Skip to main content

Full text of "Fundamenta nova theoriae functionum ellipticarum"

See other formats


Google 



This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project 

to make the world's books discoverable online. 

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject 

to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books 

are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover. 

Marks, notations and other maiginalia present in the original volume will appear in this file - a reminder of this book's long journey from the 

publisher to a library and finally to you. 

Usage guidelines 

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the 
public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing tliis resource, we liave taken steps to 
prevent abuse by commercial parties, including placing technical restrictions on automated querying. 
We also ask that you: 

+ Make non-commercial use of the files We designed Google Book Search for use by individuals, and we request that you use these files for 
personal, non-commercial purposes. 

+ Refrain fivm automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine 
translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the 
use of public domain materials for these purposes and may be able to help. 

+ Maintain attributionTht GoogXt "watermark" you see on each file is essential for in forming people about this project and helping them find 
additional materials through Google Book Search. Please do not remove it. 

+ Keep it legal Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just 
because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other 
countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of 
any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner 
anywhere in the world. Copyright infringement liabili^ can be quite severe. 

About Google Book Search 

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers 
discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web 

at |http: //books .google .com/I 



db, Google 




Google 






db, Google 



db, Google 



db, Google 



db, Google 



FUND AMENTA NOVA 
T H E O R I A E 

FUNCTIONUM ELLIPTICARUM 




A D C T O H E 
Ka'N Csu=>Ta.<j j4V<.o\» Xac-o'^* 

D. CAROLO GUSTAVO lACOBO TaCOBI, 



PROF. ORD. IN UNIT. REOIOM. 



REGIOMONTI 

SOMTIBXIS VRATROH BORNTR^OER 
1839. 



PARfSlIS APCD PoKTHiiv & Co. TnscTTit & VMbks. 

LONniNI Apuo Tmvttil, WtrKM & Ricrtib. H. W. Kottmi. B»n, Yora«« & Yomc. 

AMSTELODAMI aptd Mtretum & O. C. G. Sdiipk. 

PETROPOLI AP«n G.xi... ^g,,^^^ ^^ GoOglC 



C-'- 



db, Google 



P R O CE M I U M. 



Ante bienninm fere, cum theoriam ivmctionum ellipticanun ac- 
curatius exammare placuit, incidi in quaestiones quasdam gravis- 
simas, quae et theoriae illi novam faciem creare, et universam 
artein analyticam insigniter promovere Tidebantur. Quibns ad 
exitum ielicem et propter difBcultatem rei vix expectatum per- 
ductis, prima earum momenta breriter et sine demonstratio- 
ne, mox cum vehementius ilia desiderari, et invento novo vix 
tidem tribui videretur, addita demonstratione, cum Geometris 
communicavi. Urgebar simul, ut systema completum quaestio- 
num a me snsceptarum in publicum ederem. Cui desiderio ut ex 
parte saltem satisfaciorem, fundamenta, qnibus quaestiones meae 
superstructae sunt, in publicum edere constitui. Quae fundamenta 
nova theoriae iiinctionum ellipticjaiim iam indulgentiae Geometra- 
rum commendamus. 

a* Digitized by doOgle 



Vt a typographorum inendis, quantum fieri potuit, mundus 
evaderet liber, CI. Scherk curare voluit, cui ea de re yalde me 
obstrictum esse profiteer. Quae emendanda restant, ad calcem 
adiecta sunt. 

Scribcbaoi m. Fehr. a. 1829 
ad UniT. Regiotn. 



db,Goo';5le 



INDEX R E R U M. 



De Transformatione Functionum Ellipticarum. §$. 1— *4. p«g. i— 85 

ExpoiJtio probUinatw. geper^lU de traqdapnatioiije. }}. 1. 2. ...,..,.. p«g. 1 
Priucipia traufaimftintU, f^ fl. 4. , .... . . ■ — S 

Proponitur ezpreuib -^— ^ — '— — — -' 



e tmufomurtibiie «xpr«ub)tuB 



/±&— )tr-(!)( 



—■>)(?-!) 



Forinam simpQcioretn ledigenda 



iL 



- In sKaua eita simiiciD - 



55. 10 — 12 

Proponitur tranaformatio tertii ordinu. §$. 13. 14 

PropODitiu trenaJurmatio qointi ordiois. $• 16 

Qaomodo tranrfonnatione bis adliibita perTenitur- ad mul(ipUcatiou«m. $.16. 

Dfl nolatjone nova fiuictionum elliplicariun. $-17 

Connnlae in anftlTai functionuin ellipticamm fundameutalea. $.18 

De imagiiiariia f'uaotionum ellipticamm raloribut. rrlnoipiuin dnpliois periodi. $. 19> 

Theoria analytioa transfonnalionis liuictionuin ellipticaruio. $. 20 

Deinonstralio Ibrinulanim aualjfticarum pro trenst'ormalioue. $$. 21-^23 

De vnriii eiasdcoi ordinis tritnsl'onnatioiiibiM. Transfonnatioues dune realei , inaioris moduli 

in miuorem «t miuoris in maiorem. $. 24- v 

De traosfonnatioDibus complemeiitariis s. qnoinodo e transfonnatione moduli in modulum alia 

deriTatur coinpleinenli iu complemeutum. $. 25 

De traDsfoTioationibiu suppltmeiitariia ad multiplicationpm. $$. Z6> 27. 

t^ormulae aualyticse generalrs pro multiplicatione funttioiuim fllipticarum. $. 28> 

De a«}aatiouum rnQdularium ailVclibus. $$. 29 — S4 — 66 

Digitized b, Google 



— 28 

— :6 

— S9 

— 80 

— 88 

— S4 



49 

— 5T 

— «0 

— 64 



TheoriaEvolutioDisFuDCtioDumiilllipticaram. $§. S5— 66. pag. 84 — 188 

De erolulioue I'unctioaum ellipticanim in prodacta InfUiIta. (. SS — 38 ptg. 84 

Erolntio futictionuin eUipticBruin in seiiei ncondum rinaa vel cosiinu multiplorum tiga- 

meuti progredientes. ^. 89 — 42' . . , — 99 

Formulae generalei pro functionibui sin am | -. 1 , — ■ in leriea evolTen- 

^ ' ' •'»"'"(^) 

dia, wcnndum abau Tel oosIdiu multiplomm Ipains x progi«£enteg. j$. 48— 46- ^ 115 

Integralimn ellipticorum nenuida species In seriei evoMtur. $$.47. 48 -— 1S3 

Integralia eUiptica tertiae speraei indeflnita ad catum reTOcantur definitum, in quo ampli- 

tudo parametiiun auquat. $$. 49. 60 — 137 

lotegralia elliptica tertiae speciei in seriem erotrnntut. Qnomodo ilia per tranicaideDleBi 

novam 6 domtno^ exprimuntw. {$. S|. 02 — 142 

De additions argumentorum et amplitudiniA et paiametri in tertia speeie iutegralium ellipti- 

oorum. $$.68 — fiS — 151 

Keductionea expreuiuniOn Z(tu}, @(iu) ad argumentmn reale.- Beduotio geimdis tertiae 
.apeciei integrallum ellipticorum, in q^oibu* argnmenta M amplitndinis et paiametri 

inaginaria sunt. $$. 66— '60 — ]gt 

Functionea cjlipticae anat ftmctionea fractae. De fuaotiooibiii H , 6 , quae nomeratoria 

et denomiiiatoria locum tenant. $.61 .'.. * — 172 

De erolutione fuiMtiouum H, G iu seiiea. Evolutio tertia fuitctionum eUiplioarum. De- 

mousttatio onalylica theoreuiatis Fprmatiani , nnumquemqiie numerum esse summam 

ijiiatuor qtwdratorum. $j. 62 — 66 - — 176 



,y Google 



TRANSFORMATIONE FUNCTIONUM ELLIPtlCARUM. 



EXPOSITIO fKiOB(.enATI$ OS«KRAI<IS PE TpANS.rpH«*T10NE. 

Intesntia maxime memorabilia, quae Formula ^-itliilu'iitnr / ■ e rT»..4.aul ti'&vmc^'Vuotf 

tioDum Ellipticarum , quae dicantur, primam' ^jMJtenk- «oiuritaaul, ab Argnmeato du- 
plice pendent, et ab Amplitndine $ et a Modulo k. Eiusmodi fuacrtiiri^.inlirjae.ia^ipar 
ratis raloribns, qnos ilia pro divertis ' Aw^ilitu^n^aa- <^itHi> ,+ eodem maoente Modulo, 
egregia multa defexerant Analystae/quaA AddiTi5neit)'%ortii& t^rMultiplicatiouem spectant. 
Quam naper riflimud i^aaestionem a CI: j4t'il'iaCi>mmBatini6M; tmifttti l8tfd^iuii^o^,''ini- 
Tom in moduni prorectflni 'eSse (T. Crfet/fe JdufniaY 'Mr .viAaif tiftd' aflge^ab'Ae'MatiieMti^ 



■ il : 



Alia est qnaestio nee minoris momeliii-'^^iB)m0 -^evsu tatissimo capta illam ioTol- 
renft — de comparatione -FviWIliMiMn:. BUiptic^miii ; pro> .fifadtdkri. iiHbfaH»^> dmr^ 
Quern qnaestionem post praeclaia inr'Ail&iCf Xf^« Af'Tj —^ !7ii^riae Fuoctioniim EUipti- 
camm Conditoris — ad principta ceDa Dos'primi reTOCavi'mus, eiasqoe solntionem dedi- 
mu5 generalem (V. Aatrononiitche tfachricKun A. 1827. No. ISS. IJE?"). ''' H^tic nostfam de 
Transfbrmatiooe Theoriam et quae alia uide in Analysio Functionum Eltipticaikim' redun- 
dant, iam fnsias exponemus. 



oy Google 



2. 
Froblema, quod nobis propouimus, generale hoc est: 

„Qua4ritur Functio rationalis y elemettti x ejutmadi, ut ait: 



Qnod Froblema et Mnltiplicaliooem Tidemtu aipplecti et TraDsfbnnatioDem. 

iDDiiinera iam din coostabent exempla eiusmodi fnnctionuin rationalium j, quae 
problemati proposito satisfacinut. Frimum notum erat, quicunque datus sit iiumerus in- 
teger impar n , einsmodi fanctiouem i-atiooalem y exhiberi posse , at sit : 

/A+By+Cj'+Dy»+liy' /A+B.+Cx'+Dx'+Er* * 

<|aod est' de Moltiplicatione theorema/ Oueni ib finem hdhtberi detiet fdrma : 

t + >'i+«V + »'"it' + h ■(nn)iM 

Coefficientibua a, a', a", . . . . ; b^ b% b", , . . rite determioatis. Satis diu etiam ex- 
jdfu^itapL w\t .fonuun lumc:. , 



ae^'hBxuf'gnttvaikonA-. ■'- .1 • •< ■--' -■■ ■'■>:■. ,■'.,■.■ 

:: ■'■.'.., ' :: •■■ >«4,.'»(«fV-M:M>».> .■■^>>"'»»'° ■ .. 

. ..,,... ,,,-^~ b-W>>rtTl|V+»^V + -:' + ''"'°y°/ ■: ;; . *, ', 
qwe ex iiUps subsiti^tionis; repetitiooe oitum da^it, ^ta determinari posse, ut solvat pro- 
blema. . Ngy^ admodnm etjam proVaftum est a CI** ^^^dre , eum in fiqem adfail leri posse 
Ibrmam banc rite detenninatam: 

MB ToHoBy taAmm substitiittoae repctita, haoc gtmniumm: 

b+b'i+bV + k"'.' + .. .+b(»"'<'"' * 
His inter se iiuwtis loriiiis patet, problemati aatisfieri posse, idonea Cuts Coefficienliam 
eleotione, posito: 

^ .+.'.+.V+.".'^-...+.<".P 

'* b+b'r+bV+b'".'+ . . . + b*«i' * 



,y Google 



liquideai p tit n— fgn> fonuu 2«a''(S.m-i-l)*. lam r«qiieiilibw prabaLitnr, idamT*- 
l(a«, ^ioiMfue «itf p rtwiMnM. 

PRINCIPIA TRANSFORAIATIONIS. 
3. 

DesignenlDr per U, V fnnctiones radooales inlegrae elementi x ; sit porro y '= — ; lit : 

Sj VJU— UdV 

/'A'+B'y+Cy'+U'j'+E'y* /y ' 

Lreritatu caaaa pouto: 

V At] 1 7 il V 

Fractionem -^ in fbrmam aimpliciiweiii redigere licet, qnoties Y factores doplices 

hahet i qnin sdeo , nbi praeter quatuor fectores lioearea inter se dirnsos « reliqnonun nu- 
mero faini inter se aeqnales existant, firactio ilia sponte in Differoitiale Fnnctioius Kllipti- 
cae redit ■ ■ ' ■ ■ , desienrinte 11 faoctionem elemeoti x rationalem. 

11/ A+Bi+Ci*-|-Di>+Es* 

Qa«n accnntfns exemii^emiu oaanm ac rideamns, quot et qaales sibi poscat Coaditiones. 

Sint fimctioneaU, Vah»ap", alteram" ordinis, itaatni<p: eiitT(4p)*' or- 
dinu. lam nt, qoataor factoribns linearibiu exceptis,' e reliqnis fimctionis T fectoribua, 
qnornm est nomenu 4 p — 4 , blni inter se aeqnales eradant, (2 p — S) CoDditioniliiu 
satisfadendom erit. 'Qaot enim fiinctio proposita dnpUces habere debet Jactores lineares, 
tot inter Coefficientes eins intercedere debent Aeqnationes Conditionalea. 

At fanctiooibas U, Y Qoantilates Constantes ladetraminatae ipsnnt m + p + 2» 
sen potius m+p+l, <|nippe e qnarum nnmero nnam aliqiiam=i ponere licet. Qua- 
rum igitnr nnmero rel aeqnatur numenu Cotiditionom 2 p — 3 vel ab eo superatar , modo 
snpponatnr, m esse aliqaem'e nmnerisp — S, p' — 2, p-^t, p, qnibils casibos nntatfrns 
ladeterminatemm fit resp. 2p — 2, 2p^l, Cp> 9p+l. ' -IhuM priores casus reiicien- 
dos esse cua infra demonstrabitnr, turn hnnc in modam patet. ^arnqne inrentis fimdio- 
nibns U, V , qoae futctioni Y formam iUam jwacflcriptaip oonciliatit, nhi loco x sulwtitui- 
tur«-|-0x, neqne ordo mntatnr fiinctionum U, V, T, neqne nnmems foctorum dupli- 
cinm faiictimi& T: node, ia solotiDnem inTmtnw statini jditaa Qnantitateft Arbitrarias in- 

Digitized by Google 



feite lk«t. ' iM^tie t6iMa<B8 lilddteMikiiiatiirAiri ubiqeraifi Coniitiaaam <iwl>A* stluni uin- 
tatibos superare debet , nndrwsus m=p — S, m=p — i reitAmdi t^Mii. Pwfr vid«cniS) 
loco X poaito ' - ' , tertium casam ad qiurtaiai redaci et qaartum mioime matari, quo 
igitnr caau Indetermiwaiarum ti^s et drbitraride man£tft 6t iaLbttm iriiimt 

lam igitar erictom est, qwmtnin qi|tdem e numero iDdetenniaatamin et uuuiero 
CondiHonam inter se comparatis concludere licet, quicunque ait p nvmerut, fortnam.! 



j„ ■+"+'V-H- 



.+-' 



{■9\f 



ita tUtoTninari pone, ut ait: 



ztr 



detignaate M fimctiofttm rationaUm ipuu* * f into tolutionem trta QuantittUts jirbi- 
traridi iMttdvtri poaat. 



Ul detennioetiir fimctio Ola M, sit T=±(Ah-Bx-4-Gk*-^Dx'-|-£x*>TX, de- 
sigDADte T ionctioneBi elaneati x in^nm rationainn: erit . 
.. . . T 



Ipsa T eritoTdiiii9(2p — 2)**; nee maiom eise potest V-t——U-^.. lam casibus qui- 
bosdam constat, scilicet obi niimOTUs p formam illam habet 2«S'^ (2n+l)% M adeo 
fieri Constantem. Idem generaliter probetbttur sequentibus, quicnnque sit p numerus. 

Fnnctiones U, V snpponere possnnuis &ctorem communem non tiaberej .adiecio 
enim liMton qoiaqHwi, fra^tia y=^T'°*''* ii^uUitiif.. Resoly^mw expressionem 

A'+B'y+Cy-fD'jr«4-Eyt 

in ftctor^ Uniiares, itd at sit: 

A>B'y-fCry+I»'J'+Ey«A'.(l-«'y>.(l-j»y)(l-Vy)(|-|*y), 

unde iBtiaiU: ■ ■ 



d by Google 



lam existere Don polMl Actor, i|u quantitatilHH \—mV, V'-jSV, V— >U, 
V — h'V vel omniliiu vel imo daibns tautam ex eamm nnnwio conunimia til ; idem eaim 
et V et U simal metiretiir, quaa fiictornn commnaem nen habfre nppotaiiacis. Itaqae ubi 
factor aliquia linearis fnnctioiiem T bis metitnr, idem unam diqium e qnaiditatilbu V— alJ, 
V— /STU, V — y'V, V — i'U et ipsam bis metiatnr Decesse est. 

ian qoteptar aequatJonw seifiiMite*: 

,v_.-u/"_iiIi:iH),u.v 1H_«" 
,v_^,iH_iiI=£fl.„_,.iH_oiI 

,v-i-u,"-"^-»">.D,V.lg-p".: 

dk 4i di dx 

e quibuaseqnitiir, foctorem qui nnam aliqattm e qnautitAtibiu V— a'U, V— jffD, V— yU, 
V — SIT bis ideoune etiam eicu dififereBtiale mftiatiir ^ eaudem metiii expressioaem 



bus, conflatnm posiumDs=T, mide T ipam V-r U— metietur. At T inferioris or- 

dinis non est qaam ipsa V-^- — U— , nnde videmns 



abire in CoDstantem. 

Ceterudi adaotemiUj ubi lunctionum V, V altera ioferif^ts ot^inis feiMc* qoam 

(p — i)", ipaam etiam V^ U— inferioris ordiais fnisse qnamT, quae tamen Jku 

metiridelMl; ^vodcwnabsardui) ait, reiici debduat casus mssp — 2, m=p — 9- 

lam igitor demonstratnm est, formamt 

Digitized by Google 



ijmcumpM »H numtrut p, ita ^ttUrminan pottt, tU prod§at: 
dy di 



V A'+B-y+C'y'+D'y' +t'y' /a+B.+&'+D.'+E.» 
QtMKf «•< Prinoipium in mtmria Traruformationum Fuactiooum EUipticarum Faada- 
mtntale. 

PROPONITDR EXFRESSIO ^^ — IN FORMAH 

V ± (y-«) (y-fl) (y-7) (y-5) 

SIMPtlCIOREH REDIGBNDA 



5. 

Trium Coiutantiiun Arbitraiianim ope, qnas solutionem . Problematu nostri ad- 
mittere nditnas, expressio A+Bxh-Cx'h-Dx'-hEx* in simpliciorem redigi potest haoc; 
A(i— x*)(l^k*x*}. Ut hoo et reliqna, quae mododemoiislratasaDt, exemplis etiam 
monstreator, propotitnm sit, datam expressionein : 



/±(y-«)(y-«(y-7)Cr-!> 
facta snbstitatioDe: 

in simpUcionni transfonnare banc: 



Qnaeiitar de substitatione adhibenda, de Modulo k et de factore Constante M e datu 
quautitatibus »j 0, y, i determinandis. 

Fonatur a+a'x-|-a''x*=U, b+b'x-|-b"x'=V, j=— : e principiis modo ex- 
po&itis fiuri debet: 

(U-«V)(U-flV)iU-TV)(U-iV)=K(l-.'}(l-k*.^(l+m.r(I+n.r. 

deaigoante K CoDstantem aliquam arbitrariam. Hioc ndemas duos e namero faclornm 
U — >V, U — |3V, U — yV, V — SV, qui enrnt secondi ordinis, adeo fieri quadrata. 
PoDamus igitur : 

Digitized by Google 



lam c^aod reliqaos attioet &ctores U — «V, U — |8V, pouj polerk, aut: 

U — «V=bA(1_.»). O— flV»B(l— k»«»), .irt: 

U— aV = A.{t-ft}(l— kx), U-|9V=B{1.4.x)(l+k>), 

designaQtilras A , B, C^ D qiuBtiUtes ConstSBtM. Friiu niiciendwDi erit. Frodiret etdm 
■ |^ - ^|' ^ = — ~* =— . j^?, i , uode seqneretor, ekmento x in— x mutato y inunutatam 
maoere, (|uoi1 absurdum esse patet ex aeqaationibiu : 



u- 




^ T— T 


A 


I-*- 


u- 


7v^ 


=7^' 


A 


(l+n.)' 



Pom igitur debet: 

« U-.V=A(l-.).(i-k.) 
t) n-(!V=.B(l+.).<l+k-) 

4) D— >V=D(l-|-i>4'. 

Adnotare coaTeDit, e Goiutantibiu A, B, C, D uoam aliqaam ex arhitrio detenninari 



6- 

Videmnaexaeqiiatioiie 1)} etpoaitoxssl etfiouto xs=-^ fieri U=«V. Hinc ex 
aetinatione : 

u-ov B'(l+.)(l+l.)' 



poaifo x = l, pndit: 






posito x^— ; 

.-, c (■+f)' 



.-« B 
tmde; 



db, Google 



Frorsns simili msAo inTenitur: 

mde n=Vli, Bs= •k. Keqao eiiim MipulM po^ere U«l m et • ; hipi euim cxpressio 

il^|l=i-i^, Meoqnt ipM y •fciret in CcMtMl«n. 

lam in aeqnatioDe: 

v—,y T-; c I j+A^ I' 

ponatnr primnin x = -*-l, quo caso C = .V; deinde x= — I, quo casa U=8V: 
prodennt duae aeqnatione* sfquenles: 



a— t £ 1 1— v^ i ■ 

Ouibns in « 3ucli» aequalionibus, fit: ' ' ' 

O V (.-5)I(1-J) ' 
undo pouere licet: 

Ce/c.-tXU— n • ' • I 

D=/(.-5j(0— J) i 
nam e quantitatibus A, B, C, D una ex arbitrio detenuinati {i^tsrat- . 
Ex iisdem aeqnatiooibns, altera per alteram divisa, obtinemus: 
l+>^k _' /(«-Tl(g-') 



V"(«— r)W-^-y%--»)"M-irl 
'/(—r) (»-') + /(— ';'«-"> 
Adnotetur adjiuc formula : 

, /(«-T)W-Ji + /i"— ')(a-Ti 



^ /(•-«(»-') — /c-'iis- 



,, Google 



unde; 

Ut Coostaittes A, B, defiuiantor, observe, ex ae<(ualionilms l), 2), S), positox=-^, 
qno fiicto U=8V, erui: _ 

,-. *<--v^'('-/4) 

'"' ♦/(•-7).»-S) 



^ -V(.-T)l— ') j/(._.w«->i-v^(— Ma— ,1 j 



E urincipiis generalikus uipra a nohis stabililis seqnitur, in exemplo nostro expres- 
sionem V-^— U-i^- aeqMlem fore producM (1 -t- /kx) (I — /Ix) in qnantiutem con- 
stantem dncto, quod ita facto calculo comprobatur. 

Fit, uti evolatione fiicta constat: 

!(acti antem sumns: 

V— JV*D(t— y^-")*. 
unde; 

J(»— fVi^ tc(i+y\..)>^ 

J(»-»V) ^_tD(i_y\..)v-t. 

Digitized b,Goo';5le 



Uude prodit : 

(,-!)(vi|H.-U-i^\ = 4-4y-k.CD(l+yk..j(l-v^l..). . ( ' 

His omnibus rite coUectis, obtinemus: 

£y -t-iVy f CU d» ■ 

/-(y—)tt-«<j— >)(?-') '-' ' -"*' /ct-«'l(i-k''") ' 
nnde : 

-j-J A=AB /(.-TlOi-»r-/(»-8)W-rl 

"=T4vrV "CD— j;;^^: ^ 



/-(J— JlJ-WO— »)(!->) m/(1— "Jd-k'O 



Posito (.—,).(«— S)=G, (.— 8)(i3— 7)=G', iit: 



M. /(!--■) (■-!■■»•) 



\rr-T>{ ^+'-^ i /•/G--y^y_. 



Sit G=min, G'=Qn, sit porro: 

in'= — (m + n), ii' = /mi 
m"^— (m'+D*). n'^V m'l 

erit, posito x=Sin(P: 



d9 



Oternm valor ipsius x facillime computatur ope formulae: 



l+Vk.i V t«-*)W^^'V y— r ■ 
ubi: ^^" = 77: T?" V — ::7^:r' — 



, Google 



8. 

Qoaatitates a, 0, y, i in foimolu propositis ex aitiitrio inter se penualare licet. 
Qaod itt arbitrio nostro positnm certum fit ac defiDitnm, simnlac conditio addatnr, ut, 
siqnidem fieri possit, tnuisfonnatio per buIntitDtioaem realem succedat. Id qaod acca- 
nitiiu examinemus. 

Fooamos, qoantilates «, $, y, h reales esse omnes; sit porroa>3>T>S) ita ut 
a—fff » — y, » — 8 sint quantitstes positivae. lam distingaendnm erit pro limitibna, in- 
ter qaos Talor argumenti y coDtinetnr : 

l)itty. t) v el 0, S) |S et «, 4) « e( t. 

Cagu postremo traDsitum ab « ad t per infioitum fieri puta. ExjUvsuOQeoi - . '■ ■ ■ ■■■ 

non nisi casn secundo et quarto, exprestionem _ ■ ; . -■ ■■ ■ non nisi casn 

/ -(y-«){y-WCy_T)(y-8) 

prime et tertio realem fieri videbias. Sabstitntiones reales, quae quataor illis casibus re- 
spondent. Tabula I. indicabit. Deinde Tabula D. formulas amplectamur, quae expres- 

sioni — ■ ^ - per substitutionem realem in simpliciorem transformandae in- 

V ±Cj-«)(r-/J}(y-r) 
serriunt, pro limitibus, inter qnos valor argumenti y continetur : 

Quas formulas diridendo per i ac turn poneodo 8^— do facile e Tabula I. derirare licet. 



Digitized by Google 



TABULA I. 

/(J— )(y-«(j— iJCy-l /"l— ■ /l>_N'.' 

, y (—■ »)W-S"+ '/ ('-ffifa-») 
L= .J ^ 

.. /('— >)(H-i)-V(— m(T-») 



2 

„„ /(— T)w-<) -V^(— »)ai-T) 



db, Google 



TABULA U 



»' (r— )<y-s)(7-T) /i-." /!>_»•.' 



ni^- '/"«-/! 



y— T 



II. Limites > . . . . P: , _.. = .,- 



_dy_ 



/-(y-.)<y-m(y— >) /l-.' /t^ 






I. Limites /3 



L_K. y"(.-,)(fl— ri 



l+N. V «-» V --y 



db, Google 



u 

9. 

In tbrmnlu hisce pro limitibos assignatis simnl x a — 1 luqae ad + 1 atque y ab 
altero limite ad alteram transit. Limitibns antem , qui formalis I et II respondent , inter 
se commntatis, expressioni ~ Tid«Alu» v»lOTiew imaginaruim creari formae i»R, po- 
.sitoi=:i/ — 1, ac designante R quantitatem aliqiiam reatem ; ipsi x autem conciliart for- 






-=-itang|-. 



Formam, ad quam hac occasione delati snmus, x= . in expressioDe a - .- i.(.\, i{ 
substituamns. Prodit : 



/■<.-.■><.-, ^./(.-4^)(.-.-^*) /(.--")(■—'') 



d^ 



/l-tka>,t<p+lk /■{! - k)' C05 Ip' + {1 + kj* sin V 
Quae nobis qnidem substitutio satis memorabilu es.se videtur. E qua etiam generalior for- 
mnla fluit sequeos , ponendo x=siD«|>: 

/l — k'«n4'' /"l_fkco»a?>H-kk ■ 

uode pro limitibns o et n- obtinetur, evanescente parte iniaginaria: 
w « « 

,/ /"l—k'.ipiC' y /"l— «kcoi*ip+kk ^ /"l—Skcoj^i+kk 

quae est demonstratio succincta formttla« meniorabilis & CI. Legendre proditae. B Ta- 
bulis I et II daas alias derivare licet seqaentes, commntatis Umitibas, inter quos valor 

ipsius y continetor , ac posito x = -TfTT' ^"^ limitibus assignfttis angnlus (p iftde a 
e usque ad w crescit, dani y ab altero limite ad alteram transit. 



d by Google 



15 



T A B. U !L A III 



"Jy ip 

Ay— »){y-./3>(y_v>{)' — J) ■ V^mnieoi(|lV°n«<>(p' 

m = V'l-—rm-Sf('>-mr-t> 

/"(»-T)(|i^^'^-/(..-ffi(.,-») 






V — Cy — ")(y — jSJfy — v)0' — I) /~mmeo(^*^nn,in^r 

■""VC"— »)((i->>(--»)t«— t) 

. .y(.-»)M-i)-hA«-i)»i-T) • 



II. Limites 



♦. V c- r)(— y /EJ 



, Google 



t6 

T A B C L A.. IV. 

ir '±. 



/ty— «){y— 3)(T— t) /"muicMp'+a 



I. Limites T . . . fl: H-j-^y ;;;r:7V 5^ 



' y"("-(i)(—' >) 



a. 






... „ . » /('-tXH— r) 
I. Limiles — 06 ...•»: Wx" j 

U. LimUes |9 . . . .: i«-r"V p=V V i^' 



db, Google 



Fuflius hBDc qaaestionem tnctayiimis, at ftdsit exetdplmn elalNiratam. Restant 
adhuc casns, quibas (jnantitatniu «, B, ft S v-el duae rel qnatnor imagiaariae sant. Ca- 
sus prior «t ipee sokttioncm rwdem admittit, quae tamen specie imaginarii laborat. Ca- 
sus posterior eiasmodi solutionem realem omniDO non admittit. Qaare at otnoia ad rea- 
lia revocentiir, novis transfbrmatiomLns opas erit, node cODcinnitas formularam pent. 
Coi igitnr quaestiotii gnpersedemus. 

Salistitationi |)ropositae alia respotidet, eias inT-ersa, fonnae 

.= ■+■:'-'-•'/. 

quae et ipsa formaks elegantuunuu sappedltat. Cum vero fortasse iam Qimis din'haic 
quaestioni immorah Tideamar, eins iurestigatiooem ad aliam occasionem ralc^mus. Re- 
vertimur ad {jHaestioues geaenileft. 

de transformatiome expressionis 
' aliah eivs sihileh 

10. 

Vidimas, datam expressionem: 



M/l— x» /I— k'x 



per substitutionem adhibitam hniasmodi: 

^ b+b'.+bV+....+b<P>Mp V • 

qaicnaqae sit namems p, id aliam eiiu similem transformari posse: 



Eiasmodi substitatio cnm a datis Cotiffioientilws A', ,B\ C", D\ E' pendet, lum 
Tero tnaximt a nniDflro p, qnippe qni exponcntem dengaat iligaitatis auiniiiae, quae io 
foDctioaibns ratienalibiis V, V ioTemttir. QaamoliKm in aeqoeDtibns dicemns, eios- 

Digilized by CjOOQ IC 



modi snbstitntionem s. Imkafonoationem />'' ordinia ettt «. ad ff*"* ordiMm aive »impli~ 
cifia ad numerum p pertinere. 

lam indolem hanim sohstitutionum accnratina examinatari, musam feeianuu for- 
mam illam conqilexiorem: 

ac qaaeramtu de simpliciori faac . , ad quom illam revocari posse et vi- 



dimtis et DOtam est , iu aliam eins stmilem — __ ,. '_, ■ traiufomianda. 

QaaestioDLS propositae Datura rite perpense, problemati satisfieri ioTeDitar, siqni- 
dein IttnctioDmD U, V altera impar, altera par esse statnatnr, id qaod iam exemple in- 
nnoDt ab Analystis hacteaos explorata. Qna in re maxime distiD^endom erit inter ca- 
sum, quo iroparis functionis ordo paris ordine miuor et enm quo meior est paris ordine; 
slTe inter casnm quo transformatio ad nomenim parem et enm quo ad numertim im- 
parem pertinet. 

Iam igitur primum proI>enm&, transftametionem snocedere adKiljita substitatioiie 
■ordinis paris sen formae: 

y- -(>+.V+."-*-l- . ■ ■ -H..^"-" .'■-') U 

Hie (imctiones Th-U> V — U, V+l^U, V — XU et ipsae oimt ordinis pans, 
onde pwiamas: 

I) V + U=.(l+.)(l+k.)AA 

X) V — a = (l— .)(! — ki)BB 

S) VH-XUeCC 

4) V— XU=DDi 

designantibns A , B , G , D fnnctiones elementi x rationales integras. Quibus aeqnationi- 
)>us simnlac satisfactom erit, emetnr, uti probavimus: 

dy i» « 



Mutatoxin — xcnmUin — U abeat, V aatem non mutetnr, ex aeqoationibus i), 8) 
i«Iiqnae 8), 4) sponte floont Ut aequationibits l), 8) satisfiat, V-+- XUm ricibos, 



Digitized by 



Google 



V-t-U (m — l) ricibiu dooi inter te aeqnaleft kabere debet fiKtores tioeares; iQsuperipsi 
V-t-U etiam fiictor i+x auignah debet. Quae omnia Aeqnationes ConditioDales aibi 
poscnnt Bnmero m-f-tn — 1-t-l^ am, cj^tti et ipse est nnmenui iDdetermiDatamm 
a, a\ ... a^"'''*}^ b', L', ... bt"). Unde proUema propositam est delenDinatam. 

80cuado loco pn^wniiis, succedere etiam traiulbrinationem , adhibita uibstita- 
tiooe hniasmodi: 

_ ,(.+.V+.".«+...+«"'U"°) TJ_ 

cjuae ad Dumenim imparem j>ertmet. Hie V+U, V— U^ Y-^XU, V— A.U et ipsae 
aimt imparis ordiois, unde poaamna: 

I) V + U«=a+')AA 
t) V — U = (l— i}BB 

4) V— XU=(l-ki)DD. 

Hie quoqne solanunodo aeqnationibas t), 8) satisfacieodam erit, quippe e quibos mu- 
taodo X in — x dnae reliqnae sponte manaDt. Ut illui»atis£at, etY+U, et Y-f-XU sin- 
gnlae m vicibus daos.inter se aequoles haWant factores lineares necesse est, quern in finem 
2 m Aeqnationibas Conditioaalibiu satisfacif^odnm erit, qnibos una accedit, nt insuper 
Y-(-U nanciscatur (l +x) factorem. Hinc niunenini Aequationnm Gonditionaliuin esse ri~ 
demos Sm+l, qui etipseestnumerusladeterminatanun a, a', a", ..at"); h\ h", ...bC*"); 
node et hoc casn detenuinatam eat problema. . 

11. 

Designentur per U', Y' funcliones elemeuti y integrae rationales eiiumodi, ut 

IT 
poaito 2=-^, eraatnr: 

di dy 

Sit ea, quae adhibita est, substitntio 2==-^ ordlnis p'"; ac per aliam sobstitotionem 

Digitized by Google 



K» 

yzsi—f (desigoantilni* U^ V, utaupra, faoctioiies elemsBtix ratioaalu iotegran,) qaag sit 
ordiuu p", eruatur, nt supra: 
J? 

FA 

lam soLstituto ralore yss-sp- in expresuone zs=-^, luucatur z=-rit : erit una ilia suhatitu- 
tio z=^, (|ua adhibitft ernltar: 



ordinis (pp')*^. Ita ridemus, e pluribns tramformatioiiibns , quae resp. ad nnmeros p , p', 
p", ... pertiDeDt, successive adhibitis, unam compoDi posse, (juae ad nunieriim pp'p* - • • 
perdneL Nee Don vice versS, qnod tamen in praesentiarum non probabimus, traosforma- 
tionem, quae ad nnmenim aliqaem compositam pp'p' ■ • pertinet, semper ex aliis suc- 
cessive adhibitls componere licet, quae resp. ad nameros p» p', p"> ■ pertinent. Quamobrem 
eas tantnmmodo investigari oportet transformationes, quae ad numeram pertineant primum, 
qnippe e qnibus cunctas componere licet reliquas. lam igitur to sequeotibus missum fa- 
ciamus casom primum, qui ordinem transfbrmationis parem spectat, qnippe qnem sem- 
per componere licet e transformatioDe imparis ordinis et transformatioue, quae ad nume-' 
rum 2 pertinet, identidem, ubi opus erit, repetita. Casum secundum autem seu transfor- 
mationes imparis ordinis iam propius examinemus. 



