Skip to main content

Full text of "An essay on algebraic development : containing the principal expansions in common algebra, in the differential and integral calculus, and in the calculus of finite differences : the general term being in each case immediately obtained by means of a new and comprehensive notation"

See other formats


ni 
Hl 


Hl {I/| iH} 
Hl 


: 


— 


Digitized by the Internet Archive 
in 2008 with funding from 
Microsoft Corporation 


http://www. archive.org/details/essayonalgebraicOOjarrrich 


= by) *” Veaees 


I ae bE 


We 


PAY A w } 


¥ Ly iL if 


AN ESSAY 


ALGEBRAIC DEVELOPMENT, 


THE PRINCIPAL EXPANSIONS 
IN COMMON ALGEBRA, IN THE DIFFERENTIAL 


AND INTEGRAL CALCULUS, 
AND IN 


THE CALCULUS OF FINITE DIFFERENCES; 


THE GENERAL TERM 


BEING IN EACH CASE IMMEDIATELY OBTAINED 
BY MEANS OF 


A NEW AND COMPREHENSIVE NOTATION. 


By THE REV. THOMAS JARRETT, M.A. 


FELLOW OF CATHARINE HALL, AND PROFESSOR OF ARABIC 
IN THE UNIVERSITY OF CAMBRIDGE. 


CAMBRIDGE: 
PRINTED BY J. SMITH, PRINTER TO THE UNIVERSITY : 


FOR J. & J. J. DEIGHTONS, CAMBRIDGE; 


AND RIVINGTONS, LONDON. 


M.DCCC.XX XI. 


ee aa | F) anbaiions coy BONO mae a jhe 
ase’ a : AN ) Ley Mit ey. 
‘ah i ihe ier ay Adie PE: eA Hom st aa | bi a r 


é iri < i 
fs i Th Lr ‘f ) Ainagt ’ Pia ¥ # ta | ee & 
Bo iaee AMR MeteE ae Ai RAN PR MOR Oa ae 


oh PV ay ; ’ 3 


} ; eK . wrzt ‘ te Fe My 
iv)! x Pee Peal ary « i 
%i { Pr ; 
? Lg ru , 
i | Q 
i Seay ke re 
; the) eo ree. 8) fh } ; t PTE EA) j mT i 
ni ‘ 4 " — 
: Sarit ee ; Be tit ALY ih 
p ie - 
% F 
’ a #5 ng ty perusal fad byes - | i ‘ of 
. ; { 
* * , - ied 
y ) 2) Gy re a ' vie 
1) 4 7 
eee ri 2 
hk ee Ae Le DON be \ TEL d Wii K ECR A ‘ 
" be) t ‘ iJ + j 
Pas i ri 4 J ; 
‘ 
fy cr " Hy 
wae Pi ery ng 4 j . 
: The Dal By Wal , r 
uh hit am me Pan 2 ee Ee : Fa { bby y 
n ., a pai hy? ‘) + med et Ror, eG At esha 34 i 5 a(t), ao "aty Ne . ry 
’ ’ eery i iy i 
| . Reon) ean ee ered 
: Minw BN violin TARY Leal 
ant 
ay) i if 7 1 
i‘ i ene patwiecse tonal abe? 
i ‘i 
i fi 1 
by 
i) 
yi eae Mae fh j 14 
mh 1 } d 
} 7 i : ie ™ } 
fi! f } VM Dee RY 
‘ . ie Ns hay" 
: 1 ea nv ath is v 
wee ded 
\ ‘1 Yee 
17 ih sani A 
at 
; mt pias hae 
5 j hae i 
* ‘“ 


PREFACHE. 


Tux following pages are intended to illustrate and apply 
a system of Algebraic Notation submitted to the Cambridge 
Philosophical Society in the year 1827, and published in the 
third Volume of their Transactions. In that paper the ap- 
plications were necessarily few, and the whole was deficient 
in that development which was indispensable to render the 
introduction of the system into general use at all probable; 
but in the present Work it is applied to the demonstration 
of the most important series in pure Analysis. The methods 
by which these are demonstrated are partly original, and partly 
taken from one or other of the works of which a list follows 
this Preface, but they are in general so much modified that 
a distinct reference to the inventor of each demonstration 
appeared useless; so much, however, is due to the admirable 
works of Schweins, that it would be unjust not to make a 
distinct acknowledgment of the great use that has been made 
of his. “ Analysis.” The demonstration of the legitimacy of 
the separation of the symbols of operation and quantity, with 
certain limitations, belongs to Servois, and will be found in 
the ‘Annales des Mathématiques;” and the proof, that the 
coefficients of the binomial, (the index being a positive integer,) 
are integers, is due to Mr. Miller, of St. John’s College, and 


is the only independent proof with which T am acquainted. 


iv PREFACE. 


The following apparent innovations in the ordinary notation 


are not original : 


(1) £,¢(«), for p(#+Dz), is partly due to Arbogast, 
who uses E(x) for the same function. 


n 


ae 
(2)" d;-76, aor ae is due to Lacroix, although not used 
a 


by him, being merely pointed out in a single line*; 
it was suggested to the writer of these pages by the 
analogous integral notation invented by Professor 
Airy. 

(3) (%),_,> for the value assumed by w when 2 is put 


equal to a, belongs to Schweins. 


In order that the work may be as independent as possible, 
the Reader is supposed to be acquainted only with the first 
rules of Algebra, and the fundamental theorems of Trigo- 
nometry; and, for the sake of facility of reference, the whole of 
the theorems have been arranged in an index at the end of the 


volume, 


The additions contain a few Theorems of importance that 
did not suggest themselves till too late to be, inserted in the 
text, together with a few simplifications of the demonstrations 
inserted in the body of the Work. 


In conclusion, the Author has to acknowledge the great 
liberality of the Syndics of the University Press, in defraying 


a considerable part of the expense of publishing. 


* Calcul Diff’ Tome 11, page 527. 


LIST OF WORKS 


WHICH HAVE BEEN CONSULTED. 


ANNALES des Mathématiques. 
Arbogast, Calcul des Dérivations. 
Herschel, Examples on Finite Differences. 
Hindenburg, Sammlung combinatorisch-analytischer Abhandlungen. 
Lacroix, Calcul Différentiel et Intégral. 
Laplace, Théorie Analytique des Probabilités. 
Schweins, Analysis. 
Theorie der Differenzen und Differentiale. 


Wronski, Introduction a la Philosophie des Mathématiques. 


CHAPTER 


i. 
Il. 


INDEX TO THE CHAPTERS. 


PAGE 
On Series in general........2.. se seee cere cere eee r cee eee 1 
On Products and Factorials...... tiaeashic ete 25. eae ee Mae 


On Combinations and Arrangements..........--+-+++++- 20 
On Binomials and Exponentials...............--.+-+-+++ 23 
On (Finite (Differences cri seteee rein coterie ore rete 40 
On Differentiation in general......-....--.-+--++ 20-00 66 
On Polynomials eye rier leek rie ei ai aia oe 78 
On the Differentiation of Exponential and Circular 

WR aACELONS es fies class lee e Oe Tei ome rere ote siete 93 
On the Expansion of Circular Functions........---.--- 102 
On the Integration of certain Definite Functions........ 123 


On Generating Functions... ........--se2 esse eee eee ees 136. 


INDEX TO THE SYMBOLS. 


PAGE ART. 
n 
n 
1 Zz =, On 
nr 
g 3 Sin Om 
r § 
@) 
5 15 Seas 
n nsr 
13 28 Pam, and P,, ap. 
15 38 |@ : | a, and | @. 
nym n_ 
n 
19 49 Sin tb, § 025 4C- 
m m+1l n+l 
m,n Mm,ns:s 
20 53 C,a,, and C, a,. 
m,m—n 
21 59 C,,: (a,-,). 
n 
22 62 Aah. 


Al 116 (p+), u- 


n 


nT Vprty)fu 


r r+1 
45 125 (uw), and @,_,(w). 
126 E, (wv). 
127 D,(u). 
129A, (u). 


58 168 E,,,(u), and D,,, (uw). 
66 188 d,"u. 
67 195 fru. 


78 /9ee S.C): 
79 228 wah (a), wa" p(a), wa", and w”a,”. 
89 241 (aon Le 
nr 
136 335 Be. 


336 Gy.Uz- 


ERRATA. 


The Reader is requested to correct the following Errata before he 
proceeds to the perusal of the Work. 


PAGE LINE ERRATUM. CORRECTION. 
5 8 A5+d9n,_1 As... Gena 
s 
6 last S, Ss, 
19 1 cl : c 
n+l 1 
6 P 1p 
nym m,n 
21 
n—m+1,n n—m-+1,m 
22 17 y 
last but one +4, a, + a4, 0,4) a, 
last 2a,a,” 34, 4,7 
m m—l 
24 19 A 
AT last D,(2x) D,(u) 
48 3 $(u) $ (x) 
14 a.D. a.Dz. 
62 ll a, at 
88 ll e2m+s ae2m—S 
89 10 2ms 2m 
98 6 and last (201) (200) 
104 15 ~ n 
105 of oe ae 
“ last but one Sn Sn 
126 8 and 9 x ae 
135 6 Sm ae 


146 last but one AY (ue) A” (uz) 


ON THE DEVELOPMENT 


OF 


ALGEBRAIC FUNCTIONS. 


CHAPTER I. 


ON SERIES IN GENERAL. 


1. Iw the expansion of Algebraic Functions it has been 
usual to investigate the first three or four terms, and from 
these to deduce the remainder of the series by analogy. The 
unsatisfactory nature of this method in all cases, and the errors 
into which it may readily lead us in very many instances, must 
have been obvious to all who have made use of it. In some 
cases indeed, the connection between the consecutive terms at 
the commencement of the series is so obscure, that the most 
patient of analysts have given up the search, and have been 
compelled to state that ‘the law of the series is not obvious.” 
In order to avoid this obscurity and embarrassment, we shall 
adopt a notation by means of which the general term will be 
obtained in eyery case, and which will enable us to perform 
any operation whatever on a series, with the same facility as on 
a single term. 


2. The m™ term of a series being usually some function 
of m, we shall denote it by a,3; and, taking the letter S as an 


- n 
abridgment of the word Swm, the symbol §,,a,, will be used to 
A 


2 


denote the sum of n terms of which the m” is a,,: that is, 


n 


Sa Om = A, + Ay + Az + eee + Ay 


In this notation it will be seen that the index placed over 
the § denotes the mwmber of terms, and that the index placed 
under the same letter, is that to which the successive values 
1, 2, 3, ..., , must be given, in the function a,,, in order to 
form the consecutive terms: that is, 


S,p(m) = (1) + O2) + (3) + «+ @(n). 
Or, to give examples of a more simple nature, 
Se = 1749743? 4+...4+7. 
Set 4e4 oe WAR 
S,, (r—2m+1)'=(r-1)° +(7-3) + (7-5) +... + (7-2 41). 


3. The symbol S, a,, denotes that the 7" term must be 
omitted. 


4. Theorem. If a, =b,, ("=!)*, then S, Oy = 8.8 


m=n 


For, since a, = b, 


105 
az = b, 
&e. = &e 
ae =.0.. 


*, A) +d. + a3 + &. + a, = b, + b, +b, + &e. + b,, 


n 


n 
A a 
or Sn Gn — Sn bn 7 


* By this notation is meant, that this equation is to hold for every integral value of 
m, from 1 to n 


3 


n n n 
5. Theorem. Sin (Gn oc bn) 7s Sn Qn + Se Bn,- 


nn 
For, Sy (Gn + On) = +O, + a +b, +...+4,+6, 


=, + d+... +04,+6,+b,+... +6, 
= Sr An + ro me 


6. Theorem. If b is independent of m, then §,,a,,b=b. S. Gis 


na 


For, S,,@,0= 46+ a,b + a,b +... +a,b 


=) (a, + dy + 34+... +4) 


n 


=b.Sn4n- 
peor. (S,0— 720. 


8. Problem. To invert the order of the terms of a given 
series. 


n 
Now, Si Gm = % + Ao + 3+... +A,_1 +4, 


= Uy, + Oy_) + Up_o +++. +, by inverting the series ; 


n 


aa Da An—m41° 


In order therefore to invert the series, we must substitute 
nm —m +1 for m in the expression for @,,. 


n—r 


n r 
9. Theorem. Si an = Si an + Sh Brim: 


For, Sy Gm = $4) + dy + Oz + 00. Gb + fOr + Gyo + --- + a,h 


n—?r 


re 
z = 
= Sn Gn + os Dy 4m: 


By means of this theorem we can separate from the rest 
any number of terms, taken either at the beginning or end of a 
given series. 


1 = x” 
10. Theorem. SS, 2") = ——. 
1 a & 
For, ve} = a} ( b= 
1-wv@ 
anne a™ 


o . or nm 
— S., ge} — S.. ‘pap a Sn = 5 (4) and (5) 
y a—1 a” n—1 a” a 
fe +8, — 5 i 9)5 
1—w@ Pd ep it te fe ie (9) 
1 = x” 
- 1 — 
a” —a*- 3 
1. Con. 2S a" a. 
a-—-@ 
1 n a” 
12 "OnE: 2: = Sa") 4 
1 Sod ees 
eee a 
anc = S,, =] m—1 s va} gs —1)* ; . 
1 + v : ( ) ( l +: = 


If w is <1, the term will diminish as 2 increases, 


1 Sh 
nm 


and therefore, by taking » sufficiently great, §,,a"~' may 
1 


be made to differ from by a quantity less than any 


1 = v& 
assignable quantity, although that difference will never vanish 
] 


for any finite value of 7. In this case ; is said to equal 
, —w@ 
* term is v"—!; and this 


= 


4 m— I 
= Sn av . 


an infinite series of which the m" 


relation is denoted by the equation ; 
Z — & 


13. If the law which determines the value of a,, in the 


n 
series S,,@, is such, that a,,= 0 for every value of m greater 


n 


eo 

than 2, we may substitute §,,a,, for S,,@,,; and this substitution 
will frequently facilitate our investigations. 

Qn n n 

14. Theorem. S,, Qn = Sn @en_1 £ Sm Gems 
2Qn—1 n n—l CF 
a 1 x _—— 
and Sh, Qn = oa Gam — 1 ar Sin Ooms ‘ i, 
iy ? 


Py | ¢ A f 
fk or, hn On = A + Ay 27 a3 + ay + O5ck ae + Dry, | 


= (Ay + Ay + As + n_ 1) + (dg +O, +5... + Ao) 


n n 
| 1 
= Se Gon 1 ar Sin Aon © 
2n—1 


and Si Gy, = ay a ay ot a: ar vee a Asn) 


= (A, + Gg + 02. + Uon_1) + (Ge + Gy + «2. + Aen_o) 
n—1 


n 
\ 1 
= Sin Qom—\ + on Gon: 


C1 a a 
1 
Cor. ho a, = oye Azm—1 - oA om « 


By means of these theorems we can separate the odd and 
even terms of a given series. 


15. The symbol §,,S,,d,,, denotes the sum of 7 terms of 
& 


which the m™ is §,@,,,: that is, 


Tr s 


8 8 8 
Si Sn Fina = Sn Gi,n + Sn Gen + Spds,n be - + tS n 
=O, + Got 3t+.---+&,; 
+ fly, + Mo,9 + Aog+..-. + Gas 
+ lg + 3,9 + zg +....+ Gy, 
+ &. +  &e. 
+ G,, + G,2+4,3+.-..+G,5. 


It is obvious that the same principle may be extended to any 
number of symbols of summation. 


6 


s 


16. Theorem. (Snadm) x (S,5,) = SnGn-Srbn*. 


nun 
’ 


1 
For, Sp Gm = 0, +d +0,+... $4,. 


.e (Sn Gm) x (S,,b,) = 1. Sy 0y + dy Sy by + Og. Sy Dq+ eee + Ay SnD, 


r ‘ 
= of An S. 2, . 


17. Theorem. If is independent of m, and s of m, 


r 8 hl Rae 
then Si, S,, Qn,n = S., Sn Gn, n° 


, 


8 
For S, Gn, a Gn,1 + Bn,2 ats On,3 Ties at Bn, s ~ 


r r r r r 
ve Sn Sn On, a Sn An 1 ap Sin an, 2 ap Sn Bn, 3 Ses SIP Sn An, 53 (4) and (5) > 


’ 


fp 
S,S8 
a n m Lin, n* 


oo © ry 
Qa I ei) al 
18. Theorem. Sn Sn Gn, n= a S., On—n+1,n° 


o oo 


=) 
For, Sn S., an, n= S Gan n> (17) 5 


ron) —-) ro) co 
aI a a NI 
=D An, tS, an, ot Sin Gm, 3+ eee +S, Am, at &e. 


= Ay, 1+ Ae, 1) FAs; 7A, Fees FOn,) +&c. 
FO) ots ots oF 022 tOn_1,2 +&c. 

+4) 3+423+--.+Am 23 4-&c. 

+4), 4+ -0et+On 34 +&c. 

+&c.+ &e. +&c. 

+4), n+KC.4+4n niin +&e. 

+&e.+. &e. + &c. 

+4), m +e. 

+e. 


* That is, the product of eg! multiplied by 5. bn, 18 a series consisting of + 


terms of which the mth is am» Sn On- 


7 


2 m 


1 3 oF 
a} a! SN) Ql 
=e, ntSn43—nat es, nt A5—n,2+ &e.+5, On—n+i1,a> &e. 
by summing vertically ; 


eo m 
= Sy Same 


o m 2 oe 


i Cor, t. Siete HU to tt Mae 


oe m— 0 om 


1 
20. Cor. 2. Sn Sn On, n= n,n SERS AU ae (9); 


m 
2] 


) 
=S 
—Nm nOm+iin 


mo 2 


=n Da Gace (19); 


co ok a LO ° 


: 
€ oN aM 
20 Phcorein. | S38, 0.0 Onan ee ae Oe lay eed ae 


vi r 


= ‘ - : 

For, S29.@n,2=9nGi,nt9n2,n+9n%, nt «22 +9n Ont KC. 
= Ay, +, oF Gy, g++. +A nt --- +4), 
+ Ap, 1 +2, 9+ Mo, g+ o-- + Mo, nt oo. +A, , 
+3, 1 +s, 9 +s, 3+ 2. +s, n too. +s, 
+ &ce. + &e. + &e, 
NEC SGP atu Aare Saha Shea A 
+ &e. +. &e. + &c. 


therefore, summing diagonally, 


= r 


Sn S.@in,n= M1, 1+ (Go, + %,2) + (As, 1+ 2,24 hi,3) + vee 
+ (Gy, +@y_1,2+@y-2,3+ vee +, ,) + (Gy 41,14 Gy, 2+ Gy —1,3+ vee +s, y) 


+ (@y4014Ory12+4,3+---+4,,)+&e. + &e. 


1 2 3 r 
a 5S ,42—nnt+SnQs— nat Se Bes eee +8,4r—nernt 
r r 


“ts 4S ,Gr—n+ant ale ayaa &c.} 


m 


Y oo) | 
ay NM 
= Sn S,.Gn —n+l1, rt Sn S, Ont r—n+1,n° 


8 


mn m m—n+1 
Al 
22. Theorem. §,8,4,,=S_ S:Gn¢1=11 
™m m—n+l1 


and =s), Sree s, 


mn 1 2 3 m 7 
For, 8,8 ,.4n,:=S-41, 1+ 9742, r +9; Gs, + 022 +9;Gn, 
=@),1- 
+ Az, 1+ G2,2 
+ Gs, 1+ 43,2+ 43,3 
+s: +, 24+, 3+ My, 4 
+Gs5,1+45,2+ As, 3+5,4+4s,5 


+ &. + &¢. 


+ Gin, 1+ Gn,2+ Im, 3+ vee coe tm, ind 


therefore, summing diagonally, 


mn 
S291 On, r= Ay, t+ Mo, 2+ As, 3+ 06. + Om, m 
+2) +3 oFs,3+ 0o¢t+Un,m-1 
+31 +s 245, 3+ 26. +m, m-2 
+ &e. + &c. 
+n -1,1 + 4n,2 


+Gn,1 


m—1 m—2 m—n+1 


ae a, PS, Oy 4i,rtOr +2, rt eee tS; Osan pcos +m, 
mm m—n+l 
So) SLU 
and, summing vertically, 


mn m—1 m—2 mnr+1 


S,9;%,1 me a,, its; Gy +4, ot S, Ag 4.9,3+ coe +S, Qn+-r—1,n7 coe tn, m 


m m—nr+l 


=) Sie ee 


9 


2m m n 
a | A 
93. Theorem ioe eG. n + (eqs Hlog es ;, ,) 
m—-l m—n 


1S, Qom—7+1, reitOn S; (ag — 131, nt 1 Come eta 2) > 


2m—-1 n m-l1 7 
and S., S, Qn, 2 = S, (Git in r+ Gon —++1, rt) Qom —r—1, r+1 
m—-—2 m—n—1 2m—1 


z 
+8, S, (@om—r—1, dna t-+ Ginn 1, 28a abet Dr Som 1 r- 


2m 


2m n 1 2 3 
For, Ss, S,@y,y= SQ, +9; le, +S As, yt Pee BS. don: 


=) 


+ Qo, 1+ 2,2 

+ G3, + 43, 2+ A,3 

+4, 1+ Us, 9+ My, 3+ %,4 
+ Xe. + &c. 


+ Bom, 1+ Bam,e+ ete + Bm, 2m 3 


therefore, summing diagonally, 


2m n 


S,S1@n, r= ( (G11) + (4,1) + (43, 1+ Ae, 2) 
+ (G4, 1+ 5,2) + (Gs, 1+. @4, 2+ As, 3) + (5,144,243) 
+ (Gy,14+ 5,945, 3+ Ay 4) + (Ag, 1+ 47,24+%,3+%s, 1) 
+ W&e. + &c. +&c. 
+ Bam —1,1 + Gem —2,2+ Bam —3,3+ Gam —4,4 + Vom —5,5 4 v2 2 + 4m, m 
+ 2m, 1+ Com —1,2+ ham —2,3+ Lom —3,4t bom —4,5+ +++ F4m+1,m 


+ Gam, 2+ Lom —1,3+ om —2,4+ Gem —3,5+ Com —4,6 + e2¢ + Omti,mt1 


+ Gem, 4+ Gem, 1,5 + Gem —2, 6+ Gem —3,7+ Dom —1,8T «+» + Um+2,m+2 
+ om, 5+ om —1,6+ Lam—2, 1+ Vom —3,3+ Gem—s, 9+ 00+ + Om4s3,m+2 
+ Gam, 6+ Com —1, 7+ Cem —2,8 + Cam —3, 9 + Cam —4, 10+ OL +n 43,m4+3 
+&e. 

+ (@2m,2m—3+ em — 1,2m—2) “Fe (Gom,2m 2a Bem —1,2m— i) 


: + Gam, 3+ em —1,4+ Lom —2,5+ Lom —3,6+ Gam —4,7+ ++ + Um+2,m4+1 
; (Giana) ar (Gin, 2m)* 


B 


10 


mn m 


S15) S, (Gon —y, 7+ Oon— 14 ir) +8, Qom—r+1, 441 


m—-1l m—n 


+S, Ss, (Gm: venti t Com—rtirente) 5 


2Qm-1 n 2nm—-2 n 2m—-1 


and S, S, @n7=9n S,GartSr Qom—1, 79 (9) s 


m—-l n m—l 


=S, S, (Gop y,r+ Con 14 “) +S, Gom—y—-1,1r+1 


m—2 m—n—1 2Qm—1 


+S, S, (iis aes Bete Meee cpa a ahaa) Pm pOann ae 


by the former case. 


n—1 


24. Theorem. Vf Gy 44=Gn+0_. (Ca, then a,=a,+S,,0n- 


m=n—1/)? 
n—1 n—1l n—l 


For, Sn Ne Sn On+ ros De. (4) & (5). 


n—2 n—-2 n—l 


: y S 
m Gm +1 au: a, = ay ati S.,. An +1 a 5 b, > (9) 2 


n—1 


d,=4+8,,6,,, cancelling identical terms. 


25. Theorem. If a,4;=Ccan+bn, (as 


m=n—1/}? 


n—l 


— =u m—1 
then =" . a, +3, Cc » Des bs 
For, 1 APR 3 tt) 3 


OP Gazi =C" Ogg 0" 7 -- Dp, multiplying by c™>); 


n—l n—l n—1 


and Ss ORG en COs Seth hm a Deen (4) & (5); 


n—2 n—2 n—l 


Y = = 
y+ Sn ce Gy, —-m= =P c™ a, —m 1 c : : ay AF oF ce" b, —m, (9). 


n—l 
5. Wi pe ney + no CED. 


n—-m* 


26. Theorem. 


se = at 
x ome 
(Sn Gn-1 bet ") (S,, Ba, a ae ') ae S.. a 


11 


m 


= oe 
For, (S., An-1 anit} (S,, baw Bi ‘) 


2g. Con. iS Ona - 


8 


co 

a on Bn —-1- ee S,, by ap 
oe © 

7 Sn Sh Gy 1° ee . ak a 
i=) 

= Sn S,, Qn—n 5 Oe 6 are 


oo m 


-1 
Ee eT ae S,, A BY s: 


2 m 


ree i ot S., ge. S, Amn —n+ G—1> 


1 \ 
7 S, an—n ° 


Goats 


(16) ; 
(6); 
(18) ; 
(6). 


CHAPTER II. 


ON PRODUCTS AND FACTORIALS. 


98. ‘Tue Product of n factors, of which the m" is a,,, will 


be denoted by P,,,a,,; that is, 


nn 


Pose, =a). 85 dg...2 @,,. 


The symbol 1D a,, will denote that the 7*" factor is to be 
omitted. 


29. Theorem. If dm =bn, (=), then Pram = Prbn- 


m=n 


For, since a, =}, 


a, = by 
a, = b, 
&e. = &e. 
a — bs. 


therefore, multiplying, 


Uh © a 21g ne (Og = Ui 05. One. Ons 


n 


or Ps an = Ps Dn- 
30. Theorem. 
If b is independent of m, then P,,(a,,b) = b". P, Dns 


nt 
For, P,,(a,6) = a,6.a2b.a3b...a,6. 


UjQs0nee. 


n 


n 
= b” > Pp Qn: 


13 


31. Problem. To invert the order of the factors of a given 
product. 


7 
Now, Paqe— a1 45.0; 


o 


coe A 


n 


= d,,.,_,-4,_2...4,, by inverting the order of the factors; 


n 


Pe Qn—m+) 0 


If, therefore, we substitute »—m-+1 for m, in the expression 
for a,,, the order of the factors will be inverted. See Art. 8. 


n—Tr 


32. Theorem. ie an = Ba (Gn) 2 P,, (@,4:m)- 


n 
For, Ps an = (a - Az + Agee. a,) (G41 »Qry2+ Ur43-- Gy) 


m—r 


= P, (CA) 6 P,, (G5). 


By means of this theorem we can separate from the rest 
any number of factors, taken either at the beginning or the 
end of a given product. See Art. 9. 


n+r 


oo SCOR. jee (4) : ] ye (@, 5m) =pe An: 


0 
34. Theorem. P,,a, = 1. 


O+n 


0 n 
For, ipa (an) *) Ps (a5; =) = | Ons (33) 3 
0 n n 
or ie (4) C ) Pak ay, = PS Ans 


0 
. Pia = 1 by division. 


—n 1 1 
35. Theorem. P,, a,,=—~——— = 


n we yc - 
Be Am —n i a_ (m—1) 
n—n —n 


n 
For, mOn—n = | (Gn_n) c | a Ons (32) > 
and = 1, (34). 


