Skip to main content

Full text of "The geometry of Renâe Descartes"

See other formats


/ 


"l 


^oofe  ^'o.S.4-bfoK 


F 


LIBRARY  RULES 

This  book  may  be  kepL.-CiO.^ weeks. 

A  fine  of  two  cents  will  be  charged  for  each  day  books  or 
magazines  are  kept  overtime. 

Two  books  may  be  borrowed  from  the  Library  at  one  time. 

Any  book  injured  or  lost  shall  be  paid  for  by  the  person  to 
whom  it  is  charged. 

No  member  shall   transfer  his  right  to  use  the  Library  to  any 
other  person. 


THE  GEOMETRY 

OF 

RENÉ  DESCARTES 


TRANSLATED  FROM  THE  FRENCH 
AND  LATIN 

BY 

DAVID  EUGENE  SMITH 

AND 

MARCIA  L.  LATHAM 


WITH  A  FACSIMILE  OF  THE  FIRST  EDITION,  1637 


CHICAGO • LONDON 
THE  OPEN  COURT  PUBLISHING  COMPANY 

1925 
C 


D6 


Copyright  by 

THE  OPEN  COURT  PUBLISHING  COMPANY 

1925 


PRINTED  IN  THE  UNITED  STATES  OF  AMERICA 


THE  GEOMETRY  OF  RENE  DESCARTES 


ZA-5Q.Z 


Preface 

If  a  mathematician  were  asked  to  name  the  great  epoch-making 
works  in  his  science,  he  might  well  hesitate  in  his  decision  concerning 
the  product  of  the  nineteenth  century  ;  he  might  even  hesitate  with 
respect  to  the  eighteenth  century  ;  but  as  to  the  product  of  the  sixteenth 
and  seventeenth  centuries,  and  particularly  as  to  the  works  of  the 
Greeks  in  classical  times,  he  would  probably  have  very  definite  views. 
He  would  certainly  include  the  works  of  Euclid,  Archimedes,  and 
Apollonius  among  the  products  of  the  Greek  civilization,  while  among 
those  which  contributed  to  the  great  renaissance  of  mathematics  in  the 
seventeenth  century  he  would  as  certainly  include  La  Gcomcfrie  of 
Descartes   and   the   Principia   of    Newton. 

But  it  is  one  of  the  curious  facts  in  the  study  of  historical  material 
that  although  we  have  long  had  the  works  of  Euclid,  Archimedes, 
Apollonius,  and  Newton  in  English,  the  epoch-making  treatise  of  Des- 
cartes has  never  been  printed  in  our  language,  or,  if  so,  only  in  some 
obscure  and  long-since-forgotten  edition.  Written  originally  in  French, 
it  was  soon  after  translated  into  Latin  by  Van  Schooten,  and  this  was 
long  held  to  be  sufficient  for  any  scholars  who  might  care  to  follow 
the  work  of  Descartes  in  the  first  printed  treatise  that  ever  appeared 
on  analytic  geometry.  At  present  it  is  doubtful  if  many  mathemati- 
cians read  the  work  in  Latin  ;  indeed,  it  is  doubtful  if  many  except  the 
French  scholars  consult  it  very  often  in  the  original' language  in  which 
it  appeared.  But  certainly  a  work  of  this  kind  ought  to  be  easily  access- 
ible to  American  and  British  students  of  the  history  of  mathematics, 
and  in  a  language  with  which  they  are  entirely  familiar. 

On  this  account,  The  Open  Court  Publishing  Company  has  agreed 
with  the  translators  that  the  work  should  appear  in  English,  and  with 
such  notes  as  may  add  to  the  ease  with  which  it  will  be  read.  To  this 
organization  the  translators  are  indebted  for  the  publication  of  the 
book,  a  labor  of  love  on  its  part  as  well  as  on  theirs. 

As  to  the  translation  itself,  an  attempt  has  been  made  to  give  the 
meaning  of  the  original  in  simple  English  rather  than  to  add  to  the  dif- 
ficulty of  the  reader  by  making  it  a  verbatim  reproduction.  It  is 
believed  that  the  student  will  welcome  this  policy,  being  content  to  go 
to  the  original  in  case  a  stricter  translation  is  needed.  One  of  the 
translators  having  used  chiefly  the  Latin  edition  of  Van  Schooten,  and 
the  other  the  original  French  edition,  it  is  believed  that  the  meaning 
which  Descartes  had  in  mind  has  been  adequately  preserved. 


Table  of  Contents 


BOOK  I 

Problems  the  Construction  of  which  Requires  Only  Straight 

Lines  and  Circles 

How  the  calculations  of  arithmetic  are  related  to  the  operations  of  geometry. .   297 
How  multiplication,  division,  and  the  extraction  of  square  root  are  performed 

geometrically    293 

How  we  use  arithmetic  symbols  in  geometry 299 

How  we  use  equations  in  solving  problems 300 

Plane  problems  and  their  solution 302 

Example  from  Pappus 304 

Solution  of  the  problem  of  Pappus 307 

How  we  should  choose  the  terms  in  arriving  at  the  equation  in  this  case 310 

How  we  find  that  this  problem  is  plane  when  not  more  than  five  lines  are  given  313 


1  It  should  be  recalled  that  the  first  edition  of  this  work  appeared  as  a  kind  of 
appendix  to  the  Discours  de  la  Méthode,  and  hence  began  on  page  297.  For  con- 
venience of  reference,  the  original  paging  has  been  retained  in  the  facsimile.  A 
new  folio  number,  appropriate  to  the  present  edition,  will  also  be  found  at  the  foot 
of  each  page.  For  convenience  of  reference  to  the  original,  this  table  of  contents 
follows  the  paging  of  the  1637  edition. 


VI 


TABLE 

'Des  matières  de  U 

GEOMETRIE. 

L'mre  Tremier, 

DES  PROBLESMES   QJCJ'ON   PEUT 

conflruire  fans  y  employer  que  des  cercles  & 
des  lignes  droites. 

O  M  M  E  N  T  /^  calcul d' Ay'ithmeticjtie p rapporte  auxopC" 
rations  de  (geometric.  2çj 

Comment  fê  fint  (jcometricjuement  la  Multiplication  ,  U 
_       Dmifion^Cr  lextra^ion  de  laracine c^Harree,  29S 

Comment  on  pent  vfer  de  chiffres  en  Géométrie,  j.çç 

Comment  il  jkut  venir  aux  Equations  qui  f entent  a  re  foudre   les  pro- 
blefmes^  ^00 

^uels  font  les  probief  mes  plans -^  Et  comment  tlsfe  refoluent.  ^02 

Exemple  tiré  de  Pappus.  j  04 

Tiejpon/ê a  la  cjueflion  de  Pappus.  ^o/ 

Cornent  on  doitpofer  les  termes pottr  venir  a  C Equation  en  cet  exeple.^i  0 

K  k  k  Corn 


Vlï 


BOOK  II 
On  the  Nature  of  Curn'ed  Lines 

What  curved  lines  are  admitted  in  geometry 315 

The  method  of  distinguishing  all  curved  lines  of  certain  classes,  and  of  know- 
ing the  ratios  connecting  their  points  on  certain  straight  lines 319 

There  follows  the  explanation  of  the  problem  of  Pappus  mentioned  in  the  pre- 
ceding   book 323 

Solution  of  this  problem  for  the  case  of  only  three  or  four  lines 324 

Demonstration  of  this  solution : 332 

Plane  and  solid  loci  and  the  method  of  finding  them 334 

The  first  and  simplest  of  all  the  curves  needed  in  solving  the  ancient  problem 

for  the  case  of  five  lines 335 

Geometric  curves  that  can  be  described  by  finding  a  number  of  their  points...  340 

Those  which  can  be  described  with  a  string 340 

To  find  the  properties  of  curves  it  is  necessary  to  know  the  relation  of  their 
points  to  points  on  certain  straight  lines,  and  the  method  of  drawing 

other  lines  which  cut  them  in  all  these  points  at  right  angles 341 

General  method   for  finding  straight   lines  which  cut  given  curves  and  make 

right   angles   with   them 342 

Example  of  this  operation  in  the  case  of  an  ellipse  and  of  a  parabola  of  the 

second  class  343 

Another  example  in  the  case  of  an  oval  of  the  second  class 344 

Example  of  the  construction  of  this  problem  in  the  case  of  the  conchoid 351 

Explanation  of  four  new  classes  of  ovals  which  enter  into  optics 352 

The  properties  of  these  ovals  relating  to  reflection  and  refraction 357 

Demonstration  of  these  properties 360 


Table. 

Comment  on  trciéue  cjue  ceprohhfwe  cflplan  lorpja'tl  n' eft  point  propofé 
en  plm  de  s  lignes.  ^ , , 

Di [cours  Second. 

DE  LA  NATURE  DES  LIGNES 
COURBES. 

Q  V clic i  font  tes  lignes conrbes  <!jt4  on  pent  receuoiren  Cjeometne.  ^\  ; 
La  façon  de  dtjlwgPicY  tentes  ces  lignes  courbes  en  certains  aenres: 

ht  de  connoiflre  le  rapport  qti  ont  toHS  leurs  poins  a  ceux  des  lianes 

droites.  j  i  ç 

Suite  de  l' expliCAtion  de  la  c^uejlion  de  Pappu4  wife  au  hure  preeedenr.. 

3^3- 
Sobttion  de  ceteqmjïion  quand  elle  nejl  proposée'  cjh  en  j  ou  ^Ifrnes. 
'  3^4. 
Demonflration  de  ccte  folution.  ^^2 

^els  font  les  lieux  plans  &  fohdes  &  la  façon  de  les  trouucr  tous.    ^^4. 
^elle  efi  la  premiere  &  la  plu^  fimple  de  toutes  les  lignes  courbes  cjni 

feruent  a  la  cjuejîion  des  anciens  cjuandelle  ef  propofé e  en  cinq  lignes, 

33S' 
Celles  font  les  lignes  courbes  qu'on  defcnt  en  trouuant  plufeurs  de  leurs 

poins  qui peuuent  eflre  receucs  en  Géométrie.  ^4.0 

Celles  font  au fjt  celles  qu  on  defcnt  aueç  vne  chorde,qui  peuuent  y  eflre 

receues,  2  ^o 

^epour  troHuer  toutes  les proprietez^des  lignes  courber  ,  il  fufflt  defca- 

uoir  le  rapport  quoht  tous  leurs  poins  a  ceux  des  lignes  droites  ;    cr  U 

façon  de  tirer  a  autres  lignes  qui  les  coupent  en  tous  ces  poms  a  angles 

droits.  j^; 

Façon  générale  pour  trouuer  des  lignes  droites  qui  couppent  les  courbes 

données yOU  leurs  contingentes  a  angles  droits.  Z4.z 

Exemple  de  ce  te  operation  en  vne  Ellipfe  :  Et  en  vne  parabole  du  fecoiid 

geure,  ^^^ 

tAutre  exemple  en  vne  ouale  du  fc-condgeure.  3  44 

Exemple  de  la  conflruRion  de  ce  probief  me  en  la  conchoide.  5  j  r, 

Explication  de  4,  nouueaux geures  d*Ouales  qm  feruent  a  l'Optique, ^sï 
Les propriete'^de  ces  Ouales  touchant  Icsreflextons  cr  les  réfractons. 

357 
DemonjlrAtion  de  ces  proprie  tez.,  ^60 


IX 


TABLE  OF  CONTENTS 

How  it  is  possible  to  make  a  lens  as  convex  or  concave  as  we  wish,  in  one  of 
its  surfaces,  which  shall  cause  to  converge  in  a  given  point  all  the  rays 
which  proceed  from  another  given  point 363 

How  it  is  possible  to  make  a  lens  which  operates  like  the  preceding  and  such 
that  the  convexity  of  one  of  its  surfaces  shall  have  a  given  ratio  to  the 
convexity  or  concavity  of  the  other 366 

How  it  is  possible  to  apply  what  has  been  said  here  concerning  curved  lines 
described  on  a  plane  surface  to  those  which  are  described  in  a  space  of 
three  dimensions,  or  on  a  curved  surface 368 


BOOK  III 

On  the  Construction  of  Solid  or  Supersolid  Problems 

On  those  curves  which  can  be  used  in  the  construction  of  every  problem 369 

Example  relating  to  the  finding  of  several  mean  proportionals 370 

On  the  nature  of  equations 371 

How  many  roots  each  equation  can  have 372 

What  are  false  roots Z12 

How  it  is  possible  to  lower  the  degree  of  an  equation  when  one  of  the  roots 

is  known    2>12 

How  to  determine  if  any  given  quantity  is  a  root ZTh 

How  many  true  roots  an  equation  may  have yii 

How  the  false  roots  may  become  true,  and  the  true  roots  false 373 

How  to  increase  or  decrease  the  roots  of  an  equation 374 

That  by  increasing  the  true  roots  we  decrease  the  false  ones,  and  vice  versa.  .  375 

How  to  remove  the  second  term  of  an  equation 376 

How  to  make  the  false  loots  true  without  making  the  true  ones  false 2)11 

How  to  fill  all  the  places  of  an  equation 378 

How  to  multiply  or  divide  the  roots  of  an  equation 379 

How  to  eliminate  the  fractions  in  an  equation 379 

How  to  make  the  known  quantity  of  any  term  of  an  equation  equal  to  any 

given  quantity   380 


De  La  Géométrie. 

Comment  0»  peut  faire  vn  verre  autant  connexe  ou  concatig  en  l*vne  de 
fes  fuperficieStCju  on  voudra,  ^uirajfemble a  vn  point  donné  tout  les 
rayons  cjiti  vienent  d*vn  autre  point  donné.  ^  6^ 

(Comment  on  en  peut  fkire  vn  t^ut  fhce  le  mefme  ,  6r  cjue  la  conaexite  de 
i'vne  de  fs  ftperfictes  ait  la  proportion  donnée  ausc  la  conuexité  ou 
conçauité  de  II  autre.  ^.6 6, 

Comment  on  peut  rapporter  tout  ce  quia  ejlé  dit  des  lignes  courbes  dé- 
faites ^r  vne  fuperficte_plate,a  celles  <jui  fe  defcriuent  dans  vn  ejpaee 
(jui  a  s  dimenJtonSf  oubien  fur  vne  ftperficie  courbe»  }6i 

Liure  Troijtefme 

DE    LA  CONSTRUCTION  DES 

problefmes  roIides,ou  plufque  folides. 

DE  cfuelles  lignes  courbes  on  peut  fe  jèruir  en  la  conJlruBion  de  chaf- 
cjue  probUfme.  5  6ç 

Exemple  touchant  l' muent  ion  deplufiems  moyenes  proportionelles,  57  e 
De  la  nature  des  Ecjuations.  ^71 

Combien  il  peut  y  auoir  de  racines  en  chafque  EcjHation,  S7Z 

.Celtes  font  les fnuffes  racines.  ^yZ 

Comment  on  peut  diminuer  le  nombre  des  dimenfions  dtvne  Equation, 

lorfquon  connoifhcjuelcju'vne  defes  racines,  37  z 

Comment  on  peut  examiner  fi  quelque  quantité  donnée  efi  la  valeur 

d' vne  racine,  ^7 s 

Combien  il  peut  y  auoir  de  vrajes  racines  en  chafque  Equation.  57^ 
Comment  omfkit  que  les  fnujfes  racines  deuienent  vrayes  ,  &  les  vrajes 

fautes,  .      ^'7^ 

-Comment  on  peut  augmenter  ou  diminuer  les  racines  d'vneSquation.^74. 
j:£^V/2  augmentant  aw files  vrayes  racines  on  diminue  lesfhuffes  ,  ou  au 

contraire,  375 

Comment  on  peut  ofler  le pcond  terme  dvne  Equation,  376 

Comment  on  fan  que  les  fauffes  racines  deuienent  vrajes  fins  que  les 

vrayes  deuienent  faujfes,  S77 

(Comment  on  fait  que  toutes  les  places  d'vneEquationfoient  remplies  ^78 
(Comment  on  peut  multiplier  ou  diuifer  les  racines  êH vne  Equation,  3  jç 
(Comment  on  ofle  les  nombres  rompus  d'vne  Equation,  379 

(fomment  on  rend  la  quaiîtité  connue  de  l'vn  des  t<rmes  d'vne  Equation 

efgale  a  telle  autre  qu'on  veut.  J  ^  " 

Kkk   z  ^^c 


TABLE  OF  CONTENTS 

That  both  the  true  and  the  false  roots  may  be  real  or  imaginary 380 

The  reduction  of  cubic  equations  when  the  problem  is  plane 380 

The  method  of  dividing  an  equation  by  a  binomial  which  contains  a  root 381 

Problems  which  are  solid  when  the  equation  is  cubic 383 

The  reduction  of  equations  of  the  fourth  degree  when  the  problem  is  plane. 

Solid  problems    383 

Example  showing  the  use  of  these  reductions 387 

General  rule  for  reducing  equations  above  the  fourth  degree 389 

General  method  for  constructing  all  solid  problems  which  reduce  to  an  equa- 
tion of  the  third  or  the  fourth  degree 389 

The  finding  of  two  mean  proportionals 395 

The  trisection  of  an  angle 396 

That  all  solid  problems  can  be  reduced  to  these  two  constructions 397 

The  method  of  expressing  all  the  roots  of  cubic  equations  and  hence  of  all 

equations  extending  to  the   fourth  degree 400 

Why  solid  problems  cannot  be  constructed  without  conic  sections,  nor  those 
problems  which  are  more  complex  without  other  lines  that  are  also  more 

complex    401 

General  method  for  constructing  all  problems  which  require  equations  of  de- 
gree not  higher  than  the  sixth 402 

The  finding  of  four  mean  proportionals 411 


Table.  De  LA    Géométrie. 

^^e  les  racines  tant  vrayes  que  fknjfes peunent  eftre  réelles  ou  imaginai- 
res, ^so 
La  rediiEîion  des  Equations  cubiques  lorfque le problefme  efl plan,     ^So 
La  façon  de  diuifer  vne  Equation  par  ijn  binôme  qui  contient  [à  racine. 

^j4els  problefmes  font  jéhdes  lorfque  l'Equation  efl  cubique.  ^S^ 

La  redutlion  des  Equations  qui  ont  quatre  di  wen  fions  lorfqne  le  problef- 
me efl  plan.    Et  quels  [ont  ceux  qui.  font  folides.  5  S^ 
exemple  de  L^vftge  de  ces  reduBions.                                                  ^  s 7 
'^gle  gêner  aie  pour  réduire  toutes  les  Equations  quipaffentle  quarré  de 
quarré.                                                                                        ^  g  ^ 
Façon  générale  pour  confîruire  tous  les  problefmes  jôltdes  réduits  a  vne 
Equation  de  trois  ou  quatre  dimenfions,  2Sç 
Vinuenticn  de  deux  moyenes proportionelles.  2Çf 
La  diuifion  de  l'angle  en  trois ,  ^o^ 
^e  tous  les  problefmes  folides  fe  peutient  réduire  a  ces  deux  confiru- 
61  ions.                                                                                     ^çy^ 
La  façon  d! exprimer  la  valeur  de  toutes  les  racines  des  Equations  cubi- 
ques: Et  en  fuite  de  toutes  cell&s  qui  ne  montent  que  lufques  au  quar- 
ré de  quarrè.  ^00 
T^ourquov  les  problefmes  folides  ne  peuuent  eflre  conflruits  (ans  les  fe- 
rlions coniques  y  ny  ceux  qui  font  plus  compofés  [ans  quelques  autres 
lignes  plus  co?npfeés.  ^ot 
Façon  générale  pour  confirutre  tous  les  problefmes  réduits  a  vne  Eq [■ra- 
tion qui  n'a  point  plus  de  fx  dimenftons.  ^02 
L'inuention  de  quatre  moyenes  proportionelles. 


411 


F    I     N. 


Les 


BOOK  FIRST 


The  Geometry  of  Rene  Descartes 

BOOK  I 

Problems  the  Construction  of  Which  Requires  Only  Straight 

Lines  and  Circles 

ANY  problem  in  geometry  can  easily  be  reduced  to  sucb  terms  that 
a  knowledge  of  the  lengths  of  certain  straight  lines  is  sufficient 
for  its  construction.'''  Just  as  arithmetic  consists  of  only  four  or  five 
operations,  namely,  addition,  subtraction,  multiplication,  division  and  the 
extraction  of  roots,  which  may  be  considered  a  kind  of  division,  so  in 
geometry,  to  find  required  lines  it  is  merely  necessary  to  add  or  subtract 
other  lines  ;  or  else,  taking  one  line  which  I  shall  call  unity  in  order  to 
relate  it  as  closely  as  possible  to  numbers/"'  and  which  can  in  general  be 
chosen  arbitrarily,  and  having  given  two  other  lines,  to  find  a  fourth 
line  which  shall  be  to  one  of  the  given  lines  as  the  other  is  to  unity 
(which  is  the  same  as  multiplication)  ;  or,  again,  to  find  a  fourth  line 
which  is  to  one  of  the  given  lines  as  unity  is  to  the  other  (which  is 
equivalent  to  division)  ;  or.  finally,  to  find  one,  two,  or  several  mean 
proportionals  between  unity  and  some  other  line   (which  is  the  same 

'''  Large  collections  of  problems  of  this  nature  are  contained  in  the  following 
works:  Vincenzo  Riccati  and  Girolamo  Saladino,  Institutioncs  AnaIyticae,'Bo\ogna, 
1765;  Maria  Gaetana  Agnesi,  Istltusioni  Analitkhc,  Milan.  1748;  Claude  Rabuel, 
Commentaires  sur  la  Géométrie  de  M.  Descartes,  Lyons,  1730  (hereafter  referred 
to  as  Rabuel)  ;  and  other  books  of  the  same  period  or  earlier. 

'"'Van  Schooten,  in  his  Latin  edition  of  1683,  has  this  note:  "Per  unitatem 
intellige  lineam  quandam  determinatam,  qua  ad  quamvis  reliquarum  linearum  talem 
relationem  habeat,  qualem  unitas  ad  certum  aliquem  numerum."  Geotnetria  a 
Renato  Des  Cartes,  una  cum  notis  Flori)nondi  de  Beanne,  opera  aiqne  studio 
Francisci  à  Schooten,  Amsterdam,  1683,  p.  165  (hereafter  referred  to  as  Van 
Schooten). 

In  general,  the  translation  runs  page  for  page  with  the  facing  original.  On 
account  of  figures  and  footnotes,  however,  this  plan  is  occasionally  varied,  but  not 
in  such  a  way  as  to  cause  tlie  reader  any  serious  inconvenience. 


{ pri'iUrrvf^^M-tJ^ayTl^ 


297 


L  A 


GEOMETRIE. 

LIVRE   PREMIER. 

^es  problefmes  qu'on  peut  conftruire  [ans 
y  employer  que  des  cercles  0^  des 
lignes  droites. 

^<S^^^  O  u  s  les  Problefmes  de  Géométrie  fè 
peuucnt  facilement  réduire  a  tels  termes, 
%  qu'il  n'eft  befoin  par  après  que  de  connoi- 
ftre  la  longeur  de  quelques  lignes  droites, 
'pour  les  conftruire. 
Et  comme  toute  l'Arithmétique  n'eft  compofée,  que  Commcc 
de  quatre  ou  cinq  operations,  qui  font  l'Addition,  la|p,  "j*=^^ 
Souftradion,  la  Multiplication ,  la  Diuifîon ,  &  l'Extra-  thJeti- 
•<Stion  des  racines ,  qu'on  peut  prendre  pour  vne  efpece  '^^^  ^^ 
de  Diuifion  :  Ainfî  n'at'on  autre  chofe  a  faire  en  Geo-  auxope- 
metrie  touchant  les  lignes  qu'on  cherche ,  pour  les  pre-  ^"0  "'  ^^ 
parer  a  eftre  connues,  que  leur  en  adioufter  d'autres  ,  ou  t"e. 
en  ofter,  Oubicn  en  ayant  vne,  que  le  nommeray  l'vnite' 
pour  la  rapporter  d'autant  mieux  aux  nombres  ,    &  qui 
peut  ordinairement  eftre  pnfe  a  dircretion,puis  en  ayant 
encore  deux  autres,  en  trouuer  vne  quatriefme ,  qui  foit 
à  r  vne  de  ces  deux,  comme  l'autre  eft  a  IVnitc,  ce  qui  eft 
le  mefme  que  la  Multiplication  i  oubien  en  trouuer  vne 
quatriefme,  qui  foit  al' vne  de  ces  deux,  comme  rvnite' 

Pp  eft 

3 


«eome- 


LaMulti- 
plicatioD. 


29%  La  Géométrie. 

eft  a  l'autre,  ce  qui  eft  le  mefme  que  la  Diuifiorij  ou  enfin 
trouuer  vne,ou  deux  ,ou  plufieurs  moyennes  proportion- 
nelles entre  l'vnité,  &  quelque  autre  ligne  j  ce  qui  eft  le 
mefme  que  tirer  la  racine  quarrée^  on  cubiqu Cj&c.  Et  ie 
ne  craindray  pas  d'introduire  ces  termes  d'Arithméti- 
que en  la  Géométrie  ,  afEn  de  me  rendre  plus  intel- 

ligibile. 

Soit    pai*     exemple 
ABlVnite',  &  qu'il  fail- 
le multiplier  B  D    par 
C  B  G,  ie  n  ay  qu'a  ioindre 

les  poins  A  &  C,  puis  ti- 
rer D  E  parallèle  a  C  A, 
&,  B  E  eft  le  produit  de 
cete  Multiplication. 
Oubiens'il  faut  diuifer  BE  par  BD,  ayant  ioint  les 
poins  E  &  D ,  ie  tire  A  C  parallèle  a  D  E,  &  B  G  eft  le 
produit  de  cete  diuifîon. 

Ou  s'il  faut  tirer  la  racine 
quarree  de  G  H  ,  ie  luy  ad- 
ioufte  en  ligne  droite  F  G, 
qui  eft  rvnite'^o.:  diuifànt  F  H 
H   en  deux  parties  efgales  au 
point  K,  du  centre  K  ie  tire 
le  cercle  F I  H,  puis  eiîeuant  du  point  G  vne  ligne  droite 
iufquesà  I,à  angles  droits  fur  FH,  c'eft  GI  la  racine 
cherchée.  le  ne  dis  rien  icy  de  la  racine  cubique,  ny  des 
autres,  à  caufe  que  l'en  parleray  plus  commodément  cy 
après. 
^^^'peut^     Mais  fouuent  on  n'a  pas  befoin  de  tracer  ainfî  ces  li- 
gne 


La  Divi- 

flOQ. 


TExtra- 
éliondela 
racine 
quarrcc. 


FIRST    BOOK 

as  extracting  the  square  root,  cube  root,  etc.,  of  the  given  hne.'"  And 
I  shall  not  hesitate  to  introduce  these  arithmetical  terms  into  geometry, 
for  the  sake  of  greater  clearness. 

For  example,  let  AB  be  taken  as  unity,  and  let  it  be  required 
to  multiply  BD  by  BC.  I  have  only  to  join  the  points  A  and  C,  and 
draw  DE  parallel  to  CA  ;  then  BE  is  the  product  of  BD  and  BC. 

If  it  be  required  to  divide  BE  by  BD,  I  join  E  and  D,  and  draw  AC 
parallel  to  DE  ;  then  BC  is  the  result  of  the  division. 

If  the  square  root  of  GH  is  desired,  I  add,  along  the  same 
straight  line,  EG  equal  to  unity  ;  then,  bisecting  EH  at  K,  I  describe 
the  circle  EIH  about  K  as  a  center,  and  draw  from  G  a  perpendicular 
and  extend  it  to  I,  and  GI  is  the  required  root.  I  do  not  speak  here  of 
cube  root,  or  other  roots,  since  I  shall  speak  more  conveniently  of  them 
later. 

Often  it  is  not  necessary  thus  to  draw  the  lines  on  paper,  but  it  is 

sufficient  to  designate  each  by  a  single  letter.     Thus,  to  add  the  lines 

BD  and  GH,  I  call  one  a  and  the  other  b,  and  write  a  +  b.  Then  a  —  b 

will  indicate  that  b  is  subtracted  from  a;  ab  that  a  is  multiplied  by  b; 

a 

^  that  a  is  divided  hy  b ;  aa  or  a-  that  a  is  multiplied  by  itself  ;  a^  that 

this  result  is  multiplied  by  a,  and  so  on,  indefinitely.'''   Again,  if  I  wish 


to  extract  the  square  root  of  ar^b-,  I  write   ^Ja--\-b";  if  I  wish  to 


extract  the  cube  root  of  a^ — b^-\-ab~,  I  write  ^a^ — b^-^ah'^,  and  sim- 
ilarly for  other  roots. '^'  Here  it  must  be  observed  that  by  a",  b^,  and 
similar  expressions,  I  ordinarily  mean  only  simple  lines,  which,  how- 
ever, I  name  squares,  cubes,  etc.,  so  that  I  may  make  use  of  the  terms 
employed  in  algebra.'*' 

'''  While  in  arithmetic  the  only  exact  roots  obtainable  are  those  of  perfect 
powers,  in  geometry  a  length  can  be  found  which  will  represent  exactly  the  square 
root  of  a  given  line,  even  though  this  line  be  not  commensurable  with  unity.  Of 
other  roots,  Descartes  speaks  later. 

'■*'  Descartes  uses  a",  a*,  œ',  a'"',  and  so  on.  to  represent  the  respective  powers 
of  a,  but  he  uses  both  aa  and  a-  without  distinction.     For  example,  he  often  has 

aabb,  but  he  also  uses  -rr^. 
4b- 


'°^  Descartes  writes  :  ^JC.à^'  —  d'^-j-abd.    See  original,  page  299,  line  9. 

'*'  At  the  time  this  was  written,  a-  was  commonly  considered  to  mean  the  sur- 
face of  a  square  whose  side  is  a,  and  b'^  to  mean  the  volume  of  a  cube  whose  side 
is  b;  while  b*,  b'',  . . .  were  unintelligible  as  geometric  forms.  Descartes  here  says 
that  a~  does  not  have  this  meaning,  but  means  the  line  obtained  by  constructing  a 
third  proportional  to  1  and  a,  and  so  on. 


GEOMETRY 


It  should  also  be  noted  that  all  parts  of  a  single  line  should  always 
be  expressed  by  the  same  number  of  dimensions,  provided  unity  is  not 
determined  by  the  conditions  of  the  problem.  Thus,  a^  contains  as 
many  dimensions  as  ab'  or  b^,  these  being  the  component  parts  of  the 


line  which  I  have  called  ^a^ — b^-\-ab-.  It  is  not,  however,  the  same 
thing  when  unity  is  determined,  because  unity  can  always  be  under- 
stood, even  where  there  are  too  many  or  too  few  dimensions  ;  thus,  if 
it  be  required  to  extract  the  cube  root  of  a-b-  —  b.  we  must  consider  the 
quantity  a^b"  divided  once  by  unity,  and  the  quantity  b  multiplied  twice 
by  unity. ^'' 

Finally,  so  that  we  may  be  sure  to  remember  the  names  of  these  lines, 
a  separate  list  should  always  be  made  as  often  as  names  are  assigned 
or  changed.  For  example,  we  may  write,  AB=1,  that  is  AB  is  equal 
to  1  ;'"  GH  =  a,  BD  =  6.  and  so  on. 

If,  then,  we  wish  to  solve  any  problem,  we  first  suppose  the  solution 
already  effected.'^'  and  give  names  to  all  the  lines  that  seem  needful  for 
its  construction, — to  those  that  are  unknown  as  well  as  to  those  that 
are  known. ''"^  Then,  making  no  distinction  between  known  and  unknown 
lines,  we  must  unravel  the  difficulty  in  any  way  that  shows  most  natur- 

'"'  Descartes  seems  to  say  that  each  term  must  be  of  the  third  degree,  and  that 
therefore  we  must  conceive  of  both  a-b-  and  b  as  reduced  to  the  proper  dimension. 

'*'  Van  Schooten  adds  "seu  unitati,"  p.  3.  Descartes  writes,  AB  00 1.  He 
seems  to  have  been  the  first  to  use  this  symbol.  Among  the  few  writers  who  fol- 
lowed him,  was  Hudde  (1633-1704).  It  is  very  commonly  supposed  that  00  is  a 
ligature  representing  the  first  two  letters  (or  diphthong)  of  "aequare."'  See.  for 
example,  M.  Aubry's  note  in  W.  W.  R.  Ball's  Recreations  Mathématiques  et  Prob- 
lèmes des  Temps  Anciens  et  Modernes,  French  edition,  Paris,  1909,  Part  III,  p.  164. 

'"  This  plan,  as  is  well  known,  goes  back  to  Plato.  It  appears  in  the  work  of 
Pappus  as  follows:  "In  analysis  we  suppose  that  which  is  required  to  be  already 
obtained,  and  consider  its  connections  and  antecedents,  going  back  until  we  reach 
either  something  already  known  (given  in  the  hypothesis),  or  else  some  fundamen- 
tal principle  (axiom  or  postulate)  of  mathematics."  Pappi  Ale.yandrini  Collectiones 
quae  supcrsimt  e  Hbris  manu  scripfis  edidit  Latina  interpcllatione  ct  commentariis 
instni.vit  Frcdericus  Hulisch.  Berlin,  1876-1878;  vol.  II,  p.  635  (hereafter  referred 
to  as  Pappus).  See  also  Commandinus,  Pappi  Alexandrini  Mathcmaticae  Collec- 
tiones, Bologna,  1588,  with  later  editions. 

Pappus  of  Alexandria  was  a  Greek  mathematician  who  lived  about  300  A.D. 
His  most  important  work  is  a  mathematical  treatise  in  eight  books,  of  which  the 
first  and  part  of  the  second  are  lost.  This  was  made  known  to  modern  scholars 
by  Commandinus.  The  work  exerted  a  happy  influence  on  the  revival  of  geometry 
in  the  seventeenth  century.  Pappus  was  not  himself  a  mathematician  of  the  first 
rank,  but  he  preserved  for  the  world  many  extracts  or  analyses  of  lost  works,  and 
by  his  commentaries  added  to  their  interest. 

''"'  Rabuel  calls  attention  to  the  use  of  a,  b,  c,  ...  for  known,  and  x,  y,  z,  .  .  . 
for  unknown  quantities  (p.  20). 


Livre  Premier.  299 

gnes  fur  le  papier,  &  il  fuffift  de  les  defigner  par  quelques  ^ç^^  ^^ 
lettres,  chafcune  par  vue  feule.    Comme  pour  adioufter  clnfFresea 
la  ligne  B  D  a  G  H,  ie  nomme  Tvne  a  &  l'autre  b,&c  Qfcris  tde!"^^' 
a~h  b-^Eta—  ^,pour  fouftraire  b  d' a-^  Et  a  ^,pour  les  mul- 
tiplier IVne  par  l'autre;  Et  ^,pourdiuifer^zpar^j-Ec  a  a, 

1  5 

ou  a,  pour  multipliera  par  foymefmc;  Et/^,  pour  le 
multiplier  encore  vne  fois  par  a  ,  &:ainfl  a  rinfini  ^  Et 

'il  z  z 

^  ^-j-  b  y  pour  tirer  la  racine  quarrce  d'  a  -h  b  -^Et 

*    Ca-'b-i^abbj  pour  tirer  la  racine  cubique  d' a—b 
-h  abb,  &  ainfi  des  autres. 

Où  il  cil  a  remarquer  que  par  a  ou  b  ou  femblables, 
ie  ne  conçoy  ordinairement  que  des  lignes  toutes  fîm-- 
pies,  encore  que  pour  me  feruir  des  noms  vfités  en  l'Al- 
gèbre, ie  les  nomme  des  quarre's  ou  des  cubes,  ôcc, 

Ileltaufly  a  remarquer  que  toutes  les  parties  dVne 
mefmeligne,fedoiuent  ordinairement  exprimer  par  au* 
tant  de  dimenfions  l'vne  que  l'autre,  lorfque  IVnite'n'eil: 

point  déterminée  en  la  queftion,  comme  icy  a  en  con»- 

tientautantqu'^^^  ou  b  dont  fecompofe  la  ligne  que 

Tay  nommée  ^C.  a-  b  -i-  abb:  mais  que  ce  n'eft 
pas  de  mefine  lorfque  Tynite  eft  déterminée,  a  caufo- 
qu'elle  peut  eftre  foulèntendue  par  tout  ou  il  y  a  trop  ou 
trop  peu  de  dimenfions  :  comme  s'il  faut  tirer  la  racine 
cubique  de  aabb  —  b  j  il  faut  penfer  que  la  quantité 
aabbcd  diuifee  vne  fois  par  l'vnite',  &  que  l'autre  quan- 
tité b  eft  multipliée  deux  fois  par  la  mefme, 

P  p  a  Au 


^^^  La  Géométrie. 

Au  refte  affin  de  ne  pas  manquer  a  fe  fauuenir  des 
noms  de  ces  lignes,  il  en  faut  toufîours  faire  vn  regiftrc 
fèpare''  ,  à  mefure  qu'on  les  pofe  ou  qu'on  les  change, 
cfcriuant  par  exemple . 

A  B  30  I ,     c'eft  a  dire,  A  B  efgal  à  t. 
GH  30  ^ 
BD  00  b,  ''zc, 
Cemmct  Ainfî  voulautrefoudre  quelque  problefînc,  on  doit  d'à- 
nir^rux^^  bord  le  confiderer  comme  delîa  fair,  &  donner  des  noms 
Equatiôs  a  toutcs  les  lignes,  qui  femblent  necefTaires  pour  le  con- 
uent  are-  ûruifc^  auffy  bien  a  celles  qui  font  inconnues  ,  qu'aux 
foudre  les  autres.  Puis  fans  confiderer  aucune  difference  entre  ces 
mes.       lignes  connu  es,  &  mconnues ,  on  doit  par  counr  la  diffi- 
culté, felon  l'ordre  qui  monftre  le  plus  naturellement 
de  tous  en  qu'elle  forte  elles  dependent  mutuellement. 
les  vnes  des  autres,  iufques  a  ce  qu'on  ait  trouue  moyen 
'd'exprimer  vne  mefme  quantite^'en  deux  façons  :  ce  qui 
le  nomme  vneEquationj  car  les  terme  s  de  l'vnc  de  ces 
deux  façons  font  efgaux  a  ceux  de  l'autre.     Et  on  doit 
trouuer  autant  de  telles  Equations,qu'ona  fuppofc  de  li- 
gnes, qui  eftoient  inconnuë:t.  Oubien  s'il  ne  s'en  trouue 
pas  tant,  &  que  nonobflant  on  n'omette  rien  de  ce  qui  ell 
defiré  en  la  queftion,cela  tefmoigne  qu'elle  n*eft  pas  en- 
tièrement déterminée.  Et  lors  on  peut  prendre  a  difcre- 
tion  des  lignes  connues,  pour  toutes  les  inconnues  auf. 
qu'elles  ne  correfpond  aucune  Equation.  Après  cela  s'il 
enrefte  encore  plufieurs  ,    il  fe  faut  feruir  par  ordre  de 
chafcune  des  Equations  qui  refteut  aufly ,  foit  en  la  con- 
fiderant  toute  feul^,foit  en  la  comparant  auec  lés  autres, 
pour  expliquer  chafcune  de  ces  lignes  inconnues;  &  faire 

ainfî 


FIRST   BOOK 

ally  the  relations  between  these  lines,  until  we  find  it  possible  to  express 
a  single  quantity  in  two  ways.'"^  This  will  constitute  an  equation,  since 
the  terms  of  one  of  these  two  expressions  aie  together  equal  to  the 
terms  of  the  other. 

We  must  find  as  many  such  equations  as  there  are  supposed  to  be 
unknown  lines  ;''"'  but  if,  after  considering  everything  involved,  so  many 
cannot  be  found,  it  is  evident  that  the  question  is  not  entirely  deter- 
mined. In  such  a  case  we  may  choose  arbitrarily  lines  of  known  length 
for  each  unknown  line  to  which  there  corresponds  no  equation."'' 

If  there  are  several  equations,  we  must  use  each  in  order,  either  con- 
sidering it  alone  or  comparing  it  with  the  others,  so  as  to  obtain  a  value 
for  each  of  the  unknown  lines  ;  and  so  we  must  combine  them  until 
there  remains  a  single  unknown  line"*'  which  is  equal  to  some  known 
line,  or  whose  square,  cube,  fourth  power,  fifth  power,  sixth  power, 
etc.,  is  equal  to  the  sum  or  difference  of  two  or  more  quantities, "°'  one 
of  which  is  known,  while  the  others  consist  of  mean  proportionals 
between  unity  and  this  square,  or  cube,  or  fourth  power,  etc.,  multiplied 
by  other  known  lines.    I  may  express  this  as  follows  : 

or  s-= — aa-\-b-, 

or  c^= a::.- -\-b-jj — c'^ 

or  ::*=-ac^ — ■c^.c-\-d'^,  etc. 

That  is,  2,  which  I  take  for  the  unknown  quantity,  is  equal  to  b;  or, 
the  square  of  ^  is  equal  to  the  square  of  b  diminished  by  a  multiplied 
by  2;  or,  the  cube  of  a  is  equal  to  a  multiplied  by  the  square  of  s,  plus 
the  square  of  b  multiplied  by  ^.  diminished  by  the  cube  of  c  ;  and  sim- 
ilarly for  the  others. 

'"^  That  is,  we  must  solve  the  resulting  simultaneous  equations. 

'^"'  Van  Schooten  (p.  149)  gives  two  problems  to  illustrate  this  statement.  Of 
these,  the  first  is  as  follows  :  Given  a  line  segment  AB  containing  any  point  C, 
required  to  produce  AB  to  D  so  that  the  rectangle  AD.DB  shall  be  equal  to  the 
square  on  CD.     He  lets  AC  =  a,  CB  =  b,  and  BD  =  x.    Then  AD  =  a  +  b+x, 

and  CD  =zb  4-  x,  whence  ax  -\-  bx  +  x-  ^b~-'r  2b x  +  x-  and  x  = 7- . 

a  —  b 

^"'  Rabuel  adds  this  note  :  "We  may  say  that  every  indeterminate  problem  is  an 
infinity  of  determinate  problems,  or  that  every  problem  is  determined  either  by 
itself  or  by  him  who  constructs  it"   (p.  21). 

'"'  That  is,  a  line  represented  by  x,  x-,  x^,  x*,  .... 

'"^  In  the  older  French,  "le  quarré.  ou  le  cube,  ou  le  quarré  de  quarré,  ou  le  sur- 
solide, ou  le  quarré  de  cube  &c.,"  as  seen  on  page  11   (original  page  302). 


GEOMETRY 

Thus;  all  the  unknown  quantities  can  be  expressed  in  terms  of  a  sin- 
gle quantity/"'  whenever  the  problem  can  be  constructed  by  means  of 
circles  and  straight  lines,  or  by  conic  sections,  or  even  by  some  other 
curve  of  degree  not  greater  than  the  third  or  fourth.'^'' 

But  I  shall  not  stop  to  explain  this  in  more  detail,  because  I  should 
deprive  you  of  the  pleasure  of  mastering  it  yourself,  as  well  as  of  the 
advantage  of  training  your  mind  by  working  over  it,  which  is  in  my 
opinion  the  principal  benefit  to  be  derived  from  this  science.  Because, 
I  find  nothing  here  so  difficult  that  it  cannot  be  worked  out  by  any  one 
at  all  familiar  with  ordinary  geometry  and  with  algebra,  who  will  con- 
sider carefully  all  that  is  set  forth  in  this  treatise.''^' 

'"'  See  line  20  on  the  opposite  page. 

^"'  Literally,  "Only  one  or  two  degrees  greater." 

'^^'  In  the  Introduction  to  the  1637  edition  of  La  Geometric,  Descartes  made 
the  following  remark  :  "In  my  previous  writings  I  have  tried  to  make  my  mean- 
ing clear  to  everybody;  but  I  doubt  if  this  treatise  will  be  read  by  anyone  not 
familiar  with  the  books  on  geometry,  and  so  I  have  thought  it  superfluous  to  repeat 
demonstrations  contained  in  them."  See  Oeuvres  de  Descartes,  edited  by  Charles 
Adam  and  Paul  Tannery,  Paris,  1897-1910,  vol.  VI,  p.  368.  In  a  letter  written 
to  Mersenne  in  1637  Descartes  says:  "I  do  not  enjoy  speaking  in  praise  of  myself, 
but  since  few  people  can  understand  my  geometry,  .  and  since  you  wish  me  to 
give  you  my  opinion  of  it,  I  think  it  well  to  sav  that  it  is  all  I  could  hope  for, 
and  that  in  La  Dwptriquc  and  Les  Météores,  I  have  only  tried  to  persuade  people 
that  my  method  is  better  than  the  ordinary  one.  I  have  proved  this  in  my  geom- 
etry, for  in  the  beginning  I  have  solved  a  question  which,  according  to  Pappus, 
could  not  be  solved  by  any  of  the  ancient  geometers. 

"Moreover,  what  I  have  given  in  the  second  book  on  the  nature  and  properties 
of  curved  lines,  and  the  method  of  examining  them,  is,  it  seems  to  me,  as  far 
beyond  the  treatment  in  the  ordinary  geometry,  as  the  rhetoric  of  Cicero  is  beyond 
.the  a,  b,  c  of  children.  .    .   . 

"As  to  the  suggestion  that  what  I  have  written  could  easily  have  been  gotten 
from  Vieta,  the  very  fact  that  my  treatise  is  hard  to  understand  is  due  to  my 
attempt  to  put  nothing  in  it  that  I  believed  to  be  known  either  by  him  or  by  any 
one  else.  ...  I  begin  the  rules  of  my  algebra  with  what  Vieta  wrote  at  the 
very  end  of  his  book.  De  eincndatioiic  acquationutn.  .  .  .  Thus,  I  begin  where 
he  left  off."  Oeuvres  de  Descartes,  publiées  par  llctor  Cousin,  Paris,  1824,  Vol. 
VI,  p.  294  (hereafter  referred  to  as  Cousin). 

In  another  letter  to  Mersenne,  written  April  20,  1646,  Descartes  writes  as 
follows:  "I  have  omitted  a  number  of  things  that  might  have  made  it  (the  geom- 
etry) clearer,  but  I  did  this  intentionally,  and  would  not  have  it  otherwise.  The 
only  suggestions  that  have  been  made  concerning  changes  in  it  are  in  regard  to 
rendering  it  clearer  to  readers,  but  most  of  these  are  so  malicious  that  I  am  com- 
pletely disgusted  with  them."     Cousin,  Vol.  IX,  p.  553. 

In  a  letter  to  the  Princess  Elizabeth,  Descartes  says  :  "In  the  solution  of  a 
geometrical  problem  I  take  care,  as  far  as  possible,  to  use  as  lines  of  reference 
parallel  lines  or  lines  at  right  angles  ;  and  I  use  no  theorems  e.xcept  those  which 
assert  that  the  sides  of  similar  triangles  are  i)roportional,  and  that  m  a  right 
triangle  the  square  of  the  hypotenuse  is  equal  to  the  sum  of  the  squares  of  the 
sides.  I  do  not  hesitate  to  introduce  several  unknown  quantities,  so  as  to  reduce  the 
question  to  such  terms  that  it  shall  depend  only  on  these  two  theorems."  Cousin, 
Vol.  IX,  p.  143. 

10 


Livre  Premier.  5oi 

ain{îenlesdemefjant,  qu'il  n'en  demeure  quVne  feule, 
efgale  a  quelque  autre,  qui  foit  connue ,  oubiea  dont  le 
quarré,  oulecube,oulequarredequarré',  ouïe  furfbli- 
de,  ouïe quarre''de cube, &c. foit efgal  a  ce,  qui  fe  pro- 
duift  par  l'addition,  ou  fouflradtion  de  deux  ou  plufieurs 
autres  quantités  ^dontlVne  foit  connue  ,  &  les  autres 
foient  compofe'es  de  quelques  moyennes  proportion» 
Belles  entre  rvnite',  &  ce  quarré,  ou  cube  ,  ou  quarre  de 
quarre',&c.  multipliées  par  d'autres  connues.  Ce  que  i'e- 
fcris  en  cete  forte. 
;{_  30  ^.  ou 

i. 

^30 —  a  ^-^bb.  ou 

s^  00  'i-a  ^-^bb^s^-'C,  ou 

4  }  î  4 

^  30  ^J5  î^  "  c  :^-H  d.  &c. 
C'eftadire,  ^  que  ieprens  pour  la  quantité*  inconnue, 
eftefgaléa^,  ou  le  quarré  de  ^  eft  efgâl  au  quarre  de  b 
moins  «  multiplié  par  ^.  ou  le  cube  de  ^  eft  efggl  à  a 
multipliépar  le  quarre  de  i^plus  le  quarre' de  ^  multiplie 
par  ;^moins  le  cube  de  c,  &  ainfi  des  autres. 

Et  on  peut  toufîours  réduire  ainfi  toutes  les  quantités 
inconnues  à  vne  feule,  lorfque  le  Problefme  fe  peut  con- 
ftruire  par  des  cercles  &  des  ligues  droites,  ou  aufîy  par 
des  fedtions  coniques,ou  mefme  par  quelque  autre  ligne 
qui  ce  foit  que  d'vn  ou  deux  degrés  plus  compofce.  Mais^ 
ie  ne  m'areft^e  point  a  expliquer  cecy  plus  en  detail  ,^a 
caufe  que  ie  vous  ofterois  le  plaifir  de  l'apprendre  de 
vous  mefme,  &  l'vtilité  de  cultiuer  voftrc  efpric  en  vous 
y  exerceant,  qui  eft  a  mon  auis  la  principale, qu'on  puifle 

Pp   3  tirer 


11 


Quels 

fondes 

problef- 


3°^  La  Géométrie. 

tirer  de  cetefcience.  Aufîy  que  ien  y  remarque  rien  de 
Il  difficile,  que  ceux  qui  feront  vn  peu  verfé's  en  la  Géo- 
métrie commune,  &  en  l'Algèbre,  &  qui  prendront  gar- 
de a  tout  ce  qui  eil  en  ce  traite,  ne  puifTent  trouuer. 

C'eftpourquoyieme  contenteray  icy  de  vous  auer- 
tir,  que  pourvu  qu'en  demcflant  ces  Equations  on  ne 
manque  point  a  feferuir  de  toutes  les  diuifîons,  qui  fe- 
ront poffibles ,  on  aura  infalliblemcnt  les  plus  fimples 
termes,  aufquels  la  queftion  puifTe  eftre  réduite. 

Et  que  11  elle  peut  eftre  refolue  par  la  Géométrie  ordi- 
naire, c  eft  a  dire,  en  ne  fe  feruant  que  de  lignes  droites 
mes  plans  ^  circulaires  tracées  furvnefuperficie  plate ,  lorfque  la 
dernière  Equation  aura  efté  entièrement  déo]eflee,iln  y 
reftera  tout  au  plus  qu'vn  quatre  inconnu,  efgal  a  ce  qui 
fe  produift  de  l'Addition ,  ou  fouftradtion  de  fa  racine 
multipliée  par  quelque  quantité  connue ,  &  de  quelque 
autre  quantité' auiTy  connue 

Et  lors  cete  racine,  ou  ligne  inconnue  fetrouue  ayfe- 

ment.  Car  (î  i*ay  par  exemple 

1. 

.,. loo  a  :{-i'bb 

iefais  le  triangle  re(5tan- 
gle  N  L  M,  dont  le  co- 
fte'L  M  eft  efgal  à  b  ra- 
cine quarrée  de  la  quan- 
tité connue  bb,  8c  l'au- 
j^  trcLNeft  ^  ^,  la  moi- 
tié de  l'autre  quantité' 
connue,  qui eftoit  multipliée  par  ^que  ie  fuppofe  eftre  la 
ligne  inconnue,  puis  prolongeant  M  N  la  baze  de  ce  tri- 
angle, 


Com- 
ment ils 
fe  refol- 
uenc. 


12 


FIRST   BOOK 

I  shall  therefore  content  myself  with  the  statement  that  if  the  stu- 
dent, in  solving  these  equations,  does  not  fail  to  make  use  of  division 
wherever  possible,  he  will  surely  reach  the  simplest  terms  to  which 
the  problem  can  be  reduced. 

And  if  it  can  be  solved  by  ordinary  geometry,  that  is,  by  the  use  of 
straight  lines  and  circles  traced  on  a  plane  surface,''"'  when  the  last 
equation  shall  have  been  entirely  solved  there  will  remain  at  most  only 
the  square  of  an  unknown  quantity,  equal  to  the  product  of  its  root 
by  some  known  quantity,  increased  or  diminished  by  some  other  quan- 
tity also  known. '^°'  Then  this  root  or  unknown  line  can  easily  be  found. 
For  example,  if  I  have  2-  =  a3  -{-  &-/"'  I  construct  a  right  triangle  NLM 
with  one  side  LM,  equal  to  b,  the  square  root  of  the  known  quan- 
tity b-,  and  the  other  side,  LN,  equal  to  ^  a,  that  is,  to  half  the 
other  known  quantity  which  was  multiplied  by  a,  which  I  supposed  to 
be  the  unknown  line.  Then  prolonging  MN,  the  hypotenuse'"'  of  this 
triangle,  to  O,  so  that  NO  is  equal  to  NL,  the  whole  line  OM  is  the 
required  line  z.    This  is  expressed  in  the  following  way:'^' 


But  if  I  have  y' =  —  ay-\-b-,  where  y  is  the  quantity  whose  value 
is  desired,  I  construct  the  same  right  triangle  NLM,  and  on  the  hypote- 

''"'  For  a  discussion  of  the  possibility  of  constructions  by  the  compasses  and 
straight  edge,  see  Jacob  Steiner,  Die  gcometrischen  Constructionen  ausgefiihrt 
fnittelst  dcr  gcradcn  Linic  und  cincs  fcstcn  Krciscs,  Berlin,  1833.  For  briefer 
treatments,  consult  Enriques,  Fragcn  dcr  Elemcntar-Gcomctric,  Leipzig,  1907  ; 
Klein,  Problems  in  Elementary  Geometry,  trans,  by  Beman  and  Smith,  Boston, 
1897;  Weber  und  Wellstein,  Ëncyklopddie  der  Elementarcn  Géométrie,  Leipzig, 
1907.  The  work  by  Mascheroni,  La  gcometria  del  compasso,  Pavia,  1797,  is  inter- 
esting and  well  known. 

'^^  That  is,  an  expression  of  the  form  z-  ^=  a::±  b.  "Esgal  a  ce  qui  se  produit 
de  l'Addition,  ou  soustraction  de  sa  racine  multiplée  par  quelque  quantité  connue, 
&  de  quelque  autre  quantité  aussy  connue,"  as  it  appears  in  line  14,  opposite  page. 

'"^'  Descartes  proposes  to  show  how  a  quadratic  may  be  solved  geometrically. 

'^'  Descartes  says  "prolongeant  MN  la  baze  de  ce  triangle,"  because  the  hypote- 
nuse was  commonly  taken  as  the  base  in  earlier  times. 

i^^'From  the   figure   OM.PM  =  ^M^     If   OM  =  .3,   PM  =  s  — a,  and   since 

LM  :=  t,  we  have  .Î  (.?  —  o)  ^  fc- or  r- 3=  ar-f-b-.  Again,  MN  =  \/~o-  +  fc-j  whence 

OM  =  3=ON-(-MN  =  -a-f\/ja=-|-6-.     Descartes  ignores  the  second  root,  which 

is  negative. 

13 


GEOMETRY 


mise  MN  lay  off  NP  equal  to  NL.  and  the  remainder  PM  is  y,  the 
desired  root.    Thus  I  have 


■'=  -9''  +  \h'''  +  ^'- 


In  the  same  way,  if  I  had 

.v*  =  —  ax""  -\-  i>% 
PM  would  he  x-  and  I  should  have 


and  so  for  other  cases. 

Finally,  if  I  have  ;:-  =  as—h~,  I  make  NL  equal  to  ^  a  and  LM  equal 
to  b  as  before  ;  then,  instead  of  joining  the  points  M  and  N,  1 
draw  MOR  parallel  to  LN,  and  with  N  as  a  center  describe  a  circle 
through  L  cutting  MQR  in  the  points  Q  and  R  ;  then  .c,  the  line  sought, 
is  either  MQ  or  MR,  for  in  this  case  it  can  be  expressed  in  two  ways, 
namely  :'^^' 


^  =  r  +  \/^^-'^^ 


and 


'  =  i"-Vr'-*=- 


^-"  Since    MR.MQ^zLM".    then    if    R  = -,    we   have    \iQ  =  a  —  s,    and    so 

s  {a  —  a)=:  b-     or     r- :=  «r  —  b-. 

If,  instead  of  this,  MQ  =  .3,  then  MR  =  a  —  ^,  and  again,  .s-  =  a^  —  b'-.  Further- 
more, letting  O  be  the  mid-point  of  QR, 

1 


MQ  =  OM  -  OQ  =  -  «  -  Jl  a-.-_  ^2, 


and 

MR 


=  MO  +  OR=  j'^+yjl  a^--b^- 


Descartes  here  gives  both  roots,  since  both  are  positive.    If  MR  is  tangent  to  the 
circle,  that  is,  if  è  =  —  a,  the  roots  will  be  equal;  while  if  t»  >  —  a,  the  line  MR 

will  not  meet  the  circle  and  both  roots  will  be  imaginary.  Also,  since  RM.OM:=LM', 
c.^2.,  =  b^,andRM  +  QU  =  s^  +  3^  =  a. 

14 


Livre  Premier.  3^3 

angle ,  iufques  a  O ,  en  forte  qu'N  O  foit efgale a  N  L, 
la  toute  O  M  eft  :^  la  ligne  cherchée  Et  elle  s'exprime 
en  cete  forte 


;^  x>  ^  «  -h-  t^~  aa  -{-  bb. 

Que  fi  i^jyy  :xi  —  a  y  H-  bbjSc  qu'y  foit  la  quantité 
qu'il  faut  trouuer  ,  ie  fais  le  mefme  triangle  rectangle 
NLM,  &defabazeMNi'ofteNPefgalea  NL,  &Ie 
refte  P  M  eft  ^  la  racine  cherchée.  De  façon  que  iay 

b  b.    Et  tout  de  mefme  fî  i'a- 


30  -  ^  ^ 


V'jaa 


uois  X   :x>  —  a  X  H-  b.    P  M  feroit  x .    &  i'aurois 


X  :ù   ^  -  ^ 


4 


^^:  &ainfî  des  autres. 
Enfin  il  i'ay 

2^  CO  a^'-  bb: 
ie  fais  N  L  efgale  à  |  ^,  &  L  M 
efgale  à  b  corne  deuât,  pusis,au  lieu 
de  ioindre  les  poins  M  N  ,  ie  tire 
M  QJl  parallèle  a  L  N.  &  du  cen- 
tre N  par  L  ayant  defcrit  vn  cer- 
cle qui  la  couppe  aux  poins  Q  8c 
R,  la  ligne  cherchée  ;{  eft  M  Q? 
oubië  M  R,  car  en  ce  cas  elle  s'ex- 
prime en  deux  façons,  a  fçauoir  \:x:)'^a»r-V  ^aa-bb^ 

&c  ^  7G~a—  x/'^aa-'bb. 

Et  fi  le  cercle,  qui  ayant  fon  centre  au  point  N ,  pafîe 

par  le  point  L,  ne  couppe  ny  ne  touche  la  Hgne  droite 

MQ^,  il  n'y  a  aucune  racine  en  l'Equation,  de  fa^n 

qu'on  peut  affurer  que  la  conftru^tion  du  problefms 

propofé  eft  impoffible . 

Au 


15 


304  La   GEOMETRIE. 

Au  refle  ces  mefmes  racines  fe  peuuent  trouuer  par 
vne  infinité  d'autres  moyens  ,    &  i'ay  feulement  veulu 
mettre  ceux  cy,  comme  fort  fimples,  aîHn  défaire  voir 
qu'on  peut  conftruire  tous  les  Problefmes  de  la  Géomé- 
trie ordinaire,  fans  faire  autre  chofe  que  le  peu  qui  efl 
compris  dans  les  quatre  figures  que  i'ay  expliquées.     Ce 
queienecroy  pas  que  les  anciens  ayent  remarqué,  car 
autrement  ils  n'eufTent  pas  prisJa  peine  d'en  efcrire  tant 
de  gros  liures,  ou  le  fèul  ordre  de  leurs  propofîtions  nous 
fait  connoiftre  qu'ils  n'ont  point  eu  lavraye  méthode 
pourles  trouuer  toutes,mais  qu'ils  ont  feulement  ramaf^ 
fe  celles  qu'ils  ont  rencontrées. 
exemple       Et  on  le  peut  voir  aufTy  fort  clairement  de  ce  que  Pap- 
Pappus.    pus  amis  au  commencement  de  fonfeptiefme  liure,  ou 
après  s'eftre  arefte'' quelque  tems  a  dénombrer  tout  ce 
qui  auoit  efté  efcrit  en  Géométrie  par  ceux  qui  l'auoient 
precede',  il  parle  enfin  d  vne  queftion  ,   qu'il  dit  que  ny 
Euclide,ny  Apollonius,  ny  aucun  autre  n'auoient  fceu 
entièrement  refoudre.  &  voycy  fes  mots. 
Je  cite         Quem  autem  àicit  [Apollonius)  in  tertio  lihro  locum  ad 
Jcrfionh-  i^^^i  ^  quatuor  Uneas  ah  Eucliâe  perfeBum  non  ejje ,  ne  que 
tine  que  le  2pJ"e  perficere  poterat ,  neque  aliqui;  alius'-:  fed  neque  fau- 
affin  que   lulum  quidaddere iî5 ,  quœ  Euclides  {cripfityper  ea  tantum 
chafcun     çQ^jQii   ^    qj^^  ufquc  ad  Eudidù  t empara  prtvmonjirata 

plu4   ayfe-  Juntj^C. 

ment.  £j.  ^^^  ^^  aprc^s  il  explique  ainfi  qu'elle  eft  cete  que- 

Hion. 

At  locus  ad  très  ^  ^  quatuor  linens ,  in  quo  (Apolloîiius) 
magnifiée  fe  iaBat i  &  oftentat^nulla  habita  gratia  ei  ,  qui 
prius  fcripferat   ,   cflbujufmodi.     Sipofitione  datùtnbus 

reïlis 

16 


FIRST    BOOK 

And  if  tlie  circle  described  about  N  and  passing  through  L  neither 
cuts  nor  touches  the  Hne  MOR,  the  equation  has  no  root,  so  that  we 
may  say  that  the  construction  of  the  problem  is  impossible. 

These  same  roots  can  be  found  by  many  other  methods  ,'''^  I  have 
given  these  very  simple  ones  to  show  that  it  is  possible  to  construct 
all  the  problems  of  ordinary  geometry  by  doing  no  more  than  the  little 
covered  in  the  four  figures  that  I  have  explained.'""'  This  is  one  thing 
which  T  believe  the  ancient  mathematicians  did  not  observe,  for  other- 
wise they  would  not  have  put  so  much  labor  into  writing  so  many  books 
in  which  the  very  sequence  of  the  propositions  shows  that  they  did  not 
have  a  sure  method  of  finding  all,'""'  but  rather  gathered  together  those 
propositions  on  which  they  had  happened  by  accident. 

This  is  also  evident  from  what  Pappus  has  done  in  the  beginning  of 
his  seventh  book,'"''  where,  after  devoting  considerable  space  to  an 
enumeration  of  the  books  on  geometry  written  by  his  predecessors,'""' 
he  finally  refers  to  a  question  which  he  says  that  neither  Euclid  nor 
Apollonius  nor  any  one  else  had  been  able  to  solve  completely  ;''"  and 
these  are  his  words  : 

"Quern  autem  dicit  (Apollonius)  in  tertio  libro  locum  ad  très,  & 
quatuor  tineas  ah  Euclide  perfectum  non  esse,  neque  ipse  perficere 
poterat,  neque  aliquis  alius;  sed  neque  paululum  quid  addere  its,  quœ 

'"^^  For  interesting  contraction,  see  Rabuel,  p.  23,  et  seq. 

'-"'  It  will  be  seen  that  Descartes  considers  only  three  types  of  the  quadratic 
equation  in  s,  nan^ely,  S'  +  as — b~  =  0,  z-  —  as  —  b- =^  0,  and  s-  —  o5  +  &-  =  0. 
It  thus  appears  that  he  has  not  been  able  to  free  himself  from  the  old  traditions 
to  the  extent  of  generalizing  the  meaning  of  the  coefficients,  —  as  negative  and 
fractional  as  well  as  positive.  He  does  not  consider  the  type  z-  +  as  +  b-  =  0, 
because  it  has  no  positive  roots. 

'^^  "Qu'ils  n'ont  point  eu  la  vraye  méthode  pour  les  trouuer  toutes." 

'='1  See  Note  [9]. 

1='^  See  Pappus,  Vol.  II,  p.  637.  Pappus  here  gives  a  list  of  books  that  treat 
of  analysis,  in  the  following  words  :  "Illorum  librorum,  quibus  de  loco,  'ava\v6^ei>os 
sive  resoluto  agitur,  ordo  hie  est.  Euclidis  datorum  liber  unus,  Apollonii  de  pro- 
portionis  sectione  libri  duo,  de  spatii  sectione  duo,  de  sectione  determinata  duo,  de 
tactionibus  duo,  Euclidis  porismatum  libri  très,  Apollonii  inclinationum  libri  duo, 
eiusdem  locorum  planorum  duo,  conicorum  octo,  Aristaci  locorum  solidorum  libri 
duo."    See  also  the  Commandinus  edition  of  Pappus,  1660  edition,  pp.  240-252. 

'^"^  For  the  history  of  this  problem,  see  Zeuthen  :  Die  Lchrc  von  den  Kegel- 
schnitten  im  AUerthum,  Copenhagen,  1886.  Also,  Adam  and  Tannery,  Oeuvres  de 
Descartes,  vol.  6,  p.  723. 

