Skip to main content

Full text of "Journal of the Lepidopterists' Society"

See other formats


outs 


th 


yaneyye 
ih WAL 


toe 
=: 
. 
‘ J * 
“ 
nen 
, - ie Fi f 3 ' gen, : : - ‘ ‘ sere VE 
9 BTS 
. ths 6) 
' ‘ 
~% ’ i % Va eo ROM 
* ‘ ' ‘ ; 3 , 4 t ‘ 3 ore Weg f os 


ad athe fe Deserves Raz 

he be aCe BON Ment ee vy imecks te Del 
r Nee Ay aby & ey Se Mag este 
P ss oH: he nein prep rhs 

oe Sete he PR sre re ete 
Cin tenet ion 
A ALOK aed DR Are 
eran rhe tector ee 


Perret ree er ee 
frogs ae one Ne ras 2s 
ea Peer Dae bey ste thp 
ee icin eae 
se cata Bas ea hs 
x & mee Ber ee a aya 
a ‘tea Doe dh IA. mcrae 
Te tc err 
pre ME eas me 
Brie D ee eigen Bae Pas a anest 


DR Pym NIN whe Me tenes Maer eee ae 
RTI ty Tene ae Pace 
TN a OMe ie The 
ae Oe a eS 
me Hp hs th CRS. Enea lly & 


Sot ee 


pee tea 


rn ne er Sartre 
Th te ke ew Roe ; 


Ak Se ene te Be, 
eke be 


Rae ae 


ae 
sk tether ee tee 
a2 metigyein 


fre verte th eS OS 
a ate 


5 esate tenes 


ye 


PISS FH 2 Pia hae Seto 
a ee 


Te Ghee A “<i 
enh BW pene pie ia a pipiee nm in Belk Beet 
ge ew Se) et Bd ot Bo! ogy 


ee OR ra ee ea ae i 


WON se eS 
Deyasiee ne wage Byer x D> iis eas aS 


weer pee 
Cegar pee betes Bap 
Pad aye ete KE Cee. Fee 
Seco ty tiga oe ess 
8 Fee eee SO ee oo 
ieee ae St ee 


see wae ee 
ee: - Sod ed ee 
bc onpy Poetad ae 


erst Cece eH 
en pete 
soa 


te Bahay oe sess 
ay eye EE 
BAAS 
ner 


Reais mses: Wakre= prt ee, pa 
Sie ne 


cata 
pain PASSE 
ay eR b 


= a = | eee za 
— ow = 
) = a = |; a 
ed ; be > be 
. = - \ oe = 
w ae w” = wo 
= 7) z w . = 
NI NVINOSHLIWS S314YVYGIT LIBRARIES SMITHSONIAN 
z w — w — 
< = ‘ &. = < 
Az — z= NAS = > 
Oo os Ps Oo d Va = a Oo 
: g ZR 8 : 
= z = x £ = 
= > = > Ss 
” = ” = w” 
-S SMITHSONIAN INSTITUTION NOILNLILSNI NVI NGS EES 
w) Ss W” 3 Ww 
us a” = w” rs 
\ oe. = feed = oc 
) <y c << a < 
a +4 ce 4 a 
a 5 = 5 2 
ar 4 z - z a 
NI NVINOSHLINS SSIY¥VHYSIT LIBRARIES SMITHSONIAN 
c = c z c 
ow = w = €y, wo 
2 = 0 E 4% °> 
| > _ > — Ys 2 
a ras a ="5 UP fe _' 2 
m w” m nw?’ . ~ 
w = wn z w 
-\” SMITHSONIAN Nebr a sola aaa PE sidioniaings \ uvY gi 
= < = < = 
= => sar} = = 
ue: S WW 2 i 9 = 
S Oo ae 4 >: : oO : ac Oo 
2 E Nv 2 = a, 
z oe = 3 : 
NI NVINOSHLINS S3I¥YVYUSIT LIBRARIES SMITHSONIAN 
2 v = ” S 
Ww ul 
” 77) a ” 
E 1@)): £2: 
= = = =i 
re) ro) zet re) 
z a si z 


-S SMITHSONIAN 


ee LIBRAR} 


INSTITUTION 


INSTITUTION 


SMITHSONIAN 
f 


NOILNL 


NVINOSHLINS S31Y¥VvYgI 


saiuvagi LIBRAI 


NOILNL 


INSTITUTION NOILNLILSNI 


LIBRA! 


INSTITUTION NOLLAL 


z rs - rs 
re) re) oe oO 
— — o — 
iM x _ 
=i > = 
Ieee 2 A = 
a - pea = 
wv? ” w 
z z un _ 2 
NI NVINOSHLINS.S3 luvuag Houl B RAR i ES SMITHSONIAN 
z SS ~< = 
“ae = 5 WY FZ 
77) YO , YM ADK o 
a O + ao \. oO 
= = = < 
= > = ete 
7 z 7) 4 
ES SMITHSONIAN ~ INSTITUTION. NOLLALILSNINVINOSHLINS 
CEN Uae uw 2 
a. tal Zp a oc a ox 
a. per ip = ox = oc 
= a 3 2 5 = 
— | = ig J 
NIT NVINOSHLIWS S3tY¥vVYgIT LIBRARIES SMITHSONIAN 
= S s z : 
o A = SULTS < 390 No be 
2 ¥X = AMD) 2 By = Ey 
Oo] > . Nae cc fo abs: [5 oy Pa Jy, 2 


ES SMITHSONIAN 


INSTITUTION NOILNLILSNI NVINOSHLINS S32IY¥Vudlt 


INSTITUTION  NOIL 


INSTITUTION 


saiuvualy LIBRA 


LIBRA 


NOILN 


NVINOSHLINS S3IYVYUGIT LIBRARIES 


NOILNLILSNI 


TUTION 


o 2 
a = 
= i: 
= 
- Zz 
OSHLINS SSIYVYGIT LIBR 
a 2) = 
Kase = x \ 
Ss z 
= O'7x 
77) n° 
O % ae 
= = 
ey . 2 w 
ISONIAN INSTITUTION 
) is ” 
Ww taj 
42 me 
= oc 
= <x 
par [a 
- oOo fe 
fi z a 
SHLINS SSIYVUSIT 
2 i a 
‘4 : Oo — 
i Y = 
5 2 
ke >. 
- 0) 
= = 
— w 


INSTITUTION 
<= ; 22) 
< = 
S = 
S x 
2 8 
- 4 
SHLINS S3iyvVuygit 
a ud ae 
o a, 
4 
« a c 
on ai 
ral (@) 
a a 
AN 
a z 
7 = 
“a 5 
— Js 
= a 
WS S3!1uY¥vugIT 
wn Pd 
= Pian SS 
=. Shi 
6 } - 
= Lad 
> 
= re 
NIAN "INSTITUTION 
4 a (7p) 
o uJ 
ae = 
= < 
+ a 
f 3 2 
il 
S. 
é ’ i 
= LR = 
a ad 
a | ky A p> 0) 


INSTITUTIO! 


SMITHSONIAN 


NVINOSHLINS S3JIYVUE! 


SMITHSONIAN 


NOILNLILSNI 


LIBRARIES 


LIBRARIES SMITHSONIAN 


7 


® 


INSTITUTION NOILALILSNI 


saiuvya 


NOILNLILSNI NVINOSHLIWS 


SMITHSONIAN 
NVINOSHLIWS 


LIBRARIES SMITHSONIAN 


NOILALILSNI 


INSTITUTION NOILANLILSNI NVINOSHLINS S3IuvUugIT 


INSTITUTION 


LIBRARIES SMITHSONIAN 


NVINOSHLINS S31uYvuait LIBRARIES 


NOILANLILSNI NVINOSHLIWS 


Sa!'YvVYdIT LIBRARIES SMITHSONIAN 


Yd!i1 LIBRARIES SMITHSONIAN 


JTION NOILNILILSNI 


Saiuvudl 
INSTITUTIO! 
a 


INSTITUTION NOILALILSNI N' 


7) z 
= <= 
“ pal = 
Z WY = 
SAJI¥YVYEIT LIBRARIES SA 
= w 
on 
Z a 
<x 5 
S = 
= rae] 
S$ fi 
INSTITUTION _ NOILALILSNI_N\ 
S x 
B) 
red > 
ri A 
ms ox 
7 = 
SaldyvuaIT_ LIBRARIES Sh 
oe Z 
z = 
O = may 
a ; Oo \ 
= QQ 2 
A os 


INSTITUTION NOILALILSNI NI 


NOILALILSNI 


LIBRARIES Sh 


dp) 
tJ 
Ge 
< 
joa 
@ 
_ 
™ = 
w S) 
= 5. 
=m = 
ch rae 
: D z 
INSTITUTION NOILNLILSNI NY 
ne. 2) z 
MoS < 
G&S a = 
Wik a & oO 
N 9 = | 
x = 
Maes = 
: az 7p) 
Saiuvugit_ SN 
2 Ww 
” pte 
= ae 
= a 
S = 
PA ea) 
INSTITUTION _ NOILNLILSNI NY 
ON, O <i> ans 
KT = ey Re = 


941 46 1992 Number 1 


ISSN 0024-0966 


co JOURNAL 


of the 


_LEPIDOPTERISTS’ SOCIETY 


Published quarterly by THE LEPIDOPTERISTS’ SOCIETY 


Publié par LA SOCIETE DES LEPIDOPTERISTES 
Herausgegeben von DER GESELLSCHAFT DER LEPIDOPTEROLOGEN 
Publicado por LA SOCIEDAD DE LOS LEPIDOPTERISTAS 


15 July 1992 


THE LEPIDOPTERISTS’ SOCIETY 


EXECUTIVE COUNCIL 


FLoyYD W. PRESTON, President EBBE S. NIELSEN, Vice President 
RONALD LEUSCHNER, Immediate Past President ROBERT K. ROBBINS, Vice President 
PHILLIP R. ACKERY, Vice President Fay H. KARPULEON, Treasurer 


WILLIAM D. WINTER, Secretary 


Members at large: 


RICHARD A. ARNOLD KAROLIS BAGDONAS CHARLES V. COVELL, JR. 
SUSAN S. BORKIN STEVEN J. CARY LINDA S. FINK 
Davip L. WAGNER STEPHANIE S. MCKOWN ScoTT E. MILLER 


EDITORIAL BOARD 


PAUL A. OPLER (Chairman), FREDERICK W. STEHR (Member at large) 
JOHN W. BROWN (Journal), WILLIAM E. MILLER (Memoirs) 
JUNE PRESTON (News) 


HONORARY LIFE MEMBERS OF THE SOCIETY 


CHARLES L. REMINGTON (1966), F. MARTIN BROWN (1973), E. G. MUNROE (1973), 
ZDRAVKO LORKOVIC (1980), IAN F. B. COMMON (1987), JOHN G. FRANCLEMONT (1988), 
LINCOLN P. BROWER (1990), DoUGLAS C. FERGUSON (1990), 

HON. MIRIAM ROTHSCHILD (1991), CLAUDE LEMAIRE (1992) 


The object of the Lepidopterists’ Society, which was formed in May 1947 and for- 
mally constituted in December 1950, is “to promote the science of lepidopterology in all 
its branches, ... . to issue a periodical and other publications on Lepidoptera, to facilitate 
the exchange of specimens and ideas by both the professional worker and the amateur 
in the field; to secure cooperation in all measures” directed towards these aims. 

Membership in the Society is open to all persons interested in the study of Lepi- 
doptera. All members receive the Journal and the News of the Lepidopterists’ Society. 
Institutions may subscribe to the Journal but may not become members. Prospective 
members should send to the Treasurer full dues for the current year, together with their 
full name, address, and special lepidopterological interests. In alternate years a list of 
members of the Society is issued, with addresses and special interests. There are four 
numbers in each volume of the Journal, scheduled for February, May, August and 
November, and six numbers of the News each year. 


Active members—annual dues $25.00 
Student members—annual dues $15.00 
Sustaining members—annual dues $35.00 
Life members—single sum $500.00 
Institutional subscriptions—annual $40.00 


Send remittances, payable to The Lepidopterists’ Society, to: Fay H. Karpuleon, Trea- 
surer, 1521 Blanchard, Mishawaka, Indiana 46544, U.S.A.; and address changes to: Julian 
P. Donahue, Natural History Museum, 900 Exposition Blvd., Los Angeles, California 
90007-4057 U.S.A. For information about the Society, contact: William D. Winter, Sec- 
retary, 257 Common St., Dedham, Massachusetts 02026-4020, U.S.A. (617-326-2634). To 
order back issues of the Journal, News, and Memoirs, write for availability and prices 
to the Publications Coordinator: Ronald Leuschner, 1900 John St., Manhattan Beach, 
California 90266-2608, U.S.A. 


Journal of the Lepidopterists’ Society (ISSN 0024-0966) is published quarterly for 
$40.00 (institutional subscription) and $25.00 (active member rate) by the Lepidopterists’ 
Society, % Los Angeles County Museum of Natural History, 900 Exposition Blvd., Los 
Angeles, California 90007-4057. Second-class postage paid at Los Angeles, California and 
additional mailing offices. POSTMASTER: Send address changes to the Lepidopterists’ 
Society, % Natural History Museum, 900 Exposition Blvd., Los Angeles, California 90007- 
4057. 


Cover illustration: Strymon melinus Hiibner, the common hairstreak, is one of the most 
widespread lycaenid butterflies in the United States. Original drawing by Callie Mack, 
Natural Science Illustration, 8529 Jackie Drive, San Diego, California 92119. 


JOURNAL OF 


Tue LeEerPiIpoPTERISTS’ SOCIETY 


Volume 46 1992 Number 1 


Journal of the Lepidopterists’ Society 
46(1), 1992, 1-23 


GENITALIC RECASTING OF POANES AND PARATRYTONE 
(HESPERIIDAE) 


JOHN M. BURNS 


Department of Entomology, National Museum of Natural History, 
Smithsonian Institution, Washington, D.C. 20560 


ABSTRACT.  Hesperiine skipper genera in stable use in the United States and Canada 
at least since 1955 are gaining “authority through repetition.” But critical comparison of 
genitalia shows that many of those genera are grossly misdefined and polyphyletic. Prob- 
lems usually extend into the neotropics. On the basis of male and female genitalic char- 
acters (and about 200 KOH-treated dissections), I precisely redefine both Paratrytone 
Godman, which is high montane in much of the central and southern Rocky Mountains 
of the U.S. but especially in Mexico, and a compact group comprising the “terrestrial 
species’ of Poanes Scudder (as opposed to the “marsh dwellers’), which range from 
southern eastern and central Canada, and from California and the central Rocky Mountain 
region of the U.S., to northern South America (Colombia, Venezuela, and Ecuador). Two- 
thirds (eight) of the species currently in Paratrytone (including melane [Edwards]) go 
elsewhere—mostly to Poanes; but Paratrytone gets snowi (Edwards) from Ochlodes 
Scudder. Poanes also gets macneilli new species from the Sierra Nevada de Santa Marta 
in northern Colombia but loses two Mexican and Central American species. The fuller 
treatment given Poanes includes capsule geographic distributions of its species and dis- 
cussion of male genitalia at the specific level. Poanes zabulon (Boisduval & Le Conte) 
and Poanes taxiles (Edwards) are unquestionably distinct species. New combinations: 
Poanes niveolimbus (Mabille), Poanes monticola (Godman), Poanes capta (Miller & 
Miller), Poanes ulphila (Plotz); Paratrytone snowi (Edwards); Ochlodes batesi (Bell). New 
synonymies: Poanes taxiles (Edwards) = P. psaumis (Godman); Poanes monticola (God- 
man) = P. capta (Miller & Miller). Incertae sedis (temporary floaters): rolla (Mabille) 
and benito Freeman ex Poanes; argentea (Weeks) and barroni Evans ex Paratrytone. 


Additional key words: genitalia (male and female), taxonomy, nearctic, neotropical, 


Ochlodes. 


Our butterflies are supposed to be taxonomically well-known. Con- 
sider our skippers: half the nearly 300 species recorded from the United 
States are hesperiines, and their generic placement has not changed 
since the American hesperiine volume of Evans (1955). With the flood 
of North American butterfly books and checklists in recent decades, 
these stable skipper genera are gaining what I call “authority through 
repetition.” In fact, much is generically wrong. 

If critically studied and compared, genitalia are as valuable for group- 


2 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


ing related species in higher categories like genera as they are for 
distinguishing species. Over the past six years, I have been genitalically 
reviewing (in both sexes) much of the nearctic hesperiine fauna—and 
some of its neotropical connections—with an eye to better defining our 
“familiar” genera. 

Major errors reported so far—involving Atalopedes and Hesperia 
(Burns 1987, 1989), Amblyscirtes and some of its relatives (Burns 1990), 
and Atrytone and Mellana (Burns unpubl.)—are the tip of a taxonomic 
iceberg. There are so many hidden mistakes that I need a faster way 
of addressing them. Some quick remedies will, of necessity, be partial 
or transitional. But dispatch is desirable because faulty classification 
continues to distort information in our new butterfly books, making 
broader biological generalizations and comparisons meaningless. 

This paper is an effort to recast Poanes and Paratrytone—two sizable 
polyphyletic genera that include nearctic species—without going into 
needless detail. Since the primary problem at this stage is bringing 
related species together while dismissing the rest, problems at and 
around the species level (which have always intrigued me), and analyses 
of phylogeny, get short shrift. Traditional butterfly characters of wing 
color and pattern are dispensable, owing especially to rampant paral- 
lelism and convergence; but characters of the genitalia are crucial. I 
am resurrecting eleven genitalic illustrations from the turn of the cen- 
tury and the mid-twenties both to acknowledge pioneer workers whose 
forgotten figures still convey what we need to know (Godman 1900, 
Skinner & Williams 1924a, 1924b) and to save time (new and better 
genitalic figures would be long in coming). 


A PART FROM POANES SCUDDER 


I am actually concerned here with a subgroup of what now passes 
as Poanes, to wit, the “ordinary terrestrial species’ such as hobomok 
(Harris), zabulon (Boisduval & Le Conte), and taxiles (Edwards), as 
opposed to the four specialized “marsh dwellers,’ massasoit (Scudder), 
viator (Edwards), aaroni (Skinner), and yehl (Skinner). Though all are 
related, I cannot yet say whether the peculiar massasoit—the type 
species of Poanes—is truly congeneric with the terrestrial species (or 
even, for that matter, with the other marsh dwellers). My continued 
application of the generic name Poanes to the terrestrial species is 
conservative and provisional. 

With flamboyant asymmetric titillators augmenting the penis of the 
male and correspondingly and indescribably elaborate wrinkles com- 
plicating the copulatory duct of the female, the genitalia in the ter- 
restrial species of Poanes are collectively odd; but, at the same time, 


VOLUME 46, NUMBER 1 i) 


they are interspecifically similar. In other words, the species are minor 
variations on a major theme. 

In defining this theme—this genitalically compact group—I have 
extracted shared critical features from a total of 75 KOH-treated gen- 
italic dissections (45 males, 30 females) of all included species. My 
working description of each sex has been read against each of the 
individual dissections in order to polish it and to better accommodate 
variation. 

Many additional genitalia have been examined and compared in 
connection with the grander setting, which involves (among other things) 
the marsh dwellers, some Asian kin, and certain skippers now in Poanes 
that cannot possibly belong. Specifically, rolla (Mabille) from Costa 
Rica and Panama and the much more recently described benito Free- 
man from southern Mexico superficially resemble Poanes without being 
anywhere near it. Together, they are going to another genus (Burns 
unpubl.). 

The terrestrial species of Poanes range from southern eastern and 
central Canada, and from California and the central Rocky Mountain 
region of the United States, to northern South America (Colombia, 
Venezuela, and Ecuador). 


Male Genitalia 
(Figs. 1-16) 


The valva in lateral view is longer than high and basically rectangular, but its posterior 
end is curved rather than straight. This curved distal end is set off dorsally from the 
body of the valva by a vertical slit or notch and is itself divided into two dorsally-pointing 
projections, one more lateral (and always dentate), the other more medial (Figs. 2, 5, 
6, 8-16). 

Three long, distinctive, asymmetric titillators sprout from the distal end of the 
aedeagus—one on the right, one toward the middle, and one on the left. Both the right 
and left ones are conspicuous and conspicuously dentate (Figs. 2, 3, 5-16). The right 
titillator, which is heavy and rigid, always extends backward (also, in many cases, 
downward), well beyond the body of the aedeagus. Although the central titillator shares 
an origin with the right one (Figs. 3, 6, 7), it approaches the left one; and, together, the 
central and the left titillators, which are much more delicate than the right, fold on 
themselves 180° to run forward inside the aedeagus (see especially Fig. 3) when it is at 
rest (i.e., when the vesica is not everted). 

The aedeagus is encircled by a massive sclerotized ring, the anellus, which is medial 
to the vinculum and the anterior ends of the valvae. Wide all the way around, the anellus 
becomes extra wide ventrally (where it incorporates the juxta). Anteroventrally it extends 
forward beneath the aedeagus, finally forming a pair of short anterior projections (see 
especially Figs. 2, 3, 5, 7, but also 8-10, 12). 

In lateral view the long, more or less narrow gnathos lies close under the uncus (Figs. 
2, 5, 8-11, 14-16). In dorsal view the uncus suggests a caudally-tapering triangle, but the 
immediately anterior tegumen fails to prolong the triangular effect (Figs. 1, 4). Distally 
the uncus splits into paired prongs (interspecifically variable in length) which are in 
contact or close (Figs. 1, 4). 

The saccus is short (Figs. 2, 5, 8-16). 


4 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Fics. 1-3. Male genitalia of Poanes macneilli, holotype, from east above San Pedro 
de la Sierra, Sierra Nevada de Santa Marta, 2900-3900 m, COLOMBIA, 7 March 1975, 
M. J. Adams (genitalic dissection no. X-2352) (USNM). Scale = 1.0 mm. 1, Tegumen, uncus, 
and gnathos in dorsal view; 2, Complete genitalia (minus right valva) in left lateral view, 
with anellus and all three titillators stippled and cornutus outlined by dashes (anterior to 
titillators and medial to anellus); 3, Aedeagus and anellus in dorsal view, with central 
and left titillators in resting position (folded 180°) and the scouring-pad cornutus showing 
within the aedeagus (under the top of the anellus). 


Female Genitalia 
(Bigs) 718) 


The short, broad ductus bursae initially runs forward but then bends upward (Fig. 18) 
and to the left (Fig. 17), as well. It is membranous, and usually somewhat longitudinally 


VOLUME 46, NUMBER 1 5 


Fics. 4-7. Male genitalia of Poanes azin from Bogota, COLOMBIA, 4 April 1920, 
F. Clark (X-2965) (USNM). Vesica everted to unfold the flexible central and left titillators, 
which project from the end of the-aedeagus. Scale = 1.0 mm. 4, Tegumen, uncus, and 
gnathos in dorsal view; 5, Complete genitalia (minus right valva) in left lateral view, 
with anellus and all three titillators stippled; 6, Distal ends of valvae (showing the outer 
[dentate], and inner, dorsally-pointing projections on each valva) and aedeagus (showing 
all three titillators) in posterior view; 7, Aedeagus and anellus in dorsal view, with central 
and left titillators unfolded. 


wrinkled, both ventrally and dorsally; but it is sclerotized, and transversely wrinkled-and- 
grooved, laterally. The heavy, conspicuous wrinkles-and-grooves are extremely intricate 
and not altogether transverse. The ductus bursae does show some ventral sclerotization 
where it bends upward and some dorsal sclerotization at its origin. There, just above and 
behind the ostium bursae, a caudally convex shelf—variably sclerotized, and often at 
least centrally membranous—curves across the midline. 

Large, paired, rounded, variably sclerotized and internally spinulose pouches lie just 
above, behind, and to the sides of the ostium bursae and this arched shelf. After giving 


6 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


9 


a 
iF 


( 


Fics. 8-11. Male genitalia of four species of Poanes ex Skinner and Williams (1924a). 
All x15. Drawn from slide mounts in which parts are not perfectly oriented, these 
exploded figures show (top to bottom) tegumen, uncus, gnathos, vinculum, and saccus in 
left lateral view; the right valva in medial view (good for seeing the inner, and dentate 
outer, dorsally-pointing projections); and the aedeagus and anellus in variable views (the 
anellus, in more or less ventral view when shown, has sometimes rotated relative to the 
aedeagus; the large, rigid titillator extending backward is always the right one, no matter 
where it appears). 8, Poanes hobomok from Avon, Connecticut, U.S.A.; 9, Poanes zabulon 
from Havre de Grace, Maryland, U.S.A.; 10, Poanes taxiles from Chimney Gulch, Col- 
orado, U.S.A.; 11, Poanes melane from southern California, U.S.A. (this figure omits the 
anellus but shows all three titillators, as well as melane’s scouring-pad cornutus which 
most Poanes lack). 


rise to the apophyses anteriores, the eighth tergite continues downward to fuse broadly 
with the dorsal side of each pouch. 

From the innermost ends of these pouches, finely spinulose bands extend backward 
(Fig. 17), diverging through a membranous to very lightly spinulose area, to reach the 
outer edges of a thick, well-sclerotized, spinulose to centrally bristled transverse element 
(just in front of the ovipositor lobes), which is variously shaped, particularly along its 
posterior margin. It usually projects ventrad. 


PARATRYTONE GODMAN 


Paratrytone is a highly distinct genus that is related to the terrestrial 
species of Poanes. (However, those species of Poanes are much closer 


VOLUME 46, NUMBER 1 Tf 


Fics. 12-16. Male genitalia of five species of Poanes ex Godman (1900: plate 94), 
who treated them all as Atrytone. Drawn from slide mounts in which parts are not 
perfectly oriented, these figures show complete genitalia (minus left valva) in left lateral 
view. Like the Skinner and Williams figures, they present the inner surface of the right 
valva, whereas mine present the outer surface of the left valva. 12, Poanes zabulon (the 
gnathos has artificially sagged too far below the uncus); 13, Poanes melane (again, the 
gnathos has sagged a bit, but melane’s scouring-pad cornutus, which most Poanes lack, 
appears as a dark arc behind the bottom of the vinculum); 14, Poanes monticola; 15, 
Poanes niveolimbus; 16, Poanes inimica. 


to Ochlodes than they are to Paratrytone—so much so, in fact, that at 
least terrestrial Poanes and Ochlodes may ultimately merge.) Males of 
Paratrytone (but also of Ochlodes!) have a large stigma on the dorsal 
surface of the forewing, whereas males of the terrestrial species of 
Poanes do not. 

Though I am concerned with all of Paratrytone, instead of a subgroup 
of it, I am drastically changing its composition: six of the nine species 
included by Evans (1955) must go—four of them to Poanes, along with 
yet another species more recently described and likewise misplaced in 
Paratrytone (see Notes on the Terrestrial Species of Poanes below). 


8 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Fics. 17,18. Female genitalia of Poanes macneilli from north of San Sebastian, Sierra 
Nevada de Santa Marta, 2800-3400 m, COLOMBIA, 15 February 1975, M. J. Adams (X- 
2365) (collection of C. D. MacNeill). Scale = 1.0 mm. 17, Ovipositor lobes, eighth tergite 
with apophyses anteriores, sterigma, and bursa copulatrix in ventral view; 18, The same, 
plus the right apophysis posterioris and part of the ductus seminalis, in right lateral view. 


VOLUME 46, NUMBER 1 9 


The other two species that Evans wrongly stuck in Paratrytone—ar- 
gentea (Weeks) from Bolivia and barroni Evans from Ecuador—are 
temporarily without a proper home. (I am setting them in incertae 
sedis, like simius Edwards, formerly of Amblyscirtes [Burns 1990].) 
Early in this study I concluded, from Weeks’s (1905: plate 15, fig. 2) 
color paintings of argentea, its Bolivian provenance, and its unavail- 
ability to Evans (1955:350), that argentea did not fit in Paratrytone; 
and eventual dissection of its male genitalia bore me out totally. Evans 
(1955:351) described barroni (in the company of other species that do 
not really belong in Paratrytone) in great superficial detail from a 
single female from 915-1220 m in Ecuador. I have not gone after this 
type because neither her looks nor her low latitude and low altitude 
relate to true Paratrytone. Correctly defined and flushed of misfits, 
Paratrytone displays a tidy, restricted geographic distribution that makes 
biologic sense (see below). 

I am also removing the montane Hispaniolan species batesi (Bell) 
which went from Poanes, where it was originally described (Bell 1935), 
to Choranthus (Evans 1955), where it had absolutely no business, to 
Paratrytone (Miller 1966), where it has remained (Riley 1975, Schwartz 
1989). Even though Miller (1966) examined and compared male and 
female genitalia of representative species of Poanes and Paratrytone 
together with those of all of Evans’s species of Choranthus, he erred 
in his placement of batesi. Bell (1935) came close to the mark in putting 
batesi in Poanes—but not in specifically relating it to yehl, rhexenor 
Godman, polyclea Godman, and aphractoia Dyar. These last three 
species, all Mexican, are the only ones of the nine that Evans (1955) 
had in Paratrytone that really belong there. (It is worth noting that 
Paratrytone Godman 1900, with rhexenor as type, should not be con- 
fused with its homonym Paratrytone Dyar 1905, which, with howardi 
Skinner [=the marsh dweller aaroni] as type, is a synonym of Poanes.) 
Having compared KOH-treated genitalic dissections of two pairs of 
batesi with those of Paratrytone, Poanes, and a dozen species of Och- 
lodes (both sexes, 33 dissections), I propose the new combination Och- 
lodes batesi. As stated above, Ochlodes and Poanes may prove too close 
for bigeneric comfort. For now it is obvious that the genitalia of O. 
batesi, while different from those of the terrestrial species of Poanes, 
are ever so much nearer to them and especially to those of some species 
of Ochlodes than they are to those of Paratrytone. 

As if in compensation for the near-total purge, Paratrytone gets snowi 
(Edwards) (new combination) from Ochlodes plus some undescribed, 
high-altitude Mexican species (Burns & MacNeill unpubl.). It also keeps 
decepta, one of two species described in Paratrytone by Miller and 
Miller (1972)—but it loses the other one, which belongs with the ter- 


10 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


restrial species of Poanes (see below): figures of the male genitalia 
(Miller & Miller 1972:figs. 17, 18), despite poor representation of the 
diagnostic aedeagi, unmistakably show one species in each genus. 

To summarize, Paratrytone recast contains rhexenor, snowi, decepta, 
polyclea, aphractoia, and some undescribed species (one of which, 
however, is probably pilza Evans [1955:348] described as a subspecies 
of snowi from southern Mexico [‘‘Pinal, Puebla, 8000 feet’’}). 

In Paratrytone, as in the terrestrial species of Poanes, the genitalia 
in each sex are clearly variations on a single singular theme. The most 
salient traits are, in males, two symmetric pairs of aedeagal titillators 
(one dorsal, one ventral) along with a basally massive gnathos and, in 
females, a ventrally projecting structure at the back of the lamella 
postvaginalis (hence distally located, just in front of the ovipositor lobes) 
that suggests human lips. 

In characterizing Paratrytone I have studied and compared a total 
of 86 KOH-treated genitalic dissections (47 males, 39 females). Again, 
I have honed my working description of each sex while hearing it read 
aloud as I slowly reexamined each dissection. 

Far more limited in geographic and altitudinal distribution than the 
terrestrial species of Poanes, Paratrytone is high montane (ca. 2000- 
3100 m), mostly in Mexico but also in much of the central and southern 
Rocky Mountains of the United States (extreme southeastern Wyoming, 
Colorado, New Mexico, and Arizona). 


Male Genitalia 
(Figs. 19-23) 


Much as in Poanes, the valva in lateral view is roughly rectangular, but its posterior 
end is sometimes more angled (Fig. 23) than rounded. Again as in Poanes, the distal end 
is set off dorsally from the body of the valva by a vertical slit or notch; but this end is 
made up of only one dorsally-pointing projection (which may or may not be dentate) 
(Figs. 20, 22, 23). Because there is no second dorsally-pointing projection arising from 
its inner surface, the distal end of the valva is much simpler than it is in Poanes. 

Two pairs of symmetric titillators spring from the distal end of the aedeagus—one 
dorsally, one ventrally. All four titillators extend backward (they may also go upward 
or downward) and all lack teeth, but each ends in a single delicate point (Figs. 20-28). 
(The titillators vary greatly in length, the ventral pair vanishing in at least one species 
[Paratrytone aphractoia].) 

A simple juxta lies ventral and lateral to the aedeagus (Figs. 20, 23), medial to the 
vinculum and the anterior ends of the valvae. It is basically U-shaped (in dorsal or ventral 
view) with its central, transverse, more or less straight-edged base midventral and its two 
arms extending backward. Each arm has a single twist, and the arms usually bend dorsally 
(Fig. 20) but sometimes run straight back. 

In lateral view the gnathos looks massive, especially as it is exceedingly wide proximally 
(Figs. 20, 22, 23). Distally it usually departs from the overlying uncus, leaving a wider 
gap than in Poanes (Figs. 20, 22, 23). In dorsal view tegumen plus uncus together suggest 
an elongate, caudally-tapering triangle. Distally the uncus splits into paired prongs which 
are medium long and close together (Fig. 19). (It is not “undivided” as claimed by Miller 
[1966:260]. ) 

The saccus is short, as in Poanes (Figs. 20, 22, 23). 


VOLUME 46, NUMBER 1 ~ ll 


Fics. 19-21. Male genitalia of Paratrytone sp. from Cuazimalpa [=Cuajimalpa, ca. 
3000 m, 19°21'N, 99°18’W, Distrito Federal], MEXICO, July 1918, R. Mufelller (X-2311) 
(USNM). Scale = 1.0 mm. 19, Tegumen, uncus, gnathos, and top of vinculum in dorsal 
view; 20, Complete genitalia (minus right valva) in left lateral view; 21, Aedeagus in 
dorsal view. Note the two pairs of symmetric titillators, one dorsal and one ventral. 


12 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


23 


Fics. 22, 23. Male genitalia of two species of Paratrytone ex Godman (1900: plate 
93) and Skinner and Williams (1924b). The main problem with these figures, drawn from 
slide mounts in which parts are not perfectly oriented, involves the aedeagus whose two 
pairs of symmetric titillators do not adequately show. 22, Paratrytone rhexenor from 
MEXICO; 23, Paratrytone snowi from Morrison, Colorado, U.S.A. 


Female Genitalia 
(Figs. 24, 25) 


The ductus bursae is short and broad (broader than in Poanes)—about the diameter 
of the corpus bursae where the two join. It runs forward (but not also upward and to the 
left as in Poanes). Lacking the intricate, sclerotized, lateral wrinkles-and-grooves of 
Poanes, it begins at the ostium bursae as a ring of sclerotization, broken dorsally into a 
pair of sclerotized bands. 

From the ostium bursae, these sclerotized bands initially converge and then diverge— 
like a pair of parentheses “) (”’ in reverse—as they extend backward the length of the 
laterally membranous lamella postvaginalis to attach to the upper, outer corners of a 
thick, heavily sclerotized, spinulose, transverse structure which (just in front of the ovi- 
positor lobes) projects downward, and usually also forward, resembling, in ventral view, 
human lips. 

Anterior to the dorsally broken sclerotized ring around the ostium bursae, the ductus 
bursae is always well sclerotized dorsally and sometimes variably sclerotized ventrally 
before becoming membranous. The dorsal sclerotized plate is invaginated middorsally in 
several species (including the one illustrated [Paratrytone aphractoia]). Ventrally, adjacent 
to the corpus bursae, is a more or less distinctive zone that varies from fully membranous 
to fully sclerotized. Viewed ventrally, this zone in several species suggests human female 
breasts or the brassiere that covers them (so that one is tempted to write Paratytone). 


NOTES ON THE TERRESTRIAL SPECIES OF POANES 
Poanes melane 


I am returning melane (Edwards) to Poanes. Long ago when Dyar 
(1905) put only melane, hobomok, zabulon, and taxiles in Atrytone, 
the grouping was right but the genus, wrong, because none of those 
species is its type. Barnes and McDunnough’s (1916:132) corrective 
step— ‘The species at present placed by Dyar in the genus Atrytone 
we would place, rather than create a new genus, in Poanes Scud. along 
with massasoit, with which they seem to possess considerable affinity’ — 


VOLUME 46, NUMBER 1 — Jus} 


Fics. 24,25. Female genitalia of Paratrytone aphractoia from Mexico City, MEXICO, 
August 1920, R. Mufelller (X-2307) (USNM). Scale = 1.0 mm. 24, Sterigma and bursa 
copulatrix in ventral view; 25, The same, plus part of the ductus seminalis, in right lateral 
view. 


suited subsequent workers such as Lindsey (1921), Skinner and Williams 
(1924a), Comstock (1927), Lindsey et al. (1931), Bell (1938), and Hoff- 
mann (1941). Skinner and Williams (1924a) went so far as to show the 
male genitalia of our four terrestrial species of Poanes (hobomok, za- 
bulon, taxiles, and melane) in a single plate—reprinted in Lindsey et 
al. (1931) and now here (Figs. 8-11)—where both their distinctive form 


14 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


and their close similarity leap out. All the same, when Evans (1955), 
without explanation, switched melane from Poanes to Paratrytone, 
everyone blindly followed him. 

Putting the Californian melane back restores Poanes in the United 
States to transcontinental grandeur. 

South of the border, melane extends to Panama in two superficially 
defined subspecies—the Mexican vitellina (Herrich-Schaeffer) and the 
Central American poa Evans—whose status vis-a-vis nominotypical 
melane warrants further study. Ten dissections of male genitalia in- 
dicate that both the lateral and the medial dorsally-pointing projections 
at the distal end of the valva are shorter and wider in the Californian 
melane melane (Fig. 11) than they are in the more southerly differ- 
entiates (Fig. 13), but also that they are longer and narrower in the 
geographically intermediate melane vitellina (dissections from the 
Mexican states of Veracruz, Puebla, Michoacan, Oaxaca, and Chiapas) 
than they are in the southernmost melane poa (dissections from Costa 
Rica and Panama)! The apparent polytypic species may be a super- 
species. 

All populations of Poanes melane exhibit a well-sclerotized, long and 
narrow cornutus comprising closely spaced, more or less longitudinal 
rows of numerous overlapping fine spines set in membrane whose curved 
shape suggests a cover for, say, the top and upper sides of a tiny 
caterpillar. It belongs to a more general class that I have dubbed “scour- 
ing-pad cornuti” (Burns unpubl.). Missing from most terrestrial species 
of Poanes, this cornutus is so conspicuous in melane that it appeared 
in the Godman (1900) and Skinner and Williams (1924a) figures of 
melane genitalia (Figs. 11, 13) and elicited a remark from Skinner and 
Williams (1924a:60): “The aedoeagus of melane .. . carries. . . a floating 
bundle of hair-like spines.” 


Poanes hobomok 


Ranging from southern eastern and central Canada to the northern 
fringe of the southern eastern and central United States, hobomok is 
the most northern of the terrestrial species of Poanes. It seems to pose 
no genitalic problems. Apart from the tegumen/uncus looking more 
concave than usual in lateral view (imperfectly shown in Fig. 8), the 
male genitalia are fairly typical and without obvious idiosyncrasies. 

Poanes hobomok is famous for having dimorphic females and for 
having catalyzed the symbol T, for duration of copulation (Burns 1970). 
(The mean T, of this skipper is 38% minutes.) 


Poanes zabulon and taxiles 


Claiming that their “abdominal structures [=genitalia] are the same,” 
Scott (1986:452) made taxiles a subspecies of zabulon. For such a gen- 


VOLUME 46, NUMBER 1° 15 


italically conservative group, zabulon and taxiles express what can only 
be considered major genitalic differences; and the two skippers are 
undoubtedly distinct species. 

The biggest difference is also the easiest to see because it is at the 
distal end of the male genitalia on the outside of the valva. In zabulon 
a peculiar flap from the body of the valva extends backward, lateral 
to the lateral (dentate) dorsally-pointing projection, so as to hide it in 
lateral view (Fig. 26). This condition is unique among the terrestrial 
species of Poanes. In taxiles the body of the valva barely overlaps the 
dentate, dorsally-pointing projection (Fig. 27). And little (Figs. 2, 8, 16) 
to no (Figs. 5, 11, 13-15) overlap marks all the other species. The striking 
total overlap in zabulon does not show in previously published figures 
of its genitalia (Figs. 9, 12) because they give inside rather than outside 
views of the valva. I have verified this difference in many more males 
of zabulon and taxiles, from diverse localities, simply by examining 
the end of the genitalia in situ. 

A large genitalic difference visible only in complete, KOH-treated 
dissections involves the posterior margin of the dorsal part of the anellus. 
Viewed dorsally, it looks in zabulon like a very shallow W (much 
shallower than the one in Fig. 3) but in taxiles like a relatively deep, 
broad U to incipient W (with the point of the W, if present, but slightly 
developed—not obvious the way it is in Fig. 7). 

The medial dorsally-pointing projection at the distal end of the valva 
is rounded at its tip in both species but broader in zabulon than in 
taxiles. This difference, which is subtle, requires oblique views for 
proper detection; so it hardly shows in the strictly lateral views of Figs. 
26 and 27. 

Appropriately enough, Bailowitz and Brock (1991:9, 86) treated tax- 
iles as a full species, observing that “Some [taxonomic] changes [of Scott 
1986] (such as lumping Poanes taxiles as a subspecies of P. zabulon) 
go against our conservative grain and are mentioned but not followed.” 
Despite my stress here on male genitalia, I will add in passing that these 
two species also differ from one another in aspects of the female gen- 
italia, superficial appearance (amply illustrated in many sources), and 
size (taxiles is larger). 

Poanes zabulon is strongly disjunct, ranging through most of the 
warmer eastern United States from southern New England, the bottom 
end of the Great Lakes, and southern Iowa to northern Florida and 
eastern Texas and, in mountains, from southern Mexico (Veracruz, 
Puebla, Jalisco, Michoacan, Guerrero, Oaxaca, Chiapas) to western Pan- 
ama (Chiriqui). Poanes taxiles is montane from the central and southern 
Rocky Mountain region of the United States to northern (Durango, 
Sinaloa) and southern (Jalisco, Veracruz, Puebla) Mexico. 

The taxon psaumis Godman (1900)—described from two females 


16 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


_ SSS SSS a eel 


Fics. 26, 27. Left valva of the male genitalia of two species of Poanes in left lateral 
view. Scale = 1.0 mm. 26, Poanes zabulon from Charleson Street, Annandale, Fairfax 
County, Virgina, U.S.A., 31 August 1979, J. M. Burns (X-3103) (USNM). 27, Poanes 
taxiles from 0.8 km southeast of Clark Peak, Pinaleno Mountains, 2740 m, Graham County, 
Arizona, U.S.A., 26 June 1958, J. M. and S. N. Burns (X-3105) (USNM). Note how a 
caudally-projecting flap from the body of the valva hides the upper part of the dentate 
dorsally-pointing projection in P. zabulon but not in P. taxiles. This distal genitalic 
difference is easily revealed in situ by mere brushing of scales or, at most, a bit of dry 
dissecting. 


VOLUME 46, NUMBER 1 7 


from Jalisco, Mexico, as a species of Phycanassa Scudder (a synonym 
of Poanes) and currently treated as a subspecies of taxiles—is the same 
as taxiles (new synonymy). 


Poanes azin and macneilli 


In a two-line footnote to his original description of psaumis, Godman 
(1900:489) unintentionally described azin, ‘“‘an allied form from Co- 
lombia ... but ... a very much smaller insect.”’ Half a century later, 
Bell (1947) described this Colombian skipper again, this time as a 
subspecies, richteri, of Poanes zabulon. Ironically, I now find that there 
really is a second small orange-and-brown species of Poanes in Colom- 
bia. It and azin (=richteri) are sisters. 

Bell (1947:7) wrote at the end of his description that “The male 
genitalia are the same as those of typical zabulon.”’ Although wrong, 
this observation reemphasizes the basic genitalic similarity existing 
among terrestrial species of Poanes. 


Poanes macneilli, new species 


(Figs. 1-3, 17, 18, 28-31) 


Male genitalia. Paired uncus prongs short, in contact only at their tips (Fig. 1). Tegu- 
men/uncus, in lateral view, moderately concave (Fig. 2)—more so than in azin (Fig. 5). 
Overlap between body of valva and lateral (dentate) dorsally-pointing projection small 
(Fig. 2)—but larger than in azin, where it is slight to nonexistent (Fig. 5). Medial dorsally- 
pointing projection at the distal end of the valva short (Fig. 2). Posterior margin of the 
dorsal part of the anellus decidedly W-shaped in dorsal view (Fig. 3)—more so than in 
any other terrestrial species of Poanes except azin, where the W is much deeper (Fig. 7). 
Aedeagus with a well-sclerotized, conspicuous scouring-pad cornutus (Fig. 3)—in this 
respect like melane but like no other terrestrial species of Poanes. (I have seen a vestigial 
scouring-pad cornutus in one male of azin and one male of inimica.) 

Female genitalia. Caudally convex shelf that curves across the midline, just above and 
behind the ostium bursae, narrow, steeply arched, and evenly rounded acruss the middle 
(Fig. 17). Large, paired, rounded, internally spinulose pouches above, behind, and to the 
sides of the ostium bursae mostly membranous, but each with a narrowly triangular stripe 
of sclerotization tapering (toward the midventral line) across the middle of its dorsal wall 
(Fig. 17). (This sclerotized stripe continuous dorsally with the eighth tergite—Figs. 17, 
18.) Well-sclerotized, spinulose to centrally bristled transverse element, just in front of 
the ovipositor lobes, wide and shallowly biconcave along its posterior margin in ventral 
view, with short central bristles (Fig. 17). 

Size. Smaller than azin and therefore the smallest known species of Poanes: forewing 
length in males 12.6 and 13.2 mm, in female 13.6 mm. Comparative data for azin: with 
6 males, 1 female at hand, Bell (1947) gave male forewing length as 14-16 mm, female, 
as 16 mm; with 31 males, 5 females, Evans (1955) reported a male forewing length of 
15 mm; both my males measured 14.4 mm. 

Facies. Upperside (Figs. 28, 30): A conspicuous vertical dark mark at the distal end 
of the forewing cell, narrower toward the costal margin and wider toward the inner 
margin. Large orange areas on both pairs of wings outwardly serrate—not as even as in 
azin. Row of orange subapical spots in spaces 6 to 8 of the forewing more nearly normal 
to the costal margin than in azin; orange spots in spaces 4 and 5 better developed than 
in azin. Orange spot in space 6 of the hindwing smaller than in azin. 


18 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Fics. 28-31. Poanes macneilli from the Sierra Nevada de Santa Marta of COLOM- 
BIA. (Even numbers, dorsal views; odd numbers, ventral views; all x1.) 28, 29, Holotype 
male; 30, 31, Paratype female. 


Underside (Figs. 29, 31): Much more boldly marked and contrasty than in azin, 
especially on the hindwing, where extremely dark spots (of dark brown overscaled with 
rust) occur, most notably in the middle of space 1b plus the bases of spaces 2 and 3, 
toward the base of space 7, and at the base of the wing. A pale median V-shaped band 
(composed of creamy yellowish spots in males, white spots in the female) runs from space 
lc through spaces 2, 3, 4 and 5 (this is the apex of the V, after which is a slight break) 
to spaces 6 and 7. Pale overscaling (creamy or very light yellowish in males, lilac gray 
in the female) extends along the upper half of the outer margin of the forewing and 
along the outer margin of the hindwing as far as the yellow to dull orange abdominal 
fold. 

Holotype. Male. COLOMBIA, Sierra Nev[ada] de S[an]ta Marta, E[ast] above San Pedro 
de la Sierra, 2900-3900 m, III-7-[19]75; M. J. Adams, Collector; GENITALIA NO. X-2352 
J. M. Burns 1987. Deposited in the National Museum of Natural History, Smithsonian 
Institution (USNM). 

Paratypes. Male. Same data as holotype, except genitalic dissection X-2364. Female. 
COLOMBIA, Sierra Nev[ada] de S[an]ta Marta, N[orth] of San Sebastian, 2800-3400 m, 
II-15-[19]75; M. J. Adams, Collector; GENITALIA NO. X-2365 J. M. Burns 1987. Both 
in the collection of C. D. MacNeill. 


This new skipper comes from high on a very high (5775 m) and 
isolated continental “island” (next to the Caribbean Sea in northeastern 
Colombia), which is famous for its endemism (Adams 1973). True to 
its name, the Sierra Nevada de Santa Marta is permanently snow- 


VOLUME 46, NUMBER 1 19 


covered on top and, indeed, still glaciated. Sister species azin occurs 
well to the south, at similar elevations in the Colombian Andes, es- 
pecially in the region of Tunja and Bogota. 


Poanes niveolimbus, monticola, capta and ulphila 
(new combinations, all) 


This tight complex from montane southern Mexico and Guatemala 
is a mix of species and synonyms which have long been languishing in 
Paratrytone. The two species Poanes niveolimbus (Mabille) and Poanes 
monticola (Godman), although readily separable on the basis of a few 
stunning superficial features, have practically the same genitalia; I have 
found almost no consistent differences in a total of 14 male dissections. 
The modest differences apparent in the dorsally-pointing projections 
at the distal end of the valva in Godman’s (1900) figures of these species 
(Figs. 14, 15) are individual rather than specific. 

In males of this complex, the paired uncus prongs are long and 
delicate, with fine tips, and are in contact throughout their length (a 
set of states shared only with melane). The tegumen/uncus, in lateral 
view, is moderately concave (Figs. 14, 15) (about as in macneilli). There 
is little to no overlap between the body of the valva and the lateral 
(dentate) dorsally-pointing projection (Figs. 14, 15), but much variation 
in details of expression. The medial dorsally-pointing projection at the 
distal end of the valva is short (Figs. 14, 15). However, the posterior 
margin of the dorsal part of the anellus, in dorsal view, looks like an 
exceedingly flat W in niveolimbus but varies from slightly concave 
(unique among the terrestrial species of Poanes) through nearly straight 
to straight in monticola. 

Poanes capta (Miller & Miller), described in Paratrytone in 1972 
from three males and one female from montane Hidalgo, Mexico, is 
the same as Poanes monticola (new synonymy). Miller and Miller (1972) 
admitted that capta is very near monticola and niveolimbus but claimed 
that it differed from them in minor aspects of distal valval form and 
dorsal hindwing spotting. Both those characters vary enough that, in a 
good series of specimens, the supposed interspecific gaps vanish. 

Since capta is really a Poanes, the following behavioral bit from 
Miller and Miller (1972:5) is of interest: “the few specimens [of Para- 
trytone capta] that were taken ... did not seem as pugnacious as some 
Paratrytone we have encountered.”’ 

Judging from Plétz’s four colored figures (copies in USNM), his ul- 
phila, described from Mexico in 1883, is also in this complex; but, like 
specialists before me (Godman 1907, Hoffmann 1941, Evans 1955), I 
do not know the species. Possibilites run the gamut. At one extreme, 
with certain allowances for draftsmanship or for biological variation in 


20 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


the model (neither was likely that wild!), at least two of Pl6tz’s figures 
could be of monticola, in which case the older name ulphila would 
supplant it. At the other extreme, with so much convergence in color 
pattern among skippers, ulphila could be unrelated to the terrestrial 
species of Poanes. 

Poanes monticola comes from high elevations in southern Mexico 
(Veracruz, Hidalgo, México, Distrito Federal, Puebla, Oaxaca); and 
niveolimbus, from high elevations in far southern Mexico (Chiapas) 
and Guatemala. 


Poanes inimica and lupulina 


On the basis of a very variable color character (the extent of a pale 
yellow area that begins near the tornus, in space 1b, on the underside 
of the forewing), Evans (1955) treated lupulina (Plotz) as a species 
distinct from inimica (Butler & Druce). I am returning lupulina to 
synonymy. According to geographic data in Evans, lupulina lies entirely 
within the range of inimica. Their genitalia strike me as identical. 

Though inimica (Fig. 16) is plainly one of the boys (Figs. 1-16), its 
genitalia differ somewhat more (and more obviously) from those of the 
rest. The paired uncus prongs are long, but stouter than in any other 
species; and they are in contact only at their tips, which are blunt. The 
tegumen/uncus, in lateral view, is markedly concave (Fig. 16) (about 
as in hobomok). The medial dorsally-pointing projection at the distal 
end of the valva is long, but uniquely wide (about as wide as the lateral 
dorsally-pointing projection) and variously and irregularly truncate (Fig. 
16). The posterior margin of the dorsal part of the anellus, in dorsal 
view, varies from nearly straight to an exceedingly flat W (not unusual). 
The right titillator is exceptionally long (Fig. 16). 

Occurring at moderate elevations from Mexico (Tamaulipas, Vera- 
cruz, Hidalgo, Puebla, Morelos, Oaxaca, Chiapas) through Central 
America (Guatemala, Costa Rica, Panama) to northern South America 
(Colombia, Venezuela, Ecuador), inimica is the most southern of the 
terrestrial species of Poanes. 


Fig. 832 conveys at a glance much of what I have done to straighten 
out the sorry polyphyletic mess in a couple of our heavily used and 
long stable skipper genera. 


ACKNOWLEDGMENTS 


Thanks to the many who helped. Don MacNeill and the California Academy of Sciences, 
Jerry Powell and the Essig Museum of Entomology, University of California, Berkeley, 
and Albert Schwartz lent critical material; and MacNeill, Avery Freeman, John Kemner, 
Bo Sullivan, and Doug Mullins generously donated it. Warren Steiner spread some of it. 
Presented with nameless, coded color slides of the two small, orangy Colombian Poanes 
in dorsal and ventral views, Phil Ackery at The Natural History Museum and Jim Miller 


VOLUME 46, NUMBER 1 


Shifts of species to and from 
Poanes and Paratrytone 


Other 


Ochlodes __ Paratrytone Poanes 
Genera 


melane 
hobomok 
polyclea 
taxiles 
argentea 
zabulon 
rhexenor 


aphractoia 


macneilli 
ulphila 


Fic. 32. Summary of species movements made in this paper. 


21 


22 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


at the American Museum of Natural History unequivocally referred the types of azin 
(Godman) and zabulon richteri Bell to the same photos (hence to one and the same 
species). Richard Robbins, Adrienne Venables, and Elizabeth Klafter dissected genitalia. 
Daniel Otte, Editor of the Transactions of the American Entomological Society, gave 
permission to reprint genitalic figures from Skinner and Williams (1924a, 1924b). Victor 
Krantz photographed those figures and others from Godman (1900), as well as the adults 
of Poanes macneilli. George Venable prepared Fig. 32. Young Sohn drew genitalic Figs. 
1-7, 17-21, and 24-27 and mounted all figures. Don Harvey brought a couple of papers 
to my attention. Stan Shetler and the Research Opportunities Fund of the Smithsonian 
Institution supported relevant fieldwork in Arizona. At home, in the lab, and afield, Sarah 
Burns helped in ways too numerous or personal to mention. 


LITERATURE CITED 


ADAMS, M. 1973. Ecological zonation and the butterflies of the Sierra Nevada de Santa 
Marta, Colombia. J. Nat. Hist. 7:699-718. 

BAILOWITZ, R. A. & J. P. BROCK. 1991. Butterflies of southeastern Arizona. Sonoran 
Arthropod Studies, Inc., Tucson, Arizona. ix + 342 pp. 

BARNES, W. & J. H. MCDUNNOUGH. 1916. Notes on North American diurnal Lepi- 
doptera. Contributions to the natural history of the Lepidoptera of North America. 
3(No. 2):49-156, pls. 4-11. Review Press, Decatur, Illinois. 

BELL, E. L. 1985. A new hesperid from Haiti (Lepidoptera; Rhopalocera). Psyche 42: 
63-67. 

1938. The Hesperioidea. In Brown, F. M. (ed.), A catalogue of the original 

descriptions of the Rhopalocera found north of the Mexican border. Bull. Cheyenne 

Mountain Mus. 1(Part 1):H-1—H-35. 

1947. A new genus and some new species and subspecies of Neotropical Hes- 
periidae (Lepidoptera, Rhopalocera). Am. Mus. Novitates No. 1354. 12 pp. 

Burns, J. M. 1970. Duration of copulation in Poanes hobomok (Lepidoptera: Hesper- 
iidae) and some broader speculations. Psyche 77:127-130. 

1987. The big shift: nabokovi from Atalopedes to Hesperia (Hesperiidae). J. 

Lepid. Soc. 41:173-186. | 

1989. Phylogeny and zoogeography of the bigger and better genus Atalopedes 

(Hesperiidae). J. Lepid. Soc. 43:11-82. 

1990. Amblyscirtes: Problems with species, species groups, the limits of the 
genus, and genus groups beyond—A look at what is wrong with the skipper classi- 
fication of Evans (Hesperiidae). J. Lepid. Soc. 44:11-27. 

ComMSTOCK, J. A. 1927. Butterflies of California. Published by the author, Los Angeles, 
California. 334 pp., 63 pls. 

Dyar, H. G. 1905. A review of the Hesperiidae of the United States. J. New York 
Entomol. Soc. 18:111-141. 

Evans, W. H. 1955. A catalogue of the American Hesperiidae indicating the classifi- 
cation and nomenclature adopted in the British Museum (Natural History). Part IV. 
Hesperiinae and Megathyminae. British Museum, London. 499 pp., pls. 54-88. 

GopMAN, F. D. 1900. In Godman, F. D. & O. Salvin. 1879-1901. Biologia Centrali- 
Americana; Insecta; Lepidoptera-Rhopalocera. Vol. 2, 782 pp.; Vol. 3, 113 pls. 

1907. Notes on the American species of Hesperiidae described by Plotz. Ann. 
Mag. Nat. Hist., Ser. 7, 20:132-155. 

HOFFMANN, C. C. 1941. Catalogo sistematico y zoogeografico de los Lepidopteros 
Mexicanos. Segunda parte. Hesperioidea. Anales Inst. Biol. [Mexico] 12:237-294. 
LINDSEY, A. W. 1921. The Hesperioidea of America north of Mexico. Univ. Iowa Stud. 

Nat. Hist. 9(No. 4):1-114. 

LINDsEY, A. W., E. L. BELL & R. C. WILLIAMS JR. 1931. The Hesperioidea of North 
America. Denison Univ. Bull., J. Sci. Lab. 26:1-142. 

MILLER, L. D. [1966] “1965.” A review of the West Indian “Choranthus.” J. Res. Lepid. 
4:259-274. 


VOLUME 46, NUMBER 1 ao 


MILLER, L. D. & J. Y. MILLER. 1972. New high-altitude Hesperiinae from Mexico and 
Ecuador (Hesperiidae). Bull. Allyn Mus. No. 7. 9 pp. 

PLoTz, C. 1883. Die Hesperiinen-Gattung Hesperia Aut. und ihre Arten. Entomol. Ztg., 
Entomol. Ver. Stettin 44:195-233. 

RILEY, N. D. 1975. A field guide to the butterflies of the West Indies. Collins, London. 
224 pp., 24 pls. 

SCHWARTZ, A. 1989. The butterflies of Hispaniola. Univ. Florida Press, Gainesville. xiv 
+ 580 pp. 

ScoTT, J. A. 1986. The butterflies of North America. Stanford Univ. Press, Stanford, 
California. xiii + 583 pp., 64 pls. 

SKINNER, H. & R. C. WILLIAMS JR. 1924a. On the male genitalia of the Hesperiidae of 
North America, paper IV. Trans. Am. Entomol. Soc. 50:57-74. 

1924b. On the male genitalia of the Hesperiidae of North America, paper V. 
Trans. Am. Entomol. Soc. 50:141-156. 

WEEKS, A. G., JR. 1905. [Illustrations of diurnal Lepidoptera, with descriptions. The 
Univ. Press, Cambridge; Boston, Massachusetts. xii + 117 pp., 45 pls. 


Received for publication 16 October 1991; revised and accepted 10 January 1992. 


Journal of the Lepidopterists’ Society 
46(1), 1992, 24-38 


MALE MATE-LOCATING BEHAVIOR IN THE COMMON 
EGGFLY, HYPOLIMNAS BOLINA (NYMPHALIDAE) 


RONALD L. RUTOWSKI 
Department of Zoology, Arizona State University, Tempe, Arizona 85287-1501 


ABSTRACT. The mate-locating behavior of males of the common eggfly, Hypolimnas 
bolina, was studied in north Queensland, Australia. Males defended perching sites used 
in mate location from about 0900 to 1600 h on clear sunny days. Some popular sites 
contained the larval foodplant, Sida rhombifolia, and individual males defended such 
sites in many cases for several days or more. The form and outcome of interactions 
between site occupants and intruding males suggested that residents typically win. Ob- 
servations on site defense by resident males whose color has been altered suggest that 
color is not important in the maintenance of residence status. These observations and 
others suggest that male color pattern may be more important in intersexual than in- 
trasexual interactions. 


Additional key words: intrasexual competition, coloration, sexual selection, territo- 
riality. 


As part of his presentation of sexual selection theory, Darwin (1874) 
proposed that the brilliant male coloration found in many species of 
butterflies evolved because of females preferences for brightly colored 
males. This hypothesis has been discussed frequently in the literature 
since Darwin (e.g. Turner 1978, Smith 1984). Although empirical ev- 
idence for female choice in butterflies is growing (Rutowski 1985, Krebs 
& West 1988, Wiernasz 1989) and generally supports Darwin’s hy- 
pothesis, the female-choice hypothesis has had its detractors (e.g. Wal- 
lace 1889, Silberglied 1984). 

In his review of butterfly reproductive behavior, Silberglied (1984) 
reiterated and promoted an alternative hypothesis, namely, that brilliant 
male coloration evolved in another context of sexual selection, male- 
male competition. Although he did not specify how coloration would 
act in this context, he clearly thought that male coloration would me- 
diate male-male interactions. If true, this hypothesis should be especially 
applicable to those butterfly species in which males defend prime po- 
sitions at encounter sites, and it makes the prediction that alteration of 
male color will affect the outcome of their interactions with other males. 

The common eggfly, Hypolimnas bolina Fabricius (Nymphalidae), 
is anymphalid butterfly that is widespread in the Indo-Australian region 
and sexually dimorphic in color. Males of this species are aggressive 
and site tenacious (Valentine 1989). Here I describe the reproductive 
behavior of this species, especially patterns of site occupation and de- 
fense in males. This was done to evaluate the function of the males’ 
behavior and in conjunction with experiments and observations that 
bear on the potential role of male color in interactions with conspecifics. 

Males of H. bolina have a distinctive dorsal coloration throughout 


VOLUME 46, NUMBER 1] 95 


Fic. 1. Dorsal (left) and ventral (right) views of a typical H. bolina male (top) and 
female (bottom). 


their range. There is a large white spot near the center of the black 
background on each wing and a smaller white spot near the tip of each 
forewing (Fig. 1 top). Each white spot is ringed with violet and the 
violet extends part way into the white area. The violet coloration as- 
sociated with the spots is directional and has an ultraviolet component 
(pers. obs.), as it does in a similarly-colored congener, H. misippus 
Linnaeus (Nymphalidae) (Silberglied 1984). Females are similar in a 
general way to males, but they vary in color geographically and their 
dorsal markings are much less brilliant and clearly defined than male 
markings (Fig. 1; Clark & Sheppard 1975). In addition, they may have 
large orange spots on the dorsal wing surface. The ventral markings of 
males and females are similar. 


26 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Fic. 2. A map of the census route on the eastern campus of James Cook University 
that shows the locations (A-K) of all perching sites used during this study. A through G 
are in landscaped parts of the campus; H through K are in relatively natural areas of 
open eucalypt woodland. Legend: BS, Biological Sciences building; GH, greenhouse. 


MATERIALS AND METHODS 
Study Site and Dates 


Field observations were made from January to June 1989, on or 
within 10 km of the campus of James Cook University of North Queens- 
land, Townsville, Australia. The habitat was an open eucalypt woodland 
with an understory of grasses. The vegetation was denser along water 
courses where the common eggfly was found most often. Observations 


VOLUME 46, NUMBER 1 Dai 


also were made on males and females in landscaped and watered areas 
on campus. 


Census Techniques 


To document where and when males were most often found, a census 
route (Fig. 2) was established on campus that was approximately 500 
m in length and about evenly divided between landscaped and natural 
habitats. This route was walked hourly for several days to establish the 
daily pattern of male activity. Each census took about 20 minutes. The 
location, identity, and behavior (perched or flying) was recorded for 
each male seen. However, once the basic patterns were established 
censuses were taken only at 1000, 1200, and 1400 h. 

Two techniques were used to identify individual males. Some were 
marked with numbers on the hindwings using white correction fluid 
(Swan brand). This was used infrequently as males subjected to the 
marking procedure usually abandoned the area and were not seen again. 
The second technique involved the use of distinctive wing wear patterns. 
I closely approached and inspected perched males and made detailed 
notes on tears, beak marks, and imperfections that were distinctive and 
could be used to recognize individuals. 


Observations on Interactions 


During the censuses written records were made of any interactions 
that were observed among males. The form, outcome, and, if measured, 
the duration of each interaction were recorded. In addition, interactions 
between conspecific males and heterospecifics were observed and re- 
corded during the experiments described below. 

Observations on interactions between males and females were made 
by releasing hand-reared virgin and mated females near perched males 
in a large (20 m x 20 m x 3 m) flight cage and on a few occasions in 
the field. Females were reared on cuttings of Sida rhombifolia Linnaeus 
(Malvaceae) from eggs obtained from field-caught females in oviposi- 
tion cages in the lab. 


Male Color Alteration Protocol 


Three groups of males were established. Untreated males were those 
that were observed without any handling. Treated males, experimental 
and control, were removed from their territory at about 1530 h, marked 
with a black marking pen (Pentel N50 permanent marker), given a 
white letter with correction fluid on the ventral left hindwing, and 
placed in a glassine envelope. The envelope was then placed on ice for 
90 to 120 seconds. After chilling, the treated male was released onto a 
leaf or branch about 2 m off the ground. Observations on treated males 


bo 
QO 


JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


MEAN NUMBER OF SITES OCCUPIED 


800 1000 1200 1400 1600 1800 
TU) DAC 

Fic. 3. The relationship between male activity (measured as number of sites occupied) 

and time of day calculated from data collected 8-10 and 13-15 February 1989. The 


number over each time period is the number of days of data on which the mean + 1 SD 
are based. 


were made the following morning if they appeared at the site of capture. 
There were two groups of treated males: experimentals which had the 
black pen applied to the white and violet spots on the dorsal wing 
surface, and controls which had the black pen applied to black areas 
on the dorsal wing surfaces. 

Observations were made on treated and untreated males by arriving 
at the site in the morning before the subject male arrived. If another 
male arrived before the subject male, the intruder was removed. This 
guaranteed that the subject male could reclaim his site without contest 
and thereby be the clear resident in all cases. I then remained at the 
site for several hours observing all interactions that occurred. 


RESULTS 
Daily Pattern of Activity 


The greatest number of males was seen along the census route be- 
tween 0900 and 1400 h on clear sunny days (Fig. 3). On exceptionally 
windy or rainy days males were not seen along the census route or 
elsewhere. Males also disappeared if the weather became poor during 


the middle of the day. 


VOLUME 46, NUMBER 1 29 


TABLE 1. Descriptions of perching sites A-K shown in Fig. 3 and their relative 
frequency of occupation as determined from 52 censuses run between 8 and 20 February 
1989. Asterisks indicate sites where Sida rhombifolia was found growing. 


% Cen- 
suses 
Site occupied Description 


A* 15.4 Single tree about 3 m high and 10 m from other vegetation 
B* 23.1 Two trees about 2-3 m high and 2 m apart 

Gt 5.8 North side of line of tall (>8 m) trees along carpark; faces out onto lawn 
D* 50.00 Same as C 

E* 346 Same as C 

neg 7.7 Same as C 

G* 67.38 Tree adjacent to greenhouse 

H 1.9 Two small (<8 m) trees at beginning of path 

I 5.8 Tree on edge of 2-m-wide path cut through tall grass 

J 84.6 Same as I 

K 61.5 Tall trees along edge of stream channel 


Males were seen more often at some points along the census route 
than others. The locations of these areas are shown in Fig. 2 and their 
descriptions and relative frequencies of occupation are given in Table 
1. All perching areas included trees with low branches and leaves that 
were used as perches. There were no other obviously distinctive char- 
acteristics of perching sites although some of the most frequently oc- 
cupied sites included moist, shaded understory areas with dense patches 
of the larval foodplant (Sida rhombifolia), which rarely grew to a height 
of more than 1 m. Little or no S. rhombofolia was found along the 
path between these sites. 

Females were seen on the censuses (Fig. 4) between 0900 and 1500 
h in the vicinity of the carpark or the greenhouse. The likelihood of 
seeing a female on a census did not change with time of day during 
this period. Most were either resting or ovipositing while perched on 
the larval foodplant, which was abundant in these areas. Ovipositing 
females laid a single egg on the underside of a S. rhombifolia leaf before 
flying off. 


Male Behavior 


Each site was occupied by a single male that when not interacting 
with a conspecific or other animal perched either on the ground in an 
open area or, most often, | to 2 m or more above the ground on the 
outer leaves of vegetation adjacent to an open area. From their perches, 
males flew out and chased flying conspecifics as well as other species 
of butterflies, including Cressida cressida Fabricius (Papilionidae), 
Danaus hamatus Macleay (Nymphalidae), Euploea core Macleay 
(Nymphalidae), Catopsilia pomona Fabricius (Pieridae), and Eurema 


30 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


ORS 


0.4 


h— 
= 


O58 |e 


N 


OZ 


WOE 
VW. & 


PERCENT OF CRINSUS ES 
IN WHICH FE MATE {SIEiEIN 


WE «: 
WWM © 


WWI hh WWW gs 
CG 


WWW’. 6 


WV © 
WWM W/WW/w~'W’w(f 


3 


0.0 
700% 800 


oriteb 
00 1200 1300 1400 1500 1600 1700 1800 


TM OT sane 


© 
© 
(@) 
O 
© 
(@) 


Fic. 4. The likelihood of observing one or more females on a census as a function of 
the time of day. The number over each bar is the number of days on which censuses 
were made. 


hecabe Butler (Pieridae 


——— 


, other insects (e.g. black dragonflies (Odonata)), 
and even passing birds. After a chase, a male returned to the original 
perch or a perch within a few meters of the original. 

Interactions between conspecific males in which the resident won 
varied in duration from 8 to 306 sec (Fig. 5). In interactions of less 
than 20 to 80 sec, the intruder, chased by the resident, quickly left the 
area flying with a distinctive flap-glide flight that was not seen at other 
times. In longer interactions, the intruder turned to face the approaching 
resident and the two males began flying rapidly around one another. 
Their wings sometimes clashed audibly during these confrontations. 
These interactions ended when one male turned and flew off with the 
flap-glide flight described earlier. 

Three lengthy interactions (806, 433, and 675 sec) were observed 
during the experiments in which the identities and recent histories of 
the males were known. All three involved treated control males and 
were between the resident and an intruder that arrived and perched 
while the resident was on an investigatory sortie or in a fight. For 
example, a treated control male (T) that was under observation left his 
perch at site D to chase a crow butterfly (Euploea core) for an unusually 


VOLUME 46, NUMBER 1 31 


= ay ieee 

= 

— 

Lage y 

1D ag 

ry Yugugaguseasuas 
“YUYUYGAGgy 

2 |YUZUZAZIZOGY 

B I AAZAAAAAGL 

eee ae 


DURATION (Sig 


Fic. 5. The relative frequency of interactions of various durations between territorial 
H. bolina males and intruding conspecific males. 


long time that exceeded 60 sec. While male T was gone an unmarked 
male entered and perched in male T’s perching area. When male T 
returned he was approached and chased by the unmarked male. During 
the next 7 min the males flew rapidly around one another, face to face. 
After 4383 sec, male T flew away using the flap-glide flight. 

Interactions with heterospecific butterflies were characteristically 
brief, lasting only a second or two (Fig. 6). Interestingly, males spent 
significantly less time chasing butterflies of other species that were white 
or yellow than they did butterflies that were mostly black (Wilcoxon 
rank sum test, P < 0.05). 


Male Site Tenacity 


Males typically did not change their defended site within a day’s 
activity period or between days. In 33 cases in which an individual was 
seen at 1000, 1200, and 1400 h on one day, each was seen at the same 
perching site at all three times. Males displayed a similar day-to-day 


32 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


GOR: 


APPROACHED BUTTE RH iy 


50 b NON SIWNC [__| 
BLACK 


PERCENT OF INTERACTIONS 


to) 

Oo 
| 

oO 


(eal 
1o0= 2,0 
2 i235 
I=), 0) 
Sy (= Seo 
Si, 25 0) 
Alea s) 
BS) 


Oyo 1,0) 


DURATION OF INTERACTION (SEC) 


Fic. 6. The relative frequency of various durations of interactions between territorial 
H. bolina males and heterospecific butterflies in two color classes. 


site tenacity. In 61 of 67 cases (extracted from records on 17 males) in 
which an individual was seen on two successive days, he was seen at 
the same perch site on both days. Five of the six shifts in location 
between days were made by the male seen over 23 days, but he was 
always at a site in the same part of the census route (sites D, E, F, 
and G). 

Figure 7 summarizes the observations on all identified males during 
the 24 days when at least one census was run each day. One male was 
seen on the census route over a period of 23 days. This graph no doubt 
underestimates the typical stay of a male in that some data are from 
males that were treated as part of the experiments and some are from 
males that were still on the study site when the regular censuses stopped. 
Also, the natural marks used to identify males may have changed so 
they were no longer recognizable. 


VOLUME 46, NUMBER 1 ao 
14 


2 


Z U; iY 
5 4 5 6 dk 3) se) TG e170 
DE NCSS ASLO NP MIIN] SP GED Maclay 


Fic. 7. The tenure of males on the study site for all males during a 24-day period. 
See text for details. 


NUMBER OF MALES 
= MCGCCCG GG. GG. 


Observations on Control and Color Altered Males 


Although sample sizes are small, the results suggest that resident males 
are treated as such by intruders regardless of the treatment group to 
which they belong (Table 2). Even when color-altered, residents readily 
displaced intruders. Two fights were lost by treated control males but 
only in circumstances that suggest that they may have lost sole resident 
advantage by being absent from the site. Male R flew up from his perch 
to chase a conspecific in an interaction that lasted more than 12 sec 
and whose conclusion was not seen. While male R was away, two other 
males were seen fighting near male R’s original perch. While these 
males were fighting, male R returned and perched. The winner of the 
second fight then flew into male R’s perching site and was immediately 
challenged by male R. The ensuing fight lasted 675 sec and ended with 
male R leaving the area and the other male returning to male R’s 
original perch. Within a few minutes male R was seen successfully 
defending another less frequently occupied perching site about 15 m 
away. 

The escalated interaction over site D involving male T was described 


34 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


TABLE 2. Summary of observations on interactions involving males in various treat- 
ment groups that were residents. 


Duration of fight 


No. of sesh at a 
Group Males fights Median Range Lost? 
Control 
Untreated 2 1l 18 sec 8-90 sec 0 
Treated 8 14 15 sec 3-675 sec 2 
Experimental 2 9 10 sec 8-12 sec 0 


earlier. Male T lost this fight but returned within 20 min to site D and 
challenged the unmarked resident. An escalated fight ensued that lasted 
over 5 min. At the end of this the unmarked male returned to nearby 
site E and male T flew off but reappeared perched at site D about 12 
min later. This interaction was not included in Table 2 because male 
T’s relationship to the site was no longer clear. 


Male-Female Interactions: Courtship and Mating 


I carefully observed and described, but did not time, fifteen inter- 
actions between males and hand-reared females of which four led to 
copulation. Casual observations were made on several other courtships. 
Interactions leading to copulation can be summarized as follows. All 
occurred in cages with hand-reared virgin females and began with the 
female flying. If the male was perched he flew up from his perch to 
the female or if flying he approached her from behind. Next, he po- 
sitioned himself below the female and flew with shallow wingbeats and 
with the wings spread. The female then alighted and the male, after 
landing behind but facing the female, moved up alongside her so that 
his head was about half way along the length of her body. He then 
curled his abdomen toward the female from between his wings and 
inserted it between the inner margins of the female’s hindwings. In one 
case, coupling occurred at this time. In the other three, probing by the 
male caused the female to turn her abdomen away from the male and 
then fly off. The male pursued and repeated the sequence of events 
described above. In these cases, coupling occurred only after this se- 
quence was repeated three or more times over what seemed to be a 
minute or more. Once coupled the male moved to face away from the 
female. : 

Unsuccessful courtships ranged from those in which the male flew 
up and investigated a virgin for only a few seconds before departing 
to those in which the male followed the pattern for successful courtship 
described above for up to what seemed to be a minute or more but 
never succeeded in coupling. 


VOLUME 46, NUMBER 1 35 


Observations on five mating pairs (courtships not seen for all) pro- 
duced times from when first seen coupled to when first seen separated 
of 50, 77, 90, 120, and 129 minutes, which suggests that copulation lasts 
one to two hours. Three of the females from these pairs were dissected. 
None contained more than one spermatophore. Using techniques de- 
scribed in Rutowski et al. (1983), I estimated that the males passed no 
more than 2.6, 3.5, and 3.8 percent, respectively, of their body mass as 
spermatophore and accessory secretions during copulation. 

Three field caught females were dissected, one that was fresh and 
two that were very worn in appearance. All were mated and none 
carried more than one spermatophore. 


DISCUSSION 
Male Mate-Locating Behavior in the Common Eggfly 


The behavior of males of the common eggfly is similar in a number 
of ways to that described for other species in which males have been 
observed to defend perching sites (Rutowski 1991) including its con- 
gener, Hypolimnas misippus (Stride 1956). (1) Males select exposed 
perches on the edge of large open areas. (2) Perched males chase flying 
males and females. Males are chased for a distance of some meters after 
which the approaching male returns to his original perch or one nearby. 
Females are approached and courted. If the female is found to be 
unreceptive the male returns to his original perch or to one within a 
few meters. (3) Conspecific males are not tolerated in the vicinity of a 
perched male. A conspecific male may enter a site and perch unde- 
tected, but is chased away as soon as he flies and is detected by the 
resident. (4) A male typically occupies the same perching site for several 
days. (5) Perching site preferences are apparently consistent across 
males; in spite of changes in the identity of the resident the same areas 
are occupied. (6) Sites contain little or nothing in the way of adult food 
resources. Males observed during this study were never seen feeding 
at their perching site. (7) Males pass relatively small spermatophores 
like those seen in other species that engage in site defense (Rutowski 
& Gilchrist 1988). 

From these observations I conclude that males of H. bolina defend 
perching areas as a mate-locating tactic, that is, to maximize their 
chances of being the first to detect receptive females. Some features of 
the sites might make them good places to contact females. First, many 
sites were along paths or stream beds through the bush. These open 
paths may be used as flyways by females. Second, many popular perch- 
ing areas were over shaded areas where the larval foodplant grew and 
females oviposited. The spermatophore counts from field-caught H. 
bolina females described here and in Ehrlich and Ehrlich (1978; 2 


36 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


females each with one spermatophore) suggest that females probably 
do not often mate more than once. Mated females oviposited near male 
perching sites but during this study no mated female was ever seen to 
be receptive. Hence, males probably are defending these sites as places 
where virgin females are likely to be eclosing and taking their first 
flight, or where virgin females actively go to encounter potential mates. 

Defense of encounter sites at or near female emergence areas is known 
for other butterflies (Rutowski 1991) and does not fall readily into 
traditional categories such as female defense polygyny or resource de- 
fense polygyny (Emlen & Oring 1977). However, because the occu- 
pation and defense of sites appears to be important to male reproductive 
success, males are subject to sexual selection in the context of intrasexual 
competition. Their coloration may have evolved in this context. 

Indications are that in H. bolina residents have the advantage in 
male-male competition as has been observed in other species (Davies 
1978, Rutowski 1984, 1991, Thornhill & Alcock 1983). So long as one 
male is a clear occupant and the other a clear intruder, male-male 
interactions are brief. Escalated interactions are most likely when both 
males sense that they are the perching site occupant or resident. This 
was demonstrated by the several interactions in which one male that 
had occupied the site for some time returned to the site after an in- 
teraction to find another male that had occupied the site in the original 
male’s absence. Escalated interactions have been seen under similar 
circumstances, sometimes experimentally induced, in a butterfly (Da- 
vies 1978, Wickman & Wiklund 1983), a damselfly (Marden & Waage 
1990) and a wasp (Alcock & O’Neill 1987). 


Male Coloration and the Mating Behavior of H. bolina 


Data presented here on H. bolina and by Stride (1956, 1957, 1958) 
on H. misippus are relevant to the discussion of the role of male col- 
oration in the mating behavior of butterflies. Selection could favor the 
brilliant coloration of Hypolimnas males in intraspecific contexts in 
three ways. First, intruding males may be more readily stimulated to 
leave the territory by brilliant coloration in the resident either by mak- 
ing the resident more quickly apparent, making his identity as a con- 
specific more quickly detectable, or by indicating something about the 
resident’s fighting ability. The results presented here suggest that this 
is not the case in that intruders left quickly when chased by residents 
whose color had been altered by obliteration of the most striking pattern 
components, the white and violet dorsal spots. 

Second, intruders may have evolved a coloration that affects the 
behavior of the residents in some way advantageous to the intruder. 
Several studies show that intruder color affects resident response. As 
seen in this study, intruding butterflies that have an overall black ap- 


VOLUME 46, NUMBER 1 Sy 


pearance elicit the strongest resident responses. Stride (1956) working 
with H. misippus made the observation that “large pale butterflies .. . 
appeared to be of little interest to the Hypolimnas males” and, using 
models of various colors, he showed that white models elicited little 
more than a brief investigatory approach. Stride (1956, 1957) also showed 
in H. misippus that, after the initial approach, males used visual cues 
to discriminate females from males, i.e. only female coloration elicited 
courtship. Edmund (1969) showed that one of the female color morphs 
was especially attractive to males. These results, if anything suggest, 
the potential for selection against, rather than for, dark colored intrud- 
ers. On the other hand, brilliant coloration may clearly announce in- 
truder sexual identity and thereby curtail the sexual advances of resi- 
dents. In any event, the behavior of intruders in territorial interactions 
does not suggest that intruders attempt to transmit clearly a visual signal. 

Third, brilliant male color may be favored in the context of mate 
choice by females. Male behavior during the aerial phase of courtship 
is consistent with the notion that a visual signal is being delivered to 
the female. The position of the male relative to the female and the 
male’s shallow wingbeats clearly display both the white and the direc- 
tional violet wing markings to the female. Stride (1958) observed the 
same behavior in H. misippus and called it the “quivering flight.’”’ He 
also made a few observations on the response of females to males whose 
coloration had been altered and to control males. Males rendered col- 
orless by the removal of wings scales were unsuccessful at obtaining 
matings whereas both control males and males with the white, but not 
the violet, dorsal wing spots removed were successful in courting fe- 
males. 

Taken together, the various observations on male color and the mating 
behavior of this genus suggests that female choice may have been 
important in the evolution of male dorsal coloration. A fruitful line of 
inquiry would be to design additional experiments to determine if the 
detection of these markings does affect female receptivity. 


ACKNOWLEDGMENTS 


This study was done while I was on sabbatical leave at James Cook University. The 
Department of Zoology and Rhondda Jones kindly provided space and facilities. Rhondda 
Jones, Chris Hill, and Noeline Ikin all assisted with information and in other ways during 
the course of the study. Helpful comments on a previous draft were provided by John 
Alcock, Michael Demlong, and Barbara Terkanian. For all this help I am grateful. 


LITERATURE CITED 


ALCOCK, J. & K. M. O'NEILL. 1987. Territory preferences and intensity of competition 
in the grey hairstreak Strymon melinus (Lepidoptera, Lycaenidae) and the tarantula 
hawk wasp Hemipepsis ustulata (Hymenoptera, Pompilidae). Amer. Mid]. Nat. 118: 
128-138. 


38 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


CLARK, C. & P. M. SHEPPARD. 1975. The genetics of the mimetic butterfly Hypolimnas 
bolina (L.). Phil. Trans. Royal Soc. 272:229-265. 

DARWIN, C. 1874. The descent of man and selection in “elation to sex. 2nd edition. 
Wheeler, New York. 688 pp. 

Davies, N. B. 1978. Territorial defence in the speckled wood butterfly Pararge aegeria: 
The resident always wins. Anim. Behav. 26:138-147. 

EDMUND, M. 1969. Evidence for sexual selection in the mimetic butterfly Hypolimnas 
misippus L. Nature 221:488. 

EHRLICH, A. H. & P. R. EHRLICH. 1978. Reproductive strategies in the butterflies: I. 
Mating frequency, plugging, and egg number. J. Kansas Entomol. Soc. 51:666-697. 

EMLEN, S. T. & L. OrRING. 1977. Ecology, sexual selection and the evolution of mating 
systems. Science 197:215-233. 

Kress, R. A. & D. A. WEsT. 1988. Female mate preference and the evolution of female- 
limited Batesian mimicry. Evolution 42:1101-1104. 

MARDEN, J. H. & J. K. WAAGE. 1990. Escalated damselfly territorial contests are en- 
ergetic wars of attrition. Anim. Behav. 39:954—959. 

RUTOWSKI, R. L. 1984. Sexual selection and the evolution of butterfly mating behavior. 
J. Res. Lepid. 23:125-142. 

1985. Evidence for mate choice in a sulphur butterfly (Colias eurytheme). Zeits. 

Tierpsych. 70:103-114. 

1991. The evolution of male mate-locating behavior in butterflies. Amer. Nat. 
138:1121-1139. 

RUTOWSKI, R. L. & G. W. GILCHRIST. 1988. Male mate-locating behavior in the desert 
hackberry butterfly, Asterocampa leilia (Nymphalidae). J. Res. Lepid. 26:1—-12. 
RUTOWSKI, R. L., M. NEWTON & J. SCHAEFER. 1983. Interspecific variation in the size 
of the nutrient investment made by male butterflies during copulation. Evolution 37: 

708-713. 

SILBERGLIED, R. E. 1984. Visual communication and sexual selection among butterflies, 
pp. 207-223. In Vanewright, R. I. & P. R. Ackery (eds.), The biology of butterflies. 
Symp. Roy. Entomol. Soc. Vol. 11. Academic Press, London. 

SMITH, D. A. S. 1984. Mate selection in butterflies: Competition, coyness, choice, and 
chauvinism, pp. 225-244. In Vanewright, R. I. & P. R. Ackery (eds.), The biology 
of butterflies. Symp. Roy. Entomol. Soc. Vol. 11. Academic Press, London. 

STRIDE, G. O. 1956. On the courtship behavior of Hypolimnas misippus L., (Lepidop- 
tera, Nymphalidae), with notes on the mimetic association with Danaus chrysippus 
L., (Lepidoptera, Danaidae). Brit. J. Anim. Behav. 4:52-68. 

1957. Investigations in the courtship behaviour of the male of Hypolimnas 

misippus L. (Lepidoptera, Nymphalidae), with special reference to the role of visual 

stimuli. Anim. Behav. 5:153-167. 

1958. Further studies on the courtship behaviour of African mimetic butterflies. 
Anim. Behav. 6:224—230. 

THORNHILL, R. & J. ALCOCK. 1983. The evolution of insect mating systems. Harvard 
University Press, Cambridge. 547 pp. 

TURNER, J. R.G. 1978. Why male butterflies are non-mimetic: Natural selection, sexual 
selection, group selection, modification, and sieving. Biol. J. Linn. Soc. 10:385-4382. 

VALENTINE, P. 1989. Butterfly bullies birds. Victorian Entomol. 19:5. 

WALLACE, A. R. 1889. Darwinism. Macmillan, London. 494 pp. 

WICKMAN, P.-O. & C. WIKLUND. 1983. Territorial defence and its seasonal decline in 
the speckled wood butterfly (Pararge aegeria). Anim. Behav. 31:1206-1216. 

WIERNASZ, D.C. 1989. Female choice and sexual selection of male wing melanin pattern 
in Pieris occidentalis (Lepidoptera). Evolution 43:1672-1682. 


Received for publication 11 October 1991; revised and accepted 14 February 1992. 


Journal of the Lepidopterists’ Society 
46(1), 1992, 39-43 


COENOCHROA CHILENSIS, A NEW PHYCITINE MOTH 
FROM CHILE (PYRALIDAE) 


JAY C. SHAFFER 
Department of Biology, George Mason University, Fairfax, Virginia 22030 


ABSTRACT. Coenochroa chilensis new species is described from Nuble Province, 
Chile. Comparisons are made with previously known (three North American and two 
Brazilian) species. Illustrations include scanning electron micrographs of a denuded head 
capsule and photographs of the adult moth and male genitalia. 


Additional key words: taxonomy, neotropics. 


The three male specimens of the new species described below were 
discovered as a result of recent work sorting and consolidating Neo- 
tropical pyralid specimens in the collections of the U.S. National Mu- 
seum of Natural History [USNM], Smithsonian Institution, Washington, 
D.C. No female specimens were found, but the males are distinctive 
in several characteristics and the species is easily differentiated from 
its congeners. 

The genus Coenochroa Ragonot 1887 previously was known from 
three North American (see Shaffer 1968) and two recently described 
(Shaffer 1989) Brazilian species. In the latter paper I gave a brief review 
of the genus emphasizing distinguishing features of each species and 
providing a key. As the new species has the combination of a dentate 
valva in the male genitalia and no discal spot on the forewing it will 
not fit the first couplet of that key. 


METHODS 


Most color designations used below follow the ISCC-NBS Color-Name 
Charts (Kelly 1965), though for very smail structures only general color 
names could be given. The scanning electron micrographs were taken 
using a Hitachi S-530 SEM at 15 Kv, the specimens prepared as de- 
scribed earlier (Shaffer 1989). 


Coenochroa chilensis Shaffer, new species 
(Figs. 1-17) 


Female. Unknown. 

Male. Head. Frons light orange-yellow dorsally, dark grayish yellowish brown laterally; 
protuberance distally cylindrical and relatively narrow (see below), tip about 0.2 times 
width of frons as measured at midlevel of protuberance. Labial palpus porrect, about 4.8 
times as long as eye diameter, basal segment and second segment ventrally yellowish 
white, second and third segments dark grayish yellowish brown on outer sides. Maxillary 
palpus (Fig. 8) minute, hidden by labial palpi. Proboscis (Fig. 8) vestigial, hidden by 
labial palpi. Antenna (Figs. 3-6, 17) filiform, basal two segments of shaft fused, cilia about 
half as long as segment width. Eye diameter 0.45-0.53 mm (range of the three specimens). 
Ocellus (Figs. 3, 6, oc) vestigial, minute, conical, lens absent. Vertex light orange-yellow 


40 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


Fics. 1-2. Coenochroa chilensis. 1, Holotype 6; 2, Holotype, head, lateral view. Scale 
bar = 2.0 mm (1), 1.0 mm (2). 


between and anterior to antennae, yellowish white posterior to antennae. Occiput dark 
orange-yellow laterally, pale orange-yellow dorsally. Thorax. Patagium, tegula, and pectus 
light orange-yellow to dark orange-yellow. Outer sides of prothoracic legs dark brown, 
on coxa mixed with dark orange-yellow scales. Meso- and metathoracic legs rather uni- 
formly light grayish yellowish brown. 

Forewing radius 8.5 mm. R, short- to very short-stalked with R,,,, R, rather short- 
stalked with R,,,. M.,, fused, very short-stalked with Cu,. Ground light orange-yellow 
with scattered dark brown scales, these most abundant anterior to cell, astride and posterior 
to 2nd anal, and along cubitus. Base of cell and base of costa dark brown. Somewhat 
indistinct white tracing on radius, veins from distal margin of cell, cubitus, and 2nd anal. 

Hindwing with two veins reaching outer wing margin from lower outer angle of cell; 
ground nearly uniformly light grayish yellowish brown. 

Abdomen. All sides almost uniformly light grayish yellowish brown. 

Male genitalia (Figs. 9-14) with medial process of gnathos (Fig. 12) U-shaped, smooth, 
lacking serrations. Transtilla a pair of semilunar sclerites at junction of tegumen and 
gnathos arms (Figs. 13, 14). Juxta nearly square, basal angles rounded. Valva with valvula 
broadly rounded, distally with small poorly developed blunt tooth on inner margin (Fig. 
9, vertical arrow); cucullus with large blunt tooth. Vinculum rounded, lacking developed 
saccus; sides fused with ventral sclerites of 8th abdominal segment (Fig. 9, horizontal 
arrow). Aedeagus (Fig. 10) about 7.5 times as long as wide; distal 4 with numerous minute 
outwardly directed dentations (Fig. 11). mn 

Types. Holotype male (Figs. 1, 2, 9-15), labelled: “CHILE: Nuble Province near coastal 
stream 17.5 km. S. Curanipe 25 January 1979, 50 m. D. & M. Davis & B. Akerbergs’; 
“Genitalia Slide By J. Shaffer USNM 58165”; “Holotype Coenochroa chilensis Shaffer, 
1992.”" Two male paratypes with same data as holotype except for slide numbers, first 
paratype (Figs. 3-8, 16, 17) USNM slide Nos. 58171 (antennae, labial palpus) and 58173 
(genitalia of same specimen), second paratype undissected, each labelled: “Paratype 
Coenochroa chilensis Shaffer, 1992” [USNM]. 

Distribution. Known only from the type locality. 

Immature stages and hosts. Unknown. 


DISCUSSION 


Numerous distinctions are apparent when this new species is con- 
trasted with its congeners. The most evident external difference is the 


VOLUME 46, NUMBER 1 4] 


Fics. 3-8. Coenochroa chilensis, paratype 6, denuded head capsule (G = galea, LP 
= basal segment of labial palpus, MP = maxillary palpus, OC = ocellus, P = pilifer) in 
dorsal (3), ventral (4, 8), frontal (5), and lateral (6) aspects. 7, central area of frons 
protuberance. Scale bar = 250 wm (3-6), 25 wm (7), 50 um (8). 


light orange-yellow forewing ground color, in contrast to the light 
yellow of other Coenochroa. Although this appears to be a clear dis- 
tinction, it should be noted that wing patterns within the genus, par- 
ticularly in regard to degree of light vs. dark coloration, exhibit con- 


42 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Fics. 9-17. Coenochroa chilensis. 9-15, holotype (USNM slide no. 58165). 9, Male 
genitalia, aedeagus removed (vertical arrow = cucullus tooth; horizontal arrow = ventral 
sclerite of 8th abdominal segment); 10, Aedeagus; 11, Aedeagus tip, enlarged; 12, Medial 
process of gnathos, enlarged; 13-14, Enlargements to show left (up arrow) and right 
(outlined in ink, down arrow) sclerites of transtilla, 15, Seventh and eighth abdominal 
segments. 16-17, Paratype (USNM slide 58171) showing labial palpus (16) and basal 
region of right antenna (17) detached from head shown in Figs. 3-8. Scale bar = 200 um 
(9, 10), 50 wm (11), 100 wm (12-14), 250 um (15, 16), 50 um (17). 


siderable intraspecific variation where large series of specimens are 
available for examination (i.e., the three North American Coenochroa). 
The absence of the forewing discal spot is not a unique character, but 
is shared only with C. illibella (Hulst). Also, the abdomen is grayish in 
color rather than the yellowish brown of other Coenochroa. 


VOLUME 46, NUMBER 1 43 


In all three (dried and pinned) specimens examined the abdomen 
was quite flat rather than cylindrical, had a delicate and emaciated 
aspect, and in fact proved difficult to remove intact. In paratype slide 
no. 58173 the sclerotized plate bearing the tympanic organs remained 
attached to the metathorax when the rest of the abdomen was broken 
away for dissection. It seems likely that this frail condition is charac- 
teristic of pinned moths of this species rather than merely an artifact 
of these three specimens. 

The cylindrical tip of the frons is relatively narrow, its width being 
about 0.20 times the interocular distance as measured at midfrons level. 
Comparative figures for other Coenochroa species range from about 
0.35 times in C. californiella Ragonot to 0.50 times in C. illibella, both 
North American species, with the Brazilian C. dentata Shaffer and C. 
prolixa Shaffer intermediate at about 0.45 times. 

The male genitalia exhibit three apomorphies unique to this species 
of Coenochroa: fusion of the two ventral sclerites of the eighth abdom- 
inal segment to the sides of the vinculum (Fig. 9, horizontal arrow), a 
large blunt tooth near the dorso-distal angle of the valva, and minute 
teeth near the distal end of the aedeagus shaft (Fig. 11). 

Don Davis (pers. comm.) reports that the specimens were collected 
by blacklight about half a mile from the ocean in a relatively undis- 
turbed habitat occupying a ravine. The surrounding countryside upland 
of the ravine was dry, treeless, and very disturbed, the only trees in 
the region being confined to ravines. The soil everywhere, both in and 
above the ravine, was sandy. The last point is of interest as the distri- 
bution of Coenochroa species suggests an association with sandy soil 
habitats. 


ACKNOWLEDGMENTS 


I thank Alma Solis, Systematic Entomology Laboratory, USDA for arranging the loan 
of USNM specimens; and Vikas Chandhoke, Shared Research Instrumentation Facility, 
George Mason University for assistance with SEM work and photoprocessing. The Hitachi 
S-530 scanning electron microscope used in this study was supported in part by NSF 
Grant No. BSR-8511148. 


LITERATURE CITED 


KELLY, K. L. 1965. ISCC-NBS color-name charts illustrated with centroid colors. Stan- 
dard Sample No. 2106. Supplement to Natl. Bur. Standards Cir. 553. 4 pp. (unnum- 
bered), 18 sheets color samples. U.S. Government Printing Office, Washington, D.C. 

RAGONOT, E. L. 1887. Diagnoses of North American Phycitidae and Galleriidae. 20 
pp. Published by the author. Paris. 

SHAFFER, J.C. 1968. A revision of the Peoriinae and Anerastiinae (auctorum) of America 
north of Mexico (Lepidoptera: Pyralidae). U.S. Natl. Mus. Bull. 280:i-124. 

1989. Two new phycitine moths of the genus Coenochroa (Lepidoptera: Py- 

ralidae) from Brazil. Proc. Entomol. Soc. Wash. 91:237-247. 


Received for publication 23 September 1991; revised and accepted 19 January 1992. 


Journal of the Lepidopterists’ Society 
46(1), 1992, 44-53 


PARADULCEDO, A NEW GENUS OF 
SATYRINAE (NYMPHALIDAE) FROM WESTERN COLOMBIA 


Luis M. CONSTANTINO 
Apartado Aéreo 1676, Cali, Colombia 


ABSTRACT. Paradulcedo, new genus, is proposed for the satyrid butterfly originally 
described as Callitaera mimica Rosenberg & Talbot. This little known species, endemic 
to western Colombia, has long been considered a member of the genus Cithaerias, from 
which it is quite distinct. Descriptions of the wing venation and male genitalia are given. 
Paradulcedo is compared to members of the genera Dulcedo, Pseudohaetera, Haetera, 
Cithaerias, and Pierella. 


Additional key words: Dulcedo, Pseudohaetera, Haetera, Cithaerias, Pierella. 


The tribe Haeterini contains five genera: Cithaerias Hibner, Dulcedo 
d’ Almeida, Pseudohaetera Brown, Haetera Fabricius, and Pierella Her- 
rich-Schaeffer. All five are confined to the Neotropical Region (Miller 
1968, Masters 1970, Smart 1976, D’Abrera 1989) and all occur in Co- 
lombia. The butterflies of this tribe are, for the most part, readily 
distinguished from all other groups of the Satyrinae by having largely 
transparent wings with one or two ocelli and patches of color on the 
hindwing margin. The only exception to this description is the genus 
Pierella which has brown coloration on the upper wings and brilliant 
patches of color on the hindwing distal area with a variable number of 
ocelli. The genus Dulcedo is monotypic containing the single species 
D. polita (Hewitson, 1869) (Fig. 11), which ranges from Nicaragua to 
Western Colombia (DeVries 1987). The genus Pseudohaetera also con- 
tains a single species, P. hypaesia (Hewitson, 1868), distributed from 
Colombia to Bolivia (Weymer 1924, Brown 1942, Smart 1976) where 
it is confined to the Andean region between 1200-2500 m. This species 
is the only known high-altitude haeterine butterfly found commonly 
in cloud-forest relicts above 2000 m (Fig. 12). In Colombia, P. hypaesia 
occurs on the east slope of the western cordillera and on the central 
and eastern cordillera (J. A. Salazar pers. comm.). 

In the last ten years, butterfly collectors working on the west side 
(Pacific slope) of the western cordillera have found a species that closely 
resembles P. hypaesia both in the color markings on the hindwing and 
in flight behavior. Rosenberg and Talbot (1914) described this species 
as Callitaera mimica from specimens collected at La Selva, located at 
1400 m on the upper San Juan River, Choc6, Colombia. This rare and 
poorly known species, endemic to western Colombia, has been retained 
in the genus Cithaerias virtually since its original description, and was 
listed in Cithaerias by D’Abrera (1989). Takahashi (1981), in a list of 
Haeterinae collected by two Japanese expeditions to Colombia, did not 


VOLUME 46, NUMBER 1 45 


Cul 


Lt 


Fics. 1-4. Paradulcedo mimica (Rosenberg & Talbot). 1, 6 adult, upper side. 2, ¢ 
genitalia, lateral view with aedeagus removed (aedeagus, lateral view, beneath). 3, 6 
forewing venation. 4, 6 hindwing venation. Scale lines = 1 mm for Fig. 2 and 5 mm for 
Figs. 3-4. 


46 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


mention this species. In the most recent treatment of Neotropical Sa- 
tyridae (D’Abrera 1989), the male type of C. mimica Rosenberg & 
Talbot is illustrated. Keith S. Brown Jr. (pers. comm.) suggested that 
C. mimica could belong to the genus Dulcedo based on superficial 
observations. 

As members of neither Cithaerias nor Dulcedo are believed to exist 
above 1500 m in the Andean mountains and because they have dis- 
tinctive flight behaviors, I began a detailed study to determine the 
proper generic affinities of mimica. Comparisions of the genitalia, wing 
venation, and adult behavior of C. mimica with those of species rep- 
resenting its close relatives, Dulcedo, Cithaerias, Haetera, Pseudohae- 
tera, and Pierella, suggests that C. mimica does not belong to either 
Cithaerias or Dulcedo. The results of these studies led to the conclusion 
that C. mimica should be placed in a new genus closely related to 
Dulcedo and Pseudohaetera. | therefore propose the following new 
genus. 


Paradulcedo Constantino, new genus 


(Figs. 1-4, 5, 10, 22) 


Type species: Callitaera mimica Rosenberg & Talbot, 1914:677. 

Cithaerias mimica (Rosenberg & Talbot); D’Abrera, 1989:740. 

Cithaerias gilmouri Okano; Okano, 1986:1. 

Description. Male and female with same wing color pattern; female larger. Eyes: 
Naked, black-copper in life. Palpi: Slender, appressed to head, not extending beyond 
frontal vestiture; third segment small, one-seventh length of second. Antenna: Slender, 
eight-tenths length of forewing discal cell, comprising 47-48 segments, the terminal 7 
slightly compressed without forming a club. Forewing (Figs. 1, 3): Completely transparent 
with two strong lines running across; wing shape rounded (elongated in Cithaerias); M, 
and R,,; connate at the point of origin from the discal cell (D) (in Cithaerias M, departs 
from R,,; and not from D; in Dulcedo M, and R,,,, arise independently from the discal 
cell). Hindwing (Figs. 1, 4): Transparent with black markings (actually a strong, wide 
submarginal line) similar to Pseudohaetera; viewed ventrally, the markings are brown 
in Pseudohaetera, black in Paradulcedo; two ocelli on the hindwing margin (Cithaerias 
and Dulcedo have one); M, curved, originating from discal cell (M, straight in Cithaerias); 
Cu, and M, originating separately from discal cell (arising from same point in Pseudo- 
haetera and Haetera)); discal cell acute distad (rounded in Dulcedo). Length of forewing 
(from base to apex): male, 23.5 to 26.0 mm (n = 11); female, 28.0 to 32.0 mm (n = 6). 

Male genitalia (Fig. 2): Uncus curved and elongate without lateral projections (in 
Dulcedo there are lateral projections or horns); gnathos small (large and prominent in 
Cithaerias), aedeagus pointed apically (rounded in Dulcedo, Fig. 5; Table 1). 

Relationships. Morphologically, Paradulcedo can be separated from Cithaerias by the 
characters noted in the description above. Although the wing venation of Paradulcedo 
shows affinities with Dulcedo, differences in genitalia indicate that they are not congeneric. 
On the other hand, the genitalia of Paradulcedo reveal affinities with Pseudohaetera, but 
the wing venation is quite different. . 

Type specimens. Lectotype, 6 and 2 COLOMBIA: Chocé Dept., La Selva (Pacific 
slope), upper San Juan River, 1400 m (BMNH). Paralectotypes: All from Colombia, 1 4, 
1 2, Risaralda Dept., Pueblo Rico, 1580 m (BMNH); 1 6, Risaralda Dept., Siato, 1585 m 
(BMNH). All type material is in the Natural History Museum, London (BMNH). 

Additional specimens. COLOMBIA: CHOCO: San José del Palmar, 1000 m, 2 4 (J. H. 
Velez) (Museo de Historia Natural, Manizales), 2 2 (J. A. Salazar leg.), 1 6 (J. F. Lecrom 


Dee ee eee eee ee 


47 


SUIMpUTY UO 

IO[OO Jo sayoyed 

yyWM UMOIG 
ssuim 1oddQ 


Ajjeoide 
pepunoi pue 
WSre1s snseapoy 


jjeuus soyyeur) 


peaino ATWYysIs 
pue }10ys snouy 


aiqeize A 


peistip oynoe 
Alaa pue |[[euls G 


°IN 
wioiyz sastie Ind 


Dla1aD HY 
UI SB DAINO FJ 


D1] a4a1d 


VOLUME 46, NUMBER 1 


‘Dyasaig pure “piajapyopnasg ‘“piajavyy ‘Opaajng ‘spisavyyD WO1y Opaajnpoivg 9yeIyUoIB}fIp 0} Slojoe1eyo [eorsojoydioyy 


opaajnpo.ivd 
UI SB OUI] [eUIS 
-IeuIqns Yor[q 
BUOIS & YM 
jyuoiedsued} 
BUIM pulp] 
‘pueq auo 
yyw sum staddy 


Aj[eo 

-1de papuno. 

pue jysre1s 
snseopoy 


[Jews soyyeusy 
opao 
_-/Nppivg Ul se 
ayesuoja pue 

peaino snouy 


G 
DLBIODE] 
UI UeY} ayNoe 
a1OUL st y1edap 
Tn pue tw 
a1oyM yutod ay L, 


UISIIO 7 9}eU 
-uoo 8 pue ny 
_peounou 
-o1d sso] 
AIMS YUM FY 


DAlajaDYyopnasd 


SuUIMpUTY 

UO IO[OO jo 

yoyed yysys & 
yyw juoredsues |, 


Ajjeoide pa 
-yutod ‘A]jeseq 
podeys-u pue 

BuO] snsevapoy 


[jeuus soyyeur) 


41004 
e SeH “9AINO 
pue }10Ys snous), 


G 


Dilajavyopnasg 
uy} JopIm q 


UISIIO 7 9)eU 
-uoo Sy pue (np 

peounou 

-o1d AoA 
AIMS YUM S/Y 


D41O1ODH 


soul] [PUISIeUL 
-qns Mo1IeU 
ym juored 

-SuUBI] SUIMPUIP{ 


Ajjeorde pao 
-punol sn3eepey 


[jews soyyeusy 
suioy [elo 
-JR] 91¥ 104, |, 
‘aye 3u0[a 

pue 9Aino snoug 


pei 
-sIp pepuno.l qd 


uIs 
-110 }®8 poyele 
-das yy pue tno 


opaa 
-[npoivg ut se 8 


opaajnq 


snus 


oe ee a ee SS SS SE EE Ee eS 
Se eeeeeeemeEOeOmemememuememeS$S$S$S$S=S SooooEEEEEeeeeeSaan9>@®=a=aQoaa a SO SS 


IO 
-[09 Jo sayoyed 
yWM Juored 
-sueI] SUIM PUP] 
p9zn 
-O1ajos ATIAvaY 
dij ‘payutod 
pure yste1s 
snseapoy 


yuourwmoid pue 
ase] soyyeUuy 


Ajjeorde aaimo 
pue suo] snouy 


opaajnpp 
-1Dq pue opao 


-jnq ueyy pe 
-yeSu0ja a10UI CG 


uIs 
-110 78 poyele 
-das ®y pue (np 


ysrens Sy 


SDLLDAYNOD 


ouly [eurs 
-1euIqns yorlq 
Opim eB YIM 
yuoi1edsues} 
‘BuUIMpuUIP] 
‘spueq OM} 
yy sum 1oddQ 


pe 
-yutod Ayjeorde 
pue jYyste1s 
snsevapoy 
Aj[e419e 
-J8] 9[QISIA yOu 
‘[[eus soyyeury 


a}e3u0ja 
pue aAimo snouy 


G 


peisip aynoe 
(C1) 1199 [esta 
Ajayer 
-edas Sunied 
-9P [[90 [eo 
-SIp 94} WOlT 
Sy pue Ino 


peaino &/y 


OpaajnpdiDd 


IO[OO BULA 


el[eyuas 
aR 

I[][900 
jo 1oquinn 


UOT}VUDA 
BUIM pUI}] 


a nn 8 ee 


JayorleyD 


‘T AIAV 


48 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


——— 


Fics. 5-9. Male genitalia comparisons of five haeterine genera from Colombia. 5, 
Paradulcedo mimica (Rosenberg & Talbot) lateral view of genitalia with aedeagus re- 
moved (aedeagus, lateral view, beneath) Alto Calima, Valle. 6, Dulcedo polita (Hewitson), 
Alto Anchicaya, Valle. 7, Pseudohaetera hypaesia (Hewitson), Penas Blancas, Farallones 
de Cali, 2000 m. 8, Haetera piera (Linnaeus), Rio Amacayacu, Amazonas. 9, Cithaerias 
aurorina (Weymer), Puerto Narino, Amazonas. Scale lines = 0.5 mm. 


VOLUME 46, NUMBER 1 49 


leg.); El Tabor, 1 6 (J. F. Lecrom leg.); RISARALDA: Santa Cecilia, 900 m, 1 2 (J. H. 
Velez) (MHNM); San Antonio del Chami, 1600-2000 m, 2 2 (J. A. Salazar leg.); VALLE: 
Rio San Juan, km 56, 1200 m, 2 4, 6. viii. 1985 (L. M. Constantino leg.); Calima III, 1400 
m, 1 6, 16.v.1984 (E. Constantino leg.); Alto Rio Pepitas, 1600 m, 1 4, 15.vi.1986 (M. 
Linares leg.); cerro Los Chancos, 1600 m, 2 4, 1 2, 10.vii.1983 (J. I. Martinez leg.); Rio 
Bravo, Calima, 1300 m, 1 6, 12.iv.1985 (L. M. Constantino leg.). 


NATURAL HISTORY 


Paradulcedo mimica is restricted to undisturbed premontane and 
montane forest (commonly cloud-forest relicts) on the west side (Pacific 
slope) of the western cordillera between 900 and 1600 m, with a mean 
annual precipitation of 5000-6000 mm. Its geographic distribution ranges 
from Choco to Cauca (Fig. 22). The range may include Narino and 
northwestern Ecuador, but there are no specimens reported from these 
two regions. The flight behavior is very similar to that of P. hypaesia, 
characterized by being slow and erratic, whereas that of Dulcedo polita 
(which occurs locally on the Pacific Coast in association with pluvial 
forest from sea level to 1000 m) is very fast and straight. Flight activity 
of P. mimica is during day light hours, from 1000 to 1500 h for males 
and from 1300 to 1600 h for females. The flight period is restricted 
mainly to the dry season between June and August, but in some years 
P. mimica can be found during the first rainy season between March 
and May. Despite many hours of field observation, neither courtship 
nor Oviposition activities were observed, so the larval food plant and 
immatures remain unknown. 


DISCUSSION 


My field observations of P. mimica over the last five years indicate 
that it is restricted to a narrow transitional habitat on the Pacific drain- 
age between montane cloud forest and the foothills of the western 
cordillera. This habitat, which I term the “‘belt of endemism,”’ shows a 
high degree of endemism and biotic peculiarity for butterflies, plants 
(Gentry 1982), and birds (Haffer 1967), in contrast to other areas of 
Colombia. This perhaps is an indication that P. mimica is an endemic 
Colombian species. The known distribution of P. mimica (Fig. 22) 
agrees with the “Choco Quaternary Refugia”’ proposed for neotropical 
lepidoptera by Brown (1975). Very likely the Choco region was a “forest 
refugium” during pleistocene glaciations (Brown 1982), explaining the 
occurrence of a high number of endemic butterflies there and in im- 
mediately adjacent areas. The Choco region is located on the Pacific 
slopes of the western cordillera of Colombia from north of Quibdé to 
near Lago Calima, across Upper Atrato and San Juan River systems, 
and its influence is seen as far south as central-western Ecuador (Brown 
1975). 

Although P. mimica was so named because of the black markings of 


50 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Fics. 10-21. Wing venation of some haeterine species from Colombia. Note the shape 
variation of the hind wing discal cell and the vein M, for each genus. 10, Paradulcedo 
mimica (Rosenberg & Talbot) 4, Alto Calima, Valle. 11, Dulcedo polita (Hewitson) 2, 
Rio Tatabro, Bajo Anchicaya, Valle. 12, Pseudohaetera hypaesia (Hewitson) 2, Peas 
Blancas, Farallones, Valle. 13, Haetera macleannania Bates 6, Rio Tatabro, Valle. 14, 
Haetera macleannania Bates 2, Rio Raposo, Valle. 15, Haetera piera piera (Linnaeus) 
2, Leticia, Amazonas. 16, Haetrera piera ecuadora Brown 6, Puerto Umbria, Putumayo. 
17, Haetera piera ecuadora Brown 8, Orito, Putumayo. 18, Cithaerias menander (Drury) 
6, Rio Sabaletas, Valle. 19, Cithaerias aurorina (Weymer), 6, Puerto Narino, Amazonas. 
20, Cithaerias pyritosa ssp. (Clifton ms.) 6, Villavicencio, Meta. 21, Cithaerias pyritosa 
ssp. 2, same locality. 


VOLUME 46, NUMBER 1 | Silt 


{ 
' 
' 
t 
' 
’ 
‘ 
' 
’ 
‘ 
‘ 
' 
' 
i] 
' 
‘ 
' 


Fic. 22. Known distribution of Paradulcedo mimica in Colombia. 1, Risaralda, San 
Antonio del Chami, 1600-2000 m. This locality is the farthest north known for P. mimica. 
The habitat where the collections were made is on the upper Mistrato River in montane 
cloud forest. 2, Risaralda, Santa Cecilia. On the west side (Pacific slope) of the western 
cordillera in premontane cloud forest. 3, Risaralda, Pueblo Rico, 1584 m, the Paratype 
locality, on the road to Santa Cecilia. 4, Chocéd, San José del Palmar, 1000 m on the 
Pacific slope in cloud forest. 5, Valle, Rio Bravo (upper Calima) in premontane and 
montane cloud forest. 6, Valle, Cerro los Chancos, near Calima Lake, 1600 m, in montane 
cloud forest. 7, Valle, Rio San Juan, km 56 near Queremal, 1200 m, in montane cloud 
forest. 


52 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


the hindwing which resemble P. hypaesia, there is no evidence of a 
mimetic association between the two species. The two are parapatric, 
P. mimica occurring on the west slope and P. hypaesia on the east slope 
of the western cordillera. The genera Dulcedo, Paradulcedo, and Pseu- 
dohaetera are monotypic, with the latter two restricted to cloud-forest 
relicts in the Andean mountains. Lowland rain-forests are the province 
of the other neotropical Haeterini, Cithaerias, Haetera, and Pierella, 
with the greatest diversity in the Amazon Basin. 

The restriction of haeterine adults to the deep shade of the forest 
understory (commonly undisturbed rain forests) renders them highly 
vulnerable to habitat disturbance. Most adults tend to stay within a 
confined area in the forest at all times. Adults cannot tolerate direct 
sunlight, and once forests are cleared the species disappear from their 
natural habitat. In secondary forests, haeterine species are seen rarely 
or are absent. As a result, P. mimica is seriously threatened as most of 
its natural habitats have been taken over for agriculture and pastures. 


ACKNOWLEDGMENTS 


I thank J. A. Salazar for originally pointing out to me that this species corresponded 
to a new genus and for helpful comments and continual encouragement on this paper; 
J. H. Velez, Museo de Historia Natural de Manizales, Colombia, for providing facilities 
and access to the collection under his care; and B. A. Drummond, P. J. DeVries, and an 
anonymous reviewer for useful comments on the manuscript. Thanks also to J. F. Lecrom 
and E. Schmidt-Mumm for their assistance in checking data and specimens in their 
collections; P. R. Ackery, The Natural History Museum, London, for providing the ref- 
erence for the type-species and for his comments on the manuscript; K. S. Brown Jr. 
(Universidade Estadual de Campinas, Brazil) for making suggestions on the taxonomic 
status of this distinctive species; my brother Emilio and sister Sandra’ Constantino for 
collecting and providing specimens; and German Ramirez for the photographs of the 
adults. 


LITERATURE CITED 


BROWN, F. M. 1942. Notes on Ecuadorian butterflies. J. New York Entomol. Soc. 50: 
304-333. 

Brown, K. S. 1975. Geographical patterns of evolution in neotropical Lepidoptera. 
Systematics and derivation of known and new Heliconiini (Nymphalidae: Nym- 
phalinae). J. Entomol. 44:201-242. 

1982. Paleoecology and regional patterns of evolution in Neotropical forest 
butterflies, pp. 255-308. In Prance, G. T. (ed.), Biological diversification in the tropics. 
Columbia Univ. Press, New York. 714 pp. 

D’ABRERA, B. 1989. Butterflies of the Neotropical Region, Part 5, Nymphalidae (Conc. ) 
and Satyridae. Hill House, Victoria, Australia. 202 pp. 

D’ALMEIDA, R. F. 1951. Ligeras observacoes sobre o genero Cithaerias Hiibner, 1819, 
(Lep. Satyridae). Arquiv. Zool. Estado Sao Paulo 7:493-505. 

