Skip to main content

Full text of "Principia mathematica"

See other formats


BOUGHT  WITH  THE  INCOME 
PROM  THE 

SAGE  ENDOWMENT  FUND 

THE  GIFT  OF 

1891 


A^2mx5    i.5J(/l/i. 


MATHEMATICa 


97>4 


Cornell  University  Library 
QA  8.4.W59 
V.3 

Principla  matheinatica, 


3  1924  001   575  244 


m, 


Cornell  University 
Library 


The  original  of  this  book  is  in 
the  Cornell  University  Library. 

There  are  no  known  copyright  restrictions  in 
the  United  States  on  the  use  of  the  text. 


http://www.archive.org/details/cu31924001575244 


PRINCIPIA   MATHEMATICA 


CAMBRIDGE   UNIVERSITY   PRESS 

EonSon:    FETTER  LANE,  E.C. 

C.  F.   CLAY,   Manager 


(EIlinfiutBt) :  loo,  PRINCES  STREET  . 

Setlin:  A.  ASHER  AND  CO. 

ILeyijig :  F.  A.  BROCKHAUS 

Jleta  Imft:  G.  P.  PUTNAM'S  SONS 

iBombsj  anlj  Calcutta:   MACMILLAN  AND  CO.,  Ltd. 


All  rights  reserved 


PRINCIPIA  MATHEMATICA 


BY 


ALFRED  NORTH   WHITEHEAD,   Sc.D.,   F.R.S. 

Fellow  and  late  Lecturer  of  Trinity  College,  -  Cambridge  • 


AND 


BERTRAND   RUSSELL,    M.A.,   F.R.S. 

Lecturer  and  late  Fellow  of  Trinity  College,  Cambridge 


VOLUME   III 


Cambridge 
at  the  University  Press 


1913 

EV- 


etBmbrilige: 

PRINTED  BY  JOHN   CLAY,    M.A. 
AT  THE   UNIVERSITY  PRESS 


PREFACE  TO  VOLUME  III 

nnHE  present  volume  continues  the  theory  of  series  begun  in  Volume  II, 
and  then  proceeds  to  the  theory  of  measurement,     Geometry  we  have 
found  it  necessary  to  reserve  for  a  separate  final  volume. 

In  the  theory  of  well-ordered  series  and  compact  series,  we  have  followed 
Cantor  closely,  except  in  dealing  with  Zermelo's  theorem  (*257 — 8),  and  in 
cases  where  Cantor's  work  tacitly  assumes  the  multiplicative  axiom.  Thus 
what  novelty  there  is,  is  in  the  main  negative.  In  particular,  the  multi- 
plicative axiom  is  required  in  all  known  proofs  of  the  fundamental  proposition 
that  the  limit  of  a  progression  of  ordinals  of  the  second  class  {i.e.  applicable 
to  series  whose  fields  have  ^{o  terms)  is  an  ordinal  of  the  second  class  (cf  *265). 
In  consequence  of  this  fact,  a  very  large  part  of  the  recognized  theory  of 
transfinite  ordinals  must  be  considered  doubtful. 

Part  VI,  on  the  theory  of  ratio  and  measurement,  on  the  other  hand, 
is  new,  though  it  is  a  development  of  the  method  initiated  in'  Euclid  Book  V 
and  continued  by  Burali-Forti*.  Among  other  points  in  our  treatment  of 
quantity  to  which  we  wish  to  draw  attention  we  may  mention  the  following. 
(1)  We  regard  our  quantities  as  in  a  generalized  sense  "vectors,"  and 
therefore  we  regard  ratios  as  holding  between  relations.  (2)  The  hypothesis 
that  the  vectors  concerned  in  any  context  form  a  group,  which  has  generally 
been  made  prominent  in  such  investigations,  sinks  with  us  into  a  very 
subordinate  position,  being  sometimes  not  verified  at  all,  and  at  other  times 
a  consequence  of  other  more  fruitful  hypotheses.  (3)  We  have  developed 
a  theory  of  ratios  and  real  numbers  which  is  prior  to  our  theory  of  measure- 
ment, and  yet  is  not  purely  arithmetical,  i.e.  does  not  treat  ratios  as  mere 
couples  of  integers,  but  as  relations  between  actual  quantities  such  as  two 
distances  or  two  periods  of  time.  (4)  In  our  theory  of  "vector  families," 
which  are  families  of  the  kind  to  which  some   form   of  measurement   is 

*  Cf.  Peano's  Formulaire,  i.  (1895),  pp.  28—57. 


VI  PREFACE 

applicable,  we  have  been  able  to  develop  a  very  large  part  of  their  properties 
before  introducing  numbers;  thus  the  theory  of  measurement  results  from 
the  combination  of  two  other  theories,  one  a  pure  arithmetic  of  ratios  and 
real  numbers  without  reference  to  vectors,  the  other  a  pure  theory  of  vectors 
without  reference  to  ratios  or  real  numbers.  (5)  With  a  view  to  geometrical 
applications,  we  have  devoted  a  special  Section  to  cyclic  families,  such  as  the 
angles  about  a  given  point  in  a  given  plane. 

The  theory  of  measurement  developed  in  Part  VI  will  be  required  in  the 
next  volume  for  the  introduction  of  coordinates  in  Geometry. 

We  have  to  thank  various  friends  for  their  kindness  in  bringing  to  our 
notice  mistakes  and  misprints  noted  in  the  Errata,  both  in  this  and  in 
previous  volumes. 

A.  N.  W. 

B.  R. 


15  February  1913 


CONTENTS   OF  VOLUME  III 


PART  V.    SERIES  (continued). 

Section  B.    Well-ordered  Series 


*250. 
*251. 
*252. 
*253. 
«254. 
*255. 
*256. 
*257. 
*258. 
*259. 


Elementary  properties  of  well-ordered  series 

Ordinal  numbers 

Segments  of  well-ordered  series     . 
Sectional  relations  of  well-ordered  series 
Greater  and  less  among  well-ordered  series 
Greater  and  less  among  ordinal  numbers 
The  series  of  ordinals     .... 
The  transfinite  ancestral  relation  . 

Zermelo's  theorem 

Inductively  defined  correlations    . 


Section  E.    Finite  and  Infinite  Series  and  Ordinals 

*260.  On  finite  intervals  in  a  series 

«261.  Finite  and  infinite  series 

«262.  Finite  ordinals 

«263.  Progressions 

'ii'264.  Derivatives  of  well-ordered  series 

'»265.  The  series  of  alephs 


Section  F.    Compact  Series,  Rational  Series,  and  Continuous  Series 

*270.    Compact  series 

4^271.    Median  classes  in  series 

«'272.    Similarity  of  position 

')!'273.    Rational  series 

*274.    On  series  of  finite  sub-classes  of  a  series 

«'275.     Continuous  series 

#276.  On  series  of  infinite  sub-classes  of  a  series          .... 


PART  VI.    QUANTITY. 

Summary  of  Part  VI 

Section  A.    Generalization  op  Number 

*300.     Positive  and  negative  integers,  and  numerical  relations 
*301.    Numerically  defined  powers  of  relations 

*302.    On  relative  primes 

*303.  Ratios 


PAGE 


4 
18 
27 
32 
44 
58 
73 
81 
96 
102 

108 

109 
118 
131 
143 
156 
169 

179 

180 
186 
191 
199 
207 
218 
221 


233 

234 

235 

244 
251 
260 


VUl 


CONTENTS 


^04.  The  series  of  ratios 

«305.  Multiplication  of  simple  ratios 

«306.  Addition  of  simple  ratios 

■i(307.  Generalized  ratios  . 

*308.  Addition  of  generalized  ratios 

*309.  Multiplication  of  generalized  ratios 

*310.  The  series  of  real  numbers    . 

*311.  Addition  of  concordant  real  numbers 

'»312.  Algebraic  addition  of  real  numbers 

*313.  Multiplication  of  real  numbers 

-^314.  Beal  numbers  as  relations     . 

Section  B.    Vector-Families 


♦330.  Elementary  properties  of  vector-families 

♦331.  Connected  families          .... 

♦332.  On  the  representative  of  a  relation  in  a 

♦333.     Open  families 

*334.     Serial  families 

♦335.  Initial  families        .... 

*336.  The  series  of  vectors     .... 

4f337.  Multiples  and  submultiples  of  vectors  . 

Section  C.    Measurement     .... 


*350.  Ratios  of  members  of  a  family 

♦351.  Submultipliable  families 

♦352.  Rational  multiples  of  a  given  vector 

♦353.  Rational  families    .... 

♦354.  Rational  nets  .... 

♦356.  Measurement  by  real  numbers 

♦359.  Existence-theorems  for  vector-families 


family 


PAGE 

278 
283 
289 
296 
299 
309 
316 
320 
327 
333 
336 

339 

350 
360 
367 
376 
383 
390 
393 
403 

407 

412 
418 
423 
431 
436 
442 
452 


Section  D.    Cyclic  Families         .... 

♦370.  Elementary  properties  of  cycUc  families 

♦371.  The  series  of  vectors     .... 

♦372.  Integral  sections  of  the  series  of  vectors 

♦373.  Submultiples  of  identity 

♦374.  Principal  submultiples   . 

♦375.  Principal  ratios 


457 

462 
466 
470 
475 
485 
487 


ERRATA  TO   VOLUME  III 

p.  3,  line  ^%for"  that  there  is  "  read  "  that  this  is." 
p.  23,  *251-371.  add  "[*251-37  .*170101  .*171101]." 
p.  25,  lines  2  and  3,  for  "  18311  and  *185-11 "  read  "*183-14  and  *185-12." 
p.  25,  line  6,  for  "  [*251-61 .  *183-11 .  *185-11] "  read 
"  Bern. 

l-.*151-65.*182-05-162.    D  h  .  J  I' O'P  e  ( _|  JP)  sinor  P  n  Rl'smor  (1) 

h  .  (1) .  *151-162  .  D  h  :  Hp .  D .  a !  [(  J  ;P)s"mbr  (  J  >  Q)]  n  Rl'smor  (2) 

h  .  (1) .  *251111 .  *18216  .  D  h  :  Hp .  D  .  0'  J  5P  C  fi .  J  'P,  J  5  Q  e  Rel*excl  (3) 

I- .  (2) .  (3) .  *251-62  .  *183-14 .  *185-12  .  D  h  .  Prop  " 

p.  33,  line  6, /or  "jSXoj"  read  "  a  x  /3." 

p.  44,  line  12,  for  first  "P"  read  "  Ps." 

p.  59,  line  20,  for  "*120-413"  read  "*120-51." 

p.  71,  line  6  from  below, /or  "Nr'G'P"  read  "Nc'G'P." 

— >  — > 

p.  89,  line  4  from  below,  for  " Hp  . z e QnxV "  Tead  "  Hp  .yea-.ze QbJv" 

p.  90,  *257-211,  first  line  of  Dem.,for  "  Hp . "  read  "  Hp  .  D  .  ". 

p.  99,  *258-221,/or  "p'lc  =  (22*Q)'/<; "  read  "p'lc  =  limax  (Q/ea)'«-" 

p.  112,  line  8, /or  " xP^z"  read  " xP^z^." 

p.  120,  line  9  from  below, /or  "a  well-ordered"  read  "an  infinite  well-ordered." 

p.  177,  *265-48-49,/or  "Itp'Q"  read  "Mp'G'Q." 

p.  194,  *272-161,  second  line  of  Dem.,  for  "ze D'T "  read  "H^.ze T>'T." 

p.  195,  *272-221,  add  "z,we DT"  to  hypothesis. 

p.  196,  *272-321,  for  "  z  "  read  "  w." 

T  TOP 

p.  198,  *272-42,  second  line  oi  Dem.,  for  "  „"  read  "  my-Q-" 

p.  210,  *274-12,  fourth  line  of  Dem.,  for  " (g^^) "  read  "  (g^:)  .zea-p." 
p.  217,  *274-31,  for  "  P  e  Ser  n  comp  "  read  "  P,  e  Ser  n  comp." 

p.  224,  *276-2,  Dem.,  line  4,  /or  "  7  =  ^S  w  P'z  " 

-»         <—  «- 

read  "  7  =  (a  n  P^'z)  w  P'minp'(a  n  P'z)." 

p.  224,  *276-2,  Dem.,  line  5,  for  "ynP'z  =  l3 nP'z  =  ar\P'z .zea-y " 

<—  -*  <——><— 

read  "  minp'(a  n  P'z)  e  a  -  7 .  a  n  P'minp'(a  n  P'^)  =  7  n  P'minp'(a  n  P'z) . 

Z€y-^.ynP'z  =  anP'z  =  ^nP'z." 
p.  224,  *276-2,  Dem.,  line  6,  deZeie  "  *170-16." 
p.  244,  line  12,  for  " ( |  i2)  1 1  (-^^  1) "  read  "  {( \B)\{ (-,  1)}." 
p.  316,  line  16,/o7'  "limit"  read  "limit  or  maximum." 


X  ERRATA 

p.  317,  line  15,  end,  add  "including  zero." 

p.  320,  last  line  but  one,  for  "  rationals  "  read  "  real  numbers." 

p.  347,  line  9  from  below,  for  first  "  D  "  read  "  d." 

p.  347,  line  8  from  helow,  for  " x  +  y  =  a;  +  2"  read  " y  +  x  =  z  +  x." 

p.  379,  *333-24,  enunciation, /or  "  g  !  v  n  t"R  "  read  "  g  !  (y  +„  1)  <-«  «"P." 

p.  379,  line  8  from  below, /or  "•a^lv  nt^'Ris  veC'Ul  1?'R  " 

read  "  a  !  (i'  +« 1)  «  t^'P  isvea'Ul  f'P." 
p.  379,  *333-25,  enunciation,  /or  "  g  !  i/  n  t"L  "  read  "  g; !  (v  +c  1)  a  P'L." 
p.  395,  line  14, /or  "greater  and  less"  read  "greater  and  less  among  magni- 
tudes." 
p.  433,  *353-22,  line  4  of  Bern.,  far  "  Hp  "  read  «  Hp  .  i?  e  \g." 

ADDITIONAL  ERRATUM  TO  VOLUME  I 
p.  574,  line  8, /or  "p'a"(8\R)"  read  "p'(l"Vot'{S\R)r 

ADDITIONAL  ERRATA  TO   VOLUME  II 

p.  11,  line  13  from  below, /or  "  Nc'a  r>  t^'a. "  read  "  Nc'a  n  t't^'a." 
p.  71,  last  line, /or  "  Nc'oNc'p  =  Noc'c^""'^  Df" 

read" (Nc'a)"  =  (Noc'a)'  Df  and  fj.^<^P  =  ^^"^'^  Df." 
p.  90,  line  21, /or  "mutually  exclusive  classes  of /i" 

read  "  classes  of  /i  mutually  exclusive." 
p.  152,  margin  of  figure, /or  "D'R  =  'D'M'z"  read  "B'R  =  I>'M'w:- 

p.  152,  last  line, /or  "  e^'^'y"  read  "€^'T"y." 

p.  279,  line  11,  for  "*124-2-34"  read  "*124-23-25-252." 

p.  334,  line  10  from  below, /or  "series"  read  " well-wdered  series." 

p.  347,  line  7  from  below, /or  "the  series  a"  read  "the  class  a." 

p.  348,  line  5  from  below, /or  "Cls'excl"  read  "Cls^excl." 

p.  366,  line  8,  for  "Re G'Q "  read  " M e G'Q." 

p.  366,  line  9, /or  "such  relations  as  M"  read  "such  relations  as  R'M." 

p.  403,  footnote,  for  "  mathematischphysischen  " 

read  "  mathematisch-physischen." 
p.  519,  *200-21,  for  "  Te  Cls -» 1 "  read  "  Te  Cls  -*  1 .  P  G  J." 
p.  561,  last  line, /or  "D  "  read  "Q." 
p.  570,  first  line,  delete  "which  is  used  in  *263'11." 
p.  606,  line  23,  for  "*208-4  "  read  "  *208-41." 
p.  606,  line  24,/or  "  S, TePslnor  Q .  D  .  ^f=  T" 

read  "Psmor Q.D. (Psinor  Q)e  1." 
p.  614,  line  7,  for  "*214-31 "  read  "*214-32." 
p.  710,  Summary,  line  2,  for  " P"  read  " Q." 
p.  710,  Summary,  line  3,  for  "  Q  "  read  "  P." 
p.  753,  footnote, /or  "reallen"  read  "reellen." 


SECTION  D. 

WELL-ORDERED  SERIES. 

Summary  of  Section  D. 

A  "  well-ordered  "  series  is  one  which  is  such  that  every  existent  class 
contained  in  it  has  a  first  term,  or,  what  comes  to  the  same  thiag,  one  which 
is  such  that  every  class  which  has  successors  has  a  sequent.  We  will  call  a 
relation  in  general  well-ordered  if  every  existent  class  contained  in  its  field 
has  one  or  more  minima.  Then  a  well-ordered  series  is  a  series  which  is  a 
well-ordered  relation. 

Well-ordered  series  have  many  important  properties  not  possessed  by 

series  in  general.     A  well-ordered  series  is  Dedekindian,  except  for  the  fact 

that  it  may  have  no  last  term;  i.e.  every  section  having  a  last  term  is 

Dedekindian.    A  well-ordered  series  which  is  not  null  has  a  first  term,  and 

every  term  of  the  series  (except  the  last,  if  there  is  one)  has  an  immediate 

successor.     A  very  important  property  of  well-ordered  series  is  that  they 

obey  an   extended  form   of  mathematical   induction,  which  we  shall   call 

"  transtinite  induction,"  namely  the  following :  If  o-  is  a  class  such  that  the 

sequent  (if  any)  of  any  class  contained  in  <r  and  in  the  series  is  a  member  of 

<r,  then  the  whole  series  is  contained  in  a.     (It  will  be  observed  that  A  is 

contained  in  <t,  and  therefore,  by  *206"14,  B'P  is  a  member  of  a.)    This 

differs  from  ordinary  mathematical  induction  by  the  fact  that,  instead  of 

dealing  with  the  successors  of  single  terms,  it  deals  with  the  successors 

of  classes.     A  closely  analogous  property,  which  holds  for  all  well-ordered 

relations,  whether  serial  or  not,  is  the  following :  If  o-  is  a  class  such  that, 

— > 
whenever  P'x  C  <r,  where  x  is  any  member  of  G'P,  x  itself  belongs  to  <r,  then 

C'P Co-.    If  P  is  well-ordered,  this  property  holds  for  all  <r's  ;  and  conversely, 

if  this  property  holds  for  all  a'a,  P  is  well-ordered.     Hence  this  property 

is  equivalent  to  well-orderedness. 

If  P  is  a  well-ordered  series,  minp  selects  one  term  out  of  each  member 
of  CI  ex'C'P.  Hence  C'P,  which  is  minp"Cl  bk'C'P,  is  a  member  of  the 
multiplicative  class  of  CI  ex'G'P ;  hence  the  multiplicative  class  of  CI  ex'G'P 
exists,  and  therefore  the  multiplicative  class  of  any  class  contained  in 
CI  ex'G'P  exists  (by  *88*22).  It  follows  that  if  s'k  can  be  well-ordered,  and 
A  ~  e  «,  the  multiplicative  class  of  «  exists  ;  and  that,  if  every  class  can  be 

R.  &  W.    IIL  1 


2  SERIES  [part  V 

well-ordered,  the  multiplicative  axiom  holds.  The  converse  of  this  latter 
proposition  also  holds,  as  has  been  proved  by  Zermelo  (cf.  *258). 

Another  important  set  of  properties  of  well-ordered  series  results  from 
*20841  ff.  Two  ordinally  similar  well-ordered  series  can  only  be  correlated 
in  one  way  ;  and  no  proper  section  of  a  well-ordered  series  is  ordinally 
similar  to  the  whole  series.  (A  "proper"  section  is  a  section  not  the 
whole.) 

From  the  uniqueness  of  the  correlator  of  two  similar  well-ordered  series, 
it  follows  that  all  the  uses  of  the  multiplicative  axiom  in  *164  can  be  avoided 
if  the  fields  of  the  relations  concerned  consist  of  well-ordered  series.  I.e. 
taking  *164"45,  which  is  the  fundamental  proposition  in  this  subject,  we 
have,  without  assuming  the  multiplicative  axiom, 

P,Qe  Rel"  excl .  D  :  g  !  P  smor  Q  n  Rl'smor  .  =  .  P  smor  smor  Q, 

whenever  C'P  and  G'Q  consist  of  well-ordered  series.  Hence,  under  this 
hypothesis,  the  multiplicative  axiom  disappears  from  the  hypotheses  of  all 
the  consequences  of  *164"45. 

Ordinal  numbers  (*251)  are  defined  as  the  relation-numbers  of  well- 
ordered  series.  (This  definition  is  in  accordance  with  usage:  otherwise,  there 
would  be  no  special  reason  against  defining  "  ordinal  numbers "  as  the 
relation-numbers  of  series  in  general.  The  relation-numbers  of  series  will 
be  called  serial  numbers)  Sums  of  an  ordinal  number  of  ordinal  numbers 
are  ordinal  numbers,  but  products  of  an  ordinal  number  of  ordinal  numbers 
are  not  in  general  ordinal  numbers.  The  product  of  an  ordinal  number  of 
serial  numbers  is  a  serial  number,  and  the  product  of  an  ordinal  number  (not 
zero)  of  ordinal  numbers  other  than  zero  is  not  zero,  i.e.  a  product  of  ordinal 
numbers,  in  which  the  number  of  factors  is  an  ordinal  number,  does  not 
vanish  unless  one  of  the  factors  vanishes.  (For  relations  in  general,  the 
corresponding  proposition  requires  the  multiplicative  axiom.)  If  v  is  an 
ordinal  number,  and  /*  is  any  serial  number,  /xexprZ/  {i.e.  fi"  as  it  would 
naturally  be  called)  is  a  serial  number ;  but  if  /*  >  1,  fi  exp,  v  is  not  an 
ordinal  number  unless  v  is  finite. 

The  theory  of  sections  and  segments  (*252,  *2.53)  is  much  simplified  for 
well-ordered  series,  owing  to  the  fact  that  every  proper  section  has  a  sequent. 
Proper  sections  are  identical  with  proper  segments,  and  both  are  identical 

with  P"G'P.     The  series  of  sections,  s'P*,  is  P'P-\*G'P.     The  series  of 

segments,  s'P,  is  P'>P  or  P''P-\* C'P  according  as  there  is  or  is  not  a  last 

— > 
term  of  C'P.    The  series  of  sectional  relations,  P,,  is  Pl.'P'PlQ.'P-\*  P  ; 

its    domain    is    Pl"P"C'P,     and    its    field     is    P  ^"P"C7'P  u  t'P.      If 

— > 
xeC'P,  P^P'x  is  never  similar  to  P. 


SECTION  D]  well-ordered  SERIES  3 

The  theory  of  greater  and  less  among  well-ordered  series  and  ordinal 
numbers  is  dealt  witi*  in  *254  and  *255.  Cantor  has  proved,  by  means  of 
segments,  that  of  any  two  different  ordinal  numbers  one  must  be  the  greater. 
This  is  proved  by  showing  that  of  any  two  well-ordered  series  which  are  not 
similar,  one  must  be  similar  to  a  segment  of  the  other.  We  define  an 
ordinal  number  a  as  less  than  another  ^  if  series  P  and  Q  can  be  found  such 
that  P  is  an  a  and  Q  is  a  yS  and  P  is  similar  to  some  relation  contained  in  Q, 
but  not  to  Q.  It  can  be  proved  that  all  the  ordinals  less  than  Nr'Q  belong, 
one  each,  to  the  proper  segments  of  Q.  Hence  to  say  that  the  ordinal 
number  of  P  is  less  than  that  of  Q  is  equivalent  to  saying  that  there  is  a 
proper  segment  of  Q  to  which  P  is  similar. 

When  two  series  have  the  same  ordinal,  they  also  have  the  same  cardinal, 
in  virtue  of  *15118,  but  the  converse  does  not  hold.  When  the  cardinal 
number  of  one  series  is  greater  than  that  of  the  other,  so  is  the  ordinal 
number.  When  two  classes  can  be  well-ordered,  any  well-ordering  will  make 
the  one  class  similar  to  a  part  of  the  other,  or  the  other  similar  to  a  part  of 
the  one,  in  virtue  of  the  properties  of  segments  of  well-ordered  series.  Hence 
of  two  different  cardinals  each  of  which  is  applicable  to  classes  which  can  be 
well-ordered,  one  must  be  the  greater — a  property  which  cannot  be  proved 
concerning  cardinals  in  general. 

In  *256  we  deal  with  the  series  of  ordinals  in  order  of  magnitude.  We 
show  that  there  is  a  well-ordered  series,  and  that  the  series  of  all  ordinals  of 
a  given  type  has  an  ordinal  number  which  is  greater  than  any  of  the  ordinals 
of  the  given  type.  This  constitutes  the  solution  of  Burali-Forti's  paradox 
concerning  the  greatest  ordinal  :  there  is  no  greatest  ordinal  in  any  one 
type,  and  all  the  ordinals  of  a  given  type  are  surpassed  by  ordinals  of  higher 
types. 

*257,  *258  and  *259  deal  with  "  transfinite  induction  "  and  its  appli- 
cations, of  which  the  most  important  is  Zermelo's  theorem,  nanaely, 

*258-34.     f-:./i~6l.D:(Se  e^'Cl  ex'/* .  =  . 

(gP) .  P  e  fl .  O'P  =  /i .  /Sf  =  mini.  I'  CI  ex'/* 

where  O  is  the  class  of  well-ordered  series.     This  proposition  leads  to  the 
following : 
*?58-36.     h  :  /i  e  Cil  w  1 .  =  .  g  !  e^'Cl  ex'/* 

I.e.  a  class  can  be  well-ordered  or  is  a  unit  class  when,  and  only  when,  a 
selection  can  be  made  from  its  existent  sub-classes.     Hence  we  arrive  at 
*258-37.     h  :  Mult  ax  .  =  .  (7"fl  u  1  =  Cls 

I.e.  the  multiplicative  axiom  is  equivalent  to  the  assumption  that  every  class 
can  be  well-ordered  or  consists  of  a  single  member. 

The  proof  of  Zermelo's  theorem  uses  an  extension  to  transfinite  induction 
of  the  ideas  of  «90  and  j|e91,  which  is  explained  in  «257. 

1—2 


*250.     ELEMENTARY  PROPERTIES  OF   WELL-ORDERED  SERIES. 

Summary  of  *250. 

A  relation  is  called  "  well-ordered  "  when  every  existent  sub-class  of  its 
field  has  one  or  more  minima.  A  well-ordered  series  is  defined  as  a  well- 
ordered  relation  which  is  a  series.  We  shall  denote  the  class  of  well-ordered 
relations  by  "  Bord,"  which  is  an  abbreviation  for  "  bene  ordinata  "  or  "  bien 
ordonnee."  The  class  of  well-ordered  series  will  be  denoted  by  12.  Thus 
our  definitions  are 

Bord  =  P(Clex'C'PCa'minp)     Df, 

n  =  Ser  A  Bord  Df. 

Well-ordered  relations  other  than  series  will  be  seldom  referred  to  after  the 
present  number. 

By  applying  the  definition  of  "  Bord  "  to  unit  classes,  it  appears  that  a 
well-ordered  relation  must  be  contained  in  diversity  (*250104!).  A  well- 
ordered  relation  is  one  whose  existent  upper  sections  all  have  minima 
(*250102).     Hence  by  *21117, 

*250103.  ViPe Bord .  =  .P^e Bord 
Hence  by  *250-104, 

*250105.  hiPe Bord  .  D . Pp„  G  J 

By  considering  couples,  it  can  be  shown  (*250111)  that  a  well-ordered 
relation  in  which  no  class  has  more  than  one  minimum  is  connected  ;  hence 
by  *20416  and  *250"105,  it  is  a  series.     Thus  we  have 

*250125.  I- :  P eXl .  = .  E  !!  minp"Cl  ex'C'P, 

I.e.  a  well-ordered  series  is  a  relation  such  that  every  existent  sub-class 
of  the  field  has  a  unique  minimum.  This  might  have  been  taken  as  the 
definition  of  fi. 

By  the  definition  of  SI  we  have 
*250121.  f- :.  P  e  12 .  =  :  P  e  Ser  :  a  C  C'P .  a  !  a .  D. .  E !  miup'a : 
^  :  P  e  Ser :  a  !  a  n  C'P .  D. .  E  !  minp'o 

Applying  this  to  G'P  we  have 
*25013.     h:Pef2-t'A.D.E!5'P 


SECTION  d]       elementary  PROPERTIES   OF  WELL-ORDERED  SERIES  5 

We  have  also 

*25017.     1- :. P,  Q  6 n  -  t'A  .  D  :  P  smor  Q.  =  .Pt  Q'Psmor  Q I  a'Q 

This  proposition  justifies  the  subtraction  of  1  from  the  beginning,  and  is 

useful  in  the  theory  of  segments  of  well-ordered  series. 

We  have  next  (*250'2 — '243)  an  important  set  of  propositions  on  Pj  when 

P  e  O.     The  most  useful  of  these  is 

*250-21.     h  :  P  6  ft  .  D  .  D'P  =  D'P, 

I.e.  in  a  well-ordered  series  every  term  except  the  last  (if  any)  has  an 
immediate  successor.  (It  is  not  in  general  the  case  that  every  term  except 
the  first  has  an  immediate  predecessor.)     Another  useful  proposition  is 

*250-242.  h:P6l2.D.P  =  P,c;Pi|P 

The  next  set  of  propositions  (*250"3 — •362)  is  concerned  with  "trans- 
finite  induction."     We  have 

«250-33.     h  .  fi  =  connex  nP{aC C'P na^.D^.  seqp'a  C <r  :  D,  .  C'P C a] 

I.e.  a  well-ordered  series  is  a  connected  relation  P  such  that  the  whole  field 
of  P  is  contained  in  every  class  a-  which  is  such  that  the  sequent  (if  any)  of 
every  sub-class  of  G'P^r\  o-  is  a  member  of  a. 

*25035.     1- .  Bord  =  P {« e C'P  .  P'a; C  o- .  D^, .  a;  e o- :  D, .  O'P  C o-} 

I.e.  a  well-ordered  relation  is  a  relation  P  whose  field  is  contained  in  every 
class  <T  which  contains  every  member  of  C'P  whose  predecessors  are  all 
contained  in  <x.  We  may  say  that  a  property  is  "  transfinitely  hereditary " 
in  P  if  it  belongs  to  the  sequents  of  all  classes  composed  of  members  of  C'P 
which  possess  the  property.  In  virtue  of  *250"33,  if  P  is  well-ordered> 
every  transfinitely  hereditary  property  belongs  to  every  member  of  C'P,  and 
conversely. 

Our  next  set  of  propositions  (*250"4 — '44)  is  concerned  with  A  and 
couples.  We  prove  that  A e fl  (*250"4)  and  that  x^y  ."^  .x^yeH 
(*250-41). 

*250'5 — "54  are  concerned  with  selections.     We  have 

*250-5.       h  :  P  e  12  .  D , 

minp  1^  CI  ex'O'P  e  e^'Cl  ex'C'P  .  t'O'P  =  Prod'Cl  ex'C'P 
whence 

*25051.     I- :  a e  (7"0 .  D .  a  !  e^'Cl  ex'a 

Observe  that  G"£l  is  the  class  of  those  classes  that  can  be  well-ordered. 
From  *250'51  we  deduce 

*250-54.     h  :  (7"fl  u  1  =  Cls  .  3 .  Mult  ax 

The  converse,  which  is  Zermelo's  theorem,  is  proved  in  *258. 


6  SERIES  [part  V 

*250"6 — "67  are  concerned  with  consequences  of  *208.  We  show  that 
two  well-ordered  series  cannot  have  more  than  one  correlator  (*250'6)  ;  that 
if  P  is  a  well-ordered  series,  and  j8  is  contained  in  a  proper  section  of  P, 
P  C  y3  is  not  similar  to  P  (*250-65) ;  and  that  if  P  is  any  well-ordered 
relation,  and  a  is  any  class  such  that  there  are  terms  in  C'P  which  are  later 
than  any  member  of  a  r>  C'P,  then  P  is  not  similar  to  P  ^  a  (*250-67). 


*25001.     Bord  =  P(Clex'0'PCa'minjp)     Df 

*25002.     n  =  SernBord  Df 

*250-l.       \-:Pe  Bord  .  =  .  CI  ex'O'P  C  Q'minp  [(*250-01)] 

*250101.  h  :.  P  6  Bord .  =  :  g  !  a  n  C'P .  D,  .  g  !  minp'a     [*2501 .  *20515] 

*250102.  h  :  P  e  Bord  .  =  .  sect'P  -  I'A  C  a'minj. 
Dem. 

I-.*2501.    DhiPeBord.D. sect'P- t'ACQ'minp  (1) 

h  .  *20519 .  D  I- .  liihi  (Ppo)'a  =  i^n  (Ppo)'P*"a 

[*205-68]  =  minp'P*"o  (2) 

h  .  *90-331 .  *21113  .  D  h  :  a  !  a  n  C'P  .  D  .  P^"a  e  sect'P  -  t'A  (3) 

h  .  (3) .  D  I- :.  sect'P  -  I'A  C  Q'minp .  D  :  a  !  o  n  C'P  .  D. .  g !  minp'(P#"a) . 

[(2)]  D„.a!i]^n(Pp„)'a. 

— » 
[*205-26]  3« .  a  !  minp'a  : 

[*250-101]  DiPeBord  (4) 

I- .  (1) .  (4) .  D  h  .  Prop 

*250103.  l-:P6Bord.s.Pp„6Bord     [*250102 . *211-17] 

*250104.  l-.BordCRl'J 

Dem. 

— » 
I-  .*250-l  .Dh:PeBord  . a; e C'P .  D  . « e minp't'a; . 

[*205-194]  D  .  ~  {a>Pa;)  Oh.  Prop 

*250105.  f-iPeBord.D.PpoCJ"    [*250103104] 
*25011.     h  ::  P  6  connex  .  D  :.  P  e  Bord  .  =  :  a  '■  a  «  G'P .  D.  .  E !  minp'a : 

=  :aCC'P.a!a.3..E!minp'a 
[*250-l-101 .  *205-32] 

«250'111.  h  :.  P  6  Bord .  D  :  P  e  connex  .  =  .  minp  e  1  -♦  Cls 

Dem. 
h.*2501.*7l-l.D 

h  ::P e  Bord. minp e  1  ->  Cls .  D  :.  a;, y  e  G'P .  D  :  (i'ob  u  t'y)  - P"{i'x  w  I'y) e  1 : 

[*54-4]  D  :  t'a;  w  I'y - P"{i'x  w  I'y)  =  i'x.v  . 

I'lesj  I'y-  P"{i'x  u  i'y)  =  i'y   (1) 


SECTION  D]      elementary   PROPERTIES   OF  WELL-ORDERED  SERIES  1 

I- . (1)  .  D  h  :. P 6 Bord  .  minp el—* Cls . as, ye G'F .x^y.D: 

•  ye  P"(l'x  u  I'y)  .v.xe  P"(l'x  w  I'y)  : 

[*250-104]  D  :  wPy .  v  .  yPx  (2) 

h  .  (2) ,  *202103 .  D  f- :  P  e  Bord  .  minp  e  1  -»  Cls .  3 .  P  e  connex  (3) 

h.(3).*205-31.Dh.Prop 

*250112.  h  :  P  e connex  r.  Bord .  =  .  E !!  minp"Cl  ex'O'P 
Dem. 

\- .  *2501111 .  D 

h  :  P  e  connex  n  Bord .  =  .  minp  e  1  — >  Cls  .  CI  ex'C'P  C  Q'minp . 
[*71-16]  =  .  E 1!  minp"a'minp .  CI  ex'G'P  C  Q'minp . 

[*205-1516]  =  .  E  !!  minp"Cl  ex'C'P :  D  h  .  Prop 

«250-113.  h  .  connex  n  Bord  =  fl 
Dem. 

I- .  *204-l  .  (*25002)  .  D  h  . II C connex  n  Bord  (1) 

h  .  *250105  .  D  I- :  P  e  connex  rt  Bord  .D.Pe  connex  .P^QJ. 
[*204-16]  3 .  P  e  Ser  (2) 

h  .  (2) .  (*250-02)  .D\-:Pe  connex  n  Bord  .  D .  P  e  fi  (3) 

h  .  (1) .  (3) .  D  I- .  Prop 

*250-12.     h:P6«.  =  .PeSernBord     [(*25002)] 

*250121.  h  : .  P  e  12 .  =  :  P  6  Ser :  a  C  C'P .  a  !  a .  D.  .  E  !  minp'a : 

=  :  P  e  Ser :  a  !  a  A  C'P .  3a .  E  !  minp'a    [*2501211] 

*250122.  I- :.  P  6  n  .  =  :  P  6  Ser  :  a  !  C'P  n  p'P"(o  n  C'P) .  3. .  E !  seqp'o 
Dem. 

l-.*206-13.*250121.D 

h  :.  P  e  fl .  D  :  P  e  Ser :  a  !  C'P  o  p'lp'^a  r^  C'P) .  D. .  E !  seqp'a      (1) 

l-.*204-62.D 

h  :  P 6  Ser .  a  !  a  «  C'P  .  D  .  a  !  C'P  np'P"2j'^'(a  n  O'P) . 

[*40-62]  D.a!C'Prti3'P"{C'Pn2)'P"(anO'P)}    (2) 

l-,(2).*10-l.D 

h  :.  P  6  Ser :  a !  G'P  n^'P"(o  n  C'P) .  D. .  E !  seqp'a :  D  : 

a  !  a  n  C'P .  Da  .  E  !  seqp'{C'P  a  p'P"(o  a  C'P)} . 
[*206-131-54]  3„ .  E  !  minp'a  : 

[*250-121]D:Pen  (3) 

h.(l).(3).,DH.Prop 


8  SERIES  [part  V 

*250123.  h  :.  P  e  n  -  I'A .  =  :  P  e  Ser :  a  1  ^'P"(o  n  G'P)  .  D. .  E  !  seq^'a 
Dem. 
l-.*250-122.D 

I- : .  P  €  Ser :  a  !  p'P"(a  n  C'P) .  3, .  E  !  seqp'a :  D .  P  e  fl  (1) 

V .  *40-6  .  *24-52  .  D 

I- :.  a  !iJ'P"(a  n  O'P)  .  D,  .  E  !  seqp'a :  D  .  E !  seqp'A . 

[*20618]  D  -  a !  -P  (2) 

h .  *250-122 .  *40-62 .  D 

I-  i.Pefi  .  D  :PeSer :  a  !  a  n  O'P.  a  !i>'P"(a  "  O'P) .  D.  ■  E !  seqp'o   (3) 

h  .*206-14 .  D  h  :  a  n  O'P  =  A .  D .  ^qp'a  =  B'P 

[*205-12]  =mmp'C"P  (4) 

h  .  *33-24 .  *250121  .  D  I- :  P  e  fl  -  t'A .  D .  E !  minp'C'P  (5) 

h  .  (4) .  (5) .  D  h  :  P  6  n  -  t'A .  a  n  O'P  =  A .  D  .  E !  seqp'o  (6) 

h.(3).(6).D  ^ 

H  :.  P  e n  -  I'A .  D  :  P e Ser  :  a  !i3'P"(a  n  O'P) .  D.  .  E !  seqp'a  (7) 

h  .  (1) .  (2) .  (7) .  D  h  .  Prop 

*250124  I- :  P  e  li  .  =  .  P  e  Ser .  sect'P  -  I'C'P  C  Q'seqp 

Dem. 
h  .  *250122  .  *211-703 .  D  h  :  P  e  fl .  D  .  P  e  Ser  .  sect'P  -  I'C'P  C  Q'seqp    (1) 
h.*211-7.  D  h:.P  6  Ser.  sect'P- I'C'P  C  Q'seqp.  D: 

/S  e  sect'P  -  I'A  .  Dp  .  E  !  seqp'((7'P  -  yS) . 
[*211-723]  Dp  .  E !  minp'iS : 

[*250102-12]  DrPen  (2) 

h .  (1) .  (2) .  D  h  .  Prop 

*250125.  I- :  P  e  n  .  =  .  E !!  minp"Cl  ex'O'P .   [*250-112113] 

The    above    proposition     might    be    demonstrated,    independently    of 
*250-112-113,  as  follows: 

(a)  If  E!!minp"Clex'(7'P,   it   follows   that    a;  e  C'P  .  D  .  E  !  minp't'a;, 
whence  w  e  G'P .  D  .  ~  (xPx),  whence  PQ.J. 

(b)  If  E  !!  minp"Cl  ex'O'P,  it  follows  that 

x,ye  G'P . a; 4=  y  •  D .  E  !  minp'(t'a!  w  I'y), 
whence  it  follows  that 

xPy  .  ~  Q/Px)  .  V  .  yPx .  ~  (xPy). 
Hence  P  e  connex  .P'dJ. 

(c)  If  E  !!  minp"Cl  ex'O'P,  it  follows  that 

xPy .  yPz .  D  .  E !  minp'(t'a;  w  I'y  w  I'z), 


SECTION  D]      elementary  PROPERTIES  OF  WELL-ORDERED  SERIES  9 

whence  xPy .  yPz  .  D  .  ~  {zPx), 

and  by  P"  G  J^  (whioMhas  just  been  proved) 

xPy .  yPz  ."^  .x^z. 
Hence,  since,  by  (6),  P  e  connex,  we  must  have 

xPy .  yPz  .  D  .  xPz,  i.e.  P  e  trans. 
Hence  E  ! !  minp"Cl  ex'O'P .  D .  P  e  Ser. 

Hence  the  above  proposition  is  obvious. 

*250126.  h  :  P  e  f2  .  E  !  maxp'o  .  ~  E !  seqp'a .  D  .  B'P  e  a .  B'P  =  maxp'a 
Dem. 

h  .  *250123  .  Transp .  D  h  :  Hp  .  D .  ~  g  !  p'P"(a  n  G'P) . 
[*205-65]  D  .  ~  a  !  P'maxi.'a . 

[*33-4]  D .  maxp'a  ~  e  D'P  - 

[*93-103]  D .  maxp'a  e  B'P  . 

[*202-52]  D  .  maxp'a  =  B'P  Oh.  Prop 

*25013.     l-:PeXl-t'A.D.E!5'P 

Dem. 

h  .  *33-24 .  D  I- :  Hp .  D .  a !  (7'P . 

[*250121]  D .  E !  minp'C'P . 

[*20512]  D.E!5*P:Dh.Prop 

*250131.  l-:.Pen.D:a!P.  =  .E!JS'P 

Dem. 

h  .  *93102  .  *33-24  .  3  h  :  E !  B'P .  3  .  g !  P  (1) 

h.(l).*250-13.DI-.Prop 

*25014.     hiPeBord.D.Rl'PCBord 

Dem. 
h  .  *250-l .  *205-26  .  D 

h  :  P  6  Bord  .  Q  G  P .  D .  CI  ex'G'P  C  a'minp .  miup  [  CI  ex'O'Q  C  min<, .       (1) 
[*60-42.*35-64]  D .  CI  ex'O'Q  C  CI  ex'O'P .  a'minp  n  CI  ex'O'Q  C  a'mine     (2) 
I- .  (1)  .  (2)  .  *22-44-621 .  D  h  :  P  e  Bord .  Q  G  P .  D .  CI  ex'O'Q  C  Cl'min^  . 
[*2501]  D.Qe  Bord  Oh.  Prop 

*250141.  hiPefl.D.P^aefl     [*250-14 . *204-4] 

*250142.  h  :  P  6  Bord  .  D  .  Rl'P  n  connex  C  fl 
Dem. 

h  .  *250'14  .  D  h  :  Hp  .  D  .  Rl'P  n  connex  C  Bord  n  connex 
[*250113]  CnOh.Prop 


10  SERIES  [PABT  V 

*25015.     l-:Pen.E!5'P.D.PeDed 

Dem. 

I-  .*250-101 .  D  h  :.  Hp  .  D  :  a  !  a  A  O'P.  D. .  a  !  minp'a  (1) 

h.*206-14.    DI-:.Hp.D:anO'P  =  A.D..a!precp'«         (2) 

— »  -♦ 

I- .  (1) .  (2) .    D  I- :  Hp .  3 .  (a) .  a  !  (minp'a  w  precp'a) . 

[*2141]  D.PeDed. 

[*214-14]  D  .  P  6  Ded  :  D  h  .  Prop 

*250151.  V-.PeH. xeOT .  D  .  P ^  P^^'a;  eDed 
Dem. 

h.*250-141.Dh:Hp.D.P^P*'a;6n  (1) 

I- .  *205-41 .    D  h  :  Hp .  D  .  5'Cnv'(P  l  P^'x)  =  vaaxp'P^'x 

[*205-197]  =t'«. 

[*53-3]  D  .  E  !  5'Cnv'(P  l  ^'«)  (2) 

h.(l).(2).*250-15.Dh,Prop 

*250152.  h.nC  semi  Ded     [*214-7  .  *2o0-124] 

*25016.     f-:Pefl.a!a"0'P.3.  P'minp'a  =  p'P"(a  n  G'P) 
[*205-65 .  *250-121] 

*25017.     h  :.  P,Q  6  fl  -  I'A  .  D  :  P smor  Q .  =  .  P  t  Q'P smor  Q  ^Q'Q 
[*204-47.*250-13] 

This  proposition  is  useful  in  connection  with  the  series  of  segmental 
relations  in  a  well-ordered  series,  for  the  series  of  proper  segmental  relations 
in  a  well-ordered  series  is  (as  will  be  proved  later) 

Pl'^'^Pia'P, 

and  this  is  ordinally  similar  to  P  ^  Q'P.  Hence,  by  the  above  proposition, 
two  well-ordered  series  which  are  not  null  are  ordinally  similar  when,  and 
only  when,  the  series  of  their  segmental  relations  are  ordinally  similar. 

*250-2.       I- :  P  e  Bord  .  D  .  D'P  =  D'(P-^P^) 
Dem. 

l-.*33-4.  Dh:a!6D'P.  =  .a!P'a;  (1) 

I- .  *2.501 .  *20516 .  D  h  :.  P  6  Bord  .  3  :  a  !  P'«  •  =  •  a  !  mfnp'P'a; . 
[*205-251]  =.xe D'(P^P^)  (2) 

h  .  (1) .  (2) .  D  h .  Prop 


SECTION  D]      elementary   PROPERTIES  OP  WELL-ORDERED   SERIES  11 

*250-21.     h:Pen.D.D'P  =  D'Pi    [*201-63 .  *250-2] 

In  virtue  of  this  proposition,  every  term  of  a  well-ordered  series  (except 
the  last,  if  any)  has  an  immediate  successor. 

*250-22.     h  :  Pe Ser n  Ded  .  D'P  =  D'Pj .  3  .  Pefl-  t'A 
Dem. 

I- .  *214101 .  D  h  :  Hp .  ~  E !  maxp'a .  D .  E I  seq^'o  (1) 

h  .  *206-45  .    D  I- :  Hp .  maxp'a  e  D'P  .  D .  E !  seqjs'maxp'a  . 
[*206-46]  D .  E !  seqp'a  (2) 

I- .  (1) .  (2) .    D  h  :.  Hp .  D  :  ~ (maxp'a  =  B'P)  .  D» .  E !  seqp'o  : 
[*93-118]  D  :  ~  {B'P  e  a) .  D. .  E  !  seqp'a  : 

[*202-511.*214-5]  D  :  a !  p'P"{a.  n  G'P) .  D, .  E !  seqp'o : 

[*250123]  DiPefl-i'A:.  Dh.Prop 

*250-23.     h  :  Pefl  .E!B'P.=  .PeSern  Ded  .D'P  =  D'Pi 
Dem. 

h  .  *250-22  .*214-5  .  D  h  :  P  e  Ser  n  Ded .  D'P  =  D'P^ .  D  .  P  e  II .  E  !  fi'P    (1) 

h .  *25015-21 .  DI-:P6n.E!£'P.D.P6SerftDed.D'P  =  D'Pi    (2) 

h.(l).(2).Dh.Prop 

*250-24     h:Pen.D.P»|P,  =  PDD'P 
Bern. 
h  .  *2011 .  *1312 .  D  h  : .  Hp  .  xP^z .  D  :  yPx .  D .  yP'^  :  y  =  a; .  D .  yP^z  : 
[Transp]  3  :  ~  (yP^z) .  D .  ~  (yPa;)  -y^x: 

■     [*201-63.*202103]  DzyP^z.-^  .xPy  (1) 

l-.(l).*201-63.      Dy:B.^.xP''z.zP^y.D.xPy.x,yeT>'P  (2) 

h  .  *250-21.  D  I- :  Hp  .  x,yeD'P .  xPy .  D  .  (g^r) .  yP^z  . 

[*201-63]  D  .  (a^) .  2/P^ .  zhy  • 

[*341]  D.a;(P''|P,)y  (3). 

h  .  (2) .  (3) .  D  h  .  Prop 

*250-241.  l-:P6i2.D.P,|P==  (d'Pi)  1  P    [Proof  as  in  *250-24] 

*250-242.  l-:P6n.D.P  =  P.c;P,|P 

Dem. 
h  .  *201-63 .  D  h  ::  Hp .  D  :.  xPy .  =  :  xP^y .  v  .  xP'y  : 
[*250-21]  =  :  xPiy .  v .  (g^r) .  xP^z .  xP'y  : 

[*250-241]  =:xPry.v.  (gi)  .xP^z.  zPy : :  D  h  .  Prop 


12  SERIES  [part  V 

*250-243.  \-:Pen,.D.Pt  d'Pi  =  (CI'Pi)  1  (Pi  *a  P  i  -Pi) 
[Proof  as  in  *250-242] 

The  following  propositions  deal  with  the  extended  form  of  mathematical 
induction  which  is  characteristic  of  well-ordered  series. 

*250-3.       H  : .  P  6  Bord :  o  C  O'P  n  a .  D. .  seq^'a  CaiD.G'PCa 
Dem, 

h  .  *250-101 .  D  h  :  P  e  Bord .  g  !  C'P  -  o- .  D  .  g  !  mmp'((7'P  -  a) . 

[*205-14]  D  .  (a*)  .xeC'P-a.P'xCff. 

[*206-4.*250104]  D  .  (ga;)  .x  eC'P -a  .  P'xCa- .a;  aeqp  (P'o;)  . 

-»  — > 

[*13-195]  D  .  (ga;,  a)  .  a  =  P'ar .  a  C  C'P  n  o- .  a;  e  seqp'a  -  a  . 

[*10-24]  3 ,  (ga)  .  o  C  C'P  n  o- .  g  !  seqp'a  -  a  (1) 

h .  (1) .  Transp  .  D  J- .  Prop 

«250-301.  h  :  P  6  connex  .  ~  g  !  minp'r  .  <r  =  C'P  -  P"t  .  a  C  <r  .  D .  seqp'a  C  a 
Dem. 

h .  *205122  .  *202-501  .  3  h  :  Hp .  D  .  <r  C^'P"t  . 

[*40-6r]  D.tC^'P"o-  (1) 

F  .  *206-134  .  D  I- :  Hp  .  a;seqp  a .  D  .  P'a;  C  -p'P"a 

[*4016]  C-2>'P"(j- 

[(1)]  C-T. 

[*37-462]  D.a!~6P"T. 

[*20618.Hp]  D.a;eo-:DI-.Prop 

«250-31.     l-::Pe  connexs. a  C  O'Pno-.D.. seqp'a  Co-O,.  C'P  Co-:.D.  Pen 
Bern. 

f- .  *250-301 .  D 

— »  « 

h  :.  P  e  connex  .  g !  C'P  n  t  .  ~  g  !  minp'r  .  a  =  C'P  -  P"t  -  D  : 

a  C  o- .  Da  .  seqp'a  C  o- :  g  !  C'P  -  o-  (1) 

h  .  (1) .  *10-28 .  D 

h  :.  P  6  connex  :  (gr)  .  g  !  C'P  n  t  .  ~  g  !  minp'r  :  D  : 

— » 
(go-) :  a  C  o- .  3. .  seqp'a  C  o- :  g  !  C'P  -  a  (2) 

h .  (2) .  Transp  .  D 

I- ::  P €  connex :.  a C  <r  -  D.  .  seqp'a  C  o- :  D„ .  C'P  C  o- :.  D  : 

g  !  C'P  n  r  .  Dt  .  g  !  minp'r  : 
[*250101]     0:Pe  Bord  (3) 

F.(3).*250113.Dh.Prop 


SECTION  D]      elementary   PROPEBTIES  OF  WELL-OEDERED   SERIES  13 

*250-32.     I- ::.  P  e  connex  .'^•.-.Pe  Bord  .  =  :. 

a  CK'P  n  o- .  D.  .  seqp'a  C  o- :  D, .  C"P  C  <r     [*250-3-31] 

*250-33.     h  .  fl  =  connex  n  P  {a  C  C'P  r»  o- .  3.  .  seqp'a  C  o- :  D,  .  C'P  C  o- j 
[*250-32113] 

*250-34.     h:.PeBord:a!€(7'P.P'a;C(T.D«.a;eo-:  D.O'PCff 
Dem. 

V  . *25011 .31-:  P eBord .  g  !  C'P- o- .  D  .  g !  iimip'(C'P - o-) . 

[*205-14]  D.(a«).a;eO'P-<r.P'a!C«j-    (1) 

h  .  (1) .  Transp .  D  h .  Prop 

*250a41.  1- : :  a; e  (7'P .  P'ic C  ff .  D«  .  a;  6 (7  :  3, .  C'P C  o- : .  D .  P 6  Bord 
Dem. 
I-.*205'122.*37-462.D 
l-:a!a'PnT.~a'.minp'T.<T  =  G'P-P"T.a;e(7'P.P'«C<7.D. 

a!,>.6P"7-.a!C"P-o-. 
[Hp]  D,a;€o-.a!(7'P-o-  (1) 

h  .  (1)  .  *10-28 .  D  h  :.  (gr)  ,  g  !  G'P  n  t  .  ~a  !  minp'r .  D  : 

(aff):a;eC"P.P'a:C<r.D«.a!eo-:a!C"P-ff    (2) 
h  .  (2) .  Transp .  3  h  :.  Hp  .  D  :  g  !  G'P  n  t  .  3, .  g !  minp'r : 
[*250101]  3  :  P  6  Bord  : .  D  I- .  Prop 

*250-35.     V  .  Bord  =  P  {a;  e  O'P  .  P'a;  C  o- .  D^ .  a;  e  o- :  3, .  O'P  C  o-} 
[*250-34-341] 

*250-36.     h  :.P6n:\C«7.g!XnC"P.D^.seqp'\Co-:D.P"o-Ca 
Z)em. 

h  .*250121 .  D  I- :  Pefl  .g  !  P"o--o-.  D  .  E !  mmp\P"a-a)  (1) 

l-.*20514.*37-46.D 

h  :  a;  =  minp'(P"(r  -  ff)  .  3  .  g  !  o- A  P'a; .  P'a;  rt  (P"o- -  0-)  =  A  . 

[*24-31 1]  D  .  g  !  o-  A  P'a! .  P'a;  -  <7  C  -  P"(r  (2) 

h.(2).*202-501.D 

h  :  P  e  Ser .  a;  =  minp'(P"o-  -  o-) .  D  .  g  !  o-  a  P'a; .  P'a;  -  o-  C^'P"((r  a  C'P)  . 

[*4016]  p  .  g !  ff  A  P'a; .  P'a;  -  o-  Zp'P"(a  a  ^a;) . 

[*40-61]  D  .  P'a;  -  <r  C  P"(<r  a  P'a;)  (3) 

I- .  (3) .  D  h  :  Hp  (3) ,  D .  P'a; C (o-  A  "P'o;)  w  P"(ff  aP'o;)  . 


14  SERIES  [PABT  V 

-♦ 
[*206-l71]  D  .  a;  =  seqp'(o- «  P'oo)  . 

-*  —*  — »  — » 

[(2)]  D  .  a  !  o-  ft  P'x  .<Tr\P'xC(T.~  {seqp'(o-  rt  P'x)  C  <t]  - 

[*10-24]  D.(a\).\Co-.a!\AO'P.~(seqp'\Co-)  (4) 

h  .  (4) .  Transp .  D  I- :  Hp .  D  .  ~  E !  minp'(P"o-  -  a) . 

[(l).Transp]  D  .  P"a  -  o-  =  A :  D  h  .  Prop 

*250-361.  I- :.  P  6  n  .  Pj"o-  C<r:\Co-.a!(\n  (7'P) .  D^  .  limaxp'X  C  <r  :  D  . 

P"(7C<r 
Dem. 

-»  «- 

h  .  *206-46-43  .Dh:Hp.\Co-.E!  maxp'X .  D .  seqp'X  =  P,'maxp'X . 

— » 
[Hp]  D .  seqp'X  C  a  (1) 

— >  — > 

I-  .*207-4.D  V  :  Hp.  \C  o-.g!  (X  «  C'P).  ~  E  !  maxp'X  .D.seqp'X  =  limaxp'X. 

— » 
[Hp]  D.seqp'XCo-         (2) 

h .  (1) .  (2) .  D  h  :.  Hp .  D  :  X  C  ff .  a !  (X  A  C'P)  .  Da  •  seqp'X  C  a : 

[*250-36]  D  :  P"o-  C  o- : .  D  h .  Prop 

*250-362.  I- :.  P  e  n .  Pi"<r  Co-iXCo-.glXft  C'P  .  D^ .  liminp'X  C  o- :  D . 

P"o-  C  o- 

r*250-361  p  .  *121-26l 

*250-4       h  .  A  e  n 

Dem. 

h.*60-33.         DI-.Clex'O'ACa'min(A)  (1) 

h .  (1) .  *2.501 .  D  h  .  A  e  Bord  (2) 

h.(2).*204-24.Dh.Prop 

*250-41.     \-:x:^y.'2.xlyen 
Dem. 
h.*60-39.  ^\-.Clex'C'{xly)  =  i'i'!c\Ji'i'y^Ji'{i'xsji'y)  (1) 

h  .  *20518 .         D  h  :  Hp  .  P  =  a;  ^  y .  D  .  minp't'a;  =  x .  miap'i'y  =  y    (2) 
h  .  *205-181 .       D  h  :  Hp  (2) .  D  .  minp'(t'a:  w  t'y)  =  x  (3) 

h  .  (1)  .  (2) .  (3) .  D  h  :  Hp  (2) .  D .  CI  ex'G'(x  iy)C  a'taiup . 
[*2501]  D.a;4yeBord  (4) 

I- .  (4) .  *204-25  .  3  h  .  Prop    • 


SECTION  D]      elementary  PROPERTIES  OF  WELL-ORDERED  SERIES 


15 


*250-42. 
Dem. 


I- :  P  6  n  -  I'A .  D  .  E  !  2p .  2p=P,'B'P.  P'2p=i'B'P .  P I  P'2p=k 

(1) 


V  .  *12113 .  D  f- :  «  =  2p .  =  .  «=  P^'B'P 

V  .  *250-13 .  D  h  :  Hp  .  D  .  E !  B'P  . 
[*250-21  .*2047]  D  . E !  Pi'5'P 

h .  (1) .  (2) .  D  h  :  Hp  .  D  .  E !  2p  .  2p  =  P/JB'P 
[*204-71]  D.P'2p  =  t'£'P 

[*200-35]  D  .  P  p  P'2p  =  A 

I- .  (3) .  (4) .  (5) .  D  h .  Prop 


(2) 
(3) 
(4) 

(5) 


«250-43. 
Dem. 


h.Or  =  flnC"0 


h.*56-104.Dl-:PeO,.s.P  =  A. 


«250-44. 
Dem. 


[*250-4.*33-241] 
[*71-37.*54-l] 

|-.2,  =  OnO"2 


=  .Pea.C'P=A. 

=  . Pell  r.O"0:Dh. Prop 


l-.*56-11.3h:.P62, 
[*250-41] 
[*56-ll-38] 
[*20414] 


(•S^ie,y).x=^y.P=xly: 
PeD.:{'^x,y).x^y.P  =  xiy: 
Pen,nC"2.PriP  =  Ai 
P6QftC'"2:.DI-.Prop 

*250-5.       h  :  P  e  n  .  D .  minp  p  01  ex'O'P  e  e^'Cl  ex'O'P  . 

I'O'P  =  Prod'Cl  ex'CP     [*205-33 .  *250-l .  *115-17], 
This  proposition  is  of  great  importance,  since  it  gives  the  existence- 
theorem  for  selections  from  any  class  of  existent  classes  whose  sum  can  be 
well-ordered  (cf.  *250"53,  below).     Observe  that  " ae CD, "  means  " a  is  a 
class  which  can  be  well-ordered." 

*250-51.     l-:aeO"O.D.a!6A'Clex'a  [*250-5] 

*250-52.     h:a6C"n./8Ca.D.a!€4'Clex'/3    [*88-22-2 .  *250-51] 
h  :  s'/e  6  G"n .  A  ~  6  «  .  D  .  a  !  es'ic 


«250-53. 

Dem. 


«250  54. 
Dem. 


h  .  *60-23-57  .  D  h  :  Hp .  D .  /e  C  01  ex's'/e . 
[*88-22.*250-51]  D .  g  !  6a'k  :  D  I- .  Prop 

I- :  Cn  w  1  =  Cls  .  D  .  Multax 

h  .  *25063  .  *83-4 .  D  I-  :.  Hp .  3  :  A ~ e « .  D, .  g !  e^'* 
[*88-37]  D  :  Mult  ax  :.DI-.  Prop 


16  SERIES  [part  V 

The  above  proposition  states  that  if  every  class  which  is  not  a  unit  class 
is  the  field  of  some  well-ordered  series,  then  the  multiplicative  axiom  holds. 
The  converse  of  this  proposition  has  been  proved  by  Zermelo  (cf.  *25847). 

*250-6.       hiP.Qefl.PsmorQ.D.PslnOTQel     [*208-41 .  *250121] 

This  proposition  is  very  useful,  since  it  enables  us,  when  two  similar 
series  of  similar  well-ordered  series  are  given,  to  pick  out  the  correlators  of 
all  the  pairs  without  assuming  the  multiplicative  axiom.  I.e.  given 
P,QeRel^excl./SePsinorQ./SGsmor,  if  NeG'Q,   the   correlator  of  S'N 

and  N  will  be  i'(S'N)  smor  If  if  S'N.NeD,.  This  enables  us  to  dispense 
with  the  multiplicative  axiom  in  the  hypotheses  of  *164*44  and  its  con- 
sequences, whenever  the  relations  concerned  have  fields  whose  members  are 
well-ordered  series. 

*250-61.     h  :  P  e  n .  D  .  P  smor  P  =  t'(/  [  G'P)  [*208-42] 

*250-62.     l-:PeBord.Secror'P.D.->..(a[a;).(S'ar)Pa;    [*208-43] 

*25063.     l-:PennCnv"n.D.Rl'PftNr'P  =  t'P        [*208-45] 

This  proposition  will  be  useful  in  showing  that  a  finite  series  is  not 
similar  to  any  proper  part  of  itself,  and  is  a  series  which  is  well-ordered  and 
has  a  converse  which  is  also  well-ordered. 

*250-64.     h:PeBord.iS6cror'P.D.a'PA;)'P"D'S=A     [*208-46] 

In  virtue  of  this  proposition,  a  part  of  a  well-ordered  series  can  only  be 
similar  to  the  whole  if  the  part  extends  to  the  end  of  the  series.  Thus  e.g. 
no  proper  section  of  a  well-ordered  series  can  be  similar  to  the  whole. 

*250-65.     h  :  P  e  ft .  a  e  sect'P  -  I'G'P .  /3  C  a .  D .  ~  {P  smor  P  ^  /3} 
Dem. 

V  .  *4016  .     D  1- :  Hp  .  D  .  p'P"C'(P  I  a)  C  p'*P"G'{P  ^  /3)  (1) 

1- .*211-133 .  D  I- :  Hp  .  a~e  1 .  D  .  a=  (7'(PDa)  . 
[*211-703]  D .  a !  p'P"G'(P  I  a) . 

[(1)]  D.a!i>'P"(7'(-PD/8)  (2) 

I-  .(2).*40-6-62  .DI-:Hp.a~el.a!P.D.a!  G'P  f^  p'P"G'(P  I  ^) . 

[*208-47]  :^.r^{P smor (P  1 0)}  (3) 

I-  .*211-1 .  *24-13  .  D  h  :P  =  A  .  D  .  sect'P  -  t'G'P  =  A  (4) 

h  .  (4) .  Transp .       3  h  :  Hp  .  D .  g !  P  (5) 

h .  *200-36  .  *250-104  .  D  h  :  Hp .  g !  P .  a  e  1 .  D  .  ~  {P  smor  (P I  /3)}  (6) 
h  .  (3)  .  (5) .  (6)  .  D  1- .  Prop 

#250651.  h  :  P  e  n .  D  .  Nr'P  a  P ^"(sect'P -  I'C'P)  =  A     [*250-65] 


SECTION  D]       elementary   PROPERTIES   OF   WELL-ORDERED   SERIES  17 

*250-652.  I- :  P  e  Bord .  QQP  .'S^IC'F  n  p'*P"G'Q .  D  .  ~  (P  smor  Q) 
[*208-47]        • 

*250-653.  h  :  P  6  Bord  .•g^lCFn  p'F"(oL  n  C'P)  .D.^{P  smor  P  ^  a) 

Dem. 

h  .  *37-41 .  D  h  .  G'(P  ^  a)  C  a  n  G'P . 

[*40-16]      D  h  .p'P"(a  n  C'P)  C  p'P"(7'(P  I  a)  (1) 

h  ,  (1)  .        D  h  :  Hp  .  D  .  a  !  C'P  r.  p^"C'(P  I  a)  . 

[*250-652]  :).r^{P  smor  (P  p  a)} :  D  f- .  Prop 

*250-66.     l-:Pef2.aesect'P.Psinor(Pta).D.«=C'P     [*2.50-65 .  Traasp] 

*250-67.     h  :  P  6  n .  a;  e  C'P .  D  .  ~  {P  smor  (P  tP'so)} 
Dem. 

\- .  *211-302 ,  D  h  :  Hp .  D  .  P'a;esect'P  (1) 

l-.*200-52.    Df-:Hp.D.P'a;=|=C'P  (2) 

F  .  (1) .  (2)  .  *2o0-65  .  D  h  .  Prop 

*250-7.       bi.Pen.^ixeG'P.D^.P  [^  P^'aJeO  s  PeSer 
Bern. 

h.  *250-141.  3  f-:.P  6  fl.D:a;e  C'P.  D^.PpP^'ajefl  (1) 

I- .  *250-121 .  D 

I- : .-  a;  6  C'P  .  D:, .  P  p  P^'x  e  fi  :  =  :  a;  e  C'P  .  g  !  a  n  C'(P  t  P*'a.') .  D:», .  ■ 

E!miii(PtP*'a;)'a: 
i;*202o5]  D  :  a;  6  Q'P  r>  a .  D^,,  .  E !  mia  (P  ^  P*'a;)'a : 
[*205-27]  D^,„  .  E !  minp'a : 

1*10-23]    D:a!a'P/^«.D.  .Eiminp'a  (2) 

i- .  *20518 .  *202-52  .  D  F  :  P  e  Ser  .  a  =  £'P .  3  .  E  !  minp'a  (3) 

1- .  (2)  .  (3) .  D  h  : .  a;  e  C'P  .  D^ .  P  P  P^'a;  e  li  :  P  e  Ser  :  D  : 

a  !  a  n  C'P .  Da .  E !  minp'a  : 
[*250-121]  :i:PeD,  (4) 

h  .  (1) .  (4) .  D  1- .  Prop 

This  proposition  is  used  in  proving  that  the  series  of  ordinals  in  order  of 
magnitude  is  well-ordered  (*256'3).  We  prove  first  that  if  P  e  £2,  the 
ordinals  up  to  and  including  Nr'P  are  well-ordered;  thence,  by  the  above 
proposition,  it  follows  that  the  whole  series  of  ordinals  is  well-ordered. 


R.  &  W.    III. 


*251.     ORDINAL  NUMBERS. 

Summary  of  *251. 

The  name  "  ordinal  numbers "  is  commonly  confined  to  the  relation- 
numbers  of  well-ordered  series,  and  will  be  so  confined  in  what  follows.  The 
relation-numbers  of  series  in  general  are  commonly  called  "order-types*." 
Thus  a  is  an  order-type  if  o  e  Nr"Ser,  and  a  is  an  ordinal  number  if  a  e  Nr'Tl. 
In  the  present  number  we  shall  be  concerned  with  a  few  of  the  simpler 
properties  of  ordinal  numbers  and^ofJ.he  sums,  products,  and  powers  of  well- 
ordered  series. 

We  put  NO  =  Nr"n     Df, 

where  "  NO  "  stands  for  "  ordinal  number." 

We  prove  in  this  number  that  any  relation  similar  to  a  well-ordered 
relation  is  well-ordered  (*251"11),  and  therefore  any  relation  similar  to  a 
well-ordered  series  is  a  well-ordered  series  (*2ol"lll).     We  prove 

*251132142.  l-:aeN0.  =  .a-i-leN0.=  .l-f-a6N0 

*2511516.       l-.0„2,eNO 

*25r24.  f-:a,;8eN0.D.a  +  /86N0 

We  prove  that  if  P  is  a  well-ordered  series  of  mutually  exclusive  well- 
ordered  series,  2'P  is  a  well-ordered  series  (*251'21)  ;  that  if  P  is  a  well- 
ordered  series  of  series,  Il'P  is  a  series  (*251'3) ;  that  if  P  is  a  series  and  Q 
is  a  well-ordered  series,  P'^  and  P  exp  Q  are  series  (*2ol'42) ;  that  if  P,  Q  are 
well-ordered  series,  so  is  P  x  Q  (*251'55),  and  therefore  the  product  of  two 
ordinal  numbers  is  an  ordinal  number  (*251o6). 

In  virtue  of  the  uniqueness  of  the  correlator  of  two  well-ordered  series, 
we  have 

*251-61.     1- : .  P,  Q  e  Rel^  excl .  (7'P  C  O  .  D  : 

a  !  (P  smor  Q)  n  Rl'smor .  =  .  P  smor  smor  Q 
whence,  without  assuming  the  multiplicative  axiom, 

♦  We  shall  also  speak  of  them  as  "  serial  numbers." 


SECTION  D]  ordinal   NUMBERS  19 

*251-621.  h  :  O'P  C  X2  .  a !  (Pimof  Q)  n  El'smor  .  D , 

•  SNr'P=SNr'Q.nNr'P=nNr'Q 

*251-65.     hraeNO-i'A.ySeNR.Pe^.C'PCa.D. 

SNr'P  =  /3  X  a  .  HNr'P  =  a exp, /3 

Finally,  we  have  propositions  (*251'7'7l)  showing  that  the  esfistence  of  an 
existent  II  in  any  type  is  equivalent  to  the  existence  of  2^  in  that  type,  and 
therefore  holds  for  every  type  of  homogeneous  relations,  except  (possibly,  so 
far  as  our  primitive  propositions  can  show)  in  the  type  of  relations  of 
individuals  to  individuals. 


*25101.     NO  =  Nr"n    Df 

*25ri.       h:aeNO.H.(aP).Pen.a  =  Nr'P    [(*25101)]  .      . 

*25111.     |-:PeBord.PsmorQ.D.QeBord 

Bern.  ', 

H  .  *205-8  .  *2501 .  *37-431 .  D 

h  :.  P  e Bord  .SeP smor  Q .  D  :  a C  C'P .  a !  a  .  D. .  g  !  minQ'^"a  : 
[*37-63-431]  D  :  ;8  e  ;S'"01  ex'C'P .  a  !  /3  .  D^  .  a !  min^'^  : 

[*71-491]  D  :  yS  6  CI  ex'B"G'P .  3^  .  a  !  mrii<j'/3 : 

[*151-ll-13i.*37-25]  D  :  /3  e  CI  ex'O'Q .  Dp  .  a  !  mniQ'^g  : 

[*250-l]  D  :  Q  €  Bord  : .  D  h  .  Prop 

*251-111.  h  :  P  6  a  .  P  smor  Q.D.QeCl     [*25111 .  *204-21] 

*251-12.     h  :  P  e  Bord  .  D  .  Nr'P  C  Bord     [*2ol-ll] 

*251121.  h  :  P  6  ft .  D  .  Nr'P  C  O  [*251111] 

*251122.  hiaeNO.D.aCn  [*251121-1] 

*251-13.     l-:PeBord.^~eO'P.=  .P-t*^6Bord 
Dem. 

h.  *205-83.  *250-l.Dl-:Hp.  a  !C"P  A  a.  D.  a  !min(P-h>0)'a  (1) 

l-.*205-831.  Dh:Hp.O'(P-f*^)na=t'^.D.a!mfn(P-t*^)'a     (2) 

1-.*161-14.  DI-:.Hp.a!C"(P-+*0)na.D: 

a  !  C"P  n  a .  V  .  O'P  na=A.'3^lt'zna: 
[*161-14]  D:a!C"Pna.v.(7'(P-f*.^)na  =  t'^  (3) 

l-.(l).(2).(3).D  _^ 

1- :.  Hp  .  D  :  a  !  C/'(P-b^)  «  a  •  3a .  a  !  min  (P-f>  zYa  (4) 

f- .  (4) .  *2o0101  .  3h:PfiBord.«~ea'P.3.P-h>^eBord  (5) 

h.*25014104.*200-41.Dh:P-b^eBord.3.P€Bord.a^~ea'P  (6) 

h.  (5).  (6).  3  h.  Prop 

2—2 


20  SERIES  [part  V 

*251-131.  l-:Pen.0~eC'P.  =  .P-f*0ef2     [*204-51 . *251-13] 
*251132.  l-iaeNO.s.a+ieNO 

Dem. 

h.*251-lll.*181-12.Df-:P6n.=.4,A^H;Pen. 

[*18111.(*18r01).*251-131]  =.P4»a;en. 

[*181-3.*251-1]  = .  Nr'P+ 1  e  NO  (1) 

h .  (1) .  *2511 .  D  h  .  Prop 

*251-14.     V'.Pe  Bord  .  ^  ~  e  C'P  .  =  .  ^  «f  P  e  Bord 

Dem. 

l-.*20o-832.*161-12.D 

— »  -* 

\- :.  Hp .  D  :  2  ~  e  a .  D  .  min  {z «f  P)'a  =  minp'a  : 

[*250-101]  D  :  a  !  (a  n  C'P)  .  «  ~  e  a  .  D  .  g  !  mia  (^  <f  P)'a  (1) 

h.*205-833.*161-12.D 

h:Hp.06a.a:!P.D.a!min(0«f  P)'a  (2) 

h.(l).(2).D  ^ 

I- : .  Hp  .  a  !  P .  D  :  a  !  a  n  C"(^  <^-  P)  .  D.  .  a  !  min  (^  «f  P)'a : 
[*250-101]  D  :  0  «f  P  6  Bord  (3) 

h  . *161-201 .  *250-4  .        D  h  :P  =  A  .  D.a*f  PeBord  (4) 

h.(3).(4).  Dh:PeBord.^~6C'P.D.^*fPeBord  (5) 

h  .  *250-14-104 .  *200-41  .  D  h  :  ^  *(-  P  e  Bord  ."^.Pe  Bord  .z^eG'P   (6) 
i- .  (5) .  (6) .  D  h  .  Prop 
*251141.  h:PeD,.Z'^eC'P.  =  .z<]-Pen  [*204-51 . *251-14] 

*251142.  h:oeN0.  =  .l-t-a6N0  [Proof  as  in  *251-132] 

*25115.     h.O^eNO  [*250-4.*15311] 

*25116.     h  .  2,  e  NO  [*250-41  .  *153-211] 

*25ri7.     \-:x=^y.a!=^z.yJi=z.D.a;ly-{^zen    [*251-131 .  *250-41] 
*251171.  l-.2,  +  ieN0  [*251-16-132] 

*251-2.       I- : P e Rel^ excl n Bord  .  C'P C Bord  .■:i.X'Pe Bord 
Dem. 

h  .  *162-23  .  D  I- :  a !  a  «  0'2'P .  D  .  a !  «  '^  J?'"a'P . 

[*37-264]  D.'^lC'Pn  F"a  (1) 

h  .  *37-46  .  *33-5 .  D  h  :  Q  6P"a .  D  .  a !  «  n  C^'Q  (2) 

h.(l).(2).*250-101.D 

I- :.  Hp  .  D  :  a  !  a  '^  C'X'P .  D  .  (aQ)  ■  Q  minpP"a  .  a  !  rdn^'a . 
[*205-85]  D  .  a  !  min  (2'P)'a      ,  (3) 

I- .  (3) .  *250-101 .  D  h  .  Prop 


SECTION  d]  ordinal  NUMBERS  21 

*251-21.     f-:PeRePexclnn.O'PCn.D.S'Pen     [*204-52 .  *251-2] 

*251211.  h  :  Nr'P  e  NO  .  Nr"0'P  C  NO  .  D  .  2  Nr'P  e  NO 
Dem. 
V.*18216-162.  DI-:Hp.D.  Nr'TjPeNO-IjPeRePexcI     (1) 

h  . *1820511  . *151-65  .  D  h  :  Hp .  D  .  Nr"C"  J  JP C  NO  (2) 

f  .  (1) .  (2) .  *251-122  . 0  h  :  Hp  .  D  .  J  JP eRel^ excl  n  fl .  C  J  'PC  Q  . 

[*251-21]  D.t'l'PeD,. 

[*251-1.(*18301)]  D  .  t  Nr'P e NO  :  D  h  .  Prop 

*251-22.     h:P,Qe  Bord  .C'P  n  0'Q=  A.O  .  P^Q  €  Bord 

Dem. 
h  .  *162-3 .  *163-42  .  3  h  :  Hp .  ~  (P  -  A  .  Q  =  A) .  D  . 

PlQe  Bord .  C"(P  J,  Q)  C  Bord  .  P  J,  Q  e  ReP  excl . 

[*251-2]  D.P^LQeBord  (1) 

h  .  *160-21 .  *250-4  .Dh:P  =  A.Q=A.D.  P^Q  e  Bord  (2) 

h .  (1) .  (2) .  D  h .  Prop 

*251-23.     \-:P,QeD,.G'PnG'Q  =  A.D.P^Qe£l    [*204-5  .  *251-22] 

*251-24.     l-:a,j8eNO.D.a+/3  6NO 

Dem. 

h  .  *251-111  .  *180-12-11 .  3 

h  :  P.^eft  .  D  .  4,  (A  n  G'Q)H'P  e  O  .  (A  n  0'P)4,  UJQe  H  . 

(7'  4,  (A  r.  G'QYh'P  n  G'iA  n  G'P)  i  H'Q  =  A . 

[*251-23.(*181-01)]  D  .P  +  QeD,. 

[*180-3.*251-1]         D  .  Nr'P  -i-  Nr'Q  e  NO  (1) 

f  .  (1) .  *251-1 .  D  f- .  Prop 

*251'25.     h  :  P^Qeil  .  =  .P,Q  eil .  G'P  nG'Q  =  A 

Dem. 
|-.*204-5.  Oh:P^Qen.D.P,QeBer.G'PnG'Q  =  A  (1) 

i- .  (1)  .*205-84  .    D  H  :.  P^QeQ,.  D  :  g  !  G'Pn  a  .  Da  .  a  !  minp'a : 
[*250-ll]  DrPeBord  (2) 

h  .(1) .  *205-841  .  D f  :.  P4.Q  e  n  .  D  : 

3  !  a  -  O'P  n  0'(P4^Q) .  D,  .  g  !  mfnQ'(a  -  O'P) : 


22  SERIES  [part  V 

[*160-14.(1)]  D  :  a !  a  n  C'Q  .  D.  .  a  !  r^ng'Ca  -  G'P)  . 

[*205-15.(l)]  Da  .  a  !  miDQ'a : 

[*250101]  D:QeBord  .         (3) 

l-.(l).(2).(3).Dh:P4iQen.D.P,Qen.C"PnC"Q  =  A  (4) 

h  .  (4)  .  *251-23 .  3  h  .  Prop 

*251-26.     h:a,/3eNO-i'A.  =  .a+/36NO-t'A    [*251-25] 

*2513.       l-:Pefl.(7'PCSer.D.n'P6Ser  [*204-57 . *250-l] 

*251-31.     I- :  E  !!  B"G'P  .-^.B^CPe Fi,'C'P 
Dem. 

h  .*71-571 .  D  h  :  Hp  .  D  .P  r  CPel  -»Cls .  a'(S  [^ (7'P)  =  O'P       (1) 
l-.*93-103.DI-.PGP  (2) 

h  .  (1) .  (2) .  *80-14  .  D  h  .  Prop 

*251-32.     h  :  E !!  B"G'P  .±IP  .0 .  B[C'P  =  B'U'P 

Bern. 

h  .  *ir2-162 .  D  h  :  Hp .  D .  P'H'P  =  B^'C'P 

[*82-21]  =  i'{B  [  C'P)  :  D  h  .  Prop 

*25i-33.    h:C"Pcn-i'A.a!P.D.a[!n'P.ppO'P=P'n'P 

[*25013.*251-32] 

*251-34.     h  :  P  6  ReP  excl .  C"P  C  fl  -  I'A .  D .  a !  e^'C'G'P 
Bern. 

\- .  *251-33  .  *173-16  .Df-:Hp.a!P-3.a!  Prod'P .. 
[*173-161]  D .  a  !  Prod'C'CP  . 

[*1151]  D.a!6A'0"0'P  (1) 

h  .  *8315  .  D  t- :  P=  A .  D  .  a !  e^'C'G'P  (2) 

I- .  (1) .  (2)  .  D  h  .  Prop 

*251-35.     l-::P6n.D:. 

aP,il3.=  :tt,^eGVG'P:(-^z).zea-0.afv'p'z=.0nr^'z 
Dem. 

I-.*170-2.D 

f- :. a, y8 e GVG'P :  (a^) .zea-^.an^'z  =^ n P'^  :  D  . aP„,/3  (1) 

|-.*170-231.*250121.D 

f- ::  Hp .  D  :.  aPeijS .  D  :  a,/3eCl'C"P : (a^)  .zea-^  .an'P'z  =  fin'F'z.    (2) 

1- .  (1) .  (2) .  Dh  .  Prop 


SECTION;  D]  ordinal   NUMBERS  23 

*251-351.  h  ::  P  eX2  .  3  :.  oPje/S  .  =  : 

a, /3  eCl'O'P :  (■^z).ze  13- a.an^'z  =  ^n*P'z     [*251-35  . *1 70101] 

*251-36.     l-:P6Xl.D.P„6Ser 

Dem. 
|-.*l7017.DI-.P,iGJ  (1) 

1- .  *251-35  .  D  h  ::  Hp  .  D  :.  aP„i/3  .  jSP^iy  .  D  : 

('^z,w).Z6a-^.W€0-y.anP'z  =  ^f\P'2.^nP'w  =  yr^P'w     (2) 

h  .  *20114 .  D 

— »  -^  -*  -» 

h:.  Hp.zea-;S.we;S-7.anP'^:=;SnP'^.y8nP'w  =  7nP'w.D: 

— >  — > 

2^Pw  .0  .  zea  —  y  .an  P'z  =  y  n  Pfz     (3) 

h.  *201-14.  D  h  :.  Hp  (3).  DiwP^.D.  we  a- 7.  a  nP'w  =  7  nP'w  (4) 

h  .  (2) .  (3) .  (4)  .  *202-104. #251-35. D  l-:.Hp.D:aP„,/3 .  /3P,iy.  D  .  aPdV     (5) 
h  .  *250-121 .  D 
1- :  Hp  .  a,  /8  6  Cl'G'P .  a  =|=/3  .  D  .  (3^) .  0  =  minp'{(«  -  ^8)  u  (^  -  a)} . 

[*205-14]  D  .  (a^)  .Z6{(oL-0)vj(l3-a)}.ttnP'z  =  l3nP'z. 

[*2ol-35]  D.a(P„ic;P<,);8  (6) 

h  .  (1)  ..(5) .  (6) .  D  h  .  Prop 

*251-361.  h  :  P  6  n .  D .  Pi„  6  Ser     [*251-36  .  *170-101] 

*25r37.     h:P6fl.D,P„i  =  Pdf    [*251-35  . *171-2] 

*251-371.  h  :  P  6  Xi .  D  .  P,c  =  Ph 

*251-4.       h  :  P  6  Rel=  arithm  r.  Bord  .  C'P  C  Bord  .  G't'P  C  Bord  .  D  . 

X'S'P  6  Bord 
Dem. 

h  ,  *251-2 .  D  :  Hp .  D .  S'P  e  Rel^  excl  n  Bord  .  C't'P  C  Bord  . 
'  [*251-2]  D .  S'S'P  6  Bord  :  D  h  .  Prop 

*251-41.     t- :  P  e  ReP  arithm  «  £1 .  C'P  C  fl .  O'S'P  C  Xi .  D  .  1,'X'P  e  il 
[*204-54,*251-4] 

*251-42.     h:PeSer.Qefl.3.P«(.PexpQ)6Ser     [*204-59 .  *250-l] 

*251-43.     I- :  a  6  NR .  a  C  Ser .  /3  e  NO  .  D  .  (a  exp^/3)  e  NR .  (a  exp^^S)  C  Ser 
[*186a3 .  *251-42] 

*251-44.     h  :  a  e  NO  -  t'Or .  /8  6  NO  -  t'O^ .  3  .  a  exp,/?  +  0^ 
Dem. 

t-.*165-27.D 
l-:Hp.Pea.Qe/3.D.P4,5Q6a-l'A.C"Pjt^;QCn-i'A. 

[*25r33.*1761]        D.a[!(PexpQ)  (1) 

t- .  (1)  .  *186-13  .  D  h  .  Prop 


24  SERIES  [part  V 

*251-5.       h-.'^lP.QeBoTd.D.Pl'QeBovd     [*165-25  .*25M1] 

*251-51.     [■z'^lP.Qen.D.Pl'QeD,  [*165-25  .  *204-21 .  *251-5] 

*251-52.     f-iPeBord.D.C'PiJQCBord  [*16o-26  .*25112] 

•> 

*251-53.     h-.Pen.D.G'Pi'Qen,  [*16.5-26  .  *204-22  .  *25r52} 

"> 

*25r54.     I- :P,Q  6  Bord.D.PxQeBord 

Dem. 

l-.*165-21.*251-.5-52.D 

h  :  Hp .  rj !  Q .  D  .  Q 1 5P  6  Rel''  excl  n  Bord .  (7'Q  1 JP  C  Bord  . 

[*251-2.*1661]D.PxQ6Bord  (1) 

h  .  *166-13  .  *250-4  .Dh:Q  =  A.D.PxQ6  Bord  (2) 

h .  (1)  .  (2) .  D  h  .  Prop 

*25r55.     h:P,  Qeli.D.PxQeO         [*25r54  .  *204-55] 

*251-56.     l-:«,y86NO.D.aX/8eNO     [*184-13 .  *251-5.51] 

*251-6.       I- :  P,  Q  6  Eel''  excl  .O'PCn.SeP  smof  Q  n  Rl'smor  . 

fi  =  X {(giV) .NeG'Q.X  =  (S'N) slSof  iV} .  D  . 

i\' fie  e^fi .  s'i"fi  e P smor  smof  Q 
Dem. 

I- .  *250-6  .  *251-in  .  D  h  :  Hp .  D  .  /i  C 1 . 

[*83-43]  D.  tl'yiieeAV-  (1) 

[*164-43]  D  .  s'i"/i  e  P  smof  sniof  Q         (2) 

F  .  (1)  .  (2)  .  D  f- .  Prop 

*251-61.     \-:.P,Qe  ReP  excl  .C'PCD,.D: 

3 !  (P  smor  Q)  n  Rl'smor .  =  .  P  smor  smor  Q 
Bern. 

f- .  *251"6  .  D  h  :  Hp  .  g; !  (P  smor  Q)  n  Rl'smor  .  D  .  P  smor  smor  Q    (1) 
h  .  (1)  .  *164-17  .  D  h  .  Prop 

*251-62.     h  :  Hp  *251-61 .  a  !  P  smof  Q  n  Rl'smor .  D  . 

S'P  smor  S'Q .  H'P  smor  U'Q . 
SNr'P  =  SNr'Q  .  DNr'P  =  HNr'Q 


Bern. 


h  .  *1 64-151 .  *251-61 .  D  h  :  Hp .  D  .  S'Psmor  2'Q  (1) 

t-.*l72-44.*251-61.    D  I- :  Hp  .  D  .  n'PsmorH'Q  (2) 

l-.(l).*18313.  DI-:Hp.D.2Nr'P  =  SNr'Q  (3) 

h  .  (2) .  *1851 .  Df-:Hp.D.nNr'P=nNr'Q  (4) 

F .  (1) .  (2) .  (3) .  (4) .    D  h  .  Prop 


SECTION  D]  ordinal   NUMBERS  25 

In  the  above  proposition,. the  hypothesis  "  P,  QeRePexcl "  is  unnecessary 
for  2Nr'P  =  2Nr'Q  atd  nNr'P  =  nNr'Q,  as  appears  from  *18311  and 
*18o'll.     Thus  we  have 

*251-621.  h  :  O'P  C  fl .  a  !  (P  smof  Q)  n  Rl'smor .  D  . 

S  Nr'P  =  2  Nr'  (g  .  n  Nr'P  =  H  Nr'Q 
[*251-61  .  *183-11 .  *185-11] 

*251-63.     t- :  aeNO-  t'A  .ySeNR . P  eRePexcl  .Pe/S .  C'P Ca.D. 

2'P6/3><a.2Nr'P  =  /8xa 
Dem. 
t-.*164-47.*165-2r-21.D 
h:Hp.Q6a.«=|=0,.D.QJ,;P6^.0'Q_i;PCa.P,QpP6RePexcl. 

[*164-47]  D  .  a  l(Q  I  ;P)  sTSof  P  n  Rl'smor  .  P,  Q  J,  JP  e  ReP  excl . 

[*251-61]  D.(QJ,;P)smorsmorP. 

[*1 64-151. *166-1]      D.(PxQ)  smor  2'P . 

[*184-13]  0.t'Pej3xa  (1) 

|-.(l).DI-:Hp.a+0^.D.S'P6y8xa  (2) 

h  .  *162-42  .  Transp .  D  h  :  Hp .  a  =  0, .  D  .  2'P  =  A . 

[*184-16]  D.2'Pe/3xa  (3) 

l-.(2).(3).DI-:Hp.D.2'P6j8)^a  (4) 

[*183-13]  D.2Nr'P  =  /3xa  (5) 

h  .  (4)  .  (5) .  D  h  .  Prop 

*251-64.     f- :  Hp  *251-63 .  D  .  H'P  e  (a  exp,  y8)  .  U Nr'P  =  a  exp,  /3 
[Proof  as  in  *251-63] 

*251-65.     f- :  a  e  NO  -  I'A  .  iS  6  NR .  Pe /3 .  G'PC  a  .  D  . 

2Nr'P  = /3  X  a .  n  Nr'P  =  a  exp, /3 

h.*182-1^6.*183-231.D 

l-iHp.Qea.D.  IJPeRePexcl.  TjPeNr'P  .  C'iJPCNr'Q.  (1) 

[*251-63]         3.2Nr'I;P  =  Nr'PxNr'Q. 

[*18314]         D.2Nr'P  =  ?rr'P);cNr'Q 

[*152-45]  =^xa  (2) 

I- .  (2)  .  *10-^3  .    DI-:Hp.:3.2Nr'P  =  ;8xa  (3) 

I- .  (1)  .  *25r64  .  D  I- :  Hp  .  Q,e  «  .  D  .  nNr'  i  ;P  =  (Nr'Q)  exp^  (Nr'P) . 

[*185-ri2]      "^  D.nNr'P  =  (Nr'Q)exp,(Nr'P) 

[*152-45]  '      =aexpr/3  (4) 

h  .  (4)  .  *10-23  .    DI-:Hp..  D.nNr'P  =  aexpr/3   '  (5) 

h.(3>.(5)'.DI-.Prop 


26  SERIES  [part  V 

In  virtue  of  the  above  proposition,  the  usual  relations  of  addition  to 
multiplication,  and  of  multiplication  to  exponentiation,  when  the  summands 
or  the  factors  are  all  equal,  can  be  established  without  the  multiplicative 
axiom,  provided  the  summands,  or  the  factors,  are  ordinal  numbers. 

*251-7.       1: :  a  !  n  -  t'A  n  f„„'a  .  =  .  a  !  2^  n  ioo'a  •  =  ■  a  !  2  n  i'a  .  =  .  a  !  2„ 

Bern. 
|-.*64.-55.    Dh:'3^ia.-L'Ar^too'a.  =  .{'^P).Peil-i'A.C'PCto'a      (1) 
1- .  *200-l  2.DI-:P6n-i'A.D.  (a^;,  y).x,y  eC'P  .x^y . 
[*153-201.*55-3]  D .  a !  2,.  n  El'P  (2) 

I- .  (1)  .  (2)  .  D  h  :  a  '•  ii  -  t'A  n  t^'a. .  D .  (aP)  .  C'P  C  t„'a .  a  !  2,.  r.  Rl'P . 
[*33-26o]  D  .  (aQ)  .Qe2r.G'QC  t,'a . 

[*64-55]  D  .  a !  2,.  n  t^'a.  (3) 

V  .  *251-16-122 .  D  h  :  a !  2^  n  «„o'a .  D  .  a  !  n  -  I'A  n  «„„'a  (4) 

l-.(3).(4).        DI-:a!n-i'AnCa.  =  .a!2,nCa  {5} 

h  .  *64-55  .  D  h  :  a  !  2,.  n  i„/a  .  =  .  (aa;,  y).x^y  .x,y  e  to'a  . 

[*63-62]  =  , (a*', y).x^y .i'x\j  i'y  e t'a . 

[*54-26]  =  .  a  !  2  r. «'«  (6) 

h  .  (5)  .  (6) .  (*65-01) .  D  F .  Prop 

*251  71.     h  .  a  !  n  -  t'A  n  t^'Ch  .  a  !  n  -  t'A  n  t^'^el 
[*251-7  .  *101-42-43] 


*252.     SEGMENTS  OF  WELL-ORDEKED  SERIES. 

Summary  of  *252, 

The  properties  of  sections  and  segments  are  greatly  simplified  in  the  case; 
of  series  which  are  well-ordered,  owing  to  the  fact  that  every  proper  section 

has  a  sequent,  whence  it  follows  that  the  class  of  proper  sections  is  P"C'P ;. 
and  this  is  also  the  class  of  proper  segments.    Hence  also  the  series  of  proper 

sections  or  of  proper  segments  is  the  series  P'>P  (*252"37).     The  series  of  all 

sections  is  P>P-{*G'P {*2o2S8);  hence  (*252-381) 

Nr'5'P5,5  =  Nr'P  +  i. 

The  most  useful  propositions  in  this  number  are  (apart  from  the  above) 

*25212.     h-.Peil.D. 

sect'P  -  I'C'P  =  D'Pe  -  I'G'P  ='P"G'P .  sect'P  =  P"(?'P  w  I'C'P 

*25217.     h  :  P  e  II  -  I'A .  D  .  sect'P  -  I'A = "P^a'P  w  i'C'P 

*252171.  1- :  P  6  n  .  D .  sect'P  -  t'A  -  I'C'P  =  P"a'P 

*252-372.  h  :.  P  e  n  .  D  :  s'P  e  n  :  E  !  5'P  .  D  .  Nr's'P  =  Nr'P : 

~  E !  £'P .  D  .  Nr's'P  =  Nr'P  + 1 

*252-4.       hiPen.XCsect'P.glX.D.p'XeX 


*2521.       l-:Pen.a6sect'P-i'C'P.D.E!s^qp'a    [*2o0a24]  -; 

*25211.     I- :  P  e  X2 .  D .  sect'P  -  I'C'P  =  sect'P  n  d'seq? 

Bern. 

h  .,*206-18-2  .  D  h  .  O'P  ~  6  Q'seqp  (1) 

h  .  (1)  .  *252-l  .  D  1- .  Prop 


28  SERIES  [part  V 

*25212.     h-.Pen.D. 

sect'P  -  i'G'P='D'Pe  -  I'G'P  ='P"G'P .  sect'P  ='P"G'P  o  I'G'P 

Bern. 

f-.*211-24.*25211.    DhiHp.aesect'P-i'C'P.D.aeD'Pe  (1) 

h.*211-15.  DF-jHp.aeD'Pe-i'C'P.D.aesect'P-i'O'P     (2) 

l-.(l).(2).  DI-:Hp.  D. sect'P -i'a'P  =  D'Pe-i'G'P  (3) 

V  .  *211-302  .  *2o2-ll  .  D  I- :  Hp .  D .  sect'P  -  I'C'P  ='P"G'P  (4) 

h .  (3) .  (4) .  *211-26  .  D  h  .  Prop 

In  dealing  with  sections  and  segments  of  well-ordered  series,  it  is  necessary 

to  distinguish  series  with  a  last  term  from  such  as  have  no  last  term.     If 

a  series  has  no  last  term,  C'P  =  P"G'P,  so  that  C'PeD'Pe.     But  if  a 

— > 
series  has  a  last  term,  (7'P~6D'Pc;    in  this  case,  D'Pe=P"C'P.     Thus 

— » 
D'Pe  is  either  P"C'P  or  sect'P,  according  as  there  is  or  is  not  a  last 

term.     In  either  case, 

sect'P  =  P"0'P  u  I'O'P, 
as  has  been  already  proved  in  *252'12. 

*25213.     h  :  P  6 12 .  E  !  B'P  .  D  .  sect'P  -  I'G'P  =  D'Pe  =^"G'P . 

sect'P  =  D'Pe  u  I'G'P  =  P"G'P  w  t'C'P 
Dem. 

h  .  *250-21 .  *211-36  .  D  h  :  Hp .  D  .  sect'P  -  D'Pe  =  I'G'P  . 
[*24-492.*211-15]  D  .  sect'P  -  I'C'P  =  D'Pe  (1 ) 

[*252-12]  =P"G'P  (2) 

l-.(l).(2).*211-26.Dh.Prop 

*252-14     1- :  P  6  n .  ~  E !  B'P .  D  .  sect'P  =  D'Pe  =  P"C'P  u  t'C'P 
[*250-21 .  *211-;361 .  *252-12] 

*25215.     I- :  P  6  n .  D  .  D'Pe  =  P"D'P  u  I'D'P 
Bern. 

h  .  *25213 .  D  h  :  Hp  .  E  !  B'P .  D  .  D'Pe  =  P"D'P  u  I'P'B'P 

[*202o24]  =P"D'P u  I'D'P  (1) 

h  .*25214.  D  h  :  Hp.~E!5'P.D.D'Pe  =  P"D'P  o  I'D'P  (2) 

l-.(l).(2).Dh.Prop 

*25216.     F  :  P  6  n  -  2^  .  D  .  D'Pe  =  sect'(P  ^  D'P) 
Dem. 
}■ .  *204-27l .  D  1- :  Hp .  D  .  D'P~ e  1 . 
[*202-55]  D  .  G'(P  I  D'P)  =  D'P . 

[*250-141.*25212]        D  .  sect'(P  I  D'P)  =  P^D'P"D'P  u  I'D'P 
[*37-42-421]  =  P"D'P  u  I'D'P 

[*252-15]  =  D'Pe:  31". Prop 


SECTION  D]  segments   OF   WELL-ORDERED   SERIES  29 

*25217.     l-:Pen-i'A.D.sect'P-t'A  =  P"a'Pwt'C'P    .. 
Dem. 

h  .  *252-12  .  D  h  :  Hp .  3  .  sect'P-  t'A  =  (P"G'P-  fc'A)  u  t,'C'P 

[*33-41]  =  P"(I'P  u  I'G'P :  D  I- .  Prop 

*252171.  h  :  P  6  a .  D .  sect'P  -  t'A  -  i'C'P  =  P"a'P 
Dem, 

1- .  *252-12  .  D  I- :  Hp .  D  .  (sect'P  -  l'O'P)  -  I'A  =  lP"C'P  -  I'A 
[*33-41]  =  P"a'P  :  D  h  .  Prop 

*252-3.       h  :  P  6  n  .  D  .  D's'P*  =  P"a'P     [*21217l .  *2o2-12] 

*252-31.     hzPeH.glP.D.  C's'P*  =  ^"G'P  u  I'G'P 
[*212-172 .  *252-12] 

*252-311.  hzPen.glP.D.  tt's'P*  =  P"a'P  w  t'C'P 
[*212-171 .  *25217] 

*252-32.     h  :  P  e  n .  D  .  D's'P  =  P"D'P     [*212132 .  *25215] 

*25233.     t- :  P e n -  t'A .  D  .  C's'P  =  P"D'P  u  I'B'P 
[*212133  .  *252-15] 

*252-34.     h  :  P  e  O .  E  !  5'P .  D  .  G's'P  =  P"i7'P 
i>em. 

I- .  *202-524  .  D  h  :  Hp .  3  .  'P'B'P  =  D'P  - 

[*252-33J  D  .  C's'P  ='P"G'P  :  D  h  .  Prop 

*252-35.     h  :  P  6  O  -  t'A  .  ~  E !  5'P .  D  .  G'<i'P='P"G^P  u  t'C'P 
[*212-133 .  *252-14]  . 

*252-36.     t-:P6n.E!P'P.D.s'P  =  P5P 
i)em. 

V  .  *212-25  ,  *252-34  .  D  h  :  Hp .  D  .  P'^P  =  (s'P)  D  {G'<i'P) 
[*36-33]  =  9'P :  D  F  .  Prop 

*25237.     f- :  P 6 fi  .  D .  (s'P)  t: (-  t'C^'P)  ='P'^P 
Bern. 

h .  *36-3  .  3  h  .  (s'P)  D  (-  t'G'P)  =  (s'P)  p  (O's'P  -  I'G'P)   > 

[*212-133134]  =  (s'P)  t  (D'Pe  -  I'C'P)      (1) 

1- .  (1)  .  *252-12  .  D  h  :  Hp .  D  .  (s'P)  D  (-  I'G'P)  -  (s'P)  I  {P"C'P) 
[*212-25]  =p;P:DF.  Prop 


30  SERIES  [PABT  V 

*252-371.  h  :  P  e  n  .  ~  E !  5'P  .  3  .  s'P  =  P JP-f»C"P 

Dem. 
h.*212-25.*252-32.  D  h :  Hp.  D.P;P  =  (s'P)C(DVP)  (1) 

h.*212133.  DI-:Hp.a!P.D.C"P  =  £'Cnv's'P  (2) 

|-.*252-32.  DI-:Hp.D.DVP  =  P"C'P. 

[*20012.*204-34]  D  .  D's'P  ~  e  1  (3) 

h .  (1) .  (2) .  (3)  .  *204-461  .  D  h  :  Hp .  a !  P .  D  .  P;P-t*G'P=  s'P  (4) 

h.*212-134.*161-2.  Dh:Hp.P  =  A.D.s'P  =  A.P;P-t*C"P=A   (5) 

h  .  (4)  .  (5) .  D  1- .  Prop 

*252-372.  I- :.  P  6  fl  .  D  :  s'P  e  n  :  E  !  £'P  .  D  .  Nr's'P  =  Nr'P : 

~  E  !  5'P .  D  .  Nr's'P  =  Nr'P  + 1 
Dem. 

V  .  *2.52-36 .  *204-35  .  D  h  :  Hp .  E !  B'F .  D  .  s'P  smor  P . 

[*251-111.*152-321]  D.s'Pen.NrVP=Nr'P  (1) 

1- .  *252-37l .  *204-35  .  *200-52 .  D 

I- :  Hp .  ~  E  !  5'P .  D  .  Nr's'P  =  Nr'P  +  1.  (2) 

[*251132]  D.s'Pefl  (3) 

1- .  (1) .  (2)  .  (3) .  D  1- .  Prop 

*252  38.     h  :  P  e n  .  D .  <i'P^  =  P''P-\*G'P 

Dem. 
l-.*2o212.*212-24.D 

I- ::  Hp .  D  :.  a(s'P^)^ .  =  :a,pe'P"C'P  u  I'C'P .  aC;8 .  a  +  yS : 
[*37-6.*200-52] 

=  :  {■3_x,  y)  .x,y  eC'P  .a  =  P'x .  ^^  P'y  .'P'xC'P'y  .'P'x^'P'y  .yf  . 
(a*)  .xeG'P.a  =  P'x.^  =  C'P: 
[*204-33-34]  =  :  (ga;,  jf) .  xPy  .a  =  P'x.^  =~P'y .  v . 

('3x).xeC'P.a  =  P'x.^  =  C"P: 
[*150-5-22]   =  :  a (P'^P) /3.v.ae G'P'P .^  =  C'P: 
[*16111]      =  :  a (P'P-[*G'P) ^  ::  D  1- .  Prop 

*252-38L  h :  P  6  n .  D .  s'P*  e  il .  Nr's'P*  =  Nr'P  -i- 1 
[*252-38 .  *200-52 .  *204-35  .  *25M31] 


SECTION  D]  segments   OF    WELL-ORDERED    SERIES  31 

*252-4.       I- :  P  e  n  .  \  C  sect'P .  g  !  \ .  D  .  ^j'X  e  \ 

Bern.  • 

f- .  *211-44-l .  D  h  :  Hp .  P  =  A .  3  .  \  =  I'A . 

[*53-01]  D.p'\e\  (1) 

h  .  *212ir2  .  Dh:Hp.g[!P.D.XC  C's'P* .  g  !  \ . 

[*252-381.*250-121]  D  .  E !  min  (s'P*)'X . 

[*210-222.*211'67-66]  D.p'XeX  (2) 

I- .  (1)  .  (2)  .  D  I- .  Prop 

*252'41.     (-iPen.XCsect'P.gJX.D.s'XeX     [Proof  as  in  *252-4] 

*252-42.     hi.Peil.  (Cnv's'P*)i"«r  C  a  : 

A,  C  o- .  a  !  X  n  O's'P*  .  Dx  .  s'{\  n  C's'P*)  6  ff  :  D  . 

(Cnv's'P*)"o-  C  o- 
[*250-361 .  *252381 .  *212-322] 

*252-43.     l-:.Pen.(s'P*)i"o-Co-:  O   , 

X  C  o- ,  a  !  X  n  O's'P* .  Da  .  i3'(X  n  C'.s'P*)  e  o" :  D  .  (s'P*)"o-  C  <r 

I-.*212-181.         D  t- .  (Gnv  VP*)  smor  (s'P*)  ^(1) 

h  .  (1) .  *252-381 .  D  f- :  Hp .  D  .  (Jnv's'P*  e  O  (2) 

h  .  (2)  .  *212-34  .  *250-362  .  D  h  .  Prop 


*253.     SECTIONAL  KELATIONS  OF  WELL-ORDERED  SERIES. 

Sumimary  of  *253. 

In  the  present  number  we  shall  consider  the  properties  of  the  relation 
Ps  (defined  in  *213)  when  P  e  n.  The  relation  Ps  has  great  importance  in 
this  case,  owing  to  the  fact  (to  be  proved  later)  that  Nr"D'Ps  is  the  class  of 
all  ordinals  less  than  Nr'P,  and  that,  if  P,  Q  are  any  two  well-ordered  series, 
either  P  is  similar  to  a  member  of  G'Qs,  or  Q  is  similar  to  a  member  of 
G'Ps,  whence  it  follows  that  of  any  two  unequal  ordinals  one  must  be  the 
greater. 

The  present  number  consists  merely  of  the  more  elementary  properties  of 
Ps  when  P  e  12.  The  interesting  properties  connected  with  greater  and  less 
will  be  treated  in  the  following  number. 

The  most  useful  propositions  of  the  present  number  are  the  following : 

*25313.     h  :  P  e  n  .  D  .  D'Ps  =  P I  "'p^a'P  =  P  t  ''P^'CP 

*25318.     hzPea.D.  G'P,  C  P I  ''P^'G'P  u  I'P .  G'Ps  C  fi 

Instead  of  O'Ps  C  P  p  "P"a'P  w  I'P  we  shall  have  equality,  unless 
P  =  A  (*253-15). 

*253-2.       \-:Pen-2r.D.  'Nr'P,  =  Nr'(P  I  Q'P)  4- 1 

The  case  when  P  e  2,.  has  to  be  excluded,  because  then  P I  d'P  =  A. 

*253-21.     1- :  P  e  fl .  D  .  1  +  Nr'Ps  =  Nr'P  4- 1 

This  proposition  involves  Nr'Pj  =  Nr'P  when  P  is  finite,  but  when  P  is 
infinite  it  involves  Nr'Ps  =  Nr'P  4- 1  (cf.  *261-38). 

*253-22.     h  :  P  e  O  .  D .  Ps  t  D'Ps  smor  P I  Q'P 

*253-24.     b-.Pen.D.PseO, 

*253-4.       \-'.Pen-i'A.D. 

G'Ps  =  Q  Kai2)  •P=Q4^B.y.{-^x) .  P  =  §+>«;} 

*253-421.  1- :  P  6  n  .  Q  e  D'Ps .  3  .  ~  (Q  smor  P) 

*253-44.     l-:a,^eNO-t'A./34=0,.D.a4-/3=|=a 


SECTION  D]      sectional  RELATIONS  OF  WELL-ORDERED  SERIES  33 

This  proposition  marks  a  difference  between  ordinals  and  cardinals.  An 
ordinal  is  always  increased  by  the  addition  of  anything  at  the  end,  whereas 
this  is  (often  if  not  always)  not  the  case  with  a  cardinal  if  it  is  reflexive 
and  greater  than  the  addendum.  The  above  proposition  ceases  to  be  true 
if  we  add  ^  at  the  beginning  instead  of  the  end:  /S  -i- «  =  «  will  be  true  if  a  is 
infinite  and  /S  X  &>  is  not  greater  than  «.     (For  the  definition  of  «,  cf.  *263.) 

*253-45.     h:aeNO-t'A-t'0,.D.a4-l4=a 

Similar  remarks  apply  to  this  proposition  as  to  *253'44. 
*253-46.     V'.PeD..Q,Re  C'P, .  Qsmor  R.O.Q  =  R 

I.e.  no  two  different  sections  of  a  well-ordered  series  are  similar. 

It  follows  from  *253'46  that  the  series  of  the  ordinals  of  proper  sections 
of  a  well-ordered  series  P  is  similar  to  the  series  of  proper  sections,  and 
therefore,  by  *253-22,  to  the  series  P  with  its  first  term  omitted  (*253'4!63). 

We  have  next  a  set  of  propositions  (*253'5 — ".574)  on  the  circumstances 
under  which  Nr'Ps  =  Nr'P  and  those  under  which  Nr'Ps  =  Nr'P  +  1.  As 
a  matter  of  fact,  the  former  holds  when  P  is  finite,  the  latter  when  P  is 
infinite.  But  the  distinction  of  finite  and  infinite  will  not  be  introduced  till 
the  next  section.     In  the  present  number,  we  prove  that  (assuming  P  e  li) 

Nr'P,  =  Nr'P  if  Q'Pj  =  Q'P  .  E  !  B'P,  and  if  not,  then  Nr'P,  =  Nr'P  -j- 1 
(*253'56).  This  is  proved  by  using  P,  as  a  correlator.  (Pi  as  a  correlator 
moves  every  term  one  place  down,  except  the  first,  which  disappears.)  For, 
if  Pen,  we  have  Pi;P=PtD'P(*253-5);  hence  we  prove  Ppa'PiSmorP^D'P 
(*253-502),  and  hence,  if  a'P,=  O'P,  we  obtain  P I  Q'Psmor  P  ^  B'P  (*253-503). 
Hence  by  *253"2  (with  special  consideration  of  the  case  when  P  e  2,)  we  have 
the  two  propositions 

*253-51.     h  :  P  e  fl .  G'P,  =  G'P ,  E !  fi'P .  3  .  Nr'P,  =  Nr'P 

*253-511.  h  :  P  6  n .  Q'Pj  =  Q'P .  ~  E !  B'P .  D  . 

Nr'P,  =  Nr'P  -i- 1 .  Nr'P  ^  Q'P  =  Nr'P 

But  if  there  is  a  term,  say  x,  belonging  to  Q'P  —  Q'Pi,  use  Pj  as  a  correlator 
for  the  predecessors  of  a; ;  we  thus  find  that,  in  this  case,  P  smor  P  p  Q'P. 
Hence,  by  *253-2,  Nr'P,  =  Nr'P  +  1. 

The  hypothesis  Q'Pj  =  d'P .  E !  B'P  means  that  there  is  a  last  term,  and 
every  other  term  has  an  immediate  successor.  This,  as  we  shall  prove  later, 
and  as  is  indeed  obvious,  is  equivalent  to  the  assumption  that  P  is  finite  but 
not  null. 

From  the  above  propositions  it  results  immediately  that 

*253-573.  h  :.  P  6  fl .  D  :  Q'P,  =  Q'P  .  E !  £'P .  =  .  1  -f-  Nr'P  =f=  Nr'P 

Hence  it  will  follow  that  finite  ordinals  other  than  0^  are  those  which  are 
increased  by  the  addition  of  1  at  the  beginning.     We  have  also 

E.  <feW.   Ill  3 


34  SERIES  [part  V 

*253-574.  h  r.Pefi-t'A.  D  :  a'P,  =  a'P  .ElB'P.  =  .i  +  Nr'P  =  Nr'P  + 1 
Whence  it  will  follow  that  finite  ordinals  are  those  for  which  the  addition 
of  1  is  commutative. 

*2531.       l-:.Pen.D:QPsi2.  =  . 

(ga,  /3) .  o,  y8  6'P"a'P  yj  I'G'P  .r^l  ^-a.Q  =  P^ol.  R  =  Pl  ^ 
Dem. 
I- .  *213-1 .  *25217  .  D  h  :.  Hp  .  a  !  P .  D  :  QP,E .  = . 

('3_0L,^).a,^e'P"a'P»l'G'P.^\^-a.Q  =  Pla.R  =  Pt^     (1) 

\- .  *33-241 .  D  I- :.  P  =  A  .  D  :  P"a'P  w  I'G'P  =  I'A : 

[*24-53]  3  :  ~  (ga,  0).a,0  eP"a'P  u  I'C'P .  g !  /3  -  a : 

[*213-3]  D  :  QP,R .  =  . 

(a«,^).«,/S6P"a'Pwi'a'P.a!/3-a.Q  =  Ppa.ii  =  P^/3     (2) 
h  .  (1)  .  (2)  .  D  h  .  Prop 

*25311.     \-::Pea.D:.QP,R.  =  : 

(^oo,y)  .xea'P.  xPy  .Q^P^'p'x  .R  =  P  ^P'y .  v  . 

{'^x).xe(l'P.Q  =  PlP'x.R^P 
Dem. 

l-.*33-152.  3h:a=(7'P./36P"a'Put'(7'P.D.~a!y8-a         (1) 

h  .  *200  52  .  (1) .       DI-:Hp.a6P"a'P./3  =  C'P.D.a!/3-a  (2) 

h  .  (1) .  (2) .  *2.531 .  D  h  ::  Hp .  D  :.  QP,R .  =  : 

(a«./8).a,^eP"a'P.a!/3-a.Q  =  Pta.i2  =  Pt;8.v. 

(a«,;8) .  a6P"a'P  . /3=  G'P .  Q  =  P  r  « .  E  =  P  r /3  : 
[*37-6.*36-33] 

=  :('^x,y)  .x.yeQ'P  .'^IP'y-  P'x  .Q  =  P^P'o! .  R  =  Pl.'p'y  .V  . 
('3.«>)-«!ea'P.Q  =  Pl^'x.R=P: 
[*211-61.*210-1] 

=  :('3.x,y).x,yea'P.P'xCP'y.'P'x^'p'y.Q  =  Pl'p'x.R  =  Pl'P'y.v. 
(^x). xea'P. Q  =  Pl,p''x.R  =  P: 
[*204-33-34]= :  (^_x,y).x,yea'P.xPy.Q=Pl'p'x.R  =  Pl^'y.v . 

(•^x). xea'P. Q  =  Pl^'x.R  =  P  (3) 

I- .  (3)  .  *33-14  .  D  h  .  Prop 

*25312.     l-:P6fl.P~e2,.D.P,  =  (P^;!p;ppa'P)+»P 

Dem. 
\- .  *204-272 .  D  I- :  Hp .  D .  a'P~  e  1 . 

[*202-55.*213-151]        D  ,  P  ^"P"a'P  =  C'P  l^P'P  p  Q'P  (i) 


Section  d]     sectional  relations  of  well-oedered  series  35 

H  .  (1)  .  *25311 .  D  h  ::  Hp .  D  :.  QP,i2 .  =  : 

[*161-11]      =  :  Q  {{P I  fpiP  I  a'P)-bP}  i2 ::  D  h .  Prop    . .  -1 

*253121.  f  :  P  e n  .  D .  P ~  e  G'P  ^  ;P;P  t  <I'^ 
Dem. 

'       h .  *200-52  .  D  I- :  Hp .  D  .  C'P  ~  6  P"a'P . 

[*36-25]  D  . P ~ 6 CP^'PiPt  a'P :  D  h  .  Prop 

*25313.     h:P6n.D.D'P5  =  P^"P"a'P  =  Pp"'P"C'P 
Bern. 

h.*213-141.*252l7l.Dh:Hp.D.D'Ps  =  Pt"P"CI'P  (1) 
h  .  *37-22  .  *25013 .  D 

h  :  Hp .  a  !  P .  D.  P  l''P"C'P  =  P  p"P"a'P  u  I'P  t  P'5'P 

[*33-41.Transp]  =  P  ^'^P'^a'P  u  I'A  (2) 

l-.*250-42.DI-:Hp.a!P.D.AePt"P"a'P  (3) 

h  .  (2) .  (3) .  D  I- :  Hp  .  a !  P  .  D .  P  I'^P^'CP  =  P  ^"P"a'P  (4) 

I- .  *33-241.  .D(-:P  =  A.D.PD  ''P"G'P  =  A  .  P  t"P"g'P  =  A  (5) 

h  .  (4) .  (5) .  3  I- :  Hp  .  D  .  P  l''P"C'P  =  P  D"P"(I'P  (6) 

h .  (1) .  (6) .  D  t- .  Prop 

*25314.     hiPen.D. 

a'P,  =  (P  ^"P"a'P  u  I'P)  -  I'A  =  (P  P"P"C"P  w  t'P)  -  I'A 

Dem. 

h  .  *213162  .  D  h  :  Hp .  D  .  O'Ps  =  P  ^"sect'P  -  I'A 

[*252-12.*36-33]  =  (P  t"'P"G'P  u  I'P)  -  t'A         (1) 

[*2.53-13]     .  =(Pp"P"a'Pui'P)-t'A        (2) 

h  .  (1) .  (2) .  D  h .  Prop 

*25315.     h  :  P  e  fl  -  t'A .  D  .  O'Ps  =  P  t  "P"a'P  w  t'P  =  P  ^  "P'^O'P  u  I'P 
[*253-13-14] 

*25316.     h  :  P  e  a  -  I'A  .  3  .  JS'Ps  =  A .  B'P,  =  P    [*213-15515^ .  *25013] 

*25317.     l-:P6fi.D.PsCD'P5  =  Pt;P5PDa'P 

t  2)em.  -  .  1 

|-.*2.53-ll.D 

|-::Hp.D:.QPsi2.2,:Q(PD5?5Pp<I'P)i2.v.Q6Pt"P"a'P.iJ  =  P:. 

[*253121]  D  :.  ^(P,  p  D'Ps)i2  -=  •  Q(P  D'P^P  D  Q'-P)  -R  "  3  I"  •  Prpp 

3—2 


36  SERIES  [PART  V 

*25318.     h  :  P  6  fl .  D .  O'P.  C  P  t"P"a'P  u  I'P .  G'F,  C  H 
Dem. 

I- .  *25311 .  D 

h::Hp.D:.Qea'Ps.D:(aa;).a;6a'P.Q  =  PDi''«-v.Q  =  P: 
[*37-6]  0:QeP  l"'P"a'P  u  t'P  (1) 

I- .  (1)  .*250-141 .  D  1- :  Hp .  D  .  O'Ps  C  fi  (2) 

h  .  (1)  .  (2) .  D  h  .  Prop 

*253181.  h  :  P  €  n .  D  .  C'P,  C  D'P,  u  I'P    [*2531813] 

*253-2.       h  :  P  6  O  -  2, .  D .  Nr'Ps  =  Nr'(P  t  CI'P)  4-  i 
Dem. 
h .  *253-12-12l .  D  I- :  Hp .  D  .  Nr'P^  =  Nr'P  ^  JPJP  ^  Q'P  +  i 
[*213151.*252-171]  =  Nr'PJP  ^a'P+i 

[*204-34]  =  N  r'(P  t  d'P)  +  l:Dh.  Prop 

*253-21.     h:P6n.D.l+Nr'Ps  =  Nr'P  +  l 
Dem. 
h  .  *263-2 .    3l-:Hp.P~e2,.D.l-i-  Nr'P,  =  1 4-  Nr'(P  p  O'P)  + 1 
[*204-46-272]  =Nr'P  +  i  (1) 

h.*213-32.Dh:P62,.D.i4-Nr'Ps  =  i  +  2, 
[*161-211]  =2r+i 

[Hp]  =Nr'P  +  i  (2) 

h  .  (1) .  (2) .  D  I- .  Prop 

It  would  be  an  error  to  infer  from  the  above  proposition  that 
Nr'Ps  =  Nr'P,  since  addition  of  ordinals  is  not  in  general  commutative. 
When  Peil,  Nr'Ps  =  Nr'P  holds  when  G'P  is  finite,  but  not  otherwise. 
When  O'Pis  not  finite,  1  +  Nr'Ps  =  Nr'Ps,  so  that  Nr'Ps  =  Nr'P  + 1 ;  but 
Nr'P  4=  Nr'P +  1. 

*253-22.     h  :  P  6  il .  D  .  Ps  t  D'Ps  smor  P  p  Q'P 
[*253-l7  .  *213-151 .  *252-l7l .  *204-34] 

*253-23.     1- : .  P  e  ii  .  D  :  Nr'P  =  Nr'Q .  =  .  Nr'Ps  =  Nr'Qs : 

P  smor  Q  .  =  .  Ps  smor  Qs 
Bern. 

h .  *181-33  .  D  h  :  Nr'P  =  Nr'Q .  = .  Nr'P  + 1  =  Nr'Q  4- 1  (1) 

|-.(1).*253-21.D 

h  :.  Hp .  D  :  Nr'P  =  Nr'Q .  =  .  14- Nr'Ps  =  1 4-Nr'Qs . 

[*181-33]  =  .  Nr'Ps  =  Nr'Qs  :.Dh.  Prop 


SECTION  d]       sectional   RELATIONS   OF   WELL-ORDEREI)   SERIES  37 

*253-24.     hrPefl.D.Psefi 
Dem.  • 

h .  *253-2  .  *250-141 .  *251-132  .  D  h  :  Hp .  P  ~  e  2, .  D  .  Nr'Ps  e  NO     (1) 
h .  *213-32 .  *251-16  .  D  h  :  P  e  2, .  D  .  Nr'Ps  e  NO  (2) 

h.(l).(2).  Dh:Hp.D.Nr'PseNO. 

[*251122]  D  .  Ps  6  n  :  D  h  .  Prop 

*253-25.     h  :.  P,  Q  e  fl  -  I'A .  D  :  Ps  t  D'Ps  smor  Qs  ^  D'Qs .  =  .  P  smor  Q 
[*253-22 .  *25017] 

*253-3.       h  :  P  e  12 .  D .  P/P  =  P  ^"P"a'P  =  P  I'^P'^CP  =  D'Ps 
[*213-243 .  *253-13] 

*253-31.     h  :.  P  6  n .  D  :  QP^P .  =  .  P  e  P  t"P"C"P  ^I'P.QeR  1"'R"C'R 

Dem. 
I- .  *213-245  .  *25313  .  D 

I- :. Hp  .  3  :  QPsP .  =  . P e O'P, .  Q6Rl"R"C'R . 

[*33-24.*213-3]        =.Re  G'Ps .  g !  P .  Q  e  P  ^  "R"G'R . 

[*253-15]  =.R6P^''P"C'P^i'P.'3,lP.QeRl"R"G'R        (1) 

f- .  *37-29  .  *33-24  .Dh-.QeR  t"P"C"P .  D  .  g !  P  :  (2) 

[*13-12]  :ih:QeRl"R"C'R.R  =  P.D.'a^lP  (3) 

h.(2)^.  DI-:P6PD"P"C'P.D.a!P  (4) 

I- .  (3)  .  (4)  .  D  h  :  P 6 P  1"'P"G'P yji'P.QeR l"R"G'R .  D .  g  !P  (5) 

h  .  (1) .  (5)  .  D  f- .  Prop 

*253-32.     [-.Pen.  Re G'P, .  D .  Ps'P  =  R l"R"C'R  =  D'Ps 
[*213-246 .  *25313] 

*253-33.     b  -..Peil.D  ■.Q(Ps^B'P,)R.~  .RePl''P"G'P.QeRl"'R"G'R 
[*213-247 .  *25313] 

If  a  is  any  ordinal  number,  and  Pea,  the  ordinal  numbers  of  the 
sectional  relations  of  P  are  all  those  ordinals  which  can  be  made  equal 
to  a  by  being  added  to,  i.e.  all  ordinals  /3  such  that,  for  a  suitable  y, 
a  =  y3  +  7.  (Here  7  must  be  an  ordinal  or  i.)  Further,  in  virtue  of  *250"67, 
no  member  of  D'Ps  is  similar  to  P;  hence,  if  a  is  an  ordinal,  and  a  =  /84-7, 
where  7=}=  Or.  it  follows  that  a=f=/8.  (Observe  that  a^7  does  not  follow  from 
^=|=0r-«  =  ;8  +  7.)  These  and  kindred  propositions,  which  are  important  in 
the  theory  of  ordinals,  are  now  to  be  proved. 

*253-4.       l-:P6n-t'A.D.a'Ps  =  0Ka-R)--P  =  Q^-K.v.(aa;).P  =  Q-|*«} 
[*213-41 .  *250-13] 


38  SERIES  [PART  V 

*253-401.  hiPeli.D. 

P  l"'P"G'P  yJi'P  =  Q  {(gi?) .  P  =  Q  4l  i2 .  V .  (aa;) .  P  =  Q+>a!} 
Bern.  :     '■ 

h .  *253-4-15  .DhsHp.glP.D. 

P  ^"P"C"P  w  t'P  =  Q  {(giJ) .  P  =  Q  4.  iJ .  V .  (a*) .  P  =  (34»^} '   (1) 
I- .  *37-29 .  D  f- :  P  =  A .  D  .  P  l"'P"C'P  u  I'P  =  I'A  (2) 

h  .  *1 60-14 .  *33-241 .  D  I- :.  P  =  A .  D  :  P  =  Q  4.  i? .  = .  ^  =-A .  -B  =  A : 
[*10-281]  D:(ai?).P=Q4:E.  =  .Q  =  A  (3) 

1- .  *161-13  .  *33-241  .DI-:.P  =  A.D:P=  Q-\*x .  =  .  Q  =  A  : 
[*10-24-23]  D:('s^sc).P=Q-i^x.  =  .Q  =  A  (4) 

h  . (3) . (4) .  3  h  : : P  =  A .  D  :. (^R) .P=Q^R.v. (a«) ..P  =  Q-\*x:  =  .Q=A. 
[(2)]  =.Q6P^"P"(7'P«t'P    (5) 

h.(l).(5).Dh.Prop  i 

*253-402.  hzPen-i'K.D. 

D'i's  =  0  {(a^)  ■ -R  4=  A .  P  =  Q  4l  P  .  V .  (ga;) .  P  =  Q-f*a;} 
i)em. 
h  .  *253-16-4 .  D 

l-::Hp.D:.Q6D'Ps.s:Q4=P:(aP).P  =  Q4^P.v.(aa!).P  =  Q-+*«     (1) 
h  .  *161-14  .  *200-41 .  D  h  :  Hp  .  P  =  Q4*a; .  D  .  a;  e  (7'P .  a;  ~  e  O'Q  . 
[*13-14]  3.e  +  P  (2) 

I- .  *160-21  .Dh:Q+P.P  =  Q4LE.D.a!P  (S^) 

I- .  *160-14 .  *200-4  .  D 

l-:Hp.P  =  Q4iP.a!iJ.D.a!0'PnC'i?.~a!0'QnC"P.       -     • 
[*13-14]  3.P+Q  (4) 

l-.(3).(4).D 

l-::Hp.D:.Q  +  P:(ai2).P=Q4^P:  =  .(aP).P  +  A.P  =  Q4:E  (5) 

I- .  (1) .  (2) .  (5) .  D  h  ::  Hp .  D  :.  Q  e  D'P, .  =  : 

(aP) .  P  + A .  P  =  Q  4:P .  V .  (aa;) .  P  =  Q-|*fl; ::  D  h  .  Prop 

*253-41.     I- :.  P  6  n .  Q  e  G'P, .  D  : 

(aa) .  a  e  NO  .  Nr'P  =  Nr^Q  +  a .  v .  Nr'P  =  Nr'Q  + 1   i; 

l-.*213-3.Dl-:.Hp.D:P  +  A: 

[*253-4]  D:(aii).P  =  Q4^P.v.(a«).P  =  (2-|*«: 

[*211-283.*200-41]  >    ,; 

D:(aP).P=Q4^P.a'QnC"P  =  A.v.(aa;).P  =  Q+>a!.«~e'0'^- 
[*180-32.*181-32]  D  :  (aP) .  Nr'P  =  Nr'Q  +  Nr'P .  v .  Nr'P  =  Nr'§  +  1 : 
[*251-26]  D  :  (aa) .  «  e  NO  .  Nr'P  =  Nr'Q  -i-  a .  v .  Nr'P  =  Nr'Q  + 1 :.  D  h  .  Prop 


SECTION  D]       sectional  RELATIONS   OF   WELL-OEDEBED   SERIES  3.9 

*253-42.     h  :  P  e  fl .  D .  Nr'P  n  B'P,  =  A  [*250-651 .  *213141] 

*253-421.  l-:Pea.QeI^Ps.D.~(QsmorP)     [*253-42] 

*253-43.     I- :.  Pe  n .  x,yea'P  .  D  :  P  ^  P'a;  smor  P  ^  P'y.  =  .x  =  y 
Bern. 

I- . *25311 .  D  h  :  Hp . a!Py .  D  . (P llP'x)P, (PtlP'y) . 

[*213-245]  D  .  P  t  P'a;  €  D'(P  ^  IP'y), . 

[*253-421]  D  .  ~  {(P  tP'«!)  smor  (P  ^  P'j/)}  (1) 

Similarly  h  :  Hp.  yPa;.  D.~{(P ^P'a;) smor (P^P'^)}  (2) 

h . (1) .  (2) .  D  h  :.  Hp .  D  :  (P pP'a;) smor (P^P'y) .  D .'^(xPy) .--(yPa!) ■ 
[*202-103]  0.x  =  y  (3) 

t-.(3).*151-13.Dl-.Prop 

*253-431.  l-:P4LQ6n.a!Q.D.Nr'P=t=Nr'(P4.Q) 
i)em. 

h  .  *253-402 .  D  h  :  Hp .  D  .  P  6  D'(P:^Q)s  (1) 

f-.(l).*253-421.DF.Prop 
*253-432.  h  :  P4>a; e  O .  g !  P .  D  .  Nr'P  +  Nr'(P-f>«)     [*253402-421] 

*253-44.     l-:a,/36NO-t'A./3=t=0,.D.a  +  ;8  +  a 

Dem. 
h.*25ri.*155-34.D 

H  :  Hp  .  D  .  (gP.Q)  .  P,QeIl .  a=  N„r'P  .  /3=  N„r'Q  .  a  !  Q. 
[*180-3] 
D.(aP,(2).P,Q6n.a  =  N„r'P./3  =  N„r'Q.a[!Q.a  +  /3  =  Nr'(P  +  Q)    (1) 

h  .  *18012  .  *253431 .  (*180-01)  .  3 

h:P,QeIl.a!Q.D.Nr'(P  +  0  +  Nr'P. 

[*155-16]  3 .  Nr'(P  +  Q)  +  N„r'P  (2) 

l-.(l).(2).D         " 

1- :  Hp .  D .  (aP,  Q) .  P,  Q  6  X2  .  a  =  N„r'P .  /3  =  N„r 'Q .  a  +  /3  4=  Noi 'P . 

[*13-195]  3  .  a  + /3  +  a :  D  h .  Prop 

*253-45.     H:aeNO-t'A-t'0,.D.a  +  i=t=a 

[Proof  as  in  *253-44,  using  *253-432  instead  of  *253-431] 

*253-46.     }-:Pen.Q,BeG'Ps.QsmorR.D.Q  =  B 
Bern. 

f- .  *253-421-16  .  D  I- :  Hp .  Q  =  P .  D  .  E  =  Q  (1) 

h.*263-16  .  D  h  :  Hp.  Q=t=P.i2  +  P.  D  .  Q,-BeD'Ps  • 

[*253-13]         D.('^a;,y).x.y6a'P.Q  =  PtP''»-R  =  PtP'y' 
[*253-43.Hp]  O.Q  =  R  (2) 

I- .  (1)  .  (2)  .  D  1- .  Prop 


40  SERIES  [part  V 

*253-461.  h  :  P  €  n .  D  .  Nr  f  G'P,  e  1-*1 
Dem. 
1-  .*253-46  .  3  h  :  Hp .  Q,ReG'P, .  Nr'Q  =  Nr'i2 .0.Q  =  R:0\-.  Prop 

*253-462.  h:Pefl.D. 

Nr  I (P  I) \P  [ a'P 6 1^1 .  NrJP ^'P^P D  <^'P  smor  P ^  Q'P 
[*253-43] 

*253-463.  h  :  P  6  n  .  D  . 

NrJ  (Ps  ^  D'PO  smor  Ps  ^  D'Ps  •  NrJ  (Ps  p  D'P  )  smor  P  t  d'P 
[*2o3-462-l7-22] 

*253-47.     h  :  P  6  n  -  I'A  .  D  . 

Nr"a'Ps  =  a  {(a^)  .  a  +  /3  =  Nr'P  .  v  .  a  + 1  =  Nr'P j     [*253-4] 

*253-471.  hiPefl.D. 

Nr"(D'Ps  u  I'P)  =  a  {(gyS)  .  a  +  /8  =  Nr'P  .  v  .  a  4- 1  =  Nr'P) 
[*253-401-13] 

The  following  propositions  are  concerned  in  proving  that  Nr'Ps  is  either 
Nr'P  or  Nr'P  4-1-  This  is  proved  by  using  Pj  as  a  correlator.  The 
methods  employed  anticipate  the  discussion  of  finite  and  infinite  series ; 
in  fact,  when  P  is  finite,  Nr'Ps  =  Nr'P,  and  when  P  is  infinite, 
Nr'Ps  =  Nr'P  -i- 1.  But  it  is  important  at  this  stage  to  know  that  Nr'Ps  is 
either  equal  to  or  greater  than  Nr'P,  and  the  propositions  are  therefore 
inserted  here. 

*253-5.       h:P6n.D.Px;P  =  PDD'P 
Dem. 

b  .  *201-63  .  *25-411 .  D  h  ::  Hp  .  D  :.  P  =  Pi  a  P"" :. 
[*150-11] 0:.x(PJP)w.  =  : (gy, z) : xP^y : yP^z .  v . yP'z :  wP^z : 
[*204-7]  =  :  {^z) .  xP^w .  wPj,z .  v  .  (gy,  z) .  xP^y .  yP^z .  wP^z : 

[*250-21  -24]  =  :  a;P,  w .  w  e  D'P .  V  .  (gy)  .xP^y.y.we  D'P .  yPw : 

[*33-14.*34-l]        =  :  a;  (P,  w  Pi  I P)  w .  w  e  D'P : 
[*3314.*250-242]  =  :x,W€  D'P .  xPw ::  D  h  .  Prop 

*253-501.  h  :  P  6 n  .  D  .  P,;P  =  P  p  G'Pj 
Bern. 

h  .  *260-242 .  D  f- :  Hp .  D  .  Pi  I P  =  Pi  I  Pi  (a  Pi  I  Pi  I P 
[*7l-191.*204-7]  =![  a'Pi  o  (a'Pi)  1  P . 

[*1 50-1  .*50-65]  D  .  Pi  ;P  =  (O'Pi)  1  Pi  a  (a'P,)  1  P  |  Pi 

[*250'243]  =Pt  a'P, :  D  h  .  Prop 


SECTION  D]       sectional   RELATIONS   OF   WELL-ORDERED   SERIES  4.1 

*253-502.  J- :  P  e  fl .  D  .  P  t  a'P^  smor  P  l  D'P 
Dem.  • 

H  .  *253-5  .  *150-36  .  3  h  :  Hp  .  D  .  P  ^  D'P  =  P,'>  (P  ^  d'Pi)  (1) 

h  .  *151-21 .  *204-7  .  D  I- :  Hp .  D .  Pi?  (P  p  Q'P.)  smor  P  ^  a'P,    (2) 
h.(l).(2).Di-.Prop 

*253-503.  h  :  P  6  n  .  Q'P,  =  Q'P .  D  .  P  t  CI'P  smor  P  ^  D'P     [*253-502] 

This  proposition  shows  that  if  P  is  a  well-ordered  series  in  which  every 
term  except  the  first  has  an  immediate  predecessor,  the  series  obtained  by 
omitting  the  last  term  (if  any)  is  similar  to  that  obtained  by  omitting  the 
first  term.  The  converse  also  holds,  as  will  be  shown  later.  The  hypothesis 
Pen.(l'Pi=(l'P  is  equivalent  to  the  hypothesis  that  P  is  finite  or  a  pro- 
gression. (Here  a  progression  is  not  what  was  defined  as  "  Prog  "  in  *121,  but 
what  Cantor  calls  m;  i.e.  ii  Re  Prog,  Ppo  is  a  progression  in  our  present  sense.) 

*253-51.     h  :  P  6  ft .  O'P,  =  Q'P .  E !  P'P .  3  .  Nr'Ps  =  Nr'P 
Bern. 

t- .  *253-2 .   D  h  :  Hp.P~e  2, .  D .  Nr'Ps  =  Nr'(P  I  O'P)  4- 1 
[*253-503]  =  Nr'(P  C  D'P)  +  1 

[*204-461-272]  =  Nr'P  (1) 

h  .  *213-32  .  D  I- :  P  6  2^ .  3  .  Nr'Ps  =  Nr'P  (2) 

h  .  (1) .  (2)  .  D  h  .  Prop 

*253-511.  h-.PeD,.  a'P,  =  O'P .  ~ E ! 5'P .  D  . 

Nr'Ps  =  Nr'P  4- 1  ■  Nr'P  t  Q'P  =  Nr'P 
Dem. 

h . *93103  . *202-52  .  D  h  :  Hp .  3  . P^  D'P  =  P . 
[*253-503]  3  .  Nr'P  ^  Q'P  =  Nr'P .  (1) 

[*253-2]  3.  Nr'Ps  =  Nr'P -I- 1  '    (2) 

I- .  (1) .  (2) .  3  I- .  Prop 

*253-52.     f- :  P  6  ft  . «  =  minp'(a'P  -  Q'P,) .  3  . 

Q'P  n'p'x  C  a'P, .  P^"'P'a;  =  P'a  .  P^"P'x  =  P'x  -  I'B'P 


Bern. 


1-.*20514.    3f-:Hp.3.a'PnP'a;Ca'P,  (1) 

h  .  *250-242  .  3  h  :  Hp .  3 .  P'a;  =  P.'ai  u  P,"P'x 
[*33-41.Hp]  =P."P'a5.  (2) 

[*72-501  .*204-7]  3  .  P,"^'^  =  ?'« "  Q'-Pi  (3) 

h  .  (1)  .  3  h  :  Hp  .  3  .  Q'P  n  P'a;  =  a'P  a  P'x  n  G'P, 

[*121-305]  =a'P^r^'p'x  (4) 

h  .  (3) .  (4) .    3  h  :  Hp .  3  .  P/'P'* = 'P'"' «  Q'-P 
[*33-15.*202-52]  =P'x-i'B'P  (5) 

I- .  (1)  .  (2)  .  (5)  .  3  h  .  Prop 


42  SERIES  [PART  V 

*253-521.  \-:P€il.oo6a'P-a'P,.O.P'x,a'P'^el 
Bern. 

h.*201-66.        Dh:Pen.P'a!el.D.a;€a'Pi  (1) 

h.(l).Traiisp.DI-:Hp.D.P'a;~el  (2) 

h.*201-662.      Dh:Hp.D.a'P~6l  (3) 

I- .  (2) .  (3) .  D  I- .  Prop 

*253-522.  1- :  P e fl .  a;  =  minp'(a'P - Q'PO  .S  =  P^  [P'x yj  I  [ P^'x .  D  . 

S''{Pl(l'P)  =  P 
Dem. 

h  .  *34-25-26  .  *50-5-51 .  D 

h  :  Hp .  D .  5f;(P  ^  a'P)  =  (Pi  1^  P'a;);P  p  Q'P  o  (/  T^'^)'-?  '^^ 

(Pi  I' P'a;)  I P I  / 1^  P*'a;  va  7  [^  P^'a;  |  P  |T'a;  ^  P^ 

[*50-6-61.*150-36.*35-452]  =  (P,  ['P'xY'P  w  P  ^  P^'a;  c;  P,  [^  P'a;  |  P  I^  P*'a!  c; 

P*'^1_Pr^'a;|P:^  _^  ^ 

[*74-141.*253-52.*200-381]=  (P^  p  "P'^Y^P  w  P  ^  P^'a;  o  P'a;  1  P,  |  P  T  P^'x 

[*250-242.Hp]  =  (P,  p  P'a!)5P  c;  P  t  P*'a;  c;  P'a;1  P  I'  P*'* 

[*150-36]  =  (P.'P)  i  P,''P'x  \J  P  l*P^'x  vj'P'x  1  P  f  P*'a; 

[*253-5-52]  =Pl'P'x^JPl %'x  va  P'a;  1  P  I' p-^'x 

[*35-413.*200-381]  =P^P'a;up!^'a;) 

[*202-101]  =P:DH.  Prop 

*253-53.     h  :  P  6  fl ,  a;  =  mmp'(a'P  -  Q'P,) .  3  . 

Pi  1^  P'a;  o  / 1^  Pj^'a;  e  {P  s^ior  (P  ^  Q'P)} 
Dem. 

I- .  *204-7  .  *200-381 .  D  h  :  Hp .  D  .  P,  T  P'a;  w  / 1^  P^'a;  e  1^1        (1) 
h  .  *253-52  .  *50-5-52 .  D 

h  :  Hp .  D  .  a'(Pi  [lP'x^JI  t^^'x)  =  (P'x  -  I'B'P)  w ^^'x 

[*202-101]  =C'P-i'B'P 

[*93103]  ^  =a'P 

[*202-55.*253-521]  =  G'(P  I  a'P)  (2) 

I- .  *253-522 .  3  f- :  Hp .  3 .  (Pi  f  P'a;  u  /  [*P^'x)l{P  I  Q'P)  =  P     (3) 
h .  (1) .  (2) .  (3) .  *151-11 .  D  h  .  Prop 

*253-54.     t-iPefi.aia'P-a'Pi.D.PsmorPpa'P 
Dem. 

h  .  *250121 .  D  I- :  Hp .  D .  E  !  minp'(a'P  -  Q'Pi)  (1) 

h.(l).*253-53.Dh.Prop 


SECTION  D]       sectional   RELATIONS   OF  WELL-ORDERED   SERIES  43 

*253-55.     h  :  P  e  n .  a  !  Q'P  -  Q'P, .  D  .  Nr'Ps  =  Nr'P  + 1 

Dem. 

h  .  *253'521 .  *204-272 .  D  h  :  Hp .  D  .  P  ~  e  2^  (1) 

h.(l).*253-54-2.Dh.Prop 

*253-56.     I- :.  P  €  n .  D  :  Q'P^  =  O'P .  E  !  5'P .  3  .  Nr'P^  =  Nr'P : 
~  (Q'P,  =  a'P .  E !  S'P) .  D .  Nr'Ps  =  Nr'P  + 1 
[*253-51-511-55] 

*253-57.     h:Pea.a'Px  =  a'P.E!P'P.D. 

1  +  Nr'P  =  Nr'P  + 1  .  i  -i-  Nr'P  +  Nr'P 
Dem. 

I- .  *253-51 .  D  h  :  Hp .  D  .  Nr'Ps  =  Nr'P . 

,,  t*253-21]  D.i4-Nr'P  =  Nr'P  +  i.  (1) 

[*253-45]  D.  14- Nr'P  =^=  Nr'P  (2) 

.        h.(l),(2).DI-.Prop 

*253-571.  l-:P6n.~(a'P,  =  a'P.E!5'P).D.l  +  Nr'P  =  Nr'P  '•  ''     •"^" 
Dem. 

h .  *253-56  .  D  h  :  Hp .  D .  Nr'Ps  =  Nr'P  + 1 .  "'/     / 

'  'I  ;     '[*253-21]  D  .  1  +  Nr'P  + 1  =  Nr'P  + 1 .'  7^  '.     ; 

[*181-33]  D.  1 -i- Nr'P  =  Nr'P :Dh. Prop  ;    „ ;  ^J 

*253-572.  I- :  P  6  n  - 1' A .  ~  (a'Pi  =  a'P .  E !  P'P> .  3.1+  Nr'P  4=*Nr'P  +1 
[*253-671-45]  '_  ■-     '      '■'     ''■'•'  ^^ 

*253-573.  I- :.  P  e  fi .  3  :  Q'Pj  =  O'P .  E !  P'P .  =  .  1  +  Nr'P  +  Nr'P 
[*253-57-571]    ,,        ;■  {' 

*253-574.  h  :.  P  e  fl  -  I'A  .  3  :  O'Pj  =  fl'P .  E  IB'P .  = .  1  +  Nr'P  =  Nr'^P  +  1 
[*253-57-572]  z';^ 


*254.     GREATER  AND  LESS  AMONG  WELL-ORDERED  SERIES. 

Summary  of  *254. 

In  the  present  number  we  have  to  prove  that  of  any  two  well-ordered 
series  one  must  be  similar  to  a  sectional  relation  of  the  other.  From  this  it 
will  follow  that  of  any  two  unequal  ordinals  one  must  be  the  greater.  The 
propositions  of  the  present  number  are  due  to  Cantor*. 

Our  procedure  is  as  follows.     We  define  a  relation  " RP^^Q"  meaning 
"R  is  a  proper  section  of  P,  and  is  similar  to  Q"  i.e. 
RP^Q  .  =  .Re  D'Ps .  R  smor  Q. 

In  virtue  of  *253-46,  if  P,  Q  e  H,  P3^  e  1  ->  CIs  (*254-22)  and 
Pauitli'Qsel->l  (*254-222).  Thus  if  S  is  any  proper  section  of  Q  which 
is  similar  to  some  proper  section  of  P,  the  proper  section  of  P  to  which 
it  is  similar  is  Pam'S.  It  is  easy  to  prove  that  Psm'Qs  ^  D'Qs  is  a  section  of 
P ;  and  if  D'Pj  C.d'Qg^,  i.e.  if  every  proper  section  of  P  is  similar  to  some 
proper  section  of  Q,  we  shall  have  (*254261) 

PsDD'Ps=p,^;(2sDD'Q». 

Hence  it  follows  (*254-27)  that  if,  further,  T>'Q,  C  d'P^^,  we  shall  have 

PstD'PssmorQspD'Qs, 
i.e.  by  *25S-25,  PsmorQ     (*254-31). 

Thus  (A)  if  every  proper  section  of  P  is  similar  to  some  proper  section  of  Q, 
and  vice  versa,  then  P  is  similar  to  Q. 

Consider  next  the  case  in  which  every  proper  section  of  P  is  similar 
to  a  proper  section  of  Q  (i.e.  D'Pj  C  d'Qgm).  but  not  vice  versa,  so  that 
a  !  D'Qj  -  Q'Pgm-  It  is  easy  to  prove  that,  under  this  hypothesis,  if 
8eJ)'Q,  -  a'P,m,  then  D'Ps  C  d'S^  (*254-32).  But  if  S  is  the  minimum 
(in  the  order  Q,)  of  the  class  D'Qs  -  d'P^^,  then  T>'8,  C  Q.'P^.  Hence, 
by  (A), 

8  smor  P    (*254-321). 

Thus  (B)  if  every  proper  section  of  P  is  similar  to  a  proper  section  of  Q,  but 
not  vice  versa,  then  P  is  similar  to  a  proper  section  of  Q  (*254"33). 

•  Math.  Annalen,  Vol.  49. 


SECTION  D]       greater   AND   LESS    AMONG   WELL-ORDERED   SERIES  45 

From  (B),  by  transposition,  we  find  that  if  every  proper  section  of  P  is 
similar  to  a  proper  sectio|^  of  Q,  but  P  itself  is  not  similar  to  any  proper 
section  of  Q,  then  every  proper  section  of  Q  is  similar  to  a  proper  section 
of  P,  whence,  by  (A),  P  is  similar  to  Q  (*254"34).  Hence,  if  there  are 
proper  sections  of  P  which  are  not  similar  to  any  proper  section  of  Q,  the 
smallest  of  such  sections  (say  P')  must  be  similar  to  Q,  since  it  is  not  itself 
similar  to  any  proper  section  of  Q,  but  all  its  proper  sections  are  similar  to 
proper  sections  of  Q.  Hence  (C)  if  there  are  proper  sections  of  P  which  are 
not  similar  to  any  proper  section  of  Q,  then  there  is  a  proper  section  of  P 
which  is  similar  to  Q,  i.e. 

h  :  P,  Q  e  n  .  a !  D'Ps  -  d'Q,^ .  D  .  Q  e  a'P^^    (*254-35). 

Thus  either  (1)  g !  D'Ps- Q'Q.^,  in  which  case  Q  e  a'P^^,  or 
(2)  a  !  D'Qs  -  a'P,„,  in  which  case  P e^'Q,^,  or  (3)  D'PsCa'Q,^  and 
D'QsCa'Pg^,  in  which  case,  by  (A),  PsmorQ.  Thus  (D)  if  P  and  Q  are 
any  two  well-ordered  series,  either  they  are  similar  or  one  is  similar  to  a 
proper  section  of  the  other  (*254"37). 

We  now  proceed  to  define  one  well-ordered  series  P  as  less  than  another 
well-ordered  series  Q  if  P  is  similar  to  a  part  of  Q,  but  not  to  Q,  i.e.  we  put 

less  =  PQ  {P,  Q  e  n  .  a  !  Rl'Q  n  Nr'P .  ~  (P  smor  Q)]     Df. 
(Observe  that  we  have  El'Q  in  this  definition,  not  D'Qs.) 

It  follows  from  (D)  that,  P  and  Q  being  well-ordered  series,  if  P  and  Q  are 
not  similar,  one  must  be  less  than  the  other  (*254'4).  It  follows  also  from 
*25065  that  if  P  is  similar  to  a  proper  section  of  Q,  Q  cannot  be  less  than 
P  (*2o4"181).  Hence  P  is  less  than  Q  when,  and  only  when,  P  is  similar  to 
a  proper  section  of  Q,  i.e. 

P  less  Q .  =  .  P,  Q  e  12  .  P  6  Q'Q.^    (*254-41). 

Hence  if  each  of  two  well-ordered  series  is  similar  to  a  parb  of  the  other,  the 
two  series  are  similar  (*254"45) ;  and  in  any  other  case,  one  of  them  is  similar 
to  a  proper  section  of  the  other. 

From  the  above  results  we  easily  obtain  the  following  propositions,  which 
are  useful  in  the  ordinal  theory  of  finite  and  infinite. 

*254-51.     I- :  Pless  Q.  =  .  P.Qefi .  Rl'Pn  Nr'Q  =  A 

I.e.  one  well-ordered  series  is  less  than  another  when,  and  only  when,  no 
part  of  it  is  similar  to  the  other. 

*254-52. .   f  :  P  6  XI .  a  C  C'P .  a  !  C'P  n  p'P"oi .  D .  P  ^  a  less  P 

//.'e.  anySart  of  a  well-ordered  series  which  stops  short  of  the  end  is  less 
thf  ^ii  the  wiole  series. 


46  SERIES  [PiRT  V 

*254-55.    i-:.QlessP.  =  :P,Q6fl:(ai2).i2smorQ.i2GP.a!(7'Pftp'P"a'E 
I.e.  one  well-ordered  series  is  less  than  another  when,  and  only  when^  it  is 
similar  to  a  part  of  the  other  which  stops  short  of  the  end. 


*25401.     less  =  PQ{P,Qefi.a!Rl'QnNr'P.~(PsmorQ)}     Df 

*25402.     P3^  =  (D'Ps)1smor     Df 

*254-l.       l-:PlessQ.  =  .P,Qefl.a!Rl'QANr'P.~(PsmorQ)     [(*254'01)] 

*254101.  h  :  P,  Q  £  fl .  P  G  Q .  ~  (P  smor  Q) .  D  .  P  less  Q  [*254-l] 

*25411.    y:RP^J^.  =  .Re'D'P,.RsmorQ    [(*254-02)] 

.*254111.  l-.P,^'Q  =  D'PsnNr'Q  [*254-ll] 

*25412.     I- :  Q  e  d'P^^  •  =  .  a  !  D'Ps  n  Nr'Q      [*254-l  1 1] 

*254-121.  h.D'PjCa'P,^  •  [*254-12.*152-3] 

*25413.     h  :. P smor P'.  Q smor  Q'.'H-.P less Q.  =  .P' less Q' 
[*151-15  .  *152-321 .  *254-l] 

*254-14.     V:Se  D'Qs  .TeP  s"mof  Q.D.T'Se  T>'P,  n  Nr'/S 
Dem. 
h  .  *213-141 .  D  h  :  Hp .  D  . (gyS) .  /3  e sect'Q -  I'A  -  t'C'Q  .S=Q10     (1) 
1- .  *150-37  .    Df-:Hp./Sf  =  Qt/8.3.  T'S  =  (T>Q)l  T"0 
[*151-11]  =PIT"^  (2) 

K.*212-7.      Dh:Hp./3esect'Q.D.T"/36sect'P  (3) 

F.*37-43.      Dl-:Hp./3esect'Q-i'A.D.a!r"/3  (4) 

1- . *150-22  .    D  h  :  Hp  .  T"^  =^C'P.D.  T"^  =  T"C'Q  : 
[*7248li        DI-:Hp.T"/3=C'P.jS6sect'Q.D./3=C'Q: 
[Transp]         D  I- :  Hp .  ;8  6  seet'Q  -  t'C'Q .  D .  ^"/S  +  C'P  (5) 

l-.(3).(4).(5).D 

I- :  Hp .  /3  6  sect'Q  -  I'A  -  t'C'Q .  D  .  T";8  e  sect'P  -  t'A  -  t'C'P  (6) 

h .  (1) .  (2) .  (6) .  D  h  :  Hp .  D .  (ga) .  a  e  sect'P  -  I'A  -  t'C'P .  nS  =  P\^  a . 
[*213-141]  O.T'SeB'P,     ,  (7) 

h.*151-21.         DI-:Hp.D.(r;*S)smor/S  (8) 

I- .  (7) .  (8) .  D  h  .  Prop 

*254141.  h  :  P  smor  Q .  D .  D'Qs  C  a'P^ .  D'P,  C  Q'Q.^ 
Bern. 

h  .*254-12-14 .  D  h  :.  Hp .  D  iSeB'Qs .  D  .  S'eQ'P.^  (1) 

h  .  (1) .  *151-14  .  D  h .  Prop 


\ 


*254142.  I- :  -B  6  G'P^ .  3  .  iJs^  C  ^sm 

I- .  *213-241 .  3  I- :  Hp .  D .  D'Ps  C  D'Ps  '         \'i) 

h.(l).*2541i;Dh.Prop 


SECTION  d]      greater   AND   LESS   AMONG   WELL-ORDERED   SERIES  47 

*254143.  hzQe  a'P,„ .  D  .  G'Q,  C  Q'P,, 
Dem.  m 

I- .  *25412  .  D  h  :  Hp .  D  .  (gi?)  .ReB'P^.R  smor  Q . 
[*2.54-141]  D  .  (gii)  .  R  e  I>'P, .  J)'Q,  C  a'R,^  . 

[*254-142]  D.D'Q.Ca'P,^. 

[*213-16.Hp]  D .  (3  C"(sect'Q  -  t'A)  C  a'P,^ .         ; 

[*213-1]  D.O'QsCa'P,^:DI-.Prop  'j 

*254-144.  I-:P  =  A.D.P3„  =  A    [*213-3  .  *254-ll] 

*25415.     h  :.  Qp„  e  J" .  a  !  £'P .  Pp„  e  J- .  D  :  Q  e  Q'P.^ .  =  .  C'Q,  C  G'P,^ 

Dem. 
h  .  *254-143  .  D  h  :  Q  6  a'P,„ .  D  .  C'Q,  C  a'P,„  (1) 

h  .  *213-142 .  *211-26 .  D  h  i.JHp .  g  !  Q  .  D  :  Q  e  G'Qs : 

[*22-441]  D:C'Q,Ca'P,„.D.Q6a'P3^     .(2) 

h  .  *211-18 .  D  h  :  Hp .  D .  a  !  sect'P  r.  1 . 

[*200-35]  D  .  A  e  P  t  "(sect'P  -  t'A) . 

[*213-16]  D.AeD'P,. 

[*254-121]  D.AeQ'P.^  ■  (3) 

f-.(2).(3).  Dh:.Hp.D:C"Q,Ca'P,^.D.Qea'P,^  (4) 

I- .  (1)  .  (4) .  D  h  .  Prop 

*25416.     h  :.  Qsmor  Q'.  3  :'P,^'Q  =  P,^'Q' :  Q^a'P,^ .  =  .  Q'eQ'P.^ 
Bern. 

h .  *254111 .  *152-321 .  D  h  :.  Hp .  D  :  'p.jQ  =  ^„'Q' :  (1) 

[*13-12]  :>:a!Psm'Q-  =  -a!PB.'Q': 

[*33-41]  D  :  Q  6  Q'P.^ .  =  .  Q'  e  a'P,„         (2) 

h  ,  (1) .  (2)  .  D  h  .  Prop 

*254161.  h  :  P  smor  P' .  D  .  a'P,^  =  a'P',„ 

-Dem. 
I- .  *254-14 .  D  I- :  TePslnof  P'.SeD'P'^n'Nr'Q .  D  .  T'SeB'P,  n  Nr'Q  : 

[*254-12]  Dh:^6PslnorP'.Qea'P',^.D.Q6a'Ps„: 

[*151-12]  Dh:PsmorP'.D.a'P',^Ca'P,„  (1) 

f- .  (1)  .  *15114  .  D  h  :  P  smor  P'.  D  .  a'P^n.  C  d'P',^  (2) 

h  .  (1) .  (2)  .  D  h  -  Prop 

*254162.  h  :. P smor P'.Q smor  Q'.  D  :  QeQ'P,^.  =  .  Q'eQ'P'^^ 
[*254-16161] 

*254163.  \-:Rea'Q,^.:i.a'R,^ca'Q,^  ; 

Dem.  ^ 

h.*254-12.Df-:Hp.D.(a/Sf).i2smor/S.*Sf6D'Qs.  ! 

[*254i6i-i42]         3 .  (g^) .  a'R,^ = a's,^ .  a's,^  c  a'Q^ .       : 

[*13195]  D.a'R,raCa'Q^:D\-.Fiop  j 


48  SERIES  [PAET  V 

*254164.  h  :  D'Ps  C  a'Q^ .  D .  B'P,  =  P^"(D'Q,  r^  a'F,J  =  P^J'D'Q, 
Dem. 

V  .  *254-ll  .  3  h  :  Hp  .  E  6  D'P, .  3  .  (gS) .  S  e  B'Q, .  R  smor  5f . 
[*254-ll]  D.{'sS).Se'D'Qs.RP,„,S. 

[*371]  D.i2  6P3^"D'Qs  (1) 

[-.*25411.DI-.P,„"D'QsCD'P5  (2) 

h  .  (1) .  (2) .  D  h  :  Hp .  D  .  B'P,  =  P^"'D'Qs 
[*37-26]  =  Psm"(D'Qs  '^  a'-Pam)  =  ^  I"  •  Prop 

*254-17.     h  :  Pe O  .  Q eD'Ps .  P C Q .  D .  ~ (PsmorP) 
i)em. 
I- .  *204-21  .DhiPeii.PGP.P  smor  P  .  D  .  P  e  Ser  . 
[*204-41]  D.R  =  PtG'B  (1) 

I- .  *250-65  .  Transp  .  D 

h  :  Peil .  PsmorP .  P  =  Pt  C'R .  D  .  ~(aa) .  a  e  sect'P  -  t'C'P  .C'RCa. 
[*211-133-44]  D  .  ~ (aQ) .  Q 6 P t  "(sect'P - l'G'P)  .RdQ. 
[*213-14i]      D  . ~ (aQ) .  Q e D'Ps  .RGQ  (2) 

l-.(l).(2).3l-:P6fl.PsmorP.PGP.D.~(aQ).Q6D'Ps.PGQ    (3) 
h  .  (3) .  Transp .  D  f- .  Prop 

*254-18.     l-:Q6D'Ps.D.~(PlessQ)    [*254-17-l] 

*254181.  V:Qe  G'P,^ .  D .  ~  (P  less  Q) 

Bern. 

V  .  *254-1812 ,  D  I- :  Hp .  D  .(gP) .  R  smor  Q .  ~  (P  less  P) . 
[*254-13]  D.  ~  (P  less  Q)  Oh.  Prop 

*254 182.  h  :  P  6  n  .  Q  6  T>'P, .  D  .  Q  less  P     [*254-101 .  *253-421-18] 

*254-2.       l-:P6Q.Qea'P,„.D.QlessP 

Dem. 

I- .  *25411 .  D  h  :  Hp .  D ,  (gP) .  P  e  D'Ps .  P  smor  Q . 
[*254-182]  D.  (aP).P  less  P.  P  smor  Q. 

[*2.54-13]  D .  Q  less  P :  D  I- .  Prop 

*254-21.     I- :  P  e  n .  Q  e  d'Psu.  .RCQ.ReD,.'^  .R  less  P 

Pern. 
I- .  *254-12  .  D  h  :  Hp  .  D.(a/S,  TJ.SeD'P, .  Te-Sfs-SorQ  . 
[*151-21.*150-31]        :).('3,S,T).8eT)'P,.Te8sE:oiQ.T'yRsmorR.T'R(lS. 
[*254-l7]  D.(ar).T5PsmorP.T;PGP.~(r;PsmorP). 

[*15117]  D.(ar).  r;P  smor  P.  r;PG  P.  ~(P  smor  P). 

[*2541]  D .  P  less  P  :  D  h  .  Prop 


SECTION  D]      greater  AND   LESS   AMONG   WELL-ORDERED   SERIES  49 

*254-22.     h:P6n.D.P,„el^01s 
Dem. 

V  .  *25411 .  D  h  :.  RP^Ji .  SP^^Q ,  D  :  E,  ^  e D'Ps .  R  smor 8 : 
[*253-46]  D:P6n.D.i?  =  /S  (1) 

h  .  (1)  .  Comm .  D  h  .  Prop 

*254-221.  h  :  P  e  n .  D  .  a'P,„  C  O 

Dewi. 

I- .  *254-12  .  *25313  .  D 

h:Hp.Qea'P,^.D.(a-K,a).P  =  Pta.PsmorQ. 

[*250-141.*251111]  D  .  Q  e  n  :  D  I- .  Prop 

*254-222.  h:P,QeXl.D.P,„,rD'Qs6l-*l 
Dem. 
h  .  *254-ll  .Ohi.R  (P«^  r  D'QO  S .  R  (P,„  r  D'QO  -S'  ■  ^  = 

/Sf,  /Sf'e  D'Qs .  R  smor  )S .  R  smor  /S' : 
[*253-46]  '     D:Q6n.D.S=S'  (1) 

h  .  (1) .  Comm  .  D  I- :  Hp .  D  .  P,^  T  D'Qs  e  Cls -*  1  (2) 

I- .  (2)  .  *254-22  .  D  i- .  Prop 

*254-223.  1- .  Cnv'iP,^  [  D'Qs)  =  Q,^  [  D'P, 
Dem. 

h  .*254-ll  .  D  I-  :R(P,^[I>'Qi)S.  =  .  P e D'Ps .  >Sf  e  D'Qs .  Psmor^f. 
[*151-14]  =  .8e  D'Qs .  R  e  D'Ps .  S  smor  R  . 

[*254-ll]  =.S(Q,^rD'-P0^:3'--Prop 

*254-224.  h  :  Q  e  n  .  E !  P^^'fif .  ;Sf  e  D'Qs .  D  .  >S  =  Q^^'P^^'^ 
2)em. 

I- .  *254-223  .  D  h  : .  Hp  .  D  :  ;SfQ,„  (P,„,'<Sf)  .  =  .  (P,^'8)  P,^S     (1) 
I- .  (1)  .  *30-32  .  *254-22  .  D  h  .  Prop 

*254-23.     h  :  P  6  n  .  Q  6  G'P,^ .  D  .  P,„.'Q  =  ^'(D'Ps  n  Nr'Q)    [*254-22111] 

*254  24.     \-:P,Qeil.Re  D'Ps  n  Q'Q.^ .  8  e  Rl'P  a  D'Ps .  D  .  -S  e  Q'Q.^ 

Dem. 

h  .  *213-24  .  D  h  :  Hp  .  D  .  ;S  e  D'Ps . 

[*254-143.Hp]  D  .  >Sf  6  a'Q,^ :  D  h  .  Prop 

E.&W.    III.  * 


50  SERIES  [part  V 

*254-241.  1- :.  P  6  n  .  Q,  i?  e  C'P,  .:^:R€  a'Q,^  .  =  .Re  D'Q, 
Dem. 
h  .  *254121  .0\-:Re  D'Q,  .D.Be  a'Q,^  (1) 

h  .  *254.142  .  D  h  :  Hp  .  Q  e  C'R, .  D  .  Qsm  G  -Rem  (2) 

h.*253-42.    Oh:Ren.D.Rr^ea'R^^  (3) 

t-.(2).(3).    D\-:np.QeG'R,.D.R'^€a'Q,^  (4) 

h  .  (4) .  Transp  .  (3) .  D  h  :  Hp  .  i?  e  Q'Q.^ .  D  .  Q  ~  e  C'iis .  Q  4=  i2  . 
[*213-24.5]  D  .  ~  (QPsR)  .Q^R. 

[*213153.Hp]  D.RPsQ. 

[*213-245]  D .  E  e  D'Qs  (5) 

h  .  (1)  .  (5) .  D  h  .  Prop 

*254-242.  1- :  Q  6 Xi  .  Te  P iSor  Q  .  /Sf  e D'Qs .  3  .  T'>S  =  P,^'S 

Dem. 

1- .  *254-14  .  D  I- :  Hp  .  D  .  T''SeI>'P,  n  Nr'^f . 

[*254-ii]  D.(r;,s')P,„^f. 

[*2o4-22.*2511 11]         D  .  TJ/S  =  P,„'5' :  D  t- .  Prop 

*254-243.  h  :  Q 6 Xl . -Se D'Qs .  T e P imor  S  .S'Q,S.D.  T>S'  =  P,^'S' 
Dem. 

\- .  *213-243  .*253-18  .  D  h  :  Hp .  D .  /SeO .  8' eD'S, . 
[*254-242]  D  .  TiS'  =  P,^'S' :  D  h  .  Prop 

*254-244.  h  :  P,  Q  6  n  .  /S  6  D'Qs  n  a'P,„ .  Te  {P^'S)  imof  /S .  S'Q,S .  3  . 

T'8  =  P3^'>S .  y56"  =  P,JS'.  (T-^8')  P,  (TiS) 
Dem. 

I- .  *254-243  .  D  I- :  Hp .  iZ  =  P,^'8 .  D  .  r5>S'  =  R,^'8'  (1) 

h.*25411.    Dh:Hp(l).D.i2eD'P5.  (2) 

[*254142]                           D.i2,„CP,„  (3) 

h  .  (1) .  (3) .  *254-22  .  D  h  :  Hp  (1) .  D .  T'S'  =  P,„'«'  (4) 

l-.*151-ll.                 DI-:Hp(l).D.i2  =  r;fif.  (5) 

[(2)]                                                D.r;S6D'P»  (6) 

h  .  (1) .  (5) .  *254-l  1 .  D  h  :  Hp  (1) .  D  .  r;6f'  e  I>'(Ti8)  (7) 

I- .  (6).(7).*213-244  .  D  I- :  Hp  (1) .  D  .  (T'S')  P,  (T'8)  (8) 

f-.(6).                         Df-:Hp.D.r;S  =  P3„'^f  (9) 
h  .  (9) .  (4) .  (8) .  D  h  .  Prop 

*254-245.  \-:P,Qen.8e  I>'Q,  n  a'P,„ .  8'Q,S .  D  .  (P,^'8')P,  (P,^'8) 

Dem. 

h  .  *254-22-ll .  D  h  :  Hp .  D  .  (P^^'S)  smor  8  (1) 

h  .  (1) .  *254-244 .  D  h  .  Prop 


SECTION  D]      greater   AND   LESS   AMONG   WELL-ORDERED   SERIES  31 

*254-25.     \-:.P,Qea.S,S'e-D'Q,na'P,^.D:8'Q,8.  =  .(P,^'S')P,(P,^'S) 
Dem.  • 

h  .  *254-245  .  D  h  :.  Hp  .  D  :  S'Q,8 .  D  .  (P^^'S')  P,  (P,JS)  (1) 

P    '8  P    'SI'  P  Q 

h  :.  Hp .  D  :  (P.^'S')  Ps  (P.^'S) .  D  .  {Q,^'P,^'8')  Qs  (Q,^'P,^'8) . 
[*254-224]  D .  fif'Q.fif  (2) 

h  .  (1) .  (2) .  D  1- .  Prop 

*254-26.     I- :  P,  Q  6  ri .  D  .  Q,  t;  (D'Q,  n  O'P,^)  =  Q,„;(^»  D  D'P,) 
i>em. 

h  .  *254-25  .  D  F  ::  Hp .  D  :.  £f'  {Q^^  (D'Qs  n  Q'P^^))  ^.  =  : 
8, 8'  e  D'Q.  n  a'P,,  .  (P,^'S')  P^  (P,^'8) : 


[*254-22]  = 
[*254-223]  = 
[*15011]    = 


8,  8'  6  T>'Qs :  (^R,  R) .  RP,^S .  R'P,^8' .  R'P,R  : 
(ai2,  R') .  SQ,^R .  8'Q,^R'.  R,  R'  e  D'Ps .  R'P^R  : 
S'{Q,J(PstJ)'Ps)}S::D\-.FToi, 


*254-261.  t- :  P,  Q  6  n  .  D'Q.  C  a'P,„  .D.Qst  T>'Q,  =  Q^l{P,  I  D'P.) 
[*254-26] 

*254-27.     hzP.Qen.  D'Ps  C Q'Q^  .  D'Qs  C  Q'P,^ .  3  . 

Qs-n  r  C"(-Ps  D  D'-PO  e  (Q,  t  Jy'Qs)  iHor  (Ps  t  B'P,) 
Bern. 

h  .  *254-222  .  3  h  :  Hp . O  .  0,^  C  C'{P,  l  B'P,)  e  1  ^  1  (1) 

h  .  *37-41 .      3  I- :  Hp  .  D  .  G'(Ps  I  D'P.)  C  a'Q,^  (2) 

I- .  (1) ,  (2) .  *254-261 .  *151-22  .Oh.  Prop 

In  virtue  of  the  above  proposition,  we  have,  when  its  hypothesis  is 
realized, 

(QstD'QOsmor(P,tD'Ps), 

whence,  by  *253'25,  Q  smor  P. 

This  proposition  is  the  converse  of  *254"141. 

In  the  above  proposition  we  take  Qam  [  G'(Ps  I  D'Ps)  as  the  correlator, 
rather  than  Q^^  f"  D'Ps,  so  as  not  to  have  to  make  an  exception  for  the  case 
when  P  e  2,.  For  if  P  e  2,,  D'Ps  e  1,  but  Ps  I  D'Ps  =  A.  Thus  Q,^  [  D'Ps  is 
not  a  correlator  in  this  case. 

The  following  propositions,  down  to  the  end  of  the  present  number,  are 
important,  and  give  the  foundations  of  the  theory  of  inequality  between  well- 
ordered  series  and  between  ordinals. 

4—2 


52  SERIES  [part  V 

*254-31.     h  :  P,  Q  e  fl .  B'Ps  C  Q'Q.^ .  D'Qs  C  a'P,„  .  D .  P  smor  Q 
Dem. 

V  .  *254-27  .    D  h  : .  Hp .  D  :  (Ps  t  D'P,)  smor  (Qs  p  D'Qs) : 

[*253-25]  D:a!P.a[!Q.D.PsmorQ  (1) 

h  .  *254144  .DI-:Hp.P  =  A.D.  D'Q,  =  A . 

[*213-302]  D.Q  =  A. 

[*153-101]  D.PsmorQ  (2) 

Similarly  h  :  Hp .  Q=  A  .  D  .  Psmor  Q  (3) 

h  .  (1) .  (2)  .  (3) .  D  h  .  Prop 

*254-311.  h  :.  P,  Q  6  fl .  D  :  D'Ps  C  a'Q^ .  B'Q,  C  a'P,^  .  =  .  P  smor  Q 
[*254-31-141] 

*254-32.     \-:P,Qen.  B'P, C Q'Q.^ .  8 e D'Q, - a'P,^  .  D  .  D'Ps C a'S,^ 

Pern. 
l-.*254-24.        Di-  -.n^ .  B,8'  eB'Qs .  S'  (LR.Rea'P,^.D.  S'ea'P,^  (1) 
h  .  (1) .  Transp .  D  h  :  Hp .  E  e  D'Q,  a  a'P,„ .  D  .  ~  (^f  G  i?)  . 
[*213-21]  D.RQsS. 

[*254-22-ll.*213-245]  D  .  (Pem'^)  smor  i2 .  i?  e  D'Ss . 

[*25412]  D .  (P^JR)  e  a'8,,,  (2) 

h  .  (2)  .  *37-61 .  D  h  :  Hp .  D  .  P,r^"(D'Q,  n  Q'P,  J  C  Q'/Sf.^  . 
[*254-164]  D  .  D'Ps  C  a'/S^n, :  D  I- .  Prop 

*254-321.  h:P,(3en.D'Ps  C  a'Q,^ .  8=mm{Q,y(D'Qs  -  a'P,J .  D.SsmorP 
Dem. 

h  .  *205-14  .  D  h  :  Hp .  D  .^,'8  C  a'P,„  . 
[*213-246]  D  .  D';Ss  C  G'P,^  (1) 

I- .  *254-32  .  D  I- :  Hp .  D  .  D'Ps  C  a'S,^  (2) 

h  .  (1)  .  (2) .  *254-31 .  D  I- .  Prop 

*254-33.     \-:P,Qea. D'Ps C a'Q,„  .  a  !  D'Qs - Q'P.^ .  D  . P e Q'Q.^ 
Pern. 

I- .  *253-24 .  D  h  :  Hp .  3  .  E  !  min  (Qs)'(D'(3s  -  a'P,„) . 
[*254-321]  D .  (g/S)  .  5f  e  D'Qs .  S  smor  P . 

[*25411]  D.Pea'Q3„:Dl-.Prop 

*254-34.     h  :  P,  Q  e  fl .  P  ~  e  O'Q.^  .  D'Ps  C  a'Q,„ .  D  .  P  smor  Q 

h  .  *254-33  .  Transp .  D  h  :  Hp .  D .  D'Qs  C  d'P,^.  D'Ps  C  a'Q,„ . 
[*254-31]  D  .  P  smor  Q :  D  h  .  Prop 


SECTION  D]      greater  AND  LESS  AMONG  WELL-ORDERED  SERIES  53 

*254-35.     F  :  P,  Q  e  n  .  a  !  D'Q,  -  Q'P^  .  3  .  P  e  a'Q,^ 
Bern.  • 

h  .  *253-24 .  D  h  :  Hp  .  D  .  E  !  min  {Q,y(D'Qs  -  Q'P,  J . 

[*20514]  D  .  (aS) .  -S  6  D'Qs  -  Q'P^  .  'q,'8  C  O'P,^  . 

[*213-246]  D.{^S).Se  B'Q,  -  a'P,„ .  D',S,  C  Q'P.^ . 

[*254-34]  D  .  (a^S)  .SeB'Q^.S  smor  P . 

[*254-ll]  D.Pea'Q^^iDh.Prop 

*254-36.     h  :  P,  Q  e  O .  a  !  D'Q,  -  a'P„„ .  D  .  G'Ps  C  Q'Q,^      [*254-35143] 

*254-37.     l-i.P.Qen.DiPsmorQ.v.Pea'Qs^.v.Qea'P^^ 
Bern. 
h  .  *254-31 .  D  h  :  Hp  .  D'P,  C  a'Q,„  .  D'Q,  C  Q'P,^  .  D  .  P  smor  Q  (1) 
h  .  *254-35  .  D  F  :  Hp .  a  !  T>'Q,  -  a'P,^  .D.Pe  a'Q,^  (2) 

I- .  *254-35  .  D  h  :  Hp .  a  !  'D'P,  -  a'Q,^ .  D  .  Q  e  O'P^^  (3) 

h  .  (1) .  (2) .  (3) .  D  h  .  Prop 

This  proposition  is  the  most  important  on  the  relations  of  two  well- 
ordered  series  to  each  other's  segments.  It  shows  that  of  every  two 
well-ordered  series  which  are  not  similar,  one  must  be  similar  to  a  segment 
of  the  other. 

*254-4.       \-:.P,Qen.':i:P  less  Q.v.P  smor  Q.v.Q  less  P 
Bern. 

l-.*254-2.    DhiHp.Pea'Qg^.D.PlessQ  (1) 

h.*254-2.    DI-:Hp.Qea'P,^.D.  QlessP  (2) 

I- .  *254-37  .  D  f- :  Hp ,  P~  eO^Q.^  .  Q~ea'Pa„ .  D  .  Psmor  Q     (3) 
1- .  (1) .  (2)  .  (3) .  D  h  .  Prop 

*254-401.  h  :.  P,  Q  6  n  .  3  :  less'P  =  less'Q  .  =  .  P  smor  Q 
Bern. 

h .  *254-l .    D  h  :  Hp .  less'P  =  less'Q .  3 .  ~  (P  less  Q) .  ~  (Q  less  P)  . 
[*254-4]  D.PsmorQ  (1) 

h  .  *2o4-13  .  D  f- :  Hp .  P  smor  Q .  D  .  less'P  =  less'Q  (2) 

I- .  (1) .  (2)  .  D  h  .  Prop 

*254-41.     h  :  P  less  Q .  =  .  P,  Qe  fl .  PeQ'Q.^ .  =  .  Qefl .  Pe  a'Q,„ 
Bern. 

h.*254-2.  0\-:Qea.Pea'Q,^.:>.Ples8Q  (1) 

I- .  #254-181 .  Oh-.Qe  Q'P,^ .  D  .  ~  (P  less  Q)  (2) 

l-.*253-421  .  DI-:Q6n.Jt:eD'Qs.Psmori?.D.~(PsmorQ): 

[*254-ll]  Dh:Qefl.Pea'P,„.D.~(Psmor(3)  (3) 

|-.(2).(3).*254-4.DI-:Q6n.Pea'Ps„.D.PlessQ  (4) 

h.(l).(4).  DI-:PlessQ.  =  .Q€n.P6a'Q,„. 

[*254-l]  =.P,Qen.Pea'Q,„:DH.Prop 


54  SERIES  [part  V 

*254-42.     h  .  less  G  J .  less''  G  less 
Bern. 

I-  .*254-l .      D  V  :  Pless  Q .  3  .  ~  (Psmor  Q) . 
[*151-13]  3.-P+Q  (1) 

I- .  *254163  .Oh:  Re  Q'Q.^ .  S  e  a'R,^  .O.Se  a'Q,^  : 
[*254-41]        Db-.R less Q .  S less R.D.S less Q  (2) 

I- .  (1) .  (2) .  D  I- .  Prop 

The  relation  "less"  fails  to  generate  a  series,  because  it  is  not  connected, 
two  similar  well-ordered  series  being  neither  greater  nor  less  than  each  other. 
On  the  other  hand,  the  relation  NrUess  is  serial,  since  two  similar  well- 
ordered  series  both  contribute  the  same  term  to  the  field  of  Nr'less,  and 
therefore  connection  does  not  fail.  The  relation  Nr'less  will  be  dealt  with  in 
the  next  number. 

*254-43.     hzQen-i'A.D.AlessQ     [*2541  .*250-4  .*1.52-11] 

*254-431.  I- .  a'less  =  O  -  I'A .  C'less  C  D, 
Dem. 

l-.*2.54-43.  DhsQefi-i'A.D.AlessQ  (1) 

h  .  *254-l . *25-13 .    DI-:Q  =  A.D.Q~6a'less  (2) 

h .  *254-l .  D  h .  Cless  C  H  (3) 

I- .  (3) .  (2) .  Transp  .  D  h  .  Q'less  C  fi  -  t'A  (4) 

l-.(l).(4).  D  t- .  a'less  =  a  -  t'A  (5) 

h  .  (3)  .  (5)  .  D  I- .  Prop 

In  order  to  obtain  C'less  =  li,  we  need,  as  appears  from  (1)  in  the  above 
proof,  a  !  O  -  I'A.  In  virtue  of  *251-7,  this  requires  a  !  2.  By  *101"42-43, 
this  holds  if  "  less  "  has  its  field  defined  as  belonging  to  a  class-type  or  a 
relation-type.  If,  however,  "  less "  has  its  field  defined  as  composed  of 
individuals,  the  primitive  propositions  assumed  in  the  present  work  do  not 
enable  us  to  prove  g  !  2,  nor  therefore  to  prove  g; !  less. 

.  It  should  be  observed  that  "less,"  like  "sm"  and  "smor,"  is  significant  when 
it  is  not  homogeneous  ;  but "  (7'less  "  is  only  significant  for  homogeneous  typical 
determinations  of  "  less,"  because  only  homogeneous  relations  have  fields. 

*254432.  1- :  a  !  2a .  H  .  a  !  less  h  t^'a  f  i^'a .  =  .  a  !  fi-  t'A  n  t^'a 
Bern. 

V  .  *251-7  .  D  h  :  a !  2„ .  =  .  a  !  ii  -  t'A  n  i„„'a  .  (1) 

[*254-43]  =  .  (aQ) .  Q  6  fl  -  t'A  n  «(K,'a .  A  less  Q . 

[*55-37]  D  .  (aQ)  .  A  less  Q  .k^QQ.t^'a'^  t^'a  . 

[*55-3]  3  ■  a  !  less  n  ^^'a  f  t^'a  (2) 


SECTION  d]      greater  AND  LESS   AMONG  WELL-ORDERED   SERIES  55 

h  .  *35-103  .  D  h  :  a  !  less  A  t^'a  t  «„„'«  .  D  .  (gP,  Q)  .  P  less  Q.P,Qe  t^'a  . 
[*254-431]  •  D  .  a  !  n  -  t'A  ft  foo'a  • 

[(1)]  D .  a !  2„  (3) 

h . (1) . (2) . (3) . D  h  .  Prop 

*254-433.  h  .  a  !  less  n  t^'Ch  f  tJCla .  a  !  less  n  <„o'Rel  f  <oo'Rel 
[*254-432  .  *101-42-43] 

*254-434.  1-  :  a  !  less .  =  .  C'less  =0,.  =  .  B'less  =  A 

Dem. 

h  . *250-4 . *33-24  .    D  h  :  a'less  =  n  .  D -a  !  less  (1) 

h  .  *93-102  .  *33-24  .  D  h  :  5'less  =  A .  D  .  a  !  less  (2) 

|-.*254-43.  DHiQefi-t'A.D.AlessQ  (3) 

l-.(3).  DhiaSn-i'A.D.AeD'less. 

[*254-431]  D .  A  =  £'less  (4) 

l-.(4).*254-431. .      Dh:a!f^-i'A.D.O'less=fl  (5) 
l-.(l).(2).(4).(5).Dh.Prop 

*254-44.     h  :  P  6  G'less .  D  .  Cless  =  less'P  u  Nr 'P  w  less'  P 

Z)em. 
|-.*25413.         DI-:Hp.D.Nr'PCC"less  (1) 

I- .  (1) .  *33-152  .  D  I- :  Hp .  3  .  less'P  u  Nr'P  w  less'P  C  O'less  (2) 

I- .  *254-l .  D  h  .  O'less  C  0, . 

i*254-4]  D  h  :.  P  e  Class .  D  :  Q  e  G'less  .D.Qe  less'P  w  Nr'P  u  less'P  (3) 
I- .  (2) .  (3) .  3  F  .  Prop 

*254-45.     \-■.P,Qen.^^lB,]'Pr^'Nr'Q.'3_l'RVQf^m'P.:^.PsmorQ 

Bern. 

h  .  *254-42  .  D  h  :  P  less  Q .  D  .  ~  (Q  less  P)  (1) 

|-.*2541.    Dt-:P,Q6i:2.a!iy'QftNr'P.~(PsmorQ).D.Ple3sQ. 
[(1)]  D.~(QlessP). 

[*254-l.Transp]  D  .  ~  a  !  ^1'^ '^  Nr'Q  (2) 

h  .  (2) .  Transp .  3  h  .  Prop 

This  proposition  is  the  analogue,  for  ordinals,  of  the  Schroder-Bernstein 
theorem. 


56  SERIES  [part  V 

*254-46.     h  :  P  less  Q  .  =  .  P,  Q  e  fl .  g  !  Rl'Q  n  Nr'P .  ~  g  !  Rl'P  n  Nr'Q 
Z)em. 

I-.*152-11.*61-34.D 
h  :  P,  Q  e  fi .  a  !  Rl'Q  n  Nr'P .  ~  g  !  Rl'P  n  Nr'Q .  D  . 

P,Qen.a!Rl'QnNr'P.~(PsmorQ). 
[*254-l]  D.PlessQ  (1) 

|-.*2541-45.Transp.  D 

h  :  Pless  Q.  D  .  P,  Qell .  g  !  Rl'Q n  Nr'P .  ~ g !  Rl'P n  Nr'Q  (2) 

I- .  (1)  .  (2) .  D  h  .  Prop 

*254-47.     I- :  Pen.  D.P5  =  less  ^C'Ps 
Bern. 
I-  .*213-245  .  D  I- :.  Hp  .  D  :  RP,Q .  =  .PeD'Qs .  QeC'P, . 
[*254-121]  D.Rea'Q,^. 

[*254-41]  D.ElessQ  (1) 

h  .  *254-181 .  Transp .  D  h  :  Hp .  Q,  P  e  G'P, .  R  less  Q .  D  .  Q  ~  e  a'i?,„. . 
[*254-121]  D  .  Q  ~  e  D'P,     (2) 

I- .  (2) .  *213-25  .  *254-42  .  D  h  :  Hp  .  Q,  P  e  C'Ps .  R  less  Q.D.Re  B'Qs . 
[*213-245]  D .  PPsQ      (3) 

h  .  (1) .  (3)  .  D  I- .  Prop 

*254-5.       l-:.P,QeIi.D: 

Rl'P n Nr'Q  =  A .  =  .  a  ! Rl'Q n Nr'P . ~ (P smor Q).  =  .P less Q 
Pern. 

l-.*254-46.              Dh:Hp.Rl'PnNr'Q  =  A.D.~(QlessP)  (1) 

h  .  *61-34 .  *15211 .  D  h  :  P  smor  Q.D.Pe  Rl'P  n  Nr'Q  (2) 

f- . (2) .  Transp .         D  h  :  Rl'Pn  Nr'Q=  A.  D  .~(Psmor  Q)  (3) 

h  .  (1) .  (3) .  *254-4 .  D  I- :  Hp .  Rl'P  n  Nr'Q  =  A  .  D  .  P  less  Q  (4) 

t-.*254-46.              Dh:PlessQ.D.Rl'PftNr'Q  =  A  (5) 

h  .  (4)  .  (5)  .  D  h  :.  Hp .  D  :  Rl'P  n  Nr'Q  =  A .  =  .  Pless  Q . 

[*254-l]  = .  g  !  Rl'Q  n  Nr'P .  ~  (P  smor  Q):.-^^-.  Prop 

*254-51.     h:PlessQ.  =  .P,Qen.Rl'PftNr'Q=A     [*254-5-l] 

*254-52.     1- :  P  6  n .  a  C  O'P .  g !  C'P  n  2j'p""o .  D .  P  ^  a  less  P 

Pern. 

l-.*250-141.Dh:Hp.D.P^a6fl  (1) 

I- .  *250-653  .  D  h  :  Hp .  3  .  ~(P  ^  asmorP)  (2) 

h .  (1) .  (2) .  *254-101 .  D  h  .  Prop 


SECTION  D]      greater  AND  LESS  AMONG   WELL-ORDERED   SERIES  57 

*254-53.     I- :  P,  Qeil .  QGP.  a  !  C'P  np^"G'Q .  D  .  QlessP 

Bern. 

|-.*250-652.3l-:Hp.D.~(QsmorP)  (1) 

f- .  (1) .  *254-101 .  D  F  .  Prop 

*254-54.     h:P,Qen.R  smor  Q .  iJ  C  P .  a  !  O'P  np'^'O'R  .  D  .  Q  less  P 
[*254-53-13] 

*254-55.     l-:.QlessP.-=:P,Qen:(ai?).i?smorQ.iJGP.a!0'Pnp'P"C'jB 
Dem. 
h  .  *254-41 .  D  h  :.  QlessP .  D  :  P,  Q  efi  :  (gi?) .  iismor  Q .  ReB'Rs : 

[*21318]  D  :  P,  Q  6  fi  :  (gii) .  R  smor  Q .  i2  G  P .  g  !  O'P  n  p'P"G'R    (1) 
h .  (1) .  *254-54  .  D  h  .  Prop 


*255.     GREATER  AND  LESS  AMONG  ORDINAL  NUMBERS. 

Summary  of  *255. 

If  P  and  Q  are  well-ordered  series,  we  say  that  Nr'P  is  less  than  Nr'Q  if 
P  is  less  than  Q.  Thus  if  fj.  and  v  are  ordinal  numbers,  we  say  that  /i  is  less 
than  V  if  there  are  well-ordered  series  P,  Q,  such  that  /i  =  Nr'P  and  i/  =  Nr'Q 
and  P  is  less  than  Q.  In  order  to  exclude  the  case  where,  in  the  type 
concerned,  we  have  Nr'P  =  A  or  Nr'Q  =  A,  we  assume  ^  =  Nor'P  and 
j'  =  N„r'Q.     Thus  we  put 

/i  <  i; .  =  .  (gP,  Q) .  ^  =  N„r'P .  1/ =  N„r'Q .  P  less  Q, 

i.e.  we  put  <S=Nor'less     Df. 

In  order  to  be  able  to  speak  of  Nr'P  (where  the  type  of  "Nr"  is  left 
ambiguous)  as  greater  or  less  than  ^r'Q,  we  put 

fi  <  Nr'P  .  =  .  yii  <  N„r'P     Df, 

Nr'P  <  /i  .  =  .  Nor'P  <  /*    Df 

The  treatment  of  types  proceeds,  mutatis  mutandis,  as  in  *117,  to  which, 
together  with  the  prefatory  statement  in  Vol.  Ii,  the  reader  is  referred  for 
explanations. 

In  virtue  of  *254'46  and  *117'1,  there  is  a  close  analogy  between  cardinal 
and  ordinal  inequality.  That  is  to  say,  most  of  the  properties  of  cardinal 
inequality  have  exact  analogues  for  ordinal  inequality,  and  these  analogues 
have  analogous  proofs.  (In  the  present  number,  when  a  proposition  is 
analogous  to  the  proposition  with  the  same  decimal  part  in  *117,  and  has 
an  analogous  proof,  we  shall  omit  the  proof)  But  ordinal  inequality  has  a 
good  many  properties  which  have  no  analogues  for  cardinal  inequality.  The 
chief  of  these,  upon  which  most  of  the  rest  depend,  is 

^255*112.  \- :.  /i,ve NjO .  D  : /i  <  v .  v . /*  =  smor"i^ .  v .  v  <  /i 

where  "  NjO  "  stands  for  "  homogeneous  ordinals,"  i.e.  NO  n  NoR.  We  have 
also,  what  is  often  important, 

*25517.     (- :  Nr'P> Nr'Q  .  =  .Q  less  P  .  =  .  P,  Q  e  fl .  Q e  Q'P.^ . 

=  .  P,  Q  6  n  .  a !  D'Ps  r^  Nr'Q 


SECTION  D]  greater  AND   LESS  AMONG  ORDINAL  NUMBERS  59 

SO  that 
*255171.  f- :.  P  6  n  .  D  :  •< Nr'P  .=  .^,e  Nr"D'Ps  -  I'A 
and  more  generally, 

*255172.  l-r.PeXl.D: 

/i  <  Nr'P .  =  .  (ga) .  a  C  C'P .  g  !  C'P  n  p'*P"a .  /*  =  Nr'P  f  a .  g !  /* 

As  in  cardinals,  /j,  is  greater  than  v  if  (and  only  if)  fi  is  the  sum  of  v  and 
an  ordinal  other  than  zero,  including  1  except  when  v  =  Or  (*255-33).  But  it 
is  necessary  to  the  truth  of  this  proposition  that  the  addendum  should  come 
after  v,  not  before  it ;  i.e.  p  +  zt^v  unless  ot  =  0,  (*255'32-321),  but  •sr  +  vis 
often  equal  to  v. 

If  a,  /3,  y  are  ordinals,  and  a  •>  yS,  we  shall  have 

7  +  a  >  7  4-  /8     (*255-561), 

aX;S>/8  if  a  +  O^.^  +  Or    (*255'571), 

«X7>/SX7if7=|=0,     (*255-58), 

7  X  j8  >  7  if  7  is  of  the  form  8+1     (*255-573), 

7  X  a > 7  X )S  if  7  is  of  the  form  B+i     (*255-582). 

From  the  above  propositions  it  follows  that  if  a,  ^,  7  are  ordinals, 

y  +  a  =  7  +  73.D.a  =  j8 

(*2o5'565,  where  /3  may  be  substituted  for  smor"/8  whenever  significance 
permits;  cf.  note  to  *120'413),  which  gives  the  uniqueness  of  subtraction 
from  the  end  (subtraction  from  the  beginning  is  not  unique); 

aX7  =  /3X7.3.a  =  /8  unless  7  =  0^     (*255-59), 
which  gives  the  uniqueness  of  division  by  an  end-factor ; 

7Xa  =  7X/3.D.a  =  /3  if  7  =  S+i     (*255-591), 
which  gives  the  uniqueness  of  division  by  a  beginning-factor  of  the  form 

B  +  i. 

We  do  not  have  generally 

tt,/3,ye  NqO  .  a  <  /S  .  D  .  a  exp^  7  <  yS  exp,  7, 
because  aexprj  ^^^  /Sexpy7  are  in  general  not  ordinal  numbers,  since  series 
having  these  numbers  are  in  general  not  well-ordered.  Thus  the  theory  of 
ordinal  inequality  has  only  a  restricted  application  to  exponentiation.  This 
subject  cannot  be  adequately  dealt  with  until  we  have  considered  finite  and 
infinite  series. 

If  a  is  an  ordinal,  C"a  is  the  corresponding  cardinal,  i.e.  the  cardinal 
number  of  terms  in  a  series  whose  ordinal  number  is  a.  Thus  the  cardinal 
numbers  of  classes  which  can  be  well-ordered  are  C'"NO,  i.e. 