17 


GEOMETRY 

Enclides  scripsit,  per  ea  tantum  conica,  qucc  usque  ad  Eiiclidis  tcmpora 
prœmonstrata  sunt,  arc."  '"' 

A  little  farther  on,  he  states  the  question  as  follows  : 
"At  locus  ad  très,  &  quatuor  lincas,  in  quo  {Apollonius)  niagnifice 
se  jactat,  &  ostentat,  nulla  habita  gratia  ei,  qui  prins  scripserat,  est 
hujusmodi.^^"^  Si  positione  dotis  tribus  redis  lineis  ab  tino  &  eodem 
piincto,  ad  très  lineas  in  datis  angulis  rectœ  lincœ  ducantur,  &  data  sit 
proportio  rcctanguli  contcnti  duabiis  dnctis  ad  quadratiim  reliqiiœ: 
piinctnm  contingit  positione  datum  solidum  locum,  hoc  est  unam  ex 
tribus  conicis  sectionibus.  Et  si  ad  quatuor  rectas  lincas  positione  datas 
in  datis  angulis  linecc  ducantur;  &  rectanguli  duabns  ductis  contenti  ad 
contcntum  duabns  reliqitis  proportio  data  sit;  similiter  punctum  datum 
coni  sectioncm  positione  continget.  Si  quidem  igitur  ad  duas  tantum 
locus  planus  ostensus  est.  Quod  si  ad  plures  quam  quatuor,  punctum 
continget  locos  non  adhuc  cognitos,  sed  lincas  tantum  dictas;  quales 
autem  sint,  vel  quam  habcant  proprietatem,  non  constat;  earum  unam, 
neque  primam,  &  qucc  manifestissima  videtur,  composucrant  osten- 
dentes  utilem,  esse.    Propositiones  autem  ipsarum  hce  sunt. 

"Si  ab  aliqiio  puncto  ad  positione  datas  rectas  lineas  quinque  ducantur 
rectœ  linecc  in  datis  angulis,  &  data  sit  proportio  solidi  parallèle  pip  edi 
rectanguli,  quod  tribus  dnctis  lineis  continctur  ad  solidum  parallelepipe- 
dum  rectangulum,  quod  continctur  rcUquis  duabus,  &  data  quapiam 
tinea,  punctum  positione  datani  lincaui  continget.  Si  auteui  ad  sex,  & 
data  sit  proportio  solidi  tribus  lineis  contcnti  ad  solidum,  quod  tribus 
reliquis  continctur;  rursus  puncturn  continget  positione  datant  lineam. 
Quod  si  ad  plures  quam  sex,  non  adhuc  habent  diccre,  an  data  sit  pro- 
portio cnjiispiam  contenti  quatuor  lineis  ad  id  quod  reliquis  continctur, 

'^''  Pappus,  Vol.  II,  pp.  677,  et  seq.,  Commandimis  edition  of  1660,  p.  251. 
Literally,  "Moreover,  he  (Apollonius)  says  that  the  problem  of  the  locus  related 
to  three  or  four  lines  was  not  entirely  solved  hy  Euclid,  and  that  neither  he  him- 
self, nor  any  one  else  has  been  able  to  solve  it  completely,  nor  were  they  able  to 
add  anything  at  all  to  those  things  which  Euclid  had  written,  by  means  of  the 
conic  sections  only  which  had  been  demonstrated  before  Euclid."  Descartes  arrived 
at  the  solution  of  this  problem  four  years  before  the  publication  of  his  geometry, 
after  spending  five  or  six  weeks  on  it.  See  his  letters,  Cousin,  Vol.  VI,  p.  294, 
and  Vol.  VI,  p.  224. 

''^' Given  as  follows  in  the  edition  of  Pappus  by  Hultsch,  previously  quoted: 
"Sed  hie  ad  très  et  quatuor  lineas  locus  quo  magnopere  gloriatur  simul  addens  ei 
qui  conscripserit  gratiam  habendam  esse,  sic  se  habct." 

18 


Livre   Premiek.  Boi* 

reBis  lineis  ah  uno  &  eodem'punBe,  ad  très  lineas  in  àatis  art" 
gulis  reU^  Uneœ  ducantur ,  (3  data  fit  proportio  reUanguli 
contenti  duahu^  duBis  ad quadrutum  reliquœ  :  punUum  con-* 
tingîtpofitione  datum  folidum  locum ,  hçc  efl  unam  ex  tribus 
conicisfeBionihus.  Et  fi  ad  quatuor  reBas  lineas  pojîtione 
datas  in  datis  angulis  linece  ducantur i  ^  reBanguli  duabus 
duBis  contenti  ad  content um  duabus  reliquis proportio  data 
fit:  fi militer punBum,  datum  coni  feBionem  pofitione  cwitin- 
get.  Si  quidem  igituradduas  tantum  locus  planus  ojlenfus 
cfl,  ^luodfi  adplures  quam  quatuor,  punBum  continget  /«- 
cos  non  adhuc  cognitos^  fed  lineas  tantum  diBas  s  quales  au-* 
temfntj  velquam  habeant proprietatem,  non  confiât:  earum 
unam,  nequeprimam^  &  quœmanifefiijfimavidetur,  compO' 
jueruntofi}endentes  utilemefe.  propoftiones  autemipfarum 
hce   funt. 

Si  ab  aliquo punBo  adpoftione  datas  reBds  lineas  quin- 
que  ducantur  reBce  linete  in  datis  angulis ,  ^  data  fit  propor^ 
tio  falidiparallelepipêdi  reBanguli-,  quod  tribus  duBis  lineis 
continetur  ad  folidum  par allelepipedum  reBangulum ,  quod 
continetur  reliquis  duabus j  (3  dataquapiamlinea^  punBum 
p  opt  ion  e  datam  Une  am  continget .  Si  autem  adfex ,  S?  data 
fit propo rtio folidi tribus  lineis  contenti  ad  folidum,  quod 
tribus  reliquis  continetur i  rurfus  punBum  continget  pofitione 
datam  lineam.  ^hiodfiadplures  quamfex,  non  adhuchabent 
dicere^an  data  fit  proportio  cuiufpiâ  contenti  quatuor  lineis 
ad  id  quod  reliquis  continetur,  quoniam  non  efi  aliquid  con* 
tentum  pluribus  quam  tribus  dimenfionibus. 

Ou  ie  vous  prie  de  remarquer  en  paffant,  que  lefcru- 
pulcj  que  faifoient  les  anciens  dV fer. des  termes  del'A- 
rithmetiqueen  la  Géométrie,  qui  ne  pouuoit  procéder, 

O  q  que 


19 


306  La  Géométrie. 

que  de  ce  qu'ils  ne  voyoient  pas  afTes  clairement  leur 
rapport,  caufoit  beaucoup dobfcuritc,  &  d'embaras,  es 
la  façon  dont  ils  s'expliquoient.  car  Pappus  pourfuit  en 

ce  te  forte.. 

jicquiefcuntaufem  his ,  quipaulo  ante  talia  interf  retail 
fimt.  7ieque  unum  ali quo  pact 0  comprehenfibîlefigniJïca?itcs 
quodhîs  co7itinetur.Licehit  aute  per  coniunïïas prop orti ones 
hc£C,  (3  âiceret  ^  demonflrare  univerfe  m  diPcis  proport ion?- 
biis,  atque  his  in  hune  modum.  Si  ah  aliquo  pwiBo  adpojl- 
tione  datas-reBas  Iméas  ducanturrecl(Ç  lineœ  in  datis  angu- 
lis,  ^  data  fît proportio  cotiiunUa  ex  e<i,  quam  habet  una  du' 
Rarum  adunam,  (3  altera  adalteram^^  alia  adaliam^^  te* 
liqua  ad  datant  lineam,  fifint  feptemj  fivero  oFio,  ^  r cliqua 
a  d  reliquam:  pun&um  continget  pofitione  datas  lineas.  Et 
fimiliter  quotcumque  fmt  impares  vel  pares  multitudine, 
€um  hœcy  ut  dixi,  loco  ad  quatuor  lineas  refpondeant^  nullum 
igiturpofuerwntita  utlinea  not  a  fit  »  ^c, 

La  queftion  donc  qui  auoit  elle  commencée  a  rofou* 
dreparEucIide,  &:pourfuiuieparApolloDius,  fans  auoir 
eftèacheuéeparperfonoe ,  eftoit  telle.  Ayant  trois  oa 
quatre  ou  plus  grand  nombre  de  lignes  droites  données 
par pofîtioHj premièrement  on  demande  vn point,  du- 
quel on  puifle  tirerautant  d'autres  lignes  droites,  vne  fur 
chafcune des  données,  qui  façent  auec  elles  des  angles 
donnes,  &  que  le  redangle  contenu  en  deux  de  celles, 
qui  feront  ainfi  tirées  d'vn  mefme  point.,  ait  la  propor- 
tion^ donnée  auec  le  quarré  de  la  troifiefme ,  s'il  n'y  en  a 
que  trois; oubien  auec  le redangle  des  deux  autres,  s'il  y 
en  a  quatreiOubien,s'il  y  en  a  cinq, que  le  parallélépipède 
compofede  trois  ait  la  proportion  donnée  auec  le  parais 

lelepipede 


20 


FIRST    BOOK 

quoniam  non  est  aliquid  contcntnm  plurihns  quavi  tribus  dimensioni- 
hus."  '"' 

Here  I  beg  you  to  observe  in  passing  that  the  considerations  that 
forced  ancient  writers  to  use  arithmetical  terms  in  geometry,  thus  mak- 
ing it  impossible  for  them  to  proceed  beyond  a  point  where  they  could 
see  clearly  the  relation  between  the  two  subjects,  caused  much  obscur- 
ity and  embarrassment,  in  their  attempts  at  explanation. 

Pappus  proceeds  as  follows  : 

"Acqiiiescimt  aiitem  his,  qui  paulo  ante  talia  interpretati  sunt  ;  neque 
nnum  aliquo  pacto  comprehensibile  significantes  quod  his  continetur. 
Licebit  autem  per  conjiinctas  proportiones  hœc,  &  dicere  &  demonstrare 
universe  in  dictis  proportionibus,  atque  his  in  hunc  modum.  Si  ab 
aliquo  puncto  ad  positione  datas  rectas  lineas  ducantur  rectœ  lineœ  in 
datis  angulis,  &  data  sit  proportio  conjuncta  ex  ea,  quam  habet  nna 
ductarum  ad  iinam,  &  altera  ad  alteram,  &  alia  ad  aliani,  &  rcliqua  ad 
datam  lineam,  si  sint  septcm;  si  vcro  octo,  &  reliqua  ad  reliquam: 
punctum  continget  positione  datas  lineas.    Et  similiter  quotcumque  sint 

'"'  This  may  be  somewhat  freely  translated  as  follows  :  "The  problem  of  the 
locus  related  to  three  or  four  lines,  about  which  he  (Apollonius)  boasts  so  proudly, 
giving  no  credit  to  the  writer  who  has  preceded  him,  is  of  this  nature:  If  three 
straight  lines  are  given  in  position,  and  if  straight  lines  be  drawn  from  one  and 
the  same  point,  making  given  angles  with  the  three  given  lines;  and  if  there  be 
given  the  ratio  of  the  rectangle  contained  by  two  of  the  lines  so  drawn  to  the 
square  of  the  other,  the  point  lies  on  a  solid  locus  given  in  position,  namely,  one 
of  the  three  conic  sections. 

"Again,  if  lines  be  drawn  making  given  angles  with  four  straight  lines  given 
in  position,  and  if  the  rectangle  of  two  of  the  lines  so  drawn  bears  a  given  ratio 
to  the  rectangle  of  the  other  two;  then,  in  like  manner,  the  point  lies  on  a  conic 
section  given  in  position.  It  has  been  shown  that  to  only  two  lines  there  corre- 
sponds a  plane  locus.  But  if  there  be  given  more  than  four  lines,  the  point  gen- 
erates loci  not  known  up  to  the  present  time  (that  is,  impossible  to  determine  by 
common  methods),  but  merely  called  'lines'.  It  is  not  clear  what  they  are,  or 
what  their  properties.  One  of  them,  not  the  first  but  the  most  manifest,  has  been 
examined,  and  this  has  proved  to  be  helpful.  (Paul  Tannery,  in  the  Oeuvres  de 
Descartes,  differs  with  Descartes  in  his  translation  of  Pappus.  He  translates  as 
follows  :  Et  on  n'a  fait  la  synthèse  d'  aucune  de  ces  lignes,  ni  montré  qu'elle  servit 
pour  ces  lieux,  pas  même  pour  celle  qui  semblerait  la  première  et  la  plus  indiquée.) 
These,  however,  are  the  propositions  concerning  them. 

"If  from  any  point  straight  lines  be  drawn  making  given  angles  with  five 
straight  lines  given  in  position,  and  if  the  solid  rectangular  parallelepiped  contained 
by  three  of  the  lines  so  drawn  bears  a  given  ratio  to  the  solid  rectangular  paral- 
lelepiped contained  by  the  other  two  and  any  given  line  whatever,  the  point  lies 
on  a  'line'  given  in  position.  Again,  if  there  be  six  lines,  and  if  the  solid  con- 
tained by  three  of  the  lines  bears  a  given  ratio  to  the  solid  contained  by  the  other 
three  lines,  the  point  also  lies  on  a  'line'  given  in  position.  But  if  there  be  more 
than  six  lines,  we  cannot  say  whether  a  ratio  of  something  contained  by  four 
lines  is  given  to  that  which  is  contained  by  the  rest,  since  there  is  no  figure  of 
more  than  three  dimensions." 

21 


GEOMETRY 

impares  vel  pares  mult itn dine,  cum  hœc,  ut  dixi,  loco  ad  quatuor  lineas 
respondeant,  nullum  igitur  posuerunt  ita  ut  linea  nota  sit,  &c}^*^ 

The  question,  then,  the  solution  of  which  was  begun  by  Euclid  and 
carried  farther  by  Apollonius,  but  was  completed  by  no  one,  is  this  : 

Having  three,  four  or  more  lines  given  in  position,  it  is  first  required 
to  find  a  point  from  which  as  many  other  lines  may  be  drawn,  each 
making  a  given  angle  with  one  of  the  given  lines,  so  that  the  rectangle 
of  two  of  the  lines  so  drawn  shall  bear  a  given  ratio  to  the  square  of 
the  third  (if  there  be  only  three)  ;  or  to  the  rectangle  of  the  other  two 
(if  there  be  four),  or  again,  that  the  parallelepiped''"^  constructed  upon 
three  shall  bear  a  given  ratio  to  that  upon  the  other  two  and  any  given 
line  (if  there  be  five),  or  to  the  parallelepiped  upon  the  other  three  (if 
there  be  six)  ;  or  (if  there  be  seven)  that  the  product  obtained  by  mul- 
tiplying four  of  them  together  shall  bear  a  given  ratio  to  the  product 
of  the  other  three,  or  (if  there  be  eight)  that  the  product  of  four  of 
them  shall  bear  a  given  ratio  to  the  product  of  the  other  four.  Thus 
the  question  admits  of  extension  to  any  number  of  lines. 

Then,  since  there  is  always  an  infinite  number  of  different  points 
satisfying  these  requirements,  it  is  also  required  to  discover  and  trace 
the  curve  containing  all  such  points.'^"'  Pappus  says  that  when  there 
are  only  three  or  four  lines  given,  this  line  is  one  of  the  three  conic 
sections,  but  he  does  not  undertake  to  determine,  describe,  or  explain 
the  nature  of  the  line  required'"'  when  the  question  involves  a  greater 
number  of  lines.  He  only  adds  that  the  ancients  recognized  one  of 
them  which  they  had  shown  to  be  useful,  and  which  seemed  the  sim- 

'^^'  This  rather  obscure  passage  may  be  translated  as  follows  :  "For  in  this  are 
agreed  those  who  formerly  interpreted  these  things  (that  the  dimensions  of  a 
figure  cannot  exceed  three)  in  that  they  maintain  that  a  figure  that  is  contained  by 
these  lines  is  not  comprehensible  in  any  way.  This  is  permissible,  however,  both 
to  say  and  to  demonstrate  generally  by  this  kind  of  proportion,  and  in  this  man- 
ner :  If  from  any  point  straight  lines  be  drawn  making  given  angles  with  straight 
lines  given  in  position;  and  if  there  be  given  a  ratio  compounded  of  them,  that 
is  the  ratio  that  one  of  the  lines  drawn  has  to  one,  the  second  has  to  a  second, 
the  third  to  a  third,  and  so  on  to  the  given  line  if  there  be  seven  lines,  or,  if  there 
be  eight  lines,  of  the  last  to  a  last,  the  point  lies  on  the  lines  that  are  given  in 
position.  And  similarly,  whatever  may  be  the  odd  or  even  number,  since  these, 
as  I  have  said,  correspond  in  position  to  the  four  lines  ;  therefore  they  have  not 
set  forth  any  method  so  that  a  line  may  be  known."  The  meaning  of  the  passage 
appears  from  that  which  follows  in  the  text. 

'^^^  That  is,  continued  product. 

'^^^  It  is  here  that  the  essential  feature  of  the  work  of  Descartes  may  be  said 
to  begin. 

'^'^  See  lino  19  on  the  opposite  page. 

22 


Livre  Premier.  3^7 

felepipedecoinpofedes  deux  qufreftcntj&dVne  antre 
ligncdonnée.  Ou  s'il  y  en  a  fîx,  que  le  parallélépipède 
côpofédetroisaitla  proportion  donnée  auec  le  parafle- 
lepipcde  des  trois  autres.  Ou  s'il  y  en  a  fept^que  ce  qui  fe 
produid  lorfqu'on  en  multiplie  quatre Tvne  par  l'autre, 
aitlaraifon  donnée  auec  ce  qui  feproduift  par  [a  multi- 
plication des  trois  autres,  &  encore  d'vne  autre  ligne 
donnec;  Ou  s'il  y  en  a  huit,  que  le  produit  de  la  multi- 
plication de  quatre  ait  la  proportion  donne'e  auec  le-pro- 
duit  des  quatre  autres.    Et  ainfi  cete  queftiou  fe  peuc 
eftendre  a  tout  autre  nombre  de  lignes.  Puis  a  caufe  qu'il 
y  Tw  toufiours  vneinfînite'dediuerspoins  qui  peuucnt  fa- 
tisfaireacequi  eft  icy  demande,  il  eft  aufly  requis  de 
connoiftre,  &  de  tracer  la  ligne,dans  laquelle  ils  doiuent 
tousfe  trouuer.    &  Pappus  dit  que  lorfqu'il  n'y  a  que 
trois  ou  quatre  lignes  droites  données ,  c'eft  en  vne  des 
trois  feétions  coniques,  mais  il  n'entreprend  point  de  la 
determiiier,  nyde  la  defcrire.   non  plus  que  d'expli- 
quer celles  ou  tous  ces  poins  fe  doiuent  trouuer,  lorfquc 
laqueftioneftpropofeeenvnplus  grand  nombre  de  li- 
gnes. Seulement  ilaioufte  que  les  anciens  en  auoient 
imagine  vne  qu'ils  monftroient  y  eftrevtile  ,    mais  qui 
fembloit  la  plus  manifefte,  &  qui  n'eftoit  pas  toutefois  la 
premiere.  Ce  qui  m'a  donne'  occafion  d'effayer  fî  par  la 
méthode  dont  ie  me  ièrs  on  peut  aller  aulTy  loin  qu'ils 
ont  efte'. 

Et  premièrement  i'ay  connu  que  cete  queftion  n'eftant  Rcfponfc 
propofee  qu'en  trois,  ou  quatre,ou  cinq  lignes  ,  on  peutl'^^T 

r  I  11/  ^  '"on  de 

toufiours  trouuer  les  poms  cherches  par  la  Géométrie  Pappus. 
fimplci  c*eft  a  dire  en  ne  fe  feruant  que  de  la  reigle  &  du 

Q,q  2  compas. 


23 


3©^  JLa  Géométrie, 

compas,  uj  ne  fmfàm  auti;echofe,  t|ue  ce  qui  a  défia  efte. 
dit;  excepteTeuIement  lorfqu'il  y  a  cinq  lignes  données, 
fi  elles  font  toutes  parallèles.  Auquel  cas,  comme  aufly 
lorfquela  queftion  eft  propofee  en  fix, ou  7,  ou  8,  ou  9 
lignes,  on peuttoufiourstrouuer les poins cherchés  par 
la  Géométrie  des  folides  j  c'eft  a  dire  en  y  employar«t 
quelqu^vne  des  trois  fediions  coniques.  Excepte'  feule- 
ment lorfqu'il  y  a  neuf  lignes  données,  fi  elles  font  toutes 
parallèles.  Auquel  cas  derechef,  8c  encore  en  10,11,12, 
ou  13  hgnes  on  peut  trouuer  les  poins  cherchés  par  le 
moyen  d'vne  hgne  courbe  qui  foit  d'vn  degré  plus  cora- 
pofée  que  les  fed;ions  coniques.  Excepte''  en  treize  fi  el- 
les font  toutes  parallèles ,  auqueîcas ,  &  en  quatorze,  i y, 
16,  &  17  il  y  faudra  employer  vne  ligne  courbe  encore 
d'va  degré' plus  compofca  que  la  précédente.  &  ainfî 
a  l'infini. 

Puisiay  trouuc'auffy,  que  lorfqu'il  ny  a  que  trois  ou 
quatre  hgnes  données,  les  poins  cherchés  fe  rencontrent 
tous  ,  non  feulement  en  l'vnedes  trois  fedions  coni- 
ques ,  mais  quelquefois  aulTy  en  la  circonférence  d'vu 
cercle ,  ou  en  vne  Hgne  droite.  Et  que  lorfqu'il  y  en  a 
cinq,  ou  fix,  ou  fept,  ou  huit,  tous  ces  poins  fe  rencon- 
trent en  quelque  vne  des  lignes,  qui  font  dVn  degré  plus 
corapofées  que  les  fecStions  coniques ,  &  il  eft  impofîîble 
d'en  imaginer  aucune  qui  ne  foit  vtile  a  cete  queftioU; 
mais  ils  peuuent  aufTy  derecheffe  rencontrer  en  vne  fe- 
(Stion  conique,  ou  en  vn  cercle,  ou  en  vne  ligne  droite. 
Et  s'il  y  en  a  neuf,  ou  i  o,  ou  n ,  ou  1 2,,  ces  poins  fe  ren- 
contrent en  vne  hgne,  qui  ne  peut  eftrc  que  d'vn  degr^ 
plus  compofée  que  les  précédentes  3  mais  toutes  celles 

qui 

24 


FIRST   BOOK 

plest,  and  yet  was  not  the  most  important. ''''  This  led  me  to  try  to  find 
out  whether,  by  my  own  method,  I  could  go  as  far  as  they  had  gone.'''"' 

First,  I  discovered  that  if  the  question  be  proposed  for  only  three, 
four,  or  five  lines,  the  required  points  can  be  found  by  elementary 
geometry,  that  is,  by  the  use  of  the  ruler  and  compasses  only,  and  the 
application  of  those  principles  that  I  have  already  explained,  except 
in  the  case  of  five  parallel  lines.  In  this  case,  and  in  the  cases  where 
there  are  six,  seven,  eight,  or  nine  given  lines,  the  required  points  can 
always  be  found  by  means  of  the  geometry  of  solid  loci,''"'  that  is,  by 
using  some  one  of  the  three  conic  sections.  Here,  again,  there  is  an 
exception  in  the  case  of  nine  parallel  lines.  For  this  and  the  cases  of 
ten,  eleven,  twelve,  or  thirteen  given  lines,  the  required  points  may  be 
found  by  means  of  a  curve  of  degree  next  higher  than  that  of  the  conic 
sections.  Again,  the  case  of  thirteen  parallel  lines  must  be  excluded, 
for  which,  as  well  as  for  the  cases  of  fourteen,  fifteen,  sixteen,  and 
seventeen  lines,  a  curve  of  degree  next  higher  than  the  preceding  must 
be  used  ;  and  so  on  indefinitely. 

Next,  I  have  found  that  when  only  three  or  four  lines  are  given,  the 
required  points  lie  not  only  all  on  one  of  the  conic  sections  but  some- 
times on  the  circumference  of  a  circle  or  even  on  a  straight  line.'"' 

When  there  are  five,  six,  seven,  or  eight  lines,  the  required  points 
lie  on  a  curve  of  degree  next  higher  than  the  conic  sections,  and  it  is 
impossible  to  imagine  such  a  curve  that  may  not  satisfy  the  conditions 
of  the  problem  ;  but  the  required  points  may  possibly  lie  on  a  conic 
section,  a  circle,  or  a  straight  line.  If  there  are  nine,  ten,  eleven,  or 
twelve  lines,  the  required  curve  is  only  one  degree  higher  than  the  pre- 
ceding, but  any  such  curve  may  meet  the  requirements,  and  so  on  to 
infinity. 

'"*'  See  lines  5-10  from  the  foot  of  page  23. 

'^^'  Descartes  gives  here  a  brief  summary  of  his  solution,  which  he  amplifies 
later. 

[40]  -pj^jg  term  was  commonly  applied  by  mathematicians  of  the  seventeenth  cen- 
tury to  the  three  conic  sections,  while  the  straight  line  and  circle  were  called  plane 
loci,  and  other  curves  linear  loci.  See  Fermât,  Isagoge  ad  Locos  Pianos  et  Solidos, 
Toulouse,  1679. 

'"'  Degenerate  or  limiting  forms  of  the  conic  sections. 


25 


GEOMETRY 

Finally,  the  first  and  simplest  curve  after  the  conic  sections  is  the 
one  generated  by  the  intersection  of  a  parabola  with  a  straight  line  in 
a  way  to  be  described  presently. 

I  believe  that  I  have  in  this  way  completely  accomplished  what 
Pappus  tells  us  the  ancients  sought  to  do,  and  I  will  try  to  give  the 
demonstration  in  a  few  words,  for  I  am  already  wearied  by  so  much 
writing. 

Let  AB,  AD,  EF,  GH,  ...  be  any  number  of  straight  lines 
given  in  position,''"'  and  let  it  be  required  to  find  a  point  C,  from  which 
straight  lines  CB,  CD,  CF,  CH,  .  .  .  can  be  drawn,  making  given  angles 
CBA,  CDA,  CFE,  CHG,    .  .  .    respectively,  with  the  given  lines,  and 

'*''  It  should  be  noted  that  these  lines  are  given  in  position  but  not  in  length. 
They  thus  become  lines  of  reference  or  coordinate  axes,  and  accordingly  they 
play  a  very  important  part  in  the  development  of  analytic  geometry.  In  this  con- 
nection we  may  quote  as  follows:  "Among  the  predecessors  of  Descartes  we 
reckon,  besides  Apollonius,  especially  Vieta,  Oresme,  Cavalieri,  Roberval,  and 
Fermât,  the  last  the  most  distinguished  in  this  field;  but  nowhere,  even  by  Fermât, 
had  anv  attempt  been  made  to  refer  several  curves  of  difïerent  orders  simultane- 
ously to  one  system  of  coordinates,  which  at  most  possessed  special  significance 
for  one  of  the  curves.  It  is  exactly  this  thing  which  Descartes  systematically 
accomplished."  Karl  Fink,  A  Brief  History  of  Mathematics,  trans,  by  Beman  and 
Smith,  Chicago,  1903,  p.  229. 

Heath  calls  attention  to  the  fact  that  "the  essential  difference  between  the 
Greek  and  the  modern  method  is  that  the  Greeks  did  not  direct  their  efforts  to 
making  the  fixed  lines  of  a  figure  as  few  as  possible,  but  rather  to  expressing 
their  equations  between  areas  in  as  short  and  simple  a  form  as  possible."  For  fur- 
ther discussion  see  D.  E.  Smith,  History  of  Mathematics,  Boston,  1923-25,  Vol.  II, 
pp.  316-331   (hereafter  referred  to  as  Smith). 


26 


Livre  Premier.  ^^^ 

qui  font  dVn  degré  plus  compofees  y  peuuentferuir,  & 
ainfî  a  l'infini. 

Au  refle  la  premiere,  &  la  plus  fimple  de  toutes  après 
les  fednons  coniques ,  eft  celle  qu'on  peut  defcrirepar 
i'interfeétiond'vne  Parabole,  &dVne  ligne  droite,  en  la 
façon  qui  fera  tantoft  explique'e.  En  forte  que  ie  penfè 
auoir  entièrement  fatisfait  a  ceque  Pappus  nous  dit  auoir 
efte'chetché'en  cecy  par  les  anciens.  &  ic  tafcheray  d  en 
mettre  la  demonftration  en  peu  de  mots.car  il  m'ennuie 
défia  d'en  tant  efcrire. 


Soient  A  B,  A  D,  E  F,  G  H,  &c.  plufieurs  lignes  don- 
nées par  pofition,  &:  qu'il  faille  trouuer  vn  point,  comme 
C,  duquel  ayant  tire'd'autres  lignes  droites  fur  les  don- 
nées, comme  C  B,  C  D,  C  F,  &  C  H ,  en  forte  que  les 
anglesCBA,CDA,CFE,CHG,&c.foientdonnds, 

Qq  3  & 


27 


3^^  La  Géométrie. 

&que  ce  qui  eft  produit  par  la  multiplication  d' vue  par- 
tic  de  ces  lignes, foit  efgal  a  ce  qui  eft  produit  par  la  mul- 
tiplication des  autres,  oubien  qu'ils  ayent  quelque  autre 
proportion  donnée,  car  cela  ne  rend  point  la  queftion 
pius  difficile. 
Commet      Premièrement  ie  fuppofe  la  chofe  comme  defîa  faite^ 
^'ofedes  ^-pour  me  demeller  de  la  côfulion  de  toutes  ces- lignes, 
termes     ie  confidcre  l'vne  des  donne'es,  &  IVne  de  celles  qu'il 
«n  VE-  fauttrouuer,  parexemple  A  B,  &  C  B ,  comme  lesprin- 
quation    cipalcs,  &  aufquclles  ie  tafche  de  rapporter  ainfi  toutes 
exemple.  Ics  autrcs.    Quc  le  fegment  de  la  ligne  A  B,  qui  eft  entre 
les  poins  A  &  B,  foit  nommé  x.  &  que  B  C  foit  nomme' 
y,  &  que  toutes  les  autres  lignes  données  foient  prolon- 
gées, iufques  a  ce  qu'elles  couppent  ces  deux,  aufly  pro- 
longées s'il  eft  befoin,  ôcCi  elles  ne  leur  font  point  paral- 
lèles, comme  vous  voy  es  icy  qu'elles  couppent  la  ligne 
A  B  aux  poins  A,  E,  G,  &  B  C  aux  poins  R,S,T.   Puis  a 
caufequetousles  angles  du  triangle  A  RB  font  donne''s3 
la  proportion, qui  eft  entre  les  coftés  A  B,  &  B  R,  eft  auf- 
fy  donnée,  &  ie  la  pofe  comme  de  ^  à  ^,  de  façon  qu'  A  B 

eftant  x,  R  B  fer  i  *:'  &:  la  toute  C  R  fera  y  -+-  ~  '  à  caufe 
que  le  poin  t  B  tombe  entre  C  &  R^  car  fi  R  tomboit  en- 
tre C  &  B,C  R  feroit  ;/---{'&  fi  C  tomboit  entre  B  &  R, 

CR  feroit  — ^-i-"7*     Tout  de  mefme  les  trois  angles 

du  triangle  D  R  C  font  donnel; ,  &  par  confequent  aufiy 
la  proportion  qui  eft  entre  les  cofte's  C  R,  &  C  D ,  que  ie 

pofe  comme  de  ;^à  r;  de  façon  que  C  R  eftant  y  -^-  -* 

CD 


28 


FIRST    BOOK 

such  that  the  product  of  certain  of  them  is  equal  to  the  product  of  the 
rest,  or  at  least  such  that  these  two  products  shall  have  a  çiven  ratio, 
for  this  condition  does  not  make  the  problem  any  more  difficult. 

First,  I  suppose  the  thing  done,  and  since  so  many  lines  are  confus- 
ing, I  may  simplify  matters  by  considering  one  of  "the  given  lines  and 
one  of  those  to  be  drawn  (as,  for  example,  AB  and  BC)  as  the  prin- 
cipal lines,  to  which  I  shall  try  to  refer  all  the  others.  Call  the  segment 
of  the  line  AB  between  A  and  B,  x^  and  call  BC,  y.  Produce  all  the 
other  given  lines  to  meet  these  two  (also  produced  if  necessary)  pro- 
vided none  is  parallel  to  either  of  the  principal  lines.  Thus,  in  the 
figure,  the  given  lines  cut  AB  in  the  points  A,  E,  G,  and  cut  BC  in  the 
points  R,  S,  T. 

Now,  since  all  the  angles  of  the  triangle  ARB  are  known,'"'  the  ratio 
between  the  sides  AB  and  BR  is  known.'"'   If  we  let  AB  :BR  =  r  :b, 

since  AB  =  x,  we  have  RB  =  —  ;  and  since  B  lies  between  C  and  R  '"', 

z 

/>x 
we  have  CR^v  +  -— •    (When  R  lies  between  C  and  B,  CR  is  equal 

to  y  —  —,  and  when  C  lies  between  B  and  R,  CR  is  equal  to  —  y  +  —  ) 

Again,  the  three  angles  of  the  triangle  DRC  are  known,'*"'  and  there- 
fore the  ratio  between  the  sides  CR  and  CD  is  determined.    Calling  this 

ratio  z  :  c,  smce  CR  =  y  -{--;:>  we  have  CD  =  "    -f-  ^:;^-     i  hen,  smce 


'"'  Since  BC  cuts  AB  and  AD  under  given  angles. 

'^'  Since  the  ratio  of  the  sines  of  the  opposite  angles  is  known. 

'"'  In  this  particular  figure,  of  course. 

'*"'  Since  CB  and  CD  cut  AD  under  given  angles. 


29 


GEOMETRY 

the  lines  AB,  AD,  and  EF  are  given  in  position,  the  distance  from  A 
to  E  is  known.  If  we  call  this  distance  k,  then  EB  =  A-  -f-  x ;  although 
EB  =  fe  —  X  when  B  lies  between  E  and  A,  and  E=^- — k -{- x  when  E 
lies  between  A  and  B.  Now  the  angles  of  the  triangle  ESB  being 
given,  the  ratio  of  BE  to  BS  is  known.     We  may  call  this  ratio  a  :  d. 

Then  BS  =  '^^^  +  ^^'  and  CS  =  ^-L+^''^i±_^^'.i-]   ^j^^^  g  y^^^  between  B 

G  2 

and  C  we  have  CS  = ,  and  when  C  lies  between  B  and  S 

z 

we  have  CS  = ~ — — — .     The  angles  of  the  triangle  ESC  are 

known,  and  hence,  also  the  ratio  of  CS  to  CF,  or  s  :  e.     Therefore, 

ezy -^  de/; -\- i/fx        t  -i        •  \  r-  i   •        •  ^   T^r^        i 

LP  = -^ — .     Likewise,  AG  or  /  is  given,  and  B(j  =  /  —  x. 

Also,  in  triangle  BGT,  the  ratio  of  BG  to  BT,  or  ,z  :  f,  is  known.  There- 
fore, BT  =-^^  ~-^'^"  and  CT  =  ^-'' "^-^'^~^\     In  triangle  TCH,  the  ratio 

z  z 

of  TC  to  CH,  or  z  :  g,  is  known,''''  whence  CH  ^  '^^^ ^ ^^-  . 

i^'i  We  have 

,    dk-\-dx 

=  y  + ~ 

^y-\-dk^dx 


and  similarly  for  the  other  cases  considered  below. 

The  translation  covers  the  first  eight  lines  on  the  original  page  312   (page  32 
of  this  edition. 

'"'  It  should  be  noted  that  each  ratio  assumed  has  ^  as  antecedent. 


30 


5^x 


CD  fera  t^ 


hex 


-.  Apres  cela  pourceque  les  lignes  A  F, 

A  D,  &:  E  F  font  données  par  pofition,  la  diftance  qui  eft 
entre  les  poins  A  &  E  eft  au  fTy  donnée,  &  fi  onlanom- 
me  K,  on  aura  E  B  efgal  a  k^  -{-  x-^  mais  ce  feroit  /^—  x ,  fi 
le  point  B  tomboit  entre  E  &  A;&  --  >^-f-  .r^fi  E  tomboit 
entre  A  &B.  Et  pourceque  les  angles  du  triangle  ESB 
font  tous  donnés,  la  proportion  de  BE  a  BS  eftaufly 
donnée,  &  ie  la  pofe  comme  :^à^  ,  fibienque  BS  eft 

dk>i<  dx      „     ,  ^  ^      f^   zy  'i*  dk  <i>d  x 


&  la  toute  C  S  eft 


mais  ce  feroic 


\y  •-  dk  --  dx 


file  point  s  tomboit  entre  B  &C5&  ce  feroic 


■  -  z.y  >i*  d  k  'i*  dx 


K. 


,  fi  C  tomboit  entre  B^  &  S.  De  plus  les 
trois  angles  du  triangle  F  S  Cfont  donne's,  6c  en  fuite  îa 

pro- 

31 


^^*  La  Géométrie. 

proportion  de  C  S  à  C  F,  qui  foie  comme  de  ^kc,   5c1â 

toute  C  F  fera         ^^ .   En  meime  taçon  AG 

que  ie  nomme /eft  donnée,  &B  G  eft  /--  x\  &  acaufe 
dutriangleBGTlaproportion  de  BG  la  BTefraufîy 

fl'-fx 

donnée,  quifoit  comme  de  :^  à  /!  &B  Tfera  — ^  ,& 

C  T  co  ^•'^'^{"^    .  Puis  derechef  la  proportion  de  T C  a 
C  H  eft  donnée  ,  acaufe  du  triangle  T  C  H ,  &  lapofant 

comme  de^agy  on  aura  C  H  30 — . 

EtainfivousvoyeX  qu'en  tel  nombre  de  lignes  don- 
nées par  pofition  qu'on  puifîeauoir,  toutes  les  lignes  ti- 
rées defTus  du  point  C  a  angles  donne's  fuiuant  la  teneur 
delaqueftion  ,fepeuuent  toujours  exprimer  chafcune 
par  trois  termes j  dont  l'vn  eft  compofe'de  la  quantité  in- 
connue j',  multipliée  ,  ou  diuifce  par  quelque  autre 
connue^  &  l'autre  de  la  quantité'  inconnue  x,  aufly  mul- 
tiplie'e  ou  diuifce  par  quelque  autre  connue ,  &  le  trolîel^ 
me  d'vne  quantité  toute  connue.  Excepte  feulement  lî 
elles  fontparalleles  joubien  a  la  ligne  AB,  auquel  cas  le 
terme  compofe  de  la  quantité  AT  fera  nul  ;  oubien  a  la  li- 
gne C  B,  auquel  cas  celuy  qui  eft  compofe'de  la  quantité" 
y  fera  nulj  ainfi  qu'il  eft  trop  manifeftc  pour  que  ie  m  are- 
fte  a  l'expliquer.  Et  pour  les  fignes  4-,  &:  -,  qui  fe  ioi- 
gnent  à  ces  termes,  ilspeuuent  eftre  changes  en  toutes 
les  façons  imaginables. 

Puis  vous  voyés  aufly,  que  multipliant  plufîeurs  de 
ces  lignes  l'vne  par  l'autre,  les  quantités  x3cy,  qui  fe 
trouuent  dans  le  produit,  n'y  peuuentauoir  que  chafcu- 
ne autant  de  dimenfions,  qu'il  y  a  eu  deligues,  al'expli- 

cation 

32 


FIRST    BOOK 

And  thus  you  see  that,  no  matter  how  many  Hues  are  given  in  posi- 
tion, the  length  of  any  such  hne  through  C  making  given  angles  with 
these  lines  can  always  be  expressed  by  three  terms,  one  of  which  coh- 
sists  of  the  unknown  quantity  y  multiplied  or  divided  by  some  known 
quantity  ;  another  consisting  of  the  unknown  quantity  .r  multiplied  or 
divided  by  some  other  known  quantity  ;  and  the  third  consisting  of  a 
known  quantity.''"'  An  exception  must  be  made  in  the  case  where  the 
given  lines  are  parallel  either  to  AB  (when  the  term  containing  .r  van- 
ishes), or  to  CB  (when  the  term  containing  3'  vanishes).  This  case  is 
too  simple  to  require  further  explanation. '°"'  The  signs  of  the  terms 
may  be  either  +  or  —  in  every  conceivable  combination.'''' 

You  also  see  that  in  the  product  of  any  number  of  these  lines  the 
degree  of  any  term  containing  x  or  y  will  not  be  greater  than  the  num- 
ber of  lines  (expressed  by  means  of  .r  and  y)  whose  product  is  found. 
Thus,  no  term  will  be  of  degree  higher  than  the  second  if  two  lines 
be  multiplied  together,  nor  of  degree  higher  than  the  third,  if  there  be 
three  lines,  and  so  on  to  infinity. 

'^"^  That  is,  an  expression  of  the  form  ax  +  by  +  c,  where  a,  b,  c,  are  any  real 
positive  or  negative  quantities,  integral  or  fractional  (not  zero,  since  this  exception 
is  considered  later). 

[50]  Yj-jg  following  problem  will  serve  as  a  very  simple  illustration  :  Given  three 
parallel  lines  AB,  CD,  EF,  so  placed  that  AB  is  distant  4  units  from  CD,  and  CD 
is  distant  3  units  from  EF  ;  required  to  find  a  point  P  such  that  if  PL,  PM,  PN 


be    drawn   through    P,    making    angles    of    90°,    45°,    30°,    respectively,    with   the 
parallels.    Then  PM-=  PL.PN. 

Let  PR  =  y,  then  PN  =  2y,  PM  =  V2 (  v  +  3) ,  PL  =  j  +  7.    If  PM  "  =  PN .  PL, 

we  have      V^^  i'  +  >^)  |    =  2v ( J  +  7) ,  whence  :v  =  9.    Therefore,  the  point  P  lies  on 

the  line  XY  parallel  to  EF  and  at  a  distance  of  9  units  from  it.    Cf.  Rabuel,  p.  79. 
'°''  Depending,  of  course,  upon  the  relative  positions  of  the  given  lines. 


2>l 


GEOMETRY 

Furthermore,  to  determine  the  point  C,  but  one  condition  is  needed, 
namely,  that  the  product  of  a  certain  number  of  hues  shall  be  equal  to, 
or  (what  is  quite  as  simple),  shall  bear  a  given  ratio  to  the  product  of 
certain  other  lines.  Since  this  condition  can  be  expressed  by  a  single 
equation  in  two  unknown  quantities,'"''  we  may  give  any  value  we  please 
to  either  .v  or  y  and  find  the  value  of  the  other  from  this  equation.  It 
is  obvious  that  when  not  more  than  five  lines  are  given,  the  quantity  x, 
which  is  not  used  to  express  the  first  of  the  lines  can  never  be  of  degree 
higher  than  the  second.'"^' 

Assigning  a  value  to  3',  we  have  x-  =-^  ±  a.v  ±:  h-,  and  therefore  x 
can  be  found  with  ruler  and  compasses,  by  a  method  already  explained.'"' 
If  then  we  should  take  successively  an  infinite  number  of  different 
values  for  the  line  y,  we  should  obtain  an  infinite  number  of  values  for 
the  line  .r,  and  therefore  an  infinity  of  different  points,  such  as  C,  by 
means  of  which  the  required  curve  could  be  drawn. 

This  method  can  be  used  when  the  problem  concerns  six  or  more 
lines,  if  some  of  them  are  parallel  to  either  AB  or  BC,  in  which  case 

'""'  That  is,  an  indeterminate  equation.  "De  plus,  à  cause  que  pour  determiner 
le  point  C,  il  n'y  a  qu'une  seule  condition  qui  soit  requise,  à  sçavoir  que  ce  qui  est 
produit  par  la  multiplication  d'un  certain  nombre  de  ces  lignes  soit  égal,  ou  (ce  qui 
n'est  de  rien  plus  mal-aisé)  ait  la  proportion  donnée,  à  ce  qui  est  produit  par  la 
multiplication  des  autres  ;  on  peut  prendre  à  discretion  l'une  des  deux  quantitez 
inconnues  x  ou  y,  &  chercher  l'autre  par  cette  Equation."  Such  variations  in  the 
texts  of  different  editions  are  of  no  moment,  but  are  occasionally  introduced  as 
matters  of  interest. 

''^^'  Since  the  product  of  three  lines  bears  a  given  ratio  to  the  product  of  two 
others  and  a  given  line,  no  term  can  be  of  higher  degree  than  the  third,  and  there- 
fore, than  the  second  in  x. 

'^^'  See  pages  13,  et  seq. 


34 


Livre  Premier.  5^5    . 

cation  defquelles  elles  feruent ,  qui  ont  elle''  ainfî  multi- 
pliées: enforce  qu'elles  n'auront  iaraais  plus  de  deux  dî- 
menfious,  en  ce  qui  ne  fera  produit  que  par  la  multipli- 
cation de  deux  lignes;  ny  plus  de  trois ,  en  ce  qui  ne  fera 
produit  que  par  la  multiplication  de  trois ,  &  ainfi  a  l'in- 
fini . 

De  plus,  a  caufe  que  pour  determiner  le  point  C,  il  o^^^ou^c 
n'ya  qu'vne  feule  condition  qui  foitrequife  ,    à  fçauoir  que  ce 
que  ce  qui  eft  produit  par  la  multiplication  d'vn  certain  ^^°^^  ' 
nombre  de  ces  lignes  foit  efgal ,  ou  Ccequi  n  eft  de  rien  plan  lorji 
plus  malayfe]  ait  la  proportion  donnée ,  à  ce  qui  eft  pro-  "^l-'^^  ^ 
duit  par  la  multiplication  des  autres;  on  peut  prendre  api^opofé 

*"^  ,  1        1  .     ,  .  -    en  plus  de 

difcretion  T vne  des  deux  quantités  mconnues  x ou  y ,  &  j  lignes. 
chercher  l'autre  par  cete,  Equation,  en  laquelle  il  eft  eui- 
dent  que  lorfque  la  queftion  n  eft  point  propofee  en  plus 
decinqlignes,  la  quantité  a:  qui  ne  ferc  point  a  Icxpref- 
(îon  de  la  premiere  peut  toufîours  n'y  auoir  que  deux  di- 
menfious.  de  façon  que  prenant  vne  quantité  connue 
pourjy,  il  ne  reftera  que  xxyi-hou--  ax-{-  ou  —  bb,  &c 
ainfî  on  pourra  trouuer  la  quantité  x  auec  la  reigle  &le 
compas,  en  la  façon  tantoft  explique'e.  Mefme  prenant 
faccelîîuement  infinies  diuerfes  grandeurs  pour  la  ligne 
y  y  onentrouneraauffyiniSnies  pourlahgne  Ar,&ain{ion 
auravncinfiniteMediuerspoins  ,  tels  que  celuy  qui  eft 
marqué  C ,  par  le  moyen  defquels  on  defcrira  la  ligne 
courbe  demandée. 

11  fe  peut  faire  aufTy,  la  queftion  eftant  propofe^e  en  fîx, 
ou  plus  grand  nombre  de  lignes^  s'il  y  en  a  entre  les  don- 
nées, qui foient  parallèles  a  B  A,  ou  B  C  ,  quel'vne  des 
deux  quantités  x  ou  y  n'ait  que  deux  dimenfîons  en 

Rr  TEqua- 


35 


^14  i-A    GEOMETRIE^ 

TEquation,  Se  ainfî  qu'on  puifTe  trouuuer  le  point  C  aaec 
lareigle  &:  le  compas.  Mais  au  contraire  fi  elles  font  tou- 
tes parallèles  ,    encore  que  la  queftion  ne  foit  propofee 
qu'en  cinq  lignes,  ce  point  C  ne  pourra  ainfi  eftre  trou- 
ue',  a  caufe  que  la  quantité  x  ne  fe  trouuant  point  en  tou- 
te rEquation,il  ne  fera  plus  permis  de  prendre  vne  quan- 
tité connue  pour  celle  qui  eft  nommeej' ,  mais  ce  fera 
elle  qu'il  faudra  chercher.  Et  pource  quelle  aura  trois  di- 
menfions,on  nelapourra  trouuer  qu'en  tirant  la  racine 
dVn€  Equation  cubique,  cequi  ne  fe  peut  généralement 
faire  fans  qu'on  y  employe  pour  le  moins  vne  fedion  co- 
nique. Et  encore  qu'il  y  ait  iufques  a  neuf  lignes  don- 
nées,pourvûqu'elles  ne  foient  point  toutes  parallèles,  oiî 
peut  toufiours  faire  que  l'Equation  ne  monte  que  iufques 
auquarrédequarré.  au  moyen  dequoy  on  lapeutauffy 
toufiours  refoudre  par  les  fedtions  coniques,  en  la  façon 
que  i'expliqueraycy  après.    Et  encore  qu'il  y  en  ait  iuf^ 
ques  a  treize  ,  on  peut  toufiours  faire  qu'elle  ne  nionte 
que  iufques  au  quarré  de  cube,  en  fuite  de  quoy  on  la 
peut  refoudre  par  le  moyen  d'vne  ligne  ,    qui  n'eft  que 
d'vn  degré' plus  compofée  que  les  feétions  coniques,  en 
la  façon  que  i'exphquerayauflycy  après.    Et  cecy  eft  la 
premiere  partie  de  cequei'auoisicyademonftrer^  mais 
auant  que  ie  pafi^e  a  la  féconde  il  eft  befoin  que  ie-  die 
quelque  chofe  en  general  delà  nature  des  lignes  cour- 
bes. 


LA 


36 


FIRST    BOOK 

either  x  or  y  will  be  of  only  the  second  degree  in  the  equation,  so  that 
the  point  C  can  be  found  with  ruler  and  compasses. 

On  the  other  hand,  if  the  given  lines  are  all  parallel  even  though  a 
question  should  be  proposed  involving  only  five  lines,  the  point  C  can- 
not be  found  in  this  way.  For,  since  the  quantity  x  does  not  occur  at 
all  in  the  equation,  it  is  no  longer  allowable  to  give  a  knowni  value  to  y. 
It  is  then  necessary  to  find  the  value  of  3'.'^'^  And  since  the  term  in  y 
will  now  be  of  the  third  degree,  its  value  can  be  found  only  by  finding 
the  root  of  a  cubic  equation,  which  cannot  in  general  be  done  without 
the  use  of  one  of  the  conic  sections.'^"' 

And  furthermore,  if  not  more  than  nine  lines  are  given,  not  all  of 
them  being  parallel,  the  equation  can  always  be  so  expressed  as  to  be 
of  degree  not  higher  than  the  fourth.  Such  equations  can  always  be 
solved  by  means  of  the  conic  sections  in  a  way  that  I  shall  presently 
explain.'"' 

Again,  if  there  are  not  more  than  thirteen  lines,  an  equation  of  degree 
not  higher  than  the  sixth  can  be  employed,  which  admits  of  solution  by 
means  of  a  curve  just  one  degree  higher  than  the  conic  sections  by  a 
method  to  be  explained  presently.'^*' 

This  completes  the  first  part  of  what  I  have  to  demonstrate  here,  but 
it  is  necessary,  before  passing  to  the  second  part,  to  make  some  general 
statements  concerning  the  nature  of  curved  lines. 

''"'''  That  is,  to  solve  the  equation  for  y. 

''"'  See  page  84. 

i="i  See  page  107. 

^^^  This  line  of  reasoning  may  be  extended  indefinitely.  Briefly,  it  means  that 
for  every  two  lines  introduced  the  equation  becomes  one  degree  higher  and  the 
curve  becomes  correspondingly  more  complex. 


37 


BOOK  SECOND 


Geometry 

BOOK  II 

On  the  Nature  of  Curved  Lines 

THE  ancients  were  familiar  with  the  fact  that  the  problems  of  geom- 
etry may  be  divided  into  three  classes,  namely,  plane,  solid,  and  linear 
problems.'^"'  This  is  equivalent  to  saying  that  some  problems  require 
only  circles  and  straight  lines  for  their  construction,  while  others 
require  a  conic  section  and  still  others  require  more  complex  curves.'*'' 
I  am  surprised,  however,  that  they  did  not  go  further,  and  distinguish 
between  different  degrees  of  these  more  complex  curves,  nor  do  I  see 
why  they  called  the  latter  mechanical,  rather  than  geometrical.'"' 
If  we  say  that  they  are  called  mechanical  because  some  sort  of  instru- 
ment'"*' has  to  be  used  to  describe  them,  then  we  must,  to  be  consistent, 

[59]  (-£  Pappus,  Vol.  I,  p.  55,  Proposition  5,  Book  Til  :  "The  ancients  consid- 
ered three  classes  of  geometric  problems,  which  they  called  plane,  solid,  and  linear. 
Those  which  can  be  solved  by  means  of  straight  lines  and  circumferences  of  circles 
are  called  plane  problems,  since  the  lines  or  curves  by  which  they  are  solved  have 
their  origin  in  a  plane.  But  problems  whose  solutions  are  obtained  by  the  use  of 
one  or  more  of  the  conic  sections  are  called  solid  problems,  for  the  surfaces  of  solid 
figures  (conical  surfaces)  have  to  be  used.  There  remains  a  third  class  which  is 
called  linear  because  other  'lines'  than  those  I  have  just  described,  having  diverse 
and  more  involved  origins,  are  required  for  their  construction.  Such  lines  are  the 
spirals,  the  quadratrix,  the  conchoid,  and  the  cissoid,  all  of  which  have  many  impor- 
tant properties."     See  also  Pappus,  Vol.  I,  p.  271. 

'""^  Rabuel  (p.  92)  suggests  dividing  problems  into  classes,  the  first  class  to 
include  all  problems  that  can  be  constructed  by  means  of  straight  lines,  that  is, 
curves  whose  equations  are  of  the  first  degree  ;  the  second,  those  that  require  curves 
whose  equations  are  of  the  second  degree,  namely,  the  circle  and  the  conic  sec- 
tions, and  so  on. 

'"^  Cf.  Encyclopedic  on  Dictionnaire  Raisonne  des  Sciences,  des  Arts  et  des 
Metiers,  par  une  Société  de  gens  de  lettres,  mis  en  ordre  et  publiées  par  M .  Diderot, 
et  quant  à  la  Partie  Mathématique  par  M.  d'Alcmbert,  Lausanne  and  Berne,"  1780. 
In  substance  as  follows  :  "Mechanical  is  a  mathematical  term  designating  a  con- 
struction not  geometric,  that  is,  that  cannot  be  accomplished  by  geometric  curves. 
Such  are  constructions  depending  upon  the  quadrature  of  the  circle. 

The  term,  mechanical  curve,  was  used  by  Descartes  to  designate  a  curve  that 
cannot  be  expressed  by  an  algebraic  equation."  Leibniz  and  others  call  them 
transcendental. 

1"'^  "Machine." 

40 


Geome- 
tric. 


Livre  Secokd.  Sif 

GEOMETRIE. 

LIVRE    SECOND. 

^e  la  nature  des  lignes  courhes, 

T   E  s  anciens  ont  fore  bien  remarque  ,   qu'entre  les 
-■— 'Problefmes  de  Géométrie,  les  vns  font  plans  ,  les  au-    Quelles 
tresfolidesj&lesautreslineaircs,  c'eil  adire^queles  vns  ["J^^^f 
peuuenteftreconflruits,  eu  ne  traçant  que  des  lignes  courbes 
droites,  &:descerclesjau  lieu  que  les  autres  ne  le  peu-  peuTV 
uent  eftre,  qu'on  n'y  employe  pour  le  moins  quelque  fe-  ^^uoir  en 
d:ion  conique,  ni  enfin  les  autres   ,   qu  on  n'y  employe '^""^" 
quelque  autre  ligne  plus  compofee.  Mais  ie  m'eftonne 
de  ce  qu'ils  n'ont  point  outre  cela  difliugué  diuers  de- 
grees entre  ces  lignes  plus  compofées,  &  ie  ne  fçaurois 
comprendre  pourquoy  ils  les  ont  nommées  mecl^ni- 
ques,  plutoft  que  Géométriques.    Carde  dire  que  c'ait 
efte'',  a  caufe  qu'il  efV  befoin  de  fe  fèruir  de  quelque  ma- 
chine pour  les  defcrire,  il  faudroit  reietter  par  melrne 
raifon  les  cercles  &  les  lignes  droitesjvû  qu'on  ne  les  de- 
fcrit  fur  le  papier  qu'auec  vn  compas,  &  vne  reigle,  qu'on 
peut  auffy  nommer  des  machines.  Ce  n'eft  pas  non  plus, 
a  caufe  que  les  inftrumens,  quiferuent  a  les  tracer^eftanc 
plus  compofe's  que  la  reigle  &  le  compas  ,    ne  peuueut 
eftre  fî  iuftes;  car  il  Eiudroit  pour  cete  raifon  les  reietter 
des  Mechaniques,  où  la  iultelTe  des  ouurages  qui  fortent 
delamaineftdefirec;  plutoft  que  de  la  Géométrie  ,  ou 
c'cft  feulement  la  iufteile  du  raifonnemct  qu'on recher- 

Rr    2  che, 

41 


3'<^  La  Géométrie. 

che,  &  qui  peut  fans  doute  eftre^ufly  parfaite  touchant 
CCS  lignes ,  que  touchant  les  autres.  le  ne  diray  pas  aufly, 
que  ce  foit  a  caufe  qu'ils  n*ont  pas  voulu  augmenter  le 
nombre  de  leurs  demandes  ,  &  qu'ils  fe  fontcontentés 
qu'on  leur  accordaft ,  qu*ils  puflent  ioindre  deux  poins 
donnés  par  vne  ligne  droite  ,   &  defcrire  vn  cercle  d'wn 
centre  donne,  qui  pafîaft  par  vn  point  donne.carils  n'ont 
point  fait  de  fcrupule  de  fuppofer  outjr e  ceIa,pour  traiter 
des  fedîions  coniques  ,    qu*on  puft  coupper  tout  cône 
donnd'parvn  plan  donne.    &iln*eft  befoin  de  rien  fup- 
pofer pour  tracer  toutes  les  lignes  courbes ,    que  ie  pre- 
tens  icy  d'introduire;  finon  que  deux  ou  plulîeurs  lignes 
pniflent  eftre  meues  IVne  par  l'autre ,  &  que  leurs  inter- 
férions éo  marquent  d'autres  ^;  ce  qui  ne  me  paroift  en 
rien  plus  difficile.  Il  eft  vray  qu'ils  n  ont  pas  aufly  entiè- 
rement receu  les  fed:ions  coniques  en  leur  Géométrie, 
&  ie  ne  veux  pas  entreprendre  de  changer  les  noms  qui 
ont  efte^approaue's  par  Ivfàge;  mais  il  eft,  ce  me  fèmble, 
très  clair,  que  prenant  comme  on  fait  pour  Géométri- 
que ce  qui  eft  precis  &  exad:  ,   &  pour  Mechanique 
ce  qui  ne  Teft  pas  ;  &  confiderant  la  Géométrie  comme 
vne  fcience,  qui  enfeigne  généralement  a  connoiftre  les 
mefures  de  tous  les  cors,  on  n'en  doit  pas  plutoft  exclure 
les  lignes  les  plus  com pofees  que  les  plus  limples,  pourvu 
qu'on  les  puiflc  imaginer  eftre  defcrites  par  vn  mouue- 
ment  continu,  ou  par  plufieurs  qui  s'entrcfuiuent  &  dont 
les  derniers  foient  entièrement  règles  par  ceu::  qui  les 
precedent,  car  par  ce  moyen  on  peut  toufîotirs  auoir 
vue  connoiftance  exaéte  de  leur  mefure.  Mais  peuteftre 
que  ce  qui  a  empefche'  les  anciens  Géomètres  de  reçe- 


uou: 

42 


SECOND    BOOK 

reject  circles  and  straight  lines,  since  these  cannot  be  described  on 
paper  without  the  use  of  compasses  and  a  ruler,  which  may  also  be 
termed  instruments.  It  is  not  because  the  other  instruments,  being 
more  complicated  than  the  ruler  and  compasses,  are  therefore  less 
accurate,  for  if  this  were  so  they  would  have  to  be  excluded  from 
mechanics,  in  which  accuracy  of  construction  is  even  more  important 
than  in  geometry.  In  the  latter,  exactness  of  reasoning  alone'""'  is 
sought,  and  this  can  surely  be  as  thorough  with  reference  to  such  lines 
as  to  simpler  ones.'"'  I  cannot  believe,  either,  that  it  was  because  they 
did  not  wish  to  make  more  than  two  postulates,  namely,  (1)  a  straight 
line  can  be  drawn  between  any  two  points,  and  (2)  about  a  given  center 
a  circle  can  be  described  passing  through  a  given  point.  In  their  treat- 
ment of  the  conic  sections  they  did  not  hesitate  to  introduce  the  assump- 
tion that  any  given  cone  can  be  cut  by  a  given  plane.  Now  to  treat  all 
the  curves  which  I  mean  to  introduce  here,  only  one  additional  assump- 
tion is  necessary,  namely,  two  or  more  lines  can  be  moved,  one  upon 
the  other,  determining  by  their  intersection  other  curves.  This  seems 
to  me  in  no  way  more  difficult. '°^' 

It  is  true  that  the  conic  sections  were  never  freely  received  into 
ancient  geometry, '°°'  and  I  do  not  care  to  undertake  to  change  names 
confirmed  by  usage  ;  nevertheless,  it  seems  very  clear  to  me  that  if  we 
make  the  usual  assumption  that  geometry  is  precise  and  exact,  while 
mechanics  is  not  f^  and  if  we  think  of  geometry  as  the  science  which 
furnishes  a  general  knowledge  of  the  measurement  of  all  bodies,  then 
we  have  no  more  right  to  exclude  the  more  complex  curves  than  the 
simpler  ones,  provided  they  can  be  conceived  of  as  described  by  a  con- 
tinuous motion  or  by  several  successive  motions,  each  motion  being 
completely  determined  by  those  which  precede  ;  for  in  this  way  an  exact 
knowledge  of  the  magnitude  of  each  is  always  obtainable. 

'"'^  An  interesting  question  of  modern  education  is  here  raised,  namely,  to  what 
extent  we  should  insist  upon  accuracy  of  construction  even  in  elementary  geometry. 

'"'  Not  only  ancient  writers  but  later  ones,  up  to  the  time  of  Descartes,  made 
the  same  distinction  ;  for  example,  Vieta.  Descartes's  view  has  been  universally 
accepted  since  his  time. 

'"^'  That  is,  in  no  way  less  obvious  than  the  other  postulates. 

'*°'  Because  the  ancients  did  not  believe  that  the  so-called  constructions  of  the 
conic  sections  on  a  plane  surface  could  be  exact. 

'"'  Since  it  is  not  possible  to  construct  an  ideal  line,  plane,  and  so  on. 

43 


GEOMETRY 

Probably  the  real  explanation  of  the  refusal  of  ancient  geometers  to 
accept  curves  more  complex  than  the  conic  sections  lies  in  the  fact  that 
the  first  curves  to  which  their  attention  was  attracted  happened  to  be 
the  spiral, '""'  the  quadratrix,'"*'  and  similar  curves,  which  really  do 
belong  only  to  mechanics,  and  are  not  among  those  curves  that  I  think 
should  be  included  here,  since  they  must  be  conceived  of  as  described 
by  two  separate  movements  whose  relation  does  not  admit  of  exact 
determination.  Yet  they  afterwards  examined  the  conchoid/""  the 
cissoid/'''  and  a  few  others  which  should  be  accepted;  but  not  knowing 
much  about  their  properties  they  took  no  more  account  of  these  than 
of  the  others.  Again,  it  may  have  been  that,  knowing  as  they  did  only 
a  little  about  the  conic  sections,'"'  and  being  still  ignorant  of  many  of 
the  possibilities  of  the  ruler  and  compasses,  they  dared  not  yet  attack 
a  matter  of  still  greater  difficulty.  I  hope  that  hereafter  those  who  are 
clever  enough  to  make  use  of  the  geometric  methods  herein  suggested 
will  find  no  great  difficulty  in  applying  them  to  plane  or  solid  problems. 
I  therefore  think  it  proper  to  suggest  to  such  a  more  extended  line  of 
investigation  which  will  furnish  abundant  opportunities  for  practice. 

Consider  the  lines  AB.  AD,  AF,  and  so  forth  (page  46),  which  we 
may  suppose  to  be  described  by  means  of  the  instrument  YZ.  This 
instrument  consists  of  several  rulers  hinged  together  in  such  a  way  that 
YZ  being  placed  along  the  line  AN  the  angle  XYZ  can  be  increased  or 
decreased  in  size,  and  when  its  sides  are  together  the  points  B,  C,  D, 
E,  F,  G,  H,  all  coincide  with  A  ;  but  as  the  size  of  the  angle  is  increased, 

'"^'  See  Heath,  History  of  Greek  Mathematics  (hereafter  referred  to  as  Heath), 
Cambridge,  2  vols.,  1921.  Also  Cantor,  Vorlesungen  ilber  Geschichte  der  Mathe- 
niatik,  Leipzig-,  Vol.  I  (2),  o.  263,  and  Vol.  H  (1),  pp.  765  and  781  (hereafter 
referred  to  as  Cantor). 

'«°i  See  Heath,  I,  225  ;  Smith,  Vol.  H,  pp.  300,  305. 

'™i  See  Heath,  I,  235,  238  ;  Smith,  Vol.  H,  p.  298. 

"''  See  Heath,  I,  264;  Smith,  Vol.  U,  p.  314. 

'"^  They  really  knew  much  more  than  would  be  inferred  from  this  statement. 
In  this  connection,  see  Taylor,  Ancient  and  Modern  Geometry  of  Conies,  Cam- 
bridge, 1881. 