DEVRIES, P. J. 1987. The butterflies of Costa Rica and their natural history. Princeton 
Univ. Press, New Jersey. 327 pp. 

GENTRY, A. H. 1982. Phytogeographic Patterns as evidence for a Choco refuge, pp. 
112-136. In Prance, G. T. (ed.), Biological diversification in the tropics. Columbia 
Univ. Press, New York. 714 pp. 

HAFFER J. 1967. Speciation in Colombian forest birds west of the Andes. Am. Mus. 
Novit. 2294:1-57. 


VOLUME 46, NUMBER 1 | 53 


MasTERS, J. H. 1970. Bionomic notes on Haeterini and Biini in Venezuela (Satyridae). 
J. Lepid. Soc. 24:15-18. 

MILLER, L. D. 1968. The higher classification, phylogeny and zoogeography of the 
Satyridae. Mem. Am. Entomol. Soc. 24:1-174. 

OKANO, K. 1986. Descriptions of two new Neotropical butterflies (Lep: Rhopalocera) 
with the list of the Neotropical transparent winged Satyridae. Tokurana 12:1-10. 

ROSENBERG, W. F. H. & G. TALBOT. 1914. New South American butterflies. Trans. 
Entomol. Soc. Lond. 1913:671-682. 

SMART, P. 1976. Encyclopedia of the butterfly world. Hamlyn, London. 275 pp. 

TAKAHASHI, M. 1981. A list of the butterflies of the Haeterinae and Biinae (Lep.: 
Satyridae) collected by two Japanese expeditions in Colombia and Peru, South Amer- 
ica. Ty6 to Ga. 32:108-116. 

WEYMER, G. 1924. Familie Satyridae, pp. 173-283. In Seitz, A. (ed.), Die Gross-Schmet- 
terlinge der Erde. Vol. 5. A. Kernen, Stuttgart. 


Received for publication 14 September 1991; revised and accepted 2 February 1992. 


Journal of the Lepidopterists’ Society 
46(1), 1992, 54-69 


THE BEBEARIA MARDANIA COMPLEX (NYMPHALIDAE) 


DAvID L. HANCOCK! 


Natural History Museum, Bulawayo, Zimbabwe 


ABSTRACT. Six species are recognized in the African Bebearia mardania complex: 
B. mardania (Fabricius); B. senegalensis (Herrich-Schaeffer), stat. rev.; B. theognis (Hew- 
itson), stat. rev.; B. guineensis (Felder & Felder), stat. revy.; B. orientis (Karsch); and B. 
badiana (Rebel), stat. rev. Bebearia cocalia (Fabricius) is placed as a synonym of B. 
mardania and the type-locality of both taxa, described from “Indiis,”.is interpreted as 
Sierra Leone, West Africa. Bebearia cocalioides Hecq is newly placed as a subspecies of 
B. mardania, whilst katera (van Someren) (=insularis Schultze, syn. nov.; =continentalis 
Hecq, syn. nov.) is newly placed as a subspecies of B. senegalensis. The taxon paludicola 
(Schultze) is placed as a new synonym of B. guineensis, and both dealbata (Carcasson) 
and taveta Clifton are newly placed as subspecies of B. badiana. The identities of the 
various species and subspecies are discussed, and lectotypes are designated for B. gui- 
neensis and B. badiana. 


Additional key words: Africa, taxonomy, lectotype designations, Fabrician species, 
type-localities. 


Taxonomically, the Bebearia mardania complex is perhaps one of 
the most confused groups of African Nymphalidae. The identity of B. 
mardania (Fabricius) itself has been misinterpreted consistently ever 
since its original description nearly 200 years ago (Fabricius 1793). As 
generally recognized prior to Hecq (1988), the taxon actually comprised 
three distinct species—B. mardania, B. senegalensis (Herrich-Schaef- 
fer) and B. guineensis (Felder & Felder). The two former taxa usually 
were regarded as subspecies, whilst B. guineensis has been lost in syn- 
onymy since Aurivillius (1899), following Butler (1871), incorrectly 
regarded it as the male of B. mardania. Bebearia cocalia (Fabricius) 
had been regarded variously as a form of B. mardania, as a monotypic 
species, or as a bitypic species that also included B. theognis (Hewitson). 
Hecq (1988) regarded B. mardania as a senior synonym of B. theognis 
and accepted B. cocalia as a separate, polytypic species. Actually, B. 
cocalia is the male of B. mardania and neither taxon has anything to 
do with B. theognis. The taxon B. orientis (Karsch) generally was 
regarded as a subspecies of B. mardania until its specific identity was 
recognized by van Son (1979). Bebearia badiana (Rebel) also generally 
has been regarded as a subspecies of B. mardania but two subspecies 
here transferred to it, dealbata (Carcasson) and taveta Clifton, were 
placed in a separate species, B. dealbata, by D’Abrera (1980). Bebearia 
orientis and B. badiana actually appear to be most closely related to 
B. senegalensis, the three forming an allopatric group. Possibly con- 


' Present address: 5 Bogong Street, Riverhills, 4074, Brisbane, Queensland, Australia. 


VOLUME 46, NUMBER 1 sys) 


specific, they are regarded as separate species here for reasons discussed 
below. 

It has not been practicable, nor indeed possible, to examine the 
relevant type material. The holotypes of B. mardania and B. cocalia 
were stated to be in the Drury Collection and are now believed lost. 
Syntypes of B. senegalensis are believed to have been in the Staudinger 
Collection but enquiries to Berlin failed to locate them; their present 
whereabouts, if still extant, are unknown to me. The types of forms 
paludicola Schultze and insularis Schultze also are believed lost. For- 
tunately, the types of B. mardania and B. cocalia were figured in 
William Jones’ unpublished Icones, now preserved at the University of 
Oxford, while those of B. senegalensis were figured by Herrich-Schaef- 
fer (1858). Syntypes of B. orientis and its synonym pseudocalia Stau- 
dinger are in the Zoologisches Museum der Humboldt Universitat zu 
Berlin and color slides of these have been examined. Since this is the 
only species occurring in coastal East Africa, its identity is not in doubt. 
Holotypes of subspecies dealbata and taveta are in the National Museum 
of Kenya and both were adequately illustrated in the original publi- 
cations (Carcasson 1958, D’Abrera 1980). Syntypes of B. badiana are 
in the Naturhistorisches Museum, Vienna, and color photographs of 
these have been examined. Holotypes of B. cocalia continentalis Hecq 
and B. cocalioides Hecq are in the Musee Royal de |’ Afrique Centrale, 
Tervuren, and both have been figured (Hecq 1988). Holotypes or syn- 
types of the remaining taxa, B. theognis, B. guineensis, B. mardania 
katera (van Someren), and B. orientis insularis Kielland, are in The 
Natural History Museum, London. Apart from B. guineensis, of which 
color slides of the syntypes have been examined, these taxa had their 
types illustrated in the original publications (Hewitson 1864, van So- 
meren 1939, Kielland 1985). 

Fortunately, the available published and unpublished illustrations 
are sufficient to enable identification of the various species and sub- 
species and no problems remain that require a closer examination of 
types or topotypical material for their resolution. These, and material 
in the Natural History Museum of Zimbabwe, have enabled the com- 
plexities of this group to be resolved. 


ABBREVIATIONS 


The following abbreviations of Museums and collections are used 
throughout: BMNH—The Natural History Museum, London; NHMZ— 
Natural History Museum of Zimbabwe, Bulawayo; NHMV—Natur- 
historisches Museum, Vienna; ZMHU—Zoologisches Museum der 
Humboldt Universitat, Berlin; HCO—Hope Entomological Collections, 


ele) JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


University of Oxford; BWC—B. Wilson Collection, Bulawayo; AHC— 
A. Heath Collection, Cape Town. 


SYSTEMATICS 


Family Nymphalidae 
Genus Bebearia Hemming 
mardania complex 


Species in this complex are distinguished by the presence of a dark 
postdiscal band running across both fore- and hindwings on the un- 
derside. The complex is considered here to comprise six species, best 
identified by comparison with the figures and diagnostic notes provided. 
The following key is intended merely as a guide to identification, 
particularly in the case of females. Subspecies are distinguished pri- 
marily by female pattern characteristics. Where known, the larvae feed 
on palms (Palmae). 

Carcasson (1981) considered Bebearia to be a subgenus of Euphaedra 
Hubner but provided no evidence for this reassignment. In the absence 
of revisionary studies on the genera in question, I prefer to maintain 
the traditional separation of Bebearia as a distinct genus. 


Key to Species in the mardania Complex 


Vy Maas cco a 2 
Ll’. Females 0002 7 
2. Forewing with a faint brown subapical bar but no yellow markings; hindwing 
rounded (Fig. 7); valvae elongate, with one long apical tooth and several broad 
subapical dentations, (Mig. 20) 22 es theognis 
2'. Forewing with at least a trace of yellow subapical markings; hindwing at least 
slightly angled» valvae not as/\above 2. ee eee 3 
3. Forewing with a broad, distinct, yellow subapical bar; black apical area without 
a purplish suffusion; valvae short and apically rounded (Fig. 21) guineensis 
3’. Forewing rarely with the yellow subapical bar broad and distinct; black apical 
area with a purplish suffusion; valvae elongate and apically produced or toothed 
4 


4. Hindwing slightly angled (Figs. 3, 5); valvae with apex broad (Fig. 18) mardania 
4’. Hindwing distinctly angled (Figs. 6, 8-10); valvae with apex narrowed (Figs. 
19,22, 28) os ee Se ee ee =) 
5. Reddish above; upperside of hindwing with submarginal pale spots pronounced; 
valvae elongate and strongly produced apically into a dentate process (Fig. 
DO) Lo te lS a i 2 orientis 
5’. Purple to reddish-purple above; upperside of hindwing with submarginal pale 
spots not evident; valvae not as\above 2 eee 6 
6. Valvae broad, with several small apical teeth (Fig. 23) 2000 badiana 
6’. Valvae elongate and slightly produced to a blunt point apically (Fig. 19) 
Bah tottus 2h eM RL S08 he ee eames eV EY PSR ORE nn oe i senegalensis 
7. Hindwing rounded, not distinctly angled (Figs. 14, 15); forewing with subapical 
pale bar broad, not narrowing noticeably posteriorly; ground color brown to 
greyish-brown 2-0 ee 8 
7'. Hindwing angled (Figs. 11-13, 16, 17); forewing with subapical pale bar narrow 


VOLUME 46, NUMBER 1 o7 


or narrowing noticeably posteriorly; ground color generally orange-brown to 


TRBVO =| OER IVLY, sa SU ene POPE oa ten A 0 eal 9 
Spuorewimersubapical pale bar white 222. guineensis 
Sapborewieysubapical pale bar mostly yellow 22202 theognis 
9. Forewing reddish-brown basal to subapical pale bar; submarginal pale spots 

Peneralivgcitiuse-and indistinct 4.05. ee ee 10 
9’. Forewing with a black area basal to subapical pale bar; submarginal pale spots 

TEmerallsy CLS Cece iim ee UememnMne ne Remmi eet NO an eRe iL) 

10. Postdiscal areas paler than basal areas, often whitish; hindwing weakly angled 

(Gigaset) wforewing subapical pale bar white {22 =e mardania 


10’. Postdiscal areas not noticeably paler than basal areas; hindwing distinctly angled 
(Fig. 17); forewing subapical pale bar white or orange ccc badiana 

11. Hindwing with pale areas distad of submarginal dark line distinct; forewing 
with submarginal pale spot in space CuA, entirely orange 0c orientis 

11’. Hindwing with pale areas distad of submarginal dark line indistinct; forewing 
with submarginal pale spot in space CuA, partly or entirely white . senegalensis 


Bebearia mardania (Fabricius) 
(Figs. 1-5, 11, 18) 

Papilio mardania Fabricius, 1793:249 (2). Type-locality “Indiis,” recte [Sierra Leone], 
Jones’ Icones 3:70, fig. 1. 

Papilio cocalia Fabricius, 1793:250 (8). Type-locality “Indiis,”’ recte [Sierra Leone]; Jones’ 
Icones 3:70, fig. 2. 

Nymphalis cocalia, Donovan, 1800—04:[53] (6), pl. [86], fig. 1. 

Euryphene senegalensis, Aurivillius, 1912:177, partim (2) (Sierra Leone). Misidentifica- 
tion. 

Najas cocalia theognis, Fox, 1965:229 (Liberia); Owen & Owen, 1973:597 (Sierra Leone). 
Misidentifications. 

Bebearia cocalia, D’Abrera, 1980:309, partim (4, 8rd 2 only) (Kumasi, Ghana); Hecq, 
1988:120 (6 partim). 

Bebearia mardania, Hecq, 1988:120 (2 partim). 


Diagnosis. The weakly angled hindwings in both sexes, pale postdiscal 
areas in the female, and shape of the valvae in the male, serve to 
distinguish this species. The typical subspecies differs from the next in 
having the female smaller and with a better developed subapical pale 
band on the forewing. 

Discussion. Although Butler (1871) misinterpreted this species, his 
actions in placing B. cocalia as a synonym of B. mardania may be 
construed as that of first reviser, giving priority to the name mardania. 
This synonymy has been largely overlooked in subsequent publications. 
The name mardania has not been applied correctly since its original 
description but the figures in Jones’ Icones are accurate and enable this 
species to be interpreted correctly. Hecq (1988) referred to both these 
figures but associated the female (mardania) with male B. theognis 
and the male (cocalia) with female B. senegalensis. 

It is probable that both taxa originated from the same source, since 
both were described from the Drury Collection at the same time from 
the same incorrect locality. Specimens agreeing well with both figures 


58 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Fics. 1-4. Illustrations of Fabrician types in Jones’ unpublished Icones, Vol. 3: Upper- 
and undersides of Bebearia species. 1 and 2, B. mardania, female. 3 and 4, B. cocalia, 
male (=synonym of B. mardania). 


in Jones’ Icones have been collected together near Abidjan in Ivory 
Coast and there can be no justification for continuing to regard mar- 
dania and cocalia as anything other than female and male respectively 
of the same nominal species. 

Type-locality. Both mardania and cocalia were described originally 
from “Indiis” (India) but this is erroneous. The figures of both taxa in 
Jones’ Icones closely resemble specimens from West Africa. Aurivillius 
(1899) mentioned only Cameroon for cocalia and this has been assumed 
to be its type-locality. However, specimens from there differ from 
typical specimens (as figured by Jones), and Sierra Leone is interpreted 
here as the type-locality for both taxa. It is known from historical records 
that ships en route to Europe from India stopped in this area to collect 
water and other provisions, and that Drury obtained material from this 
region. 

Material examined. IVORY COAST: 8 6, 3 2, Azegny Nat. Park, W 
of Abidjan, x.1985 (NHMZ, BWC); 12, Abidjan, x—xi.1974 (NHMZ). 

Distribution. Sierra Leone, Liberia, Ivory Coast, Ghana. 


VOLUME 46, NUMBER 1 o9 


Bebearia mardania cocalioides Hecgq, stat. rev. 


Euryphene cocalia, Aurivillius, 1899:198 (Cameroon); 1912:pl. 40 (2). Misidentification. 

Euryphene mardania @ f. cocalia, Peters, 1952:62. Misidentification. 

Euphaedra cocalia, Fox, 1968:1266 (Congo); Carcasson, 1981:165. Misidentifications. 

Bebearia cocalia, D’Abrera, 1980:309, partim (2nd 2 only) (Cameroon). Misidentification. 

Bebearia mardania, Berger, 1981:149, partim (6 f. cocalia, 2? f. senegalensis), pl. 119, figs. 
1 (6), 10 (2) (Zaire). Misidentification. 

Bebearia cocalioides Hecq, 1988:124, figs. 19, 20 (6 2). Type-locality Eala, Zaire. 


Diagnosis. The female tends to be larger and has the subapical white 
band of the forewing narrower and more deeply indented, particularly 
on its basal side, than in typical mardania. 

Discussion. These Central African populations appear to represent 
a subspecies of B. mardania rather than a separate species. Males have 
not been available for genitalia dissection but both taxa agree in wing 
shape and male pattern; females of both also have pale postdiscal areas 
on the wings. Berger (1981) stated that the types of B. badiana were 
identical to this taxon but this is not the case. Most references to B. 
cocalia in the literature actually belong here. 

Distribution. Cameroon, Congo, Zaire, Central African Republic. 


Bebearia senegalensis (Herrich-Schaeffer), stat. rev. 
(Figs. 12, 19) 
Euryphene senegalensis Herrich-Schaeffer, 1858:54, figs. 95-98 (6 2). Type-locality Sen- 
egal. 
Euryphene senegalensis, Aurivillius, 1899:198; 1912:177, partim (6) (Senegal). 
Euryphene mardania, Aurivillius, 1912:pl. 40 (2 only). Misidentification. 
Euryphene mardania senegalensis, Peters, 1952:62. 
Najas mardania senegalensis, Fox, 1965:230 (Liberia & Guinea). 
Najas mardania, Owen & Owen, 1973:598 (Sierra Leone). Misidentification. 
Bebearia cocalia, D’Abrera, 1980:309, partim (1st 2 only) (Enuchi, Ghana); Hecq, 1988: 
120 (6 partim, 2) (Sierra Leone & Ivory Coast). Misidentifications. 
Bebearia mardania senegalensis, D’Abrera, 1980:310. 
Euphaedra mardania senegalensis, Carcasson, 1981:165. 
Bebearia cocalia senegalensis, Hecq, 1988:121. 


Diagnosis. The male has hindwings more angular than B. mardania 
but can be distinguished with certainty from B. badiana only by the 
more elongate, apically produced valvae. The female resembles that of 
B. orientis but differs in characters noted in the key. In the typical 
subspecies the female is a little variable in the extent of the reddish- 
brown areas, particularly on the forewing, but may be identified readily 
by the submarginal ring-shaped spot in space CuA, of the forewing, 
which is white on both its inner and outer edges. 

Discussion. Although generally regarded as the western subspecies 
of B. mardania, this species is distinct and occurs sympatrically with 
the former. Bebearia cocalia of Hecq (1988) is essentially this taxon. 


60 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Its identity has been obscured by a lack of understanding of the true 
nature of B. mardania. 

Material examined. IVORY COAST: 2 6, 8 2, Azegny Nat. Park, W 
of Abidjan, x.1985 (NHMZ & BWC). 


Distribution. Senegal, Guinea Bissau, Sierra Leone, Guinea, Liberia, 
Ivory Coast, Ghana. 


Bebearia senegalensis katera (van Someren), stat. rev. 


(Figs. 6, 13) 


Euryphene guineensis, Felder & Felder, 1867:430, partim (2) (Calabar, Nigeria). Misi- 
dentification. 

Euryphene mardania, Butler, 1871:74, partim (9), pl. 28, fig. 6 (2) (Fantee, Ghana); 
Aurivillius, 1891:210 (Cameroon & Gabon); 1899:198, partim; 1905:4 (pupa); 1912: 
177, partim, pl. 40 (6 only); Neave, 1910:37 (Lualaba, Zaire); Holland, 1920:187 
(Zaire). Misidentifications. 

Euryphene cocalia, Staudinger, 1885-86:148, pl. 52 (6 2) (Cameroon, Gabon & Congo). 
Misidentification. 

Euryphene senegalensis, Aurivillius, 1912:pl. 40 (6 2). Misidentification. 

Euryphene mardania var. insularis Schultze, 1920:721 (2). Type-localities Santa Isabel & 
San Carlos, Fernando Poo (described as 2 form, i.e., infrasubspecific). Syn. nov. 
Euryphene mardania katera van Someren, 1939:52, pl. 14, figs. 3, 4, pl. 15, figs. 3, 4 (6 

2). Type-locality Katera, SW Uganda. 

Euryphene mardania katera, Peters, 1952:62. 

Najas mardania, Carcasson, 1966:24, 58, fig. 21 (W Tanzania & N Zambia). Misidenti- 
fication. 

Euphaedra mardania, Fox, 1968:1266, partim (Congo); Carcasson, 1981:46, partim (2 
only) (Zaire), 165; Dowsett, 1983:61, partim (below Nyika, NE Zambia). Misidenti- 
fications. 

Bebearia mardania, Cornes, Riley & St. Leger, 1973:13; Larsen, Riley & Cornes, 1980: 
16 (Nigeria); D’Abrera, 1980:310, partim (2 only); Berger, 1981:149, partim, pl. 119, 
figs. 5, 6 (6), 9 (2). Misidentifications. 

Bebearia cocalia guineensis, Hecq, 1988:121, partim (2). Misidentification. 

Bebearia cocalia continentalis Hecq, 1988:122, figs. 3-6, partim (6 only). Type-locality 
Beni, Zaire. Syn. nov. 

Bebearia cocalia katera, Hecq, 1988:123; Kielland, 1990:118, pl. 36. 

Bebearia orientis, Kielland, 1990:118, partim, pl. 36 (2) (Tukuyu, SW Tanzania). Misi- 
dentification. 


Diagnosis. The female of this subspecies differs from typical sene- 
galensis in having the pale submarginal ring-shaped spot in space CuA, 
of the forewing mostly orange, with white scales only on its outer 
portion, in being generally orange-brown in ground color, and with the 
black apical area of the forewing well developed. The male valvae are 
identical to those of the typical subspecies. There is some variation in 
the width of the pale subapical forewing band in both sexes. Some males 
approach B. guineensis in the width of this band but the apical area 
has a purplish suffusion, the hindwing is more distinctly angled, and 
the valvae differ. 

Discussion. The majority of references to B. mardania in the liter- 
ature actually refer to this taxon. Hecq’s (1988) subspecies continentalis 


VOLUME 46, NUMBER 1 61 


is a mixture of this taxon and B. guineensis (the female); the range of 
material available does not support its separation from katera. The 
female form insularis was stated by Schultze (1920) to have the wings 
darker basally than in mainland examples of katera but Hecq (1988), 
while not actually assigning the name to any particular taxon, noted 
that it was without value. 

Although described (in a footnote) by Schultze (1920) as a variety of 
B. mardania, the name insularis was considered by him to apply only 
to females, in the sense of a form-name, and not to males also recorded 
from Fernando Poo (=Bioko). Thus the name is considered here to be 
infrasubspecific, under the provisions of Article 45 (g) (ii) (1) of the 
International Code of Zoological Nomenclature (1985). Nomenclatural 
problems would arise if this name, unmentioned in the literature be- 
tween its original proposal and Hecq (1988), were to be regarded as 
valid at the subspecies level. It would become a senior synonym of 
katera and would result in B. orientis insularis Kielland becoming a 
homonym. 

Material examined. NIGERIA: 1 2 (paralectotype of E. guineensis 
C. & R. Felder), labelled Calabar Type/ Felder Colln./ syntype (BMNH: 
color slides); 1 2, Ajessor-I[kom, ii.1958 (NHMZ); 2 6, 1 2, Ikom, iii.1956 
& ix.1959 (NHMZ); CAMEROON: | 2, Lomie, 6.viii.1962 (NHMZ); 1 
2, Kumba Gorge, 19.ix.1962 (NHMZ); CENTRAL AFRICAN RE- 
PUBLIC: 1 2, Bangui, ii.1967 (NHMZ); ZAIRE: 1 4, 1 2, Sandoa, ii.1930 
(NHMZ); 1 2, no locality, 1947 (NHMZ); 1 6, Kafakumba, x.1931 
(NHMZ); 1 6, Kanzonze, Katanga, 20.ii.1968 (NHMZ); UGANDA: 4 4, 
Katera, Sango Bay, vi.1938 & xi.1953 (NHMZ); 1 6, Budongo Forest, 
10.ii.1989 (NHMZ); ZAMBIA: 64, 1 2, Ikelenge, viii-ix.1961, 28.iv.1963, 
v.1964, 28.iv.1972, 7 & 20.v.1983 (NHMZ); 4 4, 42, Kashiba, Mpongwe, 
5.v.1974 (NHMZ & AHC); 1 2, Chambezi R., x.1898-i.1899 (HCO: 
color slides). 

Distribution. Ghana, Nigeria, Cameroon, Equatorial Guinea (Fer- 
nando Poo), Congo, Gabon, Central African Republic, Zaire, W Uganda, 
W Tanzania, N Zambia. 


Bebearia theognis (Hewitson), stat. rev. 


(Figs. 7, 14, 20) 


Euryphene theognis Hewitson, 1864:[41], pl. [21], figs. 3, 4 (4). Type-locality Ashanti, 
Ghana. 

Euryphene theognis, Aurivillius, 1899:198; 1912:177, pl. 40 (6 2); Peters, 1952:62. 

Bebearia theognis, Cornes, Riley & St. Leger, 1978:13; Larsen, Riley & Cornes, 1980:16 
(Nigeria); D’Abrera, 1980:310, partim (6 only). 

Euphaedra cocalia theognis, Carcasson, 1981:165. 

Bebearia mardania, Hecq, 1988:120 (2 partim, $) (Ghana & Nigeria). Misidentification. 


Diagnosis. The male is easily identified by its rounded hindwings, 


62 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Fics. 5-10. Bebearia species, males. 5, B. m. mardania. 6, B. senegalensis katera. 7, 
B. theognis. 8, B. guineensis. 9, B. o. orientis. 10, B. b. badiana. 


lack of yellow subapical markings on the forewing, and by the distinc- 
tive valvae. The female resembles that of B. guineensis in having 
rounded hindwings and a broad pale subapical band on the forewing, 
but may be readily differentiated by the yellow coloration in this band. 

Discussion. This is the most distinctive species in the complex and 
Carcasson (1981) was incorrect in placing it as a subspecies of B. cocalia 
(=mardania), as the distinctive male valvae readily show. Hecq (1988) 
regarded B. theognis as a synonym of B. mardania but this is based 
on an incorrect interpretation of both the latter species and B. cocalia. 
It appears to replace B. mardania from Ghana to Nigeria and may be 
responsible for the disjunct distribution seen in that species. 

Material examined. GHANA: 2 4, Takoradi, 24.xii.1939 (NHMZ): 
TOGO: 1 6, Amezdofe-Vane, 2300’, xi-xii.1932 (NHMZ); NIGERIA: 4 
6, 1 2, Lagos, iv.1955 (NHMZ); 2 6, 1 2, Ubiaja, Benin Province, vi & 
vii.1955 (NHMZ). 

Disiribution. Ghana, Togo, Nigeria. 


VOLUME 46, NUMBER 1 . 63 


Bebearia guineensis (Felder & Felder), stat. rev. 


(Figs. 8, 15, 21) 


Euryphene guineensis Felder & Felder, 1867:430, partim (6 only). Type-locality Calabar, 
Nigeria. 

Euryphene mardania, Butler, 1871:74, partim, pl. 28 (6 only) (Fantee, Ghana); Aurivillius, 
1899:198, partim; 1912:177, partim; Peters, 1952:62. Misidentifications. 

Euryphene guineensis, Aurivillius, 1891:210 (6) (Cameroon). 

Euryphene mardania ab. paludicola Schultze, 1920:721 (2). Type-locality N’ginda, S. 
Cameroon. Syn. nov. 

Euryphene mardania 2 f. paludicola, Peters, 1952:62. 

Euphaedra mardania, Fox, 1968:1266, partim (Congo); Carcasson, 1981:46, partim (é 
only) (Cameroon). Misidentifications. 

Bebearia theognis, D’Abrera, 1980:310, partim (2 only) (Kumasi, Ghana). Misidentifi- 
cation. 

Bebearia mardania, D’Abrera, 1980:310, partim (6 only); Berger, 1981:149, partim (é f. 
mardania), pl. 119, figs. 3, 4 (6) (Zaire). Misidentifications. 

Bebearia cocalia guineensis, Hecq, 1988:121, partim (6). 

Bebearia cocalia continentalis, Hecq, 1988:122, partim (2 only) (Beni, Zaire). Misiden- 
tification. 


Diagnosis. The male is easily recognized by the well marked, broad 
yellow subapical band on the forewing and by the lack of a purplish 
suffusion to the black apical area. The valvae are shorter than in the 
other species and the hindwing is a little less angled than in B. sene- 
galensis, B. badiana, and B. orientis. The female resembles that of B. 
theognis in having the hindwing not distinctly angled, but has the 
subapical band of the forewing white without any yellow coloration. 

Discussion. This species had been lost in the synonymy of B. mar- 
dania since Aurivillius (1899) until resurrected as a subspecies of B. 
cocalia by Hecq (1988). The shorter male valvae show it to be distinct. 
It is sympatric with B. mardania, B. senegalensis, and B. theognis. 
Felder and Felder’s (1867) original material included a male of this 
species and a female of B. senegalensis katera; this incorrect association 
of the sexes was maintained by Hecq (1988). The description of form 
paludicola by Schultze (1920) is very brief, but sufficient to identify it 
as a female of this species, particularly as he noted its similarity to the 
female of B. theognis in a footnote. The female of B. cocalia conti- 
nentalis (Hecq 1988) also belongs here. 

Material examined. NIGERIA: Lectotype ¢, labelled Calabar vetus, 
Type/ guineensis n./ Felder Colln./ Syntype, here designated (BMNH: 
color slides); 2 6, 1 2, Ajessor-Ikom, ii.1958 (NHMZ); 1 2, Ikom, iii.1956 
(NHMZ); 1 6, Mamu Forest, Awka, Onitha Province, iv.1960 (NHMZ); 
2 6, Ayangba, Benin State (AHC); CONGO: 1 6, Mbe, 1-10.i.1974 
(NHMZ); 1 6, Etoumbi Forest, ix-x.1960 (NHMZ); ANGOLA: 1 4, 
Lucala R., 228 km E of Luanda, 6.x.1964 (NHMZ). 

Distribution. Ghana, Nigeria, Cameroon, Gabon, Congo, W Zaire, 
Angola. 


64 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Bebearia orientis (Karsch) 
(Figs. 9, 16, 22) 
Euryphene senegalensis, Oberthiir, 1878:28; Holland, 1896:752. Misidentifications. 
Euryphene orientis Karsch, 1895:277 (6 2). Type-locality Dar-es-Salaam, Tanzania. 
Euryphene senegalensis pseudocalia Staudinger, 1896:369 (6 2). Type-localities Usagara 
& Lindi, Tanzania. 
Euryphene senegalensis orientis, Neave, 1910:37 (lower Luangwa Valley, Zambia); van 
Someren, 1939:48, pl. 12, 13 (E. Kenya). 
Euryphene mardania orientis, Peters, 1952:62. 
Bebearia senegalensis orientis, Pinhey, 1965:92, pl. 19. 
Bebearia mardania orientis, Pennington, 1978:70, pl. 88, 89; D’Abrera, 1980:310. 
Bebearia orientis, van Son, 1979:117, pl. 18, Kielland, 1985:271; 1990:118. 
Euphaedra mardania orientis, Carcasson, 1981:165. 
Euphaedra mardania, Dowsett, 1983:61, partim (Malawi). Misidentification. 
Bebearia cocalia orientis, Hecq, 1988:123. 


Diagnosis. The pattern characters noted in the key, particularly the 
submarginal coloration on the hindwings in both sexes, enable identi- 
fication of this species. The male valvae also are distinctive. 

Discussion. Often regarded as a subspecies of B. mardania or B. 
senegalensis, the different shape of the male valvae and pattern details 
support the recognition of this taxon at the species level, as suggested 
by van Son (1979). The female from Tukuyu, SW Tanzania recorded 
by Kielland (1990) appears to belong to B. senegalensis katera. 

Material examined. TANZANIA: | 2 (syntype of E. orientis), labelled 
Dar-es-Salaam, Deutsch O.-Africa, 1895-7, v. Brgsn./ Deutsch Ost- 
Africa, 89-90, Richelm./ Origin. (ZMHU: color slides); 1 6 (syntype of 
E. pseudocalia), labelled Lindi, Deutsch Ost-Africa, 92-98, Knchhr./ 
Origin. (ZMHU: color slides); ZAMBIA: 1 6, Luangwa R., 13.x.1904 
(HCO: color slides). Also 388 6 6, 22 2 2, from: KENYA: Mombasa; 
TANZANIA: Mukenge (Rufiji, Ulanga dist.); MALAWI: Mulanje, Zom- 
ba, Cholo, Mkuwadzi Forest; MOZAMBIQUE: Dondo Forest, Beira, 
Inhaminga; ZIMBABWE: Dichwe Forest (near Manghura), Honde Val- 
ley, Mutare, Vumba, Umvumvumvu R. (near Chimanimani), Mt. Se- 
linda (all NHMZ). 

Distribution. S Somalia, E Kenya, E Tanzania, Mozambique, S Ma- 
lawi, E Zambia, N & E Zimbabwe. 


Bebearia orientis insularis Kielland 


Bebearia orientis insularis Kielland, 1985:271, 272, figs. 1-4 (6 2); 1990:118, pl. 36. Type- 
locality Ngezi Forest, Pemba Is., Tanzania. 
Bebearia cocalia insularis, Hecq, 1988:123. 


Diagnosis. The male has the subapical band of the forewing generally 
wider than in the typical subspecies. The female has the ground color 
brownish rather than reddish-brown in the basal half, whilst the distal 
half is pale ochraceous, paler than in typical orientis. 

Distribution. Pemba Island, Tanzania. 


VOLUME 46, NUMBER 1 65 


Fics. 11-17. Bebearia species, females. 11, B. m. mardania. 12, B. s. senegalensis. 
13, B. s. katera. 14, B. theognis. 15, B. guineensis. 16, B. o. orientis. 17, B. b. badiana. 


66 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Bebearia badiana (Rebel), stat. rev. 
(Figs. LOS ier 3) 
Euryphene badiana Rebel, 1914:245 (6 2). Type-locality Rutshuru, NE Zaire. 
Euryphene mardania badiata, van Someren, 1939:52, pl. 14, 15 (6 2); Carcasson, 1958:9. 
Incorrect subsequent spelling. 
Euryphene mardania badiana, Peters, 1952:62. 
Bebearia mardania badiana, D’Abrera, 1980:310. 


Euphaedra mardania badiana, Carcasson, 1981:165. 
Bebearia cocalia badiana, Hecq, 1988:122. 


Diagnosis. Similar in general appearance to B. mardania but both 
sexes have a more angular hindwing. Males can be separated with 
confidence from B. senegalensis only by the shape of the valvae. 

Discussion. The broader male valvae and more extensive brown areas 
on the female suggest that this species is distinct from the closely related 
B. senegalensis and B. orientis, two species with more elongate and 
apically produced valvae and females that appear to mimic the common 
form of Danaus chrysippus (Linnaeus). Since B. orientis currently is 
accepted as a distinct species, it follows that B. badiana also must be 
regarded as a separate species. 

Material examined. ZAIRE: Lectotype 6, labelled Euryphene badi- 
ana Rbl. Type ¢ / Kutshuru Ebene [sic], 1400-1600 m, vi.1910, Grauer, 
here designated; Paralectotype 2, same data but labelled Type 2 (both 
NHMV: color photographs); UGANDA: 44, 1 2, Mbale, xii.1949 (NHMZ); 
14,19, Entebbe, v.1952 & x.1961 (NHMZ); 2 4, Tororo Forest, 29.vii.1965 
& l.viii.1966 (NHMZ); KENYA: 2 2°, Kakamega Forest, 29-30.vii.1965 
(NHMZ). | 

Distribution. NE Zaire, Uganda, W Kenya. 


Bebearia badiana dealbata (Carcasson), stat. rev. 


Euryphene mardania dealbata Carcasson, 1958:8, figs. e, f (6 2). Type-locality Mikinduri, 
Meru, E Kenya. 

Bebearia dealbata dealbata, D’Abrera, 1980:310. 

Euphaedra mardania dealbata, Carcasson, 1981:165. 

Bebearia cocalia dealbata, Hecq, 1988:128. 


Diagnosis. The female differs from that of typical badiana in having 
the pale subapical band of the forewing yellowish orange rather than 
white. This band is also more or less horizontal towards the costa. 

Distribution. East-central Kenya. 


Bebearia badiana taveta Clifton, stat. rev. 


Bebearia dealbata taveta Clifton, in D’Abrera, 1980:310 (6 2). Type-locality Taveta, S 
Kenya. 
Euphaedra mardania taveta, Carcasson, 1981:188. 


Diagnosis. The female differs from that of typical badiana in the 


VOLUME 46, NUMBER 1 . 67 


Fics. 18-23. Bebearia species, lateral view of aedeagus and male genitalia with left 
valvae removed. 18, B. m. mardania. 19, B. s. senegalensis. 20, B. theognis. 21, B. 
guineensis. 22, B. o. orientis. 23, B. b. badiana. 


more orange ground color and in the white subapical band of the 
forewing being more or less horizontal towards the costa. This band is 
narrower than in subspecies dealbata. 
Material examined. KENYA: | 2, Tauta, v.1891 (NHMZ). 
Distribution. South-central Kenya. 


68 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


ACKNOWLEDGMENTS 


I am grateful to P. R. Ackery (BMNH), M. Lédl (NHMV), and M. Scoble (HCO, now 
BMNBH) for providing photographs of types and other interesting specimens, and to G. 
C. McGavin (HCO) for copies of the plate from Jones’ Icones and other publications. P. 
R. Ackery also kindly supplied locality data for several specimens figured by D’Abrera 
(1980). I also wish to thank J. Duff (NHMZ) for preparing figures 18 to 23 and A. Heath 
and B. Wilson for access to material in their collections. 


LITERATURE CITED 


AURIVILLIUS, C. 1891. Verzeichniss einer von Herrn Fritz Theorin aus Gabun und dem 
gebiete des Camerunflusses heimgebrachten Schmetterlinges-Sammlung. 1. Rhopa- 
locera. Entomol. Tidskr. 12:193-228, 3 pl. 

1899. Rhopalocera Aethiopica. K. Svenska VetenskAkad. Handl. 31(5):1-561. 

1905. Verzeichnis von Lepidopteren, gesammelt bei Mukimbungu am unteren 

Kongo von Herrn E. Laman. Ark. Zool. 3(1):1-16, 1 pl. 

1912. In Seitz, A. (ed.), The Macrolepidoptera of the world. Vol. 13. The African 
Rhopalocera. Kernen, Stuttgart. 613 pp., 80 pls. 

BERGER, L. A. 1981. Les Papillons du Zaire. Weissenbruch, Bruxelles. 545 pp. 

BUTLER, A. G. 1871. Lepidoptera Exotica. Vol. 1. Part 9. London. 

CARCASSON, R. H. 1958. Some new African Lepidoptera. Occ. Pap. Coryndon Mus. 5: 
3-9, 1 pl. 

1966. Lepidoptera Rhopalocera collected by the Kyoto University African an- 

thropoid expedition in the Kigoma area of western Tanganyika. Kyoto Univ. Afr. 

Stud. 1:11-72, 14 pl. 

1981. Collins handguide to the butterflies of Africa. Collins, London. 188 pp. 

CoRNES, M. A., J. RILEY & R. G. T. St. LEGER. 1973. A check list of the Nigerian 
Papilionoidea. Occ. Publ. Entomol. Soc. Nigeria 11:1-18. 

D’ABRERA, B. 1980. Butterflies of the Afrotropical region. Lansdowne, Melbourne. 593 


pp. 

DONOVAN, E. 1800-04. An epitome of the natural history of the insects of India, and 
the islands of the Indian seas. Privately published, London. 5 pp., plus 58 unnumbered 
plates with corresponding text. 

DowsETT, R. J. 1983. Nyala records. Nyala 8(1):57-61. 

FABRICIUS, J. C. 1793. Entomologica Systematica. Vol. 3. Part 1. C. @ Proft, Copen- 
hagen. 488 pp. 

FELDER, C. & R. FELDER. 1867. Reise der Osterreichischen Fregatte “Novara” um die 
Erde in 1857-9, etc. Zool. 2(3) (Lepidoptera Rhopalocera). C. Gerold’s Sohn, Wien. 
158 pp., 140 pl. 

Fox, R. M. 1965. Superfamily Nymphaloidea, pp. 172-267. In Fox, R. M., A. W. 
Lindsey Jr., H. K. Clench & L. D. Miller (eds.), The butterflies of Liberia. Mem. 
Am. Entomol. Soc. 19:1-488. 

1968. Contributions 4 la faune du Congo (Brazzaville). Mission A. Villiers et A. 
Descarpentries. 68. Lepidoptéres Nymphalidae, Danaidae et Riodinidae. Bull. Inst. 
Fr. Afr. Noire (A) 30:1236-1280. 

HECQ, J. 1988. Etude des Bebearia (Note n° 4). Sous-genre apectinaria Hecq. Groupe 
mardania. Lambillionea 88:119-124. 

HERRICH-SCHAEFFER, G. A. W. 1858. Sammlung neuer oder wenig bekannter ausser- 
europaischer Schmetterlinge. G. J. Manz, Regensburg. 84 pp. 

HEWITSON, W. C. 1862-66. Illustrations of new species of exotic butterflies. Vol. 3. Van 
Voorst, London. 8 pp., plus 60 unnumbered plates and 119 unnumbered pages of 
corresponding text. 

HOLLAND, W. J. 1896. List of the Lepidoptera collected in East Africa, 1894, by Mr. 
William Astor Chanler and Lieutenant Ludwig von Hoehnel. Proc. u S. Natl. Mus. 
18:741-767. 


VOLUME 46, NUMBER 1 69 


1920. Lepidoptera of the Congo, being a systematic list of the butterflies and 
moths collected by the American Museum of Natural History Congo Expedition, 
together with descriptions of some hitherto undescribed species. Bull. Am. Mus. Nat. 
Hist. 43:109-369, 9 pl. 

INTERNATIONAL COMMISSION ON ZOOLOGICAL NOMENCLATURE 1985. International 
Code of Zoological Nomenclature. British Museum (Natural History), London. 338 


pp. 

KARSCH, F. 1895. Aethiopische Rhopalocera, 1. Entomol. Nach. 21:275-286. 

KIELLAND, J. 1985. A preliminary check-list of the butterflies of Pemba Island, Tanzania. 
Arnoldia Zimbabwe 9:267-276. 

1990. Butterflies of Tanzania. Hill House, Melbourne & London. 368 pp. 

LARSEN, T. B., J. RILEY & M. A. CorNEs. 1980. The butterfly fauna of a secondary 
bush locality in Nigeria. J. Res. Lepid. 18:4—23. 

NEAVE, S. A. 1910. Zoological collections from Northern Rhodesia and adjacent terri- 
tories: Lepidoptera Rhopalocera. Proc. Zool. Soc. Lond. 1910:2-86. 

OBERTHUR, C. 1878. Etudes sur la faune des Lepidoptéres de la céte orientale d’ Afrique. 
Rhopalocera. Etudes Entomol. 3:11—48, 3 pl. 

OWEN, D. F. & A. J. OWEN. 1973. Systematics and bionomics of butterflies seen and 
collected in the forest region of Sierra Leone. Part 2. Nymphalidae and Libytheidae 
(Lepidoptera). Rev. Zool. Bot. Afr. 87:585-618. 

PENNINGTON, K. M. 1978. Pennington’s butterflies of Southern Africa. Ed. C. G. C. 
Dickson with the assistance of D. M. Kroon. Donker, Johannesburg. 670 pp. 

PETERS, W. 1952. A provisional checklist of the butterflies of the Ethiopian Region. 
Classey, Feltham. 201 pp. 

PINHEY, E. C. G. 1965. Butterflies of Southern Africa. Nelson, Johannesburg. 240 pp. 

REBEL, H. 1914. Lepidopteren. In Wissenschaftliche Ergebnisse der Expedition R. 
Grauer nach Zentralafrika, Dezember 1909 bis Februar 1911. Annln. Naturhist. 
Hofmus. 28:219-294, 8 pl. 

SCHULTZE, A. 1917-20. Lepidoptera. Ergebn. Zweit. Dt. Zentr.-Afr. Exped. 1(12):511- 
597; 1(14):639-829, 7 pl. 

STAUDINGER, O. 1885-86. Exotische Schmetterlinge. Vol. 1. Parts 11-12 (plates, 1885), 
15 (text, 1886). 

1896. Neue exotische Tagfalter. Dt. Entomol. Z. 8:366—379. 

VAN SOMEREN, V. G. L: 1939. The butterflies of Kenya and Uganda. Vol. 2. Part 2. J. 
E. Afr. Ug. Nat. Hist. Soc. 14:15-100. 

VAN SON, G. 1979. The butterflies of Southern Africa. Vol. 4. Ed. L. Vari. Transv. Mus. 
Mem. 22:1-286. 


Received for publication 23 July 1991; revised and accepted 19 January 1992. 


GENERAL NOTES 


Journal of the Lepidopterists’ Society 
46(1), 1992, 70-72 


BIOLOGY OF OPOSTEGOIDES SCIOTERMA (OPOSTEGIDAE) IN OREGON 


Additional key words: Ribes hurtellum, gooseberry, cambium miner, Spizella pas- 
serina, dung mimicry. 


Although the Opostegidae are nearly world-wide in distribution (absent only in Arctic 
regions), the biology of the family is poorly known (Davis 1989). From 1956 to 1975 I 
had the opportunity to study Opostegoides scioterma (Meyrick) (Opostegidae) in the 
Willamette Valley of Oregon, where larvae of this species were found mining in the 
branch cambium of Ribes hurtellum (Michaux) (Gossulariaceae), a commercially grown 
gooseberry. Gooseberry cambium injury in Oregon has been reported previously by 
Rosenstiel (1960) and Eyer (1963). 

Injury to gooseberry by opostegid larvae was first reported from New York by Gros- 
senbacher (1910), who concluded that the cambium miner (Opostegoides nonstrigella 
Chambers = O. scioterma; D. R. Davis pers. comm.) “afforded entrance” to fungi which 
in turn “kill gooseberry shoots.’ Secondary invasion by fungi has not been observed in 
Oregon. Grossenbacher (1910) reported that O. scioterma also attacked red or garden 
currant (Ribes vulgare Lam.), as well as other species of Ribes, including European 
gooseberry (Ribes grossularia L.). 

During my studies in Oregon, I never observed larvae of O. scioterma until mid- 
September because the minute size and translucent body color of early instars combine 
to make them virtually undetectable. By August, however, the thread-like prognathous 
larvae could be observed with a dissecting microscope by peeling away the bark of infested 
host branches (Fig. 1). The location of larvae within an infested branch was indicated by 
a line of darker green tissue above the mine, which contrasted with the light apple-green 
inner bark layer. By October, the larvae were half grown—0.5 mm wide and 3 mm long. 
Their thorax and abdomen were translucent; their mouthparts and cranial endoskeleton 
were pale tan. Each larva overwintered within its mine and resumed feeding in the spring. 
By late May larvae were full grown— approximately 0.6 mm wide and 11 mm long. 
Last instar larvae were similar in color and shape to early instar larvae. In early June, 
each larva made an enlargement 1.25 mm wide and 7 mm long at the terminus of its 
mine, which usually was located in the lower third of the branch. After forming this 
chamber, in which no frass was ever observed, larvae shed their penultimate skin. Next 
they cut a circular exit hole 1.25 mm wide in the bark of the host, emerged through the 
hole, and descended to the ground. Each larva penetrated the ground and formed a gray, 
roughly oval-shaped cocoon, 3-5 mm long. The cocoon was loosely covered with strands 
of silk and entangled with bits of debris so that it was highly cryptic. Pupae were tan, 
1.5 mm wide, 2.5 mm long, oval in outline, and elliptical in cross section; they resembled 
flax seeds. The pupal stage lasted from late May until late June, which roughly corresponds 
with observations by Grossenbacher (1910). - 

Uniform soil samples (40 cm?) were taken on 10 June 1958 from beneath 12 infested 
plants to determine the depth of pupation. Samples from three successive depths (i.e., O- 
2.5 cm, 2.5-5.0 cm, and 5.0-7.5 cm) were held in cloth cages in a greenhouse at summer 
temperatures. Emerging moths were counted at daily intervals. Of the 20 moths recovered 
during the period 18 June to 5 July, 60% came from the 0-2.5 cm soil depth, 19% from 
the 2.5-5.0 cm depth, and 14% from 5.0-7.5 cm depth. Wild moths emerged in the field 
from mid-June to the first week of July. 

Larvae of O. scioterma injure gooseberry plants by destroying xylem cells during their 
cambium mining activities. Each bilateral mine is made by a single larva tunneling up 
and then back down a branch of the host (Fig. la). The parallel tunnels of each bilateral 
mine are uniformly 4-5 mm apart and joined at the top and bottom in an elliptical half 


VOLUME 46, NUMBER 1 ; 71 


Fics. 1-8. Opostegoides scioterma (Meyrick). 1, Sketch of larval mines in cambium; 
scale line = 10 mm (see text for explanation); 2, Adult with wings spread, dorsal aspect; 
3, Bird dung deposit on dirt clod. 


circle (Fig. 1c). An exception is observed occasionally when larvae mine partly around 
the base of a branch (Fig. 1b). In two-year-old infested plants, the injury causes leaves 
to wilt on the terminal 150-200 cm of the branches. By that time (usually May), 3-6 
bilateral mines may be present in each branch. 

In December 1958, the mean length of mine injury in two-year-old plants was 25 cm 
(n = 70) in branches 360 cm long. In that sample, 2-3 larvae were found per branch. 
Infested branches of four-year-old plants had 8-12 mines and branches were half their 
normal size. In two- to four-year-old infested plants, the old black frass in the mines was 
replaced in 10-20% of the mines by adventitious white cell tissue. About 10% of observed 
larvae mined in such tissue for 5-10 cm and then moved into normal cambium. This 
phenomenon also was noted by Grossenbacher (1910). Interruption of nutrient conduction 
due to mining activities curtailed fruit production, forcing growers to remove infested 
three-year-old plants just when the plants were reaching fruit-bearing stage. Following 
the infestation of older plants, gooseberry fields usually continued production for about 
20 years. 


12 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


The adult of Opostegoides scioterma is a smal] moth, with a wing span of about 8 mm 
and a large, white, feathery eyecap (Fig. 2). The forewing is white, with black dorsal 
spots, smaller dark costal spots, and a diffuse dark apical patch. The apex, termen, and 
dorsum of the forewing, and both margins of the hindwing have fringes of long white 
scales (Fig. 2). 

During June and July when ambient temperatures are high, the moths remained 
sedentary on the tops of dirt clods in the gooseberry fields, with their wings spread flat 
against the substrate. Only physical disturbance caused them to move. For example, when 
a moth’s abdomen was pushed with a pencil, the moth would run quickly 2-5 cm into 
a dark crevice in the soil or between clods and stop abruptly. After 5-10 seconds, it would 
return to its original position and resume its stationary posture. 

Adults of Opostegoides scioterma exhibited a crepuscular activity pattern. At about 
1800 h, 5-10% of the moths began their evening activities by making darting flights of 
10-20 cm in many directions, moving from clod to clod, with 1-2-minute stops between 
flights. As daylight decreased, moths increased the frequency and distance of their flights. 
By 1900 h, 50-70% of the moths were flying, 30-60 cm at a time, with short rests between 
quick flights; most flights were toward gooseberry bushes. By 1980 h, flights were longer 
and generally ended in shaded central parts of the bushes where the moths alternated 
running and resting for 5-10 seconds among the inner branches. At about 2000 h, activity 
decreased, and by 2015 h, it had ceased for the night. Neither mating nor oviposition 
were observed. 

During the day the small white moths were fairly conspicuous as they rested on dirt 
clods. However, they were not attacked by chipping sparrows [Spizzela passerina (Beck- 
stein); Fringillidae], which foraged in flocks for unharvested gooseberries in the same 
fields used by the moths. The sparrows habitually defecated on the tops of the same dirt 
clods upon which the moths rested during the day (Fig. 3). Resting moths, with their 
wings spread, were about the same size (8 mm diameter) and color (white with black 
dots) as the splashed bird droppings. The moths were present on about 20% of the clods 
where the sparrows defecated. Other species of birds were uncommon in the infested 
fields. The sparrows seemed oblivious to the resting moths, which may be avoiding 
detection by potential predators such as birds through “dung mimicry’ (Endler 1981). 

This is Technical Paper No. 8971 of the Oregon State University of Agricultural 
Experiment Station, Corvallis, Oregon, 973381. 


LITERATURE CITED 


Davis, D. R. 1989. Generic revision of the Opostegidae, with a synoptic catalog of the 
world’s species (Lepidoptera: Nepticuloidea). Smithsonian Contr. Zool. 478:1-97. 

ENDLER, J. A. 1981. An overview of relationships between mimicry and crypsis. Biol. 
J. Linn. Soc. 16:25-32. 

EYER, J.R. 1963. A pictorial key to the North American moths of the family Opostegidae. 
J. Lepid. Soc. 17:237-242. 

GROSSENBACHER, J. G. 1910. Medullary spots: A contribution to the life history of some 
cambium miners. Tech. Bull. No. 15, New York State Agric. Exp. Sta., Geneva, New 
York. 

ROSENSTIEL, R. G. 1960. A gooseberry cambium miner. Pan-Pacif. Entomol. 36:170. 


R. G. ROSENSTIEL, Department of Entomology, Oregon State University, Corvallis, 
Oregon 97331-2907. 


Received for publication 3 August 1989; revised 22 April 1991; revised and acedies 23 
September 1991. 


Journal of the Lepidopterists’ Society 
46(1), 1992, 73-75 


REDESCRIPTION OF PROTOLEURON RHODOGASTER (SPHINGIDAE), 
AN UNCOMMON NEOTROPICAL MOTH 


Additional key words: Ecuador, Peru, taxonomy, Aleuron, Stolidoptera. 


Protoleuron Rothschild and Jordan is a monotypic genus considered to be most closely 
related to Aleuron Boisduval and Stolidoptera Rothschild and Jordan (Rothschild & Jordan 
1903, D’Abrera 1986:104). Protoleuron shares with Aleuron the characteristic angular 
labial palpus; it is similar to Stolidoptera in its absence of a produced lobe at the anal 
margin of the hindwing and in the presence of symmetrical male genitalia. Protoleuron 
is distinguished from these two genera by the prominent, elongate, uniserial spines on 
the posterior abdominal tergites (Rothschild & Jordan 1908). Protoleuron is similar to 
Stolidoptera in wing maculation and coloration, but the lateral wing margin of the male 
forewing is distinctly dentate in Protoleuron, whereas it is more produced and scalloped 
in Stolidoptera. 

Apparently restricted to South America (Rothschild & Jordan 1908), Protoleuron is 
known from only two specimens—the holotype male from Ecuador and a female from 
Peru. The geographical range of Stolidoptera is reportedly broader—Mexico to Venezuela 
(D’Abrera 1986:102). Here we report the capture of a third specimen of Protoleuron 
rhodogaster Rothschild and Jordan in Ecuador, and redescribe this little-known species. 

On 27 May 1976, NRV collected a single female of P. rhodogaster near Cosanga, Napo 
Province, Ecuador, 2150 m, in a swampy clearing of primary cloud forest at 1900 h. No 
additional individuals of this species were observed during subsequent evenings at this 
collecting site. 

The female was kept alive and, on the following day, she deposited 10-12 spherical 
(1 mm), glossy—almost translucent—off-white eggs along with a few abdominal setae 
and scales in the collection box. No changes in egg color were observed, but three days 
later, black, sparsely setose larvae emerged. Although several potential food plants in the 
area were offered to the caterpillars, an appropriate larval host apparently was not found. 
Subsequent visits to the locality found the habitat destroyed and the area developed. 

Because the three known specimens of P. rhodogaster differ in wing coloration, and 
because the illustration of the dorsal surface of the holotype male (Rothschild & Jordan 
1908: pl. 5, fig. 18) is considerably darker and does not illustrate some critical characters, 
especially the pinkish crimson shading below, we redescribe Protoleuron rhodogaster 
here. 

Male. Head: Grayish olive above, buff mixed with olive below. Labial palpi angulate, 
pinkish crimson proximad, shading to buff admixed with olive distad. Antennae approx- 
imately one-half forewing length, pinkish crimson to reddish coral above, devoid of scales 
below, but with fine sparse setae and buff club. Thorax: Grayish olive above, grayish 
olive to buff overlaid with pinkish crimson below. Legs smooth, grayish olive proximad, 
shading to buff distad; spurs on hindtibia shorter and separated by a setal tuft. Abdomen: 
Blackish brown above, etched posteriorly in buff, with a dark gray-olive middorsal line; 
sternites pinkish crimson etched posteriorly in grayish olive. Forewing: Upper surface 
grayish olive, with prominent darker bands: one basal, three medial, and three postmedial; 
a blackish brown spot near end cell; incomplete dark brown oblique lines extending from 
near apex at R, to M,-M, at end cell; few blue-white scales at base, along anal margin, 
across end cell, and especially along the distal margin of distal postmedian band extending 
from M,-M, to Cu,-2A. Lower surface olive brown in basal two-thirds, distal area overlaid 
with pinkish crimson to coral; incomplete dark brown oblique line enhanced below and 
coalesced with the distal postmedian band, the last deeply incised in M,-M,. Fringe dark 
gray-brown above and below. Hindwing: Upper surface dull gray-brown. Lower surface 
pinkish crimson in anterior two-thirds, shading to dull grayish olive posteriorly, with two 
or three subtle postmedian bands. Fringe dark gray-brown above, gray below. 


74 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


Fics. 1-4. The two known females of Protoleuron rhodogaster. 1-2, Peru (CMNH): 
1, Dorsal aspect; 2, Ventral aspect. 3-4, Ecuador (collection of J. M. Cadiou): 3, Dorsal 
aspect; 4, Ventral aspect. 


Female (Figs. 1-4). Similar to male, but differs in body coloration below, which in 
female is predominantly coral to crimson, particularly on the abdomen. Forewing: Upper 
surface markings more distinct than in male, especially the darker postmedian bands; 
the distal median and proximal postmedian bands coalesce in Cu,-2A. Lower surface dark 
gray-brown, with the area distad of distal postmedian band lighter gray-brown, with 
sparse red-coral to crimson scales. Distal postmedian band not as deeply incised in M,- 
M, as in male. Hindwing: Similar to male in coloration, but lighter in discal area. 

The three known specimens of Protoleuron rhodogaster are: holotype male, Ecuador 
(Hope Entomological Collections, Oxford University); female (Figs. 1, 2), Peru (Carnegie 


VOLUME 46, NUMBER 1 75 


Museum of Natural History); and female (Figs. 3, 4), Ecuador, Napo, Cosanga, 2100 m, 
27.v.1976, N. R. Venedictoff (private collection of J. M. Cadiou). Forewing lengths: 
holotype male, 37 mm; females, 33 mm and 44 mm. 

The female of Protoleuron rhodogaster collected near Cosanga, Ecuador, is similar to 
the holotype male in coloration and wing maculation, but the pinkish crimson areas on 
the wings are considerably brighter. The antennae of this female were bright reddish 
coral initially and darkened slightly with age. In addition, the ventral body is overscaled 
much more heavily with reddish coral. The shape of the lateral wing margin is variable 
among the three specimens, but the marginal dentation is less distinct in the females. 

Despite the variation in wing shape, wing maculation, and coloration of the ventral 
surface, this species is distinct and cannot be mistaken for any other neotropical sphingid. 
The unexpected time of capture (1900 h) may indicate an early flight time that might 
account for the infrequent collection of Protoleuron rhodogaster. We encourage other 
collectors to be more observant and adaptable in their field collecting schedules. 

We thank David Spencer Smith, Hope Entomological Collections, for providing pho- 
tographs of the type specimen; and Robert Davidson and John Rawlins, Section of In- 
vertebrate Zoology, Carnegie Museum of Natural History, for the loan of the female 
specimen from Peru. We particularly thank J. M. Cadiou for sharing information and 
Lee D. Miller for comments on the manuscript. 


LITERATURE CITED 


D’ABRERA, B. 1986. Sphingidae Mundi. E. W. Classey, Ltd., Faringdon, Oxon, England. 
226 pp. 

ROTHSCHILD, W. & K. JORDAN. 1908. A revision of the lepidopterous family Sphingidae. 
Novit. Zool. 9(suppl.). exxxv + 456 pp. 


JACQUELINE Y. MILLER AND NADIA R. VENEDICTOFF, Allyn Museum of Entomology, 
Florida Museum of Natural History, 3621 Bay Shore Road, Sarasota, Florida 34234. 


Received for publication May 1988; revised and accepted 18 October 1991. 


Journal of the Lepidopterists’ Society 
46(1), 1992, 75-77 


THREE NOMINAL GENERA OF CRAMBIDAE OMITTED FROM 
“THE GENERIC NAMES OF MOTHS OF THE WORLD, 
VOLUME 5, PYRALOIDEA”’ 


Additional key words: Pyraustinae, Nymphulinae, Arthromastix, Nothomastix, Mi- 
crodracon. 


Warren (1890) formally described 19 new genera of Pyraloidea, and these have found 
their places in the literature of the group. However, within the descriptions of two of 
these genera he published three additional generic names that have been overlooked 
almost totally. These are Arthromastix Warren, Nothomastix Warren, and Microdracon 
Warren. 

Arthromastix and Nothomastix were proposed in the diagnosis of Pardomima Warren 
(1890:478). According to Warren (1890), Pardomima is “Distinguished from Arthromastix 
lauralis (Salbia lauralis Guen.) and Nothomastix chromalis (Botys chromalis W\k.), with 
which it otherwise agrees, by the simple male antennae and untufted legs.”” Though a 
common character is given to distinguish the two genera from Pardomima, this in itself 
does not qualify as a description or diagnosis as it does not distinguish them from each 
other. However, one previously published species is included in each (Salbia lauralis “A. 


76 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Guenée’ [see Postscript below] for Arthromastix and Botys chromalis Walker for No- 
thomastix). This qualifies as an “indication” under Article 12(b)(5) of the Third Edition 
(1965) of the International Code of Zoological Nomenclature, and makes the names 
available, fixing the respective type species by monotypy. Fletcher and Nye (1984) omitted 
these names, though Martin (1955) cited them in his revision of African species of 
Pardomima. Both genera are valid and belong to the subfamily Pyraustinae and. tribe 
Spilomelini. Arthromastix is Neotropical and contains only the type species, which was 
placed by Hampson (1899:655) in Pilocrocis Lederer, with its synonym Ceratoclasis 
verecundalis Berg, 1874. The latter is a new combination with Arthromastix. Notho- 
mastix, on the other hand, is Indo-Australian. In addition to the type species, the following 
nominal species belong to Nothomastix: Sylepta obliquifascialis Hampson, 1896; Notarcha 
pyranthes Meyrick, 1894; Conogethes sisyroptila Meyrick, 1933 (according to Shaffer, 
in litt., a synonym of N. chromalis, new synonymy); Sylepta klossi Rothschild, 1915; and 
Botys pronaxalis Walker, 1859 (=Pardomima acutalis Hampson, 1893). Partly following 
previous authors, Klima (1939) placed these additional species in Syllepte Hubner, 1823 
(as Sylepta Hiibner [1825]), except for C. sisyroptila, which he transferred to Dichocrocis 
Lederer. All of them form new combinations in Nothomastix. 

The third genus, Microdracon, belonging to the subfamily Nymphulinae [new sub- 
family placement], presents a somewhat different case. Referring to his new genus Opis- 
thedeicta, Warren (1890) wrote, “This genus is akin to the first division (A) of Snellen’s 
Oligostigma, cf. Tijd. v. Ent. xix 1876, p. 189, for which I have proposed the generic 
term Microdracon. Opisthedeicta, however, is characterized by a peculiar formation .. . 
[etc.]” Hence, Warren (1890) (a) gave characters to differentiate Microdracon from 
Opisthedeicta; (b) gave “a bibliographic reference to a previously published description 
or definition,” i.e., that given by Snellen (1876) for his Division A of Oligostigma Guenée; 
and (c) by implication included in Microdracon the two species placed by Snellen in that 
division, viz., O. bilinealis Snellen, 1876, from the Punjab, and O. unilinealis Snellen, 
1876, from Java. Though these are not cited individually in Warren’s paper, Snellen’s 
tabulation is clear and unambiguous, and thus the two species are in Warren's paper 
“clearly referred to [Microdracon] by bibliographic reference.” Therefore, though the 
diagnosis from the previously undescribed Opisthedeicta might be considered circular, 
the generic name is available by indication under both Article 12(b)(1) and Article 12(b)(5) 
of the International Code. From the two originally included species, I hereby designate 
Oligostigma bilinealis Snellen, 1876, as type species of Microdracon Warren, 1890 [new 
designation]. This will make Microdracon a subjective synonym of Parapoynx Hubner, 
[1865] 1816 [new synonymy], according to the classification of Yoshiyasu (1985, 1987), 
with which I agree. 

Postseript. M. Shaffer (in litt.) notes, “One small problem needs bearing in mind about 
the validation of Arthromastix. Warren in 1890 incorrectly attributed the species lauralis 
to Guenée, the correct author being Walker. Martin in 1955 attributed the correct author 
to lauralis. As there is only one Salbia lauralis, we can therefore justify the assumption 
that Warren was referring to the same species, otherwise it could be argued that as there 
is no such species as Salbia lauralis Guenée, we cannot use the Article 12(b)(5) to indicate 
a species that does not exist.” The reference for the original description of Salbia lauralis 
is Walker (1859). I agree that Warren clearly intended to designate Walker’s species, and 
that his citation of Guenée as author was an inadvertent error. Under Article 67(f) of the 
International Code, Warren’s designation of the type species is valid, even though as 
subsequent author he attributed its name “to an author or date other than that denoting 
it first establishment. ”’ 

I am grateful to M. Shaffer for his contributions, and I also thank David E. Gaskin, 
Scott E. Miller, and Boyce A. Drummond for reviewing the manuscript. 


LITERATURE CITED 


FLETCHER, D. S. & I. W. B. NYE. 1984. The generic names of moths of the world. Vol. 
5. Pyraloidea. British Museum (Natural History), London. xv + 185 pp. 

HAMPSON, SIR G. F. 1899. A revision of the moths of the subfamily Pyraustinae and 
family Pyralidae. Part 1. Proc. Zool. Soc. London 1898:590-761, pl. 49, 50. 


VOLUME 46, NUMBER 1 VE 


Kuma, A. 1939. Lepidopterorum Catalogus, Pars 89. Pyralidae: Subfam: Pyraustinae 
I. Dr. W. Junk Verlag fur Naturwissenschaften, ‘s-Gravenhage. 224 pp. 

MaRTIN, E. L. 1955. African species of the genus Pardomima Warren (Lepidoptera: 
Pyralidae: Pyraustinae). Bull. Brit. Mus. (Nat. Hist.) Entomol. 3:505-521, pl. 23. 
SNELLEN, P. C. T. 1876. Over Oligostigma Guenée, een genus der Pyraliden. Tijdschr. 

v. Entomol. 19:186—209, pl. 8, 9. 
WALKER, F. 1959. List of the specimens of lepidopterous insects in the collection of 
the British Museum. Part XVIJ—Pyralides, pp. 257-508. British Museum, London. 
WARREN, W. 1890. Descriptions of some new genera of Pyralidae. Ann. Mag. Nat. 
Hist. (6)6:474-479. 

YOsHIYASU, Y. 1985. A systematic study of the Nymphulinae and the Musotiminae of 
Japan (Lepidoptera: Pyralidae). Sci. Repts. Kyoto Pref. Univ., Agric. 37:1-162. 
1987. The Nymphulinae (Lepidoptera: Pyralidae) from Thailand, with descrip- 
tions of a new genus and six new species. Microlepid. Thailand [Osaka, Japan] 1:133- 

184. 


EUGENE MUNROE, 3093 Barlow Crescent, R.R. 1, Dunrobin, Ontario KOA 1T0, Can- 
ada. 


Received for publication 24 October 1991; revised and accepted 18 December 1991. 


Journal of the Lepidopterists’ Society 
46(1), 1992, 77-79 


PALATABILITY OF SEVEN BUTTERFLY SPECIES (NYMPHALIDAE) TO 
TWO TYRANT FLYCATCHERS IN BRAZIL 


Additional key words: color patterns, Tyrannidae, foraging behavior, predators. 


Palatability of butterflies to predators that hunt visually generally is related to patterns 
of coloration. Thus unpalatable species tend to have brightly colored wings that advertise 
to predators their distasteful properties, whereas palatable ones tend to be cryptic (Fisher 
1930). In spite of recent investigations (Chai 1986), we estimate that only about 30 of 
the 3000 described species of Nymphalidae have been tested for palatability. Most previous 
studies focused on the palatability of temperate species to captive animals (almost always 
to birds and lizards). Few field data on the interactions between butterflies and predators 
have been reported (e.g., Brower 1984). 

In this paper we investigate the palatability of free flying individuals of Callicore 
astarte astarte Cramer, Catacore kolyma connectens (Talbot), Diaethria clymena cly- 
mena (Cramer), Pyrrhogyra neaerea arge Gosse, Marpesia norica (Hewitson), Marpesia 
chiron (Fabricius), and Temenis laothoe (Cramer) (all Nymphalidae: Nymphaliinae) to 
wild individuals of two tyrant flycatchers, Hirundinea ferruginea Sclater and Tyrannus 
melanocholicus Vieillot (Tyrannidae). The first three butterfly species exhibit warning 
coloration patterns (on the upper surface of the wings) when flying, with a predominance 
of red, black, blue, and yellow; such coloration suggests that they are unpalatable. The 
other four species (which do not exhibit such colors) were tested as controls. 

Field work was conducted in July 1988 in the Serra dos Carajas (5°54'—6°33’S; 49°53'— 
50°34’W) in the southern portion of the State of Para, Brazil. Butterflies were caught in 
lowland forest (Pojuca, <100 m elevation) characterized by Mimosa spp., grasses, and 
small patches of dry forest, and many tyrant flycatchers. Butterflies were released 10 to 
30 m upwind of the birds, always near the end of the afternoon when the predators feed 
(Fitzpatrick 1980). Palatability tests with H. ferruginea were conducted using a single 
pair of birds near their nest site. A combination of different butterfly species was offered 


78 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


TABLE 1. Responses of two wild tyrant flycatchers, Hirundinea ferruginea (H.f.) and 
Tyrannus melancholicus (T.m.), to seven species of free-flying butterflies (n = 63 indi- 
viduals). 


Pursuing 
Observation without Capture and Capture and 
Butterfly Bird from perch capture ‘release eating 
Callicore HE. 1D = 2) = 
astarte T.m. 2 3 2 2; 
Catacore H.E£. ] — — — 
kolyma ame 2 — — = 
Diaethria H.f. 5 1 = = 
clymena T.m. 1 1 1 1 
Pyrrhogyra H.f ) — — 2 
neaerea T.m. — — — 4 
Marpesia Hf. — — — 3 
norica T.m. il -— — ) 
Marpesia Hf. — — — 1 
chiron 
Temenis Hf. — — — 8 
laothoe 
Total PAT 5) 5) 26 


sequentially to the birds. In the case of T. melancholicus, the number of birds involved 
in the experiment was nearly the same as the number of butterflies offered (n = 25). 

The birds’ responses (Table 1) were pooled into four categories: (1) “Observation from 
perch,” when a bird observed a butterfly and moved only its head. Butterflies that did 
not elicit this response were considered as not sighted by the birds. (2) “Pursuing without 
capture,’ when a bird flew near a butterfly for closer observation, but did not attempt 
to capture it. (3) “Capture and release,” when a bird followed and captured a butterfly 
and released it afterwards. (4) “Capture and eating,” when a butterfly was swallowed 
after capture. The first two responses were considered to be sight-rejection of the butterfly; 
the last two were considered to be taste-test in which butterflies were rejected (released) 
or accepted (eaten). 

The response of the birds to butterflies offered are presented in Table 1. The brightly 
colored species C. astarte, D. clymena, and C. kolyma were considerably less attractive 
to the birds than the other species. Of all individuals of these three species tested, 78% 
(n = 36) were rejected on sight by the birds, 14% were rejected after taste trials (especially 
C. astarte and D. clymena), and 8% were eaten. Butterflies rejected were released alive 
without apparent injury, as they flew to a safer place after release by birds. 

Conversely, 85% (n = 27) of butterflies showing other color patterns (i.e., M. norica, 
M. chiron, T. laothoe, and P. neaerea) were attacked quickly by the birds and consumed 
(including the wings). Pyrrhogyra neaerea sometimes was sight-rejected by H. ferruginea, 
but it always was eaten by both bird species when captured. 

Our palatability data agree with those described by Chai (1986) for M. chiron, T. 
laothoe, and many other species in the genera Callicore, Diaethria, Marpesia, and Pyr- 
rhogyra that were tested with jacamars (Galbula ruficauda; Galbulidae). The unpalatabili- 
ty we found for Callicore astarte suggests that the similarities of color patterns among 
several species in this genus may be mimetic. 

Individuals of H. ferruginea and T. melancholicus responded similarly in their ac- 
ceptance and rejection of each butterfly species. Even so, there were slight differences: 
H. ferruginea rejected more butterflies on sight than T. melancholicus, which also cap- 
tured and ate some of the butterflies considered unpalatable. Such differences may be 


VOLUME 46, NUMBER 1 79 


due to the more generalized habits of T. melancholicus, which is found in a greater 
variety of habitats and probably has a more generalized diet. 

We thank W. W. Benson for field facilities and helpful suggestions during field work; 
the Companhia Vale do Rio Doce for facilities at Carajas; K. S. Brown Jr., for identifying 
the butterflies; and A. Raw and B. A. Drummond for their helpful suggestions on the 
manuscript. Conselho Nacional de Ciéncia e Tecnologia (CNPq) provided a grant to M. 
Martins. 


LITERATURE CITED 


BROWER, L. P. 1984. Chemical defense in butterflies, pp. 109-134. In Vane-Wright, 
R. I. & P. R. Ackery (eds.), The biology of butterflies. Academic Press, New York, 
xxiv + 429 pp. 

CuHal, P. 1986. Field observations and feeding experiments on the responses of rufous- 
tailed jacamars (Galbula ruficauda) to free-flying butterflies in a tropical rain forest. 
Biol. J. Linn. Soc. 29:161-189. 

FISHER, R. 1930. The genetical theory of natural selection. Dover Publications, New 
York. 291 pp. [Reprinted in 1958.] 

FITZPATRICK, J. W. 1980. Foraging behavior of Neotropical tyrant flycatchers. Condor 
82:43-57. 


C. E. G. PINHEIRO, Departamento de Ecologia IB, Fundacdo, Universidade de Brasilia, 
70910 Brasilia DF, Brazil; AND M. MARTINS, Departamento de Biologia ICB, Universidade 
do Amazonas, 69060 Manaus AM, Brazil. 


Received for publication 22 June 1991; revised and accepted 19 January 1992. 


Journal of the Lepidopterists’ Society 
46(1), 1992, 79-80 


AN OVERLOOKED RECORD OF LACINIPOLIA RODORA (NOCTUIDAE) 
FROM THE UNITED STATES 


Additional key words: Mexico, national record, United States. 


Lacinipolia rodora (Dyar) (Noctuidae) was described as Polia rodora Dyar (1911) from 
a single female from Mexico City, Mexico. The type specimen (Type No. 12958), collected 
by R. Mueller, is deposited in the collection of the United States National Museum (USNM), 
Smithsonian Institution, Washington, D.C. It has long been recognized by several noctuid 
workers that Lacinipolia rodora ranges into southwestern United States, but owing to 
unfortunate circumstances, this information has never been published in a formal manner. 

In the early 1960's, Lloyd Martin began a taxonomic study of the genus Lacinipolia 
McDunnough, based primarily on material in the collection of the Natural History Mu- 
seum of Los Angeles County (LACM). The subsequent loss of his notebook with photo- 
graphs of all the type specimens and extensive descriptive notes, caused Martin to abandon 
his study. In 1975, Charles Selman completed a revision of Lacinipolia as his doctoral 
dissertation at Ohio State University. Selman’s (1975) study was a complete taxonomic 
revision, including descriptions, photographs, and genitalic drawings. Due to the length 
of the document and unforeseen difficulties, Selman’s dissertation was never published. 
Required copies of his dissertation were deposited in the library of Ohio State University. 
Photocopies have been made available, but minimal distribution of photocopies does not 
satisfy the requirements for formal publication as identified in the International Code of 
Zoological Nomenclature (Stoll et al. 1961). 

Selman (1975) proposed the new combination Lacinipolia rodora in his dissertation, 


80 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


hence, the new combination was never formally published. Poole (1989) implied that this 
new combination had been published by Godfrey (1972). In the paper to which Poole 
(1989) referred, Godfrey (1972:138) described the larvae of Lacinipolia rodora from ova 
secured by J. G. Franclemont in the Chiricahua Mountains of southeastern Arizona. Thus, 
the occurrence of L. rodora in the United States and the new combination were published 
together, although Godfrey was unaware that he created a new combination. Prior to 
Poole (1989), Godrey’s (1972) contribution apparently went unnoticed, since L. rodora 
was not included by Franclemont and Todd (1983) in the Check List of the Lepidoptera 
of America North of Mexico. 

Lacinipolia rodora is similar to L. vicina (Grote), but can be distinguished from the 
latter by the presence of bipectinate male antennae; male antennae are serrate in L. 
vicina. A male specimen of L. rodora in the collection of the USNM with the same data 
as the female holotype was designated as the lectotype by Selman (1975). However, 
because the holotype is extant and the latter specimen was not mentioned by Dyar (1911), 
the lectotype designation is unnecessary and invalid; it also is unpublished. 


LITERATURE CITED 


Dyar, H. G. 1911. Descriptions of some new species and genera of Lepidoptera from 
Mexico. Proc. U.S. Natl. Mus. 38:229-273. 

GopFREY,G. L. 1972. A review and reclassification of larvae of the subfamily Hadeninae 
(Lepidoptera: Noctuidae) of America north of Mexico. U.S. Dept. Agric. Tech. Bull. 
1450:1-265. 

FRANCLEMONT, J. G. & E. L. Topp. 1988. Noctuidae, pp. 120-159. In Hodges, R. W. 
et al. (eds.), Check list of the Lepidoptera of America north of Mexico. E. W. Classey 
Ltd. and The Wedge Entomol. Res. Found., London. xxiv + 284 pp. 

STOLL, N. R. ET AL. 1961. International Code of Zoological Nomenclature adopted by 
the XV International Congress of Zoology. International Trust for Zoological No- 
menclature, London. xvii + 176 pp. 

POOLE, R. W. 1989. Lepidopterorum Catalogus (new series), fascicle 118: Noctuidae. 
E. J. Brill/Flora and Fauna Publ., Leiden, The Netherlands. Three volumes, xii + 
1341 pp. 

SELMAN, C. L. 1975. Revision of the genus Lacinipolia McD. of America north of 
Mexico (Lepidoptera: Noctuidae). Ph.D. Dissertation, Ohio State University. Unpub- 
lished. 


RON LEUSCHNER, Research Associate, Natural History Museum of Los Angeles Coun- 
ty, 900 Exposition Boulevard, Los Angeles, California 90007. 


Received for publication 3 October 1991; revised and accepted 23 February 1992. 


Journal of the Lepidopterists’ Society 
46(1), 1992, 81 


MANUSCRIPT REVIEWERS, 1991 


The merit of a scientific journal depends on the quality of its reviewers as well as of 
its authors, but the former are usually unknown to readers. The Journal relied on the 
expertise of 68 reviewers last year to provide 93 evaluations of manuscripts. It is with 
much gratitude that the Journal acknowledges the services of the people listed below 
from whom manuscript reviews were received in 1991. 


P. R. Ackery, London, England 


*Vitor O. Becker, Planaltina, DF, Brazil 

Carlos R. Beutelspacher, Mexico, DF, 
Mexico 

*M. Deane Bowers, Boulder, CO 

F. Martin Brown, Colorado Springs, 
CO 

*John W. Brown, San Diego, CA 

Keith S. Brown Jr., Campinas, Sao 
Paulo, Brazil 

Gary R. Buckingham, Gainesville, FL 

*John M. Burns, Washington, DC 


Everett D. Cashatt, Springfield, IL 

*Jose A. Clavijo A., Maracay, Venezuela 

Ian F. B. Common, Toowoomba, 
Queensland, Australia 

Christopher B. Cottrell, Pretoria, South 
Africa 

Charles V. Covell Jr., Louisville, KY 


Don R. Davis, Washington, DC 
Philip J. DeVries, Austin, TX 
*Julian P. Donahue, Los Angeles, CA 


*Thomas D. Eichlin, Sacramento, CA 

John N. Eliot, Taunton, Somerset, 
England 

Thomas C. Emmel, Gainesville, FL 

Marc Epstein, Washington, DC 


*Douglas C. Ferguson, Washington, DC 
Clifford D. Ferris, Laramie, WY 
John G. Franclemont, Ithaca, NY 


*TLawrence F. Gall, New Haven, CT 

*David E. Gaskin, Guelph, Ontario, 
Canada 

*George L. Godfrey, Champaign, IL 


Charles L. Hogue, Los Angeles, CA 
Richard Holland, Albuquerque, NM 


Nancy L. Jacobson, Ithaca, NY 


* Reviewed two or more manuscripts. 


*Ian James Kitching, London, England 


*Gerardo Lamas M., Lima, Peru 
Robert C. Lederhouse, East Lansing, 
MI 


C. Don MacNeill, San Francisco, CA 
Stephanie S. McKown, Boise, ID 
Eric H. Metzler, Columbus, OH 
Jacqueline Y. Miller, Sarasota, FL 
*Lee D. Miller, Sarasota, FL 

Scott E. Miller, Honolulu, HI 
*William E. Miller, St. Paul, MN 
Marc C. Minno, Gainesville, FL 


Herbert H. Neunzig, Raleigh, NC 
Mogans C. Nielson, Lansing, MI 


Steven Passoa, Reynoldsburg, OH 
John W. Peacock, Hamden, CT 
*Richard S. Peigler, Denver, CO 
Kenelm W. Philip, Fairbanks, AL 


Russell A. Rahn, Irving, TX 

John E. Rawlins, Pittsburgh, PA 
Robert K. Robbins, Washington, DC 
Ronald L. Rutowski, Tempe, AZ 


Theodore D. Sargent, Amherst, MA 
Albert Schwartz, Miami, FL 

James A. Scott, Lakewood, CO 
Arthur M. Shapiro, Davis, CA 
Oakley Shields, Mariposa, CA 
Steven R. Sims, St. Louis, MO 
*Marie Alma Solis, Washington, DC 
Robert Srygley, Chicago, IL 
Frederick W. Stehr, East Lansing, MI 
*Stephen R. Steinhauser, Sarasota, FL 
*Steve Stone, Lakewood, CO 


*Paul M. Tuskes, San Diego, CA 


Susan J. Weller, Washington, DC 
Wayne H. Whaley, Orem, UT 
*Christer Wiklund, Stockholm, Sweden 
William D. Winter Jr., Dedham, MA 


Allen M. Young, Milwaukee, WI 


Journal of the Lepidopterists’ Society 
46(1), 1992, 82 


ANNOUNCEMENT 
PUBLICATIONS OF THE LEPIDOPTERISTS’ SOCIETY 


THE LEPIDOPTERISTS SOCIETY COMMEMORATIVE VOLUME, 1945-1973. 
Published 1977. 374 pages. A 25-year review of the Society’s or- 
ganization, personnel, and activities, with biographical sketches. 
Includes a 25-year cumulative index of the Journal of the Lepi- 
dopterists’ Society by author, subject, and taxon. Members and 
subscribers: $8.00. Non-members: $12.00. 


MEMOIRS OF THE LEPIDOPTERISTS SOCIETY 


Memoir No. 1. A Synonymic List of the Nearctic Rhopalocera by 
Cyril F. dos Passos. Published 1964. 145 pages. Includes references 
to original descriptions and synonymies of North American but- 
terflies and skippers. OUT-OF-PRINT. 


Memoir No. 2. Catalogue/Checklist of the Butterflies of America 
North of Mexico by Lee D. Miller and F. Martin Brown. Published 
1981. 280 pages. Includes references to original descriptions, syn- 


onymies, and locations of type specimens. Members and subscrib- 
ers: $12.00 cloth, $7.00 paper. Non-members: $19.00 cloth, $10.50 


paper. 


Memoir No. 3. Supplement to the Catalogue/Checklist of the 
Butterflies of America North of Mexico by Clifford D. Ferris 
(editor). Published 1989. Includes general notes plus corrections 
and additions to the original Memoir No. 2. Members and sub- 
scribers: $6.00. Non-members: $10.00. 


Memoir No. 4. Foodplants of World Saturniidae by Steven Stone. 
Published 1991. A listing of foodplants for more than 500 species 
of saturniid moths worldwide. Members and subscribers: $7.20. 
Non-members: $12.00. 


1990 MEMBERSHIP DIRECTORY (current to October 1990). Published 
1990. 78 pages. Biennial directory of members of the Lepidop- 
terists’ Society, with members’ geographic and taxonomic interests. 
$5.00. Not available for commercial use. 


Send orders to: Ron Leuschner, Publications Coordinator 
1900 John Street 
Manhattan Beach, California 90266-2608 U.S.A. 


Date of Issue (Vol. 46, No. 1): 15 July 1992 


se 
. 
~ 
v 
& 
i 
j 
1 
2 * 
‘ j 
f 
i 
) 
4 
a 
is 
i 
‘ 
py 
att) ae 
y 
bh red 
5 f 


. 


EDITORIAL STAFF OF THE JOURNAL 


JOHN W. Brown, Editor - BoYCE A. DRUMMOND, Retiring Editor 
Entomology Department Natural Perspectives 
San Diego Natural History Museum P.O. Box 9061 
P.O. Box 1390 Woodland Park, Colorado 80866 U.S.A. 


San Diego, California 92112 U.S.A. 


Associate Editors: 
M. DEANE Bowers (USA), BoYCE A. DRUMMOND (USA), LAWRENCE F. GALL (USA), 
GERARDO LAMAS (Peru), ROBERT C. LEDERHOUSE (USA), ROBERT K. ROBBINS (USA), 
CHRISTER WIKLUND (Sweden) 


NOTICE TO CONTRIBUTORS 


Contributions to the Journal may deal with any aspect of Lepidoptera study. Categories 
are Articles, Profiles, General Notes, Technical Comments, Book Reviews, Obituaries, 
Feature Photographs, and Cover Illustrations. Reviews should treat books published within 
the past two years. Obituaries must be authorized by the President of the Society. Re- 
quirements for Feature Photographs and Cover Illustrations are stated on page 111 in 
Volume 44(2). Journal submissions should be sent to the editor at the above address. 
Short manuscripts concerning new state records, current events, and notices should be 
sent to the News, June Preston, Editor, 832 Sunset Drive, Lawrence, Kansas 66044 U.S.A. 
Journal contributors should submit manuscripts in triplicate, typewritten, entirely dou- 
ble-spaced, with wide margins, on one side only of white, letter-sized paper. Prepare 
manuscripts according to the following instructions, and submit them flat, not folded. 

Abstract: An informative abstract should precede the text of Articles and Profiles. 

Key Words: Up to five key words or terms not in the title should accompany Articles, 
Profiles, General Notes, and Technical Comments. 

Text: Contributors should write with precision, clarity, and economy, and should use 
the active voice and first person whenever appropriate. Titles should be explicit, descrip- 
tive, and as short as possible. The first mention of a plant or animal in the text should 
include the full scientific name with author, and family. Measurements should be given 
in metric units; times in terms of the 24-hour clock (0930 h, not 9:30 AM). Underline 
only where italics are intended. 

Literature Cited: References in the text of Articles and Profiles should be given as 
Sheppard (1959) or (Sheppard 1959, 196la, 1961b) and listed alphabetically under the 
heading LITERATURE CITED, in the following format without underlining: 


SHEPPARD, P. M. 1959. Natural selection and heredity. 2nd ed. Hutchinson, London. 
209 pp. 

196la. Some contributions to population genetics resulting from the study of 

the Lepidoptera. Adv. Genet. 10:165-216. 


Illustrations: Only half of symmetrical objects such as adults with wings spread should 
be illustrated, unless whole illustration is crucial. Photographs and drawings should be 
mounted on stiff, white backing, arranged in the desired format, allowing (with particular 
regard to lettering) for reduction to fit a Journal page. Illustrations larger than letter- 
size are not acceptable and should be reduced photographically to that size or smaller. 
The author’s name and figure numbers as cited in the text should be printed on the back 
of each illustration. Figures, both line drawings and photographs, should be numbered 
consecutively in Arabic numerals; “plate” should not be employed. Figure legends must 
be typewritten, double-spaced, on a separate sheet (not attached to illustrations), headed 
EXPLANATION OF FIGURES, with a separate paragraph devoted to each page of illustrations. 
Color illustrations are encouraged; contact editor for submission requirements and cost. 

Tables: Tables should be numbered consecutively in Arabic numerals. Headings for 
tables should not be capitalized. Tabular material must be typed on separate sheets, and 
placed following the main text, with the approximate desired position indicated in the 
text. Vertical lines as well as vertical writing should be avoided. 

Voucher specimens: When appropriate, manuscripts must name a public repository 
where specimens documenting identity of organisms can be found. Kinds of reports that 
require vouchering include life histories, host associations, immature morphology, and 
experimental enquiries. 

Proofs: The edited manuscript and galley proofs will be mailed to the author for 
correction of printer’s errors. Excessive author’s changes at this time will be charged to 
authors at the rate of $2 per line. A purchase order for reprints will accompany proofs. 

Page charges: For authors affiliated with institutions, page charges are $20 per Jour- 
nal page. For unaffiliated authors, page charges are $10 per Journal page with a $50 
maximum. Authors of Book Reviews and Obituaries are exempt from page charges. 
Authors unable to pay page charges for reasons such as difficulties with foreign exchange 
should apply to the editor for free publication. 

Correspondence: Address all matters relating to the Journal to the editor. 


PRINTED BY THE ALLEN PRESS, INC., LAWRENCE, KANSAS 66044 U.S.A. 


CONTENTS 


GENITALIC RECASTING OF POANES AND PARATRYTONE (HESPERI- 
IDAE).° JoRn Mo Barns 5 os vs Su cae le ra 


MALE MATE-LOCATING BEHAVIOR IN THE COMMON EGGEFLY, 
HYPOLIMNAS BOLINA (NYMPHALIDAE). Ronald L. Rutowski 


COENOCHROA CHILENSIS, A NEW PHYCITINE MOTH FROM CHILE 
(PYRALIDAE). Jay C, Shaffer. 6) . 


PARADULCEDO, A NEW GENUS OF SATYRINAE (NYMPHALIDAE) FROM 
WESTERN COLOMBIA. Luis M. Constantino 


THE BEBEARIA MARDANIA COMPLEX (NYMPHALIDAE). David L. 


Hancock. 22 Pw ee AS eo A SC : 


GENERAL NOTES 
Biology of Opostegoides scioterma (Opostegidae) in Oregon. R. G. Rosen- 
SEMC DT sete I SU Ne IN Nae Ge 


Redescription of Protoleuron rhodogaster (Sphingidae), an uncommon neo- 
tropical moth. Jacqueline Y. Miller and Nadia R. Venedictof .................. 


Three nominal genera of Crambidae omitted from “The generic names of 
moths of the world, volume 5, Pyraloidea.” Eugene Munroe ................ 


Palatability of seven butterfly species (Nymphalidae) to two tyrant flycatchers 
in Brazil... C.E. G: Pinheiro and’ M. Martins 2 os ee 


An overlooked record of Lacinipolia rodora (Noctuidae) from the United 
States.) Ron Leuschner oS 


ANNOUNCEMENT 


PUBLICATIONS OF THE LEPIDOPTERISTS’ SOCIETY ee 


THIS PUBLICATION IS PRINTED ON ACID-FREE PAPER. 


24 


39 


44 


54 


a ne 46 EAO2 ania Number 2 


; ISSN 0024-0966 


— JOURNAL 


of the 


_ LEPIDOPTERISTS’ SOCIETY 


Published quarterly by THE LEPIDOPTERISTS’ SOCIETY 
Publié par LA SOCIETE DES LEPIDOPTERISTES 
Herausgegeben von DER GESELLSCHAFT DER LEPIDOPTEROLOGEN 

: Publicado ane LA SOCIEDAD DE LOS LEPIDOPTERISTAS 


20 August 1992 


THE LEPIDOPTERISTS’ SOCIETY 


EXECUTIVE COUNCIL | 


RAY E. STANFORD, President HIROSHI INOUE, Vice President 
FLOYD W. PRESTON, Immediate Past President IAN KITCHING, Vice President 
M. DEANE BOWERS, Vice President Fay H. KARPULEON, Treasurer 


WILLIAM D. WINTER, Secretary 


Members at large: 


Karolis Bagdonas Charles V. Covell, Jr. Eric H. Metzler 
Steven J. Cary Linda S. Fink Robert K. Robbins 
Stephanie S. McKown Scott E. Miller J. Benjamin Ziegler 


EDITORIAL BOARD 


PAUL A. OPLER (Chairman), FREDERICK W. STEHR (Member at large) 
JOHN W. BROwN (Journal), WILLIAM E. MILLER (Memoirs) 
STEPHANIE MCKOwNn (News) 


HONORARY LIFE MEMBERS OF THE SOCIETY 


CHARLES L. REMINGTON (1966), F. MARTIN BROWN (1973), E. G. MUNROE (1978), 
ZDRAVKO LORKOVIC (1980), IAN F. B. COMMON (1987), JOHN G. FRANCLEMONT (1988), 
LINCOLN P. BROWER (1990), DOUGLAS C. FERGUSON (1990), 

HON. MIRIAM ROTHSCHILD (1991), CLAUDE LEMAIRE (1992) 


The object of the Lepidopterists’ Society, which was formed in May 1947 and for- 
mally constituted in December 1950, is “to promote the science of lepidopterology in all 
its branches, .... to issue a periodical and other publications on Lepidoptera, to facilitate 
the exchange of specimens and ideas by both the professional worker and the amateur 
in the field; to secure cooperation in all measures” directed towards these aims. 

Membership in the Society is open to all persons interested in the study of Lepi- 
doptera. All members receive the Journal and the News of the Lepidopterists Society. 
Institutions may subscribe to the Journal but may not become members. Prospective 
members should send to the Treasurer full dues for the current year, together with their 
full name, address, and special lepidopterological interests. In alternate years a list of 
members of the Society is issued, with addresses and special interests. There are four 
numbers in each volume of the Journal, scheduled for February, May, August and 
November, and six numbers of the News each year. 


Active members—annual dues $25.00 
Student members—annual dues $15.00 
Sustaining members—annual dues $35.00 
Life members—single sum $500.00 
Institutional subscriptions—annual $40.00 


Send remittances, payable to The Lepidopterists’ Society, to: Fay H. Karpuleon, Trea- 
surer, 1521 Blanchard, Mishawaka, Indiana 46544, U.S.A.; and address changes to: Julian 
P. Donahue, Natural History Museum, 900 Exposition Blvd., Los Angeles, California 
90007-4057 U.S.A. For information about the Society, contact: William D. Winter, Sec- 
retary, 257 Common St., Dedham, Massachusetts 02026-4020, U.S.A. (617-326-2634). To 
order back issues of the Journal, News, and Memoirs, write for availability and prices 
to the Publications Coordinator: Ronald Leuschner, 1900 John St., Manhattan Beach, 
California 90266-2608, U.S.A. 


Journal of the Lepidopterists’ Society (ISSN 0024-0966) is published quarterly for 
$40.00 (institutional subscription) and $25.00 (active member rate) by the Lepidopterists: 
Society, % Los Angeles County Museum of Natural History, 900 Exposition Blvd., Los 
Angeles, California 90007-4057: Second-class postage paid at Los Angeles, California and 
additional mailing offices. POSTMASTER: Send address changes to the Lepidopterists — 
Society, % Natural History Museum, 900 Exposition Blvd., Los Angeles, California 90007- 
4057. 


Cover illustration: Male of the brightly-colored, day-flying buckmoth, Hemileuca electra 
Wright (Saturniidae). The larval host is flat-top buckwheat, Eriogonum fasciculatum 
Bentham (Polygonaceae). Submitted by Callie Mack, 8529 Jackie Drive, San Diego, 
California 92119 U.S.A. 


JOURNAL OF 


Tue LeEpIDOPTERISTS’ SOCIETY 


Volume 46 1992 Number 2 


Journal of the Lepidopterists’ Society 
46(2), 1992, 838-96 


THE BUTTERFLIES OF ANAK KRAKATAU, INDONESIA: 
FAUNAL DEVELOPMENT IN EARLY SUCCESSION 


T. R. NEW AND I. W. B. THORNTON 
Department of Zoology, La Trobe University, Bundoora, Victoria 3083, Australia 


ABSTRACT. A survey in 1990 revealed that the butterfly fauna of Anak Krakatau 
continues to increase: of 41 species now recorded from this recent volcanic island, 18 
have arrived since 1986. Habitat relations, faunal development, and the possible future 
of the island’s butterflies are discussed. Continued vegetational succession is likely to result 
in extinction of a number of species, especially Hesperiidae and Lycaenidae, which depend 
on grassland or coastal low-growing vegetation formations. 


Additional key words: Lepidoptera, conservation, island biogeography, vulcanism. 


The pattern of colonization of the Krakatau Islands, Indonesia, by 
butterflies since the sterilizing eruption of 1883 was described by New 
et al. (1988) on data available to 1986. The island of Anak Krakatau, 
which emerged permanently from the sea only in 1930, is an active 
volcano and was devastated by eruptions in 1952 (when all vegetation 
was destroyed) and severely damaged by volcanic activity most recently 
in 1970-71. The island is of particular interest in studies of biotic 
colonization and community development as it provides one of very 
few isolated tropical sites in which such processes can be assessed from 
their earliest stages. Studies there of ecologically informative taxa and 
the progressive increase in species richness are useful in assessing the 
relationship between degree of habitat isolation and ability to recover 
from severe perturbation, a theme relevant to practical conservation. 
By 1985, 23 species of butterflies had been found on Anak Krakatau. 
Bush and Whittaker (1991) recorded an additional 18 species in 1989, 
and 5 more species are noted here from our visit in August/September 
1990. Most of these 41 are likely to have arrived from the relatively 
close older islands of Rakata, Panjang, and Sertung, but other species 
are clearly from further afield. These are known from Java and Sumatra 
but not from elsewhere on the Krakataus. 

This paper is an account of the butterfly fauna of Anak Krakatau in 


84 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


1990, when the status and distribution of these insects were appraised 
in relation to the increasing complexity of this initially simple island 
environment. Background information on Anak Krakatau is included 
in Thornton and Rosengren (1988), and a broader picture of inverte- 
brate colonization on the island is provided by Thornton and New (1988) 
and Thornton et al. (1990). 


METHODS 


During the period 19 August-3 September 1990, members of our 
group re-mapped the vegetation of Anak Krakatau to quantify changes 
in its composition and extent that had occurred during the previous 
five years. All vegetated areas were surveyed repeatedly for butterflies 
using three methods. 1. Transect walks (using the method of Pollard 
1977) were made over all habitats at intervals during each of 11 days, 
with a minimum of 5 day-surveys in each. In each habitat, main com- 
parisons are based on transects at 1030 h and 1400 h, but discrete counts 
were made at seven times on each of several days (Fig. 10), as time 
permitted. The butterflies were identified, counted and, where possible, 
sexed to yield data on species incidence, relative abundance in different 
vegetation types, and activity patterns. 2. Six selected taxa were marked 
on the hindwing underside using colored felt-tip pens (Pentel®), and 
released at the point of capture, in the air, within 10 minutes of capture. 
This technique was employed only in calm weather. Recaptures were 
used to detect any major individual movement. 3. Casual observations 
and collecting were undertaken during other work on all parts of the 
island. Data both from transect counts and recaptured marked butter- 
flies were used to estimate relative abundance of species and their 
distribution among different vegetation types. The latter data are not 
strictly quantitative, as most species occurred in only small numbers. 
The following abundance categories are used for comparison between 
major habitats: (i) common, at least 10 individuals seen in a represen- 
tative 100 m transect at some time between 1000 and 1600 h; (ii) 
moderately common, three to nine individuals seen on at least one 
transect during the above period; (iii) rare, fewer than three individuals 
seen on any transect and usually not present on all transects; (iv) sin- 
gletons. 

Status is appraised as follows: (i) resident, species associated with 
presence of larval foodplants, usually common or moderately common, 
with both sexes present and (for some) mating pairs observed, or for 
which any of these have been recorded in the past; (ii) non-resident, 
species which did not fulfill the above criteria and for which no known 
larval foodplants are present on Anak Krakatau; (iii) straggler, as non- 


VOLUME 46, NUMBER 2 . 85 


resident, but mainly strongly-flying migratory species that were either 
rare or singletons. 

Vouchers of some taxa were taken for confirmation of identity, al- 
though singleton females and several easily-recognizable or strongly 
flying species (noted in the following list) were not captured. Hesper- 
iidae were identified by A. F. Atkins; members of other families were 
identified from standard literature (such as Corbet & Pendlebury 1978, 
and many of the papers cited therein) and by comparison with material 
captured earlier on the Krakataus. A few records were made during a 
brief visit by IWBT and D. Britton in April 1991; those of significance 
are noted below. Vouchers of all Krakatau butterflies captured during 
our surveys are held at La Trobe University or the Zoological Museum, 
Bogor. 


RESULTS AND DISCUSSION 
Vegetation 


Anak Krakatau (Fig. 1) is largely bare lava and ash, with well-defined 
vegetation on the eastern coastline extending up to about 200 m inland. 
The maximum extent of vegetation has increased substantially since 
1986, and there have been marked changes in diversity and maturity. 
The three major areas, designated the Eastern Foreland, Northeast 
Headland, and Northern Foreland supported fairly discrete vegeta- 
tional communities in 1986, and still were distinct sufficiently in char- 
acter in September 1990 to be regarded as different habitats (as different 
successional stages), though by this time they were no longer separated 
by distinct vegetation-free areas. Succession is most advanced on the 
Eastern Foreland, where well-developed Casuarina equisetifolia J. R. 
& G. Forst (Casuarinaceae) woodland is becoming progressively invad- 
ed by other secondary forest species. Well defined grassland areas (Is- 
chaemum muticum L.) and natural clearings between groups of trees 
also are present. In contrast, the youngest area, the Northern Foreland, 
has predominantly grassland (Ischaemum muticum, Imperata cylin- 
drica (L.) Beauv., Saccharum spontaneum L., Gramineae) commu- 
nities with younger Casuarina to the west. The vegetation of the North- 
east Headland is intermediate between these two. There are numerous 
Ficus L. trees (Moraceae) toward the coast on the Northeast Headland 
and Eastern Foreland, and low vegetation (Ipomoea pes-caprae (L.) R. 
Br. (Convolvulaceae) communities, with Canavalia maritima (Aubl.) 
Urb. and other legumes) extends along much of the coast, but is least 
developed along about 200 m immediately south of the Northeast Head- 
land. 


Clumps of Saccharum and occasional small Casuarina trees occurring 


86 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Number of butterfly species 


Total Resident Common 
9 7 6 

18 17 9 

31 26 14 


500m 


Fic. 1. Anak Krakatau, with summary of numbers of butterfly species found in each 
of three main vegetated areas in 1990. Extent of vegetation indicated by shading. (E, 
Eastern Foreland; NE, Northeast Headland; N, Northern Foreland.) 


up much of the lower slope of the outer cone are not shown on the 
map in Figure 1. 


Butterflies 


Although collecting intensity differed between the three main areas, 
with most collecting in the more complex habitats of the Eastern Fore- 
land, the surveys collectively included repeated collections over all 
vegetated areas of Anak Krakatau, so that few species flying at the time 
of our survey would have been missed, and inferences on distribution 
and relative abundance are reliable. The following annotated checklist 
of the species observed gives the year of first record on Anak Krakatau 
in parentheses and on the archipelago in brackets following the specific 
name (1982: Yukawa 1984; 1983: Bush 1986; 1984-85: New et al. 1988; 
1989; Bush & Whittaker 1991; 1990: this paper). 


Papilionidae 


Graphium agamemnon (L.) (1984-85) [1982]. Two individuals sighted, both on 22. viii.90 
on beachfront vegetation, Eastern Foreland; one resting on Eupatorium odoratum L. 
(Compositae) blossom. Status: straggler. 

Graphium sarpedon (L.) (1990). One seen on 20.viii.90 near beach, Eastern Foreland. 
Not seen previously on the archipelago. Status: straggler. 

Pachliopta aristolochiae (F.) (1984-85) [1919-21]. Both forms adamus and antiphus 
were seen frequently in treed areas and along woodland edges of the Eastern Foreland 
and Northeast Headland; seen rarely in the Northern Foreland. Present also iv.91. Status: 
resident. 

Papilio memnon L. (1990) [1983]. One worn specimen seen on 23.viii.90 in the Eastern 
Foreland. Formerly recorded from Rakata and Sertung only. Status: ? straggler; could 


VOLUME 46, NUMBER 2 , 87 


possibly become resident soon, as suitable larval foodplants (Rutaceae) now occur on Anak 
Krakatau (T. Partomihardjo, pers. comm. 1990). 

Troides helena (.) (1989) [1908]. Moderately common in coastal forest and along 
woodland edges of the Eastern Foreland (where present also in iv.91); one seen on the 
Northeast Headland. Previously known from the other three islands. Status: resident, 
recently established. 


Pieridae 


Catopsilia pomona (F.) (1984-85) [1933]. Several individuals seen on beachside veg- 
etation of the Northeast Headland and Eastern Foreland; one flying over bare lava in the 
southwest of the island, 21.viii.90. Status: migrant, ? non-resident. 

Eurema blanda (Boisduval) (1983) [1919-21]. Not uncommon on coastal and other low 
vegetation in all areas; most frequent in the Eastern Foreland. Status: resident. 

Eurema hecabe (L.) (1984-85) [1919-21]. Not as common as E. blanda and found only 
in the Eastern Foreland and Northeast Headland. Status: resident. 


Nymphalidae 


Danaus chrysippus bataviana Moore (1990) [1919-21]. One seen on 26.viii.90 in wood- 
land clearing in Eastern Foreland. Known previously from Rakata and Sertung. Status: 
? straggler. 

Danaus genutia (Cramer) (1989) [1908]. Form suwmatrana Moore was fairly common 
in clearings in the Eastern Foreland and Northeast Headland and a few individuals of 
form intensa Moore also were present. Status: resident. 

Euploea modesta Butler (1989) [1908]. Individuals were seen nearly every day in the 
Eastern Foreland, more rarely on the Northeast Headland. First recorded from a single 
specimen (Bush & Whittaker 1991), and earlier records of Euploea sp. from Rakata and 
Sertung (New et al. 1988) may be of this species. Status: resident, recent colonist and 
apparently increasing in numbers. [D. Britton, pers. comm., captured a specimen in 
Northern Foreland in April 1991]. 

Ideopsis (Radena) juventa (Cramer) (1983) [1919-21]. Common in the Eastern Fore- 
land and less so in the Northeast Headland, virtually ubiquitous in vegetated areas but 
most frequent in clearings and along woodland and coastal edges. (Seen also iv.91). Status: 
resident. 

Tirumala septentrionis Butler (1989) [1983]. A single specimen found in a woodland 
clearing of the Eastern Foreland, 31.viii.90. Status: resident (Bush & Whittaker 1991). 
Known earlier (1983) from Rakata. 

Melanitis leda (L.) (1982) [1933]. Not uncommon in all vegetated parts of the island 
and roosting under cliff overhangs along the coast southeast of the Eastern Foreland. 
Status: resident. 

Mycalesis janardana Moore (1989) [1919-21]. Few individuals found in shaded clear- 
ings and open forest in the Eastern Foreland, more rarely in the Northeast Headland. It 
was found on all four islands in 1989 and known earlier (1982, of the more recent surveys) 
from Rakata and Sertung. Status: resident. 

Orsotriaena medus (F.) (1983) [1919-21]. One individual seen on 31.viii.90 in the 
Eastern Foreland. Status: probable resident. 

Neptis hylas (L.) (1984-85) [1908]. Not common, but a few individuals seen in both 
the Eastern Foreland and Northeast Headland. Status: resident. 

Precis atlites (L.) (1984-85) [1983]. Not common, but seen daily from 26.viii.90 in 
open areas in all parts of the vegetated areas. Status: resident. 

Precis sp. (Palmana javana) (1990). Identity not confirmed. A single specimen of a 
bright orange Precis was seen resting on Saccharum in E on 1.ix.90 (TRN), but evaded 
capture. It did not resemble any species earlier recorded from the archipelago, and TRN 
had little doubt of its identity: the species is widespread in Malaysia and Indonesia. Status: 
? straggler. 


88 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Lycaenidae 


Miletus symethus (Cramer) (1984-85) [1982]. Not common, but seen regularly in 
forested areas of the Eastern Foreland. Status: resident. 

Catochrysops strabo (F.) (1982) [1933]. Common throughout the coastal vegetation and 
seen occasionally in grassland areas within the Eastern Foreland. Status: resident. 

Euchrysops cnejus (F.) (1983) [1919-21]. Rare. Seen only in one clearing in the Eastern 
Foreland where it was present also in 1985 and 1986. Status: resident. 

Jamides aratus (Stoll) (1984-85) [1982]. Infrequent and apparently restricted to coastal 
vegetation of the Eastern Foreland. Status: resident. 

Jamides celeno (Cramer) (1982) [1919-21]. Much more common than J. aratus and 
found along most of the vegetated coastline. Status: resident. 

Lampides boeticus (L.) (1982) [1933]. Not common, but widely distributed along the 
vegetated coastline. Status: uncertain, possible resident but population almost certainly 
augmented by migration. 

Zizina otis lysizone (Snellen) (1982) [1982]. Common on coastal vegetation in Eastern 
Foreland, more rarely in other clearings and further north. Status: resident. 

Zizula hylax (F.) (1984-85) [1982]. Common, but less so than Z. otis, and with similar 
distribution. Status: resident. 

Arhopala pseudocentaurus (Doubleday) (1989) [1919-21]. Several individuals seen 
patrolling forest edges of the Eastern Foreland. Status: presumed resident and recent 
colonist from other islands. 

Hypolycaena erylus (Godart) (1983) [1919-21]. Not common, but seen most days in 
forest clearings of the Eastern Foreland. Status: resident. 


Hesperiidae 


Potanthus confucius (C. & R. Felder) (1982) [1919-21]. (See comments on identity of 
this taxon in New et al. 1988). Abundant in grasslands in the Eastern Foreland; few seen 
in open areas of the Northeast Headland; occasional individuals in the Northern Foreland. 
Status: resident. 

Polytremis lubricans (Herrich-Schaeffer) (1989) [1908]. Confirmed from Anak Krakatau 
by Bush and Whittaker (1991), with earlier record erroneous (New et al. 1988). Rare in 
open grassland and woodland clearings of the Eastern Foreland. Found on Rakata in 
1908 and 1919-21, but not seen on the archipelago since then except on Anak Krakatau. 
Status: presumed resident. 

Pelopidas conjunctus (Herrich-Schaeffer) (1990) [1919-21]. Rare in open grassland in 
the Eastern Foreland. Found on Rakata and Sertung prior to 1921 and on Rakata in 1938. 
Not seen on the archipelago since then, although Yukawa (1984) recorded a Pelopidas 
as Pagna (Moore) from Sertung. Status: presumed resident. 


Previously Recorded Species Not Found in 1990 


Danaus melanippus (Cramer) (1984-85) [1908]. Seen commonly in 1984-86, but not 
found in 1989 (Bush & Whittaker 1991) nor in 1990. Specimens from our earlier collections 
have been compared carefully with recently captured D. genutia, and differ clearly in 
identity. It is possible that D. genutia has now replaced D. melanippus on Anak Krakatau. 

Hypolimnas anomala (Wallace) (1982) [1919-21]. Possibly a sporadic migrant rather 
than resident on Anak Krakatau. 

Precis orithya L. (1989). Seen by Bush in 1989 and then new to the archipelago (Bush 
& Whittaker 1991). 

Anthene emolus (Godart) (1989) [1984]. Previously known only from Rakata, and 
recorded from Sertung and Anak Krakatau in 1989 (Bush & Whittaker 1991). 

Jamides bochus (Stoll) (1989) [1982]. Previously recorded from Sertung (Yukawa 1984) 
and recorded from Rakata and Anak Krakatau in 1989 (Bush & Whittaker 1991). 

Borbo cinnara (Wallace) (1982) [1982]. Not found in 1989 or in 1990. 


VOLUME 46, NUMBER 2 89 


Hasora taminatus Huebner (1989). Recorded as new to the archipelago from Anak 
Krakatau in 1989 (Bush & Whittaker 1991). 

Parnara cf. guttatus Bremner (1989). Also recorded as new to the archipelago from 
Anak Krakatau in 1989 (Bush & Whittaker 1991). 

Telicota augias L. (1989) [1919-21]. The first record of the species on the archipelago 
since its occurrence on Rakata in 1919-21 (Bush & Whittaker 1991). 


DISCUSSION 


Forty-one species of butterfly have been recorded from Anak Krak- 
atau (an increase of 18 since 1986), and up to about 30 of these are 
likely to be resident, some with populations augmented by regular 
migration. Only C. pomona has been observed migrating in the area 
by us, but the following species also are known migrants: G. agamem- 
non, G. sarpedon, P. aristolochiae, E. hecabe, D. chrysippus, D. genu- 
tia, E. modesta, T. septentrionis, M. leda, P. atlites, L. boeticus. Re- 
cords of many of these are included in Williams (1930). Most species 
are clearly associated with the Eastern Foreland, fewer with the North- 
east Headland, and fewest with the Northern Foreland (Fig. 1). All 
species of uncertain status in 1990 occurred in the Eastern Foreland, 
and no species were confined to the Northern Foreland. The general 
distributional picture is one of progressive attenuation both in species 
richness and overall abundance from the Eastern Foreland northward, 
corresponding to the less diverse vegetation structure and composition 
of other areas (Thornton & Rosengren 1988). About half the species 
recorded from each area were common there, but relative abundance 
in the areas differed (below). Distribution patterns of selected resident 
species are shown in Figs. 2-9. Potanthus confucius (Fig. 2) occurs in 
all grassland habitats on the island and was numerically the most abun- 
dant species during our survey. It was conspicuously more abundant 
in the Eastern Foreland (up to 14/100 m of grassland transect; mean 
of 26 transects between 0715 and 1730 h, 9/100 m) than in the Northeast 
(mean of 5.8/100 m in 14 transects) and in the Northeast than in the 
Northern Foreland (<2/100 m, 12 transects). It exemplifies well an 
impending slow expansion from a well-established population, largely 
dependent on Ischaemum (the larval food plant), in the Eastern Fore- 
land and is a morning-active species (Fig. 10). As examples of the several 
widely distributed Lycaenidae associated with Ipomea pes-caprae for- 
mations, Z. otis (Fig. 3) and C. strabo (Fig. 4) both have coastal dis- 
tributions; that of C. strabo is somewhat more extensive. Several resi- 
dents appear to have wide but disjunct distributions on the island: P. 
atlites (Fig. 5) was found in all three main vegetated areas, but was 
not observed between these. In contrast, R. juventa (Fig. 6) was absent 
from the Northern Foreland but widely distributed elsewhere. Euploea 
modesta (Fig. 7) occurs in the more densely wooded areas and was not 


90 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


500m 


y 


Fics. 2-9. Distribution (in black) of selected butterfly species on Anak Krakatau, 1990: 
2, Potanthus confucius; 3, Zizina otis; 4, Catochrysops strabo; 5, Precis atlites; 6, 
Radena juventa; 7, Euploea modesta; 8, Troides helena; 9, Catopsilia pomona. Margin 
of vegetated area shown. 


found in the Northern Foreland (but was present there by 1991), and 
the distribution of T. helena was generally similar (Fig. 8). In contrast 
to these residents, the incidence of the migrant C. pomona (Fig. 9) was 
very patchy, and a number of other migrants were seen only in the 
Eastern Foreland. All resident species (Table 1) occurred in the Eastern 
Foreland. 

Many resident species are restricted in their distribution on Anak 
Krakatau; Table 1 ranks the more common species by relative abun- 
dance. The abundances of several species appear to have changed 


VOLUME 46, NUMBER 2 91 


TABLE 1. Relative abundance (1 = most abundant) of butterfly species in the three 
main habitat areas of Anak Krakatau, Aug.—Sept. 1990. Status of each species in each 
area shown as common (C), moderately common (MC), rare (R), as defined in text. 


Region 
Sequence North Northeast East 
1 P. confucius (R) C. strabo (C) P. confucius (C) 
2 Exatis (R) P. confucius (MC) Leotisa @) 
3 E. blanda (R) E. blanda (MC) Z. hylas (C) 
4 Z. hylas (R) Z. hylas (MC) C. strabo (C) 
5 C. strabo (R) Z. otis (MC) E. blanda (C) 
6 P. atlites (R) P. aristolochiae (MC) R. juventa (C) 


considerably since 1986, although the substantial natural fluctuations 
that can occur in insect populations imply the need for caution in this 
suggestion. The decline of D. melanippus is anomalous, but declines 
of several Lycaenidae (e.g., Jamides, C. strabo) may reflect some re- 
duction of the extent of Ipomoea pes-caprae formations, especially around 
the southern part of the Eastern Foreland. Other taxa have remained 
remarkably constant. For example, it seems that the small colony of E. 
cnejus may have persisted without expansion of size or range since 
1986. Some conspicuous recent colonizers, such as T. helena and E. 
modesta, have become very well-established within a short time. 

As Bush et al. (1990) noted, butterfly assemblages on the Krakataus 
are strongly ‘habitat-determined,’ and the relatively early stage of suc- 
cession on Anak Krakatau enables reliable correlation between resident 
butterflies and their preferred or obligate habitats. Anak Krakatau also 
is important in providing butterfly habitats not otherwise readily avail- 
able on the archipelago. Several extinctions on the older islands in the 
1920’s, particularly of Hesperiidae, were attributed to forest closure 
eliminating grassland habitats (New et al. 1988). It is notable that three 
of those species, T. augias, P. conjunctus, and P. lubricans, that were 
not seen in the Anak Krakatau grasslands in 1984-86, and possibly 
others, have appeared recently in similar areas on Anak Krakatau after 
apparent absence from the archipelago of some 60 years. Their future 
on the island merits detailed appraisal to clarify the role of the island 
in the ‘ecological rescue’ (Thornton et al. 1990:152) of such early 
succession taxa whose habitats are declining elsewhere on the archi- 
pelago. The danaine D. genutia sumatrana, which inhabits Casuarina 
clearings, also now may be limited to Anak Krakatau. Another species, 
C. panormus, now persists only on the Sertung spit, which also supports 
Casuarina grassland; this species, too, should be studied in the future 
to determine whether or not it persists there. 