*255-7.      h .  Nc"a"Ii  =  C"'NO 


60  SERIES  [part  V 

It  is  evident  that 
*255-71.     h  :  P  less  Q .  D  .  Nc'O'P  <  Nc'O'Q 

whence,  by  *254'4, 
*255-73.     l-:.P,Q6fl.D: 

Nc'C"P<  Nc'O'Q .  V .  Nc'C'P  =  Nc'C'Q  .  v .  Nc'C'P  >  Nc'G'Q 

whence  also 

*255-74.     h:.a,^e  C""NO  -t'A.D:a</3.v.a>/3 

Thus  if  two  classes  can  both  be  well-ordered,  they  either  have  the  same 
cardinal,  or  the  cardinal  of  one  is  less  than  that  of  the  other. 

We  have 
*255-75.     h  :  P,  Q  6  n .  Nc'C'P  <  Nc'O'Q  .D.P  less  Q 

or,  what  comes  to  the  same  thing, 
*255-76.     h  :  a,  ;e  6  NO  .  G"a  <  C'/S  .D.a<^ 

The  converse  of  this  proposition  only  holds  for  finite  ordinals.  If  a  is  an 
infinite  ordinal,  a  +  1  always  exists  and  is  greater  than  a,  but  G"a=  C"{a.  +  1). 
(The  existence  of  a  -i-  i  is  deduced  from  that  of  a  by  taking  a  member  of  a, 
and  removing  its  first  term  to  the  end.  The  result  is  a  series  whose  number 
is  a  -i-  i,  in  virtue  of  *253-503-54.) 


*25501.     <=N„rness  Df 

*25502.     >  =  Cnv'<  Df 

*25503.     NoO  =  NOnN„B,     Df 

Thus  "NoO"  means  "homogeneous  ordinals."  In  virtue  of  *155'34"22, 
this  is  the  same  as  "ordinals  other  than  A."  It  is  not,  however,  strictly 
correct  to  put  N„0  =  NO  -  I'A,  because  if  the  "  NO  "  on  the  right  is  derived 
from  an  ascending  Nr,  it  will  not  contain  all  the  ordinals  in  the  type  to  which 
it  takes  us,  but  only  those  which  are  not  too  big  to  be  derived  from  the  lower 
type  from  which  "Nr"  starts.  Thus  in  this  case  NoO  will  be  a  larger  class 
than  NO  -  t'A.  If,  however,  the  "  Nr  "  from  which  the  "  NO  "  on  the  right 
is  derived  is  homogeneous  or  descending,  we  shall  have 

N„0  =  NO  -  I'A. 
*25504.     ^  =  <c;smore^NoO     Df 

This  definition  leads  to  the  usual  meaning  of  "  less  than  or  equal  to."  We 
want  the  relation  "  less  than  or  equal  to  "  to  hold  only  between  numbers  of 
the  sort  in  question  (cardinal  or  ordinal),  and  we  want  "  equal  to  "  to  hold 
between  two  numbers  which  are  merely  different  typical  determinations  of  a 
given  number,  provided  neither  of  these  typical  determinations  is  A.  That 
is,  if  fi  is  an  ordinal  which  is  not  A,  smor"/A  is  to  be  reckoned  equal  to  fi  in 
every  type  in  which  it  is  not  A.     Thus  ii  v  =  smor"/*,  i.e.  if  v  =  smoie'fi,  we 


SECTION  D]  greater  AND  LESS  AMONG   ORDINAL  NUMBERS  61 

shall  reckon  v  equal  to  fi  if  both  are  ordinals  and  neither  is  A,  i.e.  in  virtue  of 
*155"34-22,  ii  fi,ve  NoO.  «This  leads  to  the  above  definition. 

*25505.     ^  =  Onv'^  Df 

*25506.     itt  <  Nr'P  .  =  .//,<  Nor'P    Df 

On  this  definition,  compare  the  remarks  on  *117'02. 

*255-07.     Nr'P  < /i .  = .  Nor'P  < /*    Df 

The  following  propositions  (down  to  *255'108)  merely  re-state  the  above 
definitions. 

*255-l.       h  : /i <j' .  = . (gP, Q).fJ.=  N„r'P .  v - N„r'Q  . P less Q 

*255101.  1- :  At  <  Nr'Q .  =  .^  <  N„r'Q 

*255102.  h  :  Nr'P  <!/.  =  .  N„r'P  <  v 

*255103.  \-:fi>v.=  .v<fi 

«255'104.  \-:./i^v.  =  :/Ji<iV.v.fi,ve  NoO  .  /a  =  smor"j/ 

*255105.  \-  :./i  ^v  .  =  :v^/j,:  =  :v<.fi.v./j,,ve  NoO  .  /ij=  smor'S 
[*25^^4 .  (#2550^) .  *1 55;^4] 

*255106.  h  :  Nr'P -^  Nr'Q .  =  .  Nor'P  <  Nor'Q     [*255--101102f 

*255107.  h  :  Nr'P  ^  Nr'Q .  =  .  Nor^P  ^  Nor'Q 

*25510a  h  :.  Nr'P  ^  Nr'Q .  =  :  Nor'P  <  Nor'Q .  v  .  Nr'P  =  Nr'Q  .Peil 
[*255-107-104 .  *155-16  .  *152-53] 

*25511.     h  :/*<!/.  =  .(aP,g).P,Q€n.^  =  Nor'P.i/  =  Nor'Q. 

a  !  Rl'Q  n  Nr'P .  ~  a  !  Rl'P  n  Nr'Q     [*255-l .  *254-46] 

*255-lll.  f- :  ^  >  v .  =  .  (aP,  Q).P,Qen.fi  =  Nor'P  .v  =  N„r'Q . 

a  !  RHP  r.  Nr'Q .  ~  a  '■  Rl'Q  ^  Nr'P  [*255-ll-103] 
This  proposition  is  exactly  analogous  to  *117"1,  except  for  the  addition 
P,  Q  e  fl.  Hence  except  where  this  addition  is  relevant,  the  analogues  of  the 
propositions  of  *117  follow  by  analogous  proofs.  Such  analogues  will  be 
given  without  proof  in  what  follows,  and  will  have  the  same  decimal  part 
as  the  corresponding  propositions  in  *117.  Where  proofs  are  given,  there 
are  no  analogues  in  *117,  or  else  the  method  of  proof  is  not  analogous. 

*255112.  I- :.  n,  v  eNoQ  .  3  :  /i  <  v .  v  .fji=smor"v  .v.v<fi 

Dem. 
h  .  *255-l .  *254-4 .  D  h  :.  Hp .  D  : 

/i  <  1/ .  V .  K  <  M .  V  .  (aP,  Q)  ■  -P>  ;@  e  ^  ■  /^  =  Nor 'P .  I'  =  N„r 'Q .  P  smor  Q  : 

[*155-4.*152-321] 

D  : /*  <  I' .  V  .  j;  < /. .  V  .  (aP,  Q) . /x -^  N„r'P .  Nr'P  =  Nr'Q .  Nr'Q  =  smor"!/ : 

[*155-16] 

D  :/.<»/.  V .  1/ </*.  V .  (aP,  Q)  ./*  =  Nor'P .  Nor'P  =  Nr'Q .  Nr'Q  =  smor"z; : 

[*1317]  D:/i<v.v.j/</i.v.A'  =  smor"i; :.  3  h  .Prop 


62  SERIES  [part  V 

*255-113.  I- :.  P,  Q  e  n  .  D  :  Nr'P  <  Nr'Q  .  v  .  Nr'P  =  Nr'Q  .  v .  Nr'^ <  Nr'P 

Bern. 
l-.*255112-106.DI-:.Hp.D: 

Nr'P  <  Nr'Q .  v  .  N„r'P  =  smor"N„r'Q .  v  .  Nr'Q  <  Nr'P : 
[*155-4-16]  D  :  Nr'P  <  Nr'Q .  v  .  Nr'P  =  Nr'Q  .  v  .  Nr'Q  <  Nr'P :.  D  h .  Prop 
«255-114.  \-:.fi,ve  N„0  .D:/A^i'.v.z/<;a:/i^v.v.i'>/i 
[*255112-104-105-103] 

*255115.  h  :.  P,  Q  6  n  .  D  :  Nr'P^^  Nr'Q  .v.  Nr'Q  <  Nr'P: 

Nr'P ^ Nr'Q. V. Nr'Q  >  Nr'P     [*255-113108] 

*25512.     l-:./i>i'.  =  i/tji/eNoO  : 

P  6  /i .  Q  6 1/ .  Dp,Q .  a  !  Rl'P  n  Nr'Q .  ~  a !  Rl'Q  n  Nr'P 

*255-121.  f-:./i>i'.  =  :/i,i'6 NjO  :• 

Pefj,.Dp.  (aQ)  .  Q  6 1/ .  a  !  Rl'P  -^  Nr'Q  .  ~  a  !  Rl'Q  <^  Nr'P 
*255-13.     f- :  Nr'P  >  Nr'Q .  =  .  P,  Q  e  fl .  a !  Rl'P  ^  Nr'Q .  ~  a  !  Rl'Q  <^  Nr'P 

*255131.  h  :  Nr'P  >  Nr'Q .  =  .  Nr'P  ^  Nr'Q .  Nr'P  =j=  Nr'Q 

[*25o-13 .  *254-4i5] 
*25514.     h  :  /i  >  V .  = .  (aP,  Q)  ■  P,  Q  6  n .  /Lt  =  N„r'P .  i;  =  N„r 'Q  .  Nr'P  >  Nr'Q 
*255141.  \- : ij,>>v .  =  .  fM^v .  fj,^smoi"v    [*255-131-14] 
*25515.     h  :/i>  y.  =  ./*,  i/eNoO.  a!s'Rl"/"^smor"j/.  ~a!s'Rl"z/nsmor"/i 

*25516.     l-:./i,«/eN„O.D: 

fi'>v  .  =  .  smov" fi  •>  i; .  =  .  /i  •>  smor"!/ .  =  .  smor"/i  •>  smor"!/ 

*255-17.     h  :  Nr'P  >  Nr'Q .  =  .  QlessP .  =  .P,  Q  efl .  QeQ'P.^  . 

=  .P,Qeft.a!D'P.'^Nr'Q 
Dem. 

h  .  *25513 .  *2o4-46  .  D  h  :  Nr'P  >  Nr'Q .  =  .  Q  less  P .  (1) 

[*254-41]  =.P,Q6ft.Q6a'P3^.  (2) 

[*25412]  H.P,Qen.a!D'PsnNr'Q  (3) 

1- .  (1) .  (2) .  (3)  .  D  h  .  Prop 

*255171.  \-:.PeD,.':):iJ.<  Nr'P  .  =  ./*£ Nr"D'Ps -  I'A 
Dem. 
H  .*26514 .  D  h  :.  Hp .  D  :  /i  <  Nr'P .  =  .  (aQ)  ■/*  =  N„r'Q .  Nr'Q  <  Nr'P . 
[*255-l7]  =  .  (aQ) .  M  =  Nor'Q  .QeCl.^lD'F,  n  Nr'Q . 

[*152-1]  =  .  (aQ,  R)./M=  N„r'Q  .Qen.Q  smor  R.ReD'P,. 

[*lo2-35.*15516]  H  .  (aii)  .  fi  =  Nr'i?  .Reil.Re  D'Ps .  a !  /*  • 
[*25318.*37-6]     =  .  /t  e  Nr"D'Ps  -  t'A  :.  D  h  .  Prop 


SECTION  D]  greater   AND   LESS   AMONG   ORDINAL   NUMBERS  63 

*255172.  hz.Pea.O: 

/t <  Nr'P .  =  .tan) .aCC'P.^lG'F np''p"oi . /*  =  Nr'P^ « ■  3 ! M 
Bern. 

h  .  *211-703  .  *213-141 .  D 

V  iQeD'Ps .  D .  (aa) .  a C  C'P .  a !  O'P n_p'P"a .  Q  =  Pp a        (1) 
I- .  (1) .  *255171 .  D  K:  Hp .  ;u,  <  Nr'P .  D  . 

(aa) .  a  C  O'P .  a  !  C'P  np'^'a .  /*  =  Nr'Pf  a .  a  !  /*    (2) 
h  .  *250-653  .  *254-47  .  D 

h  :  Hp  .  a C  C'P .  a !  G'Pnp'p'"a .  D  .  P^  aless P . 
[*255-l7]  3 .  Nr'P  I  a  <  Nr'P  (3) 

h  .  (2)  .  (3) .  3  f- .  Prop 
*255173.  hi.PeXl.D: 

Nr'Q  <  Nr'P .  =  .  (aa) . «  C  C'P .  a  !  G'P  n  jo'P"a .  Q  smor  (P  f  a) 
i)em. 

l-.*255-172-102.*155-22.D 

h :.Hp.D:Nr'(3<  Nr'P.  =  .(aa).« C  (7'P.  a!  C''Pnp'P"a .  N„r'Q=Nr'Pp  a . 
[*152-35.*155-22]  =.(aa).  a  C  C'P.  a  !  C"P  n^'P""a.Q smor  (Pp  a) :  D  h.  Prop 
*255174.  h  :  Nr'Q  <  Nr'P .  =  .  P  e  fl .  Nr'Q  e  Nr"D'Ps 
Dem. 

h.*255-iril02-13.D 


F:.Nr'Q<Nr'P.  =  ; 
[*37-6.*155-22]  = ; 
[*lo5-16] 
[*37-6] 


:  P  6  n  .  N„r'Q  6  Nr"D'Ps  -  I'A : 
i :  Pen  :  (ai?)  .-ReD'Ps .  N„r'Q  =  Nr'ii  : 
:Peil:  (-^R) .  R  e  'D'P, .  Nr'Q  =  Nr'P : 
: :  P  e  n .  Nr'Q  e  Nr"D'Ps :.  D  h  .  Prop 
*255175.  l-:Nr'Q^Nr'P.s.P6Xl.Nr'QeNr"(D'Psui'P)    [*255174-108] 
*255176.  h  :.  a  !  -P  ■  3  :  Nr'Q  ^  Nr'P .  =  .  P  e  O .  Nr'Q  e  Nr'C'Ps 

[*213-158 .  *255-l75] 
*255-21.     l-:Nr'P<Nr'Q.  =  .P,Q6n.Rl'PnNr'Q=A    [*254-51  .*255-17] 
This  proposition  has  no  analogue  in  cardinals,  because  it  depends  upon 
*254-4.    In  cardinals,  if  Cl'anNc'yS  =A,  it  does  not  follow  that  g!  Cl'/SoNc'a, 
so  that  Nc'a  may  be  neither  less  than,  nor  equal  to,  nor  greater  than  Nc'/S. 

*255211.  1- :. P,  Q e n .  D  :  a ! B.\'Pn  Nr'Q . a !  Bl'Q r^  Nr'P.  =  . Nr'P=  Nr'Q 
[*254-45] 

This  proposition  is  the  ordinal  analogue  of  the  Schroder-Bernstein  theorem. 
If  P  and  Q  are  series  which  may  be  not  well-ordered,  the  proposition  fails. 
Thus  e.g.  the  series  of  rationals  is  like  the  series  of  proper  fractions,  which  is 


64  SERIES  [part  V 

a  part  of  the  series  of  rationals  >  0  and  ^  1,  and  this  latter  series  is  part  of 
the  series  of  rationals,  but  is  not  similar  to  the  series  of  rationals,  since  it  has 
a  last  term,  which  the  series  of  rationals  has  not. 

*255-22.     t- :  P,  Q  6  n  .  a  !  Rl'P  n  Nr'Q  .  =  .  Nr'P  ^  Nr'Q 

*255-221.  I- :.  Nr'P  ^  Nr'Q  .  =  :  P,  Q  e  li  :  (gj?)  .RQP.R  smor  Q 

*255-222.  y-.QCP.P.Qeil.-D.  Nr'P  ^  Nr'Q 

*255-23.     h  :  Nr'P  ^  Nr'Q  .  Nr'Q  ^  Nr'P  .  =  .  P,  Q  e  fl .  Nr'P  =  Nr'Q 

*255-24.     \-:fjL^v.  =  .  (gP,  Q)  .  /t  =  N„r'P  .  v  =  N„r'Q  .  Nr'P  ^  Nr'Q 

*255-241.  l-:/i^i/.s.(aP,Q).yci  =  N„r'P.z.  =  N„r'Q.P,Q6fi.a!Rl'PnNr'Q 

*255-242.  h  :./i,i;eNO  .  D  :  ^^1/ .  = .  (gP.Q) .  Pe/t .  Qey .  g  !  Rl'P  n  Nr'Q 

*255-243.  t-:.ya^i/.  =  : 

(gP,  Q)  :  P,  Q  eXi  .  /i  =  N„r'P.  i;  =  N„r'Q :  (gi?)  .RCP.R  smor  Q 

*255-244.  I- :.  /i,  i;  e  N„0  .  D  : 

/4  ^  i; .  =  .  smor"/i  ^  y  .  =  .  /^t  ^  smor"i/ .  =  .  smor"/ii  ^  smor"!/ 

^255°25.     hi/x^j'.i/^/i.s./i,  i/e  NqO  .  smor"/i  =  smor"v 

*255-27.     H  :  Nr'P  <  Nr'Q  .  =  .  Nr'P  ^  Nr'Q  .  Nr'P  4=  Nr'Q 

*255-28.     h  :  Nr'P  >  Nr'Q  .  =  .  Nr'P  ^  Nr'Q  .  ~  (Nr'Q  ^  Nr'P)  . 

=  .  P,  Q  6  XI .  ~  (Nr'Q^  Nr'P)     [*255-13-22-21] 

*255-281.  t-:/i>z/.H.y(i^i'.~(z/^/i).  =  .yLi,i;6N„0.~(i/^/i)  [*255-114] 
*255-29.     h  :  Nr'P  <  Nr'Q  .  =  .  Nr'P  ^  Nr'Q  .  ~  (Nr'Q  ^  Nr'P)  . 

H  .  P,  Q  6  Xi  .  ~  (Nr'Q  ^  Nr'P)         [*255-115] 

*255-291.  f-:y[t<  v.  =  ./t^i'.~(i/^/i).  =  ./x,,i/eNoQ.~(z/^/i)     [*255-114] 

In  the  following  proposition,  we  employ  an  abbreviation  which  is  justified 
by  its  convenience,  namely  we  put 

(gw)  .  in-  e  NO  u  I'i  .  Nr'P  =  Nr'Q  -i-  la- 
in stead  of 

(at!7) .  tB-  6  NO  .  Nr'P  =  Nr'Q  +  ti7 .  v  .  Nr'P  =  Nr'Q  +  1. 

In  virtue  of  *51'239,  these  two  expressions  would  be  equivalent  if  1  had  any 
independent  meaning;  but  as  1  is  only  significant  as  an  addendum,  *51-239 
cannot  be  applied.     We  will,  however,  adopt  the  following  definitions : 

*255-298.  (g[CT).OTe«wi'l./(/i  +  i!j).  =  :(aii7).CT6«:./(/:i4-cr).v./(;t4.1)    Df 

*255-299.  ■Bre«wt'i.D^./(/i  +  'sr).  =  :OTeK.D^./(/i  +  i!r):/(/i  +  i)        Df 

These  definitions  enable  us  to  state  many  propositions,  in  which  1  occurs 
as  though  1  were  an  ordinal  number. 


SECTION  D]  greater   AND   LESS   AMONG   ORDINAL   NUMBERS  65 

*255-3.       t-:.Nr'P^Nr'Q.  =  :P,Q e f2:(aOT) .^ eNO  u  ta.Nr'P=Nr'Q+ w 

i)em.  • 

l-.*255-175.*253-471.D 

h  :.  Nr'P^ Nr'Q .  =  :  Pefi  :  (3^,7) .  Nr'Q  +  t!r=  Nr'P .  v .  Nr'Q  +  1  =  Nr'P  : 
I*251-132-26]  =  :  P  e  fl :  (gw) .  Nr'Q,  w  e  NO .  Nr'Q  +  tir  =  Nr'P .  v  . 

Nr'Q  6  NO  .  Nr'Q  + 1  =  Nr'P : 
[*251-1111]   =:P,Qeil:  (aisr) .  lii  e  NO  .  Nr'Q  +  •sr  =  Nr'P  -  v  . 

Nr'Q-i-l  =  Nr'P: 
[(*255-298)]    =  :  P,  Q  eO  :  (gtir) .  ^  eNO  u  t'l .  Nr'P  =  Nr'Q  +  i!r  :.D  h  .  Prop 

«255-31.     f-  :./i^i;.=  :/i,  i/eNoO  :  (307).  we  NO  u  t'l . /*  =  !;  +  «■ 
[*255-3-14] 

*255-32.     h  :.  I/,  1SS-  e  NjO  .D:i;  +  w>J'.  =  .'SJ-  +  Or 
Dem. 

l-.*253-44.  DhiHp.OT  +  O^.D.i'  +  i  +  i'  (1) 

1-.*255'31.  DI-:Hp.D.i/  +  iiJ-^i'  (2) 

h  .  (1)  .  (2) .  *255141 .  D  h  :  Hp .  OT  +  0,  .  D  .  i/+ii7  >  j;  (3) 

l-.*255'141  .  Dl-  :Hp  .  v  +  ■oi' >  v .  D  .i;  +  i3-=t=smor"v. 

[*180-6]  D.  ■574=0,  (4) 

h  .  (3) .  (4) .  D 1- .  Prop 

*255-321.  1- :.  1/  6  N„0  .D:z/4=0,.  =  .i'  +  i>i' 

l-.*253-4.5,.  Dt-:Hp.i'=t=0,  .D.v-i-l  +  i'  (1) 

|-.*255-31.  Df:Hp.D.i/-t-l^i/  <2) 

I- .  (1) .  (2) .  *255-141 .  D  I- :  Hp  .  v  +  0, .  D  .  v  4-  i  >  v  (3) 
f-.*255-141.                DF:Hp.i/  +  i  >  i/ .  D .  1/ + 1  =t=  smor"i/ . 

[*161-2]  D.i'  +  O,  (4) 

h  .  (3) .  (4) .  3  h  .  Prop 

*255-33.     \-:.fi>>v.  =  : 

/jL,ve  NoO  :  (aw)  .in-eNO-t'O,  ./i  =  i'-i-'iB-.v.z/4=0,.  ./t  =  j'+i 

F  .  *255-31 .  D 

\-:./j,->v.=  :/i,  i'eNoO:(a'n7).'5reNO./ii=i'  +  '=r./i>  j/ .  V  . /t  =  v  +  i./*>i' : 

[*255-32-321] 

=  :/i,ve NoO  :  (gw) .  w e NO  -  t'O,.  ./j.  =  v  +  -sT.v.v^Or.fi  =  v  +  i:.':>  l-.Prop 

E.  &W.    III.  5 


66  SERIES  [PART  V 

*255'4.  hi/Li^i/.z/^OT.D./i^OT 

*25541.  \-:  /jb^v.v^TiT.D.fi^iiT 

*255-42.  1- .  ~  (/i  >  /i) :  ~  (/A  <  /i) 

*255-43.  I- :  /*  ^  v  .  ~  (/i  ^  ot)  .  D  .  ~  (i/  ^  -st) 

*255-431.  h  :  yu,  ^  2/ .  •ST  6  NoO  .  c^  {/j,^  ■sr)  .  0  .  ■ur  •>  v     [*255-43-114] 

*255'44.  I- :  v  ^  OT .  ~  (/*  ^  •ar)  .  D  .  ~  (/tt  ^  i*) 

*255-441.  \-:v^'!S7./jL6  NoO  .  ~  (/a  ^  tsr)  .  D  .  v  >  /a     [*255-44-114] 

*255'45.  t-:|U.^z'.z/>t3-.D./A>'!ir 

*25546.  hi/A^j/.z/^OT.D./i^OT 

*255'47.  l-:;ii'>i'.z/>-OT.D./i>'57 

*255-471.  l-:yu.<z/.j;<i!7.D./i<z!7 

*255-482.  l-:yit^i'.=  ./i,  z/6  N„0  .  ~  (i/  >  /t) 

*255-483.  [-:^<z/.  =  ./t,i/6NoO.~(z'</i)    ■ 

*255-5.       \-:fie'NoO.  =  .fi^Or 
Bern. 

V  .  *255-31  .Dh:./j.^Or.  =  ■./jlb'N.O  :  (aw) .  ot  eNO  u  I'l .  ^=  0,4-^ : 
[*180-61]  =  :  /i  e  NoO  :.  D  h  .  Prop 

*255-51.     l-:/i,6N„O-t'0^.  =  .M>0^     [*255-141-5  . *15315] 

*255-52.     l-:Pefi-t'A.s.Nr'P^2^ 
Dem. 

h  .  *25013  .  D  I- :  P  e  O  -  t'A .  D  .  E !  5'P . 

[*93-101]  :>.('3,y).(B'F)Py.B'P^y. 

[*56-ll.*55-3]  D  .  (ay) . (B'P)  iy62rn  Rl'P  . 

[*13-195]  D  .  a  !  2,  n  Rl'P . 

[*255-22]  D.Nr'P^2^  (1) 

I- .  *255-22  .  D  h  :  Nr'P  ^  2, .  D  .  P  e  £1 .  a  !  2,  n  Rl'P  . 

[*6r361]  D.PeJQ-i'A  (2) 

F  .  (1) .  (2)  .  D  h  .  Prop 

*255-53.     \-:fj,el!ioO-i'Or.=  .fi^2r    [*255-52] 

*255-54.     h:.2,^/i.  =  :/*  =  0y.v./i  =  2y 

I- .  *255-53  .  Transp .  *265-281 .  D  h  :  2^  >  /^ .  =  .  /tt  =  0^  (1) 

1- .  (1) .  *25o-105  .  D  h  .  Prop 


SECTION  D]  greater   AND   LESS   AMONG   ORDINAL   NUMBERS  67 

*255-55.     h:fi>>2r.=  .iJ.e N„0 -  I'O, - 1% 
Dem.  • 

V  .  *255-54 .  Transp .  *255-281 .  D 

[-:/[*>  2^.=  ./*6NoO./tt4=Or./i=f=2y:DI-.Prop 

*255-56.     I- :  E  e  O  .  Nr'P  >  Nr'Q .  D  .  Nr'E  +  Nr'P  >  Nr'i?  +  Nr'Q 

Dem. 
h  .*255-3  .  D  h  :.  Hp  .  D  :  P,  Q,i2en  :  (gisr) .  ^eNO  u  t'l .  Nr'P  =  Nr'Q  +  =7 : 
[*180-56] 

D  :  P,  Q,  i2  e  fl :  (gisr) .  ST  6  NO  u  I'l  .  Nr'P -i- Nr'P  =  (Nr'E  +  Nr'Q)  +  ^  : 
[*255-31.*251-26]  D  :  Nr'P  +  Nr'P  >  Nr'P  +  Nr'Q :.  D  h  .  Prop 

*255-561.  h:7eNo0.a>;8.D.7  +  a>7  +  /3     [*255-56] 

*255-562.  F  :  P  e  O .  Nr'P  ^  Nr'Q .  D  .  Nr'P  +  Nr'P  ^  Nr'P  +  Nr'Q 

Dem. 
V  .  *180-3  .  D  h  :  Nr'P  =  Nr'Q  .  D  .  Nr'P  +  Nr'P  =  Nr'P  +  Nr'Q  (1) 

h  .  (1) .  *255-108-56  .  D 

h  :.  Hp  .  D  :  Nr'P  +  Nr'P  >  Nr'P  +  Nr'Q .  v  .  Nr'P  +  Nr'P  =  Nr'P  +  Nr'Q : 
[*255-108]  D  :  Nr'P  +  Nr'P  ^  Nr'P  +  Nr'Q : .  3  h  .  Prop 

*255-563.  l-:76N„0.a^j8.D.7-t-a^7  +  /3     [*255-562] 

*255-564.  h  :  P,  Q,  P  6  n  .  Nr'P  +  Nr'P  =  Nr'P  +  Nr'Q .  D  .  Nr'P  =  Nr'Q 
Bern. 

h  .  *255-42  .  D  h  :  Hp .  D  .  ~  (Nr'P  +  Nr'P  >  Nr'P  +  Nr'Q) . 
[*255-56.Transp]  D .  ~  (Nr'P  >  Nr'Q)  (1) 

Similarly  h  :  Hp  .  D  .  ~  (Nr'Q  >  Nr'P)  (2) 

I- .  (1)  .  (2) .  *255113  .  D  h  .  Prop 

This  proposition  establishes  the  uniqueness  of  subtraction  from  the  end. 
Owing  to  the  fact  that  ordinal  addition  is  not  commutative,  we  have  to 
distinguish  "  subtraction  from  the  end "  from  "  subtraction  from  the 
beginning."  They  may  be  called  terminal  and  initial  subtraction  re- 
spectively. Thus  by  the  above  proposition,  terminal  subtraction  among 
ordinals  is  unique.  This  does  not  hold  in  general  for  initial  subtraction 
among  ordinals. 

*255-565.  l-:a,/3,7eNo0.74-a  =  7+jS.3.a=smor"/3    [*255-564] 

The  above  proposition  is  still  true  if  we  put  a  =  yS  instead  of  a  =  smor"/S 
in  the  conclusion,  but  in  that  case  it  is  only  significant  when  a  and  fi  are  of 
the  same  type,  whereas  in  the  above  form  it  is  free  from  this  limitation. 

5—2 


68  SERIES  [part  V 

*255-57.     h  :  P,  Q  6  fl  -  t'A .  D  .  Q  less  (PxQ).  Nr'Q  <  Nr'P  X  Nr'Q 

Bern. 
h.*250-13.        Df-:Hp.D.E!5'P.  (1) 

[*165-251]  D .  Q  smor  Q  J,  (S'P)  (2) 

h  .  (1) .  *1661 .   Dh-:Hp.D.QJ,(5'P)GPxQ  (3) 

1- .  (1) .  *93-101 .  D  h  :  Hp .  D  .  (g*) .  (5'P)  Px  (4) 

l-.*166-113.Dl-:(S'P)Pa;.R6G'QJ,(£'P).2/eO'^.D.E(Pxe)(2/J,a;)     (5) 
h  .  (5) .  (4) .  *33-24  .  *166-12  .  *113-106  .  D 

h:.Sp.D:('^x,yy.ReG'Qi{B'P).DR.R(PxQ)(yix):yixeG'(PxQ)    (6) 
h.(2).(3).(6).Dh:Hp.D. 

Q i  (B'P) smor  Q.Qi  (B'P) G  P  x  Q .  g  !  0'(P  xQ)n  p''p^"C'Q i (B'P) . 
[*254-54]  D  .  Q  less  (P  x  Q)  (7) 

F.(7).*255-17.DI-.Prop 

*255-571.  l-:a,yS6NoO-t'0,.D./3<a><;8     [*255-57] 

*255-572.  h  :  P,  Q  e  n  -  t'A .  E !  P'P .  D .  P  less  (PxQ).  Nr'P  <  Nr'P  x  Nr'Q 

Dem. 
y  .  *25013  .  D  h  :  Hp .  D  .  E !  5'Q .  (1) 

[*166111]  0.(B'Q)i>P(iPxQ  (2) 

h  .  *151-64 .  (1)  .  D  h  :  Hp  .  D  .  (B'Q)  1 5P  smorP  (3) 

h  .  *202-511 .  D  h  :.  Hp  .  D  :  B'P  ep'P"D'P : 

[*166-111]  D:a;6D'P.2/6a'Q.D.{(5'Q)|a;}(PxQ){y;(5'P)}        (4) 

I- .  *202-511 .  D  h  :.  Hp .  D  :  B'Qep'Q"a'Q  : 

[*166-111]  D:x  =  B'P.yea'Q.D.{{B'Q)ix}(PxQ){yi(B'P)}       (5) 

h  .i4>)  .(5)  .Dh  -..Rp  .:>  :  xeG'P .  y  ea'Q.:>.{(B'Q)  ix](PxQ){y  i(B'P)}  : 
[*150-22]  D:M€  G'(B'Q)  i''P  .yea'Q.D  .M(P  xQ)[y  i  (B'P)} : 

[Hp.*33-24.*166111] 

:>:('^N):NeG'iPxQ):M6G\B'Q)iiP.:>M.M(PxQ)N-  (6) 
I- .  (2) .  (3) .  (6) .  *254-54 .  D  F  :  Hp .  D  .  P  less  (P  x  Q)  (7) 

h  .  (7) .  *255-l7  .  D  h .  Prop 

*255-573.  1- :.  a,)8eN„0-i'0,:  (37) .  veNO-t'O^wt'l .  a  =  7  +  i0.a<a>:y8 
Pern. 
I- .  *204-483  .  D  h  :  Hp .  D .  (gP,  Q)  .  a  =  N„r'P  .  y8  =  N„r'Q .  g  !  5'P      (1) 
|-.(l).*255-572.DI-.Prop 


SECTION  D]  greater  AND  LESS  AMONG   ORDINAL  NUMBERS  69 

*255-58.     h:7eN„O-i'0^.a>jS.D.a><7>/S><7 

Dem.  * 

}■ .  *255-31 .  D 

l-:.Hp.D:(ai!r).,B-6NO-i'0r.a  =  ;84-^.v./34=0^.a=^  +  l  (1) 

h.*184-35.  D[-:a  =  ^  +  ^.D.a-ky  =  {^Xy)  +  (-BTXy)  (2) 

h.*184-16.  DI-:Hp.i3-  +  0^.D.w>C7=t=0,  (3) 

1- . (2)  . (3)  . *255-32  .  D  1- :  Hp  . ct  e NO  - I'O,. .a  =  /3  +  w.D.a><7>/3><7    (4) 
H.*184-41.  Dh:Hp.a  =  |8  +  l.D.aX7=(;8X7)  +  7. 

[*255-32]  D.a><7>/3X7  (5) 

h  .  (1) .  (4)  .  (5) .  D  h  .  Prop 

*255-581.  \-:Pen.ElB'P.Q\essR.D. 

PxQ  less  PxR.  Nr'P  X  Nr'Q  <  Nr'P  X  Nr'S 
Dem. 

h  .  *254-55  .  D  F  :  Hp  .  D  .  (gS) .  5fsmor  Q .  ,S  C  P  .  g  !  G'Bnp'R"G'S  (1) 

t-.*16611.3H:S'GE.D.PxSGPxE  (2) 

f-.*lC6-23.Dh:/SfsmorQ.D.PxSsmorPxQ  (3) 

f- .  *202-524  .■*40-53  .  D  h  :.  Hp .  ^ e  O'P .  w  e  C/Sf .  y  e  G'E  n p'B"G'S .  D  : 

zP(B'P)  .v.z  =  B'P:  wRy : 

[*166-113]  D:(M;J,0)(Pxi?){2/4,(5'P))         (4) 

I- .  (4) .  *166111 .  D  f- :.  Hp  .  2/  6  G'Rnp'R"C'S  .  D  : 

ilf  e  0\P  x8}.DM-M{PxR){yi  (B'P)]         (5) 

I- .  (5) .  *10-28  .  D  h  :.  Hp .  a  !  C'i2  A  p^"G'S .  D  : 

(giT) : iVe 0'(P  x  R)  iMeG'iP  x  /S) .  D^f  ■  -^(^  x  •«) -^        (6) 

1- .  (2)  .'(3) .  (6).  D  1- :.  Hp  .  ;Sfsmor  Q.SQR  .'^IG'R  np'R"G'8 .  D  : 

(P  X  S)smor(P  xQ).Px8QPxR.'^lG'(Px  R)r^p''pVR"G'(P  x  S) : 

[*254-54]  D .  P  X  <3  less  PxR  (7) 

l-.(l).(7).DF:Hp.D.PxQlessPxE  (8) 

I- .  (8) .  *255-l7  .  D  h  .  Prop 

*255-582.  H  :.  aeN„0  :  (aS) .  S  e  NO  -  t'O^  w  I'l  ,a  =  S-i-i:/3<7:3. 

a  X  ;8  <  a  X  7    [*255-581 .  *204-483] 

*255-59.     l-:a,j8,7eN„O.74=0,.a>iC7  =  /3>C7.3.«  =  smor"y3 
Dem. 

\- .  *255-58  .  Transp .  D  I- :  Hp  .  D  .  ~  (a  >  /3) .  ~  (a  <  j8) . 
[*255-ll 2]  3  .  a  =  smor"/3 :  D  h  .  Prop 


70  SERIES  [part  V 

This  proposition  establishes  the  uniqueness  of  terminal  division,  i.e. 
division  by  an  end-factor.  Initial  division  {i.e.  division  by  a  beginning- 
factor)  is  only  unique  if  the  divisor  is  of  the  form  S-i-l. 

*255-591.  h  :.  a,  /3, 7  e N„0  :  (gS) .  S e  NO  -  tU  u  I'l .  a  =  S-j- 1 : 

aX|S  =  aX7:D.;8  =  smor"7     [*255-582-112] 

*255-6.       V  :  Nr'P  >  Nr'Q  .3.1  +  Nr'P  >  1  +  Nr'Q 
Dem. 

I-  .*265-33  .  D  1- :.  Hp.  3  :  (gisr) .  -sreNO-  I'O^.  Nr'P  =  Nr'Q-i-i!7 .  v . 

Nr'P  +  0^ .  Nr'P  =  Nr'Q  -j- 1 : 
[*181-55]  D  :  (gw) .  w  e  NO  -  t'O, .  1 4-  Nr'P  =  (1  +  Nr'Q)  +  ^  .  v . 

Nr'P  +  Or .  1  +  Nr'P  =  (i -i- Nr'Q)  4- 1  : 
[*255-33]  D  :  1  -j- Nr'P  >  1  -i-Nr'Q :.  D  h  .  Prop 

*255-601.  t- :  Nr'P  >  Nr'Q .  = .  1  -f-  Nr'P  >  1  -(-  Nr'Q 
Dem. 

h  .  *255-6  ^ .  *255-103  .  D 

|-:Nr'P<Nr'Q.D.l  +  Nr'P<l-f-Nr'Q  (1) 

I- .  (1) .  *255-108  .  D  h  :  Nr'P  ^  Nr'Q .  D  .  1  +  Nr'P  ^  1  +  Nr'Q  (2) 

h  .  (2) .  Transp  .  *251-142 .  D 
I- :  i -i-Nr'P,  i -i-Nr'QeNO  .  ~ (1  +  Nr'P ^  1  -j- Nr'Q) .  D  . 

Nr'P,  Nr'Q  e  NO .  ~  (Nr'P  ^  Nr'Q)     (3) 
h  .  (3) .  *255-281 .  D  I- :  i  -i-  Nr'P  >  1  +  Nr'Q .  D  .  Nr'P  >  Nr'Q  (4) 

F  .  (4) .  *255-6  .  D  h  .  Prop 

*255-61.     b:Q,Rea.  Nr'P  =  Nr'Q  +  Nr'P  .  Q'iJ,  =  Q'P .  E !  P'^ .  D . 

Nr'P+i>Nr'Q-i-l 
Dem. 

f- .  *253-57  .  D  h  :  Hp .  D  .  Nr'P -j- 1  =  Nr'Q -i- 1  +  Nr'P . 
[*255-32]  D .  Nr'P  -j- 1  >  Nr'Q  +  i:0\-.  Prop 

*255-62.     h  :  Q,  P  6  f2 .  Nr'P  =  Nr'Q  +  Nr'P .  Nr'P  +  0^ . 

~(a'Pi=a'P.E!P'P).D. 

Nr'P  >  Nr'Q  4- 1 .  Nr'P  + 1  >  Nr'Q  -{- 1 
Dem. 

h  .  *253-571 .  D  I- :  Hp  .  D  .  Nr'P  =  Nr'Q  4- 1 4- Nr'P . 

[*255-32]  D  .  Nr'P  >  Nr'Q  4- 1  .  (1) 

[*255-321]  D  .  Nr'P  4-  i  >  Nr'Q  4- 1  (2) 

t- .  (1) .  (2) .  D  h  .  Prop 


[*255-483] 

D 

h.*2oll32. 

DI-:~(P,QeO).D 

[*255-12] 

D 

l-.(3).(4). 

DI-:~(Nr'P>Nr'Q).D 

SECTION  D]  greater  AND  LESS  AMONG   ORDINAL  NUMBERS  71 

*255-63.     H:Nr'P>Nr'Q.D.Nr'P-i-i>Nr'Q-f-i 
Bern.  • 

h  .  *255-33  .  D  h  :.  Hp .  D  :  (gi?) .  Nr'i2=|=0, .  Nr'P  =  Nr'Q  +  Nr'i? .  v . 

Nr'Q  4=  0,  .  Nr'P  =  Nr'Q -i- 1 :  ■ 
[*255-62 -321]  D  :  Nr'P  +  l  >  Nr'Q  +  1 :.  D  h  .  Prop 

*255-64.     I- :  Nr'P  >  Nr'Q .  =  .  Nr'P  + 1  >  Nr'Q  + 1 

Dem. 
h  .  *255-63-103  .  DH:Nr'P<Nr'(3.D.Nr'P-i-i<Nr'Q-(-i  (1) 

h  .  *181-31 .  D  h  :  Nr'P  =  Nr'Q  .  D  .  Nr'P  + 1  =  Nr'Q  + 1  (2) 

I- .  (1) .  (2)  .*255-113  .  D  h  :  P,  Q  efi  .  ~(Nr'P  >  Nr'Q)  .  D  . 

Nr'P-fi=^Nr'i3  +  l. 
,~(Nr'P  +  l>Nr'Q-i-i)         (3), 
,  ~  (Nr'P  + 1,  Nr'Q-f-  i  e  NR) . 
,~(Nr'P-i-i>Nr'Q  +  i)         (4) 
,~(Nr'P+l>Nr'Q-i-l)         (5) 
l-.(5).*255-63.Df-.Prop  : 

*255-65.     f- :.  /i  6  N„0  -  t'O^  ."^-.v^  ft,.  =  .v^fi  +  i 

Dem. 
h  .  *255-33  .  3  I- :.  J/  >  /i  .  D  :  (gw) .  ot  e  NO  -  t'O, .  z/  =  /^  +  ra- .  v .  k  =  /a  +  i   (1) 
H  .  *255o3-31 .  3 

h  :.  Hp .  OT  6  NO  -  I'O, ,  J/  =  /i-i-  tir .  D  :  (g/))  .  p  e NO  u  t'l  .  v  =  /i  +  2  -f-p  : 
[*181-56]  D:(aio)./>eNOut'l.i;  =  /i  +  i  +  l+/3: 

[(*255-298)]  D:i'  =  ;a  +  l-i-i.v.z/  =  /i-i-i  +  i  +  i.v. 

(a/o)  . /oeNO- i'0^.i;  =  yit-i-i-fi -i-p  : 
[*255-33]  D:i/>/i-i-i  (2) 

|-.(1).(2).  Dh:v>/*.D.i/^/i-i-i  (3) 

h  . *2o5-45-321  .DI-:Hp.z/^/x-|-i.I>-i'>A'  (4) 

h  .  (3) .  (4) .  D  h  .  Prop 

The  following  propositions  are  concerned  with  the  relations  of  ordinals  to 
the  corresponding  cardinals,  i.e.  to  the  cardinals  of  the  fields  of  well-ordered 
series  having  the  given  ordinals.  If  P  is  a  well-ordered  series  whose  ordinal 
is  a,  0"a  =  Nr'CP,  so  that  G"a  is  a  cardinal  whose  members  can  be  well- 
ordered.  Such  cardinals  have  the  property  that  of  any  two  which  are  not 
equal,  one  must  be  the  greater. 

If  the  cardinal  number  of  one  series  is  greater  than  that  of  another,  so 
is  the  ordinal  number ;  but  the  converse  does  not  hold  except  for  finite 
numbers. 


72  SERIES  [fart  V 

*255-7.      f-.Nc"C'^'X^  =  0"'NO    [*152-7  .  (*25101)] 

*255-701.  h .  Nc"a"ll  -  t'A=a'"(NO-i'A)=a"'N'0-i'A  [*255-7  .*37-45] 

*255-71.     h  :  P  less  Q .  3  .  Nc'C'P  <  Nc'C^'Q 

Bern. 

h  .*254-l .  D  I- :  Hp .  D  .  a !  Rl'Q  a  Nr'P . 

[*154-1]  D .  a  !  CFG'Q  n  Nc'C'P . 

[*1 17-22]  D  .  Nc'C'P  <  Nc'C'Q :  D  h  .  Prop 

*255-711.  h  :  Nr'P  ^  Nr'Q .  3  .  Nc'C'P  <  Nc'O'Q 
[Proof  as  in  *253-7l,  using  *255-22] 

*255-72.  h  :  a  ^  j8  .  D  .  (?"«  <  C"^ 

h  .  *255-24 .  D  h  :  Hp .  3  .  (gP,  Q) .  a  =  N„r'P  .  ^  =  N„r'Q  .  Nr'P  ^  Nr'Q . 
[*255-7ll]  D  .  (gP,  Q)  . «  =  N„r'P .  yS  =  N„r'Q .  Nc'O'P  ^  Nc'O'Q . 

[*1527]  D  .  C"a  <  (7"/3 :  3  h  .  Prop 

*255-73.     l-:.P,Q6fl.3: 

Nc'C'P  <  Nc'C'Q .  V .  Nc'O'P  =  Nc'C'Q  .  v .  Nc'(7'P>  No'C'Q 
i)em. 

h  .  *255-7ll .  3  h  :  Hp .  Nr'P  ^^ Nr'Q .  3 .  Nc'C'P  <  Nc'C'Q  (1) 

I- .  *255-7l  .   3  1- :  Hp .  Nr'Q  <  Nr'P .  3  .  Nc'CQ  <  Nc'CP  (2) 

h  .  (1)  .  (2)  .  *255-115  .31-.  Prop 

*255-74.     V  :.a,y8  e(7"'N0  -i'A.3:a<^.v.«>/3 

Dem. 
V  .  *255-701 .  3  F  :  Hp  .  3  .  a,  ;S  6  0"'(N0  -  t'A)  . 

[*1 55-34]  3  .  (aP  Q).P,QeD..a=  G"l>!,r'P .  /3  =  6«'N„r'Q . 

[*152-7]  3.(aP,Q).P,Q6fl.«  =  N„c'C"P./3  =  N„c'C"Q      (1) 

F- .  *255-73 .  *117-106-107-108  .  3 

h  :.  P,  Q  e  fi  .  3  :  N„c'C'P  <  N„c'C"Q  .  v .  N„c'0'P  >  Noc'O'Q  (2) 

h  .  (1) .  (2) .  3  I- .  Prop 

*255-75.     h  :  P,  Q  6  n  .  Nc'C'P  <  Nc'C'Q .  3  .  P  less  Q 

Bern. 

h  .  *117-291 .  3  h  :  Hp .  3  .  ~  (Nc'C'Q  <  Nc'C'P) . 
[*255-711.Transp]  3 .  ~  (Nr'Q  s^  Nr'P) . 

[*255-29]  3  .  Nr'P  <  Nr'Q . 

[*255-l  7]  3  .  P  less  Q  :  3  f- .  Prop 

*255-76.     h  :  a,  y8  6  NO.  C"a<C"^,  3.  a  </3    [*255-75  .  *152-7] 


*256.     THE  SERIES  OF  OEDINALS. 

Summary  of  *256. 

In  the  present  number,  we  have  to  consider  the  series  of  ordinals  in  order 
of  magnitude.  Propositions  on  this  subject  deserve  close  attention,  because 
it  is  in  this  connection  that  Burali-Forti's  paradox*  arises.  This  paradox,  as 
we  shall  show  in  the  present  number,  is  avoided  by  the  doctrine  of  types. 
But  before  discussing  the  paradox,  it  will  be  well  to  explain  various  propo- 
sitions which  raise  no  difficulty. 

For  convenience  of  notation,  we  shall,  in  the  present  number,  employ  the 
letter  M  for  the  relation  "  •< ".  (This  letter  is  chosen  as  the  initial  of 
"  minor.")     Thus  "  oM^  "  means  that  a  and  /3  are  ordinals  of  which  a  is  less 

than  /S.  Jlf'/3  will  be  the  class  of  ordinals  less  than  ;8,  ifi'/S  will  be  13  +  1, 
and    il/i'jS,   when    it    exists,   will    be    such    that    either    ifZ/S  + 1  =  yS,  or 

|8  =  2, .  Mi'/S  =  Oy.     Thus  Q'ilfi  is  the  class  of  ordinals  having  immediate 

— > 
predecessors,  and  B'Mi  is  the  class  of  ordinals  not  having  immediate  pre- 
decessors. 

We  have  (*256-12) 

1- :.  ailf;8  .  =  :  a, /3  6  NoO  :  (37) .  7  6  NO  -  t'Or  w  I'l . /3  =  a-h7, 

that  is,  one  ordinal  is  less  than  another  when  something  not  zero  can  be 
added  to  the  first  to  make  it  equal  to  the  second ; 

*25611.     h  :  P  6  fl  .  D  .  M'Nr'P  =  Nr"D'Pj 

I.e.  the  numbers  less  than  that  of  P  are  the  numbers  of  the  proper 
segments  of  P.     Also,  if  P  e  fl, 

if  p-irNr'P  =  N„r;(Ps  ^  D'Ps) .  N„r  p  B'P,  e  1  ^  1     (*256-2-201), 

so  that  (*256'202)  the  series  of  ordinals  less  than  that  of  P  is  similar  to  the 
series  of  the  proper  segments  of  P,  i.e.  to  P  ^  d'P  (in  virtue  of  *253-22). 
It  follows  (*256-22)  that  every  section  of  M  is  well-ordered,  and  therefore 
that  M  is  well-ordered  (*256-3),  i.e.  that  the  ordinals  in  order  of  magnitude 
form  a  well-ordered  series. 

*  "Una  questione  sui  numeri  transflniti,"  Rendiconti  del  circolo  matematico  di  Palermo, 
Vol.  XI.  (1897). 


T4  SERIES  [past  V 

For  the  purposes  of  the  present  number,  it  is  convenient  to  include  Ig 
(of.  *153)  in  the  series  of  ordinals ;  we  therefore  get 

N=Ms:iOrilsV>(i%)^a'M    Dft  [*256]. 

The  effect  of  this  definition  is  merely  to  insert  Ig  in  the  series  M  between 
0^  and  2r.     We  then  have  (*256-42) 

Nr'iV=i-i-Nr'ilf. 

Now  if  PeD,,  P[.(I'P  (as  we  have  just  seen)  is  similar  to  a  proper 
segment  of  M,  so  that  if  we  omit  to  mention  types  we  obtain 

h  :  Pefl .  D  .  Nr'P  I  Q'P  <  Nr'Jlf. 

Hence  Nr'P,  which  is  1  +  Nr'P  ^  Q'P,  is  less  than  l-j-Nr'ilf  (by  *255-63), 
i.e.  is  less  than  N.     Hence 

l-:PeXi.D.Nr'P<Nr'i\r. 

Nevertheless  iV  e  11,  so  that  it  might  seem  as  if  Nr'iV  must  be  less  than 
itself,  which  is  impossible  by  *255'42.  Hence  we  are  led  to  Burali-Forti's 
paradox  concerning  the  ordinal  number  of  all  ordinals. 

Burali-Forti's  own  statement  of  his  paradox,  which  is  somewhat  different 
from  the  above,  may  be  summarized  as  follows.     Assuming 

a,/36N„O.D:a<;ff.v.a  =  /3.v.a>;8  (A), 

we  shall  have  a  e  NjO  .  D .  a  <•  a  + 1- 

But  we  also  have  a  e  NjO  .  D  .  a  ^  Nr'iV. 

Hence  Nr'iV  <  Nr'iV-(- 1 .  Nr'iV-i-  i  =^  Nr'iV, 

which  is  impossible.  The  conclusion  drawn  by  Burali-Forti  is  that  the 
above  proposition  (A)  is  false.  This,  however,  cannot  be  maintained  in  view 
of  Cantor's  proof,  reproduced  above  (*255"112,  depending  on  *254'4).  The 
solution  of  the  paradox  must  therefore  be  sought  elsewhere. 

With  regard  to  Burali-Forti's  statement  of  the  paradox,  it  is  to  be 
observed  that  "  a  <  « -j- 1 "  only  holds  if  g  !  a  + 1,  i.e.  if  (gP)  .  P  e  a .  C'P  +  V. 
This  will  always  hold  if  a  exists  and  is  infinite,  because  then,  if  Pea, 
P  ^  d'P  -f>  B'P  6  a  -}- 1.     But  if  a  is  finite,  this  method  fails,  since 

Pia'P-i^B'Pea. 
Thus  if  the  total  number  of  entities  in  the  universe  (of  any  one  type)  is 
finite,  ''a<a-i-l"  fails  when  C"a  =  t'Y,  which  is  just  the  crucial  case  for 
Burali-Fprti's  proof.  Hence  as  it  stands,  his  proof  is  only  applicable  if  we 
assume  the  axiom  of  infinity ;  it  might,  therefore,  be  regarded  as  a  reductio 
ad  absurdum  of  the  axiom  of  infinity,  i.e.  as  showing  that  the  total  number 
of  entities  of  any  one  type  is  finite. 

In  order  to  make  it  plain  that  the  paradox  does  not  depend  upon  the 
axiom  of  infinity,  we  have  above  stated  it  in  a  form  independent  of  this 


SECTION  D]  the   series   OF   ORDINALS  75 

axiom.  The  paradox,  stated  simply,  is  as  follows :  The  ordinal  number  of 
the  series  of  ordinals  from«0^  (including  Ij)  to  any  ordinal  a  is  a-i-1 ;  hence 
«+l  exists,  and  is  therefore  >  a.  But  the  ordinal  o  is  similar  to  the 
segment  of  the  series  of  ordinals  consisting  of  the  predecessors  of  a,  and  is 
therefore  less  than  the  ordinal  number  of  all  ordinals.  Hence  the  ordinal 
number  of  all  ordinals  is  greater  than  every  ordinal,  and  therefore  than  itself, 
which  is  absurd ;  moreover,  though  the  greatest  of  all  ordinals,  it  can  be 
mcreased  by  the  addition  of  1,  which  is  again  absurd. 

In  order  to  dispel  the  above  paradox,  it  is  only  necessary  to  make  the 
types  explicit.     In  the  proposition 

Pea.D.PlessN  (B), 

upon  which  the  paradox  depends,  the  relation  "  less "  is  not  homogeneous. 
N  is  of  the  same  type  as  M,  which  is  defined  as  Nr'less,  where  G'leas  =  D,. 
Thus  Nr'P  e  C'N.  Thus  N,  as  it  occurs  in  (B),  should  really  be  iV  f  i'Nor'P, 
i.e.  Nlt't'P,  i.e.  N{P,P),  according  to  the  definition  *65-12.  We  have 
therefore 

*256-53.     h  :  P  6  fl  .  D  .  P  less  JSf  I  t'^o^'P 
but  this  does  not  allow  the  inference 

N  t  «'N„r'P  less  N I  i'Nor'P, 
which  is  what  would  be  required  in  order  to  elicit  a  paradox.     The  correct 
inference  is,  substituting  for  N^fN^T^P  the  equivalent  form  N{P,P), 
N(P,P)lessN'{N'(P,P),N(P,P)],  or,  more  generally, 

*256-56.     H  .  (iyr  p  X)  less  [N  [.  (tH^'X)} 

Thus  in  higher  types  there  are  greater  ordinals  than  any  to  be  found  in 
lower  types.  This  fact  is  what  gave  rise  to  the  paradox,  as  the  corresponding 
fact  in  cardinals  gave  rise  to  the  paradox  of  the  greatest  cardinal. 

*25601. 
*25602. 
*2561. 

Dem. 


M=<. 

Dft  [*256] 

N=MKlOrih^{l'l.)\ 

a'ilf 

Dft  [*256] 

f-.i/eSer.O'ilfCNoO 

l-.*255-42. 

Dh.TlfCJ" 

(1) 

1- .  *255-47l . 

D  1-  .ilf  6  trans 

(2) 

h .  *255-12 . 

Dh.O'J/CNoO 

(3) 

l-.(3).*255-112.*15 

5-43 . 

,  D  h  .  ATeconnex 

(4) 

I- .  (1)  .  (2) .  (3) .  (4) .  D  h  .  Prop 
The  above  proposition  assumes  that  M  is  homogeneous,  since  otherwise 
"  CM "  is  not  significant.     But  M  is  significant  even  when  it  is  not  homo- 
geneous.    Thus  the  conditions  of  significance  in  the  above  proposition  impose 
a  limitation  upon  M  which  is  not  always  imposed  upon  M. 


76  SERIES  [part  V 

*256-101.  f- :  a !  ilf .  D  .  CM  =  N„0  .  0^  =  B'M :  N„0  -  t'O,  =  a'M 
Bern. 

|-.*200-12.*256-l.Dl-.O'M~6l  (1) 

h .  (1) .  *51-4 .  Dhia'.M.D.g!  G'M-  I'Or . 

[*2561]  D.g!N„O-i'0^  (2) 

h.*255-51.  DI-:/t6N„O-t'0^.  =  .0,Jl//*  (3) 

l-.(3).  Dh.'N.O-i'OrCa'M.Or'^ea'M  (4) 

F.(2).(3).  Dhz'^lM.D.Ore'D'M  (5) 

f- .  (4) .  *256-l .  l^h.a'MCN.O-L'Or  (6) 

h  .  (4) .  (5) .  (6) .  D  1- .  Prop 

The  hypothesis  g; !  M  will  fail  in  the  lowest  type  for  which  M  is 
significant,  if  the  universe  contains  only  one  individual.  Under  any  other 
circumstances,  g  !  M  must  hold. 

*256102.  h  :  a  !  N„0  -  t'O,.  .D  .±1  M 

Bern. 

h  .  *256-101 .  D  h  :  Hp .  D  .  a !  a'M  (1) 

1- .  (1)  .  *33-24 .  D  h  .  Prop 
*25611.     I- :  P  6 12  .  D  .  M'Nr'P  =  Nr"D'Ps     [*225-174] 

*25612.     h  : .  aM^ .  =  :  a,  ^  e  N„0  : 

(37) .  7  6  NO  -  I'Or  ./8  =  a-i-7.v.a=f0,  ./3  =  a+i     [*255-33] 
*256  2.       I- :  P  e  n  .  D . 

M^  (M^'m'P)  =  N„r;Ps .  M  I,  (M'Nr'P)  =  N„r;(Ps  ^  D'Ps) 

1- .  *256-101 .  D  h  :  Hp .  P  6  0, .  D  .  Jf  [:  ^*'Nr'P  =  A .  ikf  ^  (i^'Nr'P)  =  A  (1) 

l-.*213-3.      DI-:Hp.P6  0^.D.N„r;Ps  =  A.N„r;(PsDD'Ps)  =  A  (2) 

h .  *25611 .  *213-158  .  D  h  :  Hp .  P  ~  e  0^ .  D  .  J^^'Nr'P  =  Nr^'^'P,  (3) 
h  .  (3)  .  *255-l7  •  3  I- :.  Hp .  P~  e  IV .  D  :  o  {i/ 1  A'Nr'P)}  jS .  =  , 

(aQ,  P) .  a  =  N„r'Q  .  ^  =  N„r'P .  Q,  P  e  C'Ps .  Q  less  P  . 
[*254-47]               =  .  (aQ.  P) .  a  =  N„r'Q .  ^  =  Nor'P .  QPsP . 

[*150-4]  =.a(N„r;P0/3  (4) 

Similarly  l-:.Hp.P~60^.D:a{ilf  p(i^Nr'P)}/3.=  .a{N„r;(Ps^D'Ps)}(8  (5) 
h  .  (1) .  (2) .  (4)  .  (5) .  D  h  .  Prop 

*256-201.  h  :  P  e  n .  D .  N„r  I-  D'P,  e  {ilf  ^  (M'Nr'P)}  g-mor  (P^  ^  D'Pj) . 

N„r  [  C'Ps  6  {M I  (M^'m'P)]  smoi  P,     [*253-461 .  *256-2] 


SECTION  D]  the  series   OF  ORDINALS  77 

*256-202.  I- :  P  6 12 .  D  .  Nr'{ilf  p  (i^'Nr'P)}  =  Nr'(Ps  D  D'Ps)  =  Nr'(P  ^  CI'P) 
[*256-201 .  *25?22] 

*256-203.  h  :  P  6  ft .  D  .  Nr'{M  I  (J^'Nr'P)}  =  Nr'Ps     [*256-201] 

*256-204.  h  :  a  e  N„0  -  1% .  D  .  1  +  Nr'(ilf  I  M'a)  =  a 


h  .  *2o5-101 .  *256-202  .  D 

h  :.  P  6  ft  .  a  =  N„r'P .  D  :  Nr'{Jf  p  i^'a}  =  Nr'(P  ^  Q'P)  : 

[*204-46-272]  D  :  P  ~  e  2, .  D  .  1  +  Nr'(j¥  ^  J^a)  =  Nr'P  : .  D  I- .  Prop 

*256-21.     f-:/t6N0.P6/z.D.MV  =  Nr"D'Ps  [*25611] 

*256-211.  h  :  /i  e  NO  -  I'O^ .  P  e/i .  D  .  iT^'/t  =  Nr"0"Ps    [*213-158  .  *256-21] 

*256-22.     \-:/j,eNO.:^.MlM^'fiea 
Dem. 

h  .  *256-203  .DI-:Hp.Pe/*.D.  Nr'(il!f  t  M^'fi)  =  Nr'Ps . 
[*253-24]  D.ilf^il%'/ieft  (1) 

l-.(l).  D\-:fi=^A.'D..MlM^'fi6a  (2) 

h.(2).*250-4.Dh.Prop 

*256-221.  h-.fie'NO.'D.MlM'fien    [*256-202] 

*256-3.       h  .  ilf  6  ft  [*256-221 .  *250-7] 

*256-31.     1- :  a  !  ilf .  D  .  2,  =  2^ = M/O^ 
Dem. 

I- .  *255-51-53  .  D  f- :  Hp  .  D  .  M'Or  =  t%  w  J/'2,  . 
[*205-196.*256-l]  D .  2^  =  min^il^'O, 

[*206-42.*201-63]  =M^'Or 

[*250-42.*256-101]  =  2^^ :  D  I- .  Prop 

We  shall  have,  for  every  finite  v,  Vr  =  vjii,  where  Vr  will  he  defined  as  the 
ordinal  corresponding  to  v,  i.e.  as 

ft  n  G"v. 

(This  is  a  single  ordinal  when  p  is  finite ;  otherwise,  it  is  the  sum  of  a  class 
of  ordinals.)    This  subject  will  be  considered  in  the  next  section. 


78  SERIES  [part  V 

*256-32.     I- :.  aM^^  .  =  ia,^e  NoO  :a=}=Oy./3  =  a-i-i.v.a=0,.;S  =  2, 
Dem. 

h  . *255-65  .  D  h  :  a 6 N„0 -  I'O^ .  D  .  M'«  =  t'(«-i- 1)  u M'(a+i) . 
[*205-196]  D.a-i-i  =  miiiVil/'a. 

[*206-4<2.*201-63]  D.a+i  =  i^i'a  (1) 

I- .  (1) .  *256-31 .  D  h  .  Prop 

*256-4.       l-.ls~eNO 
Dem. 

l-.*153-36.  D\-:Rel,.'D.G'Rel. 

[*200-12.*25012]  D  .  E  ~  6  n  (1) 

h  .  (1) .  *251-122  .  D  h  :  a  e  NO  .  D  .  a  n  1,  =  A  (2) 

h.(2).*153-34.Dl-.Prop 

*256-41.     \-.N=M\jOrils^(i'h)t(i'^    [(*256-02)] 

*256-411.  1- :. aNl3 .  b  :  a=  0,  .  /Sei'l,  w  a'M.v . 

a  =  1, .  y8  e  a'M  .v.  a,  Be  a'M .  aM^     [*256-41] 

*256-412.  [■:M=A.D.N=Qrils.Ne2r    [*256-41] 

*256-413.  h  :  M=Or  J,  2^  .  D .  JV  =  0^ i  Ij  a  0^  J,  2, o  1^  J,  2^ . iVe  1  +  2^ 
[*256-41 .  *161-211] 

*256-414.  h  :  Q'ilf  ~  el  .D  .N=Orils^Ml  a'M 
Dem. 

h  .  *204-46  .  *256-101 .  D 

\-:'Sp.'3_lM.D.N=0r*\-M[,  a'M  c;  0,  i  1,  w  (I'l,)  ^  C'(M  p  a'J/) 
[*161-101]  =  04  1,  o  (I'O^  u  t'l,)  f  G'{M  I  a'M)  w  ilf  I  d'M 

[*i60-i]  =o,ii,4^#Ca'iif  (1) 

l-.(l).*256-412.Dh.Prop 

*256-42.     h  :  a  !  if .  D  .  Nr'iV=  1  +  Nr'ilf 
Dew. 
I-  .*256-414 .  D  I- :  Hp .  Q'Jf  ~6l .  D  .  Nr'JV=  2^  +  Nr'(ilf  p  a'if) 
[*181-57]  =1  +  1  +  Nr'(if  t  a'ilf ) 

[*204-46]  =l  +  Nr'Jf  (1) 

H.(l).*256-413.DI-.Prop 

*256-43.     hiiVeli-t'A     [*256-412-42] 


SECTION  D]  the   series   OF   ORDINALS  79 

*256-41     I- :.  Pe  fl .  D  :  P^Q'P  less  if .  =  .  P  lessiV .  g !  M 

Bern.  • 

h.*255l7-601.D 

h  : .  Hp  .  D  :  P  t  a'P less M.=  A  +  Nr'P  ^  (I'P  <  1  +  Nr'ilf  (1) 

f- .  *256-412-42  .  D  h  :  P  =  A  .  D  .  P  less  N  (2) 

l-.*255-51.         Dh:.P  =  A.D:PtCI'Plessiif.  =  .a!ikf  (3) 

h.(2).(3).         DI-:.P  =  A.D:Pta'Plessilf.  =  .PlessiV.a!ilf         (4) 
h.*200-35.*255-51.DI-:.  a'Pel.D:Pt(I'Plesslf.  =  .a!ilf  (5) 

l-.*256-42.  DI-:.Hp.a'Pel.a[!i/.D.PlessiV"  (6) 

l-.(5).(6).  Dh:.Hp.a'P6l.D:P^a'PlessJlf.  =  .a!il/.PlessiV      (7) 
h  .  *204-46  .  D  h  :.  Hp .  a  !  P  .  Q'P  ~  e  1 .  D  :  1  -j-Nr'P  I  a'P  =  Nr'P : 
[(1)]  D:Pta'Plessilf.  =  .Nr'P<l-i-Nr'ilf. 

[*256-101-42]  =  .  Nr'P  <  Nr'A^ .  g !  ilf  (8) 

h  .  (4)  .  (7)  .  (8) .  D  h  .  Prop 

We  now  make  use  of  the  above  propositions  to  show  that  every  well- 
ordered  relation  P  of  the  type  we  start  from  is  less  than  N,  where  N  is  to 
hold  between  ordinals  of  the- type  to  which  Nor'P  belongs.  This  proposition 
embodies  what  Burali-Forti's  paradox  becomes  when  account  is  taken  of 
types. 

*256-5.       higlJf.Pen.D.  N„r;(Ps  I  D'P^)  e  D'(if  ^  <'N„r'P)s 
Dem. 

V  .  *256-2  .  *25313  .  D  h  :  Hp .  D  .  N„r  ;(Ps  l  D'Ps)  e  D'M,  (1) 

h  .  (1)  .  *150-22  .        D  h  :  Hp  .  D  .  N„r"D'Ps  C  to'G'M, . 
[*213-141]  D  .  Npr'P  e  t,'G'M, . 

[*63-53]  D.CG'i/s  =  «'N„r'P  (2) 

I- .  (1) .  (2)  .  D  h  .  Prop 

*256-51.     h  :  P  6  n  .  D  .  N„rJ(Ps  I  B'P,)  smor  P I  Q'P     [*253-463] 

*256-52.     F  :  a !  ilf .  P  e  n  .  D .  P  t  CI'P  less  M  p  i'Nor'P  [*256-5-51 .  *254-182] 

*256-53.     l-:Pen.D.Plessi\^p«'Nor'P 

Dem. 

h  .  *256-44-52  .DhrHp-alJf.D.P  less  iV^  «'N„r'P  (1) 

|-.*256-102.    DI-:Hp.ilf=A.D.P  =  A. 

[*256-43]  D.P  less  i\r  (2) 

h  .  (1)  .  (2) .  D  I- .  Prop 

*256-54.     h  :  P  6  O .  D  .  Nr  (P)'(i\r  p  i'Nor'P)  =  A 
Dem. 

V  .  *256-53 .  D  h  :.  Hp  .  D  :  Q  ef'P  .  Dq  .  ~  {QsmoriVt  ^'N^r^PJ : 
[*15211]  :i:fPn  Ni-'{Ni  «'N„r'P)  =  A : 

[(*65-04)]  D  :  Nr  (P)'(iV  p  f 'N„r'P)  =  A  : .  D  h  .  Prop 


80  SERIES  [part  V 


*256-55. 

\-:Pen. 

D. 

Nr  (Py(N  I  «'N„r'P)  =  Nr  (P)'(iV  I  i 

!'«'P)  =  Nr  (Py[N  (P,  P)}  =  A 

Bern. 

\- .  *155-12 
[*63-105] 

.DI-.PeN„r'P. 
DI-.Pefo'NoT'P. 

[*63-53] 

DI-.<'«'P  =  i'N„r'P 

(1) 

J-.(l)- 

DI-.Nr(P)'(iV[:«'N„r'P) 

=  NT(Py(NltH'P) 

(2) 

[(*65-12)] 

=  Nr  (P)'{i\^(P,P)} 

(3) 

K(2).(3). 

,  *256-54 .  D  h  .  Prop 

*256-56. 

\-.(NtX) 

less{iVt:<fVX)} 

Bern. 

h  .  *256'43-53 .  D  I- .  (iV  ^  X)  less  {N I  (fN^v'N  ^  \)}  (1) 

h.*156-12.       Dh.iV^^XeNor'i^^X,. 
[*63-105]  DI-.iV"^X6«o'N„r'iV"t\. 

£*63-53]  D  h .  i'f'JV l\  =  f'Not'N  [,  X  (2) 

l-.*64-16.         Dh.N^Xet'ito'X^to'X). 
[(*64-01)]  Dh.N^Xetoo'X  (3) 

I- .  (2)  .  (3) .       D  I- .  «'i„„'\  =  «'N„r'iV  p  X,  (4) 

h  .  (1) .  (4) .  D  I- .  Prop 
When  types  are  neglected,  the  above  proposition  appears  as 

NlessN, 

which  is  impossible,  and  embodies  Burali-Forti's  paradox.  In  the  form 
proved  above,  however,  the  paradox  has  disappeared,  and  we  have  instead 
the  proposition  that  in  higher  types  longer  series  are  possible  than  in  lower 
ones. 


*257.     THE  TRANSFINITE  ANCESTRAL  RELATION. 

Summary  of  *257. 

In  this  number,  we  are  concerned  with  an  extension  of  the  notions  of 
-Bjjf  and  R^.  This  extension  requires  two  relations,  R  and  Q.  It  is  most 
easily  explained  by  first  defining  the  "  transfinite  posterity  "  of  a  term  x  with 

respect  to  R  and  Q;  this  class  is  an  extension  of  R^'x.  This  class  is 
generated  as  follows.  Let  us  suppose,  to  aid  the  imagination,  that  Q  is  more 
or  less  serial  in  character,  and  that  i2  is  a  many-one  relation  contained  in  Q. 
Then  the  transfinite  posterity  of  x  with  respect  to  R  and  Q  is  generated  as 
follows :  Starting  from  x,  we  travel  down  the  posterity  of  x  with  respect  to  R 

<—  *-  .    .      . 

(i.e.  R^'x)  as  long  as  we  can ;  if  the  whole  class  R^'x  has  a  limit  with  respect 

to  Q,  we  begin  again  with  this  limit,  which  is  to  be  included  in  the  trans- 
finite posterity  of  x  with  respect  to  R  and  Q ;   if  the  limit  is  y,  we  travel 

down  R^'y,  and  include  the  limit  of  this  class  with  respect  to  Q,  and  so  on,  as 
long  as  we  still  have  either  terms  belonging  to  D'iJ  or  classes  belonging  to 
Q'ltg.  The  whole  of  the  terms  so  obtainable  constitute  the  transfinite 
posterity  of  a;  with  respect  to  R  and  Q,  which  we  will  denote*  by  (i2*Q)'a;. 

In  order  to  obtain  a  symbolic  definition  of  this  class,  let  us  call  a  class  <r 

"  transfinitely   hereditary "   when  not    only  R"a-  C  o-,   as   in   the   ordinary 

hereditary  class,  but  also  if  we  take  any  existent  sub-class  fi  oi  a-  n  G'Q,  if  fi 

has  a  limit  with  respect  to  Q,  that  limit  is  to  be  a  member  of  a:     Thus  a  is 

to  be  such  that  the  i2-successor  of  any  member  of  cr  belongs  to  a  and  the 

Q-limit  of  any  existent  sub-class  of  o-  n  G'Q  belongs  to  o-  (so  long  as  these 

\j  — ► 

exist).    That  is,  B"a  C  a  and  /*  C  o- .  g  !  /tt  n  G'Q .  D^ .  It^'/it  C  a.    Using  the 

notion  of  the  derivative  of  a  class  with  respect  to  Q,  introduced  in  *216,  the 

condition  /*  C  o- .  g !  /n  a  G'Q .  D^ .  Itg'/*  C  a  reduces  to  hq'a-  C  <t,  in  virtue  of 
*216'1.    Hence  <t  is  transfinitely  hereditary  with  respect  to  R  and  Q  if 

R"<r\jhQ'(TCa. 

*  This  meaning  for  R*Q  has  no  connection  with  the  meaning  temporarily  assigned  to  this 
symbol  in  *95. 

B.  &w.    III.  6 


82  SERIES  [part  V 

We  may  now  define  the  transfinite  posterity  of  x  with  respect  to  R  and  Q 
as  all  members  of  G'Q  which  belong  to  every  transfinitely  hereditary  class  to 
which  X  belongs,  i.e.  we  put 

{B*Qyx  =  C'Qn§lxea-.R"a-yjBQ'<TCcr.X-yea-}     Df. 

Then  the  analogue  of  B^is  ^p{ye(R*Qyx}.  This  relation,  however,  is 
less  important  than  the  analogue  of  R^^  limited  to  the  posterity  of  x.  This 
analogue,  assuming  Q  to  be  transitive,  will  be  Q  ^  (R^nQYx.  For  this  we 
introduce  the  two  notations  Qjg^  and  Q  (R,  x),  the  latter  being  more  con- 
venient when  either  i2  or  a;  is  replaced  by  a  more  complicated  expression. 
Thus  we  put 

Qi^  =  Q(R,x)  =  Qt(R*Qyx    Df. 

If  Q  is  a  well-ordered  series  and  R  =  Qi,  Q^  is  merely  the  series   Q 

*—        *— 
beginning  with  x,  and  (R*Qyx  =  Q^'x  =  Q'x\j  I'x  if  xeG'Q.     Thus  in  this 

case,  if  a;  =  B'Q,  Q^  =  Q.     But  the  importance  of  Qji^  is  in  cases  where  Q  is 

not  completely  serial,  but  becomes  so  when  limited  to  (i2*Q)'a;.     In  these 

cases,  Q  will,  in  applications,  almost  always  be  logical  inclusion  combined  with 

diversity,  or  the  converse  of  this ;  i.e.  it  will  be  either 

or  MN(M(lN.MJi=N), 

A. 

or  the  converse  of  one  of  these.     In  the  case  of  o/3  (a  C  /3 .  a  =j=  /3),  we  have 

Itg  =  s  P  (-  Q'maxg) .  tig  =p  [  (—  a^min^), 
as  will  be  proved  in  *258. 

In  the  present  number,  we  are  concerned  in  proving  that,  under  certain 
circumstances,  Qg^  e  fi.  The  proof  proceeds  on  the  lines  of  Zermelo's  second 
proof*  of  his  theorem  that  if  a  selection  exists  from  all  the  existent  sub- 
classes of  a  given  class,  then  the  given  class  can  be  well-ordered. 

Before  proceeding  to  treat  of  this  subject,  however,  it  is  necessary  to 
prove  some  elementary  properties  of  {R^QYx.  These  are  given  in  the 
propositions  preceding  *257'2. 

We  have 
*257-ll.     \-:xea.  B"a  w  S^'tr  C  o- .  D  .  (E*Q)'a;  C  a 

Thus  in  order  to  prove  that  (i2*Q)*a;  is  contained  in  a  class  a,  we  have 
to  prove  (1)  that  x  belongs  to  or,  (2)  that  the  ii-successors  of  members  of  fl- 
are members  of  cr,  i.e.  that  <7  is  hereditary  with  respect  to  B,  (3)  that  the 
derivative  of  a  with  respect  to  Q  is  contained  in  a,  i.e.  that  if  /*  is  any 
existent  sub-class  of  o-  r>  G'Q  which  has  a  Q-limit,  this  limit  is  a  member  of  <t. 

*  "  Neuer  Beweis  tax  die  Moglichkeit  einer  Wohlordnnng,"  Math.  Annalen,  lxv.  p.  107  (1907). 
His  first  proof,  which  was  somewhat  more  complicated,  was  published  in  Math.  Annalen,  lix. 
p.  514  (1904). 


SECTION  D]  the   TKANSFINITE   ANCESTRAL   RELATION  83 

*257111.  [■.{R*QyxCG'Q 
*25712.     \-:xeC'Q.  =  .xe(B*  QYx 

*257123.  h-.RCQ.D.  B"{R*Qyx  C  (E*Q)'a; 

I.e.  if  It<lQ,{B*Qyx  is  hereditary  with  respect  to  B.     The  hypothesis 
i2  G  Q  is  required  for  most  of  the  properties  of  (i2*Q)'a!. 

*257125.  hiBQQ.xeC'Q.D  .*R^'x  C  {B*Qyx 

Thus  if  a;  e  G'Q,  the  i2-posterity  of  x  is  contained  in  (i?*Q)'a;. 

*25713.     t- :  /i  C  {B^Qyx .  g  !  /i .  D  .  ItgV  C  (E*Q)'« 

*25714.     f- :  iJ  G  Q .  D  .  (is:*Q)'a;  C  ^s'^ 

Thus  (B^Qyx  is  wholly  contained  in  the  Q-posterity  oi  x. 

The    following   propositions    (*257"2 — "SG)    are    concerned    in    proving 
Qjjj.6li,  with  a  suitable  hypothesis.     This  hypothesis  is 

Q  e  nVJ  n  trans  .  B  e  Rl'Q  r.  Cls  ->  1 .  Itg  [^  CI  ex'(iS:*Q)'a:  e  1  -»  Cls. 
We  assume,  to  begin  with,  only  part  of  this  hypothesis,  namely, 

Q  e  Rl'J"  n  trans  .  B  e  Rl'Q  n  Cls  -^  1. 
Thus  to  prove  Qex  e  Ser,  we  only  have  to  prove  Q^^  e  connex,  i.e. 

y  e {B^Qyx .  D  . {B*Qyx QQ'y, 
or,  what  comes  to  the  same  thing, 

{B^qyxCp'Q'^B^qyx. 

Let  us  pu t  0-1  =  (iJ * Qyx  np'Q"{B*Qyx.. 

Then  any  member  of  o-j  may  be  called  a  "  connected  term,"  because  it  is  con- 

nected  by  Q  or  Q  with  every  other  term  of  (i2*Q)'aj.  (A  connected  relation 
is  then  a  relation  whose  field  consists  entirely  of  connected  terms.)  We  wish 
to  prove  that  o-i  is  a  transfinitely  hereditary  class,  and  therefore  equal  to 
{B^QYx.  We  do  this,  not  directly,  but  by  combining  o-j  with  another  class 
ffa  defined  as  follows.     Consider  those  members  z  of  (B^Qyx  which  are  such 

that  their  successors  in  Q^^  consist  of  B'z  and  its  successors  in  Q^^,  i.e.  put 

r  =  (B^QYx  n  t  [Qj^'z  =  (Q^^'B'z}. 

It  will  be  observed  that,  even  when  Q  is  transitive,  Q^  and  (Qbx)^  are  still 

useful.     In  this  case,  (Qs^)*  =  Qsx  ^  ^^  (^'Qme .  so  that  {Qiia,)^'B'z  consists  of 

B'z  and  its  successors  in  Q^^.  We  then  consider  the  class  a^  consisting  of 
those  terms  y  whose  predecessors  are  all  members  of  t,  i.e.  we  put 

<r,  =  (B*Qyx  n^{zQy.ze  (B^Qyx .  3, .  q'j^'z  =  (Q^^'B'z}. 

Finally  we  put  a-=  ffifs  a-^,  i-e- 


a  =  {B^qyx  n  p'Q"{B*Qyx  ng{zQy.ze  {R*Qyx .  D,  .Q^^Jz  =  {Qj^J^'B'z}. 

6—2 


84  SERIES  [part  V 

The  reason  for  this  process  is  that  it  is  easier  to  prove  that  o-  is  a  transfinitely 
hereditary  class  than  it  is  to  prove  this  directly  for  a-^ ;  and  the  result  follows 
immediately  for  ai  when  it  has  been  proved  for  a. 

We  have  then  to  prove  R"a  C  a .  Bq'a  C  a. 

The  first  step  is  to  prove 

yea.D.  Qj^'y  =  Qju'R'y  «  t'B'y- 
This  is  proved  by  transfinite  induction,  by  showing  that 

is  a  transfinitely  hereditary  class,  whence  the  result,  because,  by  hypothesis. 

The  proof  that  Q^'y  w  Q^'R'y  is  a  transfinitely  hereditary  class  is  as  follows. 
If  z  €*Q^'R'y,  R'z  e*Q^'R'y.    liz  =  y,  R'z  =  R'y. 

\i  ze  Qbx'V'  tlien  since  by  the  hypothesis  QbJz  =  (.Qib^^'R'z,  we  have 

< -  "       — » 

y  e  {Qb^^'R'z,  i.e.  R'z  e  Q^'y. 

Hence  z  e  (R*Qyx  n  {Q^'y  w  Q^'R'y)  .Z>.R'ze  Q^'y  u  Q*'E'y. 
We  have  next  to  prove 

^L  C  {R^QYx  n  (Q^'y  Jq^'R^y) .  g  ! ;. .  D  ."UqV  CQ^'y  ^%'R'y. 

If  a  !  /t  f^%'R%  thenlteV  CQ^'R'y. 

—*  —>  —* 

It fiC Q^'y  -y eii,  then  y e maxg'/i,  and  Itq'/i  =  A. 

If  /i  C  Q'y,  we  have  y  ep'Q"iJi,,  whence  w  It^/t .  D  .  ~  (yQw),  whence,  since 
y,  by  hypothesis,  is  a  connected  term,  wQ^y. 

Hence   in  any  case   Itg  V  C  Q^^'y  u  Q^'R'y.      Hence    Q^^'y  w  Q^'R'y    is 
hereditary,  and  therefore  contains  (i2*Q)'a! ;  and  hence 

This  shows  that  iJ'y  is  a  member  of  a^.  For  by  hypothesis  this  holds 
of  all  predecessors  of  y,  and  we  have  now  shown  (1)  that  it   also  holds 

of  y,  (2)  that  y  is  the  only  predecessor  of  R'y  which  does  not  precede  y. 
This  is  the  first  step  towards  proving  that  a  is  transfinitely  hereditary. 

It  follows  immediately,  from  what  has  now  been  proved,  that  ii  y  ea,  R'y 
(if  it  exists)  is  a  connected  term.     For  by  hypothesis 

{R*Q)'xCQ^'yyj*Q'y, 
whence,  by  what  we  have  just  proved, 

{R*Q)'xCQ'R'yyj%'R'y, 


SECTION  D]  the  TEANSFINITE  ANCESTRAL  RELATION  85 

whence  R'y  is  a  connected  ^rm.     Hence  R'y  e  a.     Hence  R"cr  C  a. 
It  remains  to  prove  Sq'o-  C  o-. 

Just  as  R"<T  C  o-  was  proved  by  proving  Q'y  =  Q^'R'y,  so  Sg'o-  C  o-  is 
proved  by  proving 

provided  /itCo-.  g;  !/t  .~a  !  maxg*/*; 

w    — > 
and  this  is  proved  by  showing  that  Q"/i  u  Q^'ltq'n  is  a  transfinitely  heredi- 
tary class. 

To  show  that  Q"ii  w  Q^"\iQ'fi  is  a  transfinitely  hereditary  class  if 

— » 
/t  C  o- .  a  !  /i .  ~  g; !  maxg'/t, 

we  observe  that  by  hypothesis 


Hence  R^z  e  {Qn^^^^fJi'  \  and  hence,  since  by  hypothesis  fi  C  Q^'ytt, 

R'zeQ^",,. 

Hence  ^"{(Q*i?)'«  r.  Q"/*}  C  {Q^Ryx  n  Q"^. 

Also  obviously  R"Q^"ltQ'fi  C  Qj|j"ltQ'/i- 

"    — > 
Hence  putting  p  =  (Q*i2)'a!  n  (Q'V  "  Q*"ltcV)> 

we  have  ii"jO  C  p. 

We  have  now  to  prove  Sq'p  C  p, 

— >  -> 

ie.  a  C  p .  a  !  a .  ~  a  !  maxg'a .  D  .  Itg'a  C  p. 

If  a  C  Q"fi,  it  is  obvious  (since  p,  is  composed  entirely  of  connected  terms) 
— »  — » 

that  seq^'a  C  Q"ii  w  Itg'/t- 

>^    — » 
On  the  other  hand,  if  a  !  *  '^  Q*"lto'/*'  ^^^"^  *"  ^  Q'V>  if  i^'  exists,  does  not 

affect  the  value  of  the  limit  of  a,  which  is  the  limit  of  a  n  Q^"ltQ'fi,  which  is 

obviously  contained  in  Q^"\tQ'fi.     Hence  Sq'/*  C  p.     Hence  fi  is  transfinitely 
hereditary,  and  we  have 

/i  C  o- .  a  !  M  ■  ~  a !  maxg'p, .  3  .  (R^QYoo  C  Q"/j.  w  Q5|e"ltQ'p. 
At  this  point  it  is  necessary  to  assume 

ItQ  [  CI  ex'iR^QYx  6 1  ^  Cls. 
This  being  assumed,  we  have,  by  what  has  just  been  proved, 

p,  c  o- .  a !  /^  ■  a !  ^k'H-  ■  3  ■  (R*Qy«!  c  Q"p  »  Q*'!*^'/"  ■ 

D .  (ii!*Q)'«  c'JltgV  w  Q^'ltgV 


86  SERIES  [part  V 

Hence  Itg'/tt  is  a  connected  term.     Hence 

We  only  require  further 


/i  C  o- .  a  !  /i  .  a  !  ltQ> .  D  :  ^Q  Itg'/t .  z  e  (R^QYx .  D, .  Q^Jz  =  (Qb^)*'-R'^- 

Now   by   what   we   have  just    proved,   zQltQ'fj,.  =  .Z6Q"fi ;    and   by   the 
definition  of  a,  since  fiCcr,  we  have 

Hence  we  arrive  at  Sq'o-  C  o-.     Since  we  have  already  proved  R"<t  C  o-,  it 
follows  that  <7  is  hereditary,  and  (R^Qyas  C  o-,  i.e. 

2/  6  (R*Qyx  :Oy:y  ep^"{R^ QYx :  zQj^y .  D,  .'q^'^  =  (Qjj.)*'-B'^, 

<—  <— —     ^ 

i.e.  Qj^  e  connex  :  ^  e  D'Qua,  •  3z  ■  Qs^'z  =  {Qm^h'R'z. 

Hence  Qjjj.eSer.     Hence  also  the  immediate  successor  of  every  term  z  in 

I>'Qe^  is  R'z,  so  that 

D'Q^,  C  D'E .  (Qj,,),  =  R  i  (R*Qyx. 

To  show  that  Q^  e  il,  we  observe  that  every  class  contained  in  D'Qjj^,  has 
a  sequent,  namely 

— > 
«  C  D'Qjj^  .  a  !  maxg'a  .  D  .  seq  {Qn^ya  =  E'maxg'a, 

a  C  D'Qjja. .  a  ! « ■  ~  a !  maxQ'a .  D  .  seq  (QB^)'a  =  It^'a, 

whence  a  C  B'Qs^ .  D.  .  E  !  seq  (QaJ'a, 

which  shows  that  Qji^eD,. 

The  first  derivative  of  Q^^,  is  SQ'{Q*Ryx,  and  its  last  term,  if  any,  is 

^i'{(Q*Ryx-T>'R},  i.e.  \iQ%Q^Ryx i\J)'R}. 

The  hypothesis  required  for  Qbx  e£l\s  the  same  as  for  Q]^  e  Ser,  namely, 

Q  6  Rl'J  n  trans .  R  e  UVQ  n  Cls  -^  1 .  Itg  [  CI  ex'(i?*  Q)'a;  e  1  ^  Cls. 

In  order  that  Q^^  may  not  be  null,  we  require  further  xeJy'R. 

The  next  set  of  propositions  (*257*5 — "SG)  are  designed  to  prove  that, 
subject  to  the  above  hypothesis  together  with  x  e  D'R,  Q^^  is  the  only  value 
of  P  fulfilling  the  following  conditions  : 

(1)  P  is  transitive. 

(2)  G'P  is  contained  in  {R^Qyx. 

(3)  If  z  is  any  member  of  D'P,  R'z  is  its  immediate  successor. 

(4)  If  a  is  any  existent  class  contained  in  G'P  and  having  no  maximum, 
Itg'a  is  its  P-limit. 


SECTION  D]  the  TRANSFINITE  ANCESTRAL  RELATION  87 

This  proposition  is  essential  for  what  may  be  called  "transfinite  inductive 
definitions,"  i.e.  definitions  (©f  a  series  by  defining  the  successor  of  every  term, 
and  the  successor  of  every  class  having  no  maximum. 

The .  following  illustration  may  make  this  clear.  Suppose  iZ  is  a  many- 
one  relation  of  classes  to  individuals ;  suppose  we  start  with  some  class  a,  and 

proceed  to  a  w  I'R'a,  a  w  I'R'a  u  L'E'(a  w  I'R'a),  and  so  on.  At  the  end  of 
this  series  we  put  its  sum,  i.e.  its  limit  with  respect  to  the  relation  (C  n  J) ; 

let  the  sum  be  ^8.  We  then  proceed  with  ^  u  I'R'fi,  and  so  on,  as  long  as 
possible.  The  series  ends  with  a  sum  which  is  not  a  member  of  D'R,  if  there 
is  such  a  sum.  It  is  evident  that  the  series  is  uniquely  determined  by  the 
above  method  of  generation  ;  the  above-mentioned  propositions  give  symbolic 
expression  to  the  process  expressed  in  words  by  "and  so  on,  as  long  as 
possible." 


*25701.     (R*Qya!  =  C'Qn§{ccea.R"<TyjSQ'a-Ccj-.D,.y€a-}    Df 
*257-02.     QB.=  Q(R,«>)  =  Qt(R*Qy^  Df 

*257-l.       I- :.  2/  6  (R*Qyx  .  =  :y  eC'Q-.x  eo- .  R"(t  u  Sg'a  Ca.O^.yea 
[(*257-01)] 

*257101.  i-::ye (R^Qyx  .  =  :.yeG'Q :. 

xe(7  .  R"(T  Co-:/iCo-.a!/tn  C'Q  .  D^  .  Itg'/i  Ca-'.D^.yea 
[*257-l .  *216-1] 

*257102.  H  ::  2/  6  (R^QYx  .  =  :.y  eO'Q:. 

^  —*  —* 

xea.R"(rC<Ti  iiC  a  .'^XjJi.n  C'Q.  ^glmaxg'/i.  D^.  seq^'/otCo-:  "Ha.yecy 

[*257-101 .  *2071] 
*25711.     l-:a!6(7.^"o-uSQVCo-.D.(it:*Q)'a;Co-    [*257-l] 

Almost  all  proofs  of  propositions  concerning  {R^QYx  use  this  proposition. 
*257111.  \-.(R*Qya;CC'Q  [*257-l] 

*257-12.     i-:xeC'Q.  =  .xe(R*Qyx    [*257-l] 

*257-121.  \-:R(-Q.ye (R^Qyx .D.R'yC (i?* Qyx 

Dem. 
h  .  *257-l .  D  1- :.  Hp  .  yRz  .'Dixea.  R"(r  u  Bg'a  C  o- .  D^. «/  e  o- :  yRz.ze  C'Q: 
[*37-l]  -D'.zeO'Q:xe<T.R"aCa.  Sq'o-  C  o-  .  D^  .  ^r  e  <t  : 

[*257-l]  ':i:ze {R*Qyx :.  D  h  .  Prop 


88 

*257122.  h 
*257123.  h 
*257124.  h 
*257125.  h 
*257126.  h 


SBBIBS 


iJ  G  Q .  /*  C  (iJ*Q)'a; .  D  .  ii' V  C  (R*Qyx 

RGQ.-^.  R"(R*Qyx  C  (JB*Q)'a; 

E  G  Q .  D  .  !R5„"(E*Q)'a;  C  (i2*Q)'a; 

i?  G  Q .  «  6  a'Q  .  D  .  R^'x  C  (i2*Q)'a; 

RQQ.ooe  T>'R .  ~  (a;i?a;) .  D  .  {R*Qyx ~  e  0  u  1    [*257125] 

/i  C  (R*Qyx .  a !  /i .  D  .  IV/i  C  (R^Qya; 


[PABT  V 

[*257121] 
[*257-122] 
[*257'123] 
[*257-12-124] 


*25713.     h  1 

Bern, 

h  .  *257-101 .  *10-1 .  *221 .  D  I- ::  /*  C  (i?*Q)'a! .  D :. 

^  — » 

a!eo-.E"o-Co-:i/Ca-.a!vn  C'Q  .  D„ .  Itg'v  C<r:D./iCa-     (1) 

h.(l).Fact.Dh::Hp.D:. 

^  — > 

a;  6  o- .  R"<r  C<T:vC<T.<^lvr\  C'Q .  D„ .  Uq'i'  Co-O./tCo-.g!/*     (2) 

f-.*101.*257-lll.D 

— » 
h  :.  K  C  o- .  a; !  V  r>  C'Q .  D^ .  ItgS  C  o- :  D  :  Hp  .(iCa.y  Itg/i  ."^  .yea  (3) 

l-.(2).(3).DI-::Hp.i/ltg/i.D:. 

aj  6  o- .  i?"o-  Co-ii/Co-.alvrt  CQ .  D^ .  It^'v  C  cr :  3 .  y  eo-     (4) 
I- .  (4) .  *1011-21 .  *257-101 .  D  h  :  Hp .  2/  Itg^ti  ■  3  •  2/  e  (i2*Q)V  :  3  H .  Prop 

*257131.  h  .  SQ'(i2*e)'a;  C  {R*Qyx  [*257-13  .  *216-1] 

*257132.  h  : «  C  CI  ex'(i?*Q)'a; .  D  .  Itg"*  C  (i2*  Q)'a;    [*257-13] 

*25714.     V'.RQ.Q.O.{R*Qyx  CQ^'x 

Dem. 
V  .  *90-163  .  D  h  :  Hp .  D  .  R"Q^'x  C  Q:j^'x  (1) 

I- .  *20615  .  D  h  :  /t  C  Qjje'a; .  z  Itg/t .  g  !  /* .  D  .  ^;  ep'Q"n .  g  !  /t .  /*  C  Q^i^'a; . 
[*40-61.*90-163]  D  .  0  e  Q"/x .  Q"/t  C V*'«  ■ 

[*22-46]  l^.zeQ^'x  (2) 

h  .  (1) .  (2) .  *25711 .  D  h  :  Hp .  «  e  C"Q .  D  .  (i2*Q)'«  C  Q^'a;  (3) 

h  .  *87-261-29  .  *60-33 .  (*216-01) .  D 

I- :  Hp .  D  .  R"i-  C'Q)  =  A  .  Sg'(-  C'Q)  =  A  (4) 

I- .  (4) .  *257-ll .  D  h  :  Hp . «  ~  6  C'Q .  D .  (B*Q)'a;  C  -  C'Q . 
[*257;111]  D.(i2*Q)'a!  =  A  (5) 

h  .  (3) ,  (5) .  D  h  .  Prop 


*257-141.  I- :  i2  G  Q  .  D  .  i2"C'Q  o  Sq'C'Q  C  G'Q    [*216111  .  *37-201-16] 


SECTION  D]  the  TEANSFINITE  ANCESTRAL  SELATION  89 

*257142.  h-.RCQ.^eO'Q.D.  {R*Qya)=p  {xe<7.  B"cr  w  Sq'^  Ca.D^.yea} 
Bern.  * 

l-.*257-141.Dh:Hp.D.^ta'e<7.^"<rwVo-Cff.3„.y6o-}CC"Q   (1) 
h  .  (1) .  *257-l .  D  f- .  Prop 

*25715.     h  :  y  e  (R*Qyx .  z  e  (-B*Q)'2/ .  3  .  ^  e (i?* Q)'a; 
Dem. 

I" .  *257'1  .  D  h  :.  ii"o-  u  Sq'ct  Co-.Diajeo-.D.yeo-iyeo-.D.^^eo-; 
[Syll]  D:a!eo-.D.^6o-  (1) 

I- .  (1) .  *2o7-l .  D  h  .  Prop 

*25716.     h  :  a;  e  (7'Q  -  D'^ .  D .  (i2*Q)'«  =  t'a; 
i)em. 

h  .  *257-12 .  D  h  :  Hp .  D  .  a;  6  (i2*Q)'a;  (1) 

V  .  *37-261-29  .      D  I- :  Hp  .  D .  R"i'x  =  A  (2) 

h  .  *205'18 .  D  h  :  Hp .  ~  g !  m&XQ'i'x .  D  .  xQx . 

[*206-42]  D .  I^qg'i'x  =  A      (3) 

h  .  (3) .  *21 6-101 .  D  h  :  Hp .  D .  Sq'i'x  =  A  (4) 

h  .  (2) .  (4) .  D  h  :  Hp  .  D  .  ^"I'a;  w  Sq'i'x  C  t'/c . 

[*257-ll]  D  .  (E*Q)'a;  C  t'a;  (5) 

h .  (1) .  (5) .  D  H  .  Prop 
We  now  begin  the  proof  (completed  in  *257'34)  that  under  certain  cir- 
cumstances Qji^eil.     We  first  prove  that  the  class  <t  introduced  in  *257"2  is 
transfinitely  hereditary,  and  this  requires  as  a  preliminary  the  proof  that 

*         < ^       . 

if  yea;  the  class  {Q^^^'y w {Qjjr^^'R'y  is   transfinitely   hereditary.     This 

preliminary  is  provided  by  *257"2"21.     The  hypothesis  of  *257'2  is  not  all 
used  in  *257'2,  but  is  introduced  because  it  is  required  in  the  set  of  pro- 
positions of  which  this  is  the  first. 
*257-2.       h  : .  Q  6  Rl' J  n  trans .  i2  e  El'Q  n  Cls  -» 1 . 

a  =  {R^qyx^p^"{R^yx n §  {zQ^y .  D, .q'^'z  =  {Q^^'R'^z].0  :^ 

yea.ze  {QM  "  (QL)*'^'^  .zeWR.:>  .R'ze  (Q^'y  u  (QL)*'-R'2/ 
Bern. 

h  .  *90-163  .  *37-62  .  *257-123  .  D 


hz.RQQ.ElR'z.D-.ze  {Qn^h'R'y .  D  .R'z  e  {Q^)^'R'y  (1) 

h  .  *30-37  .  D  I- :  E  !  E'0 .  ^  =  2/ .  D .  E'^  =  ^'2/  (2) 


I- .  *201-18 .  *91-52 .  *32-182  .  D 


(- :  Hp .  ^  e  Q^'y .  D  .  Q^'z  =  {Q^)^'R'z  .  y  e  Qj^'z . 
[*13-13]    ■  D.y€(Q^;)^'R'z. 

[*32182]  D.R'ze(QM  (3) 

I- .  (1)  .  (2) .  (3)  .  *71-161 .  D  h  .  Prop 


90  SEEIES  [part  V 

*257-21.     h  :  Hp  *2o7-2  .yea.^C  (Q^^'y  u  ^^'R'y .  a  !  /. .  D  . 

Dem. 

V  .  *201-14-15  .  *206134  .  D 

— >  — > 

I- .  *205"38  •  D  I- :  Hp  .  /a  C  Qj^'y .  y  e  /i .  D  .  y  e  maxg'/i . 

[*207-ll]  3.15!^  =  A  (2) 

l-.*40-55.*206-143.D 

V:  fxC  Q'y .  w  Itg/i  .  D  .  y  ep'Q"/ji .  w  ~  e  Q"p'Q"fJ, . 

[*37-l]  D.~(yQ«;)  (3) 

h  .  *257-13  .  D  h  :.  Hp  (3) .  Hp .  D  :  yQw .  v .  wQ^y : 

[(3)]  ^iwQ*^  (4) 

l-.(l).(2).(4).DI-.Prop 


*257-211.  h  :  Hp *257-2  .  y  e  <7 .  D  .  (E*Q)'a;  C  (Q^)*'2/  u  (Qj,,)^'R'y 

Dem.  ^ 

l-.*257-14.DI-:Hp.^6(Q^,V2/  (1) 

l-.(l).*257-2-21-ll.DI-.Prop 


*257-22.     h  :  Hp  *257-2  .yea.D.  Q^'y  =  {Q^)^'R'y .  (Qi^^^'y  =  Qn^'R'y 
Dem. 

I- .  *257-211 .  D  h  :  Hp .  D  .  iiQ^^'R'y  =  (jR^Qyx  -  (^S^'y 

[Hp]  ^  =Q;.'2/  (1) 

Similarly  h  :  Hp .  D .  (qj^'y  =  S/^'2/  (2) 

h  .  (1) .  (2) .  D  h .  Prop 

It  is  to  be  understood  that  (Qjtx)^'R'y  =  A  if  ~  E !  R'y. 

*257-23.     h  :  Hp  *257-2 .  D .  jB"o-  C  o- 

Dem. 
l-.*257-22.        DI-:.Hp.2/6(rnD'i?.D:0QE'y.D,.QL,'^  =  (Q^'^'^    (1) 
l-.*257-22-211.Dh:Hp. 2/60- nD'i2.D.(iJ*Q)'a;  =  Q^/E'2/u(Q^'E'2/     (2) 
l-.(l).(2).         DI-:Hp.2/6<TftD'i2.D.E'2/eo-:DI-.Prop 

The  above  proposition  gives  the  first  stage  in  the  proof  that  a  is  trans- 
finitely  hereditary.  The  second  stage,  similarly,  requires  as  a  preliminary 
the  proof  that  if  fi  is  an  existent  sub-class  of  a-  having  no  maximum,  then 

is  a  transfinitely  hereditary  class.    This  proof  is  provided  by  *257'24!241242. 


SECTION  D]  the  TBANSFINITE  ANCESTRAL  RELATION  91 

*257-24.     I- :  Hp  *257-2  ./iCff-al/i.^g!  r^xg'fi .  D  .R"Qj^"p  C  Q]^"fi 
Bern.  • 

1- .  *91o2  .  *201-18  .  D  h  :  Hp .  0  6  Qj,,'V  ■  ^  -Viex'^  =  (Sj*'-R'.2  ■ 
[*37-46.*13-12]  D.a!(Q^*'E'^n/.. 

[*37-46]  D.E'^6(Q^VV  (1) 

h.*205-123.  DhiHp.D./iCQs/V  (2) 

h  .  ( 1 ) .  (2)  .  D  I- :  Hp .  ^  6  Qje,"/i .  D  .  E '^  6  Qjj^'  V :  3  I-  ■  Prop 

*257-241.  h : Hp  *257-24.  D .^"{Q^'V  v.  (Q^,)*"K'/.}  C  Q^/VC(QW*""ite'/* 
-Dem. 

H  .  *90-164  .DhzRQQ.D.  R"(Q^h"ltQ'^,  C  (Q^vKv  (1) 

l-.(l).*257-24.DI-.Prop 

*257-242.  h  :  Hp  *257-24  -  p  =  Qji^"fj.  u  (Qa« Vlt^V . 

— »  — > 

a  C  p .  a  !  a .  ~  a  !  maxg'a .  D  .  It^'a  C  p 
Dem. 

l-.*206-15.    DI-:Hp.a!/inp'Q""«-wUQa.D.a!/i-Q'w  (1) 

f- .  *201-521  .Dh:Hp./iCo-.D./i-  Q'w  C  Q^'w  (2) 

l-.(l).(2).     Dh:Hp(l).D.a!/.nQ;i.'w  (3) 

l-.*205-123.Dh:Hp.D./tCQ"/t  (4) 

l-.(3).(4).    Dh:Hp(l).D.W6(2^'V  (5) 

l-.*206-24.    DI-:Hp.^CQ"a.oCQ"/i.D.  Va  =  V/i,  (6) 

h  .  *20615  .    D  I- :  Hp .  a  !  a  n  (Qj^V'ltiv .  D  .  h^'a  C  (Q^)*"!^^         (7) 
l-.(5).(6).(7).Dh.Prop 

*257  243.  I- :  Hp  *257-24  .  D.(i2*Q)'a;  =  Qj^''/^  u p'OL' V  [*40-53.*205-123] 

*257-25.     h  :  Hp  *257-24  .  D  .  (E*Q)'«  =  Qjj^'V  u  (Qjte)*"^^'^ 

I- .  *257-242  .  D  h:HpO.  V{Qie."/*«(Qiex)*""itQV}CQ^'Vv^(4.)*"H'eV  (1) 
I- .  (1) .  *257-241 .  D  h  .  Prop 

*257-251.  I- :  Hp  *257-24 .  D  .  (Qjio.  Vlt^V  ^P^bx"h- 
Dem. 
V  .  *257-25-243  .  D  I- :  Hp  .  D  .  Q^",i  u  (Qje^vI^gV  =  Qisx'V  "P'S/V  ■ 
[*200-53.*24-481]  D  .  (0^)*'%^  =  p'S."^  =  31-.  Prop 


92  SERIES  [PART  V 

*257-252.  h  :  Hp  *257-24 .  g  Ip'Stx'V  ■  3  ■  Qi^'V  =i5'3Bx"ltQV  •  3  !  IteV 
J5em. 

I- .  *257-251 .  *37-29  .  D  h  :  Hp .  D  .  g !  ItgV  ^  (^) 

[*200-53,*40-62]  D .  iJ'Qjjx"^  V  C  (ii:*Q)'a;  -  (Qij.)*"lte  V 

[*257-251]  C{R*Qyx-p'Qs^"ti 

[Hp.*10-57.*257-243]  C  QgJ'ii  (2) 

h  .  *201-51 .  *40-67  .    D  I- :  Hp .  D  .  Q^' V  C  p'S."ltQ>  (3) 

h  .  (1) .  (2)  .  (3) .  D  h  .  Prop 
In  order  to  complete  the  proof  that  o-  is  a  hereditary  class,  we  have  to 
introduce  the  additional  hypothesis 

Itg  1^  CI  ex'(iJ*Q)'«  6 1  ^  Cls. 
With  the  help  of  this  hypothesis,  the  last  stage  of  the  proof  is  provided  by 
the  following  proposition. 

*257-26.     h  :  Hp*257-2  .  Itg  \  CI  ex\R*Qyx  e  1  ->  Cls  .  D .  Sq'o-  C  a- 

Dem. 
h  .  *257-251-252  .Dhi.Hp./iCo-.gl^.a!  ItgV  •  ^  ■ 

(R*Qyx  ='Q^'ltQ V  V.  (Q^*'ltQ V  •  ^'ItaV  =  Qb."m-  ■■ 
[Hp]  D  :  ItgV  ep'^"(R*Qyx :  yQnMl^  ■  ^v  ■  Vb/2/  =  ^M^h'^'y  ■ 
[Hp]  D  :  ItgV  6  o- :.  D  h  .  Prop 

*257-261.  h  :  Hp  *257-26  .  D  .  (i?*Q)'«  =  o-     [*257-ll-23-26] 

*257-27.     I- :  Q  e  Rl' J  n  trans  .  J?  e  Rl'Q  n  Cls  -»  1 . 

Itg  \-  CI  ex'(-R*Q)'a;  e  1  ->  Cls  .  D  . 

Q^,Ser.Qj^  =  (R\Q^)\;{R*Qyx 
Dem. 

h  .  *257-261 .  D 

I- :  Hp .  D  .  (i2*Q)'a;  Cp'^"{R*Qyx  n  §  {zQ^^y .  D, .  q"^,'^  =  (Q^^'-R'^}      (1) 

f- .  (1) .  D  h  ::  Hp .  D  :.  Qjjj,  6  connex :.  ^ e D'Qjj^ .  Dg :  ^Qb^-w .  =^ .  ^fi  |  (Qj{a;)*w :. 

[*5-32.*4-71.*257-121] 

D  :.  Qj{^  e connex  :.  zQ^f^w .  =j,„ .  ^  e D'Qj,^ .  ^jB  |  Q^w  .  w  e  C'Qj^  :■ 
[*36-13.*257-121]  D  :.  Q^o,  e  connex  .  Qb^  =  (R  \  Q*)  t  iR*Qyx  "  3  I"  ■  Prop 

We  have  thus  proved  that  Q^j.  is  a  series.     No  additional  hypothesis  is 
required  to  prove  that  it  is  well-ordered,  as  we  shall  now  show. 

-»  ♦- 

*257-28.     h  :  Hp  *257-27  .  fi  C  (R*Qyx  .^I/m.  maxgV  =  A  .  a  Ip'Qbx"/^  ■  ^  ■ 

P'Qb."/^  =  (4.)*"KV  •  Qii/V  =  p'QrAi^     [*257-251-27] 


SECTION  D]  the   TEANSFINITE   ANCESTRAL   RELATION  93 

*257-281.  h  :  Hp  *257-28 .  E !  ItgV  .  D  . 

V^bJ'h-  =  (W*'ltg> .  QjL' V  ='«i!»'lte'/^    [*267-28] 

*257-29.     h  :  Hp  *257-27  .  x  e  D'jB  .  D  .  CQ^^  =  (R*Qyx  .  B'Qj^  =  x 
Dem. 

\- .  *257-27-126 .  *202-55  .  D  1- :  Hp .  D  .  G'Qjg^  =  (R*Qyx  (1) 

l-.*257-14.  Dh:Hp.D.(E*Q)'a!-i'a;CQjto'a;         (2) 

h  .  (1) .  (2) .  D  h  .  Prop 

*257-291.  h  :  Hp *257-27  . « ~ e B'B  .D.Qjt^  =  A    [*2.57-16  .  *200-35] 

*257-3.       I- :  Hp *257-27  .  D .  B'Qj^  =  B'B  n  (R^QYx 
Dem. 

h  .  *257-27  .  D  h  :.  Hp  .  y  e (E*Q)'a; .  D  :  g  !  Q'y .  =  .  g  !  Q^'E'y . 
[*257-141]  =.E!^'2/:.Dl-.Prop 

->  «— 

*257-31.     h  :  Hp *257-27  .  /j.  C  (R*Qyx .  g !  /* .  ~  g  !  maxg'/i .  g  !  p'Q^/ V-  ^ ■ 

seq(Qijx)V  =  ltQV     [*257-28] 

*257-32.     h  :  Hp  *257-27  .  /*  C  (i?*Q)'a; .  g  !  maxe'/t .  g  ! ij'Vi^'V  ■  ^  ■ 

seq  (Qjja:)>  =  -R'max  (Qj^)'/* 
i)em. 

l-.*257-3.Dh:Hp.D./tCD'i2. 

— >  —*  ^ 

[*257-27.Transp]        D  .  Q*'max  {Qs^YfJi  =  Q'E'max  (Qb^)V  :  D  I-  .  Prop 

*257-33.     h  :  Hp  *257-27  .  ytt  C  (ii*Q)'a; .  g  !  /* .  g  !  p'Q^' V  ■  3  ■  E !  seq  (Qjj,)'/^ 
[*257-31-32] 

The  above  proposition  together  with  *257"27  shows  that  Q^^  is  well- 
ordered,  in  virtue  of  *250'123. 

*257-34.     h  :  Hp  *257-27  .O.Q^eD. 
Dem. 
h.*257-291.  DI-:Hp.a;~eD'i2.D.Qjt„6fi  (1) 

|-.*257-29.*20614.Dh:Hp.a;eD'i2.D.seqp'A  =  a;    .  (2) 

|-.(2).*257-33.D 

h  :.  Hp .  a;  6  D'ii;  .  D  :  /^  C  (R*Qyx .  g  Ij^'Okt"/*  •  3^  •  E !  seq {QsJ'fi : 
[*257-29.*206-131]  D  :  g  Ip'QbJ'(im  n  C'Qj^) .  D^ .  E !  seq  (Qjj^)> : 
[*250123.*257-27]  D  :  Q^  e  Xi  (3) 

I- .  (1)  .  (3)  .  D  h  .  Prop 


94  SERIES  [part  V 

*257-35.     h  :  Hp  *237-27  .D.Rl  (i2*Q)'a;  =  (Q^), .  R I  (R*Qyx  e  1  -♦  1 
Bern. 

y  .  *257-32 .  3  h  :.  Hp .  D  :  y  e  D'Q^.  •  3  ■  seq  (Q^^yi-'y  =  R'y        (1) 
I- .  (1)  .  *206-43  .  *204-7  .  D  h  .  Prop 

*257-36.     I- :  Hp  *257-27  .  x  e  B'R .  D  . 

G'Qa.  =  {R*Q)'x .  Q'Q^  =  {R^yx  -  I'x . 

B'Q^  =  X  Tb'Qj^  =  {R*Qyx  -  T>'R    [*257-29-3] 
The  following  propositions  are  concerned  in  showing  that  a  relation  P 
which  satisfies  the  hypothesis  of  *257'5  is  identical  with  Q^,  thus  showing 
that  this  hypothesis  is  suflScient  to  determine  P. 

*257-5.       h  :  Hp  *257-27  .  P  e  trans .  G'P  C  (i2*  Qyx  .P-P'=Rt(R*  Qyx . 
Itp  [  CI  ex'{R0Qyx  =  Itg  p  CI  eK'{R*Qyx .  D  .  P  G  J .  C'P  =  {R*Qyx 
The  above  hypothesis  is  not  all  necessary  for  the  present  proposition, 
but  it  is  necessary  for  the  series  of  propositions  of  which  this  is  the  first. 
Dem. 
h  .  *37-41 .  D  h  :.  Hp  .  D  :  D'(P  -  P^  =  R"{R*Qyx  n  (iJ*Q)'a; 
[*257-36]  ={R*QyxnT)'R  (1) 

h  .  *32-14 .  D  h  :  Hp .  D  .ltp'{(P*Q)'a;  f^  D'R}  =  l?e'{(E*Q)'a;  r^  D'R} 
[*257-36]  =(P*Q)'a;-D'E       (2) 

h  .  (1) .  (2) .  D  h  :  Hp .  D  .  (R*Qyx  C  G'P . 
[Hp]  •2.(R*Qyx  =  G'P  (3) 

I- .  (3)  .  D  h  :  Hp  .  D  :xeT>'P  .  D  . a;P - P=  (-R'a;)  • 

[*34-5.Transp]  D.~(a;Pa;)  (4) 

I- .  (3) .  (4) .  D  h  .  Prop 

*257-51.     h  :  Hp  *257-5  .O.G'P  =  %'x 
Dem. 

\- .  *257-123 .  *90-16  ,  D  1- :  Hp .  D  .  P'^P^i^'a;  C  P^'x  (1) 

h  .  *9013 .  D 1- :  Hp .  D  .  ltQ"Cl  ex'P^'a;  =  ltp"Cl  ex'%'x  . 

[*90-163.*40-61]  D.ltQ"Clex'Pi^'a;CPi,f'a;  (2) 

h.(l).(2).  D\-:B.^.D.(R*QyxCP^'x  (3) 

l-.(3).*257-5.Dl-.Prop 

In  order  to  prove  P  =  Q^  we  first  prove  Peil.  The  proof  proceeds  as 
for  Qjjj,,  but  in  some  points  it  is  easier.  It  is  merely  outlined  below,  as  it 
closely  resembles  the  proof  for  Qg^. 

*257-52.     h:Hp*257-5. 

a  =  G'Pn  p'*P"C'P  n  p  {zPy  .  D^  .  P'z  =  P*'^'^)  .D.R"aCa 


SECTION  D]  the  TRANSFINITE  ANCESTRAL  RELATION  95 

Dem. 
h  .  *34-5  .  Transp  .  *201 18*D  h  :.  P^  =  E  ^  (-B*Q)'a; .  y  ep'*P"G'P .  D  : 

zF  (B'y) .  D  .  ~  (yPz)  :  zP^y  ."^.zP  (R'y) : 
[Hp]  :>:zP{B'y).=  .zP^y  (1) 

As  in  *257-2-21,  using  Itp  |'Clex'(i?*Q)'a;  =  ltQ  I^Cl  ex\R*Q)%  we  prove 
^:B.p.yea-nI>'R.p  =  P^'y^P^'B'y.:i.R"pCp.SQ'pCp. 

^D.(R*Qyx  =  f^'yyj%'R'y  (2) 
I- .  (1)  .  (2) .  D  h  :  Hp  .  2/6<r  n  D'i? .  D  .P'2/  =  P5,f'^'2/  (3) 

h  .  (1) .  (3) .  D  h  :  Hp .  2/  e  a  n  D'E  .D  .R'yecrzDh  .  Prop 

*257-521.  h  :  Hp  *257-52  .yLtCo-.a!/i.~a!  maxpV .  D  . 

(P*  Q)'a;  =  P"p,  u  P*"ltp> 
[Proof  as  in  *257*25,  by  similar  stages] 

*257-53.     h  :.  Hp  *257-5  .  D  :  P  e  Ser :  ^  e  D'P .  D^ .  ^'z=*P^'R'z 
[Proofasin*257-27] 

*257-54.     h:Hp*257-5.D.Pen     [Proof  as  in  *257-34] 

*257-55.     h  :  Hp  *257-5  .  o-  =  ^  (P'^^  =  Qj^'y) .  D  .  R"tT  C  a- 
i)em. 

h  .  *257-53 .  D  h  :  Hp .  2/  e  C/'P .  D .  P'P'j'  =  G'P  -  %'R'y 
[*257-53]  =C'P-'P'y 

[*257-53]  =P'yyji'y  (1) 

l-.(l).  DI-:Hp.2/e<7.D.P'.fl'2/="4.'yv.i'y 

[*257-22]  ='QR^'R'y :  3  H  .  Prop 

*257-551.  h  :  Hp  *257-55  .  D  .  Sq'o-  C  o- 
Dem. 

I- .  *257-63  .  D 

— » 
f-:Hp./*Co-.a!/i.^  =  UqV  .  D  .  P'«  =  {(R^QYx  n  /*}  u  P"/* 

[Hp]  =_{CB*Q)'a'«/*}wQ«.'V 

[*257'27]  ='QRa,'z :  3  f-  ■  Prop 

*257-56.     h  :  Hp  *257-5  .D.P  =  Qb^ 
Bern. 

h  .  *257-51-54 .  DI-:Hp.D.P'a!  =  A. 

[*257-36]  D.P'a;="Ste'«  '  (1) 

I- .  (1) .  *257-55-551  .D\- •..B.p.D  lyeCP .Oy.P'y  ='QiJy :.  D  h  . Prop 

This  proves  that  the  conditions  in  the  hjrpothesis  of  *257"5  are  sufficient 
to  determine  P. 


*258.     ZERMELO'S  THEOREM. 

Summary  of  *258. 

In  this  number,  we  shall  first  show  the  applicability  of  the  propositions 
of  *257  to  the  case  where  the  Q  of  that  number  is  replaced  by  logical 
inclusion  combined  with  diversity,  i.e.  by  any  one  of  the  four  relations : 

a^(aC/3.a  +  ^),     Sy8(;SCa.a  +  /3), 

MN(M(LN.M^N),    MN(NQM .M=^N). 
If  we  put  Q=aj8(aC/3.a  +  /3), 

and  if  «  is  any  class  of  classes,  then  s'k  is  the  maximum  of  k  with  respect  to 
Q  if  s'ksk,  and  the  sequent  of  k  with  respect  to  Q  if  s'xf^eK  (*258'111); 
similarly  p'k  is  the  minimum  of  k  if  p'x  e  k  and  the  precedent  of  k  ifp'ic^e  k 
(*258'101*111).  Hence  every  class  of  classes  has  a  unique  maximum  or 
a  unique  sequent  with  respect  to  Q,  and  every  class  of  classes  has  a  unique 
minimum  or  a  unique  precedent  (*258"12) ;  we  have,  moreover, 

\tQ  =  s\  (-  a'maxg)  .  tie  =p  P  (-  a'miiiQ)     (*25813-131). 

Hence  Itg,  tlge  1  — »  01s  (*258'14),  and  Q  and  Q  therefore  satisfy  the  most 

exacting  part  of  the  hypothesis  of  *257"27.  Also  Q  and  Q  are  Dedekindian 
relations  (*258"14).     (They  are  not  series,  because  they  are  not  connected.) 

An  exactly  similar  argument  applies  to  MM^MQN .M^ N).  Hence  if 
Q  is  any  one  of  the  above  four  relations,  and  if  iJ  is  a  many-one  contained  in 
Q,  it  follows  from  *257"34  that  Q  with  its  field  limited  to  the  transfinite 
posterity  of  any  term  is  a  well-ordered  series.  If  we  take  Q  =  a^{aC^.a^^), 
and  take  any  initial  term  a,  our  series  proceeds  to  continually  larger  classes, 
proceeding  to  the  limit  by  taking  the  logical  sum,  i.e.  if  k  is  any  existent 
sub-class  of  the  posterity  of  a,  s'«  =  limaxg'/t  =  limax  (Qjjn)'*  (*258'21*22), 
where  Qoa  bas  the  meaning  defined  in  *257.  This  process  stops  with 
s'\D'R  r\  (R^QYx]  if  D'J?  n  (iJ*Q)'a!  has  no  maximum ;  otherwise,  it  stops 
with  the  iZ-successor  of  this  maximum,  which  is  maxg'fO'iJn  (JB*Q)'a;}. 
If,  on  the  other  hand,  we  take  Q  to  be  the  converse  of  the  above,  we  proceed 
to  continually  smaller  classes,  and  the  limit  of  any  set  of  classes  k  having  no 
last  term  is  p'k.  In  this  case,  if,  starting  from  a,  every  existent  sub-class  of 
a  belongs  to  D'iJ,  the  process  of  diminution  cannot  stop  short  of  A.     This  is 


SECTION  D]  ZEEMELO'S   THEOREM  97 

the  process  applied  in  Zermeb/s  theorem.  We  have  there  a  class  /i,  assumed 
to  be  not  a  unit  class,  aqiil  a  selective  relation  >Si  for  existent  sub-classes  of 
^,  i.e.  a  relation  8  for  which  S  e  e^,' CI  ex' fi.  Then  our  relation  B  is  the 
relation  of  a  to  a  —  I'S'a,  i.e.  the  relation  of  an  existent  sub-class  of  /j,  to  the 
class  resulting  from  taking  away  its  /S-representative.  Thus  Qs^  is  a 
well-ordered  series,  which  starts  from  /i  and  ends  with  A.  Omitting  the 
final  A,  8  selects  a  representative  from  every  member  of  the  field  of  Qbil, 
and  the  series  of  these  representatives,  i.e.  S'Qr^,  is  similar  to  Q^^  with  the 
final  A  omitted.  Moreover  every  member  of  fi  occurs  among  these  repre- 
sentatives, for,  if  SB  be  any  member  of  /i,  let  k  be  the  class  of  those  members 
of  G'Qsi,.  of  which  a;  is  a  member.  (There  are  such  classes,  because  /jl  e  G'Qbx 
and  X  e /JL.)  Then  xep'x,  and  by  what  was  said  earlier,  p'K  is  a  member  of 
G'Qb^.  Hence,  by  the  definition  of  «,  p'k  ex,  and  therefore  p'K  =  mAXQ'K. 
But  no  class  smaller  than  p'k  can  belong  to  k,  and  therefore  p'K  —  i'8'p'k  is 
not  a  member  of  «,  and  therefore  x  is  not  a  member  oip'K  —  i'8'p'k.  Hence 
x  =  8'p'k,  and  therefore  x  occurs  among  the  representatives  of  members  of 
G'Qsii,  which  was  to  be  proved.  (The  above  is  an  abbreviated  rendering  of 
the  symbolic  proof  given  below  in  *258"301.)  Hence  the  field  of  8'>Qb^  is  /*, 
and  therefore  there  is  a  well-ordered  series  having  /i  for  its  field,  provided 
64 '01  ex'fi  is  not  null  (*258"32).     This  is  Zermelo's  theorem. 

The  converse  of  Zermelo's  theorem  has  been  already  proved  (*250'51). 
Hence  the  assumption  that  a  selection  can  be  made  from  all  the  existent 
sub-classes  of  fi  is  equivalent  to  the  assumption  that  /jl  can  be  well-ordered 
or  is  a  unit  class,  i.e. 

*258-36.     h:/jLe  G"£l  u  1 .  =  .  g !  e^'Cl  ex  V 

Hence  also,  by  *88'33,  the  multiplicative  axiom  is  equivalent  to  the 
assumption  that  all  classes  except  unit  classes  can  be  well-ordered,  i.e. 

*258-37.     V  :  Mult  ax  .  =  .  0"n  u  1  =  01s 

Hence  also,  in  virtue  of  *255'73,  the  multiplicative  axiom  implies  that  of 
any  two  unequal  existent  cardinals  one  must  be  the  greater,  i.e. 

#258-39.     l-::Multax.  D:./i, i/eNoC.  D  :/i^v.  v.;u.>i' 


#258'1.       \-:.Q  =  &^{aCp .a^^).'^:s'KeK.'^  .  s'k=  max^'/c 

Bern. 
\-  .*205"101 .  D  h  ::  Hp  .  D  :.7maX(jK  .=  :76«:a6/«;.Da.~(7Ca.74a): 
[Transp]  =  :  7  e  «r :  a  e  k  .  a  =|=  7 .  D.  .  ~  (7  C  a)  (1) 

H  .  (1) .  *101 .  D  H  ::  Hp .  s*«  e  K .  D  :. 

7  maxQ«  .=  :76«:a6/«;.a=}=7.Da.~(7Ca):  s'k  4=  7 .  D  .  ~  (7  C  s'k)  : 
[*40'13]  =:7eK:aeK.a=|=7'3a.~(7Ca):s'/(:  =  7: 

[Transp.*40"13]  =  :  7  e  « .  s'/c  =  7  : 
[Hp]  =  :  «'k  =  7 ::  D  f- .  Prop 

B.  &  W.    III.  7 


98  SERIES  [part  V 

*258101.  h  :  Hp  *258-l .  p'/c  e  «  .  D  .  p'/e  =  mine'/c     [Proof  as  in  *258-l] 

*258-ll.     I- :  Hp  *2581 .  s'/c  ~  e  /e .  D  .  seq^'/c  =  s'k 
Dem. 

h.*40-53.  DI-:Hp.D.;)'Q"«  =  $(a6«:.Da-aC7.a  +  7) 
[Hp.*40151.*10-29]  =9(s'«C7)  (1) 

I- .  3|^0-1 .  *22-42-46  .'^V.s'K=p'f}  (s'k  C  7)  (2) 

I- .  (2) .  *258-101 .  D  h  :  Hp .  D  .  s'«  =  ming'i^  (s'k  C  7) 
[(1)]  =  seqg'/c :  D  h  .  Prop 

*258111.  h  :  Hp  *258-l .  jsV  ~  e  « .  D  .  prec^'/c  =  ja'/c     [Proof  as  in  *258-ll] 

*25812.     h  :.  Hp  *258-l .  D  :  E !  max^'/t .  v .  E !  seqe'« : 

E  !  ming'/K .  v .  E  !  precg'/c     [*258-1101-ll-lll] 

*25813.     h  :  Hp  *258-l .  D  .  Itg  =  s  C  (-  a'maxg) 
Dem. 

h  .  *258-l  .  Transp  .  D  h  :  Hp  .  ~  g  !  max^'K  .  D  .  s'«  ~  e  «  . 

[*258-l  1]  D  .  Uq'k  =  s'k  :  D  h  .  Prop 

*258131.  I- :  Hp  *2581 .  D .  tig  =  j3 1^  (-  aiming)     [Proof  as  in  *25813] 

*25814.     h:Hp*258-l.D.Q,Q6Ded.lte,tlQ6l^Cls    [*258-12-13131] 

*258-2.       \- :  Hp  *258-l .  R  e  Rl'Q  n  Cls  ^  1 .  D  .  Q^  e  n 

Dem. 

\- .  *258-14  .  D  h  :  Hp .  D  .  Hp  *257-27  (1) 

I- .  (1) .  *257-34 .  D  h  .  Prop 

*258-201.  \-:Q  =  a$(j3Ca.aJpl3).Rem'Qr^C\s-^1.0.Qsaen 
[Proof  as  in  *268-2] 

*258-202.  [■:Q  =  M(MQN.M=^N).Bem'QnCls-^l.D.Qji^6n 
*258-203.  \-:Q  =  MM{N(lM.M^N).Bem'QnC\a^l.D.Qsxea' 

*258-21.     I- :  Hp  *258-2  . «  C  (i?  *  QYa .  D  . «'«  =  limaxQ*« 
Dem. 
h  .  *258-13 .  D  h  :  Hp .  ~  a  !  maxg'/c .  D  .  s'k  =  Itg'K  (1) 

h  .  *258-2  .    D  I- :.  Hp .  a  !  maxg'K .  D  :  (37)  :7eK:aeK.D..aC7: 
[*40-151]  D:s'k6k: 

[*268-l]  D :  s'k  =  maxg'K  (2) 

I- .  (1)  .  (2)  .  D  I- .  Prop 

*258-211.  I- :  Hp*258-201  .  k  C  (B*Q)'a  .D.p'K  =  limax^'K 


SECTION  D]  ZERMELO's  THEOREM  99 

*258-22.     h  :  Hp *258-2  .  a  e  D'i? . «  C  (i2*Q)'a .  g  !  « .  D  .  s'/e  =  limax  (Q^)'* 
Dem.  • 

I- .  *258-21 .  D  h  :  Hp .  s'k  ~  6  « .  D .  s'k  =  Itg'/c . 

[*257-13]  D.s'KeJR^QYa. 

[*210-233]  D ..  s'k  =  limax  (Q^)'«:  :0b.  Prop 

*258-221.  h  :  Hp*258-201  .aeB'B  .  /cC  (i2*Q)'a .  D  .p'K=  (i?*Q)'«: 

*258-23.     f- :  Hp *258-2  .  a  e  B'R .  D  .  Q^j,  e  Ded .  s'(E*Q)'a  =  B'Qm^ 
[*258-2-22 .  *250-23  .  *205-121] 

*258-231.  h  :  Hp  *258-201 .  a  e  D'R  .  D  .  Q^  e  Ded  .  p'{R*Qya  =  B'Qz^ 

*258-24.     h:Hp*258-2.D. 

(B^Qya  =  0(aea  .  R"a  C  o- .  s"Clex'o-  C  o-  -  D„  .  ;S  e  o-) 
i)em. 
h.*2581-13.*257-l.D 

h  :  Hp .  3  .  (i?*Q)'a  €/§(«€  o- .  R"a  C  a- .  s"Cl  ex'o-  C  o- .  D. .  /3  6<r)  (1) 

h.*257-123.DI-:Hp.D.^"(E*Q)'aC(i2*Q)'a  (2) 

l-.*258-22.    Dh:Hp./tC(^*Q)'a.a!/i.D.sVe(-R*Q)'a  (3) 

h.*267-12.    Dh:Hp.D.a6(i?*Q)'a  (4) 
h  .  (2) .  (3)  .  (4) .  D 

f- :.  Hp  :  a  6  o- .  R^a  C  tr .  s"Cl  ex'o-  Co-.D,.j8e<r:D.;86  (iJ*Q)'a;  (5) 

h .  (1)  .  (5) .  D  h  .  Prop 

*258-241.  h  :  Hp  *258-201 .  D  . 

(i2*Q)'a  =  ;§  (a  e  o- .  ^"o- C  o- .  ^"01  ex'o- C  <r  .  D„  . /S  6  0-) 

*258-242.  h  :  Hp  *258-202  .  D  . 

(i?*Q)'Z  =  7(X  6  o- .  E"o-  C  o- .  s"Cl  ex'o-  C  o- .  D, .  Fe  o-) 

*258-243.  V  :  Hp*258-203  .  D  . 

(i2*Q)'Z  =  f  (Z  6  o- .  E"o-  C  o- .  p"Cl  ex'o-  C  o- .  D„  .  Fe  o-) 

*2583.       I- :  Q  =  aj§(jg C a .  a  +  /8) .  /Sfee^'Cl  ex'/i . 

i2  =  a;8  (a  e  CI  ex'/* .  /3  =  a  -  I'/S'a)  .  D  .  Qjj^  e  fl .  iSJQjj^smor  Q^^  ^  (-  I'A) 
Bern. 
V .  *80-14 .  D  I- :  Hp .  D  .  iJ  G  Q  .  ii!  e  Cls  ^  1 .  D'i?  =  01  ex'/t .  O'i?  =  Cl'/t    (1) 
l-.(l).*258-201.DI-:Hp.D.Qi^efl  (2) 

H.*257-35.  Dh:Hp.D.i2^C"Qjj^el->l. 

[(l).Hp]  D.fifrC'Qj2^6l->l  (3) 

h  .  *257-14  .  D  I- :  Hp .  D  .  O'Qm,.  C  Ol'/i  (4) 

l-.*80-14.  DI-:Hp.D.a'/S  =  Clex'/t  (5) 

h.(3).(4).(5).    DI-:Hp.D.-Sf;QB^smorQjj^P(-i'A)  (6) 

1- .  (2)  .  (6) .  D  I- .  Prop 

7—2 


100  SERIES  [part  V 

*258-301.  h  :  Hp  *258-3  .  ic  e  /i .  K  =  G'Qr^  n  e '« .  D  .  a;  =  S'p'ic 
Dem. 

|-.*257-36.  DI-iHp.D./ieO'Qjjj,. 

[Hp]  D.^lK  (1) 

h  .  (1) .  *258-241 .  D  h  :  Hp .  D  .  p'«  6  (R^QYfi . 

[*257-36]  :i.p'KeC'Qs^  (2) 

l-.*40-l.  Dh:Hp.D.a!ey«:  (3) 

h.(2).(3).  Dh:Hp.D.p'«:e«. 

[*258-l  01  ]  3  .  2j'«:  =  maxQ'«  (4) 

h.(4).  Dh:Hp.D.(p'A;-t'<Sfy/«;)~6«. 

[*257-121.Hp]  0.xr^€(p'K-i'Sy>c)  (5) 

l-.(3).(5).  DI-:Hp.D.a!6i'Sy«:  Dh.Prop 

*258-31.     h:Hp*258-3./i~6l.D.(7'^;(3B^=/i 
i)em. 

h  .  *80-14 .  D  h  :  Hp .  3  .  Q'/Sf  =  01  ex'/* . 

[*150-36.*257-14]      D  .  S'Qr^  =  /SJQjj^  p  (-  t'A) .  G'Qm^  p  (-  I'A)  C  Q'/Sf . 
[*150-22]  D  .  O'^SJQjj^  =  8"G'Qs^  t  (-  t'^)  • 

[*202-54.*257-125]    D  .  O'/SJQjj^  =  S"(G'Qm^  -  I'A)  (1) 

h . *8321 .  D  F- :  Hp  .  D  .  S"G'Qs^ C  fi  (2) 

h  .  *258-241-301  .DI-:Hp.a;eyu,.D.a!6  S"{(E*Q)V  -  t'A} . 
[*257-36]  D . « 6  S"(G'Qb^-  I'A)  (3) 

h .  (2) .  (3)  .  D  h  :  Hp .  D  .  S"(G'Qb^  -  I'A)  =  /^  (4) 

I- .  (1) .  (4) .  D  h  .  Prop 

*258-32.     h:iCi~6l.a!e4'ClexV.D./*6C'"Il     [*258-3-31] 
This  is  Zermelo's  theorem. 

*258-321.  h  :  Hp  *258-3 .  /SQjj^a .  D  .  5f';8  ~  e  a 

h  .  *250-242 .  D  h  :.  Hp .  D  :  a  =  (Qs^y^  ■  v  .  (Qz^y^Qe^a : 
[*257-35.Hp]  D  :  a  C  ;8  -  i'<Sf'/8 :.  D  h  .  Prop 

*258-33.     h  :  Hp  *258-3 .  /*  ~  e  1 .  P  =  /SJQjs^ .  D .  /S=  minp  f'  CI  ex'/t 
Dem. 

h.*80-14.  Dl-:Hp.aCjit.g!a.D.S'a£a  (1) 

h.*258-321.  Dh  :Hp(l).a;6a.D.~(a;8)./3Qij^a.a!  =  fi('^. 

[*150-4.Hp]  D.~(a;Pfi"a)  (2) 

h  .  (1) .  (2)  .  *2051 .  D  h  :  Hp (1) .  D  .  8'ammp a  . 
[*258-3]  D.S'a=  miup'a :  D  h  .  Prop 


SECTION  D]  ZEKMELO'S   THEOREM  101 

*258-34.     l-:./:i~6l.D: 

iSf  e  e^'Cl  ex^  .  =  .  (gP) .  P  6  n .  O'P  = /^ .  fif=  minp  f  CI  ex  V 
[*260-5 .  *258-33] 
*258-35.     \- :  fi  e  G"a.  =  .  fi<^  el.^  I  et^'Cl  ex' fi    [*200-12.*250-51.*258-32] 
*258-36.     l-:/i6(7"I2ul.  =  .a!eA'Clex'M  [*258-35  .  *60-37  .  *83-901] 

*258-37.     h  :  Mult  ax  .  =  ,  Cil  u  1  =  Cls  [*258-36  .  *88-33] 

*258-38.     h  : .  Mult  ax  .  D  :  Nc'a  <  Nc'/3 .  v .  Nc'a  =  Nc'^S .  v .  Nc'a  >  Nc'/8 
[*255-73 .  *258-37  .  *ll7-54-55] 

*258-39.     h::  Multax.D:./i,i/6N„C.D:/t<i;.  v./*>i'     [*258-38] 


*259.     INDUCTIVELY  DEFINED  CORRELATIONS.    :     ., 

Summary  of  *259. 

In  the  theory  of  well-ordered  relations,  we  often  have '  occasion  to  define 
a  relation  (vyhich  is  generally  of  the  nature  of  a  correlation)  by  thfe  following 
process :  Given  a  relation  S,  let  W'8  be  a  relation  (generally  a  couple)  which 
is  a  function  of  S.     Let  us  put 

At^'8=Sk>W'S. 

Then,  starting  from  A,  we  form  the  series 

A,  Ajy'A,  Ajy'A^r'A,  etc., 

each  of  which  contains  all  its  predecessors.     We  proceed  to   the  limit  by, 

< . 

taking  the  sum  of  all  these  relations,  i.e.  s'( J.  jj?-)5|f'A ;   we  then  proceed  to 

^        < . 

A^r's'{Aj^)^'A.,  and  so  on,  as  long  as  possible.     The  sum  of  all  the  relations 

so  obtained  is  a  function  of  W,  and  is  often  important. 

As  an  example,  we  may  consider  the  correlation  of  two  well-ordered 
series  P,  Q,  which  is  dealt  with  in  *259'2 — "25  below.     In  this  case,  we  put 

W=xf{X  =  seqp'D'T  J,  seqg'a'T}. 

Hence  Tf'A  =  i^'A  =  5'P4,5'Q  =  lp4,  Ig, 

ATy'AT^'A=lpilQK)2pi2Q, 
and  so  on. 

Proceeding  in  this  fashion,  we  can  continue  until  one  at  least  of  the 
two  series  P,  Q  is  exhausted.  We  thus  pbtain  a  new  proof  that,  of  any  two 
well-ordered  series,  one  must  be  similar  to  a  section  of  the  other. 

For  convenience  of  notation,  let  us  put  temporarily 

A  =  §T{S(LT.S^T)    Dft. 

We  then  have  A  eRl'J^n  trans. ^.^^eRl'^.  n  Cls-»1,  which  is  part  of  the 
hypothesis  of  *257'27  and  following  propositions.  The  rest  of  this  hypothesis 
follows  by  analogy  from  *2.58'14.     We  now  put 

W^  =  s'(Aj^*AyA    Df. 

Then  W^  correlates  the  whole  of  P  with  part  or  the  whole  of  Q,  or  vice 
versa.     This  is  proved  in  *259"25,  below. 


SECTION  D]  inductively   DEFINED   CORRELATIONS  103 

For  other  values  of  W,  we  get  other  results,  often  of  a  useful  kind ;  for 
example  we  shall  have  cession  to  use  the  methods  of  this  number  in  *273, 
which  deals  with  series  similar  to  the  series  of  rationals. 

The  present  number  gives,  first,  some  elementary  properties  of  {A^fr^AyA 
and  Wj^  for  a  general  relation  W,  concerning  which  we  only  assume  that 
W'S  is  never  contained  in  S,  i.e.  TFn(G)  =  A  (except  in  *259121-13,  where 
we  also  assume  Tf  e  1  -*  01s).  We  then  proceed  to  deal  specially  with  the 
case  where 

F  =  Zy  |X  =  seqp'D'f  J,  seqg'a'T) 
as  explained  above. 

*259-01.  A  =  ST(SGT.S^T)  Dft  [*259] 
*25902.  AT^  =  ST(T=SyjW'S)  Dft  [*259] 
*259-03.     W^  =  s'{Aw*AyA  Df 

In  the  following  propositions,  which  result  from  those  of  *258,  it  is 
essential  to  have  Aj^QA.  For  this  we  require  that  W'S,  when  it  exists, 
shall  not  be  contained  in  S.  It  will  be  observed  that,  according  to  the  above 
definition, 

A^^SfiSCT). 
Hence  instead  of  using  "  G  "  as  a  relation,  which  is  notationally  awkward,  we 
shall  use  A^.     Thus  the  condition  we  wish  to  impose  upon  W  is  that  we  are 
never  to  have  (W'S)A^S.     This  is  insured  by 

which  accordingly  appears  as  hypothesis  in  the  following  propositions. 

*2591.       h  :  .4  6  Rl'J  n  trans .  It^  e  1  ->  Cls : 

Wf\A^-^  A .  D  .  Aj^elLVA  a  Cls^  1 .  ^  {Ajy,  A)  efi 
Bern. 

As  in  *25814,  h  .  It^  e  1  ^  Cls  (1) 

|-.*20ri8.  DI-:.Hp.D:ilfF»Sf.D.~(ilfG5f)  (2) 

h  .  (2) .  (*259-02)  .Df-:.Hp.D:/Sf4pK^-^-'SGr.S=|=2'. 
[(*259-01)]  :i.SAT  (3) 

H .  (1) .  (3) .  *258'202  .  3  h  .  Prop 
In  the  following  proposition,  the  notation  A  (Aw,  A)  is  that  defined  in 
*25702,  adopted  because  A^  cannot  conveniently  be  used  as  a  suffix. 
*25911.     \-:ElW'A.WnA^  =  A.O. 

W^  =  B'Cnv'A  {Aw,  A) .  s"CV(Aw*AyA  C  (^^*^)'A 
Dem. 
H  .  *258-242  .  *259-l .  3  f  :  Hp .  \  C  (^  b,*^)'A  .D.s'Xe  {Aw*  Ay  A   (1) 
H.(l).  Oh:Bp.D.W^e{Aj^*AyA  (2) 

l-.*41-13.  D\- :B.-p.  Te{Aw*AyA-i'W^.D.TAW^      (8) 

I- .  (1) .  (2) .  (3)  .  3  h  .  Prop 


104  SERIES  [part  V 

*259111.  h:.WnA^  =  A.8,Te{A^r*AyA.:>:SCT.v.T(-8 
[*259-l .  *257-36] 

*25912.     \-'.Se-D'Ajr.  =  .ElW'S  [(*259-02)] 

*259121.  h  :  If  6  1  -*  Cls .  3  .  DM  ^=  a'Tf    [*25912] 

*259122.  h:  W n  A^=  A.^W^y.-K'^iAjy^AyAnT {'^(xTy)}  .■D.oo{W's'\)y 
Dem. 


V .  *259-ll . 

DI-:Hp.D.s'\e(A^*^)'A. 

(1) 

[Hp] 

D.s'XeX 

(2) 

h.(l).(2).*257-3.Dh:Hp.D.s'\eD'^^. 

[*259-12] 

D  .  E !  W's'X 

(3) 

l-.(3). 

DI-:Hp.D.(s'\)^(^^'s'\). 

[*257-121] 

D  .  A  ^'s'X  e  {Ajr^Ayk  -  X  . 

[Hp] 

D.x{Aj^'s'\)y 

(4) 

h.(2).(4). 

3  h  :  Hp .  D  .  ~  {«  (s'.X)  y}.x{A  j^'s'X)  y . 

[(*259-02)] 

D.«(TF's'\)2/:DI-.Prop 

i913.     V-.WnA:)^^. 

A. .  F6 1  ->  Cls  .  D  .  F^  =  i'Tf"(^,p*^)'A 

Dem. 

h .  *259-122 

.  3  h  :  Hp .  D  .  TT^  G  s'F"(^^*4yA 

(1) 

1- .  *257-123 

.  D  1- :  Hp .  D  .  s'TF"(^^*^)'A  G  F^ 

(2) 

I- .  (1)  .  (2) .  D  h  .  Prop 

*25914.     I- :.  Fn^5,j  =  A  :  )ge(^^*^)'A  a  1  ->Cls  a  d'W .  D^. 

Tf' /Se  1  ->Cls  .  a'/Sr  A  a'F'/Sf=  A :  D .  F^  6 1  -♦  Cls 
Bern. 

V  .  *71-24  .  (*259-02) .  D  h  :.  Hp  .  D  : 

.Sf  6  (A  jr*AyA  A  1  ->  01s .  D  .  Aj^'S e  (^ ^*4)'A  a  1  ^  Cls     (1) 
h  .  *259-lll .  D  I- :.  Hp .  5f,  T  eiAj^^AyA  .D  :  SCT  .v  .  TCS  (2) 

I- .  (2) .  D  h  ■.I[^.XC(Aw*AyA.a!{s'X)z.y(s'X)z.-^.('3^T).TeX.xTz^yTz  (3) 
f- .  (3) .  D  h  :  Hp  .  X  C  (Aj^^AyA  a  1  -*  01s .  x (s'X) z .  y  (s'X) z . 'i^  .sil=y  (4) 
h  .  (4) .  D  h  :  Hp .  A,  C  (^  ^*^)'A  a  1  ^  01s .  3  .  s'\  e  1  -»  01s  (5) 

t- . (1) .  (5)  . *258-242  .  D  h  :  Hp .  D  . {Aj^^Ayk  CI  -> Cls . 
[*259-ll]  D.F^6l-»Cls:DI-.Prop 

*259141.  I-:.  FA^^  =  A:>Sfe(43.*^)'AACl8-*lAa'F.Ds■ 
F'>Sf601s^l  .D'S'AD'F'/Sf=A:D.  F^eOls^l; 
[Proof  as  in  *25914]  ; 


SECTION  D]  inductively  DEFINED  CORRELATIONS  105 

*259-15.     i-:.WnA^=A:Se(A^*AyAr\l^lna'W.Ds.     '•     • 

F'/Sf  e  1  ->  1 .  D'/?*n  D'W'S=A.a'Sna'W'S  =  A:^.W^el-*l 
[*259-14-141] 

The  following  proposition  is  a  lemma  for  *273-23. 

*25916.     h:.W  f^A^  =  A:T6(A^^*AyAna'W.Pl'D'T-T>Q.DJ,. 

PtiA^'T)  =  (A^'T)iQ:D: 

Pl'D'Wj,=  WJQ:Te(Af^*AyA.'2j.:PtB'T=r'Q 
Dem. 

h  .  *259-lll .  D  h  :.  Hp .  X.  C  (J.^*^)'A .  D  : 

a; (P p D's'X) y  .=  . (gT) .Te\.x{P^  DT) y  (1) 

h  .  (1) .  D  h  :.  Hp .  \ C  (^^*J.)'A :  7 e\ .  Dy.  P  ^  D'T=  T''Q:D: 

x{P\,'D's'X)y.  =  .{'3^T).TeX.x(T'>Q)y. 

[*259-lll]  =  .  (a>Sf,  T).8,Te\.x  {S\  Q\T)y  • 

[*150-1]  =.a7{(s'X);<2}y  (2) 

1- .  (2) .  *258-242  .  D  h  :  Hp  .Te^Ay^^Ayk .  D  .  P  ^  D'2'=T5Q  (3) 

h  .  (3)  .  *259-ll .  D  h  .  Prop 

The  two  following  propositions  are  lemmas  for  *273'22'212. 

*259-17.     V■..Wf^A^  =  A■.S6{AJfr*AyAr^a'W.^:is^ 

a'/S n  a'F'>S  =  A  :  D  .  a  1^  (^^*^)'A  e  1 -♦  1 
Dem. 

V  .  *250-242  .  *267-35  .  *269-l  .  D  ;     . 

h  :.  Hp . 8, Te{Aw*AyA . >S+  T.  D  :  Aw'8Q.T.v .  Aj^'T G  S  : 

[(*259-02)]  ■^■.a'W'SCd'T.M.a'W'TQa'Si 

[Hp]  D  :  a'yS  +  a'T :.  3  1- .  Prop 

*259171.  hi.WhA:i^  =  A:8e{Aw*AyAna.'W.'^s- 

D'5f  n  D'F'<S  =  A :  3  .  D  f  (J.y*2iyA  e  1 ->  1 

[Proof  as  in  *259-l7] 

*259-2.       h!  TF  =  lf{X  =  seqp'D'rj,seqQ'a'r}.D.F^6l-*l.]irn^5le=A 

Dem. 
H.*72182.Df-:.Hp.D:T6a'Tf  .D.  TF'Tel-*!  (1) 

l-.*206-2.    DI-:.Hp.D:yea'F.D.D'2'nD'TF'T=A.a'2'na'F'r=A    (2) 
h.(2).*55-134.DI-:Hp.?'ea'F.D.~(F'rGr)  (3) 

1- .  (1)  .  (2)  .  (8) .  *259-15  .  3  h  .  Prop 


106  SERIES  [part  V 

*259-21.     h  :  Hp  *259-2  .Q'QJ.D.  WJQ  GP.D'W^CG'P.  Q'  W^.C  G'Q 
Dem. 

h.*206133.DI-:Hp.r€a'F.D.(F'r);Q  =  A  (1) 

h  .  *206-21 .    D  h  :  Hp  (1)  .  D .  seqg'a'T^  e  Q^d'T . 

[*37-461]  D .  ( W'T)  \Q\T=k  (2) 

l-.*206-18.   Dh:Hp(l).D.D'^;^CC"P  (3) 

h .  (3) .  *41-43 .  *258-242  .  D  f- :  Hp  .  D  .  D'  TT^  C  C'P  (4) 

Similarly  h  :  Hp  .  D  .  Q'  Tf^  C  G'Q  (5) 

h  .  (4) .  *206-132  .  D  I- :  Hp (1) .  Te{Aj^^Ayk .  D .  seqp'D'T6^'P"D'T. 
[*4016]  D  .  seqp'D'T  ep'P"2'"Q'seqe'a'T . 

[*40-6r]  D  .  (2'"'Q'seqQ'a'r)  t  I'seqp'DT  G  P        (6) 

I-  .(1).(2) .  (6).  D  h  :  Hp(l).  T6(^^*^)'A.  fJQ  GP.D.(2^'T);QGP    (7) 
h  .  *259-lll  .      D  h  ::  \  C  (^^*4)'A  .  «  {(s'X)5Q}  2/ .  D  :. 

[*ll-62.*10-23]  D  :.  T  6  X  .  Dr .  TJQ  G  P :  D  .  xPy  (8) 

I- .  (8)  .  Comm  .  D  h  :.  \C(^^*^)'A  :  TeX.Dr-^'QGP  :  D.(s'X);QGP    (9) 
I- .  (7) .  (9) .  *258-242  .  D  f- :.  Hp  .  D  :  Te  (A^*^yA  .D.T'QGP: 
[*259-ll]  D:F^;QGP  (10) 

h  .  (10)  .  (4) .  (5) .  D  h  .  Prop 

*259-211.  h  :  Hp*259-2 .  P^G  J.  D  .  WJP<LQ    [Proof  as  in  *259-21] 

*259-22.     \- :  Hp  *259-2  .  P  e  connex  .  D  ,  D"(^^*^)'A  C  sect'P 
Bern. 

I- .  *211-22  .  D  h  :  Hp .  r  6  Q'  F .  B'Te  sect'P .  D  .  D' j!  ^T  e  sect'P        (1) 
I- .  *211-63 .  D  h  :  D"X  C  sect'P  .  D  .  D's'X  e  sect'P  (2) 

h .  (1)  .  (2) .  *258-242  .  D  I- .  Prop 

*259-221.  H  :  Hp*259-2 .  Qeconnex .  D  .  a'-'(il^*^)'A  C  sect'Q 

*259-222.  h  :  Hp*259  2 .  PeSer .  E !  B'P  .Q^QJ.  Te^A^^Ayk .  D . 

T>Q  e  C'Ps      [*259-21-22  .  *213161] 

*259-223.  h  :  Hp  *259-2  .  Q  e  Ser .  E !  5'Q .  P^  6  / .  T  e  (^  ^*.4  )'A  .  D  . 

T'PeG'Qs 

*259-23.     h  :  Hp  *259-2  .  P,  Q  e  Sern  Q'P  .Te(Af^*AyA.D  . 

(gJf.iV) .  Me  C'P,  .NeG'Q, .  TeMeiSm  N    [*259-2-21-222-223] 


SECTION  D]  inductively   DEFINED   CORRELATIONS  107 

*259-24.     h  :.  Hp  *259-2  .  ^,  Q  e  11 .  D  :  D' F^  =  O'P .  v .  Q' Tf^  =  C'Q 

Dem.  • 

l-.*206-18.DI-:Hp.P  =  A.D.F^  =  A  (1) 

h.*206-18.Dh:Hp.Q  =  A.D.F^  =  A  (2) 

f-.(l).(2).DI-:.Hp:P  =  A.v.Q  =  A:D:D'F^  =  C"P.v.a'F^  =  0'Q    (3) 
1- .  *259-ll .  *257-36  .  D  h  :  Hp .  g  !  P .  a  !  Q .  D  .  Tf^  ~  e  D'^l^ . 
[*259-12]  3 .  ~  (E !  seqp'D'  F^  .  E !  seq^'Q'  F^)        (4) 

I- .  (4) .  *252-l .  *259-22-221 .  3 

h  :.  Hp .  a !  P .  a !  Q .  D  :  D'F^  =  C'P .  V .  Q'F^  =  a'Q  (5) 

h.(3).(5).Df-.Prop 

*259-25.     h  :.  Hp  *259-24 .  D  :  (g/S) .  /3  e  sect'Q .  Wj,  eP  imor  (Q  ^  ;8)  .  v . 

(aa) .  a  6  sect'P .  F^  e  (P  ^  a)  iSof  Q     [*259-23-24] 

The  above  affords  a  new  proof  of  *254'37,  which  asserts  that  if  P  and  Q 
are  well-ordered  series,  one  must  be  similar  to  a  section  of  .the  other.  In 
virtue  of  *259"25  (which  has  been  proved  without  using  the  propositions  of 
*254),  F^  is  the  correlator  which  correlates  the  whole  of  one.  series  with 
part  or  the  whole  of  the  other. 

It  will  be  observed  that  the  relations  (J.jp*J.)'A  are  the  class  of  corre- 
lators of  sections  of  P  with  sectiops  of  Q,  provided  P,  Q  e  li  —  I'A ;  i:e, 

f-:Hp*2o9-2.P,Qen-t'A.D. 

{Ayfi^Ayk=f[{'^M,N) .  MeC'F, .  Ne  G'Q, .  Te  Jlf  s"mor  N}. 


SECTION  E. 

FINITE  AND  INFINITE  SERIES  AND  ORDINALS. 

Summary  of  Section  E. 

In  the  present  section  we  shall  be  concerned  first  with  the  distinction  of 
finite  and  infinite  as  applied  to  series  and  ordinals.  We  shall  then  establish 
the  distinguishing  properties  of  finite  ordinals,  and  shall  deal  with  the 
smallest  of  infinite  ordinals,  namely  m,  the  ordinal  number  of  a  progression. 
Finally  we  shall  briefly  consider  certain  special  ordinals,  and  the  series  of 
cardinals  applicable  to  well-ordered  infinite  series,  namely  the  series  of 
"  Alephs,"  as  they  are  called  after  Cantor's  usage. 

In  dealing  with  the  finite  and  the  infinite  as  applied  to  series,  we  have 
coi^stant  need  of  the  relation  (Pi)po,  where  P  is  the  generating  relation  of 
the  series.     We  have 

X (Pi)po y  .  =  .P{xh-y)6 Cls  induct  —  I'A, 

i.e.  " x{P^^y"  holds  when,  and  only  when,  there  is  a  finite  number  of 
intermediaries  between  x  and  y.     When  P  is  finite,  we  have 

■P  =  (-Pi)po> 

but  we  may  have  this  when  P  is  not  finite.  The  infinite  series  for  which 
this  holds  are  progressions  and  their  converses  (which  we  will  call  regres- 
sions), and  series  consisting  of  a  regression  followed  by  a  progression,  of  which 
an  instance  is  afforded  by  the  negative  and  positive  finite  integers  in  order 
of  magnitude. 


*260.     ON  FINITE  INTEEVALS  IN  A  SERIES. 

Swmmafy  of  *260. 

In  the-  present  number  we  are  concerned  with  the  relation  which  holds 
between  x  and  y  when  the  interval  P{x\—y)  is  an  inductive  class  other  than 
A,  or  when  the  interval  P(x\-\y)  is  an  inductive  class  of  at  least  two  terms. 
This  relation  holds  if  x  and  y  have  any  relation  of  the  class  fin'P  (defined  in 
*121).     We  will  call  this  relation  Pj^.     Thus  we  put 

Pf„  =  s'fin'P    Df. 

Then  aoPf^y  holds  when  xP„y,  where  v  is  an  inductive  cardinal  other 
than  0  (*260"1).  This  relation  will  take  us  from  x  to  any  later  term  which 
can  be  reached  without  passing  to  the  limit.  But  if  in  the  interval  P{x—\y) 
there  is  any  term  which  has  no  immediate  predecessor,  i.e.  any  member  of 
G'P—d'Pi,  then  we  shall  not  have  xPf^y.  Thus  P,n  confines  us  to  terms 
which  are  at  a  finite  distance  from  our  starting-point.  We  shall  find  that  if 
P  6  fl,,  a  necessary  condition  for  the  finitude  of  P  is  P  =  Pj^.  This  is  not 
a  sufficient  condition,  since  it  does  not  exclude  progressions,  but  these  are  the 
only  infinite  series  it  admits,  and  these  are  excluded  by  the  assumption 

ElB'P. 

Although  Pfn  is  not  in  general  serial  when  P  or  Ppo  is  serial,  it  becomes 
serial  when  confined  to  the  posterity  or  the  ancestry  or  the  family  of  any 
term  with  respect  to  itself  (*260"32"4).  When  a  series  P  is  well-ordered,  the 
whole  series  can  be  divided  into  constituent  series,  each  of  which  is  the 
family  of  any  one  of  its  members  with  respect  to  Pj^  (except  when  P  has 
a  last  term  which  has  no  immediate  predecessor,  in  which  case  this  last  term 
must  be  omitted).  (Of.  *264.)  Each  of  these  series  (except  the  last,  possibly) 
is  a  progression,  and  the  last  is  either  finite  or  a  progression.  Hence  every 
infinite  well-ordered  series  consists  of  a  series  of  progressions  followed  by 
a  finite  tail  (which  may  be  null);  hence  the  cardinal  of  the  field  of  an  infinite 
well-ordered  series  is  a  multiple  of  Xo.  These  results  will  be  proved  later ; 
for  the  present  we  are  concerned  with  the  proof  that  the  family  of  any  term 
with  respect  to  Pj„  is  a  series  of  which  the  generating  relation  is  Pf^  with 
its  field  confined  to  that  family. 


110  SERIES  [part  V 

In  the  present  number  we  are  chiefly  concerned  with  the  relations  of 
Pfa  to  P,.     We  have 

*260-27.     h  :  Ppo  6  Ser .  D  .  P,„  =  (P,\, 

This  proposition  will  be  used  very  frequently  throughout  this  section. 
Without  any  hypothesis  we  have 

*26012.    i-.p,„ePp„ 

We  have  also 

*26015.     l-.P,„  =  (Ppo),„ 

Hence  whatever  properties  of  Pf„  result  from  the  hypothesis  that  P  is 
a  series  will  result  from  the  weaker  hypothesis  that  Ppo  is  a  series. 

If  Ppo  is  a  series,  Pfn  is  contained  in  diversity  and  is  transitive  (*260'202), 
but  not  in  general  connected. 

In  comparing  Pj^  and  (Pi)po,  we  constantly  need  the  proposition 

*260-22.     h  :  Ppo  6  Ser .  D .  {P,\  =  A .  P,  e  1  -*  1 .  (P^po  G  J 

From  *260'3  to  the  end  of  the  number,  we  are  concerned  with  the  result 
of  limiting  the  field  of  Pj„  to  the  ancestry,  posterity  or  family  of  some 
member  of  its  field.     We  have 

*260-33.     l-:Ppo6Ser.a;6D'Pi.Pi  =  E.D. 

An  D  ('''«'  ^  K'^)  =  i%'^)  1  -Bpo  =  {&'*)  1  i2}po  =  {R  r  (Uo'^)}po 

*260-34.     h  :  Hp *260-33  .  D  .  {P^  ^( 'a;  w p't^'a;)],  =  (%'x) ^R  =  E  [%o'«! 


*26001.     Pf„  =  i'fin'P     Df 

*2601.       t- :  xPf^  y.  =  .  (jsy) .  z/  e  NC  induct  -  I'O .  mF„y 
[*121-121.(*260-01)] 

*26011.     h  :  xPf^  y .  =  .  P  (a;  M  y)  6  Cls  induct  -  0  - 1 
Dem. 

(-.*260-l.*121-ll.D 

VixPf^y.  s  .  (ai/) .  1/ e NC  induct  -  t'O .  P (a; m  j/)  e  v +o  1  ■ 
[*120-472]  = .  (a/Lt) .  yti  e  NC  induct  -  I'O  -  I'l .  P  (a;  m  y)  e  ^ . 
[*120-2]      =  .  P  (a;  M  y)  €  Cls  induct  -0-1:31-.  Prop 

*26012.     l-.P,„CPpo 
Dem. 

h  .*121-321  .*117-511 .  D  h:  i/eNC  induct-  t'O  .:i.P,Q.P^^       (1) 
I- .  (1) .  *2601 .  D  h  .  Prop 


SECTION  E]  on   finite   INTERVALS   IN   A   SERIES  111 

*26013.     [- :  a;Pj„  y  .D  .P{xh-y),  P(x-\y)eCls  induct  -  I'A 

Dem.  • 

h  .*260-12  ,*121-2r22  .  D  I- :  Hp .  D  .P(a!i-2/),P(«-iy)e- t'A  (1) 

H  .  *91-54 .  (*121011-012-013) .  D 
h.P{a!y-y)CP(wh^y).P(x-iy)CP(xi-ty). 

[*120-481.*26011]  D  h  :  Hp .  D  .  P  (a!t-  2/),  P  (a;  -1 2/)  e  Cls  induct  (2) 

h .  (1) .  (2) .  D  h  .  Prop 

*260131.  I- :.  Ppo  G  J .  D  :  xPi^  y  .  =  .  P(a)\-y)eC\s  induct  -  I'A . 

=  .P{x—\y)e Cls  induct  —  t'A 
i)em. 
I- .  *121-22  .  D  h  :  P  (« f-  2/)  e  01s  induct  -  t'A .  D  .  a;Pp„2/  ■  (1) 

[*121-242.*91-o4]  ':>.P(xt-\y)  =  P(a;i-y)vi'y . 

[*120-251]  D.P (a; My) 6 Cls  induct   (2) 

1- ■  (1)  .  *12r242  .       DI-:Hp.Hp(l).D.a;,2/6P(a;My).«4=2/. 
[*52-41]  D.P(a;i-i2/)~eOul  (3) 

h .  (2) .  (3) .  *260-ll .  D  1- :  Hp .  Hp  (1) .  D .  xP^y  (4) 

Similarly  1- :  Hp. P (a;—)?/) e Cls  induct .  D.a;Pfn 3/  (5) 

h  .  (4) .  (5) .  *260-13  .  D  h  .  Prop 

*26014.     l-:P6(Cls->l)w(l^Cls).PpoGJ".D.P(„  =  Pp„ 

Dem. 

h  .  *121-52  .  D  I- :  Hp .  D  .  s'finid«P  =  P* . 

[(*260-01)]  O.Ptr,  =  P^-Po 

[*12l-302]  =P^-^I[C'P 

[*91-541]  =Ppo:3H.Prop 

*26015.     l-.P,„  =  (Ppo)f„    [*2601.*121-254] 

*26016.     l-.(P),„  =  Pfa       [*260-l . *121-26] 

*26017.     h  : Ppo e Ser  .xP^^y  .Zi  .P{x^y)  =  G'[P^^ lP{x^y)]. 

X  =  5'{Ppo  lP{x^y)].y  =  B'Cn^'{P,o  D  P  (^  m  y)} 
Dem. 
I- .  *121-242  .  D  h  :  Hp .  3  .  a;,  y  e  P  (a;  M  y) . « =^  y .  (1) 

[*52-41]  D.P(a!M2/)~el. 

[*202-55]  D .  a'{Pp„  pP  (a;  m  y)}  =  P  (a;  m  y)  (2) 

l-,*91-542.    31-:.  Hp.  D  :06P(a!M2/)  .^4=^.  3  .a;{PpoPP(a!i-i2/)}^:: 
[(l).*205-35]  D  :  a;  =  min  {Pp„  1^  P  (a;  h  y),}'P  («  m  y) : 

[(2).*205-12]  D  :  a;  =  5'{Pp,  t  P  («!  HH  j/)}  (3) 

Similarly  h  :  Hp .  3  .  y  =  i?'Cn v'{Pp„  ^  P  («  m  y)}  (4) 

h  .  (2) .  (3)  .  (4) .  3  h  .  Prop 


112  SERIES  [part  V 

The  folIowiDg  propositions  are  concerned  in  proving  that  if  Ppo  e  Ser, 
Pfn  =  (Pi)po  and  P„  =  (Pi)„.  Note  that  '■  x  (Pi)poy  "  means  that  we  can  get 
from  X  to  yhj  a.  finite  number  of  steps  from  one  term  to  the  next,  so  that 
the  series  contains  no  limit-points  between  x  and  y.  The  relation  "x  (Pj),  y  " 
means  that  v  — c  1  intermediate  terms 

^l>    ^2,    ■^S)     •••     ^p—el 

can  be  found,  each  of  which  has  the  relation  Pi  to  its  neighbour,  and  such 
that  xPiZ  and  z,_^iPiy.  Thus  we  have  to  prove  that,  provided  Ppo  is  a  series, 
this  occurs  when,  and  only  when,  the  number  of  terms  in  the  interval 
P  {xv-^y)  is  V  +c  !• 

«260'2.       I- : Ppo e connex  .  xP^y .  yP^z .1i  .P {x\-\z)  =  P{x)-\y)^j P {y\-\z) 

I)em. 
h  .  *20ri4-15  .    Dl-:Hp.D.P(a;i-iy)CP(«M^).P(yi-i5)CP(a;i-i^)     (1) 
h  .  *202-13-103  .  D  h  :.  Hp .  xP^w .  D  :  wP^y .  v .  yP:j^w  (2) 

h  .  (2)  .  *121-103  .  D 

h  :.  H^ .  w  e  P  (xv-i  z) .  D  :  xP^w .  wP^y .  v .  yP^w .  wP^z  z 
[*121-103]  D  :  w  e  P  («  M  2/)  u  P  (y  m  0)  (3) 

1- .  (1) .  (3) .  D  h  .  Prop 

*260'201.  h  :  Ppo  e  connex  .  D  .  Pjn  e  trans 

Dem. 
I- .  *260-12  .  D  h  :  xPj^y  .  yPt^z  .  D  .  xP^y  .  yP^z  (1) 

1:.(1).*260-2.D 

f- :  Hp  .  xPf^y  .  yPfj^z  ,0  ,P{xy-tz)  =  P(xi-iy)\j  P(yt-fz),  (2) 

[*260-ll.*120-7l]         D.P(«M^)eCls  induct  (3) 

h .  *60-32-37l  .DhiaeOwl./SCa.D.^SeOul: 

[Transp]  DI-:;S~60wl.;SCa.D.a~60wl  (4) 

h  .  (2)  .  *260-ll .  D 

h  :  Hp  .  a;P,„2/ ■  yPfn^  ■  3  .  P(«i-ijr)~eO  w  1  .  P(a;i-i2/)  C  P(a!M^:)  . 
[(4)]  D.P(a;M^)~eOul  (5) 

h  .  (3)  .  (5)  .  *260-ll  .  D  h  :  Hp  .  xPt^^y  .  yPf^z  .  D  .  xPi^z  :  D  f- .  Prop 

*260-202.  h  :  Ppo  6  Ser  .  D  .  P,„  e  El'J"  n  trans 
i)em. 

I- .  *260-12  .  D  h  :  Ppo  G  J .  D  .  P,„  G  J  (1) 

I- .  (1)  .  *260-201  .  D  f- .  Prop 

We  shall  not  have  in  general  Ppo  e  Ser  .  3  .  P,„  e  Ser,  because  P,„  is  in 
general  not  connected.  Pf„  only  relates  two  terms  which  are  at  a  finite 
distance  from  each  other,  and  hence  divides  Ppo  into  a  number  of  mutually 
exclusive  parts.  We  shall  only  have  P,„  e  Ser  when  every  interval  in  the 
series  is  finite. 


SECTION  E]  on   finite  INTERVALS   IN   A  SERIES  113 

*260-21.     I- :  Ppo  e Ser  .  xP^y  .yP^z  .:>  .  P {x^z)  =  P  {x\-iy)  yj  i'z 
Dem.  • 

V  .  *121-304  .D  h  -.Rtp  .0  .  P  (y^z)  =  I'y  w  I'z  (1) 

H.*121-242.DI-:Hp.D.2/eP(«M2/)  (2) 

I- .  *260-2  .      D  h  :  Hp  .  D  .  P  (a; m 0)  =  P  (« m y)  w  P  (yt-tz) 
[(l)-(2)]  =  P  («  M  y)  w  t'^  :  3  h  .  Prop 

*260-22.     h  :  Pp„  e  Ser .  D  .  (P,\  =  P, .  p,  e  1  -*  1 .  (P,\,  Q  J 
Dem, 

h.*121-254.      DKP,  =  (P,„X  (1) 

l-.(l).*204-7.DH:Hp.D.Piel->l  (2) 

h  .  *121-305  .      D  I- :  Hp  .  D  .  P,  G  P . 
[*91-59]  D.(POp„CP,„. 

[*204-l]  D.(P,),„eJ-  (3) 

1- .  (1) .  (2)  .  (3) .  *121-31 .  D  h  .  Prop 
*260-23.     h  :  Pp„  6  Ser  .  1/  6  NO  induct .  D  .  (P0„  e  1  -*  1 
[*121-342 ,  *260-22] 

*260-24.     h  :  Pp„  6  Ser  .  v  e  NC  induct .  x  (Pj).  y  ■  x  (Pi),+„.  ^  .  D  .  yP,z 
Dem. 

h  .  *121-35  .  *260-22  .  D  h  :  Hp .  D  .  a;  {(PO.  |  PJ  ^  . 
[*341]  D  .  (gw) .  X  {P^\w  .wP^z. 

[*260-23.Hp]  D.yPi^iDh.Prop 

*260-25.     1- :  Ppo  e  Ser .  P  =  Pj .  xB^y  .D  .P(xt-ty)  =  R{x)-iy) 

Dem. 
h  .  *260-24 .  D  H  :  Hp  .  z/  6  NC  induct .  xR,y.  xR^+.^z .  P  (xMy)  =  R  (x^y) .  3  . 

yRz  .P{xh-iy)  =  R(xh^y). 
[*260-21]  :>.P{xh-iz)  =  R(x>-ty)yji'z 

[*260-22.*12I  •371-304]  =R(xi-tz)  (1) 

h  •  (1)  .  D  I- :.  Hp  .  V  e  NC  induct :  xR^y  .  Dj, .  P  (a; i-i  y)  =  P  (a;  m  ?/)  :  D  : 

xR^+„jZ .  Da .  P  («  M  ^)  =  P  (a;  M  £r)         (2) 
h  .  *121-301-22-242  .  D  f- :  Hp .  xR,y  .D  .P(xi->y)  =  i'x  =  R(xi-ty)  (3) 

h  .  (2) .  (3) .  Induct .  D 

I- :.  Hp  .Dive  NC  induct .  xR^y .  D  .  P  (a;  i-i y)  =  P  (a; m  y) : 
[*121-12]  D  :  fi' e  finid'P  .  a;% .  D  .  P  (a;  M  y)  =  P  («  M  y) : 
[*121-52.*260-22]  D  :  xR^y .  D  .  P  (a;  m  y)  =  P  (a;  m 3/)  :.  D  h  .  Prop 

In  the  above  proposition,  "Induct"  refers  to  *12013.     The  '^<j}^"  of 
*120'13  is  replaced  by 

xRty.Oy.P(x\r-\y)  =  R(xMy). 

R.  &  W.  III.  8 


114  SERIES  [part  V 

Thus  (2),  in  the  above  proof,  is  (when  v  is  replaced  by  |) 

f  e  NO  induct .  <^^ .  D  .  ^  (f +„  1), 
and  (3)  is  ^0. 

Hence,  by  *120"13,  we  have 

a  e  NO  induct .  D  .  </>«, 
i.e.  V  6  NO  induct .  D  :  xH^y  .  Dj, .  JB  (a;  m  y), 

which  is  the  inference  drawn  in  the  above  proof. 

Wherever  "  Induct "  is  given  as  a  reference,  it  indicates  a  process  such  as 
the  above,  making  use  of  *120"13  or  *120'11. 

*260-251.  h  :  F^  e  Ser  .  D  .  (P^po  G  P,„ 
Bern,. 
|-.*260-25.DI-:Hp.i2  =  Pi.a!Epoy.D.P(a!tHy)  =  i?;(a;i-i2/).       (1) 
[*12r45.*260-22]  D  .  P  («  m  y)  e  Cls  induct        (2) 

1- . *121-242 .  (1) . *260-22  .  D  h  :  Hp(l) .  D  .  *, yeP{x^y)  .x^y, 
[*52-41]  D.P(a;M2/)~eOul         (3) 

|-.(2).(3).DI-:Hp.a;(Pi)poy.3.P(«i-i2/)6Clsinduct-0-l. 
[*260-ll]  D  .  xPt^y  Oh.  Prop 

*260-26.     I- : . Ppo e Ser . i?  =  Pi . xR^y .2:xP^y.  =  . xB^y 

Bern. 

h  .  *260-25  .  D  h  :.  Hp  .  D  :  P  (iCM?/)  =  P  (xt-iy)  : 

[*121-11]  D  :  xP^y  .  =  .  xR,y  :.  D  h  .  Prop 

*260-261.  I- :  Ppo  6  Ser  .  J/  e  NO  induct  -  t'O  .  xP^y  .  xP^+^^z  .  D  .  yP^z 

Dem. 
|-.*121-ll.Dh  :Hp.D.Nc'P(«My)  =  j/+„l.Nc'P(a!i-i^)  =  z;+„2.    (1) 
[*1 20-32]  3-2/  +  ^  (2) 

h  .  (1) .  *120-428  .  D  h  :  Hp .  D  .  Nc'P(«t-i^)  >  Nc'P(a!hHy) . 
[*ll7-222.Transp]  D  .  ~  {P  (« m  0)  C  P  (a;  m 2/)} . 

[*121-103.*201  •14-15]  D.~(0P5^y).  (3) 

[*202-103]  D  .  yP^^z  . 

[*202-l71]  D.P(a;i-i^)  =  P(a;M2/)wP(2/-i^). 

[*120-41.(1).(3)]  D  .  P  (2/  -H  5)  6 1 . 

[*121-242.(2)]  D.P(2/i-.ir)62. 

[*121-11]  D.2/Pi^:Df-.Prop 

« 

*260-27.     f- :  Ppo  e  Ser  .  D  .  P,^  =  (POp„ 

Dem. 
V  .  *260-261 .  D  h  :  Hp  .  1/  e  NO  induct  -  t'O .  xP,y .  xP,+^^z .  x  (Pi)po2/ .  D . 

yPiZ.x{P,)j„y. 
[*9r511]  3.«(Pi)p„^  (1) 


SECTION  E]  on   finite   INTERVALS   IN   A   SERIES  115 

I- .  (1) .  D  h  :.  Hp  .  i;  6  NO  induct  -  I'O  :  xPyy .  Dj, .  a;  (P,)po  2/ :  3  : 

xP,+^,z.:),.x{P,)^z        (2) 
I- .  *91-502i .  D  h  :  xP^y .  D  .  a;  {P^\„y  (3) 

h  .  (2)  .  (3)  .  *120-47  .  D  h  :.  Hp  .  D  :  I.  e  NC  induct  -  I'O  .X-P.d  (Pi)po  = 
[*260-l]  D:P,„C(P,)po      '  (4) 

h  .  (4) .  *260-251 .  D  h  .  Prop 

*260-28.     h  :  Pp„  6  Ser .  i;  6  NC  induct  -  t'O  .  D  .  P„  =  (P,)v=  (Pfn)- 
-Dem. 

I- .  *260-26  .        3  1- :.  Hp .  D  :  a;  (P^poy .  xP^y .  =  , « (P^po^  ■  oo  {P,\y    (1) 
h  .  *2601 .  3  I- :  Hp .  xP,y .  3  .  xP^^y . 

[*260-27]  :>-a>(Pdvoy  (2) 

t- .  *121-321 .      D  h  :  Hp  .  ^  (P,\y  .0.x  {P,)^y  (3) 

h.(l).(2).(3).Dh:.Hp.D:a;P,y.  =  .a;(P0„2/  (4) 

l-.*121-254.       DI-.(PO.  =  KA)po}.- 

[*26a-27]  D  h  :  Hp .  D  .  (PO.  =  (P,n).  (5) 

h  .  (4)  .  (5) .  3  h  .  Prop 

The  above  proposition  does  not  hold  in  general  when  k  =  0,  for  if  P  is  a 
compact  series,  Pi  =  A,  so  that  (Pi)o  =  A,  but  Po  =  /  \G'P. 

*260-29.     I- :  Ppo  6  Ser .  xP^^y .  3  .  P  (a;  i-h  2/)  =  Pj  (a;  m  y)  =  P,„  (« i-i  y) 
Bern. 

h  .  *260-27-25  .  3  h  :  Hp .  3 .  P  (a;  M  2/)  =  Pi  (a;  M  y) 
[*121-253.*260-27]  =  P,„  (a;  m  y) :  3 1- .  Prop 

The   following  propositions  are   mainly  concerned  with   the  result  of 
confining  the  field  of  Pjn  to  the  posterity  of  a  single  term. 

*260-3.       I- :  Pp„  e  Ser .  3  .  D'P,„  =  D'Pj .  a'P,„  =  Q'Pi .  C'Pf„  =  O'Pi 
[*260-27.*91-504] 

*260-31.     h:Pp„eSer.a;eD'Pi.3. 

G'{Pt.  D(t'«  ^%»\  =  tP^'x  =  I'a;  u  %,'x 
Dem. 


h  .  *260'27  .  3  I- :  Hp .  3  .  fc'a;  w  P^^'x  =  I'x  u  (Pi)p/a; 

[*96-14]  ^  =^'«=  (1) 

l-.*260-3.   3h:Hp.3.a!P,n'a:. 

[*36-13]  ^3  .  {w) .  X  {Pto  I {I'x  yj%^'x)}  y  (2) 

h  .  *3613 .  3  h  :  2/  e  Kn'«  .  3 .  a;  {P^  ^  (*'«  "  ^fn'^?)}  2/ . 

[*io-24]  3  ■  (a^)  ■  ^.{Pfn  D  (*'*  «  K^ )}  y  (3) 

h  .  (2) .  (3)  .  3  h  :  Hp .  3  . 1'a,'  w  P,„'arC  C'lP^  ^(I'a; «  K'*)}  • 

[*37-41]  3  . 1'x  w  P,„'a;  =  a'{P,„  p  (I'a;  w  P^'n'*)}  (4) 

I- .  (1)  .  (4) .  3  I- .  Prpp 

8—2 


116  SERIES  [part  V 

*260  32.     l-:PpoeSer.D. 
Dem. 

V .  *26o-i2 .  D  h .  Pf„  t  (!'*•  u  Kn'«^)  e  Ppo  D  (t'^; "  K'*)  (i) 

h  .  *260-3  .  *200-35  .  3 

1- :  Hp . «  ~  e  D'Pi .  D  .  Pf„  t  (t'«  v.  Kn'«)  =  A  =  Pp„  D {t'co  u  K'*')     (2) 

h  .  *201-521 .  *260-27  .  D 


h  :  Hp .  a;  6  D'P, .  D  .  Pf„  t  (i'«?  u  Pfn'a;)  =  (POp„  D  {P.)*«>  ■ 
[*202-14.*260-22]D  .  Pf„  ^(I'a;  u  P,„'a;)  e  connex  . 
[*260  202]  3  .  Pfn  D  (t'«  « K'*)  e  Ser  .  (3) 

[(1).*260-31.*204-41]  D  .  P,„  l{l'x  w  ^/^)  =  Pp„  l{i'x  u  Pj^^'a;)  (4) 

f- .  (2) .  (3) .  (4) .  D  t- .  Prop 

*260-33.     h  :  Ppo  e  Ser .  a;  e  D'Pj .  Pj  =  i?  .  3  . 

Dem.. 

h  .  *260-27-31 .  D  f- :  Hp .  D  .  P,„  CC^'^^ "  An'«)  =  -Kpo  D^*'*: 
[*96-16.*91-602]  =  (E*'a!)1  Epo  (1) 

[*96-13]  ={&21i2}p„       (2) 

[*96-2.*260-22]  =  {R  rCRpo'«')}po      (3) 

h.(l).(2).(3).DI-.Prop 

*260-34.     1- :  Hp  *260-33  .  D  .  {P,„  I  (I'x  w  Pin'«)}i  =  (-B*'^)1  i?  =  i^  rXD'a; 

jDem. 

h  .  *2'60-33  .  *121-254  .  D 

h  :  Hp .  D  .  {P,„  DCi'a;  u  K'*)}!  =  K^*''^)!  ii}i  =  {R  rK>^>      (1) 
f- .  (1) .  *121-31 .  *260-22  .  D  h  .  Prop 

The  following  propositions  are  concerned  with  the  result  of  confining  the 
field  of  P(n  to  a  single  family. 

*260-4.       h  :  Ppo  e  Ser .  D  .  Pf„  C  Kn'«  e  Ser . 

C"(P,„  DK'^)  =  K'^  =  (K)*'^ .  P,n'^  ~  e  1 
jDem. 

1- .  *260-27  .  *97-l7  .  D  h  :  Hp .  D  .  P,„  D K'« =(Pi)po  D(K)*'a;  ■ 

[*202-15.*260-22]  D  .  P,^t  -Pfn'a'  e  connex  . 

[*260-202.*204-42]  D  .  P,„  t-Pfn'«  e  Ser  (1) 


SECTION  E]  on   finite   INTERVALS  *IN   A   SERIES  117 

h.*97-18.DI-^a'(P,„tK'«')  =  Kn'«'      ^  (2) 

I- .  (2) .  *260-202  .  *200-l  2 .  D  h  :  Hp .  D  .  Ka''^  ~  e  >  (3) 

h  .  *260-27  .  *97-l  7  .  D  h  :  Hp .  D  .  P,^'cc  =  (Pj*'*  (*) 
h.(l),.(2).(3).(4).DI-.Prop 

*260-41.     l-:Ppo6Ser.i2  =  P,.D. 


De 


m. 

I- .  *260-27  .  *97-l7  .  D  h  :  Hp .  D .  P,„  p P,„'a;  =  i?p„  I %'a!  ^  (1) 
h  . *97-13 .  D f- :  Hp . y 6 Pji^'a; .  yR^„ z.D.ze B^'^R^'x « Epo"i2*'« ■ 
[*92-31 1  .*260-22]                                    D .  ^  e  fl^'a;  u  P^'a; . 

[*9713.*36-13]                                      3 .  y  (Ppo  W^;)  ^  (2) 

I- .  *35-21-441 .  D  h  .  Pp„  pp'jie'a;  G  (P*'a;)1  R^  (3) 

h  .  (2) .  (3) .        D  h  :  Hp .  D  ,  Ppo  ^P*'^  =  (P*'^)1  Pp„  (4) 

Similarly               h  :  Hp .  D  .  Pp„  ^  %'x  =  R^  [%'w  (5) 
I- .  (1) .  (4)  .  (5) .  D  h  .  Prop 

*260-42.     h  :  Hp  *260-41 .  D .  P,„  ^K'^  =  (^*'*1  i2)po  =  (R  \-%'^)vo 
Pern. 

h  .  *92-32  .  *260-22 .  3  h  :  Hp .  D  .  P^'P^i^'a;  C  R^'x . 
[*96-lll]  D  .  (%'xy^  Pp„  =  {{R£x)^  RU        (1) 

Similarly  h  :  Hp .  D  .  Pp„  \-^^'x  =  {P  pSle'^'lpo  (2) 

h  .  (1) .  (2) .  *260-41 .  D  h  .  Prop 


*260-43.     l-:PpoeSer.D. 


J)em. 


{Pf.  tK^r  =  Px  D  K'^'  =  (K.'^)  1  Pi  =  Pi  r  (Kn'a;) 


|-.*260-42.*l  21 -254.3 

h  :  Hp .  P  =P, .  D  .  {P,„  tK„^,  =  {(J*'«')  1  -Rli 

[*121-31.*260-22]  =^^'x)^R 

[*97-17.*260-27]  =  (Kn''^)  1 A        ~  (1) 

Similarly  h  :  Hp .  3  .  {P,„  ^ K'^'].  =  -Pi  TAn'*        (2) 

K  (1) .  (2) .  *35-l  1 .  D  h  :  Hp .  D  .  {Pf„  fp,„'^},  =P,  [:*?,/«        (3) 

H.(l).(2).(3).Dh.Prop 

Observe  that  the  two  series  Pfn  ^Pf„'x  and  Pfj,  pPfn'y  are  either  identical 
or  have  no  common  terms  in  their  fields.     This  results  immediately  from 

*97"16,  since  the  fields  of  the  two  series  are  (Pi)^'x  and  {Pi)^'y. 


*261.     FINITE  AND  INFINITE  SERIES. 

Summary  of  *261. 

In  this  number  we  define  finite  and  infinite  series,  and  we  show  that, 
where  well-ordered  series  are  concerned,  there  is  only  one  kind  of  finitude, 
i.e.  there  is  not  the  distinction,  which  exists  in  cardinals,  between  "in- 
ductive" and  "non-reflexive."  We  also  give  various  equivalent  forms  of 
the  distinction  between  finite  and  infinite  series,  and  some  of  the  simpler 
properties  of  each.  The  propositions  of  this  number  are  numerous  and 
important. 

We  define  an  infinite  series  as  one  whose  field  is  a  reflexive  class,  and  a 
finite  series  as  one  which  is  not  infinite.     Thus  we  put 

Ser  infin  =  Ser  n  C"Cls  refl       Df, 

n  infin  =  n  n  0"Cls  refl         Df, 

Ser  fin  =  Ser  —  Ser  infin         Df, 

n  fin  =  n  -  O  infin  Df. 

We  also  put,  to  begin  with, 

XI  induct  =  XI  n  a"Cls  ind  net   Df, 

but  in  the  course  of  this  number  we  prove 

*261-42.     t- .  X2  fin  =  X2  induct 

so  that  the  symbol  "  XI  induct "  is  not  required  after  the  present 
number. 

After  some  preliminary  propositions,  we  proceed  (*261-2ff.)  to  various 
criteria  of  finitude  and  infinity.     We  have 

*261-25.     h:.PeSer.D: 

G'P  6  Cls  induct  -  t'A  .  =  .  P  =  P,„ .  E  !  B'P .  E !  5'P 

The  condition  P  =  Pf^  insures  that  every  interval  is  finite,  but  this  still 
leaves  it  possible  for  our  series  to  be  a  progression,  or  its  con-verse,  or  the 
converse  of  a  progression  followed  by  a  progression  {i.e.  the  type  of  the  nega- 
tive and  positive  finite  integers  in  order  of  magnitude).     The  third  of  these 


SECTION  E]  finite  AND  INFINITE   SERIES  119 

possibilities  is  excluded  by  either  E !  B'P  or  E  !  B'P ;  the  second  is  excluded 

by  E !  B'P,  and  the  first  by  E !  B'P.     We  have 

*261-212.  h  :.  Pefl .  3  :  a'P,  =  a'P .  = .  P  =  (POpo .  =  ■  P  =  Pf„ 

"  Q'Pi  =  CE'P  "  means  that  every  term  except  the  first  has  an  immediate 
predecessor.     We  have 

*261-26.     h  :  P  e  Ser .  a  C  C'P .  a  !  o .  a  e  Cls  induct .  D  .  E  !  minp'a .  E  !  maxp'a 

and 

*261-27.     h  :.  P  e  Ser :  a  C  O'P .  a  !  a .  Da  .  E  !  minp'a .  E !  maxp'a :  D  . 

P  =  P,„.  a'P 6 Cls induct 
whence  we  obtain 

*261-28.     hxPeSer.D:. 

a  C  C'P .  a  !  a ,  Da  ■  E !  minp'a .  E !  maxp'a  :  =  .0'Pe  Cls  induct 

I.e.  a  series  whose  field  is  inductive  is  one  in  which  every  existent  sub- 
class of  the  field  has  both  a  minimum  and  a  maximum. 

From  the  above,  together  with  an  inductive  proof  that  every  inductive 
class  which  is  not  a  unit  class  is  the  field  of  some  series,  we  obtain 

*261-29.     h.  Cls  induct  = 

1  u  G"P{P  6  Ser :  o  C  O'P .  a  !  a .  Da .  E !  minp'a .  E !  maxp'a} 
=  1  w  0"(n  ft  Cnv"0) 

The  above  proposition  is  interesting  as  giving  an  alternative  method  of 
treating  inductive  classes.  Instead  of  the  definitions  adopted  in  *120,  we 
might  have  taken  the  above  proposition  as  the  definition  of  inductive  classes, 
putting 

NO  induct  =  Nc"Cls  induct     Df. 

We  should  thus  wholly  avoid  the  use  of  mathematical  induction  in  de- 
finitions; hence  if  such  avoidance  were  in  any  way  desirable,  it  could  be 
secured  by  dealing  with  series  before  introducing  the  distinction  of  finite 
and  infinite,  and  then  defining  inductive  classes  as  the  fields  of  series  which 
are  well-ordered  backwards  as  well  as  forwards.  The  inductive  properties  of 
such  classes  would  then  be  deduced  from  *261"27,  together  with  *260'27,  in 
virtue  of  which  we  have 

P  e  fl  n  Cnv"f2  .D.P  =  (P^po. 
whence,  by  *91"62, 

I-  ::P efi  r.  Cnv"i2  .  D  :.  ooPy .  =  : Pi"^ C/*  .  P^'xe/ju.  D^.yefi. 

In  virtue  of  this  proposition,  if  7  is  the  field  of  a  well-ordered  series  P 
whose  converse  is  well-ordered,  then  any  property  which  is  inherited  with 
respect  to  Pj  belongs  to  all  the  successors  of  x  (where  xey)  if  it  belongs  to 
the  immediate  successor  of  x.     Hence  mathematical  induction  follows. 


120  SERIES  [part  V 

From  the  above  we  obtain  at  once 

*261-31.     h  :.  P  6  Ser .  D  :  C'P  6  Cls  induct .  =  .  P,  P  «  fl 

I.e.  series  whose  fields  are  inductive  are  the  same  as  inductive  well- 
ordered  series,  and  are  also  the  same  as  well-ordered  series  whose  converses 
are  well-ordered.     Hence  also  we  obtain 

*261-33.     hrP.Qefl.QGP.D.QeOinduct 

I.e.  a  descending  well-ordered  series  of  terms  chosen  out  of  a  well-ordered 
series  must  be  finite.  This  proposition,  which  is  due  to  Cantor,  has  been  used 
by  him  in  many  proofs. 

We  have 

*261-35.     h  :.  P  6  fl .  D  :  C'P  6  Cls  induct  -  t'A .  =  .  Q'P^  =  d'P .  E !  B'P 

In  *253"51  and  following  propositions  we  have  already  had  the  hypothesis 

CI 'Pi  =  CE'P .  E !  B'P,  which  now  turns  out  to  be  equivalent  to  the  hypothesis 
that  our  series  is  finite  and  not  null.     Thus  we  have 

*261-36.     h  i.Pefl .  D  :  G'P  e  Cls  induct  -  I'A  .  =  .  Nr'P=t=  l-j-Nr'P 

*261"4  and  following  propositions  are  concerned  in  proving  that  a  well- 
ordered  series  which  is  not  inductive  always  contains  progressions,  and  in 
deducing  consequences  from  this.     We  have 

*261-4.       h  :  P  6  n  -  O  induct .  D  .  {{P;)^'B'P]  ^  P^  e  Prog 

The  above  proposition  is  very  important,  for  many  reasons.  One  of  its 
most  important  consequences  is  that,  if  P  is  a  well-ordered  series  which  is 
not  inductive,  its  field  contains  an  Ko,  and  is  therefore  a  reflexive  class 
(*261"401).  Hence  a  class  which  can  be  well-ordered  is  either  inductive  or 
reflexive  (*261'43),  and  a  well-ordered  series  is  either  inductive  or  infinite 
according  to  the  definitions  given  above  (*261*4!l).  Hence  where  well- 
ordered  series  are  concerned,  the  two  ways  of  defining  finite  and  infinite 
(namely  those  in  *120  and  *124)  give  equivalent  results.  This  cannot  (so 
far  as  is  known)  be  proved  for  classes  in  general  without  assuming  the  multi- 
plicative axiom. 

From  the  above-mentioned  propositions  it  follows  that  a  well-ordered 
series  is  one  in  which  Pi  limited  to  the  posterity  of  B'P  with  respect  to  Pi 
is  a  progression  in  the  sense  of  *122  (*261'44),  and  that  any  class  contained 
in  a  well-ordered  series  is  either  inductive  or  reflexive  (*261"46). 

The  number  ends  with  some  propositions  in  ordinal  arithmetic.  We 
prove  that  P'^  is  well-ordered  if  P  is  well-ordered  and  Q  is  a  finite  well-ordered 
series  (*261'62) ;  that  if  i?  is  a  finite  well-ordered  series,  and  P  is  less  than  Q 
(in  the  sense  of  *264),  then  P^  is  less  than  Q^ ;  and  that  a  finite  well-ordered 
series  is  less  than  an  infinite  one  (*261'65). 