Videmus eo casu fuocliones duas, alteram V parem Jm** ordinis, alteram Uimpa- 
rem (2m-i-l)*' ordinis ita determinandas esse, ntsit: 

Iain dico, ai quidtm ita functionet U, y determinentur , ut loco « potitp t— abeat 

U 1 V 

7=-?^ (/I -— = 7^: aequatione* ilia* alteram ex altera tponte aequi. 



d by Google 



PoMraiu V;=i^x*)« Vjeax^in.'); ridentu expreieiouein yss-^^s^- Joco x po- 
sjto -r— abire itt ■ ■ - ■ 



ubi x^'^Fj-rT^i, ^^'^I'f'Ctri] ^9** fanctioavs iDtegrae. QmoA at ae<jaale iiat expressioni 
— = T-Yj^-^-^^pr-, seqaentes obtiaere debeat seqaationes : 

desigoante p qnaDtitatem Constantom. 'Ubi in his aequatuNiibiu mams ponimus t— 
loco X muicucdinur: 

Qoihiu cnm [sionbus compantis •M^a^oqil^as, ol>tiii«m|is ~j^=-rt QQ^e 
Hinc fit : . 



qaarum aequationum altera ex altera sequilur. 



1 qnobes expreimio: 






fjaadratiim est fnnctioius elementi x intc^rae rationalis, idem etiam vale)»t de alia, quae 

Digitized by Google 



22 

ex ilia demattir praendo — looo x ac multipUcando per x*"*/^Xk*i"~i . Qoo fiicto ob- 
tioemiis, tiqttidem — -■ - — quadratum ait^ Junctionem! 



../T?=r!(^lH!Mi 



= i+ki 

= J+k. l+l. • 

et (pMm guadrotom for«. Q. D. E. 

Itsque eo rCTOcatmn est problema, ut expNuio: 

Quadratum reddatUT, desigoante ^(x*) expressioDem huinsniodi: 

Fit antem, posito U = x F (x*) = x (a -»- a' x' -I- a" x* -f- .. . -»-aMx*»>, cam sit 
U=xF(x')=-/'^^x"'+' (p(-jiT): 

I__ /-- b'" ^, AT b'— '' ^. AT b'"-' 

.w_yz. k- , .<— 'i=yT.bi»-, ,"— •=y^I.b-k— . . . . 

lam ad exempla delalumur. 



,, Google 



FROrOKITOR TRANSFORUATIO TERTII ORDINIS. 
13. 

Sitm=l, qui est casus sunpUcusimiu, V^l-^b'x% U=x(a+a'x*). Fosito 
A=;(l+sx), enumils: 

v+u=(1+.;aa=i+(1+i.).+.(«+.; ,•+.".■. 
Hioc 6t: 

b'=.(t+.). >-l4-f «, .'=.■. 
Aequationes X $■ ^2 "> sequentes abeuat: 

node obdnemas: 

Poii«tnry>=u, y>.=r, erit.=i, l-t-8«;= •+*"' , .(2+.)=.^ilH^±^. Hinc 
aeqoatio ; 

'+•""'•+"1/5 

abit in aequeutem: 



1) 


«•■ 


-»'+t.»(i_i>'o=o. , , 


Fit pnetem: 




b'-.w.,=..(ii+i)='"-<'+-'' 






(.+«.■).•+.■•■ 



Digitized byGoO'^jle 



M 

Praeterea obtiuemus, quia. (-1-7;=. — —^ : 



4) l-y = 



(H-XT+ti'l)" 


"+'■"■(»+«»■)«■ 


d-.X,-,")- 



A_y A— I V— n' 



6) /l-jj. 



,.+.'u'(r+«a' 



Porro loco x ponendo cum y abeat in —^, eruiraas secjnetitiijm for- 

mularum systema; ._ 

, . ^ (H-.)(l+u„)- 

„ , t'— ■)" — "!' ' ■ 






10) /l- 



l+.u'Cv+t.")^ 



14. 

Posito V-)-U = (H-i)AA, V-<-iU = (l-tt>CC, V-»»j=(t — x)BB, 
V — )iU=(l — kx)DD, Tidimps fieri: 

ABCD=M)v4i!._uilj, -. -i. .. + •,-•. ■ 
designaote M quaotitatem CoDstaotem ; qoam ex niuus^eiusdetn dignitatis Coefficienitis ooni- 

paratioue, in ntraqae expressione ABCD, Y— 'U~j — tnstitnta, ernere licet. lam 

posito V=b-|-b'x*-t- etc., U^ax-|-a'x'-|- etc., in siogdUs expressionibus A, B, C, D, 

fit (^onstaos /V> nude in prodacto ex iis conflatb ^bj -ih txprekiam atitem V -3 U -r- 

CoDstantem fieri Tidemus ab; nnde: 



d by Google 



Bine in exemplo iiostro,fit> quia bsxsl, a=- 



»+«■' — »(«»-t-') . 



unde; 






MofloU k, X, t|uos per aequationem qnarti gradus a t>e invicem peodere ridimiu §.13. l), 
foeik per eandem qoantitatem « rationaliler exprimantur. E fonnulis cnim supra 
allatis; 

-(«+•.] ■04 •) ■' 



»= — i l+t. 



Kqnitnr: 



, -'(t+«) _.. 



Filinsnper: M j-: . , nnde, posito yssinT, x=sinT, aequalio: 



V^l— y»/l— x*y' M/"i— «' V'l-k**' 



in sequenlcm abit: 



/(!+««.»-.(«+.)■ ".!•■ /l+t.-i^B+.Jml' 



/■(l+J.)' C^-P+d —)■(!+•) •i-'T' ir(l+!.)Co.r+{l+.)'(l— J-taT 

ad quam perrenitar subslilntioiie facta; 

sh, r = t'+«')"'T-f...i.T- 



db, Google 



PBOrOinTUH TKANSrORMATW otimVi oHbims. ' 

■■ ;■- ,15. -~7 •' 

I.im ad exemplam, (jaod simplicitate proxinium est, transeaniDa , in quo in^2, 
Eniimuii: 
uMe : 
Hinc nauciscimiir: 

Aequationts }£ §• IS fiunt: 

■=/?4. -/!-■ ••=/?■ ■ •: 

Ex bis sequitur: i '.:.'- 

»'»' _ b'b' 

sive, cam habeatur b'=(2«H-/3)H-(j3,-4-«»i), a'=|8(l -+-««)-|-(|3H-ai«): 

t«+fi ~ flCl+«») ' ...... 

uode : 

Hinc facile setjnitur: 

(juod evolutum ac per » diTuum abit in : 

Hanc aeqaatioDem his etiam duobua modis repraecMtare licet: 

(""+«("-««=«(«-«)(■+««) 
(, .+S) («_.)=(— Id) (I.+fl), 



db, Google 



nnde set|oitur: 



His praeparatiA, reliqna facile Imuignnlur. Inrenimus eptra-, pai^tpk^a*, X=v*: 

in + fi V _ h'b' __x^ ' il ' ' 

unde etiam: 

«— 1/3 "" u* ■ 

Eat insuper (8 = »/a"^Y T"^^ — ' "^^"^ aeqnalioucs: 

«• l« — tfl/ 0(l+t«) • « — J;3 u' .-,-;. , 

in seqaentes abenat: 

sire: ■ ■• ■■■■I '■■'■• ■ - I- ■■■'^■■■■- ■ '■" I ■■-"-| ■ --- — ' •:. -m. 

8oit{i— ov»)=ii(t«— n«) ; "'I '■;■■ 

«(TV + «i.)=«a'(l+ii'v), . .^ J ,j ^^ .^ ^^ ^. 

uade: 

Facta cTolutioii'; proflil: .■-.-. / - ■■ 

1) ii«_v«+5u'v'K— *'>+4uKa--V»'j=o. ...'.'■; .''.., 

Reliqaa its inTemantnr. Ex fle((uatioiiil>us : 

J«»Cl-l.T') = tiCv«-U«) , ,_, 

seqnitur: 
Hinc fit: 

•—=4(1^) 



, Google 



■ .■,+8= '-'f';+'" ^u-(-iirj;-). 

Hinc tandem dedncitur: 

y=p+...H..+^= °"'t:?I'.r°'' 



lam cum sit M= — =7( — _"^ ], transfbrmatio qainti ordiois coQtiiMbitiir theore- 
mate seqneate: 

T H E O R E M A. 



Fosilo ; 



T(Y-U-). + u- (■■ + »■)(»-■.■).■+.'• (l-ll.') J 



1) ,=- 



, Google 



pUOMODO TRANSFORMATIONE BIS ADHI81TA PERVENITUR 
AD UULTIFLICATIOnEH. 

1& 
lospicieatem a^natioiies inter n et ▼ , daohns exemplis propositi^ inreutas : 

fugeie noD potest, immntatu eas manere, abi v loco V, loco u autem ■ — t pouilar. Hiac 
e theoreaute exemplo piimo ioTeoto, Tidellcet posito: 

n*— v«+*B»(l — u't')=0 



fieri: 






idtenun statim derirator hoc, posito: 

■ (■■-tv')y+v«y' 



B«+«.Tt(„_,^j^ • 



fieri: 



/r=?. 



lam vero est: 
ande aequtur: 



Utloco —8 wtiatlir + 8» sirez in — z, sive x in — x mulari i1el>et. 

Simili modo e theoronate^ exemplo secundo proposilo, alteram deiliutlur , TicFe- 
licet poaito: 



'•M+b'tj-i- »*»(«•+»■)£"+»•) r*+»'''(«+'')y' 



d by Google 



lam cam setjuatar ex ae(|aatione; 

<u.p,»)(v-u') uTfl— u'T*)— (g'-T^ 



{l + u'v,(l-Mv') ,..(l+ii'*)(l-u.') *' 



fieri TiiieiDiis: 



Ira traDsformatione bis adhilnta perretiitar ad MultipHcaliouem. ' 

Haec duo exempla, v't z. trausfonoationcs terHist qirinti'ordJDis, iam ))riu» in lit- 
teris exhibui, quas mense lanio a. 1827 ad CI. Schumacher dedt. • V. Nova Antron. I. I. 
Nee non ibidem methodi, qua emta saot) g^Kratitatem pTaedtcabam. Alteram biennio 
ante iam a CI. Legeadre inTentum erat. ' < ■ ■ * 

DE NOTATIONE NOVA FUNCTTONUil ELLlPTlCARUM. 

17. 

Mi&sis factis quaeslionibus algebraici^ accuratius inqniramus In oaturafn'atial^ti- 
caro functioDom noslramm. Antea auteni notationis modnm, cuius in sequetRibaR mus 
erit, indicemus uecesse est. 
If) 

Posito / - — ■=:u. angulum i^ ampUtudinem fnnctiouut u Tocart Geome- 

•Terunt Hunc igitur angt 

r: 

(p = am 

P' J. 

/ — ,_ - ^Uf 



trae cODsneTerunt Hunc igitur angulum in sequtolibns tlenotabirndsper: ' ampl. u seu 

brerins per : 

(p = am.u. 

Ita, ubi t r - "/' " ~ ^"r *"* = 



x=;sin.am.u. 



d by Google 



,81 

losuper posito:' 






vocaJjimoA K — u Complementain functiouls u ; Complementi ampliludiaem deaignabuaiis 
per cotim, .ita nt Ht: 

ExpreMtooem V^i-.k*nn*MRH= — ■ *^" , duce CI. Legeodre, deootabimus per 

Aamu^y I— k'riii*amD . 

ComplemeQtnm, (juod Tocatur a Q, La^udie, HodHU k deitigHibo per k', ita at sit: 

kk+k'k's=l. 

FoiTo e ootatione nostra erit: 






Modulus, (jni snblDtelUgi debet, ubi opiu erit, aire uocis incltuus addetui , uve ia mar- 
gine adiicietar. Modulo qod addito, in ' seqaentibus eaudem obi^ue Modulnm k sul>- 
intelligas. 

Ipsas expressiones sin am a , sin oomm a, eos am . u, cos co&m u, A am a, A coam u, 
c«l. ac generaliter fuactionea trigonom4trietu •a mptit u di a i t , ia aetfuantibas Functionum EL~ 
UpticaruM nomine insignire couTCnit; ita fOf ei aomini aliam (juandam trlbnamus nolio- 
nem atque hacteuus fectum est ab Anal^stiii. Ipsam n dicemus Argumentum Functionu 
EUipticae , ita dI posito x ^ sin am n , ns; iifg . «n «m x . fi nototione proposita erit : 

■tot an u . . 

mh coam-*-^ — . - - - 

k'riauna 



dbyGoo^^jle 



St 



formulae in analtsi ftlnctionum elupticarum 
fukdahektaxek 

la 

Ponamas am.n = aj ain.v = b, am(a+T)=ff, aiii.(u — t)s=^, nol 
formulae pro additione et subtracdone FunctioDom ElliptMaramJandanentales; 

■ coi b A b -t- fin b coskAa 





l-k'«n 


..'.inb' 


co*ac 


Mb — do 


..IHDbA.Ab 




1— k»uii 


■'■■■lb* 


a»&b 


— k*iini 


slnbcOfiCMb 




l-k»«a 


.•dob^ 


«iiiac< 


MbAb- 


• <iDbcaiaa> 




I-k".b.'«»b' 


eo«>M.b-|>«D 


ia»inbA«Ab 



1— k'. 

. . _ A«Ab+k'«iifAilieo«ic«>»t 
1 — k-iiom'iuib' 

Ut ia promtu sint omnia, {juorum in postemm nsus erit, adnotemus adhnc formu- 
las scqaenteSf qnae facile demonstrantur, et qnanun facile augetar nQmcrus; 

t) Hn « + (in 9 s ; p . , 

«, - . - a. *a«.Ab 

8) A <r + a » — 



4] iiD <r — lin » = 

5) cof ■ 9 — CM » = 

6} a } — & «^ = 

7) mh r . sin 9 = 

8} l+k*ii07.tiii»K 

9) l + dii,.d«» = 



1— k'lina'Miib' 

»iinbco»aaa 
1 — k°<ina'uiib* 
Xainaunb Aadb 
1 — k'daa'.aiab* 
Sk* iia a .mib coia ■ CM b 
1— k'daa'ainb' 

1 — k'aiDa'dnb* 

ah'«^k*Nna*.cMb* 

1— k'.ii>a*iS*b' 

CMb'+aina'ab' 



d by Google 



t+KOtg.COti= - 






U) i+a,.A»= i-k'riT." 



12) t~k'ui)r*iDa= 



a.'+k'jiBb*co«>' 

l-k<>m.*iinl»* 

15} 1 — 111) ff iin 9 = -- 

. 1— lt',in.',iiib* 

... , ^^ - iin«'Ak* + iiiib>a.' 
I*) 1— usrci».7^ — — p-7 — - ■ - 



15) t — A <r ^ » : 



ma*co»b'+«iiib'c< 
1 — k'»ina'MBb' 



«6) (l±in,)(l±A.9, (^.b±.i„.A g_ 

I— k «na°»mb 



18) (i±k,i„.)(i±k»,?j^ ^tltw^i;-" - 



19) (I±kiiiiffXlTkriDj;= . 
») Cl±cM^)(l±«..a)c . 
«) (l±co.ff)ClTc<MS) = - 



{A«±kwtibco»a)' 
1— k'uBaSinb' 
(co*a±co»li)' 

(.in>AbT"''t>^ii)' 



««) a±<io(i±Aa) = — . ^'l':'"^''^',. 

1 — k'uDa iinb 

M) (l±i.)(lTi!l) = '■'■■'.'•.=^.''' 

- 1 — r itn a >iD b 



M) 



b + »in b cw b, A 



^ . ^ lia a CO* a A b — tin b cm b A . 



96) lia ff & 9 = - 

S7) HD » A <r = ■ 

28) coi •■ i 5 = - 

S9> CO* » & (r = J 



1 — k*tm>*ii«b* 
coi b sin a & a -^ coi ■ tin b A b 

COfbiina&a — coiaaiob Ab 

I — k'wna'rinb' 
oaacoib AaAb~*k'k'»iia(inb 
T-fc'^a'wJTv - 

Mae<MbAaAb + k'k'»maiinb 



£ 

Digitized by 



Google 



M 

SO) ™(,+9) = - ■ ""^ 

SO >in C<r — ») = 

S!) „,(,:(.»)=- 

SS) ».(,_S)=. 

1 — k'« 



DF. IMAGINARIIS FUNCTIONUM ELLIPTICARUM VALORIBUS. 
rHINCIPIUM DUFLICIS PERIODI. 

19. . 

Fonamus sin (^ =z i tg ij' , abi i loco ^ — 1 positnoi ««t more pleris(f ue Geometric 



1— k' 


■na'ibvb' . 


2*iati 


.coibAa- 


l-k'«n.'-.b' 


eo.a'- 


.«>a>*Ah? 


l — k' 


iua'anb* 


CMb»- 


-jmk'Ai' 



\A-if 



Hiocft: 



id^i \A-if 



Quam e notatione nostra in haoc abire videmas aequatioueai : 

I) Mil .in i B = i tMlg ■« (u, k*). 

HiQC setjiritiir: 

f) cotam (iu, k) = ucait>(a, k") 
S) UngamCiu, k) = i>iD.m(u. kY 

4) a .m C 1. k) = ^""tu.fc^ ^ __ ' 

Co«aim(u, k) fiaci>aBi(ii, k) 



i)J 


uDCoamCiu 


'■>=^»<„,i', 


6) 


coicoam(iu 


,k)=.i-^eM<»..(u.k-) 


?) 


Ig co»m (i u 


u -' 


' k'.in™(u. I') 


8) 


A coatn fi u 


k) = k',i„.o,«(u. k'). 



Aliud, quod bine flait, formnlantiti systema hoc est-: 

9) tin am 2 i K' = O 

10] *b *m i K' = cc , tc) li pbcci ir i X . 



, Google 



11) 


.U,«n(.+SlK')"=+.i«tm. 




«) 


wtvMi(a+ii1C)'=A — cofamu 




t) 


aaiii(ii-t-t>K') = — daaiu 




») 


/ . f .7^ 1 








15) 


iAamu 


— ik' 


"""'° + '''''= k.l<,.,„u - 


kcMcoamu 


16) 


1 ■ v +' 




ig .n. (« + . K) ^ ^^ ^ 




m 


d .m (u + i K') = - i colg .» II 




18) 


.in con. f.+iK') = .'^'"° = - 


1 



19) c(»coani(u-|-iR'} a 



+ l''i 



50) iKCOun (u+iK') = -^Aainu 

51) AcMm(<t.(-iK') = 4-ik*tgafnu. 

£ forniulis praecedentibus, quae et ipsae tamijnam *'r-"1"imrnitalrn ia Aoidysi fiiii- 
clionum elljpticaruin cousiderari debent, elacet: 

a. fuRctioDes ellipticas argnmCDti imagiuarii iv, Moduli k transforraari no»!(« 
in alias argamenti realis t, Modali k' = /"i_kk ; und'e ^eneraliter fuoctio- 
nes ellipticas argameoti itnagioarii u + i*', Moduli k, cotnpooere licet e 
functionibns cllipticis argumenli u, Moduli k et aliis -argamenti y, Mo- 
duli k'; 

b. fiiDctiones ellipticas duplici gaudere periodo, altera reali, altera imagina- 
ria , siquidem Modulus k est realis. Utraque At imaginaria , ubi Moduluit 
et ipse -est' imaginariirr. Quiod Printipium TtdpHcia iPenWi'niiDCnpabinius. 
Equo, camnoirersam, quae fiogi potest, Amplectatur Periodicitatem Ana- 
Ijticam, eincet, fuDClionea ellipticas non aliis adnumerari del>ere traoscen- 

. dtntilnu, qoM^oibusdaiii gandent eleganlii*, 'f<H4a»»e i^rtbd* iHa<i aut ma- 
ioribas , sed speciem quandam iis iness^ |?efecti et absolnti. 



Digitized by Google 



THEORIA ANALYTIC* TRANSFOEMAHOiyS FUNCTIONUM 
ELLIPTICARUM. i + 

20. 

Vidimus in aatecedentibus, cjaoties functioaes elemdini"x. ratioDale^ iutegras A, B, 
0, D, V, V ita delennitientur, utsil: 

V + U = Cl+i)AA 

V — U = (l— »)IJB 

V+^U=(l+kii)CC . , 

V— XUs=(l — kiijDi), 

tJj ,. 
poRito y=-r- lore: ■ ■(■ 



designaote M quantitatem Coustantem. lam expr«i»iioiie.s illaruQi fuucliouuni analjiicas 
geofraleB pfoponaaias. 

Sit n nomerus impar (juilil>et , slut m , m' nuiiieri iot^ri ^uilibet po^iitivi xeu ue- 
gativi, qai tamen factorem commaDem noii hal>eaiit, (jui el ipse aumerum n metitur: 
poiianiDs . , . 

_ mK+in'iK' . ' . 



'"~MV Mil'™*- / V rin^>m8<. /■■'r iii.'.in«(n — 1)- / 

V = |i— k'MB'iift4«."J a— k'»Ui'amqM.»»V- T • (i — V.>ia'»mHlat~.t)m.tA 

A = fiH — : — ^-r-) (i+-^ — ^—s—) ■■■• (^+— !, ., ) 

*" y tincauni— } \ lincoainSM / \ fiilcoanit(a — I)* / 

C = ^l+kMacoun4N.ij /l+kt<DCi»m8(*.>l . . . ^lH-kjiacMii>«(o — l)»,<j 

D = |1— kMBCo«ni4a.il {i — kMiicMm8«i.«t .... Il — k Hncoiint(ii— l)a-i| 



,, Google 



^ ^ h limcoain4a.*iDCOain8a . ... (uicaamt(a — l)"]* 
~^' ' Inn ■m 4-iIb am 8«....riD «m » (n — 1) •/ ' 



OtiitiiisposiUs, ubix=:5inaniai, fit j=~;=suiam[-j^ , XJ. 



Oui 



Antequam ipsam aggrediamur formularum demoostrationem , earam iraDsformatio- 
nem (jaaadam tDdicaMmiis. Qoem iii'fitiem liequealea aduotauius formulas, quae stalini 
e formulis $. 18. d«cafnmt.' 



1) .lnM»(M+«t)»w»ni(« — «) = — ^^^^,^^^,^,^^^ 

(l+rioMn(..-)-«))(l+rf-.m(.~«)) ^ 0+.'r4rmV 

CO*" am R 1 — k' lin' am II md' am ei 

-r coa*aai« '■ ~ ' ' l-^)i'itii*ainuai«*am«( 

(l+krinainj[a+«)) (t-t*k*li»ait»(a— c^) (l-t-kt|namuMDCoain«)* 



&*ani« 1— k*i 

(l_klioa<n(u+«)) (1 — kai»m(u — «)) (l — ki'n 



E qiiibiiii..fbnQQlijL etiam sequitiur 

eo««m(n+B)coi>ro(n— «) _ 



1— k'fin'ai 
flnn(ti+»^^aiii(n— «t) • J— fc'wg'ain 



A'a^tt ' 1— k'l 

Posito x=siDsmu, uiBQciscimar' e formula 1): 



In am (u -f-w) *!a am (u — «) 



1 — k'tm'amei 
e fonnulis 2), S) : 



1— k'l'^n'aMiti ~ eo.'iin<i. ' 



d by Google 



88 

e formulis 4), 6): ' ' 

(l±k»m county _ (l±k5;nam(u+«)) (l±krin«ii.(Q-«))- 

Hinc nl)i loco « snccessive ponitor 4 i», 8«», ...2(q — 1)«», loco — • autem 4 n « — «, 
olitinemns : 

U ITV ~"»iB'»m4«/V "~riB'iin8»/"' A ~ riii'ain»(*-^l)w/ 

*^ "V (1— k'x»Mii*»m4«) (1 — k'x»Mi»'»m8-) .... (l — k'.*ib'.mA(i) — IJ*) , 



■ A.,H.(u+4.).i..>m(B+8,)...-»m.-(u4-*("-l)») 
f»mcoam*-iiii«»inB».... Ai«)»«n2<n— 1)-}' 



(l_k'i'Mp'am4-)(l — kV*in'.ni8»)....(l — k'x'dii*.mtCn — 1)«) 

(l+.ia»muUl^-«ll.ln(^H-4-)Ul+«■>•In(i^^^*.)L..-^T+.tn>m(ii+4(B-I)-)) 
(c«km4«7co«M>A«..'..«MMn'£(B-^4)*>| 

m4iii /\ jJD coam 8 « / ' 



Jtneo*>nC(ti — 1) « 



(1 — k'i'rin'ant*-) (l-k'.'iia'»m8*).. .. (l — fc'x"Mn'»in«(n — !)•) 

Cl—inimuWl-dnan, (u + 4-)Vl-«n«. ^o+e-)) . . . . (f-*io«n (lH-»(«-l)-)) 
^ (cM»n4«.«o*w>8«>....co]ainS(a — l)a|' 

(l + k»)CC (l+k-){(l + kx.mcMm4.)fl + k.rinco».n8«)....(t + k«wiico.n.I(o_l)«))' 

*'* V ~ (I — k'x'.ra'im4»)(l — k'.»mt'.me.)....(l— k'.'iiB'i«.»<«^13-) 

f 1+k .in »n «y 1+k Aa am (i.+4 «))(l+k,ri« «in (a+S -) J . . . (l+k >i>> un (u+4 («-!) ■) j 
~ {Aan>4-AamB<.... AamS(ii — IJ-I' 

/|__^,\DQ (l_ki}f(l — kiiiDcoam4*i)(l — kxuiicoain8»)....(l— ^kxiincoamSCn — I)**)}' 
"^ V (I— k'x'fin'»m4-)(l — k'.'rin'am8.)....(l — k'x'.in'.m«(n — 1)») 

(l_k.b.muVl-k«n.m(u4-»«)Vl-k«nani(iH-8»))..../l-kwDa<n(o+4(i>-l)-)) 
~ ' i[Aam4.&MnSa...Aaiii2(a~.l)aj! 



,y Google 



: sequuBtor £anniihe: 

I — u AB /> V lin' coani 4 M/y md' co»in flu/ \ lin' coam > (ii — 1)"/ 

V ** ''(1— k>i*tm*am4«)(l — k'i'Mi'a«)8«)....(l— k'>'iui*unt(a — 1}«) 

cotamn.ui*am(u-f-4a)ca*ani(u+8a)....co*ain^u^4(n— 1)>} 
[c<Mam4«.CMain8« .... co*aaiX(a— 1)»)* 

_ (l-k'i'*in*coan4.)(l-kVaii/coagn8.)....(l-k'K'iiii*coamX(ii-l}«) 
(l-k«.'iui'ani4<.)(l-k'«'wo*«m8i.)....(l-k* «'«!.' am J(o-l)«) 

aamuaaiD(u4-4«)Aain(u4-8»)....i&am(u + 4(ii — l)fl) 
|Aadi4a&MnaM .... i^unt(it— 1)«]* 



DEMONSTRATIO FORMULARUM ANALTTICARUM PRO 
TRANSFORMATIONE. 

21. 

lam demouatremos, posito: 

_ (\ riacovain/X Miicoatn8a/ \ iincoamt(n-'-l)M/J 

^~ ' (1 — k'i'*in'am4a)(l — k'i'Na'am8«i)....(l — k'>'*iii'am8(n— 1)1.) 

(l-Mnau.oUl-*mam(a + 4-)^(l_w.an.(u + 8-)):...(l-«ii.att(u+4(B-l)»)j 
lcoaaiii4«.co«am8«.co(>nil2N •■•. co«am8(n--l)sl 

et reliquas erui fonnulas, et hanc: 

Ay ''_ d» 



-f i 1 — \*y' M/ 1 — a* V l-k-i* 



sifjaidei 



A. = k fHnccwm4a.niicoain8a ....iiiicoamS(ii — I)a| 

!nncoain4«.micoaiiiSM (iiicoainS(n — l)i»l 
no an 4* . ria ath 8h ... da am 2(d— t) ■} 



E formala proposita apporet, miaitneittiilari y, qaoties u abit ia ii-4-4«ii Tcuu awxa 
(jniris fector in subse(|aeDtem a}>it, ulUmu* vero.io fu-imum. Unde generaliter y noo mu- 



,y Google 



40 I 

tatur, siuuidem loco u pouatur u + 4 pw, tlesigoante p tuimerum intfgrum positivum s. 
uegalivuDi. Ul'ivcron=0, fit; 

(1 — >;n>m4«)(l— nnam8«)...(l — iiitain4(D — 1>) 
[cosain4>.co*Bm8-...c(»ainS{ii~l}«] 

'sive y = 0. Facile eoim patet, fore: 

— ain ami (n — 1) a ^ ^ sio am 4 e> 

— Moain4<ii — SJKi^s+biiiHnSa , 



unde: 



(I — ilnan^4o)^l— iiiiam4(n— l)M)=:c«t'ain4a 
(1 — unam8i>)(l — ^Ilam4(a_^)■•) = cOl'aID8~ 



(i-»iuamJCD-l)-)(l-«na.nS(^+I)»)=cot'.,n*C^>-l)-. 

lam (iniay=0) quotiesn=:=0, neque mntatar y , nbi loco □ ponitar u -t- 4 p w^ geoeraliter 
evanescit j , qaoties n valores indiut : 

0, 4>>, 8«, 4(n— S}». 4(a — 1)«, 

guibas respondent valores (panlitalis x^sinamw: 

0, «a3m4i>, unam8», .. . iliiun4(n— S}*, ■iDain4(n— 1}>, 

(juos ita etiam exliil>ere licet: 

0, ±>inatn4»i ±3iDam8a>, ■ ■ ■ . i;*inaml(n — 1).«.| , 

sire eliam hune in jnodum : 

0. ±*ui*ntS>, ±Mnain4«i, . .. ±*iDain(a — !)■>. 

Qui valoKs element! x, quos eranesceute j induere potest, omnes inter se diversi erunt, 
eorumqae numerus eril =n. lam ex aeqaatione inter x et y snpposita , e qua profecti sii- 
mus, elucet, poaitis: 

V = (1— li'»'iiii'«in4»)(l — k'x'»ii.»ain8«)....(l — k'i'iiB'MnS(D-l)«) 
= (1 — k'x'.m'an>«(»)(l — k'i'»in'»m4»)....(i— k'i'Hn'ani(n — 1)'»), 

yz= — , fieri U functionem elemenfi x rationaleio integram e'' osdiois, ; Quae cuni simiil 
cum y eranescat-pro TatsriLas quantitatis x numero n et inter se diversis bequentilnis : 

0, ±(iaamt*, j:nDatii4B>, ... ±iinam(D— -l)*,. 



Digitized by 



Google 



41 

necessario fonnam indait: ^ j, ., -' - 

M \ Mn*ani4«/l Hii*«ni8i>/ y fin*auit(ii — l)i>/' 

ilesfgnaote M ConstaDtem. Com posito x = 1 , fiat 1 — t = 0, y=ii, olttiuemuK ex 

U ■■....■..■ ..■:'■ .: .. ; ■. ' - ■ 

aeqaatiooe 7^— : 

\ na'»mtm/\ nn*»mim/' ' ' lio'tm (a' — 1)«/ 

~ M(l — k'»in'»m««)(l_k'»io'iiii4«^....(l — fc"iin'«in(n_I)») 



( — 1). * (iiiieo*mt*.iiii«<Min4« .... flnci>fm(n— '1}«<J 




• 1 

f«.iiacoam4« 
, |iinfHiS«.Mni«in4« ... jina^tn— ljif| .,;, ,. _ i ' ..';~ '._ .. ^ .. 

luter functiones U, V memorabilu interceilit con«latioj^iUu^ itica mptm lu«mor 
ratam, cuius iKueficio fit, ut posito ^locq x fipaidf ,in. j-« a)>eat, designante X Con- 

staatem. 

Posito enim - — loco x abit: 

"" ■■ ■'■ ■■ . : . ■ I . ■ . H I . i ; 

in hanc expres-'tionem : ''■ ' 

£^ V 1 ^ 

Ml" k°(*iiiainSa.>ValLin4a'..... ad am [n — !)«)*' 

Coutra Tero eadem snbstitutione facta , . . - , , ^ 

in hanc expre-ssionem a]ii,t; ■ . , r .: . .;.,,' ,:..-.; 

{— 1)~^ — ^ . M {iiD amto . HW.B.4* . . . .-*i»«n^ — IJ*}.. 

F 



,y Google 



4i 

Undu loco X posilo-r-, y=— abit in: 



sire y in — , slqnidem ponitur: 

X = HHk'^{«in*mXa.*inMn4«....Mn>in(a — 1}.}* 
= k^luneoamSa.HncaaiDAa .... iinc(Min{n — !)■}* 

Id (juod demoDStrandnm «rat. 

Ex aequatione propositn: 

(l — V*»'mii*«iii4w^(1 — k*i'Hn*am8M^,...^l^k*x*sin*ainC(ii^l)«) 

posito -r- locox, — locoy, qnod ex antecedeQlibus licet, eruimus: ' 

_L_ 1 3= -i^^|(l— kxrin(i«m4«)(l_k«iineo»fh8«),...(l — i<MocoMiit(B— l)-)l'. 

qaod dnctiMii in Xy = -^, praebet: 

l-Xy = (l-k,)ii ii V ^ ^ ■ -^■ 

Ceterumpatet, y=~al)ireiii — y, ubixin — x mntatar, qao fecto igttor statim etiam 
l_l_y, iH-iyexl— y» 1— Xy obtinemos. 

lam igitor eiiumodi iaveiutiuu flinctioiieft dementi x rationales integras V, V, 
ut sit: 

V + U= V(l + y) = (! + .) AA 

V ^ r ^ y (1 - 7) = (i — .) BB 

V + XU= V(l + Xy)=a+k.)CC 
V_XU= VCl — Xj)=(l-k>>DD, 

desigmiDlibiis A, B, C, D et ipsis fnnctiones element! x ratiouales iotegras. Hinc aatem 
secuudam Frincipia TransfermatioDis initio stabilita statim seqaitor: 






Digitized by 



Google 



49 

Mahiplicatorait M, <jueni Tocabimus, ex obserratioae §. 15 fiicta obtinemiu. Uiuk 
iam omnes fbmiDkie aiialylicae gener&les, quae theoriam traDsformationis fuocliooam el- 
lipticamin concemnDt, demoustratae sunt. 

22. 

Demoiutliutiio proposita ex ea, qaam dedimas in TSov'u Aairouomicis a CI. ^ha- 
macher editisNo. 127, eruilur, nhi poaitur w loco — aliis omQiljiu immutatis maDenti- 
bos. Ipmin theorems analyticnm genorale de TnmsformatioDe sub {bnaa patJo alia iam 
pritu ibidem Ifo. 128 cuni AualysUs oommuuioaTcnun. Damoiulralioiiem CI. Legendre, 
»ummus in faac do^triua arbiter, ibidem No. ISO benigiie et praedare recetuere voluit. 
Obserrat ibi Vir malli« nominibos TeDerandus, aeqaationem: 

V^_U~ ABCD _ T 

cuius beneficio demonstralio conficitur, et qnae nobis e principiis transformatiouis mete 
algebraicia seqaebator, etiam sine illis atiatytice probaii posse. Qaod com ex ipsa Viri 
Chuusimisententia egregiam th^oremali nostro lucem afiundat, praeennle illo , paucishunc 
in raodum demonstrenius. 