The recent arrival on the archipelago (to Anak Krakatau) of two 


92 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


TABLE 2. Incidence and relative abundance of resident Anak Krakatau butterflies in 
major vegetation types, Aug.—Sept. 1990. Vegetation types (1-6) are (1) Ipomoea pes- 
caprae associations, (2) Ischaemum grassland, (3) Imperata, Saccharum grassland, (4) 
Casuarina, (5) other woodland, (6) woodland clearings; — = absent, c = common, 
MC = moderately common, R = rare (see text); number in table list = more abundant 
species in each habitat from 1 (most abundant), down. 


Vegetation type 
Species 1 2 8 4 5 6 


P. aristolochiae — R R 5R IMC 4MC 

T. helena — — — R 4MC MC 

E. blanda 4MC 2MC 4MC R == 

E. hecabe MC 3R MC R — 

D. genutia R 

E. modesta — 

R. juventa 6MC 

T. septentrionis — 

M. leda R 

M. janardana —_ 

O. medus —= 

N. hylas R 

P. atlites R 
2C 
R 


po) 

(ep) 

pe) 

bo 

2 

@ 

ol al ol SS) ae) 

ee | 
@) 16 


@) 


M. symethus 

C. strabo 

E. cnejus 

J. aratus 

J. celeno 5MC 
L. boeticus R 
Z. otis 1C 
Z. hylas 3C 
A. pseudocentaurus — 
H. erylus — 
P. confucius MC 
P. lubricans — 
P. conjunctus —_— 


Total resident species 14 


| 
|| QR) | eae 
Qmm mmm) | P| mem) wm 


z 
QO 
pe 
= 
Q 


| = 


R Ler 
15 16 10 20 


PR | | P| Rm] | | 
iw) 
< 
Oo 


hesperiids, H. taminatus and P. guttatus, and the nymphalid P. orithya, 
and (to the Sertung spit) of the lycaenids Allotinus unicolor, Nacaduba 
beroe, and Prosotas lutea illustrates the biogeographical roles that these 
two areas, both of which carry early vegetational stages, may play in 
permitting colonization of the archipelago by open country butterflies 
that would otherwise find no suitable habitat on the islands. 

None of the species at present on Anak Krakatau can be considered 
a true ‘forest butterfly.’ Most are taxa associated with secondary or 
transitional seral stages, and are characterized by relatively good dis- 
persal powers and broad geographical distributions. The most abundant 
species in each major habitat are listed in Table 2, and most of these 
are highly characteristic of the habitat noted. Butterfly species richness 
in grassland is rather similar to that on low coastal vegetation and also 
to open woodland and associated small clearings. However, closed wood- 


VOLUME 46, NUMBER 2 93 


40 


seen 


30 


20 


Number 


10 


~ pear Be 


~ ? 


~ ? 


ow 
tt at 
0800 1200 1600 
Time 
Fic. 10. Daily activity patterns of selected butterfly species on Anak Krakatau, based 


on transect walks. Solid circles: Potanthus confucius; open circles, Radena juventa; stars, 
Melanitis leda. 


land-secondary forest has relatively few species associated with or re- 
stricted to it. Much of this limitation reflects availability of larval food- 
plants. As examples, New et al. (1988) emphasized the key nature of 
legume-dominated low coastal vegetation in promoting the establish- 
ment of many species on the Krakataus; Gramineae-dependent Hes- 
periidae depend on stands of grasses with little over-story; and Aris- 
tolochia L. (Aristolochiaceae) vines are restricted largely to secondary 
forest areas in the Eastern Foreland, coinciding with the major distri-: 
bution of consumers such as T. helena and P. aristolochiae. In wood- 
lands, these two species and E. modesta were restricted almost com- 
pletely to denser areas, but most others occurred more commonly along 
edges and in smaller clearings where sunlight could penetrate. The most 
common such species, R. juventa, flew throughout the day without any 
major activity peaks (Fig. 10), and D. genutia also was common. The 
Satyrinae are ‘furtive’ and occurred in long grass in shaded clearings. 
Several Lycaenidae (e.g., A. pseudocentaurus, H. erylus, E. cnejus) 
were found only along woodland edges. 


94 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


There was little evidence of interchange or movement of butterflies 
between habitat patches. Recaptures were obtained for all of the species 
marked and released at their points of capture: I. jwvoenta—40 marked 
(18 recovered); D. genutia—24 (5); E. blanda—80 (4); P. aristolo- 
chiae—15 (9); P. confucius—82 (11); and C. strabo—8 (2). Radena 
juventa and E. blanda were marked with different colors in the Eastern 
Foreland and Northeast Headland, and none was recaptured in the 
other area. Most recaptures were within 20-40 m of the release points, 
with maximum distances (R. juventa—2, D. genutia—1) of about 200 
m. In general, recaptures were too sporadic for reliable interpretation 
of population sizes but the estimates of relative abundance noted earlier 
incorporate inference from this study in addition to transect counts. 

Leps and Spitzer (1990) compared the butterflies of forest climax, 
transitional, and ruderal communities in northern Vietnam by transect 
counts and indicated that high density and faunal heterogeneity were 
associated with the less advanced vegetation, whereas forest butterflies 
exhibited lower diversity but higher constancy. Fifty-five of the total 
of 82 species they recorded (Lycaenidae and Hesperiidae were exclud- 
ed) had relatively broad geographical ranges, and some of these were 
characteristic of ruderal habitats (17 of 55 species) or forest clearings 
(6 of 55). If all records for each Vietnam habitat are combined, the 
totals for each habitat become 45 of 82 species (ruderal) and 62 of 82 
(forest clearings), with a combined total of 75 species; only 7 of 82 
species were confined to closed forest and all of these have restricted 
geographical ranges. Thus, there was a trend for broad range species 
to be excluded from more specialized or later succession: plant associ- 
ations. ‘Ruderal systems’ are the result of shifting agriculture, and they 
represent secondary simplification from the cultivation of fields derived 
from clearing forests and their subsequent abandonment and transfor- 
mation to grasslands with low shrubs. Few such studies of habitat or 
successional segregation of butterflies have been made in southeast Asia, 
but Leps and Spitzer (1990) emphasize that many of the characteristic 
ruderal species are extremely good colonizers of early successional hab- 
itats, and their Vietnam list includes some of the Anak Krakatau taxa: 
P. aristolochiae, P. memnon, G. sarpedon, C. pomona, E. hecabe and 
N. hylas. In Vietnam, T. helena was most characteristic of forest clear- 
ings, coinciding (in part) with its habitat on Anak Krakatau. 

To date, there are few true forest butterflies on any of the Krakatau 
islands and none on Anak Krakatau. As suitable habitat develops, some 
may be expected to appear—although there is a strong possibility that 
most such specialist species may not be sufficiently vagile to reach the 
islands except by rare chance. The mosaic of habitats at present available 
on Anak Krakatau increasingly fosters the establishment of many of 


VOLUME 46, NUMBER 2 95 


the earlier succession species that may arrive, and their persistence will 
depend on the continuance of the full array of such habitats, including 
Ipomoea pes-caprae communities and relatively pure grassland stands. 
The ‘arrival wave’ of butterfly species to the archipelago that is best 
represented on Anak Krakatau is the set that colonized the archipelago 
between 1908 and 1921, from 25 to 38 years after 1888, the period of 
forest formation. The biological age of Anak Krakatau, assuming a self- 
sterilizing volcanic eruption in 1952, was 38 years at the time of the 
last survey, and mixed forest was beginning to develop. Thornton et 
al. (1990) review numerous examples of the extinction of animals on 
the archipelago coinciding with the main period of canopy closure and 
elimination of more open habitats, and New et al. (1988) point out that 
the extinction rate for butterflies was highest during that period (1919- 
34). Monitoring the sequence of vegetational succession on Anak Krak- 
atau over the next two decades could shed considerable light on the 
need to manage such open areas elsewhere to conserve the early suc- 
cessional habitats necessary for many invertebrate animals. This theme 
scarcely has been documented in tropical areas, especially those suffi- 
ciently distant from putative sources to render colonization by late 
successional ‘specialist’ taxa relatively difficult. 

As Thomas (1991:270) commented ‘Butterflies are becoming suffi- 
ciently well-studied for them to be used ... for general conservation 
planning in some parts of the tropics, as a representative insect group.’ 
His study in Costa Rica also emphasized that species frequenting mod- 
ified habitats tend to be those with broad distributions, and that con- 
servation of primary forest is necessary to conserve narrow endemic 
‘specialist’ butterflies. Comparison with the pattern of butterfly colo- 
nization inferred on the older Krakatau islands suggests strongly that 
some widespread species on Anak Krakatau could be conserved locally 
only by maintenance of early seral stages of vegetation. For example, 
D. genutia and P. conjunctus appear to survive on the archipelago 
only because they inhabit the early successional habitats provided by 
Anak Krakatau. Others, such as H. taminatus and P. c.f. guttatus, may 
have been able to colonize the island group only because early succes- 
sional habitats have been available. Altogether, some eleven butterfly 
species may owe their presence on the archipelago, either as recent 
colonists or as declining resident species, to the habitats provided by 
Anak Krakatau and the Sertung spit (Thornton et al. 1992). We suggest 
that such species will eventually disappear from Anak Krakatau as its 
communities move towards later successional phases. Such a move is 
by no means inevitable, however. Future volcanic activity could set back 
the succession, thus again postponing the extinction of such butterflies 
from the island. Rejuvenation of Anak Krakatau through sporadic vol- 


96 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


canic activity may prove to be an important factor in assuring that such 
butterflies persist on the island. 


ACKNOWLEDGMENTS 


Financial support for our work on Krakatau was provided by the Australian Research 
Council and La Trobe University. We thank other expedition members who observed or 
captured butterflies for us and D. Britton for observations made in April 1991. A. F. 
Atkins kindly identified the Hesperiidae. 


LITERATURE CITED 


Busu, M. B. 1986. The butterflies of Krakatoa. Entomologist’s Mon. Mag 122:51-58. 

Busu, M. B. & R. J. WHITTAKER. 1991. Krakatau: Colonisation patterns and hierarchies. 
J. Biogeogr. 18:341-356. 

BusH, M. B., D. J. B. BusH, & R. D. Evans. 1990. Butterflies of Krakatau and Sebesi: 
New records and habitat relations, pp. 35-41. In Whittaker, R. J., N. M. Asquith, 
M. B. Bush & T. Partomihardjo (eds.), Krakatau Research Project 1989 Expedition 
Report. School of Geography, University of Oxford. 62 pp. 

CorBET, A. S. & H. M. PENDLEBURY. 1978. The butterflies of the Malay Peninsula. 3rd 
ed., revised by Eliot, J. N. Malayan Nature Society, Kuala Lumpur. 578 pp. 

Leps, J. & K. SPITZER. 1990. Ecological determinants of butterfly communities (Lepi- 
doptera, Papilionoidea) in the Tam Dao Mountains, Vietnam. Acta Entomol. Bohemo- 
slov. 87:182-194. 

NEw, T. R., M. B. Busu, I. W. B. THORNTON, & H. K. SUDARMAN. 1988. The butterfly 
fauna of the Krakatau Islands after a century of colonisation. Phil. Trans. Royal Soc. 
Lond. B. 332:445-457. 

POLLARD, E. 1977. A method for assessing changes in the abundance of butterflies. Biol. 
Conserv. 12:115-134. 

THomas, C. D. 1991. Habitat use and geographic ranges of butterflies from the wet 
lowlands of Costa Rica. Biol. Conserv. 55:269-281. 

THORNTON, I. W. B. & T. R. NEw. 1988. Krakatau invertebrates: The 1980s fauna in 
the context of a century of recolonisation. Phil. Trans. Royal Soc. Lond. B. 322:493- 
522. 

THORNTON, I. W. B., T. R. NEw, R. A. ZANN & P. A. RAWLINSON. 1990. Colonisation 
of the Krakatau Islands by animals: A perspective from the 1980s. Phil. Trans. Royal 
Soc. Lond. B. 328:181-165. 

THORNTON, I. W. B., S. A. WARD, R. A. ZANN & T.R. NEw. 1992. Anak Krakatau— 
A colonisation model within a colonisation model? GeoJournal. In press. 

THORNTON, I. W. B. & N. J. ROSENGREN. 1988. Zoological expeditions to the Krakatau 
Islands, 1984 and 1985: General introduction. Phil. Trans. Royal Soc. Lond. B. 322: 
273-316. 

WILLIAMS, C. B. 1930. The migration of butterflies. Oliver & Boyd, Edinburgh and 
London. 473 pp. 

YUKAWA, J. 1984. Geographical ecology of the butterfly fauna of the Krakatau Islands, 
Indonesia. T¥o to Ga 35:47-74. 


Received for publication 6 August 1991; revised and accepted 23 February 1992. 


Journal of the Lepidopterists’ Society 
46(2), 1992, 97-105 


MASS FLIGHT RESPONSE OF OVERWINTERING MONARCH 
BUTTERFLIES (NYMPHALIDAE) TO CLOUD-INDUCED 
CHANGES IN SOLAR RADIATION INTENSITY IN MEXICO 


WILLIAM H. CALVERT, LINCOLN P. BROWER 
Department of Zoology, University of Florida, Gainesville, Florida 32611 


AND 


ROBERT O. LAWTON 


Department of Biological Sciences, University of Alabama at Huntsville, 
Huntsville, Alabama 35899 


ABSTRACT. Seemingly enigmatic behavioral responses to sudden clouding charac- 
terize monarch butterflies in their overwintering colonies in Mexico. On sunny days 
throughout the overwintering season, large numbers of monarchs basking on conifer 
boughs within their colony repeatedly respond to periodic cloud shadow by taking flight 
and flying above the colony for approximately 5 minutes before reforming clusters on 
the boughs. Likewise, monarchs in streaming flights down an arroyo to water reverse 
direction and head back to their colony when shaded by a cloud. We hypothesize that 
both of these behaviors are physiologically triggered by rapidly lowering body temper- 
ature when solar radiation warming their bodies is obscured by a cloud. The reversal in 
flight direction is interpreted as an adaptation to the unpredictable duration of cloud 
cover which, if longer than a few minutes, would result in the butterflies’ thoracic 
temperatures dropping below flight threshold. This could strand butterflies away from 
their colony for up to several days, subjecting them to freezing at night, and possibly also 
to greater bird predation. Within their colony, the adaptive significance of the cloud- 
induced behavior appears to be that it allows individual butterflies to relocate into positions 
on boughs that are better insulated by the forest canopy against radiant heat loss to the 
open sky during the night. 


Additional key words: cloud-response, microclimate, thermoregulation, thermal ecol- 
ogy, overwintering. 


Monarch butterflies, Danaus plexippus L., overwintering in the high 
mountains of the Transvolcanic Range of Mexico cannot fly until their 
thoracic temperatures reach 12.7-16°C (mean thermal flight threshold 
= 14.35°C, Masters et al. 1988). Ambient temperatures beneath the 
shaded forest canopy rarely exceed this flight threshold, and in one 
overwintering colony it was exceeded on only 2 of 46 days between 20 
January and 6 March (Calvert & Brower 1986). Therefore few monarchs 
should be active during most of the overwintering period. However, 
on clear days, although the majority of butterflies remain clustered in 
shaded areas on the trees, hundreds of thousands sun-bask, countless 
others fly about above the firs in no sustained direction, while still others 
stream back and forth to water as far as a kilometer from the colony 
(Brower 1986, Calvert & Brower 1986, Masters et al. 1988). The mon- 
archs are able to fly in the cold ambient environment because they are 


98 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


extremely proficient at raising their thoracic temperatures by solar 
basking in either direct or diffuse sunlight: in less than a minute an 
individual monarch can raise its body temperature from below to well 
above flight threshold (Kammer 1970, Douglas 1979, 1986, Casey 1988, 
Masters et al. 1988). ) 

A particularly striking behavior of these sun-basking monarchs in the 
overwintering colonies is that when a cloud casts a shadow, the but- 
terflies invariably fly from their perches in such large numbers that for 
several minutes the sky is partially darkened (Fig. 1A,B). We first noted 
this reaction in January 1977 (Brower et al. 1977) and have since 
observed it on hundreds of occasions over 16 overwintering seasons. If 
the cloud shadow persists for only a short time, most butterflies land 
and resume basking. However, if the cloud cover persists for more than 
about five minutes, the monarchs flutter down and land on less exposed 
positions of the tree boughs within the protective cover of the forest 
canopy (Fig. 1B). Both the sky above the colony and the original exposed 
basking positions become virtually clear of butterflies. Individual but- 
terflies sometimes follow each other in undulating chains as they reform 
the clusters (arrow in Fig. 1B). 

Over the last 16 years, we have observed that the intensity of the 
cloud-response appears related both to the thickness of the cloud and 
to the length of sunshine preceding the cloud shadow. The most intense 
response occurs after a long period of cloudless sunshine and when the 
cloud is thick. Less intense responses occur when clouds and short 
periods of sunshine alternate in rapid succession and when the clouds 
are thin so that they only partly block the radiation falling on the 
colony. The cloud-response involves both an increased number of but- 
terflies flying and an increase in the tempo of sound caused by the 
butterflies colliding with each other and with the vegetation. For this 
study, we chose a situation in which a thick cloud passed over the colony 
after a long period of cloudless sunshine. 

We also have observed repeatedly a second cloud-induced behavior 
that was first reported by Brower (1986). Binocular viewing from above 
the colony on clear days documented huge streams of monarchs flowing 
out of the colony and down an arroyo in search of water. When suddenly 
shaded by a cloud, these streaming butterflies reverse direction back 
towards the colony. If the cloud passes before the butterflies reach the 
colony, they again switch direction towards the water sources. 

In this paper we present quantitative data on the monarchs’ cloud- 
response behavior when direct sunlight radiating the basking butterflies 
is obscured by a passing cloud. We then provide a common hypothesis 
that explains the cloud-induced flight behaviors of the butterflies both 
within their colonies and while flying to water sources. 


VOLUME 46, NUMBER 2 99 


Fic. 1. Cloud-response behavior of monarch butterflies at their Sierra Chincua over- 
wintering site in Michoacan, Mexico. A) Wide-angle view of the sky, clouds that have 
just shaded the area, and the Abies religiosa roosting trees with several thousand flying 
monarchs that have been stimulated by the drop in solar radiation to fly above the tree 
canopy (15 March 1981; original 35 mm kodachrome by L. P. Brower). B) Within about 
five minutes after the appearance of the cloud, the monarchs begin to reform their 
clusters. Individual butterflies follow each other in undulating chains (see arrow) as they 
fly to the tree boughs. Original 35 mm kodachrome by W. H. Calvert. 


100 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


METHODS 


The overwintering colony of several hundred thousand monarchs 
occupied 0.54 hectares of the Abies religiosa (Pinaceae) fir forest in 
the Sierra Chincua of Mexico’s Transvolcanic Belt (19°41'N, 100°18’W, 
altitude 3000 m). The colony was on the high slopes of the Arroyo La 
Plancha drainage immediately below an area locally know as Pena 
Cargada, near the town of Angangueo, Michoacan (Calvert & Brower 
1986). We estimated butterfly flight response to a cloud that rapidly 
obscured solar radiation on 22 January 1986, a clear to partly cloudy 
day. Using a Nikon 50 mm lens set at a focal distance of approximately 
25 m, we took a series of 85 mm color slides of an area of sky from 
the same point within the colony before, during, and after the passage 
of a large, thick cumulus cloud. We projected 18 of these slides taken 
at one minute intervals from 1438-1455 h and counted the flying 
butterflies in each image. The field of view on the projection screen 
consisted of a column of air with a focal midpoint cross sectional area 
of approximately 20 x 80 m. While taking the photographs, we also 
recorded the time of appearance and duration of the shadow produced 
by the cloud that passed over the colony. Variation in the solar radiation 
was recorded simultaneously in a nearby forest clearing located ca. 0.5 
km south of the butterfly photographing position. We used a pyranome- 
ter (Model No. LI-200SB) attached to a printing integrator (LI-550B; 
Li-Cor Inc., Box 4425, Lincoln, Nebraska 68504) to measure the incident 
radiation (watts per m? across the spectrum from 400 to 1200 nm) at 
one minute intervals from 1420-1459 h. By synchronization of the 
pyranometer clock and the photographer’s watch, and by noting the 
time of onset of shading above the butterflies and above the pryanome- 
ter, we determined that it took 5 minutes for the cloud to travel from 
the pyranometer site to the butterfly colony. Thus Table 1 and Fig. 2 
show 18 butterfly counts from 1433-1450 h with times adjusted to 
correspond to the pyranometer readings. 


RESULTS 

A few cumulus clouds appeared around the mountain massif shortly 
after noon on the day of our study, and high, thin cirrus clouds also 
were present intermittently. The radiation data and butterfly counts 
are in Table 1. During a cloudless period from 1420-1436 h, the average 
irradiance in one minute samples varied between 620-812 w/m? (mean 
= 745 w/m2). At 1437 h the cloud drifted between the sun and the 
monarch colony. During the 10 minutes that the shadow persisted 
(1437-1446 h), the mean radiation was 143 w/m? with a low of 102 
w/m?. From 1447-1459 h after the cloud passed, it varied between 
501-762 w/m? (mean = 725 w/m?). 


VOLUME 46, NUMBER 2 101 


TABLE 1. Solar radiation as watts per m2 measured at one minute intervals from 
1420-1459 h and samples of the numbers of monarch butterflies flying in the sky above 
the canopy in the Sierra Chincua overwintering colony, 22 January 1986. Butterfly counts 
were made from photographs taken at one minute intervals over an 18 minute period 
when a cumulus cloud drifted across the forest and shaded the roosting monarchs for 
approximately 10 minutes. 


Solar radiation 


Minutes after 14 h (watts/m_2) No. of flying butterflies/600 m2 
20 810 — 
Zit 812 — 
Pap 796 — 
23 798 — 
24 804 — 
25 801 — 
26 798 —_— 
High 798 — 
28 TKS) — 
29 745 — 
30 750 — 
31 716 — 
32 679 — 
33 637 20 
34 620 16 
35 662 8 
36 665 9 
37 249 34 
38 119 193 
39 113 308 
40 110 232 
Al 105 232 
42 102 263 
43 : 102 881 
44 113 766 
45 142 420 
46 OAT 419 
47 501 282 
48 671 194 
49 668 13 
50 651 56 
ol 702 — 
o2 742 — 
53 728 — 
34 745 — 
foys) 753 — 
56 716 —_ 
57 736 _— 
58 762 — 
59 626 — 


Fig. 2 is a plot of the radiation data measured over one minute 
intervals from 1420-1459 h, and the numbers of butterflies flying at 
18 one minute intervals extending from 4 minutes before to 4 minutes 
after the cloud passed. Flying butterflies counted in the space above 


102 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 
1000 
800 7 


600 


400 —t—_ Watts 
=O Buiterfiies 


Solar radiation (watts/m?) and 
numbers of butterflies flying 


20 25 30 35 40 45 50 55 60 


Time as minutes after 1400 hrs 


Fic. 2. Cloud-response behavior of sun basking monarch butterflies to the sudden 
attenuation of radiation by a cloud. Sierra Chincua, Mexico, overwintering colony, 22 
January 1986. Data are from Table 1. 


the camera during the last 4 minutes of the initial cloudless period 
(1433-1436 h) ranged from 8 to 20 individuals (mean = 18 butterflies). 
During the cloudy period the numbers of butterflies flying rose to 881 
individuals, a 40 to 100 fold increase over the numbers flying before 
the cloud shadow. The cloud began passing the sun at 1444 h and the 
number of butterflies dwindled back to less than a hundred over the 
next 5 minutes. 


DISCUSSION 


Masters et al. (1988) experimentally determined that when sun bask- 
ing monarchs were moved into the shade at an ambient temperature 
of 11.8°C, their thoracic temperatures dropped from 29°C to below the 
lower flight threshold (12.7°C) in less than 7 minutes. In the current 
study, we documented that the butterfly flight response within the 
colony is correlated with the rapidly diminishing amount of radiation 
caused by the passage of a cumulus cloud. Our data also indicate a 6- 
7 minute delay between the onset and peaking of the cloud-response 
(Table 1). This delay is consistent with the heat loss curve identified 
by Masters et al. (1988) and strongly suggests that the cloud-response 
is triggered by the butterflies’ rapidly decreasing body temperature 
rather than by the decreased light intensity per se. 

Periodic clouding occurs frequently at the Mexican overwintering 
sites from December through February, the coldest part of the over- 


VOLUME 46, NUMBER 2 . 1038 


wintering season (Mosino-Aleman & Garcia 1974, Anonymous 1976, 
Calvert et al. 1989). Early mornings are typically clear but cumulus 
clouds begin to form over the mountain massifs towards noon and 
continue to build through the afternoon leading to partly cloudy and 
then often overcast late afternoons. The duration of cloud shadow is 
unpredictable. Thus when the first cloud appears it may cast a shadow 
for only a few seconds, or it may be the harbinger of complete sky 
closure for several days (Calvert et al. 1983). 

We therefore hypothesize that taking flight and reforming clusters 
under the thermally insulating canopy of the forest allows individual 
butterflies to avoid being trapped in positions that are directly exposed 
to the sky. Such trapping is extremely dangerous because intense clear- 
ing at night frequently results in temperatures plummeting to as low 
as —5°C (Calvert & Cohen 1988, Calvert et al. 1982, 1983, 1984, 1986). 
This, in combination with heavy dew that forms on surfaces exposed 
to the open sky, greatly increases the danger of the butterflies freezing 
through inoculative ice crystal formation (Salt 1936, Calvert & Brower 
1981, Brower 1985, Anderson & Brower 1992). 

We also deduce from our research in another Sierra Chincua over- 
wintering colony (Brower & Calvert 1985) that an additional advantage 
of the cloud-response behavior may be a reduction of bird predation. 
During the winter of 1978-79 birds consumed an average of 15,000 
monarchs per day. However, the risk of predation for individual but- 
terflies in exposed positions within the colony was greater than for 
individuals in clusters (see also Calvert et al. 1979, Hamilton 1971). 
Thus, if butterflies were to be trapped thermally while more dispersed, 
the probability of bird predation on individuals would be increased. 


CONCLUSIONS 


Two heretofore enigmatic and very different behaviors of tens of 
thousands of butterflies responding dramatically to cloud shadow appear 
to have a common proximate cause. We hypothesize that both behaviors 
are an innate behavioral response to the butterflies’ rapid cooling that 
results from reduced solar radiation caused by the cloud shadow. 

The ultimate evolutionary advantage of the cloud-response behavior 
is that it reorganizes the individual butterflies into tightly clustered 
positions on the boughs that are better insulated by the forest canopy 
against radiant heat loss to the open sky during the night. Away from 
the colony, the butterflies’ reversal in flight direction back towards their 
colony prevents individuals from becoming stranded and subjected to 
a higher probability of freezing or being eaten while engaged in normal 
behaviors critical to winter survival. 


104 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


ACKNOWLEDGMENTS 


We are indebted to a team of biologists from the Subsecretariat of Ecology (S.E.D.U.E.), 
including E. Verduzco, M. Espitia C., A. Espinoza E., M. Mejia M., M. Huerta Z., Z. 
Aguirre T. and M. Mendez P. We also thank Monarca, A. C., the private conservation 
organization devoted to the protection of the monarch butterfly, for helping to assuage 
many difficulties. Carlos Gottfried and family provided friendship and material support. 
We also thank Nancy Stamp and Linda Fink for critical readings of the manuscript. The 
research was supported by World Wildlife Fund grant 1958 administered by Monarca, 
A. C. and by U.S. National Science Foundation grant BSR 8500416. We dedicate our 
paper with fond memories to the late Richard Barthelemy who shared the mystery of 
these marvelous behaviors while we struggled to understand their significance. 


LITERATURE CITED 


ANDERSON, J. A. & L. P. BROWER. 1992. Ecological factors critical to the cold-hardiness 
of overwintering monarch butterflies (Danaus plexippus) in Mexico. In Malcolm, S. 
B. & M. P. Zalucki (eds.), Biology and conservation of the monarch butterfly. Los 
Angeles County Museum of Natural History, Contributions in Science. In press. 

ANONYMOUS. 1976. Normales climatologicas. Direccion general de geografia y meteo- 
rologico. Servicio Meteorologico Nacional, D.F., Mexico. 

BROWER, L. P. 1985. New perspectives on the migration biology of the monarch 
butterfly, Danaus plexippus L., pp. 748-785. In Rankin, M. A. (ed.), Migration: 
Mechanisms and adaptive significance. University of Texas (Contributions in Marine 
Science), Austin, Texas. 

1986. The migrating monarch. Science Year, The World Book Annual Supple- 
ment, pp. 12-27. World Book, Inc., Chicago. 

BROWER, L. P. & W. H. CALVERT. 1985. Foraging dynamics of bird predators on 
overwintering monarch butterflies in Mexico. Evolution 39:852-868. 

BROWER, L. P., W. H. CALVERT, L. E. HEDRICK & J. CHRISTIAN. 1977. Biological 
observations on an overwintering colony of monarch butterflies (Danaus plexippus 
L., Danaidae) in Mexico. J. Lepid. Soc. 31:232-242. 

CALVERT, W. H. & L. P. BROWER. 1981. The importance of ground escape behavior 
and forest cover for the survival of overwintering monarch butterflies (Danaus plex- 
ippus; Danaidae). J. Lepid. Soc. 35:216-225. 

1986. The location of Monarch butterfly (Danaus plexippus L.) overwintering 
colonies in Mexico in relation to topography and climate. J. Lepid. Soc. 40:164—187. 

CALVERT, W. H. & J. A. COHEN. 1983. The adaptive significance of crawling up onto 
foliage for the survival of grounded overwintering monarch butterflies (Danaus 
plexippus) in Mexico. Ecol. Entomol. 8:471-474. 

CALVERT, W. H., L. E. HEDRICK & L. P. BROWER. 1979. Mortality of the monarch 
butterfly (Danaus plexippus L.): Avian predation at five overwintering sites in Mexico. 
Science 204:847-851. 

CALVERT, W. H., M. B. Hyatt & N. MENDOZA VILLASENOR. 1986. The effects of 
understory vegetation on the survival of overwintering monarch butterflies, (Danaus 
plexippus L.) in Mexico. Acta Zool. Mex. (Nueva Serie) 18:1-17. 

CALVERT, W. H., S. B. MALCOLM, J. I. GLENDINNING, L. P. BROWER, M. P. ZALUCKI, T. 
VAN Hook, J. B. ANDERSON & L. C. SNOOK. 1989. Conservation biology of monarch 
butterfly overwintering sites in Mexico. Vida Silvest. Neotr. 2:38—48. 

CALVERT, W. H., W. ZUCHOwWSKI & L. P. BROWER. 1982. The impact of forest thinning 
on microclimate in monarch butterfly (Danaus plexippus L.) overwintering areas of 
Mexico. Bol. Soc. Bot. Mexico 42:11-18. 

1983. The effect of rain, snow and freezing temperatures on overwintering 

monarch butterflies in Mexico. Biotropica 15:42—47. 

1984. Monarch butterfly conservation: Interactions of cold weather, forest thin- 

ning and storms on the survival of overwintering monarch butterflies (Danaus plex- 

ippus L.) in Mexico. Atala 9:2-6. 


VOLUME 46, NUMBER 2 105 


Casey, T. M. 1988. Thermoregulation and heat exchange. Adv. Insect Physiol. 20:119- 
146. 

Douc as, M. M. 1979. Hot butterflies. Natural History 88:56-65. 

1986. The lives of butterflies. University of Michigan Press, Ann Arbor, Michigan. 
xvii + 241 pp. 

HAMILTON, W. D. 1971. Geometry of the selfish herd. J. Theor. Biol. 31:295-311. 

KAMMER, A. E. 1970. Thoracic temperature, shivering, and flight in the monarch 
butterfly, Danaus plexippus (L.). Z. vergl. Physiol. 68:334-344. 

MasTERS, A. R., S. B. MALCOLM & L. P. BROWER. 1988. Monarch butterfly (Danaus 
plexippus) thermoregulatory behavior and adaptations for overwintering in Mexico. 
Ecology 69:458—467. 

MOSINO-ALEMAN, P. A. & E. Garcia. 1974. The climate of Mexico, pp. 345-404. In 
Brysen, R. A. and F. K. Hare (eds.), World survey of climatology. Elsevier, Amster- 
dam. 

SALT, R. W. 1936. Studies on the freezing process in insects. Tech. Bull. Minn. Agric. 
Exp. Stn. 116. 41 pp. 


Received for publication 28 October 1991; revised and accepted 7 April 1992. 


Journal of the Lepidopterists’ Society 
46(2), 1992, 106-109 


LARVAL MORTALITY OF INDIAN TASAR SILKWORM 
(ANTHERAEA MYLITTA) (SATURNIIDAE) 
DUE TO PEBRINE INFECTION 


C. S. K. MISHRA 


Department of Zoology, College of Basic Science, 
Orissa University of Agriculture and Technology, 
Bhubaneswar 751003, Orissa, India 


B. K. NAYAK 
State Sericultural Research Station, Baripada 757001, Orissa, India 


AND 


M. C. DASH 
School of Life Sciences, Sambalpur University, Burla 768019, Orissa, India 


ABSTRACT. Large scale mortality of tasar silkworm, Antheraea mylitta, occurs 
during commercial rearing seasons because of pébrine caused by Nosema sp., a micro- 
sporidian pathogen. This paper reports comparative mortality by instar in pébrine free 
and pébrine infected larvae during three rearing seasons—rain, autumn, and winter. 


Additional key words: seasonal variation, Nosema, pathogen, Bombyx mori. 


Pebrine is a common disease of the tasar silkworm caused by a 
pathogen Nosema sp., which results in heavy mortality to the tasar 
silkworm, Antheraea mylitta (Drury). Little literature is available on 
tasar mortality due to pébrine (Jolly 1968). Most studies on pebrine 
have focused on Bombyx mori L., examining effects of temperature 
and humidity on pébrine occurence (Dasgupta 1950), seasonal incidence 
of pébrine (Deviah & Krishnaswami 1975), and seasonal variation on 
larval mortality caused by pébrine (Noamani et al. 1971). Studies on 
drug effect and susceptibility of Malacosoma disstria Hiibner to No- 
sema distriae have been reported by Wilson (1984) and Chandra and 
Sahakundu (1983). However, there is no published information on the 
rate of mortality of the tasar silkworm due to pébrine. Hence, this 
investigation was conducted during 1988 to determine the susceptibility 
of tasar silkworm to pébrine disease in different larval stages and dif- 
ferent seasons. 


MATERIALS AND METHODS 


Mated females of A. mylitta were segregated into pébrine free (PF) 
and pébrine infected (PI) groups after microscopic examination of the 
moths in the grainage at the State Tasar Research Farm, Durgapur, 
Mayurbhanj District of Orissa, India. The grainage is a specially de- 
signed house for preservation of tasar seed cocoons and production of 


VOLUME 46, NUMBER 2 107 


healthy tasar eggs at a commercial scale. Pébrine free and pébrine 
infected eggs were collected after oviposition. The eggs were allowed 
to hatch, and twenty replications of 500 hatchlings of both pébrine free 
and pébrine infected A. mylitta were reared on Termilalia tomentosa 
Wt. & Arn. (Combretaceae) in isolated rearing fields at the State Tasar 
Research Farm. The mortality of pébrine free and pébrine infected 
larvae at each instar was tabulated. The experiment was repeated during 
three commercial rearing seasons, i.e., July-August (Rain), September- 
October (Autumn), and November—December (Winter) of 1988. The 
data were analyzed statistically using Student’s t-test (Snedecor & Coch- 
ran 1967). Climatological parameters, such as maximum and minimum 
temperature, relative humidity, and rainfall during experimental pe- 
riods were recorded. 


RESULTS 


Mortality of tasar silkworm is common in cultures due to outdoor 
rearing methods which subject them to adverse climatic conditions, 
predators, parasites, and diseases. Observations indicated that percent- 
age mortality of pébrine infected larvae was greater than that of pébrine 
free larvae in all instars except the 5th and in all seasons. The probability 
values (P < 0.001) of the t-tests demonstrate a statistically significant 
difference in percentage mortality of pébrine free and pébrine infected 
larvae, except for Ist instars in the winter sample (Table 1). Mortality 
was consistently higher in pébrine infected larvae in instars 1—4 and in 
pebrine free larvae in instar 5. Within the pébrine free samples, per- 
centage mortality was higher in the Ist and 5th instar than in the 2nd, 
3rd, and 4th instar. Within the pébrine infected samples, percentage 
mortality was higher in the 3rd and 4th instar than in the Ist, 2nd and 
Sth instar. 


DISCUSSION 


Sen et al. (1969) reported that mortality of A. mylitta larvae was 
accelerated from the 8rd instar onwards, with increasing intensity of 
disease symptoms. However, the present investigation indicated that 
the pathogen was most active and virulent during the 3rd and 4th 
instars inducing maximum mortality. This is similar to earlier obser- 
vations by Wilson (1984) in M. distriae in which he concluded that 3rd 
instar larvae are more susceptible than 5th instar larvae. 

Comparatively lower percentage mortality in pébrine infected larvae 
in the 5th instar may be due to elimination of larvae susceptible to the 
pathogen in the 8rd and 4th instars, a possible inactive phase of the 
pathogen in the 5th instar, or the development of immunity in the 
surviving larvae. 


JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


108 


‘WUvOTIUBIS JON = SN x 


1000 >d 1000 >d 1000 >d 1000 >d *SN =} 

8ST + GV9 IST + 60°SG 6I'T + FS 6I LOT = IV Tl 961+ PO 9T Id 

961+ G6 $I SIT + 698 9¢ 1 + 618 Oc I + SV OL 161 + 96ST Hd IOJUT A 
1000 >d 1000 >d 1000 >d 1000 >d 1000 >d = 

ccIl + S16 9c T + FS 0S Sol + 90' VG LGT + SV FI Isl + OV 1G Id 

STI + $9 9T1 LOT + O08 TI SIT = TLGt 861 + SCSI VE + LI OG Ad uuIn{ny 
1000 >d 1000 >d 1000 >d 1000 >d 1000 >d = 

cc. + L¢8 CST + FG'8G 89'T + 06°66 O09 T + SCST LOT + ST6I Id 

661 + OG CT Ig I + O6 OL Oc I+ V8 II SSI + P6CI Sco 1+ IT8I Ad urey 

Ie\suI YIG 1e\sul YP Ieysul pig 1e\sul pug Ie }sUul }ST UOI}IPUOD [PAIL] uOseaS 


JUsIIIp ye DIWWhw “vy Jo sear] ([q) peyoyur surged pue (fq) 9e1} 9uTAqed Jo uoTjeIAep piepueys F Aj][eOUL 93e}Ud010g 


‘S86 JO SUOSBOS JUSIOFIP sulInp pue sieysul 


‘T ATIVE 


VOLUME 46, NUMBER 2 109 


TABLE 2. Mean values + standard deviation of some environmental parameters dur- 
ing different rearing seasons of A. mylitta during 1988. 


Parameters Rain Autumn Winter 


Daily maximum temperature (°C) 35.17 + 1.68 34.40 + 1.39 29.70 + 1.28 
Daily minimum temperature (°C) PRT) se M928) 20.33 + 1.18 V6.27 == 14 
Daily relative humidity (%) 91.40 + 1.78 90.00 + 1.89 81.67 + 1.58 
Total rainfall (mm) 312.50 142.83 20.83 


The average temperature, relative humidity, and rainfall were all 
least during winter, coinciding with the lowest larval mortality. These 
climatic features were highest during ‘rain’ and medium during ‘au- 
tumn’ (Table 2). The medium temperature and relative humidity re- 
gimes coincide with highest larval mortality, which is similar to obser- 
vations by Dasgupta (1950) in B. mori. Medium temperature and relative 
humidity apparently stimulate the pathogen. However, Deviah and 
Krishnaswami (1975) found minimum incidence of pébrine in B. mori 
at higher temperature and relative humidity, and maximum incidence 
at low temperature and relative humidity. In contrast, Noamani et al. 
(1971) reported that temperature and relative humidity have no relation 
to incidence of pébrine. Although our data and results are consistent 
with the findings of some previous studies regarding the role of climatic 
factors on the mortality of pébrine infected A. mylitta, they are contrary 
to those reported in other studies. Hence, it is clear that this topic 
requires further investigation. 


LITERATURE CITED 


CHANDRA, A. K. & A. K. SAHAKUNDU. 1983. The effect of drug on pébrine infection 
in Bombyx mori L. Indian J. Sericulture 21:67-69. 

DascupTA, M. R. 1950. Monographs on cottage industries, No. 1, Diseases of silkworms. 
Govt. Indian Press, Calcutta. 202 pp. 

DEVIAH, R. & S. KRISHNASWAMI. 1975. Observations on the seasonal incidence of pébrine 
disease on the silkworm Bombyx mori. Indian J. Sericulture 14:27-30. 

JoLiy, M. S. 1968. Tasar Research Scientific Brochure No. 4:1-31. Central Tasar Re- 
search Station, Ranchi. 

NOAMANI, K. R., S. KRISHNASWAMI & A. K. SAHAKUNDU. 1971. Observations on the 
seasonal incidence and intensity of pébrine disease of the silkworm B. mori under 
West Bengal climatic conditions. Indian J. Sericulture 8:11-14. 

SEN, S. K., M. S. JoLLy & T. R. JAMMy. 1969. Diseases of tasar silkworm A. mylitta 
(Saturniidae). Indian J. Sericulture 8:11-14. 

SNEDECOR, G. W. & W. G. COCHRAN. 1967. Statistical methods. Sixth ed. Iowa State 
University Press, Ames, Iowa. 593 pp. 

WILSON, G. G. 1984. Pathogenicity of Nosema distriae, Pleistophora schubergi and 
Varimorpha necatrix (Microsporidia) to larvae of forest tent caterpillar, Malacosoma 
disstria. Zeits. Parasit. 70:763-767. 


Received for publication 13 June 1991; revised and accepted 23 February 1992. 


Journal of the Lepidopterists’ Society 
46(2), 1992, 110-118 


SEXUAL DIFFERENCES IN HABITAT PREFERENCE 
AND BEHAVIOR OF OENEIS CHRYXUS 
(NYMPHALIDAE: SATYRINAE) 


DALE L. CLAYTON AND DANIEL PETR 
Department of Biology, Southwestern Adventist College, Keene, Texas 76059 


ABSTRACT. Individual Oeneis chryxus were captured, marked, released, and ob- 
served during 1988 and 1990 at a site in the Rocky Mountains of central Colorado at 
2700 m. Habitat preferences were analyzed in the context of hilltopping and territoriality. 
Males showed a clear preference for rocky ridge tops, whereas most females were found 
in grassy meadows. Male and female flight patterns differed significantly. Males and 
females responded differently to conspecifics and to other species. Males defended ter- 
ritories, females did not. 


Additional key words: _ hilltopping, territoriality, flight pattern, mate-searching, arctic 
butterfly. 


Oeneis chryxus (Doubleday and Hewitson) is a small, orange-brown, 
cryptically-colored butterfly. It prefers open, sunny habitats, and is 
arguably the most variable of the “‘arctics” in terms of color, markings, 
habitat, range, and behavior. This species is found in northern or mon- 
tane environments characterized by short summers and requires two 
years to mature. At least one population in Colorado is synchronized 
on a biennial cycle, with adults absent in odd numbered years (Emmel 
et al. 1992, Clayton & Petr, unpublished). Scott (1986) reported that 
population size is greater during even-numbered years in Colorado and 
in odd-numbered years in northwest Wyoming and California; alter- 
nating population size is not apparent in Michigan and Manitoba (Scott 
1986). 

Masters and Sorensen (1969) characterize O. chryxus as a prairie and 
steppe species with a tendency to move into other habitats such as 
forests and mountaintops. At Stagecoach Meadows, on the west slope 
of the Colorado Rockies (Gunnison County, Colorado), O. c. chryxus 
occurs in open meadows but is found more often in the “tension zone” 
between meadow and forest, characterized by fallen trees and open 
areas for perching (Masters & Sorensen 1969). Scott (1986) reported O. 
c. chryxus perching on hilltops or ridge tops, but also observed the 
species perching in gulches near timberline in the San Juan Mts., Col- 
orado (perhaps to avoid harsh winds that sweep the crests). Other species 
of Oeneis (e.g., O. melissa (Fabricius)) also are known for their hill- 
topping habits (Troubridge et al. 1982). Dunlap (1962) and Knapton 
(1985) studied O. c. strigulosa McDunnough in Algonquin Park, On- 
tario, Canada, where it reportedly does not exhibit hilltopping behavior 
but defends perch sites in open sandy or stony spots in relatively flat 
terrain. In addition, territorial behavior has been reported for O. chryxus 
by Dunlap (1962), Troubridge et al. (1982), Knapton (1985), and Mas- 


VOLUME 46, NUMBER 2 . 111 


ters and Sorensen (1969), and for several other species of Oeneis by 
Guppy (1962), Masters and Sorensen (1969), and Troubridge et al. 
(1982). 

Based on studies of O. c. chryxus in a montane community near 
Florissant, Colorado, we report on sexual differences in habitat pref- 
erence, territoriality, and behavior. 


MATERIALS AND METHODS 


Our study area was located 12 km S of Florissant, Colorado, at an 
elevation of 2670-2707 m. It was traversed by a path 1065 m long, 
connecting three ridge tops (A, B, & C) and two meadows (MB & MC). 
The study area covered 102,850 m? of which ridges were 10,450 m? 
and meadows were 18,400 m:?. 

The ridges were characterized by rock outcroppings, pines (Pinus 
ponderosa Laws.; Pinaceae), aspens (Populus tremuloides Michx.; Sal- 
icaceae), and open patches of stony soil sparsely vegetated with low 
grasses and forbs. Meadows were located at the base of large gulches 
where soil was deeper, richer, and wetter. Meadows supported grasses 
and forbs with shrubby cinquefoil (Potentilla fruticosa L.; Rosaceae) 
and other shrubs sparsely distributed throughout, and small aspens and 
pines around the edges. 

Observations were made on 4 days (5-8 July) in 1988 and on 18 days 
(24 June-6 July) in 1990. A total of 196 individuals were captured, 
marked, and released. Individual O. c. chryxus were numbered on the 
underside of the hindwing using red or black Sharpie permanent marker 
pens (Sanford) or a “‘Silver-Marker’’ paint-pen (Pilot) and identified 
later with binoculars. Each individual’s number, sex, location of capture, 
and the time, date, and location of all sightings and behaviors were 
recorded. Some individuals were sighted 10 or more times per day but 
were counted only once per day unless they moved to a different ridge 
or meadow. This proceedure prevented biases from extended obser- 
vations at more active sites. 


RESULTS 
Habitat Preference 


Ridge tops and meadows. Males were found more frequently on 
ridge tops, and females were found more frequently in meadows (Fig. 
1; Chi Square with Yates correction = 157.5, P < 0.001). The pattern 
of sex distribution on the ridges was the same in 1988 and 1990. 

Females were more sedentary than males. Fifteen percent (26 of 
173) of adults captured in 1990 were females, but only 10.5% of the 
sightings (29 of 275) were females. 

Elevation and exposure. Fig. 2 gives the number of male sightings 


112 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


707; : MALES 
Sale ee aie 2// 
: | FEMALES 


NUMBER OF MALE/FEMALE SIGHTINGS 


0 Z i A LLB AD UY} 5 


A B S MB MC TRANS 
RIDGE(A,B,C)-MEADOW(MB,MC)-TRANSITION 


Fic. 1. Habitat distribution of male and female Oeneis chryxus chryxus sightings at 
three ridge tops, two meadows and intermediate areas (TRANS). Numbers in boxes 
indicate the proportion of males to females for the 1990 season. Individuals were scored 
only once per day. 


at the more active perch sites during the 1990 season. Elevation of 
perch sites and number of male sightings showed a significant positive 
correlation (Spearman Rank Correlation, P < 0.05). Perch sites A5, B12, 
and C47 were the three most frequently occupied and also were the 
highest sites on the three ridges of the study area. Ridge C was not 
studied in 1988, but activity on Ridges A and B showed the same pattern 
in 1988 as in 1990, with sites A5 and B12 being the two most active 
sites, and A7 and B8 being next most active. All active sites (Fig. 2) 
were open and relatively free of ground cover and overhead vegetation. 


Behavioral Differences 


Flight patterns. Females seem to have a slower wing-beat, fly with 
less undulation, and have straighter flight paths than males. By contrast, 
males circled and returned quickly to their perches after engaging other 
butterflies or if disturbed by us. These simple differences were used to 
correctly predict sex of 60/60 male and 11/12 female O. c. chryxus 
before capture (P < 0.001, Chi Square = 45.9). When stalked or dis- 
turbed, males sometimes abandoned the perch and disappeared into 


VOLUME 46, NUMBER 2 ; 118 


) 


& 


NUMBER OF MALE SIGHTINGS 


A7 A28 Bi2 B10 C47 C66 C75 C106 


THE MOST ACTIVE RIDGE SITES 


Fic. 2. Number of Oeneis chryxus chryxus male sightings at the most frequented 
sites on three ridges. Sites A5, B12, and C47 were the highest points on Ridges A, B, and 
C. Only sites with four or more sightings are shown. Individuals were scored only once 
per day. 


vegetation; female wing beat frequency increased or became more 
erratic as they attempted escape. Prediction of sex was not attempted 
if an individual gave conflicting signals. Predictions were recorded only 
during the last nine days of the 1990 field observations. 

Chases and spirals. Any butterfly moving near a male O. c. chryxus 
elicited a chase. Usually the intruder took a direct path away from the 
perch site with the resident in pursuit. The chase often turned into a 
spiraling flight with two, or occasionally three, individuals twirling in 
tight circles around each other. Some spirals lasted more than 45 seconds 
and did not end until the butterflies were well above the treetops, as 
high as 30 m above ground. Spirals ended with one or both participants 
diving sharply toward the ground. The resident returned to the perch 
site more often than the intruder (Table 1, Chi Square = 98.7, P < 
0.001). A resident was defined as a marked O. c. chryxus male with a 
recent history of occupancy and successful defense of the perch site 
against conspecifics. 

Nine females captured in meadows were released on. ridges and 


114 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


TABLE 1. A comparison of site tenacity for resident Oeneis chryxus chryxus and 
intruding conspecifics. A resident was defined as a marked O. c. chryxus male with a 
recent history of occupancy and successful defense of the perch site. 


Return to perch site 


Resident and Number of 

Flight season Resident only Intruder only intruder encounters 
1988 40 (88.8%) IL (22%) 4 (8.8%) 45 
1990 114 (77.0%) 3 (2.0%) 31 (20.9%) 148 


observed. Most females fled resident males and were pursued in long 
chases or spiral flights. Three of the nine pursued females landed on 
the trunks of trees or in branches as high as 10-12 m, and the resident 
males returned to their perches. Only one male from more than 300 
male/male encounters landed in a tree. Two of the released females 
landed on the ground where the pursuing males approached and at- 
tempted to mate. 

Females were never observed to initiate chases or defend territories. 
One female was observed for an hour while nectaring on shrubby 
cinquefoil in a meadow. A grasshopper and six butterflies (a skipper, 
two angle-wings, a sulfur, a little blue, and a copper) flew within 10- 
30 cm of her but elicited no response. All males we observed gave chase 
when approached by butterflies, moths, birds, falling leaves, and even 
pebbles tossed near the perch. 


DISCUSSION 


Marked butterflies could be identified with binoculars, making it 
unnecessary to recapture them or to disrupt their activities. Morton 
(1984) found that adding marks of different color or size to the cryptic 
underwings of five butterfly species did not change the statistical prob- 
ability of sighting them on subsequent days. Recapture involving han- 
dling, however, did reduce the frequency of sightings in his study. 

Dunlap (1962) and Knapton (1985) studied O. c. strigulosa in Al- 
gonquin Park, Ontario, Canada, where it reportedly does not show 
hilltopping behavior. Both Dunlap’s and Knapton’s observations were 
made along an abandoned railroad right-of-way, raised slightly above 
the surrounding area and providing perch sites free of vegetation. 
Baughman and Murphy (1988) show that hills need not be high to orient 
a butterfly’s movements and to evoke hilltopping. It could be argued 
that the Ontario population of O. c. strigulosa was hilltopping on the 
raised roadbed, but it would be difficult to make that argument for the 
Stage coach Meadow population of O. c. chryxus on the west slope of 
the Colorado Rockies, because they defend perches considerably below 
available peaks (Masters & Sorensen 1969). Whether the behavioral 


VOLUME 46, NUMBER 2 115 


variability between populations reflects genetic differences or is in re- 
sponse to differences in habitat, elevation, or topography is unknown. 

Oeneis c. chryxus hilltop near Florissant, Colorado, although features 
other than elevation, such as bare ground and lack of surrounding trees 
or bushes, add to the attractiveness of perch sites. On ridge A, site A7 
was at the same elevation as A5 and only 50 m away, but had signifi- 
cantly fewer male sightings (Fig. 2; Chi Square = 18.0, P < 0.001). 
The more active site (A5) had slightly less cover on the periphery and 
was at the head of a valley leading from a meadow. Site B8, on ridge 
B, was slightly lower but had more activity than adjacent sites B10 and 
B11. B8 was free of vegetation and atop a large rock (2 m high and 5 
m in diameter), with bare ground sloping downhill for 20-25 m. B10 
and B11 were bounded by bushes and trees. The distribution of O. c. 
chryxus males at sites on Ridge C are strongly correlated with elevation. 
Site C47 was at the peak; sites C22, C66, and C67 were at nearly equal 
elevations but lower than C47, and the remaining sites were even lower 
on the ridge. 

A female would encounter a male about 15-80 times as frequently 
on ridges as she would in meadows. This estimate is based on male 
sightings and is corrected for observation times in the two habitats. 
Weather conditions permitted an average flight period slightly longer 
than five hours per day; thus, in 10 to 20 minutes a female would 
encounter as many males on ridges as she would in five hours (an entire 
day’s flight period) in meadows. Hilltopping for mate location greatly 
reduces a female’s energy expenditure and exposure to predation. 

Hilltopping is well-documented for butterfly species and other insects 
as an efficient strategy for bringing mates together (Alcock 1987, Shields 
1967, Lederhouse 1982, Scott 1968, Thornhill & Alcock 1983, Wickman 
1987, 1988). We assume that virgin female O. c. chryxus hilltop for 
mating, but quickly return to meadows for oviposition on the abundant 
grasses that are their larval food plants. Wickman (1988) showed that 
virgin female Lasiommata megera (L.) (Satyrinae) fly uphill to where 
males perch, but cease to do so after mating. 

Wickman (1986, 1987, 1988) and Wickman and Wiklund (1983) 
demonstrated that females of three genera of satyrines in Europe mate 
soon after eclosing and usually only once. Wiklund (1982) also showed 
that following mating, female Aphantopus hyperanthus (L.) (Satyrinae) 
become more cryptic, evasive, and resistive to male contact. Similar 
behaviors in O. c. chryxus likely account for the smaller number of 
females found in our study and in collections we have examined. 

Male Coenonympha pamphilus (L.) (Satyrinae) defending territories 
achieve more matings than do males without territories (Wickman 
1985). Ehrlich and Wheye (1986, 1988) present an interesting exception 


116 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


in which hilltopping and territoriality result in lower mating success 
for Euphydryas editha (Boisduval) (Nymphalinae) during years of high 
population density (also see Scott 1968). 

Territoriality in insects, and specifically in butterflies, has been ques- 
tioned on the basis of the primitive phylogenetic position of the group 
and a lack of defensive accouterments (Scott 1974, 1986, Suzuki 1976). 
However, an individual’s ability to maintain a territory can be decided 
simply by the response of conspecifics. The chases and spirals initiated 
by resident males are effective because intruders tend to leave directly 
and quickly (Table 1). The most active sites were at times contested 
for by two, rarely three, sparring males; but the resident initiated most 
of the chases, occupied the preferred perch, and enjoyed the most 
occupancy time. Such contests always were resolved, usually with one 
encounter. Encounters from which both resident and intruder returned 
to the perch site involved a short series of engagements from which 
the resident (usually) returned alone the final time. Extended obser- 
vations at the more active sites in 1990 account for the increased pro- 
portion of encounters where both resident and intruder returned (Ta- 
ble 1). 

It is unlikely that O. c. chryxus males can distinguish gender or even 
species from the perch, demonstrated by the fact that they chase skip- 
pers, swallowtails, birds, falling leaves, or tossed pebbles. Scott (1986) 
calls chases and spirals “potential courtship forays.’’ The simplest ex- 
planation for these forays probably involves a fixed-action pattern (pur- 
suit), coupled to a sign stimulus (movement) via an innate releasing 
mechanism (Colgan 1989). Once initiated, the behavioral sequence 
exhibited by the resident is switched to “sparring” by intruder males, 
“courtship” by females, and “break off” by other species and inanimate 
objects. The quickness with which resident males attempted to mate 
females landing on the ground suggests that males discriminate the sex 
of conspecifics in flight. Occasionally, sparring males landed near one 
another but two males were never observed to make physical contact 
on the ground. 

The perching male does discriminate some features of intruders. He 
seldom chases dipterans or hymenopterans even though some are as 
large as some butterfly species that are chased. The most obvious dif- 
ference is wing beat frequency. Oeneis c. chryxus, other butterflies, 
moths, and skippers have fluttering, undulating flight patterns and are 
chased. Bees and flies at most elicited brief, quickly aborted chases, as 
did pebbles tossed above perching males. 

It is axiomatic that benefit must exceed the cost of a behavior (Car- 
penter 1976). The resource(s) contested for at these perch sites has not 
been identified unquestionably, but the most likely resource is “mates.” 


VOLUME 46, NUMBER 2 ; Lye 


Ridges provide no apparent advantage for food, shelter, thermoregu- 
lation, oviposition sites, or freedom from predators. 

The habitat and behavioral differences we have described for O. c. 
chryxus indicate a reduced time and energy expenditure for females. 
Males are found at predictable, easily-located sites (ridges); females are 
found away from males in more protected sites (meadows) where they 
are less likely to be disturbed while ovipositing. Males spend much 
energy and risk greater exposure defending perch sites against com- 
peting conspecific males, which suggests that natural selection pays 
males well for territorial defense (Riechert 1988). 


ACKNOWLEDGMENTS 


We thank Boyce Drummond for introducing us to O. c. chryxus and encouraging us 
to write this paper; Tom Emmel for reading an early draft and suggesting improvements; 
Christer Wiklund and an anonymous reviewer for valuable criticism; Roger “Sandy” 
Sanborn for making the facilities of Pikes Peak Research Station available to us; and Angel 
Rodriguez, Academic Dean, Southwestern Adventist College, for finding funds to support 
this research. 


LITERATURE CITED 


ALCOCK, J. 1987. Leks and hilltopping in insects. J. Nat. Hist. 21:319-328. 

BAUGHMAN, J. F. & D. D. MurpHy. 1988. What constitutes a hill to a hilltopping 
butterfly? Amer. Midl. Nat. 120:441-448. 

CARPENTER, F. L. 1976. Threshold model of feeding territoriality and test with a 
Hawaiian honey-creeper. Science 194:639-642. 

COLGAN, P. W. 1989. Animal motivation. Chapman and Hall, New York. 159 pp. 

DUNLAP, D. J. 1962. Territorial habits of the chryxus arctic butterfly. Ont. Field Biol. 
16:20-24. 

EHRLICH, P. & D. WHEYE. 1986. Nonadaptive hilltopping behavior in male checkerspot 
butterflies (Euphydryas editha). Am. Nat. 127:477-483. 

1988. Hilltopping checkerspot butterflies revisited. Am. Nat. 132:460-461. 

EMMEL, T. C., M. MINNo, & B. A. DRUMMOND. 1992. Florissant butterflies. A guide 
to the fossil and present-day species of Central Colorado. Stanford Univ. Press, 
Stanford, California. 118 pp. In press. 

Guppy, G. 1962. Collecting Oeneis nevadensis (Satyrinae) and other genera on Van- 
couver Island, with a theory for hilltopping. J. Lepid. Soc. 16:64—66. 

KNAPTON, R. W. 1985. Lek structure and territoriality in the chryxus arctic butterfly, 
Oeneis chryxus (Satyridae). Behav. Ecol. Sociobiol. 17:389-395. 

LEDERHOUSE, R. C. 1982. Territorial defense and lek behavior of the black swallowtail 
butterfly, Papilio polyxenes. Behav. Ecol. Sociobiol. 10:109-118. 

MASTERS, J. H. & J. T. SORENSEN. 1969. Field observations on forest Oeneis (Satyridae). 
J. Lepid. Soc. 23:155-161. 

Morton, A. C. 1984. The effects of marking and handling on recapture frequencies 
of butterflies, pp. 55-58. In Vane-Wright, R. I. & P. R. Ackery (eds.), The biology 
of butterflies. Symp. Roy. Entomol. Soc. Lond., No. 11. 429 pp. 

RIECHERT, S. E. 1988. The energetic costs of fighting. Amer. Zool. 28:877-884. 

ScoTT, J. A. 1968. Hilltopping as a mating mechanism to aid the survival of low density 
species. J. Res. Lepid. 7:191-204. 

1974. Mate-locating behavior of butterflies. Am. Midl. Nat. 91:103-117. 


118 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


1986. The butterflies of North America: A natural history and field guide. 
Stanford Univ. Press, Stanford, California. 583 pp. 

SHIELDS, O. 1967. Hilltopping: An ecological study of summit congregation behavior 
of butterflies on a southern California hill. J. Res. Lepid. 6:69-178. 

SUZUKI, Y. 1976. So-called territorial behavior of the small copper, Lycaena phlaeas 
daimio Seitz (Lepidoptera, Lycaenidae). Kontyu 44:193-204. 

THORNHILL, R. & J. ALCOCK. 1983. The evolution of insect mating systems. Harvard 
Univ. Press, Cambridge, Massachusetts. 547 pp. 

TROUBRIDGE, J. T., K. W. PHILIP, J. A. SCoTT & J. H. SHEPARD. 1982. A new species 
of Oeneis (Satyridae) from the North American arctic. Can. Entomol. 114:881-889. 

WICKMAN, P. O. 1985. Territorial defence and mating success in males of the small 
heath butterfly, Coenonympha pamphilus L. (Lepidoptera: Satyridae). Anim. Behav. 
33:1162-1168. 

1986. Courtship solicitation by females of the small heath butterfly, Coenonym- 

pha pamphilus (L.) (Lepidoptera: Satyridae) and their behavior in relation to male 

territories before and after copulation. Anim. Behay. 34:153-157. 

1987. Mate searching behavior of satyrine butterflies. Doctoral Dissertation, 

University of Stockholm, Sweden. 95 pages. 

1988. Dynamics of mate-searching behaviour in a hilltopping butterfly, La- 
siommata megera (L.): The effects of weather and male density. Zool. J. Linn. Soc. 
93:357-377. 

WICKMAN, P. O. & WIKLUND, C. 1983. Territorial defense and its seasonal decline in 
the speckled wood butterfly (Pararge aegeria). Anim. Behav. 31:1206-1216. 

WIKLUND, C. 1982. Behavioural shift from courtship solicitation to mate avoidance in 
female ringlet butterflies (Aphantopus hyperanthus) after copulation. Anim. Behav. 
30:790-793. 


Received for publication 17 June 1991; revised and accepted 23 February 1992. 


Journal of the Lepidopterists’ Society 
46(2), 1992, 119-127 


BUTTERFLIES OF THE CAYMAN ISLANDS, WITH THE 
DESCRIPTION OF A NEW SUBSPECIES 


LEE D. MILLER AND STEPHEN R. STEINHAUSER 


Allyn Museum of the Florida Museum of Natural History, 
3621 Bayshore Road, Sarasota, Florida 34234 


ABSTRACT. Thirty-one butterfly species are recorded from the islands of Grand 
Cayman and Cayman Brac, including two new records for the Cayman Islands, Eumaeus 
atala and Eurema dina dina. Dryas iulia zoe, new subspecies, is described, and some 
aspects of the taxonomy of Cayman Lepidoptera are discussed. 


Additional key words: Caribbean biogeography, Dryas iulia zoe n. ssp., new records. 


The junior author, in the company of Z. M. Schwendeman, collected 
on Grand Cayman and Cayman Brac islands between 31 October and 
7 November 1990. During this time, they captured a total of 407 
specimens representing 31 butterfly species, one with a different sub- 
species on each island, and one represented by a new subspecies de- 
scribed herein. Two new records for the Cayman Islands are included 
in this total. The presence of new records on the Caymans is rather 
surprising: one has been led to believe that these islands are well col- 
lected. The records enumerated below raise the total number of but- 
terflies known from these islands to 46 species, and the Grand Cayman 
total number of species remains at 41 species (Schwartz et al. 1987: 
147), while the total for Cayman Brac is now 80 species. 

Five separate localities were collected on Grand Cayman, whereas 
six were visited on Cayman Brac. These are discussed briefly below, 
and will be referred to only by code number in the text. Unless otherwise 
indicated, all specimens are deposited in the Allyn Museum collection, 
but may be distributed later. 

Station GC-1 was 1.38 km N of Frank Sound, Grand Cayman, visited 
on 31 October. The locality was one of secondary scrub. 

GC-2 was the South Sound shore area, Grand Cayman, visited on 31 
October and 2 and 4 November in an area of beach scrub. 

GC-8 is the Great Beach, north of a quarry, Grand Cayman, collected 
on 31 October and 2 and 3 November. This locality had tall scrub, 
apparently undisturbed. 

GC-4 is Seven Mile Beach, Grand Pavilion Hotel, Grand Cayman, 
collected on 1, 2, and 3 November in primarily grass and weeds adjacent 
to the parking area. 

GC-5 is Prospect Park, off Mahogany Way, Grand Cayman, collected 
only on 2 November. Collecting was done along dike roads near Milords 
Bay. 


120 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


CB-1 is the Brac Reef Resort, Cayman Brac, collected only on 4 
November. 

CB-2 is the South Side road between Jennifer and Pollard Bays, 
Cayman Brac, collected on 4, 5, and 7 November, secondary scrub and 
trees below cliff. 

CB-8 is along Stake Bay Bluff Road and Major Donald Road, Cayman 
Brac, visited daily from 4-7 November. This area was wooded and 
grassy land with many cycads. 

CB-4 is Spot Bay, Cayman Brac, collected on 5 November, secondary 
scrub. 

CB-5 is the Ashton Rutty Centre, Cayman Brac, at light, collected 
only for moths. 

CB-6 was at Hawksbill Bay along the South Side road, Cayman Brac, 
collected on 6 and 7 November. This locality had secondary tree growth, 
was below the cliff and was shielded from the prevailing winds; it falls 
within the area encompassed by CB-2. 

All specimens are labeled with “Allyn Museum / Acc. 1990-18”, and 
these data will not be repeated further. 


BUTTERFLIES RECORDED 
Danaidae 


Danaus plexippus plexippus (Linnaeus, 1758): A single female was collected at GC-2 
on $1.x.1990. This record is remarkable because Askew (1980: 878) mentions that this 
species had not been seen on Grand Cayman since 1975, and Schwartz et al. (1987) do 
not mention records of it at all. The latter authors consider Cayman material to belong 
to the subspecies megalippe (Huebner, 1826), but the female at hand is clearly the 
migratory North American morph. 

Danaus gilippus berenice (Cramer, 1779): A single male, GC-8, 31.x.1990. 


Nymphalidae 


Agraulis vanillae insularis (Maynard, 1889): Many specimens captured at stations GC- 
2, GC-8, GC-4, GC-5, CB-1, CB-2 and CB-6 (including a pair in cop., 6.xi.1990). 


Dryas iulia zoe Miller and Steinhauser, new subspecies 


(Figs. 1-4) 


This butterfly is apparently the morph that has been considered to 
be identical with the Bahamian subspecies, D. i. carteri (Riley, 1926). 
It previously was unreported from Cayman Brac, and a solitary male 
from Grand Cayman (May, M. Simon) does not appear to agree with 
the material at hand, but it was collected earlier in the year, and such 
variation must be seasonal. 


Diagnosis: Male: upper surface ground color rich golden orange with a prominent 
black forewing cell-end bar (occasionally with a subsidiary blackening of the basal part 
of M,) and very narrow black margins of both wings (hindwing margin even narrower 


VOLUME 46, NUMBER 2 I at 


Fics. 1-4. Dryas iulia zoe Miller and Steinhauser, new subspecies: 1, 2, holotype 4, 
- upper (1) and under (2) surfaces: GRAND CAYMAN I[SLAND]: Great Beach area N of 
quarry; Sta. GC-3; 31.x.1990 (S. R. Steinhauser & Z. M. Schwendeman); Allyn Museum 
photographs 911105-15/16; 3, 4, paratype 2, upper (3) and under (4) surfaces: CAYMAN 
BRAC I[SLAND]: Hawksbill Bay, south side of road; Sta. CB-6; 6.xi.1990 (S. R. Steinhauser 
& Z. M. Schwendeman); Allyn Museum photographs 911105-19/20. Scale line = 20 mm. 


than in carteri). Under surface ground color reddish tan (not as purplish as in carteri and 
not as orange as in delila (Fabricius 1775)); dark brown fore- and hindwing markings 
more clearly developed than in carteri and about comparable with those of delila; white 
hindwing subcostal, apical and tornal markings comparable to those of carteri. Length 
of forewing of holotype male 42.5 mm, those of the nine male paratypes range from 33 
to 44 mm, averaging 40.3 mm. Female: upper surface ground color browner than in 
other subspecies with darker forewing shading in base of cell and distad on the wing 
along Cu,-2A; a broad fuscous band across end of forewing cell and distad along M, to 
outer margin (this band always interrupted in carteri); submarginal dark forewing band 
scalloped basad on M, and M,; hindwing marginal band enclosing submarginal tan spots. 
Under surface ground color dull grayish tan and dull brown markings as illustrated and 
similar to those of nudeola (Bates, 1934) (Alayo & Hernandez 1987: pl. 18). Lengths of 
the forewings of three female paratypes are 39.5, 39.5 and 38.0 mm. 

Male and female genitalia as in other D. iulia populations. 

Variation: Assuming the Simon specimen gives an accurate impression, the upper side 
coloration and maculation are similar to the autumn specimens at hand. The under side 
is much more uniform and slightly redder than described. 

Described from 13 specimens, ten males and three females, from the Cayman Islands. 

Holotype male: GRAND CAYMAN J[sland]: Great Beach area N of quarry; Sta. GC- 
8; 31.x.1990 (S. R. Steinhauser & Z. M. Schwendeman). 

Paratypes: Same data as holotype, 1 male, 1 female; same data as holotype, but 2.x.1990, 
five males; “Grand Cayman’, 27.v.1979 (M. J. Simon, Acc. 1979-16), one male; CAYMAN 
BRAC L.: Hawksbill Bay, South Side rd.; Sta. CB-6; 6.xi.1990 (S. R. Steinhauser & Z. M. 
Schwendeman); two males and two females (including one pair in cop.). 

Disposition of type-series: Holotype male, eight male and three female paratypes in 
Allyn Museum of Entomology; one male paratype in collection of M. J. Simon. 


Discussion: It has always seemed odd that the Caymans should harbor 
a population of the Bahamian D. i. carteri, as claimed by Riley (1975: 


122 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


87). Other isolates of iulia have achieved a remarkable radiation of 
subspecies in the West Indian islands, so the presence of a Cayman 
endemic is neither startling nor surprising. The present insect is perhaps 
nearer the Cuban nudeola. 

Seasonal variation in Dryas: All of the subspecies of D. iulia from 
the northern West Indies and south Florida are very similar, displaying 
limited seasonal variation, most prominent on the under surface. With- 
out exception, specimens collected during the dry season (roughly De- 
cember to May) show very little patterning ventrally, whereas speci- 
mens from the corresponding wet season are strongly patterned. Certainly 
this explains the variation shown in the series of D. i. zoe, where the 
available dry season specimen is almost entirely devoid of patterning, 
especially on the under hindwing, that distinguishes the illustrated 
holotype and the remaining specimens in the type series. Females have 
the costa of the upper hindwing concolorous with the rest of the wing 
and are typical of the “Antillean group” of subspecies (Clench 1975) 
and contrasting with that of the Jamaican D. i. delila. 

This variation is equally prominent in all populations of D. iulia from 
an area delimited by Florida, the Bahamas, and Jamaica, whereas 
specimens from further east and south in the Antilles do not illustrate 
this variation so dramatically. 

To differentiate the present subspecies, other northern Antillean iulia 
are compared in Table 1. 

Etymology: This insect is named after Zoe M. Schwendeman who 
sponsored the Cayman expedition and collected much of the type series 
while accompanying the junior author. ; 

Heliconius charitonia ramsdeni W. P. Comstock and F. M. Brown, 1950: Five males 
were taken at stations CB-2, 5.xi.1990, and CB-6, 6.xi.1990. Comparison of Cayman 
material with that from Cuba and Jamaica reveal that the Cayman butterflies are referable 
to ramsdeni. This butterfly is well-known from all of the Caymans. The Allyn Museum 
has a pair from Grand Cayman (May, 1979, M. J. Simon). The Cayman population of 
charitonia flew higher and more rapidly than did others that we have observed in Florida, 
Latin America, or elsewhere in the Caribbean. 

Euptoieta hegesia hegesia (Cramer, 1779): Very common on both islands. Nineteen 
specimens were collected at GC-2 (31.x and 2.xi.1990), GC-8 (2.xi.1990), CB-2 (5.xi and 
7.xi.1990), and CB-6 (6.xi.1990). 

Phyciodes phaon (W. H. Edwards, 1864): Abundant only on Grand Cayman, where 
it previously was recorded. Twenty-five specimens were collected at GC-2, GC-3, GC-4, 
and GC-5 between 31.x.1990 and 3.xi.1990. 

Junonia evarete zonalis (C. and R. Felder, 1865): This insect was encountered only 
on Grand Cayman with records from GC-2, GC-8, GC-4, and GC-5, 31.x.1990-3.xi. 1990. 
It was sympatric with the next species at GC-3, 2.xi. 

Junonia genoveva (Cramer, 1779): This butterfly was somewhat commoner than the 
last; 14 specimens were collected at stations GC-1, GC-3, CB-2, and CB-3 on most dates. 
We suspect that Schwartz et al. (1987) have confused this species with the last: whereas 
we record J. evarete only from Grand Cayman, those authors record only J. genoveva, 


and the records for Little Cayman and Cayman Brac are similarly reversed. We follow 
Turner and Parnell (1985) in our treatment of Junonia. 


123 


VOLUME 46, NUMBER 2 


She ek a) SS eS er 


uMoIg-AeI3 UMOIG uMOIq uMOIG IO[OO 
YM poyxieur A[IAvey ‘uUR} YM poyxreu Aysy ‘ue, YIM poxrew AjiAvoy “Uey YUM poxreut AY St] “Ue} punois opisiopun 
ysem IO[OO 
esuer1o popeys Apues asurio popeys Apues ajdind e yy Apues esue10 papeys Apues punois opisiepun 
Ing-"W Ing-W Iny-"/W 
4399} OU “yIOOUIS ‘SIA-2JV._ 499} [euTxo1d ‘SIA-2JV._ 499} [euLxoId ‘SI-3I,_ 499} [euTxo1d UISIeU AA 
Ing 
%OT yeso1d %06< JUeso1d yussoid sXemye yuosoid sXemye -8J| Ul Yeas MA 
Jejnsuerjoo1 pejsoo jsopvoiq Iepnsueyo1 pejsoo jsapeoiq yods ]{[99 MA 
pee ee ee a eg ler ee Pe ee 
aoz pDjoapnu 140}4D9 Od 410] JojorleyD 
uOoxe |, 


‘(1x9 9Y} UI passnosIp se pepnyjoxe 
voreulel Woy DjYAp ‘1 ‘C) SEIPUT ISOA\ PY} PUL BPO, Woy DIMI sphaq jo suoryetndod peyoeres Jo saynqi1ije aAteieduioy) ‘[ ATAVE 


124 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Anartia jatrophae jamaicensis (Moeschler, 1886): This species is another not known 
from Cayman Brac, and specimens were collected only on Grand Cayman at GC-2, GC- 
8, GC-4, and GC-5 between 31.x.1990 and 3.xi.1990. 

Memphis echemus danielana (Witt, 1981): Two tattered females of this insect were 
collected on Cayman Brac (CB-6, 6.xi.1990). The insect is well known from there; and 
the Museum also has specimens from Grand Cayman. 


Lycaenidae 


Eumaeus atala (Poey, 1832): The discovery of a large and thriving colony of this most 
unexpected butterfly on Cayman Brac was perhaps the high point of the trip. A total of 
58 specimens were collected, 53 at CB-3 during the period from 4—7.xi.1990, and five at 
CB-6 on 6-7.xi.1990; others were observed, but not captured at CB-1. They represent a 
new record not only for Cayman Brac, but also for the Caymans as a whole. There were 
abundant cycads in the area of karst topography at CB-6. 

Strymon martialis (Herrich-Schaeffer, 1864): Two specimens of this insect were taken 
at GC-4 on 1-2.xi.1990. It also is known from Little Cayman, but not yet from Cayman 
Brac. 

Strymon acis gossei (W. P. Comstock and Huntington, 1943): Two specimens were 
collected at GC-2 (2.xi.1990) and CB-6 (7.xi.1990). Both are referable to the Jamaican 
subspecies despite assignment of Cayman Brac material to the Cuban S. a. casasi (Com- 
stock and Huntington, 1948) by Schwartz et al. (1987: 147). 

Leptotes cassius theonus (Lucas, 1857): This butterfly was encountered on both islands, 
whence it has been reported previously. Specific records are GC-4 (8.xi.1990), CB-1 
(4.xi.1990), CB-2 (5.xi.1990), and CB-6 (7.xi.1990). 

Hemiargus hanno filenus (Poey, 1832): Known from all of the Caymans, specimens 
were taken at GC-1 (31.x.1990), GC-3 (2.xi.1990), GC-4 (2 and 3.xi.1990), CB-2 (5.xi.1990), 
and CB-6 (6.xi.1990). 

Cyclargus ammon erembis Nabokov, 1948: This striking Cayman endemic is known 
from all three islands, and 49 examples were collected on GC-2, GC-4, CB-1, CB-2, and 
CB-4 between 31.x and 5.xi.1990. One pair was taken in cop., GC-4, 2.xi.1990. 


Pieridae 


Appias drusilla poeyi (Butler, 1872): Well known from the Caymans, a few specimens 
were collected at CB-2 (4 and 5.xi.1990) and CB-6 (6-7.xi.1990). 

Ascia monuste eubotea (Godart, 1819): Another butterfly of wide occurrence, this 
species was taken at GC-3 (31.x and 2-3.xi.1990), GC-4 (8.xi.1990), CB-2 (4—-5.xi.1990), 
and CB-6 (6-7.xi.1990). 

Phoebis sennae sennae (Linnaeus, 1758): Recorded from all three Cayman Islands, 
single specimens were taken at GC-3 (2.xi.1990) and CB-6 (6.xi.1990). 

Eurema daira palmira (Poey, 1852): This widespread species was encountered at GC-3 
(31.x and 2.xi.1990), GC-4 (2.xi.1990), CB-1 (4.xi.1990), CB-2 (4.xi.1990), and CB-6 
(7.xi.1990). 

Eurema elathea (Cramer, 1775): This butterfly exhibited a more restricted range than 
the last and was collected at GC-3 (31.x and 2.xi.1990) and CB-1 (4.xi.1990). The Jatter 
record is the first from Cayman Brac (Schwartz et al. 1987: 147). 

Eurema nicippe (Cramer, 1782): Recorded from all of the Caymans, a single specimen 
was taken at GC-3, 2.xi.1990. 

Eurema lisa euterpe (Menetries, 1832): This widespread species was encountered only 
on Grand Cayman, though it is known from all of the Caymans (Schwartz et al. 1987: 
147). Specimens were taken at GC-1 (31.x.1990), GC-2 (2.xi.1990), and GC-3 (31.x.1990). 

Eurema nise nise (Cramer, 1775): This butterfly, described from Jamaica (Riley 1975: 
120) and recorded from Cuba (Alayo & Hernandez 1987: 76-77), is newly recorded from 
the Cayman Islands on the basis of a single male taken at CB-2 on 5.xi.1990. This specimen 
is illustrated in Figs. 5-6. 


VOLUME 46, NUMBER 2 : 125 


Bie ie er - 


Fics. 5-6. Eurema nise nise (Cramer), 6, upper (5) and under (6) surfaces: CAYMAN 
BRAC I[SLAND]: South Side road from Jennifer Bay to Pollard Bay; Sta. CB-2; 5.xi.1990 
(S. R. Steinhauser & Z. M. Schwendeman); Allyn Museum photographs 911105-23/25. 
Scale line = 10 mm. 


Papilionidae 


Heraclides andraemon andraemon (Huebner, 1823): The nominate subspecies, de- 
scribed from Cuba, is restricted to Cayman Brac and Little Cayman; specimens were 
collected at CB-2 (4—5.xi.1990), CB-3 (6.xi.1990), and CB-6 (6.xi.1990). These are com- 
parable to Cuban specimens. 

Heraclides andraemon tailori (Rothschild and Jordan, 1906): A single specimen of this 
Grand Cayman endemic was collected at GC-2 on 81.x.1990. 


Hesperiidae 


Urbanus proteus domingo (Scudder, 1872): This was the commonest skipper in the 
collections from the Caymans, specimens were collected at GC-2 (31.x.1990), CB-2 
(4.xi.1990), CB-3 (4.xi.1990), and CB-6 (6-7.xi.1990). 

Urbanus dorantes santiago (Lucas, 1857): This Cuban endemic subspecies was rep- 


Fics. 7-8: Urbanus dorantes santiago (Lucas), ?, upper (7) and under (8) surfaces: 
GRAND CAYMAN I[SLAND]: Great Beach, N of quarry; Sta. GC-3; 2.xi.1990 (S. R. 
Steinhauser & Z. M. Schwendeman) Allyn Museum photographs 911106-1/38. Scale line 
= 10 mm. 


126 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


resented in the collection by a single female from GC-8 (2.xi.1990). It previously is 
unrecorded from the Caymans, although Schwartz et al. (1987: 147) record the Hispaniolan 
subspecies, cramptoni (Comstock, 1944). Comparison of the single Cayman specimen, 
which we illustrate (Figs. 7-8), with long series from Hispaniola and Cuba reveals the 
close affinity of the latter to the Cayman specimen. 

Cymaenes tripunctus tripunctus (Herrich-Schaeffer, 1865): This butterfly was captured 
only at station CB-6, 6—7.xi.1990, but it was locally common. It previously has been 
reported from both islands under consideration here. 

Hylephila phyleus phyleus (Drury, 1773): Although it has been reported from Grand 
Cayman and Cayman Brac (Schwartz et al. 1987: 147), specimens were procured only 
at GC-2 (31.x.1990) and GC-4 (1.xi.1990) during this trip. 

Panoquina sylvicola (Herrich-Schaeffer, 1865): Previously recorded from Grand Cay- 
man, specimens of this species were captured at stations GC-2 (31.x and 2.xi.1990), GC-3 
(31.x and 2.xi.1990), and GC-4 (1-3.xi.1990). Panoquina sylvicola remains unrecorded 
from the other Cayman Islands. 


SUMMARY 


In summary, the Cayman Islands have been populated from a number 
of sources, most notably Cuba and Jamaica. Carpenter and Lewis (1943) 
and Schwartz et al. (1987) mention cases where subspecies of butterflies 
from both of the larger islands are present somewhere in the Caymans, 
and we have seen specimens that confirm the presence of at least the 
two Heraclides andraemon populations. We cannot, however, verify 
that the populations of Strymon acis from the Caymans are of both 
Cuban and Jamaican subspecies; rather, all of the specimens we have 
examined are of the Jamaican race. Similarly, though Schwartz et al. 
(1987) record Urbanus dorantes cramptoni from Grand Cayman, the 
specimen that we have examined and illustrated herein is clearly U. d. 
santiago (Lucas); it is entirely possible that different invasions of that 
species could have arrived from different islands. We have seen no 
Hispaniolan elements from the Cayman fauna; instead there is a pre- 
ponderance of Jamaican and Cuban taxa represented. 


ACKNOWLEDGMENTS 


Weare greatly indebted to Zoe M. Schwendeman of Sarasota, Florida, for underwriting 
the costs of the 1990 Cayman Island collecting trip and for her invaluable assistance in 
the field. We also wish to thank Gina Petrie and John Davis of the Cayman Islands Natural 
Resources Laboratory for their assistance to the junior author and recommendations of 
collecting sites; and Gretchen Allen, Social Secretary to the Governor of the Cayman 
Islands, for help and support. 

Thanks are due Jacqueline Y. Miller for reviewing the manuscript and for performing 
the photographic duties with her usual skill. 


LITERATURE CITED 


ALAYO, D., P., & L. R. HERNANDEZ. 1987. Atlas de las mariposas diurnas de Cuba. 
Editorial Cientifico-Tecnica, La Habana. 148 pp., 49 color pls. | 

AsKEw, R. R. 1980. The butterfly (Lepidoptera, Rhopalocera) fauna of the Cayman 
Islands. Atoll Res. Bull. 241:121-188. 


VOLUME 46, NUMBER 2 . LOT 


CARPENTER, G. D. H. & C. B. LEwis. 1943. A collection of Lepidoptera (Rhopalocera) 
from the Cayman Islands. Ann. Carnegie Mus. 29:371-396. 

CLENCH, H. K. 1975. Systematic notes on Dryas iulia (Heliconiidae). J. Lepid. Soc. 29: 
230-235. 

RILEy, N. D. 1975. A field guide to the butterflies of the West Indies. Collins, London. 
224 pp., 24 pls. 

SCHWARTZ, A., F. L. GONZALEZ & R. M. HENDERSON. 1987. New records of butterflies 
from the West Indies. J. Lepid. Soc. 41:145-150. 

TURNER, T. W. & J. R. PARNELL. 1985. The identification of two species of Junonia 
Hubner (Lepidoptera: Nymphalidae): J. evarete and J. genovera in Jamaica. J. Res. 
Lepid. 24:142-153. 


Received for publication 19 November 1991; revised and accepted 4 March 1992. 


Journal of the Lepidopterists’ Society 
46(2), 1992, 128-137 


A NEW SPECIES OF COLORADIA FROM SONORA AND 
CHIHUAHUA, MEXICO (SATURNIIDAE: HEMILEUCINAE) 


CLAUDE LEMAIRE! 
La Croix des Baux, F-84220 Gordes, France 


AND 


MICHAEL J. SMITH? 
7428 Holworthy Way, Sacramento, California 95842 


ABSTRACT. Coloradia prchali, new species, is described from the mountains of 
eastern Sonora and western Chihuahua, Mexico. This charcoal black species is sympatric 
with Coloradia luski and has been collected only from the region around Yecora, Sonora, 
Mexico, at an elevation of 1050 m to 1900 m, primarily in the pine/oak forest habitat 
(Petran [Madrean] Conifer Forest). It also has been collected sparingly in the oak woodland 
habitat (Madrean Evergreen Woodland) just below the pine/oak forest community. Fe- 
males of this species are attracted to Mercury Vapor and Ultra-violet light, but only five 
males have been collected at light. Males are primarily day fliers and have been observed 
flying (and attracted to virgin females) between 0900 and 1500 h. Genitalic characters 
indicate that C. prchali is most closely related to C. luski but characters of the foretibia 
are more similar to Coloradia pandora. 


Additional key words: Systematics, variation, distribution, habitat, Sonoran Lepi- 
doptera Survey. 


The Lepidoptera fauna of Sonora, Mexico, was poorly known until 
the past decade. Recent collecting efforts have increased significantly 
our understanding of this fauna (Holland & Forbes 1981, Friedlander 
1985, Smith 1985, Opler 1986, Miller & Miller 1988, Donahue 1989, 
Rindge 1990). In 1982, Steve Prchal of Tucson, Arizona, began his 
ecological and entomological studies in the mountains and plains of 
Sonora. The successes of his early trips sparked the interests of several 
other Arizonan collectors and resulted in annual collecting trips into 
various parts of Sonora. A result of these expeditions has been a dramatic 
increase in the number of Lepidoptera recorded from northwestern 
Mexico, including saturniid moths (Saturniidae). Hoffmann (1942) re- 
corded only six species of saturniids from Sonora. There are now 37 
species of Saturniidae documented and another 5 to 10 species are 
considered possible from this Mexican state (M. Smith, unpubl. data). 
Many of these species have proven to be significant range extensions 
for Mexican Saturniidae, including Rothschildia orizaba orizaba (West- 
wood), Antheraea montezuma (Sallé), Copaxa muellerana (Dyar), Au- 
tomeris boudinotiana Lemaire, Automeris metzli (Sallé), Anisota as- 
similis Druce, Syssphinx colloida (Dyar), Citheronia beledonon Dyar, 


' Correspondant du Muséum national d'Histoire naturelle, Paris. 
2 Research Associate, Nevada State Museum and Historical Society, Las Vegas, Nevada. 


VOLUME 46, NUMBER 2 | : 129 


and Dysdaemonia boreas (Cramer). Certainly one of the most inter- 
esting discoveries was an undescribed charcoal-black, white-fringed 
Coloradia (Hemileucinae). Collecting efforts in 1988 through 1991 pro- 
vided a number of specimens for study. 


Coloradia prchali Lemaire & M. J. Smith, new species 


(Figs. lA & B, 2; Plate 1A & B) 


Male. Head: Black, scattered with whitish scales; labial palpi two-segmented, about 
the same color as the frontal area. Antennae quadripectinate to the apex, flagellum rusty 
yellow, rami black; apical rami shorter than basal rami, those of outer side less than half 
as long as those of inner side of flagellum. Thorax: Dorsally covered with black hairs, 
speckled with white hairs, the latter most prevalent on the metathorax. Legs dark brown 
with intermixed black and white hairs; foretibia (Fig. 1C, D) lacking the epiphysis in the 
dissected specimens (n = 4) but bearing a long spine arising from the inner apical angle. 
Abdomen: Black, the white scales not abundant dorsally and ventrally but laterally forming 
well defined streaks. Forewing: Length 28.1-31.0 mm (x = 29.4 mm, n = 12). Above 
charcoal black, slightly and irregularly suffused with white scales; the overscaling most 
prevalent on the anterior half of the costa, the medial area and the outer side of the 
almost obsolescent postmedian line. The latter and the black rounded discal spot are all 
that remain of the ornamentation, except for small but contrasting white dots of the 
fringes at the apex of veins A to R5. Forewing below as dorsally with the whitish overscaling 
much reduced and restricted to the postmedian area. Hindwing: Above and below entirely 
black, with a slightly darker rounded discal spot; the pure white fringes contrasting well 
on both sides of the wing. 

Female. Head: Same as male except antennae yellow, strongly bidentate to the apex. 
Thorax and abdomen: Same as male, except usually a more conspicuous speckling of 
white hairs on the dorsum of the abdomen. Forewing and hindwing: Same ground color 
and markings as in male, except usually with less white speckling on the upper forewings. 
Forewing length: 35.7-41.9 mm (x = 39.0 mm, n = 22), about one-third larger than the 
male. 

Variation. Wing pattern elements and other structures appear to be consistent. Variation 
is restricted to the degree of whitish overscaling on the upper surface of the forewings 
of both sexes. Sexual dimorphism is negligible and is restricted to smaller overall size of 
males. 

Male genitalia (Fig. 2A, B). Uncus down-curved, simple but apically bidentate, dorsally 
crowned by a broad subsclerotic protuberance, rising from the posterior edge of the 
tegumen, characteristic of the genus. Valves bilobed, transtilla with a narrow but strongly 
sclerotic medial plate laterally connected both to the anterior portion of the costal lobe 
of the valves and the posterior area of the tegumen. Juxta very narrow, laterally connected 
by a membrane to the base of the saccular lobe of the valves. Saccus broad, anteriorly 
rounded. Aedeagus small, slightly sinuous. 

Female genitalia (Fig. 2C). Sclerotization of the eighth sternum circumvaginal with a 
broad membranous subtriangular medial area and laterally separated from the eighth 
tergum by a narrow membranous gap. Eighth tergum bilobed, subsclerotic. Postapophyses 
about one-fourth longer than the anapophyses. Ductus bursae membranous; bursa short, 
not bulky; ductus seminalis rising from the right hand side of base of bursa. Oviporus 
well developed, covered with relatively strong setae. 

Types. Holotype: male, Mexico, Sonora, 11.2 km NW of Yecora, off old Santa Rosa to 
Yecora road, 1550 m, 2/4 July 1989 (leg. M. Lindberg). Allotype: female, same data as 
holotype. Paratypes: 15 males, 41 females, data as follows: 1 male, 11 females, same data 
as holotype; 1 male, 2 females, same locality as holotype, 3 July 1989 (leg. K. Koppos); 
1 female, same locality as holotype, 3 July 1988 (leg. M. Lindberg); 2 females, same 
locality as holotype, 3 July 1989 (leg. R. Nagle); 3 females, same locality as holotype, 1/ 
3 July 1989 (leg. M. Wilson); 9 females, same locality as holotype, 28/29 June 1990 (leg. 


130 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Fic. 1. Forelegs of Coloradia: A) C. pandora alesse male; B) C. luski male; C) C. 
prchali male; D) C. prchali female. Scale line = 1 mm. 


M. Smith); 2 females, same locality as holotype, 28/29 June 1990 (leg. D. Mullins); 2 
females, same locality as holotype, 28/29 June 1990 (leg. K. Hansen); 1 male, same locality 
as holotype, 28/29 June 1990 (leg. M. Lindberg); 1 male, same locality as. holotype, 1/3 
July 1989 (leg. J. Palting); 1 female, 4.0 km east of Santa Rosa, old Santa Rosa—Yecora 
road, 1040 m, 11/12 August 1983 (leg. S. Prchal); 1 female, 3.2 km south of La Trinidad 
mine, off old Santa Rosa—Yecora road, 1200 m, 28 July 1987 (leg. P. Jump); 11 males, 7 
females, 9.6 km WSW of Yecora, Hwy 16, 1600 m, 7 July 1991 (leg. J. Brock & S. Prchal). 

Disposition of types. The holotype male and allotype female have been deposited in 
the Natural History Museum of Los Angeles County, Los Angeles, California. One para- 
type pair has been deposited in the Muséum national d'Histoire naturelle, Paris, France; 
two paratype pairs have been deposited in the Sonoran Arthropod Studies, Inc. (SASI) 
collection, Tucson, Arizona. Two paratype pairs have been deposited in the UNAM 
collections: Instituto de Biologia, Mexico, D.F., Mexico and Museo de Zoologia, Mexico, 
D.F., Mexico. Paratype pairs have been deposited in the collections of the following 
institutions: Natural History Museum of Los Angeles County, Los Angeles, California; 


VOLUME 46, NUMBER 2 131 


s 
BoePoeO" tess = Sian 

a eee oa" hens Vey apm eti. iy UES. ~ 

INCAS eae 


Cpl g 25 
OAR i 


Sy ah eS 
TP TSS. a 


Fic. 2. Male genitalia of Coloradia prchali new species: A) Ventral view, aedeagus 
removed; B) Lateral view of aedeagus. C) Female genitalia of Coloradia prchali new 
species. Scale line = 1 mm. 


California Academy of Sciences, San Francisco, California; United States National Mu- 
seum (Smithsonian Institution), Washington, D.C.; and American Museum of Natural 
History, New York, New York. Other paratypes will remain in the collections of the 
original collectors and of the junior author. 


Diagnosis. Coloradia prchali differs from previously described Co- 
loradia species by its darker coloration, extreme reduction of orna- 
mentation, and complete absence of red scales from the body as well 


132 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


———_ 


PLATE 1. Coloradia prchali, new species. A) Male holotype, Mexico, Sonora, 11.2 km 
NW of Yecora, off of Santa Rosa road, 1550 m, 2/4 July 1989 (leg. M. Lindberg). B) 
Female allotype, same data as holotype. Scale line = 10 mm. 


VOLUME 46, NUMBER 2 5 133 


vier ie 


i 


ARIZONA 


° te 
SNS Sine ae. ee 


Fic. 3. Distribution of Coloradia prchali (@) in northwestern Mexico. 


as from the hind wing. Coloradia prchali appears more closely related 
to Coloradia luski Barnes and Benjamin than to any other form of 
Coloradia. The wing pattern elements in both sexes are most similar 
to that of dark females of C. luski (see Ferguson 1971: pl. 6, fig. 18). 
However, C. luski never has the charcoal black color as on C. prchali. 
Coloradia prchali also differs from C. luski by its absence of sexual 


134 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


dimorphism in color and pattern and the lack of individual variation; 
whereas C. luski is probably the most variable species in Coloradia 
(Ferguson 1971; Lemaire, pers. obs.). Coloradia prchali is larger than 
C. luski in both sexes: Coloradia prchali males, x = 29.4 mm, n = 12; 
C. luski males, xX = 26.5 mm, n = 12; Coloradia prchali females, x = 
39.0 mm, n = 22; C. luski females, x = 30.6 mm, n = 2). The two 
species also are differentiated by the coloration of the rami in the male 
antennae, black in C. prchali and yellow in C. luski. Male specimens 
of C. prchali fly during the daytime (J. Brock & S. Prchal, pers. comm.), 
a unique habit within the genus. The foretibial spine (Fig. 1) is no- 
ticeably longer in relation to the tibia in C. prcehali than in C. luski (24 
percent vs. 16.7 percent). It is about the same percentage in C. prchali 
and C. pandora davisi Barnes & Benjamin (see Ferguson 1971). The 
small differences between the genitalia of C. prchali and C. luski, such 
as the absence of the notch at the apex of the dorsal protuberance of 
the uncus and the larger medial plate of the transtilla, require larger 
series of dissections to be analyzed for significance. 

Etymology. This species is named in honor of Steve Prchal, who 
captured the first specimen of this saturniid and whose enthusiastic 
interests in Sonora sparked the collecting efforts of many others over 
the past decade. 

Distribution (Fig. 3). All known specimens of C. prchali have been 
collected in the mountainous region around Yecora, in eastern Sonora, 
Mexico. This distribution includes western Chihuahua and is in the 
Sierra Madre Occidental mountains of northwestern Mexico. The type 
locality, located in the Petran (Madrean) Conifer Forest habitat of 
Brown (1982), is a plateau region northwest of Yecora at about 1550 
m. Most of the known specimens of C. prchali have been collected in 
this habitat, which is community of pine/oak trees, some shrubs, and 
grasslands, including various conifer species as Pinus ponderosa Law- 
son, P. engelmannii Carr. [=P. latifolia Sarg.], and P. leiophylla var. 
chihuahuana Engelm. (all Pinaceae); Juniperus deppeana Steud. (Cu- 
pressaceae); and various evergreen oaks, including Q. pennivenia Trel., 
Q. arizonica Sarg., O. grisea Liebm., Q. viminea Trel., and Q. fulva 
Lieb. (Fagaceae). Within this habitat, C. prchali also has been recorded 
from 6.4 km east-northeast of Yecora and from 9.6 km south of Yecora 
by P. Jump and S. McCleve. This latter locality is in Chihuahua, Mexico, 
and thus documents C. prchali for this Mexican state. Coloradia prchali 
also was recorded from 13.6 km west-southwest of Yecora at 1900 m 
by D. Mullins and B. Kelly. The latter locality is a more mixed 
chaparral habitat within the Petran (Madrean) Conifer Forest com- 
munity. 

Outside of this habitat community, one female paratype was collected 


VOLUME 46, NUMBER 2 . 135 


in the Madrean Evergreen Woodland habitat south of La Trinidad 
mine, a region of steep canyons (barrancas) and ridges that is primarily 
oak woodland with associated pine and juniper species, and several 
shrubs such as Ceanothus (Rhamnaceae) and Arbutus (Ericaceae). An- 
other paratype female (actually the first known specimen of this species) 
was collected in Sinaloan Thornscrub habitat between Santa Rosa and 
La Trinidad mine. However, this locality is a canyon bottom imme- 
diately below the Madrean Evergreen Woodland habitat occurring on 
the hills just above. The female probably strayed down from the latter 
habitat. 

Coloradia prchali should be found in similar habitats in eastern So- 
nora and western Chihuahua in the Sierra Madre Occidental. Coloradia 
luski has been collected sympatrically with C. prchali, although the 
flight period of C. luski begins approximately two weeks later (M. Smith, 
unpubl. data). The surrounding Sierra Madre Occidental, east and south 
of the Yecora region, also supports populations of C. pandora davisi. 

Collection dates for C. prchali range from 28 June to 15 August, 
indicating a midsummer flight. The peak flight seems to be early July, 
coinciding with the beginning of the annual monsoon rains. Since 1983, 
a total of five males and over 50 females (including non-paratype 
females) have been collected at UV and MV light. Field studies in 1991 
resulted in males being attracted to virgin female C. prchali, indicating 
that males of this species are diurnal, flying between 0900 and 1500 h 
(J. Brock & S. Prchal, pers. comm.). This diurnal flight habit is unusual 
for the genus. Coloradia pandora lindseyi Barnes & Benjamin was 
reported as a day flier by Patterson (1929); Schmid and Bennett (1988) 
and Brown (1984) reported C. pandora davisi flying in the daytime 
during years of unusual abundance. 

The larval stages of C. prchali have not been observed in nature; 
however, larvae of this species have been reared in captivity on various 
Pinus species (Pinaceae) by several workers. The life history of C. 
prchali will be the subject of a later paper by K. Wolfe of Escondido, 
California. 

Discussion. The genus Coloradia Blake, 1863, with type-species Co- 
loradia pandora Blake, 1868, by original designation (Fletcher & Nye 
1982), occupies the western half of the United States, ranging as far 
north as Wyoming and South Dakota (Ferguson 1971), and south to at 
least Oaxaca and Chiapas in southern Mexico (K. Wolfe, pers. comm.). 
Four species occur in the United States: C. pandora, C. doris Barnes, 
C. luski, and C. velda Johnson & Walter (Ferguson 19838, Johnson & 
Walter 1979). Beutelspacher (1978) cited only three species from Mex- 
ico, all endemics: C. euphrosyne Dyar, C. vazquezae Beutelspacher, 
and C. hoffmanni Beutelspacher, although Hoffmann (1942) also listed 


136 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


C. pandora from Sinaloa. Since the 1978 revision by Beutelspacher, C. 
luski and C. p. davisi have been found in northern Mexico (specimens 
at Univ. California Davis, in the collection of T. Sears from southwestern 
Chihuahua) and C. pandora (probably subspecies lindseyi) has been 
confirmed from Baja California Norte (Johnson & Walter 1979). This 
description of Coloradia prchali brings the number of Coloradia species 
known from Mexico to six. 


ACKNOWLEDGMENTS 


We thank Steve Prchal for bringing this species to our attention. We also thank the 
collectors who generously shared their specimens and locality data with us: Jim Brock, 
John Palting, Ray Nagle, Markus Lindberg, Keith Koppos, Michael Wilson, Doug Mullins, 
and Bob Weich, all of Tucson, Arizona; Peter Jump and Scott McCleve, Douglas, Arizona; 
and Ken Hansen, Eureka, California. We thank the many other collectors who have been 
part of the collecting trips to this region, under the loose guise of the Sonoran Lepidoptera 
Survey. We especially thank Jim Brock and Doug Mullins for spearheading the efforts to 
gather data and specimens for study. Kirby Wolfe provided field data on Mexican Co- 
loradia. Steve Stone took the color photographs of the type specimens. Julian Donahue 
of the Natural History Museum of Los Angeles County reviewed the manuscript and 
offered helpful suggestions. We thank two anonymous reviewers for their comments and 
suggestions. 


LITERATURE CITED 


BEUTELSPACHER B., C. R. 1978. Revision del género Coloradia Blake (Lepidoptera: 
Saturniidae) para México con descripcion de dos especies nuevas. An. Inst. Biol. Univ. 
Nat. Auton. México 49, Ser. Zoologia (1):231-240. 

Brown, D. E. (ed.). 1982. Biotic communities of the American Southwest—United 
States and Mexico. Desert Plants 4:1—342. 

BROWN, L. N. 1984. Population outbreaks of Pandora Moths (Coloradia pandora Blake) 
on the Kaibab Plateau, Arizona (Saturniidae). J. Lepid. Soc. 38:65. . 

DONAHUE, J. P. 1989. Discovery of the carpenter moth Morpheis clenchi (Cossidae) in 
Mexico. J. Lepid. Soc. 43:327-328. 

FERGUSON, D. C. 1971. Bombycoidea, Saturniidae (part.). In Dominick, R. B., et al. 
(eds.), The moths of America north of Mexico. Fasc. 20. 2A. E. W. Classey Ltd. & 
R. D. B. Publications, Inc., London. 153 pp., 11 pls. 

1983. Saturniidae, pp. 108-109. In Hodges, R. W. et al. (eds.), Check list of the 
Lepidoptera of America north of Mexico. E. W. Classey Ltd. and The Wedge En- 
tomol. Res. Foundation, London. 284 pp. 

FLETCHER, D. S. & I. W. B. NYE (eds.). 1982. The generic names of moths of the world. 
Vol. 4, Bombycoidea. Trustees of the British Museum (Natural History), London. 
XIV + 192 pp. 

FRIEDLANDER, T. P. 1985. The biology and morphology of the immature stages of 
Asterocampa idyia argus (Bates) (Lepidoptera: Nymphalidae). J. Res. Lepid. 24:209- 
2205. 

HOFFMANN, C. C. 1942. Catalogo systematico y zoogeografico de los Lepidopteros 
mexicanos. Tercera Parte. Sphingoidea y Saturnioidea. An. Inst. Biol. Mexico 13:213- 
256. 

HOLLAND, R. & G. S. FORBES. 1981. Rediscovery of Apodemia phyciodoides (Riodin- 
idae). J. Lepid. Soc. 35:226-232. 

JOHNSON, J. W. & E. WALTER. 1979(80). A new species of Coloradia in California 
(Saturniidae, Hemileucinae). J. Res. Lepid. 18:60-66. ; 

MILLER, L. D. & J. Y. MILLER. 1988. A new Euptychia species from northwestern 
Mexico (Satyridae). J. Lepid. Soc. 42:276—280. 


VOLUME 46, NUMBER 2 S37 


OPLER, P. A. 1986. A new Euchloe (Pieridae) from northwestern Mexico. J. Lepid. Soc. 
40:188-190. 

PATTERSON, J. E. 1929. The pandora moth, a periodic pest of western pine forests. U.S. 
Dept. Agric. Tech. Bull. 137. 19 pp. 

RINDGE, F. H. 1990. A revision of the Melanolophiini (Lepidoptera, Geometridae). 
Bull. Amer. Mus. Nat. Hist. 199:1-148. 

SCHMID, J. M. & D. D. BENNETT. 1988. The North Kaibab pandora moth outbreak, 
1978-1984. USDA For. Serv. Gen. Tech. Report RM-158, 18 pp. 

SMITH, M. J. 1985. Ecological observations on Apodemia phyciodoides Barnes & Ben- 
jamin (Riodinidae). J. Lepid. Soc. 39:337-388. 


Received for publication 23 December 1990; revised and accepted 11 April 1992. 


Journal of the Lepidopterists’ Society 
46(2), 1992, 188-158 


BUTTERFLIES OF THE ARCHBOLD BIOLOGICAL STATION, 
HIGHLANDS COUNTY, FLORIDA 


Marc C. MINNO 
Department of Zoology, University of Florida, Gainesville, Florida 32611 


ABSTRACT. Seventy butterfly species (27 Hesperiidae, 16 Nymphalidae, 11 Pieridae, 
8 Papilionidae, and 8 Lycaenidae) have been recorded from the Archbold Biological 
Station near the southern end of the Lake Wales Ridge in Highlands County, Florida. 
Peaks of abundance and diversity for adult butterflies at Archbold occur in March and 
August. At least 11% (70 species) of the plants at the station provide butterflies with nectar 
or larval hosts, many of which are documented for the first time. Crab spiders, the green 
lynx spider, a phymatid bug, and a robber fly were observed feeding on adult butterflies. 
Approximately 12% of the butterflies found in Highlands County are limited primarily 
to peninsular Florida. 


Additional key words: food plants, distribution, phenology, predators, Lake Wales 
Ridge. 


The Archbold Biological Station (ABS) serves not only as a major 
center of biological research in Florida, but also as a preserve of the 
natural communities of the southern Lake Wales Ridge (Minno & Myers 
1986). The Lake Wales Ridge is one of several ancient dune formations 
that run parallel to the peninsular coastline (Fig. 1). The deep, sandy 
soils of this region have given rise to distinctive xerophytic plant com- 
munities that contain many unusual organisms. Ward (1979) lists 18 
endangered, threatened, and rare species of plants from the Lake Wales 
Ridge area. Neill (1957) discusses over 50 animal taxa found mostly in 
central peninsular Florida. 

Fire plays an important role in shaping and maintaining the natural 
communities at ABS. Prescribed burning of small tracts of the station 
is conducted annually. Lightning-induced wildfires also occur regularly, 
especially during the summer. Central Florida experiences a hot, humid 
rainy season with frequent thunderstorms from June through Septem- 
ber. Winters are mild and dry with occasional temperatures below 
freezing (Chen & Gerber 1990). 

Some 540 species of vascular plants grow natircallly at the station 
(Vander Kloet 1986), and about 80 species of exotic plants have been 
planted on the property (Herndon 1986). Abrahamson et al. (1984b) 
describe the plant associations of the station in detail. Generally, the 
western half of ABS is a mixture of flatwoods, scrub, and seasonal ponds. 
A few small bayheads (stands of broad-leaved evergreen trees), dom- 
inated by Loblolly Bay, Gordonia lasianthus (L.) Ellis (Theaceae), occur 
along the western and northern boundaries. Sand Pine scrub predom- 
inates in the northeastern portion of the station in the area around Red 
Hill. Sandhill vegetation covers the top of Red Hill and much of the 


139 


VOLUME 46, NUMBER 2 


ARCHBOLD BIOL. STATION 
ATLANTIC COASTAL RIDGE 
BELL RIDGE 

BOMBING RANGE RIDGE 
BROOKSVILLE RIDGE 
COTTON RIDGE 

CRESCENT CITY RIDGE 
CENTER PARK RIDGE 
DELAND RIDGE 

GREEN RIDGE 

LAKE HENRY RIDGE 

LAKE OKEECHOBEE 
LAKELAND RIDGE 

LAKE WALES RIDGE 

MOUNT DORA RIDGE 

OCALA RIDGE 

ORLANDO RIDGE 

SOUTHERN COASTAL RIDGE 
TEN MILE RIDGE 

TRAIL RIDGE 

TITUSVILLE RIDGE 
WITHLACOOCHEE RIDGE 
WINTER HAVEN RIDGE 


QQ 25 50 7H Loo) 
eee eee eee 


SCALE - KILOMETERS 


Fic. 1. Map of Florida showing the locations of the major sand ridges (after White 
1970) and the Archbold Biological Station. 


land from the main compound south to the abandoned settlement of 
Hicoria. A detailed vegetation map by Abrahamson, Johnson, and Layne 
(1984a) is available from ABS. Figure 2 shows a map of the main features 


of the station. | 
Little has been published on the butterflies of the Lake Wales Ridge. 


140 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


i 
* Y Ze 
: AYHEADS .” 
» Ar 
; Leh 
3 4 
i f 5 
ee eesnones —— —— 
& \ \ 
Y 
Los, HB 
\ : vt ! . oo cad } 
ie esa a 
Whe Sa el 
»” BAYHEADS it id RED HILL 
C Ly ey i 
5 \ H Ae 1 ! 


fpr os v ooo 
: 
/ iy! 
page: doesn ih cai 
/ lg S 
Be iti 
HOS aH res] 
5 HIE = 
it Oo 
fa iti > 
Fane t t4: iw) 
ea eee ies ates zl eee bP 
/ p it: ~] 
at ! : : 
s iomay : tHe 
2 , ’ ‘ 
{ H 
As rc ~Y 
gl ine a eee ae 
i HICORIA 
' t 
bd et al ’ 
ee eae H 
a a ae g N 
5 fo ia H 
S| es 
on a 
Sy | = 
i al } o 
— bother} 
i ¢ 
ae 


- ‘ 
a ee a eed 


= ee ee es ee en eee eee 


GP 0 1 2 
\ ane 
: 
/ SCALE — KILOMETERS 
ls " | 
Ae 
. | 


Fic. 2. Map of the Archbold Biological Station. Dotted lines indicate trails. 


VOLUME 46, NUMBER 2 14] 


Comstock and Comstock (1902) listed 20 species from two sites on the 
ridge, Avon Park and Lake Josephine, in Highlands County. Frost (1964, 
1966, 1969, 1975) collected ten species of hesperiids, five lycaenids, and 
two nymphalids in ultraviolet light traps at ABS. Other sources of data 
are mentioned in the species accounts below. In another report (Minno 
1988), I presented a check list of the Lepidoptera of ABS. Here, I list 
the butterflies recorded from ABS and discuss their relative abundance, 
phenology, larval and adult resources, and predators. 


METHODS 


I collected and observed butterflies at ABS during November 1983; 
June-August, September, October, and November 1986; February and 
March 1987; and April 1988. During 1986 I visited nearly all parts of 
the station accessible by trail or road, but concentrated my efforts 
around the main buildings, Red Hill, Hicoria, and in the shallow ponds 
dominated by Redroot Lachnanthes caroliniana (Lam.) Dandy (Hae- 
modoraceae) near the western bayheads, because these areas usually 
had an abundance of flowers that attracted butterflies. At each site, the 
date, beginning and ending sampling time, weather, species and num- 
ber of individuals of each species observed, flowers visited, host plants, 
and predators, were recorded. Voucher specimens were deposited in 
the ABS reference collection. 


ANNOTATED LIST OF SPECIES 


The butterflies of ABS are discussed individually in the following 
list. Where known, the status, habitat, abundance, flight period, host 
plants (larval food plants), nectar sources, and predators are presented. 
The families and subfamilies are arranged in taxonomic order according 
to Hodges et al. (1983). Species are listed in alphabetical order. I cat- 
egorize the butterfly species as abundant if they are likely to be en- 
countered on a field trip to ABS, occasional if they are irregularly present 
in low numbers, and uncommon if less than five individuals are recorded 
from the station. Reference to eggs, larvae, or pupae indicates that more 
than one immature individual was found, but exact numbers were not 
recorded. The plant taxonomy and nomenclature used in the paper 
conforms primarily to that of Wunderlin (1982). 


HESPERIIDAE: PYRGINAE 
Epargyreus clarus clarus (Cramer) 


STATUS: Occasional in the old citrus grove on Red Hill. 
HOST PLANTS: One larva was found on Galactia regularis (L.) BSP. (Fabaceae). 
FLOWERS VISITED: Lantana camara L. (Verbenaceae). 


142 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Erynnis brizo somnus (Lintner) 


STATUS: Abundant in Sand Pine scrub, sandhill, and scrubby flatwoods habitats during 
the spring. Frost (1975) took one in an ultraviolet light trap. 

HOST PLANTS: Larvae were found on Quercus inopina Ashe and Quercus myrtifolia 
Willd. (Fagaceae). 

FLOWERS VISITED: Conradina canescens (Torr. & Gray) A. Gray (Lamiaceae). 


Erynnis horatius (Scudder & Burgess) 


STATUS: Abundant in Sand Pine scrub, sandhill, and scrubby flatwoods habitats. Frost 
(1966) took one in an ultraviolet light trap. 

HOST PLANTS: Larvae were found on Quercus inopina, Quercus myrtifolia, and 
Quercus hemisphaerica Bartr. (Fagaceae). 

FLOWERS VISITED: Asclepias curtissii A. Gray (Asclepiadaceae), Bidens alba (L.) 
DC. (Asteraceae), Balduina angustifolia (Pursh) Robins. (Asteraceae), Dalea feayi (Chapm. ) 
Barneby (Fabaceae), Diodia teres Walt. (Rubiaceae), Heterotheca subaxillaris (Lam.) 
Britt. and Rusby (Asteraceae), Lachnanthes carolinianum, Lantana camara, Palafoxia 
feayi A. Gray (Asteraceae), Vernonia gigantea (Walt.) Trel. ex Branner and Coville 
(Asteraceae), Wedelia trilobata (L.) Hitche. (Asteraceae). Males were occasionally found 
at mud puddles. 

PREDATOR: An unidentified crab spider (Thomisidae) was found feeding on an adult 
on Lachnanthes. 


Erynnis juvenalis juvenalis (Fabricius) 


STATUS: Abundant in Sand Pine scrub, sandhill, and scrubby flatwoods habitats during 
the spring. One adult was taken in July (Burns 1964). Frost (1975) collected one in an 
ultraviolet light trap. 

HOST PLANTS: A larva was found on Quercus inopina at Highlands Hammock State 
Park. 


Erynnis zarucco zarucco (Lucas) 


STATUS: Abundant in Sand Pine scrub, sandhill, scrubby flatwoods and disturbed sites. 
Frost (1969) took a few in an ultraviolet light trap. 

HOST PLANTS: Larvae were found on Galactia elliottii Nutt. (Fabaceae), Galactia 
regularis, and Indigofera caroliniana Mill. (Fabaceae). 

FLOWERS VISITED: Asclepias curtissii, Bidens alba, Dalea feayi, Heterotheca subax- 
illaris, Lachnanthes caroliniana, Lantana camara, Liatris tenuifolia Nuit. (Asteraceae). 

PREDATOR: A green lynx spider (Peucetia viridans Hentz; Oxyopided was found 
feeding on an adult on Lachnanthes. 


Pyrgus oileus oileus (Linnaeus) 


STATUS: Uncommon in scrubby flatwoods and disturbed sites. One was taken in a 
Malaise trap in Sand Pine scrub by M. Deyrup (ABS reference collection). The dry season 
phenotype, montivagus, begins to appear in November. 


Thorybes pylades (Scudder) 


STATUS: Occasional in sandhill and scrubby flatwoods habitats. Frost (1975) took one 
in an ultraviolet light trap. 

HOST PLANTS: Larvae were found on Galactia regularis and Rhyncosia difformis 
(Ell.) DC. (Fabaceae). 

FLOWERS VISITED: Asclepias curtissii, Bidens alba, Lantana camara, Lachnanthes 
carolinianum. 