SECTION  E]  finite   AND   INFINITE   SERIES  121 

*261-01.  Sermfin  =  SernG"Clsrefl         Df 

*26102.  n  infin  =  H  n  C'Cls  refl              Df 

*26103.  Serfia=Ser-Sermfia              Df 

*26r04.  Iifin  =  n-nmfin                      Df 

*261-05.  n  induct  =  12  n  C"Cls  induct     Df 

*2611.  hiPeSer  infin.  =  .P  6  Ser.C'PeCls  refl     [(*261-01)] 

*26111.  h:  Pen  infin.  s.PeO.C'PeClsrefl          [(*261-02)] 

*26112.     h  : Pe Ser fin .  =  .  P e Ser -  Ser infin .  =  .  PeSer .  C"P~eClarefl 
[(*261-03)] 

*26113.     h  :  Peflfin  .  =  .  PeO-  n  infin  .  =  .  Peft  .  0'P~eClsrefl 
[(*261-04)] 

*26114.     h  : P e fi induct  .=  .Peil.C'P e.Cls induct     [(*26105)] 

*261-15.     I- :  P  e  Ser  infin  .  P  smor  Q .  D  .  Q  e  Ser  infin 
Bern. 

l-.*261-l.DI-:Hp.D.P6Ser.O*PeClsrefl.PsmorQ. 
[*204-21.*151-18]      D  .  Q  6  Ser .  O'P  6  Cls  refl  .  G'P  sm  G'Q . 
[*124-18]  D.QeSer.C'QeClsrefl. 

[*2611]  D  .  Q  6  Ser  infin  Oh.  Prop 

*261-151.  h  :  P  6  Ser  infin  .  D  .  Nr'P  C  Ser  infin     [*261-15] 

*261-152.  h  :  P  6  Ser  infin .  =  .  N„r'P  C  Ser  infin .  =  .  g !  N„r'P  n  Ser  infin 
[*261-151.*155-12] 

*261-153.  J- :  P  6  Ser  infin  .  =  .  (gQ) .  P  smor  Q .  Q  e  Ser  infin 
[*261-15 .  *1.5113] 

*261-16.     h  :  P  6  n  infin  .  P  smor  Q .  D  .  Q  e  fi  infin 

[Proof  as  in  *261-15,  using  *261-11 .  *251-111 .  *151-18 .  *12418] 

*261-161.  f- iPeXiinfin.  3.  Nr'P  Cfl  infin     [*26ri6] 

*261-162.  h  :  P  6  fl  infin  .  =  .  Nor'P  C  il  infin  .  =  .  g  !  N„r'P  n  Ser  infin 
[*261-161 .  *15512] 

*261163.  h:P6fiinfin.=  .(aQ).PsmorQ.Q6liinfin   [*261-16  .  *151-13] 

*261-17.     HiPeSerfin.PsmorQ.D.QeSerfin  [*261-15 .  Transp] 

*261-171.  hcPeSerfin.D.Nr'PCSerfin  [*261-17] 

*261172.  I- :  P  e  Ser  fin  .  =  .  N^r'P  C  Ser  fin .  h  .  g  !  N„r'P  n  Ser  fin 
[*261-171.*155-12] 

*26li73.  h  :  P  6  Ser  fin  .  H  .  (gQ)  .  P  smor  Q .  Q  e  Ser  fin     [*26117  .  *15ri3] 


122  SERIES  [part  V 


18.  hrPenfin.PsmorQ.D.Qeflfin     [*261-16 .  Transp] 

181.  hiPellfin.D.Nr'PCOfin  [*261-18] 

182.  I- :  P  e  n  fin  .  =  .  N„r'P  C  £1  fin  .  =  .  g !  Nof'P  n  Q  fin 
[*261-181.*155-12] 

183.  h:P6nfin.=  .'(aQ).PsmorQ.Q€fifin     [*261-18  .*loll3] 

19.  h  :  P  e  12  induct .  P  smor  Q .  D  .  Q  e  H  induct 
[Proof  as  in  *261-16,  using  *120-214  instead  of  *124-18] 

191.  h  :  Pen  induct.  D.Nr'P  CXI  induct     [*261-19] 

192.  hzPeil induct .  =  . N„r'P C Q, induct .  =  .  g  !  Nor'P n  O, induct 
[*261191.*155-12] 

193.  hzPeO,  induct .  =  .  (aQ)  .  P  smor  Q.QeD,  induct 
[*26ri9.*15]-13] 

2.       l-:Ppo6Connex.(5'P)P,„(jB'P).D.O'P6Clsinduct 
Dem. 

h  .*202-181 .  3  h  :  Hp .  D .  G'P  =  P(B'P\r-iB'P) . 
[*260-ll.Hp]  :>.C'Pe  Cls  induct  Oh.  Prop 

*261-21.     h  :  P  e  connex  .  P  =  P,„  .  E  !  B'P .  E  !  B'P  .D.C'Pe  Cls  induct 
Dem. 

h  .  *202-103  .  *93-101 .  D  h  :  Hp .  D  .  (B'P)  P  (B'P) . 

[Hp]  ■^.(B'P)P,^(B'P)- 

[*261  -2]  D.C'Pe  Cls  induct  Oh.  Prop 

*261211.  h  :  P  6  Ser .  D  .  ^rip'{Pa!  -  (Kv*}  C  d'P  -  Q'P, 
Dem. 

h.*91-511.*121 -305.3 

h  :.  Hp .  D  :  2/  e P'a;  n  (Pi)po'« .  yP^z  .D.zeP'xn  (P\^'x : 

<- 


*261 
*261 
«261 

*261 
«261 

*261 
*261 

*261 

«261 


[Transp]  DizeP'x-  (P,)^^'x  .yP^z  .:>  .y  e-P'x^J  -  (P,)^'x         (1) 

h.*91-5O2.Dh:.0  6P'a!-(P,)po'«.  '^\zeP'x-%'x\ 

[*201-63]  D :  Hp .  3 .  aiP^^  (2) 

h  . *201-63  .  D  h  :  Hp  . xF'z . yP^z .  D  . ~ (yPx)  .y^x. 

[*202-103]  D ,  xPy  (3) 

h.(2).(3).Dh:Hp.^6P'a;-  (P^'x  .yP,z  ."D  .ye^'x . 

[(1)]  D.yeP'x-(%j^'x. 


[*201-63]  D.yeP'zn{P'x-(P,)^'x}. 

[*20514]  D.^~emm/{Kc-(Kwa;}  (4) 

h  .  (4)  .  Transp  .  D 

h  :  Hp .  0  6  minp'{P'a!  -  (P,)^,'x} .  D  .  ~  (gy)  .  yP,z :  D  h  .  Prop 


SECTION  e]  finite  AND  INFINITE  SERIES  123 

*261-212.  l-:.P6n.D:a'Pi  =  a'P.  =  .P  =  (P,)po.  =  .P  =  Pfn 
Bern.  • 

I- .  *121-305  .  D  h  :  Hp .  D  .  (P^po  G  P  (1) 

H  .  (1) .  D  h  :  Hp .  P  +  (POpo .  D .  {'3X,  y)  .  xPy .  ~  KP0po2/l  ■ 

[*32-18]  D.(a«;).a!P'a;-(Kv«'- 

[*250-121]  D  .  (a«) .  E !  minp'lP'^  -  (Ku'*}  ■ 

[*261-211]  O.'^ia'P-a'P^  (2) 

I- .  (2) .  Transp .  D  I- :  Hp .  Q'P  =  Q'P, .  D  .  P  =  (P^po  (3) 

h  .  *91-504 .        3  h  :  P  =  (P,\^ .  D  .  Q'P  =  a'P.  (4) 

h  .  (3) .  (4) .         D  h  :.  Hp .  D  :  Q'P.  =  Q'P .  =  .  P  =  (P^po . 
[*260-27]  =.P  =  Pt^:.D\-.  Prop 


*261-22.     h  :  P  6  Ser .  C"P  e  Cls  ind uct .  D  .  P  =  P,„ .  D'P  =  D'P, .  Q'P  =  Q'P, 
Dem. 

h  .  *260-12  .  *201-18  .  D  h  :  Hp  .  D  .  P,„  G  P  (1) 
I- .  *121-242  .                D  h  :  Hp .  xPy  .':i.x,yeP{x\-\y).x^y. 

[*52-41]  D.P(a;M2/)~60ul  (2) 

-   I-.*120-481.  DI-:Hp.D.P(a!M2/)6Clsmduct  (3) 

I- .  (2) .  (3)  .  *260-l  1 .  D  h  :  Hp .  a;P2/ .  D .  xPf^y  (4) 

l-.(l).(4).  Df-:Hp.D.P  =  P,„.  (5) 

[*260-3]  D  .  D'P  =  D'P, .  Q'P  =  G'P,  (6) 

I- .  (5) .  (6) .  D  h  .  Prop 

*261-23.     h  :  PeSer .  D'Pi  =  D'P.~  E  !  5'P .  g  !  P.  D  .  C'PeCls  refl 
Dem. 


^      <- 


h.*91-52.    DI-.P,"(PO*'a;  =  (P,)po'a'  "    (1) 

h.*91-54.*260-22.D 


h  :  Hp  .  a;  e  (7'P .  D  .  (Pi V«  =  ''« »^  (-POpo'^  ■  a^  ~  e  (-Pi)po'«  (2) 

l-.*93-ll.    Dh:Hp.D.D'Pi  =  C"P.  (3) 

[*9018]                       D.(KVa'CD'P,  (4) 

I- .  *260-22  .  D  I- :  Hp .  D  .  Pi  e  1  ->  1  (5) 

h  .  (1)  .  (2) .  (4)  .  (5) .  *r3-21 .  *91-74 .  D 
<- —         <- 


h  : .  Hp  .  D  :  a;  e  G'P .  D  .  (P,)*'^  sm  (POpo'a^  ■  (Pi)po'*  C  (P,  V«'  ■ 

^ a!(PO*'a!-(POi^o'«'- 

[*124-16]  3 .  (P'O^'x  6  Cls  refl  (6) 

I- .  (6)  .  (3) .  (4) .  D  I- :  Hp .  D  .  a  !  Cls  refl  n  Cl'CP  . 
[*124141]  "  D.C'Pe  Cls  refl  :  D  h  -  Prop 


124  SERIES  [PABT  V 

*261-24.     Y-iFeSer.G'Pe  Cls  induct  -  I'A  .  D .  E  !  £'P  .  E  !  fi'P 

Bern. 

h  .  *261-22  .  D  h  :  Hp  .  D  .  D'P  =  D'P^ . 

[*261-23.Transp]  D .  E !  5'P  (1) 

h.(l)^.      DI-:Hp.D.E!5'P  (2) 

h  .  (1) . (2) .  D  h  .  Prop 

*261-25.     h  i.PeSer .  D  :  C'P  e  Cls  induct  -  t'A  .  =  .P  =  P,„.E!£'P.  ElB'P 

[*261-22-24-21] 

When     P  =  P,„  .  E !  5'P .  ~  E  !  B'P,  P  is  a  progression ; 

when  P  =  P,„ .  E  !  5'P .  ~  E  !  £'P,  Pisa  regression 

(i.e.  the  converse  of  a  progression) ;  and  when 

P  =  P,„  .  ~  E  !  5'P  .  ~  E  !  B'P, 

P  is  the  sum  of  a  regression  and  a  progression.     These  propositions  will  be 
proved  in  the  next  number. 

*261-26.     1- :  P  €  Ser .  a  C  C'P .  a  !  a .«  6  Cls  induct .  D .  E !  minp'a .  E !  maxp'a 
Dem. 
i- .  *205-17  .Dt-:Hp.«el,D.EI  minp'a .  E  !  maxp'a  (1) 

h  .  *202-55  .Dh:Hp.a~6l.D.  a=0'(P  I  a)  . 
[*261-24]  D  .  E  !  B'{P  ^  a) .  E !  B'Cnv'(P  ^  a)  . 

[*205-42]  D  .  E  !  minp'a .  E  !  maxp'a  (2) 

h  .  (1) .  (2)  .  D  h  .  Prop 

*261-27.     h  :.  P  6  Ser :  a  C  C'P .  a  !  a .  3^  .  E  !  minp'a .  E  !  maxp'a :  D  . 

P  =  P,„.C"P  6  Cls  induct 
Dem. 

t-.*250121  .DhiHp.D.Pefi. 

[*250'21]  D.D'P  =  D'P,. 

[*260-3]  D.D'P  =  D'P,„  (1) 

I- .  (1)  .  D  I- :  Hp  .  ajP,„2/ .  2/ 6  D'P .  3  . 2/ e  D'P,„ .  ^P,„y . 

[*260-201]  D.ye  P,„"P,n'a; . 

[*260-12.*201-18]  O.ye  P"%n'x . 

[*205-lll]  D.2/  +  maxp'P,/a!  (2) 

I- .  (1) .  (2)  .  Transp .  D  h  :  Hp .  a?  e  D'P .  D .  maxp^P,„'ar  =  B'P       (3) 

h  .  *260121-13 .  D  h  :  Hp .  a  !  P .  D  .  E !  .B'P . 

[(3)]  0.(B'P)Pt„{B'P)- 


SKCTION  E]  finite   AND   INFINITE   SERIES  125 

[*260-l  1]  D  .  P  (B'P  M  B'P)  6  Cls  induct . 

[*202-181]             *                        D.CP 6 Cls  induct  (4) 

f- .  *120-212  .  D  h  :  P  =  A .  D  .  C'P  6  Cls  induct  (5) 

H.(4).(5).    Df-iHp.D.CPeClsinduct.  (6) 

[*261-22]                       3.P  =  Pf„  (7) 
1- .  (6) .  (7) .  3  I- .  Prop 

#261-28.     hiiPeSer.D:. 

a  C  a'P .  a !  a .  Da .  E !  minp'o  .  E !  maxp'a  •.  =  .G'P€  Cls  induct 
[*261-26-27] 

*261-281.  I- :  7  e  Cls  induct  -  1 .  D  .  7  e  0"Ser 

Dem. 

y .  *204,-24 .  D  h .  A  e  0"Ser  (1) 

f-.*52-22.  Dl-.Aut'icel  (2) 

I- .  *52-22  .  D  h  :  a;  =  2/ .  D  .  t'a;  u  I'y  e  1  (3) 

I- .  *204-25 .  :>\-:x^y.O  .I'x^Ji'ye  C'Ser  (4) 

l-.(3).(4).  D\-.i'xyJi'yelwC"Sev. 

[*52-l]  Dhzyel.D.yyJi'yelyj  C'Ser  (5) 

f-.*51-2.  0[-:yeG"Ser.yey.D.y\Ji'yeG"Ser  (6) 

h  .  *204-61 .  *161-14  .  D  h  :  7  e  0"Ser  .^ly. y^ey  .0  .yyj  I'ye  C"Ser        (7) 

l-.(6).(7).  Dl-:760"Ser.a!7.D.7ut'2/60"Ser  (8) 

h.(2).(5).(8).  Dh:7elwO"Ser.D.7ui'y6luC"Ser  (9) 

h  .  (1) .  (9) .  *120-26  .  D  h  :  7  e  Cls  induct .  D  .  7  e  1  w  C"Ser  :  D  h  .  Prop 

*261-29.     I- .  Cls  induct  = 

1  w  G"P  {P  6  Ser  :  a  C  C'P  .  a  !  a  .  D,  .  E  !  min^'a  .  E  !  maxp'a} 
=  1  u  C"(n  n  Cnv"n) 
Dem. 
h  . *261-281 . D  h  :. 7  6Cls  induct- 1 .  D  : (gP) : PeSer  .y=G'P : 
[*261-28] 

D  :  (aP)  :  P  e  Ser  :  a  C  C'P .  a  !  a .  D. .  E  !  miup'a .  E !  maxp'a :  7  =  G'P  : 

[*37-6]      D  :  7 e  G"P{P  e  Ser :  a  C  (7'P.  a  ! « .  D„ .  E  !  minp'a  .  E  !  maxp'a}  (1) 
h.*261-28.Df-:.PeSer: 

a  C  G'P .  a !  a  ■  3a  -  E !  minp'a  .  E !  maxp'a  :  7  =  O'P :  3 . 7  e  Cls  induct : . 
[*37-6]  3  h  :  7  e  C"P  (P  e  Ser  :  a  C  O'P .  a !  « .  D„ .  E  !  minp'a .  E !  maxp'a) .  D  . 

7  6  Cls  induct    (2) 

V  .  *120-213  .  D  h  .  1  C  Cls  induct  (3) 
h.(l).(2).(3).D^ 

V  .  Cls  induct  =  0"P  {P  €  Ser :  a  C  (7'P  .  a  !  « ■  3.  ■  E  !  minp'a .  E  !  maxp'a} 
[*250-121]      =  G"(n  n  Cnv"n)  .31-.  Prop 


126  SEBiES  [part  V 

The  following  four  propositions  are  immediate  consequences  of  the 
propositions  already  proved. 

*26r3.       l-::PeSer.D:. 

G'P  e  Cls  induct .  =  :  P  e  fl :  a  C  O'P .  g  !  a .  D„ .  E  !  maxp'a 
[*261-28  .  *250121] 

*261-31.     h  :.  P  e  Ser.  DiO'Pe  Cls  induct.  =  .P,Pefl   [*261-3  .  *250121] 

*261-32.     h  .  Ser  n  0"Cls  induct  =  n  induct  =  n  n  Onv"n     [*261'31-14] 

On  account  of  this  proposition,  we  do  not  introduce  the  notation  "  Ser 

induct "  for  "  Ser  n  (7"Cls  induct,"  because  a  series  whose  field  is  inductive 
is  a  well-ordered  series,  and  therefore  the  notation  "  fl  induct "  gives  all  that 
is  wanted. 

*261-33.     \-iP,Qea.QQ.P.D.Qea  induct 
Dem. 

I- .  *204-2  .  D  h  :  Hp .  D  .  Q  e  Ser .  Q  G  P  . 

[*2o0-14]  D.QeSernBord. 

[*2.50-12]  D.Qen. 

[*261-32]  D  .  Q  6  n  induct :  3  h  .  Prop 

This  proposition  (which  is  due  to  Cantor)  is  of  great  importance  in  the 
theory  of  well-ordered  series.  It  shows  that,  however  great  a  well-ordered 
series  may  be,  any  descending  well-ordered  series  contained  in  it  must  be 
finite.  (A  descending  series  in  a  given  series  is  a  series  contained  in  the 
converse  of  the  given  series.) 

*26134.     1- :  P  e  fl .  Q'Pi  =  Q'P  .  E  !  B'P  .D.G'Pe  Cls  induct 
Dem. 

h .  *250-23  .  *214-12  .  D  h  :.  Hp .  a  C  G'P .  D  :  E  !  maxp'a .  v .  E  !  seqp'a     (1) 
h  .  *206-181 .  D  h  :  Hp .  a  C  C"P .  a  !  a .  E !  seqp'a .  D  .  seqp'a  e  a'P, . 
[*204-7]  D  .  E !  P/seqp'a  . 

[*206-451]  D .  E !  maxp'a  (2) 

h  .  (1) .  (2) .    D  h  :.  Hp .  3  :  aC  O'P .  a  !  a .  D, .  E !  maxp'a  : 
[*261-3]  D:C'Pe  Cls  induct :.  D  h  .  Prop 

*26135.     h  :.  P  e  fl .  D  :  O'P  e  Cls  induct  -i'A.  =  .  Q'P,  =  Q'P  .El  B'P 
[*261-22-24-34] 

Observe  that  "a'Pi  =  Q'P .  E  !  £'P"  occurs  as  hypothesis  in  *253-5l 
and  some  succeeding  propositions.  Thus  this  hypothesis  is  equivalent  to  the 
hypothesis  that  the  field  of  P  is  an  inductive  existent  class.     It  follows  that 


SECTION  E]  finite   AND   INFINITE   SERIES  127 

if  P  is  an  inductive  well-ordered  series,  Nr'Ps  =  Nr'P,  whereas  if  P  is  a 
well-ordered  series  which  fc  not  inductive,  Nr'Ps  =  Nr'P  4- 1 ;  also  that 

*261-36.     1- :.  P  6  ft  .  D  :  C'P  6  Cls  induct  -  t'A  .  =  .  Nr'P  +  1  +  Nr'P 
[*253-573 .  *261-35] 

*261-37.     h  :.  P  e  O  .  D  :  O'P  e  Cls  induct .  = .  1  -f- Nr'P  =  Nr'P -j- 1 
[*253-574  .  *261-35  .  *161-2-201] 

*261-38.     h  :.  P  6  n  .  3  :  O'P  e  Cls  induct  -  t'A  .  D  .  Nr'P,  =  Nr'P  : 

G'P  ~  6  Cls  induct  -  t'A .  D  .  Nr'P,  =  Nr'P  + 1 
[*253-56 .  *261-35] 

*261-4.       hiPeil-D,  induct .  D  .  {^,)^'B'P}  1  P,  e  Prog 

Dem. 
t-.*204-7.      DI-:Hp.ii  =  Pi.D.Pel-»l  (1) 

h  .  *120-212  .  D  h  :.  Hp .  3  :  a  !  P  : 
[*250-13]  D  :  E !  5'P  : 

[*250-21]  D:ii  =  P,.D.5'PeD'i2  (2) 

l-.*260-22.    DI-:Hp.ii  =  Pi.D.EpoG/  (3) 

h  .  *93103  .  *202-52  .  D 

\-:Peil.B  =  P,.^l%'B'P-D'P.:>.B'P6%'B'P. 
[*93-101.*91-54]  D  .  (5'P)  iipo  (B'P) . 

[*260-27]  D.(B'P)Pt,{B'P). 

[*261-2]  3 .  G'P  e  Cls  induct  (4) 

1- .  (4)  .  Transp  .  D  h  :  Hp  .  jB  =  P^ .  D  .  R^'B'P  C  D'P  . 
[*250-21]  D .  B^'B'P  C  D'R  (5) 

h  .  (1) ,  (2)  .  (3) .  (5) .  D  I- :  Hp .  i2  =  Pi .  D  . 

Rel->l.B'Pe  B'R .  ~  {{B'P)  R^  (B'P)} .  ^^'B'P  C  D'P  . 
[*122-52]  D  .  (^^'B'P)  1  i?  e  Prog  :  D  h  .  Prop 

*261-401.  h  :  P  e  II  -  n  induct .  D  .  g  !  «„ «  Cl'O'P .  G'P  e  Cls  ret! 
Dem. 

I- .  *261-4 .  *123-1  .  D  H  :  Hp .  D  .  J)'{{P^'B'P}  1  Px  e  N„  (1) 

l-.*121-305.  Dh:Hp.D.D'{(PxV5'P}1PjC0'P      "  (2) 

|-.(1).(2).  Dh:Hp.D.a!N„nCl'0'P.  (3) 

[*12415]  D.C'PeClsrefl  (4)   • 

h  .  (3)  .  (4)  .  3  h  .  Prop 


128  SERIES  [part  V 

*261-41.     f- .  fl  -  n  induct  =  «  infin     [*261-401  .*261-11  .*124-271] 

*261-42.     h  .  fl  fin  =  fl  induct  [*261-41 .  Transp .  *124-27l] 

We  shall  henceforth  use  "  n  fin  "  in  preference  to  "  XI  induct." 

*261-43.     h  .  G"n  C  Cls  induct  w  Cls  refl    [*261-4pll4] 

*261-431.  hiPefl-i'A.D. 

{(Ah'B'P}  1 A  =  P,  WB^  =  A  t  (I'B'P  u  %,'B'P) 

=  (i'B'Pyj%'B'P)'{P, 
Dem. 

I- .  *25013-21 .  D  f- :  Hp .  D .  £'P  6  D'P, .  (1) 

[*260-31]  D .  I'B'P  yj%^'B'P  =  (P^'B'P  (2) 

i- .  (1) .  *260-27  .  D  h  :  Hp .  D  .%„'B'P  =  (P^'B'P  - 

[*260-34]  O.P,\-  K'B'P  =  mh'B'P}  1 P,  (3) 

[(2)]  _  ={i'B'P^%^'B'P)^P,  (4) 

h  .  (3) . (4) .  *35-l  1 .  D I- :  Hp .  D . {(P^)^'B'P\ ^P,  =  P^t {i'B'P  «  K'^'-P)     (5) 
h  .  (3) .  (4) .  (5) .  D  h  .  Prop 

*261-44.     I- :.  P  e  n  .  D  :  P,  f  Pf/^'-P  e  Prog  .  =  .  P  e  II  infin 
Dem. 

h  .  *123-1 .  3  1- :  Pefi .  P^ f  PJn'^'^ e Prog .  D  .  g  !  K„  n  Cl'C'P  - 

[*124-15]  D.CPeClsrefl. 

[*261-1]  D.  Pell  infin  (1) 

h  .  *261-4-431-41  .  D  h  :  P  e  fl  infin  .':).P,\-  PJn'-B'P  e  Prog  (2) 

1- .  (1)  .  (2) .  D  h  .  Prop 

*261-45.     I-.  O  infin  =  nnP{P,pP,„'B'Pe  Prog}     [*261-44] 

*261-46.     y-.Pen.D.  GVG'P  C  Cls  induct  v^  Cls  red 
Bern. 

h  .  *250-141 .  *202-55  .  D 

h:Hp.aCO'P.a~el.D.Ptaefl.a=G'(PDa). 
[*261-43]  D  .  a  6  Cls  induct  u  Cls  refl  (1) 

I- .  *120-213 .  D  h  :  a  e  1 .  D .  a  6  Cls  induct  (2) 

I- .  (1)  .  (2)  .  D  h  .  Prop 

*261-47.     h  :.  P  e  n  .  a  C  O'P  .  D  :  o  6  Cls  induct .  s  .  a~  e  Cls  refl 
[*261-46  .  *124-271]    ^ 

*26r6.       h  :.  Pen .  C'P C fi . Nc'C'P  =  v .  Dp.  n'Pefi : 

v  6  Nc  induct  -  t'O  —  t'l :  D  : 

Dem. 
h  .  *204-272 .  D  I- :  Nc'D'Q  =  1 .  Q  e  Ser .  D  .  Q  e  2,  . 
[*56-112]  D.0'Qe2  (1) 


SECTION  E]  finite  AND   INFINITE   SERIES  129 

h  .  (1) .  Transp .  D  h  :  Q  e  fl .  O'Q  C  fi  .  Nc'G'Q  =  v  +„  1 . 

•      veNC  induct- i'0-fc'l.D.D'Q~6l     (2) 
h  .  *261-24 .  D  I- :  Hp(2) .  D  .  E !  £'Q  . 
[(2).*204-461]  3 .  Q  =  Q  D  D'Q  4»  5'Q  - 

[*l72-32]  D  .  n'Q  smor  n'(Q  t  D'Q)  x  B'Q  (3) 

h .  *110-63  .  D  H  :  Hp  (2) .  D .  Nc'D'Q  +„  1  = ,;  +„  1  . 

[*120-311]  3 .  Nc'D'Q  =  1/  (4) 

H  .  (4) .  D  h  :.  Hp  (2)  :  P  6  XI .  C'P  C  fi  .  Nc'O'P  = .. .  Dp  .  H'P  e  fi :  D  . 

n'(QDD'Q)en. 

[(3).*251-55]  D .  n'Q  e  n  (5) 

h  .  (5)  .  Exp  .  D 

h  :.  Hp .  D  :  QeO .  O'QC  n  .  Nc'(7'Q  = «; +„  1 .  D  .  n'Qefi  :.  D  h  .  Prop 

*26r61.     l-:Penfiii.C7'PCn.D.n'Pen 

Dem. 
h  .  *26 1  -6 .    D  h  : :  ^i; .  =  „ :  P  6  XI .  O'P  C  n .  Nc'O'P  =  v .  Dp .  H  'P  e  XI : .  D  : . 
1/  6  Nc  induct  -  I'O  -  t'l .  D :  ^v .  D  .  ^  (y  +e  1)  (1) 

h  .  *200-12  .  D  I-  .~(aP) .  PeXi .  O'PCXl .  Nc'(7'P=  1 . 
[*10-53]        Dh:Hp(l).D.^l  (2) 

h  . *172-13  . *250-4 .    D  h  :  Hp(l).  D.  (/)0  (3) 

h  .  *l72-23  .*251-55  .  D  h  :.  F+Z.  F,  Ze  O .  D  :  H'CFJ,  ^,  n'(-^4,  F)  e  XI : 
[*55-54.*204-13]  D  iPeSer .  0'P=  t'Fw  i'^.  D  .  O'PeXl       (4) 

l-.(4).*54-101.DI-:Hp(l).D.^2  (5) 

I- .  (2) .  (3) .  (5) .  Dh:.Hp(l).D:^0:./6t'0ui'l.^K.D.<|)(i'+„l)      (6) 
h .  (1) .  (6) .  D  h  :.  Hp (1) .  D  :  J/ e NC  induct  .<}>v.O^  .^(v+^l):<f>0  : 

[*120-13]  D  :  a  e  NC  induct .  D^  .  (/>«  (7) 

h  .  (7)  .*13-191 .  D  h  iPeXl .  O'PCXl .  Nc'C'PeNC  induct .  Dp.  H'PeXl : 
[*261-14-42]         D  h  :  P eX2  fin .  G'P C X2 .  Dp .  U'P e XI :  D  h  .  Prpp 

*26162.     h:PeXi.QeXlfin.D.P«eXl 
Bern. 

I-.*251-51.  DhiHp.giP.D.PiJQeXi  (1) 

l-.*165-26.  Dh-.Rp.O.C'Pi'QCO.  (2) 

■J 

h .  (1) .  *165-25  .  *261-18 .  D  I- :  Hp .  g !  P .  D  .  P  jt^  JQ  e  Xl  fin  (3) 

h.(l).(2).(3).*261-61.Dh:Hp.a!P.D.n'P4,;Q6Xl. 

[*176-181-182]  D.P«6ft  (4) 

l-.*l76-151.*250-4.         DI-:P  =  A.D.pe6Xl  (5) 

h  .  (4) .  (5) .  D  h  .  Prop 

H.  &W.    III.  9 


130  SERIES  [part  V 

*261-63.     ^zElB'R.PQQ.xeG'Qn  p'Q"C'P .  D  . 

(I'a;)  t  G'B  e  C'Q^  np'^"G'P^ 
Bern. 

V  .  *11612  .  D  I- :  Hp .  D  .  {I'x)  t  G'B  e  (G'Q  f  G'R)a'G'R  . 

[*176-14]  D .  (I'x)  t  G'R  e  G'Q^  (1) 

h  .  *11612  .  *9311 .  D  h  :.  Hp  .  S e {G'P  t  G'R^G'R .  T  =  (t'a;)  t  O'i? .  3  : 

(fif'5'E)  Q  (T'5'E) :  ~  (ay) .  yR  (B'R)  : 

[*10-53]  D  :  (S'B'R)  Q  (T'B'R) :  yR  (B'R)  .y^B'R.Oy.  S'y  =  T'y  : 

[*l76-19.(l)]D:^f((2«)r  (2) 

h  .  (2) .  *17616  .  D  h  :.  Hp .  3  :  <S  e  G'P^ .  D  .  /S  (Q«)  {(t'«)  t  G'R]  (3) 

I- .  (1) .  (3) .  D  h  .  Prop 

*261-64.     I- :  E e n  fin  -  t'A .  Pless Q .  D .  P« less  Q« 

Bern. 
h  .*254-55 .  D  I- :  Hp .  D  .  (aF) .  P'  smor  P .  P'  G  Q .  a !  G'Qnp'Q'"G'P' . 
[*261-63.*25013]      D .  (aP')  ■  P'  smor  P .  P'  G  Q .  a  !  0'Q«  n  p'^"C'{PY  - 
[*l76-35-22]  D  .  {'^M)  .  If  smor  P« .  M  G  Q^ .  a  !  G'Q''  n  p^^"G'M . 

[*254-55.*261'62]      D  .  P*  less  Q« :  D  h  .  Prop 

*261-65.     l-:PeOinfin.QeI2fin.D.QlessP 
Bern. 

h  .  *261-ll-14-42  .  D  h  :  Hp .  D  .  G'P  e  Cls  refl .  G'Q  e  Cls  induct . 
[*124-26]  D .  Nc'C'P  >  Nc'C'Q . 

[*255-75]  D  .  Q  less  P :  D  h  .  Prop 


*262.     FINITE  ORDINALS. 

Summary  of  *262. 

Finite  ordinals  are  defined  as  the  ordinals  of  finite  well-ordered  series ; 
infinite  ordinals  are  defined  as  the  ordinals  of  infinite  well-ordered  series. 
In  virtue  of  *261"42,  finite  ordinals  are  those  whose  members  have  fields 
which  are  inductive,  and  are  also  those  whose  members  have  fields  which  are 
not  reflexive.  Finite  ordinals  have  the  formal  properties  which  cardinals  have 
but  which  relation-numbers  and  ordinals  in  general  do  not  have,  i.e.  their 
sums  and  products  are  commutative,  and  the  distributive  law  holds  in  the 
form 

;a  >C  (v  +  ot)  =  (a*  X  v) -i- (/i  X  isr), 

as  well  as  in  the  form 

(v  +  ot)  X /i  =  (j' X /".) -i- (si- X /i), 

which  was  proved  generally  in  *184'35. 

The  distinguishing  properties  of  finite  ordinals  are  most  readily 
established  by  means  of  their  correspondence  with  inductive  cardinals.  In 
general,  two  well-ordered  series  whose  fields  have  the  same  cardinal  need 
not  be  ordinally  similar,  but  when  the  cardinal  of  the  fields  is  inductive, 
the  two  series  must  be  ordinally  similar.  Hence  the  ordinal  of  a  finite  well- 
ordered  series  is  determined  by  the  cardinal  of  the  field  of  the  series.  We 
put  generally 

^l^  =  D,r^C"^l     Df. 

The  result  is  that,  if  fi  is  an  inductive  cardinal,  fi,f  is  the  ordinal  of  all  those 
series  whose  fields  have  /t  members.  Thus  there  is  a  one-one  correspondence 
of  inductive  cardinals  and  finite  ordinals  ;  and  in  virtue  of  this  correspondence, 
the  formal  properties  of  finite  ordinals  can  be  deduced  from  those  of  inductive 
cardinals. 

It  will  be  observed  that,  according  to  the  definitions  already  given, 

h.O^  =  ilnC"Aby  *250-43, 

h  .  2,  =  n  n  C"2  by  *250-44. 

9—2 


132  SKEiEs  [part  V 

Hence  the  notations  0^,  2^  are  particular  cases  of  the  general  notation  fir. 
But  in  virtue  of  *200-12,  we  have,  by  the  definition  of  fir, 

h  .  1^  =  A, 
so  that  1,  does  not  take  its  place  in  the  series  of  finite  ordinals. 
Our  definitions  in  this  number  are 

NO  fin  =  Nor"Il  fin        Df, 
NO  infin  =  Nor"n  infin     Df, 
/A,.  =  flnO"/i         Df. 
It  will  be  observed  that  for  the  sake  of  convenience  we  have  defined  NO  fin 
and  NO  infin  so  as  to  exclude  A.     The  definition  of  /i,  is  chiefly  useful  when 
fi  is  an  inductive  cardinal. 

The  number  begins  with  various  elementary  propositions,  partly  embody- 
ing the  definitions,  partly  concerned  with  fi^.     We  have 

*262-12.     l-:Pe/t,.=  .P6«.a'Pe/i 

*262-18.     t-:/ieNC.a!/v.D./t=  G"iir 

This  proposition  does  not  require  that  (ir  should  be  a  relation-number. 
If  /i  is  a  reflexive  cardinal,  /i,  is  not  a  relation-number  unless  it  is  null, 
because  series  of  many  different  relation-numbers  can  be  made  with  a  given 
cardinal  number  of  terms.  When  /i  is  a  cardinal,  "g  !  fi"  means  that  classes 
having  /ti  terms  can  be  well-ordered. 

^26219.     h  :.  ytt,  1/  e  NO  .  g  !  /*, .  D  :  /*  =  i; .  =  .  /t^  =  v. 

Thus  the  relation  of  fi  to  jir  is  one-one  so  long  as  /t  is  the  cardinal  number 
of  a  class  which  can  be  well-ordered. 

We  next  prove  that  if  /t  is  an  inductive  cardinal  other  than  A  or  1,  /^^  is 
a  finite  ordinal,  and  that  every  finite  ordinal  is  of  the  form  /t,  for  an  appro- 
priate fi.     We  have 

*262'21.     I- :  ytt  e  NC  induct  -  I'A  -  t'l .  D  .  g  !  /^^ 

*262-24.     h  :  /t  6  NO  induct  -  t'A  -  I'l  .  D  .  /i^  e  NO  fin 

We  prove  this  by  means  of  an  inductive  proof  that  two  series  are  similar 
if  their  fields  are  inductive  and  similar. 

*262-26.     V-.ae  NO  fin  .  s  .  (g/t)  .  /*  e  N„C  induct  -  I'l.  a  =  fi^ 

Hence  we  easily  obtain  the  properties  of  finite  ordinals  from  those  of  the 
corresponding  cardinals.  Assuming  that  fi,  v  are  inductive  cardinals  other 
than  1,  we  have 

.  *262-33.      Ilr  +  Vr  =  (ji  +0  V)r 

*262-35.    /i,  -}- 1  =  (/i  -He  1),,  if  At  +  0, 

*262-43.      flr'kVr=(jJiXe  v)r 


SECTION  E]  finite  ORDINALS  133 

*262-53.  fj^  exp^  Vr = ifi'^,  if  v  +  0, 

*262'7.  /i  ">  V  .  =  .  fifi>  Vr 

Hence  if  a,  /S,  7  are  finite  ordinals, 

*262-6.  a+^  =  i3+tt 

*262-61.  aX(S  =  /3xa 

*262-62.  ax(;8-i-7)  =  (o>Cy8)  +  (aX7) 

*262-63.  (a  x  0)  exp,.  7  =  (o  exp^  7)  X  (/3  exp^  7) 

Thus  the  arithmetic  of  finite  ordinals  obeys  the  same  formal  laws  as  the 
arithmetic  of  inductive  cardinals. 


*26201.  NO  fin  =  N„r"fl  fin  Df 

*26202.  NO  infin  =  N„r"r2  infin     Df 

*26203.  fj.r  =  nnG"/i  Df 

*262-l.  l-:a6N0fin.s.(aP).Penfin.a  =  N„r'P  [(*262-01)] 

*26211.  I- :  a 6 NO  infin  .  =  .  (gP) .  P  e  fl  infin  .  a  =  Nor'P     [(*26202)] 

*262111.  h  :.  a  e  NO  fin  .  =  :  a  6  N„0  :«=t=i  +  «.v.a=0^: 

=  :  a  6  NO  :a=fi-i-a.v.a  =  Or 
Dem. 

I- .  *262-l .  D 

l-:.aeN0fin.  =  :a6N„0:(aP).P6nfin.«=Nr'P: 

[*261-36]  =  :  aeN„0  :  (gP)  :  Nr'P  + 1  +  Nr'P .  v .  P  =  A :  «=Nr'P : 

[(*255-03)]        =:a6N„O:a4=l  +  a.v.a=0r:  (1) 

[*180-4.*155-5]=  :  oeNO  :  a+  i-j-a  .  V .  a  =  Or  (2) 

H .  (1)  .  (2) .  D  I- .  Prop 

*262112.  h  :  a  £  NO  infin  .  =  .  aeNoO  -  I'O, .  1  +  a  =  a 
[*262-lll ,  Transp .  *261-13] 

*26212.     \-:Pe,ir.  =  .Pen.C'Pe/j.    [(*26203)] 

*26213.     H  :  Nr'PeNOfin  .  =  .Pefl  fin  .  =.  PeQ  .  C'PeCls induct 

Dem. 
1- . *262-l .  D  1-:  Nr'PeNO  fin  .  =  .  (gQ) .  Q e fl  fin .  Nr'P  =  N„r'Q . 
[*152-35.*155-13]  =  .  (gQ)  .  Q  e  li  fin  .  P  smor  Q  . 

[*261-183]  =.Penfin.  (I) 

[*261-4214]  =.  Pe  fit.  O'P  6  Cls  induct  (2) 

h  .  (1) .  (2) .  D  f- .  Prop 


134  SERIES  [part  V 

*26214.     h  :  Nr'P  e NO  infin  .  s  .  P e  fl  infin  .=  .  F eCl .  G'P eC\s refl 
[Proofa8m*262-13] 

*26215.     h  : .  a  6  NoO  .  3  :  a  e  NO  fin  .  =  .  G"a  e  NO  induct 
Dem. 

1- .  *262-13  .  *120-21 .  D 

|-:N„r'P6NOfin.  =  .Pefl.N„c'(7'P6NCinduct     "  (1) 

I- .  (1) .  *251-1 .  D 

h  :.  N„r'P  e  NO  .  D  :  Nor'P  e  NO  fin  .  =  .  N„c'(7'P  e  NO  induct . 

[*152-7]  =  .  C'Nor'P  e  NO  induct       (2) 

l-.(2).*155-2.Dh.Prop 

*26216.     l-:.aeN„O.D: 

a  6  NO  infin  .  =  .  G"a  ~  e  NC  induct .  =  .  C"a  e  NO  refl 
[Proof  as  in  *262-15] 

*26217.     h:Pef2.D.P6(Nc'C"P),. 

Dem. 

I- .  *100-3 .  D  h  .  C'P  6  Nc'C'P  (1) 

h  .  (1) .  *26212  .  D  h  .  Prop 

*26218.     l-:/i6NC.a!/ir.D./i=(7"/ir 

Z)em. 

|-.*262-12.       Dh.C'firCfi  (1) 

l-.*262-12.       'D\-:ae/j..Pe/j.r.D.a,G'P6fi  (2) 

I- .  (2) .  *100-5.  D  I- :  Hp  .  a e /i .  P 6/ir .  D  .  asm  (7'P . 

[*73-l]  D.(aS).;S'6l^l.a  =  D'/S.C"P  =  a'/S. 

[*151-1.*1 50-23]     D  .  (a/S)  .  iSfJPsmorP .  C'SiP^a. 

[*251-111.*262-12]  D .  (g^f) .  /SJPe  O  .  G'S'P^a . 

[*262-12.Hp]  D.(afif)./Sf;Pe/i^.C">Sf;P=a. 

[*37-6]  D.aeG"fir  (3) 

I- .  (3) .  *10-23 .  D  h  :  Hp .  D  .  /t  C  0' ^  (4) 

h  .  (1) .  (4)  .  D  I- .  Prop 

*26219.     \-:.  ii,ve  NO  .  g  !  /t,. .  D  :  /*  =  y .  =  .  /i^  =  I'r 
Dem. 

l-.*262-12.Dh:/4  =  i'.D./ir=i/^  (1) 

h  . *262-18  .  D  H  :  Hp . /i,  =  i/^ .  D  .fi=G"vr 
[*262-18]  =  1^  (2) 

h  .  (1) .  (2) .  D  I- .  Prop 


SECTION  E]  FINITE  ORDINALS  135 

*262-2.       h .  Cls  induct  - 1  =  G"(n  n  Onv"12) 
Bern.  • 

h .  *261-29  .  D  h  .  Cls  induct  - 1  =  C"(f2  n  Cnv"Xl)  - 1 
[*200-12]  =  (7"(fi  n  Cnv"n) .  D  h  .  Prop 

*262-21.     h  :  /i  6  NO  induct  -  I'A  -  I'l .  D .  g  !  /^^ 
Bern. 
h  .*120-2  .*100-43 .  D  I- :  Hp .  D  .(ga) .  a  e /* .- a  e  Cls  induct .  a~el . 
[*262-2]  D.(ao,P).a6/i.Pen.O'P  =  a. 

[*262-12]  D.a!/*,:DI-.Prop 

*262-211.  h  :  a  6  Cls  induct  -  1 .  D .  g  !  (Nc'a),  n  f„„'a 

-Dem. 
h  .  *262-21 .  *108-12  .  3  h  :  Hp .  D  .  g  !  (N„c'aX .  a  e  N„c'ffl . 
[*26212]  D .  (gP) .  P  e  (Nc'o), .  G'P  e  N„c'a .  a  e  N„c'a  . 

[*63-13]  D  .  (gP)  .  P  e  (No'a), .  O'P  e  t'a . 

[*64-24.*35-9]  D  ,  (gP) .  P  e  (Nc'aX .  P  e  <'(o  |  a) . 

[*64-ll]  D  .  a  !  (Nc'a),  n  «„o'a  :  D  h  .  Prop 

*262-212.  h:/i=|=0./i4=l.P6(/*+elV.D.Pta'P6yiv 

i)em. 
h.*262-12.  DhiHp.D.C'Pe/i+el.Pefl.  (1) 

[*110-4]  D./4  6NC-t'A  (2) 

I- .  *93103  .  *250-13  .  D  I- :  Hp  .  D  .  O'P  =  I'B'P  w  a'P .  B'P  ~  e  Q'P . 
[*1 10-63]  D  .  Nc'C'P  =  Nc'a'P  +„  1 . 

[(1).(2)]  D./i+el  =  Nc'a'P+„l. 

[*120-311.(1)]  D.yii  =  Nc'a'P.P6n. 

[*202-55.*250-141]  D .  /i  =  Nc'C"(P  p  Q'P) .  P  ^  Q'P  e  fi . 

[*26212.*100-3.(2)]  O.Pl  Q'P  e  /i^ :  D  h  .  Prop 

*262-213.  \-:.fi^0.fij=l:P,Qefir-  Dp.q.  PsmorQ  :  D  : 

P,  Q  6  (yi*  +0  l)r .  3p,Q  .  P  smor  Q 
Bern. 

|-.*262'21212.*120-124.D 

l-:Hp.P.(26(/i+„l),.D.PCa'P,Qta'<26/^.P,Q6ll-t'A. 

[*ll-l.Hp]  D  .  P  t  a'P  smor  Q  la'Q .  P,  Qe  fl  -  t'A  . 

[*25017]  D  .  P  stnor  Q  :  D  I- .  Prop 


136  SERIES  [part  V 

*262-22.     h  :  ;x  6  NO  induct  .P,Qefir.D.P  smor  Q 

Bern. 
I- .  *153-101 .  *262-12  .  3  h  :  P,  Qe  Or .  D  .  P  smor  Q  (1) 

h.*200-12.  D\-.lr  =  A. 

[*10-53]  D  h  :  P,  Q  e  Ir .  D  .  P  smor  Q  (2) 

l-.*153-202.  Dt-:P,  Q6  2,.  .D.PsmorQ  (3) 

H  .  (2) .  (3) .  *2-02  .        D\-:.fj.  =  0.v.fi  =  l: 

P,Q6iXr.Dp,Q.P  smor  Q  :  D  :  P,  Q  e  (ytt  +e  !>  ■  3p.Q  .  P  smor  Q     (4) 
I- .  (4) .  *262-213  .  D 

l-:.P,  Qe/i,.  Dp,Q.P  smor  Q:  D  :  P,Q  e  {/j,  +^1\  .  Dp,q  .  P  smor  Q  (5) 

h  .  (5)  .  (1)  .  Induct .  D  h  .  Prop 

*262-23.     I-:.P,  Q6nfin.D:C"PsraC"Q.=  .PsmorQ 
Dem. 
l-.*262-17-13.D 

h  :  Hp  .  C'P  sm  G'Q.O.P,Qe  (Nc'G'P\  .  Nc'C'P  e  NC  induct . 
[*262-22]  D.P  smor  Q  (1) 

h.(l).*15118.DI-.Prop 

The  above  is  the  fundamental  proposition  in  the  theory  of  finite  ordinals, 
since  it  enables  us  to  reduce  relations  among  finite  ordinals  to  relations  among 
the  corresponding  cardinals. 

*262-24.     h  :  /i  6  NC  induct  -  I'A  -  t'l .  D  .  /t^  e  NO  fin 
Dem. 

h  .  *262-21 .  D  h  :  Hp  .  D  .  a !  /i,  (1) 

l-.*262-22.  Dh-.Tl-p.Pe/ir.D.firCm'P  (2) 

h  .  *26212  .*151-18  .Oh:Pe/j,r.O.  Nr'P  C/t,  (3) 

l-.(2).(3).  Di-:Hp.P6/i,.D./Xr  =  Nr'P  (4) 

(-.(1).(4).  DhiHp.D./^eNR-i'A  (5) 

t- .  *262-12  .  D  I- :  Hp  .  P  6  /v .  D .  O'P  6  Cls  induct . 

[*262-13.(4).(5)]  D .  /i,  e  NO  fin  (6) 

h  .  (1)  .  (6) .  D  h  .  Prop 

*262-241.  h  :.  /i  e  NC  induct .  P  e  £2  .  D  :  nt,  =  Nr'P .  =  .  /i  =  Nc'CP 
Dem. 

f- .  *100-3 .  D  I- :  Hp .  /I  =  Nc'C'P  .D.G'Pe/i. 

[*26212]  D.Pefir. 

[*152-45.*262-24]  D .  /^^  =  Nr'P  (1) 

h  .  *152-3  .  *262-18  .  D  h  :  Hp .  yti^  =  Nr'P .  D .  /i  =  C'Nr'P  . 
[*152-7]  D./ii  =  Nc'0'P  (2) 

I- .  (1) .  (2) .  3  h  .  Prop 


SECTION  E]  FINITE  ORDINALS  137 

*262-25.     I- :  (g^*) .  ;*  e  NC  induct  -  I'l  -  t'A  .  a  =  ^, .  =  .  a  e  NO  fin 

Bern.  • 

I- .  *262-l-13 .  D 

I- :  aeNOfin  .  D  .  (gP)  .Peafin  .  a  =  Nr'P .  Nc'O'Pe  NO  induct . 
[*262-241]       D  .  (gP) .  P  6  n  fin  .  a  =  Nr'P .  (Nc'CP)^  =  Nr'P . 

Nc'O'P  e  NO  induct . 
[*13-172]         D  .  (gP)  .  a  =  (Nc'O'P), .  Nc'O'P  e  NO  induct . 

[*20012.*2621.*15513]  D.(a/i,).^6N0induct-t'l-i'A.a=A'>-  W 
I-  .*264-24  .  D  h  :  (g/i) .  /^eNC  induct-  I'l  -  I'A  .  a  =  /t, .  D  .  aeNOfin  (2) 
h  .  (1)  .  (2)  .  D  h  .  Prop 

*262-26.     h  :  a  6  NO  fin  .  =  .  (g^)  .  /^  e  N„0  induct  -  t'l  .  a  =  /x, 
[*262-25 .  *103-13-34] 

*262-27.     h:o,/36NOfin.D.a  +  ;8eNOfin 

Dem. 
I-.*180-21.    DhzHp.Pea.Qe^.D.P  +  Qea  +  yS  (1) 

h.*251-24.    Dh:Hp.D.a  +  /36NO  (2) 

h  .  *180-111  .  D  h  :  Hp  (1) .  D .  Nc'C"(P  +  Q)  =  Nc'(C"P  +  O'Q) 
[*110-3]  =  Nc'O'P +e  Nc'O'Q  (3) 

I- .  *262-13  .    3  h  :  Hp  (1) .  D  .  Nc'O'P,  Nc'O'Q  e  NO  induct . 
[*120-45]  D.  Nc'O'P +oNc'0'Qe  NO  induct  (4) 

I- .  (1) .  (2) .  *155-26  .  *251-122  .  D 

h:Hp(l).D.P+,Qen.a  +  /3  =  N„r'(P  +  Q)  (5) 

l-.(3).(4).  Df-:Hp(l).D.0'(P  +  Q)6Clsinduct        (6) 

h  .  (5) .  (6) .  *262-l .  *261-42  .  D  h  :  Hp  (1) .  D .  a  +  /3  e  NO  fin  (7) 

I- .  *262-l .  *15o-13  .  D  h  :  Hp .  D  .  g  !  a .  g !  (S  (8) 

h  .  (7) .  (8) .  D  I- .  Prop 

*262-271.  H:a,y8eN0fin.D.aXi86N0fin 

[Proof  as  in  *262'27,  using  *1S4-12  .  *166-12  .  *251-55  .  *120-5] 

*262-272.  h  :  a,  y8  e  NO  fin  .  D  .  a  exp,  ;S  e  NO  fin 

[Proof  as  in  *262-27,  using  *186-1 .  *176-14  .  *261-62  .  *120-52] 

*262-31.     I- :  /i,  j;  6  NO .  D  .  /Ay-i-  j/y  C  (/i  +e  vX 

Dem. 
h.*180-2.D 

\-'..Ze(ir  +  Vr.  =  :  (aP,  Q)  . /tr  =  N„r'P .  v^  =  N„r'Q . Z sraor (P  +  Q) :         (1) 
[*180-111.*151-18]  D  :  (gP,  Q) .  /*,  =  N„r'P .  i/,  =  Nor'Q .  O'Z  sm  (G'P  +  O'Q) : 
[*155-12]  D  :  (gP, QyPefjLr.Qevr.O'Zsm {C'P  +  O'Q) : 

[*26212]  D  :  (gP,  Q).G'P  efi.C'Qev .  G'Z  sm  (G'P  +  G'Q)  : 

[*1 10-21]  "D  iRp.D.  G'Z  €  ft, +^v  (2) 


138  SERIES  [PART  V 

h.(l).*262-12.*155-12.D 

[*251-25.*180-11-12.(*180-01)]  D.^eO  (3) 

f- .  (2)  . (3) .  *262-12  .  3  h  :.  Hp .  D  iZefir  +  Vr .  D  . -Z'eC/i  +„ i/), :.  3  h  .  Prop 

*262-32.     h  :  fi, i; eNC induct .Pefir-Qevr-D-P  +  Qe/ir  +  Vr 
Bern. 

I- .  *200-12  .  *262-12  .  D  h  :  Hp .  D  . /i,  z;  6  -  I'l  -  t'A  . 

[*262-24]  D.^^.z^^eNO. 

[*180-21]  D.P  +  Qe/i^  +  i/^iDI-.Prop 

*262-33.     \-:/i,ve'NG  induct  -t'l  .D  .  fir  +  Vr  =  (fi+a  v)r 

Bern. 
\- .  *262-12  .:>  b  i.  /ji=  A  .V .  v  =  A  zD  :  iJLr  =  A  .V  .  vr  =  A  : 
[*180-4]  :>:fir  +  Vr  =  A  (1) 

h  .*110"4.    DI-:./i=A.v.j'  =  A:D./i+oi'  =  A. 

[*262-12]  D.{fJL+,v)r  =  A  (2) 

|-.*262-32.Dh:Hp.P6/i,.Qei/^.D.P  +  Q6/t,-i-i',.  (3) 

[*180-42.*152-45]  D  . /^i,  +  v^  =  Nr'(P  +  Q)  (4) 

h  .  (3)  .  *262-31 .  D  h  :  Hp  (3)  .  D  .  P  +  Q  6  ((li +0  i')r . 
[*120-45.*262-24]  0  .P +  Qe(fi+^v)r.{ti+e v)r e NR . 

[*152-45]  D.(/.+„j;),  =  Nr'(P  +  Q)  (5) 

h  .  (4)  .  (5) .  *10-23  .  *262-21 .  D  l- :  Hp  .  g  !  yct .  g  !  v .  D  .  /^r  +  I'r  =  (/*  +c  i')r    (6) 
h  .  (1) .  (2) .  (6) .  D  h .  Prop 

The  above  proposition  still  holds  (as  we  shall  now  prove)  when  one  of 
fi  and  V  is  equal  to  1,  but  not  both.  When  both  are  equal  to  1,  fj.r  +  Vr  =  A, 
while  (ji  +e  v)r  =  2r. 

*262-34.     l-:/[i6NC-i'0.D./i,  +  iC(/t+el),. 

Bern. 
I-  .*181-2  .  3  h  i.^e/i^-i-i  .  =  :  (gP,*)  ./i^  =  Nor'P.  Zsmor(P4»«)  (1) 

h  .  *181-6  .  *152-7  .  D  h  :  a  !  P .  D  .  Nc'C"(P  4>  «)  =  Nc'G'P  +„  1  (2) 

l-.(l).(2).D 

h  :.  Hp .  D  :  Ze/^,  +  1 .  D .  (gP) .  /^,  =  N„r'P .  'Nc'G'Z=  Nc'<7'P+„  1 . 
[*262-24112]  D  .  (gP) .  ,ir  =  N„r'P .  Nc'(7'^=  fi+.l . 

[*100-3]  D.O'^e/i+ol  (3) 

h  .  (1)  .  *262-12  .  *15512  .  3  h  :  ^e/it^  +  l .  D  .  (gP) .  Pe  O  .  /i,  =  N„r'P . 
[*2511-132]  D./i^+ieNO. 

[*251-i22]  O.ZeD,  (4) 

I- .  (3)  .  (4) .  *262-12  .D\-:.E.p.0:Zefi,.+  i.D.Z6(u,+,l\:.0\-.  Prop 


SECTION  E]  FINITE  ORDINALS  139 

*262-341.  h  :  ,16'NCmdnct .  P  e  ^Lr  .^  .  P  hxe  fir+i 
Dem.  • 

h  .  *200-12  .  *26212  .  D  h  :  Hp .  D  .  ^  e  -  I'l  -  t'A  . 

[*262-24]  D.^^eNO. 

[*181-21]  D.P4*a;e/i,.-i-l:DI-.Prop 

*26235.     h  :  ;ii 6 NO  induct  -  t'O -  I'l .  3  .  /i,  + 1  =  (/t*  +c  l)r 

Dem. 
l-.*262-12.         DI-:/^  =  A.D./i,  =  A. 

[*181-4]  D. /*,  +  !  =  A  (1) 

h.*110-4.  DI-:/*  =  A.D./^+„l  =  A. 

[*262-12]  3.  (/.+„!),  =  A  (2) 

h.*262-341.       Dh:Hp.P6/i,.D.P4»«6Ai,+  i.  (3) 

[*181-42.*152-45]  D  .  /i,+ 1  =  Nr'(P -f* a;)  (4) 

f- .  (3).*262-34  .  D  h  :  Hp .  Pe/i,.  D  .  P-i+a'eC/ii+ol)^ . 
[*1 20-45 .*262-24]  D  .  P  4*  a;  6</i  +„  l)r  ■  (/^  +c  l)r  ^  NR . 

[*152-45]  D.(/*+„lV  =  Nr'(P4*«;)       .  (5) 

I- .  (4) .  (5) .  D  h  :  Hp .  a  !  /x^ .  D  .  /ir  + 1  =  ((li  +„  1), : 

[*262-21]  DK:Hp.a!/..D.;c*,  +  i  =  (M+„l).  (6) 

h  .  (1) .  (2) .  (6) .  D  h  .  Prop 

*262-36.     h  :  /i  6  NO  induct  -  I'O  -  t'l .  3 . 1  +  A^r  =  (1  +« /^V 

[Proof  as  in  *262-35,  by  means  of  analogues  of  *262-34-341] 

*262-41.     \-\(j.,ve  NC .  D  .  /i^  X  Vr  C  (/*  x^  v\ 

[Proof  as  in  *262-31,  using  *1841-5  .*113-21] 

*26242.     Vifx.ve  NC  induct .  P  e  fir .  Q  e  Vr  -  0  .  P  x  Q  e  firk  v,. 
[Proof  as  in  *262-32,  using  *184-12J 

*262-43.     \-:fi,ve  NO  induct  -  t'l .  3  .  /*r  X  Vr  =  (/*  ^c  ")»• 

[Proof  as  in  *262-33,  using  *184-11 .  *113-204 .  *184-15  .  *120-5] 

*262-51.     i-zfie  NC .  v  e  NC  induct .  D  .  /t^  exp,  v^  C  (/i*"), 
Dem. 

h.*186-5.    DI-:/x,,i/^eN„R.j/4=0.i2e/i,.exp^z/,.D.O'i2e(a"/irr''''  (1) 

H  .  *186"11 .  D  h  :  i2  e  /Xy  exp,  v^ .  D  .  g  !  /ti^ .  g  !  i/^  (2) 

t- .  (1) .  (2)  .*262-18 .  D  H  :  Hp  .  i/ +  0  .  i? e /x^ exp,.  j;, .  D  .  CiJe/x"  (3) 
f-.*262-12.                 Dh./t^Cfl. 

[(2).*251-1.*186-11]  Dhiiie/irexp^iV.D./x^eNO  (4) 

H.*262-24.  Dh:Hp.i;+l'.i'4=A.D.j/^eN0fin  (5) 

h.(2).(4).(5).*261-62.pi-:Hp.i'=t=l.i2e/irexp^i'^.D.iJ:6fl  (6) 

h.(2).*200-12.DI-:i2e/irexp^i/^.b.i'=j=l  (7) 
[■ .  (3)  .(6)  .(7)  .  0\-  -..Up  .D  :  R  e  /jLrex^rVr  .0  .  Re  n  .O'Re  fi" . 
[*262-12]                                                             D-P6(/i,'')r:.3l-.Prop 


140  SERIES  [PABT  V 

*262-52.     h  :  /i,  j;  e  NO  induct  .Pefir-Qevr.'^.(P  exp  Q)  e  {fi^  exp,  i^^) 
Dem. 
V  .  *200-12  .  *26212  .  D  h  :  Hp .  D .  ^,  j;  e  -  I'l  -  t'A  . 
[*262-24]  D./Lir,i/,6N0. 

[*186-13.*152-45]  D  .  (P  exp  Q)  e  {nr  exp^  j/^) :  D  H  .  Prop 


*262-53.     h  :  /i,  1/  6  NO  induct  -  t'l .  y  =1=  0 .  D  .  /*^  exp^  Vr  =  (/i'')r 

i)em. 

h  .  *26212  .  *18611 .    Dh:.nt  =  A.v.z/  =  A:D./i^  exp^  j/^  =  A 

(1) 

h  .*116-204  .  *26212  .DI-:.//,  =  A.v.i/  =  A:D.  (A<.-')r  =  A 

(2) 

1- .  *262-52  .  D  h  :  Hp  .  P  e /i^ .  Q  e  i/r .  3  ■  (i' exp  Q)  e  (Mr  expr  I'r)  ■ 

(3) 

[*186-13.*152-45]                                3  .  Nr'(P  exp  Q)  =  /^,.  exp,  v. 

(4) 

h .  (3) .  *262-51 .          D  h  :  Hp  (8)  .  D  .  (P  exp  Q)  e  {fi^ 

(5) 

K  .  (5) .  *120-52  .          D  1- :  Hp  (3)  .  3  .  M"  6  NO  induct 

(6) 

l-.(5).                         DI-:Hp(3).D.a!(/.-)r. 

[*200-12.*262-12]                             ^-A'-'  +  l 

(7) 

1- .  (6) .  (7) .  *262-24 .  D  f- :  Hp .  D  .  (/.■'),  e  NO 

(8) 

1- .  (5)  .  (8) .  *152-45  .  3  h  :  Hp  (3) .  D .  Nr'(P  exp  Q)  =  (m-),  . 

[(4)]                                                                        D.^irexprVr  =  (jJ-'')r 

(9) 

1- .  (9) .  *262'21 .         DI-:Hp.a!yit.a!i/.D.  jit,  exp,  v,  =  (/it"). 

(10) 

1- .  (1) .  (2)  .  (10)  .Oh.  Prop 

We  are  now  in  a  position  to  establish  the  commutative  property  of 
addition  and  multiplication  of  finite  ordinals.  This  is  effected  by  means 
of  *262-33  and  *262-43. 

*262-6.       l-:a,/36NOfin.D.a  +  /S  =  /3  +  a 

Dem. 
h  .  *262-26  .  D  h  :  Hp .  D .  (g/i,  v).fi,pe'NG  induct  -.t'l .  a  =  yti, .  ^9  =  y, . 
[*13'12]    D  .  (a/i,  p).ij,,ve  NO  induct  —  t'l .  a-i-/3  =  /it,-}- 1/, .  a  =  /*, .  ^8  =  v, . 
[*262-33]  D  .  (gyit,  v)./i,ve  NO  induct  -  I'l .  a  -j-  /8  =  (/i  -*-„  i/), .  o  =  //,, .  y8  =  k,  . 
[*110'51]  D  -(a/t,  i*)  . /i,  V  6  NO  induct  —  I'l .  a  +  ^  =^  (v  +^  /i)r .  a  =  /jl,.  ■  ^  =  Vr . 
[*262-33]  D  .  (a/i,  v).fi,ve  NO  induct  -  i*l .  a  +  /3  =  j/,  4-  /^r  ■«  =  /*«••  ;S  =  v, . 
[*13-22]    D.a  +  /8  =  /3-j-a:Dl-.Prop 

*262-61.     h:a,;8eNOfin.D.ax/3  =  /3xa 

[Proof  as  in  *262-6,  using  *262-43  and  *113-27] 

*262-62.     l-:a,^,76N0fin.D.ax(;S  +  7)  =  (a>C/8)  +  (aX7) 
Dem. 
h  .*262-27-61 .  D  h  :  Hp .  D  .  ax(/8  +  7)  =  (/8-i-7)xa 
[*184-35]  =(;Sxa)-j-(7>:a) 

[*262-61]  =(a><;8)-i-(a>C7):Dt-.Prop 


SECTION  E]  finite  ORDINALS  141 

*262-63.     I- :  a,  /3, 7  6  NO  fin  .  D  .  (a  X  (8)  exp,.  7  =  (a  exp,  7)  X  (/3  exp,  7) 

Dem.  • 

1- .  *262-26  .  D 

f- :  Hp .  D  .  (g/i,  v,  •sr) .  /i,  v,  bt  e  NC  induct  —  t'l .  a  =  /*, .  /3  =  i/^ .  7  =  bt,  (1) 

h  .  *262-43  .  D 

I- :  /i,  V,  TO-  6  NC  induct  —  I'l .  D  .  (/i^  >C  Vr)  exp^  in-,  =  (/i  x„  1/)^  exp^  tn-r  •    (2) 

h  .  *113-602  .Dh:Ai  =  0.i'  =  O.D./iX„i;+l  (3) 

l-.*ll7-631.Dh:/4,i;6NC-t'0-t'l.D./iX„r=|=l  (4) 

h.(3).(4).     Dh:Hp(2).D./i,Xei/  +  l  (5) 

h.*120-5.      Dl-:Hp(2).D.yttx„x/eN0induct  (6) 

H  .  (5) .  (6)  .  *262-53  .  D  h  :  Hp  (2) .  w  4=  0^ .  D .  (/t  x„  v)^  exp,  to,.  =  {(/i  x„  1/)=^}, 
[*116-55]  =(yit'^x,i/-),     (7) 

h  .  *ll7-652  .  D  h  :  Hp  (7) . /i  4=  0, .  D  . /*'' > /i  Xe  TO  . 

[*117-631]  D.M'^  +  1  (8) 

V  .  *116-311 .  3  h  :  Hp  (7) .  /i  =  0, .  D  .  <=j=  1  (9) 

l-.(8).(9).    Dh:Hp(7).D./i'^+l  (10) 

Similarly  1- :  Hp  (7) .  D  .  i/='4=  1  (11) 

h  .  (10) .  (11) .  *120-52 .  *262-43 .  D  1- :  Hp  (7) .  D  .  (/a-^  x„  v'^^  =  (m^^),  X  {y^)r 
[*262'53]  =  (/ir  exp,  to,)  X  (I'r  exp^  to,)         (12) 

K(2).(7).(12).D 

h  :  Hp  (7) .  D  .  (/i,  X  Vr)  exp,  to,  =  (/*,  exp,  to,)  x  (v,  exp,  to,)  (13) 

l-.(l).(13).*262a9.D 

1- :  Hp.74=0, .D.(aXy8)exp,7  =  (aexp,7)x(/3exp,7)  (14) 

I- .  *186-2 .  *184-16  .  D 

h:Hp.7  =  0,.D.(aX/8)exp,7  =  0,.(aexp,7)x(/3exp,7)  =  0,  (15) 

h  .  (14) .  (15) .  D  h  .  Prop 

*262-64.     h:aeNOfin.D.a  +  l  =  l  +  a 
Dem. 

V  .  *262-35-36-26  .  *110-51 .  D  h  :  Hp .  a  =(=  0, .  D  . «+ 1  =  1  +  a  (1) 

h.*161-2-201.  Dh:a  =  0,.D.a-i-l  =  0,.i  +  o  =  0,       (2) 

h  .  (1) .  (2) .  D  1- .  Prop 

*262-65.     h:a,/3eNOfin.yS  +  0,.D.ax(/3-i-l)  =  (aXyS)  +  a 

Dem. 

|-.*262-61.Dh:Hp.D.aX(/8-i-i)  =  (/3  +  l)xa 

[*184-41]  =(^X«)  +  a 

[*262-61]  =  (a  X  /3)  -i-  a  :  D  h  .  Prop 

*262-66.     h:a,/8eNOtin.;8  +  0,.D.ax(l-i-iS)  =  a+(«X/8) 
[Proofasin*262-65] 


1 42  SERIES  [part  V 

*262-7.       \-i.iJ,,ve  NO  induct  -  t'l  .  D  :  /i  >  i; .  s  .  /i^  >  v, 
Dem. 
h  .  *262-21 .  *11712  .  D  h  :  Hp  .  /t  >  v .  D  .  a  !  /i, .  a !  v, . 

[*26218]  D  .  yic  =  0"flr  ■  "  =  G"Vr .  (1) 

[*255-76.*262-24]  D./ji^>Vr  (2) 

I- .  *1 20-441 .  D  h  :  Hp  .  ~  (/i  >  J/) .  D  .  /i  <  i;  (3) 

h  .  (1)  .  3  h  :  Hp  .  /(i  <  v .  D  .  /i,  <  r,  (4) 

h  .  *262-21 .  D  h  :  Hp  .  /i  =  sm"// .  D .  (gP) .  /x  =  N„c'C"P .  /j,  =  sm"i/ . 
i:*103-4]  3  .  (gP) .  fj,  =  Noc'a'P .  v  =  Nc'O'P . 

[*262-241]  3  .  (gP) .  /*,  =  N„r'P .  i/^  =  Nr'P  - 

[*1554]  "D ,  /ir  =  smor"i/  (5) 

h  .  (4) .  (5)  .  *117-104  .  3  h  :  Hp  .  /i  <  1/ .  D  .  /ir  <  I'r  (6) 

I- .  (3) .  (6) .  *255-483  .  3  h  :  Hp .  ~  (/i  >  i^) .  3  .  ~  (,it^  >  Vr)  (7) 
h  .  (2)  ,  (7)  .  3  I- .  Prop 

*262-71.     h  :  a  6  NO  fin  -  t'O^ .  3  .  (g^S) .  /S  e  NO  fin  -  I'O,  u  t'l .  a  =  ^  +  i 

h  .  *262-ll .  *261-24 .3l-:Hp,3.g!ar.  a'(B  \  Cnv)  (1) 

I- .  (1) .  *204-483  .  (*18104) .  3  h  .  Prop 

*262-8.       l-:o,/8eN0.7eN0fin.a</i.3.aexp,7<;8exp,7     [*261-64] 

*262-81.     h  :a,^€  NoO  .  7  e  NO  fin  .  a  exp^  7  =  /8  exp,  7 .  3  .  a  =  smor"jS 
Bern. 

h  .  *262-8  .  Transp  .  *25542  .  3  1- :  Hp  .  3  . ~ (a < yS) . ~ («  > ^) . 
[*255112]  3.«  =  smor"/3:3l-.Prop 

*262-82.     h  :  a  e  NO  fin  .  ;8  e  NO  infin  .  3  .  a  <  /3     [*261-65] 

*262-83.     1- :  aeN„0  -t'O^ .  /8,7  6N0  fin  .  y8<  7 .  3  .  aexp,^  <  aexp^7 
Dem. 

l-.*255-33.3l-:.Hp.3:(giir).weNO-t'0^.7  =  /3-|-CT.v./3=t=0^.7=;S  +  i  (1) 

l-.*254-51.3h:QGP.3.~(PlessQ)  (2) 

I- .  (2) .  *255-l .  3  h  :  7  =  /S  +  t!!- .  3  .  ~  (7  <  isr)  (3) 

h  .  (3) .  *262-82  .  Transp .  3  h  :  Hp .  7  =  ;8  +  or .  3  .  w  e  NO  fin  (4) 

h.*186-14.3l-:Hp(4).t3-  +  0,./84=0^.3.aexp,7  =  (aexp^;S)><(aexp^tir)  (5) 
I- . *262-7l-272  .  3  1- :  Hp(5) .  3  .(gS) .  SeNR-i'O,  w  t'l .  aexp^;8  =  S  +  i  . 

[(5).(4).*256-573]  3 .  a  exp^  7  >  a  exp^  /3  (6) 

h  .  *255-51 .  3  1- :  Hp  (4)  .  ^4=0^ .  j8  =  0^ .  3 .  aexp^  7  >  aexp^/8  (7) 
h  .  *1 86-22  .  3  h  :  Hp  .  /3  +  0,  .  7  =  )S  4- 1 .  3 .  a  exp,  7  =  (a  exp,  /8)  >^  ^8  . 

[*262-7l.*255-673]  3 .  a exp^7  >  o exp, /3  (8) 

h  .  (1)  .  (6) .  (7) .  (8) .  3  h  :  Hp .  3  .  a  exp^  7  >  a  exp^ /3  :  3  h  .  Prop 

*262-84.     h:PeXl-t'A.Q,P€nfin.QlessP.3.P«lessP^    [*262-83] 


*263.     PROGRESSIONS. 

Summary  of  *263. 

If  iJ  is  a  progression  in  the  sense  defined  in  *122,  i.e.  a  one-one  relation 
whose  field  is  the  posterity  of  its  first  term,  then  R^  is  a  serial  relation,  and 
the  series  generated  by  R^^  is  of  the  type  which  Cantor  calls  o),  i.e.  the 
smallest  of  infinite  series.  It  is  easy  to  prove  that  all  progressions  are 
ordinally  similar,  and  that,  if  all  inductive  cardinals  exist,  the  series  of 
inductive  cardinals  in  order  of  magnitude  is  of  the  type  a.  Thus  a  is  an 
ordinal  number,  which  is  not  null  if  the  axiom  of  infinity  holds. 

Most  of  the  properties  of  m  are  easily  deduced  from  the  cofresponding 
properties  of  "Prog,"  which  have  been  proved  in  *122.     The  definition  is 

«  =  P{(aiE).i2eProg.P  =  i2po}     Df 

The  axiom  of  infinity  implies  that  "  less  to  greater "  with  its  field  con- 
fined to  inductive  cardinals  is  a  member  of  m,  or,  what  comes  to  the  same 
thing  but  is  easier  to  prove,  that  {(NO  induct)  1(+gl)}po  is  a  member  of  m 
(*263'12).  Thus  the  axiom  of  infinity  for  the  type  of  x  implies  the  existence 
of  CD  in  the  type  f^'x  (*263'132) ;  and  generally  the  existence  of  to  in  any 
type  of  relations  is  equivalent  to  the  existence  of  No  in  the  type  of  their 
fields  (*263-131),  because  No  =  D"©  =  C"(o  (*263-101). 

By  using  the  fact  that  in  a  progression  R  (in  the  sense  of  *122)  all  the 
terms  are  values  of  v^,  where  every  inductive  cardinal  occurs  as  a  value  of  v 
(which  was  proved  in  *122),  we  easily  deduce  that  if  there  are  progressions 
they  are  the  series  that  are  ordinally  similar  to  the  series  of  inductive 
cardinals  (*263*161).  Hence  both  "Prog"  and  w  are  relation-numbers 
(*263'162'19).  Moreover,  by  *122"21'23,  a>  consists  of  well-ordered  series 
(*263'11).     Hence  w  is  an  ordinal  number  (*263"2). 

We  next  prove  that  progressions  are  infinite  series  (*263'23),  and  that 
a  series  contained  in  a  progression  is  finite  if  it  has  a  maximum  (*263"27), 
and  is  a  progression  if  it  has  no  maximum  (*263"26).  It  follows  that, 
assuming  the  existence  of  progressions  or  the  axiom  of  infinity,  to  is  the 
smallest  ordinal  which  is  greater  than  all  the  finite  ordinals  (*263*31"32). 
Connected  with  this  is  the  fact  that  the  predecessors  of  any  term  in  a 
progression  are  an  inductive  class  (*263"412). 


144  SERIES  [part  V 

*263"44"48  give  various  formulae  for  a>,  any  one  of  which  might  be  taken 
as  the  definition.     We  have 

*263-44.     h  .  ffl  =  n  -  t'A  n  P  (a'P,  =  O'P  .  ~  E  !  B'P) 

I.e.  progressions  are  existent  well-ordered  series  in  which  every  term 
except  the  first  has  an  immediate  predecessor,  and  there  is  no  last  term. 

*263-46.     h.«  =  XlnP(E!£'P,.~E!S'P) 

I.e.  progressions  are  well-ordered  series  in  which  there  is  only  one  term 
having  an  immediate  successor  but  no  immediate  predecessor,  and  there  is 
no  last  term. 

*263-47.     h  .  o)  =  a  n  P  {«  C  C'P .  D,  :  n  6  Cls  induct .  =  .  g  !  O'P  n  p'P"a} 

I.e.  a  progression  is  a  well-ordered  series  in  which  any  sub-class  a  stops 
short  of  some  point  of  the  series  if  a  is  inductive,  but  not  otherwise.  This 
proposition  will  be  useful  in  the  next  section. 

*263-49.     h.n  fin  w«  =  nnP(a'P,  =  a'P)  =  11  nP(P  =  P,„) 

I.e.  finite  well-ordered  series  and  progressions  together  are  those  well- 
ordered  series  in  which  every  term  except  the  first  has  an  immediate  pre- 
decessor, and  are  also  those  in  which  every  interval  is  an  inductive  class. 

From  *261'45  it  follows  that,  if  P  is  an  infinite  well-ordered  series,  P 
confined  to  the  terms  at  a  finite  distance  from  B'P  is  a  progression,  i.e. 

*263-5.       h  :  P  e  n  infin  .  3  .  P  t  {I'B'P  u  Pf„'£'P)  e  « 

Hence  it  follows  at  once  that  an  infinite  ordinal  is  at  least  as  great  as  «u, 
and  therefore  infinite  ordinals  other  than  m  are  greater  than  m,  i.e. 

*263-54.     I- :  a  6  NO  infin  -  I'w .  D  .  a  >  «u 

The  remaining  propositions  of  this  number  are  occupied  in  proving  to  X  2^=0) 
(*263'63)  and  « X a  =  «  if  «  is  finite  and  not  zero  (*26366).  It  is  not  the 
case  that  2,  X «»  =  a>  or  a  X  w  =  o>. 

Cantor  has  varied  his  definitions  of  multiplication  as  regards  the  order  of 
the  factors.  Originally,  he  adopted  the  same  rule  as  we  have  adopted,  but 
in  later  works  he  inverted  the  rule,  so  that  what  we  call  2,  x<u  he  calls 
ft)  >C  2y,  and  vice  versa.  Thus  with  his  definitions  in  his  later  works,  2^  X  <»  =  tu 
but  (oX2r^o).  We  have  reverted  to  his  earlier  practice,  for  various  reasons, 
but  chiefly  in  order  to  have  Nr'n'(P  J,  Q)  =  Nr'P  X  Nr'Q  (cf.  *172).  Which- 
ever rule  we  adopt,  there  are  some  inconveniences,  so  that  the  question  as  to 
which  is  chosen  is  not  of  great  importance. 


SECTION  e]  progressions  145 

*263-01.     a)=P{(ai?).i2^Prog.P=Epo}  Df 

*263  02.     iV  =  ;*  0  {/li  6  NC  induct .  i/  =  (/*+„  1)  n  «.'/*}     Dft  [*263] 

The  above  temporary  definition  of  N  is  the  same  as  that  in  *123. 
*2631.       f-:Pea).=  .(aE).E6Prog.P  =  i2po     [(*26301)] 
*263101.  h  .  N„  =  D"a)  =  0"«       [*1231  .  *122141 .  *91-504] 

«263-ll.     h  .  m  C  O 
Dem. 

I- .  *122-28-141  .*2631  .DhiPew.aCO'P.a'a.D.E!  minp'a    (1) 
H  .  (1) .  *250125  .  D  h .  Prop 

*26312.     h  :  Infin a,s..O.N^„ea     [*123-25  . *2631] 

*26313.     h  :  a  !  N„  («) .  =  .  a  !  a.  A  <"'« 

Dem. 

h  .  *263-101 .  (*65-02) .  D 

h  :  a  !  N„(a:)  .  =  .  (aP)  .Pew.  G'P  etH'x . 

[*64-57.*63-5]  =  .  (aP)  .Pea.Pe  P"x  :  D  h  .  Prop 

*263131.  h  :  a  !  (>*o). .  =  .  a !  «  '^  <»'«     [Proof  as  in  *263-13] 

*263-132.  h  :  Infin  ax  (a;)  .  =  .  a  !  <»  "  *^'«  • 
i)em. 
h  .  *125-23  .  *26313 .  D  h  :  Infin  ax  (as)  .  =  .  a  !  «  «  «"'«"«. 
[(*64-011014)]  =  .  a  !  0)  n  «^'a; :  3  I"  •  Prop 

This  proposition  asserts  that,  if  the  number  of  individuals  of  the  same 
type  as  os  is  not  an  inductive  number,  then  there  is  a  progression  whose 
terms  are  of  the  type  of  fx.  This  progression  will  be  that  of  the  inductive 
cardinals  which  are  applicable  to  classes  whose  terms  are  of  the  same  type 
as  iv. 

*26314.     \-:Re  Prog  .  P  =  iipo  .  D  .  P  =  P,„  =  i2,„  .  i2  =  P^ 

Dem. 

h  .  *121-254  .  3  1- :  Hp  .  D  .  Pi  =  i2i . 

[*121-31.*1221-16]        D.Pi  =  E.  (1) 

[Hp]  D.(POpo  =  P. 

[*260-27.*26811]  O.Pt^  =  P.  (2) 

[*26015.Hp]  D.Rt^  =  P  (3) 

h .  (1) .  (2) .  (3) .  D  h  .  Prop 

R.  &  W.    III.  10 


146  SERIES  [part  V 

*263141.  I- :  P  6  »  .  D  .  P,  e  Prog .  P  =  (PO,n  =  (P>)po 
Dem. 
V  . *263-l  .  D  h  :  Hp .  D  .  (gii) . R  e Prog .P  =  B^. 
[*263-14]  D  .  (aJ2) .  R  e  Prog .  P,  =  i? .  P  =  iJf^ .  P  =  iJpo . 

[*13-195]  D .  P,  6  Prog .  P  =  (POf„  =  (POpo  OK  Prop 

The  above  proposition  shows  that  every  interval  P(a;My)  in  a  progres- 
sion is  an  inductive  class. 

*263142.  y-.R.Se  Prog  .R^  =  S^o-^  ■  R  =  S 
Dem. 

h  .  *263-14  .  D  h  :  Hp .  D  .  E  =  (8^\ 

[*26314]  =S:D\-.PTop 

*263143.  h  :  P,  Q  6  to  .  Px  =  Qi .  D .  P  =  Q 

Dem. 
l-.*2631.Dh:Hp.D.(ai?,<S).i2,/SeProg.P=iJp„.Q  =  /Sfp„.P,  =  Qi. 
[*26314]D.(ai2,S).i2,/S6Prog.P  =  Epo.Q  =  Sp„.i?  =  Pi./S=Qi.P,  =  Q,. 
[*13-17]    D.(aE,/S).i2,S6Prog.P  =  i?p„.Q  =  5fp„.iJ  =  fif. 
[*13-17]    D.P  =  Q:DI-.Prop 

*263-15.     \- :  ReFiog .  S  =  ^i!  {v e'NCindMct . 0}=  (v  +^l)ii\  .'D . S e Rsiadi N 

Dem. 
h.*123-3.    DI-:Hp.D.Sel->l.D'S  =  D'P.a'>S  =  NCinduct       (1) 
h  .  *123-21  .  D  I- .  NC  induct  =  G'JSf  (2) 

h  .  *110-56-643  .  D  h  :  Hp  .  (/i  +0  l)N(v  +„  1)  .  D  .  i;  +„  1  =  /i  +,,  2  (3) 

h  .  (3)  .  D  h  :.  Hp  .  D  : 

a!{S''N)y.  =  .  (a/u.) .  /i  6  NO  induct .  a;  =  (/i  +„ !)«  .  y  =  (yit  +„  2)u  . 
[*121-332131]  =  .  (a/i)  .  ^  e  NO  induct .  (B'R)  R^  x .  (jS'A)  {R^  \R)y. 

[*122-341.*121-342]    =.xRy  (4) 

I- .  (1)  .  (2) .  (4)  .  D  h  .  Prop 

*263151.  h  :  ii  6  Prog .  D  .  iJ  smor  iV  [*263-15] 

*263152.  ViRe  Prog .  Q  smor  R.'^.Qe  Prog  [*123-32] 

*263-16.     l-:i2  6Prog.D.Prog  =  Nr'i2  =  Nr'iV  [*263-151-152] 

*263161.  l-:a!Prog.D.Prog  =  Nr'iV  [*263-16] 

*263162.  l-.ProgeNR  [*263-161 . *154-242] 


SECTION  e]  progressions  147 

*26317.     h  :  P  6  ft) .  D .  «  =  Nr'P  =  Nt'N^„ 
Dem.  • 

H.*263-l.    DK:Hp.D.(ai?).i2eProg.P  =  iJpo. 

[*263-151]  D.(aii:).Esmoriyr.p  =  iJp^. 

[*151-56]  D.PsmoriyTp,.  (1) 

[*152-321]  D.lSTr'P  =  Nr'iVp„  (2) 

V  .  *151-59  .  D  h  :  P  e  o) .  Q  smor  P.O.Qi  smor  Pj . 

[*263-141152]  D.Q,6Prog  (3) 

H  .  *150-83  .-^h-.Peco.SeQ  slnor  P .  D  .  (QOpo  =  S'(Pi\o 

[*263-141]  =  S'P 

[*151-11]  =  Q  (4) 

h  .  (3) .  (4) .  *263-l .  3  h  :  P  6  o) .  Q  smor  P.D.Qem  (5) 

h.(l).         Dl-:P,Qeo).D.PsmorQ  (6) 

h  .  (5) .  (6) .  D  h  :  P  e  « .  D  .  o>  =  Nr'P  (7) 

h  .  (7) .  (2) .  3  h  .  Prop 

*26318.     l-:a!a).D.w  =  Nr'iVp„     [*263-l7] 

*26319.     h  .  o)  e  NR  [*263-18 .  *154-242] 

*263-2.       h.  0)6  NO  |:*263-1911.*256-54] 

*263-22.     I- :  P  e  ft) .  D  .  Q'P  C  D'P .  ~  E !  £'P .  E !  P'P 

[*122-141 .  *2631 .  *122-11] 

*263-23.     h  .  ft)  C II  infin 

Dem. 
h  .  *261-35  .  Transp  .  *263-ll-22  .  D  h  :  P  e  o) .  D .  O'P  ~  e  Cls  induct  -  I'A  (1) 
H  .  *263-22  .  D  h  :  P  €  ft) .  D  .  a  !  C7'P  (2) 

h  .  (1)  .  (2) .  D  h  :  P  €  ft) .  D  .  C'P  ~  6  Cls  induct . 
[*261-14-41.*263-11]       D  .  P  e  fl  infin  :  D  h .  Prop 

*263-24.     h  :  a  !  ft) .  D  .  ft)  e  NO  infin    [*262-14 .  *263-17-23] 

*263-26.     h  :  P  e  ft) .  a  !  a  n  C'P .  ~  E  !  maxp'a .  D  .  Pp  a  e  o) 

h.*263-l.*205123.D 

h  :  Hp .  D .  (gi?) .  i2  e  Prog  .P  =  R^.^laf^C'R.af^G'RC  i2po"«  . 

[*122-442-45]  D .  (gi?) .  R  e  Prog .  P  =  Ppo .  P  ^  a  -:-  (P  ^  a)=  e  Prog . 

[*263-l]  D.P^aeft):Dh.Prop 

*263-27.     h  : P  e  ft) .  E  !  maxp'a .  D  . P^  aefl fin 


Bern. 


I- .  *122-43  .  *2631 .      D  i- :  Hp .  D  .  a  n  O'P  e  Cls  induct . 
[*37-41.*120-481]  D  .  (7'(P  D  a)  €  Cls  induct  (1) 

h  .  *26311 .  *260-141 .  D  h  :  Hp .  D  .  P  p  a  e  n  (2) 

h  .  (1) .  (2) .  *261-14-42  .  D  h  .  Prop 

10—2 


148  SERIES  [part  V 

*263-28.     l-:P6a).D.SeinRl'PC  town  fin     [*204-421 .  *263-26-27] 

*263  29.     hiPew.QeOfin.D.QlessP  [*261-65  .  *263-23] 

*263-3.       h  :  P  e  o) .  D  .  less'P  =  11  fin 
Dem. 

h.*254-l.*263-l7.D 

h-.Peto.Q  less  P  .  3  .  g  !  Nr'Q  n  Rl'P .  Q  ~  e  «  .  Q  e  fi  . 

[*26317]  D .  (gP) .  i?  e  Nr'Q  n  Rl'P .  P  ~  e  »  . 

[*263-28]  D  .  (gP) .  P  e  Nr'Q  r.  fl  fin  . 

[*261-183]  D .  Q  6  n  fin  (1) 

h  .  (1) .  *263-29  .  D  h  .  Prop 

*263-31.     h:.  a!Q).D:a<(B.B.aeNOfin 

Dem. 
h  .  *25517  .  *263-l7  .  D  h  :.  P  e  eo  .  D  :  Nr'Q  <  «  .  =  .  Q  less  P . 
[*263-3]  s  .  Q  e  fl  fin  . 

[*262-13]  s.Nr'QeNOfin: 

[*152-4]  D  :  a  6  NR .  a  <  ft) .  s  .  a  e  NR .  a  e  NO  fin  : 

[*255-12.*262-l.*152-4]  D  :  a  <  to .  =  .  a  e  NO  fin  :.  D  h  .  Prop 

*263-32.     l-:.Infinax.D:a<a).  =  .a6N0fin     [*263-3112] 

*263-33.     h:a<a).D.aeNOfin 
Dem. 

h.*2551.*155-13.DI-:Hp.D.a!ft)  (1) 

I- .  (1) .  *263'31 .  D  h .  Prop 

*263-34.     h  .  1  +  ft)  =  ft) 
Dem. 

h  .  *262-112  .  *263-24  .DI-:Hp.a!o).D.l+ft)  =  o)  (1) 

l-.*181-4.  Dh:o)=A.D.l  +  ft)=A  (2) 

h  .  (1) .  (2) .  D  h  .  Prop 

*263-35.     l-:aeNOfin.D.a  +  ft)  =  ft) 

Dem. 
y  .  *180-61 .  *263-18  .3l-:a!ft).D.0,  +  ft)  =  a)  (1) 

V .  *180-4 .  Dl-:o)  =  A.D.O,  +  o)  =  A  (2) 

h .  (1) .  (2) .  Oh.0r  +  m  =  m  (3) 

I- .  *181-57  .*263-34  .DI-.2,  +  o)=i-i-ft) 

[*263-34]  =0)  (4) 

1- .  *262-36  .  D  h  :  /i  6  NC  induct  -  I'O  -  t'l .  D  .  (/*  +o  1),  +  o)  =  /v  +  1  +  <« 
[*263-34.*181  -68]  =  /V  +  o)  (5) 

h.(5).  D  h  :/i6NOmduct-t'0-i'l./i,  + w  =  o).3  .  (/t+el),  +  ffl=  ft)     (6) 
h  .  (4)  .  (6) .  Induct .  D  h  :  /i  e  NC  induct  -I'O- I'l  .D  .fir  +  (o  =  (o  (7) 

h .  (3)  .  (7) .  D  I- :  /i  e  NO  induct  -  t'l .  D .  /tt,  4-  w  =  o) : 

[*262-26]  DI-:a6N0fin.D.a  +  a)  =  ft):Dl-.  Prop 


SECTION  E]  progressions  149 

*263-4.       I- :  P  e  o) .  D  .  B'P,  C  O  fin .  Nr"D'Ps  =  NO  fin 
Bern. 

h  .  *254-182  .  D  f- :  Hp .  D .  T>'P,  C  l^s'P  - 

[*263-3]  D .  D'Ps  C  fi  fin  (1) 

h.*263-31.    Df-:.Hp.D:a<Nr'P.  =  .a6N0fin: 

[*256-ll]  D  :  a  6  Nr"D'Ps .  =  .  a  e  NO  fin  (2) 

f- .  (1)  .  (2) .  D  h  .  Prop 

*263-401.  h:  Pern,  a  6  sect'P  -  I'A  -  I'G'P .  D .  E  !  maxi.'a 

Dem. 

h  .  *250-65  .Dh:Hp.3.PCa~e  Nr'P . 

[*26317]  D.P^a~6fi). 

[*263-26.Transp]  D .  E !  maxp'o :  D  h  .  Prop 

*263-402.  h  :  P  6  « .  D  .  sect'P  -  t'A  -  I'G'P  =  P^"C'P 

Dem. 
h  .  *205-131-22  .  *263-401 .  D 

h  :  Hp  .  a  6  sect'P  -  t'A  -  I'G'P .  D  .  a  u  P"a  =  P'maxp'a  w  I'rnaxp'a . 
[*2111.*91-54]  D .  a  =  P^f'maxp'a . 

[*205-lll]  D.a6'P^"C'P  (1) 

1- .  *211-313  .      D  h  .  ^^"C'P  C  sect'P  (2) 

h.*90-12.  Dh.P5|,"0'PC-t'A  (3) 

h  .  *205-197  .       3  h  :  Hp .  a;  6  O'P  .  D  .  E !  maxp'P;^'* . 
[*263-22]  D  .  'P^'w  4=  G'P  (4) 

h  .  (2) .  (3) .  (4) .  D  I- :  Hp .  D  .  ^^"C'P  C  sect'P  -  t'A  -  I'C'P  (5) 

h  .  (1) .  (5) .  D  h  .  Prop 

*263-41.     y:Pea}.D.P,l  B'P,  =  P  t' P*'  P 

2)e»re, 

h.*213-ll-141-151.D 

h  :.  Hp .  D  :  Q (Ps  P  D'Ps)P .  =  ■  (ga.iS) .  a, /36sect'P-t'A-i'(7'P.aC/3.«+)8. 

Q  =  Pta.i?  =  Pp/3. 
[*263-402] 

=  .(aa;,2/).a.,2/eC''P.P*'ajCP*'y.P*'«J  +  P*'i/.Q=PCP*'flJ.P=PW^ 
[*200-391] 

=  .  (a;.,  y)  .  ^,  2^  6  C"P  .  P*'a;  C  P*'y  .  a?  +  2/ •  Q  = -P  D  Ale'^; . -B  = -P  Wy  . 
[*204-32.*90-12] 

=  .('^a,,y).ooP^y.x^y.'p^'xC%'y.Q  =  Pt%'a,.R  =  PtP^'y. 


150  SERIES  [PABTV 

[*201-18]      =  .  (ga;,  y).xPy.Q  =  P[,  %'x  .E  =  P  ^  P*'y . 
[*1501]        =.Q{P  f'P^'P)  R'..Oi-.  Prop 

*263-411.  I- :  P  e  « .  D  .  C'D'P,  ='p^"a'P  w  t'A 
Dem. 

I-.*213141.*263-402.D 

h  :  Hp .  D  .  C'D'P,  =  0"PI"'P^"C'P 
[*93103]  =  (7"P ^ "P*"a'P  u  I'CP tP^'B'P 

[*201-521.*202-55]  ='p^"a'P  u  t'C'P^  P^'B'P 
[*201-521.*200-35]  =  P^"(1'P  u  t'A :  D  h .  Prop 

*263-412.  h  :  P  6  ft) .  D  .  P'a;,  P^^'a;  e  Cls  induct 
i)em. 

f- .  *205197  .  D  f- :  Hp .  a;  6  O'P .  D  .  E  !  max^'P^^'a; . 
[*263-27.*202-55.*120-213]         D .  P^j^'*  e  Cls  induct .  (1) 

[*120-481]  D.P'ice  Cls  induct  (2) 

l-.(l).(2).Dh.Prop 

*263-42.     h  :  P  6  ft) .  D  .  sgm'P  =  A  J,  (C'P) 
Dem. 
h.*212-21.*211-12.D 

l-:.Hp.D:a(sgm'P)/3.  =  .a  =  P"a./3  =  P";8.«C;8.«  +  /3  (1) 

h.(l).*211-l.*205-123.D 

h  :  Hp .  a  (sgm'P)  /3 .  D .  a,  ;8  e  sect'P .  ~  E !  maxp'a .  ~E !  maxp'/8 . 
[*263-401]  D.a,^ei'Awi'a'P  (2) 

l-.(l).(2).  DI-:Hp.a{sgm'P)|S.D.a=A.jS=C'P  (3) 

l-.*37-29.    DI-:a  =  A.D.a  =  P"a  (4) 

t- .  *263-22  .  D  H  :  Hp .  y8  =  C'P .  D .  /3  =  P"0  (5) 

h.(l).(4).(5).  DH:Hp.a  =  A.|S  =  C"P.D.a(sgm'P)/8  (6) 

h  .  (3) .  (6)  .  D  I- .  Prop 

*263-43.     H:Peft).D.a'Pi  =  a'P 

Dem. 

h  .  *263141 .  D  h  :  Hp  .  D .  Q'P  =  a'(POpo 

[*91-504]  =  a'P, :  D  I- .  Prop 


SECTION  E]  PROGRESSIONS  151 

*263431.  l-:Pefi-t'A.a'Pi  =  a'P.~E!5'P.D.P6a. 
Bern. 

V  .  *261-35  .  Transp  .  D  h ;  Hp  .  D .  P  e  fl  infin  . 

[*26r44]  D  .  P,  [%^'B'P  e  Prog . 

[*261-212]  D.PifP'B'PeProg. 

[*202-524]  D.  Pie  Prog  (1) 

l-.*261-212.  Dl-:Hp.D.P  =  (POpo  (2) 

h  .  (1) .  (2) .  *263-l .  D  h  .  Prop 

*263-44.     !-.(»  =  ft -t'AnP(a'Pi  =  a'P.~E!£'P)     [*263-43-22-431] 

*263-45.     h.w  =  n-t'Ar.P(P  =  Pf„.~E!5'P)  [*261-212  . *263-44] 

*263-46.     h.o,  =  ftnP(E!B'P,.~E!5'P) 

Dem. 
h  .  *121-305  .  *93-101 .  D 

h  :  P  6  ft  .  ~  E !  £'P .  Q'Pi  =1=  d'P  .3.3!  Q'P  -  d'Pi .  Q'P  =  D'P  -  I'B'P . 
[*250-21]  D.a!D'P,-a'P,-t'S'P. 

[*93101]  D  .  a  !  B'Pi  -  t'5'P  (1) 

h  .  *121-305  .  *25021 .  D  h  :  P  e  ft  -  I'A .  D .  £'P  e  B'P,  (2) 

1-.(1).(2).         DI-:P6ft.~E!£'P.a'Pi4=a'P.D.^'P,~6l. 

[*53-3]  D .  ~  E !  5'P,  (3) 

I- .  (3) .  Transp .  D  I- :  P  e  ft  .  E !  B'P, .  ~  E  !  B'P .  D .  Q'P,  =  O'P . 

[*263-44]  D.Pew  (4) 

h  .  *250-21 .  *263-44 .  D  h  :  P  e  <u  .  D  .  £'P,  =  B'P . 

[*250-13]  3  .  E !  B'P,  (5) 

h .  (5) .  *263-44 .         DH:Pe«.D.E!5'P,.~E!B'P  (6) 

f- .  (4)  .  (6) .  D  h  .  Prop 

*263-47.     h  . «  =  ft  n  P  {a  C  O'P .  D. :  a  6  Cls  induct .  =  .  g  !  (7'P  r>  ^'P"a| 

Dem. 
\- .  *254-52  .  D  I- :  Pe  « .  o  C  O'P .  a  !  O'P  np'P"a .  D .  (P  ^  a)lessP  - 
[*263-3]  D.Ppaeftfin. 

[*261-42-14]  D  .  0'(P  t  a)  e  Cls  induct . 

[*202-55.*120-213]  D .  a  e  Cls  induct  (1) 

h  .  *261-26  .  D  I-  -.Peto.aCG'P .  aeCls  induct .  g  !  a .  D  .  E  Imaxp'a. 
[*263-22]  D  .  a  !  P'maxp'a . 

[*205-65.*40-69]  D  .  3  !  C"Pn^'P"a  (2) 


152  SEEiES  [part  V 

I- .  (1) .  (2) .  *40-2 .  D 

H  :.  Peo)  .aC  C'P .  D  :  a e Cls induct .  =  .  g  I  C'Pnp^"a  (3) 

l-.*40-2.*120'212.D 

h  ::  Pen  :.  aC  C'P .  D,  :  aeCls induct .  =  .g  !  C'Pnp'P'"a  :.  3  .g  !  P  (4) 

h .  (4) .  *200-51  .  D  h  :  Hp  (4)  .  D .  C'P~  e  Cls  induct  (5) 

h  .  *250-16  .  D 

h  :  Hp  (4) .  g  !  Q'P  -  Q'P, .  D  .  P'miDp'(a'P  -  a'P^)  e  Cls  induct . 

[*261-26]  D  .  E !  maxp'?minp'(a'P  -  Q'P,) . 

[*205-252]  D.minp'(a'P-a'Pi)ea'Pi  (6) 

t- .  (6) .  Transp  .  3  h  :  Hp  (4)  .  D  .  Q'P,  =  Q'P  (7) 

h  .  (5) .  (7)  •  *261-34 .  D  h  :  Hp  (4) .  D .  ~  E !  5'P  (8) 

h  .  (4) .  (7) .  (8) .         DI-:Hp(4).D.P6<»  (9) 

1- .  (3) .  (9) .  D  h  .  Prop 

*263-48.     I- .  0.  =  n  A P  {a C C'P .  D.  :  a~e  Clsrefl  .  s  .  g !  C'P nj3'P"a} 
[*263-47 .  *261-47] 

*263-49.     h.Xlfinu  6)  =  nnP(a'Pi  =  a'P)  =  n  ft  P(P  =  P,„) 
Dem. 

I- .  *261'22  .  *263-44  .Dh:P6nfinwa).D.  a'P,  =  a'P  (1) 

l-.*261-34.*263-44.DI-:P6fl.a'Pi  =  a'P.D.Peflfinw(B    (2) 
h  .  (1) .  (2) .  D  h  .  n  fin  u  ft,  =  fl  ft  P  (Q'Px  =  Q'P) 

[*26r212]  =fiftP(P  =  P,J.Dh.Prop 

*263-491.  l-:PeOfinwo,.D.P  =  (P^po ■  Pa  =  (PiV 

h  .  *263-49  .  *261-212  .  D  I- :  Hp .  D  .  P  =  (P,)p„ .  (1) 

[*91-602.*121103]  D  .P(an-iy)  =  P^(xiHy) . 

[*121-11]  D.P„  =  (P,)„  (2) 

I- .  (1) .  (2) .  D  1- .  Prop 

*263-5.       I- :  P  6  n  infin .  D  .  P  ^  (t'5'P  w  P,n'-B'P)  e  co 

Bern. 
h  .  *261-45  .       3  h  :  Hp .  D  .  P,  T  P,/5'P  e  Prog  (1) 

h  .  *260-33-27  .  D  h  :  Hp .  D  .  (P,  ['p,„'B'P)^  =  P,„  ^  (I'^'P  «  P,n'-B'P) 
[*260-32]  =PUi'fi'PwP,„'5'P)       (2) 

t- .  (1)  .  (2) .  *263-l .  D  h  .  Prop 


SECTION  E]  PROGRESSIONS  153 

*263-51.     hiPeflinfin.D. 

I'B'P uKn'-B'P e D'(Pe n /)  .  I'B'P yj^tu'B'P e a'sgm'P 
Bern. 

f- .  *263-5-22  .  D  h  :  Hp .  D .  ~  E !  ma.xp'(i'B'P  ^%^'B'P)  (1) 

F- .  *26011 .     D  h  :  Hp .  2/  6  a'P  -  P,/5'P .  a;  e'Pt^.'B'P .  D  . 

P  (5'P  hH  2/)  ~  6  Cls  induct .  P  (5'P  m  a;)  e  Cls  induct . 

[*120-49]  3  .  Nc'P  {B'P  m  ?/)  >  Nc'P  {B'P  w  x) . 

[*117-222.Transp]D.~(yP«)  (2)    : 

I- .  (2) .  Transp .    D  h  :  Hp .  D  .  P"K'£'P  C  ^P  w  K'-B'P  (3) 

I- .  (3) .  *93-101 .  D  h  :  Hp .  3  .  P"{i'B'P  C  %^'B'P)  C  I'B'P  u  %^'B'P  (4) 

H.(l).(4).*211-41.Dh:Hp.D.i'jB'PwP,n'^'^eD'(PeA/).  (5) 

[*212152]  D .  i'£'P  yj%^'B'P  e  Q'sgm'P  (6) 

f- .  (5) .  (6)  .  D  h  .  Prop 

*263-52.     hiPeXlinfin-w.D.  (ga;)  . «  e  Q'P .  P,n'5'P  u  l'5'P  =  P'a; 
i)em. 
I-  .*263'49  .  Transp .  D  I- :  Hp .  D  .  g  !  a'P-a'P, . 
[*260-27]  D.^ia'P  -%^'B'P . 

[*250-121]  3  .  E  !  niinp'(a'-P  -  Pfn'-B'-P)  ■ 

[*263-51.*206-25.*211-726]       D  .  (ga;) .  a;  e  Q'P .  P^'^'P  w  I'B'P^'P'x: 

D  h .  Prop 

*263-53.     h  :  P  6  n  infin  -  <»  .  D  .  Nr'P  >  tu 
Dem. 

h  .  *253-13  .  *263'52  .  D  h  :  Hp  .  D ,  P  t;  (Pi^'B'P  u  t'£'P)  e  D'Ps . 
[*263o]  D .  a  !  w n D'Ps . 

[*255-17.*26318]  D  .  Nr'P  >  «  :  3  h .  Prop 

The  above  proposition  shows  that  «  is  the  smallest  of  infinite  ordinals. 
The  same  fact  is  otherwise  expressed  by  the  following  proposition. 

*263'54.     1- :  a  e  NO  infin  -  I'w  .  D  .  a  >  m     [*263-53] 

*263-55.     h:Pea).D.P!6w-i-i.s'P6&)  +  i 

DeTn. 

h.*253-511.*263-44.DI-:Hp.D.Psec»-i-i  (1) 

h  .  *2.52-372  .  *263-44 .  D  h  :  Hp .  D  .  s'P  e  to  + 1  (2) 

h  .  (1) .  (2) .  D  h  .  Prop 


154  SERIES  [part  V 

The  following  propositions  are  lemmas  for  proving  w X 2^  =  eo  (*26363). 

*263-6.       i- :: P eSer .  x^y .  M  =  P  X  (x iy)  .0  :.  RM,S .=  : 

(gw) .  u  6  C'P  .R  =  oi;lu.8=ylu.v.  (gw,  v) .  uPjV .  R~y  ],u.S  =  a!lv 
Bern. 
h  .  *1 66- 1 1 1 .  D  I- : .  Hp .  mPi;  .  E  =  a;  4,  M  :  5f  =  a;  J,  i; .  V  . /S  =  2/ 4,  ?) :  D  . 

RM{ylu).{yiu)M8.  ' 

[*201-63.*204-55]         D.'^(RM,S)  (1) 

Similarly  \-:.Rp.uPv  .R^y  iu.S  =  y  iv.D  .'^{RM^S)  (2) 

h.*166-lll.D 

I- :  Hp .  uPw .  wPv  .R  =  ylu.S==xlv.D.  RM(x  lw).{x\,w)  MS . 
[*201-63.*204-55]  D.~(i2M„Sf)  (3) 

h  .  (1) .  (2) .  (3) .  Transp .  *166111 .  3 
h:.Hp.  RMiS.O:{'^u).R  =  xlu.S  =  yiu.ueG'P.v. 

{'^u,v).uPTV.R  =  y  ^u.S=xlv  (4) 

\-.*166in.D\-:'H.i>.R  =  xlu.S=yiu.RM(xiv).O.SM(xiv)        (5) 
h  .  *166111  .'^\-:.Rp.R  =  xiu.S  =  ylu.  RM(y  lv).D:u  =  v.v.  uPv  : 
[*166-111]  D:ylv  =  S.v.SM(yiv)        (6) 

h.*166-lll.D 

\-:'S-p.R  =  yiu.S  =  xiv.  uP^v .  RM  {ylw).O.SM(yiw)  (I) 

\- .  *166-111  .D\-:.ll^.R  =  yiu.8  =  xiv.  uP^v .  RM{x  J,  w) .  3  : 

xiw  =  8.^.8M{x\,w)        (8) 
h  .  (5) .  (6) .  (7) .  (8) .  D  I- : .  Hp  : «  e  C'P .  i2  =  a;  J,  M .  /S  =  2/  4,  M .  V  - 

uP,v.R  =  yiu.8  =  xlv:0.RM^S      (9) 
h  .  (4) .  (9) .  3  I- .  Prop 

*263-61.     I- :  P  6 Ser .  a;  +  2/ .  Jlf  =  P  X  («  4, 2/) .  3  .  d'M,  =  y  yCPux  4,"a'P, 
[*263-6] 

*263-62.     h:P6(».a!=t=2/.3.Px(a;4,2/)6o> 
Dem. 
h  .  *263-61-43 .  D  h  :  Hp  .  D .  Q'jP  x  (a;  j  y)],  =  2/  ^"O'P  u  x  l"a'P 
[*166111]  =a'{Px{xiy)}  (1) 

|-.*251-55.      DI-:Hp.D.Px(a!4,2/)6ii  (2) 

h.*166-14.      DI-:Hp.D.Px(a;4,2/)6-t'A  (3) 

\- .  *166-16  .  *263-22  .  D  h  :  Hp .  D  .  S'Cnv'{P  x  (a:  4,  y)}  =  A  (4) 

h  .  (1) .  (2) .  (3) .  (4) .  *263-44  .Dh:Hp.D.Px(a;4,2/)6a):DI-.  Prop 

«26363.     \-.(oX2r  =  co 
Dem. 

I- .  *263'62-l7 .  DI-:P6«.Qe2,.D.Nr'(PxQ)  =  ffl  (1) 

h  .  *184-13  .  *26317  .DI-:P6«.Qe2,.D.  Nr'(P  x  Q)  =  «  X  2,  (2) 

|-.(1).(2).  Df-:a!w.a!2^.D.«x2,=  w  (3) 

\- .  *184-11 .  DI-:<a  =  A.D.«BX2^  =  A  (4) 


SECTION  E]  PEOGEESSIONS  155 

I- .  *123-14 .  *263101  .Df-:a!ft).D.a!2. 

[*262-21]  •  D.a!2,  (5) 

l-.(3).(4).(5).Dh.Prop 
The  following  propositions  are  lemmas  for  proving  *263'66. 

*263-64.     y  :P,QeSer  .aieCF  .zQ,w .  M  =  P  X  Q  .D  .(z  ia!)M,{w  la:) 
Bern. 
l-.*166-lll.D[-:Hp.D.(0  4,a!)M(«;4,a;)  (1) 

h  .  *166-111 .  D  I- :.  Hp .  (a:  I «)  JIf  (m  J,  y) .  D  :  xPy  .w  .x  =  y.  zQu  : 
[*204'7l]  D  : xPy .v.x  =  y.u  =  w.v.x  =  y. wQy : 

[*166-111]  ■^■.{wlx)M{u\,y).y.{iu\,x)^(u\,y)  (2) 

h.(2).*204-55.DI-:Hp(2).D.~  {(M42/)ilf(wJ,a')}  (3) 

h .  (1) .  (3) .  *201-63  .  D  h  .  Prop 

*263-641.  V  \  P,qe^ev .  z  =  B'Q.w  =  B'Q  .xP^y .  M=^  P  X  Q  .O . 

{z\,x)M,{wiy) 
Dem. 

h  . *166-111 .  3  h  :  Hp .  D  . {zix)M{w i y)  (1) 

h  .  *166111  .  D  h  :.  Hp  .  (^  j  «)  Jf  (m  J,  ?;)  .  D  :  a;P?; : 

[*204-7l]  D:v  =  y.w.yPv  (2) 

h.(2).*166-lll.D 

I- :.  Hp  .  {z  lx)M(u^v) .  D  :ulv  =  w  ^y  .v  .(w  ly)M(u^v): 

[*204-55]  D  :  ~  {(m  4,  »)  M{w  J,  y)}  (3) 

h  .  (1) .  (3) .  *201-63  .  D  h  .  Prop 

*263-642.  h  :  P,  Q  6  Ser .  ilf  =  P  X  Q .  D  .  (C'P  x  Q'QO  C  Q'ilf,    [*263-64] 

*263-643.  h  :  P,  QeSer.E  !  5'Q .  E !  5'Q.ilf  =Px  Q.D.(5'Q)4,"a'P,Ca'ifi 
[*263-64] 

*263-65.     l-iPew.Qeflfin-i'A.D.PxQeo) 
Dem. 

h.*25r55.Dh:Hp.D.PxQ6n  (1) 

h.*166-14.DH:Hp.D.PxQe-i'A  (2) 

h  .  *263-642;643 .  *261-24 .  D 

I- :  Hp .  D .  (C'P  X  a'QO  w  (B'Q)  i"a'P,  C  a'(Pi  X  Q), . 
[*263-49]  D  .  (C'P  X  Q'Q)  w  (5'Q)  l"a'P  C  a'(P  x  QX . 

[*166-12-16]  D .  a'(P  X  Q)  -  ^'(P  X  Q)  C  a'(P  x  Q\ . 

[*93-101  .*201-63]  D  .  a'(P  x  Q)  =  a'(P  x  Q),  (3) 

I- .  *166-16  .  *263-22  .  D  h  :  Hp .  3  .  fi'Cnv'(P  x  Q)  =  A  (4) 

I- .  (1) ,  (2)  .  (3)  .  (4) .  *263-44 .  D  J- .  Prop 

*263-66.     l-:a6NOfin-t'0,.D.ft)Xa  =  «»    [*263'65] 
The  proof  proceeds  as  in  *263'63. 


*264.     DEEIVATIVES  OP  WELL-ORDERED  SERIES. 

Summary  of  *264. 

The  principal  purpose  of  the  present  number  is  to  show  that  every 
infinite  well-ordered  series  is  the  sum  of  a  series  of  progressions  followed 
by  a  finite  tag,  which  may  be  null.  For  this  purpose,  we  proceed  as  follows : 
If  X  is  any  member  of  G'P,  it  must  belong  to  the  family,  with  respect 

to  P„  of  some  member  of  G'P-d'P^,  unless  x  =  B'P  and  £'P~ea'Pi. 

Assuming  that  we  have  either  ~E!B'P  or  S'PeCE'Pi,  and  assuming 
further  that  P  is  an  infinite  well-ordered  series  other  than  a  progression, 
it  follows  that  every  member  of  G'P  belongs  to  the  family,  with  respect 
to  Pj,  of  some  member  of  CV'P,  because,  by  *216-611,  C'V'P  =  D'P,  -  Q'Pi 
in  the  circumstances  contemplated  (*264'15).     Now  P  limited  to  any  one 

family  with  respect  to  Pj  is  a  progression,  unless  that  family  includes  B'P ; 

and  if  it  includes  B'P,  it  is  finite.     Hence  our  proposition  follows. 

An  important  consequence  of  the  above  proposition  is  that  every  cardinal 
which  is  not  inductive  and  is  applicable  to  classes  that  can  be  well-ordered  is 
a  multiple  of  «„  (*264-48). 

For  the  purposes  of  this  number  we  need  a  notation  for  the  series  of 
series  each  of  which  consists  of  the  family  of  some  member  of  C'VP.  We 
therefore  put 

Pp,  =  P D ; {P^h'^^'P  Dft  [*264]. 
Here  "  pr ''  is  intended  to  suggest  "  progression."  When  P  e  fl  infin  —  ca, 
Ppr  is  the  series  of  progressions  (possibly  ending  in  a  finite  tag)  whose 
sum  is  P  (or  P  ^  D'P,  in  one  case).  Before  using  this  definition,  some 
preliminary  considerations  are  necessary.  V'P  is  the  series  of  limit-points 
of  P,  including  B'P.  In  order  that  V'P  may  exist,  there  must  be  at 
least  one  limit-point  besides  B'P.  Now  the  limit-points  of  a  series  are 
G'P-a'P^,i.e.  the  limit-points  other  than  B'P  are  Q'P-Q'Pi  (*216-21). 
Hence  when  B'P  exists  and  Q'P  — CE 'Pi  exists,  V'P  exists.  Hence  by 
*263'49, 

*26413.     h:.PeIl.D:a!V'P.  =  .Pen  infin  -  m 


SECTION  E]  derivatives  OF  WELL-OEDEEED  SEEIES  157 

I.e.  a  well-ordered  series  whose  derivative  exists  is  one  which  is  infinite 
and  not  a  progression.     W»  have  similarly 

*26414.     h  :  P  e  n  infin  -  « .  D .  G'V'P  =  G'P  -  d'P^ 
and 

*26412.     h:P6n.D.a'V'P  =  a'P-a'Pi 

We  next  proceed  (*264"2 — •261)  to  study  the  posterity  of  a  term  x 

with  respect  to  Pj,  i.e.  the  series  P^{P^^'x.     We  show  that  if  this  series 

has  a  last  term,  it  is  finite  (*264-21),  and  ends  with  B'P  (*264-2),  while 
if  not,  and  if  xeCP^,  i.e.  if  x  has  either  an  immediate  successor  or  an 
immediate  predecessor,  the  series  is  a  progression  (*264*22).    Hence  we  have 

*26423.     l-:.Pe0.a;eC"V'Pn(7'P,.D: 

E !  maxp'(PiVa!  .  =  .x  =  B'Cnw'V'P .  E !  B'P 

Moreover,  if  xeC'Pi,  the  ancestry  of  x  with  respect  to  Pi  must  end  with 
a  member  of  the  derivative  of  P,  i.e. 


*264-233.  h  :  P  e  n  infin  -a.xe  G'P^ .  D .  minp'(Pi)*'a;  e  G'V'P 

We  thus  arrive  at  the  result  that  if  P  has  a  last  term,  so  has  V'P 
(*264'24),  and  if  x  is  any  member  of  the  derivative  except  the  last,  the 

series  P^{P^^'x  is  a  progression  (*264'25),  while  if  x  is  the  last  term  of 

the  derivative,  and  the  series  P  has  a  last  term,  then  P  ^  {P^^'x  is  finite 
(*264'252).  Moreover  the  supposition  that  P  ends  with  a  member  of  the 
derivative  is  equivalent  to  the  supposition  that  P  ends  with  a  term  which 
has  no  immediate  predecessor  (*264'26). 

We  now  proceed  (*264'3 — "403)  to  consider  the  relation  Pp,  defined 
above.  If  we  take  any  term  y  in  a  well-ordered  series,  there  is  some  term 
X  belonging  to  G'P  —  Q'Pi  such  that  the  family  of  y  with  respect  to  Pj 
is  the  posterity  of  x.  This  results  from  *264*283  above.  Thus  we  may 
.  divide  the  field  of  P  into  mutually  exclusive  stretches,  each  of  which  is  the 
posterity  of  some  member  of  O'P  — Q'Pi  with  respect  to  Pj.  The  series  of 
series  thus  obtained  is  Pj,j.  There  is  an  exceptional  case,  when  the  series 
ends  in  a  term  having  no  immediate  predecessor,  for  then  the  posterity  of 
this  term  with  respect  to  Pi  is  null,  and  therefore  Ppj  omits  this  term. 
Otherwise,  we  shall  have  S'Ppr  =  P;  i.6.  we  have 

*264-39.     1- :  P  e  O  infin  -  © .  ~  {B'P  e  G'V'P) .  D .  2'Pp,  =  P 

*264-391.  \-:Pen.B'Pe G'V'P .  D  .  t'P^,  =  P C D'P 

Moreover  we  have 

*264-36.     f- :  P  €  n .  D .  Ppr  smor  V'P .  Pp,  e  Eel''  excl 


158  SERIES  [part  V 

from  what  was  proved  earlier  we  know  that,  assuming  Peil,  we  have 
D'PpjCw  (*264-401);  if  P  has  no  last  term,  CPp^Ca;  if  P  is  infinite  and 

has  a  last  term,  B'Pp^  is  finite,  and  if  the  last  term  of  P  belongs  to  C'V^P^ 

£'Ppr  =  A.  Hence,  using  *251"63,  which  assures  us  that,  in  virtue  of 
*264-36  above,  if  C'Pp,  C  m,  S'Pp,  is  a  multiple  of  to,  we  find  (*264'44)  that 
every  well-ordered  series  has  an  ordinal  number  of  the  form  (a  >C  w)  4-  ^, 
where  a  and  /3  may  be  any  ordinals,  including  0^  and  1  (putting  1  X  a  =  a  to 
avoid  exceptional  cases).  The  above  account  omits  the  exceptional  cases, 
which  require  special  treatment  and  render  the  proof  long;  but  in  the  end 
the  above  simple  result  is  obtained. 

Since  a  multiple  of  H^  is  not  increased  by  the  addition  of  an  inductive 
cardinal,  it  follows  (*264'44)  that  the  cardinal  number  of  the  field  of  an 
infinite  well-ordered  series  is  always  a  multiple  of  tia  (*264'47).  Hence 
if  all  classes  can  be  well-ordered,  all  cardinals  which  are  not  inductive  are 
multiples  of  No.  In  virtue  of  Zermelo's  theorem,  the  same  result  follows  if 
the  multiplicative  axiom  is  true. 


*26401.     Pp,  =  Pt5(A)*5V'P    Dft[*264] 

*26411.     H:.Pen.D:a!sgm'P.  =  .Peninfin 

Dem. 
l-.*263-51.  DhiPeninfin.D.glsgm'P  (1) 

1- .  *212-152  .  *211-41 .  D  h  :  P  e  n  .  a  !  sgm'P .  D  .  a  !  sect'P-  t'A  -  Q'maxp . 
[*261-28.Transp]  D .  P  e  fl  infin  (2) 

I- .  (1) .  (2) .  3  h  .  Prop 

*26412.     h  :  P  e  n .  D  .  a' V  'P  =  Q'P  -  a'P, 
Devi. 

I-.*216-61.  DI-:Hp.a!P.D.a'V'P  =  a'P-a'Pi  (1) 

h  .  *216-612  .  *33-241 .  D  h  :  P  =  A ,  D  .  Q'V'P  =  A  .  Q'P  -  Q'Pi  =  A    (2) 
I- .  (1) .  (2)  .  D  h  .  Prop 

*26413.     l-:.Pen.D:a!V'P.  =  .Pefi  infin  -  o, 
Dem. 

h  . *26412 .  D  h  :.  Hp  .  D  :  a  !  V'P .  =  .  g  !  a'P-a'P^ . 
[*263-49]  =  .  P  e  n  infin  -  o) :  D  h  .  Prop 

*264-14.     h:Peflinfin-<».D.O'V'P  =  a'P-a'P,     [*264-13  .*216-611] 

*26415.     I- :.  P  6  n  infin  -  «  :  ~  E !  B'P .  v  .  B'P  e  a'P^ :  D .  G'V'P  ='b'P^ 

Dem. 
V  .  *264-14 .  *93103  .  D  h  :  Hp  .  ~  E  !  5'P.D.C"V'P=C"P-a'Pi.C"P=D'P. 
[*93-101.*2.50-21]-  D.G'S/'P='b'P,  (1) 


SECTION  e]  DEEIVATIVES  OP   WELL-ORDERED  SERIES  159 

l-.*93101.         DhiB'PeQ'Pi.D.C'P-a'PiCD'P  (2) 

H  .  (2)  .  *264-14 .  D  f- :  Hp  .%P  e  Q'A .  D .  C'V'P  =  D'P  -  a'P^ 
[*93-101.*250-21]  =B'P,  (3) 

I- .  (1) .  (3) .  D  I- .  Prop 


*264-2.       h  :  P  e  n .  E;  !  msiXp'(P^%'x .  D  .  maxp'(P,)*'a;  =  B'P 
Bern. 


h  .  *206-42-46  .  3  h  :  Hp .  D  .  seqp'(PO*'«  =  P/maxp'(P,)*'a; . 
[*90-16]  ^.^qp'(P^'a;C(P^'x. 

[*206-2]  D  .  seqp'(Pi)*'a!  =  A . 

[*250126]  D .  maxp'(P,)*'a!  =  £'P :  D  h  .  Prop 

*264-21.     h  :  P  6  fl .  E !  maxp'(P,)*'« .  D . 


P  t  (Pi)*'«  6 12  fin  .  P  (a;  M  5'P)  e  Cls  induct 
Dem. 


f- .  *20035  .  D  h  :  Hp .  (Pi)*'*  =  I'a; .  D  .  P r  (P,)^'x  =  A  (1 ) 

« < 

I- .  *260-27  .  D  h  :  Hp  .  (Pi)*'a;  4=  I'a; .  D  .  a!P,„  maxp'(P,)j,f'a; . 

<- 


[*260-ll]  D.P{a;i-imaxp'(P,Va;}  6  Cls  induct.   (2) 

[*205-2]  D.G'P^  C^O^'a;  e  Cls  induct  (3) 

I- .  (1) .  (2) .  (3) .  *264-2  .  D  h  .  Prop 


*264-22.     h  :  P  e  n  .  ~  E !  maxp'(Pi)5,e'«  ■ «  «  C'P, .  D .  P  ^  (Pi)*'a;  e  a 
Dem. 

I- .  *260-32-34-27  .  D  h  :  Hp .  D  .  {P  p  (PO*'«}i  =  {CPO*'*}  1 A  ■  (1) 

[*122-52]  D.{Pt(PVf}xeProg  _  (2) 

h  .  (1) .  *260-33  .    D  I- :  Hp .  D  .  [{P  D  (AVa;! Jp„  =  P  ^  (PO*'*  (3) 

|-.(2).(3).*2631.DI-.Prop 

*264-221.  h  :  P  e  fl .  a;  ( V'P)  2/ .  D  .  P  («  -  2/)  ~  6  Cls  induct 
Dem. 
I- .  *207-34 .  *216-6  .  D  h  :  Hp  .  D .  xF'y .  y  =  Itp'P'y . 
[*207-25]  D .  xF'y .  y  =  ltp'(P'a;  n  P'y) . 

[*20713]  D .  xP'y .  ~  E !  maxp'(P'a;  n  'p'y) . 

[*261-26]  D  .  P'a;  n  P'y  ~  e  Cls  induct :  D  h  .  Prop 

*264-222.  h  :  P  e  fi .  P'«  e  Cls  induct .  D .  a;  ~  e  D'V'P    [*264-221 .  Transp] 


160  SERIES  [PAKT  V 

*264-223.  h  :  P  e  n  .  P  («  -  2/)  ~  6  Cls  induct .  D  .  g  !  CI'V'P  a  P  («  -i  2/) 
Dem. 
V  .  *261-3 .  D  h  :  Hp .  D  .  (ga)  .aCP(«-2/).a!a.~E!  maxp'a . 
[*250-122]  D.(aa).aCP(a;-y).a!a.E!ltp'a. 

[*206-213]  D.(aa).aCP(a!-2/).a!a.  VaeP(a;-i2/). 

[*206-181]  D  .  a  !  dtp  A  Q'P  n  P  («  -)  2/) . 

[*216-602]  D  .  a  !  a'V'P  A  P "(«  -H  y) :  D  I- .  Prop 

*264-224.  h  :  P  e  n .  a;  =  5'Cnv'V'P .  E !  P'P .  D  .  P'a;  e  Cls  induct 
Dem. 
\- .  *264-223  .  Transp .  D  h  :  Hp .  D  .  P  («  -  B'P)  e  Cls  induct :  D  h  .  Prop 


*264-225.  h  :.  P  6  n .  a;  e  O'Pi .  D  :  E  !  maxp'(P,)*'a; .  =  .  (Pi)*'*  e  Cls  induct 

[*264-21-22] 

*264-23.     \-:.Peil.X€G'V'PnG'F,.:i: 

E !  maxp'CPO*'*  ■  ^  ■  a;  =  i5'Cn v'V'P .  E !  B'P 
Dem. 


I- .  *264-2 .  D  I- :  Hp .  E !  maxp'(Pi)i^'a; .  D  .  E !  B'P  (1) 

h  .  *264-21-222 .  D  h  :  Hp  (1) .  D  .  a;  ~  e  D'V'P . 

[*93-103]  D  .  a;  =  5'Cnv'V'P  (2) 

I- .  *264-224 .       3  I- :  Hp .  a;  =  5'Cnv'V'P .  E  !  B'P  .D.P'aie  Cls  induct . 
[*120-481-251]  D  .  (Pi)*'a;  e  Cls  induct . 

[*90-12.Hp.*261-26]  3 .  E !  maxp'(P,)*'a;  (3) 

1- .  (1) .  (2) .  (3) .  D  h  .  Prop 

*264-231.  h-.Pen.xeC'V'P-  C'P^ .  D  .  a;  =  5'Cn  v'V'P  =  B'P 

Dem, 

h  .*2o0-21 .  D  h  :  Hp  .  D  .a;~6D'P  . 

[*93-103]  D.x  =  B'P.  (1) 

[*216-6]  D.aj~6D'V'P. 

[*93-103]  D.ai=  B'Cny'V'P  (2) 

h  .  (1) .  (2) .  3  h  .  Prop 

*264-232.  l-:.Pe0.a;6a'V'P.D: 

(P^'x  6  Cls  induct  .  =  .x  =  B'Cnv'V'P  .El  B'P 

This  proposition  differs  from  *264'23  by  not  assuming  that  x  e  G'Py. 

If  B'P  has   no   immediate  predecessor,  B'PeC'V'P-C'Pi,  so  that  B'P 
satisfies  the  hypothesis  of  *264-232,  but  not  that  of  *264-23. 


SECTION  E]  derivatives   OF   WELL-ORDERED   SERIES  161 

Dem. 

l-.*90-13.      Dl-:Hp.(*Pi%'a;  =  A.D.a;~eO'P,. 

[*264-231]  D.a;  =  B'Cnv'V'P.E!B'P  (1) 

I- .  *120-212  .  D  h  :  Hp  (1) .  D  .  {P^'x  e  Cls  induct  (2) 

h  .  *264-225  .  D 

h  :.  Hp .  a  !  (Pj)^'ai .  D  :  {Pi)^'x  e  Cls  induct .  =  .  E !  maxp*(Pi)*'«  ■ 

[*264-23]  =.a;  =  £'Cnv'V'P.E!5'P    (3) 

h  .  (1)  .  (2) .  (3) .  D  h  .  Prop 

*264-233.  I- :  P  e  fi  infin  -  to  . «  e  G'P, .  D  .  mmp'(Pi)^'ai  e  G'V'P 
Dem. 

l-.*250-121.      D  h  :  Hp .  D  .  E  !  minp'(Pi  V«  (1) 

h .  *90-l72 .        D  h  :  Hp .  y  (PO*  « .  zP^y .  D  .  ^  e  (Pi)*'*  n  P'y . 

[*205-14]  D .  y  +  mini.'(Pi)*'a;         (2) 

> 

I- .  (2) .  Transp .  D  h  :  Hp .  y  =  miiip'(Pi)*'« .  D  .  y  ~  e  (I 'Pi . 

[*26414J  D.yeC'V'P  (3) 

I- .  (1) .  (3) .  3  I- .  Prop 

*264-24.     h  :  P  6  n  infin .  E !  5'P .  D .  E !  5'Cnv'V'P 
Dem. 

I- .  *26412  .  D  h  :  Hp .  5'P  ~  6  O'Pi  .D.B'Pe  G'V'P . 

[*216-6]  D .  B'P  =  S'Cnv' V'P  (1) 

y  .  *264-233 .  *263-22 .  D  I- :  Hp .  B'P  e  G'P^ .  3  .  minp'(Pi)*'JB'P  e  C'V'P    (2) 

h  .  *205-55  .  D  I- :  Hp  (2)  . «  =  minp'(P,)*'5'P .  D  .  5'P  =  maxp'(PiVa; . 

[*264-23.(2)]  D .  a;  =  B'Cnv' V'P  (3) 

h  .  (1) .  (3) .  D  I- .  Prop 


*264-25.     hzPen.xe  D'V'P .  D  .  P  p  (Pi)*'a;  e  co 
Dem. 

h .  *264-232  .  *250-21 .  D  h  :  Hp .  D .  (Pi)*'a!~  e  Cls  induct .  x  e  D'Pi . 

[*264-225]  D  .  ~  E  !  maxp'(P,)*'a; .  x  e  D'Pi . 

[*264-22]  O.Pt [Pih'x e o) :  D h- .  Prop 

*264-251.  h  :  P  e  X2  .  ~  E !  £'P .  a;  e  0' V'P .  D .  P  ^  (Pi)*'a;  e  o) 

Dem. 

h  .  *250-21 .  D  h  :  Hp .  3  .  a;  6  D'Pi . 

[*264-23.Hp]  D  .  ~  E !  maxp'(PiVa! .  x  e  B'P, . 

[*264-22]  'ii.Pt  (Pi)*'*  e  o) :  D  1- .  Prop 

E.  ifcW.    III.  11 


162 


SERIES 


[part  V 


*264-252.  \-:Pen.ElB'P.x  =  B'Cnv'V'P .  D  .  P  p  (P,)*'«  e  £1  fin 
Dem. 


f- .  *264-23  .  D  f- :  Hp .  a;  6  C'P^ .  3  .  E !  ma.xp'(Pi)^'x . 
[*264-21]  D.Pl  (Pi)*'«  e  ft  fin 


(1) 
(2) 


(1) 
(2) 
(3) 


I- .  *90-14 .  3  h  : «~  6  C'Pr  .O.Pl  {P,)^'x  =  A 
1- .  (1) .  (2) .  D  f- .  Prop 

*264 26.     h  :. P e ft .  D  :  J5'P 6  C'V'P .  =  .ElB'P.  P'P~ e Q'P, 
Dem. 

I-.*14-21.    D  h-.B'P  6  G'V'P.D. El  B'P 
h  .  *264-12 .  D  I- :  Hp .  B'P  e  G'V'P .  D  .  B'P  ~  e  Q'Pi 
h  .  *26412 .  D  h  :  Hp .  £'P~ e  Q'Pj .  D .  5'P e  G'V'P 
1- .  (1) .  (2) .  (3) .  D  f- .  Prop 

*264-261.  h  :.  P  e  ft .  D  :  ~  (B'P  e  C  V'P)  .  =  .C'P  =  C'P, 

Dem. 
h  .  *264-26  .  D  h  ::  Hp .  D  :.  ~  (B'P  e  G'V'P) 
[*202-52] 
[*250-21] 
[*121-322] 

*264-3.       I- :  QP^,R  .  =  .(^x,;/)  .x(V'P)y  .Q  =  Pl  (P^'x .  E  =  P t  {P^'y 

[(*264-01)] 
*264-31.     I- :.  P  e  Ser .  D  :  QPj^B .  s  . 

(•^x,y).x,yeG'P-a'P,.xPy.Q  =  Pt(P^'x.R  =  Pltp7)'^'y 

[*207-35.*264-3.*216-6] 

*26432.     h  .  O'Pp,  =  P  t  "C^O*"^'' V'P    [*150-22  .  (*264-01)] 
*264-321.  h  :  P  e  Ser .  a;  e  C"  V'P  .  D  .  (P^'x  ~  e  1 

I- .  *216-611 .  D  I- :  Hp .  D  .  a;  e  (7'P  -  Q'Pi 


~  E  !  5'P  .  V  .  £'P  e  a'P,  : 

£'PCa'P,: 

(7'PCC'Pi: 

C'P  =  C"Pi::DI-.Prop 

<- 


h.*90'14.      Dl-:a;~6C"Pi.D.(PiVa;=A 

I- .  *1 21-305  .  D  h  :  Hp .  a;  6  D'Pi .  D  .  a !  (Pi)*'*  -I'x. 

[*90-12]  D.(Pi)*'a!~el 

l-.(l).(2).(3).DI-.Prop 

*264-33.     h  :  P  e  Ser .  D  .  G"G'P^,  =  CPO*"C" V'P 
[*264-321 .  *202-55  .  *264-32] 


(1) 
(2) 

(3) 


SECTION  E]  derivatives   OF   WELL-ORDERED   SERIES  163 

*264-34.     \-:P6n.x,yeC'P.Pl(P^'x  =  Pl(P^'y.D.x  =  y 
Dem.  * 


h  .  *264-321 .  *202-55  .  D  I- :  Hp  .  D  .  (Pi)*'*  =  (Pi)*'2/  (1) 

I- .  (1) .  *9012  .       D  h  :  Hp  .  a;  6  C'P^ .  D  .  a;  (Pi)*y .  y  {P;)^x . 
[*260-22.*91-541]  ■^.x  =  y  (2) 

h.*250-21.  Dh:Hp.a;~6a'Pi.D.a!  =  5'P  (3) 

h  .  (1) .  *9012-14  .  D  h  :  Hp  .  a;~  6  C'P, .  D  .  y^  e  O'P, . 

[*250-21]  D.y^B'P  (4) 

h.(3).(4).  DI-:Hp.a!~6C'Pi.D.a;  =  2/  (5) 

h  .  (2) .  (5) .  D  h  .  Prop 

*264-341.  h  :  P  6  Ser .  a?,  2/  6  G'V'P .  x  (P;)^y .  D  .  a;  =  y 

Dem. 

h  .  *216-611 .  3  h  :  Hp  .  D .  y  ~  6  Q'Pj . 

[*91-504]  D.~{a;(Pi)p„2/}. 

[*91-54]  D  .  a;  =  2/ :  D  I- .  Prop 

*264-35.     1- : P e Ser . a;, 2/ e  G' V'P .  g  !  (Pa)*'a; n (Pi)*'y  .O.x  =  y 

Dem. 

h  .  *96-302  .  3  I- :.  Hp .  D  :  a; (Pi)*2/ .  v .  y  (Pi)** : 

[*264-341]  D:x  =  y:.D\-.  Prop 

*264-36.     h  :  P  e  £2  .  D  .  Ppr  smor  V'P  .  Pp,  e  Rel'^  excl     [*264-34-35] 

The  following  propositions  .lead  up  to  *264'39'391. 
*26437.     h  :  P  6 11  infin  -  «  .  D  .  s'C'P^^  =  P^ 

Dem. 
h  .  *264-32  .  D  h  :.  Hp .  D  :  a;(s'a'Pp,)  y.  =  .  (ga) .  aeG^'P.x,  y  e  (P^)^'a.xPy . 
[*260-32-27]  =  .  (act) .  a  e  C'VP^^,  y  e  (Pi)*'a  .joPf^y . 

[*264'233-35]  =  .  (ga) .  a  =  minp'(Pi)*'«  =  mmp'{Pi)^'y .  xPf^y . 

[*13-195]  =  .  mmp'(P,)^x  =  minp'(Pi)*'2/  ■  *Pfn2/  (1) 

h  . *260-27  .  3  h  :  Hp  .  a;P,„2/ .  D  .  (Pi)*'*C (Pi)*'^/ .      _ 
[*205-5]  3 .  minp'(Pi)*'a;  =  minp'(Pi)*'y  (2) 

h  .  (1 ) .  (2)  .  D  1- : .  Hp .  3  :  a;  (i'CPp,)  y.  =  .  xPf^y  : .  D  h .  Prop 

*264-371.  h  :  P  e  Ser .  a  (V'P)  6.3.  (Pi)*'a  C  P'6 
Dem. 

l-.*216-6.    3H:Hp.3.a6P'6  (1) 

h  .  *204-71 .  3  1- :  Hp  .  a;P6 .  xP,y .  ~  (2/P6)  .D.y  =  b. 
[*33-14]  3.6ea'Pi  (2) 

I- .  (2) .  Transp .  *216-611 .  3  h  :.  Hp .  3  :  arP6 .  a;Piy  .O.yPb  (3) 

h  .  (1) .  (3) .  *90112  ,  3  I- :.  Hp  .  3  :  ct(Pi)*a! .  3  .  a;P6  :.  3  h .  Prop 

11—2 


164  SERIES  [PART  V 

*264-372.  1- :  P  6  Ser .  D  .  PJPp,  G  P-P,„ 

Dem. 
l-.*264-3-321.*20255.D 

h  :.  Hp .  D  :  a;  (PJPp,)  y.  =  .  (ga,  6) .  a  (V'P)  b.xe  (P^'a .  y  e  (PO^'b .        (1) 
[*264-37l]  D .  xPy  (2) 

h  .  *264-35  .  D  h  :  Hp .  a  (V'P)  6 .  a;  6  (PiVa .  2/ e  (P,)*'6  .  3  . 2/ ~  e  (A)*'a  ■ 
[*90-l'/]  D.2/~6(P,Va;. 

[*260-27]  D.~(«P,„2/)        (3) 

I- .  (1) .  (2)  .  (3)  .  D  h  :  Hp  .  D  .  F'P^,  G  P-P^ :  D  h  .  Prop 

*264-373.  h  :  P  e  11 .  ~ (B'P  e  C'V'P) .  D  .  P-P,„  G  PJPp, 

Bern. 
h.*264-261-233.*263-49.D 


h  :  Hp  .!c{P^Pt^)y.  D  .  mmp\P,)^'x.  vamp\P,)^'y  e  G'V'P  (1) 

>  > 

1- . *96-301 .  3  h  : . Hp . mmp'{Pi)^'ai  =  miup'(P^)^'y .D:x (Pi)* y  .v.y {P^^x : 

[*260-27]  :>:x  =  y.v.  xPj^y .  v .  yPi^x  (2) 

h  .  (2) .  Transp .     D  h  :  Hp  (1 ) .  D  .  mmp'{P.,)^'x  4=  xa.mp\P;)^'y  (3) 

h  .  (1) .  *264-371 .  D  h  :  Hp .  minp'(P,)*'2/  P  minp'(Pi)*'a; .  D  .  yPx  (4) 

h  .  (4)  .  Transp .     D  h  :  Hp  (1) .  D .  ~  {minp'(P,)*'2/ P  minp'(PiVa;j  (5) 

h  .  (3) .  (5) .  D  h  :  Hp  (1) .  D  .  minp'{P^'x  P  mmp'(P^  _  (6) 

h  .  (1) .  (6) .  3  h  :  Hp (1) .  D  .  (ga,  6) .  a (V'P)  6 .  a;  e  (PO*'a .  y  e{P,)^'b  . 

[*264-3-321  .*202-55]         D  . » (PJPp,)  y :  D  h  .  Prop 

*264'38.     h  :  P  6  n  .  ~ (£'P  e  G'V'P) .  D  .  F>P^,  =  P-Pfn    [*264-372-373] 

*264-381.  h  :  P  6  fl .  5'P  e  (7' V'P .  D  .  PJPp,  =  P  t  D'P  -^P,„ 
Bern. 

H  .  *264-33 .  D  h  :  Hp  .  D  .  s'G"G'P^^  C  C"P, . 
[*264-26.*42-2]  D  .  5'P  ~  e  O'PJPp, . 

[*264-372]  D.P;Pp,GP^D'PiP,„  (1) 

h  .  *250-21 .  D  I- :  Hp  .x{PlIi'P-Pt^)y .  '^.x,ye  G'P, . 
[*264-233.*263-49]  D  .  minp'(Pi)5u'a;,  minp'(P,y2/  e  G'V'P  (2) 

Thence  as  in  the  proof  of  *264"373, 

l-:Hp.a;(P^D'P-P,„)2/.D.a;(P;Pp,)2/  (3) 

I- .  (1)  .  (3) .  D  h  .  Prop 


SECTION  E]  derivatives  OF  WELL-ORDERED  SERIES  165 

*264-39.     h  :  P  e  fl  infin  -^  .  ~  (5'P  e  G'V'P)  .  D .  S'Pp^  =  P 
[*264-37-38  .  *26012  .  *1621] 

*264-391.  hzPea.B'Pe  G'V'P .  D  . 2'Pp,  =  P^ D'P 
Dem. 

h.*264-13.Dh:Hp.D.P60infin-a)  (1) 

h  .  *260-27  .  D  h  :  Hp .  D .  Pfa  =  P,„  C  C'P, 

[*264-26]  =Pt^lI)'P  (2) 

I- .  (1) .  (2) .  *264-37  .  *260-12  .  D  h  :  Hp .  D  .  s'C'P^,  =  P,„ .  P,„  G  P  ^  D'P    (3) 
F  .  (3) .  *264-381 .  D  h  .  Prop 

*264-4.      h  :  P  6  n  .  ~  E !  5'P .  D  .  C'P^^  C  w    [*264-251  -32] 

*264-401.  h  :  P  e  n .  D  .  D'Pp,  C  « 
Bern. 

h  .  *151-5  .  *264-34 .  D  I- :  Hp .  D  .  D'Pp,  =  P  t"(PO^"D' V'P         (1) 
h  .  (1)  .  *264-25  .  D  I- .  Prop 

*264-402.  I- :  P  e  fl  infin  .  E  !  B'P .  D  .  5'Pp,  e  il  fin 

Dem. 

h  .  *264-24 .  D  h  :  Hp .  D  .  E !  P'Cnv' V'P . 

[*151-5.*264-34]  D.5'Pp,  =  Pp(P,y£'Cnv'V'P . 

[*264-252]  D  .  B'P^,  e  II  fin  :  D  h  .  Prop 

*264-403.  \-:P€a.B'Pe  G'V'P .  D .  B'Pj,,  =  A 
Dem. 

h  .  *264-26-231 .  D  I- :  Hp .  D  .  B'P  ~  e  C'P^ .  S'P  =  5'Cnv' V'P . 
[*9014]  D .  CPO^'-B'Cnv' V'P  =  A . 

[*151-5.*264-34]  D .  P'Pp,  =  A :  3  h  .  Prop 

The  following  propositions  deal  with  the  various  different  cases  that  arise. 
Their  net  result  is  expressed  in  *264'44. 

*264-41.     h:P6Xlinfin-«.~E!5'P.D.Nr'P  =  Nr'V'Pxw 
Dem,. 

I- .  *264-36-4 .  D  h  :  Hp  .  D. .  Pp,  e  Rel""  excl  n  Nr'V'P .  G'Pj,,  C  m  . 
[*251-63]  3  .  S'Ppr  6  Nr' V'P  x  «  . 

[*264-39]  D  .  P  6  Nr '  V'P  X  w  :  D  I- .  Prop 


166  SERIES  [part  V 

*264-42.     h  :  P  €  n .  5'P  ~  6  G'V'P .  V'P  e  2, .  D  .  Nr'P  =  «  +  Nr'^'Pp, 
Dem. 

h  .  *264-36  .  D  1- :  Hp .  D  .  Pp,  =  (£'Pp,)  i  (-B'Pp,) . 
[*]  62-3.*264-3913]     -:>.P  =  B'P^.^B'P^^ . 
[*264-36-401]  D  .  Nr'P  =  «  +  jS'Pp, :  D  h .  Prop 

*264-421.  h: Pen. 5'P6C"V'P.V'Pe2r.D.Nr'P=  0)4-1 
Dem. 

h  .  *264-36  .  3  :  Hp  .  D  .  Pp,  =  (B'P^,)  i  {B'P^) . 
[*162-3.*264-39113]  "^.Pl D'P  =  B'P^.^B'P^, 
[*264-403.*160-21]  =  B'P^, . 

[*264-401]  D.PtD'Peo). 

[*204-461  J  D  .  P  6  ft)  + 1 :  D  h  .  Prop 

*264-422.  h  :  P  6  fl  infia  -  w  .  5'P  ~  e  C"  V'P  .  V'P  ~  e  2,  .  D  . 

Nr'P  =  {Nr'(V'P)t  (D'V'P)  x  «}  -i-Nr'P'Pp, 
Dem. 

V  .  *264-36  .  *204-272  .  D  h  :  Hp  .  D  .  D'Pp,  ~  e  1  . 
[*204-461.*264-24-36]  3  ■  Ppr  =  Ppr D  D'Pp,  -f>  5'Pp, . 

[*162-43.*264-39]  D .  P  =  S'(Pp,  t  D'Pp,)  4^fi'Ppr  (1) 

h  .  *264-36-401 .  *251-63 .  D 

I- :  Hp  .  D  .  Nr'S'(Pp, t  D'^pr)  =  Nr'(V'P)  C  (D'V'P)  x  o,  (2) 

h  .  (1) .  (2) .  *264-36  .  D  h  .  Prop 

*264-423.  h  :  P  6  fl .  5'P  6  C"  V'P .  y 'P  ~  e  2^ .  D  . 

Nr'P  =  {Nr'(V'P)t:  (D'V'P)  x  ft)}  + 1 
i)em. 

As  in  *264-422, 

h  :  Hp  .  D  .  Pp,  =  Pp,  t  D'Pp, -t»  5'Pp, . 

[*162-43.*264-391]  D  .  P^  D'P  =  2'(Pp,p  D'Pp,)4i5'Pp, 

[*264-403]  =S'(Pp,t;D'Pp,)  (i) 

(- .  *264-36-401 .  *251-63  .  D 

f  :  Hp .  D .  Nr'2'(Pp,  [.  D'Pp,)  =  Nr'(V'P)  ^  (D' V'P)  x  lo  (2) 

I- .  *204-461 .  3  H  :  Hp  .  3  .  Nr'P  =  Nr'(P  ^  D'P)  + 1  (3) 

l-.a).(2).(3).DI-.Prop 


SECTION  E]  derivatives  OF  WELL-ORDERED  SERIES  167 

*264-429.  lxa  =  a    Df 

This  definition  is  merely  intended  to  enable  us  to  include  1  with  ordinals 
in  general  formulae. 

*264-44.     l-:P6n.D.(aa,^).a6N0wt'l.^eN0finui'I.Nr'P=(ax»)  +  ;8 
Dem. 

V  .  *1 60-22  .  *166-13  .  D  I- :  P  e  fi  fin  .  D  .  Nr'P  =  (0^  >(oy)  +  Nr'P  (1) 

h.*160-21.  Dh:P=a>.D.Nr'P  =  (i>(»)4-0,  (2) 

F.*264-41.*160-21.D 

I- : Pefl infin -  »  .  ~ E  !  5'P  .  D  . (ga) .  aeNO  .  Nr'P  =  (a x to) 4- 0,  (3) 

h  .  *264-42-402  .  D 

f-:P6ni5'P~6C"V'P.V'Pe2,.D.(a/3)./8eNOfin.Nr'P=(i>(«)-i-/8  (4) 
l-.*264-421.  Dh:P6n.5'P6C"V'P.V'P62^.D.Nr'P  =  (l>C<»)  +  i  (5) 
t- .  *264-422-402  .  D  |-:Pe  flinfin  -  «  .  5'P~eO'V'P .  V'P~e2^.  3. 

(aa,^).a6NO.;3  6NOfin.Nr'P  =  (aXffl)-i-/3    (6) 
l-.*264-423.DI-:P6n.5'P6C'V'P.V'P~6  2^.D. 

(a«).a6N0.Nr'P  =  (ax«)-i-l     (7) 
1- .  (1) .  (2) .  (3) .  (4) .  (5) .  (6) .  (7) .  D  h  .  Prop 

The  following  propositions  apply  the  above  results  to  the  cardinal  number 
of  the  field  of  a  well-ordered  series, 

*264-45.     I- :  P  6  n .  V'P  6  2^ .  D  .  Nc'(7'P  =  N„ 
Dem. 

I- .  *26442-402  .  *180-7l .  *152-7  .  D 

I- :  Hp  .  5'P  ~  6  G'V'P .  D  .  (g/*)  .fie  VIC  induct .  Nc'C'P  =  C'o)  +„  fi . 
[*263101.*1 23-41]  D .  Nc'C'P  =  N„  (1) 

f- .  *264-421 .  *181-62  .  3  h  :  Hp .  5'P  e  C"  V'P .  D  .  Nc'C'P  =  G"co  +^  1 
[*263-101.*123-4]  =N„  (2) 

f- .  (1)  .  (2) .  D  h  .  Prop 

*264-451.  h  :  P  6  n  infin  -  « .  ~  E  !  5'P .  D  .  Nc'CP  =  Nc'C'V'P  x„  N„ 
Dem. 

h  .  si5264-41 .  *184-5  .  D  h  :  Hp .  D  .  Nc'O'P  =  Nc'C  V'P  x„  0"« 
[*263-101]  =  Ne'C"  V'P  x^  K„ :  D  I- .  Prop 

*264-452.  h  :  P  e  n  infin  -  «  .  V  'P  ~  e  2^ .  5'P  ~  e  C"  V'P .  D  . 

Nc'a'P  =  Nc'D'V'PXeNo 
Dem. 

h  .  *264-422  .  *184-5  .  *180-71 .  D 

h  :  Hp  .  D  .  (a/.) .  /*  6  NO  induct .  Nc'O'P  =  (Nc'D'V'P  x„  N„)  -!-„  /^  (1) 


168  SERIES  [part  V 

h  .  *123-43 .  *117-62  .  D  h  :  Hp .  /*  e  NO  induct .  D  .  /^  <  Nc'D'V'P  Xe  N„ . 
[«117-561]  D  .  (Nc'D'V'P  x„  N„)+e/i  <  (Nc'D' V'P  x,  N„)  +,  (Nc'D'V'P  x,  N„) 
[*123-421.*113-43]  <  Nc'D'V'P  x^  K„  (2) 

h  .  (1) .  (2)  .  *ll7-6-25  .  D  t- :  Hp .  3  .  Nc'CP  =  Nc'D'V'P  Xe  N„ :  D  h  .  Prop 

*264-453.  h:P6nmfin-«.E!B'P.V'P~6 2,. D.Nc'0'P  =  Nc'D'V'P XeN„ 
Dem. 
As  in  *264-452, 

h  .  *264-423  .  D  h  :  Hp .  £'P  e  C" V'P .  D  .  Nc'CP  =  Nc'D'V'P  Xe  K    (1) 
h  .  (1) .  *264-452  .  D  H  .  Prop 

*264-46.     h  :  P  e  n  infin  -  6, .  D  .  Nc'O'P  =  Nc'O'V'P  x„  No 

Dem. 
F  .  *123-421 .  *264-45  .  D  h  :  Hp  .  V'P  e  2^ .  D  .  Nc'CP  =  Nc'C'V'P  x^ii„    (1) 
h  .  *264-453 .  D 

h  :  Hp .  E !  B'P .  V'P  ~  e  2^ .  Nc'C" V'P  = /i +„  1 .  D .  Nc'O'P  = /i,  Xe  K„ 
[*123-421.*113-43]  =  (fi  x„  N„)  +« (/i  x^  N„)  (2) 

h.*ll7-571-6.D 

h:Hp.D./tiX„N„<(/i+„l)x„N„.(/i+„l)x„N„<(/xx„N„)+,(/iX„N„)    (3) 
h  .  (2) .  (3) .  D  h  :  Hp  .  D  .  Nc'O'P  =  (/^  +„  1)  x„  No 

[Hp]  =Nc'C'V'Px„N„  (4) 

f- .  (1) .  (4) .  *264-451 .  D  h  .  Prop 

*264-47.     h:Peninfin.D.(aM).y^6NC-i'O.Nc'0'P  =  /iX<,No    [*264-46] 
t-48.     h  : «  6  0"n  -  Cls  induct .  3  .  Nc'a  e  D'(  x„  N„)  [*264-47] 


*265.     THE  SERIES  OF  ALEPHS. 

Summary  of  *265. 

In  the  present  number,  we  shall  confine  ourselves  to  the  most  elementary 
properties  of  the  ordinals  and  cardinals  considered.  The  most  important 
propositions  to  be  proved  are  the  existence-theorems.  These  all  depend 
upon  the  axiom  of  infinity;  moreover,  as  the  numbers  concerned  grow 
greater,  the  existence-theorems  require  continually  higher  types. 

In  virtue  of  the  definition  in  *262,  (Ko),.  is  the  class  of  well-ordered  series 
whose  fields  have  No  terms.  This  is  not  an  ordinal  number,  but  the  logical 
sum  of  a  certain  class  of  ordinal  numbers,  namely  of  Nr"(No)r. 

a>i  is  the  smallest  ordinal  whose  field  has  more  than  No  terms.  We  do 
not,  however,  take  this  as  the  definition  of  eoi :  we  define  eoi  as  the  class  of 
relations  P  siich  that  the  relations  less  than  P  (in  the  sense  of  *254)  are 
those  well-ordered  series  which  are  finite  or  have  No  terms  in  their  fields,  i.e. 

ft),  =  P  {l^s'P  =  (No),  u  n  fin}     Df. 

By  *2.54'401  it  follows  immediately  that  if  Peoji,  P  is  a  well-ordered 
series  and  lUi  is  its  ordinal  number  (*265"11).  Hence  lOi  is  an  ordinal  number 
(*265'12),  though  we  need  the  axiom  of  infinity  to  show  that  o)i  exists. 

Assuming  the  axiom  of  infinity,  the  existence-theorem  for  (o^  is  derived 
from  the  series  of  ordinals  which  are  finite  or  belong  to  series  of  No  terms. 
For  notational  convenience,  we  temporarily  define  this  series  as  N;  thus 
N=  «)  I  {NO  fin  u  Nr"(NoW     Dft  [*265]. 
It  is  also  convenient  temporarily  to  write  M  for  ''  <•  " :  thus 

Jf=<     Dft[*265]. 

It  is  easy  to  prove  that  if  No  exists,  N  is  an  ojj  (*265'25).  Hence  we 
obtain  the  existence-theorem  for  ai  in  either  of  the  forms: 

*265-27.     h  :  a !  No  n  i'a .  D  .  a  !  ft),  n  «"'<„„'o 
*265-28.     V  :  Infin  ax  (a?) .  D  .  g  !  o»i  «  t^H^'x 

It  is  easy  to  prove  that  oii  is  greater  than  the  ordinal  number  of  any 
series  of  No  terms  (*265'3),  and  that  if  coi  exists, 

iif'ft),  =  NO  fin  u  Nr"(No)r    (*265-35), 

i.e.  the  ordinals  less  than  o)i  are  those  that  apply  to  series  of  No  terms  or  of 
a  finite  number  of  terms. 


170  SERIES  [part  V 

We  define  Ni  as  0"(o^,  i.e.  as  the  class  of  those  classes  which  can  be 
arranged  in  a  series  whose  ordinal  number  is  Wi.  It  follows  from  *152'71 
that  Ni  so  defined  is  a  cardinal  number  (*265'33),  and  that  if  N,,  exists, 
Ni  >  No  (*265-34). 

In  a  precisely  analogous  fashion  we  can  put 

ft),  =  P  {less'P  =  (Ni)r  «  (No)r  ^  O  fin}     Df. 

K  =  G"m,  Df. 

Theorems  similar  to  those  mentioned  above  can  be  proved  for  a^  and  Kj 
by  similar  methods.  We  can  proceed  to  to^  and  N„,  where  v  is  any  ordinal 
number.  But  our  methods  of  proving  existence-theorems  fail  if  v  is  not 
finite,  since  at  each  stage  the  existence-theorem  is  proved  in  a  higher  type 
and  we  know  of  no  meaning  that  can  be  assigned  to  types  whose  order 
is  not  finite. 

It  is  easy  to  prove  that  the  sum  of  two  ordinals  which  are  less  than  a)i  is 
less  than  m^.  Much  of  the  accepted  theory  of  (No),  and  ft>i  depends  upon  the 
proposition  that  the  limit  of  any  progression  of  ordinals  less  than  Wi  is  less 
than  o)i,  so  that  in  the  series  N,  every  progression  has  a  limit  within  the  series. 
This  proposition — or  at  any  rate  the  current  proof  of  it — depends  upon  the 
multiplicative  axiom.     The  proof,  in  outline,  is  as  follows : 

It  is  easy  to  prove  that  an  ordinal  which  has  No  predecessors  must  be 
a  member  of  Nr"(No)r,  i.e.  must  be,  in  Cantor's  language,  an  ordinal  of  the 
second  class.  Now  consider  any  progression  P  contained  in  N,  i.e.  consider 
a  series  Hj,  ffj, . . .  a,,...  of  increasing  ordinals  of  the  second  class.  The  interval 
between  any  two  consecutive  terms  of  this  series  is  either  finite  or  has  No 
terms.  Hence  N"G'P,  i.e.  the  class  of  ordinals  preceding  the  limit  of  our 
series,  is  the  sum  of  No  classes  each  of  which  is  finite  or  has  No  terms.  It  is 
then  argued  that,  because  No  XoNo  =  No,  the  whole  class  N"G'P  must  consist 
of  No  terms.  This  conclusion,  however,  except  in  special  cases,  requires  the 
multiplicative  axiom,  since  it  depends  upon  *113"32,  i.e. 

h  ;.  Mult  ax  .  3  :  /t,  J/  e  NO  .  KevnCl  excVfi  .D  .s'xe  fix^v. 

It  follows  that,  unless  for  those  who  regard  the  multiplicative  axiom  as 
certain,  it  cannot  be  regarded  as  proved  that  Mi  is  not  the  limit  of  a  pro- 
gression of  smaller  ordinals.  With  this,  much  of  the  recognized  theory  of 
ordinals  of  the  second  class  becomes  doubtful.  For  example,  Cantor  pro- 
ceeds to  define  a  host  of  ordinals  of  the  second  class  as  the  limits  of  given 
series  of  such  ordinals.  It  is  probable  that,  in  regard  to  all  the  ordinals  which 
he  has  defined  in  this  way,  a  proof  that  they  belong  to  the  second  class  can 
be  found,  by  actually  arranging  the  finite  integers  in  a  series  of  the  specified 
type.     But  the  mere  fact  that  they  are  limits  of  progressions  of  nunjbers  of 


SECTION  E]  the  series  OF   ALEPHS  171 

the  second  class  does  not,  of  itself,  suffice  to  prove  that  they  are  of  the  second 
class.  • 

As  another  example  we  may  mention  the  very  interesting  work  of 
Hausdorff*,  much  of  which  is  based  upon  the  proposition  that  a  term  which 
IS  the  limit  of  an  toj  chosen  out  of  a  given  series  cannot  be  the  limit  of  an 
ft)  chosen  out  of  the  same  series.  This  proposition  is  a  consequence  of  the 
proposition  that  o)i  is  not  the  limit  of  a  progression  of  smaller  ordinals,  and 
must  therefore  be  regarded  as  doubtful.  Hausdorff  constructs  by  means  of 
it  many  remarkable  series,  for  example,  compact  series  in  which  no  pro- 
gression or  regression  has  a  limit.  The  existence  of  such  series  appears, 
however,  to  be  open  to  question,  unless  the  multiplicative  axiom  is  assumed. 

It  is  not  improbable  that  a  proof,  independent  of  the  multiplicative  axiom, 
can  be  found  for  the  proposition  that  eo^  is  not  the  limit  of  a  progression ;  but 
until  such  a  proof  is  forthcoming,  the  proposition  cannot  be  regarded  as 
certain. 


*26501.     ft)i  =  P {less'P  =  (N„)^ u fi  fin}  Df 

*26502.     {<x  =  (?"ft>i  Df 

*265-03.     ft)2  =  P  {l^s'P  =  (Ni)r  ^  (No)r  ^  fi  fin}     Df 
*26504.     N2  =  0"«B,  Df 

etc. 
*26505.     M=<  Dft[*265] 

This  definition  is  revived  from  *256. 
*265-06.     iV^=JlfnNOfinwNr"(K„)^}  Dft  [*265] 

The  existence-theorem  for  (Oi  is  derived  from  N,  since,  if  Xo  exists,  Neoii. 
*2651.       1- : .  P  6  ft), .  =  :  Q  less  P .  =q  .  Q  e  £1 .  C'Q  e  Cls  induct  u  N„ 
[(*26501)] 

*26511.     h:Peo),.D.ft)i  =  Nr'P.P6ll 

Dem. 
h  .  *265-l .  D  h  :  Hp  .  D  .  A  less  P  - 

[*2541]  :^.P6a  (1) 

h  .  *2o4-401 .  (1) .  (*265-01) .  D  h  :  Hp .  Q  e  ft), .  D  .  Q  smor  P  (2) 

h  .  *254-401 .  (1) .  (*265-01)  .  D  h  :  Hp .  Q  smor  P.:).  less'Q  =  (NoV  w  fi  fin  . 
[(*265-01)]  D.^eft),  (3) 

I- .  (1) .  (2) .  (3) .  D  h  .  Prop 

*  Vntersuchungen  ilber  Ordmtngstypen.     Berichte  der  mathematisch-pbysischen  Klasse  der 
Eoniglich  Sachsisehen  Gesellschaft  der  Wissenachaften  zu  Leipzig,  Feb.  1906  and  f  eb.  1907. 


172  SERIES  [part  V 

*26512.     h  .  «,  6  NO    [*265-ll .  *256-54] 

*26513.     l-:aeNOinfin.D.Jlf^Jl/'aea 
Dem. 
V  .  *256-202  .  D  h  :  P  e  n  infin  .  D  .  Nr'JIf  t  (M'Nr'P)  =  Nr'(P  p  Q'P) 
[*262112]  =Nr'P  (1) 

I- .  (1) .  *262-ll .  D  h  .  Prop 

*265-2.       l-.a'i\r=NOfin-i'0,wNr"(K„V  =  i^'0,    [*255-51] 

*265-21.     I- :  a  !  K„ .  a  6  NO  fin  u  Nr"(N„X  ■  ^  ■ 

Jf  t  'M'a  less  iV" .  aJf  (Nr'i^)  .  a  C  \^'N 
Dem. 

V  .  *253-13  .  *265-2 .  D  h  :  Hp  .  a  e  NO  fin  u  Nr"(No),  .O.M^'M'ae  T>'F, . 

[*254-182]  -^.MlM'a  less  N     (1) 

I- . (1) . *265-13 .         Df-:Hp.«eNr"(N„),.D.aJlf(Nr'iV)  (2) 

h  .  (2) .  *263-31-101 .  D  h  :  Hp .  aeNO  fin .  D  .  aMa, .  ioM(Nt'N)  . 

[*256-l]  D .  ailf  (Nr'iV")  (3) 

l-.(2).(3).  Dh:Hp.aeNOfinuNr"(N„X.D.aM(Nr'i^.  (4) 

[*255-17]  D.aCl^'iV  (5) 

t- .  (1)  .  (4) .  (5) .  D  h  .  Prop 

*265-22.     l-:a!N„.D.nfinu(N„),C1^8'JV"    [*265-21] 

*265-23.     h:P6D'i\^s.3.(aa).a6N0finuNr"(N„),.P=JlfpM'a.Nr'P  =  a 
[*265-2  .  *25313  .  *26513  .  *262-7  .  *120-429] 

*26524.     h:P6D'i\rs.D.P6f2finu(N„),     [*265-23] 

*265-25.     l-:a!N„.D.iVe«i 
Dem. 

V  .  *254-4112  .    D  h  :  PlessiV.  D  .  (gQ) .  Q  e  D'N, .  P  smor  Q . 
[*265-24.*261-18.*151-18]  D  .P  ellfin  w(N„X  (1) 

I- .  (1) .  *265-22  .  D  I- :  Hp  .  D  .  \^s'N=n  fin  u  (N„), . 
[*265-l]  D  .  iV  6  0)1 :  D  h  .  Prop 

*265-26.     1- :  a  6  No .  D  .  N„r;(less  ^  C^'d'a)  e  m^  .  N„r;(less  t  G"Cl'a)  =  N 

Dem. 
h.*254-431.*150'37.D 

I- .  N„r;(less  t  G"Cl'a)  =  (N„r;iess)  p  N„r"(0  n  C"Cl'oi)  (1) 

I- .  *123-16  .  D  h  :  a  6  No .  D  .  N„r"(n  n  0"Cl'a)  C  NO  fin  u  N„r"(No)^  (2) 


SECTION  E]  the   series  OF  ALEPHS  173 

I- .  *12314 .  *262-18-21 .  D  h  :  a  e  «„  ■  /*  e  NO  induct  -  t'l .  3  .  g !  /it,  n  C"CVa  : 
[*262-25]  D*:a6N„.i;eNOf3n.D.a!i/nC"Cl'a. 

[*152-45]  ■^.pe  Nor"C"Cl'a  (3) 

l-.*152-7.Dh:Pe(N„X.a6N„.D,aeO"N„r'P. 

[*60-34.]  D .  Nr'P  e  N„r"0"Cl'a  (4) 

I- .  (3)  .  (4) .  D  h  :  a  6  No .  D  .  NO  6n  u  Nr"(N„),  C  N„r"(G"Cl'a  n  fl)  (5) 

I- .  (2) .  (5)  .  D  h  :  o  6  N„ .  D .  NO  fin  w  Nr"(No),  =  N„r"(0"01'a  n  O)  (6) 

I- .  (1) .  (6) .  (*255-01 .  *265-05-06) .  D  h  :  o  e  N„ .  D  .  N„r;(less  ^  a"Cl'a)  =  iV . 
[*265-25]  D  .  N„r  ;(less  l  G"Cl'a)  e  ajj :  D  I- .  Prop 

*265-27.     h  :  a  !  No  n  i'a .  D  .  a !  a,  n  «"%o'a 
i)em. 

l-.*64-55.DI-:/S6«'a.G'PC/3.D.P6C«  (1) 

l-.(l).        0\-:/3et'a.0.G"C['^Ct^'a. 

[*1 55-12.*63-5]  D .  Nor"C'"01'y8  C  t't^'a . 

[*64-57]  3.N„r;(less^a"Cl'j8)e«"'i„o'a  (2) 

h  .  (2) .  *265-26  .  3  h  .  Prop 

*265-28.     h  :  Infin  ax  («)  .  D .  g  !  wi  a  f^'t^'x 

Dem. 

V  .  *123-37  .  D  h  :  Hp .  D .  a  !  No « «'«"« . 
[*265-27]  D .  a  I  «i  n  t'^'t^H^'x . 

[*64'312]  D  .  a  !  Ml  rt  ^"'^'''a! :  D  h  .  Prop 

Propositions  concerning  N^  and  m^,  and  generally  N„  and  «»„,  where  v  is 
an  inductive  cardinal,  are  proved  precisely  as  the  above  propositions  are 
proved.  There  is  not,  however,  so  far  as  we  know,  any  proof  of  the  existence 
of  Alephs  and  Omegas  with  infinite  suflfixes,  owing  to  the  fact  that  the  type 
increases  with  each  successive  existence-theorem,  and  that  infinite  types 
appear  to  be  meaningless. 

*265-3.       h  :  a 6 Nr"(No), .li.a^ciwi    [*265-22-25] 

*265-31.     l-:a!No-3-Ni>Ko 

Dem. 

h  .  *26o-25  .  D  h  :  Hp .  D  .  C'iVe Ni  (1) 

l-.*265-2.                       Dh.NOfin-t'O^CG'iV  (2) 

I- .  *262-19-21 .  *12327  .  D  h  :  Hp .  D .  NO  fin  - 1%  e  N„  (3) 

|-.(2).(3).                      Dh:Hp.D.Nc'(7'iV>N„  (4) 

h  .  (1) .  (4) .  D  f- .  Prop 


174  SERIES  [part  V 

*265-32.     t-:a!No.D.N„  +  Ni.N„nNi  =  A 
Bern. 

l-.*265-3.Dt-:P6a.O'P6N„.D.P~6ft),. 

[(*265-02)]  D.C"P~eN,  (1) 

I- .  (1) .  *26218 .  (*265'02)  .Df-.N„nN,  =  A.DI-.  Prop 

*265-33.     h  .  Nj  6  NC  [*152-71 .  *265-12] 

*265-34.     h  :  a  !  No .  D  .  ^e,  >  No    [*265-31-32-33  .  *255-74] 

*265-35.     h  :  a  !  0,1 .  D  .  M'w,  =  NO  fin  u  Nr"(No), 
Dem. 

V  .  *265-3  .  *263-31 .  D  h  :  Hp  .  D  .  NO  fiu  u  Nr"(No)r  C  M'<o,  (1) 

V  .  *265-ll .  D  h  :  P  e  wi .  Nr'Q  e  M'co^ .  D  .  Q  less  P . 

[*265-l]  D.Nr'Q6N0finwNr"(N„),     (2) 

h  .  (1) .  (2) .  D  h  .  Prop 

*265-351.  h  :  P  e  Ml .  =  .  a  !  tB, .  Nr"D'Ps  =  NO  fin  u  Nr"(No)r 
Dem. 
l-.*256-ll.*265-35.D 

h  :  a  !  0,1 .  Nr"D'Ps  =  NO  fin  w  Nr"(N„), .  =  .  a  '■  «i  •  M'^'P  =  M'w, . 
[*2561.*204-34]  s  .Pea,,:  D  h  .  Prop 

*265-352.  l-:P6o,i.D.Nr"D'Ps  =  if'ftJi     [*265-35-351] 

*265-36.     \-:a,0e  Nr"(N„V .  D  .  a  +  /8  e  Nr"(N„V 
Dem. 

I- .  *1 80-71 .  D  h  :  Hp .  D  .  C"(a  +  y3)  =  C"a  +„  0"/3 

[*262-i2]  =^^o+o^«o 

[*123-421]  =  No . 

[*262-12]  ^.a  +  ^e  Nr"(i*o)r :  ^  I"  ■  Prop 

*265-361.  h  . «,  /3  e  NO  fin  w  Nr"(No)r .  3 .  a  +  /3  e  NO  fin  u  Nr"(N„)r 
[Proof  as  in  *265-36,  using  *120-45  and  *123-41] 

*265-4.       h  :  P  6  0,1 .  a  C  (7'P  .  P^"a  e  01s  induct  w  N„ .  D .  a  lp'P''a 
Dem. 

h  .  *2651 .  D  h  :  Hp .  D  .  (P  t  P*"a)  less  P . 

[*254-51]  O.P^"a=^G'F. 

[*202-504]  D  .  a  lp'P''a  Oh.  Prop 

*265-401.  h  :  P  6  0,1 .  a  C  a'P .  P"a  e  Cls  induct  w  N„ .  3  .  a !  p'P"a 
Dem. 

h  .  *205131 .  D  h  :  Hp  .  D  .  P^"a  =  P"a  \j  maxp'a . 
[*205-3.*120-251.*123-4]  D .  P^"a  e  Cls  induct  w  No . 
[*26o4]  D.a!p'P"a:3f-.Prop 


SECTION  E]  the   series   OF   ALEPHS  175 

*265-41.     h  :  P  6  ffli .  D  ^"G'P  C  K„  w  Cls  induct .  ^^"G'P  C  N„  u  Cls  induct 
Dem.  • 

h  .  *254-l  82  .  D  h : .  Hp .  D  :  a;  6  a'P .  D  .  (P  D  Ip'x)  less  P . 

[*265-l]  D.  ^a;  6  No  u  Cls  induct    (1) 

H  .  (1) .  *120-251 .  *123-4  .  D  h  :.Hp .  3  :  a;  e  C'P .  D  .  "p^'x  e  N„  w  Cls  induct  (2) 

1- .  (1) .  (2) .  D  1- .  Prop 

*265-42.     I- :  P  e  wi .  D  .  Q'P  C  D'P 
Z)em. 

h  .  *265-4-41 .  3  h  :  Hp  .  a;  e  d'P .  D .  g  !  fP"i'x . 
[*5301-31]  D  .  a; 6 D'P :  D  h  .  Prop 

*265-43.     h  :  P  6  <ui .  ar  e  (7'P .  D  .  P  p  P,„'a;  e  «  .  E  !  Itp'P'^'a; 
Pem. 

1- .  *264-2  .  *265-42 .  D  h  :  Hp  .  D  .  ~  E  !  maxp'Pf^'a; .  (1) 

[*264-22]  D  .  P  t  K'«  e  <o  (2) 

h  .  (2) .  *265-41 ,  *123-421 .  D  h  :  Hp  .  D  .  P"Kn'«  e  ^<o  • 
[*265-401]  D  .  a  !  ^'P"^„'a; . 

[(1).*250123]  D .  E !  Itp'Kn'*  (3) 

h  .  (2) .  (3) .  D  h  .  Prop 

*265  431.  V-.Pea^.QdP.xeG'Q.^'x  C%^'x .  D  .  g  !  p'P"G'Q 
Dem. 

V  .  *265-43  .  D  h  :  Hp  .  D  .  C'Q  C  P'ltp'Pj/a;  Oh.  Prop 

*265-44.     |-:P6«,.a;eC"P.D.PCP*'a;eo)i 

Pern. 
l-.*253-13.Dl-:Hp.D.D'(PtPj|e'a;)s=P{(ay).a;P*y.P  =  PtP(a;H-2/)j  (1) 
h  .  *254-101 .  D  h  :  Hp  .  xP^y .  D  .  Nr'P  ^  P  (« ^- y)  ^  Nr'P  I  P'y . 
[*265-352]  D  .  Nr'P  lP(xt-y)e  M'w,  (2) 

h  .  *265-352  .  D  h  :  Hp .  D  .  Nr'P  [JP'x  e  M'to,  (3) 

h  .  (3) .  *265-361-35  .  D 
1- :  Hp .aeM'fOi .  D  . Nr'P ^P'a!  +  a e M'co, . 
[*265-351]  D  .  (ay) .  Nr'P  lP'x  +  a  =  Nr'P  I  P'y . 

[*253-47-ll]  D .  (ay) .  a'P*?/  •  Nr'P  ^  P'a; -i-  a  =  Nr'P  I  P'y . 


176  SERIES  [part  V 

[*204-45]    D  .  (ay)  .  xP^y .  Nr'P  p  P'a;  +  o  =  Nr'P  p  P'a;  +  Nr'P  ^  P  (a;  i-  y)  . 

[*2o5-564]  D .  (32/) .  ^Pj^y .  a  =  Nr'P  ^  (a;  i-  y)  • 

[(1)]  D .  a  6  Nr"D'(P  t  P*'«)»  (4) 

1- . (2) . (4) .  D  h  :  Hp .  D  . Nr"D'(P IP^'x),  =  ^'«, . 

[*265-35-351]  "^.P^  P^'x  e  <oi :  D  h  .  Prop 

*265-441.  h  :  P  e  Ser .  e,  i?  6  «  n  Rl'P .  ii  G  Q .  3 . 

P"a'i2  =  P"G'Q .  Q"G'B  =  C'Q 
Dem. 

h  .  *263-27  .  Transp .  3  I- :  Hp  .  D  .  ~  E !  ib&xq'G'B  . 

[*205123]  D  .  C'ii  C  Q"G'R .  (1) 

[*37-2]  D  .  P"G'i2  C  P"Q"G'R 

[*37'15-2]  CP"G'Q  (2) 

I-  •  *263-47  .  Transp .  D  h  :  Hp .  D  .  p'Q"G'R  =  A . 

[(1).*202-51]  O.G'Q=  Q"G'R .  (3) 

[*201-5.Hp]  D.P"G'QCP"G'R. 

[(2)]  D .  P"G'i2  =  P"G'Q  (4) 

I- .  (3) .  (4) .  D  h  .  Prop 

*265-45.     h  :.Pea>i.QGP:«eC'Q.Da;.a!Q'«-i'fn'«:Qe«. 

S  =  S  ^  {«  6  (7'Q .  y  =  mmQ'(V«  -X'«)}  ■R  =  S  [%'B'Q :  D  . 

R^em.R^CQ.  P"C'R^  =  P"0'Q 
Dem. 

f-.*32181.DI-:Hp.D.SGQ.  (1) 

[*91-59.*201-18]  D.B^GQ  (2) 

h  .  *26311 .  D  1- :.  Up .  D  :  «6  O'Q .  D^ .  E !  S'a; : 

[*71-571]  D-.SeCls-^l.G'QCD'S: 

[(1)]  D:5f6Cls-*l.a'/SfCD'/8f: 

[*122-51.*96-2l]  D  :  P  6  Prog : 

[*2631]  D :  i?p„  6 «  (3) 

h  .  (2) .  (3) .  *265-441 .  D  h  :  Hp .  D .  P"G'R  =  P"G'Q  (4) 

I- .  (2)  .  (3) .  (4) .  D  h  .  Prop 

*265-451.  h  :.  Hp  *265-45  .  3  :  a;  e  C'P .  D .  P (« f-  Ei'a;)  e  N„ 
Bern. 

h  .  *265-45  .  *26314 .  D  h  :.  Hp  .  D  :  a;  e  O'iJ .  D  .  Ri'x=8'x . 
[Hp]  3  .  Ri'tB  e  P'a;  -  Pf^'x . 

[*260-131]  D.P(a!t-i?i'a;)~eClsinduct  (1) 

H  .  *265-41 .  D  h  :.  Hp  .  D  :  a;  e  O'P .  D  .  P  (a;  i- ^'a;)  e  N„  w  Cls  induct  (2) 

I- ,  (1) .  (2) .  D  h  .  Prop 


SECTION  E]  the  series  OF  ALEPHS  177 

*265-452.  h  :  Hp  *265-45  .  w  !  -P  (» ►-  -Ri'*)  « -P  (2/  >-  -Bi'y) .  D  ■ «  =  2/ 
Dem. 

V  .  *201-18  .  D  h  : .  Hp .  D  :  a;P  (^/y) .  yP  (P,'a;) : 

[*14-21]  D:a),yeG'R.xP (E,'y)  .  yP (A'a;) : 

[*204-41.*265-45]  3  :  «J?p„  (B^'y) .  yR^„  (R^'x) : 

[*204'7l]  3  :  a;  =  y .  V .  osR^oy  •.y  =  x.v .  yR^x  : 

[*4-41]  3  :  a;  =  y .  V  .  a;22poy  .  yR^x : 

[*204-13.*265-45]  D  : «  =  y : .  D  h  .  Prop 

*265-453.  h  :  Hp  *265-45  .  k  =  a  {(ga;) .  a;  e  O'i? .  a  =  P  (a;  ^-  ^x'a;)} .  D . 

«  e  No  n  01  excl'No  ■ «'«  =  P"G'P  «  P*"G'R    [*265-451-452] 

*265-454.  h  :.  Hp *265-453  :  «  e  No  n  01  excl'No .  3« . «'«  e  «« :  ^  ■ 

P"C'R  n  P^"G'R  6  N„     [*265-453] 

*265-46.     l-:.Peffli.Qewn  Rl'P  zxeO'Q  .D^.'^lQ'x-  P,„'a; : 

K  6  No  rt  01  excl'No .  3. .  s'«:  6  No :  3  ■  P"Cf'Q  e  N„ 
[*265-41-454 .  *123-421] 

*265-461.  I- :  Hp  *265-46  .  D  .  a !  p'P"0'Q    [*265-46-401] 

*265-47.     h  : .  P  e  eoi .  Q  e  «  n  R1«P :  «  e  N„  n  01  excl'No .  D« .  s'/e  e  N„ :  3 . 

a!^'P"a'Q    [*265-461-431] 

*26548.     l-:.«6Non  01  excl'No. D^.s'/eeNoOiPeoji.QewnRl'P. 3. E!ltp'Q 
[*265-47.*250123] 

*265481.  h  :  Mult  ax .  3  .  Hp  *265-48    [*118-32  .  *123-52] 

*265-49.     l-:.Multax.3:P6a),.Q6«nRl'P.3.E!  VQ    [*265-48-481] 

This  proposition  shows  that,  assuming  the  multiplicative  axiom,  any 
progression  of  ordinals  of  the  second  class  {i.e.  consisting  of  series  having  No 
terms)  has  a  limit  in  the  second  class,  because  Necoi. 

*265-5.       1-  :Peft>i .  Qew  .  C'QC  a'P .  ~E !  maxp'G'Q . 

R  =  ^{xeG'Q.y  =  mmQ'{P'x  a  q"'«)}  .S  =  R[ B^'B'Q  .  3  . 

8^ew.S,o(^P.  P"G'S,,  =  P"C'Q 
Bern. 

h.*20511.  3t-:Hp.3.EGP.PeQ.  (1) 

[*20ri8]  3.^poGP./SpoeQ  (2) 

I- .  *205-197  .  3  h  :  Hp .  a;  e  (7'Q .  Q^'x  C  P^'x .  3  .  a;  =  maxp'^^^'a;  (3) 

h  .  *263-412  .  *261-26 .  3  h  :  Hp  .  a;  e  O'Q  .  3  .  E !  maxp'Q'a;  (4) 

E  &W     III.  12 


178  SERIES  [part  V 

I- .  (3)  .  (4)  .  *205193 .  D  h  :  Hp .  a;  6  O'Q .  %'x  C  P^'a; .  D .  E !  inaxp'(7'Q     (5) 
h  .  (5) .  Transp  .  D  h  :.  Hp  .  D  :  a;6  O'Q .  D  .  g  !  Q^'x-P^'x . 

[*91-542.*202103]  3  .  g  ^^'x  n*P'x . 

[*250121]  D .  E !  E'a;  (6) 

h  .  (1) .  (6) .  *122-51 .    D  h  :  Hp .  D .  (Sf  6  Prog . 

[*263-l]  3  .  -Sfpo  e  o)  (7) 

h  .  (2) .  (7) .  *265-441  .  3  h  :  Hp .  D  .  P"C'S^^  =  P"G'Q  (8) 

h  .  (2) .  (7) .  (8) .  D  h  .  Prop 

*265-51.     I- :  Hp  *265-48  .  P  e  Wi .  a  e  N„  n  QVC'P .  ~  E !  maxp'a  .  D .  E !  Itp'a 
Dem. 

h  .  *265-5  .  D  h  :  Hp  .  D  .  (a,S)  .Sewn  Rl'P .  P"C'S=  a  (1) 

h  .  (1) .  *265-48 .  D  h  .  Prop 

The  following  propositions  follow  easily. 
*265-52.     h:.Hp*265-48.P6Wi.D: 

o  n  CP  e  N„  w  Cls induct .  =  .  g ! (7'P  n^'P"(«  n  (7'P)    [*265-51-41] 

*265-53.     t- ::  Hp  *265-48  .  3  :.  P  e  «i .  =  : 

P  e  Xi  :  a  ft  G'P  e  No  w  Cls  induct .  =„ .  g  !  C'P  n  p'P^ '(«  ft  O'P) 

*265-54.     I- :  P  6  «i .  D  .  a'V'P  C  ltp"0"(6j  ft  Rl'P)    [*265'5] 

/.e.  every  limit-point  in  an  w,  is  the  limit  of  a  progression,  which  is  what 
(following  Hausdorff)  may  be  conveniently  called  an  w-limit. 

*265-56.     I- :  P  6  «, .  D  .  a' V'P  =  ltp"(7"(«  ft  Rl'P)    [*265-54 .  *216-602] 

This  proposition  does  not,  like  *265'48,  assert  that  every  progression  in 
P  has  a  limit,  and  therefore  it  does  not  require  the  hypothesis  of  *26548. 


SECTION  F. 

COMPACT  SERIES,  RATIONAL  SERIES,  AND  CONTINUOUS  SERIES. 

Summary  of  Section  F. 

A  compact  series  is  one  in  which  there  is  a  term  between  any  two, 
i.e.  in  which  P  G  P",  where  P  is  the  generating  relation.  We  may  call 
any  relation  P  compact  when  P  QP';  then  a  transitive  compact  relation 
will  be  one  for  which  P  =  P".  Hence  a  serial  relation  P  is  compact  when- 
ever P  =  P^.  Compact  series  in  general  have  certain  properties,  some  of 
which  have  been  already  proved ;  but  the  majority  of  the  interesting  pro- 
positions in  this  subject  come  from  adding  some  other  condition  besides 
compactness.  Thus  series  having  Dedekindian  continuity,  which  have  many 
important  properties,  are  such  as  are  compact  and  Dedekindian.  Bational 
series  (i.e.  such  as  are  ordinally  similar  to  the  series  of  all  rational  numbers, 
positive  and  negative,  or,  what  is  equivalent,  to  the  series  of  rational  proper 
fractions)  are  defined  as  such  as  are  compact,  without  beginning  or  end,  and 
consisting  of  ti^  terms.  Such  series,  also,  have  many  important  properties. 
A  continuous  series  (in  Cantor's  sense)  is  a  Dedekindian  series  containing 
a  rational  series  in  such  a  way  that  there  are  terms  of  the  rational  series 
between  any  two  terms  of  the  given  series.  This  species  of  compact  series 
also  has  many  important  properties.  It  consists  of  all  series  ordinally  similar 
to  the  series  of  real  numbers  including  0  and  oo . 


12—2 


*270.     COMPACT  SERIES. 

Summary  of  *270. 

The  propositions  of  the  present  number  are  mostly  either  obvious  or 
repetitions  of  previously  proved  propositions.  The  latter  are  repeated  here 
for  convenience  of  reference. 

We  put  comp  =  P  (P  G  P^)     Df, 

so  that  the  class  of  compact  series  is  Ser  n  comp.     We  have 

*27011.     h  :.  P  6 comp .  =  :  xPy .  D^,^ .  g !  P'«  n  P'y 

*270-34.     h  :  P  6  trans  n  comp .  3  .  s'P  =  sgm'P 

The  proposition  s'P*  =  sgm'Pj^ ,  which  was  proved  in  *212,  is  a  particular 
case  of  the  above. 

*270-41.     J- :  P  6  Ser  n  comp .  D  .  Nr'P  C  Ser  n  comp 

I.e.  a  series  which  is  similar  to  a  compact  series  is  a  compact  series. 

*270-56.     1- :  P  6  Ser .  Q  6  fi  .  ~  E  !  5'P .  ~  E  !  B'Q .  D  .  P«  e  Ser  n  comp 

This  proposition  gives  us  a  means  of  manufacturing  compact  series  of 
various  types,  such  as  toexp^w,  wexprCOi,  etc. 


*27001.     comp  =  P(PGP'')     Df 

Here  "  comp  "  is  an  abbreviation  for  "  compact."     "  Compact "  series  are 
the  same  as  the  series  which  Cantor  calls  "  tiberall  dicht." 


*2701.  t- 

*27011.  h 

*27012.  V 

*27013.  h 

*27014.  h 


P  6  comp .  =  .  P  C  P=  [(*270-01)] 

.  P  6  comp  .  =  :  xPy .  3^,,^ .  g  !  P'x  n  P'y  [*270-l] 

Pecomp.  =  .Pecomp  [*270-ll] 

P  e  trans  r.  comp  .  =  .P  =  P^  [*2701 .  *201-1] 


Pe  Ser  n  comp .  =  .  Pe  Rl'/n  connex . P=P^ .  = .  Pe  Ser .  P=  P» 
[*270-13] 

*27015.     h:PeSerncomp.  =  .PeSer.Pi  =  A  [*201-66  .  *270-14] 


SECTION  F]  compact  SERIES  181 

*270-2.       h  :  P  e  comp  .  D  .  ~  g  !  m&Xp'P'x    [*205-25  .  *270-l] 

*270-201.  h  :  P  e  comp  .  D  .  ~  g  !  mmp'a'P .  ~  g  !  maxp'D'P 
Dem. 

H.*3r-25.        DI-.imnp'a'P  =  P"D'P-(P2)"D'P        (1) 
I- .  (1) .  *2701 .  D  h  :  Hp .  D .  minp'a'P  =  A  (2) 

Similarly  h  :  Hp .  D  .  maxp'D'P  =  A  (3) 

h  .  (2)  .  (3)  .  3  h  .  Prop 

— >      ^  — > 

*270-202.  h  :  P  6  comp .  D  .  ~  g !  minp'P"a .  ~  a !  maxp'P"a 

[Proof  as  in  *270-201] 
*270-203.  V'.Pe  comp .  3  .  ~  g  !  seqp't'a;  [*206-42 .  *270-l] 

*270-204.  I- :  P  e  Ser  ft  comp .  E  !  seqp'a .  D  .  ~  E !  maxp'a 
[*206-451 .  *270-15] 

*270-205.  h  :  P  e  Ser  n  comp .  D  .  Itp  =  seqp  [*207-l .  *270-204] 

*270-21.     I- :  P  6  Rl'/  n  comp .  a;  e  O'P .  3  . « Itp  (P'x)     [*207-31 .  *270-l] 

*270-211.  V\Pe  Rl'Jn  comp  .  D  .  D'ltp  =  G'P  [*270-21] 

Thus  if  a  relation  is  compact  and  contained  in  diversity,  every  member 
of  its  field  is  a  limit-point. 

*270-212.  h  :  P  6  connex .  D'ltp  =  O'P .  D .  P  e  comp 
Dem. 

I- .  *207-34 .  D  h  :  Hp .  D .  C7'P  C  -  a\P-  P') . 

[*33-251]  D  .  a'(P-  P«)  =  A . 

[*270-l]  D  .  P  6  comp :  D  h  .  Prop 

*270-22.     h  : .  Pe  Rl'/n  connex  .  D  :  Pe  comp  .  =  .  D'ltp  =  C'P  .  =  .  Q'P  C  D'ltp 
[*270-211-212 .  *207-18] 

*270-23.     h-.Pe  comp  -  I'A .  D  .  P  ~  e  Bord 
Dem. 

I- .  *270-201 .  D  h  :  Hp .  D .  (ga) .  a  C  G'P .  g !  a .  ~  g !  minp'a . 
[*250101]  D.P~  6  Bord  Oh.  Prop 

*270-24.     h  :  P  6  Ser  A  comp  -  t'A .  D  .  G'P  ~  e  Cls  induct 

Bern. 

I-  .*270-23  .DI-:Hp.D.P~6n. 

[*261-31]  D .  O'P  ~  e  Cls  induct  Oh.  Prop 

*270-3.       h  :  P  e  Ser  n  comp .  3  .  sect'P  -  D'Pe  =  P^"G'P 
[*211-351.*270-15] 


182  SERIES  [part  V 

*270-31.     f-:P6  trans  ncomp.D.D'Pe  =  D'(Pen/)  [*211-51 .  *27014] 

*270-32.     h  : P 6 trans n  comp .'^.'P'ice B'{Pe n I)  [*211-452  . *270-l] 

*270-321.  H  :'P"C'P  C  D'(Pe  nI).-^.Pe  comp  [*211-451 .  *2701] 

*270322.  H  :.  P e  trans .  D  :  P"G'P  C  D'(Pe  n  /)  .  = .  P e  comp 
[*270-32-321] 

*270-33.     h  : .  P  e  Ser .  D  :  P  6  comp .  =  .  Q'maxp  n  d'seqp  =  A 
[*211-551 .  *270-14] 

*270-34.     h  :  P  e  trans  n  comp .  D  .  s'P  =  sgm'P    [*270-31 .  (*212-0102)] 

*270-35.     h  :.  P 6 trans  n  connex  n  comp  .0:Pe  Ded .  =  .  Q'maxp  =  -  Q'seqp 
[*214-4.*27018] 

*270-351.  F- : .  P  e  Ser .  D  :  P  6  comp  a  Ded .  =  .  Q'maxp  =  -  Q'seqp 
[*214-41.*270-14] 
A  series  which  is  compact  and  Dedekindian  is  one  which  has  Dedekindian 
continuity.     Thus  the  above  proposition  states  that  a  series  which  has  Dede- 
kindian continuity  is  a  series  such  that  every  class  has  either  a  maximum  or 
a  sequent,  but  not  both. 

*270-352.  I- :  Pe  Ser  n  comp  r\  Ded  .  a  e  sect'P.  D  .  limaxp'a  =  liminp'(0'P  -  a) 
[*214-42] 

*270-36.     h  : P 6 Rl' / n  comp .  D .  Sp'G'P  =  a'P.V'P  =  P 
[*216-2 .  *270-211 .  (*21605)] 

*270-4.       h  :  P  e  comp .  D  .  Nr'P  C  comp 
Dem. 
h.*201-2.         D\-:SePi5IdiQ.D.(8>Qf  =  8>Q\P  =  8>Q  (1) 

h  .(1)  .*2701 .  D  h  :  Pecomp .  SfePsmor  Q .  D  .  fifJQG>Sf;Q». 