—n n 


a jie (4,,) $ Poe = 1 3 


14 


—n 


and P,,a,, = ,» by division ; 


n 


m&m—n 


ee 


m @_(m—1) 


n—l 


36. Theorem. - If dy.) = m-b,, then a, = a,.P,,dn 


For, 6,, = ; 


n—] ait Qn +1 
oe |i = Ps ( ) ? (29) ; 


m 


n—2 


pe P. (Gn +1) .: a, ; (32); 


a - Pre 


a pie, ae 
= —, cancelling the identical factors. 


n—l 


a, = ay, . Re be 


37. Theorem. If an,.= dans. 


n—l n—l 


then Ayn = Ap. P; bem and Ayn) = A - BP; Bom 1: 


Bom+2 
Kor — 


Gam 


n—] n—l Qo me 
-s P Don, = ‘PF ( ) b) (29) ; 


‘2m 


n—2 


— Palaons2) don (32) ; 


My : ‘Ps Aon 42 


a, :; 
= —, cancelling the identical factors. 
Ay 
n—) 


Cyn = Ap : ip Bam: 


Gom+1 
Also, Gyan ae 


hy m—1 


lI 


n—1 n—1 Doms 
es Ec. Bom —1 = Pa ’ (29) ; 


‘2m —1 


n—2 


ps (aon4) © Aan} : (32) ; 


Q ‘) P,, Bony, +] 


Ag, 1 


a, 


n—l 


"o Aan) = ay * P, (Oam—1)- 


38. The symbol |a denotes the product of m factors 


forming an arithmetical progression, of which the first term 
is a, and the common difference m; if m=—1, the m may be 
omitted; and, if, in the same case, m=a, the n also may be 
omitted: thus 

|@ = a(a + m)(a + 2m)...(a +m —1.m), 

n,m 

|a =a(a —1)(@—- 2)...(@—m + 1), and 


n 


|a=a(a—1)(a-2)...2.1, 


39. Theorem. ab=b".\a p 


n,m m 


For, |ab = ab. (ab + m)(ab +2m)...(ab +n —1.m) 


n,m 


ll 
S 
g 
LS 
g 
ah 
\s 
ae 
as 
g 
aie 
SS 
3 
eet 
aa 
g 
oe 
= 
| 
x 
3 
a 


40. 


For, 


16 


Theorem. \@ =r ig, Sale an1. 


ym ny—m 


|@ =a.(4+m)(a+2m)...(a+n—1.m), 


n,m 


= (4+n—-1.m) (a+n—2.m)(a+n—3.m)...(a+m) a, 


by inverting the order of the factors; 


4]. 


For, 


For, 


43. 


For, 


=|a@+n—1.m. See Art. 31. 


Nn, —m. 


Theorem. a = |a .|a+trm. 


My, ™m Vv, mm u—?r, ™ 
|@ = Ja.(a+m)(a+2m)...(a+r =) -m)t x 
n,m 
\(@t+rm)(a+7r+1.m)...(a+n—1.m)t 


= |a. |@ +rm. See Art. 32. 


r,m N—r,m 


Theorem. |a= 


0, m 


[a \a +0.m = \@ 5 CAL ys 
0,m n,m O+n, m 
or \@ . | = |a. 
0,m nym n,m 


4 ja = 1, by division. See Art. 34. 


0,m 


Theorem. |@ = eS = SS. 
\@ —nm a—m 
‘ —Ns™m™ 
n,m Nn, —m 
a—-nm = |@ —nm.|a, (41), 
m—n,m n,m —n, mM 


and =i, (42); 


-|a-nm.|a=1. 


n,m —n,m 


, by division ; 


, (40). See Art. 35. 


44. Theorem. —— =0. 


1 1 


[== [== 


—m,—1 


= |—m+m, (43) ; 


m, —1 


ie 


m 


For, 


=m); 


45. 'The theorems in Articles 34, 35, 42, and 43 are ana- 
, 1 ‘ : 
logous to the equations a°=1, and a~”= —; which last equations 
q” 


indeed may be deduced from them as particular cases. 


n—m 
EN 
™m n—™m 


48. Problem. 'To shew that i is a whole number; 7 
m 


and m being integers. 


m+1 = m+1 aa S,—, (24) 
m+i1 m+ 1 m 
T 
n—1 
=S,— 
r | m 
n n 
If, therefore, —- were an integer, —“t would be an integer ; 
[= bes 
n n 


but fr is an integer, and therefore — is an integer. 
m 


te 


19 


49. The symbol § ay +b, §...§¢}...¢ denotes the re- 


m m+1l n+l n+l 1 
sult of the combination of the symbols 


ay ty aa + be fon fy + By} Of oof 5 

1 2 3 ntl ntl 1 
the brackets being omitted after the expansion, if they are then 
without signification. 


m—1 


50. Theorem. }ay +055... Cesiee a, Pb, +e: P,6,. 
m+l1 n+l 
For, t AmtDm § ae. {C= {a, +b, fa.+b,§...$ 6 $...$ 
m+l n+l 1 2 3 n+l ntl 1 
=fa+ D+ 3b, eas 
1 


+ §[B,y00.by-1- Ay §B,b2...b,¢} ...} 


n+1 n+1 1 


= a,+b, a+b, bo As .e. 
+b, b,...6,_,@,+6,65...6,€ 


m—1 


Euan . P,b,+e. PG. 


51. Theorem. If a,=6, + €,- +23 


m s—l 


then a,= S, a Piensa. at Anime: Prokes. ar 


For, a,= SOO, Dn at Cn za) see nen a see Carnes a 
1 2 3 s s+1  m+l m+l 1 


by substitution ; 


™m 


= bn Fay Os ante NU eee (49) ; 
s s+] m+l 


m s—1 m 
= Cera meee et Onemaces Cn+ial a (50). 


52., ‘Corsi lfias = '0in 4 Cnyn “Gate dees; then 
s—l 


Am, n= S, i eter a,n+s—1.8 * Pi (Cnt. a, n+t—l. a) 


+ Ans rantrB ° P, (Cer oat 8)- 


CHAPTER III. 


ON COMBINATIONS AND ARRANGEMENTS. 


53. Tue symbol Ce: will be used to denote the sum 
of every possible combination, (without repetitions of any one 
letter in the same combination,) that can be formed by taking 
m at a time of m quantities of which the r™ is a,; and the 


mn; s 
sym bol C,a, will denote the same thing, with the condition 
that a, is to be every where omitted. 


m+1,n+1 m+l1,n Mm, 7 


54. Theorem. C,a,=C,a,+a,,,.C,a,. 


m+1,n+1 
For, C,a, must consist of terms into which a,,, does not 
enter as a factor, and of others into which it enters as a factor 


m+1,n 
once only; and it is obvious that C,a@, will express the first 


mM, nN 


set, and that a,,,.C,a, will express the second. Hence the 
truth of the theorem is manifest. 


55. Theorem. If b is independent of r, then 


my, rr Ms, 7 
CHG Oa 0" Cras 
m,n - 
For, C,(a,6) denotes the sum of a certain series, each term 
of which is the product of m quantities, and into each of which 


My, rt 


quantities 6 enters as a multiplier; and C,a, denotes the sum 
of a series, each term of which is the product of the same m 
quantities, each being deprived of its multiplier 6. 


56. Theorem. If ais independent of *, 


ye 
mn 


then C, (a) = . a”. 
m 


n 


n,m 


For, the number of terms in C,a, is Ee and each term 
m 


myn 
consists of m factors. Since, therefore, in C,(a) each of these 
factors is equal to a, the truth of the theorem is manifest. 


57. Theorem. =(Cigse 


n 


Pia 


For, the numerator of the first member of this equation con- 
sists of every possible combination of m quantities, taken m at a 
time; and, hence, that side of the equation consists of a series of 
fractions, the numerator of each being unity, and in which the 
denominators are formed by taking away, in every possible 
manner, m of m given quantities, and will, therefore, consist 


of every possible combination of these m quantities taken »—m 
at a time. 


0,2 


58. Theorem. C,a,=1. 


0, N—nN,n 


For, C,.a, = C,a, 


m,n—m 
59. The symbol C,., (a,.0,) denotes that there are 1 
quantities of which the 7 is a,, and m others of which the 
s™ is b,, and that every possible combination, (without repe- 
titions of the same quantity in any one combination,) is to 


be formed of the first series, by taking them m at a time; 


22 


and that each combination thus formed is to be multiplied 
by ~—m quantities of the second series, so taken that in 
each of the combinations the whole of the natural numbers 
from 1 to m shall appear as indices: thus, 
2,3 
C,,5 (4.5) = @, d2b3b,b; +; A3b2b,b; + a, d,b2b3b; + 4, A5b2b5 0, 
+ a,03b,b,b; + d.a,b,b,b, + a.a;b, bb, 
+ a; a,b, 6.6; + A350, b.b, + a,a;b,b,bs. 


60. Cor. If b,=6, then C,,(a,.0,) =0'-".C,a, 


61. Theorem. 
n—m+1,m n—m,m n—m+1,m—1 
Ci (4, : bs) = An41- Cs (a, , b.) mL Dna q Cr (a, ; b.). 
n—m+1,m 


For, C,,, (@,-6,) will consist of terms into which a,,,, enters 
as a factor, and 6,,, does not; and of others into which 6,,, 
enters and a,,, does not. Also each of these terms must con- 
sist of m factors, exclusive of the factors a,,, or 6,,,; and each 
of them must contain 2—m-+1 factors of the series @,, d2,.¢+@,+15 


n—m+1,n 


and m of the series 6, 6.,...6,,;. Also C,,,(a,.6,) must con- 
tain every possible term that can be formed consistently with 


n—m,m 
these conditions. Hence a,,,.C,,,(@,.6,) will contain all the 


n—m+1,m—1 


terms of the first kind, and 6,,,.C,,,(@,-.6,) all those of the 
second kind. 


62. The symbol A,,,a,, denotes the sum of every pos- 
sible Arrangement that can be formed of any number of 
quantities of which the m™ is a,, these arrangements being 
subject to the condition that the sum of the indices subscript 
shall in every single arrangement amount to 7; repetitions of 
the same letter being allowed in any arrangement: thus 


4 
AL Ay, = Ay + AzQ, + AgAy + A,H, QA, + A, A, 4, a, + A, A, Ap + A, 


= 1, + 20,0, + A.” + 2a,. 0,7 + a). 


23 


n—m 


63. Theorem. A,,@, = SnGmn- 


+r Oy 
n m=—1 
= S., Qn—m+1 . ‘AG Dy. 
For, A,,@, is the sum of all the terms that can be formed 
of any number of quantities a), a, &c. such that the sum of 


n—m 


the indices subscript shall be m; now a,.A,,a, will include 


n—m 


every term in which a,, is a factor, and §,,a,.A,,a, will 
include all the admissible values of a,, and therefore every 


n 
term of A,,4,. 


= Se keer ars (8). 
64. Cor. AG; =r 


n n 
65. Theorem. If a,=S,,0,-m-6,, then a,=a,.A,,0,. 
1 
For.) 4) = dy. 0, = dy) iA 4, 5. 


Qe => a,b, + Ay b. 
2 


= a, (6,? + 6.) = a. A,,0,- 
as = a,b, + a,b, + a,b, 


= Ay (b3 + b, bs + bb, + b;) 
3 


= )- se 63 
a, = ab, + Az b, a a,b, oe Ay by 
= dy (b,* + b,? by + bbb, + bb; + b2by” + b” + b3b, + 6,) 


4 


= Ao ° AC b, . 
n 
Suppose, therefore, a,=a,.A,,6,; 
n+l 
then O41 = Sa Gn—m+) On 
n+l n—m+1 


Se nbn An 0, 
n+l n—m-+1 

Ce On LB On, (6) ;- 
n+l 


Gj Aaa, Ors (63). 


i} 


24 


If, therefore, the law were true for 7 and all inferior integers, 
it would be true for 2+1; but it 7s true for 1, 2, 3 and 4, and 
therefore for n. 


n 
66. Theorem. If a4,=¢,+SnQnr—-m-Oms 
n m—1 n 
thena2="S,, Cro 54)- AG; Or + Gp Ag Oe 


For, proceeding as in the last Article, we shall find that 


m—1 


=s. C5_m* Avy; +. A.,b,: 


m—1 


n 
Suppose, therefore, a, = Sy C,—m+1-A+,5, + %- Ay ee 


n+l 
then Qn41=Cas 1+ Om e Qy—m+1 


n+l n—m+1 


=Cgh ita On sor eheea 1 een Was at oar 728 by substitution ; 


n+l m—1 s—l n+l n—m+1 


=CriitS, hs pies Cn—s- A, 6; + - Ss Dm ce etO;5 (8) and (6) ; 


s—l n m s—l 
=Caiitbn41- S, Cy_s- A,,b, +S Ds tea Sila sua eur Or 
n+l 
+a,.A,,6,, (9) and (63); 
s—l n+l 


=e ae m+1° S. Cm—i+1 = Ay Opty? A,B, 


nn—m+1 s—l n+l 
=A +S Ss0sin serena 0,-+a5- AG 0, (6) and (22): 
n n—m+1 n+l 


=CatitSm Om oF Oye —m—S+2° (A. Bi4iay. A 4,5, (6) ; 


n n—m+1 n+l 


=n Cm - Ase b, +, . Aj b,s (63) 5 
n+l 
Deeg Se Ch—m+1° A Bet dy. A i Ors (8) ; 
n+l m n+l 


Ss) Ch—m+2 ° Ase b, +a, 3 A... b,, (9). 


If, therefore, the law were true for and all inferior integers, 
it would be true for +1; but it is true for 1, 2, 3 and 4, and 
therefore for 7. 


CHAPTER IV. 


ON BINOMIALS AND EXPONENTIALS. 


a Te m—1 


67. Theorem. P (a, +,) = C,,; (a, - 8,). 
For, by actual multiplication, 

3 

P, (a, + 6,) = @, yz + A, dgby + A, O30, + Ay Ayb, 


+ A, b.b; + debi bz + a,b, b, + b,b.b; 


4 4—m,m—1 
= Sn C,,s (a, : b,). 
Ss n—m+l, m—1 
Suppose, therefore, P P. (a; + b,) = C,, :(@;-.5s)s 
n+l ict n—m+1, m—1 
then P, (a, + b,) = (Qn41 + bi4:)-S C,,5 (4, - bs) 
a+l n—m+1, m—1 n+l n—m+1,m—1 
= Sin Gn41+C,,5(4,-b,) + Sp O41 - C,, (a, UP) (6); 
a 


= Anir- ¢ GBS b,) a S. An+1- Ca, 0.) 


n—m+1, m—l 


ay Dun. Cn (az. bs) + Ones C 3 (4,. b.)s (9); 


n+l, 0 n—mMm, m n—m+1, m—1 0, n+ 


=C;, (a, b)+S, 5 Gait rigs (a, 6) +8, 41 C,,.(a,- bt+C,, (Gy Bi} (0): ; 


n+1,0 n n—m+l,m 


= C,,.(@, - b)+5n C;; (a, 53 bs) +C,, (4,.. bs), (61) > 
n+2 n—m-+2, m—1 
=S, C,(@,-5), (9). 
If therefore, the law were true for m factors, it would be 
true for n+1; but it 7s true for 3, and therefore, it is true for 7, 
D 


26 


S n—m+1, m—1 


68. Cor.1. Put 6,=a, then P, (a@+a,)=S, C,,.(a,-2) 


n+l n—m+1,n 


= §,,a"-'. C_a,, | (60)- 
69. Theorem. If a, is the r™ root of the equation 


n+l n—m+l1,n 


0=§,,@n_,.a"—}, then shall a,_,=C,(—a,). 


Foret. ae EPG) 


n+l n—m-+1, % 
= Sn: Ege . C,(- a,)s (68) 3 
n—m+l1, n 
an-1 = C,(- a,)- 


70. Problem. Given b,_,;=S,,4,.-'. am, ("Z,), to find a. 


n—7r,n;t 


Multiply both sides of the equation by C,(-—a,) 


n—r,n;t N—7yn;t 


then b,_,.C,(-4,) = S,, Be Glo. CO =a,), 6): 


m™ 


n—r,n;t 


7b,_,.C,(—4,) = Sy.2n-S, men, (-a), (4) and (17); 


as 


n nst 
= Sn Xn - E. (4, a a), (68). 
n;t 


But P,(a,,-—a,)=0, for every value from m=1 to m=n, 
except for m = ¢; 


n n—r,n;t nt 
therefore, S,b,_,.C,(—a,) = %. P,.(a,—,), 


M—, rst 
S, b,? ee C, (- i) 
mst 


P, (a, ry a,) 


and a= 


27 


x -) Wit 


S.67-!. —a 
vale Cor. If Des; = bi, then a n;t oi 2, 
P,(a,-4,) 
nit (b—a, 
op ( _ Pa (G3), 
a, — a, 
72. Theorem. 
n+1 n+l 
S a yma} n n—m+) S a b"-) 
m = Ihe Es =i {S ‘m—\* 
m = S,,2” eS Ge eh" eT a 1 
ee b ce b 
a} 3 6" - m—l 
For, “> =S,a".b"-""',, (11); 
a Sen a ae oe m—] 
s. m ; aes ; =O, \- Seo Ee : 
ae Ci 
n+1 n+l 
it m—-1l n+] m—1 
ees are SnGn—15 1 = -r-1 
and A ys hada om fi) hee Folie = oe ples Bt if hist 9 (4) ; 
0 % m 
a a = al = —r 
= 4).5,0°°'.b-'+S,,a,-S,07-'.b"-", (9); 
n m 
= Sm e S,a77! é bn-7 
n n—m+1 
& x = 
= 8,20". S,dner1-6', (6) and (22). 
n+l n+l 
—] n a—m+1 m —1 
aU ae bile a ay Sinai oU 
ay =S,07 la tr 08 1 Se PDS 
n+1 


73. Cor. If bis a root of the equation 0=S,,a,_,.2"~', 
the second side of the equation is divisible by x6. 


For, the remainder after the performance of this division 
n+l 
is Sp@m—1-6""!; which =0, since 4 is a root of the equation. 


28 
nm 


Ma 
3, =x .|@ : |b: ; n being any 


n—m+1,*+ m—l1,7r 


74. Theorem. \a+b 


positive integer. 


For, Jerbma+d= ao bid 


sr 1,r 


a+b=(a+b+r) (ja+ |) 
ar i597 > el5 


we 


=e Gir n Pas) 


lr 


Lats (Be3- a.\b+ 1) 


1, lr 2,7 


=[eeaee DP a. Garb) |o(@siaH 
297 


eee 

=|a+|a. [b+2.|a. b+2.|a. |b+|a. [+]. 
37  2r Lr 2,7 lr lr 27 1 %r 37 
=|a+3.|a.|b+3.|a.|b+|b. 

37 2r ir lr 27 37 

sae 

=Sa a. [a |b 

tL __ 


|m—1 


Similarly, eS S a [dete Leds 


il 5-—m,r m—1,7 


n 


Suppose, therefore, ee at 


ae 


a n—m+1,r m—l,7r 


then }a+b=(a+b+mr) .|a+b 


_ 
= Sp Za! je, |b -(a+n—m4+1.r+b+m—-1.7r), (6); 


n+1 


29 


=Sr—=.(ja  .|6 +a  .|b) 


|m—1 n—m+2,r m—l,r n—m+l,r mr 


n nm Le 


= Cae [bse |e |b. ee oe 2 [6 


nt+l,r 0,7 | m n—m+l,r mr c= a n—m+l1,7 m7 


paige k (9) ; 


n+1,7r 
Lavina 
=|a_. oS. (E+ ) |e \b+1a. |b 
n+l,r. 0,7 = n—m+l1,r mr 0,7 n+l1,r 
n+1 
=|a .[b+Sp2—.|a .|b+|a.|6 , (47) 
n+l,r O,7r | m n—m+l,r mr 0,r n+l,r 


n+2 | +1 
Beles. fas 1b (9). 


Tan | [o 
m—1l nomt2,r m—lr 


If, therefore, the law were true for , it would be true for 
: but it is true for 4, and therefore, for 7. 


1 


7 \Cor: 1. ne .|-b. 


1 n—m+1,r m—l,r 


But bali (=1)" Ae » (39). 


m—l, 


n 


i 
©) Lee S.C)" ere 


1 n—m+l,r m—1] 


: Ole 
46. Cor. 2. - Since |r=|m .|[m—m+1, + eee aaa” 
ee m— | 


ceo A a ee 
and n,r —= Sn (#1) . n—m+1,7__m—l, +r 


ic ia 


77. Theorem. 


> | eae eae z [o . a"? = |a+b. a" 
m—1,r n—1,7r ew m—1, rT 
(3. =) (8 |. 
eer [ee 
m—l,7r n—1,7r 
For, (S ye [z-1 ) 
a |b 


io=) ——— 5 
=S,,@ m— 1 5 ee a, (26) ; 
|m—n. |~-1 


_ lett 
=S,a"-) mht, (76). 


z) 
|m—1 
m—-l n m—1 
F |@ - &@ a |ma - & 


78. Cor. 1. (Sa =), ; 
|m—1 m—1 


n being any positive integer. 


: a—b.a”-! OP ent coats fy agy ae 
moms (REBT) (Abe) ale" 
= =I = 
‘ |a ea 4 |b a t |a—b. m1 
S,, m—1,r S, n—1,r 2 Sn m—1,r 
m—1 nm—1 m—I 


31 


Sie Cant (Ss. [a pel |= | (Sele. ae : 


t oon 


noe nfo s gf te J [m—1" 


82. Cor. 5. Put S. a “ai SO 
Oe ee 
then $ f(a)? -" aaTOye =) =f(0-na), (79); 
PatGee) 


83. Cor.6. {f(a)t-'=f(-a); 


t ag”) t = 
84. Theorem. (Sx a 


m—1,r m—I 


+terms in a. 


= 
ih 

iF 
z 


t gm} t gy) 
For, (Sela. 55) ($2) 
| a 6 


m+n—2 
@ 


(16) and (6); 


aa 


t ——— 
= S,, Spee te) + termsane, “(18); 


ees 
BSS 


t 
Sp eee terms in a, (6); 


‘nan [n=i 


, lord. am’, 


= Dee terms an 7, 9 (76): 
|m—1 
, a a gm} n , na a” 1 
85. Cor. 1. (s, == _) = S, 22 a termsan ae 
m—1 m—1 


a+1 | 


86. Theorem. (a+b)'=S,,——.a"-"*).b"-'; nm being 
[mar 


any positive integer. 


n n+1 m—1,n 
For, P, (a+6,)=8,,a"-"*!.C,(6,), (68) and (8). 


m—1,n 


Put 6,=6 then (a+b)"= tes Otte O2(b) 


aa 
n+l 


=S, mb a4} b"-1, (56). 


"|m=1 


This theorem may also be proved as follows: 


n+1 oe 


a+b=S,, |e |b 3 (74). 


nT "Tm é 5 n—m+1,r m—1,r 


Put r=0, then |a+b=(a+6)", |@ 


=o" P41, and |b =pr-1, 


sr n—m+1,7r m-1,7r 


n+1 n 
*! (a+b)"= =S, a7 m+1 _pr- 1 


"[m=1 


33 


87. Cor. 1. If we invert the series we shall get 


n 
+1 
(a+b)"=S,, en an. Baa (8) ; 
| 7 | 
pie =p m—1 ; (46) : 


M Jaamei mel m—1 


therefore the coefficients are the same when taken in an inverted 
order. 


88. Cor. 2. Since |2= |7 - |2—m-+1, 


m—1 
Co ry qr-m+l Bm} 
[nT [acme |e 
89. Theorem. 


0 In 


(a+b)'=Sy ZL. (aby"—" (a4 4 Bt es (aby, or 
[mi git 
4 (n+1) 
=S,, 3(ab)"7 1 (as aa 7 seth Ve 


‘bet 


according as ” is even or odd. 


n+1 | 
For, (a+b)"=S,, =~ .a"-"*1.b"-!, (86). 


|m—1 


“(1)_ Let 2 be even; then 


n VL) 
Bie ia n—m+1 m—1 tn tn 
(a+b)"=S,, a + =<. (ab) 
m—1 oy 
1% 


+§,, — 1 Oe i (9), (8) and (46). 


34 


= S22 = . (ab)”~ ; (a"- Paez + Us mt ae E ll 


[m= 2” 
(2) Let be odd, then 


$(n+1) | $(n+1) |e 
m— : a™-} f pat. (9), 


(a+b)"=S,, [ea ett Ont +n Sate 


= m—1 = (abyr ary —2m +2 we fie 242), (5) 


90. Cor. If m is even, 


n 
(a- b)" “5 (2 1h) gas = (ab)”"- (ar. 2m+24 pn- 2m+2) 


xy ap) 28 by". 
+(=1) ED (ab)™; 


and if is odd, 
n 
$(n+1) 
(a- —b)” =S,, (]1)?> a eed = (ab)"- 1 (a —2m+2_pn— wei) 
ee De Tia 
91. Theorem. ( + a) r= S., E a ‘ [ : 2 n and 9° 


m—1 


being any positive integers, and @ being less than unity. 


© rm—-1l\ +r & Puen 
For, (S, +t.) S,[m .——, (78) and. (82) ; 


m—l 


n+) [a 


=S,, — : Y ime (13) 5 


|m—1 


=(1+a)", (86). 


m-'_.a™-1, where m is any 


93... Cor" papost 
|m-1 


rational quantity ; w being less than unity: (86), (13) and (91). 


2S Nay | Be 
93.;_ Cor. 2. " 1 + #)F=5, F 
rr) |m—t1 
m—1 


=(S tyr). 


m—1,n" 


ae 


m—1,n 


wt (140) =148,(-1 Le Ta (=). 


1 o 
95) Cox.4.. (14+2) 28, i 


=S, (-1)"- a (7). (39). 


96. Theorem. 


3 


(5. ae (5 —).8 oe a 


o a7} am-l roa) b’-1 g-} © m an”. pr} 
For, (S, ~ | (Ss, —) Bf ole i Sea aaa 


[mar IW [aa [mn fani? O° 
2. (a+b)"—! ym—1 
nm m—1 y) (88) 


97. Cont. P, fete ae Ona 


|m—1 
98. Cor.2. Put a,=a, 


o aq™—1 gr} n © na m—-1 aml 
then (8.7) =S Slag a 8 


[ma [ma 


o m—1 m—1 my kes m—1 m—1 
99. Cor. 3. {8. (<) i ) 6. 
mi ee 
l 
(8, a” 1 ym a -8, ( am: a} | 
(ae ee 
100. Cor. 4. 


ond (a—b)*=). a=! ° GB -). a) 2 a™—1, ya! 
(S, a (s. =~) +§,.— 3 
|m—1 n—1 |m—1 


co a™—) , am) o b-) , at} I (a—b)” ~ at} 
oe ea 
m1 [2-1 |m-1 
LOLS .Cors a: 
(S. (Cote =<) (5. rm =~) a (a—a)"™"* a"! ue 
|m—1 |m=1 m—1 
(s “_<)\" 8 (a)? a" 
m m1 =Wm pa : 
402s1'+ Core 6. 
is. qq") . al" aI8, (Ee) et = 
m—1 |m—1 
=o pay" a: an} 
=Sn mi 5B eCEOL) = yt 
and 
1 
(s —— q (s ae 
" |m=1 wikis |m—1 
(27 ay ae 
z q 
=Sn m—1 
22 (42 ay 
© a" -) 
103. Cor. 7. Put z=1, then (S. ) Gives Mat ca 
m—1 m—1 


104. Cor. 8. Put a=./+1, then 


m =VOm 


m—1 


where » is any rational number. 


m—1 


is ae 5 Vv #1)" 


38 


. 2 1 . . 
The series S,, [m—1 occurs very frequently in algebraical 
investigations, and therefore we shall use the symbol e¢ to re- 
mye Ae ar: 


present it; while «v1 will be used to denote S,, ; 
m— 


Hence the above equation may be written 


= (ef +1)"") 


gaye 

m—1 
105. Cor. 9. Let # be irrational; and suppose y and z 
are two rational numbers very nearly equal, such that «>y, 


and #<2. 
Then e¢*, e”, and e’ are in order of magnitude; that is, 


m—1 


o sg o yn 
S , e”, and S,, , are in order of magnitude. 


oy ea er 


m—1 a™ -l o° y”™ -l 
ee , are also in order of 


But S,, ——, 
|m—1 m—1 m— 


magnitude however near the values of z, and y are taken to 


—_ 


that of «; 
2} gst 
7S 
wd ie |m—1 
106. Cor. 10. Hence, whatever the value of 2 may be, 


ou ti? 


we shall have ¢’=S,, . 
|m—1 


al 3] : m—1 
107. Theorem. a*= pe Oe a 


For, a=el%'**; 


“ By log, a is denoted the logarithm of a in the system whose base is ©. 


39 
of ata '8.-4 
a (a log.) 
eee) 


™m |m—1 > 


108. Theorem. (a+b)’=a°+2ab+b . 


(106). 


This will appear from actual multiplication. 


n-—m 


109. Theorem. (Sna,)?= =S_4,2+2 ice CES Panes 


n—r+l1 n—r 


For, Sin Grim —1=2r+Sm br m- (9) 5 


n-T+1 n—?r n—r 


tse. Dy +m ye =a, 742d, Sn ete (Sen Gees (108) ; 


n n—r+l1 n— n n—r 


and S, (S,, ar4+m— y= Mice a, £28, 4,.Sy0y én +S,(Sy. Oran), 
(5), and (6); 


n—1 n—r 


. (Snap)? +S, C.2))7— =S rdy “42 S, a, (Sia, 


n—l1 n—r 


+S, (826-20) (Sia, >) 


n—m 


(Sh Gn)? =8,, 9? +2 eh Dn S, Ant 


(4), 


(9) 5 


CHAPTER V. 


