(navigation image)
Home American Libraries | Canadian Libraries | Universal Library | Community Texts | Project Gutenberg | Children's Library | Biodiversity Heritage Library | Additional Collections
Search: Advanced Search
Anonymous User (login or join us)
Upload
See other formats

Full text of "Mathematical Sciences, Vol -105"

Proceedings of the 
Indian Academy of Sciences 

(Mathematical Sciences) 

Editor 

S G Dani 
Tata Institute of Fundamental Research, Bombay 

Editorial Board 

S S Abhyankar, Purdue University, West Lafayette, USA 

Gopal Prasad, University of Michigan, Ann Arbor, USA 

K R Parthasarathy, Indian Statistical Institute, New Delhi 

Phoolan Prasad, Indian Institute of Science, Bangalore 

M S Raghunathan, Tata Institute of Fundamental Research, Bombay 

S Ramanan, Tata Institute of Fundamental Research, Bombay 

C S Seshadri, SPIC Science Foundation, Madras 

V S Varadarajan, University of California, Los Angeles, USA 

S R S Varadhan, Courant Institute of Mathematical Sciences, New York, USA 

K S Yajnik, National Aeronautical Laboratory, Bangalore 

Editor of Pubiications of the Academy 

V.K. Gaur 

C-MMACS, NAL, Bangalore 



Subscription Rates 

(Effective from 1989) 

AH countries except India 1 year 3 years 5 years 

(Price includes AIR MAIL charges) US$75 $200 $300 

India 1 yea r 

Rs. 75 

Annual subscriptions are available for Individuals for India and abroad at the concessional 
rate of Rs. 25/- and $20/-respectively. 

Ali correspondence regarding subscription should be addressed to The Circulation 
Department of the Academy. 




Editorial Office: 

Indian Academy of Sciences, C V Raman Avenue, Telephone: 3342546 

P B No. 8005, Bangalore 560080, India Telex: 0845-2 178 AC AD IN 

Telefax: 91-80-3346094 

1995 by the Indian Academy of Sciences. All rights reserved.' 

The "Notes on the preparation of papers" are printed in the last issue of every volume. 




Proceedings of the Indian Academy of Sciences 
Mathematical Sciences 



Volume 105 
1995 



Published by the Indian Academy of Sciences 
Bangalore 560 080 



Proceedings of the 

Indian Academy of Sciences 

(Mathematical Sciences) 

Editor 

S G Dani 
Tata Institute of Fundamental Research, Bombay 

Editorial Board 

S S Abhyankar, Purdue University, West Lafayette, USA 

Gopal P*rasad, University of Michigan, Ann Arbor, USA 

K R Parthasarathy, Indian Statistical Institute, New Delhi 

Phoolan Prasad, Indian Institute of Science, Bangalore 

M S Raghunathan, Tata Institute of Fundamental Research, Bombay 

S Ramanan, Tata Institute of Fundamental Research, Bombay 

C S Seshadri, SPIC Science Foundation, Madras 

V S Varadarajan, University of California, Los Angeles, USA 

S R S Varadhan, Courant Institute of Mathematical Sciences, New York, USA 

K S Yajnik, C-Af MACS, NAL, Bangalore 

Editor of Publications of the Academy 

V K Gaur 
C-MMACS, NAL, Bangalore 

Subscription Rates - 1996 

All countries except India $100 

I Price includes AIR MAIL charges) 

India Rs 150 

Annual subscriptions are available for Individuals for India and abroad at the concessional 

rates of Rs. 75 - and $30 respectively. 

All correspondence regarding subscription should be addressed to The Circulation Depart- 
ment of the Academy. 

Editorial Office: 

Indian Academy of Sciences, C V Raman Avenue, Telephone: 334 2546 

P B No. &005, Bangalore 560080, India Telex: 0845-2178 ACAD IN 

Telefax: 9 1-80-334 6094 

i; 1995 by the Indian Academy of Sciences. All rights reserved. 

The "Notes on the preparation of papers" are printed in the last issue of every volume. 



Proceedings of the Indian Academy of Sciences 

Mathematical Sciences 
Volume 105, 1995 

VOLUME CONTENTS 
Number 1, February 1995 



The structure of generic subintegrality ......... Les Reid, Leslie G Roberts and 

Balwant Singh 1 

Flat connections, geometric invariants and energy of harmonic functions on 
compact Riemann surfaces ........................................... K Gurupmsad 23 

Fibred Frobenius theorem .............. Pedro M Gadea and J Munoz Masque 3 1 

On infinitesimal /z-conformal motions of Finsler metric ................. , ......... 

....................................... H G Nagaraja, C S Bagewadi and H Izumi 33 

A bibasic hypergeometric transformation associated with combinatorial 
identities of the Rogers-Ramanujan type .................. . ........... U B Singh 41 

Some theorems on the general summability methods ........... W T Sulaiman 53 

Symmetrizing a Hessenberg matrix: Designs for VLSI parallel processor 
arrays ...................................... ............... F R K Kumar and S K Sen 59 



Control of interconnected nonlinear delay differential equations in 

.................................................................... ....... E N Chukwu 73 

A note on integrable solutions of Hammerstein integral equations ............ 

.............................................. ..... K Balachandran and S Ilamaran 99 

On over-reflection of acoustic-gravity waves incident upon a magnetic shear 

layer in a compressible fluid ........................................ P Kandaswamy 105 



Number 2, May 1995 



Badly approximate p-adic integers A G Abercrombie 123 

Uncertainty principles on certain Lie groups 

A Sitaram, M Sundari and S Thangavelu 135 

On subsemigroups of semisimple Lie groups 

D Kelly-Lyth and M McCrudden 153 

Induced representation and Frobenius reciprocity for compact quantum 
groups Arupkumar Pal 157 

Differential subordination and Bazilevic functions S Ponnusamy 169 



ii Volume contents 

Convolution integral equations involving a general class of polynomials and 

the multivariable //-function 

K C Gupta, Rashmi Jain and Paw an Agrawal 1 87 

On L 1 -convergence of modified complex trigonometric sums 

Satvinder Singh Bhatia and Babu Ram 193 

Absolute sumrnability of infinite series 

C Orhan and M A Sarigol 201 

Solution of a system of nonstrictly hyperbolic conservation laws 

K T Joseph and G D Veerappa Gowda 207 

Oscillation in odd-order neutral delay differential equations 

Pitambar Das 219 

Surface waves due to blasts on and above inviscid liquids of finite depth 

C RMondal 227 

Generation and propagation of SH-type waves due to stress discontinuity in 

a linear viscoelastic layered medium 

P C Pal and Lalan Kumar 241 

A proof of Howard's conjecture in homogeneous parallel shear flows - II: 

Limitations of Fjortoft's necessary instability criterion 

Mihir B Banerjee, R G Shandil and Vinay Kanwar 25 1 



Number 3, August 1995 

Lifting orthogonal representations to spin groups and local root numbers 

Dipendra Prasad and Dinakar Ramakrishnan 259 

Irrationality of linear combinations of eigenvectors 

Anthony Manning 269 

On the zeros of $ - a (on the zeros of a class of a generalized Dirichlet 
series-XVII) K Ramachandra 273 

A note on the growth of topological Sidon sets K Gowri Navada 28 1 

Characterization of polynomials and divided difference 

P L Kannappan and P K Sahoo 287 

A theorem concerning a product of a general class of polynomials and the 

H-function of several complex variables 

VB L Chaurasia and Rajendra Pal Sharma 291 

Certain bilateral generating relations for generalized hypergeometric fun- 
ctions Maya Lahiri and Bavanari Satyanarayana 297 

A localization theorem for Laguerre expansions P K Rathnakumar 303 

Degree of approximation of functions in the Holder metric by (e, c) means 

G Das, Tulika Ghosh and B K Ray 315 



Volume contents iii 

The algebra A p ((0, oo)) and its multipliers 

Ajit Iqbal Singh and H L Vasudeva 329 

Reflection of P-waves in a prestressed dissipative layered crust 

Sujit Bose and Dipasree Dutta 341 

Computer extended series solution to viscous flow between rotating discs 

.- N M Bujurke, N P Pai and P K Achar 353 

Number 4, November 1995 



The Hodge conjecture for certain moduli varieties V Balaji 371 

Equivariant cobordism of Grassmann and flag manifolds 

Goutam Mukherjee 381 

Local behaviour of the first derivative of a deficient cubic spline interpolator 
Surendra Singh Rana 393 

On the partial sums, Cesaro and de la Valee Poussin means of convex and 
starlike functions of order 1/2 Ram Singh and Sukhjit Singh 399 

Uniqueness of the uniform norm and adjoining identity in Banach algebras 

S J Bhatt and H V Dedania 405 

Weakly prime sets for function spaces 

H S Mehta, R D Mehta and B B Mishra 411 

Oscillation of higher order delay differential equations 

P Das and N Misra 417 

Nontrivial solution of a quasilinear elliptic equation with critical growth 

in U" Ratikanta Panda 425 

An axisymmetric steady-state thermoelastic problem of an external circular 

crack in an isotropic thick plate 

Rina Bhowmick and Bikash Ranjan Das 445 

Some characterization theorems in rotatory magneto thermohaline convec- 
tion Joginder Singh Dhiman 46 1 

Subject Index.... 471 

Author Index 476 



Proc. Indian Acad. Sci. (Math. Sri.), Vol. 105, No. 1, February 1995, pp. 1-22. 
Printed in India. 



The structure of generic subintegrality 



LES REID, LESLIE G ROBERTS* and BALWANT SINGH* 

Department of Mathematics, Southwest Missouri State University, Springfield, MO 65804, 

USA 

* Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada, 

K7L 3N6 

f School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, 

Bombay 400005, India 

MS received 21 January 1994 

Abstract. In order to give an elementwise characterization of a subintegral extension of 
Q-algebras, a family of generic Q-algebras was introduced in [3]. This family is parametrized 
by two integral parameters p ^ 0, N ^ 1, the member corresponding to p, N being the 
subalgebra R = Q [ { y n \ n ^ N } ] of the polynomial algebra Q[x l9 ...,x pt z]mp + l variables, 



Jx.z""'. This is graded by weight (z) = 1, weight (x ) = i, and it is 

shown in [2] to be finitely generated. So these algebras provide examples of geometric 
objects. In this paper we study the structure of these algebras. It is shown first that the ideal 
of relations among all the y^s is generated by quadratic relations. This is used to determine 
an explicit monomial basis for each homogeneous co'mponent of JR, thereby obtaining an 
expression for the Poincare series of R. It is then proved that R has Krull dimension p + 1 
and embedding dimension N + 2p, and that in a presentation of R as a graded quotient of the 
polynomial algebra in N + 2p variables the ideal of relations is generated minimally by 

1 elements. Such a minimal presentation is found explicitly. As corollaries, it is shown 

that R is always Cohen-Macaulay and that it is Gorenstein if and only if it is a complete 
intersection if and only if N + p ^ 2. It is also shown that R is Hilbertian in the sense that 
for every n ^ the value of its Hilbert function at n coincides with the value of the Hilbert 
polynomial corresponding to the congruence class of n. 

Keywords. Subintegral extensions; subrings of polynomial rings. 



Introduction 

Let A B be an extension of commutative rings containing the rational numbers Q. 
In [3] an element beB is defined to be subintegral over A if there exist integers p > 0, 

N ^ 1 and c l9 . . . , c p eB such that g n := b n -f f= l ( " )c f b w ~ eA for all integers n ^ N. 

With this definition the extension A B is subintegral in the sense of Swan [7] if 
and only if every element of B is subintegral over A [3, 4]. 

In [3] the tuple (0, p, N; 1, c l9 . . . , c p ) with the above properties was called a system 
of subintegrality for b over A. There was an extra parameter 5 which we can take to 
be in the present discussion, and the 1 represents c . In [3] we assumed that 

1 



2 L Reid et al 

N ^ s + p. Here (as in [4]) we adopt the conventions that for any element b in a ring, 

b = 1 and ( n }b n ~ l : = if i > n. Then it suffices to assume that JV > 1. By [3, proof 

W 

of (4.2) <iv)=>(i)] (note also [4, (1.1)]) if b has a system of subintegrality for some 
N ^ 1, then b has a system of subintegrality with N = 1. Systems with N > 1 are still 
of interest, however, since freedom in the choice of N may result in a simpler system 
of subintegrality. 

Let x j,..., Xp, z be independent indeterminates over Q, and let x = 1. For n ^ let 



and let R:=QlVn\*>N]S:=Qlx l ,...jc 9 z]. Then z is 

subintegral over R (N) with system of subintegrality (0, p, AT; 1, x l9 . . . , x p ). Furthermore 
this setup is universal for subintegral elements together with their systems of 
subintegrality, in the sense that given any extension of commutative Q-algebras A B 
with beB having a system of subintegrality (0,p,N; I,c l9 ...,c p ), the homomorphism 
(p:S->B given by <p(x f ) = c { . and <p(z) = b satisfies (p(y^ = g n and cp(R (N) )^A. Such 
universal extensions played a crucial role in [3]. 

The rings R (N} have an interesting algebraic structure, which we discuss in the 
present paper. First of all R (N} and S are graded by weight (x f ) = f, weight (z) = 1, 
which imply that weight (y n ) = n. In 1 we find relations (1.2) of degree two (but not 
necessarily homogeneous) among the y n9 where degree means deg(y n ) = 1 for all n ^ 1, 
and is to be distinguished from weight. We show in (2.2) that these quadratic relations 
generate the ideal of all relations. These quadratic relations include those used in [2] 
to prove that R (N] is a Q-algebra of finite type, although in [2] we did not find a 
complete set of relations. In (2.1) we use the quadratic relations to obtain an explicit 
monomial basis for R ( "\ the weight k part of R (N \ from which we obtain in (2.8) the 
Poincare series of R (N} for arbitrary p and N (generalizing both [4, (4.4)], which 
handles the case N = 1, and [4, (4.7)], which is the case p = 1, N arbitrary). 

In 3 we use the quadratic relations to eliminate all but a finite number of the y n , 
obtaining thereby our main result (3.2) which gives a minimal presentation of K (N) 
as a graded Q-algebra of finite type. Of course, after eliminating these variables, the 
relations among the remaining variables are no longer all quadratic. From (3.2) we 
derive several corollaries ((3.3)-(3.7)) on the nature of R (N) : (3.5) says that R (N) is 
always Cohen-Macaulay, which was a surprise to us; (3.6) says that R (N) is Gorenstein 
if and only if it is a complete intersection if and only if N + p ^ 2. 

In 4 we give an alternative proof of the linear independence of our basis for Rf } . 
This method is more complicated but also more precise than the argument of 2. 

We conclude the paper by studying in 5 the Hilbert function of R (N \ We find the 
minimal number d of Hilbert polynomials needed to express the Hilbert function of 
R (N \ and show that if p ^ 2 then R (N] is Hilbertian, meaning that the value of its 
Hilbert function at n coincides with the value of the Hilbert polynomial corresponding 
to the congruence class of n modulo d, for every n ^ (rather than just for n 0). 

The non-negative integers are denoted by Z + , and \_a\ is the integral part of the 
real number a (i.e. the largest integer ^ a). 



1. The quadratic relations 

Let R (N} S be the universal extension as defined above. Let T be an indeterminate 



The structure of generic subintegrality 



over S, and let F(T)= H-f =1 ( p z~' (so that y n = z n F(n)). Then we have the 
following (generalizing [2, (1.2)]). 

Theorem 1.1. Let k be an integer > 2p, and let < d l < d 2 < < d p + r ^ fc/2 be any 

p + 1 distinct integers. Let d be any integer < d ^ /c/2, distinct from the d t . Then 

P+I 

jdJk-d^ E fl iW*-d O- 2 ) 

/=i 

/or some rational numbers a t . 

Proof. Note that we have d t < k - d t (1 ^ i ^ p), d p + j ^ k - d p+ 19 and the p + 1 pairs 
(dfrk di) are distinct (as unordered pairs). First consider the case d p + 1 <k d p + l 
so that each pair (d f , fc~d ) consists of two distinct integers. Let / = {d l9 ...,d p+1 , 
k d p+ !,..., /c di}. For p + 2<i<2p-f-2 define d i = k d 2p + 3 ^ i , so that / = 
Wi<i^2/+2- The set / contains 2p + 2 distinct integers. For 1 ^ i ^ 2p + 2 let TT,- be 
the interpolating polynomial of degree 2p+ 1, which is 1 at d f and at the remaining 
elements of /. Let G(x) = ^ J f^ 2 n i (x)F(d i )F(k-d i ) and H(x) = F(x)F(k-x). Then 
G(c) = H(c) for all ce/. The polynomial G(x) is of degree < 2p+ 1 in x, whereas H(x) 
is of degree 2p in x. These two polynomials (with coefficients in the integral domain 
Q [x !,..., x^z" 1 ]) agree at 2p + 2 values of x, hence are equal. Setting x==d, 
a { = Ki(d) + K 2 p+i-i(d) (K i < p+ 1) and multiplying by z k yields (1.2). . 

Now consider the case d p+l =k d p+l . Let / = {d l ,...,d p+1 ,k d p ,... 9 k d 1 }. 
For p + 2<f<2p+l define d i ^k-d 2p + 2 , h so that / = {d^^^zp + i- The set ^ 
contains 2p 4- 1 distinct integers. For 1 ^ i < 2p 4- 1 let n L be the interpolating 
polynomial of degree 2p, which is 1 at d t and at the remaining elements of /. Let 
G(x) = Hf^ 1 n i (x)F(d i )F(k - d^) and H(x) = F(x)F(k-x). Then G(c) = H(c) for all eel. 
The polynomials G(x) and H(x) are both of degree < 2p in x. These two polynomials 
(with coefficients in the integral domain Q[x 1 ,...,x p ,z~ 1 ]) agree at 2p+ 1 values of 
x, hence are equal. Setting x = d, a = n t (d) + n 2p+2 -i{ d ) C- < l ' < P) a p+i = n P + i( d \ 
and multiplying by z k yields (1.2). 1 

COROLLARY 1.3. 

(a) Ifk^Ip then the monomials of degree <2 and weight k in the y t span a vector 
space V kt2 of dimension p-f-1, and any set o/p-f 1 distinct monomials of degree ^2 is 
a basis for this vector space. 

(b) If k^2p+l then any set of distinct monomials of degree ^ 2 and weight k is 
linearly independent. 

(c) In any relation (1.2) all the a t are uniquely determined and nonzero. 

Proof. The monomials y h 7i7 k _ 1? . . . , y d y k - d (d = min(|_fc/2J, p) are linearly independent 
by [4, proof of (4.1)] from which (b) follows. It also follows that if fc ^ 2p then V kt2 
is of dimension ^p+1, and by "(1.2) any p+1 elements span. Thus (for k^2p) 
dim V k ^ 2 = p + 1, and (a) and (c) follow. (Note that (c) is vacuous unless k^2p + 2.) 



Examples 1.4. Here are a few examples of the quadratic relations (obtained using 
a computer program that we wrote): 



4 L Reid et al 

forp=l: 

(1.4.1) 74 = 47^3- 37^ - 

(1.4.2) 7 5 = 37 1 74~27 2 7 3 

(1.4.3) 7i7 5 = 47 2 7 4 -37* 

and for p = 2: 

(1.4.4) 7s = 207 2 7 6 - 647 3 7s + 457^ 
(1 A5) 7 9 7i = 207377 - 647 4 7 6 + 457^ 
(1.4.6) 7io = (63/5)7 2 7 8 - (128/5)7 3 7 7 

These examples illustrate the following. 

Theorem 1.5. (1) The quadratic relations are translation-invariant, i.e. if 

p+i 

jdjk-d^ Z *fW*-di 

t=l 

then also 



for any integer j^O (with the same a t ). (Homogenize by putting in y if necessary.) 
(2) If the di are consecutive integers, then the coefficients a t in (1.2) are integers. 



Proof. (1) In (1.1) replace d t by d\ = d t + j (1 < i ^ p + 1), d by d -f ; and k by fc + 2j. 
Then also d t is replaced by d; = d +; (p + 2<i<2p + 2 or p-|-2<i<2p+l 
respectively in the two parts of the proof of (1.1)). Formula (1.2) becomes 



where < = 7r;(d+j) + ^' 2p+3 _.(d-f 7) for l^Kp + 1 (respectively aJ = 
7r 2 P +2-i(^+^) for K^'<P and a p-fi = 7C p+i(^+;)X < being the interpolating 
polynomial of degree 2p 4- 1 (respectively degree 2p) which is 1 at d'., and at the 
remaining d'y Obviously n'^c +j) = n t (c) for all real numbers c, from which it follows 
that a\ = a. for all f, proving (1). 

(2) If the d t (1 <i^2p + 2, resp. l<i^2p-l-l in the two cases) are consecutive 
integers, then the Lagrange formula for the n t (when evaluated at any integer) is (up 
to sign) the product of two binomial coefficients. Thus the n t (d) are integers, hence 
also the a h proving (2). B 

Example (1.4.6) shows that in general the a { need not be integers. We can arrange 
to have the d t consecutive by taking c = [_k/2\ and {y c y k - c , y c -iy k - e+l9 . . . , 7 c - P 7fc-c+ P } 
as the set of quadratic monomials on the right-hand side of (1.2). 



2. The Poincare series of 

Determining the Poincare series of R (N) is essentially the same as determining the 
dimension of the Q-vector space R ( f\ the weight k part of R (N \ for every k. In fact, 



The structure of generic subintegrality 5 

we do more. Namely, using a basis interchange technique, we find in the following 
theorem an explicit monomial basis for 



Theorem 2.1. R[ N ) has Q-basis 



if 



Proof. If p = the result is trivial. For then y t = z l for all i and R (N] = Q|V | i ^ AT). 
lik^N then JRjf has basis y fc and J^ >Jt contains only y fc , since we must have d= 1. 
If /c = then R ( <f } has basis y = 1 and & NtQ contains only the empty product 1 since 
we must have d = 0. If < A; < AT then JRj^ = and ^ Njk is empty. Hence assume 
p^ 1. First consider the case N= 1. In [4, (4.1)] a basis {z*GJ(fc)| te^jj for jR 1J (there 
denoted simply as R k ) is obtained. The definition of this basis is quite technical, so we 
will not recall its definition completely. It suffices to note that 3~ k is a set of integers 
indexing all sequences of the form a t = (a l9 a 2 ,...,a k ) with ^a t ^ ^a k ^ p, 
afc _ 1 = a fc , and IX- ^- Also, in the proof of [4, (4.1)] the above basis is put in 
one-to-one correspondence with another basis of R( 1] that consists of monomials in 
the y's. Under this bijection, z k G' l (k\ for a t = (a 1? a 2 , . . . , a k ), corresponds to y ai y ak _ j^, 
where /? fc ^ a^ is chosen so as to make the weight o^-f ^ a*- 1 + /? fc = /c (remember 
that some of the a's can be 0, and that y =l). But (omitting the y 's, renumbering 
the remaining y's and noting that N + pl=p) this is just the basis ^ 1>k claimed for . 
N = 1 in the statement of the theorem. 

Now, for general AT, if y^j is a factor of a monomial in the y's of weight /c, with i 
and ; both ^ AT + p, then the quadratic relations (1.2) can be used to replace y^- by 
a linear combination of 

}';+j> JNyi+j-NiyN+lJi + j-N-l'' '-^yN + p-iyi+j-N-p+l 

(note that z+j N p-fl^N-fp l^N) from which it follows that ^^ spans 
R ( ^\ Thus it suffices to prove the linear independence of & N>k . This we prove by 
induction on N. The idea is to produce a basis for R^ ~ 1 } that contains @ N ^ k as a subset. 
Hence suppose that N^2 and $ N - ltk is a basis for R^ -1) . We have 
*N-i f fc={yj 1 y J2 ---7iJAf-l<^<---<^-i<^id-i<^ + P--l if </ >!,=!'; = /:}. 
Let % = &N,k r( &N-i,k ( = those elements of ^-i.fc that do not contain any y^^'s). 
Let (f be the set of those elements of 38 N - ltk which contain a certain number of 
y^-i's, say e^l of them, and which have the largest subscript i d satisfying 
i d ep^N + pl. Let $ be obtained (elementwise) from <^ by replacing each y N _ 1 
by y N + p _ j and decreasing the highest subscript accordingly. The theorem follows from 

(2.1.1) Claim 

(2.1.2) ^ = ^11*? 

(2.1.3) (& N - ltk - )v<f is a basis for R ( k N ~ 1} . 



Proof of (2.1.2). Obviously # ^ N ^ and ^ c Jf N fc . Furthermore, any element 
that contains e > 1 y^+p-i's (or one y N + p _i and one y with subscript >N + p 1) is 
obtained uniquely by the above transformation from an element of <? , and any 
element of @ N that contains at most one y#+ P -i and has all other subscripts 



L Reid et al 
-l is in #. Thus ^ Nk ^^^jS. It is obvious that #n<^ = 0, which proves 



(2.1.2). 

Proof of (2.1.3). Let 



and let <?' be the set of those elements of Sf which contain a certain number of 
y/v-i's, say e^l of them, and which have the largest subscript i d satisfying 
i d -ep^N + p-1. Then JVijc^N,* c #' and g r o . Let p: <T II N tk ->'oUO! Ntk 
be the map which is identity on ^ N>fc and is defined on <f' as follows: if ye<f ' then 
write y = y N ~i8y c with c^ N -\-2p- 1 and <5 a monomial in y^-i, )>#,..., y^H-p-i, and 
define p(y)==5 i y N+p _ 1 y c _. p . Further, for such a y = yN-i<5y c e<f 



Put ^ = ^ II#, and for z^l let ^ = {p(y)\yeS! i . 1 }. Then each f is a subset of 
, p is a bijection from 2 i onto ^i_ l5 and ^11^ = ^- for f0. Let 



Q.j {yt<$ i \y N _. l appears exactly to power; in y}. 

Then Q i = 11^ f</> and for i, j ^ 1 we have p( _ u) ^ fj _ t with equality if; ^ 2. 
Let ye y with; ^ 1. We claim that S(y) ^j-i. This is clear for i = 0. If i^l then 
y = p(j8) with j?6^^ 1J+1 , and clearly S(y)= {p(a)|aeS(j8)}. So the claim follows by 
induction on i. Now, the set (y,p(y)}uS{y) has p + 2 elements, and by (1.1) and 
(1.3) (c) any p -f 1 of these elements form a basis for the vector space spanned by this set. 
So, as S(y)^^ iJ _ 1 , the sets {y}^& ltj ^ i and {p(y)}^j^ ij , 1 span the same vector 
space. Therefore, since 2 { can be obtained from S i _ 1 in stages by changing 



u))u^ 

starting with the highest h, it follows that each spans the same space. In particular, 
^ U^ and <^II# = & Ntk span the same space. The former being a part of a basis for 
#*-!,*, (2.1.3) is proved. B 

COROLLARY 2.2. 

The idea/ o/a// relations among the y's is generated by the quadratic relations (1.2). 

Proo/. Only the relations (1.2) were used to reduce the set of all monomials of weight 
k in the y's to the basis 39 Ntk . H 

COROLLARY 2.3. 

Let V ktd be the subspace of R ( * } spanned by monomials of \veight k and degree ^d in 
the y t (deg y t - = 1 for all i ^ 1) as in [4, 2]. Then V k%d has Q-basis of those monomials 
in & N ^ k of degree ^d. 

Proof. The indicated elements are linearly independent since they are part of the 
basis & Ntk . Therefore it suffices to prove that they span K M . To do this we may assume 
that p ^ L If yflj is a factor of a monomial in the y's of weight /c, and degree ^d 
with i and; both >N + p, then as in the proof of (2.1) the quadratic relations (1.2) 



The structure of generic subintegrality 1 

can be used to replace y^- by a linear combination of ? +^7^ +./-#, 
y N+1 y i+j . N , l9 ... 9 y N+p ^ 1 y i+ j^ ff . p+1 (note that i+j- N -p+ l^N + p-l^N 
and that the quadratic replacement does not increase degree), from which it follows 
that the claimed elements span F M . 

COROLLARY 2A (cf. [4, (2.1)]) 

We have dim V k d = { } for k 0. More precisely, dim V kd { } if 

' \ P / ' V p ) 



and only if k^m, where m is defined as follows: (1) if p^l and d^2 then 
m = (N 4- p l)d; (2) ifd = then m = 1; (3) in all other cases m = N or m = accordingly 
as N> 1 or N = 1. 



Froo/. Case (2) is trivial. For, if d = then =0, and the only product of 

\ P / 

degree zero is the empty product which is 1. So assume that d^l. Then if the y of 
highest weight is removed from each element of the basis of V kd described in (2.3), 
this basis is put in one-to-one correspondence with a subset of the monomials of 
degree less than or equal to d 1 in the p variables y N9 y N+ 19 . . . , y N + p ~ ^ If k is large 
enough we obtain in this manner all monomials of degree less than or equal to 

d1 in yN,yN+i 9 .'. 9 yN+ p -i. Since there are ( 1 such monomials, the first 

\ P / 

part is proved. Assume now that we are in case (1), i.e. p ^ 1 and d ^ 2. Then a 
monomial M of degree ^d 1 iny N9 y N+1L9 ... 9 y N+p ^- L corresponds to an element of 
our basis if and only if fc wt(M) is bigger than or equal to any subscript occurring in 
M. The most critical case is y^Vp- 1 which requires k (d l)(N + p l)^ N + p 1, 
or k^(N + pl)d = m, proving case (1). The proof of case (3) is an easy and 
straightforward verification. H 

Example 2.5. Here is an example to illustrate the algorithm in the proof of (2.1). 
Let N = p = 2. Then dim Q R ( v = 31 9 dimQ^ = 10. Monomials in the /s will be 
represented by listing the subscripts, thus (1,1,2,7) represents y^y?- ^ e ^ ave 
* = {(1, 10), (1,1,9), (1,2,8), (1,1,2,7), (1,2,2,6)} and # = {(11), (2,9), (2,2,7), 
(2,2,2,5), (2,2,2,2,3)}. To understand the example it is not necessary to list the 
elements of # 1(11 - S > explicitly. We have ^ = f UV = 00 U0 01 II0 02 with 

00 = {(11), (2, 9), (2, 2, 7), (2, 2, 2, 5), (2, 2, 2, 2, 3)}, 

^ 01 = {(1,10), (1,2,8), (1,2,2,6)} and 02 = {(1, 1,9), (1,1,2,7)}. 

The following table shows how the transformation proceeds using the linear relation 
among y,p(y) and S(y): 

y = Replaced by p(y) = Using 5(y) = 

(1,1,9) (1,3,7) (1,10), (1,2, 8) 

(1,1,2,7) (1,2,3,5) (1,2, 8), (1,2, 2, 6) 

(1,10) (3,8) (11), (2, 9) 

(1,2,8) (2,3,6) (2, 9), (2, 2, 7) 



L Reid et al 



(1,2,2,6) (2,2,3,4) (2, 2, 7), (2, 2, 2, 5) 

(1,3,7) (3,3,5) (3, 8), (2, 3, 6) 

(1,2,3,5) (2,3,3,3) (2, 3, 6), (2, 2, 3, 4) 

The first two rows show how ^ 02 is transformed into p(@ Q2 ) an( * the next three rows 
show how @ 01 is transformed into p( i)- This S ives ^i=-io u ^ii with 

^ n =p(S 02 ) = {(l,3,7),(l^ 

(11), (2,9), (2,2,7), (2,2,2,5), (2,2,2,2,3)}. Finally, the last two rows show how S n 

is transformed into p(Q^\ giving 2 = 20 = p(^ i)U 10 = { (3, 3, 5), (2, 3, 3, 3), (3, 8), 
(2, 3, 6), (2, 2, 3, 4), (1 1), (2, 9), (2, 2, 7), (2, 2, 2, 5), (2, 2, 2, 2, 3)} = tUV = # 2il ^ Note that 
for fixed i, j the order in which elements of 2 tj are transformed into those of 
is immaterial. 
The basis of K 3ill given by (2.3) is {(11), (2,9), (3,8), (2,2,7), (2,3,6), (3,3,5)}. 



The calculation of the Poincare series is now just a matter of counting # Ntk . The 
number of partitions of k as sums of integers each ^ N and ^ N -f p 1 is the coefficient 
of t k in 

1 77- (2-6) 



Allowing one integer > N -f- p 1 is the same as finding the partitions of the integers 
from to k N p as sums of integers each ^ N and ^ N -f p 1 (adding one more 
integer, which will be greater than N + p1, to each partition to bring the sum up 
to k), and the number of such partitions is the coefficient of t k in 

^ (2-7) 



Adding (2.6) and (2.7) yields 

Theorem 2.8. Let P(t) be the Poincare series for the ring R (N \ i.e. 
where H(k) = dim Q R( N \ Then 



By a similar argument, using x to keep track of the number of terms added, we 
obtain that dim F M is the coefficient of x d t k in 

1 + i v+N + p 

^ (2-9) 



3. Relations ideal and the structure of 

In this section we determine the structure of R (N) by finding a minimal presentation 
for it as a graded Q-algebra. We show that R (N) has Krull dimension p + 1 and 



The structure of generic subintegrality 9 

embedding dimension N + 2p 9 and that in a presentation of R (N) as a graded quotient 
of the polynomial algebra in N + 2p variables the ideal of relations is generated 

minimally by f ) elements. As corollaries, we show that R (N) is always 

Cohen-Macaulay; that R (N} is Gorenstein if and only if it is a complete intersection 
if and only if N + p^2 (which happehs exactly in the three cases p = 0, N"= 1; p = 0, 
N = 2; p=l = JV); and that R (N) is regular if and only if p = 0, N=l. 

Let B=Q[T N9 T N + i9 ... 9 T 2N + 2 p-i] ^ e the polynomial ring in N + 2p variables 
graded by weight (T t ) = i, and let cp: B-+R (N) be the Q-algebra homomorphism given 
by (p(T t ) = y t for all L Let A = Q[T^ T N + l9 ... 9 T N + P ] 9 let M be the 4-submodule of 
B generated by l,r Ar+p+1 ,...,r 2Ar +2p-i an( * * et M' = <p(M). Then M' is the ^-sub- 
module of R (N} generated by 1, y N+p + 19 ... i y 2 N+ ZP- 1 where ^' = Q[y^ 7* + 1> 
(We will see later that M' = 



Lemma 3.1. W 7 e /iat;e y^M' and yf/^eM' /or a// i, / ^ N. 

Proof. We prove the first part by induction on f. Clearly we have y f eM' for 

N^i^2N + 2p-L Let i^2N + 2p. Then i-N-p^N + psoby (1.2) y ( - belongs 
totheQ-spanofy N y _j V ,y N+1 y f JV l9 ,..,7 JV + p y I .. Ar ^ p . Now 7 i . JV ,y l .. jV _ 1 ,... 9 y l .. w . p eM / 
by induction, since i>i N^i N p'^N. Therefore y^-eM', and the first part is 
proved. Now, if at least one of f and j is < N 4- p then y^eM' by the first part. On 
the other hand, if both z and 7 are > N } p then z +7 N p 4- 1 > N + p 1 so by 
(1.2) ytfj belongs to the Q-span of y i +j 9 y N y i+J - N9 ... 9 y N + p _ 1 y i+j , N _ p + 1 (just y i+j if 
p = 0) and these p+ 1 monomials belong to M' by the first part. So y 



By the Lemma we can write, for i 9 j^N + p+ 1, y -yj = a' 
a\p' h eA'. We may assume that a',/^ are homogeneous of appropriate weight so that 
the expression is homogeneous of weight i +j. Lift a', p' h to homogeneous elements 
a, p h of A of the same weight and let 

2N + 2p-l 

P tj =T t Tj-tt- X ftT A . 



Then P y is homogeneous of weight z + j. 

Theorem 3.2. T/ie graded Q-algebra R (N) has Krull dimension p-f 1 anJ embedding 



dimension N 4- 2p, flm/ /i^5 <2 minimal presentation with N -f 2p generators and I 
relations. M^^ precisely, the Q-algebra homomorphism (p:B-*R (N} is surjective and 
the ideal ker(cp) of B is generated minimally by the I 1 elements P^ 



Proof. By [2, (1.4)], or by (3.1) above, R (N) is generated by y 
This means that cp is surjective, and R (N) is a Q-algebra of finite type. Now, since the 
quotient field of R (N) is Q(x 1 ,...,x p ,z) by [4, (5.2)], we get dim(R (A ) = p+ 1. (That 
dim(J^ (N) ) = p+ 1 also follows independently from (3.3) below.) 

We show next that the set {P^N 4- p + 1 < i ^ j ^ 2N + 2p - 1} generates ker(<p) 
minimally. To do this, let / be the ideal of B generated by this set. 



10 



L Reid et al 



Minimality. Since the P tJ are homogeneous, it is enough to show that no P tj belong 
to the ideal generated by the remaining ones. Suppose for some ij we ha\ 
Pgj = Z (r S )#a jyf rs P rs with /rs ejB - We may assume that each / rs is homogeneous wit 
weight (/) = i+j r s (negative weight means the element is zero). L< 



frs(T r T s 



Since AT + p + 1 ^ i, j ^ 2N + 2p 1 and Q tj is of degree at most one i 
TJV +P+ i ?2N+2p- 1 the term T i T j is present on the left hand side. Let us look fc 
this term on the right hand side. First of all, T i T j cannot appear in any of the tern 
f rs T r T s because (r,s) ^(,7) is an unordered pair. It follows that T i T j must come froi 
one of the terms / rs Q rs . Since N 4- p + 1 < z, j < 2N + 2p 1 and Q rs is of degree at mo; 
one in T N + p+l9 ... 9 T 2N + 2p - 1 , m order for T i T j to appear in the term f rs Q rs it 
necessary for/ rs to contain a term which is a nonzero rational times T t or T} or 7^7 
Accordingly, we would get i +j r s weight (/ rs ) = i or j or i+j whence r + s = 
or i or 0. This is a contradiction, since r -f 5 ^ 2N 4- 2p + 2. This proves the minimalil 
of the generators. 

Generation. By construction, we have / ker(</>). So we have the surjective ma 
\I/\B/I -+R (N} induced by cp. We have to show that \l/ is an isomorphism. Note th; 
M is a free ^-module of rank N + /?, with basis T := l 9 T N+p+l9 ... 9 T 2N+2p . 1 . 11 
module M is graded by weight (T ) = i. Let (: M - B// be the restriction of the natur; 
map B-+B/I to M. Given any polynomial in B, we can reduce it modulo / to a 
element of M. This means that is surjective. Now, let <r = \l/. Then <r: M -> J R ( ^ V) 
an y4 -linear map which is homogeneous of degree zero and is surjective. Now, denotir 
by P L (t) the Poincare series of a graded ^.-module L and writing R = R (N \ it is enou^ 
to prove that P R (t) = P M (t). For, since a is surjective, this would show that a is a 
isomorphism whence also \f/ is an isomorphism. Now, by (2.8) we have 



On the other hand, since A is the polynomial ring Q[T N ,T N+1 ,... 9 T N+P ~] with weig] 
.) = i, we have 

p (A _ 

XU 



Therefore, since M is A-free with basis 1, T N + p+l ,... 9 T 2N+2p _ l and weight (T.) = 
we get 

l * . .N + p+ 1 



Now, it is checked readily that P R (r) = P M (t). This completes the proof of the equali 



Finally, we show that the embedding dimension of R (N} is N + 2p. Recall that f 
a finitely generated graded ring C = @ k ^ Q C k with C a field its embedding dimensic 
emdim(C) is the minimal number of homogeneous C -algebra generators of C, 
equivalently the minimal number of homogeneous generators of the ide 
C+ = *^iCfc. ^ n our situation we have R (N) = B/I with / generated by the P 



The structure of generic subintegrality 11 



AT + p + 1 < i <; < 2N + 2p 1. For such f, 7 we have i+j^2N + 2p + 2. Therefore 
in the expression Pij=T t Tj-ai-xl p p ~ + \fi H T h we have aeX + and each p h eA + . 
This shows that /s^ Therefore by (graded) Nakayama the minimal number of 
homogeneous generators of the ideal R ( + } of R (N) is the same as that of the ideal B+ 
of B, which is AT -f 2p, since B is the polynomial ring in N + 2p variables. This proves 



COROLLARY 3.3. 

The ring A' *=Q[y N ,y N+l9 ...,y N+p ] is the polynomial ring in p + 1 variables over 
and R (N) is a finite free A'-module with basis 



Proof. The restriction of the isomorphism <r.M-+R (N) to A is a Q-algebra 
isomorphism of A onto A', sending T t to y t (N ^ i ^ N + p). This implies the first 
part. The second part follows since (T(T t -) = y f (i = or AT + p + 1 < i < 2 AT -h 2p 1). 

H 

COROLLARY 3.4. 

A Q~basisfor R (N) in terms of monomials in y^ 



Consequently, a Q-basisfor R ( ^ is 



which can also be written, for comparison with (2.1), as 



j=l 
Proof. Immediate from (3.3). H 

COROLLARY 3.5. 

The sequence y N ,y N +i,...,y N+p is R (N} -regular, and the ring R (N) is Cohen-Macaulay. 

Proof. The regularity of the sequence is immediate from (3.3). Therefore the 
localization of R (N) at the irrelevant maximal ideal R ( * ) of R (N} is Cohen-Macaulay. 
It is well known that this implies that R (N) is Cohen-Macaulay (e.g. [1, (33.27)]). 

COROLLARY 3.6. 

The following three conditions are equivalent: 
(1) R (N) is Gorenstein; (2) R (N) is a complete intersection; (3) A/ + p<2. 



12 L Reid et al 

Note that, since N ^ 1, (3) occurs in exactly the following three cases: p = 0, N = 1; 

Proof. (l)o(3): Since R (N) is graded, it is well known that R (N) is Gorenstein if and 
only if its localization at the irrelevant maximal ideal R is Gorenstein (e.g. 
[1, (33.27)]). Let C denote this localization and put D = C/(y N , y N + 19 . . . , y N+p ). Then, 
since C is Cohen-Macaulay and y N9 y N+l9 ...,yN+ P is a regular C-sequence by (3.5), 
C is Gorenstein if and only if D is Gorenstein. Let m be the maximal ideal of D. 
Then, since dim(D) = 0, D is Gorenstein if and only if ann(m), the annihilator of m, 
is a 1-dimensional space over D/m. Now, it follows from (3.2) that m is generated 
minimally by S N+p+19 ... 9 8 2N + 2p . 19 where 8 i denotes the natural image of y, in D. 
Consider two cases: 

Case 1: m=0. In this case D is Gorenstein, and this case occurs <=> 



Case 2: m ^ 0. Then ann(m) c m. IfN + p + Ki,j<2A/' + 2p-l then, as noted 
in the proof of (3.2), we have P y = T^T,- - a - Zj^iJ J^i ^T h with aeA 2 + and each 
P h eA + . It follows that m 2 = 0. Thus m^ann(m) whence ann(m) = m. So D is 
Gorenstein om is generated by one element o2N + 2p-l = iV-fjp+l<>iV-fp = 2. 
(2)o(3): Since dim(JR w ) = p-f-l and R (N} = B/I with / minimally generated by 



homogeneous elements, R {N) is a complete intersection if and only if 

fN+p\ 
JV+2p=p-j-l-H 1. The solutions of this equation with integers p ^ 0, N ^ 1 

are exactly those given by N + p ^ 2. 