[*150-31]  D.S'S'QQS'S'QK 

[*151-252]  D .  Q  G  Q" :  3  h  .  Prop 

*270-401.  h'.Pe comp  .  =  .  Nor'P  C  comp  [*270-4 .  *155-12] 

*270-41.     h  :  Pe  Ser  n  comp.  D.  Nr'P  C  Ser  n  comp      [*270-4  .  *204-22] 

*270-411.  I- :  P  6  Ser  n  comp .  =  .  Nor'P  C  Ser  n  comp     [*270-41 .  *15512] 

«—  — > 

*270-42.     \-:Pe comp .  D  .  P  ^  P^'tv,  P I  P^'x e comp 

Dem. 

\- .  *270-ll .  D  h  :  Hp .  2/,  2^  6  P^'m .  yPz .  D .  (gw) .  yPw .  wPz . 

[*90-16]  '^.(:sw).weP^'x.yPw.wPz    (1) 

h  .  (1) .  *270-ll .  3  h  :  Hp .  D  .  P^P^'x  e  comp  (2) 

— > 
Similarly  h :  Hp .  D .  P  ^  P^'x  e  comp  (3) 

f- .  (2) .  (3) .  D  h  .  Prop 


SECTION  F]  compact  SERIES  183 

*270-5.       h  :  P,  Q  e  Ser  A  comp  .  C'P  rt  f7'Q  =  A  .  ~  (E !  5'P .  E !  B'Q) .  D  . 

•  P4^QeSerncomp 

Dem. 

H  .  *1 60-51 .       D  h  :  Hp .  D .  (P4.Q)=  =  P»  u  Q**  c;  D'P  t  O'Q  c;  C'P  f  Q'Q 
[*93103.Hp]  =P2c;Q»c;0'PtC"Q  (1) 

h  .  (1) .  *270-l .  3  I- :  Hp .  D  .  P^iQ  G  (P4.Q)''  (2) 

h.(2).*204.-5.DI-.Prop 

*270-51.     h  :  P  6  Ser  n  comp .  G'P  C  Ser  r.  comp .  P  e  Rel"  excl .  D . 

S'P  6  Ser  n  comp 
Dem. 

h.*204-52.DI-:Hp.D.S'PeSer  (1) 

,      l-.*1621.D 

h  .  (S'P)'  =  (s'C'Pf  a  (PJP)''  u  (s'O'P)  I  (P;P)  c;  (^JP)  |  (s'G'P)         (2) 

I- .  *2r0-l .  D  h  :  Hp .  x(s'G'P)  y.D.  (gQ)  .QeC'P.  xQFy . 

[*41-13]  ^.x{s'G'Pyy  (3) 

I- .  *270-l .  D  h  :  Hp .  a;  (PJP)  y  .  D  .  a;  (PiP^  y . 

[*163-12.*201-2]  D .  a; (PJP)^  y  W 

h .  (2) .  (3) .  (4) .  *1621 .  D  h  :  Hp .  D  .  S'P  G  (S'P)»  (5) 

h  .  (1) .  (5) .  D  h  .  Prop 
The   hypothesis  of  *270'51   is  in  excess  of  what  is  required  for  the 
conclusion,  which  only  requires,  in  place  of  Pecomp,  that  there  should  he 
no  two  consecutive  relations  in  G'P  of  which  the  first  has  a  last  term  while 
the  second  has  a  first  term.     This  is  proved  in  the  following  proposition. 

*270-52.     I- :  P  6  Ser  A  ReP  excl .  G'P  C  Ser  n  comp . 

B"P^"{G'P  n  Cnv"a'5)  =  A  .  D  .  S'P  6  Sern  comp 
Dem. 

V  .  *2701 .  *163-12  .  D  I-  :  Hp  .  D  .  s'G'P  G  {s'C'Pf  (1) 

h  .  *201-63  .  D  h  :  Hp  .  D  .  F>P  =  PJP,  c;  PJP"  (2) 

H  .  *93103  .  D  h  :.  Hp  .  QP^R  .  D  :  D'Q  =  O'Q  .  v  .  d'R  =  G'R       (3) 

h  .  (3)  .  D  h  :.  Hp  .  a;  (PJPi)  y .  D  : 

(aQ,  R):xeI>'Q.yeG'R.v.x60'Q.  yed'R  :  QP^R : 
[*3313-131-17] 

D  :  (ad-B,^)  -.xQz.zeG'Q.yeC'R.v.xeG'Q.zeG'R.  zRy :  QPiiJ  : 
[*i50-52.*201-63]  D  :  x  {{s'G'P)  \  (PJP)}  y .  v .  a;  {(PJP)  |  (s'CP)}  y : 
[*162-1]  ■:i:x{t'Pyy  (4) 

h  .*1 63-12  .*201-2.  D  h  :  Hp .  D  .  PJP^  =  (P'P)''  (5) 

f- .  (2) .  (5) .  *162-1 .  D  h  :  Hp  .  D .  P;P  G  (2'P)"  (6) 

I- .  (1) .  (6) .  *162-1 .  D  h  :  Hp  .  D  .  S'P  G  {VPf  (7) 

h  .  (4)  .  (7)  .  *204-52  .  D  h  .  Prop 


184  SERIES  [PART  V 

*270'521.  I- :.  P  6  Ser  n  ReP exel .  O'P  C  Ser  n  comp  : 
C'P  n  Cnv"a'B  =  A  .  V  .  C'P  n  a'5  =  A  :  D  .  S'P  6  Ser  A  comp     [*270-52] 

*270-53.     l-iPeSer. Qe  Ser  n  comp.  ~(E!5'Q.E!S'Q).D.PxQe  Ser  n  comp 
Dem. 
I-.*1661.    :>V.PxQ=X'Qy>P  (1) 

|-.*165-21.DI-.Q_4,;P6RePexcl.  (2) 

h  .*165-25.*204-21.  D  h  :  Hp .  g  !  P.  D  .  QJ,  JPeSer  (3) 

h  .  *165-26  .  *270-4 .  3  h  :  Hp  .  D  .  (7'Q  J,  JP  C  Ser  n  comp  (4) 

h  .  *151-5 .  *165-26  .  D  h  :  Hp .  ~  E  !  5'Q .  D  .  C'Q  J,  ;P  o  a'5  =  A  (5) 

I-  .*151-5  .*165-26  .  D  h  :  Hp.~E!5'Q.  D  .G'Q_4,;PnCnv"a'J5=A   (6) 

I- .  (1) .  (2) .  (3) .  (4) .  (5)  .  (6) .  *270-521 .  D  * 
h  :  Hp .  a !  P  .  D  .  P  X  Q  e  Ser  n  comp  (7) 

H  .  *16613  .DI-:P  =  A.D.PxQ6Sern  comp  (8) 

h  .  (7) .  (8) .  3  h  .  Prop 

*270-54     h  :  Pe Ser  n  comp .  ~ E  ! B'P .xr^eG'P .  D  .  P-f+aJeSer  n comp 
Dem. 

h.*204-51.       DI-:Hp.D.P-f*a!eSer  (1) 

h.*16ri.         Dh:Hp.D.(P4>a!)''  =  P''wD'Pti'a; 
[*93-103]  =P^Ki  C'P  t  I'x  (2) 

h  .  (2) .  *2701 .  D  h  :  Hp  .  D  .  P+>a;  G  (P +>«)''  (3) 

h  .  (1) .  (3)  .  3  h  ,  Prop 

*270-541.  h  :  P  e  Ser  n  comp  .  ~  E  !  B'P .  a;  ~  e  C'P .  D  .  a;  «f  P  e  Ser  a  comp 
[Proof  as  in  *270-54] 

*270-55.     h  :  P  6  n .  C'P  C  Ser .  ~  E  !  5'P .  O'P  n  Cnv"<l'B  =  A .  D  . 

II'P  e  Ser  a  comp 
Dem. 
h.*251-3.DI-:Hp,D.n'P6Ser  (1) 

h  .  *250-21 .  *93-103  .  D 

1- :  Hp .  Q  e  C'P .  ilf  6  Pa'C'P  .  D  .  (ga;) .  {M'P^'Q)  (P^'Q)  x  (2) 

h  .  *200-43  .  D 

Vi'K^{^).{M'K'Q){h'Q)iio.L=M\{-i'P,'Q)Kix^{P,'Q).-D.M{li'P)L    (3) 
I- .  *200-43  .  D 

I- :  Hp(3) .  Ne F^'G'P.  (M'Q) Q(N'Q) .  MfP'Q  =  N\-'P'Q .  D  .  i(n'P)  A^  (4) 
|-.(2).(3).(4).D  _^ 

h  :  Hp .  M,NeF^'C'P  .QeC'P.  (M'Q) Q (N'Q) .  M['p'Q  =  N['P'Q .  D  . 

(^L).M{U'P)L.LiU'P)N    (5) 
h  .  (5)  .  *200-43  .  D  I- :  Hp .  3  .  H'P  G  (U'Py  (6) 

I- .  (1) .  (6) .  D  h.  Prop 


SECTION  f]  compact  SERIES  185 

*270-66.     h:P6Ser.QeXl.~E!5'P.~E!£'Q.D.P«6Serrtcomp 

Bern.  • 

I-.*176-151.  Dh:P  =  A.D.P«eSerncomp  (1) 

h.*176-181-182.  Df-.P«smorn'PJ,;Q  (2) 

h  .  *165-25  .  *251121 .  D  h  :  Hp .  g !  P .  D  .'p  J,  JQ  e  «  (3) 

h  .  *165-26  .  *204-21 .   Dh  :  Hp.  3.  CPj^JQCSer  (4) 

h.*165-25.*151-5.     D  h  :  Hp.g  !P.  D  .~E!P'Cnv'P  J,;Q  (5) 

h.*165-26.*151-5.      D  f- :  Hp.  D  .  O'P  J,  JQ  n  C!nv"a'P  =  A  (6) 

H  .  (3) .  (4) .  (5) .  (6) .  *270-55  .  3  h  :  Hp .  g !  P .  D .  H'P  J,  JQ  e  Ser  a  comp . 
[(2).*270-41]  3 .  P«  €  Ser  n  comp  (7) 

h.(l).(7).Dh.-Prop 

By  means  of  the  above  proposition,  compact  series  can  be  manufactured  by 
taking  series  of  such  types  as  a  exp^  to,  to  exp^  Wj,  a>i  exprO>,  etc.  Any  power 
o  exp,  ^  consists  of  compact  series,  if  y8  is  an  ordinal  having  no  immediate 
predecessor,  and  a  is  any  serial  number  having  no  immediate  predecessor 
(i.e.  not  formed  by  adding  i  to  a  serial  number). 


*271.     MEDIAN  CLASSES  IN  SERIES. 

Summary  of  *27l. 

We  shall  call  a  class,  a  a  "  median  "  class  in  P  if  a  C  G'P  and  there  is  a 
member  of  a  between  any  two  terms  of  which  one  has  the  relation  P  to  the 
other.     When  this  is  the  case,  we  have 

xPy  .  y„^y .  (g^)  .zed.  xPz  .  zPy, 
i.e.  PGPI'alP. 

Thus  P  cannot  contain  any  median  class  unless  P  is  compact.     Conversely, 

if  P  is  compact,  G'P  is  a  median  class.     Hence  relations  containing  median 

classes  are  the  same  as  compact  relations.     Median  classes  are  important  in 

dealing  with  rational  and  continuous  series :  the  rationals  are  a  median  class 

in  the  series  of  real  numbers,  and  the  series  which  Cantor  calls  continuous 

are  characterized  by  the  fact  that,  in  addition  to  being  Dedekindian,  they 

contain  a  median  class  which  forms  a  series  of  the  same  type  as  the  rationals. 

— »  _  _ 

If  P  is  a  compact  series,  the  class  P"Q.'P  is  a  median  class  in  the  series  s'P 

(*271'31).     This  fact  is  used  in  proving  that  the  series  of  segments  of  a 

rational  series  is  a  continuous  series. 

Our  definition  is 

med  =  aP(aCG'P.PeP|^a|P)     Df. 
— » 
Thus  med'P  will  be  the  median  classes  of  P,  and  " Pe Q'med "  means  that 

there  are  median  classes  of  P.     We  have  Q'med  =  comp  (*271"18);  also 

*27115.     h:amedP.D.P,Ppa6comp 

*271-16.     I- :  (a  n  G'P)  med  P .  =  .  (a  n  D'P)  med  P .  =  .  (a  n  Q'P)  med  P . 

=  .(anD'Pna'P)medP 
If  P  is  a  series,  and  a  C  G'P,  a  is  a  median  class  when,  and  only  when,  its 
derivative  is  d'P,  i.e. 

*271-2.       hz.PeSer.aCO'P.  D:amedP.  =  .a'P  =  V« 
An  important  proposition  is 

*271-39.     h:P,Q6SerADed.amedP./3medQ .  (P I  a)smor  (Q  t^).:^. 

PsraorQ 

I.e.  if  P  and  Q  are  Dedekindian  series,  and  a,  ^  are  median  classes  of  P 

and  Q  respectively,  then  if  P  ^  a  and  Q\,^  are  similar,  so  are  P  and  Q.    This 


SECTION  F]  median  CLASSES  IN  SERIES  187 

* 
proposition  is  proved  by  showing  that  P  is  similar  to  the  series  of  segments 
of  P  ^  «,  the  correlator  beiug  Itp  with  its  converse  domain  limited  (*27l'37). 
Another  important  proposition  is 

*271-4.       h:SePsmofQ.iSmedQ.D.(S'"/8)medP 

I.e.  a  correlator  of  P  with  Q  correlates  median  classes  with  median 


The  above  two  propositions  are  used  in  *275"3'31,  which  prove  that  two 
series  which  are  continuous  (in  Cantor's  sense)  are  similar,  and  that  a  series 
similar  to  a  continuous  series  is  continuous. 


*27101.     med  =  aP(aCC"P.PCPfa|P)    Df 
*2711.       Vi.oLmediP  .  =  '.olCC'P  .P(lP\a\P:  =  \ 

aCG'P:  xPy .  D„,j, .  g  !  a  n  P'x  r.  P'y     [(*27l-0l)] 
*27111.     f-:amedP.  =  .amedP  [*27ll] 

*27113.     l-:amedP.;8C0'P.D.(aui8)medP    [*27l-l] 

*271-14.     h :  a  med  P .  D  .  C7'P  t  a  med  (P  t «) 
Dem. 

h.*271-l.D 

h  :.  a  med  P .  D  : «,  3/  e  a .  xPy .  "^x.y  •  (a^s')  •  ^  e  a  .  aiPz .  zPy  . 
[*35-102]  '^^^y.{'^z).zea.x{P^a)z.z{P^a.)yi 

[*35-102.*27l-l]  D  :  C'P  ^  a  med  (P  t  a)  :.  D  h  .  Prop 

*27115.     l-:amedP.D.P,PPaecomp 
Dem. 

h.*27ri.  Dh:Hp.D.PGP». 

[*270-l]  :i.Pe  comp  (1) 

h  .  (1)  .*271-14  .  D  h  :  Hp .  D .  P  ^  oecomp  (2) 

h  .  (1) .  (2) .  D  h  .  Prop 

*27116.     I- :  (o  n  C'P)  med  P .  = .  (a  n  D'P)  med  P .  =  .  (a  n  O'P)  med  P  - 

=  .(anD'Pna'P)medP 
Dem. 
h.*27l-l.*33-15.D 

I- :.  (o  n  G'P)  med  P .  =  :  a!P2/ .  D^.y .  a  !  a  rt  D'P  n  P'x  n  P'y : 

i*27l-l]  =:(anD'P)medP  (1) 

h  .  *2711 .  *33151 .  D  h  :  (a  n  C'P)  medP .  =  .  (a  n  Q'P)  med  P  (2) 

I- .  *271-1 .  *33-15'151 .  D 

h  : .  (a  n  C'P)  med  P .  =  :  a;P?/ .  D«,  ^ .  g  !  a  n  D *P  ft  Q'P  n  P 'a;  n  P'y : 

[*27l-l]  =:(aftD'Pfta'P)medP  (3) 

h  .  (1) .  (2) .  (3) .  D  h  .  Prop 


188  SERIES  [PART  V 

*27117.     I- :  P  e  comp .  D  .  G'P,  D'P,<['P  e  i^d'P 
Dem. 

h  .  *35-452  .  *270-l .  D  h  :  Pecomp .  D  .  PQ.P\G.'P  \  P . 

[*271-1]  D .  Q'P  6  med'P .  (1) 

[*271-13]  O.C'Pe  i^d'P .  (2) 

[*27116]  D .  D'P  e  i^d'P  (3) 

f- .  (1) .  (2)  .  (3)  .  D  h  .  Prop 

*27118.     y  .  Q'med  =  comp     [*2711517] 

*27r2.       h:.PeSer.aC(7'P.D:amedP.  =  .a'P  =  Sp'o    [*216-13.*271-1] 

*271-3.       hiPe m'J n  trans .  a med P .  D . P"a med (s'P) 

Dew*, 
h  .  *271-15  .  *270-34 .  3  h  :  Hp .  3  .  s'P  =  sgm'P . 

[*212-11]  D.s'P  =  ^9{/3,76D'(PeA7).a!7-/8}    (1) 

h .  (1) .  *211-12  .  D  h  :  Hp .  /3  (s'P)  7 .  D  .  g  !  7  -  /3 .  P"7  =  7 .  P"/3  =  /3 . 
[*37-l]  '2.(^a;,y).xey-^.a!Py.yey. 

[*27l"l]  D  .  (ga;, y,z).x6y-^ . xPz . zPy  .zea.yey. 

[*20112]  D . (gas, y,z).xey-^. xPz . zPi/ . 0 e a . y e 7 .  ~ (yP^) - 

[*32-18]  D , (a^) . ^ea . a  ! P'z-^. 'g^ly-P'z. 

[(l),*270-322]  D.(a0).^€a.yS(s'P)(P'«).(P'^)(s'P)7  (2) 

h.(2).*27l-1.3l-.Prop 

*271-31.     f- :  P  6  Rl' J  rt  trans  n  comp  .  3  .  P"a'P  med  (s'P)     [*271-3-l7] 

The  following  propositions  lead  up  to  the  proposition 
*271-37.     h  :  P  e  Ser  n  Ded .  a  med  P .  D  .  Itp  r  C"s'(P  ta)eP  sSor  {s'(P  ta)] 

whence,  if  a  is  a  median  class  of  P,  P  is  similar  to  the  series  of  segments  of 
P^a.  This  proposition  is  used  in  proving  that  every  continuous  series  is 
similar  to  the  series  of  segments  of  a  rational  series. 

*271-32.     h  :  P  6  Ser .  P  =  P  C  a .  iS  6  D'Pe .  E I  Itp'/S .  D  .  ^=R"fi=a  n'P'W^ 

Dem. 

— »  -♦ 

V  .  *205-9  .  3  I- :  Hp .  a  rt  G'P  ~  e  1 .  3  .  maxjj'/3  =  maxp  (o  n  /3) 

[*37-413.*21111]  =  maxp'/3 

[*207-13]  =  A  (1) 

h  .  (1) .  *200-35  .  D  I- :  Hp  .  3  .  r^xjj'jg  =  A  . 

[*211-42-12]  3 .  /8  =  P"j8  (2) 

h  .  *207  -231 .       3  h  :  Hp .  3  .  P"^  =  P'ltj.'/3 . 

[*37-413]  3.P"(8  =  aAP'lt/^  (3) 

h  .  (2)  .  (3)  .  3  h  .  Prop 


SECTION  F]  MEDIAN  CLASSES  IN  SERIES  189 

*271-321.  h  :  Pe  Ser  .  E  =  P^  a  .  D  .  Itpl^D'iJeel-^l 
D&n.  • 

f- .  *271-32  .  D  h  :  Hp  .  /8, 7  e  D'Ee .  1 V/8  =  ltp'7  .  D  .  /3  =  7  :  D  I- .  Prop 

*271322.  h  :  P  e  Ser  .  iJ  =  P  p  a  .  D  .  ItpJs'iZ  C  P 

Dem. 
f- .  *212-23  .  D  h  :.  Hp  .  D  :  x(\tph'R)  y.  =  . 

(a/S,7).A7eD'Pe./8C7./8  +  7.a;  =  lV/3.y  =  ltp'7- 
[*207  •231]        D  .  (3/8, 7) .  |S,  7  e  D'Ee .  ^  C  7 .  ^8  +  7 .  P'a;  =  P";8 .  "P'y  =  P"7 . 
r*37-2.*2ri-321]  D .  P'«  C  P'2/ .  a;  +  y . 
[*204-33]  li.xPyi.'^V.  Prop 

*271-33.     I- :  P  e  trans  .  a  med  P  .':i.P'x  =  P'\ol  n  P'a;) 
i)em. 

V  .  *201501 .  D  F  :  Hp  .  D  .  P"'p'xZP'x  . 

[*37-2]  D.P"(anP'a;)CP'a!  (1) 

I- .  *27l-l  ,      D  H  :.  Hp .  D  :  yPx  .  D  .  (g^)  .  yPz  .zea.  zPx  . 

[*37-l]  D.ye  P"(a  n  P'a;)  (2) 

h  .  (1)  .  (2)  .  3  h  .  Prop 

*271 331.  h  :  Hp  *27l-33  .  R  =  Pla  .'D  .an'P'x  =  R'\a  a  P'x) 
Dem. 

h  .  *271-33  .  3  h  :  Hp  .  3  .  o  n  P'aj  =  a  n  P"(o  n  P'a;) 

[*37-413]  =  R"(a  n  P'a;)  :  D  h  .  Prop 

*271-332.  h  :  P  e  Ser  .  a  med  P.xeC'P  .O.x  =  ltp'(a  n  P'x) 
Dem. 

I- .  *271-331 .  D  h  :  Hp  .  D  .  a  n  P'a;  C  P"(a  n  P'x)  . 

[*205-123]  D  .  maxp'(a  n  P'a;)  =  A  (1) 

h.(l).*271-33.D 

h  :  Hp .  D  .  a;  e  (7'P .  P'a;  =  P"(a  n  P'a;) .  ~  E  !  maxp'(a  r«  P'a;) . 

[*207-521]  0.x  =  ltp'(«  n  P'a;)  :  3  I- .  Prop 

*271-34.     h  :  P  e  Ser  .  a  med  P  .  3  .  P  =  ltp;s'(P  I  a) 
Dem. 

h  .  *271-331  .  *211-11  .3l-:Hp.i2  =  Pta.3.anP'a;e  B'R,  (1) 

I- .  *204-33  .    3  h  :  Hp  .  xPy  .D  .an  P'xCa  n  P'y  (2) 

h  .  *271-332  .  3  h  :  Hp .  xPy .  3  .  a;  =  ltp'(a  n  P'a;)  .  y  =  ltp'(a  n  P'y) .  (3) 

[*204-I  ]                                     3  .  «  n  P'a;  +  a  n  P'y  (4) 


190  SERIES  [PAKT  V 

h  .  (1) .  (2) .  (4) .  *212-23  .  D 

l-:.Hp.J?  =  P^a.D:a;Py.D.(anP'a;)(s'iJ:)(ar.P'y)  (5) 

H  .  (3).  (5)  .  D  I-  :.  Hp  .  D  :  aiPy .  D  .  a;  {ltp'^'(P  p  a)}  y  (6) 

h  .  (6)  .  *27l-322  .  D  I- .  Prop 

*27135.     h  :  a  med  P  .  D  .  D'(P  D  a)^  C  -  Q'maxp 

Dem. 
I- .  *37-413  .  *211-11  .  D 

h  :.  iS  6  D'(P  ^  a)e .  D  :  (gp) .  ^  =  a  n  P"(p  n  a)  :  (1) 

[*37-l]  D:(ap):a;6^.D».(ay).yepno.a!Py  (2) 

h  .  (2)  .  *271-1  .  3 

h  :.  Hp  . ;S 6 D'(P t  a)c .  D  1(3/3) : a; 6/3  .  Da,.(ay,«).a;P5.^6a.5^P2/.ye/3na. 
[(1)]  D«.(a^).a;P^.^€^. 

[*371]  D^.xeP"^  (3) 

h  .  (3)  .  *205-123  .  D  I- :  Hp  .  /3  e  D'(P  ^  a)e .  D  .  maxp'yS  =  A :  D  h  .  Prop 

*27r36.     h:P6Ded.ainedP.D.D'(Ppo)eCa'ltp    [*27l-35  .*214-101] 

*271-37.     1- :  P  6  Ser  n  Ded  .  a  med  P .  D  .  Itp  p  C's'(P  D  «)  e  -P  smof  {s'(P  t «)} 
[*271-321-3436 . *151-22] 

*271-38.     l-:P6SerADed.amedP.D.Psmor{s'(P^a)}     [*27l-37] 

*271-39.     h  :P,QeSernDed.amedP./3medQ.(P^a)smor(Q^/3).D. 

P  smor  Q 
Bern. 

h  .  *212-72  .  D  h  :  Hp .  D  .  {s'(P  ^  a)J  smor  {s'(P  ^  ^)}  (1) 

V  .  *271-38 .  D  h  :  Hp .  D .  P  smor  {s'(P  D  «)}  •  Q  smor  {s'(Q  t  ^)]         (2) 
h.(l).(2).  DH.Prop 

This  proposition  is  used  in  proving  that  all  continuous  series  are  similar, 
by  means  of  the  fact  that  such  series  contain  rational  series  as  media;ns,  and 
that  all  rational  series  are  similar. 

*271-4.       ViSeP  s15m  Q  .  ^  med  Q  .  D  .  (,Sf"/S)  med  P 
Dem. 

h.*35-354.*74-14.Dh:Hp.D.Q|'^|S=Q|/S|'/S"/3. 

[*150-1]  •^.S-'{Q\^)  =  {8'Q)\S"$. 

[*151-11]  -^■{SKQ\mW'Q)  =  {P\S"p)\P    (1) 

l-.*72-6.  DI-:Hp.D.((2|'jS)|,Si/S  =  QI^/8. 

[*150-1]  ':>-mQimi.Sm  =  8\Q\^\Q\8    (2) 

h.(2).*27l-l.         DH:Hp.D.5|Q|<SG{fi';(Q|'^)j|(5(;Q). 
[*15M1.(1)]  D  .  P  G  (P  I'  5"/3)  I P . 

[*271-1]  D .  (S"/S)  med  P :  D  I- .  Prop 


*272.     SIMILARITY  OF  POSITION. 

Swmmary  of  *272. 

If  P,  Q  are  two  serial  relations,  and  T  is  a  correlator  which  correlates 
some  terms  of  C'P  with  some  terms  of  C'Q,  we  say  that  two  terms  x  and  y, 
of  which  OB  belongs  to  C'P  and  y  to  C'Q,  have  similar  positions  with  respect 
to  T  if  y  comes  after  the  correlates  of  all  members  of  D'T  which  x  comes 
after,  and  y  comes  before  the  correlates  of  all  members  of  D'T  which  a;  comes 
before.  This  notion  is  useful  for  inductive  definitions  of  correlations.  If  we 
start  by  correlating  any  two  terms  Xi,  y^,  and  take  another  term  x^  coming 
(say)  after  x^,  a  term  y^  having  similarity  of  position  with  respect  to  x^  ^  y^ 
must  come  after  y^.  Suppose  now  we  take  x^  between  x^  and  x^.  Then 
a  term  ys  having  similarity  of  position  with  respect  to  Xi  ^  y^Ki  x^  ^  y^  must 
come  between  yi  and  2/2 ;  and  so  on.    A  correlation  T  constructed  in  this  way 

will  be  such  that  T''QQ.P .  hp  G  Q.  If  the  whole  of  C'P  and  C'Q  can  be 
obtained  by  prolonging  the  construction  long  enough,  T  will  at  last  become 
a  correlator  of  P  and  Q.  This  is  the  principle  of  Cantor's  proof  that  any  two 
rational  series  are  similar. 

As  a  rule,  when  the  notion  of  similarity  of  position  is  useful,  the  relation 
T  will  be  one-one,  but  this  is  not  assumed  in  the  definition.  We  write 
"  xTp(iy''  for  "  x  and  y  have  similar  positions  in  P  and  Q  respectively  with 
respect  to  T"  or,  as  we  may  express  it  more  shortly,  "  the  P-position  of  x  is 
T-similar  to  the  Q-position  of  y."     The  definition  is 

Tpq  =  ^{xeC'P.ye  C'Q  .  D'T  n  P'x  C  T''Q'y  .  D'T  r^'x  C  T''Q'y . 

D'Tni'xCT'y]     Df. 

This  definition  states  that  the  predecessors  of  x  which  have  T-correlates  are 
to  be  correlated  with  predecessors  of  y,  the  successors  of  x  which  have 
T-correlates  are  to  be  correlated  with  successors  of  y,  and  if  x  itself  has 
a  T-correlate,  y  is  to  be  a  T-correlate  of  x. 

When  T  is  a  many-one  relation,  the  definition  becomes  somewhat  simpler. 
We  then  have 

*27213.     H  ::  Te  Cls -» 1  .  D  :.  xTpqy .  =  : 

xeC'P.yeC'Q zzeB'TnP'x .  D, .  T'zQy  :zeD'Tr\  P'x .  0, . yQPz  : 

xeD'T.O.y^T'x 


192  SERIES  [part  V 

We  have 

*27216.     I- .  (D'r)1  TpQ  G  T 

That  is,  a  term  which  has  a  correlate  cannot  have  similarity  of  position  with 
any  term  except  one  with  which  it  is  correlated.  A  member  of  C'P  n  T>'T 
will  have  similarity  of  position  with  its  correlate  (assuming  yeCls— »1)  if 

P I  B'TQT'>Q .  T"C'P  C  G'Q  (*2r2-18). 

Under  ordinary  circumstances,  a  term  which  is  not  a  member  of  T>'T 
cannot  have  similarity  of  position  with  any  member  of  Q.'T  (*272'2).  When 
T  is  many-one  and  its  domain  is  contained  in  C'P,  and  P  and  Q  are  series, 
and  X  has  no  T-correlate,  we  have  (*272'21) 

xTpQy  .=  \xeG'P.yeC'QiZ6  DT  r>  P'x .  =^ .  T'zQy, 

i.e.  in  this  case,  x  and  y  have  similar  positions  if  the  predecessors  of  x  which 
have  correlates  are  the  terms  whose  correlates  precede  y.  In  this  case,  if 
xeG'P,  we  have  (*272-212) 

Tp^'x  =  C'QnP  (D'T  n  "P'x  =  f'Q'y't  =G'Qf^^  (D'T  n  Ip'x  =  T"Q^'y). 

We  next  investigate  the  condition  for  G'P  =  T>'TpQ,  i.e.  the  condition 
required  in  order  that  every  member  of  G'P  may  have  similarity  of  position 
with  some  member  of  G'Q.     A  suflBcient  condition  is 

P,  Q  6  Ser .  Q  e  comp .  Te  Cls-*1 .  D'T  e  Cls  induct .  P  l  D'T  CT'Q  .'g^lQ. 

T"G'PC'D'Qna'Q 
as  is  proved  in  *272'34. 

We  next  consider  the  reversibility  of  Tpg,  i.e.  the  condition  that  the 

converse  of  TpQ  should  be  (T)qp.     A  sufficient  condition  is 

P, Q e Ser .  Te  1->1 .  DTC  G'P .  G'TCG'Q     (*272-42). 

Finally,  we  have  two  propositions  on  the  addition  of  another  couple  x^yto 
T.  With  the  above-mentioned  hypothesis  of  *272-42,  if  xTp^y  and  T'Q  G  P, 
putting  W=T^x\,  y,  we  shall  have  PIT>'W=W>Q  (*272-51),  so  that  the 
hypothesis  we  had  for  T  still  holds  for  W. 

The  propositions  of  this  number  are  in  the  nature  of  lemmas  for 
Cantor's  proof  that  any  two  rational  series  are  similar,  which  is  given 
in  *273. 


*27201.     TpQ  =  ^[xeG'P.ye  G'Q  .  DT  n  P'x  C  T"Q'y . 

D'T  n  Ip'x  C  f'Q'y  .  D'T  n  I'x  C  T'y}    Df 
*2721.       1- :  xTp^y  .  =  .xeG'P  .yeG'Q  .B'T  n  P'x  C  T"'Q'y  . 

D'T  A  P'x  C  T'^'y  .  D'T  n  i'x  CT'y     [(*27201)] 


SECTION  F]  similarity   OF   POSITION  193 

*27211.     hzxeCP."^. 

n  p'P'CD'T  n  I'x) 
Dem. 

h  .  *2721  .  D  h  :  Hp  .  D  . 

%Q'a!  =  G'Q  n §  {zeB'Tn'P'x .  D, .  sT\  Qy  :ze'D'Tn*P'x .  D, . zT\  Qy  : 

z  6  D'T  n  I'x  .  D^ .  ^Ty} 

[*40-51-53]    =  C'Q  n  j3'Q'"^"(D'r  n  P'a;)  n  p'Q"'y"(D'r  n  P'a;) 

n  p^"(D'T  nL'x):D\-.  Prop 

*272111.  h  :  «  6  (7'P  .  D  . 

[*272-ll .  *4018] 

•*27212.     h  ::  xTpQy  .  =  :.xeC'P  .yeC'Qi.ze  B'T.  -D.-.zPx  .:i  .zT\Qy: 

zPx.D.zT\Qy:z  =  x.6.zTy     [*2r2-l] 

*272-13.     h  ::  Te Cls->1 .  D  :. xTpQy  .  =  :xeG'P .y  eC'Qi 

zeB'Tn'p'x .  D, .  T'zQy  :  ^eDTn  P'« .  D^ .  yQT'z  -.xeD'T  .:>  .y=T'x 
[*272-12.*7l-701] 

*272-131.  1- :  2'e Cls-*1  .xeC'P.D. 

%q'x  =  G'Q  n  p'^"T"P'x  u  Q"T"'P'x  u  P'iD'T  n  t'<r)} 
[*272-lll.*71-613] 

*27214.     \-:x6C'P- B'T  .  D  . 

[*272-lll.*40-18] 

*272141.  I- :  a;  6  C'P  -  D'!r .  D  . 

IVe'a;  =0'Qn§  (D'T  n  P'a;  C  2'"Q'2/ .  I>'T  n*P'x  C  ^'^y) 
[*272-l] 

*272-15.     \-:Te  01s-»l  .  a;  e  O'P  -  DT .  D  . 

Tpq'x  =  O'Q  n  ^'Q""2'"P'a;  n  p'Q"T"'p'x 
[*272-131  .  *4018] 

*272-16.     \-.(D'T)'\TpqQT 
Bern. 

1- .  *272-12  .  D  h  :  a;  e  D'T .  xTp^y  .'D.xTy.Db.  Prop 

R.  &W.    III.  13 


194  SERIES  [part  V 

*272161.  h  :  TeCls^l  .PID'TQTIQ  .  D  .  (DT)-]  TpQ  =  G'P^T\C'Q 
Bern. 

I-.*150-41.  -^V:n^.zeT>'T.zPx.xTy.-:i.T'zQy        (1) 

l-.*150-41.  -^V:ze'D'T.xPz.xTy.:i.yQT'z  (2) 

I- .  (1) .  (2) .  *272-13  .  D  h  :  Hp  .  «ry .«  e  C'P .  y  6  O'Q .  D .  xTp^y  (3) 
h  .  (3)  .  *272-16  .  D  h  .  Prop 

*27217.     I- :  Te Cls->1 . P I  D'TQ.  T'Q .  D'T C  G'P  . G'T CG'Q.D. 

T=(D'T)^TpQ    [*272161] 
The  hypothesis  of  *272"17  is  satisfied  in  all  the  important  uses  of  TpQ. 

*272171.  I- :  Hp  *272-l7  .a;eD'T.  D  .%q'x=  I'T'x    [*27217] 

*27218.     \-:Te Cls^l .  P  ^  B'TdTiQ .  T"G'P  C  G'Q .  x  e  G'P  n  DT.  D  . 

Tp,i'x=T'x 
Bern. 

h  .  *150-41  .  D  h  :.  Hp  .  D  :  ^  6  D'T  n Ip'x  .  D, .  {T'z)  Q  (T'x)  (1) 

h  .  *150-41  .  D  t- :.  Hp  .  D  :  ^  6  B'T  n  P'a; .  D, .  (T'x)  Q  (T'z)  (2) 

h  .  *37-61  .    D  h  :  Hp  .  D  .  !"«  6  CQ  (3) 

I- .  (1)  .  (2)  .  (3) .  *272-13  .  D  1- :  Hp  .  D  .  xTpg  (T'x)  (4) 

h  .  *272-13  .  D  h  :  Hp  .  xTp^y  .  3  .  y  =  T'a;  (5) 

1- .  (4)  .  (5)  .  D  t- .  Prop 

*272-2.       h:TeCls-*l.D'rCC'P.Peconnex.QG/.a;~eD'r.D. 

Dem. 

h  .  *272-13  .  D  I- :  Hp  .  xTpQy . z  e B'T n  P'x  .li  .T'z^y  (1) 

l-.*272-13  .':>  V  :B.^  .  xTpQy  .z  eT>'T  (y  P'x  .:>  .T'z^  y  (2) 

1- .  (1) .  (2)  .  D  h  :  Hp  .  xTpQy .  ^  e  DT.  D  .  T'^  +  y :  D  f- .  Prop 

*272-201.  h  :  TeCls-^l .  D'T C  G'P .  P  e  connex  .  g  !  DTpg-  DT.  D . 

a'TCG'Q 
Bern. 

V  .  *202-104  .  D  h  :.  Hp  .zeTf'T .xTpQy  .  a;~eD'r.  D  :  ^P« .  v  .  a;P^  : 

[*272-13]  D  :  T'^Qy .  v  .  yQ  (?'^)  : 

[*33-132]  D  :  r^  e  C'Q  : .  D  h  .  Prop 

*272-21.     V  ::  Te Cls^l .  DTC  C'P .  P,  Q  e Ser . «~  eD'^ .  D  :. 

xTpQy  .  =  :xeG'P.yeG'Q:ze'D'T  nP'x .  =, .  T'zQy 
Bern. 

\-  .*2l2-2  .Dh  :.JIy,  .  z  eB'T  .xTpQy  .D  :  xJf=z  .yJf=T'2  : 

[*204-3.*272-201]  D:xPz  .  =  .<^(zPx):yQ(T'z).  =  .n^{(T"z)Qy}    (1) 


SECTION  F]  similarity   OF   POSITION  195 

h  .  (1) .  *27213  .  D  I- ::.  Hp .  D  ::  xTp^y .  =  :. 

xeC'P .yeC'Q -..zeBV.  ^,:zPx.O.  T'zQy  \r^{zPx) .  D  . ^(^'0) Qy    (2) 
F  .  (2) .  D  1- : :  Hp .  D  :.  xTpgy  .=  :xeC'P  .yeC'Q:ze  D'T.  zPx .  =, .  T'zQy : : 

D  h .  Prop 
*272-211.  h  ::  Hp  *2r2-21 .  D  :.  xTpQy .  =  : 

xeC'P.yeG'Q-.ze B'T n P'x .=,.yQ (T'z)     [Proof  as  in  *272-21] 
*272-212.  h  :  Hp  *272-21  .xeG'P.D. 

Tpq'x  =  G'Qr^'^  (DT  n  'P'x  =  r""5y)  =  G'Qn§  (B'T  n  p"'*  =  T'^'y) 
[*272-21-211] 

*272-22.     h  :  r e  Cls->  1 .  P,  Q  6  trans .  aiTpg  y .  ^,  w  e  D'T .  a;  e  P  (0  -  w) .  D  . 

i)em. 

I- .  *272-13  .  D  1- :  Hp  .  3  .  T'zQy .  yQT'w  :  D  f- .  Prop 

*272-221.  h  :  r 6  Cls-*  1 .  P,  Q  6  trans .  a  !  D'Tpq  nP(z-w).D.  (T'z)  Q  (T'w) 

[*272-22] 
*272-23.     h  : .  r  6  01s  -*  1 ,  P,  Q  e  trans  : 

z(Pl  I>'T)w.  D^,» .  a  !  D'TpQ  nP(z-w):D.PlI>'T(lT'Q 
Dem. 

h  .  *272-221 .  D  f- :.  Hp  .  D  :  ^(P  t  D'T)w.  D  .  (T'z)Q(T'w) . 
[*150-41]  D .  z  (T'>Q)  w :.  D  I- .  Prop 

*272-24.     \-:J)'TnG'P  =  A.:).TpQ=G'P'fG'Q    [*2721] 
*272-3.       hiTeCls-^l.-SGr.D.TpQGSfpQ 
Dem. 

h  .  *272-13 .  D  h  :.  Hp .  xTpQy .  D  :  ^ e DT.  ^Pa; .  D  .  T'zQy : 

[*72-9]  D  :  5  e  D'(Sf .  ^Pa; .  D .  S'zQy  (1) 

Similarly         h  :.  Hp .  aiTpQ^ .  D  :  ^  e  D'-Sf .  ^P^ .  D .  2/Q,S'^  (2) 

\-.^272-lS.'D\-:.B.p.xTpQy.D:zeD'T.z  =  x.O.T'2  =  y: 

[*72-9]  D:0eD';Sf.^  =  a;.D.,S'^  =  y        (3) 

h  .  (1) .  (2) .  (3) .  *272-13  .  D  h  :  Hp  .  xTpQy .  D  xSpqy  :  D  h  .  Prop 

The  following  propositions  lead  up  to  *272'34. 

*272-31.     h  : P, Q 6 Ser .  T e 01s -*  1 . a; ~ 6 B'T . z  =  maxp'(D'r nP'x) . 

w  =  minp'CDT  n  P'a;)  .PIB'TQT'Q.D  .%q'x  =  Q  (T'z  -  T'w) 
Dem. 

h  .  *205-21 .  D  h  :  Hp  .  ueD'T  r^P'x- I'z  .li.uPz. 

'    [*160-41.Hp]  O.T'uQT'z  (1) 

13—2 


196  SERIES  [part  V 

h  .  (1).  D  I- :  B.^.yeQ{T'z-T'w).ue'D'Tn'P'x.:i  .  T'uQy  (2) 

Similarly  h  :  Hp .  y  e  Q  (f'^  -  T'lv)  .ueJ)'Tn%x  .0  .yQT'u  (3) 

1- .  (2) .  (3) .  *272-13  .  D  I- :  Hp .  2/  6  Q  (r'2  -  T'w) .  D  .  xTpQy  (4) 

I-.*272-22.                D}-:'S.^.O.*Tpq'xCQ{T'z-I"w)  (5) 
I- .  (4) .  (5) .  D  1- .  Prop 

*272-32.     I- :  P,  Q  e  Ser .  T e  Cls->  1 .  D'T  C  P'a; . 

Dem. 

\- .  *272-13  .  D  h  ::  Hp .  D  :.  xTpQy .  =  :  m  e  D'T .  D„ .  T'ttQ;/  '  (1) 

h  . *205-21 .  D  h  :  Hp  .  16 e DT -t'z.:>.  uPz . 
[*150-41.Hp]  D .  T'uQPz  (2) 

I- .  (2) .  D  h  : .  Hp .  2/  e  Q'T'z .  D  :  m  e  DT .  D„ .  T'uQy  : 

[(1)]  3:*ypgy  (3) 

f-.(l).  D\-:Rp.xTpQy.D.T'zQy  (4) 

h  .  (3) .  (4) .  D  I- .  Prop 

*272-321.  \-'.P,QeSer.TeCls-^l.'D'TCP'x. 

PlD'T(lT'Q.w  =  minp'B'T .  3  .%q'x  =Q'T'z 
[Proof  as  in  *272-32] 

*272-33.     1- :  P.QeSer .  Qecomp  .  TeCIs^l .  D'TeCls induct . 

P  t  DTG  yJQ .  D .  (P"D'rn  P"D'T)  -  DTC  DTp^ 
Dem. 

I- .  *261-26  .  D  h  :  Hp .  a  !  B'T  nP'x.D.El  maxp'(D'Tn^'x)  (1) 

I- .  *261-26  .  D  h  :  Hp  .  a  !  B'T  n  P'a; .  D  .  E !  mmp'(D'T  n  P'a;)  (2) 

I- .  *20511111 .  D 

I- :  Hp  .  a;  ~  e  DT .  ^  =  iaa.Xp'(D'T  n  P'a;)  .  w  =  mmp'(D'T  n  P'a;)  .  D  .  ^Pw  . 

[*150-41]  D  .  T'zQT'w . 

[*270-ll]  D  .  a !  Q  (7"^  -  ?'«;) . 

[*272-31]  3.a!Vp<2'<«  (3) 

h.(l).(2).(3).D  _^  ^ 

h  :  Hp . a;~6 D'T.  a  !  DTn  P'a; .  a  !  T>'Tn*P'x .  D  . a;6D'2'pQ  :  3  l"  ■  Prop 


SECTION  f]  similarity   OP  POSITION  197 

*272-331.  h  :  Hp  *272-33  .  a  !  Q .  T"G'P  C  D'Q .  D  .  G'F  n  ^'P"D'r  C  DTpg 

Dem. 
h  .  *261-26  .  D  h  :  Hp .  a !  DT  n  C"P .  D  .  E  !  maxp'D'T  (1) 

I- .  *272-32 .  D  h  :  Hp .  a;  ep^"D'T .  z  =  maxp'DT .  D  .  %^'x  =^'T'z  . 
[*33-4]  D.aiKe'*  (2) 

f- .  (1)  .  (2)  .  D  I- :  Hp.  aje^'P'^DT.  a  !  DTn  C'P  .  D  .  aseD'^pQ  (3) 

t- .  *35-85  .  *272-24 .  D  I- :  Hp .  DT  n  O'P  =  A  .  D .  (7'P  C  D'Tpg  (4) 

h  .  (3) .  (4) .  D  h  .  Prop 

*272-332.  h  :  Hp  *272-33 .  a  !  Q  ■  r"C"P  C  Q'Q .  D  .  O'P  n  ^'P"D'r  C  B'Tpq 
[Proof  as  in  *272-331] 

*272-34.     h  :  Hp  *272-33 .  a  !  Q  •  T"C'P  C  D'Q  n  Q'Q .  D  .  G'P  =  D'Tp<j 
[*272-33-3:31-332-18 .  *202-505] 

The  following  propositions  are  lemmas  for  *272'42. 

*272-4.       h:P,QeSeT.Tel->l.I)'TCG'P.a'TCG'Q. 

a;  ~6  D'T .  xTpQy .  D  .  y(T)Qpic 
Dem. 

h  . *272-21 .  D  h  :.  Hp  .  D  :  a; eC'P . y 6  C'Q  -.zeD'TnP'a; .  =^ .  T'zQy : 

[*72-243]  ■D-.xeG'P.yeG'Q:  (T'w) Pa; .  =» .  w e aT . wQy : 

[*272-21]  D:2/(?')epa!:.Dl-.Prop 

*272-41.     h  :  P,  Q  6  Ser .  r  e  1  ^  1 .  DT  C  C'P .  Q'T  C  G'Q . 

a3eD'r.ajrpQ2/.D.2/(?)cpa; 
i)em. 

h  .  *272-13  .  D  h  ::  Hp  .  D  :.  a;  6  C'P .  2/  =  T'a: : 

zeD'Tn  P'x .  0, .  T'^Qy :  ^ e DT n  P'a: .  3^ . yQ{T'z) :. 
[*204-3]        D  :.  a;  6  G'P .  2/  =  T'a; :  ^  6  D'T  n  P'a; .  D^ .  T'zQy : 

^  6  D'y  -  t'a;  -  P'a; .  D^ .  7"^  =f  y  .  ~  {(2"^)  Qy} : . 
[Transp]       Dz.xeC'P .y=I"x:.Z6l>'T- I'x .  D^ : ^Pa; .  =  . (7"^)Qy :. 
[*204-l]        Dz.xeC'P.  y=T'x :.zeT)'T.  X-zPoo.  =  . {T'z) Qy :. 
[*72-243]      D:.xeG'P.y  =  T'x:. (T'w) Px.=^.we a'T .  wQy  :. 
[*71-362]      D:.yeG'Q.x  =  T'y:.  (T'w)  Px.=^.we  a'T .  wQy :. 
[*14-21.*33-43]  :):.yeG'Q.x=T'y:.we  a'T .  D,„ :  (T'w)  Pa; .  =  .  wQy :. 
[*204-3]  D  z.yeC'Q .x=T'y :.  w eOTn  Q'y .  D,„ .  ^'wPa; : 

w  6  a'T n  Q'2/ .  D^ .  xP(T'w)  :. 
[*27213]  D:.y(r)Qpa;:01-.Prop 


Bern. 


198  SERIES  [part  V 

*272-42.     \-:F,QeSeT.T  6  1-^1. T>'TCC'P.a'TCG'Q.O.(T)Qp  =  TpQ 
Bern. 

V  .  *272-4-41 .  D  I- :  Hp .  D  .  TpQ  G  {T)qp  (1) 

K(l)|.         Dh:Hp.D.Cnv'(r)gpGrpQ  (2) 

t- .  (1) .  (2) .  D  I- .  Prop 

*272-43.     1- :  P,  Q  6 Ser  n  comp -  t'A  .Tel^l.  D'TC D'P n  Q'P . 
QT  C  D'Q  n  a'Q  .P  t  'D'T=  T>Q .  D'TeCls induct .  D  . 
D'rpQ  =  C"P.a'TpQ  =  C"Q 

h  .  *272-34 .  D  F  :  Hp  .  D  .  DTpQ  =  O'P  (1) 

I-  .*i5o-36 .  D  h .  2';Q=r;Qp  a'y.  r;p= ?;pc  dt        (2) 

l-.(2).  \-:n^.D.PtJ)'T=T>Qia'T. 

[*151-25]  :i.Qia'T=hPl'D'T 

[(2)]  =hp  (3) 

F  .  *1 20-214 .  D  h  :  Hp .  D .  Q'T  e  Cls  induct  (4) 

f- .  (3) .  (4) .  *272-34 .  D  h  :  Hp  .  D  .  C'Q  =  D'(?)qp 

[*272-42]  =  a'TpQ  (5) 

I- .  (1) .  (5) .  D  h  -  Prop 

*272-5.       \-:P,QeSer.Te  Cls  ->1 .  DTC  C'P .  ^Tpgy  .TiQCP.D. 

(Tva;ly)iQ(lP 
Dem. 
V  .  *150-75  .  D 

I- :  Hp  .  D  .  (To  a;  4, 2/)5Q  =  T5Q  »  T"Q'y  f  I'x  kj  I'a;  t  r"Q'2/  (1) 

h  .  *272-212  .  D  h  :  Hp .  a;  ~  6  B'T .  D  .  T"^?/  C  P'x .  T"Q'y  C  P'a;  (2) 

h.(l).(2).     DI-:Hp.a;~6D'T.D.(rc;a;J,2/);QGP  (3) 

h.*272-16.    DI-:a;6D'r.D.7'wa;4,2/=r  (4) 
I- .  (3) .  (4) .  D  h  .  Prop 

*272-51.     h  :  P,  Q  6 Sep .  Te  1-»1 .  DTC  C'P .  OTC  C'Q . 

xTpQy.PlT>'T=T'Q.  W=Tvj  x^y  ."^  .PID'W^  W'Q 
Dem. 

h.*272-5.  DI-:Hp.D.F;QGP  (1) 

h .  *272-42 .  D  h :  Hp .  D .  y(T)Qpx  (2) 

h  .  *150-36  . *151-26  .  D  h  :  Hp  .  D  .  hp  =  Ql  QT  (3) 

h  .  (2)  .  (3) . *272-5  .     D  I- :  Hp.  D  .  FJPG  Q  (4) 

I- .  (1) ;  (4) .  *150-36  .  D  h  :  Hp  .  D  .  W'Q  G  P  ^  D'Tf .  FS  (P  D  D'F)  G  Q . 
[*151-26]  D.PtD'TF=TF;Q:Df-.Prop 


*273.     RATIONAL  SERIES. 

Summary  of  *273. 

A  "  rational  series  "  is  a  series  ordinally  similar  to  the  series  of  all  positive 
and  negative  rational  numbers  in  order  of  magnitude,  or,  what  is  equi- 
valent, a  series  ordinally  similar  to  the  series  of  all  rational  proper  fractions 
(0  excluded).  This  characteristic  of  rational  series  is  not,  however,  the  most 
convenient  for  purposes  of  definition.  Following  Cantor,  we  define  a  rational 
series  as  one  which  is  compact,  has  no  beginning  or  end,  and  has  No  terms  in 
its  field.  Thus  the  field  of  a  rational  series  can  be  arranged  in  a  progression, 
and  this  is  the  source  of  the  special  properties  which  distinguish  rational 
series  from  other  compact  series. 

Kational  proper  fractions  can  be  arranged  in  a  progression  in  many  ways, 
for  example  the  following :  If  two  fractions  (in  «heir  lowest  terms)  have  the 
same  denominator,  put  the  one  with  the  smaller  numerator  first ;  if  they  have 
different  denominators,  put  the  one  with  the  smaller  denominator  first.  We 
thus  obtain  the  series 

11213123^1 

^'    'S'    "S'    4'    4'     5'    T>    6'    6'    F'"'' 

This  series  is  a  progression,  and  contains  all  rational  proper  fractions. 

Conversely,  the  natural  numbers  can  be  arranged  in  a  rational  series. 
Take,  e.g.,  the  following  arrangement:  Express  the  numbers  in  the  dyadic 
scale,  so  that  every  number  is  of  the  form 

2  2''(/i6«;), 

where  «  is  a  finite  class  of  integers.  The  relation  of  the  number  to  k  is 
one-one.  Arrange  the  various  k's  by  the  principle  of  first  differences,  i.e. 
form  the  series  M^i  ^  (Cls  induct  -  t'A),  where  M  is  the  relation  "  less  than  " 
among  finite  integers.  The  resulting  series  is  a  rational  series ;  thus  the 
integers  are  arranged  in  a  rational  series  by  virtue  of  their  correlation  with 
the  classes  k.  This  arrangement  places  all  the  odd  numbers  before  all  the 
even  numbers,  all  numbers  of  the  form  '^v+2  before  all  numbers  of  the 
form  4sv,  and  so  on.  If  two  numbers  are  expressed  in  the  dyadic  scale, 
their  relative  position  in  the  series  is  determined  by  the  first  digit  (starting 
from  the  right)  which  is  not  the  same  in  the  two  numbers :  the  one  in  which 
this  digit  is  1  precedes  the  one  in  which  it  is  0. 


200  SERIES  [part  V 

The  two  chief  propositions  in  regard  to  rational  series  are  (1)  that  any 
two  rational  series  are  ordinally  similar,  (2)  that  if  i?  is  a  progression,  its 
finite  existent  sub-classes  arranged  by  the  principle  of  first  differences  form 
a  rational  series.  The  second  of  these  propositions  is  proved  by  showing 
(a)  that  the  finite  existent  sub-classes  arranged  by  first  differences  form 
a  compact  series,  (b)  that  the  finite  existent  sub-classes  arranged  by  last 
differences  form  a  progression.  By  this  means,  given  any  progression,  we 
can  specify  a  relation  which  arranges  its  terms  in  a  rational  series.  For  if  T 
is  a  correlator  of  our  progression  R  with  the  progression 

iJie  I  (Cls  induct  -  I'A), 

then  T'Ra.  t  (Cls  induct  -  I'A) 

is  a  rational  series  whose  field  is  C'R.  Hence  rational  series  exist  in  any 
type  in  which  progressions  exist. 

The  arrangement  of  the  finite  sub-classes  of  a  progression,  with  the 
resultant  existence-theorem  for  rational  series,  will  be  dealt  with  in  the 
following  number.  In  the  present  number,  we  shall  be  concerned  with  the 
proof  that  any  two  rational  series  are  ordinally  similar. 

The  proof  of  the  similarity  of  any  two  rational  series  is  due  to  Cantor. 
It  is  long  and  rather  complicated  ;  in  outline,  it  is  as  follows. 

Let  P,  Q  be  two  rational  series,  and  R,  S  two  progressions  whose  fields 
are  C'P  and  C'Q  respectively.  Construct  a  series  of  correlations  of  parts  of  P 
with  parts  of  Q  on  the  following  plan :  Begin  with  A,  and  if  T  is  any  correla- 
tion, let  the  next  be 

T\j  seq^'D'T 4  mins'^Ps'seq/DT. 

Then  the  sum  of  all  the  correlations  generated  from  A  by  this  law  of 
succession  will  be  a  correlation  of  P  with  Q.  It  will  be  seen  that,  if 
we  put 

W  =  xf{X  =  sec^s'B'Tl  mms'TpQ'seqs'^'T], 

the  relation  which  is  to  be  shown  to  be  a  correlator  of  P  and  Q  is  W^,  in  the 
sense  defined  in  *259.     Thus  we  have  to  prove 

W^el-^l.a'W^  =  G'Q.P  =  WJQ. 

Wji  e  1  — » 1  results  immediately  from  *259"15. 

P  D  D'TF^  =  F^5Q  results  immediately  from  *259-16  and  *272-51. 

Thus  it  remains  to  prove  D'F^  =  C'P .  Q'Tf^  =  C'Q. 

D'W^  =  C'P  is  easily  proved.  ~By  induction,  if  T  is  one  of  the  series 
of  partial  correlators,  D'T  e  Cls  induct,  and  therefore  E  !  seqjj'D'T,  by  *263"47, 

and  by  *272-34,  C'P  =  I)'Tpq;   hence   g !  Tpe'seq^'DT,  and  therefore,  by 

*250"121,  E  \mixis'TpQ'seqji''D'T.     Hence  T  has  a  successor,  which  correlates 


SECTION  F]  RATIONAL  SERIES  201 

seqjj'DT  with  mins'TpQ'seqjj'DT.  Hence  the  successor,  in  R,  of  every 
member  of  C'R  which  has  a  correlate,  has  a  correlate ;  hence  by  induction 
every  member  of  C'R  (i.e.  of  G'P)  has  a  correlate.     Hence  D'  W^  =  C'P. 

The  proof  of  Q'TT^  =  C'Q  is  more  difficult.  As  before,  let  T  be  one  of  the 
series  of  partial  correlators.  We  have  to  prove  that  there  is  a  correlator  which 
has  seqs'CET  in  its  converse  domain ;  when  this  is  proved,  the  result  follows 
by  induction.     To  prove  this,  put 

a;  =  mms'TpQ'se(is'<I'T. 

X  exists,  in  virtue  of  *272-43.  Also  since  D'  W^  =  G'P,  it  follows  from  *259-13 
that  there  is  a  partial  correlator  U  such  that 

X  =  seqjj'D'ZJ. 

We  then  have  to  prove       seq^'OT  =  mius'Upq'x. 

Put  y  =  seqs'aT.     Then  S'y  C  a'T.     Hence,  by  *272-2,  'S'y  n  Upt^'x  =  A. 

Thus  it  xUpgy,  it  follows  that  y  =  mins' Upq'x.    To  prove  xUpqy,  observe  that 

TQ.U.  UpQ dTpQ.Pl T)'U=  U'Q. 

We  have  ueD'U.O. »-(uTpQy),  by  *272-2.  Hence,  by  the  definition  of  Tpq, 
we  have,  if  m  e  D'  U, 

(a^) . z e Tt'T .zPu.r^ (T'zQy) .  v .  (g^)  .zeD'T.  uPz .  ~ (yQT'z). 

In  the  first  case,  we  have  ('^z).ze'D'T.zPu.r^{zPx),  because  xTpqy 
Hence,  since  x^z  because  a; ~ g T)'T, 

('^z).ze'D'T.zPu.xPz. 
Similarly,  in  the  second  case, 

('3^z).ze'D'T.uPz.zPx. 
The  second  case  is  incompatible  with  xPu,  and  the  first  with  uPx.     Hence 

xPu .  D .  (a^)  .zeD'T.xPz . zPu : uPx  .  D  .  (g;^)  .zeD'T .  uPz . zPx. 
But,  since  xTpqy,  xPz  .'^.yQ  (T'z)  ."^  .yQ{  U'z),  because  TGU,  and  since 
PtT>'U=U''Q,    zPu.O.(U'z)Q(  U'u). 

Hence  xPu  .  D .  yQ (U'u),  and  similarly  uPx.'D  .(U'u)Qy.     Hehce  xUpgy. 

Hence  y  =  miug' Upq'x,  and  therefore  y  belongs  to  the  converse  domain  of  the 
next  correlator  after  U.  Hence  every  term  of  C'Q  belongs  to  the  converse 
domain  of  some  correlator,  and  therefore  to  d'W^.  Hence  W^  correlates  P 
and  Q,  and  P  and  Q  are  ordinally  similar. 


202  SERIES  [part  V 

*27301.     7;  =  SerncoinpnC"N„nP(D'P  =  a'P)     Df 

Following  Cantor,  we  use  t?  for  the  class  of  rational  ISeries. 

*273-02.     RspqT  =T\j  seq^'D'T  J,  mins'Tpg'seqjj'D'r    Dft  [*273] 

*273-03.    (ii;Sf)pQ  =  (B^Q VA  Dft  [*273] 

*273-04.     T^pQ  =  s'{RS)pQ  Dft  [*273] 

^BSPQ  ■will  l>6  shown  to  be  a  correlator  of  P  with  Q  when  P  and  Q  are 
rational  series,  and  R  and  >S  are  progressions  whose  fields  are  O'F  and  C'Q 
respectively. 

*2731.       l-:P67;.H.PeSerncomp.C"P6Ko.D'P  =  a'P     [(*273-01)] 

*27311.     h  :.  Pel? .  =  :  PeSer  n  comp  .  D'P=  Q'P:  (gE)  .Rew.C'P  =  G'R 
[*2731 .  *263101] 

*273-2.       h  :F  =  Xr{Z  =  seqB'D'T4,min/VpQ'seq^'D'T} .  D. 

[*257-125 .  *258-242  .  (*273-02-03-04  .  *259-02-03)] 

Here  the  temporary  definitions  of  *259  are  revived. 

The  second  of  the  above  inclusions  might  be  changed  into  an  equality, 
but  it  is  not  necessary  for  our  purposes  to  prove  this. 

*273-21.     h  :  Hp  *273-2  .  D  .  D'  F^  C  C'iJ .  Q'  W^  C  C'8 
Bern. 

V  .  *259-13  .  D  h  :  Hp  .  D  .  D'  Tf ^  =  s'D"  W"{A  ^*.4)'A  (1) 

V  . *206-18  .  D  i- :  Hp  .  XeD'Tf .  3  .  D'Z  C  G'R  (2) 
l-.(l).(2).Dt-:Hp.D.D'F^CC"J?  (3) 
Similarly  1- :  Hp  .  D  .  Q'  If ^  C  C'S  (4) 
h  .  (3) .  (4) .  D  I- .  Prop 

*273-211.  h  :  Hp  *273-2  .T  ed'W ."?  .B'T  r^T>'W'T  =  ^     [*206-2] 

*273-212.  h  :  Hp  *273-2  .  D  .  F^  e  Cls  ->  1 .  D  f  (4  ,^*J.)'A  e  1  ->  1 
[*273-211 .  *259-141-17l] 

*273-22.     h  :  Hp  *273-2  .  C"P  =  O'P .  P e connex  .Q(LJ.-:i. 

Bern. 
V  .  *273-211-212-21 .  *206-2  .  (*25903)  .  D 
|-:.Hp.D:2'e(il^*^)'Ar.a'F.D.reCls-*l.D'rCC"P.seqB'D'r~6D'T. 

[*272-2]  D .  min/rps'seqB'DT  ~  e  QT  (1) 

H.(l).Dh:.Hp.D:re(^^*4)'Ana'F.Dr.a'rna'F'r=A: 
[*259-14-l7]        D:F^6l->Cls.ap(4,^*^)6l-*l  (2) 

I- .  (2) .  *273-212 .  D  h  .  Prop 


SECTION  F]  RATIONAL  SERIES  203 

*273  23.     h :  Hp*273-2 .  P,  Q  e  Ser .  G'P  =  G'R  .  C'Q  =  G'S .  Te  {A ^*4)'A .  D  . 

p^D'T=r;Q 
Bern. 

h  .*272-51  .*273-21 .  D  h  :  Hp.  TeO'll^.  D  .Pf  D'I^'r=(I„/r);Q       (1) 
h.(l).*25916.DI-.Prop 

*273-24.     V'.Te  {RS)pq  .  D  .  D'f,  Q'T  e  Cls  induct 
Bern. 

h .  *120-251 .  D 

I- :.  Hp .  3  :  T  e  D'^  ^ .  DT  e  Cls  induct .  D  .  D'^j^Te  Cls  induct : 
[*90-112]  ::>ik{Ayfr)^T.O.D'Te  Cls  induct : 

[*273-2.(*273-03)]     D  :  Te{RS)pQ  .  D  .  D'T e  Cls  induct  (1) 

Similarly     h  :.  Hp .  D  :  T e  (ii>S')pQ  .  D  .  QT e  Cls  induct  (2) 

h  .  (1) .  (2) .  D  h  .  Prop 

*273-25.     \-:P,Qev.G'P  =  0'E.  C'Q  =  G'S .  Te(RS)pQ .  D  . 

B'TpQ  =  G'P .  a'TpQ  =  C'Q 
Dem. 

h  .  *273-l .  D 

I- :  Hp  .  D .  P,  Q  6  Ser  n  comp  .  G'P  =  B'P  =  Q'P .  C'Q  =  D'Q  =  Q'Q    (1) 
h  .  *273-l .  *263-44  .  D  h  :  Hp .  D  .  a !  P .  a !  Q  (2) 

I- .  (1) .  (2) .  *273-22-23-24 .  *272-4.3  .  D  h  .  Prop 

*273-26.     \-:.P,Q€v.R.86(o.  G'P  =  G'R  .  O'Q  =  G'8.D: 

Te{R8)pQ .  D  .  E !  seq^'DT .  E !  ininsTpe'seq^'DT 
i)em. 

I- .  *273-21 .  *263-47  .  *273-24  .  D  1- :  Hp .  Te(RS)pQ  .  D  .  a !  O'i?  np'R"D'T. 
[*250-122]  D .  E !  seq^'D'T  (1) 

h  .  (1) .  *273-25  .  D  h  :  Hp  .  D  .  a  !  Trg'seq^'D'T . 

[*250-121.*2721]  D .  E !  mms'TpQ'seqjt''D'T  (2) 

h  .  (1)  .  (2) .  D  h  .  Prop 

*273-27.     h  :  Hp  *273-2 .  Hp  *273-26  .  D  .  (RS)pq  CG'W  .  {RS)pq  C  DM  ^ 
[*273-26] 

*273-271.  I- :  Hp  *273-26  .  T  e  (RS)pq  .  D  .  seqjj'DT  e  B'T^spq 
Dem. 

h  .*273-2  .  D  h  :  Hp .  Hp*273-2  .  D  .  T€{RS)pQf\'D'ATr.'^-  ATr'Te(RS)pQ  (1) 
h  .  *273-2 .  D 

h  :  Hp  .  Hp  *273-2  .  :re  (i2/S)pQ  .  E  !  I  ^'T .  D  .  seq^'DT  e  D'A  ^'T  (2) 

h.(l).(2).*273-27.D 

h  :  Hp  .  Hp  *273-2  .  D  .  ^  p^T  e  (ii<S)pQ .  seq^'D'T  e  B'A  ^'T . 
[*273-2.(*27304)]   D  . seq^'D'^ e  B'Trspq  :  3  I"  ■  Prop 


204 


SERIES  [part  V 


*273-272.  h  :  Hp*273-26  .  D  .  I)"(R8)pq  =  R"C'R 
Dem. 

h . *206-401 .  D  h  :  Hp .  T6(RS)i.q ■  D'r=  E'a; .a;eG'R.D.x  =  seq/DT. 

[*204-71.*250-21]  D  .'D'Rspq'T  =  R'R,'x  (1) 

h.*25013.  Dh:B.p.D.'D'A='R'B'R  (2) 
h  .  (1) .  (2) .  *90-131 .  D  h  :.  Hp  .  D  :  T(Rspq)^A  .  3  .  J)'Te'R"0'R  : 

[(*273-03)]  0:I>"(R8)pqC'R"G'R  (3) 

h  .  (1) .  (*27303)  .  D 

h  : .  Hp .  D  :  a;  6  O'E .  iJ'a;  e  D"(E,S)pq  .  D  .  !r' A'a;  e  I>"(RS)pq  (4) 

l-.(2).  DF:Hp.D.E'£'iJ6D"(Ji^)pQ  (5) 

J- .  (4) .  (5) .  *90-112  .  D  h  :.  Hp  .  D  :  a;  6  (R^'B'R  .D.'r'x€  J)"{RS)pq  (6) 

t-  .*263-43  .  *250-21 .  D  h  :  Hp  .  D  .  <7'i2  =  C'Ej .  B'R  =  B'R,  (7) 
h  .  (6) .  (7) .  *263141 .  *122-1141 .  D 

hz.K^.O-.xeC'R.D.R'cce  I>"(RS)pq  (8) 
h  .  (3)  .  (8) .  D  F  -  Prop 

*273-28.     I- :  Hp *272-26  .  D .  Tjispq e  1  -*  1 .  D'T^spq  =  G'P.P=  Tsspq'Q 
Dem. 

h.*273-2-22.DI-:Hp.D.rRSPQ6l->l  (1) 

I- .  *273-272  .  3  h  :  Hp .  D  .  D'Tbspq  =  s'R"G'R 

[*26322]  =  G'R  (2) 

I- .  *273-2-23  .  D  h  :  Hp .  D  .  P  t  D'^bspq  =  TnspQ'Q  • 

[(2)]  ■^.P  =  Tj^p^->q  (3) 

I- .  (1) .  (2)  .  (3)  .  D  I- .  Prop 

In  order  to  prove  TpspQ  e  P  smor  Q,  it  only  remains  to  prove 

a'T^PQ  =  G'Q. 

*273-3.     I- :.  Hp*273-2 .  T,  f76(4^*4)'A .  D  :  D'TCD'ZJ.  =  .TGU 
Dem. 

h.*33-263.  libzTGU.O.D'TCB'U  (1) 

h.*259-lll.         DI-:.Hp.D:yGi7".v.fyGT  (2) 

h.*33-263.  D\-:U<1T.T>'TCI>'U.D.I>'T='D'U        (3) 

h  .  (3).  *273-212  .  D  I- :  Hp  .  UCT-B'TC  I>'U.  D.T=U         (4) 
h.(2).(4).  Db-.R^.B'TCD'U.O.TQU  (5) 

h  .  (1) .  (5)  .31-.  Prop 


SECTION  F]  BATIONAL   SERIES  205 

*273-31.     I- :  Hp *273-26  .  T e (RS)pq  .yeC'S-  d'T .~S'yCa'T.O. 

(aa-'.tT) .  X  =  mins'TpQ'y .  Ue(RS)pQ .  x  =  seqs'D'U 
Dem. 

V  .  *273-25  .  *250121 .  D  I- :  Hp .  D  .  (ga;) .  x  =  mius'TpQ'y  (1) 

I- .  *273-272  .  D  h  :  Hp .  a;  =  min^'TpQ'y .  D  .  (g CT) .  CTe  {RS)pq  .  B'U^'l'x . 

[*206-401]  D.(^U).Ue(RS)pQ.x=8e(is''0'U    (2) 

I- .  (1) .  (2)  .  D  h  .  Prop 

*273-32.     I- :  Hp  *273-31 .  x  =  mins' TpQ'y .  U  e  (RS)pq  .  x  =  seqjR'D'  CT .  D  . 

xUpQy.TGU 
Bern. 

h  .  *205-14 .  D  h  :.  Hp  .  uRx .  D  :  ~  (uTpgy) : 

[*272-13]  •^■.(•^z):z6l)'T:zPu.'^(T'zQy).v.uPz.'^(yQT'z)  (1) 

I- .  *272-2-42 .  DI-:Hp.D.a;~6D'y.  -  (2) 

[*273-272]  D.B'Tc'R'x  (3) 

h.*273-272.  DI-:Hp.D.^'«  =  D'J7"  (4) 

l-.(3).(4).*273-3.Dh:Hp.D.rGU-  (5) 

h.(l).*272-13.D 

t- :.  Hp . uRx .  D  :  (ga)  -.zeB'T-.zPu .r^(zPx)  .  v . uPz .'^{xPz)  (6) 

1- .  *204-l .  D  1- :.  Hp .  D  :  uPx .  zPu .  D  .  zPx :  xPu .  uPz .  D  .  xPz  (7) 

I- .  (6)  .  (7)  .  (4) .  D  h  :.  Hp .  M  e D'CT.  D  :  uPw .  D  .  (-g^z) .  z e D'T.  uPz  .~{xPz) : 

xPu .  D  .  (a^) .  ^  6  J)'T .  ^Pm  .  ~(0Pa;) : 

[(2)]  0  :  mP«  .  D  .  (a«^) .  z  e  B'T .  mP^  .  zPx : 

a;PM.D.(a^).0  6D'r.^PM.aiP^    (8) 
h  .  *272-13 .  *273-23  .  D 

h:Hp.MeD'f7'.^6D'r.MP0.^Pa;.D.(&'M)Q(^'^:).(r'^)Qy. 
[(5)]  :>-(U'u)Qy  (9) 

Similarly         I- :  Hp.MeD'^J.^reDT.^PM  .ajPi? .  D  .  yQC^'w)  (10) 

K (8). (9). (10).  3 

h  :.  Hp. MeD'f7.  D  :  wP« .  D  . (^'m) Qy.xPu.'D.  yQ{U'u)  (11) 

h .  (11)  .*272-13 .  3  h  :  Hp  .  D  .  xUpQy  (12) 

h.  (5).  (12).  31-.  Prop 


206  SERIES  [PABT  V 

*273-33.     1- : Hp *273-32  .  3  .  y  =  mins' Upq'x . x {Rspq^ U) y 
Bern. 

h  .  *273-32  .  D  h  :  Hp  .  D  .'s'y  C  a'U. 

[*272-2-42]  D  .'S'y  nUpQ'x  =  A  (1) 

h .  (1) .  *273-32  .  *205-14 .  D  h  :  Hp .  D .  y  =  mins'  Uj.q'x  (2) 

h  .  (2) .  (*273-02) .  D  1- :  Hp .  D  .  a;  (Rspq'U)  y.Dh.  Prop 

*273-34.     h  :  Hp  *273-31 .  D  .  y  e  (J'Thspq 
Bern. 

h  .  *273-31-33  .  D  I- :  Hp .  3  .  (a  ?7) .  [/■«  {RS)pq  .  y  e  d'RsQP  V  ■ 
[*90-16.(*273-03)]  D  .('s^W) .W €(RS)pQ.yea'W . 

[(*273-04)]  D.ye  a'T^spQ  :  3  I"  ■  Prop 

*273-35.     h  :  Hp  *273-26  .  D  .  a'TsspQ  =  G'Q 
Bern. 

t- .  *273-34  .:>\-:R'p.yeC'S.S'yC  a'Tj^sPQ  -O.ye  a'TssPQ      (1) 
h  .  (1)  .  *250-34  .  D  h  .  Prop 

*273-36.     h  :  Hp  *273-26  .  D  .  T^spq  e  P  smof  Q    [*273-28-35] 

*273-4.       \-:P,Qer,.D.P  smor  Q 
Bern. 
h  . *273-ll .  D  I- :  Hp .  D  . (gi?, S).R,8 eto  .C'P  =  G'R  .  C'Q  =  C'S . 
[*273-36]  D  .  (gJS,  /S) .  T^pg  e  P  smor  Q  :  D  t- .  Prop 

*273-41.     hzPev.PsmorQ.D.Qev 

Bern. 

h  .  *270-41 .  D  h  :  Hp  .  D  .  Q  e  Ser  n  comp  (1) 

h  .  *15118  .  *123-321  .  D  t-  :  Hp  .  D  .  O'Q  f  {<„  (2) 

h  .  *151-5  .  D  h  :  Hp  .  D  .  D'Q  =  a'Q  (3) 

I- .  (1)  .  (2)  .  (3) .  *273-l  .  D  h  .  Prop 

*273-42.     l-:Pe7?.D.»7  =  Nr'P     [*273-4-41] 
*273-43.     f- .  t;  6  NR  [*273-42  .  *266-54] 

The  following  propositions  are  easy  to  prove: 

h  :  Q  6  Ser  ft  C"ii„  .Pe^j.D.QxPe^?, 
whence  h  :  a  e  NR  n  Cl'Ser  .  G"a  =  N„.D.aX77  =  i7; 

and 

I- :  P  6  t;  .  Q  6  Ser  n  C"N„  .«€  C'P .  D  .  a;  i  ;Q  e  Nr'Q  n  Rl'(e  X  P)  .  Q  X  P  6  77, 
whence,  from  the  fact  that  all  tj's  are  similar, 

\-:PevQeSerrx  C^'N, .  D  .  a  !  Nr'Q  «  Rl'P. 
Thus  an  rj  contains  series  of  all  the  order-types  composed  of  J4o  terms. 


*274.      ON  SERIES  OF  FINITE  SUB-CLASSES  OF  A  SERIES. 

Summary  of  *274. 

In  the  present  number,  we  shall  be  concerned  with  the  construction  of 
a  rational  series  consisting  of  the  finite  existent  sub-classes  of  a  progression. 
When  the  finite  sub-classes  of  a  progression  (excluding  A)  are  arranged  by 
the  principle  of  first  diiferences,  the  result  is  a  rational  series.  When  they 
are  arranged  by  the  principle  of  last  differences,  the  result  is  a  progression. 
These  two  propositions,  with  the  consequent  existence-theorems,  are  to  be 
proved  in  the  present  number. 

We  define  "P, "  as  P„i  with  its  field  limited  to  finite  existent  classes. 
(For  the  definition  of  P^i,  see  *170"01.)  In  the  present  number,  we  shall  be 
chiefly  concerned  with  P,  when  Pew,  but  it  has  interesting  properties  in 
many  other  cases. 

Our  definition  is 

Pr,  =  Pel  D  (Cls  induct  -  I'A)     Df. 

We  shall  be  concerned  in  this  number  not  only  with  P,,  but  also  with 

P,„  ^  (Cls  induct  -  I'A).  This  is  Cnv'(P),.  Thus  if  we  put  P=Q,  the 
hypothesis    that    P  e  Q    as    used    in    studying    Pj,.  ^  (Cls  induct  —  I'A)  is 

equivalent   to   the    hypothesis   that    Q  e  fi    as   used    in   studying   Gnv'Q,, 

i.e.  Q,.  Thus  the  study  of  P^j  and  Pi,,  with  their  fields  limited  to  inductive 
existent  classes  may  be  replaced  by  the  study  of  P,  in  the  two  cases  where 

(1)  P  6  fl,  (2)  P  6  fl.  The  second  case  is  the  simpler,  and  is  considered  first. 
We  have  first,  however,  a  collection  of  propositions  which  only  assume  that 
P  is  a  series. 

Since  an  inductive  existent  class  in  a  series  must  have  a  maximum  and 
a  minimum,  we  have 

*27412.     l-::P6Ser.D:.aP,/8.  =  : 

->  -> 

a,  jS  6  CI  induct'C'P  -  I'A  :  (30)  .  ^  e  a  -  ^8  .  a  «  P'«  =  /3  n  P'a 

We  have 
*27417.     I- :  O'P  ~  6  1  .  D  .  O'P,  =  CI  induct'G'P  -  i' A 


208  SERIES  [part  V 

Whenever  P  is  a  series,  P,  is  a  series  (*2'74"18).  If  P  has  a  last  term,  the 
class  consisting  of  this  last  term  only  is  the  last  term  of  P, ;  if  P  has  no  last 
term,  P,  has  no  last  term  (*274'191).  If  G'P  is  an  inductive  existent  class, 
the  first  term  of  P,  is  G'P  (*274-194);  if  not,  P,  has  no  first  term  (*274195). 
Hence  if  P  has  no  last  term,  P,  has  no  first  or  last  term,  and  we  have 
D'P,  =  Q.'Pn  (*274'196).     Thus  of  the  characteristics  used  in  defining  i), 

we  have  P, eSer  whenever  PeSer,  and  D'P,  =  C['P,  whenever  ~E!5'P. 

We  next  prove 

*274-22.     h  :  P  e  n  .  D  .  P,  e  fi 

which,  in  virtue  of  what  was  said  above,  is  equivalent  to 
P  6  n  .  D  .  Pi„  t  (Cls  induct  -  t'A)  e  fi, 
that  is :  The  principle  of  last  differences  applied  to  the  inductive  existent 
sub-classes  of  any  well-ordered  series  gives  a  well-ordered  series. 

To  prove  *274'22,  since  we  already  know  that  P,  is  a  series,  we  only  have 
to  prove  that  every  existent  sub-class  of  CP,,  has  a  maximum  with  respect 
to  P,.     This  is  proved  as  follows. 

Let  K  be  any  existent  sub- class  of  CI  induct'O'P  —  I'A.  Consider  the 
minima  of  all  the  members  of  k  :  these  minima  all  exist,  because  k  is 
composed  of  inductive  classes.  Then  in  virtue  of  the  nature  of  the  principle 
of  first  differences,  members  of  «  which  have  a  later  minimum  come  later 
than  those  that  have  an  earlier  minimum.  Hence  if  we  consider  minp"«, 
the  classes  whose  minimum  is  the  maximum  of  miu/'K  (which  exists,  because 

P  e  O)  are  later  than  any  other  members  of  k.     Put 

Xi  =  maxp'minp"/(; .  Ki  =  k  n  minp'a^. 

Thus  «!  consists  of  those  members  of  k  which  have  the  largest  minimum, 
and  members  of  Kj  come  later  than  any  other  members  of  k.  Similarly  the 
latest  members  of  «■]  will  be  those  that  have  the  greatest  second  term. 
That  is,  if  we  take  away  the  (common)  first  term  from  each  member  of  k^, 
and  if  Xi  is  the  resulting  class  of  classes,  we  have  to  apply  to  \i  precisely 
the  same  process  as  we  have  already  applied  to  k.  Thus  we  are  led 
to  put 

sOi  =  maxp'minp"«  .  Ki  =  k  a  minp'aji  .\  =  (—  i'x^"ki, 
x^  =  maxp'minp'%  .  K2  =  \^r\  minp'aJa .  X^  =  (-  i'x^"k2, 
and  so  on.     The  series  oci,  x^, ...  is  an  ascending  series  in  P,  and  is  therefore 
finite,  by  *261*33.     It  therefore  has  a  last  term,  say  «„.     Then  the  class 
I'iCi  w  I'x^  w  . . .  u  I'x,  is  a  member   of  k,   and   is   easily  shown  to   be   its 
maximum.     Hence  every  existent  sub-class  k  of  O'P,  has  a  maximum,  and 

therefore  P,  e  O. 


SECTION  F]        on  SEBIES  OF  FINITE  SUB-CLASSES  OF  A  SERIES  209 

In  order  to  symbolize  the  above  process,  we  put 

Pm'it  =  niaxpmmp"/e  Dft, 

Tp'K  =  (-  i'P„,'k)"{ic  n  mnp'Pm'ic)  -  I'A     Dft, 

Mp'K  =  P„"(Tp)#'K  Dft. 

w  < 

Thea  Pm'«  is  what  we  called  »!,  Tp'x  is  what  we  called  Xj,  {Tp)^'k  is 

the  class  k,  \,  Xj, ...  Xn,  and  Mp'k  is  the  class  x^,  x^,  x^, ...  x,.     Thus  what 
we  have  to  prove  is 

Mp'K  =  max  {Py)'K, 

which  is  proved  in  *274215. 

We  prove  next 

*274-25.     I- :  P  6  o) .  3  .  P,  e  o) 

For  this  purpose  we  use  *26344,  namely 

«  =  n  -  I'A  rt  P  (a'Pi  =  d'P  .  ~E  !  B'P)- 

Thus  it  only  remains  to  prove 

D'(P,X  =  D'P,.~E!5'P,. 

~  E !  J5'P,  follows  from  *274-195,  and  D'(P,)i  =  D'P,  is  proved  without  any 
difficulty ;  hence  our  proposition  follows. 

From  *274'2517,  by  substituting  P  for  P,  we  obtain 
*274-26.     h  :  P  e  ft) .  D  .  Pie  t  (01s  induct  -  I'A)  e  a, . 

C"P,c  t  (Cls  induct  -  I'A)  =  CI  induct'O'P  -  t'A 
whence  it  follows  immediately  that 

*274-27.     h  :  a  6  No .  D  .  CI  induct'a  e  «„  ■  CI  induct'a  -  I'A  e  «„ 
I.e.  a  class  of  ii„  terms  contains  No  inductive  sub-classes. 
We  now  have  to  prove 

*274-33.     \-:Peco.D.P„6v 

In  virtue  of  *274-17-27,  we  have  O'P,  e  ti„ ;  and  by  *274-18,  P,  e  Ser. 
Thus  it  only  remains  to  prove  P,  e  comp .  D'P,  =  Q'P,.  The  second  of 
these  results   immediately   from  *274196.      As  for  P,  e  comp,  if  oiP,^, 

a  w  yS  6  Cls  induct,  and  therefore  g  !  p'P"(a  w  /3)  ;  but  if  a;  e  p'P"{a  w  j8),  we 
have  aP,  (/3  w  I'a;)  .  (/8  u  t'x)  P,^ ;  hence  P,  G  P,''.  This  completes  the  proof 
that  P,  e  J?. 

The  proposition  holds  not  only  if  Pew,  but  if  P  is  any  series  which  has 
no  last  term  and  whose  field  has  Nj  terms  (*274"32). 

Finally,  we  deal  with  the  existence  of  rj  (*274'4 — •46).  If  P  e  »>,  P  is 
similar  to  Pio  t  (Cls  induct  -  t'A),  by  *274-26;   and  if  T  is  a  correlator  of 

B.  &  W.  III.  14 


210  SEBIES  [part  V 

these  two,  T'P,,  is  an  77  whose  field  is  C'P  (*274-4).  Hence  the  existence 
of  7]  in  any  type  is  equivalent  to  the  existence  of  a  in  that  type  (*274"41). 
Hence  we  have  merely  to  apply  previous  propositions  on  the  existence  of  w. 


*27401.     P,  =  Pelt  (01s  induct -I'A)    Df 

*27402.     P„'«:=maxp'minp"«  Dft  [*274] 

*27403.     Tp'K  =  (-  i'P^'k)"(k  n  imnp'P^'«)  -  t'A 

Dft  [*274] 

*27404.     Mp'K  =  P^"{TpyK  Dft[*274] 

*2741.       V  :  aP,/3 .  =  .  a,  ^S  e  CI  induct'C^'P  -  I'A  .  g  !  a  -  ;8  -  P"{^  -  a) 
[*170-1 .  (*27401)] 

*27411.     1- :  P  6  Ser  .  a  6  CI  induct'O'P  -  t'A  .  D  .  E  !  minp'a  .  E  !  maxp'o 
[*261-26] 

*274-lll.  h  :  P  e  Ser  .  ~  E  !  5'P .  a  e  CI  induct'C'P  .  D  .  g  !p'P"a 

V  .  *274-ll  .  D  h  :  Hp  .  a  !  a  .  D  .  maxp'a  e  D'P  . 

[*205-65]  D.a!yP"a  (1) 

l-.(l).*40-2.DI-.Prop 

*27412.     I- : :  P  e  Ser .  D  :.  ap,^ .  =  : 

a,  j8  e  CI  induct'O'P  -  t'A  :  (a^)  .  0  e  a  -  ^ .  o  n  P'^  =  |8  ft  P'0 
D&m. 

I-.*170-2.D 

I- :.  a, /3  e  CI  induct'a'P-i'A:(a0).  a  e  a- /3.  a  nP'ir  =  /3  ft  P'if:D.aP,/3  (1) 

h  .  *274-ll .  D  h  :  Hp  .  aP,yS .  D  .  E  !  minp' {a  -  jS  -  P"(iS  -  a)} . 

[*170-23.*205-192]  "^  .{'^z).ar^P'z  =  ^r^P'z  (2) 

h  .  (1) .  (2) .  D  h  .  Prop 

*27413.     l-.P,et(Cls  induct- t'A)  =  Cnv'(P),     [*1 70-101 .  (*274-01)] 

*27414.     h  ::  P  6  Ser .  3  :.  a  {Pi„  t  (Cls  induct  -  t'A)})8 .  =  : 

a, /3 e  CI  induct'C'P -  t'A  :  (g^) .ze^-OL.ar\P'z  =  ^r^P'z 
[*27412-13] 

*27415.     h  :  a,  /3  e  CI  induct'C'P  -t'A.;8Ca./3=|=a.D.  aP^^ 
[*170-16 .  *274-l] 

*274151.  I- :  a  e  CI  induct'CP  -  1  .  a;  e  a  .  D  .  aP,(t'a;)     [*274-15] 


SECTION  F]        on  series  OF  FINITE  SUB-CLASSES  OF  A  SERIES  211 

*27416.     l-:a[!P,.  =  .0'P~eOwl 
Dem. 

l-.*274-l.     Dhia'.P^.D.gia'P  (1) 

V  .  *274151 .  D  h  :  O'P  ~  e  0  w  1 .  D .  a  I  P,  (2) 

h  .*60-38 .      D  h  :  O'Pel .  D  .  ~ (ga, /8) .  a, ^8  e  Cl'O'P-  I'A .  g !  a-/3. 
[*274-l]  D.P,  =  A  (3) 

h  .  (1) .  (2) .  (3) .  D  h  .  Prop 

*27417.     h  :  (7'P  ~  e  1 .  D  .  C'P,  =  CI  induct'O'P  -  I'A 

Dem. 

h  .  *274-151 .  D  h .  01  induct'O'P  -  I'A  - 1  C  D'P,  (1) 

h  .  *2r4151 .  D  h  :  ȣ  C'P  .  G'P  +  t'a; .  D  .  I'a;  e  Q'P,  (2) 

h  .  (2) .  D  h  :  Hp .  D  .  GVG'P  n  1  C  Q'P,  (3) 

f-.(l).(3).    Dh:Hp.D.Clinduct'C"P-t'ACC?'P,  (4) 

h  .  (4) .  *2741 .  D  h  ,  Prop 

*274171.  ViP^Q.J.xPy.-:i. (I'x) P„ (I'y)    [*274-l] 

*274-18.     h:PeSer.D.P,6Ser 

Dem. 
h.*201-14.D 
I- :.  Hp.  06  a -/8.  w  6/3 -7.  a  nP'^  =  i8r.P'0.j8nP'w  =  7  nP'w.D: 

zPw  .0  .zea  —  y  .an  P'z  =  70  P'0  (1) 
h  .  *201-14 .  D 1- :.  Hp  (1) .  D  :  wPz .  D  .  w  e  a  -  7  .  a  n  P'w  =  7  n  P'w  (2) 
I- .  (1) .  (2) .  *202-103  .  *27412  .  D  h  :  Hp .  aP,^ .  /3P,7 .  D  .  aP,7  (3) 

I- .  *27411 .  D 

h  :  Hp .  a,^6  Clinduct'C'P-  t'A .  a  +  18 .  D  .  (g^) .  0  =  minp'{(o-^)w (i8-«)} . 
[*20514]  D  .  (a^)  .  0  6  (a  -  /8)  u  (/3  -  a)  .  a  n  P'0  =  iS  A  P'a  . 

[*274-12]  D.a(P,c;P,)/3  (4) 

f-.(3).(4).*l70-l7.Df-.Prop 

*27419.     h  :  P  6  connex  .  P"  C  J .  3 .  5'P,  =  i"£'P 

Dem. 
H  .  *274-151 .  3  h  .  CI  induct'CP  - 1  C  D'P,  (1) 

h.*274l7l.  DI-:Hp.D.i"D'PCD'P,  (2) 

h  .  (1) .  (2) .  *274-17  .  D  h  :  Hp .  D .  5'P,  C  t^'P'P  (3) 

h  .  *202-524  .  D 

|-:Hp.a;e£'P./3eCl'a'P-l'A..'C~6i8.D.a;6P"(/3-l'a!)  (4) 

14—2 


212  SERIES  [part  V 

l-.(4).D 

I- :  Hp  .  a;  e'S'P  .  D  .  ~  (3^8)  .  ;8  e CI  induct'CP -  t'A  .  g  !  i'x-^-P"(^-l'ai) . 
[*274-l]  D.t'a;~6D'P,  (5) 

h  .  (5) . *27417  .  D  h  :  Hp .  D  .  t"'B'P CB'P„  (6) 

h  .  (3) .  (6) .  D  H .  Prop 

*274191.  \-:.Pe  connex .  P»  G  J" .  D  :  E !  5'P .  D  .  5'P,  =  I'B'P : 

~  E  !  £'P .  D .  P'P, = A    [*27419] 
*274192.  I- :.  P  6  connex .  P"  G  / .  D  :  E !  £'P .  =  .  E  !  B'P^    [*274-191] 

*274193.  h  .  B'P,,  =  I'C'P  n  (Cls  induct  -  I'A  - 1) 
Bern. 

h.*274-151.    D  I- :0'Pe  Cls  induct -I'A-l.D.O'Pe^'P,  (1) 

h  .  *274-16l7  .  D  h  :  C'P  ~  €  (Cls  induct  -  I'A  - 1) .  D  .  C'P  ~  e  C'P,  (2) 

1-.*27415.       D  hiaeClinduct'O'P-t'A.  a;  6  C'P- a.  D.  (aw  t'a!)P,o  (3) 

l-.(3).              Dh.Clinduct'C'P-t'A-t'a'PCa'P,  (4) 

h  .  (4) .  Transp  .  *2741 .  D  h  .  "b'P^  C  (CI  induct'C'P  -  I'A)  n  I'C'P  (5) 

l-.(5).*27416.  D  t- .£'P,C  (Cls  induct -i' A -l)nt'0'P  (6) 

h  .  (1)  .  (2) .  (6)  .  D  h  .  Prop 

*274194.  \-:C'Pe  Cls  induct  -  t'A  - 1 .  D .  B'P„  =  G'P       [*274193] 

*274195.  I- :  O'P  ~  6  Cls  induct .  D .  S'P,  =  A  [*274193] 

*274196.  h  :  P  6  Ser .  ~  E  !  5'P .  D  .  D'P,  =  Q'P, 

'^^'^-  l-.*274-192.  DI-:Hp.D.£'P,  =  A  (1) 

I- .  *274-195-16  .  *261-24 .  D  h  :  Hp .  D  .'B'P„  =  A  (2) 

h  .  (1) .  (2) .  D  I- .  Prop 

The  following  propositions  give  the  proof  of  P  e  11 .  D .  P,  e  O  (*274'22). 

*274-2.       h  :  P  6  fi . «  C  CP, .  g  !  k  .  D  .  E !  P^'k  .  PJk  e  minp"« 
[*274-l-ll .  *250-121 .  (*274-02)] 

*274-201.  \-:^e  Tp'k  .  =  .  (ga) .aex.  miup'a  =  P^'k  .^  =  cl- l'P,„^k  .  g  !  j8 
[(*27403)] 

*274-202.  h  :  E  !  P„'« .  D  .  E !  Tp'«:    [(*27408) . *14-21] 

*274203.  h  :.  Hp *274'2  .  D  :  Tp'/e  =  A .  =  .  k  n  minp'P„'«  =  i'i'P^'k 

Dem. 
h  .  *274-2-202  .  D 

1- : :  Hp .  D : .  Tp'k=A  .  s  :  ~  (ga,  0).aeK .  niinp'a  =  Pm'ic .  /3  =  a  -  I'Pm'ic  ■  g  !  /8 : 

<— 
[*13'191]  = :  a  e  «  n  minp'Pm'/c .  Da .  a  -  I'Pm'ic  =  A  : 

«— 
[*274-2]  = :  a  e «  n  minp'Pm'*  .=«■«=  t'Pm'ic ::  D  H  .  Prop 


SKCTION  f]        on  series  OF  FINITE  SUB-CLASSES  OF  A  SERIES  213 

*274-204.  h  :  «  C  G'P, .  «  (Tp)*\ .  D  .  \  C  (7'P, 
i)em.  • 

y  .  *120-481 .  *274-201 .  D  h  :  «  C  Cls induct .  E !  Tp'k.:^.Tp'k C  Cls induct  (1) 

I- .  *274-201 .  D  h :  «  C  Cl'G'P .  E !  fp'« .  D  .  fp'*  C  Gl'C'P  -  t'A  (2) 

h  .  (1) .  (2) .  *274-16  .  D  h  :  «  C  C'P, .  E !  Tp'« .  3  .  Tp'/e  C  CP,  (3) 

h  .  (3) .  Induct .  D  f- .  Prop 

*274-205.  h  :  P  6  Ser .  E !  Pr^'Tp'X .  D  .  (P™'\,)  P  (P,„'Tp'X) 
Dem. 

h  .  *274-201 .  *205-21  .  D  I- :  Hp  .  /3  e  Tp'X  .  D  .  /3  C  P'P^'X  (1) 

h  .  *205-ll .  (*274-02)  .  D  h  :  Hp  .  3  .  Pm'Tp'X  e  s'Tp'X  (2) 

h  .  (1) .  (2)  .  D  h  .  Prop 

*274-206.  h  :  Hp  *274-205  .  k  {Tp)^X .  D  .  (P™'«)  P  (P^'fp'X) 
Dem. 

h  . *14-21 .  (*27402) .  D  1- :  E !  PJT/X .  D  .  E  !  P^'X,  (1) 

1- .  (1) .  Induct .  D  I- :  Hp .  D  .  E !  P^'k  (2) 

h  .  (2) .  *274-205  .  Induct .  D  h  .  Prop 

*274-207.  h  :  P  e  fl .  «:  (rp)*X  .  P^'X  =  maxp'i/p'/c .  D  . 

^El  Pm'Tp'X  .Tp'\  =  A 
Bern, 

h  .  *274-205  .  Transp .  D  h  :  Hp  .  3 .  ~  E  !  P^'h'^  ■ 

[*274-204-2.Transp]  D  .  Tp'A,  =  A  :  D  h  .  Prop 

*274208.  h:.Pen.KC(7'P,.a!K.D: 

A  6  (^V)*'*  :  (gA,) .  «  (rp)*5t .  \  n  minp'P^'X  =  I'l'P™' \ .  Tp'X  =  A 

Dem. 

f- .  *250-121 .  3  h  :  Hp .  D  .  E  !  maxp'Jlfp'/e  (1) 

h  .  (1) .  *274-207-203-204  .  D  h  .  Prop 
*274-21.     h  :  /3  e  Tp'/c .  D  .  jS  w  t'Pm'«  e  «    [*274-201] 

*274-211.  h  :  «  (Tp)*\  .  ^S  e  \ .  D  .  |8  w  P™"T'p  (« i-  A.)  e  « 

Dej». 
h  .  *274-21 .  D  h  :.  Hp  :  /3  6 \ .  3^  .  /3  u  Pm"Tp  (/«:  i-  \)  e  k  :  D  : 

7eTp'\.DY.7uP^"rp(«i-r/\)e«     (1) 
h  .  *274-21 .  (1) .  Induct .  D  h .  Prop 


\ 
\ 


214  SERIES  [part  V 

*274-212.  h  : PeXl .  /tC  C'P, .  g  !  k .  D .  Jl/p'* e/e 

Z)em. 
f-.*274-208-211.D 

I- :  Hp  .  D  .  (gX.). «(Tp)^\  .  ?p'X  =  A  .  l'P„'\  e \  .  I'Pm^X  w  P„"yp(Ki-\)  e  k  . 
[*121-103]  D  .  (gX)  .  P^"rp  («  M  \)  6  «  .  PJ'Tp  («  m  \)  =  P„,"(Tp)^'k  : 

D  h  .  Prop 

*274-213.  h  :  P  e  Ser .  «  C  C'P, .  a  e  « .  «  (7'p)5|,\  .  P'P»'\  n  ilfp'/e  C  a .  D  . 

a-(P'Pm'\r.ilfp'«;)6\ 
-Dem. 

h  .*274-201 .  D  h  :  Hp .  K  =  \.  D .  a-(P'P^'\  n  Jlfp'«)  =  a . 

[*13-12]  D.a-(P'P^'\nifp'«)6/<:  (1) 

h  .  *274-206  .  D 

h  :.  Hp :  ^  e  « .  P'P™'\  n  ilfp'*  C  ^8 .  D^  .  /3  -  (P'Pr^'X  n  Mp'k)  e  X  :  D  : 

/3  e  «  .  P'Pr^'Tp'X  n  il/p'/c  C  /8  .  D  .  P'P^'X  n  ifp'«  C  /3 .  P,„'X  e  /9 . 

{/8  -  (P'P»'X  n  ilfp'K)}  6  X  .  P^'X  6  {^  -  (P'PJX  n  il/p'«)} . 

[*274-201]         D .  {/3  -  (P'P„'X  «  il/p'/e)  -  t'P„,'\}  e  Tp'X . 

[*274-206]        D.{/3-(P'P™'rp'XnJ/p'«)}6rp'X  (2) 

h  .  (1) .  (2)  .  Induct .  D  h  .  Prop 

*274-214.  h-.Pen.KC  C'P„ .  a  e  /c  -  I'i/p'* .  3  .  aP,(il/p'«) 

Dem. 
h  .  *274-212 .       D  f- :.  Hp .  D  :  Mp'k  e  Cls induct :  (1) 

[*17016]  D  :  Mp'k  C  a .  D  .  aP,(il/p'«)  (2) 

I-  .*274-ll .  (1).  D  I- :  Hp .  a !  Mp'k- a. "^  .  E I  minp'(ifp'«;  -  a) . 
[*205-14.(*274-04)]  D  .  (gX)  .  «  (rp)^,^  X .  P^'X  ~  e  a .  P'P^'X  n  Mp'k  C  a  . 
[*274-213]  D  .  (gX)  .  «  (Tp)^X .  P^'X  ~  e  a  .  a  -  (P'P^'^  n  Jlfp'/e)  e  X  . 

'P'Prr.'XnMp'KCa. 
[*274-201]  D . (aX, z) . K {Tp)^ X.z  =  minp'fa - {P'Pr^'X  a ifp'«)} . 

zP  (Pm'X) .  P'P™'  X  f^  Mp'k  C  a . 
[*3118]  D  .  (30)  .  0  e  a  -  Mp'k  .  Ifp'/e  r>  P'«  C  a . 

[*17011]  D .  aP,{Mp'K)  (3) 

h  .  (2)  .  (3) .  D  I- .  Prop 

*274-215.  h  :  P  €  12 . «  C  C'P, .  g  !  «  .  D  .  Mp'k  =  max  (P,)'«     [*274-212-214] 


SECTION  F]        on  series  OF  FINITE  SUB-CLASSES  OF  A  SERIES  215 

*274-22.     h:Pen.D.P,ef2 
Dem.  • 

h  .  *274-215  .  D  h  :  Hp .  D .  E !!  max  (P,)"C1  ex'CP, . 

[*250125]  D  .  P,  e  n  :  D  h .  Prop 

The  following  propositions  constitute  the  proof  of 

Pe<o.D.P,6«»  (*274-25). 

*274-221.  h  : P 6 Ser . P'raax^'a e Cls induct . a e 01  induct'G'P -I'A-i 'B'P . 

/8  =  (a  -  I'maxp'a)  u  P'maxp'a .  D ,  aP,;S 
Dem. 

h.*205-55.         Dh:Hp.£'P6«.D.a!a-i'maxp'a  (1) 

h.*202oll.       Dh:Hp.5'P~ea.D.5'P6P'maxp'a  (2) 

h  .  *93101 .         D  h  :  Hp .  ~  E !  B'P .  D  .  g  !  P'maxp'o  (3) 

l-.(l).(2).(3).DI-:Hp.D.a!^  (4) 

I- .  *120-481-71 .  D  h  :  Hp .  D  .  /3  e  Cls  induct  (5) 

b  .  *205-21 .  *200-361 .  D  h  :  Hp .  D .  /3  n  P'maxp'a  =  a  n  P'maxp'a       (6) 
t- . (4) . (5) .  (6) .  D  h :  Hp .  D  . a, /S 6 Clinduct'C'P -  I'A .  maxp'a 6 «  - /3 . 

«  r\  P'maxp'a  =  ffrt  P'maxp'a  . 
[*27412]  D .  aP,/9 :  D  I- .  Prop 

*274-222.  h  :  Hp  *274-221 .  aP,7 .  maxp'a  ey.D.  ^P^y 

Dem. 

— >  -♦ 

|- .  *27412  .  D  |- :  Hp .  D .  (g^;) .  ^  e  a  -  7 . « =f  maxp'a .  a  n  P'2:  =  71-1  P'^r . 

[*201-14.*205-21.Hp] D . (g^)  .Z6ff-y.^nP'z  =  ynP'z. 
[*274-12]  D  .  /SP,7  Oh.  Prop 

*274-223.  h  :  Hp  *274-221 .  aP,7 .  maxp'a  ~  e  7 . 7  4=  /3 .  3  .  /SP,7 

Dem. 

— >  — > 

h  .  *274-12 .  D  h  :.  Hp  .  D  :  (g^)  .zea  —  y-  I'maxp'a .  a  n  P'z  =  70  P'^: .  v  . 

-♦  — > 

a  n  P'maxp'a  =  7  a  P'maxp'a         (1) 

1-.*201-14.*205-21.D 

— »  —* 

\- :.  Hp  :  (a«)  .  5  6  a  —  7  —  I'maxp'a  .  a  r>  P'2:  =  70  P'^  :  D  .  y3P,7  (2) 

-♦  — » 

h  .  *205'21 .    D  h  :  Hp .  a  n  P'maxp'a  =  70  P'maxp'a  .  D  . 

-♦ 
a  —  I'maxp'a  =  70  P'maxp'a        (3) 

h  .  *202101 .  D  h  :  Hp  .  D  .  7  C  P'maxp'a  u  P'maxp'a  (4) 

->  — > 

h  .  (3) .  (4) .    3  t- :.  Hp .  a  n  P'maxp'a  =  7  n  P'maxp'a .  D  :  7  C  /8 : 

[*17016.(*274-01)]  D:7=|=/3.D./3P,7   (5) 

h.(l).(2).(5).Dh.Prop 


216  SERIES  [part  V 

*274-224.  h  :  Hp*274-221 .  aP^r^ .  y34=  7 .  D  .  /3P,7    [*274-222-223] 

*274-23.     h:Hp*274-221.D.«(P,)i/3  [*274-221-224.*204-72] 

*274-25.     f-:Peft).D.P,6« 
DeTn,. 

V  .  *274-22-16  .  D  h  :  Hp .  D  .  P,  6  n  -  t'A  (1) 

l-.*274-191-l7.D 

h  :  Hp .  a  6  D'P, .  D  .  a  e  CI  induct'C'P  -  t'A  -  I'B'P  (2) 

h.*263-412.*274-ll  .D 

h  :  Hp  .  a  6  CI  induct'a'P  -  I'A  .  D  .  P'maxp'a  e  Cls  induct  (3) 

h  .  (2)  .  (3) .  *274-23  .  D  I- :  Hp .  a  e  D'P, .  D  . «  e  D'(P,X  (4) 

h  .  (1) .  (4) .  *274-195  .  *121-323  .  D 

t- :  Hp .  D  .  P,  6  n  -  I'A .  D'P,  =  D'(P,). .  ~  E !  £'P, . 

[*263-44]  D  .  P,  6  »  :  D  h  .  Prop 

*274-26.     h  :  P  6  oj .  D .  Pie  t  (Cls  iuduct  -  t'A)  e  «  . 

C'Pie  p  (Cls  induct  -  I'A)  =  CI  induct'CP  -  I'A 
Dem. 

I- .  *274-13  .  D  h  :  Q  =  P .  D .  Pie  p(Cls  induct  -  I'A)  =  Q,  (1) 

l-.*274-25.DI-:P6M.Q  =  P.D.Q,6ft)  (2) 

I- .  *27417  .Dt-:Pe«.Q  =  P.D.  G'Q,  =  CI  induct' C"P  -  I'A      (3) 
h  .  (1) .  (2) .  (3) .  3  t- .  Prop 

*274-27.     1- :  a  6  {<„ .  D  .  CI  induct'a  e  N„ .  CI  induct'a  -  I'A  e  «„ 
Dem. 

h  . *263-101 .  D  h  :  Hp .  D  . (gP) .Peo).a=G'P. 
[*274-26]  D  .  (gif  ) .  if  e  «  .  CI  induct'a  -  t'A  =  CM . 

[*263101]  D.  CI  induct'a- t'A  e  No .  (1) 

[*123-4J  D.  CI  induct'a  6  No  (2) 

h  .  (1) .  (2) .  3  h  .  Prop 

The  following  propositions  constitute  the  proof  of 
Pem.D.P^er)  (*274-33). 

*274-3.       h  :  P  e  Ser .  aP,y8 .  x  e p'P"(a  u  ^) .  D  .  oP,(/S  u  I'ai)  .  (/3  w  t'a;)  P„^ 
Dem. 

|-.*200-53.  DI-:Hp.«6a.D.;SnP'2r  =  (^wt'a;)ftP'5  (1) 

l-.*200-5.  DI-:Hp.^^ea-/3.D.^;ea-(/3wt'a;)  (2) 

h  .  (1) .  (2) .  *274-12  .  3  h  :  Hp  .  D .  aP,(/8  u  I'a;)  (3) 

h .  *200-5  .  *170-16  .  3  h  :  Hp .  D  .  (/3  u  t'a;)  P,/3  (4) 
h  .  (3)  .  (4)  .  D  I- .  Prop 


SECTION  f]        on  series  OF  FINITE  SUB-CLASSES  OF  A  SERIES  217 


*274-31.     h  :  P  e  Ser  .  ~  E  !  5'P  .  D  .  P  6  Ser  A  comp 

Dem.                              ♦ 

I- .  *274-l .  *120-71 .31-:  aP,/3 .  D  .  a  u  ^  e  01s  induct  -  t'A 

(1) 

h  .(1).*27411 .        D  1- :  Hp  .  aP,^  .  D  .E  !  maxp'(au^) . 

[*93103]                                                D  .  a  !  P'maxp'(a  w  /3) . 

[*205-67]                                                D.a!^'P"(au^). 

[*274-3]                                                D .  aP,^/3 

(2) 

h  .  (2)  .  *27418  .  D  h  .  Prop 

*274-32.     1- :  P  e  Ser  n  G"N„ .  ~  E  !  5'P  .  D  .  P,  e  77 

Dem. 

h  .  *274-31  .       3  h  :  Hp  .  D  .  P,  6  Ser  n  comp 

(1) 

h  .  *274-196  .     D  1- :  Hp  .  D  .  D'P,  =  Q'P, 

(2) 

1- .  *274-27-17  .  D  h  :  Hp  .  D  .  C'P,  e  K„ 

(3) 

h  .  (1)  .  (2) .  (3)  .  *273-l  .  D  h  .  Prop 
*274-33.     l-:Pe<o.D.P,  e»;     [*274-32  .  *263-10111-22] 
This  is  the  principal  proposition  of  the  present  number. 

*274-34.     l-iaeNo. D.a!9?n  C'(C1  induct'a  -  t'A) 

Dem. 
h  .  *263-101 .  D  h  :  Hp .  D  .  (gP)  .  P  e  «  .  C"P  =  a . 

[*274-33l7]  D .  (gilf )  .Mev  G'M=  01  induct'a  -  t'A  :  D  l- .  Prop 

The   following  propositions  are  concerned  with  the  existence-theorem 
for  -0.     They  all  follow  from  *274-33. 

*274-4.       h-.Pew.  T=^i'P mm  {P^^ I  (Cls induct -I'A)} . D . T'P„evnG'C'P 
Bern. 
h .  *274-26-l7 .  Dh:Hp.D.a'r=a'P,  (1) 

I- .  (1) .  *151-11-131 .  D  h  :  Hp .  D .  ^TJP,  smor  P, .  G'T''P„  =  G'P . 
[*274-33.*273-41]  D  .  TJP,  e  v .  C'T'>P„  =  C'P :  3  h .  Prop 

*274-41.     I-  :  a  !  0)  n  «'P  .  =  .  a  !  7;  n  «'P 
Bern. 

h  . *274-4 .    D  I- :  Qeffl  n i'P .  3  . (<^R).Rev.  G'R  =  O'Q . 
[*64-24]  3  .  a  !  7?  n  i'P  (1) 

I- .  *273-ll .  3  h  :  i2  e  jy  n  <'P  .  3  .  (aQ)  .Qea  .G'Q  =  G'R. 
[*64-24]  3  .  a  !  <"  «  «'-P  (2) 

h  .  (1)  .  (2)  .  3  h  .  Prop 

*274-42.  h:aeN„.3.a!'?"C''o    [*274-4-26  . *263-l7  . *250-6  . *263-101] 

*274-43.  h  .  No  =  G"ri  [*273-l .  *274-42] 

*274-44.  h  :  a  !  No "  fa .  =  ■  a  !  ^7  -^  *oo'a      [*263-131 .  *274-41] 

*274-45.  h:a!^{o(«).  =  ■a!'?'^«"'«        [*263-13 .  *274-41] 

*274-46.  h  :  Infin  ax  («) .  =  .  a  !  1?  "  «^'a;     [*263-132  .  *274-41] 


*275.     CONTINUOUS  SERIES. 

Summary  of  *275. 

The  definition  of  continuity  to  be  given  in  this  number  is  due  to  Cantor. 
A  different  and  not  equivalent  definition  was  given  by  Dedekind:  series 
which  are  continuous  in  Cantor's  sense  are  also  continuous  in  Dedekind's 
sense,  but  not  vice  versa.  Cantor's  definition  has  the  advantage  (among 
others)  that  two  series  which  are  continuous  in  his  sense  are  ordinally 
similar,  which  is  not  necessarily  the  case  with  series  that  are  continuous  in 
Dedekind's  sense.  Dedekind's  definition  of  '"continuous  series"  is,  in  our 
language,  "  series  which  are  compact  and  Dedekindian."  Cantor's  definition 
(after  a  certain  amount  of  simplification)  is  "  series  which  are  Dedekindian 
and  contain  an  N„  as  a  median  class."  In  the  case  of  the  real  numbers,  the 
rationals  are  a  median  class  of  this  sort. 

An  equivalent  definition  to  the  above  is  that  a  continuous  series  is  a 
Dedekindian  series  whose  converse  domain  is  the  derivative  of  a  contained 
rational  series  (*275'13). 

Following  Cantor,  we  shall  use  0  for  the  class  of  continuous  series. 

In  what  follows,  we  prove  first  that  the  series  of  segments  of  a  rational 
series  is  a  continuous  series,  i.e. 

*275-21.     l-:P67;.D.s'P6^ 

_    — > 
The  contained  No  is  P"G'P.     The  proposition  follows   at   once  from 

*271'31.     On  its  importance,  see  remarks  on  *275'21  below. 

From  this  proposition,  it  follows  that  if  tj  exists  in  any  type,  d  exists  in 
the  next  type  (275"22),  whence  the  existence  of  0  in  suflficiently  high  types 
follows  from  the  axiom  of  infinity  (*27525). 

To  prove  that  any  two  continuous  series  are  similar,  we  use  *27l"39.  By 
the  definition,  if  P  and  Q  are  continuous,  they  contain  respectively  two 
median  classes  a  and  /3,  such  that P^a  and  Q p /8  are  rational  series.  Hence 
by  *273-4,  PpasmorQp/3,  and  therefore  PsmorQ,  by  *27l-39.  Also 
obviously  PeO  .P  smor  Q  .D  .Qed.     Hence 

*275-32.     \-:Pe0.O.0  =  'Nr'P 

and 
*275-33.     h.^eNR 


SECTION  F]  continuous  SERIES  219 

*27501.     e=SeTnJ)ednmed"iio    Df 

*275-l.       hrPe^.s.PeSernDed.alNoAi^d'P 
[(*275-01)] 

*27511.     [■:.Pee.  =  :PeSeinBed:(-s.a).aeiio.Bp'a  =  a'P.aCG'P 
[*275-l .  *27l-2] 

*27512.     f-;:Pe6'.  =  :.P6SernDed:.(aa):a€No: 

ajPy .  D«,„ .  a  !  a  rt  P  (a;  -  y) :  a  C  C'P    [*275-l .  *271-1] 

*27513.     i-  :.P  e  e  .=  :P  eSeT  nI)ed:(<aR).  RQP  .Rev  .8p'G'R  =  a'P 

Bern. 
I- .  *273-l .  *27l-2  .  D 

h:P€Sern'Ded.RQP.R6v.Sp'G'R  =  a'P.:>.G'Reiio-G'Re^d'P. 

[*2751]                                                                   D.Pee  (1) 

f-.*27ri6.D|-:amedP.)8  =  anD'Pna'P.D./3medP.  (2) 

[*271-15]                                                                D.P  C^ecomp  (3) 

h.*123-17.Dh:Hp(2).PeSer.a€N„nCl'C'P.D./36N„rtCl'(7'P  (4) 

h.*27l-l.    DI-:/SmedP.D.P"/3  =  D'P.P"yS  =  a'P  (5) 

I- .  (5) .  *37-41 .  (2) .        Dh:Hp(2).D.D'(PD/S)  =  /8.a'(PCj8)  =  ;8  (6) 

h  .  (3) .  (4) .  (6) .  *273-l .  D  I- :  Hp(4) .  D  .  P  p  /SeT,  (7) 

I- .  (2) .  *27l-2 .  D  h  :  Hp  (4) .  D  .  Sp'(7'(P  t  /3)  =  Q'P  (8) 

H  .  (7) .  (8) .  *275-l .  D  h  :  P  6  5 .  3  .  (g^S) .  P  p  /3  e  i? .  Sp'C'CP  l^)  =  Q'P  (9) 
h  .  (1) .  (9) .  D  h  .  Prop 

*27514.     \-.d  =  Gn\"e 
Bern. 

I- .  *214-14 .  *271-11 .  D  1- :  P  e  Ser  ft  Ded .  a  6  N„  n  i^d'P .  =  . 

PeSernDed.aeNo^med'P  (1) 

h.(l).*275-l.Dh.Prop 

*275-2.       h  :  P  e  J? .  D  .  s'P  6  Ser  A  Ded  .  'P"G'P  e  N„ .  'P"G'P  e  mwl's'P 
Bern. 

h.*214-33.  Dh:Hp.D.s'PeSernDed  (1) 

h  .  *204-35  .  D  I- :  Hp  .  D  .  P"G'P  sm  G'P . 

[*2731.*123-321]  :i  .'P"G'P  e  H,  (2) 

h  .  *271-31 .  *2731 .  D  h  :  Hp  .  D  .'P"G'P  e  i^d's'P  (3) 

h  .  (1) .  (2) .  (3) .  D  h  .  Prop 


220  SERIES  [part  V 

*275-21.     h:Pe7?.D.s'Pe5     [*275-21] 

This  proposition  is  of  great  importance,  particularly  in  the  theory  of  real 
numbers.  We  shall  define  the  real  numbers  as  segments  of  the  series  of 
rational  numbers,  in  order  to  be  sure  of  their  existence.  Thus  if  P  is  the 
series  of  rational  numbers,  s'P>  which  may  be  taken  to  be  the  series  of  real 
numbers,  is  continuous.  If  P  is  the  series  of  rational  proper  fractions, 
excluding  0,  s'P  is  the  series  of  real  proper  fractions  together  with  0  and  1 : 
this  series  is  continuous  in  virtue  of  the  above  proposition. 

The  above  proposition  is  also  useful  as  enabling  us  to  deduce  the  existence 
of  8  from  that  of  i;,  and  thence  from  that  of  No,  and  thence  from  the  axiom 
of  infinity.  A  rise  of  type  is,  however,  required  for  the  existence-theorems, 
which  are  given  in  the  following  propositions. 


*275-22. 

i-iaS'/oCa.^-a!^"^"'" 

Dem. 

h .  *64-o5 .  D  h  :  a !  9?  A  i«,'a .  D .  (aP)  .Pev-G'PC  *„'« . 

[*63-37l]                                D.(aP).Pe9?.(7'P6«'a. 

[*275-21]                               D.i's^Q).Qed.C'QCt'a. 

[*64-57]                                  D  .  a  !  0  n «"'« :  D  1- .  Prop 

*275-23. 

1- :  a  !  K„  n  i'a .  D  .  a  !  ^  n  «"'a    [*274-44 .  *275-22] 

*275-24. 

h  :  a  !  No  («) .  D  .  a  !  0  n  i^'a;         [*275-23 .  *64-31-312  .  (*65-02)] 

*275-25. 

h  :  Infin  a,x(iv)  .':>  .-^Id  nt^'x 

Dem. 

1- .  *123-37  .  D  h  :  Hp  .  D  .  a !  No  («='«)  • 

[*275-24]                       D  .  a !  ^  "  «""<"«  • 

[*64-312]                       D  .  a  !  ^  "  ^'«  :  3  f-  •  Prop 

*275-3. 

hiP.Qe^.D.PsmorQ 

Dem. 
h  .  *27513  .  D  I- :.  Hp  .  D  :  P,  Q  6  Ser  o  Ded : 

('^R,S).B,S6v.R<^P-8QQ.C'R€^d'P.C'Semed'Q: 
[*204-41]  D:P,Q6SernDed:(aa,i8).amedP./8medQ.P^a,QCi8e7?: 
[*273-4]     D:P,Q6SernDed:(aa,/3).amedP.i8medQ.(P^a)smor(Qp;S): 
[*27l-39]  D  :  P  smor  Q :.  D  h  .  Prop 

*275-31.     l-:Pe5.PsmorQ.D.Qe^ 

Dem. 

-»  — » 

h  .  *27l-4 .  D  h  :  Psmor  Q .  a  !  No  -^  med'P .  D  .  a  '■  N„  n  med'Q  (1) 

h  .  *204-21 .  *214-6  .  D  1- :  P  6  Ser  n  Ded .  P  smor  Q .  D  .  Q  e  Ser  a  Ded  (2) 
h  .  (1)  .  (2) .  *2751 .  D  h  .  Prop 

*275-32.     h:P6^.D.^  =  Nr'P    [*275-3-31] 

*275-33.     h  .  0  6  NR  [*275-32  .  *256-54] 


*276.     ON  SEEIES  OF  INFINITE  SUB-CLASSES  OF  A  SERIES. 

Summary  o/"  *276. 

The  subject  of  the  present  number  bears  the  same  relation  to  ^  as  that  of 
*274  bears  to  t).  We  shall  consider,  in  the  present  number,  the  arrangement 
of  all  the  infinite  sub-classes  of  a  series  (together  with  A)  by  the  principle  of 
first  differences,  i.e.  the  relation 

■Pel  D(-Cls  induct  wi'A), 

where  P  is  the  given  series.  This  relation  we  will  call  Pg.  It  consists 
of  Pel  with  its  field  limited  to  terms  not  belonging  to  C'P^  (*276-12).     It 

will  (under  a  certain  hypothesis)  contain  a  part  similar  to  P„  namely  P^i 
with  its  field  limited  to  complements  of  finite  sub-classes  of  G'P.  Hence 
if  Peco,  Pf  will  contain  an  17,  whose  field  is  composed  of  the  complements 
of  members  of  CP,  (*276'2).  The  field  of  this  17  will  be  a  median  class  of  P«. 
We  shall  find,  also,  that  Pg  e  Ser,  if  Pe  ft  (*27614),  and  Pg  e  Ded,  if  Pe  O  infin 
(*276-4).    Hence 

*27641.     \-:Peo>.O.Pge0 

Also,  since  Pew. D. 01 'O'P 62"°,  and  since  C"P,eN„,  we  shall  have  C"P9e2'*' 
(*276"42).     This  result  is  important,  since  it  gives  the  proposition 

*276-43.     h.G"0  =  2^ 

The  proof  that  Pg  is  Dedekindian  if  P  is  an  infinite  well-ordered  series 
is  somewhat  complicated.  We  proceed  by  proving  that  every  sub-class  of 
C'Pg  has  a  lower  limit  or  a  minimum.  In  this  proof,  we  observe  first  of  all 
that 

C'P  =  B'Pg.A  =  B'Pe  (*276-121). 
Hence  G'P  is  the  lower  limit  of  the  null-class,  and  A  is  the  minimum  of  t'A ; 
also  if  K  is  any  existent  sub-class  of  G'Pg,  other  than  I'A,  we  have 

liimn  (P«)'«  =  limin  (P«)'(/f  -  I'A). 
Hence  if  we  can  prove 

K  C  G'Pg  .a!K.A~e«:.D^.E!  limin  (Pg)'*  (A), 

we  shall  have  CI  ex'G'Pg  C  Q'limin  (Pg), 


222  SERIES  [part  V 

whence,  by  *214"12'14,  we  shall  have  Pg  e  Ded.  Thus  we  have  to  prove  (A), 
ie.  «  C  D'Pfl .  a !  « .  D^ .  E  » limin  (Pe)'K,  which  is  *276-39.  To  prove  this 
proposition,  consider  mmp'(s'K—p'K).  This  exists  unless  wel;  it  is  the 
first  term  which  belongs  to  some  members  of  k  but  not  to  others.  Those 
members  of  k  to  which  it  belongs  precede  (in  the  order  Pj)  those  to  which  it 

does  not  belong.     Let  us  call  those  to  which  it  belongs  Tp'k,  so  that 

^  <— 

Tp  =  «  \  {\  =  «  n  e'minj'(s'K  —p'k)}. 

Put  also  Pm'«  =  minp'(s'K  — p'k)     Dft, 

so  that  we  may  put  Tp'k  =  k  n  e-'Pm'it  Dft. 

Then  if  we  put  A=k\{\Ck.X^k),  Tp  and  A  fulfil  the  hypotheses  of  *258, 
and  we  have 

A{Tp,K)en,. 

The  series  A  {Tp, «)  proceeds  to  smaller  and  smaller  sub-classes  of  k,  of  which 
any  one,  say  X,  consists  of  terms  which  come  earlier  (in  the  order  Pj)  than 
any  other  sub-class  of  ic  not  belonging  to  \.  By  *258'231,  the  s&T\esA{Tp,  k) 
has  an  end,  namely 

p'(Tp*AyK. 

If  this  is  not  null,  it  must  consist  of  a  single  term,  which  will  be  the  minimum 
of  K  (*276'33).     But  if  it  is  null,  we  proceed  as  follows.     Put 

Pti'K  =  s'^  {(a\)  .\6{Tp^AYK.y  =  p'-Kn  P'Pm'M     Dft. 
Then  Pa'/c  will  be  the  lower  limit  of  k. 

In  the  first  place,  we  easily  prove  that,  since  p'{Tp^A)'K  =  A,  if 

\6(?p*4y«-t'A, 

Pm'^   and   Tp'X   both   exist  (*276'341).     Hence   every  member  of  k  has 

predecessors  in  k,  and  k  has  no  minimum.     In  the  second  place,  we  show 

that 

\{A(Tp.K)}fi.^llM.D. (P«,'\) P (Prn'fi)  (*276-34-342), 

->  -♦ 

and  that  aeX.D.p'Xn P'P^'T^  =  an P'P,n'\   (*276-353). 

Hence  we  find  that 

\{A(Tp,K)]/j,.aefi.D. p'\ n  P'Pr„.'X  =p'ii n  P'P^'X  =  « r. P'PJX  . 

D  .  p'X  n'P'Pr^'X  C  p'fi  n'P'PJ/i . 

{p'lJL  n'P'PJ/j,)  n'P'P^'X  =  p'Xr^'p'PJ^, 
whence  it  follows  that 

\  6  {Tp^Ayic  -  fc'A  .  D  .  p'\  n  P'P^'X  =  Pti'«  n  P'PJX, 

whence,  by  what  was  stated  above, 

X  e  (Tp^AYk  .aeX.D.an  P'P„'X  =  Pa'ic  n  P'Pm'^^  (*276-354). 


SECTION  F]      on   series  OF   INFINITE  SUB-CLASSES  OF  A  SERIES  223 

Again,  if  ae/t,  the  product  of  all  the  members  of  {Tp^A)'k  to  which  a 
belongs  is  a  member  of  (Sp^AYk  to  which  a  belongs,  but  if  we  call  this 

product  X,  Pm'X<^ea.  (because,  if  P^'Xea,  aeTp'X,  which  is  contrary  to  the 
definition  of  A,).     Hence  we  have 

a  6  « .  D  .  (Pti'«)  P«  a  (*276-36). 
It  only  remains  to  prove 

(Pti'«)  P»^  ■  3  ■  (aa) .  a  e  « .  oPg/S  (*276-3r). 
By  the  hypothesis,  and  the  definition  of  P^k,  we  have 

(a^, X) . \ e {Tp^AYk  .zep'Xn  P'P„,'\ - j8  . Pt,'«  nP'2  =  0n  P'z. 
Since  this  involves  E !  Pm'K  it  involves  X  =^  A,  hence,  by  what  was  stated 

above,  it  involves 

->  -»  -» 

(gir,  X, a) .  X 6 (Tp*Ayie  .aeX.zean  P'P^'X - /3  .  Pti'«  nP'2=^n  P'z. 

-*  — > 

Hence  we  obtain  ^nP'zC  P^'k  n  P'P^'K 

and  Pa'KnP'P^'X  =  anP'P^'\, 

— » 
whence  yS  n  P'^^  C  a. 

Hence,  by  *17011,  we  have  aPg/S. 

This  completes  the  proof  of  P^'k  =  tl  (Pa)'«  (*276"38).  Hence,  combining 
the  two  cases,  we  find  that  «  has  a  minimum  if  g  lp'{Tp*AyK,  and  a  lower 
limit  if  ~a  !  p\Tp^AyK.     Hence  E !  limin  (P«)*«,  in  either  case  (*276-39). 

This  completes  the  proof  of  Pg  e  Ded  if  P  e  O  infin. 


*27601.  Pe  =  Pel  D(-Cls  induct  ut'A)     Df 

*27602.  J.  =  S/3(;SCa.i8  +  a)  Dft  [*276] 

*276-03.  P„'X  =  minp'(s'X-p'X)  Dft  [*276] 

*276-04.  Tp  =  X/i  {/i  =  X  n  e'P^'X}  Dft  [*276] 

*276-05.  Pt/«  =  s'f^{(aX).X6(rp*i!)'«;-i'A.7=^'XnP'P^'X}    Dft[*276] 

*276-l.       h :  aP«y8 .  =  .  «,  /3  e  (Cl'O'P-  Cls  induct)  w  I'A  .  g !  o  -  /3  -  P"(/S  -  a) 
[*1701 .  (*276'01)] 

*27611.     H  : :  P  e  fi  .  D  : .  aP«  (8 .  =  : «,  /3  e  (Cl'C'P  -  Cls  induct)  u  I'A  : 

(a«)  .zea-^.anP'2  =  ^nP'z     [*251-35  . (*276-01)] 
*27612.     h :  C'P ~  e  1 . 3 .  P,  =  Pel  D  (-  C'P,)    [*274-l7  .  *2761 .  *170- 1] 
*276121.  I- :  C'P  ~  e  Cls  induct .  D  . 

B'Pt  =  A  .  B'Pe  =  C'P .  C'Pg  =  (Cl'C'P  -  Cls  induct)  w  t'A 
[*l70-31-32-38.(*27601)] 


224  SERIES  [part  V 

*276122.  h  :  a'P  ~  6  0  u  1 . 3  . 0'P,  w  G'Pe  =  Cl'O'P    [*276-121 .  *27417] 
*276123.  h  :  a'P  ~  6  Cls  induct .  s  .  g !  P^  [*2761-121] 

*27613.     h  :  O'P  ~  e  0  w  1 .  D .  Nc'C'P,  +„  Nc'CP^  =  2^^'^'^ 

[*2r6-122.*116-72] 
*27614.     hiPefl.D.PgeSer    [*251-36 .  (*276-01)] 
*276-2.       h  :  P  6  0) .  D  .  (O'P  -)"(C1  induct'O'P-  I'A)  e  X„  n  i^d'Pg 


I- .  *24.-492  .  D  I- .  (0'P-)"(C1  induct'a'P-  I'A)  sm  (01  induct'O'P  -  t'A)    (1) 

f- .  (1) .  *274-27  .  D  h  :  Hp .  D  .  (G'P  -)"(C1  induct'C'P  -  I'A)  e  N„  (2) 

l-.*200-361.*263-47.D 

->  ->  <- 

h  :  Hp  .  aP(,/3  .  ^  6  «  -  y3 .  a  r.  P'^:  =  (8  n  P'^ .  7  =  ;8  u  P'« .  D  . 

7  n  P'^  = /8 n P'^  =  0 n  P'^: .  ^:  6  a  —  7 . 7~ 6  Cls  induct . 

[*276-ll.*l70-16]       3  .  aP«7 .  7P«;S  (3) 

1- .  *263-47  .  D  h  :  Hp  (3) .  D  .  O'P  -  7  6  Cls  induct  (4) 
h  .  (3)  .  (4) .  *276-ll .  D 

h  :  Hp .  aPfl^ .  D  .  (37)  .C'P-ye  Cls  induct .  aPe7 .  yPgl3  (5) 
h.*120-7l.Transp.D 

I- :  Hp  .  a  e  CI  induct'CP  -I'A.D.  (G'P  -  a)  ~  e  Cls  induct  (6) 

h  .  (6) .  *276121 .  D  h  :  Hp .  D  .  (G'P  -)"(C1  induct'C'P  -  I'A)  C  G'Pg  (7) 
h  .  (2) .  (5) .  *271-1 .  (7) .  D  h  .  Prop 

The  following  propositions  constitute  the  proof  of 
P  6 12  infin  .  D  .  Pg  e  Ded  (*276-4). 

*276-3.       1- : .  E !  P^'X, .  D :  a  e  Tp'X .  s  .  a  e  X .  P^'X  e  a :  P»'X,  =  minp'(s'A,  -  p'X) 
[(*27603-04)] 

*276-301.  I- :  Peli .  \  C  Cl'O'P-  t'A  .X^eOul.D.E!  P^'X, .  E !  Tp'X 
Bern. 

l-.*40-12-13.  Dl-:.^'\  =  s'\.D:a,/8e\.Da,p.«  =  /S  (1) 

h  .  (1) .  Transp .  *40-23  .  D  I- :  Hp .  D  .  g  !s'«-p'« . 
[*250-121]  D  .  E !  minp'(s'K  -  p'«) :  D  h  .  Prop 

*276-302.  h  :  E !  P^'X, .  D  .  P^'X  6  p'fp'X  - 1)'\     [*276-3] 

*276303.  \-.Tp(-A. (Tp)^ G A 
Dem. 

h  .  *276-3  .      D  h  :  /iTpX .  D .  /i  C  X  (1) 

l-.*276-302.DI-:/irp\.D./t+X  (2) 

h  .  (1)  .  (2) .  *201-18  .  3  h  .  Prop 


SECTION  F]      on   series   OF   INFINITE   SUB-CLASSES   OF   A   SERIES  225 

*276'304.  \-:^l{A  {Tp,  k)}\.D  . /iC\.p'XCp'/jL.  ij,^\.  p'X^p'ii 
[*276-302-303]  * 

*276-305.  V.A(Tp,K)eD,    [*2o8-201 . *276-303] 

*276-31.     l-:P6n.a!\.\C  CVO'P  -  t'A .  \  ~  e  D'Tp .  3  . 

X,  6  1  .  s'\  =  p'\  =  I'X     [*276-301 .  Transp] 

*276-32.     l-:.Pen.\~60«-<l.\CD'P8.D: 

-»  -» 

P^'A,  6  p'Tp'X  -  p'A, :  a  6  \  .  D„  .  a  r.  P'P^'A,  =  p'X  n  P'Pm'X 

Dem. 

V  .  *276-301 .     D  h  :  Hp .  D  .  E !  Tp'\ .  E  !  P^'X .  (1) 

[*276-302]  D  .  P™'\  e^'Tp'X  -  p'\  (2) 

h  .  (1) .  *276-3 ;  D  h  :  Hp .  D  .  P'F,„'X  n  s'X,  =  P'P^'X  n  p'X  (3) 

h  .  (2)  .  (3)  .  D  I- .  Prop 

*276-321.  I- :  Hp  *276-32  .  a  e  Tp'\ .  ^  e  \  -  Tp'X .  0 .  aPg^ 
Dem. 
h  .  *276-3-32  .  D  h  :  Hp .  D  .  P^'X  e  a  -  /3 .  a  n  P'Pm''>^  =  /8  n  P'P^'X . 
[*27611]  D  .  0P9/3  Oh.  Prop 

*276-322.  h  :  Hp *276-32  .  /j, e (Tp^Ayx .ae/i.^eX- /j-.D  .  aPg^ 

Dem. 
h  .*40"23.Dh  :. pC(Tp*Ay\ ."s^l p  :  fj-ep  .aeii.^6\- /i.  D^,a,p  ■  aP«/8 :  D : 

aep'p.  fieX-p'p.':ia,fi.aPg0     (1) 
h  .  (1) .  *276-321 .  *258-241 .  D  h  .  Prop 

*276-33.     h  :  Hp  *276-32  .  a !  p'(Tp*Ayx .  D  . 't'p'(rp*^)'\,  =  min  {PeYX 

Dem. 
h  .  *276-31 .  *258-231 .  D  h  :  Hp .  D  .p'{Tp*Ayx  e  1  (1) 

I- .  (1) .  *276-322  .         Dh:liip.a6\-p'{Tp*Ay\.:>.{i,'p'(Tp^A.y\]Pea  (2) 
F- .  (1) .  (2) .  D  h  .  Prop 

*276-331.  I- :  Hp  *276-32  .  g  !  p'(Tp*Ay\ .  D  .  E  !  min  (Ps)'^    [*276-33] 

*276-34.     h  :  Hp  *276-32  .  fj,Tp\ .  /^  e  B'Tp .  D  .  (P„'X)  P  (P^V) 

h  .  *276-3 .        3  h  :  Hp .  3  .  PJ\  =  minp'(s'X  -  p'\)  (1) 

h  .  *276-3-304  .  3  h  :  Hp .  D  .  P^'/*  e  (s'X  -  p'X)  (2) 

1- .  *276-302  .     3  h  :  Hp  .  3  .  P^'Xep'/j. .  P^'fi ~  ep'p, . 
[*1312]  3.P^'X  +  P^'/i  (3) 

h  .  (I) .  (2)  .  (3) .  3  I- .  Prop 

R.  &  W.  III.  15 


226  SERIES  [part  V 

*276-341.  f-:.Hp*276-32.p'(rp*4)'X  =  A.D: 

Pr„."iTp*Ayx  C  P"P„,"(Tp*Ay\ .  P^'\Tp*Ay\  ~  e  Cls  induct : 

/i  e  {Tp*Ayx  -  t'A .  D^ .  E  !  Tp',x  .  E  !  P^V 
Dem. 

V  .  *258-231 .  *2r6-301  .  D 

h  :.  Hp .  D :  /i  6 (rp*^)'X  -  iy(Tp*Ayx .  D  .  E  !  Tp'yu, .  E  !  PJfA, : 
[*276-34.Hp]    D:f,€iTp*AyK.E\P„,',i.D.(PJfi)P(P„,'Tp'fi)      (1) 
I- .  (1) .  *261-26  .  Transp  .  D  I- .  Prop 

*276-34:2.  h  :  Hp  *276-341 .  \  {A  (Tp, «)}/..  E !  P^V  ■  ^  •  (^m'^)  P  (PmV) 

Dem. 
h  .  *276-3  .  D 

I- ::  Hp  :  p  C  (rp*4)'K  .  g  !  p  .  g  !  jj'/a  :  D  :.  P^'pV  e s'pV  - iJ'p'/o  :• 
[*40-lll ]  D  :.  (aa)  .aep'p.  Pm'p'p  e  «  :  (a«)  -aep'p.  Pm'p'P ~  e  a  :. 

[*40'1.*11"26]  D:.\e/3.DA:(aa).a6X.PTO'p'/3  6a:  (ga)  .ae\.P„'p'p<^ea:. 
[*40-l-ll]  D:.\6/j.DA.P^ype(s'X-y\)  (1) 

h  .  (1) .  *276-302  .  D  h  :.  Hp  (1) .  D  : 

Tp'X  ep.Xep.'D^.  PJX  e  p'Tp'X  .  PJp'p  ~  6  p'Tp'X  : 

[*13-12]  D:Tp'\ep.Xep.D;,.P„'X  +  P„yp  (2) 

h  .  (1) .  (2) .  *276-3  .  D  h  :  Hp  (1) .  Tp'X  ep.Xep.D.  (P^'X)  P  {Pm'p'p)        (3) 
t- .  (3) .  *276-34 .  *258-241 .  D  I- .  Prop 

*276-35.     l-:.Pen.«;CD'Pfl.a!/«:.  p'{Tp^A)'K  =  A  .  D  : 

X  e  {Tp*AyK  -  I'A  .  D  .  P^'X  e^'^p'X  n  P'P^'Tp'X 
Dem. 

h  .  *276-341 .  D  h  :  Hp  .  X  e  {Tp^AyK  -  t'A .  D  .  E  !  Tp'X  . 

[*276-302-34]  D  .  P^'X  e  jj'Tp'X  n  P'PJTp'X :  D  I- .  Prop 

*276-351.  I- :  Hp  *276-35  .  D  .  P^"(rp*^)'/«;  C  Pa'/c 
Dem. 

l-.*276-3.  DI-.~E!P»'A  (1) 

h  .  *276-35  .  (*276-05) .  D  h  :  Hp  .  X  e  (Tp*^)'«  -  t'A .  D  .  P^'X  e  Pt,'«       (2) 
h  .  (1) .  (2) .  D  I- .  Prop 
*276-352.  h  :  Hp  *276-35  .  D  .  P^'k  ~  e  Cls  induct     [*276-35r341] 
*276-353.  f-  :  Hp  *276-35  .  X  e  (2V*^)'k  .X{A{Tp,k)]/i  .  ae  jj,  .:i  . 

p'X  n  'P'PJX  =  p'fi  r^'P'P^'X  =  an  P'P^'X 
Dem. 
l-.*276-304.  DhiHp.D.aeX  (1) 

h  .  *276-35-31 .  Transp  .  D  h  :  Hp  .  D  .  E  !  P^'X  .  X~  eO  u  1  (2) 

I- .  (1) .  (2) .  *276-32 .      D  h  :  Hp  .  D  . _p'X n  P'P^'X  =  an  P'P^'X       (3) 


SECTION  F]      on   series   OF   INFINITE   SUB-CLASSES   OF   A   SERIES  227 

h  .  (3)  .  D  1- :.  Hp  .  D^yS  6/i  .':>p.ar^  P'P,„'X  =  /8  n  P'P^'X  (4) 

1-  .  (4)  .  D  h  :  Hp  .  D  .  a  n IP'PJX  =  p'fi  n  'P'P,^'X  (5) 

h  .  (3) .  (5) .  D  h  .  Prop 

*276-354.  I- :  Hp  *276-35  .  \  e  (Tp*AyK  .aeX.D. 

Pa'K  n'P'PJX  =  p'X  nlP'P^'X  =  an  P'P^'X. 
Bern. 

h  .  *276-353  .  D 1- :  Hp  .  g  !  ^ .  \  {^  (Tp, «))  /i .  D . 

->  — > 

[*22-47]  0.(p'fin'P'Pj,jL)nP'P^'XCp'\n'P'PJ\     (1) 

1- .  *276-353  .  3  h  :  Hp .  ytt  {4  (rp , «)}  X .  D . ;, V  '^  ^'i'mV = i)'\  n  P'P^V 
[*276-342]  Cij'XnP'P^'X,    (2) 

h  .  (1)  .  (2) .  *276-305 .  D 

h  :Hp . ^L6(Tp*AyK - I'A .  D  .(p'^nP'PJ^) n P'PJXCp'X nP'PJX    (3) 
h  . (3) . *276-32  . (*27605) .  D  h  .  Prop 

*276-355.  h  :  Hp  *276-35 .  a  e  «: .  D  .  (gX) .  X  e  (Tp*AyK .  a  e  X .  P^'X  ~  e  a 
Bern. 

f- .*40-l .  D  h  :.  Hp  .  D  :  (gX) .  X6(2V*4)'« .  a~  eX : 
[*276-305]  D  :  (gX)  :  X  e  (Tp*  J.)'*  .  a  ~  e  X  :  /i  {^  (?>, «)}  X .  D^ .  a  e /i     (1) 

h  .  *40-l  .D\-:./ji{A  (Tp,  «)}  X .  D^ .  aeyii  :  X  =2)'J.  (Tp, k)'X  :  D  .  aeX     (2) 
h  .  (1)  .  (2) .  Transp .  D 

1- :  Hp  .  D  .  (gX,  /t)  .  /*,  X  e  (Tp*  J.)'/e  .  X  =  ?pV .  a  e  /x  .  a  ~  e  X . 
[*276-3]  D  .  (a/t)  . /I e (Tp*AyK  .ae/i.  P^'fJ. ~ e a  :  D  h  .  Prop 

*276-36.     h  :  Hp  *276-35  .  a  e  «  .  D  .  (Pu'k)  PgO 

l-.*276-351-355-354.D 

I- :  Hp  .  D  .  (gX)  .  X  e  (Tp*^)'*  .  P^'XePu'/c  -  a .  P^'KnP'P^'X  =  a  nP'P^'X  . 
[*276-352]  D  .  (Pa'«)  P^a :  D  h  .  Prop 

*276-361.  h  :  Hp  *276-35  .  D  .  «  C  P^'Pti'/e    [*276-36] 

*276-37.     h  :  Hp  *276-35  .  (Pa'x)  Pg^  ■  3  ■  (ga) .  a  e  k  .  oPeyg 
Bern. 

h  . *276-l  1 .  D  h  :  Hp  .  D  .  (g^) . ^: e Pa'x  -  /S . Pu'/c nP'z  =  ^ nP'z . 

[(*27605)]  D  . (gi?, X)  . X e (Tp*^)'k  .zep'Xn P'P,n'\ - ^ . 

Pa'fcr^P'z^^n'P'z. 
[*276-354]  D .  (gz,  X,  o) .  X  e  (rp*^!)'^  .ae\.zea-0. 

'P'z CP'PJX . a n P'P^'X  =  /8  n P'P^'X . 

[Fact.*276-304]     0  .{'^z,a).a€K  .zea-0  .^  nP'zCa. 
[*170-11]  3  .  (ga) .  a  e  « .  oPg^  Oh.  Prop 

15—2 


228  SERIES  [part  V 

*276-38.     l-iPeO./cCD'Pe.a!*:.  f(Tp^A )'«  =  A  .  D  .  P^'k  =  tl  {Pt)'K 
[*276-361-37] 

*276-381.  h  :  P  6  n  .  K  C  D'P, .  a  !  «  .  ^'(Tp*^)'*  =  A  .  D  .  E  !  tl  (Pfl)'« 
[*276-38] 

*276-39.     h  :  P  6  fl .  K  C  D'Pj .  g  !  «  .  D  .  E  !  limin  {P^Yk.     [*2r6-331-381] 

In  the  following  proposition,  the  only  reason  why  P  has  to  be  infinite  is 
in  order  that  Pg  may  exist ;  for  "  Ded  "  was  so  defined  as  to  exclude  A. 

*276-4.       h  :  P  e  O  infin  .  D  .  P^  e  Ded 

Dem. 
h.*276-121.*207-3.*20518.DI-:Hp.D.liminp'A  =  O'P.liminp't'A  =  A     (1) 
1- .  *206-7  .      D  h  :  Hp .  «  C  G'Pe .  A  e  k  .  «  +  t'A .  D  . 

prec  {PgYK  =  prec  (Pe)'(K  -  I'A)     (2) 
I- .  *205-192  .  D  h  :  Hp  (2) .  D  .  nim  {P^Yk  =  min  (Pe)'(K  -  I'A)  (3) 

h  .  (2) .  (3) .    D  h  :  Hp  (2) .  D  .  li^n  {P;)'k.  =  lii^n  {PeY{ic  -  t'A) . 
[*276-39]  D .  E !  limin  (P,)'k;  (4) 

h  .  (1) .  (4) .  *276-39  .  D  H  :.  Hp .  3  :  K  C  G'P, .  D, .  E  !  limin  (Pe)'* : 
[*214-12-14]  D  :  Pfl  e  Ded  :.  D  h  .  Prop 

*276-41.     l-:P6ft).D.P«60    [*276-2-414 .  *2751] 

*276-42.     I- :  P  6  o) .  D  .  CP^  e  2No 
i)em. 

I- .  *27613  .  *274-27  .  3  h  :  Hp  .  D  .  Nc'CP^  +„  N„  =  2Ko  (1) 

I- .  *276-2  .  D  h  :  Hp  .  D  .  (g^) .  Nc'0'P«  =  /^  +„  N„ . 

[*123-421]  D  .  Nc'O'Pe  +„  X„  =  Nc'O'Pg  (2) 

I- .  (1)  .  (2)  .  D  h  .  Prop 

*276-43.     I- .  G"d  =  2»<» 

Bern. 

h  .  *276-42-41  .Dl-:a!a).D.a!  C'd  n  2K« . 

[*100-42.*27533.*152-71]  D  .  G"0  =  2^0  (1) 

h.*276-ll.*263-101.    :>\-:co  =  A.D.e  =  A  (2) 

h  .  *263-101 .  *116-204 .  D  h  :  «  =  A .  D .  2K»  =  A  (3) 

|-.(2).(3).                      DI-:qj  =  A.D.O"0  =  2«»  (4) 

I- .  (1) .  (4) .  D  h  .  Prop 

The  propositions  proved  in  the  present  number  are  capable  of  being  to 
some  extent  generalized.     Also  we  can  prove 

i-  .  6  =  ((0  exp,.  m)  + 1. 


SECTION  F]      on   series   OF   INFINITE   SUB-CLASSES   OF   A   SERIES  229 

For  this  purpose,  we  prove  first  that  if  P,  Q  are  well-ordered  series,  P^  is 

Dedekindian  (except  that«lf  ~  E  !  B'P,  P^  has  no  last  term) ;  i.e.  we  prove 

P.Qen  .  D  :  XC  C«PO .  a  !\.  Da  .  E  !  limin(P«)'\. 

For  this  purpose,  assuming  X  C  O'P^  ■  a  !  ^,  put 

Qr„.'X  =  ming'^  (s'X'y  ~  e  0  u  1), 

Tp'X  =  X  n  #  {M'Qm'X  =  mmp's'X'Qrn'X], 

A  —  Xp,(ij,CX .  fi^ X), 

(PQYX  =  s'N  {(a/x) .  /.  e  {Tp*Ayx .  N=(p'^i)  IQ'Qm'i^}. 

We  can  then  show,  by  steps  closely  analogous  to  those  in  the  proof  of  P^eDed, 
that  we  have 

a  !  p'{Tp*Ayx .  D  .  ^LY{Tp*Ayx  =  min  (P«)'X, 

~a  lp'(Tp*Ayx .  D  .  (PQyx  =  prec  (P«)'X,, 

whence,  in  either  ease,  E  !  limin  (P«)'A,. 

Hence  we  have 

|-:P,Q6n.E!£'P.D.P«6Ded, 

f-:P,QeIl.~E!£'P.^~6C"P«.D.P«-f*^6Ded. 

We  have  therefore  h  .  (a>  exp^  w)  -j- 1  C  Ded. 

We  now  have  to  prove 

Q  6  (to  exp^  «)  -j- 1 .  3  .  a  !  No  "  med'Q. 

For  this  purpose,  it  will  be  sufficient  to  prove 

P  6  o) .  D  .  a '.  No '>med'(PO. 

The  No  in  question  will  be  the  class  of  those  members  of  G'(P^)  in  which, 
from  a  certain  point  onward,  the  correlate  of  every  member  of  C'P  is  B'P. 
We  have 
ilf  (PO N.  =  :M,  Ne(C'P  t  G'PVG'P : 

(aa;)  .xeC'P.  MlP'x  =  NfP'x .  (M'x)  P  (JV'a;). 
Now  consider  the  relation 

L  =  M  [P^'x  ^Jyi  P,'x  c;  (l'B'P)  t  P'P/a;, 

where  (ilf'P,'«)P2/. 

Then  M  (P^)  L  .  L  (P^)  K    Also  L  has  B'P  for  the  correlate  of  every  term 
after  Pi'a;.     Hence  it  is  determined  by  the  correlates  of  the  terms  up  to  and 

including  P^'x.     Thus,  putting  z  =  Pi'x,  we  have  to  consider  the  class  of 
relations 

fji  =  x  {(a^) .  ^  6  a'P .  z  6 1  ^  cis .  a'x  =  p*'^  .  D'Z  c  cp}. 


230  SERIES  [part  V 

If  X  6  /i,  Z  vy  (I'B'P) '[  P'maxp'Q'Z  is  a  member  of  G'P^.  We  have  there- 
fore only  to  show  that  /a  e  No. 

To  show  that  /tteNo,  we  observe  that  if  X  e /j,,  D'X  and  d'X  are  both 
inductive  classes;  hence  each  has  a  maximum.  Let  X  and  X'  be  two 
members  of  fi,  and  let  us  put 

X  =  maxp'D'Z .  x'  =  maxp'D'Z' .  y  =  maxp'Q'Z .  y'  =  maxp'a'X'. 

If  x  =  fip  and  y  =  vp,  put  « +p2/ =  (yu. +e  i')p.  Then  put  X  before  Z'  if 
{x  4-p  y)  P  («'  +p  y'),  or  it  x+py  =  x  +p  y' .  yPy".  But  if  a;  +p  y  =  «'  +p  y'  and 
y=  y',  i.e.  if  x  =  x'  .y  =  ]f ,  take  the  immediate  predecessors  of  m,  y,  x',  y'  in 
D'Z,  Q'Z,  D'Z',  Q'Z'  respectively,  and  apply  the  same  tests  to  them,  and 
so  on,  until  we  come  to  a  difference.  In  this  way,  we  obtain  an  arrangement 
by  last  differences  (in  a  slightly  extended  sense),  and  this  arrangement  is 
easily  shown  to  be  an  m.     Hence  /a  e  No.     Hence  the  class 

"  =  7  {(aZ)  .  Z  6  yii .  7  =  Z  vy  {I'B'P)  f  V'maxp'Q'Z} 

is  an  No,  and  we  have  already  shown  that  it  is  a  median  class  of  G'P^, 
Hence 

t-:P6a).D.a!N„n  vaeA\PP). 

The  same  class  will  be  a  median  class  of  P^  -^ Z,  if  Z~ e G'P^.     Hence 

I- :  Pe  <B  .  Z'^eC'P'' .  D  .  g  !  No  n  ^A'{P''-^Z). 

Hence,  by  what  was  proved  earlier, 

V  -.Peto.Zr^eG'P^  .:>  .{P'-^Z)ee, 

i.e.  h  .  (o)  exp,  w)-\-\  =  6. 


PART    VI. 

QUANTITY. 


SUMMARY  OF  PART  VI. 

The  purpose  of  this  Part  is  to  explain  the  kinds  of  applications  of 
numbers  which  may  be  called  measurement.  For  this  purpose,  we  have 
first  to  consider  generalizations  of  number.  The  numbers  dealt  with  hitherto 
have  been  only  integers  (cardinal  or  ordinal) ;  accordingly,  in  Section  A,  we 
consider  positive  and  negative  integers,  ratios,  and  real  numbers.  (Complex 
numbers  are  dealt  with  later,  under  geometry,  because  they  do  not  form 
a  one-dimensional  series.) 

In  Section  B,  we  deal  with  what  may  be  called  "  kinds "  of  quantity :. 
thus  e.g.  masses,  spatial  distances,  velocities,  each  form  one  kind  of  quantity. 
We  consider  each  kind  of  quantity  as  what  may  be  called  a  "  vector-family," 
i.e.  a  class  of  one-one  relations  all  having  the  same  converse  domain,  and  all 
having  their  domain  contained  in  their  converse  domain.  In  such  a  case  as 
spatial  distances,  the  applicability  of  this  view  is  obvious ;  in  such  a  case 
as  masses,  the  view  becomes  applicable  by  considering  e.g.  one  gramme 
as  +  one  gramme,  i.e.  as  the  relation  of  a  mass  m  to  a  mass  m'  when  m 
exceeds  m'  by  one  gramme.  What  is  commonly  called  simply  one  gramme 
will  then  be  the  mass  which  has  the  relation  +  one  gramme  to  the  zero 
of  mass.  The  reasons  for. treating  quantities  as  vectors  will  be  explained  in 
Section  B.  Various  different  kinds  of  vector-families  will  be  considered,  the 
object  being  to  obtain  families  whose  members  are  capable  of  measurement 
either  by  means  of  ratios  or  by  means  of  real  numbers. 

Section  C  is  concerned  with  measurement,  i.e.  with  the  discovery  of 
ratios,  or  of  the  relations  expressed  by  real  numbers,  between  the  members 
of  a  vector-family.  A  family  of  vectors  is  measurable  if  it  contains 
a  member  T  (the  unit)  such  that  any  other  member  S  has  to  y  a  relation 
which  is  either  a  ratio  or  a  real  number.  It  will  be  shown  that  certain 
sorts  of  vector-families  are  in  this  sense  measurable,  and  that  measurement 
so  defined  has  the  mathematical  properties  which  we  expect  it  to  possess. 

Section  D  deals  with  cyclic  families  of  vectors,  such  as  angles  or  elliptic 
straight  lines.  The  theory  of  measurement  as  applied  to  such  families 
presents  peculiar  features,  owing  to  the  fact  that  any  number  of  complete 
revolutions  may  be  added  to  a  vector  without  altering  it.  Thus  there  is  not 
a  single  ratio  of  two  vectors,  but  many  ratios,  of  which  we  select  one  as  the 
principal  ratio. 


SECTION    A. 

GENERALIZATION  OF  NUMBER. 

Swmmary  of  Section  A. 

In  this  section,  we  ftrst  define  the  series  of  positive  and  negative 
integers.  If  /i  is  a  cardinal,  the  corresponding  positive  and  negative 
integers  are  the  relations  +o/i  and  -„/*,  or  rather  (+|.At)  t  (NC  induct  —  I'A) 
and  (— ,.  jj)  ^  (NC  induct  —  I'A).  (It  will  be  observed  that  a  positive  integer 
must  not  be  confounded  with  the  corresponding  signless  integer,  for  while 
the  former  is  a  relation,  the  latter  is  a  class  of  classes.)  We  next  proceed  to 
numerically-defined  powers  of  relations,  i.e.  to  R",  where  v  is  an  inductive 
cardinal.  We  have  already  defined  R^  and  R^,  but  for  the  definition  of  ratio 
it  is  important  to  define  R"  generally.  If  ii  e  1  — >  1 .  iJpp  G  J,  we  shall  have 
R''  =  R,,  and  if  ReSev,  we  shall  have  {Riy  =  Ry.  But  these  equations  do 
not  hold  in  general,  and  in  particular  if  RCI  and  v=^0,  R''  =  R  but  i?„  =  A. 
After  a  number  devoted  to  relative  primes,  we  proceed  to  the  definition 
of  signless  ratios,  thence  to  the  multiplication  and  addition  of  signless  ratios, 
thence  to  negative  ratios,  and  thence  to  the  generalized  addition  and 
multiplication  which  includes  negative  ratios.  (In  the  case  of  ratios,  signless 
ratios  are  identical  with  positive  ratios.  This  is  possible  because  signless 
ratios,  unlike  signless  integers,  are  already  relations.)  We  then  proceed 
to  the  definition  of  real  numbers,  positive  and  negative,  and  to  the  addition 
and  multiplication  of  real  numbers.  At  each  stage,  we  prove  the  com- 
mutative, associative,  and  distributive  laws,  and  whatever  else  may  seem 
necessary,  for  the  particular  kind  of  addition  and  multiplication  in  question. 

Great  difiiculties  are  caused,  in  this  section,  by  the  existence-theorems 
and  the  question  of  types.  These  difficulties  disappear  if  the  axiom  of 
infinity  is  assumed,  but  it  seems  improper  to  make  the  theory  of  (say)  2/3 
depend  upon  the  assumption  that  the  number  of  objects  in  the  universe 
is  not  finite.  We  have,  accordingly,  taken  pains  not  to  make  this 
assumption,  except  where,  as  in  the  theor}'  of  real  numbers,  it  is  really 
essential,  and  not  merely  convenient.  When  the  axiom  of  infinity  is 
required,  it  is  always  explicitly  stated  in  the  hypothesis,  so  that  our 
propositions,  as  enunciated,  are  true  even  if  the  axiom  of  infinity  is  false. 


*300.     POSITIVE  AND  NEGATIVE  INTEGERS,  AND  NUMEEICAL 

RELATIONS. 

Summary  of  *300. 

In  this  number,  we  introduce  three  definitions.  We  first  define  "  TJ"  as 
meaning  the  relation  which  holds  between  fi+aV  and  /t  whenever  /j.  and  v 
are  existent  inductive  cardinals  of  the  same  type,  and  v  +  O,  and  /i+c"  exists 
in  this  type.  Thus  U  is  the  relation  "  greater  than "  confined  to  existent 
inductive  cardinals  of  the  same  type.     The  definition  is  : 

*300-01.     C/'=(+„l)poC(NCinduct-t'A)    Df 

Then  if  fj,  is  an  inductive  cardinal  which  exists  in  the  type  in  question, 

Uy,  and  Ufj,  are  the  corresponding  positive  and  negative  integers,  where  "  Uf^" 
has  the  meaning  defined  in  *121.  It  will  be  observed  that  OU^/i,  so  that 
f/j»  exists,  when  fi  exists  in  the  type  in  question.  We  prove  (*300'15)  that 
Z7  is  a  series,  and  (*300'14)  that  its  field  consists  of  all  existent  inductive 
cardinals  of  the  type  in  question,  its  domain  consists  of  all  its  field  except  0, 
and  its  converse  domain  of  all  its  field  except  the  greatest  (if  any).  If  the 
axiom  of  infinity  holds,  G'U  consists  of  all  inductive  cardinals. 

It  will  be  observed  that  IT  arranges  the  inductive  cardinals  in  descending 
order  of  magnitude.  The  reason  for  choosing  this  order  instead  of  the 
converse  is  that  U  is  less  required  in  its  serial  use  than  as  leading  to  the 
functional  relations  U^.  As  explained  at  the  end  of  Part  I,  Section  D,  there 
is  a  broad  difference  between  functional  and  serial  relations,  and  this 
produces,  where  one  relation  (or  its  derivatives)  is  to  have  both  uses,  a 
certain  conflict  of  convenience  as  to  the  sense  in  which  the  relation  is  to  be 
taken.  Considered  as  arranging  the  integers  in  a  series,  U  would  naturally 
be  defined  so  as  to  arrange  them  in  ascending  order  of  magnitude,  as  was 
done  with  "N"  in  *123.  But  considered  as  functional  relations,  it  is  more 
convenient  and  more  natural  to  take  (say)  +,,  1  as  the  relation  to  start  with, 
and  —el  as  its  converse.  Thus  we  want  /lUiV  when  /j,  =  v+e'i-,  i.e.  we  want 
U^'v  =  v+cl;  and  this  requires  the  definition  of  U given  above. 

We  prove  in  this  number  (*300'23)  that  Z7is  well-ordered,  and  (*300-21-22) 
is  either  finite  or  a  progression.     We  also  prove  (*300'17'18)  that,  if  /j,  is  any 


236  QUANTixr  [part  vi 

typically  indefinite  inductive  cardinal,  /i  and  /i+el  will  belong  to  C'U  if  U 
is  taken  in  a  suflficiently  high  type. 

Our  other  two  definitions  in  this  number  define  two  classes  of  relations 
which  are  of  vital  importance  in  the  theory  of  ratio.  We  define  numerical 
relations,  which  are  called  "  Rel  num,"  as  one-one  relations  whose  powers  are 
all  contained  in  diversity,  i.e.  we  put 

*30002.     Rel  num  =  (1  ->  1)  n  ^ (Pot'R  C  BA'J)     Df 

We  thus  have  (*300-3) 

1- :  i?  6  Rel  num  .  =  .  Rel^l  .  R^^QJ. 

It  will  be  remembered  that  the  hypothesis  i26(Cls->l)u(l— >Cls).  J?poG  J 
played  a  great  part  in  *121,  and  in  all  later  work  which  depended  upon  *121. 

When   both    R   and   R  fulfil  this  hypothesis,   we   have  R  e  Rel  num,   and 
vice  versa.     We  prove  (*300'44)  that  if  (t  is  an  inductive  cardinal  not  zero, 

and  P  is  a  series,  then  P^  is  a  numerical  relation,  and  so  is  P„.     If  P  is  an 

endless  well-ordered  series,  finid'P  {i.e.  the  class  of  relations  P„)  is   what 

(in  Section  B)  we  shall  call  a  vector-family :  P^  is  the  vector  which  carries 
a  term  a  steps  along  the  series. 

In  order  to  be  able  to  deal  with  zero,  we  have  to  consider  the  application 
of  ratios,  not  only  to  such  relations  as  are  numerical  in  the  above  sense, 
but  also  to  relations  contained  in  identity,  because  a  relation  contained 
in  identity  may  be  regarded  as  a  zero  vector,  so  that  {e.g.)  if  P  is  a 
series,  /  f"  G'F  will  have  a  zero  ratio  to  P,  if  a-  is  an  inductive  cardinal 
other  than  0. 

We  therefore  introduce  a  class  "  Rel  uura  id "  consisting  of  numerical 
relations  together  with  such  as  are  contained  in  identity;  these  maybe  called 
numerical  or  identical  relations.  They  may  be  defined  as  one-one  relations 
whose  powers,  other  than  R„,  are  contained  in  diversity,  because,  if  i?  G  /, 
there  are  no  powers  other  than  Rg.     Thus  we  put 

*30003.     Rel  num  id  =  (1  ->  1)  n  E  (Potid'i?  -  I'Ro  C  Rl'J)     Df 

and  we  then  prove 
*300-33.     I- .  Rel  num  id  =  Rl'J  w  Rel  num 

For  the  application  of  ratio,  it  is  important  to  know  under  what  circum- 
stances there  exists  a  numerical  relation  R  such  that  R^  is  not  null.  We 
prove  (*300'45)  that  if  a-  is  an  inductive  cardinal,  and  P  is  a  series  of 

o--|-ol  terms,  then  {B'P)  P^{B'P).  Now  we  also  prove  (*300-44)  that  if 
P  is  a  series,  and  R  =  Pi,  P„  =  Ra  and  R  is  a  numerical  relation.  Hence 
it  follows,  by  *262-211,  that  if  o-  =)=  0  and  a  is  a  class  of  o-  +„  1  terms,  there  is 


SECTION  A]  POSITIVE   AND  NEGATIVE  INTEGERS  237 

a  numerical  relation  R  whose  field  is  of  the  same  type  as  a  and  for  which  R„ 
exists.     Remembering  *39©'14  (quoted  above),  this  proposition  is : 

*300-46.     hzaea'U-i'O.D. 

(gP,  iJ) .  P  6  ((X  +e  l)r .  -K  =  Pi .  -R  6  Kel  num  .  t'G'B  =  t^'a- .  (B'B)  R„  (B'R) 
We  have  conversely  (*300-47) 
I- :  £  eRel  num  .  g  !  iJ^  .  D  .  o-eNCind  .  g  !  (o-  +„  1)  a  t'G'B  .  o-  n  t'G'Bea'U, 
where  "  NO  ind  "  has  the  meaning  defined  in  *126,  i.e.  "treNCind"  means 
that  o-  is  a  typicallj'  indefinite  cardinal. 

The    number   ends    by   propositions    proving  (*300'52)   that    U^  is   a 
numerical  relation,  that  (*300'57) 

±l{Ui),n(U^)^.:i.^XaVeG'U.^X^v  =  T}X^fi, 
and  analogous  theorems. 

*30001.     U  =  (+0  l)po  t  (N C  induct  -  I'A)  Df 

*30002.     Rel  num  =  (1  -♦  1)  n  ^ (Pot'i?  C El'J)  Df 

*300-03.     Rel  num  id  =  (1  -»  1)  n  ^  (Potid'P  -  l'B„  C  Rl'J)    Df 
*3001.       h  :/t£/'i'.s./i(+ol)p„i;./i,i/eNC  induct -t'A     [(*300-01)] 
*30011.     [■:./iUv.  =  : 

II,  V  e  NC  induct  -  t'A  :  (gX.) .  X,  e  NC  induct  —  t'O .  jit  =  v  +o^  : 
=  :  fi,ve  NO  induct  —  t'A :  (g;\)  .\=fO./*=v+eX.: 
s  :  /i,  1/  6  NC  induct  -  t'A :  (a\) .  \  e  NO  -  c'O . /j.  =  v +a\ 
[*300-l .  *120-42-428-462-452  .  *110-4] 

«300'12.     i-:fjLUv.  =  .fi,ve NO  induct  —  t'A .  i/ < /t . 

=  .  fi,ve  NC  induct .  v  <  /* . 

=  •  fie  NO  induct .  i/  <  /* 
[*300-ll .  *ll7-3  .  *120-42  .  *ll7-26  .  *110-6  .  *117-15  .  *120-48] 
*30013.     V.UQ.J    [*30012 . *117-42] 

*300-14.     \-.G'U=  NC  induct  -  t'A  .  'D'U=  NC  induct  -  t'A  -  t'O . 

Q'  CT  =  NO  induct  n  D  (g  !  i;  +e  1)  =  «>  (i'  +b  1  e  NO  induct  -  t'A) . 

B'U=Q 
[*30012  .  *117-511  .  *120122  .  *101-241  .  *120-429-422] 

*30015.     h  -  fTe  Ser     [*300-13  .  *1 20-441] 

*30016.     h  :  a e  Cls induct .  D .  N„c'a  eC'U r,  t^'a .  N„c'a eG'{Ul  t^'a) 


Bern. 


h  .  *120-21  .  D  h  :  Hp  .  D  .  N„c'«  e  NC  induct  (1) 

h  .  *103-13  .  D  h  .  Noc'a  4=  A  (2) 

I- .  *103-11  .  3  h  .  N„c'a  e  fa  (3) 
h  .  (1)  .  (2)  .  (3)  .  *300-14  .  D  h  .  Prop 


238  QUANTITY  [PAET  VI 

*30017.     h  :  /i  e  NC  ind  .  D  .  (ga)  .  fint'aeC'U  .  fieG'iUl  f'a) 
Dem. 

V .  *126-1 .  D  I- :  Hp .  D  .  (ga) .  a  e  Cls  induct .  /j,  =  Nc'a .  g  !  /t . 

[*103-34]  D  .  (ga) .  a e Cls  induct  .fint'a=  N„c'a    (1) 

I- .  (1)  .*300-16  .  D  I- :  Hp .  D  .  (aa)  .finfaeCU.  (2) 

[*65-13]  D.(aa)./z6C"fr./iC«'a. 

[*63-5]  D.(ao)./xeC"?7./t6«"a  (3) 

h  .  (2) .  (3) .  D  h  .  Prop 

*30018.     I- :  /A  6  NC  ind  .  D  . 

(a<r)  .  2^  6  (7'( (7 1  «"<7)  .  i/J.  +^1)  n  t'a  6  C'U .  ^  e  a'(U  l  t^a) 
[*126-13-15  .  *300-l7-14] 

*300181.  h:  ^e'NC'md.  fin  t'aeG'U.D. 

2"  n  f'a.  eG'U.(fi+^l)n  f'a  e  C  U .  fj.  n  f'a  e  a'U 
[*1 26-23  .  *300-14] 

*300-2.       h  :  Infin  aK.D.U=N'j„ 

Here  N  has  the  meaning  defined  in  *263'02. 
Bern. 

t- .  *300-1 .  *1251 .  D  h  :.  Hp .  D  :  /iZZi; .  s  .  ju,.  1/  6  NC  induct .  fi  (+„  l)po  v . 
[*120-l.*91-574]  =  .  K+o  1)*  0  .  ;tt  (+„  l)p„  V . 

[*96-13]  =-/*{(+cl)r(+^'0]po^- 

[(*263-02.*l 20-01)]  =  .  vN^ /i :.  D  h  .  Prop 

*300-21.     h  :  Infin  ax .  D  .  CTe  o     [*300-2 .  *263-12] 

*300-22.     I- :  ~  Infin  ax .  D  .  C/"  6  fl  induct 
Dem. 

\- .  *125-16-24 .  Transp .  D  h  :  Hp .  D  .  C"  ?7  e  Cls  induct  (1) 

I- .  (1) .  *300-15  .  *261-32  .  D  h  .  Prop 

*300-23.     h.Ueil     [*300-21-22] 

*300-231.  \-:/iU^v.  =  .fi,ve^C  induct  -  I'A.fi^v+^l . 
=  .fie NC induct  —  I'A  .  fi  =  v+cl. 
=  .  /*  6  NC  induct  -  t'A  -  I'O  .v  =  fi—„l . 
=  .ve  NC  induct  —  t'A .  i/  =  /t  — ^  1 
Dem. 
l-.*300-15-12.*201-63.D 


[*120-429]  = 
[*ll7-25]    = 


fi,ve  NC  induct  —  t'A  .  i/  <  yu. :  ~  (gX) .  i;  <  \ .  \  <  /x : 
/*,  1/  e  NC  induct  -  I'A  .v  <./jLiv+el'^/ji. /j.'^v+al : 
/i,  1/ e  NC  induct  —  I'A . /A  =  1/ +(.  1  (1) 


I- .  (1) .  *120-422-424-423  .  D  h  .  Prop 


SECTION  a]  positive   AND   NEGATIVE   INTEGERS  239 

*300-232.  f- :  /t  6  NO  induct .  D . 

U,.  =  (+0  /t)  t  (^C  induct  -  t'A) .  U„  =  (-„  /*)  I  (NO  induct  -  t'A) 

For  the  definition  of  f/).,  see  *121'02. 

i)em. 
I- .  *121-302  .  *300-15  .Dl-:pC/'„o-.  =  .aea'l7.p  =  (r. 
[*300-14.*110-6]  =  .  p,  o-  €  NO  induct  -  t'A .  p  =  o-  +„  0  (1) 

h  .  *260-22-28  .  *121-332  .  D 

f- :  ^/^  =  (+c  IJ)  t  (NC  induct  -  I'A) .  D  .  f7^+„i  =  (+„  /*)  p  (NO  induct  -  I'A)  |  fT-j 
[*300-231]  =  (+„  /i)  t  (NC  induct  -  t'A)  |  (+„  1)  I  (NO  induct  -  t'A) 

[*120-45-452]  ={+e(/x+ol)}D(NC  induct -t'A)  (2) 

h.  (1).  (2).  Induct.  Dh.  Prop 

*300-24.     h  :  /i  e  NC  induct .  D .  D'  J/^  =  U^'ij,  =  NO  induct  n  i)  (v  >  ;u,) 
[*300-232 .  *lir-31 .  *120-45] 

*300-25.     h  :  /i  6  NC  induct .  D  . 

B'U^  =  U'fj.  =  NC  induct  n  t>  {v  < /j,)  =  U (0  i-  fi) 
[*300-232-24-12] 

*300-26.     V:fi6G'U.  =  .,j,U^0.  =  .±lU^l  (G'U)    [*300-23214  .  *110-6] 

Here  the  fi  in  "  U^"  is  of  higher  type  than  the  /m  in  " /leCU,"  because 
the  interval  f7  (0  i— i  /i)  is  composed  of  members  eiach  of  which  is  of  the  same 
type  as  ft,. 

*300-3.       l-:i2eRelnum.  =  .E6l->1.2?poGJ.  =  .J26l->l.Pot'i2CRl'J 
[(*300-02)] 

*300-31.     I- :  ii  6  Eel  num  iA.  =  .Rel^l.  Potid'jR  -  i'iJ„  C  Rl'J 
[(*300-03)] 

*300311.  V\RQ.I.  =  .Ra  =  R.  =  .B  =  I\C'R 
Bern. 

h  .  *20113-18  .    Dh:.iJ;G/.D:a;6  0'i?.D.i?j|5'a;niij^'a!  =  i'a;    (1) 

|-.(l).*12111.Dh:i2G7.  D  ./pC'i2Gi2„. 

[*121-3]  D.i?„  =  /pO'i2. 

[*72-92]  D.Ro  =  R  =  I[C'R  (2) 

l-.*121-3.  D[-:Ro=B.':>.R<lI  (3) 

h  .  (2) .  (3) .  D  h  .  Prop 

*300-312.  h  :  i?  G  / .  D  .  Potid'i?  =  I'R  =  t'i2„     [*300-311 .  *50-72  .  Induct] 

*300-313.  h:Re  Rel  num  id  .  D  .  i2*  -  E,  G  J    [*300-31 .  *91-55] 


240  QUANTITY  [part  VI 

*300-32.     l-:i?6Relnumid.  D.i?o  =  /rC"i2 
Dem. 

V  .  *91-35  .  D  H  .  / 1^  C'iS;  6  Potid'i?  -  Rl  ex'J"  (1) 

f- .  (1) .  *300-31 .  3  h  .  Prop 

*300-321.  h  :  E  6  Rel  num  id.iJ=t=i2„.D.i2GJ".a!i?     [*300-31] 

*300-322.  h  :  ii  G  J^.  D  .  i?p„  n  i?„  =  A 
Dem. 

h.*121-3.Dh:a;i?p„3/.a;4=2/.D.~(a;i2„2/)  (1) 

l-.*50-24.DF:.Hp.D:~(a;Ba;):  (2) 

[*91-57]  D  : a;i2p„ x.:3.x (B^„ \R)x. 

[*121-103.(2)]  D .  E  («  i-i  «)  4=  i'« . 

[*121-11]  D.~(a;ii„«)  (3) 

1- .  (1) .  (3) .  D  I- .  Prop 

*300-323.  h  :  i?  6  Rel  num  id  .  E  =t=  i?„ .  D .  iilpo  G  J 
Dem. 

h  .  *300-321-322  .  D  I- :  Hp  .  D  .  Epo  n  E„=  A . 

[*300-32]  D  .  iJpo  n  /  p  C"i?  =  A :  D  h  .  Prop 

*300-324.  h  :.  E  6  Rel  num  id .  3  :  E  G  / .  v .  E  e  Rel  num 

Dem. 
h  .  *300-311-323 .  D  h  :.  Hp .  D  :  ie  G  / .  V .  iJpo  G  J  (1) 

I- .  *300-32  .  D  h  :  ii  6  Rel  num  id  .  i?p„  G  J .  D  .  Potid'iJ-i'i?„=Pot'i2  (2) 

I- .  (2) .  *300-31 .  D  h  :  i?  e  Rel  num  id .  Ep„  G  J" .  D  .  Pot'E  C  Rl' J  (3) 

I- .  (1) .  (3) .  *300-3  .  D  1- .  Prop 

*300-325.  [■■.RQI.D.Rel&el  num  id 
Dem. 

I- .  *300-312  .  D  h  :  Hp  .  D  .  Potid'i?  -  I'R,  =  A  (1) 

t- .  (1) .  *300-31 .  D  h  .  Prop 

*300-326.  I-  :  E  e  Rel  num  .D.ReRel  num  id 
Dem. 

i-.*121-3.*300-3.      DI-:Hp.D.iS;„~6Pot'ii  (1) 

1- .  *121-302 .  *300-3 .  3  I- :  Hp  .  D  .  i2„  =  / 1'  C'i?  (2) 

I- .  (1) .  (2)  .  *91-35  .    DI-:Hp.D.Potid'i2-i'i?o  =  Pot'iJ  (3) 

I- .  (3) .  *300-3-31 .  D  h  .  Prop 

*300-33.  h  .  Rel  num  id  =  Rl'/  u  Rel  num  [*300-324-325-326] 

*300-34.  1- .  A  6  Rel  num  [*300-3  .  *72-l] 

*3004.  h  .  Rel  num  =  Onv"Rel  num  [*300-3 . *91-522] 

*300-41.  I- .  Rel  num  id  =  Cnv"Rel  num  id  [*300-31 .  *91-521] 


SECTION  a]  positive  AND  NEGATIVE  INTEGERS  241 

*300-42.     I- :  jK  e  Eel  num  .  D .  Pot'R  C  Eel  num 
Dem. 

I- .  *91-6  .  *92-102  .  D 

I- :  E  6  Rel  num  .  P  e  Fot'B  .  D  .  P  e  1  -»  1 .  Pot'P  C  Bl'J . 

[*300-3]  D  .  P  e  Rel  num  Oh.  Prop 

«300'43.     I- :  E  6  Rel  num  id  .  D  .  Potid'J?  C  Eel  num  id 
Dem. 

I- .  *300-325-312  .       D  h  :  i?  G  / .  D .  Potid'iJ  C  Eel  num  id  (1) 

h.*300-325.  Dt-./pO'EeEelnumid  <2) 

h  .  (2) .  *300'42-326  .  3  h  :  iJ  e  Eel  num  .  D  .  Potid'fl  C  Eel  num  id    (3) 
h  .  (1) .  (3) .  *300-33  .  D  h  .  Prop 

*300-44.     l-:.PeSer.o-eNCind.D: 

P„,  P„  6  Eel  num  id  :  o-  4=  0  .  D  .  P,  =  (Pi),  .  P„,  P„  e  Eel  num 
Dem. 

h  .  *121-302  .  *300-325  .  D  I- :  Hp .  o-  =  0 .  D  .  P„,  P,  e  Eel  num  id     (1) 

h.*260-28.  Dl-:Hp.o-  +  O.D.P,  =  (P,)a  (2) 

h  .  *300-3  .  *260-22 .        D  h  :.  Hp .  D  :  P^  e  Eel  num  : 

[*121-5.*300-42]  D  :  <r  4=  0 .  D  .  (PiV  e  Eel  num  . 

[(2).*300-4]  D  .  Pa,  P„  e  Eel  num  (3) 

h  .  (1) .  (2) .  (3) .  D  h  .  Prop 

*300-45.     h  :  o-  6  NC  ind .  P  e  (o-  +c  l)r  ■  3  •  (B'P)  P,  (B'P) 

For  the  definition  of  (a-  +„  1),,  see  *262-03. 

Dem. 

h.*26212.Dh:Hp-D.P6a.a'P€o-+el. 

[*202181.*261-24]      D  .  (B'P)  P,  (B'P)  Oh.  Prop 

*300-46.     \-:<7€a'U-L'0.D. 

(gP,  P) .  P  e  (o-  +0  l)r .  -B  =  Pi .  -R  6  Eel  num .  t'G'B  =  «„'<r .  (B'B)  B,  (B'B) 

Dem. 
h  .  *30014 .  D  h  :  Hp .  D  .  (ga) .  a  e  Cls  induct .  t'a  =  t^'a .  a  e  o-  +o  1 . 
[*262-211]  D  .  (gP) .  P  e  (a  +„  1), .  t'C'P  =  t,'a-  - 

[*300-45]  D .  (gP)  .  P  e  (o-  +„  1 V .  f'O'P  =  t,'a- .  (B'P)  P„  (B'P) . 

[*300-44.*261-22]         D  .  (gP,  i?) .  P  e  (o-  +e  l)r  ■  P  =  Pi  -  P  e  Eel  num  . 

t'G'B  =  </o- .  (P'P)  B^  (B'B) :  D  h  .  Prop 

B.  &  W.  Ill,  16 


242  QUANTITY  [part  VI 

*300-47.     hiiJeRelnum. giiZ^.D. 

o-eNCind  .  a  !  (a+„  1)  r^  t'G'R  .  a  n  t'G'Rea'U 
Dem. 

I- .  *121-11 .  D  1- :  Hp  .  D  .  (ga;,  y) .  -B  («  m  y)  e  o-  +c  1  ■ 
[*121-46]  D  .  o-  +„  1  6  NO  ind .  a  !  (o-  +c  1)  n  t'C'R . 

[*120-422.*300-14]      D  .  o-  e  NO  ind .  g  !  (o-  +c  1)  "  t'G'B . 

ant'G'Rea'U-.Oh.Prop 
*300-48.     h:i2G/.7/=t=O.D.i?„  =  A 
Dem. 
\- .  *300-312-311 .  *91-55  .  D  h  :  E  G  7  .  D  .  J?^  =  /  f  C"i2  (1) 

l-.(l).*121-103.DI-:i?G/.D.i?(a;M2/)=C"i?nt'a;ni'2/  (2) 

h  .  (2)  .  *121-11 .    D  1- :.  i?  G 7 .  D  :  xR,y  .  =  .G'Rn  I'x ni'yev+^l. 
[*ll7-222]  D.r+el^Nc'i'a;. 

[*117-54.*120-124]  D.i/+„1  =  1. 

[*110-641.*120-311]  D  .  1/  =  0  (3) 

h  .  (3) .  Transp .  D  h  .  Prop 

*300-481.  h  :  i?  6  Rel  num  id  .  i/  +  0  .  D  .  (i?„),  =  A .  {R,\  G  R, 

Bern. 

h  .  *300-32-48  .  D  I- :  Hp .  D  .  (R,\  =  A  (1) 

h  .  *300-43-32  .  D  f- :  Hp .  D  .  (i?,)„  =  / 1^  G'R, . 

[*121-322.*300-32]  D .  (R,\  G  E„  (2) 

h  .  (1) .  (2) .  D  h  .  Prop 

*300-49.     h  :  B  6  Rel  num  .  A  ~  e  Pot'E .  D .  O'i?  ~  e  Cls  induct 

JDem. 
I- .  *121-5  .  D  h  :.  Hp .  D  :  i/eNCinduct .  D  .  g  !  i2„ . 
[*12111]  D  .  a  !  (z/  +,,  1)  n  Cl'Ci? :.  D  I- .  Prop 

*300-491.  h  :  (gi?) .  E  e  Rel  num  .  A  ~  e  Pot'i? .  D  .  In  fin  ax     [*300-49] 
*300-5.       I-.  CTieRelnum  [*300a5-44] 

*300-51.     h.Uoe Rel num  id  [*300-15-44] 

*300-511.  \-.U^  =  i TJX  [*300-21-22 . *263-491] 

*300-52.     l-:/ieNCind-i'O.D.  f/^eRelnum     [*300-15-44] 
*300-53.     f-.(Xel)tC"C/eRelnumid  [*300-325  .*113-621] 

*300-54.     I- :  Infin  ax .  /,t  e  D't/"  -  I'l .  3  .  (x„ /a)  |;  D' i7e Rel  num 
Bern. 
h.*120-51.  DI-:Hp.D.(x„/i)t:D'f;'6l-»l  (1) 

V  .  *126-61 .  *113-621 .  D  F  :.  Hp .  D  :  (0  {(x,/i)  ^  D'C7}  a- .  D  .  ^  >  o- : 
[*ll7-47-42]  D:((x„/*)pD'fr}p„GJ  (2) 

h  .  (1) .  (2) .  *300-3 .  D  h  .  Prop 


SECTION  a]  positive   AND   NEGATIVE   INTEGERS  243 

*300-55.     l-:a!i?pnE,.D.a!(/3+„l)nf'C"i2.p  =  o-    [*12ril .  *120-31] 
*300-551.  h  :  a  !  J2p  n  E^  .  =  .  a  !  Bp .  p  =  o-  [*300-55] 

*300-552.  h  :  i?  e  Rel  num  .  3  .  (i?|),  G  J?fx„„ 
Dem. 
H.*121-36.    Dh:Hp.^,i;6NOincl-i'0.D.(i?f),  =  i?j>,,,  (1) 

I-  .*300-481  .DI-:Hp.f  =  0.i'  +  O.D.  (i?f).  =  A  (2) 

h  .  *300-32-311 .  *113-602  .Dh:Hp.^  =  0.i/  =  O.D.  (J?f),  =  iJf  x..  (3) 
h.*300-481.*113-602.  D  h  :Hp.  f  4=0  .  i;  =  0  .  D  .  (J2f),ei?fKov  (4) 
|-.*300-47.  DI-:Hp.~(^,i/6NCind).D.(Ej),  =  A      (5) 

I- .  (1) .  (2) .  (3) .  (4) .  (5) .  D  h  .  Prop 

*300-56.     h  :  i?  6  Rel  num  .  g  !  {R(\  n  {R^  ■  3  . 

^x^v  =  vx<,IJ'-{^Xov)r^t'C'Rea'U 
Dem. 

\- .  *300-552  .  D  I- :  Hp  .  D .  a  !  J?f>,„,  A  i?,^.,.  (1) 

I- .  (1) .  *300-55  .  D  I- .  Prop 
*300-57.     l-:a!(C7-j)„n(f7,V.D.^x„i;6C'i7.^x„i;  =  ^x„/x 

h .  *300-5-511-56-552  .  D  I- :  Hp .  D  .  ^  x„  z/  =  i?  x„  ;u, .  a  !  ?7jx..  (1) 

I- .  (1) .  *300-26  .  D  h  .  Prop 

By  *30056,  we  have,  with  the  above  hypothesis,  (^ x^ v) n t'G' Ued'U. 
But  here  the  17  in  Q.'U  is  of  higher  type  than  the  U  in  (^  x,.  k)  n  t'G'U  or  in 
the  hypothesis.  In  the  type  of  the  U  in  the  hypothesis,  we  have  ^x^veC'U, 
not  necessarily  ^x^ved'U. 

*300-571.  V  1.^,7, e'D'U.:i:^\{Ui\f^{Ur;)^.  =  .^x^veG'U.^x^v  =  -nx^fi. 

Dem. 
|-.*300-26.DI-:|x„i'6C"f7.fx„i/  =  ,,Xe/i.D.(^x,i'){t7-fx..Af7-,x„40  (1) 
I- .*121-36  .  D  h  :  Hp .  Hp(l)  ./.  +  0  .  Z/  +  O.D.  f7jx..  =  (^a- i^,x.^  =  (f7,V  (2) 
I- .  *300-32  .  D  h  :  Hp .  Hp  (1) .  i;  =  0 .  D  .  ( [7j),  =  /  p  0'  f7f  . 
[*300-26]  D.0{([7jV}0  (3) 

Similarly  h :  Hp.  Hp(l)  ./4  =  0.D  .0|(f7,)^}  0  (4) 

H  .*113-602 .  D  h  :  Hp .  Hp  (1) .  1/  =  0 .  D  .  /A  =  0  (5) 

l-.(l).(2).(3).(4).(5).Dh:Hp.Hp(l).D.a!(f/^).n(C7,V  (6) 

f- .  (6) .  *300-57  .  D  I- .  Prop 

*300-572.  V;.^^V>'U.:>:<^\{Ui)y.  =  ,^x^veQ'V     I  *300-571  ^ 

16—2 


*301.     NUMERICALLY  DEFINED   POWERS  OF  RELATIONS. 

Summary  of  *301. 

In  this  number,  we  have  to  exhibit  the  powers  of  a  relation  R,  i.e.  the 
various  members  of  Potid'J?,  as  of  the  form  R",  where  o-  is  an  inductive 
cardinal.  We  have  already  had  R^  =  R\R  and  R^  =  R^\ R.  What  we  need 
is  a  definition  which  shall  give 

Now  R"  is  a  function  of  R  and  o- ;  thus  we  have  to  exhibit  R"  in  the  form 
S'ff,  where  8  will  be  a  function  of  R.  That  is,  we  have  to  define  the  relation 
)S  as  a  relation  of  R"  to  cr,  and  S  must  be  such  that,  if  it  holds  between 
R"  and  a,  it  holds  between  R"'^''^  and  0-+0 1.  Thus  we  may  take  /S  as  a  sum 
of  couples,  such  that  if  one  couple  is  R"  ^  tr,  the  next  is  (i?"  \R)  I  (a-  +„  1), 
i.e.  such  that,  if  one  couple  is  Q  ^  cr,  the  next  is  (Q\R)  j,  (o-  +(.  l)i     Now 

(Q I  i?)  4,  (c7 +„  1)  =  (I  i?)  II K  i)'(Q  U). 

Hence,  since  we  want  to  have  R''  =  I\'  G'R,  our  class  of  couples  is 

M[M{(\R)U-,l)}^{{irG'R)  iO}]. 
Calling  this  class  num  (R),  we  may  therefore  put 

i?-'={s'num(i?)}'o-     Df. 
If  we  put  (I  R)  II  (-(.  l)  =  Rp,  the  above  definitions  are 

num  (R)  =  (R^'iil  r  G'R)  i  0}     Dft, 
R''={s'mim{R)Ya-  Df. 

But  the  g,bove  definition  of  Rp  requires  some  modification  before  it  can  be 
considered  quite  correct.     With  the  above  definition,  we  have 

RAQio-)  =  (Q\R)i(a+,l)  (1). 

Now  since  num  (R)  is  defined  by  means  of  (Rp)^,  and  since  the  definition 

of  JSjif  contains  the  hjrpothesis  R"/j,  C  //.,  it  follows  that,  if  num  (R)  is  to  be 
significant,  the  relation  — ^  1  which  appears  in  the  definition  of  Rp .  must 
be  homogeneous,  so  that,  in  (1),  a-  and  tr+^l  must  be  of  the  same  type. 
Hence    a;   though    typically    ambiguous,   cannot    be    typically  indefinite; 


SECTION  a]        numerically  DEFINED  POWERS  OF  RELATIONS  245 

therefore,  if  the  axiom  of  infinity  is  not  true,  we  shall  sooner  or  later  arrive 
at  ff  =  A  as  we  travel  up  tlH  inductive  cardinals.    In  that  case,  we  shall  have 

iJ"-'!  I  (a -e  1) 6 num (R) . (R"-'^ \R)iAe num (R), 

(R'-'^R \R)iAe  num  (R),  etc. 

Now  if  (for  example)  i?  is  a  cyclic  relation,  such  as  that  of  an  angle  of 
a  polygon  to  the  next  angle  to  the  left,  we  shall  not  have 
^T-a  =  ij<r-ci|j2  or  R''-'^\R  =  R''-''^\R\R. 

Hence  s'num  (R)  will  fail  to  be  one-many,  and  i2°'  will  fail  to  exist.  Hence 
it  becomes  desirable  to  restrict  a-  to  cardinals  which  exist  in  some  assigned 

type,  i.e.  to  replace  -„  1  by  (— ^  1)  ^  (NO  induct  —  t'A),  i.e.  by  C/i. 

Thus  we  now  put  Rp  =  (|  R)  \\  U^    Dft. 

But  even  this  definition  is  not  quite  complete,  because  the  type  of  U  is 
not  assigned.  It  makes  some  difference  how  the  type  of  U  is  assigned,  for 
if  we  take  as  the  type  of  C'U  a,  type  lower  than  that  of  i'N„c'<'i2,  we  may 
find  that  our  numbers  become  A  before  we  have  ceased  to  obtain  fresh 
powers  of  R. 

For  example,  suppose  the  total  number  of  individuals  were  four,  and  that 

these  were  a, x, y, z.     Let  us  write  x  \,{a,y,...)kv  sc  ]^  a<ax  \,yK) Then 

consider  the  relation  R  =  x  ]^  {a,y)  v)  a  ^  y  v» y  ]^  {x,z).     Then 

R^  =  x  ],{x,y,z)^Jai{x,z)v^y  \,  {a, y), 

R'  =  x\,  {a,y,x,z)yjal  {a,y)vty  \^  {!B,y,z\ 

R*  =  a)l(y,x,z,a)K/al(y,x,z)vyl  {a,y,x,z), 

R'  =  x  l(a,x,y,z)Kia  I  (a,x,y,z)K/y  I  (a,x,y,z). 

After  this,  R^  =  R^\R  =  R' [R''^  etc.  But  up  to  R^,  each  power  of  R  is 
difierent  from  all  its  predecessors.  If  we  take  t'G'U=t''N„cH'G'R,  G'U 
consists  only  of  the  numbers  0,  1,  2,  3,  4,  and  is  thus  inadequate  to  deal  with 
R\  Hence  the  type  in  which  we  take  U  must  be  a  suflBciently  high  type, 
which  must  increase  with  the  type  of  iJ.  Hence  we  take  G'Uin  the  type  of 
t'Noc'i'iJ,  i.e.  in  the  type  of  t^'R.  This  is  secured  by  writing  U  p  i^'R  in 
place  of  17  in  the  definition  of  Rp.     Hence  the  final  definitions  for  R"  are : 

*301-01.    Rp  =  (\R)\\(U^lf'R)  Dft  [*301] 

*30102.     num  (R)  =  (^VK^  T  (^'^)  i  (0  '^  *"-K)}     ^^^  [*301] 

*301-03.     R'  =  {s'nxxm{R)Ya  Df 

The  two  temporary  definitions  5it301'01'02  are  only  to  extend  to  the 
present  number. 