VOLUME 46, NUMBER 2 . . 143 


PREDATOR: A Phymata guerini Lethierry & Severin (Hemiptera: Phymatidae) caught 
an adult at flowers (ABS reference collection). 


Urbanus dorantes dorantes (Stoll) 


STATUS: The Dorantes Skipper became established in Florida sometime in the late 
1960’s (Clench 1970). Knudson (1974) found this species to be abundant on 12 October 
1972 near Bartow in Polk County. The Dorantes Skipper was abundant in the old citrus 
grove on Red Hill and occasional in scrubby flatwoods during the summer of 1986. 

HOST PLANTS: Observed ovipositing on Desmodium incanum DC. (Fabaceae). 

FLOWERS VISITED: Bidens alba, Lachnanthes carolinianum, Lantana camara, 
Richardia scabra L. (Rubiaceae), Satureja rigida Bartr. ex Benth. (Lamiaceae). 


Urbanus proteus proteus (Linnaeus) 


STATUS: Abundant during the fall when dispersing adults fly southward through 
Florida in large numbers. Frost (1969) captured a few in an ultraviolet light trap. 

HOST PLANTS: Larvae were found on Centrosema floridanum (Britt.) Lakela, Des- 
modium incanum, Desmodium tortuosum (Sw.) DC., and Vigna luteola (Jacq.) Benth. 
(all Fabaceae). 

FLOWERS VISITED: Bidens alba, Crotalaria mucronata Desv. (Fabaceae), Lach- 
nanthes carolinianum, Lantana camara, Liatris tenuifolia, Satureja rigida, Urena lobata 
L. (Malvaceae). 


HESPERIIDAE: HESPERIINAE 
Ancyloxypha numitor (Fabricius) 


STATUS: Uncommon and local in the ditches bordering the railroad tracks. Although 
numerous seasonal ponds occur within the flatwoods at ABS, A. numitor does not utilize 
these areas, perhaps due to the lack of suitable larval food plants. The Least Skipper is 
often closely associated with Leersia spp. (Poaceae) and other semi-aquatic grasses in 
Florida. 


Asbolis capucinus (Lucas) 


STATUS: Uncommon on the top of Red Hill and on the main grounds. 
HOST PLANTS: One larva was found on Sabal etonia Swingle ex Nash (Arecaceae). 
FLOWERS VISITED: Ipomoea cairica (L.) Sweet (Convolvulaceae). 


Atalopedes campestris huron (Edwards) 


STATUS: Occasional in scrubby flatwoods and disturbed sites. Frost (1975) took a few 
in an ultraviolet light trap. 
FLOWERS VISITED: Dalea feayi, Lachnanthes carolinianum, Lantana camara. 


Atrytone delaware delaware (Edwards) 


STATUS: Occasional in scrubby flatwoods. 

HOST PLANTS: Larvae were found on Panicum hemitomon Schult. (Poaceae). 

FLOWERS VISITED: Dalea feayi, Ipomoea cairica, Lachnanthes carolinianum, Lan- 
tana camara, Liatris ohlingerae (Blake) Robins. (Asteraceae), Liatris tenuifolia. 


Atrytonopsis hianna loammi (Whitney) 


STATUS: R. W. Pease Jr. collected three adults at ABS on 16, 24, and 27 September 
1960 (ABS reference collection). This species should occur in the scrubby flatwoods areas 
of the station, but I did not find it. 


144 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Copaeodes minimus (Edwards) 


STATUS: Occasional in the old citrus grove on Red Hill and in scrubby flatwoods. 
FLOWERS VISITED: Dalea feayi, Heterotheca subaxillaris, Lachnanthes caroliniana. 


Euphyes arpa (Boisduval & Leconte) 


STATUS: Abundant in scrubby flatwoods during the late summer and fall. 

HOST PLANTS: Larvae were found on Sabal etonia and Serenoa repens (Bartr.) Small 
(Arecaceae). 

FLOWERS VISITED: Asclepias species, Lachnanthes carolinianum, Liatris tenui- 
folia, Palafoxia feayi. 

PREDATOR: An unidentified crab spider (Thomisidae) was found feeding on an adult 
on Liatris. 


Hesperia meskei straton (Edwards) 


STATUS: R. W. Pease Jr. collected one on 10 October 1960 at ABS (reference collection). 
I did not find H. meskei in the fall of 1986, but it should occur in the sandhill and scrubby 
flatwood areas of the station. 


Hylephila phyleus phyleus (Drury) 


STATUS: Abundant in sandhill, scrubby flatwoods, and disturbed areas. Frost (1975) 
took one in an ultraviolet light trap. 

HOST PLANTS: Observed ovipositing on Stenotaphrum secundatum (Walt.) Kuntze 
(Poaceae). 

FLOWERS VISITED: Asclepias curtissii, Dalea feayi, Lachnanthes carolinianum, 
Lantana camara, Liatris tenuifolia, Satureja rigida. 

PREDATORS: Green lynx spider (Peucetia viridans), an unidentified crab spider 
(Thomisidae), Phymata guerini (Hemiptera: Phymatidae), all on Lachnanthes, and a 
large gray robber fly (Diptera: Asilidae). 


Lerema accius accius (J. E. Smith) 


STATUS: Uncommon in the old citrus grove on Red Hill and on the main grounds. 
Frost (1975) took a few in an ultraviolet light trap. 
FLOWERS VISITED: Bidens alba, Ipomoea cairica, Lantana camara. 
Lerodea eufala eufala La 


STATUS: Occasional in scrubby flatwoods. 
FLOWERS VISITED: Lachnanthes caroliniana, Richardia scabra. 


Nastra lherminier (Latreille) 
STATUS: Uncommon in scrubby flatwoods. One was collected in a Malaise trap in 
Sand Pine scrub by M. Deyrup (ABS reference collection). 


Oligoria maculata (Edwards) 


STATUS: Occasional in scrubby flatwoods and disturbed sites. 
FLOWERS VISITED: Cirsium nuttallii DC. (Asteraceae), Ipomoea cairica, Lach- 
nanthes caroliniana, Lantana camara, Liatris tenuifolia, Urena lobata. 


VOLUME 46, NUMBER 2 : 145 


Panoquina ocola ocola (Edwards) 


STATUS: Abundant during the fall when dispersing adults fly southward through 
Florida in large numbers. Frost (1966) took a few in an ultraviolet light trap. 

HOST PLANTS: Observed ovipositing on Panicum repens L. (Poaceae). 

FLOWERS VISITED: Asclepias curtissii, Bidens alba, Balduina angustifolia, Dalea 
feayi, Heterotheca subaxillaris, Lachnanthes caroliniana, Lantana camara, Liatris ten- 
uifolia, Palafoxia feayi, Wedelia trilobata. 


Polites themistocles (Latreille) 


STATUS: Occasional in scrubby flatwoods. Frost (1975) took one in an ultraviolet light 
trap. 

HOST PLANTS: Observed ovipositing on Panicum aciculare Desv. ex Poir. (Poaceae). 

FLOWERS VISITED: Lachnanthes carolinianum. 


Polites vibex vibex (Geyer) 


STATUS: Abundant in sandhill, scrubby flatwoods, and disturbed areas. Frost (1969) 
captured one in an ultraviolet light trap. 

FLOWERS VISITED: Asclepias curtissii, Bidens alba, Dalea feayi, Diodia teres, Lach- 
nanthes carolinianum, Lantana camara, Liatris tenuifolia, Momordica charantia L. 
(Cucurbitaceae), Satureja rigida, Vernonia gigantea. 


Wallengrenia otho (J. E. Smith) 


STATUS: Occasional in scrubby flatwoods and disturbed sites. 
FLOWERS VISITED: Asclepias curtissii, Lachnanthes carolinianum, Lantana cam- 
ara. 


HESPERIIDAE: MEGATHYMINAE 
Megathymus yuccae buchholzi H. A. Freeman 


STATUS: Although adults were seen infrequently, immatures were abundant on Red 
Hill and in scrubby flatwoods during 1986 and 1987. Males perched on the ground or 
low vegetation in open areas at mid-day. Late-instar larvae began to develop wax glands 
and finished feeding in October and November. 

HOST PLANTS: Ova and larvae were found on Yucca aloifolia L. and Yucca fila- 
mentosa L. (Agavaceae). 


PAPILIONIDAE: PAPILIONINAE 
Battus philenor philenor (Linnaeus) 


STATUS: Uncommon in sandhill and scrubby flatwoods habitats. 

HOST PLANTS: No native Aristolochia species (Aristolochiaceae) have been found at 
ABS (Vander Kloet 1986), and the Pipevine Swallowtail does not seem to utilize the exotic 
Aristolochia littoralis Parodi naturalized on the main grounds of the station. The few 
adults taken may represent strays from the Highlands Hammock area, where breeding 
populations are present. 


Battus polydamas lucayus (Rothschild & Jordan) 


STATUS: Often abundant during the fall, but local near patches of the larval food 
plant on the main grounds. 
HOST PLANTS: Larvae were abundant on Aristolochia littoralis during the fall. 


146 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


FLOWERS VISITED: Clerodendrum speciosissimum Van Geert (Verbenaceae), Salvia 
coccinea Buchoz. ex Etling (Lamiaceae). 


Eurytides marcellus floridensis (Holland) 


STATUS: Abundant in Sand Pine scrub, sandhill, and scrubby flatwoods habitats. 
HOST PLANTS: One larva was found on Asimina obovata (Willd.) Nash (Annonaceae). 
FLOWERS VISITED: Lachnanthes carolinianum. 


Papilio cresphontes Cramer 


STATUS: Often abundant but local near citrus on Red Hill and the main grounds. 

HOST PLANTS: Observed ovipositing on Citrus sp. (Rutaceae). 

FLOWERS VISITED: Cirsium nuttallii, Clerodendrum speciosissimum, Lantana 
camara, Palafoxia feayi, Salvia coccinea, Urena lobata. 


Papilio glaucus australis Maynard 


STATUS: Occasional on Red Hill and the main grounds. 
FLOWERS VISITED: Cirsium nuttallii, Lantana camara, Urena lobata. 


Papilio palamedes Drury 


STATUS: Abundant in scrubby flatwoods and other habitats. 
FLOWERS VISITED: Befaria racemosa Vent. (Ericaceae), Cirsium nuttallii, Clero- 
dendrum speciosissimum, Lachnanthes carolinianum, Lantana camara, Salvia coccinea. 


Papilio polyxenes asterius Stoll 


STATUS: Uncommon in scrubby flatwoods and disturbed sites. 

HOST PLANTS: Observed ovipositing on Ptilimnium capillaceum (Michx.) Raf. (Api- 
aceae). Larvae and pupae were found on Eryngium cuneifolium Small (Apiaceae). 

FLOWERS VISITED: Lachnanthes carolinianum. 


Papilio troilus ilioneus J. E. Smith 


STATUS: Abundant in scrubby flatwoods and on the main grounds. 

HOST PLANTS: Larvae were found on Persea borbonia (L.) Spreng. (Lauraceae). 

FLOWERS VISITED: Clerodendrum speciosissimum, Lachnanthes carolinianum, 
Lantana camara. 


PIERIDAE: PIERINAE 
Ascia monuste phileta (Fabricius) 


STATUS: Abundant during early summer in the old citrus grove on Red Hill. Occasional 
in other habitats. 
FLOWERS VISITED: Polygala rugelii Shuttlew. (Polygalaceae). 


Pontia protodice (Boisduval & Leconte) 


STATUS: Abundant in the citrus grove on Red Hill during early summer. Occasional 
in other habitats. 

HOST PLANTS: Observed ovipositing on Lepidium virginicum L. (Brassicaceae). 

FLOWERS VISITED: Salvia coccinea. 


VOLUME 46, NUMBER 2 147 


PIERIDAE: COLIADINAE 
Colias eurytheme Boisduval 


STATUS: Uncommon in scrubby flatwoods. 
FLOWERS VISITED: Lachnanthes carolinianum, Liatris tenuifolia. 


Eurema daira daira (Godart) 


STATUS: Abundant during the fall when dispersing adults fly southward through 
Florida in large numbers. 

HOST PLANTS: Observed ovipositing on Aeschynomene americana L. (Fabaceae) 
and Indigofera hirsuta Harv. (Fabaceae) just south of ABS at Venus. 

FLOWERS VISITED: Bidens alba, Dalea feayi, Elephantopus elatus Bertol. (Aster- 
aceae), Eryngium cuneifolium, Galactia regularis, Heterotheca subaxillaris, Lach- 
nanthes carolinianum, Liatris tenuifolia, Lippia nodiflora (L.) Michx. (Verbenaceae), 
Momordica charantia, Palafoxia feayi, Pityopsis graminifolia (Michx.) Nutt. (Astera- 
ceae), Polygonella robusta (Small) Horton (Polygonaceae), Richardia scabra, Wedelia 
trilobata. Adults also sip water from wet soil occasionally. 


Eurema lisa lisa Boisduval and Leconte 


STATUS: Abundant but often rather local near the larval food plant in Sand Pine scrub, 
sandhill, and scrubby flatwoods habitats. The winter form, which has reduced black 
borders on the upperside of the hindwings, begins to appear in November. 

HOST PLANTS: Observed ovipositing on Cassia fasciculata (Michx.) Greene (Faba- 
ceae). 

FLOWERS VISITED: Dalea feayi, Galactia regularis, Richardia scabra, Satureja 
rigida. 


Eurema nicippe (Cramer) 


STATUS: Abundant in the vicinity of the larval host plant along a firelane at Hicoria. 
Occasional in other habitats. 
HOST PLANTS: Larvae were found on Cassia occidentalis L. (Fabaceae). 


Nathalis iole Boisduval 


STATUS: Apparently abundant in disturbed sites some years. Rutowski (1981) studied 
the mating behavior of N. iole at ABS from July to November 1981. He commented that 
this species “flies all year” at the station. I did not find the Dainty Sulfur during any of 
my surveys at ABS. 


Phoebis agarithe maxima (Neumoegen) 


STATUS: An uncommon vagrant from south Florida. One specimen in the reference 
collection was taken on 28 July 1967 at ABS. 


Phoebis philea philea (Johansson) 


STATUS: On 5 August 1966, T. E. Pliske captured a female of this species at ABS 
(reference collection). Phoebis philea breeds in residential areas of Highlands County 
where ornamental species of Cassia have been planted (H. D. Baggett pers. comm. ). 


Phoebis sennae eubule (Linnaeus) 


STATUS: Abundant during the fall when dispersing adults fly southward through 
Florida in large numbers. Of 10 individuals observed on 8 February 1987, all were flying 
north. 


148 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


HOST PLANTS: Observed ovipositing on Cassia fasciculata. Larvae were found on 
Cassia occidentalis. 

FLOWERS VISITED: Bidens alba, Clerodendrum speciosissimum, Lachnanthes car- 
olinianum, Lantana camara, Liatris ohlingerae, Liatris tenuifolia, Richardia scabra, 
Salvia coccinea. 


Zerene cesonia (Stoll) 


STATUS: Uncommon in scrubby flatwoods. 
FLOWERS VISITED: Asclepias tuberosa ssp. rolfsii (Britt.) Woods. (Asclepiadaceae), 
Lachnanthes caroliniana. 


LYCAENIDAE: EUMAEINAE 
Atlides halesus halesus (Cramer) 


STATUS: Uncommon in sandhill habitats. Frost (1969) captured one in an ultraviolet 
light trap. 

HOST PLANTS: Hatched egg shells, probably of this species, were found on Phora- 
dendron serotinum (Raf.) M. C. Johnst. (Loranthaceae) growing on Quercus myrtifolia 
and Quercus geminata Willd. (Fagaceae). 


Calycopis cecrops (Fabricius) 


STATUS: Abundant in Sand Pine scrub, sandhill, scrubby flatwoods and on the main 
grounds. Frost (1969) took one in an ultraviolet light trap. Males hilltop in trees of various 
sizes. Dozens were frequently seen perching and chasing each other in the large laurel 
oaks planted on the main grounds during July and August. I have also observed males 
hilltopping on scrub oaks less than three meters tall. Hilltopping adults were especially 
active late in the afternoon and also on cloudy days. 

HOST PLANTS: Associated with oaks (Quercus myrtifolia, Quercus chapmannii Sarg., 
and Quercus hemisphaerica) and mango (Mangifera indica L., Anacardiaceae). Larvae 
from a single female grew most rapidly on shoots and young leaves of mango, and more 
slowly on those of Rhus copallina L. (Anacardiaceae), Q. hemisphaerica, and Toxicoden- 
dron radicans (L.) Kuntze (Anacardiaceae). 

FLOWERS VISITED: Asclepias curtissii, Bidens alba, Dalea feayi, Gelsemium sem- 
pervirens (L.) J. St. Hil. (Loganiaceae), Lachnanthes carolinianum, Lantana camara, 
Solidago sp. (Asteraceae). 


Euristrymon favonius (J. E. Smith) 


STATUS: Abundant in late spring and early summer in Sand Pine scrub, scrubby 
flatwoods, and on the main grounds. Frost (1975) took one in an ultraviolet light trap. 
Adults are associated with oaks. 

FLOWERS VISITED: Asclepias curtissii, Persea humilis Nash (Lauraceae). 


Parrhasius m-album (Boisduval & Leconte) 


STATUS: Uncommon in scrubby flatwoods and on the main grounds. Frost (1975) 
captured a few in an ultraviolet light trap. Adults are associated with oaks. 
FLOWERS VISITED: Bidens alba, Lachnanthes carolinianum, Sabal etonia. 


Satyrium calanus calanus (Hubner) 


STATUS: Two individuals were collected by R. W. Pease Jr. on 10 May 1958 (ABS 
reference collection). ABS is the southernmost locality where this species has been recorded 


VOLUME 46, NUMBER 2 : 149 


in Florida. Some populations of S. calanus in Florida are associated with oaks, whereas 
others occur on hickory. Oaks as well as Scrub Hickory (Carya floridana Sarg., Juglan- 
daceae) are abundant at the station. 


Strymon melinus melinus Hubner 


STATUS: Abundant in Sand Pine scrub, sandhill, scrubby flatwoods, and disturbed 
sites. 

HOST PLANTS: Observed ovipositing on Desmodium incanum flowers, and often 
associated with Galactia species. 3 

FLOWERS VISITED: Asclepias curtissii, Bidens alba, Dalea feayi, Diodia teres, Er- 
iogonum floridanum Small (Polygonaceae), Eryngium cuneifolium, Galactia regularis, 
Lachnanthes carolinianum, Liatris tenuifolia, Licania michauxii Prance (Chrysobalana- 
ceae), Palafoxia feayi, Sabal etonia. 


LYCAENIDAE: POLYOMMATINAE 
Hemiargus ceraunus antibubastus Hubner 


STATUS: Abundant in Sand Pine scrub and sandhill habitats. 

HOST PLANTS: Observed ovipositing on Cassia fascicularis, Indigofera hirsuta, and 
Galactia regularis flowers. Larvae were found on Chapmannia floridana Torr. & Gray 
(Fabaceae) and Indigofera carolinanum flowers. 

FLOWERS VISITED: Asclepias curtissii, Balduina angustifolia, Dalea feayi, Diodia 
teres, Eriogonum floridanum, Eryngium cuneifolium, Lachnanthes carolinianum, Lia- 
tris tenuifolia, Licania michauxii, Satureja rigida. 

PARASITOID: Rogas species (Braconidae) reared from a larva on Chapmannia, 1 
October 1986, T. Eisner (ABS reference collection). 


Leptotes cassius theonus (Lucas) 


STATUS: This species appears to colonize the station during favorable years. The 
reference collection has specimens from 1957 and 1960. I have not found the Cassius 
Blue at ABS, but several were seen in nearby Lake Placid during November 1987 in 
association with an exotic mimosoid tree. Frost (1964) supposedly collected a Hemiargus 
thomasi bethunebakeri Comstock & Huntington in a light trap at ABS; however, this 
species has been recorded only in the Florida Keys and southernmost mainland. Dr. Frank 
Fee kindly checked the Frost collection at Pennsylvania State University, examined the 
specimen, and determined that it is a female L. cassius, not H. thomasi. 


NYMPHALIDAE: HELICONIINAE 


Agraulis vanillae nigrior Michener 


STATUS: Occasional in scrubby flatwoods and disturbed sites, especially during the 
fall when dispersing adults fly southward through Florida in large numbers. 

FLOWERS VISITED: Bidens alba, Lachnanthes carolininanum, Liatris tenuifolia, 
Richardia scabra. 


Heliconius charitonius tuckeri Comstock & Brown 


STATUS: Abundant during the fall in shady areas on the main grounds. 
HOST PLANTS: Larvae were found on an exotic species of Passiflora (Passifloraceae) 
growing in the old citrus grove on Red Hill. 


150 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


NYMPHALIDAE: NYMPHALINAE 
Anartia jatrophae guantanamo Munroe 


STATUS: Occasional to abundant during the fall, when adults of this tropical species 
disperse northward. 


FLOWERS VISITED: Lachnanthes caroliniana, Lippia nodiflora, Vernonia gigantea. 


Basilarchia archippus floridensis (Strecker) 


STATUS: Uncommon and local around patches of willow near Lake Annie; observed 
once on the main grounds. 


HOST PLANT: Larvae were found on Salix caroliniana Michx. (Salicacaeae). 


Euptoieta claudia (Cramer) 


STATUS: I observed one adult at Hicoria on 27 November 1983. The Variegated 
Fritillary probably colonizes ABS in some years. 


Junonia coenia (Hubner) 


STATUS: Abundant in scrubby flatwoods and other habitats. 

HOST PLANTS: Larvae were found on Seymeria pectinata Pursh (Scrophulariaceae). 

FLOWERS VISITED: Dalea feayi, Lachnanthes carolinianum, Liatris tenuifolia, 
Lyonia ferruginea (Walt.) Nutt. (Ericaceae), Satureja rigida. 


Marpesia petreus (Cramer) 


STATUS: The Ruddy Dagger Wing rarely strays into Highlands County from tropical 
South Florida. Comstock and Comstock (1902) collected one in May at Avon Park. Frost 
took one at ABS on 16 December 1959 (Kimball 1965). 


Phyciodes phaon (Edwards) 


STATUS: Uncommon along roadsides and on Red Hill. 
FLOWERS VISITED: Bidens alba. 


Phyciodes tharos tharos (Drury) 


STATUS: R. W. Pease Jr. took one on 19 December 1957 (ABS reference collection). 
I have not found the Pearl Cresent at ABS, although the larval food plants, Aster spp. 
(Asteraceae), are present. This butterfly is abundant and widespread throughout Florida. 
Its scarcity at ABS is a mystery. 


Polygonia interrogationis (Fabricius) 


STATUS: One specimen (form fabricii) was taken at ABS on 5 December 1965 (ABS 
reference collection). The Question Mark is abundant 40 km north of the station at 
Highlands Hammock State Park (H. D. Baggett pers. comm. ). 


Vanessa atalanta rubria (Fruhstorfer) 


STATUS: Uncommon in the citrus grove on Red Hill and on the main grounds. Frost 
(1966) took one in an ultraviolet light trap. 

HOST PLANTS: Larvae were found on Boehmeria cylindrica (L.) Sw. (Urticaceae). 

FLOWERS VISITED: Polygonella robusta. 


VOLUME 46, NUMBER 2 ul 


Vanessa virginiensis (Drury) 


STATUS: Uncommon in the old citrus grove on Red Hill and in scrubby flatwoods. 
FLOWERS VISITED: Lachnanthes carolinianum and Lantana camara. 


NYMPHALIDAE: SATYRINAE 
Hermeuptychia sosybius (Fabricius) 


STATUS: Abundant in shady areas on the main grounds. Frost (1964) captured one in 
an ultraviolet light trap. 
FLOWERS VISITED: Bidens alba. 


Neonympha areolata areolata (J. E. Smith) 


STATUS: Comstock and Comstock (1902) reported the Georgia Satyr to be “very 
common over marshes in April and May, both at Avon Park and Lake Josephine.” At 
ABS, R. W. Pease Jr. collected a few in August and October 1960 (reference collection) 
and Oosting and Harvey (1976) recorded it in April 1975. I did not find N. areolata on 
my surveys of the station. 


NYMPHALIDAE: DANAINAE 
Danaus gilippus berenice (Cramer) 


STATUS: Occasional in scrubby flatwoods and sandhill habitats. Brower’s (1961, 1962) 
data suggest that D. gilippus berenice is more abundant than D. plexippus in Highlands 
County, especially during the summer. 

HOST PLANTS: M. F. Minno found larvae on Asclepias curtissii, Asclepias tomentosa 
Ell. (Asclepiadaceae), and Asclepias tuberosa ssp. rolfsii. Brower (1961) also reports 
immatures on Asclepias humistrata Walt. and Asclepias curassavica L. (Asclepiadaceae) 
in Highlands County. 

FLOWERS VISITED: Bidens alba, Balduina angustifolia, Dalea feayi, Heterotheca 
subaxillaris, Lachnanthes caroliniana, Lantana camara, Liatris tenuifolia. 


Danaus plexippus plexippus (Linnaeus) 


STATUS: Most abundant during spring and fall in disturbed scrub habitats, but also 
present and breeding in small numbers during the summer. 

HOST PLANTS: Brower (1961) reports Monarch immatures on Asclepias humistrata, 
Asclepias tuberosa ssp. rolfsii, and Asclepias curassavica in Highlands County. 

FLOWERS VISITED: Bidens alba, Polygonella robusta. 


Faunal Composition 


Seventy species of butterflies have been found at ABS. Eleven ad- 
ditional species have been recorded from Highlands County, but not 
Archbold (Table 1). The least-probable of these to be found at the 
station is I. henrici margaretae dos Passos, which seems to be a poor 
disperser and usually occurs in swamps with an abundance of Ilex 
cassine L. (Aquifoliaceae), a larval food plant. Calephelis virginiensis 
(Gueérin-Ménéville) is likely to be an overlooked resident at ABS. This 
metalmark occurs in flatwoods at Sebring (85 km north of ABS on the 
Lake Wales Ridge) similar to those present at the station. The other 


152 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


TABLE 1. Butterflies recorded from Highlands County, Florida, but not the Archbold 
Biological Station. 


Family Species 


Hesperiidae Calpodes ethlius (Stoll) 
Euphyes pilatka pilatka (Edwards) 
Poanes aaroni howardi (Skinner) 
Problema byssus (Edwards) 


Pieridae Pieris rapae (Linnaeus) 

Lycaenidae Incisalia henrici margaretae dos Passos 
Riodinidae Calephelis virginiensis (Guérin-Ménéville) 
Nymphalidae Asterocampa celtis reinthali Friedlander 


Asterocampa clyton flora (Edwards) 
Danaus eresimus tethys Forbes 
Megisto cymela viola (Maynard) 


butterflies may eventually be recorded from ABS as stray individuals 
or temporary colonizers. 

The butterfly fauna of the station is an ever-changing mixture of 
species. In any particular year, additional species may become estab- 
lished and others may disappear. Many butterflies are highly vagile and 
disperse great distances, which may account for the several species 
recorded from ABS as single individuals. Some species are dependent 
upon ephemeral weedy habitats or specific stages in fire-maintained 
communities, and must frequently colonize new areas. Changes in hab- 
itat and climate are likely to cause changes in the butterfly fauna. 
Highlands County is a rapidly changing area, and many natural areas 
are being converted to pastures, orange groves, and urban environments 


30 
28 
26 
24 
22 
20 
18 
16 
14 


MEAN TEMPERATURE (°C) 


Jo RM SAC Mis Je Av Si OmiNeae 
MONTH 


Fic. 3. Long-term mean monthly temperature at the Archbold Biological Station, 
Highlands County, Florida (National Oceanic & Atmospheric Administration 1987). 


VOLUME 46, NUMBER 2 153 


24 


MEAN PRECIPITATION (CM) 


JP MAU dd Jd AS © IND 
MONTH 


Fic. 4. Long-term mean monthly precipitation at the Archbold Biological Station, 
Highlands County, Florida (National Oceanic & Atmospheric Administration 1987). 


(Peroni & Abrahamson 1985). ABS is changing in a different way. Large 
portions of the sandhill areas have not been burned for some time, and 
although small fires occur regularly in the flatwoods, large fires do not. 
Many areas of the station today look quite different from photographs 
taken in the 1980’s (ABS archives). 

A number of tropical species, including Urbanus dorantes, Pyrgus 
oileus, Battus polydamas, Ascia monuste, Nathalis iole, Phoebis philea, 
Phoebis agarithe, Leptotes cassius, Heliconius charitonius, and Anartia 
jatrophae, have a tendency to disperse northward, especially in the fall. 
These species occur sporadically at ABS. Some are known from single 


oO 
(o) 


aS 
© 


Ww 
o) 


10 


NUMBER OF SPECIES 


0 


J Ey MeAR Mi evATS sO: N> 'D 
MONTH 


Fic. 5. The number of butterfly species recorded each month at the Archbold Bio- 
logical Station, Highlands County, Florida. 


154 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


TABLE 2. Records of monthly occurrence (indicated by an “x’’) of adult butterflies 
at the Archbold Biological Station, Highlands County, Florida. 


Month 
Species J F M A M J J A S O N D 


Hesperiidae: Pyrginae 
Epargyreus c. clarus — 
Erynnis brizo somnus x 
Erynnis horatius x 
Erynnis j. juvenalis x 
Erynnis 2. zarucco _— 
Pyrgus o. oileus —_— — 
Thorybes pylades — — 
Urbanus d. dorantes — x 
Urbanus p. proteus x 


Xi, lee lax <x Ox 
| 
| 
| 


Na OO Sele ae 


Hesperiidae: Hesperiinae 
Ancyloxypha numitor ee ee 
Asbolis capucinus Sa 
Atalopedes campestris huron <p Xela 
Atrytone d. delaware ee ee 
Atrytonopsis hianna loammi a 
Copaeodes minimus Pes Pele EE 8 gs 
Euphyes arpa cpm CP Epo a age EP 
Hesperia meskei straton —_— — 
Hylephila p. phyleus — x 
Lerema a. accius x xX 
Lerodea eufala —_— — 
Nastra lherminier ee 
Oligoria maculata ey eee ex 
Panoquina o. ocola Oh ee 
Polites themistocles a Sa J KG tle enone 
Polites v. vibex ALD nti 
Wallengrenia otho —- — — 


See aaa XxX oe: x x 4 


Hesperiidae: Megathyminae 
Megathymus yuccae buchholzi — x 


| 
| 
| 
| 
| 
| 
| 
| 


Papilionidae: Papilioninae 
Battus p. philenor —_— — 
Battus polydamas lucayus KX 
Eurytides m. floridensis — — 
Papilio cresphontes — x 
Papilio glaucus australis —_— — 
Papilio palamedes — x 
Papilio polyxenes asterius —— 
Papilio troilus ilioneus —_—- — 


Xx XG exe xX | 
x | | 
apa aX 
No BS SSS SOS] 


Pieridae: Pierinae 


Ascia monuste phileta Be ee a es a x: Xe 
Pontia protodice scien, re 


x 
x 
| 
| 
| 
| 
| 


Pieridae: Coliadinae 


Colias eurytheme — 
Eurema daira daira x 
Eurema lI. lisa — 
Eurema nicippe x 


| x x | 

| 

| 

x «OX 
Xe Xe xXeX 
x xX X xX 
Px 
<x | 
ess | 


VOLUME 46, NUMBER 2 


Species 


Nathalis iole 

Phoebis agarithe maxima 
Phoebis p. philea 
Phoebis sennae eubule 
Zerene cesonia 


Lycaenidae: Eumaeinae 


Atlides h. halesus 
Calycopis cecrops 
Euristrymon favonius 
Parrhasius m-album 
Satyrium c. calanus 
Strymon m. melinus 


Lycaenidae: Polyommatinae 


Hemiargus c. antibubastus 
Leptotes cassius theonus 


Nymphalidae: Heliconiinae 


Agraulis vanillae nigrior 

Heliconius charitonius tuckeri 
Nymphalidae: Nymphalinae 

Anartia jatrophae guantanamo 

Basilarchia a. floridensis 

Euptoieta claudia 

Junonia coenia 

Marpesia petreus 

Phyciodes phaon 

Phyciodes t. tharos 

Polygonia interrogationis 

Vanessa atalanta rubria 

Vanessa virginiensis 


Nymphalidae: Satyrinae 
Hermeuptychia sosybius 
Neonympha a. areolata 

Nymphalidae: Danainae 


Danaus gilippus berenice 
Danaus p. plexippus 


TABLE 2. 
J F 
aX 

x 
— x 
— x 
=—— “>< 


155 


Continued. 
Month 
NP ER ee pea St Om ND 
SO ee tg ment) een Mr rc ee SK 
pe faa eae Sy ee ee a ee 
cy cl ri ge he hein ag a al ol ae nln Pe al 
5 ee a Oe ES CN a ee 
5 es i SS AE 572 Dae TE A apm 
Big 9 =a SOB as Se aE SRO aan 
eee REE ES SEIS? SC MIS 
Eee CO Ae A ee acento RNY Geen es eres 
ee ae OK PSC Be ee ae 
ee gen MEN es tee SE, eee eee ew ee 
SO eee SCRA PGS TE DC ke oe 
So ea eM nS Ceti x x x 
Sg So Rly Snes Pay ae i So ae a SC 
Siege ee pet os ge Ie 5 bere Sci ea 
oe ee eee aX Make 
Hak eee reat: | A TS Be aa. ea 
Sere, Be Sh NR oe WC ah ae 
eens CSE at Peet’ LAB Pee ee See ey Be 
Sho picasa F EE i SC eal SN hee ans pa ag SL oe lee 
eT et SS ages SRS) Vee Sie rts SONS 
el) ae BO | aa ee MA gg AO 
poe Reale © BE aoe beg gs SSE 
pee ee ee eee peer eee RON ERE ee 
ee i IE SW ag ee ema ee 
5m co OS. = 5 i ee in i Nein le 
SO ee Ee ein ae ES NG on aE 
eee ee eo eee a en Se ee a Be 
Se ee eC EEG) OG Deer es WeI TR 
Sb Pe EXGED ING GOO P= Leh a= Be 


individuals; others establish ephemeral populations during favorable 
years. A few butterflies migrate southward through Florida in great 
numbers during the fall (Walker 1978, 1985). Southward-bound mi- 
grants such as Urbanus proteus, Panoquina ocola, Eurema daira, Phoe- 
bis sennae, Agraulis vanillae, and Junonia coenia occur in greatest 
abundance at ABS during late August, September, and October. 
There are no butterflies endemic to the scrubs of the Lake Wales 
Ridge (Deyrup 1989), but several are found primarily in peninsular 


156 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Florida. Peninsular Florida endemics that occur in Highlands County 
include Erynnis brizo somnus, Euphyes arpa, Papilio glaucus australis, 
Papilio troilus ilioneus, Eurytides marcellus floridensis, Satyrium cal- 
anus calanus, Incisalia henricii margaretae, Euristrymon favonius, 
Basilarchia archippus floridensis, Asterocampa celtis reinthali, and 
Asterocampa clyton flora. None of these butterflies are rare or endan- 
gered. 


Phenology 


Figures 3 and 4 show climatological data for ABS. The wet season 
corresponds to summer, beginning in May and ending in October. 
Temperature (Fig. 3) and rainfall (Fig. 4) peak between June and 
September. Although adult butterflies may be found all in months at 
the station, there are two peaks in species richness and abundance (Fig. 
5). The first peak occurs in March, when species overwintering as 
immatures break diapause, complete development, and emerge as adults. 
A second peak occurs in late summer and early fall (August/September), 
when most resident species reach their greatest abundance and many 
migrant butterflies travel through Highlands County. Table 2 presents 
the monthly occurrence of each species at ABS. 

The majority of butterfly species at ABS are multivoltine, but some 
species, particularly oak-feeders, emerge as adults only in the spring or 
early summer. Univoltine species include Erynnis brizo, Erynnis ju- 
venalis, Megathymus yuccae, Satyrium calanus, and Euristrymon fa- 
vonius. Spring adults of multiple-brooded species often are smaller or 
patterned somewhat differently from later generations. This is es- 
pecially true of those that overwinter in the pupal stage, such as swal- 
lowtails (Papilionidae). A few butterflies found at ABS overwinter in 
the adult stage. Adult diapausing species often have different summer 
and winter phenotypes, as in Pyrgus oileus, Eurema spp., Zerene ce- 
sonia, Junonia coenia, Phyciodes phaon, and Phyciodes tharos. The 
winter forms of most of these species are brownish or reddish on the 
undersides of the hindwings, instead of the paler colors of summer 
individuals. 


Adult and Larval Resources 


At least 70 of the approximately 620 species of vascular plants that 
grow at ABS are used by butterflies as larval hosts or as sources of nectar 
for adults. Only about 13% of the flora consists of monocots; yet the 
larvae of nearly 30% of the butterfly species feed on plants in this group, 
such as grasses, sedges, palms, and yuccas. Among the dicots, the As- 
teraceae, Fabaceae, Fagaceae, Lamiaceae, Rubiaceae, and Verbenaceae 
are the more important families used by butterflies. 


VOLUME 46, NUMBER 2 157 


A few rare plants such as Asclepias curtissii, Conradina canescens, 
Eryngium cuneifolium, and Liatris ohlingerae are used occasionally 
by butterflies at ABS. On the other hand, exotics like Aristolochia 
literalis, Citrus spp., Clerodendrum speciosissium, and Wedelia tri- 
lobata are used as well. The flowers of weedy plants such as Bidens 
alba and Lantana camara may be visited by multitudes of butterflies 
during late summer and fall, but are often ignored at other seasons. 
Native plants with flowers attractive to many butterflies include pal- 
mettos, Asclepias spp., Lachnanthes carolinianum, Dalea feayi, Bal- 
duina angustifolia, Liatris spp., and Satureja rigida. 


ACKNOWLEDGMENTS 


I thank James L. Wolfe and the Archbold Biological Station for providing support for 
this project. Mark Deyrup, H. David Baggett, Maria F. Minno, and Frank Fee kindly 
furnished additional data on the butterflies of Archbold. Many thanks to H. David Baggett, 
Charles V. Covell Jr., Mark Deyrup, Boyce A. Drummond, Thomas C. Emmel, and Maria 
F. Minno for reviewing the manuscript. Peter Eliazar helped prepare the graphs. 


LITERATURE CITED 


ABRAHAMSON, W. G., A. F. JOHNSON & J. N. LAYNE. 1984a. Archbold Biological Station 
vegetation map. Published by the Archbold Biological Station, Lake Placid, Florida. 

ABRAHAMSON, W. G., A. F. JOHNSON, J. N. LAYNE & P. A. PERONI. 1984b. Vegetation 
of the Archbold Biological Station, Florida: An example of the southern Lakes Wales 
Ridge. Florida Scient. 47:209-250. 

BROWER, L. P. 1961. Studies on the migration of the monarch butterfly I. Breeding 
populations of Danaus plexippus and D. gilippus berenice in south central Florida. 
Ecology 42:76-83. 

1962. Evidence for interspecific competition in natural populations of the mon- 
arch and queen butterflies, Danaus plexippus, and D. gilippus berenice in south 
central Florida. Ecology 48:549-552. 

Burns, J. M. 1964. Evolution of skipper butterflies in the genus Erynnis. Univ. Calif. 
Publ. Entomol. 37:1-216. 

CHEN, E. & J. F. GERBER. 1990. Climate, pp. 11-34. In R. L. Myers & J. J. Ewel (eds.), 
Ecosystems of Florida. Univ. of Central Florida Press, Orlando. 765 pp. 

CLENCH, H. K. 1970. New or unusual butterfly records from Florida. J. Lepid. Soc. 24: 
240-244. 

ComsTock, J. & H. Comstock. 1902. A trip to Lake Josephine, Fla. Entomol. News 
13:75-77. 

Deyrvup, M. 1989. Arthropods endemic to Florida scrub. Florida Scient. 52:254-270. 

Frost, S. W. 1964. Insects taken in light traps at the Archbold Biological Station, 
Highlands County, Florida. Florida Entomol. 47:129-161. 

1966. Additions to Florida insects taken in light traps. Florida Entomol. 49: 

243-251. 

1969. Supplement to Florida insects taken in light traps. Florida Entomol. 52: 

91-101. 

1975. Third supplement to insects taken in light traps at the Archbold Biological 
Station, Highlands County, Florida. Florida Entomol. 58:35—42. 

HERNDON, A. 1986. Cultivated plants, pp. 61-68. In Plant list of the Archbold Biological 
Station. Published by the Archbold Biological Station, Lake Placid, Florida. 80 pp. 

HopcEs, R. W., T. Dominick, D. R. Davis, D. C. FERGUSON, J. G. FRANCLEMONT, E. 
G. MUNROE & J. A. POWELL (eds.). 1983. Check list of the Lepidoptera of America 


158 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


north of Mexico. E. W. Classey, London, and The Wedge Entomological Research 
Foundation, Washington, D.C. 284 pp. 

KIMBALL, C. P. 1965. The Lepidoptera of Florida. Florida Dept. of Agriculture, Gaines- 
ville, Florida. Arthropods of Florida and Neighboring Land Areas 1:1-363. 

KNUDSON, E. C. 1974. Urbanus dorantes dorantes Stoll (Hesperiidae): Another example 
of Florida’s population explosion. J. Lepid. Soc. 28:246-248. 

MINNO, M. C. 1988. Insects of the Archbold Biological Station. Order Lepidoptera. 
Archbold Biological Station, Lake Placid, Florida. 29 pp. 

MINNO, M. F. & R. Myers. 1986. Archbold Biological Station. Its history and its biology. 
The Palmetto 6(4):3-7. 

NATIONAL OCEANIC & ATMOSPHERIC ADMINISTRATION. 1987. Florida, annual sum- 
mary. Climatological Data 91(18):1-34. 

NEILL, W. F. 1957. Historical biogeography of present-day Florida. Bull. Florida State 
Mus. 2:175-220. 

OosTING, D. P. & D. J. Harvey. 1976. The 1975 field season summary: Florida. News 
Lepid. Soc. 1976(2):13. 

PERONI, P. A. & W. G. ABRAHAMSON. 1985. Vegetation loss on the southern Lake Wales 
Ridge. The Palmetto 5:6-7. 

RuTOwsKI, R. L. 1981 [1983]. Courtship behavior of the dainty sulfur butterfly, Nathalis 
iole with a description of a new, facultative male display (Pieridae). J. Res. Lepid. 
20:161-169. 

VANDER KLOET, S. P. 1986. Florula Archboldiensis. Being an annotated list of the 
vascular plants of the Archbold Biological Station, pp. xi—xii, 1-60. In Plant list of 
the Archbold Biological Station. Published by the Archbold Biological Station, Lake 
Placid, Florida. 80 pp. 

WALKER, T. J. 1978. Migration and re-migration of butterflies through north peninsular 
Florida: Quantification with Malaise traps. J. Lepid. Soc. 32:178-190. 

1985. Permanent traps for monitoring butterfly migration: Tests in Florida, 
1979-1984. J. Lepid. Soc. 39:313-320. 

WARD, D. B. (ed.). 1979. Plants. Vol. 5. In P. C. H. Pritchard (series ed.), Rare and 
endangered biota of Florida. Univ. Presses of Florida, Gainesville. 175 pp. 

WuiteE, W. A. 1970. The geomorphology of the Florida peninsula. Florida Dept. of 
Natural Resources, Bureau of Geology, Geol. Bull. No. 51. 164 pp. + 7 maps. 
WUNDERLIN, R. P. 1982. Guide to the vascular plants of central Florida. University of 

South Florida, Tampa, Florida. 472 pp. 


Received for publication 2 October 1990; revised 7 September 1991; accepted 27 January 
1992. 


GENERAL NOTES 


Journal of the Lepidopterists’ Society 
46(2), 1992, 159 


OCCURRENCE OF DISPHRAGIS CAPTIOSA (NOTODONTIDAE) IN ARIZONA 
Additional key words: Mexico, national record, United States. 


There have been specimens of a notodontid from Arizona in the Natural History 
Museum of Los Angeles County (LACM) for over 40 years. The species was identified 
as Disphragis captiosa Draudt, 1932, but the identification was made too late for its 
inclusion in McDunnough’s 1938 Checklist. The record remained unpublished, and sub- 
sequently was left out of the 1988 MONA Checklist (Franclemont 1983). This note will 
facilitate its inclusion in a subsequent list. 

Disphragis captiosa was described by Draudt (1932) from specimens collected in 
Zacualpan and Cuernavaca, Mexico. The type is a female in the Draudt collection. The 
female is similar to the female of Heterocampa obliqua Pack., 1864, in general appearance, 
but much smaller (83 mm versus 47 mm). Specimens were taken in Madera Canyon, 
Santa Cruz Co., Arizona, on 22 and 25 August 1946, and 17 and 20 August 1949 by J. 
A. Comstock, L. M. Martin, and C. W. Kirkwood (LACM). I collected a single specimen 
in a residential area on the north side of Tucson, Pima Co., Arizona, on 11 August 1974. 
The LACM also has one specimen from Rincon, Puntarenas Province, Costa Rica, which 
may represent the southern extent of its range. 

All six specimens examined are females as is the type. I hope that this note will stimulate 
Arizona collectors to generate more records for this species, and perhaps collect the male. 
Disphragis captiosa can be recognized by a large oval yellow-brown patch on the forewing, 
that starts at the reniform and extends outward toward the apex and outer margin. 


LITERATURE CITED 


DraAupDT, M. 1932. Notodontidae, pp. 901-1070. In Seitz, A. (ed.), Macrolepidoptera 
of the American Region, Vol. 6, Amer. Bombyces & Sphinges. 1296 pp., 185 pls. 
FRANCLEMONT, J. G. 19838. Notodontidae, pp. 112-114. In Hodges, R. W. et al. (eds.), 
Check list of the Lepidoptera of America north of Mexico. E. W. Classey Ltd. and 
The Wedge Entomol. Res. Found., London. xvii + 284 pp. 

McDuNNOouGH, J. 1938. Checklist of the Lepidoptera of Canada and the United States 
of America. Part 1 (Macrolepidoptera). Mem. Southern California Acad. Sci., Los 
Angeles. 275 pp. 


RON LEUSCHNER, Research Associate, Natural History Museum of Los Angeles Coun- 
ty, 900 Exposition Boulevard, Los Angeles, California 90007 


Received for publication 3 October 1991; revised and accepted 283 February 1992. 


Journal of the Lepidopterists’ Society 
46(2), 1992, 159-160 


HILEITHIA DECOSTALIS (CRAMBIDAE: PYRAUSTINAE), 
NEW TO THE UNITED STATES 
Additional key words: distribution, new record, checklist placement. 


Hiliethia decostalis (Guenée, 1854) is a relatively small pyraustine moth native to the 
neotropics. Although there is a specimen from Mexico in the collection of the USNM (A. 


160 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Solis, pers. comm.), it formerly was not known to occur as far north as the United States 
(Munroe 1983). A single female was taken at Bay St. Louis, Hancock Co., Mississippi, 30 
July 1979, by Rick Kergosien. The specimen was determined by E. Munroe and is 
deposited in the personal collection of B. Mather. Hiliethia decostalis should be inserted 
in the checklist (Munroe 1983) as number 5271.1, preceding Herpetogramma Lederer. 


LITERATURE CITED 


MUNROE, E. G. 1983. Pyraloidea, pp. 67-86. In Hodges, R. W. et al. (eds.), Check list 
of the Lepidoptera of America north of Mexico. E. W. Classey, Ltd. and The Wedge 
Entomol. Res. Found., London. 284 pp. 


BRYANT MATHER, 213 Mt. Salus Road, Clinton, Mississippi 39056-5007; AND EUGENE 
MUNROE, 3093 Barlow Crescent, R.R. 1, Dunrobin, Ontario KOA 1T0, Canada. 


Received for publication 19 January 1991; revised and accepted 23 February 1992. 


Journal of the Lepidopterists’ Society 
46(2), 1992, 160-161 


A NEW LICHEN MOTH RECORD FOR THE UNITED STATES: 
LYCOMORPHODES SORDIDA (ARCTIIDAE: LITHOSIINAE) 
FROM SOUTH TEXAS 


Additional key words: Zygaenidae, mimicry, neotropical, Hidalgo County. 


Lycomorphodes sordida (Butler) (Arctiidae: Lithosiinae) is distributed in Latin America 
from northern Mexico to northern Colombia (Seitz 1940:253). The species is sexually 
dimorphic; both sexes are presumably lycid beetle (Lycidae) mimics. The male has nearly 
solid orange forewings, with the wing margins variably shaded with black. The female 
forewing is similar, but has a black costal dash midway between the base and apex, and 
the margins are more heavily shaded with black. The hindwing of both sexes is generally 
black, with only the leading edge suffused with orange. L. sordida is a small species; male 
forewing length ranges between 18 and 20 mm (n = 9); females range between 21 and 
23 mm (n = 7). Superficially, L. sordida resembles some species of Zygaenidae (e.g., 
Triprocris spp.), which also are probable lycid beetle mimics, though the zygaenids tend 
to have less heavily scaled wings giving them a translucent appearance. 

Lycomorphodes sordida may be locally common in northern Mexico. I have found it 
especially abundant in Tamazunchale in the state of San Luis Potosi (at mercury vapor 
street lights in August). I recently examined a male specimen of L. sordida in the personal 
collection of J. Richard Heitzman with the following data: Santa Ana Reserve, Hidalgo 
County, Texas, 24 June 1968, taken at UV light, J. R. Heitzman. [The full title of the 
Santa Ana Reserve is Santa Ana National Wildlife Refuge.] The specimen had been 
determined as “Triprocris sp.??”’. Species in the genus Triprocris are not likely to occur 
in southern Texas; the genus is generally restricted to the southwestern U.S. and north- 
western Mexico (Seitz 1940: 24-25). The range of L. sordida is unlikely to overlap broadly 
with that of any Triprocris sp. This U.S. record of L. sordida probably has gone unnoticed 
due to the small size of the species and the previous misdetermination. 

The Check list of the Lepidoptera of America North of Mexico (Hodges et al. 1983: 
114-115) does not list Lycomorphodes sordida as part of the fauna of North America 
north of Mexico. The specimen discussed above was sent to Douglas Ferguson at the U.S. 
National Museum of Natural History (where the specimen now resides) to confirm my 
identification and to verify that this is indeed the first U.S. record for L. sordida. The 
specimen subsequently was examined by Nancy L. Jacobson, who also confirmed the 
identification. 


VOLUME 46, NUMBER 2 | | 161 


The genus Lycomorphodes is distributed widely throughout Latin America. Of the 
+15 species in the genus, L. sordida is the most northerly in distribution, with the majority 
of the species occurring in South America (Seitz 1940: 252-254). Although there is some 
resemblance to the zygaenid genera Triprocris Grote and Pyromorpha Herrich-Schaeffer, 
confusion is more likely with the lithosiine genera Lycomorpha Harris and Ptychoglene 
Felder (also apparent lycid beetle comimics), some species of which are sympatric with 
Lycomorphodes sordida in northern Mexico. Specimens of lithosiine arctiids that have 
been collected in south Texas and determined as Lycomorpha or Ptychoglene sp. should 
be reexamined closely to determine if they represent additional U.S. records of Lyco- 
morphodes sordida. 

I thank J. R. Heitzman for allowing me to have and examine the male L. sordida, and 
Douglas Ferguson and Nancy L. Jacobson for verification of the identity of the specimen 
and critically reviewing the manuscript. 


LITERATURE CITED 


HOopGEs, R. W., T. Dominick, D. R. Davis, D. C. FERGUSON, J. G. FRANCLEMONT, E. 
G. MUNROE & J. A. POWELL (eds.). 1983. Check list of the Lepidoptera of America 
north of Mexico. E. W. Classey, Ltd. and The Wedge Entomological Research Foun- 
dation, London, 284 pp. 

SEITZ, A. 1940. The Macrolepidoptera of the World (Vol. 6): The American Bombyces 
and Sphinges (text and plates). Alfred Kernan, Stuttgart. 


JAMES K. ADAms, Dalton College, 213 N. College Drive, Dalton, Georgia 30720. 


Received for publication 7 October 1991; revised and accepted 3 March 1992. 


Journal of the Lepidopterists’ Society 
46(2), 1992, 161-163 


LIFE HISTORY NOTES ON CATOCALA SAPPHO AND 
CATOCALA ULALUME (NOCTUIDAE) 


Additional key words: larvae, rearing, foodplants, Lepidoptera. 


I present new life history information for two Nearctic species of underwing moths, 
including a description of the larva of Catocala sappho Strecker, and a wild foodplant 
record for Catocala ulalume Strecker. 

Catocala sappho. In Florida, adults of this underwing species can be found in ravine 
bottomland habitats between late May and early August. Adult males are collected most 
easily in mid to late afternoon as they rest on tree trunks about 1-3 m above the ground; 
females are encountered less frequently. The preferred microhabitat of the species seems 
to be low-lying hardwood hammocks that flood in the late winter and early spring, and 
whose characteristic trees include pignut hickory (Carya glabra [Mill] Sweet; Juglanda- 
ceae), bayberry (Myrica cerifera L.; Myricaceae), sweetgum (Liquidambar styraciflua 
L.; Hamamelidaceae), and several species of oaks (Quercus [Tourn.] L.; Fagaceae). 

In July of 1986, three adult female Catocala sappho were collected from tree trunks 
in Gainesville, Alachua County, Florida, and a fourth was taken in a bait trap in Jack- 
sonville, Duval County, Florida. Each female was put in a separate large paper bag and 
supplied with suitable food on a daily basis (sucrose solution placed on a small piece of 
sponge), and small twigs of hickory (the presumed foodplant; see below) to stimulate 
oviposition. The bags were misted with water every two days to prevent desiccation. One 
of the Gainesville females deposited approximately 50 eggs on 14-15 July 1986; the others 
died without ovipositing, although dissections revealed the presence of mature eggs in 
each. Eggs were deposited in clusters in the folds of the paper bag, on the sides of the 
bag, and on the sponge. The eggs subsequently were transferred to baby food containers 
with screened lids, which were stored outdoors in a shaded location through the winter. 


162 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Fic. 1. A-C, mature (sixth instar) larva of Catocala sappho Strecker: A, lateral view, 
scale bar = 5 mm; B-C, enlargements of head capsule and prothoracic regions. D, scanning 
electron micrograph (SEM) of egg: at 80x magnification, scale bar = 0.2 mm; note larval 
exit hole at bottom. 


The first larvae hatched on 22 March 1987. The remainder of the batch hatched within 
a few days. The young larvae were very active and readily accepted young leaves of 
pignut hickory, but refused mockernut hickory (Carya tomentosa [Poir.] Nutt.; Juglan- 
daceae). Several larvae from the same brood in the care of L. F. Gall and W. A. Miller 
readily accepted shagbark hickory (Carya ovata [Mill.] K. Koch; Juglandaceae) and pignut 
hickory, but fed sparingly on pecan (Carya illinoiensis [Wang.] K. Koch; Juglandaceae). 
My rearing procedure was to place young larvae in small plastic containers with tight 
fitting lids, and to change leaves every other day. The more mature larvae were transferred 
to large screened plastic cages, with foodplant leaves “potted” in test tubes containing 
water. The mature larvae had a habit of dropping from the foodplant and thrashing and 
twisting when disturbed. Feeding at all stages of growth was usually at night, although 


VOLUME 46, NUMBER 2 ; 163 


daytime feeding did occur. The larvae passed through six instars; the first pupated on 19 
April 1987. The first adults hatched on 19 May 1987. The cocoons were typical for 
Catocala: loosely spun silk, incorporating paper towels and/or leaf litter at the bottom 
of the rearing containers. 

The mature larva of Catocala sappho is shown in Figs. 1A-1C. The larval ground color 
is whitish gray, finely stippled with black atoms; some larvae are sparsely covered with 
a waxy white bloom; the dorsal tubercles are small and red, set inside whitish rings; the 
fifth abdominal segment is raised only slightly dorsally, and has an indistinct, mottled 
dark gray lateral “saddle patch;” the two dorsal stripes are black, prominent (especially 
on the mesothorax), but interrupted throughout their length; the latero-dorsal stripes are 
black, prominent, and less interrupted than the dorsal stripes; short, thin fleshy “‘filaments’’ 
are scattered sparingly along the latero-ventral margins; the venter is whitish, with in- 
distinct pinkish spots rimmed with gray on the abdominal segments; the head capsule is 
whitish gray, with fine pinkish-red and black striations, with neither a lateral band nor 
conspicuous submandibular dash. 

Pecan (Carya illinoiensis) is listed, without supporting evidence, as a larval foodplant 
for Catocala sappho by Forbes (1954), Kimball (1965), and Sargent (1976). Kimball 
additionally listed “hickory” as a foodplant for Catocala sappho, and cited Watson (1919), 
although Watson stated only that: “Its life history is entirely unknown. Its relatives spend 
their caterpillar days on the hickory and it is probable that this one does likewise. It is 
found only in woods with hickories.’’ On the basis of (1) my experience with the habitat 
of adult Catocala sappho, which agrees with Watson's observations, (2) the rearing notes 
presented herein and by Gall (1992), and (3) the overall geographic range of the moth, 
it seems unlikely that pecan is a wild host of any significance (being either recorded in 
error, given that misidentifications of hickories are common; or in confusion with ex ovis 
foodplant acceptability). Hickories in section §Eucarya DC. of Carya (e.g., Carya glabra) 
seem much more probable candidates. 

Catocala ulalume. On 26 May 1986, I collected a full grown larva of what subsequently 
proved to be Catocala ulalume on a small mockernut hickory (Carya tomentosa) in 
Liberty County, Florida. The habitat in which the larva was found was dominated by 
scrubby oak, with a mixture of mockernut hickories and species of hawthorn and blue- 
berries. The larva pupated on 31 May 1986, and an adult female emerged 29 June 1986. 
I am not aware of any previously published wild foodplant records for C. ulalume. Brower 
(1922) provided a description of the larva based on ex ovis rearings. 

I thank H. D. Baggett and R. M. Gillmore for stimulating my interest in Catocala, and 
for sharing their considerable knowledge about these moths in Florida. L. F. Gall helped 
edit the manuscript and hunt down references. 


Received for publication 19 November 1991; revised and accepted 14 March 1992. 


LITERATURE CITED 


BROWER, A. EF. 1922. Preparatory stages of Catocala ulalume Stkr., with larva of C. 
lacrymosa for comparison (Lepid., Noctuidae). Entom. News 33:234-236. 

FORBES, W.T.M. 1954. Lepidoptera of New York and neighboring states. III. Noctuidae. 
Mem. Cornell Univ. Agric. Expt. Sta. 329:1—-438. 

GALL, L. F. 1992. Evolutionary ecology of sympatric Catocala moths (Lepidoptera: 
Noctuidae). I. Experiments on larval foodplant specificity. J. Res. Lepid. 29:173-194. 

KIMBALL, C. P. 1965. The Lepidoptera of Florida: An annotated checklist. Fla. Dept. 
Agric., Gainesville. 363 pp. 

SARGENT, T. D. 1976. Legion of night: The underwing moths. Univ. Massachusetts Press, 
Amherst. 222 pp. 

WATSON, J. R. 1919. The chase of Catocala. Fla. Buggist 3:8-11. 


JEFFREY R. SLOTTEN, 5421 NW 69th Lane, Gainesville, Florida 32606. 


Journal of the Lepidopterists’ Society 
46(2), 1992, 164-165 


BOOK REVIEWS 


BuGGY Books: A GUIDE TO JUVENILE AND POPULAR BOOKS ON INSECTS AND THEIR 
RELATIVES, by Gary A. Dunn. 1990. Published by Young Entomologists’ Society, Inc., 
1915 Peggy Place, Lansing, Michigan 48910-2553. 120 pp. Soft cover, 21 x 28 cm, no 
ISBN, $12.95 (plus $2 S&H). | 


Asked by a clergyman what his many years of studying biology had taught him about 
the Creator, the great scientist J. B. S. Haldane reportedly replied “An inordinate fondness 
for beetles.” Apocryphal or not, this anecdote underscores the fact that the insect order 
Coleoptera is the most species-rich group of animals on earth, currently numbering about 
350,000 named species. Extending Haldane’s logic, we must surmise that the Creator 
prefers beetles over butterflies and moths by a three-to-one margin; the Order Lepidoptera 
numbers about 120,000 named species, barely edging out Diptera (flies) for a distant 
second place. Hymenoptera (ants, bees, and wasps) comes in fourth at about 100,000 
species before the insects relinquish fifth place to the Mollusca (a Phylum, no less) at 
around 80,000 species. Order Hemiptera (true bugs) ranks sixth at 60,000 species, followed 
by spiders (Class Arachnida—55,000 spp.), vertebrates (Phylum Vertebrata—54,000 spp. ), 
and crustaceans (another Class—45,000 spp.), before we arrive at the Order Orthoptera 
(grasshoppers, crickets, roaches) in tenth place with 20,000 species. (These numbers are 
taken from Southwood, T. R. E., 1978, The components of diversity, pp. 19-40, in Mound, 
L. A. & N. Waloff (eds.), Diversity of Insect Faunas, Symposia of the Royal Entomol. 
Soc. London, No. 9; Blackwell Sci. Pub., Oxford, 204 pp.) 

These numbers and rankings are useful in evaluating the attention given different 
groups in popular publications on insects. Does popularity have anything to do with 
diversity? Assessing the relative popularity of insect orders in books for the general public 
recently has been made easier by Gary Dunn, who has compiled a list of 736 juvenile 
and popular books on insects and their relatives. Buggy Books covers only non-fiction 
works (fictional books on arthropods number an additional several hundred titles and will 
be covered in a future publication), but stretches back to 1900 to cover 90 years of 
publishing. 

The heart of Buggy Books is an alphabetical listing by title in two parts. Part | treats 
non-insect arthropods; Part 2 treats insects. In each Part, following the alphabetical book 
list, is a subject index, age appropriate index, and an author index. For each book entry 
the following information is given: author; name, place, and date of publication; number 
of pages and illustrations; ISBN; price at the time of publication; an age appropriateness 
abbreviation; a quality rating symbol; and a brief description (2-8 lines). Age appropri- 
ateness designations are based on publisher recommendations and Dunn’s own evaluations. 
Intended as guidelines, not absolutes, the five age categories range from PRE/BEG 
(=Read-aloud and Early Reader Books, ages 3-6) to INT/ADV (=Books for Adolescents 
and Adults). The quality ratings are Dunn’s personal opinion of the quality and usefulness 
of the book. They range from one star (Books of POOR Quality = little use) to five stars 
(Books of EXCELLENT Quality = highly useful). A significant minority of titles were 
unavailable for review and are labeled NR (=not rated). 

The indices add greatly to the usefulness of Buggy Books. For example, in the Age 
Appropriateness Index, titles are grouped alphabetically under each of the five categories 
and are followed by the quality rating, providing easy identification of the best books 
appropriate for children of classrooms of any age group. In the Subject Index, titles are 
listed alphabetically under subject headings (5 subject categories in Part 1; 24 categories 
in Part 2), and each title is followed by the age appropriateness designation. My one 
suggestion for improvement of Buggy Books would be to add the quality ratings to titles 
listed by subject. This would allow someone interested in a particular group—butterflies 
and moths, for example—to scan for the top quality books about those insects. 

Dunn, Executive Director of Y.E.S. (Young Entomologists’ Society), has tried to make 
Buggy Books as complete as possible, but admits that it is unlikely that he has uncovered 
every non-fiction arthropod book ever published in English (books published in other 
languages have not been included). Even so, nothing else approaches the comprehen- 


VOLUME 46, NUMBER 2 ; | 165 


siveness of this compendium. For parents and teachers, Buggy Books is an invaluable 
resource for locating quality books (and avoiding inferior ones) that will stimulate young 
naturalists and introduce them to the animal groups that display the greatest diversity in 
species, life histories, and behavior. To be sure, many titles are out-of-print, but “col- 
lecting” these rarities can be as challenging and exciting for the bibliophile as swinging 
a net is for the field lepidopterist. Many in-print titles are available by mail from Y.E.S.’s 
Buggy Bookstore, or by special order from any good bookshop. To locate out-of-print 
titles, Dunn suggests checking your local public or school library (ask for a search through 
interlibrary loan if the book is unavailable locally) or exploring used bookstores. 

Let’s return to our original question: Does popularity (number of titles) have anything 
to do with diversity (number of species)? Here’s the score for the Orders of insects: 


Percentage of | Number of books Percentage of 
species in published on Order total books 


Order (Rank) Class Insecta since 1900 published (Rank) 
Coleoptera (1) 44.2% 39 10.8% (3) 
Lepidoptera (2) 15.1% 137 37.9% (Gp) 
Diptera (3) 15.0% 13 3.6% (6) 
Hymenoptera (4) 12.6% 113 31.38% (2) 
Hemiptera (5) 7.6% 6 1.7% (7) 
Orthoptera (7) 2.5% 88 10.5% (4) 
Other Orders (6) 8.0% 15 4.2% (5) 
Totals 100.0% 361 100.0% 


The great popularity of the Lepidoptera probably results more from public appreciation 
of the beauty and grace of butterflies than from the sheer number of species, most of 
which are small dull-colored moths. Indeed, most of the books treat butterflies, which 
account for only about 15% of the Lepidoptera. No doubt the mystical symbolism of 
metamorphosis contributes as well, as many books dwell on the “magic” and “wonder” 
of the transformation from caterpillar to adult. (Of course, the four most species-rich 
orders are all holometabolous, but the immature stages of beetles, flies, and hymenopterans 
are usually much more cryptic than woolly bears, horned devils, and cutworms.) Hy- 
menoptera surely owes its boost in the rankings in part to its venomous nature (killer bees 
and warrior ants are favorite book subjects) and perhaps to widespread envy of the 
industrious nature of ubiquitous ants. Flies would probably rank higher if they weren't 
generally perceived as pests and carriers of disease. That domestic species tend to breed 
in disgusting places doesn’t help. 

I could go on, but in keeping with the spirit of self-discovery encouraged by Buggy 
Books, (ll let you ponder the numbers and draw your own conclusions. 


BoycE A. DRUMMOND, Natural Perspectives, P.O. Box 9061, Woodland Park, Colorado 
80866. 


Journal of the Lepidopterists’ Society 
46(2), 1992, 166 


DiE RAUPEN DER SCHMETTERLINGE Evuropas, by Prof. Dr. Arnold Spuler (ZWEITE AU- 
FLAGE VON Dr. E. HOFMANNS GLEICHNAMIGEM WERKE). Erlangen, Weihnachten 1904. 
Reprint edition 1989, Apollo Books, Svendborg, Denmark. In German. 88 pp. “introduc- 
tion” and appendix; 60 color plates, 2000+ figures. Hard cover, 21 x 29 cm, ISBN 87- 
88757-12-9, Danish Kroner 780 (about $125 U.S.). 


The title indicates that this is a book about the caterpillars of European butterflies, but 
6.5 plates are butterfly immatures, 42.5 plates are moth immatures, 1 plate is eggs, and 
9.5 of the 10 addendum plates are moth larvae. 

The book appears to be an exact reprint of the 1904 edition (but I have not compared 
it with the original). As a consequence, the text is vintage 1904, and has limited value 
(especially if one is not fluent in German). The “introduction” of 26 pages is the entire 
text and covers a diversity of topics, including a general review on insects, a similar, but 
more detailed review for Lepidoptera, including details on eggs, larvae and pupae, ranging 
from structure to biology, behavior, and life cycles. Useful and harmful larvae are listed, 
examples of natural enemies are given, diseases are discussed, and culturing techniques 
are described. Other techniques are also provided, including killing adults by chloroform, 
cyanide, tobacco juice or smoke, and how to anesthetize and inflate larvae. The eleven- 
page “appendix” contains indices to common names and scientific names of plants, and 
an index to the Lepidoptera species associated with them. The genera of the insects are 
not indexed, so, for example, one cannot easily look up which species of Malacosoma are 
covered. The extensive use of German common names is also a drawback unless one is 
very familiar with the language. 

However, the book’s primary value is in the beautiful color illustrations, not the text, 
and it is certainly more useful for Europeans than North Americans, unless one wants to 
gaze upon a cabbage butterfly larva or a gypsy moth larva and a few others. The plates 
are nicely laid out as is characteristic of many of the old Lepidoptera books, with the 
caterpillars resting on vegetation in more or less natural positions, and with many flowers 
included. I judge most of the larvae to be last instars, and, as a general rule, the larger 
and more distinctive the larva is, the easier it will be to identify it using the illustrations. 
However, the gypsy moth larva is rather poorly done, and it would be easy to overlook 
it in making comparisons. The smaller illustrations cannot show much detail, and the best 
they can do is give an overall impression of the color and of any patterns or distinctive 
structures that are readily apparent. The illustrations are generally grouped by families, 
but families are not given anywhere, making the book less useful to those who are not 
very knowledgeable. The nomenclature is obviously outdated, but can’t be corrected in 
a strict reprint edition. The paper, printing, color reproduction, and binding appear to 
be excellent. I don’t know what the original 1904 edition sells for on the used/rare book 
market, but the $125 price of this reprint will probably deter all except those who are 
lovers of old color plates (and a reprint is not quite the same as an original). 

In summary, the book is a nice reproduction of an old caterpillar plate book that some 
may find enjoyable and useful. 


FREDERICK W. STEHR, Department of Entomology, Michigan State University, East 
Lansing, Michigan 48824-1115. [The assistance of Renate Snider in accurately reading 
the German is gratefully acknowledged. ] 


Journal of the Lepidopterists’ Society 
46(2), 1992, 166-167 


A REVISION OF THE INDO-AUSTRALIAN GENUS ATTACUS, by Richard S. Peigler. 1989. 
Lepidoptera Research Foundation, 9620 Heather Road, Beverly Hills, California 90210. 
xi + 167 pp., 24 text figs., 4 color plates. Soft cover, 20 x 28 cm, ISBN 9611464-2-7, 
$30.00. 


Peigler has done an outstanding piece of work in revising the “well known” moths of 
the genus Attacus. The members are among the largest of moths, and are arguably the 


VOLUME 46, NUMBER 2 167 


most widely recognized insects in the world. They occur from northern India and southern 
China to northern Australia. As a result of the interest in them, a considerable number 
of papers and descriptions have been published, usually without much prior knowledge 
of what was already in the literature. The result has been chaos. Now it is possible to go 
to one publication and learn to distinguish the 14 included species, to obtain the correct 
names for them, and to find out the status of all the other names that have been proposed. 
These total 50 (the emendations of which balloon the total to over 100!) for the species 
now included in Attacus. Plus anything and everything that pertains to these moths. 

All of this is accomplished in a handsome, soft cover book, printed on glossy paper 
with wide margins; typographical errors are almost non-existent. The book is well or- 
ganized and easy to use. In addition to the introduction, literature review, materials and 
methods, there are sections on morphology (egg, larva, pupa, and adult), systematics, 
biology and ecology, relationships of genera within the Attacini, zoogeography, phylogeny 
and speciation, and conclusions. There are over 10 pages of literature citations, an ex- 
tremely valuable section of the book. The two appendices list recorded foodplants of 
Attacus and zoogeographical names, providing valuable help for an area in which so 
many name changes have taken place. 

The illustrations are grouped in the back of the book. The black and white figures 
include distribution maps, morphology (larva, pupa, adult, venation), male and female 
genitalia, and cladograms. The four color plates show 8 caterpillars and 33 adults; the 
latter are reduced and of the right side only, due to the large size of these moths. The 
colors are quite good. All 14 species are shown, with type material of half of them being 
illustrated. 

This is one of the best revisionary works on Lepidoptera to have been published; it sets 
a model for others to follow. I strongly recommend this revision to anyone who has any 
interest in these very large and showy moths, or in seeing a first-rate revisionary study. 
For me, it was well worth the cost of the book to have all the nomenclature cleared up, 
with just the species names themselves being utilized. 


FREDERICK H. RINDGE, Department of Entomology, American Museum of Natural 
History, New York, New York 10024. 


Journal of the Lepidopterists’ Society 
46(2), 1992, 167-168 


A REVISION OF THE INDO-AUSTRALIAN GENUS ATTACUS, by Richard S. Peigler. 1989. 
Lepidoptera Research Foundation, 9620 Heather Road, Beverly Hills, California 90210. 
xi + 167 pp., 24 text figs., 4 color plates. Soft cover, 20 x 28 cm, ISBN-9611464-2-7, 
$30.00. 


Peigler revises this genus of tropical saturniine saturniid moths as thoroughly as is 
humanly possible with museum specimens and old literature. He then comes to us on 
bended knee and apologizes for doing this for a land he has never set foot in! As I read 
through this magnificent effort, I put on my “living in a developing tropical country hat” 
and asked “What would I have wanted Peigler to do with Attacus?’’ Would I have wanted 
him to spend years raising money to tourist around southeast Asia collecting an Attacus 
here and there, and soaking up the humidity and color of Attacus habitats? No. 

Without doubt I would have wanted him to do exactly what he did. Peigler has taken 
one of the most conspicuous and tractable insects of southeast Asia, and cleaned the last 
two centuries of garbage and debris off the framework. As I turn page after page of 
Peigler’s detailed and painstaking analysis of bad taxonomy, bad literature, printer’s errors, 
bad biology, rare books, fractured journals, and bad specimens, and all the last century 
of taxonomic exploration by mediocre biologists and taxonominists in three European 
languages, I thank God for the Richard Peiglers of the world. 

Can you imagine what hell it would have been for a Javanese biologist to have to spend 
four years of his life trying to sort out this mess before going to work on these fascinating 


168 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


moths? What Peigler has done is swept all that muddled antiquariat into a snug and 
concise library file, sunk 38 names, and given us 14 taxonomically and nomenclatorially 
clean names. He has fulfilled the taxonomist’s real mission. He has set up Attacus for a 
broad scale attack, by a southeast Asian resident, on its biology, ecology, natural history, 
ethology, morphology, cladistics, genetics, and chemistry. A clean taxonomy and nomen- 
clature is the best start that any biologist can ask for in the tropics. If only we had a 
Peigler for every tropical genus with more than five species. And what a miracle it would 
be if all taxonomists had Peigler’s ability and desire to elicit collaboration and help as he 
has done from the remainder of the community of workers on saturniid moths. 

There may even be some more species of Attacus in southeast Asia, and now the 
resident biologist—anywhere between India and New Guinea—has a serious chance of 
finding them, knowing them, and using them. 

And can you believe it? Peigler even had the common sense to put summaries in Bahasa 
Indonesia and Japanese at the beginning of his work. These are followed by a historical 
review of the taxa above Attacus, and a very detailed account of each of the 14 species. 
Not surprisingly, the two new species are known from only one and three specimens and 
are from small islands. Not only has Peigler cleaned up and summarized for the resident 
tropical biologist the old taxonomic literature on Attacus in developed world publications 
and museums, but he has done the same with the biological information on parasites, 
food plants, flight periods, and habitats occupied by Attacus. 

Peigler finishes with a detailed analysis of the phylogenetic relationships between 
Attacus and the other genera of the tribe Attacini. He presents the logic and cladistic 
technology that lead to the postulation of a multi-branched phylogeny with Attacus and 
the eight other attacine genera, with the old world genera as one group and the new 
world genera as another. However, I cannot avoid noting that either Rothschildia and 
Attacus are one of the most incredible cases of convergence in color pattern available 
(which I doubt), or Rothschildia and Attacus represent the color pattern of the original 
saturniid species that gave us the Attacini. This in turn implies that the life form of these 
moths dates back at least to a time approximating the beginnings of continental separation. 
And even more tantalizing is his observation that the one Enicospilus ichneumonid wasp 
reared from Attacus atlas in West Malaysia is of the same Enicospilus species group that 
attacks Rothschildia and other large saturniine saturniids in the New World. 


DANIEL H. JANZEN, Department of Biology, University of Pennsylvania, Philadelphia, 
Pennsylvania 19104. 


Journal of the Lepidopterists’ Society 
46(2), 1992, 169-171 


OBITUARY 


CARROLL MILTON WILLIAMS (1916-1991) 


Carroll Williams, one of the country’s most influential biologists, died 
in November 1991 after a long battle with a lymphoma. A dedicated 
lepidopterist in his youth, he graduated from the University of Rich- 
mond in 1937, and completed his formal training at Harvard University, 
where he earned both a Ph.D. in Zoology and a degree in medicine. 
He was appointed Assistant Professor of Zoology at Harvard in 1946, 
and remained on that faculty without interruption, serving as Chairman 
of Biology in 1959-62, and becoming the Benjamin Bussey Professor 
of Biology in 1966, until retiring in 1987. He is survived by his wife 
Muriel V. Williams, two sons, and a host of biologists whose careers he 
had helped to guide. 

He followed closely the new biology that unfolded so rapidly during 
his career, and was quick to apply it to the understanding of his cher- 
ished insects. He was a showman who relished describing his insights 
and discoveries as colorfully as possible and was, as a consequence, a 
superb teacher and recruiter of young talent. Hundreds of leading insect 
researchers and teachers in this country and around the world were 
drawn to insects by Williams as undergraduates or graduate students, 
trained with him as post-doctoral fellows, or indirectly were influenced 
by him as next-generation students of his students. 

My own recruitment to this circle occurred as an entering graduate 
student in September 1948, when Williams was in the early stages of 
his academic career. With little idea of who he was or what he studied, 
and with only an amorphous idea of my own goals, I was sent to his 
office for an interview. I emerged thirty minutes later, intensely excited, 
having accepted what turned out to be both my thesis problem and 
the first steps in a life-long career in the physiology of insect meta- 
morphosis. The photograph accompanying this article portrays with 
great fidelity the outer force of the man who had appraised me, matched 
me to one of his current scientific obsessions, and proceeded to engage 
my allegiance. 

The ambience of his laboratory during the 1940’s and ’50’s was the 
very best of its era, and probably would be impossible to replicate at 
the present time. Each of us, including Williams, had a research project 
that resembled those of the others only in concerning an insect, and 
preferably a moth. Cocoon spinning, flight muscle mitochondria, en- 
docrine gland transplantations, cytochrome fluctuations with meta- 
morphosis, blood protein biochemistry, and ionic regulation of heart 
rates were all being studied as separate thesis topics. What held us 
together was a meeting with Williams over tea at the end of each day, 


170 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Bachrach 


when we talked about each other’s experiments, subjected his results 
to the same spirited scrutiny as our own, and served as an enchanted 
audience for his colorful and strongly opinionated conversations. 

His most important early work dealt with the hormonal control of 


VOLUME 46, NUMBER 2 : : 171 


pupal diapause and metamorphosis in the Cecropia silkworm—a subject 
that he worked by himself with neither technical nor student assistance. 
He spent Saturdays in his surgery anesthetizing pupae, cutting windows 
in their cuticle, transplanting tissues, and implanting chemicals, while 
a Red Sox game, in season, played in the background. His experiments 
complemented those elsewhere on other orders of insects in establishing 
how the prothoracic glands, corpora cardiaca, corpora allata, and the 
brain interact to control metamorphosis and molting. He was an in- 
novative surgeon, and had astutely chosen the diapausing lepidopteran 
pupa as a system that would clearly distinguish between the roles of 
the hormones that interested him. His isolated pupal abdomen prep- 
aration was used to demonstrate, among other things, that the steroids 
crystallized by Karlson and Butenandt in 1952 were in fact the molting 
hormone secreted by the prothoracic glands. And he began the parade 
toward juvenile hormone identification with his demonstration in 1956 
that ether extracts of the imaginal male abdomen of Cecropia were a 
rich source of corpus allatum activity. 

In later years, as teams of biochemists followed in the wake of the 
pioneers of insect endocrinology, Williams became an advocate of the 
use of metamorphosis hormones and their analogues as pesticides, and 
of the study of plant-insect interactions mediated by these powerful 
substances. He played other roles as well, especially through his chair- 
manship of Biology at Harvard (which began a profound metamorphosis 
during his tenure), as chairman of the Section on Zoology of the National 
Academy of Science, and as consultant to chemical industries striving 
to develop new strategy insecticides. 

Recalling Williams’ extraordinarily productive career highlights the 
profound influence that the preoccupations of youth can have in shaping 
a career. The study of Lepidoptera provided not only an early arena 
for exercising his extraordinary gifts, but the roots that oriented and 
sustained his exceptional career. 


WILLIAM H. TELFER, Department of Biology, University of Pennsylvania, Philadel- 
phia, Pennsylvania 19104-6018 


Date of Issue (Vol. 46, No. 2): 20 August 1992 


EDITORIAL STAFF OF THE JOURNAL 


JOHN W. Brown, Editor BoycE A. DRUMMOND, Retiring Editor 
Entomology Department | Natural Perspectives 
San Diego Natural History Museum P.O. Box 9061 
P.O. Box 13890 Woodland Park, Colorado 80866 U.S.A. 


San Diego, California 92112 U.S.A. 


- Associate Editors: 
M. DEANE BOWERS (USA), BoYCE A. DRUMMOND (USA), LAWRENCE F. GALL (USA), 
GERARDO LAMAS (Peru), ROBERT C. LEDERHOUSE (USA), ROBERT K. ROBBINS (USA), 
CHRISTER WIKLUND (Sweden) 


NOTICE TO CONTRIBUTORS 


Contributions to the Journal may deal with any aspect of Lepidoptera study. Categories 
are Articles, Profiles, General Notes, Technical Comments, Book Reviews, Obituaries, 
Feature Photographs, and Cover Illustrations. Reviews should treat books published within 
_ the past two years. Obituaries must be authorized by the President of the Society. Re- 
quirements for Feature Photographs and Cover Illustrations are stated on page 111 in 
Volume 44(2). Journal submissions should be sent to the editor at the above address. 
Short manuscripts concerning new state records, current events, and notices should be 
sent to the News, Stephanie McKown, Editor, 650 Cotterell Drive, Boise, Idaho 83709 
U.S.A. Journal contributors should submit manuscripts in triplicate, typewritten, entirely 
double-spaced, with wide margins, on one side only of white, letter-sized paper. Prepare 
manuscripts according to the following instructions, and submit them flat, not folded. 

Abstract: An informative abstract should precede the text of Articles and Profiles. 

Key Words: Up to five key words or terms not in the title should accompany Articles, 
Profiles, General Notes, and Technical Comments. 

Text: Contributors should write with precision, clarity, and economy, and should use 
the active voice and first person whenever appropriate. Titles should be explicit, descrip- 
tive, and as short as possible. The first mention of a plant or animal in the text should 
include the full scientific name with author, and family. Measurements should be given 
in metric units; times in terms of the 24-hour clock (0930 h, not 9:30 AM). Underline 
only where italics are intended. 

Literature Cited: References in the text of Articles, Profiles, General Notes, and 
_ Technical Comments should be given as Sheppard (1959) or (Sheppard 1959, 1961a, 
1961b) and listed alphabetically under the heading LITERATURE CITED, in the following 
format without underlining: 


‘SHEPPARD, P. M. 1959. Natural selection and heredity. 2nd ed. Hutchinson, London. 
209 pp 

196la. Some contributions to population genetics resulting from the study of 

the Lepidoptera. Adv. Genet. 10:165—-216. 


Illustrations: Only half of symmetrical objects such as adults with wings spread should 
be illustrated, unless whole illustration is crucial. Photographs and drawings should be 
mounted on stiff, white backing, arranged in the desired format, allowing (with particular 
regard to lettering) for reduction to fit a Journal page. Illustrations larger than letter- 
size are not acceptable and should be reduced photographically to that size or smaller. 
The author's name and figure numbers as cited in the text should be printed on the back 
of each illustration. Figures, both line drawings and photographs, should be numbered 
consecutively in Arabic numerals; “‘plate’’ should not be employed. Figure legends must 
be typewritten, double-spaced, on a separate sheet (not attached to illustrations), headed 
EXPLANATION OF FIGURES, with a separate paragraph devoted to each page of illustrations. 
Color illustrations are encouraged; contact editor for submission requirements and cost. 

Tables: Tables should be numbered consecutively in Arabic numerals. Headings for 
tables should not be capitalized. Tabular material must be typed on separate sheets, and 
placed following the main text, with the approximate desired position indicated in the 
text. Vertical lines as well as vertical writing should be avoided. 

Voucher specimens: When appropriate, manuscripts must name a public repository 
where specimens documenting identity of organisms can be found. Kinds of reports that 
require vouchering include life histories, host associations, immature morphology, and 
experimental enquiries. 

Proofs: The edited manuscript and galley proofs will be mailed to the author for 
correction of printer's errors. Excessive author’s changes at this time will be charged to 
authors at the rate of $2 per line. A purchase order for reprints will accompany proofs. 

Page charges: For authors affiliated with institutions, page charges are $20 per Jour- 
nal page. For unaffiliated authors, page charges are $10 per Journal page with a $50 
maximum. Authors of Book Reviews and Obituaries are exempt from page charges. 
Authors unable to pay page charges for reasons such as difficulties with foreign exchange 
should apply to the editor for free publication. 

Correspondence: Address all matters relating to the Journal to the editor. 


PRINTED BY THE ALLEN PRESS, INC., LAWRENCE, KANSAS 66044 U.S.A. 


CONTENTS 


THE BUTTERFLIES OF ANAK KRAKATAU, INDONESIA: FAUNAL DE- 
VELOPMENT IN EARLY SUCCESSION. T.R. New and I. W. B. 
Thornton 


MASS FLIGHT RESPONSE OF OVERWINTERING MONARCH BUTTER- 
FLIES (NYMPHALIDAE) TO CLOUD-INDUCED CHANGES IN SOLAR 
RADIATION INTENSITY IN MEXICO. William H. Calvert, Lin- 
coln P. Brower, and Robert O. Lawton 


LARVAL MORTALITY OF INDIAN TASAR SILKWORM (ANTHERAEA 
MYLITTA) (SATURNIIDAE) DUE TO PEBRINE INFECTION. C. 
S. K. Mishra, B. K. Nayak, and M. C. Dash 


SEXUAL DIFFERENCES IN HABITAT PREFERENCE AND BEHAVIOR OF 
OENEIS CHRYXUS (NYMPHALIDAE: SATYRINAE). Dale L. 
Clayton and Daniel Petr 


BUTTERFLIES OF THE CAYMAN ISLANDS, WITH THE DESCRIPTION 
OF A NEW SUBSPECIES. Lee D. Miller and Stephen R. Stein- 
hauser 


A NEW SPECIES OF COLORADIA FROM SONORA AND CHIHUAHUA, 
MEXICO (SATURNIIDAE: HEMILEUCINAE). Claude Lemaire 
and Michael J. Smith 


BUTTERFLIES OF THE ARCHBOLD BIOLOGICAL STATION, HIGH- 
LANDS COUNTY, FLORIDA. Mare.C. Minno 2 ee 


GENERAL NOTES 


Occurrence of Disphragis captiosa (Notodontidae) in Arizona. Ron Leusch- 
mer oO eh aN ON A Te a 


Hileithia decostalis (Crambidae: Pyraustinae), new to the United States. 
Bryant Mather and Eugene Munroe .............. ee De EE 


A new lichen moth record for the United States: Lycomorphodes sordida 
(Arctiidae: Lithosiinae) from south Texas. James K. Adams 


Life history notes on Catocala sappho and Catocala ulalume (Noctui- 
dae). Jeffrey R.: Slotten: 2S ee 
Book REVIEWS 


Buggy books: A guide to juvenile and popular books on insects and their 
relatives. ~ Boyce A. Drummond 2. 2) 08 es 


Die raupen der schmetterlinge Europas. Frederick W. Stehr 0 
A revision of the Indo-Australian genus Attacus. Frederick H. Rindge ........ 


A revision of the Indo-Australian genus Attacus. Daniel H. Janzen ....... 


OBITUARY 
Carroll: Milton, Williams. “Wiliam H, Telfer c= 2S eee 


83 


97 


106 


110 


11S 


128 


138 


Volume 46 1992 | Number 3 


ISSN 0024-0966 


JOURNAL 


of the 


LEPIDOPTERISTS’ SOCIETY 


i eee a 


Published quarterly by THE LEPIDOPTERISTS’ SOCIETY 


Publié par LA SOCIETE DES LEPIDOPTERISTES 
Herausgegeben von DER GESELLSCHAFT DER LEPIDOPTEROLOGEN 
Publicado por LA SOCIEDAD DE LOS LEPIDOPTERISTAS 


é 


NOV 24 {999 


LiBoapice 
ONMARIES 
soe acide abe 


10 November 1992 


THE LEPIDOPTERISTS’ SOCIETY 


EXECUTIVE COUNCIL 


RAY E. STANFORD, President HIROSHI INOUE, Vice President 
FLOYD W. PRESTON, Immediate Past President IAN KITCHING, Vice President 
M. DEANE BowEks, Vice President ROBERT J. BORTH, Treasurer 


WILLIAM D. WINTER, Secretary 


Members at large: 


Karolis Bagdonas Charles V. Covell, Jr. Eric H. Metzler 
Steven J. Cary Linda S. Fink Robert K. Robbins 
Stephanie S. McKown Scott E. Miller ~ J. Benjamin Ziegler 


EDITORIAL BOARD 
PAUL A. OPLER (Chairman), FREDERICK W. STEHR (Member at large) 
JOHN W. Brown (Journal), WILLIAM E. MILLER (Memoirs) 
STEPHANIE S. MCKOWN (News) 
HONORARY LIFE MEMBERS OF THE SOCIETY 
CHARLES L. REMINGTON (1966), F. MARTIN BROWN (1973), E. G. MUNROE (1978), — 


ZDRAVKO LORKOVIC (1980), IAN F. B. COMMON (1987), JOHN G. FRANCLEMONT (1988), 


LINCOLN P. BROWER (1990), DouGLAs C. FERGUSON (1990), 
HON. MIRIAM ROTHSCHILD (1991), CLAUDE LEMAIRE (1992) 


The object of the Lepidopterists’ Society, which was formed in May 1947 and for- 
mally constituted in December 1950, is “to promote the science of lepidopterology in all 
its branches, . .. . to issue a periodical and other publications on Lepidoptera, to facilitate 
the exchange of specimens and ideas by both the professional worker and the amateur 
in the field; to secure cooperation in all measures” directed towards these aims. 

Membership in the Society is open to all persons interested in the study of Lepi- 
doptera. All members receive the Journal and the News of the Lepidopterists Society. 
Institutions may subscribe to the Journal but may not become members. Prospective 
members should send to the Treasurer full dues for the current year, together with their 
full name, address, and special lepidopterological interests. In alternate years a list of 
members of the Society is issued, with addresses and special interests. There are four 
numbers in each volume of the Journal, scheduled for February, May, August and 
November, and six numbers of the News each year. 


Active members—annual dues $25.00 
Student members—annual dues $15.00 
Sustaining members—annual dues $35.00 
Life members—single sum $500.00 
Institutional subscriptions—annual $40.00 


Send remittances, payable to The Lepidopterists’ Society, to: Robert J. Borth, Treasurer, 
6926 North Belmont Lane, Fox Point, Wisconsin 53217, U.S.A.; and address changes to: 


Julian P. Donahue, Natural History Museum, 900 Exposition Blvd., Los Angeles, California 


90007-4057 U.S.A. For information about the Society, contact: William D. Winter, Sec- 
retary, 257 Common St., Dedham, Massachusetts 02026-4020, U.S.A. (617-326-2634). To 
order back issues of the Journal, News, and Memoirs, write for availability and prices 
to the Publications Manager: Ronald Leuschner, 1900 John St., Manhattan Beach, Cali- 
fornia 90266-2608, U.S.A. 


Journal of the Lepidopterists’ Society (ISSN 0024-0966) is published quarterly for 
$40.00 (institutional subscription) and $25.00 (active member rate) by the Lepidopterists’ 
Society, % Los Angeles County Museum of Natural History, 900 Exposition Blyd., Los 
Angeles, California 90007-4057. Second-class postage paid at Los Angeles, California and 
additional mailing offices. POSTMASTER: Send address changes to the Lepidopterists’ 
Society, % Natural History Museum, 900 Exposition Blvd., Los Angeles, California 90007- 
4057. 


Cover illustration: The painted lady, Vanessa cardui L. (Nymphalidae), is the most 
widespread butterfly species known. It occasionally exhibits mass dispersals involving 
thousands of individuals. Original illustration by Callie Mack, Natural Science Illustration, 
8529 Jackie Drive, San Diego, California 92119. 


JouRNAL OF 
THe LeEPIDOPTERISTS’ SOCIETY 


Volume 46 1992 Number 3 


Journal of the Lepidopterists’ Society 
46(3), 1992, 173-181 


TEMPORAL CHANGES IN ABUNDANCE OF TWO LYCAENID 
BUTTERFLIES (LYCAENIDAE) IN RELATION TO 
ADULT FOOD RESOURCES 


C. J. HILw! 


School of Australian Environmental Studies, Griffith University, 
Nathan, Brisbane, Queensland, Australia 4111 


ABSTRACT. The temporal distributions of adult Hypochrysops apelles (F.) and H. 
epicurus (Miskin) in relation to the abundance of flowering mangroves were examined 
over a 2.5 year period at Redland Bay near Brisbane, Australia. The flight period of both 
species (September to May) coincided with the flowering of two mangrove species that 
the butterflies visited for food. Within the flight period of H. epicurus, adult abundance 
was closely associated with the abundance of mangrove flowers over time. Several expla- 
nations for the observed relationship are suggested; the most likely causal factors are 
climate and adult food availability. A laboratory experiment confirmed that the avail- 
ability of adult food (carbohydrate) could increase longevity in both species. 


Additional key words: flight period, nectar, Australia, mangrove Hypochrysops. 


Shapiro (1975) suggested that a butterfly’s flight period depends pri- 
marily on the availability of sunshine, nectar, and oviposition sites. 
Given that these resources are available, predation and competition 
might then be important. Several studies have related the flight period 
of particular butterfly species to the availability of either favorable 
conditions for flight or suitable oviposition sites (Cappuccino & Kareiva 
1985, Dobkin et al. 1987, Slansky 1974). However, the importance of 
nectar availability in determining the flight period of butterflies remains 
poorly studied. 

There are indications that the temporal availability of flowers, to- 
gether with seasonal and biological factors, may be important in de- 
termining the flight period of some butterfly species (Clench 1967, 
Owen 1971, Owen et al. 1972, Percival 1974, Shapiro 1975). Although 
these authors suggest that the temporal abundance of butterflies may 
be tied closely to the abundance of the flowers they utilize as adult food 


‘Current address: Department of Zoology, James Cook University, Townsville, Queensland, Australia 4811. 


174 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


resources, their studies often have been based on anecdotal observations 
of flowering phenology. The aim of this study was to determine whether 
temporal changes in abundance of Hypochrysops apelles (F.) and 
H. epicurus Miskin were related to the temporal availability of their 
adult food resources. As such, it is one of the few attempts to obtain 
detailed temporal data on both butterflies and flowers and, while the 
observed associations are open to several interpretations, they represent 
a first step in determining whether such relationships exist. 


METHODS 


The study was conducted at Redland Bay (153°17’E, 27°35’S), situated 
on the coast of Moreton Bay near Brisbane, Australia. The climate is 
subtropical, with hot, wet conditions from October to March and mild, 
dry conditions from May to August. The study area comprised a patch 
of mangroves with an area of 14.7 hectares. The vegetation at the site 
is dominated by the mangrove Avicennia marina (Forssk.) Vierh (Avi- 
cenniaceae), but the mangroves Rhizophora stylosa Griff. (Rhizopho- 
raceae), Ceriops tagal (Perrottet) C. B. Robinson (Rhizophoraceae), and 
Aegiceras corniculatum (L.) Blanco (Myrsinaceae) also are common. 

In the Brisbane region, both H. apelles and H. epicurus are found 
only within mangrove habitats. However, at the northern end of its 
distribution, H. apelles occurs in a variety of other habitat types (Com- 
mon & Waterhouse 1981). The larvae of H. apelles feed on the mature 
leaves of R. stylosa and C. tagal, although several other plant species 
have been recorded as hosts elsewhere (Common & Waterhouse 1981). 
Hypochrysops epicurus is restricted to mangrove habitats throughout 
its range (Common & Waterhouse 1981). The larvae of H. epicurus 
feed on the mature leaves of A. marina, which is the most abundant 
mangrove in the Brisbane region. 

The abundance of the butterflies was estimated using a transect walk 
as described by Pollard (1977). The transect (which incorporated as 
much intra-habitat variation as possible) was 2100 m long and took an 
average of 95 minutes to complete. The sampling area was set at 10 m 
in front, 5 m on either side, and 5 m directly above the observer. 
Following Moore’s (1975) technique, a long-handled butterfly net was 
waved over the vegetation in order to disturb any perching individuals. 
In order to encompass the period of maximum adult butterfly activity, 
observations were performed between 1030 h and 1430 h. To ensure 
that observations were carried out on days on which conditions were 
favorable for flight activity, the following criteria were adopted: (i) 
50% or less of sample time spent under cloud cover, (ii) average tem- 


VOLUME 46, NUMBER 3 | 175 


perature between 17 and 32°C, and (iii) average wind speed of 10 km 
h-! or less. Any samples that did not fit these criteria were discarded. 

The temporal availability of adult food was estimated by counting 
the number of flowering individuals (i.e., any plant that had flowers 
present) of all mangrove species for 5 m on either side of the transect. 
This method provides only a rough estimate of the amount of adult 
food available but accurately describes the time at which the food is 
available. In addition, records were kept of any feeding events by any 
butterfly species. 

Sampling commenced in September 1982 and ceased in February 
1985. Sampling was conducted once per month from September 1982 
to August 1983 and from June 1984 to August 1984. From September 
1983 to May 1984 and from September 1984 to February 1985, two 
sampling efforts per month were conducted. 

In addition to the field sampling, a small laboratory experiment was 
conducted using adult H. apelles and H. epicurus reared from larvae 
collected in the field. In this experiment twelve to fourteen adult but- 
terflies of each species were given either a water diet or a diet of 10% 
honey solution. The butterflies were kept in individual containers at a 
constant temperature of 25°C and a 12/12 hour light/dark cycle. Only 
longevity was measured because it was not possible to get either species 
to mate or lay eggs in the laboratory. 


RESULTS 


Avicennia corniculatum and A. marina were the only species whose 
flowers were visited by butterflies at Redland Bay. During this study 
A. corniculatum produced flowers from September to December, 
whereas A. marina flowered from January to April. 

The temporal distribution of H. apelles was variable (Fig. 1). The 
flight period began in September and ended in May; however, the 
number of peaks in abundance varied from year to year. While the 
summer flight period coincided with the flowering of the two mangrove 
species used as adult food, no clear association between the butterfly 
and its adult food was observed within its flight period. Figure 2 presents 
the same data for H. epicurus. The flight period of H. epicurus com- 
menced in September and finished in May with only two peaks of 
abundance evident. These peaks coincided with the flowering phenol- 
ogy of A. corniculatum and A. marina. 

These trends are confirmed by correlations (Spearman’s rank) be- 
tween butterfly and flower abundance (Table 1). Both butterfly species 
were significantly correlated (P < 0.01) with flowering mangrove abun- 


| 176 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


1982 1983 
800 
(dp) 
= 
2 < 
fe O 
z 
c 
5 400 i 
co > 
us S 
200 a 
Ss ro) 
| re) 
0 = 
200 
(2p) 
= 
” < 
4 150 a 
LL 
a O 
oa = 
c 
E 100 on 
co > 
u. 5 
50 e 
fe) Li. 
2 vo) 
re) 
0 za 
2 1984 1985 
300 Ba 
= 
op) 
: = 
10 200 «5 
ui | r 
E i 
= 
rea) | = 
Lu 5 - 100 
O iL 
ro) LL 
= Oo 
/ re) 
0 0 z 


SON DJFMAMJIJA 
MONTH 
Fic. 1. Temporal changes in abundance of adult H. apelles (solid line) and the number 


of A. corniculatum and A. marina plants in flower (dashed line) from September 1982 
to February 1985. 


VOLUME 46, NUMBER 3 | 177 


1982 1983 
” 
= 
wy < 
z a 
za oO 
ui Zz 
E & 
ra = 
: ° 
(e) LL 
: LL 
re) 
Zz os 
ro) 
z 
1983 1984 
200 
w” 
S 
tu < 
= 150 Al 
va oO 
ui z 
= 
= 100 7 
rea) = 
ro 
LL. zy 
(e) LL. 
50 
fe) re} 
= s 
re) 
0 za 
1984 1985 
250 
7) 
= 
Hf 200 < 
par a 
= a 
ui 10. «S 
fe ra 
z : 
100 
ql i 
Oo LL 
: 50 UL 
S tS 
re) 
z= 


SONDJ>FMAMJJA 
MONTH 


Fic. 2. Temporal changes in abundance of adult H. epicurus (solid line) and the 
number of A. corniculatum and A. marina plants in flower (dashed line) from September 
1982 to February 1985. 


178 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


TABLE 1. Correlations (Spearman’s rank) between the abundance of adult H. apelles 
and H. epicurus and the number of flowering individuals of A. corniculatum and A. 
marina for samples occurring from September to May within the two complete sampling 
years and for all samples (NS: not significant; * P < 0.05; ** P < 0.01). 


Sep 1982- Sep 1983- Sep 1982- 
Species May 1983 May 1984 Feb 1985 
Hypochrysops Te 0.46 0.16 0.41 
apelles n 9 16 42 
p ODHEXS 0.559NS 0.008* 
Hypochrysops i 0.68 0.62 0.70 
epicurus n J) 16 42 
p 0.042* 0.010* 0.001** 


dance over the whole sampling period, indicating that the flight periods 
of the butterflies and the flowering of the mangrove species occurred 
in the same season from year to year. Hypochrysops epicurus abundance 
also illustrated a significant statistical correlation (P < 0.05) with the 
number of flowering mangroves within its flight period (September to 
May). Hypochrysops apelles, however, was not correlated with flow- 
ering mangroves within its flight period. 

The results of the adult feeding experiment are given in Table 2. 
The availability of honey (carbohydrate and amino acids) in the adult 
diet greatly increased the longevity of both H. apelles and H. epicurus. 


DISCUSSION 


Although closely related and occupying similar habitats, H. apelles 
and H. epicurus exhibit different patterns of adult flight activity. Both 
species occurred as adults during the warmer months suggesting that 
climate plays a role in determining their flight period. In southeastern 
Queensland, all known Hypochrysops overwinter as mature larvae (D. 
Sands pers. comm.). Therefore, the start of the flight period in Septem- 


TABLE 2. The mean longevity (days) and results of a t-test for adult H. apelles and 
H. epicurus provided with diets of either water or 10% honey solution. 


Mean Sample f 
Species Diet longevity size t-test 
H. apelles Water 3.0 12 6.7 
10% honey 20.2 13 .P < 0.001 
H. epicurus Water 4.0 14 3.8 


10% honey 14.9 13 P < 0.001 


VOLUME 46, NUMBER 3 . 179 


ber commences when adults eclose from pupae produced by the over- 
wintering larvae. Subsequent generations of adults result as the season 
progresses. In the case of H. apelles, the number of generations per 
year was variable, but for H. epicurus there were two distinct peaks 
of adult abundance each year. The close coincidence of the peaks of 
abundance shown by H. epicurus and the flowering of A. corniculatum 
and A. marina suggests that their respective phenologies are closely 
related. 

There are three likely explanations for this temporal association be- 
tween butterflies and flowers. First, the result may simply reflect the 
movement of butterflies into and out of the study site as flowers go into 
and out of bloom, as has been found for other species of lycaenids 
(Douwes 1975, Sharp & Parks 1973, Sharp et al. 1974). However, despite 
extensive searches of other nectar sources in the vicinity of the study 
site, neither species was observed outside the mangrove habitat. 

Second, it is possible that larval resources in some way account for 
the observed flight periods. For instance, the nutritional quality of the 
mature leaves may vary throughout the year. Hypochrysops epicurus 
oviposits on the twigs of its larval food plant, and the larvae feed on 
mature leaves which are present throughout the year; therefore, this 
explanation seems unlikely. Alternatively, since the larvae of both spe- 
cies of butterfly are obligately tended by ants (Common & Waterhouse 
1981), adult abundance may be related to ant activity. However, the 
appropriate ant species were observed on the mangroves at all times 
of the year, often tending overwintering larvae. 

The final hypothesis is that the flight period and abundance of adult 
H. epicurus is timed to coincide with the availability of food resources 
in its habitat. The availability of food to adult butterflies can have 
important effects on the longevity and fecundity of some species (Leath- 
er 1984, Murphy et al. 1983, Norris 1935). The laboratory experiment 
on the effect of adult diet on H. epicurus and H. apelles demonstrated 
that the presence of honey in the diet greatly increased adult longevity 
of these species. In addition, Hill and Pierce (1989) have shown that 
the availability of sugar significantly increased both longevity and fe- 
cundity of the lycaenid Jalmenus evagoras (Donovan). Therefore, by 
maximizing longevity and fecundity, the availability of adult food has 
the potential to play an important role in the population biology of 
butterfly species. However, the temporal association between H. epi- 
curus and the flowers on which it feeds may not be caused solely by a 
requirement of the adult butterflies for the sugars and/or amino acids 
in floral nectar. Butterfly species that are confined to mangroves are in 
a unique situation. If adults emerge during a period of the year in 
which no mangroves are flowering, then there are no alternative nectar 


180 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


sources. Moreover, the mangrove substrate is highly saline and there is 
no source of water apart from rainfall. Therefore the mangrove flowers 
are the only predictable source of sugar, amino-acids, and water avail- 
able to these butterflies. It is possible that the close temporal relationship 
between H. epicurus and flower abundance may be as much due to an 
avoidance of desiccation as to the availability of floral nectar as adult 
food. Watt et al. (1974) have stated that water may be as valuable a 
resource as nectar or excess pollen to flower visitors. In this respect, it 
is significant that the lycaenid butterfly Acrodipsas illidgei (Waterhouse 
and Lyell), another mangrove specialist found at the same site, is re- 
corded as having a flight period from September to December and in 
February (Common & Waterhouse 1981, C. Hill unpubl. obs.). Thus, 
the flight period of this species coincides with the flowering times of 
the two mangrove species that are the major source of adult food for 
butterflies in this habitat. Even though A. illidgei are autogenous and 
do not require nectar to reproduce (Sands 1980), the availability of 
nectar might extend the longevity of adults. 

In contrast to H. epicurus, H. appeles showed no close temporal 
association with its adult food. It may have alternative food sources 
that were unidentified in this study. Primack and Tomlinson (1978) 
have shown that R. stylosa, the larval food plant of H. apelles, secretes 
a sugar solution from its terminal leaves, but butterflies were not ob- 
served feeding on this secretion in this study. Alternatively, H. apelles 
may possess a life history strategy in which larval reserves provide 
sufficient energy throughout the length of the adult life. 

To demonstrate unequivocally a temporal association between the 
flight period of a butterfly and the flowers that it uses as adult food 
resources requires the collection of several seasons’ data in order to 
determine whether a pattern exists. The two and a half years’ data 
collected in this study suggest that, for H. epicurus, the flight periods 
of the butterfly do coincide with the flowering of the mangroves that 
it uses as food. In addition, a laboratory experiment showed that the 
presence of sugar in the adult diet increased longevity. To test further 
this hypothesis would require some manipulation of the availability of 
adult food resources in the butterfly’s habitat. Decreasing the temporal 
availability of adult food resources by removing key plant species would 
be an informative way to test such an hypothesis but also would be 
prohibitively destructive. 


ACKNOWLEDGMENTS 


Thanks to Roger Kitching and Jane Hughes for advice during this work. Rhondda 
Jones, Don Sands, Carole Wallace and Mike Braby provided helpful comments on earlier 
drafts. This work was funded by a Griffith University postgraduate scholarship. 


VOLUME 46, NUMBER 3 ; 181 


LITERATURE CITED 


CAPPUCCINO, N. & P. KAREIVA. 1985. Coping with a capricious environment: A pop- 
ulation study of a rare pierid butterfly. Ecology 66:152-161. 

CLENCH, H. K. 1967. Temporal dissociation and population regulation in certain hes- 
periine butterflies. Ecology 48:1000-1006. 

Common, I. F. B. & D. F. WATERHOUSE. 1981. Butterflies of Australia. 2nd ed. Angus 
and Robertson, Sydney. 682 pp. 

Dopskin, D. S., I. OLivieriI, & P. R. EHRLICH. 1987. Rainfall and the interaction of 
microclimate with larval resources in the population dynamics of checkerspot but- 
terflies (Euphydryas editha) inhabiting serpentine grassland. Oecologia 71:161-166. 

DouwEs, P. 1975. Distribution of a population of Heodes virgaureae. Oikos 26:332- 
340. 

HILL, C. J. & N. E. PIERCE. 1989. The effect of adult diet on the biology of butterflies 
1. The common imperial blue, Jalmenus evagoras. Oecologia 81:249-257. 

LEATHER, S. R. 1984. The effect of adult feeding on the fecundity, weight loss and 
survival of the pine beauty moth, Panolis flammea (D&S). Oecologia 65:70-74. 

Moore, N. W. 1975. Butterfly transects in a linear habitat. Entomol. Gaz. 26:71-78. 

Murpny, D. D., A. E. LAUNER, AND P. R. EHRLICH. 1983. The role of feeding in egg 
production and population dynamics of the checkerspot butterfly Euphydryas editha. 
Oecologia 56:257-263. 

Norris, M. J. 1935. A feeding experiment on the adults of Pieris rapae. Entomol. 68: 
15-127. 

OwEN, D. F. 1971. Tropical butterflies: The ecology and behaviour of butterflies in the 
tropics with special reference to African species. Clarendon Press, Oxford. 214 pp. 

OwEN, D. F., J. OWEN & D. O. CHANTER. 1972. Seasonal changes in the relative 
abundance and estimates of species diversity in a family of tropical butterflies. Oikos 
23:200-205. 

PERCIVAL, M. 1974. Floral ecology of coastal scrub in south east Jamaica. Biotropica 6: 
104-129. 

POLLARD, E. 1977. A method for assessing changes in abundance of butterflies. Biol. 
Conserv. 12:115-134. 

PRIMACK, R. B. & P. B. TOMLINSON. 1978. Sugar secretions from the buds of Rhizophora 
stylosa. Biotropica 10:74-75. 

SANDS, D. P. A. 1980. A new genus Acrodipsas for a group of Lycaenidae (Lepidoptera) 
previously referred to Pseudodipsas C. & R. Felder, with descriptions of two new 
species from northern Queensland. J. Aust. Entomol. Soc. 18:251-265. 

SHAPIRO, A. M. 1975. The temporal component of butterfly species diversity, pp. 181- 
195. In Cody, M. L. & J. M. Diamond (eds.), Ecology and evolution of communities. 
Harvard University Press, Cambridge. 

SHARP, M. A. & D.R. Parks. 1973. Habitat selection and population structure in Plebejus 
saepiolus Boisduval (Lycaenidae). J. Lepid. Soc. 27:17-21. 

SHARP, M. A., D. R. PARKS & P. R. EHRLICH. 1974. Plant resources and butterfly habitat 
selection. Ecology 55:870-875. 

SLANSKY, F. 1974. Relationship of larval food-plants and voltinism patterns in temperate 
butterflies. Psyche 81:243-253. 

WarTrT, W. B., P.C. HocH & S.G. MILLs. 1974. Nectar resource use by Colias butterflies. 
Chemical and visual aspects. Oecologia 14:353-374. 


Received for publication 11 November 1991; revised and accepted 23 May 1992. 


Se 


Journal of the Lepidopterists’ Society 
46(3), 1992, 182-194 


GENITALIC CHARACTERIZATION, ENLARGEMENT, AND 
REASSOCIATION OF THE NEOTROPICAL HESPERINE 
GENUS HALOTUS (HESPERIIDAE) 


JOHN M. BURNS 


Department of Entomology, National Museum of Natural History, 
Smithsonian Institution, Washington, D.C. 20560 


ABSTRACT. Since classical characters involving facies, antennae, palpi, leg spines, 
wing shape, and venation do not, as previously used, rigorously delimit the genus Halotus, 
I do so using male genitalia. Halotus comprises three species: H. angellus (Plotz), the 
type, from at least Costa Rica and western Panama; H. jonaveriorum new species from 
Oaxaca, Mexico, which superficially looks like the type species; and H. rica (Bell) from 
southern Mexico to Costa Rica (and Ecuador?), which departs sharply from the other two 
species with respect to both facies and the male stigma. Mostly from male genitalia, I 
argue that Halotus, number 27 in Evans’s (1955) 36-genus M or Hesperia group (the 
group most prevalent in the United States and Canada), relates to Niconiades, number 
11 in his 20-genus O or Calpodes group. Evans's system of new world hesperiine generic 
groups is fatally flawed. 


Additional key words: genitalia (male), stigma, taxonomy, generic groups, Niconia- 


des. 


I meant it when I wrote that “much of Evans’s taxonomic system 
just below the level of the subfamily may be invalid” (Burns 1990:11). 
I was referring to his placement of 184 genera of American hesperiine 
skippers in 8 generic groups, lettered H to O (Evans 1955), and was 
extrapolating from the fact that Amblyscirtes, in his N or Lerodea 
group of 4 genera, belongs not with fellow groupies but with a few 
scattered genera in his 53-genus J or Apaustus group. Adding fuel to 
the fire, I argue here that genus Halotus, number 27 in Evans’s 36- 
genus M or Hesperia group (the group most prevalent in the United 
States and Canada), relates to Niconiades, number 11 in his 20-genus 
O or Calpodes group. 

Originally monotypic, Halotus is a small but growing genus that is 
strictly neotropical. Godman (1900:505) proposed it to accommodate a 
species (which he knew from two Costa Rican males) set off from 
external look-alikes by “the form of the brand [stigma]’ and “‘the pe- 
culiar structure of the genitalia” (Fig. 1). Four decades later, Bell (1942) 
described a second species from a lone Costa Rican male, whose genitalia 
he figured but wrote nothing about. Because the upper side of its wings 
reminded Bell of Atrytonopsis python (Edwards), he put his new species 
in Atrytonopsis, whose genitalia differ greatly from those of Halotus 
(see Skinner & Williams 1924 [or Lindsey et al. 1931], Burns 1982, 
1983). Evans (1955) correctly associated the two Halotus species, which 
differ substantially from each other in appearance. Now, half a century 
after Bell, I describe a third species from southern Mexico that super- 


VOLUME 46, NUMBER 3 | , 183 


ficially looks like the first and genitalically approximates the first in 
some respects, the second in others (while expressing its individuality). 

I recharacterize the genus Halotus in terms of male genitalia (omit- 
ting female genitalia because females of two of the three species are 
lacking). The generic characters of Godman (1900) and Evans (1955) 
involve facies, antennae, palpi, leg spines, wing shape, and venation. 
As presented, these classical characters restrict the hesperiine field con- 
siderably but do not rigorously delimit Halotus. 

Everyone wants to know about facies; but, because it can be so 
misleading, and because it has been so misread in the past, I play it 
down. In Halotus, as in so many other skippers, the ground color is 
dark brown, semihyaline spots variably relieve it in standard positions 
on the forewing (in spaces 2, 3, 6, 7, 8, and the cell), opaque spots 
sometimes mark the forewing (in space 1b) and dorsal hindwing (in 
spaces 2, 3, 4, 5, and the cell), and an elaborate system of opaque spots 
and overscaling creates a relatively complex ventral hindwing. (Bell 
[1942:4] thoroughly covers the ventral hindwing pattern in his descrip- 
tion of Halotus rica.) What is far less common, the fringes of the wings 
are checkered in Halotus (see Figs. 14-19). 

Judging from H. rica (the one species whose female I have seen), 
Halotus is not sexually dimorphic in color pattern. Although Halotus 
males do have a stigma on the dorsal forewing, its form is too inter- 
specifically variable (Figs. 11-13) to sharply define the genus. 

In citing specimens, I place genitalic dissection numbers in brackets, 
museum abbreviations in parentheses. X-rated dissections are mine; the 
rest I credit individually. All dissected genitalia remain free in vials 
except those from the holotype of Atrytonopsis rica Bell, which are 
stuck on a slide. AMNH denotes the American Museum of Natural 
History, New York, N.Y.; USNM, the National Museum of Natural 
History, Smithsonian Institution, Washington, D.C. 


Halotus Godman, 1900 
(Figs. 1-10) 


Type species. Hesperia angellus Plotz (1886:94) = Hesperilla saxula Mabille (1891: 
LXXXI) = Halotus saxula Godman (1900:505, pl. 95, figs. 42-44). 

Male genitalia. Overall, the tegumen, uncus, and gnathos look oddly squat (Figs. 2, 5, 
8). The uncus is slightly. divided (Figs. 2, 5, 8) and shorter than the gnathos (Figs. 1, 2, 
asa, 8,9): 

The outer side of the valva is simple; the inner side, complex. In lateral view, at about 
the middle of the posterior margin, a small rough point points backward; below this point, 
it looks as though the posteroventral corner of the valva were bitten off (Figs. 1, 3, 6, 9). 
In dorsal or, better, ventral view, almost the distal third of the valva presents an inwardly 
produced and wickedly toothed flange. In the paired valvae, these dentate flanges suggest 
jaws that could have taken the posteroventral bite out of those valvae (Figs. 4, 7, 10)! 
Arising dorsal to the flange, toward the top of each valva, a more or less oblong, distally 
dentate projection extends anteromediad (Figs. 1, 3, 4, 6, 7, 9, 10). 


184 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


Fic. 1. Male genitalia of Halotus angellus from Iraza, Rio Sucio, COSTA RICA (ex 
Godman 1900:plate 95, fig. 44). Complete genitalia (minus left valva) in left lateral view. 
This figure presents the inner surface of the right valva whereas those that follow present 
the outer surface of the left valva. 


The main body of the aedeagus, which is neither thick nor thin, is fairly uniform in 
diameter and fairly short—about three-fourths as long as the total intact genitalia (i.e., 
saccus plus valvae) (Figs. 1, 3, 4, 6, 7, 9, 10). The aedeagus ends ventrally in one or two 
robust, caudally directed, pointed prongs (Figs. 1, 3, 4, 6, 7, 9, 10). Its vesica carries three 
cornuti: a band of numerous spines, set in membrane, and two distinct, well-sclerotized 
units with one to several points (Figs. 3, 4, 6, 7, 9, 10). Myriad tiny spines crowd circum- 
phallic membrane in a peculiar field just above the aedeagus (well above the juxta) (Figs. 
3) 4,657) 910) 

The juxta lies ventral and lateral to the aedeagus, forming what amounts to an oblique 
U, but sits well back, quite hidden behind the valva, or valva plus vinculum, in lateral 
view (Figs. 3, 6, 9). Its transverse base has a concave anterior margin (Figs. 4, 7, 10), a 
pair of stubby, anteriorly- or anterolaterally-directed prongs at its anterolateral corners 
(Figs. 4, 7, 10), and a midventral, triangular projection (Figs. 4, 7, 10) that points anter- 
oventrally (Figs. 3, 6, 9). On either side, two major lines of the U-shaped juxta cross in 
the narrowed zone where the ventral base connects with the broad, lateral arms (Figs. 3, 
6, 9). 