44 


Li  vre  Second.  ^^^ 

uoir  celles  qui  eftoient  plus  compofees  que  lesfedions 
coniques,  c  eft  que  les  premieres  qu'ils  ont  confiderees, 
ayant  par  hafard  efte  la  Spirale,  la  Quadratrice ,  &  fein- 
blables ,  qui  n'appartienent  véritablement  qu'aux  Me- 
chaniquesj&nefont  point  du  nombre  de  celles  que  ie 
penfe  deuoir  icy  eftre  receues,  a  caufe  qu'on  les  imagine 
defcrites  par  deux  mouuemens  fepares,  &  qui  n*ont  en- 
tre eux  aucun  raport  qu'on  puifTe  raefurer  exadtement, 
bienqu'ils  ayent  après  examiné  la  Conchoide ,  la  Ciflbi- 
de,  &  quelque  peu  d'autres  qui  en  font,  toutefois  a  cau- 
fe qu'ils  n'ont  peuteftre  pas  afles  remarqué  leurs  pro- 
priete's ,  ils  n'en  ont  pas  fait  plus  d'eftat  que  des  premie- 
res. Oubien  c'eft  que  voyant  ,  qu'ils  ne  connoiffoient 
encore  ,  que  peu  de  chofes  touchant  les  ferions  coni- 
ques, &qu 'illeur  enreftoitmefme  beaucoup,  touchant 
ce  qui  fe  peut  faire  auec  la  reigle  &  le  compas  ,  qu'ils 
ignoroient,  ils  ont  creu  ne  deuoir  point  entamer  de  ma- 
tière plus  difficile.  Mais  pourceque  i'efpere  que  d'orena- 
uant  ceux  qui  auront  Tadreffe  de  fe  feruir  du  calculGeo- 
metriqueicy  propofe'',  netrouueront  pas  aire's  dequoy 
s'arefter  touchant  les  problefmes  plans,  ou  folidesj  ie 
croy  qu'il  eft  a  propos  que  ie  lesinuite  a  d'autres  re- 
cherches ,  où  ils  ne  manqueront  iaraais  d'exercice. 

Voyesleslignes  AB,A  D,  A  F,  &  ferablables  queie 
fuppofe  anoir  efté  defcrites  par  l'ayde  de  l'inftrumenc 
Y  Z,  qui  eft  compofé  de  plufîeurs  reigles  tellement  ioin- 
tes,  que  celle  qui  eft  marquee  YZ  eftant  areftée  fur  la 
ligne  A  N,on  peut  ouurir  &  fermer  l'angle  X  Y  Z;  &  que 
lorfqu'ileft  tout  fermé  ,  les  poins  B,  C,  D,  F,  G,  H  font 
tous  aflemblés  au  point  A  ;  mais  qu'a  mefure  qu'on 

Rr  5  l'oaure. 


45 


5IS 


La  Geometrte. 


Tomire,  la  reigle  B  C,  qui  eft  iointe  a  angles  droits  auec 
XYau  point  B,  poufTevers  Z  la  reigle  CD,  qui  coule 
fiirY  Zenfaifant  toufiours  des  angles  droits  auec  elle,  82 
C  D  poufle  D  H,  qui  coule  tout  de  mefme  fur  Y  X  en  de- 
meurant parallèle  a  B  Q  D  E  poufTe  EF,E  F  poufTe  F  G, 
cellecy  poufTe  G  H.  &  on  en  peut  conceuoir  vne  infinite 
d'autres*,  qui  fe  pouflent  confequutiuement  en  mefme 
façon,  &  dont  les  vnesfacent  toufiours  les  mefmes  an- 
gles auec  Y  X,  &  les  autres  auec  Y  Z.  Or  pendant  qu'on 
ouureainfi l'angle  XYZ,le  point  B  dcfcritlaligne  AB, 
qui  eft  vn  cercle,  &les  autres  poins  D^F,  H,  ou  fe  font 
les  interfe(5tions  des  autres  reigles ,  defcriuent  d'autres 
lignes  courbes  AD,  A  F,  A  H,  dont  les  dernières  font 
par  ordre  plus  copofc'es  que  la  premiere,  &  cellecy  plus 
que  le  cercle,  mais  ie  ne  voy  pas  ce  qui  peut  empefcher, 
qu'on  ne  concoiueauffy  nettement  j  &  auflTy  diftindte- 
ment  la  defcripcion  de  cete  premiere^que  du  cercle ,  ou 

du 


46 


SECOND    BOOK 

the  ruler  BC,  fastened  at  right  angles  to  XY  at  the  point  B,  pushes 
toward  Z  the  ruler  CD  which  slides  along  YZ  always  at  right  angles. 
In  like  manner,  CD  pushes  DE  which  slides  along  YX  always  parallel 
to  BC  ;  DE  pushes  EF  ;  EF  pushes  EG  ;  EG  pushes  GH,  and  so  on. 
Thus  we  may  imagine  an  infinity  of  rulers,  each  pushing  another,  half 
of  them  making  equal  angles  with  YX  and  the  rest  with  YZ. 

Now  as  the  angle  XYZ  is  increased  the  point  B  describes  the  curve 
AB,  which  is  a  circle  ;  while  the  intersections  of  the  other  rulers, 
namely,  the  points  D,  E,  H  describe  other  curves,  AD,  AE,  AH,  of 
which  the  latter  are  more  complex  than  the  first  and  this  more  complex 
than  the  circle.  Nevertheless  I  see  no  reason  why  the  description  of 
the  first'"^  cannot  be  conceived  as  clearly  and  distinctly  as  that  of  the 
circle,  or  at  least  as  that  of  the  conic  sections  ;  or  why  that  of  the  sec- 
ond, third,''''  or  any  other  that  can  be  thus  described,  cannot  be  as 
clearly  conceived  of  as  the  first;  and  therefore  I  see  no  reason  why 
they  should  not  be  used  in  the  same  way  in  the  solution  of  geometric 
problems.™ 

'"'  That  is,  AD. 

"*i  That  is,  AF  and  AH. 

'^^' The   equations   of    these    curves    may    be    obtained    as    follows:      (1)    Let 

YA  =  YB  =  a,  YC  =  .r,  CD —y,  YD  =  ^;  then  z  :  x  =  x  :  a,  whence  s  =  — • 
Also  s-==x-  +  y-;  therefore  the  equation  of  AD  is  x*  =  a"(x-  +  y-).  (2)  Let 
YA  =  YB  =  a,    YE  =  x,    EF  =  v,    YF  =  :r.      Then    z  :  x  =  x  :  YD,    whence 

YD  =  ^.    Also 

.r  :  YD  =  YD  :  YC,  whence  YC  ==  '—  -^  x  =  — .  • 

z-  z    . 

But  YD  :  YC  =  YC  :  a,  and  therefore 


4i 


Also,  z'  =  x-  +  y^.    Thus  we  get,  as  the  equation  of  AF, 

'd!  =  X-  +  y-,  or  x^  =  a-  (x-  +  y- )  \ 

(3)   In  the  same  way,  it  can  be  shown  that  the  equation  of  AH  is 

.r'-  =  a"(x-  +  y-)^. 
See  Rabuel,  p.  107. 

47 


GEOMETRY 

I  could  give  here  several  other  ways  of  tracing  and  conceiving  a 
series  of  curved  lines,  each  curve  more  complex  than  any  preceding 
one,™  but  I  think  the  best  way  to  group  together  all  such  curves  and 
then  classify  them  in  order,  is  by  recognizing  the  fact  that  all  points  of 
those  curves  which  we  may  call  "geometric."  that  is,  those  which  admit 
of  precise  and  exact  measurement,  must  bear  a  definite  relation'"'  to 
all  points  of  a  straight  line,  and  that  this  relation  must  be  expressed  by 
means  of  a  single  equation.''"'  If  this  equation  contains  no  term  of 
higher  degree  than  the  rectangle  of  two  unknown  quantities,  or  the 
square  of  one,  the  curve  belongs  to  the  first  and  simplest  class,''"'  which 
contains  only  the  circle,  the  parabola,  the  hyperbola,  and  the  ellipse  ; 
but  when  the  equation  contains  one  or  more  terms  of  the  third  or  fourth 
degree'*"'  in  one  or  both  of  the  two  unknown  quantities'"''  (for  it 
requires  two  unknown  quantities  to  express  the  relation  between  two 
points)  the  curve  belongs  to  the  second  class  ;  and  if  the  equation  con- 
tains a  term  of  the  fifth  or  sixth  degree  in  either  or  both  of  the  unknown 
quantities  the  curve  belongs  to  the  third  class,  and  so  on  indefinitely. 

[78]  "Qui  seroient  de  plus  en  plus  composées  par  degrez  à  l'infini."  The  French 
quotations  in  the  footnotes  show  a  few  variants  in  style  in  different  editions. 

'"'  That  is,  a  relation  exactly  known,  as,  for  example,  that  between  two  straight 
lines  in  distinction  to  that  between  a  straight  line  and  a  curve,  unless  the  length 
of  the  curve  is  known. 

'™'  It  will  be  recognized  at  once  that  this  statement  contains  the  fundamental 
concept  of  analytic  geometry. 

''"'  "Du  premier  &  plus  simple  genre,"  an  expression  not  now  recognized.  As 
now  understood,  the  order  or  degree  of  a  plane  curve  is  the  greatest  number  of 
points  in  which  it  can  be  cut  by  any  arbitrary  line,  while  the  class  is  the  greatest 
number  of  tangents  that  can  be  drawn  to  it  from  any  arbitrary  point  in  the  plane. 

'*"'  Grouped  together  because  an  equation  of  the  fourth  degree  can  always  be 
transformed  into  one  of  the  third  degree. 

'"'  Thus  Descartes  includes  such  terms  as  .r-^',  .v-.v-,  .    .  as  well  as  x^^,  y* 


48 


Livre  Second.  519 

du  moms  que  des  fedtions  coniques-  ny  ce  qui  peut  em- 
pefcher,  qu'on  ne  concoiue  la  féconde ,  &  la  troifiefme, 
&  toutes  les  autres,  qu'on  peut  defcrire,  aufTy  bien  que 
lapremi&re;  ny  par  consequent  qu'on  ne  les  recoiue 
toutes  en  mefme  façon,  pour  feruir  aux  fpeculations  de 
Géométrie. 

le  pourrois  mettre  icy  plufieurs  autres  moyens  pour  La  ùcoa 
tracer &conçeuoir des liraes  courbes,  qui  feroient  <Je "^^  "^'^^"^" 
plus  en  plus  compolées  par  degrés  a  1  infini,  mais  pour  tes  les  li- 
comprendreenfèmble  toutes  celles,  qui  font  en  la  natu- ^""'^^^"'^' 
re ,  &  les  diftiuguer  par  ordre  en  certains  genres  j  ie  ne  certains 
fçache  rien  de  meilleur  que  de  dire  que  tous  les  poins,  de  ^Tcol'.  "^ 
celles  qu'on  peut  nommer  Géométriques,  c'eft  a  dirc"°'^^^  ^^ 
qui  tombent  fous  quelque  meflire  precife  ôc  exad:e,  ont  wont 
necefTairement  quelque  rapport  a  tous  les  poins  dVne-^°"^ '^""^ 

1-  j-  •  n  •       /  polos  a 

hgne  droite,  qui  peut  eirre  exprime  par  quelque  equa-^euxdes 
tion,  en  tous  par  vnemefme.    Et  que  lorfque  ceteequa^  Jj^SJ'.^^g 
tion  ne  monte  que  iufques  au  recftangle  de  deux  quanti- 
tés indéterminées,  oubien  au  quarréd'vnemefine,  la  li- 
gne courbe  eft  du  premier  &  plus  fîmpie  genre,  dans  le- 
quel il  ny  a  que  lé  cercle,  la  parabole,  l'hyperbole  ,  & 
TEllipfe  qui  foient  comprifes.  mais  que  lorfque  l'équa- 
tion monte^iufques  a  la  trois  ou  quatriefme  dimenfion 
des  deux, ou  de  Tvne  des  deux  quantite^s  indéterminées, 
car  il  en  faut  deux  pour  expliquer  icy  le  rapport  d\n 
point  a  vn  autre, elle  eft  du  fecondrSc  que  lorfque  l'équa- 
tion monte  iufques  a  la  y  ou  fixiefme  dimenfion,  elle- 
eft  du  troifiefme;  &  ainli  des  autres  a  l'infini. 

Comme  fi  ie  veux  fçauoir  de  quel  genre  eft  la  ligne 
E  C;,  que  l'imagine  eftre  defcrite  par  i'interfedion  de  la- 

reigîe- 

49 


320 


La   GEOMETRIE. 


reigle  G  L,  &  du  plan  rediligne  G  N  K  L,  dont  le  cofté 
K  N  eft  indefiniement  prolongé  vers  G  ,  &  qui  eftant 
meu  fur  le  plan  de  deflbus  en  ligne  droite ,  c'eft  a  dire  en 
telle  forte  que fon  diamètre. KL  fe  trouue  toufîours  ap- 
pliqueTur  quelque  endroit  de  la  ligne  B  A  prolongée;  de 
part  &  d'autre,  fait  mouuoir  circulairement  cete  reigle 
G  L  autour  du  point  G,  a  caufe  quelle  luy  eft  tellement 
iointe quelle pafle toufîours  par  le  point  L.  le  choiiîs 
vne  ligne  droite,  comme  A  B,pour  rapporter  a  fes  diuers 
poinstousceuxdecetelignecourbeEG,  &en  cete  li- 
gne A  B  ie  choifis  vn  point,  comme  A,  pour  commencer 
par  luy  ce  calcul.  le  dis  que  ie  choifis  &rvn&  l'autre,  a 
caufe  qu'il  eft  libre  de  les  prendre  tels  qu'on  veult.  car 
encore  qu  il  y  ait  beaucoup  de  choix  pour  rendre  l'équa- 
tion plus  courte,  &:  plus  ayfécj  toutefois  en  quelle  façon 
qu'ouïes  prene, on  peut  toufîours  faire  que  la  ligne  pa- 
roiflè  de  meûne  genre,  ainfî  qu'il  eft  ayfe^  a  demonftrer. 

Apres 


50 


SECOND   BOOK 

Suppose  the  curve  EC  to  be  described  by  the  intersection  of 
the  ruler  GL  and  the  rectihnear  plane  figure  CNKL,  whose  side 
KN  is  produced  indefinitely  in  the  direction  of  C,  and  which,  being 
moved  in  the  same  plane  in  such  a  w^ay  that  its  side'^''  KL  always  coin- 
cides with  some  part  of  the  line  BA  (produced  in  both  directions), 
imparts  to  the  ruler  GL  a  rotary  motion  about  G  (the  ruler  being 
hinged  to  the  figure  CNKL  at  L).""  If  I  wish  to  find  out  to  what 
class  this  curve  belongs,  I  choose  a  straight  line,  as  AB,  to  which  to 
refer  all  its  points,  and  in  AB  I  choose  a  point  A  at  which  to  begin  the 
investigation.'"'  I  say  "choose  this  and  that,"  because  we  are  free  to 
choose  what  we  will,  for,  while  it  is  necessary  to  use  care  in  the  choice 
in  order  to  make  the  equation  as  short  and  simple  as  possible,  yet  no 
matter  what  line  I  should  take  instead  of  AB  the  curve  would  always 
prove  to  be  of  the  same  class,  a  fact  easily  demonstrated.''"' 

^^^  "Diamètre." 

^*^^  The  instrument  thus  consists  of  three  parts,  (1)  a  ruler  AK  of  indefinite 
length,  fixed  in  a  plane  ;  (2)  a  ruler  GL,  also  of  indefinite  length,  fastened  to  a 
pivot,  G,  in  the  same  plane,  but  not  on  AK;  and  (3)  a  rectilinear  figure  BKC,  the 
side  KG  being  indefinitely  long,  to  which  the.  ruler  GL  is  hinged  at  L,  and  which 
is  made  to  slide  along  the  ruler  GL. 

'*^^  That  is,  Descartes  uses  the  point  A  as  origin,  and  the  line  AB  as  axis  of 
abscissas.    He  uses  parallel  ordinates,  but  does  not  draw  the  axis  of  ordinates. 

'*^'  That  is,  the  nature  of  a  curve  is  not  affected  by  a  transformation  of 
coordinates. 


51 


GEOMETRY 

Then  I  take  on  the  curve  an  arbitrary  point,  as  C,  at  which  we  will 
suppose  the  instrument  applied  to  describe  the  curve.  Then  I  draw 
through  C  the  line  CB  parallel  to  GA.  Since  CB  and  BA  are  unknown 
and  indeterminate  quantities,  I  shall  call  one  of  them  y  and  the  other  x. 
To  the  relation  between  these  quantities  I  must  consider  also  the  known 
quantities  which  determine  the  description  of  the  curve,  as  GA,  which 
I  shall  call  a  ;  KL,  which  I  shall  call  h  ;  and  NL  parallel  to  GA,  which 
I  shall  call  c.    Then  I  say  that  as  NL  is  to  LK,  or  as  c  is  to  h,  so  CB,  or 

y,  is  to  BK,  which  is  therefore  equal  to  -  y.     Then  BL  is  equal  to 

-  y  —  h,  and  AL  is  equal  to  x  -\-  -y  —  h.     Moreover,  as  CB  13  to  LB, 

b  .  l>  ,  . 

that  is,  as  -v  is  to  -  T  —  h,  so  AG  or  a  is  to  LA  or  x -\- -  y  —  h.    Multi- 

ah 
plying  the  second  by  the  third,  we  get  — y  —  ah  equal  to 

b    ,       , 

xy^-  y  —  by, 

which  is  obtained  by  multiplying  the  first  by  the  last.     Therefore,  the 

required  equation  is 

ex 

y  '=  cy 7-  3'  +  ^v  —  <3^. 


52 


Livre  Second. 


321 


A  près  cela  prenant  vn  point  a  difcretion  dans  la  courbe, 
comme  C,  fur  lequel  ie  fuppofe  que  l'inflrument  qui  ferc 
a  la  defcrire  eft  applique',  ie  tire  de  ce  point  C- la  ligne 
C  B  parallèle  a  G  A,  &:pourceque  C  B  &  B  A  font  deux 
quantités  indéterminées  &  inconnues  ,  ie  les  nomme 
Tvne^  &  l'autre  a;,  maisaffin  de  trouucr  le  rapport  de 
IVneàrautrcjieconfidere  aufTy  les  quantités  connues 
qui  déterminent  la  defcription  de  ccte  ligne  courbe, 
comme  G  A  que  ie  nomme  ^,  K  L  que  ie  nomme  b ,  & 
N  L  parallele'a  G  A  que  ie  nofnme  c.  puis  ie  dis^  comme 
NLeftàLK,oucà/^,ainriCB,ou;^,  eftàBK,  qui  eft 

^  b  b 

parconfequent-;;':  ôcBLeft—  y-b,  &c  A  Left  a: -H 

b  h 

~y  —  b,  de  plus  comme  C  B  eft  à  L  B,  ou  j/  à  -jy-b,  ainfî 

a^  ou  G  A,  eft  a  L  A,  ou  a:  -^  -^y  -b,  de  façon  que  mul- 

S  f  tipliant 

S3 


J^  La  Géométrie. 

tip  liant  la  féconde  par  la  troifrefme  on  produit  77  -  ai^ 

qui  eft  efgale  à  xy-h^^yy  -  by  qui  fe  produit  en  multi- 
pliant la  premiere  par  la  dernière.  &  âinfî  Tequation  qu'il 
faUoittrouuereft  . 

y  y  30  cy-  ^y  -h  ay  -  ae. 
de  laquelle  onconnoift  que  la  ligne  EC  eft  da  premier 
genre  ,   comme  en  effedl  elle  n  eft  autre  qu  vne  Hy- 
perbole. 

Que  fî  en  Tinftrument  qui  fèrt  a  la  defcrire  on  fait 
qu'au  lieu  de  la  ligne  droite  C  N  K,  ce  fdit  cete  Hyper- 
bole, ou  quelque  autre  ligne  courbe  du  premier  genre, 
qui  termine  le  plan  C  NKL;  Tinterfedtion  de  cetc  ligne 
&  de  la  reigle  G  L  defcrira,  au  lieu  de  l'Hyperbole  E  C, 
vne.  autre  ligne  courbe,  qui  fera  du  fécond  genre.  Com^ 
me  fî  C  N  K  eft  vu  cercle,  dont  L  fôit  le  centre ,  on  de- 
fcrira la  premiere  Conchoidedes  anciens  j  &fî  ceft  vne 
Parabole  dont  le  diamètre  foit  K  B ,  oii  defcrira  la  ligne 
courbe,  que  i'ay  tantoft  diteftre  la  premiere,  &  Ia*plus 
fîmplè  pourla^eftion  dePappus,lorfqu'il  n'y  a  que  cinq 
lignes  droites  données  par  pofîtion.  Mais  lî  au  lieu  d  vne 
de  ces  lignes  courbes  du  premier  genre  ,  c'en  eft  vue  du 
fécond,  qui  termine  le  plan  C  N  K  L,  on  en  defcrira  par 
fon  moyen  vne  du  troifîefme,  ou  fi  c'en  eff  vne  du  troifi- 
cfme,  onen  defcrira  vne  du  quatriefme,  &  ainfi  a  l'infini, 
comme  il  eft  fort  ayfea  connoiftr^  par  le  calcul.     Et  en 
quelque  autre  façon,  qu'on  imagine  la  defcriptiou  d'vne 
ligne  courbe  ,   pourvûqu'elle  foit  du  nombre  de  celles 
qucictiomme  Géométriques ,  on  pourra  toufiourstrou- 

uer 

54 


SECOND    BOOK 

From  this  equation  we  see  that  the  curve  EC  belongs  to  the  first  class, 
it  being,  in  fact,  a  hyperbola.'"" 

If  in  the  instrument  used  to  describe  the  curve  we  substitute  for  the 
rectilinear  figure  CNK  this  hyperbola  or  some  other  curve  of  the  first 
class  lying  in  the  plane  CNKL,  the  intersection  of  this  curve  with  the 
ruler  GL  will  describe,  instead  of  the  hyperbola  EC,  another  curve, 
which  will  be  of  the  second  class. 

Thus,  if  CNK  be  a  circle  having  its  center  at  L,  we  shall  describe 
the  first  conchoid  of  the  ancients, '^^  while  if  we  use  a  parabola  having 
KB  as  axis  we  shall  describe  the  curve  which,  as  I  have  already  said, 
is  the  first  and  simplest  of  the  curves  required  in  the  problem  of  Pappus, 
that  is,  the  one  which  furnishes  the  solution  when  five  lines  are  given 
in  position.'"*' 

^^^  Ci.  Briot  and  Bouquet,  Elements  of  Analytical  Geometry  of  Two  Dimen- 
sions, trans,  by  J.  H.  Boyd,  New  York,  1896,  p.  143. 

The  two  branches  of  the  curve  are  determined  by  the  position  of  the  triangle 
CNKL  with  respect  to  the  directrix  AB.     See  Rabuel,  p.  119. 

Van  Schooten,  p.  171,  gives  the  following  construction  and  proof:  Produce 
AG  to  D,  making  DG  =:  EA.  Since  E  is  a  point  of  the  curve  obtained  when 
GL  coincides  with  GA,  L  with  A,  and  C  with  N.  then  EA  =  NL.  Draw  DP 
parallel  to  KG.  Now  let  GCE  be  a  hyperbola  through  E  whose  asymptotes 
are  DP  and  PA.  To  prove  that  this  hyperbola  is  the  curve  given  by  the  instru- 
ment described  above,  produce  BC  to  cut  DP  in  I,  and  draw  DH  parallel  to  AF 


meeting  BC  in  H.    Then  KL  :  LN  =  DH  :  HL    But  DH  =  AB  =  x,  so  we  may 

write    b  :  c  =  x  :  HI,   whence    HI  =  ^,    IB  — a  +  c ^,    IC  =  o  +  c — -7 y. 

000 

But  in  any  hyperbola  IC.BC  =  DE.EA,  whence  we  have  (a  +  c i-  —y)y^ac, 

cxy 
or  y^  ^  cy -r'  +  ay  —  ac.     But  this  is  the  equation   obtained  above,  which   is 

therefore  the  equation  of  a  hyperbola  whose  asymptotes  are  AP  and  PD. 

Van  Schooten,  p.  172,  describes  another  similar  instrument  :  Given  a  ruler 
AB  pivoted  at  A,  and  another  BD  hinged  to  AB  at  B.  Let  AB  rotate  about  A 
so  that  D  moves  along  LK  ;  then  the  curve  generated  by  any  point  E  of  BE  will 
be  an  ellipse  whose  semi-major  axis  is  AB  +  BE  and  whose  semi-mmor  axis  is 
AB  — BE. 

'"^  See  notes  59  and  70. 

'**'  Por  a  discussion  of  the  elliptic,  parabolic,  and  hyperbolic  conchoids  see 
Rabuel,  pp.  123,  124. 

55 


GEOMETRY 

If,  instead  of  one  of  these  curves  of  the  first  class,  there  be  used  a 
curve  of  the  second  class  lying  in  the  plane  CNKL,  a  curve  of  the  third 
class  will  be  described  ;  while  if  one  of  the  third  class  be  used,  one  of 
the  fourth  class  will  be  obtained,  and  so  on  to  infinity.'""'  These  state- 
ments are  easily  proved  by  actual  calculation. 

Thus,  no  matter  how  we  conceive  a  curve  to  be  described,  provided 
it  be  one  of  those  which  I  have  called  geometric,  it  is  always  possible 
to  find  in  this  manner  an  equation  determining  all  its  points.  Now  I 
shall  place  curves  whose  equations  are  of  the  fourth  degree  in  the  same 
class  with  those  whose  equations  are  of  the  third  degree  ;  and  those 
whose  equations  are  of  the  sixth  degree'""'  in  the  same  class  with  those 
whose  equations  are  of  the  fifth  degree""'  and  similarly  for  the  rest. 
This  classification  is  based  upon  the  fact  that  there  is  a  general  rule  for 
reducing  to  a  cubic  any  equation  of  the  fourth  degree,  and  to  an  equa- 
tion of  the  fifth  degree'"''  any  equation  of  the  sixth  degree,  so  that  the 
latter  in  each  case  need  not  be  considered  any  more  complex  than  the 
former. 

It  should  be  observed,  however,  with  regard  to  the  curves  of  any 
one  class,  that  while  many  of  them  are  equally  complex  so  that  they 
may  be  employed  to  determine  the  same  points  and  construct  the  same 
problems,  yet  there  are  certain  simpler  ones  whose  usefulness  is  more 
limited.  Thus,  among  the  curves  of  the  first  class,  besides  the  ellipse, 
the  hyperbola,  and  the  parabola,  which  are  equally  complex,  there  is 
also  found  the  circle,  which  is  evidently  a  simpler  curve  ;  while  among 
those  of  the  second  class  We  find  the  common  conchoid,  which  is 
described  by  means  of  the  circle,  and  some  others  which,  though  less 

'*°^  Rabuel  (p.  125),  illustrates  this,  substituting  for  the  curve  CNKL  the  semi- 
cubical  parabola,  and  showing  that  the  resulting  equation  is  of  the  fifth  degree, 
and  therefore,  according  to  Descartes,  of  the  third  class.  Rabuel  also  gives  (p.  119), 
a  general  method  for  finding  the  curve,  no  matter  what  figure  is  used  for  CNKL. 
Let  GA  =  a,  KL=b,  AB  =  .r,  CB  =  y  and  KB  =  r;  then  LB  =  s—b,  and 
AL  =  x  +  c—b.       Now     GA:AL  =  CB:BL,     or     a  :  x  + s  —  b  —  y  :  ::  —  b, 

,  xy  —  by-^-ab 

whence  r  =  *  . 

a  —  y 

This  value  of  .::  is  independent  of  the  nature  of  the  figure  CNKL.  But  given 
any  figure  CNKL  it  is  possible  to  obtain  a  second  value  for  ::  from  the  nature  of 
the  curve.     Equating  these  values  of  z  we  get  the  equation  of  the  curve. 

[90]  "ÇgUes  dont  l'équation  monte  au  quarré  de  cube." 

'"'  "Celles  dont  elle  ne  monte  qu'au  sursolide." 

""'  "Au  sursolide." 

56 


Livre  Second.  Î^J 

uer  vne  equation  pour  déterminer  tous  Tes  poins  en  cere 
forte. 

Au  refteie  mecs  les  lignes  courbes  qui  font  monter 
cete  equation  iufques  au  quarre  de  quatre  ,  au  mefme 
genre  que  celles  qui  ne  la  font  monter  que  iufques  au 
cube.  &  celles  dont  Tequation  monte  au  quarrédecu- 
be,au  mefme  genre  que  celles  dont  elle  ne  monte  qu'au 
furfolide.  &ain(î  des  autres.  Dontlaraifoneft,  qu'iîy  a 
reigle  générale  pour  réduire  au  cube  toutes  lesdifScul- 
te's  qui  vont  au  quarre'de  quarre  ,  &au  furfolide  toutes 
celles  qui  vont  au  quarre  de  cube ,  de  façon  qu'on  ne  les 
doit  point  eftiraer  plus  compofees. 

Mais  il  eft  a  remarquer  qu'entre  les  lignes  de  chafque 
genre,  encore  que  la  plus  part  foient  efgalement  compo- 
sées ,  en  forte  qu'elles  peuuentferuir  a  déterminer  les 
mefmes  poins.  Su  conftruire  lesmefmes  problefmes  ,il  y 
eoa  toutefois  aufly  quelques  vues ,  qui  font  plus  fimplcs, 
&qui  n'ont  pas  tant  d'eftendue  en  leur  puilfance.  cora- 
mcentre  celles  du  premier  genre  outre  l'Ellipfe  l'Hyper- 
bole &  la  Parabole  qui  font  efgalement  compofees  ,Ic 
cercle  y  eft  aufiy  compris ,  qui  mauifeftement  eft  plus 
fimplcr  &  entre  celles  du  fécond  genre  il  y  a  la  Conchoi- 
de  vulgaire,  qui  afon  origine  du  cercle^  &il  y  en  a  en- 
core quelques  autres,  qui  bien  qu'elles  n  ayentpas  tant 
d'eftendue  que  la  plus  part  de  celles  du  mefme  genre, 
nepeuuenr  toutefois  eftre  mifes  dans  le  premier. 

Or  après  auoirainfî  réduit  toutes  les  lignes  courbes  a  J^,"!"],  J^ 
certains  genres  ,  il  m  eft  ayfe'de  pourfuiure  en  la  de-  ^ion  delà 


ppus 


monftrationdelarefponfe,qiiei'ay  tanroftfaite  alaque-  Tzf,,^ 
ftion  de  Pappus.  Car  preaierement  ayant  fait  voir  cy  ^'^^ 'ii 

Ol    Z  dcliuS,  ccJep- 


57 


3*4  La    GEOMETRIE. 

delTus  ,    que  lorfqu'il  n'y  a  que  trois  ou  4  lignes  droites 
données,  l'équation  qui  fert  a  determiner  les  poins  cher- 
chés, ne  monte  quciufqucs  au  qnarréj  il  efVeuidcntjque 
la  ligne  courbe  ou  fetrouuent  ces  poins,  eft  neceflaire- 
ment  quelquVpe  de  ceîles  du  premier  genre:a  eaufe  que 
cete  mefme  equation  explique  le  rapport ,  qu'ont  tous 
les  poins  deshgnes  du  premier  genre  a  ceux  d'vne  ligne 
droite^  Et  que  lorfqu'il  n'y  a  point  plus  de  8  lignesdroi- 
tes  données    ,    cete  equation  ne  monte  que  iufques  au 
quarredequarré'tputauplus,  5c  que  par  confequent  la 
hgne  cherchée  ne  peut  eftre  que  du  fécond  genre ,  ou  au 
deffous.Et  que  lorfqu'il  n'y  a  point  plus  de  1 2  lignes  don- 
nées ,  l'équation  ne  monte  que  iufques  au  quarre'de  cu- 
be, &  que  par  confequent  la  hgne  cherchée  n'cft  que  du 
troifîefmegenre,  ouaudeffous.  &ainfi  des  autres.   Et 
mefme  a  caufe  que  la  pofition  deslignes  droites  données 
peut  varier  en  toutes  fortes,  &  par  confequent  faire  châ- 
ger  tant  les  quantités  connues,  que  les  fîgnes  H-  &  --  de 
l'équation,  eu  toutes  les  façons  imaginables  j  il  eft  eui- 
dentqn*iln'ya  aucune  ligne  courbe  du  premier  genre, 
qui  ne  (bit  vtilea  cete  queftion,  quand  elle  eftpropofeh 
en4hgnesdroitesjnyaucunedufecondqui  nyfoit  vti- 
le,  quand  elle  eft  propofee  en  huit;  ny  du  troifîefme, 
quand  elle  eft  propofee  en  douze:  ôc  ainfi  des  autres.  En 
forte  qu'il  n'y  a  pas  vne  Hgne  courbe  qui  tombe  fous  le 
Solution  calcul&puifleeftre  recede  en  Géométrie  ,   quin'yfoit 
^^  ^ftioti  ^^^^  P°^^  quelque  nombre  de  hgnes. 
quandeiie      Maisil  faut  icy  plus  particuHeremeut  queiedetermi- 
pofée^^°  ne,  &  donne  la  façon  de  trouuer  la  ligne  cherchée  *  qui 
qu'en  î     fçf  i;  eu  chafque  cas,  lorfqu'il  ny  a  que  3  ou  4  lignes  droi- 

58 


SECOND    BOOK 

complicated''"''  than  many  curves  of  the  same  class,  cannot  be  placed 
in  the  first  class. '"^ 

Having  now  made  a  general  classification  of  curves,  it  is  easy  for  me 
to  demonstrate  the  solution  which  I  have  already  given  of  the  prob- 
lem of  Pappus.  For,  first,  I  have  shown  that  when  there  are  only  three 
or  four  lines  the  equation  which  serves  to  determine  the  required 
points'*^'  is  of  the  second  degree.  It  follows  that  the  curve  containing 
these  points  must  belong  to  the  first  class,  since  such  an  equation 
expresses  the  relation  between  all  points  of  curves  of  Class  I  and  all 
points  of  a  fixed  straight  line.  When  there  are  not  more  than  eight 
given  lines  the  equation  is  at  most  a  biquadratic,  and  therefore  the 
resulting  curve  belongs  to  Class  II  or  Class  I.  When  there  are  not 
more  than  twelve  given  lines,  the  equation  is  of  the  sixth  degree  or 
lower,  and  therefore  the  required  curve  belongs  to  Class  III  or  a  lower 
class,  and  so  on  for  other  cases. 

Now,  since  each  of  the  given  lines  may  have  any  conceivable  posi- 
tion, and  since  any  change  in  the  position  of  a  line  produces  a  corre- 
sponding change  in  the  values  of  the  known  quantities  as  well  as  in 
the  signs  +  and  —  of  the  equation,  it  is  clear  that  there  is  no  curve 
of  Class  I  that  may  not  furnish  a  solution  of  this  problem  when  it 
relates  to  four  lines,  and  that  there  is  no  curve  of  Class  II  that  may  not 
furnish  a  solution  when  the  problem  relates  to  eight  lines,  none  of 
Class  III  when  it  relates  to  twelve  lines,  etc.  It  follows  that  there  is* 
no  geometric  curve  whose  equation  can  be  obtained  that  may  not  be 
used  for  some  number  of  lines."*' 

It  is  now  necessary  to  determine  more  particularly  and  to  give  the 
method  of  finding  the  curve  required  in  each  case,  for  only  three  or 

'^''  "Pas  tant  d'étendue."  Cf.  Rabuel,  p.  113.  "Pas  tant  d'étendue  en  leur 
puissance." 

^"^^  Various  methods  of  tracing  curves  were  used  by  writers  of  the  seventeenth 
century.  Among  these  there  were  not  only  the  usual  method  of  plotting  a  curve 
from  its  equation  and  that  of  using  strings,  pegs,  etc.,  as  in  the  popular  construc- 
tion of  the  elHpse,  but  also  the  method  of  using  jointed  rulers  and  that  of  using 
one  curve  from  which  to  derive  another,  as  for  example  the  usual  method  of 
describing  the  cissoid.     Cf.  Rabuel,  p.  138. 

'*^^  That  is,  the  equation  of  the  required  locus. 

[96]  «-gj^  sorte  qu'il  n'y  a  pas  une  ligne  courbe  qui  tombe  sous  le  calcul  &  puisse 
être  receuë  en  Géométrie,  qui  n'y  soit  utile  pour  quelque  nombre  de  lignes." 


59 


GEOMETRY 

four  given  lines.     This  investigation  will  show  that  Class  I  contains 
only  the  circle  and  the  three  conic  sections. 

Consider  again  the  four  lines  AB,  AD,  EF,  and  GH,  given  before, 
and  let  it  be  required  to  find  the  locus  generated  by  a  point 
C,  such  that,  if  four  lines  CB,  CD,  CF,  and  CH  be  drawn  through  it 
making  given  angles  with  the  given  lines,  the  product  of  CB  and  CF 

is  equal  to  the  product  of  CD  and  CH.     This  is  equivalent  to  saying 

that  if 

CB  =  y, 

„„ ezy  +  dek  -\-  dex 

z^  ' 

and  ç^^^g"^y-\-f9\-fg--_ 

z^ 

then  the  equation  is 

, {cfglz  —  dcks^)y  —  (dez^  -\-  cfgz  —  hcgz)xy  -\-  hcfglx  —  bcfgx^ 

ez^  —  cgz' 


60 


Livre   Second.  ^*^ 

res  données;  &  enverra  par  mefme  moyen  que  le  pre- 
mier genre  des  lignes  courbes  n'en  contient  aucunes  au- 
tres, queles  trois  fecStions coniques, (Se  le  cercle. 


Reprenons  les  4  ligues  AB,  AD,  EF,&GH  don- 
nées cy  deflus,  &  qu'il  failletrouuer  vne  autre  ligne ,  ea 
laquelleilfe  rencontre  vne  infinite  de  poins  tels  que  C, 
duquel  ayant  tireles  4  lignes  CB,CD,CF,  &  CH,a 
«igles  donnes,  fur  les  données,  CE  multipliée  parCF, 
produift  une  fomme  efgale  a  C  D ,  multiplie'e  par  C  H. 

c  z.  y  >i<  b  c  X, 

c'eft  a  dire  ayant  fait  C  B  so  j ,  C  D  oo  — 


GF^  ^-      ,,    &CH3Q     ^   ,:  lequatioeft 

-dekzz,   "^t       "dezzx  ^      >i>bifglx 


^  i  --  W   t   ^  <,  A 

i-  ^fê^^    j  ^  -cfgz^x  U  ..bcfgxx 
>i'  hcgzx  J 


} 


Sf  î 


au 


61 


ja^  La  GeometriEo 

au  moins  en  fuppofant  e  i^plus  grand  que  f  ^.car  s'il  eftoit 
moindre,  il  faudroit  changer  tous  les  fîgnes  H-  &  — .  Et 
il  la  quantité j' fe  trouuoit  nulle,  ou  moindre  que  rien  en 
ceteequationjlorrqa'onafupporé'Ie  point  C  en  l'angle 
D  AG,  il  faudroitle  fuppofer  au  jGTy  en  l'angle  D  A  E,  on 
E  A  R,  ou  R  A  G,  en  changeant  les  lignes  4-  &  —  felon 
qu'il  feroit  requis  a  cet  effect.  Et  (i  en  toutes  ces  4  po- 
fitions  la  valeur  d'j/  fe  trouuoit  nulle ,  la  queftion  feroit 
impoffible  au  cas  propofé.  Mais  fuppofons  la  icy  eftrc 
poffible,  5c  pour  en  abréger  les  termes,  au  lieu  des  quan- 

titcs ^ elcriuons  ±m  ,     ôc  au   heu    de 

ez,--  cgzz 
dezz^i*  cfgz--bc^7  .  tn  ^ 

efcnuons  — ;    &    ainli  nous  au- 


î  z 

ez-cgzl^ 


rons 

^             ^"  ...  'i^bcfgîx-.bcfgxx    jont  la  raci- 
yy^zmy-  7-  xy -, 

€  Z—  CgZZ 

ne. eft 


nx  •//"  imnx       nnxx*^  bcfglx  -■  bcfgxx, 

y^m-  --t-       mrïï ^ h-^~^  7:~TZ^ 

abréger,  au  lieu  de 
efcriuonso,&:àu  lieu  de- 


ez--  CgZZ 

ô^  derechef  pour  abréger,  au  lieu  de 


tmn        bcfgl  -     .  ,    .       I-         ,    nn      -bcfn 


ez-cgzz  e.-cgzz 

efcriuons  ^.  car  ces  quantite's  eftant  toutes  données, 
nous  les  pouuons  nommer  comme  il  nous  plaift,  6r 
ainfi  nous  auons  

y  TOm-'-X'^-'^  mm-^-  oa:-- -.vAr,quidoit  cftrela 

longeur  delà  ligne  B  C,  en  laiffaut  A  B, ou  .v  indeter- 

raince. 

62 


SECOND   BOOK 

It  is  here  assumed  that  cz  is  greater  than  eg  ;  otherwise  the  signs  + 
and  —  must  all  be  changed.""'  If  y  is  zero  or  less  than  nothing  in  this 
equation/"*'  the  point  C  being  supposed  to  lie  within  the  angle  DAG, 
then  C  must  be  supposed  to  lie  within  one  of  the  angles  DAE,  EAR, 
or  RAG,  and  the  signs  must  be  changed  to  produce  this  result.  If  for 
each  of  these  four  positions  y  is  equal  to  zero,  then  the  problem  admits 
of  no  solution  in  the  case  proposed. 

Let  us  suppose  the  solution  possible,  and  to  shorten  the  work  let  us 

write  2w  instead  of  — ^- s—,  and  —  mstead  of ~ ^r^- 

ez^  —  cgz^  2  ez^  —  cgz^ 

Then  we  have 

^  2«  hcfqlx  —  hcfqx^ 

^  ^        z     '    '        ez^  —  cgz- 

of  which  the  root"*'  is 


"•^    ,      /    ,       2mnx       n-x-      hcfqlx — hcfqx' 
2         \  z  z^  ez^  —  cgz- 

A      •      r       ,         1        r  1        •                   2w«  hcfql  ,  ,  , 

Again,  for  the  sake  of  brevity,  put +  -^       — ^  equal  to  o,  and 

«^  bcfg  .      p 

-ly  —  — 1. -v  equal  to—;  for  these  quantities  being  given,  we  can 

z         ez  — cgz"-  f'l 

represent  them  in  any  way  we  please.''""'    Then  we  have 


y  =  m  —  -  X  +     Lfi2   I  o.r  +  -  x^. 

This  must  give  the  length  of  the  line  BC,  leaving  AB  or  x  undeter- 

[""J  When  cs  is  greater  than  eg,  then  ez^'  —  eg  a-  is  positive  and  its  square  root 
is  therefore  real. 

'**'  Descartes  uses  "moindre  que  rien"  for  "negative." 

'*®^  Descartes  mentions  here  only  one  root  ;  of  course  the  other  root  would  fur- 
nish a  second  locus. 

'""'In  a  letter  to  Mersenne  (Cousin,  Vol.  VII,  p.  157),  Descartes  says:  "In 
regard  to  the  problem  of  Pappus,  I  have  given  only  the  construction  and  demon- 
stration without  putting  in  all  the  analysis  ;  ...  in  other  words,  I  have  given  the 
construction  as  architects  build  structures,  giving  the  specifications  and  leaving 
the  actual  manual  labor  to  carpenters  and  masons." 


63 


GEOMETRY 

mined:  Since  the  problem  relates  to  only  three  or  four  lines,  it  is  obvi- 
ous that  we  shall  always  have  such  terms,  although  some  of  them  may 
vanish  and  the  signs  may  all  vary.'""' 

After  this,  I  make  KI  equal  and  parallel  to  BA,  and  cutting  off  on 
BC  a  segment  BK  ecjual  to  m  (since  the  expression  for  BC  contains 
-|-  m;  if  this  were  — m,  I  should  have  drawn  IK  on  the  other  side  of 
AB,"°''  while  if  m  were  zero,  I  would  not  have  drawn  IK  at  all).  Then 
I  draw  IL  so  that  IK  :  KL  =-  ^  :  n;  that  is,  so  that  if  IK  is  equal  to  x, 

KL  is  equal  to  ~x.     In  the  same  way  I  know  the  ratio  of  KL  to  IL, 

which  I  may  call  n  :  a,  so  that  if  KL  is  equal  to  -  x,  IL  is  equal  to 

a 

-X.     I  take  the  ponit  K  between  L  and  C,  since  the  equation  contains 

z 

—  -.V  ;  if  this  were  -1 — .r,  I  should  take  L  between  K  and  C  ;'""''  while  if 
z  z 

-  X  were  equal  to  zero,  I  should  not  draw  IL. 
This  being  done,  there  remains  the  expression 


LC=  x/;n.-  +  o.r  +  -A-2, 

from  which  to  construct  LC.    It  is  clear  that  if  this  were  zero  the  point 

'^"'^  Having  obtained  the  value  of  BC  algebraically,  Descartes  now  proceeds  to 
construct  the  length  BC  geometrically,  term  by  term.  He  considers  QC  equal  to 
BK+KL  +  LC,  which  is  equal  to  BK  —  LK  +  LC  which  in  turn  is  equal  to 


~  -^'  +\/ Mî2  +  OX  +  — 

\  m 


1'"='  That  is,  take  I  on  CB  produced. 

'"'^  That  is,  on  KB  produced.     C  is  not  yet  determined. 


64 


Livre  Second. 


3*7 


îBinée.  Et  il  eft  euident  que  la  queftion  n'eftantpro- 
pofce  qu'en  trois  ou  quatre  lignes ,  on  peut  toufîours 
auoirdetels  termes,  excepfe  que  quelques  vns  d'eux 
peuuenteftrenuls,  &  que  les  figues  t1-  Ôc  --  peuuent  di- 
uerfement  eftrechangés. 

Après celaie  fais  Kl  efgalc &  parallèle  aB  A,  en  forte 
qu'elle  couppe  de  B  C  la  partie  B  K  efgale  à /w  ,  à  caufe 
qu'il  y  a  icy -f- m;  &  ielauroisadioufteeentirantcete 
ligne  I K  de  l'autre  code,  s'il  y  ^uoit  QU  —  m;  &  ie  ne  Tau- 
rois  point  du  tout  tirée,  fi  la  quantité"  ttî  euftefte'' nulle. 
Puis  ie  tire  aufiy  I L ,  en  forte  que  la  ligne  I  K  efi:  à  K  L, 
comme  Z  eft  a  «.  ceft  adiré  que  IK  efiantA:,  KL  eft 

-.V.  Et  par  raefme  moyen  ieconnois  au  fly  la  proportion 

qui 


65 


52$»  I^A    GEOMETRIE. 

qui  ell:  entre  KL,  &  I L,  que  ie  pofe  comme  entre  n  Se  a: 
fibienque  K  L  eftant  -x,  I  L  eft  -  x;   Et  ie  fais  que  Ie 

point  K  foit  entre  L  &:  C ,  a  caufe  qu'il  y  a  icy  —  -  x-, 

au  lieu  que  i'aurois  mis  LentrcK  &  Cjfi  i'eulTe  en  ^-  -  .r,- 

&  ien'eufTe  pointtiré'ceteIigneIL,fi^A;euft  efte'nulle. 
OrceIafait,iInemereftepluspourlaligne  LC,  que 

ces  termes,  LCoo      m'm'^r  ox  "-^^^.  doùievoy 

<5ue  s'ils  eftoient  nuls,  ce  point  C  fe  trouueroit  en  la  li- 
gne droite  I  L3&  que  s'ils  eftoient  tels  que  la  racine  s'en 

ft 
pufttirer,c'eftadirequew2/»&;^A;  :v    eftant   marqués 

dVn  mefme  figne  4- ou  — ,  00  fuftergalà4^;7?,oubien 

queIestermes/ww&oA:,ouoA;  &-  xx  fuflent  nuls,  ce 
point  C  fe  trouuerpit  en  vne  autre  ligne  droite  qui  ne  fe- 
roit  pas  pins  malayfee  a  trouuer  qu'  I L.  Mais  lorfque 
cela  n'eft  pas,  ce  point  C  eft  toufiours  en  l'une  des  trois 
fedions  coniques ,  ou  en  vn  cercle  ,  dont  l'vn  des  dia- 
mètres eft  en  la  ligne  I  L,&:  la  ligne  L  C  eft  l'vne  de  cel- 
les qui  s'appliquent  par  ordre  à  ce  diamètre  j  ou  au  con- 
traire L  C  eft  parallèle  au  diamètre ,  auquel  celle  qui  efc 
«n  la  ligne  I L  eft  appliquée  par  ordre.  A  fçavoir  fi  le  ter« 

me  ^xx,  eft  nul  cete  fe£tion.conique  efi  vne  Parabole- 

&  s'il  eft  marqué  du  fîgne  -f-  ,  c'eft  vne  Hyperbole  ;  & 
enfin's'il  eft  marque  du  fîgne  —  c'eft  vne  Ellipfe.  Excepte" 
feulement  fi  la  quantité'  aam  eft  efgale  à  pw  &  que  l'an- 
gle ILC  foit  droit  ;  auquel  cas  on  à  vn  cercle  au  lieu 

d'vne 

66 


SECOND   BOOK 

C  would  lie  on  the  straight  line  IL  ;'""'  that  if  it  were  a  perfect  square, 

P 
that  is  if  «r  and  —  x-  were  both  -1-'"^'  and  o-  was  equal  to  Apm,  or  if 
m 

m'  and  ox,  or  ox  and  --  x-,  were  zero,  then  the  point  C  would  lie  on 

another  straight  line,  whose  position  could  be  determined  as  easily 
as  that  of  IL.'^"*' 

If  none  of  these  exceptional  cases  occur,'""^  the  point  C  always  lies 
on  one  of  the  three  conic  sections,  or  on  a  circle  having  its  diameter 
in  the  line  IL  and  having  LC  a  line  applied  in  order  to  this  diameter,^'"*' 
or,  on  the  other  hand,  having  LC  parallel  to  a  diameter  and  ÎL  applied 
in  order. 

In  particular,  if  the  term  —  x-  is  zero,  the  conic  section  is  a  parabola  ; 

if  it  is  preceded  by  a  plus  sign,  it  is  a  hyperbola;  and,  finally,  if  it  is 
preceded  by  a  minus  sign,  it  is  an  ellipse. '^°*^    An  exception  occurs  when 

[104]  -pj^g  equation  of  IL  is  j)  :=  m —  ~x. 

tio6]  -phere  jg  considerable  diversity  in  the  treatment  of  this  sentence  in  differ- 

ent  editions.     The  Latin  edition  of  1683  has  "Hoc  est,  ut,  mm  &  — xx  signo  + 

p 
notalis."  The  French  edition,  Paris,  1705,  has  "C'est  à  dire  que  mm  et  —xx  étant 

-m 

marquez  d'un  môme  signe    +    ou  ■ — ."     Rabuel  gives  "C'est  a  dire  que  mm  and 

^ XX k.\.2,x\\  marquez  d'un  même  signe   +."    He  adds  the  follov^ring  note:  "Il  y  a 

dans  les  Editions  Francoises  de  Leyde,  1637,  et  de  Paris,  1705,  'un  même  signe  + 
ou  — ',  ce  qui  est  une  faute  d'impression."  The  French  edition,  Paris,  1886,  has 
"Etant  marqués  d'un  même  signe  +  ou  — ." 

[i°8]  Note  the  difficulty  in  generalization  experienced  even  by  Descartes.  Cf. 
Briot  and  Bouquet,  p.  72. 

'""'  "Mais  lorsque  cela  n'est  pas."  In  each  case  the  equation  giving  the  value 
of  ;y  is  linear  in  x  and  y,  and  therefore  represents  a  straight  line.    If  the  quantity 

under  the  radical  sign  and      x  are  both  zero,  the  line  is  parallel  to  AB.     If  the 

quantity  under  the  radical  sign  and  m  are  both  zero,  C  lies  in  AL. 

[los]  «^j^  ordinate."  The  equivalent  of  "ordinition  application"  was  used  in  the 
16th  century  translation  of  Apollonius.  Hutton's  Mathematical  Dictionary,  1796, 
gives  "applicate."    "Ordinate  applicate,"  was  also  used. 

''•^J  Cf.  Briot  and  Bouquet,  p.  143. 


Gl 


GEOMETRY 


a'm  is  equal  to  p2^  and  the  angle  ILC  is  a  right  angle/""'  in  which  case 
we  get  a  circle  instead  of  an  ellipse. ''"' 


If  the  conic  section  is  a  parabola,  its  latus  rectum  is  equal  to  —  and 

a 

its  axis  always  lies  along  the  line  IL.'"''  To  find  its  vertex,  N,  make 
IN  equal  to  — ;^,  so  that  the  point  I  lies  between  L  and  N  if  m^  is  posi- 
tive and  ox  is  positive;  and  L  lies  between  I  and  N  if  wr  is  posi- 
tive and  o.v  negative  ;  and  N  lies  between  I  and  L  if  in-  is  negative  and 
ox  positive.  It  is  impossible  that  nr  should  be  negative  when  the  terms 
are  arranged  as  above.  Finally,  if  m-  is  equal  to  zero,  the  points  N  and 
I  must  coincide.  It  is  thus  easy  to  determine  this  parabola,  according 
to  the  first  problem  of  the  first  book  of  Apollonius'"". 

If,  however,  the  required  locus  is  a  circle,  an  ellipse,  or  a  hyper- 
bola,'"'' the  point  M,  the  center  of  the  figure,  must  first  be  found.  This 

'""' Rabuel  (p.  167)  adds  "If  a-m^^pz-  or  if  m=^p  the  hyperbola  is  equi- 
lateral." 

'"''  In  this  case  the  triangle  ILK  is  a  right  triangle,  whence  IK^  =  LK'^  -|-  K?; 
but  by  hypothesis  IL  :  IK  :  KL  =  a  :  s  :  7i;  then  a'-\-n'^  =  s-.  Now  the  equa- 
tion of  the  curve  is 


:>'  =  '«-?  +  '^\m^  +  02-^  x\ 
^  \  nt 


and  therefore  the  term  in  x"^  is 


and  if  a^m=^  pz-,  then  —  = -r;,  and  this  term  in  x-  becomes 


^'+"'  .,2 2 


Therefore,  the  coefficients  of  x-  and  ■v"  are  unity  and  the  locus  is  a  circle. 
iu2]  "pi^is  ffjay  ijg  ggçj^  2s  follows  :  From  the  figure,  and  by  the  nature  of  the 

parabola  LC^=  LN./)  and  LN  =  IL-(-IN.     Let  IN  —  4>;  then  since  IL  =  -x,  we 

Û  71  ft  {I 

have  LN  =  - .r -|- 0  and  LC  =  j'  —  in+—x;  whence   (;y  —  ni-\- —  x)- ^  (-x-\-<P) p. 
But    {y — m-\- —x)~  =^  m- -\- ox    from    the    equation    of    the    parabola;    therefore 

-  .r/i -|- 0/>  =:  m^ -(- o.r.     Equating  coefficients,  we  have  -pr=o;  p  ^  ~^;  <pp=:m^; 

02  „      ,       a»r 

a  02 

'"''  ApoUonii  Pcrgaeii  Quae  Graece  exstant  edidit  I.  L.  Heiberg,  Leipzig,  189L 
Vol.  I,  p.  159.  Liber  I,  Prop.  LII.  Hereafter  referred  to  as  Apollonius.  This 
may  be  freely  translated  as  follows  :  To  describe  in  a  plane  a  parabola,  having 
given  the  parameter,  the  vertex,  and  the  angle  between  an  ordinate  and  the  corre- 
sponding abscissa. 

'^"'  Central  conies  are  thus  grouped  together  by  Descartes,  the  circle  being 
treated  as  a  special  form  of  the  ellipse,  but  being  mentioned  separately  in  all  cases. 

68 


Livre  Second. 


329 


d'y  ne  Ellipfe.   Que  fi  cete  fedion  eft  vne  Parabole ,  fon 

colle  droit  eft  efgal  à  -^,  &  fon  diamètre  eft  toujours  en 

la  ligne  IL.  &:  pour  trouuer  le  point  N,  qui  en  eft  le 

fommet,  il  faut  faire  I N  efgale  a  7^,-  &  que  le  point  I 

fait  entre!.  &  N,fî  les  termes  font  -j-mm-^ox;  oubien 
que  le  point  L  foit  entre  I  &  N,  s'ils  font  -^  mm  —  ox; 
oubien  il  faudroit  qu'  N  fuft  entré  I  &  L ,  s'il  y  auoit 
"  m  m  -^  0  X  ,  Mais  il  ne  peut  iamais  y  auoir 
—  m  m,  en  la  façoaque  les  termes  ont  icy  cfte'  pofe^s.  Et 
enfin  le  point  N  feroit  le  mefme  que  le  point  I  (î  la  quan- 
tité w;7ze(xoit  nulle.  Au  moyen  dequoy  il  dt  ayfé  de 
trouucrcereParaboleparlei^^^Problefrae  du  i^r.  jiure 

d'Apollonius. 

Tt  QLie 

69 


J5o  La    GEOMETRIE. 

Que  (î  la  ligne  demâdee  efc  vn  cercIe,ou  vne  eIlipfe,ou 
vnc  Hyperbole,  il  faut  premièrement  chercher  le  point 
M,  qui  en  eft  le  centre  ,  &  qui  eft  toufiours  en  la  ligne 

ao  m 

droite  IL,  ou  on  le  trouue  en  prenant  ~  pour  IM.  en 

forte  que  fi  la  quantité  o  eft  nulle, ce  centre  eft  iuftement 
au  point  I.  Et  fi  la  ligne  cherchée  eft  vn  cercle,  ou  vne 
ElHpfej  on  doit  prendre  lé  point  Mdumefme*'cofté  que 
lepointL,  aurefpedi  du  point  I,  lorfqu'on  a  -H  oatj  & 
lorfqu'on  à  —  o  a;  ,  on  le  doit  prendre  de  l'autre.  Mais 
tout  au  contraire  en  l'Hyperbole,  fi  on  a  —  ox,  ce  centre 
MdoiteftreversLj&fîona-^-oAT,  il  doit  eftrede l'au- 
tre cofte.  Après  cela  le  cofte'  droit  de  la  figure  doit  eftre 

—jj-  H 7^  lorfqu'on  a  H-  w  wî  ,  &:  que  la  ligne 

cherchée  eft  vn  cercle,  ou  vne  EUipfè  ;  oubien  lorfqu'on 
a—  mm,  &  que  c'eft  vne  Hyperbole.     &  il  doit  eftre 

't/'ûozz,        A^P^^'p^     I-  T.         1    »        n  f 

~~r. Jr~"la  hgne  cherchée  eftant  vn  cercle, 

ou  vneElîipfe,ortà->7;2  77?;DTibien  fi  eftant  tne  Hyper- 
bole &  la  quantité'o  o  eftant  plus  grande  que  4  mp,  on  à 
-f-  m  m.   Qiie  fi  la  quantitcTW  m  eft  nulle,  ce  cofte  droit 

eft"^,  &  fi  (?  :c eft  nulle ,il  eft:  f^^.^^^.  Puis  pour  le  cofté 

a,  a  a,  ^ 

travcrfant,  il  fauttrouuer  vne  ligne,  qui  foita  ce  cofte' 
droit,  corne  «<îw2  eft  à^  :^:^,àfçauoir  fi  ce  cofte  droit  t^t 


% 


'U'     0  0  zz         4  w  P^^>  t  r  f^   'i/  a  a.0  omm  ^  aam 

""7^"'^" — — —  letrauerianteit      -— — — ■ -r-— ■ 

Et  en  tous  ces  cas  le  diamètre  de  la  fedion  ek  en  la  ligne 
I  M,  &  L  Ceft  l'vnede celles  qui  luy  cft  appliquée  par 
ordre;  Sibienque  £iifant  M  N  efgale  a  la  moitié  du  cofte 

trauer* 

70 


SECOND   BOOK 

will  always  lie  on  the  line  IL  and  may  be  found  by  taking  I M  equal  to 

-^ — .'"^^    If  0  is  equal  to  zero  M  coincides  with  I.    If  the  required  locus 

is  a  circle  or  an  ellipse,  M  and  L  must  lie  on  the  same  side  of  I  when 
the  term  ox  is  positive  and  on  opposite  sides  when  ox  is  negative.  On 
the  other  hand,  in  the  case  of  the  hyperbola,  M  and  L  lie  on  the  same 
side  of  I  when  ox  is  negative  and  on  opposite  sides  when  ox  is  positive. 
The  latus  rectum  of  the  figure  must  be 


4 


if  m^  is  positive  and  the  locus  is  a  circle  or  an  ellipse,  or  if  m^  is  nega- 
tive and  the  locus  is  a  hyperbola.    It  must  be 


if  the  required  locus  is  a  circle  or  an  ellipse  and  m^  is  negative,  or  if  it 
is  an  hyperbola  and  o^  is  greater  than  4mp,  mr  being  positive. 


oz 


But  if  m'  is  equal  to  zero,  the  latus  rectum  is  —  ;  and  if  o^  is  equal  to 
;ro'"''^  it  is 


4 


lAmpz^ 
For  the  corresponding  diameter  a  line  must  be  found  which  bears 


the  ratio  —-5-  to  the  latus  rectum:  that  is,  if  the  latus  rectum  is 


4 


o'^s-      Anips- 


the  diameter  is 


4 


a^o^m^      4a^m^ 


+ 


p-z""     ^     pz^ 

In  every  case,  the  diameter  of  the  section  lies  along  IM,  and  LC  is  one 
of  its  lines  applied  in  order. '"'^  It  is  thus  evident  that,  by  making  MN 
equal  to  half  the  diameter  and  taking  N  and  L  on  the  same  side  of  M, 

'"'^  Cf.  Briot  and  Bouquet,  p.  156. 

'"*'  Some  editions  give,  incorrectly,  ox  for  oc. 

["'J  See  note  108. 

71 


GEOMETRY 

the  point  N  will  be  the  vertex  of  this  diameter.''"'  It  is  then  a  simple 
matter  to  determine  the  curve,  according  to  the  second  and  third  prob- 
lems of  the  first  book  of  Apollonius.'"*' 

When  the  locus  is  a  hyperbola'^^'  and  in-  is  positive,  if  o-  is  equal  to 
zero  or  less  than  4pm  we  must  draw  the  line  MOP  from  the  center  M 
parallel  to  LC,  and  draw  CP  parallel  to  LM,  and  take  MO  equal  to 


4/  ' 

while  if  o.v  is  equal  to  zero,  MO  must  be  taken  equal  to  m.  Then  con- 
sidering O  as  the  vertex  of  this  hyperbola,  the  diameter  being  OP  and 
the  line  applied  in  order  being  CP,  its  latus  rectum  is 


and  its  diameter'"''  is 


4w2 


''^*'If  the  equation  contains  — m"  and  +nx,  then  n^  must  be  ;?reater  than 
4mp,  otherwise  the  problem  is  impossible. 

'""'  Cf.  Apollonius,  Vol.  I,  p.  173,  Lib.  I,  Prop.  LV  :  To  describe  a  hyperbola, 
given  the  axis,  the  vertex,  the  parameter,  and  the  angle  between  the  axes.  Also 
see  Prop.  LVI  :  To  describe  an  ellipse,  etc. 

'"*'  Cf.  Letters  of  Descartes,  Cousin,  Vol.  VIH,  p.  142. 

[ini  "Qf^^Q  traversant." 


72 


Livre  Second.  35i 

traucrfant  6c  le  prenant  du  piefme  coCté  du  point  M, 
qu  efc  le  point  L,  on  a  le  point  N  pour  le  fommet  de  ce 
diamètre  .en  fuite  dequoy  il  eCt  ayfeMe  trouuer  la  fedtion 
par  le  fécond  ôc  3  prob.  du  i",  liu.  d'Apollonius- 


Mais  quand  cote  fedion  eftant  vne  Hyperbole ,  on  à 
•4-  m  W5  &  que  la  quantité  0  0  eft  nulle  ou  plus  petite  que 
4;?  m,  on  doit  tirer  du  centre  M  la  ligne  MOP  parallèle  a 
L  C ,'  &  C  P  parallèle  à  L  M;    &  faire  M  O  efgale  a 

^  ww--^^.oubien  la  faire  efgale  à  m  fila  quantite'orc 
eft  nulle.  Puis  confiderer  le  point  O,  corne  le  fommet 
de  cete  HyperbolCi  dont  le  diamètre  eft  O  P ,  &  C  P  la 

Tt  2  lign^^ 

73 


332-  La-  Géométrie. 

ligne  qui  Iqy  eft  appliquée  par  ordres  fori  coftedroireft 


-— ;  —  77^:;^  &  Ion  coite  trauersat  elc  *^  ^mjn- 

Excepte'quand  o  x  eft  nulle.car,  alors  le  cofte  droit  db 
— ^77~.  ^letrauerfanteft  iw.    &ainfî  il  çft  ay/c  de  la 
trouuer  par  le  3  prob.du  i^^,  ijy^  d'Apollonius. 
UraTimi        Et  Ics  demonftrations  de  tout  cecy  font  euidentes.car 
detoutcccompofant  vn  efpace  des  quantités  que  iay  afîign ces 
^^cft^'e^^'^pourlecoftedroit,  &  Je  trauerfant,  ôcpourlefegment 
cipiiquc.  dudiametreNL,ouOP,fuiuâtlateneurderii,du  ii,& 
d:u  13  theorefraes du  i",  liure d'Apollonius,  on  trouuera 
tous  les  mefmes  termes  dont  eft  compofé  lé  quarrè  de 
îaligne  C  P,ou  C  L,qui  eit  appliquée  par  ordre  a  ce  dia- 
mètre.  Gomme  en  cet  ex'emple  oftantlM  ,   qui  eft 

TTT,  de  N  M,  qui  eft  -—      0  0  -I-  4  mpy  iay  I N,  a  laquel- 

le  aiouftant  IL,  qui  eft  ~^,  lay  N  L  ,^qui  eft  -  X'  —  -^ — - 

•H  JT^"^  0  0 -h  4  ;»  />  ,  ôd  cecy  eftant  multiplie^  par 

;^<^  0-1- 4  »2/?,  qui  eft  le  cofte  droit  de  la  figure,  il  vient 

rvy  0  0-^4  j?z^  "'  ,"; ^  oo-j-  ^mp  -h  ~7  -h  z  m  ?n. 

pour  le  rectangle,  duquel  il  Faut  oftet  vn  efpace  qui  foi  t 
au  quatre  de  N  L  comme  le  cofté'droit  eft  au  trauerfant. 