246  QUANTITY  [part  VI 

With  the  above  definitions  we  have 

*30116.     \-:,j,eG'Unf'R.  =  .E\B^ 

*301-2.       \-.R''  =  I[G'R.R'  =  R 

*301-21.     h  :  1/  s  a'  C  n  f  2? .  D  .  iJ-'+'i  =  R-\R 

*301-23.     h:fj,+^veC'UnP"R.:^.  R^+"'  =  R/'\R''  =  R^\Rr 

*301-26.     l-:P6Potid'i2.  =  .(a<7).P=i2'' 

I.e.  the  powers  of  R  are  the  various  relations  R".  This  proposition  might 
have  been  not  universally  true  if  we  had  taken  ?7  in  a  lower  type. 

*301-3.       ViR(lI.<TeG'Unt"R.:i.R''==R  =  R,  =  I[G'R 

It  is  largely  for  the  sake  of  this  proposition  that  we  require  powers 
of  relations  in  dealing  with  ratio,  rather  than  finid'iJ.  For  we  have 
-R  G  / .  <r  =^  0  .  D  .  Ra  =  A,  so  that  R„  does  not  give  what  is  wanted  if 
RGI.  On  the  other  hand  (*301'41),  if  EeRelnum,  we  have  R"  =  R„ 
iiaeG'U r\P'R.  Thus  as  applied  to  numerical  relations,  R^  may  always 
replace  R". 

We  have,  whatever  R  may  be, 
*301-504.  }r:fi,veG'Un  f'G'R  .v^O.D.  (Ri^y  =  iJ^x-" 

The  importance  of  this  number  will  appear  in  connection  with  ratios. 


*301-01.     Rp  =  (\R)\\{U,l.  f'R)  Dft  [*301] 


*301-02.     num  (R)  =  (Rp)^'{{I  T  G'R)  J,  (0  n  t"R)}     Dft  [*301] 

*30103.     iJ''=  {s'num  (i2))'o-  Df 

*301-1.       \-:<rea'(Ul  V'R)  .:>  .Rp'{Q  i  C7)  =  {Q\R)  \,  \{a  +„  1)  n  t^'R] 
[*55-61 .  (*.301-01)] 

*301101.   V:<Tea\Vl  1?'R)  .  =  .  o-  e  Q'  T/n  V>'R  .  =  .  o-  e  Q'  f/" .  <r  C  t^'R 
[*63-5] 

*30ri02.  V:ae(l'{Ult"R).=  . 

(gX)  .  \  e  01s  induct .  g  !  -  X  .  i?  e  «o'X, .  o-  =  Noc'X 
[*30014.*1 03-11] 

*301103.   V:<yea\Ul  P'R)  .  =  . 

(gX.)  .  X  6  CIs  induct  .g!-X.i?6X.(7  =  Njc'X 
[*301-102.*r3-71-72] 

*301104.  \-:aea'(Ul  t^'R) .  =  .  (o-  +„  1)  n  t^'R  e NC induct  -  t'A 
[*301-101.*300-14] 

*301105.  f- :  o-  6  a'(  P  C  P'R) .  =  .  (aX) .  X  e  CIs  induct .  i?  e  X .  o-  +„  1  =  Noc'X 
[*301104] 


SECTION  a]        numerically  DEFINED  POWERS  OF  RELATIONS  247 

*301106.   \-:(7ea'(Ulf'R).  =  . (gX) . \ e Cls induct .  Reto'X.  a-+^l  =  N„c'\ 
[*301-104]         • 

*301107.  h  :  o-  6  a'(  C/"^  f'R)  .  = .  o-  e  NC  ind  .  iJ  e  s'{a  +,  1) 
[*30M06 .  *126-1] 

*30111.     h'.aea'iUl  1^'R)  .  =  .  E  !  Rj,'(Q  J,  a-)     [*3011] 

*30ri2.     \- : M€nnm(:R) .-D  .{'3,P,a).P eVotid'R.cT eO'U ni^'R .M  =  P I  a- 
[*95-22] 

*301-13.     \- :Pl06mim(R). D.P  =  I\-G'R 

Bern. 

h  .  *90-31 .  (*301-02) .  D 

h.:  P  I  fienum  (R)  - 1'{(7 \- C'R)  |  0} .  D  . 

iPi^.){(R,)^\Rp}{(I[G'R)iO}. 

[*30-33.*301-l]  D  .  (P  i  /i) {RphiR  i  1) . 

[*95-22]  D.fiU^l. 

[*300-24]  D./ii  +  O  (1) 

h  .  (1) .  Transp .  D  h  .  Prop 

*301-14.     h:P  i  ^,Qi  fi6niim{R).D.P  =  Q 

Dem. 
V  .  *120-124 .  *90-31 .  D 
h:{Si(/.+„l)}(E^)*{(/ra'i?)iO}.D. 

{S  i  (;.  +„  1)1  {R,  i  (E^)*}  {(/  r  G'R)  I  01  (1) 

h  .  (1) .  (*301-02) .  *3()1-12  .  *300-14  .  D 

h  :  ,Sf  4,  (/i +„  1 )  6  num  (22) .  D  .  S  4,  (/. +c  1)  e -R/'num  (22) .  a  ! /i +„  1 . 
[*301-1] 

D.  (aP,i').p;  1/61^111(2?). ,sfi(/* +ei)=(P|i2)i(i'+„i).  a! /*+ci- 

[*55-202.*120-311] 

D.(aP).PJ,/*6num(22).S4,(M+el)  =  (-P|-B)i(/^+cl)  (2) 

h  .  (2) .  D  h  :.  P  4,  /i,  Q  i  M  e  num  (22) .  Dp,  Q  .  P  =  Q :  D  : 

;Sf4,(|,x+el),ri0i*+ol)enum(22).Ds,i..;S=2'  (3) 

I- .  (3) .  *3011213  .  Induct .  D  h  .  Prop 

*301141.  I- .  a's'num  (22)  =  C'Un  1^'R 
Dem. 

h  .  *3011 .  D 

h  :  o-  e  Q'  U"  n  f '22  .  a-  e  a's'num  (22)  .  D  .  (<r  +,.  1)  e  a's'num  (22)         (1) 

H  .  (1)  .  *300-14  .  Induct .  3  h  .  Prop 


248  QUANTITY  [part  VI 

*30115.     H  .  s'num  (E)  e  1  ^  Cls 
Dem. 

\-  .*301-14>  .Oh  :  M,N€num(R)  .'3^ia'M  na'N  .D  .  M  =  N     (1) 
h  .  (1) .  *72-32  .  D  h  .  Prop 

*301-16.     b:fieO'Ur^f'B.  =  .^lR^     [*301141-15 .  (*301-03)] 

*30r2.       i-.Ro^I^G'R.R'^R  [*301-13-16-1  .(*30103)] 

*301-201.  h  :  V  e  C'U  n  f'R  .:y  .{R'  I  v)  e num  (E) 
Dem. 

\- .  *30116  .  (*301-03) .  D  I- :  Hp  .  D  .  i?"  {s'num  (R)}  v . 
[*4.1-11]    D  •  (gJlf ) .  If  6  num  (iJ)  .  R^Mv  . 
[*301-12]  D .  {'S^M,?, a-) .Memim{R) .  ilf  =  P  i  a- .  R'Mv . 
[*55-13]    D.(E''4,v)6num(iJ):DI-.Prop 

*301-21.     \-:v€a'Un  t"R .  D  .  R'+'^  =  R''\R 
Dem. 

\- .  *301-1-201  .  D  h  :  Hp .  D .  i?''+»i  J,  (,;  +„  1),  (R-'  |  i?)  |  (v  +« 1)  e  num  (R) . 
[*301-14]  D.ii-+»i  =  JB''|i?:DI-.Prop 

*301-22.     h  :  E !  iJ" .  D  .  i?"  e  Potid'E     [*301-2011216] 

*301-23.     h  :  ,j,+^v  e  G'U  n  t^'R  .D  .  RI-+"'  =  Ri'\R''  =  R-'lRi^ 
[*301-21 .  Induct] 

*301-24.     h  :.  <7  6  NO  ind  :  /i<  o- .  z^  <  /i  .  D^,  „ .  E''  +  E" :  D  . 

2)  em. 

h  .  *120-442  .  D  h  :  Hp  .  /t<  o- .  1/  <  o- .  i?''  =  E" .  D  .  /*  =  K       (1) 
h  .  (1) .  *73-14  .  *301-15  .  D 

h  :  Hp  .  D  .  Nc'P  {(a/t) .  /t  <  ff  .  P  =  i?"}  =  Nc'^  (/t  <  o-)  (2) 

h.  (2).  *1 20-57.  Dh.  Prop 

*301-241.  I- :  Hp  *301-24  .0  .  a  nt''Rea'{Ul  V'R)  .  R'+'i^  =  R''\R 
[*301-24-104-21] 

*30r242.  }■  :<reC'U  nf'R./j.'^ff  .V  <  /JL.R''  =  R''  .0  .R-'IR^  R''-'f'+<"'+'^ 
m. 

\- .  *120-412-416  .  D  h  :  Hp .  D  .  o-  =  (o-  -e  ya)  +0  /*  ■ 
[*301-23]  D.R''  =  R'-"'-\R^. 

[Hp.*30r21]  D.E°-|i2  =  P°-'=''|i2"+'=i 

[*301-23]  =  iJ-'-oM+c^+ci  .Oh.  Prop 


SECTION  a]        numerically   DEFINED   POWERS   OF   RELATIONS  249 

*301-25.     h:(ao-).P  =  iJ''.D.(a[T).P|i2  =  i?'-    [*301-16-241-242] 

*30r26.     h:P6Potid'i?.  =  .(a(r).P  =  i?-- 
Dem. 

V  .  *301-2&-2 .  Induct  .DViPe  Potid'i? .  D  .  (a<r)  .P=-R'  (1) 

I- .  (1) .  *301-22 .  D  h  .  Prop 

*30r3.       \-:RCI.a6C'Uni^'B.D.R'^=R  =  R„  =  I[C'R 
[*300-312.*301-16-26] 

*30r31.     l-:i2G/.o-  +  O.D.i2„  =  A    [*300  48] 

The  above  proposition  is  the  same' as  *300'48,  but  is  repeated  here  to 
show  the  relations  of  R„  and  R". 

*301-32.     l-:.i2G7.a!ii.D:a!i2,.  =  .o-  =  0     [*300-311  .*301-31] 

*301-4.       h  :  P  e  Rel  num  .  o-  e  G'U  n  t^'R  .D.R^^R" 
Dem. 

h  .  *301-2  .  *121-302  .  D  h  :  Hp  .  D  .  P„  =  P»  (1) 

h.*301-21.*121-332.D 

h  :.  Hp  .  ff  6  a' ?7  A  ^'P .  D  :  P,  =  P' .  D  .  P,+,i  =  R-'+-^  (2) 

h  .  (1) .  (2) .  Induct .  D  h  .  Prop 

*301-41.     hzR.SeRel num  .  g  !  P''  n  P" .  D  .  /j,  =  z/ .  a  !  (/li  +„  1)  n  t'G'R 
[*301-4-16 .  *300-55] 

*301-5.       h  :  /tt  Xe  v  e  O'E/  ft  f 'P .  /i  =f  0  .  V  +  0  .  D  .  (P")"  =  P^x-" 
Bern. 

|-.*117-62-32.       Dh:Ki).O.fi,veC'Unt'"R  (1) 

h  .  (1) .  *301-16-2  .  D  h  :  Hp .  D  .  {Ri^y  =  P^x=i  (2) 

1- .  *301  -23  .  D  h  :  i;  +„  1  6  C  ZJ  n  f 'P .  D .  (P'')-+=i  =  (P")- 1 P*'  (3) 

h.(3).*301-23.D 

\-:(jix^i')+^/jLeG'Un  t^'R  .  (P")"  =  P^X'" .  D  .  (P'')-+'=i  =  pO'Xcv)+c,.  (4) 

I- .  (4) .  *113-67l .  D 

I- :.  (R^y  =  P'^X"- .  3  :  /i  x,(i;+,  1)6  C'Cr  r>  f  P .  D  .  (iJ^y+d  =  ij^xc(.+ci)  (5) 
h  .  *ll7-57r32  .  D  t- :  /^  Xo (z/  +c  1)  e  G'Unt^'R .  D  .  /^  x„  v e C'i7 n  i»'P  (6) 
h  .  (5) .  (6) .  D  h  :.  /*  Xe  1/  6  C" f7n  «»'P .  D .  (P'')-'  =  P''X=-' :  3  : 

/u,  X,  (j/  +c  1)  e  a'CT  A  f  P  .  D  .  (P-y+oi  =  P^xc(v+ci)         (7) 
h  .  (1) .  (2) .  (7) .  Induct  .Oh.  Prop 

*301-501.  \-:fi  =  0.veG'Unf'R.D.  (P")-  =  P^x^^    [*301-2-3] 

*301-502.  hzfi.ve  G'Uf\f'G'R  .0  .  fi  x^veG'Unt^'R.  (/t  x^  i^)  a  i"P  e  C"J7 

Bern, 
y  .  *300-14 .  *120'5  .  D  h  :  Hp .  a  !  (/A  x„  y)  A  ««^    3 .  (^  Xe  I-)  A  i='P  e  O'fT    (1) 
h  .  *300-14  .  D  h  :  Hp  .  D  .  (ga,  /3) .  a  e  ^ .  /8  e  v .  a,  ^  e  i'O'P . 

[*113-251]  D .  (ga,  /3) .  a  X  /3  e  /i  Xo  v .  a,  )S  6  i'O'P  . 

[*113-17.*64-61]  D .  (ga,  |8) .  a  x  /8  e  (/*  x,,  i/)  a  «"P  (2) 

h  .  (1)  .  (2)  .  *65-13  .  D  h  .  Prop 


250  QUANTITY  [part  VI 

*301-503.  I- :  i; 6  NO  ind .  J.  n  t'C'R e  G' U^  {t"G'R) .  3  . «/  a  f'R  eG\Ul  f'B) 

Dem. 

h  .  *S00-14  .  D  h  :  Hp  .  D  .  (ga)  .aevn  t'G'E  . 

[*106-2]  D  .  (ga;,  o)  .  J,  x"a  e  v  n  P'R  (1 ) 

h  .  (1) .  *300-14  .  D  h  .  Prop 

*301-504.  \-:iJ.,veC'Un  f'G'R  .  i/  +  0  .  D  .  (Bf^y  =  E'^xc 
[*301-5-501-502-508] 

*301-505.  h  :.  ^  6  D'[^.  D  :  a !  {{+,  ^)IG'UY  .  =  .^x,veC'U 
Dem. 
h  .  *120-452  .  D  h  :  a  !  {(+„  ^^  G'U}' .  =  .  g  !  {(+« r)D  C'C/"}"  ■  f  ^  (7'C/. 
[*300-232]  =  .  a  !  ( ?7f )■' .  f  6  C"  f/"  (1) 

h  .  (1) .  *300-52  .  *301-4 .  D 

h  :.  Hp  .  D  :  a  !  {(+„  ^)[;  C'C/}- .  =  .  a  !  (fTf), .  f  e  O'f^. 
[*300-572]  =.f  XeveCfTi.Dh.Prop 

*301-51.  \-:.l'neB'U.D:±l\{+,^)lG'UYn{(+,r,)lG'U}^.  =  . 

h  .  *301-505  .  *300-232  .  *301-4 .  D 

[*300-571]  =.fx„v6  0'D'.fx„i/  =  77Xe/t:.Dh.  Prop 

*301-52.     i-:veT>'Un  t"R  .  D  .  (x,,  /a)"  =  x„  (/a") 

1- .  *301-2  .  *113-204  .  *116-204-321 .  D  h  .  (Xe  yti)'  =  Xe(/ii)  (1) 

I- .  *301-21  .Dh-.ve  a'Un  f'R.:>.  (x„  /i)''+'=i=  (x,,  /*)"  |  (x^fi)  (2) 

h  .  (2) .  D  h  :  1/  6  a' [/-n  i^'iJ .  (x„  /i)"  =  x„  dj,") .  D  .  (x„  /i)-'+'i  =  x„  (fj.")  |  (x, ^) 
[*116-52-321]  =x„(/i''+"i)         (3) 

h  .  (1)  .  (3) .  Induct  .Dh.  Prop 


*302.     ON   RELATIVE  PRIMES. 

Summary  of  *302. 

The  present  number  is  merely  preparatory  for  the  definition  and  discussion 
of  ratios.  We  want,  of  course,  to  give  a  definition  of  ratio  which  shall  ensure 
that  /m/v  =  (//,  Xj  t)/(v  Xe  t).  Hence  in  defining  /x/v  in  any  given  type,  we 
cannot  exact  that  fi  and  v  themselves  should  exist  in  that  type,  but  only 
that,  if  p/a  is  the  same  ratio  in  its  lowest  terms,  p  and  o-  should  exist  in  that 
type.  Hence,  if  we  are  not  to  assume  the  axiom  of  infinity,  it  is  necessary  to 
deal  with  relative  primes  before  defining  ratios. 

The  theory  of  relative  primes  is  concerned  with  typically  indefinite  in- 
ductive cardinals  (NC  ind).  It  will  be  observed  that  we  have  three  different 
sorts  of  inductive  cardinals,  namely  NC  ind,  NC  induct,  and  C  U.  NC  ind 
consists  of  typically  indefinite  cardinals,  NC  induct  consists  of  all  cardinals 
of  some  one  type,  and  G'U  consists  of  all  existent  cardinals  of  some 
one  type.  If  the  axiom  of  infinity  holds,  we  have  (7'[/=  NC  induct,  and 
NC  ind  =  sm"NC  induct.  But  neither  of  these  is  true  if  the  axiom  of 
infinity  does  not  hold.  It  will  be  found  that,  where  we  require  typically 
definite  cardinals,  it  is  G'U  or  d'U  ox  D'U  that  we  require,  not  NC  induct; 
that  is  to  say,  we  almost  always  want  to  exclude  A,  and  sometimes  we  want 
to  exclude  the  greatest  existent  cardinal  of  the  type  in  question,  or  to 
exclude  0.  Thus  "NC induct"  will  seldom  occur  in  what  follows.  The 
cases  in  which  C'U  or  D'U  or  Q'ZJ  occurs  are  of  two  sorts:  (1)  where  we 
are  proving  typically  definite  existent-theorems,  (2)  where  we  are  concerned 
with  series,  as  e.g.  in  *300,  where  we  considered  the  series  of  existent 
cardinals,  or  in  *304  below,  where  we  shall  consider  the  series  of  ratios. 
Wherever  series  are  concerned,  we  must  have  typical  definiteness,  because 
the  definition  of  "PeSer"  involves  G'P,  and  therefore  only  a  homogeneous 
relation  can  be  serial.  This  is  a  particular  instance  of  the  fact  that  when  we 
require  numbers  as  apparent  variables  (as  e.g.  in  the  theory  of  real  numbers), 
typical  definiteness  becomes  essential.  Many  propositions  containing  the 
hypothesis  "fie  NC  ind "  (where  /i  is  a  real  variable)  do  not  allow  of  /* 
being  turned  into  an  apparent  variable,  because  this  requires  that  fi  should 
be  fixed  in  one  type,  and  our  original  proposition  may  demand  that  the 


252  QUANTITY  [part  VI 

type  in  which  /i  is  fixed  should  be  a  function  of  /i.  For  example,  *30017 
states 

1- :  /i  6  NO  ind  .  D .  (ga)  ./ji,eC'(Ul  fa). 

If  we  fix  the  type  of  fi,  we  thereby  also  fix  the  type  of  a,  and  the  proposition 
becomes  false  unless  the  axiom  of  infinity  is  true.  In  fact,  the  proposition 
demands  that,  the  greater  ^  becomes,  the  higher  must  the  type  of  a  become. 
"  NC  ind  "  is  not  a  strictly  correct  idea,  and  the  primitive  proposition  *9"13 
does  not  apply  without  reserve  to  propositions  in  which  it  occurs.  We  have 
introduced  it  because  it  immensely  simplifies  the  expression  of  many  proposi- 
tions, and  because  it  is  easy  to  avoid  the  errors  to  which  it  might  give  rise  if 
used  without  remembering  that  it  is  a  concession  to  convenience. 

It  will  be  found  that,  when  we  are  not  concerned  with  existence-theorems, 
or  with  numbers  as  apparent  variables, "  NC  ind  "  is  almost  always  the  notion 
required.  This  applies  to  all  cases  where  we  are  only  concerned  with  addition, 
multiplication,  subtraction  and  division;  it  applies  to  ratios  except  when 
ratios  are  considered  as  forming  a  series,  or  when  we  are  investigating  their 
existence.  As  regards  the  use  of  an  "NCind"  as  an  apparent  variable, 
there  is  a  distinction  between  "  all  values  "  and  "  some  value."  If  we  have 
"pe NCind,"  "(g/a)"  will  often  be  legitimate  when  "(/>)"  is  not.  The 
reason  of  this  is  that,  if  we  are  to  fix  upon  one  typically  indefinite  cardinal, 
it  will  be  possible  to  assign  one  definite  type  in  which  it  exists ;  e.g.  there  are 
at  least  two  classes,  four  classes  of  classes,  sixteen  classes  of  classes  of  classes, 
and  so  on.  But  if  we  are  making  a  statement  about  all  typically  indefinite 
inductive  cardinals,  it  will  not  be  true  unless  there  is  a  type  such  that  our 
statement  holds  of  all  inductive  cardinals  in  this  type. 

In  virtue  of  *300"17,  if  we  have  "joe  NC  ind,"  we  may  replace  it  by  "peC  U" 
if  we  may  take  U  in  as  high  a  type  as  we  please,  or  if,  on  account  of  the  rest 
of  our  proposition,  p  cannot  be  greater  than  some  assigned  inductive  cardinal 
so  long  as  the  hypothesis  of  our  proposition  is  true. 

The  above  remarks  will  enable  the  reader  to  test  the  uses  of  typically 
indefinite  inductive  cardinals  as  apparent  variables,  and  the  passage  from 
propositions  concerning  NC  ind  to  propositions  concerning  C  U. 

We  define  p  as  prime  to  a-  when  both  are  typically  indefinite  cardinals  and 
1  is  their  only  common  factor,  i.e.  we  put 
*302-01.     Prm  =  joff{|0,o-6NCind:p  =  |=XoT.a-  =  i;XoT.Df,,,T-T  =  l}     Df 

In  this  definition,  ^,  r/,  r  may  be  taken  to  be  typically  indefinite  cardinals, 
because,  when  jO=^XoT.o-  =  7;XoT,we  must  have  ^^p.ri^a- .r^p.  t^  a; 
so  that  f ,  7),  T  cannot  grow  indefinitely  (with  a  given  p  and  o-)  while  the 
hypothesis  remains  true. 

We  define  "  (p,  a-)  Prm^  (fi,  v)  "  as  meaning  that  p  is  prime  to  cr,  that  t  is 
not  zero,  and  /a  =  p  x^  t  .  i*  =  o-  x^  r,  i.e.  pja  is  /x/v  in  its  lowest  terms,  and  t  is 
the  highest  common  factor  of  /*  and  v.     The  definition  is : 


SECTION  a]  on  relative  PRIMES  253 

*302-02.     (p,  a-)  Prm^  {,1,  v).  =  . 

p ftm  o- .  T 6 NC  ind  —  I'O . p,  =  p  x^t .  v  =  <t  x^t    Df 

We  then  put  further 
*302-03.     (p,  a)  Prm  (ji,  v).  =  .  (gr)  .  (p,  a)  Prm^  (/i,  v)     Df 

Here  again  there  is  no  ©bjection  to  t  as  an  apparent  variable,  because  t 
must  be  not  greater  than  p,  and  v.  "(./a,  a)  Prm  (/*,  v)  "  secures  that  p/o-  is  /i/v 
in  its  lowest  terms. 

We  also  define,  in  this  number,  the  lowest  common  multiple  and  the 
highest  common  factor. 

Our  definition  of  "Prm"  is  so  framed  that  every  inductive  cardinal  is  prime 
to  1  (*302-12),  that  1  is  the  only  number  which  is  prime  to  itself  (*302"13), 
and  the  only  number  which  is  prime  to  0  (*302"14). 

After  a  number  of  preliminary  propositions,  we  arrive  at  the  result  that 
if  p.  and  v  are  not  both  zero,  and  ^  and  rj  are  not  both  zero,  the  existence  of 
a  couple  p,  a-  which  is  prime  both  to  fi,  v  and  to  f,  »?  is  equivalent  to 
/x  Xo  1;  =  V  x„  ^,  i.e. 

*302-34.     h  : .  /i,  1/,  ^,  7?  e  NC  ind  .  ~  (/i  =  V  =  0) .  ~  (^  =  1;  =  0) .  D  : 

/iXei7=i'Xef.  =  .  (ap,  a)  .  {p,  0-)  Prm  {p.,  v)  .  (p,  a)  Prm  (1^,  77) 

We  have  also 
«302-36.     h  :  /i,  V  6  NC  ind  .  ~  (/i  =  v  =  0)  .  =  .  (gp,  o-)  .  {p,  a)  Prm  (p,,  v) 
*302-38.     I- :  (p,  0-)  Prm  (/*,  v) .  (f,  -n)  Prm  (/*,  v) .  D  .  p  =  f .  o-  =  17 

I.e.  there  is  only  one  way  of  reducing  a  fraction  to  its  lowest  terms. 

We  prove  also  (*30215)  that  if  p,,  v  are  typically  indefinite  cardinals,  which 
both  exist  in  the  type  of  X  (i.e.  p.^,  VKeC'U),  then 

(p,  o)  Prm  {p.,  v).  =  .  (p,  0-)  Prm  (p.^,  v^). 
This  enables  us,  when  we  wish,  to  substitute  typically  definite  cardinals  for 
the  typically  indefinite  p,  and  v. 


«302-01.    Prm  =  pff{p,o-eNCind:p  =  f  XeT.o-  =  i7X<,T.Df,,,T.T  =  l}     Df 

«302-02.    (p,<r)PrmT  (/*,!/).  =  . 

p  Prm  a  .T€  NC  ind  —  I'O  .  p,  =  p  x^r  .  v  =  a  x^t     Df 
Here  p,,  v  are  to  be  typically  indefinite  in  the  same  way  as  p  x^  t  and  a  x^  t. 
Thus  if,  in  some  one  type,  px^T  and  ax^r  are  both  null,  that  does  not  justify 
us  in  writing  (p, a) Prm, (A,  A),  because  there  are  other  types  in  which  px^r 
and  ff  Xj  T  are  not  null.     On  this  subject,  cf.  *126. 

*30203.     (p,  0-)  Prm  (At,  i').  =  .(aT).(p,o-)  Prm,  (/*,!/)  Df 

*302-04.     hcf  {p,,  v)  =  (7t)  {(ap,  a-) .  (p,  a)  Prm,  (/*,  v)]  Df 

*302-05.     1cm  {p.,  v)  =  (7?)  {(gp,  cr,  t)  .  (p,  <r)  Prm,  {p.,v).^  =  px^a  x^  t]     Df 


264  QUANTITY  [PAKT  VI 

*3021.       hz.p  Prm  a  .=  :p,a-e  NO  ind  :  p  =  ^  x^t  .  a  =  rj  x^r  .  Df,,,T  ■  t  =  1 
[(*302-01)] 

*30211.     h  :  p  Prm  c7  .  s  .  o- Prm  p        [*302-l] 

*30212.     h  :  p  Prm  1 .  =  .  p  e  NO  ind    [*302-l .  *117-631-61] 

*30213.     h  :  p  Prm  p.  =  .p  =  l 
JDem. 

l-.*302-12.Dt-:p  =  l.D.pPrmp  (1) 

h  .  *3021 .    D  h  :.  p  Prm  p.D:p  =  lx„p.D.p  =  l: 
[*113-621]  D:p  =  l  (2) 

I- .  (1) .  (2) .  3  1- .  Prop 

*30214.     1- :  0 Prm  jj,.  =  .fi=l 
Dem. 

|-.*302-12.Dl-:/i==l.D.0Prm/i  (1) 

l-.*302-l.    DI-:.OPrmyit.D:0  =  OXo/i./it=l  Xe/u,.  D  ./i=l : 
[*113-60r621]  D:/i  =  l  (2) 

h  .  (1) .  (2) .  D  I- .  Prop 

*30215.     F  :.  M,  1/  6  NC  ind  .  /i^,  VKeC'U.D: 

(p,  a)  Prm  (/i,  i/) .  =  .  (p,  o-)  Prm  (p,x,  vx) 
Dem. 

h  .  *126-101 .  *300-14  .  D 

h  :.  Hp  .  D  :  p  Pim  a  .re  NO  ind  —  I'O  .  /*  =  p  x^  t  .  i/  =  o-  x^  r .  =  . 

p  Prm  o- .  T  6  NC  ind  —  I'O .  /ix  =  p  Xo  t  .  v^  =  o-  x^  t       (1) 

h .  (1) .  (*302-02-03) .  D  h  .  Prop 

«302'2.       I- :  fi;veC'U.<^(/j,  =  v  =  0).  k  =  t{('3^p,(7). /j,  =  px^r .  i'  =  ff  Xgr}.  D  . 

E !  max ( ^)'« .  max  ( UYk eD'U 
Bern. 

|-.*113-621.Dh:Hp.D.l6«  (1) 

h  .  *ll7-62  .  *113-602  .  Transp .  D 

h  :.  Hp  .  re/t.  D  :  T^/t.  v.T^i/  (2) 

h  .  (1) .  (2) .  *300-21-22  .  *261-26  .  *300-26  .  D  I- .  Prop 

In  the  above  proposition  we  write  "  max  (  UYk  "  rather  than  "  min  (  UYk," 
because,  since  U  arranges  the  natural  numbers  in  descending  order, "  min  (  f7 )'«  " 
is  the  greatest  number  which  is  a  member  of  k,  and  therefore  it  is  less  con- 

fusing  to  speak  of  this  number  as  "  mux  (UYk." 


SECTION  a]  on   EELATIVE   PRIMES  255 

*302-21.     I- :  Hp*302-2  .  t  =  max(?7)'K  ./i  =  pXoT.i/=o-x„T.D. 

Dem. 

h  .  *1312  .  D  h  :  Hp .  /3  =  /a'  Xo  t'  .  o-  =  0-'  Xe  t'  .  D  . 

/*  =  p'  Xe  t'  Xo  T  .  1/  =  0-'  Xo  t'  Xg  T  . 

[*113'602,Transp.Hp]  D .  t'  x^  t  4=  0 .  t'  x^  t  <  t  - 

[*120-511.*117-62]        D  .  t'  =  1  (1) 

h.(l).*302-l.DI-:Hp.D.pPrmo-  (2) 

I- . (2) . *302-2  .  (*30202) .  D  h  . Prop 

*302-22.     h:./j,,ve  NC  ind  .  ~  (^^  =  i;  =  0) .  D  :  (ap,  cr,  t)  .  (p,  o-)  Prm,  (ft,  v)  : 

(ap.  o-)-(/'.o-)^rm(/i,  i/) 
[*302-2-21 .  *300-17  .  (*302-03)] 

*30223.     V  :.  /i,  V eD'U.D  :  ("S^p,  (t)  :  p,  a eD'V .  fji,  x^a  =  V  x^ p  : 

f,  7?  eD'^T". /it  Xoi?  =  K  X,,  ^ .  Df,, .  f  >  p  .  i;  >  o- 
Dem. 

h  .  *300-23  .  *113-27  .  D 

h  :  Hp .  «  =  D'O^n  p  {(go-) .  /*  x„  o-  =  i/  Xep} .  D  .  E !  min  (^)'«  (1) 

I- .  (1) .  *300-12  .  D 

h  :.Hp.  D  :  ('S.p>o^)  :  p,(reD'U./MXea-=vXgp: 

f,776D'?7./iX„iy  =  i/x„^.Djf.,.f>p     (2) 
I- .  *120-51 .  D 

h  :  Hp . p,  a- e D' cr. /i  Xo ff  =  I'  x„ p  . ju, x„ 7?  =  v  Xgf .  D  . p  Xg  17  =  o-  Xe f  (3) 

h  .  *117-571 .  D  h  :  Hp  (3)  .  I,  ■>;  6  D'C/".  I  >  p  .  D  .  f  x„  o-  >  p  Xe  <r  (4) 

I- .  *126-51 .    D  I- :  Hp  (4)  .  ff  >  1? .  D  .  p  Xo  o-  >  p  Xg  7;  (5) 

I- .  (4) .  (5)  .    D  I- :.  Hp  (4) .  D  :  cr  >  1? .  D  .  f  Xe  or  >  p  Xb  77 : 
[Transp]  D  :  ^  x^  o-  =  p  x^  j;  .  D  .  17  ^  o-  (6) 

h  .  (2) .  (3)  .  (6) .  D  h  .  Prop 

*302-24.     h  :./i,i/,p,creNCind-i'0.yttx„o-  =  z/x„p  : 

/i  Xg  77  =  1/ Xj  1^.  ^,  i;eD'f/^.  Df,,.f^p.i7^o-:D.p  Prm  <r 
i)em. 
h  .  *302-l .  D 

I- :  p,  o-6D'C/".~(pPrmo-).  D  .  (a^,  17,  t)  .  t  4=  1  .p  =  ^XoT.o-  =  77XoT 
[*113-203-602.*120-511.*117-62] 

D.('S,^,V,T).lv,T€l>'U-l'l.^<p.V<<r-p  =  ^-X«r.a-  =  rjX„T    (1) 
|-.*120'51 .  D  I-  :/i,  y,  p,  o-6D'Z7./iXoO-  =  i/  Xop.p  =  ^XoT  .  o-  =  i7  XoT.  D. 

/iXo77  =  Z/Xef  (2) 

I- .  (1) .  (2) .  D  I- :  /i,  v,  p,  o-  6  D'f7.  /i  Xo  o-  =  I'  Xe  p  .  ~  (p  Prm  cr) .  D  . 

(a^.  77)  .  /i  Xo  77  =  «/  Xo  f  .  ^,  7/  e  D'CT.  |<  p  .  77  <  o-     (3) 
h  .  (3) .  Transp .  *300-l7  .  D  h  -  Prop 


256  QUANTITY  [part  VI 

*302-25.     h  :  p.^eD'U.  D  .  (ga,  y8)  .aeC'U.  j8  <  f  ./>  =  («  x„  ?)+oy3 

Bern. 
y  .  *117-62  .  *120-428  .  D  1- :  Hp  .  D  .  p  <  (/a  +„  1)  x^  ^  (1) 

h  .  (1) .  *300-23  .  D  h  :  Hp  .  D  .  E !  min  ( Uyci  {aeG'U.p<  (a  +c  1)  x„  ^} . 
[*120-414-416]  3  .  (ga) .  a  e  C"  t/".  /a  <  (a  +„  1)  x„  ^^ .  p  >  a  x^  f . 

[*lir-31.*120'4o2]  D.(a«,/3).a,/3eC'C.p<(a+„l)x<,|.p  =  (ax„f)+e^. 
[*113-671]  D.(aa,^).a,^e(7'[/-.p<(ax„?)+„?.p  =  (ax„f)+„;8. 

[*120-442.*ll7-561.Transp] 

D  .  (a«,  /3) .  a  6  C"  tr.  /S  <  ^  p  =  (a  x„  ^)  +„  ;8  :  D  h  .  Prop 

*302-26.     1-  :  Hp  *302-24  .  D  .  (p,  o-)  Prm  (;a,  j/) 

Bern. 
h  .  *302-25  .  D 

|-:Hp.D.(aa,;8,7,S)./t  =  (ax„p)+„y8.i'  =  (7X„o-)+„S.;8<p.S<<r   (1) 
h  .  *113-43  .  D 
1- :  /t  =  (a  x„  p)  +e  /3 . 1/  =  (7  x„  0-)  +„  S .  /3  <  p .  S  <  0- .  yu.  Xo  o-  =  V  x„  p .  D  . 

(a  x„  p  x„  0-)  +e  (^  x„  0-)  =  (7  x„  p  X,,  <r)  +„  (S  x„  p) .  /S  <  p  .  8  <  o-  -    (2) 
[*117-31.*120-452.*113-671] 

D  .  a  x„  p  x„  o-  <  (7  +„  1)  x„  p  x„  o- .  7  x„  p  Xo  <7  <  (a  +0 1)  Xo  p  Xe  ff  - 
[*126-51]  D.a<7+„1.7<a+„l. 

[*120-429-442.*ll7-25]  D  .  a  =  7  (3) 

h  .  (2) .  (3) .  *120-41 . DI-:Hp  (2). D.;8XeO-=Sxe  p. /8<p.S<o-. 
[Hp]  D  .  ;8  =  0  .  S  =  0  (4) 

h  .  (3) .  (4) .  D  h  :  Hp  (2) .  D  .  p,  =  a  x„  p  .  1/  =  a  Xe  o-  (6) 

h  .  (1)  .  (5) .  *302-24  .  D  h  .  Prop 

*302'27.     \-:fJ',v,  p,  a;^,T}e  NC  ind  -  t'O  .  p.  x^  o-  =  1/  x^  p  .  /i  x^  17  =  i/  x^  ^ .  D  . 

?x„o-  =  i7Xop 
Dem. 

|-.*113'27.Di-  :Hp.D.^XeJ'XoCr  =  7;  X„/4X„o- 
[Hp]  =»;x„i/x„p. 

[*126-41]  D.|:x„o-  =  77X„p:DI-.Prop 

*302-28.     1- :  Hp*302-24 .  ^,  97  eNC  ind  -  I'O  ./i  x^i;  =  1/  x^  f .  D . 

(p,  <7)  Prm  (f,  v)     [*302-26-27  .  *300-l7] 

*302-29.     f- :  Hp*302-28  .  ^Prm  rj  .:i  .^  =  p  .■>]  =  a 
Bern. 

V  .  *302-28-l .  D 

I-  :.Hp.  3:(aa).?=  «x„p,')7  =  aXocr:^=aXep.»;  =  aXeO-.D„.a=l: 
[*1 4-122]  D:|:=lx„p.97  =  lx„<7:.DI-.  Prop 


SECTION  a]  on   relative   PRIMES  257 

*302-3.       h:/i,i;,f,97eNCind-t'O.AiX„97  =  i/x„^.D. 

•  (ap.  0-)  ■  {P>  0-)  Prm  {fi,  v)  .  (p,  a)  Prm  (|,  17) 

Dem. 

I- .  *302-23-24  .  D 

h  :.  Hp  .  D  :  (gp,  o-)  :  p  Prm  a- .  p,a-e  NC  ind  —  t'O  .  /i  Xg  o-  =  k  Xo p  : 

a, /SeD'D". /t  Xo/3  =  i'X„a.  D„,p  .o^/o.^S^o-: 
[*302-26-28]  3  :  (gp,  a) .  (p,  o-)  Prm  {/i,  v)  .  (p;  a)  Prm  (f,  ^)  :.  3  h  .  Prop 

*302-31.     f- :  {p,  a)  Prm  (/t,  i^) .  /t  Prm  v  .'2  .,j.  =  p  .v  =  tT 

Bern, 
y- .  *302-l .  (*302-02-03) .  D 

h  :.  Hp  .  D  :  (gr)  .  /jl  =  px^T  .v  =  tr  x^t:  fi  =  p  x^r  .v  =  (r  x^t  .'^j.t=1  : 
[*1 4-122]  D./i  =  pXol.J'=o-x„l:.DI-. Prop 

«302'32.     I- :  ^Prm  rj .  /*  Prm  v  .^XgV='t]XgfjL.O  .^  =  jj,.tj  =  v 
Bern. 

b  .  *302-3-31 .  D 

h  :  Hp .  D  .  (gp,  a-) .  p  Prm  a-.^  =  p.fi  =  p.r]  =  a-,v=tr:'Di-.  Prop 

*302-33.     I- : .  /i,  i^,  f ,  1;  e  NC  ind  -  t'O .  D  : 

fj.x^r)  =  vx„^.  =  .  (gp,  0-)  .  (p,  0-) Prm (ji,  v)  .  (p,  a-) Prm (f,  17) 
Z)em. 

h  .  Id  .  (*302-02-03) .  D  h  :  (p,  <r)  Prm  (/*,  v)  .  (p,  o-)  Prm  (^,  17) .  D . 

(a'''.  T'  )  •  1",  t'  6  D'Cr.  /;t  =  p  Xg  T  .  1/  =  O-  Xg  T  .  ^  =  p  Xg  t'.  ?/  =  (7  Xg  t'. 

[*113-27]  D .  (gr.V) .  /*  x„  7?  =  p  x„  o-  x^  t  x^  t'  =  i/  x„  ^  (1) 

I- .  (1)  .  *302-3 .  D  h  .  Prop 

*302-34.     h:./i,j',|:,i?eNOmd.~(/i  =  i/  =  0).~(^  =  '>7  =  0).D: 

/i  Xei?  =  1/  Xef .  =  .  (gp,  0-)  .  (p,ff)Prm(/i,  z/)  .  (p,  o-)Prm(f,5y) 
i)em. 

•     h.*113-602.Dh:Hp.ytt=O.i/=l=0.D.f=O. 77=1=0  (1) 

|-.*113-602-621.D 

\-  •.fi  =  0  .v=^0  .^=0  .r]=^0  .D  .fi=0  XgV.v=lx^v.^  =  Ox^Tl  .r]  =  lXaTi  • 
[*302-14]  D.(0,l)Prm(At,i').(0,l)Prm(|,97)  (2) 

h  .  (1) .  (2) .  D  h  :  Hp .  ^  =  0  .  i;  =f=  0 .  D  . 

("KP'  <^)  ■  (P>  o")  Pi™  (m.  v)  .  (p,  0-)  Prm  (f,  17)  (3) 
Similarly        I- :  Hp  .  v  =  0 .  /i  =[=  0  .  D  . 

(a/3>  °")  ■  (P>  <^)  Prni  (/*>  v)  .  (p,  a)  Prm  (f ,  77)  (4) 
h  .  (3) .  (4) .  *302-33  .  D  h  .  Prop 

*302-35.     H  :.  /*,  1/  e  NC  ind .  ~  (/i  =  i;  =  0) .  p  Prm  a.D: 

p.x„a  =  vx„p.  =  .{p,a)  Prm  (fi,  v)     [*302-3414-31] 

H.&W.    III.  17 


2o8  QUANTITY  [part  VI 

*302-36.     h  :  /A,  1/  6  NO  ind  .  ~  (/A  =  i;  =  0)  .  =  .  (gp,  a) .  (p,  a)  Prm  (fi,  v) 

Bern. 
\- .  *302-14  .  D  t- :.  (p,  a)  Prm  (/t,  i/) .  D  : 

/3,  o-  6  NC  ind  .  ~  (jO  =  ff  =  0)  :  (gr) .  t  e  NC  ind  -  t'O  .  /*  =  p  x,.  t  .  k  =  o-  x^  t  : 
[*120-5.*113-602]  -D:fi,ve'NCind.'^(ji  =  v  =  0)  (1) 

h  .  (1) .  *302-22  .  D  h  .  Prop 

*302-37.     I- :  (p,  a-)  Prm  (/*,  v) .  =  . 

/i,  z^  6 NC  ind  .  ~  (/J,  =  0 .  y  =  0)  .  /3  Prm  a . /mx^ct  =  v  x^p     [*302-35-36] 

*302-38.     h  :  (p,  tr)  Prm  (/a,  i/)  .  (^,  i?)  Prm  (/t,  z;)  .  D  .  p  =  | .  a  =  t; 

Dem. 
h  . *302'37  .  D  h  : Hp  .  D .  p Prm o- .  ^ Prm r) .  fiXca-  =  v  x^p  .  fjLX^r)  =  vXa^. 

r^(fl=O.V  =  0)      (1) 

I- .  (1)  .*302-14  .*113'602  .Dh:Hp./it  =  0.D./3  =  0.^  =  0.o--l.i;=l  (2) 
h  .  (1) .  *30214  .  *113-602  .DI-:Hp.j'  =  0.D./3  =  l.^=l.o-  =  0.7;  =  0(3) 
t- .  *302-27  .Dh:Hp./i=t=0.j/  +  O.D.px<,97  =  o-Xef. 

[(1) .  *302-32]  0.p=^.a-  =  v  (4) 

h  .  (2)  .  (3) .  (4) .  D  h  .  Prop 

*302-39.     h  :  (p,  a)  Prm  (/*,  z/) .  D  .  /i  ^  p  .  v  >  o- 

Dem. 
I- .  *302-23-36 .31-:.  /i,  z/eD'C/".  D  : 

(aP>  o")  :  (p.  o") Prm (/i,v)  :  ^.rjeB'U.  fix^r)  =  v  x^^  .D^^^  .  ^"^p  .rj^a: 
[*113-27]  D  :  (ap,  0-) .  (/>,  cr)  Prm  (/*,  i/)  .  /i  ^  p .  i/  ^  o- : 

[*302-38]  D  :  {p,  <r)  Prm  (/i,  i-) .  D  .  /i  >  /> .  i/  >  o-  (1) 

h  .  *302-37-14 .  D  h  :  /i  =  0  .  (p,  o-)Prm  (/i,  i/) .  D  .  i/  +  0  .  p  =  0  .  o-  =  1  (2) 

Similarly  h  :  i/ =0.  (|0,  o-)Prm(/i,  v)  .  D  .^=|=  O.p  =  1  .a-  =  0  (3) 

f-.(2).(3).D  t-:.(p,o-)Prm(/i,v):/i  =  0.v.i'  =  0:D./i>p.7/>o-  (4) 
h  .  (1)  .  (4) .  *302-36  .  *300-l7  .  D  I- .  Prop 

*302-4.       h  :  /*,  1/  e  NO  ind .  ~  (/A  =  i;  =  0) .  D  .  E  !  hcf  (/i,  I/) 

Z>em. 
1- .  *302-22  .  3  h  :  Hp  .  D  .  (gp,  a,  t)  .  (p,  o-)  Prm^  {p,,  v)  (1) 

h  .  *302-38  .  (*302-02-03) .  3 

h  :  (p,  0-)  Prm^  (/i,  I/)  .  (f,77)  Prm^  (/A,  J/)  .  D  .  p  =  f .  o- =  i; .  ^  =  p  Xg  T . /*  =  I  x„  or . 
[*1 26-41]  D.T  =  CT  (2) 

h  .  (1)  .  (2) .  (*302-04) .  D  I- .  Prop 

*302-41.     h  :  ytt,  1/  6  NC  ind  .  ~  (yu,  =  J/  =  0)  .  D  .  E !  1cm  (/it,  J/) 
[Proof  as  in  *302-4] 


SECTION  a]  on   relative   PRIMES  259 

*302-42.     h  : /i,  v eNC  iud  . ~ (/*  =  v  =  0) .  D .  hcf  (/4,  v)  Xolcm {/i,  v)  =  fix^v 

Bern.  • 

h  . *302-4-41 .  (*302-0405) .  D  h  :  Hp  .  D  . 

(aP,  0-,  t)  .  /i  =  p  Xo  T  .  V  =  (7  X„  T  .  hcf  (/i,  i;)  =  T  .  Icm  (/i,  I/)  =  /3  x„  o-  Xo  T  . 

[*113-27.*116-34]  D  .  (gp,  o-,  t)  .  /t  x„  v  =  p  x,,  <7  Xj  r"  - 

hcf  (/i,  v)  Xe  1cm  (/*,  I/)  =  p  Xo  o-  Xo  t'  :  D  h  .  Prop 

*302'43.     h  :  (p,  a)  Prm  (/t,  i/) .  D  .  p  Xg  hcf  {fi,  v)  = /j,  .  a  x^  hcf  (/x,  v)  =  v 
[*302-4 .  (*3020204)] 

«302'44.     h  :  (p,  <r)  Prm  (/*,  v) .  D  .  p  x^  v  =  1cm  (/i,  v)  =  a-Xgfi 
[*302-41 .  (*302 0205)] 

*302-45.     h  :  (p,  a-)  Prm  (/i,  i;) .  ?, »?  e  NC  ind .  ~  (^  =  9;  =  0) .  /*  x„  t;  =  i;  x„  f .  D  . 

lcm(^,77)  =  px,^  =  o-Xei7 
Dem. 

\- .  *302-37  .  D  h  :  Hp .  D .  (p,  0-)  Prm  (^  v)  (1) 

h  .  (1) .  *302-44  .  D  I- .  Prop 


17—2 


*303.     RATIOS. 

Swmmary  of  *303. 

In  this  number,  we  give  the  definition  and  elementary  properties  of  the 
ratio  fijv.  Most  of  the  important  applications  of  ratios  are  to  numerical  or 
identical  relations,  i.e.  to  relations  which  may,  in  a  certain  sense,  be  called 
vectors.  Neglecting  identical  relations  for  the  moment,  let  us  consider 
numerical  relations,  and  to  fix  our  ideas,  let  us  take  distances  on  a  line. 
A  distance  on  a  line  is  a  one-one  relation  whose  converse  domain  (and  its 
domain  too)  is  the  whole  line.  If  we  call  two  such  distances  R  and  8,  we 
may  say  that  they  have  the  ratio  fijv  if,  starting  from  some  point  x,' 
V  repetitions  of  R  take  us  to  the  same  point  y  as  we  reach  by  fi  repetitions 
of  S,  i.e.  if  xR^y .  xS^^y.  Thus  R  and  8  will  have  the  ratio  i^jv  if  g !  E"  n  >S^ 
In  order,  however,  to  insure  that  fi/v  =  pja  if  {p,  a)  Prra  (fj,,  v),  it  is  necessary, 
in  general,  to  substitute  g  !  iJ"'  n  /S''  for  g; !  iZ"  n  8^^.  (In  the  above  case 
of  distances  on  a  line,  the  two  are  equivalent.)  Thus  we  shall  say  that  R  has 
the  ratio  /i/v  to  8  if  (gp,  c)  . (p,  <t) Prm {fi,  v).%\R''  f\ 8''. 

If  we  apply  the  above  definition  to  identical  relations,  we  find  that, 
if  RQI .80.1,  R  has  the  ratio  fi/v  to  8  provided  '^lRf\8,  i.e.  provided 
a  !  G'R  n  CS.  This  application  is  required  for  dealing  with  zero  quantities 
and  zero  ratios. 

Thus  we  are  led  to  the  following  definition  of  ratios : 

*30301.     fi/v  =  RS{{'3_p,a).(p,a)Frm(ij„v).'3_lR''nSi'}     Df 

This  definition,  as  it  stands,  requires  justification  in  two  respects :  (1)  we 
commonly  think  of  ratios  as  applying  to  magnitudes  other  than  relations, 
(2)  we  should  not  commonly  include  as  examples  of  ratio  certain  cases  included 
in  the  above  definition.     These  two  points  must  now  be  considered. 

(1)  In  applying  our  theory  to  (say)  the  ratio  of  two  masses,  we  note  that 
the  idea  of  quantity  (say,  of  mass)  in  any  usage  depends  upon  a  comparison 
of  different  quantities.  The  "vector  quantity"  R,  which  relates  a  quantity  jjij 
with  a  quantity  m^,  is  the  relation  arising  from  the  existence  of  some  definite 
physical  process  of  addition  by  which  a  body  of  mass  rrti  will  be  transformed 
into  another  body  of  mass  m^.     Thus  a-  such   steps,  symbolized   by  R'^, 


SECTION  A]  RATIOS  261 

represents  the  addition  of  the  mass  o-  (wij  —  mi).  Similarly  if  S  is  the  relation 
between  M3  and  M^  which*,rises  from  the  process  of  addition  turning  a  body 
of  mass  Ml  into  another  body  of  mass  M^,  then  Sf  symbolizes  the  addition  of 
the  mass  p  (M^  —  M^.  Now  g  !  iJ"'  o  /S*"  means  that  there  are  a  pair  of  masses 
m  and  m',  such  that  mli''m'  and  mSi'm.  In  other  words,  if  we  take  a  body  A 
of  mass  m  and  transform  it  so  as  to  turn  it  into  another  of  mass  m+tr  (m^  —  m^, 
we  obtain  a  body  of  the  same  mass  m  as  if  we  proceeded  to  transform  A  into 
a  body  of  mass  m  +  p{M^—M^.  Hence  (T{'rrh-rrh)  =  p{M^  —  M^;  that  is 
(wis  —  rrh)/(M2  —  Ml)  =  p/a.  But  in  our  symbolism  the  addition  of  m^  —  mi  is 
represented  by  the  vector  quantity  R,  and  that  of  M^  —  M^  by  the  vector 
quantity  S;  so  in  our  symbolism  It  has  to  S  the  ratio  of  p  to  a. 

Thus  to  say  that  an  entity  possesses  p,  units  of  quantity  means  that,  taking 
U  to  represent  the  unit  vector  quantity,  Ui^  relates  the  zero  of  quantity — 
whatever  that  may  mean  in  reference  to  that  kind  of  quantity — with  the 
quantity  possessed  by  that  entity. 

It  can  be  claimed  for  this  method  of  symbolizing  the  ideas  of  quantity 
(a)  that  it  is  always  a  possible  method  of  procedure  whatever  view  be  taken 
of  it  as  a  representation  of  first  principles,  and  (/8)  that  it  directly  represents 
the  principle  "No  quantity  of  any  kind  without  a  comparison  of  different 
quantities  of  that  kind." 

Furthermore  analogously  to  our  treatment  of  cardinal  and  ordinal  numbers, 
we  can  define  any  definite  quantity  of  some  kind,  say  any  definite  quantity  of 
mass,  as  being  merely  the  class  of  all  "bodies  of  equal  mass"  with  some  given 
body.*  The  zero  mass  will  be  the  class  of  all  bodies  of  zero  mass ;  and  if  there 
are  no  bodies  with  the  properties  that  a  body  of  zero  mass  should  have,  this 
class  reduces  to  A  in  the  appropriate  type. 

Thus  the  application  of  our  symbolism  to  concrete  cases  demands  the 
existence  of  a  determinate  test  of  "  equality  of  quantity  "  of  different  entities, 
and  a  determinate  process  of  "  addition  of  quantity."  The  formal  properties 
which  the  process  of  addition  must  possess  are  discussed  in  the  numbers 
concerned  with  vector  families. 

(2)  Having  now  shown  that  cases  apparently  excluded  by  our  definition 
of  ratio  can  be  included,  we  have  to  show  that  no  harm  is  done  by  our  inclusion 
of  cases  which  would  naturally  be  excluded.  In  order  that  ratio  may  agree 
with  our  expectations  it  is  necessary  that  the  two  relations  R  and  S,  whose 
ratio  we  are  considering,  should  have  the  same  converse  domain.  Otherwise 
we  get  such  cases  as  the  following :  Let  P,  Q  be  two  series,  and  suppose* 
B'P  =  B'Q,  5p  =  6q,  11p  =  9q,  13p  =  25q,  but  that  P  and  Q  have  no  other 
terms  in  common.     Then  we  shall  have,  it R  =  Pi.S=Qi, 

{B'P)R'5p.(B'P)S'5p, 

*  For  notation,  cf.  »121. 


262  QUANTITY  [part  VI 

whence  it  follows  that  R  has  to  /S  the  ratio  5/4,  i.e.  we  have  R(5/4i)S.  But 
we  shall  also  have  R  {8/10)8  and  i?  (24/12)  (S,  i.e.  R(4i/5)S  and  R  (2/1)8. 
Thus  our  definition  does  not  make  different  ratios  incompatible.  In  practical 
applications,  however,  when  R  and  8  are  confined  to  one  vector-family, 
different  ratios  do  become  incompatible,  as  will  be  proved  at  the  beginning 
of  Section  C.  And  so  long  as  we  are  not  concerned  with  the  applications 
which  constitute  measurement,  the  important  thing  about  our  definition  of 
ratio  is  that  it  should  yield  the  usual  arithmetical  properties,  in  particular  the 
fundamental  property 

fi/v  =  p/a-  .  =  .IJ,Xea-=VXeP, 

which  is  proved,  with  our  definition,  in  *303"39.  Thus  any  further  restriction 
in  the  definition  would  constitute  an  unnecessary  complication. 

In  virtue  of  our  definition  of  fi/v,  fj,/v  =  A  if  yti  and  v  are  not  both  inductive 
cardinals,  or  if  /n  =  i/  =  0  (*303-ll-14).  We  have  (*303-13)  \-.fi/v  =  Gnv'{v/ix), 
i.e.  the  converse  of  a  ratio  is  its  reciprocal.  If  /x.  =  0,  and  R  {fi/v)  8,  R  must 
have  a  part  in  common  with  identity  (which  we  may  express  by  saying  that 
iJ  is  a  zero  vector),  and  8  may  be  any  numerical  or  identical  relation  whose 
field  has  a  member  which  has  the  relation  R  to  itself  (*303"15).  Thus  if  v,  a 
are  inductive  cardinals  other  than  0,  0/v  =  O/o-.  The  common  value  of  ratios 
whose  numerator  is  0  is  the  zero  ratio,  which  we  call  Og  (where  "q"  is  intended 
to  suggest  "quantity").     The  definition  of  Oj  is 

*30302.     Og  =  s'0/"NC  induct     Df 

In  like  manner,  if  fi  and  p  are  inductive  cardinals  other  than  0,  we  have 
fi/0  =  p/0.     The  common  value  of  such  ratios  we  call  oo  g,  putting 

*303-03.     oOj  =  sV0"NCinduct     Df 

The  properties  of  ratios  require  various  existence-theorems,  and  in  estab- 
lishing existence-theorems  without  assuming  the  axiom  of  infinity,  the  question 
of  types  requires  considerable  care.     We  have 

*303-211.  h  :  (p,  0-)  Prm  (fx,,  v).O.fi/v  =  p/a- 

so  that  the  existence  of  fi/v  does  not  depend  upon  fi  and  v,  but  upon  p 
and  0-,  where  p/a  is  fi/v  in  its  lowest  terms.  We  may,  therefore,  in  consider- 
ing existence-theorems,  confine  ourselves,  in  the  first  instance,  to  prime 
ratios. 

To  prove  the  existence  of  (p/cr)  [,  t'R,  when  p  Prm  o-,  we  take  two  relations 
R  and  8  both  contained  in  identity.  These  have  the  ratio  p/a  provided  their 
fields  have  a  member  in  common  and  El  R".  El  8''.  By  *301'16,  this  requires 
p,ae  C'{  Ul  f'R).     Thus  we  have 

*303  25.     l-:.|oPrm(r.D: 

'3_l(p/a)lfR  .  =  .p,aeG'(Ul  t"R).  =  .  p  {R),  a  (R)  e  C  U 


SECTION  A]  RATIOS  263 

But  this  existence-theorem,  which  is  obtained  by  supposing  R  and  S 
contained  in  identity,  is  i^t  much  use  in  practice :  what  we  require  is  the 
existence  of  a  ratio  between  numerical  relations.  For  this  purpose,  assuming 
p'^cr  and  a-^0,  let  \  be  a  class  of  such  a  type  that  Nc'i'X "^p+^l.  (Such 
a  class  can  always  be  found  in  some  type,  by  *300'18.)  Then  we  have 
p^ed'U,  and  we  can  construct  a  series  Q  such  that  C'Q  is  of  the  same  type 
as  X  and  'Nc'O'Q  =  p+^1.  (This  is  proved  in  *262'211.)  We  can  then  choose 
out  of  Q  a  series  P  having  the  same  beginning  and  end,  and  consisting  of 
o-  +0 1  terms.     We  then  have 

(B'Q)  (Q.y  (B'Q) .  (B'Q)  {P,y  (B'Q). 

Hence  Pj  and  Qi  have  the  ratio  p/a:     A  similar  argument  applies  if  o-  ^  p 
and  p  =^  0.     Thus  we  arrive  at  the  proposition : 

*303-322.  I- :  p  Prm  o- .  p^,  o-^  e  J)'Un  QT/.  D  .  a  !  (p/a) I  (Rel num  n  too'X) 

I.e.  if  p  is  prime  to  a  and  neither  is  0,  and  p+ol,  <r+o  1  both  exist  in  the 
type  of  X,  then  there  are  numerical  relations  having  the  ratio  pja-  and  having 
their  fields  of  the  same  type  as  \. 

The  case  when  either  p  or  o-  is  0  requires  separate  treatment.  If  R  has 
to  8  the  ratio  O/o",  R  must  be  partly  contained  in  identity  (*303"15) ;  hence 
we  have  to  find  a  hypothesis  for  a  !  (0/<r)  \  Rel  num,  since  g; !  (O/cr)^  Rel  num 
is  impossible.  Since  O/o-  =  0/1,  we  only  require  the  existence  of  2  in  the 
appropriate  type,  i.e.  we  have 

*303-63.     1- :  a !  2a  .  3  .  a  !  O3  P  (Rel  num  n  t^'X) 

It  will  be  remembered  that  a !  2^  is  demonstrable  except  in  the  lowest 
type. 

In  the  above  propositions,  /*  and  v  and  p  and  a  have  been  typically  in- 
definite. Ratios  of  typically  definite  inductive  cardinals  are  dealt  with  by 
means  of  *302'15,  which  gives  at  once 

*303'27.     h  :  /i,  v  e  NC  ind .  /i^ ,  Kx  e  0'  IT".  D  .  /t/v  =  nJvx 

I.e.  a  ratio  may,  without  changing  its  value,  have  its  numerator  and 
denominator  specified  as  belonging  to  any  type  in  which  both  exist.  This 
enables  us  to  take  p  and  cr  as  typically  definite  cardinals  in  *303'322,  thus 
obtaining  the  proposition 

*303-332.  h:.p  Prm  a-.'D-.'s^l  (p/o-)^  (Rel  num  r.  t^^'p)  .  =  .  p,(TeI)'Un  a'U 
The  above  existence- theorems  are  useful  in  proving 
a/0  =  y/S.  =  .ax,B  =  l3x,y. 
We  proceed  as  follows:  We  first  show  (*303'34)  that,  if  p,a-  are  inductive 
cardinals  other  than  0,  and  p+gl,  cr -f-^  1  exist  in  the  type  of  X,  we  can  find 
numerical  relations  R  and  8  such  that  '^IR'  f\  81',  but  ij  >  o- .  D .  ~  a  !  R^. 


264  QUANTITY  [part  VI 

This  is  done  by  taking  two  series  P  and  Q  having  the  same  beginning 
and  end,  and  having  G'P e o-  +e  1 .  G'Q ep+^l.  Then  if  J?  =  Pi  and  8  =  Qi, 
we  have 

{B'P)  R'  (B'P) .  (B'P)  S"  (B'P)  :7,><r.D.B^=A, 
whence  the  result.     From  this  proposition  it  follows  immediately  that  if 
p  Prm  0- .  f  Prm 77 .  17  >  o",  and  if  p^,  a-^eD'Urid'U,  we  can  find  an  R  and 
an  8  such  that  R  (p/a-)  fif .  ~  {i2  (f /•»?)  8}.    A  similar  argument  applies  if  ??  <  a- 
or  ^  >  p  or  f  <  p.     Hence  we  find,  by  transposition, 

*303-341.  h:px,o-x6D'f7'na'fr./3Prmo-.^Prm97.(p/o-)^*„„'^.  =  (?/'7)DC^-3- 

p=^.a-=Ti 

From  this  point  on,  the  argument  offers  no  difficulty.     For  if  we  have 
«//3  =  7/S .  (p,  a)  Prm  (a,  /3) .  (^  r,)  Pnn  (7,  8), 
we    have,   by   *303-341-211,   p  =  ^.ff  =  7).      Hence,   by  *302-32,   we    have 
a  Xj  8  =  jS  Xj  7.     What  is  approximately  the  converse,  i.e. 

*303-23.     h  :  /i,  I/,  1^,  7?  e  NO  ind  . 

~  (/*  =  I'  =  0)  ■  ~  (f  =  »?  =  0) .  /i  x„  77  =  1/  Xe  I .  D  .  /i/v  =  ^/t; 

follows  at  once  from  *303'211  and  *302"3.     Hence,  after  dealing  with 
special  cases,  we  find 
*303-38.     h  : .  a,  /3, 7,  S  6  NC  ind : 

ax,/3Aea'C7.v.7;„8;,ea'?7":~(a  =  /3  =  0).~(7  =  S=0):D: 
(a/;3)  I  «„„'X  =  (7/S)  t  «„„'\  .  =  .  a  Xe  8  =  ;8  Xe  7 

It  will  be  observed  that  a//3  is  typically  indefinite,  like  Nc'f.  But  in 
order  to  insure  that  a//3  =  7/8  however  the  type  may  be  determined,  it  is  only 
necessary  to  insure  that  this  equation  holds  in  a  type  in  which  (a/yS)^  Rel  num 
exists.  When  we  write  simply  "  a//3  =  7/8,"  we  shall  mean  that  this  equation 
holds  however  the  type  may  be  determined ;  in  other  words,  that  it  holds  in 
a  type  in  which  (a/^S)  ^  Rel  num  exists.  (There  always  is  such  a  type,  if 
a,  /8  6  NC  ind  -  I'O,  in  virtue  of  *303-322  and  *300-18.)  Thus  we  have 
*303-391.  h  :.  a,  ^  6  NC  ind  .  ax,  /8a  e  a' Cr.  ~  (a  =  ^  =  0)  .  D  : 

(a//3)  D  «oo'^  =  (7/8)  D  4o':^- .  =  .  a//3  =  7/8 .  =  .  a  x„  S  =  yS  x^  7 

and,  in  virtue  of  *303'38,  we  have 
*303-39.     l-:.a,;8,7,86NCind.~(a  =  ;S  =  0).~(7=8  =  0).  D: 

a/iS  =  7/8.  =  .aXeS  =  /3Xo7 

This  proposition  is,  of  course,  essential  to  the  justification  of  our  definition 
of  ratios. 

The  remaining  propositions  of  *303  consist  (1)  of  applications  of  the 
theory  of  ratio  to  powers  of  a  given  numerical  relation,  (2)  of  properties 
of  Og  and  oo  ,,  (3)  of  a  few  properties  of  the  class  of  ratios.  This  last  set 
of  propositions  depends  upon  two  new  definitions,  which  must  be  briefly 
explained. 


SECTION  A]  RATIOS  265 

We  have  already  explained  that  fijv  is  typically  indefinite.  Thus  if  we  call 
It/v  a  "  ratio,"  ratios  are,  Hke  "  NO  ind,"  not  strictly  a  class,  because  every 
class  must  be  confined  within  some  one  type.  Nevertheless  it  is  convenient, 
just  as  in  the  case  of  NO  ind,  to  treat  ratios  as  if  they  formed  a  class ;  and, 
with  similar  precautions,  we  can  avoid  the  errors  into  which  we  might  be  led 
by  treating  them  as  a  proper  class.     We  therefore  put 

*303-04.     Rat  =  Z{(a/i,v)./i,i'6NCind.i'  +  0.Z  =  /t/i;}     Df 

("The  condition  v  4=  0  is  only  introduced  because  it  is  usually  convenient 
to  exclude  oo  g.)  It  will  be  observed  that  fijv  is  still  typically  indefinite  if  /i 
and  V  are  typically  definite.  This  results  from  *303-27.  But  we  often  want 
typically  definite  ratios.  We  want  these  defined  in  types  in  which  there  are 
numerical  relations  having  the  ratios  in  question.     Hence  we  put 

*303  05.     Rat  def  =  1  {(g/*,  v) .  /i,  i/  e  D'  CTn  Q'  17.  Z  =  {^jv)  I  t^'p]     Df 

Here  "  def"  stands  for  "  definite,"  and  /i,  v  are  typically  definite  inductive 
cardinals.  The  desired  properties  of  "Rat def"  result  from  *303-322.  It 
should  be  observed  that,  besides  consisting  of  typically  definite  ratios, 
"Rat  def"  differs  from  "Rat"  by  the  exclusion  of  Og.  This  is  merely  for 
reasons  of  convenience. 

The  properties  of  "  Rat "  and  "  Rat  def"  follow  immediately  from  previous 
propositions.     We  have 

*303  721.  h  :  Z  e  Rat  -  t'Oj .  D  .  (g/i) .  Z I  t^'/jL  e  Rat  def 

*303-73.     l-zZeRatdef.D.alZ^Relnum 

By  *303-322 ;  and  by  *303-391, 

*303-76.     h  :.  Z,  Ye  Rat .  Z^  t^'p  e  Rat  def .  D  :  Z^  t^^'p  =  7^  tn'p  .  =  .X=Y 

If  the  axiom  of  infinity  holds,  every  member  of  "  Rat ''  except  Og  becomes 
a  member  of  "  Rat  def"  as  soon  as  it  is  made  typically  definite.     Hence 

*303-78.     I- :  Infin  ax .  D  .  Rat  def  =  Rat  - 1% 

The  uses  of  "  Rat "  and  "  Rat  def"  differ  just  as  the  uses  of  "  NO  ind  "  and 
"NO induct"  differ.  The  distinction  is  only  important  so  long  as  the  axiom 
of  infinity  is  not  assumed. 


*30301.     ixlv  =  RS[{<3^p,a).{p,a)Vi-vii{^,v).'3_\R''hS''}     Df 

In  the  above  definition,  p,  <r,  fi,  v  are  typically  ambiguous,  but  p,  a-  must 
(by  *301"16)  exist  in  the  type  of  t'R,  while  /t,  v  need  not  do  so ;  /t,  v  cannot, 
however,  be  null  in  all  types,  by  *30017. 

*30302.     05  =  s'0/"NC  induct      Df 

*30303.     00,  =  sVO"NC  induct    Df 


266  QUANTITY  [PABT  VI 

*303-04.  Rat  =  Z{(a/tt,i;)./i,i;€NCmd.i;4=0.Z  =  /i/i'}  Df 

*30305.  Ea,tde{=X{{'3^fi,v).iJ.,ve'D'Ur^a'U.X  =  {filv)lti^'fi}     Df 

*3031.  \-:B(fj,jv)S.  =  .{'^p,<T).{p,a)'Prm{^,v).±lR'nS''     [(*30:3'01)] 

*303-ll.  f-:~(^,z.eNCind).D./i/i^  =  A     [*303-l . *302-36] 

*303-13.  h  .  yti/i/  =  Cnv'(v/fi)  [*303-l .  *302-ll] 

*30314.  h.O/0  =  A  [*303-l . *302-36] 

*30315.     \-:R{0/v)S.  =  .veNCind-i'0.'^lRnI[C'S. 

=  .ve'NCmd-L'0. '3^1  G'SnfcixRx) 
Bern. 

\- .  *302-14-38 .  *3031 .  D 

\- 1  R(0/v)  S  .  =  .  V  e'NGmd-  I'O  .±\  R'  n  S' . 

[*301-2]  = .  1/  6  NC  ind  -  I'O  .  a  !  E  A  / 1'  C/S :  D  h  .  Prop 

*303151.  [-z.R.Se'Rel num id.D:R (O/v) S.  =  . 

z;  6  NC  ind  -  I'O  .  J?  e  Rl'/ ,  S  e  Rel  num  id  .  a  !  C"i2  n  C'/Sf 
[*303-15 .  *300-324-3] 

*30316.     h  :  R(,j./0)S .^  .  fie'NCmd- I'O .■3,1  S n I[ C'R . 

=  .  At  6  NC  ind  -  I'O .  a  !  C'iJ  n  ^  (xSx)      [*303-15-13] 

*303161.  h  :. iJ, »S e Rel num id.O-.R (fijO) S.  =  . 

/tieNCind  -  I'O  .ii  eRelnum  id  .  SeRl'/.  g  !  G'R  n  G'S 
|;*303151-13] 

*303-17.     \-:.iJ,,ve'NCind-i'0.R,8e  Rel  num  id  .  R  {fijv)  S .  D  : 

i?,  S  e  Rl'/ .  V  .  E,  5f  e  Rel  num 
Dem. 

V  .  *3031 .  *113-602  .  D 

h  ::Hp.  D  i.E^^eRelnumid  :  (g/s, o") . jo, cr e NC ind  -  t'O  .  g  ! i?°' n fSf*" :. 

[*300-33.*301-3] 

D  :.  ,Sf  6  Rel  num  id  : .  i?  e  Rl'I :  {^p) .  p  e  NC  ind  -  t'O  .  g  !  ii  n  fifp :  v  : 

ii  6  Rel  num  :  (gp,  a).p,a6  NC  ind  -  t'O  .  g  !  iJ"  n  /Sp  :. 
[*300-3]  D :.  S  6  Rel  uum  id  :.  i?  e  Rl'/.  g !  /n,Sfpo .  v .  ii  e  Rel  num .  g!  Jn8j„ :. 
[*300-3-33]  D:.R,Se  Rl'/ .  v  .  J?,  S  e  Rel  num  ::  D  I- .  Prop 


SECTION  A]  RATIOS  267 

*303 18.     \-:.,jL,ve D'H^t^'R . R, SeRl'I .  D  : 

R(/^)S.  =  .R{Olv)S.  =  .R(,i.jO)S.  =  .'^[C'RnC'S 
[*303-1151-16 .  *301-3] 

*303181.  1- :  a !  (,j,/v) .  =  .  (gp,  <t)  .  (p,  a)  Prm  (jj,,  v) 

Bern. 
h  .  *303-l .  D  h  :  a  !  (^/v) .  D  .  (gp,  a) .  (p,  a)  Prm  (/m,  v)  (1) 

I-  .  *301-3.*300-325-17.  D  h  :  (p,  o-)  Prm  (/n,  i-) .  D.  (aa;).(a;4a!)(/i/j/)(a;4,a;)     (2) 
h  .  (1) .  (2) .  D  h  .  Prop 

In  the  above  proposition,  if  ^jv  is  typically  indefinite,  so  that  "  a  !  fijv  " 
only  asserts  existence  in  a  suflSciently  high  type,  p,  <t  may  also  be  typically 
indefinite.  But  if  /i/i/  is  to  be  taken  in  a  definite  type,  p  and  o-  must  be  taken 
in  the  corresponding  type,  and  must  not  be  null  in  that  type.  This  is  proved 
later. 

*303182.  h  :.  0/0  =  /t/i; .  =  :  ~  (/*,  i/  e  NC  ind)  .  v  .  /*  =  v  =  0 

Here  the  equation  0/0  =  p.jv  is  assumed  to  hold  in  a  sufficiently  high  type. 
J)e/m. 

V  .  *303-14 .  D  1- :.  0/0  =  /i/i/ .  D  :  /i/i/  =  A  : 

[*303181.*302-36]  D  :  ~  (/t,  i^  e  NC  ind  -  t'O)  .  v  .  /t  =  i/  =  0       (1 ) 

h.(l).*.3031114.DI-.Prop 

*30319.     V  :  R {y^jv) S.  =  .R (fi/v) S    [*303-l . *121-26] 

*303-2.       t- :.  (p,  a)  Prm  (//,  i;)  .  D  :  i?  (,jl/v)  5f .  =  .  g  !  iJ-  A  .S" 
Bern. 

h.*303-l.  :y\-:'Sp.±lR-'f^8i'.D.R(fj,/v)S  (1) 

h  .  *302  38  .  *303-l .  D  h  :  Hp .  E  (p./v)  S  .D  .^IR' nS"  (2) 

h  .  (1) .  (2) .  D  (- .  Prop 

*303-21.     i-:.pFima-.D:R(p/a)S.  =  .'3_lR''nS''    [*302-31 .  *303-l] 

*303-211.  h  :  (p,  0-)  Prm  (yii,  v).D.p./v  =  p/a  [*303-2-21] 

«303'22.     I- :  p  Prm  a-.  fi,ve  NO  ind  .  ~  (^u  =  v=0).  p.  x^  (7=  vx^p  .D.  fijv  =  pja- 
[*302  37.*303-211] 

*303-23.     \-:p,,v,^,r)e  NCind  . ~ (/*=  v=  0).~(^  =  ■»?  =  0) . /i x^t?  =  v  x^ ^,  D. 

W"  =  f/'7     [*302-3  .  *303-211] 

jf(303'24.     t- :  yLt,  v  6  NC  ind  .  ~  (/i  =  v  =  0) .  D  .  (a/o,  o-) .  p  Prm  o- .  njv  =  jo/o- 
[*303-211.*302-22] 

The  following  propositions  give  typically  definite  existence-theorems  for 
ratios. 


268  QUANTITY  [part  VI 

*303-25.     \-:.p'Pima.:^:'3^l(pla)l,t'R.  =  .p,<y€G'(Ule'R).  =  .p{R),<T{R)eG'U 

I.e.  if  p  Prm  a,  there  are  relations  of  the  same  type  as  R  and  having  the 
ratio  pja  when,  and  only  when,  the  number  of  relations  of  the  same  type  as  R 
is  at  least  as  great  as  p  and  at  least  as  great  as  o-. 

Dem. 
V  . *303-21 .  D  h  :.  Hp  .  D  :  a  !  (p/o-)^  «'J2  .  D  .  (g/Sf,  T) .  E !  /Sf' .  E  I^o.^f,  Tet'R. 
[*30116]  0.p,c-eG'Uit"R  (1) 

l-.*301-16-3.DI-:.Hp.D: 

p,  aeC'Ul  t^'R.xeto'G'R  .D.(xlx)p  =  (xlxy  =  a;iic  (2) 

h  .  (2) .  *303-21 .  D 

1- :.  Hp .  D  :  p, o- 6  G'Ul  f'R .  xet.'G'R .  D  .  (a;  J, «) {pja)  {x  J,  x)  (3) 

I- .  (1) .  (3) .  *63'18  .  D  h  .  Prop 

*303-251.  I- :  /*,  1/  e  G'  ?7t  «"i2 .  ~  (/i  =  I'  =  0) .  D  .  a  !  {filv)  I  t'R 
Bern. 

V  .  *302-36-39  .  D  h  :  Hp .  D  .  (gp,  o-) .  (p,  o-)  Prm  (/i,  i/) .  /t  >  p  .  i'  >  o- . 
[*117-32]  D  .  (ap,  0-) .  {p,  a)  Prm  (/t,  v).p,aeG'Ul,  t"R  . 

[*303-211-25]  3  .,a  !  (fju/v)  ^  ^'E  :  D  I- .  Prop 

*303-252.  1- :  yit,  j;  e  NC  ind  n  0'  [/"t  t"G'R .  ~  (/i,  =  i-  =  0) .  D  .  g  !  (At/i/)  D  ^'-R 
Bern. 

h  .  *64-51-55  .  D  h  :  /i  =  Nc'a .  a  e  t'G'R .  x  e  t,'G'R .  D  .  4  x"ol  e  /x  a  t"R      (1) 
h  .  (1) .  *300-14 .  D  F  :  Hp  .  3  .  /i,  i;  e  CfTt  «"iJ  (2) 

h.(2).*303-251.Dh.Prop 

In  the  above  proof,  jx,  v  are  assumed  to  be  typically  indefinite.  If  they 
are  typically  definite,  sm"/j,  and  sm"!/  must  be  substituted  for  p,  and  v  on  the 
right-hand  side  of  (1)  and  (2).  The  hypothesis  "  fj.,ve'NCind  n  C'Ulf'G'R" 
is  a  convenient  abbreviation  for 

"fj,,ve  NC  ind .  M  rt  i'O'i?,  v  n  i'O'E  e  C"  CTp  ««(7'i?  . " 
By  *65-13, 
;a  n  t'G'R  €  G'U[.  t^'G'R .  =  .  /i  C  t'G'R  .fieG'U^  f'G'R  .  =  .^e  G'Ult^G'R. 

Bat  " fMeG'U^f'G'R"  requires  that  /j,  should  be  typically  definite,  whereas 
"/tteNOind"  requires  that  p,  should  be  typically  indefinite.  Hence  the 
hypothesis  of  *303'252  is  only  defensible  as  an  abbreviation,  meaning 
"ya,  1^6  NCind,  and  if  /m,  v  are  given  the  suitable  typical  definition,  they 
become  members  of  G'Utf'G'R." 

*303-253.  I- :  /i,  i;  6  NC  ind  n  G'  Ul  f'X .  ~  (^  =  i;  =  0) .  D  .  g  !  (p,/v)  I  «„„'X 
[*303-252] 

*303-254.  I- : /4,  V 6 NC ind  . p.^, vk e G'U.  ~ (^  =  z/  =  0) .  D .  g  !  (fi/v)ltoo'\ 
[*303-253 .  (*65-01)] 


SECTION  a]  ratios  269 

«303-26.     I- :  /A,  v  e  NO  ind .  ~  (^  =  v  =  0) .  D  .  (gX.) .  g  !  (jjl/v)  I  t^'X 
[*303-254 .  *300f  7] 

*303-27.     \-:/j.,ve'NGind.iJLK,VKeG'U.O./jilv  =  iJ,KlvK     [*30215 .  *303-l] 

*303-3.       h  :  p  Prm  o- .  g  !  Po^"" .  D  .  Pp  (p/o-)  P" 
Dem. 

h  .  *30116  .  *14-21 .  D  I- :  Hp  .  D  .  p  x„ o- e  C'f/'n  <"P  (1) 

h  .  (1) ,  *301-5  .  D  h  :  Hp  .  p  +  0 .  o- +  0 .  D  .  (Pp)"' =  PoX""- =  (P")" . 

[*303-21]  :>.F''{p/a-)P-  (2) 

l-.*301-2.    DI-:Hp.p  =  O.D.P''  =  /r(7'P  =  P''x»-.g[!/r(7'P     (3) 

h .  *302-14  .Dh:Hp.p  =  O.D.o-=l. 

[*301-2]  D.P''  =  P  (4) 

h  .  (3) .  (4) .  D  h  :  Hp .  p  =  0 .  D  .  a  !  (P")"  n  (P")" . 

[*303-21]  D.P''(p/o-)P°-  (5) 

Similarly  h :  Hp.  o-  =  0 .  D.P'-CpMP''  (6) 

h.(2).(5).(6).DI-.Prop 

*303-31.     H  :  p  Prm  o- .  p  +  0  .  o-  +  0 .  (p  x„  o-)  n  i'X,  e  Q'  [7 .  D . 

(aP)  .  P  6  Rel  num  n  «„„'X, .  Pp  (p/a)  P" 
JDem. 

I- .  *300-46  .  *301-4 .  D  h  :  Hp .  D  .  (gP) .  P  e  Rel  num  .  (B'P)  Pp^cr  (B'P)     (1) 

h .  (1) .  *303-3  .  D  h  .  Prop 

*303-311.  l-:p^,<r;,6a'P'-l'0.p><7.D.(aP,Q).Pe(p+„l),.Q6(o-+„l),. 

P,QeC>.-Qe-P-5'P=P'Q.P'P=5'Q 

Dem. 

I-  .*262-21 .  D  h  :  Hp  .  3  .g!  (p+ol),oC>.  (1) 

h  .  *117-22  .  D  I- :  Hp .  P  6  (p  +0 1 ), .  3  .  (ga) .  a  C  (7'P .  a  e  o-  +o  1         (2) 
h  .  *261-26  .  *205-732  .  D 
l-:Hp.P6(p+el>.«C(7'P.aeo-+„l. 

yS  =  (a  -  I'minp'a  -  t'maxj 'a)  w  i'5'P  w  i'J5'P.  D .  ^8  e  o-  +o  1 . 
[*250-141.*202-55]  D.Pti86(o-+el)r   (3) 

I- .  (1) .  (2) .  (3) .  *205-55  .  D  h  .  Prop 

*303-32.     h  : p Prm o-.p>o-.o-=|=0.pAe(I'f7.D. 

a  !  (p/o-)  C  (Rel  num  n  t^'X)  n  M  (Ep„  G  8^) 
Bern. 

|-.*303-311.Df-:Hp.D.(aP,Q).Pe(p+,l),.Q6(o-+„lV.P,Q6C>.. 

Q(IP.B'P  =  B'Q.B'P  =  B'Q    (1) 
h  .  *300-44-45  .  *301-4  .  D 

h  :  Hp  .  P  e  (p  +0  l)r .  /Sf  =  Pi .  D  .  iS  e  Rel  num  .  (B'P)  So  (B'P)  (2) 


270  QUANTITY  [part  VI 

Similarly 

h  :  Hp .  Q  6  (a-  +„  l)r .  i?  =  Q, .  D .  i?  e  Rel  num  .  (B'Q) R' {B'Q)  (3) 

h  .  (1) .  (2) .  (3) .  *261-35-212  .  D 

h  :  Hp  .  D  .  (gi?, 8).B,Se Rel num n «„„'\ . B^^ QS^^.'S^IR-' nS"  (4) 

h  .  (4) .  *303-21 .  D  h  .  Prop 

*303-321.  h  :  p  Prm  a  .  p  +  0 .  a  +  0 .  px,  o-a  e  Q'  f/".  D .  g  ! (p/a)  I  (Rel  num  n «oo'^.) 
[*303-3213] 

*303-322.  I- :  p  Prm  a- .pK.a-^eD'Una'U.D  .'g^l  (p/cr)  I  (Rel  num  n  t^'\) 
[*303-321] 

*303-323.  h  :  /i,  i;  e  NC  ind  -  t'O  .  D .  (gX) .  g  !  (/i/i/)  I  (Rel  num  n  i™'\) 
[*303-322] 

*303-324.  h  : /i,  v 6 NC ind .  fj,^,Vf, e D'Cr.  ~ (/i Prm v).^  . 

a  !  du./!/)  I  (Rel  num  n  <oo'X) 
Dem. 
h  .  *302-22  .  D  h  :  Hp .  D  . 

(a/3,  cr,T)./3Prmcr./3=t=0.  cr=|=O.T=t=O.T=t=l . /i4  =  jC»  X„T.i'=crX<,T.  g! /ix  .  a!  Vx  . 
[*303-2-21] 

D  .  (a/3,  0")  .  p  Prm  o- .  p  +  0  .  a-=|=  0  .  /i/i'  =  p/o- .  a  !  (p  +0  1)a  .  a  !  (o"  +0  1)a  ■ 
[*303-321]  3  .  a  !  (/^MD  Rel  num  :  D  h  .  Prop 

In  order  to  the  existence  of  (/i/v)  ^  Rel  num  in  any  given  type,  it  is 
by  no  means  necessary  to  have  fj,,veD'U  in  the  corresponding  type.  If 
pFrma .p,(T  eH'U rid'U,  (p  x„T)/(a  x^t)  will  exist,  however  great  t  may 
be,  because  (p  Xg  t)/(o-  x^  t)  =  p/a. 

*303-33.     h  :  a  !  (P'/v)  t  (Rel  num  n  t^'X) .  =  . 

(a/3, 0-) .  (/>,  <7)  Prm  (fj,,  v) .  /3a,  o-x 6 D'CTn  Q'tT 
Dem. 

h  .  *303-322-211 .  D 

h  :  {p,  a)  Prm  (/i,  i/)  .  px,  tx  e  D'  C/" n  Q' fT" .  D .  a  !  (W")  t  (Rel  num  n  ^„„'X)     (1) 

|-.*303-1811516-211.D 

h  :.  a  !  (/ti/") D  (Rel  num  n  <„„'X) .  D  :  (a/>,  cr)  .  (p,  o-)  Prm  (;4,  v) .  p  =t=  0  .  o-  =|=  0  . 

a  !  ipla)  I  (Rel  num  n  «„'\) : 

[*303-21]  3  :  (ap,  0-) .  (p.  a)  Prm  (/i,  i;) .  p  4=  0 .  o-  +  0  : 

(a-B,  S).B,Se  Rel  num  n  «„„'X .  a  !  -R°'  <=»  -S'' : 

[*301-41]  D  :  (ap,  0-) .  (p,  0-)  Prm  (/ct,  I/) .  p  4=  0  .  <7  4=  0  . 

a  !  (p  +0  1)  n  «„'X  .  a  !  (o-  +c  1)  n  «„'\     (2) 
h  .  (1) .  (2) .  D  h  .  Prop 

*303'331.  h  :. p Prm  o- .  D  : a  ! (p/o-) D  (Rel  num  n  to^'X) •  =  .pK,'y>.eI>'U nd'U 
[*303-33 .  *302-31] 


SECTION  A]  RATIOS  271 

*303-332.  h  :.  (0  Prm  o- .  D  :  a  !  (pja)  f  (Rel  num  r.  ii/p)  .  =  .  p,o  eD'U nd'U 
[*303-331]  • 

In   this   proposition,    p,  a  are   typically  definite  cardinals,  whereas  in 
*303'331  they  are  typically  indefinite. 

*303-34.     h  :  p.o-eNCind  .p^,o-xeD'i7n  a'U .  7,><T.':i. 

(giJ, S).R,Se Rel  num  n i„,'\ . g  ! ii'' n 6'" . ~ {g  ! i?" n 8^ 

Note  that  ~  {g  !  iJi  n  S^}  does  not  imply  E !  iZ")  or  E  !  SK 

Dem. 

h  .*303-311 .  D  1- :  Hp.  D  .(aP,Q,ii,£f)  .Pe(p+„1V.  Q6(o-+„l),. 

P,Q€too'X.B'P  =  B'Q.B'P  =  B'Q.R  =  P,.S=Q,    (1) 

As  in  *303-32  Dem, 

\-.{l).0h:-RTp.:i.(^P.Q,R,S).Pe{p+,l)r.Q6{.7+,l)r.S  =  P,.R=Q,. 

R,  S  e  Rel  num  .  (B'P)  (R'  n  S")  (B'P) . 
[*121-4.8.*202181.*301-4.*300-44] 

D  .  (aE,*S) .  i?,  fife  Rel  num  n  «„„'X, .  g  !  i?"  n  fifp .  ~(a  !  iJi)  :  D  h .  Prop 

*303-341.  h  :  p^,  o-^eB'Una'U.pPrma-.  ^Frmr,. (p/<r)l  t^''X.=  (^lv)tt^''^-  3- 

p  =  ^.a  =  rj 
Dem. 

h  .  *303-34-21 .  D  h  :  p;i,  o-A  6  D'CTn  Q'tT .  p  Prm  <r  .  f  Prm  17 .  i;  >  tr  .  D  . 

(/'/o-)DCx  +  (r/'7)DCx   (1) 

I- .  (1)  .  Transp  .  *3021  .  D  h  :  Hp  .  D  . «?  <  o-  (2) 

h .  (2) .  *303-13 .  D[-:Hp.3.f<p  (3) 

h  .  (2)  .  (3)  .  *ll7-32  .       DI-:Hp.D.^;,,(T^6a'f7'  (4) 
h  .  *303-322  .                     D  h  :  Hp  .  D  .  a  !  (^/r,)  ^  Rel  num  . 

[*303-ll-15-16]  D  .  f  4=  0  . 1/  4=  0  (5) 

I- .  (2)  .  (4) .  (5)  .  D  h  :  Hp  .  D  .  ^>,,  vk  e  D'U^a'U. 

"^'>-^'>-|^]  ^-<'?-P<^  (6) 

- .  (2) .  (3) .  (6) .  D  h  .  Prop 

*303-35.     \-:l^€a'U.^PTrQ7,.(0/l)lt^'X^{^lv)tV\.0.^  =  0.v  =  l 

Bern. 
\-  .*300-14.  D  I-  :Hp.  "2  .(•g^x.y)  .x=^y  .x.yet^'X. 

[*303-15]  D  .  (ga;,  3/) .  a;  4=  y .  («  J, «)  (0/1)  («  J,  y) .  a;  J, «,  a;  J,  y  e  <oo'>.  ■ 

[Hp]  D.(aa;,2/).a;  +  2/.(«J,«)(f/9?)(a;4,y). 

[*303-16-l7.Transp]     D  .  ^  =  0 .  (1) 

[*302-14]  D .  7?  =  1  (2) 

I- .  (1)  .  (2) .  D  h  .  Prop 


272  QUANTITY  [part  VI 

*303-36.     V  :.  p^.cr^ea'U  .V .  ^^,rj>.ea'U :  p  Prm  a .  ^  Prm  t?  :  D  : 

Dem. 
h  .  *30014 .  *302-14  .  D 

h  i.px.o-^eCI'C/'.pPrm  o-.~(p;^,o-xeD'?7).D:/3  =  0.ff=l.v.jO  =  l.(7  =  0: 
[*303-35-13]  D  :  f  Prm ,, .  (p/<r)  [;  t^'X  =  (^/^)  ^  «„„'\  .D.p=^.a  =  v  (1) 

l-.(l).*303-341.DI-.Prop 

*303-37.     h  :.  a,/3 eNCind  n  a'CiJt  «"X) .  ~(a  =  /3=  0) .  v . 

7,S6NCindna'(I/t«"\).~(7=S  =  0):D: 

(a//3)  t  «oo'X=  (7/8)  D<„„'X  .D.ax,S  =  /3x„7 
Z)em. 

1- .  *302-36  .  *303-211 .  D  I- :  a,  j3  6  NO  ind .  ax, /9^  6  a' iT" .  ~  (a  =  ;S  =  0)  .  D  . 

(ap,<r).(p,<r)Prni(a,/3)./5/<7  =  a/^     (1) 
t- .  (1) .  *303-254-181 .  D  h  :  Hp  (1) .  (a/^)  [,  t„,'\  =  (7/8)  l  «„„'\ .  D  . 

(af '?)■(?,'?)  Prm  (7, 8)     (2) 
h  .  (1) .  (2) .  *302-21-22 .  *303-211 .  D 
I- :  Hp  (2)  .  D  .  (ap,  <7,  ^,  ^)  .  (p,  <7)  Prm  («,  ^)  .  (?,  ,7)  Prm  (7,  8) .  p,  ^  6  a' f^ . 

[*303-36]    D  .  (ap,  «7) .  (p,  <7)  Prm  (a,  /3) .  (p,  a)  Prm  (7, 8) . 

[*302-34]   D.aXo8  =  /3Xe7  (3) 

Similarly 

l-:7,86NCind.7,,8,ea'U-.~(7=S  =  0).(a/;8)t:C^-  =  (7/S)DC:v.3. 

aXeS  =  /3x„7    (4) 
1- .  (3) .  (4) .  D  h  .  Prop 

*303-371.  I- :  «,  ;S,  7, 8  6  NO  ind .  a^,  /S^,  7^,  8^  e  C'C .  ~  (a  Prm  /3 . 7  Prm  8) . 

(a//3)  t  ioo'X  =  (7/8)  D  «»'>. .  3  ■  a  x„  8  =  ^  Xe  7 
[Proof  as  in  *303-37] 

*303-38.     h:.a,A7,SeNCiDd:ax,/3x6a'C/'.v.7x,8xea't/': 

~(a  =  /3  =  0).~(7  =  8  =  0):D: 
(a//8)  D  VX  =  (7/8)  t  ioo'X.  ■  =  ■  a  Xe  8  =  ^  X,  7    [*303-37-23] 
*303-381.  l-:.a,A7,8  6NCind.ax,/8x,7x,8xe(7'[7.~(aPrm/3.7Prm8).D: 
(a//S) C  *co'^.  =  (7/8)  t  «<„,'\ .  =  .  a  Xe  8  =  yS  x„  7    [*303-37r23] 
*303-39.     l-:.a,A7.86NCind.~(a  =  ^  =  0).~(7  =  S  =  0).D: 

a/j8  =  7/8 .  =  .  a  x„  8  =  yS  Xo  7     [*303-38  .  *300 18] 
*303-391.  l-:.a,;SeNCind.ax,y8A6a'[/.~(a  =  iS  =  0).D: 

(«//8)D  «oo'X  =  (7/8) D  «oo'>^ .  =  .  a//8  =  7/8 .  =  .  a  x„  8  =  ^  x„7 
[*303-38-264-ll-14] 


SECTION  A]  RATIOS  273 

Thus  when  a/yS  is  used  as  a  typically  indefinite  symbol,  we  obtain  the 
same  results  as  if  we  suppo^d  it  defined  as  of  a  type  too'X,  where  a  +o  1  and 
^+ol  both  exist  in  the  type  of  \,  i.e.  Nc%'\>a.Nc%'X>/3. 

*303-392.  l-:.a,/3ea'Cr.~(a  =  jS  =  0).D:  (a/^)  P  «n'a  =  (7/S)  D  «ii'a .  =  . 

a/jS  =  7/S .  =  .  a  Xe  S  =  /3  Xe  7    [*303-39r27] 

This  proposition  differs  from  *303391  by  the  fact  that  a,  jS  have  become 
typically  definite.  It  will  be  observed  that  even  when  a  and  /S  are  typically 
definite,  a/fi,  like  ax^^,  remains  typically  indefinite. 

*303-4.       \-:.p  Prm  a .  i?  e  Rel  uum  .:i:R^ (p/a)  i2^  .= .  3  !  R,,^,^ 
[*303-3-21 .  *301-4] 

*303-41.     l-::/t,veNOind.~(/*  =  0.i;  =  0).D:. 

J2eRelnum  .  ^=lcm{fi,v).  D  :  R^itijv) R, .  =  .g;!i2f 
Dem. 

h.*303-2.*300-44.D 

1- :.  Hp  ./*=f0.j/  +  0.i26  Eel  num .  {p,  a)  Prm^  (/i,  v) .  D  : 

Rn  i/J'/v)  i2„  .  =  .  a  !  i?,.Xo<r  f^  -Bi-X.p  ■ 

[*302-37]  =.a!i2^x..  (1) 

h  .  (1) .  *302-44 .  3  h  :.  Hp(l) .  f  =  1cm  (ji.  v).  D  :  R^{fj,/v)R, .  =  .  g !  iij        (2) 

h  .  (2) .  *302-22 .  D 

I- :.  Hp./i=|=0.  i/=t=0.i2eRelnum.f  =lcm(/i,  J/).  D  :i?j»(/ct/i/)i?,.  =  .a;!i2f    (3) 

l-.*302-44.D 

h  :.Hp./i  =  0.i2eRelnum  .  f  =lcm(/i,  v).  D:  ^=0: 

[*303-15]  0:R^{/j,/v)Ry.  =  .'3_lRi  (4) 

Similarly 

h  :.Hp  .v  =  0  .iJeRelnum.  f  =  Icm (fi,v).  D  :  Rh(/m/v) R, .  =  .g;  !i2|  (5) 

f- .  (3) .  (4)  .  (5)  .  D  h  .  Prop 

*303-42.     h  : . Hp *303-41 .  ^  =  lcm (jj., v).  D  :  U^, (/i/v)  U,.  =  .  1cm (/i, v)eG'U 
[*303-41  .  *300-26] 

*303"43.     h  :.  Infin  ax  .  D  :  ;i4, 1/  e  NC  ind .  ~  (/i  =  1/  =  0) .  D^,  „ .  CT^  (fJ^/v)  U, 
[*303-42 .  *30014] 

*303-44.     V  :.  Hp  *303-42  .  P  e  Ser .  D  :  P^  (/t/v)  P,, .  =  .  g  !  Pf 
[*303-41 .  *300-44] 

*303-45.     F  :  P  e  fi  in  fin .  /*,  1/  6  NC  ind  .  ~  ((li  =  0  . !» =  0) .  D .  P^  (/it/j/)  P„ 
[*300-44 .  *303-44] 

*303-46.     V:.{p,a)  Prm  (/i,  i;) .  f ,  t?  e  NC  ind .  E  e  Rel  num .  D  : 

i?j  (/i/v)  i2, .  =  .  f  Xe  o-  =  t;  Xo  fj .  a  !  -Kfxoff 
Z>em. 

f-.*303-211.3 

h  :.  Hp .  D  : Ri(/jilv)R,, .  =  .  R{(p/<t)R^  . 

[*303-21]  =.a!i2jx„.-^i2,xoP- 

[*300-55]  =.|XoO-  =  9?  Xe/3.a[!iJfxc<r:-3l"-I'rop 

R.  &W.    III.  18 


274  QUANTITY  [part  VI 

*303-461.  I- :.  /i,  i;,  f ,  97  6  NC  ind .  ~  (/i  =  1/  =  0) .  ~  (^  =  9?  =  0). E  6  Rel  num . D : 

Rl  {/j-jv)  i2, .  s  .  ^  Xo  i;  =  t;  Xo ^ .  a  !  Biomit.i) 
Bern. 

V  .  *302-45  .  D 

I- :  Hp .  (/J,  0-)  Prm  (^,  t?)  .  D  .  f  x^  <r  =  1cm  (^,  i?)  (1) 

h  .  *302-35  .  D 

h  :  Hp  .  (p,  a)  Prm  (/t,  i') .  f  x^  o-  =  ly  x^  p  .  D  .  (p,  o")  Prm  (^, »?)  .     (2) 

[*302-34]  D  .  ^  Xe  1/  =  77  x„  ;li        (3) 

1- .  *302-35-37  .  D 

I-  :Hp.(p,o-)Prm(/i,i/).f  XoV  =  77Xe/t.D.^XeO-  =  '>7  x^p         (4) 

h  .  (1) .  (2) .  (3) .  (4) .  *303-42  .  D  h  .  Prop 

*303-47.     h  : .  Hp  *303-461 .  A  ~  e  Pot'i? .  D  :  J?f  (/^/i/)  i?,.  =  .fx,i/  =  7?x„/i 
[*303-461] 

*303-471.  h  :.  /i,  I/,  f ,  7?  6  NO  ind  .  ~  (/i  =  1/  =  0) .  ~  (f  =  17  =  0)  .  P  e  fi  infin  .  D  : 

Pf  (m»P,  .  =  ■  ^  x„i'  =  i7  x„/i 
[*303-47.*300-44] 

*303-48.     !-:./*,  K,  1,7/ eNOind.~(^  =  v  =  0).~(f  =  i7  =  0).D: 

Ul(/j,/v)  f/,.  =  .^x„i/  =  iy  x„/4.1cm(f,7;)6(7'Cr 
[*3O3-461.*3O0-26] 

*303-49.     h  : :  Infin  ax  .  D  : .  /a,  i/,  ^,  77  e  NO  ind  .  ~  (/a  =  v  =  0) .  D  : 

^fW")  C;.  =  .  ?XoV  =  77X„/i 
Dem. 
h  .  *303-15  .  D  h  :.  /i,  v,  ?,  77  e  NC  ind .  /i  =  0  .  i^  4=  0 .  D  : 
CTj  Oii/i;)  U^.  =  .U^e  Rl'/ .  CT,  e  Rel  num  id  . 
[*1 20-42]  =.^=0. 

[^113-602]  =.^Xci'  =  77X,;ii  (1) 

Similarly 

|-:./i,i',f,77eNCind./*4=0.  v  =  O.D:  Ui(im/v)  U,,.  =  .  ^  x^v  =  r}  x^fi       (2) 

h .  (1) .  (2) .  *303-48 .  D  h  .  Prop 

*303-5.       h  :  p,  o-  e  NC  ind  -  t'O .  a  !  (p  +0  o-)a  .  D . 

{^P,Q).Pe(p+,l)r.Qe{a+,l\.P,QeWX. 

B'P  =  B'Q .  B'P  =  B'Q .  C'P  n  O'Q  =  t'£'P  « I'B'P 
Bern. 

h  .  *110-202  .  *120-417  .  D 

|-:Hp.D.(aa,/3).a,/8eC^.aep+cl./Se<7-el.aft^  =  A  (1) 


SECTION  a]  ratios  275 

h  .  *262-2  .  D  ^ 

l-:Hp.a,^6«„'X,.a6p+ol./8eo--el.aft/3  =  A.o-4=2.D. 

[*251-131-141]  D .  (gP,  8,Q).P,8,Qean  t^'X  .G'P  =  ol.C'S=^  . 

Q  =  B'P^S-{*B'P.  G'P  n  C'Q  =  I'B'P  u  I'B'Q        (2) 
h .  *262-2  .  D  h  :  Hp .  a,  /3  6  «„'\ .  a  e  p  +0 1 .  /8  =  I'a; . «  ~  e  a .  (7  =  2  .  D  . 

(aP,Q).P,QeC't.P6n.G'P=a.Q  =  (5'P)4,^+>5'P         (3) 
I- .  (1) .  (2) .  (3) .  D  I- .  Prop 

*303-51.     h  : .  p  Prm  o- .  p  4=  0  .  o-  +  0 .  g  !  (p  +« o-);, .  D  : 

(ai2,  S):E,S6  Rel  num  n  i„„'X, .  i?  (p/a-)S:^/'ri^p/a-.  D^,, . <^B{^/t))S 

Dem. 
l-.*300-44:45.*301-4.D 
l-:Hp.P6(p+„l)j^.Qe(<7+„l),.;Sf=Pi.J?  =  (2i. 

P'P  =  5'Q .  B'P  =  B'Q .  O'P  n  O'Q  =  t'J'P  u  I'B'P .  D  .  g  !  iJ'  n  ^S"  (1) 

I- .  *301-41 .  D  h  :  Hp  (1) .  ~  (^  =  p  . ,,  =  0-) .  D .  Pi  A  /Sff  =  A  (2) 

I- .  (1) .  (2)  .  *303-21 .  D 

h  :.  Hp(l)  .  p  :  P(p/o-)i^ :  ^Prmi? .  ~(^  =  p  .  ,,  =  0-)  .  Df ,  .,^P(|/,,)fif: 

[*303-36]     b  :  P  (p/<r)  <S :  ^  Prm  t;  .  ^/,,  +  p/a  .  D^.,  .  ~  P  (^/,,)  S  : 

[*302-22.*303-211] 

[*303182]  D  :  P  (p/cr)  5f :  ^/i;  =j=  p/o- .  Dj,, .  ~  P  (1^/,,)  S  (3) 

1- .  (3)  .  *300-44 .  *303-5  .  D  h  .  Prop 

*303-52.     I- :.  /i,  1/  e  NC  ind  -  I'O .  a  !  (/*  +„  i')^  .  D  : 

(gP,  S) :  P,  ;Sf  e  «„„'\ .  P  (,./,/)  fif :  ?/^  +  /x/f  .  Dj., .  ~  P  (^/t?)  -S 

h  .  *303-24 .  *302-39  .  D 

h  :  Hp  .  D  .  (g[p,  cr) .  p  Prm  cr .  /^/j;  =  p/er .  p  4=  0  .  o-  =)=  0  .  g; !  p  +e  o-     (1) 

h  .  (1) .  *303-51 .  D  F  .  Prop 

*303-6.       h  :  1/  e  NO  ind  -  t'O  .  D .  O/i;  =  Og  [*303'1 5] 

*303-61.     h:i'6NOind-t'0.D.i'/0=oOj  [*303-16] 

*303-62.     \-.Og  =  Cnv'oo,  =  RS{'3_lBr^I[G'S)    [*303-6-61-13-15] 

«303-621.  h  .  Og  I'  Rel  num  id  =  Cnv'(Rel  num  id  ^  oo  g) 

=  P;S  (P  G  / .  >Sf  e  Rel  num  id .  g  !  G'P  n  G'S)    [*303-6-6113-151] 

18—2 


276  QUANTITY  [part  VI 

*303-63.     I- :  a  !  2x  .  D  .  a  !  Og  I'  (Rel  num  n  t^'X) 
Bern. 

h  .  *303-15-6  ,  D  h  :  fl;4=  2/ .  D  .  /Og (a;  J,  3/)  :  D  h  .  Prop 

*303-631.  h  :  a !  2x .  D  .  a  !  (Rel  num  n  «„o'X.)  ^  oo  ,     [*303-63-62] 

*303-65.     1- :  a !  2^ .  D  .  Og  t  «oo'A,  +  00  g  p  4„'\ 
Dem. 
h  .  *303-62  .  D  h  :  a;  =1=  y .  D  .  lOg  (a;  I  y)  .  ~  {/oo  g  (a;  4, 2/)} :  D  I- .  Prop 

*303-66.     h  :.  a  !  2x .  D  :  (fi/v)  tt^'\  =  Og.  =  .  fi  =  0  .  v  eNCind-  I'O 

Dem. 
l-.*303-6.DI-:y[4  =  0.i/eNCind-i'0.D./i/i'  =  0g  (1) 

h  .  *303-615  .  D 

I-  :/i/i;  =  Og.  D  .At/j'  =  ii^(E6Rl'7.  ^feRel  num  id  -a  !  G'BnG'S)  (2) 

h  .  *300'3  .  D  h  :  Hp .  D .  (a«,  y).a;4=y.«J.2/6  Rel  num  n  too'\ . 
[*10-24]  D .  a  !  (Rel  num  id  -  Rl'J)  n  t^'X  (3) 

|-.(2).(3).*303-ll-l7.D 

h  ::Stp  .D  :.  (fj,lv)lt^'X  =  Og.D  :  fi,v  e'NC  ind  :  (1  =  0  .V .  v  =  0  (4) 

l-.(2).(3).*303-16.D 

1- :.  Hp .  D  :  (fi/v)  ^  i^'X,  =  0, .  3  .  ~  (yti  =|=  0 .  z/  =  0)  (5) 

h  .  (4) .  (5) .  D  I- : .  Hp .  D  :  (/t/i/)  ^  «„„'\  =  0, .  D  .  /i  =  0 .  i/  e  NO  ind  -  I'O       (6) 
h  .  (1) .  (6) .  D  h  .  Prop 

*303-67.     h  :.  a  !  2x  .  3  :  (/a/j/)  t  t^o'X  =<x>  g.  =  .v  =  0 .  fieNG  ind-i'O 
[*303-66-62] 

*303-7.       h  :  Z  6  Rat .  s  .  (a/t,  v)  .  /i,  y  e  NO  ind  .  v  +  0  .  X  = /^/i; 
[(*303-04)] 

*303-71.     h  :  ZeRat  def .  =  .  (a/*,  v)  .  ,jL,veI)'Un  Q'U .X  =  (,ji./v)lt,r'/i 
[(*303-05)] 

*30372.     h  :  Z  e  Rat .  D  .  ('gji)  .'3_lXl  t^'fi    [*303-26] 

*303-721.  h  :  Z  e  Rat  -  t'Og ,  D  .  (a/*)  .  Z I  ta'fJi.  e  Rat  def 
[*300-18.*303-7-7l] 

*303-73.     I- :  Z  e  Rat  def .  D  .  a  !  Z  t  Rel  num     [*303-322-324] 

*303-731.   b:.p  Prm  <7.:^:  {pja)  I  t^'p  e  Rat  def .  =  .  p,  er  e  D'CTn  Q'tT 
[*303-7l .  *302-39] 


SECTION  a]  ratios  277 

*303-74.     b  :.  pfrma  .  X=(j}la-)ltn'p-':>:t^.Xinelnnm.  =  .p,a-6'D'Una'U 
[*303-332]  • 

*303-75.     h  :  Z  6  Eat .  a !  Z  ^  («,//*  n  Rel  num) .  D  .  X  ^  ^u'/i  e  Rat  def 
[*303-74-7l] 

*30376.     h  :.  X,  Fe  Eat .  Z  ^  t^^'p  e  Eat  def .  D  :  X  ^  «u'p  =  F  ^  t^^'p .  =  .  X=  F 
[*303-391] 

*303-77.     h  : .  lafin  ax  .  D  :  /4,  v  e  NC  ind  -  t'O  .  D  .  /i/i/  e  Eat  def 
[*30014 .  *303-7l] 

*303-78.     h:Infinax.D.Ratdef=Eat-t'05    [*303-7-77] 

The  above  two  propositions  assume  that  fi/v  in  the  first,  and  "Eat"  in 
the  second,  have  been  made  typically  definite,  but  they  hold  however  the 
type  may  be  defined. 


*304.     THE  SERIES  OF   RATIOS. 

Summary  of  *304. 

In  this  number  we  consider  the  relation  of  greater  and  less  among  ratios, 
and  the  series  generated  by  this  relation.  We  need  two  different  notations, 
one  for  greater  and  less  between  typically  indefinite  ratios,  the  other  for 
greater  and  less  between  ratios  of  the  same  type.  The  former  is  more 
useful  where  we  are  dealing  merely  with  inequalities  between  specified  ratios, 
but  the  latter  is  necessary  when  we  wish  to  consider  the  series  of  ratios  in 
order  of  magnitude,  since  a  series  must  be  composed  of  terms  which  are  all 
of  the  same  type.     We  put 

*30401.     X  <,  F.  =  .  (g/i,  V,  p,  a-) .  /i,v,p,a-6  NO  ind  .a-^0./j,x^a-<.vx^p. 

X  =  p.lv.Y=pl<T    Df 

This  definition  is  so  framed  as  to  include  Og  but  exclude  oo  q.  For  the 
relation  "less  than"  among  rationals  of  given  type  (excluding  Og),  we  use 
the  letter  H,  to  suggest  tj  (defined  in  *273),  because,  if  the  axiom  of  infinity 
holds,  the  series  of  rationals  of  a  given  type  is  an  t).     The  definition  is 

*30402.     jS"  =  1 F {Z,  7 e  Rat  def .  X  <^  F}     Df 

When  we  wish  to  include  Og  in  the  series,  we  use  the  notation  H' ;  thus 

*30403.     £r'  =  XF{Z,  F6Ratdefwt'0g.X<^F|     Df 

(It  will  be  observed  that  here  I'Og  acquires  typical  definiteness  through 
the  fact  that  it  must  be  of  the  same  type  as  "Ratdef"  in  order  to  make 
"  Rat  def  w  t'Og  "  significant.) 

If  the  axiom  of  infinity  does  not  hold,  H  and  H'  will  be  finite  series : 
if  v  +0 1  is  the  greatest  integer  in  a  given  type  (i/  >  1),  the  first  term  of  H 
is  Ijv  and  the  last  is  vjl  (*304'281).  In  a  higher  type,  we  shall  get  a  larger 
series  for  H,  but  at  no  stage  shall  we  get  an  infinite  series.  If,  on  the  other 
hand,  the  axiom  of  infinity  does  hold,  H  is  &  compact  series  (*304'3)  without 
beginning  or  end  (*304"31)  and  having  Ko  terms  in  its  field  (*304'32), 
i.e.  fl"  is  an  ??  (*304-33).  In  this  case, '  C'iZ"  =  D'S"  =  Rat  -  I'O,  (*304-34), 
i.e.  any  rational  other  than  Og,  as  soon  as  it  is  made  typically  definite,  belongs 
to  C'H. 


SECTION  a]  the  series  OF  RATIOS  279 

Under  all  circumstances,  S  is  a  series  (*304-23),  and  H  exists  in  the 
type  tfa'^  if  3  exists  vo^  the  type  t'\  (*304-27).  In  the  same  case, 
(?'iZ"=Ratdef  (*304-28).     Similar  propositions  hold  for  H'. 

G'H'  consists  of  typically  definite  ratios,  and  if  X  is  any  ratio,  there  are 
types  in  which  X  belongs  to  C'E'  (*304-62).  If  the  axiom  of  infinity  holds, 
every  ratio  is  a  member  of  G'H'  in  every  type  (*304-49). 


*30401.     X <,  r .  = .  (a/i,  V, p, a-)  .fi,v,p,a-e NC ind .  cr  =j=  0  . /i  Xo <r  <  v  Xj p  . 

X  =  fi/v.Y=pl<T    Df 

*30402.    H  =  X7{X,YeB,Sitdei.X<,.¥}  Df 

*30403.     fl'  =  1 F {Z,  7 e Rat  def  u  i% .  X  <r  Y]    Df 

*3041.       h  :  X  <.r  Y.  =  .  (a/A,  V, p, a)  .  fi,v,p,<Te NC  ind  .  fiXecr  <.v  x^p  . 

X  =  filv.  Y=  pItT    [(*304-01)] 

*304-ll.     1- :  fijv <r p/a-.  =  .  ir/p  <r vjp.     [*304-l] 

*30412.     V\X<rY.  =  .  Y<rX  [*30411 . *303-13] 

*30413.     h  :  X  <^  F .  D  .  Z,  Fe  Eat .  F+  0, 
Dem. 

h .  *117-5  .3h:/itXoO-<z/Xjp.D.i/XojO=|=0. 

[*113-602]  D.i;  +  0./)  +  0  (1) 

h  .  (1) .  *304'1 .  *303-7  .  D  I- .  Prop 

*30414.     h  :  XEY .  =  .  Z,  F  e  Rat  def .  Z  <,  F    [(*304-02)] 

*304-15.     h  :  XHY.  =  .  (g/t,  v,  p,  a) .  p,,  v,  p, <7  eD'fTo  a'f7 . 

Z  =  (/i/v)  I  t^^'fi .  F=  (p/a)  t  tn'fi  ./iX^a-KvX^p 
[*304-14-1.*303-71] 

*304-151.  1- : ZffF .  =  . (^M, N,p).M<rN.Ml  t^'p., N I tn'fi e Rat  def . 

X^Ml  t^^'fi .  F = iV ^  <u'/t    [*304-15] 

*304-152.  h:.p  Prm  v .  p  Prm  o- .  D  :  {(ji/v)  I  iu'/i}  H  {(p/a)  I  t^^'p]  .  =  . 

p,/v  <r p/a- .p.,v,p,<r6'D'Uf\a'U    [*304-161 .  *303-731] 

*30416.     h  :  (p,/v)  H (p/a) .  =  .  (cr/p)  H (v/p.)     [*304-lo] 

*304161.  h  :  XHY.  =  .  FffZ  [*304-12151] 

*304-2.       h.HdJ 

Dem. 
h  .  *803-37  .  D 

I-  •.p.,v,p,a-e'D'U nd'U .{p,lv)^tn'p  =  {plff)^  tii'p,.  D./i  XcO-  =  i'  Xgp  . 
[*304-15]  D  .  ~  {(p,/v)  H  (p/a)}    (1) 

h  .  (1)  .  Transp  .  ^  H  .  Prop 

*304-201.  h  -  ~  (Z  <,Z)     [Proof  as  in  *304-2] 


280  QUANTITY  [PAET  VI 

*304-21.     h.  5^  6  trans 

Dem. 
V  .  *30415  .  D  h  :  XHY .  7HZ .  D . 

px.'nKaX.^.X^  {ixjv)  i  t,,'^  .  Y  =  (p/a)  \;  t,,'u  .  Z  =  (f/,?)  ^  «n  V     (1) 
I-.*117-571.*120-51.D 
h'.fji,v,p,a;^,r]eI)'Ur\Q.'U.fj,Xe(7<vXgp.pX„r]<a-Xe^.':y. 

yu,  x„  o-  Xg  1?  <  V  Xo  p  Xe  i;  <  K  x„  a-  x„  f  . 
[*126-51]D./iX„9?<i'X„^  (2) 

h  .  (1)  .  (2) .  D  f- .  Prop 

*304-211.  h  :  X  <^  F .  F  <,  ^ .  D  .  Z  <,  ^    [Proof  as  in  *S04-21] 

*304-22.     h.He  connex 

Dem. 
h  .  *126-33  .0\-:.fji,,v,p,aeB'U  na'U  .D: 

IJ,x„cr  <vXeP  .  v./iXecr  =  i;Xo/J.v.ytt  Xo<r>i/Xo/3         (1) 
h.(l).*304-15.DI-.Prop 

*304-221.  \-:.X,Ye'Rsit.D:X<r7.v.X=7.v.Y<rX  [Proof  as  in *304-22] 

*304-23.     h.HeSer    [*304-2-21-22] 

*304  24.     h  :  /^, ..  6  D' f7  n  a'f/" .  1/  =(=  1  .  D  .  (^/v)  H  [nl{v  -„  1)} 
Dem. 

V  .  *120-414-415-416  .  D  h  :  Hp  .  D  .  i/  -„  1  e  I)'Ur^  Q'U  (1) 

I- .  (1)  .  *304-15  .  D  h  .  Prop 

*304  241.  h-./jueD'U.^+^lea'U.I).  (fi/l)  H  {{^  +„  l)/lj 
Dem. 

l-.*300-14.  DhiHp.D./i,  lea'C7  (1) 

h  .  *300-14  .  *120124  .  D  h  :  Hp .  D  .  ^u,  +„  1  e D'U"  (2) 

l-.(l).(2).*304-15.DI-.Prop 

*304-25.     l-:/i,i/6D'f/'na'C/'.~(/i+el  =  5'f/.i/=l).D.M/i;6D'ir.i///i6a'fl 
[*304-24-241-16] 

*304-251.  h  :  /i  +„  1  =  £'[/" .  D  ,  ^/l  ~  6  T>'H 

Dem. 

|-.*300-14.D 

1- :  Hp . /),  o- 6  D'Cn  a'C/" .  D  . /3  < /i .  1  <  ff  . 

[*117-571]  D.px„l</iXeff  (1) 

h  .  (1) .  *304-15  .  D  1- .  Prop 

*304 26.     h  :. /i Prm v.D:,j,/ve D'H .=  .v/fie d'H . 

=  . /Lt.i/eD'D'n  a'CT.  ~(/i+„  1  =£'i7. 1;=  1) 
[*302-39 .  *304-25-251-15-16] 


SECTION  a]  the  series  OP   RATIOS  281 

*304-261.  1- .  D'5'=i'  {(a/i,  v) .  fi,  veB'Un  Q'U".  ~(/i+o  l=B'U.v='l) . 

•  X  =  (jjlIv)  i  iu  V}     [*304-2o-251-15] 

*304-262.  1- . a'H=  X  {('^,v).^,ve'D'Ur^  a'U .r^(fji+,l  =  B'U.  v=  1) . 

X  =  (yjij)  I  t,^'ii]     [*304-261-16] 
*304-27.     l-:a[!ir.=  .a!3 
Dem. 

H  .  *30014 .  D 

h  :.  a  !  3  .  D  : /i=  1 .  i;  =  2  .  D  .  (It, ;;  6D'Z7n  a'U".  ~(/i+„  1  =  5'?7 .  i/  =  1) . 

[*304-25]  D .  a !  ff  (1) 

t- .  *304-261 .  D 

I- :.  a  !  if .  D  :  (a/i,  i;)  : /i,  1/ e  D'fTn  a'f/" : /* +„  1  6  a'fr.  V .  V  +  1  : 

[*300-14]     D  :  (a^t)  .  /i>  1 .  a !  /*  +0  2  .  V  .  (ai')  .  v  >  1  .  a  !  "  +0  1  : 

[*ll7-32]    D:a!3  (2) 

h  .  (1) .  (2)  .  D  I- .  Prop 

*304-28.     h  : a ! 3  .  3  .  G'H  =  X{{'3ji,v).  fi.ve'D'U r^ d'U .X  =  {jilv)l  V/*} 

=  Eat  def 
Dem. 

V  .  *30014 .  D  I- :.  Hp,  D  :  /i  +0 1  =  ^'f/" .  3  ■  /i  >  1  (1) 

f-.(]).DI-:Hp.D.~(aAi,z/)./i+„l=5'C/'.i;=l.i/+el=5'f/'.^=l     (2) 
h  .  (2) .  *304-261-262  .  *303-71 .  D  h  .  Prop 

*304-281.  h  :.  a  !  3  .  D  :  fi/v  =  B'H .  =  .,i=  I  .v+^l  =  B'U  .  =  .  v/iJ,  =  B'H 
[*304-28-261-262] 

*304-282.  h.O^'^eC'H    [*304-27-28 . *303-66] 

*304-29.     h  :  (fju/v)  H  (p/a)  .  /*  +„  p,  i/  +«  o-  e  Q'  CT .  D  . 

(/./«.)  H  {(/^  +,  p)/(v  +e  a)]  .  {(m  +e  /,)/(.  +„  <r)}  H  {pi a) 
Dem. 

f- .  *3041  .  D  h  :  Hp  .  D  .  /i  x^  cr  <  v  Xj  p  . 

[*126-5]  D  .  /i  Xo (z/  +e o-)<  v  x„ (/i  +e p)  . 

{fj.  +c  p)  Xe  «r  <  (l/  +0  ff)  Xe  p  .  (1) 

I- .  (1)  .  *304-l .  D  I- .  Prop 
*304-3.       I- :  Infin  ax  .  D  .  iT  e  Ser  n  comp  [*304-29-23] 

*304-31.     t- :  Infin  ax  .  D  .  ~  E  !  B'H .  ~  E  !  B'H  '  [*304-281 .  *30014] 

*304-32.     1- :  Infin  ax  .  D  .  G'H  e  K„ 
Dem. 
h  .  *304-15  .  *303-211  .  *302-22  .  D 

H  .  Nc'(7'fi^<  Nc'l  {(ap,  0-)  .  p  Prm  o- .  p,  o-  6  D'Z7n  a'Z/  .  Z  =  p/o-j 

[*303-36]    <  Nc'#  {(ap,  ff) .  p  Prm  o- .  p,  o-  6  D'  CT  n  a'  U" .  if  =  p  J,  0-} 
[*33-161]    <Nc'C"t'"x,Nc'C"U'  (1) 


282  QUANTITY  [part  VI 

h  .  (1) .  *123-52  .  *300-21  .  D  I- :  Hp  .  D  .  Nc'C"5"<  K„  (2) 

I- .  *304-28  .  D 

1- :  Hp  .  D  .  Nc'C'S^  Nc'l  {(37/)  .  v  e  B'U  n  a'U.  X  =  vjl] 

[*303-36]  >  Nc'(D'  U^a'U) 

[*300-21]  >  No  (3) 

h  .  (2) .  (3) .  *ll7-23 .  D  h  .  Prop 

*304-33.     h  :  Infin  Ax.D.Hev  [*304-3-31-32  .  *273-l] 

*304-34.     h  :  Infin  ax  .  D  .  C'H  =  B'H  =  Eat  -  1%    [*303-78  .  *304-28] 

*304-4.       h  :  XH'T.  =  .  X,  FeKat def  u  t'Og .  X<rT. 

-  •  (a*^.  I',  /3,  0-)  .  ytt,  z/,  /),  o-  6  Q'  fT" .  v  4=  0  .  cr  4=  0  .  /i  X,.  o-  <  1/  Xe  jO  . 

X  =  (fi/v)  t  t^^'fi .  F=  (p/<t)  I  tr^'^    [*3037 1 .  (*304-03)] 
*304401.  h  :.  Infin  ax  .  D  :  Z<,  F.  s  .  X^'F    [*304-4  .  *303-78] 

*304-41.     V.'D'H'  =  X{{'3^ii,v).fi,v6a'U.v^Q.'^{li,+^l  =  B'U.v=\). 

[Proof  as  in  *304-261] 

*304-42.     h  .  a'H'=  X  {(g^,  v) .  fi.v  ea'U .  fi^O  .v^O  .X  =  (fi/v)  ^  «uV} 
*304-43.     h  :  a  !  if' .  =  .  a  !  2     [*304-42] 

*304-44.     h  :  a  !  2  .  D  .  Cfi"' =  X  {(g/^,  i;) . /i,  1/ e Q' Z7 .  i;  +  0  .  Z  =  (/i/i.)t  i„V} 
[*304-41-42] 

*304-45.     h  :  a  !  2  .  D  .  B'H'  =  0^         [*304-41-42  .  *303-6] 

*304-46.     l-:a!3.D.ir'  =  04«f  fi"    [*304-45-4-271] 

*304-47.     I- :  Infin  ax.D.H'ei+v     [*304-46-33] 

*304-48.     h.H'eSer 
Dem. 

h  .  *304-4  .Dh:a!2.~a!3.D.Zf'  =  0j4  (1/1)  (1) 

I- .  (1)  •  *304-43-46-23  .  D  h  .  Prop 

*304-49.     I-  :  Infin  ax  .  D  .  C'H'  =  Ji'H'  =  Rat     [*304-34-46] 

*304-5.       hiXeO'fl".  D.aJ-^DRelnum         [*303-73 .  *304-14] 

*304-51.     V:Xe  C'H' .  D  .  a  !  ^  T  ^^1  num 
Dem. 

h  .  *303-63  .  *304-43  .  D  I- :  Hp  .  D  .  a  !  0,  f  Eel  num  (1) 

h  .  (1) .  *303-73  .  *304-4  .  D  H  .  Prop 

*304-52.     h  :  Z  e  Eat .  D  .  (a/i) .  Z  ^  <iiV  e  C'H'  [*304'44  .  *300-18] 

*304-53.     f- :  Z  e  Eat  -  t'O,  .  D  .  (a/i)  •  X I  Ui'h-  ^  (^'H    [*304-28  .  *300-18] 


*305.     MULTIPLICATION  OF  SIMPLE  RATIOS. 

Summary  of  *305. 

The  ratios  hitherto  considered  are  called  "simple"  ratios  in  opposition 
to  "generalized"  ratios  (introduced  in  *307),  which  include  negative  ratios. 
We  deal  with  multiplication  and  addition  first  for  simple  ratios,  and  then 
for  generalized  ratios.  In  this  number  we  are  only  concerned  with  the 
multiplication  of  simple  ratios. 

In  defining  multiplication  of  ratios,  we  naturally  frame  our  definition  so 
as  to  secure  that  the  product  of  fijv  and  pja  shall  be  {fi  x^  p)j{v  x.^  o").  This 
is  effected  by  the  following  definition  (where  "s"  stands  for  "simple"): 

*30501.     Xx.,Y=RS [(a/i, I/, jo, 0-) . /^, I/, p, 0- 6 NC ind .  J-  +  0 .  o- 4=  0 . 

X  =  im/v.T=p/<t.R  {(fi  Xe p)/(v  X, <t)}  S]     Df 
which  gives  us 

*305-142.  h  :  /li,  p  e  NO  ind  .  1/  =f  0  ■  o'  +  0 .  3 .  /t/i'  Xg  p/o-  =  (/i  Xo  p)/(v  x^  <r) 

and 

*305144.  h  :  a !  {fijv  Xs  pi  a) .  D  .  /i/v  Xg  p/o-  =  (jix^  p)l(v  x^  a) 

The  reason  for  the  hypotheses  in  these  propositions  is  that,  if  yu,  is  a 
cardinal  which  is  not  inductive,  while  p  =  0  and  v,  a  are  inductive  and 
not  0,  fj,/v  =  A  and  fj,/v  Xsp/a-  =  A,  but  (/iXap)/(v  Xacr)  =  Oq. 

For  the  applications  of  the  multiplication  of  ratios,  it  is  essential  that  we 
should  have,  if  M,  S,  T  belong  to  a  suitable  vector  family, 

R  (ji/v)  S .  8(p/a)  T.'^.Rifi/v  Xg  p/a-)  T, 

e.g.  we  want  two-thirds  of  five-sevenths  of  T  to  be  (2/3  Xg  5/7)  of  T.    It  will 
be  shown  in  Section  0  that  our  definition  satisfies  this  requirement. 

We  prove  in  this  number 
*305-3.       h  :  X,  Fe  Rat .  =  .  Z  Xg  Fe  Rat 
*305-22.     h  :.  Z  Xg  F=  Oj  .  =  :  Z,  Fe  Rat :  Z  =  Og  .  V  .  F=  Og 

i.e.  a  product  only  vanishes  when  one  of  its  factors  vanishes ; 
*305-301.  h  :  Z,  F  e  Rat  -  t'Oj  .  =  .  Z  Xg  F  e  Rat  -  i% 


284  QUANTITY  [part  VI 

*305-25.     \-:^L,v,p,o-e'D'Una'U.D.  (fi/v  x,  p/a)  I  t^'fi  e  G'H 

Thus  a  product  of  two  ratios  which  both  exist  in  a  given  type  exists  in 
the  next  type,  i.e. 

*305-26.     f- :  X,  7  e  Rat .  Z  ^  t,,'fj.,  Y  [.  t^'fi  e  Rat  def .  D  .  (Z  x,  F)  ^  t^'/i  e  C'H 

The  formal  laws  offer  no  diflSculty.      We  prove  the  commutative  law 
(*305"11)  and  the  associative  law  (*305'41);   we  prove  that  Xxjl/l=Z 

(*305-51)  and  that  Zx,Z  =  1/1  (*305-52).     Division  results  from 
*305-61.     \-:.Ae'Rait-i%.A'eB:at.D:Ax,X  =  A'.  =  .X  =  A'x,A 

and  the  axiom  of  Archimedes  is  given  bj^ 
*305-7.       h  :  Z,  7  6  Rat  -  t'O, .  D  .  (aa) .  o  e  NO  ind .  7<,  (a/1  x,  Z) 


*305'01.     Z  X,  7=  RSK'Sji, v,p,<T).fji,v,p,a-e'NGmd.v^0.a-^0. 

X  =  p.lv.Y=pl<r.R{{^X,p)l{vX^<T)]^     Df 

*3051.       V:R{Xx,Y)8.  =  .  ('3,fji,v,p,  o-) .  /i,  i/,  p.o-eNCind .  i;=t=0 .  o-  +  0 . 

X  =  ixlv.  Y^pja .  R  {(/i  Xe  p)l{v  Xe  a-)]  8     [(*305-01)] 

*30511.     h  .  Z  X,  7=  7  Xs  Z  [*3051] 

*30512.     h  :  Z,  7  ~  e  I'Oj  w  i'  oo^ .  Cnv'(Z  x,Y)  =  Xx,Y   [*3051 .  *30313] 

*30513.     t- :  /*,  V,  p,  a-  6  NO  ind  -  I'O  .  p-jv  =  pfjv  .  pja-  =  pja  .  D  . 

(p,  Xe  p)/{v  x,  0-)  =  {p'  x„  p')/(j''  Xo  o-O 
Z)em. 

1- .  *303-39  .  D  F  :  Hp .  D .  /t  Xo  v'  =  v  x„  /a'  .  /3  Xo  cr'  =  p'  Xo  o- . 

[*120-51]  D  .  /4  Xo  /3  Xo  v'  Xo  0-'  =  /  Xe  p'  Xo  v  Xo  o-  - 

[*303-39]  :>-(px.  p)l{v  Xo  <7)  =  {p'  Xo  pO/Ci-'  Xo  <x') :  3  h  .  Prop 

*305131.   V:v,p,(7e  NC  ind  -  t'O  .  0/z/  =  /*'/).' .  pja-  =  p'/a' .  D  . 

(0  x„  p)/(p  Xo  a)  =  (/  Xo  p'W  Xo  ff') 
Dem. 
l-.*303-66.      Df-:Hp.D.yLt'  =  O.i''€NCind-i'0  (1) 

h  .  (l).*303-6  .  D  h  :  Hp.  D.  (0  x^p)/{vx^o-)  =  Og  =  {p:  x,p')l(v'x,a-') :  D  h.  Prop 

*305132.  I- :  /i,  I/,  p,  o-  e  NC  ind  .  V  4=  0  .  o-  4=  0 .  /it/j/  =  p'/v  .  p/a  =  pja  .  D  . 

{p  xi  p)/(i'  Xo  0-)  =  (/^'  Xo  pO/C"'  Xo  o-') 
[*305-13-131] 


SECTION  a]  multiplication   OF  SIMPLE  RATIOS  285 

*30514.     h  :  /*=}=  0  . /)4=  0 .  i/=j=  0 .  0-  +  0  .  3  .  /i/v  Xsp/(7  =  (/i  ■x.^p)l{v  x^ o") 

Bern. 
V  .  *3051-132  .  D 
h  : :  Hp  .  D  :.  i2  {fijv  x^  pja)  S .-: 

(a/.  "'.  />'.  o-')  •  /*'> "'.  p'.  0-'  6  NO  ind  .  iit/i'  =  /i'/v' .  p/o-  =  p'/o-' .  v'  +  0 .  0-'  =f  0  : 

i2{(MX„p)/(..x,«7)}>S    (1) 
H  .  *303-181 .  *302-36  .  *120-512  .  D 

h  :  Hp  .  i?  {(^  x„ p)/(v  x„a-)}S.D.  fi,  v,p,a-e NC ind  (2) 

l-.(l).(2).DI-.Prop 

The  condition  /*  =j=  0 .  p  =j=  0  is  required  in  the  above  proposition  because  if, 
e.g.  yu.  =  0  .  p  6  NC  infin,  we  shall  have  (if  v,ae  NC  ind  —  I'O)  fi/v  =  Oj .  p/tr  =  A, 
whence  fi/v  x^  p/a  =  A,  but  (jx  x^  p)/{v  x^  cr)  =  Og.  If  we  assume  /i,  p  e  NC  ind, 
it  is  not  necessary  to  assume  /i  4=  0  .  p  =^  0.     This  is  stated  in  *305"142. 

*305-141.  h  : .  i;  =  0 .  V .  or  =  0  :  D  .  /i/i/  Xg  p/or  =  A 
Dem. 

h  .*30S-67-ll  .Dh  :v  =  0  .  fi',v'  eiaCmd  .  fjL/v  =  /jl'/v  .:>  .v  =0         (1) 
l-.(l).*305-l.Dh.Prop 
*305142.  \-  :/i,pe  NC  ind .  v  =}=  0 .  o-  =|=  0.  D .  fi/v  Xj  p/o-  =  {/i  x^  p)/(i;  x^  a) 

[Proof  asin*305-14] 
*305143.  h  :  a  !  (At/V  Xg  p/f) .  D .  /t,  v,  p,  o-  e  NC  ind .  v  =}=  0 .  o-  =f  0 

Dem. 
h  .  *3051 .  D  h  :  a  !  (fi/v  x,  p/o-) .  D .  ('^p,',  v') .  /,  v'  e  NC  ind  .  v'  =j=  0  .  /i/v  =  p.'/v' . 
[*303-182-67]  D./i,i'6NCind.i/=)=0  (1) 

Similarly       H  :  a  !  (a'/i'  Xg p/v)  .  D .  p,  o-  e  NC  ind .  o-  =f  0  (2) 

I- .  (1)  .  (2) .  D  h  .  Prop 
*305144.  I- :  a  !  (fi/v  x,  p/a)  .D./i/v  x,  p/a  =(/i  x„  p)/(v  x^  a-)     [*305-143-142] 

«305'15.     1- :.  ~  (/Lt,  v,  p,  o-  6  NC  ind)  .v.i'  =  0.v.(7  =  0:D.  /i/v  Xg  p/a  =  A 
[*305-143 .  Transp] 

*30516.     h:.fi,v,p,ae  NC  ind:/*  =  0.v.p  =  0:i'=|=0.o-4=0:D. 

p./v  X,  p/o-  =  Og    [*305-142  .  *303-6] 

*30517.     f-.Zx,<»g  =  A    [*305-141 .  *303-67] 
*305-2.       h  :  a  !X  x,  7.  D.Z,Fe  Rat 

Dem. 
h  .  *305-l .  3 

h  :  Hp .  3  .  (a/i,  v,  p,  0-) .  fj,,v,p,ae  NC  ind  .i'4=0'O'=f^"-^~  /*/"  ■  -^  ~  P/""  ■ 
[*303-7]  3  .  Z,  FeRat :  3  h  .  Prop 


286  QUANTITY  [part  VI 

*305-21.     \-:Xx,7e  Rat  -  I'O^  .:^.X,Y€  Rat  - 1% 

Dem. 

h .  *303-72  .  *305-2 .  3  h  :  Hp .  D  .  X,  Fe  Rat  (1) 

h  .*30516.Transp .  D  h  :  Hp .  D .  X  +  Og .  74=0^  (2) 

h .  (1) .  (2) .  D  I- .  Prop 

*305-22.     \-:.XXs7=0g.  =  :X,  YeRat-.X  =  0^.v .Y=Oq 

Dem. 
l-.*305-l-2-142.*303-66.D 
h  :.  X  Xj  F=  Oj .  =  :  (g/x,  v,p,a).X=  fi/v  .  Y=  pja  .  fi,v,p,(Te NC ind  . 

/u,Xo/3  =  0.i'Xo  0-4=0: 
[*303'66]  =  :  (g/i,  v,  p,  a) :  X  =  fiju .  F=  p/a- .  /j,,v,p,a-€  NC  ind  . 

K  =t=  0 .  cr  =)=  0  :  yu./j'  =  Og  .  V .  jo/o-  =  Og : 
[*303-7]  =  :  X,  Fe  Rat :  X  =  0, .  V  .  F=  Oj  :.  3  h  .  Prop 

*305-222.  h  :  X  X,  Fe  Rat  .O.X.Ye  Rat     [*305-21-22] 

The  following  propositions  are  lemmas  designed  to  show  that  if  X,  F  are 
ratios  which  exist  in  a  given  type,  X  Xg  F  exists  in  the  next  type. 

*305-23.     h  :  /i  e  NC  ind  .  D  .  (2  Xe  /*)  +e  1<  2''+»i     [*ll7-652  .  *120-429] 
*305-231.  }-.(fji+^iy  =  fj?+^{2x,fj,)+„l  [*116-34.*113-43-66] 

*305-232.  h  :  /i  6  NC  ind .  D  .  /i''  <  2"+'' 

Dem. 
h  .  *116-311-321  .  D  1- .  O''  <  2»+«i  (1) 

f-.*305-231.  DI-:Hp.^^<2'^+o'.D.(/i+el)='<2''+=i+„(2x,/[i)+,l  (2) 
h  .  (2) .  *30.5-23  .  D  h  :  /i  e  NO  ind  .  /a''  <  2''+«' .  D  .  (/a  +,  If  <  2''+»'  +„  2»+='  - 
[*113-66.*116-52]  3  ■  (fi  +0 1)"  <  2"+"'  (3) 

h  .  (1) .  (3) .  Induct .  D  I- .  Prop 

*305-24.     h:/i,  i/./j.o-eD'fZna'Z/.D. 

(/A  Xojo)  n  ^'/i,(j/  Xgff)  r\  t'/MeD'U  r\  d'U 
Dem. 

V .  *116-72 .  D  h  :  Hp .  3 .  (2^+='  n  t'/i)  eC'U. 

[*305-232]  :>.fi^nt'fi€a'U  (1) 

h.*116-35.  DhiHp.D./i'^ni'/ieD'f;'  (2) 

Similarly  \- iRp  .D  .v' r\t'fi,p^  nt'iu,,a^  nffieTfU  na'U  (3) 

l-.*117-57l.D 

I- :.  Hp .  D  :  /i  Xj p  <  ^^  V .  /i  Xo /3  <  /d''  :  J'  Xo  o-  <  1;= .  V .  z/  Xo  c7  <  0-2  (4) 

h  .  (1) .  (2) .  (3) .  (4) .  D  h .  Prop 


SECTION  a]  multiplication   OF   SIMPLE   RATIOS  287 

*305-25.     ^:fi,v,p,a-e'D'Una'U.D.(filvx,pla)lt^'lj,eC'H 
Bern.  • 

I- .  *305'14  .  D  I- :  Hp  .  D  .  fijv  x,  p/a-  =  {fi  x^  p)/(v  x^  cr)  (1) 

I- .  (1) .  *304-28 .  *305-24 .  D  h  .  Prop 

*305-26.     h-.X.YeU&t.X^  tn'/i,  Y^  <n'/* 6 Rat def .  D  . (Z  x,  F) t  <ooV e G'H 
[*305-25 .  *304-28] 

*305-27.     h  :  Z,  Fe  Rat  -  I'Og .  D .  (g/i)  .(X  x,Y)H„'fie  G'H 
[*305-26 .  *303-721] 

*305-28.     h  :  X,  F 6  Rat .  D  .  (a/i) .  (X  x,  F) ^  t^'fi  e  O'fi^'    [*305-27-22] 

*305-3.       h  :  Z,  F 6  Rat .  =  .  X  x,  Fe  Rat 
Dem. 

h  .  *305-142  .  *303-7  .  D  h  :  X,  Fe Rat .  D  .  X  x,  Fe  Rat  (1) 

h  .  (1) .  *305-222  .  D  h  .  Prop 

*305-301.  h  :  X,  Fe  Rat  -  t'O, .  =  .  X  x,  Fe  Rat  -  I'Og 
[*305-14.2  .  *303-7  .  *305-21] 

*305-31.     I- :  (a/i) .  X  t  t,,'fi,  Y  t  t^'fi  eG'H.  =  .  (gi/) .  (X  x,  F)  ^  «„'«'  e  G'H 
[*305-301.*304-53] 

*305-32.     h  :  (a/^) .  X  ^  «u V,  F f  «,//*  e  G'S"' .  =  .  (31/) .  (X  x,  F)  p  t^'v  e  G'H' 
[*305-3 .  *304-52] 

*305-4.       h  :\,  I/,  0-6  NO  ind./*  4=0  •P  +  0.t4=0.D. 

(\/fi  Xgvjp)  Xg{<r/T)=(X x^vx^a-yifi Xe/3  x„T)=X/fi, Xs{v/p  Xsct/t)  [*305-142] 

*305-41.     l-.(Xx,F)x,^=Xx,(Fx,Z)    [*305-4-2] 

*305-5.       h  :  /*  +  0  .  3  .  {\//jl)  x,  (1/1)  =  X/p.     [*305-14-14215] 

*305-51.     h:XeRat.D.Xx,(l/l)  =  X        [*305-5] 

*305-52.     l-:XeRat-t'Og.D.Xx,X  =  l/l 
Dem. 

f- .  *30514 .  *303-13  .  D 

h  :  Hp .  D  . (a/x, v).p,,ve NC ind - I'O . X  x, X  =  (/u,  x„ i;)/(i;  x^ /*) . 

[*303-23]  D  .  X  x,  X  =  l/l :  D  I- .  Prop 

*305-6.       l-i.^eRat-t'Oj.XeRat.D:^!  x,X  =  A'.  =  .X  =  ^'Xsl 
Bern. 

f-.*304-l-4.*305-32-222.D 

1- :  Hp  .  D  .  (a/x,  v,  /3,  cr,  f ,  rj).  p,v,a-e  NC  ind  —  I'O  .p,^,7je  NC  ind  . 

A  =  p./v  .  X  =  p/a  .  A' =^  ^It,      (I) 


288  QUANTITY  [part  VI 

h  .  *305-142  .  D  f- :.  yet,  1/,  o-  e  NC  ind  -  t'O  .  p,  f  97  6 NO  ind .  D  : 
W"  Xs  p/o-  =  f /'?■  =  ■  (m  Xo  />)/("  Xe  o'}  =  ^/v  ■ 

[*303-38]  =  ./iXepXe1?  =  J'X„o-Xe^. 

[*303-38]  =-p/<r  =  (.V  x„  ?)/(/[*  Xe  1?) 

[*305-142.*303'13]  =  ^/i?  x„  Onv  V/")  (2) 

h  .  (1)  .  (2) .  D  h  .  Prop 

*305-61.     h  :.  ^  6  Rat  - 1%  .A'en^it.^D:Ax,X=A'.  =  .X  =  A'x,A 
[*305-6-222-32] 

*305-7.       h  :  Z,  7e  Rat  -  t'O, .  D .  (ga) .  a  e  NC  ind  .  F  <,  (a/1  x,  X) 

Dem. 

h  .  *117-571 .  *120-511 .  *117-62  .  D 

\- :  /i,v,p,(re  NC  ind  —  t'O  .  f  >  j/ .  D  . 

[*3041]    D  .  (p/o-)  <r  (^  Xe  p  Xe  f  Vi; . 

[*305-14]  D  .  (p/<7)  <,  {/jilv  X,  (p  Xe  f )/l}  (1) 

I- .  (1)  .  *304-l .  *120-5  .  D  h  .  Prop 

*305-71.     h  :.  -?  6  Rat  -  t'Og  .D  :X  <rY .- .X  XsZ  KrYx^Z 

Bern, 
h  .  *30.5-142 .  D  h  :  Hp .  X  <,  F.  D  . 

(a^,  v,  p,  0-,  ^, »;) .  /A,  v,  p,  0-,  f ,  i;  6  NC  ind .  J/  +  0  .  o-  +  0 .  ^  =f  0  .  17  4=  0 . 
X  =  fj,/v  .  F=  p/o- .  Z=  ^/r) .  fiXgCr  <iv  Xe  p  . 
Z  X,  ^  =  (/i  Xe  M"  Xe  '?)  ■  F  X,  ^=  (p  Xe  ^)/(o-  Xe  17)  . 

[*304-l.*126-51]D.Xx,2:<rFx,-?  (1) 

|-.(l).Dt-:Hp.Zxj^<rFx,^.D.Zx,^x,^<^FxsZxgi. 
[*305-51-52]  D  .  Z  <^  7  (2) 

h  .  (1) .  (2) .  D  h  .  Prop 


*306.     ADDITION  OF  SIMPLE  RATIOS. 

Summary  of  *306. 

The  addition  of  simple  ratios  is  treated  in  a  way  analogous  to  that  in 
which  their  multiplication  is  treated.  We  wish  to  secure  that  the  sum  of 
Xjv  and  fijv  shall  be  (K+gfj.)/v,  and  that  the  sum  of  /i/v  and  p/a-  shall  be 
{(/i  Xj  o")  +0  (j;  Xgp)}j(v  Xo  a-).     This  is  secured  by  the  definition 

*306-01.     X  +g  F=  R^ [('3JI, v,p).iJ,,v,pe'NCmd.v=^0. 

X  =  filv.Y=plv.E  {(/i  +c  p)lv}  S]    Df 
whence  we  obtain 

*30613.     I- :  1/  +  0  .  D  .  /i/i/  +s  /a/i;  =  (;ti  +e  p)/v 

*30614.     h  :  1/  =1=  0  .  o-  =t=  0 .  D  .  /i/v  +8  p/o-  =  {(/Li  Xe  0-)  +0  (i*  Xo  p)}/(v  x^  a-) 

Our  definition  is  so  framed  that  oo  g  +8  txs  ,  =  A.  This  is  on  the  whole 
convenient,  though  we  could,  of  course,  frame  our  definition  so  as  to  have 

COq+s'X)  q='X>  q. 

In  applications,  if  R,  S,  T  are  members  of  a  suitable  vector-family,  we 
want  to  have 

B (fi/v) T .  8 (p/o-)  T.:).iR\S) iix/v  +8 pla) T, 

e.g.  if  a  vector  R  is  2/3  of  T,  and  a  vector  S  is  5/7  of  T,  we  want  the  vector 
which  consists  of  first  travelling  a  distance  R  and  then  travelling  a  distance 
S  to  be  (2/3  +8  5/7)  of  T.  We  shall  show  in  Section  C  that  our  definition  of 
addition  fulfils  this  requirement. 

As  in  the  case  of  products,  the  sum  of  two  ratios  is  a  ratio  (*306'22),  and 
the  sum  of  two  ratios  which  exist  in  a  given  type  exists  in  the  next  type 
(*306"64).  A  ratio  is  unchanged  by  the  addition  of  Og  (*306'24),  and  a  sum 
of  two  ratios  is  only  Og  if  both  the  summands  are  Og  (*306'2).  No  difficulty 
is  offered  by  the  formal  laws :  we  prove  the  commutative  law  (*306'11),  the 
associative  law  (*306'31),  and  the  distributive  law  (*306'41). 

An  important  proposition  is 
*306'52.     h  :.  X  <^  F.  =  :  Z  6  Rat :  (g^) .  .^e  Rat  -  t'O, .  Z  +« ^=  F 
When  the  axiom  of  infinity  is  assumed,  this  proposition  becomes 
XH'Y.  =  :  X  6  C'H' :  (^Z)  .ZeC'H.X +,Z=Y. 

B.  &  W.  III.  19 


290  QUANTITY  [part  VI 

We  prove  also  the  proposition  upon  which  subtraction  depends,  namely 
*306-54.     h  :. Z,  Fe  Rat .  D  : Z  +,  F=Z  +,Z.  =  .  F=  Z 


*306-01.     X+,Y=RS  [(3^1,  v,p).fi,v,pe'!^Cmd.v^O. 

X^(i/v.Y=p/v.R{(fi+,p)/v]^    Df 

*3061.       f-:iJ(Z+,F)<Sf.  =  .(a/i,i',p)./x,i/,p6NCind  .7^  +  0. 

X  =  ij./v.Y=pIv.E  {{/j.  +, p)/v}  S    [(*306-01)] 

*306 11.     h  .  Z  +,  F  =  F  +,  X  [*3061  .  *110-5l] 

*30612.     I- :  a  !  (Z  +,  F) .  D  .  Z,  F  6  Rat     [*3061  .  *303-7] 

*306121.  \-:fjL/v  =  M.'/v' .  p/v  =  p'// .  3  .  (At  +c  p)Ip  =  (/*'  +o  p')/"' 

Dem. 
h  .*303-39  .  D  h  :  Hp . /i,  i^,  p, /*»' e  NC  ind .  i/ +  0  .  k'  +  O  .  D  . 

fi  x^v  =  fi'  XgV .  p  Xgv'  =  p'  x^v . 
[*113-43]     D.(f^+, p)  X, v'  =  (ji!  +, p')  X, V . 

[*303-39]      D.(f,+,p)/v  =  (p,'+,p')lv'  (1) 

l-.*303-181.*302-36.D 

h  :  Hp .  ~  (p,,  V,  p,  pi,  v',  p'  e  NC  ind) .  D  .  (^  +c  p)lv  =  A .  (/  +„  p')/"'  =  A        (2) 
I- .  (1) .  (2) .  *303-67  .  D  h  .  Prop 

*306-13.     \-:v=^O.D.p,/v+,p/v  =  (fj,+^  p)/v 
Bern. 

I- .  *306-l .  D  F  :  Hp .  D  .  (ytt  +„  p)/v  G  /^/j/  +,  /a/i'  (1) 

l-.*306-121.D 

!-:/./«.  =  p.'/v' .  p/v  =  p'jv' .  X  {(^'  +, p')/v'}  F .  D  .  Z  {(^  +,  p)/v}  Y        (2) 

F  .  (2) .  *306-l  .D\-.p,/v+,  p/v  e  (y(i  +e  /3)/i'  (3) 

h  .  (1) .  (3) .  D  I- .  Prop 

*30614.     F  :  I-  +  0 .  o-  +  0  .  D  .  /x/^  +,  p/<7  =  {(/.  x„  <r)  +e  (v  x„  p)}/(i;  x„  a) 

Dem. 
h.*303-39.D 

h  :  Hp  .  /i,  v,  /),  o-  6  NC  ind .  D  .  p,/v  =  (/a  x^  o-)/(j/  x„  o-)  .  p/o-  =  (v  x„  /3)/(i'  x„  <r) . 
[*306-13]  ^■f^/i'+eP/<T  =  {(/^x,<r)+,(vx„p)}/(vx,^)  (1) 

I- .  *30612  .  *303-ll  .  D 

\-:r^(lu,,u,p,ae  NC  ind)  .  D  .  //,/z.  +, p/a=A.  {(fj.x^a-)+^(v x„p)}J(v  x„a-)= A   (2) 
h  .  (1)  .  (2)  .  D  f- .  Prop 

*306141.  ]-:.v  =  0.v.(T  =  0:D.p./v+,p/a-  =  A     [*306-12  .  Transp .  *303-7] 


SECTION  a]  addition   OF   SIMPLE   RATIOS  291 

*30615.     \-:iJi.lv+,p/<T=Qg.  =  .fi  =  p  =  0.v,cr€'NGind-i'0 

Bern.  • 

l-.*306-14.*303-66.Dh:/i  =  /j  =  0.r',o-eNCind-i'0.D./t/j/+,p/<r=0,    (I) 
h.*30612.         D  h  : /i/i/ +« p/o- =Oy.D. /.,!/,  (0,0- 6  NO  ind  (2) 

h.*306-141.       DI-:/i/x/+,/3/o-  =  0,.D.i'=|=0.o-=f  0  (3) 

K  (3) .  *306-14 .  D  h  :  Hp  (3) .  D  .  {(/.  x„  o-)  +,  (v  x„  p)}/(v  x„  cr)  =  0, . 
[*303-66]  O.(f,x,a)+,{vx,p)=^0.vx,a^Q. 

[*110-62.*113-602]  D./i  =  /3  =  0.i'  +  0.<r  +  0  (4) 

l-.(l).(2).(4).DI-.Prop 

*30616.     \-.X+,7=RS[('^iJ.,v,p,a-).p.,v,p,ae'SCmd.vJrO.<7^0. 

X  =  p./v.  Y=  p/a- .  R  {{p,  x„  o-  +c  J/  x„  p)/v  x„  <t]  S] 
[*3061412] 

*30617.     h  :  /i  =  0  . 1/,  /3,  o-  6  NO  ind .  i;  4=  0 .  o-  =t=  0  .  D  .  /i/i;  +,  jo/o-  =  p/o- 
Dem. 

h  .  *303-6  .  D  h  :  Hp .  D  .  p/i/  =  O/o- . 

[*306-13]  3 .  p.lv  +s  p/a-  =  (0  +„  p)/ff  :  D  1- .  Prop 

*3062.       \-:X+,Y=0q.  =  .X  =  0g.Y=:0j    [*3061512] 

*306  22.     l-:Z+,FeRat.  =  .Z,  FeRat 

Bern. 
h  .  *30616  .  *303-7  .  D  h  :  Z  +,  Fe  Rat .  s  . 

(g/u,  7^,  jO,  cr)  .  p,v,p,a-  e  NC  ind  .  X  =  /ci/i/ .  F=  p/cr  .vx^a-  ^0  . 
[*113-602]=  .  (a/i,  i/,/3,  a-).p,,v,p,<re'NCmd.X  =  p./v.Y=p/(T.v^O.<T^O. 
[*303-7]  ■   =  .  Z,  Fe  Rat :  3  F  .  Prop 

*306-23      h  :  Z  +,  Fe  Rat  -  I'O, .  =  .  Z,  Fe  Rat .  ~  (Z  =  F=  0,) 
[*306  22.*303-7.*306-2] 

*306-24.     l-:ZeRat.D.Z+,Oy  =  Z    [*306-l7-ll] 

*306-25.     h  :  Z  +s  Fe  Rat .  =  .  a  !  (Z  +g  F) .  =  .  Z,  Fe  Rat 
[*306-12-22  .  *303'26  .  *30614] 
Here  X  +gY  must  be  taken  in  a  sufficiently  high  type,  otherwise  X  +gY 
may  be  null  when  X,  FeRat. 

*306-3.        h  .  (X/fi  +,  v/p)  +s  o-/r  =  X/p,  +,  (v/p  +,  ct/t) 

Bern. 
\- .  *306-14  .DI-:/i=|=0./34=O.T4=O.D.  (X//i  +s  v/p)  +,  cr/r 
=  {(^  Xo  /»)  +0  (/*  x-o  v)]/{fi  Xe  p)  +s  ajr 

[*80614]  =  ((A,  X„  p  X„  t)  +c  (/i  X,,  jy  X„  t)  4e  (/i  X„  /D  X„  (7)}/(yti  Xe  p  X„  t) 
[*1 13-43]  =  [{X  Xe  (/)  Xe  r)}  +e  {^  X^  ((l/  Xe  t)  +e  (p  X^  <T))W/{p.  X^  (p  X,  t)} 
[*306-14]  =  V/.  +,  {(v  Xe  t)  +e  (p  Xe  (r)}/(p  Xe  t) 

[*306-14]  =  \//i+,(i//jo+,o-/T)  (1) 

l-.(l).*30612.DI-.Prop 

19—2 


292  QUANTITY  [part  VI 

*306-31.     \-.{X+,7)+sZ=X+,{Y+,Z) 

Bern, 
h  .  *306-3  .    D\-:X  =  X/fi.Y=v/p.Z=a-jr.D. 

(X+,Y)+,Z  =  X+,(Y+,Z)        (1) 
h .  *306-25  .  D  h  :  ~  (gX,  fi,  v,  p,a,T).X  =  X//j,.Y=v/p  .Z=<7/t  .D  . 

(X+sY)+,Z=A.X+,iY+,Z)  =  A        (2) 
h  .  (1) .  (2) .  D  h  .  Prop 

*306-4.       h  .  X//i  Xj  (v/p  +s  o-/t)  =  (\/yt4  Xg  iz/p)  +,  (X//4  Xj  (t/t) 

Bern, 
h  .  *306-14  .  D  h  :  X,y[4, 1/,  p,  0-,  T  e  NC  ind  .  /i  =1=  0  .  V  +  0  .  o-  +  0  .  D  . 

X/fJ.  X,  (v/p  +s  0-/t)  =  \//A  X,  {(j/  Xo  t)  +e  (/3  Xo  a)}/(p  Xe  t) 
[*305-14]  =  [\  Xe  {(j/  Xe  t)  +e  (p  X„  0-)}]/(/x  X„  p  X^  t) 
[*303-23]  =  [X  Xe  jU,  Xe  {(v  Xe  t)  +e  (p  Xe  0-)}]/(^  X^pX^p.  X^  t) 
[*113-43]  =  {(X  Xe  /i  Xe  V  Xe  t)  +„  (^  Xc  /^  Xc  P  Xc  0")}/(A*  ^e  jO  Xg  /i  Xe  t) 
[*30614]  =  (X  Xe  I/)/Ox  Xe  p)  +s  (X  Xe  <7)/(p,  X,  t) 

[*305-14]  =  (X///,  X,  vZ/a)  +,  (X//^  x^  (t/t)  (1) 

h  .  *305-2  .  *306-22  .  D  h  :  g  !  X//i  x^  (i///3  +,  a/r)  .  D  .  \/p,  v/p,  a/r  e  Rat . 
[*303-7]  :>-Hp(l)  (2) 

l-.*306-12.*305-143.D 

^'■'k-  {(V/*  Xg  Z^//3)  +s  (X//i  Xg  (t/t)}  .  D  .  X//LI,  Iz/iO,  (7/t  6  Rat . 

[*303-7]  3.Hp(l)  (3) 

l-.(2).(3).D 

h  :  ~  Hp  (1) .  D  .  \/fj,  Xg  (v/p  +,  ct/t)  =  a  =  (X//i  Xg  v/p)  +,  (X/p.  Xg  o-/t)  (4) 

I- .  (1) .  (4) .  D  h  .  Prop 

*306-41.     l-.Xxg(F+g^)  =  (XxgF)+g(Xxg^     [*306-4-25 .  *305-2] 

*306-51.     \-.X+s  (v/1  Xg  X)  =  (v  +e  1)/1  Xg  X 

Bern. 
h  .  *306-12 .  D  t- :.  a  !  (Z  +g (z^/l  XgX)} .  D  :  X  v/l  x, Z  e  Rat : 
[*305-3.*303-7]  D  :  v  e  NO  ind  :  {'S_p,  o-)  .  /o,  <7  e  NC  ind  .  cr  =t=  0  .  X  =  p/o-  (1) 

h  .  *305-2  .  D  h  :.  a  !  ((i;  +e  1)/1  x,  Z} .  D  :  (i-  +„  1)/1,  Z  e  Rat : 
[*303-7.*126-31]  D  :  1/  6  NC  ind  :  {-^p,  tr) .  yo,  o-  e  NO  ind  .  o-  =j=  0  .  Z  =  /o/<7      (2) 
I- .  *305-142  .  D  I- :  I/,  ;o,  o-  e  NC  ind  .  o-  =t=  0  .  D  .  I//1  Xg  p/o-  =  (j/  x^  p)/cr . 
[*806-13]  D  .  p/(T  +g  (v/l  Xg  /d/o-)  =  {/J  +e  (i/  Xe  yo)]/o- 
[*113-6.71]  ={(v+,l)x,p]/a- 

[*305-14]  =(v +,!)/!  Xsp/a  (3) 

F  .  (1) .  (2) .  (3) .  D  h  .  Prop 


SECTION  a]  addition   OF   SIMPLE   EATIOS  293 

*306-52.     h  :.  X  <r  7.  =  :  X  6  Rat :  (a^) .  Ze  Rat  -  I'Og  .X+,Z=Y 

Bern. 
F.*306-13.*119  34.D 
\- :  fi,  V,  p,  a  e  NO  ind  .v^O  .(T=^0  .  X  =  /jl/v  .  Y=  pja  .  fj.Xa&  <.v  x^p  ■ 

^=  (v  Xo  p)  -0  (p-x^a).Z=  ^liy  Xoff).D.X+sZ={vXa  p)/{v  x„  a) 
[*303-23]  =  p/a 

[Hp]  =  Y  (1) 

h.(l).*304-l-13.D 

h  •.•X<r  F.  D  :  XeRat :  (gZ)  .  ^eRat-  t'O,  .X+sZ=Y  (2) 

h  .  *306-14 .  D 
\-:fji.,v,p,ae'MCmd.v^0.p^0.a-^O.X  =  iJ./v.Z  =  p/a.Y=X+sZ.'D. 

F=  {(/i  X„  ff)  +„  (v  Xe  /))}/(y  Xe  0-)  .  [{(/i  X„  ff)  +„  (v  X„  /a)}  Xe  f]  >  /i  Xc  {v  X„  O")  . 

[*304-l]  D  .  X  <^  7  (3) 

h  .  (3) .  *304-l .  D  h  :  Xe  Rat .  ^6  Rat  -  i%  .X +,Z=Y  .D  .X  <rY     (4) 
I- .  (2) .  (4) .  D  h  .  Prop 

The  above  proposition  requires  that  X  and  Y  should  be  taken  in  a 
sufficiently  high  type,  namely  at  least  in  a  type  in  which,  if  X  =  fi/v  and 
Y  =  p/a,  where  fi  Prm  v  and  p  Prm  a;  (v  x^  p)  +„  1  and  (/i  x^  o")  +„  1  are  not 
null.     Otherwise  there  may  be  no  Z  such  that  X+gZ  =Y. 

*306-53.     h:./i,j;6NCind.v4=0.o-=f=0.i7=t=0.D: 

/m/v  +s  p/(7  =  p,/v  +s  ^/v-=-  p/<^  =  ^/'7 

h  .  *306-12  .Dh:HTp.fi/v+s  pja-  =  njv  +>  ^/v  .  ~  (/o,  o-  e  NO  ind) .  D  . 

W"  +« l/i?  =  A  .  /a/o-  =  A  .  (1) 

[*306-25]  D  .  ~  {fi/v,  ^/v  6  Rat} . 

[Hp.*303-7J  D.~(?,97eNCind). 

[*303-ll.(l)]  3 .  f/'?  =  p/a-  (2) 

I- .  *306-25  .D\-:Hp.fi/v+s  p/a-  =  /jl/v  +g  ^/v .  />,  o"  e  NO  ind  .  D  . 

^,77  6  NO  ind  (3) 

h .  (3) .  *30614 .  *303-39  .  3 

h  :  Hp  (3) .  D  .  [(fi  x„  ff)  +c  (v  x„  |o)}  x^  v  x^  t?  =  {(/i  x^  rj)  +„  (v  x^  ^)}  Xe  i/  x„  o- . 
[*113-.43] 

D  .  (/i  Xo  O-  Xe  V  Xe  1?)  +„  (l/^  Xe  p-X.a'n)  =  (H-  Xc  0"  Xc  «'  Xo  '?)  +o  (''"  X^  |  X^  ff)  . 
[*126-4]  D  .  l/^  X„  (,0  Xe  V)  =  ""  Xe  (^  Xe  <7)  . 

[*303-39]D./>/<7  =  ^/»;  (4) 

h  .  (2)  .  (4) .  D  h  :.  Hp .  D  :  fi/v  +sp/<r  =  p^/v+g^/v  .:>.pl<T=  ^/v  (5) 

1- .  *306-l .  D\-:p/(7  =  ^/v^-  P'h  +s  pl<y  =  /*/«'  +8  f/i;  (6) 
I- .  (5)  .  (6)  .  D  h  .  Prop 


294  QUANTITY  [part  VI 

*306-54.     t-:.X,  FeRat.D:Z+,F  =  X+,^.  =  .  Y=Z 
Dem. 

h  .  *306-25  .  D  h  :.  Hp .  D  :  X+,  Fe Rat : 

[*306'25]  D:Z+,  F=X+,^.D.Z6Rat  (1) 

h  .  (1) .  *306-53  .  *803-7  .  D  h  .  Prop 

*306-55.     l-:F<,X.D.~(a^).Z+,Z=F 

Dem. 
I- .  *117-291 .  *304-l .  D  h  :  Hp .  D  .  ~  (Z  <,  F) . 

[*306-52]  D.'^('^Z).Z6'Rat-i'0g.X+sZ=Y    (1) 

t- . *306-24 . *304-l .    D  h  :  Hp  .  D.~(Z+,0,=  F)  (2) 

t-.*306-25.  Dh:Hp.Z+,Z=  F.D.  ^eRat  (3) 

I- .  (1) .  (2) .  (3) .  D  h  .  Prop 

The  following  propositions  are  concerned  with  the  existence  of  Z  +g  F  in 
definite  types.  It  will  be  showa  that  if  Z,  F  exist  in  a  given  type,  X  +sY 
exists  in  the  next  type,  i.e.  if  Z  ^  t^^'/ji,  and  F I  tn'fi  exist,  then  (Z  +g  F)  ^  iooV 
exists,  where  Z,  F  are  rationals. 

*306-6.       1- :  /I,  peB'U  n  a'U.  D  .  (/i, +„ /a)  n  t'^  e  D'Una'U 

Dem. 

l-.*305-23.DI-:Hp.//,<p.D.M+„/3<2<'+"i  (1) 

Similarly  h  :  Hp  ./3</i.  D  . /ti+o/s  <  S-^+'i  (2) 

t-.(l).(2).*11672.DI-.Prop 

*306-61.     \-:tJ.,v,p€D'Una'D  .0.  (fi/v  +,  p/v)  n  «„„'/*  e  Rat  def 

Dem. 
\-.*B061Z-6.'D\-:RY).D.fi/v+,p/v=-(fi+„p)/v.(iu.+^p)nt'fi,vnt'iMeI>'Una'V. 
[*30371]  D .  (At/y  +8  p/i')  n  ^„„V  e  Rat  def :  D  h  .  Prop 

*306-62.     [■:fi,v,peJ)'Una'V'.D.  (fi/v  +,  pip)  n  t^'fj,  e  Rat  def 

Dem. 

h  .  *303'39  .  D  I- :  Hp  .  D  .  /i/i/  +,  p//3  =  jn/j;  +,  i^/i/  (1) 

I- .  (1) .  *306-61 .  D  I- .  Prop 

*306-621.  h  :  o-  6  NC  ind  .  D  .  o-''  -„  a-  +e  1  <  2"^ 
Dem. 

|-.*116301-311.       Dl-.0^-<,0+ol<2»  (1) 

|-.*116-321-331.      DI-.P-el+„l<2i  (2) 

I- .  *ll7-55  .  *126-5  .  D  h  .  2^  -„ 2  +e  1  <  2=  (3) 

I- .  *305-231 .  D  h  :  Hp  .  o-  >  1 .  0-2  -,,  a-  +e  1  <  2-' .  D  . 

(o- +„  1)= -„  (tr +„  1) +„  1  <  2" +„  (2  Xe  <r)  . 
[*ll7-652.*116-52]D.(a-+,l)2-,(o-+„l)+„l<2-'+«i  (4) 

1- .  (1) .  (2) .  (3) .  (4) .  Induct .  D  F  .  Prop 


SECTION  a]  addition   OF   SIMPLE    RATIOS  295 

*306-622.  h  :  /*  e  NC  ind  -  t'O .  D  .  (/*  -0 1)^  =  ij?  -^{1  x„ ii)  +„  1 
D&m.  • 

[-.*305-231^^^:^.      DI-:Hp.D.(/i-el?+c{2x,(/^-,l)}+„l  =  /.'  (1) 

t- .  *113-43  .  *120-416  .  D  I- :  Hp .  D .  {2  Xe  (/i  -e  1)}  +e  2  =  2  Xe  /i  (2) 

K(l).(2).  DI-:Hp.D.(/.-,l)^+„(2x«/.)  =  ^»+„l  (3) 

h.(3).*119-32.DI-.Prop 

*306-623.  h  :  /t,  v,  p  6  NC  ind  .  v  <  ^  .  p  <  /i  .  D  .  (/i  Xe  ytt)  +e  (i/  Xe  pX  2''+«i 
Dem. 

h  . *120-429  .  D  h  :  Hp  .  D  .  (/.  x„ /i) +„ (i;  Xo /d)< /.= +e (/i -  1)^ - 
[*120-429.*306-622]      D  .  (/*  x„^)+„(i;  x„p)  <  (2  x,fi?)  -,  (2  x„y[i)+„2 
[*306-621.*126'51]  <  2"+"! :  D  h  .  Prop 

*306624.  h  :  /4,  J/,  /3, 0"  6  NO  ind  .i/</*.p^/i.o-^/t.D. 

(/.  x„  <7)  +„  (,;  x„  p)<  2^+'  1     [*306-623] 

*306-63.     h  :  /A,  i/,/3,  o-  6 D'f7 n  Q'tT" .  D  .  (/i/v  +, p/a-)^too'fJ.  e  Rat  def 

h  .  *306-62  .DhiHp. !-  =  /*. D.  (At/v  +« p/a-)  p  «ooV  e  ^.at  def  (1) 

I- .  *306-624  .  *305-24 .  *303-7l  .  D 

h  :  Hp  .!'</*. p^/t.o-^/it. 3.  (/i/v  +g  p/(t)  ^  fooV  ^  ■'^^^  ^^^^  (2) 

Similarly 

h  :  Hp  .i/</i./i^j0.o-^/i.D.  (/ti/j/  +,  p/a)  ^  ioo'/i  e  Rat  def  (3) 

l-.(2).(3).D 

h  :  Hp  .  V  <  /i  .  (7  ^  yti .  D  .  (//./k  +g  p/cr)  ^  ^oo  V  ^  ^^^  '^^f  (^) 

Similarly 

h  :  Hp  .  fj,>  V  .  <T^/JL.0  .  (/i/v  +g  p/a)  f  t^'/jL  e  Rat  def  (5) 

1-.(1).(4).(5).DI-  :Hp. o-</t.D.  (jM/v-\-gpla-)  ^C/teRatdef    (6) 

Similarly  H  :  Hp  .  /*  ^  o- .  D  .  (/i/i;  H-j  p/cr)  ^  ^oo'/ti  e  Rat  def    (7) 

h  .  (6)  .  (7)  .  D  h  .  Prop 
The  following  propositions  are  immediate  consequences  of  *306"63. 
*306-64.     h  :  (/tt/v)  I  tii%  (p/a-)  I  tn'/j,  e  Rat  def .  D  .{fi/v  +,  p/o-)  ^  «ooV  « I^at  def 
*306-65.     F  :  Z,  Fe  Rat  def .  D  .  (X  +,  F)  ^  t^'G"C'X  e  Rat  def 
*306-66.     h  :  Z,  F  6  0'5^ .  D  .  (Z  +,  F)  t  t^'CG'X  e  G'H 
*306-67.     h  :  Z,  F  6  C'lT' .  D .  (Z  +s  F)  ^  C'C'CZ  e  C'iT' 


*307.     GENEBALIZED  RATIOS. 

Swmmary  of  *307. 

In  this  number  we  introduce  negative  ratios.  If  X  is  a  ratio,  what  would 
ordinarily  be  called  —  X  is  X  |  Cnv.     This  may  be  seen  as  follows.   Suppose  we 

have  RXS.    We  then  have  R  (X  |  Cnv)  8.    Now  if  R  and  S  are  vectors  which 

carry  us  in  the  same  direction,  R  and  S  are  vectors  which  carry  us  in 
opposite  directions,  i.e.  their  ratio  is  negative.  Hence  calling  the  class  of 
negative  ratios  "Eat„,"  we  may  put 

*30701.     Eat„=|Cnv"Rat    Df 

The  sum  of  "Rat"  and  "Rat„"  we  will  call  "Rat^,"  where  "g"  stands 
for  "  generalized."     Thus  we  put 

*307-011.  Rat3  =  RatuRat„    Df 

If  njv  <r  pjcr,  we  have  {(/tt/v)  |  Cnv}  ( |  Cnv'  <,)  {{pja)  \  Cnv].  Hence 
we  put 

*30702.     <„=|Cnv;<,    Df 

*307021.  >„  =  Cnv'<„      Df 

If  X  and  Y  are  generalized  ratios,  we  consider  X  less  than  Y  if  either 
X,  Y  are  both  positive  and  X  <,  7,  or  X,  Y  are  both  negative  and  X  >„  F, 
or  X  is  negative  and  Y  is  positive  or  zero.     Hence  we  put 

*307-03.     <s  =  (>„)o«^)u(Rat„-t'0,)|Rat    Df 

On  the  analogy  of  <„  and  <.g,  we  put 

*30704.     Hn  =  \Cnv)E     Df 

*30705.     Hg=:Hn^H'     Df 

We  prove  in  this  number  that  if  Z  is  a  ratio,  X  |  Cnv  =  Cnv  |  X,  and 
Cnv'(Z  I  Cnv)  =  Z I  Cnv  (*307-21-22).     We  prove  also 
*307'25.     \-.G'EnC'H„  =  A 

We  prove  that  Og  and  oo,  are  their  own  negatives,  but  are  not  the  nega- 
tives of  anything  else  (*307-26-27-31).  We  prove  Nr'Zr„  =  Nr'fl'  (*307-41) 
and  Infin  ax  .  D  .  ff^ei;  (*307-46).  None  of  the  propositions  of  this  number 
offer  any  difficulty. 


SECTION  A]  GENERALIZED  RATIOS  297 

*30701.  Rat„  =  I  Cnv"Eat  Df 

*307011.  Raty=RatuRat„*  Df 

*30702.  <„  =  |Cnv;<,  Df 

*307021.  >„  =  Cnv'<„  Df 

*30703.  <j  =  (>„)c;«,)c;(Rat„-i'05)tRat    Df 

*307031.  >g  =  Cnv'<g  Df 

*30704.  Hn  =  \CiiwlH  Df 

*30705.  Hg  =  Hn^H'  Df 

*3071.  V:R{X\  Cnv)  S  .  =  .  RXS  [*7l-7] 

*307-ll.  h  :  i?  (I  Cnv5Z) S.  =  .  RXS  [*307-l] 

*30712.  h  .  X I  Cnv  I  Cnv  =  X  [*307-l] 

*30713.  h  :  X I  Cnv  =  F I  Cnv .  =  .  X  =  F     [*307-12] 

*30714.  h  :  F=  X I  Cnv  .  =  .  X  =  F I  Cnv     [*307-12] 

*30715.  l-:a[!X^/«:.  =  .a!/c1(X|Cnv)P(Cnv"«;)  [*307-l] 

*30716.  !-:.«:  =  Cnv"«;.D:g[!Xt«-.s.a!(X|Cnv)tK     [*307-15] 

*307-2.  h  .  (fi/v)  I  Cnv  =  Cnv  |  (fijv)  [*307-l .  *30319] 

*307-21.  f-:X6Ratui'oo5.D.X|Cnv  =  Cnv|X     [*307-2 .  *303-7-67] 

*307-22.  l-:XeRatut'oOj.D.Cnv'(X|Cnv)  =  X|Cnv     [*307-21] 

*307-23.  \-.Gn\"0'Hn  =  G'H„    [*304-28 .  *30313 .  *307-22] 

*30724.      h:fj,,v,p,a-eQ.'U.fi  Prm  v  .  p  Prm  o-.p^o-.<r=|=O.D. 

'3_l{p/a)-(fi/v)\Cnv 
Z>em. 

I- .  *303-32  . 0  h  :.  Hp .  D  :  (gP,  Q) .  P,  Q  €  Rel  num  .  Ppo  G  Qpo .  P (p/o-)  Q  : 

[*303-21]  D  :  (gP, Q).P,Qe Rel num  . Pp„ G  Qp„ . g ! P' A  Qp : 

[*300-3]  D  :  (gP,  Q).P,Qe  Rel  num  .  a  !  P-  n  Qc .  P-  n  Q''  =  A  : 

[*303-21]  D  :  (gP,  Q) .  P  (p/a)  Q .  ~  {P  (/*/i')  Q] :.  D  h  .  Prop 

*307  25.     h  .  G'H  n  a'JS'n  =  A 

Dem. 
l-.*307-24.*303-13.D 

I- : /i,  v, p,  <7  eC['f/"./iPrm  v  .  pFrma- .  D  . /^/v  =|=  (p/<r) |  Cnv  (1) 

b  .  *302-22  .  *303-211 .  *304-27-28  .  D  h  :  X,  Fe  G'H .  D . 

(a/*' ^> p,o-)./i,v,p,(reQ^'U./i Prm  v . p Prm  o- . X  =  /i/v  .  Y=p/cr     (2) 
h.(l).(2).Dh:X,Fe(7'fl".D.X+F|Cnv:Dh.Prop 


298  QUANTITY  [part  VI 

*307-26.     h  .  O5 1  Cnv  =  Og  =  Cnv  j  Og 
Dem. 

l-.*307-2.  Dh.Og|Ciiv  =  CnviOg  (1) 

h  .  *303-6-15  .  *.307-l .  D  1- :  ii  (Oj  I  Cnv) /S .  =  .  a  !  ii  n  /  f  C'^ . 
[*33-22]  =  .  a  !  ii  n  /  p  C'>Sf . 

[*308-15]  = .  RQ^S  (2) 

h  .  (1) .  (2) .  D  I- .  Prop 

*307-27.     h  .  00  g  I  Cnv  =  00 ,  =  Cnv  I  X  ,  [*307-26  .  *303-62] 

*307-3.       l-:X6C"if.D.g[!(X|Cnv)tRelnum     [*304-5  .*30716  .*300-4] 

*307-31.     l-:X6Rat-i'03.D.X|Cnv=j=0,.X|Cnv=t=oOg 
[*307-3.*304-53.*303-62] 

*307-4.  h  :  XHnY .  =  .  (X  |  Cnv)  H{Y\  Cnv)  [*150-41 .  (*307-04)] 

*307-41.  h.Nr'ir„  =  Nr'ir  [*307-13  . (*307  04)] 

*30742.  1- :  Infin  ax  .  D .  Nr'if„  =  Hi-'En  =  v  [*307-41 . *304-33] 

*307-43.  h-.XeC'Hn.O.'iilXl'Relaum  [*307-3] 

*307-44.  h  .  O4,  00  5  ~  6  C'H„  [*307-31] 

*307-45.  h  .  'Nr'Hg  =  Nr'^  + 1  +  Nr'i^  [*307-25-41 .  (*307-05)] 

*307-46.  I- :  Infin  ax.D.Hgerj  [*307-45  .  *304-33] 

This  proposition  requires  rj  +  i+rj  =ri,  which  is  easily  proved. 


*308.     ADDITION  OF  GENERALIZED  RATIOS. 

Summary  of  *308. 

In  this  number  we  have  to  extend  addition  sp  as  to  include  negative 
ratios  as  addenda,  and  for  this  purpose  we  have  to  define  subtraction  of 
simple  ratios.     This  is  defined  as  follows: 

*308-01.     X-,Y=RS  {(a^)  :  Z,  F,  Z  e  Rat :  ^  +8  F=  X .  RZ8 .  v . 

Z+,X=Y.RZS]     Df 
That  is  to  say,  if  F  <,.  X,  X  — j  F  is  the  ratio  which  must  be  added  to  F  to 
give  X,  while  if  X  <,.  Y,X-gY  is  the  negative  of  the  ratio  which  must  be 
added  to  X  to  give  F.     Thus  we  have 

*30813.     h:.  F<rX.v.F6Rat.F=X:D.X-,F=(7^(Z+,F=X) 

*30814.     l-:.X<^F.v.XeRat.F=X:D.X-,F={(jZ)(Z+,X=F)}|Cnv 

We  have,  of  course,  X-gO,=  X  (*308-22),  Oj-,X  =  X|Cnv  (*308-2:3), 
and  X— gX=Og  (*308-I2).  Existence-theorems  for  X— jF  are  closely 
analogous  to  those -for  X+^F  and  X  x,  F.     Also  we  have 

*308-2.       h  :  X,  F  6  Rat .  =  .  X  -,  F  6  Rat, 

We  define  the  sum  of  two  generalized  ratios  by  means  of  the  sums  and 
differences  of  simple  ratios,  as  follows  : 

*30802.     X  +j  F=  (X  +,  F)  w  (X  -,  F I  Cnv)  c; 

(F-,X|Cnv)c;(X|Cnv+,F|Cnv)|Cnv    Df 

Of  the  four  relations  which  occur  in  the  above  definition,  all  but  one 
must  be  null  if  neither  X  nor  F  is  0,.  Thus  if  X  and  F  are  positive, 
X-jF|Cnv,  F-sX|Cnv,  and  X|Cnv-f-gF|Cnv  are  null;  if  X  is  positive 
and  F  negative,  X+«F,  F-,X|Cnv,  and  X|  Cnv +j  F| Cnv  are  null;  if  X 
and  Fare  both  negative,  X-(-,  F,X  — j  F|  Cnv,  and  F— ,X  |  Cav  are  null. 

If  X  is  Og  and  F  is  positive, 

X  +.  F=  F-, X I  Cnv .  X  -,  F|  Cnv  =  (X  |  Cnv  +,  Y\  Cnv)  |  Cnv  ^  A. 
If  both  X  and  Fare  Oj,  all  four  relations  are  Og. 


300  QUANTITY  [part  VI 

Hence  we  find 
*308-32.     h  :  X,  Fe  Rat .  D  .  Z  +ff  F=  Z+,  F 
*308-321.  h  :  Z  6  Rat .  F6Rat„ ,  D  .  Z  +3  F  =  X -,  F|  Cnv 
*308-322.  h  :  F  6  Rat .  Z  6  Rat„ .  D .  Z  +3  F=  F-. Z  |  Cnv 
*308-323.  h  :  Z,  Fe  Rat„ .  D  .  Z  +^  F=  (Z  |  Cnv  +,  F|  Cnv)  |  Cnv 

The  existence-theorems  for  X  +gY  are  closely  analogous  to  those  for 
Z  +8  F,  and  the  formal  laws  oifer  no  difficulty.     We  have 

*308-52.  hr.Z,  FeRat^.  D  :Z+s  F=Z+jZ.  =  .  F=Z 

*308-54.  1- :  Z,  F 6 Rat^  .  D  . (gZ)  .  -^e Rat^  .X+gZ=Y 

*308-56.  h  :.  Z  <p  F.  =  :  Z 6  Ratj, :  (g^) .  Z e Rat  -  l%  .X+gZ=Y 

*308-72.  \-:{X+g  Z)  <g  {X+gZ').  =  .X6  Rat^,  .Z<gZ' 


*308-01.     Z -,  F=  RS  {(gZ)  :  Z,  F,  ^e  Rat :  ^+8  F=  Z .  RZS .  v . 

Z+sX  =  Y.RZS}     Df 
*30802.     Z+jF=(Z+,F)o(Z-8F|Cnv)va 

(F-,Z|Cnv)vy(Z|0nv+8F!Cnv)|Cnv     Df 

*3081.       h  :  F<^Z.D.Z-8F=ES{(a^).^6Rat.^+,F=Z.i?^S} 

Bern. 

h  .  *306-55  .  D  1-  :  Hp .  D  .  ~  (g^) .  ^  +« Z  =  F  (1) 

h  .  (1) .  (*308-01)  .  D  h  .  Prop 

*30811.     h  :  Z  <^  F.  D  .  Z -,  F=E§{(a2)  .  ZeRat .  Z+sX=  Y.RZS} 

Dem. 

h  .  *306-55  .  D  h  :  Hp  .  D  .  ~  (g^)  .Z+,Y=X  (1) 

h .  (1) .  (*308-01) .  D  h  .  Prop 
*30812.     h  :  Z  e  Rat .  Z  =  F .  D  .  Z  -8  F=  0,    [*306-54-24] 

*30813.     h:.  F<,Z.v.  FeRat.  F=Z:  D  .Z-,  F=  (?^)(^+,  F=  Z) 
Bern. 

I- .  *306-52-24 .  D  h  :  Hp  .  D  .  (g^) .  Z+,  F=  Z  .  ZeRat  (1) 

h.*306-54.      Dh:Hp.Z-|-,F=Z.Z'+,F=Z.D.-Z'  =  -?'        (2) 
t- .  (1)  .  (2)  .  *308-112  .  D  h  .  Prop 
*30814.     l-:.Z<,F.v.ZeRat.Z=F:D.Z-,F=f(?Z)(^+,Z=F)}|Cnv 

[Proof  as  in  *308-13] 
*30815.     I-:~(Z,  FeRat).D.Z-,  F=A     [(*308-01)] 

*30816.     I-:Z,  FeRat.  Y+,Z  =  X  .D  .  X -,Y=  Z 
Bern. 

l-.*306-55.*304-221.DI-:.Hp.D:  Y<rX.v  .  FeRat.  F  =  Z     (1) 
|-.(l).*308-13.DI-.Prop 


SECTION  a]  addition   OF   GENEBALIZED   RATIOS  301 

*30817.     h:X,YeRa,t.X+sZ=Y.-^.X-sY=Z\Gtiv    [*306-55.*308-14] 

*30818.     I-:F<,Z.D.5'-,  FeEat-t'O, 
Dem. 

h.*306-52.DH:Hp.D.(aZ).ZeRat-t'0,.  Y+sZ  =  X        (1) 
h  .  (1) .  *308-13  .  D  h  .  Prop 

*30819.     \-:X<rY.O.X-,Y€  Rat„  -  t'O, 
Bern. 

h  .  *306-52  .  D  h  :  Hp .  D  .  (g^) .  Ze  Eat  -  I'O^  .X+,Z=Y       (1) 
h  .  (1) .  *308-14  .  D  h  .  Prop 

*308-2.       h  :  X,  7 6  Rat .  =  .  Z  -,  Fe  Rat^     [*308-12-18-19-15] 

*308-21.     h  :  Z  -,  F=  ( F-, Z)  |  Cnv  =  Cnv  |(F-, Z) 

i)em. 
I- .  *308-13-14  .  D 

h:.Z<rF.v.ZeRat-i'0,.Z=F:D.Z-,F=(F-,Z)|Cnv  (1) 

h  .  *30813-14 .  *30712  .  D 

h:.  F<rZ.v.F6Rat-t'0j.F  =  Z:D.Z-,  F=(F-,Z)|Cnv  (2) 

h  .  (1) .  (2) .  *304-221 .  D  f- :  Z,  Fe  Rat .  D .  Z  -,  Y=(Y-, X)  \  Cnv  (3) 

[*307-21.*308-21  =Cnv|(F-sZ)  (4) 

h  .  (3) .  (4) .  *308-15  .31-.  Prop 

*308-22.     f-:Z6Rat.D.Z-,0j  =  Z  [*306-24 .  *308-13] 

*308-23.     h:ZeRat.D.Oj-,Z  =  Z|Ciiv     [*308-21-22] 

*308-24.     h  :  (v/p)  <r  (X//i) .  D  .  \//*  -,  v/p  =  {(K  x^  p)  -,  (p.  x„  v)}/(p.  x„  p) 

Dem. 

H.*3041.DI-:Hp.D.\Xe/3>jtiXoy  (1) 

h  .  *303-23  .  *306-13  .  (1) .  3 

h  :  Hp .  3  .  {(\  Xe  /))  -  (ji  X,  v)]l(p,  X,  /))  +,  v/p  = 

[{(\  X^p)-(jM  Xe  I/)}  +0  Ot  x„  !/)]/(/*  x„  p)- 

[*303-23.*119-34]  =  \//i  (2) 

h  .  (1) .  (2) .  *30816 .  D  h  .  Prop 

*308-241.  h  :  (X/p.)  <r(v/p) .  D  .  X/m  -,  v/p  =  [{(a*  x^  v)  -„  (\  x^  p)}/(/i  x„p)]|  Cnv 
[*308-24-21] 

*308-25.     \-:\,p,v,pe'D'Una'U.vlp  <r  \//i .  D  .  (V/*  "s  "/p)  D  *oo  V  «  C''^' 
i)em. 
h  .  *305-24  .  D 

h  :  Hp.  D.  f(\  x,p)-,(^iX,v)]nt'pL,(p.  x,p)r^t'^leT>'U r^a'U        (1) 
h  .  (1) .  *308-24  .  *304-28  .  D  h  .  Prop 


302  QUANTITY  [part  VI 

*308-251.  \-:X,fi,v,pe'D'Un  a'U .  \/fi  <r  v/p.O.  (X/fi  -,  v/p)  I  <»'/*  e  G'Hn 
[*305-24.*308-24.1] 

*308-252.  [■:X,fi,v,p6J)'Una'U.D.(X/fi-,  v/p)  I  t^'p.  e  G'Hg 
[*308  25-251-12] 

*308-26.     h  :  Z,  Fe  Eat .  Z  t  im'p.,  Y I  t^.'/j.  e  G'H' .  D  .  (Z  -,  F)  t  t^'p.  e  G'Hg 
[*308-252 .  *304-28] 

*308-261.  h  :  X,  F  6  G'H' .  D  .  (X  -,  F)  ^  t^'G"C'X  e  G'Hg    [*308-26] 

*308-3.       l-:a!(X-,F|Cnv).D.X6Rat.  FeRat^ 
[*30815.*30712] 

*308-301.  h  :  a  !  (X I  Cnv  +,  F I  Cnv)  .O.X.Ye  Eat„     [*30612  .  *307-23-12] 

*308-31.     h  :  a !  (X  +^  F) .  D  .  X,  Fe  Rat^     [*:306-12  .  *308-3-301 .  (*308-02)] 

*308-32.     h:X,  Fe  Rat.  D.X +3  F=X+sF 

Dem. 
h  .  *308-3-301 .  *307-25  .  (*308-02) .  D 

l-:X,  FeRat-i'Og.D.X+^F=X+,F  (1) 

I- . *306-24  . *308-22-3301 .  D 

l-:X6Rat-t'0g.F=0,.D.X+pF=X  =  X+,F  (2) 

h  .  *306-24 .  *308-3-301 .  D  H  :  X  =  Og .  F=  Oy .  D  .  X  +3  F=  0,  =  X  +,  F    (3) 
K(2).(3).D 

hr.XeRat.  Y=Oj.v.  Ff  Rat  .X  =  0,:  D  .X+j  F=X +s  F  (4) 

h  .  (1) .  (4) .  D  h  .  Prop 

*308-321.  F  :  X  e  Rat .  Fe  Rat„ .  D  .  X  +^  F=  X -,  F|  Cnv 
[*30612 .  *308-3-301 .  *307-25  .  (*308-02)] 

*308-322.  h  :  Fe  Rat .  X  6 Rat„ .  D  .  X  +5  F=  F-^ X  |  Cnv 
[*306-12  . *308-3-301 . *307-25  .  (*30802)] 

*308-323.  h  :  X,  Fe  Rat„  .:>.X+gY=  (X  |.Cnv  +,  Y\  Cnv)  i  Cnv 
[*306-12  .  *308-3-301 .  *307-25  .  (*308-02)] 

*308-33.     h  :  X  +^  F  6  Rat^ .  =  .  X,  F  e  Rat^ 
[*306-22 .  *308-2-32-31] 

*308-4.       h  .  X  +3  F=  Y+gX    [*306-ll .  (*308-02)] 

*308-41.     I- .  X  +j  F=  (X I  Cnv  +g  Y\  Cnv)  |  Cnv 

Dem. 
h  .  *30712  .  *34-26  .  (*308-02) .  3 
I- .  (X  i  Cnv  +^  F|  Cnv)  |  Cnv  =  (X  |  Cnv  +,  Y\  Cnv)  |  Cnv  u  (X  |  Cnv  -,  F)  |  Cnv 

w  (F|  Cnv -,X)  I  Cnv  o  (X +,  F) 
[*308-21J  =  (X I  Cnv  va  Y\  Cnv)  |  Cnv  a  (F-,X  |  Cnv) 

c;(X-,F|Cnv)w(X+,F) 
[(*308-02)]  =  X  +^  F .  D  h  .  Prop 


SECTION  aJ  addition   OF   GENERALIZED   RATIOS  303 

*308-411.  h.(X+gY)\Cn\  =  X\  Cnv  +j,  7  \  Onv    [*308-41 .  *30712] 

*308-412.  h  :  X\Cay  +gY\^nv  =  Z\Cn\  .  =  .X  +gY=Z 
[*308-411 .  *30713] 

*308-42.     h  :  X,  F  e  Rat .  D  .  (X  -,  F)  +j  F=  i: 

Dem. 
h  .  *30812-32  .  *306-24 .  D  h  :  Hp .  Z  =  F.  D  .  (X -,  F)  4-^  F=  X  (1) 

h  .  *308-18-32  .    D  1- :  Hp .  F<rX .  D  .  (X  -,  F)  +^  F=.(X  -.  F)  +,  F 
[*308-13]  =X  (2) 

I- .  *308-19-322  .  D  h  :  Hp  .  X  <^  F.  D  .  (X -,  F)  +s  F=  F-,(X -,  F)  |  Cnv 
[*308-21]  =F-,(F-,X)      (3) 

h  .  *30813  .         D  F  :  Hp  (3) .  D  .  X  +,  ( F-,  X)  =  F . 
[*308-16-18]  D.X=F-,(F-,X)  (4) 

l-.(3).(4).  DI-:Hp.X<,F.D.(X-,F)+^F=X  (5) 

I- .  (1) .  (2)  .  (5)  .  *304-221 .  D  h  .  Prop 

*308-43.     I- :  X,  Fe  Rat .  D  .  (X  +y  F)  -,  F=  X  ' 
Dem. 

h  .  *308-32  .  D  h  :  Hp  .  D  .  X  +y  F=  X  +,  F  . 
[*308-16.*306-22]        D  .  (X  +^  F)  -,  F=  X :  D  h  .  Prop 

*308-44.     h  :.  X,  ^eRat  .D:X-sZ=  Y-,Z.  =  .  X=  F 

Dem. 
l-.*308-13-1415.DI-:X=F.D.X-,Z=F-,-^  (1) 

h.*308-2.  DI-:Hp.X-,Z=F-,Z.D.  FeRat. 