Aeqnationem propositam: 

v-iH._u— *BCD T_ 
di , ai ^ M " M 

ita qnoqne exbibere Hcet: 

dU dV dIogU dIogV ABCD _ T 

Udi~*"vdr™ di di ^ MUV ~ MUV ■ 

Invenimus antem: 

^ ~'mV~ MB*»mt-/r~ .iii'.n.4« j--"!^*— .in'«iii(o— J)- j 
V = (l_k*»'.)«'»in»-)(l — lL'x'«m'am4-)...(l — k'i*«"'«»(n— 1)»). 

ande: 

JIobU dlogV _ 1 ^( ^ 



1— k'i*.u>*»tt4- f 

Digitized by Google 



T ABCD 

.lUV ™' MUV 



namero q in sunima i?esigiiate (riliulis-valorifius r, 2 , S , '. . . ■, ■ "Z' " ■ ' Tom inveninius: 

CD = (1 — V'i'siii'coain2«»)(l — L*K*»in'coain4«i)....(l — V'i'»iii*c«»mCn — 1)«(), 

nnde; 

Yl(i " Ul_k'x'«i.'co.in2pi.) 

slquidem Id producUs breritatu. caasa pifiefuEO sigoo n denotatis sbmeuto p T«lcres tri- 
bouDtiir l,Cr 5} .-..., ~7~ '* ^'>*' «x|veS8ionezn iu frafetiones aimpUces discerpeK 
iicet, ita ut formam ibdaat: " • 

1 / a"'» ' ' b'^'x 

quo facto at evictam habeamas, quod propositura est, denioostrari debet, fore; 

Deaolaliimos lo sequenlibtu praefiso signo n*^' prodtictum ita formatunij ut ele- 
meoto p valores tribuantor 1 , 2, S, ...» — s— > omiaso tamen valore p^q. Hinc e 
praeceptis fractlonum simplicium theoriae abupde gratis 9e<|uitDr: 

«in'»mgq» 
'^V l_k*>in'iii>SqM.siQ'aniSu«i / 



= jl — k*Mii'sni2q Ai.*iD*co*ni2i]a>l — 






*A ^ 1 — k'lia'amXqai.ND'coamZpw / 

lam e formulis supra a noljis exhibitis Rt: 

^ ' lin'imitqai 

T Mn*ca>m<p0 co(>in(Xq+Sp)«.eoi«m(tq — Cp)" 
1 — k'ua'amtq oiin'aDiZpN co«'am9ptii 
sin' am 2 q u 
rio'trt tpm _.^ coj coam {Sp+4 q)a» . botcoam (Zp -i-S q) u 



mSpn coi'ccaraSpw 

Digitized b, Google 



,48 

FacUe antem patet, sublalis (jai iadenomipatore el uumeratore iidem iareoiaotur facto- 
rOiaa, fieri: 

*' cM*>in2p« ~~ t^tfatq* 



unde : 

.(q) — (1 — k'MD'«ii»tq>niii'coani2q*»)c o»e)win4qM 

cu an f I) *i coi coam 2 ^ u 

At e oola de <luplicatione formula fit: 



2 k uoam 2q«tcotani2aatAain2q •> 

>icoain4qai ^ - i 

1— 2k'iiii*«in2qBi + k*Mii*am2q« 



2qBi+k*Mii*am2q« 
2k •iniin2q«coiam2qu^iin2qai 
A'ainXqaf — L*«in*aD)2qwcw'«inlqM 

2co«>w2^«.«— coawigqM 

1 — k* *iD* ■■i2 q M fin* coim tqm 

onde laudem, qaod demoiutraudum erat, A^^'= — 2. Pnwstu simili modo alteram oequa- 
lioDem: B'^=2k*aiD^am2(j w probare licet; (jaod tameo, iam ioTento A'^'=3 — 2, fa- 
ciliufl ita fit. 

faaie patet, loco x po.sito -r- non mutari expressioneia : 

nCl ____!__ Ul_k',',in'co.m2p«| 
V «n'coa.n2p«;\ '^ } 

qoatn vidimus aequalem poni posse expresiiooi: 

.+2_^'J= + 2 li^Ji! . 

fin' am 2 q M — k' 1 — k' »ili' am 2 q w i' 

Haec aotem expres^, posito -r- loco x^ abit is Iwuo: . _. r 

* t — k'a'*ii>*»in2qM k'(»ili'»m2q u — i*} ~~ 

^ T (9 °'^' ^ y 2fc'i'»in'amtq*. y — b'^' »' 

''*■*■ i k' MO* am «q •/■*'■*• 1 — k».»«B*«oi2q» "'"'*' k'rin'aDiZqu' »ii'aiiiSqa> — x' " 

.unde Qt immntata ilia maoeat, quod debet, fieri oportet: 

B''*=2k'»in'am2qa.. 

0. D. E. 



d by Google 



■46 
23. • 



E fonniila 14) §. 20 se<jULlur: 



n7?^i/TF? ^° ^ /Yp? ^^~''''''^'"^*''X*-'''''"°'«^*'')---(t -^'-'"°'''^("-^)_«') 



(l-k>i*Mii*«iiitt>Xl-k*i*nii*am4u)...-(l-k'K'*in>aai(i>-l}») 

Fositox=lj unde eliamy^l, ac v 1 — \X=:X\ fit: 

™ I AamXM AaaliN ... Aam(n — 1)m /' 

lam vero est: 

k' 

~ A IDI U ' 

uiide: 



1) x' = 



k'° 



{&am2ai.&ani4ai .... a«n)(n— l)uj* 
Forro in asnm vocatia fiumolia : 

tj X = k"|Miieo»tn*i>i.»iiicoMn4» .... rineoMn{n— 1)» 



8) M=(-I) 
nancUciniDr : 



1 — * |tinccaniXw.iiiica*in4w .... ibconn(n — l)a(|' 



o.«w..iDim4w....«nim{n_1^7j 



{coi»nX«co«am4w .... aMain(a--t)tt 



Maiiil»^am4w .... Aan(D— I) wt 



7) ^ 1/ -;^ = Jtg wn « w . lB«in4«i . . . tgain(i»— 1) «.| 



lin coam Z at . lia coatn 4 ai ■ ■ ■ nn coam (n — 1) mJ 



jcoi coam S ti co* coam 4 n 



db, Google 



10) 



n— 1 r~ / >j 

11} (— 1}"^ H m/ . ^ ^^ mc {lg coam t M Ig ci»m 4 a . , . tg cram (n— 1} m\ . 

Harum formulanun ope formulae l), 4), 5) iu sequentes abeunt: 

IX) «nam^-^, xj = y ^»iiiaiu«B«o.(u+4«)«tiain(o+8«).. .. »i«Mi. («i+4{ii— 1)») 

IS) coiw/-^. x) = y i-!^«o.Miiicoiiin(tt+4«)cwuo(u+8«.)....eraam(iH-*(n-l)") 

14) &Mm ^^. >.j=y ^iM.ua<n.(u+4«)a«n(u+8w)....aai«(u+4{ii-t)<.). 
node etiam: 

15) »g«n(-^. xj = y iltgtmutg«n(a+4»)lg«n(n+a«)....tg.m(«+4(«-l)«). 

AHud ita inveiutiir formularam sjslema. Ex ae<jaatioDe 4} seq^oitur: 

= {lin im X u tin am 4 u . . . . siii am (n— I) wj , 

uiide: 



/« .\ » TT •in'.mSp*, kM Tf 

= ««am(_. XJ=-||.j-j_-j--_-=_^,||- 



— uD'amXpu 



k'lin'amSpM 



°—nc--i.--»'p-)-t^.H..»(-^.>)n(.-- t.^.L.pJ - 

Kadices haiiu aequatiotus u" ordinis sant: 

i = iiaaRi«. Niiani(«+4a(). rin am (m+8ai), ..... tin am (u+4 (n — 1) w). 

nude aequationem naDcisciiniir identicaui: 

-n('-^»--»-)-nr-'-(^.^)n(--p;5:|^)= 



,, Google 



4$ 

Hinc prodit samma radicam 

16) 2 *•■" »■» C''+*q") = -nr "" "" ("^ • ^) ■ 

Eodem modo invenitnr: 

17) 2 <'■>"■" ("+*'»''>= hM """(la- '^j 

19) 2 >e »- {«+4q~) = t^ »B •■" (-S"' *■) ■ 
in quibua formulis uumero q trUiuuBtQr ralores 0, 1, 2, 8, ... nwi. ^uas fonndas 
etiam hunc in moclum repraesenlare conrenit: 

kM VM / V , ■ ". 

D— 1 

(-1) - >•.- (^ ^1 = M.«n« + 2!^»"'("+*'I'')+'**""("-*'«-5l 

kM V™ / ' ' 

— j^ Ig «« (■^. A^j = tg -m a + 2 {le^"- (•"+*q «) + t«.™ (»-*q«)}, 

ubi numero q tribuuntur valores 1,2, 8 , • ■ - ^y~ * '"'" 8*'^'*«'**"' fonnOlse : 

S eo» »iD 4 q <• i »in 4 q w »in iw ii 
5m*mCu + 4q«) + im»m(ii-4q«)= 

coj»in(u+4q<u)+co.«m<u— 4q«,) = 

A am (n + 4 q o») + A am {u — 4 q w) = 

tgam<a+4qo.) + tB.tn{u— 4qu) = 



l-k'.to 


>m4q« 


lin' am a 


X cot am 4 q « CO* 


jm u 


l_k' sin 


>.n.4q». 


n'am u 


XA» 


m4qaiA 


itnu 


l-k'«D 


am4q*, 




2 A am 4 ^ 


a un am n 


cof am u 


CO*' am 4 q ai 


_ i' am 4 


q »• ""' »"• « 



•) cf. J. 18 formuta* I), 1^. 5); formtja pJslrema e' formalU.K^, 3<^ Huil. uW repufci, cue Igff + 'e'' 
lin (g + J) 



,, Google 



40 

(|uarara ope formulae 16) — 19) in has atrennt: 

») — J— ; — niiMn|-r^> ^1 = *m im u + 2 — ; — 0-:^ ; ~~z 

kM \M / 1 — k*«in an 4q m na* ain n 

— '**'*I"M • »-| = e««" + Z — ; — rr-ri — ^ tt 

\ Ja. / ^ 1 — k «in •» 4 q w «d* am u 



81) 

i=lLi:A..YjL. .^ . ■■ .. ■ 1=. «A.-4q.^.m, 

1 — k*uii>«m4 

t a am 4 q w »in 



«) ^^^^^ ' ■- (^. *) = a .» " + 2 i_i..^„..„,,|. -^ 



(juae eliam bhtinentur, ulii fbrmolae sapra propositae e methmlix notis in fractiones 
simpHces resolrantar. 



DE VARUS EIUSDEH ORDINIS TRANSFORM ATIOMBVS. 

TRANSFORHATIONES DUAE REALES, MAIORIS MODULI IN MINOREM 

£T MINORIS IN MAIOREH. 

24. 



sigiintitiLus m, ni' numeros integros positivos s. oegativoii, quitnmiiq, quories n est ou- 
merus coinpnsitus, nullntn ipsius u facrorem cotnmuuem habeu). Facile autem patet, nl«t 
4 sit primus ad u, valores w = -^ — ^^ ' — suhatitutiooes diTcrsas uqii e?chiliituro)i 
esse. Hinc ubi ipse n est nnmerus primus, valores Klemenli a*, (jui tranvformationes Hi- 

Tersax suppeditant, erant omiieft: 

K_ i^ It+iK' K + t i K' K + gJK" K. + (a_l)iK' 

ii'd' u' n ' n .•••^ 

sire etiam: 

^ IE. ^ + . ' ^' « K + i K' 8 K ■!■ I K' (n — I) K + i KT 

aut, si placet: 



G 



Digitized by 



Google 



quorum est numerus u+ !• Ac reapse vidiiuuit, , in U'aasformatiombus tcrtii et quioti or- 
diub, SDpra tamqaam exemplis propositi^, ae(]uatioae$ later u = ^k et r = y^X, qiias 
Aequationea Modularet Quacupabltnus , re.sp. ad rja^rtuni et sexfum gradum asceudisw. 
(.)uoties vero n est ntunerus compositas, isle valde augelur uumrrus; accedunt enim ta- 
sas, qui)ms sive m, sive m' sive etiam ulerque &cU>rem Ifaliet ci|m n couiwubmq , modo | 
ne uEris<jue m, m' idem comiuunis sit cum u. Geiieraliler aulem valet theorema: I 

„ numerum aubatiUUionem n" ordinia inter ee diveraarum , quorum ope tratufor- I 
„ntare Uceat functioriea elUptictu, aequare aummani factorum ipaiut n, qui ta- 
y^men numerua, quotiea nper quadratum dividitur, et aubatiautioaea ampUctitur 
„ex tranaformationa at midliplicatione mixtaa; adeoque quotiea n ipaum est qua- ' 
„dratum ipaam multiplicationem." i 

Lta igitur factorum summa desi^nahit gradum, ad (|uem pro dato namerq u Aequatlo Mo- ^ 
dularis ascendet, nbi adDOtaudum est, quoties n sit Humerus quedratus, uoam e radicam 
numero praebiluram esse k = X, ac generaliter, quoties u = m'v, designaule m^ qoa- 
dratum minimum, per quod uiimerum n dividere licet, e namero radicum fore etiam omnes 
radices Aeqaatiouui Modularis, quae ad ipsum v pertinet. 

Inter valoreselementi w supra propositos, quicasa, quo n est primus, quem, cum 
in eum reliqui redeant, sire uiiice .sive prae ceteris considerare couvenit, universam traiu- 
formalionum copiam saggeruot, duo tantum generaliler loquendo *) iiiveniuntor, tiui trans- 

formationes realea suppeditaal , hos dico w = — , w =: . Ulam iu sequentibus voca- 

himus transformatioiiemfrimam, haac aecundam ; modulosque qui his respondent, desigoa- 
bimus resp. per X, X^ eorumque Complementa per X', i^. Argamenta amptitndinis — , 
quae his modulis respondent, (functiones integras vocat CL Legendre,) desigualitmn.i per 
A, A,, a', a/. Formulae noslrae generates pro his casibus evaduat sequentes. 



•) Nam infinili) cuibua pro ModulLi ipccialibus fit, ul fu ladicam imagiiuriiniin Aeqnstiooum MfMluUrimn 
ribi Miotic evadal ideoque rule fil. 



I, Google 



61 

I. 

FORMULAE PHO TRAMSFOBMATIONE REALl POI^IA MODULI I IN MODULUM X. 



X = k" 



tK . 4K . (ti — 1)KJ 



lAani dam ...... a am ' — J 

Inn n t 

I . «K . . 4K (o— I)K i' 

I iiD coani — — MD com) ■' nn coam i- •■ — — I 

~ \ tK . Tk " iTn — llK '1 
f tin am -— «m aoi — md ani I 

\ • ■ . " ) 

M I ., «kU'-., «k|-|'-T^ (.-1)K| 

,ji_ X V "■•"T/\ •■"••■»-; \ ..■■..— 1^; 

""■"^" ■ ■" (.-k-.i...,„!iaio.a„.j(.-l-d.-.„*Ji.f„'a„,.j..,.(l_V.i...„<:ri«£.,...„„j 

,—- Aamuf !->'*■■> Oain — aia'atnuH 1-k aurcoam — ain amu I ...I l-li'fiu'c«aiii — am* am n I 

"'«■ ^"V i-- (,.l,,,...„»^..,„.,„„)(,.l.ai...„^.i.-a.,.j....(.-l..i..,„!llii5.i„.„~ 

( .i«»nu 1/ aiaai.. v /. ■h»"° \ 

' ■ ■ • I tincoam — If iincoam — I 1 tiacoam-J^ 1— I 



/ 





V 




.X) 

,.) 

8K . 
eoam — ill 
u 


.„„) 


.■(.-k»..co>m«<"-'J'^^n 




1— kiioaffiB 


»") 


H4«n.»o 


(,+k.aco.m^.taa 


""X-+'- 


co.m**'.; 


n am u 1 . 


..(l+k»i 


t(n_lJK . 
oeoam-i i— lip 

D 

Digil zed ; 


, Google 



-ra-™""(-H-' ^)-=v—' •+«2 



(~i)^MfmZ3 _i,| 



-kM-"""(T' »)=«■" ■"•+«2 . ^. . . t,°K . . 



-^r^-'i-w- •)-"""' + '^- 



-ina-'f°(-^.>j = f"- + «S ,; ,K.. 

^ ' co^ am -^ A' am --^ nn' ui a 



^. FORMULAE PBO TRAHSFORHATIONE REALI SECUHDA. MODULI k IN 
HODDLUM X,. sup FORMA IMAGINARIA. 



fiK' . 4iK' 



n' 



-I 



M, -(-!)- 



"(i-.)- 



tJK' . " Til? ; (m— QjR' f 

'-tt~Tk|('— — fTS')-|'-~nEESIEI 

y ^.iiniiniiiniiiii(ii-|-4iK')iia.m(a-|->IK')....>ii>iii(ii+«(it-l)IK') 

Digitized b, Google 



I .. ■•KU ., JiK'l I' ., (._«)iK'l 

" V J^'»'"'"=""»("+—j"-°(°+— )•■•■"— (■+ — ; — ) 

"" \ir • \\ = !-i —, —t 

'•"■ I /, "°"°' \/i ■ ■"■•°" \ /i "'"" \ 

\ "■■••■»— /\ w.m— ; ^ ...,„___; 

/ '-■°"(-ii:'4-. . 

. %\v:\\~, *'*t'I "r"^ . {— i)iK'| 

n / \ n / ^ n / 

-fiioMra /. . MD»inii \ /, L "" '" " \ j, . »iii»mii ^ 



7? 



■(-^•^) 



„(^...) 

1 iin coam II un coam —— I 1 nn cosm I 

CMain'^~^! i iam— J nna 

WM- "■ - (■j^ = » "■ • - X 2 ' .. '' it^-DIK- .' . 

' ^ ' t ' md' am ■1-' ^ (- fro* am u 



d by Google 






( — 1)^ A am lio am u coi am u 



B. FORMULAE PRO TRANStORRtATlb^E REAL! SECtJNDA SUB FORMA REALI. 



I— 'H^' , i.)i 



('^..»(i,.))( t?;;(i^,..)|; (■\™(i^..j) 

""Im"' M^ - > -1 . r. sin' Bm u- \ /, . . "n" "m rf ' \ /, . ( wn" am b \ 

■ ..^.('*,,.(^,.))|%..„(ff,.)) (\,.(t^4 

Digitized b, Google 



/ 



(1 — vnamu^amf •^')|| 1 — tba^iuAaml — , k'l I...I t— tMi»"<<'^*ii'( • ^'l I 

('-H-T1^■-,("■.'■))(•4.■.St'>T^|^|■)).■•,^('+"•r:■'^r(T^•'■)) 



'..-.1 in) , 



, Y>.-,v»!""(Tr'^) . 



' .i«-,„fJ5l!ii;.k-)+c«,.™(!<3^'.l-).i.-.n,« 

(-«.™..„r!!l:i)5:.i.U„,. 



kM, 


'00* 


-fe 


.^)=. 


B-l 


A * 


"■{w, 


-•)= 



-A_^«.(-^.v) = ^«.u + t2- 



I— i , k l + cOi iml — i ,k Isin'u 



,, Google 



— - « — 

« — t 
In fbrmuUs pro trsnsfbnnatione prima ponittta est ( — l) ' M loco M. Formulas 
pro tranitforniatioDe aecuuda dapUciter exEilwre plapoit, et sub ftirma imagioaria et suIj 

fonna reali, in (jDibus praeterea loco k sin am , k sin coam —^ — , cet. ubiqae 

MTtptum est f—i-rrs^'t " ; — . .. - i cet. td quod, sicuti rednclio in 

tio ini rin conn -i -^-^ — 

I'onnam realem, ope forraQlarnm ^' 19 Tacile ijnutMtctuni est. Ubi signam ambiguum + 
posilum est, alteram + eligendum est, abi — % - Mt oumerus par, alteram — , ubi — ^ 
est numenis impar; de signo'^ cootrarium valet. In stiminlis praefixo £ designalis, nu- 
mero q valores 1 , 2 , S , .... - \ ~- trlbnendi sant. 

B Jbrmults pro trandbnaatioBe prima proposilis paiet, quotios u fiat succes- 
tive: 

o JL — — *^ . 

fore am (^.x): 

0. _. „. _. ,.. 

node obtinetnns : 

Contra Tero viilema^ in Iransfbrmatioue secunda, quoties u fiat: o, K, 2K, sK, ... 
sire am b: 0, -j-, ft, —-, . . ., 'fieri am (-j^. >■,) et ipsam=0, -j-y ^> -r- 1 • ■» 
nude hoc casu: 



Ceteram e formulis pro Modulis X, V, X, X' exhibtlis elucet, crescente n, Moda- 
los X, X^ rapide ad nihtlum courergere, ideoque sitnul Modules X', X, proxime accedere ad 
uaitatem. Itaque transformatioDem Modali primnm dicere convenit maiorit in minorem, 
secundam nUnorit in mtUorem, 



db, Google 



6T 

DB TRANSFORUATIOHIBDS COHFLEMENTARIIS 

S. QUOMODO E TRANSFORUATIONE MODULI IN HOODLUM ALIA 

DERIVATUR COMFLEMENTI IN COHFLEMENTUM. 

25. 
In fonnula supra inTenla; 

'••"('H'' '•)-V-7(r-'« •»"'!■"(" + ••)'«■"(" + '")•■••'« •"("+•<■-')•) 
ponamus usaia, «=siw% in at Mt <f=inKT4-ni'iK', o'sm'K' — miK. lam vero 
est (}. 19) 

ll.»(iu'. X) = iii«.m(«', V). 

unde formulam allegatam in aequentom abire ridemus: 
Porro iaTeoimiu formulae; 



»— ' fNBcMmtvNniMui4a...*iiicoBin (n— l)«t* 
|»i •I. taiin^m <•>... ilii an (i— 1] •{= 



(jnae e fomudis: 

Aia(ta, k) 



fio cokin (u, k) 

lode etiam le^itar: 



-i_WIC^«(«,k') 



linamOu, k} ig m (<• . b'} & >m (a . k*) iinun(u, k; 

I aeqaeoteft abennt ; 

K' = k'»{«ii«»ni»«.'iuico«ni 4 ».'.... lin CMin (n — I) •>■]* (Hod k') 

M = — ^-: r-r-J r"7 r— tt — ., ,.w ^ I"*^ ^ 1 



h' lin an %«' ..'. (iB an (n — 1} wj 

H 

Digitized by Google 



58 

His formulis oomparatis cum illisj quae traosformationi Moduli k in Modnlum X ia- 
nerriunt: 

Hnaml-^, X J = ••/ --— nnain n mq mm (u+4«*) mo •« (u+8 •») Mn an (u+4 (n— 1)«) 

X = k"(«DM»int wrincoimi* .... lin coini{n— 1) mJ* 

°~* f lin eoain 2 w lin coam 4 u ,, , . lin coam (n — 1) n i*- 
"~'~*^ ' \ >ia im t •> NB am 4 N ■ia«ai(n — 1}m /' 

eiucet Tlicorema, tjuod tnaximi momeoti censeri debet in Theorta TransformatiouLii : 

j^Qudecunque de Tranaformatione Moduli k in Modidum X proponi possint 

„ formulae, eaedam valere, mutato k in )l\ X tn X', tt in tt =s -:- ^ M ui 
o — 1 

»(-l) ' M." 
TraDsformationem autem Complementi in Complementam, dicto modo e transfomiatione 
propouta ' derivatain , dicemus TfaatformationMm CampUmenttineaif. 

Facile patet, traDaformadonuai realium Moduli k tranaformationes reales Moduli V 
complementarias esse , ita tauten ut primae Moduli k secuuda Moduli k', secondae Moduli 
k prima Moduli k' complementaria sit. Ubi enim in tbeoremate modo proposito ponitor 
w=:-^ — , 1*=:-=^ — , quod transformationibns Moduli k primae et secandae respondet, 

htm'=-^=:— — , «'=:-?-^ , quod transformaliooibus Moduli k' respondel reap. 

Mcnudae et primae. Nee non, cum crcsceote Modulo decrescat GunpleueDtum ac vice 
versi, trans&rmatio Moduli in Modulum ubi est maioris in minorem, traosformatio Gom- 
plemeuti in Complementnm sen translbnnatio complementaria minoris in maiorem esse de- 
bet, ac rice versS. Videmus igitor, mutato k in k', abire X in X^, X, ia. X'. Nee nm 
Mnltiplicalor M, transfarmationi primae eiustjue complementariae communis*), abibit 



*) Hoc pacralitcr tantiim ncglecto Hgno Taletj Tidimni ciiim, qnod in alkra tr. wat M, in eomplanenUri* 

cue ( — 1) * M; It noitris catibu* to, qiiod in Imuformationa prima loco H poMfooi Mt (— I) ' M 
(v. lupra), ligni ambiguiUf lolliliiT', ita ut traniformatioiiibua realibiu complanenlariit' oamino idtm lilUn]- 
ti^tcatoT M. 



,, Google 



TRANSFORM g^ SUPPLEMENTARIAE. c5 ««) 



"Inda cum supplkmentabia. 



■ ■ I ■--.■ 



H t 



Digitized by 



Google 



68 

Hia formulis oomporatu cum iUis, quae traosfonnatiom Moduli k in Moduliua X in- 
Mrriont: 

«D.iii(^. \) = y -^ihiaio»«ii«n(u+4«.)iiDmci(u+8»).....iiiam(u+*Cii-l)-;» 
A. = k^funcoamf Muncaainlw .... nncoain(a— 1} »»J* 

£^4| *iD coitn 2 01 (ID coam 4 u ... . tin coam (n — 1) oi 1*' 
( *■■* ■■» S u ria am 4 w . . . . uo am (n — 1) w / ' 

elucet Tli(>orema, quod maximi moinenti censeri debet inTbeoria Transformaliouiii : 

,fQudecunqu€ de Tranaformatione Modali k in Modulum X proponi poM 
„ formulae t taadam valerg, mutato k tn L', X in X', w t/i w'= -p, M 

\ 



n — 1 



Transformationem autem ComplemeDti in Complementum, dicto modo e tratufonnatioii 
propouta ' deriTatain , dicemos Tf'aiuformatioatm Comptementariaitf. 

Facile patet, traDsformatioDam realium Moduli k transformatioDes reales Moduli J 
compIemeDtarias esse, ita tatnen at prlmae Moduli k secnoda Moduli k\ secundae Modu 
k pfima Moduli k' complemeutaria sit. Vbi eoim in tbeoremate modo proposito ponitD 
t,-=— — , u=i-^ — , quod transformationibas Moduli k primae et secundae responde 

fit w'=:-^=:-=^ — , m' = -^^- , quod transfbrmatioaibos Moduli k' reapondet respl 

Mcundae et primae. Nee uon, cum crescente Modulo decrescat Gom^dsBientam ac vicA 
yersh, trensfbrmatio Moduli in Modulum ubi est maioris in minorem, transformatio Gnu-I 
plementi in Complementum seu transformatio complementaria minoris in maiorem esse de-\ 
bet, ac vice versfi. Yidemns igitor, mutato k in k', abire X iu X), X, in X'. Nee ikhi 
Multiplicalor M, trausftfrmationi primae eiuM|ue complementariae commaiiis*), abibit 

*) H«c ga«raGt«r tanhnn Mglecto n«uo Taletj vUinua enim, quoi in altera tr. aril H, id eoinpl«Mcnlat» 

cue (— 1) » M; at noftrii caiibn* to, qiiod in tmufonnaliona prima loco H poiifiun ail (— 1 j~* ' H 
(v. tupra], tigiii ambiguhw (Dllitur', ila ut trauibrnuliambiu realibiu complcmenUriu- oamino idem ril MpJ> 
tipBcator M, 

Digitized by GoO^^jle 



TRANSFOm, g^ SUPPLEMENTARIAE. (5 aso 






NDA CUM SUPPLEMENTARIA. 



■(-' ■^,; ,- .1 



H I 



, Google 



,, Google 



in M,, qui ad tnnsfonnalioiieni seciuidain einsque complemeDiaruie pertioet, ac rice renfi 
M, idM. Hioce formulu snpra inrentis: 



seqannttir hae: 



unde proreuiaDt fonnulBe stutuni momenti in bac theoria: 



Hae fbrmalae geouiDiitn tTamfonnationis propositae cbaracterem coiutituunt, unde palet, 
bono iuie singulas nos transformatioDes ad singnlos nnmerOH n retulisse. Adnotalio , quo- 
ties Q sit Dumenu compositns = n'n"} e singulis radicibus realibus AequatioQum Modula- 
riDm, seu e singulis Modnlis realiLus^ ia quos datum Modnlnm k per aubstitntionem a" 
ordiDLs transfbrmare liceat, proTenire aequadooes buiusmodi: 



quae siugulia discerptiooibos noia^ n in duos factores respondent. E quanun igitur nu- 
mero, quoties n est nomems qaadratns, erit etiam haec: 



quae docet, casn quo n est quadratum, e nnmero substitatitmum esse unam, quae mul- 
tiplicatioDeni suppeditet. 



Digitized by GoO^^le 



DE TRANSFORMATIONIBUS SUPPLEMENTARIIS AD 
MnLTIFLICATIOSEM. 

26. 

Berocemiu formulas: 

A' _ K' a; l^ K' 

A^^It" A, "oK" 

f|uil>iu haoc in modom scriptis: 



elucet, eodeni modo pendtrt ModuUtm X a Modulo k atque Modulam k a Modulo X , titv 
eodem modo pendere Modulum k a Modulo X atque Modulum X^ a Modulo k. Itaqiie pa i 
transformatioQem priraam s. maioris in miuorem, qua k io X, transrormabilnr X, in k; ' 
per transfonnationetn secundam sen minoris in maiorem, qua k io X,, transfonnahilur | 
X in k. Itaque pott tra/ufonnationmn primam adhibita wcttnda aeu poat teciuidam adAihita 
prima, Modulut k m «« redit, am* trofuformationui prima et aecunda auccetaive adhibitat, 
utro ordine placet, Muitiplicationem praAent. 

Vocemns M' Maltiplicatorptn , qui eotkm modo a X pendet atque M, a k ; M^ Mnt- 
tiplicatorem qui eodem modo a X, pendet al(|ue M a k ; ita ut olttineaotur aequatiooes : 

*7 



Aj 



quamm alien transformalioni Moduli k in Modulum X |>er transfbrmalionem primam, al- 
tera transformationi Moduli X in Modulum k per Iransformalionem Mcandam respondft. 
Kx his aequationilins proveoit: 

A*. dx / u \ 

Vd— Oa-k'**) MMVa— .•){l-k''') VMM'/ 

Digitized by Google 



At ex aetjoalioiio A, sr: -j^ inalftado k in X, quo /acto K to A, X, ia k, A, io K » M, in M' 
aliit, obtioetiir K=-r-7-, qua aeqaatioue contparata cam ilia A= — ^, proreiiit 



Eodem modo ex aefjaatione A = -~t7- mataodokin X,, <|uoiaclo K iu A,, Xin k, A in K, 
M, in M^ ahit , provenit K = — =^ , qua aeqcatioue comparata cum hac A,= -rj- , proveiiit 
1^^=:n; nnde ridemos, ddobus illis casilias ponit Maas transfonhationes mcceftsire ad- 
hil)itas multiplicari Argameottim per narnemm ». * 

Ufii past IraosfonnatioQeia Moilirii k in Modulam X Modolas X rarms in Modulum k 
transformalur, ^ nt Mnlliplicatio prorenial, Iianc transformaliotiem illiu» aupplementariam 
ad muUipliceaiontm MQ &imp)iciter aapplemsntariam nnncupabinnis.' 

AppoDamus cam exempli causa tarn ia.usuoi se(|uealium formulas pro transforma- 
\iaub primae tuppUmeataria, 9. Modali X in Modulum k , <|u«>.erit ipeiosX secunda, eaH 
tameu sab altera tanlum forma imaginaria, cam reductio ad realem in promlu sit. Quat 
confestim olrtiBeflMH fimnulas, nbi in iiit, quae supra de trattsfornyitione Moduli k seconda 
propositae sunt, (t. tab. 11. A. $. 24) loco k poiiimus X, k loco X, -r^ loco a, M' = — - ^ 
loGoM, node -jg^ = DU loco -^. In his formalin , sed iu his tantam, Modulus X vale- 
bit, nisi diserte adiectos sitModnlnsk; ceterom brevitatis causa positumj=sin ami— , M; 
nDmero q , ut supra , tribuendi sunt valores : 1 , S , 8 , ■ > ■ , — j — ■ — 



dbyGoo^^jle 



rORHULAE rRO TRANSFORHATIONE MODULI X IN MODIILUM k, 
SEV FRIUAE StirFLEHENTARIA. 



27. 



. ,„ / . «iA' . tiX (n-lJiA'i" 

k IB X <iin caim ^— tin coam . ■ . . am eoaiii i 

( n n n / 

I . tiA' , 4iA' . <ii— l]iA' 1 * 



tiA' . 4iA' 



. (n-l)iA' 



A M (ma, k} = 



/X" . u . /u . *iA'v . /u 8iA'\ /u 4Cd— I)iA'v 

, /i_ iz — \/i n — ,\.../i u \ 

y ...'—^^/^ .n. .»-^; \ «■.'■« — ; — ; 

V^ t'X' « /ii 4iA'i /" ."A'l /« «(»_l)iA'i 

n?r"-""-H-""»(-M+-r)"""(M+— J-"""{m-+ — J — ) 

Digitized b, Google 



/ 



, . , , , /". \ MB co»m /I on cokin f I mi coam I 

1 — »m>in(i»ii. I) / 1 — y \ n /\ a / \ n 7 



/ 



I MB eoam — — 1 1 tia com — — I 1 an cava ■■■-' f 



. Hs-DiA- „ ._ (I,-1).A- 



^y *T ^ 

knM knH * 



.,...„ ii—i „ 



(-ir[v/v-j7 j/T 



^ ikoM •* 



(-l)«™.m 



gl-')'A'.._i«<-lliA- 



.>* 



.„<... k,=t^A357H+i^^SS^: 



Ig Ml (n n , k) s 





.-. 


'«.^ 


..„A' ^^ 






(-«' 


nnai 


^(g<|-') 

n 


ii^»..«^ 


■Si 


iA' 




HD< 


.„2l 


..,iA ^^ 







' llL^_A' *S'^' ■ . 



Theorema anal/ticum generale, tntoiformatioDem illam primae supplemeotariam 
coucerneDs, iam initio tnensis August! a. 1827 ciim CI. Legeodre commuoicavi, cuitu 
etiam itle jn N«ta supra citata (Nora Astr. a. 1827. no. 180) meodoikevi iniicere Toluit 
Simile formularam sj^stema pro traosformatioDe altera secundae sapplementaria s. transform* 
madooe Moduli X, id Modalum k stabilin potuisset. Quae omnia at diluci<Uora fiant, ad- 
iecta tabula formulas faodamentales pro transfiDrmatioDibus prima et secunda earam com- 
plementartis et snpplemeDlariis conKpecttai expoiiere placuit. 



d by Google 



64 

Nee uou e DDmero traosformatlotiuiii imaginariaraQi una (juaeque «aam baJfet ao^ 
plenieatariam ad MultipIicDliouem. Sup|KinBiuuit , tfuod licet, bumeros m, m' §. 20 feclo- 
rem communeia non habere: sit porro m/u' — ^m:=:i, designaatiltas ^ , ^' nnmenM inte- 
gros positiros s. oegativos. lam si in forniulia noatrifi generalibiu de traDafonnatiooe pro- 
posltLs §. SO sqq. ponitur w = '" Jt ' — , ac k et X inter se commatautar, formulas ob- 
lines, (juae ad suppleoientariam lraiuformatioiu» pertiueiit. Fotulo m= t , m'=;0, fit 
^=0, ^'=1^ oude ^ ■ ^ - ' — = -^|j-=: -— -, quod prinne aupplemeotariam prae- 
bet, Qti vidimus. 



FORMULAE ANALYTICAE GENEBALES PRO MPLTIPLICATIOKE 
FUKCTIONUM ELLIPTICARUM. 

28. 

E binis Trausformatiooibus Sapplementariis compoaere licet ipsas pro MultipU- 
cadone formulas, s. formulas, qnilius fonctiooes ellipticae Argnmeuli'mu per fanctioDei) 
ellipticas Argumeuti u exprimontur. Quod nt exempio demonstretor , Moltiplicatio- 
nem e traDsformatione prima eiusqae supplementaria componaroas. Qnem in finem re- 
Tocetur formola: 

quam etiam hunc in modum rcpraesenlare licet; 

<-,r^..„(z.,.)=/:^n....(.+-!=i^), 

desiguante m nnmeros 0, +1, +«,.-., + "-y" " ^" **"* foroiula loco n pooamus 
u_j ^ onde — abtt m -^H — ='5r-t .-' prodit 

Digitized b,Goo';5le 



$6 



isti coDTeuiant valores, facto proilDCto olttinemus: 

ut)i in altero producto nninero m', id allero utriqne m, m' ralores 0, +t, ±2, . ., 
+ ~-~ triLuendi sunt. 