COROLLARY 3.7. 

The ring R (N) is regular if and only i/p = 0, JV= 1. 

Proof. R (N} is regular oemdim(K (JV) ) = dim(R (JV) )<*> N + 2p = p + 1 oJV + p = 1 op = 0, 

Example 3.8. We illustrate the structure theorem (3.2) by computing P lV explicitly 
in the cases p=l = JV andp = l, ]V=2. 

First, let p= 1 = JV. In this case B = Q[T l5 T 2 , T 3 ], A = Q[T l5 T 2 ], 4' = Q[y ls y 2 ], 
M' is the ^'-module generated by I,y 3 , and there is only one relation P 33 . To find 
it we have to express yl as an A'-linear combination of 1, y 3 . We da this by eliminating 
? 4 ,y 5 among the relations (1.4.1), (1.4.2), (1A3) obtaining 

3 1'2 '2 *1'3 *1'2'3 

as the desired linear combination. So P 33 = T\ - 3T^T^ + 47^ 4- 4T^T 6T T T 

A similar computation for the case p= 1, JV=2 gives 
R (2) s Q[T 2 , T 3f T 4 , T 5 ]/(P 44 , P 45 , P 55 ) 






The structure of generic subintegrality 13 

4. The independence of 3$ Nyk 

In this section we give a new proof of the linear independence of & Ntk , which does 
not depend upon the proof of (2,1). The matrix approach used here gives additional 
insight into the nature of .jR (N) . In particular, we obtain a sharpening of the 
independence part of (2.1), in that we prove that a specific minor of a certain matrix 
is nonzero. Our matrix theoretic techniques are perhaps of interest in their own right. 

Before stating our result precisely (Theorem (4.1)) we would like to describe more 
carefully the relationship between the two bases ^ 1>fc and <& k := {z k G' t (k)\te3~ k } of JRj^. 
In 2 we noted that y k is a set of integers indexing (as t ranges over ^ k ) all sequences 
of the form a t = (a ls a 2 , . . . , a fc ) with ^ o^ < a 2 ^ - ^ a fc ^ p, a k _ L = a k , J> < k. In 
[4, 3] we also introduced monomials b t = x ail x OL2 "-x Xk (with x = l). If we wish to 
write an element M of ^ 1>fc (or more generally, any monomial M of 
weight k in the y t ) as a linear combination of & k we just expand M in terms of 
monomials b t . Then the coefficient of z k G' t (k) in M is the rational coefficient of b t 
(ignoring the power of z). See [4, (3.7) (5)], and for some explicit examples [4, (4.3)]. 
We shall think of the basis element z k G' t (k) as also being indexed by the monomial b t . 

Put ^ ifc = W^-xJ'IO^Kp, a q ^2, Z? =1 (z + N-l)a f </c}. Then ^ has 
the same cardinality as 3B Ntk . An explicit bijection between 3S' N k and 3& Ntk is given 
by x? 1 x5 a -xj^yj r % a +1 - -y^_ 2 y^-i^ where e^JV + ^-'l is chosen to yield 
weight k. Give the set {x^x^ 2 -x a q q \Q^q^p,a q '2z2} the reverse lexicographic order 
and let 8' N k have the induced order. Let & Nk be given the order corresponding to . 
that of &' N k under the above-mentioned bijection between & Ntk and &' Ntk . This done, 
let C be the matrix over Q whose ij entry is the coefficient of the jth element of & k 
in the expression of the ith element of & Ntk written as a Q-linear combination of ^ k . 
The linear independence of 38 Ntk follows immediately from the following theorem. 

Theorem 4.1. Let p ^ and let be the matrix (with entries in Q) defined above. Let 
r\ be the submatrix o/( consisting of the columns corresponding to 3^' N ^ Then det(^) ^ 0. 

Our first attempt to prove the linear independence of the ^ Njfc was by proving 
(4.1), but this turned out to be somewhat elusive. So we ended up proving (2.1) using 
the basis interchange technique given in 2. However, we were still intrigued 
by the equality card( # Ntk ) = card( &' N k ), and we were finally able to prove (4.1), showing 
that this equality is not a coincidence. This gives an independent, but more difficult, 
proof of (the linear independence part of) (2.1). In the proof of [4, (4.1)] (the case 
N = l)'the matrix ( = r\ in this case) was triangular with nonzero entries down the 
diagonal so non-singularity was easy to establish. We have not been able to find 
such a simple argument in the case N > 1. 

The following example will help explain the meaning of (4. 1), as well as illustrate (2.3). 

Example 42. Let JV = p = 2, fc=10. Then J" 2>10 = {l^x^x^XpX^x^xJx^x!} 
and in the corresponding order # 2tlo = {y 10 , y 2 y s , y^y 6 , y|y 4 , y*, y 3 y 7 , y 2 y 3 y 5 , y\y\> y^yj. 
Then K 1(U has basis {y 10 }, F 10>2 /F 10 ,i has basis {y 2 y^y^i}, ^10,3/^10,2 has basis 

fe'Wa^?^}' "10.4/^10,3 has basis (vly^ylyli and "io, 5 /"io,4 has basis {yf}- 

The complete list of monomials corresponding to & k is {l,XpXpXpXpXpxJ,xJ,x^, 

1 * 2* X^X-2? X^X*2^ X^X^i X]X>2i X-^ X^ X-^X^ X^ X^X^t X-^X^ X-^jC^ Xr-^X,^ 2* 12' 12' 2 / 

so the matrix is 9 by 26. Monomials of degree greater than 5 can be omitted since 
all entries in their columns will be 0. This leaves l.xxxxxxxxxxx 



14 



L Reid et al 



X 2 x i x i x i x l x 2 x i x 2> x 2} so ^ e non-trivial part of f is 9 by 15. We shall not write 
this matrix down, but the possibly nonzero entries by degree considerations (a row 
of degree d can have nonzero entries only in a column of degree ^d) are indicated 
by *'s, and only the subscript digits are indicated for the row indices (x being 10). 
The column indices of ^' 2tlo (i.e. the columns of rf) are underlined. 



2tlo 









X 


* 








28 


* 


* 




* 


226 


* 


* 


* 


* 


2224 


* 


* 


* 


* * 


22222 


* 


* 


* 


* * * 


37 


* 


* 




* 


235 


* 


* 


* 


* 


2233 


* 


* 


* 


* * 


334 


* 


* 


* 


* 



* 

* 

* 



* 

* * 
* * * 



* * * * 



Theorem (4.1) in this case is sharper than (2.1) in that there are several other 
maximal minors that could be nonzero. 

The proof of (4.1) will now occupy the rest of this section. The various constructions 
involved are illustrated by Example (4. 12) below, to which the reader might refer 
while working through the proof. Suppose p = 0. Then ^ = {z fe } and ^i^ = {l}- 
Further, ^ N , fc = if 0<k<N and & Nik = {y k } otherwise. So ( is either the Oxl 
empty matrix or the 1x1 identity matrix, and (4.1) holds trivially in either case. 
Similarly, (4.1) is trivial in case /c = 0. Assume therefore that p^ 1 and k^ 1. The 
integers p, k and N ^ 1 are fixed in what follows. Let d = \_(k/N)]. In the notation of 
[4, (3.5)] let s/' = {(a l5 . . .,a d )eZ d 1 <!< a d _! = a d < p}. For i > 1 let a t be the 
number of times i occurs in (a l9 ...,a d ). Then the correspondence (a !,..., a d ) <-+ 
(a !,..., a p ) identifies s#' with the following subset U of (Z + ) p : 



d, 3; with a^ 2 and a i = 



For a = (a l9 . . . , a 



f define the 
Define K = 



of a to be wt(a) = 
= {(0,...,0)} and 



f- 1 (W + * - l)flj. Let 
for 1</<P define 



. Put ^ = 



We use the reverse lexicographic order on U. Namely, (a l9 . . . , a p ) < (b^ . . . , b p ) (or 
(a l9 ...,a p ) "precedes" (b l9 ... 9 b p )) if the last nonzero entry of (a l5 ... 9 a p ) (b l9 ... 9 b p ) 
is negative. Let Fand P^have the induced order. This order is such that the elements 
of V j , l (resp. Wj-t) precede those of V j (resp. 



Let S = Q[x l5 ...,x p ,T] and let 
the ith element of W define 
F (T) = 



i (where x = l). If (a l9 ... 9 a p )i& 



- JF(N + p - 



Note that JF(n) = (7 n ) r = i, and that F t (k) is the fth element of a Ntk (with z set equal to 
1). The reason for decreasing the last index in defining the elements of W is to take 



The structure of generic subintegrality 15 

into account the adjustment of the last index to obtain weight k when defining the 
elements of Ntk . If (b lt ... 9 b p ) is the ;th element of V then x* l x^ 2 ---xj* is the jth 
element of S8' Nk (where the latter has the same order as before). Let 
r = card(F) = card(H / ). Let M(T) be the rxr matrix (Afy(r)) 1<jJ<r with 
M;;(r)eQ[r] the coefficient of x^x* 2 --^ in F (T), where (b l9 ... 9 b'J is" the jth 
element of V. (Note that the rows of M are indexed by W and that the columns are 
indexed by V.) By the discussion preceding Theorem (4.1), M -(/c) is the coefficient of 
z k G' t (k) (t corresponding to the jth element of S8' N k ) in the expansion of the z'th element 
of & Ntk . Therefore ?/ = M(fe), so (4.1) is equivalent to M(/c) being invertible. If p=l 
then M(k) is lower triangular with nonzero entries down the diagonal, hence trivially 
invertible. The argument that follows is needed only for p ^ 2. 
Note that if j corresponds to an element of V h then 

deg r Afy(TXfc. (4.3) 

Therefore 



deg T det(M(T))<<5:= /rcard(F ft )= /i-card(^). (4.4) 

/=! A=l 

Our intention is to show that M(k) is invertible by finding S roots for det(M(T)), 
each less than fc, and then showing that the coefficient of T 8 in det(M(T)) is not 
identically zero. The d roots will be found by obtaining coincidences of the rows of 
the matrix M(s\ as s ranges between N and k 1. 
We begin by proving a few lemmas. 

Lemma 4.5, Let M(T) be an rxr matrix with entries in Q[T]. Let peQ. Let ^ be 
the set of rows of M(T) and let f be the set of all nonempty subsets of %,. Suppose 
there exists a subset S of f such that 

(1) The sets in S are disjoint. 

(2) For each Ee<?, all the rows in E coincide when T is specialized to \JL. 
Lei c = c(S) = Z e ,(card(E) _ i). Then (T- tf divides det(M(T)). 

Proof. It is clear that rank(M(/z)) < r c. By elementary row and column operations 
over Q[T] the matrix M(T) can be reduced to a diagonal matrix D(T) with diagonal 
entries {/i(T),...,/ r (T)}. (This is well known, and easily proved using that Q[T] is 
an Euclidean domain.) Then (since the same operations can be carried out with T 
set equal to ILL) we have rank(5(ju)) = rank(M(/x)) < r c. Thus (T ^) divides at least 
c of the' /r Since (up to a nonzero scalar) det(M(T)) = det(D(T)) = U\ = l /., the lemma 
follows. M 

Before stating the next lemma we introduce some notation. For a=(a l9 . . . , a p )e(Z + ) p 
put / = yj l yy +1 -7j i v p . 1 . Then @ N , k = {y a y k - wt(a} \aeW}. Since the rows of M(T) 
correspond to & Ntk , those of M(s) correspond to & N , k (s):= {y a y s - wt (a)\ a eW}. Here the 
elements y a y s - wt (a) are treated as symbolic monomials with s wt(a) allowed to be 
negative. Given symbolic monomials y a y t , y b y u with a,be(Z + ) p and t, weZ, we say 
they are formally equal if at least one of the following two conditions holds: (1) 
(a, t) = (b, u); (2) both t and u belong to the set {0} u [AT, N + p - 1] and /y f and /y tt 
coincide as formal monomials in 7 N ,...,7 N+p _ 1 on replacing y by 1. We say that a 
row R of M (s) is labeled by a symbolic monomial y fl y, if the symbolic monomial in 



16 



L Reid et al 



@ Ntk (s) corresponding to R formally equals y a y t . Clearly two rows of M(s) labeled by 
the same symbolic monomial are equal. 

Let 2;= {(b l9 ... 9 b j9 Q 9 . . . , 0)e(Z + H^O}. For beQj put E(6)= Wn{fr-*,|0< 
i < j} where e Q = (0, . . . , 0) and for 1< i < p, e = (0, . . . , 1, . . . , 0) is the standard basis 
vector with 1 in the ith place. 

Lemma 4.6. Let beQj. Then the rows of M(wt(b)) wWc/i are labeled by /( = /y ) 
are precisely those indexed by E(b). Moreover, ifb, ceQj with b^c and wt(b) = wt(c) 
thenE(b)r\E(c) = 0. 

Proof. It is clear that the rows of M(wt(b)) indexed by E(b) are labeled by y b . Let R 
be a row of M(wt(b)) which is labeled by y b . Let a be the element of W corresponding 
to R. Then the symbolic monomial of & Ntk (wt(b)) corresponding to is y a y wt(b )- wt(a y 
Comparing the subscripts and exponents of this symbolic monomial with those of 
y b we conclude that aeE(b). This proves the first part. Now, let 6, ceQ/ with 
wt(fc) = wf(c) = s, say. Suppose E(b) and E(c) have a common element, say a. Let R 
be the row of M(s) indexed by a. Then jR is labeled by y b as well as by y c whence 
we get b = c. H 

Lemma 4.7. For an element b of Qj the following three conditions are equivalent: 

(1) card(E(b)) ^ 2; (2) b-e^W for some i, Q^i< j; (3) b - ep Wandb- e t e W for 

some i, < i<j- 

Moreover, if any of these conditions holds then wt(b) < k. 



Proof. Assume (2). Then b e^Qh for some fc, i^h^j. Since b eieWj we have 
\vt(b - ej) < wt(b - ed ^ k - (N +j - 1)< k ~ (N + h - 1) whence b - e^ W h . This proves 
(2)=>(3). Also, the inequality wt(b-ej)<k-(N+j-l) gives \vt(b)<k. The 
implications (1)=>(2) and (3)=>(1) are trivial. 

Put Q = {beU'^Qj\caid(E(b)) ^ 2}. 
Lemma 4.8. The product U bQ (T- w^fc)) "^^" 1 divides det(M(T)). 

Proof. Writing Q(s) = {beQ\ wt(b) = s}, it is enough to prove that U bfe Q (s) 
(T-w^fr)) 6 "^ 5 "" 1 divides det(M(T)) for every s. But this is immediate from (46) 

and (4.5), since rows labeled by the same symbolic monomial are equal. 

\ 

Lemma 4.9. % beQ (card(E(&))-l) = <5. 

Proof. For fceQ n Q,. put E'(b) = { (ft, b - e t ) \ ^ f < ;, b - e,e W}. It follows from (4.7) 
that card(F(fc)) = card((fe)) - 1. Let <$ =U beQ E'(b). The second projection induces a 
map rj:^^W. Let ae W} and let i be an integer with ^ i <j. Then a + e eQ by (4.7). 
It follows that //~ V) = {(a + e* a)|0 < i <j}. Thus there are exactly j elements in the 
fibre of r\ over each element of Wj. Therefore we get ^ beQ (csird(E(b)) 1) = 
) = card(^) = J, , 7 card(^.) = 5. 



Now, since deg r det(M(T)) ^6 by (4.4), and since (4.7)-(4.9) taken together exhibit 8 
roots of det(M(T)) each less than /c, it remains only to show that det(M(T)) is not 



'The structure of generic subintegrality 17 

identically zero. We do this by showing that the coefficient of T* is not zero. Let a tj 
be the coefficient in M {T) of T h if j corresponds to an index in V h (by (4.3) h is 
highest power of T with a potentially nonzero coefficient in M i} {T)). It then suffices 
to show that det((0- -))^0. For l^i, j^r (where as before M is rxr) let 
H t (T) = F(T) ai F(T + If 2 - F(T + p - l) fl *, where (a l9 ..., a p ) is the fth element of W, 
and let r y be the coefficient of x^x^ 2 ---*^ in HN), where (fe^...,^) is the jth 
element of W. Let h be the index for which (b l9 ... 9 b p )eW h . Then, since 
(fc l5 ...,l +b h , 0,...,0) is the corresponding element of V h and since FT) = 
Hi(N)F(Tc) for some integer c, we get <r y = (l/fc!)T y . So it suffices to prove that 
det(i) ^ (where t = (r y )). Rearrange the rows and columns of i by reordering W by 
degree (where degree (a l9 . . . , a p ) = IX-). Then T is lower-block triangular with degree 
blocks down the diagonal. It suffices to show that each of these blocks has a nonzero 
determinant. Therefore for u (Q^u^d I) let S u be the submatrix of t with rows 
and columns indexed by elements of W and V of degree u. It suffices to show that 



The matrix S u is obtained as follows: Let W(u) be the elements of W of degree u, 
and let r(u) = card( W(w)). For 1 ^ i, j ^ r(u) let (a l9 ... 9 a p )be the fth element of W(ii) 
and let (b !,..., b p ) be the jth element of W(u). Define an r u x r u matrix L U (T) by setting 
the (i, ;') entry to be the coefficient of x*'x* 2 xj* in H t (T). Then S u = L M (AT). Thus it 
suffices to show that W is not a root of det(L M (T)). Since we are now dealing with 



the homogeneous case we can replace F(T) by F(T) = ^? = A lx and H^T) by 

Hi(T) = F(T) ai F(T + l) fla - F(T + p - l) ap without changing L U (T). We now note that 
H-(T) is divisible by T l (T + l) a2 - - - (T 4- p - l) flp , or equivalently, the ith row of L u is 
divisible by T fll (T-h l) fl2 (T + p - l) ap . Factoring out these entries from the rows of 
L U (T) we obtain a matrix K U (T) which can be defined directly as follows: let 

/T-l\ 
G(T) = f =1 (l /f) )x, (so that TG(T) = F(T)) and define L t (T) = G(T) fll G(T + 



- l) ap . Then the (i 9 j) entry of X U (T) is the coefficient of x^x^ xj* 
in Li(T). Noting that the roots of the factors (T+ i) flf are all <0, it suffices to prove 
that N is not a root of det^R^T)). In fact, det(K u (T)) is a nonzero constant, as we 
show next. 

For a = (a l9 ... 9 a j9 Q 9 ... 9 Q)eQj define aw(a), the augmented weight of (2, to be 
N +7 - 1 + Zf = t (N + i - l)fl . Also define aw(0) = 0. If ae W then aw(a) is the weight 
of the corresponding element of V, and aw(a)^k for all a^W. Now, order the 
elements of W(u) by augmented weight with small weights coming first, and order 
elements of the same weight by reverse lexicographic order as was done previously. 
This ordering is such that 

(4.10) if for j < i we decrease a t by one and increase a j by one then we get an earlier 
element in the ordering. 

Furthermore W(u) is a leading segment in the set W(u) of all elements of degree u 
in (Z + ) p (where W(u) is ordered in the same manner). The matrix K U (T) can be 
constructed with W(u) ordered in this way without changing the value of det(X M (T)). 

Now we shall work with W(u). Let r(u) = czrd(W(u)) and let K U (T) be the f u x f u 
matrix whose (i, 7) entry is the coefficient of x^x* 2 - x b p p in L t (T):= G(T) ai G(T -h I)" 2 
G( T + p l) ap where (a l9 ... 9 a p ) and (b l9 ... 9 b p ) are respectively the fth and the jth 



18 L Reid et al 

elements of W(u) (for convenience of notation we are changing the 'meaning of L 
rather than introducing a new symbol). Let u = 1. If we take out the factors l/i from 

the columns then K^T) is reduced to the matrix J= ( J . If we 



subtract each row of J from the next (performing the operations in the order replace 
pth row by pth (p l)st, replace (p l)st by (p l)st (p 2)nd etc.) and use the 



. 1 tj .. /T-H-A /T+i-2\ r 

binomial identities 1 ( = then J row reduces to 

V j-i ; V j-i / V j-2 ; 

) where J' = I ) - (Performing row operations in this 

J'J LV j-1 /JKI^P-I 

manner was suggested to us by Sue Geller.) Continued row reduction of thisjype 
(subtracting from a row Q-linear combinations of previous rows) will reduce K X (T) 
to an upper triangular matrix with ones down the diagonal. We conclude that 
det(J) = 1 whence det(K 1 (7'))= 1/p!, a nonzero constant. Now, let E = (E tj ) by any 
p x p matrix with entries in Q[T]. If R t is the ith row of E let us identify R t with 
the element E il x i +E i2 x 2 + -- + E ip x p of Q[T,x l5 ...,x p ]. Let /() be the f u x r u 
matrix whose (i, j) entry is the coefficient of x^x^ x^ in R^Rf -'R a p p , where as 
before (a l9 . . . , a p ) and (& 19 . . . , b p ) are respectively the tth and the jth elements of W(u). 
This construction is such that f u (K 1 (T)) = K u (T). Furthermore if we change E into 
a matrix E' by row operations of the above type (i.e. subtracting from a row Q-linear 
combinations of previous rows) then because of (4.10) f u (E) is changed into /(') 
by row operations of the same type. We have that / of an upper triangular matrix 
is upper triangular, so K U (T) can be converted to an upper triangular matrix with 
nonzero constant entries down the diagonal by a succession of row operations in 
which from a given row we subtract a Q-linear combination of previous rows. These 
row operations leave invariant the subspaces spanned by the first i rows (1 ^ i ^ f J. 
Since W(u) is an initial segment of W(u) we conclude that detX M (T) is a nonzero 
constant, completing the proof of (4.1). H 

Exampfe4.il. If JV = 3, p = 4, then in reverse lexicographic order we have 
(1, 0, 2, 0) < (0, 1, 2, 0) < (0, 0, 3, 0) < (2, 0, 0, 1) with augmented weights respectively 18, 
19, 20, 18. Therefore if we order reverse lexicographically instead of by augmented 
weights the argument above will fail for k = 18 since then W(3) will not be an initial 
segment of W(3). 

Example 4.12. Let us return to (4.2), where N = p = 2, /c = 10. Here we have 
K = {(0,0)}, ^ = {(2,0), (3,0), (4,0), (5,0)}, V 2 = {(0 9 2\ (1,2), (2,2), (0,3)}, W* = 
{(0,0)}, W l = {(1,0), (2,0), (3,0), (4,0)} and W 2 = {(0, 1), (1, 1), (2, 1), (0,2)}. The rows 
of M(10) are indexed by the monomials # 2flo 
ylyl^ly^} as noted in ( 4 - 2 )- Thus the rows of M(s) are indexed by j 

{y& v 2 ^-2' 72^-^ rive* y^s-s^ y^y s -3^ y2yiy s - 5 > yly*y s -v yly s -6}- The polynomial 

det(M(T)) is of degree card(7 x ) + 2card(F 2 ) = 4 + 2-4 = 12, and we have Q = {(1,0), 
(2,0), (3,0), (4,0), (0,1), (1,1), (2,1), (3,1), (0,2), (1,2)}. Taking 6 = (1,0) we get 
(&)= {(0,0), (1,0)}. This corresponds to the pair y s >y 2 y s . 2 , indexing the first two 
rows, which become equal when we set s = 2. The complete set of row coincidences is 
obtained similarly and is given by the following table: 



The structure of generic subintegrality 19 



b 


E(b) 


elts of 


* tfft (r\ 

2 1 0\ / 


rows 


roots of 
det(M(T)) 


(1,0) 


(0,0), (1,0) 


7 S , 7 2 7 


s-2 


1,2 


2 


(2,0) 


(1,0), (2,0) 


y 2 y s _ 2 


(> 7 2 y s 


2,3 


4 


(3,0) 


(2,0), (3,0) 


727s -A 


v^v 
I- 5 '2's 6 


3,4 


6 


(4,0) 


(3,0), (4,0) 


y3y 


7 2 y s 


4,5 


8 


(0,1) 


(0,0), (0,1) 


7 S > 7 3 7 


5-3 


1,6 


3 


(1,1) 


(1,0), (0,1), (1,1) 


7 2 7 s - 2 


^W.-^Ws-S 


2,6,7 


5,5 


(2,1) 


(2,0), (1,1), (2,1) 


727s -4 


^2^3^-5^273^-7 


3,7,8 


7,7 


(3,1) 


(3,0), (2,1) 


727 s - 


j, 7 2 7 3 y s - 7 


4,8 


9 


(0,2) 


(0,1), (0,2) 


7s7 s -3 


P yly s 


6,9 


6 


(1,2) 


(1,1), (0,2) 


7 2 7 3 7 S 


-s>/&-6 


7,9 


8 



By direct computation det(M(T)) turns out to be 

2 4 3 5 (r-9)(T-8) 2 (r~7) 2 (T-6) 2 (T-5) 2 (T-4)(r-3)(T--2), 

which is in agreement with the roots (together with multiplicities) obtained from the 
above table. We have that det(M(T)) does not vanish at T= 10, as claimed. 

Now we shall illustrate some features of the last part of the proof. Here 
G(T) = xj + ((T - l)/2)x 2 , and G(T + 1) = x t + (T/2)x 2 , so K^T) = K^T) = 

(I (T- l)/2\ 

v " . We have W(3) = { (3, 0), (2,1)} and W(3) = {(3,0), (2,1), (1,2), (0,3)}. 
\1 (T/2) J 

The respective augmented weights of the elements of W(3) are 8 ( = 4-2), 
10 ( = 2-2 + 2-3), 11 (= 1-2 + 3-3) and 12 ( = 4-3). The last two have weights greater 
than 10 and so are not included in W(3). lip = 2 the reverse lexicographic ordering is 
also an ordering by weight, but this need not be the case for larger p, as we saw in 
(4.11). Set R l = G(T) and R 2 = G(T+ 1). Then the matrix K 3 has rows {jRj, .R 2 2 , 
jRjjR 2 , ^2)9 ( or more precisely the 4x4 matrix obtained by taking the coefficients of 
{xpX 2 x 2 ,x 1 x 2 ,X2} in these polynomials). The rows of K 3 will be denoted as 
{r 1 ,r 2 ,r 3 ,r 4 }. The row operation that reduces K^T) to upper triangular form is to 
replace {Ri 9 R 2 } by {R 1 ,R 2 R 1 }. Then / 3 ({^i,^ 2 ~^i}) has row corresponding 

tr\ /Z?3 l?2/n p \ n fn n \2 / p p \3\ fp3 D2p p3 p p2 0/?2p _i 

LO |r\.^ y i\^^/\ 2 ^iJ> ^-ll^2 -*^1/ 1^2 -*^1/ J 1 1> 12 *^l> ^1^2 ^1^2 ' 

^i ^2 ~ 3-^1-^2 "^" ^^ 1^2 ~ ^?} so the row operation to reduce K 3 to upper triangular 
form (with nonzero diagonal entries) replaces {r 1? r 2 , r 3 , r 4 } by (r l9 r 2 r l9 r 3 2r 2 + 
r 1? r 4 3r 3 H-3r 2 + r x }. The matrix K 3 is the upper left 2x2 submatrix of K 3 , to 
which these row operations restrict, so det K 3 is also a nonzero constant. If we had 
used weight 11 rather than 10, then K 3 would have been the upper left 3x3 block 
of K 3 , which also has determinant a nonzero constant, for the same reason. 



5. Hilberty polynomials 

The graded ring R (N) has Hilbert function H given by H(n) = dim Q /?Jf. We consider 
the problem of expressing H(n) as one or more polynomials in n. The Hilbert function 



20 L Reid et al 

of a graded ring which is standard (i.e. finitely generated over a field by elements of 
weight 1) is given for n by its Hilbert polynomial. Our ring R (N) is finitely generated 
but is not standard except in the trivial case p = 0,.JV= 1. For such a ring there exist, 
by [5, Corollary 2], a positive integer d and polynomials H , H ly . . . , H d _ t such that 

H(n) = Jf j(n) if n and n == i (mod d ). (*) 

In general, it is of interest to quantify precisely the condition "w 0". In particular, 
in the standard case, if the Hilbert function coincides with the Hilbert polynomial 
for all n ^ then the ring is called a Hilbertian ring. So we may call a general finitely 
generated graded ring Hilbertian if (*) holds for all n ^0. In our first result (5.1) we 
show that R (N} is Hilbertian if p ^ 2, and determine the minimal d satisfying (*). 

If p = then H(n) =1 if n = or n ^ N 9 so in this case (*) holds with d= 1, H = 1, 
and R (N) is Hilbertian if and only if W= 1. 

Now, in general, to say that R (N) is Hilbertian is the same as saying that its Hilbert 
function H is a quasi-polynomial in the language of [6, (4.4)]. The integer d appearing 
in (*) is then a quasi-period of H . 

Theorem 5.1. Let d = lcm(JV,AT+l,...,Ar + p--l). // p>2 then H is a quasi- 
polynomial with minimum quasi-period d, and in particular R (N) is Hilbertian. If p = 1 
then the function H given by fl(n) = H(n) for n^l and fi(0) = H(0)- 1=0 is a 
quasi-polynomial with minimum quasi-period d. 



Proof. Let P(t) = ^ H(n)t n and P(t) = n %H(n) n , whe r e we put H = H if p ^ 2. 
Then by (2.8) we have 



and P(t) = P(t) - 1 = t N /((l - r)(l - r*)) if p = 1. In either case write P(t) = 
with f(t\ g(t) polynomials without a common factor. Then deg f(t) < deg#(t) and the 
zeros of g(t) are the dih roots of 1. So by [6, (4.4.1)] H is a quasi-polynomial with quasi- 
period d. 

To prove the minimality of d, we claim first that d is the 1cm of the orders of the 
roots of unity which occur as zeros of g(t). This is clear if p= 1. Hence assume that 
p ^ 2. If 1 is a root of unity as well as a zero of 1 t + t N+p then 1, - 1 and JL N+P are 
three roots of unity whose sum is zero. This is the case if and only if (1, -/I, 1 N+P } 
are the three cube roots of unity. Thus A is a primitive cube root of unity, so >L is 
a primitive sixth root of unity and 1 N+ p = (- 1) 2 is the other primitive cube root of 
unity, whence N + p = 2 (mod 6). Obviously 1 - 1 + t N+p has no repeated factors, so 
if N 4- p s 2 (mod 6) then we can cancel the cyclotomic polynomial 1 - 1 + 1 2 of 
primitive sixth roots of unity once, otherwise there is no cancellation. The cancellation 
still leaves us with roots of unity of order 2 and 3 as zeros ofg(t\ proving our claim. 
_ Now let D be the minimum quasi-period. Then we can write P(t) in the form 
P(t) = ^~o^oHj(j + Di)t j+Di for some polynomials #,, Multiplying by l~t D 
amounts to differencing the coefficients (except in low degrees) so (l-t D ) e P(t) is a 
polynomial in t for some positive integer e. Therefore the roots of unity that occur 
as zeros of g(t) must have orders which divide D. Thus d divides D, proving the 
minimality of d. 



The structure of generic subintegrality 21 

Theorem 5.2. The polynomials H t in (5.1) are all of degree p. 

Proof. This is seen by examining the partial fraction expansion of P(t). We have that 
1 is a root of the denominator of P(t) of multiplicity p-f 1, and that all other roots 
are of smaller multiplicity. Setting X = AT in the well-known expansion 

x n (in which the coefficient of X n is a polynomial in n of 



degree r 1), we see that a root k of multiplicity m of the denominator contributes 
a polynomial of degree m 1 to each of the Hj. Thus 1 contributes degree p to each 
Hj and the other roots contribute a lower degree, so the highest degree terms cannot 
cancel leaving all the Hj of degree p. M 

Now, we give an example to show that the various Hj need not be distinct. 
Consider the case N = 2, p = 3, where our Poincare series 

l-t + t 5 



has partial fraction expansion 

a b 1/8 2/9 



with a of degree 3 and b of degree 1 which need not be stated explicitly. The power 
series expansions of l/(l + 2 ) and l/(l+t-K 2 ) are 



of periods 4 and 3 respectively, with coefficients in each period being 1,0, 1,0 and 
1, 1,0 respectively. The "non-polynomial" contribution to the various H(i) are given 
by the following table (with rows corresponding to t l for i = 0,1,2,... and columns 
corresponding respectively to the roots of order 1,2,4,3): 



I 








J 


I 1 


1 


1 


1 ] 


I -1 





-1 


2 1 


L 1 


-1 





3 ] 


[ -1 





1 


4 ] 


I 1 


1 


-1 


5 


-1 








6 


1 


-1 


1 


7 


1 





-1 


8 


1 


1 





9 


-1 





1 


10 


1 


-1 


-1 


11 


-1 








12 


[ 1 


1 


1 



The polynomials coincide if and only if the rows are the same. By inspection of the 
table we see that the period is indeed 12, as given by (5.1), and that H l = # 7 , H 3 = H 9 , 



22 



L Reid et al 



and # 5 = H 11 , with the polynomials Hj (0<j<ll) being otherwise distinct. Tl 
equality of the /f/s here comes from the O's in the power series expansion of tl 
cyclotomic polynomial of primitive fourth roots of unity. Note that the possibility 
are determined only by the columns corresponding to roots of order 4 and 3. Obvious 
the first column plays no role in deciding on the cases, and the second does not eith< 
since whenever entries in columns three and four are equal, so are the entries 
column two. 

t t 2 t 3 19 
By explicit computation we obtain H (t) = 1 H 1 1 , H 1 = H 1 = 

D T-O InrT" J.H'T 1 

5t t 2 t 3 

I j. e tc. with the polynomials all of degree 3 as claimed by our theorem, ar 

48 48 144 F 

with polynomials equal and distinct as claimed above. The coefficients of t 2 and 
are the same in all polynomials, which can be explained by the fact that only tl 
root 1 has multiplicity greater than two, and the coefficient of t is periodic with peric 
2 since only the root 1 has multiplicity 2. 

In another example that we have worked out, equality of the various Hj arose 
a seemingly accidental way from primitive roots of unity of order other than powe 
of two. The general situation seems to be quite complicated. 



References 



[1] Herrmann M, Ikeda S and Orbanz U, Equimultiplicity and Blowing up (New York: Springer- Verh 

1988 
[2] Reid Les, Roberts Leslie G and Singh Balwant, Finiteness of subintegrality, in Algebraic K-Thec 

and Algebraic Topology, P Goerss and JF Jardine (eds) (Kluwer) 1993, pp. 223-227 
[3] Roberts Leslie G and Singh Balwant, Subintegrality, invertible modules and the Picard Group, Comp 

Math. 85 (1993) 249-279 
[4] Roberts Leslie G and Singh Balwant, Invertible modules and generic subintegrality, J. Pure Af 

Algebra 95 (1994) 331-351 

[5] Shukla PK, On Hilbert functions of graded modules, Math. Nachr. 96 (1980) 301-309 
[6] Stanley Richard P, Enumerative Combinatorics, Volume I, (Wadsworth and Brooks/Cole) 1986 
[7] Swan RG, On seminormality, J. Algebra 61 (1980) 210-229 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 1, February 1995, pp. 23-29. 
Printed in India. 



Flat connections, geometric invariants and energy of harmonic 
functions on compact Riemann surfaces 



K GURUPRASAD 

Department of Mathematics, Indian Institute of Science, Bangalore 560012, India 

MS received 1 September 1993; revised 23 March 1994 

Abstract. A geometric invariant is associated to the space of flat connections on a G-bundle 
over a compact Riemann surface and is related to the energy of harmonic functions. 

Keywords. Principal G-bundle; flat connections; Chern-Simons forms; energy of maps; 
harmonic maps. 



Introduction 

This work grew out of an attempt to generalize the construction of Chern-Simons 
invariants. In this paper, we associate a geometric invariant to the space of flat 
connection on a S[/(2)-bundle on a compact Riemann surface and relate it to the 
energy of harmonic functions on the surface. 

Our set up is as follows. Let G = Sl/(2) and M be a compact Riemann surface and 
->M be the trivial G-bundle. (Any Sl/(2)-bundle over M is topologically trivial). 
Let # be the space of all connections and J^ the subspace of all flat connections on 
this G-bundle. We endow on # the Frechet topology and the subspace topology on 3?. 

Given a loop tr.S 1 -#", we can extend a to the closed unit disc <r:Z) 2 -># since <g 
is contractible. On the trivial G-bundle E x D 2 -*M x D 2 we define a tautological 
connection form 9" as follows 



Clearly restriction of $* to the bundle E x {t}-+M x {t} is 5(t)VteD 2 . Let K(&*) be 
the curvature form of S*. Evaluation of the second Chern polynomial on this curvature 
form K(& ff ) gives a closed 4-form on M x D 2 , which when integrated along D 2 yields 
a 2-form on M. This 2-form is closed since dim M = 2 and thus defines an element 
in H 2 (M,R)&R. It is seen that this class is independent of the extension of a. We 
thus have a map 



where !(#") is the loop-space of #". 

We assume that the genus of M^2. The energy E(f) of any smooth function 
/:M-G is defined using the Poincare metric on M and the bi-invariant metric on 
G = SU(2) given by the Killing form. 

23 



24 K Guruprasad 

Any smooth function f:M-+G defines a flat connection &>/ = /* (A*) on the trivial 
bundle M x G- M, where ju is the Maurer-Cartan form on G. By a result of Hitchin 
([H]), the loop in V is given by 

G f (t) = -(o f -f (cos t)o) f + (sin t)(*o)f)) for te[0, ITT], 

where *;A 1 (M,^)->A 1 (M, ( ^) is the Hodge star operator, is actually a loop in OF if 
and only if / is harmonic. (9 is the Lie- Algebra of G). 
The main result of this paper is 

Theorem ///:M~G is a harmonic map, then 



1. Construction of the basic geometric invariant 

In this paper we suppose M is a compact Riemann surface of genus 
with Lie algebra # = su(2) and n:E-+M is the trivial G-bundle on M. V is the space 
of connections and ^ is the subspace of all flat connections on E-*M. D 2 is the 
closed unit disc in R 2 and dD 2 = S 1 is the unit circle. O(J ? ') = Map(5 1 ,J 5 ') is the 
loop-space of J 5 ". Given a loop crrS 1 -* J* we extend cr to <r:Z) 2 -# (# is contractible). 
On the trivial bundle x D 2 - M x D 2 , let 9" be the tautological connection defined 
in the introduction. Let K($ ff ) be the curvature 2-form of the connection 9 ff . Let C 2 
be the second Chern polynomial on ^. For the Lie algebra 9 = su(2\ C 2 is essentially 
the determinant. More particularly C 2 (A)= ~(l/47i 2 )det(A) for Aesu(2) (cf. [KN], 
Chap. XII). Now an easy computation shows that 

C 2 (A) = -^trace(,4 2 ) for 



Evaluation of C 2 on K(9 ff ) gives a closed 4-form C 2 (K(9 ff )) on x D 2 which projects 
to a closed 4-form C 2 (K( ff )) on M x D 2 . Integrating C 2 (K(S ff )) along D 2 yields a 
closed 2-form on M(dim M = 2) and thus defines a cohomology class in H 2 (M, R) i.e. 



R. 

D 2 J 

We outline the proof of the following lemma (cf. [G], 1 and [GS], 2,3). 
Lemma LI. J D2 C 2 (K(& <r )) is independent of the extension of cr.S 1 -^ to d:D 2 :-^^. 

Proof. Let a l ^& 2 be two extensions of a with corresponding connection forms 9^, &2 
and curvature forms (&*), ($*) on the bundle E x D 2 -M x D 2 . On x Z) 2 we 
have 



Flat connections, geometric invariants ... 25 

where TC 2 ($l), TC 2 ($ a 2 ) are the Chern-Simons secondary forms with respect to 
SJ, 2 respectively (cf. [CS, 3]). We can easily check that C 2 (K(&*)) - C 2 (K(9*)) is an 
exact form on E (cf. [G, 1]). Since n*:H 2 (M,R)-+H 2 (E,R) is an isomorphism it 
follows that {C 2 (K ($*))} = {C 2 (K (<[))} eH 2 (M,R) and this proves the lemma. 
We thus have a map 



1)2 



where Q^) is the loop-space of 3F. It is easy to check that %(G &') 

where crcr' is the composite of two loops in 3F. We call this map % the geometric 

invariant. 



2. Energy of functions and a class of special loops 

We recall the definition of energy of a function. Let X and Y be Riemannian manifolds. 
Given a smooth map /:X-> Y, the energy density of / is a function e(f):X-+R 
defined by 



where ||d/(x)|| denotes the Hilbert-Schmidt norm of the differential d/(x)e T*(x) 
T /(JC) ( Y). If A" is compact and oriented, the energy of/, denoted by E(f) is given by 

Qy/2 
(/)(x)dx) 
M / 

where dx is the volume form of X with respect to its Riemannian metric. / is harmonic 
if it is a critical point of the energy functional. 

Using the Poincare metric on the compact Riemann surface of genus ^ 2 and the 
bi-invariant metric on G = 517(2) given by the Killing form, we can define the energy 
(/) of a smooth function f:M-+G by the above formula. 

Any smooth function f:M^G defines a flat connection co f = /*(//) on the trivial 
bundle E -> M where 



is the Maurer-Cartan form on G. In the case of the trivial bundle E-+M, clearly the 
space of all connections # can be identified with the space A 1 (M,^) of all ^-valued 
1-forms on M. For any smooth functipn /:M-G, consider the loop in ^ given 
by a f (t) = (co f + (cos t)a> f + (sin t)(*co f )) for te[Q, 2n], where *: A 1 (M, #) -* A 1 (M, 9) 
is the Hodge star operator. By a result of Hitchin ([H]), we know that a f ([Q, 2ri]) cJ 5 " 
iff /is harmonic, i.e. dy is a loop in ^" iff /is harmonic. 