[*308-42]  D.(Y-,Z)+,Z=Y. 

[Hp]  D.{X-,Z)+,Z=Y. 

[*308-42]  D.X^Y  (2) 

I- .  (1)  .  (2) .  D  h  .  Prop 

*308-45.     H  :.  X.^eRat .  D  :  Z-,X  =  Z-,  Y.  =  .X=Y 
[*308-44-21.*30ri3] 

*308-46.     h  :  X,  Fe  Rat .  F+  Oj .  D  .  (X  -,  F)  <g X 

Bern. 
h  .  *308-19  .  D  h  :  X  <r  F .  D  .  (X  -s  F)  e  Eat„  -  I'Oq .  X  e  Rat . 
[(*307-03)]  3 .  (X  -,  F)  <g  X  (1) 

I- .  *30812  .  D  h  :  Hp .  X=  F.  D .  X -s  F=  0, . 

[*304-46.(*307-03)]  3  ■  (X  -,  F)  <^  X  (2) 

h  .  *30813-18  .  D  h  :  Hp .  F<,X  .  D  .  (X-,  F)+,  F=  X .  X-,FeRat-i'0,. 
[*306-52]  D.(X-sY)<rX. 

[(*307 -03)]  3 .  (X  -,  F)  <^  X  (3) 

h  .  (1) .  (2) .  (3) .  D  h  .  Prop 


304  QUANTITY  [part  VI 

*308-47.     hzXeB.at.ZZeRa.Xj-i'Og.li.X-.Y^X+.Z 
Bern. 

h  .  *306-52  .  *308-46  .  D  h  :  Hp .  D  .  (X  -  F)<,  (Z  +,  Z) . 
[*304-201]  D.Z-,F+Z+,^:DI-.Prop 

*308-51.     h  :.  X  e  Rat^  .D:X +gY=X  .  =  .¥=0, 

Dem. 
l-.*30833.    Dh:.Hp.D:X+(,F=X.D.reRatj  (1) 

l-.*308  32.    Dh:XeRat.F=Oj.D.X+jF=X+»F 
[*306-24]  =  X  (2) 

I- .  *308-322  .  D  h  :  X  6  Rat„ .  F=  0, .  D  .  X  4-^  F=  F-«  X  |  Cnv 
[*308  23.*307-12]  .  =X  (3) 

l-.(2).(3).    DI-i.Hp.D:F=Os.D.X+^F=X  (4) 

h  .  *308-32 .    D  h  :  X,  Fe  Rat .  X  +^  F=  X .  D  .  X  +,  F=  X . 
[*306-24-54]  3 .  F=  0,  (5) 

l-.*308-321.DI-:X6Rat.F6Rat„.X+3F=X.D.X-,F|Cav  =  X. 
[*308-22-45]  D  .  F|  Cnv  =  O4 . 

[*307-2]  D.F=0,  (6) 

h  .  *308-322  .  D  1- :  X  6  Rat„ .  Fe  Rat .  X +s  F=  X .  D  .  F-,  X I  Cnv  =  X 
[*308-23.*307-12]  =  Og  -,  X  |  Cuv . 

[*308-44]  3.F=0j  (7) 

h  . *308323 . *307-14 .  D 

l-:X,  F6Rat„.X+^F=X.D.X|Cnv+,F|Cnv  =  X|Cnv. 
[(5).*307-26]  D.F=03  (8) 

h  .  (1) .  (5) .  (6) .  (7) .  (8) .  D  h  :.  Hp .  D  :  X  +^  F=  X .  D  .  F=  Oj  (9) 

I- .  (4)  .  (9)  .  D  h  .  Prop 

*308-52.     h  :.  X,  FeRat^.  D  :X+g  Y=X+gZ.  =  .Y=Z 

Bern. 
h .  *308  321-47  .  D  h  :  X,  F 6  Rat .  F+  O5 .  X  +3  F=  X  +^ -^ .  D  .  Z ~  e  Rat„  (1) 
|-.*308-ol.         D\-:XeUsitg.Y=Oj.X+gY=X+gZ.D.Z=Oj  (2) 

t- .  (1) .  (2) .  *308-33  .  D  h  :  X,  F e  Rat .  X  +^  F=  X  +^  Z .  D  .  ^ e  Rat  (3) 

I- .  (3)  .  *308-32  .         DI-:X,F6Rat.X+jF=X+jZ.D.X+,F=X+,Z. 
[*306-54]  :i.Y=Z  (4) 

h  .  (4) .  *308-323  .  *307-13  .  D  h  :  X,  Fe  Rat„  .X +gY=X +gZ  .0  .Y=Z   (5) 
I- .  *308-321-32-47  .  D 
h:XeRat.  FeRat„.  X+y  F=X+^^.  D  .^^eRat- I'O,  (6) 

f-.(2)5-5.Transp.D 

hiXeRat.  FeRat„-i'0g.X+jF=X+^^.D.Z=t=05  (7) 


SECTION  a]  addition   OF   GENERALIZED   RATIOS  305 

h  .  (6) .  (7) .  *308-33 .  D 

h  :  X  eRat .  YeUatn-  I'Og.M  +gY=  X  +gZ  .'^ .  Z  eU&tn  (8) 

I- .  (8) . *308-321 .  D  h  :  Hp(8) .  3  . X-,  F|  Cnv  =  Z-,^|  Cnv . 
[*308-45.*307-13]  3 .  F=  Z  (9) 

h  .  (9) .  *308'411 .  *307-13  .  3 

h:X6Rat„.F6Rat.Z+j,F=Z+j^.D.F=Z  (10) 

h  .  (4) .  (5) .  (9) .  (10) .  3  h  :  Hp .  Z  +j  F=  Z  +3  Z .  D .  F= ^  (11) 

h .  (11) .  (*30802) .  D  I- .  Prop 

*308-53.     F  :  Z,  Fe  Ratj .  D  .  Z  +3  (F+^  Z I  Cnv)  =  F 

Bern. 
h  .  *308-321 .  *307-12  .  D  h  :  Z,  Fe  Rat .  D  .  X +g{Y+gX \Cny)  =X+g(Y-,X) 
[*308-4-42]  =  F  (1) 

h  .  *308-32  .  D 

h  :Z6Rat„.  F6Rat.D.Z+^(F+j,Z|Cnv)  =  Z+j,(F+,Z|0nv) 
[*:308-4-321.*306-22]  =(F+,Z|  Gnv)-,Z|Cnv 

[*308-43-32]  =F  (2) 

h  .  *308-323  .  *307-12  .  D 
h  :  Z 6 Rat .  Fe  Rat„ .  D  .  Z  +g(Y+gX\  Cnv)  =  Z+.,(F|  Cav  +,Z)  |  Cnv 


[*308-321.*306-22] 

=  Z-,(F|Cnv+,Z) 

[*308-17.*307-12] 

=  F 

(3) 

h  .  ( 1) .  D  h  :  Z,  Fe  Rat„ .  D  .  Z 1  Cnv +y  (F 1  Cnv +j Z 1  Cnv  1  Cnv)  =  F|  Cnv . 

[*308-411] 

D.ZiCnv+p(F+3Z|Cnv)|Cnv=F|Cnv. 

[*308-412] 

D.Z+^(F+yZ|Cnv)=F 

(4) 

K(l).(2).(3).(4). 

D  I- .  Prop 

*308-54.     h  :  Z,  Fe  ] 

Ratg .  3  .  (aZ) .  ZeUatg .X+gZ=Y    [*308-53-33] 

1 

*308-55.     h  :.Z,  F.^eRat^.  D  :X+gZ=  Y.  =  .X=  F+^Z|  Cnv 

Bern. 

1- .  *30S-53-52-4  .  D  h 

:Hp.Z+3^=F.D.F+jZ|Cnv  =  Z 

(1) 

h  . *308o3-4 .      D  h 

:Hp.F+^^|Cnv  =  Z.D.Z+j^=F 

(2) 

h  .  (1) .  (2) .  D  h  .  Prop 

*308-56.     h  :.  Z  <^  F .  =  :  Z  e  Rat^ :  (g-?) .  -^ e  Rat  -  t'Oj .  Z  +j  ^=  F 

Bern. 
h  .  *306-52 .  *308-32  .  D 

h:.Z<^F.  =  :ZeRat:(a^).ZeRat-t'Og.Z+jZ=F:  (1) 

[*306-52-25]  D  :  Fe  Rat :  (-^Z)  .ZeRat-i%.X +gZ=Y  (2) 

H.(2)?lCn^4^.3 
A.,  Y 

h:.Z>„F.D:Z6Rat„:(aZ).ZeRat-l'0j.FlCnv+p-?  =  Z|Cnv: 

[*308-55-412]  :i\X^  Rat„ :  (g^ .  Z  e  Rat  -  t'O,  .X-VgZ^Y  (3) 

K.  &  w.  III.  20 


306  QUANTITY  [part  VI 

\- .  *308-82-53  .  *806-23  .  D  h  :  X  e  Rat„ .  Fe  Rat .  D  . 

Y+gX\Guv.e-Ra,t-i%.X+g(Y+gX\Gnv)=Y        (4) 
1-.(1).(2).(3).(4).(*307-03).D 

\-:.X<gY.D:XeB.a.tg:('^Z).Z6Ra.t-i%.X+gZ=Y  (5) 

I- .  *35-103  .  (*307-03)  .  D  h  :  X  e  Eat„  -  I'O, .  Fe  Eat .  D  .  X  <y  F  (6) 

h .  *308-55-412  .  D 

h:X,Y6'Ratn.Ze'B,a.t-i%.X+gZ=Y.:3.X\Cnv=Y\Gnv+sZ. 
[*30(J-52]  D .  X  >„  F  (7) 

h  .  (6) .  (7) .  D  1- :.  XeRat„:  (a-^) .  ZeRat-  I'Og  .X+gZ=  Y::^.X<gY  {8) 
I- .  (1) .  (8) .  D  h  :.XeRaty  :  (a-?) .  ^eRat  -  i%.X+gZ=  F:  D  .  X  <3  F  (9) 
h  .  (5)  .  (9)  .  3  h  .  Prop 

*308-561.  I- :.  X  <„  F.  =  :  Fe  Rat^ :  (gZ)  .  ^e  Rat  -  I'Og  .X+gZ=Y 
[*308-56-33] 

*308-57.     h  :  X  <y  F.  =  .  X  e  Rat^ .  F+^^X  j  Cnv  e  Rat  -  I'O, . 

=  .Ye  Redg  .  F  +^  X  |  Cnv  e  Rat  -  I'O, 
Bern. 

V  .  *308-55-56-4. .  D 

1- :.  X  <^  F.  =  :  XeRat^ :  (a^) .  ZeB,at-i% .  Z=  F+jX|  Cnv         (1) 

l-.*308-55-561-4.D 

\-:.X<gY.=  :Y6  Rat^ :  (g^ .  ^  e  Rat  -  t'O, .  -?  =  F  +j  X  |  Cnv  (2) 

h  .  (1) .  (2) .  D  h  .  Prop 

*308-6.       h  :  X,  F^eRat .  D  .  (X +gY)+gZ=  X +giY+gZ) 
[*308-32 .  *306-22-31] 

*308-601.  \-:X,Y,Ze'Ra.tn.O.(X+gY)+gZ  =  X+g{Y+gZ) 

Dem. 
h.*308-323.*307-12 

h  :  Hp .  D  .  (X +j  F) +3  Z=  (X 1  Cnv +,  F|  Cnv)  I  Cnv +^ (Z I  Cnv)  I  Cnv 
[*308-411]  =  {(X I  Cnv  +,  Y\  Cnv)  +g Z \  Cnv}  |  Cnv 

[*308-6.*306-22]  =  {X  |  Cnv  +^  ( F |  Cnv  +g  Z  \  Cnv)}  |  Cnv 

[*308-411]  =X+^(F|Cnv+j^|Cnv)|Cnv 

[*308-323]  =  X  +^  (  F  +3  Z)  :  D  I- .  Prop 

*308-602.  \-:\fi,  v, p,a,re NC ind  .  /it, p, t ~ e  I'O  .  D  . 

(\//t  +,  vjp)  -,  aJT  =  (\//A  -g  o-/t)  +g  vjp 
Bern. 

h  .  *308-24 .  D  h  :  Hp  .  o-/t  <rX//i .  D . 

(X//t  +g  I/V/j)  -,  0-/t  =  {(\  X„  p  X„  t)  4e  (,a  X„  1/  Xo  t)  -0  (/i  Xe  p  X^  0-)}/(/i  X„  /J  X^  t)  . 
(\//t  -«  0-/t)  +g  l//p  =  {(\  Xe  jO  X„t)  -„  (/i  Xe  p  Xe  a)  +„  (m  Xel/  X„t)}/(ji,  X^p  XJt)  (1) 


SECTION  a]  addition   OF  GENERALIZED   RATIOS  307 

h  .  *308-241 .  D  h  :  Hp .  X/fi  +,  v/p  <r  a/r.D.  (X/fi  +,  v/p)  -,  a/r 

=  [{(/*  Xo  P  Xc  0-)  -  C^  Xo  P  Xc  t)  -  0^  Xo  "  Xc  t)}/(m  Xo  P  Xo  t)]  I  Cnv  . 

(V/l,  -,  0-/t)  +3  v/p  =  [{(jJL  X„  t)  -,  (\  Xe  0-)}/(;lt  Xe  t)]  |  Cnv  +j  v//) 

[*308-322'21] 

=  [{(/i  Xe  p  Xo  0-)  -  (X  X„  />  X„  t)  -  (m  X„  V  X„  T)j/(/t  Xe  /O  Xe  t)]  |  CdV      (2) 

h  .  *308-24.-24.1 .  D  h  :  Hp  .  \//i  <r  (t/t  .  a/r  <,  \//i  +,  i//p .  D  . 

( V/*  +«  "/P)  -s  0-/t  =  {(>■  Xc  p  Xe  t)  +e  (/*  Xe  V  X^  t)  -e  (/i  Xe  p  X^  (t)}/(jj,  X^  p  X^  t)  . 

(X/fi  -,  a/r)  -{-gv/p  =  [{{p.  Xe  ff)  -e  (\  Xe  T)}/{p.  x^  t)]  |  Cdv  +g  v/p 

[*308-322-21]  =  {(X  x„  p  x„  t)  +« (p-  x,  v  x^  t)  -„  (/i  Xe  p  Xe  a)}/(p,  x„  p  x^  r)     (3) 

l-.*308-16-12.D 

I- :  Hp  .  X/yii  ^a/r  ."^  .  {X/p,  +« v/p)  — s  a/r  =  v/p  =  (X.//t  — g  o-/t)  +j  v/p  (4) 

l-.*308-12-53-l7.D 

h  :  Hp  .  X/p.  +e  v/p  =  a/T  .0.  (X/p,  +,  v/p)  -« ff/r  =  Og  =  (.\//i  -,  ct/t)  +g  v/p       (5) 

h  .  (1) .  (2) .  (3) .  (4) .  (5) .  D  h  .  Prop 

*308-61.     I- :  Z,  F,  Ze  Rat .  D  .  (Z  +y  F)  -,  Z=  (Z  -, -^)  +j  F 
[*308-602-32] 

*308-62.     h  : Z,  FeRat . ZeRatn .  D .  (Z+j  F)  +jZ=Z+j(F+j^ 

Z)em. 
h  .  *308-33-321 .  D  h  :  Hp .  D .  (Z  +^  F)  +g  Z=  (Z  +J,  F)  -, ^ I  Cnv 
[*308-4]  =  {Y+g  X)  -,Z\  Cnv 

[*308-61]  =(Y-,Z\Onv)+gX 

[*308-4]  =  Z  +/F-,  Z I  Cnv) 

[*308-321]  =  Z  +s  (F+ff  ^) :  D  I- .  Prop 

*308-621.  h:Z,  FeRat™. -?eRat.D.(Z+jF)+^-^=Z+3(F+^Z) 

Dem. 
h.*308-62.D 

I- :  Hp  .  3  .  (Z|  Cnv+^  Y\  Cnv)4-j-^|Cnv  =  Z|  Cnv+^(Fi  Cnv+^^l  Cnv) . 
[*308-411]  D .  (Z 4-j  F)  I  Cnv  +5 -^ i  Cnv  =  Z |  Cnv  +g(Y+g Z) |  Cnv 
[*308-411]  ={X+g(Y+gZ)}\  Cnv . 

[*308-412]  D .  (X+gY)+gZ=X+g(Y+gZ):  D  h  .  Prop 

*308-63.  \-.(X+gY)+gZ=X+g{Y+gZ) 

Bern. 
h  .  *308-6-601-62-621 .  D 

h  :  Z,  F  ZeRat^.  D  .(Z+(,  Y)+gZ=X +giY+gZ)  (1) 

h  .  *308-31-33  .  D 

I- :  ~(Z,  F^eRatj) .  D .  (Z  4-^  Y)+gZ=k.X +g(Y+gZ)  =  A  (2) 

I- .  (1) .  (2) .  D  h  .  Prop 

20--2 


308  QUANTITY  [part  VI 

*308-71.     h  : Z e Rat^ .Z <gZ' .:>  .{X +gZ)  <g {X  +g Z') 
Bern. 
Y  .  *308-57  .  D  h  :  Hp .  D .  Z'  +y  ^1  Cnv  e  Rat  - 1'% . 
[*308-56]  D.(X+gZ)<g  {(X  +^  Z)  +^  (Z'  +g  Z  \  Cnv)} . 

[*308-63-53]  -^.(X-^-gZXg (X  +gZ'):^\-.  Prop 

*30872.     \-:(X+g  Z)  <g  {X+gZ').  =  .Xe  Rat^  .Z<gZ' 

Bern. 
h .  *308-33  .:)[-:(^X+gZ)<g  (X  +,  Z').D.  X,  Z,  Z'  e  Rat^  (1) 

h.*308-57.D 

1- :  (X+,^)<,(X +,-?')■  3  ■  {(^+.-^')+.(^  +  -^)iCnv}  eRat-t'Og. 
[*308-411-63-53]  D  .  (^'  +p  2'  |  Cnv)  e  Rat  -  i'%  (2) 

h .  (1) .  (2)  .*308-57  .  D  h  :  (Z +,  Z)<,  (X +,  ^') .  D  .  ^<,Z'  (3) 

f- .  (1)  .  (3) .  *308-7l .  D  I- .  Prop 

*308-8.       h  :  Z,  F  6  Rat, .  X I  U.'ix,  Y  i  «„ V  e  G'H„ .  D  .  (Z  +,  F)  ^  «ooV  e  C'i?, 
[*308-32-321  •322-323 .  *306-()4  .  *308-26] 

*308-81.     h  :  Z,  F  e  C'H^ .  D  .  (Z  +,  F)  ^  WC'G'X  e  G'H„     [*308-8] 


*309.     MULTIPLICATION  OF  GENERALIZED  RATIOS. 

Summary  of  *309. 

The  subject  of  this  number  is  simpler  than  that  of  *308,  because  it 
requires  nothing  analogous  to  the  consideration  of  subtraction.  The  product 
of  two  generalized  ratios  is  defined  as  follows : 

*30901.     X  x„  Y=  (Z  X,  7)  w (Z I  Cnv  x^  Y\  Cnv) 

^J{Xx,Y\  Cnv)  I  Cnv  w  (X  \  Cnv  x,  F)  |  Cnv     Df 

As  in  *308,  three  of  the  four  products  concerned  in  this  definition  will 
be  null  in  any  given  case  (unless  X  =  Oq  or  Y=Og).     Hence 

*30914.     h:X,F6Rat.D.Xx,F=XxsF 

*309141.  1- :  Z  e  Rat .  Fe  Eat„ .  D .  Z  x^  F=  (Z  x,  F|  Cnv)  |  Cnv 

*309 142.  h  :  Fe  Rat .  Z  6  Rat„ .  3  .  Z  x,  F=  (Z  j  Cnv  x,  F)  |  Cnv 

*309143.  h  :  X,  Fe  Rat„ .  D  .  Z  x^  F=  Z  |  Cnv  x^  F |  Cnv 

The  propositions  of  this  number  are  merely  generalizations  of  those  of 
*305.  The  proofs  of  the  formal  laws  are  straightforward,  but  the  pi:oof  of  the 
distributive  law  (*309'37)  is  long,  because  of  ^ihe  multiplicity  of  different 
cases. 


*309-01.     Z  X,  F=  (Z  Xs  F)  c;  (Z I  Cnv  x,  Y\  Cnv) 

w  (Z  X,  F|  Cnv)  I  Cnv  c;  (Z  |  Cnv  x,  F)  ]  Cnv     Df 

*3091.       h  .  Z  X,  F=  (Z  X,  F)  w  (Z I  Cn V  X,  F I  Cnv) 

va  (Z  Xg  F I  Cnv)  |  Cnv  o  (Z  |  Cnv  x ,  F)  |  Cn v    [(*309-01)] 

*309-101.  I- :  Z  e  Rat  - 1% .  D  .  Z  |  Cnv  x,  F=  A  [*305-2  .  *307-25] 

*309102.  1- :  Z  e  Rat„  -  l%  .  D  .  Z  x,  F=  A  [*305-2  .  *307-25] 

*30911.  t- :  a  !  Z  Xj  F .  D  .  Z,  Fe  Rat,  [*S05-2 .  *3()91] 

*309-12.  h.XXgY=:YXgX  [*305-ll .  *3091] 

*309121.  h  .  Z  X,  F=  Z I  Cnv  x^  Y\  Cnv 

=  (Xx„Y\  Cnv)  I  Cnv  =  (Z  |  Cnv  x^  F)  |  Cnv     [*3091 .  *307-12] 


310  QUANTITY  [part  VI 

*309-122.  1- .  X  X,  Fj  Cnv  =  Z I  Cnv  x„  F=  (Z  X,  F)  I  Cnv 
[*309-121 ,  *307-12] 

*30913.     l-:X,FeB,at-i'0,.D.XXi,F=Xx,F    [*309-l  •101-12] 

*309131.  \- :.  X  =0g.  Y  eUsit-  I'Og  .w  .  Y=Og .  X  eB-At  -  L%:D . 

Xx,F=Zx,F=Oj 
Dem. 

h.*309101.D 

I-  :X  =  0, .  FeRat-  I'Oj  .D.Xx„Y=(Xx,  F)  t;(Z|  Cnv  x,  F)|  Cnv  . 

[*307-26.*305-22]  D .  X  x,  F=  Z  x,  F=  0,  (1) 

h  .  (1) .  *309-12  .  D  h  :  F=  0, .  X  6  Rat  - 1% .  D  .  Z  x,  F= Z  x^  F=  0,     (2) 

I- .  (1) .  (2) .  D  f- .  Prop 

*309133.  h  :  Z  =  Og .  F=  0, .  D . Z  X,  F=Z  X,  F=05 
[*309a  .  *307-26  .  *305-22] 

*30914.     l-:Z,F6Rat.D.Zx,F=ZxgF    [*30913131133] 

*309141.  h  :  Z  6  Rat .  Fe Rat„ .  D .  Z  x,  F  =  (Z  x,  F|  Cnv)  |  Cnv 
[*309-121-14] 

*309142.  h  :  Fe  Rat .  Z  6  Rat„ .  D  .  Z  x^  F=  (Z  |  Cnv  x,  F)  |  Cnv 
[*309-141'12] 

*309143.  h  :  Z,  Fe  Rat„ .  D .  Z  x,  F=  Z  |  Cnv  x,  F|  Cnv     [*309-14-121] 

*30915.     h  :  X,  Fe Raty  .  =  .XXgYe  Rat, 
Bern. 
h  .  *305-3  .  *309-14143 .  3 

f-:.Z,  FeRat.v.Z,  FeRat^O.Zx^FeRat         '  (1) 

h  .  *305-3 .  *309-141142  .  D 

l-:.ZeRat.FeRat„.v.ZeRat„.  FeRatO.ZXgFeRat™  '       (2) 
h.(l).(2).  DI-:Z,F6Rat„.D.ZXyFeRat„         (3) 

h  .  *303-72  .  (*307-01011)  .■^h:Xx,Ye  Rat^  .D.'^lXx.Y  (4) 

h .  (4) .  *30911 .  DI-:Zx^FeRat^.D.Z,F6Rat,  (5) 

1- .  (3) .  (5) .  D  f- .  Prop 

*30916.     l-.(Zx^F)x,^  =  Zx,(Fx,Z)     [*305-41 .  *309-l] 

*30917.     h  :  Z,  F  ~  6  t'O,  w  t'c»  , .  D .  Z  x^  F=  Cnv'(Z  x,  F) 

Dem. 
h  .  *3091 .  3  h  .  Z  X,  F=  (Z  X,  F)  w  (Z I  Cnv  X,  F I  Cnv) 

va  (Z  X,  F|  Cnv)  |  Cnv  w  (Z  |  Cnv  x,  F).|  Cnv     (1) 


SECTION  a]  multiplication  OF  GENERALIZED  RATIOS  311 

H.*305-12.Dh:Hp.D.Xx,F=Cnv'(Zx,F)  (2) 

h  .  *307-22  .  D  I- :  X  6  Rat .  i:^  Z I  Onv  =  Cnv'(X  |  Cnv)  (3) 

l-.(3).  Dh:Z6Eat.X  =  Z|Cnv.D.i"|Cnv  =  (i|Cnv)|Cnv 

[*307-12]  =Z 

[*307-14]  =Cnv'(Z|Cnv)  (4) 

h  .  (3) .  (4) .  D  I- :  Xe Rat^ .  3  .  Z |  Cnv  =  Cnv'(Z ]  Cnv)  (5) 

l-.(2).(5).DI-:Hp.Z,F6Rat,.D. 

Z|Cnvx,F|Cnv=Cnv'(Z|Cnvx,r|Cnv). 

Z  X,  F|  Cnv  =  Cnv'(Z  x,  Y\  Cnv), . 

Z|CnvXsF=Cnv'(Z|Cavx,F)  (6) 

h .  (1) .  (2) .  (6)  .  *309-l .  D  h  :  Hp .  Z,  Fe  Rat,  .li.Xx^Y^'  Cnv'(Z  x,  F)    (7) 

l-.*303-13-7.  DI-:Z,  FeRatj-i'Og.H.Z,  FeRatj-t'Oj         (8) 

h  .  (8) .  *309-ll .  D 

h  :  ~(Z,  FeRat,  u  t'oo  ,) .  3  .Z  x,  F=  A.  Cnv'(Z  x„  F)  =  A  (9) 

h  .  (7) .  (9) .  D  I- .  Prop 

*309-21.     h  :.  Z,  FeRatg  :Z  =  03 .  v .  F=Og :  =  .Z  x,  F=05 

Bern. 
h  .  *309-14-141 .  *305-22  .  *307-26  .  D  h  :  Z  e  Rat, .  F=  0, .  D .  Z  x,  F=  Oj  (1) 
h.*309-15.  Dh:ZXjF=Og.D.Z,  FeRaty  (2) 

I- .  (2) .  *30914141-142143  .  *307-26  .  3 
l-:.Zx,  F=Og.D:Zx,F=0,.V.Z|Cnvx,  F|Cnv  =  Oy. 

V .  Z  X,  F|  Cnv  =  Og .  V .  Z I  Cnv  x,  F=  0, : 
[*305-22.*307-26]  D  :  Z  =  0, .  v .  F=  O5  (3) 

l-.(l).(2).(3).DI-.Prop 

*309-22.     I-:Z,  FeRat^-t'Oj.s.ZXjFeRatj-i'Og    [*309-21 .  Transp] 

*309-23.     h  :  Z  6  Rat,  -  I'O, .  D  .  Z  x,  Z  =  1/1 
Bern. 

I-.*30913.  Dh:Z6Rat-i'05.D.Zx,Z  =  Zx,Z 

[*305-52]  =  1/1  (1) 

h .  *309121 .  *307-22 .  3  h  :  Fe  Rat  - 1% .  Z  =  F|  Cnv .  D  .  Z  x, Z  =  F  x,  F 

[(1)]  =1/1    (2) 

h  .  (1) .  (2) .  D  h  .  Prop 

*309-24.     h  :ZeRat,.  D.Z  X,  1/1  =Z 
Bern. 
l-.*309-14.  DF:ZeRat.D.Zx,l/l  =  Zxsl/l 

[*305-51]  ■■■"■^  =Z  (1) 

h  .  (1) .  *309-142 .  D  f- :  Z e Rat„ .  D  .  Z  x,  1/1  =  (Z |  Cnv)  [Cnv    ' 
[*307-12]  =Z  '  (2) 

I- .  (1) .  (2) .  D  h  .  Prop 


312  QUANTITY  [part  VI 

*309-25.     \-:.X,AeB,atg.Aj=Og.:i:XXgA  =  A'.  =  .X  =  A'XgA 
Dem. 

h  . *30&-23-24-16  .         3  h  :Hp.  D.Z  =  Z  x^il  x,I  (1) 

l-.(l).  Dh:'S.^.XXgA  =  A'.D.X  =  A'XgA      (2) 

h.(l)'^.*30915.DI-:Hp.D.^'  =  ^'x,^  x.A  (3) 

h.(3).  D\-:Rp.X^A'XgA.D.Xx,A  =  A'      (4) 

f- .  (2) .  (4) .  3  I- .  Prop 

*309-251.  \-:.X,A'€'Ra.t„.A^Og.D:Xx,A  =  A'.  =  .X  =  A'XgA 
[*309-25-15] 

*309-26.     I- :  X,  FeKat^,  .X^Og.O.  (g^ . ZeRat^  .Xx„Z=Y 
Bern. 

l-.*309-25.Dt-:Hp.^=Fx,Z.D.^x,Z=F  (1) 

l-.(l).*309-l  512.  Dh.  Prop 

*309-31.     I- :  Z,  FeEat .  ^eRat, .  D .  (Z+,  F)  x«-?  =  (Z  x„^+,(Fx^Z) 

Dem. 
h.*308-32.*30914.D 
h:Hp.^6Rat.D.(Z+,F)x,Z=(Z+sF)x,Z. 

XXgZ=XxsZ.YXgZ=Yx,Z. 
[*306-41]  D.(X+,Y)x,Z=(Xx„Z)+,(7x„Z)  (1) 

h .  *309122  .  D 

h  :  Hp .  TT 6  Rat .  ^  =  F I  Cnv  .  D .  (Z  +„  F)  X,  ^=  {(Z  +,  F)  Xg  Tf }  I  Cav 
[(1)]  ={(Zx,F)+,(Fx,F)}|Ciiv 

[*308-411.*309-122]  ={X  XgZ)+g(YXgZ)  (2) 

I- .  (1)  .  (2) .  D  h  .  Prop 

*309-311.  h  :  Z,  Fe  Rat„ .  ^e  Rat,  .0  .(X +gY)XgZ=(X  x„Z)  +» (F  x^  Z) 
Dem. 
I- .  *308-41 .  *309-122  .  D 

h  :  Hp .  3  .  (Z+„  F)  x,Z=  {(X  \  Cnv+,  Y\  Cnv)  x,^}  |  Cnv 
[*309-31]  =  {(Z|  Cnv  x,Z)+,(F|  Cnv  x,Z)}  \  Cnv 

[*309-122.*308-41]  ={X  x,Z)+g(Yx,Z):D\- .  Prop 

*309-32.     h  :  (v/p)  <r  ( X//*) .  ff/r  e  Rat .  D  . 

(\//t  -,  I^/p)  X„  0-/t  =  {((\  Xo  p)  -e  (/i  X„  k))  Xe  0-}/(^  X„  p  X^  t) 

Dem. 

V  .  *308-24 .  D  h  :  Hp .  D  .  V/*  -,  j//(0  =  ((\  Xe  p)  -„  (fi  x,  v))/fi  x,p     (1) 
h  .  (1) .  *30914 .  *305-142  .  D  h  .  Prop 


SECTION  a]  multiplication   OF  GENERALIZED  RATIOS  313 

*309-33.     h  :  X//t,  vjp,  aJT  e  Rat .  D  . 

^\//i  -,  vjp)  Xj  (ff/r)  =  (\/^  X,  ff/r)  -g  (i^/p  X,  ff/r) 
Dem. 

h  .  *309-14  .  D  h  :  Hp .  D  .  Xjp.  Xg  a/r  =  X//a  x«  o-/t  .  v/p  x^  c/t  =  v/p  Xj  (t/t  . 
[*305-142]  D  .  V^  X,  a/T  =  (\  x„  <7)/(/.  Xe  t)  .  v/p  x„  cr/r  =  (v  x,  a)/(p  x,  t)       (1) 
h  .  (1) .  *308-24  .  D 
h  :  Hp  .  (v/p)  <^  (\//t) .  D  .  (X,//i  X,  «7/t)  -,  {v/p  X,  a/r)  = 

{(\  Xe  0-)  X„  (p  Xe  t)  -c  (/*  Xe  t)  X^  (v  X„  <T)]/{p.  X„  p  X^  T=) 

[*303-38]  =  {(\  Xc  a-x^p)-  (ji  x^  v  x^  a)\/{ii  x^  p  x,,  t) 

[*309-32]  ={X/p.-,v/p)x,a/T  (2) 

h .  (2) .  D  F  :  Hp .  (X//i)  <^(/;/p) .  D  . 

(i//p  X(,  <7/t)  -s  {X/fi  x„  o-/t)  =  (v/p  -,  \//i)  X,  (t/t  . 
[*308-21.*309-122]      D  .(\/^  x,a/r)-,iv/p  x,a/r)  =  {X/p.-,v/p)  x^a/r      (3) 
H  .  *30812 .  *309-21 .  D 
I- :  Hp .  \//i  =  i//p .  D  .  (X//it  -,  i//p)  Xj  o-/t  =  Og . 

{X/p.  X J  a/r)  -,,  (i//p  Xj  <7/t)  =  0,  (4) 

f- .  (2) .  (3) .  (4) .  D  I- .  Prop 

*309-34.     V  :  X,  F.ZeRat .  D .  (Z-,  F)  x^Z=(Z  x„^)-,(Fx^^) 
[*309-33] 

*309-35.     h  :  X.^eRat .  FeRatn.  D  .  (Z+^  F)  x„Z={X  XgZ)+„(YXgZ) 

Dem. 
h  .*308-321 .  D  h  :  Hp  .  D  .  Z+„  F=X-,  F|  Cnv . 

{Xx„Z)+„{Yx„Z)  =  {Xx,Z)-,{Y\Cx,yx,Z)    (1) 
h .  (1) .  *309-34 .  D  h  .  Prop 

*309-36.     h:Z,ZeRat„.F6Rat.D.(Z+jF)x,Z=(Zxj^+^(Fx,Z) 

Dem. 
h.*308-41.*309-121.D 

I- :  Hp .  3  .  Z  +,  F=  (Z I  Cnv  +,  Y\  Cnv)  |  Cnv .  Z  Xj^=Z  |Cnv  x,Z|  Cnv . 

Fx,Z=F|Cnvx,Z|Ciiv. 
[*309-122]  D .  (Z  +,  F)  X,  ^  =  (Z I  Cnv  +,  7 \  Cnv)  x,  Z  |  Cn v . 

(Zx,Z)+,(Fx^Z)  =  (Z|Cnvx,^|Cnv)+,(F|Cnvx,Z|Cnv)    (1) 
I- .  (1) .  *309-35  .  D  h  .  Prop 

*309-361.  h  :  Z  e  Rat^ .  Ye  Rat„ .  ^  e  Rat .  D  . 

(Z+,  F)  x,-?=(Z  x,^)+„(Fx,Z)    [*309-311-36] 


314  QUANTITY  [part  VI 

*309-362.  [■:X,Z6Ra.t,.YeRatn.:^.{X+,Y)x,Z  =  {Xx„Z)+^(VXgZ) 

Dem. 
h  .  *309122  .  *308-41 .  D 
h  .  (Z +,  7)  X,  ^  =  {(X +,  7)  X,  ^  I  Cnv}  I  Cnv . 

(Zx,Z)+,(7x,^)  =  {(Zx,^|Cnv)+,(7x,^|Cnv)}|Cnv  (1) 

h.*309-361.D 
h  :  Hp .  ^6Eat„ .  D  .  (Z+j  7)  x^-^j  Cnv 

=  (Zx,^jCnv)+,(7x„Z|Cnv)  (2) 

h.(l).(2).DI-:Hp.^eRat„.D.(Z+,7)x,^  =  (Zx,^)+,(7x,2)       (3) 
h  .  (3) .  *309-361 .  D  f- .  Prop 

*309-363.  h  :  Z,  Y.ZeB.aig.'D  .(X+g  7)  XgZ=  (Z  XgZ)+g(YxgZ) 

Dem. 
h.*309-35-12.*308-4.D 

\-:Y,Z6'Rat.Xe'R&tr,.D.(X+gY)XgZ  =  {XXgZ)+g(YxgZ)  (1) 

h  .  *309-36  .  D 

\-:YeB&t.X,ZeUa.t„.-^.(X+gY)XgZ  =  {XxgZ)+g(YxgZ)  (2) 

l-.(l).(2).D 

h:Z6Rat„.  Yenab-ZeBatg.-^  .{X+gY)XgZ={X  XgZ)+g(YxgZ)     (3) 
h  .  (3) .  *309-31 .  D 

h  : Ze Rat(, .  76Rat . -^eRat^.  D .  (X +g  7)  XgZ  =  {X  XgZ)  +g(YxgZ)     (4) 
h  .  (4) .  *309-362 .  D  f- .  Prop 

*309-37.     V.{X+gY)XgZ  =  (Z  x^  ^)  +s  ( 7  Xg  Z) 
[*309-363-ll-15  .*308-31-33] 

*309-41.     V\.AeRaX-i%.':>:{A  XgX)<gY.  =  .X <g(YxgA) 

Dem. 
I- .  *308-56  .OV:.(AxgX)<gY.  =  : 

AxgXeEaitg:{:^Z).Ze'Ra,t-i'Og.(AXgX)+gZ=Y    (1) 
I- .  (1) .  *309-15  .  D  h  ::  Hp .  D  :.  (4  XgX)  <gY.  =  : 

Xe'Ra,tg:('^Z).ZeB,a,t-i'Og.(AxgX)+gZ=Y: 
[*309-25-37-23-24] D  :  Z  eEatj :  (gZ) . ^eRat-  t'O, .  Z  +j(^Xg^)=  YxgA  : 
[*305-31.*30913]  D:Xe  Rat^  :  (gZ') .  Z'  e  Rat  -  (,% .  X +gZ'=YxgA: 
[*308-56]  D:X<g(YXgA)  (2) 

Similarly  H  :.  Hp  .  D  :  Z  <g{YxgA)  .D.{A  XgX)  <g  7  (3) 

1- .  (2) .  (3) .  D  I- .  Prop 


SECTION  A]  MULTIPLICATION  OF  GENERALIZED  RATIOS  315 

*309-42.     [--..A  6Rat„  -  I'O^.  0:{A  XgX)<gY  .  =  .  (TxgA)  <gX 
Dem. 
h  .  *307-4  .  *309-122  .  D 

h  :.  Hp .  D  :  (^  XgX)  <gY.  =  .{Y\  Cnv)  <g(A  |  Cnv  XgX) . 
[*309-41.*307-22]  =  .  (7 1  Cnv  x^ ^  ]  Cnv)  <g X . 

[*309-121]  =.{YxgA)<gX:.0\-.Frop 

*309-5.       h  :  Z,  Fe  Ratj .  X  t  <n  V.  Y I  t^^'t^  e  C'Hg  .D.(XxgY)t  t^'f^  e  C'Hg 
[*309-14-141-142-143 .  *305-26] 

*309-51.     h  :  Z,  F  6  C'Hg .  3  .  (Z  x ^  F)  p  t^'CC'X  e  C'Hg    [*309-5] 


*310.     THE  SERIES   OF  REAL  NUMBERS. 

Summary  of  *310. 

Real  numbers,  as  opposed  to  ratios,  are  required  primarily  in  order  to 
obtain  a  Dedekindian  series,  so  as  to  secure  limits  to  sets  of  rationals  having 
no  rational  limit.  If  rationals  and  irrationals  are  to  form  one  series,  it  is 
necessary  to  give  some  definition  of  "  rationals "  other  than  "  ratios,"  since 
the  series  of  ratios  (assuming  the  axiom  of  infinity)  is  not  Dedekindian,  and 
is  not  part  of  any  arithmetically  definable  Dedekindian  series.  But  in  virtue 
of  the  propositions  of  jj(212,  the  series  of  segments  of  the  series  of  ratios, 
i.e.  the  series  s'-ff,  is  Dedekindian,  and  this  series  contains  a  series,  namely 

H'^H,  which  is  ordinally  similar  to  H.     Thus  the  properties  which  we  desire 

real  numbers  to  have  will  result  if  we  identify  them*  with  segments  of  H, 

-* 
and  give  the  name  "  rational  real  numbers "  to  segments  of  the  form  H'X, 

i.e.  to  segments  which  have  ratios  as  limits.  Thus  H'X  is  the  rational  real 
number  corresponding  to  the  ratio  X,  and  a  real  number  in  general  is  of  the 
form  H"X,  where  \  is  a  class  of  ratios.  H"X  will  be  irrational  when  X,  has 
no  limit  in  H. 

Since  real  numbers  involve  classes  of  ratios,  the  ratios  concerned  must  be 
of  some  one  type,  and  cannot  be  typically  indefinite.  Thus,  as  might  be 
expected,  hardly  any  of  the  properties  of  real  numbers  can  be  proved  without 
assuming  the  axiom  of  infinity.  In  the  present  number,  however,  we  shall 
be  mainly  concerned  with  just  those  few  simple  properties  which  are  inde- 
pendent of  the  axiom  of  infinity. 

The  series  ^'H,  by  which  real  numbers  are  to  be  defined,  has  both  a 
beginning  and  an  end,  namely  A  and  D'H  (which  =  G'H  if  the  axiom  of 
infinity  holds).  D'H  will  be  infinity  among  real  numbers.  It  is  not  con- 
venient to  include  it  in  the  series  of  real  numbers  as  defined,  just  as  it  was 
not  convenient  to  include  oo  5  in  the  series  H  or  H'.  Again  A  is  not 
naturally  to  be  taken  as  the  zero  of  real  numbers,  which  should  rather  be 
taken  as  being  I'Oq.  Thus  we  are  led  to  the  two  following  definitions,  in 
which  0  is  the  series  of  positive  real  numbers  other  than  zero  and  infinity, 

*  On  this  definition  of  real  numbers,  cf.  Principles  of  Mathematics,  Chap,  xxxiii. 


SECTION  A]  THE   SERIES   OF   REAL   NUMBERS  317 

while  @'  is  the  series  of  zero  and  the  positive  real  numbers  other   than 
infinity :  • 

*31001.     e  =  (s'ff)  D  (- i'A  -  t'D'S")    Df 
*310011.  @'  =  t'Oy*f  @  Df 

These  notations  are  framed  on  the  analogy  of  H  and  H',  the  letter  @ 
being  chosen  to  suggest  6,  the  relation-number  of  the  continuum.     Although  ^ 
we  do  not  have  Nr'@=^,  we  have  Nr's'jH'=^,   and  therefore   (*310-15) 
1  +  Nr'@  +  i  =  ^,  and  Nr'©'  + 1  =  ^  (assuming  the  axiom  of  infinity).     Thus 
the  relation-number  of  @  is  simply  that  of  a  0  with  the  ends  cut  off. 

We  put  further,  on  the  analogy  of  ff„,  Hg, 
*31002.  @„  =  (s'ir„)D(-t'A-t'D'£r„)  Df 
*310021.  ©'„  =  t'Oj«f  ®„  Df 

*31003.     @g=®„4:@'  Df 

Thus  @„  is  the  series  of  negative  real  numbers,  @'„  the  series  of  zero  and 
the  negative  real  numbers,  @j  the  series  of  negative  and  positive  real  numbers 
(infinity  always  excluded).  The  class  of  positive  real  numbers  is  C®, 
of  negative  real  numbers  G'%n,  of  all  real  numbers  (excluding  infinity) 
C"@  u  t't'Og.u  0'%n-  If  v  is  a  positive,  real  number,  |  Cnv"i/  is  the  corre- 
sponding negative  real  number  (*310"16).  The  properties  of  0,  @„,  @j  in 
respect  of  limits,  continuity,  etc.,  result  from  the  properties  of  6  as  proved  in 
*275,  and  from  the  properties  of  series  of  segments  as  proved  in  *212. 

Instead  of  taking  the  series  of  segments  as  constituting  the  real  numbers, 
it  is  possible  to  take  the  series  of  their  relational  sums,  i.e.  s>@.  This 
depends  on  the  fact  that  s'@smor@  (*310"33).  The  chief  advantage  of 
s5@  is  that  it  is  of  the  same  type  as  the  series  of  ratios.  We  shall  show  in 
*314  how  to  construct  the  arithmetic  of  real  numbers  defined  as  the  relational 
sums  of  segments ;  until  then,  we  shall  regard  real  numbers  as  segments  of 
the  series  of  ratios. 


*31001.     @  =  (s'fl)D(-i'A-t'D'ir)  Df 

*310011.  ©'  =  t'O4«f0  Df 

*31002.     @„=(s'^„)C(-i'A-i'D'ir„)  Df 

*310021.  ®'„  =  t'05«f  @„  Df 

*31003.     @p=@„4^©'  Df 

*3101.       F .  ©,  ©',  ®n,  ®'n,  ®g  6  Sor    [*304-23  .  *307-41-2o  .  *204-5  .  *212-31] 

*31011.     V  :  fj,®v .  =  .fj,,ve B'He - I'A  - I'D'H  .^Cv./jl^v. 
s  . /i,  i;  e  D'iTe  .  a  I/n-a!  D'H  -  v  .'g^l  v  —  fi . 
=  . /i,  1/ 6  D's'if  n  Q's'-ff .  M  C 1/ . /i  +  I' 
[*212-23-132  .  *211-61 .  (*310-01)] 


318  QUANTITY  [part  VI 

*310111.  h  :  fi@nv  .  =  .fi,ve D'(ir„)e -  I'A -  I'H'Hn .fiCv.fi^v. 
=  .li,ve  D'(Hn)e  .  a  !  /i .  a  !  D'^„  - 1/ .  a  !  i»  -  /x  . 
=  .fjL,ve  J)'<s'H„  n  a'^'Hr,  .(iCv-n^v  [(*310-02)] 

*310112.  h  :.  II® gv .  =  :  /it©„i/ .  v  .  /i@i/ .  v  . 

/i e  (?'@„ .  i; e I'l'O,  w  0'@  .  v  .  /x  =  I'Oj .  k  e  C"@     [(*31003)] 

*310-113.  h  :. /t®'!/ .  =  ifi=i% .v€C'@.v. ijBv  [(*310-011)] 

*310114.  1- :.  fiWnV  .  =  :iM=  1%  .  v  e  (7'®„  .  v .  /t@„z/  [(*310-021)] 

*31012.     h  -  0'@  =  D's'5"  n  a's'H  =  D'^e  -  t'A  -  I'B'H . 

G'@n=  Ji'^'Hn  n  a'^'Hn  =  D'(ir„)e  -  t'A  -  t'D'if^     [*212-132] 

*310121.  F  .  C"@  C  CI  ex'D'ff .  (7'0„  C  01  ex'D'^„  [*310-12] 

*310 122.  t-:a!3.  =  .a!@-  =  -!i[!@'-  =  -a!@»-  =  -a!0'»-  =  -a!®ff 
[*212-14 .  *16M3 .  *304-27.] 

*310123.  h  :  a !  3  .  D  .  G'&  =  l'i%  u  G'@  .  C"©'„  =  i'i%  u  G'e„ . 

C'®g  =  0'@„  w  I't'O,  w  C"@     [*310-122  .  *161-14] 

*310 13.     \-.G'@n  G'@n  =  A  . s'G'@  a «'(?'©„  =  A 

Bern. 
h  .  *31011-111 .  D  h  :  /i  6  C"@ .  1/  6  C"@„ .  D  .  /*  C  D'if .  i/  C  D'ir„ .  a  V  ■  H !  "  • 
[*307-25]  D./i+i'./t<M'  =  A:Dh.Prop 

*310131.  l-.t'0y^eO'@ua'@„    [*304-282] 

*31014.     h  .  @n  smor  ©  [*212-72  .  *307-41] 

*310-15.     h  :  Infin  ax  .  D  .  ©'  -f>  O'^',  ©'„  -t>  C'fi^„,  G'H^  *f  @g  -f*  O'S'e  61 
[*304-33 .  *310-14  .  *275-21] 

*310151.  h  :  Infin  ax  .  D  .  ©',  ©'„  e  Ser  n  comp  n  semi  Ded 
[*310-15  .  *275-l .  *27l-18  .  *214-74] 

*31016.  l-:z/6a'©.  =  .|Cnv"i;eC"©„  [*310-12 .  (*30704)] 

*31017.  I- .  I  Cnv"|  Cnv"!/  =  v  [*307-12] 

*31018.  f- : /i  =  I Cn v"v .  =  .v=\ Cnv' >  [*31017] 

*31019.  \-:/j.  =  v.  =  .\Gnv"/jL  =  \Cuv"v  [*310-17] 

*310-31.  \-:/jLeC'®yj  G'®„ .  D  .  a  !  (s'ti)  t  I^el  num  [*304-5  .  *310121] 


SECTION  a]  the  series  OF  REAL  NUMBERS  319 

*310-32.     h  :. ij,,veC'@g.D  :  s'fi  =  s'v .  =  .  fi  =  v 

Bern.  • 

f-.*310-31.*303-62.D 
I- :  /A  6  G'©  u  C"®„  .  V  =  t'Og  .  D  .  a  !  (s'/ii)  D  Rel  num  .  ~  g  !  (s'l;)  ^  Rel  num  . 

D.s'/t  +  s'i/  (1) 

f- .  *31012-31 .  *307-25  .  D  I- :  ^  e  C"@  .  i/  e  C'@„  .  D  .  sV  4=  s'v  (2) 

h  .  *31011 .  D  h  :.  /t@j; .  D  :  a !  K  -  yii : 
[*310-121]  D  :  (3(0,  a):  p/a-ev:^/r)efi .  Df,, .  ^/i?  4=  /s/o" : 
[*303-52]     D  :  (gp.  a,  R,8):  p/<Tev  .R  {pi  a)  S :  ^/t;  e  /.  .  Df  „  .  ~  {i?  (^/i,)  S] : 
[*41-11]       D:a!s'i--^s'/i  (3) 

h  .  (3) .  *310-1 .  D  h  :  /I,  i/€  C"@  .  /i  +  r .  D .  sV  +  s'i*  (4) 

Similarly  h:  fi,ve  G'@n  ./j.^v.'D.  s'fi  4=  s'v  (5) 

h  .  (1) .  (2) .  (4) .  (5) .  D  f- :.  Hp .  D  :  m4=  i; .  D  .  s'/i  +  «'"  (6) 

I- .  (6) .  Transp .  D  h  .  Prop 

*310-33.     l-.s5@smor®  .s5@„smor@„.s;@5smor©g    [*310-32] 


*311.     ADDITION   OF  CONCORDANT  REAL  NUMBERS. 

Summary  of  *311. 

We  define  a  set  of  real  numbers  as  concordant  when  all  are  positive 
or  zero,  or  all  are  negative  or  zero,  i.e.  when  all  belong  to  G'®'  or  all  belong 
to  G'&n.  Given  two  concordant  real  numbers  /a  and  v,  we  define  the  sum  of 
fi  and  V  as  the  class  of  sums,  in  the  sense  of  *308,  of  a  member  of  fi  and  a 
member  of  v,  i.e.  as 

W{('^M,N).Me(i.Nev.  W=M+gN], 

i.e.  as  s'fi+a"v,  in  virtue  of  *40"7.     It  is  easy  to  prove  that,  assuming  the 

axiom  of  infinity,  the  sum  so  defined  has  the  properties  we  require  of  a  sum. 
We  denote  the  sum  so  defined  by  "  /x+pv."  In  order  to  insure  that  /M+pV 
shall  be  A  unless  /i,  v  are  concordant  real  numbers,  we  put 

*311-02.     fi-\-pV  =  X  {concord (/*, j/) . Z e s'n  +g"v]     Df 

Thus  if  a,  V  are  concordant  real  numbers,  fi+pv  —  s'iu,+g"v  (*311*11);  if 

not,  fi+pv  —A  (*311'1).  A  definition  of  addition  which  applies  to  real 
numbers  of  opposite  sign  will  be  given  in  *312. 

The  comnmtative  and  associative  laws  for  +p  (*311*12'121)  follow  at 
once  from  the  corresponding  laws  for  +g.  Assuming  the  axiom  of  infinity, 
we  prove  without  much  difficulty  that  the  sum  of  two  positive  real  numbers 
is  a  positive  real  number  (*311'27),  and  the  sum  of  two  negative  real 
numbers  is  a  negative  real  number  (*311'42).  In  these  proofs,  when  propo- 
sitions of  previous  numbers  involving  "  Rat "  are  used,  "  Rat "  is  replaced  by 
G'H'  and  "  Rat  -  I'O,  "  by  G'H.  This  is  legitimate  in  virtue  of  *304-49-34. 
In  *311'511  we  prove  (assuming  the  axiom  of  infinity)  that  if  ^  is  a  positive 
real  number,  and  Y  is  any  positive  ratio,  however  small,  there  are  members 
X  oi  ^  such  that  Y  +gX  is  not  a  member  of  ^,  i.e.  given  any  positive  real 
number,  there  are  rationals  differing  from  it  by  less  than  any  assigned  positive 
rational.  This  proposition  is  useful,  and  is  used  in  proving  that  if  ^,  rj  are 
positive  rationals,  each  is  less  than  |^+j,i;  (*311'52).  The  converse  of  this 
proposition,  i.e.  the  proposition  that,  if  fi@v,  there  is  a  positive  real  number 


SECTION  a]  addition  OF  CONCOEDANT  REAL  NUMBERS  321 

\  such  that  v  =  fi+pX,  is  proved  in  *311"621'64,  after  a  considerable  amount 
of  work.     Thus  we  have       • 

*311-65.     h  :: Infin ax  .  D  :.  fi®v .=  :/i,ve G'@ :  (gX) . X e C'@ .v  =  fi+p\ 

We  have,  of  course,  a  corresponding  proposition  for  ©„  (*311"66).  From 
*311'65  we  deduce  without  difficulty  that  if  fi  is  less  than  v  (/i,  v  being 
positive  real  numbers),  then  \  +^  /*  is  less  than  X+pV  (\  being  a  positive 
real  number),  i.e. 

*311-73.     h  :  Infin  ax  .  \  e  C©  .  ii®v  .  D  .  (\  +p  /i)  @  (\  +p  v) 

whence  (with  the  corresponding  proposition  for  @„)  we  deduce 

*311'75.     I-  :•  Infin  ax  .  concord  (\,  /x)  .  D  ;  X  4-p  /*  =  \  +p  i/ .  =  .  /i  =  i* 
which  secures  the  uniqueness  of  subtraction. 


*3ir01.     concord  (//,,  V,... ).  =  :/u,  J/,...  eO'®'.v. /A,  V,...  6  (?'©'„    Df 

*31102.     /[4 +pi'  =  X  {concord  (/i,  I/).  Z€s'/i+j"i/}  Df 

*3111.       I- :  ~  concord  (/A,  J/) .  D  . /t +J,  V  =  A    [(*31102)] 

*311'11.     1- :  concord  (/*,  i^) .  D  . 

fi+pv=s'n+g"v=  W[{'^M,N).Mefi.Nev.W=M^-gN] 

[(*31102)] 

*31112.     V.ii+pV=v+piM  [*311-1-11 .  *308-4] 

*311-121.  h  .  (\  +p  /i)  +p  V  =  \  +p  (/i  +p  v)     [*311-1-11 .  *308-63] 

«311'13.     h  :  concord  (/i,  v)  .  =  .  concord  (|  Cnv'Vi  |  Cnv"i;) 
[*310-16 .  (*311-01)] 

*31114.     h  :  concord  (/*,  |  Cnv"i;) .  = . concord  (|  Cnv'V,  v)    [*311-13  .*310-l7] 

*31115.     I- :  concord  (/i,  I  Cnv"i/) .  D  .  ~  concord  (/i,  I/)  [*310-13-16] 

*311-2.       h  :  Infin  a.x.^CC'E .  X  eC'H  .O.X  +g"H"^  =  H"X  +/'^  '^  ^'^ 

Bern. 
I- .  *308-72  .  *304-34-401 .  3  h  :.  Hp .  D  :  Fe Z  +g"H"^ .  =  . 

i'3^Z,Z').Z'e^.ZeG'H.Y=X+gZ.{X+gZ)HiX+gZ'). 
[*37-6]     =.('^Z,Y').ZeC'H.Y=X+gZ.Y'6X  +g"^  -  YHY' . 
[*306-52]  = .  YeH"X  +/'?  ■  ^HY :.  3  h  .  Prop 

*311-21.     h  :  Infin  a^x.  ^CG'H  .^l^  .X  eC'H.D .  H^'X  C  H"X  +g"^ 
Dem. 

h  .  *306-52 .  *304-401 .  D  f- :.  Hp  .  D  :  Fe  f .  D .  Z£r(Z  +p  F) : 
[*40-5r61]  D:XeH"X+g"^  (1) 

h  .  (1)  .  *304-23 .  D  h  .  Prop 

E.  &  W.    III.  21 


322  QUANTITY  [part  VI 

*311-22.     I- :  Infinax  .  f  C  C'i? .  g  l^.XeC'H.  D  . 

H"X  +/'!  =  H^'X  w  X  +g"H"^ 
Bern. 

[■.*304:-23.:>\-.H"X+g"^={H"X+g"^nH^'X)^(H"X+g"^n^'X)    (1) 
h.(l).*3ir2-21.DI-.Prop 

*311-23.     h :  Infin  a.x  .^eC'@  .X  eC'H  .D .  H"X  +p"f  =  H^'X  u  X  +g"H"^ 
[*311-22.*310-12] 

*311-24.     V  :.  Infin  ax .  f  e  C'@  .  Ye  G'H.D: 

{^Z).ZHY.  YeZ+g"^:  Yes'^+g"H'Y 
Bern. 

l-.*304-31.Df-:Hp.D.(aTf).  We^.  WHY. 
[*306-62]  3  .(a^,  W)  .  We^.ZHY.  Y=Z+gW:D\-.  Prop 

*311-25.     h  :  Infin  ax  .  f  17  e  C"@  .  D  .  f  C  ^+j,i; .  j;  C  ^  +p  t; 
Dem. 

I-.*310-12.         ■^h-.B.p.Yev^^.H'YCT,. 
[*311-24]  O.Yes'^+g"v  '       (1) 

f-.(l).*311-ll.Dh:Hp.D.7;Cf+pi7  (2) 

l-.(2).*31112.Dl-:Hp.D.^C?+j,77  (3) 

h  .  (2) .  (3) .  D  h  .  Prop 

*311-26.     h  :  Infin  ax  .  f ,  7;  e  C"@  .  D  .  H"(^  +pv)  =  ^+pV 
Dem. 
I-  .*311-23  .  D  h  :.  Hp.  D  :  FeT? .  D.H"(^+g  Y)  =  H^'Yyj(H"^)+g  Y: 

[*3iril.*310-12]  D:H"(^+pv)  =  -S*"v'^(^+pV) 

[*311-25.*310-12]  =  ?  +p9y :.  D  h  .  Prop 

*311-27.     h  :  Infin  ax .  ^,  77  e  (7'@ .  D  .  f  +p  17  e  (7'© 
Bern. 
h  .  *311-25  .  *310-12  .  D  h  :  Hp .  D  .  a  !  f  +p  9? . 

[*311-26.*310-12]  D  .  ^  +p  ly  e  0'@  u  t'D'if  (1) 

|-.*310-12.*211-703.D 

h  :  Hp .  D  .  (gi/,  N).M,Ne  B'H .  if  ep'^"^ .  i\r  ep'H"f) . 
[*308-32-72.*306-23]  D  .  (,'iM,N) ,  Jf +3  JVep'^"(^+j,i?)  n  D'if  (2) 

I- .  (2) . *200'5  .  D  f- :  Hp .  D .  ^+pr,=^'D'H  (3) 

h  .  (1) .  (3) .  D  F  .  Prop 

The  axiom  of  infinity  is  essential  to  the  truth  of  the  above  proposition,  for 
if  it  fails  we  have  E !  B'H .  B'H  ~  e  f  +p »;,  while  fieC®  .1^  .B'H  efi. 


SECTION  a]  addition  OF  CONCORDANT  REAL  NCMBEKS  323 

*311-31.     h  .  I  Cnv"(/i  +p  v)  =  (I  Ciiy"fi)  +p  (|  Cnv"i;) 
Dem.  • 

I- .  *311-13-1 .  D 

h  :  ~  concord  (^,  j/) .  D  .  |  Ciiv"(/i,  +pv)  =  A.(\  Cnv"/*)  +p  (I  Cnv"v)  =  A    (1) 
I- .  *31113-11 .  D  h  :  concord  (/*,  i/) .  D  .  |  Cnv' V  +pv)  =  \  Cnv"s'/i  +g"v 

[*308-411]  =s'{\Gny",i) +g"Q  Cnv"v)  '  (2) 

h  .  (1) .  (2) .  D  h  .  Prop 

*311-32.     l-.|Cnv"(/i+ylOnv"j/)  =  (|Cnv"/i)+pi;  [*311-31  .*310-17] 

*311-33l.     [■.fi+pV  =  \Cnv"{(\Cav"/j.)+p(\Cnv"v)}  [*3ir31  .*31018] 

*311'41.     I- :  Infin  ax.  ii,v  e  0'©„  .'^./iC/ji.+pV.vC/jL+pV 
Dem. 
I- .  *311-25  .  *310-16  .  D  h  :  Hp .  D .  I  Cnv"/*  C  (|  Cav"/i)  +p  (|  Cnv"*/) . 
[*311-33.*310-17]  D./iC/i+pi;  (1) 

Similarly  1- :  Hp  .0  .vC/jb+pV  (2) 

h.(l).(2).Dh.Prop 

*311-42.     h  :  Infin  ax.pb.ve  0'@„  .O-fi+pve  C"@„ 
Dem. 

I- .  *311-27  .  *310-16 .  D  h  :  Hp .  D .  (I  Cnv'V)  +p  (|  Cnv'S)  e  C'@ . 
[*311'33.*310-16]  O./i+pve  a'@„  Oh.  Prop 

*311-43.     h  :  /t  6  G'@g .  D  .  /*  +,  t'Og  =  /* 
i)e»i. 

h.*31111.DI-:Hp.D./i+pi'0,=  #{(ailf)  .  Jfe/*.  W=M+gOg} 
[*308-51]  =/*:Dh.Prop 

*311-44.     h  :  Infin  ax  .  concord  (jj,,v).'^  ./jL+pve  G'&g    [*311-27-42-43] 

«311'45.     f- :.  Infin  ax  .  concord  (/t,  v)  :  /t=|=  t'Og .  v .  i;  =  t'Og  zD  .fiCfi+pV 
[*311-25-41-43] 

*311-51.     1- :  Infin  ax .  f  e  D'^e  -I'A.Ye  G'H .  Y+g"^  C  f .  D .  ^  =  G'^  =  D'H 

Dem. 
h.*38-13.Dh:Hp.Z6?.D. F+jZef. 

[*306-52]  D.Fe|  (1) 

F.*306-51.D 

|-:Hp.I.6NCind.Ze^F+g(I;/lx.Z)e^D.F+^{(l/+ol)/lx,Z}€^  (2) 
I- . (1) .  (2) .  Induct .  D  h  :  Hp .  j; eNCind  . Ze^  D .  F+g(i//l  x.Z)  e^  (3) 
|-.*305-7.*306-52.D 

i-  zR^.X e^ .ZeC'H .:> .{'^v) .V eiaCmd. ZH {Y+g{v/l  XsX)}  (4) 

h  .  (3)  .  (4) .  D  h  :  Hp . -?  e  (7'^ .  D  .  Z  e  f :  D  h  .  Prop 

21—2 


324  QUANTITY  [PART  VI 

*311-511.  l-:Infinax.feC"©.F6C'ir.D.(aZ).Z6f.F+jZ~e^ 
[*311-51 .  Transp] 

*311-52.     h  :  Infin  ax  .  f ,  ,7  e  C'0  .  D  .  f  @  (f  +p  v) 
Bern. 
l-.*311-511.DI-:.Hp.D:FeO'fi'.D.(aZ).Ze^Z+3F~e^: 
[*311-11]  D  : (gX,  Y).X+,  Fe (f  +pv)-^ ■ 

[*310-ll.*311-27]  D  :  ^@  (f  +p  1?) :.  D  I- .  Prop 

*311'53.     h  :  Infin  ax  .  f,  t?  e  a'@„ .  D  .  f ©„  (|^  +p  v)  [*311-52-33] 

*3ir56.     I-:.  Infin  ax.  f  6  C"@g.D:f  =^+^7?.  =  .  »?  =  i'0,    [*3111-43-52-53] 

*31157.     h  ::  Infin  ax.D:.^=f+j,i7.=  :?=A.v.f6  G'%g .  r,  =  I'O, 
[*311-o6-l] 

*3ir58.     h:Infinax./i6C"@.D./i  =  ^'>    [*304-3 .  *270-31] 

*311-6.       V  iluf^na.x  .  ii@v  .  X,Y  ev  -  II .  XHY .  M  €  iJL  .-;>  .  M  +g{Y  ->X)ev 
Bern. 

h  .  *310-11 .  D  I- :  Hp  .  D .  MHX  . 

[*308-42-72]  D.{M+g{Y-sX)}HY  (1) 

h.(l).*311-58.Dh.Prop 

*311-61.     h  :  Infin  ax  .  fi,@v  . 

\  =  L[(^X,Y).X,Yev-fi.XHY.L=Y-sX}.D. 
s'fji,+g"XCp     [*311-6] 

*311-62.     I- :  Infin  ax  . ,j,(&p  .Xev-fji.D.  (gF)  .Yev-/JL. XHY 
Dem. 

h  .  *311-58  .  D  h  :  Hp .  D  .  Z  6  H"v  -  H"/j, :  D  h  .  Prop 

*311-621.  h  :  Hp*311-61 .  D  .  \e  C"@ 

Bern, 
h  .  *311-62  .     D  h  :  Hp .  D  .  a  !  \  (1) 

I- .  *308-46  .     D  I- :  Hp  .  D  .  \  C  H"v  (2) 

h.*311-62.     Dy:RY>.X,Yev-fi.XHY.:).{'^Z).Z€v-fi.  YHZ . 
[*308-42-72]  ■^.{'3^Z).Zev-ii.{Y-,X)H{Z-,X)  (3) 

l-.(3).*37-l.DI-:Hp.D.\C^"\  (4) 

h.*308-56-42-72.D 

I- :  Hp .  Z,  Fei;  -/i .  XHY.  LH{Y-,  X).-::i.XH{X  +gL) .  (Z  +gL)  HY . 
[*310-ll.*308-43]  -^.LeX  (5) 

I- .  (5) .  *37-l .  D  h  :  Hp  .  D  .  H"\  C  \  (6) 

I- .  (1) .  (2) .  (4) .  (6)  .  D  F  :  Hp .  D  .  \  6  D'^e  -  t'A  -  t'D'^  . 
[*310-12]  D  .  \  6  C"@  :  D  h  .  Prop 


SECTION  a]  addition   OF   CONCORDANT   REAL   NUMBERS  S25 

*311-63.     h  :Inhna.x  .V  eC® .  X  ev  .  N  €  G'H  .-^  .('a^L) .  LHN  .X  -hgLev 

Bern.  • 

h  .  *311-58  .  D  h  :  Hp .  D .  (gF) .  Fe i; .  XHY  (1) 

I- .  *308-42  .  D  h  :  Hp.  Yev.XHY.Z=  Y-,X.ZHN.:>.ZHN.X+gZ6v    (2) 
F  .  *308-42-72  .  D 

i-:RTp.Yev.XEY.Z=Y-,X.NH^Z.LHN.'^.LHN.X+gL€v       (3) 
h.(3).*311-58.D 

f-:Hp.  Yev.XHY.Z=Y-,X.NH^Z.-^.{'aL).LHN.X+gLev       (4) 
h  .  (1) .  (2)  .  (4) .  D  h  .  Prop 

*311-631.  h  :  Infin  ax  .  fi@v  .  iVe /* .  D  . 

(^M,X,Y).Mefi.X,Y€v-fji.XHY.N=M+g(Y-,X) 
Dem. 

h  .  *311-58  .  *308-72 .  3 

Vz'S.^.Xev-ii.LHN.X+gLev.Y=X^-gL.M=N-gL.:i. 

Me^L.X,Yev-/i.XHY.N=M+g(Y-,X)    (1) 

h  .  (1) .  *311-63  .  D  h  .  Prop 

*311-632.  I- :  Infin  ax  .  fi®v .  JVe  v  -  /i .  D  . 

('aM,W).Me^L.M+gW,N+gW€v-iM.{M+gW)H(N+gW) 
Dem. 

I- .  *306-52 .  *311-63-58 .  D  h  :  Hp .  D  .  (g  Tf ) .  F e  (7'5 .  iV  +j  F  e  v  -  /li        (1) 

h.*311-511.Dh:Hp.  WeG'H.0.('3^M).Mefji.M+gW'^efi  (2) 

h.*311-58.    Oi-zKp.Me/M.Nev-fi.WeC'H.D.MHN'.WeC'H. 

[*308-72]  D .  (M+g  W)  H(N+g  W)  (3) 

I- .  (3) .  *311-58  .  D  h  :  Hp  (3) .  iV+j  F  e  j; .  3  .  Jlf+j  TT  6 1/  (4) 

J- .  (2) .  (4) .  D 

l-:Hp.  W6C'H.F+gWev-^L.0.('3^M).M€fi.M+gW€v-fi  (5) 

h  .  (1) .  (3) .  (5) .  D  h  .  Prop 

*311-633.  h  :  Infin  ax  .  fi@v  .Nev.'^. 

('S.M.X,  Y).M6^L.X,Y€v-fi. XHY.  N=M+g(Y-,X) 
Dem. 
V  .  *308-61-4-63  .  D 

\-:R^.MHN.X  =  M+gW.Y=N+gW.:y.N=M+g{Y-,X)  (1) 

h  . *311-632 . *308-72 .  D  h  :  Hp .  J\r~ e/i .  D  .  (gM,  W,X,Y). 

Mefi.X=M+gW.Y^N+gW.XHY.MHN.X,Yev-^i,    (2) 
h.(l).(2).Dl-:Hp.iV~e/t.D. 

(aJf,Z,F).Jlfe^.Z,Fei;-/i.Z5'F.i\r=Jlf+3(F-,Z)    (3) 
|-.(3).*311-631.Dh.Prop 


326  QUANTITY  [part  VI 

*31164.     l-:Hp*311-61.D.i/  =  /i+j,\ 

Dem. 

V  .  *311-633  .  D  .  I.  C  sV  +g"\  (1) 

I- .  (1) .  *311-621-61 .  D  h  :  Hp .  D .  \  6  C©  .  j;  =  sV  H-/'\ . 

[*31111]  D.i;=/i+p\:Dh.Prop 

*311-65.     h  : :  Infin  ax  .  D  : . ii@v  .  =  :fi,v6  G'&  :  (gX) .  \ e  C'@  .v  =  fi+pX 
[*311-52-64] 

*3H-66.     I- : :  Infin  ax .  D  : .  yu,©™!/ .  =  :  /t,  v  e  C'©„ :  (gX) .  \  e  G'@n  .v  =  ii+p\ 

Dem. 
\- .  *310-11111 .  D  h  :  /i©„v  .  = .  (I  Cnv'V)  ©  (|  Onv"i/)  (1) 

H.(l).*311-65.Dh::Hp.D:. 

/i@nv  .  =  :  I  Cnv' V  6  C'@ :  (gX) .  X  e  C© .  |  Cnv"v  =  |  Cnv"/i  +j,  X : 
[*311-32.*31016-19]  =  :  /i  6  (7'0„ :  (gX)  .  X  e  (?'©„  .v  = /j,+p\::D}- .  Prop 

*311-73.     I- :  Infin  ax  .  X  e  C© .  fi@v .  D  .  (X  +j,  /*)  ©  (X  +p  v) 
Dem. 

I- .  *31 1-65 .  D  h  :  Hp .  D .  (g/j) .  /a  e  C© .  v  =  /x  +3,  /o  . 
[*311-121]  D.(gp).pea'@.X+pi;  =  (X+p/i)+^p         (1) 

h  .*3H-27  .  D  h  :  Hp .  3 .  X +j, /i,,  X +p  v  e  (7'©  (2) 

I- .  (1) .  (2) .  *311-65  .  D  h  .  Prop 

*311-731,  h  :  Infin  ax .  X  e  0'©„ .  /i©„i; .  D  .  (X  +p  /*)  ©„  (X  -^-p  v)     [*311-73] 

*311-74.     I- :.  Infin  ax  :  X,/*  e  (7'©  .  v .  X,  /*  e  (7'©„  :D:X+j,yu,  =  X+pZ/.  =  ./i  =  v 

h.*3ir271.  DI-:X,ytie(?'©.X+3,/t  =  X+pj'.D,i/6a'©  (1) 

I- .  *311-73  .  Transp .  D  1- :  Hp  (1) .  D .  ~  (/i©v) .  ~  (j;@yu,)  (2) 

h.(l).(2).*310-l.  Dh:Hp(l).D./*  =  i/  (3) 

Similarly  I"  :X,/ieC"©„.X+pyii  =  X+pV .  D  ./i  =  v  (4) 

h  .  (3) .  (4) .  D  h .  Prop 

*311'75.     I- :.  Infin  ax .  concord  (X,  )it) .  D  :  X  +p  /i  =  X  4-^  i; .  =  .  yu,  =  v 
[*311-74-43] 


*312.     ALGEBRAIC  ADDITION  OF  EEAL  NUMBERS. 

Summary  o/"  *3]2. 

In  this  number  we  extend  the  definition  of  addition  so  as  to  apply  to  real 
numbers  of  opposite  sign.  As  in  *308,  this  requires  a  previous  definition  of 
subtraction.  We  define  subtraction  as  follows :  If  there  is  a  \  such  that 
v+p\  =  fi,  then  /i  — J,  V  is  \ ;  if  there  is  a  X  such  that  /i  +p X  =  v,  then  /i—pvis 
I  Cnv"\,  i.e.  the  negative  of  X,;  in  any  other  case,  /i— pV  =  A.  The  formal 
definition  is : 

*31201.     ii-pV  =  X{{'g\)i\iJL,veG'®gi 

V  +p\  =  fi .  X  e\  .V  .  fi  +pX  =  v  .  X  6\  Cnv"X}     Df 

Hence  assuming  the  axiom  of  infinity  we  have 

v{@\J  ©„)./* .  3  ■  M -J, I-  =  (J^) {v+pX  =  ii)    (*31218), 
/i  (@  w  @„)  i; .  D  .  /t  -p  i;  =  (7\)  (ji  +p  I  Cnv"\  =  v)     (*312-181), 
\6G'eg.D.\-p\  =  i'05    (*312191). 

The  algebraic  sum  of  /*  and  v  is  defined  as  /i+pv  if  /t  and  v  are  of  the 
same  sign,  and  as  yn  — p  |  Cnv"j;  if  /*  and  v  are  of  opposite  signs ;  i.e.  we  put 

*31202.    ii+aV  =  {ii.+pv)yj{fi-p\C'D.v"v)    Df 

This  definition  is  justified  because  either  /i+pv  or  fi—p\Cnw"v  must 
always  be  A.     Thus  we  have 

*31232.     I- :  concord (ji,v).'D  .  fi+aV  =  /i+pV 

^12'33.     f- :  ~  concord  (/*,  z/) .  D .  /*  +„  i*  =  /*  -p  |  Onv"i> 

The  propositions  proved  are  analogous  to  those  of  previous  numbers,  and 
offer  no  difficulty. 


*31201.    fj.-pV  =  X{(<3X):X,ti,veC'®g: 

p+p'K  =  /i.X  eX.v  ./i+pX  =  v.X  e\  Cnv"\}     Df 

*31202.    /i+aV  =  (jji+pv)\j(jjL-p\Cnv"v)    Df 


328  QUANTITY  [part  VI 

*3121.       }-:.Xe/i-pV.=  : fi,v6G'®g:(^X)  :XeC'@g: 

v+p\  =  /jL.Xe\.v.ii+p\  =  v.Xe\Cnv"X     [(*311-01)] 

*312-11.     h  : ^ concord (fi,v).0.fi-pv  =  A    [*311-l-27-42-43] 

*31212.     h  :  Infin  ax  .  v®fi .  D  . 

fi-pV  =  X {(a\) . \ 6 G'@ .v+pX  =  iJ,.Xe\}  =  (?\)  {v+p\  =  /i) 
Dem. 
I- .  *3111-65  .      Dh:Hp.D.~(a\)./i+j,X.  =  v  (1) 

h.(l).*312-l.    0\-:Bp.D.fi-pV  =  X{(<3\).\eG'&.v+p\  =  fi.Xe\}   (2) 
I- .  (2) .  *311-74 .  D  h  .  Prop 
*31213.     h  :  Infin  ax .  fi@v .  D  . 

fi-pv  =  X {{'s\) .XeC'®  . ii+p\  =  v . X e\Gny"\] 
=  I  Cqv"(7\) (fji,+p\  =  v)    [Proof  as  in  *312-12] 

*31214.     f- :  Infin  ax  .  i;@„/t .  D  . 

fi-pV  =  X  {(gX) .  \  6  0'@n  .v+pX=fi.XeX} 

=  (;\)  (v  +p  \  =  /*)  [Proof  as  in  *312-12] 

*31215.     I- :  Infin  ax  .  fjL®„v  .  D  . 

fi-pv  =  l {(a\) . X 6 G'@n ./i+pX  =  v.Xe\  Cnv"\} 
=  I  Cnv"(7\) {fi+pX  =  v)   [Proof  as  in  *312-12] 

*31216.     V-.fie  G'@g .  D  .  fl-p  i'Og  =  fi  [*312-1 .  *311-43] 

*31217.     h  :  /i  e  G'@g .  3  . 1'O,  -p  /^  =  |  Cnv'V     [*312-1  .  *311-43] 

*312-18.     \-:IntiTia.x.v(&K)@n)fj,.D.fi-pV  =  (iX)(v+pX  =  fi)   [*31212-14] 

*312181.  h  :  Infin  ax  .  /i  (@  c;  0„)  i;  -  D  .  /i  -p  j^  =  |  Onv"(jX)  (yu,  +p  X  =  v) 

=  (iX)(fi+p\Gnv"X==v)     [*312-13-15] 

«312'19.     h  :  Infin  ax  .  concord  (X,  /j,) .  0  .  (X  +p  /i)  —pX  =  fi 
[*31218 .  *311-65-6G-43] 

*312191.  h  :  Infin  ax  .  X  e  G'@g .  3  .  X  -j,  X  =  t'O,     [*311-52-53-43] 
*312-2.       I- .  I  Cnv"(^  -pv)  =  \  Cnv'V  ~p  \  Cm"v 

Dem. 
h  .  *312-1  .  *31016  .  D 
H  :.  X  e  I  Cnv'V  -p  I  Cnv"i;  .=  :/*,  v  e  G'@g  : 

(gX) :  X  6  O'0j :  |  Cnv"j;  +p  X  =  |  Cnv'V  .XeX.v. 

I  Cnv'V  +pX  =  \  Cnv"i/ .  Z  e  I  Cnv"X : 
[*311-32]  =  :iJL,ve  G'@g :  (gX) :  X  e  0'®g : 

V  +p I Cnv"X  =/t.ZeX.v./i+p| Cnv"X  =v.Xe\  Cnv"X : 
[*312-1.*310-16]  =:Xe\  Cnv"(ji  -pv):.Oh.  Prop 

*312-201.  i-.fi-p\ Cnv"!/  =  j Cnv"(| Cnv'V -p v)    [*312-2] 


SECTION  a]  algebraic  ADDITION  OF  REAL  NUMBERS  329 

*31221.     h  .  I  Cav"(i;  -p,j,)  =  fi-pv 

Bern.  • 

h  .  *312-1 .  D  h  ::  X  6  I  Cnv"(i;  -,, /*)  .  =  :.  (gF) :.  /a,  i;  e  G'@g :. 

(a\):\6C"@g:/i+p\  =  i'.  Fe\.Z=  F|Cnv.  V. 

v+pX  =  ii.  Fe|Cnv"X.Z=  F|Cnv:. 
[*31016]  =  \.ii.,ve G'®g :.  (gX)  : \ e G'®g  :/ji,+p\  =  v  .X e\  Cnv"\  .  v  . 

V  +p'K  =  /I.  X  eX:, 
[*312-1]    =:.Z6/i-yv::Dh.Prop 

*312-211.  y.fi-p\  Cnv'S  =  v-p\  Cnv'V    [*3i2-201-21] 

*312-22.     I- :  Infin  ax  .  v  (6  o  @„)  /t .  D  .  /*  -,  i;  e  G'@ 
JDem. 
h  .  *311-65  .  *312-12  .  D  h  :  Hp  .  v@ii  .D  . /M-pV  eC®  (1) 

h  .  *311-66  .  *312-15  .  D  h  :  Hp  .  /i@nv  .  D  .  |  Cnv"(ji  -p  v)  e  G'@„  . 
[*310-16]  ^.fji-pveG'@  (2) 

h  .  (1)  .  (2)  .  D  h  .  Prop 

*312-23.  h:  Infin  ax. /i(@w@„)i».D./i-pi;e(7'@„  [*312-21-22  .  *31016] 

*312-3.  [■.fi+aV  =  {fJL+pv)^j{/i-p\Cnv"v)  [(*312-02)] 

*312-31.  h  :  ~  (/*,  1/  e  G'@g)  .  3  .  ^  +,.  v  =  A  [*312-3-ll .  *311-1] 

*312-32.  h  :  concord  (/i,  j;)  .  D  . /i +a  v  =  At  4p  v  [*312-311  .*31115] 

*312-33.  h  :  ~ concord (fi,v).D.  fi+aV=fi-p\  Cnv"j;  [*312-3  . *311-1] 

*312-34.  h  :  Infin  ax  .  ^,  v  e  G'@g .  D  .  /*  +„ !»  e  (7'©j 
[*312-32-33-22-23 .  *311-44] 

*312-41.       i-.fl+aV  =  V+afJ- 

Dem. 
h  .  *312-32  .  *311-12  .  D  h  :  concord  (/*,  r) .  D .  /*  +„  v  =  j»  +<,  /*  (1) 

I- .  *312-33-21 .  D  h  :  ~  concord  (/*,  v) .  D .  /*  +„  v  =  |  Cnv"(|  Cnv'"i;  -p  fi) 

[*312-201]  =v-p\Cn\"fL 

[*312-33]  =v+aH-  (2) 

h  .  (1)  .  (2) .  D  h  .  Prop 

«312'42.     I- :  Infin  ax .  concord  (\,  /*,  v) .  D  .  (\  +p  fi)  —p  (\  +pv)  =  fi—pv 
Bern. 

I- .  *31127-42-43  .  D  I- :.  Hp .  D  :  concord  (\  +j,  fi,  X  +p  v,  X,  fi,  v)  : 
[*311'75]  D  •.X-\-pp  =  ii.  =  .(X+pp)+pV  =  ii+pV. 

[*311-12-121]  =.{X+pv)+pp  =  ii+pV       (1) 

Similarly  I- :.Hp  .  3  :/*+pP  =  X.  =  .(/*+pi')+pjO  =  \+yi'       (2) 

h  .  (1)  .  (2)  .  *312-1  .  D  h  .  Prop 


330  QUANTITY  [part  VI 

*312-43.     I- :  Infin  ax  .  concord  (\,  /i,  v)  .  v  (@  c;  0„)  /i  .  D  . 

(\  +pfi)—pV  =  X  +p  {fi  -p  v) 
Dem. 

V  .  *311-65-66  .  D  h  :  Hp  .  D  .  (g^o)  .  p  e  G'@g  .fi=^v+pp. 
[*312-12-13-19]  D .  (a/j) .  p  e  C'&g  .(\+pfi)-pV  =  \+pp. /ji,-pV  =  p::>[- .  Prop 

«312-44.     h  :  Infin  ax  .  concord  (\,  /i,  v)  .  /i  (@  va  ®„)  k  .  D  . 

(X,  +J,  /t)  -p  V  =  \  -p  (v  -p  jx) 
Dem. 

V  .  *311-65-66  .  D  h  :  Hp  .  D  .  (gp)  .  p  e  0'@g  .v=fi+pp. 
[*312-42-19]  D .  (ap)  .  peC'@g . {X+pfj,)-pV  =  X-pp. p  =  v-pfi:  D  h  . Prop 

ii^312'45.     h  :  Infin  ax .  concord  (X,  fi) .  0  .  (\ +p  p.) —p  fi  =  X +p  {p,  —p  p) 

Dem. 
h .  *31219  .  *311-43  .  D  h  :  Hp .  D  .  /*  -^  /i  =  i% . 
[*311-43]  '^.X+p(ji-pp)-=X 

[*31 219]  ={X+pp)-pp.:'^V  . Prop 

«312  451.  I- :  Infin  ax  .  concord  (\,  p,,v).0  . 

(X  +p  p)-pv  =  (X  +0,  p)  +« I  Onv"j^  =  X.  +«()".  +a  I  Cnv"!;) 
Dem. 

V  .  *312'43  .  D  h  :  Hp .  i;  (@  c*  @„)  /i .  D .  (X  +p/i)  -J,  V  =  \  +i,  (/t  -jp  I') 
[*312-33]  =\+p(/t+„|Cnv"j/) 
[*312-32-12-14]  =\+„(/^+„!Cnv"i;)    (1) 

V  . *312-44 .  3  h  :  Hp .  /It (@  w  @„) v  ."^  .{X+pp)-pV  =  X-p{y-p p) 
[*312-21]  =X-p\Cn^"{tL-pv) 
[*312-33-12-14]  =X.+a(/i-j,i') 
[*312-33]                                                                   =  \ +„(/.+„  I  Cnv"i^)    (2) 
h  .  *312-45  .  D  I- :  Hp .  /i  =  K  .  D  .  (\  +p  /It)  -p  J/  =  \  +p  (/I,  -^  I/) 

[*312-33-32]  =  X  +e  (/*+<,  I  Cnv"j;)  (3) 

h  .  (1)  .  (2)  .  (3)  .  *312'32 .  *311-43 .  D  h  .  Prop 

«312'46.     h  :  Infin  ax  .  concord  (\,  /it)  .  3  .  (\  +„  /t)  +„  v  =  \  +»  (/tt  +a  v) 
Dem. 

V  .  *312-32  .  *311-65-66-43  .  D  I- :  Hp  .  concord  (\,  /it,  v)  .  D  . 

0^-\-alj)+aV  =  {X->rpp)+pV.X+a{p-+aV)  =  X-¥p(,p.+pV)  (1) 

h  .  *31 2-451  .  3 

h  :  Hp  .  concord  (\,  p.,  \  Cnv"j;)  .  3  .  (\  +„  /a)  +»  k  =  X  +»  (/t  +<,  v)  (2) 

h.*312-31.3l-:i;~eC"@j.3.(\+a/t)+„i'  =  A.\+„(/t+<,i')  =  A  (3) 

f- .  (1)  .  (2)  .  (3)  .  *311-121  .31".  Prop 


SECTION  A]  ALGEBRAIC  ADDITION  OF  REAL  NUMBERS  331 

*312461.  h  :  Infin  ax  .  concord  (ytt,  v)  .  0  .  (X  +„ /J-)  +av  =  \  +a (/*  +a v) 
Dem.  • 

V  .  *312-46  .  D  h  :  Hp  .  D  .  (i;  +a  /i)  +a  \  =  V  +„  (/*  +«  \)  (1) 

1- .  (1)  .  *312-41 .  D  h  .  Prop 

*312'47.     h  :  Infin  ax  .  concord  (\,  v)  .  3  .  (X,  +„  /i)  +0 1*  =  X  +» (/*  +« J') 
i)em. 
h  .  *312-461  .  D  h  :  Hp  .  D  .  (/i  +„  X)  +„  V  =  /i  +«  (X  +„  i^)  . 

[*312-41]  D.  (X +„/*)+„  J/ =  /i+<,(X+„i') 

[*312-41]  =(X+a  »')+«/* 

[*312-46]  =  X  H-a  (i^  +„  11) 

[*312-41]  =X+<,(M+„i;):Dh.Prop 

*312-48.     I- :  Infin  ax  .  D  .  (X  +„  /*)  +„  i;  =  X  +„  (^  +„  v) 

Bern. 
I-.*812-31.D 

f-:~{X,/i,j/6O'0g}.D.(X+„/i)+«i'=A.X+„(/i+„j»)  =  A  (1) 

V .  *31012  .  D  h  :.  X,  /i,  V  e  (?'@g .  3  :  concord  (X,  /i) .  v .  concord  (X,  v) : 
[*312-46-47]  :>:(X+aiJ.)+aV  =  \+a(H-+av)  (2) 

h  .  (1) .  (2)  .  D  h  .  Prop 

*312-51.     l-:XeC"@g.D.X+„t'05  =  X     [*312-32 .  *311-43] 

*312-52.     l-:Infinax.X6(7'@3.D.X+„|Onv"X=i'0j 
Dem. 

h  .  *312-33  .  D  h  :  Hp  .  D  .  X  +„  I  Cnv"X  =  X,  -p  X 
[*312-191]  =  I'Og  :  D  h  .  Prop 

*312-53.     H  :.  Infin  ax .  X,  /t,  j;  e  C'@g  .D  :'\+afi  =  v  .=  .\  =  v+a\  Cnv"/* 
[*312-48-51-52] 

*312-54.     h  :  Infin  ax  .  X,  /i  e  (7'©j .  D  .  (go-)  .  o-  e  C"®g .  X  +„  o-  =  /i 
Dem. 

I- .  *312-48-51-52  .  D  h  :  Hp  .  3  .  X  +„  (|  Cnv"X  +<,  yu.)  =  /*  (1) 

I- .  *312-34  .  D  1- :  Hp  .  3  . 1  Cnv"X  +„  /i  e  G'®g  (2) 

h  .  (1)  .  (2)  .  D  1- .  Prop 

*312'55.     h  :■  Infin  ax  .  X,  /i,  v  e  G'®g  .D:X+a/i  =  X+ai'.s./i  =  i» 
Z)em. 

I- .  *312-41-63 .  D  f- :.  Hp  .  D  :  X+a/t  =  X+oJ' .  =  .  A'  =  (X+a  v)+a  I  Cnv"X . 
[*312-41-48]  =  .  yll  =  v  +a  (X  +a  I  Cnv"X) . 

[*312'51-52]  =./i  =  v:.Dh.Prop 


332  QUANTITY  [part  VI 

«312-56.     I- :.  Infia  ax ,  concord  (\,  /*) .  3  :  A,@j/i .  =  .  (go-) .  a  e  C'@  .  \  +„  o-  =  /i 

Dem. 
I-.*311-65.*312-32.D 

I- : .  Hp .  \,  /i  e  Ce .  D  :  \@g/t .  =  .  (g^) .  o-  e  G'@  .  \  +„  o-  =  /*  (1) 

h.*3ir66.*310-16.D 

I- :.  Hp .  \, /t  e  a'e„ .  D  :  \@g/i  .  = .  (go-) .  o- e  C"@  . /i +J,  I  Cav"o- =  \ . 
[*312o3-32]  = .  (ao-) .  o-  e  Ce .  \  +„  o-  =  /*  (2) 

h.*312-51.  DI-:.Hp.\  =  i'Og.D:\@g/i.=.(ao-).a-e(7'0.\+aO-  =  /i  (3) 
h  , *312-53ol .  D  h  :. Hp . /4  =  t'Og .  D  : \®g/i .  =  .(aff).o- e (7'@ .\  +„ o"  =  /i  (4) 
h  .  (1) .  (2) .  (3) .  (4) .  D  I- .  Prop 

*312'57.     I- :.  Infin  ax  .  \,  /*  e  G'®g .  ~  concord  (\,  /*)  ■  3  : 

\0g/i .  =  .  (ao-) .  ff  6  0'@  .  \  +a  o-  =  /i 
Dem. 
h.*312-48-51-52.        3  h  :\6C"®„. /ieO'®  .  D  ./t  =  \+a(|Ciiv"A,+a/t)     (1) 
I- .  *312-32  .  *311-27  .  D  h  :  Hp  (1) .  D  .  (|  Cnv"\+o/i)  e  C'@  (2) 

t-.(l).(2).  3h:\eO'e„./i6(7'©.D.(a<7).<reC"6.\+„ff  =  /i,     (3) 

h .  *312-32  .  *311-27  .  *31013  .  D 

h:XeC'@.yit6C'®„.D.~(aff).o-eC'@.\+aff  =  ^  (4) 

h.(3).(4).D 
h  : . Hp .  D  :  \ e a'@„ .fi6G'@.  =  . (go-) .  o- e 0'©  .  \  +« ff  =  /t :.  D  h  .  Prop 

*312-58.     h  : .  Infin  ax .  \,  /a  e  C'@g .  3  : 

\ej/t .  =  .  (a<7) .  ff  6  0'@  .  \  +a  ff  =  /*     [*312-56o7] 


*313.     MULTIPLICATION  OF  REAL  NUMBERS. 

Summary  of  *313. 

Multiplication  of  real  numbers  is  simpler  than  addition,  because  it  is  not 
necessary  to  distinguish  between  factors  of  the  same  sign  and  factors  of 
opposite  sigtis.     Thus  we  put 

*313-01.     fjiXaV  =  X{fi,veG'@g.Xes'iJ.Xg"v}     Df 

Thus  if  /J,,  V  are  real  numbers,  their  product  is  the  class  of  products  (in 
the  sense  of  *309)  of  members  of  /i  and  members  of  v ;  otherwise  their  product 
is  A.  The  propositions  of  this  number  are  analogous  to  those  of  previous 
numbers,  and  the  proofs  are  as  a  rule  analogous  to  those  of  *311,  except  in 
the  case  of  the  distributive  law  (*313'55). 


*31301.  ^LXaV-=X{^Ji,veG'®g.Xes'^■>^g"v}     Df 

Proofs  in  this  number  are  mostly  analogous  to  those  for  addition,  and  are 

therefore  often  omitted. 

*31311.  l-:~(/i,i;6C7'©j).D./iX„i;  =  A 

*31312.  V:u.,ve  G'®g  .:i  ./iXaV  =  s'u,  Xg"v 

*313-21.  \-:fi,ve  G'&  w  I'l'Og .  D  .  /i  x^  v  =  s'/i  x,"v 

*313-22.  \-:/ji,ve  0'@„  w  I'l'Og  .  3  .  /i  x,,  /;  =  s'(\  Cnv"/i,)  x,"(|  Cnv"i;) 

*313-23.  hzfjie  (7'@„  .  i;  e  C"@ .  D  .  /*  x„  i;  =  I  Cnv"s'(|  Cnv'V)  x,"v 

*313-24.  \-:fjieG'@.ve  (7'@„ .  D .  /i  x„  k  =  |  Cnv"s'(/t  x,)"|  Cdv"i» 

*313-25.  h.fjiXaV  =  \  Cnv"(|  Cnv' V  x„  i/)  =  |  Onv' >  x„  |  Cnv"i» 

*313-26.  I- .  /t  x„  I  Cnv"i;  =  |  Cnv"/t  x„  v  =  |  Cnv"(fi  x^  v) 

*313  31.  h  :  Infin  ax  .  ^  e  O'0 .  Z  e  G'H  .:i.X  x/'f  C  H"X  x/'^ 

*313-32.  V  :  Infin  a.s.^eG'@.Xe  G'H .  D .  Z  x/'f  =  H"X  x /'f 

*313-33.  h  :  Infin  ax  .  f  e  0'© .  Z  e  G'H .  3  .  Z  x/'f  e  G'@ 

*313-34.  [- :  Infin  ax .  f  e  (7'0„ .  Z  e  G'Hn  ■  3  •  Z  x/'f  e  (7'® 


334  QUANTITY  [part  VI 

*313-35.  h  :  Infin ax  .  f  e  (7'@  . X e C'Hn  -O.X  x/'f  e G'@n 

*313-351.  F  :  Infin  ax  .  ?  e  C"©„ .  X  e  G'H .  D .  Z  x/'f  e  C"®„ 

*313-36.  h:^e  C'@g  .  D  .  Oj  x/'f  =  t'Oj 

*313-37.  h-.Xe  C'Hg  ."^.X  x/'t'O,  =  i% 

*313-38.  I- :  Infin  ax  .  f  e  G'®g .  X  e  C'Hg .  D  .  Z  x/'f  e  C'@g 

*313-41.  h  :  Infin  ax  .  concord  (fi,  v) .  /x  =|=  I'Oj .  v  =|=  I'O, .  D  .  /i  x^  i»  e  (7'@ 

*313'42.  h  :  Infin  ax .  ~  concord  (/m,  v).  n,ve  0'@g  .D  .  /juXave  (7'@„ 

*313-43.  t-:./i=f'Og.v  .v  =  i%:/ji.,veG'@g:  :>  . /iXaV  =  L'Oq 

*313-44.  h  :  Infin  ax .  yit,  v  e  G'®g  .D.fiXave  G'@g 

3l^313'45.       \-  .  (lXaV  =  VXa/l 

«313'46.     1- :  Infin  ax .  D  .  (\  x,,  /i)  x^  v  =  X  x,,  (^  x^  j;) 

The  following  propositions  are  concerned  with  the  proof  of  the  distributive 
law. 

«313'51.     f- :  Infin  ax  .  concord  (X,  /*,  v) .  D  .  (j>  x^  \)  +„  (v  x^  ft)  = 

^[(gX,  Y, Z, Z').XeX.  Ye  /j, .  Z.Z'  €v.M=(Z XgX)+g(Z'  Xg  7)] 

[*313-12 .  *312-32  .  *311-11 .  *313-41] 

*313-511.  h  I  Infin  ax  .\,fj.eG'@.  Z,  Z' €  fi.  ZHZ'  .X  e\.0  .Z  XgZ'  XgX  eX 
Bern. 

h  .  *304-l-401 .  *305-14  .  D  h  :  Hp .  D .  (2  x^  X)  if  (2^'  Xg  X) . 

[*309-41]  :i.{ZxgZ'XgX)HX. 

[*311-68]  D.ZXgl'XjXeXiDh.Prop 

*313-52.     I- :  Infin  ax  .  concord  (\,  /t,  i;) .  D  .  (v  x^  \)  +»  {v  Xaiji)  =  v  Xa  (A,  +„  ti) 

Bern. 
l-.*313-61-511.Dl-:Hp.D. 
{vXa\)+a(vXaM-)  =  ^[i^^,Y,Z).Xe\.Yefi.Zev.M={ZxgX)+g(ZxgY)] 

[*309-37]  =M[('3_X,Y,Z).Xe\.Ye/j-.Zev.M=Zxg(X+gY)] 

[*31312.*3i2-32.*311-ll]  =  v  x„(\  +„  /i) :  D  h  .  Prop 

3K313 53.     h  : Infin  ax  . concord (\, /i) . ~ concord (X,, v).ve G'®g .  D . 

(v  XaX)  +a(v  Xa  iJl)  =  V  XaiX+a/i) 

Bern. 
I- .  *313-25  .  D  I- .  (\  +a  m)  x„  1/  =  I  Cnv"{(\  +afi)  x„,  \  Cnv"i/}  (1) 

h  .  *313'52  .  D  h  :  Hp . 3.  (\+„  fi)  x^  \  Cnv"i;=(\  x„  |  Cnv"i;)  +^{^  x„ |  Cnv^'i;) 
[*313-26.*311-31]  =Cnv"{(\x„i;)+„(/iX„i')}     (2) 

t- .  (1) .  (2)  .  D  h  .  Prop 


SECTION  a]  multiplication  OF  KEAL  NUMBERS  335 

3N313'54:.     I- :  Infin  ax  .  concord  (\,  v)  .  ~  concord  (\,  /i)  •  /ms  G'@g .  D . 

Bern. 
h  .  *312'33'34  .  D  h  :.  Hp  .  \  +„  /tt  =  p .  D :  concord  (\,  p)  .v .  concord  (/i,  p)    (1) 
h  .  *313-52  .      3  h  :  Hp  (1) .  concord  (\,  p)  .  D  . 

(pXav)  +a (I  Cnv"/i  x„ I/)  =  (p  +o  I  Cnv"/i)  X.. " 
[*312-53]  =  X,  x»  v  . 

[*312-53.*313-26]  D  .  p  x»  i/  =  (X  x„  i^)  +„  (/*  x„  v)  (2) 

Similarly     h  :  Hp  (1) .  concord  (/i,  p) .  D  .  p  x^  v  =  (X  Xo  v)  +„  (/*  Xg,  v)  (3) 

h  .  (1) .  (2) .  (3) .  D  I- .  Prop 

«313'55.     t- :  Infin  ax .  D .  (v  Xa  \)  +»  (v  x,,  /*)  =  v  x^  (\  +»  /*) 
[*313-52-53-54-ll  .*312-31] 


*314.     EEAL  NUMBERS  AS  RELATIONS. 

Summary  of  *314. 

In  this  number  we  take  up  the  definition  of  real  numbers  suggested  in 
*310,  namely  s"G'®g  instead  of  G'@g.  The  series  of  real  numbers  is  now 
s>®g  instead  of  ®g.     Everything  in  this  number  depends  upon 

*310-32.     I-  ■../ji.,veG'@g.'D:s'/j.  =  s'v.  =  .fJi  =  v 

In  consequence  of  this  proposition,  s  [  G'®g  is  a  correlation  of  the  two 
sorts  of  real  numbers,  and  the  properties  of  the  relational  sort  can  be 
immediately  deduced  from  the  propositions  of  previous  numbers.  We  define 
addition  and  multiplication  of  relational  real  numbers  so  as  to  secure  that,  if 
/jL,  V  are  real  numbers  of  our  previous  sort,  the  arithmetical  sum  of  s'fi  and 
s'v  is  s'(/A  +o  v)  and  their  product  is  s'{fi  x^  v).     This  is  effected  by  putting 

*31401.     X+rY=RS[{'3_ti,v).X  =  s'^.Y=s'v.R{s\^+av)]8]    Df 

with  a  similar  definition  for  X  Xr  T.  The  zero  of  real  numbers  is  now 
Og  instead  of  I'Og,  and  the  negative  of  a  real  number  X  is  X  |  Cnv.  The 
fundamental  propositions  are 

*31413.     \-:/ji.,v€  G'@g .  D  .  s  V  +^  s'v  =  s'(/j,  +«  v) 

*31414.     \-:fi,ve  G'@g .  D  .  s V  x^  s'v  =  s'(/jl  x^  v) 

in  virtue  of  which  the  arithmetical  properties  of  relational  real  numbers 
follow  at  once  from  those  of  real  numbers  as  segments. 

Relational  real  numbers  are  useful  in  applying  measurement  by  means  of 
real  numbers  to  vector-families,  since  it  is  convenient  to  have  real  numbers 
of  the  same  type  as  ratios. 

For  some  purposes,  a  somewhat  different  definition  of  real  numbers  as 
relations  is  more  convenient.  Instead  of  deriving  our  relations  from  ®g,  we 
may  derive  them  from  ^'Hg,  i.e.  we  may  consider  the  relations  s"G'%'Hg 
instead  of  the  relations  s"G'@g.  In  virtue  of  *217-43,  {%'Hg)  I  (-  I'A-i'G'Hg) 
is  ordinally  similar  to  ®g;  hence  the  requisite  properties  of  s"G'%'Hg  follow 
at  once. 


SECTION  a]  real  NUMBERS  AS  RELATIONS  337 

*31401.    X+rY=R8 [(aAM/) .X  =  s'fi.Y=s'v.R {s'(,i  +« v)}  S]     Df 

*314-02.    XXrY  =  R^[('a,fi,v).X  =  s'tJ..Y=s'v.R{s'(fix^v)}S]      Df 

*31403.     J'  =  (^„)e I  (C'Hn -)  r  {^'(Sn)e - t'A -  i'G'H„} 

Kj  (G'H„)  i  (1%)  a  (G'H„  u)  1^  (D'ffe  -  t'A  -  I'G'H)     Df 

*31404.     M+„N=RS[(^,v).M=s'^'fi.N=s'^'v.R{s'J"(^i+av)}S]     Df 

*31405.  Mx,N=RS[{'^,v).M=s'^'fjL.N=s'^'v.R{s'^'(fiXav)}S]     Df 

*3141.  h:a!Z+,F.D.X,Fes"(7'eg  [*312-31 .  (*314-01)] 

*31411.  t-:.Iafinax.D:a[!X+,F.=.X,Fes"0'@3    [*314-1 . *312-34] 

*31412.  h  :.  Infin  ax  .  D  :  g  !  Z  x,  F.  = . X,  Fe  s"(7'e, 

*31413.     \-  :  fiyve  C'@g .  D  .  s'/i  +,  s'v  =  s'(/i  +„  v) 
i)em. 
h  .  *314-1 .  (*314-01)  .31-:^  {S'/m  +r s'v} S.  =  . 

(a/3,  a).p,tTe  G'@g .  s'/i  =  s'p  .  s'v  =  s'a.R  [s'{p  +a  <t)\  8     (1) 
h  .  (1) .  *310-32  .  D  h  -  Prop 

*31414.     \-:iJi.,v6  G'@g  .O.s'/i  x,  s'v  =  s'(ji  Xa  v) 

*314-2.       h:i2  6s"(Cf'@j-t't'0,).D.a[!ii^Relnum     [*310-31] 

*314-21.     h  :.  Infin  ax  .  D  :  i2,  /Sf  e  s"Cf'ej .  =  .  i2  +,  >Sf  6  s"G'®g . 

=  .i2x,S€5"0'@3 

Dem. 

V .  *314-13-14 .  *312-34 .  *313-44  .  3 

I- :  Hp .  iJ,  /Sf  e  s"G'®g  .D  .R+rS,R  XrSe  s"G'@g  (1) 

I- .  (1) .  *31411-12 .  D  I- .  Prop 

*314-22.     }-:Res"C'@g.'2.R+rO,  =  R.RXrOg  =  0, 
Bern. 

f-.*314-13-14.D 

V:  jjue  G'@g  .O.s'/jL  +, 0,  =  s'{fi  +» I'Og) . s'/i  x, 0,  =  s'((jl x„ I'O,) . 

[*312-51.*313-43]  D  .  s'/i  +^  Oj  =  s>  .  s'/*  Xr  0«  =  Og :  D  I- .  Prop 

*314-23.     h  :  Infin  ax .  i2  e  s"C'®g .  D  .  i?  +,  E  f  Cnv  =  0, 

h  .  *31413  .  D  I- :  /i  e  C"0g  .D.s'/i  +r  s'\  Gnv"fi  =  s'(ijl  +„  |  Cnv"/*)  . 
[*43-421]  D  .  s>  +,  (s V)  I  Cnv  =  s'(/t  +„  |  Cnv"/*) 

[*312-52]  =Og:Df-.Prop 

E.  <Siw.  Ill,  32 


338  QUANTITY  [part  VI 

*314-24.     \-.B+rS  =  8+rR    [*312-41 .  (*314-01)] 

*31425.     \-.RXrS  =  SxrR    [*313-45 . (*314-02)] 

*314-26.     I- :  Infin  ax  .  D  .  (E  +,  S)  +,.T  =  R  +,  (8  +,  T) 
Dem. 
h  .*314-13  .  D  h  :  Hp. /D,o-,T6  a'®g.  i?  =  s'p  .  ;Sf  =  s'<7  .  r  =  s'T .  D  . 

[*312-48]  =5'{p+»(o-+aT)} 

[*314-13]  =R+r{S+rT)  (1) 

h  .  *314-11-21 .  D 

h  :  ~  (a/3,  <7,  t)  .  /9,  cr,  T  6  0'@j .  i2  =  s'p  ■  ^  =  s'o- .  r  =  s't  .  D . 

{R+rS)+rT=k.R-\-r{S-<rrT)^k  (2) 

I- .  (1) .  (2) .  D  h  .  Prop 

*314-27.     f- :  Infin  ax  .  D  .  (i2  x,  ^)  x^  2'=  E  x^  (zSf  x^  T) 
[*31414 .  *313-46  .  *314-12-21] 

*314-28.     I-  :  Infin  ax  .  D  .  (i?  x^  (S)  +^  {R  XrT)  =  R  x,  (S  +,  T) 

Dem. 
h  .  *3141 3-14  .  D  h  :  Hp .  p,  (T  T  e  (7'©3 .  E  =  s'|0 . -Sf  =  s'o- .  r  =  s't  .  D  . 

{R  Xr  S)  +r  (R  Xr  T)  =  s'(p  X^  a)  +,.  s'{p  X„  t) 

[*314-21-13]  =  s'{{p  x„ a)  +a(p  x^ t)} 

[*313-55]  =^s'{px^(cr+^r)} 

[*314-21-14]  =  s'p  X,.  s'{a  +„  t) 

[*314-13]  =  s'p  x^  (s'a-  +r  s't) 

[Hp]  =RXriS-^rT)  (1) 

l-.*314-211112.D 

h  .  ~  (ap,  0-,  t)  .  p,  0-,  T  6  (7'@3 .  B  =  s'p  ■ -S  =  s'o- .  y  =  s't  .  D  . 

(i?x^>Sf)+^(i2x,.r)  =  A.i2x,(/S+^r)  =  A  (2) 

I- .  (1) .  (2) .  D  h  .  Prop 

*314-4.       h  :  Infin  ax  .  D  .  c/"  e  {{s'Hg)  ^  (-  t'A  -  I'G'Hg)]  sSor  0, 

[*217-43  . *304-31-282-23 . *307-41-44-46-25  . (*31001-011-0203)] 

*314'41.     f- .  s  [^  (G's'Hg)  6  1  ->  1     [The  proof  is  analogous  to  that  of  *310-32] 

*314  42.     h  :  Infin  ax  .  D  .  s^  '@g  smor  ©^     [*314-4'41] 

*314'5.       h  :.  Infin  ax .  D  : 

a  !  Jf+^iV.  =  .  a  !  il/  X,  iV .  =  .  M,N€s"(D'<;'Hg  -  t'A) 
[*312-34  . *313-44  .  *314-42  .  (*314-0405)] 

*314-51.     h  :  Infin  a,x.fi,ve  G'@g .  3  . 

[*314-42 .  (*314-04-05)] 

The  properties  oi  M+aN  and  M  x„N  result  from  this  proposition  exactly 
as  those  of  X+rY  and  X  x^  F  result  from  *31413-14. 


SECTION  B. 

VECTOR-FAMILIES. 

Summary  of  Section  B. 

The  present  Section  is  concerned  with  the  theory  of  magnitude,  so  far 
as  this  can  be  developed  without  measurement.  Measurement — i.e.  the 
application  of  ratios  and  real  numbers  to  magnitudes — will  be  dealt  with  in 
Section  C ;  for  the  present,  we  shall  confine  ourselves  to  those  properties  of 
magnitude  which  are  presupposed  in  measurement.  But  throughout  this 
Section,  measurement  is  the  goal :  the  hypotheses  introduced  and  the 
propositions  proved  will  be  such  as  are  relevant  to  the  possibility  of 
measurement. 

We  conceive  a  magnitude  as  a  vector,  i.e.  as  ap  operation,  i.e.  as  a 
descriptive  function  in  the  sense  of  *30.  Thus  for  example,  we  shall  so 
define  our  terms  that  1  gramme  would  not  be  a  magnitude,  but  the  difference 
between  2  grammes  and  1  gramme  would  be  a  magnitude,  i.e.  the  relation 
"  + 1  gramme  "  would  be  a  magnitude.  On  the  other  hand  a  centimetre 
and  a  second  will  both  be  magnitudes  according  to  our  definition,  because 
distances  in  space  and  time  are  vectors.  It  will  be  remembered  that  we 
defined  ratios  as  relations  between  relations ;  hence  if  ratios  are  to  hold 
between  magnitudes,  magnitudes  must  be  taken  as  relations. 

We  demand  of  a  vector  (1)  that  it  shall  be  a  one-one  relation,  (2)  that  it 
shall  be  capable  of  indefinite  repetition,  i.e.  that  if  the  vector  takes  us  from 
a  to  h,  there  shall  always  be  a  point  c  such  that  the  vector  takes  us  from 
h  to  c.  If  R  is  the  vector,  the  point  to  which  it  takes  us  from  a  is  R'a ; 
thus  the  above  requisite  is  expressed  by  "  E  !  R'a .  Do  ■  E  !  R'R'a,"  i.e.  by 
"  D'R  C  G.'R."  It  will  be  observed  that  the  points  which  are  starting-points 
of  the  vector  form  the  class  d'R,  i.e.  the  class  of  possible  arguments  to  R 
considered  as  a  descriptive  function,  while  the  points  which  are  the  end- 
points  of  the  vector  form  the  class  D'R,  i.e.  the  class  of  values  of  R  considered 
as  a  descriptive  function.  Since  D'R  C  d'R,  we  have  d'R  =  G'R ;  thus  the 
field  of  the  vector  consists  of  all  points  from  which  the  vector  can  start.     By 

22—2 


340  QUANTITY  [part  VI 

assuming  I>'R  C  d'R,  we  exclude  magnitudes  of  kinds  which  have  a  definite 
maximum,  unless  they  are  circular,  like  the  angles  at  a  point  or  the  distances 
on  an  elliptic  straight  line;  but,  except  when  they  are  circular,  such 
magnitudes  are  of  little  importance. 

According  to  what  has  just  been  said,  if  i?  is  a  vector  whose  field  is  a,  we 
have 

R€l-*l.a'R  =  a.J)'BCa. 

A  relation  which  fulfils  this  hypothesis  is  called  a  "  correspondence ''  of  a, 
because  it  makes  a  part  of  a  correspond  with  a.  The  class  of  correspondences 
of  a  we  denote  by"  cr'a,"  which  is  the  cardinal  correlative  of  "cror'P,"  defined 
in  *208.     Thus  we  put 

cr'a  =  (1  -♦  1)  n  a'a  n  D"Cl'a    Df. 

We  proceed  next  to  define  a  "  vector-family  of  a."  This  we  define  as  an 
existent  sub-class  of  cr'a  such  that,  if  R  and  S  are  any  two  members  of  it, 
i?  I  *S  =  ^  I  jB.  We  define  a  class  of  relations  as  "  Abelian  "  when  the  relative 
product  of  any  two  members  of  the  class  is  commutative,  i.e.  we  put 

Ahel  =  ii(R,8eH:.Dji,s-Ii\S=8\R)    Df 

Thus  a  vector-family  of  a  is  an  existent  Abelian  sub-class  of  cr'a,  i.e.  writing 
"  fm'a  "  for  "  vector-family  of  a,"  we  put 

fm'a  =  AbelnClex'cr'a    Df. 

The  class  of  vector- families  is  then  defined  as  everything  which  is  a  vector- 
family  of  some  a,  i.e.  we  put 

FM  =  s'D'{m    Df. 

Thus  a  vector-family  is  an  existent  Abelian  class  of  one-one  relations 
which  all  have  the  same  converse  domain,  and  all  have  their  domains 
contained  in  this  common  converse  domain.     If  k  is  a  vector-family,  the 

common  converse  domain  is  i'Q."k,  which  is  identical  with  s'CE"*,  and  will 
be  called  the  "  field  "  of  the  family.     Thus  we  have 

l-ZKeFM  .  =  .H:e  Abel .  «  C  1  ->  1  .  a"«  e  1 .  s'D"«  C  s'a'U. 

A  vector-family  may  be  regarded  as  a  kind  of  magnitude,  In  order  to 
render  measurement  possible,  we  require  various  hypotheses  as  to  the  nature 
of  the  family.  Measurement  within  a  given  family  ic  is  obtained  by  limiting 
the  fields  of  ratios  to  k,  i.e.  by  considering  X^.  k  where  X  is  a  ratio,  or  ^  ^  « 
where  Z  is  a,  relational  real  number  of  the  kind  defined  in  *314.  In  order 
to  make  measurement  possible,  we  wish  k  to  be  such  that,  if  X  is  a  ratio, 
X  P  K  shall  be  one-one ;  again,  if  R,  8,  T  are  members  of  k,  and  R  has  the 
ratio  X  to  8,  while  8  has  the  ratio  Y  to  T,  we  wish  R  to  have  the  ratio 
X  Xg  F  to  T,  i.e.  we  wish  to  have 

ZpK|Fp«e(Zx,r)t«; 


SECTION  b]  vector-families  341 

again,  if  R  has  the  ratio  X  to  T,  and  8  has  the  ratio  Y  to  T,  we  wish  R  \  8 
(which  represents  the  "  sum  of  R  and  8)  to  have  the  ratio  Z"  +  s  F  to  T, 
i.e.  we  wish  to  have 

(Z  ^  «'T)  1(7^  «'T)  G  (Z+,  7)  P  «'y. 

The  above  and  other  similar  properties  will  be  proved,  with  suitable 
hypotheses,  in  Section  C ;  for  the  present,  we  shall  proceed  with  the  theory 
of  vector-families  without  explicit  regard  to  measurement. 

The  first  and  most  important  hypothesis  as  to  a  family  which  we  consider 
is  the  hypothesis  that  it  is  "  connected,"  i.e.  that  there  is  at  least  one  member 
of  its  field  from  which  we  can  reach  any  member  of  the  field  by  a  vector 
belonging  to  the  family  or  by  the  converse  of  a  vector  belonging  to  the 
family.  Such  a  member  of  the  field  of  k  we  shall  call  a  "  connected  point " 
of  K ;  the  class  of  such  points  will  be  denoted  by  "  conx'/t "  ;  the  definition  is 

->         <— 

conx'/c  =  s'<1"k  r\  6,  (s'x'a  w  s'k'u  =  s'Q."k)    Df. 

It  will  be  observed  that  s'k'u  are  the  points  to  which  there  is  a  vector  from 

<— 
a,  while  s'k'u  are  the  points  from  which  there  is  a  vector  to  a.    The  definition 

states  that  these  two  classes  together  make  up  the  whole  field  of  the  family. 

We  define  a  connected  family  as  one  which  has  at  least  one  connected  point, 

i.e.  we  put 

FM  conx  =  ^ilf  n  ;J  (a !  conx'/t)    Df. 

The  properties  of  connected  families  are  many  and  important.  Among  these 
may  be  mentioned  the  following:  If  «  is  a  connected  family,  the  logical 
product  of  any  two  different  members  of  « is  null,  i.e.  if  P,  Q  e  k  .  P  =^  Q,  then 
Pf\Q=  A,  or,  what  comes  to  the  same  thing,  if  P,  Q  e  k,  and  if  we  ever  have 
P'x  =  Q'x,  then  P  =  Q;  if  P  e  k,  all  the  powers  of  P  are  either  members  of  k 
or  the  converses  of  members ;  if  P,  Q  e  k,  then  P  |  Q  is  either  a  member  of 
K  or  the  converse  of  a  member.  A  connected  family  may  not  form  a  group, 
i.e.  we  do  not  necessarily  have 

P,Qe K.  Dp,Q.P|  QsK, 

but  we  shall  show  at  a  later  stage  (*354)  that  a  group  can  be  derived  from  a 
connected  family  «  by  merely  adding  to  it  the  converses  of  those  members  of 
K  (if  any)  whose  domains  are  equal  to  their  converse  domains.  The  result 
of  this  addition  is  to  give  us  a  connected  family  which  is  a  group. 

Another  important  property  of  a  connected  family  k  is  that  /  f"  s'<I"k  is 
always  a  member  of  it.  /  \  s'Q."k  is  the  zero  vector.  In  a  connected  family, 
every  vector  except  /  [  s'(1"k  is  contained  in  diversity.  For  many  purposes, 
the  class  of  vectors  excluding  I  [  s'Q."k  is  important.     We  therefore  put 

K3  =  «-R1'/    Df. 


342  QUANTITY  [part  VI 

la  the  study  of  a  vector-family  k,  an  important  derived  class  of  relations 
is  the  class  of  all  relations  of  the  form  B  |  S,  where  R,SeK.  The  operation 
-K I S  consists  of  an  /Sf-step  forward,  followed  by  an  i2-step  backward ;  that  is 
to  say,  if  R'S'a  exists,  it  is  obtained  by  moving  a  distance  8  forward  from  a 
to  S'a,  and  then  a  distance  R  backward  from  S'a  to  R'S'a.  The  class  of 
such  relations  as  i2 1  >S,  where  R,SeK,  we  call  «.;  i.e.  we  put 

K,  =  s'(Cnv"K)\"K    Df. 

The  class  k,  will  have  different  properties  according  to  the  nature  of  k.     We 
may  distinguish  three  cases  : 

(1)  The  field  of  k  may  have  a  first  term,  i.e.  there  may  be  a  member  of 
s'(I"k  which  is  not  a  member  of  s'D"«g.  This  case  is  illustrated,  e.g.  by  a 
family  of  distances  from  left  to  right  on  the  portion  of  a  given  line  not  lying 
to  the  left  of  a  given  point.  This  given  point  will  then  belong  to  s'Q."k, 
since  there  are  vectors  which  start  from  it,  but  it  will  not  belong  to  s'D"«g, 
since  there  are  no  vectors  which  end  at  it  except  the  zero  vector.  A 
connected  point  a  which  belongs  to  s'(J"k  but  not  to  s'D"/cg  is  called  the 
"initial"  point,  and  a  family  which  has  an  initial  point  is  called  an  "initial" 
family.     A  family  cannot  have  more  than  one  initial  point.     Thus  we  put 

init'/e  =  t'(conx'«  —  s*D"/«g)     Df, 

FM  init  =  FMn  Q'init  Df. 

(2)  It  may  happen  that,  even  if  k  is  not  an  initial  family,  none  of  the 
converses  of  members  of  «g  are  members  of  «.  (If  k  is  an  initial  family,  this 
must  happen.)  This  case  is  illustrated  by  the  case  of  all  distances  towards 
the  right  on  a  straight  line.  It  is  also  illustrated  by  the  family  of  vectors  of 
the  form  (+g  X)  ^  G'H,  where  X  e  G'H'.  In  this  case,  as  in  (1),  it  is  possible, 
by  adding  suitable  hypotheses,  to  secure  that  s'k^  shall  be  a  series.  This  case 
divides  into  two,  which  are  illustrated  by  the  above  two  instances :  it  may 
happen,  as  in  our  first  instance,  that  the  domain  of  a  vector  is  always  equal 
to  its  converse  domain,  i.e.  T>"k  =  (1"k  ;  or  it  may  happen,  as  in  our  second 
instance,  that  the  domain  is  only  part  of  the  converse  domain.  (The  domain 
of  (+s  X)  ^  G'H  consists  of  all  ratios  greater  than  X.) 

(3)  It  may  happen  that  «g  contains  pairs  of  vectors  which  are  each 
other's  converses.     In  this  case,  it  is  obvious  that  s'k^  cannot  be  serial,  since 

R,ReK^.'^,R\R  =  I\ s'0."k .R\R(£.  (s*«g)S  so  that  (s'K^f  is  not  contained 
in  diversity  (except  in  the  trivial  case  k  =  I'A). 

In  considering  «„  we  do  not  at  first  explicitly  introduce  any  of  the  above 
possibilities,  but  it  is  necessary  to  bear  them  in  mind  in  order  to  realize  the 


SECTION  b]  vector-families  343 

purpose  of  the  propositions  proved  concerning  k^.     If  Z  is  a  member  of  k^, 

and  L  =  B,\B,  where  R,8eK,  then  if  a  is  a  connected  point,  and  L'a  exists, 
it  follows  that  there  is  a  member  T  of  «  w  Cnv"*  such  that  L'a  =  T'a.  It  is 
easy  to  deduce  from  this  that  L=T,  hence  Lex  ^ Onv"*.     The  same  holds 

if  L'a  exists.  Hence  if  E !  L'a  .  v .  E !  L'a,  i.e.  if  a  e  G'L,  L  is  a  member  of 
K  u  Cnv"K.  Thus  if  a  belongs  to  the  field  of  every  member  of  «„  we  shall 
have  K^  =  K\J  Cnv"K.  We  say  that  a  family  "  has  connexity "  (not  to  be 
confounded  with  "being  connected")  if  g  !  conx'/fn^'C'/fj ;   thus  we  put 

^Jf  connex  =  FM  n  « (g  !  conx'*:  n  p'C'K,)    Df, 
and  by  what  has  just  been  said  we  have 

h  :  K  e  ^Jlf  connex  .  D  .  Kj  =  k  w  Cnv"«. 
We  also  have  h :  /c  e  JWconnex  .  D .  s'kq  e  connex 

and  h  :.  «  6  FM  conx  .D  :  k  e  FM  connex  .  =  .  s'kq  e  connex. 

It  is  these  propositions  that  justify  the  notation  "^if  connex." 

It  is  obvious  that  we  shall  have  g; !  p'C'k^  if  D"k  =  Q"/e,  unless  k  =  I'K. 

Some  illustrations  will  serve  to  make  clearer  the  nature  of  the  hypothesis 
g  Ip'C'K,.  This  hypothesis  states  that  there  is  at  least  one  term  a  in  the 
field  of  K  such  that,  if  R,  8  are  any  two  members  of  k,  we  can  either  take  an 
B-step  forward  from  a,  followed  by  an  iS-step  backward,  or  we  can  take  an 
iS-step  forward  followed  by  an  i2-step  backward.  Suppose,  for  example,  that 
our  family  consists  of  all  vectors  of  the  form  (+o  fi)  ^  NC  induct,  where 
/i  6  NC  induct.     Then  if  R  is  the  operation  of  adding  /*,  and  (Sis  the  operation 

of  adding   v,   R\8  is  the  operation  of  adding  v—gfi  if  v^ fi,  and  is  the 

operation  of  subtracting  fi—„v  if  fi>  v.    In  the  former  case  R\S e k,  while 

in  the  latter  case  S\ReK.    In  the  former  case,  if  or  is  any  inductive  cardinal, 

(R I  /Sf) V  =  y  — 0  /*  +e  ■!!'■ ;  in  the  latter  case,  (8 1  R)'iir  =  /*  — „  v  H-^  •sr.     Thus  in 

either  case  'meO'(R\8).  Thus  the  family  in  question  has  connexity,  and 
K,  =  K^J  Cnv"K.    i 

But  now  consider  the  family  consisting  of  all  vectors  of  the  form 
(Xo^it)  ^(NC  induct  — t'O),  where  /ieNC  induct  — I'O.  This  is  an  initial 
family,  its   initial   point   being   1.      But   it  does  not  have   connexity.     If 

R  =  (x„  fi)  I  (NC  induct  -  I'O)  and  8  =  (x„  v)  I  (NC  induct  -  I'A),  R\8is  the 
operation  of  multiplying  by  v  and  dividing  by  fi,  with  its  field  confined  to 
inductive  cardinals  other  than  0.  If  v  is  prime  to  fi,  this  relation  has  only 
multiples  of  fi  in  its  converse  domain  and  only  multiples  of  v  in  its  domain. 
Hence  its  field  consists  of  multiples  of  /i  together  with  multiples  of  v.  Thus 
no  member  of  k.  except  I[s'(I"k,  i.e.  (Xo  1)^  (NC  induct -t'O),  has  the 
whole  of  s'(1"k  for  its  field,  and  there  is  no  number  which  belongs  to  the 


344  QUANTITY  [part  VI 

field  of  every  member  of  «..  The  above  family  may  be  usefully  borne  in 
mind  in  considering  k^,  since  it  affords  good  illustrations  of  most  of  the 
general  theorems  concerning  k^. 

If  K  is  any  family  except  I'A,  any  finite  number  of  members  of  k,  have  an 
existent  relative  product,  and  their  converse  domains  have  an  existent 
logical  product.  If  «  is  a  connected  family,  any  two  members  L,  M  of  k^ 
whose  logical  product  exists,  i.e.  for  which  (gy) .  L'y  =  M'y,  are  identical,  and 
if  x,y  are  any  two  members  of  s'Q"«,  there  is  just  one  member  of  k^  such 
that  x  =  L'y.  1{  MeK,  and  P  is  a  power  of  M,  there  is  some  member  L  of 
K,  such  that  PdL.  But  P  is  not  in  general  itself  a  member  of  k^.  For  the 
application  of  ratio,  the  member  of  «.  which  contains  P  is  important.  We 
call  it  the  "representative"  of  P.   The  general  definition  of  a  representative  is 

rep/P  =  «'(«,  ft  G'P)     Df 

In  a  connected  family,  Ktnd'P  cannot  have  more  than  one  member;  hence 
if  there  is  any  member  of  k^  which  contains  P,  that  member  is  rep„'P,  and  if 
there  is  no  member  of  k.  which  contains  P,  rep,;'P  =  A. 

If  P  I  Q  is  any  member  of  k,,  (where  P,Qe  «),  we  shall  have 

re^,'(P\Qy  =  P^\Q>; 

and  it  L,  M  6  K„  we  shall  have 

rep/(X  I  M)o  =  rep^  '(Z"  |  Mo)  =  rep<'{(rep/i'')  |  (rep/Jf'')}. 

These  two  formulae  are  the  most  useful  in  determining  representatives. 

In  order  to  apply  the  above  theory  to  the  measurement  of  vectors,  it  is 
necessary  to  distinguish  between  open  and  cyclic  families.  An  open  family 
is  one  in  which,  if  M  e  k^  —  K1'/,  M^^  G  /,  i.e.  one  in  which  no  number  of 
repetitions  of  a  non-zero  member  of  «i  will  bring  us  back  to  our  starting- 
point.  If  this  condition  fails,  as  in  the  case  of  angles,  or  distances  on  the 
elliptic  straight  line,  the  problem  of  measurement  is  more  complicated,  since, 
if  ^  is  a  measure  of  an  angle,  so  is  2j/7r  -1-  Q  for  any  integral  v.  The  case  of 
cyclic  families  will  be  considered  in  Section  D ;  for  the  present,  we  proceed 
to  consider  open  families,  and  we  shall  still  be  concerned  almost  exclusively 
with  open  families  in  Section  C.  It  should  be  observed  that  in  cyclic 
families,  as  we  shall  define  them,  members  of  «g  return  into  themselves, 
whereas  in  open  families,  not  merely  no  member  of  k^,  but  no  member  of 
a:,  —  Rl*7,  returns  into  itself.  In  most  of  the  families  that  naturally  occur, 
it  happens  either  that  no  member  of  k^  —  Rl'J  returns  into  itself,  or  that 
there  are  members  of  /cg  which  do  so.  But  there  is  no  logical  necessity  in 
this,  as  the  following  instance  shows:  Consider  the  family  consisting  of 
positive  and  negative  integral  multipliers  other  than  —  1,  with  their  fields 
confined  to  positive  and  negative  integers  other  than  —  1.     Then  1  is  a 


SECTION  b]  vegtok-families  345 

connected  point  of  this  family,  in  fact  the  initial  point.  Multiplication  by 
—  1  is  a  member  of  k„  since^t  can  be  obtained  by  multiplying  by  any  integer 
;*  and  then  dividing  by  — /i.  Also  the  square  of  multiplication  by  - 1  is 
contained  in  identity,  and  is  the  zero  vector  of  our  family.  Hence  there  is  a 
member  of  k^  —  Rl'/  whose  square  is  contained  in  identity,  although  no  power 
of  any  member  of  Kg  is  contained  in  identity. 

In  order  to  avoid  brackets,  we  put 

'^id  =  i''i)d     Df, 
i-e.  «,9  =  K.  -  Rl'/. 

Then  the  definition  of  open  families  is 

FM&^  =  FMf^1c  (s'Pot"/«:,9  C  Rl'J)     Df. 

Hence  V:.KeFMa,^.=  :  ks  FM:M  e  k^q.  Dj^.M^^dJ. 

It  will  be  observed  that  if  n  is  an  open  family,  K^  is  contained  in  Rel  num  id 

(cf  *300),  and  w.g  C  Rel  num.     Hence  if  M  e  /e.g,  M-'  =  M,  (c£  *121),  and  the 

propositions   on   intervals  in  *121  become  available.     Also  if  M  e  K^g,  and 

a  e  s'(I"k,  we  have 

^     — >  w       -» 

M  ^  M^'a  e  Prog  .  M^^  t  J^*'a  e  «• 

The  chief  use  of  these  facts  is  to  show  that  the  existence  of  open  families 
implies  the  axiom  of  infinity  and  the  existence  of  No.  Hence  as  applied  to 
open  families,  the  theory  of  ratio  undergoes  the  very  great  simplification 
which  results  from  the  axiom  of  infinity. 

If*  is  open  and  connected,  and  L,  Me  k^,  and  a  is  any  inductive  cardinal 
other  than  0,  we  shall  have  L  =  M  if  L'  =  M''  or  rep^'i'  =  rep, 'if"  or 
a !  i"^  n  M".  If  p,  r  are  also  inductive  cardinals  other  than  0,  we  shall 
have  rep/Z'' =  rep/M"  if  ipx.r  =  jif<rx.T^  or  jf  rep/i'"<°''  =  rep/ilf'>^'^  or  if 
g  !  XpX"'' n  Jf'><«^     We  have  in  fact 

rep^t'Z''  =  rep^'M"  .  =  .'glLi' nM" 

=  .a!X'"<°''n  ilfo-x«'- 
and  rep/Mp  =  rep/it/"  .  =  .¥>'=  M' .  =  .p- a. 

On  applying  the  definition  of  ratio  (*303"01),  we  see  from  the  above 
propositions  that,  with  the  above  hypothesis, 

M  {pi  a)  N  .  =  .^\M''nNi'.  =  .  rep/Jlf'  =  rep/i\r'', 

while  if  R,  T  are  members  of  «, 

Ripla)  8.^.^  =  8". 

Further,  we  have,  in  virtue  of  the  above  propositions, 

a  !  i'  n  Jfp  .  a  !  Z"  o  Jf*' .  D  .  yu,  Xo  o-  =  1/  Xo  jO, 

whence  X,  Fe  G'H' .^ !  Z  ^  K^g  <S  F^  «;<3  .  D .  X  =  F. 


346  QUANTITY  [part  VI 

These  propositions,  together  with 

belong  to  Section  C.  They  are  mentioned  here  as  showing  why  the 
propositions  of  this  Section  are  useful  in  connection  with  measurement. 

We  next  proceed  to  consider  serial  families,  which  are  those  in  which 
i'/cg  is  an  existent  serial  relation.  For  this  purpose  we  require  the  definition 
of  "FM  connex"  already  given,  and  also  the  definition  of  "transitive" 
families.     We  define  a  as  a  "  transitive  point "  of  k  if 

— »  — > 

i.e.  if  any  point  which  can  be  reached  from  a  in  two  non-null  steps  can  also 
be  reached  in  one  non-null  step.  We  define  a  family  as  transitive  when  it 
has  at  least  one  transitive  point.  If  KeFMconx,  the  hypothesis  that  k  is 
transitive  is  equivalent  to  the  hypothesis  that  «g  forms  a  group,  and  implies 
that  K  forms  a  group.  We  define  a  serial  family  as  one  which  is  transitive 
and  has  connexity,  i.e.  we  put 

FM  sr  =  FM  trs  n  FM  connex     Df. 
Then  if  «  e  FM  sr,  s'xg  is  a  .serial  relation,  so  that  the  points  of  the  field  of  k 
are  arranged  in  a  series  by  means  of  relations  of  distance. 

When  a  family  is  serial,  the  vectors  also  can  be  arranged  in  a  series,  by 
means  of  a  relation  which  may  be  regarded  as  that  of  greater  and  less.  After 
a  short  number  on  initial  families  (explained  above),  we  proceed  to  the 
consideration  of  greater  and  less  (&.s  it  may  be  called)  among  vectors.  We 
may  call  a  point  y  "  earlier  "  than  a  point  z  when  there  is  a  non-null  vector 
which  goes  from  y  to  z,  i.e.  when  z  (s'«g)  y.  If  ilf,  iV  e  «, ,  we  then  say  that  N 
is  "  less "  than  M  if  the  i\r-step  from  some  point  x  takes  us  to  an  earlier 
point  than  the  Jf-step.  Writing  V^  for  "  greater  than  "  among  members  of 
K,,  our  definition  is 

V,  =  MN  {M,  NeKr.  (a«)  ■  {M'x)  (s'/cg)  {N'x)]    Df 
For  the  same  relation  confined  to  members  of  «,  we  use  the  notation  U^ ; 
thus 

U^=V^l^    Df 
If  «  e  FM  conx,  we  have 

U,  =  P^{P,QeK'.('^T)  .T  e  K^.P  =  T\Q}; 
this  is  generally  the  most  serviceable  formula  for  U^. 

If  «  is  a  serial  family,  U^  and  F^  are  series  ;  and  if  k  is  an  initial  family, 
JJ^  is  similar  to  s'wg. 

The  last  number  in  this  Section  is  concerned  with  the  axiom  of 
Archimedes  and  with  the  existence  of  sub-multiples  of  vectors.  The  axiom 
of  Archimedes  will  be  expressed  by  saying  that  if  a  is  any  member  of  the 


SECTION  b]  vector-families  347 

field  of  K,  and  R  is  any  vector,  then  R^'a,  for  a  suflBciently  great  finite  v,  will 
be  later  than  any  assigned  member  of  the  field  of  k.  In  other  words,  putting 
P=  Cnv's'/fg,  we  wish  to  have 

«  6  O'P .  D^ .  (gi;)  .  j;  e  NO  ind  -  t'O  .  xP  (R"a), 
or,  what  comes  to  the  same  thing, 

P"R^'a  =  G'P. 

This  will  hold  if  «  is  a  serial  family  and  P  is  semi-Dedekindian  (cf.  *214). 
If,  further,  P  is  compact  (i.e.  P^  =  P),  then  all  finite  sub-multiples  of  a  given 
vector  exist,  i.e. 

>Sf  e « .  V e NC ind  -  I'O .  D  . (gZ)  .L en:.  8  =  1". 

It  will  be  observed  that,  according  to  our  definition  of  ratio,  if  S  =  L''  and 
S^A,L  has  to  8  the  ratio  1/v,  so  that  L  is  the  vth  sub-multiple  of  8. 

Instead  of  treating  vector-families  by  the  method  we  have  adopted,  we 
might  have  started  from  a  double  descriptive  function,  which  we  may  denote 
hy  x  +  y,  and  concerning  which  we  should  make  various  hypotheses.  By  the 
general  notation  of  *38,  we  obtain  various  relations  of  the  form  +y  or  a;  -|- . 
These  relations  may  replace  the  k  employed  in  our  method.  For  convenience 
of  notation,  we  may  put 

'+'y  =  +  y    Df. 

+'x  =  x+    Df. 

Then  if  -|-  has  suitable  properties,  and  7  is  a  suitable  class,  -I- "7  will  be  a 
vector  family. 

Let  us  assume  that  x  +  y  exists  when,  and  only  when,  x  and  y  both 
belong  to  the  class  7,  and  that  when  x  and  y  both  belong  to  the  class  7,  «  +  y 
also  belongs  to  this  class.  Then  ii  x  +  y  exists,  so  does  x  +  y  +  y;  hence 
D'+  y C (J'+  y.  Further,  by  our  assumptions,  if  x,yey,  x+y  exists,  and 
therefore  x e OE'-l-  y.     Hence  yey.  D  .  (I'+  y  =  y.    Hence  if  7  exists, 

D"+"7  6  1 .  s'D"+"7  C  s'a"+"7. 

If  we  now  assume      x  +  y  =  x  +  z.  Dx,y,z  •  y  =  z, 
-♦ 
then  +"'Y  C 1  — >  1.     Hence  we  now  have 

-* 
+"<y  e  CI  ex'cr'7. 

In  order  to  obtain  the  Abelian  property,  we  require 

(x  +  y)  +  z  =  (x  +  z)  +  y, 

which  holds  if  -I-  obeys  the  permutative  and  associative  laws.     Thus  in  this 

case, 

— » 

+"7  e  fm'7. 


348  QUANTITY  [part  VI 

-> 

In  order  that  +"7  may  be  a  connected  family,  we  require 

(:S^ct):.zey.Oi  :  (gy)  :  a  =  z  +  y.v.z=a  +  y. 

A  sufficient,  though  not  a  necessary,  condition  for  this  is  that  there  should  be 
a  zero,  i.e. 

(ga)  ■.Z6<y.'2z.z  =  a  +  z. 

In  this  case,  +  a  is  the  zero  vector,  and  if  a  is  not  the  sum  of  two  terms  other 
than  itself,  a  is  the  initial  point  of  the  family. 

-> 
The  condition  that  if  x,  y  are  members  of  7  so  is  «  +  y  secures  that  +"7 

is  a  group.     Families  which  are  groups  we  denote  by  "  FM  grp." 

Thus  collecting  what  has  been  said,  we  find  that 

— » 

+"7  6  FM  conx  grp 

if  +  fulfils  the  following  conditions : 

(1)  x-\-y  exists  when,  and  only  when,  ie,y  e<^; 

(2)  a;,2/67.Da,,j,.a;  +  2/e7; 

(3)  x  +  y  =  x  +  z.'^x,y,z-y  =  z; 

(4)  x-\-y  =  y  +  x; 

(5)  {x  +  y)  +  z  =  x-ir{y  +  z); 

(6)  (ga)  '.ze'f.'^z.z  =  a  +  z. 

From  (3)  and  (4)  it  follows  that  the  a  of  (6)  is  unique,  i.e.  there  cannot  be 
more  than  one  zero. 

In  order  to  insure  that  our  family  shall  have  connexity,  we  require 
further 

(7)  x,y  erf  .':>x,y-{'5.'^)-  z  erf '.  X  ■{-  z  =  y  .w  .y  +  z  =  x; 

(8)  in  order  that  our  family  may  be  an  initial  family  we  require  that 

x-\-y  shall  only  be  zero  when  x  and  y  are  zero. 

With  this  further  condition,  our  family  becomes  serial. 

The  above  is  only  a  sketch  of  one  of  the  simplest  ways  of  generating 
families  by  means  of  double  descriptive  functions.  Other  ways  are  possible, 
and  by  greater  complication  greater  generality  can  be  obtained. 

There  are  some  advantages  in  the  above  manner  of  treatment.  First,  it 
is  possible  to  take  our  magnitudes  as  being  the  x  and  y  which  appear  in 
"  x-\-  y','  instead  of  having  to  take  them  as  the  vectors  +  y  or  «  +.  Secondly, 
our  vector-family  derives  unity  from  the  fact  of  being  generated  by  the 
single  operation  +.  Thirdly,  the  method  is  more  in  agreement  with  current 
conceptions  of  quantity  than  the  method  we  have  adopted.     The  choice 


SECTION  B]  vector  FAMILIES  349 

between  the  two  methods  is  a  matter  of  taste ;  but  it  would  seem  that  the 
method  we  have  adopted  is  Capable  of  somewhat  greater  generality  than  the 
other,  and  that  it  requires  less  new  technical  apparatus  than  the  other.  We 
have  not  elsewhere  had  occasion  to  treat  of  double  descriptive  functions 
which  only  exist  when  their  arguments  belong  to  assigned  classes,  though 
it  is  to  be  observed  that  our  definitions  of  various  kinds  of  addition  and 
multiplication  might  quite  easily  have  been  so  framed  as  to  give  this  result. 
For  instance,  we  might  have  put 

fi+oV  =  (?i!r)  {(ga,  /3) .  /t  =  N„c'a .  v  =  N„c'/3  .  w  =  Nc'(a  +  jS)}     Df. 

In  that  case,  E !  (/i  +o  v)  would  have  implied  fi,ve  NqC,  whereas  with  our 
definition  it  is  only  a !  (/*  +o  v)  that  implies  /*,  v  e  NpO.  The  general  treatment 
of  double  functions  which  only  exist  in  certain  cases  would  require  a 
considerable  logical  apparatus  not  required  elsewhere  in  our  work,  and  this 
is,  for  us,  a  reason  against  adopting  the  method  of  treating  vector-families 
which  derives  them,  as  in  the  above  sketch,  from  a  single  function  x  +  y. 


*330.     ELEMENTARY  PROPERTIES  OF  VECTOR-FAMILIES. 

Summary  of  *330. 

In  this  number,  we  begin  by  defining  the  class  of  "  correspondences  "  of 
«.  A  "  correspondence  "  of  a  is  a  one-one  relation  B  which  makes  every 
member  of  a  correspond  to  an  n,  i.e.  which  is  such  that,  if  a;  e  a,  R'x  always 
exists  and  is  a  member  of  a.  Thus,  for  example,  if  fi  is  an  inductive  number, 
+0  fJ-,  with  its  field  limited  to  inductiye  numbers,  is  a  correspondence  of  the 
class  of  inductive  numbers,  provided  the  axiom  of  infinity  holds.  (Otherwise, 
(+0  m)  t  ^^  induct  is  not  one-one.)  The  definition  of  correspondences  of 
a  is 

*33001.     cr'a  =  (1  -» 1)  n  Q'a  n  I)"Cl'a    Df 

I.e.  a  correspondence  of  a  is  a  one-one  relation  whose  converse  domain  is 
a  and  whose  domain  is  contained  in  a.  The  definition  should  be  compared 
with  the  definition  of  "  cror'P  "  in  *208. 

It  will  be  seen  that  ii  Re cr'a  and  xea,  R'x  exists  and  is  an  a,  and 
therefore  R'R'x  exists  and  is  an  a,  and  so  on.  Hence  all  the  powers  of 
R  exist  (*330'23).  Similarly  if  R,  S,  T,  ...  are  any  finite  number  of  corre- 
spondences oi  a,  R\8\T\ ...  exists.  This  is  proved  for  two  and  three  factors 
in  *330-21-22. 

We  define  a  "  vector-family  of  a"  as  an  existent  Abelian  class  of 
correspondences  of  a,  where  an  Abelian  class  of  relations  is  defined  as  one 
such  that  the  relative  product  of  any  two  of  its  members  is  commutative. 
Thus  we  put 

*33002.     Ahel  =  1i{R,SeK.'^B,s-R\S  =  S\R)    Df 
*33003.     fm'a  =  Abel  n  01  ex'cr'a  Df 

*33004.    FM  =  s'I)'tm  Df 

It  will  be  remembered  that  Potid'P  and  (for  certain  kinds  of  relations) 
finid'P  are  Abelian  classes  of  relations  (*91"34  and  *121-352).  If  P  e  1  -»  1, 
Potid'P  will  be  a  vector-family  of  C'P,  and  if  further  Pp^  Q  J,  fiuid'P  will  be 
the  same  vector-family. 

One  other  definition  belongs  to  this  number,  namely 

*33005.     /c.  =  s'(Cnv"«)|"/<:    Df 

This  definition  has  been  sufficiently  discussed  in  the  summary  of  the 
present  Section. 


SECTION  B]        elementary  PROPERTIES  OF  VECTOR-FAMILIES  351 

After  some  preliminary  propositions  on  CI  ex'cr'a  (*330'1 — "32)  and  on 
K.  (*330'4! — -iS),  we  proceed^o  such  properties  of  families  as  do  not  require 
any  further  hypothesis  as  to  the  nature  of  the  family  concerned.  These 
properties  are  mainly  such  as  assert  the  existence  of  relative  products,  and 
of  logical  products  of  converse  domains,  or  such  as  assert  commutativeness  of 
the  relative  product  under  certain  circumstances.  The  earlier  propositions 
deal  with  members  of  k,  the  later  propositions  mainly  with  members  of  «.. 
The  most  useful  propositions  are : 

*330-54.     V  :  KeFM .  Q,Re  ic.^\B'x  .-:i  .^\R'Q'x 
*330-56.     V  I  KeFM .Q,Re K .'&\R'a.:i  .R'Q'a  =  Q'B'a 
*330-61.     \-'.KeFM-i'i'k.L,MeK,.'^. 

a  !  a'Z  n  d'M.'^  !  D'i  n  (I'M .  a !  Q'i  n  D'if .  g  !  Vt'L  n  D'M 
*330'611.  h  zKeFM-i'i'A .  L,MeK..D  .±1  L\M 
*330-624.  hzKe FM-  I'l'k  . Z e «. .  D  .  A ~ e Pot'i 
*330-63.     \-:K.eFM.L,MeK,.^\L'x.^\  L'M'x .  D .  L'M'ai  =  M'L'x 
*330-642.  h-.KeFM-  I'l'k  .L,MeK,.0.  (ga;) .  E  !  i'a; .  E  !  L'M'x 
*330-71.     hzKeFM.P.QeK.pe'NGmd-i'O.El  Pi"x .  D  .  E !  (P  |  Qy'a; 
*330-72.     h-.Ke  FM  -  I'l'k  .  £,  Jf  e  /Ci .  p,  o-  e  NO  induct .  3  .  g  !  Q'Ze  n  a'M' 
*330-73.     h  :K€FM.P,Qeic .  p  6NCind.E!(P  1  QY'x.D  .(P\Qy"x  =  Pi"Q'"x 


*33001.  cr'a  =  (1  ->  1)  o  G'a  n  D"Cl'a  Df 

*330-02.  Ahe\  =  ii(R,SeK.Ds.s-li\S  =  S\R)  Df 

*330-03.  fm'a  =  Abel  n  CI  ex'cr'a  Df 

*33004.  FM  =  s'D'fm  Df 

*33Q-05.     K,  =  s'(Cnv"«)  I  "k  Df 

)} 

*3301.       l-:«6Clex'cr'a.s.«Cl->l.a"«  =  t'a.D"/eCCl'a     [(*330-01)] 
*33011.     I- :.  (ga)  •  /r  e  CI  ex'cr'a .  =  :  «  C 1  ->  1 :  (ga) .  Q"*;  =  I'a .  s'J)"k  C  a 

r*3301] 
*33012.     h  :  «  6  CI  ex'cr'a .  D  .  s'a'U  =  a    [*330-l .  *53-02] 
*33013.     h  :  /c  6  CI  ex'cr'a .  D  .  D"k  C  Cl's'a"* .  s'J)"k  C  s'a"K    [*3301-12] 
*330131.  H  :  (ga) .  «  e  CI  ex'cr'a .  =  .  k  C  1  ->  1 .  a"«  e  1 .  s'D"«  C  s'Q"/^ 

[*330-ll-12] 
*33014.     h  :«£  CI  ex'cr'a.  3.  D"/eCNc'a    [*330-l] 


352  QUANTiTy  [part  VI 

*33015.  h.Clex'cr'A  =  i'i'A  [*330-l] 

*330151.  h ;  a  !  a .  /c  e  01  ex'cr'a .  D  .  A  ~  e  «  [*33014] 

*33016.  l-:.(aa).«;6Clex'cr'a:«  +  i'A:D.A~e«  [*330-15-151] 

*33017.  l-:a!a./«:eClex'cr'a.D.D"/cCClex's'a"A;  [*33013-151] 

*33018.  h  :.(aa).«:6Clex'cr'a:«;  +  t'A:D.D"«CClexVa"K  [*33015ir] 

*33019.  h  .  i\I  \a)eQ\ ex'cr'a  [*3301] 

*330'2.  1- :  «  6  01  ex'cr'a .  i?  e  « .  g !  T>'M  n  s'a"K .  D .  a  !  E  |  Jf 

Dem. 

h  .  *330-l-12  .  D  h  :  Hp  .  D  .  a  !  D'M  n  a'B  :  D  h  .  Prop 

*330-21.     h  :  «  6  01  ex'cr'a  .  «  4=  t'A  .  ii,  S  e  «  .  D  .  a  !  -K  |  (S 

Dem. 

h  .  *33018  .  D  t- :  Hp  .  D  .  a  !  B'-Sf  n  s'a"K  (1) 

I- .  (1) .  *330-2  .  D  h  .  Prop 
*330-22.     h  :  «e01ex'cr'a  .  K^f^  I'A.  B,8,Te  k  .0  .jil  R\S\T 
Bern. 

h  .  *330-21-18  .  D  h  :  Hp  .  D  .  a  !  ^'(S  \  T)  n  s'<1"k  (1) 

1- .  (1)  .  *330-2  .  D  h  .  Prop 

*330-23.     h  :  «  6  01  ex'cr'a .  K^i'k.Re  k  .":>  .  k^^e  Potid'JB 
Dem. 
h.*330-16.DI-:Hp.D.a!/rO'-B  (1) 

V  .  *33018  .  D  h  :  Hp  .  P  6  Potid'i?  .  a  !  -P  •  ^  ■  a  '  D'P  n  s'(1"k  . 
[*330-2]  D.a!-R|P  (2) 

I- .  (1) .  (2)  .  Induct .  D  I- .  Prop 

«330-3.       I- :  «  6  01  ex'cr'a  .  I[  ae  k  .D  .  kCs'k\"k 

Dem. 

I- .  *3301  .Dh:.Hp.D:i?e«.D.JB  =  i2|/|^a:.Dh.  Prop 

*330-31.     h:«601ex'cr'a.i2e/c.D.E|ii  =  /fs'a"«     [*3301] 

*330-32.     h  : .  «  6  01  ex'cr'a  .  R,Se  k.O  :R\8=  I[  s'a"ic  .  =  .  R  =  8 
Dem. 

1- .  *330-31  .D[-:.Rp.O:R  =  S.O.R\S  =  I[  s'a"K  (1) 

l-.*330-l.    DI-:Hp.  0  .  R\R\8  =  (D'R)^8  (2) 

f- .  (2) .  D  t- :.  Hp  .  D  :  E  I  fi'=  /  r  s'd"*  .  D  .  -B  =  (D'R)  1  /S . 
[*72-92]  D.R  =  8ia'R. 

[*330a]  D.E  =  /S  (3) 

h  .  (1)  .  (3) .  D  h  .  Prop 


SECTION  b]        elementary   PROPERTIES  OF  VECTOR-FAMILIES  353 

*330-4.       \-:MeK,.  =  .(^B,8).B,S6K.M  =  R\S    [(*330-05)] 

*330-41.     h.Gnv"K,=  K,  [*330-4] 

*330-42.     h  :  K  e  CI  ex'cr'a  ./fae/e.D.KW  Cnv"*  C  k, 
Bern. 

h  . *330-l . *60-5-51  .Dh:Hp.E6«.D.i2  =  (I|'a)|i2./|'a6 Cnv"«    (1) 
I- .  (1) .  *330-4-41 .  D  h  .  Prop 

*330-43.     hiKeCl ex'cr'a .  D  . / 1' s'Q"* e k,  [*330-31-4] 

*330-5.       l-:.KeAbeU=:i?,S6«:.Da,s.iJ:|-S  =  ,S|iJ;     [(*330-02)] 

*330-51.     h:/«;efm'a.s.«eAbelnClex'cr'a  [(*330-03)] 

*33052.     h  : « e FM .  =  .  (ga) .  k e  Abel r.  01  ex'cr'a . 

=  .Ke  Abel .  K  C  1  -*  1 .  a"K  6 1 .  s'D"k  C  s'a"« 
[*330-51-131 .  (*330'04)] 

*330  53.     h  :  k  eFM.Q.Rex.  E !  R'Q'no.O  .ElQ'x.ElR'x 
Dem. 

H  .  *330-5 .  D  I- :  Hp .  D  .  E  !  Q'R'x  (1) 

l-.(l).*30-5.DI-.Prop 

*330-54.     h  :  K  e  FM.  Q,  Re  K. El  R'x.:>. El  R'Q'x 
Dem. 

\- .  *330-31-52  .  D  h  :  Hp .  D .  ^'a;  =  R'Q'Q'x  (1) 

H  .  (1) .  *330-53  .  D  H  .  Prop 

*330-541.  h  :  «  6  i^ilf .  Q,  i?  e  /«: .  D .  Q"l>'R  C  D'i2    [*330-54] 

*330-542.  \-:iceFM.ReK.O. B'R e sect's'*         [*330-541 . *21] -1] 

*330-55.     h  :  KeFM-i'i'k .  Q, iJe« .  D .  g !  D'Q r.  D'E . g !  Q"D'i2 

Dem. 

h  .  *330-54 ,  D  h  :.  Hp .  3  -.xeJ^'R .  D .  Q'xeTi'R : 

[*33-43]  D  :  a  !  D'iJ .  3 .  g  !  D'Q  r.  D'iJ        (1) 

h  .  (1)  .  *33016  .  D  h  :  Hp .  D  .  3  !  D'Q  n  D'i2  (2) 

H  .  *3301116  .    D  h  :  Hp .  D  .  D'iJ  C  a'Q .  a !  D'E . 

[*37-43]  D .  a !  Q"D'i2  (3) 

h  .  (2) .  (3) .  D  h .  Prop 

*330-551.  V  :  Hp  *330-55  .  D  .  g !  Q  |  J2    [*330-55  .  *37-32] 

B.  &  w.  III.  23 


354  QUANTITY  [PABT  VI 

*330-56.     \- :  K  €  FM.  Q,  Bex. El  R'a."^.  R'Q'a  =  Q'R'a 
Dem. 

V  .  *330-oll .  D  h  :  Hp .  D  .  Q'R'R'a  =  R'Q'R'a . 
[*72-24]  D  .  Q'a  =  R'Q'R'a . 

[*330-31  -54]  D .  B'Q'a  =  Q'R'a :  D  h  .  Prop 

*330-561.  \-:KeFM.Q,ReK.O.R\Q[T>'R  =  Q\R    [*330'56] 

*330-562.  \-:KeFM.Q,ReK.'^.R>QCQ  [*330-561] 

*330-563.  f- :  «  6  FM .  ^  e  k  .  \  C  « .  D  .  R>s'\  G  s'\  [*330-562] 

*330-57.     h  :  K  6  Abel  .R,Seie  .ve'NC  induct .  D .  ^>'|^"'=  (RIS)".  R\S'=  S-'\R 
Bern. 

t-.*30r2.                :i\-.R'>\S'  =  {R\S)'>.R\8<>  =  S<'\R  (1) 

I- .  *330-5  .*301-21 .  D  I- :  Hp .  i?  I  -Sf"  =  -S"  I  J? .  D  .  i?  I  -Sf+'i  =  8"+''^  \  R  (2) 

l-.(l). (2). Induct. Dh:Hp.D.i2|>Sf>'  =  S'''|ii                     •  (3) 

I- .  (3) . *301-21 .  D  I- :  Hp .  D  . iJ-'+'i  1 8"+'^  =  R''\8''\R\8  (4) 

I- .  (4) .  *301-21  .D\-:Rp.R''\S-'  =  (R\8y.D.  ^"+"1 1 8"+--^  =  (E  |  /SO'+'i  (5) 

h  .  (1) .  (5) .  Induct .  D  h  :  Hp .  D  .  E"  I  ^f"  =  (i?  I  -Sf)"  (6) 
I- .  (3) .  (6) .  D  I- .  Prop 

*330-6.       \-:KeFM-i'i'A.LeK,.0.'3^lL 
Dem. 
\- .  *330-16-4 .  D  h  :  Hp  .  D  .  (aQ,  R).Q,R€K.<3ilR.L  =  R\Q  . 
[*330-54]  D  .  (aQ,  iJ, «)  .  Q,  E  e  «  .  E  !  E'Q'a; .  Z  =  E  |  Q . 

[*34-41]  D .  a  !  Z  :  D  h .  Prop 

*33061.     \-:KeFM-i'i'A.L,MeK,.:i. 

a !  a'Z  r.  a'iif.  a  i  b'l  n  a'Jif .  a !  ci'z  n  d'j/.  a !  D'x  n  D'ii/ 

i)em. 
h  .  *330-55-4 .  D 

l-:Hp.D.(aQ,-R,'S,r).Q,i?,-Sf,2'e«.i  =  E|Q.lf=r|S.a!D'i2'>D'2'- 
[*330-54] 

D  .  (aQ,ii,*Sf,  r,a;) .  Q, E, S, Te/c . i  =  ^ I  Q .  ilf  =  r| /S.  E  !  E'Q'a; .  E !  T'8'a; . 
[*34-41]  D  .  (a«) .  E  I  i'a; .  E !  Jf 'a; . 

[*33-43]  D .  a !  ci'i  ft  a'iif  a) 

l-.(l).*330-41.DF-.Prop 


SECTION  B]        elementary  PROPERTIES   OF  VECTOR-FAMILIES  355 

*330-611.  \-:KeFM-  I'l'k .  Z.  M  e  «. .  D  .  g  !  i  |  #    [*330-61 .  *34-3] 

«) 
*330-612.  I- :  «  e  FM-  t't'A .  Z,  ilf,  JVe  «, .  D  .  g  !  Q'Z  n  G'ilf  n  Q'iV 

Z)em. 
f- .  *330-22-4 .  3 
l-:Hp.D.(aP,Q,i2,;Sf,T,F).P,Q,i2,5f,r,F6«. 

L  =  P\Q.M=R\S.N=T\W.^\P\R\T. 
[*330-53]  D  .  (gP,  Q,  R,  S,  T,  W,  x)  .P,Q,R,S,T,WeK. 

L  =  P\Q.M=R\S.B'=T\W.'KlP'a!. El  R'x. El  T'a;. 
[*330-54]  D . (a*) .ElL'x.ElM'x.ElN'x-.Oh. Prop 

*330-613.  h  :  «  6  Pilf  -  I't'A  .  i,  M,  iVe  «, .  D  .  g  !  i  |  Jl/|  iV 

h .  *330-22-4  .  D 

H  :  Hp.  D  .  (aP,  Q,i2,fif,  T,  Tf.a;) .  P.Q,R,S,  T,W€k. 

L  =  P\Q.M=R\8.N=T\W. El  P'R'T'a;. 
[*330-54]  D  .  (gP,  Q,  iJ,  S,ie).P,Q,R,SeK . 

L  =  P\Q.M=R\S.ElP'R'(N'x). 
[*330-54]  D .  (gP,  Q) .  P,  Q  e  « .  Z  =  P I  Q  .  E !  P'{M'N'x) . 
[*330o4]  D  . (a*)  .  E  !  L'M'N'x  :  D  h  -  Prop 

*330  62.     h  :  K  6  Pilf  .Ze*.  .)Sfe«.D.(Sf|ZGZ|(S 
Dem. 
h.*330-561.DI-:Hp.P,Qe/e.Z  =  P|Q.D.iSf|PGP|5f.  '       . 

[*330-5]  D.<SfjP|QGP|Q|S:DI-.Prop 

*330  621.  Vi.KeFM-  I'l'A  .  Z  e  «. .  C'P  C  s'Q"*  .  g  !  P  : 

<Se«.Ds-'S|-PCP|/Sf:D.a!P|Z 
Dem. 

h  .  *330-ll  .Dh:.  Hp.Q,i26/«;.Z  =  S|i2.D:      • 

a;P^  .  D  .  (gw,  ^r)  .  uRx  .  zQy  .  xPy  . 

[*34-l]  3  .  g  !  i2  I  P I  Q  . 

[*330-5]  D  .  a  !  P I  E  I  Q  . 

[*330-561]  D  .  g  !  P  I  Q I  22  . 

[Hp]  D  .  a  !  i*  I  i  :■  3  i-  •  Prop 

23—2 


356  QUANTITY  [part  VI 

*330-622.  h  :  Hp  *330-621  .  D  .  g  !  i  |  P 

Dem. 
h  .  *33011  .  *72-59  .D\-:R^.Q,BeK.L  =  Q\R.D.PQQ\P\Q. 
[*72-59]  D  .  P  I  Q  G  Q  I P  . 

[*330-621]  D  .  a  !  Q  I P I  i?  . 

[*330-5]  D  .  a  !  Q  I P  I  P  . 

[Hp]  D  .  a  !  Z  I  P  :  D  h  .  Prop 

*330-623.  \-:KeFM.SeK.LeK,.Me  Pot'i  .  D  .  >Sf  |  if  G  ilf  |  <Sf 

Bern. 

h  .  *34-34  .Dh:Hp.fi'|ilfGJIf|<S.D./Sf|il/|iGif|<S|X. 
[*330-62]  D.S\M\L<1M\L\S  (1) 

I- .  (1)  .  *330-62  .  Induct .  D  I- .  Prop 

*330-624.  h  :  /c  6  Pif  -  I't'A  .  Z,  6  «. .  D  .  A  ~  6  Pot'i 

Pem. 
h  .  *330-6  .  D  h  :  Hp .  D  .  a  !  i  (1) 

h  .  *330-622-623  .       D  h  :  Hp  .  Jf  e  Pot'Z  .  a  !  ^- 3  ■  H  ! -M"! -^  (2) 

I- ,  (1)  .  (2)  .  Induct .  D  h  :.  Hp  .  D  :  ilf  6  Pot'i  .  Dj^ .  a  '■  itf  :■  3  H  ■  Prop 

*330-625.  \-:KeFM.L,MeK,.Qe7ot'{L\M).SeK.O.S\Q(lQ\S 
Bern. 

h.*330-62.DI-:Hp.D./Sf|i|ifGZ|J/|/S  (1) 

I-  .>*34.-34 .  D 

'  h:Hp.PePot'(Z|lf)./S|PGP|/S.D./Sf|P|P|il/GP|/S'|X|il/ 
[(1)]  QE\L\M\8     (2) 

I- .  (1) .  (2) .  Induct .  D  I- .  Prop 

*330-626.  h  :  a:  e  Pi/  -  I'l'A .  i,  ilf  e  «. .  3  .  A  ~  e  Pot'(i  |  M) 
Bern. 

|-.*330-611.        Dh:Hp.D.a!P|if  (1) 

i- .  *330-621-625  .  D  F  :  Hp .  Q  e  Pot'(i  \M).^\Q.:i  .^\Q\L  (2) 

I- .  *330-625  .        D  I- :  Hp .  Q  e  Pot'(Z  I  ilf ) .  >S  6  «  .  3  .  (S I  Q I Z  G  Q I  /Sf  I X 
[*330-62]  Q.Q\L\8    (3) 

h  .  (2) .  (3) .  *330-621 .  D  1- :  Hp .  Q  e  Pot'(Z  \M).^\Q.:i  .^\Q\L\M    (4) 
F-.  (1).  (4).  Induct.  Dh.  Prop 


SECTION  B]        elementary  PROPERTIES  OF  VECTOR-FAMILIES  357 

*330-627.  \-:ic€FM-i'L'A.L,MeK,.PeFot'M.-2.<3,lP\L.'3_lL\P 
Bern. 

h.*330-611.  DI-:Hp.D.a!Jlf|i.a[!i|M  (1) 

h  .  *330-623  .  Dh:Hp.Se«.D./Sf|P|iGP|S;|Z. 

[*330-62]  D.8\P\L<IP\L\8  (2) 

l-.(2),*330-622.     Dl-:Hp.a!P|Z.D.a!Jf|P|i;  (3) 

f- .  (1) .  (3) .  Induct .  D  I- :  Hp ,  D .  a !  P I  i  (4) 

h  .  (2) .  *330-621 .     D  h  :  Hp .  a  I Z I P .  D ,  a  !  Z I P I  if  (5) 

h  .  (1) .  (5) .  Induct .  D  h  :  Hp .  D .  a !  ^  I P  (6) 

H  .  (4) .  (6) .  D  h  .  Prop 

*330-63.     h  :  «  e  Pif .  i,  if  e  K, .  E !  Z'a; .  E !  L'M'ai .  D  .  L'M'x  =  Jf 'i'a; 
-Dem. 

h  .  *330-5 6  .  D  h  :  Hp .  Q,  P, ,?,  r  e  « .  X  =  Q I JS .  M = ^  I  r .  D  . 

[*330-5]  =8'Q'T'R'x 

[*330'56.Hp]  =  S'T'Q'R'x :  D  h  .  Prop 

*330-64.     Vi.KeFM.L.MeK,.'^: 

E !  i'a; .  E  !  L'M'x .  =  .  E  !  if '« .  E  !  il/'i'a;    [*330-63] 

*330-641.  h  :.  « ePJf .  Z,  ilf  6K. .  E !  Z'a; .  E  !  il/'a; .  D  : 

E !  L'M'x .  =  .  E !  if' Z'a; .  =  .  L'M'x  =  ilf 'Z'a;    [*330-63-64] 

*330-642.  h  :  K  e  PM  -  t't'A .  Z,  ilf  6  «e .  D  .  (a«) .  E !  Z'a; .  E  !  Z'Jf' a; 

Dem. 
h  .  *330-21 .  D 

l-:Hp.D.(aP,Q,P,'S,a;).P,Q,P,/Sf6«.Z  =  P|Q.lf=P|iSf.E!P'P'a;. 

[*330-53-54]  D .  (aP,  Q,  P,  >Sf, «) .  P,  Q,  P, /Sf  6  « .  Z  =  P I  Q .  if = P I /Sf . 

E !  P'Q'x .  E !  P'Q'B'S'x :  D  h  .  Prop 

*330'643.  I- :  «:  e  Pif .  P  e  « .  Z  e  «. .  E !  Z'a; .  3  .  P'Z'a;  =  L'P'x     [*330-56-5] 

*330-65.     \-:KeFM.Q,R,S,TeK.  B'Q'x  =  T'8'x .  D .  T'Q'x  =  P'^S'a; 
2)em. 

f- .  *72'24  .  D  h  :  Hp  .  3  .  Q'a;  =  P'T'/Sf'a; 

[*330-56]  =  T'R'8'x . 

[*72-24]  D  .  r'Q'a;  =  P'/Sf'a; :  D  h  -  Prop 


358  QUANTITY  [part  VI 

*330-66.     \-:.iceFM.Q,R,S,TeK. 'El  R'Q'x  .  E  !  T'S'cc  .  D  : 

R'Q'x  =  T'S'o! .  =  .  T'Q'x  =  R'S'iE 
Bern. 

h  .  *330-56  .  D  h  :  Hp  .  T'Q'cc  =  R'S'x  .  D  .  T'R'Q'a;  =  R'R'S'x 

[*72-241]  =  8'x . 

[*72-241]  D .  R'Q'x  =  T'S'a:  (!) 

h  .  (1)  .  *330-65  .  D  h  .  Prop 

*330-7.       h  :  «  e  I'ilf .  P,  Q  e  «  .  /3  €  NO  ind  -  t'O  .  E  !  Q'(P  |  Qy-'^'P'x  .  D  . 

Q'(PjQ)p-ci'P'a,  =  (P|Q)p'a! 
Dem. 
l-.*330-56.*301-2.D 

I- :  Hp .  E !  Q'(P  I  Qy'P'ic .  D .  Q'(P  |  Qf'P'a)  =  (P  |  Qy'x  (1) 

h.*330-56.*301-21.3 

h  :.  Hp :  E !  QX-P I  Qy-'^'P'i«  ■  3a=  ■  Q'(P  \  Q)"-' ^'P'a;  =  (P  |  Qy'a; :  3  : 

E !  Q'(P  1  QyP'* .  3 .  Q'(P  I  QyP'x  =  (P I  Qy'Q'P'x 

[*330-56.*301-21]  =  (P  |  Q)''+ "a;    (2) 

h  .  (1)  .  (2) .  Induct .  D  h  .  Prop 

*330-71.     h  :  /cePJkf .  P,  QeK .  />  eNC  ind  -  t'O .  E  !  P"'*.  D .  E !  (JP\Qy'x 

Dem. 

V  .  *330-54  .  D  I- :  Hp  .  E  !  P"x  .  D  .  E  !  (P  |  Qy'x  (1) 

I- . *301'21  .  D  h  :.  Hp  :  E  !  Pf'x .  D», .  E  !  {P\Qy'x  :  D  : 

E  !  Po+oi'a; .  D  .  E  !  (P  |  Q)'>'P'a! . 

[*330-52]  D  .  E  !  Q'(P  |  QyP'x  . 

[*330-7]  D.E!(P|Q)''+«i'a;  (2) 

h  .  (1)  .  (2)  .  Induct .  3  h  .  Prop 

*330-711.  }-:iceFM.Q€  s'Pot"«  .  D  .  Q'Q  =  s'Q"* 
Dem. 

I- .  *330-62  .DhiHp.Pe/e.D.  Q'P  =  s'a"«  (1) 

h  .  *37-322  .  D 

I- :  Hp .  P  e  « .  Q  e  Pot'P .  Q'Q  =  s'a"ic .  D  .  a'(Q  |  P)  =  s'a"/«:  (2) 

h  .  (1) .  (2)  .  Induct .  D  h  .  Prop 


SECTION  B]        elementary  PROPERTIES   OF  VECTOR-FAMILIES  359 

*330-72.     \-:KeFM-  I'l'A  .  Z,  if  e  «. .  p,  <t  e  NO  iaduct .  D .  a  !  (I'L"  n  Q'if " 
Dem.  * 

t-.*330-7ll-23.D 

h  :  Hp .  P,  i2e« .  D .  (ga) .  E  iR^'a-R^'aea'P' ■ 
[*330-52]  3 .  (ga) .  E !  P'"B"a  (1) 

h  .  *330-57  .  D  h  :  Hp  (1) . «  =  P''R"a .  3 .  E !  P'-'a; .  E !  R-^'x  (2) 

h  .  (2) .  *330-7l .  D 

I- :  Hp(2) .  Q,  SeK  .  Z  =  P|  Q .  ilf  =  ^|  Sf.  D  .  E  iZP'a;.  E  !  Jf-'a; . 
[*33-43]  D.xe  a'L"  n  Q'ilf  »•  (3) 

f- .  (1) .  (3) .  D  I- .  Prop 

We  have  "  NO  induct "  in  the  above  proposition,  not  "  NC  ind,"  because 
it  is  necessary  to  have  E  !  Z*" .  E  !  iW",  and  by  *301'16  this  may  fail  if  either 
p  or  o"  is  null  in  the  type  of  L  and  M.  The  existence  of  a  family  does  not 
imply  the  axiom  of  infinity,  since  the  family  may  be  cyclic. 

*330-73.     \- :  K  €  FM .  P,Q  e  K  .  p  eNCind  .El  iP\  Qy-'a: .  D  . 

(P\Q)'"x  =  Pi''Qp'a! 
Dem. 

I- .  *330-56 .  D  I- :  Hp .  E !  P'y .  D .  Q'P'y  =  P'Q'y  (1) 

h .  (1) .  D  1- :  Hp  .  Q'Po-'i'a;  =  Po-'^'Q'x .  E !  P'"y .  D  .  Q'P'"y  =  P'Q'Po-'^'y 

[Hp]  =P'Pi-'i'Q'y 

[*301-23]  =P'"Q'y        (2) 

I- .  (1 ) .  (2) .  Induct .  D  h  :  Hp .  E  !  PCy .  D  ,  Q'Pi"y  =  Pi-'Q'y  (3) 

1- .  *301-23  .  D  f- :  Hp .  (P I  Q)p'«  =  Pp'Qo'x  .  E  !  (P  |  Qy+'^'x .  D . 

(P I  Qy+'^'x=P'Q'P'"Q"x 

[(3)]  =P'P'"Q'Q'"a; 

[*301'23]  =P/>+.i'Qp+.Ka,  (4) 

1- .  (4)  .  Induct .  D  h  .  Prop 


*331.     CONNECTED  FAMILIES. 

Summary  of  *331. 

A  "  connected  point "  of  a  family  k  is  a  point  of  the  field  of  k  from  which 
every  member  of  the  field  can  be  reached  by  a  member  of  k  or  the  converse 
of  a  member.     That  is,  if  a  is  a  connected  point,  we  are  to  have 

X  e  s'(1"k  .  Da, .  (gi?)  .  Re  K  .a;{R\j  B)a 

as  well  as  a  e  s'G."k.     This  amounts  to  saying  that  every  member  of  s'Q."k 

is  of  the  form  R'a  or  R'a,  where  ReK.     The  definition  is 

*331-01.     conx'«  =  s'a"K  n  S,  (s'«'a  u  s'x'a  =  s'a"«)     Df 

Here  we  include  the  factor  s'Q."k  in  the  definition,  in  order  to  exclude 
the  case  when  k  =  t'A.  If  s'G"k  were  not  included,  we  should  have 
conx'i'A  =  V,  whereas  with  the  above  definition  conx'i'A  =  A. 

In  the  case  of  any  other  family,  the  factor  s'Q."k  makes  no  difference, 

since  if  s'Q"«  exists, 

— »         <— 

s'K'a  u  s'k'u  =  s'(I"k  .  D  .  a  6  G's'k, 

and  if  K  is  a  family,  G's'k  =  s'Q."k.  But  in  the  case  of  t'A,  the  factor 
s'(1"k  insures  that  no  connected  point  exists,  thus  securing,  conversely,  that 
a  family  which  has  a  connected  point  is  not  t'A-  This  is  convenient,  since 
the  case  of  t'A,  which  is  trivial,  would  often  otherwise  have  to  be  explicitly 
excluded. 

The  definition  would  be  more  analogous  to  the  definition  of  a  connected 

relation  in  *202  if  we  put 

->  <- 

conx'/c  =  s'Q"k  a  a  (s'/cg'a  w  s'/tg'a  w  I'a  =  s'G"k)    Df. 

But  this  definition  fails  to  give  us  the  information  that  there  is  a  member 
of  K  which  relates  a  to  itself,  whereas  our  definition  does  give  this  informa- 
tion, and  hence  leads  to  the  proof  that  /  f"  s'(1"k  e  k,  i.e.  that  there  is  a  zero 
vector. 

We  say  that  a  family  "  is  connected  "  when  it  has  at  least  one  connected 
point,  i.e.  we  put 

*331-02.    FM  conx  =  .fif  r>  «  (g  !  conx'«)    Df 


SECTION  B]  connected  FAMILIES  361 

When  all  points  of  the  field  are  connected  points,  the  family  "  has  con- 
nexity "  (cf.  *334-27),  profided  k  4=  t'A.  For  the  present,  we  only  assume 
that  at  least  one  of  the  points  of  the  field  is  a  connected  point.  To 
take  an  illustration:  the  family  whose  members  are  of  the  form 
(Xo  1^)  D  (NO  induct  —  I'O),  where  fi  e  NO  induct  —  t'O,  has  only  one  con- 
nected point,  namely  1.  If  we  had  taken  positive  and  negative  integers, 
both  as  multipliers  and  as  constituting  the  field,  we  should  have  had  two 
connected  points,  namely  1  and  —  1. 

Almost  all  our  future  propositions  on  vector-families  will  be  confined  to 
connected  families.  In  the  present  number,  we  prove  first  that  in  a  connected 
family  k,  the  vector  which  relates  a  connected  point  to  itself  also  relates  any 
other  member  of  the  field  to  itself  (*331'2),  whence  it  follows  that  I  \  s'0."k 
is  a  member  of  k  (*331'22),  and  that  every  other  member  of  k  is  wholly 
contained  in  diversity  (*331-23),  and  that  k  u  Cnv"«  C  k.  (*331"24).  We 
next  prove  that  the  product  of  two  members  of  k  is  a  member  of  k  or  of 
Onv"K  (*331'33).  We  then  proceed  to  consider  «.,  and  prove  at  once  the 
two  fundamental  properties  of  «,  in  a  connected  family,  namely  (1)  that 
between  any  two  members  of  s'Q."k  there  is  a  relation  which  is  a  member 
of  «,  (*331"4),  and  (2)  that  two  members  of  k^  whose  logical  product  exists 
are  identical  (*331*42).  From  these  two  propositions  it  follows  that  there  is 
just  one  member  of  k^  whicb  relates  any  two  members  of  s'(I"k  (*381'43). 
Finally  we  prove  that  any  power  of  a  member  of  «  is  a  member  of  /c  u  Cnv"* 
(*331'54),  and  that  any  power  of  a  member  of  k^  is  contained  in  some  member 
of  K,  (*331-56). 

Stated  symbolically,  the  above  propositions  are  as  follows : 

«331-2.  h  :. «  e  FM .  a  e  conx'/e .  x  e  s'<1"k  .ReK.D:  R'a  =  a.  =  .  R'a;  =  x 

*331-22.  l-:«:6^Jfconx.D./fs'a"«;6« 

*331-23.  h  : «;  e  i?'Mconx .  D  . «  C  Rl'/  w  Rl'J 

*331-24.  h  :  «  6  FM  conx  .  D  . «  w  Cnv"/c  C  k^ 

*331-33.  V'.Ke  ^if  conx  .  D  .  s'k  |"«  C  «  u  Cnv"/t 

*331'4.  V\Ke  FM  conx  .x,ye  s'G."k  .  D  .  (gZ)  .Lsk^.x^  L'y 

*331-42.  h  :.  K  6  JWconx  .i,  ilfe/e..D:a!inM.  =  .i  =  Jlf 

*331-43.  Voce  FM  conx  .x,ye  s'(I"k  .'2.M(MeK,.  xMy)  e  1 

*331-54.  V-.KeFM  conx .  P  e  « .  D  .  Pot'P  C  k  u  Cnv"«: 

*331-56.  V-.KeFM  conx.  LeK,.Me'PQt'L.:>.{'^N).NeK,.MQ.N 


*331-01.     conx'«  =  s'a"/ena(syaws'«'a  =  s'a"«)    Df 
*33102.     FM  conx  =  Pjtf  n  ;S  (g  !  conx'«)  Df 


362  QUANTITY  [part  VI 

*3311.       \-:aeconx'K.  =  .aes'a"K.s'K'ayJs'K'a  =  s'a"K     [(*331-01)] 

*331-11.     h:.aeconx'«.=  :aes'(I"«::a;es'a"K.Da,.(aK).-B6/(;.a;(iJt(iJ)a 
[*331-1] 

*33112.     h  :  a  !  coax'*  .  D  .  k  +  t'A     [*3311] 

— »         «— 
^33113.     h  :.  K  e  CI  ex'cr'a .  D  :  a  e  conx'/c  .  =  .«=!=  I'A  .  s'k'u  w  i'«'a  =  s'Q."k 

Dem. 

H  .  *53-24 .  D  h  :  Hp . « =)=  I'A .  s'k'u  \j  s'x'a  =  s'QL"* .  D  .  g  !  s'«'a  w  sVa . 
[*330-13]  D.a6s'a"«  (1) 

h  .  (1)  .  *331-112  .  D  h  .  Prop 

i|e331'131.  h  ::  /ce  CI  ex'cr'a.  D  :.  aeconx'«.  =  :  K^l'A.:a>es'(l"/c.  Da,. 

(aE).ii;e«:.a!(i2t;E)a     [*331-13] 

-* 
*33114.     h:.\  =  K\J  Cnv"« .  D  :  a e conx'/e .  =  .  a e s'a"« .  s'\'a  =  s'G."k 

[*3311] 

«331'2.       \- :. K 6 FM .  a e coax'K . X e s'G."tc. B € K .  D  •.B'a  =  a.  =  .R'a;  =  x 
Dem. 
h.*331-ll.         DI-:Hp.D.(a<Sf).5feK.L(/SwS)a  (1) 

l-.*330-5.  :)i-:B.^.SeK.x  =  S'a.R'a  =  a.D.E'x  =  S'R'a 

[Hp]  =iS'a 

[Hp]  ^  =^  (2) 

I- .  *330-56  .         D  h  :  Hp  .  (Sf  e  «.  a;  =  /S'a .  iJ'a  =  a .  D  .  -R'a;  =  5'JS'a 
[Hp]  =S'a 

[Hp]  =«;  (3) 

h  .  (1) .  (2) .  (3) .  D  h  :.  Hp .  D  :  E'a  =  a .  D  .  i2'a;  =  a;  (4) 

Similarly  1- :.  Hp.  D  :i2'a;  =  a;.  D  .i2'a  =  a  (5) 

h  .  (4) .  (5)  .  D  h  .  Prop 

*331-21.     h:.Ke  FM .  a  e  conx'«  .ReK."^:  R'a  =  a .  =  .  /  f  s'CI"«  =  iJ 

Dem. 

|-.*331-2.    Dh:Hp.E'a  =  a.D./rs'a"«  =  E  (1) 

h.*33M.    Dl-:Hp./|^s'a"«  =  i2.D.i2'a  =  a  (2) 

h  .  (1)  .  (2)  .  D  1- .  Prop 

*331-22.     \-:KeFM  conx  .  D  .  J  I'  s'Q"*  e  « 
Dem. 

h  .  *331-11  .  D  h  :  Hp  .  a  6  conx'*  .  D  .  (ai?)  .ReK.R'a  =  a         (1) 
I- .  (1) .  «331-21  .  D  h  .  Prop 


SECTION  B]  connected  FAMILIES  363 

*331 23.     \-:KeFM  conx  .  D  .  k  C  Rl'/  w  Rl'J 
Dem. 

h  .  *331-221  .Df-:Hp.iJeK.a!jBn/.D.iJG/:DK.  Prop 

*331'24.     l-:«;e^Jfconx.D.«wCav"«C«:.      [*330-42  .  *331-22] 

*331-25.     V'.KeFM  conx  -  1 .  3  .  g  !  «  n  Rl'J"    [*331-22-23] 

*331-26.     h  :  «  6  ^JW  conx  -  1 .  D  .  s'«,  s'ki  ~  e  k. 
Dem. 

V  .  *331-22-25  .  D  f- :  Hp .  D .  (ga,  R,8,x).R,SeK.  aRa  .aSoB.a^x. 
[*71-172.*41-11]  D.s'/«;~6l->l.  (1) 

[*331-24]  D.s'/«:.~6l-*l  (2) 

h  .  (1) .  (2) .  *330-52  .  D  h  .  Prop 

*331-31.     h  : .  /c  e  ^ilf .  a  e  coux'k  .  as  e  s'(I"ic .  P  e  k  .  iV  e  k.  .  D  : 

P'a  =  N'a.  =  .P'os  =  N'x 
Dem. 

h.*331-ll.*330-4.D 

\-:B.-p. 0.('a.Q,Ii,S).Q,R,S€K.iD(QKiQ)a.N  =  R\8  (1) 

I- .  *330-5  .  D 
y:-Kp.Q,R,Seic.a!=Q'a.N=R\S.P'a  =  N'a.D.P'x  =  Q'R'S'a 

[*330-56]  =R'Q'S'a 

[*330-5]  ^R'S'Q'a 

[Hp]  =-ZV'a'  (2) 

l-.*330-56.3 

\-:-a-p.Q,R,SeK.!v  =  Q'a.N'=R\8.P'a  =  N'a.:i.P'x  =  Q^R'8'a 

[*330-5]  =1'^'?"" 

[*330-56.Hp]  ^R'S'Q'a 

[Hp]  =-ZV'«'  (3) 

h.(l).(2).(3).DI-:Hp.P'a  =  i\r'a.D.P'a!=iV'a;  (4) 

Similarly  h  :  Hp .  P'a;  =  iV'a; .  D .  P'a  =  iV'a  (5) 

h  .  (4) .  (5) .  D  h  .  Prop 
*331-32.     K  :.  K  6  .fif  conx  .Pe/e.iVe/e.  .D:a!Pni\/".  =  .P  =  JV 

Dem. 
I- .  *331-31 .  D  h  ::  Hp .  a  e  conx'« .  D  :. »,  y  e s'a"/«; .  D  : 

P'a!='N'x.  =  .P'a  =  N'a.  =  .P'y  =  N'y    (1) 
I- .  (1) .  (*331-02) .  D  h  : .  Hp .  3  : a;, 2/ e s'Q"* . P'a;  =  N'a!.-^.  P'y  =  iV'i/ : 
[*33-45.*72-94]  D:a!PnJV.D.P  =  JV  (2) 

h  .  *33ri2 .  *33016  .  D  I- :.  Hp  .  D  :  P  =  iV .  D  .  a !  P  n  J\^  (3) 

H  .  (2) .  (3) .  D  h  .  Prop 


364  QUANTITY  [part  VI 

*331-321.  h  :.  «  e  ^ilf  conx  .P,QeA:.D:a!PnQ.  =  .P  =  Q     [*331-32-24] 

*331-33.     \-:KeFM  conx  ."H.s'k  \"k  C  k  w  Cnv"* 

n 

Dem. 
I- . *33111 .  D F- :.  Hp . D  :  (ga)  :P,Qe>c.  Dp,Q . (gii!) . (P'Q'a) (R^JR)a     (1) 
h  .  *330-5  .  D 

I- :  Hp .  P,  Q,  JB  6  «.  P'Q'a  =  E'a .  <S  e  «.  y  = /Sf'a .  3  .  P'Q'y  = /S"P'Q'a 
[Hp]  =  /Sf'JJ'a 

[*330-5.Hp]  =  B'y  (2) 

h.*330-56.D 

h  :  Hp . P, Q,  JB 6 « . P'Q'a  =  R'a.86ic.y  =  S'a.D  . P'Q'y  =  >S'P'Q'a 
[Hp]  =  ^'iJ'a 

[*330-56.Hp]  =R'y  (3) 

h  .  (2) .  (3) .  *33M1  .D\-:Kp.P,Q,BeK.  P'Q'a  =  R'a  .D.P\Q  =  R        (4) 
Similarly  ^ -.Kp  .P,Q,ReK.P'Q'a=R'a.D  .P\Q  =  R         (5) 

|-.(1).(4).(5).D 
l-:.Hp.P,Qe«.D:(aiS:):i26«::P|Q  =  E.v.P|Q  =  E:.Dl-.Prop 

*331*4.       f  :  «  e  PJfconx  .  a;,  2/  e  s'(I"/«: .  D  .  (gZ)  .LeK,.x  =  L'y 

Dem. 
V.^^^l^\l.^^V'.B.p.■:i.{'^a,R,8).R,8eK.x{R^aR)a.y{8\JS)a         (1) 
h.*330-56.Dh:Hp.E,5(e/«:.«  =  P'a.2/  =  /S'a.D.a;  =  ^'E'2/. 
[*330-4]  D.(ai).i;e«:..a!  =  i'2/    (2) 

I- .  *331  •24-33  .  3 

V:'&p.R,8eK.x  =  R'a.y  =  S'a.-:i.R\SeK,.x={R\S)'y  (3) 

h.*331  •24-33.  D 

V:B.-p.R,8eK.x  =  R'a.y  =  8'a.-^.R\8eK,.x  =  (R\8)'y  (4) 

h  .  *330-4  .  D 

t-:Hp.P,^6«.a;  =  E'a.2/  =  ^'a.D.^|/SeA;,.a!  =  (E|iS')'^  (5) 

I- .  (1) .  (2) .  (3) .  (4) ,  (5) .  D  h  .  Prop 

*331-41.     V-.KeFM  conx  .  D  .  s'/«r.  =  (s'Q"*)  t  (s'a"*)    [*331-4] 

*331^42.     h  :.  K  6  Pif  conx  .L,M  e  k,."^ -.^X  L  f\M  .  =  .  L  =  M 
Dem. 
V  .  *330^6 .  *331-12  .Df-:Hp.Z  =  ilf.D.a!inif  (1) 

I- .  *331-4 .  D 
^  :Rp .  L'x  =  M'x  .'El  L'y  .0  .{"^N) .  N  e  K,.  N'x  =  y  .El  L'y . 


SECTION  B]  connected   FAMILIES  365 

[*330-63]  D .  (giV)  .Neic,.N'x  =  y  .L'y  =  N'L'x 

[Hp]  .  =N'M'x 

[*330-63]  =M'N'x 

[*1312]  ■^.L'y  =  M'y  (2) 

Similarly      V:B.^.L'x  =  M'x.^\M'y  ."^  .L'y  =  M'y  (3) 

h  .  (2) .  (3) .  *7l-35  .Dh:Hp.a!Z<Sil/.D.i;  =  Jlf  (4) 

h .  (1) .  (4) .  D  I- .  Prop 

*331-43.     h  :  «  6  FM  conx  .x,ye  s'Q."k  .2.M(MeK,.  xMy)  e  1 
Dem. 

l-.*33r4.    DI-:Hp.3.(aJl/).(Jl/e«,.a;M2/)  (1) 

1- .  *331-42 .  D  h  :  Hp .  i,  if  6  «. .  xMy .  xLy  .D.L  =  M  (2) 

h  .  (1)  .  (2)  .  D  h  .  Prop 

*33144.     \-:.K6FMconK.P,QeK.D:'3^lPnQ.=  .P  =  Q    [*331-42-24] 

*33r45.     \-:.  KeFM conx. L,M,N 6 K,.':): 

•3_lL\MnN.  =  .L\M  =  N[a'(L\M) 
Dem. 

H. *330611.  DhiHp.Z  I  if  =  iV'['a'(i|Jf).D.  a  !Z|  If  niV^  (1) 

l-.*330-63.    D  \- :B.^.  L'M'x  =  N'x. El  L'M'y.XeK,.y  =  X'x.:>. 

L'M'y  =  L'X'M'x .  E !  L'M'x .  E !  L'X'M'x  .ElX'x. 

[*330-63]  D.  L'M'y  =  X'L'M'x. El  X'x. 

[Hp]  O.L'M'y  =  X'N'x.ElX'x. 

[*330-63]  D  .  i'Jlf'2^  =  N'X'x 

[Hp]  =i\^'2/  (2) 

I- .  (2) . *331-4 .  D  H  :  Hp . L'M'x  =  N'x . ye a'(L | if ) .  D . L'M'y  =  N'y       (3) 

h  .  (1) .  (3) .  D  h  .  Prop 

*331-46.     \-:.'B.p*B31-4<5.D:M\L  =  N^a'(M\L).  =  .L\M=N\-a'(L\M) 

Dem. 
h  .  *330-642-63  .D\- ■.Rf.L\M=N\-  a'(L  \M).D.  (ga;) .  M'L'x  =  N'x . 
[*33r45]  ':>.M\L  =  N[a'{M\L)  (1) 

Similarly  \-:HTp.M\L  =  N[a'{M\L).D  .L\M=N[a'{L\M)   (2) 

f- .  (1) .  (2) .  3  h  .  Prop 

*33r47.     \-:KeFMconx.L,M6K,.D.('s^N).NeK,.L\MQ.N.M\LQN 
[*331-46-45-4] 

*331-48.     h  :  K  e  FM .  i  e  «i .  g  !  conx'w  n  O'i  .  D  .  i  e  k  w  Cnv"« 

h  .  *330-41 .  D  h  :.  Hp .  a  e  conx'«  n  C'i .  D  :  i,  i  e  «. :  E 1  i'a .  v .  E !  X'a : 
[*331-11]       D  :  X,  Z  e  «. :  (g-B) :  E  e  /c  u  Ciiv"/«: :  i'a  =  iJ'a .  v .  Z'a  =  jR'a : 
[*331-24-42]  D  :  (aii) :  i2  e  «  w  Cnv"«  :i:  =  iJ.v.i  =  iE:.3h.  Prop 


366  QUANTITY  [part  VI 

*331-5.       \-:k6  FM  conx  .  P  ex  .  Le  k,.  0  .  L\P,P\L€k, 
Bern, 
y  .  *331-33  .  D 

h:'Rp.Q,Reic.L  =  Q\R.D.('^8).SeK^jCnv"K.L\P=Q\S  (1) 

h.*330-4.Dh:Hp(l).^f6«.i|P  =  Q|/S'.D.i|P€K.  (2) 

f- .  *34-2  .  D 

\-:B.^{l).SeCm"K.L\P  =  Q\8.D.i'^T).TeK.L\P  =  Cnv'(T\Q). 
[*331-33]  D.Z|Pe«wCnv"«. 