ON FINITE DIFFERENCES. 


110. Is p(w) is any function of w, then Pp(w) will 
denote the same function of @(w). This last is expressed by 
p(w); and, the same notation being extended, we get the 
equations 


pg” (u)=p"*'(u), and pf" (u)=p"*" (wu). 
111. Con... $"(w=$""(u)=9"(w). 
-. P'(u)=u. 
112, Cor. 2: o-". hb" (w=p-"*"(u) 
=" (u) 


113. Definition. If p(w) is such a function of w that 
pl(ut+r)=h(u)+G(v), then P(w) is called a distributive func- 


tion of wu. 


114. Definition. If d(u), and wW(w) are such functions 
of u that py(u)=\ p(u), then the functions p(w) and W(w) 


are said to be commutative with each other. 


115. Instead of p(u)+ (wu), it is frequently convenient 
to write (p+W)w; in which case the latter expression must be 
carefully distinguished from the product (@+W) xu, and must 
be considered merely as an abridgment of the full form 


p(u)t+(u). 


41 


116. We shall express {(@+W)(p+W)}u, by (P+wW).u, 
and {(P+V(P+W(P+w)}us by (P+y)su: 
that is, (P+) w=(u)+V(w), 
(Pr u=G}(PtWyy + (G+ Wu, 
and, similarly, (p+y),u=P(P+Wn1v+WP+Wnat 


n 


117. The symbol }(@,+y,)}u, will be equivalent to the 
r r+l 


expression 


S(gitW)(Go+ Wr)... (Prt) iu. (See Art. 49). 
118. Theorem. If (wu), .(u), (uw), &e. and Y,(w), 


W(t), W3(w), &c. are all distributive functions, and commuta- 
tive with each other, then shall 


be We) fu=Ba)" “Cupp iu 


For, (fit \i)u=i(w+v(w), (115). 


(pet) = (pat he) Shi(w)+W(w)i, (117); 


=. 5 h,(w)+Wr(u)t +Wo$gi(u)+yr(w)?, (115) 5 

=pog Wt oynW+po(w+ Wyn), (13); 

=piplu)+orplu)+ gone, (114). 

S(t Wo) $x (ot Yo) pled) + useles) +p) 

+Wiy(u)}, (117); 

=) Piplu)+ Pry.(u)+ paw + vil} 

+ Wi Pip(w)+ ov) + orri(u)t+Wirr(w)t, (115); 

E 


42 
=PiP:fs(U) + PGs (O+ Pepi + oye) 
+ PiPys(w)+oows(w) + Gris(%) +Vivews(u), (113) & (114); 
=(hihspst Pipost Dipset Pepsi t Pest Privs+ Pair 
+Wiows)u, (115); 


4—m, m—1 


= Sn 5 C,,s(br-Ws) ' U. 
Suppose, therefore, H(petyh) ueS} Calay ies 


then Voy fun (dissident epi paN any 


HG FS.4° C, “CG. pw] + Wiel Sah “Cie ay)}u], (115)5 
LNT pis aro SY aErneenperine: eer W)tw], (113); 


Si dO GN EPS IC. tote (210) 


n—m+1, m=) 


= Sa C ue, CSV OCG (bey) } (118); 
“56 Cab V) Badale GU BN ert, 
Hen Gulu Os 
=16.,G.91)4+ Bal purr CalQe) Yon Gee] 
PEG} ©) and (114); 
jE G+8. Cages Galgeydiuy (1): 
-{8. EG ©): 


n+2 rte m— 


=S,,} OC My)}u, (115). 


43 


If, therefore, the law were true for », it would also be true 
for n+1; but it és true for 3, and hence it is true for 7. 


119. Cor. 1. Let the functions p,(w), p.(w), &e. be all 
similar to each other, and to @(w); also let W,(w), W.(w), &e. 
be all similar to W/(w); then 


(pet yr) ju becomes (+ ),#, and 


eis Base | 2 
n+l n—m+1, m—1 n+l 


Sn i C,,.(p,..,)} w becomes §,, ca Mg oN aa 
(56) and (60) ; 


mean ae 
Pe rr a 


ror” Con. 2. Butt gp, and yy denoted quantities instead 


u+1 [me 


of functions, then would (@+W)"=S, ——. po "*!W""!; and 


*[maa 


hence we may express the preceding result by the equation 


(prpau=(pryy-n 


This must by no means be considered as an identical equa- 
tion; for the first side is merely an abridged expression of 
certain functional operations to be performed, while the second 
is a compendious method of denoting the expanded result of 
these operations. In fact these expressions will not generally 
be equivalent unless @(w) and y/(w) are both distributive and 
commutative with each other. 


121. Cor. 3. Tf W(u)=S,.4,-1-@n-1(u)+x,.(%), where 
Xn(w)=0 for some value of m and for all succeeding values ; 
then we may put 


WW) =SnIn—1-Pm—1(%)> (13); 


44 


and, if @,(w), p(u),--- Pale) are distributive functions, and 
commutative both with each other, and with any constant factor, 
we shall have 


V (0) =(Snin-a-Pn-1)" (120). 
122. Cor. 4. If, in the same case, a,,_,=a"~', and 
Qn-1=g" *, then 
Vw)=Saa™ gp" yu 


1 - ‘ 
= es u, (12) and (13); 
=(1-a.g)™".u. 


123. It will be readily seen that the preceding theorems 
of this chapter will hold not only when @ and yy are symbols 
denoting functions of which the successive orders are deduced 
by a series of substitutions, but also when they denote functions 
of which the successive orders are deduced by performing a 
series of operations all of which are subject to any given law. 
An exception, however, must be made with respect to the theorem 


pr. grwau: 
for, if @, denotes an operation such that 
p.(u+a)=,(u), 
where @ is independent of w; then 
db: '-p,(u)=u+e,, 
Qi: Pe (U)=h,(U) +0, 
Pe * pe (uy=ut hs (4) +e 


n 
and. de”. Pz' (u) =U+9n, Dro eM) 0. 


where ¢,, is some quantity independent of #, and is to be de- 
termined by the conditions of the problem. 


45 


124. If wis a function of any number of quantities, two 
of which are # and y; then @,(wv) may be used to denote the 
result of an operation in which w only undergoes a change, 
and @,(wz) a result similarly obtained on the supposition that 
y is the only variable; while p,.,(w) will denote @,. }@y-(w)}. 


125. The symbols (w),_,, and @,_,(«) denote respectively 
the values of wu, and p.(w), when # is put equal to a; this 
substitution, in the latter case, not being made till after the 
operation indicated by @, has been performed. 


126. Definition. If in uw, any function of x, we sub- 
stitute a+h for v, w will, in general, assume a new value, 
which is called the New State (Etat) of u taken with respect 
to x, and is denoted by the symbol E(w). 


127. Definition. The excess of the new value of w above 
its original value is called the Difference of wu taken with re- 
spect to x, and is denoted by the symbol D,(w). 


128. Cor.1. D,(u)=E,(u)—u, E,(u)=u+D,(u), and 
u=E,(u)—D,(u). 


129. Cor. 2. If w=(~), and #+h is substituted for «, 
we shall get E,(uv)=P(#+h), and D,(u)=h(w+h)—(#) ; or, 


since h is the difference between the two values of «, 
E(u)=9(v+Dz2), and D,(u)=p(v+Dex)-P(2). 


The case that most commonly occurs being that in which 
Dwx=1, we shall denote the difference of « with respect to a, 
on this supposition, by the symbol A,(2); that is 


As(u)=(0+1)-G(2). 
130. (Cor. 3.) DD) =D"*"(u), and D,(u)=4u; 
also E,” EB,’ (u)=E,"*" (u), 
Eo (u)=u, and) Ea". BA (u)=u: (110), (111), and (112). 


46 
131. Theorem. E,'.p(«)=$(w+nDa). 
For, E,@(«)=$(v+Da2). 

EP (2) =E,. E,.p(«), (110) 
=EK,.o(v+Dz2) 
=(#7+2Dz2). 

&e. = &e. 

E,'p(@)=9(@+nD2). 

132. Theorem. E,-'(w)=(«-Da). 
For, put E,"f(w)=Py(#) ; then 
p(a)=E,.E,'p(x), (130) ; 
=E,.pv(2) 
=v («+Dz2). 
-. 2=V(w+De), and 
v-Du=\(2) ; 
. Ep.p(@)=$(e-Da). 
133. Cor. E,-"@(«)=$(w—-n Da). 
134. Theorem. E,*\(u+v)=E,;"(w)+E,*'(v). 
For, put w=(#), and v=(a) ; 
then E,*!(w+v)=E,"' $(a) +(a)} 
i eee 
= Ba) +Ee'y(x) 
=F," (u)+£." (0). 


47 


135. Theorem. E,*'(aw)=a.E,*'(u); @ being indepen- 
dent of 2. 


For, put w=9(2) ; 
then E,*'(au)=E,*'. §a.g(a)} 
=a.o(#+De) 
=a.E,*'$(«) 
=a Be (a). 
136. Theorem. D,(u+v)=D,(u)+D,(v). 
For, put w=(2), and v=\(c); 
then D,(w+v)=D,{p(2)+W(2)} 
= (+ Dx) +y(v4+De)—9(2) (2) 
=(0+ Da) -(2)+W(v+ D2) (2) 
=D,.$(«)+D,.V(a) 
=D,(u)+D,(v). 


137. Theorem. D,(au)=a.D,(u); a being independent 
of a. 


For, put w=(2) ; 
then D,(aw)=D,{a.g(2)} 
=a.(v+Dx)-a.(2) 
=a\p(v+Da)-9(2)} 
=a.D,.$(«) 
=a.D,(2). 


48 


138. Theorem. D,-".D,"(u) = a Dm) te 


For, let a be any quantity independent of #, and put 
U=P(w) 5 
then D,(u+a)=}(7+Da)+al —}(x) +a} 


=(«7+ D2) -(2) 
=D,(u). 
De®. Di(U)=U+S_-De- (Gy) (1238) 


n 
=bt+ Snes if?) 1)» , 137): 


139. Cor.1. D,-'(u+v)=D,-'$D,.D,-\(u)+D,.D,'(v)}, 
(128) ; 
=D, /D,4D, W)+ De @) it. a6); 
=D, (u)+D,-'(v), (188). 


The arbitrary constant must be added after the performance of 
the operations indicated in the second member of the equation. 


140.- Cor. 2. D,-!(au)=D,71fa.D.D,-"(u)t, (130) ; 
=D,1.D,\4.D, "(u)t, G37); 


=. 1, (a), (138). 


141. Theorem. E,.D,(u)=D,.E,(u). 
For, D,(u)=L,(u)—u. 
+. E,D,(u)=E£,E,(u)-E,(u), (134) 


49 
149. Cor. E,-D,(u)=D," E(u), 
D,E,-"(u)=E,~'.D,(u), 
and, A? D, (y= D>. 2, * (uy 
143. It follows from the last nine Articles that the func- 
tions denoted by the symbols H,*", D,, are distributive, and 


commutative with each other and with any factor independent 
of x. 


n+1 w 


144. Theorem. D,"(w)=S,,(-1)"7 ea Ee" (u). 
n— 


. For, D,(w)=E,(u)—u 
=(E,-1).u, (115). 


~. Df (u)=(E,-1),4, (116); 


nv 
n+1 


=S,,(—1)"-). =. H2-"*1(u), (119) & (143). 


[mat 


n 
n+1 
145. Theorem. E,(u)=S, “=~. D,""'(u). 


[moe 


Hor) EB ¢a yas DCs} 
=(1+D,)u, (115); 


 E2(w)=(+D,),u, (116); 


Nh 
n+l 
=S, a .D,"""(w), (119) and (148). 


[m—1 


G 


50° 
146. Theorem. D,'.v"=|n-h' ; where h= Di. 


Yor, D, .2"=(a+h)’-2"=n.2"~'.h+inferior positive powers of «# 


D,’ .2"=\n.v"~*.h’ +inferior positive powers of «. 


9 


4 


D,".«"=|n.a"~" hk" +inferior positive powers of 2. 


™m 


DEG Sh 


147. When the quantity of which either the difference or 
new state is to be taken is a power of the independent variable, 
the index subscript of the letters D, A, or E may be omitted ; 
and hence the above theorem will be expressed thus: 


D".x"=|n.h". 


n 
n+1 s 
148. Theorem. r"=$,(-1)"). = —7 (w+n—7r+1)”. 


n+l [n 


For, D’ nm =S, €—1)' fay a =: ee r+ a", (144). 


at+l 


. Nt GS, (1). r—1 -(w+n—-7+1)", (131). 


atl 
149. Cor.1. S,(-1)'"?. —*. (@+n—r+1)"=A".a", (148) 5 


[7-1 
=|» (147). 


a+l | % 
150. Cor.2. A*.0"=9;¢=1)'3! feat (—7+8)". 


The numbers comprehended under the symbol A".0” are of 
great utility in the expansion of various functions. The following 
values may be readily calculated by the theorem of this article : 


OO8839S | ODJGSEOL | OOOOFGOE | OOSSEQ6S | OFFSSFOL | OOOSOTS OossIs 


O8869& OGSISFI OSF86S6 OSI G06L O8t9O8I Og I8I 


OSIIFI OOO9SI POSOP 96LG 


———<—<—_— —$—$—q—| Kqe (mm — ——— 


OFOS OOsgT OOFS8 9081 


OO8T O9ST OFS 


— Oot OFS 


52 
151. Theorem. _D,*.a"=a*.(a'—1)’; 
For, D,.a’=a°t"—q* 
=a" (a"-1) 
D,2.a*=(a"—1).D,.a", (137); 
=(a"—-1)’.a*; 


and, similarly, D,”.a*=a*.(a"—1)". 


152. Theorem. D,.\a+ba=bnh.|a+b.(@+h). 


n, bh n—l, bh 
For, D,. a+ba=| a+b.(a+h)—|a+be 
n, bh n, bh n, bh 


= }a+b(w+nh)—(a+b2)t |a+b.(w+h), (41); 


n—l, bh 


=bnh.|a+b.(a+h). 


n—l, bh 


153. A,.|w=n.| a. 


n n—] 


S22 2 2 aah 


n n n 


=(v+1)|e-|x.(@—-n+1), (41); 


m—l] n—] 


=n.| wv. 
n—J 


1 —bnh 


154. Theorem. D,—— = 
|a+be a+ber 


n, bh n+l, bh 
1 iT ] 

tate De (atiae (ach ein (aebo 
n, bh ny bh n, bh 


at+be a+b.(@+nh) 


|a+be a+be 
n+l, bh n+l, bk 


156. Theorem. 
DP .d{a4(r—1).b} = {G(0+nh)—G(a)} .P.d(w4rh) 
For, D,.P,p{a+(r—1).ht =P, p(w+rh)—P,p §w4(r-1).h3 
= [p(w inh) —G(a)} Pp (w+ rh), (82) 


157. Theorem. D,.[P,@ e+ (r-1)-h > 
=~ {p(v+nh)—9(0)} [Bp $03 (r—1)-h} 

For, D,.[P,o{e+(r-1)-ht} 
=P, o(w+rh)t [Pg fat (r-1) 42 J 


be Sp(ainh)—p(2)! TP, Sv+(r-1).h} le: 


m m—Ts, 


158. Theorem. D,.P,(u,)=8, Coy. (t,-De-t): 


For, £,..P,(a;) sp) (u,+.D,u,) 


m+1 m—r+1, r—1 


=S,  C,.(u,.D,m), (67); 


m m—Ty 


ob (2, +S, C, a. Da: (9). 


m 


ED, Paar) — S, TORE. Di))5_(128). 


159. Theorem. D,(uv)=u.D,v+D,(u).E,v. 

For, E,(wv)=(u+D,u) (v+D,v) 
=uv+D,(a).v+u.D,v0+D,(u). Dv 
=uv+u.D,v04+ D,(u). Ev; 


. Duv)=e.D,0+D,(u). Lv. 


and 
DIO, 


1 D,(u).v-—u.D,v 
160. Theorem. D, (“) = a 
0 v.E,v 


wn “-+- Dia. ua 
For, D, z = - 
v v+D,0  v 


uv+D,(u).v—uv—u.D,v 
a ane ene Pe 
v. Ev 


D,(u).v—u. D,v 
if v. Ev , 


161. Theorem. If (vu), Pi), W(v), and y,(v) are 
distributive functions, commutative with each other and a con- 
stant factor, and if P(w).W(v)+,(w)-Wn(v) is denoted by 
(pW+qd.\1) uv, then shall 


n+l | 


Gis ates EO  @) 


For, by proceeding precisely as in Art. 118, we shall find 
that 


(DY+ br Pa)n0= Sn eG" Pi" (W) YP" (0). 


| m— i 


Suppose, therefore, 


” 
n+1 Sih. 
(ov+gi V1) nUV=Sm re 1 Gis (w) AN oe (v) ; 
then 
n+l | 


(pw + QW) np 1Mv= (pw +i) sees ; orm pi” (w). Wee Wi" (v) 


50 


SE Ee OLY OO] 


FAlPrr GPW] hLe" a @)]},  (13)s 
= S., = Names (a0 (72) Nata a \i gms (2) 
j + Gr" Lit (a) mL a” (v)?, (114)5 


nN 


= p""'(u). YOST ee soar) ™ (41). y" m+1 Wn" (v) 


ye 
is S., aa Po) dy" (U) Wot (ve) +"*? (u) Wi" (&), 
(Ghee 


=p" (u).""? (v)+S,, - im Oy (at) Dy 


+p (w)-Wr'*"(e), (5) and (47); 


By eee! 
= S. eas . (Og maie Cen (w) , Neen ; ee (v), (9). 
If, therefore, the law were true for 2 it would be true for 
m+1; but it is true for 3, and therefore it is true for 7. 


162. Cor. 1. The equation just found may be written 
thus, 


i 


S iz 
(ov+gy Wi) Uv= Say fog m+1" aM ial" ae, 


or (@+gith).uv=(+givy)’*uv. See Art. 120. 


It must be carefully observed that, in the expansion in- 
dicated by this last expression, the symbols @ and @, are to be 
prefixed to uw, while x and \, are to be prefixed to v. 


57 
163. Cor. 2. If di, ps---py, and Yr, Yos...,, denote 


distributive functions, and commutative both with each other, 
and with a constant factor; then shall 


(SP) wv=(S,Pv,)" wr. 
164. Cor. 3. With the same limitations, 
(Br Oe Ds. Dy) nU- Uae» Us=(Sp Pr Pree Pr)” Uy Une» Us 3 


where the symbols ‘Dis "Prise Drs are to be prefixed to 1, Uo5.--Uss 
respectively. 


165. Theorem. 


n+1 = 


De (u D) S,.-—— imei m—1 Wey = (2) p De —m+1 y JD ke —] (v). 
For, D,.(uv)=u.D,v+D,(u).E,(v), (159) 5 
=(D,+'D,.E,)uv, (161); where 'D, only belongs to w. 
* D2 (uv)=(D,4+'D,Ez),-U0 


n+1 | 
= ee DS a) De et (oy (On): 


| m =| 
166. Theorem. 


n+l n 


De? (uv)= Ss. (-1)"" 1 ET sl Es ml). nae mato): 


For, D,(uv)=E,(u). E,(v)-uv 
=(KH,.E,-1)uv, (161); 
. D2 (ur)=(L,. E,-1),.Uv 


n+1 nm 
=S,(-1)""! CT sees 8 ()..-* 21a), (161). 


H 


58 
167. Cor.1. D,"(wu2)=$(+'D,)(14+°D,)-1f "wu 5 and 
DE. P, (w,)=$(1+'D,)04°D,)...+"D,)-1 i gd 
= 1S. CCD)" Uj Us.+.Uny (68) and (9). 
168. Theorem. E,.E,(u)=E,.E,(u). 
For, put w= («, y); then 
E,(w)=(«, y+ Dy) 
E,.E, (w= («+ De, y+Dy) 
=F,p(v+Da, y) 
=E,.E,.p(«, 9) 
Sr Oy 


Hence, we may express either H,.E,(«) or E,.E,(«), by 
E,,,(u); while D,,,(«) will denote E,, ,,(w)—w. 


By 
169. Theorem. E,E,(u)=u+D,(u)+D,(u)+D,D,(u). 
For, E,(u)=u+D,(u), (128). 

E,. E,(u)=E,(u)+£,-D,(u), (134); 

=u+D,(u)+D,(u)+D,D,(u), (128). 

170. Cor. 1. Since w+D,(1)+D,(w)+D,D,(u)=E,E,(u) 
=E,E,(u), (168) ; 
=u+D,(u)+D,(u)+D,D,(w). 

-. DID (o)=D, PGs): 

171. Con.2. £,,(u)=(14+D,4:D,+D,D,)u, (115); 

ob” (u)=(0+D,4+D,+D,D,),u 


“ay 


=(1+D,+D,+D,D,)".u, (121) and (143). 


59 
172. Cor. 3. D,,(u)=(D,4+ D,+D,D,)u, (168) 
a Dy (w= (D,+D,+D,Dy,),u 


=(D,+D,+D,D,)".u, (121) and (143) ; 


= 1(1+D,)(14D,)=14" 


nr 
n+1 


173. Theorem. D,’,(u)=S,(-1)"7 Tee i eaten (¢)) 


ry 


For, D,,,(u)=E,,,(u)—u, (168); 
=(£,,,—1)u. 
. De é)=(Esy-Y at 


=(E,,,-1)’u, (121) and (143); 


n+ a 


=S,,(—1)""? = a Oi Py c 


a 
n+1 


174. Theorem. E,”,(u)= Sn—_— Dr y (%)- 


[mai 


For, E,,,(u)=u+D,,,(u), (168); 
== (VEE DRS ore 
Ex, (@)=GA+Dzy)a¥ 
=(14+D,,,)".u, (4121) and (143) ; 


nN 
n+1 


So Pr 0) 


60 


175. Theorem. 
Lm [Ps 
He _E}(u)=8, 8, DF Ds ae: 


Pas pat 


|m 
———.D,"~\(u), (145) and (13). 


aa 


For, £,"(u)= S 


| m 
E.”. Ej (w=S,-—.D,""!. E,"(u), (168), (134), (135) & (141); 


Pend 


nv 


aS, = D8. ——.D,’~'(w), (145) and (13) ; 


=§,-=.S, .D,'-!.D,5-}(u), (136) and (137); 


=S,6,-2 = D-5D,!-1(u), (6) and (18). 


176. Theorem. 
D,-) (uv)=u.D,-u-D,'$D,(u).D, "Et. 


For, D,(u.D,~'v)=uv+ D(u).D,~'.E,(v), (159) and (142). 
. u.D,-v=D,"'(uv)+D,-'3D,(u).D,-1E,(v)t, » (139) 5 


and D,-'(wv)=u.D,-'v-D,-"}D,(u).D,"".E,vt. 


61 
177. Theorem. 


De? (wv) = S,, (- Lye it Dent (w) \ VD me Ee -lay 
+(-1)".D,"! De (w) 1) Le Oaks vi 


For, Dis 1 {DS =) (w) : DD (m—1) pee =i v i = Diz =| (w) : yD ig JD —] (v) 
a Dis 1 ; Diz (w) ‘ Dae ; y Die v ¢ . (176) 5 


: (- 1)" me Die! ; De (w) } Dix (m—1) ng Een ; 
Ne (-1)""" ’ Des 1 (w) ; Dee BY Oe 1 v 
=s ( al i ; D7 DS (w) ; Das ; pe v : 
o) S,(-1)"7 : DH 0 ae (w) oD ea 1) : E,""'v} 
a Ss. (- 1) -] ’ Di -1 (2) 5 yO us ’ yOu -1 u 
+S,, (- L)* ae Ds (w) : Dw E,"v} F (5) ; : 
r—l 
D,~) (uv) +8, (-1)". D7 {D2 (u).D, " Ev t 
a S., ( pms 1 -1 ‘ De -1 (w) P Dp m Y Bec -1 a 
r—1 “ 
mn S,, ( fies ine ’ Dp 1D? (w) ; De ) Dee vi 
(=). De? } DD," (u) WO 1 ORE 3 (9)5 
aieh Ds 1 (u v) =§,,(- ie \ Dis 1 (w) _ D-* DB rh 
+(-1)’.D,“' Ay, (w) Di hut ! 
178. Cor. If, for some value of r, D,’u=0, then 


Dix (u v) =S,,(- Her! j 1D are , Dm Pee, (13) ; 
= {D4 (14D. 2D, * Eee; 


where 'D, only belongs to wu, (12) 5 


62 


D,-"(wv)=$D_-".(14'D,.D,1.E,)-"} wo, (163) ; 


n 


Dp: —n 1S,(=1)"- (ima at oD: m—1 SD —(m—1) A pers we, 


(92) and (39) ; 
i | 
=S (-1 m—1 _m—),1 D m—1 D —(n+m-—1) m—1p, 
m ) . 7 . v (w) 5 r 5) oe v. 


in 


179. Theorem. D,~'(a* Jalen 7, + const. 


For, a*.(a’—1)=D,.a*, . (151), 


v 


a 
wy be 137); 
Slagle (137) 


a 
anda 3) a, ; teonst. (138). 
a 


nL 
180) \ (Cor. °\0D.-* fae" =1) 5", eae eat 
181. Theorem. 


D> '(a,.) =O 5, (= 1) a Ge 1) Dn 
4(-1)".D,-' 4 Ds (u).a"**. (a =1)*t. 


For, Di. (aw) ae (21)? D2) De oe 
+(—1) D3 Dy) 2D Eso KV 


qtt (mh 


=$,,(-1)” *.———— : 


(ayn 
(180) ; 


Pe 
=a" .S,(—1)""} ain DF, (a* 1)" DP 


q7ttrh 
.D2""'u+(-1)" D-\p, (zw). (a =} 


(1). DOU Day." (PAD, CY: 


LSE is abe =, a+b(a—h). 
eae bh(n+1) bantu) 


For, bh(n+1).|a+b@ = D,.|a+b.(w—h), (152) 


n,bh n+1, bh 
|a+bwe = D,. \honn a+b(a 1) (37) 
nibh bh(n +1) 7 Oa 
and DD," a-ba=————— | |a+b.(#—h). 
eee bh(n+1) n+l, bh aa 
v 
PS Bee Nee 2 oo 
ao Geel 
(n+1) 1h | w (153) 
n n+] 
av 
so jv=A,—, (137); and 
L— n+1 
ja 
NS, e= nl 
le n+1 
1 1 
Nga YDS 8 ee ee 
|a+be bh(m—-1).|a+be 
ny bh n—1, bh 
—bh(n-1) 
For, ————— = D,.——— 154). 
i ja+ba zi jat+ba’ GC) 
n,bh n—1,bh 


1 1 
——— =D,.)-—__—_—_ 137); 
G+ bay tf | hasta: ( ) 
n, bh n=l, dh 
1 
and D, oe, ea ot Da 
ieee bh(m—1).|a+be 


1, bh m—l, bh 


64 


—1 
m 
iad ce (n— (n-1)|@=1 
n—-l 
_~(n-1 
For, Me ) Seems (155) 
[a |w—1 
ee n—l 
1 1 
- US7)'5 
|v 4 (n—1) =} Ce 
nr 7 
1 -—1 
and 1 = 
nd, v (n—1)|v-1 


r+ 
186. .A-.7=S 7A" 6:: = » being any positive integer. 


+l [2 
For, (y+«)"=Sn—--A.”"'y", (145). 


[m=1 


eo |v 
o, #=S,, ———-A”-!.0"; 
fal ee 
1 ee zat Nie 1 0” if 3 
and As ae a |e, (139), and (140); 
ya m—1 
r+ v 


aS. (Amaiigs en (ass). 
[me 
187. Theorem. Sy tee Nees a) nsas 


n n+l n 


For, A Tie Nee an, = ra Srna Am —Sn Ay, 


=An+1: 


and 


or, as it may be 


conveniently expressed, 


n 


oy An= (A, ; =A) Gn+1- 


CHAPTER VI. 


ON DIFFERENTIATION IN GENERAL. 


188. Derinition. The quantity }(Dx)-"D,"u}p,-) is 
called the n™ differential coefficient of u, taken with respect 
to x, and is denoted by the symbol d,"w. 


189. Theorem. d,"d,?u=d,"*"u. 


For, put Dw=h; then 
d7u=(h*. DP); 
and -d7" 0 u= ha" D2 (hk "DS U) 
Rho De (he as, 
=3h it” Deal, 2.) (187) and. (180) 5 


=A? a. 
190. Cor. dQu=w. 
191. Theorem. d,.(u+v)=d,u+d,v. 