26 Guruprasad 

3. Relation between the geometric invariant and the energy of harmonic maps 

We prove the following result 

Theorem 3.1. // f:M>G is a harmonic map, then x( a r) -- (/) 

4n 

Proof. At the outset we show that the closed 2-form which represents i(a f )eH 2 (M, R) 

is (*&>! AcOi + *co 2 Aco 2 -f *o> 3 Aco 3 ) where 

2n 






We extend the loop <7y in J^ to a map d f :D 2 -^^ in an obvious way. We drop the 
suffix / and simply use a and S in the computations that follow. 

Let (s, r) be the polar coordinates on D 2 = {(s, f), ^ s ^ 1, < t ^ 27i}. 
Set <r(s,t) = scr(t). We now compute the curvature K( ff ) of the connection form d ff 
on the bundle x D 2 -> M x D 2 . 



A 



where K(v(s> f) is the curvature of <r(s, f)) and d E and ^3 are respectively the exterior 
differentials on E and D 2 . 
If we set 



as a form on M for each feS 1 , then after a straightforward calculation (see [G], 
Lemma 4.1), it follows that J D2 C 2 (K(S' 1 )) is cohomologous to the form 



Now 



so that 



i L 



a(t) A 



CL> 2 



(t) A 



(co 2 
i(co 3 4- cos to> 3 -hsint*co 3 ) 

+ c os ta> 2 -f sin t*o> 2 ) -f i(co 1 + cos tco a -f- sin t*co 2 ) 
+ costo 3 -f 



Flat connections, geometric invariants ... 



27 



.e. 



Now 



oi(t) = (co 1 + cos to! 

= (o> 2 -f cos tco 2 + sin t*o> 2 ) 
= (o> 3 + cos to> 3 + si 



+cost*co 1 )A(a> 1 - 
>! 4- cos 2 t*(D Aco 1 



= *<y 1 Aa> 1 . 



Similarly 



d 


at 

It follows that f^ C 2 ((3*)) is cohomologous to the form 
1 



= *G> 3 Aco 3 . 



A c^ 4- *G> 2 A co 2 4- *co 3 A co 3 )dt 



S i 






= (*&>! A a?! 4- *o> 2 A co 2 4- *o> 3 A co 3 ). 

27T 






Thus the closed 2-form on M representing %(o f )H 2 (M,R) is (*o> 1 A co x 4- 

2;r 

*co 2 A co 2 4- *ct) 3 A o> 3 ). 
To prove that %(G f ) = -- E(f\ w ^ check using local coordinates that the forms 

471 



2n 



dt 



A 



~y(t) A 
dt 






and -- g(/)(w)dw (dm is the volume form on M) are equal at any arbitrary point. 

471 

Since any left translation in G is an isometry, for any weM, ||d/(m)|| = 
||d(L /(wrl o/)(m)|| where L /(wrl :G->G is left translation by /(m)" 1 . We can therefore 
assume that / maps some point weM to the identity element in G, i.e. /(m) = 1. 

Since we intend to use local coordinates to prove the equality of forms, we can go 
to the universal cover D 2 of M with Poincare metric and assume /:D 2 -G and 
/(m) = 1 for some fixed meD 2 . Since there exist an isometry of D 2 which maps the 
origin to m, we can assume /(O) = 1 and check equality of forms at the origin. 

At the origin we have 



dx'dx 



dy'dy 



K Guruprasad 



28 
and 



where , are the usual coordinate vector fields. Let dx and dj; be the dual 1 -forms 

ox dy 

Clearly at the origin *dx = dy and *dj; = dx. Since dm = dx A dy we have 



dy 



, 4-*co 2 Ao> 2 -f *co 3 Ao> 3 ) , 1= -- e(f)(m). 

dx dy) 4n 



We prove that 



2n 



If o)j = djdx 4- bjdy (1 <; < 3, a j5 b } are functions on D 2 ) then *(0j = cijdy. - bjd* 
for 1< j ^ 3 so that *co j A co,- = - (aj 4- b*)dx A dy for 1 < j < 3 

=* r-Mi A a*! H- *co 2 A o) 2 + *o) 3 A co 3 ) = -- (aj + &J + a 2 -h ^ + a^ 4- bl)dx A dj; 
271 2n 

For/:D 2 -^SC/(2) with /(O) = 1 



2 



dx 



By definition of Maurer-Cartan form 



?x ; 
i.J d M\ 



-^1 



V \ dx J ^\ dx J -\ dx ) ! 

The pairing (A, B)h-trace(/lJ3) for A, Besu(2) gives the Killing form on su(2) so that 



dx 1 



dx 



Similarly 



dx 



Flat connections, geometric invariants . . . 
Noting that f*fij = a>j(l ^j < 3) we have 



29 



Now 

Therefore 

Similarly 

Thus 

Therefore we have 

( (*a>! A a> 1 + *a> 2 A o> 2 + *o>3 
In other words 



A dy. 



( (*co 1 A co 1 + *co 2 A o) 2 + *o> 3 A co 3 ) J = e(f)(m)dm 



Consequently x(<r f ) = E(f) and the theorem follows. 

4n 



Acknowledgement 

It is a pleasure to thank A R Aithal, I Biswas and N Hitchin for helpful discussions. 



References 

[CS] Chern S S and Simons J, Characteristics forms and geometric invariants. Ann. Math. 99 48-49 

(1974) 
[G] Guruprasad K, Flat connections, geometric invariants and the simplectic nature of the fundamental 

group of surfaces. Pac. J. Math. 162 no. 1, (1994) 
[GS] Guruprasad K and Shrawan Kumar, A new geometric invariant associated to the space of flat 

connections. Compos. Math. 73 199-222 (1990) 

[H] Hitchin N J, Harmonic maps from 2-torus to the 3-sphere. J. Differ. Geom. 31, 627-710 (1990) 
[KN] Kobayashi S and Nomizu K, Foundations of Differential Geometry, Vol. II Interscience Publications, 
(1969) 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 1, February 1995, pp. 31-32. 
Printed in India. 



Fibred Frobenius theorem 



PEDRO M GADEA and J MUNOZ MASQUE* 

C.S.I.C., I.M.A.F.F, Serrano 123, 28006-Madrid, Spain 
*C.S.I.C, I.E.C., Serrano 144, 28006-Madrid, Spain 

MS received 27 April 1994 

Abstract. We give a version of Frobenius Theorem for fibred manifolds whose proof is 
shorter than the "short proofs'* of the classical Frobenius Theorem. In fact, what shortens 
the proof is the fibred form of the statement, since it permits an inductive process which is 
not possible from the standard statement. 

Keyword. Frobenius theorem 

Theorem. Let n:M -> N be a submersion, dim N = n, dim M = m, + n, and let E c V(n) 
be an involutive sub-bundle of rank r of the vertical bundle V(n) of K. Given a point 
y eM and any coordinate system (x ly ... 9 x n ) on a neighbourhood of x = n(y \ there 
exist functions (yi,.-.,y m ) on M such that: 

(i) (x 1 K 9 ... 9 x n n t 9 y l9 ... 9 y m )isa coordinate system on an open neighbourhood U ofy , 

(ii) 



Proof. By induction on r. For r = 1 there exists an open neighbourhood U Q of y 
and a non-singular vector field Y such that r(l/ ,) = < Y>. Since n is a submersion, 
given (x l5 ...,x w ) there exist functions (y' v . * . <> y' m ) on M satisfying (i) and, since Y is 
vertical, we have Y=^ l =1 f i (d/dy' l ). As Y is non-singular, we can apply the theorem 
of reduction of vector fields to normal form (see [1, Lemma 2]) by considering 
(x !,..., x n ) as parameters, thus obtaining a system (x 1 TT, . . . , x n n; y 1 , . . . , y m ) such that 



Assume r> 1. There is an open neighbourhood 17 of y on which E admits a 
basis: r(/ ,E) = <Y 1 ,..., 7 r >. Applying the above case to Y l9 we obtain a system 

(*! TC, - . . , x n ir, j/ 1? . . . , y'J such that Y 1 = d/dy' v Let 



so that Y' 2 , . . . , Y' r span an involutive sub-bundle E f c E of rank r 1. In fact, as E 
is involutive, we have for 2 ^ j, j < r: 

[y;,y"j]= i f\? k = E 



k=2 



As 7^;) = 0, one has [FJ, Y;] (j/J = 0. Hence / y = 0. 

Let Tt'iM-^JV x [R be the submersion 7r' = (7c,/ 1 ). Since Y / j(y\) 9 we have 
E c ^(Tr'). Let x n+ ! :N x IR -> [R be the projection onto the second factor, which makes 
(x l9 ...,x n ,x n+l ) a coordinate system on N x (R. By the induction hypothesis, there 

31 






32 Pedro M Gadea and J Munoz Masque 

exist functions 0>2>-->JC) satisfying conditions (i) and (ii) with respect to E 1 . 
Consequently, there exists an open neighbourhood U of y such that 
HI^^Y!, 3/3/2,... ,3/dj/'>, and from x n +iri^y' v we deduce Y 1 = d/dy\ + 
^ 2 fi(d/dy f f). Substituting Y\ =d/dy\ + !?-,+ 1/^ 3 / 8 ??) for Y l9 we also have 
T(U, E) = < FI , 3/3/2, - > 3/3y, >, and since E is involutive for every 2 <;* < r, we have: 



Applying both sides to y\ we conclude ^!=0. Hence 3/ +r /3jJ = 0; that is, 
(/r + 1 / J depend only on (x x TT, . . . , x n TT; y\ , ^ + 1 , . . . , /^). Consequently, there 
exists a change of coordinates 



which reduces Y\ to Y^ d/dy^ Now, writing 3>j = yJ, 2^j^r, we have 
F(17, ) = <3/3y 1 , a/3); 2 , . . . , d/3)> r >, thus finishing the proof. 



Acknowledgement 

This work is supported by DGICYT (Spain) through Grant No. PB 89-0004. 

Reference 

[1] Lundell A T, A short proof of the Frobenius theorem, Proc. Am. Math. Soc. 116 (1992) 1131-1133 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 1, February 1995, pp. 33-40. 
(D Printed in India. 



On infinitesimal /t-conformal motions of Finsler metric 



H G NAGARAJA, C S BAGEWADI and H IZUMI* 

Department of Mathematics, Kuvempu University, B.R. Project 577 115, India 
*Sirahata 4-10-23, Fujisawa 251, Japan 

MS received 14 May 1993; revised 9 September 1994 

Abstract. The conformal theory of Finsler spaces was initiated by Knebelman in 1929 and 
lately Kikuchi [7] gave the conditions for a Finsler space to be conformal to a Minkowski 
space. However under the fc-condition, the third author [4] obtained the conditions for a 
Finsler space to be /i-conformal to a Minkowski space. 

The purpose of the paper is to investigate the infinitesimal fc-conformal motions of Finsler 
metric and its application to an H-recurrent Finsler space. We obtain the following results. 

A. Theorem 2. 1 . If an HR-F B space is a Landsberg space, then the tensor F l hjk is recurrent. 

B. Proposition 3.3. An infinitesimal Ji-conformal motion satisfies 

L x G l jk - PJ 



C. Proposition 3.6. An infinitesimal /i-conformal motion satisfies L x P l jk = pC l jk . 

D. Theorem 3.7. In order that an infinitesimal /i-conformal motion preserves Landsberg 
spaces, it is necessary and sufficient that the transformation be an infinitesimal homothetic 
motion. 

E. Theorem 3.8. An infinitesimal /i-conformal motion preserves *P-Finsler spaces. 

F. Theorem 3.10. An infinitesimal /2-conforma3 motion preserves /i-conformally flat Finsler 
spaces. 

G. Theorem 4.1. An infinitesimal homothetic motion preserves H-recurrent Finsler spaces. 

H. Theorem 4.2. If an H-recurrent Finsler space admits an infinitesimal homothetic motion, 

then Lie derivatives of the tensor F! ,. and all its successive co variant derivatives by x l or 

n J K 

y l vanish. 

Keywords. Infinitesimal h-conformal motion; h-conformal tensor; infinitesimal homothetic 
motion. 



1. Preliminaries 

1.1 Berwald connection 

Let F n be an n-dimensional Finsler space with the Finsler metric F(x,y). The metric 
and angular metric tensors are given by y := didjF 2 /2 and hif^g^ lil^ where 

33 



34 H G Nagaraja et al 

We use the following: 

+ 8jg kh - d h g jk ) 9 

djG\ G<:=iy' fc //. (1.1 

Two types of covariant derivatives for a vector X' are given by 
(a) X' k := d k X l + G l hk X\ d k := d k - G"d m , 



(b) X l ]k :=d k X\ d k :=- 



Jt' 



and the Cartan tensor is defined by C l hk := ^g im d k g mh . This connection is known as th 
Berwald connection, which is not metrial, that is, 



', = 2PW. (cf. [2]) (1.2 

When a Finsler space satisfies the condition P l . k = 0, the space is called a Landsben 
space. 

The curvature tensor H^. fc is defined by 

H^-d^ + G-G^-M, (1.3 

where j | /c means the interchange of indices/ and k in the foregoing terms. We see 

LJI . _ Lri Tji . _ pi JJT . _ fji 

~ ~- n hj . n hji , 



where the index means the transvection by y. 
The Ricci identities are denoted by 

/ Q \ Hpi nri rrt T" m TH* 7 m JL/m npi 

{a.j A h' i'k h'k'i mik h m hik ifc h\m y 

In the theory of conformal transformation, the h-conformal tensor F^ - k is define^ 
by ([4], (4.15)) 

1 __ 

hjH mk g im ~j\ k) + H(g hj 5[ - g hk fy 



.2 Lie derivative 



We consider an infinitesimal extended point transformation in a Finsler spac 
generated by the vector X = u*(x)3 f , i.e. 

J x'^x' + u'dt, ^^y + ^/Vdt. (Li 



The well-known commutation formulae ([1], [5], [6], [8-10], etc.) involving L: 



Infinitesimal h-conformal motions 35 

and covariant derivatives are given by 
(a) L x T, k - 

' HJk 
where 



(b) L x H' HJk = Ai, j:k + AfG l hkm -J\k, (L7) 



In the usual way we raise or lower indices by means of the metric tensors g ij or g^. 

2. An HR-F n space 

A Finsler space F n is said to be an H-recurrent Finsler space (denoted by an HR-F W 
space), if the Berwald curvature tensor H l hjk satisfies the relation 

#<*., = * H U ffU*. (2-1) 

where K m is a nonzero vector. As y l k = 0, we have 

H l j:k = K k Hj, H ij:k = K k Hij 
and from (1.5) we obtain 

*!*. = ^ U + -(P-jAg* - 9 hJ H tk P -j\k) 



-Af'PaJ-jl*}. (2.2) 

Thus we have 

Theorem 2.1. If an HR-F n space is a Landsberg space, then the tensor F l h . fc is recurrent. 

3. An infinitesimal A-conformal motion 

3.1 An i.c.m. 

The condition for an infinitesimal transformation (1.6) to be an infinitesimal 

conformal motion (denoted by an i.c.m.) is that there exists a function <f) of x such that 1|| 

L x g jk -2</)(x)g jk , L x g jk = - 2ct>(x)g jk . (cf. [1], [5], etc.) (3.1) $] 

If the function (j> is a constant, the i.c.m. (3.1) is called an infinitesimal homothetic 
motion (denoted by an i.h.m.) and when = 0, the (3.1) called an infinitesimal isometric 
motion (denoted by an i.i.m.). 

It is well known that an i.c.m. (3. 1) satisfies L x C jk = and L x y l = 0. We can easily see 1 1 

(c) L x f = - 4>l\ L x lj = </,, (d) L x h] = 0, L x (g ih g jk ) = 0. (3.2) 



36 H G Nagaraja et at 

Since the Lie derivative is commutative with d k or d k , we see from (1.1) (a) and (3.1) 



Transvecting the above equation by /'/ we have 

L x G L = B ih <t> h , F A :=//~iFV". ( 3 - 3 ) 

Differentiating (3.3) by y j and /, we get 

(a) L X G] = Bf < Bf := djB ih = d}y h + <5*/ - 



Using (3.2) we have 

PROPOSITION 3.1. 

An infinitesimal conformal motion satisfies the following: 

Loth __ f\ . T "Dih - f\ j T D^ ...u-r f\ 
y_J sss \J 4~r JL/ y Jj " \ J 4r-r LJ y fj .. ==:: \J. 

3.2 An i.a.m. 

If an infinitesimal transformation (1.6) satisfies L x G\ k = 0, then the transformation is 
called an infinitesimal affine motion (denoted by an La.m.). 
First, we shall show 

Theorem 3.2 ([1], (VII), Theorem 5.1). In order for an infinitesimal transformation 
be homothetic, it is necessary and sufficient that the transformation be conformal and 
affine motion at the same time. 

Proof. We see from (3.4) 

= y'y^L^G^ = B l Q (j) h = 2B ih (t> h = F 2 (2fl h g ih )(j> h . 
Transvecting the above equation with 2/ f / fc g ik , we have F 2 (j) k = 0. Q.E.D. 

Remark., This theorem was first proved by Takano (Japanese, 1952). 

3.3 An i.h-c.m. 

If we impose the Ji-condition on the vector <,-, i.e. 

FC h u (j) h = #!&, 4> 1 := ^ . (cf. [4], 3) (3.5) 

n~ 1 

the transformation is called an infinitesimal h-conformal motion (denoted by an 
i./2-c.m.). 

Because the function $>i(x) is proved to be a function of x only (see [4], Lemma 3.2), 
we get 



Infinitesimal h-conformal motions 37 

(a)F5 t /r}=-V-*& 
(b) F 2 (d k C?)<t> h = F 



= FdMtf) - Wfr = - WJ + h(lj + Ajy. (3.6) 

Using the above calculations, we obtain 

A',, = L x G} k = Pj 6' k + Pk S' } - g jk p l - fayj, 
A} = L X G] = pSfj + 4> 3 y ~ yjP\ (3.7) 

FC h l 
' 



I 
Hence we have 



PROPOSITION 3.3. 

An infinitesimal h-conformal motion satisfies 



L x G' jk = Pj Sf k + p.d'j - p'g jk - 



The vector PJ is called an associated vector with a vector 4>j and satisfies the 
conditions: 

(a) FC h jk p h = (t>ih jk , (/i-condition) 



(b) pj\ k -d kPj -C h jk p, = Q. 

(Cartan's covariant derivative by /) (3.8) 

A vector which satisfies (3.8) (a) (b) is called an /i-vector. 

PROPOSITION 3.4 ([4], Proposition 3.4). 

Let VI(K, y) be a vector in a Finsler space. If v t satisfies the conditions v t \ k = and 
FC* k v h = v 1 hj k , then the function v l and the vector *v l :=v i v 1 l i are independent of y. 
Here we shall show 

Lemma 3.5. We have 



Proof. We see 

3 _ih is^ih a /^"i p f^ih/^ \ l/ 01 ^/^ L ^i^^ /^ 

^ = - 2 ^fc . ^mS'* d -"' 5 ' C *W = ~" 2C m C hjk + 9 O m L hjk , 

and using d m C hjk = d k C hjm , (3.6) (a) and '(3.8) (b), we get 

)-C hJ J k (Fp m )} 



From (1.7)*(a) we see 

L x C} kl - (L x C l jk ), = A^C"- AC> mk - Ayl - A?d m C l jk . 



38 H G Nagaraja et al 

In consideration of L x C Jk = and transvecting the above equation by y l , we have 

L^ = LA, = A'.Ci - AJ-CU - AlC} m - W*, 
Substituting (3.7) into the above equation, we have 

LxP 1 * = <Mty* + Wj + hff} + *oCj + F 2 p m S m C ]k . 
Using Lemma 3.5, we obtain 

^=Wo+wq*=/>q*- (3 - 9) 

Thus we have 

PROPOSITION 3.6 

An infinitesimal h-conformal motion satisfies 



Remark. If we denote the deformed tensor (cf. [1]) of P l jk with respect to an i./i-c.m, 
(1.6) by Pjfc, we see 



This means that the deformed space of a Landsberg space (P l jk = 0) is not necessarily 
a Landsberg space. 
However we can state the following. 

Theorem 3.7. In order that an infinitesimal h-conformal motion preserves Landsberg 
spaces, it is necessary and sufficient that the transformation be an infinitesimal homothetic 
motion. 

Proof. It is sufficient to show fa = 0. In fact, we have 



It is evident that the theorem holds. Q.E.D. 

3.4 *P-Finsler space 

If the tensor *^:=^j fc -Aq k vanishes, the space is called a *P-Finsler space (cf. 
[3]). The *P-condition: P} k = kC l jk is invariant under any fc-conformal change of 
Finsler metric. 
From (3.9) we have 

L x Pj = pC s , P ; :=Pj,. (3.10) 

Using (3.10) we see 

Q = L x (Pj-lCj) = (p-L x X)Cj 9 M = p. (3.11) 

This means L x *P( k = 0. Hence we have 

Theorem 3.8. An infinitesimal h-conformal motion preserves *P-Finsler spaces. 



Infinitesimal h-conformal motions 39 

3.5 An h-conformally flat Finsler space 

If a Finsler space is ft-conformal to a Minkowski space, the space is called an 
h-conformally flat Finsler space. 

An /i-conformally flat Finsler space is proved to be one of *P-Finsler space (cf. 
[4], (5.2)). Here we shall show 

Lemma 3.9. In a *P-Finsler space an infinitesimal h-conformal motion satisfies 

**-& (3J2) 



Proof. Differentiating (3.11) w.r.t. y h we have L x k h = p h . Next from (3.2) we see 



n 



Hence we have L x */ ; = ( d] -- ^- )p = <,, Q.E.D. 

\ " V 

On the other hand, we know the theorem ([4], Theorem 6.6): 
The necessary and sufficient conditions for a Finsler space to be /i-conformally flat are 
that dfl l j k = and nj, w = and ^ is an h- vector, where 



fl 

**hkr = ^l*Ijik ~^~ *^hk^*ml ' ' ^k ==: ^k Hok^m- (j.lj) 

The parameter H( k and the tensor nj^ are invariant under an /z-conformal 
transformation and these are independent of j;. 
We shall show 

Theorem 3.10. An infinitesimal h-conformal motion preserves h-conformally flat Finsler 
spaces. 

Proof. It is sufficient to prove L x Tl i jk = Q. We see LjBjJ = from Proposition 3.1. 
Moreover, we have from (3.4) (b) and (3.12) 

Lx^jk = L x(G l jk ~~ Bfk *^ft) = B'jk^H ~ B^h = 0. 
It is easy to prove n[ kl = 0. Q.E.D. 

4. An infinitesimal homothetic motion in HR-F n spaces 

In this section we shall consider an i.h.m. only, that is, 

L x g Lj = 2cg L p L x g ij = 2cg ij \ c = constant. (4. 1 ) 

From Theorem 3.2 and (1.7) (b), we have L x H l hjk = 0. 
From (1.7) (a) and (2.1) we see 

r L/t r / IX" r/i \ / r jy- \ rji r\ 

L X^hjk.m - L x(^m^hjk) - ( L X&m)H hjk - U, 



40 H G Nagaraja et al 

which means 

L x K m = and L X (H^ M - K m H l hjk } = 0. 
Thus we have 

Theorem 4.1. An infinitesimal homothetic motion preserves H-recurrent Finsler spaces 
and satisfies L x K m = 0. 
An i.h.m. (4.1) satisfies 

L x lj = clj, L x f=-cf, L x h] = Q. (4.2) 

From Proposition 3.6 we see 



L x H=-2cH. (4.3) 

. 

Moreover we see from (2.2), (4.2) and (4.3) 



After some calculations we obtain L x F l hjk = 0. 



*U + *- L * F U = 0- 
Hence we have 

Theorem 4.2. If an H-recurrent Finsler space admits an infinitesimal homothetic motion, 
then Lie derivatives of the tensor F l hjk and all its successive covariant derivatives w.r.t. x l 
or y l vanish. 



References 

[1] Yano K, The theory of lie derivatives and its applications (1957) (Amsterdam: North-Holland) 

[2] Rund H, The differential geometry of Finsler spaces (1959) (Berlin: Springer Verlag) 

[3] Izumi H, On *P-Finsler spaces, I, II, Mem. Defence Acad. Japan 16 (1976) 133-138; 17 

(1977) 1-9 
[4] Izumi H, Conformal transformations of Finsler spaces. II. An /i-conformally flat Finsler space, Tensor 

N.S. 34 (1980) 337-359 

[5] Izumi H, On Lie derivatives in Finsler geometry, Symp. on Finsler Geom., at Naruto, 1980. 
[6] Sinha R S, On projective motions in a Finsler space with recurrent curvature, Tensor N. S. 21 

(1970) 124-126 

[7] Kikuchi S, On the condition that a Finsier space be conformally flat, Tensor N. S. 55 (1994) 97-100 
[8] Pande H D and Kumar A, Special conformal motion in a special projective symmetric Finsler space, 

Lincei - Rend. ScLfis. mat. e nat. 58 - Maggio (1975) 713-717 

[9] Kumar A, On projective motion in recurrent Finsier spaces, Math. Phi. Sci. 12 (1978) 497-505 
[10] Sinha R S and Chowdhury V S P, Projective motion in recurrent Finsler spaces, Bull. Cal Math. 

Soc. 75 (1983) 289-294 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 1, February 1995, pp. 41-51. 
() Printed in India. 



A bibasic hypergeometric transformation associated with 
combinatorial identities of the Rogers-Ramanujan type 



U B SINGH 

Department of Mathematics and Astronomy, Lucknow University, Lucknow 226 007, India 

MS received 29 December 1993; revised 16 March 1994 

Abstract. During the last five decades, a number of combinatorial generalizations and 
interpretations have occurred for the identities of the Rogers-Ramanujan type. The object 
of this paper is to give a most general known analytic auxiliary functional generalization 
which can be used to give combinatorial interpretations of generalized ^-identities of the 
Rogers-Ramanujan type. The derivation realise the theory of basic hypergeometric series 
with two unconnected bases. 

Keywords. Auxiliary functions; unibasic hypergeometric series; bibasic hypergeometric series; 
< g-hypergeometric identities. 

1. Introduction 

The two celebrated Rogers-Ramanujan identities 

oo n n 2 -f an oo 

IT r =n(i-T l , ll<i. (i) 

"=0 (qiq) n =i 

n = (a + l)(mod 5) 

where a = or 1, were first given by Rogers [12] in 1894 and then rediscovered 
(without proof) by Ramanujan in 1911. 

In 1916, MacMahon ([11]; 7, Chap. Ill) gave the following combinatorial inter- 
pretation of these two identities: 

"The number of partitions of n into parts that differ by at least 2 with each part > a 
is equal to the number of partitions of n into parts = (a + l)(mod 5), where a may 
be either or 1". 

In 1917, while scanning some old volumes of the Proceedings of the London 
Mathematical Society, Ramanujan came across the remarkable papers of Rogers 
[12-14] which not only contained analytical proofs of these identities but also 
contained other similar identities for the moduli 7, 10, 14, 15, 20 and 21. In 1919, in 
a joint paper, Rogers and Ramanujan [15] gave several proofs of these identities 
which are based on the general transformation formula: 



n = o (l-a)(q;q) n n = o(q;q) n 

proved by them. 

41 



42 U B Singh 



Later, in 1929, Watson [22] gave an elegant and straightforward proof of these 
identities with the help of the following transformation formula connecting a 
terminating well-poised 8 O 7 and a terminating Saalschiitzian 4 <S> 3 series: 



, f^M^^ggl 

) n [_aq/c,aq/d,efq n /a J 



(aq/e,aq/f\q) 

In 1936, with the help of certain difference-equations, Selberg [17] obtained, besides 
a number of other identities, the Rogers-Rarnanujan identities (1) by means of his 
auxiliary function 



in which 



where fe is real and > - 1- 

In 1947, Bailey [6,7] outlined a technique of obtaining a large variety of trans- 
formations of basic hypergeometric series from which he deduced known as well as 
new identities of the Rogers-Ramanujan type on different moduli by specializing the 
parameters suitably. Shortly afterwards, Slater [19,20] made a systematic use of 
Bailey's technique to give a list of 130 identities of the Rogers-Ramanujan type 
involving prime factors 2, 3, 5 and 7 in the moduli. 

A generalization of Rogers-Ramanujan type of identities in a different direction 
was given by Alder [3] in 1954. He used Selberg's auxiliary function (4) to prove the 
following generalizations of the Rogers-Ramanujan identities (1): 

(6) 

, fc(mod2/c-f 1) 




M0,l (mod2fc+l) 

where G k tii (q\ k^2, are certain polynomials which reduce to q" 2 for k = 2, the Rogers- 
Ramanujan case. Singh [18] extended these results of Alder by giving r-generalizations 
of the above two identities with the help of a transformation theorem for basic 
hypergeometric series given by Sears ([16]; 4). 

In 1974, Andrews [4] obtained another analytic generalization of the Rogers- 
Ramanujan identities (1) with the help of Selberg's auxiliary function (4) by using the 
^-difference equations 



A bibasic hyper geometric transformation 43 

iteratively. Later, he [5] considered the auxiliary function 

''-i)/2 



n >o (I- a)(q 9 aq/b, aq/c; q) n 

and showed that it is equal to 



(aq/b, aq/c; q) n Ml ..... mfc _ , > o (q; q) mi . . . (g; #) mk _ t \ be 

X < 2< /c ~ 1 ) mi + ... + 2mk-2 + Wfc-i~mJ-f (raj +m 2 } 2 + ... +(m l + ... + m k _ 2 ) 2 ("9") 

In. 1980, Bressoud [8] also obtained an analytic generalization of the Rogers- 
Ramanujan identities (1) by considering the following auxiliary function for < r ^ k 
with Mi = m + m i+ 1 + . . . + rn k _ i : 

-!- z M 



(aa/bca) ^M^.-. 

v *!/ ' *^m>c~i 



. c . 

(ID 

and also gave a combinatorial interpretation of these identities in the following form: 

Let <5, r, k be integers satisfying d = or 1, < r < (2fc -I- <5)/2. Let B^ r ^(n) denote the 
number of partitions of n such that, if f i denotes the number of times i appears as a 
part in the partition, then / ^ r 1, f i + f i+ i ^ k 1 for all z and / s 4- / i+ x = k 1 
implies that if t + (i + l)/ i+ x = r 1 (mod 2 5). Also let A krd (ri) denote the number 
of partitions of n in which no part is = 0, r(mod 2k + <5). Then, for each positive 
integer n, 

^>) = **,,>) (12) 

In another paper, Bressoud [9] gave a further analytic generalization of the 
Rogers-Ramanujan identities by using the following auxiliary function: 



H ^ t i *4> v 

^r^); *)'<?)= 7; I 



c - A 4- 1 



(13) 
He also proved that 



?; q) mi ...(q\ q) mtc . 



44 U B Singh 



>/b 2k+ , _,; ) }, (14) 

and gave a very general combinatorial interpretation of the identities obtained by him. 
A close examination of the auxiliary functions (from Rogers-Ramanujan to 
Bressoud) stated above raises some very natural questions of the type: 

(i) Is it necessary to take a and a r , simultaneously, in the auxiliary function as has 
been done by Bressoud? 

(ii) Is it necessary to take two related bases q and q r instead of two general unconnected 
bases q and q^l 

Since the general transformation theory for basic hypergeometric series with two 
unconnected bases has already been developed in 1967 by Agarwal and Verma [1,2], 
the object of the present paper is to establish a general bibasic transformation formula 
similar to (14) with a parameter 1 in place of </ and then discuss a few interesting 
particular and limiting cases of this transformation. 



2. Notation 

For |g|<l, let 



A generalized multibasic hypergeometric series, whenever it converges, is defined 
as 



..o (q,b;q) n 



t=i(d,;q,) n 
where R = r + r 1 + ... + /- mJ S = s + s 1 + ... + s m) a = (a l! ...,a r ),fc = (6 1> ...,b s ),c 

( c .i."- c ,,,M = (4.i.---.O 

The superscript (m + 1) in the <l>-symbol denotes the number of bases in the series. 

3. 

We shall first prove the following general bibasic transformation formula: 



A bibasic hyper geometric transformation 45 

Theorem. For \q\ < I 9 \q^\ < 1, 



[a,b 9 c 9 a l9 ... 9 a 2k _ l : 4ixA 

2m + 3 /i / / , /7 

L aq/b 9 aq/c, aq/a t , . . . , ag/a 2fc _ x : ^/A, - 



;q) M ^ 2 ..4aq/a 2 ^^ 
l9 ... 9 b 2m ;q l )M l (- 



-J + (5/2)M, + M 2 + ... + M k _ x (m- l 



;<?,4i; 
i 

(15) 



M ( - = m f 4- m. + 1 4- . . . + m k _ 1 , m, r and fc are positive integers. 
Proof. By the ^-analogue of Saalshiitz's theorem ([10]; eqn. (1.7.2)), we have 
(b 9 c,q) H 



wi i \ v" 1 \ "i * " j ^f ' "^ s n^ 

(a^f/ft, aq/c; q) n \bcj s = o (4, 04/6, a<?/c; <?) 5 

Using (16) in the left hand side of (15), one can easily write it in the form 



(q 9 aq/b 9 aq/c 9 q) mh _ i 



n n(k-m k - 1) n n(m- 1 



l-'-^fc-l^l^ 

Putting n = m k _ 1 -h t, the last expression is equal to 

l , . . . , a 2 ,_ , ; q) mu _ i (a; q) 2mk _ i 
, aq/c 9 aq/a l , . . . , 



i ! 



46 V B Singh 



f jm-t-t/r-k-mic-i _m-l 

) _ * g *1 






We now iterate the procedure used in transforming the left hand side of (15) to the 
form (17) (such that the parameters b, c are "shifted out" from the <l> series). Then, 
after (k - 2) iterations, we find that the left hand side of (15) can be written in the 
following form: 

^ 



i^;^-^,^;^.^^^ 



-v^k-ytto-i''^-^...**^^^ 



^ 






xj 



- l + - +m /a 2k _ 3 ,fl^ 1 ? Wk - l + - +mi /a 2Jk . 2 A, 

7 fl m fc -i + ...4-mi . -(l+mk-1+...+mi) 77 ^l+wik- 1 +...' + mi /J" 

^k-l^ ' ^1 V A '~"^1 V^ 



-i-...-m 1 -m 



Introducing the summatory symbols M f , it is easy to see that the last expression is 
equivalent to the right hand side of (15). 



A bibasic hypergeometric transformation 
4. Particular cases 



47 



We shall now discuss a few interesting particular and limiting cases of the above 
transformation (15). 

Case I. Let us take /c = 2, w = 0, r=l, A = a and q 1 = q in (15) and make b,c,a l9 a 29 
a 3 -+ oo. Then, with the help of a well-poised 6 <X> 5 summation formula ([1 ; 0]; eq. (2.7.1)) 
and some simplification, we get the transformation (2) proved earlier by Rogers and 
Ramanujan [15]. 

Case II. We now consider the following auxiliary function which is a multiple of the 
left hand side of (15): 



If we first take w = 0, A = fl r , q 1 =q r in (18) and then make b,c,a 1 ,...,a 2/c _ 1 ->oo, we 
get 



which is equivalent to Selberg's auxiliary funption (5). 

Case III. If we take m 0, A = a, q 1 = q, r = 1 and a 2A _ x = q~ N in (15), then the inner 
series on the right hand side of it can be summed up by a well-poised 6 O 5 summation 
formula ([10]; eq. (2.7.1)). We easily get the following identity: 



/-/-// / 

V a, - ^/a, aq/b, aq/c 9 aq/a^ , . . . , aq/a 2k ^.^ 



bca 1 ...a 2k _ 1 



a 2k~s a 2 k -4'> 9) mi 



^ti^-^a^^.^^^'--^^ 
aq/aM)^ 



(20) 



which is seen to be equivalent to the identity ([15]; Theorem 4) due to Andrews. 



48 U B Singh 

Case IV. Again, let us take /I = </, q 1 = q r (0 < r ^ k) in (15) and make 



The inner series on the right hand side of (15) is then summable by a well-poised 
6 $5 summation formula ([10]; eq. (2.7.1)) and we get the following transformation: 



! 
* 






a 2fc _ 4 ; ) m . (21) 



k , 52fc _ 4 



The transformation (21) is easily seen to be equivalent to Bressoud's transformation 
(14). 

If, in addition to these changes, we make 



in (18), we get the auxiliary function (10) due to Bressoud. However, if we make all 
these changes in (15), then, on making use of a well-poised 6 O 5 summation formula 
([10]; eq. (2.7.1)), we get the transformation (11) due to Bressoud. 

Case V(a). Let us take 

k = p - 2, m = 2, r = 1, A = a, q l = q, 

a 2p-7 = 6 ' a 2p-6 = X ' a 2p-5 = ~" X 



in (15), and transform the inner series on the right hand side of the resulting trans- 
formation by another transformation ([21]; eq. (1.3)). Then, we easily get a general 
transformation which is seen to be equivalent to the result ([21]; eq. (4.1)) due to 
Verma and Jain. 
In (15), let us first replace q by q 2 and then take 

k = p - 2, A = a, q^ = <j 2 , m = 2, r = 1, 



We can now transform the resulting inner series in (15) by the transformation formula 



A bibasic hyper geometric transformation 



49 



([21]; eq. (1.4)). We thus get a general transformation which is easily seen to be 
equivalent to the result ([21]; eq. (4.3)) due to Verma and Jain. 

Case V(b). Let us now take 

k = p - 3, m = 3, r = 1, J, = a, q l = q, 



in (15), and then transform the inner series on the right hand side of the resulting 
transformation by another transformation ([21]; eq. (1.5)), we thus get a general 
transformation equivalent to the result ([21]; eq. (4.4)) due to Verma and Jain. 
Next, we first replace q by q 3 in (15) and set 

k = p - 3, m = 3, r = 1, A = a, q l = q 3 , 



i = y>b 2 = yq, b 3 = yq 2 , 



Then, by using the transformation formula ([21]; eq. (1.6)), we get a general trans- 
formation which is also seen to be equivalent to the result ([21]; eq. (4.5)) due to 
Verma and Jain. 

Case VI. In (15), let us replace q and q 1 by q 2 and q 2N+1 , respectively, where AT is a 
positive integer and make 

5,c,a 1 ,...,a 2;c _ 1 ->cx),c 1 ,...,c 2m ->oo. (22) 

Then, on setting a = q 2 , we easily get the following interesting identity which is 
believed to be new: 



... ,>o 



f nm + k/rlAfi+n 
> 



x (3 + 2Nm + m)n 2 + 2{2M 1 +(2N + l)M l m-N-k+l}n 

* L * -l m+klr q*q- 2N ' 



= lim 3 <|) 2 

a, 6-* oo 



0,0 



/I Km 3 <l> 



32 



^0,0 



(23) 



where ^* = 



50 



U B Singh 



Again, if we replace q and q^ by q 3 and q*, respectively, in (15), take the limits 
indicated in (22) and then set a = <? 3 ; we obtain the following interesting identity 
which is also believed to be new: 



= lim 3 <X> 2 



.0,0 



-A lim 3 <D 



32 



L 
ab 



aft 



-0,0 



(24) 



where ^ 



5. Conclusion 

We have not tried to list all the special cases of our general result but have only 
drawn attention to the fact that multidimensional transformations of bibasic hyper- 
geometric series perhaps provide the best way of unifying the enormous number of 
partition - theoretic analytical identities. We hope to exploit this viewpoint in a future 
communication. 



Acknowledgement 

This work is supported by a grant (No. PDF/93/2084) from the National Board for 
higher Mathematics. 



References 



[1] Agarwal R P and Verma A, Generalized basic hypergeometric series with unconnected bases, Proc. 

Cambridge Philos. Soc. 63 (1967) 727-734 
[2] Agarwal R P and Verma A, Generalized basic hypergeometric series with unconnected bases (II), 

Q. J. Math. 18 (1967) 181-192; Corrigenda, ibid. 21 (1970) 384 

[3] Alder H L, Generalizations of the Rogers-Ramanujan identities, Pacific J. Math. 4 (1954) 161-168 
[4] Andrews G E, An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. 

Nat. Acad. Sci. (USA) 17 (1974) 4082-4085 
[5] Andrews G E, Problems and prospects for basic hypergeometric functions. Theory and applications 

of special functions (R Askey, ed.), (New York: Academic Press) (1975) 191-224 
[6] Bailey W N, Some identities in combinatory analysis, Proc. London Math. Soc. 49 (1947) 421-435 
[7] Bailey W N, Identities of the Rogers-Ramanujan type, Proc. London Math. Soc. 50 (1949) 1-10 
[8] Bressoud D M, An analytic generalization of the Rogers-Ramanujan identities with interpretation, 

Q. J. Math. 31 (1980) 385-399 



A bibasic hyper geometric transformation 51 

[9] Bressoud D M, Analytic and combinatorial generalizations of the Rogers-Ramanujan identities, Mem. 

Amer. Math. Soc., No. 227, 24 (1980) 1-54 

[10] Gasper G and Rahman M, Basic hypergeometric series, (Cambridge: University Press) (1990) 
[11] MacMahon P A, Combinatory Analysis, Vol. 2, (New York: Cambridge University Press) 1916 

(Reprinted: Chelsea, New York 1960) 

[12] Rogers L J, On the expansion of some infinite products, Proc. London Math. Soc. 24 (1893) 337-352 
[13] Rogers L J, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. 

25 (1894) 318-343 

[14] Rogers L J, Third memoir on the expansion of certain infinite products, Proc. London Math. Soc. 

26 (1895) 15-32 

[15] Rogers L J and Ramanujan S, Proofs of certain identities in combinatory analysis, Proc. Cambridge. 

Philos. Soc. 19(1919)211-216 
[16] Sears D B, Transformations of basic hypergeometric functions of special type, Proc. London Math. 

Soc. 52 (1951) 467-483 

[17] Selberg A, Ober einige arithmetische identitaten, Avh. norske vidensk, Akad. 8 (1936) 1-23 
[18] Singh V N, Certain generalised hypergeometric identities of the Rogers-Ramanujan type, Pacific J. 

Math. 1 (1957),1011-1014; 1691-1699 
[19] Slater L J, A new proof of Rogers' transformations of infinite series, Proc. London Math. Soc. 53 

(1951) 460-475 
[20] Slater L J, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. 54 (1952) 

147-167 
[21] Verma A and Jain V K, Transformation between basic hypergeometric series of different bases and 

identities of Rogers-Ramanujan type, J. Math. Anal. Appl. 76 (1980), 230-269 
[22] Watson G N, A new proof of the Rogers-Ramanujan identities, J. London Math. Soc. 4 (1929) 4-9 



11 /? 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 1, February 1995, pp. 53-58. 
Printed in India. 