[*33r24]  D.L\Peic,  (3) 

h- .  (1)  .  (2) .  (3)  .  *330-41  .  D  h  .  Prop 

*331-51.     h  :  K  e  FM  conx .  P  e  « .  D  .  Pot'P  C  «.  [*331-5 .  Induct] 

*33r52.     \-:KeFMcons..P,QeK.LeK,.O.P\L\QeK,    [*331-5] 

*331-53.     \-:k6  FM  conx  .  P,  Q  e  k  .  /a,  o-  e  NO  induct .  0  .  P"  \  Q' e  k, 
[*331-5  .  Induct .  *331-51 .  *330-43] 

*331-54.     h-.KeFM  conx  ,  P  e  «.  D  .  Pot'P  C  «  o  Cnv"A: 
Dem. 
h  .  *330-711  .  D  h  :  Hp  .  a  e  conx'«  .  Q  e  Pot'P  .  D  .  E  !  Q'a  . 
[*:331-11]  D  .  (gT)  .  2'  e  «  w  Cnv"«  .  Q'a  =  2"a . 

[*331-51-42-24]  D  .  Q  e  «  w  Cnv"«  :  D  I- .  Prop 

eie331'55.     I- :  «  e  PM  conx  .P,Qeic,.pe  NC  induct .  D  . 

(P I  Q)"  G  P"  I  Q" .  P"  I Q"  6  «.     [*330-73  .  *331-53] 

*331-56.     h  :  «  ePJf  conx  .Leic,  .MeVot'L  .  D  .  ('^N)  .NeK^.MGN 
[*331-55 .  *330-4] 


*332.     ON  THE  REPRESENTATIVE  OF  A  RELATION  IN  A  FAMILY. 

Summary  of  *332. 

We  saw  at  the  end  of  the  last  number  (*331"56)  that  any  power  of  a 
member  of  k.  is  contained  in  a  member  of  «,.  When  a  relation  is  contained 
in  a  member  of  «„  we  call  this  member  the  "  representative  "  of  the  relation 
in  the  family.  For  purposes  connected  with  the  application  of  ratio,  the 
"  representative  "  is  an  important  function  of  a  relation,  especially  when  the 
relation  concerned  is  a  power  of  a  member  of  «,.  By  the  definition  of  ratio 
(*.3b301),  we  shall  have  L (p/a)  Jlf  if  g ! i'' n  Jlf "  and  p  Prm  o-.  Now  if  i' 
and  M''  each  have  a  representative,  then  they  must  have  the  same  representative 
if  g  !  X"^  n  M"  (by  *331'42).  Hence  we  are  enabled  to  substitute  an  equality 
for  '^l  L'  r\  Ml"  in  dealing  with  ratios  of  members  of  «,.  The  elementary 
properties  of  representatives  are  dealt  with  in  the  present  number. 

We  denote  the  representative  of  P  in  the  family  k  by  "  rep^'P."  In  order 
to  insure  E  !  rep,'P  under  all  circumstances,  we  do  not  define  rep.'P  as  the 
only  member  of  «t  which  contains  P,  but  as  the  logical  sum  of  the  class  of 
members  of  «.  which  contain  P,  i.e.  we  put 

*33201.     rep/P  =  sV' '^  G'P)    Df 

*— 
In  a  connected  family,  if  P  is  not  null,  «i  r\  d'P  cannot  have  more  than 

one  member  (*332"21),  and  therefore  the  representative  of  P,  if  it  is  not  null, 

must  be  a  member  of  «,  (*332"22).     If  P  is  a  member  of  k^,  it  is  its  own 

representative  (*332-241). 

We  prove  in  this  number  that,  if  P,  Q,  R,...  have  existent  representatives, 
the  representative  of  their  relative  product  (unless  this  product  is  null)  is 
the  representative  of  the  relative  product  of  their  representatives  (*332-37). 
Among  other  important  propositions  in  this  number  are  the  following : 

*332-32.  I-  :  K  e  FM  conx  .  Z,  Jf  e  «. .  3  .  rep/(Z  |  M)  =  rep/(Jlf  |  L) 

*332-51.  y-.KeFM  conx  .  P,  Q  e  «  .  D  .  rep/(P  |  Q)  =  Q  |  P 

*33253.  h-.Ke  FM  conx  .  P,  Q  e  /e .  p  e  NC  induct .  D  .  rep/(P  |  Q)"  =  P"  |  Q" 

*332-61.  \- :  Ke  FM  conx  .  i  e  k.  .  D  .  rep^c^'Potid'^  C  «. 


368  QUANTITY  [part  VI 

*332-8.       h-.KsFM  conx  .  i,  ilf  e  «, .  ^  e  NO  ind  .  D  . 

rep/(Z|M)^  =  rep/(if|ifO 

*332-81.     h  :  «  6  ^Jf  conx  .  v,  a-  e  NO  ind  -  t'O  .  Z  e  «, .  D  . 

rep^'i''^^""'  =  rep^'(rep^'X-)'' 


*33201.     rep/P  =  s'(«,nC'P)     Df 

*332-l.       h  .  rep/P  =  s'(«.  r,*C'P)  =  ^  {(gi)  .Lek^.PQL.  xLy] 
[(*332-01)] 

*33211.  h  :  a  !  rep/P  .':i.PQ.  rep/P  [*332-l] 

*33212.  h  :  a  !  rep/P .  D  .  g  !  («,  n^'P)  [*3821] 

*33213.  h  .  rep/A  =  s'/e.  [*332-l] 

*33214.  h  :  P  e  Q  .  D  .  rep/Q  G  rep/P  [*3321] 

*33215.  h  .  rep/P  =  Cnv'rep/P 

h  .  *330-41  .  D  h  .  «,  n  G'P  =  Onv"(«.  n^'P)  (1) 

I- .  (1)  .  *332-l .  D  I- .  Prop 

*33216.     h  :  «  =  I'A  .  3  .  rep/P  =  A     [*3321] 

*332-2.       Vi.KeFM-  I'l'k  .  D  :  g  !  («,  n  Q.'P)  .  =  .  g  !  rep/P 
i)em. 

h  .  *380-6  .  D  h  :  Hp  .  a  !  («.  n  V'P)  .  D  .  g  !  (k,  r^'o.'P)  -  I'A  . 
[*332-l]  D .  a !  rep/P  (1) 

h  .  (1) .  *33212  .  D  h  .  Prop 

*332-21.     h  :  K  e  PM  conx  .  g  !  P  .  D  .  («.  n  G'P)  e  0  u  1 

h  .  *331-42  .Dh:Hp.L,il/6«,.PGi.PGif.D.i  =  ilf:Dl-.  Prop 

*332-22.     hz.Ke FM conx  .  g  !  P  .  D  :  rep/P ek^.v.  rep/P  =  A 
jDem. 

h  .  *332'21-12  .  D  h  :  Hp  .  a  !  rep/P  .  D  .  («,  n^'P)  e  1 . 

[*3321]  D  .  rep/P  e  «. :  D  h  .  Prop 

<— 
*33223.     I- :.  keFM conx  .±IP.D:  rep/P e «. .  =  •  g  !  («. n  G'P) 

h  .  *332-22-2  .  D  h  :  Hp  .  rep/P  ~  e  «. .  D  .  («.  n^'P)  =  A         (1) 
I- .  *330-6  .       D  1- :  Hp  .  rep/P  e  «, .  D  .  a  !  rep/P . 

[*332-2]  D.a!(«.AG''P)  (2) 

h  .  (1)  .  (2)  .  D  h  .  Prop 


SECTION  B]      on   the   REPRESENTATIVE   OF   A   RELATION   IN   A   FAMILY        369 

*332-231.  hi./ceiWconx-l  .D:rep/PeKi.  =  .a!P.a!(«;.n  G'P) 
Dem. 

f- .  *331-26  .  D  t- :.  Hp  .  D  :  rep/P  e  k,  .  D  .  rep/P  =t=  s'lc, . 
[*332-13]  D .  P  +  A  (1) 

I- .  (1) .  *332-23  .  D  I- .  Prop 

*332-232.  h  :. «  6 ^ilf  conx  - 1 .  D  :  rep/P  e  «;. .  = .  g !  P .  g  !  rep/P 
[*332-231-2] 

*332'24.     VuKeFM  conx .  g !  P .  3 :  X  e  («,  n  G  'P) .  = .  g  !  rep/P .  rep^'P  =  L 

Dem. 
I- .  *332-21-l .      DI-:.Hp.D:i6/<:.n^'P.D.rep/P  =  Z  (1) 

l-.*332-2.  Dh:.Hp.D:i6/«;,ne'P.D.a!rep/P  (2) 

V  .  *332-22  .         D  h  :.  Hp .  D  :  a !  rep/P .  D  .  rep/P e  k.  : 
[*13-12]  D:a'.rep/P.rep/P=L.D.Z6K.  (3) 

h  . (3). *33211 .  D 1- :.  Hp .  D  :  a  !  rep/P . rep«'P  =  i .  D  .  L 6(«r. n  G'P)     (4) 
h  .  (1)  .  (2) .  (4) .  D  h  .  Prop 

*332-241.  h-.iceFM  conx  .  P  e  «. .  D  .  P  =  rep/P 
Dem. 

f- .  *332-24  .DI-:.Hp.a[!P.D:P6«:.nG'P.  =  .a!  rep/P .  rep/P  =  P : 

[Hp]  D:rep/P  =  P  (1) 

l-.*330-6.    Df-:Hp.~a:!P.D./e  =  t'A. 

[*332-13]  D.rep/P  =  A  (2) 

I- .  (1) .  (2)  .  D  1- .  Prop 
*332-242.  hzKe  FM  conx  .  g  !  P  .  g  !  rep/P  .  D  .  rep/P  =  rep/rep/P 

i)em. 

I- .  *332-22  .  D  I-  :  Hp  .  D  .  rep/P  e  «,  (1) 

t- .  (1) .  *332-241 .  3  h  .  Prop 

*332-243.  h-.KeFM  conx  .  g  !  P  .  P  G  7  f  s'a"«  .  D  .  rep/P  =  71'  s'tt"* 
[*332-24 .  *330-43] 

*332-244.  h  :.  K  6  Pilf  conx  -  1  .  D  : 

a  !  P  .  P  G  7 1^  s'a"K  .  =  .  rep/P  =  7  ^  s'a"« 
7)em. 
h  .  *331-26  .  *330-43  .  D  h  :.  Hp  .  D  : »'«,  +  7  p s'a"«  : 

[*33213]  D:rep/P  =  7r5'a"«.D.a!P  (1) 

|-.*33211.  Dl-:.Hp.D:rep/P  =  7rs'a"«.D.PG7rs'a"«    (2) 

h  .  (1) .  (2) .  *332-243  .  D  f- .  Prop 

H.  &w.  III.  24 


370  QUANTITY  [part  VI 

*332-25.     \-:k6FM conx  .  g  !  P .  g  !  rep/Q  .PdQ.D.  rep/P  =  rep/Q 

Dem. 

h  .  *332-ll .  3  h  :  Hp  .  3  .  P  e  rep/Q  (1) 

b  .  *332-22  .  D  1- :  Hp  .  D  .  rep/Q  e  k,  (2) 

h  .  (1) .  (2)  .  *332-24 .  D  1- .  Prop 

*332-26.     f- :  «  6  PMconx .  g  !  P  n  Q .  g  !  rep/P .  g !  rep/Q .  D . 

rep/P  =  rep/Q  =  rep/(P  n  Q)    [*332-26] 

*332-27.     h  :  K  e  Pilf  coax  .  a !  P .  a !  rep/Q .  g !  Q  n  rep/P .  D  .  rep/P  =  rep/Q 

Dem. 

h  .  *332-ll .  3  h  :  Hp  .  D  .  Q  G  rep/Q  . 

[Hp]  3  .  a  !  rep/P  n  rep/Q  (1) 

h  .  *332-22  .  D  h  :  Hp  .  D  ,  rep/P,  rep/Q  e  k,  (2) 

h  .  (1)  .  (2)  .  *331-42  .  3  h  .  Prop 

*332-31.     h  :  /c  e  PM  conx .  Z,  M  e  k.  .  3  .  rep/(i  \M)eK, 
[*330-611 .  *331  •47-12  .  *332-23] 

*332-32.     h  :  «  e  FM  conx  .L,MeK,.'D.  rep/(Z  |  ilf )  =  rep/( if  |  L) 
[*330-611 .  *331-47-12  .  *332-24] 

«332-33.     I- :  /t  e  Pif  conx .  rep/P,  rep/Q  e  «. .  g  !  P  |  Q .  3  .  rep/(P  |  Q) 

=  rep/{(rep/P)  |  (rep/Q)}  =  rep/{(rep/P)  |  Q}  =  rep/{P  |  rep/Qj 
Dem. 
h  .  *330-6  .  *331-12  .  3  h  :  Hp .  3  .  a !  rep/P .  g !  rep/Q . 
[*332-ll]  3.PGrep«'P.QGrep/Q.  (1) 

[Hp]  3.a!P|rep/Q  (2) 

l-.*330-6.*332-31..(l).3 

h  :  Hp .  3 .  P I  rep/Q  G  rep/P  |  rep/Q .  g  !  rep/{rep/P  |  rep/Q} . 
[(2).*332-25] 

3  .  rep/(P  I  rep/Q)  =  rep/{rep/P  |  rep/Q} .  g  !  rep/(P  |  rep.'Q)     (3) 
Similarly  h  :  Hp  .  3  .  rep,'{(rep/P)  |  Q}  =  rep/{(rep/P)  |  (rep/Q)}  (4) 

l-.(l).3  l-:Hp.3.P|QGP|rep/Q. 

[Hp.(3).*332-25]  3  .  rep/(P  |  Q)  =  rep/(P  |  rep/Q)  (5) 

h  .  (3) .  (4) .  (5) .  3  h  .  Prop 
*332-34.     l-:Hp*332-33.3.rep,'(P|Q)e/«;.    [*332-3r33] 

*332-35.     \-:KeFMcoQx..L,M,NeK,.D. 

rep/(i  \M\N)  =  rep/{Z  |  rep/(if  |  iV)}  =  rep/[{rep/(Z  |  M)}  |  iV] 
[*330-613.*332-31-33] 
*332-36.     h  :Hp*332-35.  3.  rep/(i;  I  if  I  iV)  6  «.    [*332-35-31] 


SECTION  B]      on   the   REPRESENTATIVE   OF   A   RELATION   IN   A   FAMILY        371 

*332-37.     i-ZKeFM  oonx  .  rep/P,  rep/Q,  rep/i?  eK,.'3^\P\Q\R.O. 
rep^^P  I  Q I  -R)  =  rep/{rep/P  |  rep/Q  |  rep/i2} 
=  rep/{rep«'P  j  rep/i?  |  rep«'Q} 
=  rep/{rep,'Q  |  rep,'i?  |  rep/P} 
Dem. 

y  .  *332-38 .  3 

I- :  Hp  .  D  .  rep/(P  |  Q  |  i?)  =  rep/[rep/P  |  rep/(Q  |  R)] 
[*332-33]  =rep/{rep,'P|rep/(rep/Q|rep/iJ)}       (1) 

[*332-35]  =rep<'{rep/P|rep/Q|rep,'i?}  (2) 

h  .  (1) .  *332-32  .  D 

I- :  Hp .  D .  rep/(P  |  Q  \  R)  =  rep/{rep/P  |  rep/(rep/P  |  rep/Q)} 
[*332-35]  =rep/{rep/P|rep/i2|rep/Q}  (3) 

>  .  (1) .  *332-33-32  .  D 

h  :  Hp .  D  .  rep/(P|  Q\R)  =  rep/[{rep/(rep/Q  |  rep/iJ)}  |  rep/P] 
[*332-35]  =rep/{rep/Q|rep/P|rep/P}  (4) 

I- .  (2) .  (3) .  (4) .  D  h  .  Prop 

*332-41.     l-i./eeP^conx.Z.JIf.iVeK.  .D: 

rep/(Z  I M)  =  rep/(i  |  i\^)  .  =  .  Jlf  =  iV 
J5em. 

I- .  *34-34  .  D  1- :  Hp .  rep/(i:  |  M)  =  rep/(Z  |  iV) .  D  . 

L I  rep/(i  I  Jlf )  =  i  I  rep/(L  |  N) . 

[*332-35]  D  .  rep/(i  |  i  |  if )  =  rep/(i  |  £  |  iV) . 

[*330-31]  D  .  rep.'Jf  =  rep.'iV . 

[*332-241]        O.M  =  N::>\-.  Prop 

*332-411.  hz.KeFM  conx  .L,M,N€k..D:  rep/(ilf  |  i)  =  rep/(i\^  |  £) .  s .  M  =  iV 
[*332-32-41] 

*332-42.     \-:KeFM  conx  .  i,  M  e  «. .  D  .  CQv'rep/(Z  |  M)  =  rep/(2  [  M) 
[*332-32-15] 

*332-43.     h:.KeFMconx.L,M,NeH:,.0: 

N  =  rep/(X \M).  =  .L  =  rep/(iV \M).  =  .L^ rep/(Jtf  |  JV)  . 

=  .M=  rep/(iV  I  i) .  =  .  il/  =  rep/(i  |  N) 
Dem. 
h  .  *332-35  .  *330'41 .  D 

h  :  Hp .  iV  =  rep/CZ  |  i/) .  D  .  rep.'(i  |  if  j  M)  =  rep/(iV  |  M) . 

[*330-31]  D  .  rep/Z  =  rep/(iV  |  M) . 

[*332-241]  D.L  =  rep/(N'\M).  (1) 

[*332-32.*330-41]  D.L  =  rep/(^  1  iV)  (2) 

H  .  (1) .  *330-41 .  D  f- :  Hp .  i  =  rep/(iV|  M) .  D  .  iV=  rep/(Z/ 1  if )    (3) 

h.(l).(2).(3).Dl-.Prop 

24—2 


372  QUANTITY  [part  VI 

*332-44.     \-:.KeFMconx.L,M,N€K,.D:iep,'{L\M)  =  N.  =  .L\MQN 
[*330-6 .  *332-24-31] 

*332-45.     h :.  Hp *332-44 .  D  :  rep/(X  \M)  =  N.  =  .  rep/(i  \M\M)  =  I ^s'a"K 
Dem. 

V  .  *332-35  .  D  h : .  Hp  .  D :  rep/(Z  |  J/)  =  iV" .  D .  rep/(Z  \M\N)  =  rep/(iV  | N) 
[*332-24.*330-31]  =I\s'G."k     (1) 

I- .  *332-35  .  3  I- :.  Hp .  D  :  rep.'(i; \M\  N)  =  I\s'a"K  .  D  . 

rep/[{rep/(i:  |  if)}  j  i/']  =  /  T  s'a"/c . 
[*332-31-43]  D.rep/(Z|if)  =  rep/iV 

[*332-241]  =iV  (2) 

h  .  (1) .  (2) .  D  t- .  Prop 

*332-46.     h  :.  «  e  FM  conx  .  L,M  e  k,.D  :  L\M  dl  .=  .  L  =  M 
Dem. 

h  .  *330-43-611 .  *332-243  .  D 

l-:Hp.Z|MG7.D.  rep/(i  |  il/)  =  /  T  s'<^"«  ■ 
[*332-43.*330-43]  D  .  Z  =  rep/^ 

[*332-241.*330-41]         =i^  (1) 

|-.*rri91.Dh:Hp.Z  =  if.D.i!JlfG/  (2) 

F- .  (1) .  (2) .  D  h  .  Prop 

*332-51.     h  :  /c  6  J?Wconx  .  P,  Q  e  «  .  D  .  rep/(P  \Q)  =  Q\P 
Dem. 

I- .  *331-24  .  *332-32  .  D  h  :  Hp .  D .  rep/(P  |  Q)  =  rep/(Q  |  P) 
[*332-241]  =Q|P:DI-.Prop 

*33252.     h:  ice  FM  conx.  P,Q,R,8eK.0.vep/{P\Q\R\S)  =  Q\S\P\R 
Bern. 

h  .  *330-613  .  *331'12-124 .  D  h  :  Hp .  D  .  g  !  (P  |  Q)  |  (P  |  ;S) . 

[*332-33-51]  D.rep/(P|Q|P|^)  =  rep/(Q|P|,SiP)    (1) 

h  .  *330-561-611  .Df-:Hp.D.Q|P|S|PGQ|,S|P|P.a[!Q|P|^|P        (2) 

l-.*331-52.  D(-:Hp.D.Q|is|P|P6/e,  (3) 

h  ,  (1) .  (2) .  (3) .  *332-24 .  D  h  .  Prop 


SECTION  B]      on   the  REPRESENTATIVE  OF  A  RELATION   IN  A  FAMILY       373 

*332-53.     h-.KsFM  conx  .  P,  Q  e  « .  p  e  NC  induct .  D  .  rep/(P  |  Q>'  =  P"  |  Q" 
Bern. 

H.*330-624.Dh:Hp.D.a[!(P|Q>'  (1) 

H.*330-73.    Df-:Hp.D.(P|Q)pGP''|Q''  (2) 

h.*331-53.    Dh:Hp.D.P''|Q''6«.  (3) 
h  .  (1)  .  (2) .  (3) .  *332-24  .  D  f- .  Prop 

*332-61.     \-:KeFM  conx  .  i  e  /e, .  D  .  rep/'Potid'i  C  «. 
Dem. 

h  .  *332-243  .  *330-43 .  D  f- :  Hp .  D  .  rep/(/  f  C'L)  e  «,  (1) 

h  .  *332-31 .  D  h  :  Hp .  Jf  6  Pot'Z .  rep/M  e  k.  .  D  .  rep/fiS  |  rep/if }  e  «.     (2) 
h  .  *330-624 .  D  h  :  Hp .  Jlf  e  Pot'i .  D  .  g  !  Z  |  Jlf  (3) 

f- .  (2) .  (3) .  *332-83  .     D  h  :  Hp  (2) .  D  .  rep/(i  |  if )  e  «.  (4) 

h  .  (1) .  (4) .  Induct .  D  I- .  Prop 

*332-62.     h:«6J^ilfconx.A~6Pot'P.a!rep/P.D. 

rep/'Pot'P  C  rep/'Pot'rep.'P 
Dem. 

h  .  *332-242  .  D  h  :  Hp  .  D .  rep^'P  =  rep/rep/P  (1 ) 

|-.*332-22.    Dh:Hp.D.rep/P6«.  (2) 

h  .  (2) .  *332-61 .  D 

I- :  Hp .  Q  6  Pot'P .  rep/Q  e  rep/'Pot'rep/P .  D  .  rep/Q  e  k.  (3) 

h  .  *91-36  .      D  h  :  Hp  .  Q  6  Pot'P .  D  .  g  !  P  |  Q  (4) 

I- .  (2) .  (3) .  (4)  .  *332-33  .  D  f- :  Hp  (3) .  D  .  rep/(P  |  Q)  =  rep/{rep/P  |  rep/Qj . 

[Hp.*91  -36]                                              D .  rep/(P  |  Q)  e  rep/'Pot'rep/P  (5) 

h  .  (1)  .  (5)  .  Induct  .31-.  Prop 

*332-63.     h  :  Hp  *332-62  .  D  .  rep/'Pot'P  C  k, 

Bern. 

h  .  *332-22  .  D  f- :  Hp  .  D  .  rep/P  e  «.  (1) 

I- .  (1) .  *332-62-61  .  D  f- .  Prop 
*332-64.     V-.KeFM  conx .  rep/'Pot'P  C  k.  .  3 .  rep/'Pot'P  C  rep/'Pot'rep/P 

h.*331-26.*33213.DI-:Hp.«~el  .D.A~6Pot'P  (1) 

V  .  *330-6  .  *331-12  .    D  h  :  Hp .  3  .  A  ~  e  rep/'Pot'P  (2) 

K .  (1) .  (2) .  *332-62  .  D  h  :  Hp .  «~e  1 .  D  .  rep/'Pot'P C  rep."Pot'rep/P  (3) 
h  .  *330-43  .  *331-22  .  D  h  :  Hp .  k  e  1 .  D  . «.  =  l'{I  [  s'tt"*)  =  k  (4) 


374                                                               QUANTITY  [PABT  VI 

l-.(2).(4).  *33212.  DI-:Hp (4).  D.PG/ 1' s'a"«:.  (5) 

[*332-243-13.(4)]                             D  .  rep/P  =  /  f  s'Q"*  (6) 
h  .  (5)  .*301-3  .            D  h  :  Hp(4) .  D  .  Pot'P  =  i'P  . 

[(6).*332-241]                                    D .  rep/'Pot'P  =  I'rep/rep/P  (7) 
h  .  (3) .  (7)  .  D  h  .  Prop 


1-65.     h  :  A  ~  e  Pot'P .  g !  rep/P .  3 .  Pot'P  C  s'Rl"Pot'rep/P 
Dem. 
h.*332-ll.Dh:Hp.D.PGrep/P  (1) 

h  .  (1) .  D  h  :  Hp .  Q  6  Pot'P .  R  e  Pot'rep/P  .QGP.D.Q|PGi?|  rep/P     (2) 
h .  (1) .  (2) .  Induct .  D  h  .  Prop 

*332-66.     h  :  a  !  rep/P .  i?  e  Pot'rep/P .  D .  (gQ) .  Q  e  Pot'P  .QQR 
[Proof  as  in  *332-65] 

*332-67.     \-:KeFM coax  .  A ~ e Pot'P .  g !  rep/P .  D  . 

rep/'Pot'rep/P  =  rep«"Pot'P 
Dem. 
h  .  *332-242  .       D  h  :  Hp .  D .  rep/rep/P  =  rep«'P  (1) 

l-.*332-66.         DI-:.Hp.D:i?ePot'rep/P.D.a!P|P  (2) 

h  .  *332-22  .         D  h  :  Hp .  D  .  rep/P  e  k,  (3) 

h  .  (3) .  *332'61 .  D  h  :.  Hp  .  D  :  i?  6  Pot'rep/P .  D .  rep/JB  e  /r.  (4) 

h.(2).(3).(4).*332-33.D 

h  :.  Hp .  D  :  P  6  Pot'rep/P .  D  .  rep/(rep/P  |  rep/P)  =  rep/(P  |  rep,'P)       (5) 
h  .  *332-33  .  D  h  :  Hp  .  P  6  Pot'rep/P .  Q  e  Pot'P .  rep/P  =  rep/Q .  3  . 

rep/CQ  I P)  =  rep«'(rep/P  |  rep/P) 
[(5)]  =rep/(P|rep/P)  (6) 

h  .  (6) .  D  F- :  Hp .  P  e  Pot'rep/P .  rep/P  e  rep/'Pot'P  .  D  . 

rep/(P|rep/P)6rep/'Pot'P    (7) 
f- .  (1) .  (7) .  Induct .  D  h  :  Hp  .  3  .  rep/'Pot'rep/P  C  rep/'Pot'P  (8) 

h  .  (8) .  *332-62 .  D  h  .  Prop 

*332-71.     \- :  Ke  FM  conx  .L,MeK,.'^. 

rep/'Pot'(i  I  M)  =  rep/'Pot'rep/(i  |  M) 
Dem. 

h.*330-626.  DI-:Hp.D.A~6Pot'(Z|il/)  (1) 

h  ■  *332-31 .  *330-6  .  D  h  :  Hp .  3  .  g !  rep/(Z  |  M)  (2) 

h  .  (1) .  (2) .  *332-67  .  D  I- .  Prop 


SECTION  B]      on  the  REPEESENTATIVE  OF  A  RELATION   IN  A  FAMILY        375 

*332-72.     h  :  Hp  *332-7l .  D  .  rep,"Pot'(X  |  M)  C  «,    [*332-31-61-7l] 

*332-73.     \-:KeFM conx  .L.Meic,.'^.  Pot'(Z |  M) C s'Rl"Pot'rep/(X | M) 
[*332-65-31 .  *330-626] 

*332-74.     \-:KeFM  conx  .L,MeK,.Pe  Fot'M .  3  . 

rep/(Z  I P)  =  rep/(P  |  L)  =  rep/(Z  |  rep/P) 
Dem. 

h  .  *330-627  .  *332-61-33  .  D 

h  :  Hp  .  D  .  rep/(i  |  P)  =  rep/{i  |  rep/P}  (1) 

[*332-61-32]  =rep/{rep/P|Z} 

[*330-627.*332-61-33]  =  rep/(P  |  L)  (2) 

h .  (1) .  (2) .  D  h  .  Prop 

*332-75.     h  :  Hp  *332-74  .  D  .  g  !  rep/(i  !  P)    [*332-74-61-31 .  *330-6] 

*332-8.       I- :«  ei^iW  conx.  X,Jfe«:..|eNCind  .  D. 

rep/(X  I  My  =  rep/(Z«  |  ilfO 
Dem. 

I- .  *332-243  .  D 

I- :  Hp .  I  =  0 .  D  .  rep/(Z  |  ilf  )f  =  /  p  s'a"«  =  rep/(i^  1  Mi)         (1) 

h  .  *301-21 .  *332-83 .  *330-626  .  3 

h  :  Hp .  rep/(Z  I  Jf )« =  rep/(Z*  |  M^)  •  3  • 

rep/(i  i  Jf  )«+•!  =  rep/{i^  \Mi\L\M} 
[*332-37]  =rep/{Z«|rep/(il/^|X)|Jlf} 

[*332-32-33]  =  rep/ji*  |  rep/(i  |  Jl/^  |  -3^ } 

[*332-37]  =rBp,'{Zf+ci|^^+"'}  (2) 

H  .  (1) .  (2) .  Induct .  D  I- .  Prop 

*332-81.     h  :  «  e  FM  conx .  v,  o-  e  NO  ind  -  t'O .  X  e  k.  .  D  . 

rep/Z-"*""  =  rep«'(rep,'Z'')' 
Dem. 

h  .  *301-23  .  3  h  :  Hp ,  rep/X'"^"''  =  rep/Crep/i")' .  D  . 
rep/i'"'°'°"+°i'  =  rep/(Z'"'"''  |  L") 
[*332-33]  =  rep/iCrep/Z-)""  |  rep/i-} 

[*301-23]  =rep/(rep/Z'')''+«i  (1) 

h  .  (1)  .  Induct .  D  h  .  Prop 

*332-82.     hi/cePJfconx.i/eNCind-l'O.i.Jfe/e.  .3  . 

rep/(X  I  My  =  rep/{rep/(i  |  i/)}" 
Dem. 
h .  *332-33  .  3  h  :  Hp  .  rep/(i  |  My  =  {rep/(Z  \  M)}" .  3  . 

rep/(Z  I  My+''  =  rep/[{rep/(Z  I  ilf )}"  1  rep/(Z  |  M)] 
[*301-23]  =rep/{rep/(Z|ilf)}''+'i  (1) 

h  .  (1) .  *113-621 .  *301-2  .  Induct .  3  h  .  Prop 


*333.     OPEN  FAMILIES. 

Summary  of  *333. 

An  "  open  "  family  is  defined  as  one  such  that,  if  L  is  any  member  of  Ki 
which  is  not  contained  in  identity,  then  every  power  of  L  is  contained  in 
diversity,  i.e.  L^  G  J.  We  shall  often  have  occasion,  both  in  this  number 
and  later,  to  consider  the  class  k^  —  Rl'/,  and  in  later  numbers  we  shall  often 
have  occasion  to  consider  the  class  k  —  Rl'/.     We  therefore  put 

*33301.     k9  =  a:-R1'/    Df 

*333-011.  «.a  =  («,)a         Df 

Thus  K^g  consists  of  all  members  of  k^  which  are  not  contained  in  identity, 
i.e.  (if  «:  is  a  connected  family)  all  members  of  k^  except  I  \  s'(1"k.  The 
definition  of  an  "open"  family  is 

*33302.    ^ifap  =  ^ifn;i{s'Pot"«,gCRl'J}     Df 

From  the  point  of  view  of  the  application  of  ratio,  the  hypothesis  that 
a  family  is  open  is  very  important.  To  begin  with,  it  insures  (*333"18) 
that  K,g  consists  of  "numerical"  relations  (cf.  *300),  so  that  if  Xe^^g,  we 
have  Pot'i  =  fin'i  (*333-15),  and  in  virtue  of  *300'491,  the  existence  of 
open  families  implies  the  axiom  of  infinity  (*333"19). 

Again,  in  an  open  connected  family,  if  L,  M  are  two  different  members 

of  Ki,  all  the  powers  oi  L\M  are  contained  in  diversity,  and  therefore  the 
representatives  of  these  powers  are  members  of  Kjg ;  that  is,  we  have 

*333-22.     V-.Ke  FM  ap  conx  .L,M  sk^.L^M  ."^  .  rep/Tot'(Z  |  M)  C  /c^g 

It  follows  from  this  proposition  that,  with  the  above  hypothesis,  if  o-  is 

any  inductive  cardinal  other  than  0,  L'  \  M"  is  not  contained  in  identity,  and 
therefore  L"  ^  M"  and  rep^'X"  =j=  rep^'ilf".  Hence  by  transposition  we  obtain 
the  two  propositions : 

*333-41.     I-  :.  /c  6  FM  ap  conx  .  i,  il/  e  k.  .  o-  e  NO  ind  -  I'O  .  D  : 

rep/Z"  =  rep^^'ilf"  .=..L  =  M 


SECTION  B]  OPEN   FAMILIES  377 

*333-42.     h  :.  Hp  *333-41  .D  :  L' =  M"  .  =  .  L  =  M 

Hence  we  obtain  • 

*333-43.     J- :.  Hp*333-41  .::>  z'g.l  L' n  M' .  =  .  L  =  M 

This  proposition  shows  that  in  an  open  connected  family,  no  two 
members  of  «.  have  the  ratio  1/1  unless  they  are  identical.  Again  it 
follows  from  *333-41  that  if  L"^'''  and  M'^''^  have  the  same  representative, 
then  Z*"  and  M"  have  the  same  representative,  and  vice  versa,  i.e. 

*333-44.     \-:.K6FMa.p  conx  .  L,MeK, .  p,  o-,  t  e  NC  ind  -  t'O  .  3': 

rep^'Z'"^'"'  =  rep^'if'"''"" .  =  .  rep^'Z'"  =  rep^'Jl/" 

Hence  we  obtain  two  propositions  which  are  vital  for  the  application  of 
ratio,  namely : 

*333-47.     h  :.  «  6  ^ilif  ap  conx  .  Z,  JWe  k.  .  p,  o-  e  NO  ind  -  t'O  .  D  : 

rep^'Zp  =  rep^'M'  .  s  .  g  !  Z*"  n  ij/" 

*333-48.     h  :.  «  e  ZMap  conx  .  L,  M  e  k,.  p,  <t,t  e^G  ind  -  I'O  .  D  : 

On  comparing  this  last  proposition  with  the  definition  of  ratio  (*303'01), 
it  will  be  seen  that,  whether  p  is  prime  to  o-  or  not,  Z  has  to  M  the  ratio  a/p 
when,  and  only  when,  g  !  Z*"  A  Jf "•,  i.e.  (by  *333'47)  when,  and  only  when, 
rep^'Z*"  =  rep^'ilf". 

From  *333-47  it  follows  also  that,  if  Jlf  e  K,g,  M^  and  M'  will  not  have  the 
same  representative  unless  p  =  a  (*333"51),  i.e. 

*333'51.     I- :. «  e  FM aTp  conx .  if  e  /c^g .  p,  cr  e  NC  ind .  D  : 

reTp^'Mf  =  rep^'ilf'  .  =  .p=a 

From  this  it  follows  that  no  member  of  /e^g  has  any  other  ratio  to  itself 
than  1/1.     Again,  by  *333-47-48'51,  we  have 

«333-53.     1- :  K  eiW  ap  conx.  Z,  if  e  «,9.  a  iZ'nilf''.  a  iZ'n  if".  D. 

fiXea-=vXgp 

Hence  if  Z  and  M  have  the  two  ratios  p/a,  p,/v,  we  have  p/a  =  p,/v ;  that 
is,  no  two  members  of  /c^g  have  more  than  one  ratio. 

The  applications  of  ratio  indicated  in  this  summary  will  not  be  made  till 
the  following  Section ;  they  are  here  mentioned  in  order  to  show  the  utility 
of  the  propositions  of  the  present  number. 


*33301.     «:g=K-Rl'/  Df 

*333-011.  /c.g  =  (Og  Df 

*333  02.     FMap  =  FMf\1c  {s'Pot"«:.9  C  Rl'J}  Df 

*33303.     FM ap  conx  =  FM ap  n  FM conx  Df 


378  QUANTITY  [part  VI 

*3331.       h  -.Me  K^s.  =  .{^P,Q) .  P,Qe  K  .  M^P\Q  .±1  M  nj . 

=  .MeK,.^\MhJ  _        [(*333-01-011)] 

*333-101.  \-'..KeFMa.^.=  :KeFM:M6K,y.PeVot'M.0M.P'P(i.J: 

=  :/ceFM:MeK^S.-^M-M^^(lJ  [(*333-02)] 

*33311.     \-:KeFMa.Tp.LeK^Q.':>.LQ.J.L^(lJ.Lr,L  =  A.L^L.'3^lL 
[*3331101] 

*333-12.     \-:iceFMa.p  conx .  g !  rep/P .  g  !  P  n  J .  D  . 

rep/P  6  K,9  .  (rep,'P)po  G  J 
Dem. 

V  .  *332H  .  D  h  :  Hp  .  D  .  a  !  rep/P  n  J". 

[*332-22.*333-l]  D .  rep.'P  e  /c^g  (1) 

h  .  (1)  .  *333-101  .  3  h  .  Prop 

*333-13.     I- :  KePilf  apconx  .  g  !rep/P .  g !  P  n  J".  D  .  Ppo  G/ 

Dem. 
I-.*33211.         DI-:Hp.D.PGiep/P  (1) 

h  .  (1) .  *332-22  .  D  h  :  Hp .  D  .  a  !  (rep/P)  -S  J .  P,„  G  (rep/P)p„ .  rep/P  e  «, . 
[*333-l]  3 .  Ppo  G  (rep,'P)po .  rep/P  e  /..g  . 

[*333-101]  D  .  Ppo  G  / :  D  h  .  Prop 

*333-14.     h  :  «  ePilf  ap  conx  .L.Mex,.  Lj=M  .D  .(L\  M)^<IJ 
Bern. 

F.*330'626.  DI-:Hp.D.A~ePot'(£|ilf)  (1) 

h  .  *332-31  .  *330-6  .  3  h  :  Hp  .  D  .  g !  rep.'(i  |  M)  (2) 

h  .  *332-46  .  Transp  •  D  h  :  Hp .  D  .  g  !  (i  |  if )  n  /  (3) 

h  .  (1) .  (2) .  (3) .  *33313  .  D  h  .  Prop 

*333-15.     h  :  «  e  Pi(/ ap  .  i  e  K^g  .  D  .  Pot'i  =  fin'X  =  finid'i  -  I'Zo 
[*121-501 .  *33311-101] 

*33316.     h  iKeFM&^conx.LyMeic.L'^M.Ii. 

Pot'CI  I  ilf)  =  fiii'(i  I M)  =  finid'(Z  I M)  -  i'{L  \  M\ 
[*121-501.*33314] 

*33317.     h  :  K ePilf  ap conx  .  g !  rep/P .  g  !  P  n ./".  D  . 

Pot'P  =  fin'P  =  finid'P  -  t'P„     [*121-501 .  *333-13] 

*33318.     h  :  «  e  Pilf  ap .  D  .  «:.9  C  Rel  nam        [*333-101 .  *300-3] 

*33319.     hi/cePifap-t'i'A.D.Infinax     [*333'18  .  *330-624 .  *300-491] 

*333-2.       h:a!Pilfapconx.D.Infinax        [*333-19 . *331-12] 


SECTION  B]  OPEN  FAMILIES  379 

*33321.     I- :  « 6  JPJl/ap conx  . Z e «.g  .  D . rep,".Pot'X C /c,g 
Bern.  « 

h .  *332-61 .  D  I- :  Hp .  D  .  rep/'Pot'i  C  «.  (1) 

I- .  *333101 .  *330-624  .Dh:.Hp.D:A~e  Pot'Z .  Pot'i  C  Rl'J" : 
[*332-ll.(l)]  Drilferep/'Pot'i.D.alilfnJ'    (2) 

H  .  (1) .  (2) .  *333-l .  D  h  .  Prop 

*333-22.     h  :  «  e  ^M  ap  conx  .  Z,  if  e  «. .  Z  4=  iW" .  3  .  rep/'Pot'(i  |  M)  C  /c^g 
-Dem. 

h  .  *332-n  .  D  f- :  Hp .  D  .  rep/'Pot'(Z  |  M)  =  rep."Pot'rep/(Z  '\  M)      (1) 

h  .  *332-46-ll-232-31 .  D  h  :  Hp.  D  .  rep/(Z  |  M)  e k^  (2) 

h  .  (1) .  (2) .  *333-21 .31-.  Prop 

«333-23.     H  :  «  6  FJl/  ap  conx  .  A  ~  e  Pot'P .  g  !  rep,'P  .'3^\P  hj  ."H  . 

rep/'Pot'PC«,g 
i)em. 

l-.*332-62.  bl-:Hp.D.rep/'Pot'PCrep,"Pot'rep/P      (1) 

h  .  *332-ll-22  .  *333-l .  D  I- :  Hp .  D .  rep/P  e  K.g  (2) 

I- .  (1) .  (2) .  *333-21 .  D  t- .  Prop 

*333-24.     h  :  K  6 Pif  conx .  A~6  Pot'P .  g !  rep.'P. i-  e  NO  ind .  g !  i;  n  i^'i?  .  D  . 

rep.'P' =  rep/(rep/P)- 
Dem. 

I- .  *301-2  .  *332-243  .  D  I- :  Hp .  D  .  rep««P»  =  I\  s'Q."k  =  rep/(rep,'P)»       (1) 

h  .  *332-63  .  *330-6  .  *301  •16-22  .  D 

I- :  Hp  .  D  .  rep/P",  rep/P  e  k,  .  g  !  P'+^i .  (2) 

[*301-21.*332-33]  D  .  rep/P'+^i  =  rep/{(rep/P'')  |  rep/P}  (3) 

I- .  (2) .  (3) .  D  h  :  Hp .  rep/P'  =  rep/Crep/P)- .  D  . 

rep/P'+^i  =  rep/{rep«'(rep/P)''  |  rep^'P} . 

rep/(  rep/P)",  rep«'P  e  k.  (4) 

h.(2).*330-624.*301-21.3F:Hp.D.a!  (rep/P)- 1  rep/P  (5) 

h  .  (4)  .  (5) .  *332-33  .  D  I- :  Hp  (4) .  D .  rep/P""!-"!  =  rep/{(rep/P)"  |  rep/P} 
[*301-21]  =rep/(rep/P)"'+"i  (6) 

h .  (1)  .  (6) .  Induct .  D  h  .  Prop 

A  hypothesis  equivalent  to  i/  e  NO  ind  .  g  !  v  r>  P'R  is  v  eG'U^  f'R.     It 
is  sometimes  convenient  to  substitute  this  for  the  other. 

*333-25.     h  : «  e  FM  conx  .  Z,  if  e  /e^ .  w  e  NC  ind  .  g !  x;  n  f'L .  D  . 

rep/(Z  I  My  =  rep/{rep/(Z  |  M)]" 
Dem. 

V  .  *330-626  .  *331-12  .  D  h  :  Hp  .  D  .  A  ~  e  Pot'(Z  |  M)  (1) 
h  .  *332-31 .  *330-6  .     D  h  :  Hp  .  3  .  g  !  r6p/(Z  |  M)  (2) 

V  .  (1) .(2) . *333-24 .    D  t- . Prop 


380  QUANTITY  [part  VI 

*333-32.     h  :«  ei^ilf  conx.  i,  ilf  6  «..p,o-ea'(C/'Cf'Z).D.  a  iZ"  I  Jlf' 
Dem. 

V  .  *330-61 .  *301-2  .  D  h  :  Hp  .  D  .  a  !  i»  j  Jlf»  (1) 

h.*330-623.  Dh:.B.^. :>:SeH:.Ds-S\I^\M''(Ll>\M'\S:        (2) 

[*330-622]  D:a!i>|ilf''.D.a!  i>+'^i  |  M'  (3) 

h  .  (2) .  *330-621 .      DI-:.Hp.D:a!i''|ilf''.3.a!^r-3/''+'='  (4) 

h  .  (1) .  (3)  .  (4)  .  Induct .  D  h  .  Prop 

*333-33.     h-.Ke  FM  conx  .L,Meic,.,Te  a\Ult"L) .  D . 

repJ{L'  I  Jlf")  =  rep/(Z  |  if)' 
i)em. 

I- .  *333-32  .  *332-243 .  D 

h  :  Hp .  D  .  rep/(Z«  |  i/»)  =  / 1'  s'a"K  =  rep/(Z  j  if")»  (1) 

l-.*332-37.*301-21.D 

I- :  Hp  .  D  .  rep/(Z''+«^  |  M'+''^)  =  rep/lrep/iL'  \  M")  \  rep/X  |  rep/i/}  (2) 

I- .  (2) .  D  J- :  Hp .  rep/CZ'  |  Jf")  =  rep/(i  |  ilf)" .  D . 

rep/(L'+«i  I  iy'+'i)  =  rep/{rep/(Z  |  M)'  \  rep/Z  |  rep/if}     (3) 

»- .  (3) .  *333-32  .  *332-37  .  D 

h  :  Hp (3) .  D  . rep/(Z''+'=' |  M''+'')  =  rep,'{(Z \My\L\M} 

[*301-21]  =  rep«'(Z  \  My+-^  (4) 

h  .  (1) .  (4) .  Induct .  D  h  .  Prop 

*333-34.     H  :  Hp  *333-33  .  D  .  rep/(Z'  |  M")  =  rep/{rep/(Z|  Jlf  )}''=rep/(Z|  Jlf )' 
Dem. 

F  .  *330-626-6  .  *332-31 .  D 

I- :  Hp .  D  .  A  ~  6  Pot'(Z  \M).±\  rep/(Z  |  il/)  (1) 

h  .  (1) .  *333-24  .  D  h  :  Hp .  D  .  rep/{rep,'(Z  j  M)]'  =  rep/(Z  |  M)"       (2) 
h  .  (2)  .  *333-33  .  D  h  .  Prop 

*333-41.     h  : .  K  e  J?'Jf  ap  conx .  Z,  J/  e  /t. .  o-  e  NC  ind  -  I'O .  D  : 

rep^'Z"  =  rep^'JIf"  .  =  .L  =  M 
Dem. 

V  .  *333-34-22-2  .  D  I- :  Hp .  Z  +  il/ .  D  .  rep/(Z°- 1 M")  e  K.g . 

[*333-21-32.*332-33]  D  .  rep/{rep/Z°- 1  rep/i^"}  e  K.g . 

[*332-44.Transp]  D  .  ~  {rep/Z"  |  rep/^"  G  /  [^  s'a"«} . 

[*332-15-46.Transp]  D  .  rep/Z' +  rep/ilf'  (1) 

h  .  (1) .  Transp .  D  h  .  Prop 

*333-42.     h  :.Hp*333-41.D:Z''  =  if".  =  .Z  =  ilf    [*333-41] 


SECTION  B]  open   FAMILIES  381 

*333-43.     I- :.  Hp  *333-41 .  D  :  g  !  i'  n  ilf" .  =  .  i  =  JIf 
Dem.  • 

1-  .*333-21  .*332-26 .  D  h  :  Hp  .  g !  i'  n  M' .  D  .  rep/i'  =  rep/itf"  . 
[*333-41]  D.L  =  M  (1) 

h.(l).*330-624.Dt-.Prop 

«333-44.     \-:.Ke FMa^p  conx  .L,MeK,.p,a;Te NO ind  -  I'O .  D  : 

re^p^'L"^"^  =  reTp/M"^"^ .  =  .  rep^'i>  =  rep^'JIf"' 
Dem. 

l-.*301-5-.*333-24.D 

I- :.  Hp .  D  :  rep«'i>>^«''  =  rep^'J/""*"'' .  =  .  rep^'C^ep^'i^'')''  =  rep,'(i'ep„'ilf'')''  - 

[*333-41-21]  =  .  rep/Zp  =  rep/Jf" :.  D  I- .  Prop 

*333-45.     l-:.Hp*333-44.D:i>X'^^  =  ilf""<-='-.D.rep/i>  =  rep.'Jlf<'    [*333-44] 

*333-46.     H  :.  Hp  *333-44  .Dig!  I/"""^  n  if'X'^ .  D  .  rep/i"  =  rep/il/' 
J5em. 

H  .  *332-26  .  *333-21 .  D 

h  :  Hp .  a !  Li'^'''  n  Jj/'X"' .  D  .  rep«'i>xcT  =  rep/Jif'^^'^  (1) 

h  .  (1) .  *333-44  .  D  h  .  Prop 

*333-47.     h  :.  K  e  ZMap  conx  .L,MeK,.p,a-e  NO  ind  -  t'O .  D  : 

rep«'J>  =  rep^'if" .  =  .  g !  2/"  n  J/' 
Dem. 

h .  *333-46  .  D  h  :  Hp  .  a  !  Z^  o  Jlf" .  D  .  rep/Z"  =  rep/JM'  (1) 

h  .  *332-53 .  *72-92  .  D 

\-:'ELp.P,Q,R,Seic.L  =  P\Q.M=R\S.D.L'  =  (I'i'\Q'')\-a'D'. 

M'  =  iB'  i  S")  r  a'J/' .  rep/Zp  =  P"  |  Q" .  rep/Jf"  =  E'  |  /Sf"    (2) 

h  .  (2) .  *35-14 .  D 

I- :  Hp  (2)  .  rep/Z"  =  rep/ilf-' .  D  .  Z"  r»  ilf"  =  (P"  |  Qp)  [-  (Q'Z"  n  Q'M") . 

[*330-72]  D  .  a  !  Zp  n  M"  (3) 

h .  (1)  .  (3) .  D  I- .  Prop 

^333*48.     \-:.Ke  FM  ap  conx  .L,MeK,.p,a;T  e  NO  ind  -  t'O .  D  : 

a  !  Zp  (S  if' .  =  .  a  !  Zpxc^  n  Jf'XcT 
i)em. 
h.*333-46.  3l-:Hp.a!-^''"J^"'-3-rep/ZP  =  rep/Jlf'  (1) 

h  .  *330-624 .  *332-61 .  D  h  :  Hp .  D .  A  ~  e  Pot'Zp .  a !  Tep/L> . 
[*333-24]  3 .  rep/Zpxo-  =  rep/(rep/Zp)'  (2) 

Similarly  h  :  Hp .  D  .  rep/il/'Xcr  =,  rep/(rep/Jf' )»  (3) 

h  .  (1)  .  (2)  .  (3) .  D  1- :  Hp .  a  !  Zp  n  ilf" .  D  .  rep/Zpxo^  =  rep/ilf'Xcr . 

[*333-47]  3 .  a !  -^''°'  ^  ■^'''°'  (4) 

h  .  *333-46-47  .  D  h  :  Hp .  a  !  i>''°"  " -3^'"'°' ■  3 . 3 ! -^'' «  ^''  (o) 

1- .  (4) .  (5)  .  D  I- .  Prop 


382  QUANTITY  [PART  VI 

*333-49.     h  :  «  e  FM  ap  conx  .L,MeK,.p,a-e  NC  ind  -  t'O  .  rep^'Z^  =  rep^'M' . 
D  .  /.<■  I'  a'M'  =  ¥'[  a'Z" .  CD'M")  1  L"  =  (D'i>)  1  M' 
Bern. 
I-.*333-21  .*330-6  .  D  I- :  Hp .  D  .  g  !  rep/X" . 
[*332-ll]  D.i/Grep/X'. 

[*72-92]  D  .  Z"  =  (rep/i>)  p  a'i>  (1) 

Similarly  h  :  Hp  .  D  .  Jlf"  =  (rep/J/")  |^  aW' . 

[Hp]  D.Jlf''  =  (rep/i>)|^a'il/<'  (2) 

1- .  (1) .  (2) .  D  h  :  Hp  .  D  .  Z"  I'  Q'il/'  =  (rep/Z")  p  (Q'Z'  n  a'i/")  =  M''\  <l'Ij>  (3) 
Similarly      I- :  Hp  .  D .  (D'J/")  1  Z^  =  (D'Zo)  1  ilf"  (4) 

1- .  (3) .  (4) .  D  1- .  Prop 

*333-5.       V:.KeFM&p  conx  .  P,  Q  e  «  .  <t  e  NC  ind  -  t'O  .  D  : 

P'  =  Q"  .  =  .  a  !  P'  n  Q'  .  =  .  P  =  Q    [*333-42-43  .  *331-24] 

*333-51.     V  :.  K€  FM  ap  conx  .  M  e  ic^^ .  p,  a  e  NC  ind  .  D  : 

rep^'if''  =  rep^'i/"' .  =  .p  =  a- 
Bern, 

h  .  *333-47  .  D  h  :.  Hp .  rep/Jf"  =  rep/il/'' .  D  :  g !  ilf "  r>  ilf -^ : 

[*301-23.*120-412-416]  D  :  p  ^  o- .  3  .  g  !  Jfc-""  A  7 . 

[*333-101]  D .  p  =  o-  (1) 

Similarly  h  :.  Hp(l) .  D  :  o-^/j .  D.p  =  o-  (2) 

I- .  (1) .  (2) .  D  F  .  Prop 

*333-52.     I-  :.  Hp  *333-51  .D  :  M"  =  M' .  =  .  p  =  a-    [*333-51] 

*333-53.     h  :  «:  e  Pil/ap  conx  .  Z,  ilf  e  /c,g  .  g  !  Z"'  n  il/p .  g  !  Z"  n  Jf'' .  D  . 

liXga-  =  v  Xap 
Dem. 

h  .  *333-48  .  *301-16  .  D  H  :  Hp .  D  .  g  !  Z^^"'  n  Jf^X"" .  g !  Z'"<'='>  n  ilf'^x^" . 

[*333-47]  D  .  rep^'Z''^^"'  =  rep«'ilf''X'=''  =  rep/Z"'*'"' . 

[*333-.51]  .D.yu,Xocr  =  vXo/3:DI-.  Prop 


*334.     SERIAL  FAMILIES. 

Summary  of  *334. 

The  purpose  of  the  present  number  is  to  consider  what  properties  of 
a  family  k  will  insure  that  s'/cg  is  serial,  or  has  one  or  more  of  the  properties 
characteristic  of  serial  relations.  Suppose,  for  example,  that  «  consists  of  dis- 
tances on  a  line.  Then  Kg  consists  of  those  distances  which  are  members  of  k 
and  are  not  zero.  Any  selection  of  distances  on  the  line  may  constitute  k;  thus 
e.g.  K  may  consist  of  all  distances  which  are  integral  multiples  of  a  given  distance, 
or  of  all  which  are  rational  multiples  of  a  given  distance,. or  of  all  distances 
from  left  to  right,  or  of  all  distances  on  the  line  in  either  direction.  It  is 
plain  to  begin  with  that  if  s'k^  is  to  be  serial,  k  must  not  contain  equal 
distances  in  opposite  directions,  since  if  it  does,  (s'k^Y  will  not  be  contained 
in  diversity,  i.e.  s'icg  will  not  be  asymmetrical.  We  call  a  family  «  asym- 
metrical when  no  member  of  kq  has  a  converse  which  is  also  a  member  of 
Kg.     The  definition  is 

*334-05.    FM  asym  =  FMnK(Kn  Cnv"«  C  Rl'/)    Df 

It  will  be  observed  that  s'k^  G  J"  in  any  connected  family,  by  *331"23.  If 
K  e  FM  asym,  we  have  also  (s'/eg)"  G  J. 

In  order  to  secure  that  i'/cg  shall  be  transitive,  we  require  that  the  field  of 

K  should  contain  at  least  one  "  transitive  point,"  where  a  "  transitive  point " 

means  a  point  a  such  that  any  point  which  can  be  reached  from  a*  by  two 

successive  non-zero  steps  can  also  be  reached  by  one  non-zero  step,  i.e.  such 

that 

— »  — > 

(s'Ks)"s'Kg'a  C  s'Kg'a. 

The  definition  of  transitive  points  is 

*334-01.     tia'K  =  s'a"Kna{(s'Ks)"s'Ks'aCs'Ks'a}     Df 

Thus  if  a  is  a  transitive  point,  and  R,8eKg,  there  is  always  a  member  of 
Kg,  say  T,  such  that  R'S'a  =  T'a.  It  will  be  seen  that  if  «  is  a  connected 
family,  the  existence  of  a  transitive  point  implies  that  the  family  is  asym- 
metrical. Again,  if  there  is  a  transitive  point  in  a  connected  family,  then 
E,/Sf6Kg.  D.iJ|/SieKg,  by  *331"32;  hence  Kg  is  a  group.    The  converse  also 


38-1  QUANTITY  [part  VI 

holds,  i.e.  if  Kg  is  a  group,  any  member  s'G."k  is  a  transitive  point  (*334"11). 
Hence  if  there  is  any  transitive  point,  every  point  of  s'(1"k  is  a  transitive 
point. 

The  definition  of  a  transitive  family  is 

*334-02.     FM  trs  =  iW  n  « (g  !  trs'/c)     Df 

By  what  has  just  been  said,  a  connected  transitive  family  is  one  in  which  Kg 
is  a  group,  i.e. 

*33413.     1- : .  K  6  FM  conx  .  D  : «  e  FM  trs .  s  .  s'/tg  ["/cg  C  Kg 

A  connected  family  is  transitive  when,  and  only  when,  s'/eg  is  a  transitive 
relation,  i.e. 

*33414.     1- : .  K  6  FM  conx  .  D  :  «  e  FM  trs  .  =  .  s'Kg  e  trans 

In  order  to  secure  that  s'k^  shall  be  a  connected  relation,  it  is  not  enough 
that  K  should  be  an  FM  conx,  i.e.  that  s'Q."k  should  have  at  least  one  con- 
nected point.  We  require  that  every  point  of  s'(I"k  should  be  a  connected 
point.  This  will  be  secured  if  there  is  a  connected  point  which  belongs  to 
the  field  of  every  member  of  «,,  i.e.  if 

g !  coux'k  np'C'K,. 

For  suppose  a  e  coux'k  n  p'C'Kt.     Then  if  X  e  Ki,  either  L'a  or  L'a  exists,  and 

is  of  the  form  B'a  or  B'a,  where  jR  e  k.     Hence,  by  *331'32,  L  is  identical 

with  R  or  with  R;  hence  Ki  =  A;uCnv"K.  Hence  by  *331"4,  s'Kge  connex. 
Conversely,  if  Kei'W conx  and  s'Kge  connex,  it  follows  from  *331'32  that 
Ki=«uOnv"K;  hencep'0"Ke=s'C["K,  and  therefore  we  have  glconx'Knp'C'K,. 
Hence  putting 

*334-03.     FM  connex  =  FMn^  ('3^1  conx' Knp'C'ic,)    Df 

where  ".FJf  connex''  means  "families  having  connexity,"  we  have 

«334'26.     h  : .  K  e  FM  conx  .  D  :  k  e  FM  connex  .  =  .  s'k^  e  connex . 

=  .K,  =  lc^J  Cnv"K .  =  .  0"k.  =  a"K 
and 

*334-27.     h  .  FM  connex  =  FM  n  k  (s'a"K  =  coux'k  .  k  4=  I'A) 

I.e.  a  family  having  connexity  is  one  whose  field  consists  wholly  of  connected 
points  and  is  not  null. 

"We  thus  secure  (1)  s'k^  G  J"  by  the  hypothesis  k  e  FM  conx,  (2)  s'Kg  e  trans 
by  the  hypothesis  k  e.Fif  conx  n  jPif  trs,  (3)  s'Kg  e  connex  by  the  hypothesis 
K  e  FM  connex  (which  implies  k  e  FM  conx).  Hence  we  secure  s'Kg  e  Ser  by 
the  hypothesis  Kei^'ilf  trs  n^ilf  connex.  When  this  hypothesis  is  fulfilled, 
we  call  K  a  "  serial "  family  ;  thus  we  put 


SECTION  B]  serial  FAMILIES  385 

*334-04.     FM  sr  =  FM  trs  n  FM  connex     Df 

and  we  have 

*334-3.       h  :  «  e  J'ilf  sr .  D  .  s'Kg  6  Ser 

*334-31.     \-:.K6FM.I[s'a"KeK.:i:iceFMsr.  =  .s'KseSeT-i'A 

An  important  special  case,  which  is  briefly  considered  in  this  number,  is 
the  case  when  the  domains  of  members  of  k  are  the  same  as  their  converse 
domains,  i.e.  when 

This  case  is  illustrated,  e.g.  by  the  family  whose  members  are  all  relations  of 
the  form  {+gX)^C'Hg,  where  XeC'H'.  It  is  also  illustrated  by  cyclic 
families,  which  are  considered  in  the  next  Section  but  one.  When  D"k=Q."k, 
if  «  is  a  family,  so  is  k  u  Cnv"«:(*334"4),  and  if  k  is  a  connected  family,  so  is 
K  u  Cnv"«  (*334'41).  In  the  case  of  the  above  family,  whose  members  are 
(+gX)lG'Hg  where  XeC'H',  k^Cuv^k  will  consist  of  all  relations 
i+gX)  I.  G'Hg  where  X  e  G'Hg,  i.e.  it  will  consist  of  all  additions  of  positive 
or  negative  ratios  to  positive  or  negative  ratios. 

A    connected    family   in    which    D"/«:  =  Q."k   is   a   family   having    con- 
nexity,  i.e. 
*334-42.     V-.Ke  FM conx  .  D"/c  =  (I"/e  .D.ke  FM  connex 

The  definitions  and  propositions  of  this  number  are  much  used  through- 
out the  remainder  of  Part  VI.  ' 


*334-01.  tTs'K  =  s'a"Kna{{s'Ks)"s'Kd'aCs'Ks'a]  Df 

*33402.  FMtrs  =  FMnlt{'3^1tvs'K)  Df 

*33403.  FM  connex  =  FMn^{'g^l  coux'k  n  p'  G"k,)  Df 

*33404.  FM  sr  =  FM  trs  n  FM  connex  Df 

*33405.  FM asym  =  FMn1i(Kn  Cnv"/<:  C  Rl'7)  Df 

*33409.  h  :  «  e  FM  conx  .  D  .  s'kq  G  J    [*331  "23] 

*3341.  \-::KeFM.D:.aetrs'K.  =  : 

a e s'a"K  :  E, fif 6 «3 .  Djj,s . {'^T) .TeK^. R'S'a  =  Pa    [(*334-01)] 

3|«334°11.     H  :.KeFM  conx.  D  :  a  etrs'K .  = .  a  e  s'(I"k  .  s'K^\"KgC  kq 

)} 

Bern. 

h  .  *331  •33-24 .    Dl-:Hp.i2,/Sf6A:g.D.i?|^eK.  (1) 

1- .  (1) .  *331-32  .  D  h  :  Hp .  T  6  /eg .  R'S'a  =  T'a.D.R\8=T  (2) 

I- .  (2) .  *334-l .    Dl-::Hp.D:. 

a€trs'K.=  :a6s'a"K:R,SeKs.:>ji,s-{'aT).TeK^.R\S==T: 
[*13-195]  =  :aes'a."KiR,SeK^  .  Ds.s  ■  -B  i/Se/eg  ::  D  h  .  Prop 

H.  &  w.  III.  25 


386  QUANTITY  [part  VI 

*33412.     h  :.  «;  6 FM coDx  .a,xe  s'Q."k  .  D  : 

a  6  trs*«  .=  .xe  tis'/c .  =  .  s'/cg  |"/cg  C  /cg      [*334"11] 

)) 

*33413.     h  :.  «  e  J^JIf  conx  .  D  :  k  e  FM trs  .  =  .  s'k^  \"Kg  C  Kg 

[*334-12  .  *33112  .  (*334-02)] 

*334-131.  \-:KeFM  conx  n  J'ilf  trs .  E  e  /eg .  D  .  Pot'E  C  /eg     [*334-13 .  Induct] 

*334132.  \-:k6FM  conx  n  ^ilf  trs  .  3  .  s'Pot"/c  C  k  [*334131] 

*334-14.     h  : .  K  e  i^if  conx  .  D  :  /c  e  Fil/  trs  .  =  .  s'/cg  e  trans 

Dem. 
y  .  *41-51 .  *334-13  .  D  h  :.  Hp .  D  :  /c  e^Jftrs .  D  .  (s'/«:g)=  G  s'/cg  (1) 

1- .  *330-52  .  D  1- ::  Hp  .  D  :.  s'/tg  e  trans  .  D  : 

iJ,6'6/eg  .x€s'a"K  .  D^,s,^.  (aT) .  Te/eg .  R'S'x=  T'x. 
[*331-31-33-24]  '^r.s.x-  i'ST)  .TeK^.R\S=T. 

[*13-195]  D^,s,,.i?|fif6/.g  (2) 

I- .  (2)  .  *331'12  .        D  I- ::  Hp .  D  :.  s'/tg  e  trans  .  D  :  ii,  /S e  /eg  .  D2S,S'  -^  |  /S e  /cg  : 
[*33413]  DzAceJfWtrs  (3) 

1- .  (1) .  (3) .  D  h  .  Prop 

*33415.     I- :  /e  e  ^Jf  conx  n  FM  trs. 0  .  s'k\"k  =  k 

Dem. 
f- .  *331-321-22  .  D  h  :.  Hp .  i?  6/e  -  «g .  D  :  R  =  I\s'a"K : 

[*50-62-63]  D:SeK.:i.R\S,S\ReK      (1) 

h .  (1) .  *33413 .  DI-:Hp.D.s'A:|"/eC/e  (2) 

h  .  *331-22 .  *50-62-63.  D  h  :  Hp .  D .  /e  C  s'/e  |"/e  (3) 

h  .  (2) .  (3) .  D  h  .  Prop 

*334-16.     h  :  K  6  FM  conx  nFM  trs.  ReKf,.':i.R^„Q.  J    [*334-13109] 

— » 
*334161.  V-.Ke  FM  conx  nFMtis.ReK^.ae  s'a"K  .  3  .  R^'a  e  «„ 

[*334-16.*123-191] 

*334162.  h  :  a  !  FM  conx  nFMtvs-l.:^.  Infin  ax     [*334-161] 

*33417.     h-.KeFM  conx  /^  1 .  3  .  /eg  =  A  [*331-22] 

*33418.     h  :  K  6  ^ilf  conx  -  1 .  D  .  C's'kq  =  s'a"/e=s'a"«:g  .  a  !  s'k^  .  g  !  /eg 

-Dem. 
h  .  *331-22-321 .  D  I- :.  Hp .  3  :  a  !  /eg  : 

[*330-52]  D  :  a  6  s'a"/e .  D  .  (a^?)  .  i?  e  /eg .  a  e  Q'i? . 

[*40-4]  D.aes'a"/tg.  (1) 

[*41-45]  D.aeC's'/eg  (2) 

h.  (1).  (2).  *331 12.31-.  Prop 


SECTION  B]  serial   FAMILIES  387 

*334-19.     \-:K€FM.:>.C's'ic-^Cs'a"K    [*41-45 . *330-52] 

*334-2.       \- ::.  KeFM  .:>::  aep'G"K,.  =  :.  L  e  K,. Ol-.EI  L'a  .V  .'E.l  L'a 
[*330-52] 

*334-21.     I- :  «  e  FM  connex .  D  .  «i  =  «  u  On v"« 

Dem. 
\- . *334-2  . *331-11 .  D  h  :.  Hp . a 6 codx'« np'C'K, .Lbk^.D: 

(giJ) :ReKU  Cnv"«  : L'a=R'a .  v . L'a  =  R'a  : 

[*331-42-24]  D:(ai2):i2e«oCnv"«:Z  =  E.v.i  =  i2  (1) 

h  .  (1) .  *331-24  .  D  I- .  Prop 

*334-22.     h-.KeFM  connex. 0.p'C"K,  =  s'a"K    [*334-21 .  *330-52] 

*334-23.     l-:/e6^Jlf  connex.  D.conx'/e  =  5'a"«     [*334-21 . *331-4] 

*334'24.     h  : «  e  ^Jlf  connex .  D  .  s'k^  e  connex 
Dem. 

h  .  *334-21 .  *331-4 .  D 
t- :.  Hp  .x,ye s'(J"k  .x^y."^:  (a-R) : iJ e Kg  : xRy .  v  . yRx :.  D  h  .  Prop 

*334-25.     VzKeFM connex .  D  .  (7"k.  =  Q"*     [*334-21 .  *330-52] 

*334-251.  h  :  «  e  iW . «.  =  /e  w  Cnv"* .  D  .fG"K,  =  s'Q"* 
i)em. 

f- .  *40-18 .  *33-22 .  D  h  :  Hp .  3  .p'G"K,  =  p'<7"«  (1) 

F  .  (1) .  *330-52  .  D  I- .  Prop 

^334*252.  V  -.Ke  FM  conx .  s'wg  e  connex  .  D  .  Kj  =  k  u  Cnv"* 

Dem. 
V  . *41-11 .  D  h  :  Hp . i e K. . a;  =  L'y .  D . (gE) .ReK\j  Cnv"« . ajJSy . 
[*331-42-24]  D.ieKwCnv"*  (1) 

h  .  (1)  .  *330-6  .  *331-12  .  D  I- .  Prop 

*334-253.  h  :  «  6  i^W  conx .  C"k,  =  Q"* .  D  .  /c  e  ^ilf  connex 
Dem. 

I- .  *330-52  .  D  I- :  Hp .  3  .p'G'^K  =  s'C["ic . 

[*331-1]  D .  a ! p'G"k,  n  conx'« :  D  h  .  Prop 

*334'26.     h  : .  K  6  ^Jf  conx .  D  :  «  e  ^if  connex .  =  .  sVg  e  connex . 

=  .«.  =  ««  Cnv"K .  =  .  G"k,  =  a"K    [*334-21-24-25-251-252-253] 

*334-27.     h  .  FM  connex  =  i^Jf  n  k  {s'(1"k  =  conx'/e .  k  4=  t'A) 

Dem. 
h  .  *33ri .  D  I- :  «  6  i^ilf .  k  =|=  t'A .  s'Q"*  =  conx'w .  D  .  s'k^  e  connex . 
[*334-26.(*331-02)]  D.iceFM  connex  (1) 

h  .*334-23  .(*334-03) .  D  h  :  «  e  2?'if  connex .  D  .  s'a"«  =  conx'* .  «  +  I'A        (2) 
h  .  (1) .  (2) .  D  I- .  Prop 

25—2 


388  QUANTITY  [part  VI 

*334-3.       h-.iceFMsr.::).  s'k^  e  Ser 

jDem. 

h.*334-09.Dh:Hp.D.s'/cgej'  (1) 

h  .  *334-14 .  D  I- :  Hp .  D .  s'Kg  e  trans  (2) 

h  .  *334-24 .  D  h  :  Hp .  3  .  s'kq  e  connex  (3) 

l-.(l).(2).(3).DI-.Prop 

*334-31.     l-:.«eZM.7|^s'a"«e«.D:«6^ilfsr.  =  .s'«9  6Ser-t'A 
Dem. 

i- .  *41-11 .  D  I- :.  Hp  .  s'kq  e  Ser  -  I'A .  D  : 

x,ye  s'Q."k  .  D-t,  j,  .  (gi?)  .BeK.!Jc{RK/R)y: 
[*33iai]  D:s'a."K  =  conx'K  (1) 

I-  .(l).*33414-26  .  D  h  :  Hp(l) .  D  .  «  e^if  trs  .KsFMconnex  (2) 

I- .  (2) .  *334-3  .  *331-12  .  D  1- .  Prop 

*334-32.     b.FM  srC  iWap    [*334-16-21 .  *333-101] 

*334-4.       \-:ic6FM.  D"«  =  Q"* .  D  .  «  u  Cnv"K  e  ^ilf 
Dem. 

I- .  *33-2-21 .  D  h  :  Hp .  D  .  D"(«  «  Cnv"/c)  =  a"(«  u  Cnv"«)  =  Q"*     (1) 
I- .  *330-561 .  D  h  :.  Hp .  D  :  i?,  5f  6  «  .  3 .  E I  <Sf = /Sf  I  ^  (2) 

I- .  (1)  .  (2) .  *330-52  .  D  h  .  Prop 

*334-41.     \-:KeFMconx.I>"K  =  a"K.:>.KyjCnv"KeFMconx 
[*334-4.*33111] 

*334-42.     h  :  K  e  ^Jlf  conx  .  D"«  =  Q"* .  D . «  e  ^Jf  connex 
Dem. 

h  .  *37-323  .  D  I- :.  Hp  .  D  :  iJ,  ^f  e  « .  D  .  a'(E  |  S)  =  a'S : 
[*330-4]  D:a"«.  =  a"«:  (1) 

I- .  (1) .  *334-26  .  D  h  .  Prop 

*334-43.     V-.KeFM conx  n  ZM trs .  D"k  =  Q"* .  D  .  « e i^if  sr 
[*334-42 .  (*334-04)] 

*334-44.     V-.Ke  FM conx .  D"«  =  a"« .  i  e  «, .  D  .  D'Z  =  Q'Z  =  (7'Z  =  s'Q"* 
Dem. 

I- .  *37-323  .Dh:Rp.R,SeK.D.a'{R\S}  =  (I'S:D\-.  Prop 


SECTION  B]  serial  FAMILIES  389 

*334-45.     y-.KeFM conx  .  T>"k  =  Q"*:  .L.MeK^.D.  a'(L  \M)  =  s'a"K 
[*334-44]        • 

*334-451.  h  :  Hp  *334-44 .  /S  e  Pot'Z .  D  .  D'>S  =  a'S  =  G'S = s'Q"*    [*334-44] 

*334-46.     h  : . Hp *334-44 .M,NeK,.0:'g^lL\M nN .  =  .L\M=N 
[*334-45 .  *331-45] 

*334-5.       h  :  «  6  FM  conx  n  FM  asym  .  D  .  (i'«g)^  G  / 
Bern. 

h.*332-46.         D\-:B.p.R,S€K.R\S(lI.O.R  =  S. 
[(*33405)i  D  .  iJ  =  7  p s'a"«     (1 ) 

I- .  (1)  .  Transp  .  3  h  :.  Hp  .3  :  iJ.^fe  «g .  D  .~(i2|/SG7) . 
[*331-33-23]  D.J2|<SG/:.Dh.Prop 


*335.     INITIAL  FAMILIES. 

Summary  of  *335. 

A  family  of  vectors  may  or  may  not  have  a  point  in  its  field  which  is  a 
starting-point  but  not  an  end-point  of  non-zero  vectors.  For  example,  the 
family  of  which  a  member  is  (+« X)  l  G'E',  where  X  e  G'H',  has  such  a  point 
in  its  field,  namely  0, ;  but  the  family  of  which  a  member  is  (-!-« X)  ^  G'H, 
where  X  e  G'H',  has  no  such  point  in  its  field,  and  no  more  has  the  family  of 
which  a  member  is  (+gX)  I  G'Hg,  where  X  e  G'H'.  If  such  a  point  exists,  it 
is  a  member  of  s'Q."k  but  not  of  s'D"*;g.  Such  a  point,  if  it  is  also  a  con- 
nected point,  must  be  unique,  i.e.  we  have 

*33512.     h-.iceFM.'^.  conx'«  -  s'T>"ks  e  0  w  1 

When  conx' K  —  s'D" K^  exists,  we  call  its  only  member  "the  initial  point 
of  K,"  putting 

*33501.     init'K  =  7'(conx'K  -  s'D"A;g)     Df 

If  the  initial  point  of  k  exists,  we  call  k  an  "  initial "  family ;  thus  we  put 

*33502.     FM  im.t=FMna'im.t    Df 

An  initial  family  is  asymmetrical  (*335"16)  and  transitive  (*335"18),  and 
forms  a  group  (*335'17);  and  if  its  initial  point  is  a  member  of  p'C'iei,  it  is  a 
serial  family  (*335-3). 


°'"'a 


*33501.    init'«  =  i'(conx'K-s'D"«g)    Df 
*33502.    FM init  =  FMn  a'init  Df 

*33511.     h-.KeFM.ae  conx'/e  -  s'D"«g  .  D .  s'a"K  =  s'ic'a .  I'a  =  ¥k' 
Dem. 

h  .  *41-43  .  *33-4  .  D  h  :  Hp .  D  .  Picg'a  =  A  (1) 

I- .  *331  •23-22  .       D  h  :  Hp  .  D  .  s'k'u  =  s'xg'a  w  I'a  (2) 

h  .  *331-1  •23-22  .    D  h  :  Hp .  D  .  s'a"«  =  s Va  u  |^9'a  (3) 

h  .  (1) .  (2) .  (3)  .  D  h  .  Prop    • 


SECTION  B]  initial  FAMILIES  391 

*33512.     hzKcFM.O.  conx'«  -  s'D"«g  e  0  w  1 

Dem.  « 

— > 
I- .  *335*11  .  D  I- :  Hp .  a,  6  6  conx'/e  -  s'D"«g .  D  .  6  e  sVa . 

[*32-182]  D  .  a  e  s'«'6 . 

[*335-ll]  D  .  a  =  &  :  D  h  .  Prop 

*33513.     h  :.  «  e  jPif  .  D  :  E  !  init'«: .  =  .  g  !  conx'/e  -  s'D"«g 
[*33512 .  (*335-01)] 

*33514.     h-.ice  FMinit .  =  .  keFM.'s^  !  conx'«-s'D"«g  [*335-13.(*33502)] 

*33515.     l-:«6^il/init.D.s'a"/«:  =  sVinit'«r  [*335-ll.(*335-01)] 

*33516.     h  .  FMinit  C  J?'Jf  asym 

Dem. 
h  .  *335-14  .:>[-:.KeFM  init .  D  : 

(ga)  :  a  e  s'a"*  :Reic.ae  D'i?  .  Djj .  ii  e  Rl'J    (1) 
h  .  *330-52  ,  D  h  :  /e  e  ZAf .  a  e  s'a"K  .Rexn  Cnv"K  .  D  .  aeD'R  (2) 

I- .  (1)  .  (2)  .  D  h  :.  «  6  JW  init .  D  :  i?  e  «  n  Onv"«  ."Us.  Re  Rl'/ : 
[(*334-05)]  D  :  K  e  ^Jl/asym  :.  D  h  .  Prop 

*335-17.     h  :  K  e  ^ilf  init .  D  .  s'« !"«  =  « 

Dewi. 
I- .  *335-15  .  3  h  :.  Hp  .  D  :  iJ,  ,Se  K  .  D  .  (gT) .  Te  k  .  i2'>S'init'«;  =  T'init'«  . 
[*331-24-33-32]  D .  (gr) .  Te/c .  i? | <S=  T. 

[*13-195]  D-JSI^Se/B  (1) 

h.*331-22.DI-:Hp.D./«;Cs'«;|"«  (2) 

h  .  (1)  .  (2)  .  3  h  .  Prop 

*335-18.     h  .  FM^  init  C  FM  trs 

Dem. 
l-.*335-l7.  Dh:.K6^ilfinit.D:i2,/Sf6/cg.3.J?|)SeK  (1) 

1- . *334-5  . *335-16  .  D  h  :.  «6i?'ilf  init .  D  :i2,/Se«g.  D  .E  | -Sf  G  J"  (2, 

I- .  (1) .(2).*330-551 .  D  I- :.  «  e ^i/init .  D  :  22,  )S e  Kg  .  D  .  i?  |  -S  e  «g  (3) 

h  .  (3)  .  *334-13  .  D  I- .  Prop 

*33519.     h  :.  «  6 i^lf  init .  D  :  «  e FM  connex  .  =  .  init'w  ep'C'K, 
[*334-23  .  (*334-03  .  *335-02-01)] 

*335-21.     h-.Ke  FMinit .  D  .  s'«g  e  trans .  (s'k^Y  G  J    [*335-1816  .  *334-14-5] 

*335-22.     h  :.  xeFM init .  D  :  s'wg  e connex  .  =  .  C"k,  =  (I"« .  =.init'«; ep'C'K, 
[*334-26 .  *335-19] 


392  QUANTITY  [part  VI 

*335-23.     h  : .  K  6  FM  init  n  FM  connex  .  £  e  /ic,g .  D  : 

init'/e  e  D'i  .  =  .  init'/c  ~  e  d'L 
Dem. 
V  .  *335-19  .  D  h  :.  Hp .  D  :  init'«  e D'Z .  v  .  init'«  e Q'i  (1) 

I- .  *334-21 .  D  f- :  Hp .  D  .  i  e  Kg  u  Ciiv"«g  (2) 

I- .  *335-ll .  D  h  :.  Hp .  D  :  i  e  /(g .  D  .  init'«  ~  e D'X : 

ieCnv"A;g.D.init'«~ea'X  (3) 

h  .  (2) .  (3) .  D  h  :.  Hp .  D  :  init'*  ~  e  D'i .  v  .  initV  ~  e  Q'Zi  (4) 

h  .  (1) .  (4) .  *5-l7  .  D  1- .  Prop 

*335-24     h  :.  K 6 J^Winit  n  ^if  connex  .B,SeK  .R^8 ."2: 

E'init'/c  e  D'/S .  =  .  /Sf'init'/c  ~  e  D'i? 
Z)em. 

1- .  *71-162  .  D  h  :.  Hp .  D  :  i?'imt'«  e D'/S .  =  .  init'«  e  a'(^  |  i?) . 

[*333-l.*335-23]  =  .  init'/e  ~  e  D'(S  |  i?)  . 

[*71-162]  =  .  S'miVK ~  e  B'R  :.  D  I- .  Prop 

*335"25.     h  : : .  «  6  ^1/  init .  D  : :  s'/eg  e  connex .  =  : . 

E, /S e  « .  D^,g  J D'i?  C  D'/S .  V  .  D'/Sf  C  D'i? :. 
=  :.a,;86D"K.D.,p:aC|8.v./3Ca 
Z)em. 
h  .  *202'135  .  D  h  ::  Hp .  s'«g  e  connex  .  D  :.  s'/e  e  connex  :. 
[*211-6.*330-542]  D  :.E,/Sf€«.  D  :D'iiCD'/S.  v  .  D'/SCD'i?    (1) 

h  .  *71-162  .  D  h  :  Hp  .  ii'init'«  e  D',S .  D  .  init'*  e  a'(^  |  S)  (2) 

h  .  *71162  .  D  h  :  Hp  .  /S'init'«  e  D'i? .  D  .  init'/e  e  D'(^  1 8)  (3) 

l-.(2).(3).  DI-:.Hp.J?,S6/<;:D'i?CD'^.v.D'^CD'i?:D. 

init'«eC"(E|.Sf)    (4) 
h  .  (4) .  *330-4  .  D  h  : :  Hp :.  ^,  5 e  « .  3^,s :  D'iZ  C  D'/S .  v .  D'/Sf  C  J)'R  : .  3  . 

init'/e  e  p'C'K^ . 
[*335-22]  D .  s'/eg  6  connex         (5) 

|-.(l).(5).*37-63.DI-.Prop 
*335-26.     h-.Ke  JW  init  n  FM  connex  .D.D['/cel-*l 

Dem. 
h.*33-43.    Dh:Hp.i?,/Se/«:.J?'init'K~eD'^.D.D'i?=f=D'/S  (1) 

h  .*335-24  .  D  h  :  Hp  .  J?,  ,Sf  e  « .  i?  + /S .  iJ'init'«  e  D'/Sf .  D  .  fif'init'«  ~  e  D'i? . 
[*33-43]  D.D'iJ  +  D'S  (2) 

I- .  (1) .  (2) .  D  I- :  Hp  .  i?,,Sf6«  .i«  +  ;Sf .  D .  D'iJ  +  D'^f :  D  h  .  Prop 
*335-3.       h:«6J?'if.init'«6^'C"«..D.s'«g6Ser     [*335-21-22] 


*336.     THE  SERIES  OF  VEOTOES. 

Summary  of  *336. 

•  In  this  number  we  consider  a  relation  between  members  of  k  or  of  k^ 
which,  with  suitable  limitations  as  to  the  nature  of  the  family,  may  be 
identified  with  the  relation  of  greater  and  less.  If  there  is  a  member  of  k 
which  takes  us  from  a  point  ^^  to  a  point  y,  i.e.  if  y  (s'kq)  z,  we  say  that  z  is  an 
earlier  point  than  y ;  thus  we  regard  s'/cg  as  the  relation  of  later  to  earlier. 
If  now  M  and  N  are  two  members  of  k„  and  if,  for  some  x,  M'x  is  later  than 
N'x,  we  shall  say  that  M  is  "greater"  than  N  with  respect  to  k.  This 
relation  we  denote  by  V^,  where  "  V"  is  intended  to  suggest  that  the  relation 
holds  between  vectors.     The  definition  is : 

*336-01.     V,  =  'MN[M,N6Kr.  (g^) .  {M'x)  (s'«g)  {N'x)]    Df 

For  the  same  relation  when  confined  to  members  of  k,  we  use  the  notation 
U^ ;  thus  we  put 

*336011.  U^  =  V^Ik    Df 

In  dealing  with  F^  and  U^  it  is  desirable  to  be  able  to  express  M'x  as  a 
function  of  M.  We  wish  to  consider  (say)  a  fixed  origin  a,  and  the  various 
points  R'a,  8'a,  T'a, ...  to  which  the  various  vectors  which  are  members  of  k 
carry  us  from  a.     For  this  purpose  we  put 

B'a  =  Aa'B, 
where  "  A  ''  stands  for  "  argument,"  and  "  A^'R  "  may  be  read  "  the  value, 
for  the  argument  a,  of  R."     The  definition  is 

Aa  =  ^R(xRa)    Df, 
whence  we  obtain 

*336101.  \-:ElR'a.D.R'a  =  Aa,'R 

Then  the  points  R'a,  S'a,  T'a, . . .,  where  R,S,T,...  are  the  various  members 

of  K,  form  the  class  Aa"ic,  which  is  thus  the  same  class  as  s'x'a.  The  relation 
Aa\^  K  correlates  the  point  R'a  with  the  vector  R.  The  vector  R  is  analogous 
to  the  coordinate  of  R'a  when  a  is  the  origin  ;  thus  .4„  f  «  is  analogous  to 
the  relation  of  a  point  to  its  coordinate.  A  relation  which  is  more  exactly 
that  of  a  point  to  its  coordinate  will  be  explained  in  Section  0,  where,  in 


394  QUANTITY  [part  VI 

addition  to  the  above  correlator  A^  \  k,  we  shall  also  correlate  a  vector  with 
its  numerical  measure  in  terms  of  an  assigned  unit. 

If  «  is  a  connected  family,  and  a  is  any  point  of  its  field,  Aa  f  «i  is  a  one- 
one  relation  (*336'2).  If  k  is  an  initial  family,  and  a  is  its  initial  point, 
Aa\ K  is  a  correlator  of  s'(1"k  and  k  (*336"21),  so  that  in  an  initial  family 
the  class  of  vectors  is  similar  to  the  field  (*336'22).  If  k  is  a  connected, 
family,  and  a  is  any  point  of  the  field,  and  \  is  those  members  L  of  /c,  for 
which  L'a  exists,  then  ila  f"  X.  correlates  the  field  with  \,  so  that  X,  is  similar 
to  the  field  (*336-24). 

By  the  definition  of  Aa,  it  Mek,  and  M'a  exists,  we  have 
M'a  =  Aa'M  =  Aa\->cJM. 
Hence  by  the  definition  of  F^, 

h  -.'MV^N .  =  .  (aa) .  (Aa  r  >c,'M)  (s'k^) (A^  [  kJN)  . 

=  .  (aa).ilf(«:.1  Aa>s'Ks)N,  by  *150-41. 

Similarly  \-:PU,Q.  =  .  (ga) . P (« 1  AJs'ks)  Q- 

Now  in  a  connected  family,  if  a  and  b  are  any  two  members  of  the  field,  and 
P,QeK, 

(P'a)  (s'ks)  (Q'a) .  =  .  (P'b)  (s'«9)  (Q'b)    (*336-38) ; 

hence  fc ']  AJs^k^  ^k"]  A}}s^k^, 

and  hence  U^  =  k'\  AJs'k^     (*336"43). 

Since  /c"]  -4a  is  one-one  (by  *336'2),  the  above  gives  an  ordinal  correlation  of 
Ux  with  (s'«g)  t  Aa'K  (*336'461),  i.e.  JJ^  is  ordinally  similar  to  s'«g  with  its 
field  confined  to  those  points  which  can  be  reached  from  a  by  vectors  which 
are  members  of  k.  If  «  is  an  initial  family,  it  follows  that  U^  is  similar  to 
s'/cg  (*336"44)  ;  if  not,  U^  is  in  general  only  similar  to  a  segment  of  s'/cg  (in 
the  sense  of  *213). 

It  should  be  observed  that  k,  '\  A^'x  is  the  member  of  /e.  which  takes  us 

from  a  to  X,  and  « 'j  Aa'x  (if  it  exists)  is  the  member  of  k  which  takes  us  from 

a  to  X.  Thus  k'\  AJs'k^  is  the  series  of  vectors  which  take  us  from  a  to  all 
the  various  points  which  can  be  reached  from  a  by  members  of  k,  the  order 
of  the  series  being  that  of  the  points  to  which  the  various  vectors  take  us 
from  a. 

If  «  is  a  connected  family,  U^  is  the  relation  which  holds  between  two 
members  of  «  when  one  of  them  is  the  relative  product  of  the  other  and  a 
third  (other  than  the  zero  vector),  i.e. 

*336-41.     V  :  >c  e  FM  couK  .:>  .  U,^  PQ  {P,Q  e  >c :  (•^T)  .  T  e  Ks  .  P  ='T\Q] 


SECTION  B]  THK  series  OF   VECTORS  395 

This  is  for  many  purposes  the  most  convenient  formula  for  TJ^-  If,  in 
addition,  we  have  D"/c^Q"/c,  a  similar  formula  holds  for  V^,  i.e. 

*336-54.     V-.KeFM  conx  .  D"«;  =  <1"k  .  D . 

V,  =  MN{M,NeKr.{'sT)-TeK^.M=T\N] 

If  «6^Jf  conx,  F,  is  contained  in  diversity  (*3366);  if  «  is  also  transitive, 
Fk  is  transitive  (336"61) ;  and  if  «  has  connexity,  so  has  F,  (*336"62).  Hence 
if  /c  is  a  serial  family,  F^  and  U„  are  serial  (*336'63'64). 

In  addition  to  the  above-mentioned  propositions,  the  following  propo- 
sitions in  this  number  are  important : 

*336'411.  h  -..KeFMcou^  .  s'« !"«:  C  k  .  D  :  PU,Q  .Rsk.D  .(P\R)U,{Q\R) 
*336-511.  \-:.KeFMsr.ve'!^Gmd-i'O.D:RU,S.  =  .R-'U.S-' 

*336-53.     \-:.K€FM conx  .M,NeK,.0'.  MV^ N.=  .  NVJl 

The  present  number  is  important,  since  F,  and  TJ^  are  the  general 
relations  from  which  greater  and  less  are  derived,  and  the  subject  of  magni- 
tude is  therefore  intimately  dependent  upon  them. 


*336-01.     V,^MN[M,NeKr.{'K'«).{,M'x){s'K^){N'x)]    Df 
*336011.  Cr«=F,p«  Df 

*33602.    Aa  =  ^R{ooRa)  Df 

*336-l.       V  :  xAaR  .  =  .xRa  [(*336-02)] 

*336101.  h:E!iJ'a.D.i2'a  =  ^„'i2  [*3361] 

*336-ll.     Vix{Aa\ic)R.  =  .ReK.  xRa  [*336-l] 

*336-12.     V.I^K'a  =  Aa"K  =  'D%Aa\ic) 
Dem. 

V .  *41-11 .31-.  s'K'a  =  a  {(gi?)  .ReK.  xRa] 

[*336-l]  =  ^  {(a-B)  .ReK.  xAaR]  ^  3  H .  Pr'op 

*33613.     V.J)'Aa\KCs'Ji"K 

Dem. 

V  . *33612  . *33-15  .  D  H  .  D'J.«  \kC D's'k  .31-.  Prop 

*33614.     f-:A:Cl-»Cls.3.^„rKel->Cls 

Dem. 

V  .^^^%-ll  .':i\- :  x{Aa[  k)  R  .y  {Aa\  k)  R  ."^ .  Re  K .  xRa  .yRa    (1) 
I- .  (1) .  *71-17  .  3  h  :  Hp  .  Hp  (1) .  3  . «  =  2/  (2) 

H  .  (2) .  *71-17  .  3  h  .  Prop 


396  QUANTITY  [part  VI 

*33615.     \- :  kCct'u .  aea .:^  .a'(Aa[ k)  =  K 
Dem. 

I- . *336-ll  .Oh:  Re a'(Aa  fx) .  =  . (a*)  .ReK.xRa  (1) 

F  .  (1) .  (*330'01) .  D  I- .  Prop 

*33616.     \-:a€Conx'K.  =  .aes'a"K.Aa"{K\jCny"K)  =  s'a"K 
Dem, 

[-.*331-1.*336-12.D 

h:ae conx'/e  .  =  .  a  e s'Q"*  .  il„"«  w  4„"Cnv"«  =  s'a"/c  (1) 

h  .  (1) .  *37-22 .  D  h  .  Prop 

*33617.     h  :  K  6  ^ilf  conx  nFMtrs-l.P  =  s'k^  .  3  .  Aa"ic  =  P^'a 
Dem. 

h  .. *334-14-18  .  D  h  :  Hp .  D  . P^'a  =  P'a^I^ s'a^x'a 

[*331-22-23]  =s'K'a 

[*336-12]  =  Aa"K :  3  I- .  Prop 

*336-2.       I-  -.KsFM  conx  .aes'(I"K  .D  .Aa[  K,el-*1 

Dem. 
I- .  *336-14 .  D  f- :  Hp  .  D .  ^„  I' «.  e  1  ->  Cls  (1) 

h  . *336-l  1  .Ol-:B.p.x(AaiK,)L.oi;{Aa[ic,)M.D.L,MeK,. xLa . xMa . 
[*33r42]  D.£  =  ilf  (2) 

t- .  (1) .  (2) .  D  1- .  Prop 

*336-21.     V-.Ke  FM .  a  =  init'«  .  3  .  ^„  [^  /«  e  (s'a."je)  sm  k 

Dem. 

l-.*336-2.  DhiHp.O.^al'/cel-*!  (1) 

b  .  *335-15  .  *336-12  .  D  h  :  Hp .  D  .  D'^«  [k  =  s'a"K  (2) 

[-.*336-15.  Dh:Hp,D.a'^a|^/«;  =  /«;  (3) 

I- .  (1)  .  (2)  .  (3)  .  3  h  .  Prop 

*336-22.     h-.xeFM  init .  D  .  (s'a"«)  sm  «     [*336-21] 

*336-23.     h  :  kbFM conx .  a  es'Q"* .  \=  k.a  i(aeC['Z) .  D  . 

Dem,. 

l-.*336-2.    DI-iHp.D.^aPXel-^l  (1) 

I- .  *336-ll .  3  h  :  Hp  .  D  .  D'(Aa  T  \)  =  ^  {(gZ)  .Le\.  xLa] 
[Hp]  =  o5 {(gi)  .LsK,. xLa] 

[*331-4]  =s'a"«  (2) 

h . *336-ll .  D  F  :  Hp .  "0 .a\Aa  \'^)  =  L[{'^x) .LeX. xLa] 

[Hp]  =\  (3) 

I- .  (1) .  (2)  .  (3) .  D  h  .  Prop 


SECTION  B]  the  series  OF  VECTORS  397 

*336-24.     I- :  Hp  *336-23  .  D  .  (s'a"«:)  sm  \     [*336-23] 

*336-25.     h:KeFMcoux.a,be  s'a"«  .X  =  K,nL(ae  O'i) . 

fi  =  K,nM{bea'M).:^.Xsmfi    [*336-24] 

*336-26.     h  :  «e^ilf .  aeconx'«  .  \  =  k  w  Cnv"E  (ReK  .aeD'R) .  D  . 

^„  1^  \  6  (s'a"«)  sin  \     [*336-23  .  *331-48] 

*336-3.       h  :.kC1-*CIs.  :^:R(K'\Aa'P)S.=  .R,SeK.{R'a)P(S'a) 

Bern. 
V  . *150-11 .  D  I- :  i2 (k ^  A^'P) S.=  .  (ga;, y).R,8eK. xA^R . y^a-S . xPy . 
[*336"1]  =  .  (a*,  y).R,SeK .  ocRa .  ySa .  xPy  (1 ) 

h  .  (1)  .  *7l-36  .  D  h  .  Prop 

*336-31.     h  :  «  e  FJlf  conx  .  a  e  s'(1"k  .  D  .  Kg  C  D'(«  1  ^a's'/eg) 

Dem. 
F- .  *336-3  .  D 

I- :.  Hp  .  D  :  i?  6  D'(/«:  1  J^^Js'^g) .  =  .  (g/S,  T) .  JB,/Se« .  Te/tg .  R'a=T'8'a  (1) 
I- .  *331-22  .  D  h  :  Hp  .  i2  6  Kg .  D  .  -R  6 Kg  .  /|^s'a"K6 k  .  ii'a  =  ii'(/ 1' 5'a"K)'a . 

[(1)]  O.Re  D'(k  1  Jf^Js'Kg) :  D  H .  Prop 

*336-311.  h  :  K  6  FJ/conx  -  1 .  a  e  s'a"ic .  3  . 1  [~  s'a^K  e  a'(K  1  laJs'Kg) 

Dem. 
h.*336-3.D 
h  :.  Hp .   D  : ^!ea'(Kl^<.'s'«3) ■  =  ■  (H-K, T).R,8eic.  Teic^  .  R'a=T'8'a : 

[*331-22]  D  :  / 1^  s'a"K  e  a'(K  1  AJs'xg) .  =  .  (giZ,  T).ReK.T  eK^.R'a=^T'a. 
[*330-52]  s  .  a !  Kg  (1) 

h  .  (1) .  *334-18  .  D  h .  Prop 

*336-312.  ViiceFM  conx  -  1 .  D .  C"(k  1  i^Js'Kg)  =  k    [*336-31-311] 
«336-313.  h  :  K  e  jfil/  conx  n  ^if  asym  .  a  e  s'Q."k  .  D  .  D'(k  ^  ^a^s'Kg)  =  Kg 


h  .  *336-3  .  D 

h  :.  Hp .  D  :  I[ s'a"Ke'D'{K^Aa's'K^) .  =  .  (a^f,^)  ./Sfe K.Te Kg. a  =  T'/S'a  (1) 

h  .  (1)  .  *334-5  .    Dh:Hp.D./|'s'a"K~6D'(Kl-4„;s'Kg)  (2) 

I- .  (2)  .  *336-31 .  D  h  .  Prop 


398 


QUANTITY 


[part  VI 


*336-32.     h  :  «  e  FM .  a  e  conx'/c  .\  =  Kr\R{ae  B'R)  .  D  . 

C'[(k  w  Cnv"«)  1  AJs'k^}  ^ksj  Ciiv"\ 
De?w. 

h  .  *33616  .  *334-18 .  D  h  :  Hp .  D .  O's'/^g  =  a'(«  u  Cnv"*)  1  ^„ . 

[*150-23]  D  .  G'{(k  w.  Cnv"*;)  1  AJs'^g}  =  D'(«  w  Cnv"*)  1  la 

[*336-15-ll]  =  K  w  ^  {(ga;) .  E  e  Cnv"« .  xEa} 

[Hp]  =  «  u  Cnv"\  :  D  h  .  Prop 

*336-34.     h  :  «  6  JW .  a  =  init'* .  D  .  (« 1  Aa's'K^)  smor  (s'/cg) 
i)em. 
I-  .*336-21  .Dh:Hp.D.«;liL„6l->l.  Q'*  ^  2„  =  O's'/eg  :  D  h  .  Prop 

j|(336°35.     h  :  K  6  Flf .  a  e  conx'« .  3  .  {(«  w  Cnv"*)  1  AJs'k^}  smor  (s'Kg) 
[*336-2-16] 

*336-351.  h  :  K  6  i^iiif  conx .  a  e  s'Q"* .  3  .  (k  ^  ^^Js'/cg)  smor  (s'/cg)  ^  4a"« 
Dem. 

h.*336-2.    DhiHp.D.Kllael-*!  (1) 

h  .  *150-37  .  D  1- :  Hp  .  D  .  K 1  i^a^s'/eg  =  «  ^  i^aKs'^e)  t  ^a"«  (2) 

I- .  (1)  .  (2)  .  D  h  .  Prop 

*336-36.     hz.Ke  FM  conx  .L,MeK,.a,be  G'L  n  a'M.  TeK.li: 

L'a  =  T'M'a  .  =  .L'b  =  T'M'h  :  L'a  =  T'M'a  .  =  .L'b  =  T'M'b 
Bern. 
I-  .*13-12.  D  h  :.  Hp  .  iVe/e.  .a  =  N'b.:i:  L'a=  T'M'a.  =  .L'N'b  =  T'M'N'b. 
[*330-63]  =  .  N'L'b  =  N'T'M'b . 

[*71-56]  =.L'b  =  T'M'b      (1) 

I- .  (1) .  *331-4 .  D  I- :.  Hp  .  D  :  Z'a  =  T'M'a  .  =  .L'b  =  T'M'h  (2) 

h  .  *71-362  .       D  h  :.  Hp .  3  :  i'a  =  T'M'a  .  =  .M'a=  T'L'a . 
M,L~ 


(2)- 


V'L,M\ 

[*7l-362] 

h  .  (2) .  (3) .  D  I- .  Prop 


=  .M'b  =  T'L'b. 
=  .L'b=  T'M'b 


(3) 


*336-37.     h  :.  « e ^Jlf  conx .L,M€K,.a,be a'L n  G'M  .  D  : 

(L'a)  is' Kg)  (M'a) .  =  .  (L'b)  (s'ks)  (M'b) 
Bern. 
\- .  *336-36  .  D 
\-  -..Rp .  D  :('g^T).T e Kg. L'a  =  T'M'a. =  .('^T).T e Kg. L'b=T'M'b:.:i\- .Frop 


SECTION  B]  the  series  OF  VECTORS  399 

*336-371.  V'..iceFM conx  .  Z,  il/  e  ^. .  a  e  d'L  n  a'M .  D  : 

tLV,M.  =  .  (L'a) (s'k^) (M'a)    [*336-37  .  (*33601)] 

*336-38.     h  : .  «  6  J?'Jlf  conx  .  P,  Q  e  « .  a,  6  e  s'a"K .  D  : 

(P'a)  (s'«g)  (Q'a) .  =  .  (P'6)  (s'«g)  (Q'b)    [*336-37  .  *331  -24] 

*336-4.       bzKeFM  conx  .  a  e  s'a"K  .D  .  U,  =  PQ{P,QeK .  (P'a)  (sVg)  (Q'a)} 

Dem. 
h  .  *336-38  .  D 

h  :.  Hp .  D  :  6  e s'a"* .  (P'6)  (s'xg)  (Q'b)  .  =  .be  s'a"« .  (P'a)  (s'k^)  (Q'a) : 
[*10-ll-281.Hp]  D  :  (36) .  &  e  s'a"K .  (P'b)(s'Ks)  (Q'b) .  =  .  (P'a)(s'«g)(Q'a)  (1) 
h  .  (1) .  (*336-011) .  D  h  .  Prop 

*336-41.     h-.KeFM conx  .  D .  [;■,  =  PQ  {P,  Q  e  «  :  (gT)  .  T  e Kg .  P  =  T |  Q} 

Dem. 
h.*41-ll.DI-:Hp.aes'a"«:.P,Q6«.re«:9.P=r|Q.D.(P'a)(s'Kg)(Q'a)  (1) 
h  .*41-11 .  D  h  :  Hp .  a  6  s'Q"* .  (P'a)  (s'/cg)  (Q'a) .  D . (gT) .  Te  «g .  P'a=  T'Q'a . 
[*331-32-33-24]  D.('3^T).TeKs.P  =  T\Q  (2) 

h  .  (1)  .  (2) .  *336-4  .  D  h  .  Prop 

*336-411.  \-:.KeFM  conx  .s'k\"kCk.O:  PU^Q.ReK  .0  .(P\R)U^(Q\R) 

[*336-41] 

*336-412.  h  :  Hp  *336-411  .  P.Q,R€h:.(P\R)U,(Q\R).D  .  PU^Q 
Dem. 

h  .  *336-41  .  D  h  :  Hp .  D  .  (gT)  .2'e«g.P|J?  =  T|Q|i2. 

[*330-5]  :>.('^T).Te>cs.R\R\P  =  R\R\T\Q. 

[*330-31]  3.(a2').2'6Kg.P  =  y|Q. 

[*336-41]  D  .  P  f7,Q :  D  h .  Prop 

*336-413.  h  :.  Hp  *336-411  .P,Q,Re  k  .0:  PU^Q.  =  .(P\R)U,(Q\R) 
[*336-411-412] 

*336-42.     h : «  6  Pilf  conx  .  a  ep'D"* .  D .  F^  =  M  {i,  iW e  «, . (i'a)(s'«9)(ilf' a)} 

Dem. 
h  .  *330-54  .  D  t- :.  Hp  .  i,lf  6  K. .  D  :  a  6  a'L  n  Q'ilf : 

[*336-37]  D  :  (L'b)  (s'k^)  (M'b) .  D  .  (L'a)  (s'«g)  (Jf 'a) : 

[(*336-01)]  D  :  ZF^if .  D .  (Z'a)  (s'/cg)  (M'a)  (1) 

h  .  (1)  .  (*336-01) .  3  h  .  Prop 

«336-43.     h  :  «  6  Pilf  conx  .  a e  s'(1"k  .  D  .  U^=  k^  Aa's'K^ 
Dem. 

y  .  *336-4101 .  D  H  :  Hp .  D  .  CT,  =  PQ  {P,  Q  e  K .  (2I/P)  (s'^g)  (A^'Q)} 

[*35-7]  =  pO  {(^„  r  «'-p)  (s'«9)  (4«  r  «'<?)} 

[*150-41.*336-2]  =  « 1  ii'aJs'/eg  :  D  h  .  Prop 


P{F,p(«uCiiv"\)}Q.= 
[*14-21.Hp]  = 

[*4<1-11]  = 

[*336-3]  = 


400  QUANTITY  [part  VI 

*336-44.     h  :  «  e  FM  init  .O.U,  sraor  (s'/tg) 

Bern. 
h  .  *336-41 .  D  h  :  Hp  .  a  =  init'/e  .  D  .  f7«  =  k  1  Aa's'K^  (1) 

h  .  *336-21 .  D  1- :  Hp  .  a  =  init'« .  D  .  /c  ^  1„  e  1  ->  1 .  a'(K  1  Aa)  =  s'Q"*      (2) 
1- .  (1)  .  (2) .  *334-19  .  D  h  .  Prop 

*336-45.     h  ZKeFM.  a  e  coux'k  .\  =  k  r,  R{a  eB'B) .  D. 

F.  C  («  u  Cnv"\)  =  («  w  Cnv"«;)  1  AJs'ks 
Dem. 
1-.*4111.(*33601).D 

l-:.P{F,t(«uCnv"\)}Q.  =  :P,Qe««Ciiv"\:(a«,r).re«g.P'a;=r'Q'«  (1) 
l-.(l).*336-36.DI-::Hp.D 

:  P,  Q  6  «  u  Cnv"X, :  (gT) .  Te  «g  .  P'a  =  T'Q'a : 
.P,QeKyj  Cnv"/c  :  (aT)  .  Te  /«:g  .  P'a  =  T'Q'a  : 
\P,Q6Kyj  Cnv"« .  (P'a) (s'/cg) {Q'a)  : 

:  P  {(«  u  Cnv"A;)  1  i«5s'«g}  Q ::  D  h  .  Prop 

*336-46.     h:Hp*336-45.D.F4(«uCnv"\)smor(s'K9)     [*336-45-2-16] 

*336-461.  I- :  K  6  Pilf  conx  .  a  e  s'Q."k  .  D  .  fT'^  smor  (s'«g)  p  (-4a"«:) 
[*336-351-43] 

*336-462.  f- : «  6  Pilf  conx  n  PM  trs .  a  e  s'a"/e .  P  =  s'«g .  D .  !/;=  smor  (P  ^  P^j^'a) 
[*33G-461-17.*334-17] 

*336-47.     h  :  «  e  PM  conx .  D  .  Kg  C  D'  D^  [*336-31-43] 

*336-471.  \-:KeFM  conx  - 1 .  D  .  «  =  C  f/^  [*336-312-43] 

*336-472.  \- ZKeFM  conx  n  Pif  asym  .  D  .  /cg  =  D'  tT^     [*336-313-43] 

*336-51.     h  :.  «  ePilf  sr  .  P,  fi:e«  .  i;  eNC  ind  -  I'O  .  D  : 

(P'a)  (s'Kg)  (5f'a) .  =  .  (R'"a)  (s'«g)  (/S-'a) 

I- .  *333-42  .  *334-32  .  *330-57  .  *331-42  .  D 

h  :.  Hp .  D  zTeic^.B'a  =  T'8'a  .  D  .  R'"a=T-"S-"a . 

[*334-131]  D  .  (If'a)  (s'/cg)  (/S-"a) 

f- .  (1) .  *41-11 .  D  h  :.  Hp .  D  :  (B'a)  (s'/cg)  (^'a) .  D .  (P'"a)  (s'«g)  (&'""») 


I- .  (2)  ^ .        D  I- : .  Hp .  D  :  (S"a)  (s'/tg)  (B'a) .  D  .  (-S'-'a)  (s'«g)  (P-"a) 

I- .  *331-42  .        D  h  :.  Hp .  D  :  P'a  =  /Sf'a .  D  .  P'-'a  =  S'-'a 
1- .  (3)  .  (4) .  *334-3 .  D 

h  :.  Hp .  D  :  ~  {(B'a)  (s'«g)  (fif'a)}  .  D  .  ~  {(P-'a)  (s'«g)  (,S'"a)} 
h  .  (2) .  (5)  .  D  h  .  Prop 


(1) 
(2) 

(3) 
(4) 


(5) 


SECTION  B]  the   series  OF  VECTORS  401 

*336-511.  \- :. K eFM sr  .  V el^C'md-  I'O  .■^  :  RU,S .  =  .  R-'U^S''   [*336-51-4] 

*336-52.     !-:.«€  FM  conx  .Q,B,S,TeK  .xe  a'(Q  |  R)  n  a'(^  |  T) .  D : 

($  I  i?)  F,  (S I  r)  .  =  .  {S'R'x)  (s'ks)  (Q'T'x) 
Dem. 
h .  *336-37l  .  D 

I- :.  Hp  .  D  :  (Q I JS)  F,  (^|  T).  =  .  (gP) .  P  e  /cg .  Q'i2'a!  =  P'ST'a;  (1) 

h .  *330-56  .  D  I- :.  Hp .  P  e  «g  .  D  :  Q'iJ'a;  =  P'S'T'x .  =  .  Q'R'co  =  S'P'T'x . 
[*7l-362]  s  .  E'/B  =  Q'S'P'T'a; . 

[*330-54-56]  =.R'x  =  S'Q'P'T'x . 

[*71-362.*330-5]  =  .S'R'a;  =  P'Q'T'a;    (2) 

I- .  (1).(2)  .  D  h:.Hp.D:(Q|iJ)F,(S|  r)  .  =  .  (^P).PeK^.S'R'x  =  P'Q'T'a;. 
[*41-11]  =  .  {8'R'iJo)(s'KgXQ'r'a!):.0  \- .  Prop 

*336-53.     \-:.>ceFM  conx .  if,  JV  e  /c. .  D  :  MV,N .  =  .  i^F«i^ 

Bern. 
h .  *330-5-54 .  D 
l-:Hp.Q.iJ,<S,r6K.M=Q|i2.JV  =  ^|r.ae  s'Q"*: . «  =  Q'R'S'T'a .  D  . 

E !  J/'* .  E !  iV'a; .  E !  i^'a; .  E !  ^'a;    (1) 
h  .  (1)  .*336-52 .  D  h  :.  Hp  (1) .  D  :  MV,N .  =  .(S'R'x)(s'ks)(Q'T'x)  . 
[*330-5]  s  .  (R'S'x)  (s'Kg)  (2"Q'a;) . 

[*336-52]  =.(T\S)V,(R\Q). 

[Hp]  = .  NV^M  (2) 

I- .  (2) .  *331-12  .  D  h  .  Prop 
*336-54.     \-:KeFM conx  .  D"«  =  a"«  .  D  . 

F.  =  M{J/,iV  6  «. :  (gT) .  Te  «9 .  Jl/ =  r|i\r} 

Dem. 
h  .  *334-46  .  D  h  :.  Hp .  ilf.iVe  «. .  D  : 

{^T,x).TeKs.M'x  =  T'N'x.  =  .{'s^T).T6Ks.M=^T\N    (1) 
h  .  (1)  .  (*336-01) .  D  h  .  Prop 

«336-6.       \- iKeFM  conx.  O.V^QJ 
Dem. 
H  .  *331-23  .  D  h  :.  Hp  .  D  :  MV^N .  D .  (ga;)  .  il/'a;  +  iV'a; :.  D  h  .  Prop 

Observe  that,  by  the  conventions  explained  in  *14,  " M'x^N'x"  implies 
E  !  M'x .  E !  N'x.     From  "  (ga;)  .  ~  (ilf'a;  =  N'x)  "  we  cannot  infer  ilf  =j=  N. 

R.  &  w.  III.  26 


402  QUANTITY  [PABT  VI 

*336-61.     h  :  «  €  FM  conx  trs .  D  .  F,  e  trs 

Dem. 
\- .  *330-612  .  D  1- :  Hp  .  i,  ilf,  iV"e«. .  D  .  a  !  a'Lna'M^a'N  (1) 

I-  .*336-37l .  D  I- :  Hp  .LV,M .MV.N' .  aea'L  n  a'Mn  O'iV.  D  . 

(L'a)  (s'«9)  (ilf' a)  .  (if 'a)  (sVg)  (iV'a) . 
[*334-14]  D  .  (L'a)  {s'icg)  (N'a) . 

[(*336  01)]  D.LV^N  (2) 

F- .  (1) .  (2) .  D  h  .  Prop 

*336-62.     h  :  «  6  ^il/  connex  .  D  .  F,  e  connex 

Dem. 
h  .  *330-61 .  D  h  :  Hp .  i,  il/6«, .  D  .  a  !  a'i  n  a'il/  (1) 

h  .  *334-24  .  D  h  :.  Hp  .  i,  ilf  e  K, .  a  6  Q'Z  n  Q'ilf .  D  : 

Z'a  =  JIf 'a .  V .  (i'a)  (s'/cg)  (if' a) .  v  .  (M'a)  (s'/cg)  (Z'a) : 
[*331-42.(*33601)] ^:L=M.v. LV.M.v  . MV,L  (2) 

f-.(l).(2).DI-.Prop 

*336-63.     hzKeFMsr.D.V^eSer    [*3366-61-62] 

*336-64.     y-:iceFMsi.D.U^eSeT     [*336-63] 


*337.     MULTIPLES  AND  SUB-MULTIPLES  OF  VECTORS. 

Summary  of  *337. 

In  this  number,  we  are  concerned  with  the  axiom  of  Archimedes  and  the 
axiom  of  divisibility.  If  k  is  a  family  of  vectors,  k  obeys  the  axiom  of 
Archimedes  if,  given  any  two  points  sc,  a  in  the  field  of  «,  and  any  vector 
jB  which,  is  a  member  of  «,  there  is  some  power  R"  of  R  such  that  R'''a  is 
later  than  x.  That  is,  k  obeys  the  axiom  of  Archimedes  if,  starting  from 
any  given  point  in  the  field,  a  sufficient  finite  number  of  repetitions  of  any 
given  vector  will  take  us  beyond  any  other  assigned  point.  A  sufficient 
hj^othesis  for  this  is  that  k  should  be  serial  and  Cnv's'/cg  should  be  semi- 
Dedekindian  (cf.  *214),  i.e.  we  have 

*33713.     h  :.  « e FM sr . P  =  s'k^. P e semi  Ded  .ReKg.ae  C'F .  D  : 

xeG'P.D.  (gi;)  .  i-  e  NC  ind  -  I'O  .  xP  (R'^a) 

'  The  hypothesis  P  =  s'k^,  which  appears  in  the  above  proposition,  is  often 
notationally  convenient.  It  will  be  observed  that  s'/cg  gives  us  the  series 
in  the  Opposite  order  to  that  in  which  it  is  usually  wanted  ;  hence  the  intro- 
duction of  the  above  relation  P  tends  to  avoid  confusions. 

A  family  k  is  said  to  obey  the  axiom  of  divisibility  when,  given  any 
member  R  of  k,  and  any  inductive  cardinal  v  other  than  0,  there  is  a 
member  L  oi  k  such  that  L'  =  R.  When  this  axiom  holds,  every  vector 
can  be  divided  into  any  assigned  finite  number  of  equal  parts.  We  shall  in 
the  next  Section  (*351)  define  a  family  for  which  this  holds  as  a  "  sub-multi- 
pliable  family,"  denoted  by  "  FM  subm.''  For  the  present  we  are  concerned 
to  find  a  hypothesis  as  to  s'/cg  from  which  this  property  can  be  deduced. 
The  hypothesis  in  question  is  that  Cnv*s'«g  is  serial,  compact,  and  semi- 
Dedekindian';  i.e.  we  have 

*337'27.     V  i.Ke  FM  sr  .  Cnv's'/eg  e  comp  r>  semi  Ded  .  D  : 

<S6«.i/eNCind-i'0.D.(ai).i6/«;.(S  =  i-' 

The  proof  proceeds  by  taking  two  points  a,  x  in  the  field  of  k,  of  which  a  is 
earlier  than  x,  and  considering  the  class 

■K  =  K^r\R{{R'"a)Px], 

26—2 


404  QUANTITY  [PAET  VI 

i.e.  the  class  of  vectors  such  that  v  repetitions  of  them,  starting  from  a,  do 
not  take  us  as  far  as  x.  It  is  easy  to  show  that,  when  P  is  compact,  this 
class  has  no  maximum  (*337"23),  and  therefore,  when  P  is  also  semi-Dede- 
kindian,  has  a  limit,  whose  vth.  power  is  the  vector  which  takes  us  from  a  to 
X  (*337'26).     Hence  our  result  follows. 


*3371.       h  ■.KeFM.P  =  s'Kg.Reicg  .aeC'P.O.  R^'aCP"R^'a 

Bern. 
h  .  *9016  .  *41-141  .  D  h  :  Hp .  xR^a .  y  =  R'x  .1^  .ye  R^'a  .  xPy . 
[*37i]  D  .  a;  6  P"R^'a  Oh.  Prop 

^  -*   — » 

*33711.     h  :  «  6 FM connex asym  . P  =  s'k^  .ReK^.ae C'P . D . seqp'R^'a  =  A 

Dem. 
h  .  *206-15  .  D  h  :  Hp ,  D  .  s'^p'R^'a=p'%'R^'a  -  P"p'P"R^'a  (1) 

f- .  *330-542  .  *40-61 .  D  h  :  Hp . »  ep^"R^'a  .D.xe  T>'R . 
[Hp]  D .  (go) .x  =  R'c.  cPx  (2) 

l-.*90-l72.  DI-:cei25,t'a.D.E'cei2*'a  (3) 

h  .  (3)  .  Transp  .  *200-5  .  *334-5  .  D  I- :  Hp  (2)  .«  =  iJ'c  .  D  .  c  ~  e  R^'a  (4) 

1- .  *37-l .  D  h  :  c  6  P"R^'a .  D  .  (36) .  b  e  E*'a .  cPb  (5) 

h  .  (5)  . *208-2  .  3  h  :  Hp  .  ceP"R^'a  .x^R'c.O.  (36) .  6 eiiji^'a . xP (R'b) . 
[*90-l72]  :i.x€P"R^'a  (6) 

h  . (6) . Transp  . *200 53 .  D  I- :  Hp (2). a;  =  iJ'c  .  D  .  c~eP"%'a      (7) 

h  .  (4) .  (7) .  *202-502  .  *334-24 .  D  h  :  Hp  (2)  .«  =  i?'c  .  D  .  c  ep'P"R^'a       (8) 

h.(2).(8).  DhzHp  (2).  0.x  6  P'Y'P"R^'a  (9) 

h  .  (1)  .  (9) .  D  h  .  Prop 

*33712.     b-.KeFMsr.P  =  i'«g  .Pesemi  Ded.i?  e  «g  .aeG'P.'O.P"R^'a=C'P 

Bern. 

->     — » 

h  .  *337-l .  D  H  :  Hp .  D .  ~  a !  maxp'R^'a  . 

[*205-7]  3 .  ~  a !  iaa,Xp'P"R^'a         (1) 

h  .  (1)  .  *206-33  .  *33711 .  D  h  :  Hp  .  D  .  ~  g  !  aeqp'P"R^'a  (2) 

h  .  (1) .  (2) .  *214'7  .  D  h  .  Prop 

*33713.     h  :. «  6  Pil/  sr .  P  =  s'«3 .  P  e  semi  Ded  .  i2  e  «g .  a  e  G^P .  D  : 

«;  e  C'P  .  D  .  (gi/) .  1/  e  NC  ind  -  t'O  .  a;P  (R-'a)     [*337-12  .  *301-26] 


SECTION  B]  multiples  AND  SUB-MULTIPLES   OF   VECTORS  405 

*33714.     t- :  K  e  FM  sr .  P  =  s'«g .  P  e  semi  Ded  .0  .U^e  semi  Ded 
[*336-462 .  *ll4-r4-75] 

*337-2.      I- :  «  6i?'il/conx  .LU.R .  R=^I[s'a"K  .O.LU,(R\  L) 
Bern. 

I- .  *336-41 .  D  h  :  Hp .  D  .  (gT) .  Z,  jB  c  «  .  r  6  «g .  Z  =  T I  i? . 

[*330-31]  D . (gT) .  Te/cg .  B |  Zi  =  T.  i=  T |  fi . 

[*13-195]  D.E|ie«:g.i  =  (^|Z)|i2. 

[*330-5.*336-41]  D  .  Z  CT^  (^  |  i)  :  D  I- .  Prop 

*337-21.     h  :  k  eFM  conx  n  ^ilf  trs .  E  e«g .  i/eNC  ind  -  I'O-t'l .  D.R-'U^R 

Dem. 

V  .  *334-162 .  *301-23 .  D  I- :  Hp  .  D .  iJ"  =  R"-'^  \R  (1) 

h.*334-131.  Dh:Hp.D.iJ,iJ-',i?''-«i6«9  (2) 

h  .  (1)  .  (2)  .  *336-41 .  D  f- .  Prop 

*337-22.     h  :  K  6  JW  sr .  P  =  s'yeg .  P  e  comp  .  aPx .  i/  e  NO  ind  -  t'O .  D . 

{'SR)'ReK   .{R"a)Px 
Dem. 

h .  *27011 .  D  h  :  Hp .  D  .  (gy) .  aPy  .  yPx  . 

[*41-11]  0.(<^R,y).R€Ks.y  =  R'a.{R'a)Px  (1) 

I- .  (1)^ .  D  h  :  Hp  .  E  e  Kg .  (i?-"a)  Pa; .  D  .  (gS) .  S e  «g .  (,S"ii!-"a) Pa;       (2) 

F  .  *336-64 .  D  h  : .  Hp (2) . /S e Kg  .  {S'R''a) Pa;.D:R  =  S .v  .RU^S.w  .S U^R : 
, [*336-511-4]  D  :  B  =  >Sf .  V  .  (E'+'i'tt) P ((Sf'iJ-"a) .  v  .  (/S-  +«i'a)  P (S'R-'a)     (3) 
f- .  (2) .  (3) .  *334-3 .  D  h  :  Hp  (2) .  D  .  (a>S) .  5f  e  Kg  .  (/S''+«i'a)  Px  (4) 

h  .  (1) .  (4) .  Induct .  D  h  .  Prop 

*337-23.     t- : Hp *337-22 . X  =  Kg n E {(iZ'-'a) Px}.D.X=  U/'\ 

Bean. 
h  .*336-511 .  D  h  :  Hp .  JB  e  \ .  SU^R .  D  .  (;S''"a)  P  (i2-"a) .  (iZ'-'a)  P« . 
[*334-3.Hp]  D.SeX  (1) 

h  .  *337-22  .DI-:Hp.i2e\.3.  (g^) .  S  e  Kg  .  {S-'R'"a)  Px . 
[*330-57-5.*334-13]  D  .  (gfi') .  P  |  /Sf  e  Kg  .  {(fl  |  ^f^'a}  Pa; . 

[*336-41]  D .  (a;S) .  P  t  'S'  6  Kg .  {(P I  /S)'"a}  Pa; .  P  [/■^(P  |  fif) . 

[*3r-l]  ^.ReU,"\  (2) 

l-.(l).(2).Dh.Prop 


406  QUANTITY  [PA«T  VI 

*337-24.     h:Hp*337-2&'.Z  =  tl(fr^y\.D.~{(i'"a)Pa;} 

Dem. 

V .  *206-2  .Dh:Hp.D.Z~e\. 

[Hp]  D  .  ~  {(L-'a)  Pw}  Oh.  Prop 

*337-241.  1- :  Hp  *837-24 .  D  .  ~  {a;P  (Z-'a)} 
-Dem. 

I- .  *337-2-23  .Df-:Hp.i26\.D.E|i6X. 

[*332-53-241  .*334-131]  0  .  R\  L  eX  .(R\  L)"  =  R"  \  L" . 

[Hp]  D.(P'"X'"a)P«. 

[*71-362.*41-11]  D .  (L-'a)  P{R'"x)  (1) 

I- .  *337-23  .  D  I-  :  Hp  .  -B  6  «9  -  X .  D  .  ~  {Z f/,i2} . 

[*336-.511]  D  .  ~  {{R-'a)  P  (Z-'a)} . 

[*330-5.Hp.*334-14]  D  .  ~  {(J?"'*)  P  (I/'a)}  (2) 

h  .  (1)  .  (2)  .  D  h  :  Hp  .  D  .  ~(ai2) .  P  e  «g  .  (R"a;) P {L"a)  . 

[*337-22.Transp]  D  .  ~  [a;P  (/."'a)}  Oh.  Prop 

*337-25.     h  :  Hp  *337-24  .D.L-  =  k^  A^'x 

Dem. 

h  .  *337-24-241 .  D  h  :  Hp .  D  .  L'''a  =  a; :  D  h  .  Prop 

*337-26.     h  :  Hp  *337-23  .  Pe  semi  Ded  .  D  .  {tl  (f7,)'\|-  =  k^IA^'x 

Bern. 

h  .  *337-21  .  D  h  : .  Hp  .  D  :  E  6  \ .  Db  ■  (M'a)  Px : 

[*336-4]  D : « 1  Aa'x€p''u,"X  (1) 

h  .  (1) .  *337-23-14 .  D  h  :  Hp  .  D  .  E !  tl  (  U,y\  (2) 

h  .  (2)  .  *337-25  .  D  h  .  Prop 

*337-27.     h  :.  K  e  PM sr  .  Cnv's'/cg  e  corap  n  semi  Ded .  D  : 

/S 6 /t .  z; 6 NC ind - t'O  .  D  . (gX)  .LeK.8  =  L-'    [*337-26] 


SECTION   C. 

MEASUREMENT. 

SumTnary  of  Section  C. 

In  this  Section,  the  "  pure  "  theory  of  ratios  and  real  numbers  developed 
in  Section  A  is  applied  to  vector-families.  A  vector-family,  if  it  has  suitable 
properties,  may  be  regarded  as  a  kind  of  magnitude.  In  order  to  derive  from 
the  "pure"  theory  of  ratio  a  theory  of  measurement  having  the  properties 
which  we  should  expect,  it  is  necessary  to  confine  ourselves  to  some  one 
vector-family;  that  is,  instead  of  considering  the  general  relation  X,  where 
X  is  a  ratio,  we  consider  the  relation  X^  k,  where  k  is  the  vector- family  in 
question;  or  sometimes  we  consider  X^k„  or  sometimes  X  ^  (/t  w  Onv"*). 

Concerning  ratios  with  their  fields  thus  limited,  which  are  what  we  may 
call  "  applied  "  ratios,  we  have  to  prove  various  propositions. 

(1)  No  two  members  of  a  family  must  have  two  different  ratios.  This 
is  proved,  for  an  open  and  connected  family,  in  *350'44!. 

(2)  All  ratios  except  Og  and  oo  g  must  be  one-one  relations  when  limited 
to  a  single  family.  This  is  proved,  for  an  open  and  connected  family,  in 
*350'5;  with  the  same  hypothesis,  Og  is  one-many  (*35051). 

(3)  The  relative  product  of  two  applied  ratios  ought  to  be  equal  to  the 
arithmetical  product  of  the  corresponding  pure  ratios  with  its  field  limited, 
i.e.  if  X,  Y  are  ratios,  we  ought  to  have 

Z^«  |7^«=(Zx,F)C« 
or  XlK,\7lK,  =  (Xy,Y)lK,. 

That  is  to  say,  two-thirds  of  half  a  pound  of  cheese  ought  to  be  (2/3  Xg  1/2) 
of  a  pound  of  cheese;  and  similarly  in  any  other  ease.  For  any  open  connected 
family,  we  have  (*350"6) 

XtK,\7tK,(l(Xx,Y)lK,, 
but  in  order  to  obtain  an  equation  instead  of  an  inclusion,  it  is  necessary 
(*351"31)  that  K  should  be  "  submultipliable,"  i.e.  that  if  R  is  any  member 
of  K,  and  V  any  inductive  cardinal  other  than  zero,  there  should  be  a  member 
of  K  whose  vth  power  is  M.  The  class  of  such  families  is  denoted  by 
"  FM suhm,"  and  considered  in  *351. 


408  QUANTITY  [part  VI 

(4)  If  X,  Y  are  ratios,,  and  T  is  a  member  of  the  family  k,  we  ought 
to  have 

{X  i  k'T)  I  (Ft:  k'T)  =  (X  +,  Y)  t  k'T, 

that  is,  two-thirds  of  a  pound  of  cheese  together  with  half  a  pound  of  cheese 
ought  to  be  (2/3 +« 1/2)  of  a  pound  of  cheese,  and  similarly  in  any  other 
instance.  This  property  is  shown,  in  *351"43,  to  hold  for  any  open  connected 
submultipliable  family  in  which  all  powers  of  members  are  members.  In  any 
open  connected  family,  if  R,  8,  Te  k,  we  have 

RXT .  SYT .  D  .  (i2 1  *Sf)  (Z  +,  F)  T    (*350-62). 

The  remainder  of  the  hypothesis  of  *351'43  is  required  in  order  to  prove 
(a)  that  Xp/cT,  F^AT'Tand  (X+.F)  ^kT  exist,(6)  that  (Zp«'2')|(Fp«'r), 
which  is  the  i2 1  /S  of  *350'62,  is  a  member  of  k.  As  applied  to  «„  we  have 
to  take  the  representative  (cf.  *332)  of  the  relative  product;  if  i  e  /c.,  we  have 
(*351-42) 

rep/{(Z  I  K,'L)  i  (Yt  «.'£)}  =  (X  +,  F)  t  k,'L, 

provided  k  is  open  and  connected  and  submultipliable. 

The  fact  that  the  above  propositions  can  be  proved  for  suitable  vector-- 
families  constitutes  the  reason  for  studying  such  families,  as  we  did  in 
Section  B.  The  proof  of  the  above  propositions,  together  with  other 
elementary  properties  of  applied  ratios,  occupies  the  first  two  numbers  of 
this  Section. 

We  proceed  next  (*352)  to  consider  all  the  rational  multiples  of  a  given 
vector  in  a  given  family,  i.e.  all  the  members  of  a  given  family  «  which  have, 
to  a  given  vector  T,  a  ratio  which  is  a  member  of  C'H',  or,  alternatively,  all 
the  members  of  k,  which  have  to  T  a  ratio  which  is  a  member  of  G'Hg.  It 
will  be  observed  that,  in  virtue  of  *307,  if  R  and  8  have  a  ratio  X  which  is 

a  member  of  C'H',  R  and  8  have  the  corresponding  negative  ratio  X  \  Cnv. 
The  members  of  k  which  have  to  T  a,  ratio  which  is  a  member  of  C'H'  are 
those  vectors  R  for  which  we  have 

(gZ) .  Z  6  C'H' .  RXT, 
i.e.  using  the  notation  of  *336,  those  for  which  we  have 

(,^X).XeC'H'.RATX. 

Thus  they  constitute  the  class 

K  n  Aj."C'H'. 

Assuming  that  TeK,  the  vector  which  has  the  ratio  Z  to  T  is  «']  ^.y'Z. 
This  is  the  vector  whose  measure  is  Z  when  yis  the  unit.  Thus  k^  Af^G'H' 
is  the  correlator  of  a  vector  with  its  measure.  It  is  easy  to  prove  (*352"12) 
that  k'\  Aj,\C'H'  is  one-one. 


SECTION  C]  MEASUREMENT  409 

We  can  arrange  the  vectors  which  are  rational  multiples  of  T  in  a  series 
by  correlation  with  thfir  measures,  putting  vectors  with  smaller  measures 
before  those  with  larger  measures.     The  ordering  relation  is  T^,  where 

T.^k^^At'^H'    Df 

Similarly  the  members  of  k^  which  are  positive  or  negative  rational  multiples 
of  T  may  be  ordered  by  the  relation  T„,  where 

T,,  =  K.'\A^iHg    Df. 

We  prove  that  change  of  units  makes  no  difference  to  T,,  i.e.  if  S  is  any 
member  of  k  which  is  a  rational  multiple  of  T,  then  8^  =  T^  (*352-45).  The 
corresponding  proposition  holds  for  T^,  if  S  has  a  positive  ratio  to  T,  but  if  8 

has  a  negative  ratio,  *S„  =  T,,  (*352-56-57). 

If  K  is  a  serial  family,  T^  is  the  converse  of  U^  (cf.  *336)  with  its  field 
limited  to  rational  multiples  of  T  (*352-72).  This  proposition  connects  the 
generalized  form  of  greater  and  less  represented  by  {/„  with  the  form  of 
greater  and  less  derived  from  greater  and  less  among  the  measures  of  vectors, 
since  it  shows  that,  in  a  serial  family,  the  vectors  which  have  greater  measures 

come  later  in  the  series  C7'„,  and  those  with  smaller  measures  come  earlier. 

We  next  proceed  (*353)  to  consider  "rational"  families.  These  are 
families  in  which  every  member  is  a  rational  multiple  of  some  one  unit  T, 
i.e.  in  which 

('S^T).T6Ks.kCAj,"G'H'. 

It  is  obvious  that,  given  any  family,  the  rational  multiples  of  one  of  its 
members  constitute  a  rational  sub-family.  In  a  rational  family,  rationals 
are  sufficient  for  measurement,  and  irrationals  are  not  required.  If  the 
family  has  connexity,  it  will  be  serial;  in  fact,  if  T  is  one  of  its  vectors  and 
a  is  a  member  of  its  field,  we  have  (cf.  *353"32'33) 

Uk  =  k']  Aj:'  H'  .  s'Kg  =  AJ  K']  Aji'H'. 

Thus  both    Ux  and  s'k^  are  ordinally  similar  to  H'  ^  Ax"k.     If  k  is  sub- 

multipliable,  U^  is  ordinally  similar  to  H'  (*353'44). 

We  proceed  next  (*354)  to  consider  "  rational  nets,"  which  are  important 
in  connection  with  the  introduction  of  coordinates  in  geometry.  A  rational 
net  is  obtained  from  a  given  family,  roughly  speaking,  by  selecting  those 
vectors  which  are  rational  multiples  of  a  given  vector,  and  then  limiting  their 
fields  to  the  points  which  can  be  reached  by  means  of  them  from  a  given 
point.  In  order  to  make  this  more  precise,  we  proceed  as  follows:  Let  us 
define  as  the  "connection"  of  a  with  respect  to  k  the  class  Aa"ic„  i.e.  all  the 
points  which  can  be  reached  from  a  by  a  member  of  k^.  We  will  now  define 
as  the  "  a-connected  derivative  of  k  "  the  class  of  relations  obtained  by  limiting 


410  QUANTITY  [part  VI 

the  field  of  every  member  of  k  to  the  connection  of  a  with  respect  to  k.     This 
class  of  relations  we  denote  by  cxa'/e,  putting 

CX„'K=^(^a"«0"/C      Df. 
Instead  of  k,  we  take,  in  order  to  obtain  a  rational  net,  all  the  rational 
multiples  (in  k)  of  a  given  member  T  of  k,  i.e.  G'T^.     Then  cXa'G'T^  is  a 
rational  net,  namely  the  rational  net  associated  with  the  origin  a  and  the 
unit  vector  T. 

In  proving  propositions  concerning  the  rational  net  cXa'C'T^,  we  often 
require  the  hypothesis  that  «  is  a  group.  In  order  to  avoid  having  to  make 
this  hypothesis  concerning  our  original  family,  we  construct  a  closely  allied 
family,  which  is  always  a  group  when  k  is  connected.  This  family,  which  we 
call  Kg,  is  obtained  from  k  by  including  the  converses  of  those  members  of  k, 
if  any,  whose  domains  are  equal  to  their  converse  domains,  i.e.  we  put 

«3  =  «  w  Cnv"(«  "  D Va"K)  Df. 
Then  if  «  is  a  connected  family,  Kg  is  a  connected  family  wliich  is  a  group 
(*354!-14-16),  and  (Kg\  =  «.  (*354-15).  Then  putting  X  =  Kg,  we  take  cxa'G'Ti, 
rather  than  cXa'C'T^  as  the  rational  net  to  be  considered.  If  k  is  an  open 
and  connected  family,  this  rational  net  is  a  family  which  is  open,  connected, 
rational,  transitive  and  asymmetrical  (*354'41). 

We  proceed  next  (*356)  to  the  application  of  real  numbers  to  vector- 
families.  For  the  application  of  real  numbers,  it  is  essential  that  our  family 
should  be  serial.  Given  a  serial  family  in  which  a  given  vector  8  is  the  limit 
(in  the  series  U,,)  of  a  set  of  vectors  which  are  rational  multiples  of  another 
vector  R,  it  is  natural  to  take  as  the  measure  of  8,  with  the  unit  R,  the  limit 
of  the  measures  of  the  vectors  whose  limit  is  8.  It  is  convenient  to  take  our 
real  numbers  in  the  relational  form  given  in  *314,  i.e.  if  ^  is  a  segment  of  H, 
we  take  s'^  as  the  corresponding  real  number.  Thus  positive  real  numbers 
are  the  class  s"G'@,.  while  positive  and  negative  real  numbers  together  with 
zero  are  the  class  s'^G'®g.  If  f  eC©,  a  vector  which  has  to  i?  a  ratio  which 
is  a  member  of  ^  has  a  measure  which  is  less  than  s'^.     The  class  of  all  such 

vectors  is  s'^'R,  i.e.  if  X  =  s'f ,  it  is  X'R.     The  limit  of  such  vectors  in  the 

series  U,^,  if  it  exists,  will  naturally  be  taken  as  the  vector  whose  measure  is 

X.     Remembering  that  U,,  proceeds  from  greater  to  smaller  vectors,  we  see 

— > 
that  the  first  vector  which  is  greater  than  every  member  of  X'R  will  be  the 

— » 
lower  limit  of  X'R  with  respect  to  TJ^-     Hence,  if  we  write  X«'i?  for  the 

vector  whose  measure  with  the  unit  R  is  X,  we  have 

X/i2  =  prec(C/^,)'Z'i2. 
Hence  we  may  take  as  our  definition  of  X, 

Z,  =  prec(f/'«)|X|'«     Df. 
Then  X«  is  an  "  applied  "  real  number. 


SECTION  C]  MEASUREMENT  411 

The  properties  to  be  proved  concerning  applied  real  numbers  almost  all 
require  that  the  familJ>to  which  they  are  applied  should  be  serial  and  sub- 
multipliable,  and  most  of  them  also  require  that  Cnv's'/cg  should  be  semi- 
Dedekindian.  Assuming  this,  we  can  prove  that,  if  X,  Yes"G'@,  X^^k  is 
one-one,  and,  with  various  hypotheses, 

iXlK)\{YlK)  =  (XxrY)lK    (*356-31), 

X,\7,  =  {XxrY),        (*356-33), 

(X/R)  I  ( r^'R)  =  (Z  +r  YyR    (*356-54). 

These  are  the  essential  properties  required  of  measurement,  as  in  the 
analogous  case  of  ratios. 

We  might  proceed  to  consider  "real"  multiples  of  a  given  vector,  and 
"  real "  nets.  But  these  subjects  have  less  importance  than  in  the  analogous 
case  of  rationals,  and  are  therefore  not  discussed. 

The  Section  ends  (*359)  with  a  number  on  existence- theorems  for  vector- 
families.  The  most  important  of  these  are  derived  from  rationals  and  real 
numbers.  The  family  whose  members  are  of  the  form  {+gX)^G'H',  where 
XeG'H',  is  initial,  serial,  and  submultipliable  (*359'21).  The  family  whose 
members  are  of  the  form  (-1-^  /i)  ^  G'&,  where  ^  e  G'@',  is  initial,  serial,  and 
submultipliable,  and  has  Cnv's'«;g  =  @',  so  that  Cnv's'«g  e  semi  Ded  (*359'31). 
Finally  we  prove  that  the  properties  of  families  are  unaffected  by  the 
application  of  correlators,  whence  it  follows  that,  given  any  series  P  whose 
relation-number  is  l+rj,  or  is  6'  where  6'  +  1  =  6,  there  is  an  initial  serial 
submultipliable  family  k  such  that  Cnv's'Kg  =  P.  Such  a  family  may  be 
used  for  the  measurement  of  distances  in  P. 

It  is  of  some  interest  to  observe  that,  given  a  suitable  family  k,  ratios 
with  their  field  limited  to  Kg  form  a  family  whose  field  is  /eg.  In  this  family, 
the  zero  vector  is  (1/1)  ^«g,  and  the  family  is  connected  if  k  is  a  rational 
family.  If  we  wish  to  obtain  a  serial  family,  we  must  limit  ourselves  to 
ratios  not  less  than  1/1,  i.e.  to 

t:«g"^*'(l/l). 

This  family  is  serial,  and  if  we  call  it  \,  we  have  (with  a  suitable  hypothesis) 

It  is  necessary,  however,  if  we  are  to  obtain  a  family,  that  our  original  family 
should  be  submultipliable,  since  otherwise  we  do  not  necessarily  have 
CI'X^«:g  =  Kg.  For  this  reason,  we  cannot  use  the  family  of  ratios  without 
a  frequent  loss  of  generality  in  the  resulting  theorems. 

The  theory  of  measurement  developed  in  this  Section  is  only  applicable 
to  open  families.  The  application  of  ratio  to  cyclic  families  is  more  complicated, 
and  is  considered  separately  in  Section  D. 


*350.     RATIOS  OF  MEMBERS  OP  A  FAMILY. 

Summary  of  *350. 

In  this  Dumber  we  introduce  no  new  definitions,  but  merely  bring  together 
the  propositions  of  *303  on  the  pure  theory  of  ratio,  and  the  propositions  of 
*333  on  powers  of  vectors  in  open  connected  families,  especially  *333'47'48. 
We  thus  find  that,  if  k  is  an  open  connected  family,  and  fi,  v  are  inductive 
cardinals  which  are  not  both  zero, 

M  [iiilv)  lK:\N.  =  .M,NeK,.^\M''hNi'.  (*350-4) 

=  .M,NeK,.  rep/if "  =  rep/iV''     (*350-41), 
while  if  R,  T  are  members  of  k, 

R  (fi/v)  T.  =  .R'  =  Ti'  (*3.50-43). 

We  prove  also,  by  means  of  *333"53,  that  if  L  and  M  are  members  of  w,  other 
than  I  f"  s'(l"ic,  they  cannot  have  more  than  one  ratio,  i.e. 

*350-44.     h  :  «  6  -FM  ap  conx  .X,Ye  G'H' .  g  !  Z  ^  K^g  n  F  ^  /e.g .  D  .  Z  =  F 

We  next  prove  that  any  ratio  other  than  0,  and  oo  g  becomes  one-one  when 
its  field  is  limited  to  /c,  (*350"5),  while  0,  becomes  one-many  (*350'51)  and 
X  q  becomes  many-one  (*350'511),  Og  being  in  fact  the  ratio  of  the  zero  vector 
r[s'(I"K  to  any  member  of  /£„  and  oo  q  being  the  converse  of  Og. 

We  consider  next  the  multiplication  and  addition  of  ratios,  but  in  this 
subject  we  cannot  obtain  some  of  the  main  theorems  without  the  hypothesis 
that  our  family  is  submultipliable  (introduced  in  *351).  In  the  present 
number,  we  prove  that,  if  k  is  an  open  connected  family,  and  /j,,  v  are  inductive 
cardinals  other  than  0, 

(/i/l)t«.|(l/«.)p«.C(/./^)p«.  (*350-53), 

{II v)  I K,  I  (fjL/1)  t «.  =  (fi/u)  t  /..  (*350-54), 

(ji/1)  I K,  I  ivjl)  I «.  =  {{ti  x„  v)l\]  I  «.     (*350-5o), 

and  (l/yii)  I K,  I  (1/z.)  t  «c  =  {l/(/i  Xe  v)]  I «.     (*350-56). 

Hence  we  find  that,  if  Z,  F  are  ratios  other  than  Og  and  oo  q, 

Z  ^  K.  I  F  t  «.  G  (Z  X,  F)  t  /cc        (*350-6), 

while  if  R,  8,  T  are  members  of  k, 

RXT.SYT.-2.(R\S)(X+s7)T    (*350-62), 
and  if  L,  M,  N  are  members  of  k^, 

LXN .  MYN .  D  .  {rep/(i;  |  M)}  (Z  +s  F)  N    (*350-63). 


SECTION  C]  RATIOS   OF   MEMBERS  OF  A   FAMILY  413 

We  then  prove  similar  results  for  subtraction,  and  thus  arrive  at  the  following 
proposition  concerning  ^neralized  addition  of  positive  or  negative  ratios : 

*350-66.     hiKeFMa.^  conx  . L, M, JTe «. . X,  Ye G'Hg . LXN .MYN.D. 

iep.%L\M)  =  (X+gY)tKjN 


*3501.       I- :  /e  e  FM  ap .  D  .  /e^  C  Rel  num  id .  /c,g  C  Rel  num 
Bern. 

H.*333-101.     DI-:Hp.Z6«:.3.3.L6l-»l.ipoeJ  (1) 

h  .  (1) .  *300-3  .  D  h  :  Hp .  D .  /e^g  C  Relnum  (2) 

h.*3331-101.  Dh:Hp.2;e«.-/«:.g.D.ie/. 
[*300-325]  D.ieRelnumid  (3) 

1- .  (2) .  (3) .  D  I- .  Prop 

ii^50'2.       I- :  K  e  FM  ap  conx .  g  !  K^g .  D  .  Infin  ax 

Bern. 
h  .  *330-624 .  *333-15  .  D  h  :.  Hp .  Z  e  /c^g  .  D  :  A~e  finid'Z : 
[*121-1112]  D  :  1/ e NC induct .  D, .  (ga;, y)  .L{xh-iy)ev+al: 

[*120-3]  D  :  Infin  ax  :.  D  h  .  Prop 

*350-21.     hialJWapconx-l.D.Infinax     [*334a8 .  *350-2] 

*350-31.     h  :.  «  e  ^Jlf  ap  conx  .fi,ve  NC  ind  - 1<0  .  ilf,  iVe  «:,g  .  D  : 

■  M(/i/v)N.  =  .'3_lM''nNi' 
Bern. 
h  . *3031 .  (*3020203) . *1 13-602 .  D 
h  ::  Hp  .  D  :.  M(jj,/v)N.=  :  (gp,  a;r).p  Prin  v. re  NC  ind  -  I'O  . 

[*333-48]  =  :  (a/3,  <r,  t)  .  p  Prm  <r .  T  e  NC  ind  -  t'O .  p  +  0  .  o- +  0  . 

/i  =  /3  Xe  T .  v  =  o-  Xg  T  :  a  !  Jf"  «S  iV'' : 
[*I  13-602.(*302-0203)]  =  :  (gp, a) .  (p, o-) Prm (/i,  v)  :  g  !  Jlf "  n iV'' :      - 
[*302-36]  =  :  a  !  JIf "  n  iV'' : :  3  I- .  Prop 

*350'32.     I- : .  Hp  *350-31 .0:M  (fi/v)  N.  =  .  rep.'ilf "  =  rep/i\/''* 
[*350-31 .  *333-47] 

*350-33.     I- :. «  6  FM  ap  conx  ./M.ve'NG  ind  -  t'O .  M=I[s'<I"k  .  JVe  «. .  D  : 

M(/ji/v)N.  =  .M  =  N.  =  .'3^lM-'nN'' 
Bern. 
h  .  *301-3 . *333-2 .  D  I- :.  Hp.  D  :  o-eNOind-  I'O .  D  .  M »  =  ilf  (1) 

F- .  (1) .  *303-l .  D 

h  :.  Hp .  D  :  Jf  (fi/v) N.  =  .  (gp,  ff) .  (p,  ff)  Prm  (/*,  v) .  g  !  if  A  JV" . 
[*333-101]  =  .  (ap,  ff) .  {p,  ff)  Prm  (/i,  v).M=N. 

[*302-36]  =.M=N.  (2) 

[(l).*331-42]  =.a!il^''«-ZV''  (3) 

h  .  (2)  .  (3) .  D  h  .  Prop 


414  QUANTITY  [part  VI 

*350-331.  h  :.  AC  6  Fif  ap  conx  .  /t,  v  e  NO  ind  -  I'O .  ilf  e  k.  .  JV  =  /  f'  s'a"K .  D  : 
M  (/t/i/)  iV".  =  .Jf=iV.  =  .a!ilf-niV''     [*350-33 .  *303-13] 

*350-34.     \-:.Ke FMap conx  .  i/ e  NC ind  -  I'O  .M,NeK,.D: 

Bern. 
f-  .*303-151 .  :>h  :.  Hp .  D  :  M{0/v)N.  =  .  il/G/.  g  !  G'MnC'N. 
[*330-43-61]  =  .  M  =  I[s'a"K  :.  D  I- .  Prop 

*350 35.     h  :.  xeFMap conx .  i/ e NC  ind  -  I'O .  M,NeK,.  D  : 

Bern. 

h  .  *301-2  .  D  h  :.  Hp .  D  :  a  !  Jtf  -  n  iV» .  =  .  a  !  il/-'  n  /  [^ s'(1"k  . 
[*333-101.*331-12]  =.M=Ils'a"K  (1) 

h  .  (1) .  *350-34 .  D  h  .  Prop 

*350-351.  h  :.  /c  6  FMwp  conx  .  fi  e  NC  ind  -  t'O  .  D  : 

i/ (/i/0)  iV .  =  .  iV=  /  I' s'a"/e     [*350-35  .  *303-13] 

*350-4.       h:.«ei'il/apconx,/i, i/eNCind.~(/i  =  i/  =  0).  D: 

M  {(fi/v)  lK,]N.  =  .M,N6K,.'s_\M^hNi'    [*350-31-33-331-35-351] 

*350-41.     h  : .  Hp  *350-4 .  D  :  il/  {{fijv)  ^  «.)  iV .  =  .  if,  iV  e  «■. .  rep/if ^  =  rep/if -^ 
Z)em. 
h  .  *332-243  .  *301-3  .  D  h  :  Hp .  ilf  =  /  I'  s'a"« .  D  .  rep/ilf  -  =  il/       (1) 
1- .  (1) .  *350-33-331-32  .  D  I-  .Prop 

*350-42.     h  : .  Hp  *350-4  .Q,R,S,Teic.D: 

{Q  \  R)  i^ilv)  {S\T).  =  .Q-\R-  =  h\Ti'    [*350-41 .  *332-53] 

*350-43.     I- :.  Hp*350-4 .R.TeK.'^iR (fi/v)T.  =  .R^=Ti' 

*350-44.     I- :  xeJ^ifapconx  . X,  YeC'E' . g  !  Z  p  K^g n  F^ «.g .  D  . Z  =  F 

Dem. 
h  .  *350-4 .  D  h  :  Hp .  D .  (gii,  M,  /j,,  v,  p,<T).L,Me  K.g  . 

a  !  Z"  n  il/p  .  g  !  Z- n  if (^ .  Z  =  ^/«; .  F=  p/<7  , 
[*333-53]  D.fix^a-  =  vx^p.X  =  fi/v.Y=p/a. 

[*303-39]  D.Z=F:DF.  Prop 


SECTION  C]  RATIOS   OF   MEMBERS   OF  A   FAMILY  415 

«350'5.       h  :«6^il/apconx./i,  veNCind-t'O.  D .  (/it/i;)  ^  «.  e  1 -» 1 

Dem.  • 

h.*350-41.Dl-:.Hp.D: 

L,M,NeK,.L {(i/v) N .  M (fi/v) N.D. rep/i"  =  rep/iV"  =  rep/if " . 
[*333-41]  ^.L  =  M  (1) 

h.(l).        Df-:Hp.D.(/i/j/)t«.6l->Cls  (2) 

Similarly        I- :  Hp .  D  .  (;n/j/)  ^  k.  e  Cls ->  1  (3) 

F- .  (2) .  (3) .  D  h .  Prop 

*350-51.     h  :  K  e  i^lf  ap  conx  .  i;  e  NC  ind  -  t'O  .  D  . 

(O/i/)  D  /<.  e  1  ->  Cls .  a'(0/j;)  D  «.  =  «. .  D'(0/i')  i  «.  =  i'/  1^  s'G"k     [*350-34] 

*350-511.  h:Hp*350-51.D. 

(v/0)  C  «.  6  01s  -»  1  .  D'(i;/0)  D  «.  =  «. .  a'Cv/O)  t  «.  =  I'/  r  «'a"ye 
[*350-51.*303-13] 

*350-52.     1- :  «  e  ^M  ap  conx  .  X  e  G'H  .D.X^K.el-*! 
[*350-5  .  *304-34  .  *383-2] 

*350-521.  I- :  «  6  JW  ap  conx  .  Z  e  G'H' .  D  .  Z  C  «.  e  1  -»  Cls 
[*350-52-51 .  *303-l] 

*350-53.     h  :  Hp  *350-5  .  D  .  {(/t/l)  t  «4  I  {(!/")  D  «•}  ^  (W")  D  «' 

Dem. 

h  .*350-4  .  D  h  :  Hp.i  {(;tt/l)D  «4  -^-  -^RlMD  ««}  -^-  ^  • 
L,M,NeK,.'3_lLnMi--.'^lN^M-'. 

[*333-48]  D  .  i,  ilf,  iV  6  «, .  a !  i-  A  Jf'^'^"'' .  a !  i^"  A  M'^>^-'  - 

[*333-47]  D.L,M,NeK,.  rep/Z"  =  rep/Jf^*^-^"  =  rep/iV^^ . 

[«350-41]  D  .  i  {(/*/")  D  «.}  -^ :  3  •■  •  ^'I'^P 

*350-54.     h  :  Hp  *350-5  .  D  .  {(l/v)  t  «.}  |  {(/i/l)  D  «'!  =  (/*/")  t  «• 

Dem. 
h  .  *350-41 .  *332-241 .  D 

I- :.  Hp  .  D  :  X [{(!/«;)  D  «.}  |  {(m/1)  D  «')]  -^ ■  =  ■ 

(gJlf )  .  Z,  if ,  JV  e  «. .  rep/Z-  =  iW  =  rep/J\^''  - 

[*332-22]  =.L,NeK,.  rep/X'  =  rep/i\r''  - 

[*360-41]  =  ■  L  (fijv)  N  :.:>}■ .  Prop 


416 


QUANTITY 


[PAKT  VI 


*350-55.     h  :  Hp*3o0-5  .  D .  {(/t/1)  t  k.}  \  {(v/1)  f  «.}  =  {(^  x„  v)/l}  t «. 

=  K''/i)D«^}|{Wi)D«.} 

h  .  *350-4 .  D  I- :.  Hp .  D  :  X  [{(li/l)  ^  «.}  |  {(k/I)  p  «.}]  iV .  =  . 


[*333-47] 

[*333-21] 

[*333-47] 

[*333-24] 

[*350-41.*3015] 

f-.  (1).*1 13-27.  Dh.  Prop 


.  Z,  iV  e  /e. .  a  !  i  «  (rep/i\r'')'' . 

.L,NeK,.L  =  rep<'{(rep^'i\7'''/} . 

.L,NeK,.L  =  vb^^^N^Y . 

.L[{(vx,^)/l]tK.]N  (1) 


*350-56.     h  :  Hp  *350-5  .  3 .  {(1//.)  ^  «.]  |  {{1/v)  t  «.}  =  {l/(/.  x^  i;)}  t: «. 

=  {(1/v)  I  «4  I  {(l//i)  p  K.}     [*350-55  .  *303-13] 

*350-6.       I-  ZKeFMapconx.X,  YeG'H.:)  .  (Z^  «OI(I^P«OG(X  x,  F)  t  «, 

Dem. 
h  .  *304-34 .  D 

1- :  Hp.  D.  (a/i,v,p,(7)./i,K,  (0,0- 6  NC  induct -i'O.Z  =  /t/i/.  Y=p/<T       (1) 
h  .  *350o4 .  D  f- :  K  6  FM  ap  conx  .fj,,v,p,cre  NC  induct  -  I'O .  D  . 

{(W*-)  D «.}  I  {(pH  t  «4  =  {(1/^)  D «.}  I  (Wi)  t «.}  I  {(i/<r)  D «.  }i  {(/j/i)  D  «4 

[*350-53-54]  G  {(1/^)  I  «.}  |  {(l/<r)  ^  «.}  |  {(/./l)  D  «.}  |  {(/,/!)  ^  «.} 

[*3o0-56-55]  G  {l/(i/  x.  a)}  t «,  |  {(/.  x„  p)/l}  ^  «. 

[*350-54]  G  {(/.x„ /,)/(«;  x„  ,7)}  C«. 

[*305-14]  Gl/./z;x,p/<r}D«.  (2) 

I- .  (1) .  (2) .  D  I- .  Prop 

*350-61.     h  -..KeFMapconx  .  Xe  G'H.D  :M=(XIk:)'N .  =  .  iV  =  (ZC  «,)'if 
[*350-52] 


Dem. 


*350-62.     H  :  «  ei^if  ap  conx  .  X,  Ye  G'H'  .R,S,TeK.  RXT.SYT.  D . 

(R\S)(X+sY)T 
[-.*350-43.DI-:Hp.X  =  /i/i/.  F=p/(r.D. 

[*301-5]  D  .  JS"^"'  =  Ti^^"" .  ,S'"<'=''  =  T^xcp . 

[*330-57]  3  ■  (-R I  /S)''><°°-  =  ytf^x^-fJ+cC-xcp) . 

[*350-41.*306-14]  3  .  (i?  |  fif)  (Z  +,  F)  T :  D  h  .  Prop 


SECTION  C]  RATIOS    OF   MEMBERS   OF   A   FAMILY  417 

*350-63.     hiiceFMa,^  conx  .  X,  Ye G'H.L,M,Ne>c, .  LXN.MYN.  D  . 

{rep/(X|Jl/)}(Z+,F)iyr 
Dem. 
V  .  *360-41 .  D 

h  :  Hp .  X  =  /i/v  .  F=  p/o- .  D  .  rep/i"  =  rep.'iV^^ .  re^^'M'  =  rep/Nf . 
[*332-81]  D .  rep/i-X""'  =  rep^'i\f "><'='' .  rep/i/''x«"-.=  rep/iV-X"" . 
[*332-33]  D  .  rep/(i/'"<"''  |  M-""'")  =  rep.'iV<'^X'""+«<'"<"''i . 
[*332-8]    D.rep/(X|  Jf)''X'=''  =  rep,'i\r'^X'='^+'=('"<'=p) . 
[*332-82]  D .  rep/{rep/(i  |  ¥)}•"'•''  =  rep/iV^xcoi+c  (-xop) . 
[*350-41]  D  .  {rep/(i  |  M)}  [{(jjl  x,  <r)  +„  (i-  x„  p)}/{v  x„  ,r)]  J\r . 
[*306-14]  D  .  {rep/(i  |  Jlf )}  (Z  +,  F)  iV :  D  h  .  Prop 

*350-64.     h  :  Hp *350-63  .  XHY .  D .  {rep/(Z  |  M)}  {Y-,X)N 
Dem. 

h  .  *33215-81 .  D  f- :  Hp .  D  ,  rep/L"'Xc<r  =  Cnv'(rep/i)''X"''         (1) 
Thence  the  proof  proceeds  as  in  *350"63. 

*350-65.     f- :  Hp  *350-62  .0  .{R\8){Y -,X)T    [*350-64 .  *308-21] 

*350'66.     V-.KeFMs.-^  conx  .L,M,N eK,.X,Y e  G'Hg . LXN . MYN .  D  . 

rep/(L|ilf)  =  (X+gF)^«/iV 
Dem. 
V  .  *350-63 .  D 

h  :.  Hp .  ir  =  rep/(X  I  M).:>:X,  YeC'H .  D  .  1F=  (Z  +,  F)  ^  ic.'N  (1) 

y.*S50-6i.O\-:Rf(l).XeG'H„.YeG'E.-^.W  =(Z+jF)t«/iV  (2) 
h  .  *350-63  .  *3071 .  D  h  :  Hp  (.1)  •  X,  Ye  G'H^  .:>  .W={X +gY)l  k,'N  (3) 
h  .  *350-34 .  D  h  :  Hp .  Z=  Oj  .  D  .  rep/(Z  |  il/)  =  il/ 

[*308-51]  =  (X  +g  F)  C  «/iV  (4) 

Similarly  F  :  Hp .  F=  0^  .  D  .  rep,'(i  \M)  =  {X  +g  F)  I  kJN  (5) 

h  .  (1) .  (2) .  (3) .  (4>.  (5) .  D  h  .  Prop 


R.  &  W.    IIL  27 


*351.     SUBMULTIPLIABLE  FAMILIES. 

Summary  of  *351. 

A  "  submultipliable "  family  is  one  in  which  any  vector  can  be  divided 
into  V  equal  parts  (where  v  is  any  inductive  cardinal  other  than  0),  i.e.  in 
which,  it  Re  K,  there  is  a  vector  S  which  is  a  member  of  k  and  is  such  that 
S'  =  R.     The  definition  is 

*351-01.     FM  suhm  = 

FM  n  ii{Re  K  .V  e'NCind-  I'Q  .Ds,..('a.S)  .  SeK  .  R  =  S'']     Df 

In  open  families,  such  as  we  are  considering  in  this  Section,  S  will  be  unique 
when  R  and  v  are  given.  But  in  cyclic  families,  as  we  shall  show  in 
Section  D,  there  will  be  v  values  of  S.  For  example,  let  «  be  a  family  of 
angles.  Then  the  vector-angle  2fnrjv  has  its  vth  power  equal  to  27r  for  any 
integral  value  of  fi,  since  2/i7r  is  the  same  vector  as  27r ;  and  'ifnrjv  has  v 
different  values,  since,  considered  as  a  vector,  any  angle  6  is  identical  with 
6  +  2ir.  In  the  present  Section,  however,  these  complications  are  excluded, 
owing  to  the  fact  that  we  confine  our  attention  to  open  families. 

In  virtue  of  *337'27,  a  family  is  submultipliable  if  it  is  serial  and 
Cnv*i'«g  is  compact  and  semi-Dedekindian  (*35111). 

When  «  is  a  family  which  is  open,  connected,  and  submultipliable,  if 
LeKi  and  fi  e  NC  ind  —  t'O,  we  have 

(aJ/).ilfe«..rep/ilf''  =  Z     (*351-2). 
Hence  if  X  is  any  ratio  (excluding  x  g,  now  and  always  henceforth),  we 
have 

E!Zt«;/X    (*351-21). 

In  order  to  obtain  the  same  result  for  k,  we  have  to  assume  that  all  powers 
of  members  of  k  are  members  of  k  (*351'22),  but  we  can  obtain  the  same 
result  for  k  w»  Cnv"*  without  this  assumption  (*351*221),  because  of  *331'54, 
which  shows  that  in  any  connected  family  all  powers  of  members  of  «w»Cnv"« 
are  members  of  k  w  Cnv"*. 

In  virtue  of  the  above  propositions,  the  propositions  on  products  and 
sums  of  ratios,  which  in  *350  only  stated  inclusions,  now  state  identities. 
Thus  if  X,  YeC'H',  we  have 

(XlKdliYl K,)  =  (Z  X,  Y) t  K,        (*351-31), 
rep/{(Z  I  K,'L)  \(Yl  «.'i)}  =  (Z  +,  F) I  k,'L     (*35r42), 


SECTION  C]  SUBMULTIPLIABLE   FAMILIES  419 

where  Ze/e^;  also 

rep,' {{X I  «/4) \{Yl  «/i)}  =  (Z -,  7)  t  «.'-£    (*351-45). 

The  corresponding  propositions  for  ratios  confined  to  k  instead  of  to  k^ 
require  the  additional  hypothesis  s'Pot"«  C  k,  because  this  hypothesis  is 
required  in  *351-22;  on  the  other  hand,  in  the  analogue  of  «351'42  "rep," 
does  not  appear,  and  we  have  (with  the  above  hypothesis) 

(X I  k'R) \(Tl  k'R)  =  {X+,Y)l,  k'B    (*351-43), 

where  Ren.  For  ratios  confined  to  k  w Cnv"«  instead  of  to  k,  the  corre- 
sponding result  can  be  proved  without  the  hypothesis  s'Pot"*  C  k  (*351"431). 
It  will  be  observed  that  the  hypothesis  s'Pot"«  C  k  is  satisfied  if  k  is  a  group, 
though  it  may  also  be  satisfied  when  k  is  not  a  group.  Since  a  transitive 
connected  family  is  a  group,  a  transitive  connected  family  always  satisfies 
s'Pot"*  C  K,  as  has  been  proved  already  (*334*132). 


*35101.     FMs\xhm  = 

FMn  lc{ReK.vel>iCmd-i'0.  Djj,..(a/S)  .SeK.R  =  S'}     Df 

*3511.        h  :.  «  6  FM suhm  .  =  :  «  e  FM  iReK.ve  NC  ind -  t'O  .  Djb,,  . 

(•S^S).8e>c.R  =  S'     [(*35101)] 

*351101.  h  :  a  !  i?'if  subm .  D  .  lufin  ax     [*3511 .  *30116 .  *300-14] 

*351'11.     \-  :k€ FM sr .  Cnv's'/cg e comp n  semi  Ded .  D .  « e FM subm 
[*337-27] 

«351'2.       h  :. «  e  FMap  subm  conx .  D  :  /i  e  NO  ind  -  I'O .  Z  e  k.  .  D . 

(gilf )  .Meic,.  rep^'Jlf"  =  L 
Dem. 

h  .  *3511 .  3  h  :  Hp . /iie  NC  ind  -  t'O .  Q,-B6«: .  i  =  Ql  i? .  D . 

[*332-53]    D .  (a<S,  r ) .  S,  r  e  «  .  i  =  rep/(S  |  7)^ :  D  h  .  Prop 

*351-21.     h  :  Hp *351-2  . X e G'H'  .Lbk,.  O  .ElX^  k,'L 

Dem. 
|-.*351-2.*332-61.D 

h  :  Hp .  /x,i;  6  NO  ind  -t'O .  Z  =  /i/i' .  D .  (gi/) .  ilf  e  «. .  rep^^'if"  =  rep/X" . 
[*350-41-5]  D.ElXtK^'L      '  (1) 

l-.*350-34.D 
|-:Hp./i  =  0.i/eNOind-t'0.Z  =  /*/j;.D.XC«.'i/  =  /ts'a"/e  (2) 

I- .  (1)  .  (2)  .  D  I- .  Prop 

27—2 


4,20  QUANTITY  [part  VI 

*351-22.     \-:B.p*351-2. s'Pot">cCK. XeC'H' .BeK.D.ElXlK'R 

Dem. 
V  .  *301-22  .  D  h  :  Hp  .  /i,,  i;  €  NO  ind .  V  +  0 .  D  .  i2^  6  «  . 

[*351-1]  D.(aS)-'Se«-^  =  'S''-       . 

[*350-4.*331-12]  0.('3iS).SeK.8i/j,/v)B    (1) 

I- .  (1) .  *350-521 .  D  f-  .  Prop 

*351-221.  h  :  Hp  *351-2  .  X  e  G'H' .  \  =  «  u  Cnv"«  .  Re\.D  .ElX^X'R 
[Proof  as  in  *351-22,  using  *331-54,] 

*351-3.       h  :  Hp*351-2  .  /t,  j;  e  NC  ind  .  v  +  O  .  D  . 

{(/./i)t«.}|{(i/'')D«4  =  (W'')D«-' 

Dem. 
\- .  *350-41  .DI-r.Hp./i  +  O.D: 

i  {(fi/v)  t  K.}  iV .  =  .  X,  iV  e  «. .  rep/Z"  =  rep/iV"  . 
[*351-2]    =  . (gi/) .L,M,NeK,.L  =  rep/il/"  . rep/i-  =  rep/iV""  . 
[*333-24]  =  . (gJl/) .L,M,NeK,.L  =  rep/ J/" .  rep/ilf ''^"-  =  rep/iV'^ - 
[*333-44]  =  .  (ail/)  .L,M,NeK,.L  =  rep/ J/" .  rep/i/"  =  rep/iV  . 
[*3.50-41]  =  .  (^M) .  L  {(/./I)  tK.}M.M  {(1/v)  [.  «.}  N  (1) 

1- .  *350-34  .  D  f- :.  Hp  .  /*  =  0  .  D  : 

Z  {(^/i;)  C  «.}  iV^ .  s  .  L  =  / 1^  s'a"«: .  iV  6  «.  (2) 

I- .  *350-34  .  *351-21  .DI-:.Hp./t  =  O.D: 

z  KWi)  t  «4 1  {(!/")  D  /^a  -^  •  =  ■  -^  =  -^  r  s'a"«  ■  -zv"  e «.      (s) 

I- .  (1) .  (2)  .  (3) .  D  1- .  Prop 

*351-31.     h  :  Hp  *351-2  .X,Y€  G'H'  .D  .(XI  k,)\{YI  k,)  =  (X  x,Y)l  «, 
[Proof  as  in  *350'6,  using  *351-3  instead  of  *350-53] 

*351"4.       \- :  Ke  FM  ap  subm  conx  .  fj.,v,p,ae  NO  ind  .i'4=0-<''=fO.Ze«:.  .3. 

rep/[{(^/i;)  t  k.'L}  \  {(pja)  ^  «/Z}]  =  {^^Iv  +.  pja)  I  k.'L 
Dem. 

h  .*350-41 .  D  H  :  Hp .  //,+  0  .  p^^O  .  M  =  {n/v)  [,  k,'L  .  D  .  rep/lf "  =  rep/Z"  - 

[*333-44]  D .  rep/ilf  •"<-=■'  =  rep/Z^^-''  (1) 

Similarly 

|-:Hp./i  +  0./3=|=0.iy^  =  (|o/o-)  t  Kc'Z  .  D  .  rep/iV'X'^-'  =  rep/Z-x-^o  (2) 

h  .  (1) .  (2)  .  *333-34  .  *332-33  .  3 

I- :  Hp(l)  .  Hp(2) .  D  *rep/(ilf  I  iV)''X'=''  =  rep/{Z<^>'<"''  |  Z""'"")}  . 

[*301-23.*333-24]    3  .  {rep/(il/ 1 N)]'"''"'  =  rep/Z»'><«"i  +cCXcp) . 

[*306-14.*3o0-41]    D.reTp,'(M\N)  =  (fi/v+,p/a)lic,'L  (3) 

f- .  (3) .  *351-21 .  *350-34 .  D  h  .  Prop 


SECTION  C]  SCBMULTIPLIABLE   FAMILIES  421 

*351-41.     h  :  «  e  FM  ap  subm  conx  .  s'Pot"«  C  «  . 

*  jj,,  V,  p„  a  e  NC  ind  .v^O.a^O.ReK.D. 

[(^fv)  t  k'R}  I  {{p/a)  t  >c'R}  =  (/*/«/  +,  p/a)  t  k'R 
Bern. 

h.*351-21-22.D 

I- :  Hp  .  D  .  (fi/pyi  k'R  =  (/./«/)  I  K,'R  .  {pi a)  I  k'R  =  (p/a)  t  kJR  '  (1) 

I- .  (1) .  *332-241  .  *331-24-33  .  D 

h  :  Hp .  D  .  {(j,/v)  I  k'R}  \  {{p/ak'c'R}  =  rep,'[{(/./^)  t  k,'R\  \  {(p/a)  t  k^'R}] 

[*351-4.(1)]  =  (fj./v  +,  p/a)  p  K'i2 :  D  h  .  Prop 

*351-411.  h  :  Hp  *351-4  .  \  =  «  w  Cnv"«  .  /Sf  6  X .  3  . 

{(f./v)  t  X'S}  I  {(p/a)  I  \'S}  =  (W«'  +s  Pl<y)  D  ^'S 
[Proof  as  in  *351-41,  using  *331'54] 

*351-42.     h  :  K  6  jPilf  ap  subm  conx  .X,Ye  &H' .  i  e  «. .  3  . 

rep«'((X  t  ic,'L)  \{Yl  k.'L)]  =  {X  +,  Y) I  k,'L    [*351-4] 

*351-43.     \-:KeFM&^  subm  conx  .  s'Pot"/e  C  /c .  Z,  Fe  0'^' .  i?  e  « .  D  . 

(Z  t  «'i?)  I  (Ft  «'i?)  =  (X  +,  F)  C  «'E    [*351-41] 

*351-431.  V  :  Hp*351-42  .  \=  «  w  Cnv"* .  SeX  .  D . 

(Z  p  V-S)  I  (Ft  X'S)  =  (Z+,  F)  t  X'/S    [*351-4ll] 

*351'44.     h  :  «  6  ^ilf  ap  subm  conx  . 

/i,  V,  p,  (T  e  NC  ind  .  v  4=  0  .  0-  +  0  .  {pja)  H'  {njv)  .  i  e  «. .  D  . 

rep/CKW")  t  «.'^}  I  {(p/<^)  D  «/^}]  =  (W"  -^P/-^)  D  >c.'L 
Bern. 

As  in  *351-4, 

h  :  Hp  .  M  =  (,i/v)  t  icJL  .N={pIit)  I  k,'L  .  D  . 

{rep/(J!f  I N)]'"''"'  =  rep/{i>>^'=''  |  L""'i']     (1) 

V  .  *301-23  .  *308-13  .  3  h  :  Hp  .  t  =  (/*  x^  o-)  -„  (i;  Xe  p)  .  D  . 

[*72-59.*332-25]  =  rep/X'  (2) 

H.  (1).(2).*350-41.D. 

I-  :  Hp  (1) .  Hp  (2) .  3  .  rep,'(i¥  |  N)  =  [rjiv  x„  a)}  ^  k,'L  (3) 

h  .  (3)  .  *308-24  .31-.  Prop 


422  QUANTITY  [PART  VI 

*351-441.  h  :  K  e  FM  ap  subm  conx  . 

fi,  v,p,a  6  NC  ind  .  v  4=  0  ■  o-  =t=  0  .  {fijv)  H'  (p/a)  .  X  e  /ci .  D  . 

i)em. 

|-.*33215.*303-19.D 

h  :  Hp  .  3  .  rep/[{(/./i.)  t  k,'L}  \  {{pja)  I  «/£}]  =  ^ 

Cnv'rep.'[l(p/cr)  ^  «/i}  |  {(W")  D  «.'^J] 

[*351-44]  =  Cnv'(p/o-  -.p-lv)  I  k,'L 

[*303-19]  =  (p/o-  -s  fjLJv)  I  k/l 

[*308-21]  =  {fijv  ->pI<t)  t  K.'i  :  D  h  .  Prop 

*351-45.     h  :  K  6  J^Jf  ap  subm  conx  .  X,  Ye  G'H' .  Z  e  /c. .  D . 

rep/{(X  t  «/i)  I  (F p  «/i)}  =  (Z  -.  F)  D  «/-t 
Dem. 

I- .  *351-21 .  *350-34  .  *30812  .Dh:Hp.X=r.D. 

rep/{(Z  C  «/X)  I  ( F  t  «.'Z)}  =  /  [  s'Q"*  =  (Z  -,  F)  t  «.'X     (1) 

h  .  (1)  .  *351-44-441  .  D  h  .  Prop 

*351-46.     I- :  /c  6  FM  ap  subm  conx  .  s'Pot"«  C  k  .  Z,  Fe  C'H'  .ReK.O. 

(Cnv'Yl  K'R)\{Xt K'R)e K, 
Dem. 
h  .  *351-22  .  3  h  :  Hp .  D  .  Z  p  «'i?  6  « .  F  t;  «'i?  e  K . 
[*37-62]  D  .  Z  t  «'i2  6  «  .  Cnv'Ft  ic'R  e  Cnv"*:  Oh.  Prop 

*351-47.     h  :  Hp  *351-46  .  D  .  (Cnv'F  ^  /e'E)  |  (Z  p  «'«)  =  (Z .-«  F)  p  «/i2 
[*351-45-46] 


*352.     EATIONAL  MULTIPLES  OP  A  GIVEN  VECTOR. 

Summary  of  *352. 

By  a  "  rational  multiple  "  of  a  given  vector  in  a  family  k  we  mean,  if  we 
are  dealing  with  k,  any  vector  in  the  family  which  has  to  the  given  vector 
a  relation  which  is  a  member  of  G'H',  and  if  we  are  dealing  with  «„  we  mean 
any  member  of  /c,  which  has  to  the  given  member  of  «,  a  relation  which  is 
a  member  of  G'Hg.  We  will  call  the  former  "rational  /c-multiples"  and  the 
latter  "  generalized  rational  multiples."  It  will  be  observed  that  if  k  contains 
pairs  of  members  which  are  each  other's  converses,  only  one  member  of  such 
a  pair  can  be  contained  among  the  rational  «-multiples  of  a  given  member 
of  K,  provided  k  is  an  open  family.  Hence  the  rational  ^-multiples  of  a  given 
vector  all  have  one  "  sense,"  even  if  this  was  not  the  case  with  the  original 
family. 

Rational  multiples  of  a  given  vector  T  can  be  arranged  in  a  series  by 
correlation  with  their  measures  with  T  as  unit.  These  measures  are  ordered, 
in  the  case  of  rational  /e-multiples,  by  the  relation  H',  and  in  the  case  of 
generalized  rational  multiples,  by  the  relation  Hg.  Moreover  if  X  is  the 
measure  of  a  gi,ven  member  of  k  with  T  as  unit,  the  given  member  of  k  is 
k'\  Afp'X ;  while  if  X  is  the  measure  of  a  given  member  of  «.,  the  given 
member  of  /c,  is  «,  "1  AjfX.  Hence  the  rational  K-multiples  of  T  are  ordered 
by  the  relation  k'\  Aj^'H',  and  the  generalized  rational  multiples  are  ordered 
by  the  relation  ic,']  Aj,>Hg.  These  two  relations,  therefore,  are  the  relations 
we  shall  consider  in  this  number.     We  put 

*35201.     T,=k^At'H'    Df 

*35202.     T,,  =  K,^AT'Hg    Df 

We  assume  throughout  this  number  that  k  is  open  and  connected.  In 
dealing  with  T^,  we  assume  TeKg,  and  in  dealing  with  r„,  we  assume 
TeKg.     We  then  prove  the  following  propositions  among  others: 

k1Aj,[  G'H' el-*l      (*35212), 

K.  1  J.r  r  G'Hg  e  1  ^  1     (*352-15), 
i.e.  the  relation  of  a  rational  multiple  of  T  to  its  measure  is  one-one. 


424  QUANTITY  [part  VI 

T„  r„  e  Ser    (*352-16-17). 

Observe  that  this  requires  only  that  k  should  be  open  and  connected.     The 
serial  property  results  from  the  correlation  with  H'  or  Hg. 

C'T,  =  /«:  n  Aj."G'H' .  C'T,,  =  ic,n  Ajf'G'H^    (*352-3-31). 

If  (Sis  any  non-zero  member  of  G'T^,  C'S^  =  C'T^  (*352'41),  i.e.  the  rational 
K-multiples  of  T  are  the  same  as  those  of  any  rational  «-multiple  of  T ;  with 
a  similar  proposition  for  C'T^,  (*352*42). 

RT^S.  =  :  E./Se K  n  Ajf'G'H' :  (a/i,i/)./i,i'  e NO ind ./*  <v.R'  =  -S"  (*352-43). 

This  is  a  convenient  formula  for  T^,  and  leads  immediately  to 

T,  =  {s'H"{ll\)\  t:  («  n  Aj,"G'H')    (*352-44). 

Observe  that  H''(l/1)  is  the  class  of  rational  proper  fractions,  including  Oj. 
By  *352-44  and  *3.52-41-3,  we  see  that,  ii8^I\s'(l"K, 

SeG'T,.D.S.  =  T,    (*352-45), 

i.e.  the  order  of  magnitude  of  a  set  of  vectors  which  are  rational  /e-multiples 
of  a  given  unit  is  independent  of  the  choice  of  the  unit. 

In  order  to  establish  the  analogous  property  for  T^,  we  first  prove  a 
formula  analogous  to  *352'44,  namely 

T„  =  Cnv;{s'^'(l/1)}  t  («.  n  Aj."G'H)  ^ 

{s'H"(l/l)}  t  («.  A  Ajf'G'H')    (*352-54). 

Here  the  first  term  gives  the  series  of  negative  multiples  of  T,  while  the 
second  gives  the  series  of  positive  multiples  of  T  (including  I  \  s'Ql"k). 

From  the  above  formula  it  follows,  as  in  the  case  of  T^,  that  if  <Si  is  a 
positive  multiple  of  T  (not  including  I\s'Q."k),  /S„=  f^,.  while  if  /S  is  a 

negative  multiple  of  T,  /S„=I'„  (*352-56-57). 

Finally  we  deal  with  the  relation  of  U^  to  T^.  Here  we  have  to  assume 
that  K  is  a  serial  family.  We  then  find  that  U^  with  its  field  confined  to 
rational  K-multiples  of  T  is  the  converse  of  T^ ,  i.e.  we  have 

*352-72.     ViKeFMsT.TeK^.-^.U,  ^G'T,  =  « 1  A^'H'  =  T, 


*352-01.  T,  =  K^Aj.'H'      Df 

*35202.  T,,  =  K.^A-p'>Hg    Df 

*3521.  \-:.RT,S.  =  :R,SeK:{'^X,Y).XH'Y.RXT.8YT    [(*352-01)] 

*35211.  \-:.RT,,8.  =  :R.S6>cr.{lX,r).XHgY.RXT.8YT    [(*352-02)] 


SECTION  C]  RATIONAL  MULTIPLES  OF  A  GIVEN  VECTOB  425 

*35212.     h  :  K  6 FM&^  conx  .  Te  /eg .  D  .  « 1  ilr|  C'H'  e  1  ^  1 

Bern.  • 

l-.*336-l.       Oh:R(K'\Ar[C'H')X.  =  .ReK.XeG'H'  .RXT  (1) 

l-.*350-521.  D\-:Rf.R,SeK.X6C'H'.RXT.SXT.D.R  =  S  (2) 
l-.*350-44.  lihiHip. R6Ks.X,Y6G'H'.RXT.RYT.D.X=Y  (3) 
h  .  *350-34-4 .  D 

\-:'iiT>.R=:I[s'a">c.X.YeC'H'.RXT.SYT.-:i.X  =  Og.Y=0,      (4)     , 
\-.(S).{4>).0\-:HY>.Reic.X,YeC'H'.RXT.8YT.:3.X=Y  (5)     ' 

h  .  (1) ,  (2)  .  (5) .  3  h  .  Prop 

*35213.     h  : «;  e  ^ilf  ap  conx  .  T  e  K.g .  D .  «.  n  Aj,"G'H  C  /e.g 
Dem. 

h  .  *350-4 .  D  I- :  Hp .  ii  e  K.  o  Ajf'G'H .  D . 

(a/x,  v) .  /[*,  1/  e  NO  ind  -  I'O  .  a  !  i?"  n  J^'  - 
[*333-101]    D.i26«;,g:DI-.Prop 

*352 131.  h  :  Hp  *35213 .  D  .  «.  n  At"G'H„  =  Cnv"(K.  n  A/'G'H)     [*3071] 
*352132.  I- :  Hp  *352-13  .D.K.n  At"G'H^  C  /c^g     [*352-13131] 

*35214.     h  :  «  e  JW  ap  conx  .  T e  /<:,g  .  D  .  k,  n  At"C'H'  n  Ajf'G'H^  =  A 

De?w. 
|-.*307-l.*350-4.*352132.DH:Hp.ii,S6«..jBe^j."O'ir„.fif6^r"C"ir'.D. 
(H/*j  ".  p.  o")  •  H;V,p,a-e  NC  ind  .i'=^O.jO=j=0.o-4=0.i?6/<:jg. 

rep/J2-  =  rep/f" .  rep/^S"  =  rep/rf . 
[*333-44]    D  .(a/t,z/,/),<7) .  /t,  i/,p,  ffeNCind .  1/4=0  ./34=0  .  O-  +  0  .  i?  6«,9  . 

rep»'i?""««''  =  rep/i^^""  =  rep^'>S''^"'' . 
[*333-47]    D.(a^,77).f,^6NCind.f+0.a!^fn;Sf''.iJe«.g. 
[*71-192]   D.(af,7;).f,,76NCind.f  +  0.a!7ni2«|,S''.i26«,g. 
[*333101.Transp]  D  .  i2  =1=  ,S :  D  h  .  Prop 

*352-15.     l-:«eJWapconx.  Te/c^g  .  D  ,  k,1  ^rCCjET^el -♦I 

\-.*Sm-l.D\-:lIi>.R(K.^Aj,[G'Hg)X.R{H:,^Aj.\-G'H^)Y.':>. 

ReK,.X,YeG'Hg.RXT.RYT  (1) 

h  .  (1)  .  *352-14  .  D  h  :.  Hp  (1) .  D  : 

ReK,.X,YeG'H'  .RXT.RYT.y.ReK,.X,YeG'Hn-RXT.RYT: 
[*3071.*350-44.*35213i32]  ':>iX=Y,  (2) 

h  .  *336-l .  D  I- :  Hp .  i?  (/<:.1  4r  r  (?'^s)X .  S'(«.1  ^r  f  G'Hg)X.  D  . 

R,S6K,.XeG'Hg.RXT.SXT. 
[*350-521.*307-l]  D.i?  =  »S  '  (3) 

I- .  (2)  .  (3) .  D  h  .  Prop 


426  QUANTITY                                                     [part  VI 

*35216.  h  :  a:  6  ZAf  ap  conx .  T  e  /eg .  D .  T.  e  Ser    [*352-12  .  *304-48] 

*352-17.  h-.KeFMap  conx  .  Te  «,g .  D  .  ?„  e  Ser  [*352-15  .*307-45  .*304'23] 

*35218.  h-.Ke  FMat^  conx  .  s'Pot"Kg  CK^.Kgn  Cnv"A;g  =  A  .  Te  /cg  .  D  . 

Z)cm. 
h  .  *350-43  .  D 

h  : .  Hp . /i, j; 6 NO ind -  t'O  . Z  =  (fi/u) \Cnv.8eK.D: SXT .  =  .S'  =  Ti'. 
[Hp]  D.>S-e/«:gnCnv"«g  (1) 

h  . (1) . Transp .  D  h  :  Hp  .  D  . ~ (gZ, /S) . X e C"^„ .SeK.SXT:  D  h  .  Prop 

*352181.  h  :  «  6  i^Minit .  fe  Kg  .  D  .  «  n  A/'C'H„  =  A     [*35218  .  *335-21] 

*352-2.       \-:KeFMsL-p  conx  .  T  e  Kg  .  D  .  (/  [^  s'Q"*:)  T^  T 
Bern. 

h  .  *350-34 .  *331-22  .  D  h  :  Hp .  D  .  (/  |^s'a"K)  0,  T  (1) 

h.*350-31.  DI-:Hp.D.r(l/l)T  (2) 

h  . *304-45-48  .  D  h  :  Hp.  D  .  0,^^(1/1)  (3) 

h  .  (1) .  (2) .  (3) .  *352-l .  D  h .  Prop 

*352-21.     h  :  K  e  I'Jf  ap  conx  .  T  e  K,g .  D  .  (/ 1^  s'a"«:)  T,,  T   [Proof  as  in  *352-2] 

*352-22.     I-  :  K  6  iW  ap  conx  .  T  e  Kg  .  D  .  g  !  T^  [*352-2] 

*352-23.     l-:K6l'Mapconx  .2'6K,g.D.a!7'„  [*352-21] 

*352-3.       h  :  K  6  iW  ap  conx  .  Te  Kg  .D  .C'T,  =  k  r^  Aj,"G'H' 
Dem. 
h  .  *350-31 .  *304-48  .  D 

h  :  Hp  .  Z  6  G'H' .  Z  4=  1/1 .  D  .  Z  (Zf '  c<  H')  (1/1)  .  Tiljl)  T . 

[*3061]  ^2.Xe{H'^:lH')"AJf'K  (1) 

h .  *350-34 .  *331-22  .  *304-45-48  .  D 

h  :  Hp . Z  =  1/1 .  D  .  XH'Oq . {I\ s'(l"K)QqT .1  \s'(I"k e k  . 

[*3061]  D .  Z  e  ^'"i'j,"«  (2) 

h.(l).(2).    Dh:Hp.D.a'fi:C(5''aS')"Ir"K  (3) 

h  .  *150-201 .  D  h  :  Hp  .  D  .  C'T,  =  « 1  ^/'(fl"'  a  HJ'A/'k  . 

[(3)]  D  .  K 1  A/'C'H'  C  OT,  (4) 

h.  (4).  *1 50-202.  Dh.  Prop 


SECTION  C]  RATIONAL  MULTIPLES   OF  A  GIVEN   VECTOR  427 

*352-31.     F- :  K  6  JfM  ap  conx  .  T  e  «:,9  .  3  .  O'T,,  =  «.  n  A/'C'Hg 
Dem.  • 

Asin*352-3,  h  iKp.:)  .C'H' C{HgK> Hg)"Aj."ic  (1) 

H  . *350-31 . (*307-05) .  D  h  :  Hp  .XeC'Hn .  D  . XHg(l/l) .  T (1/1)1. 
[*336-l]  :i.X6Hg"Aj,"K  (2) 

h.(l).(2).  Dh:Hp.D.a'^gC(^gaff^)"^2,"«  (3) 

I- .  (3) .  *150201-202  .  D  I- .  Prop 

*352-32.     h  :.  Hp*352-3 .  Z,  YeC'H'  .R  =  Xl  k'T.S=  7^  k'T.D  : 

RT,S .  =  .  XH'Y    [*352-l .  *350-521] 

*352-33.     h  :.  Hp*35231 .  X,  Fe C'^^ .  i?  =Z ^  ic,'T.S=  Y^  kJT .  D  : 

ijr„,S .  =  .  XHg  Y    [*352-ll-15] 

*352-34.     h  :.  Hp *352-3 .0:RT,T.  =  .  (gZ) .  XH' (1/1)  .R  =  XIk'T 
[*352-l .  *350-521-31] 

*352-341.  I- :.  Hp*352-3  .  D  :  TT,R .  =  .  (gZ) .  (1/1)  H'X .  i?  =  Z  f  «'r 

*352-35.     h  :.  Hp *352-31  .  D  :  RT,, T.  =  .  (gZ) .  XHg (1  /I) .  E  =  Z  p  k.'T 
[*35211-15] 

*352-351.  I- :.  Hp  *352-31  .  D  :  TT,,R  .  =  .  (gZ)  .  (1/1)  HgX  .R  =  X  ^k,'T 

*352-36.     h  :  Hp  *352-3  .  s'Pot"*  C  k  .  D  .  Pot'T  -  iT  C  K'^ 
Dew. 
I- .  *350-43  .  3  I- :  Hp .  i;  e  NO  ind  -  I'O  -  I'l  .  D .  r- (iz/l)  T . 
[*304-4.*352-341]  D  .  IT,  T" :  D  h  .  Prop 

*352-37.     h  :  Hp*352-31 .  Te*  u  Cnv"* .  D  .  PotT-  t'TC  T^.'T 

Dem. 

V  .  *331-24-54  .  D  h  :  Hp  .  D  .  PotT  C  «. 

Hence  as  in  *352"36. 

*352-38.     I-  :  Hp *352-31  .  3  .  rep«"(Pot'T -i"r)cV,,'T 

Dem. 

h  .  *332-61 .  D  h  :  Hp  .  D  .  rep/'(Pot'^-  i-'^)  C  «. 
Hence  as  in  *352'36. 

*352-41.     \-  -.KeFM&^conx.S.TeK^.SeG'T^.D. 

G'8^  =  C'T^  =  K  n  At"C'H'  =  Kf^  As"C'H 
Dem. 
h  . *352-3  . *350-43  .  D f- :  Hp .  D  . (g/i, v).fi,veNC  ind - I'O . (S"  =  T" .    (1) 
[*352-3]  -i.TeC'S,  (2) 


428  QUANTITY  ^  [PART  VI 

h  .  (1) .  *352-3  .  *350-43 . 0  I- :  Hp .  i?  e  0'^«  .  D  . 

(a/i,  I/,  p,  0-) . /x,  I/,  o- e  NC  ind  -  t'O .  p  e  NC  ind .  (S"  =  y  . -R' = /S" . 
[*301-504]  D  .  (a^,  v,p,  a).  fjL,v,ae  NO  ind  -I'O.pe  NO  ind  .  R''"'"'  =  r-x-o  . 
[*352-3.*350-43]  D.EeCT,  (3) 

h.(2).(3)|^,DI-:Hp.i?6C'r,.D.iieC"<S.  (4) 

h  .  (3)  .  (4)  .  *352-3  .  D  h  .  Prop 

*352-42.     \- :  K eFM a.^coux  . S,T 6 K^S  ■  ^ ^ C"T„  .  D .  C'S^,  =  C"r„ 

Z)em. 
h  .  *352-3  .  *350-4  .  *307-l .  D 

h  :.  Hp .  D  :  (a/x,  i.) :  ^,  i^  e  NC  ind  -  t'O  :  g  !  /S"  n  r** .  v .  g !  /S-  «S  T"  :  (1) 

[*352-31]D:2'6C";Sf„  (2) 

h  .  (1) .  *3o2-3  .  *350-4  .  *307-l .  D 
h  :.  Hp  .  i?  6  0'/S„ .  D  :  (g/i,  v,  />,  a)  :  fi.v.ae  NO  ind  -  i'O  .  p  e  NO  ind  : 

a  !  /Sf"  n  T^.v-a  !  /S'  n  T" :  a '.  -R"  A  -S"  ■  V  .  a  !  -R"  "  -S" : 
[*333-48]  D  :  (a/t,  i-,  p,  a-)  : /m,  v,  <7  e  NO  ind  -  I'O  .  p  e  NC  ind  : 

a  !  R"^'''  r,  f^'f .  V  .  a  !  R"'"'!'  n  T-x"" : 
[*352-31]  O-.ReC'T,,  (3) 

l-.(2).(3)^.DI-:Hp.i?eO'2'...D.i260'/S.,  (4) 

h  .  (3)  .  (4)  .  D  h  .  Prop 

*352-43.     \-::KeFMa,pconx.TeKg.D:. 

RT,S.  =  :R,SeKnAj."C'H':{'^fj,,v)./i,vel!(Cind.fi<v.R'  =  S'' 
Bern. 
b  .  *3317  .  D  h  :  RT,S  .  =  .R,SeC'T,.  RT,S  (1) 

h  .  (1)  .  *352-31  .  *350-43  .  D  h  ::  Hp  .  D  :. 