Geographic distribution. Middle elevations from southern Mexico (Jalisco, Puebla, 
Guerrero, Oaxaca, Chiapas) through Central America (Guatemala, El Salvador, Honduras, 
Costa Rica, western Panama [Chiriqui])—plus Ecuador (?). 


Halotus angellus (Plotz) 
(Figs. 1-4, 11, 14, 15) 


Male genitalia (Figs. 1-4). Large gap between uncus and gnathos in lateral view (Figs. 
1, 3). Each division of the divided uncus dual in dorsal view and slightly longer laterally 
than medially (Fig. 2). 

In lateral view, rough point near middle of posterior margin of valva short and sharp 
(Figs. 1, 3). “Bite’’ out of ventrolateral corner of valva intermediate in depth and com- 
paratively straight edged (Figs. 1, 3). Inwardly produced, wickedly dentate, “jawlike” 
flange set relatively high on valva—about midway between top and bottom of valva (Figs. 


VOLUME 46, NUMBER 3 | 185 


J 


Fics. 2-4. Male genitalia of Halotus angellus from Volcan Baru, 1800 m, Chiriqui, 
PANAMA, 5 December 1976, S. S. Nicolay [X-3089] (USNM). Scale = 1.0 mm. 2, Tegu- 
men, uncus, and gnathos in dorsal view; 3, Complete genitalia (minus right valva) in left 
lateral view, with vesica everted (the simpler of the two discrete cornuti does not show 
at this angle); 4, Valvae, aedeagus (vesica everted to show cornuti), juxta, field of spines 
above aedeagus, saccus, and ventralmost vinculum in ventral view. 


186 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


3, 4). Teeth on dorsal, oblong, anteromedially running projection of valva relatively coarse 
(Fig. 4). 

One long prong at distal end of aedeagus on the right (Figs. 1, 3, 4). Cornutal spines 
larger and fewer (Figs. 3, 4) than in the other species of Halotus. The two discrete cornuti 
dissimilar: one a single, sharp, conspicuous point sprouting from one end of a low, elongate 
base (about like both of the discrete cornuti in rica); the other with multiple serrations 
sprouting from the middle of a low base (Figs. 3, 4). Field of numerous tiny spines above 
aedeagus at least as long as wide, and barely wider than aedeagus (Figs. 3, 4). 

Midventral, triangular projection of juxta small (Figs. 3, 4). 

Saccus the longest in the genus (Figs. 3, 4). 

Stigma (Fig. 11). Inconspicuous. Bipartite: a triangular element in the angle between 
the cubitus and vein 2, not quite filling the apex of that angle; plus a linear element 
immediately below, along the lower side of vein 2. 

Facies (Figs. 14, 15). Forewing cell and dorsal hindwing without spots. Semihyaline 
spots of forewing whitish or dirty white. That in space 2 usually shaped like > on the 
left and < on the right. Of the three small subapical spots in spaces 6, 7, and 8, only 7 
always developed; and 6 more likely to dwindle than 8. Opaque spot in space 1b, just 
above vein 1, rudimentary to absent dorsally. Complex pattern of ventral hindwing mostly 
in shades of tan and brown and not contrasty. 

Size (male forewing length). Mean 14.8 mm, range 14.0-15.4 mm, n = 7; the smallest 
species. 

Type locality. Chiriqui. 

Material examined. n = 7. COSTA RICA, Mount Poas, December, 2 6[X-3088] (USNM). 

PANAMA, CHIRIQUI: Volcan, 1465 m, 23 August 1964, 2 6, G. B. Small [H 304, S. 
S. Nicolay] (USNM); 30 June 1965, 1 6, G. B. Small (USNM). Volcan Baru, 1800 m, 5 
December 1976, 2 4, S. S. Nicolay [X-3089] (USNM). 

Steinhauser (1975) lists 15 6 of H. angellus from a single locality in western El Salvador. 
I do not know whether they belong to this species or the next. 


Halotus jonaveriorum, new species 


(Figs. 5-7, 12, 16, 17) 


Male genitalia (Figs. 5-7). Large gap between uncus and gnathos in lateral view (Fig. 
6), as in angellus. Each division of the divided uncus dual in dorsal view but slightly 
longer medially than laterally (Fig. 5)—and therefore visibly dual in lateral view, as well 
(Fig. 6). 

In lateral view, rough point near middle of posterior margin of valva short and truncate 
(Fig. 6). “Bite” out of ventrolateral corner of valva comparatively deep and curved (Fig. 
6). Inwardly produced, wickedly dentate, “jawlike” flange set relatively low on valva— 
closer to bottom than top of valva (Figs. 6, 7). Teeth on dorsal, oblong, anteromedially 
running projection of valva relatively fine (Fig. 7). 

Two short prongs at distal end of aedeagus, one (lower) in the center and one (higher) 
on the right (Figs. 6, 7); central prong longer and directed noticeably downward (Fig. 
6). Cornutal spines smaller and more numerous (Figs. 6, 7) than in angellus. The two 
discrete cornuti dissimilar: one with one or more short serrations sprouting from one end 
of a small, low base; the other with multiple serrations sprouting sharply along one side 
of a large, low base (Figs. 6, 7). As in rica, field of numerous tiny spines above aedeagus 
wider than long, and much wider than aedeagus (Figs. 6, 7). 

Midventral, triangular projection of juxta large and more anteroventrally oriented than 
in angellus and rica (Figs. 6, 7). 

Saccus the shortest in the genus (Figs. 6, 7). 

Stigma (Fig. 12). Inconspicuous. Bipartite: a triangular element in the angle between 
the cubitus and vein 2, not quite filling the apex of that angle; plus a linear element 
immediately below, along the lower side of vein 2. All as in angellus. 

Facies (Figs. 16, 17). Very like angellus. Forewing cell and dorsal hindwing without 
spots. Semihyaline spots of forewing dirty white to vaguely yellowish. That in space 2 
somewhat suggestive of > on the left and < on the right, especially ventrally, but less 


VOLUME 46, NUMBER 3 | ; 187 


SS 


Fics. 5-7. Male genitalia of Halotus jonaveriorum, holotype, from La Soledad-Buena 
Vista, Sierra Madre del Sur, 1525 m, Oaxaca, MEXICO, 12 April 1990, J. Kemner [X- 
2970] (USNM). Scale = 1.0 mm. 5, Tegumen, uncus, and gnathos in dorsal view; 6, 
Complete genitalia (minus right valva) in left lateral view, with vesica everted to show 
cornuti; 7, Valvae, aedeagus (vesica everted—the fancier of the two discrete cornuti does 
not show at this angle), juxta, field of spines above aedeagus, saccus, and ventralmost 
vinculum in ventral view. 


a ee 


188 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


than in angellus because the apex tends to fill in to make a triangular instead of angular 
spot. Of the three small subapical spots in spaces 6, 7, and 8, only 7 always developed. 
Small, linear, opaque yellow spot in space 1b dorsally, just above vein 1. Complex pattern 
of ventral hindwing mostly in shades of tan and brown and not contrasty. 

Size (male forewing length). Mean 15.6 mm, range 14.5-17.2 mm, n = 11; the middle 
species. 

Material examined. Holotype: MEXICO, OAXACA, Sierra Madre del Sur, La Soledad- 
Buena Vista, 1525 m, 12 April 1990, 4, John Kemner [X-2970]; deposited in the National 
Museum of Natural History, Smithsonian Institution (USNM). 

Paratypes: 10 6 taken by John Kemner at the type locality as follows: 12 April 1990, 
1 6; 16 April 1990, 1 3; 6 May 1990, 2 6[X-3243]; 21 November 1990, 4 6[X-3078, X-3079, 
X-3244]; 2 December 1991, 2 6 (4 in the collection of H. A. Freeman, 6 in USNM). 

Etymology. I am delighted to name this species for both John Kemner who collected 
all the material and H. Avery Freeman who spread it and passed it on. I have deliberately 
dropped the surname and “h” from each. 


Halotus rica (Bell) 
(Figs. 8-10, 13, 18, 19) 


Male genitalia (Figs. 8-10). Little or no gap between uncus and gnathos in lateral view 
(Fig. 9). Uncus comparatively narrow at its distal tip (Fig. 8). Each division of the very 
shallowly divided uncus (Fig. 8) dual in lateral view, with the subdivisions one above the 
other (Fig. 9) instead of side by side as in angellus and jonaveriorum. 

In lateral view, rough point near middle of posterior margin of valva somewhat long 
and sharp; posterior margin above it more nearly straight and vertical (Fig. 9). “Bite” 
out of ventrolateral corner of valva comparatively shallow and straight edged (Fig. 9). 
Inwardly produced, wickedly dentate, “jawlike” flange set relatively low on valva—much 
closer to bottom than top of valva (Figs. 9, 10). Teeth on dorsal, oblong, anteromedially 
running projection of valva relatively coarse (Fig. 10). 

Two short prongs at distal end of aedeagus, one (lower) on the left and one (higher) 
on the right (Figs. 9, 10); both (especially the right) curved gently downward (Fig. 9). 
Cornutal spines smaller and more numerous (Figs. 9, 10) than in angellus. The two 
discrete cornuti similar: each a single, sharp, conspicuous point sprouting from one end 
of a low, elongate base; base narrower in one cornutus than in the other (Figs. 9, 10). 
Field of numerous tiny spines above aedeagus wider than long, and much wider than 
aedeagus (Figs. 9, 10). 

Midventral, triangular projection of juxta small (Figs. 9, 10). 

Saccus intermediate in length (closer to angellus) (Figs. 9, 10). 

Stigma (Fig. 13). A little less inconspicuous than in angellus and jonaveriorum. Tri- 
partite: a linear element running along the lower side of the cubitus from the origin of 
vein 3 to a point about half way toward the origin of vein 2, where it bends to cross space 
2; a large spot immediately below, against the lower side of vein 2 in the top of space 
1b; and a smaller spot just below that in about the middle of space 1b. Quite different 
from angellus and jonaveriorum. 

Facies (Figs. 18, 19). Forewing cell with a dual semihyaline spot and dorsal hindwing 
with a total of five opaque yellowish orange spots—small and round in the cell but large 
and long in spaces 2, 3, 4, and 5 (the last two more or less fused). Semihyaline spots of 
forewing light yellowish orange. That in space 2 large and quadrate. Of the three subapical 
spots in spaces 6, 7, and 8, 6 and 7 always developed. Large, linear, opaque yellowish 
orange spot in space lb dorsally, just above vein 1. Complex pattern of ventral hindwing 
mostly in shades of grayish white and brown and therefore contrasty. Relative to angellus 
and jonaveriorum, a well marked and jazzy skipper. 

Size (male forewing length). Mean 17.1 mm, range 15.9-17.8 mm, n = 4; the largest 
species. 

Type locality. Costa Rica. 

Material examined. n = 11. MEXICO: JALISCO, Guadalajara, 1 6 [X-2332] (USNM). 
PUEBLA, Dos Caminos, 1220 m, July 1991, 1 6, M. Rangel [X-3245] (USNM). GUER- 


VOLUME 46, NUMBER 3 | 189 


Sa 


J 

Fics. 8-10. Male genitalia of Halotus rica from E] Zamorano, HONDURAS, 10 July 

1980, R. D. Lehman [X-2404] (USNM). Scale = 1.0 mm. 8, Tegumen, uncus, and gnathos 

in dorsal view; 9, Complete genitalia (minus right valva) in left lateral view, with vesica 

everted to show cornuti; 10, Valvae, aedeagus (vesica everted—one of the two discrete 

cornuti does not show at this angle), juxta, field of spines above aedeagus, saccus, and 
ventralmost vinculum in ventral view. 


190 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


ee ee ee ae ma — 


Fics. 11, 12. Bipartite male stigmas of Halotus: upper, triangular element is well to 
the right of the semihyaline angular to triangular spot in space 2 and lower, linear element 
(marked by arrow) is just across vein 2 in upper part of space 1b, well above and to the 
right of the opaque spot (in space 1b) which lies just above vein 1 of the left forewing. 
From specimens in Figs. 14-17. 11, H. angellus; 12, H. jonaveriorum, holotype. 


VOLUME 46, NUMBER 3 191 


Fic. 18. Tripartite male stigma of Halotus rica extending from near the upper right 
corner of the quadrate semihyaline spot in space 2 almost to the right end of the opaque 
spot (in space 1b) which lies just above vein 1 of the left forewing. From specimen in 
Figs. 18, 19. 


RERO, Acahuizotla, September 1960, 1 ¢, T. Escalante [H-660, H. A. Freeman] (AMNH). 
OAXACA, Oaxaca, 22 June 1966, 1 2, H. A. Freeman (AMNH). CHIAPAS: Muste, 24 
August 1968 and 11 September 1968, 2 6, E. C. Welling (AMNH); San Jeronimo, vicinity 
Tacana Volcano, 450 m, 9 September 1970, 1 6, E. C. Welling (AMNH). 

EL SALVADOR, Cojutepeque, 7 July 1952, 1 6 (USNM). 

HONDURAS, El Zamorano, 10 July 1980, 1 6, R. D. Lehman [X-2404] (USNM). 

COSTA RICA: 1 6 (holotype) [G 1130, E. L. Bell] (AMNH). San José, 13-18 November 
1977, 1 9, W. H. Wagner [X-3246] (USNM). 

Evans (1955:362) lists “1 2 Guatemala. 1 6 Ecuador (Zamora)” for H. rica in the collection 
of the British Museum (Natural History). Because the Ecuadorian male is the only spec- 
imen of Halotus I know of from south of Chiriqui, Panama, verification is desirable; but, 
because Halotus is still poorly represented in collections, the record may be real. 


Reassociating Halotus 


Evans (1955) makes Halotus the last genus in what is by far the 
largest division (the 22-genus Hesperia subgroup) of his 36-genus M or 
Hesperia group. In addition to Hesperia, this subgroup contains such 
familiar genera to American collectors as Atalopedes, Polites, Wallen- 
grenia, Atrytone, Poanes, Ochlodes, and Paratrytone. I have been 
closely studying the genitalia of these skippers, particularly during the 


ng? JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


Fics. 14-19. Males of Halotus in dorsal (even numbered) and ventral (odd numbered) 
view (all x1). 14, 15, H. angellus from Volcan Baru, 1800 m, Chiriqui, PANAMA, 5 
December 1976, S. S. Nicolay (USNM); 16, 17, H. jonaveriorum, holotype, from La 
Soledad-Buena Vista, Sierra Madre del Sur, 1525 m, Oaxaca, MEXICO, 12 April 1990, 
J. Kemner [X-2970] (USNM); 18, 19, H. rica, from El Zamorano, HONDURAS, 10 July 
1980, R. D. Lehman [X-2404] (USNM). 


past six years (Burns 1985, 1987, 1989, 1992, unpubl.), and see no special 
similarity between them and those of Halotus. | 

However, I do see similarities between the genitalia of Halotus (Figs. 
1-10) and those of another neotropical genus, Niconiades, which is the 
last genus in the largest division (the 7-genus Niconiades subgroup) of 
Evans’s (1955) 20-genus O or Calpodes group. Although the rough 
general resemblance, in itself, might not be significant, it is bolstered 
by specifics. Niconiades, like Halotus, produces a dentate, inwardly 
directed flange from the inner side of the distal part of the valva. In 
both genera, the aedeagus ends in one or two caudally directed, pointed 
prongs that range from short to long. Almost all species of Niconiades 
express the peculiar field of spines in membrane just above the aedeagus 
and well above the juxta (these crowded spines are larger in Niconiades 
than they are in Halotus). In my genitalic characterization of Halotus, 
the entire paragraph describing the juxta applies nearly as well to 
Niconiades (in Niconiades, the juxta is still more posterior than it is in 
Halotus, and the anterior margin of its transverse base is sometimes 
convex instead of concave). | 

I do not yet know enough about the genitalia of neotropical hesper- 
iines across the board to say how close Halotus and Niconiades really 


VOLUME 46, NUMBER 3 | 193 


are. Niconiades differs strongly (and consistently) from Halotus in the 
form and also the length of the uncus (longer, instead of shorter, than 
the gnathos) and lacks cornuti, which are so characteristic in Halotus. 
A much larger genus, Niconiades varies much more in valval shape. 

With respect to several classical nongenitalic characters, Halotus and 
Niconiades are not so different as wing shape and facies might at first 
suggest. (Facies is especially tricky to interpret since it shifts abruptly 
within each genus—in Halotus, compare angellus and jonaveriorum 
[Figs. 14-17] with rica [Figs. 18, 19]; Niconiades makes a bigger jump 
than that. Some Niconiades, like all Halotus, have checkered wing 
fringes.) Stigmas of Niconiades vary from bi- to tripartite (though not 
in the way that they do in Halotus). When bipartite, they usually 
resemble or exactly copy (in both form and position) the bipartite 
stigmas of H. angellus and H. jonaveriorum (Figs. 11, 12); and when 
tripartite, the upper two elements keep the bipartite positions on the 
wing. Antennae of Halotus are relatively longer, with less chunky clubs, 
than those of other Hesperia subgroup genera and hence are much like 
those of Niconiades (the nudum is shorter in Halotus [11 to 13 segments, 
distributed 3/8 to 4/9] than it is in Niconiades [13 to 16 segments, 
distributed 5/8 to 7/9]). Palpi are remarkably similar in Halotus and 
Niconiades. 

Because these—and other (Burns 1990)—related genera are far apart 
in Evans’s (1955) system, it is fatally flawed. In that connection, it is 
abundantly and painfully clear to me that Niconiades is nowhere near 
other genera in. Evans’s Niconiades subgroup such as Thespieus, Va- 
cerra, and Oxynthes, and, furthermore, that their closest relatives are 
widely scattered in at least three major generic groups of Evans besides 
M and O—but that is another story. 


ACKNOWLEDGMENTS 


I thank Fred Rindge for his hospitality at the American Museum of Natural History; 
John Kemner and Avery Freeman for, respectively, catching and forwarding Mexican 
skippers; Richard Robbins, Adrienne Venables, and especially Elizabeth Klafter for scru- 
pulously KOH-dissecting genitalia; Young Sohn for beautifully capturing genitalic com- 
plexities in brush, pen, and ink; and Victor Krantz for photographing the Godman genitalic 
figure along with adult males and their stigmas. 


LITERATURE CITED 


BELL, E. L. 1942. New genera and new species of neotropical Hesperiidae (Lepidoptera: 
Rhopalocera). Am. Mus. Novitates No. 1205. 9 pp. 

Burns, J. M. 1982. Lychnuchoides frappenda from central Mexico joins lunus and 
zweifeli in a lunus group of Atrytonopsis (Lepidoptera: Hesperiidae: Hesperiinae). 
Proc. Entomol. Soc. Wash. 84:547-567. 

1983. Superspecies Atrytonopsis ovinia (A. ovinia plus A. edwardsi) and the 

nonadaptive nature of interspecific genitalic differences (Lepidoptera: Hesperiidae). 

Proc. Entomol. Soc. Wash. 85:335-358. 


194 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


1985. Wallengrenia otho and W. egeremet in eastern North America (Lepi- 

doptera: Hesperiidae: Hesperiinae). Smithsonian Contrib. Zool. No. 423. iii + 39 pp. 

1987. The big shift: nabokovi from Atalopedes to Hesperia (Hesperiidae). J. 

Lepid. Soc. 41:173-186. 

1989. Phylogeny and zoogeography of the bigger and better genus Atalopedes 

(Hesperiidae). J. Lepid. Soc. 43:11-82. 

1990. Amblyscirtes: Problems with species, species groups, the limits of the 

genus, and genus groups beyond—A look at what is wrong with the skipper classi- 

fication of Evans (Hesperiidae). J. Lepid. Soc. 44:11-27. 

1992. Genitalic recasting of Poanes and Paratrytone (Hesperiidae). J. Lepid. 
Soc. 46:1-23. 

Evans, W. H. 1955. A catalogue of the American Hesperiidae indicating the classifi- 
cation and nomenclature adopted in the British Museum (Natural History). Part IV. 
Hesperiinae and Megathyminae. British Museum, London. 499 pp., pls. 54-88. 

GopMAN, F. D. 1900. In Godman, F. D. & O. Salvin. 1879-1901. Biologia Centrali- 
Americana; Insecta; Lepidoptera-Rhopalocera. Vol. 2, 782 pp.; vol. 3, 118 pls. 

LINDSEY, A. W., E. L. BELL & R. C. WILLIAMS JR. 1931. The Hesperioidea of North 
America. Denison Univ. Bull., J. Sci. Lab. 26:1—-142. 

MABILLE, P. 1891. Description d Hespérides nouvelles, premiére partie. Ann. Soc. En- 
tomol. Belgique, Comptes-Rendus Seances 35:LIX-LXXXVIII. 

PLOTz, C. 1886. Nachtrag und Berichtigungen zu den Hesperiinen. Entomol. Ztg., 
Entomol. Vereine Stettin 47:83-117. 

SKINNER, H. & R. C. WILLIAMS JR. 1924. On the male genitalia of the Hesperiidae of 
North America, Paper IV. Trans. Am. Entomol. Soc. 50:57-—74. 

STEINHAUSER, S. R. 1975. An annotated list of the Hesperiidae of El] Salvador. Bull. 
Allyn Mus. No. 29. 34 pp. 


Received for publication 28 February 1992; accepted 1 June 1992. 


Journal of the Lepidopterists’ Society 
46(3), 1992, 195-202 


FOODPLANT SPECIFICITY AND BIOLOGY OF 
OIDAEMATOPHORUS BALANOTES (PTEROPHORIDAE): 
A NORTH AMERICAN MOTH INTRODUCED INTO 
AUSTRALIA FOR THE BIOLOGICAL CONTROL OF 
BACCHARIS HALIMIFOLIA 


W. A. PALMER 


North American Field Station, Queensland Department of Lands, 
2801 Arrowhead Circle, Temple, Texas, 76502 


AND 


W. H. HASELER 
41 Alpine Terrace, North Tamborine, Queensland, Australia, 4272 


ABSTRACT. The stem-boring moth, Oidaematophorus balanotes (Meyrick) (Pter- 
ophoridae), was investigated as a biological control agent for Baccharis halimifolia L. 
(Asteraceae), an introduced weed in Australia. Oidaematophorus balanotes occurs from 
New York to the Rio Grande Valley and its larval hosts are B. halimifolia and B. neglecta 
Britton. It is univoltine throughout its range except in Florida where there may be two 
overlapping generations per year. The host range of O. balanotes was determined by 
observing the response of moths and neonate larvae on 64 economically important plants 
and B. halimifolia. In multiple choice tests, moths oviposited almost exclusively on B. 
halimifolia. Larvae placed on foliage of the test plants were able to complete development 
only on B. halimifolia. As a result, O. balanotes was considered safe for release in Australia 
where it was established in southeastern Queensland in 1985. 


Additional key words: Asteraceae, host plant, Florida, Texas. 


The woody shrub Baccharis halimifolia L. (Asteraceae: Astereae: 
Baccharidineae), an introduction from North America, is a serious weed 
in Queensland, Australia (Stanley & Ross 1986, Palmer 1987). The 
Queensland Department of Lands, through the Alan Fletcher Research 
Station, therefore initiated a long-range research program in 1960 to 
find biological control agents in the New World for release against this 
weed in Australia. Following initial surveys by F. D. Bennett (Palmer 
& Bennett 1988), officers of the Alan Fletcher Research Station, in- 
cluding the second author, commenced a three year research program 
in 1967 at the Archbold Research Station, Lake Placid, Florida, to 
determine the host specificity of selected insects. In the next decade, 
efforts focused on South American fauna but in 1982 the North Amer- 
ican Field Station was established to continue work in the North Amer- 
ican region. 

The genus Baccharis is one of the largest in the Astereae, with ap- 
proximately 450-500 species, all of which are native to the New World 
(Nesom 1990). About 90% of the species occur in South America (Nesom 
1990); twenty species occur in the United States (Mahler & Waterfall 
1964). Nesom (1990) divided the 48 species occuring in North and 


? Dera = = ee 


196 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Central America into six sections. Baccharis halimifolia was nominated 
as the type species of the section Baccharis. Other species of relevance 
to this study that were placed in this section include B. angustifolia 
Michx., B. dioica Vahl, B. glomerufolia Pers., and B. neglecta Britt. 
Baccharis sarathroides Gray was placed by Nesom (1990) in the section 
Sergilae, which is very closely related to the section Baccharis. 

The insect fauna on B. halimifolia has been described by Palmer 
(1987) and Palmer and Bennett (1988). One of the first insects selected 
in 1967 for further study at Lake Placid was the moth, Oidaematopho- 
rus balanotes (Meyrick) (Pterophoridae), larvae of which frequently 
were found boring in the stems of B. halimifolia and occassionally 
causing considerable damage to the shrub. Moreover, search of the 
literature, examination of previously collected specimens, and obser- 
vation of surrounding flora suggested that O. balanotes larval foodplant 
range might be confined to Baccharis spp. 


Oidaematophorus balanotes 
Taxonomy 


Oidaematophorus Wallengren is a large genus containing 78 species 
(Hodges et al. 1983). Within this genus, the balanotes group (Cashatt 
1972) includes O. balanotes, O. grandis (Fish), O. lacteodactylus 
(Chambers), O. kellicottii (Fish), and O. glenni Cashatt. 

Until the revision of the group by Cashatt (1972), who examined the 
genitalia of both sexes, these species were very difficult to separate. 
Indeed, specimens collected from B. halimifolia prior to 1972 were 
frequently identified as either O. balanotes, O. kellicottii, or O. lac- 
teodactylus. We now believe that these specimens were most probably 
O. balanotes. 


Distribution and Larval Food Plant Range 


Although some adults have been captured in Arizona, O. balanotes 
is essentially an eastern species (Cashatt 1972) that occurs along the 
eastern seaboard from New York in the north to the Rio Grande Valley 
in Texas. This distribution approximates that of its Baccharis hosts. 

The first author has collected larvae of O. balanotes from B. hal- 
imifolia and B. neglecta on many occasions (Palmer 1987). Almost 
certainly it also occurs on the Florida species B. glomeruliflora and B. 
angustifolia. Its host in Arizona is probably B. sarathroides. 

Cashatt (1972) gives Myrica sp. (Myrtaceae) as a larval host based 
on one specimen record in the material he examined. However, we 
believe that this record is in error. Myrica and B. halimifolia are similar 
looking shrubs growing in the same habitat and sharing the same com- 


VOLUME 46, NUMBER 3 | } 197 


mon name, “sea myrtle’. Apart from this one record, Baccharis spp. 
are the only known hosts for O. balanotes (Cashatt 1972). 

Indeed, all species in the balanotes group appear to have very narrow 
larval host ranges within the tribe Astereae. Oidaematophorus grandis 
has been collected from B. pilularis (Cashatt 1972); O. kellicotti from 
Solidago (Cashatt 1972), B. neglecta, and B. dioica (Palmer unpubl. 
data); O. lacteodactylus from Solidago sp. (Cashatt 1972); and O. 
glenni from Solidago canadensis (Cashatt 1972). 


Biology and Phenology 


The moths are rather delicate with brownish white wings spanning 
about 40 mm. Females oviposit eggs singly on the leaves, leaf axils, 
young twigs, and probably inflorescences. The eggs are oval, 0.6 mm 
long, and translucent white. Accurate egg counts were not made but 
we estimate that a female might produce a brood of several hundred 
eggs. 

Larvae feed initially on leaves, inflorescences, and young stems. Al- 
though pterophorids are not known to be leaf miners, early instar O. 
balanotes tunnel into leaves to feed on the mesophyll. After a few days 
they move to the stem, either at the leaf axil or at the terminal, enter, 
and then feed for two to three weeks. A further migration then occurs 
as the larvae seek out more mature tissues further down the stems. 
Tunnels are made in mature stems of more than a year in age and 
these may reach over a meter in length. The entrance to this tunnel 
remains open although surrounded by a characteristic, granular frass. 
The larva is similar to that of O. grandis, which was described by 
Peterson (1962), except that the granulated texture of the anal shield 
is more uniform. Both of these species have two ““urogomphi-like” hooks 
present on the anal shield, a character present only on very few Lep- 
idoptera species. Larvae pupate in the tunnel and the moth emerges 
through the tunnel opening. 

Throughout most of its range there appears to be one generation a 
year with moths emerging over summer. Early instars are found in 
autumn and often can be collected from inflorescences. Terminal twig 
death of the hosts occurs as these early instars attack new growth of 
stem tips. Tunnelling in more mature tissue then commences and the 
larvae overwinter in these tunnels. Larval tunnelling continues in the 
spring until the larvae pupate. 

In Florida, where the winter is less pronounced, there appear to be 
two generations a year and the generations are not discreet. For ex- 
ample, in central Florida in February 1988, all stages from early instars 
to mature pupae were found in the stem tunnels. 

Four species of hymenopteran parasitoids were reared from the lar- 


re a as a 


USTs) JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


vae: three Braconidae: Macrocentrus cerasivoranae Vierick, Chelona 
sp., Chelonus (Microchelonus) sp.; and one Ichneumonidae: Temelu- 
cha cartipetiolata Dasch. Parasitism rates ranged from 40-60% with 
M. cerasivoranae being the most abundant species. 


Host Plant Specificity 


Oviposition preference. Oviposition behavior was tested by randomly 
assigning each of two potted plants of 64 test plant species (Table 1) 
to one of eight cages. Baccharis halimifolia was included as a control 
in all eight cages. Twenty unsexed moths were released into each cage 
and honey-water wicks were placed in the cages for their nourishment. 
After five days, when the control plants were infested with eggs, the 
cages were dismantled and all eggs on the potted plants and cage walls 
were counted. The plants then were transferred to a greenhouse and 
observed until feeding was seen on the B. halimifolia controls. All plants 
were then reexamined for evidence of larval feeding. 

Plants of B. halimifolia in all cages had dozens of eggs attached. 
Only five other plant species had eggs: Leucaena leucocephala (Lam.) 
de Wit., Cucumis melo L., and Triticum aestivum L. each had one 
egg; one plant of Carica papaya L. had seven eggs; both plants of 
Paspalum dilatatum Poir had one egg. The foliage of all these plants 
was in close proximity to that of B. halimifolia. On no other plant were 
eggs or feeding damage found. Hatch rate of eggs on B. halimifolia 
was greater than 80% and feeding on the plant tips and boring into the 
stems were seen on all these plants. The eggs on all the other plants 
hatched but no feeding occurred. We conclude that O. balanotes is 
highly selective about its choice of larval food plants, that oviposition 
of a few eggs laid on other plants probably was an artifact of caging, 
and that, of the plants tested, only B. halimifolia is a suitable host. 

Larval feeding. Moths confined in cages with B. halimifolia plants 
oviposited, after which leaves with eggs were cut into sections so that 
each section contained 4 eggs. These leaf sections were then glued to ~ 
the leaves of the test plants (Table 1), which were arranged in groups 
of eight with one B. halimifolia plant as a control. There were two 
replications of each plant species except sunflower, Helianthus annuus 
L., which had seven replications. Eggs hatched normally with a hatching 
rate above 95%. After 5 weeks, when vigorous larval tunnelling was 
seen in the controls, all plants were examined carefully. 

Eggs hatched and larvae developed normally on all B. halimifolia 
plants. In most cases feeding was seen immediately below the eggs. In 
other cases larvae moved up to 50 mm from the egg to enter the leaf 
petiole, leaf axil, or the stem. With one exception, larvae made no 
attempt to feed on any test plant; no tissue abrasions could be seen 


VOLUME 46, NUMBER 3 199 


TABLE 1. Plant species tested as potential hosts of Oidaematophorus balanotes. 


Apiaceae: Daucus carota L.; Pastinaca sativa L. 

Anacardiaceae: Mangifera indica L. 

Asteraceae: Baccharis halimifolia L.; Carthamus tinctorius L.; Chrysanthemum sp.; 
Dahlia sp.; Helianthus annuus L.; Lactuca sativa L. 

Brassicaceae: Brassica oleraceae (L.) Alef.; Brassica rapa L. 

Bromeliaceae: Ananas comosus (L.) Merr. 

Caricaceae: Carica papaya L. 

Chenopodiaceae: Beta vulgaris L. 

Convolvulaceae: Ipomoea batatas (L.) Lam. 

Cucurbitaceae: Cucumis melo L.; Cucumis sativus L.; Curcubita maxima Duch. 

Fabaceae: Arachis hypogaea L.; Centrosema pubescens Benth. Desmodium canum 
(Gmel.); Glycine wightii (R. Grah. ex Wight & Arn.) Verdc.; Glycine max (L.) Merr.; 
Medicago sativa L.; Phaseolus atropurpureus DC.; Phaseolus vulgaris L.; Pisum sa- 
tivum L.,; Stizolobium sp.; Stylosanthes gracilis.; Trifolium repens L.; Vigna catjang V. 

Linaceae: Linum usitatissimum L. 

Malvaceae: Gossypium hirsutum L. 

Mimosaceae: Leucaena leucocephala (Lam.) de Wit. 

Musaceae: Musa sapientum M. 

Passifloraceae: Passiflora edulis Sims 

Pinaceae: Pinus radiata D. Don.; Pinus taeda L. 

Poaceae: Avena sativa L.; Digitaria decumbens Stent.; Panicum maximum Jacq.; Pas- 
palum dilatatum Poir.; Pennisetum clandestinum Chiov.; Saccharum officinarum L.; 
Sorghum vulgare L.; Triticum aestivum L.; Zea mays L. 

Porteaceae: Macadamia integrifolia Maid & Betche 

Rosaceae: Fragaria vesca L.; Malus sylvestris Mill.; Prunus domestica L.; P. persica (L.); 
Pyrus communis L.; Rosa sp. 

Rutaceae: Citrus limon (L.) Burm. F.; Citrus paradisi Macfady.; Citrus reticulata Blanco; 
Citrus sinsensis (L.) 

Sapindaceae: Litchi chinensis Sonn. 

Solanaceae: Capsicum annum L.; Lycopersicum esculentum Miller; Nicotiana tabacum 
L.; Solanum tuberosum L. 

Vitaceae: Vitis vinifera L. 

Zingiberaceae: Zingiber officinale Roscoe. 


under 10x magnification. In H. annuus L., however, some larvae 
commenced feeding and formed mines in leaves of the seven replicates 
(2, 2, and 3 mines respectively). Although some mines reached 10 mm 
in length, no larvae on H. annuus advanced to the next feeding stage 
of entering and feeding in the stem. 


Release in Australia 


Approval was received in 1968 from the Commonwealth Department 
of Health to release O. balanotes in Australia. This approval was given 
with the usual proviso that the insect be reared through one full gen- 
eration in quarantine facilities to ensure that it was free of parasites 
and diseases before being released. 

Oidaematophorus balanotes was first imported into Australia as lar- 
vae in 1969. Small numbers of moths and larvae were released on three 


200 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


occasions (25 late instars, 20 moths, and 70 first instars, respectively) in 
southeastern Queensland but establishment was not successful, probably 
because the numbers released were inadequate. 

Further attempts at introduction were made in 1982-83. In autumn 
1982 and spring 1983 in Texas, Louisiana, and Florida, larvae were 
collected by dissecting stems of both B. halimifolia and B. neglecta at 
the North American Field Station and placed individually into 2 cm 
sections of plastic tubing containing Harley-Willson artificial diet (Har- 
ley & Willson 1968). A wad of cotton wool acted as a stopper at both 
ends. In this manner some 500 larvae were shipped to Australia where 
they were placed on fresh artificial diet to complete their life cycle. 
However, the larvae responded poorly to this diet and eventually the 
colony was lost. 

A third attempt was made in 1984. Larvae were collected in the 
summer and autumn of 1984 from Texas and Florida. The finding of 
a large population of larvae relatively free of parasites near Gainesville, 
Florida, was an important factor in the ultimate successful colonization 
of this insect. Approximately 1000 larvae were shipped, mostly from 
this population at Gainesville, to Australia. This time larvae were reared 
on potted plants of B. halimifolia instead of on artificial diet, using a 
technique developed by A. J. Tomley at the Alan Fletcher Research 
Station. The development of this technique was the single most im- 
portant factor in the success of the program and was the basis for a 
mass rearing program implemented from 1985-88. Potted plants were 
exposed to adult moths and plants with eggs were then kept in shade 
houses until the insect completed its development. As larvae began 
pupating, their food plants were placed inside temporary cloth cages 
so that emerging moths could be captured and then released in the 
field. | 

Oidaematophorus balanotes reared by this mass production tech- 
nique were first released in 1985. Over the next 3 years some 10,000 
moths were released at various sites in southeast Queensland. Estab- 
lishment was confirmed in 1985 and the moth is now found throughout 
most of the range of its foodplant (A. J. Tomley pers. comm.). We 
anticipate that O. balanotes may prove to be one of the better biocontrol 
agents introduced for this weed (see also Palmer 1989). 


DISCUSSION 


Oidaematophorus balanotes displays a number of useful character- 
istics of good biocontrol agents, in addition to its being sufficiently host 
specific to be used safely in Australia. Its broad native distribution 
includes a wide range of climatic conditions, including an area with a 
climate similar to southeast Queensland (Florida), so that its prospects 


VOLUME 46, NUMBER 3 | 201 


of successful establishment should have been good. As an endophage, 
it has a somewhat better chance of success than an ectophage, primarily 
because endophages are less susceptible to generalist parasitoids and 
are less less likely to be attacked by specialist parasitoids. 

A major potential problem of using an insect such as this for biocontrol 
lies in the difficulty of rearing it in the laboratory. Stem boring insects 
with relatively long lifecycles can be difficult to rear and the problem 
is compounded if they do not adapt to artificial diets. Almost certainly 
the ultimate success of this project was due to the development of 
suitable mass rearing techniques that produced large numbers of healthy, 
robust adults available for release. 

The successful establishment of O. balanotes in Australia provides 
an example of a problem confronting those involved in biological con- 
trol. That is, how much effort should be expended on a species when 
first attempts to establish it fail? Is it better to persevere with such an 
insect or divert attention to other species? Obviously the answers depend 
on many factors, but this example suggests that multiple attempts at 
establishment may be worthwhile. 

The effects of O. balanotes on Baccharis halimifolia in Australia 
have not yet been ascertained. Populations of the moth, although in- 
creasing, have not yet reached damaging levels. Even when the moth 
is fully established the effects may be difficult to gauge. Unless plants 
become grossly infested they are unlikely to be killed. Rather, O. bal- 
anotes may weaken the plants and predispose them to the deleterious 
effects of other herbivores and pathogens. 


ACKNOWLEDGMENTS 


Dr. E. D. Cashatt of the Illinois State Museum provided expert identification and 
helpful advice. Dr. D. H. Habeck of the University of Florida also advised on identifying 
immatures. Dr. D. Green, G. Critchfield, R. Harris, and J. Boldt assisted in the collection 
of larvae for shipment to Australia. Dr. S. Passoa provided a description of the immatures. 
The first author thanks the second author for making his host specificity data available 
and accepts full responsibility for the content of the rest of the paper. 


LITERATURE CITED 


CasHATT, E. D. 1972. Notes on the balanotes (Meyrick) group of Oidaematophorus 
Wallengren with description of a new species (Pterophoridae). J. Lepid. Soc. 26:1-13. 

HARLEY, K. L. S. & B. W. WILLSON. 1968. Propagation of a cerambycid on a meridic 
diet. Canad. J. Zool. 46:1265-1266. 

HopcEs, R. W., ET AL. 1983. Check list of the Lepidoptera of America north of Mexico. 
Wedge Entomological Foundation & E. W. Classey, Ltd., London. 284 pp. 

MAHLER, W. F. & U. T. WATERFALL. 1964. Baccharis (Compositae) in Oklahoma, 
Texas and New Mexico. Southw. Nat. 9:189-202. 

NEsom, G. L. 1990. Infrageneric taxonomy of North and Central American Baccharis 
(Asteraceae: Astereae). Phytologia 68:40-60. 

PALMER, A. W. 1987. The phytophagous insect fauna associated with Baccharis hal- 


202 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


imifolia L. and B. neglecta Britton in Texas, Louisiana and northern Mexico. Proc. 

Entomol. Soc. Wash. 89:185-199. 

1989. Food plant specificity and biology of Itame varadaria (Walker) (Geo- 
metridae), a North American moth introduced into Australia to control the weed 
Baccharis halimifolia L. J. Lepid. Soc. 43:305-312. 

PALMER, W. A. & F. D. BENNETT. 1988. The phytophagous insect fauna associated 
with Baccharis halimifolia L. in the eastern United States. Proc. Entomol. Soc. Wash. 
90:216-228. 

PETERSON, A. 1962. Larvae of insects. Part 1: Lepidoptera and plant infesting Hy- 
menoptera. Edwards Bros. Incorp., Columbus, Ohio. 315 pp. 

STANLEY, T. D. & E. M. Ross. 1986. Flora of southeastern Queensland. Vol. 2. Queens- 
land Department of Primary Industries, Brisbane. Misc. Pub. QM84007. 623 pp. 


Received for publication 22 January 1991; revised and accepted 14 September 1991. 


Journal of the Lepidopterists’ Society 
46(3), 1992, 203-214 


BIOLOGY OF EPIPHYLL FEEDING BUTTERFLIES IN A 
NIGERIAN COLA FOREST (LYCAENIDAE: LIPTENINAE) 


CuRTIS J. CALLAGHAN 
Avenida Suba 130-25 Casa 6, Bogota, Colombia 


ABSTRACT. I describe the adult behavior of 16 liptenine butterfly species (Lycaeni- 
dae) and include descriptions of oviposition behavior and immatures of 12 from a cola 
forest near Lagos, Nigeria. Larvae of all species fed on epiphylls such as lichens and 
fungi, and adults fed at extrafloral nectaries on forest bamboos and vines. I conclude that 
most species have strictly defensive relationships with ants, the butterfly larvae using their 
long setae and crevasses in the bark for protection. Larvae of one species (Aethiopana 
honorius) inhabit Crematogaster ant runs, and avoid ant attacks by a combination of 
speed and defensive use of their long lateral setae. 


Additional key words: Nigeria, defensive behavior, ants, larval behavior. 


No studies of Nigerian Lycaenidae have been published since the 
classic articles by Farquharson (1921) and Lamborn (1918). These and 
subsequent works by Jackson (1937), dealing with a wider African 
fauna, considered mainly those liptenine species associated with ants. 
Of species not associated with ants, some information is available on 
two Telipna species, one Mimacraea, one Liptena (Jackson 1937), and 
two Pentila (Clark & Dickson 1971). Here, I report the biology of 12 
additional species of Lipteninae, of which 11 are not associated with 
ants. Notes on adult behavior are included for 16 species. I conclude 
with a discussion of adult and larval habits. 


STUDY AREA AND METHODS 


I observed and collected lycaenid butterflies over a two-year period 
near Lagos, Nigeria. The study area (Fig. 1) was a small forest on the 
edge of a swamp near Agbara, an industrial estate 40 km west of Lagos. 
The dominant tree species was Cola nitida (Vent.) Schott & Endl., 
which grows to a height of 10-15 m, forming a closed canopy. Most 
primary forest in the region has been destroyed, but cola trees are 
preserved because of the commercial value of their red, pink, and white 
nuts, which are used locally for chewing and ceremonial purposes. Even 
so, the cola forest is threatened by the demand for firewood and living 
space by the nearby urban population. In this surviving cola forest the 
understory vegetation is usually left to grow along with a few cacao 
and banana trees that are not sprayed, thus forming a good habitat for 
many forest species. 

I made observations on liptenine biology from July 1986 to March 
1988. During the second year I made trips to the study area nearly 
every weekend, weather permitting, spending a total of 29 days in the 
field. Initially, I started observations at 0900 h and terminated them at 


204 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


1600 h. After four months of such long hours, I limited my field time 
to between 1000 and 1530 h, which I had discovered to include the 
peak of lycaenid activity. Field observations were recorded on a por- 
table tape recorder and later transcribed to a notebook. 

I collected eggs in two ways: by following ovipositing females in the 
field and by inducing females to lay eggs in captivity. Following females 
proved unsatisfactory because it required searching the substrata for 
eggs with a hand lens, by which time the female had usually gone, 
making identification uncertain. By confining field caught females in 
plastic bags or wide mouth jars with a piece of moist lichen-covered 
wood inside, some species could be induced to oviposit. The containers 
with the females were kept in a naturally ventilated room with no direct 
light. After hatching, larvae were transferred to jars with fresh epiphyll- 
covered wood and closed with tissue paper to allow ventilation and 
prevent mold. High humidity prevented use of totally closed containers, 
which quickly became moldy, with consequent ill effects for the eggs 
and larvae. 


SPECIES ACCOUNTS 


The following 16 liptenine species were recorded at the study site 
and are listed with observations on their habits and biology. 


Ptelina carnuta (Hewitson, 1873) 


On numerous occasions I observed adults, both male and female, 
feeding during the morning hours at extrafloral nectaries of vine tendrils 
and bamboo, as many as four together and often in the company of 
other liptenines and ants. When landing, P. carnuta held their wings 
vertically after flexing them a few times. 

One female oviposited 5 orange eggs singly on leaf litter on the forest 
floor at about 1530 h. The female and eggs were taken to the lab, but 
the eggs never hatched and the female would not oviposit in captivity. 
Two subsequent attempts to induce other females to oviposit in plastic 
bags in which dried leaves had been placed also failed. 


Pentila nigeriana Stempffer and Bennett, 1961 


Adults of both sexes fed on tendril and bamboo nectar between 1000 
and 1200 h. Males perched around the trunks of prominent trees on 
the edge of small openings in the forest between 1100 and 1330 h, 
which they would circle with a slow, fluttering flight about 4-5 m off 
the ground before coming to rest on a nearby dry branch. When alight- 
ing, they flexed their wings a few times before resting with the wings 


folded over their backs. 


VOLUME 46, NUMBER 3 ; 205 


Fics. 1-6. 1, Cola forest habitat, Agbara, Lagos, Nigeria. The taller trees are Cola 
nitida; 2, Pentila bitje ovipositing on a dead branch; 3, Liptena opaca feeding on 
extrafloral nectaries of a creeper; 4, Third instar larva of Larinopoda aspidos feeding on 
epiphylls; 5, Male Aethiopana honorius resting on bamboo stem; 6, Larva of A. honorius. 
Note long lateral setae. 


206 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


A single female oviposited on dried branches near the forest floor at 
1340 h. The eggs were laid singly. Brought into the lab, she later placed 
many reddish-brown eggs on a lichen covered stick in a plastic bag, 
but the eggs never hatched. 


Pentila picena cydaria (Grose-Smith, 1898) 


Pentila picena was an avid feeder at bamboo nectaries, with up to 
6 individuals of both sexes feeding on the same stem. Male perching 
habits were similar to P. nigeriana, with which P. picena shares perch- 
ing trees. Like P. nigeriana, adults of P. picena used the tree trunks as 
reference points, landing on nearby dried branches from which they 
flew if disturbed, making a few slow circles around the trunk before 
alighting on the same branch as before and flexing their wings a few 
times. 

I made nine observations of females of this species ovipositing in the 
forest between 1320 and 1500 h. Eggs were laid singly on live trees 
and woody stems covered with green lichens and moss. When laid, eggs 
were white, then became dark brown within a day. In one case two 
eggs were placed near one another on the same trunk. One female 
brought into the lab laid numerous eggs on the inside of a glass jar. 
None of the eggs, either field collected or obtained in the lab, hatched. 


Pentila bitje Druce, 1910 


The males of this species perched in the company of those of P. 
picena and P. nigeriana around the same tree trunk. Flight was slow 
and fluttery. They alighted invariably on dried branches or tendrils, 
flexing their wings 3-4 times before closing them over their backs. I 
observed both sexes feeding on tendril and bamboo extrafloral nectar 
during the morning (1000 to 1230 h). 

On six occasions I observed females ovipositing dark brown eggs (Fig. 
2) on dead twigs and branches covered with epiphylls and located 
near the ground and abandoned termite mounds. Eggs were laid singly 
between 1300 and 1500 h. Three times I induced females to oviposit 
in the lab. The larvae hatched in twelve days, refused to eat and died 
two days later. First instar larvae were light brown with setae longer 
than the body and extending dorsad and cephalad. 


Telipna rothi (Grose-Smith, 1898) 


Both sexes fed throughout the morning on bamboo extrafloral nectar. 
They spent the rest of the day resting in the deeper forest on the 
undersides of low branches with wings folded. When disturbed, their 
flight was fairly rapid, similar to that of Acraea bonasia Cramer, from 
which they are indistinguishable on the wing. Upon landing, they did 


VOLUME 46, NUMBER 3 ) : 207 


not flex their wings, their cryptic undersides blending into the back- 
ground. 

One female brought in from the field oviposited brown-gray eggs on 
dead lichen-covered sticks placed in a plastic bag. The eggs hatched 
after 10-11 days and the larvae fed on the lichens, spending much of 
their time in the crevasses or under loose bark. They molted to second 
instar 9 days later, but refused to eat, despite the introduction of new 
lichens, and died. Eggs laid by a second female failed to hatch. The 
head of the second instar was black, thorax and abdomen gray-green 
with dark lines between the segments, and covered with long setae, the 
longest dorsad. 


Ornipholidotos kirbyi (Aurivillius, 1895) 


This species congregated in numbers of up to 6 individuals of both 
sexes in the morning on vine tendrils and the tips of bamboo shoots 
where they fed at extrafloral nectaries in the company of ants. When 
approached by ants, they lowered their wings, keeping them in that 
position until the ants had retreated. Between 1230 and 1430 h males 
perched on branches 5-7 m below the forest canopy in groups of up 
to 4 individuals. Here they chased each other in circles, then landed 
on branches, and did not flex their wings. Inducing females to oviposit 
in captivity was unsuccessful. 


Mimeresia libentina libentina (Hewitson, [1866]) 


Both sexes féd between 0900 and 1200 h on bamboo and tendril 
extrafloral nectaries. Between 1200 and 1500 h males rested just inside 
the edge of the woods, hanging from tendrils or dried branches less 
than 2 m above the ground. Upon landing, they flexed their wings for 
a minute or two before closing them. 


Eresiomera cornesi (Stempifer, 1969) 


I observed both sexes feeding on bamboo extrafloral nectaries in the 
morning. Females appeared to be rare, only two being captured during 
the two year study period. Between 1200 and 1430 h, males were 
common at their perching site, which was a large tree trunk around 
which they chased each other in circles, never lower than 4 m above 
the ground. To rest, they landed on the tree trunk, flexing their wings 
a few times. 


Citrinophila marginalis Kirby, 1887 


Between 0900 and 1600 h, males congregated around the trunks of 
certain trees, where they rested on nearby leaves 3 to 5 m above the 
ground. They returned to the same perch after being disturbed, flexing 


li 


208 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


their wings a few times. Only once did I observe this species feeding 
on bamboo nectar. 

On five occasions I saw females ovipositing in the late afternoon 
(1400-1500 h). Flying slowly through the undergrowth, females landed 
on live, smooth-barked trees as well as on dead twigs, upon which they 
deposited a tiny dark brown egg. Ovipositing females did not flex their 
wings. Twice females in the lab laid eggs, both times on the sides of 
the container rather than on the lichen-covered sticks provided. Seven 
days later the transparent, pubescent larvae hatched, started feeding 
on the lichen material, and gradually turned the same color as the 
lichens. However, after the second day of feeding, all larvae stopped 
eating and died. 


Citrinophila erastus erastus (Hewitson, [1866]) 


Males perched high in the upper story of the forest just below the 
canopy, 6-7 m above the ground, between 1100 and 1340 h. They 
rested for long periods on leaf surfaces, flying only when disturbed. 
Like C. marginalis, they flexed their wings a few times upon landing. 
Lone females were encountered only twice, moving slowly through the 
undergrowth near the ground in the early afternoon. 


Liptena similis (Kirby, 1890) 


This species fed on bamboo extrafloral nectaries during the morning 
(900-1230 h). They congregated in groups of 4-5 individuals of both 
sexes on a shoot, driving ants away by lowering their wings. 

In the laboratory one female oviposited tiny, dark brown eggs with 
nearly smooth shells. The pubescent brown larvae hatched 13 days 
later, but refused to eat and died. 


Liptena opaca opaca (Kirby, 1890) 


In the morning (900-1200 h) this species fed in groups at the nectaries 
of forest creepers and bamboo shoots in the company of ants and other 
liptenines (Fig. 3). They lowered their wings to drive away ants. Males 
chased one another high in the canopy and remained on the wing for 
long periods, circling in a small area without landing. 

I saw one female oviposit on dry branches near the forest floor during 
the afternoon, but later, in the laboratory, she did not continue ovi- 
positing. 


Larinopoda aspidos Druce, 1890 


Groups of 5 to 6 individuals of both sexes fed on tendril and bamboo 
extrafloral nectaries during the morning. Males did not appear to have 
specific perching sites, but flew in wide, low circles in open areas in 


VOLUME 46, NUMBER 3 ) 3 209 


the forest. Adults did not flex their wings when landing, although they 
lowered their wings to push ants away when feeding. Males have a 
slightly faster flight than Pentila. Females, when searching for ovipo- 
sition sites, resembled a small white pierid, Leptosia, which is very 
common in the same woods. 

I observed 13 ovipositions on dead, epiphyll-covered branches in the 
woods between 1300 and 1600 h. Females also oviposited readily in 
the lab. The dark brown eggs hatched within 10 days and the pubescent 
first instar larvae fed on lichens, seeming to prefer a pale green variety. 
Molt to the second instar occurred 7 to 9 days later. Individual larvae 
varied in development time, some molting 3-4 days ahead of their 
siblings. Second and third instars (Fig. 4) had dark bands on the thoracic 
and abdominal segments and, on both thorax and abdomen, setae which 
curve up from the sides and over the back, ending with white bulbous 
tips, similar to the larvae of Liptena undina Smith and Kirby described 
by Jackson (1937). Molt to the third instar occurred 7 to 10 days later. 
Larvae crawled under loose pieces of bark, avoiding direct light. They 
fed almost continuously except the 2 days before molt. Later instars 
fed on rotten wood as well as on lichen. No larvae survived the third 
instar. 


Tetrarhanis diversa (Bethune-Baker, 1904) 


I observed both sexes of this tiny butterfly in the company of other 
liptenines feeding at tendril and bamboo extrafloral nectaries in the 
deep forest during the morning. 

Twice I found females ovipositing on dead, lichen-covered sticks on 
the forest floor around 1300 h. After placing a single egg, the female 
would fly 10 to 20 m before depositing another egg on another stick. 
None of the three eggs brought into the lab hatched. 


Epitola dunia Kirby, 1887 


The conspicuous blue males perched during the late morning and 
early afternoon on the edge of large, sunlit clearings, flying rapidly 
along the forest margins, then returning to their original perches. They 
usually rested on dried branches 2-4 m above the ground, their cryptic 
undersides making them difficult to spot. They did not flex their wings. 
Females primarily remained deeper in the forest, appearing on the 
forest margins for mating, where I discovered a copulating pair at 1100 
h. I observed one individual of this species being chased and caught 
by a bird. 

I saw a female ovipositing on a dead palm frond at 1315 h. The disk 
shaped egg hatched 9 days later, but the pubescent larva refused to eat 
and died after 2 days. Although this genus is reported to be associated 


210 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


with ants (Lamborn 1918, Jackson 1937), there were no ants where the 
oviposition was observed. 


Aethiopana honorius (Fabricius, 1793) 


Males perched in late morning (1100 to 1300 h) on the edge of small 
sunlit clearings, where half a dozen or more were found together, and 
not far from the ant trees utilized by their larvae. Males rested by 
hanging from dead branches or from the bamboo stems from which 
they fed (Fig. 5). Females frequent the same clearings, but more rarely. 
Normal flight was rapid and high, the males spectacular as they flashed 
among the trees. When disturbed while perching, they flew only a short 
distance before alighting. Their underwing pattern mimics that of dis- 
tasteful Bematistes (Acraeinae). 

One female brought into the lab laid a single, disc-shaped egg with 
serrated edges which did not hatch. Females flew around trees infested 
with Crematogaster ants (Formicidae) and I discovered two larvae 
moving about the ant runs on the tree trunk near the ant’s carton nests. 
The larvae were dark reddish brown with long lateral setae, and with 
the body tapering caudad (Fig. 6). Although they normally did not pay 
attention to the larvae, the Crematogaster ants became very aggressive 
when aroused, as I discovered when I was removing an A. honorius 
larva from the tree. The ants attacked it and were able to get between 
the setae, causing wounds from which it later died. The second larva 
was brought into the lab where it fed on lichens for three weeks before 
dying. 


DISCUSSION 
Adult Behavior 


Liptenine adult behavior is summarized in Table 1. Perching activity 
by males revealed no marked habitat partitioning in time and space 
by congeneric species as has been recorded for Neotropical Riodinidae 
(Callaghan 1983). Most congeneric liptenine species perched in the same 
localities and over long periods. Perching for most species occurred 
from slightly before noon until 1400 h, only C. marginalis perching 
earlier in the morning (at 0900 h). Five of 13 species consistently 
perched near trees, but only one (cornesi) actually rested on the tree. 
Most species landed on dry branches or creepers. In the field, liptenines 
can be differentiated from butterflies of other families that they mimic, 
such as Acraeidae, by their resting substrate and behavior. o the two 
Citrinophila species rested on flat leaves. 

Wing flexing upon landing was found only in pienne Mimeresia, 
Pentila, Eresiomera, and Citrinophila, all of which share a character- 


VOLUME 46, NUMBER 3 . : : Ol 


TABLE 1. Summary of liptenine behavior. 


Perching 
Ovipositing 
Sub- Rites 

Species Site! Time? strate? Wingflex* Substrate® Time 
P. carnuta — — C Ni A 1530 
P. nigeriana A 11-1830 A Ye B 1340 
P. picena A 11-1400 A ¥ C 1320-1500 
P. bitje A 12-1400 A Ni B 1300-1500 
T. rothi — — A N B — 
O. kirbyi B 13-1430 A N = — 
M. libentina C 1030-1400 A ve = — 
E. cornesi A 12-1430 (G Ni = — 
C. marginalis A 900-1600 B Y Bae 14-1500 
C. erastus B 11-1340 B Ye -- — 
L. similis C 11-1400 A N — — 
L. opaca B 12-1400 A N B 1400 
L. aspidos C 11-1300 A N B 13-1600 
T. diversa = == A N B 1300 
E. dunia C 10-1300 A N B 1315 
A. honorius C 11-1300 A N — — 


! Perching Site: A = around a perching tree; B = high above ground, just below canopy; C = woods edge or large 
sunlit clearings. 

2 Perching Time indicates the hours of the day during which perching was observed. 

3 Perching Substrate: A = tendrils and dry branches; B = leaves; C = tree trunk. For species not observed perching, 
the substrate used for normal resting is given. 

4 Wingflex refers to the pumping movement of the wings while the butterfly is at rest: Y = yes; N = no. 

° Oviposition Substrate: A = fea litter; B = dried branches; C = live branches or tree trunks. 

6 Dash = not observed. 


istic slow flight. This behavior may be an advertisement of distasteful- 
ness. Despite their slow flight, I never saw birds take any interest in 
them, although I once observed an E. cornesi being stalked by a small 
lizard. Although the lizard made several attempts to reach the resting 
butterfly, it was unable to catch it. 

Oviposition took place between 1200 and 1600 h for all species ob- 
served. Females placed eggs primarily on dry, epiphyll-covered branch- 
es near the forest floor, except for Pentila picena, which utilized live 
epiphyll-covered substrates, and Citrinophila marginalis and Larinopo- 
da aspidos, which used both. Ptelina carnuta oviposited on dry leat 
litter. All eggs in nature were laid singly and widely spaced, with the 
exception of one observation of P. picena, in which 2 eggs were placed 
on the same tree trunk. 

The major food resource for adult liptenine butterflies was the nectar 
from extrafloral nectaries. Some forest creepers and bamboos produce 
from their growing tips a sweet nectar that attracts ants and liptenine 
butterflies. From morning to early afternoon some creeper and bamboo 
stems may be visited by numbers of liptenines of different species, 
which appear not unlike small flags on a pole (Fig. 3). To keep ants 
away, the butterflies lower their wings and maintain them in that 
position until the ants have moved away. Whether or not this behavior 


ale JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


has the effect of releasing ant repellant pheromones as suggested by 
Atsatt (1981) could not be determined. 

In wing pattern, Citrinophila, Larinopoda, and Liptena species mim- 
ic Pieridae; Telipna and Aethiopana resemble Acraeinae; and Telipna 
mimic day flying moths. 


Behavior of Immatures 


Once thought to be rare, the use of epiphylls (liverworts, lichens, 
bacteria, algae, and fungi) as larval foodplants by butterflies appears 
to be widespread. Evidence presented here, in addition to that in Jackson 
(1937), Fahrquharson (1921), and Clark and Dickson (1971), suggests 
that this is a major larval food resource for the lycaenid subfamily 
Lipteninae, currently with 46 genera. In addition, two Satryinae (Singer 
et al. 1971, DeVries 1986) and one Neotropical genus of Riodinidae, 
Sarota (DeVries 1988, Callaghan unpublished), have been recorded 
feeding on these food sources. The list probably will grow with future 
research, 

All observations on liptenine larvae were made in the lab from eggs 
found in the forest and from females induced to oviposit in plastic bags 
or jars. In the latter case females laid as many as 50 eggs on the sides 
of the containers or on wood placed inside. However, as all field ob- 
servations suggested that eggs are laid singly, the number of eggs laid 
in the lab was presumably a result of the confined environment and 
stress. Many times the eggs did not hatch, for reasons unknown. In only 
two cases did larvae pass the first instar and in no case did larvae 
produce adults. My observations suggest that larval diet is varied, both 
lichens and rotten wood (fungus?) being consumed by the same species. 
The food resource of A. honorius is the black varnish (fungi/feces?) 
left by the ants along their runs (Farquharson 1921), although they will 
feed on epiphylls as well. 

One of the major determinants of larval behavior and morphology 
is their relationship with ants. Among the liptinines I observed, this 
relationship took two forms; purely defensive, in which the larvae 
merely protected themselves from aggressive ant behavior (the majority 
of the species) and opportunistic, in which the larvae took advantage 
of the ant’s aggressiveness for protection against other predators (only 
in the case of Aethiopana honorius). 

Cola forests are invaded periodically by driver ants, especially during 
the rains. Driver ants advance quickly and viciously on a wide front, 
attacking any creature in their path irrespective of size. Insects and 
other small animals are immobilized and dismembered in minutes. To 
test the driver ants’ reaction to Lepidoptera larvae, I placed several 
unidentified pierid larvae among the ants, which immediately attacked 


VOLUME 46, NUMBER 3 | . Ons 


and killed them. The sluggish lichen feeding liptenine larvae would 
likewise be easy prey, lacking the thick cuticle and ant appeasing nectar 
glands found in other lycaenids (Atsatt 1981, Cottrell 1984). Also, there 
is no evidence that liptenines produce pheromones that appease or repel 
ants. The principal protection for liptenine larvae appears to be their 
long setae. Once, I observed small red house ants (genus undetermined) 
enter the L. aspidos larva jar and take up residence in the wood. 
Normally quite aggressive, the ants left the larvae alone after encoun- 
tering the setae. As larvae spend much time in the crevasses in the bark, 
the setae apparently form a protective umbrella that prevents ants from 
getting close enough to bite them. The use of long setae for protection 
against ants has been suggested by Jackson (1937), Cottrell (1984), and 
DeVries (1988). 

Other liptenine larvae seek protection among ants while not providing 
any direct benefit to them, such as honeydew secretion. Genera with 
this behavior are Aethiopana, Hewitsonia, Tetatoneura (Farquharson 
1921, Jackson 1937, my own observations in Zaire) and Epitola (Jackson 
1937), although in the case of the latter my observation of oviposition 
far from the ant runs may suggest both purely defensive and oppor- 
tunistic behavior for that genus. 

Aethiopana honorius larvae evidently avoid predation by inhabiting 
ant runs, which are hostile environments for many potential predators. 
Other Lepidoptera larvae without long hairs and other insects that I 
placed in the ant runs were immediately attacked. Although the ants 
do not normally bother honorius larvae, they will attack if excited and 
will bite the larvae if they can get between or under their setae, as 
related earlier. Farquharson (1921) described a similar experience in 
which larvae in a jar were attacked by ants. Larvae of A. honorius are 
protected by their long setae and by moving about the ant runs on their 
long legs at a speed equal to that of the ants themselves. When the ants 
become excited, the larvae beat a hasty retreat, flicking the last ab- 
dominal segments to shake off any attacking ants that may have become 
lodged among their setae. Similar behavior occurs among Hewitsonia 
larvae in Zaire (Callaghan unpublished), suggesting an exception to the 
assertion by Cottrell (1984) and Atsatt (1981) that lycaenid larvae lack 
a “thrashing reflex’ found in other lepidopterous larvae, presumably 
because rapid movements incite ant aggression. The rapid movement 
of A. honorius and Hewitsonia transports them out of danger by not 
allowing excited ants the chance to gang up on them; the flicking 
removes ants entangled in the setae. Such behavior also works because 
the larvae remain in the runs where ants are not densely packed, 
category L2 of Cottrell (1984). The larvae will not enter the ants’ carton 
nests. I tried pushing a Hewitsonia larva towards the nest, but it kept 


214 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


trying to move in the opposite direction. There is nothing in the behavior 
of larvae of either species that would suggest that they use ant appeasing 
pheromones. 

Finally, in addition to living in the ant runs, larvae with long setae 
gain additional protection from vertebrate predation by mimicking 
larvae of moths of the family Lymantriidae, which also inhabit the 
same ant runs and have tufts of stinging dorsal spines. 


ACKNOWLEDGMENTS 


I thank Robert Robbins of the Smithsonian Institution, Phillip Ackery of the Natural 
History Museum, Stephen Henning, and an anonymous reviewer for their helpful com- 
ments on the manuscript. The immature material has been deposited in the U.S. National 
Museum of Natural History. A detailed description of eggs and larvae will appear in a 
future paper. 


LITERATURE CITED 


ATSATT, PETER R. 1981. Lycaenid butterflies and ants: Selection for enemy free space. 
Amer. Nat. 118:638-654. 

CALLAGHAN, C. J. 1982 (1983). A study of isolating mechanisms among Neotropical 
butterflies of the subfamily Riodininae. J. Res. Lepid. 21:159-176. 

CLarK, C. C. & C. G. C. Dickson. 1971. Life histories of South African lycaenid 
butterflies. Purnell, New York. 16 + 272 pp. 

COTTRELL, C. B. 1984. Aphytophagy in butterflies. Zool. J. Linn. Soc. 22:1—57. 

DEVRIES, P. 1986. Hostplant records and natural history notes on Costa Rican butterflies 
(Papilionidae, Pieridae and Nymphalidae). J. Res. Lepid. 24:290-333. 

1988. Use of epiphylls as larval hostplants by Sarota gyas. J. Nat. Hist. 22:1447— 
1450. 

FARQUHARSON, C. O. 1921. Five years’ observations (1914-1918) on the bionomics of 
southern Nigerian insects, chiefly directed to the investigation of lycaenid life his- 
tories and to the relation of Lycaenidae, Diptera and other insects to ants. Trans. 
Entomol. Soc. London 3:319-381. 

JACKSON, T. H. E. 1987. The early stages of some African Lycaenidae (Lepidoptera) 
with an account of the larval habits. Trans. Entomol. Soc. London 86:201-238. 
LAMBORN, W. A. 1913.: On the relationship between certain West African insects, 
especially ants, Lycaenidae and Homoptera. Trans. Entomol. Soc. London 61:436- 

OY, 

SINGER, M. C., P. R. EHRLICH & L. E. GILBERT. 1971. Butterfly feeding on a lycopsid. 

Science 172:1341-1342. 


Received for publication 12 June 1989; revised and accepted 26 October 1991. 


Journal of the Lepidopterists’ Society 
46(3), 1992, 215-219 


POTENTIAL FOR THE NON-INVASIVE STUDY OF INSECT 
HEART FUNCTION WITH A DOPPLER CRYSTAL SYSTEM 


JON D. TURNER 
208 Westmoreland Avenue, Huntsville, Alabama 35801 


ABSTRACT. This report describes a new technique for the non-invasive physiologic 
study of butterfly and moth circulatory systems. The technique employs a miniature 
Doppler crystal for in vivo assessment of circulatory function and provides information 
not obtained by previously reported methods. 


Additional key words: blood flow, velocimeter, dorsal vessel, aorta, cardiac output. 


The insect circulatory system has been studied extensively with re- 
views of structure and function (Davey 1964, Jones 1978, 1977, McCann 
1970, Wigglesworth 1971). Although limited visual and photoelectric 
recordings of the insect heartbeat have been reported (Jones 19738, 
Tachibana & Nagashima 1957), most studies of in vivo function have 
required invasive electrical techniques (Miller 1973). Advances in min- 
iature Doppler technology in the study of the human cardiovascular 
system can be applied to the study of insects. This report describes a 
new technique for the non-invasive evaluation of butterfly and moth 
circulatory systems. 


METHODS 


A 20 MHz Doppler catheter Model DC-201 (Millar Instruments, Inc., 
6001-A Gulf Freeway, Houston, Texas 77223-0227) was used for trans- 
mitting and receiving acoustic signals. This catheter consists of a 20 
MHz circular ceramic crystal attached to the tip of a USCI Rentrop 
Reperfusion Catheter, 135 cm length tapering to 1 mm diameter tip 
(Millar Instruments). This catheter is used for intravascular measure- 
ment of blood flow in the human coronary artery (Sibley et al. 1986). 
Two wires attached to the crystal traverse the lining of the catheter 
and are connected to a range-gated 20 MHz pulsed Doppler velocimeter 
(Millar Instruments) that detects the Doppler shift of the echoes from 
the blood cells. The velocimeter transmits pulses of 20 MHz ultrasound 
from the crystal at the catheter tip into the dorsal vessel. During the 
pause between pulses the crystal serves as a sensor and receives echoes 
from the blood cells. The distance between the crystal and the echo 
source may be varied from 1 to 10 mm by the range control on the 
velocimeter. The polarity of the phase shift (plus or minus 90 degrees) 
is determined by the direction of the motion either toward or away 
from the Doppler crystal. The pulsed Doppler velocimeter provides an 
audio signal with phasic output display. This phasic velocity signal from 
the pulsed Doppler velocimeter is recorded on a strip chart recorder 


| 
| 
| 
| 
| 
| 


216 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


(Meda Sonics Model R 12 B, 340 Pioneer Way, Box 7268, Mountain 
View, California 94039). The strip chart recording displays not only 
the rate but the wave form of the Doppler shift frequency change at 
a specific distance from the transducer. Since the Doppler shift fre- 
quency is directly proportional to the velocity of the flow, the peak 
velocity can be measured at the peak of the wave form above the zero 
line (Hartley & Cole 1974). Audio recording was accomplished with a 
standard cassette tape recorder. The velocimeter was calibrated follow- 
ing the steps of the manufacturer (Millar Instruments). 

The butterfly or moth was placed on a standard mounting board 
where it was carefully positioned with wings spread and held down by 
paper strips. The body rested in the open midline groove but was not 
penetrated by pins. The tip of the Doppler catheter was then held over 
the dorsal midline upper abdomen or thorax lightly touching the insect. 
Conduction of the Doppler signal was enhanced by the use of a small 
amount of ultrasound transmission gel (Aquasonic 100—Parker Labo- 
ratories, Inc., Orange, New Jersey 07050) between the tip of the catheter 
and the body of the insect. The range control on the Doppler velocimeter 
was adjusted from 1 to 10 mm for sampling. Audio volume (loud, high 
signal to noise ratio) was used to guide the optimal sampling depth and 
angle of the catheter tip over the dorsal vessel with respect to the body 
of the insect. 


RESULTS 


Audible signals were recorded from the following species: Epargyreus 
clarus Cramer (Hesperiidae), Limenitis arthemis (Drury) (Nymphal- 
idae), Danaus plexippus Linnaeus (Nymphalidae) over the thorax (aorta 
and/or pulsatile organ); and the moth Catocala judith Strecker (Noc- 
tuidae) over the upper abdomen (heart). At room temperature (22°C) 
heart rhythm was irregular in all species. The rate was variable at rest 
from as low as 20 to 30 per minute in C. judith (Fig. 1), to over 210 
per minute in E. clarus (Fig. 2). The maximum peak velocity recorded 
was 2.0 cm/sec in E. clarus, 1.3 cm/sec in L. arthemis, and 1.5 cm/sec 
in C. judith. Because heart rate is variable, variations in peak velocity 
are expected. This variation was apparent at rapid rates (shortened 
diastole may impair adequate filling), but also occurred even at slower 
rates when filling should not be impaired. Reverse flow was noted by 
the negative deflection (below baseline) of the phasic wave form, gen- 
erally following the positive flow wave (Fig. 2). 


DISCUSSION 


This report describes a new technique for the study of the butterfly 
and moth circulatory system. The technique potentially could be ap- 


VOLUME 46, NUMBER 3 217 


| 
a 

Fics. 1 and 2. 1, Doppler recording of C. judith heart activity. The maximum flow 
velocity for each heartbeat is the peak of the vertical distance (cm/sec) from the zero 
line. The paper speed is 25 mm/sec on the horizontal scale. The peak flow velocity on 
this recording is 1.2 m/sec; 2, Doppler recording of E. clarus heart activity. The rate is 
rapid and the rhythm is irregular with variable peak velocities (em/sec on the vertical 


scale). The deflections below the zero baseline indicate reverse flow. Paper speed on the 
horizontal scale is 25 mm/sec. 


plied to other insects whose dorsal vessel is of sufficient size (minimal 
diameter unknown) to be within the resolution of the Doppler crystal 
frequency. The non-invasive feature of this technique minimizes trau- 
ma to the insect. Thus, multiple observations over time in the same 
subject may be performed. This technique avoids the artifactual changes 
that may be introduced with invasive in vivo techniques. Furthermore, 
the Doppler technique provides in vivo flow information not obtained 
by any other previously described method of study of the insect cir- 
culatory system. Using this technique, heart rate and flow parameters 
in the same subject could be obtained under varying conditions, or the 
rate and flow variables in different subjects could be compared under 
similar conditions. In addition, the flow per unit time can be calculated 
as the sum of the areas under the curves per unit of time (Cole & 
Hartley 1977, Perez 1987). Thus, if the radius of the vessel is known 
at the sample location, cardiac output (ml/min) can be calculated (Haites 
et al. 1985). Calculation of the forward cardiac output would require 
subtraction of the reverse flow per unit time. 


| 
| 
1 
| 


218 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Reviews of electrical and optical methods for recording the insect 
heartbeat are reported elsewhere (Jones 1977, Miller 1973). The variable 
heart rates of the Lepidoptera in this study are similar to those previously 
reported, but audio recordings have not been described. 

Earlier studies of dorsal vessel muscle contraction reviewed elsewhere 
(Beard 1958, Miller 1985) have involved visual and invasive mechanical 
devices to study the peristaltic wave contraction. There are no previous 
studies of blood flow velocity in the dorsal vessel. This technique pro- 
vides such information non-invasively. 

Heartbeat reversal in which peristaltic waves of contraction are di- 
rected from front to back (reverse or retrograde peristalsis) are well 
described in insects since the first visual observation by Malpighia in 
1669 (Gerould 1929, Davis 1961). This phenomenon has been attributed 
to changes in automaticity in cardiac pacemakers anteriorly and pos- 
teriorly, spontaneously or secondary to various stimuli (Davis 1961). 
Characteristically, anterograde (traveling anteriorly) peristaltic con- 
tractions occur for a period of beats then reverse or retrograde peristalsis 
occurs. This heartbeat reversal is to be distinguished from the reverse 
or backward blood flow pattern seen in the present study, usually im- 
mediately following the forward flow. This brief reverse flow is likely 
secondary to the characteristics of the open-end circulatory system. The 
hemolymph of insects is aspirated into the heart during diastole under 
a negative pressure (Wigglesworth 1971). Since the dorsal vessel is open- 
ended and without intraluminal valve structures to prevent back flow, 
some reverse flow is expected. Elastic recoil of the vessel wall and 
supporting structures may accentuate this effect (increased vascular 
compliance). However, this explanation cannot be proved without si- 
multaneous Doppler flow pattern and electrical or visual observation 
of the peristaltic wave form. 7 

The disadvantages of this technique imoluiele the immobilization of 
the insect, thus limiting conditions of the physiologic assessment. In 
addition, electrical artifact on the chart recorder at times limited the 
ability to record on paper the Doppler signal though it was easily 
audible. The etiology of the artifact is uncertain but likely is secondary 
to limitations of the strip chart recorder. A strip chart recorder with 
bioelectric amplifiers may reduce or eliminate this problem. Noise 
artifact may be produced by movement of the catheter tip on the insect 
body but this was not a significant problem. Occasional wing muscle 
contraction introduced noise artifact, most prominent in E. clarus, but 
this was usually brief and did not interfere with recordings. Gut move- 
ment did not produce noticeable noise artifact. Auditory artifact from 
electrical interference and its elimination from the velocimeter is de- 
tailed by the manufacturer (Millar Instruments). There was some dif- 


VOLUME 46, NUMBER 3 7 219 


ficulty in holding and positioning the catheter tip, especially for pro- 
longed measurements. Measured flow rates may be underestimated by 
this technique with improper angulation between the transducer crystal 
and the vessel flow (Perez 1987). 

Refinements and improvements in instrumentation specifically di- 
rected toward the study of the insect circulatory system should reduce 
these drawbacks. This technique offers an important new method for 
the non-invasive in vivo physiologic assessment of the butterfly and 
moth circulatory systems, and potentially other insects. 


ACKNOWLEDGMENTS 


I wish to thank Thomas Emmel for his review of the manuscript. I thank Larry Dean, 
David Sibley, and Mike Carter for their assistance in obtaining the equipment. Special 
thanks to Lyn Quillin for her assistance in preparation of the manuscript. 


LITERATURE CITED 


BEARD, R. L. 1953. Circulation, pp. 232-272. In Roeder, K. (ed.), Insect physiology. 
John Wiley, New York. 

COLE, J. S. & C. J. HARTLEY. 1977. The pulsed Doppler coronary catheter. Circulation 
06:18-25. 

Davey, K. G. 1964. The control of visceral muscles in insects. Adv. Insect Physiol. 2: 
291-225. 

Davis, C. C. 1961. Periodic reversal of heartbeat in the prolarva of a gyrinid. J. Ins. 
Physiol. 7:1-4. 

GEROULD, J. H. 1929. History of the discovery of periodic reversal of heartbeat in 
insects. Biol. Bull. 56:215-225. 

HAITES, N. E., F. M. MCLENNAN, D. H. R. MORWAT & J. M. RAWLES. 1985. Assessment 
of cardiac output by the Doppler ultrasound technique alone. Brit. Heart J. 54:68- 
WER 

HARTLEY, C. J. & J.S. COLE. 1974. An ultrasonic pulsed Doppler system for measuring 
blood flow in small vessels. J. Appl. Physiol. 37:626-629. 

JONEs, J. C. 1973. Factors affecting heart rates in insects, pp. 119-167. In Rockstein, 
M. (ed.), The physiology of Insecta. Vol. 5. Academic Press, New York. 

1977. The circulatory system of insects. Charles Thomas, Springfield. 234 pp. 

McCann, F. V. 1970. Physiology of insect hearts. Ann. Rev. Entomol. 15:173-184. 

MILLER, T. A. 1973. Electrophysiology of the insect heart, pp. 169-200. In Rockstein, 
M. (ed.), The physiology of Insecta. Vol. 5. Academic Press, New York. 

1985. Structure and physiology of the circulatory system, pp. 289-353. In Kerkut, 
G. & L. Gilbert (eds.), Comprehensive insect physiology, biochemistry and phar- 
macology. Pergamon Press, Oxford. 

PEREZ, J. E. 1987. Doppler echocardiography. McGraw Hill, St. Louis. 258 pp. 

SIBLEY, D. H., H. D. MILLAR, C. J. HARTLEY & P. L. WHITLOW. 1986. Subselective 
measurement of coronary blood flow velocity using a steerable Doppler catheter. J. 
Am. Coll. Cardiol. 8:1332-1340. 

TACHIBANA, K. & C. NAGASHIMA. 1957. Photoelectric recordings of heartbeat in peripla- 
neta. Jap. J. Appl. Entomol. Zool. 1:155-158. 

WIGGLESWORTH, V. B. 1971. The principles of insect physiology. Chapman and Hill, 
London. 475 pp. 


Received for publication 18 November 1991; revised and accepted 10 May 1992. 


| 
| 
| 
| 


Journal of the Lepidopterists’ Society 
46(3), 1992, 220-232 


TWO NEW SPECIES OF MOTHS 
(NOCTUIDAE: ACRONICTINAE, CUCULLIINAE) 
FROM MIDLAND UNITED STATES 


CHARLES V. COVELL JR. 
Department of Biology, University of Louisville, Louisville, Kentucky 40292 


AND 


ERIC H. METZLER 
Ohio Department of Natural Resources, 1952 Belcher Drive, Columbus, Ohio 43224 


ABSTRACT. Two new species of noctuid moths are described and illustrated. Ac- 
ronicta heitzmani, new species, in the subfamily Acronictinae, is known from Missouri, 
Arkansas, Illinois and Ohio. Lithophane joannis, new species, in the subfamily Cucul- 
liinae, is known from Ohio, Kentucky, and Michigan. Both species are compared with 
morphologically similar congeners. 


Additional key words: Acronicta heitzmani, Lithophane joannis, faunal survey. 


Since their origins, the Ohio Lepidopterists and the Society of Ken- 
tucky Lepidopterists have promoted regional surveys of the Lepidoptera 
fauna of midland United States. These efforts have resulted in numerous 
new records and range extensions and in the discovery of several new 
taxa. The purpose of this paper is to describe and illustrate two recently 
discovered species of the family Noctuidae. Both apparently are re- 
stricted to midland United States. Acronicta heitzmani, new species, 
is known from Missouri, Arkansas, Illinois and Ohio. Lithophane joan- 
nis, new species, is known from Ohio, Kentucky, and Michigan. Both 
species are morphologically distinct from, and sympatric with, con- 
geners. 

In 1964, J. R. Heitzman collected a series of an unusual Acronicta 
species in Missouri. The specimens superficially resembled A. fragilis 
(Guenée) which was not recorded from Missouri. In 1967, the first 
author collected a specimen of the same species in Kentucky; the second 
author took the first Ohio specimen in 1975. The specimens were de- 
termined as a possibly undescribed species near A. fragilis by the late 
E. L. Todd of the Systematic Entomology Laboratory, U.S. Department 
of Agriculture. In 1986 J. D. Hooper collected typical A. fragilis to- 
gether with the new species in Shawnee State Forest, Scioto Co., Ohio; 
more recently, both were collected together at Tunnel Ridge, Red River 
Gorge, Powell Co., Kentucky, by L. D. Gibson. Over the years, collec- 
tions of this species have resulted in a study series of 92 specimens from 
5 states. Characteristics that distinguish this species are remarkably 
constant throughout its range. We therefore describe this insect as a 
new species. 


VOLUME 46, NUMBER 3 221 


The new species of Lithophane was collected in Ohio in 1975 by the 
second author, who recognized it as an undescribed species on the basis 
of male genitalic characters. More specimens were recorded from Ohio 
and Kentucky in the 1980’s. In 1990 M. C. Nielsen took two specimens 
in Lenawee Co., Michigan. We initially assumed that this species had 
remained undescribed because of its close resemblance to “‘ferralis” 
phases of Lithophane petulca Grote and L. hemina Grote; however, 
only two specimens that predate 1975 were located in any collection. 

No specimens of either of the new species were found in the American 
Museum of Natural History, Carnegie Museum of Natural History, 
Canadian National Collection, Field Museum of Natural History, Illi- 
nois Natural History Survey, Ohio State University collection of insects, 
Michigan State University Department of Entomology, or University 
of Michigan. 


Acronicta heitzmani Covell and Metzler, 
new species 


(Pigs. 1, 2, 7, & ®) 


Diagnosis. Acronicta heitzmani is similar to A. fragilis in forewing 
pattern (see Figs. 1-4), but it is slightly smaller—individuals range 1.0- 
1.5 mm shorter in forewing length. Black areas of the forewing in A. 
fragilis are replaced by olive gray in A. heitzmani, giving it a more 
uniform olive gray ground color. The scaling between the double an- 
temedial and postmedial lines and in the suborbicular spot are gray in 
A. heitzmani rather than white as in A. fragilis. The hindwing is gray 
in A. heitzmani, not white with gray shading as in A. fragilis. The 
male valvae are slightly longer in relation to their width in A. heitzmani 
(see Figs. 6 and 7). 


Description (Figs. 1 and 2). Head with frons usually more outwardly bulging than in 
A. fragilis. Vestiture of body similar to A. fragilis, but abdomen darker grayish. Forewing 
length 12.0-14.5 mm (n = 67) in males, 12.5-15.0 mm (n = 25) in females. Forewing 
above olive gray with black lines and spots contrasting less than in A. fragilis, which is 
black and whitish; lower half of postmedial line less deeply incurved than in A. fragilis. 
Filling of postmedial line, subterminal shade, and terminal line whitish. Fringe checkered 
olive-gray and white. Hindwing above dull gray; discal dot and median line faintly 
expressed. Terminal line broken, thin, blackish, with fringe as in forewing. Both wings 
shiny gray below, forewing darker. Lines of upperside faintly repeated beneath, darkest 
at costa; terminal lines of fine black dots. Color and pattern similar in both sexes and 
uniform among specimens studied. 

Male genitalia (Fig. 7). Similar to that of A. fragilis (Fig. 6), but valva longer in relation 
to width, and not narrowing noticeably beyond valvula. Ampulla wider and shorter than 
that of A. fragilis. Aedeagus much smaller—nearly half the size of that in A. fragilis. 

Female genitalia (Fig. 8). No consistent differences between those of A. heitzmani and 
A. fragilis are apparent. As with adults in general, the genitalia of A. heitzmani are 
smaller than those of A. fragilis. 

Types. Holotype, male: Missouri, Benton County, Harry S. Truman State Park, near 
Warsaw, 24 July 1965, at blacklight, J. R. Heitzman. Paratypes, 66 66 and 25 22, as follows: 


222 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Fics. 1-5. Acronicta and Lithophane species. 1, Acronicia heitzmani, holotype male. 
2, Acronicta heitzmani, paratype female, Boone Co., Kentucky, 18 May 1980, L. D. 
Gibson. 3, Acronicta fragilis, male, Harlan Co., Kentucky, 14 July 1979, C. V. Covell Jr. 
4, Acronicta fragilis, female, Powell Co., Kentucky, 21 May 1988, C. V. Covell Jr. 5, 
Lithophane joannis, holotype male. 


ARKANSAS: Madison Co.: Blue Springs State Park, east of Springdale, 15 April 1967 (1 
6), R. L. Heitzman. Washington Co.: Devil’s Den State Park, 22 July 1967 (1 4, 19), R. 
W. Hodges. MISSOURI: Benton Co.: same locality as holotype, 26 July 1964 (3 é¢), 7 
May 1965 (1 9), 24 July 1965 (1 6), 8 August 1965 (1 é), 7 August 1966 (2 66), 27 July 
1967 (2 86, 1 2), 15 May 1969 (1 8), 7 May 1970 (1 4, 3 92), 5 August 1971 (1 3), all R. L. 
Heitzman. Boone Co.: Ashland Wildlife Area, deciduous forest, 12 April 1977 (1 3), 14 
April 1977 (1 8), 21 April 1977 (2 68), all R. L. Heitzman. Grundy Co.: Crowder State 
Park, marsh and deciduous forest, near Trenton, 21 July 1979 (1 4), 24 May 1980 (1 9), 
R. L. Heitzman. Jefferson Co.: Victoria Glade, 4 km (2.5 miles) SE Hillsboro, 24 April 
1982 (4 68), George Balogh. Laclede Co.: 3 km (2 miles) SE Stoutville, 2 August 1975 (4 


VOLUME 46, NUMBER 3 . pss 


Fic. 6. Acronicta fragilis. Male genitalia left valve. Slide C.V.C Jr. 1186. Bell Co., 
Kentucky, 3 May 1974, Carl C. Cornett. Scale bar = 1 mm. 


66, 1 2), 10 April 1976 (2 48), 31 July 1976 (6 46, 2 92), R. L. Heitzman. Ste. Genevieve 
Co.: Hawn State Park, 10 April 1981 (1 4), 27 July 1984 (1 4), T. C. Macrae. ILLINOIS: 
McDunnough Co.: Macomb, 22 April 1985 (1 8), Y. Sedman. KENTUCKY: Boone Co:: 
Big Bone Lick State Park, 2 May 1979 (3 44, 3 22), 19 May 1979 (1 9), 5 May 1980 (1 4, 
1 2), 18 May 1980 (1 4, 5 9g), L. D. Gibson; Camp Earnst, 17 August 1979 (1 4), L. D. 
Gibson. Jefferson Co.: Valley Station, 3 May 1987 (1 4), B. S. Nichols. Meade Co.: Fort 
Knox, 9 August 1975 (1 4), S. Sholz; Otter Creek Park, 10 May 1987 (1 2), B. S. Nichols. 
Oldham Co.: Horner Wildlife Sanctuary, 14 August 1967 (1 2), C. V. Covell Jr. Powell 
Co.: Tunnel Ridge, 14 May 1988 (1 4), 3 May 1991 (1 4), L. D. Gibson. OHIO: Adams 
Co.: Green Township, Waggoner Riffle Rd. at Black Run Rd., 1 August 1981 (2 48), E. 
H. Metzler. Scioto Co.: Shawnee State Forest, clearcut on state forest Rt. 2, ca. 0.6 mile 
east of state forest road 13, 16 July 1986 (4 48); clearcut 1 mile south of Pond Run Tower, 
18 July 1986 (8 64), 20 August 1986 (1 8), J. D. Hooper. Vinton Co.: Richland Township, 
Section 24, 1 August 1975 (1 4), 30 July 1976 (1 6), 28 May 1978 (1 9), 24 May 1981 (1 
6, 1 2), and 15 May 1982 (1 2), E. H. Metzler. 

Disposition of types. Holotype and paratypes in the National Museum of Natural 
History, Washington, D.C.; paratypes at American Museum of Natural History, New 
York; California Academy of Sciences, San Francisco, California; Canadian National 
Collection, Ottawa, Ontario; Carnegie Museum of Natural History, Pittsburgh, Pennsyl- 
vania; Field Museum of Natural History, Chicago, Illinois; Florida State Collection of 
Arthropods, Gainesville, Florida; Los Angeles County Museum of Natural History, Los 
Angeles, California; Museum of Comparative Zoology, Harvard University, Cambridge, 
Massachusetts; The Natural History Museum, London, England; University of Louisville, 
Louisville, Kentucky; and private collections of George J. Balogh, Portage, Michigan; 
Loran D. Gibson, Florence, Kentucky; J. Richard Heitzman, Independence, Missouri; 
Jeffrey D. Hooper, Uniontown, Ohio; Eric H. Metzler, Columbus, Ohio; Barry S. Nichols, 
Louisville, Kentucky; and Yale Sedman, Macomb, Illinois. 

Type locality. Described by J. R. Heitzman (pers. comm.) as oak-hickory forest inter- 
spersed with cedar glades. Understory trees, shrubs, and vines include Bumelia (Sapo- 
taceae), Celtis (Ulmaceae), Cercis (Fabaceae), Crataegus (Rosaceae), Gleditsia (Faba- 
ceae), Gymnocladus (Fabaceae), Prunus (Rosaceae), Viburnum (Caprifoliaceae), 
Sassafras (Lauraceae), Zanthoxylum (Rutaceae), Ceanothus (Rhamnaceae), Ribes (Sax- 
ifragaceae), Rhus (Anacardiaceae), Vaccinium (Ericaceae), Aristolochia (Aristolochi- 
aceae), Smilax (Liliaceae), and Vitis (Vitaceae). Elevation is approximately 260 meters. 

Immature stages. Unknown. One female produced 3 ova in captivity but the larvae 
refused to eat alder, Alnus serrulata (Ait.) Willd. (Betulaceae), and river birch, Betula 
nigra L. (Betulaceae). 


224 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


SS 
~ 

SS = TS WSs : 
3 — SSSs, 


oS, EE see 


Fic. 7. Male genitalia of Acronicta heitzmani. a) Genitalia with aedeagus removed; 
b) Aedeagus. Slide C.V.C.Jr. 1172. Paratype, Adams Co., Ohio, 1 August 1981, E. H. 
Metzler. Scale bar = 1 mm. 


225 


VOLUME 46, NUMBER 3 


NA 


i saat ee 7 


Fic. 8. Female genitalia of Acronicta heitzmani. Slide C.V.C.Jr. 1185. Paratype, 
Oldham Co., Kentucky, 14 August 1967, C. V. Covell Jr. Scale bar = 1 mm. 


Geographical distribution. Southeastern Ohio to Illinois, Missouri, and northern Ar- 


kansas (Fig. 9). 
Flight period. Two broods, April through early June, and mid-July to late August. 
Discussion. The known range of Acronicta fragilis extends from 
Newfoundland to Florida, west across Canada, and south to Kentucky 
(Covell 1984:85). The known range of A. heitzmani lies within the 


226 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Scale of Miles 
0 100 200 


Fic. 9. Geographical range of Acronicta heitzmani in the United States. 


southern part of the range of A. fragilis, west of the Appalachian 
Mountains. It also extends farther to the southwest than A. fragilis, 
reaching northern Arkansas. Heitzman (pers. comm.) has not found A. 
fragilis in Missouri or Arkansas. 

Etymology. The authors take pleasure in naming this species in inthe 
of J. Richard Heitzman, who collected the first known specimens and 
who has make many significant contributions to North American lep- 
idopterology. 


VOLUME 46, NUMBER 3 | . 207 


Lithophane joannis Metzler and Covell, 
new species 


(Figs. 5, 10, 11, 12) 


Diagnosis. Lithophane joannis is similar to “‘ferrealis’’ phases of L. 
hemina and L. petulca, and the typical form of L. oriunda Grote 
(Noctuidae). It can be separated from L. oriunda by its darker black- 
brown color and less contrasting pale outlines of the orbicular and 
reniform spots, and from L. hemina and L. petulca by the more evenly 
excurved terminal line. The costal area is not as pale as the “‘lignicosta” 
form of L. hemina, and lacks the bluish cast of the “‘ferrealis’ form of 
L. petulca (Franclemont 1942). The forewing has neither contrastingly 
pale scales outlining the claviform spot nor very dark scales in medial 
area of the fold often found on L. hemina form “‘lignicosta.”’ 


Description (Fig. 5). Dorsal thorax dark brown with pale mid-thoracic crest between 
collar and abdomen. Legs, palpi, head, and collar pale. Front crossed laterally by a black 
line. Abdomen brown with five obscure dorsal tufts. Forewing length 15.0-17.0 (n = 82) 
in males and females. Forewing above umber and black-brown. Pale reddish brown costa 
continues to basal dash; the latter defined by pale. Orbicular spot pale, flattened laterally. 
Reniform spot dark with pale outline, often smudged with pale scales. Orbicular and 
reniform spots with filling slightly paler than dark ground color. Antemedial line obscure, 
single, deeply zigzagged basally on veins and distally between veins, doubled through 
the pale costa; marked with three pale dots at the radial, medial, cubital, and anal veins. 
Similar postmedial line zigzags distally on veins, basally between veins; marked by six 
obscure pale dots at the radial, medial, cubital, and anal veins. Medial line marked only 
by a dark shade at the costa. Two terminal lines: one pale, excurved, nearly parallel to 
the outer margin; the other fine, black; base of fringes pale. Subterminal area darker on 
paler specimens. Hindwing above dark fuscous with darker veins; a dark discal lunule 
and dark terminal line. Fringe tips pale. Forewing below uniformly dark fuscous with 
costa and terminal area slightly paler. Costa just before terminal area marked with four 
dark and three pale shades; reniform spot of dark shade. Hindwing below paler than 
forewing, dusted with dark scales; marked by dark postmedial line, dark discal spot, and 
dark terminal line. Fringes pale. Males and females similar in color and pattern. Spring 
specimens range from black-brown to faded umber brown, never pale. 

Male genitalia (Fig. 10). Similar to L. oriunda, L. hemina, and L. petulca, but the 
base of the valve with a prominent dorsal lobe not found in those species. At the narrowest 
point, the central ridge of the juxta is at least 4% wider than in the other three species. 

Female genitalia (Fig. 11). The ductus bursae is 45% shorter than that in L. hemina 
and L. petulca. 

Types. Holotype male: Ohio, Greene County, John Bryan State Park, 30 October 1989, 
E. H. Metzler. Paratypes, 40 46 and 39 99, as tollows: KENTUCKY: Boone Co: Big Bone 
Lick State Park, 20 February 1986 (1 4, 2 22), 25 March 1986 (1 6, 1 2), both D. J. Wright, 
20 March 1979 (1 2), 23 March 1980 (1 2), 25 March 1986 (2 99), all L. D. Gibson; Boone 
Cliffs Nature Preserve, 17 March 1982 (8 8é, 2 92), 24 March 1982 (1 2), both L. D. Gibson. 
Carroll Co: General Butler State Park, 29 March 1980 (2 34, 3 22), L. D. Gibson. Jefferson 
Co: Camp Cedar Ridge, 15 February 1981 (1 2), R. A. Henderson; Louisville, 9 March 
1977 (1 4, 2 92), C. V. Covell Jr. Menifee Co: north of Slade Road, vicinity Red River, 
Edward Branch, elev. 900 ft, 3-8 March 1980 (1 8), J. S. Nordin. Meade Co: Otter Creek 
Park, 17 March 1979 (1 2), R. A. Henderson. MICHIGAN: Lenawee Co: T8S, R2E, Section 
31, 21 March 1990 (1 4, 1 2), M. C. Nielsen. OHIO: Adams Co: 1 mi [1.3 km] SE Lynx, 
P. Knoop Property, 20 March 1991 (1 ), L. D. Gibson. Delaware Co: Alum Creek State 
Park, 15 March 1977 (1 8), E. H. Metzler. Fairfield Co: Wahkeena Nature Preserve, Berne 
Township, Section 4, 11 March 1977 (1 4), E. H. Metzler (EHM slide no. 100). Franklin 


| 228 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


| 

| 

Fic. 10. Male genitalia of Lithophane joannis. a) Genitalia with aedeagus removed; 
b) Aedeagus. Slide E.H.M. 110. Paratype, Greene Co., Ohio, 10 March 1990, E. H. 
Metzler. Scale bar = 1 mm. 


VOLUME 46, NUMBER 3 | 229 


Fic. 11. Female genitalia of Lithophane joannis. Slide E.H.M. 111. Paratype, Fulton 
Co., Ohio, 10 March 1989, R. W. Rings. Scale bar = 1 mm. 


Co: Blendon Township, Hoover Dam, 22 February 1975 (1 2), E. H. Metzler; Jefferson 
Township, Gahanna Woods Nature Preserve, 19 March 1976 (1 8), E. H. Metzler. Fulton 
Co: German Township, Goll Woods, 11 March 1989 (1 ¢), R. W. Rings (EHM slide no. 
111). Greene Co: John Bryan State Park, 14 March 1989 (3 66) (EHM slide nos. 112, 113), 
16 April 1989 (2 22) (EHM slide nos. 114, 115), R. W. Rings, 30 October 1989 (2 99), 10 


230 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Scale of Miles 
100 200 300 


Fic. 12. Geographical range of Lithophane joannis in the United States. 


March 1990 (12 44, 5 2?) EHM slide nos. 110, 116), 16 April 1990 (1 2), 3 March 1992 (5 
43, 7 22), E. H. Metzler. Hamilton Co: Cincinnati, 9 March 1986 (1 2), 13 March 1986 (2 
43, 1 9), D. J. Wright. Lawrence Co: Lake Vesuvius, 10 October 1984 (1 4), R. W. Rings. 
Vinton Co: Richland Township, Section 24, 3 March 1979 (1 6), E. H. Metzler. Wayne 
Co: Wooster, 4 March 1970 (1 8), R. W. Rings. No county: Skinner collection [no date] 
(1 8). 
Disposition of types. Holotype and paratypes in the National Museum of Natural 
History, Washington, D.C.; paratypes in Academy of Natural Sciences, Philadelphia, 
Pennsylvania; American Museum of Natural History, New York, Canadian National 
Collection, Ottawa, Ontario; Carnegie Museum of Natural History, Pittsburgh, Pennsyl- 
vania; Florida State Collection of Arthropods, Gainesville, Florida; Los Angeles County 
Museum of Natural History, Los Angeles, California; Michigan State University, De- 


VOLUME 46, NUMBER 8 | | 231 


partment of Entomology, East Lansing, Michigan; Museum of Comparative Zoology, 
Harvard University, Cambridge, Massachusetts; The Natural History Museum, London, 
England; Ohio State University, Ohio Agricultural Research and Development Center, 
Wooster, Ohio; University of Louisville, Louisville, Kentucky; Ohio Lepidopterists’ col- 
lection, Ohio State University, Columbus, Ohio; and private collections of John G. Fran- 
clemont, Department of Entomology, Cornell University, Ithaca, New York; Loran D. 
Gibson, Florence, Kentucky; Eric. H. Metzler, Columbus, Ohio; Mogens C. Nielsen, 
Lansing, Michigan; and Donald J. Wright, Cincinnati, Ohio. 

Type locality. The type locality is a mature, second growth, mixed mesophytic hard- 
wood forest along a ridge trail overlooking the Little Miami River at the campground in 
John Bryan State Park. The exact location where the holotype was collected is 39°47'04’N, 
83°D1'57"W. 

Immature stages. Unknown. One female produced 17 ova in captivity but the larvae 
refused to eat a variety of woody plants that were offered. 

Geographical distribution. Southeast Michigan, Ohio, and north-central Kentucky (Fig. 
2) 

Flight period. October through April. 


Discussion. Lithophane joannis probably has gone undetected be- 
cause of its limited geographic range coupled with a dearth of collecting 
efforts for “winter moths’ as described by Newman (1945). Only two 
specimens that predate 1975 were located in any collection; most col- 
lections have no specimens. This species is abundant in the type locality, 
where, in March, the number of specimens collected at bait exceeds all 
other species of Lithophane combined. 

Etymology. The specific epithet joannis is the genitive case of the 
Latin word for John. John H. Newman, who introduced the second 
author to the study of Noctuidae, declined to be recognized with a 
patronym. Therefore, this species is named for the first word of the 
type locality—John Bryan State Park—which is also by intentional 
coincidence the first name of Mr. Newman. 


ACKNOWLEDGMENTS 


Publication of this paper is part of the Comprehensive Survey of Ohio Moths and 
Butterflies sponsored by The Ohio Lepidopterists and funded by the Ohio Department 
of Natural Resources (ODNR), Division of Wildlife. This paper also is part of the Kentucky 
Lepidoptera Survey. The ODNR, Division of Parks and Recreation, granted permission 
to collect at John Bryan State Park and Alum Creek State Park. The ODNR, Division of 
Natural Areas and Preserves, granted permission to collect at Gahanna Woods State Nature 
Preserve and Goll Woods State Nature Preserve. The Ohio Historical Society, Columbus, 
Ohio, granted permission to collect at Wahkeena State Nature Preserve. The Carl Cornett 
Fund at the University of Louisville provided publication costs. John G. Franclemont 
and Robert W. Poole made helpful suggestions pertinent to the description of L. joannis. 
Robert W. Poole also provided photographs of the types of L. hemina and L. petulca for 
comparison. The drawings of the genitalia were skillfully prepared by Cynthia M. B. 
Darling, ODNR, Division of Wildlife. 

The following individuals provided access to specimens in the collections under their 
care: Donald Azuma, Academy of Natural Sciences, Philadelphia, Pennsylvania; Julian 
P. Donahue, Los Angeles County Museum of Natural History, Los Angeles, California; 
John G. Franclemont, Cornell University, Ithaca, New York; George L. Godfrey, Illinois 
Natural History Survey, Champaign, Illinois; J. Donald Lafontaine, Canadian National 


232 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Collection, Ottawa, Ontario, Canada; Mark F. O’Brien, University of Michigan, Ann 
Arbor, Michigan; Robert W. Poole, National Museum of Natural History, Washington, 
D.C.; Eric L. Quinter, American Museum of Natural History, New York; John E. Rawlins, 
Carnegie Museum of Natural History, Pittsburgh, Pennsylvania; Roy W. Rings, Ohio 
State University, Ohio Agricultural Research and Development Center, Wooster, Ohio; 
Frederick W. Stehr, Michigan State University, East Lansing, Michigan; Yale Sedman; 
Barry S. Nichols; Mogens C. Nielsen; J. Richard Heitzman; Roger L. Heitzman; Jeffrey 
D. Hooper; Loran D. Gibson; William F. Babcock; George J. Balogh; and Donald J. 
Wright. We thank Douglas C. Ferguson and Robert W. Poole for reviewing the manu- 
script. 


LITERATURE CITED 


COVELL, C. V. Jr. 1984. A field guide to the moths of eastern North America. Houghton 
Mifflin Co., Boston, Massachusetts. 496 pp. 

FRANCLEMONT, J. G. 1942. Notes on some Cuculliinae (Phalaenidae, Lepidoptera) II. 
Entomol. News 53:31-35, 63-66. 

NEWMAN, J. H. 1945. Midwinter collecting of Lepidoptera in Michigan. Entomol. News 
36:7-9. 


Received for publication 6 June 1992; revised and accepted 1 July 1992. 


GENERAL NOTES 


Journal of the Lepidopterists’ Society 
46(3), 1992, 233-234 


PARASITOID INDUCED MORTALITY IN THE EGGS OF THE 
ENDANGERED GIANT SWALLOWTAIL BUTTERFLY 
PAPILIO HOMERUS (PAPILIONIDAE) 


Additional key words: Jamaica, Encyrtidae, Eulophidae, life history. 


The giant swallowtail butterfly, Papilio homerus Fabricius, is confined to the Caribbean 
Island of Jamaica where it presently exists in two isolated and diminishing strongholds 
(Emmel & Garraway 1990). The numbers of Papilio homerus have been dwindling, and 
it now is listed in the IUCN Red Data Book as one of the four endangered swallowtail 
butterflies (Collins & Morris 1985). 

Important contributions to our knowledge on the plight of P. homerus come from the 
works of Walker (1945), Emmel and Garraway (1990), and unpublished manuscripts by 
J. Parnell and T. Turner. None of these works, however, examine in detail, factors that 
might be controlling population numbers (Emmel and Garraway 1990). This paper pre- 
sents the preliminary results of a survey investigating the importance of developmental 
mortality; here we examine the level of egg mortality due to parasitoids at a major 
population center. 

This study was conducted at Fishbrook (near the village of Millbank) in the parish of 
Portland. The area is mainly secondary forest; large portions have been cleared over 
several decades for shifting cultivation. Hernandia catalpaefolia Britton and Harris, 
(Hernandiaceae) was the only larval food plant verified during this study. This plant is 
locally common in the damp ravines of the mountains of the parishes of Portland and 
St. Thomas and is endemic to this part of Jamaica. Adams (1972) recorded this plant 
between 450 m and 640 m elevation, but we recorded it as low 150 m. 

One hundred and eight Hernandia trees were sampled. All leaves up to a height of 3 
m above the ground were examined individually, and the following data were recorded: 
number of eggs observed, number of eggs hatched, and number of eggs attacked by 
various mortality factors. Sampling was done once a month from July to October 1991. 
The transfer of eggs from the field to the laboratory allowed for further examination and 
ensured that eggs were not counted more than once. 

Females of P. homerus lay their eggs on the upper surfaces of the leaves. Most eggs 
or their remains persist for over one month, and it is quite easy to determine if a P. 
homerus egg has been attacked by parasitoids. Emergence holes of the parasitoids are 
small and round. Those of P. homerus larvae are larger and irregular in shape; occasionally 
the larva eat considerable portions of the chorion. Moreover, in parasitized eggs, larval 
exuviae and mummified larvae, pupae, or adults of the parasitoids were easily identified. 
Eggs without emergence holes were taken to the laboratory for study; examination under 
the microscope or hand lens revealed parasitoid ovipositional sites. All live material was 
allowed to develop. 

Three species of hymenopterans, one member of the genus Ooencyrtus (Encyrtidae) 
and two of the genus Chrysonotomyia (Eulophidae), emerged from the eggs of P. home- 
rus. Ooencyrtus sp. is undescribed and appears to be unlike any described species from 
the New World (Noyes pers. comm.). The genus Ooencyrtus is cosmopolitan; most species 
are polyphagous and are primarily parasitoids of the eggs of other insects, notably Het- 
eroptera and Lepidoptera. The Chrysonotomyia spp. have not been identified to species; 
however, members of the genus Chrysonotomyia generally are parasitic on the eggs and 
larvae of phytophagous insects, mainly leaf-mining and gall forming Diptera and also 
Lepidoptera on herbaceous plants. 

The parasitoids oviposited in the early stages of development of the P. homerus embryo 
while the contents of the egg were still fluid. Only once was the sclerotized remains of a 


234 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


TABLE 1. Mortality of P. homerus eggs caused by parasitoids at Fishbrook, July to 
October 1992. 


No. of % % % other 
Month eee: fers mae ee, 
July 258 9.3 Aces) Helle 
August 108 17.6 (8 Me 
September 63 19.0 76.2 4.8 
October 14 Wl 64.3 28.6 
Total 443 
Mean 12.6 76.9 10.8 


P. homerus larva discernible in the remains of a parasitized egg. The larvae of the 
parasitoids generally consumed the contents of the egg and between 10 and 18 adult 
parasitoids generally emerged. 

The parasitoids resulted in 76.5% (n = 443) egg mortality during the months July to 
October (Table 1). This is a significant portion of the 87.4% total egg mortality. The 
remaining 10.9% mortality was caused by fungus and a number of unidentified factors. 

While the true role of the egg parasitoids is far from resolved, the 76.5% egg mortality 
they caused in this case is significant for an animal! with extremely low densities. This 
suggests a very high efficiency in searching for P. homerus eggs or the possibility of 
alternate hosts that maintain the population of parasitoids at high levels. As pointed out 
by Parsons (1984), parasitoids breeding in a common alternate host may adversely affect 
the survival of a rare species. 

We thank the Jamaica Agricultural Research Programme for financial support, and J. 
S. Noyes and J. LaSalle of the Commonwealth Institute of Entomology for identifying 
the parasitoids. 


LITERATURE CITED 


ADAMS, C. D. 1972. Flowering plants of Jamaica. University of the West Indies, Jamaica. 
848 pp. 

Co.uins, N. M. & M. G. Morris. 1985. Threatened swallowtail butterflies of the world: 
The IUCN Red Data Book. IUCN, Cambridge: 401 pp. 

EMMEL, T. C. & E. GARRAWAY. 1990. Ecology and conservation biology of the homerus 
swallowtail in Jamaica (Lepidoptera: Papilionidae). Trop. Lepid. 1:63-76. 

PARSONS, M. J. 1984. ‘The biology and conservation of Ornithoptera alexandrea, pp. 
327-331. In Vane-Wright, R. I. & P. R. Ackery (eds.), The biology of butterflies, 
Academic Press, London. 

WALKER, D. J. R. 1945. Papilio homerus. Nat. Hist. Notes of Nat. Hist. Soc. of Jamaica 
1:161-163. 


ERIC GARRAWAY AND AUDETTE J. A. BAILEY, Department of Zoology, University of 
the West Indies, Mona, Kingston 7, Jamaica, W.I. 


Received for publication 22 January 1992; revised and accepted 1 June 1992. 


Journal of the Lepidopterists’ Society 
46(3), 1992, 235-238 


WORLD DISTRIBUTION OF THE VANESSA CARDUI 
GROUP (NYMPHALIDAE) 


Additional key words: biogeography, migration, dispersal, Vanessa kershawi. 


Vanessa cardui (Linnaeus) and V. kershawi (McCoy) together comprise the cardui 
group of the genus Vanessa (Field 1971). The two species are morphologically similar 
and are allopatric in distribution. Vanessa cardui is undoubtedly the most widespread 
butterfly in the world and is purportedly “cosmopolitan,” Vanessa kershawi is restricted 
to the Australian region. The purpose of this paper is to review and detail the distributions 
of these two species. The data for this review represent a variety of previously published 
sources too numerous to enumerate. 

North, Central, and South America. Vanessa cardui is found throughout the United 
States from sea level along the California coast up to 3960 m on Pike’s Peak in Colorado. 
It occurs sporadically across southern Canada from Newfoundland to British Columbia 
and rarely in northern Quebec (Fort Chimo), southeastern Northwest Territories (Baker 
Lake), and extreme southern Yukon (Carmacks). It is absent from Alaska, except in the 
extreme southeast (Chickamir River), and it does not occur above the Arctic Circle in 
the Western Hemisphere, except for one record from northern Greenland (Scott 1986). 
It is absent from all of the North American Arctic islands, including the Pribilofs and 
Aleutians. Vanessa cardui is found throughout Baja California and much of Mexico, 
especially the northern part (also Aguascalientes, Distrito Federal, Morelos, Vera Cruz, 
and Guerrero). In Central America it occurs in Guatemala (common in montane areas), 
Honduras, Costa Rica (rare in montane areas), and Panama (rare). It apparently is absent 
from most of South America; however, there are two records from high inter-Andean 
valleys in Ecuador (Scudder 1876, Brown & Heineman 1972). 

Along the American west coast, V. cardui has been collected on the Queen Charlotte 
Islands, Vancouver Island, throughout the California Channel Islands, and several islands 
off the coast of Baja California, including San Martin, Cedros, and San Jose. It is apparently 
absent from Isla Guadalupe (Baja California), Islas Revillagigedos (Colima), and the 
Galapagos Islands (Ecuador). 

In the Caribbean region, Vanessa cardui occurs on Bermuda (resident but rare), the 
Florida Keys (Siesta Key, Paradise Key, and Key West), the Bahamas (New Providence 
Island and San Salvador Island), Cuba (rare), Grand Cayman, Jamaica (rare), Hispanola 
(uncommon in montane areas), Puerto Rico (rare), and Mona (rare). In the lesser Antilles 
it occurs on Montserrat and rarely on Dominica, Martinique, St. Lucia, St. Vincent, 
Barbados, Grenada, Trinidad, Tobago, and San Andres Island. 

Africa. Vanessa cardui frequently is cited as ranging throughout Africa and the Ethi- 
opian region, but it is absent from Rio Muni and the Gulf of Guinea Islands. It has been 
reported from Morocco, Algeria, Tunisia, Libya, Egypt, Ethiopia (up to 3350 m), Sudan 
(up to 3050 m), Dakar, Senegal, Liberia, Sierra Leone, Ghana, Nigeria, Congo, Kenya, 
Uganda, Rhodesia, Nyasaland, Malawi, Mozambique, Bechuanaland, South-West Africa, 
and South Africa (to the Cape of Good Hope at Cape Town, Port Elizabeth, and East 
London). Records from the Sahara region include northwest Sahara, Ahaggar, Air, and 
Tibesti. 

Mediterranean, African, and Indian islands. Vanessa cardui is found throughout the 
Mediterranean and many of the Aegean islands, the Azores, Madeira, Canary Islands, 
Cape Verde Islands, Ascension, St. Helena, Tristan da Cunha (one record), Madagascar 
(common), Reunion, Mauritius (rare), Seychelles (Mahe, St. Anne, Aldabra, Assumption, 
Coetivy, Desroches), Socotra (common), Bahrain, Maldives (North Male Atoll, Hulule 
Island, Addu Atoll), Sri Lanka, Andamans (South Andaman), Nicobars (Nancowry), and 
Christmas Island. In the South Atlantic it is absent from Fernando Noronha, and it is 
unreported from the Comoro Islands. 


236 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Europe. Vanessa cardui ranges throughout Europe. Although it is more common in 
the southern portion of the continent, it is known from Scandinavia and Finland to above 
the Arctic Circle in Lapland. In the North Atlantic it occurs throughout Great Britain, 
on the Scilly Islands, Channel Islands, Isle of Wight, Isle of Man, Ireland (rare), Outer 
Hebrides, Orkneys, Shetlands, Faeroes, Iceland (rare), and Spitsbergen. 

Middle East and Asia. In the Middle East, Vanessa cardui is known from throughout 
the Arabian Peninsula, Kuwait, Iraq, Jordan, Israel, Lebanon, Syria, Turkey, Transcau- 
casia, and Iran (up to 3350 m). On the Asian continent it occurs in Afghanistan, Pakistan 
(up to 5180 m), India (throughout), Nepal (83960 m on Mount Everest), Sikkim, Bhutan, 
Himalayas, Burma, Thailand (rare), Laos (rare), North Vietnam, Malay Peninsula (spo- 
radic), northeastern Sumatra (common in montane areas), Nias, Java, Singapore Island, 
Palawan, the Philippines, Taiwan, and Hainan. Vanessa cardui is absent east of Wallace's 
Line. It occurs throughout Russia (including Siberia and Far East USSR, sporadic in 
places) except for the Far North, and ranges above the Arctic Circle in western Siberia. 
It also is found in Tibet (up to 5030 m), Yunnan (2900 m), central, west, and north China 
(including Manchuria and Amur), Hong Kong, Mongolia, Korea, Quelpart Island, Che- 
judo, many small islands along the west coast of South Korea, Ryukyu Islands, Japan, 
Sakhalin, and the Kurils. 

Pacific Islands. With the exception of its introduced and naturalized status on Hawaii 
(Kauai, Oahu, Molokai, Maui, Lanai, and Hawaii), it is conspicuously absent from Pacific 
Islands, including Micronesia, Melanesia, and Polynesia. The male and female genitalic 
structures of specimens from Hawaii are identical to those of V. cardui and differ from 
V. kershawi (Zimmerman 1958, Field 1971), thus casting doubt on the theory that Ha- 
waiian stock is intermediate between the two (Walker 1919, Scott 1986). 