Some theorems on the general summability methods 



W T SULAIMAN 

Department of Mathematics, Mosul University, Iraq 

MS received 20 January 1993 

Abstract. In this paper a new theorem which covers many methods of summability is proved. 
Several results are also deduced. 

Keywords. Summability methods. 



1. Introduction 



Let Da n be an infinite series with partial sums s n . Let cr d n and q 6 n denote the nth Cesaro 
mean of order <5(<5 > 1) of the sequences {s n } and {na n }, respectively. The series La n 
is said to be summable (C,<5) with index /c, or simply summable |C,<5| fc , k^ 1, if 



or equivalently 

z-xi k <- 

M=l 

Let {p n } be a sequence of real or complex constants with 
The series Ea w is said to be summable \N,p n \, if 

00 

where 

t n = P~ 1 p n - v s v (t_ 1 =0). 

We write p = {p n } and 

f PnH 

M=<p:p n >0 and 



Pn Pn 



53 



54 



W T Sulaiman 



It is known that for peM, (1) holds if and only if (Das [4]) 



IAJ I 

I 



n 

I Pn-v 



< 00. 



DEFINITION 1 (Sulaiman [5]) 

For peM, we say that I,a n is summable \N 9 p n \ k9 k 3* 1, if 



1 



< 00. 



In the special case in which p n = A r n x , r > 1, where A r n is the coefficient of x n in 
the power series expansion of (1 x)~ r ~ l for |x| < 1, |N,pJ k summability reduces to 
|C,r| k summability. _ 

The series Ea w is said to be summable \N 9 p tt \ k9 k^ 1, if 



where 



(Bor[l]) 



v-0 



If we take p n = 1, then |JV,p B | k summability is equivalent to |C,l| k summability. In 
general, these two summabilities are not comparable. 
We set 



. = MO 



and assume that P n , L/ n , R n and W n all tend to oo. 

DEFINITION 2 (Sulaiman [6]) 

Let {p rt }, {^f n } be sequences of positive real constants such that qeM. We say that 
is summable \N 9 p n ,q n \ k ,k^l,\f 



t?=l 



< 00. 



Clearly \N,p n9 l| k and |7V, l,<? B | k are equivalent to |AT,p rt | k and |N,^ n | k respectively. We 
prove the following: 



I 
Some theorems on the general summability methods 55 [ 

Theorem 1. Let [p n } 9 {q n } 9 {u n } and {v n } be sequences of positive real constants such 
that q,veM y q n =: 0(v n ), {pJP n R k n _ 1 v k n } nonincreasing and that a n ^ if v n ^ c. Suppose 
{e n } is a sequence of constants and write W n _ 1 G n L"^ 1 U r _ i v n _ r a r . If ' f 



=7+iP r /? r _ 1 u*_ r _i 
w '-i V t 



t -^ 

" " -i ;-,-i 
. \* 

5 B l*<oo, (3) 



oo \fe~l 

(4) 

\ \V nn - 

k-l 

(5) 



then the series ~La n e n is summable \N,p a ,q a \ k , k^l. 

2. Lemmas 

Lemma 1 (Sulaiman [6]). Let qsM, then forQ<v 

V ^L = o(r- 11 )- 
,=rne r V ; 

Lemma 2. {pJP n ^- k n -^ k n } nonincreasing implies 



Froo/ Since 



therefore {pJPnR*-^ is nonincreasing. We have 

m nlA/7lf 2r m 

ZPn l^r^w-ri J V . V J i r * 

-- - - = < L + L ( = Ji+J2> say 



Z i 

=r+l 






= 



i 



56 W T Sulaiman 

3. Proof of theorem 1 

Write 

R 

" r=l 

then, by Abel's transformation 



, i 
\b r \ 



|e,l 






In order to prove the theorem, by Minkowski's inequality, it is therefore sufi 
to show that 

V _ p " -f* <co, r = 1,2,3, 4,5, 6, 

^J p ok "' r 

= l f n K -l 

where k > 1. Applying Holder's inequality, 



" 



n-1 



lc-1 



x I |A r D n _ r | 

r=l 



Some theorems on the general summability methods 57 





= 0(1) E -1 



fn- 

I 
l=i 



1 n ,, ")fc-l 

p r q n - r -i 



n 



n / W \ k 

^1*10,1* = 0(1). 



m+1 n m+1 

V _ ^! _ p k y 

"^ 



m + 1 

x y ?= 



*-l 



n m+1 n-1 

Pn pk < y P^ y 

Dfc r n,5^ ^ D n Ls P r 







P \ k ~ 1 ( W \ k 



is completes the proof of the theorem. 



58 W T Sulaiman 

4. Applications 

Theorem 2. (Bor [1] and [2]). // nu n = 0(U n \ U n = O(nu n \ then the series E0 n is 
summable |C, l| fc if and only if it is summable |JV,i*J fc , k ^ 1. 

Proof. 

(=>) follows from theorem 1 by putting p n = 1, q n = 1, v n = 1, and e n = 1. 
(<=) follows from theorem 1 by putting q n = 1, u n = 1, i7 B = 1, and e n = 1. 

Theorem 3. (Bor and Thorpe [3]). Let {p n }, {u n } be sequences of positive real 
constants. If p n U n = 0(P n u n ) and_P n w n = O(p n U n \ then the series a n is summable 
|NPnlfc whenever it is summable \N^u n \ k9 k^l. 

Proof. Follows from theorem 1 by putting q n = 1, v n = 1 and e n = 1. 

Theorem 4. // the sequences {p n }, {q n }, {U B }, {v n }, satisfy the conditions of theorem 1 
except (3H5) and if Pn U n = 0(P n u n ), P n u n = 0(p B l/J and P^_ A = 0(v n U n ^ , ), tten the 
series Sa B is summable \N,p n ,q n \ k whenever it is summable \N,u n ,v n \ k ,k^ 1. 

Proof. Follows from theorem 1 by putting e n = 1. 

COROLLARY 5 

Let {q n }, {u n } be sequences of positive real constants such that geM, U n = 0(nu^) and 
nu n ~O(U n ). Then the series *La n is summable \N,q n \ k whenever it is summable \N 9 u n \ k , 



Proof. Follows from theorem 4, by putting p n = 1, v n = 1, and making use of lemma 1. 

COROLLARY 6 

If the sequences {p n }, {<?}, {u n }, {v n } satisfy the conditions of theorem 1 except 
(3)-(5), and if p n U n = O(P n u n ) and P n u n = O(p n U n \ then sufficient conditions that Za n s n 
is summable \N 9 p n9 q n \ k whenever it is summable \N 9 u n ,v n \ k9 k^ 1 are 



Proof. Follows from theorem 1. 



References 

[1] Bor H, On two summability methods, Math. Proc. Cambridge Phil Soc. 97 (1985) 147-149 

[2] Bor H, A note on two summability methods, Proc. Am. Math. Soc. 98 (1986) 81-84 

[3] Bor H and Thorpe B, On some absolute summability methods, Analysis 7 (1987) 145-152 

[4] Das G, Tauberian theorems for absolute Norlund summability, Proc. London Math. Soc. 19 (1969) 

357-384 

[5] Sulaiman W T, Notes on two summability methods, Pure Appl. Math. Sci. 31 (1990) 59-68 
[6] Sulaiman W T, Relations on some summability methods, Proc. Am. Math. Soc. (to appear) 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 1, February 1995, pp. 59-71. 
Printed in India. 



Symmetrizing a Hessenberg matrix: Designs for VLSI parallel 
processor arrays 



F R K KUMAR and S K SEN 

Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 
560012, India 

MS received 3 November 1993; revised 19 April 1994 

Abstract. A symrnetrizer of a nonsymmetric matrix A is the symmetric matrix X that satisfies 
the equation XA = A'X, where t indicates the transpose. A symrnetrizer is useful in converting 
a nonsymmetric eigenvalue problem into a symmetric one which is relatively easy to solve 
and finds applications in stability problems in control theory and in the study of general 
matrices. Three designs based on VLSI parallel processor arrays are presented to compute 
a symmetrizer of a lower Hessenberg matrix. Their scope is discussed. The first one is the 
Leiserson systolic design while the remaining two, viz., the double pipe design and the fitted 
diagonal design are the derived versions of the first design with improved performance. 

Keywords. Complexity; equivalent symmetric matrix; Hessenberg matrix; symmetrizer; 
systolic array; VLSI processor array. 



1. Introduction 

A symmetrizer [3, 7, 14, 16, 19, 20] of an n x n nonsymmetric matrix A is the solution 
X satisfying the equations XA = A*X and X = X 1 . A symmetrizer is used in trans- 
forming a nonsymmetric matrix into an equivalent symmetric matrix [14, 20] whose 
eigenvalues are the same as those of the nonsymmetric matrix and is useful in many 
engineering problems, specifically stability problems in control theory and in the 
study of general matrices [14]. 
Let 



'11 



'12 



'22 







'23 








(1) 



be a lower Hessenberg matrix with b iti+1 ^0 for i = l(l)n - 1, where i = l(l)n - 1 
denotes i = l,2,...,n- 1. Also, let x f be the i-th row of the symmetrizer X for 
i = n (~ 1)1. Then, from XB = B'X, we write the serial algorithm [3] as follows 

STEP 1: Choose x n 7^0 arbitrarily. 



60 



F R K Kumar and S K Sen 



STEP 2: Compute x M-1 ,x n ^ 2 ,...,x 1 recursively from 
1 



j = M _l(-l)l 



As an illustration, consider 



3 


-4 








-1 


2 


-4 





2 


-1 


6 


-2 


5 


3 


-2 


4_ 



Choose x 4 = [1 2 1]. x 3 ,x 2 , and then x l are computed following the 
foregoing algorithm. Hence the symmetrizer is 



" 1-8438 


3-8750 


2-0000 


1-0000 


3-8750 


3-2500 


1-5000 


-2-0000 


2-0000 


1-5000 


-5-0000 


0-0000 


_ 1-0000 


-2-0000 


0-0000 


-1-0000_ 



It can be seen that the symmetrizer is not unique because if we choose x 4 = [1 1 1 1] 
then we get a different X. 



2. Leiserson systolic design 

The single assignment algorithm [10] for computing a symmetrizer of the Hessenberg 
matrix B in Equation (1) is as follows. 

for f:= 1 to n do for 7": = to n do read BpJ]; 
for fc: = 1 to n do read X[n, k]; 
for i: = n 1 down to 1 do 
begin 

for j : = 1 to n do Y p,;, 1] : = 0.0; 

for j:= 1 to n do 

begin 

for k:= 1 to n do YpJ,k+ 1]:= Y[U,k] + Xp + U]*J3[/cJ]; 



for p:=i+ 1 to n do YpJ. 



+ 1]:= ypj,n + p] - 
i + 1]; 



write 
end 
end. 

The implementation [6, 15, 17, 18] of this single assignment code a 4 x 4 matrix on 

the Leiserson systolic array depicted in figure 1 is straightforward by using the re- 

; ming technique [10]. The allocation of the diagonals of the Hessenberg matrix to the 

rocessing cells (Type I) of the linear string of processors is as shown in figure 2. The 

nspecified output of PE 5 in figure 1 is ignored while its unspecified input is zero. 



Symmetrizing a Hessenberg matrix 



61 



TO SYSTEM BUS /HOST 



y\ = x ;B 



INTERFACE PROCESSOR AND MEMORY 




PEL Jl'EJ C M^t 



Here X- => elements of veciorXj| ; so do Yj and Xj_j 



a. b . 

1 1 



BASIC CELLS 



OPERATIONS 




x. . 




TYPE I 



x := x. 
o i 



TYPE II 

x := x . + a . b . 
o i 11 



TYPE III 

x := x . / a . 
o 1/1 



if x j= ' 'henx o :=- if a. = . then X Q := x. 

if x .= then * Q '^' and y o - y. if a.= and b.=. then x := x. 



y = y. + a. x. 
o 'i 11 



Figure 1. Systolic array cells system for a 4 x 4 matrix symmetrization. 




Figure 2. Systolic array cell (Type I) allocation for the diagonals of a 4 x 4 Hessenberg 
matrix. 

Figure 3 displays how the pumping of the row vector x i+l and the matrix B into 
Type I cells is done for the matrix-vector multiplication while figure 4 demonstrates 
the array consisting of Types II and III cells to generate a symmetrizer row by row. 
The pumping will be done elementwise in Types II and III cells. The notations 
x "> k^ y |9 in figure 4, each of which has 2n 1 elements including tag bits are given as 



.. = [h.. o b tj o ... o 



62 



F R K Kumar and S K Sen 



X- 



u 


42 


u 


b 33 


u 


b 4l 


U 


b 32 




b 23 




b 




22 


o 


O 


u 31 


b 21 


o 


b !2 


o 







b u 





o 




o 


o 


u 


o 







o 





o 













1 


1 


I 


1 


i 


PE1 ~ 


* PE2 ~ 






" PE5 . 


* PE3 _ 


* PE4 ^ 












(a) Just before the first time cycle 


o 











u 





o 























o 


b 43 


u 


b 3 4 





^42 





b 33 





b 4. 





b 32 


o 


b 23 


U 


b,, 


U 


22 


U 





o 31 


b 2l 





b !2 


u 





o 


^11 





J 


1 


1 


1 


i 


* PE1 . 


^ 





*JL 




PE2 


~* PE3 . 


PE4 


PE5 









o 


yi I 



(b) Just after the third time cycle 



44 



PE1 


u 









X 




o 


PE5 




PE2 




PE3 




PE4 









y 









y 



(c) Just after the ninth time cycle 



PE1 


u 


PE2 


^i. 


PE3 


u 




o 


PE5 






PE4 




o 









o 




o 



(ci) Just after thirteenth time cycle 
Figure 3. 1-D systolic array for vector Hessenberg matrix multiplication. 



and 



= o 



_ x o ... o y\~\ 



This notation is used to conserve space. 

A lower (or upper) Hessenberg matrix of order n needs n + 1 cells of Type I. 
Denoting these cells PE 1 , PE 2 , . . . , PE n+l following the same notation (and connection) 
as in figure 1, the diagonal consisting of only one element b nl is positioned appropriately 



Symmetrizing a Hessenberg matrix 



63 



'22 x} 



* U 32 X" u u 

00 U U 



-b 43 X* 8 pairs 
-b X 4 u u of tag bits 



~ b 44 X 4 7 P airs 7 P airs 

4 of tag bits of tag bits 



"34 




K If u 

X . => elements of the vectorx so does b: : 
l * J 

Figure 4. Systolic array for generating a 4 x 4 symmetrizer row by bow. 

to be pumped into PE l , the next diagonal (just above the foregoing diagonal) consisting 
of the elements b n _ 1 1 , b n2 is allocated to PE2. The third diagonal with elements 
k/i-2 i'^n-i 2'^n3 is assigned to PE 3 and so on. Figure 2 illustrates the allocation of 
the diagonals of the 4 x 4 Hessenberg (symbolic) matrix B = [b. .] to different cells. 
The generalization to an n x n matrix is immediate. However, the diagonals could 
have been allocated in the reverse order, i.e., the diagonal having the elements b 12 ,b 23 , 
i> 34 , -">b n _ 1 n could have been allocated to PE^ , the principal diagonal to PE~ 2 , and 
so on. Both the allocations are functionally identical. We, however, use the former 
allocation. 

In a one-dimensional Kung-Leiserson systolic array [4], the elements of the vector 
x flow from left to right (figure 3) for row vector-Hessenberg matrix multiplication. 
This array consists of Type I cells, viz., inner product step (ips) cells. The matrix 
elements flow into the top and the solution elements appear from the left of the cells. 
Here half the cells are active at any one time. It is, however, possible to orient the 
data flow so that the cells are all active simultaneously [8, 11]. Note that the number 
of cells depends on the bandwidth (number of diagonals) of B and not on the size of 
B. The summation with a negative sign, viz., the result 



of Step 2 of the algorithm ( 1) is computed using Type II cells as shown in figure 4. 
The values y n = x n B,y n _ 1 =x n - 1 B, ...,yi. =\ 1 B to which the results is to be added 
are pumped into the cells from the left while the terms of the summation are pumped 
into them from the top. The single division by b. i+1 is then carried out in Type III 
cell, one of which only is needed to be used irrespective of the size of B. The elements 
of the row- vector of the symmetrizer X which are output rhythmically one after the 
other by this Type III cell are then fed back as indicated in figure 1. This row- vector 
is then used in the computation of the remaining row-vectors of X recursively. 



64 F R K Kumar and S K Sen 

3. Double pipe and fitted diagonal designs 

The Leiserson systolic model [6,9, 12] needs 2n -f 1 cells and 4n + 1 time cycles to 
obtain a row of the symmtrizer. Here we discuss two designs - one called the double 
pipe construction method, based on introducing a second pipe while the other, called 
the fitted diagonal method, on reducing the number of diagonals of the matrix B. 
While mapping the single assignment algorithm in 2, the double pipe design aims 
at minimizing the time complexity while the fitted diagonal design the number of 
cells. 

3.1 Double pipe construction method 

This method [18] uses n + 1 cells comprising two pipes - the first one consisting of 
odd labelled cells P 1 ,P 3 ,..., while the second one the cells PE 2 ,PE 4 ,..., where 
n is the order of B; in addition, it uses one adder and one delay cell (figure 5). It 



computes a symmetrizer B in 



time cycles where f ] indicates the upper 



integral part. The double pipe concept increases cell efficiency and removes tag bits. 
It minimizes the hardware delay that exists before the start of actual computation. 
The data flow and the architecture of the n + 1 cells are illustrated in figures 6 and 
8, respectively. 

Split the Hessenberg matrix B i.e., write B = Bl 4- B2. Bl contains only odd 
diagonals of B, where the first diagonal contains only the element b ni , the second 
the elements b n _ ll ,b n29 and so on while B2 the even diagonals. The remaining 
elements of Bl and B2 are zero. Since x B = y f , we have x (Bl + B2) = y . If we allow 
x.Bl = y B1 and x.B2 = y B2 then y B1 + y B2 = y.. Figure 6 depicts the flow and com- 
putation of y B1 and y B2 . The array needs no dummy elements, viz., the tag bits. Pipe 1 

cells. Pipe 2 requires (n + 1) - ips cells. The time complexity 

* u - ^ fw+H 1 f 5n + 3 l 
to obtain a row is 2n + -f 1, i.e., . 



contains 



b 41 b 42 b 43 b 44 b 34 




b 31 b 32 b 33 b 23 






b 21 b 22 b 12 


> 


' , 




1 ' 


11 l 




jfri 
















.J 


m\ 




PEl 






PE3 






PE5 "* 














\ 




< " ' 
















s~\ 


PE2 




PE4 




-H>FI \vi*e 

















Figure 5. Double pipe array for vector Hessenberg matrix multiplication. 



y = y + b-i\, v = v 
I I 1 2t2 "2 '2 



* V i y i + bit X 3 v = v + K x 
1 ! 31 *2 *2 b 222 



*3 b 32 



v = v 
'3 '3 



^3 -3 b 43 4 y^x y 4 +b J4 3 



V = V 

"4 "4 



Figure 6. Data flow for double pipe method. 



J 42 



43 



32 
h 22 

b 21 

b, 



D 34 


b 23 


b, 2 







4 




I 




1 


x 








. 










y 















i 


f 


* ^ 1 * d 


v 

' 3 




X A ^AA 




X 3 




- V 4 








Figure 7. Fitted diagonal method and data flow. 



66 



F R K Kumar and S K Sen 




. . .. 

1 1 1J 1 



Figure 8. Architecture of ips cells for Leiserson and double pipe methods. 

3.2 Fitted diagonal method 

This method [15] consists in halving the number of diagonals, and hence the number 

of ips cells used is half of that required in the double pipe method. The number of 

i -I 

diagonals can be reduced to - by fitting two adjacent diagonals into one. 
Let d k+ 1 and d k be two adjacent diagonals, of JB, of length k + 1 and k, respectively 



A fitted diagonal A f is defined by interleaving the elements of d k+1 and d k , as 



where length (d,) = length(d fc+ x ) + length(dj = 2k + 1. 

Therefore, if the bandwidth n -f 1 of B is even then B is transformed to fitted diagonal 

v\ -4- 1 

matrix B F with bandwith - . For a 5 x 5 Hessenberg matrix B = [6 r ], 



b 2l 



Sl 



34 



'54 



55_ 



Symmetrizing a Hessenberg matrix 



67 



the bandwidth is odd then B F will have 



n- 



+ 1 fitted diagonals where the 



diagonal is fitted with one additional diagonal of - zero elements. For a 4 x 4 
enberg matrix B, 



B F = 



'43 



gure 7 illustrates the fitted diagonal method for a 4 x 4 Hessenberg matrix. A 
ction in the number of PEs in this method necessitates some minor modifications 
e ips cells. Each of the input vectors x. +1 and that of the output vectors x. = y 

: be kept in each of the PEs for two time cycles as shown in figure 9. 



time complexity is the same as that for Leiserson systolic model but the number 
Es is + w, where the last n PEs do the same job as the last n PEs in 

:rson systolic model of figure 1. This number is about 75% of those required for 
;onventional Leiserson systolic model. If (n -f 1) is odd the diagonal left is fitted 




Here all the gates are multi-input gates 
Figure 9. Architecture of ips cell for fitted diagonal method. 



68 F R K Kumar and S K Sen 

Table 1. Time complexity for a row and number of PEs for the designs. 



Method 


Time complexity 
Number of PEs (for computing a row) 


1. Leiserson 
Systolic 
Method 


w 1 =2n+l 


w,+2 




2. Double 
Pipe 
Construction 


w 2 = 2n + 3 


. + f^ 


! 1 


3. Fitted 
Diagonal 


Tn-hll 

w I _L, IT 


w 3 + 2n 




3 1 2 r n 



-*>22 X^ 



32 X* o o 

O 01) 






PE6 



-b 



43 



JLJL jM 




34 




X. => elemen ts of the vector X ; so does b: 
Figure 10. Modified systolic array for generating a 4 x 4 symmetrizer row by row. 



with an additional diagonal of null elements. However this reduction in the number 
of processors needs some minor modification required for the processing elements. 
The first (n + 1) PEs owing to the elements of vectors x and y must be kept in each 
processor for two clock cycles. The time complexity is the same as that of Leiserson 



systolic model but the number of processors is 



n+n 

r 



which is roughly half of 



that for conventional Leiserson systolic model. 

We present, in table 1, a comparison of time complexity to compute a row of the 
symmetrizer and number of PEs for the proposed three designs. 



Symmetrizing a Hessenberg matrix 



69 




8L 



70 E R K Kumar and S K Sen 

4. Scheduling and total time complexity 

In the Leiserson systolic model, computation of a row of a symmetrizer requires 
2/i + Wi time cycles (where w 1 =2n-f 1). Repeating this process for all the rows 
independently, the total number of time cycles required is (n l)(2n + w x ). Even 
though this total number of time cycles is O(n 2 \ it is still expensive. After w 1 -fn 
time cycles Type I cells (figure 1) are totally idle. A new pumping process is scheduled 
every w x + n time cycles. Therefore, the total number of time cycles to obtain the 
symmetrizer is T l =(n l)(n + w x ) 4- n which reduces the number of time cycles by 
n 2 - 2n. 
The same number of time cycles T is required in fitted diagonal method even 

though, in this case, number of PEs is reduced by , compared to that in Leiserson 

systolic model. Similarly, in the double pipe construction method, the symmetrizer 
is computed with the number of time cycles T 2 = (n 1)1 4- (n -f 3) 

If we use programmable systolic chip, then Types II and III cells are modified as 
in figure 10 and the cells architecture is as depicted in figure 11; Type II cells (except 
the last) have two output gates. The switch value is always assigned zero. The controller 
sets one for particular clock counter values, e.g., for Leiserson model of 4 x 4 matrix 
symmetrization, the processor PE6 controller sets the switch value one from 6th time 
cycle to 12th time cycle so that the data is pumped to the division cell directly. 
Type III cell gets input from any one of the gates. This modification reduces the tag 
bits in Type II and III cells. It also reduces the time complexity by (n ~2)(n 3)/2. 



5. Conclusions 

The systolization procedures, i.e., all the three designs can also be easily extended to 
the general serial algorithm [14] to compute a symmetrizer of an arbitrary square 
matrix. The bandwidth will, however, be more. We hope that such a systolization 
will enormously reduce the complexity of computing an error-free symmetrizer [19, 
20]. This error free symmetrizer will produce a more accurate equivalent symmetric 
matrix [14, 19] than what an approximate one does. It can be seen that when a real 
non-symmetric matrix has one or more pairs of complex eigenvalues then the 
equivalent symmetric matrix will be a complex one, Jacobi-like methods [1, 2, 5, 13] 
have been developed for computing eigenvalues, some of which are complex, of a 
complex symmetric matrix. These methods obviously make use of the "symmetry" 
property which results in a significant reduction in computation. 



Acknowledgement 

The authors thank the referee for his comments which have significantly helped in 
revising the paper. 



Symmetrizing a Hessenberg matrix 71 



References 

[1] Anderson P and Loizou G, On the quadratic convergence of an algorithm which diagonalizes a 

complex symmetric matrix, J. Inst. Math. Its Appl 12 (1973) 261-271 
[2] Anderson P and Loizou G, A Jacobi-type method for complex symmetric matrices (Handbook), 

Numer. Math. 25 (1976) 347-363 

[3] B N Datta, An algorithm for computing a symmetrizer of" a Hessenberg matrix, (unpublished) 
[4] Dew P M, VLSI architectures for problems in numerical computation, (ed.) D J Paddon, Super- 
computers and Parallel Computation, New Series No. 1 (ed.), The Institute of Mathematics and Its 

Application Series, 1984 
[5] Eberlein P J, On the diagonalization of complex symmetric matrices, J. Inst. Math. Its Appl. 1 (1971) 

377-383 
[6] Evans D J, Designing efficient systolic algorithms for VLSI parallel processor arrays, Parallel 

Architecture and Computer Vision, 1988 
[7] Krishnamurthy E V and Sen S K, Numerical algorithms: Computations in science and engineering 

(1993) (New Delhi: Affiliated East- West press) 

[8] Kung H T, Why systolic architectures?, IEEE Comput. 16 (1982) 37-46 
[9] Kung H T and Leiserson C E, Systolic arrays (for VLSI), (eds) I S Duffand and G W Stewart Sparse 

Matrix Proceedings 1978, 256-82; SI AM (1979) 

[10] Kung S Y, VLSI Array processors (1988) (New Jersey: Prentice-Hall, Englewood Cliffs) 
[11] Kung S Y, Arun K S, Gal-Ezer R J and Bhaskar Rao D, Wavefront array processor: language, 

architecture, and applications, IEEE Trans. Comput. C31 (1982) 1054-1066 
[12] Mead C and Conway L, Introduction to VLSI systems (1980) (Reading, Massachusetts: Addison- 

Wesley) 
[13] Seaton J J, Diagonalization of complex symmetric matrices using a modified Jacobi method, Comput. 

J. 12 (1969) 156-157 
[14] Sen S K and Venkaiah V Ch, On computing an equivalent symmetric matrix for a nonsymmetric 

matrix, Int. J. Comput. Math. 24 (1988) 169-80 
[15] Suros R and Montagne E, Optimizing systolic networks by fitted diagonals, Parallel Computing 4 

(1987) 167-174 
[16] Taussky O, The role of symmetric matrices in the study of general matrices, Linear Algebra Appl. 

5 1(1972) 147-154 

[17] Ullman D J, Computational Aspects of VLSI, (1984) (Standford Univ.: Computer Science Press) 
[18] Uwe S and Lother T, Linear systolic arrays for matrix computations, J. Parallel and Distributed 

Computing 1 (1989) 28-39 
[19] Venkaiah V Ch and Sen S K, Computing a matrix symmetrizer exactly using modified multiple 

modulus residue arithmetic, J. Comput. Appl. Math. 21 (1988) 27-40 
[20] Venkaiah V Ch and Sen S K, Error-free symmetrizers and equivalent symmetric matrices, Acta 

Applicande Mathematicae 21 (1990) 291-313 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 1, February 1995, pp. 73-98. 
Printed in India. 



Control of interconnected nonlinear delay differential equations in 



E N CHUKWU 

Mathematics Department, North Carolina State University, Raleigh, NC 27695-8205, USA 

MS received 1 September 1993; revised 26 September 1994 

Abstract. Our main interest in this paper is the resolution of the problem of controllability 
of interconnected nonlinear delay systems in function space, from which hopefully the 
existence of an optimal control law can be deduced later. We insist that each subsystem be 
controlled by its own variables while taking into account the interacting effects. This is the 
recent basic insight of [13] on ordinary differential systems. Controllability is deduced 
for the composite system from the assumption of controllability of each free subsystem 
and a growth condition of the interconnecting structure. Conditions for a free system's 
controllability are given. One application is presented. The insight it provides for the growth 
of global economy has important policy implications. 

Keywords. Large-scale systems; delay equations; decentralized control; growth of capital 
stock; depression. 



We motivate the problem with a simple economic system derived by Kalecki [24] 
and reported in [1]. He argued that the dynamics of capital stock x(t) of a firm is 
given by 

x(t) = a x(t) + a^(t - fc) + bu(t\ (1.1) 

where a i9 i = 0, 1, are constants, bu(t) is a sum of two terms a constant multiple of 
autonomous consumption and a trend term. The crucial assumption for (1.1) is that 
the net capital formation x(t) is given by I(t\ the investment function. To obtain (1.1), 
Kalecki assumes that the investment decision B is given by 



where a, c, k are constants, is a windfall which may be time varying. The income 
(or output) is y, x(t) denotes the stock of capital, and e is the trend term. The delay 
h represents the time lag between the decision to invest and the deliveries of capital 
equipments. One can interpret (1.1) as a system whose growth can be controlled by 
autonomous consumption and windfalls. For example one can ask whether it is 
possible to grow from a 3% growth rate x(i) = 3t/100 = <(t) te[ h, 0], to 10% growth 
rate, x(t+ T) = Wt/lQQ = \j/(t\ te[-/i,0] in time T, by using u as a control. To 
motivate a nonlinear system of the form (1.1) which is interconnected by the so-called 
"solidarity" function inspired by [14], [20], [21] we argue as follows. Let Z denote 
aggregate demand consisting of consumption (C), investment (I), net exports (X) and 
government outlay (G). These differentiable functions are related as follows: 

(1.2) 

73 



74 EN Chukwu 

where 



(1.3) 

and y T is the current after-tax income, 

r=r +/ 1 (y). (1.4) 

T >0 is the level of non-income taxes, and f^y) is the income taxes. 

, e L >0. (1.5) 



the part of income that is spent on other countries' products, X is autonomous 
net exports, and R is the real rate of interest. Public expenditure is 

G = / 3 G>(r-/0) + i;(r), (1.6) 

where / 3 is public consumption which is dependent on the previous high income, 
and v(t) public investment. Investment is autonomous, i.e. it does not depend on 
income, but on "animal spirits" of entrepreneurs: 

I(r) = Io(0- (1-7) 

Thus 

Z(t) = (Z (t) + f 3 (y(t - h)) + v(t) + cy(t) - cT Q (t) ~ cf^y) - f 2 (y(t)} - e, R, 

(1.8) 

where Z (t) = I -f X -h C . From the model equations of money demand and supply 
[14] we deduce that 

"HHA- 

since 



where fc is a fraction of income, r > is measured in dollars. Here M is the nominal 
value of money supply which is controlled by the Central Bank, P is the price level. 
The real demand for money is denoted by L/P. The symbol j is autonomous real 
money demand. With R in (1.9) we deduce that 



/ e k\ 
Z(t) = Z (t) + y(t)l c - j + f 2 (y(t-h)) - 



Following Allen [1] we postulate that -dy(t)/dt= - X(y(t)-Z(t)\ where /I is a 
constant. Thus 



.v(r)=-A(l + ^-, 

; - /r)) + fl I fl _y I + ^(f) + ; iZo ( f ) _ l c T (t). (1.10) 



Delay differential equations in W ( ^ 75 

Denote "solidarity functions," by 

^ -cT (t) + ( 
f "o 

d "private initiative" by 



en the dynamics of income is 

( e k \ 
y(t) = - A^ 1 + -|- - c\y(t) + A(c/i(y(t)) + f 2 (y(t)) + Jl/ 3 

' +PW + 0W- (Lll) 

[t is an interconnected nonlinear system whose controllability is investigated for 
values of p and q. The type of result which we shall prove in Theorem 2.2 when 
plied to the special system (1.11) will now be stated. 
Suppose 



(l.lla) 



1 B(t)u(t) = p(t) + <?(0; then the dynamics of gross national product is 

e k 
1 + _i_ __ c 



s possible for national income to be controlled by w, a combination of government 
1 private controls. Using this, for example, we can steer a growth rate of 3% i.e., 
[t) = 3r/100, *[- /z,0], to a growth rate of 10%, \j/ 2 (t + T) = 10r/100, re[- /i,0], 
;ime T provided 



B(t) * on [T- *, T], B(t) * 0, re[0, T- *] 
(Condition (ii), Theorem 2.2), 



< 00, 



the combined effect of the coefficient of solidarity and private initiative is "strong", 
I nontrivial. This is (iii), Theorem 2.2, the condition of the essential uriforni 
mdedness of the generalized inverse of B(t). 

Also there is a condition of how big q should be compared with p(t): Theorem 2.4 
(ii), see Remark 2.4: "private initiative" should dominate "solidarity". 

t is proper to consider x i (t) = (x[(t) 9 ...,x i n (t)) to be the value of n capital stocks 



76 EN Chukwu 

with strategy u l = (u\ ...wj,), Bw l '(0 = P;W 1 ^ w}(0 < 1, which is located in an isolated 
region S f . They are linked to / other such regional systems in the country and the 
"interconnection" or "solidarity functions", or government intervention givenby 



Here q t describes the action of the whole system on its fth interconnected subsystem 
(St\ 

x l (t) -A^x\t - h) = 4 jc'(t) + A^t ~-h) + Bu l (t). (S^ 



Thus 

1 x i (t-h) + B i u(t) + q i . (1.12) 



Thus formulated we are interested in using the firms strategy u l and government 
interventions q t to control the growth of capital stock on which the wealth of a nation 
depends. Theorems 3.1 and 3.2 can be stated loosely as follows. If a regional economy 
is well behaved, carefully weighted government interventions q t can maintain the 
country's economic growth. Even if a regional economy is not controllable the 
intervention of solidarity function can render the system controllable. (See Remark 3.1 
and Theorem 3.2.) Implications of controllability questions for the control of global 
economy are pursued elsewhere in [5], [8]. The issue of optimality is apparent in [8]. 



1. Introduction 

For linear free systems, criteria for W ( 2 } controllability have been provided in [2]. 
For nonlinear cases a similar investigation was recently carried out in [8]. Recently 
Sinha [16] treated controllability in Euclidean space of large scale systems in which 
the base is linear. We extend the scope of the treatment in [16] by treating large 
scale systems with delay when the state space is W and the base system is not 
necessarily linear. We state criteria for controllability of the free subsystem by defining 
an L 2 control that does the steering both in the linear and nonlinear case. We prove 
that such a control exists as a solution of an integral equation in a Banach space. 
For this, we use Schauder's fixed point theorem. Assuming that the free subsystem is 
controllable and the interaction function has a certain growth condition we prove 
the controllability of the interconnected system. 

We begin with a simple system. A linear state equation of the z'th subsystem of an 
interconnected control system can be described by, 

x l (t) = A^x^t) + A 2i x l (t - h) + A 3i y l (t) + A 4i y l (t -h) + B t u l (t\ (1.13) 

where x l (t)eE nt is the n r dimensional Euclidean state vector of the fth subsystem, 
u t eE mi is the control vector and A u A 2i B t A 3i A 4i are time invariant matrices of 
appropriate dimensions. Also, y l (t) is the supplementary variable of the ith subsystem 
and is a function of its own Euclidean -state vector x l (t) and other subsystem state 
vector x j (t) ; = 1, ...,/. We express this as follows: 

i 
y l (t) = M,,x'() + Z M.jX^t) (1.14) 

where M u , M.. (j = l,2,...,l, j ^ i) are constant matrices. 



Delay differential equations in W ( ^ 77 

By substituting (1.14) into (1.13) we obtain the state equation of the overall 
interconnected system, 



where 

H i = A U + A 3i M ii> G i= A 2l' 

i 



In (1.15), m f (t) and e ( (t /i) describe the interaction, the effects of other subsystems 
on the z'th subsystem. This can be measured locally. The decomposed system (1.1.5) 
can be viewed as an interconnection of / isolated subsystems 



x'(t - h) + B M (t), 
with interconnection structure characterized by 



which does not depend on the state variables x l (t). 
We now consider the more general free linear subsystem, 



and the decomposed large scale system, 

x i W = L.( ) x;) + B i .u i () + ^.(t,-/ l ), 
x = f,J =!,...,/, (/,) 



k where 



L.(t,xj)= f 

J-A 



We assume B.(t) is an n. x m. continuous matrix. The linear operator (/>->L.(t, 0) is 
described by the integral in the Lebesgue-Stieltjes sense, where (t,0)-f/ (,i?) is an 
n. x n. matrix function. It is assumed that ->^(, 0), te, is continuous for each fixed 
0e[ /z,0] and O-^ri^O) is of bounded variation on [ /t,0] for each fixed te. 
Also, ff (f, 0) = 0, 9 ^ 0, fy (t, 6) = ^(r, h\6^h and -> iy E .(t, 0) is left, continuous 
on ( h, 0). It is assumed that 



where p.(t) is locally integrable. These conditions also hold for r\ ir 

Throughout the sequel E r is the r-dimensional Euclidean space with norm |-|. The 
symbol C denotes the space of continuous functions mapping the interval [ /i,0], 



78 EN Chukwu 

h > 0, heE into E n with the sup norm || ||, defined by || || = sup |<(s) 

-h^s^O 

The controls are square integrable functions tieL 2 ([<Mi],JE w ), t^E, t^xy and 
L 2 is the space of measurable functions u defined on finite intervals [Mi] for which 
\u\ 2 is summable. If re[tr, tj, we let x t eC be defined by x,(s) = x(t -f s), /i < s < 0. 
With L 2 as the space of admissible controls, the state space is either E n on W ( \ the 
Sobolev space of absolutely continuous functions x: [ /i,0]-^" with the property 
that t-+x(t)<=L 2 ([-h,0],E n ). Thus if or, teE and fieW^d-h^lE*), u'eL^Mj, 
mi ) there is a unique absolutely continuous function x (% a, (f>\ u l ) = x f :[a h, tj] ~~> F" 
which satisfies (L.) or (/.) a-e on [cr,^] and the initial condition x^ = whenever 
the earlier conditions in rj., ^ and B i are satisfied. Also xj(', <r, , u^e^ 1 } ([- /i,0], n O 
forteCMj. 

DEFINITION 1.1 

The system (L f ) is controllable (respectively Euclidean controllable) on the interval 
[Mj if for each </ f , ^eW^^C- /i,0],E Wf ) (respectively ^ 6^ ( 2 1) ([- /i,0], w O), xJeJE" 1 , 
there is a controller M l "eL 2 ([cr ) t 1 ], mt ) such that x^(% a, ^', w l ") = </> f and xl^cr^u 1 )^^ 1 
(resp ^(f^tr,^,!^) = **!) If (L.) is controllable on every interval [a,tj, ^ >cr-f-/i, 
we say it is controllable. If (L.) is Euclidean controllable on every interval [or, tj], 
t i > o we say it is Euclidean controllable. For the free subsystem (L.) the following 
controllability theorem is available in [2, p. 616]. 

PROPOSITION 1.1 

In (L.) let B*(t) denote the Moore-Penrose generalized inverse of B.(t), teE. Assume 
that f-B. + (t) is essentially bounded on [t^h^t^. Then (L.) is controllable on an 
interval [cr, tj] wit/i t i >a + h if and only if 

rank B.(t) = n. on [t x fc, 1 1 ]. 
An easy adaptation of the argument in [2] yields the following result on the system (/;). 

Theorem 1.1. Consider the interconnected decomposed system (/.) in which Bf(t) is 
essentially bounded. Suppose 

rank B t (i) = n. on [t l h 9 t l ]. 
Then (/ f ) is controllable on [cr, tj, t x ><r + h. 

Proof. Let ^ f (t,s) be the fundamental matrix solution of 



Then 



has rank n i9 so that (7 ) is Euclidean, controllable. Here B* is the algebraic adjoint 
of A This is proved by letting fieW*? = H* 2 1} ([- fc.0], "'), x^eE 11 /, and by defining 
a control 



Delay differential equations in W ( } 79 

. -*(* (7, 0,0) 



pi-* -1 

L l * 1 ' s0iS ' s s j' 



s x l '(t, <r, </>,0) is the solution of (L ) with u l = 0. Using the variation of parameter 
Aerifies that u l indeed transfers 4> l to x[ in time ^ h. Thus there is a control 
2 ([<r, tj - h], m ') such that x (^ - fe, <r, 0, u') = \I/ L (- h). We extend u l and x f to 
iterval [a,^] so that 



>n [ti - Mil To do this note that 



^(t,a-t)^ 

Jri-/t 



ow define 



r 

+ j tl _^ yt ' a 

'-+/- * p 1 "* 
* I i ^ ' * j t _ A ' ' a 

r ' 
j,,-' / '' ' a 

v r , M i/ t , f 1 '* / 

+ X >/ y (t, /t)x-'(t h) + \ f/ y (, a t)x 

jj* \ L J t~~h 

"' + f ' 

Jti-fc 



! h ^ t ^ t l . Because of the smoothness properties of x 1 , x j and \l/\ u l is indeed 
opriate. Thus the controllability of the composite system can be deduced from 
of the subsystems so long as the interconnection is as proposed. We now turn 
attention to the nonlinear situation. 