At TidimuH §° praecedente, esse: 

<|uani ita quocfue repraeseatare licet fomnlam: 

unde iatn: 

1) ■i..».. = (-l)^'y^t—'n-i«-("+ '""+'■»•'''' j. 
Eodem moAo inreninit': ' ' 



// 1 \»»-' _ . / , tmK+tn/iK' \ 

s) ii™.« =y (yj ni'»("+ — ^ )■ 

Quae facile etiam in banc fomiam reffiguator formulae: 

(,_ ==L^'li: \ 

V ^,^ fn.K + I.„'iK- ; 



..„.n 



It— k'«ii'»ni- — '--■■■»'— bI 

^mK-t-«m'iK,' 



TT 



I, Google 





ea 


TT 


...k.»-.«. '»■'+'■»•"'■.....„. 


6) A«mnu = a«inn I 1 - 


1 k-™..™ '"■■'+.«-iK' ,.,.^^ 


Quilms addere placet aequeutes: 




't) Oiiu'ET »"K+»m'iK' 


(-l)"^" 




^^pi 




un-t 


., n»-.» «"■'+'"■'■'■ 


= (^) ■ 


9, n'^-.. '"■'+•■"■'■'■ 


DM-l 



]u sex formulis postremis uumero m ralores tautmn positiri 0, 1, 1, S, •-., °~ 
cODTeniiiDt , ita tamen ut quoties m = et ipsi m' valores tantnin positiri 1 , 2 , $ , . . . , 
~- tribuantar. Et has et alias pro MoltipIicatiODe formwas iam pricu CI. ^bel mutatis 
mutandis proposnit, uode nobis breriores esse licuit. 

DE AEpUATIONUM MODULARIUM AFFECTIBUS. 

29. 

Quia eodem mode X a k atque k a X, nee non \' a k', k' a X' pendet; patet, ubi 

secundum eandem legem Modolorum scalas coudas, qui in se iovicero transfbnnari pos- 

snnt, alteram Modulum k, alteram G)mplementum etns k' continentem, in iia. terminos 

fore eodran ordine se excipientes; 

K, k. \, ... 

.... X', I', \'. 

Id quod in transfomtatioDibus secundi et tertii ordinis iam prius a CI. Legendre observa- 
tom et fecto calculo confirmatum est. Similia cum de omnibus Modalis transformatis et 
imaginariis raleant, patet, designaote \ Modulum transfbrmatam quemlil>et, aequatio- 
nes algdiraicas inter k et X, seu inter u = V^k et v =: y>., quas Jtqutaionea Modulareu 
nuQcapaTimns , immutatas manere, 



, Google 



67 

1) uiii L et X inter ae commutehtnr, 
Z) ubi It! loco k, X'.loco X ponatur. 

Alterum iara supra ia aequationibus Modulariba$ , quae ad traosformatioiies tei'tiiet (juioti 
ordinui pertinent: ■ 

t) u» — T* + t a r (I — u' v") = 

2) tf» _ y» + 5 u» v' (u' — .'J + 4 u V {1 — «• »«) = 

n}>8ervaTimus ; etusque obserratioQui ojw expruwiioues algeLiaicas pro trausformalioiiibus 
supplemeotariis exhiLuimns. Ut alterum quocjne liia exemplis probetur, aequatioues Ulas 
in alias transformemus inter kk = u* et XX = v*, quod non slue calculo prolixo fit. puo 
suMucta obtinentur aequationes: 

1> (k' — X')* *= ISS k' J." (I _ k") (1 — *.')<« — t*— V +» It' k') 
S) (k* — X*)* = SUk'X' £1 — k^)a— X'){L— L'k'+L"k«— L-'k"!. 

itiquidem in secunda ponltur: 

L = Its ~ IM X" + 78 X* — 7 X» 



^' s= 


IM + tM X» - 


-«SX«- 


78 X* 


L'' = 


78 + tiS X* - 


~tS*K*~^ 


l«X' 


1"= 


7- T8X"- 


_ 19f X» — 


USX*. 



Quae^ io formam mnlto conimodiorem abeont aeqnatiooes , intrDducfeU qnantitatibntf 
q ==: 1 s k% 1 = 1 — 2 X*. Quo facto aequationes propoaitae VTadnnt : 

1) {q-J)«= 64(l_qq)a-II){8+<|l} 

8D (q-l)- » «56Cl-qq)Cl-ll){«ql{9-qI)* + 9{45-qI)(q-J/j 

= f56(l_qq)Cl-H)(405(qq + Il)+486qI_»ql(qq+il)— «Dqqli + I8q'I'|. 

Quae aequationes, ubik'Iocok, x'loco X ponilur, nude q in — q, I in — I abit, immu- 
tatae maDent; id quod deraonstrandam erat. 

CoroUarium. (^hiia Aequationes Modulares inter q=l— ak'etl=i — ax*' 
propositas formam satin commodam iuduere vidimus, intere^e potest, et i^sas fiinctiouev 
K, K' secundum quantitatem q evolTcre. Quod non ineleganter fit per series: 
/ q' 5.5.q* 5.5.9.9.q* \ 

' /q a.S.q' S.a.7.7.,- I.S.7.7.U.U.,' 1 

~ "ij" ^ f "'" «.♦.« "*" 8.4.6.8.10 "*" J. 4.6. 8. 10. 12. 14 ^■••f 

1 t 



db, Google 



K _ J |1 + ^-^ + _j__ + _______ + . . . .^ 

_«_ / q S.S.q' S.5.7.7.q* g.8.7.7.11 . ll.q' \ 

■•" JJ l.t "*" «.*.6 ■*" «. 4.6. 8. 10 "•" X.4.6.8.10.12.K "*" } 

uLi Lrevjiatis caasa poaltam est 






30. 
FaciJiori uegolio pro traQsforniatione tertii oitliDiS ae()uationflm: 

ita transformare licet, at comlatio ilia ioter Modnlos et Complementa eluceat. Obline' 
raus eniui ex ilia : 

(i_B»)(i + Y') = 1 — u»T«+ Suva ^u'T^ = a— •■**■)(* + <■»)*. 

(1 + »•) (i _ ,•) = l_U«T»-tu»tl-«'v^«(l-ll'T')(l_By)'. 

(jMil/us ia «e dactis aequalionibiu prodit: 

Cl-B'){I-*')-(l-u'v')«. 





1 — ■■* = k' k', * u'- 




.1 — T*= X'A'=/« 


exti'actis 


radioibus jil: 




u'"»'' = 1 — u't". 



(|Ui)in ipsam elegantissimam fbrmulani lam CI. Legemlre exhilmil. Neqne ineleganter ilia 
per formulas uoslras analj'ticas pn>l>atur. Qnippe e (|uil>iu casu osiS fluit: 



Jl ^ k' lin* coam 4 w ( X' ^ - 



db, Google 



node: 

^^-■zn^. ""."■ .',::::...-■. ' '■ ' 

unde emu »it : 

k' k' + k k M^ am 4 u = 1 — k k (ia* mi li ='&*»mim. 
olitiaeitfDs, qaod demooatnmdiuii'erat: 

■ v^kr+ /Vat-. I. 

Ut exempio aecuudo simpliciorem inter a, r, a', r «r«am aequMioiiem, ita ago. 
Aequalionem propositam: 

u»_v» + J «'»'£■•' -pT^**.* V (I -Til*.') «0 
exhiheo, nt aequitur: 

(tt» — 0(B» + 6a'T' + T*) + 4i.T(l — u't'jsbO, 

(juam facile patet indnere jtosse fbrioas duas so^neiUaK; 

(!.• _ O (» - »)* = - 4 U T + U«) {I - T*) . 

(|Dil)iu iu se dnctis aequatioiubus prodit: 

(u' — »•;• = 16u'l*(l — »»)<t — »'>=««•-•>•'» »*. 

Quia &imul, ut supra probatam est, u* iu n"^ t* in v" abit,' olftiuNBUs etiam: 

(V> _ a-y = 16 u" t" (1 _ u'») (1 — »'•) = 16 n" »^ u» »'. 

Uinc facta divisione et exiractis radicibns, ' «iruitor: 

sive ' . ' ' ' ' ■ ' .■ 

y'kr(v>_>o.)^«.yvr{v7.'-yTj')._ ■ i_ 



,y Google 



31. 

Alia adhuc aequaUonnm Modularium 

tt» — T« + t B » (1 — n" T*) *= 

«• _ V« + S tt* T* (U' — T^ + 4 B . (1 — B« %*) = 

insignis proprietas vel ipso iotuita.inrefiitpr, viz. immutatas eaa^maii^re, siquidem loco 
«, V ponatur— , — . QuoA ut geueraliter de ae(jii«tiq|kil>n»M(>4Hl4rilHia dcmoostretur, 
adnotentuT aequeutia , quae ad alias etiam qnaestioD^^-mqi e^se possunt. 

Ubi ponitur y=i.kx». obUnetnr.:, 

Jy kdi , 



unde cum simul x =i , y = : 



Hinc posito 






nude X = sin aB|(u, k), y = siQamlku, -r-J. Hinc provenit aeqaalio: 

nosm Iku. —l = fc«(o~*in'((i, t), tinde'etiaiA ' 

«..,n.(kB. -i.)-iMn(u. k) 

& tm (kit. -i-\ s CM *m (u. k) 

tf am (ku, —j = ^ cMCMm (u, k) 

Digitized by Google 



«ac«»m (ku, -j-| = — : ^r- 

y k / im coan (u , ■) 

coscoam Ik a, -r~l ^ ■ ^' f g am (u > 1) 

' \.co«.(k.:±)^- -'■ ' 

\ ^ / ,to» cwiin j(u, k) , 

Forro peaendo i u loco a, (jttia Gomplemeiitum Moduli -r- ^' ~t~> obtiaemus adiumeato 
tbnuDlaniin §'19: 

lil. >m ^k II , Ji-j '= CO, co.m (u , V) 
CM«in Ik*,'— — -J = tlneonD (n, k') 

tg am Ikn, -r— I == uig eoam (u, V) 

ctuCMin |ka, -^-} ^ (in UQ (n , k'} 

^ couD (ku, —J = totgan (u, k'j. 

lam iuvestigemus, tiuaenam evadant K, K' »eu arg. am {—, k), arg. am ^-^, k'j, m- 
<|uidetn loco k ponitur — ; ^seu iareatigenuis valorem expressiouum arg. am l-r-, ~l~)> 
arg. am 1-^, ~k~)' ^^^^ expresaiones e uotatioDe a CI. Legendreadhibitafwent F*l-pl 
F ("-pi • Fit antem primum : 



'^' ■ '^"f/i'-'k^-^) °//rfFl) "/TFte 



Di Google 



Posiloj = kx, fit 



Ut alternm eruatnr intej 



le - P *^ ponamtu y z=/l— k'k'x% 



^> = — — - ^^' - . lam quia x iwie a. o Dsqae ad 1 omcit, »i- 

/('-'•)(&-') /(■-)(■-"■■■) 

mnl atqne y inde a 1 asqne k decrescit, obtinemna: 

-//R)('-^) " -//('-'■)(&-') <//(--X'--) 

sive nl>i k in -r- mutatar, abit K in k iK -4- iK'S. 
Foiiito aecundo loco y- = cos(J), fit: 

sea «bi k in -r- mutator, abit K' in k K'. 

Geaeraliter igitnr mutalo k in -J- abit m K -*- i m' K' in k[^lK-^-(m-^-nl')iKj, 
„.d. «a CO... j^t-i;^, l| ta .in cao, jM^ll^l^!^, ±j , id ^aod a for- 

mola sincoam [k u, •y)= rincoimCu. k) ^*" 

I tp(i»K+( m+..')iK-) I I 
uA coam { * T — ^ — ■ "T~i..™ ~ 



Digitized b, Google 



'75 

lam igitar, posito ■ = <«, ^^^ — ■ = «»,, expressio 

X = k' jiin coam I u lio coitn 4(0 tm cAarh « w .': . . ilA coam'til — tj (uj'^>*''" 

mutato k in -r* io banc abit: , i ., 



k" jiin coim t ai^ lin co*m 4 m^ iId coani 6 b>^ . . . *in co*in (n — 1) oil (^ 

ul)i I* et iusa est radix aBquatiotm Modularis, seu e Motfdtoruin uutiiero, iu 4juos pvr 
traDaformatioatsm u^ ordinis Modolum 'propoailum- k ti<aDt<|fbrnlap^Jicrft.': NaoM^Q « val»- 
ritius, (J u6s w iniluere potest, ut prod^at Modulus traiiKfqrmatiis, ertt etiam iBe t» . tJnde 
iani causa patet, cur geueraliter Aie^uetioDes Modutaref ui^UAto . k in.-r-, X in — immu- 
tatae maiiere debeant- 

Adnolabo adhuc, ulu secuudum eaadem transformationui. legem qaampiam simut 
traDsformatur k in k*"', X in X*"', . tjiioties't.*"* 16co fc pooatur", eUdinilD X"** aLire; 
uiide aequatlones Modulares ubi »imul k in k'™', X in X^"' matatur, iqjj^ufattif-.nianffv.dje- 
lent. Ila ex. g. aeqnalk) ifkX ■4- /"k' X' =: 1 , quae est ipro' tr^psforiiiMiqne ^rtfi ,ordi- 

nis immutata manere debet, ubilocok, X resp. ponitor -t-^t,- , ■ "* . , uade loco k', X' 

'"'■* , , :T^ .1 .i s 

|io&etur ., J , , id tjund per transrormationem secundi ordiaia fieri notum est. 

Quippe aequatio iTk X -|- vk'X'=: \ in hone abit": •' ' 



/i 



Qua in ae i|)sa ducta prodit : !■-...;;. 

4/"!^^= «(l + k'A') — 8kX. »iVe t>. = I+k'i' — l/'tF; 
(|uae extractis radicibus in propositani redit: 

AT = 1 - /k-r^ «;, /kT + /kT"= 1 . '. 

Quod exemplum iam a CI. Legendre propa'situm est. Geik^raliter autem de compositione 
transformationum probari potest, transfbrmationibiH duabuA aut pluribus successive adtu-^ 
bitb, ad eandem perveniri , (juocanque illae adhibeautur ordiiie- ' . . 

K 

Digitized by Google 



74 

32. 

At iuter afiieclus Aequalionum Modulariam id maxime n)«nioral>xle ac siogulare milii 
videor aiiiniadvertere , quod eidem ontnet jiequationi Differentiali Tertii Ordinia tatufaciaat. 
Cuius tamen ioTesligatio paullo lougius re|)etenda erit. 

Satis DOtuDi est *) , poaito a K -i- l> K' = Q , fore: 

dwiguaatiLus a, b Constautes quaslibet. Ilacliainposito a'K-i-b'K'=Q', desiguantiljus 
a', b' alias Constaules quaslibet, erit 



, {q J!21 _ « j!12.> ^ „_ .1., Jn J«: _ n- Jl«_l 



Qailius combinatij aequatiouibus, obtioetur: 
aode- iulegratioHe fiicla: 

Conslans C a CL Legendre e casu speciali inventa est = — -^t unde ianj 

— i-,(.b--.-k) 



•<3' 



V 



Kl-l") 

— L,(.b--.'k)jk 



Q Kl-k-jQQ 

Similiter designanttt X aliom Modalnm quemlibet , erit posito a A -4- |8 A' = L , 
«'Ah-i8'a'= L', 

-4— (-«'-''«''* 



L ~ X{1— X*)LL 

Sit \ Modulus in quem k per transformationem primam n*^ onliuiii trauHfoniiatur ; sit 
porroQ = K, 0' = K', L = A, L' = A'i erit; 

L' A' _ nK' nQ' 

~T~ ^ A ~ K ™ Q • 

•) Cf. Ugmdn TniU dc* F. E. Tow. I. Cap. XIII. 

Digitized b,Goo';5le 



node 

Ddk _ dx 

k(l — fc')KK ~ A,(l — V,AA ■ 

Inrenimas autem pro ea transformatioDe A :=: — jrp , uude i 





MM = — 


xci— x^Jk 
• k(i-k')dn ' 






Ak 


ndX, 




k{l_k*)KK 


\(1— X.TA^A, 


onde el hie: 








MM^ ». V>-\')" . 



Gcnerallter aatero, qaicanque sit Modalos X, sive realis slve imagiiiarius, in quern per 
transfonnationein u*' onlinis transforDiari potest Modular propositus It , ralehit aeqaatio : 

MM- * Wi-jOii. 

"" = T- x(i-x-)dk - 
Quod ot probetnr , adnotabo geoeraliter obtioeri aequationes formae : 

desigoautiLas a, a', a, m Dumeros impares^ b, b', j8, ff numeros pares, utrosqne positivos 
rel negatiros eiiumodi , nt sit a a' + L b' = 1 , »»' -i- &ff ^ i *). Hinc posito ; 
, • K + ■ b K' «= Q , •' K' -)- i b' K s= Q* 

«A + i/lA' = L. «'A' + ifl'A = L', 

olilinemus, quia aa' + bb' = 1, ««'+|9|3'=l: 

Q' — nifdk L' — irdX 

Q ~ JkCl— k-JQQ ■ "TT " JX{I— X'JLL ' 



*) Accuratior numeramm ■, ■', h, h' eel. eel. delarminatio pro «lnguli« ciuidem ordinis moirormttiooibui pa- 
vibui labonra diflicullslibni yidetur. Immo baec detcrioiiuilio, niii cgregic faliimur, niaxinic a Itnitrbui pen- 
del, inter <|u«* Modulu* k Tenalur, ita ut pro limilibut divanii plane a&a evadat. Id ^nod quam inlricaUm 
reildat quaestiooeni, eipertaa cognoicet. AnI* oninb BBtein accurattai in Mturam Modulorum imagiaarivrum 
iiii{uireDdum ene otdetur. <inae adkuc Iota iacet qtuutio. 

Digitized by Google 



» 






Aduotabo adhaC) aeqaationem inrentam ita quoqae exhil>eri posse: 



HH = 



X'(l— X')d(k') _ 1 .A.''a^A'')J(kT 



k'ci-k')dM n : k-(i_k")d(>.") ■ 

uude videtuus, expressionem MM Aon mutari^'ubi loco k, X Compleiueuta ponuiilur k', >.', 
sive quod supra demoDStraTimas, transfiarinatioiiiliiu complementariis , sigoi ratiooe non 
haliila, eundem esse multiplicatorem M. Forro mutaQdo k in X, Xiok, quo facto trans- 
formatio iu sapplementariam abit, mutaturMMin ^ 

n ' \C1 — V>dk "" ddHM ' oM ' 

quod ef ipsuni.pMpra probatum est 

33- : ., 

Posito Q ^ aK H- 1)K.', L = «A + i^A't Go«i»tantes a, b, «, J3 ita semper deter- 
minare licet, utsitL=-^, sireQssML. Forro habentur aequationes: 

I) (fc-k')-^ + a-8k')-i^_kQ = 

quas eliam huoc iu modum repraeseatare.lic^t:. , - ■ . . 

(k-k')dQ ■ ■ ,• . : .- .1 . . 





dk 




dk 


<I - 


dX 



Substituamus in a/equAtioiie; 



»-'')-if + ''-""'.4r-'."'- 



,, Google 



Q = ML, pradit: 



qua per M mnltiplicata, obtinemus: 





5) LMfd-k-j^+a-Jk') 


dM 

dt'- 


-kMJ + d - 


dk 
" dk 




At 


e $° antecedente fit; 












D(k— k')dX ' 


uude 


{l-k')M"dL 
dk 


= Jt: 


-X')dL 


Po 


rro ex aequatione 4) fit; 












'{^^^^} 


= XLdX. unde 








(k— k')M'dL 


Ji: 


-X>)dL 
d>. 


XLdX 





ndk ■" ndk 

Hibc aequado S) divisa per L in banc abit: " ' 

«) « {c-'") 4^ + <■-»•> -^ - '«} + 4lf = »■ 

Ubi io hac aetjaatione valor ipsias M ex aetjuatione M' = -■ ~ .,. . - substituitur, ol>- 
tinetur aequatiio dif&reotialis inter ipsos Moduku k, X, qaatu facile patet ad ordinem ter- 
ttom asceodere. Facto caJcuIo paollo molesto iaTeoitar: 

Sd'X' tiK dU . dA.' //1+k'k' /1+X'\' d*.') 

^ -dF--"-dr-7rt7FUfc=^)'"tnn?)--dF; = ''- 

In hac aequatione dk ut differentiale coD^tans coosideratum est. Qaam ubi iu aUam tmu- 
fbriaare placet, in qua di£Ferentia]e nnllam coostana positum est, pon^ndam erit: 

d'X d>X dXd'k 

IF ™ dk' " dk' 

dU d*X fld'Xd'k dXd'k , SdXd'k' 



onde: 



SdX'd'k' . JdX'd'k 



,y Google 



78 

Hitic oequatio 7) maltiplicata per <Ik' in sequeutem abit, in qna (Ufiferattiale nuUam 
con.slans.posLtQm est, vel in qua ut tale, qaodcunqae placet > consiilerari potest: 

Hanc patet , elemeotis k et X inter se commatatiit , immntatam mauere ae<]uatioDem , id 
uuod supra de Aequationibus Modalaribiis probavimas. 

Operae pretium est, alia adhuc mpthodo aequalionem illam iTiffereultalem terlii 

ordiuls in-^eiitigare. Quern io fiaem introducanius in ae(|uatioDem, uude pro5ciscimur: 

d*0 dO 

(k-k-)-J- + (i-»kO-j^-i«.o 

quautitatem (k — It*) Q() z=s. Fit 

-il. = (I-SklQQ + «(l-k') Q i5; 

-i^ = -61QQ +4(I-Bk')QaQ + «(k_l,")(i^y+ «(l-k')g-^. 
Oua in ae<|aatioQe uhi pouitur; 

(t-k'l 4f- = kQ - (1 -« k1 12- , prodit 

^ = -"«« + «<'-»■)« 4f + '<'-"'(4r)" 

•= S-12.{(l_Sk-) Q + (k_k.)12.} - «kQQ. 

Qua aequatione dacia in 2s = 2{k — k*)QQ, oblinetnr: 

il£l = J(k-k')QH.|j(i_jk-)(}Q + t(k_k')Ql2.|_«k'(4-k')g'. 

sire cam sit: 

• (k-k-) Q 4f = -JT - ""■"'"''' 

J(l-Sk1 QQ + J (k-k>) Q -12. « -ll- + (l-Sk-jgQ. 

obtiiiemua : 

Digitized b, Google 



lam vero posito a'K -f-b'K' = Q', ~- ^ t, Tidimiu eftse -jr- = -pr — |^.p- = — ^» 
desigaaote m Coustaotem; iuul« s ^— — . Aequationem 9) in aliam trausfonuemus, 
ia qua dt coMtans positnni esL Erxt -~ = -J~-, ~ = —^ — ^^ ; yuibiu 
Hubistilutu ex aequatiooe 9) prodit: 

■dI^d7-'d?al7+(krri7?-=*** =*»*'« 

10) td'kd k — »a'k* + /lt^j'dk* ssOi 

ubi secundain t, quod ex aefjoatione evasit, differenlianduni est. 

Fouendo — . 1^ . r-t^ ««, Coostaotes a, 0, a, ff, quoties X est Modulus traua- * 
fifftuatus, ita determinari poteruat, ut sit t=w; nee non umili modo oLtiuemns: 

11) td'XdX — Sd'x< + ^i±^Jd>.« = o. 

in qua aeqnaliooe et ipsa secundam h := t differentiandum exit. Multiplicetur aetjuatio 
10) per dX't aeqnatio ll) per dk*: snbtractioue facia obtioetur: 

iX) tdkdA.|dxd'k — dkd'xj — sjdx'd'k* — dk'd'A»l + dk'dA*|/^^^j'ak' — (^l^l'dx*! = o. 

At haec aecjualio cam aequaliooe 6) conTeuit, iu qua scimos, differeotiale qaodcunque 
placeat tamqaam constans considerari posse, ideoque etsi iuTeula sit sappositione facta, 
dtesse difiereotiaJe constana, ralebit etiam, quodcunque aliud nt tale consideratur. 

Ecce igitur aequatiouem differeDtialem tertii ordinis, quae inuumeras faabet solo- 
tiooes atgebraicas, particulares tameo, viz. Ae<iuationes quas diximus Modulares. Atlit- 
tegrale completnm a fuDCtionibua ellipticis pendet ; quippe quod est t = i* , sire ■ * ^^ . g r- 
:= — _|_ ■ .T , quam ita etiam repraeseotare licet aequationem : 

mKA + m'K'A' + i&"KA' + m'"K'A » 0, 

designantibus m , m', m", m'" Conatantes Arbitrarias. Quam integrationem altisslmae in- 
daginis esse censemus. 



d by Google 



80 

Inquirere posaemus, an Aeqaationes Modnlares pro traasformatioDibus tertii el 
tjuiali ordiais reapse, quod debeot, aeqaatioiii Qostrae difierealiali tertii ordinia satis- 
facisut. Qnod vero cum Dimbi prolixoa calculos slbi poscere rideatur , idem de tramfor- 
matiooe secaodi ordiois, nbi X = ~ , , demonstrare snfficiat. 









A. 




kk + k'k'=c 1 






-s 


dk — k' 
dk' ~ k 




dk'" 


4 
(I+k)' 


d'k —I 

dk'- = k 


k'k' 

k» 


d';i 


_« 


d<k 3k' 




-dTT 


(i-t-Vf 


dk'. k. ■ 




t; 


ak'd'X'— dX'd'k' 16 
AV k'(l 


k'k' 4 






+I.V k-(l+k',> 






4jk<k--(l+ir) 


4[k'-(l-k')'-l} 






k'<l + k-)- 


k'(l+k')' 




Porro obtinetar; 








dkd'X— axd'k Kk* 


. 6k' 6k 


(s(i-kV+il 




dk'< ' k(l + k')' 


■• vd+iy 


k.(i_ky 



unde 
Potio iit 



4ikdA.{dkd'x— axd^k} «k*'(«(i— k7— i} 

Ik'- = k"Ci + t'j* ' 

3[dk'd'X'— dX'd'k'J — tdkdx{«lkd>X— d^d'kj «{«k'' — 1) 

d k'« ~ k'(l-|.k')4 



\k— kV "dP^ k«k'' 






( i + k' l' dk' _ ft + A-'l' dA.' _ B(l— tk-) 

U-v/ dk" U— >.'/ dx" ■" k'k" 

dk'dX' (/ 1 + k' i' dk' ^ / 1 + X' v dX' ^ _ l>(l-»k'') 
dk*' Uk— ^V dk''~lx— X',' ~ - 



Digitized by Google 



Hinc tandem fit, quod debet: 

dk'« 
*•" dk'« (^k— k»; d^ U-x'/ dk"/*^ k»(i+k')» + kvi+kO* " 

Ubi methodi expeditae in promtn esseot, si qnas aeqnatio diflferentialis solationes alge- 
braicaa habet, eas eraendi omQes: e sola aequatione differential! a noLia proposita Aeqna- 
tiooes Modalares, quae singulos transformationam ordines spectant, elicere possemm omnes. 
Qaam taroen materiem ardnam qui attigerit, praeter CI. Condonet, scio neminem, atten- 
tione Aoaljittanim digoam. 



Aequatio sapra inrenta: 

MH = — . 



34 



X(l— XX) dk 
k(l-kk) ' dX ' 



cuius ope ex Aeqaatione Modolari inrenta statim etiam quantitatem M determiaare licet, 
digna esse Tidetnr, cai adhnc panliaper immoremor. Non patet prime aspectu , quomodo 
valores quantitatis M in transfbrmationibns tertii et quioti ordinis inventi cam aequatione 
ilia coQveoiant. Quod igitnr accuratioa examinemns. 

a) In transformatione t«r<Hordinis, positon=vk, r^/ji inrenimns: 

1) u»— »« + tii*(l— u't') = 0. 

qnam ita qaoqne exhibnimns aequationem $. 16: ■ 

Porro fieri Tidimas: 

Oifferentiata aequatione l) obtinemus: 



d by Google 



an 

sive loco 3 posilo I " 1 1— — ^J: 



*) 



g^'-t l+u'v'+gu'% 



Su'+» l + o'v' — 80T' 

Ex ae(|U8tione 1) a«<juitiir: 

1 _ u* = {1 + o*) [l - ,' + *UT (1 - u'y*)} 

= I — u*Y» + u« — v'+lu»CI + u*)(l — u'v' 

= l-u«T*+2u>v(l-u».*j = (l-u'OCl+u'v'+Su'v). 

E^dem mode iDrenitur: 

nnde 

~' = ■ .* .T-"^ ■ »"e ex ieuaatione 4) : 
1— u' 1+u't'+»u>v ^ ' 

t — y' du _ a^' — u 
' 1— u* ■ Av ~ ta>+T ' 

Qua aet|natioiie dacta in 



3U - (t«' + T){tT'-l.) ' 

prodit: 

S * u(l — n') 'At S ' kCI — kk) *^V»+*"'/ 

Q. D. E. 

b) In transfomiatioae jui'/itt ordiDis, positou=r k, t^vx, iuYenimtis: 

1) u»— t« + 5ii't*Cu*— v') + 4nvCI-u«v*)= 0, 
quam his etiam modu exhibuimus aequatlonem $$. 16. 50: 

*' ud+u'v) TCl-u,') 

S) (u'— 77- = 16u»T'(l_n')fl_v'). 



Porro inTenimns : 



»_ut 5u{!+u'v) 



d by Google 



88 

Differentiata aequatione S), obrinemus: 

6uv(l— u')(! — »')(iiau— »dv) = 
„(u»_,'){l_B')(l-5T')dT + »Cu'-»')(l-y')Cl-Su')du, 

are: 

AequatioDo 1) dacta in n% t% ernitur: 

5u'— u" + T*— 6«»T« = (1 — i.«v*)(v'H-5tt* + 4u'T) 
5t*_v» + u'-Su' »•=.{!-«' »•)("' + 5»'—4u»*). 

uode aequatio 5) in banc abit : 

v(l— *') Ju h' + 5t' — iuT* 

•^ u(l_u*) ' dy = ^ + 5u' + 4u'T • 

Fonatur u-»-v*=3A, n-»-u'v=zB, v — u* = C, v — ut' = D, iuut: 
-^ = 5, sive AC = 5BD 

C 5B 

„' + S,'_4u.» = uA + 5yD 



t(I— v'l du dA + 5tD _ uAB + tAC _D_ 

^ u(l — u') ■ "57" " »C + 5uB ~ vCD + uAC ' B 



bB + tC ad _ AD 



~ vU + uA ■ BC BC 

Fit enim: 

uB + yC = tO + uA = uu + TY 

Unde etiam: 



= -^ = 5MM. 



MM : 



1 v(l — v') du _ 1 K{l — \K) _dk_ 
~ ■ u(l — u') ' dv ~ S ' k(l— ktj ■ dX 

O. D. E. 



L 2 



d by Google 



S4 



THEORIA EVOLUTIONIS FUNCTIONUM ELLIPTICARUM. 



DE EVOLUTIONE FUNCTIONUM ELLIPTICARUM IN PRODUCTA 
INFINITA. 

35. 

Proposito Modulo k reali, imitate mlnore, videmiu Modulum 

K = k"Ln GOim — tin eoam — . tin coin f''-'>^ t* 
I n n n f' 

in qoem ille per transfonuatiooem primam n** ordiBis mutator, crescente Domero d^ ce- 
lerrime ad nihilum coDrergere ; adeoqae pro limite n = 00 , fieri X =3 0. Tnin erit 
A=-7-f am(a, X)=u, unde e formuUs A = — ^, a'=-=7^ obtiaemns: 
M — ^ —=— — — 

FoDanius iam in fbrmolia pro transfonnatioue primae snpplementaria §. 26 ^ loco n, 
n=00: abitam(-^, x)inam(^, ^) = -S'' y = »inam(^, x)insiii^i porro 
am (n a) in am (u) . Hioc e formuUs illis nanciscimar seqnentes .* 

8Kj \ ■°-ir l\ ■'°— ir l\ "°-ir / 
V "°TirA ""TirA "°-iK-/ 



('—fi^]i'—fiT^)(^—fkA ■ ■ ■ 

\ ""-nr/V •'°Tk-/\ "-jiT/ 

Digitized by LjOOQ IC 



V ""-jiT/l "• TS- /\ "'-sir/ 

A am u = : : 

V ""-JK-Zv ""-sr/V "-tr) 



V ""-iir/v ""■-«- /\ "'-jKr/ 

/ iitK' SiwK' Siirlt' \ 

— nn? . . »i.K' — + — sTiTT I- 

""■-SK~" ■"•-jir-" ""Tk— " / 

— wK' 

Fouamiu io seuuentibns e '^ = (f i -j^ = x , aive u =5: , node 

* : sin X ; fit : 



ande : 



1— «q*'"cMg« + q«° 



db,Goo';5le 





SB 


«,'»J»I' 


l+!,-»eo.«. + ,— 


(!+,-;• = 


(! + ,■-)• 


!,».io. 


1±S,".».+,- 


■L .+,.» - 


1+q'" 


!q"(l+q"») 





1 — 2q""M»*x + s:'' 



«K' 1— Sq"»cos2i + q'" 



His praeparatis, atque posito Jjrevitatis cauiMi ; 



A = 



l (l-q)a-q')(l-q').. j" 

l(t-,1(l-qV(i-q*).. / 

_ 1 (i-q)('-q')(i-T)-- j' 
I (i+q')(i+q*)(i+q')-- I 

^ ( (!-,) (1_,1C1-,-).. )• 

( (i+q) (i+q') (l+q'l ■ I ' 
prodeuot FuuctioDnm Ellipticaram evotatlones in Froducta Infiaita fuudamentales : 

«AK . (1— aq'coi«. + q')(l-8q'l».»»+q'|(l — »q'Coiti+q") ■ ■ 



1) 



2) coiam - 



S) 



(l_!qco.!«+q')a— «q'c».!.+q')(l— Sq'<».J<+q») 
(l+aq'eo.a. + 1-)(l-Hq'co.«. + q-)(l+«q'c«.8,+q'') 



' (t— 2qco(«»+q'J(l— «q'coi2x+q'HI— «q»c««i+q") 

(l + 8q=..8-)-q')(l + »q'eo.i.+,-)(l + «q-pi.t. + ,") 



— : — skt 

/TIT- *''" 
1 — k Sin Bin 



(I— 8,cii.!.+q')(l-2q"coi!i+q'')(l— «q'cM!.+q") . 

+q')(l— 8q'nn.+q')(l— «q'»iii.+q') . 



-H-q") (l+8q'».. + ,')(l+aq'«~,+q>) . 



Jt (l-8/"qiilli + q)(l — 8/V.iDX.fq')[l— 8/V,lD.+,'). 

(i+a/T<i»'+q) (i+8/V"««+q') (i+8/V"»«+q') ■ 



, Google 



Nee noQ aliad formulanim systema, qaod resolationem propositamm in fractiones aim- 
plices suppeditat: 

t) •"■ '■ .in-f ■^('+.'^ I /V('+1-) I /Vd-I-T) \ 

' . kK ^ 1— tr,coi>> + <l' 1— «q'co.«. + .|' ^ l_2q'co.«» + q'' ^ 7 

n .uiiii '"' '" mill '^''— C' /V('-1') I ^1.1— a \ 

' IT kK \ 1— Xqco*Zx+q* i— S q>co«Xi+()* "*" 1— t<i'c(.»8i + q'« V' 

Qiii}jus adilimDs «x eodem foote maiuiDtes: 

, .„!Ji;»±. + .A,.^.ii^l!);si._.A„,g.ii±321Si + .A,e^,»±a:)i£i_.. 

If 1 — q 1 — q' 1 — q* 

Id formula postrema sigDom soperins eligendam est, (jaolies io termino uegativo, inferius 
ijiioties ID termino positiro computationem sistis. 



36. 

CoDtemplemur formulas l) — S), in ijnibusaate omDia (juanlitalutii , quaa [ier A, 

B, C deugnarimas valores eruendi sunt Facile qnidem iuveuitur poiiendo x =:= -^ , c 

formnlis 5) , 1) : 

k- » cf f-l)('-i')('-i')--- l'_ cc 
la+«(l-q')(i+q')-.. ( 

mde C = /V 1 



« Ul+q)(l+q' 



r)('+q') ■ ■ ■ 1' 
') (l+q'J • • • / 



uade B = . At ut ipsius A eruator Talor, ad alia artiiicia coufugiendum est. 