&   ce  quarré  de  N  L  eft  ^^f^:- -— -.^- 
<l  «  o  *  7»  rt          nam. 
_    ^    L 

74 


SECOND   BOOK 

An  exception  must  be  made  when  ox  is  equal  to  zero,  in  which  case  the 

latus  rectum  is     ,  ^     and  the  diameter  is  2;;;.     From  these  data  the 
p2- 

curve  can  be  determined  in  accordance  with  the  third  problem  of  the 

first  book  of  Apollonius/'^^ 

The  demonstrations  of  the  above  statements  are  all  very  simple,  for, 

forming  the  product'^^^  of  the  quantities  given  above  as  latus  rectum, 

diameter,  and  segment  of  the  diameter  NL  or  OP,  by  the  methods  of 

Theorems  11,  12,  and  13  of  the  first  book  of  Apollonius,  the  result  will 

contain  exactly  the  terms  which  express  the  square  of  the  line  CP  or 

CL,  which  is  an  ordinate  of  this  diameter. 

In  this  case  take  IM  or  -^^—-  from  NM  or  from  its  equal 

am 

Yfz 


9.„  Vo'H-4w/). 


To  the  remainder  IN  add  IL  or— jt,  and  we  have 

2 


a         aom      am 


z  Ipz      Ipz  '         '^ 


Multiplying  this  by 


the  latus  rectum  of  the  curve,  we  get 


for  the  rectangle,  from  which  is  to  be  subtracted  a  rectangle  which  is 
to  the  square  of  NL  as  the  latus  rectum  is  to  the  diameter.  The  square 
of  NL  is 

^'-"-1  See  note  113. 

1123]  "Composant  un  espace." 


GEOMETRY 

Divide  this  by  a-m  and  multiply  the  quotient  by  pc-,  since  these  terms 
express  the  ratio  between  the  diameter  and  the  latus  rectum.    The  result  is 

P        1  1-^1 i 1  ^^"^  ^^         l-n 1 9 

—  x'^  —  ÛX  -I-  X    -yJo^  -I-  4Mp  4-  -— —  —  — —    V^    +  -if/ip  -I-  Tfr. 
m  ^  ^       ^  ^    2/         2/  ^       ^  ^ 

This  quantity  being  subtracted  from  the  rectangle  previously  obtained, 
we  get 

CL,  =tn^  Jr-ox  —  —  x'^. 
m 

It  follows  that  CL  is  an  ordinate  of  an  ellipse  or  circle  applied  to  NL, 
the  segment  of  the  axis. 

Suppose  all  the  given  quantities  expressed  numerically,  as  EA=3, 

AG  =  5,  AB  =  BR,  BS=  |- BE,  GB  =  BT,  CD=  |cR,  CF-2CS,  CH  = 

—  CT,  the  angle  ABR=60°  ;  and  let  CB .  CF=CD .  CH.  All  these  quan- 

ties  must  be  known  if  the  problem  is  to  be  entirely  determined.     Now 
let  AB^,r,  and  €6=3».     By  the  method  given  above  we  shall  obtain 

3;^==2y — xy-\-^x — ,r^  ; 


whence  BK  must  be  equal  to  1.  and  KL  must  be  equal  to  one-half  KI  ; 
and  since  the  angle  IKL  =  angle  ABR  ^  60°  and  angle  KIL  (which  is 
one-half  angle  KIB  or  one-half  angle  IKL)  is  30°,  the  angle  ILK  is  a 

right  angle.    Since  IK  =  AB  =  ;»:,  KL  =  -.v-,  IL  =  ;f  a/-,  and  the  quantity 

/3  3 
represented  by  z  above  is  1 ,  we  have  a  =  \\-,  ?fi  =  l,  c?  =  4,  /  =  -,  whence 
\  4                                4 

IM  =  a/  ~,  NM  =  a/  — -;  and  since  a^w  (which  is  .)  is  equal  to  ps^ ,  and 


76 


Livre  Secon^d.  ?33 

i/^M~  ^  (?o H- 4;»/?  qu'il  fautdiuiferpar^tf^ôc 

multiplier  par;j^^,acaufe  que  ces  termes  expliquent  la 
proportion  qui  eft  entre  le  cofté  trauerfant  &  le  droit,  & 


0  0  in 


il  s\^\A-xx--oX'\'xV  00  -^  ±  mp  -. 

tn  ■'  i  /> 

«-^-^ "/  oo-^-A-mp -fr  m;«.cequ'il faut ofler du red:anele 
precedent,  ôcontrouue  ?w;»-Hoa;  —  -  ATArpourlequar- 
redeCL,  qui  par  confequent  eft  vne  ligne  appliquée 
p^r  ordre  dans  vne  Ellipfe,oudans  vn  cercle,au  lègment 
du  diamètre  NL. 

Et  Convent  expliquer  toutes  les  quantite's  données 
par  nombres,  en  faifant  par  exemple  EAa)^,  A  God  y, 
AB:»BR,BSfX)iBE,GB30  BT,  CDco  ^CR,CF 
002CS,  CHx>f  CT,  &  quel'angle  ABR  foit  de  60 
degrésj  &  enfin  que  le  redtangle  des  deux  C  B ,  &  C  F, 
foit  efgai  au  re&ngle  des  deux  autres  C  D  ôrC  Hj  car  il 
faut  auoir  toutes  ces  chofesaffin  que  la  queftion  foit  en- 
tièrement déterminée.  &  auec  cela  fappofànt  A  B  do  .v, 
&  G  B  30^,  on  trouue  par  la  façon  cy  deflus  expliquée 
y  y  30  2  j  "   X  y    -^  ^  X   "  X  X  Sc  y  CO  j  ..  L.x  -h" 

/'i-f-4A;'-|^':v:  fi  bienqueB  Kdoit  eftre  i,&  KL 
doit  eftre  la  moitié  de  Kl,  &  pourceqae  Tangle  I  Kli 
ou  A  BR  eft  de  ($0  degrés,  &îKILquieftla  moitic'de 
K I B  ou  I K  L,  de  30, 1  L  K  eft  droit.  Et  pourceque  I  K 
ou  ABeftuomme:c,KLeft^A;,  Ôc  IL- eft  a:^|,  &lâ 
quantité  qui  eftoit  tantoft  nomm^  ^  eft  i ,  celle  qui 
eftoit  a  cft  î^^  |,  celle  qui  eftoit  m  eft  r,  celle  qui  eftoit  0 
eft  4,  &  celle  qui  eftoit  p  eft  |,de  façon  qu'on  à  /  '| 

Tt   i  powr. 

77 


3M 


La   GEOMETRIE. 


Quels 
font  les 
lieux 
plans, & 
lblides:& 
la  façon 
de  les 
Uouuer. 


pour I M,  Se  V  ^^  pour  N  M,  &  pourceque  aam  qui 
eft  I  eft  icy  efgâl  à  ps^::^  &  que  Tangle  I L  C  eft  droit ,  oa 
trouue  que  la  ligne  courbe  N  C  eft  vn  cercle.  Et  on 
peut  facilement  examiner  tousles  autres  cas  en  mcfme 
forte . 

Aurefte  acaufe  que  les  equations,  qui  ne  montent 
que  iufques  au  quarre^,  font  toutes  comprifes  en  ce  que  ie 
viens  d*expliquer  ;  non  feulement  le  problefine  des  an- 
ciens en  5  &  4  lignes  eft  icy  entièrement  acheue'j  mais 
aufly  tout  ce  qui  appartient  à  ce  qu'ils  nommoient  la 
compolîtion  des  lieux  folides-  Ôcparconfèquent  auffya 
celle  des  lieux  plans»  a  caufe  qu'ils  font  compris  dans  les 
folides.  Car  ces  lieux  ne  font  autre  chofe,  fînon  que  lors 
qu'il  eft  queftion  de  trouuer  quelque  point  auquel  il 

manque 

78 


SECOND   BOOK 

the  ang-Ie  ILC  is  a  right  angle,  it  follows  that  the  curve  NC  is  a  circle. 
A  similar  treatment  of  any  of  the  other  cases  ofïers  no  difficulty. 

Since  all  equations  of  degree  not  higher  than  the  second  are  included 
in  the  discussion  just  given,  not  only  is  the  problem  of  the  ancients 
relating  to  three  or  four  lines  completely  solved,  but  also  the  whole 
problem  of  what  they  called  the  composition  of  solid  loci,  and  conse- 
quently that  of  plane  loci,  since  they  are  included  under  solid  loci.'^"' 
For  the  solution  of  any  one  of  these  problems  of  loci  is  nothing  more 
than  the  finding  of  a  point  for  whose  complete  determination  one  con- 

'^'  Since  plane  loci  are  degenerate  cases  of  solid  loci.  The  case  in  which 
neither  x^  nor  y-  but  only  xy  occurs,  and  the  case  in  which  a  constant  term  occurs, 
are  omitted  by  Descartes.  The  various  kinds  of  solid  loci  represented  by  the  equa- 
tion y=i±ni±—x±:  —  ±  \  ±  m-  ±  ox  ±  —x  may  be  summarized  as  follows  : 

(1)   If  all  the  terms  of  the  right  member  are  zero  except  -7,  the  equation  repre- 

sents  an  hyperbola  referred  to  its  asymptotes.  (2)  If  —  is  not  present,  there  are 
several  cases,  as  follows:  (a)  If  the  quantity  under  the  radical  sign  is  zero  or  a 
perfect  square,  the  equation  represents  a  straight  line;  (b)  If  this  quantity  is  not 
a  perfect  square  and  if  —  .r-  =  0,  the  equation  represents  a  parabola;   (c)   If  it  is 

not  a  perfect  square  and  if  —  x^  is  negative,  the  equation  represents  a  drcle  or  an 

ellipse;  (d)  If  —  x~  is  positive,  the  equation  represents  a  hyperbola.   Rabuel,  p.  248. 


79 


GEOMETRY 

ditioii  is  wanting,  the  other  conditions  being  such  that  (as  in  this  exam- 
ple) all  the  points  of  a  single  line  will  satisfy  them.  If  the  line  is 
straight  or  circular,  it  is  said  to  be  a  plane  locus  ;  but  if  it  is  a  parabola, 
a  hyperbola,  or  an  ellipse,  it  is  called  a  solid  locus.  In  every  such  case 
an  equation  can  be  obtained  containing  two  unknown  quantities  and 
entirely  analogous  to  those  found  above.  If  the  curve  upon  which  the 
required  point  lies  is  of  higher  degree  than  the  conic  sections,  it  may 
be  called  in  the  same  way  a  supersolid  locus, ''"^'  and  so  on  for  other 
cases.  If  two  conditions  for  the  determination  of  the  point  are  lacking, 
the  locus  of  the  point  is  a  surface,  which  may  be  plane,  spherical,  or 
more  complex.  The  ancients  attempted  nothing  beyond  the  composition 
of  solid  loci,  and  it  would  appear  that  the  sole  aim  of  Apollonius  in  his 
treatise  on  the  conic  sections  was  the  solution  of  problems  of  solid  loci. 
I  have  shown,  further,  that  what  I  have  termed  the  first  class  of 
curves  contains  no  others  besides  the  circle,  the  parabola,  the  hyperbola, 
and  the  ellipse.  This  is  what  I  undertook  to  prove. 
I12EJ  u^j^  jjgy  sursolide." 


80 


Livre  Second.  33/ 

manquevne  condition  poureflre  entieretncnt  determi- 
ne, ainfî  qu'il  arritie  en  cete  exemple, tous  les  poins  d'Vne 
mefme  ligne  peuuent  eftre  pris  pour  celuy  qui  efl  de- 
mande'. Et  fî  cete  ligne  eft  droite,  ou  circulaire  ,  on  la 
nomm^vn  lieu  plan.  Mais  fi  c'eftvne  parabole,  ouvne 
hyperbole,  ou  vne  cUipfè,  on  la  nomme  vn  lieu  folide.  Et 
toutefois  &  quantes  que  cela  eft,  on  peut  venir  a  vne  E- 
quationqui  contient  deux  quantite's  inconnues,  &  eft 
pareille  a  quelqu'vne  de  celles  que  ie  viens  de  refoudre. 
Que  fi  la  ligne  qui  determine  ainfi  lè  point  cherché ,  eft 
d'vndegre'pluscompofeequeles  fciflions  coniques,  on 
la  peut  nommer,  en  mefme  façon  ,  vn  heu  furfohde ,  & 
ainfi  des  autres.  Et  s'il  manque  deux  conditions  a  la  de- 
termination de  ce  point,  le  heu  ou  il  fè  trouue  eft  vne  fu- 
perficie,  laquelle  peut  eftre  tout  de  mefme  ou  plate,  ou 
fpherique,  ou  plus  compofee.  Mais  le  plus  haut  but 
qu'ayent  eu  les  anciens  en  cete  matière  a  efte  deparue- 
niralacompofîtiondes  lieux  folides:  Et  il  femble  que 
tout  ce  qu'Apollonius  a  efcrit  des  fedlions  coniques  n'a 
efte'qu'àdefleinde  la  chercher.  ^    u   n. 

^  Quellcclt 

De  plus  on  voit  icy  que  ceque  iay  pris  pour  le  premier  '^  prcmie- 
genredeshgnes  courbes,n  en  peut  comprendre  aucunes  pîu?  fim- 
autres  que  le  cercle,  la  parabole,  l'hyperbole, &rellipfe.P^'''^*=  , 

.     /•  -,         .  .     ,  ^        toutes  les 

qui  eit  tout  ce  quel  auois  entrepris  de  prouuer.  lignes 

Que  fi  la  queftion  des  anciens  eftpropofee  en  cinq  li- '°"^^^" 
gnes,  qui  foîent  toutes  parallèles  ;    ilefteuidentque  le  uent^en  la 

point  chercheTeratoufîours  en  vne  ligne  droite.  Maisfi  ]lf^Z" 
elle  eftpropofee  en  cinq  lignes,  dont  ilyenait  quatre  ciens 
qui  foient  parallèles,  Sequela  cinquiefme  les  couppe  a  S  pro- 
angles droits,  &  mefme  que  toutes  les  limes  tirées  duP°f^^"* 

.       cinqli- 


pOintgncs. 


81 


53<^  La  Géométrie. 

point  cherche  les  rencontrent  aufîy  a  angles  droits,  & 
enftn  que  le  parallélépipède  compofè  de  trois,  des  lignes 
ainfî  tirées  fur  trois  de  celles  qui  font  paralleles/oit  efgal 
au  parallélépipède  compofé  des  deux  hgnes  tirées  Tvne 
fur  Ja  quatriefme  de  celles  qui  font  parallèles  &  l'autre 
fur  celle  qui  les  couppe  a  angles  droits,  &  dVne  troifîcf. 
me  ligne  donnée,  ce  qui  eft  ce  femble  le  plus  ûm- 
pic  cas  qu'on  puiflb  imaginer  après  le  precedent  j  le 
point  cherche  fera  en  ja  ligne  courbe ,  qui  eft  defcnte 
parle  raouuementd'vne  parabole  en  la  façon  cy  deffus 
expliquée. 


Soient 


82 


SECOND   BOOK 

If  the  problem  of  the  ancients  be  proposed  concerning  five  hnes,  all 
parallel,  the  required  point  will  evidently  always  lie  on  a  straight  line. 
Suppose  it  be  proposed  concerning  five  lines  with  the  following  condi- 
tions : 

(1)  Four  of  these  lines  parallel  and  the  fifth  perpendicular  to  each 
of  the  others  , 

(2)  The  lines  drawn  from  the  required  point  to  meet  the  given  lines 
at  right  angles  ; 

(3)  The  parallelepiped"""'  composed  of  the  three  lines  drawn  to  meet 
three  of  the  parallel  lines  must  be  equal  to  that  composed  of  three  lines, 
namely,  the  one  drawn  to  meet  the  fourth  parallel,  the  one  drawn  to 
meet  the  perpendicular,  and  a  certain  given  line. 

This  is,  with  the  exception  of  the  preceding  one,  the  simplest  pos- 
sible case.  The  point  required  will  lie  on  a  curve  generated  by  the 
motion  of  a  parabola  in  the  following  way: 

[120]  Yhat  is,  the  product  of  the  numerical  measures  of  these  lines. 


83 


GEOMETRY 


Let  the  required  lines  be  AB,  IH,  ED,  GF,  and  GA.  and 
let  it  be  required  to  find  the  point  C,  such  that  if  CB,  CF,  CD,  CH,  and 
CM  be  drawn  perpendicular  respectively  to  the  given  lines,  the  paral- 
lelepiped of  the  three  lines  CF,  CD,  and  CH  shall  be  equal  to  that  of 
the  other  two,  CB  and  CM,  and  a  third  line  AI.  Let  CB=3;,  CM=jr. 
AI  or  AE  or  GE=a;  whence  if  C  lies  between  AB  and  DE,  we  have 
CF=2a— V,  CD==a— 3;,  and  CH=v-fa.  Multiplying  these  three  to- 
gether we  get  y^~2ay-—a-y^2a''  equal  to  the  product  of  the  other 
three,  namely  to  axy. 

I  shall  consider  next  the  curve  CEG,  which  I  imagine  to  be  described 
by  the  intersection  of  the  parabola  CKN  (which  is  made  to  move  so 
that  its  axis  KL  always  lies  along  the  straight  line  AB)  with  the  ruler 
GL  (which  rotates  about  the  point  G  in  such  a  way  that  it  constantly 
lies  in  the  plane  of  the  parabola  and  passes  through  the  point  L).  I 
take  KL  equal  to  a  and  let  the  principal  parameter,  that  is,  the  par- 
ameter corresponding  to  the  axis  of  the  given  parabola,  be  also  equal  to 
a,  and  let  GA=2a,  CB  or  MA=y,  CM  or  AB=.r.  Since  the  triangles 
GMC  and  CBL  are  similar,  GM  (or  2a— y)  is  to  MC  (or  x)  as  CB 

(.ovy)  is  to  BL,  which  is  therefore  equal  to  ^  -  -  .  Since  KL  is  a,  BK 

2a— y 

^y  2a  — ay — xy 

IS  a  —  - or .    Finally,  since  this  same  BK  is  a  segment 

2a— y  2a— y 

of  the  axis  of  the  parabola,  BK  is  to  BC  (its  ordinate)  as  BC  is  to  a 
(the  latus  rectum),  whence  we  get  y^—2ay-—a-y-^2a"^=axy,  and  there- 
fore C  is  the  required  point. 


84 


Livre  Sicokb.  337 

Soient  par  exemple  les  lignes  cherchées  A  B,I  H,E  D, 
G  F,  &  G  A.  &  qu'on  demande  le  point  C,  en  forte  que 
tirant  C  B,  C  F,  C  D,  C  H,  &  C  M  a  angles  droits  fur  les 
données,  le  parallélépipède  des  trois  CF,  CD,  &  CH 
foit  efgal  a  celuy  des  2  autres  C  B,  &  C  M,  &  d'vne  troi- 
fiefme  qui  foit  A I.  le  pofè  C  B  y3y.  C  M  O)  x\  A I,  ou 
A  E,  ou  G  E  00  ^,de  façon  que  le  point  C  eflant  entre  les 
lignes  A  B,  &DE,  iayCFooa^  —y,  C  D  :»  ^  —  ^.  & 
C  H  30^  H-  ^.  &  multipliant  ces  trois  l'y  ne  par  l'autre, 

lay  y  —layy--  a  ay  -^  ia  efgal  au  produit  des  trois 
autres  quieft^ATj/.  Après  cela  icconfidere  ta  ligne  cour- 
be C  E  G,  que  i'imaginc  eftre  defcrite  par  l'interfedion, 
de  la  Parabole  C  K  N,  qu'on  fait  mouuoir  en  telle  forte 
que  fon  diamètre  KL  eft  toufiours  fur  la  ligne  droite 
A  B,  &  de  la  reigle  G  L  qui  tourne  cependant  autour  du 
point  G  en  telle  forte  quelle  pafle  toufiours  dans  le  plan 
de  cete  Parabole  par  le  point  L.  EticfaisKLoo  «,  &le 
coftd'droit  principal,  c'eft  adiré  celuy  qui  fè  rapporte  a 
l'aiflieudeceteparabole^auflyefgalà^,  &GA30  2^7,  & 
CB  ou  M  A  30  j^,  &  C  M  ou  A  B  30  AT.  Puis  a  cau/è  des 
triangles  femblables  GM  C  &  C  B  L,G  M  qui  eft  2  ^  -y, 
eft  à  M  C  qui  eft  ^,  ,comme  C  B  qui  efty,  eft  à  B  L  qui  eft 

X  y 

par  confequent  -^^.   ^  pourceque  L  K  eft  ^,  B  K  eft  ^ 

-  xy  laa  -•  ay  -  xy 

— -,oubien  — ^^^ — .  Et  enfin  pourceque  ce  mef- 
mcB  Keftant  vn  fegment  du  diamètre  de  la  Parabole 
eft  à  B  C  quiluy  eft  appliquée  par  ordre ,  comme  cel- 
iecyeft  au  cofté  droit  qui  eft  a,  le  calcul monilre que 

y  "Zayy  —aay  -h  z-a,  eft  efgal  à  a  xy.   &par  confè-» 

V  V  quenc 

85 


33» 


La  Géométrie. 


quent  que  le  point  C  eft  celuy  qui  eftoit  demande.  Et  il 
peut  eftre  pris  en  tel  endroir  de  la  ligne  C  E  G  qu'on  ve- 
uille choifîr,  ou  aufTy  en  Ton  adiointe  ^  E  G  ^  qui  fe  de- 
fcri  t  en  mefme  façon, excepté  que  le  fommet  de  laPara- 
bol  e  eft  tourne  vers  l'autre  cofté ,  ou  enfin  en  leurs  con- 
trepofe'es  Nlo,nl  0,qui  font  defcrites  par  l'interfeétion 
que  fait  la  ligne  G  L  en  l'autre  cofté  de  la  Parabole 

KN. 

Or  encore  que  les  parallèles  donné'cs  A  B ,  1  H,  E  D, 
&  G  F  ne  fuficnt  point  efgalement  distantes,  &  que  G  A 
ne  les  couppaft  point  a  angles  droits,  ny  aafly  les  lignes 

tirées 


86 


SECOND    BOOK 

The  point  C  can  be  taken  on  any  part  of  the  curve  CEG  or  of  its 
adjunct  cEGc,  which  is  described  in  the  same  way  as  the  former,  except 
that  the  vertex  of  the  parabola  is  turned  in  the  opposite  direction  ;  or 
it  may  He  on  their  counterparts""''  NIo  and  «lO,  which  are  generated 
by  the  intersection  of  the  hue  GL  with  the  other  branch  of  the  para- 
bola KN. 

Again,  suppose  that  the  given  parallel  lines  AB,  III,  ED,  and  GF  are 
not  equally  distant  from  one  another  and  are  not  perpendicular  to  GA, 
and  that  the  lines  through  C  are  oblique  to  the  given  lines.  Tn  this  case 
the  point  C  will  not  always  lie  on  a  curve  of  just  the  same  nature.  This 
may  even  occur  when  no  two  of  the  given  lines  are  parallel. 

[i2']  "£j^  leurs  contreposées." 


87' 


GEOMETRY 

Next,  suppose  that  we  have  four  parallel  lines,  and  a  fifth  line  cutting 
them,  such  that  the  parallelepiped  of  three  lines  drawn  through  the 
point  C  (one  to  the  cutting  line  and  two  to  two  of  the  parallel  lines) 
is  equal  to  the  parallelepiped  of  two  lines  drawn  through  C  to  meet  the 
other  two  parallels  respectively  and  another  given  line.  In  this  case 
the  required  point  lies  on  a  curve  of  different  nature/^^*^  namely,  a 
curve  such  that,  all  the  ordinates  to  its  axis  being  equal  to  the  ordinates 
of  a  conic  section,  the  segments  of  the  axis  between  the  vertex  and 
the  ordinates'^^"'  bear  the  same  ratio  to  a  certain  given  line  that  this 
line  bears  to  the  segments  of  the  axis  of  the  conic  section  having  equal 
ordinates. ''^°' 

I  cannot  say  that  this  curve  is  less  simple  than  the  preceding  ;  indeed, 
I  have  always  thought  the  former  should  be  considered  first,  since  its 
description  and  the  determination  of  its  equation  are  somewhat  easier. 

I  shall  not  stop  to  consider  in  detail  the  curves  corresponding  to  the 
other  cases,  for  I  have  not  undertaken  to  give  a  complete  discussion  of 
the  subject  ;  and  having  explained  the  method  of  determining  an  infinite 
number  of  points  lying  on  any  curve,  I  think  I  have  furnished  a  way 
to  describe  them. 

It  is  worthy  of  note  that  there  is  a  great  difference  between  this 
method'"^^  in  which  the  curve  is  traced  by  finding  several  points  upon 

I12S]  Yi^e  general  equation  of  this  curve  is  axy  —  xy~ -\-2a-x  ^  a-y  —  ay-. 
Rabuel,  p.  270. 

112»]  That  is,  the  abscissas  of  points  on  the  curve. 

[ISO]  -pi^g  thought,  expressed  in  modern  phraseology,  is  as  follows  :  The  curve  is 
of  such  nature  that  the  abscissa  of  any  point  on  it  is  a  third  proportional  to  the 
abscissa  of  a  point  on  a  conic  section  whose  ordinate  is  the  same  as  that  of  the 
given  point,  and  a  given  line.    Cf.  Rabuel,  pp.  270,  et  seq. 

'"''  That  is,  the  method  of  analytic  geometry. 


88 


Livre  Second,  33? 

tirées  du  point  C  vers  elles,  ce  point  (j  ne  IaiÏÏ*eroit  pas 
de fe trouuer toufiours  en  vne ligne  courbe,  qui  feroit 
de  cete  mefme  nature.  Et  il  s'y  peut  aufly  trouuer  quel- 
quefois, encore  qu'aucune  des  lignes  données  uefoienc 
parallèles.  Maisfî  lorfqu'ilyena  4  ainfî  parallèle  s,  &  vne 
ciuquiefme  qui  les  trauerlê:  6c  que  le  parallélépipède  de 
trois  des  lignes  tire'cs  du  point  cherche,  l'vne  fur  cete 
cinquiefme,  &:  lès  1  autres  fiir  2  de  celles  qui  font  paral- 
lèles; foitefgal  a  celuy,  des  deux  tirées  fur  les  deux  au- 
tres parallèles  ,  Ôcd'vne  autre  Hgne  donnée.  Ce  point 
cherchcf'eften  vne  ligne  courbe  d'vue  autre  nature,  â 
fçauoir  en  vne  qui  eft  telle,  que  toutes  les  lignes  droites 
appliquas  parordre  a  fon  diamètre  eftant  efgales  a  cel- 
les dVne  fe<SÎ:ion  conique,  les  fegmens  de  ce  diamètre, 
quifoDteptrelefommet&ces  lignes ,  ont  mefme  pro- 
portion a  vne  certaine  ligne  donnée,  que  cete  ligne  don- 
née a  aux  fegmens  du  diamètre  de  la  fêd:ion  conique, 
aufquels  les  pareilles  lignes  font  appliquas  par  ordre.  Et 
ie  ne  fçaurois  véritablement  dire  que  cete  ligne  foit 
moins  fîmple  que  la  précédente,  laquelle  iay  creu  toute- 
fois deuoir  prendre  pour  la  premiere,  acaufêquela  de- 
fcription ,  &  le  calcul  en  font  en  quelque  façon  plus 
faciles. 

Pour  les  lignes  qui  feruent  aux  autres  cas,  ienc  mare- 
fteray  point  aies  diftinguer  par  efpeces.  car  ie  n'aypas 
entrepris  de  dire  tout  ;  &:  ayant  explique  la  faconde 
trouuer  vne  infinite  de  poins  par  ou  elles  paffectjie  pçnfç 
âuoir  aflcs  donné  le  moyen  de  les  defcrire. 

Mefm€  ileft  a  propos  de  remarquer,  qu'il  y  a  grande 
diflference  entre  cete  façon  de  trouuer  plufieurs  poins 

Vv  2  pour 


89 


340  La  Géométrie. 

font  les     pour  tracer  vue  ligne  courbe,  &  celle  dont  on  le  lert  pour 
l^g"es      j.^  fpirale,  &  fes  femblablés.   car  par  cete  dernière  on  ne 

courbes  ^  t 

qu'on  de-  trouue  pas  indiffère  ment  tous  les  poins  dé  la  ligne  qu'on 
trouu"     cherche,  maisfèulernent ceux  qui  peuuent  eftre  dcter- 
piuficurs  mines  par  quelque  mefurephisfimple,  que  celle  qui  eft 
poin7,qyirequifepourlacomporer,  &  ainfî  a  proprement  parler 
peuucnc   on  ne  trouue  pasjvude  {ç,%  poins.    c'eft  a  dire  pas  vn  de 
ceuL^eû   ceux  qui  luy  font  tellement  propres,  qu'ils  ne  puifîcnt 
Gcoine-   eftre  trouuc's  que  par  elle:  Au  lieu  qu'il  ny  a  aucun  point 
dans.les  lignes  qurferuent  a  la  queftion  propofé'e ,  qui  ne 
fe  puifTe  rencontrer  entre  ceux  qui  fe  déterminent  par  la 
façon tahtoft  expliquée.    Et  pourceque  cete  façon  de 
tracer  une  Hgne  courbe,  en  trouuant  indifferêment  plu- 
iîeurs  de  fês  poins ,  ne  s'eftend  qu'a  celles  qui  peuuent 
aufly  eftre  defcrites  par  vnmouuement  régulier  &  con- 
tinu, on  ne  la  doit  pas  entièrement  reietter  de  la  Géo- 
métrie. 
Sft^ufly      Et  on  n'en  doit  pas  reietter  non  plus,  celle  ou  on  fe 
celles      fert d'vn fil,  ou d'vne  chorde  repliée,  pour  determiner 
?crit  auec  ^^g^^^î^  OU  là  difference  de  deux  ou  plufieurs  lignes 
vnechor-  droitcs  quipeuugnt  eftre  tirées  de  chafque  point  de  la 
pc'ui?e"nc    courbe  qu'on  cherche,  a  certains  autres  poins  ^    ou  fur 
y  eftre      Certaines  autrcs  lignes  a  certains  aneles.  ainfî  que  nous 
auons  fait  en  la  Dioptrique  pour  expliquer  rEllipie  &: 
THyperbole.    car  encore <]u'on  n'y  puiiTe  reçeuoir  au- 
cunes lignes  qui  femblent  a  dès  chordes  ,  c'eft  a  dire  qu] 
deuienent  tantoft  droites  &:  tantoft  courbes,  a  cauie  que 
la  proportion,  qui  eft  entre  les  droites  &■  les  courbes, 
n'eftant  pas  connue,  &  mefme  ie  croy  ne  le  pouuant  eftre 
par  les  hommes,  on  ne  pourroit  rien  conclure  de  là  qui- 

fuft 

90 


.Tcceucs. 


SECOND    BOOK 

it,  and  that  nsed  for  the  spiral  and  similar  curves.'"''  In  the  latter  not 
any  point  of  the  required  curve  may  be  found  at  pleasure,  but  only  such 
points  as  can  be  determined  by  a  process  simpler  than  that  required  for 
the  composition  of  the  curve.  Therefore,  strictly  speaking,  we  do  not 
find  any  one  of  its  points,  that  is,  not  any  one  of  those  which  are  so 
peculiarly  points  of  this  curve  that  they  cannot  be  found  except  by 
means  of  it.  On  the  other  hand,  there  is  no  point  on  these  curves  which 
supplies  a  solution  for  the  proposed  problem  that  cannot  be  determined 
by  the  method  I  have  given. 

But  the  fact  that  this  method  of  tracing  a  curve  by  determining  a 
number  of  its  points  taken  at  random  applies  only  to  curves  that  can 
be  generated  by  a  regular  and  continuous  motion  does  not  justify  its 
exclusion  from  geometry.  Nor  should  we  reject  the  method"^"  in  which 
a  string  or  loop  of  thread  is  used  to  determine  the  equality  or  difference 
of  two  or  more  straight  lines  drawn  from  each  point  of  the  required 
curve  to  certain  other  points.''"'  or  making  fixed  angles  with  certain 
other  lines.  We  have  used  this  method  in  "La  Dioptrique"  '"''  in  the 
discussion  of  the  ellipse  and  the  hyperbola. 

On  the  other  hand,  geometry  should  not  include  lines  that  are  like 
strings,  in  that  they  are  sometimes  straight  and  sometimes  curved,  since 
the  ratios  between  straight  and  curved  lines  are  not  known,  and  I 
believe  cannot  be  discovered  by  human  minds,'""'  and  therefore  no  con- 
clusion based  upon  such  ratios  can  be  accepted  as  rigorous  and  exact. 

'^"'  That  is,  transcendental  curves,  called  by  Descartes  "mechanical"  curves. 

I133J  ç-£   j.j^g  familiar  "mechanical  descriptions"  of  the  conic  sections. 

'"^'  As  for  example,  the  foci,  in  the  description  of  the  ellipse. 

'"''  This  work  was  published  at  Leyden  in  1637,  together  with  Descartcs's 
Discours  de  la  Méthode. 

1136]  Yhis  is  of  course  concerned  with  the  problem  of  the  rectification  of 
curves.  See  Cantor,  Vol.  II  (1),  pp.  794  and  807,  and  especially  p.  778.  This 
statement,  "ne  pouvant  être  par  les  hommes"  is  a  very  noteworthy  one,  coming  as 
it  does  from  a  philosopher  like  Descartes.  On  the  philosophical  question  involved, 
consult  such  writers  as  Bertrand  Russell. 


91 


GEOMETRY 

Nevertheless,  since  strings  can  be  used  in  these  constructions  only  to 
determine  lines  whose  lengths  arc  known,  they  need  not  be  wholly 
excluded. 

When  the  relation  between  all  points  of  a  curve  and  all  points  of  a 
straight  line  is  known. '"'^  in  the  way  I  have  already  explained,  it  is  easy 
to  find  the  relation  between  the  points  of  the  curve  and  all  other  given 
points  and  lines  ;  and  from  these  relations  to  find  its  diameters,  axes, 
center  and  other  lines'"**^  or  points  which  have  especial  significance  for 
this  curve,  and  thence  to  conceive  various  ways  of  describing  the  curve, 
and  to  choose  the  easiest. 

By  this  method  alone  it  is  then  possible  to  find  out  all  that  can  be 
determined  about  the  magnitude  of  their  areas,"'""'  and  there  is  no  need 
for  further  explanation  from  me. 

''^'^  Expressed  by  means  of  the  equation  of  the  curve. 
[138]  Pqj.  example,  the  equations  of  tangents,  normals,  etc. 

I"»]  Por  the  history  of  the  quadrature  of  curves,  consult  Cantor,  Vol.  II   (1), 
pp.  758,  et  seq..  Smith,  History,  Vol.  II,  p.  302. 


92 


Livre  Se CONI5.  3fi 

fufirexad&afTuré.  Toutefois  a  caufe  qu'orrnefe  ferr 
de  chordcs  en  ces  conftrud:ions ,  que  pour  détermine^ 
des  lignes  droites,  dont  on  connoift  parfaitement  la  lon^ 
geur,  cela  ne  doit  point  faire  qu'on  les  reîette. 

Orde  cela  feul  qu'on  fçait  le  rapport,  qu'ont  tousles  Q^e  pont, 
poins  d'vne  ligne  courbe  a  tous  ceux  d'vne  ligne  droite,  J^'^'J^j^'iç 
en  la  façon  queiay  expliqueej  il  eft  ayfé  de  trouuer  auffy  proprié- 
té rapport  qu'ils  ont  a  tous  les  autres  poins,  &  lignes  don-  ^^^^ 
nées:  &  en  fuite  de  connoiftreles  diamètres ,  les  aiffieux,  couibcs, 
le^  centres,  &:  autres  lignes ,  ou  poins  ^  a  qui  cliaique  ii-  ddcaudr 
gne  courbe  aura  quelque  rapport  plus  particulier  ,  ou^erapporc 
plus  fimple,  qu'aux  autres:   &  ainfî  d'imaginer  diuers  toutîeuis 
moyens  pour  les  defcnre,&  d'en  choilîr  les  plus  faciles.  P°''^^ 
Et  mefme  on  peut  aufTy  par  cela  feul  trouuer  quafï  tout  lignes 
cequipeut^ftre  déterminé' touchant  la  grandeur  de  Te-  «^'^J''^"» 
fpace  quelles  comprenent,  fans  qu'ilfoit  befbin-  que  i-en  de  cirer 
donne  plus  d'ouuerture.  Et  enfin  pour  cequi  eH  detou-j!^"^"" 
tes  les  autres  propriete's  qu'on  peut  attribuer  aux  lignes  qui  les 
courbes,  elles  ne  dependent  que  de  la  grand,eur  des  an- ^^"JJj"^ 
gles  qu'elles  font  auec  quelques  autres  figues.  Mais  lorA  "s  poins 
qu  on  peut  tirer  des  lignes  droites  qui  les  couppent  a  an-  droifs. 
gles  droits,  aux  poins  ou  elles  fpnt  rencontrées  par  cel- 
lésauec  qui  elles  font  les  angles  qu'on  veut  mefurer,  oiî, 
cequeie  prensicy  pour  le  mefme,  qui  couppent  leurs 
contingentes-   la  grandeur  de  ces- angles  ireftpas  plus 
malayfée  a  trouuer,  que  s'ils  eftoient  compris  entre  deux 
lignes  droites.  C'eftpourquoy  ie  croyray  auoir  miS'  iey 
tout  ce  qui  ell  requis  pour  les  elemens  des  lignes  cour- 
bes, lorfque  i*auray  généralement  donne'  la  façon  de  ti- 
rer des  lignes  droites,  qui  tombent  a  angles  droits  fur 

Vr  5  tels 


9>i 


Façon 

générale 

pour 

trouuer 

des  lignes 

droites» 

qui  coup- 

pent  les 

courbes 

données, 

ou  leurs 

coBtia- 

ger^tcs>a 

angles 

droits. 


^^^  La  Géométrie. 

tels  déleurs  poins  qu'on  voudra  choifîr.  Et  i'ofe  dire 
que  c'eft  cccy  le  problefme  le  plus  vtilc ,  &  le  plus  gene- 
ral non  feulement  que  iefçache,  mais  rnefme  que  l'aye 
iamais  defîré  de  fçauoir  en  Géométrie. 

Soit  G  E 
la  ligne  courbe, 
&  qu'il  faille  ti- 
rer vne  ligne 
droite  par  le 
point  C,  qui  fa- 
ce auec  elle  des  angles  droits.  le  fùppofc  la  chofe  defîa 
faite,  &  que  la  ligne  cherchée  eft  C  P ,  laquelle  ie  pro- 
longe iufques  au  point  P,  ou  elle  rencontre  la  ligne  droi- 
te G  A,  que  ie  fuppoiè  eftre  celle  aux  poins  de  laquelle 
on  rapporte  tous  ceux  de  la  hgne  C  E  :  en  forte  que  fai- 
fant  M  A  ou  C  B  30^^,  &  G  M,  ou  B  A  X)  at,  iay  quelque 
equation, qui  explique  le  rapport,  qui  eft  entre  x  ôç^y* 
PuisiefaisPCoo/,  &PA»r^ouP  M  y>  v  -y,  &c  a 
caufe  du  triangle  redtangle  P  M  C  iay//,  qui  eft  h  quar- 
re  de  la  baze  efgal  à  xx'hvv-'ivy-hyy  ,  qui  font 
les  quarrés  des  deux  coftes .     c'eft  a  dire  iay  x  oa 

f^sx'-vv-h  ivy-^yy^  oubien  ^  ao  t/ -H  V  ss  —  xx,8c 
parie  moyen  de  cete  equation,  i'ofte  de  l'autre  equa- 
tion qui  m'explique  le  rapport  qu'ont  tous  les  poins  de  la 
courbe  C  E  a  ceux  de  la  droite  G  A,rvue  des  deux  quan- 
tités indéterminés  X  ou  y.  ce  qui  eft  ayfé  a  faire  en 
mettant  partout  V  ss  —  vv-i^  ivy--  yy  au  lieu  d'.r ,  Se 
le  quatre  de  cete  fomme  au  lieu  d^xx^  &fon  cube  au  heu 

d'x,  &ainudesautres,ficeft;cqueie  veuille oûerj  ou- 

bien 


94 


SECOND    BOOK 

Finally,  all  other  properties  of  curves  depend  only  on  the  angles 
which  these  curves  make  with  other  lines.  r>ut  the  angle  formed  by 
two  intersecting  curves  can  be  as  easily  measured  as  the  angle  between 
two  straight  lines,  provided  that  a  straight  line  can  be  drawn  making 
right  angles  with  one  of  these  curves  at  its  point  of  intersection  with 
the  other. '"°^  This  is  my  reason  for  believing  that  I  shall  have  given 
here  a  sufficient  introduction  to  the  study  of  curves  when  I  have  given 
a  general  method  of  drawing  a  straight  line  making  right  angles  with 
a  curve  at  an  arbitrarily  chosen  point  upon  it.  And  I  dare  say  that 
this  is  not  only  the  most  useful  and  most  general  problem  in  geometry 
that  I  know,  but  even  that  I  have  ever  desired  to  know. 

Let  CE  be  the  given  curve,  and  let  it  be  required  to  draw 
through  C  a  straight  line  making  right  angles  with  CE.  Suppose  the 
problem  solved,  and  let  the  required  Hne  be  CP.  Produce  CP  to  meet 
the  straight  line  GA,  to  whose  points  the  points  of  CE  are  to  be 
related.'"''  Then,  let  MA=CB=y  ;  and  CM=BA=.r.  An  equation 
must  be  found  expressing  the  relation  between  .r  and  y.'''''  I  let  PC=i', 
PA=7',  whence  FM^v—y.  Since  PMC  is  a  right  triangle,  we  see  that 
s",  the  square  of  the  hypotenuse,  is  equal  to  s--\-v-—2vy-\-y-,  the  sum 


of  the  squares  of  the  two  sides.  That  is  to  say,  x=  ^s-—v'^-{-2z>y—y- 
or  y=  V  +  '^s^  —X' .  By  means  of  these  last  two  equations,  I  can  elimi- 
nate one  of  the  two  quantities  x  and  3'  from  the  equation  expressing 
the  relation  between  the  points  of  the  curve  CE  and  those  of  the  straight 
line  G  A.    If  .r  is  to  be  eliminated,  this  may  easily  be  done  by  replacing 

.r  wherever  it  occurs  by  ^s'  —  v^ -\-2vy  —  yr ,  x'  by  the  square  of  this  ex- 
pression, x^  by  its  cube,  etc.,  while  if  y  is  to  be  eliminated,  y  must  be 

replaced  by  v -\-  V/— .^-'^  and  y',y^,  ...  by  the  square  of  this  expres- 

'^*"'  That  is,  the  angle  between  two  curves  is  defined  as  the  angle  between  the 
normals  to  the  curve  at  the  point  of  intersection. 

'""'  That  is,  the  line  GA  is  taken  as  one  of  the  coordinate  axes. 

''^-'  This  will  be  the  equation  of  the  curve.     See  also  the  figure  on  page  97. 


95 


SECOND   BOOK 

sion,  its  cube,  and  so  on.     The  result  will  be  an  equation  in  only  one 
unknown  quantity,  .i'  or  3'. 

For  example,  if  CE  is  an  ellipse,  MA  the  segment  of  its 
axis  of  which  CM  is  an  ordinate,  r  its  latus  rectum,  and  q  its  trans- 
verse axis,'""'  then  by  Theorem  13,  Book  I,  of  Apollonius,'"''  we  have 

x^  =  ry  —  -y' .   Eliminating  x'  the  resulting  equation  is 


2 
Ç"   '      ""     -     ■  g-r 


Î       2  ,  o           2             ^  2      ^^       2  I  qyy-2qvy  +  gv'-gs' 
s  —V  +ivy—y  =ry  —  - y  ,     or     y  -\ =  0. 


In  this  case  it  is  better  to  consider  the  whole  as  constituting  a  single 
expression  than  as  consisting  of  two  equal  parts.'""' 

If  CE  be  the  curve  generated  by  the  motion  of  a  parabola  (see  pages 
47,  et  seq.)  already  discussed,  and  if  we  represent  GA  by  b,  KL  by  c, 
and  the  parameter  of  the  axis  KL  of  the  parabola  by  d,  the  equation 

u"]  "Le  traversant." 

'"'^Apollonius,  p.  49:  "Si  conus  per  axem  piano  secatur  autem  alio  quoque 
piano,  quod  cum  utroque  latere  trianguli  per  axem  posita  concurrit,  sed  neque  basi 
coni  parallelum  ducitur  neque  e  contrario  et  si  planum,  in  quo  est  basis  coni, 
planumque  secans  concurrunt  in  recta  perpendicular!  aut  ad  basim  trianguli  per 
axem  positi  aut  ad  earn  productam  quselibet  recta,  quae  a  sectione  coni  communi 
sectioni  planorum  parallela  ducitur  ad  diametrum  sectiones  sumpta  quadrata  aequalis 
erit  spatio  adplicato  rectje  cuidam,  ad  quam  diametrus  sectionis  rationem  habet, 
quam  habet  quadratum  rectse  a  vertice  coni  diametro  sectionis  parallels  ducts  usque 
ad  basim  trianguli  ad  rectangulum  comprehensum  rectis  ab  ea  ad  latera  trianguli 
abscissis,  latitudinem  rectam  ab  ea  e  diametro  ad  verticem  sectionis  abscissam  et 
figura  deficiens  simili  similiterque  posita  rectangulo  a  diametro  parametroque  com- 
prehenso;  vocetur  autem  talis  sectio  ellipsis."  Cf.  Apollonius  of  Perga,  edited  by 
Sir  T.  L.  Heath,  Cambridge,  1896,  p.  11. 

■'"'  That  is,  to  transpose  all  the  terms  to  the  left  member. 


96 


Livre  Second. 


?<f3 


bien  fîc'cft^,  en  mettant  en  fon  lieu  j/^-  i^ss-xx  ,  6c 
le  quarré,  ou  le  cube,&c.  de  cete  (bmme,  au  lieu  dyy,o\x 

y  &c.  De  façon  qu'il  rcfte  toufîours  après  cela  vne  equa- 
tion, en  laquelle  il  ny  a  plus  quVne  feule  quantité"  indé- 
terminée, a;,  ou^. 

Comme  fi  C  E  eft  vne  Ellipfe  ,  6c  que  M  A  foit  le 
fegment  de  fon  diamètre,  auquel  G  M  foit  appliquée  par 
ordre,  &  qui  ait  r  pour  fon  cofté  droit ,  &  ^  pour  le  tra- 

uerfantjonàparle  15  th. 

du  I  liu.  d'Apollonius. 

S6XX>ry"^y  y  ,  d*oa 
oftant  XX,  il  refte  fS"- 

.r 

-  vv-b-zvy-yy  X)  ry--yy, 
oubien, 
y  y  ^  ^^"^V^,^  ^^"^efgala  rien,  car  il  cft  mieux  eu 

cet  endroit  de  confîderer  ainfî  enfemble  toute  la  fbm- 
me  y  que  d'en  faire  vne  partie  efgale  a  l'autre. 

Tout  de  mcûne  fî  C 
E  eft  la  ligne  courbe 
defcrite  par  le  mou- 
uement  d'vne  Parabole 
en  la  façon  cy  deiTuj 
expliquc'e,  ôc  qu'on  ait 
pofë^pourGA,  c^oax 
KL,  &  ^  pour  le  cofte 
droit  du  diamètre  KL 
e  n  JUparabole  :  l'equatio 
qui  explique  le  rApport 
qui 


97 


344- 


La  Géométrie. 


r-^ 


-   "1  C.d-K  "Y      ■-•  i,h  h  c d-\ 

i?yi>i*hb\^^Ahcd  K  y^  ccdd( 
^tidJ  ^  -  ^ddv-y       -  ddssC 


gui  éft  entr-e  oc  Uy,  c^y  —  hyy  —  c  dy  H-  b  c  d  ^  d xy  x>  o* 

d'où  oltant  x  ,  on  a  j  —  byy  —  ^ây-hbcd-^Ay 
V  ss—vp-^z.vy—yy,  &  remetrant  en  ordre  ces 
termes  parle  moyen  de  la  multiplication,  il  vient 

-  i^b  b  c d-\ 

yy  --  zb  c  cddy  >ii  bb  ccddxio 

<i(d.d  Tj  V 

Et  ainfi  des  autres. 
Mefme  encore  que  les  poins  de  la  ligne  courbe  ne  fê 
rapportafTentpasenlafaçonqueiay  ditte  a  ceux  d'vne 
ligne  droite,  mais  en  tCKite  autre  qu'on  fçauroit  imagi- 
j]er,  on  ne  laifle  pas  de  pouuoir  toufîour  s  auoir  vne  telle 
equation-  ^  Comme  fi  Ç  E  eft  vne  ligne ,  qui  ait  tel  rap- 
port aux  trois  poins  F,  G,  &:  A,  que  les  lignes  droites  ti- 
rées de  chafcun  de  fes  poins  comme  C^iufques  au  point 
F,  furpafTent  la  ligne  F  A  d'vne  quantité,  qui  ait  certaine 

proportiôdon- 
Ql^^^-s?^^  nce  a  vne  autre 

^  quantité'  dont 

GA  furpafleles 
lignes  tire'es 
des  mcfmes 
poins  iufques  à  G.  Faifons  GAoo^,  AFoor,  &  prenant 
àdifcretionlepoint  C  dans  la  courbe,  que  la  quantité 
dont  CF  furpaflfe  FA.  foit  à  celle  dont  G  A  furpaffe 
GC,  commè^à^,  en  ibrteque  fi  cete  quantité  qui  eft 

indéterminée  fe  nomme  .^iFC  eftcH-:{,&GCeft^  — ^:{. 

PuispofantMAcoy,  G  -Aedb-y,  ScFM  eft^^-;',  & 
iicaufe  du  triangle  rWlmgle  CM  G,  oftant  le  quarré 

de 

98 


SECOND    BOOK 


expressing  the  relation  between  x  and  v  is  y^  —  by^ — cdy-^bcd-\-d.Y\=0. 
Eliminating  x,  we  have 


y^—l7y-—cdy  +  [h'd+  dy  \s-—v'^-\-2vy—y-=0. 

Arranging  the  terms  according  to  the  powers  of  y  by  squaring/'"'  this 
becomes 

y<^-2hy''-^{h--2cd-\-d-)y*^{Ahcd—2d-v)y'^ 

-{-(c"d-—d~s--ird-v-—2b-cd)y-—2bc-d-y+b-c-d-=0, 

and  so  for  the  other  cases.  If  the  points  of  the  curve  are  not  related 
to  those  of  a  straight  line  in  the  way  explained,  but  are  related  in  some 
other  way,''^''  such  an  equation  can  always  be  found. 

Let  CE  be  a  curve  which  is  so  related  to  the  points  F,  G,  and  A, 
that  a  straight  line  drawn  from  any  point  on  it,  as  C.  to  F  exceeds 
the  line  FA  by  a  quantity  which  bears  a  given  ratio  to  the  excess  of  GA 
over  the  line  drawn  from  the  point  C  to  G.''**'  Let  GA=&,  AF=c,  and 
taking  an  arbitrary  point  C  on  the  curve  let  the  quantity  by  which  CF 
exceeds  FA  be  to  the  quantity  by  which  GA  exceeds  GC  as  d  is  to  e. 
Then  if  we  let  c  represent  the  undetermined  quantity,  FC=c+::  and 

GC  =  l>--,z.   Let  MA=;',  GM  =  ô-y,  and  FM  =  r+j'.   Since  CMG  is  a 
d 

right  triangle,  taking  the  square  of  GM  from  the  square  of  GC  we  have 

i"«i  "j7n  remettant  en  ordre  ces  termes  par  moyen  de  la  multiplication." 

'"''  "Mais  en  toute  autre  qu'on  saurait  imaginer." 

^''"  That  is  the  ratio  of  CF  —  FA  to  GA  —  CG  is  a  constant. 


99 


GEOMETRY 

r'         2be 
left  the  square  of  CM,  or  --^z^  —j- z-\-2by—y'^.     Again,  taking   the 

square  of  FM  from  the  square  of  FC  we  have  the  square  of  CM 
expressed  in  another  way,  namely  :  z--\-2cz — 2cy — y-.  These  two  expres- 
sions being  equal  they  will  yield  the  value  of  y  or  MA,  which  is 

2bd^-\-2cd' 

Substituting  this  value  for  y  in  the  expression  for  the  square  of  CM, 
we  have 

——2     bd^z--\-ce^z--\-2bcd-z—2bcdez 

^^  = b¥+7d-' y- 

If  now  we  suppose  the  line  PC  to  meet  the  curve  at  right  angles  at  C, 
and  let  PC=j  and  FA^î'  as  before,  PM  is  equal  to  v—y\  and  since 
PCM  is  a  right  triangle,  we  have  s^-—z>--\-2vy—y-  for  the  square  of 
CM.  Substituting  for  y  its  value,  and  equating  the  values  of  the  square 
of  CM,  we  have 

2     2bcd'z-2bcdez-2c(Pvz-2bdevz-bd'^s''  +  bd''i?-cd''s'^cd'^v^ 
^  ^  bd'^-^ce'+e'v-d'v 

for  the  required  equation. 

Such  an  equation  having  been  found'""'  it  is  to  be  used,  not  to  deter- 
mine X,  y,  or  z,  which  are  known,  since  the  point  C  is  given,  but  to 
find  V  or  s,  which  determine  the  required  point  P.  With  this  in  view, 
observe  that  if  the  point  P  fulfills  the  required  conditions,  the  circle 
about  P  as  center  and  passing  through  the  point  C  will  touch  but  not 
cut  the  curve  CE  ;  but  if  this  point  P  be  ever  so  little  nearer  to  or  far- 
ther from  A  than  it  should  be,  this  circle  must  cut  the  curve  not  only 

[119]  'pj^ree  such  equations  have  been  found  by  Descartes,  namely  those  for  the 
ellipse,  the  parabolic  conchoid,  and  the  curve  just  described. 


100 


Livre  Second.  345" 

de  G  M  du  quarre  de  G  C,  on  a  le  quarre  de  C  M,  qui  eft 

''   ^..L!o^_l-2  3y--j/j.     puis  oftant  le  quarre' de  F  M 

du  quarre'de  F  C,  on  a  encore  le  .quarre  de  C  M  en  d'au- 
tres termes,  a  fçauoir:^:^  4-2  <:  :^— 2  fj'— y  j',  &  ces  ter- 
mes eftantefgaux  auxprecedens,  ils  font  connoiftrej, 

ouMA,quicfl;— --TT^j^rr^ -&fubftituantce- 

te  forame  au  lieu  d)'  dans  le  quarfede  C  M  ,  ontrouue 
qu'il  s'exprime  en  ces  termes. 

bddz.z.  »^  ceez.z  <^  i  bcddz.--  i  bcdcz. 

bdd  ^  cdd        ^  "  "jy* 

Puis fuppofant  que  la  ligne  droite  PC  rencontre  la 
courbe  à  angles  droits  au  point  C,  Scfaifant  PC  30x,  & 
V  k-Xiv  comme  deuant,  PMeftr-y  j  &  a  caufe  du 
trîangle  redangle  P  C  M,on  à  //-  vv  -I-  2  vy-yy  pour 
le  quarre  de  C  M,  ou  derechef  ayant  au  lieu  d)'  fubftitue 
la  fomme  qui  luy  eft  efgale,  il  vient 

►f  1  bcddz.  --  1  bcdez.—  i  cdd-vz.  --  i  bdevz.  —  bddss  ►{«  bddw- 
x{,  '  bdd  >¥  cee      ee  v  --^df 

--  cddss^cddvv.  00  opourTequation  que  nous  cherchions. 

Orapre's  qu'on  à  trouuevne  telle  equation  ,  auliea 
des'enferuirpourconnoiftrelcsquantite's  .v,ou7,  ou  ^, 
qui  font  défia  donne'es,  puifque  le  point  C  eft  donne,  on 
la  doit  employer  a  trouuert;,  ou  /  ,  qui  déterminent  le 
point  P,  qui  eft  demande'.  Et  a  cet  effed  il  faut  confide- 
rer,que  fi  ce  point  P  eft  telqu'on  le  defire,  le  cercle  dont 
il  fera  le  centre,  &:  qui  paflera  par  le  point  C,  y  touchera 
la  ligne  courbe  C  E,  fans  la  coupper:  mais  que  fi  ce  point 
P,  eft  tant  foit  peu  plus  proche,  ou  plus  efloigné  du  point 

Xx  A, qu'il 

101  ■ 


^^^  La  Géométrie. 

A,  qu'il  ne  doit,  ce  cercle  couppera  la  courbe  ,  non  feu- 
lement au  point  C,  mais  aufîy  neeefTairement  en  quel- 
que autre.  Puis  il  faut  aufïyconfîderer,  que  lorfque  ce 
cercle  couppe  la  ligne  courbe  C  E,  l'équation  par  laquel- 
le on  cherche  la  quantité' :v,  ou  7,  ou  quelque  autre  fem- 
blable,  en  fuppofant  P  A  &  P  C  eftre  connues,  contient 
neceffairement  deux  racines,  qui  font  inefgales.  Car  par 
exemple  fi  ce  cercle  couppe  la  courbe  aux  poins  C  &  H, 
ayant  tire E Qjparallele  a  CM,  les  noms  des  quantités 
indéterminées  x  5f^,  conuiendront  aufly  bieii  aux  lignes 
EQ^&:QA,quaCM,  &MAj  puis  PEeft  efgale  a 
PC,.acaufe  du  cercle,  fi  bien  que  cherchant  les  hgnes 

EQ  &  QA,  parPE  & 
P  A  qu'on  fuppofe  com- 
me données  ,  on  aura  la 
mefme  equation ,  que  fi 
on  cherchoic  C  M  & 
M  A  par  PC,PA.  d'où 
il  fuit  euidcmment,que  la 
valeur  d'AT,  ou  d'/,  ou  de 
telle  autre  quantité  qu'on  aura  fuppofee ,  fera  double  en 
cete  equation,  cell  a  dire  qu'il  y  aura  deux  racines  ineL 
gales  entre  elles;  ocdontl'vue  feraCM,  l'autre  EQ,  fi 
c'eft  X  qu'on  cherche-  oubien  l'vne  fera  M  A ,  &  l'autre 
Q  Ajfic'efty.  &ainfi  des  autres.  Il  eft  vray  que  fi  le 
point  Ene  fe  trouue  pas  du  mefinecofte  de  la  courbe 
que  le  point  Cj  il  ny  aura  que  l'vne  de  ces  deux  racines 
qui  fait  vraye,  &  l'autre  fera  renuerfec,  ou  moindre  que 
rien:  mais  plus  ces  deux  poins,  C,  &  E,  font  proches  l'vn 
de  l'autre,  moins  il  y  a  de  difference  entre  ces  deux  raci- 
nes; 


p    M 


QjS 


102 


SECOND   BOOK 

at  C  but  also  in  another  point.  Now  if  this  circle  cuts  CE,  the  equation 
involving  x  and  y  as  unknown  quantities  (supposing  PA  and  PC 
known)  must  have  two  unequal  roots.  Suppose,  for  example,  that 
the  circle  cuts  the  curve  in  the  points  C  and  E.  Draw  EQ  paral- 
lel to  CM.  Then  x  and  3'  may  be  used  to  represent  EQ  and  QA  respec- 
tively in  just  the  same  way  as  they  were  used  to  represent  CM 
and  MA;  since  PE  is  equal  to  PC  (being  radii  of  the  same  circle), 
if  we  seek  EQ  and  QA  (supposing  PE  and  PA  given)  we  shall  get  the 
same  equation  that  we  should  obtain  by  seeking  CM  and  MA  (suppos- 
ing PC  and  PA  given).  It  follows  that  the  value  of  x,  or  y,  or  any 
other  such  quantity,  will  be  two-fold  in  this  equation,  that  is,  the  equa- 
tion will  have  two  unequal  roots.  If  the  value  of  x  be  required,  one  of 
these  roots  will  be  CM  and  the  other  EQ  ;  while  if  y  be  required,  one 
root  will  be  MA  and  the  other  QA.  It  is  true  that  if  E  is  not  on  the 
same  side  of  the  curve  as  C,  only  one  of  these  will  be  a  true  root,  the 
other  being  drawn  in  the  opposite  direction,  or  less  than  nothing.''""^  The 
nearer  together  the  points  C  and  E  are  taken  however,  the  less  differ- 

ii^o]  "j7^  l'autre  sera  renversée  ou  moindre  que  rien." 


103 


GEOMETRY 

ence  there  is  between  the  roots  ;  and  when  the  points  coincide,  the  roots 
are  exactly  equal,  that  is  to  say,  the  circle  through  C  will  touch  the 
curve  CE  at  the  point  C  without  cutting  it. 

Furthermore,  it  is  to  be  observed  that  when  an  equation  has  two 
equal  roots,  its  left-hand  member  must  be  similar  in  form  to  the  expres- 
sion obtained  by  multiplying  by  itself  the  difiference  between  the 
unknown  quantity  and  a  known  quantity  equal  to  it  ;^'"^  and  then,  if  the 
resulting  expression  is  not  of  as  high  a  degree  as  the  original  equation, 
multiplying  it  by  another  expression  which  will  make  it  of  the  same 
degree.  This  last  step  makes  the  two  expressions  correspond  term  by 
term. 

For  example,  I  say  that  the  first  equation  found  in  the  present  dis- 
cussion,'"^' namely 

a  ,  çn'  —  "^çvy + q'v^ — qs^ 
y  + , 

q-r 

must  be  of  the  same  form  as  the  expression  obtained  by  making  ^=y 

and  multiplying  y — e  by  itself,  that  is,  as  'f- — 2ey-\-e'.     We  may  then 

compare  the  two  expressions  term  by  term,  thus  :    Since  the  first  term, 

nyv '2,p'vv 

•f ,  is  the  same  in  each,  the  second  term,'"^'  ^-^ ^-^,  of  the  first  is 

q—r 

equal  to  —2ey,  the  second  term  of  the  second  ;  whence,  solving  for  v, 

r       1 
or  PA,  we  have  v  =  e—~e-\-~r,  or,  since  we  have  assumed  e  equal  to;', 
q       2 

r       1 

v=y  —  -y-\-~  r.     In  the  same  way,  we  can  find  ^  from  the  third  term, 
q       I 

"^^'^  That  is,  the  left-hand  member  will  be  the  square  of  the  binomial  x  —  a 
when  ;ir  =  a. 

'^'^'■'^  See  page  96.  The  original  has  "first  equation,"  not  "first  member  of  the 
equation." 

[163]  That  is,  the  second  term  in  ;y. 


104 


Livre  Secokd.  347 

nesj  &:  enfin  elles  font  entièrement  efgales,  s'ils  font  tous 
denxioins  en  vn^  c*eft  adiré  fi  le  cercle, qui  palTe  par  C, 
y  touche  la  courbe  CE  fans  la  coupper. 

De  plus  il  faut  confiderer,  que  lorfqu'ily  a  deux  raci- 
nes efgales  en  vue  equation,  elle  a  neceflairement  la 
mefme  forme,que  fi  on  multiplie  par  foy  mcfme  la  quan- 
tité" qu'on  y  fuppofe  eftre  inconnue  moins  la  quantité 
connue  qui  luy^ft  cfgale,  &  qu'après  cela  fi  cetc  dernière 
fommen'apas  tant  de  dimenfions  que  la  précédente, 
on  la  multiplie  par  vne  autre  fomme  qui  en  ait  autant 
qu'il  luy  en  manque^  afiîn  qu'il  puiffe  y  auoir  feparement 
equation  entre  chafcun  des  termes  de  l'vne  ,  &  chafcun 
des  termes  de  l'autre. 

Comme  par  exemple  ic  dis  que  la  premiere  equation 
trouuee  cy  deflus,  afçauoir 

y  y — ; — aoitauoirlamefine  forme  que 

celle  qui  feproduift  en  faifànt^  efgala/,  &  multipliant 
ye par  (by  mefiiie,d'où il  vient  ^y  —  zey-^-e e, en  forte 
qu'on  peut  comparer  fèparement  chafcun  de  leurs  ter- 
mes, &  dire  que  puifque  le  premier  qui  eft;  ;  eft  tout  le 
mefme  en  Tvne  qu'en  l'autre,  le  fécond  qui  eftenlVnc 

qr  y  -  -z  (i  v  y, 

—TTr —  ^ft  €%^^  ^"  fecôd  de  l'autre  qui  eft  -  2  ey  ,d'où 
cherchant  la  quantité'  v  qui  eft  la  ligne  P  A  ,  on  à 

v'Xie  — ~^-H  ï?*,  oubie 

a  caule  que  nous  auons 
fuppofe'  e  efgal  a;  ,  oti  a 

Xx  a  ainfi 


105 


^4&  l'A    GEOMETRIE. 

ainlî  on  pourroit  trouuer  s  par  le  troifîefine  reime 
ee  co^^^^^^^^^T^'maispourceque  la  quantité  t/  determine 
affés  le  point  P,qiiî  eft  le  feul  que  nous  cherchions,on  n'a 
pas  befoin  de  pafTer  outre. 