80 E N Chukwu 

2. Nonlinear systems 

Consider the general nonlinear large scale system, 

x(t) = /(f, x t , u(t}) + B(t, x t )u(t) + g(t, x t , v(t)), (2. 1) 

where /: x C x m ->E" is a nonlinear function #:E x C x E m ~+E n is a nonlinear 
interconnection and the n x m matrix function B:ExC->E nXm is possibly nonlinear. 
Conditions for the existence of a unique solution x(% or, 0, M), when weL 2 , 0eC([ h, 0], 
") are given in Underwood and Young [18]. It is shown there that (</>, u) - x t (" o" 5 w)eC 
is continuously differentiable. These conditions are assumed to prevail here. Indeed 
we have, 



Lemma 1.1. For t/ze 5ysrem x(t)=f(t 9 x t9 u(t)) -f B(r,x t )w(t) assume that 

(i) : x C-> nXm is continuously differentiable. 
(ii) TTiere exist integrable functions N h N t :E-^[0 9 oo), i = 1,2, SMC/I 



/or tsE anrf (/>eC([- /i,0],E n ). Here an<i in t/ie s^ue/ D^( ) is the Frechet 

derivative of g with respect to the ith variable. 
(in) /(t, v) is continuously differentiable for each t. 
(iv) /(, 0,o)) is measurable for each <j> and CD. 
(v) For each compact set KaE n there exists an integrable function M f :E-[0, oo), 

i = 2, 3 such that 



l|D 2 /(t,^G))||<M 3 (t) VteE, 
Then for each ueL 2 there exists a unique solution x to 



Remark 1.1 Note that 
we have 



The system (2.1) may be decomposed as 



B t (t, x? t )u l (t) + ^ y (t, xf, t? (t)), i = 1, . . . , I, (2.2) 



where 



Let 

Z i = w Z m i . = 



Delay differential equations in 

[/(t, x,, )] T = [(/, (t, x, 1 , u 1 )) T ,. ..,(f,(t, x l , u') T ], 

/ 
g i (t,x,,v i (t))= 



81 



t, x,, t/) = [ 01 (t, x, 1 , v 1 (0) T , . . . , te,(r, xj, i>'( 



ten we can view (2.1) with decomposition (2.2) as an interconnection of / isolated 
bsystems (S ; ) described by the equations 

( (t s x l V(tX (S f ) 



th interconnecting structure characterized by 

9i (t, x t , v'(t)) = t g. .(t, x/, D f (t)) = g t (t, x,, v'(t)). 



mditions for the existence and uniqueness of solutions are assumed. In particular 
^^i(t,x t ,v l (t)) is assumed integrable. 

First we shall state the conditions for controllability of each isolated subsystem 
To do this we define a matrix H t : 



H.= 



(L) 



r each <'eC([- A,0], n ') = C ni . Here B* is the transpose of JJ.. 

leorem 2.1. In (S^ assume that 

i) there is a continuous function N* t (t) such that ||JJ*(t,^')|| ^ JV*.(t) V^'eC 11 '; 
i) H t - in (L) tos a bounded inverse', 

i) /zere exist continuous functions G.^C" 1 ' x E m ^E + and integrable functions 
:E^E + j = l,...,q such that 



r a// (t, (j),u(t))eE x C nf x mi , w/zer^ t/ie following growth condition is satisfied: 



limsupr- 



j=l 

hen (Si) is Euclidean controllable on [cr, ^]. 

emar/c 2.1 Condition (iii) is a growth condition which should be compared to a 
liform bound imposed on /by Mirza and Womack [15, Theorem C] when treating 
slay equations. Such growth conditions have a long history: see [9, 4, 3, 22]. In 
] one sees the consequences of the growth condition. 



82 EN Chukwu 

Proof. Let fie W ( }\ x\eE n '. Then the solution of (S,.) is given by 
xty + ffJ-MX te[-fc,0]; 

i (s))ds+-fB i (s,xi)u i (5)d S , t*a. (2.3) 

J <r 

Now define a function u* on [cr,^] as follows: 

(2.4) 



where x'( ) is a solution of (S ) corresponding to u l with initial function <t> 1 . Such a 
solution exists as earlier remarked if w exists as an L 2 function. Since t-^BfaQ) is 
continuous, w', as defined, is L 2 . Introduce the following space 



with norm h 

IIOMII = li4>ll + iNl2, (<M)eX, ? 

where 

ati \l/2 

|u(s)| 2 ds ) . 
T / 

We show the existence of a positive constant r , and a subset A(r ) of X such that 

where 

^i(*i> r o) = {^[ Mi]-*^ 1 " continuous = <, ||J ^^relV,^]}, | 

42(*ir ) = {t*eL 2 (0,t 1 [,E m O:(i)ltt(t)|<r a.e. i* 1 ^[cr,^] and 

fi 
(ii) | tt (t + s) tt(r) \ 2 dt -* as s -> uniformly with t 

Jar 

H 

respect to ueA 2 (t 1 ,r )}. 

It is obvious that the two conditions for A 2 ensures that A 2 is a compact convex 
subset of the Banach space L 2 ([1 1, p. 297]). Define the operator Ton X as follows: 

where 



I /(*, X^ M (5))ds + f ' B (S, Xj)(5)d5, 
Jar J<r 



^ CT, (2.5) 

(2.6) 

Obviously the solutions x'(-) and u (-) of (2.3) and (2.4) are fixed points of T; i.e., 
T(x\ u l ) = (x\ u l ). Using Schauder's fixed-point theorem we shall prove the existence 
of such a fixed point in A. Let 



G y (r) = sup {G y (0', W ''): || (<l>\ u l ) \\ < r}, 



Delay differential equations in W ( ^ 83 

where G^. are defined in (iii). Because the growth condition of (iii) is valid there exists 
a constant r > such that 



or 



See a recent paper by Do [22, p. 44]. With this r define A(r ) as described above. 
To simplify our argument we introduce the following notation: 

(t 1 -a), 1}, 



a = 



If (x'.a'Jeyl^oX from (2.5) and (2.6), we have that 

j " f a/s)Gy(jcJ, u'(s))ds I 

f f " a.(s)G y (r )dsl 

J*! Jr J 



Also 

rtl aj (5)G..(X s ,M(s))ds 



< ^o + ^ = 2ro 
We now verify that 

f 11 - 2 

} ff 

uniformly with respect to veA 2 (t l ,r Q ). Indeed 

f' 1 f' 1 

j. vt * s vt ^L 



as 



where 

I- \' 1 ffax^uWds 

j ^ 



84 



E N Chukwu 



Because t -> B*(t, x t ) and t - x t are continuous, we assert that indeed fc \v(t 4- s) v(t)\ 2 
dt ->0 as s->0. This proves that i?e/4 2 and we have completed the proof that T maps 
A(r Q ) into itself. We next prove that T is a continuous operator. This is obvious if 



are continuous since w -*(,) is continuous. To prove continuity in the general 
situation we argue as follows. Let (x l 9 u l \ (x ri ,u fi )eA(r ) and T(x i 9 u i ) = (z(t) 9 v(t)) 9 
T(x' l ",w'') = (z'(t),z/(t)), where v(t) is as given in (2.6) corresponding to u l and v'(t) is 
also given by (2.6) corresponding to w f . Also z(t) is given in (2.5) corresponding to u l 
and z'(t) corresponds to w. Then 



\v(t)-v'(t)\ 2 = 



- Bf(t, 



- / i ( Sj x7,w(s))ds 



B*(t,xJ") [" 

Jff 



(2.7) 



f 

J<T 



|/ f (s,x7,w(s))| 2 ds 



Since m-B*(t,x^) and u->/.(t,x",u) are continuous given >0, there is a fj>0 
such that if |u - w| < r, then |B*(t,j - B*(t,x; w )| < E, and |/.(t 5 xj u ; u) -/.fexj 1 ", w)| < e, 
tefV.tJ. Divide the interval [ff,tj] into two sets e x and e 2 ; put the points at which 
\u(t)-w(t)\<ri to be e! and the remainder e 2 . If we write ||u-w|| L2 = y, then 
T 2 = f;l(f)-wW| 2 dt5=J e2 iu(t)-fflWI 2 d^^ 2 mese 2 so that mese 2 <y 2 /?7 2 . Consider 
the integral 



1 = 



Then 



4v 2 



Delay differential equations in 

for some R. This last estimate is deduced from the fact that if (x, w), (x', u f )eA(r ) this 
implies that sup{/ t -( )} < K, for some jR. 
On using this last estimate in (2.7) we deduce that if \u w| < rj; then 



Thus 

!b-'H 2 = ws)-t/(s)| 2 ds 



v 2 /? 2 f' 1 1 

^- N*(s)ds . 

^7 Jcr J 



Because y 2 = ||u w|| 2 and JV*. is integrable i; and v' can be made as close as 
possible if u and w are sufficiently close. We next consider the term |z(t) z'(t)|. We 
have 



+ 



||B (s,x J )-B (s,x' f )|||i;(s)|ds+ 



Because of this inequality and an argument similar to the above, z, z' can be made 
as close as possible in A i if u, w are sufficiently close. We have proved that T is 
continuous in w. It is easy to see that T is continuous in x, the first argument, and 
thus, by a little reasoning based on the continuity hypothesis on / 4 and B h that T(x, u) 
is continuous on both arguments. 

To be able to use Schauder's fixed point theorem, we need to verify that T(A(r )) 
is compact. Since A 2 (t 1 ,r ) is compact we need only verify that if (x,u)eA(r ) and 
(z, v) = T(x, u) then z as defined in (2.5) is equicontinuous for each r . To see this we 
observe that for each (x,u)eA(r ) and s 1} s 2 e[<M 1 ], s 1 <s 2 , we have 



< ft I |s 2 - Sl I + I" /s)G v (r )ds (2.8) 

HGy(r )|s 2 -sj 



86 EN Chukwu 

In the above estimate we have used the fact that ft = max ||fi.(s,0)||, and 



It now follows that the right hand of (2.8) does not depend on particular choices of 
(x,). Hence, the set of the first components of T(A(r )) is relatively compact. Thus 
T(A(r Q )) is compact which by an earlier remark proves that T is a compact operator. 
Gathering results we have proved that T:,4(r )-,4(r ) is a continuous compact 
operator from a closed convex subset into itself. By Schauder's fixed point theorem 
there exists a fixed point (x, u) = T(x, w), given by (2.3) and (2.4). 



r/ (s,xX(5))ds+ r 

J <r J <r 



Euclidean controllability is proved. 

We now consider the criteria for controllability in W\ for the system (SO- 
It is well known that with L 2 controls the natural state space of (2.1) is 
Conditions on existence and uniqueness of solutions of variants of (2.1) are treated 
by Melvin [27, 28] and recently by Chukwu and Simpson [29]. Since the optimal 
control of the linear system has been extensively studied in W ( ^ it seems appropriate 
to treat the nonlinear case. The growth rate we desire in economics is a function. 

Theorem 2.2. In (S t ) assume 
(i) Conditions (i) and (Hi) of Theorem 2.1. 



(ii) ranfc[B f (t,] = n. on [t, ~h,tj for each 

(iii) The Moore Penrose generalized inverse of ., Bf (t,)-is essentially uniformly 

bounded on [t l h 9 t l ] 9 for each eC te[t l h 9 t l ]i 
(iv) -.+ (,) is continuous. 

Then (S^ is controllable on [a, r^, with t^xr + h. 

Proof. First we show that (S f ) is Euclidean-controllable on [Mi -ft]- For this we 
let ^'eW, x\eE". The solution x (0 of (S ) with x' ff = (^ is given by (2.3). Since 
hypothesis (ii) is valid, the matrix B i (t l -h 9 x i ti _ k )Bf(t 1 -h 9 ^ ti _ h ) (where B*( ) is the 
algebraic adjoint of .( )) has rank n r Since t-.(t,xp is continuous, there exists 
some e > such that for each s, ^ s < e, B.(t 1 - h - s,x* ti _ h _ s )B*(t l -h-s, x l ti _ h _ s ) 
has rank n r As a consequence of this 



' B(s,x s )B*(s,x s )ds+ ^ " B(s,x s )B*(s,x s )ds 

Jti-h-e 

has rank n h since the last integral is positive definite and H^ - h) is positive 
semidefinite. By Theorem 2.1, (S f ) is Euclidean controllable on [cr,^ - ft], t x > a 4- h, 
so that given any f , ^eW there exists a u i 6L 2 ([a 5 t 1 -/i], mi ) such that the 
solution of (Si) satisfies x l ff = 1 ", x'(* ; - /i, tr, <^ f , w f ) = ^ f ( - /i). We conclude the proof 
by extending M and x f (% a, <', u ) = x f ( ) to the interval [<r, fj t l >o -f /i so that 



Delay differential equations in W ( * } 87 

^(t - *! ) = /,(*, *;', u l (f)) + JB,(t, x t V(*X (2.9a) 

5. on [t x ' /i, tj, where X'*(T) = ^'(T f j), f j fc < T < f t on the right hand side of 
.9a). Because of the rank condition (ii) we may define a control function u l as follows: 



u*(t) = B+ (t, x ; w ) *lf'(t -t.)- at, x? , u'(t)) , (2.9b) 

r L<fc J 

r r x h^t^ t l . That such a u exists can be proved as follows: We define the 
llowing set 

A 1 (r )=luL 2 ([t l -h 9 t l l,Er<):\\u( )\\ L2 <r and with 

P - -+ 1 

Jti-/i J 

follows from [7, p. 297] that A = ^4^^) is compact. Let T be a map on ,4 defined 
; follows 



here 

(2.11) 



/e shall prove that there is a constant r such that with 

A = A l (r Q ), T:A-+A, where T is continuous. 
ecause of [7, p. 297] and [7, p. 645], T is guaranteed a fixed point, that is 



hich implies that (2.9a) and (2.9b) hold. Observe that A is a compact and convex 
ibset of the Banach space L 2 . Because of a result of Campbell and Meyer [25, 
. 225], and hypotheses (i) and (ii) of the theorem, the generalized inverse t - B + (t, {) is 
ontinuous and therefore uniformly bounded on [t 1 h,t 1 ']. Since the growth 
ondition (iii) is valid there exists a r > such that 

t CjG y (r ) + rf<r , 

;=i 

>r some d. With this r define A = A^TQ). Now introduce the following notations 



max f" |a,(s)l<U ll,ll, sup 



l Ix'J + I^OUI^H^, sup 



88 E N Chukwu 

Let we A. Then 



where 



q 1 

I a/t)G y (x|,u(t)) 
;=i J 

a/*)G y (r )"| 
j =1 J 



Therefore 

IMI<0 + | ll^il L2 + llM G u( r o) 1^1 Wli 2 + U a jllGy(r ) 



Therefore 

We have proved that T:A-*A 9 if we can verify the second condition. Now 



ti-fc 



where { (t) = ^(t-t 1 )-/ i (t,x|,u(t)). 

The function k(t) = B+ (t, x l t ).(t) is measurable in t, and is in L 2 . We can therefore 
choose a sequence {/c n (t)} of continuous functions such that 



i: 



asn->oo. 

Jti-h 

Therefore 

11/2 



1/2 






Qti 11 

\k n (t + s)-k n (t)\ 2 dt 
ti-h J 

Qti "11/2 

\k H (t)-k(t)\ 2 dt\ . 



We choose n large so that the last and first integral on the right hand side of this 
inequality are less than an arbitrary s > 0. Also s can be made small enough for the 
second integral to be less than e > 0. This verifies the first part of the assertion T:A-+.A. 

We now turn to the problem of continuity. Let (u\ (u')eA(r ), T(u) = (t?), T(w') = (t/). 



Delay differential equations in W ( ^' 89 

Then 

|(t) - v'(t)\ < Bt(t,$)W l (t - !)-/,(*, *T) 



- B + (t, x') 

llB+fcxjj- 

+ ii B; (t, x;<) - B. + (t, xj) ii i/ f (t, 



Since M-B j ' t "(t,x") and u(f) -/,(*, x t ,u(t)) is continuous given >0 there exists an 
i] > such that if |(t) - u'(t)\ < q then 



|/,(t,xj",u(t))-/,(t,x|"',u'(t))|<e VteC^ -fc,^] si. 

Divide I into two sets gj and e 2 and put the points at which \u(i) u'(t)\ <r\ to be 
ej and the other to be e 2 . If we set ||u ' || 2 = y, then 



|M(t)- U '()| 2 dt 



so that mes e 2 ^ y 2 /rj 2 . A simple analysis shows that 

|iAll2 + 2^ + 

n 



+ 2 mese 2 {sup|/()|} 2 -f4/? +2 ^sup{|/ i ()|} 



It follows from these estimates that || v v' \\ 2 can be made arbitrarily small if || M u' \\ 2 
is small. This proves that T:A-+A is a continuous mapping of a compact convex 
subset of L 2 with itself. By Schauder's fixed point theorem [11, p. 645] T has a fixed 
point: 



With this u in 

V 

\jf l (t - rj = 0.(t, x r , w(t)) + ;(, x r )w(t) 

(19a) is satisfied. The proof is complete. 

Remark. Condition (iv) can be removed by employing an argument similar to the 
earlier proof. 



90 EN Chukwu 

In Theorem 2.2 we have stated conditions which guarantee the controllability of 
each isolated free subsystem (S t ). Next we assume these conditions and give an 
additional condition on the interconnection g i which will ensure that the composite 
system (2.2) is controllable. It should be carefully noted that 

g t (t,x t ,J(t))= g tj (t,xi 9 v?(t)) 

# 

is independent of x 1 , the state of the ith subsystem, though it is measured locally in 
the (S t ) system. 

Theorem 2.3. Consider the interconnected system in (2.2). Assume that 

(i) Conditions (i)-(iii) of Theorem 2.1 are valid: Thus each isolated subsystem is 
Euclidean controllable on [<M t ]. 
(ii) For each i, j = 1, . . . , /, i ^j 



tfifc*,, '(*))= I ^M 

W 
satisfies the following growth condition: There are continuous functions 



and L 1 functions /},-:- + y = 1, ..., g such that 

y (xX) forall(t,x tt it\ 



w/iere /or some constants c 



limsupfr- c J sup{G y (x,,'(t)):||(x f , < (t))K'-}V +00 - 

r-*oo \ j=l / 

Then (2.2) is Euclidean controllable on [a, t x ]. 

Theorem 2.4. In (2.1) and (2.2), assume that 

(i) Conditions (i) - (iv) o/ Theorem 2.2 JioW. 

(ii) For each i,j= I,...,/, 1=5*7, ^t satisfies the growth condition: there are continuous 

functions 



and L 1 functions a -: E -+ E" 1 ", j = 1, . . . , q such that 



/or a// (r, (j>, u\ v l \ where fij < a,, and /or some constants c j9 

limsup(r~ J ^suptGy^u 1 ): ||(<M )Kr} ) = +00. 

r-oo \ j-1 ' 



Delay differential equations in W ( ^ 91 

Then (2.2) is controllable on [cr, rj, t l >a + h. 

Remark 2.4 The condition (ii) of Theorem 2.3 and Theorem 2.4 is similar to the 
growth condition of Michel and Miller in [23, Theorem 5.8.4 (ii), Theorem 3.3.5 (iii), 
Theorem 3.3.2 (iii), Theorem 2.4.20 (iii)]. The condition states that the external 
(government intervention g t on (S f ) (in forms of taxation, money supply, investment, 
etc., i.e. q { = g t (t 9 M /P, T, V)) should be dominated by some "power" foPy of the firm, 
"power" measured as a function of (I ,C ,X ,y). This condition that g t is sufficiently 
"small" is a nonlinear generalization of the requirement in the linear pursuit game, 



that 

IntPoQ. 

The firm's control set (or initiative) should dominate the government's. This is a 
necessary and sufficient condition (on the control sets) for controllability. See Hajek 
[10, p. 61] for the genesis of this idea. It settles this century's basic problem: How 
much (in comparison to private effort (i.e. autonomous consumption, investment, 
export, money holding) should government intervention (i.e. q(M /P , T ,v)) be in 
the economy. The nonlinearity of (2.2) has been well motivated in our introduction. 
The interconnectedness is natural and essential in the economic application. As a 
control action of government, q(t) = A[(e 1 /r)(M /P )-cT (t) + v(t)'] 9 in (1.10) and 
(1.11) is (realistically) not linear in w(0 = (w 1 ,w 2 ,w 3 ,w 4 ) = (M ,Po^o 5 V). We 
combine the fiscal and the monetarist views. The modern debate of macroeconomics, 
particularly of Lucas critique [12] makes the incorporation of q(t) very reasonable. 
(see [17, Macroeconomics in the Global Economy, Chapter 10]. The argument 
demands a game theoretic formulation for the .dynamics of income. This is well spelled 
out in Mullinex [26, p. 91]. Wt are therefore compelled to insert a nontrivial g { . 
Mathematicians often object to and scoff at the full rank of B, but the economic 
insight of Tinbergen in [17, p. 5, 90] shows how essential this "classical non-degeneracy 
assumption is in executing monetary and fiscal policies to achieve a target with several 
dimensions. 

Proof of Theorem 2.3. The proof parallels that of Theorem 2.1. The integral equation 
of (2.2) corresponding to (2.3) is 



f 

J <r 



The control function corresponding to (2.4) is defined by 

lt(t) = B*(t, XJ)Jf- * |"xi - < (0) - [*/! (5, X< , t/(s))ds - I*'' g 

This control steers ft to x( in time ^ . The additional sum f ff # (s, x* , i? (s))ds is utilized 
in the estimates by using condition (ii), noting that ft < a . Just as in the proofs of 
Theorems 2.1 and 2.2 under the conditions of Theorem 2.3 the system (2.2) is Euclidean 
controllable. The operator T is defined as in the proof of Theorem 2.1 with the 



92 EN Chukwu 

modification that 

where 



- j 



Just as before we prove that T has a fixed point: T(x f ,u') = (x',w')> so that (2.2) is 
Euclidean controllable. To prove this we suppose that 

G.. (r) = sup (G y (<M): II (<M) II <r}. 

Because of the growth condition in (ii), there is some r such that c f G..(r ) + d ^ r 

j=i 
for some c f , d. With this we deduce the estimate 

', | + |tf'(0)| _t J" (/) + j8 J -(s))G y (r )ds 

| + |^(0)| + J^ 2 J" a,(s)G y ( 
since jSj < a^ by condition (ii). With this, 

G,(r ))<l(^+ f C;GjJ .(r ) 

/ J/C \ ;=1 

2r 



In the same way, we have ||z|| < -. Thus 



T is a continuous operator since (t, </>) -* J5 (t 5 </>), (t, 0, t>) ->/ (t, 0, u) and (t, 0, w) -*-/i(t, </>, w) 
are continuous and u -> x(-, u) is continuous. The general situation follows an argument 

that yielded (2.7) and the subsequent inequalities. For equicontinuity the inequality 

rs 2 q 
(2.8) has an extra term a j( s )G -(r )ds due to #.. The reasoning is as before. 

J Si J =1 

The interconnected system is Euclidean controllable. 

Proof of Theorem 2.4. Our proof here parallels that of Theorem 2.2. From Theorem 2.3 
we conclude that (2.2) is Euclidean controllable on [V,^ /i], so that given any $*, 
( ^ there exists a u l eL 2 ( [a, 1 1 ~ h] 9 E mi \ such that the solution x of (2.2) satisfies 

= < and x l (f-/i,ff,0 i ,u) = ^(~fc). 



Delay differential equations in W ( ^ 93 

The control u and the solution x l (',a,(l)\u) are extended on the interval 
[<r,ti],fi >cr + h so that 

* W = /,(', 4 u W) + ^(t, xj, !>'(*)) 4- B. (t) ii(t) 
for t l - ft < f ^ t l9 where x(t) = \j/(t - t^\ t 1 - h ^ t ^ t r Define a control 

(2.12) 



The various estimates that lead to the proof of the existence of a fixed point carry 
through with a,- replaced by 2a 7 - (since /?, < a,-) and f (t) defined by 



In all the calculations one remembers that once v is chosen and fixed, u is allowed to 

q 

vary with its constraints. With minor modification caused by adding /^(OGy.fc', w l ()) 

j= i 
the rest of the proof is completed as in the case when g i == 0. 

Remark. An economic interpretation may define /?,- as a measure of government 
intervention while <x is a measure of the firm's reaction. To ensure controllability 



3. General nonlinear systems 

In (2.2) it is very important that the system is of the form in which some term is 
linear in u. Here we consider the more general situation 

x(t)=f(t,x t ,u(t)\ (3.1) 

where f:ExCxE m -+E n is continuously differentiate in the second and third 
arguments, and is continuous, and it also satisfies all the conditions of Lemma 1.1. 
Details of the proof of the following is contained in Chukwu [8]. 

Theorem 3.1. In (3.1) assume that: 

(i)/(t,0,0) = O 
(ii) The system 



(3.2) 
is controllable on [a, t x ], where t^a + h, and where 

D 2 f(t, 0, 0)z t = L(t, z t \ D 3 /(r, 0,0)t; = B(t)v. 
Then 

06lnt^(t,tr), (3.3) 

where 



is a solution of (3.1) with x ff = 0} (3.4) 

is the attainable set associated with (3.1). 



94 EN Chukwu 

Remark. The argument in the proof is as follows. The solution of (3.1) with x ff = is 



The mapping 



can be demonstrated to be Gateaux differentiable with Gateaux derivative 



where z(t,Q,v) is a solution of (3.2). Because F(Q):L 2 ->W ( v is a surjection because 
of Condition (ii), all the requirements of Corollary 15.2 of [19, p. 155] are met. 
Therefore F is locally open which implies (3.3). 
We shall next investigate the large scale system 

*'' =/;(,*;,"') + t g u (t,x>,tf(t)) (3.5) 

j ~i 

where f t and g tj are as defined following (2.2). Thus we investigate the interconnected 
system (2.1) 

* W = f(t, x t , u(t)) -f g(t, x t , v(t)) (3.6) 

where / and g are identified following (2.2). We state the following result. 

Theorem 3.2. Consider the large scale system (3.6) wit/z its decomposition (3.5) where 



(ii) f i9 g { satisfy all the requirements of Lemma 1.1. 
(iii) Assume that the linear variational system 

z i (t) = L.(t > z;)4-B l '(t)^(t) (3.7) 

of 

x i (t)=/ i (t,x> i (t)) ) (3.8) 

where 

D 2 f t (t 9 0, 0)zj = L.(t, zj), 



is controllable on [a, t ^ t l > a -f h. 

Tfeen t/ie interconnected system (3.5) fs locally null controllable with constraints. 

COROLLARY 3.2 
Assume 

(i) Conditions (i)-(iii) o/ Theorem 3.2. 
(ii) TTie system 



,0) (3.9) 

zs globally exponentially stable. 



Delay differential equations in W ( ^ 95 

Then the composite system is (globally) null controllable with controls in 



Proof of Theorem. By Theorem 3.1, 

Oelnt^.(f,cr) for t>a + h, (3.10) 

where t s/ i is the attainable set associated with (3.8). Let x be the solution of (3.5), 
with x l = 0. Then 



,0,"V")W = P/ i (s,xX 
J. 



j-i 
Thus, if we define the set 

ff (t p a) = {xV,0,tt^e^^^ 
we deduce that 

,cr). 



Because /.(, 0, 0) = y (f, 0, 0) = and because x l (t, 0, 0, 0) = is a solution of (3.5), 
QeH.(t 19 o). As a result of this and (3.10) we deduce 



^cH^,*). (3.11) 

There is an open ball B(0,r) center zero, radius r such that 



The conclusion 



follows at once. Using this one deduces readily that Oelnt^, the interior of the 
domain of null controllability of (3.5), proving local null controllability with 
constraints. 

Proof of Corollary 3.2. One uses the control u l = Oel/j t;' = Oel/ f to glide along the 
system (3.5) and approach an arbitrary neighborhood of the origin in 
"'). Note that 



Because of stability in hypothesis (ii) of (3.9) every solution with u l = is entrapped 
in (9 in time a ^ 0. Since (i) guarantees that all initial states in this neighborhood 
can be driven to zero in finite time, the proof is complete. 

Remark. Conditions for global stability of hypothesis (ii) are available in Chukwu 
[6, Theorem 4.2]. 



96 EN Chukwu 

Remark 3.1. From the condition 

OeInt^(t,0-)c:H.(,<7), (3.11) 

we deduced that 

OeIntH c (t,a), (3.12) 

is of fundamental importance. If the condition 

,<7), (3.13) 



fails, the isolated system is "not well-behaved" and cannot be controlled (3.12) may 
still prevail and the composite system may be locally controllable. To have this 
situation we require 

OeIntG.(,<7), (3.14) 

where 

f f r ' 
G (t,<r) = 



In words, we require a sufficient amount of control impact (i.e., (3.14)) to be brought 
to bear on (S f ), which is not an integral part of S . Thus knowing the limitations of 
the control u i eU i a sufficient signal gM> x^ v l ) is despatched to make (3.14) hold. And 
(3.12) will follow. 

Remark 3.2. The same type of reasoning yields a result similar to Theorem 3.2 if we 
consider the system 



^^..^^ 1 ^-^ 1 ^)), (3.15) 

where 



(^...,xr^o,x; + V..^^ 



Also conditions (ii) and (iii) of Theorem 3.2 are satisfied. 
If we consider 



(3.16) 



instead of (3.5) we can obtain the following result. 



Theorem 3.3. In (3.16) assume (i)-(iii) of Theorem 3.2. But in (3.7) L,(t,zj) and 5'( 
ar^ defined as 



D 2 f s (t, 0, 0)zJ = L,(t, zj), D 3 (/,a, 0, 0) + 9i (t, x t , 0)) = B'(t). 
Then (3.16) fs locally null-controllable with constraints. 
The proof is essentially the same as that of Theorem 3.1. We note that the essential 



Delay differential equations in W^ 97 

uirement for (3.16) to be locally null-controllable is the controllability of 

x(t) = L(t, x, ) + (B, (t) + B 2 (t))u(t), (3.17) 



ere 



he isolated system (3.8) is not "proper" (and this may happen where B^t) does 
: have full rank on [0",^], txr + h, the "solidarity function" g t can be brought 
bear to force the full rank of B = B l + B 29 from which (3.16) will be "proper" 
;ause (3.17) is controllable. Even if B^ has full rank and (3.8) is proper, the large 
le system need not be locally null controllable. The function has to be so nice that 
-f B 1 has full rank. An adequate "proper" amount of "regulation" is needed in the 
m of a "solidarity function" g t . 

.n applications it is important to know something about g i and to decide its 
squacy. It is possible to consider g { as a control and view 



a differential game. Considered in this way the control set for g t can be described. 
the linear case see Chukwu [7]. 



knowledgements 

e author is grateful to a referee whose criticism made him to include more detailed 
)ofs of Theorems 2.3 and 2.4. Remark 2.1 and 2.4 now add more understanding 
the investigation. 

ferences 

] Allen R G D, Mathematical economics (London: McMillan) (1960) 

] Banks H T, Jacobs M C and Langenhop C E, Characterization of the controlled states in W of 

linear hereditary systems, SI AM J. Control 13 (1975) 611-649 
] Balachandra V K and Dauer J P, Relative controllability of perturbations of nonlinear systems, J. 

Optimi. Theory Appl. 63 (1989) 
] Chukwu E N, Controllability of delay systems with restrained controls, J. OptimL Theory Appl 29 

(1979) 301-320 
i] Chukwu E N, Mathematical controllability theory of the growth of wealth of nations proceedings, 

first world congress of nonlinear analysts, in: Tampa, Florida (ed.) V Lakshmikanthan. August 1992 
i] Chukwu E N, Global behaviour of retarded functional differential equations, in: Differential Equations 

and Applications (ed.) A R Affabizadeh, Vol. 1 (Athens, Ohio: University Press) (1989) 
f ] Chukwu E N, Capture in linear functional games of pursuit, J. Math. Anal. Appl 70 (1979) 326-336 
!] Chukwu E N, Stability and time-optimal control of hereditary systems (New York: Academic Press) 

(1992) 717-725 

>] Dauer J P, Nonlinear Perturbations of Quasilinear Control Systems, J. Math. Anal. Appl. 54 (1976) 
)] Hajek O, Pursuit games (New York: Academic Press) (1975) 

L] Kantorovich L V and Akilov G P, Functional Analysis in Normal Spaces (New York: Macmillan) (1 964) 
i] Lucas R E, Econometric policy evaluation: A critique the Philips curve and Latoon market, 

in: Carnegie-Rochester Conference in Public Policy (a supplementary to series to the Journal of 

Monetary Economics) (eds) K Brunner and A Meltzer, Vol. 1 Amsterdam, New York: North Holland 

(1976) 
*] Qiung Lu, Lu J N, Jixans Gao and Gordon K F Lee, Decentralized Control for Multimachine 

Power Systems, Optim. Control Appl. Math. 10 (1989) 53-64 



98 EN C/mkwu 

[14] McElroy M, The Macroeconomy; private actions, public choices and aggregate outcome (New York: 

MacMillan) (forthcoming) 
[15] Mirza N B and Womack B F, On the Controllability of Nonlinear Time Delay Systems, IEEE 

Trans. Automatic Control AC-17(16) (1972) 812-814 
[16] Sinha A S C, Controllability of Large-Scale Nonlinear Systems with Distributed Delays in Control 

and States, in: Proceedings of the 1988 International Conference on Advances in Communications and 

Control Systems, Vol. II, October 19-21, 1988 (LA: Baton Rouge) (eds) W A Porter and S C Kak 
[17] Jeffrey Sachs and Lecipe Larrain, Macroeconomics in the global economy (New Jersey: Prentice Hall) 

(1993) 
[18] Underwood R G and Young D F, Null Controllability of Nonlinear Functional Differential 

Equations, SI AM J. Control Optim. 17 (1979) 753 

[19] Deimling K, Nonlinear functional analysis (New York: Springer- Verlag) (1985) 
[20] Cooke K L and Yorke J A, Equations modelling population growth, economic growth and gonorrhea 

epidemiology, in Ordinary differential equations (ed.) L Weiss (New York: Academic Press) (1972) 
[21] Takayama A, Mathematical economics (Cambridge: University Press) (1974) 
[22] Do, "Controllability of semilinear systems", J. Optimi. Theory Appl. 65 (1990) 41-52 
[23] Michel A N and Miller R K, Qualitative analysis of large scale dynamical systems (New York: 

Academic Press) (1977) 

[24] Kalecki M, A macrodynamic theory of business cycles, Econometrica 3 (1935) 327-344 
[25] Campbell S L and Meyer C D, Generalized inverses of linear transformation (London: Pitman) (1979) 
[26] Mullinex A W, The business cycle after Keynes: A contemporary analysis (New Jersey: Barnes and 

Noble Books) (1984) 

[27] Melvin W R, A class of neutral functional differential equations, J. Diff. Equn. 13 (1973) 24-31 
[28] Melvin W R, Topologies for neutral functional differential equations, J. Diff. Equn. 13 (1973) 24-3 1 
[29] Chukwu E N and Simpson H C, The solution operator in W^ ) for systems of neutral type (pending) 



1 
y 



;. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 1, February 1995, pp. 99-103. 
tinted in India. 



iote on integrable solutions of Hammerstein integral equations 



K BALACHANDRAN and S ILAMARAN 

Department of Mathematics, Bharathiar University, Coimbatore 641 046, India 

MS received 4 November 1993; revised 12 March 1994 

Abstract We derive a set of sufficient conditions for the existence of solutions of a 
Hammerstein integral equation. 

Keywords. Hammerstein integral equation; Caratheodory condition; Lusin theorem; Scorza 
Dragoni theorem; Schauder fixed point theorem. 



ntroduction 

5 of the most frequently investigated integral equations in nonlinear functional 
lysis is the Hammerstein equation 



f 

J o 



9 s)f(t,x(s))ds e[0,l]. (1) 



h an equation has been studied in several papers and monographs [1-6]. Existence 
)rems for eq. (1) can be obtained by applying various fixed point principles. In 
Banas proved an existence theorem for (1) using the measure of weak non- 
ipactness. On the other hand Emmanuele [5] established an existence theorem 
the same equation using Schauder's fixed point theorem. In this paper we shall 
ve the existence of solutions of the following nonlinear Hammerstein equation 



\ 

J 



t,s)f(t 9 x(a(s)))ds * 6 [0,1] (2) 



suitably adopting the technique of [5]. The result generalizes the result of [5]. 

Existence theorem 

>rder to prove existence theorem for (2) we shall first prove the following theorem: 
iorem L Assume that 

flieJ^fl), 1] and a^^Ofor all fe[0, 1]. 

/:[0, 1] x R-+R satisfies Caratheodory condition and there exist a 2 eL 1 [0, 1] and 

b 2 > such that 



for a.e. te[0, 1] and all xeR. 

99 



100 



K Balachandran and S Ilamaran 



(iii) /c:[0, 1] x [0, 1] -+R + is measurable with respect to both variables and is such that 
the integral operator 



Kx(t) 



= k(t, 
Jo 



s)x(s)ds maps L^O, 1] into itself. 



(iv) a: [0,1] ~>[0, 1] is absolutely continuous and there exists a constant M>0 such 
that v'(i)^M for all te[0,l]. 



s. 



Then there exists a unique a.e. non-negative function (peL l [0 9 1] such that 

<p(t) = ^f + l f * ftfc s) [a 2 (s) + 
101 l-0iJo 



Define a function ^:[0, l]-v,R by 

1 
k(t s s)a 2 (s)ds. 



Put B = 



, 1] : || x K r> where r = 

5 J ii H-. , 



Define an operator FiL^O, ll^L^O, 1] by 
Fx(t) = -^ + ~^ 



From our assumptions for xeB r we have 

- f 1 
~J 

<:j-^Ja 1 (f)d + y-^-j' 1 f * k(t,s)[a 2 (s) + l 

1 Hf f 1 1 

<- Ui() + k(t,s}a 2 (s)ds dt 
l-oJoL Jo J 



(l-*i) 



(1 



+ 



Thus we have F(B r ) <= B r . If we define B p + = {xeB r :x(r) >0 a.e.} then F(B+) c B r + . 
Also B* is a complete metric space, since B r + is a closed subset of L l [Q, 1]. 



Hammerstein integral equations 101 

Now for any two elements x,j;eB r + we have 



- Fy 



u lJO 

1 



f 1 

k(t, 
Jo 



At 



/i m,. 

(1-bJM 

On applying contraction fixed point theorem we get a fixed point for F. This proves 
Theorem 1. 

Theorem 2. Assume that 

(i) #:[0, 1] x R -+R satisfies Caratheodory conditions and there exist a^L^O, 1] and 
b l >Q such that 



for a.e. te[0, 1] and for xejR and 

\g(t,x(t)-g(s,x(s))\^(o(\t-s\) 



where o>(|t s|)-*0 as t-+s. 

(ii) /:[0, 1] x R-+R satisfies Caratheodory condition and there exist a 2 eL 1 [0, 1] and 
b 2 >0 such that 



for a.e. fe[0, 1] and all xeR. 

(iii) fc:[0, 1] x [0, 1]->R + satisfies Caratheodory condition and is measurable with 
respect to the second variable. Also the integral operator 

Kx(t) = f k(t, s)x(s) ds maps L 1 [0, 1] into itself. 
Jo 

(iv) a: [0, 1] ->[0, 1] is absolutely continuous and there exists a constant M such that 

(v) fci + ~ < 1. 

Then (2) has a solution in L^O, 1]. 

Proof. Since all the assumptions of Theorem 1 are satisfied, there exists a unique a.e. 
non-negative function cp such that 



f 

Jo 



s . 



First let us assume cp = Ll[0 t] in L^O, 1]. In this case, if we take 



102 K Balachandran and S Ilamaran 

then 



Jo 



and so j>(r) = 0. Therefore <p = Ll[01] is the solution of (2). Now, assume that 
<p 96 Ll[0tl] . Define a set Q in L^O, 1] by 



Then clearly Q is nonempty, bounded, closed and convex set in I/fX), 1]. Define an 
operator HiL^O, 1] ->/[(), 1] by 

f 1 
H x(t) = g(t, x(t)) + kit, s)/(, x(cr(s))) ds. 

Jo 
Then according to our assumptions H is continuous and for xeQ, we have 

\Hx(t)\^a 1 (t) + b i \x(t)\+ /c(t,s)[a 2 (s) + b 2 |x 

Jo 



f 1 
Jo t>S ^ 



Therefore H(Q)c:Q. Now we shall prove that H(Q) is relatively compact. Using 
Lusin's and Scorza-Dragoni's theorems [see 5] for each positive integer n there exists 
a closed set A n c [0, 1] such that m(A c n ) <(l/n) and a^^cpl^k U nX[0 ,i] are uniformly 
continuous. Now let (y k ) be a sequence in Q. For t',t"eA n we have 



- Hy k (f)\ ^ \g(f, y k (t')) - g(t",y k (t")\ 

+ [ 1 |/c(^s)~^, 
Jo 



This proves that (Hy k ) is a sequence of equicontinuous functions on A n . Also for 
every teA n we have 

f 1 
\Hy k (t)\ ^ a,(t) -f 6 lV (r) 4- fc(t,s)[a 2 (s) + h 2 <p(cr(s))] ds. 

Jo 

Because of the continuity of a l and cp on the compact set A n and fe on the compact 
set A n x [0, 1] the sequence (Hy k ) is equibounded on A n . By applying the Ascoli-Arzela 
theorem we get for each n there exists a subsequence (y m ) of Cy fc ) such that (Hy^ 
is a Cauchy sequence in the space C(A n ) of all equicontinuous and equibounded 
functions on A tt . Now, given >0, there exists ^>0 such that $ A (p(s) ds < (e/4) 
whenever m(A) < 5. Choose a positive integer N such that (I/AT) < 3. Then m(^) < 5. 
Therefore 



J 



<p(t)dt<-. 



Hammerstein integral equations 103 

Also 



for sufficiently large h' and /i" since (Hy k ) is a Cauchy sequence in C(A N ). Hence 

') - Hy-) || Ll[0>1] = \Hy k(h . } (t) - fl> 
J 



< 



for sufficiently large h f and /z". Therefore (Hy k(h) ) is a convergent subsequence of the 
sequence (Hy k ) in L^O, 1]. This proves the relative compactness of H(Q). Applying 
the Schauder fixed theorem we get a fixed point for H. This proves our theorem. 



References 

[1] Appell J, On the solvability of nonlinear, noncompact problems in function spaces with applications 

to integral and differential equations, Boll. Un. Mat. It., B6 (1982) 1161-1167 
[2] Banas J, Integrable solutions of Hammerstein and Urysohn integral equations, J. Aust, Math. Soc., 

46 (1989) 61-68 

[3] Corduneanu C, Integral equations and applications (1991) (Cambridge: Cambridge University Press) 
[4] Deimling K, N onlinear functional analysis (1985) (Berlin: Springer Verlag) 
[5] Emmanuele G, Integrable solutions of Hammerstein integral equations, Applicable Analysis (to 

appear) 
[6] Gribenberg G, Londen S O and Staffens O, Volterra integral and functional equations (1990) 

(Cambridge: Cambridge University Press) 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 1, February 1995, pp. 105-122. 
Printed in India. 