Ponamnse";= U: uhi x iu x+'.|^ mutatnr, abitUiu/^Uj siuam — -^in 



,, Google 



88 

E formula -1) antem oblmemns: 



__«K. _ \K I V-V-' \ {a-^/VHi-l'V^ . .}{(l-q-U-)(l-q'«-) . .) 

" ' ' \ t ) ia-,u>)(i-,'Di..}la-iu-)a-»'u-)..j • 



unile mntando x in x H — jjt- : 

1 ^ AK / /^U-Z^U-h {(l-q'U-Xl— i'U^..|{(l-<|U-)(l-q'U-')..| 

k,ia.m— * " ■ ' /ifl-q'U')Ci-q*1^..j{a-U-')<l-q'U-')-.)' 

qnikm in se ductis aequatiooibus , cam sit: 

prodit : 

1 1 /AK\' . ^VT J fKA iVq 

— .= -—I ). sive A = ■ 7_* i nude — = — - ^ ■■ 

Hinc erit B = ;; = s/q y p. lam igitnr fit: 

IKi 1__ gy^'in'q— gq'cMt»+q*)Ct— itq*M'»»'+q')»— tq'coili+q")... 

.mam ^ - ^. (t _8,««4« + q'){l-*q»«..l. + q')a-«q*c«li+,") . . . 

2K. _ /T^ aWco.«(l + 2q'cw8x+q*)a+*q*co*»«+q')(l+»q'cwt.+q^... 
coon, ^ _y ^ . (l_Sq«,.8x + q')(l-»q'c<..t< + q«)(l_,'«»t.+q»)rr: 

8K» _ rp- (I+aqcMg. + q')Cl+»q*M>»». + q«)(l+»q'«>»«.+q») . .. 

jr ~ * (t — «qeo.2i + q')(i— Sq'co.tx+q'ia — Jq'co.tr+q") ... * 

AeqaatioDibus in »e doctis: 



. (i-K-ja+l-Kl+q-l ■ 



~> (i+l)(l+q')(l+'l')- 
prodil : 

/T ^ ja+qXl+q-Xl+l")-}' 



db, Google 



lam rero secandum EuUrum in IntrotU (dt Partitione Kumerorum) est: 
(l-V)(l-,')(l-<l-)... 



(l+qXl+s'Xl+q") • • • = 



(l_,)(l-V)(l-q") ••■ 



(l_,,)(i_,^(l-,.). 



1) {(1— iJCi-q^d-q-Ki-q') • •)' = 'VL'' 



Advocata formala; 



'Vl _ I (1— iX'-sld-l') ■ 
/X:k ' (1— lld-lVCi-l*) ■ 



tkk'K' 



«) ((l--l')a-'l')(l-q')a-q') •■)' = 7=r' unde etiam: 

"•V q 

♦/Tk' k' K' 



») {(l-q)a-<rt(l-q')(l-q")..J' = - 



.•;^ 



Quiltas adderc licet, quae facile sequuotiir, formnJas: 

«) {(i+q)(>+q')(i+q')(i+q') ■ •)' = ~7^ 

5) ((i-H')('+i'l(i+q')(i+q') ■ ■ }' = r4- r- 

4V fc V q 

6) {(i+q)(i+q')(i+q')a+q') ■ •)• = — ;ft^ ■ 
E tjaibns eriam colligitur: 



■■ «irq 



d+q-Xl+q SC+q') ■ ■ r 
(i+q)U+q'r(i+q') •■ I 



„ ., _ I (i-q)(i-q')(t-q')- f 

' I a+q)(i+q')a+q')--( 

8K _ I (i-q')li-q')(i-q'i ■■ \'\ »+q)(i+q')(i+q')- i' 

" ir~ ( (i-q)(i-q'Hi-q')- 1 Mi+q')('+q")('+q') ■• 1 



4 y- Hi-q')('-q')('-q")-- j' 
' ' I (!-q')(l-q-Ki-q") •/ 

M 

Digitized b, Google 






g-tld-l-Xl-q') 



I a+q)a+q')(l+«- 


/ 


(<1- 


-,■)(!- 


-,•)(!-,•) . 




1(1- 


-■Od- 


9')y-q'). 




iiz 


■«1- 


q'Xl-q') . . 





c. 



« Ui+q')(i+q')(i+q-)- 

E formulia 7), 8) seqnitur aecjuatio identica satis aLstrusa: 
") ((i-q)(i-q')(i-q') ■ • j" + wqlci+qia+q-JCi+q-) • • j" 

{(l+1)(l+q')(l+q')-)". 



37. 

Vidimus supra, ubi de proprietatibua aequationum ModularioiQ actum est, diu- 
tato k in —, abire K in k (K + iK'}) K' in kK.'; porro fieri: 



Mm [i n. -j-j = CI. CO.I. (u. k-) 




cotun |l[ D, -i—j = «n coam (u. k') 




A un ^k„ ''■ \ ' 




'"■"('■"■ k ) A™(»,kV 




Commntatis inter se k et k', hinc sequitur, ubi k' in 


-TT- seuk 


K in k'K. K' in k' (K'-»-iK); porro fieri: 




liii am IV'u, — ^j = CO* cwm u 




"""(-•4) = — 




i.n./k-uiL^ ' 




\ ■^r) A.mu • 




uode etiam: 





, siDiul altire 



.(-4)-i— 



db, Google 



91 

— «K' 
At mntato K ia k'K, K'in k'(K'-hiK), ahit q^e in — q, untie vice rersa fluit 

THEOREMA I. 
Mutato q iu — q abit : 

K in V K, K' in k' (K' + iK) 



simol q in — u, x in -; x, abil: 



Inquiramus adhuc, qnasnam Functiones Ellipticae, mutato q vel in q' vel in 
y^q, snbeant mntationes. 

Vidimos supra, Modulum \, per transfonnationem realem prhnem n** ordinis a 
Moflolo k derivatum, ea insigni gnudere facultate, ut sit; 



n. ^ , 



unde matato k iu X, al)it q = e in q". Idem, a nobis de transformationams 

DgilzedoyLjOOglC 



imparis ordiuJs geueraliter probatum, inm dudum a CI. Legeudre de transforinatioue se- 
condi ordiDis probaluni est, videiicet posito X == ., ' fieri: 

node ridemus, iiiutalo k id ~ , abire q in q'. llinc vice versa obtineiuus 
THEOREHA II. 
„MuUito q in q' al»it k in -jxp*) ^ "• { — i — ) ^*' 



uode 


etiam: 






k' in 


.+1' 




k'K 


in ^VK 




V^ 


'"^ 




<n. 


,Ki.ii 



1+kin 


1 + k- 


l-l in 


«k' 


1+V in 


c+^y 


i+k' 




(i-^V 



Ex iiiTersione huins theoreiiialis obtinetor allemm 

THEOBEMA III. 
„Mutato i| in /"if, abit k in -jSr • ^ '" (''>''') '^> 



unde etiam: 




-»4^ 


.^kiniy^ 


--^ 


■ -kinJi^ 


kKinZi^.K 


--■T^ 


,^'K in k'K 


1 k-i. " . 



1+k 

Quae tria theoremata evolutiouibus §§. S5. S6 propositis inulliuiodis confirmaiittir, .-iuam- 
que in seqaeotibas frequentissimam inveniuot applicatiouem. Quippe quornni ope vet 
ex aliis alias d«ivare licet formnlas, vel alinade ioventac coDimode c<mfiniMiitar. 



oy Google 



3& 

Qoaotitates, in qttas posito q"" loco q abeunt k, k', K, designeDiiu per k*"", k""'', 
K""', ita ut k"°* sit Modalos per transformatioaem realem primam d** ordinis erutas, eius- 
(jne complementum k""^ FoDamua in aequatione: 

I (>+qKl+l')(l+q')(l+i').../ 

loco q sacce&sive q'^ q*, q'^ q'^, cet. , prodit facta multiplicalione infiuita; 

J~ l.'ri,.yk,.ri„,y = f (t-,')(l-q')n-q')(l-l-) ■ ■ ■ I' 

"■ I <l+rt(l+'l')(t+q-)(l+q")-:- I' 

at invenimiu: » 

I (i-q')(t-i')a-i')(i— !■) ■■■ !■ t/Vit 
\ (l+rtO+q-Kl+q-Xi+q-) ■■■I" » " 

uude; 

SK /k">'k«''k<')'k<">' 

" — = V a • 

Cum sit k"''= -f^, fit ex 1): 

/»K\*_ 1 tyk' t/'k^v" i/"^*^ t/"k">' 

\ , )-T' i+k' l+k'-' • i+k"!' ■ i+k"' •••• 
ande divisione facta per l); 

Quae etiam eo obtinetar formula, quod sit; 



* 


1 


JK<»> 


t 




■l+k<« 



db,Goo';5le 



94 

ande cum^ cresceute m in :nfimlum, limes expressionis sit 1, facto producto in- 

finito prodit 2). Posito: 

m = - , ti — V mn 



fit:. 



l+V 



.A- 



unde : 

t 

i+k' 

ideoque : 



sea desigoaDte ft Umitom commutiem , ad quern m"", d"" coiirergunt , crescente n iii 
infinitum : 

Quae abnnde nota sunt. 

Ponamus rursus in foruiula : 



(I — SqCo.SK-f-<l")[t— aq'co,2« + q«)(l--«q»coi«< + q«'). 



y Google 



85 

loco q successive (j^, q*, q', eel. ; sit porro : 

Facto producto infinito, cam sit: 



obtioeoius : 



,r a— Sq*«w«x+q«)(l — iq'cwai + q^Cl — tqOcoiai + q") . 



lam vero e formulis: 



» yY»iDi(l-tq'cwg« + q')(l — gq*c.>«8. + q')(l-8q-CO»«. + q"J 

y-k ■ (I— JqcMix + q^a— 2q'M.»Si+q"Kt — *q'e««» + q") ■■ • 



'/? 



W«>.»(l+aq'co,g» + q*)(l+aq«co.2» + q')(l+aq-cO.»x+q''). 
(l_tqCO.*. + q')(I-«q»-Co.ai + q»)(I_q'co.», + q") . . . 



1 ta..6--a-»S'«'«»- + q*)a-aq*CO»2l + q")(l~gq'C(.»8, + q") . 

^k' (l + «q'cM«< + q«){l + «q»CM«. + q')fl+iq-C0.8»+q-) . . 

uude prodit formula memorabilis: 

CKi 

S. tg »m — 



4) bngx 



Ut eandem per formulas notas demoustremus , adTocemus formulam pro traQalbrmatioDe 
secundi ordinis, qualem CI. Gr-iua exhibuit is Commeutatione inscripta: ^^ Deter minatio 
Attractionia " cet. : 



db,Goo';5le 



96 

cjuae lirevitatis causa posito: 

.„(i5r:i., i.».)=*«., ^«^{^^. k-) = 

ita eshibetnr: 

node eliam: 

MM 0"' a"' 






I + k"> .in' *<•) 

1 — k'" »itt' ^"* 

(l + k'")ig»'" 



Formnia postrema ita quoqae repraesentari potest: 

IT If 

DDde loco q successiye posito q', q*, q*, . . ., quo facto k, K, <p al>eunt io k'"', k'", 
k*", ..; K'", K'*\ K'", ...; q>''\ 0'*\ (t>"\ ..., obtinemus: 



tit'*' «K<'> ' &'•' 



«K"" ■ A"*> 



lam limei expressionis 

/ ex'PV 



/ ex'P>i ,, A 



d by Google 



97 

cnsotnte p w infinitmn, fit 

tang 1 1 

turn enim fit k"** = 0, K"" ^-j-' am (a» k) = n; lunle iem facto prodocto infinito 
et posito, at supra., 5 ^ &'** &'*' a'" . . . , prodit: 

HP _ *»' 

({uae est fortanla demonatranfla. 

E formula: 

Slalb 

Algorilhmus doo inelegana peti potest ad coniputnnda lategralia Elliplica priiiiae ^wciei 
indefinita; idqne ope {ommlae, probata lacilis: 

Quern in finem proponimns 

THEOREHA. 



/^ 



' /'minCoi9' + o n Sin ^' 

/ ■ilinCM9''f-(inSin ^' = A , • 

fonnentar expressiones ; 

7 =" '''"■' =" '^ =V — ;;rfa — 

_I .n /». ==. '^=V— S+S'— 

m'+n" , r-S-Tr « ..- _ / m"nr(A- + ..-) 
X = „ /„» _. ^ =V ■'■' + 1' 



N 



db, Google 



designante ju limitem communem, ad quern quantitates m"'*, d"", n'^* cnscente p f&< 
pidissime conTerguot, erit: 

, a' A' ii" . . . 

ungfi« = p-B ■ttitg^. 

liiideiii methodis, quiltus ia aQtecedentibos usi aumas, inrenitar etiam valor 
product! infiuiti 

iV^i gW »VX* iVX' 

/'k /k^» /"i?" /*il""' . ■ . • 

Quem in fiDem allegamus formulas §. 36, 4), 6): 



quarum posterior e priori oaacitar loco q posito successive q', q% q* cet. et facto pro- 
dncto iufinito,' unde ohtinemus: j 

k g'/V »V^ t/v 

4/Tr/*q" /"k"' k""' /'k"> k'**" v^k<'> k'»»' 

latn rero emimns l): 

-T- = V i- • 

unde : 

5) ^ "^ ''^ '*^ **^ a'/V 

Quae licet aliena rideri possint ah institato nostro , cum nee degantia careaot , et 
magnopere faciant ad per^jiciendaoi nataram evolattonam propositamm , . opposnisse 
inrat. 



d by Google 



«6 



EVOLUTIO FUBCTIONUM FLLlnlCABUM IN SERIES 

SECUNDUM SIHUS TEL COSINUS MULTlfLOBUM ARGUMERTI 

rROGREOIENTES. 




E fomiulu Kupni tradtlis: 

tKx tW . (I — gq't 



.». + q-Kl-»,'C0.«, + ,-)tl-8q'C0ll. + q") . . 



■yx 



■ (H*l'»"«-+q')(l+'q-f»«»+q')(i+«q'c<»»»+ q") ■ 



(1— «qco.JlH.q')Ci — tq'cO.«. + q«){l — «q»colf. + q") . 



«K. ^/-p- (l+iqco.«i-t-q')(l+iq'c°'«'+q'»'+«q'<»'«-+q'T . 



1 — Noam /"- r 

'+""■"— 

— r «if^ 

1 — k iiD am 



(I-_tqeo.«.+q')(l^»q'«..«. + q^{l-tq'co.!,+q"). 

(l-«q.l.. + q',(l-«q-.to. + q1(l-t»q .i.-fc,-)... 

(l+«,.ioi+q-)(i+sV'l««+«(i+«'l'"»-+q') • • ■ 
(i-»/7""+qH'-«/i'»"-+q')('-'/V'i«-+i') 

tl+«/"?-in.+q)(l+»/V'i»-+«('+«/q'"«'+q') 



logarithum singuloruui fadonun in altera ae(jaatioDtiin parte eroluUSj post reduclioiws 
obTiaa, MquuDtur hae: 



6) log fiD •m — 

7) loKcwun- 
S) kfiim i 

9) lo« . / - 



- I ''A'.l' 









«q 


».!. 


1 


+ , ' 


•l 


».t. 1 


1 


— 1 


4q 


^.t. 


1 


-q' ' 


- + 


«'"" 



•a+q") 

«q''~«- 

«('+q') 

'(l-q-) 



»(l+q") 



»(l-q') 



4q*CMlOi 






100 



""" , . 4/7.1.. 4/7i.». «/y.i.'5. ■ • 

Oaibiu fonnalis differeotiatia , ubi aduotamu* formulas dilferraitialcs probata fadles: 
d. log «««.—-— ,.,^ «».»-— 



«K '^""-T- . lit h^r ] 



V . «E 



enumas seqneDtes: 



4q.int« 4<|'dD4. 

1+q ~ l+s" 



4q.i°«. , 4,- .1.4. 



IS) -?i^ ■-.■■^■■: "■_ 'T"*' i gq-ne. II,.J.I0 



-+■• 

Google 



tS.% <».«^ 1 — q 1— ,» ^ 1 — q' 

ISI *^* An— '"^' --r */^«"' «/iFw8. 4/yen.S,' 

* ' « 1-q . i-q' ■** l-q* 

UIri in hnfoftnulis loco X ponltur -| x, ermtnr: 



» 4q«ImI. 4q'«p*i 4q'«n6i 

^ tK> - *' i + q + l + q- l + q> 



4q«iiiSs 4q*«ui4i 4q'nii6i 
= coi>« H — a 2-— J 3 J— 

1 — q l + q" 1 — q* 



4qHai 4q*uiiSi 4q*da5s 



Formula 18) poDendo -j^ x loco x immnlata maoet. 

Mutaudo q in — (| e thefffemnte I. $. 87 formulae tl), 12) ia 17), IS) ab- 
euut; 18) immntata maoet; e formulis l4)j lA), 18), 19) obtinemns: 



IKk 4Vqcoi» 4/^q'eo«8i 4^^coi5x 

* * l + q **" l+q' **" !+;? 



4q'iiii8ii 4q*«ipSK 



tKi «/^«in i/^ting* 4V^HJ|5» 

'~^~ l+q ~ 1+1' . f+? 



,, Google 



tOf 

- Formulae 19), Zl')':p^ evQlatioMS ttp1as_ ex_'.'i^^ J^t^^V^ fticUe derlvan possnnt, 
(juas supra attulimus $. S6. 6), 7): - ■ . 

«K. _ _«^„ / /^ft-q) /Vo-1') . /7a -q') _ \ 

E formula 9) §-35: 

± - + «-..((4^)'-)- »-«(({^j'-) + '— ((j^j-) - ■ ■ 

setjuitur adhuc: ' ' " .. ' — "*■ ''■"'" '".". " ' ^- 

Eandem eoim pro signi ambigui ratione ita repraeseulare/ heel : , , . 

_i.- ' +j. "" '"-"«. -+;■.' '- 

siquidem brevitatis causa t = tg X. Fit autem:, 

unde am — - — ^ -„ . 

sive cum sit: t *- ' ;- - ' ' ■ '- . t, 

fit am := 



'^«'«- , ... = 1"°-*" + . -■ ■ +,- 



Digitized b,Goo';5le 



toi 



quae est formtihi 24). E nains difi^reyluliAQii prodil: ^ _.. 

onde etiam, poaito — <j loco q sen -^. — x loce jt ; ' 






i+i- 



4q*c«a6j[ 



! + ,• 



'+1' 



40. 



E fonnulis propositis, poaendo x ^ rel aliu modis facile ernantur setjaentes : 

-il-+ '-' 

1+q ^ »(i+qV. > 5(l+q') .. 7(H-q') 



I) lofV 
I) -lojk' = 

"-T- = ' + 
= 1 + 



»CI+<1') •ll,+ i') 
5(1-,") "^ 7(1-,") 



»(»+«. > 5(l+q') 
1'-'- :■- *^'-^ ■ ' 






1-,' 



ir 1 — 1 l-q» T 1— q' 



T+r* l+q' * li+q' * ' 



Hq- 



! + ,■ ^ l + q. 



,4+1 

, «q 

'1+?^ 



jq*-- . ' j 4,*" 



+-^-.^11;=-:-^. 



«q' 
l+q- 
'q 



«q' 
l+q- 

, «<• 
d+ql' 



<+q" 

• l+q" : 
, gig!: 



,, Google 





t04 


4kkKK 


16, . »8,' , »!,■ . 


= 


i«q(i+«') , iSqHi+f) . i«i'C>+.0 
(i_,.). 1 (1-,.). 1 ■ (i_,-)- 


4k'k'KK 


8, «,■ «,■ 


Kir 


•+s i+q' '+q' 




«q . »q' «q' . 




(i+q-)'* (i+qy ■ (i+qV .' •• 


«kk'RK 
WW 


4/^ u/V , «>/? 

1 + , !+,■ ' 1+q' 


- 


4/~q'a+q) . 4/V(l+q') . 4/7(l+,') 
(1+q)" ' (i+qT ' (i+qV 


4k'KK 


8,- 16,. Hf 


iti* 


1+,- ■• 1+,. 1+,- 1 




8,< 8,. 8,- 




(1+qV ' (■+,•)■ (■+,■)■ 


4kKK 


4/T u/V , »/? 



(t-q)' "^ (I-,-)' "^ (i_v>' "^•- - :-, -,- 
Formulas 4)- IS) duplici motto repraeseDtaTimas ; facile aatem repraesentatio altera ex 
altera seqaitur, abi slngaU denonunatores Id seriem erolmatar. Affnotemus adhuc, se- 
cundom tlieoremata §. 37 proposita e dnabas ex eamm nomero, 4** et 8", derivari posse 
omnes. Fonendo enim Vq loco q, cum abeat K m(t+k) K, snbtraheiHlo e formula 4} 
prodit 5); deinde pODendo — q loco q, abit % io: k'K, uade e formnlis 4), 8) pro- 
dennt 6), 10); 6) immutata manet. Pouendo q* loco q al>it k'K ^|/lc'K, uode e 6), 
10) prodeunt 7), 12). Ex S), 10), quia kk + k'k'=l, prodit b). Ponendo /q* 
loco q, abit kK in 2Vk K, node e 9)- prodit IS), fonepilo — q toco t|, abit kKK 
Id tkk'KK, unde e IS) prodit 11). Ceteram pro ipso .Modulo t^L Complement eios- 
modi series non extare Tidentur. ' ' " 

Formulis propositis ad dignitates ipsius q erolntis, obtinemtu: 

15) -l0«k* = 8q+ -q' + y S* + yq' + -.,• + -q'« + -_.,» + — qlf . 1 . . 



,y Google 



105 

16) logi^. = 4,_4,. + ^q._4,' + ^q.-^,» + 5,'_4,» + |,.-^," + ... 

17) _i|i_ = l+4, + 4q' + 4q'+8q' + 4,« + «4' + 8<l" + 8q" + 4q» + 8," + 4V + .. 

19) -^ = 1 — 4q + 4q» + 4q* — 8q' + 4q» — 4q« + 8q» — 8q" + 4q" — »q" + 4q" . . . 

K) -i = 1 — 4q» + 4q« + *q' — 8q" + 4q"' — 4q"+8q* — 8q»» + 4q" . . . 

a) 



= 4/^- i6/V + «/V-w/i' + «/v-«/q^' + 56/V* 

= I_8q' + «q* — Mq' + »*q"-48q»+96q"— 64V* + «q"— 10tq" + ... 



Qnaram serierom lex et ratio quo melius perspiciatur, denotabimns eas signo sum- 
matorio £ tennino earam generali praefixo. Stataamus, p esse numerum impartm, <p (p) 
lummam factorum ipaius p. Turn fit : 

tt)_logk'»8 £-5MqP 

») 1*8*5.4 E.£*LjV_q'p-.r''-q*'-r'--| 

Porro sit n nwnenu impar, cuiua factorea primi omn*a formam 4a-f- 1 habent, 1^(0) au- 
merua factorum ipsias n; I, m nnmm omDes a asque «l 00: obtinennu: 



«) 


tkk'KK 


») 


4k'KK 


K) 


4kKK 



db, Google 



(4iii — i)'n 
SI) -i^= «!:*(.)q ' 

«, JtK!L = ,_4.+(.„'-- "•"+..*(.),''*■"— '•", 

«« «J^ = . _ 4 I ♦(.„"*-«'■■ + 4 . *(., ,«'"<•—"" " . 

Designante p nmos nnmeram imparem, $(p) sammam factorum ipsiiu p: fit 

M) -l^ = l + »J»(,){,P + B,'P + 5,,-P + 5,T + »*'P+..) 



«) i^^55 = l + 8!H>(p)(-,P + 3q'l' + »,>»+Sl"+»l"'+-) 

P-' 

M) = 4£(— I) «(p)/qP 

M) ii^=l + 8Iip(,){-,T + »,«P+»,-P + «,"P+5,"P+..) 

») iiH.= 4i:»(p)vV- 



DemoDstieniiu formulam 27). Invenimps 1): 



lo,k= 10,4/V- 7^- + 



4l' 



1+, ^ sd+ii »a+« ' 

qnod ponamiu = log 4v q + 4 £ A*^*<j". Sit x nmuerus impar p ^ m ni', e (juovi.< 

tennino -^\ — — -, prodit ^^ — , unde constat, tore A"" = 5^ . lam ait x 

munenu par = 2'p= s'niDi': e terminis 



"<l+q") ^ «»(l+q'") ^ 4m(l+,.-) ^ «n,(l + ,'") 2i„(,+,.'m, 

prOTeuit 

» ( t 4 « Ji— ^ jT) t'm ■ 



nude A*"* = ,^ , id quod formnlam propoutam sappeditat. 



db, Google 



t07 



DcmODfttremus formalim SO), lovi-oiiniu 



l + 4IA'».f. 



Sit B"" nmuerus ^torum ip«u» x, (juifbmum 4iu+l halMnt, C'"' ouDieras factorum, 
qui forrnam 4in+S haljeiit, fiicile pelet^ fore A""=B"" — C'"'. Sit x:=s'no\ ita 
nt D sit Dtimerus itnpar, caius factores primi omues foratam 4m+l, a Dumerus impar, 
cuius fadores primi omnes fbrniam 4 m — 1 haLent, &cile probator, nisi sit n' mimeros 
(juadratus, semper fore B"* — C'^* = 0, abi vero u' est Dumerns qnadralua^ (ore B'"' 
— C'" = B*"=si^(d), formula 80) fluit. 

Fostremo probemiu formulam 84). loveoimns 8); 

Designaiitex numerumimparem, facile patet, fore A"" = l^(x) ; nbi vero x uomenu par 
= 2'p, desigoantep Dmnerum imparem, (jaoties m factor ipsins p, e termiois 

prodit 8mq"{l — 2 — 4 — 8 — .. — 2'"' -t- 2')= 24mq*, aiide eo casu A"" = S$(p), 

id quod formulam proposilam suggerit. Beliquae similiter demoDstrantnr vel ex his de- 

doci possuut. 

^ tXi . tKi i J J- . . . 

Expressiones cos am —^, A am , — — ad djgmtates ipsius x evo- 

lutas, Coiitficienlem ipsius X* Danciscimur reap. TlT')' r("^~"/' "*~ "5"f~)*i 

uadee formulis $' antecedentis Zt), SO), 24) prodire Tidemns sequentes; 

"' M-r^;- *»!+, + ■+,. + 1+,. + !+,■ + •; 

I (1-1)' d-q')' d-q')' "I 

'" M^ ^ ( i+q t+q- ^ i+q- i+q' * ' 

. . .( q(l-«q'+q') q'(l-»q'+q') , q'(l-»q'+q'1 ( 

■^ I (i+qV (i+q')' (i+l')' ■■) 

O 2 

Digitized b, Google 



loa 

I (i-«. (!_,•). "^ (i-q-)' "^ ■)■ 

fix liu posito — (J loco q obtiaemus : 

V « ; I t — <I 1 — q' ^ 1— q' 1 — q' ^ ( 

\ " / I 1— q 1— q* 1— q» i— q' / 

45) kkk^iiLV^ «(^ i3!_+-B: ^3!_ + ..J. 

V * / I i+q' i+<t ^ i+q* i+q* ^ / 

Formulis 42), 44) additis, obtinemiu (-^j ; 4o)et48), il) et 46) subductls obtiDemus 

/ SkK I* / tk'K V ., .^ / — I, ,.. /«/Tki> /«/Vkv 
I 1, I 1, e quiuus posito resp. ¥ q , q loco q prodit f — i 1, 1— I 1; e 

/■♦/^KV ., , 1^ ^ /4/kl?KV 

I — - — I posito — q loco q obtmettir I 1 - 

Sub fiDem, posito k^sio-S-, erolvamus ipsam '&=Arc. sink. Vidimus, po- 
sito /q^ !oco q abire k' io ^~ -p » pODamas rursas — q loco (j , abit k in ^ , sifc Id 
i. tang -9-; ita nt posito ivqloco q, expressio ~ °f — matetur in 

Hinc e fonnnla s) 

- log k' = 



8, 


+ X1-, 


T + 5(1-,-! 


1 ■'■' 




l-I- 


+ 7(1_," 


) ' 


4/T 

i+q 


4/V 




4/7 


+ 



quae in hanc &cile transfbrmatur; 

47) — = Arc tg Z^— Arc Ig /V + Are !§ /V — Arc Ig VV H 

quae inter fbnnnlaa elegantiasiinas censeri debet. 



d by Google 



lOD 

41. 



Aequatiouem supra exkibitam: 



„n ■m = ; h — — 1- . - - 

w ir 1 — q 1 — q' 1 — q* 

in se ipsam ducamaa. Loco 2 sin m x sin n x ubiijue snbstiluto cos (m — n)x — cos 
(io+n)x, factum indait foimam: 

I j Mii*»n — = A •!- A'ctuti 4- A'coiii +A''cm6i + .... 

li)Tenitiir : 



(!-«■ (■-<rt' (!-?•)■ ■ 

Pom) fit: 

A*"' = 16B'>" — 8C'"> = 8[2B<"> _ C'"»j. 

siuoidem ponitur: 



C"" 



q' 



lam cam sit: 

1'" 1° I q" q*"'" 1 



(i-q")(i-q'"*") i-q*" I i-q" i_q"* 
St B'"' = 

q' I 1 J. q' 4. 1' J. 



1"" q" 



+ - 



T^^+l 



l — ^n 1 l_^i> + » ^ ! — ,">*' ^ I — q«n 

sire sablatis, qui se destmant, tenninis: 

q-— 



■>' /_;_ + _£- + ..+ '•— I. 



,, Google 



110 

Porro fil: 

nnde 

Hinc tandem pnxlit: 

A"< = a(iB'-- c<"'l = -'"f . 

t J 1 — q*" 

unde iam: 

Simili modo vel ex 1} iDvenitiir; 

J, j_jco.-„— - = B + 8J--j--;p-+-^--^j-+-j-;j^+..(, 
siijoideDi : 

E nolo Calculi Integralis theoremate fit, quoties 

^1 = A + A'eo>Xx-^A''cM4i-h A''cM6i-f- ... 

tarminiu prinms seu constaos: 

A = -iy^ ' *w-d-. 



unde oanciscimnr hoc loco: 



B = 1 — 1 / C4M'atn « .di. 

« \ « /y It 



Digitized by Google 



Ponnnuu cum CI. Legmdre 



SK tK <K SB 



HiDC ettam, cum niutato q in — q, abeat A itt — B, K id k'K, sequitur simul abire 
E" in ^. 

Adnotemua adhnc e fommla l) sequi: 

I (l— !)• ^ (l-qV "^ (l-l'l- "^ "/• 
uode etiam mutato q in — 4: 

., ..w.fi5.)-= «{_JL^ _ ^ + JliL _ •131. + . . 1 

I IT ; I 1— q* 1 — c|* 1 — q« 1— q' / 

" ( a+q)« a+q')' U-q'r "^■'C 

Subtjacta fonniila 4) a 8), procUt: 

-,( ■f('+*q'+l') , 1'(> + «1' + 1") . q"(l + «q"+q») ( 

= '"1 (1-qV + n-qT + (Trq-::? + •)■ 

qoem edam e S), mutato q id q*j obtines- 



dbyGoot^Ie 



lU 

42. 
Methodo simili ati^ue formala 1) inreDta est, iu expressionem 



in seriem evolrendam inquirere possemus, siqaidem formula 18) $. 39 in se ipsam du- 
catar. Id quod tameo facilius ex ipsa l) aLsolritur consideratione seqneute. 

Eteoim formula : 



d.log«i..n,i^ jjj y l-(l + kfc)«a»Kn-^ + kkM«, 



itenim (liffierentiata ^ factis reducliooibug, obtiQemas: 



— 7? (— j{"" 



SKi 



«K. I 



lam Tero invenimus §. S9, 6): 

iog»iii»m— — = logi 

uode 






Forro est $.41, l): 






«K »K _ «_ gE' _ g ( -qcoigi 8q'cw4. 54'w6x | 



,y Google 



uode cam e formula l) sit: 



I 1 d' IOC HO am ~ 

- . «Kx I « / « d»' 



proTeoit, quod qDaerimos: 

JK »K _ ^K_ «E' 1 _ f q'CT*t» t.j*coi4« 8q-co«6» 1 

IT JT Tt IT Hn'» ( i — q' I — q* 1 — q" / 

Mutatis simul q ia — q et x in — — x, mide K in k' K ^ E in -rr- §■ 41, 

tKx . ZKk , . ^. ,.. 

Sin am in cos am al>it , e 2) prodit : 



/ Sk'K \' tK »E' 1_ gi q'co»l» _ *q*co>4« gq- co.fi « _ i 

His adiuDgo, qaae facile e §. 41. l) nequuntur, hasce: 

V w / ir IT ft I 1 — q I — q» I — I 



(^)' 



gK 8E „ ( qco»t« gq'cwii , Sq>Goi6i 

"^'"i;: ( i — q' 1 — q« '* I — q" 



quamm 6) e 4) sequitaf , mutato x in — x seu q in — q. 



Fostto y^sinam— ^, r (1 — j-y)(l — k'yy) ^ R, fit; 

^= -(")■'" + "-"■'■> 

P 

Digitized b, Google 



114 

-^ = (-^)7» + »"k + k* - 60k' (i+k-),' + i20kv)R 



cet. 



cet. , 



ttix _ gKx _ (l+k'W 8K» .' l-t-Hk'+k* / «k» 1' 



ideoque : 



(^)" 



-^ + (-^)(^/+^-^^(^/" + - 



qua formula comparata com S), eruitor: 

(-^)(";=4-+(")'-"-^ 






' !-,• ^ 1-,. + I-,. + >_,. + • ■ - 



H(^)-(,_.H^.iil 



*.9.* 
Forro fit: 

sive cnm sit : 1 5 = 2 . 8* — 1 : 



16 



,■ g,- »-,• «■,• 1 



De luc formala detndiattir seqneos §. 41. 3): 

k.fiI.V= i6(_J!_ + -£3L + Jl2L + _£i. 

"I, , ; ii-?' + !-,• + 1-1' + I-,' 

Digitized by 



Google 



115 

fit resuluuDi: 

7, fi£ii)-= , _ is'-J !l3!_+_^3: s^+..), 

' \ - I 1 1-, i-s' ^ i-q- 1-^ ^ ;• 

unde eliam, mulato q in — q: 

\ « y ^ I l+q ^ l-q- ^ l+V ^ i-q- ^ )• 
quae difficiliores indagatu erant formulae. Qoas si iis inagis, qoas supra iuTeaimos. 
lam qualuor pnmas dignitates ipsoram — ■ , m series satu concinnas erolutas 



F0R91ULAE GENERALES FRO FUNCTIONIBUS 
. , iKt I 



IN SERIES EVOLVENDIS, SECDNDUM SINUS VEL COSINDS 
MUI.TIPLORUM irSIUS x PROGREDIENTES. 



43. 

Iiiveiiti.>i erolalionibas functionum : 



iam quarslio se offert tie eTolutionllius alriorum dignitahim ipsius 



perageailis. Facilis quidem in Trigouonietria Aaalj-tica via constat, qua, evolalione in- 
veota ipsorum sinx, cosx, progredi possia ad evolutioiiem expresstonnm »in''x, cos"x ; 
nimiram id succedit formularum notarum ope, qaiba^ 8iu"x, cos"x per sinus vel cosi- 
aus multiptonim ipnius x lineariter exhihentur. At in theoria Functionum Elliptica- 

P2 



d by Google 



rum illud deficit sulisidium ; ad aliud confagtemluDi erit , quod in sequeutUms ex- 
ponemus. 

Formula, quae ex elementis patet: 

*'°^™° = iiiiB»-'amu/'l — (i + kk)wii'»mii + kkMB'»mu , 

iterum differeutiala , prodit: 

I) "j„'" -— -= "(a— I)"ii''~'»mi' — in'Cl+k*)rin*'«nu+ii{ii+I)k'«i»*'«iiii. 

Fosito successive n=l, 8, 5, 7 ••, n = 2, 4, 6, 8.., hinc duplex formetur 
aequalionam series: 

I. 

= — U+^')*ina)nii + Sk'uD'amu 

= SuniniD— SCl + kOrin'wDB + Uk'»iii"«mu 

= fOnii<3ma — 2S(l+k'}aiii>amu •(- SOk'uD'unu 

s= 42iii>t>mii _ 49(I+fc')riii'wnu + 56k'(m*amu 
cet. cet. 

n. 