Tout  de  mefme  la  féconde  equation  trouuée  cy  dç(- 
fus,  a  fçauoif, 

i^i  dd-^      -  idd-uJ      '-  d  d  ssC 
>itd  d  V  -v^ 

doit  auoir  mefme  forme ,  que  la  fomme  qui  fe  produifir 
lorfqu'on  multiplie  ^^  '-^ei -A- ee  par 

4  î  5  4 

y  -^fj  '-^ggn^^^y-^  -i,  qui  eft 

-  "^^^     >hee,-'       ^eef   Ç      ^eeggJ         ^  e  e  t?ij 

de  façon  que  de  ces  deux  equations  i'en  tire  fix  autres, 
qui  feruent  a  connoiftre  les  fix  quantite^s  /^  g,  h,  \,  v,  &  j  : 
D'où  il  eft  fort  ayfe'  a  entendre,  que  de  quelque  genre, 
qucpuiffe  eftrela  ligne  courbe  propofee,  il  vient  tou- 
fiours  par  cete  façon  de  procéder  autant  d'équations, 
qu'on  cft  obligé  de  fuppofer  de  quantités ,  qui  font  in- 
connues.  Mais  pour  demeller  par  ordre  ces  equations, 
&  trouuer  enfin  la  quantité  z^,    qui  eft  la  feule  dont  on  a 
befoin,  &  à  l'occafion  de  laquelle  on  cherche  les  autres: 
Il  faut  premièrement  par  le  fécond  terme  chercher/,  la 
premiere  des.  quantités  inconnues  de  la  dernière  fom- 
me, &  on  trouue/:»  ze—  ib. 

Vu\s  par  le  dernier  il  faut  chercher  /^1a  dernière  des 
quantite's  inconnues  de  la  mefme  fomme,  ôc  on  trouuc 

bbccdd. 

/•^30— 

^  ee 

Puis 


106 


SECOND   BOOK 

2      Of'  —  qs' 

e  — ;  but  since  v  completely  determines  P,  which  is  all  that  is 

q—r 

required,  it  is  not  necessary  to  go  further.''"'' 

In  the  same  "way,  the  second  equation  found  above, '''^'  namely, 

4-  (rV^  -  2/)-r./+  d'-i-  -  d's'  )/  -  2âr'dy  +  /; W' , 
must  have  the  same  form  as  the  expression  obtained  by  multiplying 

_v-— 2^3'+^-  by  y^-\-fy'''+g-y--\-lry-\-k*, 
that  is,  as 
y'-^(f-2e)y'-\-(cf--2ef^c~)y*Jr(Ji'-^eg"-+e-f)y' 

-\-(k'—2eJr-\-e-g-)y--{-(e-h"-2ek')y^e'kK 

From  these  two  equations,  six  others  may  be  obtained,  which  serve  to 
determine  the  six  quantities  /,  g,  h,  k,  v,  and  s.  It  is  easily  seen  that 
to  whatever  class  the  given  curve  may  belong,  this  method  will  always 
furnish  just  as  many  equations  as  we  necessarily  have  unknown  quan- 
tities. In  order  to  solve  these  equations,  and  ultimately  to  find  v,  which 
is  the  only  value  really  wanted  (the  others  being  used  only  as  means 
of  finding  îO.  we  first  determine  /.  the  first  unknown  in  the  above 
expression,  from  the  second  term.  Thus,  f=2e — 2b.  Then  in  the  last 
terms  we  can  find  k,  the  last  unknown  in  the  same  expression,  from 

'"''  That  is,  to  construct  PC  we  may  lay  off  AP  =  7'  and  join  P  and  C.  If 
instead  we  use  the  value  of  e,  taking  C  as  center  and  a  radius  CP  =  r,  we  con- 
struct an  arc  cutting  AG  in  P,  and  join  P  and  C.  Rabuel,  p.  309.  To  apply 
Descartes's  method  to  the  circle,  for  example,  it  is  only  necessary  to  observe  that 
all  parameters  and  diameters  are  equal,  that  is,  q^r;  and  therefore  the  equation 

7' =  y v-|-  —  ;- becomes  z'=  _,  ^  =  — diameter.     That  is,  the  normal  passes 

through  the  center  and  is  a  radius  of  the  circle.     Rabuel,  p.  313. 

''■''^'  See  page  99.  As  before,  Descartes  uses  "second  equation"  for  "first  mem- 
ber of  the  second  equation." 


107 


GEOMETRY 

which  fe*^ — ^ — .    From  the  third  term  we  get  the  second  quantity 

g--=Ze-—Ahe—2cd^h-^d-. 

From  the  next  to  the  last  term  we  get  h,  the  next  to  the  last  quantity, 
which  is'"°' 

2^VV2     2^rV2 


h'  = 


ê     ' 


In  the  same  way  we  should  proceed  in  this  order,  until  the  last  quantity 
is  found. 

Then  from  the  corresponding  term  (here  the  fourth)  we  may  find 
V,  and  we  have 

le"       T^be^       b'^e       2ce  2bc       b^       l^V\ 

a  add  dee 

or  putting  y  for  its  equal  <f,  we  get 

2y^       ^by""       b'^y       2cy  2bc      b^       bh^ 

for  the  length  of  AP. 
""1  Found  from. 


108 


L  I  V  R  E    s  E  C  O  N  D.  34P 

Puis  par  le  troifiefme  rerme  il  faut  chercher  a  la  féconde 
quantité,  &ona^^30  ^  ee  —  ^^be  —  z  cd'r'  bb-i-dd. 
Puis  par  le  pcnukiefnie  il  faut  chercher  /j  la  penultiefîne 


quantité,  qui  eft  Z»  '  oo 


ib  b  c  cdd         1  bccdd . 


ei 


Etaiiiiî  il  fau- 


droit  continuer  fuiuant  ce  mefme  ordre  iufques  a  la  der- 
nière, s'il  y  en  auoit  d'auantage  en  cete  fomme  •  car  c'eft 
chofe  qu'on  peut  toufîours  faire  en  mefme  façon. 

Puis  par  le  terme  qui  fuit  en  ce  mefme  ordre,  qui  eft 
icy  le  quatriefrae,  il  faut  chercher  la  quantité'  v,  &  On  a 


vX>- 


h  b  e       1  ce  i  bc 


bec        hh  c  c^ 


?  bee 
dd  ~'~dd"  ''   dd~~    d      '     "     '       d      -■    ee 

©u  mettant/  au  lieu  d'^  qui  luy  cft  efgal  on   a 

-y  t     ^^yy      ^^y     -^y*  ^^^      bec    bbcc. 

....    ~~^  - 


f/30 


d 


7 


dd         d4i      '      dd 

pour  la  ligne  A  P, 

Etainfila  troifiefme  equation;  qui  eft 

Xx    3 


yy 


y' 


K.^' 


109 


iSO  La    GEOMETRIE. 

tft  zbcddz'-  xbcdex.--z  cddvz,  —  ibdevK  ••  bddss  ifi  b  ddvv- 


K\- 


bdd  i^t6t^  eev' 


■  '  cdds  s  >î<  c  ddvv  , 


a  la  mefme  forme  que 


^^'-if^-^ff,  en  fuppofant/efgal  a  ;^,  fi  bienque  il 
y  a  derechef  equation  entre—  2/,  ou  — 2  :{,  & 

>i*  1  b  c  dd -' 1  hc  d e  —  î.  cddv --1  hdcTJ  . 

' Tdd>i<cee>i.eev..ddv d  OÙ    OU  COmioift  qUC 

«  .     /  /1    bcdd-bcde>i*  bddz.  ^  ceez 

ia  quantité  v  eft  -7di:^JJ7..ee^^dd^ 

C'eftpourquoy 
composant  la 
ligne  A  P  ,  de 
cete  fbmme  ef^ 
gale  à  V  dont 
toutes  les  quan- 
tite's  font  connues,  ôc  tirant  du  point  Painfî  trouue",  vne 
ligne  droite  vers  C,  elle  y  couppe  la  courbe  CE  a  an- 
gles droits,  qui  eft  ce  qu'il  falloit  faire.  Et  ie  ne  voy  rien 
qui  empefche,  qu'on  n'eftende  ce  problefme  en  mefme 
façon  a  toutes  les  lignes  courbes, qui  tombentfous  quel- 
que calcul  Géométrique. 

Mefme  il  eft  a  remarquer  touchant  la  dernière  fom- 
me,  qu'on  prent  a  difcretion ,  pour  remplir  le  nombre 
des  dimenlîons  de  l'autre  fomme  ,  lorfqu 'il  y  en  man- 
que ,   comme  nous  auons  pris  tantoft 

y  ''^  fy  '  "^Zg,  y  y  -h  /^  '^  -+-  >^^  5  que  les  lignes  -^  &  — 
ypeuuenteftrefuppofestels,  qu'on  veut,  fans  que  la  \U 
gne  Vf  ou  A  P,  fe  trouue  diuerfè  pour  cela ,  comme  vous 
pourresayfement  voir  par  experience,  car  s'il  falloit  que 
icm'areftalTeademonftrertous  les  theorefmes  dont  ie 

fais 


110 


SECOND    BOOK 

Again,  the  third''"'  equation,  namely, 

Ibcd^'z  -  2bcdez  -  2cdh'2  -  2bdevz  -  bd^-s'  +  bd^-v'—cd's^  +  cd'h^ 


2'  +  - 


bd^'+ce^+e'v-d'^v 


is  of  the  same  form  as  zr—2fc-\-f-  where  /=r,  so  that  —2/  or  —2z 
must  be  equal  to 

2bcd'^  -  2bcdc  -  2cd'^v  -  Zbdev 
bd^+ce''  +  é\'-d\' 

whence 

bcd"^  -  bcde  -\-bd'^z+ ce^z 
^'~     cd''-^bde-€''z\d''z    ' 

Therefore,  if  we  take  AP  equal  to  the  above  value  of  v,  all  the 
terms  of  which  are  known,  and  join  the  point  1'  thus  determined 
to  C,  this  line  will  cut  the  curve  CE  at  right  angles,  which  was  required. 
I  see  no  reason  why  this  solution  should  not  apply  to  every  curve  to 
which  the  methods  of  geometry  are  applicable.''"' 

It  should  be  observed  regarding  the  expression  taken  arbitrarily  to 
raise  the  original  product  to  the  required  degree,  as  we  just  now  took 

that  the  signs  +  and  —  may  be  chosen  at  will  without  producing  dif- 
ferent values  of  V  or  AP.'''°'  This  is  easily  found  to  be  the  case,  but  if 
I  should  stop  to  demonstrate  every  theorem  I  use,  it  would  require  a 

'"''  First  member  of  the  tliird  equation. 

'"*'  Let  us  apply  this  method  to  the  problem  of  constructing  a  normal  to  a  para- 
bola at  a  given  point.  As  before,  s^  —  x- -^  v- —  2vy  ^  y- .  If  we  take  as  the 
eciuation  of  the  parabola  .r-  =  ry,  and  suljstitute,  we  have 

j=  =:  rv 4- e'=  —  2tt  +  J-       or       v^  +  (r  —  2zO.V  +  ^'- —  ^"  =  0- 

Comparing   this   with   y- —  2cy^  c- —  '^,   we   have    r  —  2v  =  —  2c\    v~  —  s- =  e- ; 

t;=J  +  f.        Since      e  =  y,     v^^-  +  y.        Let      AM  =  r.      and      7' =  AP  ;      then 

AM  —  AP  =  MP  =  one-half  the  parameter.     Rabuel,  p.  314. 

['"^  It  will  be  observed  that  Descartes  did  not  consider  a  coefficient,  as  a,  in  the 
general  sense  of  a  positive  or  a  negative  quantity,  but  that  he  alwavs  wrote  the 
sign  intended.    In  this  sentence,  however,  he  suggests  some  generalization. 


Ill 


GEOMETRY 

much  larger  volume  than  I  wish  to  write.  I  desire  rather  to  tell  you 
in  passing  that  this  method,  of  which  you  have  here  an  example,  of  sup- 
posing two  equations  to  be  of  the  same  form  in  order  to  compare  them 
term  by  term  and  so  to  obtain  several  equations  from  one,  will  apply 
to  an  infinity  of  other  problems  and  is  not  the  least  important  feature 
of  my  general  method.'""^ 

I  shall  not  give  the  constructions  for  the  required  tangents  and  nor- 
mals in  connection  with  the  method  just  explained,  since  it  is  always 
easy  to  find  them,  although  it  often  requires  some  ingenuity  to  get  short 
and  simple  methods  of  construction. 

[160]  Yhe  method  may  be  used  to  draw  a  normal  to  a  curve  from  a  given  point, 
to  draw  a  tangent  to  a  curve  from  a  point  without,  and  to  discover  points  of 
inflexion,  maxima,  and  minima.  Compare  Descartes's  Letters,  Cousin,  Vol.  VI, 
p.  421.  As  an  illustration,  let  it  be  required  to  find  a  point  of  inflexion  on  the 
first  cubical  parabola.  Its  equation  is  y"  =  a-x.  Assume  that  D  is  a  point  of 
inflexion,  and  let  CD  =  y,  AC  =  x,  PA  ^  s,  and  AE  =:  r.     Since  triangle  PAE  is 

similar  to  triangle  PCD  we  have  -^. —  =-,  whence  .v  =   " .    Substituting  in 

A'  +  j      5  r 

the  equation  of  the  curve,  we  have  \'^  —  — ^+a-j^O.     But  if  D  is  a  point  of 

r 

inflexion  this  equation  must  have  three  equal  roots,  since  at  a  point  of  inflexion 
there  are  three  coincident  ixjints  of  section.     Compare  the  equation  with 

y^  —  Zey-  +  Zc-y  —  e^  =  0. 

Then  Ze"^  =  0  and  e  ^0.  But  c  ^  y,  and  therefore  y  ^^  0.  Therefore  the  point  of 
inflexion  is  (0,  0).    Rabuel,  p.  321. 


It  will  be  of  interest  to  compare  the  method  of  drawing  tangents  given  by 
Fermât  in  Methodus  ad  disquircndam  maxiniam  et  minimam,  Toulouse,  1679, 
which  is  as  follows  :    It  is  required  to  draw  a  tangent  to  the  parabola  BD  from  a 

point  O  without.     From  the  nature  of  the  parabola > -,  since  O  is  without  the 

DI       tj  i^ 

curve.    But  by  similar  triangles  5£.  =  ^l^.    Therefore  —>£^.     Let   CE  =  a, 

CI  =  e,  and  CD  =  ^;  then  DI  =  d  —  e,  and  -; — — >7 ^-  :  whence 

a  —  c      (a  —  e)^ 

de-  —  2ade  >  —  a-e. 

Dividing  by  e,  we  have  dc  —  2ad  >  —  a-.  Now  if  the  line  BO  becomes  tangent  to 
the  curve,  the  point  B  and  O  coincide,  de  —  2ad  =  —  a-,  and  e  vanishes  ;  then 
2ad  —  a-  and  a  — 2d  in  length.    That  is  CE  =  2CD. 

112 


Livre   Secokd.  $fx 

fais  quelque  mention,  ie  ferois  contraint  d'efcrire  vn  vo- 
lume beaucoup  plus  gros  que  ie  ne  defîre.  Mais  ie  veux 
bien  en  paflant  vous  auertir  que  l'inuention  defuppofcr 
deux  equations  de  mefme  forme,  pour  comparer  fepa- 
rement  tous  les  termes  de  l'vne  a  ceux  de  l'autre ,  &  ainfî 
en  faire  naiftre  plufieurs  d'vne  feule ,  dont  vous  aues  vu 
icy  vn  exemple,  peut  fcruir  a  vne  infinité  d'autres  Pro- 
blefmes,  &  n'eft  pas  l'vne  des  moindres-  de  la  méthode 
dont  ie  me  fers. 

len'adioufte  pomt  les  conftrudtions,  par  lefquelles  on 
peut  defcrire  les  contingentes  ou  les  perpendiculaires 
cherchées,  en  fuite  du  calcul  que  ie  viens  d'expHquer ,  a 
caufe  qu'il  eft  toufîours  ayfe'de  les  trouuer:  Bienque  fbu- 
uenton  aicbefoin  dVn  peu  d'adrefle,  pour  les  rendre 
courtes  &fîmples, 

Comnje  par  exemple,  lîD  Ceft  lapremiçre  conchoi-  E„mpie 

de    des    anciens^  Je  la  con- 

dont  A  foit  le  po-  de"«  p°o. 

le,  &  BH  la  rede:  blefme.ea 
-  "la  con- 

cn  lorte  que  tou-  choidc. 
tes  les  lignes  droi* 
tes  qui  regardent 
vers  A  ,  &  font 
coraprifes  entre  la 
courbe  CD,  &Ia 
droite  B  H ,  com- 
me DB  &  C  E,  foient  efgales  :  Et  qu'on  veuille  trouuer 
1^  Hgne  C  G  qui  la  couppe  au  point  C  a  angles  droits. 
On pourroit  en  cherchant,  dans  la  ligne  B  H,  le  point 
par  où  cete  Hgne  C  G  doitpafler ,  felon  la  méthode  icy 

expli* 


cL-^ — 

[ 

) 

\\  \f 

i  \    \"E. 

B 

h\ 

\ 

A 

113 


Explica- 
tion de  4 
nouuc- 
aux  gen- 
res d'O- 
uales,  qui 
feruent  a 
I'Opti- 
aue. 


3Ji  La  Géométrie. 

expliquée,  s'engager  dans  vn  calcul  autant  ou  plus  long 
qu'aucun  des  precedens:  Et  toutefois  la  conftruélion, qui 
deuroitaprc^'sen  eftre  déduite, eft  fort  fîmple.  Car  il  ne 
faut  que  prendre  C  F  en  la  ligne  droite  C  A ,  &  la  faire 
efgale  à  C  H  qui  eft  perpendiculaire  fur  H  B  :  puis  du 
point  F  tirer  F  G,  parallèle  à  BA,  &  efgale  à  EA:  au 
moyen  de  quoy  on  a  le  point  G  ,  par  lequel  doit  pafter 
C  G  la  ligne  cherchée. 

Au  refte  affin  que  vous  fçachiees  que  la  confideration 
des  lignes  courbes  icy  propofée  n'cft  pas  fans  vfage,  & 
qu'elles  ont  diuerfes  propriétés,  qui  ne  cedent  en  rien  a 
celles  des  fêd:ions  coniques, ie  veux  encore  adioufter  icy 
l'exphcationde  certaines  Ouales,  que  vous  verres  eftre 
très  vtiles  pour  la  Théorie  de  la  Catoptrique  ,  &dela 
Dioptrique.   Voycy  la  façon  dont  ie  les  defcris. 


Premièrement  ayant  tire" les  lignes  droites  FA,  & 
A  R,  qui  s'entrecouppent  au  point  A,  fans  qu'il  importe 
a  quels  angles,  ieprens  en  l'vne  le  point  F  a  difcretion, 
c'eftadireplus  ou  moins  efloigne''du  point  A  félon  que 

ie 


114 


SECOND    BOOK 

Given,  for  example,  CD,  the  first  conchoid  of  the  ancients  (see  page 
113).  Let  A  be  its  pole  and  BH  the  ruler,  so  that  the  segments  of  all 
straight  lines,  as  CE  and  DB,  converging  toward  A  and  included 
between  the  curve  CD  and  the  straight  line  BH  are  equal.  Let  it  be 
required  to  find  a  line  CG  normal  to  the  curve  at  the  point  C.  In  try- 
ing to  find  the  point  on  BH  through  which  CG  must  pass  (according 
to  the  method  just  explained),  we  would  involve  ourselves  in  a  calcula- 
tion as  long  as,  or  longer  than  any  of  those  just  given,  and  yet  the 
resulting  construction  would  be  very  simple.  For  we  need  only  take 
CF  on  CA  equal  to  CH,  the  perpendicular  to  BH  ;  then  through  F 
draw  FG  parallel  to  BA  and  equal  to  EA,  thus  determining  the  point 
G,  through  which  the  required  line  CG  must  pass. 

To  show  that  a  consideration  of  these  curves  is  not  without  its  use, 
and  that  they  have  diverse  properties  of  no  less  importance  than  those 
of  the  conic  sections  I  shall  add  a  discussion  of  certain  ovals  which  you 
will  find  very  useful  in  the  theory  of  catoptrics  and  dioptrics.     They 


115 


GEOMETRY 

may  bè  described  in  tbe  following  way  :  Drawing  the  two  straight  lines 
FA  and  AR  (p.  114)  intersecting  at  A  under  any  angle,  I  choose  arbi- 
trarily a  point  F  on  one  of  them  (more  or  less  distant  from  A  accord- 
ing as  the  oval  is  to  be  large  or  small).  With  F  as  center  I  describe  a 
circle  cutting  FA  at  a  point  a  little  beyond  A,  as  at  the  point  5.  I  then 
draw  the  straight  line  56"""  cutting  AR  at  6,  so  that  A6  is  less  than  Ab, 
and  so  that  A6  is  to  A5  in  any  given  ratio,  as,  for  example,  that  which 
measures  the  refraction,'"'^  if  the  oval  is  to  be  used  for  dioptrics.  This 
being  done,  I  take  an  arbitrary  point  G  in  the  line  FA  on  the  same  side 
as  the  point  5,  so  that  AF  is  to  G  A  in  any  given  ratio.  Next,  along  the 
line  A6  I  lay  off  RA  equal  to  GA,  and  with  G  as  center  and  a  radius 
equal  to  R6  I  describe  a  circle.  This  circle  will  cut  the  first  one  in  two 
points  1,  1,'"'^  through  which  the  first  of  the  required  ovals  must  pass. 
Next,  with  F  as  center  I  describe  a  circle  which  cuts  FA  as  little 
nearer  to  or  farther  from  A  than  the  point  5,  as,  for  example,  at  the 
point  7.  I  then  draw  78  parallel  to  56  and  with  G  as  center  and  a  radius 
equal  to  R8  I  describe  another  circle.  This  circle  w^ill  cut  the  one 
through  7  in  the  points  1,  1''"^  which  are  points  of  the  same  oval.  We 
can  thus  find  as  many  points  as  may  be  desired,  by  drawing  lines  paral- 
lel to  78  and  describing  circles  with  F  and  G  as  centers. 

''°^'  The  confusion  resulting  from  the  use  of  Arabic  figures  to  designate  points 
is  here  apparent. 

''°''  That  is,  the  ratio  corresponding  to  the  index  of  refraction. 
'^•'1  "Au  point  1." 
'^"'^  "Au  point  1.". 


116 


Livre  Second.  3T3 

ie  veux  faire  ces  Ouales  plus  ou  moins  grandes,  fedece 
point  F  comme  centre  ie  defcris  vn  cercle  ,   quipaflfe 
quelquepeu  au  delà  du  point  A,  comme  par  le  point  y, 
puis  de  ce  point  5"  ie  tire  la  ligne  droite  s6y  qui  couppe 
lautre  au  pomt  6,  en  forte  qu'  A  6  foit  moindre  qu'  A  y, 
felon  telle  proportion  donnée  qu'on  veut,  a  fçauoir  fe- 
lon celle  qui  mefure  les  Refracftions  fî  on  s'en  veut  fer- 
uir  pour  la  Dioptrique.  Après  cela ieprcns  auffy  le  point 
G,  en  la  ligne  F  A, du  cofte'où  eft  le  point  f ,  a  difcrction, 
c'eft  a  dire  enfaifant  que  les  lignes  AF&GA  ont  entre 
elles  telle  proportion  donnée  qu'on  veut.     Puis  ie  fais 
R  A  efgale  à  G  A  en  la  ligne  Ad.    &  du  centre  G  dcfcri- 
iiantvn  cercle,  dont  le  rayon  foit  efgal  à  R5,il  couppe 
l'autre  cercle  de  part  &  d'autre  au  point  i ,  qui  eft  Tvn  de 
ceux  par  où  doit  pafTer  la  premiere  des  Ouales  cher- 
che'es.   Puis  derechef  du  centre  F  ie  defcris  vn  cercle, 
qui  paffe  vn  peu  au  deçà,  ou  au  delà  du  point  f ,  comme 
par  le  point  7,  &  ayant  tire"  la  ligne  droiteyg  parallèle  a 
S  d,  du  centre  G  ie  defcris  vn  autre  cercle,  dont  le  rayon 
eft  efgal  a  la  ligne  R8.   &  ce  cercle  couppe  celuy  qui 
pafl€  par  le  point  7  au  point  i ,  qui  eft  encore  iVn  de  ceux 
delamefme  Ouale.     Et  ainli  on  en  peut  trouuer  au- 
tant d'autres  qu'on  voudra  ,  en  tirant  derechef  d'au- 
tres lignes  parallèles  à  7  8,  5c  d'autres  cercles  des  centres 
F,&G. 

Pour  la  féconde  Ouale  il  n'y  a  point  de  difference ,  fi- 
non  qu'au  lieu  d' A  R  il  faut  de  l'autre  cofte'  du  pomt  A 
prendre  A  S  efgal  à  AG,  &  que  le  rayon  du  cercle  de- 
fcrit  du  centre  G,  pour  coupper  celuy  qui  cft  defcrit  du 
centre  F  &  qui  paffe   par  le  point  y ,  foit  efgal  a  la 

Yy  ligne 


117 


3r4 


La  Géométrie. 


ligne  S  6;  ou  qu'il  foit  cfgal  à  S  8  ,  fî  c'eft  pour  coupper 
eeluyqui  paiïepar  le  point  7.  &  ainfî  des  autres,  au 
moyen  dequoy  ces  cercles  s'entrecouppent  aux  poins 
marqués  2,1,  qui  font  ceux  de  cete  féconde  Oualc 
A  2  X. 

Pourlatroifîefme,  &laquatriefrne,au  lieu  de  la  ligne 
A  G  il  faut  prendre  A  H  de  l'autre  cofté  du  point  A,  à 
fçauoirdu  mefme  qu'eft  lepoint  F.  Et  il  y  a  icy  de  plus 
a  obferuer  que  cete  ligne  A  H  doit  eftre  plus  grande  que 
A  F:  laquelle  peut  mefme  eftre  nulle,  en  forte  que  le 
point  F  fe  rencontre  où  efl  le  point  A,  en  ladefcriptioa 
de  toutes  ces  ouales.  Apres  cela  les  lignes  A  R  ,  &  A  S 
eftant  efgales  à  A  FI ,  pour  defcrire  la  troifiefme  ouale 
A  3  Y,  ie  fais  vn  cercbe  du  centre  H,  dont  îe  rayon  eft 

efgai 

118 


SECOND   BOOK 

In  the  construction  of  the  second  oval  the  only  difference  is 
that  instead  of  AR  we  must  take  AS  on  the  other  side  of  A,  equal 
lo  AG,  and  that  the  radius  of  the  circle  about  G  cutting  the  circle  about 
F  and  passin_s:  through  5  must  be  equal  to  the  line  S6;  or  if  it  is  to  cut 
the  circle  through  7  it  must  be  equal  to  S8,  and  so  on.  In  this  way  the 
circles  intersect  in  the  points  2,  2,  which  are  points  of  this  second  oval 
A2X. 

To  construct  the  third  and  fourth  ovals  (see  page  121),  instead  of 
AG  I  take  AH  on  the  other  side  of  A,  that  is.  on  the  same  side  as  F. 
It  should  be  observed  that  this  line  AH  must  be  greater  than  AF,  which 
in  any  of  these  ovals  may  even  be  zero,  in  which  case  F  and  A  coincide. 
Then,  taking  AR  and  AS  each  equal  to  AH,  to  describe  the  third  oval, 


119 


GEOMETRY 

A3Y,  I  draw  a  circle  about  H  as  center  with  a  radius  equal  to  S6  and 
cutting  in  the  point  3  the  circle  about  F  passing  through  5,  and  another 
with  a  radius  equal  to  S8  cutting  the  circle  through  7  in  the  point  also 
marked  3,  and  so  on. 

Finally,  for  the  fourth  oval,  I  draw  circles  about  H  as  center  with 
radii  equal  to  R6,  R8,  and  so  on,  and  cutting  the  other  circles  in  the 
points  marked  4.''"^' 

'^°^'  In  all  four  ovals  AF  and  AR  or  AF  and  AS  intersect  at  A  under  any 
angle.  F  may  coincide  with  A,  and  otherwise  its  distance  from  A  determines  the 
size  of  the  oval.  The  ratio  AS  :  A6  is  determined  by  the  index  of  refraction  of 
the  material  used.  In  the  first  two  ovals,  if  A  does  not  coincide  with  F  it  lies 
between  F  and  G,  and  the  ratio  AF  :  AG  is  arbitrary.  In  the  last  two,  if  F  does 
not  coincide  with  A  it  lies  between  A  and  H,  and  the  ratio  AF  :  AH  is  arbitrary. 
In  the  first  oval  AR  =  AG  and  the  points  R,  6,  8  are  on  the  same  side  of  A.  In 
the  second  oval  AS  =;  AG  and  S  is  on  the  opposite  side  of  A  from  6,  8.  In  the 
third  oval  AS  =  AH  and  S  is  on  the  opposite  side  of  A  from  6,  8.  In  the  fourth 
oval  AR  =AH  and  R,  6,  8  are  on  the  same  side  of  A.     Rabuel,  p.  342. 


120 


Livre   Second. 


3SS 


efgal  a  S  6,  qui  couppe  au  point  3  celuy  du  centre  F,  qui 
palTe  par  le  point  j-  &  vn  autre  dont  le  rayon  eil  efgal  a 
S  8,  qui  couppe  celuy  qui  pafle  par  le  point  7,  au  point 
aully  marque'  3}  Sc  ainfî  des  autres.  Enfin  pour  la  dernière 


Yy  z 


ouale 


121 


iX^  La  Géométrie. 

oualeie  fais  des  cercles  du  centre  H  ,  dont  les  rayons 
font  efgaux  aux  lignes  R  ^,  R  8,  &  femblables ,  qui  coup- 
pent  les  autres  cercles  aux  poins  marque's  4. 

On  pourroit  encore  trouuer  vne  infinité  d'autres 
moyens  pourdefcrire  ces  mefmes  ouales.  comme  par 
exemple,  on  peut  tracer  la  premiere  AV,  lorfqu'on  fup- 
pofe  les  lignes  F  A  &  A  G  eftre  efgales ,  fi  on  diuife  la 
toute  F  G  au  point  L,  en  forte  que  F  L  foit  a  L  G ,  com- 


me A  yà  A  6^  c'ejflà  dire  qu'elles  ayent  la  proportion, 
qui  mefure  les  refractions.  Puis  ayant  diuife  A  L  en  deux 
parties  efgales  au  point  K,  qu'on  face  tourner  vne  reigle, 
comme  F  E,  autour  du  point  F,  en  preffant  da  doigt  C, 
la  chorde  E  C,  qui  eftant  attachée  au  bout  de  cete  reigle 
vers  E,  fe  replie  de  C  vers  K,  puis  de  K  derechef  vers  G, 
&  de  C  vers  G,  ou  fon  autre  bout  foit  attache' ,  en  forte 
que  la  longeur  de  cete  chorde  foit  compofée  de  celle 
des  hgnes  G  A  plus  AL  plus  FE  moins  AF.  &:  ce  fera 
lemouuementdu  point  C,  qui  defcrira  cete  ouale  ,  a 
l'imitation  de  cequi  a  cfte  dit  en  la  Dioptriq;  de  l'ElIipfe^ 

& 


122 


SECOND    BOOK 


There  are  many  other  ways  of  describing  these  same  ovals.  For 
example,  the  first  one,  AV  (provided  we  assume  FA  and  AG 
equal)  might  be  traced  as  follows  :  Divide  the  line  FG  at  L  so  that 
FL  :  LG=A5  :  A6,  that  is,  in  the  ratio  corresponding  to  the  index 
of  refraction.  Then  bisecting  AL  at  K,  turn  a  ruler  FE  about  the 
point  F,  pressing  with  the  finger  at  C  the  cord  EC,  which,  being 
attached  at  E  to  the  end  of  the  ruler,  passes  from  C  to  K  and  then 
back  to  C  and  from  C  to  G,  where  its  other  end  is  fastened.  Thus  the 
entire  length  of  the  cord  is  composed  of  GA-|-AL-|-FE — AF,  and  the 
point  C  will  describe  the  first  oval  in  a  way  similar  to  that  in  which  the 


123 


GEOMETRY 

ellipse  and  hyperbola  are  described  in  La  Dioptriqne.^'^"^  But  I  cannot 
give  any  further  attention  to  this  subject. 

Athou^h  these  ovals  seem  to  be  of  almost  the  same  nature,  they 
nevertheless  belong  to  four  different  classes,  each  containing  an  infinity 
of  sub-classes,  each  of  which  in  turn  contains  as  many  different  kinds 
as  does  the  class  of  ellipses  or  of  hyperbolas  ;  the  sub-classes  depend- 
ing upon  the  value  of  the  ratio  of  A5  to  A6.  Then,  as  the  ratio  of  AF 
to  AG,  or  of  AF  to  AH  changes,  the  ovals  of  each  sub-class  change  in 
kind,  and  the  length  of  AG  or  AH  determines  the  size  of  the  oval.'""' 

If  A5  is  equal  to  A6,  the  ovals  of  the  first  and  third  classes  become 
straight  lines  ;  while  among  those  of  the  second  class  we  have  all  pos- 
sible hyperbolas,  and  among  those  of  the  fourth  all  possible  ellipses.'"*' 

In  the  case  of  each  oval  it  is  necessary  further  to  consider  two  por- 
tions having  different  properties.  In  the  first  oval  the  portion  toward 
A  (see  page  114)  causes  rays  passing  through  the  air  from  F  to  con- 
verge towards  G  upon  meeting  the  convex  surface  lAl  of  a  lens 
whose  index  of  refraction,  according  to  dioptrics,  determines  such 
ratios  as  that  of  A5  to  A6,  by  means  of  which  the  oval  is  described. 

^'""1  See  the  notes  on  pages  10,  55.  112. 

'^®''  Compare  the  changes  in  the  ellipse  and  hyperbola  as  the  ratio  of  the  length 
of  the  transverse  axis  to  the  distance  between  the  foci  changes. 

[168]  "pi^ggg  theorems  may  be  proved  as  followrs  :  (1)  Given  the  first  oval,  with 
AS  =  A6  ;  then  RA  =  GA  ;  FP  =  F5  ;  GP  =  R6  =  AR  —  R6  =  GA  —  AS  =  G5. 
Therefore  FP-FGP  =  FS  +  GS.  That  is,  the  point  P  lies  on  the  straight  line  FG. 
(2)  Given  the  second  oval,  with  A5  =  A6;  then  F2  =  FS=FA  +  AS; 
G2=S6=SA  +  A6=  SA  + AS  ;  G2  — F2  =  SA  —  FA  =  GA  — FA  =  C.  There- 
fore 2  lies  on  a  hyperbola  whose  foci  are  F  and  G,  and  whose  transverse  axis  is 
GA  —  FA.  The  proof  for  the  third  oval  is  analogous  to  (1)  and  that  for  the 
fourth  to  (2). 

It  may  be  noted  that  the  first   oval   is  the   same  curve  as  that  described  on 
page  98.     For   FP  =  FS,   whence   FP  —  AF  =  AS,   and   AR  =  AG  ;    GP  =  R6  ; 
AG —  GP  =  A6.    If  then  A5  :  A6  =  d  :  c  we  have,  as  before, 
FP  — AF  :  AG— GP  =  d  :  c. 


124 


Livre  Second.  jj'/ 

&  de  l'Hyperbole,  mais  ie  ne  veux  point  m'arefter  plus 
longtems  fur  ce  fuiet. 

Or  encore  que  toutes  ces  oualesfemblent  eftre  quafi 
demefmcnature,elles  font  néanmoins  de 4  diuers  gen- 
res, chafcun  defquels  contient  fous  foy  vne  infinite  d'au- 
tres genres,  quiderechefcontienent  chafcun  autant  de 
diuerfèsefpeces,  que  fait  le  genre  des  Ellipfes ,  ou  celuy 
des  Hyperboles.  Car  felon  que  la  proportion ,  qui  eft  en- 
tre les  lignes  A  y,  A  ^,  ou  femblables,  eft  différente  ,.  le 
genre  fubalterne  de  cesouales  cft  different.  Puis  félon 
que  la  proportion,  qui  eft  entre  les  lignes  A  F,  &  A  G,ou 
A  H,  eft  change'e,  les  ouales  de  chafque  genre  fubalter* 
ne  changent  d'efpece.  Et  felon  qu'  A  G,  ou  A  H  eft  plus 
ou  moins  grande,  elles  font  diuerfes  en  grandeur.  Et  fî 
les  lignes  A  5  &  A6  fontefgales,  an  lieu  des  ouales  du 
premier  genreoudutroifîefme,  on  ne  defcrit  que  des 
lignes  droites;  mais  au  lieu  de  celles  du  fécond  on  a  tou- 
tes les  Hyperboles  poflîblesj  ôc  au  lieu  de  celles  du  der- 
nier toutes  les  EUipfes^ 

Outre  cela  en  chafcune  de  ces  oualès  il  faut  coufiderer  Les  pro- 
deux  parties,  qui  ont  diuerfes  propriétés  ;  a  fçauoirenla  ^''"^^"^if^ 
premiere,  la  partie  qui  eft  vers  A,  fait  que  les  rayons,  qui  touchant 
eftant  dans  l'air  vienent  du  point  F,  fe  retouruent  tous  iTonf  & 
vers  le  point  G,  lorfqu'ils  rencontrent  la  fuperficie  con-  '«  refra- 
uexedVn  verre,  dont  la  fuperficie  eft  i  A  i,  &i  dans  le- 
quel les  refraction  s  fe  font  telles,  que  fuiuant  ce  qui  a 
eftéditenlaDioptrique,  elles  peuuent  toutes  eftreme- 
furees  par  la  proportion  ,   qui  eft  entre  les  lignes  A  y  & 
A  fîjou  femblables,  par  l'ayde  defquelles  on  a  defcrit  cete 
ouale. 

Yy  3  Mais 

125 


55S 


La  Géométrie. 


Mais  la  partie,  qui  eft  vers  V,  fait  que  les  rayons  qui 
vienent  du  point  G  fe  reflefchiroient  tous  vers  F ,  s'ils  y 
rencontroient  la  fuperficie  concaue  dVn  miroir ,  dont  la 
figure  fuft  I  V  I ,  &  qui  fuft  de  telle  matière  qu'il  di- 
minuaft  la  force  de  ces  rayons,felon  la  proportion  qui  eft 
entre  les  lignes  A  5  &  A  <5  :  Car  de  ce  qui  a  efté  demon- 
ftre  en  la  Dioptrique,  il  eft  euident  que  cela  pofé,  les  an- 
gles de  la  reflexion  feroient  inefgaus,  aufTy  bien  que  font 
ceux  de  la  refraction ,  &  pourroient  eftre  mefures  en 
mefme  forte. 

En  la  féconde  ouale  la  partie  2  A  ifert  encore  pour  les 
reflexions  dont  on  fuppofe  les  angles  eftre  inefgaux.  car 
eftantenla  fuperficie  d'vn  miroir  compofé  de  mefme 
matière  que  le  precedent,elle  feroit  tellement  reflefchir 
tous  les  rayons,  qui  viendroientdu  point  G,  qu'ils  fem- 
bleroient  après  eftre  reflefchis  venir  du  point  F.  Et  il 
eft  a  remarquer ,  qu'ayant  fait  la  ligne  A  G  beaucoup 

plus 


126 


SECOND    BOOK 


But  the  portion  toward  V  causes  all  rays  coming  from  G  to  converge 
toward  F  when  they  strike  the  concave  surface  of  a  mirror  of  the 
shape  of  1\^1  and  of  such  material  that  it  diminishes  the  velocity  of 
these  rays  in  the  ratio  of  A5  to  A6,  for  it  is  proved  in  dioptrics  that  in 
this  case  the  angles  of  reflection  will  be  unequal  as  well  as  the  angles 
of  refraction,  and  can  be  measured  in  the  same  way. 

Now  consider  the  second  oval.  Here,  too,  the  portion  2A2  (see 
page  118)  serves  for  reflections  of  which  the  angles  may  be  assumed 
unequal.  For  if  the  surface  of  a  mirror  of  the  same  material  as  in  the 
case  of  the  first  oval  be  of  this  form,  it  will  reflect  all  rays  from  G, 
making  them  seem  to  come  from  F.     Observe,  too,  that  if  the  line  AG 


127 


GEOMETRY 

is  considerably  greater  than  AF,  such  a  mirror  will  be  convex  in  the 
center  (toward  A)  and  concave  at  each  end;  for  such  a  curve  would 
be  heart-shaped  rather  than  oval.  The  other  part,  X2,  is  useful  for 
refracting  lenses  ;  rays  which  pass  through  the  air  toward  F  are  re- 
fracted by  a  lens  whose  surface  has  this  form. 

The  third  oval  is  of  use  only  for  refraction,  and  causes  rays  travel- 
ing through  the  air  toward  F  (page  121)  to  move  through  the  glass 
toward  H,  after  they  have  passed  through  the  surface  whose  form  is 
A3Y3,  which  is  convex  throughout  except  toward  A,  where  it  is  slightly 
concave,  so  that  this  curve  is  also  heart-shaped.  The  difference  between 
the  two  parts  of  this  oval  is  that  the  one  part  is  nearer  F  and  farther 
from  H,  while  the  other  is  nearer  H  and  farther  from  F. 

Similarly,  the  last  of  these  ovals  is  useful  only  in  the  case  of  reflec- 
tion. Its  effect  is  to  make  all  rays  coming  from  H  (see  the  second 
figure  on  page  121)  and  meeting  the  concave  surface  of  a  mirror  of 
the  same  material  as  those  previously  discussed,  and  of  the  form 
A4Z4,  converge  towards  F  after  reflection. 

The  points  F,  G  and  H  may  be  called  the  "burning  points"  '"°^  of 
these  ovals,  to  correspond  to  those  of  the  ellipse  and  hyperbola,  and 
they  are  so  named  in  dioptrics. 

I  have  not  mentioned  several  other  kinds  of  reflection  and  refraction 
that  are  effected'™'  by  these  ovals  ;  for  being  merely  reverse  or  opposite 
effects  they  are  easily  deduced. 

'"""  That  is,  the  foci,  from  the  Latin  focus,  "hearth."  The  word  focus  was 
first  used  in  the  geometric  sense  by  Kepler,  Ad  ViteUioncm  Paralipomena,  Frank- 
fort, 1604.     Chap.  4,  Sect.  4. 

'^'"i  "Réglées." 


128 


L  I  V  R  E    s  E  C  O  N  I>.  3r^ 

plus  grande  que  A  F,  ce  miroir  fcroit  conucxe  an  milieu, 
vers  A,  &  concaue  aux  extrémitez:  car  telle  ei\  la  figure 
decetc  ligne,  qui  en  cela  reprefente  plutoftvn  coeur 
qu'vneouale. 

Mais  fon  autre  partie  X  2  fertpourIesrefraâ;ious,& 
fait  que  les  rayons,  qui  eftant  dans  l'air  tendent  vers  F,fe 
détournent  vers  G,  en  trauerfant  la  fuperficie  d\'n  ver- 
re, qui  enait  la  figure. 

La  troificfme  ouale  fert  toute  aux  refradions ,  &  fait 
que  les  rayons,  qui  eftant  dans  Taif' tendent  vers  F,  fe 
vont  rendre  vers  H  dans  le  verre,  après  qu'ils  ont  trauer- 
fô  fa  fuperficie,  dont  la  figure  ell  A  3  Y  3,  qui  eftconue- 
xe  par  tout,excepté  vers  A  où  qUq  eft  vn  peu  concaue  en 
forte  qu'elle  a  la  figure  d*vn  coeur  aufiy  bien  que  la  pré- 
cédente. Et  la  difference  qui  eft  entre  les  deux  parties 
deceteouale,  confifteencequelepoinc  F  cft  plus  pro- 
che de  l'vne  ,  que  n'eft  le  point  H-  &:  qu'il  eft  plus 
eftoigneMe  Vautre,  que  ce  mefme  point  H. 

En  mefme  façon  la  dernière  oua.le  fert  toute  aux  re- 
flexions, &  fait  que  fi  les  rayons, qui  vienent  du  point  H, 
rencontroient  la  fuperficie  concaue  d'vn  miroir  de  mef- 
me matière  que  les  precedens,  &  dont  la  figure  fuft  A4 
Z4,  ilsfereflefchiroicnt  tous  vers  F. 

De  façon  qu'on  peut  nommer  les  poins  F,  &  G ,  ou  tî 
lespoinsbruflans  de  ces  ouales,  a  l'exemple  de  ceux  des 
Ellipfes,  &des  Hyperboles,  qui  ont  efte  ainfi  nommés 
enlaDioptrique. 

l'omets  quantité"  d'autres  refradions,  &  reflexions, 
qui  font  reiglces  par  ces  mefmes  ouales  :  car  n'eftanc 
que  les  conuerfes,  ou  les  contraires  de  celles  cy,  elles  en 

peuuent 


129 


DcmoH- 
ft  rat  ion 
des  pro- 
priétés de 
ccsoualcs 
touchant 
les  refle- 
xions & 
refra- 
^oas. 


3<^  La  Géométrie. 

peuuent  facilement  eftre  déduites.  Mais  il  ne  faut  pas 
que  i  omette  la  demonftration  de  ceque  iay  dit.  &  a  cet 
cffecSt,  prenons  par  exemple  le  pointe  a  difcretionenla 
premiere  partie  de  la  premiere  de  ces  ouales  ;  puis  tirons 

la  ligne  droite 


CP,  quicoup- 
pe  la  courbe  au 
point  C  à  an- 
gles droits,  ce- 
qui  eft  facile 
par  le  problefme  precedent  ;  Car  prenant  i  pour  A  G ,  r 
pour  A  F,  c^^  pour  F  C  j  &  fuppofant  que  la  propor- 
tion qui  eu  entre  dà^e ,  que  le  prendray  icy  toufîours 
pour  celle  qui  mefure  les  refracîlions  du  verre  propofc', 
defigneaulTy. celle  qui  eft  entre  les  lignes  A  5,  &  A  5,  ou 
femblâbles,  qui  ont  ferui  pour  defcrire  cetc  ouaIe,cc  qui 

donned  —-^j^ pour  G  C:  on  trouue  que  la  ligne  A  P  e/l 

bcdd  -  bcde  ►!<  bidz.   ^f  ceez.     .     «^      ,.*        y,    y  n.     ^         J    /T 

bde  >i.  cdd  ^  dd^ .-.  .e^  ^^"fi  q"  ^^  ^  gft^  Q^Q^ft^^  ^y  ^^^"s. 

De  plus  du  point  Payant  tiré'PQ.a  angles  droits  fur  la 
droite  F  G,  &  P  N  aufly  a  angles  droits  fur  G  C,confidc- 
ronsquefîPQLeftàPN,  comme^eft  àr,  c'eft  à  dire, 
comme  les  lignes  qui  mefurent  les  refrad^ons  du  verre 
connexe  A  C,  le  rayon  qui  vient  du  point  F  au  point  C, 
doit  tellement  s'y  courber  en  entrant  dans  ce  verre,  qu'il 
s'aille  rendre  après  vers  G;  ainfi  qu'il  eft  très  euident  de 
cequiaeftéditenlaDioptrique.  Puis  enfin  voyons  par 
le  calcul,  s'iieftvray,  que  PQfoit  à  PN;  commet  eft 
i  e,  ies  triangles  red:angIesP  Q  F,  &  C  M  F  font  fem- 

blables: 


130 


SECOND    BOOK 

I  must  not,  however,  fail  to  prove  the  statements  already  made.  For 
this  purpose,  take  any  point  C  on  the  first  part  of  the  first  oval,  and 
draw  the  straight  line  CP  normal  to  the  curve  at  C.  This  can  be  done 
by  the  method  given  above,'"''  as  follows  : 

Let  AG=&,  AF=c,  FC=c-|-5'.  Suppose  the  ratio  of  d  to  e,  which 
I  always  take  here  to  measure  the  refractive  power  of  the  lens  under 
:onsideration,  to  represent  the  ratio  of  A5  to  A6  or  similar  lines  used 
to  describe  the  oval.    Then 

e 

a 

whence 

bed}  —  bcde + bd'^'z + ce^z 


AP  =  ' 


bde-^-cd'^^d'^z-e'^z 


From  P  draw  PQ  perpendicular  to  FC,  and  PN  perpendicular  to  GC.''"' 
Now  if  PQ  :  PN=c/  :  e,  that  is,  if  PQ  :  PN  is  equal  to  the  same 
ratio  as  that  between  the  lines  which  measure  the  refraction  of  the 
convex  glass  AC,  then  a  ray  passing  from  F  to  C  must  be  refracted 
toward  G  upon  entering  the  glass.    This  follows  at  once  from  dioptrics. 

''■''  See  page  115. 

''"'  Here  PQ  is  the  sine  of  the  angle  of  incidence  and  PN  is  the  sine  of  the 
angle  of  refraction.    The  ray  FC  is  reflected  along  CG. 


131 


GEOMETRY 

Now  let  US  determine  by  calculation  if  it  be  true  that  PQ  :  PN=(i  :  e. 

The  right  triangles  PQF  and  CM  F  are  similar,  whence  it  follows  that 

FP   CM 
CF  :   CM  =  FP:   PQ,  and       ^^      =PQ-     Again,  the   right   triangles 

Cr 

CP    CM 

PNG  and  CMG  are  similar,  and  therefore  — -^  —  =PN.     Now  since 

CCr 

the  multiplication  or  division  of  two  terms  of  a  ratio  by  the  same  num- 

u       1  .    u      .1         .•      -rFP.CM     GP.CM      ,        .  -.   ... 

ber  does  not  alter  the  ratio,  if       ^  :  — -z^^ — —a:  r,  then,  dividing 

each  term  of  the  first  ratio  by  CM  and  multiplying  each  by  both  CF 
and  CG,  we  have  FP  .  CG  :  GP .  CF=^  :  e.     Now  by  construction, 


bcd^  —  bcde-\-bd-a-\-cc^c 
F  P  =  r  +  -^^oq:  bdc-e'a+d'-s     ' 


or  ^^^hcd^-+c"'d"--^bd'::+cd'- 


cd~-\-bde—e-s-\-d-c     ' 

and  ^^      ,      <? 

a 

Then 

b^cd--{-bc-d^-\-b-d-c-\-bcd-a—bcdca—c-de::—bdes-—cdes- 

^^■^^=  cd-+bde-e^-s+d^-s  " 

Then 

bcd-  —  bcdc-\-bd-c-\-ce-;:: 

^^  =  ^-  ~7d-~^-bd^^-c+d  -7~  ' 
or 

b-de-\-bcde  —  be~c — cc-c 
~     cd--\-bde—e-!s-\^d-s     ' 

and  CF=c4---     So  that 

b'cde-\-bc-de-\-b^des-\-bcde:s — bce-s — c^e-z—be^z- — ce-z"^ 

GP.CF  = — ~ ,7,  ,  , ^^-VZP' • 

cd~-^bde—e-zArd-z 


132 


Livre  s  ECO  NDr  5<^J 

blableSi  d'où  il  fuit  que  C  F  eft  à  C  M ,  comme  F  P  eft  a 
P  Q  j  «Scparconfequenc  que  FP  ,  eftant  multipliée  par 
C  M,  &  diuifee  par  C  F,  eft*efgale  a  P  Q^  Tout  de  mejp. 
me  les  triangles  re(5taDgIes  PNG,  &  C  M  G  font  fem- 
blables;  d'où  il  fuit  que  G  P,  multipliée  par  C  M,  &  diui- 
fee pa'r  C  G,  eft  efgale  a  P  N.  Puisa  cauffe  que  les  mul- 
tiplications, ou  diuifions,  qui  fe  font  de  deux  quantité^? 
par  vne  raefme,  ne  changent  point  la  proportion  qui  eft 
entre  elIes;  fi  F  P  multipliée  par  C  M;  &  diuifee  par  C  F, 
eft  à  G  P  multipliée  aufly  par  C  M  &  diuife^e  par  C  G; 
comme  <^eft  à  e,  en  diuifant  IVne  ôcrrautre  de  ces  deux 
fbmmes  par  CM*,  puis  les  multipliant  toutes  deux  par 
C  F,  &:  derechef  par  C  G,il  refte  F  P  multipliée  par  C  G, 
qui  doit  eftre  à  G  P  multiphee  par  C  F,  comme  d  eftà<?« 

OrparlaconftrudionFPeft^^    i^,^ad.i,ddz,..eez. — 
oubien  F  P  oo  ^<^^^ '^  ^^^^  >î^  ^ddi.  ^  cddz,.     ^  ^    n. 

bdeyi^  cdd  ^dd{-eex.      ^  ^  ^  ^*^ 

^  "  ~d  ^-fîbienque  multipliant  F  P  par  C  G  il  vient 

bbcdd*itbccddiitbbddz.^bcddz,—  bcde/c  —  ccdex,  —  bdez.^  ^-  edez'{^. 
Fde  *  cdd>i'dd{-'eez  ~^ 

.  —  bcdd<hbcde--bddz--  cee!,        .  . 

Puis  G  P  eft  ^  --^^  J^  ^  ^^^ ..  ^^^  •  oubicn 

bbde  >^  btde--beez --ceez,',         _„     « 

G  P  30  w«1.7^^  ^rf^t-"^^  &  C  F  eft  f  H-  ^; 
fibienque  multipHant  G  P  par  C  F ,  il  vient 

bbcde  4«  bccde  —  bceex,  -  -  cceez  "i*  bbde\  >i>  bcde\—  beezz,  —  ceeza. 
bde  <i<  cdd  >i*  ddz  —  eez, 

Et  pourcequela  premiere  de  ces  (bmmes  diuifee  par  ^, 
eft  la  mefrae  que  la  féconde  diuifee  par  ^,  il  eft  mauifefte, 
que  F  P  multipliée  par  C  G  eft  a  G  P  multiplie'e  par  C  F; 

Zz  c'eft 

133 


$^2  La  Géométrie. 

c*€ft  a  dire  que  P  Qjft  à  P  N,  comme  ^  eft  à  e,  qui  eft 
tout  ce  qu'il falloit  demonftrer. 

Etfçaches,  quecete  mefme  demonftration  s'eftend 
a  tout  ccqui  a  efte  dit  des  autres  refrad:ions  ou  refle- 
xions, quifefontdanslesoualespropofces-  fans  qu'il  y 
faille  changer  aucune  clîofe,  que  les  fignes  ■+-  &•—  du 
calcul,  c'eftpourquoy  chafcunles  peut  ayfement  exa- 
miner de  foymefme,  fans  qu'il  foit  befbin  que  ie  my 
arefte. 

Mais  il  faut  maintenentjqueiefatisface  a  ce  queiay 
omis  en  la  Dioptrique,lorfqu  après  auoir  remarque^'^qu'it 
peutyauoir des  verres  de plufîeursdinerfes  figures,  qui 
facent  aufTy  bien  l'vn  que  l'autre,  que  les  rayons  venans 
d'vn  mefme  point  de  l'obiet,  s  alïemblent  tous  en  vn  au- 
tre point  après  les  auoir  trauerfes.  &  qu'entre  ces  verres» 
ceux  qui  font  fort  connexes  d'un  cofte ,  &  concaues  de 
l'autre,  ont  plus  de  force  pour  brufler,  que  ceux  qui  fbnc 
efgalement  connexes  des  deux  cofte's.  au  lieu  que  tout 
au  contraire  ces  derniers  font  les  meilleurs  pour  les  lune- 
tes.  ie  me  fuis  contente  d'expliquer  ceux ,  que  i'ay  crû 
eftre  les  meilleurs  pour  la  prattiquc,  en  fuppofànt  la  diffi- 
culté que  les  artifans  peuuent  auoir  a  les  tailler.  C'efc 
pourquoy,affin  qu'il  ne  refte  rien  a fouhaiter  touchant  la 
théorie  de  cete  fcience,ie  doy  expliquer  encore  icy  la  fi- 
gure des  verres,  qui  ayant  l'vne  de  leurs  fuperficies  au- 
tant connexe,  ou  concaue,  qu'on  voudra,  nelaiffentpas 
de  faire  que  tousles  rayons  ,  qui  vienent  vers  eux  d'vn 
mefme  point  5  ou  parallèles,  s'aflfemblent  après  en  vn 
mefme  point  •  &  celle  des  verres  qui  font  le  femblable, 
cftantelgalementconuexes  des  deux  coftc's  ,  oflbienla 

conue- 


134 


SECOND   BOOK 

The  first  of  these  products  divided  by  d  is  equal  to  the  second  divided 
by  e,  whence  it  follows  that  PO  :  PN=FP .  CG  :  GP  .  CF=d  :  e, 
which  was  to  be  proved.  This  proof  may  be  made  to  hold  for  the 
reflecting-  and  refracting  properties  of  any  one  of  these  ovals,  by  proper 
changes  of  the  signs  plus  and  minus  ;  and  as  each  can  be  investigated 
by  the  reader,  there  is  no  need  for  further  discussion  here.'™' 

It  now  becomes  necessary  for  me  to  supplement  the  statements  made 
in  my  Dioptrique'"''  to  the  effect  that  lenses  of  various  forms  serve 
equally  well  to  cause  rays  coming  from  the  same  point  and  passing 
through  them  to  converge  to  another  point  ;  and  that  among  such  lenses 
those  which  are  convex  on  one  side  and  concave  on  the  other  are  more 
powerful  burning-glasses  than  those  which  are  convex  on  both  sides  ; 
while,  on  the  other  hand,  the  latter  make  the  better  telescopes.'"^'  I 
shall  describe  and  explain  only  those  which  I  believe  to  have  the  great- 
est practical  value,  taking  into  consideration  the  difficulties  of  cutting. 
To  complete  the  theory  of  the  subject,  I  shall  now  have  to  describe 

'"'^  To  obtain  the  equation  of  the  first  oval  we  may  proceed  as  follows  :     Let 

AF  =  c;  AG^b;  FC=  c+";  GC=:é-4~-  Let  CM=,r,  AM=y.    FM^c-\-y; 

a 

GM  =  &  —  y.    Draw  PC  normal  to  the  curve  at  any  point  C.    Let  AP  =  f.    Then 
CF^=CM^+FMI  Also,  c-  +  2cc  +  c-  =  x-  +  c-  +  2cy  +  y^,  whence 


c  +  ]/  ;f  '  +  c^  +  2cy  +  y^. 


Also,  CG"-^=  CM"^+  GM^  whence 

b'  —  2—z  -]-  —  ::-  =  .v-  +  b-  — 2bv  +  y-. 
a         a- 

Substituting  in  this  equation  the  value  of  ^  obtained  above,  squaring,  and  simplify- 
ing, we  obtain  : 

^(d^--e^)x'+(d--cny--2(e-c  +  bd-)y-2ec(ec-bd)'Y 

=  4c-(bd  +  cc)-(x^-  +  c"--\-2cy-\-y^-).    Rabuel,  p.  348. 

'"^'Descartes:  La  Dioptriquc,  published  with  Discours  de  la  Méthode,  Leyden, 
1637.     See  also  Cousin,  vol.  Ill,  p.  401. 

'"^'  "Lunetes."  The  laws  of  reflection  were  familiar  to  the  geometers  of  the 
Platonic  school,  and  burning-glasses,  in  the  form  of  spherical  glass  shells  filled  with 
water,  or  balls  of  rock  crystal  are  discussed  bv  Pliny,  Hist.  Nat.  xxxvi,  67  (25) 
and  xxxvii,  10.  Ptolemy,  in  his  treatise  on  Optics,  discussed  reflection,  refraction, 
and  plane  and  concave  mirrors. 

135 


GEOMETRY 

again  the  form  of  lens  which  has  one  side  of  any  desired  degree  of  con- 
vexity or  concavity,  and  which  makes  all  the  rays  that  are  parallel  or 
that  come  from  a  single  point  converge  after  passing  through  it  ;  and 
also  the  form  of  lens  having  the  same  effect  but  being  equally  convex 
on  both  sides,  or  such  that  the  convexity  of  one  of  its  surfaces  bears  a 
given  ratio  to  that  of  the  other. 

In  the  first  place,  let  G,  Y,  C,  and  F  be  given  points,  such 
that  rays  coming  from  G  or  parallel  to  G  A  converge  at  F  after 
passing  through  a  concave  lens.  Let  Y  be  the  center  of  the  inner  sur- 
face of  this  lens  and  C  its  edge,  and  let  the  chord  CMC  be  given,  and 
also  the  altitude  of  the  arc  CYC.  First  we  must  determine  which  of 
these  ovals  can  be  used  for  a  lens  that  will  cause  rays  passing  through 
it  in  the  direction  of  H  (a  point  as  yet  undetermined)  to  converge 
toward  F  after  leaving  it. 

There  is  no  change  in  the  direction  of  rays  by  means  of  reflection  or 
refraction  which  cannot  be  efitected  by  at  least  one  of  these  ovals  ;  and 
it  is  easily  seen  that  this  particular  result  can  be  obtained  by  using  either 
part  of  the  third  oval,  marked  3 A3  or  3Y3  (see  page  121),  or 
the  part  of  the  second  oval  marked  2X2  (see  page  118).  Since 
the  same  method  applied  to  each  of  these,  we  may  in  each  case  take  Y 


136 


Livre   Second.  ^'^^ 

conuexite  de  l'vne  de  leurs  fuperficies  ayant  la  propor- 
tion donnée  à  celle  de  l'autre. 


Pofons  pour  le  premier  cas,  que  les  poins  G,  Y,  C,  &  F  ^^  peut 
eftant  donnes,  les  rayons  qui  vienent  du  point  G,  oubien  ^^'^'^^J^^_ 
qui  font  parallèles  à  GAfe  doiuent  afTembler  au  point  ^YnTcoQ- 
F,  après  auoirtrauerfevn  verre  ficoncaue,  qu' Y  eftant  uexe^ou^ 
lemilieudefafuperficie  intérieure,  l'extrémité' en  foie  ^"''"^.c 
au  point  Cenforte  que  la  chorde  CMC,  S^l^Aeche  demies  fu-^ 
Y  M  de  Tare  C  Y  C,  font  données.  La  queftion  va  là,  ^^^on 
que  premièrement  il  faut  coufiderer  ,  de  laquelle  desvoudra,_ 
oualesexplique'es,  lafuperficie  du  verre  Y  C ,  doitauoir  fembie  a 
la  figure,  pour  faire  que  tous  ks  rayons,  qui  eftant  àe-Zl^V^^ 
dans  tendent  vers  vnmefîtie  point,  comme  vers  H,  qui  tous  les 

^  .  rayons 

n'eft  pas  encore  connu,  S  aillent  rendre  vers  vn  autre,  a^Jj^j^. 
fçauoirversF,  apr^sen  eftrefortis.   Carilny  a  aucun  ncnt^d'vi 
effed:  touchant  le  rapport  des  rayons  changé  par  refle- poi^t 
xion,  ou  refradiond'vn  point  a  vn  autre  ,  qui  ne  puiffe  ^10"°^. 

eftre  caufe  par  qu^lqu'vne  de  ces  ouales.  &  on  voit 
ayfementque  ceiTuycy  le  peut  eftre  par  la  partie  de  la 
troifiefmeOuale,quiatantoft  efté  marquee  3  A  5 ,  ou 
par  celle  de  lamefme,  qui  a  efté  marquee  5  Y  3 ,  ou  enfin 
parlapartiedelafecondequiaeftémarquée  2X2.  Et 
pourceque  ces  trois  tombent  icy  fous  mefme  calcul,  on- 
doittant  pour  l'vne,  que  pour  l'autre  prendre  Y  pour 

Zz  2  leur 


137 


î^4  La  Géométrie. 

leur  fommet,  C  pour  Tvn  des  poins  de  leur  circonféren- 
ce, &  F  pour  l'vn  de  leurs  poins  bruflansj  apre's  quoy  il 
iierefte  plus  a  chercher  que  le  point  H,  qui  doit  eftre 
l'autre  point  brullant.  Et  on  le  trouue  en  confiderant, 
que  la  difference,  qui  eft  entre  les  lignes  F  Y  &  F  C,doit 
eftre  a  celle,  qui  eft  entre  les  lignes  H  Y  &  H  C,  comme 
^/eft  à  Ci  c'cft  a  dire,comme  la  plus  grande  des  lignes  qui 
mefurent  les  refrad:ions  du  verre  propofe''  eft  à  la  moin- 
dre- ainfi  qu'on  peut  voir  manifeftement  de  la  defcri- 
ption  de  ces  ouales.  Et  pourceque  les  lignes  F  Y  &  F  C 
Ibnt  données,  leur  difference  i'eft  aufî}^ ,  &  en  fuite  celle 
qui  eft  entre  H  Y  &:  H  C  ;  pourceque  la  proportion  qui 
eft  entre  ces  deux  differences  eft  donnée.  Et  de  plus  a 
caufe  qde  Y  M  eft  donnée ,  la  difference  qui  ^{t  entre 
M  H,ô£  H  C,  I'eft  auffy;&  enfin  pourceque  C  M  eft  don- 
née, il  ne  refte  plus  qu'à  trouucr  M  H  le  cofte  du  triangle 


rectangle  C  M  H,  dont  on  a  l'autre  cofte  CM,  &  on  a 
auffy  la  difference  qui  eft  entre  C  H  la  baze ,  &  M  H  le 
cofle  demande^,  d'où  il  eft  ayfe  dele  trouuer.  car  fi  on 
prent  ;^pour  l'excès  de  C  H  fur  M  H,  &  «  pour  la  longeur 

de  la  ligne  C  M,  on  aura  j;^--  \  k^  pour  M  H.    Et  apre's 

auoir  ainfî  le  point  H>s'il  fe  troune  plus  loin  du  point  Y> 

que 


138 


SECOND   BOOK 

(see  pages  137  and  138),  as  the  vertex,  C  as  a  point  on  the  curve/''"' 
and  F  as  one  of  the  foci.  It  then  remains  to  determine  H,  the  other 
focus.  This  may  be  found  by  considering  that  the  difference  between 
FY  and  FC  is  to  the  différence  between  HY  and  HC  as  rf  is  to  t'  ;  that 
is,  as  the  longer  of  the  Hues  measuring  the  refractive  power  of  the  lens 
is  to  the  shorter,  as  is  evident  from  the  manner  of  describing  the  ovals. 