On over-reflection of acoustic-gravity waves incident upon a magnetic 
shear layer in a compressible fluid 



P KANDASWAMY 

Department of Mathematics, Bharathiar University, Coimbatore 641 046, India 

MS received 10 August 1992 

Abstract. A study is made of over-reflection of acoustic-gravity waves incident upon a 
magnetic shear layer in an isothermal compressible electrically conducting fluid in the 
presence of an external magnetic field. The reflection and transmission coefficients of 
hydromagnetic acoustic-gravity waves incident upon magnetic shear layer are calculated. 
The invariance of wave-action flux is used to investigate the properties of reflection, 
transmission and absorption of the waves incident upon the shear layer, and then to discuss 
how these properties depend on the wavelength, length scale of the shear layers, and the 
ratio of the flow speed and phase speed of the waves. Special attention is given to the 
relationship between the wave-amplification and critical-level behaviour. It is shown that 
there exists a critical level within the shear layer and the wave incident upon the shear layer 
is over-reflected, that is, more energy is reflected back towards the source than was originally 
emitted. The mechanism of the over-reflection (or wave amplification) is due to the fact that 
the excess reflected energy is extracted by the wave from the external magnetic field. It is 
also found that the absence of critical level within the shear layer leads to non-amplification 
of waves. For the case of very large vertical wavelength of waves, the coefficients of incident, 
reflected and transmitted energy are calculated. In this limiting situation, the wave is neither 
amplified nor absorbed by the shear layer. Finally, it is shown that resonance occurs at a 
particular value of the phase velocity of the wave. 

Keywords. Over-reflection; gravity waves; magnetic shear layer. 



I. Introduction 

During the last decade, considerable attention has been given to the phenomenon of 
over-reflection (wave amplification) of a hydrodynamic or hydromagnetic gravity 
wave incident upon a shear layer in an incompressible homogenous or stratified 
fluid. It has been known that the reflection coefficient for waves of one kind or another 
incident upon a shear layer can be greater than unity. This implies that more energy 
is reflected back towards the source than was originally emitted. This phenomenon 
known as over-reflection (wave amplification) occurs in various hydrodynamic and 
hydromagnetic fluid models under different conditions. 

Several authors including Booker and Bretherton [3], Jones [7], Breeding [4], 
Jones and Houghton [8], Acheson [1,2], McKenzie [9], Eltayeb and McKenzie [6] 
and Kandaswamy and Palaniswamy [10] have studied various aspects of the critical 
layer for internal gravity waves in a shear flow, critical layer for internal gravity 
waves in a shear flow, critical-level behaviour and over-reflection of a hydrodynamic 

105 



106 P Kandaswamy 

or hydromagnetic gravity wave incident upon a shear layer in an incompressible 
homogenous or stratified fluid. The over-reflection of internal gravity waves by a finite 
layer of constant shear separated by two uniform streams of incompressible fluid has 
been investigated analytically by Eltayeb and McKenzie [8] and numerically by Jones 
[7] and Breeding [4]. Mckenzie [8] has studied the reflection and refraction of a 
plane acoustic-gravity wave at an interface separating two fluids in relative motion. 
He predicted the phenomenon of over-reflection for pure acoustic waves provided 
the shear flow speed exceeds the horizontal phase speed of the incident gravity wave. 
A discussion of this result implies that the gravity waves can extract energy and 
momentum from the mean flow along with the idea of a critical layer at which the 
energy and momentum of gravity waves are absorbed into the mean flow. Acheson 
[2] has investigated the phenomenon of over-reflection for a variety of different 
systems involving waves propagating towards a shear layer. He studied the reflection 
of hydromagnetic internal gravity waves travelling in an incompressible fluid towards 
a vortex-current sheet with special attention to the relationship between 
over-reflection and critical layer absorption. Recently, the over-reflection of 
hydromagnetic gravity waves in a compressible stratified fluid was considered by 
Kandaswamy and Palaniswamy [10]. In spite of these works, attention is hardly 
given to the phenomenon of over-reflection of hydromagnetic waves in a compressible 
fluid. 

The main objective of this paper is to study the phenomenon of over-reflection of 
acoustic-gravity waves incident upon a magnetic shear layer in an isothermal 
compressible electrically conducting fluid in the presence of an external magnetic 
fluid. The invariance of the wave-action flux is used to investigate the properties of 
reflection, transmission, and absorption of the acoustic-gravity waves incident upon 
the magnetic shear layer, and then to discuss how these properties depend on the 
wavelength, length scale of the shear layer, and the ratio of the flow speed and the 
phase speed of the waves. Special attention is given to the relationship between the 
wave amplification and critical-level behaviour. The over-reflection is due to the fact 
that the excess reflected energy is extracted by the wave from the external magnetic 
field. For the case of very large vertical wavelength, the coefficients of the incident, 
reflected and transmitted energy are calculated. In this limiting situation, the 
hydromagnetic acoustic-gravity wave is neither amplified nor absorbed by the 
magnetic shear layer. It is also shown that resonance occurs at a particular value of 
the phase velocity of the wave. 

2. Basic equations 

The basic hydromagnetic equations governing the unsteady motion of an isothermal 
compressible electrically conducting fluid in the presence of an external magnetic field 
H are in standard notation (Chandrasekhar [5]): 

Du 



[(VxH)xH] (2.1) 

Dp 

~J + p(V-ii) = (2.2) 

Dp 2 Dp 

= c 2 (23) 

Dt Dt ( } 



Over-reflection of acoustic-gravity waves 107 

= (H-V)u-H(V-u) (2.4) 

V-H = (2.5) 
where 



where u is the Eulerian velocity vector, p the fluid density, g the acceleration due to 
gravity, n the magnetic permeability, p the hydrodynamic pressure, and c the constant 
speed of sound. 

The equilibrium configuration is given by u = (0,0,0), H = (/f (z),0,0), p = p , 
p = PO and g = (0,0, - g) where H 05 p ,p represent the basic magnetic field, density 
and the pressure respectively. In view of these results, the basic equations yield 

_5po =0 = apo (27ab) 

dx dy 

(2.8) 



dz 
whence it follows that 



Po = P(4 Po = PoW and - 1 = (2.9abc) 

Po Sz 

On the above equilibrium configuration, we superimpose a small disturbance of 
the form 

u = (w, u, w), H = (H Q (z) + ft x , h y , h z \ p = p + p', p = p + P'- 

(2.10abcd) 

We assume that the disturbances are small enough compared to the initial state so 
that higher-order terms in perturbed quantities can be neglected. We then substitute 
(2.10abcd) in (2.1)-(2-5) and invoke linearization so that the resulting equations reduce 
to a set of linear partial differential equations. This system admits plane- wave solutions 
in which all perturbed quantities /may be written as 

/(x, y, z, t) = /(z)exp [i(foc + ly - cot)], (2. 1 1) 

where (fc, /) and co are constants, and the former represents the wavenumber and the 
latter denotes the frequency of the wave. 
Elimination of all perturbed variables but w leads to the equation 

-/?+ 



(a> 2 -A 2 k 2 )(Q-co*)dz Q dz 



, (2.12) 

Q 



108 P Kandaswamy 

where 

Q = (co 2 -A 2 k 2 )(a) 2 -<x 2 c 2 )-l 2 (o 2 A 2 , t (2.13) 

with the Alfven velocity A, the wavenumber a and the Brunt- Vaisala frequency N 
being given by 



Po 
Invoking the transformation w = </> exp I J, (2.12) assumes the form 

d? + [(co 2 - A 2 k 2 )(Q - co 4 ) dz Q J dz" 

^ /? Q d (co 2 -A 2 k 2 )(Q-(o*) 

4 2(co 2 -A 2 k 2 )(Q-a> 4 )dz Q 

V 2 



(2.14abc) 



or 



- - (2 ' 15) 

dz 

In the next section we calculate the reflection and transmission coefficients for a 
hydromagnetic gravity wave incident upon a magnetic shear layer. 

3. Reflection and transmission of hydromagnetic waves by a magnetic shear layer 

We consider the problem of a hydromagnetic gravity wave incident upon a magnetic 
shear layer specified by 

A\^ z<0 (region I) 

A 2 = A\z, A\-=-A\, 0<z^L (regionll) (3.1abc) 

it 

A\, z ^ L (region III) 

A gravity wave from region I incident upon the magnetic shear layer (region II) gives 
rise to a reflected wave in region I, a transmitted wave in region III, and two waves, 
one moving upward and the other moving downward going in region II. 

In region I, (2.15) reduces to the form 



O, (3.2) 

and the corresponding solution has the form 

0(z) = /exp(ia ri )z + Kexp(- iza 2l ), (3.3) 



Over-reflection of acoustic-gravity waves 109 

where / is the amplitude of the incident wave and R that of the reflected wave, and 
<x zi is given by 



+ lcoAN, (3.4) 

with 



Q, = (co 2 - Alk 2 )(cD 2 - aV) - l 2 co 2 Al (3.5) 

If we take a zi as the positive root of (3.4), the choice of the signs in (3.3) ensures 
that the incident wave transports wave energy upwards (towards the magnetic shear 
layer) and the reflected wave carries wave energy downwards (away from the magnetic 
shear layer). 

In region II, (2.15) takes the following form 

* 2 + j ^ , 62 Q' 2 iw 

dz 2 L (o 2 -zA 2 2 k 2 Q 2 -co 4 Q 2 ]dz 



2 (a> 2 -zA 2 2 k 2 ) 






(3.6) 



where Q 2 represents the expression (2.13) with A 2 replaced with zA 2 2 . 
Making use of the transformation $ = ^Q 1 2 ' 2 (Q 2 - co 4 )~ 1/2 , (3.6) becomes 



z 



-^ -I _ + _l_i^ i_i ^ _. Q ,3 j, 

dz 2 z 7 ^ I - ^ I ^ ^ 



(3.8abc) 



4a 2 
+ ~&^ { Qz + " 2C2(N2 ~ 92/ 2) + ^ 2 ^' 2 /e 2 )}. (3.10) 

Using the transformations 

Z = ri (z-z ci ), (lllab) 



110 P Kandaswamy 

(3.7) can be transformed into the confluent hypergeometric equation 

- a 

This admits two independent solutions in the form 



-+..., (3.13) 

( 3 - 14 ) | 

where 

Si=-lB*Z*, B t = -^ 7 4A (3.15ab) i 

k = 1 j f 1 . \ \ 

i 

Ht *ll(l2-- +n~^Tl)' (3 ' 16) 

Thus, the solution of (3.7) can be written as 



W 2 (Z) (3.17) 

where 



-+r^M 



(I!) 2 






i 
(3.18) 



(2I) 2 

+ s; 2 + 4; t - z 2 + ... (3.19) 



and D! and D 2 are amplitude constants. 
Using the transformation 4> = \l/Q l 2 /2 (co 2 - A\zk 2 )~ 112 , (3.6) reduces to 



(3 . 20) 



Over-reflection of acoustic-gravity waves 1 1 1 

where 

z = lf> C 2= 2^ , (3-21ab) 



,--ra & i 

2|_e2 <a 2 -A 2 2 zk 2 j 



Q 2 (a> 2 -k 2 c 2 )(o> 2 -A 2 2 zk 2 ) 



( } 



Q 2 c> 2 -A 2 2 k 2 z 



i 2| x>2 v*2 7 

162 (o) 2 Alk 2 z 
Invoking the transformation 

j ^ (Z\ 2 = 72(2- z C2 )> (3.24ab) 

(3.20) assumes the form 

Z^ + (l-ztf-(~J 2 Wo. (3.25) 



This gives two independent solutions in the form 

'1 .\ /I . V3 . 

-h] 

(3.26) 

(3.27) 
where 



(3.28ab) 



- , 

wl-/, 



(3.29) 



Therefore, the solution of (3.20) can be written as 

V 4 (Z) (3.30) 



112 "" P Kandaswamy 
where 



e,-[, 



'1 

2~ 72 
(I!) 2 

3 



+ v ( y '*+ \ < 



22 - l 



- A 2 2 zk 2 ) 



f V2 / Y2 A2 / "1 

*[ i+ V z+ zi+ -]' 8Z 

(3.32) 



and D 3 and Z) 4 are amplitude constants. 

The transformation ^=-\l/(Q 2 ~o} 4 r 1/2 (^ 2 ~ A 2 2 zk 2 )- 1/2 reduces (3.6) to the 
following form: 



J: ^ j_ ( J3?3 _ Vs \ j, _ n n 33) 

V,-' *'*'/ 



where 



z ej = ^, c 2 = l ~ ac ' (3.34ab) 

C3 A 2 ' 3 a 2 (co 2 -k 2 c 2 ) l 



p -If-Jlii 
K3 ~2Lc, 2 -^ 



(3.35) 



+ ^- y -^- (3.36) 



yt-p-wi -^-.--^^ 1-2! ( ^: 2 ; 2 ^ 2)2+ ^ ] 

4a2 ' -,+a 2 C 2 (N 2 -^r 



i u 2 ' 5? IJL 2 J (i o'7\ 

(co 2 -A 2 zk 2 )(0 2 -co 4 ) ' 
Equation (3.33) can be transformed to the following form 



-0 (3.38) 

by means of the transformation \ji = e~ (Z}2) \j/(Z\Z = y 3 (z C3 -z\ which has two 



Over-reflection of acoustic-gravity waves 113 

independent solutions 



where 



where 

= ~ z / 2 - 4 - 1/22 - 2 



W S (Z) = e~ z / 2 (Q 2 - co 4 )- 1/2 (o> 2 - A 2 2 zk 2 )- 1 



W 6 (Z) = e~ z/2 (Q 2 - co 4 )- 1/2 (ro 2 - A 2 2 zk 2 )- 112 



. 
(I!) 2 (2!) 2 ' 

= (l/s log Z + S 3 , (3.40) 



,= B k Z\ B k = - \ . (3.41) 



Therefore, the solution of (3.33) can be written as 

W 6 (Z) (3.43) 



I . 

+7 2 +y ' 3 2 +7 

(144) 



feZ-l 3/2 + 4/3-- )Z 2 + ... , (3.45) 

and D 5 and D 6 are amplitude constants. 
For region III, (3.15) takes the following form 

d 2 ^ J fi 2 a 2 f / / 2 \\ 

-f / 2 o) 2 ^ 2 AT 2 U = (3.46) 

and has the solution of the form 

0= Texp(fea, 3 ), (3.47) 



114 P Kandaswamy 

where T is the amplitude of the transmitted wave and <x, 3 is given by 

g i = I 2 

4 co 2 -fc 2 ~co 4 



> 2 - A 2 2 k 2 ) Q 3 + a 2 c 2 N 2 - + / 2 a> 2 ^ 2 N 2 . (3.48) 

Again the choice of the sign of a r3 ensures that the transmitted wave transports wave 
energy upwards. 

To simplify the calculations in the following discussion, we shall consider the low- 
frequency approximation, so that the dispersion equations (3.4) and (3.48) appropriate 
to region I and region III are approximated by 



By using the boundary conditions at z = and z = L, namely the continuity of the 
vertical component of velocity and continuity of pressure, we determine the amplitudes 
of the reflected and transmitted waves. Since the vertical component of velocity w is 
continuous, and from the relation w = <jf>e (/ * /2)ir , </> is also continuous. 

It follows from the equations of motion that the pressure p t can be obtained in 
the form 



. 
J 



. (3.50) 

dz 



we put w = cf)e ( P /2)s to transform (3.50) into the form 

"I (0 -~ ft) 4 )! 1 <t> 

L W V 2* 



a 2 



Therefore, the boundary conditions are equivalent to 

atz = 0,L (3.52) 



where the square bracket denotes the jump in the quantity inside the square bracket. 

Utilizing the boundary conditions (3.52), and when A\ < c\ yields [$] 0)Z , = which 
implies 



/ + R = D l W^G) + D 2 W 2 (ty> (3.53) 

Texp(fLa Z3 ) = D, W,(L) 4- D 2 ^ 2 (L), (3.54) 

fd^l 
and the condition =0 leads to 



2 W' 2 (Q). (3.55) 

a sj Texp(iLa Z3 ) = ?1 D 1 W^(L) + 7l D 2 W" 2 (D- (3.56) 



Over-reflection of acoustic-gravity waves 1 1 5 

m the above equations we obtain 

R = D l JX, ^(0) - 7l ^(0)] + P 2 rx, W 2 (Q) - 7l W' 2 m 
I 0^x^(0) + y^m + D^W^ + ^W'^rf 
DI i*,W 2 (L)- yi W 2 (L) 

= -, 1.3. JO) 

D 2 i^W,(L)- 7l W\(L) 
rexp(ia, t L) = D l W,(L) + D 2 W 2 (L) 

' 



I + R D^V\ 

the case A\ > c\, the above expressions can be written as 



D 2 



(3.60) 



rexp(ia 23 L) _ DI W,(-L) + D 2 W 2 (-L) 



the above results can be written in the compact form 
K = Mi 4, 

2 (L) 



A\<c\, and 

^ = Mi^ (3.64) 

/ M,l+ d ,2 

Tex P (ia, t L) = ^ W,(- L) + W 2 (- L) 
I + R 5^(0)+ W 2 (0) 

A\> c\, where 

d h = i z , ^.(0) - V i W' m (Q\ d rn = ia zi W n (0) + y , W' n (Q), n = 1, 2 (3.66) 



^."yx^W-fa^^D (3.68) 

^^Vi^- 1 -)- ^.(-L) (3.69) 

i the following notations were used: 



(3.71) 
(3.72) 



116 P Kandaswamy 

4 Wave amplification and critical-level behaviour 

We investigate the properties of reflection, transmission and absorption of hydro- 
magnetic acoustic-gravity waves incident upon a magnetic shear layer, and discuss 
how these properties depend on the wavelength, the length scale of the shear layer, 
and the ratio of the flow speed and the phase speed of the waves. We use the invariance 
of the wave action flux to prove some general properties. 
The wave energy flux is 

_ __ _ | j 

E = Mz = -(P f *9 s + PJ*) = - Re(A<?*), (4.1) 

where the asterisk denotes the complex conjugate and Re stands for the real part. 
Using (2.15), the expression for becomes 






where I 



p c = p</ z - (4.4abc) 

We next define the wave action flux M as the ratio of the wave energy flux and 
the local relative frequency by 



,4.5, 

-co 2 

It turns out that 

^ = forz/z cr ,r=l,2,3. (4.6) 

dz 

This means that M is independent of z except at the critical levels where it is 
discontinuous. The invariance of M is closely linked to the invariance of both the 
vertical component of the total energy flux and of the horizontal component of 
momentum. 
If 

A\<cl and A\<c*A\>c\ and A\ >c\,A\* and A\<c\ 

(4.7abc) 
and 



there is no critical level inside the magnetic shear layer. In view of the invariance of 
M over the whole domain, it turns out that 

M = g^ (/4 '"" c ' )( ^" C lJ [ |/| 2 -|R| 2 ] in region I (4.9) 

2co 2 a 2 c 2 -A 



i 



Over-reflection of acoustic-gravity waves 111 

M z * ^ 3 _1 1 ?__ | y|2 j n re gj on in (4.10) 

These results combined with the invariance of M give 









-- 

LI ' IJ - m - 



(4.11) 

Since a 2i and a, 3 are positive and terms within the square bracket are either positive 
or negative, the amplification of wave is impossible. 
On the other hand, if 



A\>c\ and Al<cl,A\<c\ and A\>c\,A\<c\ and A\>c 



(4.12abc) 



there exists a critical level inside the magnetic shear layer. We use the following 
approximate solution near z = z ci : 



+ 2; 1 7,(z-z ci )}, z<z ci (4.13a) 

z tl -z)] + D 2 {[1 +; 1 y 1 (z tl -^jlogCy^z^ -z) + m] 

-2/ iyi (z Cl -z)}, z>z ci . (4.13b) 

We then calculate the values M b of M below the critical level and the value M a 
of M above the critical level. These values are 



We obtain a zi from (4.7) and (4.11), and a Z3 from (4.8) and (4.12abc) so that they 
are given by 

(c 2 A 2 \( A 2 r 2 \ (r 2 r 2 \ 

C22 - ( * (4.16) 



(4.17) 



The results combined with (4.10) give the total energy flux in the shear layer: 



118 P Kandaswamy 

The term on the left-side of (4.18) represents the total energy flux into the shear layer 
whereas the first two terms on the right-side denote the total energy flux out of the 
layers. The term on the right side of (4.18) is negative whenever the critical level exists. 
Thus, if the critical layer exists, the wave is amplified. 
The solution near the critical level z = z C2 is given by 



2/ 2 y 2 (z-z C2 )}, z<z C2 , (4.19a) 



-2j 2 y 2 (z~z C2 )}> z>z C2 . (4.19b) 

The value M b of M below the critical level and the value M a of M above the critical 
level are 

(4 - 20) 



We obtain a zi from (49) and (4.20) and a Z3 from (4.10) and (4.21) in the form 
-- 



(4.22) 



2> 



(A 2 c^)( c 2 + A 2 } (c 2 c 2 ) 

These relations combined with (4.19) yield the total energy flux 



a 
*' 






The term on the left hand side of (4.24) represents the total energy flux into the shear 
layer whereas the first two terms in the right hand side denote the total energy flux 
out of the layer and the last term on the right hand side of (4.24) is negative whenever 
the critical layer exists. Thus the conclusion is that if the critical layer exists, the wave 
is amplified. 

Finally, at the critical level z = z C3 , the equation for the total energy flux is found 
to be 



This implies that the total energy flux into the shear layer is equal to the total energy 
flux out of the shear layer. So, the wave is not amplified in this case. 



Over-reflection of acoustic-gravity waves 
5. Reflection coefficient for large vertical wavelength 



119 



A large vertical wavelength normalized by the thickness of the shear layer 
corresponds to y l L 1. The approximate solution can be obtained from (4.13). The 
following results can be found from (3.62)-(3.65): 



where 



R 



1 ) 2 z Cl (z Cl ^ 
1 y 1 ) 2 z ci (z ci - L)] 



= a 2l ; 1 y 1 (; 1 ); 1 z ci + 1)4- 
z Cl 4- IJ- 









z Cl -L z ci 



inj\y 1 



- - 

z ci l^ z ci 



tl / X 2 \" 1 1 

Ari-7 - +Ji7i( 1 f +(;iri) 2 ^ 
-^~ z ci \ c i / J 






[i / ^1 2 \" 1 1 

JiVi. - +7i7i M -- 1 +(/i7 1 ) 2 2c, 
^~ Z Cl \ C l / J 



120 P Kandaswamy 



z 3 te/i7i(/iyi(- 

L 

- Zci )j 



+ C/ 1 y 1 ) 2 (L 



Also, we find 

, * vl^ v * 



+s 2 (l - 



^-lAy^-L) 

J 

for^<c*. (5.2a) 

cl ))] 

-si 



= ia z l tilogf^-lj + iTt-^y^L-zJ-lAy^, 

L \ ^i / J 



t 2 . (5.2c) 

^ S 7i7i"^0 *e results (5.1) and (5.2) reduces to the form 

/ ^2\ / A 2\ 

a, 3 a Zl (L-z Cl )log( 1 j- + ia Z3 ( 1 ---f + ia zi 

\ C l / \ C l J /r o\ 

a S3 a Zl (L - z ci )logfl - -f J - ia Z3 f 1 - -| J + ia zi 
and 

'T 1 

-r^r ( 5 - 4 ) 



In the limit L~ z ci ->0, we obtain 

R a,, -|-a ? ,(l 04?/c?)) ,. - x 

7 = a -a fl-UVJn* 
and 



Over-reflection of acoustic-gravity waves 



121 



view of results (5.5) and (5.6), we conclude that the wave is neither amplified nor 
sorbed by the layer. Expressing the reflection and transmission co-efficients for the 
:al energy flux as a function of A 2 and c\ we obtain 



T 2 = ' 



(5.7) 
(5.8) 

(5.9) 



;re i 2 is the ratio of the transmitted energy flux to the incident flux in the moving 
id. Also we choose the sign of <x zi and a Z3 so 
It follows from (5.7) that |R//|->oo provided 



id. Also we choose the sign of <x zi and a Z3 so that the above result is positive. 



42 A2 



is result reveals that resonance occurs (that is |JR/T| 
n of the square root of (5.10) is taken. 



oo) only when the negative 



Discussion and conclusion 

is clear from the above analysis that if (4.7abc) and (4.8abc) are satisfied, there is 
critical level within the magnetic shear layer. Consequently, the amplification of 
dromagnetic wave is impossible. 

On the other hand, if the condition (4.12abc) is satisfied, there exists a critical level 
thin the magnetic shear layer. The wave action flux is found to be invariant 
ery where in the fluid medium except at the critical level. In view of (4.12abc), the 
ive incident upon the shear layer is over-reflexed, that is, more energy is reflected 
ck towards the source than was originally emitted. In the present hydromagnetic 
alysis, the mechanism of the over-reflection is due to the fact that the excess reflected 
ergy is extracted by the wave from the external magnetic field. 
When the vertical wavelength is very large, y 1 Ll the incident energy /, the 
lected energy R and the transmitted energy T satisfy results (5.5) and (5.6). It is 
ident from these results that the wave is neither amplified nor absorbed by the 
agnetic shear layer. 

Finally, result (5.7) reveals that \R/T\ -> oo provided the phase velocity of the wave 
negative and given by 

l/2 



ius resonance occurs at this value of c^ . And this quantity c x can be expressed as 



(6.2ab) 



122 P Kandaswamy 

where 



(63ab) 

2c 2 ^) ) (6.4) f 

(6-5) 
fc, = - (A*X'c*)/(/l> + 2cM 4 ), (6-6) j. 



a 2 = -[(co 4 /a 4 + c 4 - 2a 2 c 2 /a> 2 )Al - (A\ + 2Al)c* 

J\ 

-Al(ca 4 /a. 4 + A*-2Al(o 2 /a 2 ) + 2c 2 (Al + Al)-\. (6-7) 

b 2 = -[2c*AlA 2 3 + Alc*-2c 2 AlAll (6-8) 

X. 



X = 2co 2 (c 2 - A 2 3 )/x 2 + A* - 2c 2 (6.10) 

and c is the constant speed of sound. 

References 

[1] Acheson D J, The critical level for hydromagnetic waves in a rotating fluid. J. Fluid. Mech. 53 (1972) 

401-415 

[2] Acheson D J, On over-reflexion, J. Fluid. Mech. 77 (1976) 433-472 
[3] Booker J R and Britherton F P, The critical layer for internal gravity waves in a shear layer. J. Fluid. 

Mech. 27 (1967) 513-539 
[4] Breeding R J, A nonlinear investigation of critical levels for internal atmospheric gravity waves. J. 

Fluid. Mech. 50 (1971) 545-563 

[5] Chandrasekhar S, Hydrodynamic and hydromagnetic stability (Oxford: University Press) (1961) 
[6] Eltayeb I A and McKenzie J F, Critical-level behaviour and wave amplification of a gravity wave 

incident upon a shear layer, J. Fluid. Mech. 72 (1975) 661-671 
[7] Jonos W L, Reflexion and stability of waves in stably stratified fluids with shear flow: a numerical 

study, J. Fluid. Mech. 34 (1968) 604-624 
[8] Jones W L and Houghton D D, The coupling of momentum between internal gravity waves and 

mean flows: A numerical study, J. Atmos. Sci. 28 (1971) 604-608 
[9] McKenzie J F, Reflection and amplification of acoustic-gravity waves at a density and velocity 

discontinuity, J. Geophys. Res. 77 (1972) 2915-2926 
[10] Kandaswamy P and Palaniswamy E M, Over reflexion of a hydromagnetic gravity wave incident 

upon a magnetic shear layer. Proc. Indian Natn. Sci. Acad. 53 (N.4) (1987) 499-505 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 2, May 1995, pp. 123-134. 
Printed in India. 



Badly approximable />-adic integers 



A G ABERCROMBIE 

Department of Pure Mathematics, University of Liverpool, P.O. Box 147, Liverpool L69 
3BX, UK 

MS received 7 July 1994 

Abstract. It is known that the p-adic integers that are badly approximable by rationals 
form a null set with respect to Haar measure. We define a [0, l]-valued dimension 
function on the p-adic integers analogous to Hausdorff dimension in R and show that 
with respect to this function the dimension of the set of badly approximable p-adic integers 
isl. 

Keywords. Diophantine approximation; p-adic numbers; Hausdorff dimension. 



Introduction 

A real number x is called badly approximable if, roughly speaking, there are no 
rationals p/q such that x p/q is small compared with q~ 2 .lt is well known (see [5]) 
that the set of badly approximable real numbers has Lebesgue measure zero and 
Hausdorff dimension 1. As might be expected, we can in an analogous way define the 
set of badly approximable p-adic integers. It is known (see [6]) that this set is a null set 
with respect to Haar measure on the group Z p of all p-adic integers. In this paper we 
describe a natural analog of Hausdorff dimension applicable to the space of p-adic 
integers and we show that with respect to this dimension the dimension of the set of 
badly approximable p-adic integers is 1. 

The proof of this result makes use of an approximation scheme for p-adic numbers 
developed by Mahler in [7], the essential features of which are recalled in the course of 
3 below. We also exploit a method initiated by Billingsley in [2], and further 
developed by the author in [1], for comparing Hausdorff-like dimension functions 
defined with respect to arbitrary non-atomic measures. The basic facts about this 
method are explained in 4. With the aid of Mahler's scheme we construct a measure 
with respect to which the set of badly approximable numbers has measure 1. We then 
apply Billingsley's method to complete the proof. 



1. Notation and preliminary remarks 

We denote by N the set of strictly positive integers ajid write N = Nu{0}. For 
a natural number N we denote by [AT] the set 



124 A G Abercrombie 

If z is a complex number we shall always write x = Re(z), y = Im(z). For any real j; 
we denote by U >10 the set 



We denote by T the modular group SL 2 (Z), and by I the identity of T. As usual, we let 
F act on the upper half-plane U in the following way. For 



in F and z in U we put 



az 



We denote by R the standard fundamental region for this action of T given by | 
R = RuR 2 where 



and 



It is easy to check that for any f in R the expression 



is a positive definite quadratic form in r and s. We may therefore define a positive- 
valued function $,* oji R x R by setting 



For a fixed prime p, we denote by Z p the ring of p-adic integers with the usual 
valuation | | p . Thus a typical element p of Z p is a sequence (pJ ne N , where each p n is an 
element of the additive group Z/p n Z, and for each n the natural homomorphism 
Z/p"+ 1 Z -+ Z/p"Z sends p n+ 1 to p n . Given p = (p n ) neNo , p' = (p;) neNo in Z p we define 



and 



We define |p| p = p v where v = v(p) is the least integer in N such that p v+l is 
different from zero. 
We say that p, p' are congruent modulo p*, and write p = p' (modpO, $ 

We equip Z p with the topology induced by the metric d(p, p' ) = IP - P V The space 
Z p is homeomorphic to the topological product [p]<, where [p] is equipped with the 
discrete topology. Therefore Z p is compact. 



Badly approximate p-adic integers 125 

e put 



set 53 is a basis for Z p consisting of closed open sets. An element of 93 will be called 
kere. The reader will observe that the sphere B h (p) is the set of all p' in Z p with 
p h . In sections 4-5 below we shall persistently abuse notation by writing p h in 

50fB h (p). 

;t (Z p , ^, $ be a probability space on Z p , where ^ is the <r-algebra generated by 23. 
^ be any probability measure on Z p that is non-atomic, i.e. /^({p}) = for all 
p . Suppose y > 0. For 9 > and M c Z p , write 



: the infimum is taken over all coverings of M by subsets of S of the form 
;p (0 ):ieN} such that n(B h .(p (i} )) < d for all ieN. The (not necessarily finite) limit 



s for all M. For a simple proof the / as thus defined is an outer measure see [2], 
36, 141. It can be shown ([2], pp. 136-137, 141) that for each M c Z p there exists a 
ue real number A = A M (M) such that / = oo for all y < A and ^ = for all y > A. 

e define ^:23(Z ;7 )->R by ?/(^(a)) = p"' 1 for all aeZ p , /ieN . Then by the 
itheodory-Hopf extension theorem ([4], 13, Theorem A), rj can be extended to 
lability measure on Z p , also denoted by rj. The measure r\ is clearly translation- 
riant and therefore by the Haar uniqueness theorem ([3], pp. 309-310) it coincides 
Haar measure on Z p . We call \(M) the Hausdorff dimension of M. This 
imology is appropriate because, as is proved in [2], p. 140, Hausdorff dimension 
can be defined by the same procedure with Lebesgue measure in place of Y\. 

tatement of the result 

each positive real number i let us say that a p-adic integer p is badly approximate 
nd write peJ(r) if for all a, b in Z we have 



us say that p is badly approximate if it is badly approximate (t) for some T > 0. 
denote the set of badly approximate p-adic integers by J. Thus 

J= U 'to- 



T>0 



is well known (see for example [6], Th. 4.23) that r\(J) = 0. Thus it is of interest to 
rmine A^(J). Our purpose in this paper is to prove the following: 

oremll. We have A(J) = 1. 



126 A G Abercrombie 

We first recast this result in a more convenient form. For in R and t > let 
denote the set of p such that 



for all a, b in Z, and write 

J,= |J J (T). 

T>0 

Since (^) 2 is positive definite, a simple computation shows that J is identical with J^ 
for each Therefore Theorem 2.1 is a consequence of the following result, which, 
though more detailed than Theorem 2.1, appears to be no harder to prove. 

Theorem 2.2. There is a constant C depending only on p such that for any % in R and any 
K in N we have 

\(j f ( P - K - c ))>i-~. 

Theorem 2.2 is analogous to the following result on Dio'phantine approximation in 
R. Call r in R badly approximate if there is a constant T such that \a + br\^tb~ l for 
all a, b in Z. Then we have: 

Theorem 23. The Hausdorff dimension of the set of badly approximable real numbers is 1. 

This was established by V Jarnik in [5], a pioneering paper in which dimension theory 
was applied for the first time in the study of Diophantine approximation. The proof of 
Theorem 2.3 depends on a special feature of R, namely the availability of an appropriate 
continued fraction algorithm. It turns out that badly approximable real numbers are 
those whose simple continued fractions have bounded partial denominators. 

To prove Theorem 2.2 we shall use an approximation scheme for p-adic integers 
developed by K Mahler in [7]. As Mahler points out, his scheme is a working substitute 
for a continued fraction algorithm in the sense that it yields all "good" approximations to 
a p-adic integer p, that is all potential counterexamples to (2.1). Lemma 3.2 below is 
a more precise statement of this fact. As we shall see, the badly approximable p-adic 
integers can be nicely characterized in the language of Mahler's scheme. 

In the early days of research on Hausdorff dimension it was notoriously difficult to 
find sharp lower bounds for the dimension of sets like J(i). It is now, in many cases, 
much easier, thanks to a method developed by P Billingsley which we review briefly in 
section 4 before applying it to the present problem. 



3. Mahler's approximation scheme 

Given a p-adic integer p we define, for each n in N , an integer E n = E n (p) by means of 
the relations 



Badly approximate p-adic integers 127 



\En~P\p** P 



n 



3 easy to check that exactly one integer E n satisfies these two relations. 

7 i\ in R, and for each n in N define a complex number Z n = Z n (p) by setting 



rther for each n in N let 



z n = z n (p) = x n + ty n = x n (p) -f r> n (p) 

the unique element of R that is equivalent to Z n under the action of F on U . 
luppose that 






tie element of F satisfying 



I write 



o for each n in N write 



i for each n in N write 

Q T-l T 
** - 1 -l *n' 

> can now state the fundamental results due to Mahler on which our proof of 
^orem 2.2 will be based. 

nma 3.1. ([7], p. 12). For any p in Z p and any n in N we have 



nma 3.2. ([7], p. 51 (Theorem 18)). Let a,binZ satisfy 



en 



128 A G Abercrombie 

Lemma 3.3. ([7], p. 15). The subset M(p) of GL 2 (Z p ) defined by 



is a finite set and the determinant of each element of M(p) is p. Moreover a matrix Q is 
in M(p) if and only if pQ~ 1 is in M(p). 

Note. It turns out that M(p) is independent of the choice of . However we do not 
require this fact. 

Lemma 3.4. ([7], p. 14). For each n in N we have 



Lemma 3.5. ([7], p. 14). For each n in N the integers a n and b n are relatively prime. 
We now derive some consequences of the preceding lemmas. 

Lemma 3.6. The set of badly approximate p-adic integers coincides with the set of | 
those p such that y n (p) remains bounded as n goes to infinity. More precisely, for each 
T > we have 



Proof. It suffices to prove the second statement. Suppose p is in J 5 (r). Then by the 
definition of J 5 (r) we have for each n in N that 

\^n + b n p\ p ^x(^(a n9 b n )r 2 . (3.1) 

By the definition of a n , b n we have 

P~ n ^\a n + b n p\ p . (3.2) 

By Lemma 3.1 we have 

(s(a n ^ n )r 2 = y n (p)p~ n . (3.3) 

Combining (3.1), (3.2) and (33) we have 



which proves that J^t) is included in the set of those p such that y n (p) never exceeds 

To prove the reverse inclusion, suppose that p satisfies y n (p) ^ i~ 1 for all n in N . 
Let a, b be any integers and define h = h(a, b) by the relation 



Then using Lemmas 3.1 and 3.2 we have 



> A)) 2 



Badly approximate p-adic integers 129 

t p is in J s *(r) as required. 

2 3.7. There exists a constant C depending only on p such that for any p in Z p , 
ver y n (p) > p c we have 

y n+i=p iy n (3.4) 

n ^ 1 we have 

y n _ v = p -^y n . (3.5) 

By Lemmas 3.3 and 3.4 we have for any p in Z^ and any n in N that 

Q is in M(p). We write 

'a a' 



a fixed complex number z, the subset Y(z) of [0, 2n) defined by 
= {|argQz|:QGAf(p)} 



:e, by Lemma 3.3. Now suppose z is in R. We see easily that when y is large 
h we have |arg^z| < \ for all Q satisfying a/? ^ 0. Moreover if a = we see that 
whenever y is sufficiently large. Thus there is a constant C such that for z in R, 
, and Q in M (p) we have flz in R only when /J = 0. 

then, since by Lemma 3.3 we have det 1 = p, we find that either a = p or p = p. 
establishes (3.4), and if n ^ 1 the same argument with z n _ x in place of z n 
shes (3.5). 

2 3.8. Suppose that for some, n in N we have 

y n (p)>y n+ i(p)>p c > 

C is the same constant as in Lemma 3.7. Then we have 



In view of Lemma 3.7 we need only show that y n + 2 ^ Py n + i We know, using 
ia 3.7, that y n = py n+l . Therefore by Lemma 3.4 we can write 



iven z n+1 in R there is just one choice of a' such that z n = Q M+1 z n+1 is in R. 
fore the relation y n+2 = py n+ x would imply 



130 A G Abercrombie 

so that 



and then each component of T n+2 would be divisible by p, which contradicts 
Lemma 3.5. We conclude that y n+2 *py n+1 as claimed. 

4. Billingsley's lower bound for the dimension of a set 

A version of the following lemma, relating to subsets of [0, 1], is proved in [2], 
pp. 144-145, and the proof carries over to the present setting without significant 
alteration. Recall that we agreed to abuse notation by writing p j in place of Bj(p). 

Lemma 4.1. For any non-atomic Bar el measures A, fj, on Z p and for any S^OJf 




Note: if either of the real numbers a, b is either or 1, then log a/log b is defined 
equal to 0, 1 or oo according as a > b, a = b or a < b. The logarithms can be taken 
to any positive base except 1, and in what follows we shall take all logarithms to the 
base p. 

In order to apply Lemma 4.1 to the problem at hand we need to construct 
a measure v on Z p such that 



and such that 




The construction of such a measure is made possible by the following result, which is 
a special case of Lemma 5.2 in [1]. If is any sphere, we denote by a(u) the set of 
maximal proper subspheres of u. 

Lemma 4.2. Suppose that u':<B\{Z p } -> [0, 1] satisfies 
y '() _ i 

for all u in 93. Then there is a unique Borel probability measure ji on Z p 

f*(u)n'(v) = fi( v ) I 

for all u, v in 93 with v in a(u). 



Badly approximable p-adic integers ' 131 

5. Proof of Theorem 2.2 

Let K be a fixed integer greater than 0, and let C be the constant whose existence is 
guaranteed by Lemma 3.7. For p in Z p write 



One checks easily that y n (p') is actually determined by p' n . 
We show that if 



then 

#(*n(p))>l. (5.1) 

Suppose the contrary. Then for every maximal subsphere p' n of p n _ 1 we have 
logy n (p')>K + C. 

But there are at least two maximal subspheres p' n contained in p n (in fact there are p of 
them) and therefore there are at least two (I in M(p) satisfying 



As in the proof of Lemma 3.8 any Q, satisfying 



must be of the form 



and there is just one choice of a'eZ such that Qz n _ x (p) is in R. Thus we have arrived at 
a contradiction and must conclude that (5.1) holds as claimed. 

We may therefore define a function v' = v' K on 93\{Z p } with values in [0,1] as 
follows. 

Case(i). If 

K-l + C 
and log y n (p) > K + C, we set 



Case(ii). If 

K-l 
and log y n (p) ^ K -h C, we set 



132 A G Abercrombie 

Case (iii). If log y n _ x (p) lies in the complement of the interval (K - 1 -h C, K + C], we set 



One checks easily (using the definition of t n (p)) that v' satisfies the hypotheses of 
Lemma 4.2, and so there is a probability measure v on Z p satisfying (4.1). 
To check that v is non-atomic, choose p in Z p , so that 

P=C\Pn- 

rieNo 

We must show that v(p n ) goes to as n goes to oo. By (4.1) and straightforward 
induction we have 

V(P)= n v(pj. 

Kj^n 

Now by Lemma 3.7 we cannot have both 



and 



Hence for infinitely many n case (ii) of the definition of v' does not apply and for such 
n we have 



Therefore v(p n ) -0 as required, so v is non-atomic. 