For, d,.(w+v)=$h-'.D,(utv)t <9 
=(h-).D,w+h7 .D,e),5 (36)s 
=(h-’. Du), 5+ (hk .D,2)),<9 


=d,u+d,v. 


67 


192. Theorem. d,(w+a)=d,w; where a is independent 
of 2. 


For, d,.(w+a)= $h-*.D,(u+a) t ro 
=(". Diu), -)0 2138); 


=U: 


19S) eC ors ty d,.¢—0, 7 (198): 


n 
194. Cor. 2. d,-".du=u+S,d,"-™ «Cm Where c, is 
independent of #, (123). 


195. The symbol f,’w is equivalent to d,-"w, and is read 
the n™ integral of u, taken with respect to x. Hence the equa- 
tion just found may be written thus: 


n 
f?d,"u=u+S,, hope: Cin 


196. Theorem. d,(au)=ad,u. 
For, d,.(au)={h-'.D,(au)}, 


=) hia. Du. = (137)3 


197. Theorem. d,.v=1. 
For, d,.7=(2).Da),, 


=(1);,<0 


=; 


68 


© h- 
i " é = aia a,” wv). 
198. Theorem. o(w+h)=S Sip p(x) 


For, put Dr=k, and h=nk; then 


n 


p(wt+nk)=S,, = -D,"~*.p(a), (145). 


nko }41 


- P(e+h)=S,, ESS Pik a 


whatever the value of k may be; 


Se hk-? 
LGR m—l n—l 
S: |m—1 = D; ; p(2) , k=0 
xs h™-} 
— ie lm aa il ‘ Dey i; p(x) a 


=S,,—— .d,""1. (a). 


o hm -l 


199. Cor.1. H,u=S,,— -d"-u, 


ca 


x m 


and D,u=S,,—: 
[” 


200. Cor.2. D,uw=(e'—1)u, (106) and (115). 


dU. 


< DP u= (eh —1)"u, (121). 


69 


: ; t h™ 5 
201. Cor. 3. d,”".p(x) is the coefficient of — in the 


|m 


expansion of @(#+A). 


202. Theorem. If wis a function of v, then 
d,.~(u)=d,.p(u).d,u. 
eee) Hearn (27 
For, D-H) BE (D.0) (199) ; 


x a" : plu) co he 
= ; a pee m 2 
Sn i oe (S, poe wu)", (199) 


ad (aii ee) a (S.ar . ia) is (6) ; 


“and d,.~(w= Sh-’. D,. pu) ; h=0 
=d,.p(u).d,u. 


203. Theorem. d,.(wv)=vd,u+ud,v. 
For, D,(uwv)=(u+ D,u)(v+D,v) —uv 
=v.D,u+u.D,v+D,(u).D,v. 
ho. D,(uv)=0.h7.D,u+u.h-.D,0+h".D,(u).D,v; 
and {h7!.D,(wv)},29=0- {h7'.D,u) 9+ Uh. D,0} 5-9 
+[{h-?. Diu} ,29-(De)r<o OF COPE) ar Momaed BRO || 
o. d,.(uv)=vd,ut+ud,vt {d,u.0 or 0.d,0} 
=vd,u+ud,v. 


Ah Cain, — =a 


d,.(wv) d,u d,v 
: f —— -——, 
Uv ul v 


d,.P,u, ™ d,w 
205. Theorem. ———=S,, a = 
P..u, z 
"P. P 
is sehgl hy ae Ges beag tla Th 
For, a — =", a scully) (204). 
Pu Pu Un+) 
Yr Y if i: 


n 
d,. Poa, dU i A Uns+1 
oS = SLs Sn——> (24); 


n 
U u 
iP: Uy 1 m+1 


dU, 
=p, — 5) (9). 


nsm 


1 na 
206. Cor. d,.P,w,=S,,d,tm-P,u,- 


207. Theorem. d,.u"=nu'—d,u, for every rational 
value of . 


G20P 2a 
For, — =S, So (205). 
P,u, 
dow * du du 
Put w,=u, then =S, =o). 
T) He U U 


ws 1d, wan -* dyes 


nm being a positive integer. 


Also, since 1=2".w-", 


O=u-".nu"~"d,u+u".d,.u-", (193) and (203); 


and d,.w-"=—nu-"—d,u. 


it 


+ 
. +) . are ° 
Again, uw "=(w ")"; mand n being any positive integers. 


m 


m 
tmu~"~'d,u=n. (uw oy eR (u ”) 


+mzm = 5 Ese 
=nU "d,.(u ”) 
+” m Le 
andsd..(% “\—=-— 2 * deu 
n 


Hence, d,.u’=nu"-'d,u, for every rational value of 2. 


208. Theorem. d,. (=) ber ( dU ="). 
e v\u v 


Kor, diz (=) =d,.(uv—') 
Uv 
=v~'.d,u+u.(-1)v-"d,v, (203), and (207); 


u (du =") 
(= vo) 


m m mm 


” 
P,u, Pw id.Pu, .d,.P.0v, 
2 


209; Cox. 4,4 a |Wore yee 
P,v, Pio" (Piz, P,v, 


21 0. Theorem. de ae a=l|n-a"-™. 


m 


For, d,.2°=na"—', (207) and (197); 
d,.@=n.dia'=*, . (196); 


—2. 
=|n.a" > 


2 


&c.=&e. 
I Mm mt _ sn—m 
d,” a =|m.0 


m 


Lea 5 
12 


n 
, n+1 | 

t — % : 
211. Theorem. d,’.(uwv)=S,——.d,"""*1u.d,""'v. 


|m—1 
For, d,.(wv)=vd,u+ud,v, (203); 
=(d,+'d,)wv, where 'd, belongs tov, (161). 
.. d,".(uv)=(d,+'d,),Uv 


=(d,+'d,)’uv, (162); 


n+1 | 


epi n—m+1 m—1p, 
=, ———.d, Uu a, Bis 
| m— 1 


2 A"! ce) hm} \ 
E,(u = (S. aul : a!) ae a EE 0) ’ (199) ; 


ra) n d N—May m—lpy 
=S2" 7S, = = sm (26). 


m ‘ihki> 7 acall  aeee 
| 7 —m |m Ly, 


d.”. UU n+l Ge de Ow 
gh aD Ape ar oe 
im |j2—m-+1 |m—I 


n+1 | 
and d,”.(wv)= Ga dt de. 


|m—1 


m 


912. Cor. d,.P,u,=(Cd,+7d,+--.4+7d,)U,Up.--Um, (206). 


m 


ody". P,w,=(Cd, 47d, +... +7dz)"UyUne0-Um, (164); 


m m 


=(S,’"d,)".P,u,, where "d, belongs to w,. 


73 


213. Theorem. If w is such a function of w as may 
be expanded in positive and integral powers of w, then shall 


For, assume w=S,,a,_,.v"~', where a,_, is either zero or 
some finite quantity; 


then d,"w=S,a,_,-|m—-1-0"-""1, (191), (196), and (210); 


m 


mm foo} 
=5 Gq —1-[M— 1.0") 4 | MES, Ant n m+n.x", (9); 


™ m 
lo =) 
. —" | 
=U. | m+ Lae | m+n.a", since | n—1=0, (°=)). 
m ™m 


1 
re m me m=1 
: Os U=Ay,.| My and a,,=—-d)_ us ( 


‘m M= OF 


1 
a | =e 
Also (u),_,=43; and therefore, a,,_1= (maa = OD CEA 
© ym} 
q m—1 
and pera at, - 0: 


214. Theorem. d,d,u=d,d,u; x and y being independent 
of each other. 
For, put Dw=h, and Dy=k; then 
dju=(k-'. Dy w);,-o5 
and d,d,u= $h-'..D,(k-'D,u),-9¢ n= 
=$h-*.(k-. D,D,u) p43 95 (187); 
= ik DD ees 
=e A}. D, Du} 5», ae sh 170): 
aah) DD, (ho. Daye - as CS7h3 
=a iat DD, (hc Sanya | 
=, 1D, dur» 
=d,d,U. 
K 


74 
215. Cor. di,” : dU ot a, f d,” U.- 


216. Theorem. 
m—1 Jpn—1 
h Mat lay |) ‘p(@, y)- 


@(w+h, y+k)=Sn 8, ema 


© Am) 
For, p(#@+h, y)=Sn—— -4,""!.p(a, 9), (198)5 
|m—1 
io) m—1 
and p(w+h, es Apt d,""'. h(a, y+k) 
<=) he 1 
= Bi Ra 1 a 1 y ; 198 : 
Dn |m—1 tea ae D(a, y) ( ) 
roa) A@-1 f-} 
: ge gO) Ca) (191). 


ioe ‘d,'" D(a, ¥)s 


(196), and (6). 
Bien) Wor: 


he Mt) fn 1 


p(wth, y+k)= Sa "|m—n|n=1 as i Ras i lm : -p(2, Y)s (18). 


218. Theorem. If w is such a function of w and y, 
that it may be expanded in positive integral powers of «, 
and y, then shall 
GET aly ae, 


[==] fo=) < 
= : -1 - . 
For, assume, wz=S,,0 5" 29,9" 7G nas where @, jas 


is not infinite; 


daw = 
y=0 a = i. 
then s—1 ae man »Un— 1, s=19 (zap (213) ? 
du Ps 
y=0 ai eT n=1 
= 5,0" *OUn,-1, n-19 Cos) 


Sie ERY 
a d a) 


And, se aan eet (Ce eae C2 E3)5 
1 4 
dr 0 d/o Ut 0 m=1 Cx a 
> n=coJ ? 


oh [m—i.|n—1_ =Qn-1, n-19 Gee, 


o ym Ute 
F *s m—1 n—1 
and w=S,, eee a re c dio Gi U- 
219. Theorem. If x is a function of & and y, 


then shall d,}d,z.@(z){=d, Jd,z.p(z)} 


For, d,.d,} f.p(z)} =d,.4,) Lp(z)}, (214); 
d,}d,z.d,. [.p(z)t =d,}d,2.d,.,p(z)}, (202)s 
or delays sp(s)}=dy}dex.p(@)} 
220. If y=vW$x+a.p(y)}, where x is independent of 
w and y; then shall 


SM=fV +S, ao d."'S p(x) |"-d.- fy (a)}- 


Bor, f)=1FO) }x-0 Sa 


ds f(y)> (218). 


Put x+a.o(y)=u; 


ad Paper 
then — bs d, Wy (2) 


d.y  d...y(w) 


_ d,w.d, yu) 

— d.u.d, (uy)? 
du 

dat 

—pty)te-d,- py) 

eT eee d..p(y) i 


(202); 


76 


. Sis¢a.d..oy)idy=ip(y)+«-d,.py) dy, 


and, cancelling identical terms, 


diy _ dy- PY) 
dy d..p(y)’ 


Also, d,-f(y)=dey f(y)» (202); 
=d.y.p(y)-d,-f(y)s 
d,’. f(y)=d,\d.y.p(y)-d,-f(y)} 

=d.}d,y.o(y)-d,. f(y), (219); 
=d.}d.y.p(y)|’-dy-f(y)}; 

and, similarly, d,”".f(y)=d.""'.4d.y-¢(y)|"-d,.f@)$ 

=d.""!.Sp(y)|".d.- f(y}, (202). 
of Mad ' {PV@)]" 4 SV), 


d,y=d.y. p(y), since (202). 


ve 


weal FG) “MO)+Sa, dG) de AR) 


221. Cor. If y=z+a.p(y), 
a 


then f(y)=f(2)+Sn im a 5(s)|".d,.f(8)}- 


222. T'heorem. 
n < 
£(@»r)=S, (-1) da 4 ferv+(-1)". f Sd,"U. ftv f 
For, ip Noh men | Bie ‘yt = qm" Te v— if NORE ibs vt, (203). 
(=) eee” 7 te. | eer 


=(—1)” sei R a v+(-1)".f, Sd,"u. fv? 


i 


7 
Sa(—ayet fi fde'n. f2-10} 
n “ 
= se(=1)" > dt. [048m (—1)". f, Sd,” Uw. [eor, (4) and (5): 


n—1 
f(uv)+S,(-1)"f.sd,u. fret 
n n—I 
=S,.(-1)"71.d."—'w. ["0+S,, (- ye S di,” U Bo vt 
+(-1) f,$d,"u.frv', (9). 
n 
4. fo) =S,(-1)"-1d,"-1 0. v4 (-1)". Lf dru. fr0t. 


29S: Cor: 


n 


v 


n a” 
frun$,(-1 deus EL de, (197) & (210). 


CHAPTER VII. 


ON POLYNOMIALS. 


Msn 


994. Tue symbol §,,,,('a,) denotes the sum of every 
term that can be formed with the following conditions: each 
term is the product of m quantities in which 7 has the values 
of the successive natural numbers, while s has any m values 
such that their sum shall be », zero being admissible as a 
value of s, and repetitions of the same value of that letter 
being allowed in the same term. Thus: 


3,4 
ql 2 9 
S,, 45 Fa,) =*0, Ay°A +70, 'A2°A3+°Q, dy 'A3+"G,"Ae"A3+ 


26) gg) On ig 10, On Oat Oy By Gt 
Ne 570g ls gd, le in On la 


OG, Gn Az + °C; oO, + Oy Gy 1O- 


Msn n+l m—l, t1 


BO. COR.) Seta =O Gana): & 


m eke a 1 es 
226. Theorem. Co ae 
n is 
] 2 a+l a n—t+l Ge 
For, ) =3(5'2)'=s:— “ (88) ; 
it . > t ’ ? 
| ra) |~—t+1 |#-1 
2,n a s 


79 


Suppose, therefore, 


m—1 m—1,” § 
aN n X Ivey 
In ; (S,4,) '=S,, +s] 


c 5 
1 m—1 
then —.(S,a,)"= Ty (4,,+8,a,)" 


n+l } n—t+l1 m—1 


=a us Say) (88): 
‘|m—t+1.|t=1 C2) Ce, 


n+l] awa) eels tly By 


a7 ‘\n-t+1 ¢ miu 


m,n he 


=$,,..7—> (225). 


[s 


If, therefore, the law were true for m—1, it would be true for 
m; but it 7s true for 2, and therefore for m. 


1 m m,n ads U,. 


. d," . P,w,=S,,.;—— ’ ( 
" c 


I 


227. Cor. 21a). 


228. ‘The symbol Dw" p(a) denotes the coefficient of 7” 


in the development of @(S,,@n_:0”"~'), which coefficient may be 
called the m™ polynomial coefficient of P(a@) taken with respect 
to a. In this symbol the index subscript of @ is the letter 
according to the indices subscript of which the different powers 
of # ascend, and the quantity following the functional symbol 


is the term independent of & in the series S,,a,,_;a"~!*. If the 
index subscript of @ is omitted, that letter is understood which 


* Throughout this Chapter a is put for a,, for the sake of brevity. 


80 


immediately follows it, and if the function is a power of the 


polynomial, the parentheses including the first term of the 
polynomial may be omitted: thus 


@”" (a) denotes the coefficient of x” in S,, dn-1(a) a", 


wm” a’ 


28 


m—1 in 
mm — 0 § ? 


m m m—len 
Dm a, EPR sac 355 SA ee A ei t : 


229. Cor. w,’.p(a)=(a). 
2 m wa” =i a 


230. Theorem. @w"a"=S, | Sr Aa 
pe 


value of mn. 


co co 
For, (S,.0,.30" 7) =r ciStala ys (9) and (6) ; 


~ 


co ce 
ised era a Wa ihe (92); 


foo] oe 
ps ml. —m+) -1 _— y— = 
_ S2 =a at mt) aml, S,.2’ 1. a La u (228) : 


[a 
m 


ters . qn-mt+t a" 1 ‘ 0, a (6) and (18). 


pad m — 
aa SE a 


m+1 | fe 


a" a"=S, m—r+1 qu-mt+r-1 wow Ta (228) ; 


>) > 
m—-r+i 
| 
m 
=5, tl at lay"), since @”.a,°=0; 
|m—r+1 


m | 2 
= pet eg ae (8). 


[" 


931. Corl: @af=S,—-6/"o "G,))- 


232. Cor. 2. If is a positive integer, 


Y 


m n m n—Y m—r 
Dm .a, a, -D a, 1 


— =p, , and 
fae 
ow". a. m Geog stars : ow! ae 


| 7 ce er m—r+1 


233. From this last value we may deduce any number of 
one a" 
terms of the expansion of Ee , much more readily than from 
n : 


the general expression for that expansion. We have 
wo” .a” q-™ w. ay m quamti ow = m—1 
| | —m- ae * |n—m+1 —m+1 | m es 
qzu—m +2 : D. Ge 


+ |~—m+2 . |m—2 


Hence, putting m=1, and n=m—1, 


+&c. 


= 5 9 
a” m+2 SGN Gs 


|~—m-+2 . m—2 


And, putting m=2, and n=m—2, 


= —2 
m a” m+ at 


mw” a” a —m ay, 


a” m+2 a m—4 , Get ee 
oe + . a; 
|z—m+2 m—4 \2 |m—3 

qr-mt+3 : wD .a m—-3 


82 


And, proceeding in the same manner, we shall obtain suc- 


cessively the following terms : 


My? Gan er Oo —m+1 ei a, m—2 
ine y |n—m |m —m * [n—m+1 |m—2 m+ | m =50 
qm +2 Ce t os a” 3 qr-m+3 re : ie 
4 |m—m-+2 he a: era m eee |3 
m—s5 a a? m+4 ay m—8 RU he peas F fies 
|m—5 m= a + | 2— imoneeen 8 |4 * m=7 Sic 
| Gage a 2 Com qramts a2. Gs 
“ |im—6 (i +4) Tm af 33 Ae m—10 |5 
+ EES 3+ ie (« a at a a ) i iia (d34,+24;) 
|m—9 3 Posts} m—8 we [2 Sad |m-7 34 12 25 
Ce ae " qr-mt6 joe Ga 11 sg 
"6 Ae |~— —m-+6 ||m—12 |6 |m—11 |4 [a ° 
(Barmy ase : Ay a ea a; 3 i 
joao (ie [2 *Te*) — 5 (fa toes am 
io ie seg quamti Gots - rp 
ar as (E +430; bast) + l\m—7- a + Sree aa [7 
‘ Ce ae p50 a, —12 i a; a) 
mata [5° ** wie \Ys 2 * 
ai” =11 a. age as 
ap ES Co + lor » A, A+ [3 <as) 
a? The! (e Sic E ee 33 ay p 
m—10 2 0 4 2 l2 3 | |2 ) 


qz-mts Gat ag qa : as 


*Tn=m+s m—16 |8 an ane 6 - 


age; i 


ages ae ah 
+ [mai ISIE. ~ [es eae [a,a,+a34,]+ E 4 


= 2 n—9 
Ci sie 10 ie Ga 


1 
——— | — +. @, ig + 437+ Gg) + ——— - @gp+ &e. 
a \(2 Bo sagt i :) | m—9 , 


Whence, giving to m the values of the successive natural 
numbers, 


wD: n q”-1 
SS - 
| 2 |~—1 
mw 4 a” q'-2 : Oar a?! 
= + As 
| |n-2 [2 [2-1 
DZ } a” a’ 3 : a, q’-? a} 
= Se qe AN ear ~ 
| 7 |n—3 [3 |n—2 [2-1 


‘ 2 
An A,+-@ a ( + 
|n—2 ° is iti [2-1 


| 


Cee ee ee ea 7 + G0 eee ela 
‘ho Pa eT 


a -—3 as "ie a ag 
+ E TUE a] Heh a + |n—2 ef era 


N-3 z 2) 
aq" } 
2 au A: 

OR ue x, COR Nee gl Le OS le 5 kan 
Ce Cea Ceca CC 
q’-4 as? aye O° a’-3 Tie 
+ mae - Leet | + male” 

aa ; at ane 
+a (et a.) 5 l2 a} cy |n ; p+ My A+ Us 
a’ 
je 
o.a a *.as a '.ay Cara, Pe 
(EEE 


|n=5 [Sirah 
oe ee (hy om be 

+ Tee 1 +434, }+- a 
ale eet Ble te) sy 


an} 
— 5 +s + As ae aes 


n—I 


Cir | 
Salk pai (ttt) je. 


85 


1 Sm (ag. 5,07 *) 


[o=) 
ee ee n being 


234. Since 


any positive integer, (226); 


s 


Grad ys (=1), 
E 
Capt a” on ar : : 
E =the sum of all those terms of §,,,,—— in which 
n 


Is 
s(v7-1)=m. 


c,n 
=9e46 


This equation may be thus written: 


AY 


wm”. qt 2:n,m a 


‘r—1 


[7 =Or,+s,4+s(r—-1) [= 


m — - 
235. Theorem. w”.av'=a—'.A,, (=) : 
a 


co 


<=) 
Hor, (SG, 12) na yer 9) a) (228) 


o f=] 
2c) iz (S,, Bin 0") (S,a"-? wo’ 1 Gas) 


oe m 


SS et Ope clo mn Ame (18); 


© m+1 


Seed Sade. @ a) Ors (9). 


m+) 
a a take Se 
0=5,,%,) apie a 


m 


1 ail =| —1 - 
a SP Qm-n+1° wa a +a. a" a> (9) 2 


m 


-1 ®@Q a—1 7-1 
=U On 2m—n41 wO a 


m 6 
=S,,( " erie, (8) 


7 


ee — (tH Cm) A..(— = 


m 
—a, 
=0.A,,(=). 
a 


236. Theorem. 


S a a 1 fa] m n—-1 =p 
m@~m—1 F a (es = t 
a Sa" she (pee) LAS, (=) 4 

oh dase 

r 

-l co = 

S Bye” a 5 

For, = (5,4, 10) (O,0n ae. 4) ry subyjeet 


0,1 
to the condition that all the coefficients after a,_,, and b, , 
vanish; 


=S, a" 1S, Onn (Ons w( 228), -and (26). 


m n—1 


co ” —b,\ 
SSS Eo PaaS Ce OO 5 As (=) 5 (235). 


d n U n ao ™ a™ d. m Uu 
937]. ee =S,, a," . p (w) . _|m 39 where Gy —-1> im ; 


co amo 


For, p(ut+ D,w)=Si— 


oo iB n—l o he 
ae Q ie p(w) (S;, al : aru, (199); 


| mn 


ec n—1 | ds M ayn n—-1 > 
Jae Ly - P(t) ht 1 (s., hi'- : 7 (6) ; 
nL 


|n=1 ’ : 


o h®- l 
=S, ‘i \d*s 1 oS ae og a 
n— 
du 
where @,,_1= > /(228)5 


=) d,, n—m 
=e gigas «PNY PO) i a nats (26). 


— [n=m m 


. d,”".b(w) ar dr-"*'d(u) Bp ke vice (201); 


| 7 a: |z—m-+1 


G de" ** @(u) 
m EE aa 


One aa amas a since w'a°=0: 
|w—m-+1 


n—™M pm 
a 


=Sud." p(w). acre io: 


238. Theorem. 


espe n—m+1 


eo 


PS, Qn-1 an 5) os (a) +S, a. =) da. ad) pl). 


|2—m-+1 ; 


= ee 
For, PS, An—-1 a 2») =p(a+e Z S., Cy BO zy 


=$(2)+ $50 G v- Sdn)", (198); 


ae 2 
BL suas ).-Sn2 m— 1 ao" Te (228); 


m— la n—m+l 


n—m+l wo > 
=$(a)+8,0"S,, d, (a). = went (18). 


239. Theorem. 


For, 


€ 


eB 


88 


~~ (s.—) ke (106) and (9): 


© m—1 77) 
=Boot?.077 As “, (6) and (235) 


co 
=§,,0"-*.b,-2, Suppose. 


1 
But —-1=- 


2S,,6 


@ 


=6 


e”—1 


+ 
e—-l e¢ *-1 


© 
er Sn On-2)2™ "+(—2)"-*3 


Co © } 
Seabspalae —3 _ perm +) Se yi Steep sa) 


2m—2° ee”, (6) 


© 
=2h)+28,, Dom Wen (9). 


me b=-4, and by, =0. 


1 o 2m 
= 2n— 
~=a = 24890 wa 


=] 
+4 


(14); 


). 


1 
nt ge a, When ia (6) and (228); 


) m+L =j/ 
=o" '-$48n0". Ay, ( ), (9) and (64); 


ee} 2m ill 
=07'-448,0""). rl J; (14). 


2m+1 ill 
240. Cor. 1. A.( ) 
[r+1 


2m = Fl 
241. The number A..(=5) is called the (2m—1)" 
|7+1 


number of Bernouilli. In order to deduce the successive 


values of these numbers, we have 


a ei Ws ne 


ie 9 | easel eek ee seme yf ae 
| —)- "|2m—-2n+3- of = 


~ 


Ay » (14); 


m =f 2n—-1 = 
+92. r ) 
|2m—20-+2 r+i 
m =I 
=S, eo 


2n—2 


A. » (240); 


2m —i| 
and, putting, A... ( ) =Cem-1s 


90 


1 
Es= =~ = 000033068783 
67 
3 
6; =- [10 = — 0000008267 19 
10 
e, = Tie a 000000020876 
691 
Cnu=- is = —,000000000528 
ie 2 
= = 000000000013 
63 12 [13 3 
3617 
=e = — 000000000000. 


242. Theorem. 


, Bi aime 
Ds Uu=h*. fu— 5 eS UY Suomen Rel tr. 


co 
For, assume D,-\uw=S,,h"-*.dn_2, where dm_o, is some 
function of «, and independent of h. 


*. U=,h"-"_D;.G_-2, (136) and. (137); 
=Snh Sn de" Gyo» (199); 


ce m d” a 


SS) aie ee (6) and (18); 


m+) n 
d, . Gy, —n 


=d,.0_,+ 5,2" -S,— 


i Co 3 (9) ° 


91 
1 Ueda. y, OF G_-= fn 


m+1 n 
d, . An, = 


and 0=5S,, E 


™ dt a. = 
os ae a (9). 


A little consideration respecting the form of this de- 
velopment will convince us that d,"w is a factor of d,.a,,_)- 


(-1)"*' 


|m+1 


Assume, therefore, d,.a,,_,=d,"U. 10-5 


then d,.a_,=u.(—1).6, and =w. .- 6=—1. 


=| m+1 m | m—n+ 1 b, ms 
Also teen Cali ING Gin gie wee ) m—n ; 
|m-+1 [m—n-+1 [nti 


by substitution; 


_am ue (=F ar Onan 
SO Senet [RT 
Wb =) aoe Ge!) 

Aa Lee tai piel etemaen Sai 


» (6). 


( ae i 6, ™ 


a aby Ae, 


and 


=-Al ical | 


"m =r 
oe d,«Gn—\=A,"U. Very (=) 5) 


a 


m ae 
and pe — Oy 1 U : Ax, an 


Hence De u=h-?. [.u4S,h"). du. A ay (—) 


243. 


244. 


92 


r+il 


2m 


) alee = 
=A. u— — a 2m—1_ gf 2m-lay (— 
fru Z +S,,h i bes ay te (ea: (240), 


U i=] 
=h-*. fu 3 Houcamat weasel, | (241): 


Lp es ; 
A, 'u=fu- 2 +S .Gem Ge dee 


grt a” co 
=! 
—— +8 Eem-1- m a” m+14const. 
n+i1 2 


2m—1 


CHAPTER VIII. 


ON THE DIFFERENTIATION OF EXPONENTIAL AND 
CIRCULAR FUNCTIONS. 


245. Tueorem. d,.¢*=e". 


(106) and (9). 


(193), (191), and (210); 


DAG. Cor. 1. <d 6? =e. 
Qa: Corn. 23 die —e-. 0.1, (202): 
943. “Cor. 3) )0,-.e. =e 1 Ok 


249. Cor. 4. da%=d. en") 
=" log,@ : (log, a)" 
— (ghe : (log, a)". 


1 
250. Theorem. d,.(log.«)= = 
For, v=6'%«* 
. 1=6'%*.d,(log.v), (197), and (247) ; 
=wv.d,.(log, 2). 
1 
. d,.(log.r)=— . 
xv 


94 


Dae Cok. i. dp peeve 4 Wen). 
u 


Dba" Con 2 aeiler yng = 
log.a 
Te .d,.(log.w), (196); 
atenl du 
~ log.a u 


253. Theorem. 


ae 


log.w= ae 1)" ye = 


1 
For, d,.(log.v)=—, (250); 
av 


a" 1 


Coan , m being any number; 


= 8, (—1)""'(a"=1 1D eee He's ie (a" a, (12); 


Fpl Yr ‘ 
A. —y)=-(-1)' (192), (210), 


1 T | m—1 
eta ) 

” Mm 
(191) and (207); 


e (-1)""? aes —1)". — +const. 