RT,S.=  -.R.Sexn  Aj."C'H' :  (ap,o-,^,i?).cj-,^,7j  eNC ind-  I'O.p eNC ind . 

px„7;<<7X„f.i?-  =  rp.<S''  =  Tf: 
[*333-5]  =  :  ii,  <Sf  6  «  n  .4 /'C'ff ' :  (ap, 0-,  ^  I?)- 0-,  ^,i;  6  NO  ind  -  I'O . p eNC  ind  . 

p  x„  t;  <  o-  Xe  ^ .  iJ-'X'f  =  Tf-X'^  =  <Sf  x«i : 
[*12614]  ■DiR.SeKn  Ajf'C'H' :  (a//.,  i/)  .  /*,  i- e NC  ind  . /i  <  i- .  E"  =  /S"     (2) 
h  .  *350-43 .  *304-4 .  D 
h  :.  iJ, /S  e  «  n  ^ /'C'ZT' :  (a/ii,  J') . /i,  1/ e  NC  ind  . /4  <  1/ .  jB- = /Sf"  :  D  : 

R,SeKn  Ajf'C'H' :  (a^) .  Zif ' (1/1) . -BZ/S 
[*336-l]  :i'.R,SeK:  (aZ;  F,  ^)  .  XH'  (1/1) .  F,  Ze  C'H' .  iJZ<S .  22Fr .  SZT 
[*350-6.*305-71-51]  OiR,SeK:  ('3_X,Z) .  (Z  x,Z)H'Z.R{X  x,Z)T.  SZT 
[*352-l]  0:RT,8  (3) 

h  .  (2) .  (3)  .  D  h  .  Prop 


SECTION' C]     *        RATIONAL   MULTIPLES  OF   A   GIVEN  VECTOR  429 

*352-44.     \-:keFMa.p  conx  .  2'  e  «g  .  D  .  T^  =  {s'H"(lll)}  ^  («  n  Ar"C'H') 

Dem.  • 

h  .  *352-43  .  *304-4  .  3  1- ::  Hp  .  D  :. 

RT,S.  =  :B,8eKn  A/'C'H' :  (gX) .  XH'il/l) .  RXS  ::0h  .  Prop 

*352-45.     \-:KeFMa.pconx.S,TeKs.SeC'T^.O.S^  =  T^     [*352-44-41] 
*352-5.       h  :  «  e  i'Jlf  ap  conx  .  Te  /f.g  .  D  .  G'k,  1  A^'H'  =K,n  A/'G'H' 
[Proof  as  in  *352-3] 

*352-51.     h  :  K e FM ap conx  .  T e /e^g .  D .  G'k, ^AjMI^^K^n  A ^"G'Hn 
Dem. 

V  .  *150-202  .  D  h  :  Hp  .  D  .  a'Af,  1  At'E^,  C  «.  n  AT"G'Hn  (1) 

V  .  *352-131 .  D  h  :  Hp . iJ  6  «.  n  Aj."G'Hn . D . (gX) . X e  G'H. Rbk,. RXT    (2) 
I- . *304-23  .    D  h  :  Hp .X eG'H-i\\ll)  .ReK,. RXT ."^  . 

Z(irw  ^)(1/1) .  Ee/c. .  EZr.  ^(1/1)7. 
[*3071  .*3361]  D  .  jB  6  O'/c,  1 J  r'iT™  (3) 

I- .  *352-38 .    D  h  :  Hp .  Z  =  1/1 .  E  e  K. .  EZf .  D  .  ^  {k,'\  A/^H)  (rep/T^ . 
[*307-l]  D .  i?  e  C"«.  1  ^r'i^n  (4) 

h.(3).(4).    Dh-.Hp.XeC'H.ReK^.RXT.Ii.ReG'K.'lAT'Hn  (5) 

I- .  (2) .  (5) .    D  h  :  Hp .  3 .  «;e  n  At"G'H„  C  C'«,  1  ^riZT^  (6) 

h  .  (1)  .  (6) .  D  h  .  Prop 

*352-52.     h  :  K e FM &]) conx  .  Te/c^g.  3  .  T^,  =  K,'\Aj.'>Hn^K,']Ai.''H' 

Dem. 
h  .  *160-43  .  (*307-05) .  D 

I- .  r..  =  «.  1 4i.;^„  c; «,  1  ^ rJfi-'  o  («.  1  A/'G'Hn)  t  («t  1  Ajf'G'H')       (1) 
h  .  (1) .  *352-5-51 .  *307-l  .  D  I- .  Prop 
*352-53.     h  :  K  e  iW  ap  conx  .  T  e  «,g  .  D  . 

«.  1  ^tSZT'  =  {s'fl^''(l/l)}  D  («t  n  Aj,"G'H')    [Proof  as  in  *352-44] 

*352-531.  h  :  Hp*352-53  .  D  .  k,^Aj.'H=  {s'^'(1/1)}  I  (k,  n  At"G'H) 
[Proof  as  in  *352-44] 

*352-54.     h  :  Hp  *352-53  .  D  .  T„  =  Cnv  ;{s'^'(l/l)}  ^  («,  n  Ajf'G'H)  ^ 

{s'^"(l/l)}  I  («.  ft  Aj,"G'H')    [*352-52-53-531] 
*352-55.     h  :  K  6  i^Jf  ap  conx  .  /Sf,  T e  /e,g  .  (S  e  k.  n  Ajf'G'H .  D  . 

«.  ft  As"G'H'  =  K.  ft  Aj,"G'H' .  K,  ft  As"G'H  =K,nA  j."G'H 
[Proof  as  in  *352-41] 


430  QUANTITY  [part  VI 

*352-56.     h  :  «  e  i^Tlf  ap  conx .  ^,  T e  «.g  .  /S  e  «,  n  At"G'H  .  D  .  S„  =  T,, 
[*352-54-55] 

*352-57.     h  : «  e  if'if  ap  conx  .  <Sf,  T  6  «,9 .  )Sf  6  «.  A  J.  r"C/f„ .  D  .  (Sf„  =  T,. 
[*352o4-55 .  *307-l] 

*352-7.       V:.KeFMst.X,  Ye  G'H' .  Te  kq.  P,QeK.  PXT .  QYT .  3  : 

PU,Q.  =  .XH'Y 
Bern. 

y  .  *:J5218  .  DI-:Hp.Q!Pe«5.D.Q|P~e  A/'G'Hn . 

[*350-65]  D .  X  -,  Fe  G'H'  (1) 

l-.*350-52.  DI-:Hp(l).D.X+F  (2) 

F- .  (1) .  (2) .  *336-41 .  D  h  :  Hp .  PU,Q  .  D  .  Z  -  Fe  0'^ . 

[*30812-19.Transp]  D .  Z^'F  (3) 

h  .  *336-64 .  D  H  :.  Hp .  ~ (PU^Q)  .^•.P  =  Q.v  .QU^P : 

[*350-44.(3)]  D  :  Z  =  F .  V  -  Fff 'Z : 

[*304-48]  D:^(XH'Y)  (4) 

h  .  (3)  .  (4)  .  3  h  .  Prop 

*352-71.     h  -..iceFMsr  .TeK'^.P,Qe  G'T, .  D  :  PU,Q  .  =  .P(At'H')Q 
[*352-7-3] 

*352-72.     l-i/ceJWsr.re^g.D.  f7^tC''rK  =  «1^r5fi^'  =  2^«     [*352-71] 

*352-73.     hz.KeFMsr subm  .  Z,  Fe G'H' .TeK^.O: 

(Z  t  «'T)  U,  (Ft  kT)  .  =  .  XH'Y    [*352-7  .  *351-22] 


*353.     RATIONAL  FAMILIES. 

Summary  of  *S53. 

A  "rational  family"  is  one  which  consists  entirely  of  positive  rational 
multiples  of  one  of  its  members.  We  denote  rational  families  by  "  FM  rt " ; 
the  definition  is 

*353-01.    FM  rt  =  FMnii[(r^T).T€icg.icC  A  j."G'H'}     Df 

It  is  obvious  that,  if  k  is  any  family,  k  r\  Ajf'G'H',  which  we  considered 
in  the  last  number,  is  a  rational  family.  If  k  is  a  connected  family,  it  does 
not  follow  that  k  n  Ajf'G'H'  is  a  connected  family,  but  the  proofs  of  its 
properties,  as  we  saw  in  *352,  make  use  of  the  fact  that  it  is  contained  in 
a  connected  family.  Many  of  the  most  important  properties  of  connected 
families  hold  equally  of  sub-classes  of  connected  families,  notably  the  property 
that  two  members  of  k  or  k^  whose  logical  product  exists  are  identical 
(*331'4224).  In  dealing  with  rational  families,  a  good  many  propositions 
can  be  proved  by  merely  assuming  that  they  are  contained  in  connected 
families.     We  put 

*35302.     FM  ex  =  FM  n  A,  {(gw) . «  e  FM  conx  .  \  C  «}     Df 

*35303.     FM  TtCK  =  FMTtnFMcx  Df 

We  will  call  a  family  "  sub-connected  "  when  it  is  contained  in  a  connected 
family.  When  a  family  k  is  open,  rational,  and  sub-connected,  any  member 
of  Kg  may  be  taken  as  the  T  of  the  definition  *353'01  (this  is  proved  in 
*353'13)  ;  and  if  8,  T  are  any  two  members  of  Kg,  some  power  of  8  will  be 
identical  with  some  power  of  T  (*353"12).  An  open  rational  sub-connected 
family  is  asymmetrical  (*353"2) ;  no  power  of  a  member,  and  no  product  of 
two  members,  is  the  converse  of  a  non-zero  member  (*353"22'23).  Hence  by 
*331'54-33,  if  the  family  is  connected",  and  not  merely  sub-connected,  it  is 
a  group  and  transitive  (*353'25"27). 

If  X  is  a  family  which,  besides  being  open  and  rational,  has  connexity, 
then  if  a  is  a  member  of  the  field  and  7  e  Kg  we  shall  have 

s'\g  =  i4„;\  1  At'H'  .  CT,  =  \  1  At'H'    (*353-32-33). 
That  is,  the  series  of  points  in  the  field  and  the  series  of  vectors  are  both 


432  QUANTITY  [part  VI 

ordinally  similar  to  part  or  the  whole  of  the  series  of  ratios ;  they  will  be 
similar  to  the  whole  if  X,  is  submultipliable  (*353'44).  But  when  \  is 
submultipliable,  a  smaller  hypothesis  suffices,  for  in  that  case  we  can  prove 
that  if  \  is  connected,  then  \  =  X\j  Cnv"\  (*353'41),so  that  \  has  connexity, 
and  is  serial  (*35342).     Thus  we  have 

*353'44.     f- :  X  e  FM ap  conx  rt  subm  .  D  .  s'Xg  smor  H' 

*353-45.     f- .  FM  ap  conx  rt  subm  C  FM  sr 


*35301.  FMri  =  FMn^  {('^T)  .Tsk^./cC  At"G'H'}     Df 

*35302.  FMcx=FMn\  {(g/e) .  k  e  FM  conx  .  \  C  «)       Df 

*35303.  FMitcx  =  FMitnFMcK  Df 

*3531.  \-:.KeFMit.  =  :KeFM:  (gT) .  T  e  «rg  .  «  C  Aj."G'H'     [(*353-01)] 

*35312.     h  :  X  6  ^if  ap  rt  ex  .  (Sf,  r  6  \g .  \  C  Ajf'G'H' .  D  . 

(a/4, 1/) .  /^,  v  6  NC  ind .  i;  4=  0  .  /S"  =  T"    [*350-43] 

*35313.     1- :  \  6  ZM ap  rt  ex  .  r e  Xg .  D .  \  C  Ajf'G'H' 

Bern. 
I-.*35312.  Dh:B.p.SeXs .\CAs"G'H' .ReX.li. 

(a/i,  v, /3,  <r)  . /t,  I/,  p,  o- 6  NC  ind  .  p  +  0  . 1/ +  0  .  o- 4=  0  .  ii"  = /S" .  T' = /S"  . 
[*333-5] 

D  .  (a;i4,  V,  p,  a-)  .n,v,p,<Te  NO  ind.p=t=0.v=t=0-<^  +  0  .-B"'^'"'  =  Si^^""  =  T^^xo-r  _ 
[*3o0-43]  D  .  R  eAj."G'H' :  D  h  .  Prop 

*35314.     h  :  Hp  *35313  .  D  .  \.  C  Aj,"G'Hg 
Bern. 
I- . *353-13  .  D  I- :  Hp  . E,  ;S 6 \ .  D  . (gZ,  Y).X,Ye G'H' .  RXT .SYT. 

[*3.50-65]  D.(R\S){Y-,X)T. 

[*308-2]  :>.R\8eA  ^''G'Hg :  3  h  .  Prop 

*353-15.     h  :  «  e  i^'if  conx  .  T  e  /eg  .  D  .  «  r.  Aj."G'H'  e  FM  it  ox 
[*353-l . (*35302)] 

*353-2.       h  :  \  6  i?W  ap  rt  ex  .  D  .  Xg  rt  Onv"\9  =  A  .  \  e  i^if  asym 

Dem. 
h  .  *353-12-13  .  D 

h  :  Hp  .  E,  iJ  6  \g .  D  .  (a^,  z/) .  /t,  i;  6  NO  ind  -  I'O  .  iZ^  =  ij"  (l) 

l-.(l).*301-23.DI-:Hp(l).D.(a/i,,v).^,i/eNCind-t'0.i2^+'=''G/    (2) 
h  .  *333-101 .       D  I- :  Hp  (1) .  D  .  Pot'E  C  Rl'J"  (3) 

h  .  (3) .  (2) .  Transp .  (*334-05) .  D  h  .  Prop 


SECTION  C]  RATIONAL   FAMILIES  433 

*353-22.     h  :  Hp  *353-2 .  D .  s'Pot"\g  n  Cnv"A.9  =  A 
Dem,  • 

h  .  *353-1213  .  *301-5  .  3  h  :  Hp  .  ff  e  NO  ind-  t'O  .  E,  E'eXg  .  D . 

(a/t,  v) .  /u,,  v  6  NO  ind  -  t'O .  E'^'"  =  iZ" . 
[*301-23]  D  .  (a/t,  J/)  .  ju,  i;  6  NO  ind  -  I'O  .  iZ^'+cC'XcO  q  /  (i) 

h  .  *333101 .  *330-23  .  D  I- :  Hp .  D  .  Pot'B  C  J .  A  ~  e  Fot'R  (2) 

h  .  (2) .  (1) .  Transp .      3  h  :  Hp  .  i?  e  \g  .  D  .  ~  g  !  Pot'ii  r>  Cnv"\  :  D  I- .  Prop 

*353-23.     h  :  Hp  *353-2  .  D  .  (s'X  \  "\) n  Cnv"X9  =  A     [Proof  as  in  *353-22] 

*353-24.     y  :  Hp *353-2  .XeFM conx  .  D  .  s'Pot"\  C X    [*353-22  .  *331-54] 

*353-25.     l-:Hp*353-24.D.s'\i"\CX  [*353-23 .  *331-33] 

>j 

*353-26.     h  :  Hp  *353-24  .  D  .  s'Xg  |  "\g  C  \g 

Dem. 
I- .  *353-12-13\  D  h  :  Hp  .  iJ,  ,Sf  e  \g  .  D  .  (a/i,  v) . /t,  i;  6  NO  ind  -  I'O  .  i?"  = /S"  . 
[*336-57]  D  .  (a/i,  I/) .  /t,  i;  e  NO  ind  -  I'O .  {R  \  S)"  =  8'-+'"  . 

[*333101]  D  .  a  !  Pot'(i2 1 8)'  n  Rl'J". 

[*301-3.Transp.*331-23]  D  .  JJ  |  S  e  Rl'J  (1) 

h  .  (1)  .  *353-25  .  D  h  .  Prop 

*353-27.     h  :  Hp  *353-24  .D.XeFMtrs  asym     [*353-26-2  .  *334-13] 

*353-3.       h  : .  Hp  *353-2 .  v  e  NO  ind  -  t'O .  s'Pot"X,  CX.:i:RU^S  .0  .R'  U^.S" 

Dem. 

h  . *336-41 .  D  h  :  Hp  .  D  .  (a^) .  Te  \g .  iJ  =  Tj  ,S. 

[*330-57]  D  .  (a?)  .  r e  \g .  i?"  =  T'  1 6^- . 

[*336-41.Hp]  D  .  R'  U^S' :  D  I- .  Prop 

«353'31.     I- :.  XeJWaprt  connex.iJ,  »Si  e\  .  i/eNO  ind  -  I'O  .  D  : 

RU^S.=  .R'Uk8'' 
Dem. 

h  .  *336-62  .  D  h  :  Hp  .  R^  8 .'>-{RU^8) .  D  .  8U^R . 

[*353-3-24]  D.8''V'kR''. 

[*336-6-61.*353-27]  0  .'>^(B''UkS'')  (1) 

|-.*336-6.    D\-:'Ep.R  =  8.'D.'^{R'U^8'')  (2) 

I- .  (1)  .  (2) .  D  h  :  Hp .  ~ (RU,.8) .  D  .  ~ (i2-fr;,fi(')  (3) 
I- .  (3) .  *353-3  .  D  h  .  Prop 

R.  &  w.  III.  28 


434  QUANTITY  [part  VI 

*353'32.     t- :  A,  6  FM  a.Tp  rt  connex  .TeX^.O  .  U^  =  X'\  A^'H' 

Bern. 
h  .  *35312-13  .  *350-5  .  D  h  :  Hp  .  E,  -S  e  \ .  -R  +  /S .  3  .  ' 

('3^IM,v,p,a).fj,,v,p,a-e'NCmd.vJp0.a-^0.R''  =  Ti'.S'=T''.fJL/v^plcr     (1) 
h  .  (1) .  *350-43  .  D  h  :.  Hp  (1) .  D  :  ii!  {X^Aj^'H')  S.v.S{X^  A^'H')  R       (2): 
h  .  *301-5  .  3 
h  :  Hp(l)  ./i,  i;,  p,<7  eNC  ind  .  1-4=0  .  O-  +  0 .  iJ''=  r''..;S''=r''.;u,XeO-<i'X„|0.D.; 

^■-XciT-l  j§[»Xc<r=  2'("'Xop) -cdiiXco-)  ^3^ 

V  . *334-21 .  D  h  :  Hp(3) .  D  .  E I ,Sf e\  w  Cnv"\ . 

[*331-54.*332-241]  3  .  (^  |  <Sf)''x«-'=  rep/(E  |  .Sf)'"<='' 

[*332-.53.(3)]  =y(.xcp)-c(iixcT)  (4) 

I- .  (4) .  *353-24-2 .  D  I- :  Hp  (3) .  D  .  E  |  ;Sf  e  X . 

[*336-41]  D .  ,St^,J?  (5) 

1- . (1) .  (5) .  *304-4  .  D  [- :  Hp  .  ii(A,  1  Aj.->H')S.'D  .  8U.R  (6) 

h  .  (2) .  *304-4  .  D  h  :  Hp(l) .  ~  {R{\1Aj,'H')S} .  D  .  S{X^At''H')R; 
[(6)]  :>.RU,S. 

[*336-6-61.*353-27]  :>.~(SU,R)  (7) 

h.*336-6.Dh:Hp.i?=/S.D.~(;S'f/,ii)  (8) 

h  .  (6) .  (7)  .  (8) .  D  h  .  Prop 

*353-33.     h  :  Rf  *35S-32  .aes'a"X.D  .s'Xs  =  Aa''X  ]  A j.iH' 
Bern. 

I- .  *336-43  .  D  h  :  Hp  .  D  .?/;,  =  \  1  l^Js'Xg  (1) 

I- .  (1)  .  *336-2 .    Dl-:Hp.D.s'Xg  =  AJ[7;,  (2) 

I- .  (2) .  *353-32  .  D  h  .  Prop 

*353-34.     h  .  ^itf  ap  rt  connex  C  FM  sr     [*353-27] 

*353-4.       \-:Xe  FMa.p  rt  ex  .  s'Pot"\  C  \ .  Z  e  \,g  .  3  . 

(go-) .  o-  6  NC  ind  -  t'O  .  repA'i"  eX\j  Cav"\ 
Dem. 

h  .  *35312'].3  .'  D 

|-:Hp.D.(a/i,v,i?,/Sf).yi4,z^eNCind.E,/Sfe\.i.=  E!,Sf./i  +  i-.ie''  =  ^f''     (1) 
h.*301-23.D 

\-  -..Rl) .  ijL.v  e'NCind.  R,S  eX .  R"  =  Si'  .1^  :  fi  <v  .D  .R'lS'  ^S'-"!- . 
[*332-53]  D.rep,'(R\SyeX       (2) 

Similarly  h  :.  Hp  (2) .  D  :  /i  >  z; .  D  .  rep/(^  |  /S)^  e  Cnv"/«:  (3) 

h  .  (1) .  (2) .  (3) .  D  I- .  Prop 


SECTION  C]  RATIONAL   FAMILIES  435 

*353-41.     h  :  X,  e  FM  ap  conx  rt  subm  .  D  .  X^  =  \  w  Onv"\ 

Dem.  • 

I- .  *353-4 .  D 

1- :  Hp  .  i  6  X,,9  .  D  .  (gii,  a).Re\yj  Cnv"\  .  o-  e  NC  ind  -  I'O  .  rep/Z"  =  R' . 
[*333-41]  D  .  Z-  6  \  u  Ciiv"\  :  D  h  .  Prop 

*353-42.     h  :  Hp  *353-41 .  3  .  \  e  i^Jf  sr     [*353-41 .  *334-26  .  *353-27] 

*353-43.     f- :  \ e FMa.^  ex  rt  subm  .  TeX^  .  Potid'TC \ .  D  .  G'H'  C  Aj."X 

Dem. 

I-.*351-1 .  3  I- :  Hp./i,j;eNCind  .i;4=0  .  D.(a<S).,S6X,./Sf''  =  r''. 

[*350-43]  D.('^S).SeX.S{^/v)T  (1) 

f- .  (1) .  *336-l .  D  h  :  Hp  .  Z  e  G'H' .  D  .  (gS) .  >SfeX  .  S4yZ :  D  h  .  Prop 

\j 
^353'44.     I- :  X,  e  FM  ap  conx  rt  subtn  .  D  .  s'Xg  smor  H' 

Dem. 

l-.*3o3-42-33.  DI-:Hp.a6  5'a"X.D.s'Xg  =  ^„5Xl4r;5^'     (1) 

h.*353-43.  :>\-■.Rp{l).D.G'H'Ca'iAa\\^AJ,)  (2) 

h  .  *336-2 .  *352-15  .  D  h  :  Hp  (1) .  D  .  AJX^A^^G'S' e  1  -^  1  (3) 

h  .  (1) .  (2) .  (3) .  3  h  .  Prop 

*353-45.     h  .  I'il/  ap  conx  rt  subm  C  ^if  sr     [*353-42] 


28—2 


*354.     RATIONAL  NETS. 

Summary  of  *354. 

The  subject  of  "  rational  nets,"  which  is  to  be  considered  in  this  number, 
is  of  importance  for  the  introduction  of  coordinates  in  geometry.  We  have 
three  stages  in  the  construction  of  a  rational  net.  First,  taking  any  vector 
r  in  a  family  k,  we  construct  C'T^,  i.e.  the  positive  rational  multiples  of  T, 
as  in  ^352.  The  result  is,  as  a  rule,  a  family  which  is  not  connected,  even 
when  the  family  «  is  connected.  For  if  there  are  in  k  any  vectors  other 
than  G'Tic,  any  point  of  the  field  which  is  reached  from  a  given  point  a  by 
one  of  these  "  irrational "  vectors  cannot  be  reached  from  a  by  a  member  of 
C'T^,  though  it  will  be  in  the  field  of  G'T,^.  Thus  in  order  to  obtain  from 
CT^  a  connected  family,  we  shall  have  to  limit  the  fields  of  its  members  to 
the  points  which  can  be  reached  from  a  given  point  a  by  one  or  more 
rational  steps  backwards  or  forwards,  i.e.  to  the  points  Aa"(C'T^\.  It  will 
be  observed  that  whereas,  in  the  construction  of  C'T^,  only  positive  vectors 
are  used,  negative  vectors,  i.e.  the  converses  of  positive  vectors,  are  also 
admitted  in  constructing  what  we  may  call  the  "rational  points"  with 
respect  to  a  and  T.  Having  constructed  these  points,  i.e.  the  class 
■Aa'(G'T^\,  we  then  proceed  to  the  third  and  last  stage  in  constructing  a 
rational  net,  by  limiting  the  field  of  every  member  of  C'Ti^  to  Aa"(G'T^\. 

Many  of  the  propositions  concerning  rational  nets  require  the  hypothesis 
that  the  family  concerned  is  a  group.  If  this  is  not  the  case  with  the 
family  k  from  which  we  start,  we  replace  k  by  k^,  where  Kg  is  formed  by 
adding  to  k  the  converses  of  those  members  of  k  (if  any)  whose  domains 
are  identical  with  the  common  converse  domain  of  members  of  k.  The 
definition  is 

*354-01.     Kg  =  lc^J  Cnv"(/t  n  D's'a"«)         Df 

We  put  also 
*354-03.     FM  grp  =  FMn/c  (s'k  \"kCk)    Df 

We  then  easily  prove  that  if  k  is  connected.  Kg  is  a  group  (*35414),  and 
if  K  is  open  and  connected,  Kg  is  open  and  connected  and  a  group  (*354'17). 
If  K  is  connected,  (Kg\  =  Kt  (*354'15),  so  that  properties  only  dependent  on 
K„  like  that  of  openness,  always  hold  for  Kg  when  they  hold  for  k. 


SECTION  C]  RATIONAL  NETS  437 

Next,  we  prove  that  if  k  is  open,  connected,  and  a  group,  G'T^  is  open, 
rational,  sub-connectec^and  a  group  (*354'22).  Hence  if  k  is  open  and 
connected,  and  \  =  Kg,  G'T^  is  open,  rational,  sub-connected  and  a  group 
(*354-24). 

The  "  rational  points  "  with  respect  to  a  and  T  are  Aa"{G'T^\.  In  order 
to  study  them,  we  consider  A^'X^,  where  X,  is  a  family  concerning  which  we 
make  hypotheses  which  will  be  fulfilled  in  the  case  of  G'T^.  We  prove  that 
if  \  is  a  family  which  is  a  group,  and  SeX.ae s'G."\  then 

A^"X,  C  ^8"Aa"\    (*354-31), 
whence  8l{Aa"\.)  =  {Aa"\)^8^S\(A„."\,)    (*354-312). 

Next  we  prove  that,  with  the  same  hypothesis,  if  b  is  any  other  member  of 
Aa"X,  then 

^„"\.  =  ^6"\.    (*354-33). 

Thus   the  rational  points  with  respect  to  a  and  T  are  the  same  as  the 
rational  points  with  respect  to  6  and  T,  if  6  is  one  of  these  rational  points. 

The  "rational  net"  is  the  family  l{Aa"{C'T,)]"G'T^.  Writing  \  for 
G'T^,  this  becomes  ^{Aa"Xi)"\.  In  order  to  obtain  the  properties  of  the 
rational  net,  we  therefore  continue  to  consider  a  family  \,  concerning  which 
we  make  hypotheses  which  are  verified  in  the  case  of  OT,,  and  we  put 

*35402.     oxa'\  =  t{Aa"X)"'K    Df 

Thus  cXa'G'Ti,  is  the  rational  net  defined  by  «,  T,  and  a.  We  prove 
(*3o4-4)  that  if  \  is  a  group,  cx^'X  is  a  family  whose  field  is  -4^'%.  We 
prove  that  if  \  is  a  family,  and  a  a  member  of  its  field  such  that  any 
member  L  of  \,  for  which  L'a  exists  is  a  member  of  \  o  Cnv"X,  then  a  is  a 
connected  point  of  cx^'X,  i.e. 

*354-32.     h  :  \  e  FM .  a  e  s'Q."\ .  \  n  aM„  C  \  w  Gnv"X  .  D  .  a  e  conx'cx„'X, 

The  hypothesis  X,.  n  C[M„C\  wCnv"\  would  be  verified  if  \  were  a 
connected  family  and  a  were  a  connected  point  of  \.  But  we  want  to  be 
able  to  replace  X,  by  G'T^,  which  is  in  general  not  connected.  The  above 
hypothesis,  unlike  \  e^fWconx,  is  satisfied  by  C'T^,  provided  k  is  open  and 
a  group  and  a  is  a  connected  point  of  k  (*354"34).  Hence  it  follows  that  if  k 
is  a  family  which  is  open,  connected,  and  a  group,  and  a  is  a  connected  point 
of  K,  csiaG'T^  is  open  and  connected,  and  a  is  a  connected  point  of  cHa'G'T^ 
(*354"401).  Again,  in  virtue  of  *354312,  if  \  is  a  family  which  is  a  group, 
and  a  is  any  member  of  its  field,  cx„'X  is  a  group  (*354"313) ;  hence  when 
/t  is  a  family  which  is  open,  connected,  and  a  group,  cXa'G'T^  is  a  group. 
(*354"402);  and  it  is  easy  to  prove  that  it  is  also  a  rational  family 
(*354-403).  Hence,  by  *353-27,  cXa'G'T^  is  a  family  which  is  open, 
connected,  rational,  a  group,  transitive,  and  asymmetrical  (*354"404).  If  our 
original  family  is  open  and  connected  but  not  a  group,  we  only  have  to 


438  QUANTITY  [PABT  VI 

substitute  Kg  for  «,  i.e.  putting  \  =  Kg,  we  only  have  to  take  cXa'G'Tx,  in 
order  to  obtain  a  rational  net  with  all  the  above  properties.  This  is  stated 
in  the  proposition 

*354'41.     \- :  K6  FMa.p  conx  .  T  e  k^  .  a  e  conx'/c  .'\.=  Kg.D  . 

cx/G'T),  e  FM  ap  conx  rt  trs  asym 


*35401.     Kj  =  «  u  Cnv"(«:  n  DVa"/c)         Df 
*35402.     cx„'X  =  I  {A „"\.)"\  Df 

*35403.     FM grp  =  FMnlc  (s'k \  "k C  k)     Df 

*3541.       \-:.ReKg.=  :ReK.v.IteK.a'R  =  s'a"K     [(*354-01)] 
*35411.     \-:KeFMcoQK.R,Seic.:i.R\S6Kg  [*331-33  .*3541] 

*35412.     V  :  Hp  *35411 .  D'R  =  s'a"K  .'D  .R\S  =  S\R  .R\S€Kg 
Dem. 
I- .  *330-52  .  D  h  :  Hp .  a  6  conx'*  .  D  .  E !  R'S'a .  a'(R  \  S)  =  s'O"* . 
[*33111-42]  D.R\S€K\J  Cnv"« .  a'{R  |  S)  =  s'a"« . 

[*354-l.*330-561]  O.R\SeKg.S\R=:R\S::^\-.  Prop 

*35413.     t- :  Hp  *354-l  1 .  D'i?  =  D'/S  =  s'a"K  .  D  .  ^  |  ^  e  «^ 
Dem. 

\- .  *33r33  .  D  h  :  Hp .  D  .^1 6'6/«:  u  Cnv"*:  (1) 

I- .  *37-323  .  D  I- :  Hp .  D .  a'(R  \  S)  =  s'Q"*;  (2) 

h  .  (1) .  (2) .  *3541 .  D  h  .  Prop 

*35414.     \-:>ceFM  conx. D.s'Kg\"KgCKg     [*35411-12-13-1] 

*35415.     h  :  «  6  FM  conx  .  D  .  {Kg\  =  k, 

Dem. 
I- .  *3541 .  D  i- :.  Hp .  E,  S  6  /cj .  D  : 

ii,,sf6«.v.^.(S6K.v.i?,SeK.v.^,^6«;.a'ij=a'/S=s'a:"/«;  (i) 

F.*330-4.        Dh:Hp.ii,S6/«:.D.E|,S6A;.  (2) 

h  .  *33r33-24  .D\-:.'ilY>:R,SeK.v.R,SeK:D.R\SeK,  (3) 

l-.*354-12.      ■D\-:B.^.R,Seic.a'R  =  a'S  =  s'a"K.'D.R\8€K,  (4) 
h  .  (1) .  (2) .  (3) .  (4) .  D  h .  Prop 

*35416.     hiKeJ^il/conx.D./tje^il/conx     [*354-l-12] 

*35417.     I- :  K  6  FM  ap  conx  .D  .Kge  FM  ap  conx  grp 
[*354-16-15-14 .  *333-101] 


SECTION  C]  RATIONAL  NETS  439 

*35418.     h:.KeFMgrp.  =  :K6FM:R,8eK.-2s^s-R\SeH:     [(*354-03)] 
*354-19.     h-.KeFMgrp^O.s'Fof'KCK     [*354-l 8 .  Induct] 

f 

*354-2.       I- :  K  e  ^Jl/  ap  conx  .Te  k^.O  .  G'T^eFMa.p  rt  ex  ' 

[*353-15 .  *352-3] 

*354-22.     h  :  K  6  FM  ap  conx  grp  .  y  e  Kg  .  D  .  C"T«  e  FM  ap  rt  ex  grp 

Dem. 
h .  *350-62  .  *354-18  .  D  h  :  Hp .  iJ,  .S,  Te  /<: .  Z,  Fe  C'H' .  RXT.SYT.  D  . 

(iJ|;S)(Z+,F)r.i2|S6«. 
[*306-67.*352-3]  D .  ii  |  /Sf  e  C'T.  (1) 

1- .  (1) .  *352-3  .  D  I- :  Hp .  iJ,  ,S  6  CT, .  D  .  E  |  S  e  OT,  (2) 

h.(2).*354-2.DI-.Prop 

*354-23.     l-:«:eJPifrtconx.7'e«:9.D.GX  =  «:     [*353-13 .  *352-3] 

*354-24.     h  :  K  6  ^If  ap  conx  .  Te  /tg  .  A.  =  /c, .  D  .  C'Ta  e  FM  ap  rt  ex  grp 
[*354-2217] 

*354-31.     ViXeFMgt^.ae  s'(l"\ .  /S  e  \  .  D  .  ^„'%  C  S"4„'% 
Dew. 

h  .  *336-l .  D  h  :.  Hp .  D  : « e 4,,'% .  D .  (gP,  Q) .  P,  Q  e  k  . «  =  P'Q'a . 
[*330-56]  D  . (gP, Q).P,QeK .S'x  =  P'S'Q'a . 

[*354-18]  ~  D  .  (gP,  R).P,ReK.  S'x  =  P'R'a . 

[*336-l]  D./Sf'a;e4<,'%. 

[*37106]  D.xe  S"Aa"X, :.  D  I- .  Prop 

*354-311.  F:Hp*354-31.D.S"4/%C4/%    [*3o4-31] 

*354-312.  h  :  Hp  *354-31  .D.Sl  iAa"X)  =  (Aa"\)  1  /Sf  =  >Sf  p  (4„'%) 
[*354-31-311] 

*354-313.  h  :  \  e  Pilf  grp  .  a  e  s'a."\  .  fi  =  cx^'X  .D  .s'fj,\"fiCfj. 

Dem. 
I- .  *354-312  .  D 

\-:R-p.R,S€\.0.{RtiA/'\)}\{St(A,"\)]={R\8)t{A^"X,)      (1) 
I- .  (1) .  *354-18 .  D 
.       1- :  Hp .  E,  Se\ .  D .  {i2  p  (A/'K)}  \  [8  C  (Aa"X.)}  ecx^'X :  D  h  .  Prop 

*354-32.     hzXeFM.ae  s'G'^X  .  \.  n  aM„  C  \  u  Cnv"\ .  D  .  a  e  conx'cx„'\ 

Dem. 
J- .*336-l .  D  h  :.  Hp  .  D  :  a;64„"\  .  D  .  (gZ) .  ZeX  .  a;  =  Z'a.  Xea'4„ . 
[Hp]  D.(aX).Le\wCnv"\.a;  =  2;'a. 

[*330-43]  D.(aM).ilf6Cx„'\uCnv"cx/\.a;=if'a: 

[*331-llO  -  ■■  ~  D:a6Conx'cx«'\:.DI-.Prop  '..•-• 


440  QUANTITY  [part  VI 

*354-33.     I- :  \  6  ^il/  grp .  a  6  s'a"X .  b  e  Aa"X,  ■  3  .  Aa"\,  =  Ai"\ 
Dem. 
V  .  *336-l .  D 

h  :  Hp  .  c 6 Ab"\, .  D  .  (gP, Q,R,  S)  .P,Q,R,Se k .c  =  R'S'P'Q'a  . 
[*330-56]  D  .  (gP,  Q,R,S).P,Q,R,S6h:.c  =  R'P'S'Q'a  . 

[*354-18]  D .  (a  J/,  N).M,NeK.c  =  M'N'a  . 

[*3361]  0.ceAa"X  (1) 

Similarly  t- :  Hp  .  c  e  Aa"X,  .D.ceA  b"\,  (2) 

l-.(l).(2).DI-.Prop 

*354'34.     1- :  K  e  ^il/  ap  conx  grp  .  Te  Kg  .  \  =  C'T^  .  a  e  conx'/c  .  D  . 

\.naM„C\wCnv"\ 

|-.*354-22.       DI-:Hp.D.\e^ilfaprtcx. 

[*35314]  D.\.n(«:uCnv"/«;)C\wCnv"X,  (1) 

h  .  *33111-32  .  D  h  :  Hp  .  i  e\.  A  QM,, .  D  .  Z  e  «  u  Cnv"*: . 

[(1)]  D  .  Z  6  \  u  Cnv"\ :  D  h  .  Prop 

^354-35.     h  :  «  6  FMsip  conx  .TeK^.  fi  =  Kg.X  =  C'T^ .  a  e  coux'/e  .  D  . 

\, rt  a'^a C X. v^  Cnv"X,     [*354-34l7] 

*354-4.       h  :  X  6  Pi/grp .  a  e  s'a"\ .  D  .  cx<,'X,  e  FM .  s'a"cx„'X  =  Aa"K 

Bern. 
h.*330o2.    DI-:Hp.D.cx/\Cl->l  (1) 

h  .  *354-311 .  D  h  :.  Hp  .  D  :  E  6  \ .  3  .  a'R  =  ^«'% .  B'R  C  Q'iJ  (2) 

l-.*354-312.Dl-:Hp.i?,/S6\.D.{i?p(^/%)}|lSt(^„"X.)}=('B|'S)D(^»'%) 
[*330-5-52]  =  (/S I  -R)  D  (^»"X0 

[*354-312]  =  {St  (Aa"\)}  I  {i? D  {^a"\)}  (3) 

h  .  (3) .  *330-5  .  D  h  :  Hp .  D  .  cx„'\  e  Abel  (4) 

I- .  (1) .  (2) .  (4) .  *330-52  .  D  1- .  Prop 

3K354°401.  1- :  «6i^^apconxgrp.aeconx'«.  Te/Kg.  D  . 

cxa'C'T^  6  FM  ap  conx .  a  e  conx'cXa'CT, 
Dem. 

I- .  *354-4-22  .       D  h  :  Hp .  D  .  cXa'G'T,  e  FM  (1) 

h  .  *354-34-32-2 .  D  h  :  Hp .  D  .  a  e  conx'cXa'C'T^  (2) 

h  .  (1) .  (2) .  *333101 .  D  h  .  Prop 

*3.')4-402.  h  :  Hp  *354-401 .  D  .  cx<.'C"T,  e  PJlf  grp    [*354-313-22-401] 


SECTION  C]  RATIONAL   NETS  441 

*354-403.  h  :  Hp  *354-401 .  D .  cx^'OT,  e  FM  rt 

Dem.  • 

V  .  *353-12  .  *354-2  .  D 

h  :  Hp  .  S  e  OT,  .  \  =  0'r«  .  D  .  (g/*,  k)  .  /*,  i^e  NCind  .  i;  +  0  .  «"=  Z^*  ■ 
[*354-312.Induct]  3  .  (g^,  ,-)./*,  v  e  NC  iad  .  j/  +  0  . 

[*350-43.*354-401] 

D  .  (a/.,  i;) . ,.,  i;  e  NC  ind  . ,;  +  0 .  {SD  (^e'%)}  (/^/i')  {^  D  (^a"5^0}     (1) 
h.(l).*353-l.Dh.Prop 

«354'404.  h  :  «  e ^Jlf  ap  conx  grp .  a e  conx*«  .  Te  Kg .  3  . 

CKa'C'T^  e  FM  ap  conx  rt  grp  trs  asym     [*354-401-402-403 .  *353-27] 

*354'41.     h  :  K  e  FM  ap  conx  .TeK^.ae  conx'«  .X  =  Kg.O . 

cXa'C'Tx  6  i^Jf  ap  conx  rt  trs  asym     [*354-l7-404] 


*356.     MEASUREMENT  BY  REAL  NUMBERS. 

Swmmary  of  *356. 

In  this  number  we  consider  the  application  of  real  numbers  to  the 
measurement  of  vectors  in  a  family.  The  principle  of  this  application  is 
as  follows:  If  a  given  set  of  vectors,  all  of  which  are  rational  multiples  of  a 
given  vector  R,  have  a  limit  with  respect  to  U^,  and  if  their  measures 
determine  a  segment  of  H,  then  we  take  the  real  number  represented  by 
this  segment  as  the  measure  of  the  limit  of  the  given  set  of  vectors. 
For  the  sake  of  homogeneity  with  rational  measures,  it  is  well  to  take  our 
real  numbers  in  the  relational  form  given  in  *314 ;  i.e.  if  feC©,  we  take 
s'f  as  the  corresponding  real  number.  With  a  suitable  hypothesis,  the 
result  of  the  above  principle  for  applying  real  numbers  is,  where  rational 
multiples  of  the   unit   -B  are   concerned,  to  replace   the   ratio  X  by  the 

rational  real  number  s'H'X,  as  the  measure  of  the  vector  X  ^  k'R 
(cf.  *356'63).  Then  the  measure  of  the  limit  of  a  set  of  rational  vectors 
will  be,  by  our  principle,  the  limit  of  their  measures.  Thus  our  principle  is 
conformable  to  what  is  required  for  an  application  of  real  numbers. 

It  should  be  observed  that,  if  any  application  of  irrationals  is  to  be 
possible,  it  is  necessary  that  the  vectors  of  the  family  concerned  should 
have  a  serial  or  quasi-serial  order,  independently  of  the  order  generated  by 
their  measures.  The  order  generated,  among  rational  multiples  of  T,  by  the 
ratios  which  are  measures  of  these  multiples,  is  Tic  (cf.  *352).  A  vector 
which  is  not  a  member  of  O'T,,  cannot  be  the  limit  of  any  set  of  vectors 
with  respect  to  Tn.     But  we  saw  (*352'72)  that  if  k  is  a  serial  family, 

Hence  when  k  is  a  serial  family,  a  vector  which  is  not  a  member  of  O'Tn 
may  be  the  limit  of  a  set  of  members  of  OT^  with  respect  to  U^.  It  is  the 
existence  of  an  independent  series  [/„,  not  generated  by  measurement,  which 
makes  the  application  of  irrationals  as  measures  possible. 

The  following  phraseology  may  be  found  convenient.     Taking  a  unit  T 
in  a  family  k,  and  an  origin  a  in  its  field,  if  X e C'H'  and  S  =  Xl k'T  and 
a!  =  8'a  =  {X[,K'Tya,  we   call   X   the   "rational   measure"   of  S  and   the 
'  rational  coordinate "  of  so.     We  have,  in  the  same  circumstances, 
S=  K 1  ^y'Z  .  X  =  Aa'8=  Aa'ic'lAr'X. 


SECTION  C]  MEASUREMENT  BY   REAL   NUMBERS  443 

We  will  call  S  the  vector  of  X,  and  a;  the  point  of  X ;  and  the  same 
phraseology  will  be  eigployed  for  the  vectors  and  points  obtained  by 
measures  which  are  real  numbers.  We  may  now  state  the  principle 
according  to  which  we  apply  real  numbers  as  measures  as  follows.  Given 
a  segment  f  of  H,  take  all  the  vectors  of  f s  :  these  form  the  class  k  n  Ajf'^. 
Then  the  real  number  s'f  is  to  be  the  measure  of  the  limit  (with  respect 
to  U^)  of  the  class  «  n  Aj,"^.  Since  CT,  has  the  opposite  sense  to  that  of  T^, 
I.e.  U^  pl"oceeds  from  the  vectors  with  bigger  measures  to  those  with  smaller 
ones,  the  limit  we  shall  have  to  take  will  be  the  lower  limit  with  respect  to 
U„.     Thus  the  vector  whose  measure  is  s'^  will  be 

prec  (?/,)'(«:  n^j,"^). 

Now  if  we  put  X  =  s%  At"^  =  X'T,  and  Z  is  a  relational  real  number. 

Hence  using  *206-131,  the  vector  whose  measure  is  X  is  ^rec{U^yX'T. 
Hence  if  "  X^'T"  represents  the  vector  whose  measure  is  X  (unit  T), 
we  put 

*35601.     X,  =  i>Tec(U,)\X[K    Df 

Assiiming  now  that  «  is  a  serial  submultipliable  family,  in  which  we  take 
R  as  the  unit  and 'a  as  the  origin,  and  putting,  for  notational  convenience, 

we  have  first  a  set  of  preliminary  propositions  (*356'1 — ■191),  of  which  the 
most  important  are 

//'  =  {C'H')  1  As'P=(0'H')  1  As'Aa'Q    (*356-13), 

P I  G'R,  =  K 1  As'H'    (*356-14), 

giving  the  relations  between  the  series  of  ratios,  the  series  of  their  vectors, 
and  the  series  of  their  points. 

We  proceed  next  (*356-2— -26)  to  the  proof  that  X^keI-*!.  .  This 
requires,  in  addition  to  our  previous  hypothesis,  that  Q  should  be  semi- 
Dedekindian.  With  this  hypothesis,  we  first  prove  that  if  X,  Y  are 
relational  real  numbers, 

a'X,  =  a'  F.  =  «9  :  Z«  =  F« .  H  .  Z  =  F    (*3.56-21). 
We  then  prove,  by  the  help  of  some  arithmetical  lemmas,  that  the  lower 
limit  of  the  submultiples  of  a  given  vector  is  the  zero  vector,  i.e. 

tip's {Seic:  (gi;) .R  =  S'}=I\-  C'Q    (*356-22). 

Hence  we  easily  prove  that,  if  R  is  any  non-zero  vector,  and  \  is  a  class 
of  vectors  having  a  lower  limit  L,  the  lower  limit  of  the  relative  products  of 
R  and  members  of  X  is  the  relative  product  df  R  and  L,  i.e. 

\Ck.L  =  t\p'X  .ReKs.D.R\L=  tlp'R  \  "\     (*356-221). 


444  QUANTITY  [part  VI 

Remembering  that  the  relative  product  is  represented  arithmetically  by 
the  sum,  we  may  express  the  above  proposition  by  saying  that  the  limit 
of  the  sums  of  a  given  vector  and  a  set  of  vectors  is  the  sum  of  the  given 
vector  and  the  limit  of  the  set.  From  this  proposition  we  easily  deduce  that 
i{RPS,  Z/iJ  +  X/S,  whence  it  follows  that 

X^[-K6l-*1     (*356-26). 

Our  next  set  of  propositions  (*356'3 — 'SS)  is  concerned  in  connecting  the 
relative  product  of  X^  and  Y^  with  the  arithmetical  product  X  Xr  Y,  where 
"  Xr"  has  the  meaning  defined  in  *314.  Here  we  only  require  that  k  should 
be  serial  and  submultipliable,  and  we  obtain 

Z,  I  F,  =  (X  Xr  Y),    (*356-33). 

This  proposition  is  the  analogue  of  *351'31  (except  that  k.  is  replaced  by  k)  ; 
it  has  a  similar  importance,  and  calls  for  similar  remarks. 

Our  next  set  of  propositions  (*356'4 — '43)  is  concerned  in  proving  that 
the  limit  of  the  points  of  a  segment  of  ratios  is  the  point  of  their  limit,  in 
other  words,  that  the  limit  of  a  set  of  points  whose  coordinates  are  a  segment 
of  rationals  is  the  point  whose  coordinate  is  the  limit  of  the  segment.  Here 
we  again  require  that  our  family  should  be  semi-Dedekindian ;  then  if  ^  is 
a  segment  of  ratios,  and  X  =  s'^,  the  above  proposition  is 

(X/Rya  =  se(iQ'A„,"Ai,"^  =  seqe'^„"Z'i2    (*356-43). 
Here  X/R  is  the  vector  of  X,  {X^'Rya  is  the  point  of  X ;  A^"^  =  X'R, 

and  each  is  the  class  of  vectors  of  members  of  ^;  and  Aa"A^'^  or  Aa"X'R 
is  the  class  of  points  of  members  of  ^.  Moreover  X  is  a  relational  real 
number.  Thus  the  above  proposition  states  that  the  point  of  X  is  the 
segment  (i.e.  the  limit)  of  the  points  of  the  ratios  contained  in  X ;  i.e.  of  the 
ratios  which  may  be  considered  less  than  X. 

We  next  proceed  (*356*o — '54)  to  connect  the  relative  multiplication  of 
vectors  with  the  addition  of  their  measures.  Here  we  require  that  k  should 
be  semi-Dedekindian  as  well  as  serial  and  submultipliable.  We  then  find 
that  if  X,  Y  are  relational  real  numbers,  and  J?  is  a  non-zero  vector, 

(Z/i?)  I  {YJR)  =  (Z  +,  Y\'R    (*356'54). 

This  proposition  is  the  analogue  of  *351*43,  and  calls  for  similar  remarks. 
The  proof  proceeds  without  much  difficulty  by  means  of  *356*43. 

Finally  we  have  a  set  of  propositions  (*356'6 — •63)  to  prove  that  the  real 
number  which  measures  a  rational  vector  is  the  real  number  corresponding 
to  the  ratio  which  is  its  measure ;  i.e.  if  Z  is  a  ratio,  the  vector  which  has 

the  ratio  Z  to  the  unit  has  the  real  number  s'H'X  for  its  measure.  It  is  to 
be  remembered  that  rational  real  numbers  must  not  be  identified  with  ratios, 


SECTION  C]  MEASUKEMENT   BY    REAL   NUMBERS  445 

any  more  than  integral  ratios  {i.e.  ratios  of  the  form  v/l)  must  be  identified 

with  cardinals.  The  reaftiumber  corresponding  to  a  ratio  X  is  s'H'X ;  this 
is  what  we  call  a  "rational  real  number."  In  measurement,  when  we  are 
measuring  by  ratios,  if  R  is  our  unit,  X  will  be  the  measure  of  X  ^  k'R  ;  but 
when  we  are  measuring  by  real  numbers,  the  measure  of  Z  ^  k'R  must  be  a 
real  number.  The  real  number  which  is  the  measure  of  X  ^  k'R  will,  by  our 
definition,  be  a  real  number  Z  such  that 

XI  K'R  =  ^veo{U;)'Z'R. 

Thus  we  have  to  prove  that,  if  X  is  a  ratio,  the  above  equation  is  satisfied  if 

we  put  Z=  s'H'X,  This  requires  that  k  should  be  serial,  submultipliable 
and  semi-Dedekindian ;  we  then  have 

X  e  C'H .  D  .  {s'H'X ).  =  Z  ^  «     (*356-63). 

Thus  although  the  "pure"  real  number  s'H'X  is  not  identical  with  the 

— > 
"  pure  "  ratio  X,  yet  the  "  applied  "  real  number  {s'H'X\  is  identical  with 

the  "  applied  "  ratio  X^  k.    This  fact  explains  why  the  results  of  the  habitual 

confusion  between  a  ratio  and  a  rational  real  number  have  not  been  even 

more  disastrous. 


*35601.     Z«  =  prec(i7,)|Xp«i    Df 

*3561.       V:.ReK.'^:S  =  X^'R.  =  .8=-pvec{U:)'X'R    [(*356-01)] 

*356H.     h  :.  i?  e  « .  D  :  /Sf  =  {s'^\'R  .  =  .8  =  prec  ( U,)'Ak"^ 
[*356-l.*33612] 

*35612.     1- : .  K  e  FM  sr  subm  . 

X,¥eG'H'.ReH:s.aes'a"K.Q  =  s'Ks.P=U,.D: 

XH'Y.  =  .{Xl  k'R) P{Yt  k'R)  .  =  .{{Xt  K'R)'a]  Q  {( F t  k'R)' a] 

[*352-73 .  *336-4] 

*35613.     h  :  vei^'ilf  srsubm  .  Ji!e«g  .aes'<l"K  .Q  =  s'kq  .  P=  CTk  .  D  . 

H'  =  {C'H')  1  Aj,'P={C'H')  1  Aj^'AjQ    [*356-12] 

*356-14.     \-:Rp*356lS. O.PtO'R.  =  K^AR'H'     [*352-72] 

->     -»  -> 

*35615.     h  :  Hp *356-13  . X C C'H .X  =  s'\.0.  ma.xp'X'R  =  « 1  As"ma,XB'X 

Dem. 
h.*352-41.         :)\-■.Rp.D.Kf^X'RCC'R..X'R  =  AJ,"X  (1) 

I- .  (1)  .  *356-14 .  D  h  :  Hp .  D  .  r^xp'X'R  =  max  (P^  C'R,)'X'R 
[*356-14]  =  « 1  -A/'max/X :  D  h  .  Prop 


446  QUANTITY  [PAKT  VI 

*35616.     l-:Hp*356-13.XeC"@.X  =  s'\.D.maxp'X'jB  =  A     [*356-15] 
*356-17.     h  :  Hp  *356-16  .  D  .  X«  =.ltp  |  X[  G'P     [*356-16] 

*356-18.     h  :  K  e.FM  conaex  .  D  .  Z»  e  1  ^  Cls 
[*20616l .  *336-62  .  (*353-01)]. 

*35619.     V:.iceFMsv.P=  U,.D  :  ZeG'H  .D  .  Z^  h:'>P  Q  P 

Dem. 
K.  *336-511 .  D  h  :.  Hp  .  ii,  >S6«.  /i,  I'eNC  ind-i'O  ..Z=,jl/v  .  D  : 

RPS .  =  .  iJ^PiSf"  . 
[*356-43]  D  :  RPS .  M  =  (fi/v)  ^  k'R  .  W  =  (/i/i;) Ik'S.D.  M-PN"  . 
[*336-511]  0.ilfPiV:.Dt-.Prop 

*356191.  1- :  Hp  *35619  .  X  e  s"C'®  .:i  .  XIk\P  Q.P\Xl  k 
Dem. 

\: .  *35.6-19  .  D 
h  :.,Hp  .  D  :  X  e  a'®  .  Z  =  sa  .  ZeX .  D  .  ^^  « I P  GP I  ^ t  « :■  3  I-  •  Prop 

*356-2.       h  :  YL^mbQ-U  .fieC®  .LeX- (i.  D  .  «;1^/i;ep'P"^B'V 
1- .  *310-11 .  b  h  :  Hp  .  D  .  Lep^"iM . 


[*206'6.*352-12]  D  .  k  1  Aj^'L  ep'n:  1  As'H"Ar"/j,  . 

[*356'14]  D  .  «;  1  ^jj'Z  ep'P"^jj"/i  :  D  I-  .  Prop 

*356-21.     1- : .  «:  6  Pi/  sr  subm  .  Cnv's'«g  e  semi  Ded  .X,Ye  s"G'@ .  D  : 

Dem. 

1- .  *356-16  .  *214-7  .  D 
h  :  Hp  . X,/it6  C© . X  =  s'\  .  F=sV  ■  -B e«g .  3  .  E !  Z/E .  E  !  Y,'R        (1) 

|-.(l).*356-2.    DI-:Hp(l).P=t7-,.a!\-/..D.(7/ii)P(X/i2)      (2) 

Similarly  h  :  Hp(l).P=  P, .  g  !^-X.  3  .(X/P)P(7/ii)      (3) 

1- . (1) . (2) . (3)  .  D  h  :  Hp (1).X,'R=  Y.'R .  D . X  =  /t. 
[Hp]  D.X=Y  (4) 

h  .  (1) .  (4) .  D  I- .  Prop 

*356-211.  h  :  0-,  T  e  NC  ind  -  t'O  .  i-  e  NO  ind  -  I'O  -  t'l  .  D  . 

(o-  +e  t)-  >  a"  +0  {v  X„  o-"--^!  X„  t) 
Bern. 
h  .*113-43-66.*116-34.D  I-  .(<7  x„ t)^  =  ff" +„ (2  x„o-  XeT)+oT^  (1) 

I- .  *126-5  .  D  h  :.  Hp .  D  :  (ff  +„  t)"  >  o-"  +o  (v  x„  o-"-"'  Xo  t)  .  D . 

(o-  +,  t)"+«'  >  a- '+''  +e  (i/  x„  a-  x„  t)  +«  (a"  x^  r)         (2) 
1- .  (1) .  (2) .  Induct .  D  f- .  Prop 


SECTION  C]  MEASUREMENT  BY   REAL  NUMBERS  447 

*356-212.  I- :  p  >  <7  .  p,  ff,  ?6  NC  ind  .  D  .  (gi;)  .  i;  €  NC  ind  .  p"  >  ff"  x^  ^ 

Dem.  '"'         • 

l-.*356-211,D 

h  :  Hp  .  V  6  NC  ind  .  p  =  o-  +„  r .  D  .  p"  >  o-"""!  x„  {o-  +„  (7;  x„  t)}  (1) 

h  .  (1) .  *126-51 .  D  h  :  Hp  (1) .  ff  +„  (,;  x„  t)  >  <r  x„  r .  D  .  p'  >  t7-'  x„  ?        (2) 
h  .  (2) .  *113-4:3  .  *120-416  .  *126-5  .  D 
I- :  Hp  (1)  . ,;  Xe  T  >  o-  X,,  (5--„  1) .  D  .  p'  >  ff"  Xo  f :  D  1- .  Prop 

*356-213.  h:p>o-.p,o-,f,9?eNCind.7;=t=0.D. 

(gv) .  i^  6  NC  iud  .  p' Xo  1?  >  ff"  x„  ^ 
i)em. 

h  .  *356-212 .  D  I- :  Hp .  D  .  (gi;) .  v  e  NC  ind  .  p-  >  a"  x^  ^ :  D  h  .  Prop 

*356-214.  l-:p,o-6N0ind-t'0.p>ff.ZeO'jH'.D. 

(av).i/6NCind.(p/ff)-^Z     [*356-213] 

*356-215.  h  :  \  e  C"0 .  p,  o-  6  NC  ind  -  I'O .  p  >  ff  .  D  . 

(gX)  .  X  e  X, .  X  Xj  p/o-  <%>  e  X 
Dem. 

h  .  *805-142  .  Induct .  D  h  :.  \  C  O'/f.  g  !  \ .  v  e  NC  ind  -  t'O  : 

X  e  \  .  D^ .  X  Xj  pja  eXiDiXeX.D^.XXg  p'/ff"  e  X  : 

[*356-214]  :^:H"X  =  &H  .     (1) 

1- .  (1) .  Tran'sp  .  D  h  .  Prop 

*356-22.     t-  :  Hp  *356-13  .  Q  e  semi  Ded  .  D  . 

tip's  [SeKZ  i'^v)  .  R  =  3"}  =I[  C'Q 
Dem-. 

h  .  *336-.511 .  D  h  :.  Hp  .  L  =  tlp'S  {(gv)  .  i?  =  /Sf"} .  p,,  j;  e  NC  ind  -I'O.D: 

SeK.S'''''''  =  B.y.L''P8'': 

[*301-5]  0:TeK.Ti^  =  R.D.L''FT: 

[Hp]  Dri-P^i    '  (1) 

f- .  *337-21 .  D  h  :  Hp  .  i;  6  NC  ind  -  I'O  -  I'l .  Z  e  «g  .  D  .  LPL"  (2) 

h  .  (1)  .  (2)  .  D  h  :  Hp  .  3  .  Z~e  Kg  :  D  I- .  Prop 

*356-221.  h  :  Hp  *356-19  .  Q  =  s'k^  .XC.k.L  =  tip'X  .  E  e  «g .  D  . 

R\L  =  tlp'R  I  "X 
Dem. 
\- .  *334-16  .  *336-411 .  D  h  : .  Hp  .  3  :  LPM  .0  .{R\L)P(R\M): 
[Hp]  D:ilfe\.D.(iJ|Z)P(i2|4f.): 

[*37-61]  D:i2]"XCP'(P|Z)  (1) 


448  QUANTITY  [part  VI 

h  . *336-41 .  D  I- :  Hp  . (ii I i) Pilf .  D  .  (giV)  .  N eKs.M=R\L\N . 

[*330-31]  D.(aiV).iV6«9.E|J/  =  Z|iV. 

[*336-41.*334l:3]  :i  .LP{R\M).R\MeK^.  (2) 

[Hp]  :i.{'^N).Ne\.NP{R\M). 

[*336-411.(2)]  D  . (aiV) .Ne\.{R\N)PM. 

[*37-l]  ■^.MeP"R\"X  (3) 

l-.(l).(3).*207-21.Dh.Prop 

*356-23.     V  :  Hp*356-22.EP,S.D.(ai;).i/eNCmd-i'0.[Ki/+el)/i'}  D«'i?]P/S 

Dem. 
h  . *356 22-221 .  3  I- :  Hp .X  =  T{TeK: (gi/)  .  iJ  =  7"} .  D  .  tlp'Ej  "\  =  iJ. 
[Hp]  D.(ar).Te\.(ii|T)P/Sf. 

[Hp]  D  .  (gi;) . ,;  6  NC  ind  -  I'O  .  {R  \  (l/v)  ^  k'R}  PS . 

[*350-62.*334-32]  D  .  (gi;) .  i;  e  NO  ind  -  t'O .  [{(v  +„  l)lv}  t  k'R]  P8:0\-.  Prop 

*356-231.  I- :  Hp  *356-23  .  D  .  (gv) .  j;  e  NC  ind  -  t'O  .  SP  [{(v  -„  l)/v}  t  ic'R] 
[Proof  as  in  *356-23] 

*356-24.     h  :  Hp  *3o6-23  .  X  e  s"G'&  .  D  .  X/i?  +  XJS 

Dem. 
I- .  *356-23  .  D  h  :  Hp  .  \  6  Ce  .  Z  =  s'\  .  D  . 

(ap,  0-)  .  ,0,  <T  €  NC  ind  -  t'O  .  p  >  o- .  {(p/tr)  ^  k'R}  PS . 
[*356-215]    D  .(ap,  0-,  F) . /3,  o- e  NC  induct  -  I'O .  p  >  cr .  FeX.  Fx,jo/ff~6\. 

KpMD«'i?|P^.  ^ 

[*336-511]   D.(a/3,o-,I').p,o-eNCind-i'0.p>o-.F6\.Fx,/j/o-6^'ff"\. 

{Ft«'(p/<7)t«'i?}P{Ft«'5f}. 
[*3ol-31.*356-13]   D  .  (ap.  ff,  F) .  F  t  ^'(/a/ff)  I  k'R  6p'*P"X'R  rx  P"X'S . 
[*3561]  D .  X/ii  +  Y,'R  .Oh.  Prop 

*356-25.     I- :  Hp  *356-22  .  X  e  s"G'@  .  D  .  X,'R  G  Q 

I- .  *356-l-21  .  D  h  :  Hp  .  D  .  Z/E  e  Kg  (1) 

h  .  (1) .  *41-13  .  D  h  .  Prop 

*356-26.     h:Hp*356-25.D.Z«|^«:el->l 

h  .  *356-24  .  Transp  .  D  1- :  Hp .  i2,  >§  e /cg  .  Z/i?  =  Z//Sf .  D  .  ^  =  5*    (1) 
h  .  (1) .  *35618-21 .  D  h  .  Prop 


SECTION  C]  MEASUREMENT   BY   REAL   NUMBERS  449 

*356-3.       l-:.«rei^Jlfapconxsubm  .  s'Pot"«:  C  «  . /i,  i/ e  C"@  .  ii,  5f  e  « .  D  : 

•  R  (s'fjL  Xr  s'v)  S.  =  .B  {{s'/i)  [■  K  I  (s'v)]  S 

Dern. 

V  .  *314-14  .  *313-21 .  D  f- :  Hp  .  D  .  sV  Xrs'y  =  s's'fj,  x,  "v  (1) 

f- .  (1) .  D  h  :.  Hp .  D  :B(s'iJ.  XrS'v)S.  =  .  {'^M,N) .  Me fi.N ev.R{Mx, N)S. 
[*351-31-22]  =  .{'^M,N) .  M  e  ii.N  ev  .  R{M^  k\N)  S  i.:iV  .  Prop 

*356-31.     ViKeFMa,^  conx  subm  .  s'Pot"«  C  «  .  Z,  F  e  s"G'®  .  D  . 

(Xx,y)C«  =  (Zt«)|(7^«)     [*356-3] 

*356-32.     h-.KeFMsr  subm  .  X,  Yes"G'®  .  i?  e/cg  .  D  .  X,'Y/R={X  \  Y\'R 
Dem. 

h  .*356191 .  D  h  :.  Hp  •  D  :  (Se/i;  A  Y'R .  D  . «  n  'x'SCP"X'Y,'R : 
[*37-63]  D:Z"(«n  F'i?)CP"Z'F/E  (1) 

h  .  *305-6  .      D  h  :  Hp .  \  6  C'@  .  Z  =  s'\ .  ^,^'6\ .  ^^Z' .  D . 

^  t  «'F/E  =  Z'l  k'(Z I  i')  t  ic'Y.'R . 
[*356-12]  D.Zl  «'F/J?  6  ^'  t  «"P'F.'i? . 

[*35617]  D  .  ^t  «'I^«'^  e ^'  I  k'T'^Y'R  . 

[*35619]  D  .  ^  t  «' ^''^  e  P"^'  ^  «"PP . 

[Hp]  :^.ZlK'Y,'Re  P"X"'Y'R  (2) 

h  .  (1) .  (2) .     D  h  :  Hp .  D  .  P"X"'Y'R  =  P"X'Y,'R . 
[*3561]  D  .  (X I  F)/E  =  X/F/P :  D  h  .  Prop 

*356-33.     h  :  Hp  *356-32  .  D  .  Z,  |  F^  =  (X  x^  FX    [*356-31-32] 

*356-4.       h  :  K  e  Pif  conx  .  Q  =  Criv's'«g  ./Se/e.aCO'Q.aia.E!  seq^'a .  D  . 

(S'seqg'a  =  seqQ'S"a 
Bern. 

h  .  *330-o63  .  D  I- :  Hp  .  D  .  S'seq^'a  ep'Q"S"a  (1) 

h  . *37-l .        0\-::Rp.D:.S'ze Q"p^"S"a .  =  : 

(ay) : «  e  a .  Da, .  /Sf'a;Qy  :  yQ;S'^: : 
[*330-542}  =  :  (aw) : «  e  a .  D,;  ■  -S'*  Q  -Sf' w  :  S'w  Q  S'z  : 

[*208-2]  =  :  (aw)  : «  6  a .  Da .  ajQw :  wQz : 

[*37-l]  =:^eQ'yV"a  ^  (2) 

h  .  (2) .  Transp .  D  h  :.  Hp  .  D  :  ^  ~  e  Q"p'Q"<x  .  =  .S'zr^e  Q"p^"S"a      (3) 
h  .  (1) .  (3) .  *330-542  .  D  h  .  Prop 

E.  &  w.  III.  29 


450  QUANTITY  [part  VI 

*356-41.     I- : . «  6  FM  conx  trs.  P=U,.Q  =  s'kq  .  a  e  G'Q  .  X  C  k  .  g  !  \ .  D  : 

N  =  seqp'X  .=  .NeK.  seqg'Aa''^  =  N'a 
Bern. 
I- .  *336-43-2  .  *206-61 .  D 

I- :.  Hp .  D  :  iV=  seqp'\ .  =  .  iVe  «  .  Aa'N=  seq  (Q  I  A/'k)  'Aa"\  (1) 

h  .  *206-21 1 .  D  I- :  Hp .  6  =  seqe'^/'X .  D  .  (gE)  .  E  e  \  .  B'aQb  . 
[Hp]  D.(a/S).>Sfe«.6;Sra. 

[*336-ll]  0.beAa"K  (2) 

h  .  (1) .  (2)  .  D  h  :.  Hp .  D  :  i\r=  seqp'X, .  =  .  iVe  « .  A^'N  =  seq<2'J.»"X.        (3) 
h  .  (3) .  *336-ll  .  D  h  .  Prop 

*356-42.     l-:Hp*356-41.E!seqp'\.D.(seqp'\)'a  =  seqQ'^„"\     [*356-41] 

*356-43.     h  :  Hp  *356-22  .^eG'®  .X  =  s'^  .aeC'Q.D  . 

(X.'Rya  =  seqQ' A/'Ai,"^  =  seqQ'Aa"X'R 
[*356-4211-21.*336-12] 

*356-5.       l-:Hp*356-22. 

Z,  F  6  s"C"0 .  a  e  C'Q .  jR  6  « .  X  =  «  r.  X'iJ .  /i  =  «  n  Y'R .  D  . 

(X  J  By  {Y^' By  a  =  seqg's'X'seqe'sV'a 
Dem. 

I- .  *356-43  .  *33612  .  D  h  :  Hp .  D  .  (X,'By(Y,'Bya  =  seqg's'\'(F/i?)'a 

[*356-43.*336-12]  =  seqg's'X'seqg's'/i'a  Oh.  Prop 

'  *356-51.     f- :  Hp  *356-5  .  D  .  (Z  +^  Y)^'B  =  seqp's'X  |  'V 

i)em. 
I-.*35611  .*31413.DI-:Hp.f,7;ea'©.Z=s'^.  F=s'77.D. 

(X  +r  Y\'B  =  seqp'^^"(f  +» '?) 
[*312-32.*31111.*308-32]  =  seqp'4B"s'?+/''7 

[*336-ll]  =  seqp'i^  {(gi,  if )  .  Z  e  ? .  if  e  ^y .  iV  =  (Z  +,  ilf )  f  k'R] 
[*351-43]  =  seqp'^ {(gi, M)  .Le^.Mer,  .N={Ll  k'B)  \  (M t  ic'B)} 
[Hp]         =seqp'#l(af7,  F) .  fTeX.  Wefi.N=  U\  TF} :  D  h  .  Prop ' 

*356-52.     h  :  Hp  *356-5  .  D  .  {(X  +^  Y^'Bya  =  seqQ'(s'^')"sV'a 

h  .  *356-51 .  D  h  :  Hp .  D  .  {(X  +^  F)«'i?}'a  =  (seqp's'X,  |  "/*)'« 

[*356-42]  =  seqQ'4a"s'\|  'V 

[*336-ll]  =  seqg'S  {(gZ,  F) .  Z  e  \ .  Fe  /i .  a;  =  (Z  |  Y)'a} 

[*41-11]    =  seqe'^  {(gZ)  .XeX.xe  X"s'ii'a} 

[*41-11]    =  seqe'(s'X,)"s'/i'a  :  D  f- .  Prop 


SECTION  C]  MEASUREMENT   BY   REAL   NUMBERS  451 

— >  — >  — > 

*356-53.     t- :  Hp  *356-.5  .  D  .  seqg's'X'seqg'sV'"  =  seqQ'(s'\y's'fi'a 

Bern. 

->  ->  -»  -» 

V  .  *356-16  .  D  1- :  Hp  .  D  .  seqg's'X'seqe's'/i'a  =  Itg's'X'seqg's'/a''* 

— > 
[*4111]  =  Hq'B  {(gi)  .LeX.x  =  L'seqq's'fi'a} 

[*356-4]  =  Itg'^  {(gi)  .Le\.w  =  seqQ'i"sV'«} 

[*356-16.Hp]  =  Itg'^  {(gi)  .LeX.x  =  ltg'Z"sVa} 

[*207-55]       =  kg  va  Kai) .  i  e  X .  « = X"j5'a} 

[*41-11]  =ltg'(s'X)"s>'a 

[*356161;       =  seqQ'(s'X)"sVa, :  D  h  ,  Prop 

*356-54.     h  :  « e  J^W sr subm  . Cnv's'/Kg e semi Ded  . Z,  Yes"G'& .ReK^.D. 

(X/R)  I  (F/E)  =  {X+r  Y\'R    [*356-5-53-52] 

*356-6.       \-:KeFMsT.ReKs.P^U,.Q  =  s'Ks.X6G'H.O. 

icnAs"H'XC^'Xlic'R 
Dem. 

h  .  *37-6  .  D  h  :.  Hp .  D  :  ilf  e  Aj,"H'X .  =  .  (aF) .  FiTZ .  MYR . 

[*352-7]  D  .  ifP  (Z  t  «'iJ) : .  3  I- .  Prop 

*356-61.     h  :  Hp  *356-6  .iceFM  subm  .  Q  e  semi  Ded  .  /SP  (Z  ^  k'R)  .  D  . 

(aF).FffZ.>SP(FC«'i?) 
Dem. 

h  .  *356-231 .  D  h  :  Hp  .  D  .  (gf ) .  i/  e  NC  ind  -  I'O .  SP  [{(i^  -„  iVi'}  i  k'X  I  «'i2] 
[*351-31]  3  .  (ai') .  z/  6  NO  ind  -  t'O  .  >SP  [{(i;  -„  l)/i;  x,Z}  t  «'iJ] 

[*305-7l-51]  D  .  (gF) .  Ffi^Z  .  SP{Yl  k'R)  :  D  h  .  Prop 

*356-62.     I- :  Hp  *356-6  .  k  e  FM  siibm  .  Q  e  semi  Ded  .  D  . 

^'X  l  k'R  C  P"A^"H'X    [*356-61] 

*356-63.     h  :  Hp  *356-62  .  D  .  (s'H'X ).  =  Z  ^  « 
Z)em. 

I- .  *356-6-62  .  D  h  :  Hp .  3  .  Z  ^  /^'i?;  =  ltp'u4B"-H''Z  . 

[*356-ll]  :>.XlK'R  =  {s'H'XyR  (1) 

|-.(l).*356-21.DI-.Prop 


29—2 


*359.     EXISTENCE-THEOEEMS  FOR  VECTOR-FAMILIES. 

Summary  of  *359. 

In  this  number  we  prove  that,  assuming  the  axiom  of  infinity,  there  are 
vector-families  of  the  various  kinds  considered  in  previous  numbers. 

If  P  is  any  well-ordered  series  having  no  last  term,  the  converses  of  the 

interval-relations,  I.e.  the  class  finid'P,  form  an  open  family  of  C'P(*359"11). 
If  P  is  a  progression,  this  family  is  serial  and  initial  (*35912). 

The  family  consisting  of  additions  of  positive  ratios  to  positive  ratios 
(including  Oj),  i.e.  consisting  of  all  terms  of  the  form  {-\-gX)^G'H' ,  where 
X  e  G'H',  is  initial,  serial,  open,  and  submultipliable  (*359"21),  assuming  the 
axiom  of  infinity.  The  family  consisting  of  generalized  additions  of  positive 
ratios  to  generalized  ratios  is  serial,  open,  and  submultipliable,  but  not  initial 
(*359-25). 

The  family  consisting  of  multiplications  of  positive  ratios  not  0,  by  positive 
ratios  not  Og  is  open  and  connected,  but  not  serial  or  submultipliable  (*359"22); 
if  we  confine  the  multipliers  to  ratios  not  less  than  1/1,  the  family  becomes 
serial  (*359-25). 

The  family  consisting  of  additions  of  positive  real  numbers  to  positive 
real  numbers  (including  I'Og)  is  serial,  initial,  and  submultipliable  (*359"31); 
the  family  consisting  of  generalized  additions  of  positive  real  numbers  (including 
I'Oq)  to  generalized  real  numbers  is  serial  and  submultipliable,  but  not  initial 
(*359'32).  Similar  propositions  hold  for  multiplication,  provided  I'Og  is 
omitted;  but  the  resulting  families  will  not  be  serial.  In  the  case  where 
the  field  is  confined  to  positive  real  numbers,  however,  the  family  becomes 

serial  if  the  multipliers  are  confined  to  such  as  are  not  less  than  H'iljV), 
which  is  the  real  number  1. 

The  last  set  of  propositions  in  this  number  (*359"4— "44)  are  concerned 
in  proving  that,  given  a  family  k  whose  field  is  yS,  if  (S  is  a  correlator  of 
a  and  jS,  ;St"«  is  a  family  whose  field  is  a,  and  which  has  the  same  properties 
of  being  connected,  open,  etc.  as  the  original  family  k.  Hence  if  «  is  a  family 
whose  field  is  the  real  numbers,  and  we  are  given  any  class  «  similar  to  the  real 
numbers  (in  other  words  the  field  of  any  continuous  series),  if  8  is  the  correlator 


SECTION  C]  EXISTENCE-THEOREMS  FOR  VECTOR-FAMILIES  453 

of  this  class  with  the  real  numbers,  Sf'ie  gives  a  family  whose  field  is  a.  Hence 
from  our  previous  exis|gnce-theorems  we  derive  the  existence,  for  a,  of  an 
initial  serial  family,  giving  us  a  system  of  measurement  for  a.  Similarly 
if  a  is  similar  to  the  rationals. 


*3591.       I- :  P  e  fl .  ~  E  !  5'P .  D  .  finid'P  e  CI  ex'cr'C'P 
Dem. 

h  .  *260-23-28  .  D  h  :  Hp .  D  .  finid'P  C 1  -♦  1  (1) 

h.*121-302.     DI-:Hp.D.D'P„  =  C'P  (2) 
H  .  (2)  .  *121-302-35  .  *260-28  .  D 

h  :  Hp .  1, 6 NC ind  . D'P„  ==G'P.:i. D'P„+a  =  O'P  (3) 

^  .  (2) .  (3)  .  Induct .  D  h  :  Hp .  i?  6  finid'P .  D  .  D'iJ  =  O'P  (4) 

f-.*121-322.  Dh:i?e  finid'P.  D.a'^C(7'P  (5) 

I- .  (1)  .  (4) .  (6) .  *330-l .  D  h  .  Prop 

*35911.     h:  Pen.  ~E!£'P.D.  finid'P  efmap'C'P 
Dem. 

V  .  *260-28 .  *121-352  .  D  h  :  Hp  .  D  .  finid'P  e  Abel  (1) 

l-.*7l-19.  Dh:Hp./^,i;6NCind.a!P;.|P./S/.D.At  +  j'  (2) 

t-.*121-35.         DI-:Hp(2).^>i;.D.P^|P,GP^_,„. 

[*91-6.*121-36]  D.(P^|P,)p„G/  (3) 

Similarly  h  :Hp(2) .  i/ >/i.  D  .(P^|P„)poG/  (4) 

h .  (2) .  (3) .  (4) .  D  h  :  Hp .  i  6  (finid'PXg .  D  .  ip,,  G  J  (5) 

l-.(l).(5).*359-l.DI-.Prop 

*35912.     h  :  P  6  ft) . «  =  finid'P .  D  .  k  e  fm  sr  init'C'P .  s'k^  =  P 
Dem. 

b  .  *263-14141 .  *1221 .  D  h  :  Hp  .  D  .  sV£'P  =  G'P  (1) 

h .  *26314-141  .  Dt-:Hp.D.s'«9  =  P.  (2) 

[*334-31.*3.59-ll]  D.KeFMsr  (3) 

h  .  (1) .  (2)  .  (3) .  *335-14 .  D  h  .  Prop 

*359-2.       h  :  Infia  ax . «  =  ^  {(gZ) .  X  e  G'H' .  iJ  =  (+« Z)  ^  G'B'} .  D  . 

Dem. 

I- .  *306'54-26  .  *304-49  .  D  I- :  Hp  .  D  .  «  C  1  ->  1  (1) 

I- .  *306-25  .  *304-49  .      DI-:Hp.i2e«.D.  Q'P  =G'H'.'D'RC  G'H'  (2) 

l-.*30611-31.                D\-:Rp.R,S6K.:).R\S  =  S\R  (3) 

h.*306-52.  DI-:Hp.D.s'«g  =  J^'  (4) 

I- .  (1) .  (2)  .  (3) .  (4) .  D  h  .  Prop 


454  QUANTITY  [part  VI 

*359-21.     1- :  Hp  *359-2  .  D .  k  e  FM iuit  sr  subm .  s'/cg  =  R' 
Dem. 

l-.*306-24.DI-:Hp.D.i^'05  =  O'Zr'  (1) 

h.*306-41.D 

I- : .  Hp .  X  6  G'H' .  /i.  1/  6  NC  ind  -  I'O .  .S  =  {+,  (X  X,  l/i/)j  I  C'H' .  D  : 

S"  =  {+,  (X  Xs  fj./v)\  t  C'H' .  D  .  >Sf''+«i  =  {+, (X  X,  ]:^1  /v)}  t  C'H' : 
[Induct]  D:Si'=^{+,(Xx,t^/i,)}tC'H': 

[*m5-51]D:S''  =  (+,X)lC'H'  (2) 

H  .  (2) .  *351-1 .  *359-2  .  D  h  :  Hp .  3  .  /c  e  JW  subm  (3) 

h  .  (1) ,  (3) .  *8.59-2 .  *334-31 .  D  h  .  Prop 

*359-22.     f- :  Infin ax .  «  =  E  {(gX) .  X  e  C'H'  .R  =  {+gX)t  CH,] .  D  . 

«  6  FM  sr  subm .  s'«g  =  if^ 

The  proof  proceeds  as  in  *359'21,  but  in  this  case  there  is  no  origin. 

Every  member  of  k  is  a  connected  point,  i.e.  a  member  of  conx'/c.     This 

results  from  *308'64.     If,  in  *359'21,  we  substitute  H  for  H',  the  proposition 

holds  except  that  k  has  no  origin. 

*359-23.     h  :  Infin  ax  .  «  =  E  {(•gX) .  X  e  C'H  .R  =  (x,X)l  C'H} .  D . 

KeJWapconx 

The  proof  proceeds  as  in  *359'21.  We  have  to  take  H  instead  of  H', 
because  {xsOg)lC'H'  is  not  1  — >  1.  We  do  not  get  KeFMsahm,  because 
not  every  rational  has  a  rational  vth  root. 

*359-24.     h  :  Infin  ax . 

K  =  R  {(aX) . X 6 C'Hg -  t'O, .R  =  (XgX)\:  {CH, - 1'%)\ .  D  . 
K  6  FM  ap  conx 
The  proof  proceeds  as  in  *359'23. 

*359-25.     h  :  Infin  ax  .  «  =  ^  {(.gX) .  (1/1)  H^X .  ii  =  (x,  X)  ^  C'H} .  3  . 

KeFMsT.s'Ks  =  H 
The  proof  proceeds  as  in  *359"21. 

*359-31.     h  :  Infiu ax  .  «:  =  ^  {(g/i,) . yx e C'@'  .R^(+pfi)l  G'&} .  D  . 

v./ 

K  e  FM  sr  init  subm  .  s'k^  =  @' 
Dem. 

t-.*311-74.        Dh:Hp.D./cCl->l  (1) 

f-.*311-27.        D\-:Rp.ReK.D.a'R  =  C'&  .D'RCC'®'  (2) 

l-.*311-43.         Dh:Hp.D.t'0jt(7'@'  =  init'«  (3) 

F.*311-12-121.DI-:Hp.D.«6Abel  (4) 

l-.*311-65.         DI-:Hp.D.s'A:g  =  ^'  (5) 


SECTION  C]  EXISTENCE-THEOREMS   FOR  VECTOR-FAMILIES  455 

f-.(l).(2).(3).(4).(5).     0\-:R^.D.K€FMsrimt.s'Ks  =  &       (6) 
H  .  (6) .  *310-151  .*t51-ll .  D  h  :  Hp  .  D  . «  6  FM snhm  (7) 

f- .  (6) .  (7) .  3  h  .  Prop 

*359-32.     I- :  Infin  ax.K  =  R  {(g^) .  ^  e  C'&  .R  =  (+a^)l  G'@g] .  D  . 

K  e  FM  sr  subm  .  s'«g  =  ©^ 

The  proof  proceeds  as  in  *359-22.  Similarly  the  analogues  of  *359-23-24-25 
can  be  proved  for  real  numbers ;  the  resulting  families,  in  these  cases,  will  be 
submultipliable,  but  it  will  be  necessary  to  omit  1%  from  their  fields. 

*359-4.       h  :  K  6  CI  ex'cr'/3 .  <S'  e  a  sm  /3 .  D  .  /Sff"*  e  CI  ex'cr'a 

Bern. 
l-.*330-l.*7l-252.         Dh:Hp.D.St"«Cl^l  (1) 

I- .  *150-21-211 .  *3301 .  D  h  :  Hp .  i?  e  8f"ic  .  D  .  a'R  =  S"^ .  B'R  C  a'R . 
[*^303]  D.a'i?  =  a.D'i?Ca  (2) 

I- .  (1) .  (2) .  *330-l .  D  t- .  Prop 

*359-401.  I- :  «  6  Abel .  S  e  Cls  ->  1 .  s'a"«  Ca'S.D.  Sf'K  e  Abel 
i)em. 

\-.*72-G01.D\-:.Kp.D:F,Q6K.D.P\S\S  =  P.Q\S\S=Q.  (1) 

[*150-1]  D.(StP)|(-Ste)  =  'S|P|Q|S 

[*330-5]  =S\Q\P\S 

[(1).*150-1]  =(8fQ)\{SfB)    (2) 

h  . (2) . *330o  .  D  I- .  Prop 

*359-41.     h:«6fm'y8.*Sea&m/3.D./S't"«6fm'«     [*359-4-401 .  *330-51] 

*359-411.  \-:KeFM.ae  coux'k  .Sel^l.  s'a"K  =  a'S.D.  S'a  e  conx'S't"* 
Dem. 
h  .  *151-11  .  D  h  :  Hp .  P  = /S;  s'/c .  D  .  iS  e  P  slEof  (s'«) . 

[*151-33]  D  .  "P'S'a  u  Ip'S'a  =  ,Sf"s'«'a  u  iS'^i^'a 

[*3311]  =,Sf"s'a"« 

[*330-13.*160-211]  =a'S'>s'K 

[Hp]  =a'P  (1) 

t- .  *150-16  .  3  f- :  Hp  (1) .  D .  P  =  i'Sf"*  (2) 

l-.(l).(2).*331-l.DI-.Prop 

*359-412.  I- :  «  6  fm  conx'^ .  iSf  e  a  sm  yS .  D  .  Sfx  e  fm  conx'a     [*359-41-411] 


456  QUANTITY  [part  VI 

*359-413.  1- :  «  6  JW  ap .  /S  6 1  ->  1 .  s'a"K  =  a'S.D.  Sf'ie  e  FMap 

Dem. 
l-.*72-601.       DI-:Hp.P,Qe«.D.(fif;P)|(*Sf;Q)  =  /S;(P|Q)  (1) 

t- .  (1) .  *i50-4 .  D  I- :  Hp  (1) .  a !  (s;  P)  I  (/S;  Q)  n  J .  D  .  a  !  P I  Q  n  J . 

[*333101]  D.(P|Q)p„GJ-. 

[*200-21]  D.^;(P|Q)p„GJ-. 

[*150-83]  D.fS-JCPIQMpoGJ       (2) 

f-.(l).(2).       DI-:.Hp.D:Z,  F6St"«.a!X|FnJ.D.(X|7)poGJ"(3) 
l-.*359-4.         DI-:Hp.D.>Sft"«6PJf  (4) 

F  .  (3) .  (4) .  *333-101 .  D  F  .  Prop 

*359-414.  l-iKeFM.Sel^l.  s'a"«  =  a'S.a  =  init'« .  D  .  /Sf'a  =  lait'S  f'lc 
[Proof  as  in  *359-411] 

*359-415.  h  :  «  e  Pilf  subm  .  >Sf  e  1  ->  1 .  a'>Sf  =  s'a"K .  D  .  <Sft"«  e  FM  subm 

Dem. 
f-.*30r21.         DI-:Hp.F6«.veNCind.D.F-'+'i=F-'|F  (1) 

I- .  (1) .  *72-601 .  D  h  :  Hp .  S5  F"  =  (S;  F)" .  D  .  ^Sf?  F'+'i  =  (S^J  F^+^i  (2) 

h  .  (2) .  Induct .   Dh:Hp(l).D.S;F''  =  (S5F)''  (3) 

h.*351-l.  Di-:Hp.i'eNCind-i'0.Z6«.D.(aF).X=F''.Fe«. 

[(3)]  D.(^Y).YeK.8>X  =  (S>Yy    (4) 

I- .  (4) .  *351-1 .  *359-41 .  D  h  .  Prop 

*359'42.     h  :  a  !  fm  conx  ap  subm'/3  .  a  sm  /3 .  D  .  g  !  fm  conx  ap  subm'a 
[*3S9-41-412-413-415] 

*359-43.     hiPei+v'^-'SL-  Pit/ init  sr  subm  r.  ^(s'«g  =  P) 

[*359-42-21-414 .  *274-44 .  *123-18 .  *304-47  .  *273-4] 

*359-44.     l-:Nr'P+l  =  ^.3.a!  FM  init  sr  subm  n  ^  (s'«g  =  P) 
[*359-42-31-414 .  *275-3  .  *310-16  .  *204-47] 


SECTION  D. 

CYCLIC  FAMILIES. 

Summary  of  Section  D. 

The  theory  of  measurement  hitherto  developed  has  been  only  applicable 
to  open  families.  But  in  order  to  be  able  to  deal  with  such  cases  as  the  angles 
at  a  point,  or  the  elliptic  straight  Hue,  we  require  a  theory  of  measurement 
applicable  to  families  which  are  not  open.  This  theory  is  given  briefly  in  the 
present  Section. 

When  a  family  is  not  open,  two  vectors  which  have  one  ratio  will  usually 
also  have  many  others,  i.e.  we  shall  not  have  ^\X^Kf\Y\,K.'^.X=Y, 
where  X,  Y  are  ratios.  Also  a  ratio  confined  to  the  family  will  not  usually 
be  one-one.  Under  these  circumstances,  it  is  necessary,  if  measurement  is  to 
be  possible,  that  there  should  be  some  way  of  distinguishing  one  among  the 
ratios  of  two  vectors  as  their  "  principal "  ratio,  and  of  then  showing  that,  by 
confining  ourselves  to  principal  ratios,  the  requisite  properties  of  ratios  re- 
appear. 

The  case  of  angles  will  serve  to  illustrate  our  procedure.  Considered 
geometrically,  not  kinematically,  a  vector  which  is  a  multiple  of  27r  is  identical 
with  the  null-vector,  and  if  6  is  any  angle,  6  =  2vit  +  6,  where  v  is  any  integer 
positive  or  negative.  We  are  here  considering  an  angle  as  a  vector  whose  field 
is  all  the  rays  in  a  given  plane  through  a  given  point.  Thus  there  will  be  two 
angles  which  are  half  of  the  null-vector,  namely  ir  and  27r,  and  four  angles 
Which  are  a  quarter  of  the  null-vector,  namely  7r/2,  tt,  37r/2  and  27r;  and 
so  on.  The  ratio  of  7r/2  to  ir  is  any  number  of  the  form  {2)1  +  l)/(4j/  +  2) ; 
thus  two  terms  may  have  many  difierent  ratios. 

In  order  to  evade  this  difficulty,  we  first  arrange  angles  in  a  series  ending 
with  27r,  and  having  no  first  term,  but  proceeding  from  smaller  to  greater 
angles.  Then  the  angles  which  have  a  given  ratio  fijv  to  a  given  angle  will 
be  finite  in  number,  and  therefore  one  of  them  will  be  the  smallest.  We  take 
this  as  the  "principal"  angle  having  the  ratio  iijv  to  the  given  angle,  and 
define  "(jj,/v)k"  to  mean  the  relation  between  two  angles  consisting  in  the 
fact  that  the  first  is  the  "principal"  angle  having  the  ratio  (j,/v  to  the  second. 
Then  of  all  the  ratios  between  the  two  angles,  the  ratio  fi/v  may  be  regarded 


458  QUANTITY  [PAET  VI 

as  the  "principal"  ratio.  It  will  be  found  that,  with  suitable  hypotheses, 
(/a/i^),  has  the  properties  required  in  order  to  make  measurement  possible. 

In  order  to  make  the  above  method  feasible,  certain  properties  must  be 
assumed  to  hold  concerning  the  family  k.  (These  properties  are  all  verified 
in  the  cases  that  arise  in  practice.)  We  shall  therefore  only  speak  of  a  family 
as  cyclic  when  it  fulfils  the  following  conditions : 

(1)  It  must  be  connected. 

(2)  It  must  contain  a  non-zero  member  which  is  identical  with  its 
converse.  This  is  the  property  which  makes  the  family  cyclic.  In  the 
case  of  angles,  the  member  in  question  is  tt. 

(3)  It  must  be  such  that  Kg  1  U„  is  transitive.  This  is  the  property 
which  enables  us  to  arrange  the  field  in  a  series.  It  will  be  observed  that 
U^  cannot  be  transitive,  since,  if  K^  is  the  member  which  is  its  own  converse, 
we  have 

(/  \s'a"K)  U,  K, .  K,  U,  (I  [  s'a^K), 

but  we  do  not  have  (/  [^  s'Q"k)  U^  {I  f  s'(I"k),  because  U^  is  contained  in 
diversity  (by  *336'6).  It  is,  however,  possible  that  U^  should  be  transitive 
so  long  as  we  do  not  start  from  /  f  s'Q"/c,  and  this  we  assume  as  part  of  the 
definition  of  cyclic  families. 

(4)  In  order  to  avoid  trivial  exceptions,  we  assume  that  k  does  not  have 
only  two  members,  since  otherwise  it  might  consist  only  of/  [a'd'^/c  and  K^. 

We  are  thus  led  to  the  following  definition  : 
FM eycl  =  (FM conx  - 2) n  ^ {/cg ^  fT, e trans  :  (gjf ) .KeKs.K  =  K}     Df. 
We  prove  that  there  is  only  one  such  relation  as  K,  and  therefore  put 

K,  =  (iK){K6Ks.K  =  K)    Df. 
Also  for  the  sake  of  brevity  we  put 

I^  =  I\-s'a"K  Df. 

We  then  prove  that  k  is  a  family  having  connexity,  and  satisfying  the 
condition 

D"K  =  a"/e, 

i.e.  having  the  domain  of  a  member  always  identical  with  the  common 
converse  domain.     Thus  by  *334'21,  /Cj  =  «  u  Cnv"«;. 

In  a  cyclic  family,  k  u  Cnv"«  consists  of  two  mutually  exclusive  parts, 
namely  vg  and  Kic\"k^.  (In  the  case  of  angles,  Kk\R  would  be  tt  +  R. 
Thus  Kg  would  be  the  angles  from  0  (exclusive)  to  tt  (inclusive),  and  Kg  |  "Kg 
would  be  the  angles  from  tt  (exclusive)  to  27r  (inclusive).)  Also  Kic  \  "Kg 
consists  of  the  converses  of  k  —  i'K^. 

We  take  up  next  (*371)  the  question  of  arranging  k  u  Cnv"K  in  a  series. 
For  this  purpose,  in  order  to  avoid  circularity,  we  have  to  erect  a  barrier  at 
some  point ;  we  choose  I^  as  this  point.     By  the  definition  of  cyclic  families. 


SECTION  D]  CYCLIC  FAMILIES  459 

/cg1  CT,  is  transitive;  hence,  since  the  family  has  connexity,  P^t/eg  is  serial. 

This  relation  therefore  s^anges  all  the  members  of  «g  in  a  series,  beginning 

with  K^  and   proceeding  towards  /„.     In   order  to   extend    our   series   to 

Kk I  "k^,  we  only  have  to  make  K^  j R  precede  K^\8  ii  R  precedes  8,  where 

R  and  S  are  members  of  Kg.     That  is,  we  arrange  K^  \  "/eg  in  the  order 

^k\'U^I,kq.     This  gives  a  series  which  begins 

with   I^   and   proceeds   towards   K^  without 

reaching   it.     Thus   taking   the   sum   of  the 

above  two  series  (in  the' sense  of  *160),  we 

get  a  series  whose  field  is  «  u  Cnv"/i:,  which 

begins  with  /«,  travels  through  K,,  \  'Vg  to  K^, 

and  on  through  Kg  towards  /,,  without  quite 

reaching  I^  again.     This  relation  we  call  W^; 

the  definition  is 

F,  =  ^,|;Cr,^Kg4L?7.pKg      Df. 

Taking  an  arbitrary  origin,  a  vector  may  be  indicated  by  the  point  to  which 
it  carries  the  origin.  Thus  in  the  figure,  J^  is  at  the  origin,  K^  is  opposite 
the  origin  ;  the  upper  semi-circle,  including  both  ends,  is  k  ;  not  including 
the  right-hand  end,  it  is  k^;  the  lower  semi-circle,  including  both  ends,  is 
Cnv"*;  including  Ki^  but  not  /„,  it  is  Cnv"Kg;  including  /«  but  not  K^, 
it  is  K^\"kq.  Then  W^  starts  from  I^,  and  proceeds  through  the  lower 
semi-circle  first,  and  afterwards  through  the  upper  semi-circle,  stopping  just 
short  of  7k- 

If  K  is  cyclic,  W^  is  a  series.  Under  most  circumstances,  if  Rex,  we 
shall  have 

PW.Q.O.(P\R)W.{Q\R). 
The  investigation  of  the  various  cases  in  which  this  holds  occupies  a  large 
part  of  *371. 

In  the  remainder  of  this  Section,  our  work  becomes  more  full  of  ordinary 
arithmetic  than  it  has  been  hitherto.  We  shall  therefore,  where  cardinals 
are  concerned,  abandon  the  explicit  notatipn  we  have  hitherto  employed,  and 
substitute  the  ordinary  notation.  Thus  we  shall  write  fi+v  in  place  of  fi  +„  v, 
and  ij,v  in  place  of  fi  x^ v.  We  shall,  however,  retain  fi—gV  for  subtraction, 
in  order  to  avoid  confusion  with  the  sign  of  negation  of  a  class. 

We  proceed  next  (*372)  to  consider  what  is  in  effect  the  class  of  vectors 
not  greater  than  the  vth  part  of  a  complete  revolution  {e.g:  in  the  case  of 
angles,  not  greater  than  27r/v).  We  define  this  by  means  of  the  relation  W^. 
It  will  be  seen  from  the  figure  that  if  iJ  is  a  non-zero  vector,  we  shall  have 
iJo'+i  WkR",  unless  R"  belongs  to  the  lower  semi-circle  and  R'^^  to  the  upper, 
in  which  case  R"  W^R'^'^^-  The  first  time  this  happens  is  the  first  time  that 
R'^^  becomes  greater  than  one  complete  revolution.  Hence  if,  for  every 
number  o"  less  than  i^  and  not  zero,  R'^^  W^R',  it  follows  that  R"  is  not  greater 


460  QUANTITY  [part  VI 

than  one  complete  revolution,  and  therefore  R  is  not  greater  than  the  uth 
part  of  a  complete  revolution.  The  class  of  such  relations  we  call  v^ ;  thus 
we  put 

v.  =  {ku  Cnv"«)  n^(o-<i-.o-  +  O.D,.  iJ'+i  W^R')     Df. 

The  main  propositions  to  be  proved  in  this  subject  are 

Pev..PW,Q.:>.P'W.Q' 

and  (what  is  an  immediate  consequence)  . 

P,Qev..:>:P'=Q-'.  =  .P  =  Q. 

This  latter  proposition  is  the  foundation  of  the  theory  of  principal  ratios. 

Another  important  property  of  v^  is 

so  that  z/<  is  an  upper  section  of  W^. 

We  proceed  next  (*373)  to  consider  submultiples  of  identity,  i.e.  vectors 
R  such  that  R''  =  Ig,  where  v  is  a  cardinal.  We  assume  here,  and  almost 
always  henceforth,  that  «  is  a  submultipliable  family.  ,We  first  consider 
vectors  which  can  be  reached  from  /^  by  successive  bisections.  We  know 
that  K^^l^;  if  R^  =  K^,  then  R^K^,  because  K^^^K^.  Hence  by  con- 
tinuing the  same  process  we  arrive  at  the  existence  of  a  vector  Q  such  that 

Q^''  =  /,:/3<2-.p=t=0.Dp.Q''=t=/,. 
Hence  we  easily  arrive  at  the  result  that,  if  v  is  any  inductive  cardinal, 
there  is  a  non-zero  vector  whose  vth  power  is  /,.  (This  does  not  follow 
from  KeFMsnhm  alone,  because  /»"=/,,  so  that  from  the  definition  of 
.Fif  subm  we  cannot  know  that  there  is  any  vector  except  /,  whose  vth  power 
is  lie.)  Thence  we  prove  that  there  are  non-zero  vectors  whose  vth  power  is 
Ik,  and  which  are  such  that  no  earlier  power  is  I^,  i.e.  we  prove 

(gii) :  i?  6 «g .  i?"  = /« :  o- <  1/ .  (7  4=  0 .  D, .  J?-' =)= /,. 

The  class  of  such  vectors  we  call  {I,,,  v).  If  R  is  such  a  vector,  the  number 
of  different  vectors  which  are  powers  of  R  is  v.  Hence  the  powers  of  R  have 
a  maximum  in  the  order  Wk  ',  since  W^  proceeds  from  greater  to  smaller 
vectors,  this  will  be  the  smallest  vector,  other  than  /„,  which  is  a  power  oi  R. 
Concerning  this  vector,  we  show  that  it  is  a  member  of  i',,  i.e.  it  is  such  that, 
if  o-  <  1/ .  0-4=  0,  R"^^  Wi^R".  Finally  we  prove  that  there  is  only  one  member 
of  Vk  whose  vth  power  is  /,.  This  will  be  what  we  may  call  the  "  principal " 
j/th  submultiple  of  /,< ;  in  the  case  of  angles,  it  will  be  the  angle  27r/i'.  It 
will  be  observed  that  27r/i/i'  always  has  identity  for  its  vth  power,  and  has  no 
lower  power  equal  to  identity  if  /x  is  prime  to  v.  Thus  the  uniqueness  of  the 
"  principal "  vth  submultiple  depends  upon  the  fact  that  it  is  a  member  of  i/, , 
so  that,  by  what  has  been  proved  in  the  previous  number,  no  other  member 
of  z/j  has  the  same  vth  power. 


SECTION  d]  cyclic  FAMILIES  461 

We  next,  in  a  short  number  (*374),  extend  the  last  of  the  above  results 
to  any  vector,  proving  that,  if  R  is  any  member  of  « w  Cnv"«r,  there  is  a 
unique  member  of  v^  whose  vth  power  is  B.  We  may  call  this  the  "principal" 
j/th  submultiple  of  R.  We  prove  also  in  this  number  that,  if  S  is  the  principal 
vth  submultiple  of /»,  v^  consists  of  all  vectors  not  earlier  than  S  in  the  order 
Wk,  i.e.  of  all  vectors  not  greater  than  S. 

Finally  (*375)  we  define  "  principal  ratios  "  and  show  that  they  are  one- 
one  and  mutually  exclusive.  We  denote  the  ''  principal  ratio  "  corresponding 
to  fi/v  by  "{iilv\."  This  is  defined  as  the  relation  holding  between  R  and  8 
when  the  principal  /ith  submultiple  of  R  is  identical  with  the  principal  vth 
submultiple  of  S;  that  is,  we  put 

{,ilv\  =  RS{(^T).Te^L.r^v,.R  =  T'^.S=T'}     Df. 

It  is  obviou>s  that  (fi/v%  G  (fi/v)  ^  «. ;  and  there  is  no  difficulty  in  showing 
that  principal  ratios  are  one-one  and  mutually  exclusive. 

We  have  not  thought  it  necessary  to  carry  the  development  of  this  subject 
any  farther,  since,  from  this  point  onwards,  everything  proceeds  as  in  the  case 
of  open  families.  We  have  given  proofs  rather  shortly  in  this  Section, 
particularly  in  the  case  of  purely  arithmetical  lemmas,  of  which  the  proofs 
are  perfectly  straightforward,  but  tedious  if  written  out  at  length. 


*370.     ELEMENTARY  PROPERTIES  OP  CYCLIC  FAMILIES. 

Summary  of  *370. 

In  this  number,  after  the  definition  of  cyclic  families  already  cited,  we 
proceed  first  to  prove  that  only  one  non-zero  vector  is  equal  to  its  converse 
(*370'23).  This  one  we  define  as  K^.  Next  we  prove  that,  if  i2  is  a  non- 
zero vector  other  than  K^,  R\Kk  is  the  converse  of  a  non-zero  vector,  and 

R\Kx  is  a  non-zero  vector  (*3'70'31"311),  whence  it  follows  that 

'D'R  =  a'R  =  s'a"K    (*370-32), 

whence  further  we  obtain 

D"«  =  a"«; .  K  e  FMcomi&x     (*370-33). 

Hence  further,  since  hy  definition  /eg  1  f/^  is  transitive,  it  follows  that  Kg  1  U^ 
is  a  series  (*370"37).  The  remaining  propositions  (*370'4 — •44)  are  concerned 
with  the  relations  of  the  two  semi-circles  «g  and  K^  \  "«g  (cf.  figure,  p.  459). 

We  have 

Gnv"K  =  K^\"K  (*370-4), 

K  n  Cnv"/c  =  i'/,  u  I'K,  (*370-42), 

K^  I  "«g  =  Cnv"/e  -  I'K^     (*370-43), 

and  ic-^rxK^\  "Kg  =  A  (*370-44). 


*370-01.     .fWcycl  = 

(^i/conx-2)n^{«:g1f/'«6trans:(aZ).ifeKg  .K  =  K]     Df 

*37002.     K,  =  {iK){KeK^.K  =  K)    Df 

*37003.     /,  =  Jrs'a"K  Df 

*3701.       h  : .  K  e  FM  cycl .  =  : 

KeFM  conx  -  2  .  Kg  1  fT,  e  trans  :  (^Z) .  KeK^.K  =  K     [(*370-01)] 

*37011.     h  :  K  6  FM  conx .  D  .  Kg  1  P.  G  /    [*336-6  .  (*336-011)] 

*37012.     I- :  KeZM  conx  .  k^  1  Z7,,  etrans .  R,SeK^ .  RU^S .  SU^T .  D.R=\=T 
[*370-ll] 

*37013.     V:KeFM.KeK.K  =  K.D.K^  =  I^     [*330-31] 


SECTION  D]  elementary   PROPERTIES  OF  CYCLIC  FAMILIES  463 

*370-2.       \-:.KeFMconx.Ks'\  U^etr&nB.K 6Kq.  K=K .0  : 

*       Reicg.n\Keic.D.RU,{R\K).{R\K)U^B 
Bern. 

I-.*37013.         Oh:B.^.-D.R\K'  =  R  (1) 

I- .  *336-41 .  (1) .  D  1- :  Hp .  D  .  E  [T,  (i?  I Z) .  (E I  Z)  IT'.E  :  D  h .  Prop 

*370-21.     l-:Hp*370-2.i2  6/«;g.jB|^6K.D.i?|ir  =  7, 

Bern. 
h  .  *37012  .  Transp  .  D  1- :  Hp .  iJfZ,  (ii  |  Z) .  (i?  |  ^)  CT.i? .  D  .  i?  |Z ~  e «g  (1) 
h  .  (1) .  *370-2  .  D  h  .  Prop 

*370-22.     l-:Hp*370-2.E6A;9-i'^.D.i?|ir~e« 
Bern. 

h  .  *370-21 .  *330-32-5  .  D  h  :  Hp  *370-21  .':>.R  =  K  (1) 

F  .  (1)  .  Transp .  D  h  .  Prop 

*370-23.     V  :  Hp*370-2  .i?6«;g.  i2  =  E.  3  .5  =  ^ 

Bern. 

i-.*331-33.  DI-:Hp.D.i?|Ze«uCnv"K  (1) 

h  .  *330-5-52  .  *34-2  .  D  h  :  Hp .  D  .  jB  |  ^=  Cnv'(i?  |  K)  (2) 

l-.(l).(2).  DV:Hp.D.R\KeK. 

[*370-22.Transp]  D.R  =  K:D\-.  Prop 

*37024.     hzKeFMcycl.D.ElK,  [*370-l-23.(*370-02)] 

*370-25.     \-:.KeFMcycl.D:ReKs.R  =  R.  =  .R=K^  [*370-24 . (*370-02)] 

*37026.     h-.KeFM  cycl  .D  .K.e  Kg.  K,  =  K,.  K,^^  7.  [*370-24-2513] 

*370-3.       h-./ceFM  cycl .  RU^K^  .D.R  =  L 

Bern. 

b  .*S36-4>1  .D\-  i.B.p  .D  :  Re  K  :('3^S)  .8  e  Kg.  R  =  K^\8  (1) 

I- .  (1) .  *370-21-24  .  D  h  .  Prop 

*370-31.     \-:KeFMcycl.ReKs-i'K^.'2.R\K^6  Cnv"«:g 

[*331-33 .  *370-22] 
*370-311.  H  :  Hp *370S1 .  D  . E  j i<r« e «g 
Bern. 

\- . *370-31 .  D  h  :  Hp  .  D  .  ^4Ee«g . 

[*330-5.*370-26]  O  .  ^  |  Z.  e  «g  :  D  h  .  Prop 


464  QUANTITY  [part  VI 

*370-32.     \- :  K  6  FMcycl .  Re  K  .D  .D'R  =  a'R  =  s'a^K 
Dem. 

V .  *50-5-52 .  3  h .  D'/^  =  d'l^  =  s'Q'V  (1) 

I- .  *370-26  .  *:330-52  .  D  f- :  Hp .  D  .  D'^«  =  d'K,  =  s'a"*  (2) 

V  . *370-31 . *330o2  .  D  h  :  Hp . iJ e «g - i'K^ .  D  . D'(i? j ^,)  =  s'a"«  . 
[*330-52.*34-36]  D .  D'J?  =  s'a"«  (3) 

I- .  (1) .  (2) .  (3) .  D  h  .  Prop 

*370-33.     h  :  K  e i^if  cycl .  D .  D"«  =  Q"*  .ksFM connex 
[*370-32 .  *334-42] 

*370-34.     h  :  «  e  iWcycl .  D  .  Jf^  e  connex     [*370-33  .  *336-62  .  (*336-011)] 

*370-35.     h  :  Hp *370-31 .  D .  ^, UJi  .'^{RJJ^ K^) 

[*370-3  .  Transp  .  *370-34] 
*370-36.     V-.Ks  FM  cycl .  D .  Kg  ^  /7^  e  connex  .  (7'«g  '\U^  =  k 

Dem. 
l-.*336-41.         DI-:Hp.D.C"K3lf/^C«r  (1) 

h.*370-34.         DI-:.Hp.i2,/SeKa.ii4='Sf.D: 

i?(«g1f7,)S.V.;S(«g1Z7.)i?      (2) 

f-.*336-41.         DI-:Hp.iJe«;g.,Sf  =  /,.D.E(/i;g1C7,),Sf  (3) 

l-.*336-41.         DI-:Hp.S6A;9.ii;  =  /«.D.S'(«g1fr,)i2  (4) 

h  .  (2) .  (3) .  (4) .  D  H  : .  Hp .  E,  »S  e  K .  R  4=  <S .  D  : 

iJ(«g1i7,)>S.V.S(«g1i7,)iJ      (6) 

I- .  (1)  .  (5) .  D  I- .  Prop 

*370-37.     h  :  K  6  J^if  cycl .  D  .  «9  1  f/,  e  Ser  [*37011-l-36] 

*370-38.     h:«;6JWcycl.ii,/Se«.D.^|/S  =  5|^     [*330-561 .  *370-32] 
*370-4.       V-.KeFM  cycl .  D  .  Cnv  "«  =  iT,  |  "« 

h  .  *370-31 .  *330-5  .  D  h  :  Hp .  D .  ^,  |  "(xg  -  I'K,)  C  Cnv"«  (1) 

I- .  (1) .  *370-26  .        D  h  :  Hp .  D  .  ^.  I  "«  C  Cnv"«  (2) 

h  .  *370-311-26  .        Dh:Hp.ii6/c.D.^|^«6/<;. 
[*370-26]  D.(a5f).-S'eK.^  =  >Sliir,. 

[*330-5.*37-6]  :i.ReK^\"K  (3) 

I- .  (2) .  (3) .  D  1- .  Prop 

*370-41.     V:.KeFMcyA.R,SeK.-^:{K,\R)V,{K,\S).  =  .RU,S 
Dem. 
V  .  *336-54 .  *370-33  .  D 
|-:.Hp.D:(^.|ii)F,(Z.|S).  =  .(ar).Te«9.if,|ii  =  r|irjS. 

[*330o.*370-26]  =  .  (gT)  .TeK„.R=T\S. 

[*336-41]  =.Et/',5(:.Dh.Prop 


SECTION  D]         elementary   PROPERTIES   OF   CYCLIC   FAMILIES  465 

*370-42.     h-.KeFMcycl.D.Kn  Cn\"  ic  =  I'L  "  (-'K^ 
Dem.  .      ^ 

1- .  *370-22  .  D  I- :  Hp  .  ^  6  «:g  -  I'K, .  D  .  E  |  ^  ~  e  «  . 
[*.370-311.Transp]  D .  E  ~  e  /eg  -  I'K^  (1) 

l-.(l).  DI-:.Hp.D:E,Ee«:.D.-Bei'/.ui'-ff.  (2) 

l-.(2).*370-26.DI-.Prop 

*370-43.     hzKeFM cycl .  D  .  ^.  |  "k^  =  Ca v"a: - I'K,     [*370-4] 
*370-44.     h-.KeFMcycl.D.Ksr^K^l  "kq  =  A  [*370-42-43] 


E.  &  w.  III.  30 


*371.     THE  SEEIES  OF  VECTORS. 

Summary  of  *371. 

In  this  number,  we  begin  by  defining  the  relation  W^,  which  takes  the 
place,  for  cyclic  families,  of  the  relation  F,  defined  in  *336.  The  definition 
is 

*371-01.     W^  =  K,\'U,Iks^  U.Iks     Df 

Then  if  k  is  a  cyclic  family,  W.  is  a  series  (*37l"12),  and  its  field  is  «  u  Cnv"/c 
(*37l"14),  which  =  «.  since  k  has  connexity.  It  will  be  observed  that  F,  is 
not  a  series  if  «  is  a  cyclic  family ;  we  have  e.g.  I^V^Kg .  K.V.I. .  The  above 
relation  W.  is  constructed  so  as  to  make  a  barrier  at  I.,  thereby  preventing 
the  relation  W.  from  being  cyclic. 

If  P,  Q  are  both  members  of  /eg  or  both  members  of  K.  \  "«g, 
PW.Q.  =  .{'^T).TeKs.P  =  Q\T    (*371-15-151). 
Most  of  the  properties  of  W.  depend  upon  the  fact  that  «g  "j  U.  is  transitive, 
in  virtue  of  the  definition  of  cyclic  families.     If  k  is  any  connected  family,  we 
have 

«g1  C7,etrans.=  :P,Q,Q|i2,P|e|i26/<:g.i?6«.Dp,Q,B.P|Qe«g  (*37l-2). 
This  proposition  is  required  for  most  of  the  subsequent  proofs  in  this  number. 
It  leads  at  once  to 

*371-21.     f-:«6Pilfcycl.P,Q,Q|P,P|Q|Ee«g.Pe«:.D.P|g6K9 

Most  of  the  propositions  of  this  number  are  concerned  with  the  circum- 
stances under  which  we  can  infer  (P |  R)W.  (Q | R)  from  PW.Q.     We  have 

*371'31.     1- :.  «  6  PM  cycl  .i26«;g:Pe«g.v.P|i2~6«g:D: 

PW.q.:^.{P\R)W.{Q\R) 
Another  useful  proposition  is 

*371-27.     V  z.KeFMayd  .P.Qe/cg.'^: PW.Q  .  =  .  QW.P 


*37r01.     W.  =  K.\''U.tKs^U.tKs    Df 

*3711.       h  ::.  KeFMcycl .  0  ::  PW.Q .  =  :.P,QeK.\  "k^  : 

{•^R,^.R,8eKs.RU.S.P  =  K.\R.Q  =  K.\S'.yi: 
P,QeKs.PU.Q:v:P€K.\"Ks.Q6Ks 
[*202-55  .  *370-34  .  (*37l-01)] 


SECTION  D]  the  series  OF  VECTORS  467 

*37111.     \-:KeFM.K€ic.-:i.(K\)[Kel-H 
Dem.  ^ 

I- .  *330-31  .Dh:Hp.i2,Se-«:.^|iJ  =  Z|/Sf.D.JS  =  S:Dh.  Prop 
*37112.     f-i/eeiWcycl.D.F^eSer     [*3r0-37-44  .*371-11  .*204-21-5] 
*371-13.     t- :  /.  6  Jf'ilf  cycl .  D  .  F,  =  F.  t  (Cnv"«  -  I'K,)  ^  U,  ^k^  [*370-41-43] 
*37114.     V-.kbFM cycl .  D  .  C F«  =  «  u  Cnv"«:  =  k^^K^\  "wg 
Dem. 
V  .  *202-55  .  *370-34 .  *1 60-14 .  D  f- :  Hp .  D  .  C"  TT,  =  ^,  |  "k^  yj  «a 
[*370-43]  =  K  u  Cnv"* :  D  I- .  Prop 

*37115.     h  :.  K e  J?'ilf  cycl .  P,  Q e  Kg  .  D  :  PTf,^ .  =  .  (aT) .  Te  «g  .  P  =  Q  |  T 
[*370-44 .  *336-41 .  (*371-01)] 

*37ri51.  h  :.  « 6 FM cycl .P,QeK.\  "wg  .  D  :  PW^Q .  =  .  (^T).TeKg.P=Q\T 

Dem. 
h  .  *370-44 .  *336-41 .  D  I- :.  Hp .  D  : 

PW,Q.  =  .{-^R,S,T).R,S,TeKs.R  =  S\T.P  =  K,\R.Q  =  K,\S. 
[*370-26]  =  .  (gT) .  Te  «g  .  P  =  Q  |  T :.  D  h  .  Prop 

*371152.  h  :  «  6  l-Jlf  cycl .  P  6  if,  I  "«g  .  Q  6  «g .  D .  P  r«Q    [*37 1  -1] 

*37ri6.     l-:K6J'ilfcycl.P6«g.PTr.Q.3.Qe«g  [*370-44.*37ll] 

*371161.  1- :  /tePilf  cycl ,  QeiT,  |  "«g.PTf.Q  .  D  .Pe^.]  "«g 
[*370-44.*3711] 

*37117.     I- :  « 6 Pil/ cycl .  Q,  y 6 «g .  D  .  (Q I T)  W.Q .(Q\T)  WJ! 
[*37115152] 

*37118.     h  :  «  e  Pilf  cycl .  D  .  WJK,  =  Z,  |  "«g .  W.'K,  =  «g  -  t'Z. 
[*37115-152 .  *370-311-22] 

*37119.     h  :. «  6 Pilf  cycl .  P  +  /« .  D  :  PPT^Z, .  =  .  KJ17J' 
[*371-18.*370-43] 

*371'2.       I- ::  «  e Pilf  conx .  D  :.  Kg  ^  i7«  e  trans .  =  : 

P,Q,Qii?,P|Q|i2e«g.i?6K.Dp,c,ie.P|Q6Kg 

i)em. 
I-  .*336-41 .       D  I- :. Hp .  D  :  ^(Kgl  Cr,)S. S(«g1  U,)R.~. 

(^P,Q).P,Q,S,TeKs.Re>c.T  =  P\S.8=Q\R    (1) 
I- .  (1) .  *13-21 .  D  h  ::  Hp .  D  :.  Kg1  C7«  etrans .  =  : 

P,Q,Q|i«,P|Q|^eKg.i26K.Dp.Q,je.(P|Q|ii)f7'.iJ     (2) 
f-.*330-31-5.D 
h:.lip.P,Q,Re>c.M6>cs.P\Q\R  =  M\R.:i.P\Q  =  M  (3) 

h  .  (3) .  *336-41  .Dh:.Ep.P,Q,R,P\Q\ReK.D: 

(P\Q\R)U,R,  =  .P\QeKs     (4) 

l-,(2).(4).DI-.Prop 

30—2 


468  QUANTITY  [PABT  VI 

*371-21.     [■■.KeFMcyc\.P,Q,Q\R,P\Q\R6Ks.ReK.D.P\QeKs 
[*37l-2 .  *370-l] 

*371-22.     h:KeFMcyc[.P,R,P\ReKs.PW.Q.0.Q\R6Ks 
Dem. 

h  .  *371-15-16  .  D  h  :  Hp .  D .  (gT) .  Q,  Te /cg  .  P  =  Q  |  T  (1) 

l-.(l).  0\-:Rp.D.('^T).Q,R,T,Q\T,Q\T\R6Ks. 

[*37r21]  D.QIfie/fgOI-.Prop 

*371-23.     \-:k€FM  cycl .  TW.S .  D  .  TW,  (S  \  T) 
Bern. 

h  .*330-31.*370-38.D  h  :  Hp .  D .  2'=,Sf|(^|  2')  (1) 

h  .  (1) .  *37ri5-16 .    ■^V:R^.T,S\TeK^.:i.TW,{S\T)  (2) 

h .  *371-15-16  .  DhiHp.Te/tg.D.^ITe/tg  (3) 

|-.(2).(3).  DhiHp.re/.g.D.rif.C^ir)  (4) 

h.*37l-152.  Dh:Hp.r~6/«;g.S|T6«g.D.rTr,(,S|r)  (5) 

l-.*37l-151-161.       Dh:Hp.S~6/cg.D.T~e«g./Sj2'e«g  (6) 

l-.(5).(6).  DI-:Hp.<S~e«9.D.rF«(,S|7')  (7) 

l-.(l).*37l-151.      D(-:Hp.2',,S|r~6K9.5f6«g.D.rr,(iS|r)  (8) 

h.(5).(8).  Dh:Hp.y~e«g./SeA:g.D.rTr«(S|y)  (9) 

h  .  (4) . (7) . (9) .  D  h  .  Prop 

*371-24.     V:KeFMcyd.P,R,P\Reic^.PW,Q.-^.{P\R)W,{Q\R) 
Dem. 

h  .  *371-15-16  .  D  I- :  Hp .  D .  (aT)  .P,Q,R,P\R,T  eK^.P=Q\T . 
[*37l-21.*330-5]  D .  (gT)  .P\R,Q\R,TeK^.P\R  =  Q\R\T . 

[*371-15]  D.(P|i?)F,(Q|E):DI-.Prop 

*371-241.  l-:«6Pilfcycl.P,ii6«g.P|iJ~e«g.PF,Q.D.(P|iS:)F,(Q|JB) 
i)em. 

h  .  *371-152  .  D  h  :  Hp .  Q I P  e  «g .  D  .  (P I  i?)  F.  (Q 1 E)  (1) 

h  .  *37115  .  D 

l-:Hp.Q|P~e«g.D.(ar).r€«g.P|P,QlP~6/«:g.P|P  =  Q|P|r. 
[*37ri51]  D.(P|P)F,(Q|P)  (2) 

I- .  (1) .  (2) .  D  h  .  Prop 

*371-25.     h  :  « 6 Pif  cycl  .P,Reic^ . PF,Q .  D . (P | P) F. (Q | P) 
[*37l-24-241] 


sECTibN  d]  the  series  of  vectors  469 

*371-251.  h  :  «  6  FMcyoX  .R,R\QeK^..PW,Q.-^  .{R\P)W,(R\Q) 
Dem.  • 

f- .  *37l-25  .  Transp .  *371-12  .  D 

h  :  /c  e  J'jl/  cycl .  P,  iJ  6  «g  .  ( Q I  i?)  F«  (P I  jR) .  D  .  Q  W,P  ( 1 ) 

,     .  .R\q,R\P   ^.    p 

*371-26.     h  i.KeFMcyd  '.P,QeK^.v  .P,Q'^eic^'.:i: 

PW.Q.=  .{K,\P)W.{K,\Q) 
Dem. 

l-.*37l-25.*370-26.    D  h  :  Hp.Pe^g.PPT^Q.  D  .(^,|P)Tf,(^,|  Q)        (1) 

h  .  *37l-251 .  *370-26  .  D  I- :  Hp .  Q  e  «g  .  (iT,  |  P)  PT,  (Z^.  |  Q) .  D  .  PTT.Q        (2) 

l-.(l).(2).  Df-:.Hp.P,Q6«9.D:PF.Q.  =  .(Z»|P)Tr,(Z.|(3)  (3) 

l--(3)'^^^^^.*37l-14.D 

h:.Hp.P,Q~e«3.D:PTf,Q.  =  .(Z,|P)Tr,(Z,|Q)  (4) 

h  .  (3) .  (4) .  3  h  .  Prop 

*371-27.     I- :.  KeFMcyd  .P,QeK^.:i:  PW,Q .  =  .  QWJP 
Dem. 

I- .  *371-15  .  D  I- :.  Hp .  D  :  PWM  ■  =  ■  (a^)  .  Te /cg .  P=  Q  |  T . 

[*37o-33]  =.(ar).ye«g.Q=Piy. 

[*37l-15119.*370-43]  s  .  QTT^P  :.  D  h  .  Prop 

*37r3.       \-:K6FMcyc\.ReK^.P\R'^eKg.PW^Q.0.(P\R)WAQ\R) 
Dem. 

I- .  *371-27  .  D  f- :  Hp .  D  .  QW^P . 

[*371-251]  D.(R\Q)W,(R\P). 

[*37r27]  D.{P\R)W,  (Q  \R)  :  D  h  .  Prop 

*371-31.     h  :.  «  €  FM  cyc\  .i2e«g:i'e«g.v.P|E~e«g:D: 

P  F«Q .  D  .  (P I  i?)  F«  (Q I R)    [*371-25-3] 


*372.     INTEGRAL  SECTIONS  OF  THE  SERIES  OF  VECTORS. 

Sicmmary  of  *372. 

The  subject  of  this  number  is  that  section  of  TF»  which  consists  of 
vectors  not  greater  than  the  rth  part  of  the  whole  circumference  of  the 
cycle.  This  is  defined  by  means  of  W^,  as  consisting  of  those  vectors  which 
(taking  W^  as  "  greater  than  ")  are  such  that  R''+^  is  greater  than  R'  so  long 
as  a  <.v.  It  will  be  seen  that  so  long  as  iJ"  and  all  earlier  powers  of  R 
do  not  exceed  /,,  R  satisfies  this  condition;  but  if  R" eKK\"K^,  while 
ii°^'  6  Kg,  we  shall  have  R''WkR'''^\  Thus  our  definition  selects  those  vectors 
which,  starting  from  any  origin,  do  not,  by  v  repetitions,  take  us  farther  than 
once  round  the  cycle.     The  definition  is 

*372-01.     K^  =  («  w  Cnv"«:)  r.  ^  (o-  <  7/ .  o-  +  0 .  D, .  E'+i  W^R")    Df 

We  then  have  l»  =  «uCnv"K  (*37211),2«=«:g(*372-13), /*<!'. D.v^C/t,, 
i.e.  Vg  diminishes  as  v  increases  (*372  15) ;  i/  >  1 .  D  .  i/^  C  Kg  (*372"16). 

An  alternative  formula  for  Vk,  sometimes  more  convenient  than  the  one 
given  in  the  definition,  is  (assuming  v  >  1) 

i/«  =  «:gnP(Ai<i'./t=|=0.P''+'6«g.D^.P''6«;g)     (*372-17); 

i.e.  so  long  as  /jl<.v,  either  P**  comes  in  the  upper  semi-circle,  or  P''+i  comes 
in  the  lower  semi-circle ;  that  is  to  say,  the  step  from  P"  to  P''^^  does  not 
cross  /».  For  an  even  number  (not  zero),  this  leads  to  a  simpler  formula, 
namely 

(2j»)«  =  «g  rx  P  (/i  <  i; .  /t  =)=  0 .  D^ .  P"  e  Kg)     (*372-18). 

We  have  next  a  set  of  propositions  leading  up  to 

*37227.     I- :.  KePJf  cycl .  j;  eNCind-  I'O .  Pe  j;« .  PW^Q .  D  : 

/t<i'./*=|=O.D.P''Tf,Q^ 
whence,  since  W^  is  a  series,  we  obtain 

*372-28.     h  : .  K  e  FM  cycl .  i/  e  NO  ind  -  t'O .  P,  Q  e  i;« .  D  :  P"  =  Q- .  =  .  P  =  Q 

It  is  largely  owing  to  this  proposition  that  v^  is  important.  In  virtue 
of  this  proposition,  there  is  in  v«  at  most  one  vector  which  is  the  vth  sub- 
multiple  of  a  given  vector.     We  shall  show  later  that,  if  « is  a  submultipliable 


SECTION  D]         integral   SECTIONS   OF   THE   SERIES   OF   VECTORS  471 

cyclic  family,  there  is  at  least  one  such  vector ;  hence  there  is  a  unique  vector 
in  v«  which  is  the  i/th  »ibmultiple  of  a  given  vector.  This  does  not  hold  in 
general  for  larger  classes  than  v^. 

A  specially  useful  case  of  the  above  proposition  is  obtained  by  putting 
v  =  2,  which  gives,  in  virtue  of  *372-13, 
*372-29.     I- : .  /c  6  iW  cycl .  P,  Q  e  Kg .  D  :  P"  =  Qi" .  =  .  P  =  Q 

The  remaining  propositions  of  this  number  are  concerned  in  proving  that 
Vk  is  an  upper  section  of  Wk,  i.e. 

*372-33.     h  :  AC  6  Pif  cycl .  i;  6  NO  ind  .  D  .  W^"v^  C  v. 


*37201.     i;«  =  («uCnv"«)nE(<7<i/.«r  +  0.D,.-B''+'Tr«i?'')     Df 

*3721.       \-:.Rev^.  =  :ReKyj Cnv"* : o- <  v .  o-  +  0  .  D„ .  R'+^W^R' 
[(*872-01)] 

*37211.     h.l.  =  /euCnv"«     [*3721 .  *ll7-53] 

*37212.     h  :  K  e  PJlf  cycl .  iJ  6  /f  I  "Kg  .  D  .  jB  W^R" 
Bern, 
h .  *371152  .  D  f  :  Hp .  iJ»  6  «g  .  D  .  P  W,R'  (1) 

l-.*370-44.   DI-:Hp.P2~eKg.D.P,P^~e/c3.-B6/<:g.P  =  P|P=- 
[*371-151]  :^.RW,R\  (2) 

I- .  (1) .  (2) .  D  h  .  Prop 

*372-121.  >  :  «  6  PJM" cycl .  P  e  Kg  .  D  .  P''  W^R  [*371-l7] 

*372122.  h:.K6PJfcycl.D:P6Kg.  =  .P»r«P    [*372-12-121 . *37l-12] 

*37213.     h  :  K  e  Pif  cycl .  D  .  2,  =  Kg  [*372-122] 

*37214.     I- :  K  6  PJ/  cycl .  D  .  ^,  ~  e  3, 

Bern.  h  .  *371152 .  D  h  :  Hp .  D .  iT.^  F«Z/  Oh.  Prop 

*372-15.     \-:fi^v.0.v,Cti,  [*372-l] 

*37216.     h  :  K  e  Pilf  cycl .  K  >  1 .  D .  v«  C  Kg    [*372-l  5-13] 

*37217.     f- :  K  e  Pilf  cycl .  i/  >  1 .  D  . 

i;«  =  K9nP(/*<l'./*4=0.P^+l6Kg.D^.P''6Kg) 

Dem. 
1-.*3721-16.*371-16.3 

l-:Hp.D.i'«CK9ftP(/i<i;./i  +  0.P''+>eKg.D^.P''eKg)  (1) 

l-.*37115.         ^^-:Hp.P,P^P'•+^eK^.D.P''«T^.P''  (2) 

t-.*37l-152.       D 1- :  Hp.  P,  P"  e  Kg.  P''«~e  Kg.  D.P''+^  If >  (3) 

h  .  *371-151 .       D  h  :  Hp .  P  e  Kg .  P",  P''+'  ~  6  Kg .  D  .  P''+^  W.P'^  (4) 
l-.(2).(3).(4).DI-:.Hp.PeKg:P''eK9.v.P''+"~eKg:D.P''+'F.P''      (5) 

t- .  (6) .  *3721 .  3  h  :  Hp .  D .  Kg  A  ^  (/* <  I' .  /t+0 .  P^+'eKg .  D^ . P''eKg)C i»,  (6) 
h  .  (1) .  (6)  .  D  h  .  Prop 


4)72  QUANTITY  [part  VI 

*37218.     h-.KeFM  cycl . «/  >  0  .  D  .  (2i/)«  =  /eg  n  P  (/^  <  j/ .  /i  +  0  .  D^ .  P"  e  /cg) 

Dem. 
h  .  *372-l .  *37112  .  3  h  :  Hp .  P 6 (2i/)« .  D  .  P^'WJ"  . 
[*372122]  D.P-e/tg  (1) 

I- .  (1) .  *372-l7  .        D  h  :  Hp .  D  .  (2v),  C  A;g  n  P (yit  <  i-  ./*=!=  0 .  D^ .  P^e  «g)  (2) 
l-.*37115152.        Dh:Hp.P,P''6«g.D.P''+'F.P''  (3) 

t- .  (3)  .  *371-25  .       OI-:Hp.P,P''+SP''e«;g.D.P''+''+'F«P''+''  (4) 

H.(4).  D  \- :.  P  e  Kg:  fi^v .  fi=^0  .D^.  Pi"  6  KgzD  : 

/i  +  1  <  1/ .  p  <  K .  D^,p .  P^+p+iTF^P^+p : 
[*117  561]  D  :  o-  <  2i; .  D„ .  P''+'  PF«P' 

[*372-l]  D:Pe(2i/),  (5-) 

h  .  (2) .  (5) .  D  f- .  Prop 

*37219.     h  :  «  6  PM  cycl .  /*,  i/  e  NC  ind  -I'O.Pe  (/jlv\  .  D  .  P"  e  i/« 
[*372-l .  *371-12] 

*372-2.       h  :  /cePikf  cycl .  i/eNOind .  Pe  i/« .  /i<  v .  o-  <  /* .  <7+0.D.P''F«P'' 
[*372-l .  *371-12} 

*372-21.     l-:«6PJ/cycl.i/6NOind.P6v,.2/i<i/./i4=0.D. 

P»'pr,P''.P''e«:g 
i)em. 

f-.*372-2.DI-:Hp.D.P^Tf,P''.  (1) 

[*372-122]  D.P^e/cg  (2) 

h  .  (1)  .  (2) .  D  h  .  Prop 

*372-22.     i- :  «  e  Pilf  cycl .  P  W^Q  .P,P''eKg.  P"  W^Q' .  D  .  P^+i  TT^Q^+i 
i)em. 

I- .  *371-25  .  D  h :  Hp .  D  .  Pi'+'W.P  [ Q"  (1) 

h  .  *371-16  .  D  h  :  Hp .  3  .  0^6 Kg . 

[*371-25]  D.P|Q^FkQ^+i  (2) 

h  .  (1) .  (2) .  *371-12  .  D  I- .  Prop 

*372-23.     \-:KeFMcyc\.ve'NCmd.P€v^.2fi^v.fi:^0.PW^Q.O. 

P''+'  F«Q^+'    [*372-21-22  .  Induct] 

*372-24.     f- :. «  6  PJlf  cycl .  o-  e  NC  ind  -  t'O .  P  e  (2o-). .  P  TF^Q  .  D  : 

/i<2(r./i=t=0.D.P»'F«Q» 
Z>em. 

F  .  *372-21-23  .  3  h  :  Hp .  f<  o- .  i;  <  o- .  D  .  P',  Q*  e  Kg .  P^  F«Qf .  P'TF^Q" .  : 

[*37 1  -25]  D .  Pf +"  TF^P^  |  Q* .  P"  |  Qf  F.Qf +" .  • 

[*37l-12]  D.pf+'']f.Qf+'':Dh'.Prop 


SECTION  D]         integral   SECTIONS   OF   THE  SERIES   OF   VECTORS  473 

*372-25.     V:.KeFMcya[..ae^C ind -t'O.Pe (2o-  + 1)« . P W^Q  . D  :  V- 

•  /i<2<r./i  +  0.  D.P^Tf^Q"    [*372-24-15] 

*372-26.     h  :  «  ePJlf  cycl .  o-  e  NO  ind'.  P  e  (2<t  +  1). .  PF«Q .  D '.  P^^'Tf.Q^^i 
Dem. 
h.*372-25.  DI-:.Hp.D:P"'«F,Q''+':  (1) 

[*37l-3]  D  :  P*'+i  ~  e  /fg .  D  .  P='+'  TF.P'  |  Q^'     (2) 

h  .  *371-31 .  (1) .        D>:.Hp:P''|Q'^'~6*:g.v.Q'+>6«g:D. 

h  .  *372-21 .  *371-15151-152  .  D  h  :.  Hp .  D  :  P'^  |  Q'+^F «P' : 

[*371-1 6]  D  :  P'  I  0'+'  6  «;g .  D  .  Q'+'  e  ^g  (4) 

h  .  (3) .  (4)  .  D  h  :  Hp .  D .  P'  I  Q'+'  W,Q"'+'  (5) 

h  .  (2) .  (5) .  *371-12  .  D  h  :  Hp .  P^-+i  ~  e  ^g  .  D  .  P*h-i  if ^Q^^+i  (6) 

h  .  *372-22 .  D  h  :  Hp .  P"'  6  «g  .  D  .  P'*+'  TT^Q^'+i  (7) 

l-.*37l-16.*372-l.  DhiHp.P^+^e/eg.D.P^e^g  (8) 

h.(6).(7).(8).Dh.Prop 

*372-27.     h  :.  « ePJl/cycl .  i/ eNCind-  t'O  .Pev,  .PW,Q .  D  : 

/i<v./*4=0.D.P''  TT.Q"    [*372-24-25-26] 

*372-28.     \-:.KeFMcycl.v€'i^G'md-i'0.P,Qev,.O:P''=Qr.  =  .P  =  Q 

Dem. 

l-.*371-12.Dh:.Hp.P  +  Q.D:PF,Q.v.QF.P: 

■   [*372-27]  DiP'iT^Q-.v.Q-'F.P'': 

[*371-12]  DiP'  +  Q'  (1) 

I- .  (1) .  Transp .  D  h  .  Prop 
*372-29.     h  :.« 6 Pif  cycl.P.Q 6 «g.D:P^=(2^  =  .P  =  <2    [*372-28-13] 
*372-3.       h  :  «  6  Pilf  cycl .  o-  e  NO  ind  -  I'O .  P  e  (2<r), .  PF.Q .  D  .  Q  e  (2<r), 

X)em. 

h  .*372-18-27  .  D  I- :.  Hp  .  D  :/*<  o-  ./i  +  0 .  3;..  P'-e/cg  .  P'-Tf^Q" . 

[*37ri6]  Dm -Q"  6*9: 

[*37218]  D:Qei/«:.DK.Prop 

*372-31.     h  :.  «ePMcycl .  <7  e  NC  ind  -  t'O .  Pe^g .  D  :  PTT^P'*.  D  .  P^'+>6«9 
Bern. 

I-  .,*371-16  .  D  h  :  Hp .  PWj'' .  D  .  P^' e  /cg  (1) 

l-.*301-23.  Dl-:Hp.D.P  =  P-|P-+^  (2) 

h  .  (1)  ,  (2) .  *371-15  .  D  I- :  Hp .  PF,P^ .  D  .  P=^' 6  «9  :  D  h  .  Prop 


*74  QUANTITY-  [part  VI 

*372-32.     hiKeFMcycl.ffe'NCind.Pe (2<r  + 1)« . PF«Q .  3 .  Q e (2«r  + 1)« 
Z)em. 

l-.*372-315-17.  3l-:.Hp.D:^<2<r.(^e«g.D.(?'-ie«9        (1) 

H  .  *371-16 .  *372-27-l .  D  h  :  Hp .  Q="~  e  ACg .  D .  i^+i ~  e  Kg . 
[*372-31  .Transp]  3 .  par  W^P  - 

[*37l-27]  >  D.Q^F^P. 

[*372-31  .Transp]  3 .  Qsw+i  ^  ^  ^^  (2) 

h  .  (1) .  (2) .  Transp .      D 1" : .  Hp .  D  :  /*  <  2o-  +  1 .  Q^  e  Kg .  D^ .  Q^-'  e  Kg : 
[*372-17]  D:Q6(2<r  +  l).:.DI-.Prop, 

*372-33.     i-:KeFMcycl.v€'NCind.O.W,"v,Cv,     [*372-3-32]  j 


? 


*373.     SUBMULTIPLES  OF  IDENTITY. 

Summary  of  *373. 

The  purpose  of  this  number  is  to  prove  that,  in  a  cyclic  submultipliable 
family,  there  exists  a  unique  vector  which  is  a  member  of  v^  and  satisfies 
E''  =  Ik.  This  we  call  the  "principal"  i/th  submultiple  of  /«.  It  is  the 
smallest  vector  (other  than  /»)  which  satisfies  R'  =  I^.  The  proof  of  its 
existence  proceeds  by  several  stages;  the  problem  is  analogous  to  that  of 
the  construction  of  a  regular  polygon.  Suppose  the  cycle  divided  into  v 
equal  parts.  Then  a  vector  which  takes  us  from  any  one  point  of  division 
to  any  other  is  a  vth  submultiple  of  identity.  If  v  is  prime,  every  such 
vector  will  have  every  power  less  than  the  vth  different  from  I^;  but  if  v 
has  factors,  say  p  and  a,  if  R'  =  Iit,  {BP)''  =  I^ ;  thus  R",  which  is  one  of  the 
vth  submultiples  of  identity,  has  a  power  less  than  the  vth  which  is  equal 
to  /,.  We  define  (/«,  v)  as  the  class  of  those  j;th  submultiples  of  /»  which 
have  no  power  less  than  the  I'th  equal  to  /« ;  more  generally,  we  put 

*37303.     (5,i;)  =  P(P-'  =  S:a-<i;.<r  +  0.D,.P''=|=/S)     Dft 

We  then  have  first  to  prove  the  existence  of  «g  n  (/, ,  v)  when  k  is  cyclic 
and  submultipliable.     For  this  purpose,  we  put 

*373-01.     il/„  =  OP(Qe«g.Q''  =  P)    Dft 

I.e.M„^  is  the  relation  of  a  vth  submultiple  of  P  to  P,  when  the  submultiple 
of  P  is  a  member  of  Kg.  It  is  to  be  observed  that  although  k  is  submultipliable, 
we  do  not  know  to  begin  with  that  /«  has  submultiples  which  are  members 
of  «g,  except  in  the  case  of  K^,  which  is  half  of  /„.  Owing  to  this,  we  proceed 
first  by  bisection,  i.e.  by  means  of  the  relation  M^,,-  We  prove  that  the 
process  of  bisection  can  be  applied  endlessly  to  any  member  of  Kg,  and  always 
gives  new  terms  (*373'14-13),  hence  it  gives  a  progression  starting  from  any 
member  of  Kg  (*378'141),  and  therefore  the  existence  of  a  cyclic  submultipliable 
family  implies  the  axiom  of  infinity  (*373"142) ;  also  we  prove  that  v  bisections 
starting  from  a  member  of  Kg  give  a  member  of  {2"+%  (*373-15).  Hence, 
taking  K„  as  the  member  of  Kg  to  be  bisected,  we  arrive  at 

/*  =  2"+^  3  .  a !  Kg  ft  (/„  /t)    (*373-l7). 
In  order  to  extend  this  result  to  numbers  not  of  the  form   2'"'"\  we  have 


476  QUANTITY  [part  VI 

first  to  prove  that  there  are  ytith  submultiples  of  identity.  This  we  prove 
first  for  numbers  of  the  form  2"  + 1,  then  for  .(2a-  +  1)  2"  + 1,  and  then  for 
2<T  (*373"21'22"23) ;  hence  it  holds  generally,  i.e.  we  have 

*373-25.     h  -.KeFM cyclsuhm  .  /le'NCmd-  L'O-l'l  .D.('S^Q).Qe Kg. 0^=1^ 

Next,  we  prove  that,  if  Re  Kg  and  R'^  =  R''=  F^,  then  fi,  v  have  some 
common  factor  p  such  that  Re{I^,p),  i.e.  such  that  RP  is  the  earliest  power 
of  R  which  is  /,  (*373'3).  Hence  if  ft,  is  prime,  and  Rl^  =  I^,  it  follows 
that  no  earlier  power  of  R  is  /„,  i.e.  Re(I^,fi)  (*373"32),  and  that,  if 
Re(I^,p)  and  R/^=I^,  then  /i  is  a  multiple  of  p  (*373'33). 

We  now  make  a  fresh  start  with  the  general  relation  M^^.  Owing  to 
*373'25,  we  know  that  I^eQ-'M^^.  Also  since  «  is  submultipliable, 
KgCd'My^.  Hence  if  a  is  any  inductive  cardinal,  I^ed'M^^'^  (*373"404). 
Also  it  is  easy  to  show  that  if  v  is  a  prime,  and  Qif „«"/«,  Q""  is  the  first  power 
of  Q  which  is  /«.  Hence  when  v  is  prime.  Kg  r\  (!„,  v')  exists  (*373'43).  In 
order  to  extend  this  result  to  numbers  which  are  not  powers  of  primes,  we 
prove 

*373-45.     I- :  «:6^1f  cycl .  pFiraa- .Re(I^,p)  .Se(I^,  <r).D  .R\Se{I^,pa) 

Hence  by  the  help  of  a  little  elementary  arithmetic  we  arrive  at 

*373-46.     \-:KeFM cycl subm  .  /> e NO ind -  t'O -  t'l .  D .  g  !  Kg  n (/^, p) 

Having  now  proved  that  there  are  j/th  submultiples  of  I^  which  have  no 
power  short  of  the  vth  equal  to  I„,  we  have  still  to  show  that  there  is  one 
among  them  which  is  a  member  of  v^.  For  this  purpose,  we  take  any  one 
of  them  and  consider  its  powers.  It  is  obvious  that  it  has  only  v  different 
powers  (*3735),  since  after  reaching  /^  the  previous  values  repeat.themselves. 
It  is  this  fact  which  makes  it  easier  to  deal  with' submultiples  of  J^  than  with 
submultiples  of  other  vectors. 

Now  let  R  be  any  vth  submultiple  of  identity,  and  assume  that  S,  T  are 

powers  of  R,  but  T  is  not  a  power  of  S,  and  TW^S.     Then  /S  |  T  is  a  power  of 

R  but  not  of  8,  and  TW^iS\T)  (*373-53).  Hence  T  is  not  the  maximum, 
in  the  series  W^,  of  the  class  Pot'i?  —  Pot'/S.  Hence  by  transposition,  if  T  is 
the  maximum  of  Pot'i?  —  PofyS,  we  must  have  SWiJC.  Now  since  Pot'iJ  is 
a  finite  class,  Pot'i2  —  Pot'jS  must  have  a  maximum  if  it  exists ;  but  since  8 
has  the  relation  W^:  to  this  maximum,  8  is  not  the  maximum  of  Pot'iJ. 
Hence  by  transposition,  if  8  is  the  maximum  of  Pot'i?,  Pot'i?  — Pot'^  is 
null,  and  therefore  Pot'JS  =  Pot'/S  (*373'54).  Hence  it  follows  easily  that, 
if  ReKgr\{I^,v),  the  maximum  of  the  powers  of  iJ  is  a  member  of 
Kg  n  (/^,  v)  (*373'55),  and  further  that  it  is  a  member  of  v^  (*373"56).  Since 
we  have  already  proved  (*373"46)  the  existence  of  Kg  n  (7^,  v),  we  thus  have 

*373-6.       f- :  «  6  FM  cycl  subm  .  y  e  NO  ind  -  I'O .  D .  g !  v«  n  ^  (zS-  =  I^) 


SECTION  D]  SUBMULTIPLES   OF  IDENTITY  477 

The  uniqueness  of  v^nS  (S'  =  /«)  follows  from  *372-28,  and  tbus  the 
principal  vth  submultijie  of  /«  exists.  Hence  also  it  immediately  follows 
that  the  other  i/th  submultiples  of  /«  are  powers  of  the  principal  vth  sub- 
multiple,  and  that  the  total  number  of  i/th  submultiples  is  v  (*373-63-64). 

*37301.  M,,  =  QP{Q€Kg.Q''  =  P)    Dft  [*373— 5] 

*37302.  Prime  =  NCindr.J*0=o-x„T.D„,^:o-  =  l.v.o-  =  )Lt)     Df 

*373-03.  (S,v)  =  P(P'  =  S:ir<v.a-^0.:i,.P'^S)     Dft  [*373— 5] 

*373-l.  \-:QM^P.  =  .Q6Ks.Q'  =  P  >  [(*373-01)] 

*37311.  \- :  K  e  FMcyd  .D  .  M^el  ^1  [*372-29] 

*37312.  h-.Ke  FM  cycl .  D  .  ilf^,  G  ^.  [*372-121] 

*37313.  V:  K€FM  cycl.  D.(M^\„<1W,.(M^X„  Q  J    [*373-12  .*37l-12] 

*37314.     \-:Ke.FM cycl  subm  .  P  e  «g  .  v  e  NO  ind  -  t'O  .  D  .  E  !  M^"P 

Bern. 

h  .  *372-29  .  *351-1 .  D  h  :.  Hp .  D  :  Q  e  /cg  .  D  .  E !  M^'P  (1) 

I- .  (1) .  Induct .  D  h  .  Prop 

*373141.  \-:KeFM  cycl  subm  .PeK^.O.M^i  {M^\'P  e  Prog 

[*373-ll-13-14] 
*373142.  hralMfcyclsubm.D.Infinax     [*373-141] 

*37315.     h  :  «  6  FM  cycl  subm  .  P  e  Kg  .  v  e  NO  ind  .  D  .  M^*'P  e  {2'+% 
Dem. 
l-.*373-ri4.      :)\-:B.^.Q  =  M,,''-^'P.R  =  M,,-"P.:i.Q-  =  R''        (1) 
I-.  (1).  *372-18.  D  h  :.  Hp  (1).  Qe  (2'')..  3  :2<7<  2-.  D.i?=- 6  Kg  ■         (2) 
h  .  (2).*373-l .    D  h  :.  Hp(2).  D  :  2<r<  2".  D  .  R^,R^+\R\ReK^. 
[*37l-2]  D.E^'+'e.Kg  (3) 

h.(2).(3).  Dh:.Hp(2).D:/i<2''.D.iJ''6Kg: 

[*372-18]  D:E6(2>'+iX  W 

|-.*372-13.         DI-:Hp.i'  =  0.D.ilf,/'P62,  (5) 

h  .  (4)  .  (5) .  Induct  .31-.  Prop 

*37316.     h  :.  K  e  i^'ilf  cycl  subm  .  v  e  NO  ind .  Q  =  M^''K^ .  D  : 

^^•'+' = /, :  p  <  2>'+> .  p  +  0  .  D^ .  Qp  + /, 

Bern. 
|-.*373-l.  DI-:Hp.D.r  =  ir.. 

[*371-26]  D.Q^''^'  =  /«  (1) 

|-.*373-15.*372-2.(l).Dh:.Hp.D:p<2''+^p  +  0.3.Q''Tr./.       (2) 

h.(l).(2).D(-.Prop 


478  QUANTITY  [PABT  VI 

*37317.     I- :  K  6  FM  cycl  subm  .ve'NCmd./i  =  2'+"^ .  D .  g  !  «g  n  (/«,  /*) 
[*373-1614 .  (*373-03)] 

*37318.     \-:Q6Cnv"Kg.Q''  =  I,.D.Q6Ks.Q"  =  L     [*50-5-51] 
*37319.     h  :  (aQ) .  Q  e  Kg  w  Cnv"/Kg  .Q"  =  !,.  =  .  (gQ)  .QeK^.Qr^I. 

[*373-18] 
*373-2.       h  : .  «  6  ^if  cycl  subm  .  i/  e  NC  ind  .  P  =  M^^'K^ . 

;S  e  Kg .  5?^"+' =  P .  S^-^' =  Q .  D  .  Q=''+' = /, .  Q  + /« 
i)em. 

I- .  *30r5  .      D  h  :  Hp .  D  .  Qf+^  =  P^'^'  =  /.  (1) 

h.*373-l.      DF:Hp.D.P'"'+'  =  Z,|P. 

[*370-22]  D.P''''+'4=P. 

[Hp]  D'.P2''+i  +  S^"'+>. 

[*30-37]  D.P  +  S  (2) 

h  .  *301-5-23  .  D  h  :  Hp .  D  .  Q  =  (^''''+>)2 1 S'' 

[Hp]  =I^\h 

[(2).*372-29]  +/,  (3) 

I- .  (1) .  (3)  .  D  h  .  Prop 

*373-21.     h  :  K  e  Plfcycl  subm  .  v  e  NC  ind .  /n  =  2"  +  1 .  3  . 

(aQ)-Q6«a ■<?*  =  /«    [*373-2-i9] 

*373-22.     F  :  K  €  FM  cycl  subm  .  v,  o-  e  NC  ind .  /i  =  (2o-  + 1)  2"  +  1 .  D  . 

(aQ).QeKg.(2''  =  /. 

[The  proof  proceeds  as  in  *373'2'21] 

«373-23.     h:/eePJ>/cyclsubm.o-6NCind./i  =  2<r.D.(aQ).Q6Kg.Q''  =  J« 

Dem. 

h  .*370-26  .  D  h  :  Hp .  D  .  ^6Kg .  ^"  =  7, :  D  h  .  Prop 

*373-231.  h  :.  T  6  NC  ind .  D  :  (go-) :  o-  e  NC  ind :  t=  2o- .  v .  t= 2o-  + 1     [Induct] 

*373-24.     l-:/36NCind.p=)=0.D. 

(ai/,  <r)  .  1/,  (7  e  NC  ind  .  2p  + 1  =  (2o-  + 1)  2-  +  1 
Dem. 

f-.*l  17-661,3 

I- : .  Hp  .  \  =  i)  {(gr) .  t  e  NC  ind  -  t'O  .  p  =  t2''}  .D:z;e\.D./3>«/  (1) 

I- .  *116-301 .  3  I- :  Hp  (1) .  3 .  p  =  />2»  - 

[*10-24]  3.G6\  (2) 

h  .  (1) .  (2) .  *261-26  .  *263-47  .  3  h  :.  Hp  (1) .  3  : 

(gi')  :  veX  : /(i  >  v.  3^./i~e\,    (3) 

l-.*116-52-321 .3  l-:/3  =  T2-'.T  =  2ff.3./3  =  o-2''+'  (4) 


SECTION  D]  SUBMULTIPLES  OF  IDENTITY  479 

t- .  (3) .  (4) .  D  h  : .  Hp .  3  :  (a;v,  t)  :  i;,  T  e  NC  ind  .  /o  =  t2"'  :/[*>«/.  3^ . 

•  ~(gT)./>=T2'':~(ao-).T=2<7: 

[*373-231]       D  :  (gw,  a)  .v,ae  NC  ind .  p  =  (2ff  + 1)  2" : 
[*116-52-321]  D  :  (gy,  tr) .  i/,  o- «  NC  iud .  2/j  + 1  =  (2o-  + 1)  2'+'  + 1 :.  D  h  .  Prop 
*373-25.     \-:KeFM  cycl  subm  .  /*  e  NC  ind  -  t'O  -  t'l .  D  . 

(aQ)-Qe«S-Q^=^«    [*373-22-24-23-14] 
*373-3.       \-:k€FM  cycl.  ^=^0.v:^0.  Re  Kg.  Ii^  =  R'==I,.D. 

(a/>, a,/S)-/o  + 0.(0=1=1./*  =  a/).  i/  =  /3p.^e(/„p) 

h.*300-23.DI-:.Hp.D:(ap)./,  +  0.22p  =  7,:«r</).«7=j=0.3,.iJ'=^/.  (1) 
l-.*301-2.    Dh:Hp. /&>  =  /,. D./,=|=l  (2) 

l-.*302-25.DI-:Hp./)eNCind-i'0.D. 

|-.*301-23-504.D  'r         /-      f  a'     w 

h:Hp(3).i?^  =  7«./t  =  a/j  +  /3.i/  =  'yp  +  S.i&'  =  B-'  =  /,.D.JJs=Bs  =  /,    (4) 
h  .  (4) .  D  I- :.  Hp(4) :  o-<  p .  o-=|=0 .  D„  .i?''=t=/,  : 

/t  =  a/)  +  /3.K  =  7p  +  S:D.y3=i=0.S=0     (5) 
I- .  (3) .  (6) .  D  h  :.  Hp :  p=|=0  .i&'  =  /, :  cr<  p .  <r=t=0 .  D,.  iJ'  +  Z, :  D. 

(a«.  y)-ti  =  ap.v  =  yp    (6) 
f- . (1) . (2) . (6) . (*373-03) .  3  h  .Prop 

*373-31.     l-:/<:e^il/cycl.J2e«g./*=|=0.i/=|=0.i^  =  ^'  =  /,.D.~(/iPrmi/) 

[*373-3] 
*373-32.     [■:KeFMcyc\.ReKs.fieTnme.Si^  =  I^.'^.Re(I^,lj.) 

[*373-31 .  Transp .  (*373-03)] 

We  assume  here  that  a  prime  number  is  prime  to  all  numbers  less  than 
itself  except  1.     This  follows  at  once  from  the  definition. 

*373-33.     l-:«€^Jfcycl.Ee*:gn(/«, />).£"=/«. D.(aT)./t=/3T  [*373-3] 

*373-4.       h:QM,,P.  =  .QeKs.P  =  Q''  [(*373-01)] 

*373-401.  h:/e€^ilfcyclsubm.i/eNCind-t'0.3./«ea'Jlf,,  [«373-25]   , 

*373'402.  h-.KeFM  subm .  i;  e  NC  ind  -  I'O .  D .  «g  C  a'Mi,^  [*373-4] 

*373-403.  h:z/6NCind-t'0.D.D'if,,CKg  [*373-4] 

*373-404.  \-:iC€  FM  cyc\  subm .  i/,  a  e  NO  ind  - 1'0 .  3 .  /« e  a'.¥„« 
[*373-401-402-403 .  Induct] 

*373-405.  \-:v,aeNCmd-i'0.QM,^'I^.O.Q''  =  I^    [*373-4 .  Induct] 


480  :    QUANTITY  [part  VI 

*373-406.  h  :  i;, «  6  N  C  ind  -  I'O .  R  e  D'ilf,/ .  D  .  M,,-^'R  =  i?'" 
[*373'4.  Induct] 

*373-407.  \-:v,a,ye  NO  ind  -  I'O .  EM  „»+»/. .  D  .  E-'i/^T/,     [*373-406] 

*373-41.     I- :  7., «, ;S  6  NC ind -I'O .  QM,,'I, .  RMJI, .  a  <  ;8 .  D  .  Q  +  i? 
Bern. 

h  .  *373-405-4p7-403  .  3  h  :  Hp  .  D  .  Q""  =  /, .  i?""  e  «g  :  D  h  .  Prop 

*373-42.     h-.Ke  FM  cycl .  v  e  Prime  -  I'l .  a  e  NC  ind  . 

Qilf„«/, .  <r  <  i;« .  <7  +  0 .  D  .  Q'=i=/. 

h.*373-405.*300-23.D 

l-:.Hp.D:(a/3):/>  +  0.Q^  =  /.:<r</3.<7  +  0.D„.Q'  +  /,  (1) 

h.*373-33-405.D 

h  :.  Hp  :  p  +  0 .  ^"  =  7. :  (7  <  /3 .  0-4=0 .  D, .  Q'  +  /. :  D  .  (gr) .V^  =  pT. 

[Hp]  D.(a^).(Q  =  i;3  (2) 

h  .  *373-407  .  3  h  :  Hp  .  ;8  <  a .  D  .  Q"^  =1=  /«  (3) 

l-.(2).(3).    DI-:Hp(2).D./3  =  z/'  (4) 

l-,(l).(4).Dh.Prop 

In  obtaining  (2)  of  the  above  proof,  we  assume  that  if  j/  is  a  prime,  and 
pT  is  a  power  of  v,  then  p  is  a,  power  of  v.    This  is  easily  proved. 

*373-43.     h  :  K  e  FM  cycl  subm .  k  e  Prime  —  I'l.cte  NC  ind  -  t'l .  D, . 

a !  «9  n  (7, ,  j/»)     [*373-404-405-42] 

*373'44.     I- :  7  Prm  p  .  7  Prm  o- .  D  .  7  Prm  /so- 

Dem. 
h  .  *302-l .  D  I- :.  7  Prm  /) .  ~  (7  Prm  pa).(re  NO  ind  .  D  . 

(a^.  a,  /8)  .  T  e  NC  ind  -  t'O  -I'l  .y  =  ar  .  pa  =  ^t     (1) 
l-.,*303-39.  DI-:Hp(l).TeNCind-t'0-i'1.7  =  aT.(0o-  =  j8T.D. 

7/p  =  ao/^     (2) 
I- .  (2) .  *308-341 .  D  h  :  Hp  (2) .  ao- Prm /3 .  D .  7  =  ao-  (3) 

l-.(3).*302-l.      DI-:Hp(3). 0-4=1. D.~(7Prmo-)  (4) 

1-.*113-621.         :>l-:/3  6NC.o-  =  l.~(7Prm/)o-).D.~(7Prm/>)  (5) 

I- .  (5) . Transp .     DH  :  Hp(l).  >.o-4=l : 

[(4)]  Di-:Hp(3).D.~(7Prmff)  (6) 

I-  .*302-36 .  D  h  :  Hp(2) .  ~(ao-Prmi8) ,  D  . 

(a?,'?.  0  •  ?Prm ,, .  2:4=  1 .  «a  =  ^r.  ^  =  ^f  ^  (7) 
h  .*303-39  .  D  h  :  Hp(7) .  f  PrmT? .  ^4=  1 .  aa-  =  ^?.  ;8  = »;?.  D  .  aa/^  =  ^/i, . 
[(2).*303-341]  O  .  .7  =  f .  p  =  ^ . 

[Hp]  D  .  a/30-  =0y=ttp^T. 

[*126-41]  D .  o-  =  S't  (8) 


SECTION  D]  SUBMULTIPLES   OF   IDENTITY  481 

l-.(7).(8).    DI-:Hp(7).D.(ar).7  =  «T.<7=rT- 

[*302-l.Hp]  •      D.~(7PrmCT-)  (9) 

l-.(6).(9).    Dl-:Hp(2).D.~(7Prm<7)  (10) 

l-.(l).(10).Dh:7Prm/3.~(7Prm/3<7-).o-6N0ind.D.~(7Prmo-)        (11) 
h  .  (11) .  Transp .  D  h  .  Prop 

*373-441.  1- :.  jo Prm  o- :  (gS) .  /3/3  =  So- :  D  .  (g^)  .^=^a- 

Bern. 
h  .  *126-41 .  D 

I- :  Hp .  /3^  =  So- .  /a  =  fw .  S  =  7/OT  .  f  Prm  i; .  D .  |^/3  =  tjo-  .  ^  Prm  rj .  f  Prm  o-  - 
[*373-44]  D .  ^^  =  170- .  ^  Prm  t/o-  (1) 

l-.(l).  Dl-:Hp(l).f  +  l.D.Hl-?=?Xcl-'7'^  =  rXc/3- 

[*302-l]  3  ■  ~  (?  Prm.i?ff)  (2) 

F .  (2) .  Transp .  (1) .  D  h  :  Hp(l) .  D  .  ^=  1  (3) 

h  .  (1) .  (3) .  D  h  .  Prop 

*373-45.     h  :  K  e  FMcyd  .  pYrm  (T  .  B  e(T^,  p)  .  S  e{I^,a)  .0  .  R\S  €(1^,  pa-) 
Bern. 

h.*370-33.         DI-:Hp.D.(^|/Sf)'>"-  =  /,  (1) 

H  .  (1)  .*373-31 .  D  h  :.  Hp .  (^  j  <Sf)i'  =  /, .  7=1=0  .  D  :  ~  (YPrm/jo-) : 

[*373-44]  D:~(7Prm;(»).v.~(7Prmo-)     (2) 

h  .  *370-33  .  *301-504  .  D 

l-:Hp(2).p  =  aT.7  =  /3T.D./,  =  (^|<Sf)"P^  =  -S-3-  =  S'"'. 

[*373-33]  D.(aS)./}/3  =  So-. 

[*373-441]  D.jaf).y8  =  ?o-  (3) 

f-  .(3) .         D  I- :  Hp(3) .  D  .  (^|  >Sf)^-  =  /. .  S^^  =  I, . 

[*370-33]  •^.BP-  =  I,. 

[*3Jr3-33]  3  .  (a/i)  ■  ;St  =  IJMT . 

[Hp]  3-(a/<*)-7  =  W-/*  +  0  (4) 

h  .  (3)  .  (4) .  D  h  :  Hp  (3) .  D  .  {'Sy) .  7  =  1//00- .  1/  4=  0  (5) 

Similarly         h  :  Hp.~(7Prm  o-) .  D  .(ai').7=i^po-.  v=t=0  (6) 

I- .  (2)  .(6) .  (6) ,  D  h  :  Hp(2) .  D  .  {'Sy) . «;  =t=  0 . 7  =  i^po-  (7) 

l-.(l).(7),*ll7-62.DI-.Prop 

*373-451.  I- :.  /)  6  NC  ind  -  I'O  :  ~  (gv,  a) .  1/  e  Prime  .  /» =  i;"  :  D  . 

(SA*'  ^)  ■  /*  ■P'"'^  v.fji<.p.v<C.p-p=iJi'V 
Bern. 
f-.*261-26.*263-47.D 

h  :  Hp .  3  .  (37,  a) .  7  «  Prime  .  ,0  6  D'Xe  7" .  p  ~  6  D'Xe  7"'+^  p  =t=  7' . 
[*373-44.Induct]  D  .  (37, «,  ^8) .  7  e  Prime .  p  =  7-/8 .  /3  Prm  7" ,  /3  4=  1 :  D  h .  Prop 
R.  &w.    III.  31 


482  QUANTITY  [part  VI 

*373'452.  h  :.v€  Prime  .  a  e  NC  ind  .  D,_. .  0  (v")  :  /j, Prm  i; .  <^/t .  ^v  .  D^, „ . 

^  (/ii;)  :  D  :  /3  6  NO  ind  -  I'O  .  D^ .  ^  (jo)     [*373-451] 

*373-46.     h  :  «  6  ^Jlf  cycl  subm  .  |0  e  NC  ind  -  t'O  -  t'l .  D  .  g  !  Kg  n  (7^ ,  /a) 
[*373-43-4518-452] 

*373-5.       \-:Ke  FM  cycl .  y  e  NC  ind  .  i?  e  Kg  n  (/, ,  i;) .  D  .  Pot'i?  e  v 
Bern. 

h.*302-25.*301-504.D 

h  :  Hp  .  a  6  NC  ind  .  D .  (gf ,  i?) .  a  =  ^z/  + 17 .  ■»?  <  i/ .  iJ"  =  iJi . 
[*120-57]  D .  Nc'Pot'^  <  V  (1) 

I- .  *301-23  .         D\-:RY>-P<v.(r<p.D.R'\B'  =  B/^'" . 
[Hp]  D-E'lEo  +  Z.. 

[*330-32]  D.iJo  +  jB'  (2) 

h  .  (2) .  Transp .  "^V  :Yi^ .  p<v  .a  <v .  BJ'  =  R'' ."^  .  p  =  v  (3) 

I- .  (3) .  *120-57  .  D  f- :  Hp  .  D  .  Nc'Pot'i?  >  v  (4) 

h  .  (1) .  (4) .  D  1- .  Prop 

*373-51.     h  :  K  e^iW cycl .  ii  e  Kg  n  (/«,  /ii/)  .  D  .  i?^  e  (7^,  z^)  .  Pot'^  e  v 
Bern. 

h.*301 -504.3 

I- :.  Hp .  D  :  (i^)-'  =  7^ :  o-  <  z/ .  <r  +  0 .  D,  .  (iJ")' +  7. :.  D  h  .  Prop 

*373-52.     V-.KeFM  cycl  .Be  K^ry{I^,v)  .  fi  Prm  i/ .  D  . 

i?"  e  (7«,  J/) .  Pot'i^  =  Pot'J? 
Bern. 

l-.*373-33.         DI-:Hp.i?''6(7,,jo).D.(aT)./i/9  =  z/T. 

[*373-441]  D.(a?)./p  =  i;^  (1) 

l-.*301-504.       D\-:R-p(l). D.iRi^y^I^. 

[Hp]  D.p^z.  (2) 

1-.(1).(2).  DI-:Hp.D.i^6(7<,i;)  (3) 

I- .  (3) .  *373-51 .  D  h  :  Hp .  D  .  Nc'Pot'Z^  =  Nc'Pot'ii  =  v  (4) 

l-.*91-6.  D  I- :  Hp  .  D  .  Pot'iJy  C  Pot'E  (5) 

h  .  (4) .  (5) .  *120-426  .  Transp .  D  h  :  Hp  .  D  .  Pot'i?^  =  Pot'JJ  (6) 
h  .  (3) .  (6) .  D  h  .  Prop 

*373-521.  h  :  KeiW cycl .  EeC^g  u  Cnv"Kg) .  veNCind  .  B''=I,.D.Be'Pot'Ii 
Bern. 

l-.*301-2.*13-14.DI-:Hp.D.i/  +  0  (1) 

I- .  (1)  .*301-21 .     D  h  :  Hp .  D.B  =  B'-'' :  D  I- .  Prop 


SECTION  D]  SUBMULTIPLES   OF   IDENTITY  483 

*373-522.  I- :  Hp *373-521 .  S,  Te Pot'iJ  .D.S\  TeTot'R 
Bern.  • 

h  . *373-521 .  D  h  :  Hp  .  D  .SePot'S. 

[*91-6]  D.SeVot'R. 

[*91-343]  D  .  S I  TeFot'R  Oh.  Prop 

*373-53.     h  :  Hp  *373-521 .  ,S,  TeFot'R  .T~e  Fot'S .  TW,8 .  D  . 

TW.(S\T).S\TeFot'R-  Pot'S 
Bern. 

l-.*371-23.  ■D\-'.H.Yi.:i.TW,(S\T)  (1) 

l-.*373-522.  D\-:Rp.O.S\TePot'R  (2) 

I- .  *91-36  .  Transp  .Df-:Hp.D.,S|r~e  Pot',Sf  (3) 

f- .  (1) .  (2)  .  (3) .  D  F  .  Prop 

*373-531.  I- :  Hp  *373-53  .  D  .  ~  {T  =  max  ( Tf,)'(Pot'ii  -  Pot^^f)}     [*373-53] 

*373-532.  h  :  Hp  *373-521 .  ,Sf  6  Pot'i? .  T  =  max  ( F,)'(Pot'E  -  Pot'S) .  D  . 

SW^T    [*373-531.  Transp.  *371-12] 

*373-533.  h  :  Hp  *373-52 1  .  ^f  e  Pot'iJ .  E  !  max  (  W,y{Pot'R  -  Pot'S) .  D  . 

~  {S  =  max  (  W;)'Pot'R}     [*373-532] 

*373-54.     I- :  Hp  *373-521 .  S  =  max  (  F,)'Pot'i2 .  D  .  Pot'i?  =  Pot'S 
Dem. 
f- .  *373-533  .  Transp .  D  I- :  Hp  .  D .  ~  E  !  max  ( F,)'(Pot'E  -  Pot'/S)     (1) 
h  .  (1) .  *373-3-5  .  *261-26  .  Transp  .  D  h  :  Hp .  D  .  Pot'E  -  Pot'*S=  A     (2) 
I- .  (2) .  *91-6  .  3  h  .  Prop 

*373-55.     \-\K6 FMcycl .  i; e NO  ind -  t'O  .  i2 e «g  n  (/«,  v) . 

S'  =  max  (  W.yPot'R  .D.Se{I,,v) 
Dem. 

|-.*373-3-5.    DI-:Hp.>.(a|o)./3  6NCind-i'0.<Sfe(7„,/3).Pot',Sfe/3    (1) 
h  .  *373-54-5  .  D  h  :.  Hp  .  D  :  Pot'»S  e  v  : 

[*100-34]  D:/36N0.Pot'^6/3.D.|0  =  i'  .  (2) 

h  .  (1) .  (2) .  D  h  .  Prop 

*373-56.     f- :  Hp  *373-5o  .  D  .  >S  e  v, 

Dem. 
l-.*205-21.  DI-:Hp.QePot'i?-i'S.D.QPr,fif  (1) 

|-.(1).*301'21.      DI-:.Hp.«6NCind.^''+'=|='S.3:^"+'W^«'S./S«+i  =  ,S-|,S: 
[*37l-15]  3  :  ^"+'  6  «g  .  D  .  >Sf«  6  «9  (2) 

I- .  (2) .  *373-55  .      DI-:.Hp.D:a  +  0.a<i;.-Sf''+'6«:g.D.fif'>6«:g  (3) 

|-.*371'16.  Dl-:Hp.D./S6Kg  (4) 

|-.*301-2.*13-14.DI-:Hp.D.i'>l  (5) 

t- .  (3) .  (4) .  (5) .  *37217  .  3  h  .  Prop 


484  QUANTITY  [part  VI 

*373-6.       b-.Ke  FM  cyd  subm .  v  e  NC  ind  -  t'O .  D  .  g  !  v«  n  ^  ((S'  =  7«) 
[*373-46-56-5  .  *261-26  .  *37211] 

*373-61.     l-:Hp*373-6.D.i',n^(fif  =  /,)6l     [*372-28 .  *373-6] 

*373-62.     h  :  Hp  *373-6  .Sev^.S''  =  I,.D  . 

S  e  (/„  v)  .  Pot'-S  =  P(P'  =  I,)  n  («  u  Cnv"/c) 
Dem. 

h  .  *373-55-56-61 .  D  h  :  Hp .  D  .  /S  e  (7„  z^)  (1) 

h  .*373-56-54 .      D  h  :  Hp  .  i?  eC/^.i/)  n  Kg .  r=max(FO'Pot'i? .  D . 

<S,Tey„.<Sf''  =  r''.i?ePot'r. 
[*372-28]  D.;S=y.i?ePot'r. 

[*13-12]  D.i?  6  PofyS  (2) 

l-.*373-33.  Dh:Hp.iJ6(/.,/i)n«g.i?-'  =  /^.D.(aT).i'  =  /AT  (3) 

h  .  *37219  .  3  t- :.  Hp .  D  :  I'  =  /iT .  D  .  /Sf V /A, . 

[(2)]  D.^ePot'/S-  (4) 

h.(3).(4).  Dh:Hp(3).D.EePot'<S  (5) 

I- .  (1) .  (2) .  (5) .  D  I- .  Prop 

*373-63.     biKeFM  cycl  subm .  i/  e  NO  ind  -  I'O .  D  . 

P  (P-  =  /,)  n  («  u  Cnv"«)  =  Pot'(7/S)  (Sev,.S'  =  /«)     [*373-61-62] 

*373-64.     I- :  /e  e  iW cycl  subm  .  v  e  NO  ind  -  I'O .  D  . 

Nc'(P  (P-  =  7.)  n  («  w  Cnv"*)}  =  j;     [*373-63-5] 


*374.     PRINCIPAL  SUBMULTIPLBS. 

Summary  of  *374. 

In  this  number  we  prove  for  any  vector  what  was  proved  for  /„  in  *373, 
namely  that,  if  v  is  any  inductive  cardinal  not  zero,  and  R  is  any  vector, 
there  is  just  one  member  of  v„  whose  vth  power  is  R.  This  one'  we  call  the 
"  principal "  i/th  submultiple  of  R.     The  proof  of  its  existence  is  as  follows. 

Assume  i2  is  a  non-zero  vector,  and  Q  is  a  vih  submultiple  of  R.  (Q  exists 
provided  we  assume  that  k  is  submultipliable.)  Let  T  be  the  principal  I'th 
submultiple  of /k,  whose  existence  has  been  proved  at  the  end  of  *373.  We 
wish  to  prove  that  there  is  a  I'th  submultiple  of  R  which  is  a  member  of  v^. 
By  *372-33,  Q  is  a  member  of  v^  if  TW^Q.  But  if  QW^T,  then  T  must  have 
a  last  power  T"  such  that  QW^T",  and  for  this  value  of  a  we  shall  therefore 
have  T'+^TT^Q.  (We  cannot  have  T'^^=Q,  because  if  Q  were  a  power 
of   T,  we   should   have  Q'  =  Ik,  whereas  by  hypothesis  Q"  =  R.)    Now  if 

T'+'^WkQ  .  QWkT",  the  vector  T"]  Q  must  be  less  than  T,  i.e.  we  shall  have 

TWk  (T'  I Q),  and  therefore  T"  \  Q  will  be  a  member  of  v^,  by  *372-33.    More- 

over  since  T'^I^,  we  have  (T"  \  Q)"  =  Q"  =  iJ  by  hypothesis.  Hence  2"  |  Q  is 
a  vth  submultiple  of  R  and  a  member  of  v^.  In  virtue  of  *372-28,  it  is  the 
only  i;th  submultiple  of  R  which  is  a  member  of  v^.  Thus  the  existence  of 
the  principal  vth  submultiple  of  any  vector  is  proved,  assuming  the  family 
concerned  to  be  cyclic  and  submultipliable. 

We  prove  also  in  this  number  that  v^  consists  of  all  non-zero  vectors 
not  greater  than  the  principal  I'th  submultiple  of  /«,  which  is  therefore  the 
greatest  member  of  Vg ;  that  is,  we  have 


*374-21.     hiieeFM  cycl  subm  .  D  .  i/^  =  (  W^h'iiR)  (RevK.R'  =  L) 


*374-l.       I-  :.H:eFMcyc[  .R,QeKs.Q'  =  R-TevK.T-'  =  lK.D: 

TWkQ.D.Qsvk    [*372-33] 

The  above  hypothesis  is  not  all  necessary  for  the  conclusion,  but  is 
adopted  because  it  gives  the  construction  with  which  we  shall  be  con- 
cerned. 

31—3 


486  QUANTITY  [part  VI 

*374 11.     I- :  Hp *374-l .  QW.T.I)  .{-^a-) .T'+'W^Q.QW, T' 
Bern. 

I- .  *301-504-3 .  D  I- :  Hp .  o-  6  NC  ind  .  D  .  Q  =t=  ?"  (1) 

h.*373  62-5.    D  h  :  Hp  .  D  .  Pot'Tei/. 

[*261-26]  D  .  E !  min  ( W,y(Pot'T  n  W^'Q)  (2) 

h.(l).(2).*372-l.Dh.Prop 

*37412.     h  :  Hp*37411 .  T'^+^W.Q .  QW.T'^  .P=-T''\Q.D  .P  ev, 

Dem. 

I- .  *371-2316  .  D  h  :.  Hp  .  D  :  P  6 /eg  .  T' 6  Kg  : 

[#371-25]  D:PW,T.::>.P\T'W,T'+^. 
[Hp]  D.QW^T'^': 

[Tiansp.Hp]  D  :  TW^P : 

[*372-33]  D:P6i;«:.DI-.Prop 

*37413.     h  :  KeFM  eye]  subm  .Reic^.D.  (gP)  .Pev^.P'  =  R 
Dem. 

l-.*374-l.  DI-:Hp*374-l.rF«Q.D.Q6i;«.Q''  =  i?   (1) 

l-.*374-12.  DI-:Hp*374-12.D.Pei/«.P"'  =  E  (2) 

I- . (1) . (2) . *37411 .  D  h  :  Hp*374-1 .  D  . (gP) .Pev..P'  =  R     (3) 
l-.*373-6.  Dh:Hp.D.(ar).T6v..T''  =  /«  (4) 

I- .  (3) .  (4) .  D  h  .  Prop 

*37414.     V-.KeFM cycl subm . ii e «  w  Cnv"K .  D  . (gP) .Pev,.P''  =  R 
Dem. 

\- .  *374-13  .  *373-6  .Dh  :R^.8€k^.R  =  S  .0  . 

i^T,  Q) .  T,Q6v..T'  =  I,.Q^  =  S.R  =  S. 

[*372-27]  D .  (ar,  Q) .  r,  Q  6 1;. .  TTf ,  e .  (Q  \Ty =S=R. 

[*37ll6.*372-33]  D  .  (aT,  Q) .  T,  Qei;, .  Q  |  Te ,;, .  (Q|  T)-  =  i?        (1) 
I- .  (1)  .  *374-13  .  *373-6  .  D  I- .  Prop 

*374-2.       h  :  K  6  PJf  cycl  subm  .  i2  e  «  u  Cnv"« .  D .  i/«  o  P  (P"  =  i?)  e  1 

[*374-14.*372-28] 

*374-21.     h  :  «  6  .PW  cycl  subm .  D  .  j;«  =  (  Tf ,)j,j'(?i?)  (R6v^.R'  =  /«) 

Dem. 

l-.*374-2.     DI-:Hp.D.E!(7i2)(JS;6i;^.i2''  =  /^)  (1) 

l-.*372-33.   D\-:B.^.Rev^.R''  =  I^.D.(Wj^'RCv^  (2) 

h  .  *372-152  .  D  I- :  Hp .  2?  6 1/« .  ii"  =  /« .  P  e  v« .  D  .  iJ-  (  TF^)^^  P" . 
[*372-27]  D.E(F«)*P        (3) 

h  .  (1) .  (2) .  (3) .  D  I- .  Prop 


*375.     PRINCIPAL  RATIOS 

Summary  of  *375. 

In  this  number  we  define  a  relation  (li/v),,,  which  is  contained  in 
(fi/v)^  «.*)  hut  has  the  advantage  of  being  one-one,  and  of  excluding  (p/f\ 
unless  /jl/v  =  p/a.  The  relation  (/m/v),  is  defined  as  holding  between  i2  and  S 
when  the  principal  /itth  submultiple  of  R  is  identical  with  the  principal  vth 
submultiple  of  8,  i.e.  we  put 

*375-01.    (fi/v\  =  M  {(gr)  .Tefji,nv,.R=Ti^.S=T'}     Df 
(Here  /j,,r\Vic  =  fiKiifi'^  v,  and  =  v^  if  i;  ^  /it,  by  *37215.) 
The  properties  of  (fi/v\  result  from  *374"2.     We  find  that,  except  when 

/j,  =  v  =  0  or  ^=i;  =  0, 

^l/v  =  ^Iv.  =  .  (fi/v).  =  i^/v).    (*375-27). 
If/i<i;,  a'(fj./v)^=KyjCav"K  (*37514.1), 

and  I>'ip,/v),  =  (Wj^'(jjL/vyi,        (*375-22). 

The  principal  vth  submultiple  of  S  is  {1/v)k'S,  and  its  /tth  power  is 
(fi/v)K'S.     Also  we  have 

il/p\'(l/v).'S  =  (l/pv).'8  (*375-15), 
Nev^.D.(l/pyNe(pv)^  (*375-16), 
(/tH  =  (Wl).|(lR  (*375-2). 

The  propositions 

(j^/v)k  I  ip/<r)K  =  (/i/i'  X,  p/a% 

and  {(W^X'-B}  I  {(PH'^'R}  =  (/*/"  +» p/°-)«'-K 

do  not  hold  without  limitation.     The  former  requires  either 

/ji'^v  .V  .  cr'^  p, 
or  that  the  converse  domain  should  be  limited  to 

m*'(a/p\'i., 

i.e.  to  D'(o-//j),. 

The  latter  requires  either 

p-lv  +s  pl<T  <r  1/1, 
or  R€Q.'{/j,/v+gp/a-%. 


Except  in  the  trivial  case  when /I =0.  >'  =  0.    In  this  ease,  {(tt/i>)f/fi  =  A  but  (/ii/i')«  =  r/c  jl« 


488  QUANTITY  [part  VI 

*375-01.     (^L/v),  =  BS{{-^T).Tefi,nv,.R=Ti-.S=T''}     Df 

*375-l.       \-:R(^/v\S.  =  .('s,T).T6fj,^nv,.B  =  T>-.S=T''     [(*375-01)] 

*37511.     \-:KeFMcycl.fi,v6  NC  ind  -  I'O  .  D  .  (fi/v\  e  1  ^  1 
Dem. 

h .  *372-28  .  D 

\-:Rp.ReK^Cn\"K.T,We/jL,f^v,.R  =  Ti'=  W.D.T^W       (1) 
I-  ..(1)  .  *375-l .  D  h  :  Hp .  iJ  (ij./v%  S .  R  (,i,/v%  >Sf' .  D  .  /Sf  =  -S'  (2) 

Similarly  [■  :Rf  .R(fx./v%S .  R  (fj,/v%S  .D  .R=R'  (3) 

I- .  (2) .  (3) .  D  h  .  Prop 

*37512.     \-:KeFMcyc\.'^(ij,  =  v  =  0).D.(jj,/v%C(fi/v)lic,    [*370-33] 

*37513.     \-.(v/^i%  =  Gn\'(iJL/v%  [*375-l] 

*37514.     1- :  /i  >  V .  «  e  FM cycl  subrn  .  D  .  T>'{ix./v%  =  «  u  Ciiv"k 
[*374-2 .  *372-15] 

*375141.  h:ya<j;.«e^7lfcyclsubm.D.aV/i')-c  =  «uCnv"«  [*375-13-14] 

*37515.     h  :  K  6  FM  cycl  subm  .  /S  e  k  u  Cnv"K .  p,  i;  e  NC  ind  -  t'O .  D  . 

(l/p)/(l/^)/^=(l/p^)/S 
Dem. 

h  .  *375-14 .       D  I- :  Hp .  D  .  E !  {l/p)/(l/v)/S .  E !  il/pv),'S  (1) 

I- .  (1) .  *375-l .  D  I- :.  Hp  .  D  :  if  =  {l/py{l/vyS .  =  . 

{'SiN).Nev,.Mep,.N''  =  S.Mi-  =  N    (2) 

I- .  (1) .  *375-l .  D  h  :.  Hp .  D  :  ilf  =  (l/pv),'S .  =  .  if  e  (pv). .  if p"  =  S . 

[*372-19]  D.M€p,.M''ev,.{M'-y  =  8. 

[(2)]  D.if=(l//,)/(l/^)/^f  (3) 

h  .  (1) .  (3)  .  D  h  .  Prop 

*375151.  \-:KeFMcyc\.N€v,.D.N=(lJvyN'     [*375-l] 

*37516.     hiKe  FM  cycl  subm .  iV  e  v^ .  /o  e  NC  ind  -  I'O .  D  .  (l//3)/iV  e  (;oj^X 
i)em. 

I- . *375-15-151 .  D  1- :  Hp .  D  .  {\lp\'N={llpv\'N'' . 
[*375-l]  D .  {IjpyN  6  (/3i/)« :  D  h  .  Prop 

*375-2.       f- :«  6  J^if  cycl .  /x,  v  e  NC  ind  -  t'O  .  D  .  (/t/i/X  =  (/*/!)«  I  (1/")-= 
Z)em. 

h  .  *375-l .  D 1- :.  Hp .  D  :  J2  {(ju/l),  |  (l/i/).}  »Sf .  =  . 

(gT) .  y e/i. «  V. .  ii!  =  T** .  >Sf  =  T" :.  D  I- .  Prop 


SECTION  D]  principal   RATIOS  489 

*375-21.     \-:KeFM  cycl  subm  .  g  !  (fi/v)^  n  (p/a%  .D.fi/v  =  pja 

Dem.  « 

h  . *3751 .  D  h  :  Hp .Pi^lv\  Q .P(p/a),  Q .  D  / 

(:3.S,T).86,jL,nv,.Tep,na,.P  =  Si-  =  Ti'.Q  =  8'  =  T'     (1) 
h  .  (1) .  *374-2  .  *375-16  .  D  I- :  Hp  (1) .  D  .  ('^R,  S,T).Se^L,f^v,. 

[*301-504]  D  . (aiJ, S,T).Sefi,nv^. 

Tep^  n  o-«  .  Re(jjLa\  a  (va-)^  .  P  =  81"=  T"  =  RT' .  Q^S"  =  T"  =  R"' . 
[*372-28]    3  .  (giJ,  ,Sf,  T) .  S  e  /..  n  ,.,  . 

Te/j,  n  a^.Re{iia\  n  {va\  .  P  ==  8>' =  T' =  R)-^ .  T  =  R* '. 
[*301-504]  D  .  (gii) .  iJ  e  (/^o-),  n  (»//,),  .  iJ'c  =  i&"  (2) 

h.*372-2.(2).DI-:Hp(l)./iff>i;,o.D./4o-  =  z;/3  (3) 

Similarly  h  :  Hp  (1)  .  v^  ^  /io- .  D  .  /io-  =  i;/3  (4) 

h  .  (3) .  (4) .  D  h  :  Hp .  D  .  /io-  =  i;;o :  D  h  .  Prop 


*375-22.     h  :  «  6  ^ilf  cycl  subm  .  /t  <  v  .  D  .  'D'ifilv),  =  ( W,)^'(ji/v%'I^ 
Dem. 

I- .  *375-l .  D 

\-:.Rp.:):R6'D'(ji/v\.=  .{'^8,T).T6fi,nv,.R  =  T'^.S=T'. 

=  .(:^T).Tev,.R  =  T<^. 
=  .{'^S,T).8ev,.S'  =  I,.8{W.)^T.R  =  Ti-. 
=  .(^8,T).Sev..8'  =  I,.8'^(W.)^T'^.R=T>^ 
=  .(^8).Sev..8''  =  I,.8'^iW,)^R. 
=  .  {{f,/vymW,)^R:.Dh  .-Prop 


[*37215.*21-2] 

[*374-21J 

[*372-27] 

[Hp] 

[*375-l-ll] 


*375-221.  I- :  «  e  FM  cycl  subm  .fi^v.O.  d'ifi/v^  =  (  W,)^'(v/fj.yiK 

r*375-22  ?^ .  *375-13l 
L  /*'"  J 

*375-23.     h  :  «  e  FM  cycl  subm  .  /i,  v  e  NC  ind  .  ~  (/i  =  j;  =  0) .  D .  g !  (/t/i;)« 
[*375-14-141] 

*375-24.     h:K6FMcyclsuhm.{fi/v%  =  (p/(r)^.'D.fi/v  =  p/(r    [*375'21-23] 

The  cases  when  we  do  not  have  fi,  v,  p,eT€  NO  ind  —  t'O  require  separate 
treatment  in  obtaining  *375"24,  but  they  offer  no  diflSculty. 


490  QUANTITY  [part  VI 

*375-25.     \-:k6 FM cycl  subm  .  p  Prm  a  .  njv  =  pja  .  D  .  (/i/z')^  =  {pjo^K 

Dem. 
h  .  *303-39  .  *302-35  .  D  h  :  Hp .  3  .  (gr)  .fi  =  pT.v  =  (TT  (1) 

I- .  *3 7  2- 1 9  .  D  h  :  Hp  . /I  =  (OT .  i;  =  ff T .  r  6 /i,  n  i^. .  iJ  =  I'" .  <Sf  =  y - .  P  =  T^ .  D  . 

P€p,na,.R  =  Pi'.S=P'    (2) 
1- .  (1) .  (2) .  *375-l .  D  I- :  Hp .  D  .  (i^/v\  G  (,o/crX  (3) 

l-.*375-15.D 
I- :  Hp  (1) . /i  =  ^T .  j;  =  o-T .  P  6 /)« ft  0-, .  ii  =  P" .  *Sf  =  P" .  T=  (1/tVP  .  D . 

TeiJ..nv,.R  =  T>-.S=T''    (4) 
h  .  (1) .  (4)  .  *375-l .  D  h  :  Hp .  D  .  (/)/<7),  G  (/./«.),  (5) 

I- .  (3) .  (5) .  3  h  .  Prop 

*375-26.     I- :  K  6  FM  cycl  subm  .  ~  (/^  =  v  :=  0) .  ~  (^  =  j;  =  0) .  /t/i'  =  ^/t;  .  D  . 

Dem. 

h  .  *303-39  .  *302-34 .  D 

1- :  Hp  .  /i, !»,  f ,  7?  6  NO  ind  .  D  .  (a,o,  o-)  .  (/a,  o")  Prm  (fi,  v)  .  (p,  a)  Prm  (?,  i?)  . 

[*375-25.*303-211]  D  .  (a|0,  o") .  (/a/o-),  =  (ji/v), .  (|o/o-)«  =  C^^).  ■ 

[*13-171]  :>.{fjL/v\  =  (p/a),  (1) 

h.*3751.*303-1114-182.D 

h  :  Hp .  ~  (;n,  V,  I  v)  6  NC  ind .  D .  {,i/v\  =  A .  (p/a),  =  A  (2) 

I- .  (1)  .  (2) .  D  h  .  Prop 

*375-27.     h  :. «  ePilf  cycl  subm  .  ~(^  =  i;  =  0) .  ~(^  =  i;  =  0) .  D  : 

yct/i.  =  r/'7  ■  =  •  (H^\  =  (?/'?)«     [*375-24-26] 

*375-3.       h  : «  e  PM cycl  subm  .fjL,v,p,a-e  NC  ind  -  t'O  .  D  . 

i)em. 
h  .*375-l  .  D  h  :  Hp  .P(jilv\ Q .Q{p/a%R.  D  . 

('^S,T).S6fi,nv,.P  =  S'^.Q^8'.Tep,na,.Q  =  T''.B'=T'     (1) 

h.*375-141-15.D 

h  :  Hp .  >Se/i.  ft  J/. .  P  =  6> .  Q  =  <S'' .  Te/a. «  <7« .  Q=  T" .  P=  T".  D  . 

(ailf)  .  iW  ={\lpyS.P  =  Mi-^  .Q  =  M'i'=Ti'  .R  =  T''.MeiiJ,p%  . 
[*372-28]  D .  (gM) .  Me (jip),  .P^Mi^  .T=M^  .R  =  T'  (2) 

t-..  (2) .  *375-l .  3  I- :  Hp  (2) .  /i|0  >  i/ff .  D  .  P  {hpIv<t\  R  (3) 

h.(l).(3).        DI-:Hp(l).//,/3>i'o-.D.P(/i|o/j/<7).ii  (4) 

Similarly  b  ■.B.^{1)  .va^/jup.O  .P(jjiplvcT\R  (5) 

I- .  (4) .  (5) .  D  h  .  Prop 


SECTION  D]  principal   RATIOS  491 

*375-31.     h :.  K  6  FM cycl  subm  .  /i,  v,  ;o,  o-  e  NC  ind  -  t'O :  /i^  ^  z/ .  v .  o-  >  /a :  D . 

If  P  {fipjvcr)^  R,  we  have 

(gif ) . M e (up), n  {v<r),  .P  =  Mi-^.R  =  M"'. 
The  result  follows  by  putting  Q  =  M"". 
Without  the  hypothesis  /j.'^v .v .a-^ p,  we  have 
(/^p/va-V-R  =  (^/vy{p/<T\'R, 
if -R  is  sufficiently  small  to  ensure  (l/v<r)/Re{vp%,  i.e.  if 

(<r/pVI.iW,hR, 
^-e-if  Rea'(p/a),. 

*37532.     \-:k6FM cycl  subm  .  fi/v  +» p/o-  <,  1/1 .  i? e «  w  Cnv"* .  D  . 

Mv\'R}  I  {(/t)/<7)/i?}  =  {(/./„  +,  p/^)/iJ} 

The  proof  follows  immediately  from  the  definitions. 

The  same  result  follows  without  the  hypothesis  /i/v +, /j/o- <,  1/1  pro- 
vided R  is  sufficiently  small  to  ensure 

il/va-yRe(fip  +  v<r),, 
i-e.  Rea\p,jv+,pl<T\. 


CAMBRIDGE  :     PKINTEE    BY   JOHN    CLAY,    M.A.    AT    THE    DNIVEBSITY   PRESS.