We now verify that v(J(p~*- c )) = 1. If p is in the complement of J(p' K " c ) then by 
Lemma 3.6 for some n in N we have logy n (p) > K + C. Choose N to be the least 
integer with this property. Then by Lemma 3.7 we have v 



Therefore case (i) of the definition of v' gives v'(p N ) = 0, so also v(p N ) = 0. Thus the 
complement of J(p" x ~ c ) is covered by elements of 93 each of which has measure zero 
with respect to v. Since is countable we have v(J(p" K ~ c )) = 1 as claimed. Our 
next objective is to show that for all p in J(p~ K ~ c ) we have 

l-L (5 .2) 

2K' ( } 



For p in J(p~ K ~ c ) let H = H(p) be the subset of N consisting of those n for which 



Let p be in J (p " K ~ c ), and choose n in H (p). By the choice of p we have log y n ^ K + C, 
and also by Lemma 3.6 we have log y n + x ^ K + C. Thus by Lemma 3.7 and the fact 
that K 1 4- C < logy n we have 



Badly approximable p-adic integers 133 

2 we then have log y n+ 1 > C, and since log >> > logy n+ 1 Lemma 3.8 implies that 



n + 2 = - 2 + logy,, > K - 3 + C 
ming in this way we find that 



h h = 0, . . . , K. A further application of Lemma 3.7 shows that 



s the difference between consecutive elements of H(p) is at least IK, so we 
JV-l-^ (5.3) 

ZA 

if p is in J(p~ K ~ c \ we have for each n in N either 



AMnN . 



is in ff (p\ or 



ise. Therefore for each N in N we have 



e clearly have 

log?/(p N )= -AT, 
using (5.3) and the fact that t n (p) ^ 1 we have 

logv(pj 11 

N 2X* 



ore letting N go to oo we have (5.2). 
e v(J(p~ K ~ c )) = 1, we certainly have 



>w an appeal to Lemma 4.1 with A = v, jn = rj, and <5 = 1 - (1/2-K) completes the 



134 A G Abercrombie 

Acknowledgement 

The author wishes to thank the SERC for financial support. 

References 

[1] Abercrombie A G, The Hausdorff dimension of some exceptional sets of p-adic integer matrices, J. 

Sumber Theory (to appear) 

[2] Biilingsley P, Ergodic theory and information (1965) (New York: John Wiley) 
[3] Cohn D L, Measure theory (1980) (Boston: Birkhauser) 
[4] Halmos P R, Measure theory (1950) (New York: Van Nostrand) 
[5] Jarnik V, Zur metrischen Theorie der Diophantischen Approximationen, Prace mat.-fiz. 36 (1928/9) 

505-543 
[6] Lutz E, Sur les Approximations Diophantiennes lineaires p-adiques, Actualites Sci. Ind. 1224 (1955) 

(Paris: Hermann) 
[7] Mahler K, On a geometrical representation of p-adic numbers, Ann. Math. 41 (1940) 8-56 



ndian Acad. Sci. (Math. Sci.), v o*- 105, No. 2, May 1995, pp. 135-151. 
ited in India. 



jrtainty principles on certain Lie groups 



A SITARAM, M SUNDARI and S THANGAVELU 

Statistics and Mathematics Unit, Indian Statistical Institute, 8th Mile, Mysore Road, 
Bangalore 560 059, India 

MS received 22 April 1994; revised 26 September 1994 

Abstract. There are several ways of formulating the uncertainty principle for the Fourier 
transform on R*. Roughly speaking, the uncertainty principle says that if a function / is 
'concentrated' then its Fourier transform / cannot be 'concentrated' unless / is identically 
zero. Of course, in the above, we should be precise about. what we mean by 'concentration'. 
There are several ways of measuring 'concentration' and depending on the definition we get 
a host of uncertainty principles. As several authors have shown, some of these uncertainty 
principles seeni to be a general feature of harmonic analysis on connected locally compact 
groups. In this paper, we show how various uncertainty principles take form in the case of 
some locally compact groups including (FT, the Heisenberg group, the reduced Heisenberg 
group and the Euclidean motion group of the plane. 

Keywords. Fourier transform; Heisenberg group; motion group; uncertainty principle. 



reduction 

i are several ways of formulating the uncertainty principle for the Fourier 
brm on R w . Roughly speaking, the uncertainty principle says that if a function 
'concentrated' then its Fourier transform / cannot be concentrated unless 
lentically zero. Of course, in the above, we should be precise about what we 
by 'concentration'. There are several ways of measuring 'concentration' and 
iding on the definition we get a host of uncertainty principles. As has been 
i in [1], [2], [4], [9], [12], [13], [17] etc, some of these uncertainty principles 
to be a general feature of harmonic analysis on connected locally compact 
>s. We continue these investigations in this paper to see how various uncertainty 
iples take form in the case of some locally compact groups including R", the 
nberg group, the reduced Heisenberg group and the Euclidean motion group 
\ plane. In a forthcoming paper [14] we consider semi-simple Lie groups and 
[nore general eigenfunction expansions on a manifold with respect to some 
c operator. 

e way of measuring concentration is by considering the decay of the function at 
ty. In this context, a theorem of Hardy for the Fourier transform on R says the 
/ing: 

*em 1. (Hardy) Suppose f is a measurable function on R such that 

(1.1) 
135 



136 A Sitaram et a! 

where a, /? are positive constants. If a/? > r/ien / = a.e. //' a/? < r/iere are infinitely 
many linearly independent functions satisfying (1.1) and if %[} = then f(x) = O~ a * 2 . 

For a proof of the above theorem see [3]. A more general theorem due to Beurling, 
from which Hardy's theorem can be deduced, can be found in [10]. In this paper we 
establish an analogue of the above theorem for the Heisenberg group 3? n (see 2 for 
the precise formulation). We also prove Hardy's theorem in the case of R n , n ^ 2 and 
show that though the exact analogue for the reduced Heisenberg group fails, a slightly 
modified version continues to hold. In the final section we prove an analogue of 
Hardy's theorem for the Euclidean motion group of the plane. 

Another natural way of measuring 'concentration' is in terms of the supports of the 
function / and its Fourier transform /. If / is non-trivial and compactly supported 
then / extends to an entire function, and so / cannot have compact support. 
A non-trivial extension of this result due to Benedicks [1] says: If /eL^R") is such 
that m{x:f(x) ^ 0} < oo and m {:/() ^ 0} < oo then / = a.e. Here m stands for the 
Lebesgue measure on R B . This result of Benedicks has been extended in [2], [12], [4] 
etc. to a wide variety of locally compact groups. In particular, one has the following 
result for the Heisenberg group: 

Theorem 2. (Price-Sitaram) Let /eL 1 nL 2 (Jf ). Suppose that m{tEU:f(z, t) ^ 0} < oo 
for a.e. zeC" and m{AeR*: / (A) ^ 0} < oo. Then f = a.e. 

In the above /(A) stands for the group Fourier transform on & n and R* means 
M\{0}. Roughly speaking, the above theorem says that if /eL 2 pfJ is concentrated 
in the t direction then /(A) cannot be concentrated. It is the concentration in the 
t direction, not that in the z direction, which forces the spreading out of the Fourier 
transform. In fact, as was shown by Thangavelu in [17], we can have L 2 functions 
with compact support in the z variable for which / is also compactly supported. 
The special role played by the t variable in the above theorem (as well as in our 
Hardy's theorem in 2) should not come as a surprise. The Fourier transform on jf 
is more or less the Euclidean Fourier transform as far as the t variable is concerned. 
If one goes through the proof of the above theorem, one observes that it is a con- 
sequence of the corresponding theorem for the Euclidean Fourier transform in the 
t variable. 

In view of the preceding remarks one would like to have an analogue of the above 
theorem which respects the z variable. We formulate and prove such a theorem in 3. 
We will show that when / has compact support in the z variable then /(A) (as an 
operator) cannot have 'compact support'. We will give a precise meaning to this 
statement in 3. 

We now turn our attention towards quantitative versions of the uncertainty 
principle, namely uncertainty inequalities. The classical Heisenberg-Pauli-Weyl 
uncertainty inequality for the Fourier transform on R B says that 

H/!l2^C n (J|x| 2 |/(x)| 2 dx)(J|^| 2 |7(ai 2 da. (1-2) 

For a proof of (1.2) with the precise value of C n we refer to [6]. A version of the 
above inequality for the Heisenberg group was established by Thangavelu in [17]. 
Here we are concerned with local versions of the above inequality for the Heisenberg 
group. 



Uncertainty principles on certain Lie groups 137 

For the Fourier transform on R n one has the following local uncertainty inequality: 
For any measurable E c R n , and < 6 < |, 



C e m(E) 2d J/(x)| 2 |x| 2 "'dx. (1.3) 

An analogue of the above inequality is known on the Heisenberg group. The following 
result is proved in [13]. 

Theorem 3. (Price-Sitaram) Let 0e[0,|). Then, for each feL^L 2 (3f n ) and 
measurable E c R*, one has 

r 

(1.4) 

(In the above tr stands for the canonical semifinite trace and dju is the Plancherel 
measure on $t n see 2.) Again we observe that the t variable plays a special role. As 
in the case of the Euclidean Fourier transform one would like to have an inequality 
which is more symmetric in all the variables. In 4 we formulate and prove a local 
uncertainty inequality with the right hand side being 

(1.5) 

where |w| 4 = |z| 4 + t 2 and Q = (2n + 2) is the homogeneous dimension of 3tf n . From 
the local uncertainty inequality we will also deduce a global inequality similar to the 
classical Heisenberg-Pauli-Weyl uncertainty inequality. 

Finally, for various facts about the Heisenberg group we refer to the monographs of 
Folland [6] and Thangavelu [19]. We closely follow the notations of the latter which 
differ from the former by a factor of 2n. 



2. Analogues of Hardy's theorem for R" and Jf 

Before we prove Hardy's theorem for the Heisenberg group, consider the case of R", 
n > 2. The proof of Hardy's theorem (for n = 1) depends heavily on complex analysis. 
As we have not found a reference in the literature for the higher dimensional case of 
Hardy's theorem we take this opportunity to present a proof which follows easily from 
the one-dimensional case via the Radon transform. 

Theorem 4. Let f be a measurable function on U n and a,/? two positive constants. 
Further assume that 



\f(x)\ ^ Ce~^\ |/({)| ^ Ce~\ x, { 6 R. (2.1) 

// #/?>;, then / = a.e. If a/?<, there are infinitely many linearly independent 
solutions for (2.1) and if a/? = , / is a constant multiple of e~ a|x|2 . 

Proof. As mentioned above, we will use theorem 1 . So, assume that n ^ 2. We use the 
Radon transform to reduce the problem to the one-dimensional case. Recall that the 



138 ASitarametal 

Radon transform Rg of an integrable function g on R" is a function of two variables 
(co, s) where coeS n ~ 1 and se(R and is given by 

I 
g(x)dx. (2.2) [ 

) = S j 

where dx is the Euclidean measure on the hyperplane x.a> = s. Actually, for each fixed I 
co, the above makes sense for almost all selR which may depend on co. However for \ 
functions with sufficient rapid decay at infinity it makes sense for all 5. For various 
properties of the Radon transform we refer to [5] and [8]. 
Our definition of the Fourier transform of a function / on R n is : 



(2.3) 
Then it can be easily seen that 



where seSR, coeS M ~~ 1 and (Rf)~ stands for the Fourier transform of Rf in the s-variable 
alone. From the definition of the Radon transform Rf and the relation (2.4), the 
conditions on / and / translate into conditions on Rf and OR/)~. For each fixed co, we 
therefore get 



\Rf((D,r)\^Ce~* r \ reU (2.5) 

(2.6) 



By appealing to Hardy's theorem for R we conclude that for a/? > , Rf(co, .) = 0, for 
almost all CD. In view, of the inversion theorem for the Radon transform this implies/ = 
a.e. When a/J = , (K/T(a>, s) = f(sa>) = A(^)e~^ where A is a measurable function on 



the unit sphere S n ~ l . Because /eL 1 (U n \ f is continuous at zero and by taking s -* we \ 
obtain A(a) = /(O). Hence /(<*) = f(G)e~^ 2 so that /(x) = Ce~ a|x|2 for some constant C. f 
If aj? < |, the n-dimensional suitably scaled Hermite functions >^ satisfy (2.1). 

We now consider the case of the Heisenberg group tf n = C" x R. The 
multiplication law of the group 3f n is given by 

? 
(z 9 t)(w, 5) = (z + w, t + 5 + ^lm(z.w)), (2.7) 

where z,weC n , t,s6R. Then ^f rt becomes a step-two nilpotent Lie group with Haar 

measure dzdt. In order to define the group Fourier transform we need to recall some f 

facts about the representations of the Heisenberg group. For each AeR*, there is an I 

irreducible unitary representation TC A of jff n realised on L 2 (IR n ) and is given by ] 

MZ, t)0)({) = e^e^+^W + y\ (2.8) 

where z = x -f 13; and </>eL 2 (lR rl ). A theorem of Stone- von Neumann says that all the 
infinite dimensional irreducible unitary representations of ^ are given by TI A , AeIR*, | 
(up to unitary equivalence). The Plancherel measure dfi = |A|"dA is supported on R*. \ 
(There is another family of one-dimensional representations of 3tf. n which do not play , 
a role in the Plancherel theorem.) 



Uncertainty principles on certain Lie groups 139 

Given a function /, say in L l (3^ n \ its group Fourier transform / is defined to be the 
operator valued function 



-I. 



/(A)= /(z,t)7t i (z,t)dzdt. (2.9) 

J Jt'n 

(The above integral being interpreted suitably). For each AeR*, /(A) is a bounded 
operator on L 2 (R W ). A simple calculation shows that /(A) is an integral operator with 
kernel }(, 77) given by 



(2.10) 

where we have written /(z, t) = /(x, y, t) and ^ 13 / stands for the Fourier transform of 
/ in the first and the third set of variables. For / in L 1 nL 2 (Jf n ) a simple calculation 
shows that 



|^ 3 /(z,A)| 2 dz, (2.11) 

(for a suitable constant C) where \\-\\ HS is the Hilbert-Schmidt norm. From this and 
the Euclidean- Plancherel theorem, the Plancherel theorem for the Heisenberg group 
follows: 



11/111 = CJ ||/W||J s dAi(A), (2.12) 

JR* 

where d^u(A) = |A| n dA and C n is a constant depending only on the dimension. 
We now state and prove the following analogue of Hardy's theorem for j^ n . 

Theorem 5. Suppose f is a measurable function on 3tf n satisfying the estimates 

\f(z,t)\^g(z)e-^\ zeC", reR, ^ (2.13) 

\\fW\\Hs <*-**> te*> ' ( 2 - 14 ) 

where geL 1 n L 2 (C M ) and a, /? are positive constants. Then, if a/? > , / = a.e.; z/ a/? < J 
are infinitely many linearly independent functions satisfying the above estimates. 



Proof. For a function / on Jtf n define /* to be the function /*(z, r) = /(z, ~ t) and let 
/*3/* stand for the convolution of / and /* in the t- variable. Then, a simple 
calculation shows that 



f -1 f 

(/* 3 /*)(z,ry'dzdt = . 

J Jfn J C 

-f.i 

Jc n 



(2.15) 



140 A Sitaram et al 

which, in view of (2.11), equals C~^n/(A)|| 2 s . Define a function ft on R by 



= (f**f*)(z,t)dz. 

c" 



Then one has 



Now the conditions (2.13) and (2.14) on / and / translate into the conditions 

(2.18) 



where /?' can be chosen so that a/?' > J or < according as a/? > or < |. If a/J > i 
then a/?' > J, so that Hardy's theorem for R implies that A = a.e. This means 
|| f(X) \\ 2 HS = for all AeK* and consequently / = a.e. by the Plancherel theorem for 
2tf n . If aj? <i then any function of the form g(z)h k (t) where h k is a suitably scaled 
Hermite function satisfies the hypothesis of the theorem. 
The following is the exact analogue of Hardy's theorem for 3tf n . 

COROLLARY 6 

Suppose f is a measurable L 1 -function on J^ n and 

i/(z,t)|<Ce- a(! * |2+ltl2) , zeC", teR (2.19) 

\\fW\\Hs <Ce-*\ AeR* (2.20) 



for some positive constants a and /?. If a/? > J, then f = a.e. // ajJ < |, t^en r/i^r^ are 
infinitely many such linearly independent functions. 

We shall now consider the case of the reduced Heisenberg group <#^ ed = C" x S . 
The multiplication law is as in (2.7) except for the understanding that t is a real 
number modulo 1. The reduced Heisenberg group J^ T n Qd is also a step two nilpotent 
Lie group with Haar measure dzdt where dt denotes the normalized Lebesgue 
measure on S 1 . For each meZ* = Z\{0}> there is an irreducible unitary representation 
7c m of Jf r n ed realized on L 2 (R n ) and is defined exactly as in (2.8). As in the case of <#* , we 
get (up to unitary equivalence) that all the infinite dimensional irreducible unitary 
representations of jf^* are given by 7r m , meZ*. Apart from this there is a class of one 
dimensional representations, n 0tb9 a, beR n given by 

n afb (z,t) = e 2 * i(ax+by) for (z,t)e d . (2.21) 



The dual & T * d can be thought of as the disjoint union of Z* and R 2n . The Plancherel 
measure is the counting measure on Z* with a weight function C\m\ n (for a suitable 
constant C) and the Lebesgue measure on R 2 ". (This is in sharp contrast to the case of 
Heisenberg group.) 

Given / in L 1 (tf * ed ), we can write 

/(z,t)= V k (z)e ik < (2.22)- 



Uncertainty principles on certain Lie groups 141 

as a Fourier series in the central variable t. (Here / can be thought of as the LMimit of 
the Cesaro means of the right hand side of (2.22).) Hence, as in the case of 3 n , if we 
compute the group Fourier transform /(m), meZ* we see that it is an integral 
operator with kernel K(, Y\) given by 4 



(2.23) 



where ^ ^ _ m stands for the Fourier transform of x F_ m in the first set of variables. 
Therefore, for /eL 1 nL 2 (^ ed ), a simple calculation shows that 

||/(m)||| s = |m -"Il^-J^c-,, meZ*. (2.24) 

Remark 7. We will now show by an example that the exact analogue of Hardy's 
theorem on J^J ed is not valid. Since t varies over a compact set in this case, one might 
be tempted to consider the following analogue of Hardy's theorem: 

Suppose / is a measurable L 1 -function on Jf^ ed and / satisfies the following 
estimates: 

\f(z,t)\^Ce~^\ \\f(m)\\ HS ^Ce-^\ zeC",meZ*, . (2.25) 

for positive constants a, ft. Then if ajS > , / = a.e. 

However, the following demonstrates that this is 'not the case. 

Observe that as / satisfies (2.25), / belongs to L 1 nL 2 (^ ed ) and the series in (2.22) 
converges to / in L 2 -sense. Now take /(z, t) = e"~ aN V kr , for some /ceZ*. Using (2.24) 
one can see that / is a non-trivial function satisfying the conditions (2.25). 

However the following, which can be viewed as a "sort of" uncertainty principle still 
holds: 

Suppose / is a measurable L^function on Jf ed satisfying 

|/(z,r)|<a(z)/f(t), zeCVeS 1 (2.26) 

(2.27) 



where a is any function with reasonably rapid decay at infinity, /? is any function 
that vanishes to infinite order at some point tQ^S 1 and y is a positive constant. Then 
/ = a.e. 

. Remark 8. Since S 1 is compact the point r can be "viewed" as the point at infinity and 
therefore condition (2.26) can be thought of as the analogue of the decay of the 
function at infinity. 



3. An uncertainty principle for the Heisenberg group 

In this section we formulate and prove an uncertainty principle for the Fourier 
transform on the Heisenberg group. In the uncertainty principle stated in theorem 2 as 
well as in the analogue of Hardy's theorem the Fourier transform has been considered 
as a function of the continuous parameter L The properties of the given function / as 
a function of the t variable are reflected in /(A) as a function of L But if we want to 



142 A Sitaram et al 

investigate how the properties of / as a function of z are affecting /(A) one has to view 
the Fourier transform as a function of two parameters, one continuous and the other 
discrete. ^ 

To justify the above claim let us write down the formula for /(A) when / is a radial 
function. In what follows, by a radial function we mean a function which is radial in 
the z variable. In order to state the formula we need to introduce some more notation. 
For each multi index aefoT let <D a (x) stand for the normalized Hermite functions on 
W. For AeR* we let <&(x) = |A| n/4 O a (W 1/2 *) and define P k (X) to be the projection of 
L 2 (U n ) onto the eigenspace -spanned by {:|a| = /c}. By <p(r) we denote the scaled 
Laguerre function 

^W^Lr^iWr 2 )^* 1 ' 4 ^, (3-1) 

L\~ 1 (t) being the fcth Laguerre polynomial of type (n - 1). 

Now let /(z, t) be a radial function and write /(r, t) in place of /(z, t) when |z| = r. 
Then we have the following formula for the Fourier transform of /: 

(3-2) 
where the coefficients jR fe (A,/) are given by 

KW-Mr. . (3.3) 

-\-n 

In the above /(r, 1) stands for the Fourier transform of /(r, t) in the t- variable and C n \ 
is a constant. From the above formula it follows that we can identify /(A) with the 
sequence of functions {JR k (A,/)}. The support properties of / as a function of t are 
reflected on the properties of R k (hf) as a function of A. Likewise, one expects that the 
z support of / will influence the properties of R k (A,/) as a function of k. We will show { 
that this is indeed the case. \ 

More generally we consider the Fourier transform /(A) as a family of linear ; 
functional F(A,a) on L 2 (IR n ) indexed by (A,a)eR* x M". For each (A, a) the linear j 
functional F(A, a) is given by | 

F(A,a)cp = ((p,/(A)cD^ ^> 6 L 2 (R-). (3.4) 1 

With the above notations the uncertainty principle stated in theorem 2 can be restated r 
as follows. If m {t:/(z, t) 0} < oo for a.e. z and m{A:F(A, a) ^ 0} < oo then / = 0. Now | 
to state our uncertainty principle let [ 



(3.5) 
and 

B(A)={a:F(A,a)^0}. (3.6) 

Then we have the following result. 

Theorem 9. Suppose /eL 1 nL 2 (jf J is swcfe tto m(yl(A)) < oo and B(X) is finite for a.e. 



Uncertainty principles on certain Lie groups 143 

Before going into the proof of the theorem we make the following remarks 
concerning the statement of the theorem. If there exists a compact set K c C" 
such that /(z, f) = whenever z$K and re(R then it follows that A (A) is compact 
for each /I and hence m(A(%))< oo is satisfied. The condition B(A) is finite simply 
means that /(1)<I>^0 only for finitely many a and consequently there is a 
k = k(X) such that/(A)P ; -(A) = for all j>/c. Let Sj* be the span of {<D*:|a =k}. 
Then it has been observed by Geller in [7] that S k are the analogues of the spheres 
\x\ = r in R n . In other words we can think of S as a sphere in L 2 (U n ) of radius 
(2k + n)|A|. This view has turned out to be fruitful in other problems also as can be 
seen from [18]. 

Thus we can let B k to be the span of {3>:|a| ^ ^} which is the analogue of a ball in 
R n and the condition f(X)Pj(X) = for j>k simply means that /(1) = in the 
orthogonal complement of B k in L 2 (tR"). Let us say that /(/I) has compact support in 
B k when the above holds. With this definition we can restate the above theorem in the 
following form. 

Theorem 10. Let /6L 1 nL 2 (Jf n ). Suppose for each X the Fourier transform f(X) 
is compactly supported. Then /(., X) cannot have compact support for each A unless 

/=o. 

We now come to the proof of theorem 9. We need to use some facts about the 
special Hermite expansions for which we refer the reader to [19]. If /eL 2 (C") then we 
have the expansion 

f = (2n)-" Z/x^v (3.7) 

In the above <^(z) = LpHiM 2 )e~ (1/4)|z|2 and / x (p k stands for the twisted 
convolution 

(/ x <p h )(z) = f f(z - w)<p>)^ 2 ><^>dw. (3.8) 

Jc n 

The functions <p k are eigenfunctions of the operator 

(3.9) 



with eigenvalues (2k + n) and /-/x <p k is the projection of L 2 (C W ) onto the /c-th 
eigenspace of the operator L. We also have for any m 

L m (f x q> k ) = (2k + n) m f x (p k (3.10) 

and in view of the orthogonality the relation 

\\L m f\\ 2 2 = (2nr 2n (2k-+n) 2M \\fx<p k \\ 2 2 . (3.11) 

fc = 

We need the following proposition in order to prove theorems 9 and 10. 



144 A Sitaram et al 

PROPOSITION 11 

Suppose /GL 2 (C") is such that \\f x cp k \\ 2 ^ Ce~* (2k+n) for some a >0. Then f is real 
analytic. 

Proof. By the Sobolev's embedding theorem it is easy to see that / is in C(C n ). We 
want to apply an elliptic regularity theorem of Kotake-Narasimhan to prove the 
proposition (see [1 1], theorem 3.8.9). In view of their theorem it suffices to show that 
for any positive integer m 

||L m /|| 2 <M m+1 (2w)! (3.12) 

holds with some constant M. Under the assumption on /, the relation (3.1 1) gives 



n I (2k + n) 2m e~ 2 * (2k+n) . (3.13) 

* = o 

The series can be estimated by 



which gives the estimate 

||L m /|| 2 ^C 2m+1 (2m)l (3.15) 

which is more than what we need. 

Now we can give proofs of theorems 9 and 10. Define a radial function Gj(z, t) by 



i(z)\l\ n dL (3.16) 

: 

it follows from (3.2) that \ 

G/AHC,,*-' 1 ^ (3.17) ; 

C n is some constant which we do not bother to calculate. Setting #,. = /* G ; and !- 
taking the (group) Fourier transform we get \ 



djW =/(A)Gj(A) = C n e-f(X)P.()i\ (3.18) 

Now fix L Then under the hypothesis of the theorem we have g^X) = for ; > k which 
in view of (2. 1 1 ) means that for a.e. z in C"gj(z) = for j > k where we have set gj(z) to 
stand for g.(z> A) the Fourier transform of g. in the t- variable. 

Recalling the definition of the convolution g j = f* G j on tf n and taking the Fourier 
transform in the f-variable we get with the same notation as above 



where the A-twisted convolution is given by 

f**,Gj(z)=\ f^z-^GjMe'W^dv. (3.20) 



Uncertainty principles on certain Lie groups 145 

Let /j[(z) =f\2~ 1 \l\' (i/2) z). Then it follows from the definition of G j that 

/Jx^O(4 (3-21) 



Under the hypothesis of either of the theorems we have (f\ x <pj)(z) = for j > k. This 
means that f\ satisfies the conditions of proposition 1 1 and consequently /(z, /) is real 
analytic for a.e. X as a function of (x 9 y). But then the set {z:/(z,A) ^0} cannot have 
finite measure unless /(z, A) = for a.e. z. This implies / = and hence theorem 9 
follows. It is clear that the hypothesis of theorem 10 implies that of theorem 9. Hence 
both theorems are proved. 



4. Some uncertainty inequalities for the Heisenberg group 

In this section we establish a local uncertainty inequality for the Fourier transform on 
Jf B and deduce a global inequality too. As we have remarked in the previoussection 
we consider the Fourier transform f(X) as a family of linear functional F(/i, a) indexed 
by (A,a)eR* x M". From the definition of f(A,a) it follows that 

tr(/w*/a))=z ii/w<i>iii! = z iifou)ii 2 , (4.1) 

a a 

where ||F(A,a)|| is the norm of the linear functional F(A.,ct). In this notation the 
uncertainty inequality of theorem 3 can be written as 



[ ||F(A,a)|| 2 d/i(A)<C e m(^) w f \f(z, 

J A J Jf n 



,t)\ 2 \t\ 2 dzdt. (4.2) 

a A 

In the next theorem we will prove an inequality which is more symmetric in both 
variables. 

Let v be the counting measure on F^" and let a = \JL x v on R* x I\T. We now prove 
the following inequality. We let Q = (2n 4- 2) and |w| 4 = |z| 4 + t 2 for w = (z, r)e#V 

Theorem 12. Gzi?en 0e[0,), /or eacfe /eL 1 nL 2 (^f J and c R* x N" wft/i (j() < oo 
one has 



(4.3) 



C e depends only on 6 and Q. 



Proof. Let r > be a positive number to be chqsen later. We write f = g + h where 
0(w) =/(w) when |w| < r and #(w) = otherwise. We then have 



[ 

JE 

\\m\\ n*iii 2 = 



(4.4) 

.E 

Since 



146 A Sitaram et al 

where \\$(X)\\ is the operator norm of g(l) on L 2 (r) and as \\(X)\\ ^ H^ we obtain 

(4.6) 



where we have applied Cauchy-Schwarz to get the second inequality 
On the other hand by the Plancherel theorem 



= C. |/j(w)| 2 dw 

J J#n 

f 

= CJ l/i(w)| 2 |w|- 

I J^' 
/ Jr n 



(4.7) 



Therefore, we have proved the inequality : 



jfn 

(4.8) 



Minimizing the right hand side by a judicious choice of r we get the inequality 

(49) 



This completes the proof of the theorem. 



' CaSe K " e D W deduCe a global ^certainty inequality from the 



We need some more n tation Let S> be 

ct v HeiSenber 8 8 rou P and let W) be the Hermite operator whose 

spectral decomposition is given by 



(410) 



Uncertainty principles on certain Lie groups 147 

For the definition of & we refer to [16] and we remark that when /= 1, H(A) = 
A 4- x 2 on U n . The relation between < and H(X) is given by 

(J?/HA) = /(A)H(A), . (4.11) 

for any reasonable function / on $F n . We can define any fractional power J^ v by the 
equation 



)^ (4.12) 

where (ff (A)) y is given by the decomposition 



k (4 (4.13) 

fc = 

We can now prove the following global uncertainty inequality for jf n . 
Theorem 13. For f in L 2 (Jf J, < y < Q/2 one has 

|/(w)| 2 |w| 2 Mw)( f |JSf y/2 /(w)| 2 dw ) (4.14) 

.tfn / \J.#n / 

where K is a constant. 

Before going into the proof of the above inequality the following remarks are in 
order. When y = 1 the above inequality reduces to 

l/(w)| 2 |w| 2 dwVf |^ 1/2 /(w)| 2 dw) (4.15) 

/ \ J.^n / 

and this is the analogue of the classical uncertainty inequality for the Fourier transform 
on 1R". The analogy can be seen clearly if we write the inequality (1.2) in the form 



\f(x)\ 2 \x\ 2 dx ( |(-A)^ 2 /(jc)| 2 dx I. (4.16) 

/ \ J / 

The inequality (4.15) is valid even if we replace |w| by |z| as was shown in [17] and then 
a precise value for K can also be obtained. 

Now we prove theorem 13. As in the case of the previous theorem the proof is 
modelled after the proof in the Euclidean case. Let E r denote the set 

E r ={(A,a):(2|a| + n)U|^r 2 }. (4.17) 

We claim that a(E r ) ^ Cr Q . To see this we first note that 



r= U U {A:(2|a| + n)|A|<r?}-x{a} (4.18) 

and therefore 

lk + n)\2.\^r 2 }. (4.19) 



148 A Sitaram et al 

Since /i{A:(2fc + n)W sr 2 } < Cr Q (2/c + n)-"- 1 and S w=k l < C(2k + n)"~ l we get 

<r(E r ) < O e (2/c + n) - 2 $ Cr c (4.20) 

fc=o 

and this proves the claim. 
Let E' r stand for the complement of E r and write 

= C, f ||/(A)||f, s dAi(A) (4.21) 

JR 

= C. W,a)|| 2 da 






F 

r r ! 

Applying the local uncertainty inequality to the first integral with 9 = y/Q < j and ^ 
making use of the claim we obtain I 

* 

|/(w)| 2 |w| 2 Mw. (4.22) 



For the second integral one has the following chain of inequalities: 

|tdff (4.23) 



f ll/*illidcr<r- J > f 

J F J 



) 

f 



jfn 



Thus we have obtained the inequality 

H/lli<CJr 2y ||/(w)| 2 |w| 2 Mw + r- 2y [|^ /2 /(w)| 2 dw|. (4.24) 

v. J J J 

Minimizing the right hand side we obtain 

ll/ll! W fl/! 2 M 2 MwV [|jS^/ 2 /(w)| 2 dw\ (4.25) 

V J / \ J / 

which proves the theorem. 

5. The Euclidean motion group 

In this section we shall state and prove an analogue of Hardy's theorem for the 
Euclidean motion group, M(2). The group G = M(2) is the semidirect product of 



Uncertainty principles on certain Lie groups 149 

S0(2)( ~ S 1 ) and R 2 ( ~ C). A typical element of G is denoted by (z, a) and this element 
acts on (R 2 as r(z)r(a) where r(z) is the translation by zeC(~[R 2 ) and r(a) is the 
rotation by an angle a, ^ a ^ 2n. The multiplication law is given by the composition 
of such maps. Haar measure on G is dzda where dz is Lebesgue measure on C(~ [R 2 ) 
and da is the normalized Haar measure on SO(2)(cS 1 ). For any unexplained 
terminology and notation in this section see [15]. 

For aelR 4 " =(0, oo), we have the unitary irreducible representation U a of G as 
operators in ^ (L 2 (S 1 ) ) defined by 

(U(z, a)0)(0) = e^^W - a), (5.1) 

where (j>eL 2 (S l \ 0^9^2n and <.,.> is the inner product on R 2 . Here one is 
identifying ae!R + with (0,a)eC. The Plancherel measure fj, on G is supported on this 
family of representations parametrized by IR + , and is given by a da, where da is 
Lebesgue measure on IR 4 ". 

The Fourier transform / of feL 1 (G) is a function on IR 4 " taking values in 
1 )), and is defined by 



f(a) = U(f) = [ l/(z, a)/(z, a)dzda (5.2) 

J M(2) 

(the integral interpreted suitably) and therefore we have 

(5.3) 



C S0(2) 



The following is an analogue of Hardy's theorem for the Euclidean motion 
groupM(2): 

Theorem 14. Suppose f is a measurable function on G satisfying the following 
conditions for some positive constants a, /? and C: 



^Ce~^\ . (z,0)eG, (5.4) 

\\f(a}\\ HS <Ce~^\ aeU + . (5.5) 

// aj? > , then f = a.e. 

Remark 15. Since functions on [R 2 can be thought of as functions on G invariant under 
right action by SO (2), Hardy's theorem for IR 2 shows that is the best possible constant. 



Proof. For neZ, define % n on SO(2) as % n (Q) = e in$ . It is enough to show that if 
^ n */*7 m = for all n,m. This is because if / is a L^function (or more generally 
a distribution) and x n *f*X m ^ s zero f r a ^ w meZ, then / is itself zero. A simple 
calculation shows that if / satisfies (5.4) and (5.5) then for all n, m, % n *f*x m also satisfy 
(5.4) and (5.5). For n,meZ, define 



. r(0), 



150 A Sitaram et al 

Observe that if h = X n *f*x m then h belongs to L* m (G). Therefore it is enough to prove 
the theorem for a function h in L* m (G). It is easy to check that if heL l nm (G) then h(a) 
maps x m ^L 2 (S 1 ) to a multiple of x n and is zero on the orthogonal complement of x m . 
In fact, 



Therefore 



Using the transformation property of h, it can be shown that 



for a.e. 9 and y in [0, 2n) where J^/z denotes the Euclidean Fourier transform of h in 
the C( ~ R 2 )- variable z. Thus from (5.5) and (5.6) it will follow that: 

l&M&yn^Ce-* (5.7) 

for eC(~ R 2 ) and a.e. y in [0,24 But h also satisfies (5.4). Using the analogue of 
Hardy's theorem for R 2 (~C) we conclude that h(. 9 y) = Q for a.e. y in [0,24 This 
implies that h a.e. 



References 1 

[I] Benedicks M, On Fourier transforms of functions supported on sets of finite Lebesgue measure, ; 
J. Math. Anal Appl. 106 (1985) 180-183 [ 

[2] Cowling M, Price J and Sitaram A, A qualitative uncertainty principle for semi-simple Lie groups, J. [ 

Australian Math. Soc. A45 (1988) 127-132 ^ 

[3] Dym H and McKean H P, Fourier series and integrals (1-972) (New York: Academic Press) J 

[4] Echteroff S, Kaniuth E and Kumar A, A qualitative uncertainty principle for certain locally compact ' 

groups, Forum Math. 3 (1991) 355-369 ! 

[5] Folland G B, Introduction to partial differential equations, Mathematical notes (Princeton: Princeton 

Univ. Press) 1976 No. 17 
[6] Folland G B, Harmonic analysis in phase space, Ann. Math. Stud. (Princeton: Princeton Univ. Press) 

No. 122(1989) 
[7] Geller D, Spherical harmonics, the Weyl transform and the Fourier transform on the Heisenberg 

group, Can. J. Math. 36 (1984) 615-684 

[8] Helgason S, The Radon transform, Progress in Mathematics (1980) (Birkhauser) No. 5 
[9] Hogan J A, A qualitative uncertainty principle for unimodular groups of type I, Trans. Am. Math. Soc. 

340(1993)587-594 

[10] Hormander L, A uniqueness theorem of Beurling for Fourier transform pairs, Arkiv fur Matematik 29 
(1991)237-240 

[II] Narasimhan R, Analysis on real and complex manifolds (1985) (North-Holland: North-Holland ! 
Math. Lib.) 35 * 

[12] Price J and Sitaram A, Functions and their Fourier transforms with supports of finite measure for / 

certain locally compact groups, J. Func. Anal 79 (1988) 166-182 I 

[13] Price J and Sitaram A, Local uncertainty inequalities for locally compact groups Trans Am. Math. I 

Soc. 308 (1988) 105-1 14 F ' f 

[14] Pati V, Sitaram A, Sundari M and Thangavelu S, Hardy's theorem for eigenfunction expansions, 
preprint (1995) 



Uncertainty principles on certain Lie groups 151 

Sugiura M, Unitary representations and harmonic analysis, An introduction (1975) Tokyo: Kodansha 

scientific books 

Taylor M E, Noncommutative harmonic analysis, Math. Surveys and Monographs, American 

Mathematical Society (1986) No. 22 

Thangavelu S, Some uncertainty inequalities, Proc. Indian Acad. ScL, Math. Soc. 100 (1990) 137-145 

Thangavelu S, Some restriction theorems for the Heisenberg group, Stud. Math. 99 (1991) 11-21 

Thangavelu S, Lectures on Hermite and Laguerre expansions, Math. Notes (1993) (Princeton: 

Princeton Univ. Press) No. 42 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 2, May 1995, pp. 153-156. 
Printed in India. 



On subsemigroups of semisimple Lie groups 



D KELLY-LYTH and M McCRUDDEN 

Department of Mathematics, University of Manchester, Oxford Road, Manchester, 
M139PL, UK 

MS received 30 August 1994; revised 17 October 1994 

Abstract. In this paper we classify the subsemigroups of any connected semisimple Lie group 
G which are K-bi-invariant, where G = KAN is an Iwasawa decomposition of G. 

Keywords. Lie group; semisimple; subsemigroup. 

In a recent investigation of the support behaviour of certain Gauss measures on a 
connected semisimple Lie group (see [KM]), we encountered the following 
question. 

Let G be a connected semisimple Lie group with Lie algebra g having a Cartan 
decomposition g = t + p (in the usual notation of Helgason [He]), and let K be the 
analytic subgroup corresponding to t. Can one classify the subsemigroups S of G 
such that K^Sl Here "subsemigroup" means only a subset of G which is closed 
under the group multiplication. In this note we show that this problem has a very 
simple answer. 

To describe this, we let 



be the decomposition of g into its simple ideals g 7 -, 1 ^j ^ n, and we recall that 
[9i? 9;] = for all 1 < i <j < n, and g^ and g 7 - are orthogonal w.r.t. the Killing form 
on g. If QJ = tj + PJ is a Cartan decomposition for g^, then g has a Cartan decomposition 
g = t + p, where t = t!+ 1 2 + +! andp = p 1 4-p2 + " + ? 

Let N be a subset of {1, 2, . . . , n} and form Q N := t 4- / e tfPj. It is easy to see that g N 
is a reductive subalgebra containing t, and if G N is the corresponding analytic 
subgroup, then G N = (Yl jeN G j )(Yl j ^ N K j \ where G j9 Kj are the analytic subgroups 
determined by g^ and t j9 respectively. 

Our question raised above is now answered by the following result. 

Theorem. Let G be a connected semisimple Lie group and let S be any subsemigroup 
of G bi-invariant under K. Then S = G N for some subset N of { 1, 2, . . . , n}. 

In the special case when G is simple (and noncompact) this theorem tells us that 
K is a maximal proper subsemigroup of G. This special case therefore implies the 
observation of Hilgert and Hofmann that SO(2) is a maximal proper subsemigroup 
of SL(2, R) ([Hi H], Corollary 4.20, p. 49) and extends the theorem of Brun (see [B] or 
[He], Exercise A.3, p. 275) that K is a maximal proper subgroup of G, in the simple case. 

153 



154 D Kelly-Lyth and M McCrudden 

PROPOSITION 1 

Any subgroup of a connected semisimple Lie group G which contains K is of the form 



Proof, (i) Let xeG\K and let H x denote the subgroup of G generated by K and x. We 
may write x = x 1 x 2 ...x n , where XjeGj for 1 <y ^ rc, and set N x *={l^j^ n: x^Kj}. 
Since x determines Xj up to translation by a central element, and the centre of G 
lies inside K, x determines N x uniquely. 

For each j <=N X , H x r\G j contains Kj and XjKjXT 1 . As G 7 is simple, Brun's theorem 
implies that the normaliser of K j in Gj is K p hence H x n G j ^ K p so by Brun's theorem 
again, H x r\Gj = Gj. It follows that H x contains G Nx . As G Nx clearly contains K and 
x, we conclude that H x = G Nx . 

(ii) Now let H be an arbitrary subgroup of G containing K and with H^K. Then 

H=\jG Nx ~G N , 

xeH . 

where N = [j xeH N x . D 

Given semisimple g with Cartan decomposition g = t + p, we choose a maximal 
abelian subspace a p of p and denote by the set of all roots of g relative to a p (see 
[He], p. 263, and note that we follow the notation there except that a p replaces t) po 
and the subscript on g and the subspaces of g is dropped). We write N K (a p ) for the 
normaliser of a p in X. 