1 
n 
Hence 


1 “wn i me aa r 
log. 1 = = ; Sn (-1)"7?. ( ou Ee +(=1). l= +const. 


and log.v=—. Gi 1"! ae ‘ (a” (ary 
m 


v2 
t=] av 


95 


254. Cor. 1. If a®~1<1, 


then log.w= 


ise (12). 


Sir 


2554 (Con. 2. > If reeks then 


es ah 
ee ae 


rns 


log.(1-#)= 


1 p 
and log, — =log.(1+#)-log, (1-2) 
—x 


nin m 
v af 


-S, (= +3n = 


=S, {(-yrtays, (5); 


a™ nes 1 


256. Theorem. log.a= 
1 Ces 1 
For, log.«= ai fog. —log, sat 


S (-1)""! ( a” a 
“i eae w+ 


a) (ois aia. (54-1) | (255); 


m “+i 
eee S hee en 1) ae 1 bee Er .a" 
n m(a"+1)™ me m (41) 


is an” —1 


m 


‘pk m (a"+1)"° 


(5). 


257. Theorem. p(c*)= “Seo {P+ A)por-). 
For, ple)=piite-1} 
a di’ -p(t) 2 n—1 
Smee; =A, (198)5 
n—l 
1 a a3 
=a) Ae san) 5 ck (- 1) 1 ear Agee es (86) ; 
1 
Ges 1 t |2—1 ° m—1 
=o) 7 se ene ve —1)"- 1 = S,,(2- —ry"- 1 a ae 
2 at ee O10) g Lee 
Sta ae 
© gy") o Gat! t 
=S,,. Sa p(t) Ne 1 gr- MS (150) ; 
orange alee 
se Gisemn 
esi Sp(i+A)jo"-", (198). 
-) gntm-i 
258. Theorem. (¢?—-1)"=S,——— -A*.0"". 
|z+m—1 
ea) a”) 
For, (c’—1)"=5S,, FOREN pall CLE) 3 
=) m—1 
=S,, vd NOt 
|m—1 
n am} o F n+m—1 
=S,, lf Moses. wv NP Ora. 
| m— |z+m—1 
ne) pitt = ] 
=Sn .Aror+™-!, (146) and (138). 


96 


7 ae 1 


"\n+m—1 1 


, (106); 


BC) prmecrome GL) 5 


(9) ; 


iN 1 .O"- 1 


2 


(146) and (138). 


No on-} 


, (255), (146), and 


1 i) an} m 7 
Theorem. pie =e 9 Seca) 
oe 1 
= ont. (257) 
B= lanl faa ao 
fo) an} 1 
=S,, on-} 
m—-1 \2+A 
a) a™ 1 Ie 1 07> 1 
=Sn ——.§,(=1)"" : gat ea? 
oo an! m INES 1, o”- 1 
=o pat Sn(-1)"" : a 
ve 2 ie Le 
Theorem rae =Sn [mi S,(-1)""! 
log. €* 
= rae 
ao aah  tlo | 1+A 
Set POTN on, (enn): 
m—1 14+A-1 
ere nS, ; ed al 
"|m—1 A 
2 ym m Aso") 
aD . —1)-!, 
S.—.8,(-p. 


; xv a 5 
261. Cor. Since 1 =1 ie: RUS ig Oe Eee (239) and 
(241) ; 
2m +2 A®-! 0741 
*. SG rie weet ce 
m+] NOs 1 Qo?” 


Se iae ————=|2m. Coe 5, ane 


wv am 2n+1 A? —1 or 


: =| at : . 
| 2am Sn(-1) n 
fos] 


av =] 


INES" 


n+m—1 


For, D,?u=(e"4 —1)".u, (201); 


262. Theorem. D2 Uu= Se 


5 Ses Mer! zm 


L? 0” +m—1 


Tes : Se Pa eS Ee (258). 


263. Theorem. 


=S, ——— 


plog.(1+A){".0"=0, (m2); and 
Slog.(1+A){”.0"= | 2. 


co a} 
For, Sujppmz tlege(1+A)}"-0" "(loge eV, (257); 
=a". 
. flog, (14A)}".0"=0, (m2n), and LOO +A) 0 


[n =i 


264. Theorem. Slog. (1+A,)} u=d,w. 


co AS 
For, log, (1+A,)} w=S,,(-1)"71. =, (255) ; 


co (—1)ta 
aS) meee (c& — 1)", .(201)5 


oo 


S (=H © A” onte-! 
=n ane 


mm "|m+n-1 a BCP): 


qn m (-1)"~” 
i “m—n+1 


Gi? BN eel ay (6) and (is); 


pane =) mn Qo” 
‘1 (is eu’ (8) and (13); 


d,"u 


es ae 


=d,u “(268). 


-jlog.(1+A)}o”, (255); 


fs 


265. Cor. d,’u= Slog.(i+A,)}"w. 


sin 2 tan 
266. Theorem. ( } =1, and { =1. 
v 
«2=0 faa (8) 


Lv 


taney sing 1 
For, = ; 
we ® COSe 


(= *) (=) 
v | x=0 @ TS x=0 


Also, for every finite value of wv, tanv>a, and sinw<w. 


And these two relations can only be made to agree by 
the equations 


tana sInw 
=1 and =|. 
wv 7=0 v 2=0 


267. Theorem. d,.sinv=cosa. 


sin (w+h)—sinw 
For, d,.sma= ¢¥{—————_ 
h h=0 


DY seh 
cos { v+ = }.sin= 


91 S|] r 


| 


=cosw, (266). 


rr 


100 
268. Cor. 1. d,.cosv=d,.sin G -«| 


= —COSs (= -), (202) 
2 

=—sinw. 

269. Cor. 2. d2*-'.sina=(—1) ‘cosa, 
d,°".sinv=(—1)’.sina, 
d,?"-' cosw=(-1)".sina, 
d,?".cosv=(—1)".cosw. 

270. Theorem. d,.tanv=(secx)’. 


sinw 


For, d,.tanv=d,. 
COS& 


({cosx)*+(sinw)* 
. (cosa)* 


=(seca)= 


271. Theorem. d,.seca=secx.tana. 
For, d,.secv=d,.(cosx)' 


=(—1)(cosw)~*.(—sinw)=seca.tane. 


1 


Lheorem. d,smiqat——j————- 
V 1 lee 


For, #=sin(sin~' 2). 


2472, 


°. 1=cos(sin~*#) .dgsin( “a, 4, (202); 


= J/1 ait SiMe aie 


Sod,.sin = 


101 


273. Theorem. d,.cos~'# 


= 
v= si: = > 


For, v=cos.(cos”'2). 


1=—sin(cos-'wx).d,.cos~'a 


=—/1—2".d,.cos ‘x. 


—1 
. d,.cos~'#= ———. 
V 1—2* 
1 
274. Theorem. d,.tan-'!x= = 
1+a@ 


For, v=tan.(tan~’.2). 
7 L=sec.(tan> a)? d..tana' » 


=(1+4°).d,.tan7'2. 
1 


-. @,.tan v= =. 
1+ 


275. Theorem. d,.sec~'x= 


I 
& VS a > 1 
For, #=sec.(sec”' 2). 


*, 1=tan(sec—'#).sec(sec—'x).d,.sec™’ 


=f v’—1.0.d,.sec'a. 


1 
-, d,. sec” a=! = ——. 
v Jf el 


av. 


CHAPTER IX. 


ON THE EXPANSION OF CIRCULAR FUNCTIONS. 


276. Turorem. 
n — n — nr 
P,.(cosa,+4/ -1.sina,)=cosS,a,+ / —1.sinS,v,. 
For, (cosa,+4/ —1.sin2,)(cosa,+ +f —1.sina.) 
=COS (v7, +2.) + nie sin (av, +22). 


And the introduction on the first side of the equation 
of a new factor of the form cosa#,++/ —1.sinw, will increase 
the arc on the second side by the quantity #, Hence the 
truth of the theorem is manifest. 


277. *Cor ty Patrx,—z@,) then 


(cosv+4/ —1.sinx)"=cosna++/ —1.sinnx, being any posi- 
tive integer. 


Again, (cos#+ Ny A sinx)(cosw—/ —1 .slag)= 0. 
“. (cosv+ BY Si : sinv)-!=cosa— —1.sinw 
=cos(—a)+ rf -1.sin (-2), 
and (cosa+r/ —1. sinv)~"= } cos (—a’) + ne sin (—«){” 
=cos(—na’)+4/ —1.sin(—n2). 


103 


Hence, (cosa+/ —1.sinav)~"=cos(+ma)+/ —1.sin(+ma), 
m being any positive integer 5 


m : m 
=cosfn.(+—]at+r/—-1.sin}n| +—)at, 
n : n 


n being any positive integer; 


m ry sg m : 
= {cos (+2) +/—1.sin(+7.0)| 
n n 
ee m — , m 
*. (cosa+4/ —1.snv) "=cos| +—.a@ +/ —1.sin ~£—.v}. 
n n 


Consequently, whatever rational value 7 has, 


(cosw+ ait sin v)"=cosnv+ / -1.sinne. 


278. Cor. 2. 2cosnwx=(cosa+V/ —1.sinz)" 
+(cosm£r/ —1 slp), 


and 24/ —1.sinna=(cosa+/ —1.sina)"—(cosa#£/ —1.sina)*”. 


n—2m+2, 2m—2 


n lo=) 
279. Theorem. cosS,«,=S,(-1)"—'.C,,;(cos@,.sina,), 


n—2m+1,2m—1 


and sin S.2,=S,. (-1)”"'.C,,,(cosa,.sina,). 


n —s n 
For, cosS,2,+ rf —1.sin S,2,. 
n = 
=P, (cosa,+ WA —l.sina,), (276); 


co n—m+l1,m—1 


=§S,, C,,; 5 (cosa, JOST: sinw,)}, (67) and (13); 


m—l ers m—1 


= 255 (-1)? Cz; (cosa, sing), (55); 


mire 2m—2 F 
48..(< Dre !.€-.(cos#, sina.) 


n—2m-+1, 2m—1 


hf SY. S, (-1)"-'.C,,,(cosa,.sinw,), (14) and (6). 


104 


Whence, by equating possible and impossible parts, we 
obtain the above theorems. 


ag 2m—1, 


n m 1 
280. Theorem. tan§$,#,= Sa(=0"=!-C, (tana) 


2n—2,n 


Suet y"-*.C, (tana,) 


n n 
For, cosS,2,4+Y —1.sinS,2, 


=P,(cosz,).P,(i+-V —1.tana,), (276); 
m—1 m—1,n 


_p. (cosw,). Ss. (-1)? .C,(tanaz,), (68), (55) and (13); 


2m—2, n 2m—1, 7 


=P, (cosa,) {S,(— 1)""1.C,(tana,) +7 — ne 1)"-1.C, (tana, )s 
(14) and (6). 


Hence, equating possible and impossible parts, 


QIm—2,n 


eee (cosz,). ve 1)"-1.C,(tana,), and 


2m—1,n 


BAC ap (cosa, )S,.(—1)"" 1_C, (tan 2,); 


and, by dividing the second of these equations by the first, we 
obtain the theorem sought. 


281. Theorem. 
n—m 


cos na=kn. Sy (<1)? 72 cs (2cos x)"-°"*?; nm being any 
integer. era 
For, 2 cos nv=(cos v+ —/ A .sin wv)" 
+(cos w—af i SHLD) > 4208) 9 


= Cos nx (cos v7+4/ —1.sin @)" 
oe —2 2 Ss ee 3a 


=a (cos x—*/ —1.sin ay 


n t" 


¢ being any quantity greater than unity, (4) and (6). 


105 
1 cos @+%/ —1.sin & cos v—a/ —1.sin a 
= Og. | b= a +log, aa a aaa 
(255) ; 


=log, }1-t~-'.(2 cos w—t7')} 


2a(2 cosia—t,_)* 
=— S,, arn A 5 (255) 3 


n 
bad ee a) m— 1 
= sae si a . (2cos #)"-™*?, (86) and (13) 5 


| —m 
=-S,—.S,,(-1)"7! ———. (2 cos w)""*"**, (6) and (18). 
Ga |m—1 


Hence, equating coefficients of ¢~’, 


nm—mMm 


n 
=—Sn(-1)"". ea (2 COS a) we aa ts 


: 


—2COSnx 


x | 2 —m 
nite iy eee ae (2.cosm)ta <7, | (13 Y. 


—_ 


282. Cor. If mis even, every term will vanish after the 
(4n+1)™, and 
| 1 ee 
$atl gnt+m 2 


cosnv=4n.(-1)'".8, (-1)" "| eee. (2 Cos)?" ~*, 
|$n—m+1 


(8) and (6) ; 


106 


|dn+m—2 


; |2m—2 [an—m-+l 


be: Weta 
= sis n+m—2.4n. = 


m—2 es 


“lem—3° |$n+1. [an 1 (40); 


m—2, 1 ? 


ah 2 m—2 
GO” 'Pn+r\(hn—r)| 


. cosnav=(-1)'".” Oh ae 1D ie a ae (09 
Im— 


If m is odd, every term will vanish after the }(m+1)", 
and 


$(n+41) IE (n-1)+m—1 
cos 2v=4n.(-1)*”".S,,(-1 mo) so, (2 cos wv)", 
|$(m+1)—m 


(8) and (6) ; 


107 


Ts (iy> ea 1i(n- = 
Ges ME EE (1) ra a on Dts 


over [pe it) a 2 (n—1)—m 2m—2 


~ [S(Q+1)—m ~ am—1. |S (u+1)—m aca T 


4(m—1)+m-1.|4(@-1) | $(m41)-|F@-1) 


m—) _._m—1,1 m—1 


2m—1 |gm—1 


m—1 m—1 


P, 3 (Gn+r-)Gn-rt+ si PG) Gees 


2m-1 |2m—1 


P, {n’-(2r-1)*? 


| 2m—1.g?m-2 
m— 


# (n+) P. \n?—(29 as 


. cosna=(-1"? .n.S,,(-1)"71. (cos @)?”=?, 


2m— 
283. T'heorem. 


zn [me 
(sin @)y=(=1)".2-**" Sate) _—=1_ cos (n—2m+2)u 


|m =F 
| 
ae a — AOL 
roy VL 
n 


4(n+1) — 
(sin wy"=(-1)8"? 2-741. 5, (- 1)". sin (n-2m+2)a; 


according as ” is even or odd. 


For, 2 AY) a . sin v=(cos r+ pn . sin 2) 
—(cos 7+ Vf —1.sinw)7'. 


108 


(1) If mis even, then 


n 


$n 


g"(—1)'”. (sin oy a ea 


{(e0s a+4/ —1.sin vy" 


nu 
1 
—1)?"_ 22 : 
ane aes} +( 1) 3 A? (90) ; 
nN 


zn 


=S,,(-1)""! —_ 2¢c0s (n—2m+2)v+(—1)*". in (278). 


[m=3 [an 


*, (sin 2)" 


(2 I” 

zn 

(9) 82 SEA On ee a COS (m—-2m+2)0+2—", Sm 
2 


. 


= 


(2) If mis odd, then 


n 
+ (n+1) 
g” .(—1)'”.(sin eat Tae |(oos Da-a/ —1. Sin) 


1 


=a 5) (90); 


(cos 7++/ —1.sin 2) 


2(n+1) & 


=S,,(-1)"") 2a. 24/-1.sin (n—2m+2)a, (278). 
—1 


| 
- es s\n. 4(n—1) he m—1 m—1 -c ; a 
. (sin #)*=(—1) .2 ‘Sn(-1) Seam (m—2m +2) x. 
m—tI 


109 


284. T'heorem. 
ie | 92 
zn | is 
+1 cos (m-—2m+2)H+4+27 a ~ , or 
2 


1 


(cos #)"=2-"*!-S,, 
= 


n 
cos (w—2m+2)a; according as 7 is 


even or odd. 


For, 2 cos. #=(cos v+ / -1.sin xv)+(cosv+r/ —1.sin v)~! 


(1) Ifmis even, then 


n 
2" (cos x)"= “5, SH (co wEA/ Si .si ay 
ay |” 
aE iis _ (89) ; 
(cos w+ Af aissina)? "=? |5n- ; 
gs : 
=S,—M—@—. 2 cos (2—-2M42) e+ am Q78) : 
met ( ) Ee (278) 
8 | : | 
(cos #)"=2-"11. 8, - = .cos (m- 2m +2)V+ 27" — 
|m—1 lo 2 


(2) If mis odd, then 


2 (n+1) | 
gn (cos oy Buea | (co et Ay ee =~] , sin a= 2m +2 
Mm 
Hs (cos C+ TS sin aya 4 ? (89) 5 


(278) ; 


2cos (n—-2mM+2)a, 


in 
4(n+]l) Lo 
m—1 


cos (2-2 +2) w. 


. (cos n)"=2 =-ny S,, 


fn 


110 


v 2m—1 
285. Theorem. sin «= c (—1)"-". : 
2m—1 
co an 1 
For, sinv=S,, 57 eae ‘sin a, (213) ; 
"ae 


2m — 2 i) yrm- i 
2m—2 _s : 
dC  sin ree 


i=) 
ye zm—-1 .* 
=8, ome te Ne ema Sin @, 


m—2 In — 
oy C-) an il 


(14); 


co 
=S,, . (-1)""". (sin 0) ae . (-1)""! . (cos x) = 
2m—2 ‘ |2m—1 Rae 


on) 32m —1 
=d,-Sn(-1)"7 yeas 
prm—2 
at m—1 
23% 1) |gm—2 


287. Cor. 2. 


@VA=S, (-1)"- i 
(14) and (6); 


=cos v++/ —1.sin a, 


Se 5 / Sie ye 
(So Sok (ea) [2m 


and ¢~*¥-l=cos (nye n/a .sin ( 
=COs a—/ —1.sin Ds 


e7V-14 ¢-*V-1=2 cos a, 


and ¢*V-1_¢-*V¥-1=2a/ —1.sin wv. 


288. Cox. 3. ¢®-Vie. VA=(-1)"1.4/@1, 


and (mer Vet (1.)°=1, 


| i 


m—1’ 


—x) 


(106), 


111 
289. Theorem. 


oS n 1 m—1 — jl 
at _p\n—! . 2n-1 a oasis | | 
tan x=§, ( 1) + ‘Sn Sn —omal he, ( | 


For, put s=—2’, then 


tan v=sin v.(cos v)~! 


ea) gral co gm) -1 
=v. 285) and (286) ; 
ApremlGapeey 2 ae iGey 
a) gn) eo 
= S., aes Oe oo"! Gas 
1 
where @,_-)= [am at (228) ; 


— f n 1 ; m—1 —A, A 
S Out tn Merry ag ct oe: (=) ; (235) ; 


© n i! m—1 ill 
rd —1)"-), @"-}. ee 5A (xd Fr 
S. (1.08. aaa Ae (a 


cc) n—1 —ji 
290. Theorem. sec 7=§,(-1)"7).0"-?.A,, (a) 


For, sec 2=(cos 2)~' 


z (S, oe ss (286) ; 


eo 
=S,,2""'q@"-1.a7', where a,_,= [en-2 5 W289 g 


co : n—-l —j| 
=§,(=1)*) a7? AL, (=) FE: 


291. Theorem. 


roa) n 1 m—1 1 
a2: (aye ame (i es son) 
cot #=S,(—1)" 1 Sn |2n—2m Ass ars 


For, cot v=cos v.(sin 2) ~! 


co gnol o gmt -1 
= .{a2.5, —— 285) and (286) ; 
Since: (#5 =<), (285) and (286) 
oe) gn ee) 


1 


|gm—1° 


where @,,_1= (228) ; 


oO a n i] m-1 ji 
= S.C) ha Sn (Ve ( ) C 


|2n—2m 


© na—l = 
292. Theorem. cosec r=S,(-1)"-!.a"-3.A,, = é 


|2r+1 


For, cosec v=(sin x) ~! 


o gn l -1 
= (7-8, — 5 (285) ; 
= 1 
=—«¢-'.§,3"-!.@"-1:a7-1, where a,_,= [ana , (228); 
n— 
rae) n—1 a 
pe Sie?t! aa Va (235)'; 


293. Theorem. sin vaw.B,fi- (2) 1. 


For, the roots of the equation 


O=sin v 


r=] 
Tr—Olye 


are @=0, and) g=——r7, ( 


o 
-. sin v=aax.P,}(a—r)(w+rm)}, where a is independent of 2 ; 


=a2.P,(-rx).P fi ( z ) 


TC 


o 
=ax.P,(-r'n’). {1+terms in 2°%. 
But sinv=#+terms in v*, (285); 


i-=) 
- @.P,(- 9) =1, 


: 2 a \? 
and sin v=27.P,21- (=) : 
vor 


= 2H 2 
294. Theorem. cos e=P,f1- (=) . 


For, the roots of the equation 
O=cos w 
are w=£(2r-1)7, (‘=)). 


ee Qr-1 : ee 
*. cos =a. P, {a (—. ) \, where @ is independent of a ; 


~ 


«Pf (=: a) |B {i- (—=-)} 
aP,|- (== vn) }1+terms in at. 


BE 


Hi 


114 


But cos v=1+terms in #*, (286); 


or. eae 


© Qe \* 
and cos o=P,|i- ( } . 
2r—-1.a 


a2) 2m 
295. Theorem. log, sin v=log, -§,, (=) ; 


co 2 
For, sinw=2.P, } — (=) \, (293) 5 
no 


H co xv 2 
. log, sin a=log, #+§,, log, ‘ = (=) 


re) 9 1 a i) 
296. Theorem. log, cos v=—-§,, (=) .— .§,(22—-1)-*". 
7 m 


2 20° \" 
For, cos =P, {1- (—— ) \, (294) ; 


2n-1.7 


2 9a \* 
-. log, cos v=§,, log. |1— ( 


2n—1.7 


=-S,S, ( a \ es (255) and (6); 


2n—-1.7 


=-8, (*)".—.8,@n—1)-, (17) and (6) 


115 


297. Theorem. 


co Lv 2m 12 
log. tan alos: v+S,, ( ) ee ase (- 1 ies na", 
T “m 


For, log, tan v=log, sin a—log, cos # 


e) Qn 2m 1 
HS (=) Oe 
Tv m 
ay ee ea 
=log, v foe (=) °ss 
T m 


298. Theorem. 


n 


tan7! #=8,q(-1)""1.> 


(274) ; 


= 
For, d,.tan = 


.S 


=S (-1)""!. 


.. tan“! v= ae (-1)""'. 


——+(-1)" foes 


999. Cor. lf «<1; .tanq 


fo] 
S,(- i Yee ie. 


v& 
pers =a nr. 
(ay 


io=) 
1 G=S,(-1)"-'. 


-) Qu 2m 12 ; 
-Sn =) Sime Ss: (2 n) Pa 
7 m 


fon) 
.9,(2n-1)7" 


(14). 


aie: ane caer 


27 


(2); 


9? 
a” 


, (191) & (210). 


s2m — 1 
u 


Im—1 


116 


300. Theorem. 


coat re yr, 2 — -S,(-1)""! 


WT 
tan 4a@—tan Fi 


T 
1+tan be tan 


Tv 7 
I Sin (40- = 
A A. 


1 
=4,tan~'— —tan~1—— 
5 239 


1 


fo=) 
boa SN) eat (agai) 


1 


We ky MAW nk ee ee 
Sit ) (250)">" = 


But —~ =4x(,2)!"-!=,8% (04) 


Bem - 


ba - (,04)"- i : 
2,88, (HI Sy (1). 


] 


BN") 


(299). 


(2m-1)’ 


] 
Co aaKCEDS 


117 


2m—1 


, vai 
301. Theorem. «+1 Spe (vw-e ™ ee 54)! 
For, put 0=z"+1; then 2”=—1 


= _@ Narva, (288). 


2m—1 


Tay 
. v=e ” ; 
2m—1 — 
and the ” different- values of « * °”*— are the roots of the 
equation 
O=Ne-tals 


ae 
Hence the » different values of (a—-e ” 


factors of (#"+1). 


mice ~) are the simple 


302) Con. I: 
2 2m— 2m—1 
a"+1=P,, §a—(cos r+4/ 21.sin-——— ‘7) ty « (287): 
n 


303. Cor.2. If mis even, then 


1 
zn 2m—1 2n—2m+1 
aN —1 


mr i=P, (ate = ~Y) (ate n : a2 ), 
by inverting the order of the latter factors, (31) ; 


zn 2m—1 — _2m—1 ny : a ae 
+e ” *)+1}, since ’™V-1=1, (288); 


in 2m—1 
=P, (2-22. USS raene .w+1), (287). 


If 2 is odd, then 


+ (n—1) 2m—1 $(n—1) 2n—I2m-+1 — 
av "+1=P,,(¢— Fae ee ra Tay (ace). P,,(e- € % le 


(32), (288), and by inverting the order of the latter factors, (31); 
2 (n—1) 2m—1 
= (v+1) ' iP Sa —a’ (e Fs amas 
since’. e?*V=1= 15: (288) : 


’ 


4(n—1) 
=(@41): P,, (v’-24. does 


118 


2m—2 
ne Va 


304. Theorem. «x Sos) aera ). 


For, put 0=#"-1; then a”=1 


Sere ss (288): 


2m—2 Z 
xe v=€E Le 5 
2n—2 
. ——_ .7V-] 
and the m2 different values of ¢ ” are the roots of 
the equation 
O=a2”"-1. 
2m—2 


: —— or V=1 ; 
Hence the n different values of (v-e ” ‘"*~') are the simple 
factors of (#”—1). 


305.7 (Cor. a. 


z 2m—2 . 2m-—2 
a"—-1=P,, Sa—(cos w+ —1.sin .m)t. 


306. Cor. 2. If m is even, then 


zn 2m—2 Na — = ; ‘ 5 
w"—-1=P,,)(a—-e ” )) Ceara )i, by inverting the 
order of the latter factors, (31); 

tn—1 Qn 2n— 2m rn =y i 
=(v-1).P,,§(w-e” Sate )} (w@+1), (82), & (288); 
¢n—1 2m ae 2m. ER f : oa 
=(0°=1).Byfaraler pe 4}, since V1 
zn—1 9) 


5 ~m 
=(#?—1). P,, (2-22. cos. -w+1), (287). 


If is odd, then 
+ (n—1) Qmn7 — 2n—2m = 
eS UA S| : . 
v"=1 =(«-1).P,, ; (w-e n '\(a-e n i ) t 5 by inverting 
the order of the latter factors, (31); 


+ (n—1) ae SE 
=(v-1).P,,ja’-av(e" “+e ‘\+1hs since eV 15 


4+ (n—1) 


=(v-1). P), (a? —20. cos — 


119 
n 
307. Theorem. (i+e. cose)"=14 4. aa ($e) 


(my 
- n 
+2COSM#.S, ie (Leymt2r-2e° 
> = Nepen o 
ae is | 
For, a at ee aed (92) and (9); 


n n 
o 
=1+8, a (ecosa)?"—" ieee omar (14) and (5); 
|2m—1 2m 
| 2m—1 
eo ™m 
=1+58,, m= : en) —_ .§, cos (27-1) 
es a 
| 2 : 2m 2m 
— m 
am 2 —r 
+ —e "(= ae cos2rav+ a at (284) and (8); 


| |2a—1 
S, L.2.(he)"! S$, cos (27-1) 
24g 8 SS conor). 


n 2m 


o — m 


2m 1 py\em m—r mas 
+3nToo .2.($e) ge pacer COS2TA 


n 


See “(ae (Le) 
| 2 .|2m+27r—-38 


S 2cos(2m—1)x. ea Sea le 2m +2r—3 
ss n .|2m+2r—2 
+2cos2mv.S, == Gey re 


"[2m+2r-2. (aaa 


(19), (17) and interchanging m and +; 


120 
| 


ts = n -|m+2r—-2 
+5 ,2COSmx (yn ter : 
Sn = Enea pet .(4e) » (14); 
I” 
SES, (i --(4e)" 
i? n 
+2cosm”. Sa Ce eel 1d pyn+2r—2 
S: m+r—1.|r—1 Ge » 5) 
308. Theorem. If y=x+a.siny, where x independent 
of x, then shall 
Y=r 


| 2m— a 
+28,(-yr. G9 — § 
m 


—S(-1) — 
em 


ara pe 
[mar VE 
© (La 2mm oa 
eo) ae ex iS) (Ea 1 a (2r)- Le ogee 


*.sin (2r—1)s 


© an 1 
For, y=2+Sn ‘emai .d2"-*,(sing)?"-! 
m— 


o arm ; : ; 
+S, iam .d2"-".(sinx)*", (221) and (14); 
© 2m —1 en | 2m—-1 
md .g2m-2 ma Tak 
+Sn REE Powe fon 4)" Si(- ») [mar a .sin (27— ns} 
S Tipe a i m | 2m 
a" m—-r _m—r Oise 
+ Om |2m z tee 4)" or (- 1) lear 
2m 
4 ™m 


im a | (283) and (8); 


121 


2m — 1 
v 


"|a@m—1.(—4)"7} 1.(-4)""? 


ous 


a”, 2 m 


S. eC eG arisne ta 


© (ga)""* — 1 m 
=242:,,(—1)"7- |[2m—1 


Gay" 2 
EES 


309. Theorem. 


+2Sn(=1)"7). 


cos y=cosz—w.(sinz)” 


ue athey 
Tex 1 
‘ay 


(s i alae < (-1 ee 1 
|2m+1 Z 


Ue 1)”. 