Since  the  lines  FY  and  FC  are  given  we  know  their  diff'erence  ;  and 
then,  since  the  ratio  of  the  two  differences  is  known,  we  know  the  dif- 
ference between  HY  and  HC. 

Again,  since  YM  is  known,  we  know  the  difference  between  MH 

and  HC,  and  therefore  CM.     It  remains  to  find  MH,  the  side  of  the 

right  triangle  CMH.     The  other  side  of  this  triangle,  CM,  is  known, 

and  also  the  difference  between  the  hypotenuse,  CH  and  the  required 

side,  MH.    We  can  therefore  easily  determine  MH  as  follows: 

n-       1 
Let   X'  =  CH-MH   and   ;/-CM;    then   —-- -y^  =  MH,  which  deter- 

mines  the  position  of  the  point  H. 

[1701  "Circonférence." 


139 


GEOMETRY 

If  HY  Is  greater  than  HF,  the  curve  CY  must  be  the  first  part  of 
the  third  class  of  oval,  which  has  already  been  designated  by  3A3. 

But  suppose  that  HY  is  less  than  FY.  This  includes  two  cases: 
In  the  first,  HY  exceeds  HF  by  such  an  amount  that  the  ratio 
of  their  difference  to  the  whole  line  FY  is  greater  than  the  ratio  of  e, 
the  smaller  of  the  two  lines  that  represent  the  refractive  power,  to  d, 
the  larger;  that  is,  if  HF^c,  and  HY=c-|-/î,  then  dh  is  greater  than 
2ce-\-eh.  In  this  case  CY  must  be  the  second  part  3Y3  of  the  same 
oval  of  the  third  class. 

In  the  second  case  dJi  is  less  than  or  equal  to  2ce-\-eh,  and  CY  is  the 
second  part  2X2  of  the  oval  of  the  second  class. 

Finally,  if  the  points  H  and  F  coincide,  FY  =  FC  and  the  curve 
YC  is  a  circle. 

It  is  also  necessary  to  determine  CAC,  the  other  surface  of  the  lens. 
If  we  suppose  the  rays  falling  on  it  to  be  parallel,  this  will  be  an  ellipse 
having  H  as  one  of  its  foci,  and  the  form  is  easily  determined.  If, 
however,  w^e  suppose  the  rays  to  come  from  the  point  G,  the  lens  must 
have  the  form  of  the  first  part  of  an  oval  of  the  first  class,  the  two  foci 
of  which  are  G  and  H  and  which  passes  through  the  point  C.  The 
point  A  is  seen  to  be  its  vertex  from  the  fact  that  the  excess  of  GC 
over  GA  is  to  the  excess  of  HA  over  HC  as  d  is  to  c.  For  if  k  repre- 
sents the  difference  between  CH  and  HM,  and  x  represents  AM,  then 
x—k  will  represent  the  difference  between  AH  and  CH  ;  and  if  g  repre- 
sents   the   difference   between   GC   and    GM,    which    are   given.   g-\-x 


140 


Livre  Second.  36 j^ 

que  n'en  eft  le  point  F,  la  ligne  C  Y  doit  eftre  la  premie- 
re partie  de  l'ouale  du  troifiefme  genre^qui  a  tantoft  efté 
nommée  3  A  3:  Mais  ii  H  Y  eft  moindre  que  F  Y,  oubien 
ellefurpafTe  H  F  de  tant,  que  leur  difference  eft  plus 
grande  a  raifon  de  la  toute  F  Y,  que  n'eft  e  la  moindre 
des  lignes  qui  mefureni!  Tes  refradionscoipparée  auec  d 
la  plus  grande,  c'eft  a  dire  que  faifant  H  F  30  c,  &: 
•HYoof  •^h^dht^'çXws,  grande  que  ^ce-\-eh y  &c  lors 
C  Y  doit  eftre  la  féconde  partie  de  la  mefme  ouale  du 
troiiîefrae  genre,  qui  a  tantoft  efte'nomee  3  Y'3jOubien 
z:^ /; eft  efgale ,  ou  moindre  que  2  ce-i-eb:*  Ôc  lors  CY 
doit  eftre  la  féconde  partie  de  Touale  du  fécond  genre 
qui  a  cydeftlisefte  nommée  2X2.  Et  enfin  fî  le  point  H 
eftie  mefme  que  le  point  F,-ce  qui  n'arriue  quelorfque 
F  Y  &  F  C  font  efgales  ccte  ligne  Y  C  eft  vn  cercle. 

Après  cela  il  faut  chercher  C  A  G  l'autre  fuperficie  de 
ce  verre,  qui  doit  eftre  vne  Ellipfe ,  dont  H  foit  le  point 
bruflantjfî  on  fuppofe  que  les  rayons  qui  tombent  deffus 
foiët  parallèles;  &  lors  il  eft  ^yfé  de  la  trouuer.  Mais  fi  on 
fuppofe  qu'ils  vienêt  du  poinrG.çe  doit  eftre  la  premiere 
partie  d'vne  ouale  du  premier  genre,dortt  les  deux  poins 
bruftans  foiët  G  &  H,  &  qui  pafle  par  le  point  Cid'où  on 
trouue  le  point  A  pour  le  fommet  de  cete  ouale,en  confî- 
derâE,que  G Cdoit  eftre  plus  grade  que  GA,d'vne  quan- 
tité'', qui  foit  a  celle  dont  H  A  furpafle  H  C,comme  dà.e. 
car  ayant  pris  J^pour  la  difFerence,qui  eft  entre  C  H,&  H 
MjfîonfuppofeArpour  AM,ou  auraj^;--  j^,  pour  la  diffe- 
rence qui  eft  entre  A  H,  &  C  H;  puis  fi  on  prent  g  pour 
celle,  quieftentreG  C,  &GM,  qui  font  données,  on 
aura^H-ATpour  celle,  qui  eft  entre  GC,  &  GA;  & 

Zz  3  pour- 


141 


CommÔt 
ou  peut 
faire  vn 
veii"e,qui 
air  le  mef- 
me  efFed 
que  le 
précéder, 
&  que  la 
conuexi- 
ré  del'vne 
de  fes  fu- 
perficies 
aula  pro- 
portion 
<lonnée 
aueccelle 
dellautre. 


}^^  La    GEOMETRIE. 

pourcequecetc  dernière^ -f- a;  eft  à  l'autre  .V—  ^,  com- 
me ^eft  à  ^ .  onkge'+-excodx  '- d\t  oubien     ^__^ 

pour  la  ligne  a:,  ou  A  M  ,  par  laquelle  on  determine  le 
point  A  qui  eftoit  cherché. 

Pofonsmaintenent  pour  l'autre  cas  5  qu'on  ne  donnç 
que  les  poins  G  C,  &:  F,  auec  la  proportion  qui  eft  entre 
les  lignes  AM,  &  Y  M,  &  qu'il  faille  trouuer  la  figure  du 
verre  AC  Y,  qui  face  que  tous  les  rayons,  qui  vienenc 
du  point  G  s'aflTemblent  au  point  F. 

On  peut  derechef  icy  fe  feruir  de  deux  ouales  dont 
IVne,  A  C,  ait  G  ôc  Hpour  fes  poins  bruflansi  &  l'autre^ 


C  Y,ait  F&  H  pour  les  fîens.Et  pour  les  trouuer,premic- 
rement  fuppofant  le  point  H  qui  eft  commun  a  toutes 
deuxeftre  connu,  ie cherche  A  M  par  les  trois  poins 
G,C,H,en  la  façon  tout  mainteneut  expliquecjafçauoir 
prenant  >^our  la  difference,  qui  eft  entre  C  H ,  &  H  M; 
&:^pour  celle  qui  eft  entre  G  C,  &GM:  &ACcftant 
la  premiere  partie  de  l'Ouale  du  premier  genre  ,  iay 

—jZTT  P^^r  A  M:  puis  ie  cherche  au  jQfy  M  Y  par  les  trois 

poinsF,  C,  H,enforte  que  CY  foit  la  premiere  partie 
dVne  ouate  du  troiûefme  genre^  éprenant  y  pour  M  Y, 


142 


SECOND    BOOK 

will    represent    the    difference    between    GC    and    GA  ;    and    since 

g-j-x  :  x~k=d  :  e,   we   have  ge^cx^dx—dk,   or   KM=x=^^'^ 

d—e   ' 

which  enables  us  to  determine  the  required  point  A. 

Again,  suppose  that  only  the  points  G,  C,  and  F  are  given,  together 
with  the  ratio  of  AM  to  YM  ;  and  let  it  be  rec^uired  to  determine  the 
form  of  the  lens  ACY  which  causes  all  the  rays  coming  from  the  point 
G  to  converge  to  F, 

In  this  case,  we  can  use  two  ovals,  AC  and  CY,  wnth  foci  G  and  H, 
and  F  and  H  respectively.  To  determine  these,  let  us  suppose  first 
that  H,  the  focus  common  to  both,  is  known.  Then  AM  is  determined 
by  the  three  points  G,  C,  and  H  in  the  way  just  now  explained;  that  is 
if  k  represents  the  dift'erence  between  CH  and  HM,  and  g  the  differ- 
ence between  GC  and  GM,  and  if  AC  be  the  first  part  of  the  oval  of  the 

first  class,  we  have  AM=   -, . 

d—c 

We  may  then  find  MY  by  means  of  the  three  points  F,  C,  and  H. 

If  CY  is  the  first  part  of  an  oval  of  the  third  class  and  we  take  y  for 

MY  and  f  for  the  difference  between  CF  and  FM,  we  have  the  dif- 


143 


GEOMETRY 

ference  between  CF  and  FY  equal  to  /+3'  ;  then  let  the  difference 
between  CH  and  HM  equal  k,  and  the  difference  between  CH  and  HY 
equal  k-\-y.  Now  k-\-y  :  f-\-y=^e  :  d,  since  the  oval  is  of  the  third  class, 

whence  MY  =  "-'- .   Therefore,  AM  +  MY  =  AY  =  '^'^,    '\  whence    it 

a—e  d—e 

follows  that  on  whichever  side  the  point  H  may  lie,  the  ratio  of  the 
line  AY  to  the  excess  of  GC-j-CF  over  GF  is  always  equal  to  the  ratio 
of  e,  the  smaller  of  the  two  lines  representing  the  refractive  power  of 
the  glass,  to  d — r,  the  difference  of  these  two  lines,  which  gives  a  very 
interesting  theorem.''"' 

The  line  AY  being  found,  it  must  be  divided  in  the  proper  ratio  into 
AM  and  MY,  and  since  M  is  known  the  points  A  and  Y,  and  finally 
the  point  H,  may  be  found  by  the  preceding  problem.  We  must  first 
find  whether  the  line  AM  thus  found  is  greater  than,  equal  to,  or  less 

than  -J — .   If  it  is  greater,  AC  must  be  the  first  part  of  one  of  the 
a—e 

third  class,  as  they  have  been  considered  here.     If  it  is  smaller,  CY 
must  be  the  first  part  of  an  oval  of  the  first  class  and  AC  the  first  part 
[177]  "Qyj  Ç5(-  yj^  assez  beau  théorème." 


144 


Livre  Second.  3^7 

&/pourla  difference,  qui  eft  entre  C  F ,  &  F  M  ,  i'ay 
f-h-yt  pour  celle  qui  eft  entre  C  F,  &  F  Y:  puis  ayant  dé- 
fia /^pour  celle  qui  eft  entre  C  H,  &:  H  M,iay  j^  -h y  pour 
celIequieftentreCH,  &:H  Y,que  ie  fcay  deuoir  eftre 
àf'T'y  comme  e  eft  à  â',  a  caufe  de  i'Ouale  du  troifiefmc 

genre,  d  ouïe  trouue  que  j  ou  MY  elt  -7777  puis  roi- 
gnant  enfemble  les  deux  quantités  trouue'es  pour  A  M,  & 

MYjietrouue*^— ^"Tjpourlatoute  A  YjD'où  il  fuit  que 

de  quelque  cofte'quefoitfuppofe'le point  H,  cete  ligne 
A  Y  eft  toufiours  compofée  d'vne  quantité',  qui  eft  a  cel- 
le dont  les  deux  enfemble  G  C ,  &  C  F  furpallent  la  tou- 
te G  F,  Comme  ^,la  moindre  des  deux  lignes  qui  feruent 
a  mefurer  les  refradlions  du  verre  propofe',  eft  à  d—  e ,  la 
difference  qui  eftentre  ces  deux  lignes;  cequi  eft  vn  af- 
fés  beau  theorefme.  Or  ayant  ainfî  la  toute  A  Y,  il  la 
faut  couper  felon  la  proportion  que  doiuent  auoir  {ts 
parties  A  M  &  M  Y-  au  moyen  de  quoy  pource  qu'on  a 
défia  le  point  M,  on  trouue  aufly  les  poins  A  &  Y,-  &en 
fuite  le  point  H,  par  le  problefme  precedent.  Mais  au- 
parauantilfautregarder,filalignc  A  M  ainfi  trouueeeft 

plus  grande  que  jtt;^^  P^"^  petite,  ouefgale.  Car  fi  elle 
eft  plus  grande, on  apprent  de  là  que  la  courbe  A  C  doit 
eftre  la  premiere  partie  d'vne  ouale  du  premier  genre^  6c 
C  Y  la  premiere  d'vne  du  troifiefme,  ainfi  qu'elles  ont 
efté  icy  fuppofees:  au  lieu  que  fî  elle  ç,{z  plus  petit© ,  cela 
monftre  que  c'eft  C  Y,  qui  doit  eftre  la  premiere  partie 
d'vne  ouale  du  premier  genre  J  &  que  AC  doit  eftre  la 
premieredVne  du  troifiefme  :  Enfinfi  AM  eft  efgale  à 

i-e 

145 


S^8  La  Géométrie. 

^  7^  les  deux  courbes  A  C  &  C  Y  doiuenc  eftre  deux  hy- 
perboles. 

On  pourroit  eftendre  ces  deux  problefmes  a  vne  infi- 
nite d'autres  cas,  que  ie  ne  m'arefre  pas  a  deduire,à  caufe 
qu'ils  n'ont  eu  aucun  vfage  en  la  Diopcrique. 

On  pourroit  aufTypafler  outre,  &  dire  j  Ibrfque  iVne 
des  fuperficies  du  verre  eft  donnée,  pouruû  qu'elle  ne 
ibit  quetouteplatejoucompofeede  fecflions  coniques, 
ou  de  cercles;  comment  on  doit  faire  fon  autre  fuperfî- 
cie,  affin  qu'il  tranfmet te  tous  les  rayons  d'vn  point  don- 
ne', a  vn  autre  point  aufTy  donné,  car  ce  n'eft  rien  de  plus 
difficile  que  cequeie  viens  d'expliquer  ;  ou  plutoftc'eft 
chofe  beaucoup  plus  facile^  à  caufex^ue  le  chemin  en  efc 
ouuert.   Mais  iayme  mieux,  que  d'autres  le  cherchent, 
affinques'ils  ont  encore  vn  peu  de  peine  à  le  trouuer,  ce- 
la leur  face  d'autant  plus  eftimer  l'inuention  âQS  chofes 
qui  font  icy  demonft rces. 
Au  refte  ie  n'ay  parlé  en  tout  cccy, que  des  lignes  cour- 
onpeuc    bes,  qu'on  peut  defcrire  fur  vne  fuperficie  plate  ;  mais  il 
appliquer  eft  ayfé  de  rapporter  cequc  i'en  ay  dit,  à  toutes  celles 
eftédic     qu'on  fçauroit  imaginer  eftre  formées ,  par  le  mouue- 
\^ntT     mentreguHerdespoinsdê  quelque  cors,  dansvnefpace 
courbes    qui  a  trois  dimenlîons.  A  fçatioir  en  tirant  deux  perpen- 
tt7nT  diculaires,de  chafcun  des  poins  de  la  ligne  courbe  qu'on 
fuperficie  y^^^  confîderer,flir  deux  plans  qui  s'cntrecouppent  a  an- 
cdies  qui  gles droits,  l'vne  fur  l'vn,  &  l'autre  fur  l'autre,  car  les  ex- 
^^'^i"-''n  tremitesde  ces  perpendiculaires  defcriuent  deux  autres 
"fpace  qu"  lignes  courbcs,  vneTur  chafcun  de  ces  plans ,  defquelles 

rrr\lCrll.  -/^  1        /V*  t^   ._    _^^      J  ^  *.  ^  ^.—^  I«>^^->m  ^'^ffC 

les 

146 


c 
a 

xnenfioDS. 


^  "°''  ^''  on  peut,en  la  façon  cy  de{fusexpliquee,determiner  tous 


SECOND    BOOK 

of  one  of  the  third  class.     Finally,  if  AM  is  equal  to    '^^   ,  the  curves 

d—e 
AC  and  CY  must  both  be  hyperbolas. 

These  two  problems  can  be  extended  to  an  infinity  of  other  cases 
which  I  will  not  stop  to  deduce,  since  they  have  no  practical  value  in 
dioptrics. 

I  might  go  farther  and  show  how,  if  one  surface  of  a  lens  is  given 
and  is  neither  entirely  plane  nor  composed  of  conic  sections  or  circles, 
the  other  surface  can  be  so  determined  as  to  transmit  all  the  rays  from 
a  given  point  to  another  point,  also  given.  This  is  no  more  difficult 
than  the  problems  I  have  just  explained;  indeed,  it  is  much  easier  since 
the  way  is  now  open  ;  I  prefer,  however,  to  leave  this  for  others  to 
work  out,  to  the  end  that  they  may  appreciate  the  more  highly  the  dis- 
covery of  those  things  here  demonstrated,  through  having  themselves 
to  meet  some  difficulties. 

In  all  this  discussion  I  have  considered  only  curves  that  can  be 
described  upon  a  plane  surface,  but  my  remarks  can  easily  be' made  to 
apply  to  all  those  curves  which  can  be  conceived  of  as  generated  by  the 
regular  movement  of  the  points  of  a  body  in  three-dimensional  space.'"*' 
This  can  be  done  by  dropping  perpendiculars  from  each  point  of  the 
curve  under  consideration  upon  two  planes  intersecting  at  right  angles, 
for  the  ends  of  these  perpendiculars  will  describe  two  other  curves,  one 
in  each  of  the  tw'o  planes,  all  points  of  which  may  be  determined  in  the 
way  already  explained,  and  all  of  which  may  be  related  to  those  of  a 
straight  line  common  to  the  two  planes  ;  and  by  means  of  these  the 
points  of  the  three-dimensional  curve  will  be  entirely  determined. 

■'""'  This  is  the  hint  which  Descartes  gives  of  the  possibility  of  the  extension  of 
his  theory  to  solid  gcomctrv.  This  extension  was  effected  largely  by  Parent  (1666- 
1716),  CÎairaut  (1713-1765),  and  Van  Schooten  (d.  1661). 


147 


GEOMETRY 

We  can  even  draw  a  straight  line  at  right  angles  to  this  curve  at  a 
given  point,  simply  by  drav^^ing  a  straight  line  in  each  plane  normal  to 
the  curve  lying  in  that  plane  at  the  foot  of  the  perpendicular  drawn 
from  the  given  point  of  the  three-dimensional  curve  to  that  plane  and 
then  drawing  two  other  planes,  each  passing  through  one  of  the  straight 
lines  and  perpendicular  to  the  plane  containing  it  ;  the  intersection  of 
these  two  planes  will  be  the  required  normal. 

And  so  I  think  I  have  omitted  nothing  essential  to  an  understanding 
of  curved  lines. 


148 


Livre  Second.  }^9 

les  poins,  &  les  rapporter  a  ceux  de  la  ligne  droite  ,  qui 
eft  commune  a  ces  deux  plans,  au  moyen  dequoy  ceux 
de  la  courbe,  qui  a  trois  dimenfions,  fout  entièrement 
determines.  Mefme  fi  on  veut  tirer  vne  ligne  droite,qui 
couppe  cete  courbe  au  point  donne  a  angles  droits  •  il 
taut  feulement  tirer  deux  autres  lignes  droites  dans  les 
deux  plans,  vne  en  chafcun,  qui  couppent  a  angles  droits 
les  deux  lignes  courbes,  qui  y  font,  aux  deux  poins ,  où 
tombent  les  perpendiculaires  qui  vienent  de  ce  point 
donne',  car  ayant  efleue  deux  autres  plans ,  vn  fur  chaf- 
cune  de  ces  lignes  droites,  qui  couppea  angles  droits  le 
plan  où  elle  eît,  ou  aura  Tinterfedlion  de  ces  deux  plans 
pour  la  ligne  droite  cherchée.  Et  ainfî  ie  penfe  n'auoir 
rien  omis  des  elemens,  qui  font  neceflaires  pour  la  con- 
noiflance  des  lignes  courbes. 


149 


BOOK  THIRD 


Geometry 

BOOK  III 

On  the  Construction  of  Solid  and  Supersolid  Problems 

WHILE  it  is  true  that  every  curve  which  can  be  described  by  a  con- 
tinuous motion  should  be  recognized  in  geometry,  this  does  not 
mean  that  we  should  use  at  random  the  first  one  that  we  meet  in 
the  construction  of  a  given  problem.     We  should  always  choose  with 


152 


L    A 

GEOMETRIE. 

LIVRE    TROISIESME. 

^e  la  conflruBion  des  T^rohlefmes  ,  qui 
font  Solides^  ou  plu/que  Solides, 

De  quel- 

TJ  N  c  o  RE  que  toutes  les  lignes  courbes,  qui  peuuent  ^"  ^'g"" 
-■^eftre  defcrites  par  quelque  mouuement   régulier,  on  peut 
doiuent  eftre  receuës  en  la  Géométrie ,  ce  n'eft  pas  a  ai-  ^^  ^""''■» 
re  qu'il  foit  permis  de  fe  feruir  indifféremment  de  la  pre-  firudion 
miere  qui  le  rencontre,  pour  la  conftruétion  de  chafque  ^^,  fî"l!^* 

Aaa  pro- me. 


153 


37°  La  Geo  metr  ie. 

problefme:  mais  ilfautauoir  foin  de  choifir  toiifiours  la 
pins  fîmple,  par  laquelle  il  foit  pofTible  de  le  refondre. 
Et  mefme  il  eft  a  remarquer,  que  par  les  plus  fimples  on 
ne  doit  pas  feulement  entendre  celles,  qui  pcuuent  le 
plus  ayfement  eftre  defcrites ,  ny  celles  qui  rendent  la 
conftrudion,  ou  la  demonftration  du  Problefme  propo- 
fé  plus  facile,  mais  principalement  celles,  qui  font  du 
plus  fimple  genre,qui  puiiïe  feruir  a  determiner  la  quan- 
tité qui  eft  cherchée. 


Exemple 

touchant 

l'inuentiô 

de  plu- 

fieurs 

moytaes 

propro- 

tioncUcs. 


Comme  par  exemple  ie  ne  croy  pas,  qu'il  y  ait  aucu- 
ne façon  plus  facile,  pour  trouuer  autant  de  moyennes 
proportionnelles,  qu'on  veut,  nydpnt  la  demonftration 
foit  plus  euidcnte,  que  d'y  employer  les  hgnes  courbes, 
qui  fe  defcriuent  par  l'inftrument  X  Y  Z  cy  defTus  expli- 
qué! Car  voulant  trouuer  deux  moyennes  proportion- 
nelles entre  Y  A  &  Y  E,  il  ne  faut  que  defcrire  vn  cercle, 
dont  le  diamètre  foit  Y  E;  &:  pource  que  ce  cercle  coup- 

pe 


154 


THIRD  BOOK 


care  the  simplest  curve  that  can  be  used  in  the  sokition  of  a  problem, 
but  it  should  be  noted  that  the  simplest  means  not  merely  the  one  most 
easily  described,  nor  the  one  that  leads  to  the  easiest  demonstration  or 
construction  of  the  problem,  but  rather  the  one  of  the  simplest  class 
that  can  be  used  to  determine  the  required  quantity. 

For  example,  there  is,  I  believe,  no  easier  method  of  finding  any  num- 
ber of  mean  proportionals,"™^  nor  one  whose  demonstration  is  clearer, 
than  the  one  which  employs  the  curves  described  by  the  instrument 
XYZ,  previously  explained.''*"^  Thus,  if  two  mean  proportionals 
between  YA   and   YE  be   required,   it  is   only   necessary   to   describe 

II"»]  Por  the  history  of  this  problem,  see  Heath,  History,  Vol.  I,  p.  244,  et  seq. 
'^^1  See  page  46. 


155 


GEOMETRY 

a  circle  upon  YE  as  diameter  cutting  the  curve  AD  in  D,  and  YD  is 
then  one  of  the  required  mean  proportionals.  The  demonstration 
becomes  obvious  as  soon  as  the  instrument  is  appHed  to  YD,  since  YA 
(or  YB)  is  to  YC  as  YC  is  to  YD  as  YD  is  to  YE. 

Similarly,  to  find  four  mean  proportionals  between  YA  and  YG,  or 
six  between  YA  and  YN,  it  is  only  necessary  to  draw  the  circle  YEG, 
which  determines  by  its  intersection  with  AE  the  line  YE,  one  of  the 
four  mean  proportionals  ;  or  the  circle  YHN,  which  determines  by  its 
intersection  with  AH  the  line  YH,  one  of  the  six  mean  proportionals, 
and  so  on. 

But  the  curve  AD  is  of  the  second  class,  while  it  is  possible  to  find 
two  mean  proportionals  by  the  use  of  the  conic  sections,  which  are 
curves  of  the  first  class. "^''  Again,  four  or  six  mean  proportionals  can 
be  found  by  curves  of  lower  classes  than  AF  and  AH  respectively.  It 
w^ould  therefore  be  a  geometric  error  to  use  these  curves.  On  the  other 
hand,  it  would  be  a  blunder  to  try  vainly  to  construct  a  problem  by 
means  of  a  class  of  lines  simpler  than  its  nature  allows. ^^"' 

Before  giving  the  rules  for  the  avoidance  of  both  these  errors,  some 
general  statements  must  be  made  concerning  the  nature  of  equations. 
An  equation  consists  of  several  terms,  some  known  and  some  unknown, 
some  of  which  are  together  equal  to  the  rest  ;  or  rather,  all  of  which 
taken  together  are  equal  to  nothing  ;  for  this  is  often  the  best  form  to 
consider.'''"^ 

''*''  If  we  let  .V  and  y  represent  the  two  mean  proportionals  between  a  and  b  we 
have  a  :  X  =  X  :  y  ^=  y  :  b,  whence  a-  =  ay  ;  y-  =  bx,  and  xy  =  ab.  Therefore 
X  and  y  may  be  found  by  determining  the  intersections  of  two  parabolas  or  of  a 
parabola  and  a  hyperbola. 

""^  Cf.  Pappus,  Book  IV,  Prop.  31,  Vol.  I,  p.  273.  See  also  Guisnée.  Applica- 
tion dc  l'Algèbre  a  la  Géométrie,  Paris,  1733,  p.  28,  and  L'Hospital,  Traité  Analy- 
tique des  Sections  Coniques,  Paris,  1707,  p.  400. 

[183]  Yj^g  advantage  of  this  arrangement  had  been  recognized  by  several  writer* 
before  Descartes. 


156 


LïvRE  Troisiesme.  57' 

pela  courbe  A  D  au  point  D,  Y  D  eft  IVne  des  moyennes 
proportionnelles  cherché^es.  Dont  la  demonftration  fe 
voit  a  l'œil  par  la  feule  application  de  cet  inftrument  fur 
h  ligne  Y  D.  car  comme  Y  A,  ou  YB,  quiluy  eftefgale 
cftaYCjainfiYCeftaYDi&YDa  Y£, 

Toutdemefme  pour  trouuer  quatre  moyennes  pro- 
portionelles  entre  Y  A  &  Y  G;  ou  pour  en  trouuer  fix  en- 
tre Y  A  &  Y  N,  il  ne  faut  que  tracer  le  cercle  Y  F  G, qui 
couppant  A  F  au  point  F,  determine  la  ligne  droite  Y  F, 
qui  eft  iVne  de  ces  quatre  proportionnelles  j  ou  Y  H  N, 
qui  couppant  A  H  au  point  H,  determine  Y  H  l'vHe  des 
fix,  &  ainfi  des  autres. 

Maispourceque  la  ligne  courbe  A  D  eft  du  fécond 
genre,  &  qu'on  peut  trouuer  deux  moyenes  proportio- 
nelles  par  les  fedions  coniques,qui  font  du  premier  •  de 
auflypourcequ'on  peut  trouuer  quatre  ou  fix  moyenes 
proportionellcs,  par  des  lignes  qui  ne  font  pas  de  genres 
fi  compofés,  que  font  A  F,  &  A  H,  ce  feroit  vne. faute  en 
Géométrie  que  de  les  y  employer.  Et  c'eft  vne  faute 
aufiy d'autre cofté  de  fetrauailler  inutilement  a  vouloir 
conftruire  quelque  problefme  par  vn  genre  de  lignes 
plus  fimple,  que  fa  nature  ne  permet. 

Or  affin  que  ie  puifie  icy  donner  quelques  reigles,  Dc  h  lu. 
poureuiterrvne&  l'autre  de  ces  deux  fautes,  il  faut  que  ^^'^  '^.l*' 
ie  die  quelque  chofe  en  general  de  la  nature  des  Equa-   '^"^""^* 
tions-c'eft  a  dire  des  fommes  compofces  de  plufieurs  ter- 
mes partie  connus,  &  partie  inconnus ,  dont  les  vns  font 
efgaux  aux  autres,  ouplutoft  qui  confideres  tous  enfem- 
blc  font  efgaux  a  rien,  car  ce  fera  fouuent  le  meilleur  de 
les  confiderer  en  cete  forte, 

Aaa  2  Scaches 

157 


37^*-  La  g  eometrie. 

iipeut'y"      Scachés  donc  qu'en  chafque  Equation,  autant  que 
auoir  de  |^  quantité  inconnue  a  de  dimenfions ,  autant  peut  il  y 
ea  chafqi  auoir  de  diuetfes  racines,  c  cft  a  dire  de  valeurs  de  cete 
Equatiô,  quantité,   car  par  exemple  (î  on  fuppofe  x  efgale  a  2;  ou- 
bien  x—  i  efgal  a  rien   •    &  derechef  a;  30  3  j  nubien 
X  —  3  33  0; en  multipliant  ces  deux  equations  .V  --  2000, 
OCX"  s  x>(?,rvne  par  l'autre,  on  aura  xx—  s  x-h6'X>o, 
ovihicnxx20  fx—  5,  qui  eft  vne  Equation  en  laquelle  la 
quantité  a:  vaut  2  Sctoutenfemble  vaut  $.  Que  fî  dere- 
chef on  fait  AT  —  4  30  0,  &  qu'on  multiplie  cete  fomrae  par 
xX'-s^'^^^o,  on  aura  x^  —  ^  x  x  -h  26  x  —  z^.'X)  0, 
qui  eft  vne  autre  Equation  en  laquelle  x  ayant  trois  di- 
menfions a  aufly  trois  valeurs,qui  font  2,  5,  &4. 
Quelles       j,  ais  fouuent  il  arriue,  que  quelques  vnes  de  ces  raci- 
fauflesra-  nes  font  fauffes ,  ou  moindres  que  rien,    comme  fi  on 
cines.      fuppofe  quc  X  defigne  aufiTy  le  défaut  d'vne  quantité, 
quifoity  ,onaAr-f-y00(?  ,    qui  eftant  multipliée  par 
X  ^  "  9  X  X  -h  26  X  "  2^00  0  fait 

X^"4X^  •"19XX'+-  106  x— 120  oo<? 
pour  vne  equation  en  laquelle  il  y  a  quatre  racines ,  a 
fçauoir  trois  vrayes  qui  font  2,  3,  4,  &vne  faufle  qui 
cft  f. 
cômcût       £j  jj  Qjj.  euidemment  de  cecy,  que  la  fbmme  d'vne 

on  peut  •'  '  J 

diminuer  equation,  qui  Contient  plufieuts  raciucs ,  peut  toufiours 
^dcT^-  ^^  ^^^^  diuifée  par  vn  binôme  compofe'  de  la  quantité  in- 
mcnfions  connuë,moins la valeur de Tvne des  vrayes  racines,  la- 
qimion  quelle  quc  cc  foltj  ou  plus  la  valeur  de  l'vne  des  fauffés. 
lorfqu'on  ^q  moycn  de  quoy  on  diminue  d'autant  ùs  dimeu- 

connoift     >, 
qucK         ilOnS. 

ou' vne  de     Et  recipioqucment  que  fi  la  fômme  dVne  équation 

158 


THIRD  BOOK 

Every  equation  can  have''^''  as  many  distinct  roots  (values  of  the 
unknown  quantity)  as  the  number  of  dimensions  of  the  unknown 
quantity  in  the  equation. ''^°'  Suppose,  for  example,  .v  =  2  or  x — 2  =  0, 
and  again,  x  =  3,  or  x — 3  =  0.  Multiplying  together  the  two  equa- 
tions X  — 2  =  0  and  x — 3  =  0,  we  have  x-  —  5.1--1-6  ^=  0,  or  x-  =  Sx — 6. 
This  is  an  equation  in  w^hich  .r  has  the  value  2  and  at  the  same  time''^"' 
X  has  the  value  3.  If  we  next  make  a*— 4  :=  0  and  multiply  this  by 
X-  —  Sx-\-6  =  0,  we  have  x^'—9x--\-26.v — 24  =  0  another  equation,  in 
which  X,  having  three  dimensions,  has  also  three  values,  namely.  2,  3, 
and  4. 

It  often  happens,  however,  that  some  of  the  roots  are  false''*''  or  less 
than  nothing.  Thus,  if  we  suppose  x  to  represent  the  defect''*"'  of  a  quan- 
tity 5,  we  have  .^--]-5  =  0  which,  multiplied  by  x^—9x--\-26x — 24  =  0, 
yields  .a-*— 4.r^  — 19.t---|-106.r— 120  =  0,  an  equation  having  four  roots, 
namely  three  true  roots,  2,  3,  and  4,  and  one  false  root,  5.''*^' 

It  is  evident  from  the  above  that  the  sum'^""'  of  an  equation  having 
several  roots  is  always  divisible  by  a  binomial  consisting  of  the  unknown 
quantity  diminished  by  the  value  of  one  of  the  true  roots,  or  plus  the 
value  of  one  of  the  false  roots.  In  this  way,''"''  the  degree  of  an  equa- 
tion can  be  lowered. 

On  the  other  hand,  if  tlie  sum  of  the  terms  of  an  equation'""'  is  not 
divisible  by  a  binomial  consisting  of  the  unknown  quantity  plus   or 

'^'^^  It  is  worthy  of  note  that  Descartes  writes  "can  have"  ("peut-il  y  avoir"), 
not  "must  have,"  since  he  is  considering  only  real  positive  roots. 

[185]  -phat  is   as  the  number  denoting  the  degree  of  the  equation. 

[1S6]  '"Poyj;  ensemble," — not  quite  the  modern  idea. 

[187]  "j^acines  fausses,"  a  term  formerly  used  for  "negative  roots."  Fibonacci, 
for  example,  does  not  admit  negative  quantities  as  roots  of  an  equation.  Scntti  de 
Leonardo  Pisano,  published  by  Boncompagni,  Rome,  1857.  Cardan  recognizes 
them,  but  calls  them  "sestimationes  falsas"  or  "fictje,"  and  attaches  no  special  sig- 
nificance to  them.  See  Cardan,  Ars  Magna,  Nurnberg,  1545,  p.  2.  Stifel  called 
them  "Numeri  absurdi,"  as  also  in  Rudolff's  Coss,  1545. 

[18S]  <ij^g  défaut."  If  X  = — 5,  — 5  is  the  "defect"  of  5,  that  is,  the  remainder 
when  5  is  subtracted  from  zero. 

[189]  -pj^jj^.  jg^  three  positive  roots,  2,  3,  and  4,  and  one  negative  root,  —  5. 

''°°^  "Somme,"  the  left  meml)er  when  the  right  member  is  zero;  that  is,  what 
we  represent  by  /(.r)  in  the  equation  /(.r)=0. 

[191]  'Yhat  is.  by  performing  the  division. 

''""'  "Si  la  somme  d'un  equation." 


159 


THIRD  BOOK 

minus  some  other  quantity,  then  this  latter  quantity  is  not  a  root  of  the 
equation.  Thus  the"™'  above  equation  a-*— 4.r"  — iar-  +  106.r— 120  =  0 
is  divisible  by  x—2,  .r-3,  .r— 4  and  .r+5,"""  but  is  not  divisible  by  .v 
plus  or  minus  any  other  quantity.  Therefore  the  equation  can  have 
only  the  four  roots,  2,  3,  4,  and  5.'""'  We  can  determine  also  the  num- 
ber of  true  and  false  roots  that  any  equation  can  have,  as  follows  i'""' 
An  equation  can  have  as  many  true  roots  as  it  contains  changes  of  sign, 
from  -f  to  —  or  from  —  to  +  ;  and  as  many  false  roots  as  the  num- 
ber of  times  two  +  signs  or  two  —  signs  are  found  in  succession. 

Thus,  in  the  last  equation,  since  -f  .r*  is  followed  by  — 4.^-^  giving  a 
change  of  sign  from  +  to  — ,  and  —  19.r-  is  followed  by  +106.r  and 
-f  106.r  by  —120,  giving  two  more  changes,  we  know  there  are  three 
true  roots  ;  and  since  —Ax^  is  followed  by  —\9x-  there  is  one  false  root. 

It  is  also  easy  to  transform  an  equation  so  that  all  the  roots  that 
were  false  shall  become  true  roots,  and  all  those  that  were  true  shall 
become  false.    This  is  done  by  changing  the  signs  of  the  second,  fourth, 

'^'"''  First  member  of  the  equation.  Descartes  always  speaks  of  dividing  the 
equation. 

'^"■•^  Incorrectly  given  as  x  —  5  in  some  editions. 

ti^B)  Where  5  would  now  be  written  —  5.  Descartes  neither  states  nor  explicitly 
assumes  the  fundamental  theorem  of  algebra,  namely,  that  every  equation  has  at 
least  one  root. 

[190]  Yj^jg  jg  ^Y^ç.  -^yeii  I.jnown  "Descartes's  Rule  of  Signs."  It  was  known  how- 
ever, before  his  time,  for  Harriot  had  given  it  in  his  Artis  analyticac  praxis,  Lon- 
don, 1631.  Cantor  says  Descartes  may  have  learned  it  from  Cardan's  writings, 
but  was  the  first  to  state  it  as  a  general  rule.  See  Cantor,  Vol.  11(1)  pp.  496 
and  725. 


160 


racines  ea 
e 


Livre  Troisiesme.  ^^^ 

nepeuteftrcdiuifeeparvn  biuômecompofédclaquau-  on'^eu* 
titeinconnue-r- ou  — quelque  autre  quantité,  cela  tef^  examiner 

•/.Al  1  1.  Il  quelque 

moigne  que  cete  autre  quantité  n  eft  la  valeur  d  aucune  Quantité 
de  fes  racines.  Comme  cete  dernière  donnée 

elilava- 
X'^'-^X^-'l^XX'i'  lOÔX—llOOOo  leurd'vnc 

peut  bien  eftrediuifée,  par  x  —  2,  &  par  x—  3,&:par  """'^' 
a:  —  4,  &  par  at  4-  5  ;  mais  non  point  par  a;  4-  ou  -  -  aucu- 
ne autre  quantité',  cequi  monftre  qu'elle  ne  peut  auoir 
que  les  quatre  racines  2.,3,4,ôc  y. 

On  connoiftaufly  de  cecy  combien  il  peut  y  auoir  de  Combien 
vrayes  racines,  &:  combien  de  faufles  en  chafque  Equa-  luoir  de 
tion.    A  fçauoirily  en  peut  auoir  autant  de  vrayes,  que  ^"7" 
les  lignes  -H  &  —  s'y  trouuent  de  fois  eft  te  changes  ,•   &  "hafq" 
autant  de  faufles  qu*il s'y  trouue  de  fois  deux  lignes  4-,  ^4"^"° 
ou  deux  lignes  —  qui  s'entrefuiuent.  Comme  en  la  der- 
nière, a  caufe  qu'après  -i- x'^Hya-' /\.x ^qui eft  vn chan- 
gement du  ligne  H- en-,  &  après-  19  :v  a:  il  y  a -H  105  a:, 
&apres-f-lo6  Arilya—  izoqui  font  encore  deux  autres 
changemens,  onconnoift  qu'il  y  a  trois  vrayes  racines;& 
vue  fauire,a  caufe  que  les  deux  lignes  — ,de  4.x\ôci^xx, 
s'entrefuiuent. 

De  plus  il  eft  ayfc  de  faire  en  vne  mefme  Equation,  q 
que  toutes  les  racines  qui  eftoicnt  fauiTes  deuienent  onùit 
V rayes, &  par  mefme  moyen  que  toutes  celles  qui  eftoiêt  ^^"Ves 
vrayes  deuienent  faufles  :  a  fçanoir  en  changeant  tous  ^f^"" 
les  lignes  -h  ou  -  qui  font  en  la  féconde  ,   en  la  nJTt^on" 
quatriefme  ,  en  la  fixiefme  ,  ou  autres  places  qui  le  f  J^^'^^^ 
defignent  par  les  nombres  pairs  ,   fans  changer  ceux  Us  vrayes 
de  la  premiere  ,   de  la  troifiefme,  de  la  cinquiefme  ^*"^"' 
&   femblabics    qui   fe  defigiient  par  les  nombres 

Aaa  3  impairs. 

161 


.ornent 


574  La  Géométrie. 

impairs.     Comme  fi  au  lieu  de 

-h  X'*-'  ^X^  —  l^  XX-h-  lo6  X  —  I20  x>  a 

on  efcric 

-^  X  ^  -^  4.X'  —  ï^xx  —  106  X-'  120C00 
on  a  vne  Equation  en  laquelle  il  n'y  a  quVne  vraye  ra- 
cine,  qui  eft  j,  &  trois  faufTes  qui  font  2,5,  &4. 
Comcnc       Quefifansconnoiftre  la  valeur  des  racmes  d'vne  E- 

on  peut  . 

augmen-  quation,onla  veut  augmenter,  ou  diminuer  de  quelque 
^^■°"^'^*' quantite'connue,  il  ne  faut  qu'au  lieu  du  terme  inconnu 
lesracines  enfuppofcr  vn  autre,  qui  fbftplus  ou  moins  grand  de  ce- 
quatL^,  te  me  fine  quantité",  &le  fubftituer  par  tout  en  la  place 
fans  les    du  premier. 

connoi-       Comme  fi  on  veut  augmenter  de  5  la  racine  de  cete 
Equation 

X"^-^  4^X^'^lSXX^'l06  X-'  TlOlO  0 

il  faut  prendrey  au  lieu  d'x ,  &:  penfer  que  cctQ  quantité' 
y  eft  plus  grande  qux  de  3,  en  forte  que  ^  —  5  eft  efgal 
SLXjScâuVieud' X Xj  ilfautmettrelequarré'd'y  — .3  qui 
eftyj/—  6 y-i- 9 8c ânlieu d' X  ^  il  faut  mettre  fon  cube 
qui  eft^  '  •-  9yy~^  27 y  —  27,  &  enfin  au  lieu  d'  at  +  il  faut 
mettre  fonquarrédequarré'qui  eft  y'*—  ity  ^-}-  f4.yy 
—  io8^-f-8r.  Et  ainiî  defcriuant  la  fbmme  précédente 
€Q  fubftituant  par  touty  au  lieu  d'x  on  a 
y^-^-liy^-h^^yy—  lo^y-hSl 
4-47Î--  ^6yy  -f-  io8y~.ioS 

—  ^s>yy  -^  ii4y  — 171 

—  io5y-f-3i8 
—  120 

y^^^Zyi^'iyy        ^Sy*  :X)0 

oubien 


162 


THIRD  BOOK 

sixth,  and  all  even  terms,  leaving  unchanged  the  signs  of  the  first,  third, 
fifth,  and  other  odd  terms.    Thus,  if  instead  of 

4-.r*-4.r'-19.v--+106.i--120  =  0 
we  vv^rite 

_|_,t-4^4^-n_i9_^.2_io6.r-120  =  0 

we  get  an  equation  having  one  true  root,  5,  and  three  false  roots,  2,  3, 
and  4/^"^' 

If  the  roots  of  an  equation  are  unknown  and  it  be  desired  to  increase 
or  diminish  each  of  these  roots  by  some  known  number,  we  must  sub- 
stitute for  the  unknown  quantity  throughout  the  equation,  another 
quantity  greater  or  less  by  the  given  number.  Thus,  if  it  be  desired 
to  increase  by  3  the  value  of  each  root  of  the  equation 

.i-^_^4.r-'-19.i--106.r-120  =  0 

put  y  in  the  place  of  x,  and  let  y  exceed  x  by  3,  so  that  y — 3  =  x.  Then 
for  .r-  put  the  square  of  y — 3,  or  y- — 6y-\-9;  for  x^'  put  its  cube, 
y^ — 9y'+27y — 27;  and  for  .i-*  put  its  fourth  power,'"'**-'  or 

y*-  12_v-'+543'-- 1083'+81. 

Substituting  these  values  in  the  above  equation,  and  combining,  we  have 

y*  -  I2y'^  +  54\-  -  108y  +    81 

+    4_v'  -  363-  +  108y  -  108 

-  19v=  +  114y-  171 

-  106y  +  318 

-  120 


y_    8\'-''-      y--\-      8y  =  0,'"^' 

or  3,^_8y_3,+8  =  0, 

'^"'^  In  absolute  value. 

[19S]  "5qj^  quarré  de  quarré,"  that  is,  its  fourth  power. 

''"^^  Descartes  wrote  this  y*  —  S^)--  —  3'-  +  8y  *  00  0,  indicating  by  a  star  the 
absence  of  a  term  in  a  complete  polynomial. 


163 


GEOMETRY 

whose  true  root  is  now  8  instead  of  5,  since  it  has  been  increased  by  3. 
If,  on  the  other  hand,  it  is  desired  to  diminish  by  3  the  roots  of  the 
same  equation,  we  must  put  3'+3  =  x  andv"+63;+9  =  x-,  and  so  on. 
so  that  instead  of  .v*  +  4x''  —  19.r-  —  106.r  —  120  =  0,  we  have 

y*  ^  123;^  4-  54/  +  IO83;  +    81 

+    4y'  +  363;-  +  IO83;  +  108 

-I9y---  114v-  171 

—  1063;  -  318 

-120 


3,4  -I-  16/'  +  713»=  —     43;  -  420  =  0. 


It  should  be  observed  that  increasing  the  true  roots  of  an  equation 
diminishes"""'  the  false  roots  by  the  same  amount  ;  and  on  the  contrary 
diminishing-  the  true  roots  increases  the  false  roots  ;  while  diminishing 
either  a  true  or  a  false  root  by  a  quantity  equal  to  it  makes  the  root 
zero  ;  and  diminishing  it  by  a  quantity  greater  than  the  root  renders 
a  true  root  false  or  a  false  root  true."*"'  Thus  by  increasing  the  true 
root  5  by  3,  we  diminish  each  of  the  false  roots,  so  that  the  root  pre- 
viously 4  is  now  only  1,  the  root  previously  3  is  zero,  and  the  root 
previously  2  is  now  a  true  root,  equal  to  1,  since  — 2+3  =  -f-1.  This 
explains   why  the   equation  3'^— 83--  — v-)-8  =  0  has   only  three   roots. 

'"""^  In  absolute  value. 

■'"''  For  example,  the  false  root  S  diminished  by  7  means  — (5  — 7)=  +2. 


164 


Livre  Troisiesme.  V^ 

oubien^  ^  —  8^^  •- 1  ^  ^-  8  oo  <?. 

oil  la  vraye  racine  qui  eftoit  j  eft  maintenant  8 ,  acaufe 
du  nombre  trois  qui  luy  eft  aioufté. 

Que  fi  on  veut  au  contraire  diminuer  de  trois  laraci- 
ne  de  cete  mefme  Equation  ,  il  faut  faire  ^  -H  3  ooa; 
&^^-f-  6  y  -h  ç'x>  :«x,  &  ainfî  des  autres  de  façon 
qu'au  lieu  de 

a:*4-4;v'-  i^xx  —  lOS^x  — 12000a 
on  met 

-19  yy  -  1147  -  171 

—  io6y  —  318 

— 120 

y^-i- i6y  i-\~yiyy-'      4^.-420300. 

Et  il  eft  a  remarquer  qu'en  au2mentant  les  vrayes  ra-  Qb'^^» 
cines  d'vne  Equation,  on  diminue  les  fauffes  de  la  mef-  tanc  les 
me  quantité;  ou  au  contraire  en  diminuant  les  vrayes,on  J/iJJj"^" 
augmente  les  faufles.  Et  que  fî  on  diminue  foit  les  vnes  diminue 
foit  les  autres,  d*vne  quantité  qui  leur  foit  efgale,  elles  f",^^au 
deuienent  nulles,  &c[ue  fi  c'eft  d'vne  quantitéqui  les  fur-  contraire 
pafle,  de  vrayes  elles  deuienept  faufles,  ou  de  faufles 
vrayes.  Comme  icy  en  augmentant  de  3  la  vrayc  racine 
qui  eftoit  y,  on  a  diminué  de  3  chafcune  des  faufles  ,  en 
forte  que  celle  qui  eftoit  4  fi'eft  plus  qu'i,  &  celle  qui 
eftoit  3  eft  nulle,  &  celle  qui  eltoit  2  eft  deuenueviaye 
&  eft  I,  a  caufe  que  —  2  -+-  3  fait  -h  i.  c'eft  pourquoy 
en  cete  Equation^  *  -  Syy  —  i^  -h  S  so  0  il  ny  a  plus  que 
3  racines,  entre  lefquellcs  il  y  en  a  deux  qui  font  vrayes, 

I.& 


165 


''  La  Géométrie. 

I,  ôc  8,  &:  vne  faufTe  qui  eft  auffy  i.  &  en  cete  autre 

y  *-H  i6^  '  -^y^yy  --4  y  --  410  30« 
il  n'y  en  a  qu'vne  vraye  qui  eft  2,  a  caufe  que  -H  y  —  5  fait 
-f- 2,  Octrois  faufTes  qui  font  j",(5,  &7. 
Comcoc       Or  par  cete  façon  de  changer  la  valeur  des  racines 
ofter^ïc    ^^ns  les  connoiftre,  on  peut  faire  deux  chofes,  qui  auront 
fécond     Qy  aprés  quelque  vfage:  la  premiere  eft  qu'on  peut  tou- 
d'vnc  E-   fîours  ofter  le  fécond  terme  de  l'Equation  qu'on  exami- 
quatioD.   j^g^  ^  fçauoir  en  diminuant  les  vrayes  racines,  de  la  quan- 
tité connue  de  ce  fécond  terme  diuifee  par  le  nombre 
desdimenfions  du  premier,  (îl'vn  de  ces  deux  termes 
eftantmarque'du  figne-t-,rautreeft  marqué  du  ligne— ; 
oubien  en  l'augmentant  de  la  mefme  quantité ,   s'ils  ont 
tous  deux  le  fîgne  "f-,  ou  tous  deux  le  fi gnc—.  Comme 
pour  ofter  le  fecon^  terme  de  la  dernière  Equatiô  qui  eft 

y^-^  16  y  '  -h  7^yy  —  4  y  —  4  lo  do  d 
ayantdiuiféidpar4,  acau(èdcs4  dimenfions  du  terme 
y  4,  il  vient  derechef  4,  c'eftpourquoy  icfais  ;^  —  4  ooy^ 
&  i'efcris 

•^16 ^^-'içz^^HryôS  îç_— I024 

—  420 


ou  la  vraye  racine  qui  eftoit  2,  eft  6,  a  caufe  qu'elle  eft 

augmentée  de  4^  &  les  faufles  qui  eftoient  y,  6,  &  7,  ne 

fontplusque  1,2, 6c 3,  a  caufe  qu'elles  font  diminuc'es 

chafcunede4. 

Tout 


166 


THIRD  BOOK 

two  of  them,  1  and  8,  being  true  roots,  and  the  third,  also  1,  being  false  ; 
while  the  other  equation  y* — 16y^'-\-7ly- — 4y — 420  =  0  has  only  one 
true  root,  2,  since  -|-5— 3  =  +2,  and  three  false  roots.  5,  6,  and  7. 

Now  this  method  of  transforming  the  roots  of  an  equation  without 
determining  their  values  yields  two  results  which  will  prove  useful  : 
First,  we  can  always  remove  the  second  term  of  an  equation  by  dimin- 
ishing its  true  roots  by  the  known  quantity  of  the  second  term  divided 
by  the  number  of  dimensions  of  the  first  term,  if  these  two  terms  have 
opposite  signs  ;  or,  if  they  have  like  signs,  by  increasing  the  roots  by 
the  same  quantity.'""'^  Thus,  to  remove  the  second  term  of  the  equation 
'\'*+16y+7l3r— 43;— 420^0  I  divide  16  by  4  (the  exponent  of  y  in 
3;*),  the  quotient  being  4.    I  then  make  s — 4  ^  y  and  write 

2*  -  I6r'  +    96^=  -  256^  +    256 

4-  16^'  -  192^=  +  768^  -  1024 

+    71x;=- 568^ +1136 

—      4:r  +      16 

—    420 


—    25^-  —    60^  —      36  =  0. 


The  true  root  of  this  equation  which  was  2  is  now  6,  since  it  has  been 
increased  by  4,  and  the  false  roots,  5,  6,  and  7.  are  only  1,  2,  and  3, 

[202]  -pj^^j.  jg^  ^y  diminishing  the  roots  by  a  quantity  equal  to  the  coefficient  of 
the  second  term  divided  by  the  exponent  of  the  highest  power  of  x,  with  the  oppo- 
site sign. 


167 


GEOMETRY 


since  each  has  been  diminished  by  4.     Similarly,  to  remove  the  second 
terms  of  .r*— 2a.r^-)-(2a'  — r=).t-=— 2a\v+a*  =  0  ;  since  2a-^4  =  -^we 

1 

must  put  ^+-rt'  =  A-and  write 


z'  +  2a^+la'z^  +  la'z  + 

y 

-2a^-3a'2^-^a'z- 

h^ 

-\-2a-2-  +  2n'z  + 

V 

-     c'z'   -  ac'z  - 

4^' 

-2a'z- 

a' 

+ 

a' 

2  +{:^a  —c  jz  -  (a' -\-ar)z-\-      a' --a-c-  =  0. 

Having  found  the  value  of  ,:;,  that  of  x  is  found  by  adding -^?.  Second, 

by  increasing  the  roots  by  a  quantity  greater  than  any  of  the  false 
roots'""^  we  make  all  the  roots  true.  When  this  is  done,  there  will  be 
no  two  consecutive  +  or  —  terms  ;  and  further,  the  known  quantity 
of  the  third  term  will  be  greater  than  the  square  of  half  that  of  the 
second  term.  This  can  be  done  even  when  the  false  roots  are  unknown, 
since  approximate  values  can  always  be  obtained  for  them  and  the  roots 
can  then  be  increased  by  a  quantity  as  large  as  or  larger  than  is 
required.    Thus,  given, 

'^^^  In  absolute  value. 


168 


LivKE  Troisiesme.  377 

Tout  de  mefme  fi  on  veut  ofter  le  fécond  terme  de 
x^  —  iaxi  '^^^^^  xx..  la^x  -ha^ooo  , 

pourcequetJiuifant  i  a  par  4 il  vient  ^  ^;  il  faut  faire 
î^-+-^aï)Ar.&^fcnre 


"tai^     -laaii  -^a^  ^ 


I./r.4 


4- 


a 


*  c c     —  ace     "~aacc 
-+-^4 


—  ce     —atc        —  -^aacc 
&{îontrouueapres  la  valeur  de  :^,  enluyadiouflant  ~  a 
on  aura  celle  de  at.  r  ;^,«,n^ 

Cornent 

La  féconde  chofe,  qui  aura  cvapre's  quelque  vfâee  o"  p^uc 

/v»  r  If,       fairequc 

eft,  qu  on  peut  touiiours  en  augmentant  la  valeur  des  toutes 
vrayes  racines,  dVne  quantité  quifoit  plus  grande  que  '"faufTes 
n'eft  celle  d'aucune  des  faufles,  faire  qu'elles  deuienent  dvnc 
toutes  vraves,en  forte  qu'il  n'y  ait  point  deux  lignes  -f~,  ^S^.^^o*^ 

t  n  •    »  r  f  '  deuiencc 

ou.deux  lignes  --  quiientreluiuent,  &  outre  cela  que  la  vrayes, 
quantité'  connue  du  troifiefme  terme  foit  plus  grande,  [ç^^yj^"^ 
quelequarré'delamoitiede  celle  du  fécond.    Car  en- deuienct 
core  que  cela  fe  face ,  iorfque  ces  faufles  racines  font  ^"  "* 
inconnues,  il  eflayfe  néanmoins  de  iuger  a  peu  pre''-  de 
leur  grandeur,  &de  prendre  vne  quantité,  quilesfur- 
pafle  d'autant,  ou  de  plus,  qu'il  n*efl  requis  a  cet  effedt. 
Comme  fi  on  a 

Bbb 


16') 


^7^  La  Géométrie. 

en  faifânt^  -  6  »  so  -v,  on  trouuera 

y*-  }i»'\y5  HE»  î40«/*^  y  ♦--45ia  »'yy'  4«  19440«  ■♦'^  yy"46(;)^«s'^  y  ^4ô6j6»« 

>i<»    r     —    jo»»^     HhS^o^'C     --zi6o»<j      »î<648o»M    --777<»»< 

6»»-'        ►Î4i44»jr      .-li9^«4l       ►î-fi84«'l--777<^«< 

►j.      5i  »}-'       ..      648  «♦?      4«  jS88»»^   --   iTiin* 

J       tfi  iZ<f6  ^  'j     --   777^  «  < 
y"--jy»y'»î'504»»    y*   -   3780  «^    y»»i-  ij'^-o   «^  y*--  172.16   «'y    *    30  0. 

OuiKeft  manifefte,  que  yo4  ««,  qui  eft  la  quantité' 
connue  du  troifîefme  terme  eft  plus  grande,  que  le  quar- 
rede  !*•  »,  qui  eft  la  moitic'de  celle  du  fécond.  Et  il  n'y 
â  point  de  cas,  pour  lequella  quantité,  dont  on  augmen- 
te les  vrayes  racines,  aitbefoina  cet  efFedt,  d'eftre  plus 
grande,  a  proportion  de  celles  qui  font  données  ,  que 
pour  cetuy  cy. 
Cômcne        ^^j^  ^  caufe  que  le  dernier  terme  s'y  trouue  nul,  fi  on 

on  taw  *  -  -  ■' 

que  cou-    ne  defire  pas  que  cela  foit,  il  faut  encore  augmenter  tant 

^  bces       ^'^^^  P^"  ^^  valeur  des  racines  j  Et  ce  ne  Tçauroit  eftre  de 

d'vne  E-    fi  peu,  quc  cc  ne  foit  afles  pour  cet  effedt.  Non  plus  que 

?o"iea°°     lorfqu'on  veutaccroiftre  le  nombre  des  dimenfious  de 

remplies,  quelque  Equation,  ôt  faire  que  toutes  les  places  de  Tes 

termes foient remplies.   Comme  fiaulieude  x  '  **'•'* 

-«5  30  0,  on  veut  auoir  vne  Equation,  en  laquelle  la 

quantité'mconnue  ait  fix  dimenfions,  &  dont  aucun  des 

termes  ne  foit  nul,  il  faut  premièrement  pour 

.^.    *     *      »     "*■  —  ^30  0  efcrire 

x'  =*       *       *      =*.-^Ar   ''■SOO 

puis  ayant  fait  ^—^  30  A^J  on  aura 

--  b  y  y^  a  b 

Quileftmanifeftequetantpetitequela  quantité' a  foit 

fuppof^e 

170 


THIRD  BOOK 

x''-^nx''—67i-x'+36n".\-—2l6n\v--\-U96if'.v—7776n''  =  0, 
make  v—6n  ^  ,^- and  we  have, 

y^-26n]  v-'+540m==1  T*-4320n-'l  v"+19440w*l  :^--46656n^l  v+46656n'' 

'  j^     n\'   -  ZOn-\     +  360nH     -  2160m* |      +  6480mM    -  7776«" 

-     6n-]     +  144«^  f     -  \296n'\     +  5184nM   —  7776w'"' 

4-     36n-''J     -     648m*  I     +  3888n^r  -  7776«« 

-     216n*J     +  2592n-'|    —  7776n'' 

+  1296n^^J    —  7776n''' 

-  7776«« 

y^—ZSny^  +504«=^/   —3780«^   +15120«V   — 27216»'^3;  =0. 
Now  it  is  evident  that  504h-,  the  known  quantity""*'  of  the  third  term, 

/35  y 

is  larger  than  I  ;H  ;  that  is,  than  the  square  of  half  that  of  the  sec- 
ond term  ;  and  there  is  no  case  for  which  the  true  roots  need  be  in- 
creased by  a  quantity  larger  in  proportion  to  those  given  than  for  this 
one. 

If  it  is  undesirable  to  have  the  last  term  zero,  as  in  this  case,  the 
roots  must  be  increased  just  a  Httle  more,  yet  not  too  Httle,  for  the  pur- 
pose. Similarly  if  it  is  desired  to  raise  the  degree  of  an  equation,  and 
also  to  have  all  its  terms  present,  as  if  instead  of  x''  —  b  =  0,  we  wish 
an  equation  of  the  sixth  degree  with  no  term  zero,  first,  for  .r"  —  b  =  0 
write  x''' —  bx  =  0,  and  letting  _v  —  a^^  -v  we  have 

3,6_6a/+15ay-20fl"r  +  15ay-(6a'^+5)y+a''+a&  =  0. 

It  is  evident  that,  however  small  the  quantity  a,  every  term  of  this  equa- 
tion must  be  present. 
'^^'  I.  e.,  the  coefficient. 


171 


GEOMETRY 


We  can  also  multiply  or  divide  all  the  roots  of  an  equation  by  a 
given  quantity,  without  first  determining  their  values.  To  do  this,  sup- 
pose the  unknown  quantity  when  multiplied  or  divided  by  the  given 
number  to  be  equal  to  a  second  unknown  quantity.  Then  multiply  or 
divide  the  known  quantity  of  the  second  term  by  the  given  quantity, 
that  in  the  third  term  by  the  square  of  the  given  quantity,  that  in  the 
fourth  term  by  its  cube,  and  so  on,  to  the  end. 

This  device  is  useful  in  changing  fractional  terms  of  an  equation  to 
whole  numbers,  and  often''"^'  in  rationalizing  the  terms.     Thus,  given 

po  O 

x^—  M  3  .r'^-f  T^x  — ^  =  0,  let  there  be  required  another  equation 

27         27  \T 

in  which  all  the  terms  are  expressed  in  rational  numbers.  Let  j'=  \'^ 
and  multiply  the  second  term  by   ^J^,  the  third  by  3,  and  the  last  by 

3  V3.  The  resulting-  equation  is  y^ —  3y- -{-'^y—  q  =0-  Next  let  it  be 
required  to  replace  this  equation  by  another  in  which  the  known  quanti- 
ties are  expressed  only  by  whole  numbers.     Let  r=3y.     Multiplying 

26  8 

3  by  3,  -r-  by  9,  and       by  27,  we  have 

;:^-9s-+26r-24  =  0. 

The  roots  of  this  equation  are  2,  3,  and  4;  and  hence  the  roots  of  the 
'"""'  But  not  always.     Compare  the  case  mentioned  on  page  175. 


172 


Livre  Troisiesme.  ^^^ 

fuppofee  toutes  les  places  de  l'Equation  ne  laiflent  pas 
d*eftre  remplies. 

De  plus  on  peut,  fans  connoiftre  la  valeur  des  vrayes  Commet 

1  .  1  .    •    1-  ^■     -r  on  peut 

racines  dvne  Equation,  les  multiplier,  ou  diuiier  tou- muUi- 
rcs,  par  telle  quantité  connue  qu  on  veut.  Cequi  fe  fait  5|'"re°dcs 
en  fuppofant  que  la  quantité'  inconnue  eftant  multipliée,  racines 
oudiuifce,  par  celle  qui  doit  multiplier,  ou  diuifer  les  [^JJj^J^[, 
racines,  eft  efgale  a  quel<jue  autre.   Puis  multipliant,  ou  ftr«- 
diuifant  la  quantité  connue  du  fécond  terme,  par  cete 
mefrae  qui  doit  multiplier,  ou  diuifer  les  racines  j  &par 
fon  quarré, celle  du  troifiefmcj  &:  par  fon  cube ,  celle  du 
quatricfmej  &  ainfi  iufques  au  dernier.    Ce  qui  peut  fer-  ^  °rTdu?ft 
uir  pour  réduire  a  des  nombres  entiers  &rationaux,  lesi"  °om- 
fradtions,  ou  lôuuent  aufTy  les  nombres  fours  ,    qui  fe  puVdVnê 
trouHcnt  dans  les  termes  des  Equations.  Comme  fi  on  a  Çq^^^'on 

Xs-'Yl    XX-^-^X'^^yjZOOy  tiers. 