Australia. Vanessa cardui is unknown from Australia except in the extreme southwest 
corner at Bunburg and Rottnest Island (Barrett & Burns 1951) near the major seaport of 
Perth—most likely the result of an introduction. 

Migrations at sea. Migrating V. cardui sometimes are observed from aboard ships 
crossing the ocean; flights have been reported from various locations in the Mediterranean 
Sea. A huge migration appeared suddenly along the Riviera in May 1918 (Morris 1919), 
and NW migration was noted flying out over the Mediterranean from Gaza in April 1917 
(Pendlebury 1921). Small groups sometimes fly in from the north in September along the 
Egyptian coast, and there was a sudden appearance of a migration on Malta in 1952 
(Valletta 1952). Singletons have been observed in the Indian Ocean 400-km SE of Arabia; 
400 km NNW of Cape Amber, Madagascar; 190 km W of Bombay; and 515 km W of 
the Laccadives. About 100-190 km off the African coast, migrating individuals were 
sighted at numerous locations between Moroco and Portugese Guinea in September 1943 
(Williams 1945). Other sightings include numerous individuals 965 km from Gambia and 
320 km from the Cape Verde Islands. One individual was observed alive and floating on 
the water and another flying around a ship 800 km E of Newfoundland in August 1865, 
and six were seen 2250 km W of the Saharan coast (23°N, 41°W) in October 1950 (Williams 
1965). 

Broodedness and overwintering. Vanessa cardui is continuously brooded and does not 
diapause. During the winter months its huge range contracts to below about 35°N latitude 
in the North Hemisphere, at least in Europe and North America; it recolonized northward 
by migration again each spring. It overwinters along the extreme north African coast in 
Morocco and northern Algeria, and more extensively along the western margin of the 
Red Sea and in Saudi Arabia (Baker 1978). In North America it overwinters in the Sonoran 
and Chihuahuan deserts (C. J. Durden & K. Roever pers. comm., Bender 1982). It also 
overwinters in southern Africa, at least in Malawi and Rhodesia, migrating southward in 
the spring. 

Vanessa kershawi. Vanessa kershawi is common throughout southern Australia below 
the Tropic of Capricorn, occurring less commonly to 20°S in the west, 23°S in the center, 
and 16°S in the east of Australia. It is uncommon in Queensland and absent in the far 
north and in the Torresian faunal province, except in the SE part (Common & Waterhouse 
1972). The butterfly is found in Tasmania (up to 915 m), including Hobart. Two worn 
“waifs” were collected in May 1906 on Cocos-Keeling Atoll in the Indian Ocean (Jones 


VOLUME 46, NUMBER 3 Zon 


1909). On the Great Barrier Reef, Queensland, it is known from Lindeman Island north 
of 21°S, and from Percy, North West, and Wiggins Islands south of 21°S (Duckworth & 
McLean 1986). In New Zealand, it probably is not resident, but it becomes common and 
widespread there occasionally following periodic migrations from Australia. It is recorded 
from North Island, South Island, and Stewart Island. It also has been reported from Lord 
Howe Island (sometimes common), Norfolk Island (in 1968), New Caledonia and New 
Hebrides (Walker 1919), Lifu in the Loyalty Islands (Walker 1902), and Suva on Viti 
Levu, Fiji (Robinson 1975). There are few observations of V. kershawi at sea, although 
multitudes were seen off Cape Otway in the Bass Strait in November 1860, and one was 
sighted at 35°10’S, 155°40’E off New South Wales in November 1904 (Williams 1930). In 
late September to early October 1889, they covered “the gear and decks of ships many 
miles out to sea” from a large migration flying SE from Victoria (Rainbow 1907). 

Summary and conclusions. The incredibly vast range of V. cardui lies primarily within 
the Northern Hemisphere, extending substantially into the Southern Hemisphere only on 
the African continent; it occurs from sea level to about 5200 m in elevation. Vanessa 
kershawi is confined to the Australian continent where it completely replaces V. cardui. 
Their closest geographical approach is on Cocos-Keeling Atoll (V. kershawi) and Christmas 
Island (V. cardui) as waifs. The frequent claim that V. cardui is a cosmopolitan, worldwide 
butterfly is unwarranted, although it certainly is the most widely ranging species known. 

Neither V. cardui nor V. kershawi is polytypic, i.e. there are not recognized subspecies. 
This probably reflects the fact that both are strongly migratory, a behavior that acts to 
inhibit localized population differentiation. 

I thank R. A. Arnold, F. M. Brown, B. A. Drummond, T. C. Emmel, G. A. Gorelick, 
A. M. Shapiro, and an anonymous reviewer for critiquing the manuscript, and G. A. 
Gorelick, J. A. Scott, and R. E. Wells for providing useful information. 


LITERATURE CITED 


BAKER, R. R. 1978. The evolutionary ecology of animal migration. Holmes & Meier, 
New York. 1012 pp. 

BARRETT, C. & A. N. BURNS. 1951. Butterflies of Australia and New Guinea. N. H. 
Seward, Melbourne. 187 pp. 

BENDER, G. L. 1982: Reference handbook on the deserts of North America. Greenwood 
Press, Westport, Connecticut. 594 pp. 

BROWN, F. M. & B. HEINEMAN. 1972. Jamaica and its butterflies. E. W. Classey, London. 
478 pp. 

Common, I. F. B. & D. F. WATERHOUSE. 1972. Butterflies of Australia. Angus & 
Robertson, Sydney. 498 pp. 
DUCKWORTH, B. G. & J. MCLEAN. 1986. Notes on a collection of butterflies from the 
islands of the Great Barrier Reef, Queensland. Austr. Entomol. Mag. 13:43-48. 
FIELD, W. D. 1971. Butterflies of the genus Vanessa and the resurrected genera Bassaris 
and Cynthia. Smithsonian Contrib. Zool. 84:1-105. 

JONES, F. W. 1909. The fauna of the Cocos-Keeling Atoll, collected by F. Wood Jones. 
Proc. Zool. Soc. London 1909:132-160. 

Morris, C. E. 1919. Invasion of the Riviera by Pyrameis cardui. The Entomologist 
o2:20. 

PENDLEBURY, W.M. 1921. Daily migrations against a land- and sea-breeze by Pyrameis 
cardui. Trans. Entomol. Soc. London 69:xvi-xviii. 

RAINBOW, W. J. 1907. A guide to the study of Australian butterflies. T. C. Lothian, 
Melbourne. 272 pp. 

ROBINSON, G. S. 1975. Macrolepidoptera of Fiji and Rotuma. E. W. Classey, Oxon. 362 


pp. 

ScoTT, J. A. 1986. The butterflies of North America. Stanford Univ. Press, Stanford. 
583 pp. 

SCUDDER, S. H. 1876. A cosmopolitan butterfly. Am. Nat. 10:392-396. 

VALLETTA, A. 1952. Vanessa cardui Linn. and other migrants in Malta in 1952. Entomol. 
Rec. 64:279-280. 


238 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


WALKER, J. J. 1902. Antipodean field notes. I. New Caledonia, the New Hebrides, and 
adjacent islands. Entomol. Mon. Mag. 38:189-203. 

WALKER, J. J. 1919. The fringes of butterfly life. Trans. Entomol. Soc. London 1919: 
xci-Cxvii. 

WILLIAMS, C. B. 1930. The migration of butterflies. Oliver & Boyd, London. 473 pp. 

WILLIAMS, C. B. 1945. Occurrence of Vanessa cardui at sea off the west African coast. 
Proc. R. Entomol. Soc. London (A) 20:4—5. 

WILLIAMS, C. B. 1965. Insect migration. Collins, London. 237 pp. 

ZIMMERMAN, E. C. 1958. Insects of Hawaii. Vol. 7, Macrolepidoptera. Univ. Hawaii 
Press. 542 pp. 


OAKLEY SHIELDS, 6506 Jerseydale Road, Mariposa, California 95388. 


Received for publication 6 January 1990; revised and accepted 13 June 1992. 


Journal of the Lepidopterists’ Society 
46(3), 1992, 238-239 


NOTES ON THE TYPE OF PAPILIO CRESPHONTES 
AB. “MAXWELLI” (PAPILIONIDAE) 


Additional key words: aberration, holotype, Florida. 


Papilio cresphontes (Cramer) is a widespread Neotropical species with few associated 
infrasubspecific names, despite the preponderance of these names employed elsewhere 
within the Papilionidae. Papilio cresphontes ab. “maxwelli’” Franck is a rare aberration 
characterized by elongated yellow spots near the apex of the forewing, described by 
Franck (1919a) as “giving the specimen a striking tropical appearance.’ In his description 
of the taxon, Franck (1919a) figured the holotype of “maxwelli’” but omitted data re- 
garding the type locality, sex of the specimen, and the collection in which it was deposited. 
As a result, this information was unknown to subsequent authors, including Miller and 
Brown (1981) and Ferris (1989). Kimball (1965), likewise, did not mention P. cresphontes 
ab. “maxwelli’, apparently because he was unaware of the Florida type locality. However, 
Franck (1919b) amended his description with a short note that has been overlooked by 
researchers for over seventy years. 

In a one-sentance emendation, Franck (1919b) designated the type locality as St. 
Petersburg, Florida, and noted that the description was based upon a single male specimen 
in the William Barnes collection. The holotype is now located in the collection of the 
National Museum of Natural History where the Barnes collection is largely deposited. 
The specimen possesses two labels: a red holotype label affixed in 1990 and an old white 
label bearing nearly undecipherable handwriting, possibly reading “Mar 29.” No addi- 
tional information is discernable. Clark (1936) figured another male specimen of the 
“maxwelli” phenotype without providing locality data. 

Although infrasubspecific taxa are not subject to rules of the International Code of 
Zoological Nomenclature, any taxon within such a highly popularized and thoroughly 
studied family is of special interest. 

I thank Robert K. Robbins for his assistance in locating the type specimen. 


LITERATURE CITED 


CLARK, A. H. 1936. The swallowtail butterflies. Ann. Rpt. of the Smiths. Inst. for the 
Year Ending 1935:383-408. 

Ferris, C. D. (ed.). 1989. Supplement to: A catalogue/checklist of the butterflies of 
North America, north of Mexico. Lepid. Soc. Mem. No. 3. 103 pp. 


VOLUME 46, NUMBER 38 . 239 


FRANCK, G. 1919a. Papilio cresphontes, var. maxwelli, nov. Bull. Brooklyn Entomol. 
Soc. 14:3. 

FRANCK, G. 1919b. Papilio cresphontes, var. maxwelli Franck. Bull. Brooklyn Entomol. 
Soc. 14:101. 

KIMBALL, C. P. 1965. Lepidoptera of Florida. Div. of Plant Industry, Gainesville. 363 


Pp. 
MILLER, L. D. & F. M. BROWN. 1981. Catalogue/checklist of the butterflies of North 
America, north of Mexico. Lepid. Soc. Memoir No. 2. 280 pp. 


JOHN V. CALHOUN, 1731 San Mateo Drive, Dunedin, Florida 34698. 


Received for publication 22 February 1992; revised and accepted 23 May 1992. 


Journal of the Lepidopterists’ Society 
46(3), 1992, 240-241 


BOOK REVIEWS 


THE NEPTICULIDAE AND OPOSTEGIDAE (LEPIDOPTERA) OF NORTH WEST EUROPE. Fauna 
Entomologica Scandinavica, Volume 23, part 1 (text), part 2 (plates), by Roland Johansson, 
Ebbe S. Nielsen, Erik J. van Nieukerken, and Bert Gustafsson. 1990. E.J. Brill/Scandi- 
navian Science Press Ltd., Leiden, New York, Kobenhavn, K6ln. 739 pp., 111 + 1122 
figures. Hardcover, 14.5 x 21 cm, ISSN 0106-8377; 55 Dutch Guilders (about $30.00 
WES») 


As quality standards for systematic publications improve and new technologies become 
available, it becomes increasingly difficult for a single author of a monographic treatise 
to meet those standards or fully utilize those technologies. These challenges are often 
complicated further by a general downward trend in financial support for monographic 
studies. One obvious solution to such a dilemma is multiple authorship. A proper com- 
bination of co-authors—each providing their special expertise—can vastly improve as 
well as expedite a major work. This recently published two-volume review of the Nep- 
ticulidae and Opostegidae of North West Europe is a good example of what balanced 
cooperation among several authors can produce. 

Although technically an “amateur,” the senior author of this work, Roland Johannson, 
contributed significantly not only as a result of his lifelong interest in the systematics and 
natural history of Nepticulidae, but also by drawing the 186 beautifully executed color 
illustrations of the adults and over 900 line drawings. Ebbe Nielsen’s general knowledge 
of most monotrysian families was an asset particularly in the preparation of the intro- 
duction and in co-authoring the section on the tribe Nepticulini. Nielsen also became the 
major editor and coordinator for the project. Erik van Nieukerken, certainly one of the 
leading researchers on Nepticulidae today, is acknowledged as being responsible for much 
of the most recent information on the evolution and higher classification of the Nepti- 
culidae. The depth of his contribution is obvious to anyone familiar with his outstanding 
paper on the “Systematics and Phylogeny of Holarctic Genera of Nepticulidae’”’ (Zool. 
Verh. Leiden 236:1-98,; 1986). Nieukerken was also the author of the section Opostegidae. 
Bert Gustafsson’s knowledge of larval Nepticulidae is reflected in the euplreste on larval 
morphology and systematics evident in this work. 

The Nepticulidae and Opostegidae are among the smallest Lepidoptera in the world. 
The wing span of the smallest measure less than 3 mm. Because of their size they are 
not an easy group to work with and are especially difficult to dissect and to rear. Despite 
these obvious obstacles, as many amateurs as professional entomologists have concentrated 
on these tiny moths in Scandinavia, with the result that the Scandinavian nepticulid fauna 
is the best researched in the world. This work treats 121 species of Nepticulidae (ca. 20% 
of the known world fauna of nearly 600 species) and 4 species of Opostegidae (ca. 4% of 
the known world fauna of 102 species) in an area including Fennoscandia south to Paris, 
France, and the British Isles to and including Poland and the Baltic republics. Only 120 
species of Nepticulidae are enumerated in the checklist (pp. 60-62) and elsewhere in the 
text because, for reasons unclear (a late insertion?), Stigmella betulicola (Stn.) and S. 
nivenburgensis (Preiss.) are listed as 6a and 6b respectively. 

Most of the first 76 pages of the text are devoted to introductory material, which 
provides one of the best available summaries of the different life stages of the Nepticulidae. 
Reviewed in this section are the morphology of the adult and immature stages, biology, 
phylogeny, and distribution. Under biology, special emphasis has been devoted to host- 
plant relationships, parasitoids, and predators, with shorter discussions on ecology and 
conservation. The phylogeny of the Nepticuloidea is briefly reviewed at the family and 
generic levels (pp. 57-59) and is largely based upon the more extensive, manually derived 
treatment by van Nieukerken (1986), referred to above. Species keys are provided not 
only to the adults according to customary taxonomic groupings and based upon superficial 
male and female characters and male genitalia, but also according to host genera and 
larval/mine morphology. In addition, a brief synopsis for each species group is provided 
for the largest tribe, Nepticulini. 

The species treatments are informative and concise with a strong emphasis on life 


VOLUME 46, NUMBER 8 | 241 


history. The latter represent an accumulation of knowledge for Nepticulidae unequaled 
for any other comparable region. The larvae are treated by Gustafsson and van Nieukerken 
in a separate section from the adults. Descriptive synopses, supplemented by numerous, 
selective line drawings are provided for 101 of the total fauna of 121 species. The immature 
stages of only six, mostly rare species are completely unknown. Table 3 on pages 325- 
327 provides an excellent summarization of the body chaetotaxy for the 101 species 
studied. The main text of volume one concludes with the section on Opostegidae authored 
by van Nieukerken. Only two genera and four species of Opostegidae are represented in 
the region covered by this series. Finally, the general distribution of each nepticulid and 
opostegid species is graphically summarized in a chart on pages 388-401. The text appears 
to be well edited, with a few typographical errors noted (e.g., on page 37, the dorsal calli 
referred to in text figure “58” should read 60’). 

Because of the superb, collective expertise of all four authors and the relatively copious 
knowledge of the Nepticuloidea for the region treated, the importance of this publication 
exceeds that of a major faunal contribution. This work should be regarded as a primary 
source for anyone seeking information on the general biology and morphology of Nep- 
ticuloidea. 


DONALD R. Davis, Department of Entomology, NHB 127, Smithsonian Institution, 
Washington, D.C., 20560. 


Journal of the Lepidopterists’ Society 
46(3), 1992, 241-242 


DISTRIBUTION OF BUTTERFLIES IN NEW MEXICO (LEPIDOPTERA: HESPERIOIDEA AND 
PAPILIONOIDEA), by Michael E. Toliver (edited by Richard Holland). 1977 (1991). Pub- 
lished by the authors. Distributed by R. Holland, 1625 Roma NE, Albuquerque, New 
Mexico 87106. 239 pp., 1 text figure. Soft cover, spiral bound, 22.45 x 28 cm., no ISBN; 
$10.00 (postpaid). 


As one who has attempted to compile butterfly records for a large geographic entity, 
I recognize the Distribution of Butterflies in New Mexico as a labor of love. It is rare 
that information accumulated in one’s notebook evolves into an invaluable printed list 
available to anyone interested in the region. Such compilations form a solid foundation 
for future investigations, be they distributional, ecological, or biogeographical. In addition, 
they provide a basis for planning trips by the general collector. 

A short introduction is followed by species accounts presented in order of the checklist 
of C. F. dos Passos (1964, Lepid. Soc. Mem., No. 1, 145 pp.), with specific location (listed 
by county), date, and source of the record. A literature cited section and an index by 
specific name, keyed to dos Passos (1964 op. cit.) checklist number, completes this volume. 
The major shortcomings of the list (14 years between completion and published appear- 
ance, nomenclature similarly dated), are noted by Holland in the preface. Collectors 
should be aware that the book does not incorporate the recent renumbering of most state 
highways. 

The data were assembled by Mike Tolliver and include those for 269 species of butterflies 
through 1977; by early 1992, the butterflies known from New Mexico had increased to 
314 species (fide R. E. Stanford). The majority of the records are those of the author and 
editor; these are taken at face value. Literature and other records are presented with or 
without comment; it would be helpful to know which, if any, were further verified, 
especially single state records or those from apparently extralimital localities. For example, 
why were the putative specimens of Papilio troilus not examined? The problem with the 
supposed New Mexico records of Speyeria hydaspe is mentioned; a similar problem for 
Speyeria zerene is not (see Scott, J. A., 1986, The butterflies of North America, Stanford 
Univ. Press, 583 pp.). One wonders why the determinations of Systasea zampa were not 


242 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


verified and it is unfortunate that specimens of the Erynnis persius complex were not 
dissected. 

The nomenclature, as stated in the introduction, is largely that of dos Passos (1964 op. 
cit.) and was updated, apparently by Holland, to include many (but not all) subsequent 
revisions. New subspecific names proposed for Euphydryas anicia by C. D. Ferris and 
R. Holland (1980, Bull. Allyn Mus., No. 57), Speyeria atlantis by R. Holland (1988, Bull. 
Allyn Mus., No. 115), and Colias alexandra by C. D. Ferris (1988, Bull. Allyn Mus., No. 
116) are included, yet the revisions of Neominois ridingsii by G. T. Austin (1986, Bull. 
Allyn Mus., No. 107) and Thessalia fulvia by M. J. Smith and J. P. Brock (1988, Bull. 
Allyn Mus., No. 118) were not consulted. In certain instances, subspecies of some taxa 
are not recognized. Eurema mexicana is treated as monotypic, yet the southern Central 
American E. m. bogotana is certainly distinct. The Phoebis sennae is probably P. s. 
marcellina. No subspecies are mentioned for Calephelis nemesis or Vanessa atalanta. 
New Mexican Pontia beckerii must be of the nominotypical subspecies; P. s. pseudoch- 
loridice is a Pacific Northwest taxon. Cyllopsis henshawii is a subspecies of C. pyracmon 
and the name “nabokovi’ refers to the fall brood phenotype (see Scott 1986 op. cit.). 

Typographical errors are relatively few although I did not specifically search the book 
for these. At least one literature citation, C. F. dos Passos and L. P. Grey (1947, Amer. 
Mus. Novit., No. 1370), was omitted. 

All these criticisms are minor. As Holland states in the Preface, “for sheer volume of 
information it will almost surely never be surpassed.’’ The deficiencies of this work do 
not in any way detract from its importance and usefulness in the continuing study of the 
butterflies of New Mexico and southwestern United States. 


GEORGE T. AUSTIN, Nevada State Museum and Historical Society, 700 Twin Lakes 
Drive, Las Vegas, Nevada 89107. 


Journal of the Lepidopterists’ Society 
46(3), 1992, 242-243 


SIMON & SCHUSTER’S GUIDE TO BUTTERFLIES AND MOTHS, by Mauro Daccordi, Paolo 
Triberti, and Adriano Zanetti (originally published in Italian under the title Farfarelle, 
translated into English by Arnoldo Mondadori). 1988. Simon and Schuster /Fireside Books. 
Printed in Italy, published by Simon & Schuster, Inc., Rockefeller Center, 1230 Avenue 
of the Americas, New York, New York 10020 USA. ii + 383 pp., 29 text figures, 1 table, 
289 color plates. Soft cover, 11.5 x 19 em, ISBN-0-671-66066-7; $11.95 U.S. 


What a refreshing little book. Oh come on, you say, a field guide to the butterflies and 
moths of the world? You can’t be serious. Obviously, with a genre limit of several hundred 
pages, a comprehensive field guide on any particular subset of the world Lepidoptera is 
out of the question. The point of such a field guide should be to stimulate and enrich the 
large mass of humanity that has minimal lepidopterological experience. This is no small 
task, but one at which Daccordi et al.’s volume excels. 

Consider the first paragraph of the Introduction. That’s as far as one might realistically 
expect many uninitiated readers to advance before abandoning text forever in favor of 
color plates. If a book hasn’t awakened the audience’s interest after those first few sen- 
tences, it’s finished. The authors know this well. In just one paragraph they move from 
the aesthetics of butterflies and moths, to their more striking biological attributes, to their 
ties with the plant kingdom, to agriculture and human culture—while all the time 
developing a low-keyed yet alluring appeal for conservation and ecological awareness. It 
is a deft example of how to mix the author’s agenda with that of the reader. 

In fact, this is one of the clearest, most refreshingly honest and articulately craitcd 
general natural science books I’ve reviewed. To see what I mean, focus on the first sentences 
that follow each section heading in the first 69 pages of introductory /background material. 
Evolution: “We have gained little knowledge concerning the evolution of the Lepidoptera. 


VOLUME 46, NUMBER 3 ; 243 


This is hardly surprising if we consider the delicacy and fragility of the body of these 
insects, the only (and very rare) parts left as recognizable fossil remains [p. 11]. Habits: 
“If we examine the flight of a butterfly or moth and the crawling movements of a 
caterpillar, we might be tempted to think that most of the activities of these insects are 
ruled by chance [p. 31].”” Predators and parasites: “In the life cycle of a butterfly or moth, 
no stage of development is immune to the attacks of parasites and predators. Among the 
former, above all, are viruses and bacteria, as yet little known, which are the principal 
causes of death in caterpillars [p. 51].’”° The reader gets sucked into these stories, as if this 
were a paperback whodunit. 

I’m biased, of course, but can gleefully report here an overarching focus on moths 
rather than butterflies throughout the 323 color figures. For example, among the larval 
shots are 10 butterflies and 24 moths, and 7 of the latter are casebearers, leafrollers, and 
other perhaps less glamorous microlepidopterans. Perhaps ... but you can’t appreciate 
the role of a casebearer in the grand scheme of things if you don't know what one is. 
The offbeat lepidopterans are prominently displayed, too. There is a wonderful picture 
of an apterous adult female geometrid (Plate 101), the fuzzy and cuddly teddy bear of 
the book; a contorted adult lappet moth (Plate 70) to convince even the most skeptical 
that crypsis happens; and an incurvariid (Plate 37) with antennae quintuple the body 
length to underscore that wings aren't necessarily always where it’s at. All in all there 
are 323 species accounts, of which 34 illustrate the larval stage and 289 the adult stage. 
Most photographs are of live organisms and the color reproduction is excellent. 

The species accounts are organized by major geographic region of the world, and 
therein in alphabetical order by genus. The blurbs accompanying the photos are reasonably 
well organized, quite informative, and adorned with colored icons indicating the type of 
lepidopteran (diurnal, nocturnal, micro), the general habitat, and localization within the 
geographic region in question. There are a few mistakes in identification (the Catocala 
that isn’t on Plate 158; the spicebush swallowtail that ate pipevine on Plate 189), but by 
and large I don’t think such mistakes mean anything in this sort of volume. The identi- 
fication error rates are higher for regions other than the Palearctic, from whence the 
authors hail, which isn’t surprising. 

For such an otherwise well produced book, there are still a few perplexing inconsis- 
tencies. Thus, for some reason Grammia virgo (Plate 144) warrants an additional subtitle— 
“(formerly Apantesis virgo L.)’’—the taxonomic significance of which is never explained. 
And Raja Brooke's Birdwing (Trogonoptera brookiana, Plate 288) and the Dogface (Ze- 
rene caesonia, Plate 208) don’t seem to warrant subtending common names. But the 
largest problem by far is the sprinkling of photos of dead adult Lepidoptera alongside 
those of the living: for example, a scintillating translucent Cithaeris savoring a plant stem 
in the dark forest, next to a rigid Danaus flopped onto some twigs (Plates 219-220); or 
a streamlined Xylophanes sphingid, forced to cohabit with the aforementioned and quite 
dormant Dogface (Plates 207-208). The effect is just awful, and the liability to the book’s 
educational appeal is anything but trivial. It is an entirely unnecessary and avoidable scar 
on an otherwise fine volume. 


LAWRENCE F. GALL, Division of Entomology, Peabody Museum of Natural History, 
Yale University, New Haven, Connecticut 06511. 


Journal of the Lepidopterists’ Society 
46(3), 1992, 248-244 


LARVAE OF OWLET MOTHS (NOCTUIDAE): BIOLOGY, MORPHOLOGY, AND CLASSIFICATION, 
by O. I. Merzheevskaya (original release 1967) (translated from Russian by P. M. Rao; 
Scientific Editor, George L. Godfrey). 1989. Distributed by E. J. Brill Publishing Company, 
P.O. Box 9000, NL-2300 PA Leiden, The Netherlands; U.S.A. & Canada, E. J. Brill (U.S.A.) 
Inc., 24 Hudson Street, Kinderhook, New York 12106. xx + 419 pp., 97 text figs., 6 tables. 
Hard cover, 15 x 24 cm, ISBN 90 04 08804 0; $57.50 U.S. 


244 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


You have to admire anyone who decides to dive headlong into the bottomless pit that 
is the systematics of the Noctuidae. But, to purposely delve into the documentation and 
identification of the immature forms borders on insanity. I am assured by George Godfrey 
in his Forward to the English-language Edition that the author, Olga Ivanovna Mer- 
zheevskaya, was a well respected teacher and researcher and definitely in full charge of 
her considerable faculties. In fact, this study on the biology and morphology of larvae of 
144 species of Noctuidae from Belorussia is a testament to her patience, perseverance, 
and detailed observations. 

The author was able to compile information on each larval instar of a given species so 
that she could describe the changes in morphology and patterning during growth and 
development. This adds much to the knowledge of immature noctuids. 

Also of note are the brief descriptions of the eggs, plus data on where and how they 
were deposited. How useful it would have been if scanning electron micrographs were 
provided for visual comparisons. Based on the attention to detail that characterizes her 
work, S.E.M. technology must not have been available to her. 

Godfrey indicated—and I concur—that a weakness is inherent in the identification 
keys because of their reliance on color patterns. Although the author used a fixative made 
of ethyl alcohol, salicylic acid, common salt, and water to maintain color in preserved 
specimens longer (up to six months for the more labile pigments; over five years for 
melanic patterns), the keys require last instar larvae that have been recently preserved. 
Still, I have yet to try this fixative but definitely intend to do so. 

This book was originally published six years prior to Godfrey's thorough study of the 
larvae of the noctuid subfamily Hadeninae (1972). Had Godfrey’s study been available 
to Merzheevskaya, she may not have decided to disregard the characters of the hypo- 
pharynigeal complex, which she considered not useful for taxonomic purposes. 

Overall, the study has far more positives than negatives. Additionally, the English 
translation of the work is excellent. There is nothing left to be deciphered or reinterpreted 
that I could find. This publication is certainly a worthwhile contribution to the slowly 
growing body of knowledge on juvenile stages of Lepidoptera. It should be on the shelf 
of all serious students of the biosystematics of Lepidoptera and of those interested in the 
taxonomy of larval insects. The host plant information, life histories, and biological data 
are useful to an even broader audience. | 

Only a few who have ventured into this realm are still so engaged. These bold scientists 
are to be both admired and pitied. But don’t let me dissuade any aspiring student. On 
the contrary, jump in and get wet; there’s a lot of water; it’s sort of calm, and it’s plenty 
deep. 


Tuomas D. EICHLIN, Insect Biosystematics Laboratory, Division of Plant Industry, 
Department of Food and Agriculture, Sacramento, California 94271-0001. 


Journal of the Lepidopterists’ Society 
46(3), 1992, 244-245 


DISCOVER BUTTERFLIES! AN ACTIVITY BOOK FOR FAMILIES, STUDENTS, AND TEACHERS, 
edited by LuAnn Craighton, Project Coordinator. 1991. Callaway Gardens, Ida Cason 
Callaway Foundation, Pine Mountain, Georgia 31822. iv + 61 pp., color covers, black & 
white illustrations, tables, and diagrams. Softcover, 22.0 x 28.0 cm, no ISBN; $7.95. 


Since its opening in 1988, the living butterfly displays and museum exhibits at the Day 
Butterfly Center in the Callaway Gardens of western Georgia have educated hundreds 
of thousands of visitors about the wonderful fascination of butterflies. Now the Education 
Department of the Ida Cason Callaway Foundation, under the direction of Lepidopterists’ 
Society member LuAnn Craighton as Project Coordinator, has produced this exciting 
activity book on the world of butterflies. The book is accompanied by a “Butterflies” 
videotape (available separately at $19.99, or as a package of activity book and video for 


VOLUME 46, NUMBER 3 . 245 


$24.95). The combination package will be of interest to every lepidopterist who wants to 
interest other members of his or her family, friends, students, and associates about but- 
terflies. The book and video set should also become a very popular and useful resource 
in schools, summer camps, and similar educational programs. 

The book includes six chapters focusing on the biologically important aspects of but- 
terflies, especially their life history, ecology, conservation, and behavior. Chapter 1, “But- 
terfly Basics,” covers butterfly classification, very basic anatomy, the structure and purpose 
of colors on wings, and suggested activities on these subjects (such as butterfly family 
flash cards, building your own butterfly, and determining whether you have a butterfly 
or a moth at hand). 

Chapter 2, “Metamorphosis,” describes the life history of butterflies. Activities include 
building an insect cage, rearing your own butterflies, and acting out the life cycle of a 
butterfly. 

Chapter 3, “Butterfly Behavior,” includes discussion of courtship and mating, basking, 
flight, roosting, feeding, and puddling. Activity instructions range from writing poetry 
about butterfly behavior to timing the flight speed of adult butterflies. 

Chapter 4, “Butterfly Conservation,” conveys effectively a number of concepts on the 
ecological importance of butterflies, facts on the distribution and biodiversity of butterflies, 
and even a pitch for saving the world’s rainforests. Activities in this chapter include 
working on understanding food webs and other important concepts in ecology. 

Chapter 5, “Marvelous Monarchs,’ is a more concentrated look at a single species, the 
monarch butterfly. Activities here even include tagging monarchs to study the migratory 
habits of monarchs through a capture, tag, and release program. It also includes an activity 
to help make the monarch our national insect by writing letters to senators and repre- 
sentatives. 

Chapter 6, “Butterfly Watching,” includes not only suggestions on how to watch and 
collect butterflies but also a discussion of careers as entomologists, the drives to name 
state butterflies, and some of the uses of references in studying butterflies. One of the 
fine activities described in this chapter is how to plant your own butterfly garden, including 
choices of plants, locations, and design, and how to use biological controls and insecticidal 
soaps for pest management. 

The book ends with a comprehensive list of popular resources and references, including 
most of the current butterfly and moth field guides, butterfly gardening resources, bio- 
logical supply companies, children’s books, and organizations (including the Lepidopter- 
ists Society and its address). Living butterfly exhibits listed include the Day Butterfly 
Center, Butterfly World (Coconut Creek, Florida), and Marine World Africa U.S.A. 
(Vallejo, California). Bound in the center of the book is a folded removable poster that 
depicts butterfly anatomy on one side and the life cycle of the Zebra Longwing (Heliconius 
charitonius) in color on the other. 

Although the field of lepidopterology has long enjoyed a plethora of technical books 
and other publications on butterflies and moths, and some coloring books that introduce 
young children to the diversity and distribution of butterflies in the United States and 
Europe, Discover Butterflies! makes an important contribution toward providing an 
integrated package for young novices, families, students, and teachers to learn more about 
butterflies. In combination with the colorful and stimulating 15-minute video, this book 
will indeed achieve the Callaway Foundation’s purpose: to give people an increased 
respect for our natural world, and a heightened awareness of man’s responsibilities to the 
world around us. It is exciting indeed to see butterflies used so effectively in this video/ 
workbook learning package, and I predict it will be widely adopted. I recommend it as 
a gift to families with young children, and also as an appropriate gift to teachers at local 
elementary and middle schools, or to naturalist staffs at summer camps and nature centers, 
to encourage the incorporation of butterfly study materials in children’s curricula. 


THOMAS C. EMMEL, Division of Lepidoptera Research, Department of Zoology, Uni- 
versity of Florida, Gainesville, Florida 32611. 


Journal of the Lepidopterists’ Society 
46(3), 1992, 246-247 


BIOLOGIA Y MORFOLOGIA DE LAS ORUGAS: LEPIDOPTERA, Vol. 6: Syssphingidae—Satur- 
niidae—Endromidae—Lasiocampidae— Drepanidae—T hyatiridae—Notodontidae— 
Hypsidae, by Carlos Gomez de Aizptrua. 1988. Boletin de Sanidad Vegetal, Fuera de 
Serie No. 12. Published by Ministerio de Agricultura, Pesca y Alimentacién, Centro de 
Publicaciones, 1 Paseo de la Infanta Isabel, 28014-Madrid, Spain. In Spanish. 248 pages, 
402 color photographs. Soft cover, 18.5 x 25 cm, ISBN 84-7479-722-5; 3000 pesetas (about 
$30 U.S.). 


This book is part of a series on insect larvae published in Spain by the Ministry of 
Agriculture, Fisheries, and Nutrition as a volume in their Bulletin of Plant Protection. 
Its primary intended use is undoubtedly in the applied areas of entomology like agriculture 
and forestry, but the value of this book to taxonomists and lepidopterists also will be good. 
I have not seen the other volumes. 

For each of the 50 species of Spanish moths treated, there is a map of the distribution 
in all of Europe, a graph of the 12 months showing the seasonal life cycle, a table listing 
morphological characteristics (more on color and pattern than on structure) of their 
caterpillars, a brief bibliography, and 8 or more color photographs, interspersed through- 
out the text. The greatest appeal and value of this book are these abundant and excellent 
photographs of caterpillars. For virtually all species the pupa, adult (usually one pinned 
and spread, one in living repose), and top and side views of the mature larva are shown. 
Lepidopterists interested in lasiocampids and notodontids will delight in seeing the 21 
species of Lasiocampidae and 13 species of Notodontidae that fly in Spain displayed in 
so many fine color photographs. Interestingly, few cocoons are shown, the pupae having 
been extracted from their cocoons to be photographed. Good life history data are given 
in the text, including foodplants, flight times, and habitats, classification, and historical 
facts. There are no overall introductory chapters, but short ones for each family, and an 
index at the end. 

The genus Malacosoma is usually misspelled as Malocosoma in this book. The type- 
species M. franconica is erroneously attributed to Esper, instead of to Denis & Schiffer- 
miller, an error perpetuated by many authors (see Fletcher, D. S. & I. W. B. Nye, 1982, 
In Nye, I. W. B., ed., The Generic Names of Moths of the World, Vol. 4. Brit. Mus. 
Nat. Hist., London, xiv + 192 pp.). In the saturniids, I noted errors on the range maps 
for two: Saturnia pyri does not occur in the British Isles and the introduced Samia cynthia 
is not widespread across the northern edge of Africa. Therefore, I suspect that there are 
errors on maps for other species less familiar to me. 

It may be of interest here to explain the historical reason why some European authors 
persist in classifying Actias isabellae, and sometimes Aglia tau, under the family name 
Syssphingidae, instead of Saturniidae. In the standard reference series edited by A. Seitz, 
The Macrolepidoptera of the World, Max Draudt in his 1930 volume apparently could 
not force himself to classify Copiopteryx and Actias into separate subfamilies, the long- 
tailed hindwings that they share convincing him (erroneously) of a relationship. So he 
put them together in Syssphingidae (which we now call Arsenurinae plus Ceratocampinae, 
within the Saturniidae) where Copiopteryx belongs but Actias does not. Standard ref- 
erences are all too often considered to be “the last word” in taxonomy, so here confusion 
persists 62 years later! Another taxonomic point I take this opportunity to make is that 
on phylogenetic grounds alone, the generic name Graellsia must be considered a synonym 
of Actias (because to separate out the European species leaves the American and Asian 
ones as a paraphyletic, i.e. unnatural, assemblage), although technically the two names 
are subjective synonyms (see Nassig, W. A. 1991, Nota Lepid. 14:131-143.). 

This volume and probably the others in the series would be fine to add to the shelves 
of all European entomological libraries and also worthwhile to many non-European 


VOLUME 46, NUMBER 3 247 


lepidopterists. The quality and usefulness of the many color photographs should over- 
shadow any difficulty or inability by some to read Spanish. 


RICHARD S. PEIGLER, Department of Zoology, Denver Museum of Natural History, 
2001 Colorado Boulevard, Denver, Colorado 80205. 


——————er ee ee e—e—eeeavO3O 


Journal of the Lepidopterists’ Society 
46(3), 1992, 248-254 


OBITUARY 
JOSE VALENTIN HERRERA GONZALEZ (1913-1992) 


Don José Herrera G., or Pepe, was born in Mejillones, Antofagasta Province, Chile, on 
9 October 1913. His father, Juan Herrera Marin, and his mother, Isabel Gonzalez Del 
Rey, were born in Spain. He had three brothers, still living in Chile, and a sister who 
died in 1941. 

Pepe married Dona Ernesta Dick Gandolfo from Puerto Natales in 1941. Ernesta had 
a pet mountain lion, beautiful portraits of which hang in several rooms of the Herrera 
home in Santiago, and the Herrera household always included one or more cats. Their 
first daughter, Nievas, was born in August 1942, daughter Carol in August of 1946, and 
daughter Veronica in December 1947. Nievas now lives in California. Carol and Verénica 
remain in Santiago. Pepe had 6 grandchildren, 2 girls and 4 boys, when he died after a 
short illness at his home in Santiago on 29 January 1992, at the age of 78. The world has 
lost a fine Lepidopterist; Chile has lost a fine educator; and many of us have lost a fine 
friend. 


PROFESSIONAL CAREER 


Pepe attended high school at the Colegio San Luis in Antofagasta city, and in 1931 
entered the Instituto Pedagogico of the Universidad de Chile in Santiago, graduating 
with honors in 1934 as Profesor de Estado en Biologia y Quimica. He then enrolled in 
the Instituto de Educacion Fisica at the University and received a Professor of Physical 
Education degree in 1936. He was offered a post in Punta Arenas where they needed a 
teacher in science and physical education at the boy’s high school, Luis Alberto Barrera. 
He accepted for six months, but stayed for ten years. 

When he returned in 1946 to Santiago from Punta Arenas, Don José joined the faculty 
of the University of Chile as Professor of Zoology in the Institute of Pedagogy in 1946, 
and Profesor de Entomologia in 1956. He then joined the Facultad de Filosofia Y Edu- 
cacion as chief of the Departamento de Biologia from 1956 to 1960, and as Director del 
Centro de Estudias Entomologicos in 1960. He was elected Profesor Extraordinario de 
Entomologia by the faculty of Philosophy and Education of the University of Chile in 
1964. 

In 1981 he joined La Academia Superiér de Ciencias Pedagogicas de Santiago as 
Professor in the Basic Sciences Department, becoming Emeritus Professor in 1982. He 
was a member of the board of directors of the Academy from 1981 to 1984. Pepe accepted 
the post of Director of the Entomological Center in 1984, then Director of the Ento- 
mological Institute (which he founded) in 1985. 

In 1985 Don José was awarded the National Prize for Education, Chile's highest 
recognition in education. This award carries with it, aside from the considerable academic 
honors, a substantial life-time stipend for him and later, for his surviving widow. This 
award made from page news from Antofagasta to Punta Arenas and the magazine Revista 
de Educatién featured him on the cover and in two articles of the October 1985 issue, 
as the nation remembered the fifty years of teaching by Profesor José Herrera G. 

Pepe retired several times but was talked into taking up another academic post. Thus, 
he was asked to serve as Dean of Basic Sciences at the Universidad Metropolitana de 
Ciences de la Education, which he accepted in April of 1986 and held until his death. 

The former journal Publicaciones del Centro de Estudios Entomologicos, which ran 
for 12 volumes until 1982, was succeeded and continued in 1986 as the new Acta En- 
tomolégica Chilena, Volume 13. As the Director of the Center for Entomological Studies 
and then as Director of the Entomological Institute, Don José was a major force in the 
creation of this new journal and he wrote its preface. 

Pepe joined La Sociedad Chilena de Entomologia in 1934 and was elected Vice- 
President in 1981. He had been a member of The Lepidopterists’ Society since 1949 and 
served on the Executive Council from 1953 to 1955, and as Vice-President in 1966-1967. 
He joined the Sociedad de Biologia de Chile in 1978, the Lepidoptera Research Foundation 


VOLUME 46, NUMBER 3 | 249 


Prof. José Herrera G. 


250 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


in 1984, and was a member of the Advisory Council of the Association for Tropical 
Lepidoptera since its inception in 1989. 


LEPIDOPTEROLOGICAL INTERESTS 


Pepe was an educator, and his bibliography reflects this somewhat. In this capacity he 
travelled widely, allowing him to collect insects and visit many museums and entomo- 
logical colleagues in Europe and North and South America. In 1951, from June through 
September, Pepe visited the United States and worked at the U.S. National Museum. In 
1960 he returned to the United States at Atlanta, Georgia, and also visited Sao Paulo, 
Brasil. From November 1961 to March 1962 he visited Italy, France, Switzerland, and 
Spain and spent March and April of that year at the British Museum (Natural History). 
Next, on education business in 1964, he went to Puerto Rico and the United States again, 
visiting several states including California. He studied butterflies of the high Andes in 
Colombia, Ecuador and Peru, collecting and visiting museums during July and August 
of 1969. He returned to California in 1979 and in 1982 when he worked at the University 
of California at Davis and at the Oakland Museum. He traveled to Antarctica in 1980, 
to Florida and the Allyn Museum in September and October of 1984, then returned to 
California in 1988. 

Don José also traveled extensively in Chile collecting insects, often with a busload of 
his students. He very much enjoyed having students about him. Pepe was very athletic 
in his youth, and held for a time the national championship in the long jump; he prized 
an action photograph of him in competition which he had hanging in his office. This 
interest in his fitness took him, whenever possible, to some of the numerous hot springs 
and bath resorts, or termas, that are scattered along the Andes and foothills of at least 
the northern two thirds of Chile. Many of his favorite collecting localities reflect his visits 
to such hot springs “for his health.” 

He was especially interested in Chilean butterflies and had hoped to complete a book 
on the Butterflies of Chile. This led to his collaboration with several northern Lepidopterists 
with whom he became acquainted over the years in connection with Chilean Nymphal- 
idae, Satyridae, Pieridae, Lycaenidae and Hesperiidae, e.g. T. G. Howarth, W. D. Field, 
A. M. Shapiro, L. D. Miller, K. Johnson, and me. Pepe had accumulated a large and 
valuable collection of Chilean Lepidoptera which was housed at the University. This 
collection was destroyed by deliberate burning during the campus riots by the Socialistas 
in 1973. Very little material survived the fire. He never got over the loss and never felt 
comfortable again about keeping valuable specimens at the University. He had gathered 
a small collection since then which he kept at his home. He was much concerned about 
conserving native species. He was interested in establishing a Butterfly House of native 
species, and wished to reintroduce to Cerro San Cristobal in Santiago larval food plants, 
nectar sources and native butterflies of Chile. He was working with several people in 
authority toward that goal. 

There can be little doubt that Pepe was the dean of Lepidoptera in Chile; he knew 
the fauna extremely well and produced a number of students of Lepidoptera. His eye 
for discriminating species was acute as was his sense of similarities. Pepe was a strong 
believer in the reliability of genitalic characters in taxonomy and this led to spirited 
discussions. Art Shapiro tells of one such discussion where he ultimately challenged Pepe 
to a test; Shapiro would send him ten separated pierid abdomens with code numbers only 
and Pepe would report the identifications. Shapiro had included a couple of natural 
hybrids from Patagonia. He reports that Pepe got nine and a half correct. (He called a 
hybrid one of its presumptive parents.) Art has done this test with others and states that 
no one has ever come close to Pepe’s record. 

Pepe was a very good natured man who would unexpectedly burst into song. He had 
a refreshing sense of humor. He never felt comfortable with English and was wonderfully 
amused by his misadventures with the language. He delighted in the retelling of these 
misunderstandings and their consequences, told with much drama and expressive gesture. 
He was a proud man; proud of his family, his home and garden. He was proud too, of 
his accomplishments and the people he had met, and of his country. He loved fine wine 
and kept an extensive cellar of special vintages, a bottle of which was likely to appear at 


VOLUME 46, NUMBER 3 | 251 


the dinner table. He was fun to be around and had an infectious personality that made 
him many friends wherever he traveled. He will be remembered fondly and much missed 
by all those he touched. 


My thanks for reminiscences or helpful suggestions to Art Shapiro, Lee Miller, and 


Jackie Miller. To Pepe’s wife Ernesta, and his daughter Nievas Andredesz, I am partic- 
ularly grateful for generous help. I extend to them and their family my deepest sympathy. 


C. DON MACNEILLL, Research Associate, Department of Entomology, California Acad- 


emy of Sciences, Golden Gate Park, San Francisco, California 94118-4599. 


10. 


ele 


12. 


PUBLICATIONS OF JOSE HERRERA G. 


1949 


. La Pesca del congrio. Bol. Inst. Nac. 14(35):2-30, 2 figs. Santiago. 


1950 


. Dos géneros nuevos de nimfalidos para Chile. An. Univ. Catol. Chile 25(1):5-1E 


1952 


. Ausancia de dimorfismo sexual en Colias flaveola Blanchard. Rev. Chilena Entomol. 


2:173-177. 


. La pesca con redes. Bol. Inst. Nac. 18(43):33-34, 1 fig. Santiago. 


1953 


. La pesca de la albacora. Bol. Inst. Nac. 18(45):27-28. Santiago. 


1954 


. Lepidopteros nuevos para Chile (Pieridae). Rev. Chilena Entomol. 3:140-147, 12 figs. 


. La ensenanza de la zoologia sistematica en el liceo. Ministerio de Educacion Publica. 
58 pp., 13 pls. 

. Curso de Zoologia (Artropodos, Vermes y Moluscos). 2 vols. Editorial Universitaria, 
Santiago. 

. Herrera, J. & O. Palma. Los principios fundamentales de la biologia (translation of 
English). Publ. Minister. Ed. Santiago. 

1955 

Curso teorico-practico de entomologia. Editorial Universitaria, 324 pp., 93 pls. San- 


tiago. 


1956 


Herrera, J., M. Etcheverry & A. Carrasco. Los Odonatos de Chile. Rev. Universitar. 
Univ. Catol. Chile 40 & 41(1):63-88, 33 figs. Santiago. 


1957 


Notas etnoentomologicas del pueblo de Putra. Notas Cent. Estud. Antropoldgicos No. 
1:9. Univ. Chile. 


252 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


13. Herrera, J., M. Etcheverry & C. Hochleitner. Los Pyrginae de Chile (Hesperiidae). 
Rev. Chilena Entomol. 5:143-182, 1 pl., figs. 1-19. 

14. Munizaga, C. & J. Herrera. Notas etnoentomologicas del pueblo de Socaire. Notas 
Cent. Estud. Antropologicos No. 1:3-8. 


1958 


15. Las puebas del bachillerato. Editorial Universitaria Santiago. 

16. Herrera, J.. M. Etcheverry & M. Barrientos. Los Nymphalidae Chilenos. An. Univ. 
Chile 116(111):237-268, 2 pls., figs. 1-51. Santiago. 

17. Palma, O., J. Herrera & M. Etcheverry. El problema de la ensenanza cientifica en 
el liceo. Editorial Universitaria. 124 pp. Santiago. 


1959 


18. Herrera, J. & W. Field. A revision of the butterfly genera Theochila and Tatochila 
(Lepidoptera, Pieridae). Proc. U.S. Natl. Mus. 108:467-514, 93 figs. 


1960 


19. Herrera, J. & M. Etcheverry. Actualizacion de los nombres de los Apidos estudiados 
por Claude Joseph. Publ. Cent. Estud. Entomol. No. 1:63-64. Santiago. 

20. Papilionidae de Chile. Rev. Universitar. Univ. Catol. Chile. 44 & 45:153-155. Santiago. 

21. El concepto de especie. Rev. Universitar. Univ. Catol. Chile: 44 & 45:157-163. San- 
tiago. 


1961 


22. Plan de integracién educaciénal de Arica. Ministerio de Educacion Publica. 50 pp., 
8 pls. 


1963 
23. Curso tedrico-practico de entomologia, 2nd ed. Editorial Universitaria, Santiago. 


1964 


24. Etcheverry, M., J. Herrera & L. Russel. Principios de biologia moderna de D. Mars- 
land. Editorial Universitaria. 616 pp., 27 tabs., 446 figs. (translation of English of 3rd 
ed.) 


1965 


| 25. Etcheverrius y Palmaris, nuevos géneros de Satyridae Andinos (Lepidoptera). Publ. 
Cent. Estud. Entomol. No. 7; 57-78, figs. 1-26, 34-39, 59-63. Santiago. 

26. Herrera, J. & J. Carrasco. Biologia de Thanatopsyche chilensis (Philippi) (Lepidop- 
tera). Publ. Cent. Estud. Entomol. No. 6:33-48, 3 pls., Santiago. 

27. Herrera, J. & M. Etcheverry. Stuardosatyrus nuevo género de Satyridae y revalidacion 
de la especie williamsianus, Bulter, 1868. Publ. Cent. Estud. Entomol. No. 7:74-77, 
figs. 27-33, 50-58. Santiago. 


VOLUME 46, NUMBER 3 . 253 


28. 


29. 


30. 


Sl. 


32. 


33. 


34. 


35. 


36. 


37. 


38. 


39. 


40. 


1966 


Quilaphoetosus, Chillanella y Haywardella, nuevos géneros de Satyridae Andinos 
(Lepidoptera). Publ. Cent. Estud. Entomol. No. 8:69-72, 29 figs. Santiago. 
Ejemplar hermafrodita de Quilaphoetosus janiroides Blanchard) (Lepidoptera, Saty- 
ridae). Publ. Cent. Estud. Entomol. 8:127—-133, 3 pls. Santiago. 

Herrera, J. & T. Howarth. Genitalia de los tipos de Satyridae de Chile depositados 
en el British Museum. Publ. Cent. Estud. Entomol. No. 8:73-126, 29 figs. Santiago. 


SZOF 


Una especie y dos subespecies nuevas de Tatochila colectadas en la alta cordillera 
de Antofagasta (Lepidoptera, Pieridae). Publ. Cent. Estud. Entomol. No. 10:5-7, 21 
figs. Santiago. 

Herrera, J. & M. Etcheverry. Revalidacion de Butleria philippi (Butler) 1881 (Lepi- 
doptera, Hesperiidae). Publ. Cent. Estud. Entomol. No. 10:65-71, 11 figs. Santiago. 


Ol 


Mariposas comunes a Chile y Peru. (I Congreso Latinoamer. Entomol. Summary. ) 
Lima. 


1972 


Herrera, J. & M. Etcheverry. Mariposas comunes a Chile y Pert (Lepidoptera, Rho- 
palocera). Rev. Peru. Entomol. (An. I Congr. Latinoamer, Entomol.) 15(1):72-74. 
Lima. 

Curso teorico-practico de entomologia. 3rd ed., 365 pp., 50 pls. Editorial Universitaria, 
Santiago. 


1974 


Auca delessei, n. sp. Especie gemela de Auca coctei Guerin; genitalia y cariotipos de 
las spp. de Auca (Lepidoptera, Satyridae). Publ. Entomol. 11:22-32, pl. 1-7, 27 figs. 
Santiago. 


UT 


Zoogeografia de las maripoas Sudamericanas de la rama ““Tatochila—Phulia”. Resum. 
VII Congr. Latinoamer. Zool.: 105-106. Tucuman. 

Field, W. & J. Herrera. The pierid butterflies of the genera Hypsohila Ureta, Phulia 
Herrich-Schaffer, Infraphulia Field, Pierphulia Field and Piercolias Staudinger. 
Smithsonian Contrib. Zool. No. 232:1-64, 5 maps, 198 figs. 


1981 


Biologia de Cynthia carye Hubner 1812, especie criptica de Cynthia annabella Field 
1971 (Lepidoptera). IV Congreso Latinoamer. de Entomol. Actas del Congreso. 


1982 


La vida sylvestre. ;Se extinguin las mariposas en Chile? Academia No. 3. Publ. Cent. 
Estud. Entomol. No. 12:205-238, figs. 1-49. Santiago. 


254 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


41. 


42. 


47. 


48. 


49. 


50. 


ol. 


o2. 


53. 


1983 


Como animar un jardin; embellecerlo con mariposas. Primer Encuentro Cientifico 
Sobre el Medio Ambiente Chileno. Vol. 1. 5 pp. 2 figs. 

Herrera, J. & R. Covarrubias. Distribicion biogeografia del grupo Tatocheila (sic)— 
Phulia (Lepidoptera: Pieridae). Res. Comm. Sci. IX Congr. Latinoamer. Zool., Are- 
quipa, Pert. 


1986 


. Prologo. Acta Entomol. Chilena 13:9-10. (A preface to the new journal replacing the 


12 vols. of Publ. Cent. Estud. Entomol. of the Univ. of Chile.) 


. Pamperis poaoeneis Heimlich (Lep., Satyridae). Observaciones criticas y rectifica- 


ciones de la venacion alar y genitalia de esta especie. Acta Entomol. Chilena 13:161- 
166, figs, 1-15. 


. El profesor y las reformas. Rev. Educ., pp. 16-19. Ministerio de Educacion. Santiago. 
. Biologia de Cynthia carye (Hubner) 1812, especie cryptica de C. annabella Field 


1971 (Lepidoptera; Nymphalidae). Acta Entomol. Chilena 14:65-116, pls. 1-30. 


1987 


Herrera, J. & R. Cortés. Profesor Dr. Amador Neghme R. (1913-1987). Acta Entomol. 
Chilena 14:28]. 

Herrera, J., R. Covarrubias & L. Opazo. Observaciones sobre larvas de Phoebis sennae 
amphitrite (Feisthamel) 1893 (Lepidoptera). Acta Entomol. Chilena 14:183-186, figs. 
1-3. 


1989 


Iconotipo de Cynthia carye (Hubner, 1812) (Lepidoptera: Nymphalidae). Acta En- 
tomol. Chilena 15:265-267, figs. 1-20. 

Herrera, J. & V. Perez. Hallazgo en Chile de Stuardosatyrus williamsianus (Butler), 
1886, y consideraciones sobrea el género (Lepidoptera: Satyridae). Acta Entomol. 
Chilena 15:171-195, figs. 1-53. 

Cortés, R. & J. Herrera. Antecedentes historicos y bibliograficos para una historia de 
la entomologia en Chile. Acta Entomol. Chilena 16:297-322. 


1991 


Herrera, J.,C. MacNeill & J. Atria. Revision taxonoémica del género Butleria (Lepidop- 
tera: Hesperiinae). Acta Entomol. Chilena 16:201—246, tabs., figs., maps 1-3, pls. 1- 
NS: 

Fotografias del hermafrodita Quilaphoetosus janiriodes (Blanchard) (Lepidoptera: 
Satyridae). Acta Entomol. Chilena 16:277-278, figs. 1-9. 


Date of Issue (Vol. 46, No. 3): 10 November 1992 


EDITORIAL STAFF OF THE JOURNAL 


JOHN W. Brown, Editor: BOYCE A, DRUMMOND, Retiring Editor 
Entomology Department Natural Perspectives 
San Diego Natural History Museum P.O. Box 9061 
P.O. Box 1390 Woodland Park, Colorado 80866 U.S.A. 


San Diego, California 92112 U.S.A. 


Associate Editors: 
M. DEANE Bowers (USA), BOYCE A. DRUMMOND (USA), LAWRENCE F. GALL (USA), 
GERARDO LAMAS (Peru), ROBERT C. LEDERHOUSE (USA), ROBERT K. ROBBINS (USA), 
CHRISTER WIKLUND (Sweden) 


NOTICE TO CONTRIBUTORS 


Contributions to the Journal may deal with any aspect of Lepidoptera study. Categories 
are Articles, Profiles, General Notes, Technical Comments, Book Reviews, Obituaries, 
Feature Photographs, and Cover Illustrations. Reviews should treat books published within 
the past two years. Obituaries must be authorized by the President of the Society. Re- 
quirements for Feature Photographs and Cover Illustrations are stated on page 111 in 
Volume 44(2). Journal submissions should be sent to the editor at the above address. 
Short manuscripts concerning new state records, current events, and notices should be 
sent to the News, Stephanie McKown, Editor, 650 Cotterell Drive, Boise, Idaho 83709 
U.S.A. Journal contributors should submit manuscripts in triplicate, typewritten, entirely 
double-spaced, with wide margins, on one side only of white, letter-sized paper. Prepare 
manuscripts according to the following instructions, and submit them flat, not folded. 

Abstract: An informative abstract should precede the text of Articles and Profiles. 

Key Words: Up to five key words or terms not in the title should accompany Articles, 
Profiles, General Notes, and Technical Comments. 

Text: Contributors should write with precision, clarity, and economy, and should use 
the active voice and first person whenever appropriate. Titles should be explicit, descrip- 
tive, and as short as possible. The first mention of a plant or animal in the text should 
include the full scientific name with author, and family. Measurements should be given 
in metric units; times in terms of the 24-hour clock (0930 h, not 9:30 AM). Underline 
only where italics are intended. 

Literature Cited: References in the text of Articles, Profiles, General Notes, and 
Technical Comments should be given as Sheppard (1959) or (Sheppard 1959, 1961a, 
1961b) and listed alphabetically under the heading LITERATURE CITED, in the following 
format without underlining: 


SHEPPARD, P. M. 1959. Natural lekdon and heredity. 2nd ed. Hutchinson, London. 
209 pp. 

196la. Some contributions to population genetics resulting from the study of 

the Lepidoptera. Adv. Genet. 10:165-216. 


Illustrations: Only half of symmetrical objects such as Adal with wings spread should 
be illustrated, unless whole illustration is crucial. Photographs and drawings should be 
mounted on stiff, white backing, arranged in the desired format, allowing (with particular 
regard to lettering) for reduction to fit a Journal page. Illustrations larger than letter- 
size are not acceptable and should be reduced photographically to that size or smaller. 
The author's name and figure numbers as cited in the text should be printed on the back 
of each illustration. Figures, both line drawings and photographs, should be numbered 
consecutively in Arabic numerals; “plate” should not be employed. Figure legends must 
be typewritten, double-spaced, on a separate sheet (not attached to illustrations), headed 
EXPLANATION OF FIGURES, with a separate paragraph devoted to each page of illustrations. 
Color illustrations are encouraged; contact editor for submission requirements and cost. 

Tables: Tables should be numbered consecutively in Arabic numerals. Headings for 

tables should not be capitalized. Tabular material must be typed on separate sheets, and 
placed following the main text, with the approximate desired position indicated in the 
text. Vertical lines as well as vertical writing should be avoided. 
_ Voucher specimens: When appropriate, manuscripts must name a public repository 
where specimens documenting identity of organisms can be found. Kinds of reports that 
require vouchering include life histories, host associations, immature morphology, and 
experimental enquiries. 

Proofs: The edited manuscript and galley proofs will be mailed to the author for 
correction of printer's errors. Excessive author’s changes at this time will be charged to 
authors at the rate of $2 per line. A purchase order for reprints will accompany proofs. 

Page charges: For authors affiliated with institutions, page charges are $20 per Jour- 
nal page. For authors without institutional support, page charges are $10 per Journal 
page. Authors unable to pay page charges for any reason should apply to the editor at 
the time of submission for a reduced rate or free publication. Authors of Book Reviews 
and Obituaries are exempt from page charges. 

Correspondence: Address all matters relating to the Journal to the editor. 


PRINTED BY THE ALLEN PRESS, INC., LAWRENCE, KANSAS 66044 U.S.A. 


CONTENTS 


TEMPORAL CHANGES IN ABUNDANCE OF TWO LYCAENID BUTTER- 
FLIES (LYCAENIDAE) IN RELATION TO ADULT FOOD RE- 
SOURCES. C. J. Hill 


GENITALIC CHARACTERIZATION, ENLARGEMENT, AND REASSOCIA- 
TION OF THE NEOTROPICAL HESPERIINE GENUS HALOTUS 
(HESPERIIDAE). John M. Burns 


FOODPLANT SPECIFICITY AND BIOLOGY OF OIDAEMATOPHORUS 
BALANOTES (PTEROPHORIDAE): A NORTH AMERICAN MOTH 
INTRODUCED INTO AUSTRALIA FOR THE BIOLOGICAL CONTROL 
OF BACCHARIS HALIMIFOLIA. W. A. Palmer and W. H. 
Haseler 


BIOLOGY OF EPIPHYLL FEEDING BUTTERFLIES IN A NIGERIAN COLA 
FOREST (LYCAENIDAE: LIPTENINAE). Curtis J. Callaghan 


POTENTIAL FOR THE NON-INVASIVE STUDY OF INSECT HEART 
FUNCTION WITH A DOPPLER CRYSTAL SYSTEM. Jon D. Turner 


TWO NEW SPECIES OF MOTHS (NOCTUIDAE: ACRONICTINAE, 


(CCUCULLIINAE) FROM MIDLAND UNITED STATES. Charles V. 


Covell Jr. and Evic H. Metzler 3) ee 
GENERAL NOTES 


Parasitoid induced mortality in the eggs of the endangered giant swallowtail 
butterfly Papilio homerus (Papilionidae). Eric Garraway and Audette 


JOA. Bathe y oe Ee ee ee He 
World distribution of the Vanessa cardui group (Nymphalidae). Oakley 
Shields: 6i.55 00 ses ng 0 8 a ee 
Notes on the type of Papilio cresphontes ab. “maxwelli’ (Papilionidae). John 
Ve Galhotin vn OU i ak A 


Book REVIEWS 


The Nepticulidae and Opostegidae (Lepidoptera) of north west Europe. 
Donald R. Davis e502) soo Os a Ns 


Distribution of butterflies in New Mexico (Lepidoptera: Hesperioidea and 
Papilionoidea)::. ‘George T.' Austin 20 0 


Simon & Schuster’s guide to butterflies and moths. Lawrence F. Gall ........... 


Larvae of owlet moths (Noctuidae): Biology, morphology, and classification. 
Thomas: D.:Fichlin 2). 20 es a ee ee ee 


Discover butterflies! An activity book for families, students, and teachers. 
Thomas. Co Emmel 2:2 2 eos ee Ee 


Biologia y morfologia de las Orugas: Lepidoptera, Vol. 6: Syssphingidae— 


Saturniidae—Endromidae—Lasiocampidae—Drepanidae— Thyatiri- 
dae—Notodontidae—Hypsidae. Richard S. Peigher 2... c:-sssccteccre een 


OBITUARY 


José Valentin Herrera Gonzalez. C. Dom MacNeibl ccccccos:eteccecsessseeeseeteteee teen 


THIS PUBLICATION IS PRINTED ON ACID-FREE PAPER. 


173 


182 


195 
203 
215 


220 


233 


235 


] 
ST 


Volume 46 oe ae Number 4 


ISSN 0024-0966 


JOURNAL 


of the 


LEPIDOPTERISTS’ SOCIETY 


Published quarterly by THE LEPIDOPTERISTS’ SOCIETY 


Publié par LA SOCIETE DES LEPIDOPTERISTES 
Herausgegeben von DER GESELLSCHAFT DER LEPIDOPTEROLOGEN 
Publicado por LA SOCIEDAD DE LOS LEPIDOPTERISTAS 


19 January 1993 


THE LEPIDOPTERISTS’ SOCIETY 


EXECUTIVE COUNCIL 


Ray E. STANFORD, President HIROSHI INOUE, Vice President 
FLOYD W. PRESTON, Immediate Past President IAN KITCHING, Vice President 
M. DEANE BOWERS, Vice President ROBERT J. BORTH, Treasurer 


WILLIAM D. WINTER, Secretary 


Members at large: 


Karolis Bagdonas Charles V. Covell, Jr. Eric H. Metzler 
Steven J. Cary Linda S. Fink _ Robert K. Robbins 
Stephanie S. McKown Scott E. Miller J. Benjamin Ziegler 


EDITORIAL BOARD 


PAUL A. OPLER (Chairman), FREDERICK W. STEHR (Member at large) 
JOHN W. BROWN (Journal), WILLIAM E. MILLER (Memoirs) 
STEPHANIE S. MCKOWN (News) 


HONORARY LIFE MEMBERS OF THE SOCIETY 


CHARLES L. REMINGTON (1966), F. MARTIN BROWN (1978), E. G. MUNROE (19738), 
ZDRAVKO LORKOVIC (1980), IAN F. B. COMMON (1987), JOHN G. FRANCLEMONT (1988), 
LINCOLN P. BROWER (1990), DOUGLAS C. FERGUSON (1990), 

HON. MIRIAM ROTHSCHILD (1991), CLAUDE LEMAIRE (1992) 


The object of the Lepidopterists’ Society, which was formed in May 1947 and for- 
mally constituted in December 1950, is “to promote the science of lepidopterology in all 
its branches, ... . to issue a periodical and other publications on Lepidoptera, to facilitate 
the exchange of specimens and ideas by both the professional worker and the amateur 
in the field; to secure cooperation in all measures” directed towards these aims. 

Membership in the Society is open to all persons interested in the study of Lepi- 
doptera. All members receive the Journal and the News of the Lepidopterists’ Society. 
Institutions may subscribe to the Journal but may not become members. Prospective 
members should send to the Treasurer full dues for the current year, together with their 
full name, address, and special lepidopterological interests. In alternate years a list of 
members of the Society is issued, with addresses and special interests. There are four 
numbers in each volume of the Journal, scheduled for February, May, August and 
November, and six numbers of the News each year. 


Active members—annual dues $25.00 
Student members—annual dues $15.00 
Sustaining members—annual dues $35.00 
Life members—single sum $500.00 
Institutional subscriptions—annual $40.00 


Send remittances, payable to The Lepidopterists’ Society, to: Robert J. Borth, Treasurer, 
6926 North Belmont Lane, Fox Point, Wisconsin 53217, U.S.A.; and address changes to: 
Julian P. Donahue, Natural History Museum, 900 Exposition Blvd., Los Angeles, California 
90007-4057 U.S.A. For information about the Society, contact: William D. Winter, Sec-_ 
retary, 257 Common St., Dedham, Massachusetts 02026-4020, U.S.A. (617-326-2634). To 
order back issues of the Journal, News, and Memoirs, write for availability and prices 
to the Publications Manager: Ronald Leuschner, 1900 John St., Manhattan Beach, Cali- 
fornia 90266-2608, U.S.A. 


Journal of the Lepidopterists’ Society (ISSN 0024-0966) is published quarterly for 
$40.00 (institutional subscription) and $25.00 (active member rate) by the Lepidopterists’ 
Society, % Los Angeles County Museum of Natural History, 900 Exposition Blvd., Los 
Angeles, California 90007-4057. Second-class postage paid at Los Angeles, California and — 
additional mailing offices. POSTMASTER: Send address changes to the Lepidopterists’ 
Society, % Natural History Museum, 900 Exposition Blvd., Los Angeles, California 90007- 
4057. 


Cover illustration: The white-lined sphinx moth, Hyles lineata (Fab.) (Sphingidae), is 
the most common and widespread member of the family in North America. Larvae feed 
on a wide variety of dicotyledenous plants in several families, including Rosaceae, So- 
lanaceae, Onagraceae, Portulacaceae, and Nyctaginaceae. Submitted by Callie Mack, 
8529 Jackie Drive, San Diego, California 92119 U.S.A. 


JOURNAL OF 


Tue LeripoprTrerRiIsts’ SOCIETY 


Volume 46 1992 Number 4 


Journal of the Lepidopterists’ Society 
46(4), 1992, 255-264 


GRADIENTS IN BUTTERFLY SPECIES DIVERSITY IN AN 
URBAN AREA IN BRAZIL 


ALEXANDRE RUSZCZYK 


Departamento de Biociéncias, Universidade Federal de Urberlandia, 
CEP. 38.400, Uberlandia - MG, Brasil 


AND 


ALDO MELLENDER DE ARAUJO 


Departamento de Genética, Universidade Federal do Rio Grande do Sul, 
CEP. 91.501, C.P. 15053, Porto Alegre - RS, Brasil 


ABSTRACT. The diversity (Shannon- Weaver) of butterflies throughout the urbanized 
area of Porto Alegre, Brazil, was analyzed using 109 sampling areas within three char- 
acteristic zones of urbanization: buildings (B), houses and buildings (HB), and houses (H). 
Highest diversity was found in the periphery of the houses zone (H) one to two kilometers 
beyond the perimeter of the houses and buildings zone (HB). From zone H to zone HB 
we observed a significant decrease in diversity and a small overlap in community com- 
position (Renkonen’s PS). From zone HB to a central zone of buildings (B), there was a 
relatively small change in community composition demonstrated by statistically similar 
diversity indices and a high species similarity. These findings suggest the existence of two 
macrohabitats for butterflies in the city: 1) B + HB and 2) H. Samples from areas within 
the same urbanized zone showed the highest degree of similarity. Diversity decreased in 
the B + HB macrohabitat mainly owing to a reduction in species richness (S). Biotic and 
abiotic factors that may be involved in this reduction are discussed. For late spring and 
midsummer samples, nearly 50% of the variation in diversity was explained by vegetation 
cover and distance from the city center. This value rises to 63% for the total diversity 
and 70% for the log transformation of species richness. These high proportions emphasize 
the importance of regional urban environmental conditions for butterfly diversity. In the 
winter, only vegetation cover presented a partial regression coefficient that was significant, 
accounting for less than 20% of the variation in diversity. Also, a scattered distribution 
of areas with high butterfly diversity associated with high vegetation cover was observed 
during the winter. 


Additional key words: urban ecology, urban Lepidoptera, insect diversity, man-made 
habitats, community structure. 


The structure and diversity of biotic communities within urban en- 
vironments are important for theoretical and practical reasons. Urban 
biotas can be studied from a genetic and evolutionary perspective, as 


256 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


exemplified by Bishop and Cook (1981), or from an ecological per- 
spective as demonstrated by Ruszczyk (1987). The ecological conse- 
quences of urbanization for particular groups of plants and animals can 
indicate the degree of disturbance of such environments and may be 
useful in developing strategies for conservation. 

In a previous study, Ruszezyk (1987) presented maps of the distri- 
butions of 29 species of butterflies within the urbanized area of Porto 
Alegre, Brazil. Species exhibited variable rates of decline toward the 
highly-developed urban center. The border between a predominantly 
house-occupied zone (H) and a zone of houses and buildings in equal 
proportions (HB) was found to be the main area of transition for the 
urban fauna, acting as an ecological barrier for species typically asso- 
ciated with woods or natural fields. Species that are associated with 
open areas, that are highly vagile, and that have larvae that utilize both 
native and exotic cultivated plants were dominant in the city. Distance 
of the sampling areas from the center of the city was found to be a 
better predictor of butterfly numbers than average elevation or vege- 
tation cover. 

In this study we further analyzed butterfly diversity for 109 sampling 
points. We also investigated factors influencing spatial patterns of di- 
versity and species richness within the city as well as the similarities in 
the structure of butterfly communities in regions within different levels 
of urbanization. 


MATERIALS AND METHODS 


Study area. Porto Alegre is a large urban area in Rio Grande do Sul 
in southern Brazil (30°02’S 51°14’W; 1,000,000 inhabitants). It has a 
temperate-subtropical climate with high humidity and moderately high 
temperatures in the summer. Mean annual temperature is 18.8°C, and 
average annual rainfall is 1322 mm. Three characteristic zones of ur- 
banization were identified (Ruszczyk 1987): a buildings zone (B) with 
buildings more than four stories high and vegetation cover below 20%; 
a houses-and-buildings zone (HB) with equal proportions of lower build- 
ings and houses and vegetation cover between 20 and 40%; and a houses 
zone (H) with mostly houses but including open areas within the city, 
and vegetation above 40% (Fig. la). The urbanized zones illustrated in 
Fig. 1A were simplified by drawing tangential lines to the borders of 
the different urbanized zones (Fig. 1b). 

Data collection. A 1 km grid was superimposed on the map of the 
urbanized zones resulting in 109 contiguous sample areas within the 
city. Sampling areas (SAs) were arbitrarily delineated as 600 m diameter 
circles (Fig. 1b). SAs were surveyed for butterflies during three sampling 
periods: November—December 1980, March-April 1981, and June-July 


VOLUME 46, NUMBER 4 ; DESY T 


% PLANT COVER 


| J ; @ 304145 
h | ee 


Fic. 1. Urbanized zones of Porto Alegre in 1981 (a), and distribution of sampling 
areas in a simplified map (b). The triangle in Fig. 1b indicates the center of the buildings 
zone. 1, buildings zone; 2, houses-and-buildings zone; 3, houses zone; 4, marshes; 5, 
extraurban area. 


2Km 


7 : : O<15 
elf UiIi||| ©1530 


1981. Each SA was sampled sequentially, five SAs per day between 
1000-1600 h. SAs were censused by walking continually along the streets 
and recording the number of each butterfly species observed during a 
45 minute period (see Ruszczyk 1987 for further details of the sampling 
program and study area). The distance between each SA and the SA 
at the center of the building zone (marked with a triangle in Fig. 1b) 
was considered the “distance from the city center.’ The average ele- 
vation of each SA was calculated as the arithmetic mean of its highest 
and lowest points. 

Data analysis. The Shannon-Weaver index (Margalef 1958, Lioyd & 
Ghellardi 1964, Pielou 1966) was used to calculate diversity (H') for 
each SA. The SAs were grouped in three sets related to the three 
urbanized zones. The differences between the calculated indices for 
these sets were compared using a t-test moditication proposed by Poole 
(1974) for evaluating diversity calculations. In addition, a one-way 
analysis of variance was applied to the three sampling periods (Nov— 
Dec/80; Mar—Apr/81; Jun—Jul/81) disregarding the zones, to test the 
effects of seasonality on mean diversity. The degree of similarity among 
samples was measured using Renkonen’s Percentage of Similarity (PS). 
For this analysis, SAs were combined into 11 regions with similar area 
within a single urbanized zone. This reduced the area matrix from 109 


258 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


mi oon 


LATESPRING 4 MIDSUMMER 
1980 1981 


2 3 
DIVERSITY CLASS = HI ae 
H=1.241.8 1.852.4 2.443.0 3.0-3.6 
Fic. 2. Diversity index (Shannon-Weaver) of butterfly communities in the urbanized 
zones of Porto Alegre. Clear areas indicate less than 12 individuals recorded; bold lines 
separate urbanization zones (see Fig. 1b). 


sampling points to 11 contiguous areas and permitted detection of 
patterns among city regions rather than local faunal similarities. Group- 
ing of regions in the principal matrix followed the simple average 
method (Sneath & Sokal 1973). The relative influence of 1) percentage 
of area covered by vegetation, 2) distance from the city center, and 3) 
mean elevation of each SA on butterfly diversity and on the total number 
of species was calculated using multiple regression. The explained vari- 
ation (R?) of the dependent variables was partitioned into components 
attributed to each independent variable following the standard regres- 
sion method (Kim & Kohout 1975). 


RESULTS 


Highest diversity values were found in zone H, typically one to two 
km beyond the perimeter of zone HB (Fig. 2). In late spring and 
midsummer (Figs. 2a & 2b), patterns of diversity were strongly cor- 
related with urbanized zones—zone H typically had diversity values 
greater than H' = 2.4 (Fig. 2, diversity class no. 3) and zone HB had 
lower values. During winter (Fig. 2c) there was greater variability in 
the diversity indices. However, the peripheral area of the houses zone 
(H) continued to support greater diversity. 

Papilionini and Heliconiini, two tribes that are abundant in the city, 
showed the same tendencies as described above (Fig. 3). A considerable 
decrease in the number of species in these two groups was observed at 
the border between zones H and HB. In zone B the number of species 
was fairly constant—one or two. The highest number of species was 
recorded in the periphery of zone H. In the winter, the number of 
species decreased greatly, especially in zones B and HB (Fig. 3). 

Multiple regression of diversity (using pooled seasonal data) with the 


VOLUME 46, NUMBER 4 259 


fe ands. Ni jee eae eae 


a oe: saa 88-<E/eee ~ 
ee a 
ma ae. adie de G6 Es 
eo @@ Bs ef <n. 88 68.28 Bad Be 6 0) Wetecaaee eee 
ae a a omega 
ABS AaB 
en BBB ABB ees 
He. BBa Be eB. ase BEL 
as _As Bas 
es 
ari, 
a cs 


Fic. 3. Number of species of Papilionini (a) and Heliconiini (b) in the urbanized 
zones of Porto Alegre. Each three-column group indicates the number of species recorded 
(from left to right) in late spring 1980, midsummer 1981 and winter 1981. 


number of species and species evenness showed a greater interaction 
with the number of species in the explained variance of diversity (R? 
= 0.90) than with the species evenness (R? = 0.10). The standardized 
regression coefficient (variables transformed to have unit variance al- 
lowing the comparison of variables measured in different units) of the 
number of species (0.98) was nearly three times greater than for even- 
ness (0.35), indicating that diversity decreased in zones B and HB mainly 
due to the reduction in the number of species in these zones. Diversity 
indices for the entire zone H (summation of SA data) were significantly 
higher than for zones HB and B. On the other hand, the indices for 
zone HB and B were not statistically different (Table 1). 


TABLE 1. Diversity of butterflies in three urbanized zones of Porto Alegre. The lines 
indicate indices that were statistically similar (P < 0.05). Differences between indices 
were compared using a t-test modification proposed by Poole (1974). 


Urbanized zone 


Houses-and- 


Sample Buildings buildings Houses 
Late spring, 1980 2.5414 3.0304 3.4785 
Midsummer, 1981 2.6344 3.0145 3.3108 


Total 2.9277 3.2251 3.4873 


260 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


% SIMILARITY 


70 80 90 100 


Fic. 4. Similarity (Renkonen’s index) in the structure of butterfly communities of 
regions within the city of Porto Alegre. I to VII, houses zone; VIII to X, houses-and- 
buildings zone; XI, buildings zone. 


Figure 4 illustrates the results of PS calculations. Two distinct clusters 
of regions are evident: 1) regions I to VIII, all but the last of which are 
located in zone H, with a high internal PS; and 2) regions IX and X in 
zone HB and region XI in zone B, with a comparatively low internal PS. 

Standardized regression coefficients of distance from the city center 
and vegetation cover with diversity and the log number of species, were 
similar; but distance had a slightly greater value (Table 2). In midsum- 
mer, distance was almost twice that of vegetation cover. In the winter, 
vegetation cover showed a significant partial regression coefficient with 
diversity, though accounting for less than 20% of the explained variation 
in diversity. In late spring and midsummer, about 50% of the variation 
in diversity was explained by vegetation cover and distance from the 
city center. This value increased to 63% for the total diversity and 70% 
for the log number of species. These high proportions demonstrate that 
such variables are important determinants of butterfly community 
structure in Porto Alegre. However, the contribution of each variable 
alone was, in general, less than 11%. More than 30% of the variation 
was due to the interaction of vegetation cover and distance, whose 
effects on butterfly diversity and species number was neither indepen- 


VOLUME 46, NUMBER 4 261 


TABLE 2. Decomposition of the explained variation in butterfly diversity (Shannon- 
Weaver index) in three sampling periods, and total number of species (In S) into com- 
ponents attributed to the independent variables percentage of area covered by vegetation 
of the sampled area (Xj) and distance from the city center (Xg). Standardized regression 
coefficients in parentheses. Angular transformation was used for X, and logarithmic for Xg. 


Proportion 


of variation Increment due Increment due to 
Dependent explained by to vegetation distance from the Not attributed 
variable X, and Xo cover city center to either X) 
(Y) (R2) (X)) (X9) or X9g alone 
Diversity 
Late Spring 0.456 0.058 0.075 0.323 
1980 (0.341) (0.390) 
Midsummer 0.489 0.043 0.108 0.338 
1981 (0.289) (0.464) 
Winter 0.171 OL Al — — 
1981 (0.413) 
Total 0.630 0.078 0.107 0.445 
1980-1981 (0.394) (0.465) 
Log no species 0.703 0.096 0.109 0.498 


(0.440) (0.467) 


(—), partial regression coefficient not significant after the inclusion of the variable in the multiple regression equation. 


dent nor additive (Table 2). The biological mechanism underlying the 
strong association between these two variables affecting butterfly di- 
versity and species number cannot be inferred from these data alone. 
Average elevation was excluded from this analysis because in the pres- 
ence of the other variables its partial regression coefficient was not 
significant. 

A marked seasonality in diversity was observed in Porto Alegre (Fig. 
5), with mean diversity of each sampling period significantly different 
even when the zone data were pooled (Table 3). 


DISCUSSION 


The buildings zone (B) did not form a subset isolated from the houses- 
and-buildings zone (HB) (Fig. 4), and the diversity indices for these 
zones were statistically similar (Table 1) revealing their similar butterfly 


WINTER 1981 LATE SPRING1980 MIDSUMMER 1981 


H-2.242 H=2.354 H=2.532 
(73) (101) Ly 
a4 2.2 2.3 2.4 2.5 26 H 


Fic. 5. Confidence intervals (P = 0.95) of the means of butterfly diversity in urban 
Porto Alegre during three sampling periods. Number of sampled areas between paren- 
theses. 


262 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


TABLES. Results of the one-way ANOVA for mean diversity in three sampling periods, 
independently of urbanized zone. H; = Late Spring 1980; Hyg = Midsummer 1981, Hg 
= Winter 1981. 


Source SS DF MS F P 
Between 3.7050 2 1.8525 15.47 <0.001 
(H,:Ho) vs. Hg Dh, PAYA! 1 2.1274 leven <0.001 
H, vs. Ho 1.5776 ] 1.5776 13.18 <0.001 
Within 31.9676 267 0.1197 
Total 39.673 269 


community structure. Zone B can be seen as a portion of the zone B 
+ HB macrohabitat where environmental conditions are more harsh 
for butterflies, but without divergence of the typical community of 
butterflies of zone HB. In this community (B), several species of but- 
terflies that are relatively abundant in zone H, are scarce or absent. 
These include woodland species, such as Heliconius erato phyllis (Fa- 
bricius), Eunica margarita (Godart), Adelpha spp. (Nymphalidae), Bat- 
tus spp., Parides spp. (Papilionidae); Nymphalidae that feed on fruit 
and sap (Hamadryas spp., Anaea spp.); species characteristic of fields, 
such as Colias lesbia pyrrhothea (Huebner), Eurema spp. (Pieridae), 
Euryades corethrus (Boisduval) (Papilionidae), Junonia evarete (Cra- 
mer), Vanessa spp. (Nymphalidae); and some eurytopic species, such 
as Dryas iulia (Fabricius), Anartia amathea (Eschscholtz) (Nymphal- 
idae), Papilio hectorides Esper, and Papilio astyalus Latreille (Papili- 
onidae). All species found in zones B and HB also were observed in 
zone H. These species [e.g., Papilio scamander Boisduval, Papilo an- 
chisiades capys Huebner (Papilionidae), Ascia monuste orseis (La- 
treille), Tatochila autodice (Huebner), Phoebis philea (Johansson) (Pier- 
idae), and Dryas iulia| are the most widespread in the city, attaining 
high densities in all urbanized zones (Ruszezyk 1987). The impoverish- 
ment of the butterfly community in the B + HB urbanized zone is 
likely the result of the considerable environmental disturbance in this 
area as compared to zone H. Abiotic and biotic factors are harsher in 
zone B + HB than in zone H. Abiotic factors include the following: a) 
dry and strongly illuminated habitat (e.g., all watercourses are chan- 
nelized, there are few shaded areas, and there is high sunlight pene- 
tration to the ground); b) greater air pollution owing to traffic; c) habitat 
disturbance from intense human movement and traffic; and d) streets 
and sidewalks completely paved and a large percentage of the area 
occupied by buildings, diminishing the resources at the soil surface. 
Biotic factors include the following: a) lower percentage of area covered 
by vegetation which acts to decrease diversity within these zones by 
lowering primary productivity (Connell & Orias 1964), and the accen- 
tuated fragmentation of the vegetation probably reduces colonization 


VOLUME 46, NUMBER 4 . 263 


and dispersion of butterflies; b) relative homogeneity of vegetation (in 
zones B and HB relicts of native vegetation were not observed, and 
many plants that are common in outlying areas were very scarce, giving 
a qualitative decrease in nectar sources and potential food plants for 
larvae); and c) smaller contribution of elements of the extraurban fauna 
(zones B and HB probably have small participation of the transitory 
species from peripheral areas than zone H, which is in direct contact 
with remnants of natural habitats). 

The formation of butterfly diversity gradients in the city is in contrast 
to the results obtained in studies of soil arthropods, which seem to 
respond more to local (soil) variables than to urban environmental 
gradients (Kihnelt 1955, Topp 1972, Lussenhop 1973, Maurer 1974). 
More recently, Klausnitzer and Richter (1983) demonstrated the pres- 
ence of an urban gradient for carabids in the city of Leipzig, Germany. 
As for butterflies, the distance from the center of the city showed a 
greater influence on diversity than vegetation cover or mean elevation, 
emphasizing the importance of macrohabitat conditions for these in- 
sects. 

Distance correlated well with butterfly abundance (Ruszczyk 1987) 
and diversity (present paper) in Porto Alegre, Brazil, probably because 
many parameters that are important for butterflies are radially dis- 
persed in the city due to the radial pattern of the urbanized zones. 

The non-significance of the partial regression coefficient of distance 
from the city center during winter, and the island character of the class 
distribution of diversity (Fig. 2c), suggest that winter butterfly diversity 
depends on qualitative variables such as presence of habitat refugia. 
When compared to other zones, zone H showed greater possibilities for 
the presence of such refugium. In the winter, a higher diversity was 
scattered among 26 SAs, all but one of which was situated in zone H; 
19 of these SAs possess vegetation cover greater than 45%. This provides 
evidence of the biotic value of urban vegetation, and suggests that 
fragments of habitat within the urbanized areas, especially urban forest 
fragments (Rodrigues et al. 1992), may perform a vital role in main- 
taining local biodiversity. 


ACKNOWLEDGMENTS 


We thank Keith S. Brown Jr., Bruce W. Triplehorn, Woodruff W. Benson, Thomas 
Lewinshon, and Miguel Petrere Jr., for reviewing the manuscript. 


LITERATURE CITED 


BisHop, J. A. & L. M. Cook. 1981. Genetic consequences of man-made change. Aca- 
demic Press, London. 409 pp. 

CONNELL, J. H. & E. Ortas. 1964. The ecological regulation of species diversity. Am. 
Nat. 98:399-414. 


264 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Kim, J. O. & F. J. KoHoutT. 1975. Multiple regression analysis, pp. 320-353. In Nie, N. 
H., C. H. Hull, J. G. Jenkins, K. Steinbrenner & D. H. Bent (eds.), Statistical package 
for the social sciences [SPSS]. 2nd ed. McGraw-Hill, New York. 

KLAUSNITZER, B. & K. RICHTER. 1983. Presence of an urban gradient demonstrated 
for carabid associations. Oecologia 59:79-82. 3 

KUHNELT, W. 1955. Gesichtspunkte zur Beurteilung der Grossstadtfauna (mit beson- 
derer Berticksichtigung der Wiener Verhaltnisse). Ost. zool. Z. 6:30-54. 

Luioyp, M. & R. J. GHELLARDI. 1964. A table for calculating the “equitability” com- 
ponent of species diversity. J. Anim. Ecol. 33:217—-225. 

LUSSENHOP, J. 1973. The soil arthropod community of a Chicago expressway margin. 
Ecology 54:1124-1137. 

MARGALEF, R. 1958. Information theory in ecology. Yb. Soc. gen. Sys. Res. 3:36-71. 

MAURER, R. 1974. Die Viefalt der Kafer-und Spinennfauna des Wiesenbodens im 
Einflussbereich von Verkerhsimmissionen. Oecologia 14:327-851. 

PIELOU, E. C. 1966. The measurement of diversity in different types of biological 
collection. J. Theor. Biol. 13:131-144. 

POOLE, R. W. 1974. Introduction to quantitative ecology. McGraw-Hill, New York. 

RODRIGUES, J. J. S., K. S. BROWN JR. & A. RUSZCZYK. 1992. Resources and conservation 
of Neotropical butterflies in urban forest fragments. Biol. Conserv. In press. 

RUSZCZYK, A. 1987. Distribution and abundance of butterflies in the urbanization zones 
of Porto Alegre, Brazil. J. Res. Lepid. 25:157-178. [“1986’’]. 

SNEATH, P. H. & R. R. SOKAL. 1973. Numerical taxonomy. The principles and practice 
of numerical classification. Freeman, San Francisco. 578 pp. 

Topp, W. 1972. Invasion of a city park by beetles. Pedobiologia 12:336-346. 


Received for publication 11 October 1991; revised and accepted 5 September 1992. 


Journal of the Lepidopterists’ Society 
46(4), 1992, 265-268 


A NEW TEXAS CLEARWING MOTH 
(SESIIDAE: SESIINAE) 


THOMAS D. EICHLIN 


Insect Biosystematics Laboratory, Division of Plant Industry, 
Department of Food and Agriculture, Sacramento, California 94271-0001 


ABSTRACT. A new species of clearwing moth, Carmenta flaschkai, from Fort Davis, 
Texas is described. The male genitalia are illustrated. 


Additional key words: Carmenta flaschkai, C. verecunda, Synanthedon canadensis, 
sex attractant, couplet. 


Since the recent publication of a revision of North American Sesiidae 
(Eichlin & Duckworth 1988), a small series of male clearwing moths 
from Fort Davis, Texas were sent to me for identification. Generally, 
they resemble specimens of Carmenta verecunda (Hy. Edwards). How- 
ever, they differ in certain color patterns and basic structural details of 
the genitalia. 


Carmenta flaschkai, Eichlin, new species 


(Figs. 1-8) 


Description (male only, Figs. 1 & 2). Head and vertex brown-black, overlapping front; 
front gray-black or white, laterally white, white at base of antennae; occipital fringe 
dorsally mixed pale yellow and brown-black, laterally white; antennae brown-black; labial 
palpus thickened, somewhat roughened ventrally, white with brown-black laterally and 
apically. Thorax brown-black, pale yellow to white in patch beneath wing and in tuft 
above and behind wing base, very narrow orange, subdorsal, longitudinal stripe. Abdomen 
brown-black, dorsally with narrow, pale yellow or white bands on posterior of segments 
4, 6 and 7; ventrally strongly banded pale yellow or white on 4-7, white variously on 
other segments; anal tuft dorsally brown-black with yellow-orange medially, ventrally 
yellow-orange. Legs brown-black with white on forecoxa; tibiae white on proximal half 
dorsally and laterally, with some white tufted distally. Fore wing with hyaline areas in 
cell and distally mostly covered with opaque white scales, margins and discal spot brown- 
black, apical margin variously broad and suffuse, pale orange on posterior margin and 
on posterior edge of cell. Hindwing hyaline but with somewhat cloudy (milky) translu- 
cence. Wing length 8-9 mm (one specimen 7 mm). Genitalia (Fig. 3) with saccus elongate, 
more than one third length of valva; scopula androconialis long, slightly longer than 
saccus. 

Types. Holotype, male, (USNM): “TX, Jeff Davis Co., Ft. Davis, 11.1X.91, lg. D. 
Marqua, 99:1.” 

Paratypes, 15 males, (USNM, CDFA, CAS, Flaschka): (15) same as holotype except: 
(1) Genitalia Slide, CDFA #811, by S. A. Kinnee; (1) 29. VIII.91, L-108; (1) 9.1X.91; (1) 
15.1X.91; (1) 1.X.91; (2) 2.X.91; (8) 5.X.91; (5) 14.X.91 (1 with Genitalia Slide, CDFA 
#816). 

Distribution. Known only from the type locality: Fort Davis, Jeff Davis Co., Texas. 


Discussion. Carmenta flaschkai is similar in appearance to C. ver- 
ecunda, in particular the form described as hirsuta Englehardt. The 
latter form also was described from the same general area—Davis 
Mountains, Texas. However, C. flaschkai has pale orange near the 


266 


JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Male, Carmenta flaschkai (wing length 8 mm). 1, Dorsal view. 2, Ventral 


VOLUME 46, NUMBER 4 ; 267 


Fics. 3-4. Male genitalia (aedeagus detached). 3, Carmenta flaschkai. 4, C. vere- 
cunda. 


forewing base extending distally on Cu and the anal margin; addition- 
ally, the male genitalia has the scopula androconialis elongated (Fig. 
3), this structure being much reduced on C. verecunda (Fig. 4). 
Because of the orange scaling on the anal tuft, especially ventrally, 
C. flaschkai will not key out with C. verecunda (Eichlin & Duckworth 
1988:69, couplet 8) but runs to couplet 10 with Synanthedon canadensis 
Duckworth and Eichlin. Hence, an additional couplet is required: 


10b. Antenna powdered with pale yellow; labial palpus with yellow-orange ventrally 


DMG! MDSSAl NY ea eee ek eee ee ee ke Ce Se Le S. canadensis 
— Antenna without yellow; labial palpus with white not yellow-orange . C. flaschkai 


The type series was collected with the aid of a chemical sex attractant 
consisting of a mixture (99:1) of (Z, Z/E, Z) 3,18-octadecadiene-1-ol 
acetate (ODDA). 

This species is named for Hermann Flaschka, of Decatur, Georgia, 
in recognition of the contributions he has made to my studies of the 
Sesiidae through sharing his specimens, data, and collecting experiences. 


ACKNOWLEDGMENTS 


I thank Dave Marqua for collecting the type series and Hermann Flaschka for making 
the specimens available to me for examination. Technical expertise was provided by my 


268 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


assistant Scott Kinnee. The drawing of the genitalia of C. verecunda was originally 
rendered by Laura Keller (Duckworth & Eichlin 1978). 


LITERATURE CITED 


DucCKWorTH, W. D. & T. D. EICHLIN. 1978. The clearwing moths of California (Lep- 
idoptera: Sesiidae). Occas. Papers Entomol., Calif. Dept. Food & Agric., No. 27:1—80. 

EICHLIN, T. D. & W. D. DUCKWORTH. 1988. Sesioidea: Sesiidae, fasc. 5.1:1-176. In 
Dominick et al. (eds.), The moths of America north of Mexico. E. W. Classey and 
The Wedge Entomol. Res. Found., London. 


Submitted for publication 11 February 1992; revised and accepted 21 June 1992. 


Journal of the Lepidopterists’ Society 
46(4), 1992, 269-272 


HOLARCTIC DISTRIBUTION OF 
CHORISTONEURA ALBANIANA (WALKER), WITH 
NEW SYNONYMY (TORTRICIDAE) 


Pr DANG 


Forestry Canada, % Canadian National Collection of Insects, 
K. W. Neatby Building, Central Experimental Farm, 
Ottawa, Ontario K1A OC6, Canada 


ABSTRACT. Choristoneura albaniana (Walker) occurring in the northern regions 
of North America, and C. lapponana (Tengstré6m) occurring in northern Europe and 
Siberia, are conspecific; the name C. albaniana has priority. This new synonymy helps 
determine the holarctic range of this species. 


Additional key words: Choristoneura lapponana, transcontinental, male genitalia. 


Choristoneura Lederer is a Holarctic genus. Choristoneura fumif- 
erana (Clemens), C. rosaceana (Harris), and C. conflictana (Walker) 
of the Nearctic, and C. diversana (Hiibner), C. murinana (Hubner), 
and C. lafauryana (Ragonot) of the Palaearctic, are widespread and 
transcontinental, but none has been recorded in both regions (Freeman 
1958, Powell 1983, Kloet & Hincks 1972, Varis et al. 1987). 

Choristoneura albaniana (Walker), described from a specimen col- 
lected in St. Martin’s Falls, Ontario, is a transcontinental species that 
has been recorded in northern parts of North America, i.e., Alaska, 
Yukon, Northwest Territories, northern Manitoba, western Ontario, 
northern Quebec, and Labrador to Newfoundland. A southern record 
is represented by two specimens from Mt. Evans, Colorado. A specimen 
collected from Black Sturgeon Lake, Ontario, has a note indicating pin 
cherry, Prunus pensylvanica L. (Rosaceae) as a host plant. 

Choristoneura lapponana (Tengstrém), described from Finland, has 
been recorded in northern parts of the Palaearctic region, including 
Sweden, Finland, Ural, Trans-Baikal, Amur, and along the taiga zone 
in the Siberian region (Kennel 1929, Kuznetsov 1973, 1978, Varis et al. 
1987), and in Yukon, Canada (Kuznetsov & Mikkola 1991). A food plant 
has not been identified positively for this species; larvae were reportedly 
found on larch (Kuznetsov 1978), but this record requires confirmation. 

Study of the male genitalia of C. albaniana from North America and 
C. lapponana from Finland (Dang 1992) revealed that the structures 
of these two species are similar in every comparable aspect. The char- 
acteristic longitudinal split, connecting with the apical opening of the 
aedeagus, is distinctly shifted laterally to the right side, whereas in other 
Choristoneura species it is dorsally located; the apical spine of the 
aedeagus is vestigial. The uncus is small with a convex or truncate apex, 
and a distinctly widened midportion (Figs. 1-6). Further study of the 
wings of C. albaniana and C. lapponana, which exhibit similar and 


270 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


Joon EE 


1 2 3 4 -e) 6 


Fics. 1-6. Ventral view of unci of Choristoneura albaniana from various localities 
in North America and Europe: 1, Black Sturgeon L., Ontario, Canada; 2, Bradore Bay, 
Quebec, Canada; 3, Cameron Bay, N.W.T., Canada; 4, Doolittle Range, Mt. Evans, 
Colorado, USA; 5, Enontekio Karesuanto, Finland; 6, Kilpisjarvi, Finland. 


consistent colors and patterns (Figs. 7-10), prompts the present review 
of their taxonomic status. The shade of color of the forewing varies 
slightly from specimen to specimen. The ground color of the forewing 
varies from beige to brownish yellow; the oblique faciae vary from 
reddish brown to dark brick brown. Most specimens from North Amer- 
ica have paler hind wings; a few have the same color as those from 
northern Europe. The different shades of color likely represent indi- 
vidual variation. On the basis of the overall morphological similarity, 
it is concluded that C. lapponana and C. albaniana are conspecific; the 
name C. albaniana has priority. Consequently, C. albaniana represents 
the only Choristoneura species recorded across the Holarctic region. 


Choristoneura albaniana (Walker) 
(Figs. 1-10) 
Teras albaniana Walker, 1863:288. 
Choristoneura albaniana, Freeman 1958:38; Powell 1983:40; Dang 1992:19. 
Tortrix lapponana Tengstr6m 1869:359. New Synonymy. 
Dichelia Lapponana (sic), Rebel 1901:85. 
Epagoge lapponana, Kennel 1929:112; Benander 1950:25. 
Choristoneura lapponana, Obraztsov 1955:203; Kuznetsov 1973:77, 1978:348; Varis et al. 
1987:64; Dang 1992:19. 


The synonymy proposed is based on the examination of two males 
and one female of C. lapponana from the type locality (Karesuanto, 
Finland) and several specimens from nearby areas and the holotype of 
C. albaniana in The Natural History Museum, London, England, as 
well as a number of specimens of C. albaniana from various localities 
across North America. The holotype of C. lapponana, which was not 
examined in the present study, is in the Zoological Museum, University 
of Helsinki, Finland. 


VOLUME 46, NUMBER 4 ; TEAL 


Fics. 7-10. Wing patterns of Choristoneura albaniana from various localities in North 
America and Europe: 7, Churchill, Manitoba, Canada; 8, Anchorage, Alaska, USA; 9, 
Enontekio Karesuanto, Finland; 10, Kilpisjarvi, Finland. 


Material studied. The number in parentheses immediately after the 
number of specimens studied indicates the number of male genitalia 
examined. CANADA: Newfoundland: Labrador, Hopedale, 12. VII.1927, 
24.VII.1934, 26.VII.1985 (W. W. Perrett), 3 43 (1). Quebec: Indian 
House Lake, 11.VII.1954 (R. Coyles), 2 46 (1), and 12.VII.1954 (W. R. 
Richards), 2 adults without abdomen; Bradore Bay, 21 and 26.VII.1929 
(W. J. Brown), 1 4 (1), 1 9; Knob Lake, 19.VII.1948, 16.VIII.1948 (E. 
Munroe), 1 6 and 1 92; Mt. Lyall, 1500’, VII.1983 (W. J. Brown), 1 é 
and 1 2. Ontario: St. Martin’s Falls (HOLOTYPE 8) (1), BMNH, Black 
Sturgeon Lake, VI.1961—-VI.1964 (Light Trap), 19 66 (4); Moose Factory, 
21.VI.1949 (D. F. Hardwick), 2 92. Manitoba: Churchill, 4.VI.1937 
(W. J. Brown), 1 6 and 1 2. N.W.T.: Cameron Bay, Great Bear Lake, 
7.VII.1937 (T. N. Freeman), 4 66 (2); Bathurst Inlet, 20.VII.1951 (W. 
I. Campbell), 1 6 (1). Yukon: Swim Lake 3200’, 16.VI.1949 (E. W. 
Rockburne), 1 2; Rampart House, 9.VII.1951 (J. E. H. Martin), 2 29; 
Dawson 3200’, 9.VII.1949 (P. F. Bruggeman), 1 6 (1). USA: Alaska: 
Anchorage, 26.VI.1951 (R. S. Bigelow), 1 6. Colorado: Doolittle Range 
9800’, Mt. Evans, 30.VII-2.VIII.1961 (E. W. Rockburne), 2 346 (1). 


272 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


FINLAND: Kilpisjarvi, 8.VII.1936 (Lankiala), 1 6 (1); Malla subalp., 
2.VII.1936 (Lankiala), 1 2; Enontekio Karesuanto, 20.V1.1948 (O. Pel- 
tonen), 1 ¢ (1); Suecia to Jukkasjarvi, UTM 34W DA8930, 21.V1.1978 
(Ingvar Svensson), 2 66, BMNH; Ytatuostari, 12.111.1935 and VI.1937 
(W. Hackman), 1 6 and 1 2, BMNH. All specimens in the Canadian 
National Collection of insects, Ottawa, except as indicated otherwise 
(BMNH = The British Museum of Natural History, now known as The 
Natural History Museum, London, England). 


ACKNOWLEDGMENTS 


I am grateful to K. Mikkola of the Zoological Museum, University of Helsinki, Finland, 
for exchanging C. lapponana from Finland with North American tortricid species, and 
to K. R. Tuck of The Natural History Museum, London, England, for his assistance during 
my visit to study the type of C. albaniana and specimens of C. lapponana. I also thank 
K. G. A. Hamilton and J. Huber for reviewing the manuscript. 


LITERATURE CITED 


BENANDER, P. 1950. Fiarilar. Lepidoptera I. Smafjarilar. Microlepidoptera. Andra 
familjegruppen Vecklarefjarilar. Tortricina. Svensk Insektfauna 10. 178 pp., 9 plates. 

Dance, P. T. 1992. Morphological study of male genitalia with phylogenetic inference 
of Choristoneura Lederer (Lepidoptera: Tortricidae). Canad. Entomol. 124:7—48. 

FREEMAN, T. N. 1958. The Archipinae of North America. Canad. Entomol. 90 (suppl. 
7):1-87. 

KENNEL, J. 1929. Die Palaearktischen Tortriciden. Eine Monographische Darstellung, 
Stuttgardt. 742 pp. 

KLOET, G. S. & W. D. Hincks. 1972. A checklist of British insects, second edition, part 
2. Handbk. Ident. Brit. Insects 11:i-viii, 1-153. 

KUZNETSOV, V. I. 1973. Leaf-rollers (Lepidoptera, Tortricidae) of the southern part of 
the Soviet far east and their seasonal cycles. Trudy Vses. ent. Obshch. 56:44—-159. 

1978. Family Tortricidae (Olethreutidae, Cochylidae)—Tortricid moths, pp. 
279-956. In Medvedev, G.S. (ed.), A guide to the insects of the European part of the 
USSR volume 4: Lepidoptera, part 1. Opred. Fauna SSSR 117:1-686 (Translation 
from Russian. Amerind Publ. Co. Pvt. Ltd., New Delhi. 1987). 

KUZNETSOV, V. I. & K. MIKKOLA. 1991. The leaf-roller fauna of north-eastern Siberia, 
USSR, with descriptions of the three new species (Lepidoptera, Tortricidae). Nota 
Lepidopterologica 14:194-219. 

OBRAZTSOV, N.S. 1955. Die Gattungen der Palaearktischen Tortricidae. I. Allgemeine 
Aufteilung der Familie und die Unterfamilien Tortricinae und Sparganothinae. 
Tijdschr. Entomol. 98:147—-228. 

POWELL, J. A. 1983. Tortricoidea, pp. 31-41. In Hodges R. W., et al. (eds.), Check list 
of the Lepidoptera of America north of Mexico. E. W. Classey Ltd. and The Wedge 
Entomological Research Foundation, London. 284 pp. 

REBEL, H. 1901. Catalog der Lepidopteren des Palaearctischen Faunengebietes. II. 
Famil. Pyralidae-Micropterigidae. R. Friedlander & Sohn, Berlin. 368 pp. 

TENGSTROM, J. M. J. 1869. Catalogus Lepidopterum Faunae Fennicae praecursorius. 
Acta Soc. Faun. Flor. Fenn. 10:287-370. 

VarIs, V., J. JALAVA & J. Kyrki. 1987. Check-list of Finnish Lepidoptera. Suomen 
perhosten luettelo. Notulae Entomol. 67:49-118. 

WALKER, F. 1863. List of lepidopterous insects in the British Museum part XXVIII. 
Exotic Tortricidae. Catalogue of Lepidoptera Heterocera, ser. 6:287—309. 


Received for publication 20 March 1992; revised and accepted 30 June 1992. 


Journal of the Lepidopterists’ Society 
46(4), 1992, 273-279 


ANETIA JAEGERI, DANAUS CLEOPHILE AND 
LYCOREA CLEOBAEA FROM JAMAICA 
(NYMPHALIDAE: DANAINAE) 


R. I. VANE-WRIGHT AND P. R. ACKERY 


Department of Entomology, The Natural History Museum, Cromwell Road, 
London SW7 5BD, United Kingdom 


AND 


T. TURNER 


Department of Zoology, Division of Lepidoptera Research, University of Florida, 
Gainesville, Florida 32604 


ABSTRACT. Twospecies of danaid butterflies, Anetia jaegeri Ménétriés and Lycorea 
cleobaea Godart, are documented from Jamaica, West Indies, for the first time. The status 
of a third, Danaus cleophile Godart, is reviewed. The biogeographic implications of these 
species occurrence on Jamaica are discussed in the context of Caribbean biogeography. 


Additional key words: Hispaniola, Cuba, biogeography, vicariance, distribution. 


This paper comments on three rare milkweed butterflies (Danainae) 
from Jamaica, including the first formal records of the genera Anetia 
and Lycorea from the island, and speculates on the presence of a second, 
possibly new species of Anetia. Biogeographic implications of the new 
discoveries are briefly discussed. 


Anetia jaegeri Menetrieés 

The genus Anetia Hubner, once considered to be the most primitive 
of milkweed butterflies (Forbes 1939), comprises five montane or sub- 
montane species distributed in three areas: Central America (A. thirza 
Geyer), Cuba (A. cubana Salvin, A. briarea Godart, A. pantheratus 
Martyn), and Hispaniola (A. jaegeri, A. briarea, A. pantheratus). For 
many years there has been speculation that Anetia also occurs on Ja- 
maica. Based on sightings made by several naturalists, Brown and 
Heineman (1972) concluded that “‘it seems possible that there is a species 

. on Jamaica that awaits capture and will probably be found to 
represent another member in the cubana-jaegeri complex.” 

The Natural History Museum (BMNH, London) recently has received 
a male Anetia jaegeri labelled ‘Jamaica, Christiana, Aug. 21 1960.’ 
Christiana lies almost exactly at the center of the island, in the south- 
western part of the Dry Harbour Mountains, at over 1200 m altitude. 
The terrain is characterized by pine plantations on the higher hilltops, 
cultivated ridges, and dense scrub in intervening ravines. This new 
specimen differs from males of nominate A. jaegeri, formerly known 
only from Hispaniola, by having slightly more extensive yellow mark- 


274 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Fic. 1. Anetia jaegeri, male, from Christiana, Jamaica, 21.viii. 1960; forewing length 
41 mm.; dissection 1773A. Dorsal surface on left, ventral on right. 


ings. The wing pattern (Fig. 1) of this individual is thus more similar 
to that of Hispaniola females rather than males. The genitalia are the 
same as Hispaniolan jaegeri. 

A second male specimen, with exactly the same data written in the 
same hand, is held in the University of Florida collection, Gainesville, 
Florida. In this case the upperside is almost identical to Hispaniolan 
males, notably in the size of the yellow spots. On the underside hind- 
wing, the brown markings are reduced or absent, with only the vertical 
bar, which extends from the anterior wing margin to the end of the 
discal cell, remaining prominent. Compared to Hispaniola males in the 
BMNH collection, this appears to represent one extreme of the normal 
variation in wing-marking intensity. The relatively fresh wing condition 
of both specimens, and the collection of more than one specimen on 
the same day, suggest that A. jaegeri is a resident species in central 
Jamaica. 


Danaus cleophile Godart 


Danaus (Danaus) cleophile is a second danaine butterfly thought to 
occur only on Hispaniola and Jamaica. A relatively little-known insect, 
it is the sister-species of the monarch butterflies (Danaus (Danaus) 
plexippus L. and D. (D.) erippus Cramer), and may thus prove to be 
of great significance in relation to many current speculation: about the 
monarch (see Malcolm & Zalucki 1992). 

Danaus cleophile was last collected in Jamaica by Avinoff and Schou- 
matoff on Mount Diablo, in 1941, in ravines where waterfalls occurred. 


VOLUME 46, NUMBER 4 | 275 


As waterfalls are not found on the most well-known part of Mount 
Diablo, between Evarton and Moneague, the precise locality needs to 
be re-discovered. Repeated searches in the Hollymount area of Mount 
Diablo, as recently as June 1992, have been unsuccessful. 


Lycorea cleobaea Godart 


The second danaine formally recorded from Jamaica for the first 
time is Lycorea cleobaea cleobaea. This is the same subspecies as found 
on Hispaniola and Puerto Rico, and distinct from L. c. demeter Felder 
and Felder from Cuba (with occasional strays in southern Florida), and 
the various subspecies of Central and South America. It was first found 
on Jamaica as larvae feeding on Carica papaya L. (Caricaceae), in 
southwest Kingston, by A. Garel. A single female, which emerged on 
2 Feburary 1974, is held in the Institute of Jamaica collection, Kingston. 
Adults have been seen in xeric regions of southwest Kingston as recently 
as October 1990, by D. Hopwood. This insect also occurs in xeric habitats 
in Haiti (Schwartz 1983). 


Biogeography 


According to Ackery and Vane-Wright (1984), A. jaegeri is the sister 
species of A. cubana, and these two together form the sister group to 
A. thirza. The discovery of A. jaegeri on Jamaica might thus suggest, 
on a vicariance hypothesis, that Jamaica and Hispaniola have a more 
recent history of connection to each other than either has to Cuba. 
However, Ackéry and Vane-Wright (1984) also regarded A. jaegeri as 
a “paraspecies” (cf. ““metaspecies’ of de Queiroz & Donoghue 1988) 
because A. jaegeri lacks a diagnostic autapomorphy in relation to A. 
cubana and A. thirza. On this evidence, the two populations of A. 
jaegeri must be treated as a paraphyletic group, with the implication 
that one or the other (rather than both together) could form the true 
sister group of A. cubana. Thus, any idea of a special relationship 
between Hispaniola and Jamaica could not be directly supported by 
the evidence of A. jaegeri. 

As D. cleophile, also restricted to Hispaniola and Jamaica, is regarded 
as a cladistically definable species (Ackery & Vane-Wright 1984), this 
might give credence to a special relationship between the two islands 
(cf. Miller & Miller 1989) and raise the expectation of eventually finding 
uniquely defining characteristics for A. jaegeri itself. We have no in- 
formation on the possible monophyly of the Hispaniolan and Jamaican 
populations of Lycorea cleobaea cleobaea. The nominate subspecies 
extends to Puerto Rico but, as indicated above, the Cuban population 
of L. cleobaea is phenotypically distinct. 

Liebherr (1988) has investigated the biogeography of West Indian 


276 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


carabid beetles of the genus Platynus, demonstrating strong links be- 
tween Hispaniola, Cuba, Jamaica, and Central America. Over the last 
50 million years Cuba and Hispaniola may have undergone a complex 
sequence of fusions and separations, but Jamaica appears to have been 
separate (but sometimes closer to Hispaniola than now) throughout this 
period (Liebherr 1988, also see Miller & Miller 1989). Such a scenario 
provides a ready explanation for Anetia jaegeri as a paraspecies, but 
does not help us to understand the distribution of Danaus cleophile. 
Has D. cleophile never occurred on Cuba, has it gone extinct there, or 
has it simply been overlooked? The new Jamaican records of Anetia 
and Lycorea reported here, and the failure to find D. cleophile on 
Jamaica for over 50 years, make the last two possibilities more likely. 

As an alternative to a vicariance hypothesis, we could consider dis- 
persal. Darlington (1957) suggested that frogs of the genus Hyla entered 
the Greater Antilles from the Honduras region, reaching Jamaica first, 
then Hispaniola, and finally Cuba. Such a dispersal route would provide 
an explanation for both the limited distribution of Danaus cleophile 
and the paraphyly of A. jaegeri in relation to A. cubana—but there is 
no compelling reason to single out this particular route in preference 
to others. 


Yet Another Jamaican Danaine? 


Before such questions or speculations are pursued on existing evi- 
dence, more direct exploration is required. With the addition of Anetia 
jaegeri and Lycorea cleobaea to the Jamaican list, the number of milk- 
weed butterflies positively recorded from the island has risen to six (the 
others being Danaus cleophile, D. eresimus Cramer, D. gilippus Cra- 
mer and D. plexippus). However, since 1948 there have been several 
accounts of a large, dark, unidentified butterfly in the mountains of 
eastern Jamaica, which appear to indicate the existence of a seventh 
danaine. Brown and Heineman (1972) concluded that the butterfly 
must be an Anetia, but a much darker species than A. jaegeri, more 
like the very distinctive A. cubana. 

For example, Lewis (1949) reported that in June 1948 Coleman Goin 
of the University of Florida described a “fairly large, dark butterfly, 
apparently black with a distinct yellow border along the margin of both 
fore and hind wings” near the summit of Blue Mountain Peak. On 8 
July 1948 Lewis sighted a “large, apparently black butterfly, with a 
wing spread of nearly four inches” and ‘“‘a yellow border around the 
outer edges of both pairs of wings,’ at Cinchona, several miles to the 
west of Blue Mountain Peak. Bengry (1949) notes that on 22 April 1949 
McCord sighted a butterfly above Mavis Bank, south of Cinchona, which 
was “black with white and yellow borders on all wings.” 


VOLUME 46, NUMBER 4 | : Q77 


sath 
On Lx(© 
9 10 _20MILES 


Oo 10 20 30KILOMETERS 


JAMAICA 


Fic. 2. Known distribution of Anetia jaegeri (solid circles) in central Jamaica, and 
the locations of sightings of a darker, Anetia-like insect in eastern Jamaica (open symbols) 
(see also text). 


On 2 July 1967, Turner saw a large dark brown or sooty black insect, 
with pale yellow submarginal bands on both wings, crossing the track 
one mile north of Barretts Gap on the way to Corn Puss Gap, several 
miles east of the earlier sightings. On 2 August 1968 a similar insect 
was observed by Turner, two miles south of Corn Puss Gap, flying 15 
ft high in a forest clearing, where it was observed for several minutes. 
The butterfly was dark brown to sooty black, about four inches in 
wingspan, and with a clearly visible falcate apex to the forewing. Seen 
from beneath, the submarginal band on the forewing was pale yellow 
and broader and more continuous than that of A. cubana. The sub- 
marginal marking of the hindwing was not opaque like that of the 
forewing, and was difficult to discern from below. 

Both flight pattern and wing markings were superficially similar to 
the endemic Papilio homerus Fabricius, but the unidentified insect was 
smaller and lacked tails. There was no similarity in flight to either 
Papilio pelaus Fabricius or Battus polydamas L., both of which were 
seen in the vicinity. The eastern localities in which these sightings have 
been made include habitats with elevations from approximately 450- 
2250 m, in or adjacent to cloud forest. The distributions of A. jaegeri 
and the unidentified Anetia-like insect from eastern Jamaica are shown 
in hag. 2. 