+8,(-1)".2 


oe 


DB 


=) 
For, cosy=cosz+§,, 


i=) 


=cosz—2.(sinz)?— 


fn} ae +1 


ae 


Q 


S,(-1" a 


eG 1). Gr 


Bye 


; d= ail (sin Ey ier 


22m 
* [= 


i am : (sin sem nae 


2m—1 


(- 5) ier 1 .(2r- 


1) Sera: 


sin (27-1)z 


a 


——— (—1)”.(2r)*""'.sin2rg, 
-r 


(269) and (202); 
| 2m—1 


=D peo. 


sin(2r—-1)z 


oa 


(9) 2m 


(27)"— snare 


In the same case, 


| 2m+1 
m—n+l1 


| m —n+1 


2m+2 


m—n+1 


“|m=n+1 


.d,"—'.S(sins)"d,.coszt, (221): 


.(2n—1)*"~'. cos(2n—1)2 


(2n)".cos2nz, (6). 


(268), (196) and (6); 


dy 2m—1 .(sin syne 


(9) and (14); 


=cosz—a.(sinz)” 


2m+1 
arm m+1 


2m+1 | 
2. ed RD ee SIN 290 — at 
[2m arsed [ecner rae 


aes |2m+2 


= ee. 1)"-"4) ; mt. COS2NZ 
Sta - | 4yntl 5.(-1) “|m—n+1 
|2m+2 


+= acral, (283) and (8); 
m+1 


=cosz—2.(sinz)* 


am <i |2m-+1 
Sei fz ae S.,(- by Nh m—n+l1 <(=1)" Una): 


m—n+1 


cos(2n—1)% 


eee a a |2gm+2 
“Sen (coe ee Oe 


m—n+1 


cos2nx, (196), (191), (269), (202), and (193); 


=cosz—a.(sinz)* 


be ba’ |2m-+1 
ae 


1 n—1 m—n-+1 
OO nent 


: .(2n—1)*"—*.cos(2n—-1)% 


+S, (-1)". 


e 1) eae m+1 |2m-+2 


m—n+l 


Se -1)”. Jemqa on ae Tie (6). 


CHAPTER X. 


ON THE INTEGRATION OF CERTAIN DEFINITE FUNCTIONS 


1 —_—__ 
310. Turorem. lbp ae =log. (w+ rf w1). 
e Jf a £1 
For, put #’£1=’; 


then v=ud,u, 


and w+w=u(i+d,w). 


1 i+d,u 
uu v+u 
1+d,u 
and ie =f =i 
2 C+ 


=log.(w+u), (251); 
© | ~——— slog, (94/41 
or lox og (w+ ve ); 


a 
311. Theorem. Leite =loo, ——_———.. 
8 a n/ 1 La? 


(510) and (202); 


124 


1 d 
312. Theorem. a : =log..tan =. 


smn &@ 


1 siInw 


sine 1 —(cos x)” 


ie 1 1 
Sy NE ee th ee ee 
l1-—cosx 1+cos# 


fai d,.(—cosx) “ d,.(cos 2) 
2) 1-—cosx 1+cosx 


| (268); 


1 
; J Fay =F Eoge(1 cose) —loge (1 +6082) §, (251); 


1—cos@#@ 
=log. \/ ——_ 


1+cos@ 


v@ 
=log,.tan rf 


1 b 
313. Theorem. f[ =log,.cot. a — = : 


2 COS@ 


F 1 cosa 
or, ——=-———, 
cosa 1—(sinz)” 


1 1 
=F .cos2{——____ +} ——__ 
l+sing 1—sinw 


,fde-sinv  d,.(—sina) 
2 \14sine 1—sing 


\, (267); 


1 
: =1 Slog. (1+sinx)—log.(1—-sinz)? 251); 
[ego Moge(1+sina)—loge(1-sinz)§, (251) 


1+sinw 
=log, —— 


1—sinw 


314. Theorem. 


— anf 1-2 


: = m1y/) 2 +(n— 1) ey id 


a” Le 1 
and == 
@ 


1 —v if v 17 . / 1 —v ; 
a” r yr 1—2(m—1) m—l Malo Cs—1 
af Ge | ee ee ne joe 
fine n—2 n—2.(m—1) 1) m—2.(s—1) 


r oe ane ; 
+P. m—2.(s—1) ae (51); 


av 


[m-1 m1 y— er 
as = 4 alse —2 = ar iso 6). 
= _/1—a". 4 ria Bae em ea ( ) 


m,—2 T,—2 


315. Cor. If 7 is an even positive integer, then 


n—1 1 
n zn 
i Tit CN eS Si BE gn?mt1 4 ee sinter, (40) and 
: nr 
aeal — 7o [2 g 
a m,—2 EN; 2 


126 


and if 7 is an odd positive integer, then 


a # (nt) L— : 
{>=-=- 1-2 .S ——— . gon), 
2/1 a | % 


316. Theorem. 


n—2 n—2 


oo ee 1 1 
Bese / 2 m—1,—2 %,—2 
1-2 oa ssl +. [ : ae ; 


1—a77 mA 


m,—2 7,—2 


a? 
—a"—ha/ I-ah+(n-1). fF 
ve 1-a#@ 


For, 


a” 
UERG. | ee 
/ V 1 — 2 


a a me, nN gp (n= 2m—1—-1) ae ? n—2—2(s—1) 
>V1i-« "| n-2(m-1)-1 *(m-1-2(s—1) 


EG 6 


n—2 |~—2 


Ear m— m—l,—2 1 r*5—2 [ 1 > 
On AEP : [Sea at Jn 4 7 Ee aS me = 4 (6). 


mM,—2 r,—2 


127 


317. Cor. If m is an even positive integer, then 


hee ‘ 5 ae ‘ 
ree 3S "| |n—1 a" am+1? 
m,—2 


and if is an odd positive integer, then 


ae / ee 1 an b v 


m,—2 £(n—1),2 
ae and (311). 


318. Theorem. 


Sg (ae n—1 
f.sinw)"= —cosa.S,, ==. (sinw)"-2" +14 22. f.(sina)"-*". 
Ee 
m,—2 r,—2 


For, (sinv)"=—(sinz)""!.d,.cosa, (268). 


. f,(sinz)’=—(sinz)"~!.cosa+ f,(m—-1) (sinw)"-?.(cosx)*, (222) 
and (267); 


= —(sina)""!.cosw+(n—1).f, }(sinx)"-*—(sinx)"}, (196). 
. n. f,(sina)"=—(sinw)"~!.cosa+(n—1). f,(sinw)"~*, and 


(sinz)”"! 


f,(sine)"=— 


. [(sinay'=8 {- Sed a cose Pe 


n—-2M+2 —2(s—1) 


n—1 ; 
.cosv+ ——.f,(sina)"~?. 
n 


P| «fe (uiaee-*, (51); 


nm—2(s—1) 


i eal = 
=—cose. S., aE ‘ (satay ha? eee or ae . {,(sine)"- nese (6). 


m,—2 T,—2 


128 


319. Cor. If m is an even positive integer, then 


nm—1 1 
an 
[.(sine)"=—cosa.§,, =. (sinv)"- "41+ in w, (40) and (197); 


| 2 


m,—2 tn,2 


and if is an odd positive integer, then 


53 ene! 
f,(sin oe) = —Ccos2. id m—1,—2 : (sin i ee 


i 


m,—2 


320. Theorem. 
jf, (sinv)-"=—cosz. “nat Gna ~ een aE 
m,—2 r—2 
For, m. /,(sina)"=—(sinz)"~'.cosw+(n-1).f(sinx)"-*, | (318). 
. —n. f,(sinw)~"=—(sinz)-"-!, cosa—(n+1) f,(sinw)-"-*, and 


n. f,(sina)-"=(sinav)- "+. cosa+(m+1) . fp (sina) <2, 


. (n-2). f,(sina)--?) = (sinw)~"-) .cosa+ (m1). f,(sinw)-", and 


COS @ n—2 

= —(n—2) 
ae ee i : 
(2—1)(sina)"~! ee J-(sin2) 


f[.(sina)-"=— 


+8. cosa” 1 IP, eet 


~ m—2(m—1)—1" (sinx)"-2"-)-1 n—1—2(s—1) 


+P Nf esinay-™, (51); 


m—1—2(s—1) 


, [2-2 : |m—2 
2 io ae es Ss 1,—2 } s] Ve —(n—2r) 6 7 
|2—1 (sing)?-2"+3 ri |2—1 fe(sin it) 5 (6) 


m,—2 r,—-2 


129 


321. Cor. If 7 is an even positive integer, then 


n—-2 


1 
f,(sina)-"=—cosa. S.=. 


m,—2 


and if m is an odd positive integer, then 


n—- 
boy eee 
ie m—1 ,—2 
[.(sina)-"=—cose. SF “1 Gina 
mM, —2 


1 
+e log,.tan. “|, (40) and (312). 


~ 


+ (n—1),2 
322. Theorem. 
ee [nex 
f,(cosa)" =sinw. a === (cos Cy atau em 


i 


m,—2 T,—2 


se(eOsa yy. 


For, (cos#)"=(cosa)"—'.d,.sina, (267); 
*. [,(cos#)"=(cosx)"~!.sina+f,(m—-1).(cosx)"~*.(sine)’, (222) 
ae (268) ; 
=(cos#)"~'.sina+(n—-1). f,§(cosw)"~*—(cosa)"{, (196); 
-. m. f,(cosx)"=(cosx)"~!.sinv+(m—1). f,(cosw)"~*, and 


n—2 


i) n—1 
oo .sin 2+ —— . [, (cos x) 


f-(cosa)"= 


. (cosx)*-2"— 9-1 sing ? pote 1)- + 


n—2(m—1) * | n-2(s—1) 
Hpi et iS (cos x) se (51); 
eae fea 


} 
=sinw.S,, 7. (cosv)"?"*14+ ==. f(cosw)"-*", (6): 


[z 


m,—2 1,—2 


R 


130 
393. Cor. If 7 is an even positive integer, then 


n—1 [a 
$n,2 


zn 
[-(cosa)"=sina Sy mo (cosa) "14-22 .xv, (40) and (197); 


kes. E 


m,—2 $n, 2 


and if 2 is an odd positive integer, then 


(n+l) 


f,(cosa)"=sin®. Gea casa) 
ee 


m,—2 


324. Theorem. 


|2—-2 |m—2 


é 2 
1 
cosx)~=sine. 9, 22 .§ ——____ + = {——- 
Je( ) ora (cosm)*52* ‘ |2—1 (Cosme 
™m,—2 r,—2 


For, 7. f,(cosx)'=(cosx)""'.sinv+(n—1).f,(cosa)"*, (322). 
2 —n. [.(cosa)-"=(cosa)~"*" .sina—(n+1). f,(cosa)“"*, 
and n. [,(cosw)~"=—(cosw)-"*” sina+(n+1). f,(cosr)-"*". 
-. (n—2). [(cosa)—°-? = —(cosx)~"-".sinv+(n—1). f,(cosx)~", 


(cosn) >" n—2 
ee Si pe COs e) ae 
ats ee f, (cos) 


and f,(cos#)~"= 


sin& 1 m1 (7—2(s—1)—2 
Pp, pe 


* n2—2(m—1)—1 | (cosa)*-? "91 n—2(s—1)-1 


ee pe 


n—2.(s—1)—1} ~* (cosa) 


> (51); 


n—1 (cosw)"~2"*! i |w-1 7 (cosa@)"~* i 


131 


325. Cor. If m is an even positive integer, 
. |n-2 
in 
m—1,—2 I 


wy 


f,(cosx)~"= 


ize 0 (coswy2"41? 


m,—2 


and if m is an odd positive integer, then 


2 (n—1) |n—2 1 


.(cosa)~ "=sing. a ea set (cosa)"-2"*! 


m,—2 


1 


then 


rage 5 T v 
i ~ 1),2 log, cot (= BS a)? (40) and (313). 


$(n—1),2 


326. Theorem. f,(sinw)" 


n 
} & sin (7#—2m+2) x 
={-] aaa 1 m= Ae) m—l ! 

) Sn(-1) |m—1 n—2m+2 


——__ 


2 


nN 
=(=1) 1) 9-1!" (yn, Ke ‘ 
m [m= nna 


according as 2 is an even or odd positive integer. 


1 


in 


cos(n—2m+2) x 


[7 


o-n punta 


Be 


-@ Or 


For, (sinz)"=(—1)'".2-"* 1.8, (-1)""!.———.. cos ( -2 4.2) & 


ata me 


3 (n+l) 


=(-1)?"") 2-741. S).(-1)"71 sin (7-2m +2) a, 


|m—1 


according as ” is even or odd, (283). 


Hence, by (196), (191), (268), (202), (197), (267) and 


(6), the truth of the above theorems is manifest. 


132 


327. Theorem. 


n 
Aes 075 fa sin(n—2m+2) a 
f.(cosx)"=2-""".S,, —— 


[m1 n—-2M+2 ay wae 


n 5 

donnie i: sin(m—2m+2) a 

= . more ee SS ee 
|m—1 nm—2M+2 


according as ” is even or odd. 


” nN 


= .cos(2—2m+2)+2-". Soe, or 


For, (cosx)?=277". S, Sr 


Wk ie 
Cae 


according as ” is even or odd, (284). 


—Q-ntl 


.cos(2—2m+2) x, 


Hence, by the same articles, the truth of the theorems 
is manifest. 


328. Theorem. f,(a*.u) 

=a*.Sq(—1)""). (log.a)-".d,"-"0-+(—1)". (log.a)-*. [\(a®. dw). 
For, f,w.a® 

=S,,(-1)""1.d"u. fra?+(-1). (Cu). frat, (222); 


S10 ae 2” u+(-1)’. Neo du (249); 


=a". 8, (—1)""?. (log.a)-".d."-!w+ (—1)*. (log.a)-*. f(a". da), 
(6) and (196). 


atl 
329. Cor. f,(a*.«”)=a".S,,(-1)""*.|” .a"-"*. (log.a)-"; 


m—1 


nm being a positive integer. 


133 


a ] m 
330. Theorem. [ Elon: “18, 
2 U .|m 


2 (I 
Horees— leo Scie w”, (107) and (9). 


Tor) ] m 
(logea) (ont wand 


a" (w.log.a)” 
f= =log. ge S. (250), (191), (196) and 
(210). 
331. Theorem. [,(a*.w) 
~a?.S,,(—1)"". (log. a)". [™u+(—1)". Cog, a)”. (, (a7. [72). 
For, f.a’.u 
=§S,,(-1)""!.d,"-}.(a*). "w+ (-1)". f.5.d,".(a’) frur, (222); 
=S,,(-1)""2. (log.a)"~}.a”. [w+(—-1)".f,§ dog. a)”.a*. fw, (249); 
=a*.§,,(—1)"~'. (log. a)"-!. ["u+(—-1)". og. a)’. f,(a".. fi"), (6) 
and (196). 


n—l yotm 


332. Conf =a8,(-1)"' (log. a)".(- Naren 


™ 


sad 1 UR a) ar ee) x ue LO) 3 


--a".S, - (log. ay"~" ene et a —, (6) and (196); 


ae ms eoetm (lo a)” © (wv. log, a)” 
Su! Sn (log. a) , [na aig (ego [m1 flog. L4+Sin ate I, 


m 


(330). 


134 


1 on) ] 7 
333. Theorem. - —_ =log,’ 5a” 
,log, « mM. |m 
For, put log, v=u; 


1 1 


log.a Y,U 


then w=e", and A: 
& 


dx 


u 


m 


= U 
=log, u+Smn m.|m” (339); 


(log, x)” 
—m.|m * 


8 
m.|m 


=log? #+Sn 
334. Theorem. 
flog, (1+e.cos #)=—a.log. {2e-(e*-»/e*-1)} 
2 sin m: 
+2.8,,(-1)"7!.(e7!=- fe-?—1)". : Ei 


m 


2 
For, put ae then k=e7'—»/e-*—1, and 


~ 


log, (1+e.cos v)=log, (1+ age x) 


=—log, (1+k’)+log, (1+2k.cos #+k’) 


=—log, (1+k*)+log, §(1+h.6°V=)(1+h.e-*4)?, (287) 


135 


=—log. (1+) +log, (1+h.e"¥4) +log. (1+k.e-"Y) 


m 


= k ae ite 
=—log, (1+4°)+8,,(-1)”""'. a (CN fen Nye (255) and (5); 


m 


ee k 
=—log, (1 +16) +2-S_(—1)""-—.cos mx, (287) and (6). 


m f 


o 
“, flog, (1+e.cos x)=—wx.log, (1 +H’) +2.Sn(—1)""!.— sin Me, 


(267). 
=—wlog, fae(e—n/e?—1)} 


sIn mx 


$250.41) (er aera): 


m 


CHAPTER XI. 


ON GENERATING FUNCTIONS. 


335. Tue symbol §,,@m will be used to denote the sum 
of the series formed by giving to m every integral value from 
m to r both inclusive; zero being also taken as a value if is 


either zero or negative. 


336. Definition. If p(t)=8,u,t", then @(¢) is called the 


generating function of u,, and is denoted by G;.%,. 


337. Theorem. G,(u,+0.2)=G;-Uct Gi. V,- 


—a, 0 


For, G,(u,+0,)=S,(UetU2) 


—aw, & —0,0 


HS, Ut +S.%.t, (5); 


=G;.u*+G;.0,- 


338. Theorem. G,(au,)=a.G;,.u,; @ being independent of 


# and 2. 


, 


For, G,(au)=S,au,.0 


< 


137 


339. Theorem. If G;.w,=G,.v,, then shall u,=v,. 


—2,0 


For, §,u,¢7=G,.u, 


=G;.v,, by hypothesis ; 


—;, 6 


=S,v,-t. 


". U,=V,, by equating coefficients of ¢”. 


340. Theorem. t*".G,.u,=G,.U, 


lay (3a! 


—, 0 


a= == 5 
For, &”.G,.u,=t".S,u,- 


—2, 0 


=S,u,.t", (6); 


—, 


= S. Wren < te (9) 5 


(Fria 
341. Theorem. (t-'-1)".G,.u,=G,.A,".U;. 
For, (¢7'-1).G,.u,=Gy.Up4;—Gy-Uy, (340) 5 
Net (33): 


Hence, (¢-!—1)*. G,.u,=(¢"'-1). G;. A,U, 
=G;.A?7U,3 


and, similarly, (¢~'—1)". G;.u,=G;.A,"Uz- 


S42. Con. 06 = Dt Gite Ge As ae 


S 


138 


ape An 
343. Theorem. ( Se p"- 


n+) a ; n+1 
‘m— 
For, ( Se — : Gy Soe! peo? NG 
n+l 


=n ta—a . Ges Up teas 


n+l 


sh 
=G;.SpOn—1-Us+m—1> 


Sin Om Ve 


n+) 


G;. U, p= Gy. Sn Amn— 1+ Uz+m-1° 


Uz» (6) 5 


(340) ; 


(338), and (337). 


i} 0 = 
Wr4+m-19 and V U,=Urs 


n+l 
344. Cor.1. If 7’u,= 
: ui Gmn-1 
then will (‘S., — a) NG tie— Gro ls 
345. Cor. 2 


n+ 


gu} 


ca —1)?. (s Gna ‘) 0. GyUz= G;.A?.V4Us-r 


n+1 


346. Theorem. 


For, G,.A,2u,=(t7!—1)". Gy. Us, 
n+1 a 
=S.(-1)7—*: m—1 EG bes 
m—tI 
n+1 mt 


=G,.S,,(-1)""' : m—l 
| m— 1 


n+1 [7 


. A2u,=Sn(-1)"" serie VR 
|m—1 


A2 U »=Sm (- 1)" —1 , m—1 


. Urin—m+1 b) 


[me 


*Uz4+n—m+1° 
|m—1 


(341) ; 


(86) and (6); 


“Usin— m+19 (6), (340), (338), and (337) 5 


(339). 


139 


n+1 ie 


347. Theorem. Uy4,=Sn————n As" 


ae 


For, Gy. the:n=t-”. Gy. Ug, | (840); 


=(142--1)". Ge, 


Gy Pres =F —1)"-!.G,.u,, (86) and (6) ; 


=G,.S,—m=— .A,*-!.tt,, (841), (838), and (337). 
2 


n 
n+1 
= m—1, Q0 
CS sg Dae Ne ps (339): 
| ma —1 
~ |mtmr—-l 
SAB. -Theoren (U2. = UF. Sp ee AN 


| m 


ry being any integer. 


6 
For, pubic 1. ra then 


92145, = dns Sx" m.v1t, (221), (207) & (197); 
n+mr—1 


Se ae ete (196), (210), and (6); 
nn 


|m+mr—1 
=1+4n. a ean ce 


140 


. |ztmr—1 
Gy. Urpa= §14+2- Sa .t™ (1-1) G;.u,, (840) 5 
m 


| 2+mr—1 
Dye ae APU, «its, (6) C2 
m 


(338), and (337). 


ss |w+mr—1 


. Mig n= Ug tN = [m HEN Pa ste (339). 
m 


349. T'heorem. 


m—1 
n+l 2 me 
ris, Gey ey et ae 


2n-2 


|2m—1 7 Uy—m+1 


m—1 


n§, Bt) 
tee | 2m—1 


2m—2 
Nene Tees 


6 ne 
For, let @ and 2 be any quantities less than unity; then 


eee = > (12) and (9); 
we 
(plSBe 1 
VTZOE 4 0 
4 1-6¢ 
~ 1-0(614+2) 40 
1—GF 


-» where s=¢(¢-'—1)’; 


me —9(2+2)+6 


141 


aes 
~ (1=6)'-08 
co (Pe ee 


=(1-01).S. Gop (12); 


Qn 


=(1-62).8,6""!.2"-1.S,, a .6"-}, (92) and (39) ; 


ie 


|2—2m+2 


20262). S'9". See —.s"", (16) and (26); 
M— 
Q2m 


n 


= 0t)-S,6° 1/9, -te e— (8). 
n—m 


| gm |m+2—1 


—m,1 _ n—m F 
Tene aaa OO 
|m+n—-1 


nm+m—i 


ie eee =(1-00).8,07 Se 
ih , [atm one |w+m—I 
=S,,6"-!. ee tO aa apa (6) ; 
" nar [EM , [tml 
w! = =2m—1 m—1\ NMS | mind 
=1+58,6". Sn = PS il Re ne t (9), (6). 


ag WiaeLe 2 [etm —1 


» f= 2m—1 gm-l_y S 2m—1 


m—i 
— 2 A me + 
|2m—1 |2m—1 


, (mtm—1 
=S, gm (gt yem—2_G, Se g(t 1y"-2, (6). 
|2m—1 |2m-1 


ai | +m , \vt+m-l 
2m—1 2m—2 2m—1 2m —2 
» Ugen= oh ve : jis I abi ——_ A; Uz—m3 


— m * 
2m—1t |2m—1 


(340), (342), (338), (337) and (339). 


But |[w+m=|n+m.(m+1).,m—m+2, (41) and (40): 


2m-1 m—1 m—1,1 


m—1 


=(n+1).P,§(m+m—r+1)(n—m+r+1)} 


m—1 


=(741) 2, }(m+1)’—(m—r)*t 


=(n41).P, {(n41)'-"'t, (61). 


m—1| 
n+1 Pp n+1 ee 
: Uryn=(N+1). pe at 


2m—2 
. fares Uy—m+t 


op: 
n n” —_7 02 
—2.S3m ( 


2m— 


“[am-1 ae Tae (6). 


143 


+1 
+1 
1 h 2 é ye m—1 
350. Cor. Put Amb Cnaas where ¢,=Sn———. 2") 5 


s ° 
2m—-1 


1 1 Ch-1 
then ei =Ch— te Gia: rep —C,-95 
2) 

2) -l 

and fe =C,—C,-2+ (¢ —t)€y_\- 

n—-l awm—1 
vey 24 a 
Now, €,—Cy-2= 9m [5 (|n+-m—|n+m—2)+2n.3" eat 

| 2m—1 2m—1 2m—1 


(9) and (5). 


And, | +m = |z+m—2 


2m—1 2m—1 


=|n+m—2 $(m+m)(n+m—1)—(n—m)(n—m+1)}, (41); 


2m—3 


=2n.(2m—1).|n+m—2 


2m—3 


=2n.(2m—=1).|n+m—2.n.|n—m+2, (41) and (40); 


m—2 m—2, 1 


m—2 


.(2m-1).P, J (n+m—1r—1)(n—m+r+1)} 


m—2 


=2n?.(2m—1).P,$n®?-(m-r-1)’t 


m—2 


=2n*.(2m—1).P,(n?-1°), 7 (81). 


144 


n—1 »~m—-lL m—2 


2 Cg —Cqig=2N - Sn isoae .P,(n?—7?)4+20.2"-* 42" 


=2n’.S,, ae P(r? -7") +2", 
i n* = 
since P.(v?-1")=n; 


1 Le 5S = 
Lane! ‘eae See ommee 
ri Sn art r’) 
n gm-l m—l| 
ae 3) Ie es 2 me 
+4274 (144) (t-1-1)-2-5n Spy he r’) 
Ana (WUT ) m—1 =i am—-2, 1 =i 2 
eae 2 : i =| mn 1. a =| en 
Tee pee (Se GS) 
m—l 
n Pp n’ 9”) - 2 
+n.S,, c (ape BF rae (6). 
m—1 
iy 
wa (0? -7" : 
 Uppn=n?- Sm ees Ap Ug Oe eee 
® 
m—1 
nm Pi =r’) bow, 
+2. = Aer, cae ee eee 
351. Theorem. 
o m m-r+1 
Ue =S, 8,9 | Wea parapet | OS 


m+1 
. s—l pss rh 
where Vi Ug=Sr4,1-V" Unir—19 and b,-1=G@m—r+19 r=m+1)" 


ll 


m+) ¢ 
tg, i 
For, put #=8,253 then a—z=—S,a,¢~", and 


1 S,0°t=* = (12); 


1 
1—69¢-)’ 


145 


1 S,a,0"-"-@".t7') 
= Se . Ti...) aE 
S.a,07-* a —6@". tz ") 


= 


eon, apeileme PE) (5) and (6); 


ws 

1 Ot S.a,0" "8" 35,a,¢7" 
m ae 3 @r-} 
0:0 9. op aa 


ee) ee ame Oy; 
Sig Qe —z@” 


iP 
=—, suppose. 
Q PP 


m+1 


Then 55 8-1") (GC inn4107)-%, (12) and (8); 


ag. sr : Gane ) ‘S, Ge-? sn i sla b, -1=4p- Br (eae =m+1 


roy ay 
=S.6*-1.S.s8-) gt BU bo; 
m m—r+l Geen 7 
a a — S 
and) PSG" "5, race (22); 


m 


So-.5 mre, (gy. 


P fP-} 


-S ese S, m— al RA as= 1 ow" m(s—1)—1 es 
a n . Yr . 


&ly 


ace gr- 1 ae G An - Gm= rt O81 yn=t—m—) 5-8, (18), 


P fpr} 


since a” a"=0, for every negative value of m; 


Ah 


146 


ss 4 Im rtp 1 r+1—m/(s—1) 5 
ea 25 3) Sa oS—1 gpn—rt+l—m(s— Sb 


= 
m 1 m—'+1 3 ’ 
Oren : Cie ane S el gt 1p t2—m(s—] Riss (22); 
mn ] tl 
=S, 7a ites So sl wo Sree Din: (8); 


oc m esl m—rt1 
=S, Sao Sp paw Oe 5) (Grandaqlige 


m m—+1 


x ree Sy Wee Uns y— ihe S por+p- 5 (OMoE pena bs; (345). 