= I — 4(I+k*)nD'amil -f- 6k'(i>«ainu 

:= Uain'amu — 16(l-f-k'>«ia*ain« + tOk'siti"»niu 

= SOim'amu — S6a+k")Mii«ainii + tik*«iii*ainu 

= 56Mii*an>u — 64 (I ^k') no* am u + 7tk'*in<°ain« 
cet. cet. 



du» 


a' sin' am D 


do» 


d'iin'amn 


du' 


d'tiD^ama 



d SID am a 

d^ 
d'tin''»mQ 



d by Google 



117 

Ex aequationihus I. eruis successive , posito n d =: 1 . 2 . 3 . 

n4. k'iin»wnu = °"'""""" + 10(1+ k*) - " •""*■"" . ^ 3(S+tk'+8l»)«oai 





du" 


i* 


.Miaoiu 




du* 


<!• 


tin am D 




du« 


d- 


■iD^mu 



ne. k.«..'.«- = " ■•■";— + »5(i+k-) ''*-'j"'"" + 7(g7+aBk'+s?k') ^'■*^J'"" 

+ 45{5+»k'+8k»+5k'')iinBmu 
08. k'«a'««u = " •""'"'" + M(l+k') '^'■■'"'"" + 4J(47+58k*+47k«) ''*-''°""" 



+ 4(Stt9 -4-8015 k' + UlSk«+MS9k*} — -J— 
+ 81S^+K>k*+Uk<+S0k<+S5k-)<iDamu 



11. a. 

n5.k*fiD«»mu = " "'" " ■+ *(l-f-l:^»iii'amo — S 



n^. k*»i 



d= 


sia*>iiiu 




d«» 


d* 


nn'tinn 




d«* 


d* 


liD'amu 



m . k'MQ^amu = '-—-^ h Sefl+k") — '—- + l«C7 + 8k*+7k')- 



+ l«(18+lSk*-t-lSk44.18k'>}*in'ainu - 48(S4+»k* + S*k*) 
cet. cet. 



lu videmtis, generaliler poni posse: 
S) nJo.k'-Mn'o+'wnu s* 



du'"-' 
8) n(tn— «).k"'-*«iii"'Mn« 



- + <" 



j„..- — + °" j^.-. + ». J...-. ■ +■■+«; ""■■■"" + ". • . 

(tesigDaotihns Al,'"^ h'^* fiinctiones ipsias kk iategras ratiooales m" ordinis, excepta B^,^", 
(juae est (n — 2)*'. Forro e fonnnla, unde profecti samos , geaerali: 

'''*^" I = atn— ^Mn^-'smu — iio(l+k*)«o''«niu + o(n+l)k'«i»"+''«inu 

Digitized by GoO^^jle 



as —-_ 

patet , lore : 

4) a|,"'> = A^^\ + Cn— !)'(!+ k')A;;;;.-" — (Sn— t)*(2n_I)(*ii-8)k"A;,"!.7" 

quiLus in-fonnulis, qaoties m>D, poni debet Ag"* = 0, B'""=:0. 



Mutato u in u -t- iK' ciun sin am n abeat id -r-: , in formulis propositis loco 

t u poni poterit —r-. > unde proveoiunt setjuentes : 



d'.— ; 

d'.-:-; 

dTi' 

d*.— : 

du» 
d».-— 



i 

J-. . ■ 

uDimu 
du* 



a(S+»k'+8fc«) 



ac geoeraliter: 



nzn 



■ + a;". 



d—._i- 



db, Google 



119 

44. 

Quum inventum sit autecwleotibus, sitjiiidetn ponitur u =: - 



per Iiasce: 

nn txa — ^_ , On* am , 



earumque differentialia , sectmdom argameatuiii n sen x sumta, lioeariter exprimi posse, 
iam ex hanim evolutiombas, secandDin sinus ve\ cosinus maltiplorum ipsins x progre- 
dientihas, illarum sponte demanaot. 

Ita naociscimar: 



e fbromla: 



iiL..i..„i^ = .{ 1^"- + /7-i»" + /V"-" 



sfitjuentes : 



,«IKV., IKi 
S.S.4I— ^Inniam— — ei 

Digitized b, Google 



itO 



.{»(i>+.i.-+»k.)(^)'_ 5...o(i+k,(i|l)*+ (.} i^iii + 



e formula: 



sequeotes : 



K IK !e' ,r»<r«»»- 1 


1-,. -^ 


1-,- 


-(^r 


Mn* am 


= 




4„+k,(^)'(if 


-^)-»-(^r 




-•!»■*<'+'■)("/- 


-}^ 


- 




-i{...(.+k,(i^J- 


-}4^ 


- 




_,J6..(l+k')(^/- 


=1-^ 


- 





, , . ./ «kK -i' . . »K. 

A,„ -., . B. ,/*K \'/8K «K 2K «e' \ /SK\' 

8(8+7k-+8k.)(_j (_._ -.„__]_ «k.(l+k,(ii^) 

- «{!. e(8+7k'+8k.)(i!ij- s..»ci+k')(^j|V »} "^'"V 

- 4J4. 8(8+7k'+8k<)(i!iy_ 4..K)(t+l')(ilJ+ 4-} _5l^^ 

- 4;6. 8(8+7k'+8k.)(ilj*- 6..»a+kl(i|iJ+ »} -Sg^ 

cpt. cet. ; 

Digitized b, Google 



e formula: 







1*1 - 

m. 










• + 




+ 


4^1 


daSt 
-1' 



sequentes: 



•!"+'-'(-T-)"-'')^;^+ 









db, Google 

I 



lit 



~ /-15- _ .?^' 'i _L ^ _ - / gq'co«gn 4^*co«4» 6q'co.6» 

sequentes : - .. ' 

»io' am ( 

w I 



_,{, 



!'-'■+'■'(")■- "I^ 
-•{•••<'+->(^)'-}^^ 
-{*-'■+'■>(")■- '-i^^ 

— (^r- 



+ r-. ' • ■' + Md+k-jf-^lL ^2.!_ + _ 



..{t.8(8+7k-+SV)(^)'_f..»(.+l')(^)'+»'>-i^ 

Digitized b, Google 



US 

-4{6.»c8+?k-+8l.)(^)'-6..S0Cl+l')(-yLj'+6'}-t^ 



45. 

Exetnpla antecedentibus proposita doceot, quomodo e formnlis 2), s), 6), 7) §. 4s 
erolutioaea functioDom «n" am , „ — inTentaotur. Quanlitates Aj,"', BJ,"", 

a quibus itiae pendent, ope formularum 4), 6) ibid, successive eroere licet. At expres- 
siones earum generates indagandi quaestioj cnm .nimis illae compjicatae evadaot, qnam 
ul eas per inductionem assequi liceat, paollo altiiu eat r^wteade. Onem in finent se- 
quentia anlemittimus. 

Kola est fonntda elementaris : 

, . , , Siinsm v.eftiamu^amu 
tw ■m (n + t) — iia wn {o — ») = — - — —-r-, — . 

qua iDlt>grata secundum n, prodil: 






E theoremate Tajioriano fit: 

«iDam(u+T} — >ioaiii(u — t] = 



y^du{.iD.m(u + T)_,i„„„(„_,)j 



_{. d*.«ia»mtt »> il*.fia*inu t' 

'i""""'+— I? nr+— 37 nr + - 



0» 



db,Goo';5le 



144 

Facile enim constat, |M)silo u == , et sin am a et generaliler; j l °^ — . evaaescere. Hiac 

aeunatio l), etiam altera eius parte evcduta, iuhancabit: 

„ , <l* . tia am u t' . d* • wn »"> o v' 

" "•■»»•' + — j;j nr + — 3^? m-+- = 

Forro aequationiLiu notia: 



» {U_t) - 



1— k**li]*amuMii*M 
in BC dnctia^ obtiiiemus: 

S) Mn'am Cu + t) — siii».iiiCu — y) = 
4 ^n m n eoi un u A am u . naatay coi am t A am t 



'}' 



[l — k' Jin' am v nn' am t}* du dv 

lotegratioDe fiicta secandum v, provenit: 



y^dT(.m' »!. (u + v) - rin' am {u-v)J = 



If am n A am u . lin'* am t uu* am t . rf . 



1 — k' hq' am u wn' am v (1 — k* lin' am n tin' am 1} d u * 

Qoa dcDUO integrata sefnindam altenim elemeulum u, obtinemus : 

4)y^duy^dy{«»'am{u + v)_.in*am(n-T)| = 


^ ^ ■^ log (1 — k' ««' am « lin' am y) . 

E Aeoremate Tajloriana lit: 

«ii>*am(ii>|*T) — MB* aita (a — t) ■! 

t 4« ■'**' du' ■ ns '*' do* ■ ns +••/' 



,y Google 





lU 




y^dT{ri»'.m(u+») - «B'«mCu-v)j = 




•1^^^^-^ + ^ 




/-./.,{..™,.+.,- 


«.• — (.-.)} = 




'{-—-^^^'^^^ 


»« d*.rii)*amu 
■ n4 ' du« 


n6 


-,{„... 


-^ + — ^ + 


..}. 



.+..} 



siquidem per cJiaracterem U""*^ ralorem expressionis ^-^ denotamus, quern ob- 

tioet poslto n = . Bine aeqnatio 4) ^ edam altera eiiu parte evotata , iu haac a)>it : 

«* d'.an'afflu T* d«.un*amH v* 

») «»■.... -gj- + J- .^jj- + J-; ■-nr + -- 

-■»{'""-5r + '"-'-Hr+-} 

1 k* k* 

— . lia' UB n rin* atn t 4- — . nn* am u lin* *ai t + -r- *>■>* »n ti tin' amr + ,. . 

His rite praeparatis, poDatnr: 

u a: nn un u '4* ^i ■'"^ Ml n ^ B. ud* un u •(• R, tia' im n ^ . • . , 

«c generaliter: 

u" = (mh^ibb + R, Mii>«niu + R, •!«•■»« + B, lin'wnu +...}" = 

iiaO*m n + R^"' lin"*' »m n + R'^"'mii"** am it + R'^"'Hn''*' ama + . . - : 

porro e rerersione seriei : 

u = un im n -(■ I^( ■'A* ■» <> + H* *<t>' am u ^ R, tin^ >m m + . . ■ 

oriatur faaec: 

■in am n = n + .S,ii< •!• S, u> + S, u' + . . , 



d by Google 



i86 

ac sit ruTsus: 

«n» »ni u = {u + S, u» + S, u» + S, u' + . .j" = 

lam ex aeqaalione 2): 

. + ...= 



du' ' ns ^ du* • 115 



evolutis V, V*, T*, cet. in series secundum dignitales ipsios sin am t progredienles , in 
utraque aequationis parte Coefficientibus elusdem dignitatis sin'"*' am t inter se com- 
paratis, provenit: 



2n+l 
„in . J. T»<" d'.»in«mu , „„, d*.«iiamu d'x.finimu 

^ """"" + ""-' m.6a' + *"- n5.da« ■*■•■■♦■ ngn+i)du" ■ 
Eodem modo e formula 6) provenit: 

k"-»iiii"'amu 

^ 7Z = 



.„ _e^-'»U . R.4. ■)'•" 



n« ^ "-» n4.dll' 






19.4 ^ 5.6 ^ r.8 ' ' (So— l)2a/ 

E 6), 7) mulalo u in u -f- iK' setiuilW: 

8, i = 

(I n ■+■ 1) nn'" * ' •m tt 



n^nr + "-' ns.du' + "— ns.du. + • - + d7^ 



*) Fi( eniin e notalione propoiiti.* i1d' •ran sa u* -^ S" u* 4* S'''n* '^ S'''u* -^ . . , unde cnm lil V" 

= . . ■ ■ pr* Talore u s= O, U""" = IlXai . SlT' ■ 

Ji^m m-i 

Digitized by Google 



nC.iin'Mnu "^ n4.do' ^ n6.du« T • ■ -r ntn.du'"-' 

~ ^ (i:! '•' TT? '•' "tT? ''" ■•■ 4Sd-i)Sii./ ■ 

Quae sunt formulae, qnas (|iiae«mDiDS, geReralas, quarum ope sia'aoiu, — r^; 

e sin am u , sin' am n , — : , — :-; eorumque differentialibus inveniuotur. 

AdnotalK) hac occasione, ubi vice versa sio am v, sin' am v, nia' am t, cet. se- 
cundum dignitates ipsins x evcivisy e formnlis 2), 0) erui: 











10) 


n(j. 


,+l).J.' 


— 


= 






K 


**!■■ 


un 


» + 


S 

") 




.■m'amii 






■ + 


Sn + l 




n(j 


.+S)J«'» 


(!n+l)(!.+t) 




1 

2 


s;* 


'■in' 


•IIIU-I- 


^C 


.tin* •inn 


' + 


^s::...-™. 


+ • 


-i^ 



Paucaadhnc de inventione ipsaram R^', S^' adiieiendaimBt. FomIo siu am u = y, 
fit e definitioDe proposita: 



=/. 



- = r+ii.j' + >'.y' + Rir' + ■ 



/"(■-T-X'-k-j") 

Dmie ; 



/(i-rt(i-k'jT 

+ »B.,- + s».y + 7B.I- + . 



+-^-^l.'+- 



S.4.6 t.t't ■*' t ' S.4 "*" 4.4.6 

■■»■'■' , '■»■' i|,. + il .i:ik.+ J. iili. + . 

i.4.6.8 ^ «.4.6 ■ « ^ ».« f.4 ^ » ■ f.4.6 ^ 



db, Google 



us 



■j-(I + k") 



-(l+kV-^l" 
l.S 



S.4.6 
l.S. 5. 7 



■ l'(I+k') 



(l + ky - 



41^ .,, + ., ^_-_ 



cet. eel. 



sire etiam: 

SB, = i_^. k'k' 

58. = I - ^.«k'k' + ^ • k'' 

9H. = 1— ^.4k'k' + - 
cet. 
aive deiiitfue: 

SB, = fck +-i-. k'k' 



l.S. 5 
*.4.6 ■ 

1.8.5 

e.t.6 ' 
cer. 



1 



5R, = k« + J-.tk*k" 
7R, = k« + - 



-.8 k'k" 



1.8 



l.S 



k'« 



.— .sk.k-.+ 

9R. » k' +-L.4k'k"+44.fik«k'' 



2.4.6 
l.S. 9 



t.i* 



irk** + - 



cet. 



,y Google 



129 

Ex bis qaatuor tjuauiiiateti R„ exprimendi modiii, modus secuodus repraeseDUiioQflin earuiu 
satis tnemorabilem et concionam nippeditat, liiqaidem inlrodncitor quontitas: 

Ilae. g. fit -i^ = 

1.S.5 



1.X..6 1.X.S.4.S ^ 1.8.S.4 S.4.6 ' 

qua expressioue sex ncibos secundum r integratis, oLtioemus: 

+ Cr« _ C-r' + C", 



2.4... IS t.4. 6.8. 10.2 ^ S.4.6.8.2.4 2.4.6.2.4.6 

designaDtibos C, C, CT' CoDstautes Arbitraiias. Quibus commode determiualis, prodit: 

unde vicissim: 

• 2».n6.dr» 

eodeniqne modo obtiuetur generaliter: 

kP'd^frr— ly" 



12) (Sin+1}R 



»nnin.dr«' 

Conferatur CommeiitatinDCuIa (Creil* lournai V. II. p. 22S) iuscripta; 

jjUeber eioe besoudere Gattung a1gd>raischer Fonctionen, die aiu der Eut- 

1 
,,-wicklnDg der Function (I — £xz + z') entstehn." 

Inventis quautitatibus it„, per Algorithmos nolos perreaitnr ad eruendas quautitates B*"', 
S^' eas, ut sit: 

[i + B,. + R,«' + R,.' + ,.1" -I +r^'". + r;"'»> + r;'".i + ... 

Digitized by Google 



ISO 

pono uLi poBitnp: 

y -. {I + B,. + B,.' + ",-'+■■). . 

■" = j"{i + s;"'y + 5;"'y" + s;"',> + . .), 

quae cum defiuitioue (jnantilatum R^% S^' supra proposita conveuiunt. Fit aatem, 
posito : 

♦ W = i +«.- + a..' + H,,> + .,.. 
e theorematis a Gl. Maclaurin et Lagrange inventu: 



"'"' = 






8U|iii<Iem traasaclis difierpnfiatioDiLus pDottur x ^ . 



46. 
Formujaruin (i), 7)^ 8), 9), $. 46 beneJlcio naQciscimorevolutiones gencrales: 

^"T"'.i."".., '"' 



"(^/"--^(^)"-+-%^(^r 



^ (-1)° 1 /Tii- 



n(Sii+i)/ 1-, 
n(!iH-i)/ 



Digilizedb, Google 



.B". /ill 



Ul 

"c.(^r- 



*» in 






_ . '-\ ' I '"'V ' / J. J. (-ir«— I <fv«e. 

\ ns n4 T .-r jjj^ / !_(. 



(Jn+l) «»•" + ' .in- 



..(iLi- B-.fiir-v.-j- 









•{-^1^)"" 
*{«:"(^)" 






(^)" 



f—iy>yt, j ,'«io8: 



^^— :: — 11. 



n(«.+i) ( 1-,. 



"r""-l— J (— ^r)-^\,) i».« + 5.6 +7:? + -+(i._i)!.; + 



--■(^J- -:^.(^J"" 



(_iy.-.y— . I ,■„ 



R 2 



,, Google 



ISX 



.{W '-•-■(^J- 



1-1" 



( ni "" ni -r ■ -r ^^^ ^ i_^, 

E formulis 6), 7), 8), 9) §. 46 aliae dedocx possunt, tjuae respeclu fuoctio- 
nntn COS am D, tang am u, Aamu eastern partes aguat, quam illae res[>ecta fauctio- 
Du sin am a. Etenim e formnla : 

nude etiam: 

■in *in|k'(K — u>, ^j = CM am n, 

videmos , in formnlis propositis , obi pooitur -^ loco k el k' (K — u) loco u , abire sid am u 
in cos am n, nude inTeuiaator lunules formulae, (jnae ip.u cos am n respondent. Fon-o 
ex aequatione: 

■in am i n s= i tang un (a , k*) 

patet, simni mntari posse u in ia, k in k', sin am h in tang am a; nnde formulas pro 
tang am u emimns. Ex his deinde , tjuia 

cotang am (u^-iK'j = i A am (u), 

formulas [nt> A am u emere licet, cjuae lormulis 6) - 9) §. 45 respondent. (.>iiitius in- 
rentis, methodo plane similt ex evolutionilms fimctionnm: 

fK» , 1K» . £Kt ., tKx 

CO! am ■ , cw am ■ , a am ■ , A' am -■ — ' 



SKi ' , 2Kx ' . ZKi ' .. tKx ' 
coaam coi am ' i Aam ■ ■ " a* am 

a nobis propositis, evolntioiles generales dtsducis funclionnm: 

coa" am ^-^— , A" am . 

« It 

Qaae snfficiat addigitasse. 

Digitized by GoO^^le 



1«8 

Tratuformationes insigoes stfieram, in quas FuDctioae:i EllipUcas eToIviauiSj uau- 
ciscimor, posito ix loco x el adhibitis formali3, quns de reductione argutneQlt imaginarii 
ad argamentum reale ia primis fandameatis dedimus. Quae vero cum in promlu siDt, 
hoc loco diutius his Qolumus inimorari. \ 



IKTEGRALIUM ELLIPTICORUM SECUNDA SPECIES IN SERIES 
EVOLVITUR. 

47. 
lotegrata formula supra exhibita $.41. 1): 

/2kK\*.. *K< tK tK SK tE' .iCqtoiSx , *a'cot4x . 6q<co<Gi , ) 

I tr ; > * « ir ir I 1-q' ^ 1-q* ^ 1-q" ^ >' 

inde a X =:: usque ad x = x, proTcnit : 



1 tK tK _ ^K_ tE* I _ < qwnt. q'»in4i q'»in6i q«jing _« 1 

I ir w ir n f \ 1— q* 1 — q« I — q" 1 — q« ■■•^■ 

Desiguemus in sequenlibus per characterem : ■ Z | — ^ I rxpressiononi : 

I qiiAti q'«in*» q'wnfii q'rioSi i 

E CI' Legendre uotatione crit, posito =u, (p=:am»: 

f'e(»)-e*F(<P) 

f) Z(») . 

FuuclioDem Z (a) loco ipsius E (ij>) iu Aaalj'sio Funclionum Ellipticanmi iiitro- 
dacere coarenit; qnam ceterom ope formulae z) ad tPrmiuos Ci" Legendre usitelus re- 
vocare in promta est. Adombremns paacis , (jaomodo ex ipsa erolulione fuitctio- 



d by Google 



154 

uis Z, quam formula l) suppedilat, complares eiu* proprielates » ersi Dotas, deri- 
Tore liceat. 

Mutelur in l)xinx+— , prodit: 

uiule ; 

•i£'z/i!^)-ig-z/iiil^.K) = 8i ■»"■'■ + ■>'"''■ + ■''■■'°' +..}. 
ir. V«/ «Vir / I 1 — q' 1 — q" 1 — q" / 

Porro mutelur in 1) x iu Sx, q in q*, simultjue k in k'", K in R'", prodit: , 
nude : 
Al supra inrenimus: 

iiiL.;„.„ Hi. = </ '^•'" + /Ei^ /T"°«- + . I 

uude mutato q in q', x in 2x: 

I « ' ; I 1-q' ^ l-q« ^ l-q" ^ ( 

HInc se((uitur: 

„ tK („/tKx\ „/tS.x „\i 4k">K'*' , /4K'*'« .,\ 

" — in-T-) - ^{-ir- + ")! - -^r-"""(-^r-' '"') 

4, Hz(i^)- l£:z(i£li.v.-.)= ""7" ■i..m(ii^. I.") 

In (|iiibiis forinuli.s, qnnrum 4), 6) Iramformalionem functioois Z secuadi ord«nu sup- 
pedttfliit, est: 



,, Google 



IW 

Rti de traDsformatioDe secandi ordinis, a CI. X^eguiidFe proposita, constat. Unde-tormu- 
lam S) ita qucxjae repraeiientare licet, poiulo u = : 

6) Z(u} _ Z(u+K) 1= 1^ MBwnn .uncMmn. 

FoDamus brevitatis causa: amj — ~, k""'| = (f""*, e formula 4), posito suc- 

cessire k'% k'*\ k'*', .. looo k; 2x, 4x, 8x, .. loco x, prodil: 

(jaam dt-dit CI. Legeodre formulam. 

Simili modo, e formula §' 41: 

iE i£ _ iJL ^ = ,/^_ + ^!l_ + _3l_ + ^L + . .1, 

(juam etiam huoc in modum erolvere licet: 

jrK_«C^ «K JE' ( , 8,- »,■ 4,< ) 

» « . » I l-q- ^ l-l" ^ !_,• ^ l—q- ^y 

comparata cum hac, qaam snpra inreuimus: 

prodit : 

8) «K(K_ E") = (IK)' + «(V'-K"y + «OC"K«')' + «(k"iK'")' + . ., 
ijuae cum ea coDTeDit, ijuam CI. 6au«« dedit in Commcut. Determinatio AttrtictionU 
cet. §. 17. 

48. 

Eadem metliodo, qua §. 41 eruinius erolutionem exprcsaioois I 1 sin' am , 

inqniramos ia expressiouem \ Zf ~)\ in seriem erolrendam. Fonamus 

= 8, 'a + A'co»«»+ A"coi4t + A-eoifix + ...j. 

Digitized by Google 



quam expresxioDein proposilam intlaere rldemiu fonnam, dam loco 2 siu 2 m x sin 2 m'x 
uliique ponitnr cos (m — ^m') x — cos (m+m') x. Fit primnm: 

A = "J* 4. 1* . 1" , 1' , 

(l-qT ^ (l-q*)- (l-i'r ^ d-q')- ^ ' ' ' ' 

Deimle generaliter olitinemus A"" = 2B'°' — C'"', siqaidem ponilur: 



d-q-jd-,'"*-) (l_,.)(l_,""..) (1_,.)(I_,"*., 



-2^: +■ 

1(1 — (!'"-•) 



(l-q-)(l-q'»-') ^ (l-q')(l-q'— ) d-q'— )(l-q'j ' 

Id singulis hanitn expressiouum terDiinis sabstitnator resp. ; 

t"" ^ q' ( q" q'"" i 

d-q' )(1 — q""*") I — q"»ll-q" 1 — q'"«"( 

1° , 1° / 1" + 1'-° +ij 

d-q^d-q'— ") l-q"'ll-q" ^ l_q"- » ^ /■ 
prodit : 

R'n. - 1' f '■' J. 1' J. q* J. 1 

,„ , ,..„ ,.». ,.... 

q' ( q' I q* . q' I , q" i 
- i_,-\i-,' ^ i-q- ^ i-q- ■^••T ,_,../ 

/-.„, _ (°-"q" 



I — q'" ^ 1 — q'" ll— q' 

undo; 

tin> _ sum) _ rin) — _ t" ^q 



q- 


+ - 




+ • 


■ + 


,..-. , 


i-q* 


i-q-"- ) 


d-q" 


f " 


1 


^ 


■ + 


q-tt+q'") 
d-q"")' 



His coUcctis, invenitur evolutio qiiaesila: 






s'(t+q*)w>«*. 



Ci-«i')' ' (i-qV ^"f 



IpsutD A =: „ '' ,., -I- ■■■ '* „. -♦- „ ''l,,. -+-... cam etiam hunc in niodum evol- 
vere liceat: 



i-v >-q" i-q- 



db, Google 



1«7 - 

ioreniiDiu e §. 42. 6): 

_._ '!-!M-!(f)(4-)H 



Porro aatetn constat esse: 



iategrata eaim aeqaatiooe l) a x ^ luqae ad x ;= -^, lermini omnes, praeter primum, 
eranescuDt; unde si Q' Legendre uotationiljus uti placet: 

'\l S(f) '* = 5 ■ 

quae est lotegrelis definiti aatiii abstnui fletermiDatio. 

INTEGHALIA ELLIPTICA TERTIAE SPECIEI INDEFINITA AD CAStIM 

REVOCANTUB DEFIHITUM, IN QUO AMI'LITUDO PARAMETRUH 

AEQUAT. 

49. 

Anteqaam ad tertiam speciem Integralinm Ellipticorum iii serieoi erolvendam ac- 
cedamus, panels, quae TJieorlae illomm adiicere contigit, seorsim exponemus, iduue 
fere ipsis aigois Claro eios autori nsitatis. Mox idem novis adhibitis denominatioDibun 
proponetur. 

Froficiacimur a theorematibns quibusdam notis de specie secunda Integraliam EUipti- 
corum. Fit : , 



2 lin •m ti • c«* am ■ . a im ■ 
X fin am ■ . coi am u . A »in u 



■in m Co+a) ^ tin am (u— a) e 

s 

Digitized b, Google 



ande: 



■ ■ma . Anna . tin am n . coiunii • Aama 
U — k*aia*KBa . lib'amui.* 



qua iotegrata formula secundum n, prodit: 

I) /*dd.{5in'.Hi(u+a)-5m'«»(u->)} = »'-«'°> • ^'«°- ■ A.m. . ijo'tmu 

nti iam supra inrenimus. 

Ponatur: amu=ip, ama=3«, am(a+a) = (r, am(u — a) = -&, erit e oota- 
tione CI* Legeudre: 

k^dii . •in* am u «= F C«) - E{^) , 


nude etiam, com sit F(ff) — F(«) = F((P), F(*)h- F(«)= F(ip): 

VJ^A" • «ii'.mCu + .) = F(^) _ EW + E{«) 


k'/an . »iii*ain(u— .) =o F(*) — E(3) - E{«). 


Hinc aequatio 1) in banc abit: 

t) »E(«)-[eW-E(5)}= *\"2.'J2'T^X'^ ■ 

Commutatis inter se n et a, abit « in $, ^ in — *, .r immutatum manet, unde 
ex l) prodit: 

sE(« _ (EW+ E(»)) = "••'°';rf'^*.-.i°' ^. 

fjua addita aequationi l), proTenit: 

S) E(^}^(«)-E(<r)ak'«iD«.«ni9.m>r, 

quod est tbeorema de Additione fiinctionis E, a CI. Legendre prolalum, L c. Cap. IX. 
pag. 48. c. 



d by Google 



tS9 

iDt^nJia fonnae: 



tecundum oam, qtnin CI. Lcgeodre ii^stituit, lotegralium ElUpticonuti diatribatioiiem in 
species, speciem tertiam coiutitauitt. Quantitatem — k'sin^M, qnam per n desiguat, 
Parametnua roc&tj noa in sequeutibus ipsum angolom « JParametrum dioemus. Qtwnim 
iDtegralium , multiplicata aeqoatioae Z) per 

ikl<P) ~ aw ^ am ' 
ac iDtegratioiie iiutitnta a 9 =: nsqoe ad (p^<p, qno &cto ipsius a limites eninl : « = «, 
(r = <r, ipsiiu '9 limites : &= — «, -9- = -9, expressionem ernimnt seqaentem: 






ES). 



Am 



Facile constat, cum sit E( — (f) := — E((p), «s»e; 

J am "J A») ■ J im 

— ^ 

node cum sit: 

r 'EM.d, _ /tm . d» _ /"J 
n 

/ ' ES) . a? / - E(w . ai!> _ /• 'e(<i).jji _ r e(w . d^ _ / •'ec^.j^ 
■~AP) — "y i(») y iiw) y ^w) .• ^m 

_« O 

nacti siimiis noTum ac memoramle 

THEOBEMA I. 

Determinentw anguli $-, a it a, ut ait: 

r») + F(.) = EWi E(i>) - r(.) = »0). 



db, Google 



140 

erit: 



^ 

*<a Mi fertm species Ihtegralium EUipticorum, quae ah elementis tribuspen- 
det. Modulo^, Amplitudine (p , Parametroa, revocata sit ad speciem pri- 
mam et secundam, et Transcendentem novam 



J ' am 



Am ' 

quae tantum a duobus elementis pendent omnes, 
50. 

Ponamus F(a2) = 2F(a), quoties ip = », fit ff = «^, -9-^0, quo igitur casu 
e theoremate proposito naDciscimur: 

r k'Mi«coi«a«.A.'».d» = Ff lEf 1 - -i- A '^t»)-a» 



Qnaedocet formula, in locum Trauscendentis novae substitui posse et Iudc: 



qnod est iDtPgrale twtiae speciei definitum, in quo Amplilado Farametrum aequat, quod 
igitur et ipsum tantmn a duobns elemeatis peodet, a Modulo k et quantitate ilia, quae 
situnl et Parameter est et Amplitudo. 

Ponamps 2F(m) = F((p) -h F(«) = F(<r), SF(^) = F((p) — F(«)==FC^), 
eril ex l): 



tj &.m ^' ^' J (i-k'riDV-^'wK*) 



Digitized by Google 



1 / 'EW.Jy pn,,.™ P t'.iii9eo.«A».».>.d;. 



quibus in theoremate, $" autecedeate proposilo, subslitutis formulis, oLtiuenius se- 
qoeos 

THEOREMA II. 

Determinentur anguli at 'd t^<^f u^ ^'^• 



F(»)EW - rwEW + rcd)Ec«) + 





.rwEW + rcd)Ec«) + 

o 

- k'naaMi^ia./" '"^'9 -Ay 

J jl— k'iui'9. dii'v) A{v) 



gtia/brmula Jntegralia tertiae speciei indefinita revocantw ad definita, in 
guibus Amplitude Pa^ametrum aequfU^ ideoque quae ab elementU tribu* 
pendebantt ad aUa* Transcendentea , quae tantum duobus constant. 

Conunatatis iuler se « el $, abit 9 in — -&, v immutatnra niaoet, unde cum 
insuper sit: 

e theoreDiate I: 






Digitized by Google 



— m — 

obtinemus : 

^ 

Hinc, subduclione facta, prodit: 

/k**iD«cota^o( . imffp • dyi /* ^'sin^ivxfiAy . tin' a , d« 

{I — k'«n'«..iD'¥)A(i/') y (l-k'«D'v.«i.'«jaC«) ^ 

n 



F{v)E(«)_r(=t)E(v)i 



quae docet formula, Integrate tertiae speciei semper reVKfcan posse ad aliud, 
in quo, gui erat Parameter, Jit AmpUtudo, quae erat Amplitude, Jit 
Parameter. 

Ubi ia formula 2) ponitur $ = -^, obtinemus: 

/^" L'nin tf rjl1uAK«in'w*dc0 I 1 ' 

|l_l'.in'...l.>lA(.,) -. "' "--•,,. 

O . . , ^. _ 

Formulae 2), 5) cu*" »i3 conTeiiiuntj quae a CI. Legeadre exhibilae suat Cap. XXIIl. 
pag. 1*1. (n'), (Vl- 



INTEGRALIA ELLIPTICA TERTIAE SPECIEI IN SEKIEM 

EVOLVCNTUR. QUOMODO ILLA PER TRANSCENDENTEM NOVAM Q 

COMMODE EXPRIMUNTUR. 

51. 

E formula: > \ 

Hii'ani U+^) — «in'»in (»—■*) = 

»KA tKA >KA . tK» JK. JS^i 



»lt. ,< 



d by Google 



— 143 

quae ex ekmentift consiat, erainuu integiando: 

1) i^y^di.{.ia'«.^C-+A> - .m'.m^(.-A)l = 



lam dedinuu §. 41 formulam: 

Iw/" « irit «« \ 1 — 9' '*' 1 — q« 1 — q' '7' 

UDde: 

. I «qc».»(i— A) 4i|'i».4t.— A) 6,'co.6(.— A) i 

I 1-1- "^ !-,• "^ !-,• "^1 

_ , ( «qcoi«(. + A) >,'a»4(T+A) 6q'<ai.6fr + A) 1 



is,«.«a™j, 

"1 I-,- 


. + i£l 


im4A.m4i , 6q'sid6A.lii6< , 


1 
J 


inc fit Kt I): 








''^■■ 


Sk'iinii 


tKA SKA . 2RA 

ir K ff 


«K. 




1 l.'^.'™**'^^™.™*'^" 





\ I — q 1 — q* 1 — q* 



r ,«n«(.+A) 

1 l-q- 


q..:c4(,+A, q.™6(. + A) 1 
^ l-q. ' I-q- ^ 1 


( qsitfSAcoiXi 
I l-q- 


, <i'dn4AM«4>i , q>tiD6Aeor6> . ( 



ubi ita detemunari debet Conetant, at expressio proposita pro x := evanescat, node 
e i. 47. 1): 



.( q.»«A , q-».4A q'J.CA- 1 _ , '" ; C'"* ^ 

( 1_," ^ l-,< "^ l-q- ^ ■ '( ' « V « ;/ 



,, Google 



144 

Formula 2) a x = usijiie ad x = -j- iotegrata , cam prodeat -j- . Const. , reliqms eva- 





(|aod idem est atque S) §. 50. 

Designabimos in sequenlibus per characterem n (a « a , k) seu brerios per TI (n, a) 
integrale: n(u, a)*) = 

u V , 

/k'nntmacoinnai&aina . iln'ainu -da __ /~ k'tiagic«tac ^« . itn^ . dy 

1 — k'lia'amu . Ai^tp J jl^k'iin'ac . Hn*y|&(9) 



liuaidem (^ = am a , « = am a . Qailius posttis , aequatione 2) rursua integrala a x := 
usqae ad x = x, prodit: 

-^^(-irj- > — 1:17 — + »«-,.) + 5(1-,.) +■■)' 

qCM»(. + A) VtMt[. + A) q'CMtfr + A) _ 

■•■ »_,■ "^ «(l-q') "^ Sd-q-) ■^■• 

IKx „ /*I^A'\ , f q»in8A»ing« q'tiaiAwil*! q'»io6Aiin6« 1 

-T- ^ VT-) - * I 1^? + 8(1 -S') ■•" 8(1 -qV + ■ 7 • 

uuae est Integralis Elliptic! tertiae specie! erolntio quaesila. 
TJbi aduotatur evolutio nota: 

•. »( _ . q*co»4it q*cas6x q*col8i , 1 

- |,^Cl_«q«.«.+q*) = t(qco.Ii + X-^ + -3-^ + -3-^ + . . •}. 



r <iv 

•l Cl' Lcnndra nmllo alia «*t denolatia ; pooil «iin ille n (o , «p) =» / — ■— - ■' ■Trr/ 'r i '•■ "' ■ Vx^ ■ 
' ' "^ "^ '^' y (1 + n Mil* vJ A (»> 



bii nt n(ii, >), ilK erit: 



^ : n(— k'rin'K. v)- 

Mgao multiplicatorio II, ncpiui a oobli adbibilo, commulelur , *ix i 



yGoogte 



videmas formolam 3), siogulu evolulis deaominatoribos l-^ti*, 1 — q*, t— q*, cet, 
hanc induere ibrmam: 

„ n(i5L,iii| = 

52. 

lategrata fbrnmla 1) $. 47: 
a x=:0 usqae ad x^x, prtxltt: 

abi Conatant ita detemuDala , at pro x =: eranescat, fit = 

''uhf + T(I^ + 7(1^ + ••) = - '-»■-*<'-«<'-'« ■ ■>•■ 
ideoqae : 

n /%/«I-\ . . ( (1 — ^ l^I^l■».^-q■)(l-«q^co^^■ + ^^)(l-«VCTll. + l|") . . . ) 

' ";?V \-r)-*'^'°'\ i(i_,o(>-i>)(i-«---r r 



DesignaliinHU in postennn per characterem © (a) expressiooeni : 

e(.) _ »(0).» 
designante 6(0) Constantem, qaam adhac inJeteniunataM relinquimm, dam commodam 
eios detenninationem infra obtinebimus ; erit ex 1); 

* »ro l{i-i)(i-q')!i-q').-.l- 

T 

Digitized b, Google 



• — u« 

nmle formula 4) §. 6\ in hand abit: 



n(J^.iMj=i^z(l^) + .l.l.,.. *(' " *') 



SKi SKA 

sive, rursus posito -* ^^ u, ■ ^ a: 



K"C.+^) 






siqnidem ponitur: = O'(ii)- Quae eat commoda expressio Integralis Klliptici n 

per TraDsceodentetD Dovani 6. 