As Cuba and Hispaniola both harbor three species of Anetia, is it 
possible that there could be two, or even more species on Jamaica? If 
a form of A. cubana is confirmed to occur there in addition to A. 
jaegeri, the biogeographical challenge presented by Anetia would be- 
come even more interesting. 


278 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


A concerted effort to rediscover Anetia in Jamaica would seem well 
worthwhile. A search is already in progress (including attempts to re- 
locate Danaus cleophile) through Turner’s Caribbean Wildlife Surveys. 
Recent advances in our knowledge of the biology of the previously 
obscure Anetia butterflies (Schwartz 1989, Ivie et al. 1990, Ackery in 
prep.) surely will increase the chances of success. 

A key step will involve discovery of the early stages and re-confir- 
mation of the hostplant. DeVries (1987) notes Metastelma (Asclepia- 
daceae) as a possible host for Anetia thirza in Costa Rica, while Keith 
Brown (pers. comm.) knows of Anetia having been bred on Cynanchum 
(=Metastelma = Vincetoxicum) in Cuba, Dominican Republic, Costa 
Rica, and El Salvador. This suggests likely hosts to be Cynanchum 
leptocladum for A. jaegeri in central Jamaica, and C. fawcetti or C. 
harrisii for eastern Anetia species. 


ACKNOWLEDGMENTS 


One of the Jamaican specimens of A. jaegeri described here was very kindly presented 
to the BMNH by Bob Denno, College Park, Maryland. The authors thank Tom Emmel, 
University of Florida, Gainesville, for access to the second Jamaican specimen, and to 
Lee Miller, Sarasota, Florida, for helpful comments on the manuscript. The original 
photographs were prepared by the Photographic Unit of The Natural History Museum. 


LITERATURE CITED 


ACKERY, P. R. & R. I. VANE-WRIGHT. 1984. Milkweed butterflies. Cornell University 
Press, New York. ix + 425 pp. 

BENGRY, R. 1949. Natural history notes. Institute of Jamaica 4(37):48. 

Brown, F. M. & B. HEINEMAN. 1972. Jamaica and its butterflies. Classey, London. xvi 
+ 478 pp. 

DARLINGTON, P. J. 1957. Zoogeography. Wiley, New York. xiv + 675 pp. 

DE QUEIROZ, K. & M. J. DONOGHUE. 1988. Phylogenetic systematics and the species 
problem. Cladistics 4:317-338. 

DEVRIES, P. J. 1987. The butterflies of Costa Rica and their natural history. Princeton 
University Press, New Jersey. 327 pp. 

FORBES, W. T. M. 1939. Revisional notes on the Danainae. Entomologica Americana, 
Lancaster, Pennsylvania (NS) 19:101-140. 

Ivig, M. A., T. K. Puiips & K. A. JOHNSON. 1990. High altitude aggregations of Anetia 
briarea Godart on Hispaniola (Nymphalidae, Danainae). J. Lepid. Soc. 44:209-214. 

LEwis, B. 1949. Natural history notes. Institute of Jamaica 4(37):13. 

LIEBHERR, J. K. 1988. Biogeographic patterns of West Indian Platynus carabid beetles 
(Coleoptera), pp. 121-152. In Leibherr, J. K. (ed.), Zoogeography of Caribbean insects. 
Cornell Univ. Press, Ithaca. 

MALCOLM, S. B. & M. ZALUCKI (eds.). 1992. Biology and conservation of the monarch 
butterfly. Los Angeles County Museum of Natural History, Contributions in Science. 
In press. 

Nines L. D. & J. Y. MILLER. 1989. The biogeography of West Indian butterflies 
(Lepidoptera: Papilionoidea, Hesperioidea): A vicariance model, pp. 229-262. In 
Woods, C. A. (ed.), Biogeography of the West Indies: Past, present and future. Sandhill 
Crane Press, Gainesville, Florida. 


VOLUME 46, NUMBER 4 | | : 279 


SCHWARTZ, A. 1983. Haitian butterflies. Museum of Natural History, Santo Domingo. 
69 pp. 

1989. The butterflies of Hispaniola. University of Florida Press, Gainesville. xiv 

+ 580 pp. 


Received for publication 10 February 1992; revised and accepted 5 September 1992. 


Journal of the Lepidopterists’ Society 
46(4), 1992, 280-297 


CHECK LIST OF THE OLD WORLD EPIPASCHIINAE AND 
THE RELATED NEW WORLD GENERA MACALLA AND 
EPIPASCHIA (PYRALIDAE) 


M. ALMA SOLIS 


Systematic Entomology Laboratory, PSI, USDA 
Y% National Museum of Natural History, NHB 168, Washington, D.C. 20560. 


ABSTRACT. Two hundred seventy-three Old World species and 14 New World 
species belonging to Macalla Walker and Epipaschia Clemens are included. Information 
about the taxonomic status of Macalla, Locastra, Stericta, and Coenodomus is provided. 
Twenty-one new synonyms and eighteen new combinations are proposed. 


Additional key words: Pococera complex, Locastra, Stericta, Coenodomus, Lista. 


The Epipaschiinae are a large subfamily of over 700 species worldwide. 
Within the subfamily a monophyletic group of New World genera and 
species, the Pococera complex (Solis 1989) can be recognized. A check 
list of the Pococera complex will be published in the future in the 
context of a systematic revision and phylogenetic analysis (Solis in press). 
The remaining taxa are listed herein, including all Old World epipas- 
chiines and New World Macalla Walker and Epipaschia Clemens. 
Macalla and Epipaschia are included because morphological studies 
(Howard & Solis 1989, Solis 1989) show them to be more closely related 
to Old World genera than to the New World Pococera complex. Some 
species previously placed in Macalla in the Old World are not related 
to New World Macalla. In the present check list these are placed in 
Salma Walker, the next available name (Shaffer et al. in press). Anyone 
using this list also should refer to the Checklist of the Lepidoptera of 
Australia (Shaffer et al. in press) for further new combinations and 
synonymies in reference to the Australian fauna. Nevertheless, this list 
will provide a foundation for anyone wishing to conduct taxonomic 
work on the Epipaschiinae since the monophyly of the genera is still 
in question, and the placement of some genera within the Epipaschiinae 
requires verification. 

Some species in the Western Hemisphere were incorrectly associated 
with Locastra Walker and Stericta Lederer. The Western Hemisphere 
species placed in them belong to genera in the Pococera complex. 
Dissection of the types of L. crassipenis Walker (synonym of L. mai- 
manalis Walker) and S. divitalis (Guenée), the type species of Locastra 
and Stericta reveals these genera to be restricted to the Old World. 

Coenodomus Walsingham, an Old World genus, is attributed to the 
North American fauna (Hodges et al. 1983). Two genera, Dyaria Neu- 
moegen and Alippa Aurivillius, are junior synonyms of Coenodomus. 
In 1893 Neumoegen described Dyaria in the Lymantriidae and named 


VOLUME 46, NUMBER 4 281 


it after his “faithful co-labourer and friend Mr. H. G. Dyar’’ based on 
a male specimen supposedly caught in Bangor, Maine. In 1900 Dyar 
referred Dyaria to the Epipaschiinae and synonymized with it Alippa 
Aurivillius, a genus placed previously in the Limacodidae. He stated: 
“Its occurrence in North America needs verification, in spite of the 
positive statement published.” I have not seen any other specimens in 
any museum of this genus with collection data referring to the Western 
Hemisphere. Walsingham described this genus based on material he 
received from India reared from Eugenia jambolana Lamarck (Myr- 
taceae). Lista Walker is revised based on Michael Shaffer’s unpublished 
work at the The Natural History Museum, London, England. 

The generic names were crosschecked with The Generic names of 
Moths of the World (Fletcher & Nye 1984). The generic name is 
followed by the year and page of the citation and the type species in 
parentheses. Synonyms are listed under the generic or species name. 
Citations and type localities of all species names, including synonyms, 
are listed. If the original type locality did not include the modern 
country, it is provided, followed by the more specific type locality. 
When no specific locality is given and/or the original general locality 
is ambiguous, the original general locality is listed. 


CHECK LIST 


Agastophanes Turner, 1937:71. (zophoxys- 
ta Turner) 
zophoxysta Turner, 1937:72. Australia: 
Queensland: Cape York. 
Anexophana Viette, 1960a:154. (robinson- 
alis Viette) 
robinsonalis Viette, 1960a:155. Mada- 
gascar Est: Sahafanjana. 
Araeopaschia Hampson, 1906:134. (rufes- 
centalis Hampson) (not Hampson, 
1916a) 
demotis (Meyrick, 1887:188) (Stericta). 
West Australia: Geraldton. 
normalis (Hampson, 1906:135) (Spectro- 
trota). Australia: Sherlock R. 
rufescentalis Hampson, 1906:134. Aus- 
tralia: Geraldton. 
Astrapometis Meyrick, 1884a:67. (sabura- 
lis Walker) 
saburalis (Walker, 1859:914) (Pyralis?). 
Australia: Moreton Bay. 
Austropaschia Hampson, 1916a:155. (por- 
rigens Hampson). 


porrigens Hampson, 1916a:155. W. Aus- 
tralia: Yallingup. 
Axiocrita Turner, 1913:186. (cataphanes 
Turner) 
cataphanes Turner, 1913:136. Australia: 
Queensland: Kuranda. 
Catalaodes Viette, 1953:131. (malgassicalis 
Viette) 
malgassicalis Viette, 1953:1382. Mada- 
gascar Est: Fianarantsoa. 
Catamola Meyrick, 1884a:68. (funerea 
Walker) 
Elaphernis Meyrick, 1936:1. (funerea 
Walker) 
funerea (Walker, 1863:31) (Acrobasis). 
Australia: Sydney. 
xanthomelalis (Walker, 1863:32) (Acro- 
basis?). Australia: Sydney. 
Coenodomus Walsingham, 1888:49. (hock- 
ingi Walsingham) 
Dyaria Neumoegen, 1893:213. (sin- 
gularis Neumoegen) 


282 


Alippa Aurivillus, 1894:176. (anomala 
Aurivillus) 
aglossalis (Warren, 1896:456) (Scopo- 
cera). India: Khasias. New combi- 
nation 
cornucalis (Kenrick, 1907:78) (Stericta). 
Papua New Guinea: Dinawa. New 
combination 
dudgeoni Hampson, 1896a:118. Bhutan. 
fumosalis Hampson, 1903:85. India: 
Khasis. 
hampsoni West, 1931:209. Philippine Is- 
lands: Luzon, Benguet, Palili. 
hockingi Walsingham, 1888:50. India: 
Punjab, Kangra Valley. 
singularis (Neumoegen, 18938:215) 
(Dyaria). USA: Maine, Bangor. 
anomala (Aurivillus, 1894:176) (Alip- 
pa). Java. 
melanochlora (Hampson, 1916a:147) 
(Stericta). Singapore. New combi- 
nation 
rotundinidus Hampson, 1891:127. India: 
Nilgiri. 
rubrescens (Hampson, 1903:36) (Steric- 
ta). Sikhim. New combination 
schausi (West, 1931:210) (Stericta). Phil- 
ippine Islands: Luzon, Benguet, 
Klondyke. New combination 
trichasema (Hampson, 1916a:147) (Ste- 
ricta). Sri Lanka: Kitulgala. New 
combination 
trissosticha (Turner, 1932:192) (Ortha- 
ga). Australia: Adelaide R. 
Doddiana Turner, 1902:187. (callizona 
Lower) 
analamalis Viette, 1960b:207. Madagas- 
car Est: Perinet, Analamazaotra. 
callizona (Lower, 1896:155) (Stericta). 
Australia: Queensland: Mackay. 
cyanifusalis Marion, 1955:115. Mada- 
gascar Est: route d'Anosibé. 
Elisabethinia Ghesquiére, 1942:236. (cos- 
mia Ghesquiére) 
cosmia Ghesquiére, 1942:237. Zaire: Elis- 
abethville. 
Ephedrophila Dumont, 1928:28. (lucasi 
Mabille) 
algerialis (Hampson, 1900:377) (Ulo- 
tricha). Algiers: Biskra. 
jordanalis (Rebel, 1902:100) (Lepidog- 
ma). Jordan. 
constantialis (Hampson, 1906:123) 
(Anartula). Egypt: Suez Canal. 
lucasi (Mabille, 1907:308) (Ulotricha). 
Tunisia. 


JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


Epilepia Janse, 1931:466. (melanosparsalis 
Janse) 
dentatum (Matsumura and Shibuya, 1927 
in Shibuya, 1927a:349) (Macalla). 
Formosa: Kyoto. Lectotype desig- 
nated (Inoue and Yamanaka, 1975); 
Kyoto, Suzuki. 
melanobrunnea (Janse, 1922:21) (Ma- 
calla). South Africa: Hope Fountain. 
melanosparsalis (Janse, 1922:24) (Ma- 
calla). South Africa: Hope Fountain. 
confusa (Janse, 1922:26) (Macalla). 
South Africa: Bulawayo. 
simulata Janse, 1931:466. N. Nigeria: Ag- 
baja. 
Epipaschia Clemens, 1860:14. (superatalis 
Clemens) 
mesoleucalis (Hampson, 1916b:129) (Po- 
cocera). Fr. Guiana: St. Laurent Ma- 
roni. 
furseyalis (Schaus, 1922:233) (Macal- 
la). Guatemala: Quirigua. New 
synonym 
ochrotalis (Hampson, 1906:139) (Macal- 
la). Fr. Guiana: Cayenne. 
superatalis Clemens, 1860:14. USA: Con- 
necticut, Farmington. 
Eublemmodes Gaede, 1917:389. (contu- 
macialis Gaede) 
contumacialis Gaede, 1917:389. Camer- 
oon. 
Heminomistis Meyrick, 1933:486. (me- 
lanthes Meyrick) 
melanthes Meyrick, 1933:486. Thailand. 
Lacalma Janse, 1931:464. (porphyrealis 
Kenrick) 
albirufalis (Hampson, 1916a:187) (Ma- 
calla). New Guinea: Snow Mts., 
Oetakwa R. 
argenteorubra (Hampson, 1916a:138) 
(Macalla). New Guinea: Mt. Golaith. 
papuensis (Warren, 1891:431) (Stericta). 
New Guinea. 
porphyrealis (Kenrick, 1907:71) (Macal- 
la). Papua New Guinea: Ekeikei, Ke- 
bea, Dinawa. 
Lameera Ghesquiére, 1942:238. (ensipal- 
pus Ghesquiére) 
ensipalpis Ghesquiére, 1942:239. Zaire: 
Lulua, Kapanga. 
Lamida Walker, [1859] 1858:252. (mon- 
cusalis Walker) 
Allata Walker, 1863:110. (penicillata 
Walker) 
buruensis Janse, 
Buru. 


1931:461. Indonesia: 


VOLUME 46, NUMBER 4 


mediobarbalis (Hampson, 1916a:135) 
(Macalla). Sikhim. 
moncusalis Walker, [1859] 1858:252. 
Hindostan. 
penicillata (Walker, 1863:111) (Alla- 
ta). Hindostan. 
obscura (Moore, 1888:201) (Orthaga). 
India: Darjiling. 
sordidalis (Hampson, 1916a:136) (Ma- 
calla). Sikhim. 
proximalis (Caradja, 1925:53) (Macal- 
Ia). China: Canton. 
Lepidogma Meyrick, 1890:472. (tamari- 
calis Mann) 
Precopia Ragonot, 1891:18 (key), 67. 
(atomalis Christoph) 
Asopina Christoph, 1898:36. (obratalis 
Christoph) 
ambifaria Hering, 1901:22. Sumatra. 
melanopalis Hampson, 1906:130. Bor- 
neo: Sandakan. 
atomalis (Christoph, 1887:166) (Hypo- 
tia). Turkey: Tekké. 
chlorophilalis Hampson, 1912:1257. Sri 
Lanka: Maskeliya. 
chrysochloralis Hampson, 1916a:130. 
New Guinea: Fak-fak. 
dentilinealis Hampson, 1906:130. Ke- 
nya: Maungu-Inkuhwa. 
farinodes de Joannis, 1929:627. Vietnam: 
Tonkin. 
flagellalis Hampson, 1906:129. Borneo: 
Kuching. 
hyrcanalis Amsel, 1961:392. Iran. 
latifasciata (Wileman, 1911:230) (Eulo- 
castra). Japan: Hondo, Yoshino. 
megaloceros Meyrick, 1934:531. Zaire: 
Elisabethville. 
melaleucalis Hampson, 1906:129. Gha- 
na: Ashanti: Kumassi. 
melanobasis Hampson, 1906:129. Japan: 
Yokohama. 
tripartita (Wileman-South, 1917a:128) 
(Stericta). Taiwan: Kanshirei. 
melanolopha Hampson, 1912:1258. Sri 
Lanka: Kegalle. 
dubia (Wileman-South, 1917a:128) 
(Stericta). Taiwan: Kanshirei. 
melanospila Hampson, 1916a:129. Gha- 
na: Bibianaha. 
minimalis Hampson, 1916a:129. Sri Lan- 
ka: Perdeniya. 
obatralis (Christoph, 1877:264) (Asopi- 
na). Turkmeniya (USSR): Krasno- 
vodsk. 
olivalis (Swinhoe, 1895:301) (Hypsopy- 
gia). India: Mahableshwar. 


283 


novalis (Warren, 1896:463) (Ulotri- 
chodes). India: Bombay. 
rubricalis Hampson, 1906:131. Zimba- 
bwe: Salisbury. 
rufescens Hampson, 1896a:112. Bhutan. 
tamaricalis (Mann, 1873:124) (Hypotia). 
Italy: Tuscany. 
vafera (Swinhoe, 1884:523) (Hypotia). 
Pakistan: Kurrachee. 
wiltshirei Amsel, 1949:299. Iraq: Bag- 
dad. 
Leptoses Ghesquiére, 1942:236. (sophroni- 
cos Ghesquiére) 
sophronicos Ghesquiére, 1942:236. Zaire: 
Elisabethville. 
Lista Walker, 1859:877. (genisusalis Walk- 
er) Revised status 
Paracme Lederer, 1863:338. (insulsa- 
lis Lederer) New synonym 
Craneophora Christoph, 1881:1. (ficki 
Christoph) New synonym 
Belonepholis Butler, 1889:89. (striata 
Butler) New synonym 
carniola (Hampson, 1916a:146) (Steric- 
ta). Papua New Guinea: Dinawa. 
New combination 
ficki (Christoph, 1881:1) (Craneophora). 
Amur. New combination 
striata (Butler, 1889:90) (Belenopho- 
lis). India: Dharmsala. New syn- 
onym, new combination 
haraldusalis (Walker, [1859] 1858:160) 
(Locastra?). Borneo: Sarawak. New 
combination 
genisusalis Walker, 1859:877. Borneo: 
Sarawak. New synonym 
insulsalis (Lederer, 1863:339) (Parac- 
me). China: Ningpo. New combi- 
nation 
rubiginetincta (Caradja, 1925:314) 
(Stericta). China: Canton. New 
synonym, new combination 
plinthochroa (West, 1931:211) (Stericta). 
Philippine Islands: Luzon, Benguet, 
Palili. New combination 
sumatrana (Hering, 1901:25) (Crane- 
ophora). Sumatra. New combination 
variegata (Moore, 1888:203) (Scopoc- 
era). India: Darjiling. New combi- 
nation 
Locastra Walker, [1859] 1858:158. (mai- 
monalis Walker). By subsequent des- 
ignation. 
Taurica Walker, [1866] 1865:1268. 
(muscosalis Walker) 
ardua Swinhoe, 1902:181. Fiji. 


284 


drucei Bethune-Baker, 1905:94. Fiji: 
Nausori. 
bryalis de Joannis, 1929:631. Vietnam: 
Tonkin. 
maimonalis (Walker, [1859] 1859:159) 
(Locastra). Borneo: Sarawak. 
crassipennis (Walker, 1857:558) (Eu- 
rois?). Bangladesh: Silhet. 
muscosalis Walker, [1866] 1865:1269) 
(Taurica). North China. 
sikkima (Moore, 1888:202) (Taurica). 
India: Darjiling. 
cristalis (Hampson, 1893:157) (Locas- 
tra). Sri Lanka. 


pachylepidalis Hampson, 1896a:119. 


Bhutan. 
Macalla Walker, [1859] 1858:155. (thyrsi- 
salis Walker) 
Aradrapha Walker, [1866] 1865:1257. 
(mixtalis Walker) 
Mochlocera Grote, 1876:157. (zelleri 
Grote) 
Pseudomacalla Dognin, 1908:26. (noc- 
tuipalpis Dognin) 
arctata (Druce, 1902:325) (Cecidiptera, 
missp.). Peru: Chanchamayo. 
finstanalis Schaus, 1922:232. Guatemala: 
Quirigua. 
vulstana Schaus, 1922:234. Peru: Ya- 
huarmayo. New synonym 
hyalinalis Amsel, 1956:55. Venezuela: 
Maracay. 
nebulosa Schaus, 1912:667. Costa Rica: 
Avangarez. 
niveorufa Hampson, 1906:139. Panama: 
Cana Mines. 
noctuipalpis (Dognin, 1908:26) (Pseu- 
domacalla). Argentina: Tucuman. 
sinualis Jones, 1912:443. Brazil: Para- 
na: Castro. New synonym 
symmetrica Amsel, 1956:56. Venezue- 
la: Maracay. New synonym 
asymmetrica Amsel, 1956:56. Vene- 
zuela: Maracay. New synonym 
pallidomedia Dyar, 1910:136. Guyana: 
Hoorie. 
macallalis (Schaus, 1934:111) (Chlo- 
ropaschia). Brazil: Rio de Janeiro: 
Campo Bello. New synonym 
phaeobasalis Hampson, 1916a:144. Cuba: 
Santiago. 
regalis Jones, 1912:448. Brazil: Parana: 
Castro. 
euryleuca Hampson, 1916a:140. Peru: 
San Gaban. New synonym 
hyutanahana Schaus, 1925:27. Brazil: 


JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


Hyutanahan, Rio Puris. New syn- 
onym 
thyrsisalis Walker, [1859] 1858:156. 
Honduras. 
mixtalis (Walker, [1866] 1865:1257) 
(Aradrapha). Honduras. 
zelleri (Grote, 1876:157) (Mochlocera). 
USA: Texas. New combination 
Mimaglossa Warren, 1891:427. (habitalis 
Guenée) 
crypserythra (Turner, 1904:198) (Epi- 
paschia). Australia: Tasmania: Ho- 
bart. 
habitalis (Guenée, 1854:125) (Glossina). 
Australia. 
cervinalis (Walker, 1862:121) (Pyra- 
lis), Australia: Tasmania. 
revulsa Warren, 1891:428. Australia. 
nauplialis (Walker, 1859:272) (Pyralis?). 
Country unknown. 
porphyralis (Walker, [1866] 1865:1213) 
(Pyralis). Australia: Swan River. 
subcultella (Walker, 1869:81) (Acro- 
basis). Australia. 
Neopaschia Janse, 1922:20. (flavociliata 
Janse) 
flavociliata Janse, 1922:20. South Africa: 
Barberton. 
lemairei Viette, 1965:217. Malagasy Re- 
public: Andapa. 
nigromarginata Viette, 1953:130. Mad- 
agascar: Saigon. 
Noctuides Staudinger, 1892:466. (melano- 
phia Staudinger) 
Anartula Staudinger, 1893:78. (mela- 
nophia Staudinger) 
Arnatula Hampson, 1896b:454. (subsq. 
missp. ) 
Parorthaga Hampson, 1896a:110. (eu- 
ryptera Meyrick) 
albifascia (de Joannis, 1929:626) (Anar- 
tula). Vietnam: Tonkin. 
griseoviridis (Pagenstecher, 1907:130) 
(Anartula). Madagascar. 
melanochyta (Meyrick, 1933:485) (An- 
artula). Zaire: Katakumba. 
melanophia (Staudinger, 1892:466) (An- 
artula). USSR: Amur Region. 
euryptera (Meyrick, 1894:476) (Bal- 
anotis). Malay Archipelago: Sam- 
bawa. 
thurivora (Meyrick, 1932:319) (Anartu- 
Ia). Sri Lanka: Galle. 
tympanophora (Turner, 1904:193) (An- 
artula). Australia: Queensland: Eu- 
mundi. 


VOLUME 46, NUMBER 4 


Nyetereutiea Turner, 1904:192. (asbolopis 
Turner). 
Diastrophica Turner, 1937:72. (teph- 
rophanes Turner) 
asbolopis Turner, 1904:192. Australia: 
Queensland: Townsville. 
capnopis (Meyrick, 1885:439) (Catamo- 
la). Australia: New South Wales: Mt. 
Kosciusko. 
elassota (Meyrick, 1884b:280) (Cata- 
mola). South Australia: Quorn. 
melanophorella (Walker, 1866:1831) 
(Gelechia). Australia: Sydney. 
tephrophanes (Turner, 1937:72) (Dias- 
trophica). Australia: Queensland. 
tornotis (Meyrick, 1887:188) (Stericta). 
Australia: Queensland: Helidon. 
Obutobea Ghesquiére, 1942:239. (chrys- 
ophora Ghesquiére) 
chrysophora Ghesquiére, 1942:240. Zaire: 
Eala. 
Odontopaschia Hampson, 1903:34. (vires- 
cens Hampson). 
economia Turner, 1913:133. Australia: 
Queensland: Kuranda. 
stephanuchra Tams, 1935:255. Samoa. 
virescens Hampson, 1903:34. India: 
Khasis. 
Omphalepia Hampson, 1906:190. (sobria 
Hampson) 
dujardini Viette, 1967:56. Madagascar 
Ouest: Andranomena. 
sobria Hampson, 1906:191. British East 
Africa. 
Omphalota Hampson, 1899:479. (chloro- 
basis Hampson) 
chlorobasis Hampson, 1899:480. India: 
Simla. 
Oncobela Turner, 1937:72. (philobrya Tur- 
ner) 
philobrya Turner, 1937:73. Australia: 
Queensland: Cape York. 
Orthaga Walker, [1859] 1858:191. (euad- 
rusalis Walker) 
Edeta Walker, [1859] 1858:198. (ica- 
rusalis Walker) 
Pannucha Moore, 1888:199. (aenes- 
cens Moore) 
Proboscidophora Warren, 1891:429. 
(tritonalis Walker) 
Hyperbalanotis Warren, 1891:433. 
(achatina Butler) 
achatina (Butler, 1878:1856) (Glossina). 
Japan: Yokohama. 
aenescens (Moore, 1888:200) (Pannu- 
cha). India: Darjiling. 


285 


vicinalis (Snellen, 1890:567) (Pannu- 
cha). India: Darjiling. 

amphimelas Turner, 1913:140. Australia: 
N. Territory: Port Darwin. 

asbolaea (Meyrick, 1938:73) (Catamola). 
West Java: Mt. Guntur: Garoet. 

auroviridalis Hampson, 1896a:126. Sikh- 
im: Bhutan. 

basalis (Moore, 1888:200) (Pannucha). 
India: Darjiling. 

bipartalis Hampson, 1906:147. Singa- 
pore. 

castanealis (Kenrick, 1907:72) (Locas- 
tra). Papua New Guinea: Dinawa. 

chionalis Hampson, 1906:147. Singapore. 

chionalis Kenrick, 1907:73. Papua New 
Guinea: Ekeikei, Babouni, Kebea, 
Dinawa. 

columbalis Kenrick, 1907:74. Papua New 
Guinea: Kebea. 

confusa Wileman-South, 1917a:128. Tai- 
wan: Kanshirei. 

cryptochalcis de Joannis, 1927:234. Mo- 
zambique: Lourenco-Marqués: Mak- 
ulane. 

disparoidalis Caradja, 1925:59. China: 
Shanghai. 

durranti West, 1931:211. Philippines Is- 
lands: Luzon, Benguet, Pauai, 
Haight’s Place. 

ecphoceana Hampson, 1916a:152. Br. N. 
Guinea: Mt. Kebea. 

edetalis Strand, 1919:52. Taiwan: Ko- 
sempo. 

erebochlaena Meyrick, 1938:75. South 
Central Java: Djokjakarta. 

euadrusalis Walker, [1859] 1858:191. 
Borneo: Sarawak. 

acontialis Walker, 1863:103. Borneo: 
Sawawak. 

eumictalis Hampson, 1916a:150. New 
Guinea: Fak-fak. 

euryzona Hampson, 1896a:128. Burma: 
E. Pegu. 

exvinacea (Hampson, 1891:127) (Balan- 
otis). India: Nilgiri. 

ferrealis Hampson, 1906:145. Australia: 
Queensland, Townsville. 

fuliginosa (Rothschild, 1915:116) (Poly- 
phota). New Guinea: Utakwa River. 

fumida (Hering, 1901:32) (Pannucha). 
Sumatra. 

fuscofascialis Kenrick, 1907:74. Papua 
New Guinea: Dinawa and Kebea. 

haemarphoralis Hampson, 1916a:150. 
New Guinea: Setakwa R. 


286 


hemileuca Hampson, 1916a:149. New 
Guinea: Fak-fak. 
icarusalis (Walker, [1859] 1858:199) (Ed- 
eta). Borneo: Sarawak. 
irrorata (Hampson, 1893:156) (Balano- 
tis). Sri Lanka. 
leucatma (Meyrick, 1982:321) (Balano- 
tis). Sri Lanka: Peradeniya. 
leucolophota Hampson, 1916a:151. New 
Guinea: Snow Mts: Oetakwa R. 
lithochroa Hampson, 1916a:152. N. Aus- 
tralia: Port Darwin. 
mangiferae Misra, 1932:539. India. 
melanoperalis Hampson, 1906:146. Bor- 
neo: Pulo Laut. 
meyricki West, 1931:211. Philippine Is- 
lands: Luzon, Benuet, Palali. 
mixtalis Walker, 1863:104. Borneo: Sa- 
rawak. 
molleri Hampson, 1896a:126. Sikhim. 
olivacea (Warren, 1891:433) (Hyperba- 
lanotis). Japan. 
amurensis (Hampson, 1900:376) (Ma- 
calla). Amurland: Ussuri. 
shisalis (Strand, 1919:53) (Stericta). 
Taiwan: Shisa. 
onerata (Butler, 1879b:447) (Bleptina). 
Japan. 
grisealis Wileman, 1911:366. Japan: 
Yokohama. 
phaeopteralis Lower, 1902:664. Austra- 
lia: Queensland: Duaringa. 
picta (Warren, 1895:461) (Stericta). Aus- 
tralia: Queensland. 
percnodes Turner, 1905:63. Australia: 
Queensland: Kuranda. 
polyscia (Turner, 1913:138) (Epipas- 
chia). Australia: Queensland: Cairns. 
prionosticha Turner, 1925a:45. Austra- 
lia: Queensland: Coolangatta. 
rhodoptila (Meyrick, 1932:320) (Balano- 
tis). Sri Lanka: Galle. 
roseiplaga Hampson, 1896a:124. India: 
Bombay. 
rubridiscalis Hampson, 1906:146. Aus- 
tralia: Queensland. 
rudis (Walker, 1862:115) (Locastra). 
Hindostan. 
semialba Meyrick, 1932:319. Malaya: 
Kuala Lumpur. 
semieburnea Roepke, 1932:99. Celebes: 
Tonsealama. 
seminivea (Warren, 1895:463) (Steric- 
ta?). Australia: Queensland. 
chionopa (Lower, 1896:155) (Stericta). 
Australia: Queensland: Brisbane. 


JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


subbasalis (Hering, 1901:30) (Pannu- 
cha). Sumatra. 
thyrisalis (Walker, 1858:167) (Bertula),. 
Australia: Sydney. 
nigricalis (Walker, 1862:120) (Pyra- 
lis). Australia: Tasmania. 
tritonalis (Walker, 1859:906) (Pyralis). 
Borneo: Sarawak. 
rotundalis Walker, 1863:106. Borneo: 
Sarawak. 
umbrimargo de Joannis, 1927:235. Mo- 
zambique: Lourenco-Marqués: Ma- 
kulane. 
vitialis (Walker, 1859:897) (Pyralis). Sri 
Lanka. 
helvialis (Walker, 1859:915) (Pyralis). 
Country unknown. 
altusalis (Walker, 1859:1022) (Pyra- 
lis). Obj. repl. name. 
Parastericta Janse, 1931:486. (lanata Janse) 
lanata Janse, 1931:486. Indonesia: Buru. 
Peplochora Meyrick, 1933:437. (zalalges 
Meyrick) 
zalalges Meyrick, 1933:437. Sri Lanka: 
Gampola. 
Plumiphora Janse, 1931:485. (pratti Janse) 
pratti Janse, 1931:485. Sumatra: Barisan 
Range. 
Plutopaschia Hampson, 1917:361. (sinapis 
Rothschild) 
sinapis (Rothschild, 1915:115) (Stericta). 
New Guinea: Utakwa River. 
Poliopaschia Hampson, 1916a:156. 
(brachypalpia Hampson) 
brachypalpia Hampson, 1916a:156. W. 
Australia: Yallingup. 
Polylophota Hampson, 1906:189. (barba- 
rossa Hampson) 
arruensis (Kenrick, 1912:547) (Macalla). 
New Guinea: Arfak Mts. 
atriplagalis Hampson, 1916a:146. New 
Guinea: Fak-fak. New synonym, 
new combination 
klossi Rothschild, 1915:116. New Guinea: 
Canoe Camp. 
senilis Janse, 1931:479. New Guinea: Ar- 
fak Mts., Angi lakes. 
barbarossa Hampson, 1906:189. Papua 
New Guinea: Moroka. 
truncalis Kenrick, 1907:72. Papua New 
Guinea: Dinawa. New synonym, 
new combination 
Rhynchopaschia Hampson, 1906:190. 
(melanolopha Hampson) 
chalcosphaera Meyrick, 1934:532. Zaire: 
Elisabethville. 


VOLUME 46, NUMBER 4 


hemichlora Meyrick, 1934:531. Zaire: 
Elisabethville. 
melanolopha Hampson, 1906:190. Zim- 
babwe. 
reducta Janse, 1931:482. South Africa: 
Barberton. 
virescens Hampson, 1916a:154. Ghana: 
Bibianaha. 
Salma Walker, 1863: 107. (recurvalis 
Walker) 
Exacosmia Walker, 1864:609. (rubi- 
ginosa Walker) 
Calinipaxa Walker, 1865:1218. (vali- 
dalis Walker) 
Parasarama Warren, 1890:474. (cu- 
proviridalis Moore) 
Orthotrichophora Warren, 1891:429. 
(syrichtusalis Walker) 
Heterobella Turner, 1904:198. (triglo- 
chis Turner) 
Enchesphora Turner, 1913:141. (poli- 
ophanes Turner) 
aenochroa (Hampson, 1906:136) (Ma- 
calla). Brit. N. Guinea: Moroka. 
albifurcalis (Hampson, 1916a:144) (Ma- 
calla). Travancore: Pirmad. 
amauropsis (Turner, 1925b:117) (Epi- 
paschia). Tasmania. 
amica (Butler, 1879b:447) (Locastra). Ja- 
pan. 
apicalis (Kenrick, 1907:71) (Macalla). 
Papua New Guinea: Kebea, Dina- 
wa, Babouni, Ekeikei. 
polypsamma (Turner, 1937:74) (Epi- 
paschia). Australia: North Queens- 
land: Kuranda. 
atricinctalis (Hampson, 1916a:141) (Ma- 
calla). India: Travancore: Pirmad. 
atrox (Caradja, 1926:170) (Macalla). Ja- 
pan. 
aureobasilis (Caradja, 1932:10) (Macal- 
la). China: Amoy, Canton. 
baibarana (Shibuya, 1928:101) (Macal- 
la). Taiwan: Baibara. 
basiochra (Turner, 1937:75) (Epipas- 
chia). Australia: North Queensland: 
Cape York. 
brachyscopalis (Hampson, 1912:1258) 
(Macalla). Sri Lanka: Maskeliya. 
camphorella (de Joannis, 1929:629) (Ma- 
calla). Vietnam: Tonkin. 
caradriniformis (Kenrick, 1907:70) (Ma- 
calla). Papua New Guinea: Dinawa 
and Ekeikei. 
carbonifera (Meyrick, 1932:319) (Lami- 
da). India: U.P.: Dehra Dun. 
chlorographalis (Hampson, 1916a:138) 
(Macalla). New Guinea: Fak-fak. 


287 


chlorophoena (Turner, 1913:137) (Ma- 
calla). Australia: Queensland: Mt. 
Tambourine. 
cholica (Meyrick, 1884a:66) (Cacozelia). 
Australia: Queensland: Duaringa. 
lygropa (Turner, 1905:62) (Epipas- 
chia). Australia: Queensland: Too- 
woomba. 
cinerascens (Warren, 1891:431) (Steric- 
ta). Australia: New South Wales: 
Parramatta. 
cletolis (Turner, 1905:61) (Epipaschia). 
Australia: Queensland: Kuranda. 
chloanthes (Turner, 1913:139) (Epipas- 
chia). Australia: Queensland: Kuran- 
da. 
congenitalis (Caradja, 1931:205) (Ma- 
calla). China: Kwanhsien. 
conjuncta (Warren, 1896:454) (Parasa- 
rama). India: Khasias. 
cupreotincta (Janse, 1922:25) (Macalla). . 
South Africa: Umtali. 
cuproviridalis (Moore, 1867:87) (Locas- 
tra). Bengal, Darjiling. 
curtulalis (Kenrick, 1907:70) (Macalla). 
Papua New Guinea: Dinawa. 
derogatella (Walker, 1863:30) (Acroba- 
sis). Borneo: Sarawak. 
diaprepes (Turner, 1925a:45) (Macalla). 
Australia: N. Queensland: Kuranda. 
dimidialis (Snellen, 1890:568) (Pannu- 
cha). India: Darjiling. 
dochmoscia (Turner, 1905:61) (Macalla). 
Australia: Queensland: Kuranda. 
dubiosalis (Caradja, 1925:56) (Macalla). 
China: Lienping. 
ebenina (Turner, 1904:197) (Macalla). 
Australia: Queensland: Brisbane. 
elatalis (Caradja, 1925:52) (Macalla). 
China: Canton. 
eumictalis (Hampson, 1912:1259) (Ma- 
calla). Sri Lanka: Maskeliya. 
eupepla (Turner, 1915:35) (Macalla). 
Australia: Queensland: Kuranda. 
exrufescens (Hampson, 1896a:116) (Ma- 
calla). Sikhim. 
fasciculata (Hampson, 1906:187) (Ma- 
calla). Natal. 
fasciolata (Rothschild, 1915:114) (Ma- 
calla). New Guinea: Utakwa River. 
flavicollaris (Hampson, 1916a:135) (Ma- 
calla). New Guinea: Fak-fak. 
fulvitinctalis (Hampson, 1906:138) (Ma- 
calla). Kenya: Taru. 
galeata (Hampson, 1906:136) (Macalla). 
Australia: Sherlock R. 
glaucochrysalis (Hampson, 1906:140) 
(Macalla). Borneo: Sandakan. 


288 


glyceropa (Turner, 1937:78) (Macalla). 
Australia: Queensland: Brisbane. 

grisealis (Caradja, 1925:51) (Macalla). 
China: Canton. 

hicanodes (Turner, 1937:74) (Epipas- 
chia). Australia: Denmark. 

hoenei (Caradja, 1931:4) (Macalla). Chi- 
na: Mokanshan. 

hupehensis (Hampson, 1916a:145) (Ma- 
calla). C. China: Hupeh Prov: Lui- 
shin-Tze. 

hypnonalis (Hampson, 1899:480) (Ma- 
calla). Sikhim. 

hypoxantha (Hampson, 1896b:465) (Ma- 
calla). Sikhim. 

ignezonalis (Hampson, 1906:140) (Ma- 
calla). Sierra Leone. 

impurella (Caradja, 1925:55) (Macalla). 
China: Shanghai. 

kwangtungialis (Caradja, 1925:54) (Ma- 
calla). China: Lienping. 

lakasy (Viette, 1981:315) (Macalla ). 
Madagascar Ouest: Marosely. 

lithochlora (Lower, 1896:154) (Epipas- 
chia). Australia: Queensland: Bris- 
bane. 

lophotalis (Hampson, 1900:375) (Macal- 
la). Armenia: Zeitun: Mardin. 

madegassalis (Viette, 1960a:154) (Ma- 
calla). Madagascar Ouest: Sud de 
Morondara. 

malgassica (Kenrick, 1917:97) (Macalla). 
Madagascar. 

marmorea (Warren, 1891:432) (Steric- 
ta). Australia: Tasmania: Hobart. 

mauritanica (Amsel, 1953:1446) (Macal- 
Ia). Mauritania: Tagant: Haceira. 

melanobasis (Hampson, 1906:139) (Ma- 
calla). Zimbabwe. 

melapastalis (Hampson, 1906:136) (Ma- 
calla). Zimbabwe: Salisbury. 

melli (Caradja and Meyrick, 1934:145) 
(Macalla). China: Kwangtung. 

mesaleucalis (Hampson, 1916a:136) 
(Macalla). Province Wellesley. 

metachryseis (Hampson, 1906:141) (Ma- 
calla). British East Africa: Eb Urru. 

metasarcia (Hampson, 1903:35) (Macal- 
Ia). Sikhim. 

metaxanthalis (Hampson, 1916a:142) 
(Macalla). New Guinea: Fak-fak. 

minoralis (Hampson, 1906:1387) (Macal- 
la). Singapore. 

mioswari (Kenrick, 1912:547) (Macalla). 
New Guinea: Mioswar I. 

mmnesibrya (Meyrick, 1884:71) (Balano- 


JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


tis). Australia: New South Wales: 
Murrurundi. 
mniarias (Turner, 1905:60) (Macalla). 
Australia: Queensland: Kuranda. 
elaea (Hampson, 1906:135) (Macalla). 
New Guinea: Fergusson I. 
mniomima (Turner, 1913:137) (Macal- 
la). Australia: Queensland: Atherton. 
nankingialis (Caradja, 1925:54) (Macal- 
la). China: Nanking. 
nephelodes (Turner, 1933:170) (Epipas- 
chia). Australia: Queensland: Yep- 
poon. 
nubilalis (Hampson, 1893:157) (Steric- 
ta). Sri Lanka. 
nyctichroalis (Hampson, 1916a:139) 
(Macalla). Br. New Guinea: Sogeri. 
nyctizonalis (Hampson, 1916a:139) (Ma- 
calla). Philippines: Manila. 
obliquilineata (Shibuya, 1928:102) (Ma- 
calla). Taiwan: Baibara. 
ochroalis (Hampson, 1916a:142) (Macal- 
Ia). Sri Lanka: Eppawela. 
olivaceoalba (Rothschild, 1915:115) 
(Stericta). New Guinea: Utakwa 
River. 
olivalis (Kenrick, 1912:547) (Macalla). 
New Guinea: Arfak Mts. 
olivaris (Hampson, 1916a:140) (Ma- 
calla). Ghana: Bibianaha. 
soudanensis (Rothschild, 1921:226) 
(Pyralis). Africa. 
peloscia (Turner, 1918:188) (Macalla). 
Australia: Queensland: Kuranda. 
pentabela (Turner, 1915:34) (Macalla). 
Australia: New South Wales: Mt. 
Kosciusko. 
peratophaea (Turner, 1987:75) (Epipas- 
chia). Australia: Queensland: Cape 
York. 
perdentalis (Kenrick, 1907:71) (Macal- 
la). Papua New Guinea: Dinawa, 
Kebea. 
phaeoperalis (Hampson, 1916a:141) 
(Macalla). Sri Lanka: Galgama. 
phidiasalis (Walker, [1859] 1858:166) 
(Bertula). Borneo: Sarawak. 
philiasalis (Walker, 1863:104) (Ortha- 
ga). Borneo: Sarawak. 
plicatalis (Hampson, 1903:35) (Macalla). 
Sri Lanka: Matale. 
plumbeopictalis (Hampson, 1916a:143) 
(Macalla). New Guinea: Fak-fak. 
polychroalis Kenrick, 1907:73. Papua 
New Guinea: Dinawa. 
pomalis (Kenrick, 1907:70) (Macalla). 
Papua New Guinea: Dinawa. 
poliophanes (Turner, 1913:141) (En- 


VOLUME 46, NUMBER 4 


chesphora). Australia: N. Territory: 
Port Darwin. 
pretiosalis (Caradja, 1925:55) (Macalla),. 
China: Shanghai, Kiangsi. 
pseudopinguinalis (Caradja, 1925:56) 
(Macalla). China: Lienping. 
purpureopicta (Hampson,1916b:170) 
(Macalla). Somaliland. 
pyrastis (Meyrick, 1887:190) (Stericta). 
Australia: New South Wales: New- 
castle. 
ferruginea (Lucas, 1894:156) (Balano- 
tis). Australia: Brisbane. 
recurvalis Walker, 1863:107. Borneo: Sa- 
rawak. 
rubiginosa (Walker, 1865:609) (Exa- 
cosmia). Australia. 
malanospilellus (Walker, 1866:1759) 
(Crambus?). Australia: Sydney. 
crypsaula (Meyrick, 1887:191) (Bal- 
anotis ). Australia: New South 
Wales: Sydney. 
ridiculalis (Caradja, 1925:56) (Macalla). 
China: Canton. 
ribripalpalis (Hampson, 1916a:137) (Ma- 
calla). New Guinea: Mt. Goliath. 
rugosalis (Hampson, 1916a:142) (Macal- 
la). Australia: Rook I. 
rufibarbalis (Hampson, 1903:34) (Macel- 
la, missp,). Sikhim. 
rufitinctalis (Warren, 1896:455) (Para- 
sarama). Borneo: Sarawak. 
sagarisalis (Walker, [1859] 1858:160) 
(Locastra). Borneo: Sarawak. 
scoporhyncha (Hampson, 1896a:114) 
(Macalla). Sikhim. 
seyrigalis (Viette, 1960a:154) (Macalla). 
Archipel des Comores: Mayotte: 
Convalescence. 
shanghaiella (Caradja, 1925:53) (Macal- 
la). China: Shanghai. 
shibuyai (West, 1931:208) (Macalla). 
Philippine Islands: Luzon, Benguet, 
Palali. 
streptomela (Lower, 1896:156) (Steric- 
ta). Australia: Queensland: Duarin- 


ga. 

syrichtusalis (Walker, [1859] 1858:165) 
(Bertula). Borneo: Sarawak. 

pyralisalis (Walker, 1863:105) (Ortha- 
ga). Borneo: Sarawak. 

tegulalis (Walker, 1863:105) (Orthaga). 
Borneo: Sarawak. 

tenebrosalis (Kenrick, 1907:71) (Macal- 
la). Papua New Guinea: Kebea, Ek- 
eikei, Babouni. 


289 


tholoeessa (Turner, 1925b:116) (Cata- 
mola). Australia: Tasmania. 
triglochis (Turner, 1904:194) (Heterobel- 
la). Australia: Queensland: Brisbane. 
umbrosalis (Hampson, 1916a:143) (Ma- 
calla). Papua New Guinea: Mt. Ke- 
bea. 
unipunctalis (Kenrick, 1907:70) (Macal- 
la). Papua New Guinea: Dinawa. 
vadoni (Viette, 1981:316) (Macalla). 
Madagascar Est: baie d'Antongil. 
validalis (Walker, 1865:1218) (Calini- 
paxa). Borneo: Sarawak. 
minor (Moore, 1888:203) (Scopocera). 
India: Darjiling. 
fumosalis (Warren, 1896:461) (Peu- 
cela). India: Khasias. 
costimacula (Wileman-South, 1917b: 
175) (Pyralis). Formosa: Rantai- 
zan. 
viridetincta (Caradja, 1925:52) (Macal- 
Ia). China: Lienping, Amoy, Canton, 
Kuling. 
viridirufalis (Hampson, 1916a:145) (Ma- 
calla). New Guinea: Fak-fak. 
wollastoni (Rothschild, 1915:114) (Ma- 
calla). New Guinea: Utakwa River. 
zophera (Turner, 1904:196) (Macalla). 
Australia: Queensland: Burpengary. 
mixtirosalis (Hampson, 1906:135) 
(Macalla). Australia: Queensland: 
Dawson District. 
Shoutedenidea Ghesquiére, 1942:235. 
(ophigona Ghesquiére) 
ophigona Ghesquiére, 1942:235. Zaire: 
Kai Bumba. 
Sparactica Meyrick, 1938:74. (eustola 
Meyrick) 
eustola Meyrick, 1938:75. West Java: Mt. 
Guntur: Garoet. 
Spectrotrota Warren, 1891:426. (fimbrialis 
Warren) 
erythrolepia Hampson, 1916a:134. For- 
mosa: Arizan. 
catena Wileman-South, 1917a:127. 
Taiwan: Arizan. 
fimbrialis Warren, 1891:427. Australia. 
Speiroceras Chrétien, 1911:12. (pectinell- 
lum Chrétien) 
pectinellum Chrétien, 1911:12. Mauri- 
tania: Biskra. 
Stericta Lederer, 1863:267. (divitalis Gue- 
née). Obj. repl. name. 
Glossina Guenée, 1854:124. (divitalis 
Guenée) 
Pseudocera Walker, 1863:116. (incon- 
cisa Walker). 


290 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Canipsa Walker, [1866] 1865:1217. 
(suspensalis Walker). 
Matalia Walker, 1866:1727. (concisel- 


la Walker). 
Phialia Walker, 1866:1736. (gelechiel- 
la Walker). 
Sarama Moore, 1888:208. (atkinsonii 
Moore). 
Scopocera Moore, 1888:202. (pyraliata 
Moore). 
aeruginosa Lucas, 1894:155. Australia: 
Brisbane. 
angulosa de Joannis, 1929:633. Vitenam: 
Tonkin. 


angusta (Inoue, 1988:85) (Jocara). Japan: 
Shizuoka Pref, Nashimoto. 
angustalis Caradja, 1925:57. China: 
Lienping. : 
asopialis (Snellen, 1890:568.) (Pannu- 
cha). India: Darjiling. 
atribasalis Hampson, 1900:376. Amur- 
land: Sutschau, Askold I. 
atkinsoni (Moore, 1888:204) (Sarama). 
India: Darjiling. 
atribasalis Warren, 1895:461. Australia: 
Queensland. 
leucodesma Lower, 1896:156. Austra- 
lia: Queensland: Bulimba, Bris- 
bane. 
basalis (South, 1901:417) (Orthaga). Ja- 
pan: Nagasaki. 
japonica (Marumo, 1920:266) (Lepi- 
dogma). Japan. 
basilaris (de Joannis, 1929:634) (Ste- 
ricta). Vietnam: Tonkin. 
bryomima (Turner, 1913:141) (Ortha- 
ga). Australia: Queensland, Mont- 
ville. 
callibrya Meyrick, 1933:437. Sri Lanka: 
Batapola. 
caradjai West, 1931:209. Philippine Is- 
lands: Mindanao, Lanao, Kolambu- 
gan. 
carbonalis (Guenée, 1854:77) (Helia). 
Terre de Van-Diemen. 
costigeralis (Walker, 1862:121) (Py- 
ralis). Australia: Sydney. 
gelechiella (Walker, 1866:1736) (Phi- 
alia). Australia: Tasmania. 
inuncta (Lucas, 1898:80) (Catamola). 
Australia: Queensland. 
carneotincta Hampson, 1896a:123. Sikh- 
im. 
centralis (Wileman-South, 1917a:129) 
(Orthaga). Formosa. 
concisella (Walker, 1866:1728) (Mata- 
lia). Australia: Swan River. 


rubroviridis Warren, 1895:463. Austra- 
lia: Queensland. 
congenitalis Hampson, 1906:144. Bor- 
neo: Sandakan. 
corticalis Pagenstecher, 1900:167. Bis- 
marck Archipelago. 
divitalis (Guenée, 1854:124) (Glossina). 
Central India. 
phereciusalis (Walker, [1859] 1858:159) 
(Locastra). Borneo: Sarawak. 
dohrni Hering, 1901:27. Sumatra. 
evanescens Butler, 1887:115. Solomon Is- 
lands: Alu. 
flammealis Kenrick, 1907:72. Papua New 
Guinea: Ekeikei. 
hoenei Caradja and Meyrick, 1935:28. 
China. 
ignebasalis Hampson, 1916a:148. New 
Guinea: Fak-fak. 
inconcisa (Walker, 1863:116) (Pseudoc- 
era). Borneo: Sarawak. 
indistincta Rothschild, 1915:115. New 
Guinea: Utakwa River. 
lactealis Caradja, 1931:206. China: 
Kwanhsien. 
leucozonalis Hampson, 1906:142. Sin- 
gapore. 
lophocepsalis Hampson, 1906:144. Bor- 
neo: Sandakan. 
loxochlaena Meyrick, 1938:74. West Java: 
Mt. Guntur, Garoet. 
loxophaea (Turner, 1937:75) (Epipas- 
chia). Australia: Queensland, Cape 
York. 
mediovialis Hampson, 
Queensland: Cairns. 
olivialis Hampson, 1903:36. Bhutan; 
Khasis. 
orchidivora (Turner, 1904:199) (Ortha- 
ga). Australia: Queensland, Burpen- 
gary. 
phanerostola Hampson, 1916a:148. New 
Guinea: Babooni. 
plumbifloccalis Hampson, 1896a:128. 
Burma: Tenasserim. 
prasina Warren, 1895:462. Australia: 
Queensland. 
pyraliata (Moore, 1888:202) (Scopocera). 
India: Darjiling. 
rufescens Hampson, 1896a:120. Bhutan. 
kiiensis (Marumo, 1920:266) (Lepi- 
dogma). Japan. 
rurealis Kenrick, 1912:548. New Guinea: 
Arfak Mts. | 
sectilis Hering, 1901:21. Sumatra. 
sinuosa (Moore, 1888:203) (Scopocera). 
India: Darjiling. 


1916a:148. 


VOLUME 46, NUMBER 4 


subviridalis Kenrick, 1907:73. Papua New 
Guinea: Kebea, Dinawa, Babouni. 
klossi Rothschild, 1915:115. New 
Guinea: Utakwa River. 
suspensalis (Walker, [1866] 1865:1217) 
(Canipsa). Borneo: Sarawak. 
capnotila (Meyrick, 1938:73) (Macal- 
la). South Central Java: Djokja- 
karta. 
Teliphasa Moore, 1888:200. (orbiculifer 
Moore) 
albifusa (Hampson, 1896a:113) (Macal- 
la). Sikhim. Nagas. 
shishana (Strand, 1919:51) (Macalla). 
Taiwan: Shisa. 
andrianalis Viette, 1960a:158. Madagas- 
car Est: Sakaraha, Lambomakan. 
dibelana Ghesquiére, 1942:238. Zaire: 
Bena-Dibele. 
nubilosa Moore, 1888:201. India: Darji- 
ling. 
orbiculifer Moore, 1888:201. India: Dar- 
jiling. 
sakishimensis Inoue and Yamanaka, 1975: 
100. Japan: Mt. Banna, Ishigakijima, 
Ryukyu Is. 
Termioptycha Meyrick, 1889:504. (cyano- 
pa Meyrick) 
Pseudolocastra Warren, 1891:429. (in- 
imica Butler) 
Sialocyttara Turner, 1913:134. (erasta 
Turner) 
aurantiaca Janse, 1931:455. New Guinea: 
Arfak Mts. 
bilineata (Wileman, 1911:364) (Macal- 
la). Japan: Settsu, Shioya. 
eucarta (Felder & Rogenhofer, 1875:pl. 
exxxvi, fig.28) (Ethnistis). Moluccas. 
cyanopa Meyrick, 1889:505. New 
Guinea. 
erasta (Turner, 1913:134) (Sialocyt- 
tara). Australia: Queensland, Ku- 
randa. 
distantia Inoue, 1982:378. Japan. 
inimica (Butler, 1879b:448) (Locastra). 
Japan. 
elegans (Butler, 1881:581) (Locastra). 
Japan: Yokohama. 
margarita (Butler, 1879a:66) (Locastra). 
Japan: Yokohama. 


291 


lativitta (Moore, 1888:199) (Locastra). 
India: Darjiling. 
nigrescens (Warren, 1891:428) (Parasa- 
ma?). Japan: Yesso. 
scoparialis (Wileman, 1911:365) (Ma- 
calla). Japan: Nikko. 
chosenalis (Shibuya, 1927b:93) (Ma- 
calla). Korea. 
Titanoceros Meyrick, 1884a:62. (cataxan- 
tha Meyrick) 
cataxantha Meyrick, 1884a:63. Australia: 
New South Wales: Sydney. 
heliodryas Meyrick, 1933:436. Australia: 
Queensland, Townsville. 
malefica (Meyrick, 1934:531) (Jocara). 
India: Madras: Nilambur. 
mirandalis (Caradja, 1925:51) (Jocara). 
China: Lienping. 
poliochyta Turner, 1904:191. Australia: 
Queensland, Townsville. 
thermoptera (Lower, 1903:59) (Jocara). 
Australia: New South Wales, Broken 
Hill. 
vinotinctalis (Caradja, 1928:361) (Jo- 
cara). China: Lienping. 
viridibasalis (Caradja, 1932:9) (Jocara). 
China: Omei shan. 
Trichotophysa Warren, 1896:456. (olivalis 
Warren) 
juncundalis (Walker, 1865:1164) (Blep- 
tina?). Sri Lanka. 
olivalis Warren, 1896:457. India: Khas- 
ias. 
olivalis (Wileman, 1911:365) (Steric- 
ta). Japan: Yoshino, Yamato. 
yamatomis (Strand, 1919:55) (Steric- 
ta). Taiwan: Yamato. 
Incertae sedis 
africalis (Hampson, 1906:128) (Pococ- 
era). Kenya: Tana R. 
cinerea (Ghesquiére, 1942:234) (Tioga). 
Zaire: Elisabethville. 
aethlea (Ghesquiére, 1942:234) (Tioga). 
Zaire: Elisabethville. 
zophoptera (Ghesquiérer, 1942:234) 
(Tioga). Zaire: Manghay. 
albicristata (Warren, 1911:28) (Isolo- 
pha). South Africa. 


ACKNOWLEDGMENTS 


Robert Poole, Systematic Entomology Laboratory, helped to locate many of the more 
obscure journals. Ronald Hodges, Systematic Entomology Laboratory, reviewed and pro- 
vided encouragement toward the disposition of this work. Jay Shaffer, Michael Pogue, 


292 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


Norman Woodley, and two anonymous reviewers provided suggestions that greatly im- 
proved the manuscript. I thank Michael Shaffer for allowing me to use the catalog at The 
Natural History Museum, London, England to crosscheck my list. The following indi- 
viduals and institutions also provided material, types, and/or photos: E. Nielsen (Australian 
National Insect Collection), P. Viette and J. Minet (Museum National d'Histoire Naturelle), 
C. B. Cottrell (Transvaal Museum), H. J. Hanneman (Zoologisches Museum, Humboldt 
Universitat), M. Lod] (Naturhistorisches Museum Wien), U. Dall'Asta (Musée Royal de 
L'Afrique Centrale), and J. Rawlins (Carnegie Museum). Funds for study in London were 
provided by the Gahan Fellowship from the Department of Entomology, University of 
Maryland, and Sigma Xi. 


LITERATURE CITED 


AMSEL, H. G. 1949. On the Microlepidoptera collected by E. P. Wiltshire in Irak and 
Iran in the years 1935-1938. Bull. Soc. Fouad 33:271-351. 

1953. Neue Kleinschmetterlinge aus nordwest Africa. Bull. I'Inst. fran. d'Afrique 

Noire. 15:1441=1454. 

1956. Microlepidoptera Venezolana I. Bol. Entomol. Venez. 10:1-336. 

1961. Die Microlepidopteren der Brandt'schen Iran-Ausbeute. S. Teil. Ark. Zool. 
Stockholm (N.S.). 18:323-446. 

AURIVILLUS, C. 1894. Neue Spinner aus Asien. Entomol. Tidsk. 15:169-177. 
BETHUNE-BAKER, G. T. 1905. Notes on a small collection of Heterocera from the Fiji 
Islands, with descriptions of some new species. Proc. Zool. Soc. London 1:88-95. 
BUTLER, A. G. 1878. Illustrations of Lepidoptera Heterocera of the British Museum. 

Part II. Trustees of the BM, London. 62 pp. 

1879a. Illustration of the Lepidoptera Heterocera of the British Museum. Part 

III. Trustees of the BM, London. 82 pp. 

1879b. Descriptions of new species of Lepidoptera from Japan. Ann. Mag. Nat. 

Hist. (5)4:437—457. 

1881. Descriptions of new genera and species of heterocerous Lepidoptera from 

Japan. Trans. Entomol. Soc. London (Part IV):579-600. 

1887. Descriptions of new species of heterocerous Lepidoptera (Pyralites) from 

the Solomon Islands. Ann. Mag. Nat. Hist. (5)20:114-124. 

1889. Illustrations of Lepidoptera Heterocera of the British Museum. Part VII. 
Trustees of the BM, London. 90 pp. 

CARADJA, A. 1925. Ueber chinas Pyraliden, Tortriciden, Tineiden nebst kurze Betrach- 
tungen, zu denen das Studium dieser Fauna veranlassung gibt. Acad. Roumaine 
Mem. Sect. Stiint. 7:1-127. 

1926. Nachtrage zur Kenntnis ostasiatischer Pyraliden. Deuts. Entomol. Zeits. 

Iris, Dresden 40:168-179. 

1928. Die Kleinfalter der Stotzner'schen Ausbeute, nebst Zutraege aus meiner 

Sammlung (Zweite biogeographische Skizze Zentralasien). Acad. Roumaine Mem. 

Sect. Stiint. 4:361—428. 

1931. Dritter Beitrag zur Kenntnis der Pyraliden von Kwanhsien und Mokanshan 

(China). Bull. Acad. Roumaine 15:203-212. 

1932. Dritter Beitrag zur Kleinfalterfauna Chinas nebst kurzer Zusammenfas- 
sung der bisherigen biogeographischen Ergebnisse. Bull. Acad. Roumaine 15:111- 
123. 

Carapja, A. & E. Meyrick. 1934. Materialien zu einer Microlepidopteren-Fauna 
Kwangtungs. Deuts. Ent. Zeits. Iris, Dresden 47:145-167. 

1935. Materialien zu einer microlepidopteran-Fauna der chinesischer Provinzen 
Kiangsu, Chekiang und Hunan. R. Friedlander und Sohn. Berlin. 96 pp. 

CHRETIEN, P. 1911. Description de nouveaux genres et de nouvelles espéces de Phycides 
de Mauritanie. Bull. Soc. Entomol. France 1:11-14. 

CHRISTOPH, H. 1877. Sammelergebnisse aus Nordpersien, Krasnowodsk im Turkmenien 
und dem Daghestan. Horae Soc. Entomol. Ross. 12:197—299. 


VOLUME 46, NUMBER 4 293 


1881. Neue Lepidopteren des Amurgebietes. Bull. Soc. Imp. Nat. Moscou 56: 
1-80. 
1887. Diagnosen neuer Lepidopteren aus Tekke. Stett. Entomol. Zeit. 48:162- 


167. 


1893. Lepidopterologisches. Stett. Entomol. Zeit. 54:31-36. 

CLEMENS, B. 1860. Contributions to American lepidopterology. No. 3. Proc. Acad. Nat. 
Sci. Philadelphia: 4-15. 

DE JOANNIS, J. 1927. Pyralidae d'Afrique australe. Bull. Soc. Lépid. Genéve 5:41-256. 

1929. Lépidoptéres hétérocéres du Tonkin. Ann. Soc. Entomol. France 49:559- 


834. 

DOGNIN, P. 1908. Hétérocéres nouveaux de l'Amerique du Sud. Ann. Soc. Entomol. 
Belgique 52:17-83. 

Druce, H. 1902. Descriptions of some new species of Lepidoptera. Ann. Mag. Nat. 
Hist. (7)19:33821-3334. 

DUMONT, C. 1928. Notes sur les Lépidoptéres de Barbarie. Ency. Entomol. Paris, Ser. 
B. IJ. Lepidoptera 3:17-37. 

Dyar, H. G. 1893. Description of a peculiar new liparid genus from Maine. 25:213- 
215. 


1900. Notes on the genus Dyaria, Neum. Can. Entomol. 32(9):284. 

1910. New species of Lepidoptera from British Guiana. Zoologica 1:125-138. 

FELDER, C. R. & A. F. ROGENHOFER. 1875. Reise der Osterreichischen Fregatte Novara 
um die Erde. Lepidoptera Zoologischen Theil, ii. pt. 2. Plates cxxi—cxxl. 

FLETCHER, D. S. & I. W. B. NYE. 1984. The generic names of the moths of the world. 
Volume 5. Trustees British Museum (Natural History), London. 185 pp. 

GAEDE, M. 1917. Neue Lepidopteren des Berliner zoologischen Museums. Mitt. Zool. 
Mus. Berlin 8:387-428. 

GHESQUIERE, J. 1942. Catalogues raisonnés de la faune entomologique du Congo Belge. 
Ann. Mus. Congo Belge 7:121-240. 

GroTE, A. R. 1876. New Pyralides. Can. Entomol. 8(6):156-158. 

GUENEE, M. A. 1854. Histoire Naturelle des Insectes. Deltoides et Pyralites. Tome 18. 
Libraire Ency. Roret, Paris. 448 pp. 

Hampson, G. F. 1891. Illustrations of typical specimens of Lepidoptera Heterocera in 
the collection of the British Museum. Part VIII. The Lepidoptera Heterocera of the 
Nilgiri District. Trustees of the BM, London. 144 pp. 

1898. Illustrations of typical specimens of Lepidoptera Heterocera in the col- 

lection of the British Museum. Part IX. The Macrolepidoptera of Ceylon. Trustees 

of the BM, London. 182 pp. 

1896a. The fauna of British India, including Ceylon and Burma. Vol. IV. Taylor 

& Francis, London. 594 pp. 

1896b. On the classification of three subfamilies of moths of the family Pyralidae: 

The Epipaschiinae, Endotrichinae, and Pyralinae. Trans. Entomol. Soc. London (Part 

IV):451-550. 

1899. The moths of India. J. Bombay Nat. Hist. Soc. 12:475-485. 

1900. New Palearctic Pyralidae. Trans. Entomol. Soc. London. (Part II):369- 


401. 

1908. The moths of India. J. Bombay Nat. Hist. Soc. 15:19-38. 

1906. On new Thyrididae and Pyralidae. Ann. Mag. Nat. Hist. (7)17:112-147, 

189-222. 

1912. The moths of India. J. Bombay Nat. Hist. Soc. 21:1222—1272. 

1916a. Descriptions of new Pyralidae of the subfamilies Epipaschianae, Chry- 

sauginae, Endotrichinae, and Pyralinae. Ann. Mag. Nat. Hist. (8)18:126-160. 

1916b. In Poulton, E. B. (ed.), On a collection of moths made in Somaliland 

by Mr. W. Feather. Proc. Zool. Soc. London 1916(1):91-182. 

1917. Descriptions of new Pyralidae of the subfamilies Hydrocampinae, Sco- 
parianae, etc. Ann. Mag. Nat. Hist. (8)19:361-376. 

HERING, E. M. 1901. Uebersicht der Sumatra-Pyralidae. Stett. Entomol. Zeit. 62:13- 
118. 


294 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


HODGES, RONALD W., ET AL. (ed.). 1983. Check list of the Lepidoptera of America 
North of Mexico. E. W. Classey Limited and The Wedge Entomological Research 
Foundation, London. 284 pp. 

Howarp, F. W. & M. A. Sots. 1989. The distribution, life history, and host plant 
relationships of the mahogany webworm, Macalla thyrsisalis Walker. Fla. Entomol. 
72:469-479. 

INOUE, H. 1982. Moths of Japan. Vol. I. Kodansha Co., Ltd., Tokyo, Japan. 966 pp. 

1988. A new species of the Epipaschiinae from Japan, with some synonymic 
notes on the Pyralidae from East Asia (Lepidoptera). Tinea 12:85-95. 

INOUE, H. & H. YAMANAKA. 1975. A revision of the Japanese species formerly assigned 
to the genus Macalla Walker (Lepidoptera: Pyralidae). Bull. Fac. Dom. Sci. Otsuma 
Woman's Univ. 11:95-112. 

JANSE, A. J. T. 1922. Some apparently new South African genera and species of the 
family Pyralidae. Trans. Entomol. Soc. London (Parts I and II):1-38. 

1931. A contribution towards the study of the genera of the Epipaschiinae 
(Family Pyralidae). Trans. Entomol. Soc. London 79:489-492. 

JONEs, E. D. 1912. Descriptions of new species Lepidoptera-Heterocera from South- 
East Brazil. Trans..Entomol. Soc. London (Part II):419-444. 

KENRICK, G. H. 1907. A list of moths of the family Pyralidae collected by A. E. Pratt 
in British New Guinea in 1902-08, with descriptions of new species. Proc. Zool. Soc. 
London 1907(1):68-87. 

1912. A list of moths of the family Pyralidae collected by Felix B. Pratt and 

Charles B. Pratt in Dutch New Guinea in 1909-1910; with descriptions of new species. 

Proc. Zool. Soc. London 1912(8):546-555. 

1917. New or little-known Heterocera from Madagascar. Trans. Entomol. Soc. 
London (Part I):85-101. 

LEDERER, J. 1863. Beitrag zur Kenntnis der Pyralidinen. Wien. Entomol. Monat. 7:241- 
004. 

Lower, O. 1896. New Australian Lepidoptera. Trans. Roy. Soc. So. Australia. 20:152— 
170. 


1902. Descriptions of New Australian Lepidoptera. Proc. Linn. Soc. N. S. Wales 

26:639-671. 

1908. Descriptions of New Australian Noctuina, etc. Trans. Roy. Soc. So. Aus- 
tralia 27:27-74. 

Lucas, T. P. 1894. Descriptions of new Australian Lepidoptera, with additional localities 
for known species. Proc. Linn. Soc. N. S. Wales VIII:183-166. 

1898. Descriptions of Queensland Lepidoptera. Proc. Soc. Queensland 13:59- 


86. 

MABILLE, P. 1907. Description d'un Lépidoptére nouveau de Tunisie. Bull. Soc. Entomol. 
France 18:308. 

MANN, J. J. 1873. Captures in Tuscany, from April to July 1872, Italy (774 species). 
Verh. z.-b. Wien 23:117-129. 

Marion, H. 1955. Pyrales nouvelles de Madagascar. Bull. Soc. Entomol. France 60: 
114-119. 

Marumo, N. 1920. A revision of the Japanese Pyralidae. Part I. (Subfamily Epipas- 
chiinae). J. Coll. Agric. Tokyo 6:265-272. 

MEyRICK, E. 1884a. On the classification of Australian Pyralidina. Trans. Entomol. Soc. 
London 1884(Part I):61-—80. 

1884b. On the classification of Australian Pyralidina. Trans. Entomol. Soc. 

London 1884(Part III):277-350. 

1885. On the classification of Australian Pyralidina. Trans. Entomol. Soc. London 

1885(Part IV):421—456. 

1887. On Pyralidina from Australia and the South Pacific. Trans. Entomol. Soc. 

London 1887(Part III):185-268. 

1889. On some Lepidoptera from New Guinea. Trans. Entomol. Soc. London 

1889(Part IV):455-522. 


VOLUME 46, NUMBER 4 295 


1890. On the classification of the Pyralidina of the European fauna. Trans. 

Entomol. Soc. London 1890(Part III):429-492. 

1894. On Pyralidina from the Malay Archipelago. Trans. Entomol. Soc. London 

1894(Part III):455-480. 

1932. Exotic microlepidoptera. 4:289-352. 

1933. Exotic microlepidoptera. 4:417-448. 

1934. Exotic microlepidoptera. 4:513-544. 

1936. Exotic microlepidoptera. 5:1—82. 

1938. New Javanese Lepidoptera. Duets. Ent. Zeits. Iris, Dresden 52:73-88. 

Misra, C. S. 1932. The green peach-aphis (Myzus persicae Snlz.) and a new pyralid 
mango defoliator Orthaga mangiferae n. sp. Ind. J. Agric. Sci., Calcutta 2:536-541. 

Moorg, F. 1867. On the lepidopterous insects of Bengal. Proc. Zool. Soc. London 
1867(Part I):44-98. 

1888. Descriptions of Indian Lepidoptera Heterocera from the collection of the 
late Mr. W. S. Atkinson. Taylor and Francis, London. pp. 199-204. 

NEUMOEGEN, B. 1893. Description of a peculiar new liparid genus from Maine. Can. 
Entomol. 25(9):211-215. 

PAGENSTECHER, A. 1900. Die Lepidopteren Fauna des Bismarck-Archipels. Mit Be- 
riicksichtigugn der thiergeographischen und biologischen Verhaltnisse systematisch 
dargestellt. Erster Theil die Tagfalter. Zoologica. Heft XX VII. 1899. 160 pp. 2 plates. 
Nachtrage. Op.cit. 29:261-268. 

1907. Lepidoptera-Heterocera von Madagaskar, den Comoren und Ostafrika, 
6:93-146. In Voeltzkow, A. (ed.), Reise in Ostafrika in den Jahren 1903-1905. Wis- 
senschaftliche Ergebnisse. Band II. Systematische Arbeiten. 

RAGONOT, E. L. 1891. Essai sur les Pyralites. Ann. Soc. Entomol. France 60:15-118. 

REBEL, H. 1902. Neue Pyraliden, Pterophoriden und Tineen des palaearctischen Fau- 
nengebietes. Deuts. Ent. Zeits. Iris, Dresden 1902:100-126. 

ROEPKE, N. 1932. Résultats scientifiques du voyage aux Indes Orientales Néerlandaises. 
Heterocera. Mem. Mus. Roy. d Hist. Nat. Belg. IV(6):1-99. 

ROTHSCHILD, W. 1915. Macrolepidoptera. Lepidoptera collected by the British Orni- 
thologists’ Union and Wollaston Expeditions in the Snow Mountains, Southern Dutch 
New Guinea. Hazell, Watson & Viney, Ltd., London. 182 pp. 

1921. Captain Angus Buchanan’s Air Expedition. V. On the Lepidoptera col- 
lected by Capt. A. Buchanan in northern Nigeria and the southern Sahara in 1919- 
1220. Novit. Zoo. Tring. 28:142-170, 215-229. 

ScHAuUS, W. 1912. New species of Heterocera from Costa Rica. Ann. Mag. Nat. Hist. 
(8)9:656-671. 

1922. Notes on the neotropical Epipaschiinae with descriptions of new genera 

and species. Proc. Entomol. Soc. Washington 24:208-242. 

1925. New species of Epipaschiinae in the Carnegie and U.S. National Museums. 

Ann. Carn. Mus. 16:9-48. 

1934. Heterocera from Tropical America. Ann. Mag. Nat. Hist. (10)14:79-115. 

SHAFFER, M., E. S. NIELSEN & M. Horak. 1992. Pyralidae. In Nielsen, E. S., E. D. 
Edwards & T. V. Ransi (eds.), Checklist of the Lepidoptera of Australia. Monographs 
on Australian Lepidoptera, CSIRO Publications, East Melbourne. In press. 

SHIBUYA, J. 1927a.. A study on the Japanese Epipaschiinae. Trans. Nat. Hist. Soc. Formosa 
17:339-359. 

1927b. Some new and unrecorded species of Pyralidae from Corea (Lepid.). 

Ins. Matsum. Sapporo 2:87-102. 

1928. The systematic study on the Formosan Pyralidae. J. Fac. Agric. Hokkaido 
22:1-300. 

SNELLEN, P. C. T. 1890. A catalogue of the Pyralidina of Sikkim collected by Henry 
J. Elwes and the late Otto Moller. Trans. Entomol. Soc. London (Part IV):557-647. 

SoLis, M. A. 1989. A phylogenetic analysis and reclassification of the Pococera-complex 
genera (Lepidoptera: Pyralidae: Epipaschiinae) and a preliminary cladistic analysis 
of the Pyralidae. Ph.D. Thesis, University of Maryland, College Park, Maryland. 
428 pp. 


296 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


In press. A phylogenetic analysis and reclassification of the genera of the Po- 
cocera complex (Lepidoptera: Pyralidae: Epipaschiinae. J. New York Entomol. Soc. 

SouTH, R. 1901. Lepidoptera Heterocera from China, Japan, and Corea by the late 
John Henry Leech, B.Z., F.L.S., etc. Part V: With descriptions of new species by 
Richard South, F.E.S. Trans. Entomol. Soc. London. (Part IV):385-514. 

STAUDINGER, O. 1892. Untitled. Deuts. Ent. Zeits. Iris, Dresden 5:466 and Plate 3, 
Figure 22. 

1893. Beschreibungen neuer palaearktischer Pyraliden. Deuts. Ent. Zeits. Iris, 
Dresden 6:71-82. 
STRAND, E. 1919. Sauter’s Formosa-Ausbeute: Pyralididae, Subfam. Sterictinae, En- 
dotrichinae, Pyralidinae und Hydrocampinae (Lep.). Entomol. Mitt. 8:49-135. 
SWINHOE, C. 1884. On Lepidoptera collected at Kurrachee. Proc. Zool. Soc. London 
1884:503-529. 

1895. New species of Indian Epiplemidae, Geometridae, Thyrididae and Py- 

ralidae. Ann. Mag. Nat. Hist. (6)16:293-304. 

1902. Descriptions of new Eastern and Australian moths. Ann. Mag. Nat. Hist. 
(7)9:165-182. 

Tams, W. H. T. 1935. Heterocera (exclusive of the Geometridae and the Microlepi- 
doptera). Insects of Samoa. London, British Museum (Natural History). 3:169-290. 

TURNER, A. J. 1902. New Australian Lepidoptera. Trans. Roy. Soc. So. Australia 26: 
175-207. 

1904. A preliminary revision of the Australian Thrydidae and Pyralidae. Proc. 

Roy. Soc. Queensland 18:109-199. 

1905. A Preliminary revision of the Australian Thrydidae and Pyralidae. Proc. 

Roy. Soc. Queensland 19:39-64. 

1913. Studies in Australian Lepidoptera. Proc. Roy. Soc. Queensland 24:111- 


143. 


1915. Studies in Australian Lepidoptera. Proc. Roy Soc. Queensland 27:32-87. 

1925a. New Australian Lepidoptera. Trans. & Proc. Roy. Soc. So. Australia 49: 

37-60. 

1925b. New and little-known Tasmanian Lepidoptera. Pprs. & Proc. Roy. Soc. 

Tasmania (Hobart, 1926):81-117. 

1932. New Australian Lepidoptera. Trans. Roy. Soc. So. Australia 56:175-196. 

1933. New Australian Lepidoptera. Trans. Roy. Soc. So. Australia 57:159-182. 

1937. New Australian Pyraloidea (Lepidoptera). Proc. Roy. Soc. Queensland 
48:61-88. 

VIETTE, P. 1953. Nouvelles Pyrales de Madagascar. Rev. Frangais d'Entomol. 20:130- 
137. 


1960a. Pyrales nouvelles ou peu connues de Madagascar et des Comores. Ann. 

Soc. Entomol. France 129:151-177. 

1960b. Pyralides de Madagascar et de Comores nouvelles on peu connues. Rev. 

Francais d'Entomol. 27:200-214. 

1965. Nouvelles espéces de Pyrales de Madagascar (Lepidoptera). Entomops. 

31:215-220. 

1967. Deux nouveaux Lepidoptéres de l'ouest de Madagascar (Lymantriidae et 

Pyralidae). Bull. Mens. Soc. Linn. Lyon 36:56-57. 

1981. Nouvelles pyrales de Madagascar. Nouv. Rev. Entomol. 11:315-319. 

WALKER, F. 1862. Characters of undescribed Lepidoptera in the collection of W. W. 
Saunders, Esq. Trans. Entomol. Soc. London 3:70-279. 

1858-1866. List of specimens of lepidopterous insects in the collection of the 

British Museum. Parts 16 to 835. Edward Newman, London. 

1869. Characters of undescribed Lepidoptera. E. W. Janson, London. 112 pp. 

WALSINGHAM, T. 1888. Description of a new genus and species of Pyralidae, received 
from the Rev. J. H. Hocking, from the Kangra Valley, Punjab, India. Trans. Linn. 
Soc. 5:47-52. 

WARREN, W. 1890. Descriptions of some new genera of Pyralidae. Ann. Mag. Nat. 
Hist. (6)6:474—479. 


VOLUME 46, NUMBER 4 297 


1891. Descriptions of new genera and species of Pyralidae contained in the 

British-Museum Collection. Ann. Mag. Nat. Hist. (6)8:423-438. 

1895. New genera and species of Pyralidae, Thyrididae, and Epiplemidae. Ann. 

Mag. Nat. Hist. (6)16:460-477. 

1896. New species of Pyralidae from the Khasia Hills. Ann. Mag. Nat. Hist. 

17(6):452—466. 

1911. Descriptions of new Geometridae and Pyralididae from South Africa. 
Ann. So. African Mus. 10:19-29. 

WEsT, R. J. 1931. Descriptions of new species of Japanese, Formosan and Philippine 
Pyralidae. Novit. Zool. 36:206-219. 

WILEMAN, A. E. 1911. New and unrecorded species of Lepidoptera Heterocera from 
Japan. Trans. Entomol. Soc. London (Part II):189-406. 

WILEMAN, A. E & R. SouTH. 1917a. Five new species of Pyralidae, belonging to the 
sub-family Epipaschianae, from Formosa. Entomol. 50:127-129. 

1917b. New species of Pyralidae from Formosa. Entomol. 50:175-178. 


Received for publication 14 March 1992; revised and accepted 5 September 1992. 


TECHNICAL COMMENTS 


Journal of the Lepidopterists’ Society 
46(4), 1992, 298-300 


COMPARISON OF BUTTERFLY DIVERSITY IN THE 
NEOTROPICAL AND ORIENTAL REGIONS 


Heppner (1991) admirably compiled and tabulated an immense amount of Lepidop- 
teran diversity data that potentially will be of interest to biologists and conservation policy 
makers. For example, he concluded that the Oriental Region has more species of Lepi- 
doptera per unit area than the Neotropical Region and stated “... figures of species 
richness and diversity per unit of land area give a more meaningful understanding of 
the average loss to be anticipated as each section of land is deforested. . . .” The purpose 
of this note is to alert conservationists and others that the conclusions and numbers in 
Heppner’s paper need to be viewed with caution. Errors range from technical (he used 
1.67 to convert mi? to km? [2.59 is the correct factor]) to logical (see below). Specifically, 
I show that the variable “species/area,” as calculated by Heppner, is not valid for com- 
paring different sized areas, that the numbers of butterflies tabulated in his paper are 
inconsistent with other published work, and that the Neotropical Region has more than 
twice the butterfly species for a given area than does the Oriental Region. 


Is HEPPNER’'S ARGUMENT LOGICAL? 


Heppner’s argument is simple. The Neotropical Region has 46,313 Lepidoptera species 
and an area of 7.202 million mi? (=18.65 million km”), whereas the Oriental Region has 
26,794 Lepidoptera and an area of 3.934 million mi? (=10.19 million km?). Dividing, the 
Neotropics have 6434 species/million mi?, and the Orient has 6782 species/million mi’. 
From these numbers, Heppner concluded that the Oriental Region has a higher species 
diversity of Lepidoptera. Using Heppner’s method and data for just butterflies, the Neo- 
tropical Region is barely more diverse than the Oriental Region (1101 vs. 1057 species/ 
million mi?). ; 

I use a reductio ad absurdum argument to show that it is illogical to use “species/ 
area’ to compare different sized regions. Approximately 118 species are recorded in 
Massachusetts (21,386 km?) while there are about 3130 species in Brazil (8,483,571 km/?) 
(Opler & Krizek 1984, Brown 1991). Following Heppner’s method of comparison, the 
average diversity of butterflies per unit area in Massachusetts (5.3 species/thousand km?) 
is more than 14 times greater than that of Brazil (0.4 species/thousand km?), which has 
the highest (or just about the highest) number of butterfly species in the world (Brown 
1991). 

It is reasonably well-established that species number within a region is a power function 
of area with the exponent usually in the 0.1-0.4 range (MacArthur & Wilson 1967, Legg 
1978, Gilbert 1984). As a result, “species/area”’ is inversely correlated with area; the larger 
the area within a region, the smaller the ratio “species/area.”’ Comparisons between areas 
in different regions depend upon both size and species richness of the two areas. If the 
sizes are different, the comparison is invalid. This is the case for the example with 
Massachusetts and Brazil, as it is for Heppner’s comparison of the Orient with the much 
larger Neotropics. A valid comparison requires assessing species number as a function of 
area within each region (see below). 


COMPARISON OF HEPPNER’S TABLES WITH 
OTHER PUBLISHED SOURCES 


To assess the accuracy of Heppner’s tables, I examined his species numbers for but- 
terflies. They appear to be biased. His 19,238 butterfly species in the world is 11% higher 
than the corresponding figure in Shields (1989), 7% higher than that in Brown (1991), 
and above the range given in Robbins (1982) for described and undescribed species. His 
figure for butterflies without Hesperiidae is greater than the interval in Ehrlich and Raven 


VOLUME 46, NUMBER 4 : 299 


10° 


# OF SPECIES 
oO 


e Neotropical Butterflies 
« Oriental Butterflies 


10 10? 10° 10° 10° 10° 10’ 
AREA (Km’) 


Fic. 1. Log-log plot of species richness in the Neotropics (from left to right, Tam- 
bopata, Panama, Colombia, Peru, Brazil) and in the Orient (from left to right, Malay 
Peninsula, Thailand, Borneo). See text for sources. Solid regression line calculated from 
Neotropical data. Dotted line represents half the species richness expected in a Neotropical 
region, showing that Oriental species richness is less than half that of the Neotropics for 
equal-sized areas. 


(1965). Numbers in the table are uniformly higher for families than those in Shields. 
Heppner’s figure for Neotropical Nymphalidae is 42% (almost 850 species) higher than 
the 2019 species in the Atlas of Neotropical Lepidoptera checklist (Lamas in prep.). Unless 
documentation is forthcoming for the apparent high bias in Heppner’s tables, the butterfly 
parts should not be used for diversity studies. 


; 


NEOTROPICAL VS. ORIENTAL BUTTERFLY DIVERSITY 


A comparison of species richness in the Neotropical and Oriental Regions is of biological 
and conservation interest. Since Heppner’s data are insufficient for a valid comparison, I 
compare these regions using butterflies, for which there are reasonably accurate data. 
For the Neotropics, I use species richness of the Tambopata Reserve in southeastern Peru 
(Lamas 1985, Lamas et al. 1991), Panama (Robbins 1982), and Colombia, Peru, and Brazil 
(Brown 1991). These areas comprise a large portion of the Neotropics, including desert, 
grassland, scrub forest, rain forest, cloud forest, and paramo habitats. For the Oriental 
Region, I use diversity in Thailand (Pinratana 1988), the Malay Peninsula (Corbet & 
Pendlebury 1978), and Borneo (Otsuka 1988, Maruyama 1991, Seki et al. 1991). I do not 
know of any other reasonably complete, recently published butterfly data from these 
regions. I plot data on a log-log graph (Fig. 1) and draw a regression line through the 
points for the Neotropics. Legg (1978) performed a similar analysis, but much of his data 
differs markedly from that in the publications cited above. 

Neotropical butterfly richness is more than twice as great as that in the Orient (Fig. 
1), in contrast to the slight difference in Heppner’s paper. Extrapolating from the regression 
line, for example, a Neotropical country the size of Thailand would have 2.2 times the 
number of species that occur in Thailand. Single collecting sites in the Neotropics (Emmel 
& Austin 1990; Fig. 1) may have more species than the entire Malay Peninsula or Borneo. 
In lieu of more complete published data—with which the validity of the power function 
model could be tested—the Neotropics are richer than the Orient for butterflies, in accord 
with previous comparisons using less data (Robbins 1982, DeVries 1987). The Neotropics 


300 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


also appear to be richer for vertebrates and canopy tree species (Gentry 1988). Whether 
this pattern also holds for other Lepidoptera is unknown, but Sphingidae and Saturniidae 
are probably the only groups that are sufficiently well-known for a valid comparison. 

This note is contribution no. 24, Biological Diversity in Latin America (BIOLAT) 
Project, Smithsonian Institution. I thank G. Lamas for graciously allowing me to use data 
from his unpublished checklist. 


LITERATURE CITED 


BROWN Jr., K.S. 1991. Conservation of neotropical environments: Insects as indicators, 
pp. 349-404. In Collins, N. M. & J. A. Thomas (eds.), Conservation of insects and 
their habitats. Academic Press, London. 

CorsET, A. S. & H. M. PENDLEBURY. 1978. The butterflies of the Malay Peninsula. 3rd 
ed. (revised by J. N. Eliot). Art Printing Works, Kuala Lumpur. 577 pp., 35 pl. 
DEVRIES, P. J. 1987. The butterflies of Costa Rica and their natural history. Papilionidae, 

Pieridae, Nymphalidae. Princeton Univ. Press, Princeton. 327 pp. 

EHRLICH, P. R. & P. H. RAVEN. 1965. Butterflies and plants: A study in coevolution. 
Evolution 18:586-608. 

EMMEL, T. C. & G. T. AUSTIN. 1990. The tropical rain forest butterfly fauna of Rondonia, 
Brazil: Species diversity and conservation. Trop. Lepid. 1:1-12. 

GENTRY, A. H. 1988. Tree species richness of upper Amazonian forests. Proc. Natl. 
Acad. Sci. 85:156—-159. 

GILBERT, L. E. 1984. Chapter 3. The biology of butterfly communities, pp. 41-54. In 
Vane-Wright, R. I. & P. R. Ackery (eds.), The biology of butterflies. Symp. Roy. 
Entomol. Soc. Lond., #11. Academic Press, London. 

HEPPNER, J. B. 1991. Faunal regions and the diversity of Lepidoptera. Trop. Lepid. 
2(suppl. 1):1—-85. 

LAMAS, G. 1985. Los Papilionoidea (Lepidoptera) de la Zona Reservada de Tambopata, 
Madre de Dios, Peru. I: Papilionidae, Pieridae y Nymphalidae (en parte). Rev. Per. 
Entomol. 27:59-73. 

Lamas, G., R. K. RoBBINS & D. J. HARvEy. 1991. A preliminary butterfly fauna of 
Pakitza, Parque Nacional del Manu, Peru, with an estimate of its species richness. 
Ser. A Zool., Publ. Mus. Hist. Nat. UNMSM (A) 40:1-19. 

LEGG, G. 1978. A note on the diversity of world Lepidoptera. Biol. J..Linnean Soc. 10: 
343-347. 

MACARTHUR, R. H. & E.O. WILSON. 1967. The theory of island biogeography. Princeton 
Univ. Press, Princeton. 203 pp. 

MaruyYAMA, K. 1991. Butterflies of Borneo, Hesperiidae. Vol. 2, No. 2 (In Japanese and 
English). Tobishma Corp. 166 pp., 48 pl. 

OPLER, P. A. & G. O. KRIZEK. 1984. Butterflies east of the Great Plains. An illustrated 
natural history. Johns Hopkins Univ. Press, Baltimore. 294 pp. 

OtsuKA, K. 1988. Butterflies of Borneo. Vol. 1 (In Japanese and English). Tobishma 
Corp. 123 pp., 80 pl. 

PINRATANA, A. 1988. Butterflies in Thailand. Vol. 6. Viratham Press, Bangkok. 62 pp., 
44 pl. 

ROBBINS, R. K. 1982. How many butterfly species? News Lepid. Soc. 1982:40-41. 

SEKI, Y., Y. TAKANAMI & K. OTSUKA. 1991. Butterflies of Borneo, Lycaenidae. Vol. 2, 
No. 1 (In Japanese and English). Tobishma Corp. 252 pp., 72 pl. 

SHIELDS, O. 1989. World numbers of butterflies. J. Lepid. Soc. 43:178-183. 


ROBERT K. ROBBINS, Department of Entomology, NHB Stop 127, Smithsonian In- 
stitution, Washington, D.C. 20560. 


Received for publication 26 January 1992; revised and accepted 13 March 1992. 


Journal of the Lepidopterists’ Society 
46(4), 1992, 301 


RESPONSE TO “COMPARISON OF BUTTERFLY DIVERSITY IN THE 
NEOTROPICAL AND ORIENTAL REGIONS” BY ROBERT K. ROBBINS 


Robbins’ review of Heppner (1991) utilizes one exceedingly small piece of the work 
(i.e., paragraph 4 on page 4 and Table 4) as a platform to criticize the purpose and logic 
of the entire study. In doing so, he misses the broader view of the paper—comparisons 
of Lepidoptera diversity, distribution, and endemism throughout the world. Robbins uses 
his knowledge of butterflies (15% of the Lepidoptera) to criticize the results of my studies 
based on all families of Lepidoptera. 

Robbins’ major criticism focuses on my conclusions regarding species richness. Obvi- 
ously, taking any small area of the world (like Massachusetts) and using the resultant 
skewed figures for extrapolated species richness comparison is an absurd exercise, and 
this forms the basis of his criticism. Although Robbins is correct that I am not comparing 
areas of equal size (even areas of equal size may not be comparable because of shape), I 
am evaluating areas of comparable size, i.e., large continental masses of several million 
square miles. It is clearly stated in my work that the species richness values represent 

“species per million square miles.” 

Robbins uses relatively small areas like southeast Peru (Tambopata Reserve) and Ron- 
donia (Brazil) as examples to imply that all the Neotropics are vastly more species rich 
than the Oriental Region, ignoring the immense Patagonian Plains, the extensive high 
Andean regions, and the desert regions of Chile and Mexico, where species diversity is 
very low. If samples from these localities were incorporated into Robbins’ species/area 
regression, they likely would change the regression line and invalidate many of his 
conclusions. My species/area values are averaged over the total continental landmasses 
involved. Robbins even corroborates my calculations that there are more species per 
million square miles in the smaller Oriental Region (6782) than in the vast Neotropical 
Region (6434). These figures do not diminish the importance of preserving species-rich 
areas in the Neotropics (I clearly indicate that “the Neotropical region has many more 
species than any other faunal region’), they only highlight the conservation needs of the 
much more deforestation-pressured Oriental areas. 

Robbins also criticizes my species numbers for butterflies, relying primarily on other 
published numbers (i’e., Ehrlich & Raven 1965, Robbins 1982, Shields 1989, Brown 1991). 
He fails to recognize that estimates presented in these works chronologically approach 
the numbers I presented, i..e, together, previously published estimates of species numbers 
present a well defined trend in which the estimates increase chronologically along with 
our increased knowledge of the groups involved. Further, Robbins does not take into 
account the numbers of species to be described in the future. 


LITERATURE CITED 


Brown, K. S. 1991. Conservation of neotropical environments: Insects as indicators, 
pp. 349-404. In Collins, N. M. & J. A. Thomas (eds.), Conservation of insects and 
their habitats. Academic Press, London. 

EHRLICH, P. R. & P. H. RAVEN. 1965. Butterflies and plants: A study in coevolution. 
Evolution 18:586-608. 

HEPPNER, J. B. 1991. Faunal regions and the diversity of Lepidoptera. Trop. Lepid. 2 
(suppl. 1):1—85. 

ROBBINS, R. K. 1982. How many butterfly species? News Lepid. Soc. 1982:40—41. 

SHIELDS, O. 1989. World numbers of butterflies. J. Lepid. Soc. 43:178-183. 


JOHN B. HEPPNER, Florida State Collection of Arthropods, P.O. Box 147100, Gaines- 
ville, Florida 32614-7100. 


Received for publication 21 March 1992; revised and accepted 25 June 1992. 


GENERAL NOTE 


Journal of the Lepidopterists’ Society 
46(4), 1992, 302-304 


AGLAIS URTICAE (NYMPHALIDAE): A NASCENT 
POPULATION IN NORTH AMERICA 


Additional key words: introduction, Eurasian, Urtica dioica, New York. 


Aglais urticae (Linnaeus), the small tortoiseshell, is one of Europe’s most widespread 
and well-known butterflies (Thompson 1980). It was reportedly collected in the last century 
in the vicinity of Albany, New York (Emmons 1884), but there is reason to doubt this 
record (McCabe 1990). A second report was of a male that emerged from a crate of books 
shipped from England to Halifax, Nova Scotia (Scott & Wright 1972). Most recently, an 
individual of this species was collected in downtown Albany, New York on 19 October 
1987 (McCabe 1990). 

On 31 August 1988, two rangers of the Jamaica Bay Wildlife Refuge (a unit of Gateway 
National Recreation Area) in Queens, New York, noticed an unusual butterfly nectaring 
at bouncing bets (Saponaria officinalis) near the park headquarters. The butterfly, an A. 
urticae, was netted, photographed by Don Riepe, and released. It remained in the area 
and was seen again on 2 September 1988. 


Fic. 1. Aglais urticae at the Jamaica Bay Wildlife Refuge, Queens, New York, 25 
August 1991. Photograph by Don Riepe. 


VOLUME 46, NUMBER 4 303 


On 15 October 1990 an individual of A. urticae was observed at Riverside Park in 
Manhattan, New York (Nick Wagerik, pers. comm.). The extensive flower gardens in this 
park attract many late season southern immigrants. Although the butterfly was not pho- 
tographed, it was studied carefully at close range with binoculars, thus confirming its 
identity. 

On 25 August 1991 another individual was observed at the Jamaica Bay Wildlife Refuge. 
This individual was seen by a number of people including Steve Walter, John Zuzworsky, 
and Don Riepe who again was able to secure a photograph (see Fig. 1). 

These sightings could represent independent introductions of this butterfly into the 
United States but this seems unlikely. A large number of individuals of this species is 
likely to be present in the Hudson River Valley in order to produce four sightings in five 
years by the relatively few observers covering this large area. A simpler explanation is 
that A. urticae has colonized the Hudson River Valley and surrounding area. The larval 
foodplant of A. urticae in Eurasia is stinging nettle (Urtica dioica var. dioica; Urticaceae) 
(Dal 1982, Henriksen & Kreutzer 1982, Thompson 1980, Brooks & Knight 1982) which 
is now established throughout the northeastern United States (Gleason & Cronquist 1991). 

Aglais urticae is known to overwinter as an adult, sometimes indoors (Dal 1982). A 
related species of nymphalid has been reported to sometimes overwinter communally 
(Proctor 1976). Thus it is plausible that a gravid female, or a male and a female together, 
were introduced accidentally into the United States. North America may prove to be 
fertile territory for this butterfly. 

Two other well-known Eurasian species of butterflies have become established in North 
America. Pieris rapae (Linnaeus) (Pieridae), the cabbage white, was first found at Quebec 
in 1860 and at New York in 1868 (Scudder 1889). From these beachheads it rapidly 
spread across North America (Scudder 1889) and is now perhaps our most ubiquitous 
butterfly. Thymelicus lineola (Ochsenheimer) (Hesperiidae), the European skipper, was 
first recorded in North American from London, Ontario, Canada in 1910. It now occurs 
abundantly over much of the northeastern United States and adjacent Canada as well as 
in British Columbia (Burns 1966). For both of these species, the exact manner of intro- 
duction is unknown. 


ACKNOWLEDGEMENTS 


I thank Don Riepe and Nick Wagerik for communicating their sightings to me, and 
Don Riepe for providing his photographs. Robert K. Robbins of the Smithsonian Institution 
read a first draft of this note and made numerous suggestions for its improvement. 


LITERATURE CITED 


Brooks, M. & C. KNIGHT. 1982. A complete guide to British butterflies. Jonathan Cape, 
London. 159 pp. 

BuRNS, J. M. 1966. Expanding distribution and evolutionary potential of Thymelicus 
lineola (Lepidoptera: Hesperiidae), an introduced skipper, with special reference to 
its appearance in British Columbia. Canad. Entomol. 98:859-866. 

Dat, B. 1982. The butterflies of northern Europe. Croom Helm, London. 128 pp. 

EMMONS, E. 1884. Agriculture of New York. Vol. V. Insects of New York. Albany. 272 
pp., 47 pls. 

GLEASON, H. A. & A. CRONQUIST. 1991. Manual of vascular plants of northeastern 
United States and adjacent Canada. 2nd ed. New York Botanical Garden, Bronx. 

HENRIKSEN, H. J. & I. KREUTZER. 1982. The butterflies of Scandinavia in nature. 
Skandinavisk Bogforlag, Odense. 215 pp. 

McCaBE, T. 1990. New records of Lepidoptera of New York and New Hampshire. J. 
Res. Lepid. 28:75-83. 

Proctor, N.S. 1976. Mass hibernation site for Nymphalis vau-album. J. Lep. Soc. 30: 
126. 

SCOTT, F. W. & B. Wricnut. 1972. Accidental occurrence of Aglais urticae in Nova 
Scotia. J. Lepid. Soc. 26:116. 


304 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


SCUDDER, S. H. 1889. The butterflies of the eastern United States and Canada with 
special reference to New England. Cambridge, Massachusetts, Samuel Scudder. 


SHAPIRO, A. & A. R. SHAPIRO. 1978. The ecological associations of the butterflies of 
Staten Island. J. Res. Lepid. 12:65-128. 


THOMPSON, G. 1980. The butterflies of Scotland. Croom Helm, London. 267 pp., 33 
pls. 


JEFFREY GLASSBERG, 39 Highland Avenue, Chappaqua, New York 10514. 


Received for publication 25 March 1992; revised and accepted 5 September 1992. 


Journal of the Lepidopterists’ Society 
46(4), 1992, 305-307 


BOOK REVIEWS 


THE DEVELOPMENT AND EVOLUTION OF BUTTERFLY WING PATTERNS, by H. Frederik 
Nijhout. 1991. Smithsonian Institution Press, Washington and London. xvi + 297 pp., 
159 figures, 8 color plates. Hard cover (ISBN-0-87474-921-2), $45.00; soft cover (ISBN- 
0-87474-917-4), $20.00; 18 x 26 cm. 


Because they are diverse and easy to observe, not to mention beautiful, butterfly wing 
patterns provide an excellent opportunity for pursuing questions about the development 
and evolutionary history of morphological patterns. Certainly there are few contemporary 
scientists who have exploited this potential more than H. Frederik Nijhout. His recent 
book, The Development and Evolution of Butterfly Wing Patterns, summarizes his work 
and ideas, and makes clear his valuable empirical and theoretical contributions. Butterfly 
wing patterns are the material theme of this book, which offers a unique and thorough 
compilation of the existing information on this topic that will be useful for a long time. 
The conceptual theme is homology and it is in this arena that the books does less than it 
could. I will begin with an overview of the book and then deal with the concept of 
homology and how it is handled by Nijhout. 

The book is attractively constructed and priced and begins with a nice chapter that 
summarizes butterfly wing structure and explains pattern production mechanisms. The 
next three chapters (about a third of the book) are devoted to describing a set of proposed 
homologies for the diverse pattern elements found both within and between species of 
butterflies. This set is known as the nymphalid ground plan and is an update of schemes 
initially proposed independently by Schwanwitsch and Siiffert in the 1920's. Chapters 5- 
7 are devoted to presenting empirical and theoretical results on the developmental and 
genetic mechanisms that control wing pattern in butterflies. The book concludes with a 
chapter on the extent to which mechanical and developmental constraints might influence 
the evolution of butterfly wing patterns, followed by three appendices, a bibliography, 
and an index. While I realize that the intended focus of this book is butterfly wing 
patterns, this is to the near and unfortunate exclusion of discussion of studies of homology 
in the color patterns of other insects or vertebrates. 

Copiously illustrated, the book has almost 160 figures and all are crisp and clear. 
However, many are large and detailed showing numerous pattern variants. The most 
extreme figure (2.21) shows 110 different shapes found in the parafocal elements among 
the nymphalids. Similarly, the text contains many lengthy and subjective descriptions 
and interpretations of specific cases, instead of concise, quantitative summaries and anal- 
yses of the observed patterns of variation. This does not make for easy reading or for 
ready assessment of the support for Nijhout’s points. 

The nymphalid ground plan is best understood as an hypothesized set of homologies 
for the similar pattern elements found on butterfly wings both within and among species. 
Now, what does it mean to a biologist to say that two traits with some common features 
are homologous? This question has been debated in an extensive and still growing literature 
since the comparative anatomist, Richard Owen, first proposed the term in the mid- 
1800's. To most modern evolutionary biologists homology suggests that the similarity in 
traits reflects similarities in the developmental pathways producing the traits as well as 
a common ancestry. Hence, to say that two pattern elements that are similar are ho- 
mologous is to say that they arise by similar processes during development and that they 
both arose from the same ancestral pattern element. An alternative explanation is that 
the similarity in the pattern elements is a result of convergent evolution of traits with 
different developmental and evolutionary antecedents. 

Despite the central place of homology in this book and the extensive discussion of this 
term in the literature, Nijhout spends only a single paragraph explicitly dealing with 
what he means by homology. His preferred definition, put forth by H. V. Roth in 1984, 
is that homologous traits need only share a developmental pathway. In his view, issues 
of the common evolutionary history of homologies are secondary and not a necessary 
part of the definition. I think most phylogeneticists would regard common evolutionary 


306 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


history as an essential criterion for homology. Even H. V. Roth suggests that the shared 
developmental pathways of homologous traits are “controlled by genealogically related 
genes (p. 13, 1984, Biological Journal of the Linnean Society 22:13-29). The stated 
definition notwithstanding, it is clear throughout the book that the evolutionary past 
frequently figures prominently in Nijhout’s recognition of homologies. 

But Nijhout seems at times a little cavalier in his application of his preferred definition. 
In his discussion of experiments on forewing and hindwing eyespots, he concludes that, 
“we can be as certain about their homology across butterflies as we can about any system 
of homologies in the animal kingdom. Yet the processes that give rise to these two types 
of eyespots appear to be different... .” (pp. 113-114). In the discussion that follows, this 
statement is justified by the citation of an alternative criterion for homology proposed by 
Van Valen: continuity of developmental information. However, Nijhout does not make 
clear what general conditions make appropriate the use of this criterion versus some 
other. Again, I think the book would have benefitted greatly from a full discussion of 
Nijhout’s views on the concept of homology, its definition, and application. 

Although Nijhout points out that the ground plan is not to be taken as a putative 
ancestral coloration for butterflies, the ground plan homologies can be taken as an hy- 
pothesis of shared developmental pathways and common ancestry. Such an hypothesis 
can be tested in two ways. One way is to generate predicted phylogenetic relationships 
among the species within groups of butterflies. These predictions derived from wing 
patterns can then be tested for concordance with phylogenies developed from other 
characters, e.g., wing venation, DNA sequences, etc. 

Nijhout makes a cogent and well-taken plea for systematists and phylogeneticists to 
use and test the ground plan in this way. In Chapters 3 and 4, Nijhout offers a number 
of phylogenetic relationships within various genera that are predicted by the nymphalid 
ground plan. However, Nijhout could have improved the case for the ground plan if he 
had provided some clear tests of the phylogenies proposed by the ground plan. As the 
presentation stands many questions remain. What other systems of homologies and re- 
sulting phylogenies have been proposed or examined? How and why were they rejected? 
Does the nymphalid ground plan permit one to construct phylogenies that are concordant 
with those from other data? What taxonomic issues have been or might well be resolved 
using the homologies hypothesized in the ground plan? Are there other taxa in which 
study of pattern homologies have helped resolve taxonomic and phylogenetic issues? 

Relevant to the issues of taxonomy the book contains an Appendix by Donald J. Harvey 
entitled “Higher Classification of the Nymphalidae.” In it Harvey presents a newly revised 
classification for the nymphalids between the level of family and genus. Its inclusion in 
this book seems odd on two counts. First, although Harvey acknowledges the input of 
some very able reviewers, the precise review process through which this classification has 
gone is unclear. Does the revised classification (published as an appendix) have the same 
standing as a paper published through regular journal review processes? Second, its precise 
relevance to the rest of the book is unclear in that it is rarely referenced by Nijhout and 
does not use the nymphalid ground plan to resolve any taxonomic or phylogenetic issues 
in the way Nijhout suggests in Chapter 4. 

The other way to test a set of homologies such as the nymphalid ground plan is to see 
if the pattern elements proposed to be homologous in fact share developmental pathways 
and genetic control mechanisms. Results from manipulation (Chapter 5) and genetic 
(Chapter 6) experiments and a model for wing pattern development (Chapter 7) are 
described in detail but not with the explicit purpose of testing the ground plan in this 
way. Here as elsewhere in the book the ground plan is presented more as a given and 
not as a tentative and testable hypothesis. Nijhout does conclude that his work and that 
of others show that a seemingly limitless diversity of patterns can be produced by slight 
changes in the location and shape of inductive signal sources and sinks, in the thresholds 
of responding cells, and in the genes controlling pattern. 

Two other salient features of the ground plan should be mentioned. First, the plan 
does not homologize the color of pattern elements, but only their position, shape, and 
presence. Nijhout points out that two identical pattern elements can look very different 
if colored in different ways. What potential information about development and evolution 


VOLUME 46, NUMBER 4 307 


is omitted by not fully incorporating the variable of color into the system of homologies? 
Nijhout provides no specific answer to this question. Second, the plan is subjective in that 
there is no effort to quantify the similarities between pattern elements that lead to a 
hypothesis of homology. In general the lack of quantification in the description of pattern 
elements and in efforts to test Nijhout’s ideas is notable. 

The last chapter speculates on the impact of developmental or phylogenetic constraints 
and selection on the evolution of butterfly coloration. There are two key conclusions. 
First, many of the features of pattern elements (e.g., the shape of small elements such as 
parafocal elements) are probably not under direct selection and their evolution will be 
determined by what sort of pattern production mechanisms are available. This view seems 
plausible but highly speculative in that it broadly assumes interspecific similarity in the 
features of the visual system of predators and in the contexts of encounters. Second, the 
pattern-generating systems are so flexible that the evolutionary paths along which butterfly 
wing pattern may travel, driven by selection or other processes, are virtually limitless. 
This is good news for adaptationists whose hypotheses are often criticized for assuming 
few if any constraints on the trajectories evolution can take. 

In summary, this book stands as a clear and current record of Nijhout’s ideas and of 
his view of his and others’ woik on the evolution and development of butterfly wing 
patterns. It is unique and of interest as a treatise on phylogenetic and developmental 
questions about these wing patterns. However, the reader must keep in mind that Nijhout 
presents only a single hypothesis for the inter- and intraspecific similarities in butterfly 
wing patterns and that the test of this hypothesis is incomplete. My hope is that researchers 
in this area will be stimulated by the challenge of generating and testing new sets of 
homologies as alternatives to the nymphalid ground plan. 


RONALD L. RUTOWSKI, Department of Zoology, Arizona State University, Tempe, 
Arizona 85287-1501. 


Journal of the Lepidopterists’ Society 
46(4), 1992, 307-309 


A FIELD GUIDE TO EASTERN BUTTERFLIES, by Paul A. Opler (illustrated by Vichai Malikul, 
with foreword by Roger Tory Peterson). 1992. Peterson Field Guide Series, No. 4. Hough- 
ton Mifflin, Boston. xvii + 396 pp., 541 color paintings, 104 color photographs of living 
insects, and 348 range maps. Hardcover, 12 x 19 cm, ISBN-0-395-36452-3, $24.95; 
softcover, 11.5 x 18 cm, ISBN-0-395-63279-X, $16.95. 


Was a new eastern field guide necessary? The total of 422 species described by Alexander 
B. Klots in his original guide in 1951 has expanded to 524 species, through the recognition 
of many more occasional immigrants and the addition of a few recently described species, 
minus a few species submerged to subspecies status. With this, and the acquisition of 
much new biological information, forty years was not too soon for an update. 

The browser picks up this new field guide, turns to the color plates to see how the 
butterflies look, and sees—flowers! Thereafter follow three pages of photos of immature 
stages: first things first. And now nine pages, 68 superb photographs, of living butterflies 
doing what we most enjoy seeing them do: nectaring, basking, puddling. Their charac- 
teristic postures are clearly evident. Finally, on 35 color plates we see the expected formally 
sequenced, conventionally spread depictions of the great majority of the 524 species 
covered in the book, as color paintings ranging from superb (most of them), to barely 
adequate (only a few: i.e., in the genus Erynnis—but Erynnis are the bétes noires of 
most lepidopterists). 

By using this sequence, Opler is subtly emphasizing points made in his introductory 
chapters: the dependence of butterflies on their botanical substrates, and the fact that 
users of this book who wish to observe and photograph butterflies will greatly outnumber 
those who make collections of specimens. While acknowledging changing attitudes and 


308 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


interests with regard to invertebrates, he does not in any way denigrate collecting. In 
fact, he describes in careful detail, with clarifying line drawings, the collecting and 
preservation of specimens, with emphasis on proper and purposeful collecting, and on 
responsible care of collections. The necessary information about butterfly anatomy, de- 
velopment, and behavior is well covered, as are rearing, gardening for butterflies, butterfly 
conservation, and in particular, life zones and butterfly habitats. 

By whatever magic, Opler has succeeded in an area where his field guide predecessors 
were constrained: Klots with the original Field Guide to Eastern Butterflies, C. V. Covell 
with the Field Guide to the Moths of Eastern North America, and W. Tilden and A. C. 
Smith with the Field Guide to Western Butterflies. The illustrations of all the butterflies, 
even the black and white ones, are in color, thereby increasing the appeal and usefulness 
of the guide. And he has regained the benefits of “triple-indexing,” e.g.: White, Checkered, 
Pontia protodice, protodice (Pontia). The reader accustomed to finding protodice in 
Pieris wili nevertheless find the species readily in this index. 

The color values, fine detail, and general gestalt of most of Malikul’s paintings are 
magnificent. One could only wish that this were not a field guide, so that all species might 
have been portrayed at life size. This, in fact, is the basis of a minor problem. It is 
immediately obvious that the stated scale for many plates must be taken with a grain of 
salt. In Plate 16, for example, at the stated scale of x%, canadensis and glaucus are 
portrayed the same size, yet glaucus is rarely as small as canadensis and often is twice 
as large. On the same plate rapae is shown slightly larger than x % so that it seems almost 
to match the span of glaucus. And Plate 32, with various brushfoots, measures out at 
close to x %, rather than the stated x1. The caveat (Lepidoptera or no): go by the text, 
not by the scales! 

This reader often approaches a new guide with an element of anxiety: “What names 
will they use this time?’ Opler has opted for the conservative stance he employed in 
Butterflies East of the Great Plains (with George O. Krizek, 1984, The Johns Hopkins 
University Press, Baltimore, 294 pp.). He has even abandoned Polites coras in favor of 
P. peckius, familiar from Klots and from W. J. Holland (1898, The Butterfly Book, 
Doubleday, Page & Company, Garden City, NY, 382 pp.). But it was not an easy victory: 
Peck’s Skipper is P. coras on Plate 18, P. peckius on Plate 44. When even the experts can 
get trapped in habit, it makes the dilemmas of nomenclature a little less tense for the 
rest of us! 

The decision to avoid dwelling heavily on subspecies was a good one for a field guide 
to eastern North America, where subspecies rarely have sharply definable ranges. The 
“Life List” clearly points out which subspecies are actually found within the study area, 
and which of the nominate subspecies are extralimital. This, however, has introduced 
another minor problem. One would wish that the common name selected for each species 
were regularly that of the subspecies found within our area, such as American Copper 
(rather than Little Copper) for Lycaena phlaeas americana, or Tropical Buckeye (rather 
than Genoveva) for Junonia genoveva zonalis. The most disconcerting subspecies problem 
arose with Evans’ Skipper, Panoquina fusina evansi. It is properly described in the species 
account as having a “vague irregular white postmedian band.” The plate, however, 
illustrates the nominate (extralimital) fusina, which bears a strikingly clear broad white 
band. 

Species accounts are in the Klots (and Opler) tradition, covering color, pattern, shape, 
size, pleomorphism, and polyphenism. Similar species are compared; early stages, larval 
host plant, flight period are covered when known; diapausal stage is stated individually 
or by genus or large group, as applicable. This, coupled with the range (there are range 
maps for most resident species) and habitat information, provides a valid basis for searching 
for a species in the field, or identifying a specimen on film or in hand. A “remarks” 
section, for some species, gives significant behavioral and historical details. Genitalic details 
are not described, but their importance is stated for those species where they are critical 
for correct determination. : 

A recurring theme surfaces in the species accounts, as for example the following for 
Nastra lherminier, the Swarthy Skipper: “Early Stages: Not reported. Food: Little Blue- 
stem.” This opens up a gold mine of opportunity for the amateur lepidopterist: the 


VOLUME 46, NUMBER 4 309 


challenge of rearing, describing, and reporting early stages, so that the many lacunae in 
the knowledge of immatures can be gradually filled in. And for many other species Opler 
indicates that the larval host plant is still unknown. Field observations can provide the 
answers. Such information is essential for the understanding of the environmental re- 
quirements of threatened or endangered species. 

There are scattered and sometimes confusing inconsistencies relating to diagnostic 
arrows, plate labels, and the explanatory captions accompanying the plates. A plate figure 
labelled as male may indeed be female, and properly described as female. Rarely a plate 
figure is unlabelled, or improperly labelled. A diagnostic arrow may point to a feature 
not referred to in the caption or species description, or an arrow may significantly miss 
pointing out the designated feature. Occasionally a range map may not coincide with 
the verbal account of the range. While these inconsistencies may at times be confusing 
to the novice, they usually can be worked out by careful comparison of the text in the 
plate caption with that in the species description. Such flaws are by no means insur- 
mountable and should be readily correctible in a second printing. Incidentally, the Palatka 
Skipper (Euphyes pilatka) is not a typo: there probably was a slip-of-the-pen by W. H. 
Edwards in the mid-nineteenth century when he described the creature. 

With the completion of the species accounts, the author devotes the remaining fifteen 
percent of the book to extremely useful accessory material. A “Life List’’ follows the 
sequence of the Miller and Brown list, except that the skippers are placed after the “true” 
butterflies, as in the body of the guide. There is a contingent benefit from this: the skippers 
present a challenge that the novice may prefer to defer. To have placed them first might 
have diminished the appeal of the book for some; swallowtails, on the other hand, are 
an immediate attraction. The list ends with a selection of nearly thirty “potentials,”’ 
species almost reaching the covered area that have a good chance of wandering across 
the line, or of being accidentally introduced by the increasing agricultural commerce 
with the southern part of the hemisphere. 