352. Theorem. G,(u,).G,(v,)=G,.G,(uz-V2)) U, being 


the coefficient of s’, and v, of ?#”. 


For, G,G,(u,v,) denotes a series of the form 


— yO OO 


=] 
oN a 
Sn S, An, n* s™ > b, 


such that the coefficient of s*.¢’, shall be w,v,; and the product 


—, 0 —%,o 


(S,7,8") (0S, 0,0") 
will be such a series. 


. G,G,(u,0,)=G,(u,)- G:(,)- 
353. (Corll. .s°™. 62" GG) «G,(0,) 9G, GAC as ten) 


354. | Cors2.(s-'=1)" 1)": Git). G@,) 
=G,.G;. {A2(a;). AZ (,)}- 


355. Cor. 3.) (s-1¢-*=1)":G, (u,) .G,(0,) =G, G;-L,. (u,0;)- 


147 
356. Theorem. 


im 
n+1 RAO 


7A (2%, v,) = er : Janes ren (u, Hees - 1) . peg a Uy 


For, G,G;-A,"(%,2;) 


=(Sapema—l) GG, (as) |Gz( 0); aM SoD ye 


= §(s-!—1)+8-! (¢-!-1)}*. G,(u,). G,(v.) 


= m—1| (sue a eae et (Gr) pe rn (eee yaaa CU.) 5 (86); 


ee GCN ro Uae) Gz iae Use (Oy ang 342)r. 


ln 


n+ 1 ped 
=G6,.6,.5,—=— =a HAVE ep. BE (eae 1): A, ‘ng rv ib) (352), (338) and 


(337). 
Bry ales 


- A?(4,0;)= S,, emals | Ges Be be a je Ne 1, Vio (339). 


[mat 


357. The symbol G,;.u,,, will be used to denote the 


0, co — 2, & 
double series $,. 5,8’. t¥.u 
390: (Come Ie) 8”. bp. Gg eg Gag lo tm pin: 


359. Cor: Gri Sn) Cea Gert SG a Ae Ny 


to 


360. Con. 3, (6 f *=1)*-G. uu, —Gs1- Ay ng 


148 


361. Theorem. 
m+1n+1 | me a 
1 —] | = 
ao APA Uy 


As): q pl 7-1 


For, Gs4-Usemiytn 


= fits 2-1$"$14t-7—-14". Getta ys (358)5 
m+l1 | m n+1 We 
Ol (san SS a 1) Ge 86); 
= ( ) oS ( ) ot »Y? ( ) 
m+1 +1 |m [mn 
EY CE ep Ae aay alot ar (0) We (09 (2.813 


fey eee 
(338), (337), 


m+1 n+l | m f |r 
pa) q—l —1 q-} 
SNRs et adh stats 


. Tis nie). Sy 
|p-1 |q-1 
and (339). 
362. Theorem. 
iz 
a“ -Un4n—m+),y+n—mt1" 


n+1 


A’ ares) (ast ha i EE 


_ n 
For ’ Gs : A, yMay 


=(s—125'—-1)*..Gp its 9> (360) ; 


| 
(Gian aed : Gags (86) ; 


n+1i 
=§,,(-1)"). =. 
|m—1 
n+l | 
=S,,(-1)""1. ae G,¢-Usin—m¥tyen—at (6) and 4358) 
n 
(338), (337) 


n+1 
2 Urtn—m+l,yt+n—m+ 19 


As Uz, y= S, ( = 1) -1, Ea 


and (339). 


NOTES AND ADDITIONS. 


Page 10. 


25,1. Tueorem. If a,_;=0n-1—Gn> 
n 
then a=S,,(-1)"7)-0n-1+(-1)" Qn: 


Bars (a0) s) a (=) we One (ab) as 


n 


. S. (1)F 1-44 Sa (SI) baad)" -Ons (4) & (53) 5 


n—1 


n—l n = f 
and y+ Sn (—1)" dn =Sp, (—1)"72 "1+ Sy (= 1)" n+ (= 1)" Ga 
(9). 

n 
oe Gy) =Sn(—1)"7) -Om—1+ (- 1)”. On 


cancelling identical terms. 


Page 16. 


42,1. Cor. This theorem being true for every value of 
a, and m, we may put a=0, and m=—1, and we shall have 
|0 =1; which result will be found of perpetual occurrence. 


150 


Page 18. 
Ap. "Theorem: Siti ne — Oe ie 


@,,=n anda, ,,,;=0, then shalt 


For, Ay 41,m+1= yy, m+1t Gy, m+ 


n—1 


= 
Gy ea ne (24) b) 


=S sinc =0 
=9;G;,m9 SINCE A) m+1=9- 


Hence, putting m=1, 


SW Sart 
Ti aaeP (48). 


Also, putting m=2, 


ma nN 


i= >) 2-85 


Suppose, therefore, @,, .=——>; 


n—-1 n—-1 ig |m 
e) 


then Ay, m= Dr Oy m= Ore =-— (48). 


If, then, the law were true for m it would be so for m+1; but 
it is true for 3 and therefore for m. 


48,2. Similarly it may be shewn that if 


Ont 1,m=On,m+4n,m—-19 Uo=1, G,,;=1, and a,,,,,=0, then shall 


\m 


m—) 


Se ee 
nym—) : 


|m—1 


Page 20. 
m,n 


54,1. Problem. To find the number of terms in C,a,. 


Put b,,,,=the number sought ; then 


Ort aed Ont Cains (54), Dee and OO. 


| 


“6 b,, Jet (48,1). 
m 


OG 
Page 22. 


60,1. Cor. 2. Ife is independent of s, 


m,n—-—mMm Mm, n—Mm 


then, ©7 2 \(a,)\(b.c), —c"-".C, (,6,)- 
Seew Art. 55: 


Page 28. 


74. The theorem of this Article may also be proved as 
follows : 


It will be readily seen that we may assume, 
n+l 


|@+b=Sy6n,m—1- ge ee ? 


nr n—m+l,r m—l,r 


where ¢,,—, 18 Independent of a and 6; 


then |a+b=(a+b+nr).|a+b, 


n+1,7r nr 


n+2 


or roe ONE as |b 


n—m+2,r m—l,7 


n+l s aa 
=SnCgm-i-[@ - |b (a@+n—m+1.7+b+m—1.7). 


n—m+1,7 m—l,r 


P52 


n-+-1 
1 
. Cn+1,0° |@ +9); Chaat \@ . (oe 


nt+l,7r u—m+l,r m7 


1 


Bice, (ja : [jo + | Geek 1) 


n—m+2,7 m—l,r n—m+l,r mr 
n 
é | ‘ s 
=Ch,0° a +Sn KG) mp Hama |a °: |b +6y,n+|0 3 
n+1,7 n—m+l,7 mr nt+l,r¢ 


*. €n41,m= Cn, m+ Cn, m—1 3 


also we have ¢,,=1,"€; ;=1, and ¢,.,,—0- 


in 
aie OL Gee (A602) 


|m—1 


The theorems in Articles 86 and 161 may be proved in the 
same way. 


=} am} n (=a) am} 
83,1. Cor. 7. (S. la. ee) =e | ma . > 


m—1,7 


for every rational value of 7. 


Page OF: 


re ™ 


o “——) © (20) =. ae 
EE SS ee 


102.1. Cor. 6,1. (S: 
|m—1 |m—1 
n being any rational quantity. 


Page 61. 
17%. -Or thus: 
Since, D,~' HD Bice (ED ee aa. 
=D,"""'(u).D,-" E,""'0-D,-"}. D,"(u).D,-"E,"0t, (176); 


fi & Due) =5, (1) 2. DPA). DE aes)". D,-} 
DQ). DD, Eto) tse (25,1). 


153 
Page 52 
152). Theorem. D," |@ = | m. live |e : 
. m,—h n m—n, —h 
Bor 2 |w = |o+h - | @ 
m,—-h m,—h m, —h 


=(@+h)|e  —- | w (w—mh+h} 


m—l,—h m—1, —/h 


=mh. |v : 


m—1,—h 


D?\ «x =mh.(m—1).h. | a 


m,—h m—2, —h 


= |m Alike keh 
one m—2, —h 


Similarly, D,” ja = | me. h’. |w 


m,—h n m—n, —h 


Page 53. 


ea | a D2 u 
155,1.. Theorem. Soe al : 7 ; where h=Dze. 
m—l ra 


ao 
For, put u=S, |v -Gmn— 15 Where @,-, is some finite 


m—1,—h 


quantity independent of v; then 


D;"u=S8,, |m—1 "|v > Qn-19 (136), (137), and (152,1) ; 


n—l m—n, —h 
n—-1 : 
=S,,|m—-1 hn. | RU eae Cn Rw Ra 
n—l m—n, —h 


= 
+S, nm+m—1.h"-".| a AC ey sy SEO) and (42) ; 


n—1 m, —he 


(3) 


154 


= baihinw @. = 


oOo 
+S, |2+m—-1 Boa : .|a@ *An+m-19 since | 7 — 1=0, Co . 


a—l m,—h n—| 


«=0 = 
1 1 ae 
and @n-1= m—-1 ° hr-} 
& 
m—1 
= m—l,—h Deas U 
- U ‘m a4 
ih 
Page 71. 


n;™m 


207,. Theorem. d, Pom «=P, i277"): Gined: tg» Pt, > 


a, being independent of «. 


GOP ia Fd ain” 
For, — =Sn » (205) 
P,u," U am 
n a,,d,U 
=S,, “> (207) 
m 


ze = m ie 
d, Pa ees) ee i a Gy 


Mm 


nym 


Sp, Cn) Sua d,Um» PU, - 


Page 73. 
213. This theorem may also be deduced as follows: 


wv 
2 Da a 
We have u=G,, meat, 0, where h=Dzx,  (155,1). 
|m—1 eas 


co gm 1 DES 1 Uw 
then w7=S,, —— - ( = ) 
h=0 


ic=) 
= Se 


idez.u, (188): 


Page 76. 
222. Or thus: 


Since [.§d,"-!u. f"-*v} =d,"—1u. fmo—f5d."u. f2"0} , (203). 


2 f.Qur)=S,(- 1)" dee. for (-1)". fede f2"?)s (25,1). 


Page 94. 


253. The symbols ie u, fu, and ([,-f,_,)% are equi- 


=a rth 


valent to fw—f,_,U- 


Page 100. 
270. Or thus: 


: tan v+tan h 
Since an c+h)—ta w= — 
i—tan wv. tanh 


tan h. (sec «)” 


i. 1—tana.tanh- 


tan (vw+h)—tan & 
. G,stan » fee 
h h=0 


7) A p2tan @ tan h 


tan h (sec x)” 
h=6 


=(sec v7)’, (266). 


156 


Page 100. 
2703. Cor. 1.,.d-cotg=d-Atanz) 


(-1).(tan w)~*. (sec v)* 
sec 2” : 
=) ) = —(sin v)~* 


\tan &@ 


Il 


—(cosec wv)’. 


271. Theorem. d,.cosec x=—cosec «.cot v. 
For, d,.cosec v=d,.(sin a)~ 


=(—1).(sin v)~*.cos a 


il COS & 


sin @ sin #& 


= —Cosece wv. cot av. 


Page 105. 


281. Every term in this series will vanish in which zero 
is a factor of |m—m , that is of 


m—2 


(2—m) (m—m—1) ... (7 —2m +4) (N—-2m+8). 


n 
(1) Let 2 be even; then »-2m+4=0 if m= — +2; and 
n—(4n+1+7) = |hn—1-r=0, if r>dn-l. 


$n+1+7r—2 tn—l+r 


Lay. eee 
(2) Let 2 be odd; then »—2m+3=0, if m= —— +1; and 


~ 


|r—.h(mtitrfa|s (anise? p) if rp>3(n-1). 


$ (n+1)+r—2 + (n—1)+r— 


Hence, the number of significant terms will be tn+, or 
3 (m+1), according as 7 is even or odd. 


157 


It will also be observed that, although » appears as a mul- 
tiplier of the whole series, yet the coefficient of the first term 
n—1 


all 


a 
[on 


4.(2cos 2)". 


being , (48) and (42,1), the first term will become 


Page 116. 


300.1. Theorem. 


log - =2nlog 44+ 4log |2—2log 2n—log (22+1), (n=¢ )- 


For, sin v-0.P,| (: +=} (1 -~) \ (293); 
rT UD ULS 


(27+1)(27r-1) 
Ag? ¥ 


| 
wo / 3 
ofl 


2 


Te == 47° 
Q 


a(n) 


Tq)’ (n= ); 
n,2 
9 
but |! = L zs : 
na 2. | 


a 4".(|2)?.4"(| 2)" 
2° ((2n)y?.(@n+1) 


a. ((n)' 


i (|2n)’. (2n+1)_ 


~ log 


y 
oO 


=2nlog 4+4log |2—2log lgn—log (2n2+1), (n=0). 


0/3 


158 


Page 117. 
301. That there are not more than » different values of 


2Qm—1 
E€ 7” 


a may be shewn as follows: 


For m put nr+m, when 7 is any integer and m<n; then 


2m—1 = 2nr+2m—1 om=1 ae 
——.7V-] LIS LLB ae Pe =t 
€ becomes «€ ” = e2™N-l gn 
=e” > (288) 
Page 118. 


304. For m put mr+m, when r is any integer and m<n; 


ida also se 0 
=¢@2r7™V-1 .¢@ 2 


Qmn—2 = 
Se 6 VI 
then € becomes « ” 


306,1.. Theorem. 


n 
x" —2cos 0.2"4+1=P,, (a -22.cos 


For, put #°”—2cos 0.#"+1=0; 


then a”=cos 0£+/ —1.sin 6 
=cos (m—-1.274+0)£/ —1.sin (m—1.27+46), 


m—1.27+0 — . m—-1.27+0 
By (=), (77). 


m=n 


and «=cos 


-, v"—2cos 0.u"+1 


a m—1.27+0 ; —1.27+0 
ee fe (cos Sa eEN ey —1.siIn .———_———_ ] [X 
n v1) 


m—1.27+4+60 — =. m—1.2c+0 
v— C08 in Od in pe 
n 


a m—1.27+0 
=P, (@’-2 v.coSs ——__—_——_  ]).. 


i] 


159 


Page 132. 
327.1. Theorem. 


va (tan di) eee 
(tan w)"= =) (1) damaee 
(tan a)=S,,(—1y"-". SP (ay (tan 2) 


For, (tan x)"=(tan «)"-*. (sec #1) 
= (sec #)?.(tan 2)"-*—(tan a)"* 


r 


-. (tan 2)’=(sec x)?.S,,(—1)"7. (tan x)*-?"+(-1)". (tan ay'-", 
(51) and (6). 


” tang)" 2+! ¥ a 
AON f,(tan a=-5,(-n +(-1)". {(tanz)*-*, (270). 


327,2. Cor. 1. 


(tan ti) ita +1 


yn 
[(tan x)*=§,,(-1)""?. ray a +(-1)*".2, or 


$(n—1) tan v n—2m+1 
=S,,(-1)"". a +(-1)'" log, cosa; 


according as 72 is an even or an odd positive integer. 


327.3. Cor. 2. 


ry 


(cot 2)" =(cosee @)?.S,,(—1)""". (cot 2)" +(—1)".(cot a)'-". 


r cot & n—2m+1 
(cot 2)" =S.0—!) ee +(-1)’. f,(cot 2)"-*", (270,1). 


160 


cot x n—2m+1 
(cot ayant 


in 
J,(cot @)"=Sm(-1)". (-1)*".a, or 


n—-2mM+1 
+(n-1) cot &@ n—2m+1 : 
=$,(-y7, ao 4(—1)**™ log, sin v5 


according as ” is an even or an odd positive integer. 


ART. 


10. 


11. 


INDEX TO THE THEOREMS. 


n n 
Ir an= Dn 3 C=); then Sn hyn= Sn Dn > 


Si (4, Li Dm) = Sn ant Da Dn : 


If b is independent of m, then S a, 0=0 Sin Gn 


S,,b=nb. 


n n 
Sn a= SU eee ° 


n r Corer is 


Sia On = Sn Qn, Tr Shi a, +m* 


S m —1 Lew, 
CO 
1-@ 
a"—a“" kn 
= ert ate} 

a-—x 

1 We th 
Ppa. nae , and 

—_—¢ —Vv 

1 n a” 
FS | (a ly eae PR nape (al he 
1+ nf ) ( ) 14+” 


1 o=) 
If «<1, then ee 


u 


1 co 
apt — (leo) ant, 
1+ 


xX 


PAGE 


9 


16. 


Wc 


18. 


19. 


n 
NM 
if a,=0, for m>n, then Sra Dy, Ola 


2n n 


Dy an= Sn Aon = 1 + S, om =) 


2n—1 


S., an = = S,, Gam -1 a5 S, Coy, 5) and 


S cp 


= mle Si 


S 


(Sp tt) x (S, b 6 a) S,0, *: 


oo 


If r is independent of m, and s of m, 


r § so 
then Sn S., On.n= 5; oF Gn, n° 


=] m 


Sn S., Qn, n= Da na Lin —n+1,n* 


m 


co 
Y SLO aS Sis heh ae 1,n°* 


$28 


© 
S,,a 
m n Gn, n— /m Qn, +n,” 


a m r 


cols: 
Sn Sn Gn =e Sr An - rcs nm +7—n+1,n°* 


> 


m m—nr+l 


m n 
S, Sa, Sie aes 


n m—n+l1 


and =S) S,.4a Antr—-1, 0° 


2n n mn 


S., S, An, y= oh S, (d.,2 1, rt Bon = Met rte T+1r+1 


m—-1 m—n 


+S, S, (Gorn ip); rane omreiprtade)> and 


2m—-1 n m—-1 n m—1 
N NM 
S,, S, a, Se Ss, S, (on —-7',; rt Aon — r+1, ») ar Oh -—7’—-1r+1 
m—2 m—n—1 2Qn—1 . 


+S,, S, (GigE ant Corea tad ee Qom 1, r° 


PAGE 


or 


INDEX, 163 


ART. PAGE 
n—\ 


OA. VE Gai=GatOny (en2,)> then’ @,=a;F Os 5n- 10 
n-1 


1); then?a,=e'r "a, fa Oy 5- 


m=1 
m=n — 


oe TE Ga 6Ge bn. ( 


= m=1 
2551. iif Bm —= On —1—Ans ( ) 


m=n 


n 
then a=S,,(-1)"7!.0n_1:+(-1)"@,- 149 


co <<) 


NX n—1 n—1 re m—-1 @ n—1 
20. (S,, Gn Bree ) (Seba Ssh An — yo ek Ad er ets 


eo m 
a m—1 
=Dn0 aa Oana: il 
co ©. m 
x maI\e Sy amt @ 
21 Aah UPC OR Ua) kV Rs AY a? 


n n 
m=) 
29. If ay, = b, ’ ( ye then | og ay = | 2s Dn, : 12 


mn 


nr 


30. If bis independent of m, then P,,(a,6)=b". Pn dn- 


n n 
oO 
31. RG RG Pema 13 
n r nr 
32. m Cyn = PS (4,,) . m y+ m* 
r n n+r 
33. P (Gm) 0 P,. ay 4 fa Po Ay, . 
0 
34, Pya@n=1 
—n 1 1 
30. m&in= Hh er 
Py Ay —n m a_ (m—1) 
n—1 
86. If da 41=,n-0,,5 then.a,—a,. P.,8,,- 14 
. n—| n—l 


acy Lin ar +2=4m- Dns then Cry = AQ - Nd Dems and an 1=Q- P,, Bom —1- 


39. |ab=b". |a 15 


n,m m. 


164 INDEX. 


ART. PAGE 


40. |a =|ain—1.m. 16 


n,m N,—m 


41. |@ =|@ .|a+rm. 


n,m T,m R—T,M 


42 | @ = 
0,m 
42,1. |O=1. 149 
1 1 
43. oS SS = SS 16 
as |a—nm a—m 
mee n,—m 
I 
44, ——=0. 17 
—m 
jn [w 
46. —= — 
m | —m 
EA ass 2 ee 
ANT m i m+1 a m+1 18 
| m |m+1 m-+1 
48. If m and m are positive integers, then 
ie a [2 
m+] m ™m oe s 
wt 8, and — is an integer. 
[mer |m? [im : 
4851 If An+1,m+1=4n, m+i1 tn, mo Ay, =N, and Qn, n+r=95 
In 
then @,,,=——.- 150 
|m 
48,2 If An4+1,m=4n, m+ En, m—-19 Ay, o=1, @,,=1, and Gnjn+v=O5 
| 
m—1 a 


then 0.5.85 — 
| am a 


INDEX. 


165 
ART. PAGE 
m—1 
50. Jy Dy ee Ce S, @. |. 0, Ke: P, b;. 19 
m+1 n+l 
oe 


If On=0,+C,+Ons a> 


s—l 
then 4,=8, Geese Prone at Tn+ma: pret l)a 


52, If On —Un gO n? On+a,n+B then 
r s=1 
as 
Ss One Gotan tC 4* een) aoe 1)8 
a 


On eraarrb tenet ae n+ (t-1)6 


19 
m+1,n+1l m+I1,n My, 1 
54. C,a,=C,a,+4,,,-C,a,- 


| 7 
m,n a 
54,1. The number of terms in C,a, is— 


—— 151 
[m 
mn 


55. If 6 is independent of r, then C,(a,b)=b” C a 


56. 


ie 
If a is independent of 7, then C, (a)= —.a". aT 


57. ac 


58. C,a,=1. 


60. If b,=6, then C,,,(4,.b,) =b"-".C,a 


rhe 


60,1. If ¢ is independent of s, then 


mM,n—m 


m,n—mMm 


C,,5§(4,) (b,c) } =e". CG, «(a,-8,)- 
n—m+1,n 


n—mM,™m n—m+1,m—1 
61. C,,s(@,-b,)=Gn41- CG, s(@,-05) +0, 41: C,,s(4,- b,). 


151 


(h3) 
tw 


fae 


74. 


INDEX. 
A i: ee ps Lae PAGE 
bl, =n On Af eee & AG 23 

0 
A.,,@,= ike 

n na 
If 4,=Sn@,—-m-On> then a,=d,.A,,b,. 

n 
if a6 2S 2¢,2 22055 
n m—1 
thenta,— One ee senes Fae Q4 


n+1 n—m+1,m—1 


P,(a,+6, )= =h)5 C,,;:(@,-0,). 25 


n+l n—m+l1,n 
P, (7+¢,)=S,,2"-!.C,a,. 26 
If a, is the r™ root of the equation 
n+l n—m+1,n 
0=S,@n-1-0"~', then shall a,_,=C,(—a,). 
n n—r,n;t 


oa (- ao 
Pig —A,) 


If b5=S,0," 5 2a-e(C-), them = 


at / b—a, 
If pf oaecua! eas ( =); then x=P, ( ) : Bil, 
a,—d, 
1 n+1 
S a ym) n n—m+1 Sinn =e cite 
a ea are = Oi. ee 
—b «x—b 
n+l 


If b is a root of the equation 0=S,,a,,_,.@"~1, then 
the second side of the equation is divisible by #—6. 


| m 

n+l aes 

a+b=S,,——— .|@ |b F 28 & 151 
Nyt m—1 n—m+l,r m—l,r 


nN 
n+) 


|¢—-b=8,,(-1)"". ee : oer 29 


nyt n—m+1,7 m—l,—r 
| a+b aa |« : |? 
——— ees 
nr = = 30° —1, +r 
U eS =S,,(+1)" a n—m+1,7 m +9 . 


| n—-m+1. 


INDEX. 167 


ART. PAGE 


|b at! |a+b.0"- 
co 


|m—1 (pal |m—1 
a an} | ma a ee 
=) a ==) ’ 
—l,r m—l,7 : =i) 
78. ( aa =S,———-;, n being any positive 
F |m—1 oie ea ee a 
integer 


79. 


Hin 
as 
i 


=) 
8 
3 
vi 
“—_- 
| 
8 
& 
ms} 
| 
3. 
= 


81. 


t 
oO a a 3i\n 2 t gn! 
on laue a, lat east $1 


83. 


( 
( 
( 
( 


; 2 rational. 152 


(s a am} n © na am} 


mache | 1 ce 
t m —1 | aan 1 
84. (Sars. = =) (Sie n n—l,7° ee | 


1 


oe It eee [m1 ae gas in. 31 


* Stainville. 


83,1. 


86. 


88. 


89. 


90. 


|m—1 


as 2 is even or odd. 


nv 
(a- —b)" 26 Lee oe (aby? (a 
n 
+(-1)". ES (ab)*”, 
2 
+ (n+1) WG 
or =S, (-)* 7). md 


[m= 


INDEX. 
1 , PAGE 
t a an n t na gr ; 
(8.55.7) =Sn 55: [m—i + terms in 2. 32 
: | m— , m— 
n+1 | 7 
Sie Sp -a"-™*1>"-); nm a positive integer.* 
a b)” n+l qr-mti 67-2 
CD eee i 
| 7 |~—m-+1 ; |m—1 
é in 
(a+by'=S, == (GB a Bh ie .(ab)?", 
ee 2” 
2 (n+1) 2 
of =Sn———.(ab)"* (a? 4 bm +2) = according 


Click eal ier ar fy 


.(ab)”"- ‘a —2m+2 oni ae OS 


according as 7 is even or odd. 34 
#7 co nm am} vas Y 
Gp) =S. p=—. ; mand r positive integers, 
7 |m—1 
m—1 

and #<1. . 

rE a 
(i+a)'=S,——.a”—!; » rational, and v<1. 35 


* Newton’s Binomial. 


ART. 


93. 


OA. 


95. 


96. 


98. 


99. 


100. 


101. 


I 
3 
ry 
5 
[oF 


INDEX. 169 
PAGE 
n [m a\™ 1 
l+v)'=S,—. (=) 35 
(a2) oes r 2 
ae a |n—1 I v m 
1 au 1 m— ae m—l, m1, 7n_ . (=) ™ 
Gray S.C0 eee 
= 
Oye, 
l+ax 25 1 m — Lf min n / (=) 36 
oa Reise. 
2 at lan) b ] a” 1 (a+b)”— 1 am 1 
(see Cue ac 
m—1 |2-1 m—1 
n © gm Lym-l Shi: m—1 am 1 
P, (ie “——} = BS Msg 
|m—1 |m—1 
oo a™— lan} n © (0) Pca a 
( ea =n a ; m a positive integer. 
co a”™— 1 gyn 1 oo m—1 gt} 
SS ay aie -8, (< ) : ary 
a” ly Os: 1 a} -) (a—b)2- 0 m—1 
ce io - 1 a (S, [2-1 1 —~——|=S. |m—1 
a” Cores! 1 ee 1 
(s m rani. 37 
|m—1 


pee © (2p4)" 7 sa 


|m—1 


) a®™—), am} nm © Ge)" 
102,1. ——— —_—___— 


104. 


105. 


106. 


107. 


108. 


109. 


INDEX. 


; 2 rational. 


=m 


S.$ Sa 


R=) at} n 2 ‘an m—1 . 
(Ss .) = ee n rational. 


2 (0/ £1)" 


v= Sn et 


; a rational. 


€ ; w irrrational. 
| m—1 
ym —1 


a 
| m = 


—_— 


c 
€ = Sh 


; @ any quantity. 


1) 
fe a (w.log, a)"~ 


m—1 


(a£b)?=a?£2ab+b’. 


n—m 


(Sudp)?=Snt2+2.Sylin- Sines: 
eow=e"), 
p'(u)=w. 
pr-gr(u)=. 
IE pale, qpr)s pale), &e. and aCe), Pale)» Yale), 


are all distributive functions, and commutative with 
each other, then shall 


n+l n—m+1, m— 


(p+) ; u= Sis 5 ey s (W, o 7) t U. 


r+ 


37 


38 


4.0 


&c. 


Al 


ART. 


130. 


INDEX. 7 
PAGE 


n+1 ia 
( +W)n Uu= =a n— ein ai '(w). 43 
p =e 


(P+W).=(P+y)r-u 


If W(w) ss Sa Qn, —-l° On i(%), then W"(w) a (S,, an— 1 @n- 1)” U. 
If W(u)=S,,0" "gp"? Us then wW"(w) = Qa —a.p)~".u 


If @, denotes such an operation, performed with re- 
spect to #, that b,(uw+a)=,(w); « being independent 
of x, then shall 


n 
Pz" , p(w) =U a5 S,, pr ae bs Cm 3 


where ¢,, is some quantity independent of wv, and is to 
be determined, in any proposed case, by the conditions 
of the problem. 4A 


Du=E,u-u, E,u=u+D,u, and u=H,u—D,u. 45 


E,-9(«)=9$(#+ Da), D,p(2)=(#+ Dx) -(2), and 

A, $(7)=$(v+1)-(2). 