Facile constat, asse e(-^tl) ^ 0(a), UDde dMhmatatis inter ae a et u, e s) 
prodil : 



qaibus a 8) mlKdietu, fit: 

*i n(». .) _ n(t. «) = uZ{.) - »z(u), 
quae eadem est atque formala 2) §. 50. HiDC, posito n(K, a) = n'(a)j eTanescenle 
n(a, K), Z(K), fit: 

n«Wi=KZ(.). 
quae est 0' Legendre, quara supra exhiljuirans S) §. 50, formula. 
Posito iic=a, e S) fit: 

Videmus igitur, Transcendentem noTam sive per Integrate / — Tv > definiri posse ope 
formulae : 



9W 



/--'•= /-^ 



EtTl— E'F(t.) 



...0 



sire per lotegrale definitum teniae speciei ope formulae: 

8(1.1 «.zw-in(., ■) 



db, Google 



147 

E formula S) DfiociBcimar: 

_^..(4i)+„(4i.4i), 

nude S) in haoc abit fonnolani: 

«) n(„,.) = .Z(.) + i=i-.z(^)--i±i-z(^) 

que rat pro reductione lategralis t. »p. indeSniti nd definila , ilque cum Theor. II. 
§. SO. cOBveoit. 

COBOLLARIUM. 

Uti iom sapra ex erolutioiiibiis inreDtis Algoritlimos ad computam idofieos dedaxi> 
mus miDOs ut Dora proferaDtur, qaam quo melius earnm perspiciatur natara; idem rur- 
sos agamus de inventa erolutioue fuactionis 






..d. 



»m 



1(1— Od-lKl-l'l---! 

Quern ia finem antemittamos sequaulia. 
Fonatur prpductnm infiuitum; 

-(4^)(4^)"(4^r(4if)' •• 

siquidem iteratia Ticibus »ubatitnitur:, 
prodit: 

-(-')(4^)'(4ff)'(4^)'(4Tf)'- 

T t 

Digitized b, Google 



148 - 



= ('-')('-')'(S-3'(4^)*(4^) 



ande videmua, fore: 

1) T = (l-q){I— q)S(l — T)»a— q)*(l-q)A... = (1— q)*. 

Sire etiun cnm sit: 

-('-)(4^)*(4ffr(4f^)'- 

fit T = (l— q)/T, nnde T=(l— q)'. 
Ex 1) St: 

^ .-. = (4^)'(^)'(4^);- 

ijua in fonnola loco q saccessiTe pouamns cj, t\'i q\ q', . . , et instituamas infinitam 
mnltiplicatioDein. Advocata formula supra exhibila: 

•/v=(4f^)(4^)(4^)(^)-. 

prodit: 

aiqaidem designaiuus, ut supra per k'"'' qnaotitatem, quae eodem modo a q" peudet atqae 
k' a q, lire Com plemenlum' Moduli per transformatioDem primam o^ ordinis eruH. 

Forro inrenimtis $, S6: 



;(I_^(l_q.)(l_,.)(I_,., . .( = . 



lam: 



Digitized -by Google 



148 

Posito 111=1, n = l^} " ^ ■ - = m", /mn=iii'; - f — =a f!', /m'i»' = u", 
cet.; Qotum est fieri k'^ss— r, k'*''^-T* k'*,''s=-?a, OBt.,' anSe: 

Hinc etiam flait, desigoante /« = -7=- limitem commuaem, ad quem (juaotitates m'*", 
n'** coDTergnnt: 

If 16 m a S m' 8 n" 8 ni'* I 

Zju I mn — dh S n « b K d J 

quae formulae compatum expeditusimom suppeditant. Docet 5), qnomodo ex eadem 
quantitatam serie, qaam ad iuTeaiendain ralorem fonctioius K oalcnlatam haba« delws, 
ipaias etiam K' valor confestim proreniat 

Formnlam s) traosfonnemns. Fit, at Dotnni est: 

Hinc obtinemus, siquidem iteratis ricibm simul loco k sabstituimas k*^ atqae radicero 
qnadraticain extrahimns: 

16k- I / t lev I 

( i6k"' ; \ I \ i8k">' ; 
i,.,k,., ,1 



{^^}*{-'}'-{^ 



oode posito p s= 2*": 

— irf 
K Ik'P'k'P'l'l 

Hino vidonus e fonnnla 8), q = e limiton fore expressionu { — jg — > , cre- 

scente m sea p in iafinitnin, qnod est theorema a O" Legendre inventam. 

Digitized by GoO^^le 



i»«0 

Netf pon rel ipso ifltuita formulae a nobis exhibttae>: 

I.. ,,r^l (■-H'K'.+T')('+q')('+l-) ■ ■ .' l' 

( (l+l)!l+l'J(l+«')(i+l')..-) ■ " . 

patet, neglectis qaanlitatibus ordiois cj'', fore: 

■> = y -Ts-- 

qumi cum (licto theoremate conreait. 
lam in formula nostra 

loco q substitaamua successiTe duplicein qnaotitatum senem: 



et infinitam inatituamns mnltipIicatioDem. Adrocelur formula $* 



(1 — llCll.«i+<|1(l — tq'o.lH-yC— '<'P»«»+,' l")- 



/f (l+Sl«"««+q')(i+«'l'«»s<+V)<l+«q"i».«>+H|") ■ . ■ • 

ac deaifuemns per A'^* expressionem 

«_ (1 — tqyco»*pi-t-q*P)(l— tq'Pc<n«pi+q'P)<l — tq'Pccntp« + q"P) . . . 

/^;p7 ^ (i+*q''c«»sp»+q''')CH-«q'P«>.«p>+q«P){i+*q'i'«o.«,i+q»P) ... • 
provenit ; 

AlA<..*,iU>la...ft ^ (l-iqca>t. + qTfl-»q'co.t.+^)<t-tq»co*«.+ q"} ■ . i 

Factorem constantem , (|nein adiecimiis, ^ ^_ '" ^^ 7 il■ ' «»n__ n '> ?* ""P^ ii»*«6tia *ive 
eo detenmnaTimiis , quod utraqae expressio, posito x=0,. unitati aequalis eradat. 
lam Tero iDTenimiu: •■■■ . ^ .. . 

^\~^) a-«qc0.t,+q')(l-tq'cM»« + q')(l~iq'co.t..hq"}..,. 

e(0) ™ }{i-q)(i-q')Ci-q')---r 

node 

Digitized Isy Google 



— — 151 

HiDc posito — -^ss a, '6m II -= <p, fit adrocalia formulu, (|iias CI. Legendre 
de traasfbrmatioDe secanJi ordfnis proposoit, nanciscimnr seqaens, qu^d computum 
expeditam fuDctioDiB 6 soppedilat , 

THEOREMA. 



Ponatnr am (u) = (p, di=:1, n = k', A(iJ)) =; v mmcos'^ + nnsin^f = A, 
et calcnletar seriea qnantitatum : 



n' = V mn , »' =a y m'a' ,■■"«« V» 
A' = 
erit; 






■ /'y'E{y)-E'PW ^ . 



Cuios theorematis aluqae erolationatn ooBBidcratjoiiE per famuias DOtas ac Jiai- 
tas (temoiutraQdi negotio^ cum in promptu sit, siiperscdemiis. 

DE ADDITIONE ARGU9IENT0RD1I ET FARAUETRl £T AUFLITIIDINIS 
IN TERTIA SrECIE INTEGRALIUM ELLIPTICORUM. 

..;.•.- -^ ■ . 5a- 

FonDulam io Aoalysi Fanclionis 6 fintdamennilem , et cuius wAm in seqnen- 
tibta freqncbtisflKnas tuns erit, nancisciMw consideratioae sequente. Etenhn (juie po- 
sit um e5t: 

X* k*iiii*inacoiama Aaini • lin'ainii . dn 

V 1 — k**lii*ama , «iii*ama 



fit: 



d« 1 — k*Mi*anta . ^'am'u 



db, Google 



132 

Qna formula secnndam a integrata ab a == lu^tp ad a = a, prodit : 

1) /d«. ■ ''"f"' .. ^ . a l-logCl — k'»hi*»m«mi*ann«>. 

. ■ . , 

Fit autem e 8) §. 52: 
unde : 


quibos snbstitntis, dam a logaridimis ad nvmer^s tianis, e. l) t>l>tineii>: ^i i 



Formnlam S) ita repraesenlare possamas: 



k». 


MiiiniacMaina 


Aims . 


■in* 


•mn 




l-k'rin'« 


»a«n*. 


tDU 




Dnde commatatis 


a et n: 








V 




lAamn 


.«n' 


••in« 



= 8« + .Lz(u_.) i ili(.+.). 



■ . . , ^-j ! Z(u) _Z(u — .) _-^Z{u + a), 

1 — k'Mn'aminn'amn t j v -r /• 

qnilms addids fiormnlis prodit: 

4) Z(n) -I- Z(>) — Z(ii4-a) = k^Moamn . linania . Mnain(u+a), 

qnae est pro Additione fiiDctionis Z, atqne conTenit com formula 8) §. 49: 

E (V) •)■ E («) — E (r) IB k* un y . (ID a . nn «- . 

: , prodit e 4) : 

5) Z(n) — Z(if{-IQ e k'«iaamu . uncoamu, .■'•:.■ 

quam §.47' ex erolntioiie ipaios Z deiirATimns. Fosito — n loco'B, K. — n — - r 
B formula 5) obtinemus: 

6) Z{u) + ZW=k'«ianm..hi««T. , 

PoMtou=T = 4-> *»• 22(4-) =»-'^'*)- " ' 



•> i^»*-^.-.-4 = /;5. -a-L./j^. ^^^./ir. ....-I---^. 



Digitized by Google 



Ids 



ForBiulani 6) ind« a n = vsqne ad n ^ n integremns. Cam >it /z (u) . d u = 



H-^f prodit: 







1.. *• 


-loj 


e(K) 


= _lo8a.n,u. 


lire; 




















»<;+-' =^™ 






Positt 


u 


= — K, 


ernimiu e 7) 


valorem 


ipsias 






•> So- 


°7r 








uode 


T) 


fomtam induit. 

„ 8(. + K) _ 
" 9. = 









Fonnalam 9) ex ioTenta evolarione: 

\ ^ / _ (1 — «qcoi«» + q')(l— t<l*ewt»+q«)[l— fn'c<nll+q") . 



»(0) W-qja-qld-q')...)- 

bcile confirmamns. Fit enim, mntato x in x -i-—: 

I « / (lH-«qc.«..)-q1(l+»q»»»t, + ,-)(l.).t,.a.t,.|-,-) . . . 

em l(l-q)(i-q')(l-q') . . .P • 

unde: 

' ' •' .;■ ('+«q''"»'+q')('+'q'"'''+q')Ct+«q'»°>««+q")... 

g/ "I' \ (1— SqeoiJi+q-JCl— «q'«.i«i+q^CI— tq'e-l.+q")... ' 

qaam ipsam expTMsionon ioTeoimtu §. SS. = r::^ — ^ nti debet 

E formula 9) exfMressiones n(n+K, a), n(n, a+K) statim ad ipsum n(u, a) 
rerocaraos. Fit emnli.: 

Google 



iSi 



»)) n(«+K. .)=(»+l[)Z(.)+. 



e(m+K-.) 



-n(u,,) +K.Z(.) + — log. 
11) n(a, .+K)-.Z(.+K)+-1-I«« 



^■"(— ) 
(1—1') _ 



»Z(i) — k'm.ini . ■iaco.m. . 11 + —loj-—_—i + _-!„,. 



8(u+.+K) 



(ii + .) ^ « " i.«l(li + .) 



54. 

E formula fuodameutali, cuius ope functio II per fiuuAuioes Z, @ defiuitor: 
I) n(..., = „Z(., + -l-lo,.-|g=±, 
advocalis sequeutibus et ipsls in Analysi functiouam Z , @ fuudamentalllius : 

il) Zu — Z(a-f-*) 9= k'dnaina. MOimn . itnani(ii-^a) 

iam facile formulas obtines et pro exprimenno n(uH-V} a) per n(a, a), II(v, a), quod 
vocabimus de Additione jirgumenti Amplitudinu , et pro cxprimeodD fl(u, Q-^b) per 
n(u, a), n(ii, b), quod Torabimus d« ^(ft^io/M j:/r^u/n«nf( Pof-ame/ri tbeorema. Quein 
in finem aduolamus se<{aeDtia. 

E formulia: 

n,.., = . «.z.+4-W.-|i=^ 
n(T,.)— v.z. +-i-|,g. ^''— ') 

n("+T, .) - (M-»)Z. + t'°*' „>.T-.T-., 
setiiiitur; 



9 (■+,-.) 



, Google 



IB* 

ExpressioDem sob sigDO logorithmico coDtentftm: 

8(.-i) . »(T-.) . 9(.+,+.) 
S(a+.). »(,+.). «(•+.-« 

ope theorematis fuDdamentalis m. duplici ralione ad Innctlones ellipticaa revocarc licet. 
Fit enim ex eo primom : 



»(■+•)•»('+>) = 



9(. + .-i)». = 



e(.+T+.)8. 

qnamm fomuilanitii prima et qnarta in se dnctia ac per secandaiu et tertiam diWsisi 

proveDit: 

8(.-.).»(T-.).9fii+r+.), 
' «(«+.). e(T+.).9(u+T-.) 

Sic etiam, qtiae est altera ratio, obi theorema faodametitale III. htinc in mo- 
dnm repraeseiitas: 

1 8».9.)'_ 9(.+T)8(.-.) 



fit: 



I 9(.-.)8(.-.) ]' 

X 90 I 

I e(m+.) 8(T+.) 1' 



I 81 . 9(.+— .) >■ 
* 90 ) 



1— k'*in'in>n. 


""■•"" 


9(.-,) 


. 9(a+T_!.) 


1— k»riB'«m(u 


,-.)..!.■.„(.-.) 


9(._r) 


.®(i+'+«>) 


i_k'.i.-,m(u+.).™-.m(,+.) 


9(o+») 


. 9(.+.-t.) 



U 2 

, io;";'-! ..Google 



iW 

( e..8(ii+T+.) i' e(a+T).e{u+T+n) 

\ 90 i I — k'iin'ama.«ii»'ain(u+v+») ' 

<juamm formnlanuu rursus prima et qaaria ia «e ducUK. ac per Kecundam et tertiam ^- 
visis, extractisque radicibus proreoit: 

e(u-») ■ e[t-») ■ a(u+T+») ^ 

^ {l-k'«n'.m{u+»).«m'»in(Y+.)l(l-k'riD'>ma..m'»m(o + v-»])- 
»' (l-k'«u'Mn{u_^.«ii'>in<T— )((l-k'"«>'w>««.*i'>'»"i("+T+«)I * 

Vt ex ipsis elemeiitis cogDOscatur, qaomodo exprassiones S)* S) altera io alte- 
ram traosformari posaiot, adnoto seqaeutia. 

Uiii in formula, tarn saepios adhiLita: 

, , , . , ^ (in'amii — iin*«mv 

unaiii(tt-f>T).itDam(a-.T) b ■ r :, . , r-j 

1— k'Ho'ainii . sia'amY 

loco u, T reap, pooia u-j-v, u — v, prodit: 



•in* am (u + v) «- »in* am (a — v) 

FoiTo dedunns formnlam : 



■■namSa.riowi.., _ - — .. 

I — k'iin'wii(u+v) . im'amCu — ») 



unde maltipUcatioDe facta, obtiDemns: 

ti n • CO! am U-. A«Bi u . mi am i 



4) 1— k'iiii*aa>C>>+v) -Hn'sBiCa— v) = 



11 — k'»in*»mii)(l — k'«iti*am*l 
fl — k'tia'amu .on'umvf 



bunSv^l— k*am*amu . lin'.am v f 

cnius formulae Iwnefido formulae 2), 8^ iam facile altera in alteram alieunl. 
E formula 4) adhnc deduci potest haec generalior: 

^ f 1 — k'an'ami) . dn'amTif 1 — k'tin'amn'. tin' am v'} 

f 1 — k'nn'amn . Mn'ama ) {1 — k'lin'amv • MD'amv') 
(1— k*.ii>'am(M.t.w').riii',m(a — n')|M— V'«a'*'"(T-t-T').Mn'am(T— v')| 



^ (1 — k»«o'am(a+Tj . im'am(B — t) J{1- 



■ k' rin* am (u'+ **) . ""'•"'{'>'— ■'}! 



1 — k*Hn*amo 



dbyGoo^^jle 



167 

At CI. Legeadre eo loco , qao de Additioue ArgumeDti Amplitadiius agit , (Gap. XVI 
ComparaUon dea fonctiona Miptiquea de la troiaUma eapice) cam. quae 3ub sigQO loga- 
rithmico inveoitur, qQauUtatem sub forma exhibet Kac: 

l + k'fiDama. (iaamu . wnam v . 3inBm(Li4- v + a) ' 

(juaiu noD prime iotaitu palet, quomodo cum expressiooibus a nobis mventis sire s) sire S) 
coureoiat. Transformatio satis abstrusa hiinc in modum peragitur. 

K formula elementari, cuius frequeDlissimam iam fecimus applicatiooem, fit: 



. «naiii(u«HT- 



"°'"'(4^)"°''"(V) 



1— k'Hn'aB.^-!^±ljtin'>m/l±l - tj 
qaihus to se ductiA aequatio^ibus, prodit: 

{.-...„(^).,..™(^)} {._.....„(^)....„,(4. - .)} X 

<1 — k'unama . linamn . linimv • ■iaain(a^T— •)' 

{— "-m— (v)i{'-— m-»(^ -)i 
-'•{•■--(^)— -(^)}i-"(^) - --(-^^ -)}■ 

Altera aeqnationis pars eroluta, terminis 

f>e tnulno destmeiitibus , fit: 

14-l'*nn**<n| — - — |«in'ain| — ~ — |tia'un| — - — — ») 
— k*Mii*ain| — T"—) — k'MD'ini I — — 'liia'aoi | — — — — *| ^ 

{.-.^«.(^)}{.-....»(^)....(4i-.)}. 

. ::-jsijti'Bd=i'Goo';5le 







1«8 


node tandem proiUt: 






6) 

1 




1| 



. {I— k-ibvni 



l^L'tia'aml lim ami — i.^ ^ '\ 

\ i I V « ; 

HiDC mutalo a in •»&, eniimiu: 

.-.■..■.„( 4i).,...„(y ) 

nnde dlvisione facta: 

t — k*niiMna.rinamH*MBunT. Mnam(u4'T— ■} 



> . Moamu . rinamv . «inMnCa'f-v-|-*) 



-^-'•■•"(^)-'-'(4^-') ■-^■-■-(4^)-^-"-(^ + -) 

quae est transfonnatio {juaesite expressionis a CI. Legendre propoaitae in expressionem s). i 

Formnlam 6), posito n, a, ▼ loco -^y^, -y— » ^~- — a, ita ijuoqiie reprae- ' 
aenlare licet: 

8} 1— L*un>m(a+it). «'main(«— n) . «inam(a+t) . linaroCa— *) = 

(t — k*«in*an*) fl — k*«iii'aina • lia'ami) ' 

tl— k'nn'snia , liB'ainut {1 — k'utt'ama ■ nn'am v] 

-nnde formnla 4) nt cesos specialis fluit, posito a=:T. 



by^oogle 



IW 

• ' 55. 

E formulis $' aalecedeiitis \), i), 9)> 7) SHjuitur: 

1) ntn, .)+n(v,«)- ncu+T, .) = 
{'--"(^y ^-(4^ - •)} {.-v-:-..(4l)..i-^(^ ^ ■)} 
{'— ■»(^)-"(^ + .)l {.-.....„(^).....,(^ - .)J 

(1 — k'iiii'im(u+»).iin'«Bi[ir+«)]H — k*.i.'.m.«Q'»m(a + T-»)l ^ 

{1— k'ua'am(u_a).uD**iii(v— a))!!— k'Mii'«inaMn*un(n+T+>)} '^ 

— k'nnaiiiB . timmu . linam v ■ ■ipain{u-^ t — a) 

14-k'iuiama . uDiiDu . naamv. niiain(u+T + *) ' 



-r'-n-- 



quod est theorema de Additiooe ArgumeBti AmpUtudiaU. Prorsiu eadem methodo inresti- 
gari potest alterum de Additiooe Argameiiti Parametria at ope theorematis de reductione 
Parauietri ad Amplitadinem, quod nobis rappeditavit fonnula 4) §. 52: 

IV) n(u,a)-n(.. d) = uZ(.)_aZ{u). 

e formula l) idem sponte floit. Etenim e IV. fit: 

n{a, ») - n(u, •) = aZ(o> - I.Z{a> 

n (b, u] — n (n, b) = b Z (■} — u Z (b) 

n(a-H». o) - n(u, n+b) = (a+b)Z(o) - uZCapH-). 
uode: 

nCn. a) + n{ii. b) _ n(a, a+b) «. 

nCa. u) + n(b. «) - n(a+b. u) + u(Z{a) + Z(b) - Z(.+b)t, 
aive cum sit ex l): 

__ _, . , I , 1 — k'*inainD.iiiiaina,itnaiDb.iinani(«-l-b'— w) 

n(...)+n(b,.)-n(.+i...),-lo,. .^.^.^..^...^..^..^^......^iji.^.,; ■ 

porro e U.: 

Z(a) + Z(b) _ Z(a+b) >= k>«inina . abaaMk. •{■•»(• +1>)> 

fit: 

S) n(u, a) + n(u, b)- nco.%+b) = 

,, . , . , , ,, , 1- i_ 1 — k'«inainu . lin an a . md «n b . ■iiiain(a4-b— >} 
k'unama>uiambnnaiii(a+b}.H + -r-tog • ■■ , ■ i . . : —: r— t V T-r-r-T • 

ijuod est theorema quaeiiliUK de Addifioae Argumanti Pmmmetri. 

Digitized by GoO^^jle 



Alias eruimas formulas satis memorabiles consideratione seqaeute. Fit euim e 
tfaeoremate III: 

- ( ©CO) / " l_k'Mii'»m(u — a).«n'am{v — i) 

I ec+'j-ecv+h) )*_ e(u+v+»+b) . e(a-T+.-h) 

I ®(0) (" l-k'«n'«m(u+B).HD'amCv+b) " 

lam e theoremate I erit: 

n(»|-'. •+1') + n(d_.. .-1.) «. (.+,) z (»+.l) + (u_,) z (._b) + llo, . 8 (»+■—-■») ■ 9 (a-.->H.) 
untie : 

S) n(«+T, .H-bj + ncu-Y. .-k)-«n(.,i)-»n(T, l) = 

(«+l)Z(. + b) + (._,)Z(,-b) - J„Z(.) _ «yZ<b) + 

_i_ t-k-.f.-.»(.-.i..h-.„(,-b) 

t ^' I_k'.r«-.m(u+.)..i.'.n.(,+b) • 

sire cum sit: 

Z(i) + Z(b) — Z(.+b) = k'.uinia.ns>i<.b.iiiinii(..|.bj 
ZCm)— Z(b) — Z(i— b) = — k*>ui»iiii.iiD>mb.>iiiaia(s— b). 
proJit 8), S): 

4) n(n+Y, .+b) + n(— T. .-b) _ «n(.. .; _ in(,, b)' = 

— k*Miiama . linambf dnam(a4-b) . (u+t) — ainam(a — b) . (a— y)} 

1 . l-f».-a..(.-a)ri.-.»(.-b) 

-r 1 -» l_k'.ip"an.(a + a).ia'a,n(, + b) ' 

Commutatis inter se a et t, obtluemus; 

5) n(a+T, a+b) — n(a— V, a— b) — 8n(,, a) — «n(«. b)»= 
— k>iiDama.iinamb{ainam(a-f-b) .(ii+*) + nnain[a— b) , (a— v)l 

. J_io. 1— k*iin'am(y— a) ■ riii'aiii(a— b) 
« ^' 1— k'ain'atn(r+a}.ah>*ain(aH-b} " 

Addilis 4) et £) obtinemos: 

6) n(a+T, a+b) — n(n, a) _ n(., b) — n(Y, a) — nfv, b) «= 

— k'iina]nauaambaiaani(a-t-b].(n-f>T)' 
. ' |„,f '-k''ij'a"("— a)'iii'ai»f»— b) 1— k'.iii'am(Y— a)al.'aii< (.— b| i 
^ 4 ^>l-k-dr,'am(u+a)dn'am(,+k) ' l-k-d.-n>,(,^a) .i.-a«(.+b) j ' 

Digitized b, Google 



• l-k'-rf 


'«nl> 


dn- 


•■(«+•) 


l-k*.ill' 


ama 


.!•■ 


«n(._b) 


1— k'jhl' 


'una 


■'■' 


.o<u+b) 


l_k'«n' 


amv 


tin' 


m(._.) 


1 — k'un' 


'■mv 


lin' 


».(.+•) 


I-k»«n»i 


unn 


.jifl 


•«.fv-.) 



161 

Posito T = 0, e 4), 6) prodit: 

7) n(o, .+b) + n(...-b)->n(.,.) = 

>uitin«nnuab|^am(iH-b} — ■iDain(a— b]]u •( 

8) n(a, .+b) — n{ii, «— b) — sncn. b) = 

_l'Ai«..am»nb|™™(.+b) + «.«.(.-b)|. + -l.|.,. 

Posito b^o, e 4), 6) prodit; 

9) n(.+T, .) + n(._T, .) - «n(a, .) = ikj. 

10) n(.+T. •)- n(«— .,.) — fn(...)=.-i-'°e' 



REOUCTIONES EXFRESSIONUU Z(in), ©(in) AD ARGUUENTDU 

REALE. REDnCTIO GENERALIS TERTIAE SPECIEI INTEGHALIUM 

ELLIFTICORUK, IH QUIBUS AHGUMEHIA ET AUFLITlrDINIS 

ET PARAMETRI IMA61KARIA SUNT. 

56. 

Rerertimar ad Analysin fanctionain Z, @, qaarDm iiuigDem nsnm in theoria no-' 
atra antecedentibos comprobarimus. Qaaeramos de TedactioBeex{ii:cs8ionDinZ(ia), 6 (in) 
ad argnmentam reale. Idem primnin sigois O" Legendre nsitatis exequemur, deinde ad 
notationes nostras accommodabimus. 

Norimna in elementis §. 19> pag. S4, simal locam habere aequationes : 

"» = ""«*• -jsr = !¥:?)• "*'- '"♦■■'■■'• 

Hinc Bt: 



nude iotegratioDe facta: 

9 V* 

/( r* k'k'fio'rl' 1 



db, Google 



163 

sire: 

I) E(y) = i(l6,;.A(.^. V) + FC./., k') - E(^!.. k^l. 

MnItipJicomlo per ~^^ = -' ■ '''^^r et integrando eniimus : 



Ex aeqaattone l) seqaitur: 

F' E (a) — E* F f(cl _, f 
'^ ^^L. ^ F'lg,(.A(^. k') - {f'ECv>. V) + {E«-F-)F{v.. k'>}- 

lam adaoletur theorema egregiant Cl' Legendre (pag. 61 ): ■ 

F'E^CV) + F'(k')E' _ F'F-(k') = -^. 
uude: 

F'E(^, k') + (E--F')F{V., k") = -Zl_(F^(k')E(v., k') - E^(k')F(V-. kM + "^^^^^ ^'> 
ideoque : 

S) fgW-gTM = ^^,^1,, 1-, _ r-(t')E(v,,o_E-y)F(».ri _ .rty.- y; 
'F' r'M tr'F'ft') 

K Qotatione nostra .^rat : 

9> = aman). V = •"n(it, k*), FCy) = iit, P(v-. k')eii; 
poiTO: 

F'E»)-E'F(y) __ F'MEftf.. l')-E'y)F(»., f) 

F- ' ■ '• 775;; Z(".M. 

unile aequatio 3) ita repraeseotatur ; 

4) izf,«, V) _ _ig.„(.. ],■) a.„(.. k-) + jll, + z(„, n. 

Hinc prodit integrando: 

yij.ZC., V) = lo,„.™(u. fj + J^ + /'z(u, k-) J., 



db, Google 



sire 


cum 


ait /"dnZ 


w 


= log 


8(0) ■ 












"^ 


1- 


= . 


4KK' 


nm{f. 


.k') 


»(", 
«(», 


^ 



Fonnnlaei), 6) fanctionesZ(iu), ©(in) adargumenlum reale revocant. 

57. 
Matetnr in 6) n in u -H 2K', prodtt: 

9f..+liK') JKK- , ... 9(11. k')' ' . K «M 

sive posito u loco in: 



Fooatnr in 5) n + K' loco n : cnra sit 

kua*m(u, V) 
ca*am(ii^-K, k) = i,oi(n, k') 



prodit: 



«('-+"') 

JS /v , I., 90') 

unde posito nnrms n loco in; 

.(K'-»i.) 
a) e(B+iK^ = ie /T.iii«m(u)eCa). 



♦) Frt caim d(a+iK. k) = »Cii). idwxpie etlim eCu+«K. k') = «(«. k'). 



db, Google 



164 

Sumtu logarilhmia et dIfferentiaDdo, ex 1)) 2) prodit: 

4) Z(. + iK') = ^=|^ + "!{!»". Wi"»W+ ZW- 
Foiilo u =3 0, ex l) -4) 6t: 

— 
leciiK') = — e ^ e{0), e(iK') = 
'' |z«iK')= ; Z(iK')= OO. 

Formulae 1), 2) egregiam inrenioDt confirmatioDem e natura prodacti infiuiti} in quod 
fuDCtioDem 6 erolvimaa: 

\ . ; (i-i,c.ia.+,i(i-»q'ito.i.+,-)(i-»,-c»a.+,~) . . . 
»ro l(l-q)(l-q'Kl-«.-.)" " 

IB— l''"1(l-1'<''-)(l-q'''"') ..l((l-q»— '«)(l-q'«-")a-q'«-'"') .-I 
ia-q)(l— l')(l-q') ..1* ■ 

Ubi enim mntatur x in x +— 7— > quo &cto abit e'" in qe'", abit productum 

l(l_,,.ix)(l_,.,.r«)(,_,.,,ix) . ,.)j(i_,ir'i')(l-,>r.i«)(l-,'.— i«) ...) ■ 
in hoc: 

.^^((•-i«'")(i-q'«'i')(i-q'f'») ■ ■ .)((i-q«-*'»)(i-q"«— ")<i-q'«-"») . • -I, 
nnde: 

Mutato rero x in x -^--j^t abit e'" in /q'e'*, nnde prodactum 

((l-qe'"0(l-q'e'l'OB-q'.'l«)...||(l-qe— I'la-q-.— l«)(l-q'e--l«) ...| 

in hoc: 

(i-.-i«)l(i-i'.-i«)(«-q'«'") ...|((l-q'«--i')(i-q'.-'i')...l = 

^.«.l..(t-Jq'coiti+q')(l-«,<o»t,+,-)(l_q-™t,+,") .... 



db, Google 



IN 

At dedimiu §. S6 formulam : 

■""■ « °° ^ • (l-t,co.J.+,'Kl-«q'»»t.+.l-)(l-!,'cai.J.+,»)--- ' 

UDde ridemas, fore: 

Formulae 7), 8) aatem posito — — = a cam foimolu 1), 2) conTeniaut 
E formula 9) §. es: 

posito iu loco u, seqnitur: 



e(!.+K) = 



/f"o».l.(., k') 
uude e 6) $■ 56 : 

em /r »(». !■) 

sive e formula allegata 9) $. 68 : 

'' e(0) V 7 «(o, IT 

Hiuc sumendo logarithmoa et differeutiando oblioemus: 
10) lzr..+K)=^|i, + Z(.+K'.k'). 



■ «KK^ 



58. 

Formularum §§. d6. 57 inTentarum fecilia fit applicatio ad Aualjrsio fnnctionum 
n casibtu, qnibtts Argumenta sire Amplitudiuia sive Farametri sire ntrinaque imagi- 
naria Mint. 

Demonstremus primum, expressionem n(u, a-f-iK') rerocari posse ad n(a, a), 
onde patet, posito n = — k^ sin' am a, integralia 



db, Google 






altenuu ab altero pendere ; qaod est iasigne theorems a CI. Legendre prolatum Cap. XV. 
InTenimas : j 



Fit autem el), 4) §. 67: 

8(.— +iK') 





©{.+ a + iK') «B.in(. + u) eC + u) 








' nZ{a+iK') =! —Tk •" " Wg »">• -i*"" +« 


ZC); 




and* 


J, terminis -^^ ^^ se destmeotibm: 








1) n(a, .+iK') = n(u, .) + ucolg«iD«i«o..+ i-[(.g 


■in air 


'(»-») 
'(«+•», 




Fooamns in hac formula ia loco a, fit: 








liLiunri.linmfial .- -i^'w-C". k") 








t«ig«i.[i.)A»m(..) = ^^^^^^^ k')co.a«{., k-) 






«n»in(i» — 0) i»iiiu — cotgam(i«)Aimfia;tgamu 








diiam(ia + i') Aamu + cotg am (i>) ^unCia) tgamu 




sire 


posito breritatis gratia: 

^•>n(-. kl . -„ 








•inamC., k')cM.m{.. k') 




fit: 


»m»in (■•—") iimu + i/"«tg»mu 








Mi,.ni{i. + ») A«mQ-iv^«l«amu ' 




nnde l) abit in 








n(u.u + iK;)-nc„.U) ^,^_ ^ ^^ 


/••"«' 


una 



quae cum formnla f) a CI. Legeodre exhibita coDTenit. 



d by Google 



■ 59. 

Alias formulas , pro reductioae Argumeuti imaginarii ad reale faodameDtalea , ob- 
tinenma e 9), 10) §. 57. Qaarum primum observo hauc, qua ArgnmeiLta et Amplitudinu 
et Farametri imaginana ad Argumenta reatia revocautor: 

I) n(i»,u+K) = n(n, .+K'. k-). 
quae hunc in modum demonstratnr. Fit enim: 

nr,.. i.+>c, = i.z(i.+K, ; ±..,-111^1^, 

porro e lo) §.67: 

i.zr,.+i) = ^^ + .2(.+r. k'). 

e 9) §.«r: 

_ .(.—>)■ 

9(1. -U+K) fV «K' eft-.+K'. >•) 

V I' ' »Ul.l') 

'(•+'■)• 

«KK' 8(i+u+K', V) 



9(0, 


,k) 


9(i.+i 


.+K) 


9(0, 


I) 


80. -i 


• + K) 



YF- 



_ KE' e(»— M+K'. k') 

ideoqne^ termisis . — ' ^ , - se destraentibiw, 

nc.«. :.+K) = nZ(.+K', k') + -i-iog ajI+r+K\kO " "'"' '"*"^'' ^''■ 
quod demODSlrandam erat. 

Mntato in l) a in — ia, prodit: 

^ nc»ii.i+K) = -n(o,i«+K', k'). 

Fonnnia l) facile etiam probatur consideratioue ipsins integralis , per quod 
functionem 11 definivimns: 

nc..),. /"""-— ;-^--;-"-""'-'" . 