&  qu'on  veuille  en  auoir  vne  autre  en  fâ  place^  dont  tous 
lestermcs  s'expriment  par  des  nombres  ratiouaux;  il  faut 
fuppofer  y  30a;  T^  3 ,  5c  multiplier  par  V^  la  quantité 
connue  dufccondtcrme,  qui  eft  auffy  /^3  ,  &  par  fon 
quarré  qui  eft  3  cefle  du  troifiefme  qui  eft  || ,  &  par  fon 
cube  qui  cft  3 /"5  celle  du  dernier,  qui  eft  ^1^,  , ce  qui 
fait 

Puis  fi  on  en  veut  auoir  encore  vne  autre  en  la  place  de 
celle  cy,  dont  les  quantités  connues  ne  s  expriment  que 
par  dts  nombres  entiers^  il  faut  fuppofer  ^^  30  3  ^  ,  &  mul- 
tipliant 5par5,  |<î  par  9,  &  |pari7ontrouue 

V  -  9^=^"^  26 :^»- 24 30  0,  OÙ  les  racines  eftant  2,3, 
&  4,  on  connoift  de  là  que  celles  de  l'autre  d'auparauant 

Bbb  2  eftoient 

173 


5^0  La  Géométrie. 

eftoient  y,  I ,  &  |,  ôcquc  celles  de  la  premiere  eftoietrt 

Cômeni  Cctc  Operation  peut  aulTf  ferurr  pour  rendre  la  quan- 
quintitc  tïtc  confluë  dc  quclqu'uu  des  termes  de  l'Equatiô  efgale 
connue    ^  quelque  autre  donnée,  comme  fi  ayant 

des  ter-  -^*  '      *       —Ùbx-j^C'  30a 

mesd'vne  Qn  vcut  auoir  en  faplace  vneautrc  Equation,  en  laqueL- 

Equatioii  ^  -^  ^-^ 

efcaie  a  le  la  quantité'  connue,  du  terme  qui  occupe  là  troifiefme 
qu'on''"^  place,  a  fçauoir  celle  qui  eft  icy  ^^,roit  5  fl^,il  faut  fuppo. 

veut  •i/~  xcm  ^^'c'     X» 

ferj^  30  a:  ♦'^  — ,-puisefcrire^  '  *  -  "i^accyA — ^  V'  J  30<7. 
Que  les  Aurefte  tant  les  vrayes  racines  que  les  faufles  ne  font 
taa'tm'.  pas  toufîours  reclleSj  mais  quelquefois  feulement  imagi- 
yes  que  naiteSj  c'cft  a  dire  qu'on  peut  bien  toufiours  en  imaginer 
pcuucnr  autant  que  lay  dit  en  chafque  Equation^  mais  qu  il.n  y  a 
cftrcieci-  querquefois  aucune  quantité',  qui  correfponde  a  celles 

les    ou       ^    .    ^  ■*•  ,  rr     ■  • 

imaginai-  qu  OU  imagine,   comme  encore  qu  on  en  puilie  imagi- 
^"'         nertroisenccllecy, 'V  -  6a:.v^- 15  .V— io30<7,    il  ny 
en  a  toutefois  quVne  réelle,  qui  eft  2,  &  pour  les  deux 
autres,  quoy  qu'on  les  augmente, ou  diminue,  ou  multi- 
plie en  la  façon  que  ie  viens  d'expliquer,  on  nefçauroit 
Tes  rendre  autres  qu'imaginaires . 
lat^du-        Or  quand  pour  trouuer  la  conftrudtion  de  quelque 
E^°"t!?s  pJ*oblefmc,on  vient  a  vne  Equation,  en  laquelle  la  quan- 
cubiqucs  tité  inconnue  a  trois  dimenfions  ;  premièrement  fi  les 
^^'^^gj^^J'^  quantités  connues  ,   quiyfont  ,    contienent  quelques 
me  eft      noinbrcs  rompus,illes  faut  réduire  a  d'autres  entiers,  par 
P'^°'       la  multiplication  tantoft  expliquée  •  Et  s'ils  encontie- 
nentdefburs  ,  il  faut  auffy  les  réduire  a  d'autres  ratio- 
naux,  autant  qu  il  fera  poffible,tant  par  cete  mefme  mul- 
tiplication, 

174 


THIRD  BOOK 
2  4 

preceding  equation  are  —,  1  and  —,  and  those  of  the  first  equation  are 

2     / —  1     —  4     ; — 

g  V3,y\'3,and— \'3. 

This  method  can  also  be  used  to  make  the  known  quantity  of  any 
term  equal  to  a  given  quantity.    Thus,  given  the  equation 

x'—b-x-\-r  =  0, 
let  it  be  required  to  write  an  equation  in  which  the  coefficient  of  the 
third  term.'""''  namely  b-,  shall  be  replaced  by  3a-.    Let 

Isa' 

and  we  have 


^=-^'V7^ 


/_3aV  +  ^V3=0. 

Neither  the  true  nor  the  false  roots  are  always  real  ;  sometimes 
they  are  imaginary  ;'""''  that  is,  while  we  can  always  conceive  of  as  many 
roots  for  each  equation  as  I  have  already  assigned,'""*'  yet  there  is  not 
always  a  definite  quantity  corresponding  to  each  root  so  conceived  of. 
Thus,  while  w'e  may  conceive  of  the  equation  x" — 6x--\-l3x — 10^0 
as  having  three  roots,  yet  there  is  only  one  real  root,  2,  while  the  other 
two,  however  we  may  increase,  diminish,  or  multiply  them  in  accord- 
ance with  the  rules  just  laid  down,  remain  always  imaginary. 

When  the  construction  of  a  problem  involves  the  solution  of  an 
equation  in  which  the  unknown  quantity  has  three  dimensions,'"""'  the 
following  steps  must  be  taken  : 

First,  if  the  equation  contains  some  fractional  coefficients,'"'"'  change 
them  to  whole  numbers  by  the  method  explained  above  ;'""'  if  it  con- 

[206]  Descartes  wrote  this  equation  .r  *  —  /)^.r  +  c^'  30  0,  the  star  showing,  as 
explained  on  page  163,  that  a  term  is  missing.  Hence,  he  speaks  of  —  b'-x  as  the 
third  term. 

[^'J  "Mais  quelquefois  seulement  imaginaires."  This  is  a  rather  interesting 
classification,  signifying  that  we  may  have  positive  and  negative  roots  that  are 
imaginary.     The  use  of  the  word  "imaginary"  in  this  sense  begins  here. 

[208]  This  seems  to  indicate  that  Descartes  realized  the  fact  that  an  equation  of 
the  nth  .degree  has  exactly  n  roots.     Cf.  Cantor,  \^:)1.  11(1),  p.  724. 

[209]  That  is,  a  cubic  equation. 

[210]  "Nombres  rompues,"  the  "numeri  fracti"  of  the  medieval  Latin  writers  and 
"numeri  rotti"  of  the  Italians.  The  expression  "broken  numbers"  was  often  used 
by  early  English  writers. 

'""'  That  is,  transform  the  equation  into  one  having  integral  coefficients. 

175 


GEOMETRY 


tains  surds,  change  them  as  far  as  possible  into  rational  numbers,  either 
by  multiplication  or  by  one  of  several  other  methods  easy  enough  to 
find.  Second,  by  examining  in  order  all  the  factors  of  the  last  term, 
determine  whether  the  left  member  of  the  equation  is  divisible'^^^'  by  a 
binomial  consisting  of  the  unknown  quantity  plus  or  minus  any  one  of 
these  factors.  If  it  is,  the  problem  is  plane,  that  is,  it  can  be  constructed 
by  means  of  the  ruler  and  compasses  ;  for  either  the  known  quantity 
of  the  binomial  is  the  required  root'""'  or  else,  having  divided  the  left 
member  of  the  equation  by  the  binomial,  the  quotient  is  of  the  second 
degree,  and  from  this  quotient  the  root  can  be  found  as  explained  in 
the  first  book.'"'' 

Given,  for  example,  y"— 8y'  — 124a''— 64  =  0."'"  The  last  term,  64, 
is  divisible  by  1,  2,  4,  8,  16,  32,  and  64;  therefore  we  must  find  whether 
the  left  member  is  divisible  by  y-  —  1,  y'  +  l-  3'" — 2,  3;--)-2,  y- — 4,  and 
so  on.    We  shall  find  that  it  is  divisible  by  y-  — 16  as  follows  : 


+  ^,6  _    8v*  -  124y-  -  64  = 
_ye_    8y^-      4/ 

=  0 

0  _  16/  -  128y2 

-  16     -    16 

+     /+     8/+    4  = 

=  0 

Beginning  with  the  last  term,  I  divide  —64  by  — 16  which  gives  +4; 
write  this  in  the  quotient  ;  multiply  -|-4  by  -|-y-  which  gives  -\-4y"  and 

[212]  "Qyj  divise  toute  la  somme." 

[213]  ^\^^^  jg^  ^]^ç  ^QQ^  [jijj^  satisfies  the  conditions  of  the  problem. 

f'"J  See  page  13. 

'""^  Descartes  considers  this  equation  as  a  function  of  y-. 


176 


Livre  Troisiseme.  î^i 

tipli cation,  que  par  diuers  autres  moyens,  qui  font  afTés 
faciles  a  trouuer.  Ihiis  examinant  par  ordre  routes  les 
quantite's  ,  qui  peuuentdiuifer  fans  fradion  le  dernier 
terme,  il  faut  voir,  fî  quelqu'vne  d'elles,  iointe  auec  la 
quantite'inconnue  par  le  ligne -^  ou  —  ,  peutcompofer 
vn  binôme  ,  qui  diuife  toute  lafommej  ôc  lî  cela  eft  le 
Problefme  eft  plan  ,  c'eft  a  dire  il  peut  eftre  conftruit 
auec  la  reigle  &  de  compas  j  Car  oubien  la  quantité 
connuëdecebinofmeeftia  racine  cherche'e  •  oubien 
l'Equation  eftant  diuifce  par  luy ,  fe  reduift  a  deux  di- 
menfions,  en  forte  qu'on  en  peut  trouuer  après  la  racine, 
par  ce  qui  a  eft e' dit  au  premier  liure. 

Par  exemple  fi  on  a 

y^"Sy^—  iî4^'  — (5*490  (^. 

le  dernier  terme ,  qui  eft  ^4,  peut  eftre  diuifé  fans  fra» 

aionpari,2,4,  8,1^,  32,  &  ^4;  C'eft  pourquoy  il  faut 

examiner  par  ordre  fi  cete  Equation  ne  peut  point 

eftre  diuife'e  par  quelquVn  des  binômes  ,  yy  —  i  ou 

y  y  ■+*  ^>yy"  ^  ^^yy  -^^^yy  -4  &c.&on  troùue  qu'el- 
le peut  Teftre  par  y  y  - 1 5,  en  cete  forte. 

-h  y^"9y^'-i24.yy-'64  ooa 

-t^'^-Sy^-      ^yy        ... 


Vôy^  —  izSyy 
16  \6 


-  I* 


--H  ^  4  _^  %yy    ~H^4       300. 

le  commcnceparledernièrterme,&  diuife-  (^4  parj"' j'°? 
.-!<?,  ce  qui  fait -f- 4,  que  i'efcris  dans  le  quotient,  pnisvocEqua' 
ic  multiplie  ^4  par  H- jr^,ce  qui  fait -F  4;/^.  c'eft  pour- "°bi^^^^^^ 
quoy  i'efcris  -  à,  y  y  en  la  fomme,  qu'il  faut  diuifcr.car  il  y  "^"^  '^^^ 


B  b  b   5  faut  raan  "  ^ 

177 


3^2  La  Géométrie» 

tauttoufiours  efcrire  le  ligne  H-  ou—  tout  contraire  a 
celuy  que  produift  la  multiplication. &  ioignant—  ii^yy 
auec  — 4^j,  iay—  128^^,  que  iediuife  derechef  par—  16  ^ 
&  iay  ■+-  8  jj,  pour  mettre  dans  le  quotient  &  en  le  mul- 
tipliant paryy^iay  --  Zy  ^,pour  ioindre  auec  le  terme  qu'il 
faut  diuifer,  qui  eft  aufTy  —8^4,  Se  ces  deux  enfemble 
font— 1(5^  %  que ie  diuile  par  —16,  ce  qui  fait  -T-iy"^ 
pour  Te  quotient,  &  — i  y  <;  pour  ioindre  auec -f-i^^^  ce- 
quifaita,  &raonftre  que  la  diuifîon  eft  achcuee.  Mais 
s'il  eftoit  refte^quelque  quantité,  oubien  qu'on  n'cuft  pu 
diuifer  fans  fraétion  quelquVn  des  termes  precedens,  on 
euft  par  la  reconuu,quelle  ne  pouuoit  eftre  faite. 

Tout  de  mefme  fî  on  ay  ^  *"*>'  K'**yy-'^^  ^^^   00  0. 

le  dernier  terme  fe  peut  diuifer  (ans  fradion  par 
a,  aa,  aa  -+-  rr,  a  *  -f-  acs^  &  femblables.  Mais  il  n'y  en  a 
que  deux  qu'on  ait  befbin  de  confîderer,  afçauoir  aa  Se 
aa  -\-  <:^j  car  les  autres  donnant  plus  ou  moins  de  dimen- 
iions  dans  le  quotient,  qu'il  n'y  en  a  en  la  quantité  con- 
nue du  penultiefme  terme^  cmpefcheroient  que  la  diui- 
fion  ne  s'y  pli  ft  faire.  Et  notés,  que  ie  ne  conte  icy  \qs 
dimenfionsd*^^,  que  pour  trois,  acaufequ'il  ny  a  point 
à! y  %  ny  d'j'  \  ny  d*^  en  toute  la  fomme.  Or  en  exami- 
nant le  binôme j/j  —  aa ^-cc  00  o,on  trouue  que  la  diui/îon 
fc  peut  faire  par  luy  en  cete  forte. 


--  aac  * 
y.     »i<ce         —aacc   ..an—ce 

--  CUiCC     -.(M-- ce  


-^fvzyyv^a  ^0-        Ce. 


178 


THIRD  BOOK 

write  in  the  dividend  (for  the  opposite  sign  from  that  obtained  by  the 
multiplication  must  always  be  used).  Adding  — 124y-  and  — 4^;"  I 
have  —  128v".  Dividing  this  by  —16  I  have  +83;-  in  the  quotient,  and 
multiplying  by  y~  I  have  — 8y*  to  be  added  to  the  corresponding  term, 
— S'y*,  in  the  dividend.  This  gives  — 163;*  which  divided  by  — 16  yields 
-(-y*  in  the  quotient  and  — y^  to  be  added  to  -f-y*"'  which  gives  zero,  and 
shows  that  the  division  is  finished. 

If,  however,  there  is  a  remainder,  or  if  any  modified  term  is  not 
exactly  divisible  by  16,  then  it  is  clear  that  the  binomial  is  not  a 
divisor.'"'*' 

Similarly,  given  ' 

y^  +    o-)y  —  a*ly-  —    a"    ] 

—    a-c'j 

the  last  term  is  divisible  by  a,  a-,  a'-\-c-,  a^-^ac'-,  and  so  on,  but  only 
two  of  these  need  be  considered,  namely  a-  and  a--\-c-.  The  others  give 
a  term  in  the  quotient  of  lower  or  higher  degree  than  the  known  quan- 
tity of  the  next  to  the  last  term,  and  thus  render  the  division  impos- 
sible.'"''  Note  that  I  am  here  considering  y*'  as  of  the  third  degree, 
since  there  are  no  terms  in  y^,  y^,  or  y.    Trying  the  binomial 

y-  —  a-  —  c-  =  0 

we  find  that  the  division  can  be  performed  as  follows  : 

+  /+    aM     4 -«4     »     2-    «'     1 


0  -  2^2  j     4  _  rt"     I     2  -    ^^^* 


^2  cy'     ^2.2  çy^ 


_     ^2_^2 


[218]  -pi^js  is  evidently  a  modified  form  of  our  modern  "synthetic  division,"  the 
basis  of  our  "Remainder  Theorem,"  and  of  Horner's  Method  of  solving  numerical 
equations,  a  method  known  to  the  Chinese  in  the  thirteenth  century.  See  Cantor, 
Vol.  11(1),  pp.  279  and  287.  See  also  Smith  and  Mikami,  History  of  Japanese 
Mathematics,  Chicago,  1914;  Smith,  I,  273. 

[21"]  This  is  not  a  general  rule. 

179 


GEOMETRY 

This  shows  that  a--\-c-  is  the  required  root,  which  can  easily  be  proved 
by  multipHcation. 

But  when  no  binomial  divisor  of  the  proposed  equation  can  be  found, 
it  is  certain  that  the  problem  depending  upon  it  is  solid,'"'*'  and  it  is  then 
as  great  a  mistake  to  try  to  construct  it  by  using  only  circles  and  straight 
lines  as  it  is  to  use  the  conic  sections  to  construct  a  problem  requiring 
only  circles  ;  for  any  evidence  of  ignorance  may  be  termed  a  mistake. 

Again,  given  an  equation  in  which  the  unknown  quantity  has  four 
dimensions.'""*'  After  removing  any  surds  or  fractions,  see  if  a  binomial 
having  one  term  a  factor  of  the  last  term  of  the  expressioh  will  divide 
the  left  member.  If  such  a  binomial  can  be  found,  either  the  known 
quantity  of  the  binomial  is  the  required  root,  or,'^'"'  after  the  division  is 
performed,  the  resulting  equation,  which  is  of  only  three  dimensions, 
must  be  treated  in  the  same  way.  If  no  such  binomial  can  be  found, 
we  must  increase  or  diminish  the  roots  so  as  to  remove  the  second  term, 
in  the  way  already  explained,  and  then  reduce  it  to  another  of  the  third 
degree,  in  the  following  manner  :     Instead  of 

x^  ±  px-  ±:  qx  ±  r  -=0 
write 

3,6  ±  2py'  4-  ip-  ±  Ar)y-  -  q- =  0.''^' 

'^'''  That  is,  that  it  involves  a  conic  or  some  higher  curve. 
'^^"^  A  biquadratic  equation. 

[220]  "Either,  or,"  as  in  the  original.    It  is  like  saying  that  the  root  of  x- — o-=0 
is  either  x  =z  a  or  x  =  — a. 

[221]  Descartes  wrote  sul:)stantially  "Instead  of 

+  x^* .pxx .qx .r  x  0 
v^rrite 

+  y*'>.2py'^+ {pp.Ar)yy  —  qq  x  0." 

The  symbolism  is  characteristic  of  Descartes. 


180 


Livre  Tkoisies ME.  3^3 

Ce  qui  mooftref  que  la  racine  cherchée  eUaa-hcc. 
Et  la  preuue  en  eft  ayfée  a  faire  par  la  multiplication. 

Mais  lorfquonne  trouuc  aucun  binôme,  qui  puifle  Qh^^s 
ainfidiuifertoutclafomme  de  I'Kquation  propofee,  il  mes  font 
eft  certain  que  le  Problefme  qui  en  depend  eft  folide.  Et  f°'v^"' 

.     ,  *  '■  lotlquc 

ce  n'eft  pas  vne  moindre  faute  après  cela,  de  tafcher  a  le  l'Equa- 
conftruire  fans  y  employer  que  des  cercles  6c  des  lignes  ''"°.  ^^^ 
droites,  que  ce  feroitd  employer  des  fedtions  coniques 
aconftruireceuxaufquclsonn'abefoin  que  de  cercles, 
car  enfin  tout  ce  qui  tefmoigne  quelque  ignorance  s'ap- 
pelé  faute. 

Que  fi  on  a  vne  Equation  dont  la  quantité'  inconnue  ^^  ^^j^_ 
ait  quatre  dimenfions,  il  faut  en  mefme  façon,  après  en  aio»  des 
auoir  ofte^'les  nombres  fours,  &  rompus,  s'il  y  en  a,  voir  fi  jjJIJs'qui 
on  pourra  trouuer  quelque  binôme,  qui  diuife  toute  la  ont  qua- 
fomme,  en  le  compofantdelVnc  des  quantités ,  qui  di-  m^^^oas, 
uifent  fans  frajftion  le  dernier  terme.  Et  fi  onentrouue^°^^l"=^^ 
vn,  oubieniaquantite'connuëde  ce  binôme  eft  la  racine  m^  cft 
cherchée;  on  du  moins  après  cete  diuifion,  il  ne  refte  en  P^^°-  .^^ 

•     \  n  r-  1  quels  lonr 

l'Equation,  que  trois  dimenfions  ,    en  fuite  dequoy  il  ceux  qui 
faut  derechefTexaminer  en  la  mefme  forte.   Mais  lorf- ^°"/^  ^°''' 
qu'il  ne  fetrouue  point  de  tel  binôme  ,  il  faut  en  au- 
gmentant, ou  diminuant  la  valeur  de  la  racine,  ofterle 
fécond  terme  delà  fomme  ,    en  la  façon  tantoft  expli- 
qué»'. Etapréslareduire  a  vneaurre  ,    qui  ne  contie- 
ne  quç  trois  dimenfions .  Cequi  fe  fait  en  cete  forte. 
AuHeudeH-;c+  *  .pxx  ,  qx  .r     oo  o, 

il fau t  efcrire  -h  y^2py ^^Iryy  —  qq     ^o. 

Et  pour  les  figncs  H-  ou  —    que  iay  omis,  s'il  y  a 

eu 

181 


3^4  La  Géométrie. 

eu  H-/7  en  la  précédente  Equation,  il  faut  mettre  en  ccl- 
IecyH-2/^,ous'ilyaeu  -/>,  il  faut  mettre—  2.  p.  &  au 
contraire  s'il  y  a  eu -H  r,  il  faut  mettre --4.  r,  ou  s'il  y  a  eu 

—  r,  il  faut  mettre -H  4  r.  ôcfoit  qu'il  y  ait  eu  4-  ^,  ou 
--^,  il  faut  toufiours  mettre  — ^//,&  -H  pp.  au  moins  fî 
onfuppofe  que  ,v*,  Sic  y  ^  font  marquées  du  fio-nes  -h, 
car  ce  feroit  tout  le  contraire  fi  ou  y  fuppofoit  le  fî- 
gne  -. 

Par  exemple  fi  on  a  -4-  a:  ♦  *  —  4  a;  a;  -  8  a:  -H  5  y  30  0 
ilfautefcrirecnfbnlieuy^  — 8^^  —  i247^--(54  30(7.  car 
la  quantitc''que  iay,  nommée/;  ellant  —  4 ,  il  faut  mettre 

—  8^^pour2/jy*.  Scelle,  que  iay  nomme'ereftant  if^ 
îlfaut  mettre  */^^Q^,  ceft  a  dire  —  it^yy  y  au  lieu  de 
*^^^^.  &  enfin  q  eftant  8,  il  faut  mettre  —  ^4,  pour  -  qq, 
Toutderacfme  au  lieu  de  -h  jc  '^  *  — 17  xx  —  20  x—  6'x>o. 
il  faut  efcrire  -H^  ^  —  34^  "^  "+~  3 1  ^yy  -  4co  oo  0, 
Car  ^4  eft  double  de  17,  &  313  en  eft  le  quarré  ioint  au 
quadruple  de  6,  &  400  eft  le  quarré  de  20. 

Tout  de  mefme  aufly  au  lieu  de 

Il  faut  efcrire 

-«< 

Car;?  cH-h^aa  -  ce,  &ipp,  eft  |  ^  ^  -  aacc  -+-  ^  ^ ,  &!  4  r 
eft—  ^a'-'^aacCySlcnEn-'qqçiï'-a^ .'2a^cc  -^âac  \ 
Apres  que  l'Equation  eft  ainfî  réduite  a  trois  dimen- 
fions,  il  faut  chercher  la  valeur  à'yy  par  la  méthode  défia 
exphquefe.  Et  iî  celle  ne  peut  eftre  trouuee ,  on  n'a  point 

befoin 


182 


THIRD  BOOK 

For  the  ambig^iious''"^  sig^n  put  -[-2p  in  the  second  expression  if  -{-p 
occurs  in  the  first  ;  but  if  — p  occurs  in  the  first,  write  — 2p  in  the  sec- 
ond ;  and  on  the  contrary,  put  — 4r  if  +r,  and  -\-Ar  if  — r  occurs  ;  but 
whether  the  first  expression  contains  -\-q  or  -~q  we  always  write  — q- 
and  -{-p-  in  the  second,  provided  that  .r*  and  a'*'  have  the  sign  -\-  ;  other- 
wise, we  write  -\-q-  and  — p-.    For  example,  given 

.r*  —  Ax-  —  8.r  4-  35  =  0 
replace  it  by 

3,«  _  8y*  —  124y-  —  64  =  0. 

For  since  />  =  — 4,  we  replace  2/7y*  by  — 8y*  ;  and  since  r^35,  we 
replace  (/>-— 4r)y-  hy   (16— 140)y-  or  — 1243;-;  and  since  g  =  8,  we 
replace  —  g-  by  —64. 
Similarly,  instead  of 

.r*  -  \7x-  —  20.r  —  6  =  0 
we  must  write 

3,6  _  34^4  ^  313^^,2  _  400  =  0, 

for  34  is  twice  17,  and  313  is  the  square  of  17  increased  by  four  times  6, 
and  400  is  the  square  of  20. 
In  the  same  way,  instead  of 

we  must  write 

y'+{a^-  2^2)/  +   (^4  _  ^4)_^2  _  ^6  _  2^4^2  _  ^2^4  ^  Q; 

for 


^^-c\  p^^^a^-  aV  +  ^4^  4,-  ^  _  ^  ^4  +  ^2^2_ 


And,  finally, 

—  q-  =  —  a^  —  2a*c-  —  a-c*. 

When  the  equation  has  been  reduced  to  three  dimensions,  the  value 
of  y-  is  found  by  the  method  already  explained.     If  this  cannot  be 
'""'  Descartes  wrote  "pour  les  signes  +  ou  —  que  j'ai  omis." 


183 


<1 

2y 

=  0 

2y' 

=  0. 

GEOMETRY 

done  it  is  useless  to  pursue  the  question  further,  for  it  follows  inevit- 
ably that  the  problem  is  solid.  If,  however,  the  value  of  y-  can  be 
found,  we  can  by  means  of  it  separate  the  preceding  equation  into  two 
others,  each  of  the  second  degree,  whose  roots  will  be  the  same  as 
those  of  the  original  equation.  Instead  of  +  x^  d=  px-  ±  ç.r  dz  r  ^  0, 
write  the  two  equations 

->  loi 

-\-  x^~  yx-\-  —y^±.  —p 
and  ,  1     P  ,    1   , 

+  x^  +  yx  -\-  Y  y  —  y/  - 

For  the  ambiguous  signs  write  +  —p  in  each  new  ecjuation,  when  p 

has  a  positive  sign,  and  — ^p  when/»  has  a  negative  sign,  but  write 

Ç  q 

4-  TT  when  we  have  — y.r,  and  —  -^  when  we  have  +  yx,  provided  q  has 
2y  2y 

a  positive  sign,  and  the  opposite  when  q  has  a  negative  sign.  It  is  then 
easy  to  determine  all  the  roots  of  the  proposed  equation,  and  conse- 
quently to  construct  the  problem  of  which  it  contains  the  solution,  by 
the  exclusive  use  of  circles  and  straight  lines.  For  example,  writing 
3,0  _  34^4  _^  313^2  _  400  =  0  instead  of  .r*  —  I7x-  —  20a'  —  6  =  0  we 
find  that  y-  =  16;  then,  instead  of  the  original  equation 

-f  x'  —  17 X-  —  20.r  —  6  =  0 
write  the  two  equations  +  x-  —  4x  —  3=0  and  -f~-t"'+'^''*^  -[-2  =  0. 

For,  J/  =  4,  -- j2  =  8,  /  =  17,  Ç  =  20,  and  therefore 

-^Y'        2^''2y=~^ 

^"^  +^y'-^P  +  ^=+2. 

^    2  -^        2^^  2y       ^ 


184 


Livre  Troisîesme.  2^S 

befoin  de  pafler outre;  car  il  fuit  de  là  înfalliblement:, 
que  le  problefme  eft  folide.  Mais  fi  on  la  trouue  ,  on 
peut  diuifer  par  fon  moyen  la  précédente  Equation  en 
deux  antres,  en  chafcune  defquelles  la  quantité' incon- 
nuênaura  que  deux  dimenfions,  Se  dont  les  racines  fe- 
ront le$  mefmes  que  les  lignes.  Afçauoir^aulieu  de 

il  faut  efcrire  ces  deux  autres 
-hxx'-yx-i-iyy.'jp.  ^^    coo,& 

Et  pour  leî>  fignes  H-  &— queiay  omis,  s'ilya4-  pen, 
l'Equation  précédente,  il  faut  mettre  -f-  ^  /?  en  chafcune 
de  celles  cy;  (5c -^/>,  s'il  y  a  en  l'autre  -  p.  A  ai  s  il  faut 

mettre  H — -en  celle  où  il  y  a—y  ^;&--—,  en  celle  où  il 
ya-i-j'AT,  lorfqu'ily  a  -+-  ^  en  la  premiere.  Et  au  con- 
traire sM  y  a  —  <7,  il  faut  mettre  —  - ,  en  celle,  où  il  y  a 

-_yA;;& -h  ~*encelleoùilya-f-^Ar.  En-fuitc  dequoy 

il  eft  ayfé  de  connoiftrc toutes  les  racines  de  l'Equation 
propofée,  &  par  confequent  deconftruirele  problefme, 
dont  elle  contient  la  folution,  fans  y  employer  que  des 
cercles,  &  des  lignes  droites. 

Par  exemple  a  caufe  que  faifant 

y^'  —  S'^y^'^sisyy-  400 30 <?, pour 
x^*  —  ly  XX-' 2QX-' 6  03  0,  on  trouue  que^^  eft  i5,on- 
doii  au  lieu  de  cete  Equation 

-^x^  * "iyxx.—  zoX"iQx  "  6  70  0,  efcrire  ces  deux 

C  c  c  autres 


185 


l86  La*Geometrie. 

autres  H-  xx'--  4  at—  5  so  0.  Et  •+-  .va:  H-  4  ^  "^  2  30  e?. 

car;' eft 4,^;';' eft 8,/^ eft  17,  &  ^  eft  20,  de  façonque 

tirant  les  racines  de  ces  deux  Equations,  on  trouue  tou- 
tes les  mefmes ,  que  fi  ou  les  tiroit  de  celle  oii  eft  a;  -^ ,  a 
fçauoir  on  en  trouue  vne  vraye",  qui  eft  f/  7  H-  1,6c  trois 
fauftes,  qui  font  /  7  --  2,  z  -4-  |/  2,  &  2  -  V'z. 
AiniiayantA;'^— 4  ata:-  8  x~h-  ^yt^^^jpourceque  la  racine 
dej'  ^  -  ty  ^  ~  1 14-yy  ^' "  ^4  ^  ^,  eft  derechef  16 ,  il  faut 
efcrire 
;ca;  —  4.'^  -I-  j  00  <7,  Scxx-h-  4 ,r -J-  7  :x)  ^. 

Caricy-Hi_y;'..^/;..f^fait5',&-Hi;7-|:  /;  4-t 
fait7.  Et  pourcequ'on  ne  trouue  aucune  racine ,  ny 
vraye,nyfauflc,  en  ces  deux  dernières  Equations  ^  on 
connoiftdelà  que  les  quatre  de  l'Equation  dont, elles 
procèdent  font  imaginaires^  &  que  le  Problefme ,  pour 
lequel  on  l'a  trou uée,  eft  plan  de  fâ  nature  j  mais  qu'il 
ne  fçauroit  en  aucune  façon  effreconftruit,acaufe  que 
les  quantités  données  ne  peuuent  fè  roindre. 

Tout  de  mefme  ayant 

pourcequ*on  trouue  aa  H-  ce  pourj'j',  il  faut  efcrire 
jy^  —  y  aa-)rcc  \~h~ach  —  \^a  V  aa-i-  ce  OOo,  6c 
^^-^-  V  aa-^  ce  ^-h-^aa'-i-^a  Vaa-^cCXto, 

Car  y  eft  Vaa-^-cc,  &  -H  \yy  -^-  i,p  ciïlaa.  Se  fy 

cfti;^  -^'aa-hcc»  D'oùonconnoift  que  la  valeur  de  t^ 

eft 


186 


THIRD  BOOK 

Obtaining  the  roots  of  these  two  equations,  we  get  the  same  results  as 
if  we  had  obtained  the  roots  of  the  equation  containing  x*,  namely,  one 

true  root,  V  7  +  2,  and  three  false  ones,  V  7  -  2,  2  +  V  2  ,  and  2  -  V  2. 
Again,  given  .r*— 4.r-— 8.r+35  ^0.  we  have  3;"— 8y— 124y-— 64  =  0, 
and  since  the  root  of  the  latter  equation  is  16,  we  must  write 
x^—4x-\-5  =  0  and  x--{-4x~^7  =  0.    For  in  this  case, 

and  ,     1     2       1   >.   ,    ^        7 

Now  these  two  equations  have  no  roots  either  true  or  false,'"''  whence 
we  know  that  the  four  roots  of  the  original  equation  are  imaginary; 
and  that  the  problem  whose  solution  depends  upon  this  equation  is 
plane,  but  that  its  construction  is  impossible,  because  the  given  quanti- 
ties cannot  be  united. '^^^' 
Similarly,  given 

^4+   (1.^2  _  ^2\^2_  (^3  +  ^,2)  ^  +  A^4_  A^2^2  ^  Q, 

since  we  have  found  3'"  =  a-  -\-  c-,  we  must  write 
and 

[223]  -pj^g^  jg^  ^]j  j^g  roots  are  imaginary. 

ts24]  'p]^^^  jg   ^Yit  given  quantities  cannot  be  taken  together  in  the  same  problem. 


187 


GEOMETRY 


For  y=  ^Ja^  +  c^  and  +  \y'+  \p=  ^a^  and  2~  =  y  «  ^Ja^  +  c^,  then 
we  have 


^  =  Y  ^ '''  +  '-  +\/  -  \a^+^c^+  I  a  a'^2-+72 


or 


Now  we  already  have  z  +  -  a  =  x,  and  therefore  x,  the  quantity  in 
the  search  for  which  we  have  performed  all  these  operations,  is 


To  emphasize  the  value  of  this  rule,  I  shall  apply  it  to  a  problem. 
Given  the  square  AD  and  the  line  BN,  to  prolong  the  side  AC  to  E,  so 
that  EF,  laid  off  from  E  on  EB.  shall  be  equal  to  NB. 

Pappus  showed  that  if  BD  is  produced  to  G,  so  that  DG  =  DN,  and 
a  circle  is  described  on  BG  as  diameter,  the  required  point  E  will  be 
the  intersection  of  the  straight  line  AC  (produced)  with  the  circum- 
ference of  this  circle.''"'' 

Those  not  familiar  with  this  construction  would  not  be  likely  to  dis- 
cover it,  and  if  they  applied  the  method  suggested  here  they  would 
never  think  of  taking  DG  for  the  unknown  quantity  rather  than  CF 
or  ED,  since  either  of  these  would  much  more  easily  lead  to  an  equa- 

'''''  Pappus  Lib.  VII,  Prop.  72,  Vol.  II,  p.  783.  The  following  is  in  substance 
the  proof  given  by  Pappus.  He  first  gives  an  elaborate  proof  of  the  following 
lemma:  Given  a  square  ABCD,  and  E  a  point  in  AC  produced,  EG  perpendicular 
to  BE  at  E,  meeting  BD  produced  in  G,  and  F  the  point  of  intersection  of  BE  and 
CD.  Then  CD^  -f  FE"^  =  DG.^  Then  he  proceeds  as  follows:  By  the  construe 
tion  given  in  the  problem,  I5N'^=BD'-f- BN'^  By  the  lemma,  DG^=CDVfE^. 
By  construction,  BD  =  CD  and  DG  =  DN.     Therefore,  FE  =  BN. 


188 


Livre  Troisiesme. 


3h 


oubieii  ^  f'aa -h  7c- "^- iaa-h^  ce  -{-  '-^aV  aa-^ ce. 
Et  pourceque  nous  anions  fait  cy  deflus  :^H-  I^ooat, 
nous  apprenons  que  laquantite.v,  pourlaconnoifTance 
de  laquelle  nous  auons  fait  toutes  ces  operations,  eft 


h  -i^-H  V^aa  -hlcc-^^  ^cc--  \aa  -h'^a  V'aa  -H 


ce. 


Maisaffin  qu'on  puiffe  mieux  connoiftre  l'vtilite  de  ^^J.^^jP^^"^ 
cetereiele  il  faut  que  ie  rapplique  a  quelqj  Problefme.de  cesfe- 

Si  le  quarré  A  D,  &  la  ligne  B  N  eftant  donnes ,  il  faut 
prolonger  le  cofte  A  C  iufques  a  E,  en  forte  qu  E  F,tirec 
d'EversB,  foit  efgale  a  NB.  On  apprent  de  Pappus, 
qu  ayant  premièrement  prolonge' BD  iufques  à  G  ,  en 
forte  que  D  G  foit  efgale  à  D  N,  &  ayant  defcrit  vn  cer- 
cle dont  le  diamètre  foit  B  G  ,  fi  on  prolonge  la  ligne 
droite  AC,ellerencontreralacirconference  de  ce  cer- 
cle au  point  E,  qu'on  demandoit.  Mais  pour  ceux  qui  ne 
fçauroiet  point  cete  côflrucStion  elle  feroit  affés  dilficile 
à  rencotrer,&  en  la  cherchât  par  la  méthode  icy  propo- 
fée,  ils  ne  s'auiferoiêt  iamais  de  prêdrc  D  G  pour  la  quâ- 
tité  inconnue,  maisplutoft  C  F ,  ou  F  D ,  a  caufe  que  ce 

Ccc  2  font 


189 


i88  La  Géométrie. 

font  elles  qui  conduifent  le  plus  ayfement  a  l'Equatiô.'  & 
lors  ils  en  trouueroiêt  vne  qui  ne  feroic  pas  facile  a  deme- 
fler,  fans  la  reigle  que  ie  viens  d'expliquer.  Carpofant^ 
pour  B  D  ou  C  D,  &  ^  pour  E  F ,  &  .v  pou r  D  F,  on  a  C  F 
00  a  -AT,  &  corne  C  F  ou  ^  —^•,eft  àF  E  ou  f,ainfî  F  D  ou  .v, 

efl  a  B  F,  qui^ar  confequent  eft  ^— .  Puis  acaufe  du  tri- 
angle redtangle  B  D  F,  dont  les  coftés  font  l'vn  a:  &  l'au- 
tre a  y  leurs  quarres,'qui  font  xx-\-  a.  a^  font  efgaux  a  ce- 

luy  de  labaze;  qui  eft  ^.^..TJ'x^  c^c,  >^^  ^^Ç°"  4"^  multi- 
pliant le  tout  par  xX'-zax-^-aayOW  trouue  que  l'E- 
quation ç,ÇiX^ "xax^  "-^ ^ci(txX'-xa'> X -)r a^'Xi ce xXy 

oubien  :v*  —  2  /ï  :w  ^  ^_^1^  x  x  —2^5  x-V-  a  *  33  a.  Et  on 
connoift  par  les  reigles  précédentes, que  fa  racine,  qui 
eftîaîongeurdelaligneDF,eft  \a  H-  V'^aa-h^cc 

,^V ^cc  —  ~  aa-^^aV aa-i-  ce. 

Que  11  on  pofoit  B  F,  ou  C  E  ,  ou  B  E  pour  la  quantité 
mconnuë,.  on  vieiîdroît  derechef  à  vue  Equation,  en  la- 
quelle il  y  auroit  4  dimenfîons,  mais  qui  feroit  plus  ayfée 
a  démeficr,  5c  on  y  viendroit  affes  ayfement  ;  au  lieu  que 
fî  c'eftoit  D  G  qu'on  fuppofaft ,  on  viendroit  bea'ucoup 
plus  difficilement  a  l'Equation,  mais  aufTy  elle  feroit  très 
fimple,  Cequeie  mets  icy  pour  vous  auertir,  que  lorf. 
que  le  Problefme  propofe'n'eft  point  folide,  fi  en  le  cher- 
chant par  vn  chemin  on  vient  a  vne  Equation  fort  corn. 
pofce,onpeut  ordinairement  venir  a  vne  plus  liraple,  en 
le  cherchant  par  vn  autre. 

le  pourrois  encore  aioufter  dioerfes  reigles  pour  dé- 
melîer  les  Equations,  q^ui  vont.au  Cube ,  ou  au  Quarre 

de 


190 


THIRD  BOOK 

tion.    They  would  thus  get  an  equation  which  could  not  easily  be  solved 
without  the  rule  which  I  have  just  explained. 

For,  putting  a  for  BD  or  CD,  c  for  EF  and  x  for  DF,  we  have 
CF  =  a~x,  and,  since  CF  is  to  FE  as  FD  is  to  BE,  we  have 

a—x:  c  =x:  BE, 

whence  BF^ — ^ — .     Now,  in  the  right  triangle  BDE  whose  sides  are 
a  —  x 

X  and  a,  X'-\-a-,  the  sum  of  their  squares,  is  equal  to  the  square  of  the 

C'X- 

hypotenuse,  which  is  — — ^ — ..     o      Multiplying  both  sides  by 

,1  i—  c/ ,  I     j    CI 

x-—2ox-\-a- 
we  get  the  equation, 

X* —2ax^-]-2a'x- —2a^x-\-a'^  =  c~x~, 
or 

x'—2ax"-\-(2a-—c-)x--2a"x+a*  =  0, 

and  by  the  preceding  rule  we  know  that  its  root,  which  is  the  length  of 
the  line  DF,  is 


^«+  \rr«^+  -T<^'^  ~-  \nr^^-  ^«^+  ~9"  V«"+^'- 


If,  on  the  other  hand,  we  consider  BE,  CE,  or  BE  as  the  unknown 
quantity,  we  obtain  an  equation  of  the  fourth  degree,  but  much  easier 
to  solve,  and  quite  simply  obtained.'""' 

Again,  if  DG  were  used,  the  equation  would  be  much  more  difficult 
to  obtain,  but  its  solution  would  be  very  simple.  I  state  this  simply  to 
warn  you  that,  when  the  proposed  problem  is  not  solid,  if  one  method 
of  attack  yields  a  very  complicated  equation  a  much  simpler  one  can 
usually  be  found  by  some  other  method. 

''^*^  Taking  BF  as  the  unknown  quantity,  the  resulting  equation  is 
X*  +  2<:.r-  +  {c-  —  2a-). v-  —  2a- ex  —  a-c-  =  0. 
Rabuel,  p.  487. 


191 


GEOMETRY 

I  might  add  several  different  rules  for  the  solution  of  cubic  and 
biquadratic  equations  but  they  would  be  superfluous,  since  the  con- 
struction of  any  plane  problem  can  be  found  by  means  of  those  already 
given. 

I  could  also  add  rules  for  equations  of  the  fifth,  sixth,  and  higher 
degrees,  but  I  prefer  to  consider  them  all  together  and  to  state  the 
following  general  rule  : 

First,  try  to  put  the  given  equation  into  the  form  of  an  equation 
of  the  same  degree  obtained  by  multiplying  together  two  others,  each 
of  a  lower  degree.  If,  after  all  possible  ways  of  doing  this  have  been 
tried,  none  has  been  sucessful,  then  it  is  certain  that  the  given  equation 
cannot  be  reduced  to  a  simpler  one  ;  and,  consequently,  if  it  is  of  the 
third  or  fourth  degree,  the  problem  depending  upon  it  is  solid  ;  if  of 
the  fifth  or  sixth,  the  problem  is  one  degree  more  complex,  and  so 
on.  I  have  also  omitted  here  the  demonstration  of  most  of  my  state- 
ments, because  they  seem  to  me  so  easy  that  if  you  take  the  trouble 
to  examine  them  systematically  the  demonstrations  will  present  them- 
selves to  you  and  it  will  be  of  much  more  value  to  you  to  learn  them 
in  that  way  than  by  reading  them. 


192 


Livre  Troisiesme.  389 

de  qnarre,  mais  elles  fcroient  fliperfîucs  ;  car  îorfque  les 
Problefmes  fout  plans  ,on  en  peut  toufiours  trouuer  la 
Gonftrutftion  par  celles  cy, 

le  pGurrois  aiifTy  en  adiouflrer  d  autres  pour  les  Equa^   Regie 
tions  qui  montent  iufques  au  furfblide,  ou  au  Qnarré  de  ^0""^ ! 
cube, ou  au  delà,  mais  i'ayme  mieux  les  comprendre  dukeies 
toutes  en  vne,  &  dire  en  general,  que  /orfqu  on  àtafchc'qu^paj:  ^ 
de  les  réduire  a  mefme  forme,  que  celles  d  antant  de  ai-  ^•^"'^  '^ 
menfîons,quivieuent  delà  multiplrcation  de  denx  au-  quarré.  ^ 
très  qui  en  ont  moins,  &  qu'ayant  dénombré  tous  les 
moyens,  par  lefquels  cete  multiplicatioaeft  pofTible ,  la 
chofe  n'a  pu  fucceder  par  aucun,  on  doits'aflurer  qu'el- 
les ne  fçauroient  eftre  réduites  a  de  plus  fîmples.  En  for- 
te que  fi  la  quantité  inconnue  a  3  on  4  dimenfions,Ie  Pro- 
blefme  pour  lequel  on  la  cherche  eft  folide^-  &  fi  elle  en  a 
5,oni?,ileftd'vndegrépluscompofèi  &ainfi  des  autres. 

Au  rcfte  i'ay  omis  icy  les  demonftrations  de  la  plus 
part  de  ce  que  iay  dit  a  caufe  qu'elles  m'ont  femblé  fi  fa- 
ciles, que  pourvûque  vous  preniesla  peine  d'examiner 
méthodiquement  fi  iay  failly, elles  fè  prefenteront  a  vous 
d'elles  mefme:  &  il  fera  plus  vtile  de  les  apprendre  en  ce- 
te façon,  qu'en  les  lifant. 

Or  quand  on  eft  afllire,  que  le  Problefme  propofe  eft  „^^3°"^^" 
folide,  foit  que  l'Equation  par  laquelle  on  le  cherche  pourcon- 
monte  au  quatre  de  quarrê,  foit  qu  elle  ne  monte  que  tJus'^ks 
iufquesaucube,  onpeut  toufiours  en  trouuer  la  racine  problei^ 
par  l'vne  des  trois  fed;ions  coniques ,  laquelle  que  ce  foie  allrb- 
ou  mefmepar  quelque  partie  del'vnc  d'elles,  tant  petite  ^"'^  ^" 
qu'elle  puiffe  eftre-  en  ne  fe  feruât  au  refte  que  de  lignes  quadôde 
droites, ôd de  cercles.     Mais  ieme  contenteray  icy  de  "o'sou 

"'  j  quatre  di- 

CCC    5  donner  men{Ions. 

193 


390  La  Géométrie. 

donner  vne  reigle  generalepourles  trouuer  tontes  par  le 
moyen d'vne  Parabole,  a  caufe  qu'elle  efl  en  quelque  fa- 
çon la  plus  fimple. 

Premièrement  il  faut  ofler  le  fécond  terme  de  l'Equa- 
tion propofee,  s'il  n'eft  défia  nul,  &  ainfi  la  réduire  à  tel- 
le forme,  ^^30*.ap2^,a  aq,  fi  la  quantité'  inconnue  n'a 
que  trois dimenfionsj  oubienàtelle,  ^^^o"*.  ap^'{.  aaq^, 
a  5  rfi  elle  en  a  quatre^oubien  en  prenant  a  pour  IVnité, 
à  telle,  ^  '  30  *. /?  ;^.  ^,  &  à  telle 


an 


T 


Aprci 


194 


THIRD  BOOK 


Now.  when  it  is  clear  that  the  proposed  problem  is  solid,  whether 
the  equation  upon  which  its  solution  depends  is  of  the  fourth  degree  or 
only  of  the  third,  its  roots  can  always  be  found  by  any  one  of  the  three 
conic  sections,  or  even  by  some  part  of  one  of  them,  however  small, 
together  with  only  circles  and  straight  lines.  I  shall  content  myself 
with  giving  here  a  general  rule  for  finding  them  all  by  means  of  a  para- 
bola, since  that  is  in  some  respects  the  simplest  of  these  curves. 

First,  remove  the  second  term  of  the  proposed  equation,  if  this  is  not 
already  zero,  thus  reducing  it  to  the  form  z^  =  -±aps±à'q.  if  the  given 
equation  is  of  the  third  degree,  or  z^  =  ±apz^±a-qz±a'r,  if  it  is  of  the 
fourth  degree.     By  choosing  a  as  the  unit,  the  former  may  be  written 


195 


GEOMETRY 


z^  =  ±pz±q  and  the  latter  z^  =  ±p2^±qz±r.  Suppose  that  the  para- 
bola FAG  (pages  194-198)  is  already  described;  let  ACDKL  be 
its  axis,  a,  or  1  which  equals  2AC,  its  latus  rectum  (C  being  within  the 
parabola),  and  A  its  vertex.  Lay  off  CD  equal  to  |/>  so  that  the  points 
D  and  A  lie  on  the  same  side  of  C  if  the  equation  contains  -\-p  and  on 
opposite  sides  if  it  contains  — p.  Then  at  the  point  D  (or,  if  p  =0.  at 
C^  erect  DE  perpendicular  to  CD.  so  that  DE  is  equal  to  -h  q, 
and  about  E  as  center  with  AE  as  radius  describe  the  circle  EG,  if  the 
given  equation  is  a  cubic,  that  is,  if  r  is  zero. 


196 


Livre   TroIsiesme.  ÎPr 

Apres  cela  fnppofant  que  la  Parabole  F  AG  eft  défia 
defcrite,  Se  que  fon  aifîieu  efc  A  G  D  K  L,  &  que  fon  co- 
fte  droit  eft  «,  ou  i ,  dont  A  C  eft  la  moitié',  &  enfin  que 
k  point  C  eft  au  dedans  de  cete  Parabole,  &  que  A  en  efc 
lefommet;  Il  faut  faire  C  Dsoi/;,  &  la  prendre  du  mef- 
me  cofcé,  iju'eft  le  point  A  au  regard  du  point  C ,  s'il  y  a 
"h  pen  l'Equation .  mais  s'il  y  a  -  /?  il  faut  la  prendre  de 
l'autre  cofte.    Et  du  point  D,  oubien  ,  fi  la  quantité 


p  eftoitnulle.du  point  C  il  faut  eflcuer  vne  ligne  a  an^ 
gles droits iufques a E,  en  forte  quelle  foit  efgale  n\q. 
Et  enfin  du  centre  E  il  faut  defcrire  le  cercle  FG,  donc 


197 


^9^ 


La  Géométrie. 

ledemidiametre  foie 
A  E  ,  fi  l'Equation 
n'efc  que  cubique,  en 
forte  que  la  quanti- 
tér  foit  nulle.  Mais 
quand  il  y  a  -H  r  il 
faut  dans  cete  ligne 
A  E  prolonge'e,  pren- 
dre d'vn  cofte  A  R 
efgale  à  r,  &  de  l'autre 
AS  efgale  au  cofté 
droit  de  la  Parabole 
quiefc  i,  &:  ayant  de- 

fcrit  vn  cercle  dont  le  diamètre  foit  R  S,  il  faut  faire  A  H 

perpêdiculaire  fur 
A  E  ,  laquelle  A  H 
rencontre  ce  cer- 
cle R  H  S  au  point 
H,quie{tceluypar 
où    l'autre  cercle 
F  H  G  doit  pafler. 
Et  quand  il  y  a  —  r 
il  faut  âpres  auoir 
ainfî  trouuc  la  ligne 
A  H ,  infcrirc  A I, 
qui  luy  Ibit  efgale, 
dans  vn  autre  cer- 
cle ,  dont  A  E  (bit 
le  diamètre,  &  lors 
c'eftparle  point  I, 
que 


198 


THIRD  BOOK 

If  the  equation  contains  -\-  r,  on  one  side  of  AE  produced,  lay  ofif 
AR  equal  to  r,  and  on  the  other  side  lay  off  AS  equal  to  the  latus 
rectum  of  the  parabola,  that  is,  to  1,  and  describe  a  circle  on  RS  as 
diameter.  Then  if  AH  is  drawn  perpendicular  to  AE  it  will  meet  the 
circle  RHS  in  the  point  H,  through  which  the  other  circle  FHG  must 
pass. 

If  the  equation  contains  —  r,  construct  a  circle  upon  AE  as 
diameter  and  in  it  inscribe  AI,  a  line  equal  to  AH  f"^^  then  the  first 
circle  must  pass  through  the  point  I. 

'"^'  That  is,  draw  a  chord  equal  to  AH. 


199 


GEOMETRY 

Now  the  circle  FG  can  cut  or  touch  the  parabola  in  1,  2,  3,  or  4 
points  ;  and  if  perpendiculars  are  drawn  from  these  points  upon  the 
axis  they  will  represent  all  the  roots  of  the  equation,  both  true  and 
false.  If  the  quantity  q  is  positive  the  true  roots  will  be  those  perpen- 
diculars, such  as  FL,  on  the  same  side  of  the  parabola,  as  E,'"*'  the 
center  of  the  circle  ;  while  the  others,  as  GK,  will  be  the  false  roots. 
On  the  other  hand,  if  q  is  negative,  the  true  roots  will  be  those  on  the 
opposite  side,  and  the  false  or  negative  roots'"'"'  will  be  those  on  the 
same  side  as  E,  the  center  of  the  circle.  If  the  circle  neither  cuts  noi 
touches  the  parabola  at  any  point,  it  is  an  indication  that  the  equation 
has  neither  a  true  nor  a  false  root,  but  that  all  the  roots  are  imagi- 
nary.'""' 

This  rule  is  evidently  as  general  and  complete  as  could  possibly  be 
desired.  Its  demonstration  is  also  very  easy.  If  the  line  GK  thus  con- 
structed be  represented  by  r,  then  AK  is  s-,  since  by  the  nature  of  the 
parabola,  GK  is  the  mean  proportional  between  AK  and  the  latus  rec- 
tum, which  is  1.  Then  if  AC  or  ^,  and  CD  or  ^p,  be  subtracted  from 
AK,  the  remainder  is  DK  or  EM,  which  is  equal  to  z' — \p — J  of  which 
the  square  is 

And  since  DE  =  KM  =  -^  q,  the  whole  line  GM  =  z-\--^-  g,  and  the  square 
of  GM  equals  z'^-\-gz+  ^ 'f-   Adding  these  two  squares  we  have 

z^-Pz^^qz^  \g'+  -}/+  \p^\ 

IMS]  'y\y^\_  is,  on  the  same  side  of  the  axis  of  the  parabola. 

[229]  «Leg  fausses  ou  moindres  que  rien."  This  is  the  first  time  Descartes  has 
directly  used  this  synonym. 

'*^"'  It  may  be  noted  that  Descartes  considers  the  cubic  as  a  quartic  having  zero 
as  one  of  its  roots.  Therefore,  the  circle  always  cuts  the  parabola  at  the  vertex. 
It  must  then  cut  it  in  another  point,  since  the  cubic  must  have  one  real  root.  It 
may  or  may  not  cut  it  in  two  other  points.  It  may  cut  it  in  two  coincident  points 
at  the  vertex,  in  which  case  the  equation  reduces  to  a  quadratic. 


200 


Livre  Troisiesme.  393 

(^uc  doit  pafler  F I G  le  premier  cercle  cherche.  Or  ce 
cercle  FGpeuccoupper,  ou  toucher  la  Parabole  en  i, 
ou  2,  ou  3,  ou  4  poins,  defquels  tirant  des  perpendiculai- 
res fur  laifîieu,  on  a  toutes  les  racines  de  l'Equation  tant 
vrayes,  que  faufles.  A  fçauoir  fî  la  quantité'//  eft  marquee 
du  ligne -H,  les  vrayes  racines  feront  celles  de  ces  per- 
pendiculaires, qui  fe  trouueront  du  mefmecofte  delà 
parabole,  que  E  le  centre  du  cercle,  comme  F  L  ;  &  les 
autresj  comme  G  K,  feront  faufTe^  :  Mais  au  contraire  fî 
cete  quantité' ^efl  marquée  du  fîgne  —  les  vrayes  feront 
celles  de  Tantrecofté;  ôc  les  fauiïes,  ou  moindres  que 
rien  feront  du  cofte^'ôu  eft  E  le  centre  du  cercle.  Et  en- 
fin fi  ce  cercle  ne  CGuppe,ny  ne  touche  la  Parabole  en  au- 
cun point,  cela  tefmoigne  qu'il  n'y  a  aucune  racine  ny 
vraye  ny  faufTe  en  l'Equation  ,  &  qu'elles  font  toutes 
imaginaires.  En  forte  que  cete  reigle  eft  la  plus  généra- 
le ,  &:  la  plus  accomplie  qu'il  foit  pofîîble  de  fou- 
haiter. 

Etlademonftration  en  eft  fort  ayfi'e.  Cai*  fî  la  ligne 
GKjtrouuéeparceteconftrudtion,  fe  nomme  î^,  AK 
fera  ^^  a  caufe  de  la  Parabole  ,  en  laquelle  GK  doit 
eftre  moyene  proportiouelIe,entre  A  K,  &  le  cofte  droit 
qui  eft  i.pui  s  (î  de  AKi'ofte  AC,  qui  eft  ^  ,  &  C  D  qui 
eft  ~p,  il  refce  D  K,  ou  E  M,  qui  eft  ^^—  \p-  | ,  dont  le 
quarre  eft 

X'-pV^'-'^^-^ÏPP'^k^^l-  &:  a  caufe  que  DE,  ou 
KMeft^<7,latouteGMeft:(-+-^/7,  dont  le  quatre' eft 

^^'^^^■^"ï'77»*^^^^^"'^^'^"^^^^  deuxquarrés,  on  a 

Ddd  pour 


201 


394 


La  Géométrie. 


d>r 


r 


ponrîequarredelaligneG  E,  acaufe  qu'elle  eft  la  baze 
du  triangle  re<îtangle  E  M  G. 

Maisacaufe  que  cete  mefme  ligne  G  E  eft  le  demi- 
diametre  du  cercle  F  G,  elle  fe  peue  encore  expliquer  en 
d'autres rermes^afçauoirE  D  eftant^*^,  &:  AD  eftant 

ip  -f-  ^,E  A  eft  î/  ^  fq-^iPp-^'  ip^i^  caufe  de  Tan- 
gle droit  A  D  E,  puis  H  A  eftant  moyene  proportionelle 
entre  A  S  qui  eft  i  &  A  R  qui  eft  r,elle  efc  Vr-  &  à  cau- 
fe de  Tangle  droit  E  A  H,  le  quarré  deH  E  ,  oa  E  G  eft 

-qq'^\PP'^\P  '^  ï  '^  ^  •  fibienque  il  y  a  Equation 

entre 


202 


THIRD  BOOK 


for  the  square  of  GE,  since  GE  is  the  hypotenuse  of  the  right  triangle 
EMG. 

But  GE  is  the  radius  of  the  circle  FG  and  can  therefore  be  expressed 
in  another  way.  For  since  ED  =  i  g,  and  AD  =  i  /,-!_  i,  and  ADE  is 
a  right  angle,  we  have 


Then,  since  HA  is  the  mean  proportional  between  AS  or  1  and  AR  or  r, 
HA=  V  ;-;  and  since  EAH  is  a  right  angle,  the  square  of  HE  or  of  EG  is 

and  we  can  form  an  equation  from  this  expression  and  the  one  already 


203 


GEOMETRY 

obtained.  This  equation  will  be  of  the  form  s^  =  ps-—qs-\-r,  and  there- 
fore the  line  GK,  or  r,  is  the  root  of  this  equation,  which  was  to  be 
proved.  If  you  will  apply  this  method  in  all  the  other  cases,  with  the 
proper  changes  of  sign,  you  will  be  convinced  of  its  usefulness,  without 
my  writing  anything  further  about  it. 

Let  us  apply  it  to  the  problem  of  finding  two  mean  proportionals 

between  the  lines  a  and  q.    It  is  evident  that  if  we  represent  one  of  the 

2  23 

z         z      z 
mean  proportionals  by  a,  then  a:2=z:       =       :    ,.     Thus  we  have  an 

equation  between  ç  and    2>  namely,  z'^  =  a^q. 

Describe  the  parabola  FAG  with  its  axis  along  AC,  and  with 
AC  equal  to  ^  a,  that  is,  to  half  the  latus  rcclum.  Then  erect  CE 
equal  \.o  \q  and  perpendicular  to  AC  at  C,  and  describe  the  circle  AF 


204 


Livre  Troisiesme.  ^^-^ 

entre  cete  fbmme  &  la  précédente,  cequiefi:  lemefine 
que  ^  *  30  *p^X"  q  ^-f-  r.  &  par  confequent  la  ligne  trou- 
vée GK  qui  a  efcé  nommée  ;^efc  la  racine  de  cete  Equa- 
tion, ainfî  qu'il  falloic  demonftrer.  Et  fi  vous  appliqués 
ce  mefme  calcul  a  tous  les  autres  cas  de  cete  reigle,  en 
changeant  les  fignes  -H  &  —  felon  Toccafion  ,  vous  y 
trouuerés  voftre  conte  en  mefme  lbrte,fans  qu'il  foit  be- 
tfoin  que  ie  m'y  arefte. 


Si  on  veut  donc  fuiuant  cete  reigle  trouuer  denxmo» 
yennesproportionelles  entre  les  lignes  a  &  ^;  chafcun 
fçaitquepofant  ^  pourlVne,  comme  <ï  eft  à  ;^  ,   ainfi 


;^à-^,  &  7  à  ^jdefaçonqu'ily  a  Equation  entre  q  Se  L'inucn- 

rionde 

^j,  c'efladire,;^'  0)=*  *^^^.EtIaParaboleF  AGeilant  f^HTô- 

portio- 
2 


X 


Ddd 


j       porno- 
de-  ndles. 


205 


^^^  La  Géométrie. 

defcrite,  auec  la  partie  de  fon  aifïîeu  A  C,  qui  eft  ^«  la 
moitie'du  cofte  droit  ;  il  faut  du  point  C  efleuer  la  per- 
pendiculaire C  Eefgaleà^^j&ducentre  E,parA,  de- 
fcriuantleccrcle  AF, ontrouue  FL,  &:LA,  pour  les 
deux  moyennes  cherchées. 


;n  trois. 


Tout  de  mefme  fî  on  veut  diuifer  l'angle  NOP,  ou- 
de^fu^fe"  bienlarc,  ou  portion  de  cercle  N  QJL'  P,  en  trois  par- 
vn  angle  ^^q^  ef^ales  •  faifant  N  O  30  i ,  pour  le  rayon  du  cercle,  & 
NP  30^,  pour  la  fubtendue  de  lare  donne,  &NQoo:^, 
pour  la  fubtendue  du    tiers  de  cet  arc  j  l'Equation 
vient, 

i^i3o'''3;^--</.  Car  ayant  tiré  les  lignes  Nd,  OQ, 
OT;&  faifant  QS  parallèle  a  TO,  on  voit  que  comme 
NOeftaNQ^ainfiNCLaqRjôcQRaRSj  enforte 

que 

206 


THIRD  BOOK 

about  E  as  center,  passing  through  A.  Then  FL  and  LA  are  the 
required  mean  proportionals. '""'' 

Again,  let  it  be  required  to  divide  the  angle  NOP,  or  rather, 
the  circular  arc  NOTP,  into  three  equal  parts.  Let  NO  =  1  be 
the  radius  of  the  circle,  NP  =  q  he  the  chord  subtending  the  given  arc, 
and  NQ^^r  be  the  chord  subtending  one-third  of  that  arc;  then  the 
equation  is  2^  =3s — q.  For,  drawing  NQ,  OO  and  OT,  and  drawing 
QS  parallel  to  TO,  it  is  obvious  that  NO  is  to  NO  as  NO  is  to  QR  as 
QR  is  to  RS.  Since  NO  =  1  and  NO  =  ^,  then  OR  =  3-  and  RS  =  2^  ; 
and  since  NP  or  q  lacks  only  RS  or  2^  of  being  three  times  NO  or  2,  we 
have  q  =  32 — 2^  or  2^  =  32 — g.''^"' 

Describe  the  parabola  FAG  so  that  CA,  one-half  its  latus  rectum, 

13  1 

shall  be  equal  to  -^,-;  take  CD=  ^^and  the  perpendicular   DE=  ^  Ç'' 

then  describe  the  circle  FA^G  about  E  as  center,  passing  through  A. 
This  circle  cuts  the  parabola  in  three  points,  F,  g,  and  G,  besides  the 
vertex,  A.  This  shows  that  the  given  equation  has  three  roots,  namely, 
the  two  true  roots,  GK  and  gk,  and  one  false  root,  FL.'''""    The  smaller 

'•"^  This  may  be  shown  as  follows:     Draw  FM  ±  to  EC;  let  FL=2.     From 

the  nature  of  the  parabola,  FL^=a  .  AL;  AL=  — ;  ËC^-fCÀ^=ÈA^  ËM^FM' 

a 

=ËF^  EA'=|^-f ''^;  Ëm'  =  (EC  -  FL)^=  /^  y-.-V;  FM'=CÏ?=  (AL-AC)^ 

=  ("-4^5  EF'=Ç'-9^  +  ^-+4  — ■s'+'t-     ButEF=EA. 
\a         2  I  4^  a-'  4 

4        4        4  a^  4 

whence  s^  =  a^q. 

[232]  ^  NOQ  is  measured  by  arc  NQ  ; 

ZQNS  is  measured  by  è  arc  QP  or  arc  NQ  ; 
ZSQR=ZQOT  is  measured  by  arc  QT  or  NQ  ; 
.••ZOQN=ZNQR=ZQSR. 
.•-NO  :  NQ=  NQ  :  QR  =  QR  :  RS. 
QR  =  .s-  ;  RS  =  s-\  Let  OT  cut  NP  at  M. 
NP  =  2NR -h  MR  =  2NQ -}- MR 
=  2NQ  +  MS  — RS 
=  2NQ-1-QT— RS 
=  3NQ  — RS. 
Or  g  =  3.C:  —  s^. 
Rabuel,  p.  534. 

'^^^  G  and  g  being  on  the  opposite  side  of  the  axis  from  E,  and  F  being  on  the 
same  side. 