D2 t= Do 1 Dea Ek Pe 
Efu=u, and £7". E2u=u. 

E,.p(«)=9(e+nDa). 46 

dds : (2) = plwv —Dzx). 

E,”.o(@)=p(a-n De). 

E," (u+v)=E, u+E,"v. 


* With the same limitations as in 118. 


172 


ART. 


135. 
136. 
137. 


138. 


144. 


145. 


146. 


148, 


149. 


150, 


INDEX. 


PAGE 
E,;" (au)=a.E,"'u; a being independent of 2. 47 


D,(ut+v)=D,u4+ D,v. 
D,(au)=a. D,u. 
D,(u+a)=D,u, and 


D,-"D,Zu= ei ID: ~@-™ 11, c¢, being independent 
of 2. 48 


D,"(u+v)=D, 'u+D, 'v. 

Da) =o. tt 

E,.D,u=D, Eu. 

E,.D,7u=D,7°E,u, D,E,'u=E,7!D,u, and 


Ee De a= DE. 49 
n+1 [a 
D;u=S,,(- 1) j peeled i Bie m+lay. 
m— 


an+1 | 
EZu=S, peed ae _D*- ly 


"maa 
a" = | 7. (Dx)". | 50 


n+1 ed 
A? .=S/(-1" 4 ie .(w@+n—r4+1)”. 


n+l m 


S(Sn)it. LI = (w+n—-r+1)"=|n. 


n+1 [% 
A” .0"=S,(-1)’-). —— . (m-r+1)”. 


ata 


INDEX. 173 


ART. PAGE 
151. D,?.a"=a".(a'*—1)". 52 
152: a+bxe=bnh.|a+b.(a+h). 

ny bh n—1,bh 


154. D,(|a+ba “l=-bnh.(ja+ba)"'. 53 
n,bh 


n+1,bh 


Weise, Ae 


156. D,.P, Sv+(r—-1)h} =$p(w+nh)—-P(«) Pd (a+r). 


157. D,[P,o a+ (r-1) ht] 
=—So(x+nh)-9(2)} [P, pie+(r-1I)ht |. 54 


158. D,.P,(u,)=S, Cyr (tts Derm): 


159. D,(uv)=u.D,v0+D,(u). £0. 


1600; . De. bs as D,(u).v—u.D,v 7 
: v0.0 
pees oa 
aor ea lee! a ey ame) 


where o(w), di(w), (v), and yy,(v) are distributive 
functions, commutative with each other and with a 
constant factor. 


162. (PW+gi),.wv=(Pyr+ giv)’ ur. 56 


174 


ART. 


163. 


164. 


105. 


Or 


166. 


167. 


DPP, (u,)=§(4'D,)(142D,) 02. (14"D,)— 2". 10 2la. 0. Up 


168. 


109. 
170. 
(le 


172. 


174. 


176. 


INDEX. 


(Spy, wr= (S, pry," ur. 


PAGE 


57 


s m 
(Sor 2 SPr)nUi Us ~ 3. (S20, Oe 5 Py)" Uy Ug. U; 


iD? (wv)= ie 5 BES 1(u). D*- m+1 oe Igy 


cer 


n+l |n 


— 
D,?(uv)=Sn(- Mera: Tet Sy) Heal (73 al Obici 


Dj (uu) = §(1+1D,)(1+?D,)-1?" a, u,, and 


E,E,ju=h,E,uU. 
E,E,u=u+D,u+D,u+D,D,u. 
D,D,u=D,D,u. 

Ej. w=(1+D,+D,+D,D,)"u. 
D,” u=5(1+D,)+D,)-1}"u. 


DY 


n+1 mn” 


a Sn(- yee =. imo iy hae 5 eee 


n+1 | 
E} a= a ee rr 


\m—1 


oi s—l —s§ s— 
Ee Ej u= Se ape ae ‘D, lay. 


D,7\(uv)=u.D,u-D, 15. D,(u).D, Ev}. 


Dix (wv) =, (-1)"-?. Da (u) Bi) Paps: Oe v 


58 


59 


60 


+(=1)-D,-{ D2 (u). DE}. 61 & 152 


ART. 
178. 


D,-"(Uv)=Sm oe ese 1 Be (w) Die py Se Vay, 
M— 


179. 
180. 


181. 


182. 


183. 


184. 


185. 


186. 


187. 
189. 


190. 


INDEX. 


If, for some value of r, D,’u=0, then 


n 


ve 


Da 


7 +const. 
Gl 


nr 
Daa a) (a. ln? se) ae on. 


D,-'.(a*u)=a".Sp(—1)"=}.a"—", (a*=1)-*. D™y 
+(=1)"D, "3D, (u).a2*”. (a’—1)-"t 
|@+b.(w—h) 


D “tlatba Se 
ae bh(n+1) 


= Aci 
D 1 1 
“|a+ba — bh(n—1) |a+ba 
n,bh n—1,bh 
nm or | —1 
ieee i) (n—-1)|a—-1 
Se 
+1 TINE IN Dic e+ ce 
v= "|ma1 Vs and AW .a=S,, Shi oie 
mM m—l m 


n 


=| =i 
Sn an= (A n (AVE) An+1° 
a,” .d“u=d,"* a. 


dQu=uUu. 


03 


64 


66 


176 


ART. 
191. 


192. 


198. 


199. 


INDEX. 
PAGE 

d,.(w+v)=d,u+d,v. 66 
d,.(ut+a)=d,u; a being independent of «. 67 
d,:a=0. 
[tdgu=u+S, eee 
d,.(au)=ad,u. 
dn. 
p(e+h)= LS, ae ds"). b(a)* 68 

2 pm a m 
Rae 2° u, and Dyu= Sat A. 
Dfu=(e'-1)"u. 
d,”.@(«) is the coefficient of = in the expansion 
of d(v+h). 69 


If w is a function of v, then d,.p(u)=d.p(u).d, wu. 
d,(uv)=vd,u+ud,v, and f,uv=u f,v—-f, (d,u. fv). 


d, (uv) x du iM dv 


Uv U v 

ast P, Mt, <2 

NBL see ae 70 
nay Un 


n n nsm 
d,-P,,=S, Fem Py Uy: 


d,.u"=nu"—'d,u; mn rational. 


* Taylor’s Theorem. 


INDEX! vies 


ART. ’ PAGE 
“uw ufd,w dw hi 
208. d,.—=—{—— - = iI 
v v7) U v 
m ™ 
P.u, Pu, ce dell x dv 
209. d,. ” —< = n == {S. =P ar 
Whe 
Pye, P,»,; ‘ 
Ow jo, Ute, n— WL 
910. da =|n 4 ; 
m 
4 ie 
D4]. Fike (wv) = Se ™m— 0 mie C ais Tay 72 
cea 


m m m 


212.9" 0 Pa. = (S,"d,)"2 Prt,. 


218. If wis such a function of w as may be expanded in 
positive and integral powers of x, then shall 


214, d,d,u=d,d,w; v and y independent, 
g8on dud, dU, 74 


m—) m—1 
1 ieee 


216. P(ev+h,y+k)= Se Se ee ies? od) 
m—-1. [m—1 


m hm-* : ke-} 


BUT. wo) (wth, yt+h)=Sn S rifle ices a p (x,y): 


|m—n ; [2-1 


218, If w is such a function of a and y that it may be 
expanded in positive integral powers of v and y, then 
shall 


(-) © an} Te 


a (pew: 


“|m-1 nl ve. es 


* Maelaurin’s Theorem. 


Z 


178 7 INDEX, 


221, 


225. 


226. 


231. 


232. 


If visa sare of w and y, then 


ds. }d,z-p(2)§ =dyhd.z.()} 


If y=\)}x+a.p(y)}, where x is ee of & 


and y; then shall 
FU)=AY@) +S. rm ds" " ow.(2)|".d.fy-(x)}* 
If y=x+a-p(y), then 


IW=fO Sai d."—".$(s)]".d,.f(2)} 4 


as) 8, (1) dn. noe (1) Gana. 


PAGE 


75 


76 & 155 


sm 


i a= Bi(e Ly" 5 GDA rea 


mys S n+1 m—1,t—1 


S,, eC a= =§,"- et ees ny (ae) = 
1 m m3 a,s 
Giang. 
1 m m,n a. U, 
[rn Bo PP; U, a +s Ae: 2 
0 
w,?.p(a)=$(a). 
m m—-?r T 
Se [oR ty ° - 
w”".a’=S, | 7." op Teehnal- 
a, oe |7 
[n 
m 
mw”. ae CP BAS Sides Eo 
If 7 is a positive integer, then shall 
wo” .a” m ie " ont a ae m as m+r—l apr SUE ie 


=S8, 


" iapieos s Theorem. + Lagrange’s Theorem. 


Ey [n= [rs |r cs Eee eg |~— m+r—1.|m— c= ia ee 


80 


81 


ART. 


242. 


INDEX 


ppt a N c,n,m a’ 


|m 


r—1 


=e +§,+5("—1) 
& 


me —a,\ 
COO Nas ( } . 
a 


aa, = n—1 
is Am — 1-0” ‘ =p 
$$ $$ = ym—1 QS / t 
s i =~ ,,0" Ss. Ft Rarer Nee ( j F 
a ee 
S,, Do 1¢ x” 


a: = 1," P(u) (2) n wm =m gym d may 
4 


cae =5,,d,".p(w). ; where @,,_,= 


im 


=) 
p (S,, An — ya" in ') 


oe) n aw"! ay we 
a (a)+S8,2 rS,,d dat a abate 
? 24 pKa) |n —m+1 
1 x 2m ail 
2 aa 2m—1 me eet: 
e- =P 9 Sind hal rt ). 
2n+1 =f 
peer 
\ r+i 
1 = 
7 =@-'-348,,6n-).0"-). 
e —l 
- 
= = ~ 9 é 
DD, u=h f0— = ASp Cam 1-12 hme 


2 


tO 
Nee 2m—1 
a. w= fu age +3n Con d, Tate 


a” +1 i y” 


AW .a= a 
2+) 2 


2m—1 


d,.e"=e". 


2 +5n Gon- 1° |n Oe a +14 const. 


179 
PAGE 


85 


86 


87 


88 


8) 


254. 


250. 


INDEX. 


d.” .€ on € 
ad.6 =e .04 
ae : = « 2 . (ee 


d,'.a°=a". (log, a)’ 


1 
d,. (log. v)=—. 
i 


d, 
d,. (log, “) = = 


Ly du 


IO a u 


d,. (log, w)= lo 


PAGE 


Y3 


94 


pes A ym — Ca — 
log, B= Far dak 1) (= 1)’. eae 


| Cas (a"— 
If a®~1<1, log.2=—.§, (-1)""}. 
re m 


ym 


* : es a 
it a <A, log, G4+0)=5,(-1)" at 


m 
<<) aL 
x « $ 
log, 1-#)=—-§,,—, and 
mm 
1 1+@ = Lo 
Oe {—« cine Qn ay 
] © qn ae 1 


log, v= —.S, ————- - 
fie ideal Maen ie) 


ye} > 
ple’ )= Pees [m—1" PU +A)j{ om-!.% 
gitm—1 


BIN? o”"+ m—t} 


Nese ae n+m—1 


=1 


+\m 
Ail 
See 95 


96 


* Herschel’s Theorem. 


ART. 


259. 


PAO 


206. 


267. 


268. 


INDEX, 181 
PAGE 
1 * an} m A®7);077 
=S, = 1) 7) 97 
e’+1 Tani n(-1) gn 
r ee yn} & (<1): At) .0° = 
at (sa may j n 
a v co yaa ae (Xf>1 Qo?” 
—— =1--4+§,,— -S, (-1)""!. ———_.. 98 
e’-1 2 2m. 
2 JON) )o3 IE 
DU=Sn ee eae 
n+m—1 
jlog. (1+A)}".0"=0, (m=); and 
Hog, (1+ A) }".0"= |. 
jlog, (1+A,)} w=d,u. 
d,"u= Slog, (1+A,)} "wu. 99 
sin 2 tan @ 
( =1, and = 
\ v Pr Asef av r=0 
d,.sIn ©=COS @. 
d,.coS v=—sin av. 100 


gq . sin cy -COS vy ae sin L= ( — 1a i sin av. 


d,”"-'.cos v=(-1)”-sin vz, and d.2".cos a= 


d,.tan v=(sec x)’. 
d,.cot a=—(cosec x)’. 


d,.sec v=sec x. tan wv. 


(-1)’. cos a. 
100 & 155 
150 


100 


182 INDEX. 


ART. PAGE 
271,1 d,.cosec v=—cosec a.cot wv. 156 
! 1 

272. d,.sm-' #=———.. 100 

J/1 — a" 

: —1 

273. d,.cos~' a= ———., 101 

Af L—2e 

1 

974.  d,.tan™ 

1+a~ 
Dies de sSeCr a 

au*—] 


n Ee. n Prats n 

276. P,(cos v,++/ -1.sin v,)=Ccos §, a,+ / -1.sinS,a,. 102 
277. (cosa+ / —1.sin v)"=cos na+ VY —1.sin mv; n rational.* 
278. 2cosna=(cos a+ V/ —1.sin x)"+(cos e+ Vf —1.sin By. 


105 


24/ -1. sin na=(cos w+ 7 ean sin wv) "—(cos he Af 2iah sin x)". 


a, o n—2m+2, 2m—2 
279. cosS,2,=5, (-1)""- ~Goh} cos 2... sin ey, 


n n—2m+1, 2m—1 


Si S,2)— Sel) e C,.;— (cosa. sin ,): 


= 2m—1, n 
- S, (—1)"=".. Ge (tan 2 
280. tan S,7,= Bat eae a 
S32 (=1)"-.. GC, (fanz) 
Aves n—m 
281. cosnv7= tn. S.( 1) ee m2 . (2 cos ayn 2m 42, y way 
ee rr 


= 4 n. S,, (-1)""! Par (Qcosa atte 104 & 156 


| mm = 


* Demoivre’s Theorem. 


INDEX: 
ART. PAGE 
P. 
n+ (n® =: 47°) 
A Fea eae aN SD te Ne ee \2m—2 
282. cosnw=(—-1)*".n?.S, (-1)"7?. [2m—2 i(cos. a)" ~*, 
105 
P.§ 
be 4 (n+1) s n’—(27—1 2 
or =(=1)) "2.5, (-1)" 7. [pm—1 ) Pan i) Hoe 
an | 
283. Sc ey a eae 
m— 
| 
o-n in 
+ : Ln’ or 107 


lm 


ee ee 


an 


3 (n+1) 
=(—1)9) 2S, (1) a5 (2 297 +2) 
1 


tn [ 
——— cos (W—2mM+42)u4+2>". ES ; 


(cos aay Sn [™— 


|m 
Ent) Le 
or =2-74)..S- refs (n-2m+2) a. 109 


110 


oe 
sin c= —] Bir 
S,(-1)""). 5 


e**V-l=cos ~w£4/ -1.sin a, 


2 Gos @=e°V=14 6" V1 | and 


2n/ —1.sin e=e*V-1—¢7*V-1, 


290. 


291. 


292. 


294. 


207. 


2098. 


299. 


INDEX. 


PAGE 


e2m—at VAT =(-1)"- 4/1, and e™)7V==(-1)""". 110. 


R WEIS (> faa 
tan =. (1 aS (s)- 111 
an =5,(—1) S, |2n—2m-+1 PENT Bigeye 


~ 


q on fe Sheen 


m—1 ] 
i yen 3 _— 9 
cot P= S,(-1)"- S. = An, [) ) ries 


294-1 


o-) n—l =) 
cosec t=§,,(—1)""!.a". A, taal 


2r+1 


= av? 
sin vow. B,{1- (=) | , 113 
ra) { 


: [==] v 2m 
. us — 
log, sin v=log, v-S,, (=) Byes sme 114 
Tv 


< au = l re n—-1i 2m ~ 
log, tan xv=log, v+S,, (=) 29, (-1" 2 115 
T m 
,2m — 1 vn 
tan = S,(-1)"" M (=1y- : 


“Qm-1 


co 
If «<1, tan-'!2#=§,(-1)"”’. 2m—1- 


INDEX. 185 


ART. PAGE 
T © GO4)F a a2 1 

300. —=,8.,,(—1)”~'.———-ss,, (-1)”"?. — + : 
oe Su(=1) 2m—1 Su (1) (239)°""!(2m-—1) 


116 


300,1. log” = 2nlog 4+4log |n—log |2n—log (2n+1), (w= )- 


157 
Im— N= 
301. & "41<P, (@=— 8). 117 & 158 
“6 2m—1 — 2m—1 
302. “"+1=P,, }#—(cos Fr ee ae 1 jS100 Sige 
n 
in 2m—1 
303. If n is even, 2°+1=P,,(#?-22x.cos a+l1); 
+(n—1) ee 
if n is odd, #"+1=(#+1).P,, (#22. Re tl). 
n UE A 
304. 2”-1=P,,(«—-e ” ye 118 & 158 
n — 
305. a" —1=P,,$x- (ee eu aR ae 1). 


tn—1 


306. If is even, v’—1=(#-1).P,, (2 Soa cese i +1); 


2 (n—1) 
if n is odd, #—1=(#-1).P,,(a@’-22. dee 


Tr 
+1). 


2: r 9 m—1.2 0 
306,1. x" —2c0s0.a"+1=P,,(«?—24.cos ———-~ +1). 158 
n 
cee 
307. (14¢.c082)"=1+ Sy} tee. (Le) 
(my 
a n 
+2cosmx.S, m+2r—2 Geyer 119 
|m+r—1. r 


* Machin’s Theorem. 


AA 


186 INDEX. 


ART. PAGE 


308. If y=z+.siny, where x independent of x, then y= 


G 2 1 g |2m—1 
mes S,(-1)""). ——.. (2 = 1)" -*. sin (2r —1) 
|m—r 


42 ae 1) ae 


| 2mm 
ly 2m 


™m ne 
2 i ges ean ia 1) ) ee (2r)?"— sin@rz. 120 
‘he S. sa | 2m oY) mr Oe 


309. In the same case, cos y=cosz—w.(sinz)’ 


2m+1 
ues 1)"- } m—n+l .(2n—1)*"~1. cos(2n—1)# 


_|m—n+1 


Ec ues m+1 [2 m+2 
Subs Dae ete SED ()  wos2a ee 


| 2m m—n-+ 1 
310. lz =log.(v+f/ v*+1). 123 


i) 


eee 1)”. [2m 


311 = l ae Lal. 
: ——— =log, —: 
oar lea” x l4+/f lta” 


1 ax 
312. fr =log, tan — 124. 
7 sin & 2° 
1 qr aD 
313. Hk =log,.cot |— ——}. 
7 COS & A 42 
|n-1 n—1 
x” S = = be i gn —2r 
314 fs =— 1—a meres Qe ES = a = 
/ 1-2 "|n [a Yen/1—a* 
m,—2 r,-2 


INDEX. 187 


ART. PAGE 


n—l | 
v zn = : i, 
8315. if ae ees BN A — a. jen ie in, 2 F sin-!a, or 
2 | | Q 
M,—2 $n,2 


or 


2 1 m—1,—2 -2 
=—4/1_-a.S ph om aa 12 


316. EE =e = vr S m—1,—2 1 fe 
r J 1 ie i SAIL nil 7 oem +t 


m,—2 


i ——— 126 
|2— 1 a Cana 1 — 2 


n |n—2 
A a in — 1 
Sileie — Se pe Mia 3 
7 i : 1-—<.S,— erate 
a 1l-—wav nm—-1 w@ 
m,—2 
|»—2 1 
#(n—1) a 1 LE v 
2 m—1,—Z —1);2 
i 1-2’ .S,, n =S—5 +e log. Dan hie age WAT 
m,—2 £ (n—1), 2 


|m—1 
Le —_———___ 
318. f.(sina)” =—Co0s?. 5), oa (sins 2" 


[Ss 


m,—2 


|~—1 
eo ‘fGen. 
n 


r,—2 


n—1 1 

en l oe 

319. f,(sinv)"=—-cosa. are Guiayectt ss Ber Por 
n [2 
m,—2 $n,2 


n—1 


t seen 


= aaa sy (smae)y?ae™ +t, 128 


m,—2 


188 INDEX. 


ART. PAGE 
n—2 
; a! Ee J 
ro) 3 een oem | 
S34 0). f,(sin v) =—Ccos@. eo (sin 1 areca 
m,—2 
[2-2 
4 fsine —(n—2r) 128 
n—1 J ) 
1,—2 
|n—2 
in 


321. i (sina)~"=—cosa.§S,, ue 


il 
ote (sinanytn te fn 


m,—2 
n—2 1 
+ (n—1) —> 1 L aS v 
2—1,—2 + (n—1),2 
=-—COS7 1. + <= log,. tan = ahe 129 
Ral) (Sina )ee 2 2 
m,—2 +(n—1),2 
m—1 
2 “ —1,—2 n—2m+1 
322. f,(cosv)"=sine.S,, =. (cosa)"~* 
| 
m,—2 
n—1 


r,—2 
lm—1 1 
tn [ ie ca 
€ 7 1,2 mn m\n—2 92 A - 
323. f. (cos #)"=sin Hore oe (cos ny yetet 0, ol 
n 2 
m,—2 tn,2 
n—1 
+ (nt) 
. — aly —S,.”) 
=sin v.§,,7——. (cos x)" *"*). 130 
| 2 
m,—2 
n—2 


324. f,(cos 2) -"=sina. SS cooled 


1 (cos me 2m + (a LD ee 


m,—2 
n—2 


ace . f, (cos Wa rela: 


Ding —2 


INDEX. 189 


d 
ART. PAGE 
|[m—2 
$n ——. 1 
205 a VL ee X m—l,—2 : 
325 (cosv)-"=sinw.S,—_— - >? 9! 
EC ) 7 n—1 (cosa ne 
m,—2 
|—-2 ie 
(m—1) — I 
: ~ 5S 
=sINv. So 


396. {(Gmay=(21)".25"*". S,.(-))" | —— 


Oyo 


20% 
Seine 


=( Sr) oe Seth m—l 


mis Cn 
+ 42 log ocot (= = ;) - 131 
oO 4 


9) 
7. ~ 


wi (cosa) * 
4 (n—1),2 


| 
in 


sin (7—2m+2)@ 


|m—1 n—-2m+2 
| 
+27": ie @, OY 
on 
\m 
3 (n41) bi 


cos(w—-2M+4+2)v 


im—1 m—2MmM+2 
n , 
1S (= sin(n—2m+2)e 
(cos x#)"=2°"* Peli tp a NS cE 
E( wv) Ol Peels 
| 
PEG Te or 
tn 
2% 


WD 
3 (n+1) | sin (n-2m+2) x 


—g—nt+) Ss m—1 132 
=) eo 
iM |m—1 n—-2M+2 
a (tan FA) maa 1 


f.(taney'=Sn(-1)"™. (= Gumi 


159 


n—-2mM+1 


(tan a)” —2m +1 


m—2mM+1 


in 
[Ganey Sx Gaye: 


(= 0) "a, Or 


4(n—-1) 


SS. (2n)" at. 


(tan iD mat +1 


4(=1)'"" log.cosa; 
n—-2m+1 


Bnei 


+(—1)".j,(cot #)’~*. 


[.(cotay=Bq (1) 


—2m-+1 


328. 


329. 


334. 


INDEX. 
PAGE 
: ae (covaytr"?? r 
(COtd)"= 5, et ad OG 
J.(cotay'=Su(=1)" 5 (i). 
+ (n—1) (cot 2 aie ; 
=m ( 1)”. Lana +(-1)?”"” log, . sin a. 
160 
[Ke Wsa7 SoCs ae (logue), du 
+(-1)’. (log, a)’. [,(a".d," 2). 132 
Ny n+l 
j(a*.«")=a".S,,(-1)""".|n nae ae CO mm) For 
m—1 
a v.log.a)” 
{= =log, eee (eee 133 
2 mM. | m 
[@.a)=a.S,C ty. dogay ju 
+(-1)’. (log, a)’ f(a”. [" 2). 
a” ee met ae = ] 
=—a". m lo a Ee ag ft. 
i Sn (log. a) [n=l 
1 = OYA) Ve 
log, cee 22 y" 134 
, log, m|m 
flog, (1 +e cos #)=—a. log, }2e71 (e7!— /e-*=1)} 
sin Mv 
28, (-1)"7!. (et E71" : ‘ 
V BE 
G, (4,+0,) = Gy. U,+ Gy. ¥,. 136 
G,(au,)=a.G,u,; a being independent of ¢ and . 
If G,.u,=G,.v,, then shall w,=v,. 137 


O. Gy Mg= Gy Un 
(¢-'=1)". G;:4,=G,. A,?.U,. 
g” (¢-'-1)". Gy.u,=G,. AU, _,- 


ART. 


343. 


344. 


345. 


346. 


SAT. 


349. 


INDEX. 191 


n+l 


ae An —-1 Ql 
= = € 
( See fun} | ‘s G; Uz= G; 4 nm Un —1° Urt+m—-1" 138 


n+l 
TE eS a bee 1s aD. We, — tee tnien 


will ‘ 
n+l a r 
a m—1 r 
(S. Fai | Gy. t= Gis Was 


=} fa rate i ° Pp q 
(¢ =1)P Dna p"- t G,.U,=G,.O. Vis Urs 


n+1 ne 


=S.eiy*. ee *Usin—m+1° 


| m— 1 
n+1 | 
Ql i — 
Us4n=Om —— et "Uy 139 
m—1 
|w+mr—1 
ean ee Py eae Delle. any 
m 


integer. 


Uy ,=(NF1I) 8 IDES wl pevs aan ag 


st Nee Ue soa 140 


2m —2 1 2n, 
C AN i Uy—m+1 st oOs Uy—n 


= 2m — « 
) Ne NL emery ct Ny iy Tia ° 145 


361. 


362. 


INDEX. 


PAGE 
m m—r+h 


es. WV, atest Orepa10mr PL Oe, where 
Vt, = Sy ee aN Bete ee ea 
G,(u;).G,(;)=G,. G,(u,.0,)- 146 
So" bP GU) hag O,) = G; Grieg: Oo) 
(s~'—1)".(¢-1-1)”. G,(4,) . G,(v,) 

=G,.G, , A" Gi) Aor 
(Sie t 1_1)".G,(u,).G,(v,)=G,. G,A,”. (Uz02)- 


n+] = 
Az" (4,02) = Spa Nee Nye tly N tae, 147 


re ea Gy,4- Us, y= eg aay sane 
(cays ; Cai Go Ug Ge : Au 


(Get a NG Ay 2. y= Gur, 


ry" “2, y° 
i <4 Le 2 
p—1 = ay = 
Unt m,ytn= SA P aN 4 ‘4 


rae ren : oor Pas. 148 


'S 2 
n m—) m—1 
ayy 1 mn (— 1) om «Unt n—m4tl,ytn—m+l 
| m— 1 


Lately published, by the same Author, 


8vo. Price 6s. in cloth. 


A Shortt GRAMMATICAL INDEX to the Hebrew Text of 


the BOOK OF GENESIS; to which is prefixed a Compendious 
HEBREW GRAMMAR: designed to facilitate the progress of 


those who are commencing the study of the Hebrew Language. 


Preparing for the Press, 
A TREATISE ON ALGEBRA. 


Being a complete Course of Abstract Analysis. 


This Work will comprise, in addition to the ordinary Algebra, 
the Calculus of Finite Differences, the Differential and Integral 


Calculus, and the Calculus of Variations. 


Wak aid Lee 
§ san3 NG WAY Wa 


5 ae 


oe 
= ae y 
4 
oI 1 
5 
; \ 
, tee T 3 
i 
" 
: 
j 
. 
‘ 
‘ ti 
J Ve 
. 
; 1 
a ‘ 
Ms 
: 
f ; y 
\ s 
j 
: . P i 
*"} ' : ; Lioe 
/ 
» 
; e bhi 
’ my 
HUA, ay het 
a3) 
. 
ey, 
‘ 
? ™ 
¢ ‘ic 
i 
, 


a i 

lay 
a C 
a a 


UNIVERSITY OF CALIFORNIA LIBRARY 
This book is DUE on the last date stamped below. 


OCT 20 1947 
23Nov'48 Wh 


app.2 8 4955 LU 


yal 4BE 


-p 


RR 


RARY 
rER-L8 
¥ 8) ANS 


we is 


LD 21-100m-12,’46 (A2012s16) 4120 


a 


- 
: 


P43