^/ 1 — k'nn ■■!■ . un'ama 



Digitized by Google 



miu, i«^ ; J 1— li'Mn'.inp.+K).«D'wii(iB) 

O 

Fit enim e fomnilis §' 19: 



wnun a«+K) = •ineoam(ii) = 



Aw.(«+K'. k-) 



e«»mO«+K) = -coJM«io{i») = — j|— cwco.m(«. k") = -^co*«in(«+K', k'> 
A am r>«+K) = acoain(i>) = k'>tnca>in(a, k') =■ b'sinain(a+K', k*). 
node: 

ikkn>am(ia + K)co*amQa + K}Aain(ia + K) ai 
— k'k'MnamCa+K', k')c<>i»in(a+K'.k')Aam[i+K',k'). 
Porro fit: 

"°'»mCio) ^ -t g'amdi. k') 

1— k'Nn'amfia+K) riD'amCin} l+&*am(a+K', k'; te'aiii(u, k'j 
-ri.i'an.(n. k') _,ii.'.m(i., k') 



co.'am(ii, k') + a"am{a+K'. k") i(o*a«.(B, k') 1 — k'k'«n'ain (•+K'. k') ijn'an (u, k') ' 

nude: 

nCin.ia+K) = 



/■ 



k'k'»iiiini(a+K', k').co»ain(a+K'. k') . Aam(«+K', k') ■ HD'am(ii, k'j.du 
l-k'k'HO>an,(a+K'. k") .m'am(u. k') 



Sire: 

n(iu, i.+K) = nCtt. a+K'. k'). 

quod demoDstrandnm erat. 

E formnlis 9)^ lO) §. 57 simili modo atque l) comprobare possumus formtJam se- 
quentem, quae docet, fuactionea bioas ArgnmeDti imaginarii Farametri, qnanun Moduli 
alter alterius ComplemeDtum, ad se ioTicem reTocari posse; 
s) incu. ia+K) + in(a. io+K'. k') = 
^^ + »ZCa+K', k') + aZ(u+K. k). 

Fit enim: 

inc. iM-K'. ll = i.zr.u+K'. 11 + i- ,., . |g:+g-';g .. 



,, Google 



169 

lam Bt: 

k 4KK' »(.+iii+ lf, IT) 

k'" — e^ri^ — 

9(i.-t-K+ii) 9iii.-ii.).|-K| /i 4KK' 9(._i.+lC, !•) 

em «m ~Vk'' w^ii — ■ 

unde cmn sit e(m-K) = e(K — u) : 



e(i.+K+.) ' er,.+K'_.,k') ■ 



9(;.+K-«) , ■ eC"+K-,,V) 



iileoque; 

T'°«- 90.+K+.) ■t-T"*- 9r..+K'+.,k-j = ~ siii?- 
PoiTO fit: 

i.Z(i.+K) = Jl^ + .ZJ.+Ck') 

i i/Z(i«+ICk-| = Jl^+.Z(.+K,k). 
node: 

int.. I.+K) + inf., U+If. k') = ~, + "ZL+K', k') + .Z(u+K. k)j 
tj. d. e. 

60. 
Patet e formulis: 

Mnam(K+iu} = — aeoaro(a, V) 
«,«,(.+iK') = i..-j±_, 

Argmnentnm u, quod, dmn sin am u a jmjm ad 1 crescit, a ad K tranait, uU 
sin am a a 1 naqna ad -j- creacere prgat , imagiaarimn induere valorem formee 
K +iT, ita ut simnl y a naque ad K' crescat; deinde crescente sin am u a -i- 



T 



DigfeedoyGoOl^jle 



170 

tuqae ad CO, induefe a formam v-f-iK', ita at simol t a K tuque ad decre- 
Kcat ♦). 

Hiuc videmiu, siquidem in tertia specie Integraliam Elliplicorum, quae sche- 
male contenta est: 



/i 






(i + 11 tin' ip) A [qr) ' 



ponatur, uli fecimus, u = — k'sin^ama, quoties sit d Degatirani 
inter et -> kk, poDi debere a := — k'sia'ama 
- —kket — 1 , - - n = — k'sin'aei(ia-i-K) 

J et — 00, - - n = — k'siD'am(a-f-iK'), 

desigDauIe a qaaDtitatem realem. Porro cam sit — kksin* am(ia) = kk tg* am (a, k'), 
patet, quoties sit o positivum qaodlibet, poni debere: 
a ^ — kk siD*ain{ia). 

Hinc quatuor classes lotegraliam EUipticorom tertiae specie! nacti sumos, qaae respondeat 
schematis, qnae Argumeata indaant 

1) a, t) i. + K, 8) • + iK'. 4) i.. 
(|aarum tres primae pertiaeot ad n negativum , quarta ad positirum. 

At per formulam l) §. 68 videmus, fanctiooem n (u, a + iK.') redaci ad n(n, a}, 
sire classem tertiam , in qua n est inter — 1 et — 00 , reduci ad primam , in qoa n est 
inter et — kk. Porro e formula 11) §. 6S **), funclionem n(u, ia) semper reduci 



*) Oktinekilur rimnl: 



!„.„„. 0. ' . 1, ' !_. 4./!+?. » 

.-0, Ji- . K. K + i^. K+iK', -5- + i'''- '»'• 



**) Haec formula icUic«t, poiito ia l»co a id tcqucnlem abil 

n(u.i.+K)-n(., i.) 



^ — > + Arc Ig {« iiD am u . an coam u| > 

nC'.k*) 

- — 'l ■ . Quae facile per fbmmlai eleneiitare* {' 19 luccedil Iniufor' 



db, Google 



171 

ad n(u, ia-hK), sire clasiiem qnarlam, in qua n est positimm ad itecuudain , iu qna 
n est negativnm intra — kk et — i. Unde iam narti samas theorema, propoaitum 
ittttgraU 



f 



ti+ii»i»'»ja(v) ' 



quaecunque tit n quantitat rttdia poaitiva tea negativa, semper redact poaae ad integrak »i- 
miU, in quo a negativum eat inter et — 1. Qaod e&t egreginm inventum Cl' LegeDdre. 

Iam Tero consideremiu casnm generelem , qno et AmpHtado et Parameter fbmiain 
habent imaginariam qnamlibet: comtat, earn casum amplecti expressionem 

n(a+i». ,+ib), 

designantibus n^ v, a^ b quantitates reales. At e formutis §' 66 videmas, eiasmmli ex- 
presuonem redaci ad qnataor hasce: 

I) n{a. .), t) n{iT. ib), S) ncu, ib). 4) n(iY. «>, 
rel, si placet, ad qnataor hasce: 

1) n(u, •—10, ») nciT. ib+K) 
8) n(it, ib+K), 4) ncit. a— K). 

G«aeraliter enimexpressio n(aH-T» a+b) ruexpressiones n(a, a), n(T, b), n(n, b), 
n(vf a) redit, e qnibns qaatnor propositae prodeunt, siqnidem loco r penis ir, locoa, b 
TCTO a — K et K+ib. Poiro e formnlis 1), 2) §' 69 fit: 

npT. ib+K) = n{v. b+K'. V) 

n(iy. .-K) = -n{», i.+K'. k'}, 

nnde expressiooes l), 2) classem primam redennt n(u, a), expressiones S), 4) in clas- 
sem secnndam n(u, ia + K); id qaod nobis suppeditat 

THEOREMA. 
Integrate propositum formae 

r '■f 



quodcunque sit n et (^j aive reale sive imaginarium ^ revocari potest ad in- 
tegraXia similia, in quibus et (p reale et n reale negativum inter et ■ — 1. 

Y 2 

Digitized b, Google 



1T« ^ 

£/hoc dworema debetnr Gl" Legendre, iiisi quod ille reales tantum Aaipliludioes 
coutemptatus sit. 

ITormuIis 4), 5) §. 66 redacitur n(uH-v, aH-l>)-|-n(u — t, a — b) ad n(a,») 
et n(v, b), n(u-4-T, a-t-b) — n(u — v, a — b) ad n(u, b) et n(v, a). Hiac pa- 
let, posito 

n(u + iira+ib)+ nc«-iT,i-ib) = L 
n(u+ir.a+ib) - n(u-iv, a-ib) _ ^ 

pendere L a funclionibus n(u, a — K), n(iv, ib + K), Ma fuoctiombas n(u, ib+K)> 
n(iT, a — K), ideoque redire L io classem primam, M id classem secandam. 

Haec sDDt fundameota tfaeoriae tertiae specie! lutegralium EUipticomiUj e princi- 
piis BOTM deduct!. Alia infra videbaulur. 

FUNCTIONES ELLIPTICAE SUNT FUNCTIONES FRACTAE. 

DE FUNCTIOKIBUS B, S, QVAE NUMERATORIS ET DENOMINATORIS 

LOCUM TENEMT. 

&1. 

Evolationes §. S5 exhibitae genaiDam functionDin EUiptiearam natarani declanmf, 
videlicet esse eas foDctiones fractas, ut quas iam ex. elementis nOTimiis, pro innumeris Ar- 
gnmenti raloribos inter se direriiis et eranescere et ia infiDitum abire. Iam antecedentibus 
ad functionein delati sumas , quae fractionis , in quam evolnmus ipsom sin am = 

^ ' (1— «qeo.«i + q")(l — «q'c<Mt«+q")(l — tq'cM«K + q") ... 

deoominatorem constituit, fuQCtionem dico 



>m 



g— tqc<Mt» + q')(l— tq»cotti4.q«)(t — gq'coi<i + q") . 



eCQ) (a-<()Ci-q')Ci-q*)a-q') ■ ■ -P 

Iam et aameratorem particulaii charaetere denotemns, atqne pooamus: 

' « ) _ « yV«mx(l— gq'coit» + q*)(l— 8q<co.«i+q')(l— Iq'cwgt + q") . ■ ■ 

«{0) «i-q){i-q')(i-V)a-q') ■ ."T? * 

Digitized by Google 



ReJitjau advocatis erolutionibas §. 85 traditis, inreuimusr 






/v. 



node posito = d: 

Hinc flnuDt formulae speciares: 



t> »(K) = -2^1 HW 



Yf« 



Fosito H'(u) = ■ , cam sit; 

ffCu) =/Vco..m«a.mn e(u) + /Tdnamu e». 

pro valorihtu u=0} a:=K obtiDemua: 

E s) seqnitar adhoc: 
Cetenun fit: 

6) H(.+«K) = H(-u) = -E(u)| H(.+4K)=HW. 



*) Fit aim Z(K) = 0, uiHh etwn tf<IQ = 6(K)Z(KJc=0. 



, Google 



1T4 — 

E formnla !) §. 57: 

»(g-«iu) 

9{u + iK') = i. *" /^.illM.D^ii.1 

seqnitur: 



7) e(.+iK') = i. HW. 

Motato IQ hac fonnnla a in u+iK', et adrocata 1) §. 67: 

«) 9(a+SlK') = _e " »(.). 

prodit : 

S) H(u+iK') = i. *" e(u). 
ande mxsiu matato n in u+iK', e 7): 







,(K-i«) 






10) 


H(.+JiK') = - 


., " H,«). 






! fonmilis 7) - 10) 


derivari possnnt generaliores : 




11) 


irun 




ill') 




le) 


.«"■.„ = ,. 


.(.+(«n, + l)iK')' 


,iK) 




ij) 


. ""■«<.) = <- 


.r(u + (S„+l)iX')- 


9(.+(I. 


■+l)iK) 


U) 


.""■«<.) = (. 


_,)..*.. «■'■ 


«(.+(« ii, + l)ill'). 


; 12), IS) «l: 








15) 


»((«m+l)ilC) 


= 0; H(SiiitK') = 0. 







Formalae 5), 6) demoQstrant, faDctiones 6(u), H(n) tnutato u in u + 4K 
formulae ll), 12), functionea 



db, Google 



176 

mntato n in n + ^iK'iniroutatas nuDere; ande illae cam ionctioDihaa Ellipticis alteram Pe- 
riodam realem, hae altenun Periodum imagmariam communem habent. 

E formula 5) §. 66: 



8(1.. k) 4KK- 

s(o,k) ' "•■" 


<-'>^|7^- 




seqnitar: 


Rum 




-|5lL^-/Twn»r...k,. 


4^ = ,.^/T..„<..k-, 


9(1.. k-) 
■ 9(0. kV 


unde e l): 






irua 
,_ 95.. I) ,Ak 4KK' 

"l -9^75" - V f 


B(.+K'. k-) 
9(0. k') 




m '!:■'} =i/,^.^. 


H(«, k-) 





6(0, k'j 

E 16) sequitar, mntato n id ia, et commntatis k et k': 

' eco. k) V P" ' e (0. k*) ' 

cui adiangator 9) §. 67: 

.« gPo+JC.k) _,/r "itF «Ca+K'. k-) 

' »{o. k) V k' e(ork^ ■ 

E formula supra iuTeuta: 



seqoitar: 

Qua ducta formula in 



k«i»ain(ii + *)Mawn(u — t) = - 



1 — k'tin'amu uD'amv 



prodit : 

81) H{ii+,)HCti-*) 



H- 


new- 


. e-E 


iH'» 


«> 


»»«, - 


- H*« 


.HW 




H'«®' 


> — 


e'DiPT 



db, Google 



DE EVOLlfTIONE FDNCTIONDM H, IN SERIES. EVOLUTIO 
TERTIA FUNCTIOHUM ELLIPTIC ARUB. 

62. 
EvolTamas fonctiouev 

*(ir) (l-gq(».». + ,^(l-t^'co.e. + T)(l-»q-.c^«. + ,") ... 

em t(i-q)a-v)(i-«...r 



["^j »'/Vlilli(l-gq'co.«.+q')a-«<l'c»-«i + il')(l-»S'c.oi«i + q") ... 

em l("-q)(i-q")(i-i')...)" 



(— ) 



0(0) 

e{0) 



- = «V^f'*''"»'' — ^«'>'" + ^«"5' — "*«"'■* H 1- 



DetemuDatioQem ipsarum A, A', A", A'", ..; B', B", B"', B'*, ., tianciscimur ope 

— irK' 
aeqaationmu 7)- lO) §' antecedents, quae posito u= ~-^, q ^ e in m(|uea- 

tes abennt: 

.(i£i) = _q,..«»(i5L+.,K.) 

Quam in finem erolatioiies propositas ita exhibemns: 



= A - A'.'l" + A-e"i« - A-.'l- + A~."" - . . . 
_ A'.— 1« + A'f-I" - A-e-'l" + A-e-l" 



, Google 



MaUto X in x — ilogc), aliile"'" in q"!!""", e'"" in *~"" ; porroe(-?^), ul'"' \ 
in © (— ^ -I- 2 i K'j , H(— j^ -I- 2iK'j. Hinc nanciscijnnr: 





9(0) 




' 






B[0, 








-*,.•!« 


+ A', 


>««))■ 


— A'. 


!'«' 


.U + A-q 


.,.i«- 






.-.-,. 


-f 


t-*iK 




•- 


■'.^. 


.-.!._ 






8(0) 


il^ 


— qe 


• ix. _ 


!l: 


9(0) 


1 = 




•/v 


!-"- 


ff,'e» 


" + 


B-,., 


llK 


_B-,.,' 


"■+ •■ 


•f 


vi- 


{?-- 


1* 


*" + 


B~ _ 


fix 


B" 


"+■■ 


•}■ 



Qiiibns cam expressionibiu propositis comparatts, eruimus: 

A' = Aq, A'ssA'q*. A" = A'q«, A" = A'q' 

B-.sB'q'. B"=B-q«, B"=Brq-, IT" s= B"q« 

icieoqae 

A' = Aq , A" ^ Aq*, A™ = Aq*. A"" ^ Aq", .... 

B"= ffq', B"'=BV, B"" = B'q". B"*=!B'q'". 

ande evoluliooea qnaesitae fiuot: 



0) 



= Afl— ZqwZi + 3q*cos4i — 2q*cot6i + fq^cMSi — . . .{ 

: Syq" Jff""" — q'na9» + q'-'sinSi — q>-*sin7i + q«-^*in9i — - .J 

EvolQlioaeA inventas alteram ex altera derirare licuisset ope formnlae: 



db, Google 



tT8 






mutfiudo X io X — ilog/Tf, quo facta e*""*, e •"'* abeunl in q^e*""*, - — 5; — , ©| — ^j 
ui6[— ^ — h-iK'l, et nraltipUcatido per vq e'", obtinemua: 



9(0) * ''* ©(0) 

q 



8(0) 



(«V^*wii — sV^uaii + fV^fiiiSi —lV^fna7t + . ..J. 



9(0) 

Qua insuper Aualysi eraimns: 



63. 

Determinatio ipstas A artificia particalaria poscit. Fooamos, qtiod ex anlece- 
dentibns licet: 

(1 — «qCM«« + q^(l— tS'C0.1<-(-q»)(l— «q»eo««i + q'») . . . e= 

P(q}fl_2qeoilx + Sq*ca«4i — Zq*OM6i-^Zq'*CM6i4-. ..| . 

ibi(l— Sq*c«j£t-t-q*}(t— Sq*CMfx + q')(l — Sq*coiti + q») .. . = 
P(q) {mdi — q'-*»mS»+ q» •»iin5i — q»-*Mn7< + q«*'«ro9x —...); 

fit: 

P(q) 



ta-qja-q-Xi-q')."** 
Expressio secnnda immatata inaaet, ubi ducitar in primam, et post £Ktum productom po- 
nitnr q' loco q. Hiac obtinemus aeqnatiooem identicam : 

P{q')P(q*)("n« — q*»i'»3» + q'*««'5i — q»«iui7< + ...j x 

{1 — Zq°c«*2i + Sq*cof4i— {q**co«6x4-. . ,J 53= 
P(q)(«nx — q'»mSx + q*iiii5« — q"»iii7i + . . .(. 



dbyGoo^^jle 



IfQ 

Ipsam iam iostitoamas nmttipIicattOQem , ita nt uLitjoe loco 2 sin . mx cob . nx sen- 
batar sui(mH-n)x + sin (m — u)x: facile patet, Coefficientem ipsins sin x io pro- 
ducto eroluto fore: 

i + q' + <i' + q"+«r + -... 
ita ut prodeat: 

At iDTenimua e secnnda fonDalannn propositanun, posito x = ~-: 

{{i+q')a+q')a+'rt ■ . T = P(<i)(i +q' + q* + q" + q*+ . . .J. 
unde : 

^;^=„.+fl(.+,-)(.+^,...r 

sive: 

IM. = (l + q-Jd + l-Kl + q-) ... 
(1^,0(1_,.) (!_,•)...■ 

Hinc e methodo iam saepiiu adhibits *) seqnitnr; 



<i-q')(l-l'l(l-'nci-l')... 
Hinc tandem prorenit; 



a-q')(i-.l')(l-<l') . . . ((t-<i)(t-i')("-q') ■ ■ .1" 
(l+1)('+q')('+'l')('+l')... . 

d-^tt-q-Xl-q-Xl-q') ... ' 



sive ex iis, quas §. 86 dedimus, erolationibna; 
1 /tTK" 

Qnantitatem illam , qaam faactenus indetenninatam retitjmmua , 6(0) porta 

i: 



znus iam: 



*) Viddicel ponendo *Dcce*Mve tf, q*, q*> q'* • . loco s ct inttiiucDdo malltplicjlioncm inrmitam. 

z i 



, Google 



180 



64. 

Aequationem iileoticam, quani antecedentihus comprobatum irimus: 
(l-!q«o.!.+ ,')(l-!q'«,.J. + ,-)(l-«q'cc..li+,») .... = 

1 — gq'co»8» + »q*CO><» — »q'COs6l + gq"cw8l — . . . 
(l_q') (!_,•) (l_,')(l-q') .... 

alia adhuc via, a praecedente omaiDo diversa, jnvestigare placet. Quam ia fiaem 
tamqaam lemmata antemittamus formulas duas seqnentes: 
1) (i+q')(I+q'")(l+q'»)(i+q'-) ■■. = 



1 + 



l-q- ^ (l-q-jH-q-) ^ (l_,>) (l-qVd-q-) ^ (l-q'Jd-,-) (!_,•) (l_q-) 



(l-q.)(l_q>.)(l_q>.)(l_q'.) . 



q* 



q 1-q. ^ (1_,)(1_,') (l_q.)(l-q'.) 
J! •'. J. . 



+ 



(l_,)(l-q1(l_,') ■ (l_q,)(l_q'.)(l-,'.) 

Ad demonstratioDem prions observo, expressioaem 

(l+q-)(i+q'-)(l+q'-)(i+q'") . ■ ■ 
posito n' z loco z et muItiplicatioDe facta per(l+qz), immulatam maoere ; unde po.sito ; 

a+q')(l+q'«)(i+q'') . . . = l +A'.+ A".' + A™.> + . . . 
eniitnr: 

l + A'. + A-.' + A-.'H....=(l + ,.)(l + A-q'. + A"q>.' + A"q>.'+...), 

ideoque, facta evolutione; 

A' = q +,q'A', A" ^ q'A' + q*A'', A"' ^ q'A" + q"A"' 

sive ; 



l-q" 



. A" 



db, Google 



1-q' ■ (i_,')(l_q«J ■ (I— l')Cl-V)a-q*) ' 

niculi propoiiitum est. 

Ad demoDstratioDem formulae 2) observe, expressiooem 



(l-q.)a_,"=)Cl_q>t)Cl-q*l) .... ' 

posito <j z loco z et muldplicatiooe facta per -r— — , immntataoi maoere ; unde posito : 



' + -i-::r7+- 



(l_,.)(l-,-)(l-q'-H>-q'") ■ 

A"«> 



l_q. ^ (l_,.)(l_q'.) ^ (i-q.)(l-q-.)(l-q".) 

obtiDemua : 



^ l_,. ^ (l_,l)(l_,'.) ^ (l_q.)(l-,'.)a_,..) ^ • • ■ 

' A-q. *"q''' J A"'q'.' 

i-qi ^ (l_q.)(l_,'.) ^ (l-,l)(l_,-.)(l_,..) ^ (!_,,) (l-q'.jd-q'.jd-q-.l 

_ 1 J. (q+*'q)' . (q'A'+q'A-).- (q-A-H-q-A-).' 

■^ 1-q. ^ a-,.)(l-q'.) ■*■ (l_,.)a-q>.)(l-q-.) ■*■ ' ' ' '' 

Hiuc Suit: 

A' = q + A'q, A" = q'A' + q'A", A'" = q' A" + q' A'" 

ideoqne : 

A = —3- A- = '''*' A™ = ''*" 

1— q ■ 1— q' ' 1 — q' ' •* '■ 



tinde: 



A- = T^!-, A" = 



1-q ' fl-q)(l-ql ' d-qXl-q-Xl-q") ' ' " 



sicuti propositum est. 



db, Google 



lam fonnemus productum : 



ll J 5 . E 4- 2 ^ — . t' 4- 3 . s> -1- . . .^ y 

I ^1-,' ^ (!_,•) (1-q-) ^ (!-,■) a-,') (1_,-) ^ )* 

fi + -a-.-!- + - l'^.i- + £ ■- + ■■■]■ 

Coefficientem ipsios z" sive eriam -j-, qnem ponemus B'"', eruinias 8e<|aeutem : B'"' ; 



(!_,■) (I-,.)... (! — ,■") 



r^T^ + 



q" i' 



I (l-q-jd-q-Kl-q.) ' (l_,."*')(l-q"*')(l -q"") ^ ' 'I 

At e fonnnla 2), posito q^ loco q et z = {{'^, expres«ioQem, quae uDcis incliua coDspi- 
citor, iQTenimas =: 

1 

(l_,.n..)(l_,.".)(l-.,.»*.)(l-q"*-)... ■ 

node 



ideoque : 

{(l+q.)(l+,'.)(l+,'.) . .j {(l + -2-)(. + -S.)(l + Jl) . , .} = 

. + qf+-|-) + q-(-+4.) + q-(- + -^)+... 
(l-ql(l_q'Kl-q-)(l-q')... 

sire posito z^e*'", et mutato q id — q: 

(1 — IqColJl + q")(I-!q'CM!. + q')(l_J,lco.!. + q") ... = 
1 — gqw*» + gq*C0t4» — tq*cos6. + ■ . . 
(l_q')(l_,.)(l_,.)(l-q') ... 

Quod demODStrandom erat. 



db, Google 



iSS 

Ubi ponitur — qz' loco z atque per vq 2 multiplicatur , prodit; 
VT(" - -f) {» - 1"'")!' - '!'■■)<' - I'-l ■■■]" 

yV(.-4.)_y?(..-.L)^.yv(.._±)_.... 

(l-ql(l-q«)Cl-q^(l-q*).... 

sive posito z^e'*: 

£/q """(I — *l°««ix-|.,q*)(l — Sq*G(MSi-t-<|'}(l — Xq*c<MSi-f-q") . . . =" 

d-q^Cl-q'Xl-q'jCl-q')... 

(juae est altera erolutio inventa. 

65. 
Evolutiones functiooum 

1) e|^-^^] = 1 — Z^CDiSi + Sq«co(4i — Xq>oM6> + 2q"co*8i 

2) h/. ~\ = i^/~qnnx — tV*?™'' + sV^woS" — sV^""?" + ■ ■ ■ 

spoute ad eTolotioDeni nOTam fuuctionuni Ellipticarum dacuDt. Eteuim e formulis l) §. 61, 
poneodo a =: ~ , obtiDemns : 

. ^ . '{—) 






db,Goo';5le 



ande: 



« /T 1 — 2qco,«i + 2q*co.4. — tq«co»6i + «q>" w.8t — .. .' 

41 co.«ni3lL = ,/L a*^" " + g/V co»S, +g*/^co,6, + g/^co»7, + . . 
« V k ' 1 — 2qco»2j< +24'co.4» — Sq-'coifi. + iq-'cosS. — .. ~ 

51 A ■«> H^ = yV 1 + gqco.ax + gq'eo.4x + aq'co.6i + gq»CM8^ + . . . 
' T ^ ' l-8qcoi8i + «q'co.4i — Sq-coiex + Sq^coiSi 

Porro e 2), s) §. 6t , cam positiim sit ©(O) =y , obtiuemus: 

«(K, = /f, H« = /!p, e(o, = /!p. .-TO^/niE. 

unde e 1), 2): 

8) y ^ = 1 - S, + Sq' - Jq- + «q» - !q" + . . . 

"J y ' '■ ('T')' = '"^ -«'/? + 'oV?! -"*/?: + «■/?:-...•), 
unde etiam: 

l + !q + Jq' + !,' + J,"+ ... 

11) /y = ' - '1 + '1' - »q' + '1" - 'q'' + ■ ■ 
' + 'q + »q' + Sq- + Sq" + Sq" + . . 

Fit porro, cum sit Z(u) = ^^, n(n, a) = u Z (a) -t- -i- log ^'°~'' , 

Tt \ It } 1 — SqcosSi + 3q*coi4i _ Sq<cos6x + Sq>'>coi8T _ . T 
•j EtCDim cum iil — s= . 






dbyGoo^^jle 



l_ 1 -tqco.t(,-A).Hq*eoi4(— A)-tq«co«6(.-A) + . 

« ^ 1 — tqcosf (k+A) + tq* «»4(x+A) — Jq- co.6(. + A) + . 

Qaae eat erolutio tertia fanctionam Ellipticaram. 



66. 

£x eTolationibiu ioTentis; 

1) m-<f>ft-<fXt—'f) -.lid— «?"»•■+ q')(i—«q'coili + q-Ki_t,'c<»s. + ,") .,.) 

1 — tqcuti .f- Cq*eM4i — t<|*cu6i + Sq"co«8i — . . 
til— •fin— ^11— <f) ..)im>a— i<|'cciti + q*Xl — Cq-coiIi^-q-J .. . 

(ini — q*tiitSi .f> q* MnSs — q" »iii7« + q* iiii9» — ... 

quarum postremam, posito /q* loco q, ita quoqae exhibere lic«l: 

1 1(1— q)(l— q1(l— q') . .l«iu(l — •qcmt. + qld — tq"«o.J« + <i')(l _tq'c<.it, + ,-) ... 

■iDi — qfinSx -(• q'rioSl — q*iiil7x .^ q*" nii9l — q" tin Hi 4- ... , 

sequitor, posito x = 0, x: 

I - 8q + f q- - tq- + tq» 



(i-q)(i-q')(i-q')(i-q') 



(•+q)(l+q*Kl+q')(l+q") 

(l-q-jd-q-Xl-qlP-q') ■ 



d-qXl-q-Xl-q-Jd-q') 
5) ld-q)d-qOd-q')d-q')- 



1 + q + q' + q" + q" + q" + • . . 
= 1 - 9, + s," - rq> + 9," _ . . . 

Pouamiu in 2) x^~-, fit »inx = + V -j-, sm8x = 0, siD5x=— y — , 



= -i- y -J", cet. ; porro (1 — q)(l — 2qcos2x-4-q*) ^ t — q', uode 2) id hauc alnt 
fomiolatn : 

d-q-jd-q-jd-q^d-q") . . . = l-q'-q* + q'' + q"-q" 



sive: 

6) d-q)d-q^d-q-)d-q')- . . - l -q-q^+q' + q' -q" 

A a 



,, Google 



ouiiu sei'ivi tcrmiaus generalu est: 

(-l)"q * 
Comparatis iuter ue 6), 6) obtinemua: 

»)(l-q-"l' + q' + q'-q" f = l- St + i<f -7<f +3<f - . . . . 

Formulam 4) etiam CI. Gauss iuvenit iu Commentatione : Summatio ' Serierwn 
quarundam aingtdarium. Comm. Gott. Vol. 1. a. 1808 — 1811. Quam ille deduxit e se- 
qaeate formula memorabili: 



8) 



(l-q.)(l-,'l)(l-q-l)(l-q'.) . 
(l-«(l-q-)(l -,')(!-,')... 
q(l— ) . q'(l-.)(l-q.) q-a-lXl-q.Xl-q'.) 



^ 1-q ^ (l_,)(l-,') ^ (l_q)(l_,.)(l_,.) T •■ 

posilo z =(j. Coi addi {lossuiit formulae similes, qoarum demoustratiotiem hoc loco 
omitto : 

„ » (l+l)(l + q.)(l+q-.).. 1 a-.)(l-q.)(l-q'l).. 

« (l+qJd+q-jU+q').. "^ « (1+q) (1+q*) B+q') . . 
_ q ('-■•) . q<(l-.')(l-q-.-) ^■(l-.-)(l-q't1(l-q-.-) 

l-q- ■^. (l-q-Jd-,.) - (l_,')(l_,.)(l_q.) "^ ' ' ' 

,(. _3_ (l + 0(l + q.)(l + q'.).. q (l-l) (1-qi) (1-q-.) . . 

I< • (l + q)a+q'Hl + q').. " Si ' (1 + q) (1 + ,1 » + q') . . " 

q'C— •) . q-H-Od-q'.-) l"(l-.1(l-q-.-](l-q..-) , 

1-q- "^ (l-q-Xl-q') ~ (l-q1(l_,.)(l_q.) +■• 



qaamm 9) , posito z = q , praebet : 

1 _1_ (1— q)(l-,')ri-q') ■ ■ 



I ^ « • U+q)(l+q')U + q>). 
(l-,)(l-q-)(l-,.)(l-q-) . 

(i+qXi+q'Xi+q-Xi+q*) ■ 



:l_, + q._,.+ . 



l_I, + fq<_J,' + , 



quae est formula s). 

Formula 6), quae profundissimae iudaginis est, ut quae a trisectioae fo&etionum 
Kllipliuarum peudct, iam e loogo tempore a CI. EuUr inreota est ct luculeoter demoo- 
.slrata. De qua iusigux demouslratione alibi nobis fusius ageuduni eriN 



db,Goo';5le 



187 

His addamus evolutiones sequeutes: 



V ^^'( . ) «yq'l('-i')(i-q')tf-i')(i-q') ■I' 

eCi£i\ " !i-«i"»>-+q")('-«q''»>«-+q')('-«q'"-*-+q") ■ 

»'/?a-q') «W(i-q-) «y?(i-q'') 

1— 3qCMtl + q> ~ I — fq'0O»ll + q« ''" 1 — tq'colSl + q" 






{(t-q')Ci-q«)(i-q^(i-q') • 



1(1 — tq'coi«i+q«)(I— »q*CMSx + q"){l — aij«co»a. + q"). 



_i «q*a+q')»i» ■ 4q'(i+q*)»i..x *s"a+q')«i'" . 

lina 1 — Sq*cci*Sx + q* 1 — S^^cmSi -(- q* 1 — Sq*Mi»l» + q*' 

- _ 1 r (l-q')a-q*l q'(l-q«)(l-q') q" (1 ^ q') (1 - q") _ 1 

" HD* \ 1 — 2q'Goati + q* 1 — 2q*coj2x -h q* 1 — tq"eo»*i + q" ** ■ ■ j- 

quae e nota theoria resolatioois finctioiiam compositanua in simpUces fecile obtioentur. 
Hinc dedacoDtnr eTolationes speoiales: 



l+q ^ 1+q' 1 + q' "^ l + q« 



Quilius cum erolatioDibiis expressionum , supra exhilutis comparatis , prodit : 

V? vq^ . V q' /V 



l-q 1-q' 



+ 



_q. l-q' ^ 



^(S)-^(4±f)+^(4^)-- 



., 4,. 4,. 4,. 
i+q ^ l+q- 1 + ,' ' !+,■ 






4q 4,. 4,- 4,.. 

I+q ' l+q" l+q' i+q- 






Simili modo CI. Ctauatn nuper oliserravit *) , 


seriem 




/ + -J* + ^' + /* +.., 












*) CreBe Jonmil eel. Tom. III. pag. 95. 






An 2 


Digitized by 



Google 



188 

traostbrmari posse in hanc: 

InTenimus snpra erolntiooes ipsomm , — eorumque digmlatum secuiidae, 

t«rtiae, quartae in series. Quae igitur evolutiones dignitatis secundae, qiiarlae, sex- 
tae, oclavae expraasionam 

V 'T~ == » + «i + *>!' + «i' + «q" + ■ • 
V^"^ = «V"q + * V? + t'/i^ + «V^ + . . 
suppeditant,' unde vaiia theoreniata Arithmetica flauot. Ita e. g. e formula : 
(■?')'= {* + *•' + *■)* + *■>' + *1" + • •}' = 

uht p uumerus impar cjuilibet, (P(p) sunima factorum ipsius p, fiuit tamquam Corol- 
larium tbenrenta inclytani Fermatianum , nUDienim unnmquem(jue esse sunimam qua- 
tuor qiiadratorDtn. 



TVns ExrBES5«M OF.BAlIt:RII.S. 



d by Google 



IBS 



CORRIGENDA. 



Lectorem benevoluin orntum rolo , ut ante Imtloiiefn corrignt , quae Irrepferimt menilB gravlora 
seqneolia : 

P>g. 3. lin. II. leg. M loco U, bi*. 

— '■ - '•"■'»B-(I+^"«-C-(IT^- 

— 8, loco k' leg. i'. 

— 8. — 6. loeo /"kT7 leg. /^.i, bis. 

— 9. U et V ubiqae inler *« commulari dcb«nl. 

— 10. — S. *. 6. loco — /V leg. + /T- 

— 17. — 8. loco »"y, l>"j leg. ""y'l Vj\ 







-«5. _ 17. loc(.(t+2«)'l.g. {I+S«)'. 
- f9. — 5. loco + 1* leg. — T*. 

— 7. loco: V loeo u, leg.: u loeo v. 

— 18. loco a — u'v*J leg. (I — iu'v"). 



lia. poitr. loco: 



,'(1 + U'T)+.. "" u'(l+u'v)- 



_ 31. — «. loco — — leg- -. - - -7^ 

y 1 — k'sin^' ¥ 1— .k'jiny' 

- 95. — 10. 11. loco k leg. k'. 

Ila. poilr. loco pro/teti leg. perfeetL 

- 89. — 16. loco M teg. (— 1)^~M. 
-47. — 10. Iow){...)Meg. (...J*. 



8. deUnaom •yj -— - . 

/^k" / . *Ki / . 8K\ / . 4(n-l)K\ 

j-^ .co..m(o)co..«.^ii.+ ^j».™^i. + — j.. co».m(u+-i— -i-j. 

n W ■^ , jdiici 



9. deleixlam i / — — , idiiciendum : 



= /i,..a.<o,..,(. + 'J^)..„(..V")--»(-.+ ^^")- 

Bb Digitized b, Google 



db, Google