207 


GEOMETRY 

of  the  two  roots,  gk,  must  be  taken  as  the  length  of  the  required  Hne 
NO,  for  the  other  root,  GK,  is  equal  to  NV,  the  chord  subtended  by 
one-third  the  arc  VNP,'™'  which,  together  with  the  arc  NOP  consti- 
tutes the  circle  ;  and  the  false  root,  FL,  is  equal  to  the  sum  of  ON  and 
NV,  as  may  easily  be  shown. '^^^ 

It  is  unnecessary  for  me  to  give  other  examples  here,  for  all  prob- 
lems that  are  only  solid  can  be  reduced  to  such  forms  as  not  to  require 
this  rule  for  their  construction  except  when  they  involve  the  finding 
of  two  mean  proportionals  or  the  trisection  of  an  angle.  This  will  be 
obvious  if  it  is  noted  that  the  most  difficult  of  these  problems  can  be 

[234]  Pqj.  pj.QQf^  ggg  Rabuel,  page  535. 


1^=1  Let    AB  =  &;    EB  :^  MR  =  m/fe  =  NL  :=  c;    KK  =  t;Kk  =  s;KL  =  r; 
KG=3);    kg=s,    FL=z;.  Then    GM.=y  +  c,    gm=s+c,    FN—v—c,   GK^=a.AK, 


ai=y\  t 


y    — 2 

^    ^ — — ,srk  =a.Ak,   as  =  z-,s 


a 


ME  =  AB-AK  =  (^ 


mE=  b  - 


EN= 


-b 


E  G^  =  EM^  +  MG'^ 


E  a''^  =  A  b'^  -f  BE^ 
Ëg'=  b^—  2^1''  4-  y'  +y  +  2cy  +  â 


lab 


y^-\-2a-c-\-  aP'y 

y 


2ab 


\z^+2a~c-\-a-z 


y^  +  2a-c-\-à^y z^-\-  2a-c  +  a-2 

y  ^ 


2a^c  =^  2-y-\-  2y~ 
Similarly, 

2a-c  =  v-y  — ■  vy- 
z-y  -j-  zy-  =  v-y  —  vy"  v-  —  z-  ^=vy'{-  zy 

v  —  z  —  y  v  —  y^rz  FL  =  KG-t-/î-^ 

Rabuel,  p.  540. 


208 


Livre  Troisiesme.  ^^7 

que  N  O  eflant  I ,  &:  N  Qeftant  :?^, QJl  eft  ^^,  &  R  S  eft 
:^':  Et  a  caiife  qu'il  s'en  faut  feulement  R  S,  ou  ^'^  que  la 
ligne  N  P,  qui  eft  q,  ne  foit  triple  de  N  Q^  qui  eft  :^,  ou 
à^30  3  ^"^^  oubieu, 

Puis  la  Parabole  F  A  G  eftant  defcrite ,  &  C  A  la  moi- 
tie^defbncofte'droit principal eftant^,  fîon  prent  CD 
a)|,&laperpendiculaireDEcso^^,  &  que  du  centre  E, 
par  AjOndefcriuelecercleFA^G,  ilcouppe  cete Pa- 
rabole aux  trois  poins  F,  ^,  &  G  ,  fans  conter  le  point  A 
qui  en  eft  le  fomm et.  Ce  qui  mouftre  qu'il  y  a  trois  raci- 
nes en  cete  Equation,  à  fçauoir  les  deux  G  K ,  5<:g  ^,  qui 
font  vrayes;  &  la  troifîefme  qui  eft  fauffe ,  a  fçauoir  F  L. 
Et  de  ces  deux  vrayes  c*eft  ^/^  laplus  petite  qu'il  faut 
prendre  pour  la  ligne  N  9  qui  eftoit  cherchée.  Car  l'au- 
tre G  K,  eftefgaleàN  V,  lafubtendue  de  la  troifîefme 
partie  de  l'arc  N  V  P,  qui  auec  l'autre  arc  N  QJ?  achcue 
le  cercle.  Et  lafaufte  F  L  eft  efgaîe  a  ces  deux  enfemble 
QJ^  &  N  V,  ainfi  qu'il  eft  ayfé  a  voir  par  le  calcul. 

Ilferoitfuperflusqueiem'areftaiïeadonner  icy  d'au-  Quetouî 
très  exemples-  car  tous  les  Problefmes  qui  ne  font  que  biefmes. 
foHdes  fe  peuuent  réduire  a  tel  point.qu'on  n'a  aucun  be-  ^°'"!"  ^^ 
foin  de  cete  reigle  pour  les  conftruire.fînon  entant  qu'el-  rcduire  a 
le  fert  a  trouuer  deux  moyennes  proportionelles,oubien  J",^^J^^. 
îidiuifervn  angle  en  trois  partiesefgales.  Ainfi  que  vous  tions. 
connoiftres  en  confiderant,  que  leurs  difficuke's  peuuent 
toufiours  eftre  comprifes  en  des  Equations ,  qui  ne  mon- 
tent que  iufque  au  quarré  de  quarre',  ou  au  cube  :  Et  que 
toutes  celles  qui  montent  au  quarré  de  quarrd ,  fe  redui- 
fent  au  quarre',  par  le  moyen  de  quelques  autres ,  qui  ne 

Ddd  3  montent 

209 


39B  La  Géométrie. 

montent  que  infques  au  cube:  Et  enfin  qu'on  peut  ofter 
le  fécond  terme  de  celles  cy.  En  forte  qu'il  n'y  en  a  point 
qui  ne  fe  puiffe  réduire  a  quelq^  vne  de  ces  trois  formes. 

Or  fi  on  a  ;^  '  30  ^** .-;?  ;^-i-  ^,  la  reigle  dont  Cardan  at- 
tribue l'inuention  a  vn  nommd'Scipio  Ferreus ,  nous  ap- 
prent  que  la  racine  eft. 


V  C.-4-  \q  -\'  V'^  qq  -^kjp'  -^V  ^  C.\  \  q  -h  y\  qq-^trP' 

Comme  auffy  lorfqu'on  a  ^^^  oo  ^*"  -H/;  :^4-  ^,  &.  que  le 

qparrd  de  la  moitié  du  dernier  terme  eft  plus  grand  que 

le  cube  du  tiers  de  la  quantité' connue  du  penultiefme, 

vne  pareille  reigle  nous  apprent  que  la  -racine  eft. 

D'où  il  paroift  qu'on  peut  conftruire  tous  les  Probief- 
mes,  dont  les  difficulteisfereduifent  alVne  de  ces  deux 
formes,  fans  auoir  befoin  des  fecStions  coniques  pour  au- 
tre chofe,  que  pour  tirer  les  racines  cubiques  de  quel- 
ques quantité'»  données,  c*eft  a  dire,  pour  trouuer  deux 
moyennes  proportionelles  entre  ces  quantite's  &  IVnite. 

Puisiîona^'30*-f-/?^H-^,  &  que  le  quatre  de  k 
moitié  du  dernier  terme  nefoit  point  plus  grand  que  le 
cube  du  tiers  delà  quantite'connuë  du  penultiefme,  en 
fuppofant  le  cercle  N  Q P  V,dont  le  demidiametre  NO 
foit  Vjp,  c'eftadirela  moyenne  proportionelle  entre 
le  tiers  de  la  quantité  donnée/^  &  l'vnitéj  &  fuppofant 

auffy  la  ligne  N  P  iufcrite  dans  ce  cercle  qui  foit  y 

c'eft 


210 


THIRD  BOOK 

expressed  by  equations  of  the  third  or  fourth  degree  ;  that  all  equa- 
tions of  the  fourth  degree  can  be  reduced  to  quadratic  equations  by- 
means  of  other  equations  not  exceeding  the  third  degree  ;  and  finally, 
that  the  second  terms  of  these  equations  can  be  removed  ;  so  that  every 
such  equation  can  be  reduced  to  one  of  the  following  forms  : 

^3  ^  —pz+q  s'  =  +ps-\-q  s'  =  -\-ps—q 

Now,  if  we  have  2^  =  — p2-\-q,  the  rule,  attributed  by  Cardan^^'^  to  one 
Scipio  Ferreus,  gives  us  the  root 


Similarly,  when  we  have  s^  =  -\-pz-\-q  where  the  square  of  half  the 
last  term  is  greater  than  the  cube  of  one-third  the  coefficient  of  the 
next  to  the  last  term,  the  corresponding  rule  gives  us  the  root 


It  is  now  clear  that  all  problems  of  which  the  equations  can  be 
reduced  to  either  of  these  two  forms  can  be  constructed  without  the 
use  of  the  conic  sections  except  to  extract  the  cube  roots  of  certain 
known  quantities,  which  process  is  equivalent  to  finding  two  mean  pro- 
portionals between  such  a  quantity  and  unity.  Again,  if  we  have 
z^  =  -\-pz-\-q,  where  the  square  of  half  the  last  term  is  not  greater 
than  the  cube  of  one-third  the  coefficient  of  the  next  to  the  last  term, 

describe  the  circle  NQPV  with  radius  NO  equal  to  \hy-_fi,  that  is  to 

the  mean  proportional  between  unity  and  one-third  the  known  quantity 

p.    Then  take  NP  =  ~  ,  that  is,  such  that  NP  is  to  q,  the  other  known 
P 

[216]  (3ai-(jan  ;  Liber  X,  Cap.  XI,  fol.  29  :  "Scipio  Ferreus  Bononiensis  iam  annis 
ab  hinc  triginta  fermé  capitulum  hoc  inuenit,  tradidit  uero  Anthonio  Marise  Flor- 
ido  Veneto,  qui  cû  in  certamen  z\x  Nicolao  Tartalea  Brixellense  aliquando  uenisset, 
occasionem  dedit,  ut  Nocolaus  inuenerit  &  ipse,  qui  cum  nobis  rogantibus  tradidis- 
ser,  suppressa  demonstratione,  freti  hoc  auxiho,  demonstrationem  quseliuimus, 
eamque  in  modos,  quod  dififciHimum  fuit,  redactam  sic  subjecimus." 

See  also  Cantor,  Vol.  II  (1),  p.  444;  Smith,  Vol.  II,  p.  462. 

'^'^  Descartes  wrote  this  : 


Vc.+|^+Vl^^+2>  +  Vc-iWi^^+è^' 


211 


GEOMETRY 

quantity,  as  1  is  to  —p,  and  inscribe  NP  in  the  circle.    Divide  each  of 

the  two  arcs  NQP  and  NVP  into  three  equal  parts,  and  the  required 
root  is  the  sum  of  NQ,  the  chord  subtending-  one-third  the  first  arc,  and 
NV,  the  chord  subtending  one-third  of  the  second  arc."'"' 

Firially,  suppose  that  we  have  z^  =  pz—q.  Construct  the  circle  NQPV 

whose  radius  NO  is  equal  to^/-— ^,  and   let  NP,  equal  to-^,  be  in- 

scribed  in  this  circle  ;  then  NO,  the  chord  of  one-third  the  arc  NQP, 
will  be  the  first  of  the  required  roots,  and  NV,  the  chord  of  one-third 
the  other  arc,  will  be  the  second. 

An  exception  must  be  made  in  the  case  in  which  the  square  of  half 
the  last  term  is  greater  than  the  cube  of  one-third  the  coefficient  of  the 
next  to  the  last  term  ;'^''^  for  then  the  line  NP  cannot  be  inscribed  in 
the  circle,  since  it  is  long-er  than  the  diameter.     In  this  case,  the  two 

'^'^^  It  may  be  noted  that  the  equation  z^  ^Zz  —  q  may  be  obtained  from  the 
equation  ^r^  =:  Ss  +  g  by  transforming  the  latter  into  an  equation  whose  roots  have 
the  opposite  signs.  Then  the  true  roots  of  .s^  =  3r  —  (7  are  the  false  roots  of 
2^  ^Zz-\-q  and  vice-versa.    Therefore  FL  =  NQ  +  NP  is  novir  the  true  root. 

[238]  'pj^g  so-called  irreducible  case. 


212 


Livre  Troisiesme. 


W 


c'eftadirequifoit  à  l'autre  quantité  donnée  q  comme 
IVnite  eft  au  tiers  de/?;  il  ne  faut  que  diuifer  chafcun  des 
deux  arcs  NQP&NVPen  trois  parties  efgales ,  Se  on 
auraNQ,  la  fubtendue  du  tiers  de  IVn ,  &N  Vlafub- 
tenduedu  tiersderautre,quîiointes  enferable  compo- 
fèront  la  racine  cherchée. 

Enfin  fî  on  a  i^  ao*;?  ^-q  ,  en  fuppofant  derechef  le 

cercle  N  QP  V,  dont  le  rayon  N  O  foit  ^^/?,&  l'infcri- 
te  NPfoit  ^^,  NQ^Ia fubtendue  du  tiers  de  Tare  NQP  fe- 
ralVne  des  racines  cherchées,  &  NV  la  fubtendue  du 
tiers  de  Tautre  arc  fera  l'autre.  Au  moins  fi  le  quarré  de 
la  raoitiédu  dernier  terme,  n'eft  point  plus  grand,que  le 
cube  du  tiers  de  la  quantité  connue  du  penultiefme.  car 
s'il  eftoit  plus  grand,la  ligne  N  P  ne  pourroit  eftre  infcri- 
te  dans  le  cercle  ,  a  caufe  quelle  feroit  plus  longue  que 
fon  diamètre:  Ce  qui  feroit  caufe  que  les  deux  vray  es  ra- 
cines 

213 


4^  La  GeometrI'E. 

cines  de cete  Equation  ne  feroient  qu'imaginaires  ,  & 
qu'il  ny  en  auroit  de  réelles  que  la  faufle ,  qui  fuiuant  la 
reigle  de  Cardan  feroit, 

la  façon    ^^  ^.  |  ? -f- /  i^^-^T  -^  '^  C.  J  y  -   J^T^p^T. 

d'exprt"  -^^  ^^^^  ^^  ^^  ^  remarquer  que  çete  façon  d'exprimer 
merhva-  la  valeur  dcs  racines  par  le  rapport  qu'elles  ont  aux  co- 
toures  les  ft^s  de  Certains  cubes  dont  il  n'y  a;qu e  le  contenu  qu'on 
racines  counoilTe,  n'eft  en  rien  plus  intelligible ,  ny  plus  fîmple, 
quations  que  de  Ics  exprimer  par  le  rapport  qu'elles  ont  aux  fub- 
^^^^jj;"^  tenduësdecertainsarcs,  ouportionsde  cercles  ,  dont 
de  coures  [e  triple  eft  donne.  En  forte  que  toutes  celles  des  Equa- 
te mor*  tions  cubiques  qui  ne  peuuent  eftre  exprimées  par  \ç,% 
tent  que  rgigles  dc  CardaH,  le  peuuent  eftre  autant  ou  plus  claire- 

iufquesau        °  ,     -  .  {-, 

quarré de  tii€nt parla façoDicy  propoiee. 

^"^^"^'  Car  fî  par  exemple ,  on  penfe  connoiftrc  la  racine  de 
cete  Equation,  ^^30  *  „  ^  ^ ■+-/'•  ^  caufe  qu'on  fçait 
qu'elle  eft  corapofee  de  deux  lignes.  <}ont  IVne  eft  le 
coftéd'vn  cube,  duquel  le  contenu  eft  |  q,  adiouftc^au 
cofte''d'v^a  quarre"  ,  duquel  derechef  le  contcnn  eft 
ï^^—  _i^  'j  Et  l'autre  eft  le  cofte'd'vn  aut^e  cube,  dont 
le  contenu  eftla  difference, 'qui  cft  entre  |^,  &:Iecoftc 
de  ce  quarre  dont  le  contenu  eft  \  qq  -  -^p  \  qui  eft  tout 
ce  qu'on  enapprent  par  la  reigle  de  Cardan.  Il  ny  a  point 
de  doute  qu'on  ne  connoiffe  auçant  ou  plus  diftiudte- 
mcntlaracine  de  celle  cy,  ^{.^^o'^-i-^-]?,  enlaconfî- 
derant  infcrite  dans  vn  cercle,  dont  le  dqinidiametre  eft 
y  f  ^&  fçachant  qu'elle  y  eft  la  fubtenduë  cj'vn  arc 
dont  le  triple  a  pour  fafubtendue  y.    Mefme  ces  ter» 

mes 

214 


THIRD  BOOK 


roots  that  were  true  are  merely  imaginary,  and  the  only  real  root  is  the 
one  previously  false,  which  according  to  Cardan's  rule  is 


s/4^+>/i.-.vWi-vi 


/-2V'- 


Furthermore  it  should  be  remarked  that  this  method  of  expressing  the 
roots  by  means  of  the  relations- which  they  bear  to  the  sides  of  certain 
cubes  whose  contents  only  are  known'""'  is  in  no  respect  clearer  or 
simpler  than  the  method  of  expressing  them  by  means  of  the  relations 
which  they  bear  to  the  chords  of  certain  arcs  (or  portions  of  circles), 
when  arcs  three  times  as  long  are  known.  And  the  roots  of  the  cubic 
equations  which  cannot  be  solved  by  Cardan's  method  can  be  expressed 
as  clearly  as  any  others,  or  more  clearly  than  the  others,  by  the  method 
given  here. 

For  example,  grant  that  we  may  consider  a  root  of  the  equation 
z^  ==  — çz-\-p  known,  because  we  know  that  it  is  the  sum  of  two  lines 

of  which  one  is  the  side  of  a  cube  whose  volume  is  ^j^  ^  increased  by  the 
side  of  a  square  whose  area  is  — /—  :^  p^,  and  the  other  is  the  side  of 
another  cube  whose  volume  is  the  difference  between  -^^  q  and  the  side 

of  a  square  whose  area  is  ^  ç'^—  -^  p^.  This  is  as  much  knowledge  of 

the  roots  as  is  furnished  by  Cardan's  method.  There  is  no  doubt  that 
the  value  of  the  root  of  the  equation  z^  =  -\-qz—p  is  quite  as  well 
known  and  as  clearly  conceived  when  it  is  considered  as  the  length  of  a 

chord  inscribed  in  a  circle  of  radius  ^^^p  and  subtending  an  arc  that 

is  one-third  the  arc  subtended  by  a  chord  of  length  — . 

'*"'  Descartes  here  makes  use  of  the  geometrical  conception  of  finding  the  cube 
root  of  a  given  quantity. 


215 


GEOMETRY 

Indeed,  these  terms  are  much  less  compHcated  than  the  others,  and 
they  might  be  made  even  more  concise  by  the  use  of  some  particular 
symbol  to  express  such  chords,'^"'  just  as  the  symbol  \^  '"'^'  is  used  to 
represent  the  side  of  a  cube. 

By  methods  similar  to  those  already  explained,  we  can  express  the 
roots  of  any  biquadratic  equation,  and  there  seems  to  me  nothing  fur- 
ther to  be  desired  in  the  matter  :  for  by  their  very  nature  these  roots 
cannot  be  expressed  in  simpler  terms,  nor  can  they  be  determined  by 
any  constuction  that  is  at  the  same  time  easier  and  more  general. 

It  is  true  that  I  have  not  yet  stated  my  grounds  for  daring  to  declare 
a  thing  possible  or  impossible,  but  if  it  is  remembered  that  in  the  method 
I  use  all  problems  which  present  themselves  to  geometers  reduce  to  a 
single  type,  namely,  to  the  question  of  finding  the  values  of  the  roots 
of  an  equation,  it  will  be  clear  that  a  list  can  be  made  of  all  the  ways  of 
finding  the  roots,  and  that  it  will  then  be  easy  to  prove  our  method  the 
simplest  and  most  general.  Solid  problems  in  particular  cannot,  as  I 
have  already  said,  be  constructed  without  the  use  of  a  curve  more  com- 
plex than  the  circle.  This  follows  at  once  from  the  fact  that  they  all 
reduce  to  two  constructions,  namely,  to  one  in  which  two  mean  pro- 

(2411  -phis  is  another  indication  of  the  tendency  of  Descartes's  age  toward  sym- 
bolism.   This  suggestion  was  never  adopted. 

'""'  In  Descartes's  notation,  |    C. 


216 


Livre  Troisiseme.  4oi 

mes  font  beaucoup  moins  embarafTés  que  les  autres ,  & 
ils  fetrouueront  beaucoup  plus  cours  fî  on  veut  vfêr  de 
quelque  chiffre  particulier  pour  exprimer  ces  fubten- 
dûés,  ainii  qu'on  fait  du  chiffre  T^C*  pour  exprimer  le 
codé  des  cubes. 

Et  on  peut  aufTy  en  fuite  de  cecy  exprimer  les  racines 
de  toutes  les  Equations  qui  montent  iufques  au  quarre 
de  quarre'',  par  les  reigles  cy  deffus-  expliquées.  En  forte 
queienefçacheriendeplus  a  defirer  en  cete  matière. 
Car  enfin  la  nature  de  ces  racines  ne  permet  pas  qu'on 
les  exprime  en  termes  plus  fîmples,  ny  qu'on  les  deter- 
mine par  aucune  conftrudtion  qui  foit  enfemble  plus  gé- 
nérale &  plus  facile. 

Il  eft  vray  que  ie  xi'ay  pas  encore  dit  fur  quelles  raifons   Po^i'^- 
ie  me  fonde,  pour  ofer  ainfi  afîurer,  fi  vne  chofe  eft  polîî-  probiêr^ 
ble,  ouneTeftpas.  Mais  fîonprent  garde  comment, par  ™"  ^°^'- 
la  méthode  dont  ieraefers,  tout  ce  qui  tombe  fous  kpcuucnc 
confîderation  des  Géomètres ,  fe  reduift  a  vn  mefme  f-"^^  ^°"' 
genre  de  Problefmes ,  qui  eft  de  chercher  la  valeur  des  CinTksfc- 
racines  de  quelque  Equation  •  on  iu^era  bien  qu*il  n  eft  ^^°°^ 

1      r/j     r  •  j/  t  coniques, 

pas  malayie  de  taire  vn  dénombrement  de  toutes  les  vo-  ny  ceux 
yesparlefquelles  on  les  peut  trouuer,  qui  foit  ^^ifîîfant  JJ^J^^"  m- 
pourdemonftrer  qu'on  a  choifi  la  plus  générale,  &  la  plus  pofcsfans 
firaple.  Et  particulièrement  pour  cequi  eft  des  Probief-  ^u«cT  u- 
mes  foHdes,  que  lay  dit  ne  pouuoireftre  conitruis ,  fans  g""  P^^s 
qu'on  y  employe  quelque  hgne  plus  compofée  que  lafe°cT/°" 
circulaire ,  c'eft  chofe  qu'on  peut  affés  trouuer,  de  ce 
qu'ils  fereduifent  tous  a  deux  con  ft  rudions  j    en  i'vne 
defquelles  il  faut  auoir  tout  enfemble  les  deux  poins,qui 
déterminent  deux  moyenes  proportionelles  entre  deux 

Eee  lignes 

217 


^oz  La  Géométrie. 

lignes  données-  &  en  l'autre  les  deux  peins ,  qui  diuifent 
en  trois  parties  efgales  vn  arc  donné:  Car  d'autant  que  la 
courbure  du  cercle  ne  depend ,  que  d'vn  iîmple  rapport 
de  toutes  fes  parties,  au  point  qui  en  eft  le  centre  •  on  ne 
peut  aufly  s'en  feruir  qu  a  determiner  vn  feul  point  entre 
deux  extremes, comme  a  trouuer  vne  moyenne  propor- 
tionelle  entre  deux  lignes  droites  données,  ou  diuifer  en 
deux  vn  arc  donne  :  Au  lieu  que  la  courbure  des  fecStions 
coniques,  dependant  toufîoursde deux  diuerfes  chofes, 
peut  aufly  feruir  a  determiner  deux  poins  difFerens. 

Mais  pour  cete  mefme  raifon  il  eft  impoffible ,  qu'au- 
cun des  Problefmes  qui  font  dVn  degré  plus  compofés 
que  les  folides,  &  qui  prefuppofent  l'inuention  de  quatre 
moyennes  proportionelles,ou  la  diuifion  d'vn  angle  en 
cinq  parties  efgales,  puiffenteftrecoîiftruitsparaucune 
des  fecStions  coniques.  Ceft  pourquoy  ie  croyray  faire  en 
cecy  tout  le  mieux  qui  fc  pui{fe,lî  ie  donne  vne  reigle  gé- 
nérale pour  les  conftruire,  en  y  employant  la  ligne  cour- 
be qui  fe  defcrit  par  l'interfedlriô  dVne  Parabole  &  d'vne 
ligne  droite  en  lafaçoncydeflfus  expliquée,  car  i  ofe  af- 
furerqu'ilnyenapointdeplusfimpleenla  nature,  qui 
puifle  feruir  a  ce  mefme  eff'eétj  &  vous  aués  vu  comme 
elle  fuît  immédiatement  les  fedtions  coniques,  en  cete 
queftion  tant  cherchée  par  les  anciens ,  dont  la  folutiou 
enfeigne  par  ordre  toutes  les  ligues  courbes,  qui  doiuenc 
lacoaL    eftrereceuës  en  Géométrie. 

neraïc  Vousfçaucs  deflacommcnt ,   lorfqu'on  cherche  les 

5!î*uirc     quantités  qui  font  requifes  pour  la  conftrudtion  de  ces 
tousles    pfoblefmes,  on  les  peut  toufiours  réduire  a  quelque  E- 

problef  .  f  ^  /J  U 

mes  rc-   quation,qui  ne  monte  que  lulques  au  quatre  de  cube,  ou 

duics  a  ^y 

218 


THIRD  BOOK 

portionals  are  to  be  found  between  two  given  lines,  and  one  in  which 
two  points  are  to  be  found  which  divide  a  given  arc  into  three  equal 
parts.  Inasmuch  as  the  curvature  of  a  circle  depends  only  upon  a  sim- 
ple relation  between  the  center  and  all  points  on  the  circumference,  the 
circle  can  only  be  used  to  determine  a  single  point  between  two 
extremes,  as,  for  example,  to  find  one  mean  proportional  between  two 
given  lines  or  to  bisect  a  given  arc  ;  while,  on  the  other  hand,  since 
the  curvature  of  the  conic  sections  always  depends  upon  two  different 
things. '"*^^  it  can  be  used  to  determine  two  different  points. 

For  a  similar  reason,  it  is  impossible  that  any  problem  of  degree  more 
complex  than  the  solid,  involving  the  finding  of  four  mean  proportion- 
als or  the  division  of  an  angle  into  five  equal  parts,  can  be  constructed 
by  the  use  of  one  of  the  conic  sections. 

I  therefore  believe  that  I  shall  have  accomplished  all  that  is  possible 
when  I  have  given  a  general  rule  for  constructing  problems  by  means 
of  the  curve  described  by  the  intersection  of  a  parabola  and  a  straight 
line,  as  previously  explained  ;'"^'''  for  I  am  convinced  that  there  is  noth- 
ing of  a  simpler  nature  that  will  serve  this  purpose.  You  have  seen, 
too,  that  this  curve  directly  follows  the  conic  sections  in  that  question 
to  which  the  ancients  devoted  so  much  attention,  and  whose  solution 
presents  in  order  all  the  curves  that  should  be  received  into  geometry. 

'^^'  As,  for  example,  the  distance  of  any  point  from  the  two  foci.     Descartes 
does  not  say  "all  points  on  the  circumference,"  but  "toutes  ses  parties." 
'-"^  See  page  84. 


219 


GEOMETRY 

When  quantities  required  for  the  construction  of  these  problems  are 
to  be  found,  you  already  know  how  an  equation  can  always  be  formed 
that  is  of  no  higher  degree  than  the  fifth  or  sixth.  You  also  know  how 
by  increasing  the  roots  of  this  equation  we  can  make  them  all  true,  and 
at  the  same  time  have  the  coefficient  of  the  third  term  greater  than  the 
square  of  half  that  of  the  second  term.  Also,  if  it  is  not  higher  than 
the  fifth  degree  it  can  always  be  changed  into  an  equation  of  the  sixth 
degree  in  which  every  term  is  present. 

Now  to  overcome  all  these  difficulties  by  means  of  a  single  rule,  I 
shall  consider  all  these  directions  applied  and  the  equation  thereby 
reduced  to  the  form  : 

y'^_py5j^qy*—ry^j^sy-—ty-{-u  =  0 

in  which  q  is  greater  than  the  square  of  ^  p. 


220 


Livre  Troisiesme.  4^5 

au  fiirfblide.   Puis  vous  fçau^aufTy  comment,  enaug- yneEqua. 
mentant  k  valeur  desracines  de  cete  Equation,  on  peut  "°°  S"^ 
toufiours  faire  qu'elles  deuienent  toutes  vrayesj  &  auec  plus  de"*^ 
cela qu« la  quâtitd connue  du  troifîefme  terme  foitplus  ^**,i^'- 
graiîde  que  lequarré  de  la  moitié  de  celle  du  fecond:Et 
enfin  comment,  fi  elle  ne  monte  que  iufques  au  furfolî- 
de,  on  la  peut  hauffer  iufques  au  quatre  de  cube  j  &  fai- 
re que  la  place  d'aucun  de  fes  termes  ne  manque  deftre 
remplie.     Or  aiîîn  que  toutes  les  difficultés ,  dont  il  eft 
icy  queftion ,  pui/Tent  eflre  refoluè's  par  vne  mefme  rei- 
gle^  ie  délire  qu'on  face  toutes  ces  chofes,  &  par  ce 
moyen  qu'on  les  reduife  toufiours  a  vne  Equation  de 
telle  forme, 

&  en  laquelle  la  quantité  nommée  q  foit  plus  grande 
qucJe  quarré  de  la  moitié  de  celle  qui  eft  nommée /r. 


£  e  e  2  Puis 


221 


404 


La  Géométrie. 

Puis  ayant  faft  a 
ligne  B  K  indefî- 
niement  longue 
des  deux  coftes; 
6c  du  point  B 
ayant  tiré  la  per- 
pendiculaire A  B, 
dontia  longueur 
foir^/^jil  faut  dans 
vn  plan  lepare  de- 

fcrire  vne  Para- 
bole ,  comme  C 
D  F  dont  le  cofté 
droit  principalfoit 


ri. 


• 

que  ie  nommeray 
n  pour  abréger. 
Après  cela  il  faut 
pofer  le  plan  dans 
lequel  eft  cete  Parabole  fur  celuy  ou  font  les  lignes  AB  & 
BK,  en  forte  que  fonaiffieuDEfe  rencontre  iuftement 
au  deflus  de  la  ligne  droite  BK:  Et  ayant  pris  la  par- 
tie de  cet  aiffieu ,  qui  eft  entre  les  poins  E  &  D ,  efgale  à 

— ^,  il  faut  appliquer  fur  ce  point  E  vne  longue  reigle, 

en  telle  façon  queftantaufTy  appliquée  fur  le  point  A 
du  plan  de  deffbus,  elle  demeure  toufîours  iointe  a  ces 
deux  poins,  pendant  quonhaufleraoubaiflera  la  Para- 
bole 


222 


THIRD  BOOK 


Produce  BK  indefinitely  in  both  directions,  and  at  B  draw 
AB  perpendicular  to  BK  and  equal  to  ^  p.  In  a  separate  plane^""' 
describe  the  parabola  CDF  whose  principal  parameter  is 


Vw 


-\-ç-  —P 


which  we  shall  represent  by  n. 

Now  place  the  plane  containing  the  parabola  on  that  containing  the 
lines  AB  and  BK,  in  such  a  way  that  the  axis  DE  of  the  parabola  falls 

along  the  line  BK.    Take  a  point  E  such  that  DE  == and  place  a 

pn 

ruler  so  as  to  connect  this  point  E  and  the  point  A  of  the  lower  plane. 

Hold  the  ruler  so  that  it  always  connects  these  points,  and  slide  the 

parabola  up  or  down,  keeping  its  axis  always  along  BK.     Then  the 

[245]  -pi-ijg  (jQgg  j^Q^  mean  in  a  fixed  plane  intersecting  the  first,  but,  for  exam- 
ple, on  another  piece  of  paper. 


223 


GEOMETRY 

point. C,  the  intersection  of  the  parabola  and  the  ruler,  will  describe 
the  curve  ACN,  which  is  to  be  used  in  the  construction  of  the  proposed 
problem. 

Having  thus  described  the  curve,  take  a  point  L  in  the  line  BK  on  the 

2  4u 

concave  side  of  the  parabola,  and  such  that  BL  =  DE== ;  then  lay 

p)i 

t 
off  on   BK,  toward   B,    LH   equal    to  ^      ;— ,  and  from  H  draw  HI 

In  \  u 

perpendicular  to  LH  and  on  the  same  side  as  the  curve  ACN.  Take 
HI  equal  to 

which  we  may,  for  the  sake  of  brevity,  set  equal  to  ~.  Join  L  and  I,  and 

71' 

describe  the  circle  LPI  on  LI  as  diameter;  then  inscribe  in  this  circle 


the  line  LP  equal  to  J^±É^ijL.  Finally,  describe  the  circle  PCN  about 

I  as  center  and  passing  through  P.  This  circle  will  cut  or  touch  the 
curve  ACN  in  as  many  points  as  the  equation  has  roots  ;  and  hence  the 
perpendiculars  CO,  NR,  OO,  and  so  on,  dropped  from  these  points 
upon  BK,  will  be  the  required  roots.  This  rule  never  fails  nor  does  it 
admit  of  any  exceptions. 

For  if  the  quantity  j  were  so  large  in  proportion  to  the  others,  p,  q, 
r,  t,  n,  that  the  line  LP  was  greater  than  the  diameter  of  the  circle 


224 


Livre  Troisiesme.  ^^^ 

bole  tout  le  long  de  la  ligne  B  K ,  fur  laquelle  Ton  aifïîeii 
eft  applique  au  moyen  dequoy  Tinterfedtion  de  cete  Pa- 
rabole, &  de  cete  reigle,  qui  fe  fera  au  point  C  ,  defcrira 
la  ligne  courbe  A  C  N,  qui  eft  celle  dont  nous  auons  be- 
fbinde  nous  feruir  pour  la  conftruétion  du  Problefme 
propofé.  Car  après  qu'elle  eft  ainfîdefcrite,  fi  on  prent 
le  point  L  en  la  ligne  B  K,  du  coftc  vers  lequel  eft  tourné 
lefbmmet  de  la  Parabole ,  Se  qu'on  face  B  L  efgalc  à  D 

E,  c'eft  àdireà        :  Puis  du  point  L  ,  vers  B  ,  quon 
prcne  en  la  mefme  ligue  BK  ,  la  ligne  LH,  efgale  à 
^~y:;i  &  que  du  point  H  ainfi  trouue,  ou  tire  à  angles 
droits,  du  cofte'qu'eft  la  courbe  A  CN,  la  ligne  HT, 
dont  la  longcur  foit  £;4-  -V  7^^,  qui  pour  abréger 

fera  nommée  —  :  Et  après,  ayant  ioint  les  poins  L  &  I, 

qu'on  defcriue  le  cercle  L  P I ,  dont  I L  foit  le  diamètre; 
&  qu'on  infcriueen  ce  cercle  la  ligne  LP  dont  la  lon- 

geur  fbit  ^  ~~;~  -  Puis  enfin  du  centre  I,  par  le  point  P 

ainfi  trouué,  qu'on  defcriue  le  cercle  P  C  N.  Ce  cercle 
couppera  ou  touchera  la  ligne  courbe  A  C  N ,  en  autant 
de  ppins  qu'il  y  aura  de  racines  eu  l'Equation  ;  En  forte 
que  les  perpendiculaires  tirées  de  ces  poins  fur  la  ligne 
B  K,  comme  C  G,  N  R,  Q^O ,  &  fembîablcs ,  feront  les 
racines  cherchées.  Sans  qu'il  y  ait  aucune  exception  ny 
aucun  defFàut  en  cete  reigle.  Car  fi  la  quantité/  cftoic 
fi  grande,  à  proportion  des  autres)^,  q,  r,  /■,  &  Vy  que  la  li- 
gne LP  fetrouuaft  plus  grande  que  le  diamètre  ducer- 

Eee  3  cle 


225 


406  La  Géométrie. 

ciel  L, en  forte  qu'elle  n  y  puft  eftre  iufcritejil  ny  auroit 
aucune  racine  en  l'Equation  propofee  qui.ne  fuft  imagi- 
naire: Non  pJus  que  û  le  cercle  I P  eftoit  li  petit,  qu'il  ne 
coupait  la  courbe  A  C  N  en  aucun  point.  Et  il  la  peut 
couper  en  fix  diflPerens  ,  ainfi  qu'il  peut  y  auoir  fix 
diuerfes  racines  en  l'Equation.  Mais  lorfqu'il  la  coupe 
en  moins ,  cela  tefmoigne  qu'il  y  a  queloues  vnes  de 
ces  racines  qui  font  efgales  entre  elles  ,  oubienquine 
font  qu'imaginaires. 


Que 


226 


THIRD  BOOK 

LI/^*'  so  that  LP  could  not  be  inscribed  in  it,  every  root  of  the  pro- 
posed equation  would  be  imaginary  ;  and  the  same  would  be  true  if  the 
circle  IP'-*''  were  so  small  that  it  did  not  cut  the  curve  ACN  at  any 
point.  The  circle  IP  will  in  general  cut  the  curve  ACN  in  six  differ- 
ent points,  so  that  the  equation  can  have  six  distinct  roots/"**'  But  if 
it  cuts  it  in  fewer  points,  this  indicates  that  some  of  the  roots  are  equal 
or  else  imaginary. 

'^'*'That  is,  the  circle  I  PL,  of  which  the  diameter  is  t,  page  222. 
^'"^  That  is,  the  circle  PCN. 

'"*"'  The  points  determining  these  roots  must  be  points  of  intersection  of  the 
circle  with  the  main  branch  of  the  curve  obtained,  that  is,  of  the  branch  ACN. 


227 


GEOMETRY 


If,  however,  this  method  of  tracing  the  curve  ACN  by  the  transla- 
tion of  a  parabola  seems  to  you  awkward,  there  are  many  other  ways 
of  describing  it.  We  might  take  AB  and  BL  as  before  (page  226),  and 
BK  equal  to  the  latus  rectum  of  the  parabola,  and  describe  the  semi- 
circle KST  with  its  center  in  BK  and  cutting  AB  in  some  point  S. 
Then  from  the  point  T  where  it  ends,  take  TV  toward  K  equal  to  BL 
and  join  S  and  V.  Draw  AC  through  A  parallel  to  SV,  and  draw  SC 
through  S  parallel  to  BK  ;  then  C,  the  intersection  of  AC  and  SC  will 
be  one  point  of  the  required  curve.  In  this  way  we  can  find  as  many 
points  of  the  curve  as  may  be  desired. 


228 


Livre    Troisiesme.  407 

Que  fî  la  façon  de  tracer  la  ligne  A  C  N  par  le  mouue- 
inent  dVne  Parabole  volts  femble  incommode ,  il  eft  ay- 
fe'de  trouuer  plufieurs  autres  moyens  pour  la  defcrire. 
Comme  fî  ayant  les  mefmcsquantité's  que  deuant  pour 
A  B  &  B  L;  &  la  mefme  pour  B  K,qu  on  auoit  pofce  pour 
le  cofte  droit  principal  de  la  Parabolcjondefcrit  le  demi- 
cercle  K  S  T  dont  le  centre  foit  pris  a  difcretion  dans  la 
ligne  B  K,  en  forte  qu'il  couppe  quelq;  part  la  ligne  A  B, 
comme  au  point  S,  &  que  du  point  T,  du  il  fînift,on  pre- 
ne  vers  K  la  ligne  T  V,  efgale  à  B  L-  puis  ayant  tiré  la  li- 
gne S  V,  qu'on  en  tire  vne  autre ,  qui  luy  foit  parallèle, 
par  le  point  A,  comme  A  C-  &  qu'on  en  tire  aufly  vne 
autre  par  S, qui  foit  parallèle  a  B  K,  comme  S  C;  le  point 
C,ou  ces  deux  parallèles  fè  rencontrent,fera  l'vn  de  ceux 
delaligne  courbe  cherchée.  Et  on  en  peut  trouuer,  en 
mefme  forte,autant  d'autres  qu'on  en  délire. 


Or 


229 


4Q8  La    GEOMETRIE. 

Or  la  demonftration  de  tout  cecy  eft  affes  facile,  car 
appliquant  lareigle  A  E  auec  la  Parabole  EJXfur  le  point 
Gj  comme  il  eft  certain  quelles  peuuent  y  eftre  appli- 
quées enfemble  ,  puifque  ce  point  C  eft  en  la  courbe 
A  C  N,qui  eft  defcrite  par  leur  interfedion  ;  lî  C  G  fe 

yv 
nomme  ^,  G  D  fera  ^  »  à  caufe  que  le  cofte"  droit ,  qui 

crt«,eftàCG,commeCGaGD.6coftanc  DE,,  quieft 

iVx'  J'y       2  V'i' 

—  ,de  GD, onà^—  -^,pourGE.  Puis  à  caufe  que. 

A  B  eft  a  B  E,  comme 
CGeftaGE  ^  AB 
eftant  ^p  ,   B  E  eft 

zn    '  ny* 

Et  tout  de  mefme 
en  fuppofant  que  le 
point  C  de  la  courbe  à 
efte'trouuié  par  l'inter- 
feétiôdes  lignes  droi- 
tes,  S  C  parallèle  à  B 
K,  &  AC  parallèle  a 
SV.  SBquieftefgalc 
àCG,  eft  y  :  &  BK 
eftant  efgale  au  coftjé' 
droit  de  la  Parabole, 
que  iay  nommé  « ,  B 

T  eft  -.    car  comme 

n 

KBeftaBS,  ainfiBS 

eft  a  B  T.     Et  TV 

eftant 


230 


THIRD  BOOK 

The  demonstration  of  all  this  is  very  simple.  Place  the  ruler  AE 
and  the  parabola  FD  so  that  both  pass  through  the  point  C.  This  can 
always  be  done,  since  C  lies  on  the  curve  ACN  which  is  described  by 
the  intersection  of  the  parabola  and  the  ruler.  If  we  let  CG=y,  GD 
will  equal  —,  since  the  latus  rectum  n  is  to  CG  as  CG  is  to  GD.    Then 


n 


2^71  y"^      2  Vz7 

DE= ,  and  subtracting  DE  from  GD  we  have  GE==  —  ——, — . 

pn  n  pn 

Since  AB  is  to  BE  as  CG  is  to  GE,  and  AB  is  equal  to  \  p,  therefore 

BE  =^^—  — ~,     Now    let    C    be    a    point    on    the    curve    generated 
2«        ?iy 

by   the    intersection   of   the    line    SC,    which    is   parallel   to   BK,   and 
AC,  which  is  parallel  to  SV.     Let  SB  =  CG  =  y,  and  BK  =  n,  the 

latus  rectum  of  the  parabola.    Then  BT  =  "*-,  for  KB  is  to  BS  as  BS  is 

n 


231 


GEOMETRY 

to  BT,  and  since  TV  =  BL  =  -^— ^  we  have  BV  =  ^  -  ^^.  Also  SB 

p7i  n  pn 

is  to  BV  as  AB  is  to  BE,  whence  BE  =^^  —  — ^  as  before.    It  is  evi- 

dent,  therefore,  that  one  and  the  same  curve  is  described  by  these  two 
methods. 

Furthermore,  BL  =  DE,  and  therefore  DL  =  BE  ;  also  LH  =  — ^ 

2n'\u 

and  DL=^-^        ^^^ 


2n        ny 

therefore  DH  =  LH  +  DL  =  f^  -  —  +  ;; 1= 

In        7iy        2  7/  "V  71 

Also,  since  GD=  — , 
n 

GH  =  DH-GD  =  ^^  -^^—~. 
c  n        ny        in  \  2i 

which  may  be  written 

GH= ^—^ 


-y'+  ii^^+^^^- V7 


ny 
and  the  square  of  GH  is  equal  to 


y" 


-py'+{\p''  ±y+{^  ^+ 2^^y + it,  -f  ^y~'y+" 


n^'f 


Whatever  point  of  the  curve  is  taken  as  C,  whether  toward  N  or 
toward  Q,  it  will  always  be  possible  to  express  the  square  of  the  seg- 
ment of  BH  between  the  point  H  and  the  foot  of  the  perpendicular 
from  C  to  BH  in  these  same  terms  connected  by  these  same  signs. 


232 


Livre  Troisiesme.  "^^^ 

pn 


eftant  la  mefme  que  BL  ,  c'eû  a  dire— -^  ,    B  V   eft 


-„"—"'  &:comraeSBeftaBV,  ainfiABeftàBEjqui 

p  y        Vf 

eft  par  confequent  ^- —  -  comme  deuant,d  où  on  voit 

que  c'eftvne  mefme  ligne  courbe  qui  fe  defcrit  en  ces 
deux  façons. 

Après  cela,  pourceque  B  L  &  D  E  font  efgales,  D  L  & 
B  E  le  font  aufty:  de  façon  qu'adiouftat  L  H,  qui  eft  —^ 

p  y         Vf 

àDL,  qui«ft- —  .^,  on  à  la  toute  DH  ,  qui  cft 
^-  ;j -^  ^Tv  5  &:  en  oftant  G  D  ,  qui  eft  f 
on  à  GH,  qui  eft{-{  -  ^V  "V;  -  1^  C^^^^  i'^^^"^ 
par  ordre  en  cete  forte  G  H  so  —  j?  -H  ^  /?yy  -H  ^^  —  1/^v* 


y 


ny 
Et  le  quàrre  de  G  H  eft, 

nn  yy 
Et  en  quelque  autre  endroit  de  cete  ligne  courbe  qu'on 
veuille  imaginer  le  point  G,  comme  vers  N,  ou  vers  Q, 
ontrouueratoufîours  que  le  quarré  de  là  ligne  droite, 
qui  eft  entre  le  point  H  &  celuy  où  tombe  la  perpendicu- 
laire du  point  C  fur  BH,  peut  eftreexprime^en  ces  mef- 
mcs termes,  & auec les  mefmes fignes  H-  & -- . 

pe  plus  I H  cftant  £ ,  &  L  H  eftant  ^-^>  I  L  eft 

^  -f-  i'^>à  caufe  de  l'angle  droit  I H  L^  &:  LP  eftât 

Fff  V^ 

233 


^to 


LA    GEOMETRIE, 


nn  ' 


nn 
'i/'mm 


IPoulCefl, 


T^v  --"£  "Tn  ^  3  caufeauûTy  de  1  angle 
droit  I P  L.  Pois  ayant  fait  C  M  perpendiculaire  fur  I  H, 
I  Meft  la  difference  qui  eftentrel  H,  &HM011  CG, 

c*eft  a  dire  entre  ^-,  &^  ,   en  forte  que  Ton  quarre* 

_  -,  mm         1  »»y  . 

eft  toufiours  — ^  --  -^  -^yy,  qui  citant  ofte  du  quatre 

de 


234 


THIRD  BOOK 


A         •        TTT       ^^  i 

Again,  IH  =  -2,  LH  =  o„    /     ,  whence 


IL  =  J^  + 


/2 


since  the  angle  IHL  is  a  right  angle  ;  and  since 


n  n 

and  the  angle  IPL  is  a  right  angle, 


Now  draw  CM  perpendicular  to  IH,  and 

IM  =  HI-HM  =  HI-CG="f,-j'; 


whence  the  square  of  IM  is     .  —  — ^  +i/^. 

?r          n' 


235 


GEOMETRY 

Taking  this  from  the  square  of  IC  there  remains  the  square  of  CM,  or 

•     /^  ^       p\7i        2my        2 

4    2  i  2      ~r       2    —  y  1 

n  u       71  71  n 

and  this  is  equal  to  the  square  of  GH,  previously  found.    This  may  be 
written 

—  71^ y'^  +  2 77iy>^  —p  '\  71  y'^  —  sy>^  +  ,    y'. 

4:7  ( 


Now,  putting 
for  n~y*,  and 


n-y 


^y+9y-|/y 


2\7l 


for  2my^,  and  multiplying  both  members  by  n-y-,  we  have 

.«-//+ (i/-  ^),<+  (2  VV+  :^y+  (£  -/  v7)/-/.+. 

equals 

or 

y — /)y^-[-çy*— rj/'+^j;-— fy+w  ^  0, 

whence  it  appears  that  the  lines  CG,  NR,  QO,  etc.,  are  the  roots  of  this 
equation. 

If  then  it  be  desired  to  find  four  mean  proportionals  between  the 
lines  a  and  h,  if  we  let  x  be  the  first,  the  equation  is  x^—a*h  =  0  or 
x^—a*bx  =  0.    Let  y—a  =  x,  and  we  get 

/-6ay^^+15a=y— 20aV+15ay— (6fl^+o^&)y+a«+a-'&=0. 
Therefore,  we  must  take  AB  -=  3a,  and  BK,  the  latus  rectum  of  the 


236 


Livre  Tkoisiesme.  4*' 

delC,  il  refte  —  -  ~  •.- h— --vy. 

pour  le  quarrede  CM,  qui  cft  efgal  au  quarre  de  G  H  dé- 
fia trouue'.   Oubien  en  failànt  que  cete  fomme  foit  diui- 

fee  comme  l'autre  par  nnyy^  on  a 

tt 
—  miy ^ -H  2 my  ^  " pV  v  yy  —syy  -f-  -j'y.  Puis 

t 
remettant  ~  y  *"  -^  ^y*"  --  i  ppy""  ,  pour  nny*  j    & 

rj'  '  -H  2  y  i'  ^  '  -4-  ^^^  ',  pour  miy^  :   &  multipliant 
iVne  &  l'autre  Ibmme  par  7in  vy,  on  a 

y'"py''  --v~Jy 


C'eftadirequ'ona, 
y^^-py^-^qy^^-^ry^-^^-syy-ty-^-vloo. 
D'où  il  paroilt'que les  lignes  C  G,  N  R,  QO,  &  fembla- 
bles  font  les  racines  de  cete  Equation,  qui  eft  ce  qu'il  fal- 
loitdemonftrer. 

Ainfidonclîon  veut  trouuer  quatre  moyennes  pro- 
portionelles  entre  les  bgnes/2  &^,  ayant  pofe'-vpour  la 
premiere  ,  l'Equation  eft  a; '*'''*'*-- ^^^3oo  oubien 
:v'^'**'^*-V«-^a;*30(?.  Et  taifant^-.i^ooA-ilvient 

y'-6af-V'ijaay^--2oa^y^-\-\^a^yy\:';^,}yllli^^o, 
C'eft  pourquoy  il  faut  prendre  5  a  pour  la  ligne  A  Bj  &: 

,, -r-i-  6  a  a  pour  B  K,  ou  le  cofte''  droit  de  laPa- 

r  f  f  2  rabole 


237 


4ii  La  Géométrie. 


rabolequeiaynommé?;.  3cY^'^^^~^  ^^  ?^^^  D  E  ou 
B  L.  Et  après  auoir  defcrit  la  ligne  courbe  A  C  N  fur 
la  meiure  de  ces  trois ,  il  raut  taire  L  H  ,  33  —       -" 

&  HI  30 —  -{--Vaa-h-ab-T-  —====-&  £  P  33 

s-—^^ —  Car  le  cercle  qui  ayant  Ion  centre 

au  point  Ipaflera  par  le  point  Painfitrouue,  couppera  la 
courbe  aux  deux  poins  C&Nj  defquels  ayant  tiré  les 
perdeudiculaires  N  R  &:  C  G,  fi  la  moindre,  N  R,  eft 
oftee  delapIusgrande,CG,lerefte  fera, .v,  la  premiere 
des  quatre  moyenne  s  proportionellescherché'es. 

Il  eft  ayfe  en  mefme  façon  de  diuifer  vn  angle  en  cinq 
parties  efgales,  &d'infcrire  vne  figure  d'vnze  ou  treze 
coftc'scfgauxdansvn  cercle,  &de  trouucr  vnc  infinite' 
d'autres  exemples  de  cete  reigle. 

Toutefois  il  eft  a  remarquer,  qu'en  plufieurs  de  ces 
exemples,  il  peut  arriuer  que  le  cercle  couppe  fi  obli- 
quement la  parabole  du  fécond  genre;  que  le  point  de 
leur  interfed:ionfoit  difficile  a  reconnoiftre:  &ainfiquc 
cete  conftrudtion  ne  foit  pas  commode  pour  la  pratique. 
A  quoy  il  feroit  ayfcde  remédier  en  compofant  d'autres 
règles,  à  limitation  de  celle  cy  ,  comme  on  en  peut 
compofer  de  mille  fortes. 

Maismondcffeinn'eftpas  défaire  vn  gros  liure,  & 
ie  tafche  plutoft  de  comprendre  beaucoup  en  peu  de 
mots:  comme  on  iugera  peuteftre  que  iay  fait ,  fi  on  con- 
fidere,  qu'ayant  réduit  à  vne  mefmc  conftru(ition  tous 

les 


238 


THIRD  BOOK 

parabola  must  be 


^a^  +  ad 
which  I  shall  call  n,  and  DE  or  BL  will  be 


—  \a'-\-ab. 

671 

Then  having  described  the  curve  ACN,  we  must  have 

\^ri=  J—, 

2?i  ^a'-\-ab 
and 

and 


LP=  ^"  . /l5«'+6aV«'+«ô. 

71    \ 


For  the  circle  about  I  as  center  will  pass  through  the  point  P  thus 
found,  and  cut  the  curve  in  the  two  points  C  and  N.  If  we  draw  the 
perpendiculars  NR  and  CG,  and  subtract  NR,  the  smaller,  from  CG, 
the  greater,  the  remainder  will  be  x,  the  first  of  the  four  required  mean 
proportionals.'"^"' 

This  method  applies  as  well  to  the  division  of  an  angle  into  five  equal 
parts,  the  inscription  of  a  regular  polygon  of  eleven  or  thirteen  sides 
in  a  circle,  and  an  infinity  of  other  problems.  It  should  be  remarked, 
however,  that  in  many  of  these  problems  it  may  happen  that  the  circle 
cuts  the  parabola  of  the  second  class  so  obliquely'"'"'  that  it  is  hard  to 
determine  the  exact  point  of  intersection.  In  such  cases  this  construc- 
tion is  not  of  practical  value.""'  The  difficulty  could  easily  be  overcome 
by  forming  other  rules  analogous  to  these,  which  might  be  done  in  a 
thousand  dift'erent  ways. 

[2«]  'pj^g  |-^Q  roots  of  the  above  equation  in  y  are  NR  and  CG.  But  we  know 
that  a  is  one  of  the  roots  of  this  equation,  and  therefore  NR,  the  shorter  length, 
must  be  a,  and  CG  must  be  3'.  Then  x  —.  y  ■ —  a  =  CG  —  NR,  the  first  of  the 
required  mean  proportionals.     Rabuel,  p.  580. 

[250]  'ppj^^  jg^  makes  so  small  an  angle  with  it. 

[2oi]  -pj^jg  jg  especially  noticeable  when  there  are  six  real  positive  roots. 

239 


GEOMETRY 

But  it  is  not  my  purpose  to  write  a  large  book.  I  am  trying  rather 
to  include  much  in  a  few  words,  as  will  perhaps  be  inferred  from  what 
I  have  done,  if  it  is  considered  that,  while  reducing  to  a  single  construc- 
tion all  the  problems  of  one  class,  I  have  at  the  same  time  given  a 
method  of  transforming  them  into  an  infinity  of  others,  and  thus  of 
solving  each  in  an  infinite  number  of  ways  ;  that,  furthermore,  having 
constructed  all  plane  problems  by  the  cutting  of  a  circle  by  a  straight 
line,  and  all  solid  problems  by  the  cutting  of  a  circle  by  a  parabola  ;  and, 
finally,  all  that  are  but  one  degree  more  complex  by  cutting  a  circle  by 
a  curve  but  one  degree  higher  than  the  parabola,  it  is  only  necessary  to 
follow  the  same  general  method  to  construct  all  problems,  more  and 
more  complex,  ad  infinitum  ;  for  in  the  case  of  a  mathematical  progres- 
sion, whenever  the  first  two  or  three  terms  are  given,  it  is  easy  to  find 
the  rest. 

I  hope  that  posterity  will  judge  me  kindly,  not  only  as  to  the  things 
which  I  have  explained,  but  also  as  to  those  which  I  have  intentionally 
omitted  so  as  to  leave  to  others  the  pleasure  of  discovery. 


[the  end] 


240 


Livre  Trois  1  ES  ME/  ^^^ 

les  Problefmes  dVn  mefme  genre ,  iay  tout  enfemble 
donne  la  façon  de  les  réduire  à  vne  infinité  d'autres  di- 
uerfesj  &  ainfi  de  refoudre  chafcun  deux  en  vne  infinité 
de  façons.  Puis  outre  cela  qu'ayant  conftruit  tous  ceux 
qui  font  plans,  en  coupant  d'vn  cercle  vne  ligne  droite- 
&  tous  ceux  qui  font  folides ,  en  coupant  aufly  d'vn  cer- 
cle vne  Parabole^  &  enfin  tous  ceux  qui  font  d'vn  degré 
plus  compofcs,  en  coupant  tout  de  mefme  d'vn  cercle 
vne  ligne  qui  n  eft  que  d'vn  degré"  plus  compofçe  que  la 
Parabole;  il  ne  faut  que  fuiure  la  mefme  voye  pour  con- 
ftruire  tous  ceux  qui  font  plus  compofcs  a  l'infini.  Car  en 
matière  de  progreiîîons  Mathématiques  ^lorfqu  on  a  les 
deux  ou  trois  premiers  termes,  il  n'eft  pas  malayfe'de 
trouuer  les  autres.  Eti*efpere  que  nos  neueux  me  fçau- 
ront  gré ,  non  feulement  des  chofes  que  iay  icy  expli- 
quées; mais  aufly  de  celles  que  iay  omifes  volontaire- 
rement^^affin  de  leurlaifler  leplaifîrdelesinuenter.- 


F    I    N, 


241 


PAr  graced  priuilege  du  Roy  très  chre- 
ftien  il  eft  permis  a  T Autheur  du  liure  in* 
titule  DîfcouYs  delà  Méthode  Ç^c,  plm  la  Dio^ 
ptriqueJesMet€ores^&  la  Geornetrie&c.  de  le 
faire  imprimer  en  telle  part  que  bonkiyfem. 
bl^ra  dedans  6^  dehors  le  royaume  de  France, 
&:  ce  pendant  le  terme  de  dix  années  confe- 
quutiues,  a  conter  du  iour  qu'il  fera  parache- 
ué  d'imprimer,  fans  qu'aucun  autre  que  le  li- 
braire qu'il  aura  choifî  le  puifTe  imprimer ,  ou 
faire  imprimer^en  tout  ny  en  partie,  fous  quel- 
que prétexte  ou  deguifèment  que  ce  puifle 
eftre^  ny  en  vendre  ou  débiter  d'autre  impref- 
fion  que  de  celle  qui  aura  efté  faite  par  fa  per- 
miiTion^a  peine  de  mil liures  d'amande,  con- 
fifcation  de  tous  les  exemplaires  &c.   Ainfi 
qu  il  eft  plus  amplement  déclaré  dans  les  let- 
tres données  a  Paris  le  4  iour  de  May  1637.  fi- 
gnees  par  le  Roy  en  (on  confeil  Ceheret  &C 
feellees  du  grand  fceau  de  cire  iau ne  fur  fîmple 
queue. 

l'A utheur  a  permis  a  lan  Maire  marchand 
libraire  a  Leyde^  d'imprimer  le  dit  liure  S>C  de 
iouir  du  dit  priuilege  pour  le  tenis  6c  aux  con- 
ditions entre  eux  accordées, 

Jlcheué d'imprimer  le  8.  icur  de  luin  1 657. 


242 


By  the  grace  and  privilege  of  the  very  Christian  King,  it  is  per- 
mitted to  the  author  of  the  book  entitled  Discourse  on  Method,  etc., 
together  with  Dioptrics,  Meteorology,  and  Geometry,  etc.,  to  have 
printed  wherever  he  wishes,  within  or  without  the  Kingdom  of  France, 
and  during  the  period  of  ten  consecutive  years,  beginning  on  the  day 
when  the  printing  is  completed,  without  any  publisher  (except  the  one 
whom  he  selects)  printing  it,  or  causing  it  to  be  printed,  under  any  pre- 
text or  disguise,  or  selling  or  delivering  any  other  impression  except 
that  which  has  been  allowed,  under  penalty  of  a  fine  of  a  thousand 
livres,  the  confiscation  of  all  the  copies,  etc.  This  is  more  fully  set  forth 
in  the  letters  given  at  Paris,  on  the  fourth  day  of  May,  1637,  signed 
by  the  King  and  his  counsel,  Ceberet,  and  sealed  with  the  great  seal  of 
yellow  wax  on  a  simple  ribbon. 

The  author  has  given  permission  to  Jan  Maire,  bookseller  at  Leyden, 
to  print  the  said  book  and  enjoy  the  said  privilege  for  the  time  and 
under  the  conditions  agreed  upon  between  them. 

The  printing  is  completed  the  eighth  day  of  June,  1637. 


243 


INDEX 


The  numbers  refer  to  the  pages  of  the  present  edition,  not  to  those  at  the  top 
of  the  facsimiles. 


PAGE 

Abscissa   88 

Adam,   C 10,17 

Agnesi,  M.  G 2 

Alembert,  J.  le  R.  d' 40 

Angle,    division    of 219,239 

Apollonius....  17-22,  26,  68,  72,  75,  96 

Applicate    67 

Arithmetic  and  geometry 2 

Axes 95 

Ball,  W.  W.  R 6 

Beaune,   F.  de 2 

Beman,  W.  W 13,26 

Biquadratic  equation.  195  seq.,  216  seq. 

Boncompagni,    B 159 

Bouquet,  J.  C 55,  67,  71 

Boyd,  J.  H 55 

Briot,  C 55,  67,  71 

Cantor,  M.44,  91,  92,  160,  175,  179,  211 

Cardan,  H.    (G.,  or  J.) 

159,   160,  211.  215 

Catoptrics    115 

Cavalieri,    B 26 

Cissoid    44 

Clairaut,   A.   C 147 

Class  of  curves 48,  56 

Commandinus,  F 6,  17,  19 

Complex  curves 43,  48,  56 

Conchoid 44,  55,  113 

Conic  sections   44 

Coordinates,  transformation  of..     51 


PAGE 

Cousin,  V 10,  19,  63,  72,  112,  135 

Cubic  equation 195  seq.,  208  seq. 

Curved    lines    40 

D'Alembert,  J.  le  R 40 

Diderot,  D 40 

Dioptrics   115,  124,  135 

Division    2 

Enriques,   F 13 

Equality,    symbol   of 6 

Equating  to    zero 9.6 

Equations.l3,  34,  37, 156,  159,  192,  195 

Equations,  transformation  of 

163,    164,  166 

Euclid 17,  19.  22 

False   (negative)    roots 159,200 

Fermât,   P 25,  26,  112 

Fibonacci,  L 159 

Finie,   K 26 

Focus     128 

Fundamental  theorem    160 

Geometric  curves   40,  48 

Guisnée    156 

Harriot,  T 160 

Heath,  T.  L 26,  44,  96,  155 

Heiberg,   J.    L 68 

Horner's  Method    179 

Hultsch,  F. 6,  19 


245 


INDEX 


PAGE 

Hutton,   C 67 

Imaginary    roots    175,  187 

Irreducible  cubic   212 

Kepler,  J 128 

Klein,   F 13 

Leibniz,    G.   W 40 

Lenses   124-147 

Leonardo    Pisano    159 

L'Hospital,  G.  F.  A.,  de 156 

Loci,  plane  and  solid 79 

Mascheroni,    L 13 

Mechanical    curves 40,    91 

Mean  proportionals 47,  155,219 

Mersenne,    Marin 10,    63 

Mikami,  Y 179 

Mirrors 127-136 

Multiplication    2,  33 

Negative  numbers    63,  111 

Normals 112 

Order  of  curves 48 

Ordinate  67,  88 

Oresme,    N 26 

Ovals    116-131,  143 

Pappus    

6,  17,  19,  21,  26,  40,  59,  63,  156,  188 

Pappus,  problem  of 19,  21,  63 

Parent,    A 147 

Plato     6 

Pliny    135 

Polygon,    regular    . 239 

Problem  solving    6 

Ptolemy,   C 135 

Quadratic  equation    13,  34 

Quadratrix    44 


PAGE 

Rabuel,  C 2,  6,  9,  17, 

33,  40,  47,  55,  56,  59,  68,  79,  88, 
107,  111,  112,  120,  135,  191,  208,  239 

Remainder  Theorem    179 

Riccati,  V 2 

Roberval,  G.  P.,  de 26 

Roots    5 

Roots  increased  or  diminished...   163 

Roots  multiplied  or  divided 172 

Rudolph,   C 159 

Rule  of  Signs   (equations) 160 

Russell,   B 91 

Saladino,  G 2 

Scipio    Ferreus    211 

Signs,  Rule  of   (equations) 160 

Smith,  D.  E.. .  .13,  26,  44,  92,  179,  211 

Solid  analytic  geometry 147 

Spirals    44 

Steiner,    J 13 

Stifel,  M 159 

Supersolids    (sursolids).. .  .56,  80,  152 

Symbolism   5.  6,  175,  180 

Synthetic    division    179 

Tangents    112 

Tannery,  P 10,   17,  21 

Tartaglia,  N 211 

Taylor,    C 44 

Three-dimensional   space    147 

Transcendental   curves    91 

Transformation   of    roots. ..  .164,  166 
True   roots    159 

Van  Schooten,  F 2,  6,  9,  55,  147 

Vieta,  F 10,  26,  43 

Weber,   H 13 

Wellstein,   J 13 

Zeuthen,   H.   G 17 


246 


Sf 


DUE  DATE 

DEC  a 

6bbZ 

Printed 
in  USA 

QA  33.D5 


3  9358  00024562  8 


QA33 

D5 


I 


Descartes,  Rene,  ISSé^léSO. 

The  geometry  of  Rene  Descartes, 
translated  from  the  French  and  Latin  by 
David  Eugene  Smith  and  Marcia  L« 
Latham;  with  a  facsimile  of  the  first 
edition,  1637«  Chicago,  The  Open  Court 
Pub.  Co. ,  1 S25. 

xiii,  246  p.  front,  (port.)  diaêrs. 
24  cm* 

24562 


3 


lidBNU 


24   FEB    78 


635157   NEDDbp 


25-17  2S2 


QA  33.D5 


3  9358  00024562  8 


•i^