A copious glossary clarifies terms used in the introductory material and in the species 
accounts, making prior knowledge of lepidopteral terminology unnecessary for full en- 
joyment of the book. A list of references gives the reader access to general books on 
identification, butterfly biology and behavior, as well as state or more local coverages and 
checklists. The several very helpful books on butterfly gardening are not included, how- 
ever. There are extensive directories of organizations devoted to Lepidoptera, of suppliers 
of books and equipment, and of butterfly houses and insect zoos. The Collecting Guidelines 
formulated by The Lepidopterists Society in 1982 constitute the final appendix. The 
indices, one for plants, one for butterflies, are exceedingly effective. The internal indexing 
between plate and text greatly simplifies use of the book. 

In summary, the long-awaited and much-needed update of the Klots Field Guide is 
now here. Opler’s species accounts, in the manner of those he pioneered in Butterflies 
East of the Great Plains, but necessarily condensed, provide the basic framework with 
which to establish acquaintance with any of the species of eastern butterflies, and from 
which to pursue further information, known and unknown. The live photos and Malikul’s 
outstanding paintings reduce uncertainties to a minimum. This volume should become 
the standard resource for the study and enjoyment of eastern butterflies for the next 
several decades. It has been well worth waiting for. 


WILLIAM D. WINTER, 257 Common Street, Dedham, Massachusetts 02026-4020. 


Journal of the Lepidopterists’ Society 
46(4), 1992, 310-311 


THE COMMON NAMES OF NORTH AMERICAN BUTTERFLIES, edited by Jacqueline Y. Miller 
(Foreward by Paul A. Opler). 1992. Smithsonian Institution Press, Washington, D.C. ix 
+ 177 pp. Soft cover, 15 x 23 cm, ISBN-1-56098-122-9, $14.95. 


History first, though I lift quite directly from R. M. Pyle (1984, J. Res. Lepid. 23:89- 
93). When Robert Michael Pyle produced the Audubon Society Field Guide to North 
American Butterflies, the editors required him to furnish vernacular (common) names 
for every entry. Since some species had no common names, he had to invent some. Many 
included were nowhere in use and plenty of them carried little or no biological infor- 
mation. Disturbed by these problems and certain that other authors would also be required 
to make their own choices or inventions of common names, Pyle proposed the formation 
of a Common Names Committee, jointly between the Xerces Society and the Lepidop- 
terists Society. A committee of 20 members was formed by 1984. The committee was to 
collect published and proposed vernacular (English) names and recommend a list of 
standard names. As the work evolved, it was decided to make recommendations only in 
the less difficult cases, simply listing all published names. No attempt was made to invent 
more suitable names than those already published. 

Upon the proposal of a committee, resistance arose, with some basis. Lifting freely 
from D. Murphy and P. Ehrlich (1983, J. Res. Lepid. 22:154-158), the main arguments 
against doing anything to promote the use of common names were these: 


Common names lack universality, which the Latinized (scientific) names have. 
Information content, biological and cladistic, on average is very low. 

The vernacular languages of common names do not cross most national boundaries. 
Vernacular names insult the intelligence of the great majority who can easily learn 
the Latinized names. 

Common names, when gratuitously provided, act as obstacles to learning the Lat- 
inized names that allow entry into the scientific literature. 

Researching common names and arguing about which name to recommend is a 
waste of the time of people with important functions related to biological conser- 
vation. 


Sy Cee ei 


Pyle answered these objections effectively, bringing recantation from Murphy and 
Ehrlich. 

1. As J. A. Scott (News of the Lepid. Soc. #6, 1985) pointed out (and ornithologists 
agree: Calvin Hom, pers. comm.), in the case of birds, the common names are in fact 
more universal than the scientific names. This has occurred because the common names 
have been standardized while the Latinized names have been repeatedly changed. So 
long as evolutionary biologists are taken seriously when they change generic names to 
better match their momentary concepts of the evolutionary relationships of taxa, stan- 
dardized common names have high potential for exceeding the usefulness of Latinized 
names to scientist and layman alike. 

2. The point that common names carry little information is true, but hardly differ- 
entiates them from Latinized names. Every patronym is an assault on the information 
content of a name, Smith’s Blue as much as smithi. On this point I stand with Darwin. 
Common names can be chosen to be non-patronymic, even when the Latinized name is 
a patronym. Euphydryas editha luestherae can be called the Chaparral Checkerspot or 
the Lousewort Checkerspot, for instance. 

3. Within nations, common names will be in local vernaculars, but so long as the 
language of international conservation remains English, an English common name may 
be demanded for every Uzbek, French, German, and Chinese species. Having our list in 
order sooner encourages the rest of the world to conform to our usage. 

4, 5, & 6. The most telling point: the majority of us who could become interested in 
biology and conservation of insects tune out the Latinized names, at least at first. Since 
the media, our link to the public, demands common names we must supply the best ones 
we can, or lose the attention of the public. The common names act as a link to, rather 
than as an obstacle to, the Latinized names. Time spent improving and making common 
names available greatly increases public access to butterfly biology. 


VOLUME 46, NUMBER 4 oul 


The twenty committee members who labored to generate this highly valuable reference 
work have my sincere gratitude. Authors seeking appropriate common names can now 
find them. Anyone with information or interest in a butterfly that he or she knows only 
by a common name can now look it up and see what the Latinized name might be. The 
public and responding government agencies often raise biological concerns during land- 
use permitting procedures by common name only. Today I was asked about the “checkered 
moth” (suggesting a need for more work). The book offers a list of common names 
collected from all major sources, with a recommended name in boldface for each species. 
Subspecies and their common names are also listed but none is designated as recom- 
mended. Publication of this work will have the instant effect of producing new sources 
of previously published common names and advice on which of several possibilities to 
adopt into the standard list. I would mention a real need for separate names for the 
species and for the nominate subspecies. A second edition should appear, in my opinion, 
in well under ten years. 


RAYMOND R. WHITE, 788 Mayview Avenue, Palo Alto, California 943038. 


Journal of the Lepidopterists’ Society 
46(4), 1992, 311-318 


MOTHS OF AUSTRALIA, by Ian F. B. Common, with photographs by Ederic Slater. 1990. 
Melbourne University Press, Carlton, Victoria 3053, Australia. Distributed by E. J. Brill 
(USA), 24 Hudson Street, Kinderhook, New York 12106. 535 pp., 32 color plates, 44 black 
& white plates. Hard cover, 18 x 25 cm, ISBN-0-522-84326-3, $150 Australian (about 
$200 U.S.). 


REVIEW By J. A. POWELL 


This book, the fruit of four decades of labour by an incredibly dedicated lepidopterist, 
is marvelous. In addition to its usefulness to students of the Australian fauna, this text is 
the best general reference to biology and taxonomy of world Lepidoptera. The information 
is comprehensive, with comparable coverage of all taxa from primitive moths to macros; 
the text is clearly written; and the illustrations, particularly the color plates, are superb. 

Moths of Australia is presented in two sections: 1, Moths and Their Environment, and 
2, The Australian Moth Fauna. There are appendices on collection and study of Lepi- 
doptera and a larval foods list arranged taxonomically by plants with the moths names 
but not page references. The index lists moth taxa and general topics but not plant names, 
and there is a glossary as well as extensive bibliography. 

In Part 1 there are discussions of morphology and life history, biology, population 
control, economic significance, evolution and geographical distribution, and a tabular 
family classification, that are worldwide in application—an 80-page must reference for 
every lepidopterist. As an example of the comprehensiveness of coverage, probably more 
has been published on the systematics, phylogeny, and biology of extinct and extant 
primitive Lepidoptera during the past 15 years than in all preceding time. Recently, for 
a review of evolution of larval foods, I compiled more than 80 references since 1978 on 
primitive taxa and higher classification; virtually all the important ones from all biogeo- 
graphical regions are included by Common. The literature coverage is thorough to about 
1988, with a few 1989 citations. 

The classification was prepared in collaboration with E. S. Nielsen and is the system 
to be used in a forthcoming checklist of Australian Lepidoptera, edited by Nielsen and 
others. The higher taxa comprise a collapsed Linnaean hierarchical arrangement, with 
four suborders, and six infraorders within the Glossata, as contrasted with five infraorders 
treated by Minet (1986, Alexanor 14:291) and four by Nielsen (1989, The Hierarchy of 
Life, Elsevier Sci. Publ.). Thus Dacnonypha, Neopseustina, Exoporia, and Lophocoronina 
are recognized at the same taxonomic level as Heteroneura and Ditrysia. The Ditrysia is 
divided into 26 superfamilies (in addition to the skippers and butterflies), without inter- 


312 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


mediate categories. There is a list of world families of moths, about 40 of which are not 
known in Australia. 

Part 2 treats the Australian fauna and contains summaries of adult, immature stages, 
and biology of each family, including diagnoses of exemplar species. These accounts are 
accompanied by more than 400 excellent line drawings done by Common, depicting 
wing venation, male and female genitalia, and the pupa of one or two representative 
species in each family. The discussions are clearly and concisely written, mostly 3-7 pages, 
although more diverse families are given more elaborate treatment, for example 14 pages 
for Oecophoridae and 26 pages for Noctuidae. 

The description of Australian species is dependent in large part upon the photographs, 
about 750 in color and 700 black and white; the latter are not on high gloss paper but 
are nonetheless very good. Presumably costs would have been prohibitive to publish all 
photos in color. About 150 of the color and 75 of the halftone photos are of mines, galls, 
or living insects, either adult or larva. 

The Australian lepidopterous fauna, as is true of other animals, consists mostly of 
endemic species and is markedly disharmonious in comparison to other parts of the world. 
It has about 10,500 described Lepidoptera and is estimated to contain an equal number 
of undescribed species. If so, the Australian continent, which is about the size of the 
United States, has several thousand more species than does the fauna of America north 
of Mexico, which we would like to think is 70-75% described. The Oecophoridae dominate 
the Australian fauna, with more than 2600 described species, a further 1500 known species 
awaiting description, and a total fauna greater than 5000 species, Common projects, or 
nearly a quarter of all the Lepidoptera. The primitive moths are well represented, both 
in higher taxa and their included numbers of species, particularly the many large and 
spectacular Hepialidae, more so than in most other parts of the world. By contrast, other 
large moths such as Saturniidae (12 species) and Sphingidae (59 species) are depauperate. 
Butterflies are negligible in terms of biodiversity, even more so than on other continents, 
with fewer than 400 species, 2% of the estimated fauna. 

Common (1980, J. Lepid. Soc. 34:286) has discussed factors responsible for some of 
these imbalances. Large sections of the Ditrysia, notably Oecophoridae and Tortricidae, 
have evolved with the typically Australian dry sclerophyll communities dominated by 
Myrtaceae (especially Eucalyptus), Fabaceae (especially Acacia), and Proteaceae. In 
particular, larval feeding in leaf litter of the eucalypt forests seems to have set the stage 
for speciation. Largely through Common’s efforts during the past 40 years, the larval 
foods of nearly 1000 species of microlepidoptera are known; among these, 35% of Tor- 
tricinae and 83% of Oecophoridae feed on Eucalyptus, the vast majority in fallen leaves. 
Means of 100-440 lepidopterous larvae per m? of leaf litter have been reported! 

The text and illustrations emphasize families with larger individuals: nearly half of the 
100+ hepialid and 50+ sphingid species and about 10% of 1600+ noctuids are shown. 
In contrast, it is curious that the groups to which Common has directed most of his 
taxonomic research are underemphasized: only about 70 Oecophoridae and 25 Tortricidae 
are illustrated, less than 3% of the described species in these taxa. 

After a cursory comparison of unidentified specimens, it appears to me that this manual 
will be useful in indentifying the majority of larger moths, at least to the generic level, 
although this might be a naive assumption based on lack of familiarity with the macro 
families or because incidental collections by foreign visitors are liable to emphasize the 
more distinctive, showy species. For the larger families of microlepidoptera, however, 
too few are illustrated to allow much identification use. For example, in Tortricidae just 
one species of each of seven Tribes of Tortricinae (about 80 genera) and no Olethreutinae 
are illustrated in color, and only about a dozen olethreutines, including several introduced 
pest species, appear as halftones. Among Gelechioidea, representatives of 23 of 105 
described genera of Cosmopterigidae and Gelechiidae are pictured, and only about 35 
of 200+ named genera of Oecophoridae (including Xyloryctidae) and Depressariidae are 
included in the color plates. Moreover, superficial resemblances among the multicolored 
oecophorids are apt to be misleading, rendering limited usefulness to the photographs. 

Ian F. B. Common, who was president of The Lepidopterists’ Society in 1979, was 
educated in Queensland, and joined the Division of Entomology, CSIRO, in Canberra, 


VOLUME 46, NUMBER 4 | 313 


A.C.T., in 1948. Since that time he has dedicated his life to an understanding of the 
Australian moth fauna, aided immeasurably by his wife Jill, who has kindly assisted Ian 
in countless ways. This book summarizes much of that wealth of information. Possibly 
the best endorsement I can offer is, this is the reference I reach for first to answer general 
questions on biology and taxonomy of the families of moths, despite its emphasis on the 
Australian fauna, halfway around the world from North America. 


J. A. POWELL, Department of Entomological Sciences, University of California, Berke- 
ley, California 94720. 


Journal of the Lepidopterists’ Society 
46(4), 1992, 313 


MOTHS OF AUSTRALIA, by Ian F. B. Common, with photographs by Ederic Slater. 1990. 
Melbourne University Press, Carlton, Victoria 3053, Australia. Distributed by E. J. Brill 
(USA), 24 Hudson Street, Kinderhook, New York 12106. 535 pp., 32 color plates, 44 black 
& white plates. Hard cover, 18 x 25 cm, ISBN-0-522-84326-3, $150 Australian (about 
$200 U.S.). 


ADDITIONAL COMMENTS BY RICHARD S. PEIGLER 


I had not seen this book when I ordered it, but what I received far exceeded my 
expectations. Given that the microlepidoptera comprise the vast majority of families 
within Lepidoptera, here at last is a treatment that provides balance, which means that 
there is more coverage of the “micro” families than of the “macro” families. Taxonomic 
changes at all levels can be confusing to the non-specialist, so I like the way Dr. Common 
explains at the beginning of each family treatment the historical classification of subfamily, 
family, or superfamily by earlier authors. The numerous subfamilies of the Noctuidae 
are clearly outlined, for example. 

Although the museum where I work has very few moths from Australia, this book is 
already preving to have considerable value in curating the moth collection because of its 
concise morphological descriptions and drawings for all of the families, particularly the 
microlepidoptera. Many of the micros that I collect are not immediately recognizable by 
me to family level, and I am faced with looking in moth books such as C. V. Covell’s 
1984 A Field Guide to the Moths of Eastern North America, W. J. Holland’s 1903 The 
Moth Book, faunal treatments I have of southeastern Asia or southern Africa, or even the 
standard college textbook of entomology with keys to families, i.e., various editions of 
An Introduction to the Study of Insects by D. J. Borror and colleagues. But none of these 
are really adequate compared to Common’s book, which presents everything so clearly 
and all under one cover. True, a few families and subfamilies are Australian endemics, 
but if one wishes to gain a good working knowledge of the moth families of the world, 
I am not aware of a better source. So this book will serve worldwide as a useful reference 
even to those “up above” who have no material from Australia and who never anticipate 
collecting “down under.” 

Moths of Australia is beautifully produced. The binding, printing, and color plates are 
of the highest standard. There is a generous amount of color and numerous black and 
white photographs showing eggs, caterpillars, pupae, cocoons, and moths in living repose, 
as well as pinned adults. This book is not just a compilation based on literature and 
museum material; Common has obviously spent countless hours in the field over many 
years enabling him to report first-hand observations throughout the text. The book is 
regrettably expensive. If you cannot afford it, try to persuade a nearby museum, university, 
or public library to order a copy, as it deserves to be widely available for many years to 
come. Books like this encourage young amateurs to move from butterflies to moths, and 
advanced amateurs to move to microlepidoptera. 


RICHARD S. PEIGLER, Department of Zoology, Denver Museum of Natural History, 
2001 Colorado Boulevard, Denver, Colorado 80205. 


Journal of the Lepidopterists’ Society 
46(4), 1992, 314-324 


OBITUARIES 


ALEXANDER BARRETT KLOTS (1903-1989) 


Alexander Barrett Klots sparked, and in some people ignited, a passion for butterflies 
and moths among generations of naturalists. His published works include a wealth of 
popular books and articles, natural history literature for young adults, and over 90 peer- 
reviewed scientific papers, including benchmark contributions on pierid and crambid 
systematics, lepidopteran genitalia, and the biogeography of alpine and arctic butterflies. 
To many he was best known for his Peterson Field Guide on eastern butterflies, which 
made North American lepidopterology accessible to the amateur, young student, and 
professional alike. Klots passed away on 18 April 1989 at the age of 85. His wife of 61 
years, Elsie Broughton Klots, Ph.D., passed away in September 1991; they are survived 
by their two children, Cornelius Ephraim Klots, Ph.D., and Louise Snell, and four grand- 
children. 

Alexander Barrett was born 12 December 1903 to Dr. Ephraim and Helen Giles Klots 
in New York City. His father was a highly respected and successful medical practitioner. 
His upbringing was formal, and in some respects stifling; indeed, his mother had him 
wear velvet suits with lace collars. His father gave him the name “Bill”—the name most 
of us would come to know him by—to add a more common air to his childhood. 

Like that of so many naturalists, Bill’s interest in the outdoors was apparent from an 
early age. At the age of nine he presented the entomology department at the American 
Museum of Natural History (AMNH) with his first significant butterfly capture. By age 
12 he was a frequent visitor to the offices of Mr. Frank Watson and Dr. Frank Lutz at 
the American Museum. This was also the period when he met F. Martin Brown, someone 
who would be a lifelong friend and fellow lepidopterist. Frank Watson took a liking to 
both “Barrett” and Martin and encouraged them to work on the pierids in the AMNH. 

Bill’s interests as a boy and young man included fishing and bird hunting, rock climbing, 
scouting, and golfing. He had the “collecting” affliction many of us share; he saved stamps 
and coins, kept live reptiles and amphibians, and brought home myriad insects. Except 
for his hobbies of stamp and coin collecting, most of his activities took Bill outside. As a 
boy he spent countless hours exploring the countryside around the family’s summer cottage 
on Long Island. In 1917, his mother purchased Penhaven, in Putnam, Connecticut, initially 
to serve as a private retreat. With time, Penhaven became the family summer home, and 
eventually the homestead to which Bill and Elsie retired. 

Bill attended Trinity School in New York City and Blair Academy in New Jersey. From 
there it was on to Dartmouth to study medicine; evidently he spent too much time in 
the school’s outing cabins and too little time in classrooms. He got a second chance, at 
Yale, where he finished three years of course work in engineering before leaving to spend 
a summer working on a dude ranch in Wyoming, an experience that would forever bond 
Bill to the West. His free time was spent hiking, taking photographs, and collecting insects. 
He persuaded his father to buy a horse ranch in Jackson Hole with a friend that Bill had 
met from Lapland. Although he enjoyed ranching, Bill realized that he wanted to get an 
advanced degree in entomology studying butterfly systematics. 

He wrote William T. Forbes and soon was doing graduate work at Cornell University. 
His Masters research focused on the taxonomy of the pierid genus Eurema, the very genus 
Frank Watson had encouraged Bill to study nearly a decade before. While in the final 
throes of completing his Masters, it was revealed that young Klots had yet to obtain a 
Bachelor’s degree! Bill, now a dedicated student, quickly had this situation remedied and 
both degrees in hand. He stayed with Forbes to obtain his doctorate, preparing a generic 
revision of the Pieridae. While at Cornell Bill met and later married Elsie Broughton, 
one of Needham’s students who was among the first women in the country to complete 
doctoral work in entomology. Bill and Elsie married in 1927. 

Klots graduated in 1931 at the height of the Great Depression, when few universities 
were hiring. He was offered a very good job in Rochester, New York, at Wards Natural 
Science Establishment, which was owned by the University of Rochester. Although work- 
ing there full time, he found time to teach courses at the University of Rochester, where 


VOLUME 46, NUMBER 4 815 


Alexander Barrett Klots circa 1959 (courtesy Saul Frommer). 


he was an associate faculty member. Wards sent Bill out West during summers to collect 
biological specimens (e.g., insects and fossils), most of which would be sold by the company. 
He had considerable freedom to pursue his entomological interests while at Wards: he 
continued publishing on pierid systematics, wrote a widely used manual on how to make 
an insect collection, and continued his pioneering studies on insect genitalia. 

In 1934, Bill was offered a faculty position in the Biology Department at the City 
College of New York, where he taught courses in biology and field zoology; he also was 
among the first to offer a course in the new science of ecology. He spent long hours 
individually tutoring students in entomology, a course that was not formally offered at 
City College. He made special efforts to get his students outdoors for field trips. Saul 
Frommer, one of Bill’s later students, recalls Klots telling his students that “The ones who 
jump into the mud with him will get the specimens,’ almost as clearly as he remembers 
taking his first leap into a bog with Bill. 

Bill was an outstanding lecturer and teacher; his presentations often featured his pho- 
tographs or other demonstration material he had accumulated. Although City College 
was an undergraduate institution with relatively few students interested in biological 
sciences, several of his students went on to other institutions to pursue advanced degrees 
and careers studying insects, e.g., Fenja Brodo (Nematocera and arctic insects), Herbert 
Dalmat (Simuliidae), Saul I. Frommer (Curator of Entomology, University of California, 
Riverside), and Robert Traub (Siphonaptera). The Biology Department at City College 
was exceptionally strong in entomologists through much of Bill’s tenure: William S. 
Creighton, Axel L. Melander, A. Glenn Richards, Jr., Herbert Ruckes, Herman T. Spieth, 
and Asher E. Treat, among others. The entomological atmosphere at City College played 
a part in Bill’s decision to decline a job offer from the American Museum of Natural 
History early in his career. He was named Emeritus Professor upon his departure from 
City College in 1965. 

William Sargeant, a fellow professor and close friend at City College, introduced Bill 
to the sport of falconry. Klots and a number of other young men spent many weekends 


316 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Bill with his pet peregrines. 


at Assateague Island, catching or flying birds. Bill, Elsie, and the two children, Ephraim 
and Louise, kept several falcons, with as many as four in residence in some years. Susana, 
one of their peregrines, was featured in Life magazine; the family favorite was a kestrel 
named Butch that rode with Elsie in taxis, on trains, and even slept on her pillow. 

In 1942 Bill enlisted in the Army Air Force and was commissioned as a Captain in the 
Troop Carrier Command. After learning of Klots’ background in entomology, the army 
asked him to serve in the Sanitary Corps as a Medical Inspector and Malaria Control 
Officer. His most noteworthy efforts were his efficacy studies of the new wonder pesticide, 
DDT, in the control of malaria and yellow fever. He authored three papers documenting 
the effects of DDT on mosquitoes. He was rather cavalier with DDT use—it was not 
uncommon to find his clothing dusted white with the powder. One of his former students 
recalls receiving an envelope that Bill had packed and mailed off to him—Bill urging 
him to give the new pesticide a try. 

Bill’s studies took him throughout the southeastern United States, as well as Puerto 
Rico, British Guiana, and Brazil. His wartime letters to Elsie were censored—the army 
cut away any mention of places, dates, etc. Bill and Elsie found this most bothersome 

. so they soon devised an interesting way to let each other know his whereabouts—in 
each letter he would include mention of several butterfly species. Elsie would take these 
letters to the American Museum of Natural History, where with a little work in the 
collection, she could pin down his general whereabouts. 

Bill met Sergeant Roger Tory Peterson in the army. The two men shared several 
common interests: both were lifelong naturalists, each had a deep interest in birds, and 
both were studying DDT. (Peterson was evaluating the impact of DDT on birds.) After 
the war, Klots became a strong adversary of DDT and other broad spectrum pesticides. 
His early position of advocacy regarding the use of DDT haunted him ... it seems most 
ironic that one of Bill’s favorite animals and long time family pet, the Peregrine Falcon, 
was among the most adversely effected by DDT use. The relationship Peterson and Klots 
established during the war years led the former to invite Bill to author the field guide 
on butterflies. ; 

Klots’ wartime studies of mosquitoes made him a natural choice for a prestigious 
Canadian Air Force expedition to the high arctic to study biting flies. Klots spent much 
of the summer of 1952 studying means for controlling the swarming black fly and mosquito 


VOLUME 46, NUMBER 4 | 7 Oil 


Clockwise from upper left: Bill (wearing glasses) with Frank Lutz, curator at the 
American Museum of Natural History, during an informal lecture Lutz presented to a 
group of Boy Scouts; Klots (back, left) climbing what he coined “Oeneis Mountain” in 
the Wind River Range, Wyoming, with colleagues from the City College of New York; 
Klots (center) with his closest lifelong friend, C. F. dos Passos (right) and N. D. Riley 
(left) at the 1953 International Zoological Congress in Copenhagen; Paul Ehrlich (left) 
and Saul Frommer (center) and Klots (right) visit at Kansas University, ca. 1959; wartime 
DDT efficacy studies—Klots samples for adult mosquitoes from an army helicopter. 


populations on Ellesmere and Cornwallis islands. He returned at the end of the summer 
with some 40,000 specimens of Nematocera, as well as long series of many arctic butterflies. 

Klots’ association with the American Museum of Natural History spanned more than 
70 years. He kept close ties with Frank Watson and others in the entomology department 
during his years at Cornell and later at Rochester. After accepting the job at City College, 
Bill was given space in the museum where he did much of his research for the next 35 
years. The AMNH made Bill an Honorary Life Member and a Research Associate of the 
Museum. Following his retirement from City College in 1965, Bill worked at the AMNH 
for four years, before leaving New York to live at Penhaven. 

Although Bill was trained in revisionary taxonomy and produced a number of im- 
portant papers and monographs on pierids and crambids, his major contributions were 
his more popular writings. His books and photographs made entomology, especially 
lepidopterology, accessible and exciting to children and non-professionals as well as career 
biologists. Klots and his Field Guide to the Eastern Butterflies triggered my entomological 
Epiphany. My copy, which I sheepishly asked Bill to sign in 1988 was, of course, in 
miserable shape—its jacket long gone, the cover stained, spine broken, and pages riddled 
with penciled notes and highlighting. From the time it was first published in 1951, until 
Howe's (1975) The Butterflies of North America and the spate of butterfly books that 
followed, the field guide was the butterfly bible. It remains his most highly cited work. 


318 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Klots did much to popularize entomology through his photography. He was one of the 
early nature photographers to experiment with color and flash macrophotography. He 
was routinely sought out by publishers—his pictures peppered fillers in Sunday news- 
papers, magazines such as Life and Family Circle, encyclopedias, Audubon Society pub- 
lications, and his own books as well as those of others. Unfortunately, much of his color 
photography was done using Ektachrome® slide films that tend to lose blues and yellows. 
His slide collection containing some 3000 slides was given to the Connecticut State Museum 
of Natural History. It contains a large number of topically grouped slides on metamor- 
phosis, mimicry, crypsis, larval defenses, and other themes commonly seen in insects. 
Another special strength of the collection is the large number of determined larval 
Macrolepidoptera—a treasure, given the paucity of literature on immatures in this coun- 
try. 

The Field Guide explored much new ground in North American lepidopterology. It 
highlighted the relevance of ecological life zones to butterfly distributions. Bill was adept 
at identifying communities and particular plant associations that were likely to signal the 
presence of a butterfly species. He published several papers and presented numerous 
lectures on the zoogeography of arctic-alpine areas and bogs. In regard to the latter he 
wrote (1953:17) “No special environment will better repay the efforts of the butterfly 
collector.’’ Bogs were a common denominator for three of his lifelong passions: Boloria, 
Colias, and crambids. The field guide was influential in drawing attention to the biological 
uniqueness of the New Jersey pine barrens. 

Another area where Bill made important contributions is the study of genitalia for 
systematic characters. In particular, he advocated careful study of female structures. His 
treatment of Lepidoptera in Tuxen’s (1956a) Taxonomists Glossary of Genitalia in 
Insects has been his second most cited work. 

Bill was exceptional among the North American lepidopterists in that he collected all 
families, from the most obscure and minute nepticulids to the more familiar groups like 
the Noctuoidea and Papilionoidea. Early in his career he published several faunal papers 
treating both Microlepidoptera and Macrolepidoptera. The majority of the specimens 
captured and pinned by Klots—the legacy of all collectors—are housed at the American 
Museum of Natural History. A small collection of 2100 butterflies and moths, mostly 
collected after 1975, went to the University of Connecticut. The taxonomic breadth of 
his collecting efforts is reflected in the numerous lepidopteran taxa that bear his name, 
which include members of eight families of butterflies and moths: Acrolophus klotsi 
Hasbrouck (Acrolophidae); Gnorimoschema klotsi Povolny (Gelechiidae); Acleris klotsi 
Obratsov and Argyrotaenia klotsi Obratsov (both Tortricidae); Lycaena heteronea klotsi 
(Field, 1936) (Lycaenidae); Occidryas chalcedona klotsi (dos Passos, 1938) (Nymphalidae); 
Pyrausta klotsi Munroe (Pyralidae); Ixala klotsi Sperry (Geometridae); and Drasteria 
klotsi Richards and Lasiestra klotsi Richards (both Noctuidae). Klots patrenyms in other 
insect orders attest to a broad influence Bill had on American entomology. These include 
the flea, Jellisonia klotsi Traub, which is also the type of its genus; the tephiid wasp, 
Pseudomethoca klotsi Mickel; and the mosquito, Aedes klotsi Matheson. 

Bill was an early and highly respected advocate for butterfly conservation in North 
America, arguing for habitat preservation as well as responsible collecting practices. 
Regarding the Schaus’ Swallowtail (1951:174) he wrote “Now overcollecting by ‘game 
hog’ collectors has again reduced its numbers seriously in its last stand. NONE BUT 
MALES SHOULD BE COLLECTED, and then, at most, only one per collector. I believe 
most have enough sportsmanship to help protect the species and refuse to buy specimens 
at any price.” 

Both a charter and honorary life member of the Lepidopterists’ Society, he was elected 
President in 1957 and Vice President in 1974. He also was President of the New York 
Entomological Society in 1940. From its inception, he served as a Counselor for the Xerces 
Society. Klots was a fellow of both the Royal Entomological Society and the Linnean 
Society of London and a member of the Explorers Club, Falconry Club of America, 
Society of American Naturalists, Society of Sigma Xi, Society of Systematic Zoology, 
Society of Taxonomists, and South London Entomological and Natural History Society. 
An authority on nomenclature, he attended two International Zoological Congresses (Co- 


VOLUME 46, NUMBER 4 319 


ie ia {uA ei af j 


Life at Penhaven. Left: Bill in his bug room with his ever present bottle of Coca Cola®. 
No doubt, Bill spent more of his waking time in this tiny 60 square foot space off of the 
living room than in any other; right: Bill (circa 1980) dressed for some yard work ... or 
perhaps for the baiting and collection of winter moths. 


penhagen 1953 and London 1958) as a delegate to the Concilium on Zoological Nomen- 
clature. 

Beginning in 1970, Bill’s health took a turn for the worse. He had hip operations in 
1970 and 1972, neither of which was particularly successful—he was in discomfort for 
the rest of his life. Bill’s penchant for tobacco caught up with him as well. His emphysema 
limited much of his activity later in life. I carry a vivid image of Bill disconnecting 
himself from his oxygen long enough to light up and take a few pulls on his pipe. Through 
the 1970's and early 1980's he continued with his entomological interests, but also read 
books on American history and mysteries, and attended Red Sox baseball games. Bill had 
a passion for literature on the American West, evidently his favorite was The Journals 
of the Lewis and Clark Expedition—it was a series Bill read and reread many times 
during his life. 

His influence on me came in my teens, more than 20 years before I would meet him 
in person. When I finally met Bill, a little more than a year before his death, he was 
weakened by years of struggle with a bad hip and emphysema. Even then he was a giant 
to me. I think of him often, not as an old or frail man, but as a tireless collector, or in 
his words a “field man,” slogging knee-deep through some bog, bagging lesser fritillaries 
and crambids. 

I shall remember Bill for many things: in part for his proud and dignified demeanor; 
for his dry sense of humor, where puns were stacked on puns; for his colorfully eccentric 
attire that paired suits with moccasins or a favorite, old woolen army cap; but most of 
all for what he gave me as a young naturalist—knowledge and a passion for entomology— 
through his field guide, books, and photographs. More than any other North American 
biologist, his works have catalyzed and fueled the interests of legions of young entomol- 
ogists. He will be sorely missed and long remembered. 


PUBLICATIONS 


Bill was a prolific writer as comfortable with revisionary taxonomy as with popular 
prose. It was his ability to pique interest in students of natural history that will be much 
of his legacy. Although professionally an entomologist, he published works on a variety 
of other subjects including arctic life, deserts, falconry, herpetology, mountaineering, 
wildflowers, and liverworts. His diverse entomological contributions appeared over a 60 
year span and included taxonomic monographs, a field guide, several popular books, 
children’s natural history sticker books, scientific and popular articles, text for encyclo- 
pedias, and dozens of book reviews. The list that follows was compiled from Bill’s personal 
records and a curriculum vitae that he had prepared at the City College of New York. 
It is complete for Bill's books (first and English editions only) and Bill’s major entomological 
contributions. 

Bill authored 18 books; seven of which were co-written with Elsie, with Elsie as senior 


320 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


author on three. Several of these were contract works for publishers looking for popular 
books during the heyday of color publishing, e.g., the series of nine sticker books published 
by Doubleday Press that were prepared under the aegis of the National Audubon Society; 
each included a set of color stickers that would be placed into appropriate spaces in the 
book to yield a splendidly illustrated natural history volume. The field guide was his most 
successful book with well over 120,000 copies being sold. The World of Butterflies and 
Moths, another popular work, appeared in seven different languages. 

The following list may be lacking in its coverage of popular articles and does not include 
his book reviews and contributions to encyclopedias. Bill frequently was called upon for 
book reviews; as many as twenty five appeared in Natural History Magazine and the 
Quarterly Review of Biology by the year 1959. The breadth of his expertise as a natural 
historian is reflected by the subject matter of his reviews—besides Lepidoptera, Bill 
reviewed books on other insect groups, falconry, hiking and mountaineering, and ver- 
tebrate wildlife. Most of his entomological reviews appeared in the Bulletin of the En- 
tomological Society of America, Journal of the New York Entomological Society, and the 
Quarterly Review of Biology. His abilities as a writer made him popular with encyclopedia 
publishers; Bill’s treatments of insects appeared in Compton’s Encyclopedia, Encyclopedia 
Brittanica, Encyclopedia of Earth Sciences, Grolier Society's Book of Knowledge, and 
World Book: In the 1956 and 1957 edition of the latter, Klots also contributed a treatment 
on Falconry. 


Books 


1951 A field guide to the butterflies of North America, east of the Great Plains. 
Houghton Mifflin Co., Boston. 349 pp. 

1953 Butterflies and moths. Doubleday & Co., New York. 30 pp. 

1954 Desert life. Doubleday & Co., New York. 62 pp. [new ed. 1959]. 

1955a Metamorphosis. Doubleday & Co., New York. 55 pp. [2nd ed. 1960]. 

1955b_ ‘E. B. Klots & A. B. Klots. Wildflowers of the desert. Doubleday & Co., New York. 
56 pp. [2nd ed. 1960]. 

1956 = Klots, A. B. & E. B. Klots. The community of living things in the desert. Creative 
Educational Society, Mankato, Minnesota. 201 pp. 

1957a La vie et moeurs des papillons. Horizons de France: Paris. 208 pp. [English 
translation: The world of butterflies and moths. Harrap: London]. 

1957b_ In the arctic. Doubleday & Co., New York. 60 pp. 

1958a North American butterflies. Doubleday & Co., New York. 56 pp. 

1958b Our insect allies. Doubleday & Co., New York. 48 pp. 

1959 Klots, A. B. & E. B. Klots. Living insects of the world. Doubleday & Co., New 
York. 304 pp. 

1960 Tropical butterflies. Children’s Press, Chicago. 160 pp. 

196la_ E. B. Klots & A. B. Klots. Wildflowers of the woods. Doubleday Co., Garden 
City, New York. 62 pp. 

1961b_ Klots, A. B. & E. B. Klots. 1001 questions answered about insects. Dodd Mead, 
New York. 260 pp. 

1962 +E. B. Klots & A. B. Klots. Wildflowers of the coastal region. Doubleday Co., 
Garden City, New York. 63 pp. 

1968 Tropical butterflies. New Edition. Regensteiner Pub. Enterprises, Chicago. 162 pp. 

1972 + Klots, A. B. & E. B. Klots. Insects of North America. Doubleday & Co., New 
York. 250 pp. [“The printers were in many ways careless with the book ... and 
we regret never having the opportunity to see galley,” E. B. Klots, June 1989]. 

1976 Butterflies of the world. Bantam Books, Toronto. 160 pp. 


Published Scientific Articles 
(includes some abstracts and non-peer reviewed articles) 


1923 A new race of Eurema proterpia (Fabricius) (Lepidoptera, Pieridae). Entomol. 
News 34:301. 

1928a A revision of the genus Eurema (Lepidoptera, Pieridae). Part 1, New World 
species, morphology, and phylogeny. J. New York Entomol. Soc. 36:61-78. 


VOLUME 46, NUMBER 4 ook 


1928b 
1929a 
1929b 
1929c 
1929d 
1930a 
1930b 
1930c 
1930d 
1930e 
193la 
1931b 
193lce 
1931d 
1932 


1933a 
1933b 


19388c 


1935a 
1935b 


1935c 
1935d 


1936a 
1936b 


1937a 
19387b 


1987c 
1939a 


1939b 


1940a 


A phylogenetic study of the genus Teriocolias Rober (Lepidoptera, Pieridae). J. 
New York Entomol. Soc. 36:113-117. 

Notes and additions for 1928 to the New York state list (Lepidoptera). J. New 
York Entomol. Soc. 37:41-42. 

A revision of the genus Eurema Hiibner (Lepidoptera, Pieridae). Part Il, New 
World species, taxonomy and synonymy. Entomol. Am. 9:99-171. 

The genus Anteos (Hiibner) (Lepidoptera, Pieridae). Bull. Brooklyn Entomol. Soc. 
24:134-142. 

The generic status of Catopsilia Htbner and Phoebis Hubner (Lepidoptera, 
Pieridae). Bull. Brooklyn Entomol. Soc. 24:2038-214. 

Notes on Amphibia and Lacertilia collected at Weymouth, New Jersey. Copeia 
173:107-111. 

A new subspecies of Ascia monuste (L.) from Lower California (Lepidoptera, 
Pieridae). Pan-Pacif. Entomol. 6:145-147. 

A generic revision of the Euchloini (Lepidoptera, Pieridae). Bull. Brooklyn En- 
tomo!. Soc. 25:80-95. 

Diurnal Lepidoptera from Wyoming and Colorado. Bull. Brooklyn Entomol. Soc. 
25:147-170. 

On the naming of individual variants in Lepidoptera. Entomol. News 41:298- 
302 & 324-328. 

Notes on Lepidoptera collected in a Connecticut-Rhode Island woodland. Bull. 
Brooklyn Entomol. Soc. 26:57-70. 

Notes on moths collected at Silver Lake, Chesham, New Hampshire. Psyche 38: 
36-37. 

New records of Microlepidoptera from New York. J. New York Entomol. Soc. 
39:291-293. 

The generic synonymy of the North American Pieridae (Lepidoptera). Entomol. 
News 42:253-256. 

New records of Lepidoptera from New York. J. New York Entomol. Soc. 40: 
385-387. 

A generic revision of the Pieridae (Lepidoptera). Entomol. Am. 13:189-242. 
Directions for collecting and preserving insects. Wards Natural Science Estab- 
lishment, Rochester, New York. 30 pp. [with two later editions]. 

New records of Lepidoptera from New York. Bull. Brooklyn Entomol. Soc. 28: 
203-210. 

Ovoviviparity in Colias? Entomol. News 46:58. 

A new Colias from South Dakota (Lepidoptera: Pieridae). Amer. Mus. Novitates 
No. 767. 2 pp. 

Incisalia henrici Gr. & Rob. in Connecticut. Bull. Brooklyn Entomol. Soc. 30: 
159. 

On the life history of Pieris virginiensis Edwards (Lepidoptera, Pieridae). J. New 
York Entomol. Soc. 43:139-142. 

New North American Microlepidoptera. Amer. Mus. Novitates No. 867. 6 pp. 
The interrelationships of the species of the genus Lycaena Fabricius (Lepidoptera, 
Lycaenidae). Bull. Brooklyn Entomol. Soc. 31:154-171. 

The costal vein in the Pieridae. Canad. Entomol. 69:48. 

Some notes on Colias and Brenthis (Lepidoptera, Pieridae and Nymphalidae). 
J. New York Entomol. Soc. 45:311-3383. 

New records of Lepidoptera from New York. Bull. Brooklyn Entomol. Soc. 32: 
135-139. 

Evolution of social organization in insects. Biol. Rev. City College New York 2:4— 
7 & 28. 

Brenthis aphirape (Hubner) in North America with a new record of the species 
from Maine (Lepidoptera, Nymphalidae). Bull. Brooklyn Entomol. Soc. 34:259- 
264. 

New butterfly subspecies from Wyoming (Nymphalidae, Pieridae). Amer. Mus. 
Novitates No. 1054. 6 pp. 


322 


1940b 
1940c 
1940d 
1941 

1942a 
1942b 
1943 

1945a 
1945b 
1946 

1948 

1949 

195la 
1951b 
195le 
1952a 
1952b 
1952c 
1958a 
1953b 
1955 

1956a 
1956b 
1956c 
1956d 


1957 


1958a 
1958b 
1958c 


1958d 


1958e 


JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


The silvery-striped Crambus of California (Lepidoptera, Pyralidae). Bull. Southern 
California Acad. Sci. 39:53-70. 

A Crambus record. Bull. Southern California Acad. Sci. 39:203. 

A new Brenthis from Alaska. J. New York Entomol. Soc. 48:413-414. 

Two European Tortricidae not hitherto recorded from North America. Bull. 
Brooklyn Entomol. Soc. 36:126-127. 

Type material of North American Microlepidoptera other than Aegeriidae in the 
American Museum of Natural History. Bull. Amer. Mus. Nat. Hist. 79:391—424. 
North American Crambus (Pyralidae). II. New species. Amer. Mus. Novitates 
Now lole 7 pp: 

Extension of range of Crambus teterrellus (Zincken) (Pyralidae). Bull. Brooklyn 
Entomol. Soc. 38:11. 

Experiments on DDT residual spray treatment of C-47 aircraft. 1st Troop Carrier 
Command, U.S. Army Air Force. 33 pp. 

Preliminary report on disinsectization of aircraft, using DDT. Rep. Army Air 
Force Center, Orlando, Florida. 30 pp. 

Disinsectization of aircraft, using DDT. Rep. Air Proving Ground Command, 
Eglin Fi3lr, Florida. 182 pp. 

Notes on the genus Eurema (Pieridae) in the United States. Lepid. News 2:51-53. 
Papilio flyways. Lepid. News 3:25. 

Holarctic butterfly speciation and subspeciation, especially in North America. 
Lepid. News 5:24-27. 

Studies of a Connecticut nexus. Biol. Rev. City College New York 13:4-8. 

A correction: Lycaena helloides from New York. Lepid. News 5:120. 

Grey, L. P., A. B. Klots & C. F. dos Passos. The “Niobe-Cydippe-Adippe’ problem 
(Class Insecta, Order Lepidoptera, Family Nymphalidae) with suggestions for its 
solution. Bull. Zool. Nomen. 6:323-825. 

Klots, A. B. & H. K. Clench. A new species of Strymon Htibner from Georgia 
(Lepidoptera, Lycaenidae). Amer. Mus. Novitates No. 1600. 19 pp. 

Obituary: Marguerite S. Forsyth. Lepid. News 6:76-77. 

Notes on Marchantia. Biol. Rev. City College New York 15:24—26. 

The pupa of Phoebis philea (L.) (Lepidoptera, Pieridae). Biol. Rev. City College 
New York 16:1-2. 

Notes on the elliptical goldenrod gall. Biol. Rev. City College New York 17:223. 
Lepidoptera, pp. 97-111. In Tuxen, S. L. (ed.), Taxonomists’ glossary of genitalia 
in insects. Monksgaard, Copenhagen [also many definitions in Part II with B. 
Alberti, A. Diakonoff, N. Obratsov & S. Toll]. 

The larva of Hyperaeschra georgica (Notodontidae). Lepid. News 10:203-204. 
Studies of New World arctic and alpine Lepidoptera. Proc. XV Internat. Congress 
Zool., pp. 469-470 [abstract]. 

A note on the ichneumon wasp in action. Biol. Rey. City College New York 
18:2. 

Klots, A. B. & B. Heineman. The identity of Papilio nise Cramer, 1775 (Lepi- 
doptera: Pieridae) and a neotype designation for this nominal species. Proc. Royal 
Entomol. Soc. London, Series B 26:206—215. 

Ecological studies at Churchill, Manitoba. Proc. X Internat. Congress of Entomol. 
1:691 [abstract]. 

Southern extensions of arctic and subartic insects in bogs and alpine areas. Proc. 
X Internat. Congress Entomol. 1:711 [abstract]. 

Thoughts on museums, collections and collectors (Presidential Address, 8th An- 
nual Meeting of the Lepidopterists’ Society). Lepid. News 12:1-5. 

dos Passos, C. F. & A. B. Klots. Document 15/1. Proposal for the amendment 
of Article 28 of the existing “Regeles’” as amended at Copenhagen (1953) so as 
to give preference to the principal of page priority in the selection of generic 
and specific names and for other purposes. Bull. Zool. Nomen. 15:285—292. 

dos Passos, C. F. & A. B. Klots. Document 34/1. Proposal for the amendment 
of Article 21 of the existing “Regeles” (i.e., Draft Article 22) so as to make its 


VOLUME 46, NUMBER 4 323 


1959 

1960a 
1960b 
196la 
1961b 
196lc 
1961d 
196le 
1963a 
1963b 
1964 

1965 

1966a 
1966b 
1966c 
1967a 
1967b 
1967c 
1967d 
1968a 
1968b 
1968c 


1968d 
1969a 


1969b 


1970a 


1970b 


1971 


operation entirely objective in cases where a person other the nominal author of 
the book or paper concerned is responsible for a name and its indication, definition 
or description. Bull. Zool. Nomen. 15:695-702. 

A mixed. mating of two species of Limenitis. Fabricius (Lepidoptera, Nymphal- 
idae). J. New York Entomol. Soc. 67:20. 

A terrestrial flatworm well established outdoors in the northeastern United States. 
Syst. Zool. 9:33-34. 

Notes on Strymon caryaevorus McDunnough (Lepidoptera, Lycaenidae). J. New 
York Entomol. Soc. 68:190-198. 

Linsley, E. G., T. Eisner & A. B. Klots. Mimetic assemblages of sibling species 
of lycid beetles. Evolution 15:15-29. 

Zoogeography in the systematics of North American Crambinae (Pyralidae). 
Verh. XI Kongr. Entomol. Wien. 1:525-527 [abstract]. 

Toxorhynchites rutilus and Anopheles barberi in New York City (Diptera, Culico- 
idea). J. New York Entomol. Soc. 69:104. 

Colias, pp. 53-62. In Ehrlich, P. R. & A. H. Ehrlich (eds.), How to know the 
butterflies. William C. Brown, Dubuque. 

Boloria, pp. 119-127. In Ehrlich, P. R. & A. H. Ehrlich (eds.), How to know the 
butterflies. William C. Brown, Dubuque. 

Notes on a Connecticut spaghnum bog. J. New York Entomol. Soc. 71:178-180. 
On the character of color. Natural History June-July: 30-39. 

Notes on melanism in some Connecticut moths. J. New York Entomol. Soc. 72: 
142-144. 

Some glaciation-isolated populations of North American Lepidoptera. Proc. XII 
Internat. Congress Entomol., pp. 462—468 [abstract]. 

Melanism in Connecticut Panthea furcilla Packard (Lepidoptera: Noctuidae). J. 
New York Entomol. Soc. 74:95-100. 

Life history notes on Lagoa laceyi (Barnes & McDunnough) (Lepidoptera: Mega- 
lopygidae). J. New York Entomol. Soc. 74:140-142. 

The larva of Amblyscirtes samoset (Scudder) (Lepidoptera, Hesperiidae). J. New 
York Entomol. Soc. 74:185-188. 

A note on the flight of Acrolophus morus (Grote) (Lepidoptera, Acrolophidae). 
J. New York Entomol. Soc. 75:18. 

The adaptive feeding habit of a pine caterpillar. J. New York Entomol. Soc. 75: 
43-44. 

Larval dimorphism and other characters of Heterocampa pulverea (Grote & 
Robinson) (Lepidoptera: Notodontidae). J. New York Entomol. Soc. 75:62-67. 
Two new species of Crambus Fabricius from western North America (Lepidop- 
tera: Pyralidae). J. New York Entomol. Soc. 75:154-158. 

The North American Microcrambus (Lepidoptera: Pyralidae). J. New York En- 
tomol. Soc. 76:9-21. 

Melanism in Connecticut Charadra deridens (Guenee) (Lepidoptera: Noctuidae). 
J. New York Entomol. Soc. 76:58-59. 

Further notes on melanism in Connecticut Panthea furcilla (Packard) (Lepi- 
doptera: Noctuidae). J. New York Entomol. Soc. 76:92-95. 

Boreal sphagnum bog Lepidoptera. Bull. Assoc. Minnesota Entomol. 2:67-68. 
Audition by Cerura larvae (Lepidoptera: Notodontidae). J. New York Entomol. 
Soc. 77:10-11. 

dos Passos, C. F. & A. B. Klots. The systematics of Anthocaris midea Hubner 
(Lepidoptera, Pieridae). Entomol. Am. 45:1-34. 

North American Crambinae: Notes on the tribe Chiloini and a revision of the 
genera Eoreuma Ely and Xubida Schaus (Lepidoptera: Pyralidae). J. New York 
Entomol. Soc. 78:100-120. 

Lepidoptera, pp. 115-180. In Tuxen, S. L. (ed.), Taxonomists’ glossary of genitalia 
in insects, 2nd ed. Monksgaard, Copenhagen. 

Notes on the life history of Zestusa dora (W. H. Edwards) (Lepidoptera: Hes- 
periidae). J. New York Entomol. Soc. 79:84-88. 


324 


1975a 
1975b 
1982 


1983 


1929 
1933 
1940 
1952 
1953a 
1953b 
1961 


JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Scientific names and naming, pp. 49-51. In Howe, W. H. (ed.), The butterflies 
of North America. Doubleday & Co., New York. 

Colias, pp. 8354-367. In Howe, W. H. (ed.), The butterflies of North America. 
Doubleday & Co., New York. 

Klots, A. B. & C. F. dos Passos. Studies of North American Erora (Scudder) 
(Lepidoptera, Lycaenidae). J. New York Entomol. Soc. 89:295-331. 
Crambinae, pp. 76-78. In Hodges, R. W., et al. (eds.), Check list of the Lepi- 
doptera of America north of Mexico. E. W. Classey Ltd., London. 


Popular Publications 


The camp zoo. Nature and Science Education Review 1:103-108. 

Why not insects? The Guardian (Camp Fire Girls), Dec., p. 7. 

Notes on climbing in the Wind River Range, Wyoming. Appalachia 6:98-101. 
Backyard butterflies for young collectors. Family Circle, July, 38-41, 58-62. 
Color on the wing. Part I. Family Circle, June, pp. 57-61. 

Color on the wing. Part II. Family Circle, July, pp. 56-61. 

Thoughts on an arctic adventure, pp. 332-338. In Terres, J. K. (ed.), Discovery: 
Great moments in the lives of outstanding naturalists. Lippencott Co., Philadel- 
phia. 


Davip L. WAGNER, Department of Ecology and Evolutionary Biology, U-Box 48, 


University of Connecticut, Storrs, Connecticut 06269-30438. 


Journal of the Lepidopterists’ Society 
46(4), 1992, 325-333 


CHARLES GORDON CAMPBELL DICKSON 


Charles Dickson was born on 9 December 1907 at Gardens in Cape Town and died in 
that city on 80 August 1991. He was probably the foremost Scuth African lepidopterist 
of this century, discovering no fewer than 38 new lepidopteran species (138 named after 
him) in the mountains and hills of the Western Cape. Through patient fieldwork and 
life-history research, he revised some genera and described an amazing 102 new butterfly 
species and subspecies (including 7 in the forthcoming second edition of Pennington’s 
Butterflies of Southern Africa)—approximately 10% of the total fauna in the subregion. 
Only the great pioneer taxonomist Roland Trimen exceeded this output for South African 
butterflies. 

Charles became interested in butterflies at an early age, partly through his family’s 
friendship with Roland Trimen. In the early days he also was influenced by Dr. Hesse 
and Dr. Skaife, and his interest was coupled with moths, which he subsequently collected 
for the Transvaal Museum. 

Butterflies, however, were always closest to his heart, and Charles became the foremost 
authority on the butterflies of the Cape. In the 1930’s he met Gowan C. Clark, who was 
South Africa's foremost butterfly illustrator, and for more than a quarter of a century he 
collected life-history material for Clark. This collaboration produced the 1971 book Life 
Histories of the South African Lycaenid Butterflies. Charles wrote and compiled it, 
making use of Gowan Clark’s illustrations and notes, which he supplemented with his 
own. Clark, who had passed away some years previously, was acknowledged as the senior 
author—a gesture of typical modesty on the part of Charles Dickson. The value of this 
work was immediately apparent and gained for him an honorary M.Sc. from the University 
of Cape Town. 

Charles was particularly interested in the myrmecophilous Lycaenidae of South Africa, 
in which the Western Cape is particularly rich. Together with his good friend Dr. Andre 
Claassens, he pioneered local research on this fascinating aspect of butterfly life. His work 
with Claassens culminated in the 1980 book Butterflies of the Table Mountain Range, 
which dealt exclusively with the butterfly species of the Cape Peninsula. 

When K. M. Pennington died in 1974, leaving a skeleton manuscript dealing with the 
butterflies of the Southern African subregion, Charles was asked to complete the book. 
This he did with characteristic zeal, and Pennington’s Butterflies of Southern Africa 
was published in 1978. This book remains the definitive work on the butterflies of this 
subregion. At the time of his death, Charles was putting the finishing touches on the 
revised second edition of Pennington’s Butterflies, which should be published in 1992. 

Apart from butterflies, Charles’s other great passion was vintage motor cars of old 
British and Continental marques, and steam locomotives. He was also a fierce advocate 
of retaining the early Cape place names. 

Charles was a wonderful correspondent with numerous local and international lepi- 
dopterists. He corresponded with my father, Bill Henning, for 30 years, often exchanging 
letters with him every week. Unfortunately, eye problems late in life curtailed his prolific 
output of letters. Charles was a familiar figure in Cape Town, driving his vintage Riley. 
In fact, my first view of Charles Dickson was behind the wheel of the Riley when he 
came to pick me up outside the University of Cape Town in the 1970's. He was a 
particularly kind and generous person, and his many kindnesses to my father, brother, 
and myself will never be forgotten. His encouragement started me on my writing career, 
and he proof-read my early attempts at scientific writing. I will always remember him 
with affection as my mentor and friend. 


ALPHABETICAL LIST OF TAXA DESCRIBED BY CHARLES DICKSON 


Aloeides apicalis (1968), Aloeides arida (1968), Aloeides bamptoni (1977), Aloeides 
braueri (1968), Aloeides caledoni (1978), Aloeides carolynnae (1983), Aloeides clarki 
(1968), Aloeides damarensis mashona (1973), Aloeides depicta (1968), Aloeides dryas 
(1968), Aloeides gowani (1968), Aloeides henningi (1968), Aloeides juana (1968), Al- 
oeides kaplani (1977), Aloeides lutescens (1965), Aloeides macmasteri (1973), Aloeides 


326 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


y 


margaretae (1968), Aloeides molomo coalescens (1973), Aloeides molomo krooni (1973), 
Aloeides natalensis (1968), Aloeides nollothi (1977), Aloeides oreas (1968), Aloeides 
pallida grandis (1968), Aloeides pallida littoralis (1968), Aloeides penningtoni (1968), 
Aloeides plowesi (1973), Aloeides pringlei (1976), Aloeides quickelbergae (1968), Aloeides 


VOLUME 46, NUMBER 4 | Sy Ar 


rileyi (1976), Aloeides stevensoni (1973), Aloeides susanae (1978), Aloeides swanepoeli 
(1973), Aloeides trimeni southeyae (1973), Aloeides trimeni trimeni (1973), Aloeides 
vansoni (1968). 

Argyrocupha malagrida cedrusmontana (1975), Argyrocupha malagrida maryae (1980), 
Argyrocupha malagrida paarlensis (1967). 

Chrysoritis cottrelli (1975). 

Crudaria wykehami (1983). 

Gonatomyrina henningi (1976). 

Iolaus (Epamera) mimosae pamelae (1976). 

Lepidochrysops balli (1985), Lepidochrysops braueri (1966), Lepidochrysops jamesi 
claassensi (1982), Lepidochrysops oreas junae (1974), Lepidochrysops penningtoni (1969), 
Lepidochrysops pringlei (1982), Lepidochrysops southeyi (1967), Lepidochrysops titei 
(1976). 

Lycaena clarki (1971). 

Myrina silenus penningtoni (1971). 

Phasis braueri (1968), Phasis thero cedarbergae (1974). 

Poecilmitis atlantica (1966), Poecilmitis balli (1980), Poecilmitis bamptoni (1976), 
Poecilmitis beaufortia beaufortia (1966), Poecilmitis beaufortia charlesi (1970), Poecil- 
mitis brooksi tearei (1966), Poecilmitis daphne (1975), Poecilmitis felthami dukei (1967), 
Poecilmitis hyperion (1975), Poecilmitis lysander hantamsbergae (1978), Poecilmitis 
nigricans zwartbergae (1982), Poecilmitis palmus margueritae (1982), Poecilmitis pyr- 
oeis hersaleki (1970), Poecilmitis rileyi (1966), Poecilmitis stepheni (1978), Poecilmitis 
swanepoeli (1965), Poecilmitis turneri amatola (1967), Poecilmitis violescens (1971), 
Poecilmitis wykehami (1980). 

Pseudonympha camdeboo (1981), Pseudonympha southeyi kamiesbergensis (1967), 
Pseudonympha southeyi wykehami (1967), Pseudonympha trimenii nieuwveldensis (1966), 
Pseudonympha trimenii ruthae (1966). 

Stugeta bowkeri henningi (1980), Stugeta bowkeri tearei (1980). 

Tarsocera southyae (1969). 

Thestor basutus capeneri (1972), Thestor kaplani (1971), Thestor pringlei (1976), 
Thestor rossouwi (1971). 

Torynesis hawequas (1973), Torynesis mintha picquetbergensis (1967), Torynesis prin- 
glei (1979). 

Trimenia argyroplaga (1967), Trimenia macmasteri macmasteri (1968), Trimenia 
macmasteri mijiburghi (1980), Trimenia wykehami (1969). 

Tsitana tulbagha kaplani (1976). 

Tylopaedia sardonyx peringueyi (1969). 

Zintha hintza krooni (19738). 


PUBLICATIONS OF CHARLES DICKSON 


1940 


1. Notes on the early stages of Phasis felthami Trim., a lycaenid butterfly from the 
Cape Peninsula, and a list of some recently determined food-plants of some other 
South African Butterflies. Ann. S. Afr. Mus. 32:545-554. 


1943 


2. The life-history of Phasis chrysaor (Trim.) (Lepidoptera: Lycaenidae). J. Entomol. 
Soc. S. Afr. 6:37-47. 


1944 


3. The life-history of Cupido thespis L. (Lepidoptera: Lycaenidae). J. Entomol. Soc. S. 
Afr. 7:20-29. 


328 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


4. 


10. 


ie 


12. 


13. 


14. 


15. 


16. 


We. 


Recently observed food-plants of some Cape lepidopterous larvae. J. Entmol. Soc. S. 
Afr. 7:96-99. 


1945 


. Recently observed food-plants of some Cape lepidopterous larvae (2nd series). J. 


Entomol. Soc. S. Afr. 8:150-153. 


. The life history of Phasis palmus Cram. (Lepidoptera: Lycaenidae). J. Entomol. Soc. 


S. Afr. 8:99-110. 


1947 


. The life history of Phasis thysbe L. var. nigricans Aur. (Lepidoptera: Lycaenidae). 


J. Entomol. Soc. S. Afr. 9:178-192. 


. Pairing of Dira clytus L. with D. mintha Geyer (Lep. Satyridae). J. Entomol. Soc. 


S. Afr. 9:126. 


. Recently observed food-plants of some Cape lepidopterous larvae (8rd series). J. 


Entomol. S. Afr. 9:127-130. 


1948 


The life history of Phasis pyroeis Trim. (Lepidoptera: Lycaenidae). J. Entomol. Soc. 
S. Afr. 11:50-62. 


1949 


The life history of Charaxes pelias pelias Cram. (Lepidoptera: Nymphalidae). J. 
Entomol. Soc. S. Afr. 12:109-117. 


1952 


Clark, G. C. & C. G. C. Dickson. Some South African butterflies. Longmans Green 
& Co., Cape Town. 
The life-history of Phasis zeuxo zeuxo L. (Lepidoptera: Lycaenidae). Trans. R. Soc. 
S. Afr. 32:447—456. 


1953 


Recently observed food-plants of some Cape lepidopterous larvae (4th series). J. 
Entomol. Soc. S. Afr. 16:73-76. 


1954 
Note on ovipositing of Thestor basutus. (Wllg.) J. Entomol. Soc. S. Afr. 17:140. 
1956 


Clark, G. C. & C. G. C. Dickson. The honey gland and tubercles of larvae of the 
Lycaenidae. Lepid. News 10:37—40. 

Clark, G. C. & C. G. C. Dickson. Proposed classification of South African Lycaenidae 
from the early stages. J. Entomol. Soc. S. Afr. 19:195-215. 


VOLUME 46, NUMBER 4 | 399 


18. 


Ls. 


20. 


21. 


22. 


23. 


24. 


25. 


26. 


27. 


28. 


29. 


30. 


ol 


1957 


Clark, G. C. & C. G. C. Dickson. The life-history of Lepidochrysops patricia (Trim.) 
(Lepidoptera: Lycaenidae). J. Entomol. Soc. S. Afr. 20:114--116. 

Clark, G. C. & C. G. C. Dickson. The life-history of Precis octavia (Cram.) (Lepi- 
doptera: Nymphalidae). J. Entomol. Soc. S. Afr. 20:257-259. 

Clark, G. C. & C. G. C. Dickson. On the life-history of Leptomyrina lara (L.) and 
the reclassification of the Natal form, gorgias (Stoll) (Lepidoptera: Lycaenidae). J. 
Entomol. Soc. S. Afr. 20:333-334. 

Clark, G. C. & C. G. C. Dickson. On the Association of Lepidochrysops trimeni 
(B.Bak) with ants, with reference to the pupa (Lepidoptera: Lycaenidae). J. Entomol. 
Soc. S. Afr. 20:463-464. 


1958 


Dickson, C. G. C. & T. W. Schofield. Observations on the migration of Belenois 
aurota (F.) (Lepidoptera: Pieridae). J. Entomol. Soc. S. Afr. 21:427-428. 


1959 


Notes on the early stages of Poecilmitis brooksi Riley (Lepidoptera: Lycaenidae). J. 
Entomol. Soc. S. Afr. 22:312-315. 


1960 


Clark, G. C. & C. G. C. Dickson. The life-histories of two species of Thestor (Lepi- 
doptera: Lycaenidae). J. Entomol. Soc. S. Afr. 23:278-281. 


1962 


Alternative food-plants of Charaxes pelias (Cram.) (Lepidoptera: Nymphalidae). J. 
Entomol. Soc. S. Afr. 25:332. 


1963 


Clarke, C. A., C. G. C. Dickson & P. M. Sheppard. Larval colour pattern in Papilio 
demodocus. Evolution 17:1380-187. 


1964 


Clark, G. C. & C. G. C. Dickson. The life-history of Libythea labdaca laius Trimen 
(Lepidoptera: Libytheidae). J. Entomol. Soc. S. Afr. 26:290-292. 
Obituary—Gowan G. G. Clark. Entomol. Rec. J. Var. 76:1738-174. 


1965 


Clark, G. C. & C. G. C. Dickson. The life-histories of two species of South African 
Eurema. J. Res. Lepid. 4:252-257. 

A note on Lachnocnema bibulus (Fab.) (Lepidoptera: Lycaenidae). Entomol. Rec. J. 
Var. 77:112. 

A new species of Poecilmitis Butler (Lepidoptera: Lycaenidae) from the Western 
Cape Province. J. Entomol. Soc. S. Afr. 27:160-162. 


330 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


32. 


33. 


34. 


30. 


36. 


37. 


38. 


39. 


40. 


4l. 


42. 


43. 


44. 


45. 


46. 


47. 


48. 


49. 


50. 


ol. 


52. 


53. 


Recently observed food-plants of some South African lepidopterous larvae. J. Entomol. 
Soc. S. Afr. 28:11—-20. 

The life history of Xanthopan morganii (Wl|k.) (Lepidoptera: Sphingidae). J. Entomol. 
Soc. S. Afr. 28:230-232. 

Observations on some Natal butterflies. Durban Mus. Novit. 8:19-23. 


1966 


A new subspecies of Pseudonympha trimenii Butler (Lepidoptera: Satyridae) from 
the Eastern Cape Province. Entomol. Rec. J. Var. 78:85-87. 

A new species of Poecilmitis Butler (Lepidoptera: Lycaenidae) from the Great Karroo. 
Entomol. Rec. J. Var. 78:109-110. 

A Cape Coastal Poecilmitis Butler (Lepidoptera: Lycaenidae) previously unknown. 
Entomol. Rec. J. Var. 78:181-182. 

A new species of Lepidochrysops Hedicke (Lepidoptera: Lycaenidae) from the West- 
ern Cape Province. Entomol. Rec. J. Var. 78:189-192. 

Revisional notes on the Cape lycaenid Poecilmitis brooksi Riley, with the description 
of a recently-recognised race of this species. Entomol. Rec. J. Var. 78:217-219. 

A recently-discovered Poecilmitis Butler (Lepidoptera: Lycaenidae) from the West- 
ern Cape. Entomol. Rec. J. Var. 78:241-243. 

A new subspecies of Pseudonympha trimenii Butler (Lepidoptera: Satyridae) from 
the Great Karroo. Entomol. Rec. J. Var. 78:273—275. 


1967 


Clark, G. C. & C. G. C. Dickson. The life-histories of South African Colotis erone, 
C. ione, C. vesta and Leptosia alcesta. J. Res. Lepid. 6:31—42. 

A new subspecies of the Cape lycaenid Poecilmitis felthami (Trimen) (Lepidoptera: 
Lycaenidae). Entomol. Rec. J. Var. 79:65-66. 

Two new subspecies of Pseudonympha southeyi (Pennington) from the Western 
Cape Province. Entomol. Rec. J. Var. 79:93-97. 

Observations on the Cape lycaenid Phasis malagrida (Wallengren), with the descrip- 
tion of a new race. Entomol. Rec. J. Var. 79:123-125. 

Notes on the Cape satyrid butterfly Torynesis mintha (Geyer) with a description of 
a new race. Entomol. Rec. J. Var. 79:160-162. 

Some observations on Poecilmitis turneri Riley (Lepidoptera: Lycaenidae). Entomol. 
Rec. J. Var. 79:209-211. 

Some comments on the Phasis wallengrenii (Trimen) group (Lepidoptera: Lycaen- 
idae) with a description of a new species. Entomol. Rec. J. Var. 79:267-270. 
Dickson, C. G. C. & J. C. McMaster. Some observations on Poecilmitis turneri Riley 
(Lepidoptera: Lycaenidae), with a description of a new race. Entomol. Rec. J. Var. 
79:209-211. 


1968 


A further new species of the Phasis wallengrenii (Trimen) complex (Lepidoptera: 
Lycaenidae). Entomol. Rec. J. Var. 80:89-92. 

Some observations on the Phasis thero (L.) group (Lepidoptera: Lycaenidae) with a 
description of a new species. Entomol. Rec. J. Var. 80:267-—270. 

Tite, G. E. & C. G. C. Dickson. The Aloeides thyra complex (Lepidoptera: Ly- 
caenidae). Bull. Brit. Mus. Nat. Hist. (Entomol.) 21:367-388. 


1969 


A new species of Lepidochrysops Hedicke (Lepidoptera: Lycaenidae) from the North 
Western Cape. Entomol. Rec. J. Var. 81:97-100. 


VOLUME 46, NUMBER 4 331 


4. 
55. 
56. 


57. 


58. 


59. 


60. 
6L. 
62. 
63. 


64. 


65. 
66. 


67. 
68. 


69. 


70. 


712. 
. The wealth of butterfly life in the Cape. U.C.T. 12:9-12. 
74. 


A new species of Tarsocera Butler (Lepidoptera: Satyridae) from the Cape Province. 
Entomol. Rec. J. Var. 81:153-155. 

Descriptions of the neallotypes of two Cape Poecilmitis Butler (Lepidoptera: Ly- 
caenidae). Entomol. Rec. J. Var. 81:185-187. 

An additional new member of the Phasis wallengrenii (Trimen) group (Lepidoptera: 
Lycaenidae). Entomol. Rec. J. Var. 81:285-286. 

On the status of Phasis sardonyx ab. peringueyi Aurivillius (Lepidoptera: Lycaeni- 
dae), and the selection of a neallotype female. Entomol. Rec. J. Var. 81:313-315. 


1970 


A new race of the Poecilmitis thysbe (L.) group (Lepidoptera: Lycaenidae) from the 
Roggeveld Mountains. Entomol. Rec. J. Var. 82:93-95. 

A new race of Poecilmitis pyroeis Trimen (Lepidoptera: Lycaenidae) from the Eastern 
Cape Province. Entomol. Rec. J. Var. 82:157-159. 


TAL 


Clark, G. C. & C. G. C. Dickson. Life histories of the South African lycaenid butterflies. 
Purnell & Sons, Cape Town. 

A further new member of the Poecilmitis thysbe (L.) group (Lepidoptera: Lycaen- 
idae) from the Roggeveld Mountains. Entomol. Rec. J. Var. 83:1-2. 

A further new species of Thestor Hubner (Lepidoptera: Lycaenidae) from the West- 
ern Cape. Entomol. Rec. J. Var. 83:155-159. 

Dickson, C. G. C. & R. D. Stephen. A new western cape species of Thestor Hubner 
(Lepidoptera: Lycaenidae). Entomol. Rec. J. Var. 83:131-1335. 

Dickson, C. G. C. & R. D. Stephen. A new race of Myrina silenus (F.) (Lepidoptera: 
Lycaenidae) from the North Western Cape. Entomol. Rec. J. Var. 83:255-259. 


1972 


What butterfly is that? Purnell & Sons, Cape Town. 
Observations on and a description of a race of Thestor basutus (Wallengren) (Lep- 
idoptera: Lycaenidae). Entomol. Rec. J. Var. 84:253-256. 


1973 


A new race of Castalius hintza (Trimen) (Lepidoptera: Lycaenidae). Entomol. Rec. 
J. Var. 85:137-139. 

A new species of Torynesis Butler (Lepidoptera: Satyridae) with observations on some 
related taxa. Entomol. Rec. J. Var. 85:284-288. 

Tite, G. E. & C. G. C. Dickson. The genus Aloeides and allied genera (Lepidoptera: 
Lycaenidae). Bull. Brit. Mus. Nat. Hist. (Entomol.) 29:225-280. 


1974 


Claassens, A. J. M. & C. G. C. Dickson. The early stages of Aloeides thyra (L.) (Lep. 
Lycaenidae) with notes on ant association, distribution and general ecology of the 
species. Entomol. Rec. J. Var. 86:253-258. 


. A new taxon of the Lepidochrysops ortygia (Trimen) group (Lepidoptera: Lycaen- 


idae) from the South Western Cape. Entomol. Rec. J. Var. 86:65-68. 
Obituary—K. M. Pennington (1897-1974). J. Entomol. Soc. S. Afr. 37:421—422. 


Dickson, C. G. C. & C. W. Wykeham. A recently discovered race of the Cape lycaenid 
Phasis thero (L.). Entomol. Rec. J. Var. 86:177-180. 


332 JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


1975 


75. Three new Poecilmitis Butler (Lepidoptera: Lycaenidae) from the South Western 
Cape. Entomol. Rec. J. Var. 87:228-231. 

76. Dickson, C. G. C. & R. D. Stephen. An additional new race of Argyrocupha malagrida 
(Wallengren) (Lepidoptera: Lycaenidae). Entomol. Rec. J. Var. 87:129-132. 


1976 


77. Six new Southern African butterflies. Entomol. Rec. J. Var. 88:273—280. 
78. Tite, G. E. & C. G. C. Dickson. Further notes on species of the genus Aloeides 
(Lepidoptera: Lycaenidae). Entomol. Rec. J. Var. 88:177-180. 


OMT, 


79. Claassens, A. J. M. & C. G. C. Dickson. A study of the myrmecophilous behaviour 
of the immature stages of Aloeides thyra (L.) (Lep.: Lycaenidae) with special ref- 
erence to the function of the retractile tubercles and with additional notes on the 
general biology of the species. Entomol. Rec. J. Var. 89:225-281. 

80. A new species of the Phasis thero (L.) group (Lepidoptera: Lycaenidae) from the 
Roggeveld Escarpment. Entomol. Rec. J. Var. 89:317-319. 

81. Tite, G. E. & C. G. C. Dickson. Further notes on the species of the genus Aloeides 
(Lepidoptera: Lycaenidae). No. 2. Entomol. Rec. J. Var. 89:209-212. 


1978 


82. Note on an apparently new species of Colotis Hubner (Lepidoptera: Pieridae) from 
South West Africa. Entomol. Rec. J. Var. 90:185. | 

83. Two new Poecilmitis Butler (Lepidoptera: Lycaenidae) from the Hantam’s Berg, 
Western Cape Province. Entomol. Rec. J. Var. 90:293-296. 

84. Dickson, C. G. C. & D. M. Kroon (eds.). Pennington’s butterflies a Southern Africa. 
Ad. Donker (Pty) Ltd, Johannesburg. 


1979 


85-87. Six further butterflies from Southern Africa. Entomol. Rec. J. Var. 91:85-91; 92: 
1-6, 38-44. 


1980 


88. Claassens, A. J. M. & C. G. C. Dickson. Butterflies of the Table Mountain Range. C. 
Struik, Cape Town. 

89. Dickson, C. G. C. & G. A. Henning. A new species of Poecilmitis Butler (Lepidoptera: 
Lycaenidae) from the Western Cape Province. Entomol. Rec. J. Var. 92:294-297. 

90. Dickson, C. G. C. & W. H. Henning. A new race of Argyrocupha malagrida (Wal- 
lengren) (Lepidoptera: Lycaenidae) from the Western Cape Province. Entomol. Rec. 
J. Var. 92:297-300. 


1981-1982 


91-93. Four new South African butterflies. Entomol. Rec. J. Var. 93:219-221; 94:32-35, 
41-44. 


VOLUME 46, NUMBER 4 333 


1982-1983 


94-95. Three new lycaenid butterflies from the South Western Cape Province. Entomol. 
Rec. J. Var. 94:222-224; 95:1-6. 


1985 


96. A new Lepidochrysops Hedicke (Lepidoptera: Lycaenidae) from the South Western 
Cape Province. Entomol. Rec. J. Var. 97:1-5. 


1986 


97. Claassens, A. J. M. & C. G. C. Dickson. Mylothris chloris agathina (Cramer) (Lep- 
idoptera: Pieridae), a species which has extended its range of distribution from the 
easterly part of South Africa to the extreme western Cape. Entomol. Rec. J. Var. 98:1. 

98. Claassens, A. J. M. & C. G. C. Dickson. Zophopetes dysmephila dysmephila (Trimen), 
a butterfly introduced into the extreme western Cape on palms. Entomol. Rec. J. Var. 
98:4-6. 


ISIS 


99. Descriptions of the penultimate and final instar larvae of Durbania saga Trimen 
(Lepidoptera: Lycaenidae). Metamorphosis 2(3):27-28. 


STEPHEN FRANK HENNING, 5 Alexandra Street, Florida 1709, South Africa. 


Journal of the Lepidopterists’ Society 
46(4), 1992, 334-335 


FEATURE PHOTOGRAPH 


ATTRACTING AND PHOTOGRAPHING AGRIAS AMYDON 
(NYMPHALIDAE) IN BRAZIL 


I have visited the tropics 19 times within the last 22 years; 15 of those trips have been 
to Central and South America where numerous species of Agrias occur. Yet I had neither 
collected nor photographed a single individual of Agrias until my most recent visit to 
Rondonia, Brazil, in 1992. 

As with many tropical nymphalids, Agrias are attracted to organic substances, such as 
fermenting fruit, decaying fish, feces, and urine. Agrias claudina and Agrias amydon 
philatelica previously have been photographed feeding upon fermenting fruit (by J. 
Nation and P. DeVries). There is anecdotal evidence that Agrias are attracted to large 
decaying animals (e.g., cows) as well. 

During three trips to Fazenda Rancho Grande near Cacaulandia, about 60 km south 
of Ariquemes, Rondonia, Brazil, I concentrated on photographing butterflies. To attract 
my subjects, I used fermenting fruit (banana and papaya), feces, feces mixed with urine, 
fresh urine, urine several days old, freshwater fish (usually 2-3 pounds) in various stages 
of decomposition, and rotting sardines. These baits attracted numerous nymphalids, in- 
cluding Caligo, Morpho, Adelpha, Doxocopa, Batesia, Napeocles, and Prepona, but no 
Agrias. 

During my last trip to Rondonia, five or six participants collected individuals of Agrias 
amydon. One was taken in flight, one was picked by hand from beneath a leaf, one was 
attracted to urine on the ground, and several were caught in butterfly traps baited with 
rotting fish. On 23 April 1992, I photographed a fresh male of Agrias amydon bellatrix 
(see Plate 1) on a wet dirt road through virgin forest about 15-20 km east of Fazenda 
Rancho Grande. The individual was attracted by urine and white toilet paper wetted 
with 2-3 week old liquefied fish. The butterfly approached the bait, flying slowly in circles. 
After landing on the ground it changed positions, sipping various fluids, most of the time 
with its wings held closed over the thorax. On several occasions it took off and returned 
a short time later. 

I photographed the individual using a Nikon FA camera fitted with a Micro-NIKKOR 
200 mm 1:4 lens. A Nikon SB-15 electronic flash attached to the hot shoe on the camera 
was used in conjunction with Ektachrome 200 ASA slide film. The Nikon FA camera has 
a TTL (through the lens) metering system that automatically admits the necessary amount 
of light from the Nikon SB-15 flash when in TTL mode. Exposures were taken at 1/250 
sec at aperture f-32. Specific determination of the butterfly was confirmed by Thomas 
Emmel. 


GEORGE O. KRIZEK, 2111 Bancroft Place, N.W., Washington, D.C. 20008. 


VOLUME 46, NUMBER 4 BOD 


Plate 1. Agrias amydon bellatrix. 


Journal of the Lepidopterists’ Society 
46(4), 1992, 336-343 


INDEX TO VOLUME 46 


(New names in Boldface) 


aberration, 238 
acis gossei, Strymon, 124 
Ackery, P. R., 273 
Acronicta 

fragilis, 221 

heitzmani, 220 
Acronictinae, 220 
Adams, James K., 160 
Aegiceras corniculatum, 174 
Aethiopana honorius, 210 
A Field Guide to Eastern Butterflies (book 

review), 307 
Africa, 54 
agamemnon, Graphium, 86 
Aglais urticae, 302 
Agraulis vanillae insularis, 120 
Agrias amydon, 334 
albaniana, Choristoneura, 269 
Aleuron, 73 
almana javana, Precis, 87 
ammon erembis, Cyclargus, 124 
Anak Krakatau, 83 
Anartia jatrophae jamaicensis, 124 
andraemon, Heraclides, 125 
Anetia jaegeri, 273 
angellus, Halotus, 184 
Anthene emolus, 88 
anomala, Hypolimnas, 88 
Antheraea mylitta, 106 
ants, 203 
aorta, 215 
apelles, Hypochrysops, 174 
aphractoia, Paratrytone, 21 
Appias drusilla poeyi, 124 
aratus, Jamides, 88 
A Revision of the Indo-Australian Genus 
Attacus (book review), 166, 167 

Archbold Biological Station, 138 
arctic butterfly, 110 
Arctiidae, 160 
arge, Pyrrhogyra neaerea, 77 
argentea, Paratrytone, 21 
Arhopala pseudocentaurus, 88 
aristolochiae, Pachliopta, 86 
Arizona, 159 
arthemis, Limenitis, 216 
Arthromastix 

lauralis, 75 

verecundalis (new combination), 75 
Ascia monuste eubotea, 124 
aspidos, Larinopoda, 208 
astarte astarte, Catacore, 77 
Asteraceae, 195 
atala, Eumaeus, 124 


atlites, Precis, 87 

attraction (to pheromones), 265 
augias, Telicota, 89 

aurorina, Cithaerias, 44 
Austin, George T., 240 
Australia, 24, 178, 195 
Avicennia marina, 174 

azin, Poanes, 17, 21 


badiana, Bebearia, 66 
badiana dealbata, Bebearia, 66 
badiana taveta, Bebearia, 66 
Baccharis halimifolia, 195 
Bailey, Audette J. A., 233 
balanotes, Oidaematophorus, 195 
barroni, Paratrytone, 21 
bataviana, Danaus chrysippus, 87 
batesi, Ochlodes, 21 
Bebearia 
badiana, 66 
badiana dealbata, 66 
badiana taveta, 66 
cocalia (=mardania, new syn.), 57 
continentalis (=katera, new syn.), 60 
guineensis, 63 
insularis Schultze (=katera, new syn.), 60 
mardania, 57 
mardania cocalioides, 59 
orientis, 64 : 
orientis insularis Kielland, 64 
paludicola (=guineensis, new syn.), 63 
senegalensis, 59 
senegalensis katera, 60 
theognis, 61 
behavior, 24, 77, 110 
benito (ex Poanes), 3 
bilinealis, Oligostigma (=Microdracon = 
Parapoynx), 76 
biogeography, 235, 275 
Biologia y Morfologia de las Orugas: Lep- 
idoptera, Vol. 6: Syssphingidae, 
Saturniidae, Endromidae, Lasio- 
campidae, Drepanidae, Thyatir- 
idae, Notodontidae, Hypsidae 
(book review), 246 
biological control, 195 
biology, 195, 203, 233 
bitje, Pentila, 206 
blanda, Eurema, 87 
blood flow, 215 
bochus, Jamides, 88 
boeticus, Lampides, 88 
bolina, Hypolimnas, 24 


VOLUME 46, NUMBER 4 


Bombyx mori, 106 

Borbo cinnara, 88 

Brazil, 77, 255 

Brower, Lincoln P., 97 

Buggy Books: A Guide to Juvenile and 
Popular Books on Insects and 
Their Relatives (book review), 
164 

Burns, John M., 1, 182 


Calhoun, John, 238 
californiella, Coenochroa, 43 
Callaghan, Curtis J., 203 
Calvert, William H., 97 
cambium miner, 70 
canadensis, Synanthedon, 265 
capta, Poanes, 19, 21 
captiosa, Disphragis, 159 
cardiac output, 215 
cardui, Vanessa, 235 
Caribbean biogeography, 119 
Carmenta 

flaschkai, 265 

verecunda, 265 
carnuta, Ptelina, 204 
cassius theonus, Leptotes, 124 
Catacore 

astarte astarte, 77 

kolyma connectens, 77 
Catocala 

judith, 216 

sappho, 161 

ulalume, 161 
Catochrysops strabo, 88 
Catopsilia pomona, 87 
Cayman Brac, 119 
Ceratoclasis verecundalis, 76 
Cayman Islands, 119 
celeno, Jamides, 88 
Ceriops tagal, 174 
charitonia ramsdeni, Heliconius, 122 
check list, 280 
checklist placement, 159 
Chihuahua, 128 
Chile, 39 
chilensis, Coenochroa, 39 
Choristoneura 

albaniana, 269 

lapponana, 269 
chrysippus bataviana, Danaus, 87 
cinnara, Borbo, 88 
Cithaerias 

aurorina, 44 

menander, 50 

pyritosa, 50 
Citrinophila 

erastus, 208 


337 


marginalis, 207 
clarus, Epargyreus, 216 
Clayton, Dale L., 110 
clearwing moth, 265 
cleobaea, Lycorea, 275 
cleophile, Danaus, 274 
cloud-response, 97 
clymena, Diaethria, 77 
cnejus, Euchrysops, 88 
cocalia, Bebearia (=mardania, new syn.), 57 
cocalioides, Bebearia mardania, 59 
Coenochroa 

californiella, 48 

chilensis, 39 

dentata, 43 

illibella, 42 
Coenodomus, 280 
Cola nitida, 203 
cola forest, 203 
Colombia, 44 
color patterns, 77 
Coloradia prchali, 128 
Colorado, 110 
coloration, 24 
common eggfly, 24 
community structure, 255 
connectens, Catacore kolyma, 77 
confucius, Potanthus, 88 
conjunctus, Pelopidas, 88 
conservation, 83 
Constantino, Luis M., 44 
continentalis, Bebearia (=katera, new 

syn.), 60 

core, Euploea, 30 
cornesi, Eresiomera, 207 
corniculatum, Aegiceras, 174 
couplet, 265 
Covell, Charles V., Jr., 220 
Crambidae, 159 
Crematogaster, 210 
cresphontes ab. “maxwelli’, Papilio, 238 
chiron, Marpesia, 77 
chromalis, Nothomastix, 75 
Cuba, 273 
Cuculliinae, 220 
Cyclargus ammon erembis, 124 
cydaria, Pentila picena, 206 
Cymaenes tripunctus, 226 


daira palmira, Eurema, 124 
Danainae, 97, 120, 273 
Danaus 
chrysippus bataviana, 87 
cleophile, 273 
genutia, 87 
melanippus, 88 
plexippus, 97, 120 


338 


Dang, P. T., 269 

danielana, Memphis echemus, 124 

Dash, M. C., 106 

Davis, Donald R., 240 

dealbata, Bebearia badiana, 66 

de Araujo, Aldo Mellener, 255 

decepta, Paratrytone, 21 

decostalis, Heleithia, 159 

defensive behavior, 203 

dentata, Coenochroa, 48 

Diaethria clymena, 77 

Dickson, Charles Gordon Campbell (obit- 
uary), 325 

Die Raupen der Schmetterlinge Europas 
(book review), 166 

dioica, Urtica, 303 

Discover Butterflies! An Activity Book for 
Families, Students, and Teach- 
ers (book review), 244 

dispersal, 235 

Disphragis captiosa, 159 

distribution, 128, 134, 138, 159, 226, 230, 
269, 273, 298, 301 

Distribution of Butterflies in New Mexico 
(Lepidoptera: Hesperioidea and 
Papilionioidea) (book review), 
241 

diversa, Tetrarhanis, 209 

diversity, 255, 298, 301 

domingo, Urbanus proteus, 125 

Dopler crystal system, 215 

dorsal vessel, 215 

Drummond, Boyce A., 164 

drusilla poeyi, Appias, 124 

Dryas iulia zoe, 119 

Dulcedo, 44 

dung mimicry, 70 

dunia, Epitola, 209 


early stages, 70, 161 

echemus danielana, Memphis, 124 

Ecuador, 73 

ecuadora, Haetera piera, 50 

eggs, 73, 2338 

Eichlin, Thomas D., 243, 265 

elathea, Eurema, 124 

electra, Hemileuca, cover illustration issue 
2 

Emmel, Thomas C., 244 

emolus, Anthene, 88 

Encyrtidae, 233 

endangered, 233 

Epargyreus clarus, 216 

epicurus, Hypochrysops, 174 

Epipaschia, 280 

Epipaschiinae, 280 

epiphyll feeding, 203 


JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Epitola dunia, 209 
erastus, Citrinophila, 208 
erembis, Cyclargus ammon, 124 
Eresiomera cornesi, 207 
erylus, Hypolyceana, 88 
eubotea, Ascia monuste, 124 
Euchrysops cnejus, 88 
Eulophidae, 233 
Eumaeus atala, 124 
Euploea 

core, 30 

modesta, 87 
Euptoieta hegesia, 122 
Eurasian, 302 
Eurema 

blanda, 87 

daira palmira, 124 

elathea, 124 

hecabe, 87 

lisa euterpe, 124 

nicippe, 124 

nise, 124 
euterpe, Eurema lisa, 124 
evarete zonalis, Junonia, 122 


Fabrician species, 54 

faunal development, 83 

faunal survey, 83, 138, 220 
ferruginea, Hirundinia, 77 
filenus, Hemiargus hanno, 124 
flaschkai, Carmenta, 265 
flight pattern, 110 

flight period, 173 

Florida, 138, 195, 238 

food plant, 27, 70, 138, 161, 174, 195 
foraging behavior, 77 

fragilis, Acronicta, 221 


Gall, Lawrence F., 242 
Garraway, Eric, 233 
generic group, 182 
genitalia (male and female), 1, 39, 42, 45, 
48, 54, 67, 128, 182, 220, 265 
genoveva, Junonia, 122 
genutia, Danaus, 87 
Glassberg, Jeffrey, 302 
glenni, Oidaematophorus, 197 
Gonzalez, Jose Valentin Herrera (obituary), 
248 
gooseberry, 70 
gossei, Strymon acis, 124 
Grand Cayman, 119 
grandis, Oidaematophorus, 197 
Graphium 
agamemnon, 86 
sarpedon, 86 
Grossulariaceae, 70 


VOLUME 46, NUMBER 4 


guineensis, Bebearia, 63 
guttatus, Parnara, 89 


habitat, 128 
habitat preference, 110 
Haetera 

macleannania, 44, 50 

piera piera, 50 

piera ecuadora, 50 
Haeterini, 44 
halimifolia, Baccharis, 195 
Halotus 

angellus, 184 

jonaveriorum, 186 

rica, 188 
Hancock, David L., 54 
hanno filenus, Hemiargus, 124 
Haseler, W. H., 195 
Hasora taminatus, 89 
heart function, 215 
hecabe, Eurema, 87 
hegesia, Euptoieta, 122 
heitmani, Acronicta, 220 
Heleithia decostalis, 159 
helena, Troides, 87 
Heliconius charitonia ramsdeni, 122 
Hemiargus hanno filenus, 124 
Hemileuca electra, cover illustration is- 

sue 2 

Hemileucinae, 128 
Henning, Stephen Frank, 325 
Heppner, John B., 301 
Heraclides andraemon, 125 
Herrera G., Jose Valentin (obituary), 248 
Hesperiidae, 1, 88, 125, 141, 182 
Hidalgo County, 160 
Highlands County, Florida, 138 
Ene. J. 173 
hilltopping, 110 
Hirundinia ferruginea, 77 
Hispaniola, 273 
hobomok, Poanes, 3, 21 
Holarctic, 269 
holotype, 1, 39, 220, 238, 265 
homerus, Papilio, 233 
honorius, Aethiopana, 210 
host plant, 138, 195 
hurtellum, Ribes, 70 
hylas, Neptis, 87 
hylax, Zizula, 88 
Hylephila phyleus, 126 
Hyles lineata, cover issue 4 
hypaesia, Pseudohaetera, 44, 50 
Hypochrysops 

apelles, 174 

epicurus, 174 
Hypolimnas 


339 


anomala, 88 

bolina, 24 

misippus, 35 
Hypolyceana erylus, 88 


Ideopsis juventa, 87 

illibella, Coenochroa, 42 

Indian tasar silkworm, 106 

Indonesia, 83 

inimica, Poanes, 20, 21 

insect diversity, 255 

insularis, Agraulis vanillae, 120 

insularis Schultze, Bebearia (=katera, new 
syn.), 60 

insularis Kielland, Bebearia orientis, 64 

intrasexual competition, 24 

introduction, 302 

island biogeography, 83, 119, 000 

iulia zoe, Dryas 119 


jaegeri, Anetia, 273 
Jamaica, 233, 2783 
jamaicensis, Anartia jatrophae, 124 
Jamides 
aratus, 88 
bochus, 88 
celeno, 88 
janardana, Mycalesis, 87 
Janzen, Daniel H., 167 
jatrophae jamaicensis, Anartia, 124 
javana, Precis almana, 87 
joannis, Lithohane, 220 
jonaveriorum, Halotus, 186 
judith, Catocala, 216 
Junonia 
evarete zonalis, 122 
genoveva, 122 
juventa, Ideopsis, 87 


katera, Bebearia senegalensis, 60 
kellicotti, Oidaematophorus, 197 
kershawi, Vanessa, 235 

kirbyi, Ornipholidotos, 207 

Klots, Alexander Barrett (obituary), 314 
klotsi, Nothomastix (new combination), 76 
kolyma connectens, Catacore, 77 

Krizek, George O., 334 


Lacinipolia 
rodora, 79 
vicina, 80 
lacteodactylus, Oidaematophorus, 197 
Lake Wales Ridge, 138 
Lampides boeticus, 88 
laothoe, Temenis, 77 
lapponana, 269 
Larinopoda aspidos, 208 


340 


larvae, 70, 161, 197 
Larvae of Owlet Moths (Noctuidae) (book 
review), 243 

larval behavior, 70, 203 
lauralis, Salbia, 76 
Lawton, Robert O., 97 
lectotype designations, 54 
leda, Melanitis, 87 
Lemaire, Claude, 128 
Leptotes cassius theonus, 124 
Leuschner, Ron, 79, 159 
libentina, Mimeresia, 207 
lichen moth, 160 
life history, 161, 197, 233 
Limenitis arthemis, 216 
lineata, Hyles, cover issue 4 
Liptena 

opaca, 208 

similis, 208 
Lipteninae, 203 
lisa euterpe, Eurema, 124 
Lista, 280 
Lithophane joannis, 220 
Lithosiinae, 160 
Locastra, 280 
lubricans, Polytremis, 88 
lupulina, Poanes, 20, 21 
Lycaenidae, 88, 124, 173, 203 
Lycomorphodes sordida, 160 
Lycorea cleobaea, 275 
lysizone, Zizina otis, 88 


Macalla, 280 
Mack, Callie, cover illustrations, issues 1, 2, 
3&4 

macleannania, Haetera, 50 
MacNeill, C. Don, 248 
macneilli, Poanes, 17, 21 
mangrove, 173 
man-made habitats, 255 
mardania, Bebearia, 57 
mardania cocalioides, Bebearia, 59 
marginalis, Citrinophila, 207 
marina, Avicennia, 174 
Marpesia 

chiron, 77 

norica, 77 
maritalis, Strymon, 124 
Martins, M., 77 
mate-locating behavior, 24 
mate-searching, 110 
Mather, Bryant, 159 
“maxwelli” (ab.), Papilio cresphontes, 238 
medus, Orsotriaena, 87 
melane, Poanes, 12, 21 
melanocholicus, Tyrannus, 77 
melanippus, Danaus, 88 


JOURNAL OF THE LEPIDOPTERISTS SOCIETY 


Melanitis leda, 87 

melinus, Strymon, cover issue 1 
memnon, Papilio, 86 

Memphis echemus danielana, 124 
menander, Cithaerias, 50 
Metzler, Eric H., 220 

Mexico, 79, 97, 128, 159 
microclimate, 97 

Microdracon, 76 

migration, 235 

Miletus symethus, 88 

Miller, Jacqueline Y., 73 

Miller, Lee D., 119 

Mimeresia libentina, 207 
mimicry, 160 

Minno, Marc C., 188 

Mishra, C. S. K., 106 

misippus, Hypolimnas, 35 
modesta, Euploea, 87 

monarch, 97 

monticola, Poanes, 19, 21 
monuste eubotea, Ascia, 124 
Moths of Australia (book review), 311, 318 
Munroe, Eugene, 75, 159 
Mycalesis janardana, 87 


national record, 79, 159 

Nayak, B. K., 106 

neaerea arge, Pyrrhogyra, 77 

Nearctic, 1 

nectar, 173 

nectar source, 138 

Neotropical, 1, 44, 73, 160, 182, 298, 301 

Neotropics, 39 

Neptis hylas, 87 

New, T. R., 83 

new records, 119, 159, 160, 302 

New York, 302 

nicippe, Eurema, 124 

Niconiades, 182 

Nigeria, 203 

nigeriana, Pentila, 204 

nise, Eurema, 124 

nitida, Cola, 203 

niveolimbus, Poanes, 19, 21 

Noctuidae, 79, 161, 220 

norica, Marpesia, 77 

Nosema, 106 

Nothomastix 
chromalis, 75 
klotsi (new comb.), 76 
obliquifascialis (new comb.), 76 
pronaxalis (new comb.), 76 
pyranthes (new comb.), 76 
sisyroptila (new comb.), 76 

Notodontidae, 159 


VOLUME 46, NUMBER 4 


Nymphalidae, 24, 44, 77, 87, 97, 110, 120, 
235, 273, 302 
Nymphulinae, 75 


obliquifascialis, Nothomastix (new com- 
bination), 76 

Ochlodes 

batesi (new combination), 21 

snowi (transferred to Paratrytone), 21 
Oeneis chryxus, 110 
Oidaematophorus 

balanotes, 195 

glenni, 197 

grandis, 197 

kellicotti, 197 

lacteodactylus, 197 
Old World, 280 
Oligostigma bilinealis, 76 
opaca, Liptena, 208 
Opisthedeicta, 76 
Opostegidae, 70 
Opostegoides scioterma, 70 
Oregon, 70 
Oriental Region, 298, 301 
orientis, Bebearia, 64 
orientis insularis, Bebearia, 64 
orithya, Precis, 88 
Ornipholidotos kirbyi, 207 
Orsotriaena medus, 87 
otis lysizone, Zizina, 88 
overwintering, 97 


Pachliopta aristolochiae, 86 

Palmer, W. A., 195 

palmira, Eurema daira, 124 

palatability, 77 

paludicola, Bebearia (=guineensis, new 

syn.), 68 

Panoquina sylvicola, 126 

Paradulcedo mimica, 44 

Papilio 
cresphontes ab. “maxwelli’, 238 
homerus, 233 
memnon, 86 

Papilionidae, 86, 125, 145, 233 

Parapoynx, 76 

parasitoids, 197, 201, 233 

Paratrytone, 6 
aphractoia, 21 
argentea, 21 (removed from Paratry- 

tone) 

barroni, 21 (removed from Paratrytone) 
batesi, 21 (transferred to Ochlodes) 
decepta, 21 
melane, 12, 21 (transferred to Poanes) 
monticola, 21 (transferred to Poanes) 
polyclea, 21 


341 


rhexenor, 21 
snowi, 21 (new combination) 
ulphila, 21 (transferred to Poanes) 
Pardomima, 75 
Parnara cf. guttatus, 89 
pathogen, 106 
pebrine, 106 
Peigler, Richard S., 167, 246, 313 
Pelopidas conjunctus, 88 
Pentila 
bitje, 206 
nigeriana, 204 
picena cydaria, 206 
Peru, 73 
Petr, Daniel, 110 
phaon, Phyciodes, 122 
phenology, 138 
Phoebis sennae, 124 
Phyciodes phaon, 122 
Phycitinae, 39 
phyleus, Hylephila, 126 
picena cydaria, Pentila, 206 
piera piera, Haetera, 50 
piera ecuadora, Haetera, 50 
Pierella, 44 
Pieridae, 87, 124 
Pinheiro, C. E. G., 77 
plexippus, Danaus, 97, 120 
Poanes, 1 
azin. kin 2 
capta, 19, 21 (new combination) 
hobomok, 14, 21 
inimica, 20, 21 
lupulina, 20, 21 
macneilli, 17, 21 
melane, 12, 21 
monticola, 19, 21 (new combination) 
niveolimbus, 19, 21 (new combination) 
psaumis, | 
taxiles, 14, 21 
ulphila, 19, 21 (new combination) 
zabulon, 14, 21 
Pococera complex, 280 
poeyi, Appias drusilla, 124 
polyclea, Paratrytone, 21 
pomona, Catopsilia, 87 
Polytremis lubricans, 88 
Potanthus confucius, 88 
Powell, Jerry A., 311 
prchali, Coloradia, 128 
Precis 
almana javana, 87 
atlites, 87 
orithya, 88 
predators, 77, 188 
pronaxalis, Nothomastix (new combina- 
tion), 76 


342 


proteus domingo, Urbanus, 125 

proteus santiago, Urbanus, 125 

Protoleuron rhodogaster, 73 

psaumis, Poanes, | 

pseudocentaurus, Arhopala, 88 

Pseudohaetera hypaesia, 44, 50 

Pterophoridae, 195 

Ptelina carnuta, 204 

Pyralidae, 39, 280 

pyranthes, Nothomastix (new combina- 
tion), 76 

Pyraustinae, 75, 159 

pyritosa, Cithaerias, 50 

Pyrrhogyra neaerea arge, 77 


ramsdeni, Heliconius charitonia, 122 
rearing, 160 

Ribes hurtellum, 70 

Rindge, Frederick H., 166 
Robbins, Robert K., 298 
rhexenor, Paratrytone, 21 
Rhizophora stylosa, 174 
rhodogaster, Protoleuron, 73 
rhombifolia, Sida, 24 

rica, Halotus, 188 

rodora, Lacinipolia, 79 

rolla (ex Poanes), 3 
Rosentiel, R. G., 70 

rothi, Telipna, 206 
Ruszcezyk, Alexandre, 255 
Rutowski, Ronald L., 24, 305 


Salbia lauralis, 76 

santiago, Urbanus proteus, 125 

sappho, Catocala, 161 

sarpedon, Graphium, 86 

Saturniidae, 106, 128 

Satyrinae, 44, 110 

scioterma, Opostegoides, 70 

seasonal variation, 106 

senegalensis, Bebearia, 59 

senegalensis katera, Bebearia, 60 

sennae, Phoebis, 124 

septentrionis, Tirumala, 87 

Sesiidae, 265 

Sesiinae, 265 

sex attractant, 000 

sexual selection, 24 

Shaffer, Jay C., 39 

Shields, Oakley, 235 

Sida rhombifolia, 24 

similis, Liptena, 208 

Simon ¢%& Schusters Guide to Butterflies 
and Moths (book review), 242 

sisyroptila, Nothomastix (new comb., new 
syn. = chromalis), 76 

Slotten, Jeffrey R., 161 


JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY 


Smith, Michael J., 128 
snowi, Paratrytone, 21 
Solis, M. Alma, 280 
Sonora, 128 
Sonoran Lepidoptera Survey, 128 
sordida, Lycomorphodes, 160 
Sphingidae, 73 
Spizella passerina, 70 
Stehr, Frederick W., 165 
Steinhauser, Stephen R., 119 
Stericta, 280 
stigma, 182 
Stolidoptera, 73 
strabo, Catochrysops, 88 
Strymon 
melinus, cover issue 1 
martialis, 124 
acis gossei, 124 
stylosa, Rhizophora, 174 
succession, 83 
sylvicola, Panoquina, 126 
symethus, Miletus, 88 
Synanthedon canadensis, 265 
systematics, 1, 39, 54, 73, 128, 182, 220 


tagal, Ceriops, 174 

tailori, Heraclides andraemon, 125 

taminatus, Hasora, 89 

tasar silkworm, 106 

taxiles, Poanes, 14, 21 

taxonomy, 1, 39, 54, 73, 128, 182, 196, 220 

Telfer, William H., 169 

Telicota augias, 89 

Telipna rothi, 206 

Temenis laothoe, 77 

territoriality, 24, 110 

Tetrarhanis diversa, 209 

Texas, 160, 195, 265 

The Common Names of North American 
Butterflies (book review), 310 

The Development and Evolution of But- 
terfly Wing Patterns (book re- 
view), 305 

The Nepticulidae and Opostegidae (Lep- 
idoptera) of North West Europe 
(book review), 240 

theognis, Bebearia, 61 

theonus, Leptotes cassius, 124 

thermal ecology, 97 

thermoregulation, 97 

Thornton, I. W. B., 83 

Tirumala septentrionis, 87 

Tortricidae, 269 

transcontinental, 269 

tripunctus, Cymaenes, 226 

Troides helena, 87 

Turner, Jon D., 215 


VOLUME 46, NUMBER 4 | 343 


Turner, T., 273 variation, 128 
type-localities, 18, 40, 54, 220 velocimeter, 215 
Tyrannidae, 77 Venedictoff, Nadia R., 73 
Tyrannus melanocholicus, 77 verecunda, Carmenta, 265 
verecundalis, Ceratoclasis, 76 
ulalume, Catocala, 161 vicariance, 273 
ulphila, Poanes, 19, 21 vicina, Lacinipolia, 80 
United States, 79, 159, 160, 220 vulcanism, 83 
urban butterflies, 255 
urban ecology, 255 Wagner, David L., 314 
urban Lepidoptera, 255 White, Raymond D., 310 
Urbanus Williams, Carroll Milton (obituary), 169 
proteus domingo, 125 wing venation, 45 
proteus santiago, 125 Winter, William D., 307 
Urtica dioica, 303 
urticae, Aglais, 302 zabulon, Poanes, 14, 21 
Zizina otis lysizone, 88 
Vanessa Zizula hylax, 88 
cardui, 235 zoe, Dryas iulia, 119 
kershawi, 235 zonalis, Junonica evarete, 122 
Vane-Wright R. I., 273 Zygaenidae, 160 


vanillae insularis, Agraulis, 120 


Date of Issue (Vol. 46, No. 4): 19 January 1993 


ety fin 


Oa 


EDITORIAL STAFF OF THE JOURNAL 


JOHN W. Brown, Editor BOYCE A. DRUMMOND, Retiring Editor 
Entomology Department Natural Perspectives 
San Diego Natural History Museum P.O. Box 9061 
P.O. Box 1890 Woodland Park, Colorado 80866 U.S.A. 


San Diego, California 92112 U.S.A. 


Associate Editors: 
M. DEANE Bowers (USA), BoYCcE A. DRUMMOND (USA), LAWRENCE F. GALL (USA), 
GERARDO LAMaAS (Peru), ROBERT C. LEDERHOUSE (USA), ROBERT K. ROBBINS (USA), 
CHRISTER WIKLUND (Sweden) 


NOTICE TO CONTRIBUTORS 


Contributions to the Journal may deal with any aspect of Lepidoptera study. Categories 
are Articles, Profiles, General Notes, Technical Comments, Book Reviews, Obituaries, 
Feature Photographs, and Cover Illustrations. Reviews should treat books published within 
the past two years. Obituaries must be authorized by the President of the Society. Re- 
quirements for Feature Photographs and Cover Illustrations are stated on page 111 in 
Volume 44(2). Journal submissions should be sent to the editor at the above address. 
‘Short manuscripts concerning new state records, current events, and notices should be 
sent to the News, Stephanie McKown, Editor, 650 Cotterell Drive, Boise, Idaho 83709 
U.S.A. Journal contributors should submit manuscripts in triplicate, typewritten, entirely 
double-spaced, with wide margins, on one side only of white, letter-sized paper. Prepare 
manuscripts according to the following instructions, and submit them flat, not folded. 

Abstract: An informative abstract should precede the text of Articles and Profiles. 

Key Words: Up to five key words or terms not in the title should accompany Articles, 
Profiles, General Notes, and Technical Comments. . 

Text: Contributors should write with precision, clarity, and economy, and should use 
the active voice and first person whenever appropriate. Titles should be explicit, descrip- 
tive, and as short as possible. The first mention of a plant or animal in the text should 
include the full scientific name with author, and family. Measurements should be given 
in metric units; times in terms of the 24-hour clock (0930 h, not 9:30 AM). Underline 
only where italics are intended. 

Literature Cited: References in the text of Articles, Profiles, General Notes, and 
Technical Comments should be given as Sheppard (1959) or (Sheppard 1959, 1961la, 
1961b) and listed alphabetically under the heading LITERATURE CITED, in the following 
format without underlining: 


SHEPPARD, P. M. 1959. Natural selection and heredity. 2nd ed. Hutchinson, London. 
209 pp. 

196la. Some contributions to population genetics resulting from the study of 

the Lepidoptera. Adv. Genet. 10:165-216. 


Illustrations: Only half of symmetrical objects such as adults with wings spread should 
be illustrated, unless whole illustration is crucial. Photographs and drawings should be 
mounted on stiff, white backing, arranged in the desired format, allowing (with particular 
regard to lettering) for reduction to fit a Journal page. Illustrations larger than letter- 
size are not acceptable and should be reduced photographically to that size or smaller. 
The author's name and figure numbers as cited in the text should be printed on the back 
of each illustration. Figures, both line drawings and photographs, should be numbered 
consecutively in Arabic numerals; “‘plate” should not be employed. Figure legends must 
be typewritten, double-spaced, on a separate sheet (not attached to illustrations), headed 
EXPLANATION OF FIGURES, with a separate paragraph devoted to each page of illustrations. 
Color illustrations are encouraged; contact editor for submission requirements and cost. 

Tables: Tables should be numbered consecutively in Arabic numerals. Headings for 
tables should not be capitalized. Tabular material must be typed on separate sheets, and 
placed following the main text, with the approximate desired position indicated in the 
text. Vertical lines as well as vertical writing should be avoided. 

Voucher specimens: When appropriate, manuscripts must name a public repository 
where specimens documenting identity of organisms can be found. Kinds of reports that 
require vouchering include life histories, host associations, immature morphology, and 
experimental enquiries. . 

Proofs: The edited manuscript and galley proofs will be mailed to the author for 
correction of printer's errors. Excessive author’s changes at this time will be charged to 
authors at the rate of $2 per line. A purchase order for reprints will accompany proofs. 

Page charges: For authors affiliated with institutions, page charges are $20 per Jour- 
nal page. For authors without institutional support, page charges are $10 per Journal 
page. Authors unable to pay page charges for any reason should apply to the editor at 
the time of submission for a reduced rate or free publication. Authors of Book Reviews 
and Obituaries are exempt from page charges. 

Correspondence: Address all matters relating to the Journal to the editor. 


PRINTED BY THE ALLEN PRESS, INC., LAWRENCE, KANSAS 66044 U.S.A. 


CONTENTS 


GRADIENTS IN BUTTERFLY SPECIES DIVERSITY IN AN URBAN AREA 
IN BraziL. Alexandre Ruszczyk and Aldo Mellender de 


A NEW TEXAS CLEARWING MOTH (SESIIDAE: SESIINAE). Thomas 
D. Eichlin | 


HOLARCTIC DISTRIBUTION OF CHORISTONEURA ALBANIANA 
(WALKER), WITH NEW SYNONYMY (TORTRICIDAE). P. T. 
Dang oe ee Sa 


ANETIA JAEGERI, DANAUS CLEOPHILE AND LYCOREA CLEOBAEA 
FROM JAMAICA (NYMPHALIDAE: DANAINAE). R. I. Vane- 
Wright, P:R: Ackery and:T. Turner... 


CHECK LIST OF THE OLD WORLD EPIPASCHIINAE AND THE RE- 
LATED NEW WORLD GENERA MACALLA AND EPIPASCHIA 
(PYRALIDAE);: M. Alina Solis’. se 


TECHNICAL COMMENTS 
Comparison of butterfly diversity in the Neotropical and Oriental regions. 
Robert: K:Robbins i202 ee 
Response to “Comparison of butterfly diversity in the Neotropical and Oriental 
regions’ by Robert K. Robbins. John B. Hegre ro... ccccceeeeceecceee eter 
GENERAL NOTE 
Aglais urticae (Nymphalidae): A nascent population in North America. Jeffrey 
Glassberg 200k 
Book REVIEWS 


The Development and Evolution of Butterfly Wing Patterns. Ronald L. Ru- 

towskis es ee a ee 
_A Field Guide to Eastern Butterflies. Williaa, D. Witrte re .ecceseseccecsssseccsessneeenssicenee 
The Common Names of North American Butterflies. Raymond R. White ...... 
Moths of: Australia: J.A: Powell 2.00) ee 


Moths of ‘Australia, Richard S. ‘Peigler 2200 0 


OBITUARIES 
Alexander Barrett Klots. David L. Wagner 0 
Charles Gordon Campbell Dickson. Stephen Frank Hemanineg --ccccceeoccceeececeeee 


FEATURE PHOTOGRAPH 


Attracting and photographing Agrias amydon (Nymphalidae) in Brazil. George 
OF Rrizeke Re as GS EU 


INDEX TO VOLUME 46... ; 93 om a or l ‘| erate 


98/93 98115 


THIS PUBLICATION IS PRINTED ON ACID-FREE PAPER. 


255 


265 


269 


302 


SM 


LIBRARIES 


7 


WS S3LuVUuG 


« 


INSTITUTION NOILALILSNI NVINOSHLI 


NOILNLILSNI 


INSTITUTION NOILNLILSNI 


INSTITUTION 


NVINOSHLINS S3IYWYSIT LIBRARIES SMITHSONIAN 


INSTITUTION NOILNLILSNI NVINOSHLINS S3INVYGIT_ LIBRARIES S 


= Ntowy 3b = “SF ae 
= oe z 77) XS z 
N 


LIBRARIES SMITHSONIAN INSTITUTION NOILALILSNI 


NOILNLILSNI 


LIBRARIES SMITHSONIAN_INSTITUTION 


saluvagiy 


ce 2 a a 
a pe ac = 
< Ae < a 
= = = _ 
= 2 ie 3 
INSTITUTION NOILMLILSNI NVINOSHLINS SSZIYVUGIT LIBRARIES § 
f ; = r = 
= . ) = o 
= ke : 
= r= fa a 
m ” m g 
TR ele . & w = 
LIBRARIES SMITHSONIAN NOILALILSNI_N 
eit = a 22) = 
Qs § = = = 
WC 2 | : 2 
» 20 = Z S 
NOILNLILSNI NVINOSHLINS S3INVUGIT LIBRARIES 
Ss is o = | o- 
Rad uj 
(¢p) uum wn ons 
PS faa =u  .. 
ora <x an x % 
S a S a 
3 = r) ee 
re EAN : | a 
LIBRARI ES_ SMITHSONIAN INSTITUTION — oN 
° Yt, oD ° o 
= » = P) 
e <> = > 
= hi = = 
NOLLNLILSNI_NVINOSHLINS S31uvagiT_ LIBRARIES, S 
5 < ~ = < s 
= — ua ae = 
ff O aa oO iS 
72 rs) (2 SAW S 
= 2 = WY é 
= 2 ie 


NVINOSHLIWS 


LIBRARIES SMITHSONIAN INSTITUTION NOILN LSNI N 


” = ” z 

tJ ig lJ wo 

ce Yin, 4 ce a 

< Die < ma 

} ae fer & a 4 

eat 5 = 3 

= z a z 
S3SIYVuUSIT LIBRARIES S§S 

z & = 

ie S =_ vo) 

ow = oie rs 
Be S a = 

Se fk > kK 3 
a) = a mg 

rm wn m e 

a iO ee Mint = 
LIBRARIES. SMITHSONIAN INSTITUTION. NOILNLILSNI_ N 
3G 3 (2) a ww. (¢p) =a 
Ms = m™ © @. = < 
VW le ie Ne ae B 
\. 2 EN” 2? = 
ee = > = 

za Vv) za w 


SMITHSONIAN 


Li 


NOILALILSNI_ NVINOS 


« 


S3IYVUGIT LIBRARIES SMITHSONIAN. INSTITUTION 


Yin, 


NY 
SM 
NV 
SM 
NY 


4LIWS 


LIBRARIES SM 


NOILNLILSNI 


NOILNLILSN 
NOILALILSNI 


INIAN INSTITUTION NOILNLILSNI NVINOSHLINS S3IYVYSIT LIBRARIES SMITH 


udIT_ LIBRARIES 


“a, 


S$ saiuvugit 


INSTITUTION 
ae 
SS 


INSTITUTION 
INSTITUTION 


IWS SAIYVUaIT LIBRARIES SMITHSONIAN NOILALILSNI NVINOS 


NVINOSHLINS S3SIYVYUSIT LIBRARIES 


NVINOSHLINS S31dadVv 


SMITHSONIAN 
SMITHSONIAN 


NVINOSHLIW 


' IAN INSTITUTION NOILNLILSNI NVINOSHLINS S3IyYVvYaIT LIBRARIES SMITHS 


LIBRARIES SMITHSONIAN 


eS a So % v 
Ly” - o 4 ASS ~ we. of 
Pc < 4 ASS A <3 
' = feed Cc \, eas oc Yih 
: = . za £8 
INS SSIYVYSIT LIBRARIES SMITHSONIAN _ INSTITUTION NOILNLILSNI_NVINOS 
2 | - = ie = ps) oe 
oe 9 = 2 = a 
Dy > pa | i. p= | > XS 
SAK! a > fe % > ca \. as 
, 2 - ,. = F Bo 
1] am wm * 2) m Y 
= o < o z ” : 
IAN INSTITUTION NOILNLILSNI NVINOSHLINS S3I1uvugi7_LIBRARIES SMITH: 
eS w“” Zz wn” ; ees ” 
ae = e yy < = < = 
ON = Wy, * = = = 
2 AY Z VEE ip f z 2 B 
bo 2.7" § Z. = Z 
= woe >" = > = > 
77) a Zi 77) z 7) z2 


INSTITUTION NOILONLILSNI_ NVINO 


nN 
. 


N 
> 


SaIUVYSIT LIBRARIES 


. 


NOILNLILSNI 
LIBRARIES 
NOILALILSNI 


INSTITUTION NOILNLILSNI NVINOSHLINS S31YVUuaIT 


NIAN LIBRARIES SMITH 


A Sof 
Z 


S3IMUVUGIT LIBRARIES 
INSTITUTION NOILNLILSNI 


INSTITUTION 
INSTITUTION 


, 4 y 


INS S3INVYSIT LIBRARIES NOILALILSNI_ NVINO 


SMITHSONIAN INSTITUTION 
<< : 


NVINOSHLINS S31uvugit 
NVINOSHLINS S3IY¥VUdIT LIBRARIES 


NVINOSHLIWS 
KE 
SMITHSONIAN 


SMITHSONIAN 


. 
— a... 2. be. Fe he oe ea ee a ae ae, ie ee Oh.’ & a Ole PY i Wane Ee eee pee he SP ee ea ee Ee 


as ee eae es 3 9088 00908 8048 


fore @f