PROPOSITION 2 

There exists fceN x (a p ), and some m^ 1, such that for all Xea p , 



Proof. For each aeE, let r a :a p ->a p denote the reflection in the hyperplane 
(YEa p : a(Y) = 0} w.r.t. the restriction to o p of the Killing form on g. We choose a 
basis of simple roots (a l9 . . . , a z } from S, and set 

s = r i or a 2 or > 

which is a Coxeter element of the Weyl group W of (g, a p ). Since a x , . . . , a z are linearly 
independent in a*, we have 5(7) = Y for Yea p if and only if r a .( Y) = Y for all 1 <; < / 
(c.f. [Ca], Proposition 10.5.6, p. 165). Hence s(Y) = Y if and only if a/ Y) = for all 
1 <j < /, which is equivalent to Y=0 since a^..,,^ span a*. Hence the linear map 
/ - s: a p -* a p is invertible. 
Let the order of s be m, then from the identity 

(/ + s + - + s m ~ l ) (I - 5) = I - s m = 
and the invertibility of / - 5, it follows that on a p , 



Because W can also be realised as N K (a p )/C K (a^ where C K (a p ) is the centraliser 
of a p in J, we can find keN K (aJ such that s = Adfc| a ". Then (1) gives that for all 



} 



\ 



On subsemigroups of semisimple Lie groups 1 55 

X + M(k)(X) + M(k 2 )(X) 4- - + Ad(/c w ~ ^(X) = 0, 



gives the result. D 

3LLARY 1 
exists keN K (a p ) and m^ 1 such that for each aeA = expa p , 

a- 1 =(fca) M " 1 fc" III + 1 . D 

DLLARY 2 

; connected semisimple Lie group G, any K-bi-invariant subsemigroup of G is a 

>up containing K. 

Let S be a K-bi-invariant subsemigroup and let xeS, then x = /qa^ for some 
ind k lt k 2 eK. Hence x" 1 =/cJ 1 (3~ 1 /c~ 1 eS by Corollary 1. Also leS and so 

D 

roof of the theorem stated earlier is now immediate by Propositions 1 and 2, 
lary 2. 

-fc. We note the following consequence of the theorem. If G is a connected 
mple Lie group and C is any K-bi-invariant subset of G, then there is some 
;uch that C r is a neighbourhood of the identity in G(C), the subgroup of G 
ited by C. 
, by the theorem above, 

G(C)= \JC\ 

s=l 

- is Haar measure on G(C), there exists neN such that A(C") >0. But we may 
C = KDK for D^A, and by Proposition 2, Corollary 2, 



j result now follows because C n C~ n is a neighbourhood of the identity in G(C), 
/], bottom of page 50. 

)\vledgements 

>f the authors (DKL) thanks the Science and Engineering Research Council for 
financial assistance during the completion of some of this work. Both authors 
I like to thank the referee for a number of helpful suggestions. 



ences 

Brim J, &ur la simplification par les varietes homogenes, Math. Ann. 235 (1977), 175-183 
Carter R W, Simple groups of Lie type (1972) (London, New York: J. Wiley) 



156 D Kelly-Lyth and M McCrudden \ 

[He] Helgason S, Differential geometry, Lie groups and symmetric spaces (1978) (New York, London: 

Academic Press) 

[HiH] Hilgert J and Hofmann K H, Old and new on Sl(2). Manuscripta Math. 54 (1985) 17-52 
[K M] Kelly-Lyth D and McCrudden M, Supports of Gauss measures on semisimple Lie groups, Preprint j 

Math. Zeit. (to appear) 

[W] Weil A, LMntegration dans les groupes topologiques et ses applications (Paris, 1953) [ 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 2, May 1995, pp. 157-167. 
Printed in India. 



Induced representation and Frobenius reciprocity for compact 
quantum groups 



ARUPKUMAR PAL 

Indian Statistical Institute, Delhi Centre, 7, SJSS Marg, New Delhi 110016, India 

MS received 13 September 1994 

Abstract. Unitary representations of compact quantum groups have been described as 
isometric comodules. The notion of an induced representation for compact quantum groups 
has been introduced and an analogue of the Frobenius reciprocity theorem is established. 

Keywords. Induced representation; compact quantum group; Hilbert C*-module. 



Quantum groups, like their classical counterparts, have a very rich representation 
theory. In the representation theory of classical groups, induced representation plays 
a very important role. Among other things, for example, one can obtain families of 
irreducible unitary representations of many locally compact groups as representations 
induced by one-dimensional representations of appropriate subgroups. Therefore, it is 
natural to try and see how far this notion can be developed and exploited in the case of 
quantum groups. As a first step, we do it here for compact quantum groups. First we 
give an alternative description of a unitary representation as an isometric comodule 
map. This is trivial in the finite-dimensional case, but requires a little bit of work if the 
comodule is infinite-dimensional. Using the comodule description, the notion of an 
induced representation is defined. We then go on to prove that an exact analogue of 
the Frobenius reciprocity theorem holds for compact quantum groups. As an 
application of this theorem, an alternative way of decomposing the action of SU q (2) 
on the Podles sphere S^ is given. 

Notations. 3tf,3C etc, with or without subscripts, will denote complex separable 
Hilbert spaces. 08(3?) and ^ O pf) denote respectively the space of bounded operators 
and the space of compact operators on 3? . sf, J 1 , # etc denote C*-algebras. All the 
C*-algebras used in this article have been assumed to act nondegenerately on Hilbert 
spaces. More specifically, given any C*-algebra s#, it is assumed that there is a Hilbert 
space Jf such that j^^(JT) and for weJT, a(u) = for all asjtf implies u = 0. 
Tensor product of C*-algebras will always mean their spatial tensor product. The 
identity operator on Hilbert spaces is denoted by /, and on C*-algebras by id. For two 
vector spaces X and Y 9 X (x) alg Y denote their algebraic tensor product. 
Let sf be a C*-algebra acting on Jf. The subalgebras {ae^(Jf): 
and {aE^(^C)\ab,bae^^bE^} of J'(jr) are called respectively the left multiplier 
algebra and the multiplier algebra of j/. We denote them by LM(<$/) and M(j/) 
respectively. A good reference for multiplier algebras and other topics in C*-algebra 
theory is [4], See [9] for another equivalent description of multiplier algebras that is 
often very useful. 



158 , Arupkumar Pal \ 

i 

1. Preliminaries 

1.1 Let si be a unital C*-algebra. A vector space X having a right j^-module j 
structure is called a Hilbert ^-module if it is equipped with an j^-valued inner product f 
that satisfies i 

(i) <x,y>* = <y,x>, I 

(ii) <x,x0, 

(iii) <x,x> = 0=>x = 0, 

(iv) <x,yb> == <x,;y>f? for 



and if ||x|| : = || <x, x> || 1/2 makes X a Banach space. 

Details on Hilbert C*-modules can be found in [1], [2] and [3]. We shall need a few 
specific examples that are listed below. 

Examples, (a) Any Hilbert space Jf with its usual inner product is a Hilbert C- 
module. 

(b) Any unital C*-algebra j/ with <a,&> = a* b is a Hilbert ^-module." / 

(c) Jf J3/, the 'external tensor product' of 2tf and ja/ 9 is a Hilbert ^-module. 

(d) #(jf, Jf ), with <5, T> = S* T is a Hilbert (jf )-module. j 



1.2 We have seen above that & #(jf ) and #(Jf , Jf jf ) both are Hilbert 
modules. It is easy to see that the map SiZu^ a^Zi^ a f (-) from Jf a ^PO to 
#~) extends to an isometric module map from ^<g>#(Jf)' to 
, Jf JT), i.e. 9 obeys 



Thus & embeds J?(jf) in ^(jf,^ jf). Observe two things here: first, if 
^ = C, 9 is just the identity map. And, & is onto if and only if 2ff is finite-dimensional. \ 
The following lemma, the proof of which is fairly straightforward, gives a very useful * 
property of 8. 

i 

Lemma. Let O f be the map $ constructed above with ^ replacing Jf,z= 1,2. Let 
jff 2 ) and xeJ^ l (jf). T/ien & 2 ((S fd)x) = (S I)^(x). 



1.3 For an operator Te@(J{f jf), and a vector we^f, let T tt denote the operator 

I;M> T(w v) from jf to jf jf . It is not too difficult to show that T u ^(^f ^ (Jf )) 

if Te LAf( (^) ^ W). Define a map (T) from ^f to 

S" L (T u ). Then Y is the unique linear injective contraction from 

to J^,^JW) for which 9(^(T)(u))(i;) = T(ut?) Vwe^^eJT, Te 

(^) (Jf)). Here are a few interesting properties of this 

PROPOSITION 



Let W:LM(a (je)aW)^0(je,jea(jr)) be the map described above. Then 
we have the following: 

(i) *maps isometries in LM(^ (^) ^f (jf )) onto tte isometries in 



Induced representation for quantum groups 159 

(ii) For any Te 



(iii) Ifjtf is any C*-subalgebra of &(&) containing its identity, then Te LM(^? pf ) .a/) 
if and only if range ^(T)^ 



Proof, (i) Suppose T6LAf(# pH#PO) is an isometry. By 1.2, <(!>, (7 = 
<9" 1 (TJ,d" 1 (rj> = < T u , ?;>= <M,i7>7 for M,i;eJf. Thus (T) is an isometry. 

Conversely, take an isometry 7i:Jf -> J"f ^pf) and define an operator T on the 
product vectors in ^f JJT by T(uv) = S(7i(w))(i?),& being the map constructed in 
1.2. It is clear that T is an isometry. It is enough, therefore, to show that T(|w><i;|S)6 
# Pn &(&) whenever SeJ'pf ) and u,v are unit vectors in Jf such that <w,u> = 
or 1. 

Choose an orthonormal basis {e t } for Jf such that ^ = M, e r = where 

O if <u, i;> = 0, 
if <ii, !;>=!. 

Let 7c . = e f |^)7i(^). Then T(|M><i?|S) = S|e I .)<e r |7c I . 1 S where the right- 
hand side converges strongly. Since TufcJeJf ^(Jf), it follows that S 7r a *?!;,.! 
converges in norm. Consequently the right-hand side above converges in norm, which 
means T(|w> 



(ii) Straightforward. 

(iii) Take T= |w><u|(g)a,w,i;e^f,aej3f. For any 
Since *F is a contraction, and the norm closure of all linear combinations of such T's is 
> we have ran S e ^CT) ^ 3e ^ for all 



Assume next that' TeLM(^ (^f) ja^). Then T(|w><u|/)e^ pf)^ for all 
Hence ^F(r(|M><tt|/))(M)eJf jtf, which means, by part (ii), that 

f j/ for all uetf. Thus^ range ( T) e -jf ^. 
To prove the converse, it is enough to show that T(\u)^v\a)G^ Q (^) $0 
whenever aestf and u,veJ4f are such that <w, i?> = or 1. Rest of the proof goes along 
the same lines as the proof of the last part of (i). H 

1.4 Let jf 19 jf 2 be two Hilbert spaces, <$/ being a C*-subalgebra of J'pf f ) contain- 
ing its identity. Suppose <p is a unital *-homomorphism from s4 1 to j/ 2 . Then id(j)\ 
Sa\-+S<l)(a) extends to a *-homomorphism from ^ (^f) 6 s/ 1 to ^ (J^) j/ 2 . 
Moreover {((W0)(a))fc:^eJ > (Jf')j/ 1 ,fc6^ (Jf)^ 2 } is total in ^ (Jf)j/ 2 . 
Therefore id extends to an algebra homomorphism by the following prescription: 
for all fl 



PROPOSITION 

Let (j> be as above, and } i be the map T constructed earlier with JT replacing Cfr. Then 



160 Arupkumar Pal 

Proof. It is enough to prove that 

(<w|iW<)^TO)) = (^ 

Rest now is a careful application of 1.2. 



1.5 Consider the homomorphic embeddings 12 : 

and 13 :^ (^f)(g)^ 2 ->^ (^ ? )(g)^ 1 ja/2 given on the product elements by 



respectively. Each of their ranges contains an approximate identity for 
j*i j/ 2 , so that their extensions respectively to LM(^ (JH ^i) and 
j/ 2 ) are also homomorphic embeddings. 

PROPOSITION 

Let X F 1 , X F 2 ^ as * n ^e previous proposition, and let be the map* with 
replacing d. Let Se LM(^ pf ) s/J, Te LM(^ (^f ) s/ 2 ). Then 



Proof. Observe that for M 1 ,...,u ll 6^f,(Y 1 (S)(u l ),*i(S)("j) 

Therefore X F 1 (S)W is a well-defined bounded operator from jf j/ 2 to 

3df sf i st 2 - Ta5ce an orthonormal basis {ej for ^f. Define Sj/s and T f /s as 

follows: 



This converges to ^ 12 (S)^> 13 (T)(e i w) as n--oo. On the other hand, 



which implies lim^^acCPJS) W)(P,, W)V 2 (T)(,)) = ^((T 
Therefore 



Let P w :=I? =1 |e ><^|. Then CF^S) id)(P n zW)^F 2 (T)(^) = CF 1 (S) W)(Z 7<II ^ 
Ty Hence for i?6Jf I9 wejf 2 , 



Induced representation for quantum groups 161 

2. Representations of compact quantum groups 

2.1 We start by recalling a few facts from [6] on compact quantum groups. 
DEFINITION 



Let jtfbea separable unital C*-algebra, and u:<$/-+jtf<s/bea unital *-homomorphism. 
We call G = (X, /u) a compact quantum group if the following two conditions are 
satisfied: 



(i) (id IJL)IJL = (n id)^ and 
(ii) {(a I)n(b):a 9 bej/} and {(/ a)^(b):a,be^} both are total in 

\JL is called the comultiplication map associated with G. We shall very often denote the 
underlying C*-algebra s$ by C(G) and the map /x by U G . 

A representation of a compact quantum group G acting on a Hilbert space 3 is an 
element n of the multiplier algebra M(# p?) C(G)) that obeys 7C 12 7T 13 = (id}ji)n, 
where 7c 12 and 7i 13 are the images of TC in the space M(^ pf ) C(G) C(G)) under 
the homomorphisms </> 12 and 13 which are given on the product elements by: 



A representation TC is called a unitary representation if THT* = / = n*n. One also has 
the notions of irreducibility, direct sum and tensor product of representations. As in 
the case of classical groups, any unitary representation decomposes into a direct sum 
of finite-dimensional irreducible unitary representations. Let A(G) be the unital 
*-subalgebra of C(G) generated by the matrix entries of finite-dimensional unitary 
representations of G. Then one has the following result (see [8]). 

Theorem. ([8]) Suppose G is a compact quantum group. Let A(G) be as above. Then we 
have the following: 

(a) A(G) is a dense unital *-subalgebra of C(G) and n(A(G)) A(G) alg A(G). 

(b) There is a complex homomorphism &:A(G)-+C such that 



(B id)iJL = id = (id 
(c) There exists a linear antimultiplicative map K: A(G) -* A(G) obeying 
m(idK)n(a) = s(a)I = m(jc id)n(a), and /c(/c(a*)*) = a 

for all aeA(G\ where m is the operator that sends abto ab. 

The maps B and K in the above theorem are called the counit and coinverse 
respectively of the quantum group G. 

2.2 Let G = (C(G),/i G ) and H = (C(H\u H ) be two compact quantum groups. A C*- 
homomorphism from C(G) to C(H) is called a quantum group homomorphism 
from G to H if it obeys (0 (f))u G = /^0. 

One can show that if G, H are compact quantum groups, then H is a subgroup of 
G if and only if there is a homomorphism from G to H that maps C(G) onto C(H). 



162 Arupkumar Pal 

2.3 Let G = (jtf , /i) be a compact quantum group. From now onward we shall assume 
that st acts nondegenerately on a Hilbert space Jf* , i.e. j/ is a C*-subalgebra of J^pf) 
containing its identity. We call a map TT from J-f to 3tfsf an isometry if 
<7c(M),7c(i?)> = <M,i;>/ for all u,i?e^f. If TC:^ -+Jf <s/ is an isometry, then 7izW: 
u ah->7t (w) a extends to a bounded map from tf j^ to Jf ^ s/. n is called 
an isometric comodule map if it is an isometry, and satisfies (7izW)7r = (/^)TL The 
pair (Jf , TC) is called an isometric comodule. We shall often just say n is a comodule, 
omitting the 3? . 

The following theorem says that for a compact quantum group isometric 
comodules are nothing but the unitary representations. 

Theorem. Let n be an isometric comodule map acting on jjf. Then *P~ ^TC) is a unitary 
representation acting on $?. Conversely, if TC is a unitary representation of G on Jf , then 
(Stf, *(&)) is an isometric comodule. 

We need the following lemma for proving the theorem. 

Lemma. Let (Jtf, n) be an isometric comodule. Then Jf decomposes into a direct sum of 
finite dimensional subspaces 2 = @3tf a such that each Jf a is n-invariant and TT| #I is an 
irreducible isometric comodule. 



Proof. By 1.3, there is an isometry n in LM(^ (^) jtf) such that *F(A}= n. Using 
1.4 and 1.5, we get rt 12 rt 13 = (M/)A where 7c 12 = ^ 12 (7i), 7T 13 = < 13 (A), 12 an d 
13 being as in 1.5 with s^ l = stf 2 = <$/. 

Let </ = {aej/:h(a*a) = 0}, From the properties of the haar state, J is an ideal in 
jaf. For any unit vector u in ^f, let Q(M) = (M/i)(rt(|tt><tt|/)A*). Then 
6(")* = G(")eo(^)- If 6() = 0, then |A(|u><u|/)**| 1/2 * (^)^ Therefore 
A(|w><|/)A*e (J?)^. It follows then that |w><w|/eJ > ( e ^ ? )J zr . This 
forces u to be zero. Thus for a nonzero w, )(w) 7^ 0. Choose and fix any nonzero u. Then 






Thus A(j2()/) = (Q(w)/)A. If P is any finite-dimensional spectral projection of 
Q(u\ then (P I) = (P I)rt t which means, by an application of part (ii) of 1.3, that 
nP (Pid)n. Standard arguments now tell us that n can be decomposed into 



Induced representation for quantum groups 163 

ect sum of finite-dimensional isometric comodules. Finite-dimensional comodules, 
rn, can easily be shown to decompose into a direct sum of irreducible isometric 
adules. The proof is thus complete. H 

'oofof the theorem: Let rt be a unitary representation. By 1.3, *(ft) is an isometry 
J^toJjf C(G\ Using 1.4 and 1.5, we conclude that *(n) is an isometric comodule. 
>r the converse, take an isometric comodule n. If n is finite-dimensional, it is easy 
ee that V ~ I (TI) is a unitary representation. So, assume that n is infinite- 
insional. By the lemma above, there is a family {P a } of finite-dimensional 
actions in $(#?) satisfying 

P*P f = 8*pP*> I,P* = I> nP* = (P a id)n Va (2.1) 

that n\ Pyje = 7cP a is an irreducible isometric comodule. n\ Pt ^ is finite-dimensional, 
fore ~ ifa |p 2jf ) is a unitary element of LM(^ (P a ^f) ,o/f= ^(P a Jf)^. Let us 
'te *~ 1 (n) by n. Then the above implies that in the bigger space S&(tf Jf ), 

(rt(P a /))*(7i(P a /)) = P a / = (7i(P a 7))(7r(P a /))*. 

second equality implies that 7i(P a /)TI* = P a / for all a, so that TUT* = /. We 
tdy know by 1.3 that 71*71 = / and by 1.4 and 1.5 that n i2 n l3 =(id]Li)n. Thus it 
lins only to show that neM(^ (J^)^). It is enough to show that for any 
and aes/, (Sa)7te^ (J^)^. Now from (2.1) and 1.3, A(P a /) = 
for all a. Therefore (S^)^/)* = (5a)7i(P a /)6J > (^f) j</. Since 
a) n is the norm limit of finite sums of such terms, (S a)7ce^ (J ( f ) ^. Thus TT is 
itary representation acting on Jf . 

Sfext we introduce the right regular comodule. Denote by L 2 (G) the GNS space 
ciated with the haar state h on G. Then stf is a dense subspace of L 2 (G). One can 
see that $#$tf can be regarded as a subspace of L 2 (G)stf. Consider the 



= (hid)iJL(a*b) = fc(a*h)7 

11 a, feej/. Therefore ja extends to an isometry from L 2 (G) into L 2 (G) j^. Denote 
y M. The maps (/^)5R and (Wfd)5R both are isometries from L 2 (G) to 
?) s ^/ and they coincide on sf. Hence (/ /x)9? = (91 id)SR. Thus 51 is an 
letric comodule map. We call it the right-regular comodule of G. By theorem 2.3, 
(9?) is a unitary representation acting on L 2 (G). This is the right-regular represen- 
>n introduced by Worono wicz ( [8] ). 

inally let us state here a small lemma which is a direct consequence of the 
T-Weyl theorem for compact quantum groups. 

Lemma. {ueL 2 (G)\yi(u)eL 2 (G) alg C(G)} = A(G). 
iduced representations 

lis section we shall introduce the concept of an induced representation and show 
Frobenius reciprocity theorem holds for compact quantum groups. Throughout 



164 Arupkumar Pal 

this section G = (C(G), U G ) will denote a compact quantum group and H = (C(H), H H \ 
a subgroup of G. We start with a lemma concerning the boundedness of the left 
convolution operator. 

3.1 Lemma. Let G = (c/,^) be a compact quantum group. Then the map L p :<$&-+jtf 
given by L p (a) = (p id)^(a) extends to a bounded operator from L 2 (G) into itself. 

Proof. The proof follows from the following inequality: for any two states p and p 2 \ 
on stf, we have 

Pi((p2* fl )*(P2* a )) < P2*Pi( a * a ) Vaej/, I 

i 

where p f * a: = (p id)fi(a). * | 

I 

3.2 Let 7i be a unitary representation of H acting on the space Jti? .n: = *(ft) is then an 

isometric comodule map from tf to Jf C(H). Consider the following map from 

J? L 2 (G) to ^ L 2 (G) C(G): J 



where 91 G is the right-regular comodule of G. It is easy to see that this is an isometric 
comodule map acting on ^f L 2 (G). 

Let p be the homomorphism from G to H (cf. 2.2). Let ^ = {ue^f L 2 (G): 
(7 L , )u-(id p)nl}u for all continuous linear functional p on C(H)}. Then 
/9r keeps 2tf invariant; the restriction of /SR G to 2f is therefore an isometric 
comodule, so that X F~ l ((/ 9^)1^) is a unitary representation of G acting on #*. We 
call this the representation induced by n, and denote it by ind ,;! or simply by indTt 
when there is no ambiguity about G and H. 

Let 7i t and 7t 2 be two unitary representations of H. Then clearly we have i 

(i) ind A x and ind n 2 are equivalent whenever ft^ and A 2 are equivalent, and 

(ii) md(n 1 n 2 ) and ind n { ind n 2 are equivalent. ;? 

Before going to the Frobenius reciprocity theorem, let us briefly describe what we f 
mean by restriction of a representation to a subgroup. Let T! G be a unitary representa- 
tion of G acting on a Hilbert space tf . We call (uip)7t G the restriction of TT G to 
H and denote it by 7i G|fr . To see that it is indeed a unitary representation, observe that 
x F((idp)7i G ) = (/p) v F(7t G ) whicft is clearly an isometric comodule. Therefore by 
2.3, TI G|H is a unitary representation of H acting on 3tf Q . Denote *(n G ) by TI G and 
' f )by7i G ' H . 



3.3 Theorem. Let n G and n H be irreducible unitary representations ofG and H respec- 
tively. Then the multiplicity of H G in ind G 7t H is the same as that of n H in n GlH[ . 

Proof. Let /(7r G|H ,7i H ) (respectively ,/(7t G , ind7t H )) denote the space of intertwiners 
between TT G| * and n H (respectively T! G and ind i! H ). Assume that 7t G and rt H act on Jf 
and Jtf o respectively. Jf C(G) can be regarded as a subspace of Jf L 2 (G) and 
hence TT G as a map from tf into jf L 2 (G). Since TE G = V(fi G ) is unitary, we have 
for 



Induced representation for quantum groups 165 

Thus 7r G :Jf -Jf L 2 (G) is an isometry. Let S:Jf -Jf be an element of 
/(A C|H , TI H ). (S /)TT G is then a bounded map from Jf into J^ L 2 (G). Denote it by 
f(S). It is not too difficult to see that f(S) actually maps Jf into Jf , and intertwines 
TT G and ind n H . /:S(->/(S) is thus a linear map from </(TT G|H , n H ) to /(7i G , ind A"). 

We shall now show that / is invertible by exhibiting the inverse of / Take a 
T: Jf -> jf that intertwines TT G and ind TT H . For any we^f , T": = w| /) T is a map 
from jf to L 2 (G) intertwining TI G and the right regular representation SR G of G, i.e. 
<R G T u = (T u <S)id)n G . Now, TT G is finite-dimensional, so that 7t G (Jf )c jf fl/0 A(G). 
Hence 9* G T u (Jf ) c L 2 (G) fl ^(G). By 2.5, r w (jf ) c X(G). Since this is true for all 
ueJf , T(jf ) ^oflZff^(^)'- Therefore (7 e G ) T is a bounded operator from 3C 
to ^ . Denote it by 0(T). 

For a comodule TI and a linear functional p, denote (id p)n by 7i p . Let p be a linear 
functional on C(/f). Then n*g( T) = rf(I e G ) T = (/ fiG)(7r^ id) T=(l B G ) 
(/ L p . p ) T = (/pjp)T. On the other hand, since T intertwines n G and ind7T H , we 
have g(T)(7t GlH ) p = ^(T)(/ P)TT G|H = ^(T)(/ p)(I P)TT G = (/ e G ) Tn G p = (/ e G ) 
U9l^ | ,)T = (/pop)7: Thus n*g(T) = g(T)(n GlH ) p for all continuous linear 
functional p on C(ff),' which implies 0(T)e/(# G|H ,7i H ). The map T\-^g(T) is the 
inverse of/. Therefore /(TC G|H ' n H ) ^ J(ft G , ind TT H ), which proves the theorem. H 

COROLLARY 1. 

For any unitary representation n G of G and n H of H, the spaces J(fi G{H ,n H ) and 
, ind n H ) are isomorphic. 



COROLLARY! 

Let H be a subgroup of G and K be a subgroup of H. Suppose TC is a unitary representa- 
tion of K. Then ind^tf and ind^indf A) are equivalent. 

3.4 Action of S U q (2) on the sphere S^ has been decomposed by Podles (see [5] ). Here 
we give an alternative way of doing it using the Frobenius reciprocity theorem. 

Let us start with a few observations. Let u be the function z\ >z, zeS 1 , where S l is 
the unit circle in the complex plane. Then u is unitary, and generates the C*-algebra 
C(S 1 ) of continuous functions on S 1 . Let a and /? be the two elements that generate the 
algebra C(SU q (2)) and obey the following relations: 



The map p:ai->u, /?i >0 extends to a C*-homomorphism from C(SU q (2)) onto 
It is in fact a quantum group homomorphism. By 2.2, S 1 is a subgroup of SU q (2). 

For any ne{0, 1/2, 1, 3/2, . . .}, if we restrict the right-regular comodule 91 of SU q (2) 
to the subspace tf of L 2 (SU q (2)) spanned by 

{a*'^""':,- = 0,l,...,2n}, (3.1) 

then we get an irreducible isometric comodule. Denote it by u (n \ It is a well-known 
fact ([6], [7]) that these constitute all the irreducible comodules of SU q (2). If we take 



166 Arupkumar Pal 

the basis of 3 n to be (3.1) with proper normalization, the matrix entries of u (n} turn out 
to be 

2n-)A /-\ / 

(__ nr r ( 2i-r 



where 



(fc) _,:= 1 + 4-2 + ,-*.+ . .. + 
Since w (;i) | sl = (J p)u ( "\ matrix entries of (n) | s ' are given by 



Therefore if n is an integer then the trivial representation occurs in u (n) \ sl with 
multiplicity 1, and does not occur otherwise. 

Consider now the action of SU q (2) on S 2 q0 . Recall ([5]) that C(S,? ) = {aeC(SU q (2)): 
(pid)n(a) = Ia} and the action is the restriction of ju to C(S| ). From the above 
description, C(S^ ) can easily be shown to be equal to {aeC(5^ ): L p . p (a) = p(l)a for 
all continuous linear functionals p on C(S 1 )}. Therefore when we take the closure of 
C(S^ ) with respect to the invariant inner product that it carries and extend the action 
there as an isometry, what we get is the restriction of the right-regular comodule SR of 
SU q (2) to the subspace tff = {ue L 2 (SU q (2)): L p . p (u) = p(I)u for all continuous linear 
functionals p on CCS 1 )}, which is nothing but the representation n of SU q (2) induced 
by the trivial representation of S l on C. Hence the multiplicity of u (n) in n is same as 
that of the trivial representation of S 1 in u (n) \ si which is, from (3.2), 1 if n is an integer 
and if n is not. Thus the action splits into a direct sum of all the integer-spin 
representations. 



Acknowledgements 

The author expresses his gratitude to Prof. K R Parthasarathy for suggesting the 
problem and for many useful discussions that he has had with him. This work was 
supported by the National Board for Higher Mathematics (India). 



References 

[1] Jensen K K and Thomsen K, Elements of KK-Theory, (1991) (Boston: Birkhauser) 

[2] Kasparov G G, Hilbert C*-modules - Theorems of Stinespring and Voiculescu, J. Operator Theory, 

4(1980)133-150 
[3] Paschke W, Inner Product Modules Over B*-algebras, Trans. Am. Math. Soc., 182 (1973) 443-468 



Induced representation for quantum groups 1 67 

[4] Pedersen G K, C*-algebras and Their Automorphism Groups, (1979) (London: Academic Press) 

[5] Podles P, Quantum Spheres, Lett. Math. Phys. 14 (1987) 193-202 

[6] Woronowicz S L, Twisted SU(2) Group. An Example of a Noncommutative Differential Calculus. 

Publ RIMS, Kyoto Univ., 23 (1987) 117-181 

[7] Woronowicz S L, Compact Matrix Pseudogroups, Commun. Math. Phys. Ill (1987) 613-665 
[8] Woronowicz S L, Compact Quantum Groups, Preprint, 1992 
[9] Woronowicz S L, Unbounded Elements Affiliated with C*-algebras and Noncompact Quantum 

Groups, Commun. Math. Phys. 136 (1991) 399-432 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 2, May, 1995, pp. 169-186 
Printed in India. 



Differential subordination and Bazilevsc functions 



S PONNUSAMY 

School of Mathematics, SPIC Science Foundation, 92, G. N. Chetty Road, Madras 600017, 

India 

Present address: Department of Mathematics, PO Box 4, Hallituskatu 15, University of 

Helsinki, FIN 00014, Helsinki, Finland 

MS received 24 December 1993; revised 22 April 1994 

Abstract Let M(z) = z n H ,N(z) = z"-\ be analytic in the unit disc A and let A(z) = 
N(z)/zN'(z). The classical result of Sakaguchi-Libera shows that Re(M'(z)/JV'(z)) > implies 
Re(M(z)/JV(z))>0 in A whenever Re(A(z))>0 in A. This can be expressed in terms of 
differential subordination as follows: for any p analytic in A, with p(0) = 1, 

l.+ z 1+z 

p(z) + J.(z)zp'(z) X implies p(z) -< , for Re/l(z) > 0, zeA. 

1 z 1 z 

In this paper we determine different type of general conditions on A(z), h(z) and $(z) for 
which one has 

p(z) + l(z)zp'(zK/i(z) implies p(z)<^(z)<h(z\ zeA. 

Then we apply the above implication to obtain new theorems for some classes of normalized 
analytic functions. In particular we give a sufficient condition for an analytic function to be 
starlike in A. 

Keywords. ^Differential subordination; univalent; starlike and convex functions. 



1. Introduction 

Let / and g be analytic in the unit disc A. The function / is subordinate to 0, written 
f<g,or f(z) < Q(Z\ if g is univalent, /(O) = 0(0) and /(A) c g(A). Define d = {/: /(O) = 
/'(O) - 1 = 0}, j/ k = {/: /(z) = z +*a k+ iz k+l + }, and s/' = {/: /(O) = 1}. Let A(z) be 
a function defined on A with ReA(z) >rj > 0, zeA and let pe sf'. Then a recent paper 
[8, Theorem 1] establishes the following: 



Re[p(z) + A(z)zp'(z)] > p implies Rep(z) > , for zeA. (1) 



Let /i and A satisfy | Im /z(z) | < Re>l(z), zeA and let pe d'. Then a result of Miller and 
Mocanu [5, Theorem 8] shows that 

Re[>(z)p(z) + ;i(z)zp'(*)] > implies Rep(z) > 0, for zeA. (2) 

(2) is equivalent to (1) if we take /*(z) = 1 in (2) and /? = r\ = in (1). 

169 



170 S Ponnusamy 

Let M and N be analytic in A, with M'(0)/AP(0) = 1 and let /? be real. If N maps A onto a 
multisheeted starlike domain with respect to the origin, then from [4, Theorem 10] we get 

Re < 8 (or > B resp.) implies Re 7 < p (or > /? resp.), for zeA. * 

N (z) N(z) 

(3) 
A well-known condition for a function pe,o/ subordinate to q is that [6] 



under some conditions on q(z). Suppose we let p(z) = z/'(z)//(z) and q(z) = 2(l+z)/(2z\ 
then we get 



I - 2 r ^ . <T> forzeA. 

Similarly it follows from a result of Mocanu et al [7] that for , 

Re[p(z) + zp'(z)] > implies | argp(z) | < < n/3, for zeA, 

where lies between 0.911621904 and 0.911621907. This improves the relation (2) 
whenever jj,(z) = A(z) = 1 for zeA. 

However the example M(z) = z/'(z), N(z) = /(z) and = 3/2 [or M(z) = zf\z\ N(z) = z 
and ]S = resp.] in (3) suggests that there may exist some conditions on M and N so that 

forzeA (4) 



for some h t (/ = 1, 2) to be specified. 

Thus it is interesting to ask whether there exist such conditions for our implication. V 

By writing (4) in terms of differential subordination, in this article we determine some / 

new sufficient conditions on A(z), /? . and h t (z\ (i= 1,2) for Re[p(z) + l(z)zp'(z)] > Pi to 
imply p(z) is subordinate to h&z). Some interesting applications of this are given. In 
particular they improve the previous works of different authors [1, 8, 9, 12]. 

All of the inequalities in this article involving functions of z, such as (2), hold 
uniformly in the unit disc A. So the condition Tor zeA' will be omitted in. the 
remaining part of the paper. 



2. Preliminaries 

Let /e,c/ and S* = {/es/: /(A) is starlike}. Then for y > and ft < 1, we say /e(y, j?) 
if, and only if, there exists geS* such that 



where all powers are chosen as principal ones. 



Differential subordination and Bazilevic functions 171 

Denote by S^y,/?), the subclass consisting of those functions in B(y,/?) for which 
geS* can be taken as the identity map on A. As usual we let J3 1 (l,j8) = /?(jS) and 
BjCO, /?) = S*(0). From (1), for < /? < 1, y > and for /efi^y, A we easily have 



In Lemma 1 of section 3 below, we obtain a more general result which improves the 
above inequality. Lemma 1 has been used in [9] to obtain new sufficient conditions 
for starlikeness. 

We use the following two lemmas in our proofs. 

Lemma A. [5] Let F be analytic in A and let G be analytic and univalent on A, with 
F(0) = G(0). IfF is not subordinate to G, then there exist points z eA and Co e ^A, and 
m^lfor which F(\z\ < |z |) c G( z < z |), F(z ) = G(C ), and z F(z ) = mC G'(Co). 

Lemma B. [5, 6] Let 0. c: C and /ef ^f fc^? analytic and univalent on A except for those 
CedA/0r w/zzc/i Lt z ^^(z) = oo. Suppose that \l/: C 2 x A-~C satisfies the condition 

'A(4(C),mC<?'(0;z)^ (6) 

w/zen <gr(z) is ,/imte, m^k^l and \ C | = 1. // p an^? g are analytic in A, p(z) = p(0) -f 
p fc z k + -, p(0) = ^f(O), and further if 



then p(z) < q(z) in A. 

Suppose that pe^ f with p(z) = 1 +p k z*H , and ^(z) = (l+z)/(l z). Then the 
condition (6) reduces to 

\l/(ix,yiz)tn (7) 

when x is real and 3; ^ - k(\ + x 2 )/2. Except for Theorems 5 and 6, we, in our results, 
consider the situations where k = 1. 



3. Main results 

We now state and prove our main results. 

Lemma 1. Let pej/' , aeC with Rea ^ (a & 0), /? < 1 be such that 

(8) 

l], (9) 

where 



d <5(Rea) is an increasing function of Rea with (1 +Rea)/(l + 2Rea) ^ <5 < 1. 
estimate cannot be improved in general. 



172 S Ponnusamy 

Proof. We use the well-known result of Hallenbeck an Ruscheweyh [2], namely, 

1 f 2 

p(z) + azp'(z) X h(z) implies p(z)<- z~ 1/a h(t)t lf *~ 1 dt (11) 

a Jo 
" and h a convex(univalent) function with h(0) . 1. If we let 

2 p l | 2(1 -]8) 
1 z 

then h is convex and univalent on A, h(Q) = 1 and Re h(z) > p. For this choice of h, the 
condition that (8) implies - in fact is equivalent to - 



Therefore from a straightforward calculation, Inequality (8) implies 

p(fK 2-l +2(1 -* 
where (j> defined by 



(12) 



\ = 1 4 V = 

n = !na + l Jo l~ 



;, zeA 



is convex in A. 
Let 



so that 



Then, for |z| = r and < t < 1, we have 



.Re a 



This implies that 



and so 



W- 



l-r 2 t 2 



rt 



Rea 



l-r 2 



+ rt* t 



,*Rea' 



(Note that if Rea < 0, rt Rca need not be less than one and the above will not work.) 
Therefore, we have 



1 Jol+rt Re " 



for|z| = r, 






Differential subordination and Bazilevic functions 173 

Observe that the series K(r) is absolutely convergent for 0<r<l. Suitably 
rearranging the pairs of terms in K(r) it can be shown that 1/2 < K(r) < 1. 
In particular for r -> 1 ~ the above inequality reduces to 



Re 0(z) ^ K(r) >K(1) = <5(Re a), 

where 6 is as in (10). 

Next we show that 5 satisfies the inequality (1 + Rea)/(l + 2Rea)^ 5 < 1. Since 
2/J 1 4-2(1 f$)<t>(z) is the best dominant for (8), we obtain taking A(z) = a, with 
Rea > YI in (1), 

}> 2ft- 1+2(1 - 



21 -, 
-f- rj 

Thus making rj -Rea + , we get 

Kn\-MK 1 + Rea 
^2 + Rea' 

This from (12) proves (9). 

To complete the proof we need only to show that the bound in (9) cannot be 
improved in general. For this we let 

= 2j8 - 1 + 2(1 - / 



Then q is the best dominant for (8), because it satisfies the differential equation 
q(z) + xzq'(z) - 2/J - 1 + ^^ h(z). 

Therefore the function q(z) shows that the bound in (9) cannot be improved. Q D 

Remark. In fact the second assertion, namely, 

1 + Rea 

~ ' 



can be seen directly. If Re a > 1, then 



Rea 1 



1+Rea 2(l + 2Rea) 

1 + Rea 
: 2 + Rea' 



174 S Ponnusamy 

Similarly if < Re a < 1, then 



Re a 



(Re a) 2 



1 



2 4(1 +Rea) 4(1 + Rea)(l + 2Rea) 



1 



Re a 



l+Rea 



2(2 -f 



Using Lemma 1 in particular for Re a -* 0, a ^ 0, /? = 0, one has 
Re{p(z) + azp'(z)} > implies Rep(z) > 0. 

In the next result we improve this relation by showing that the same conclusion 
may be obtained under a weaker hypothesis on p. 

Theorem 1. Let a be a purely imaginary number, i.e., a = za 2 , a 2 real. Let Q be the unique- 
function that maps A onto the complement of the ray {it: t^2~ 1 (a 2 ~ 1 a 2 )} whenever 
a 2 >0({ft: t^2~ 1 (a 2 " 1 a 2 )} whenever a 2 <0). Ifpejtf' satisfies 



then Rep(z) > 0. 

Proof. If we let i/^(r, s) = r + as, then 
subordination becomes 



is analytic in A and the above 



The conclusion of the theorem will follow from Lemma B and (7) if we can show 
that \l/(ix, jO2(A) when y ^ - (1 +x 2 )/2 and x-real. Suppose that a = ia 2 , with a 2 > 0, 
then i/^'x, y) = i(x + <x 2 y) and 



x -h 



x - a 2 (l + x 2 )/2 



for all x-real. 

This shows that for a 2 >0, 
a 2 < 0. Hence the theorem. 



. A similar conclusion holds for the case 

D 



However the special case of the following lemma improves the conclusion of Lemma 1 
further at least for aeC such that | Im a | ^ ^(Re a - Y\) for a suitable fixed r\ > 0. 



Lemma 2. Let X be a function defined on A satisfying 



(13) 



Differential subordination and Bazilevic functions 



175 



such that 



and let 



zeA 



/ffo) 



-( + ' + 2V ) L 



9 -2 > /9+lSiy 2 



10 



6e such that 2p f (rj) + 77 ^ 0. Ifpes/' satisfies 



(14) 



(15) 



(16) 



:|argp(z)|<7r/3. 

Proo/. Note that /?'()?) < if, and only if, r\ ^ ,/3/2. Now using (1), (16) implies 
Rep(z)>: 



Since 2jS / (^) + rj ^ 0, this Inequality further implies Rep(z) > in A. 
If we let fll = {coeCiReco > j8'(^)} and q(z) = [(1 + z)/(l - z)] 2/3 s then ^(A) equals 
: | arg co | < Tr/3}. Then for \l/(r, s; z) = r + >l(z)s, (16) can be rewritten as 



So to prove the lemma we need only to show that p -< q. 

If p is not subordinate to q, then by Lemma A there exist points z eA and Co 
and m ^ 1 such that 

p( | z | < | z 1 ) c 4(A), p(z ) = (C ) and z p'(z Q ) = mCo9 ; (C )- 

We first discuss the case p(z ) 7^ which corresponds to a point on one of the rays 
on the sector #(A). Since p(z ) ^ 0, ( ^ 1. Next by letting X and 7 be the real and 
imaginary parts of A(z ), respectively, from (13) and (14), we find that 



X- 



.(17) 



Further if we set ix = (1 + Co)/(l Co) an d use the above observations, we obtain 



For x ^0, 



ReiA(p(z ),z oP '(z );z ) = 



|2/3 



^r-upo^ it;( <o 

3|x| 



176 S Ponnusamy 



2, if x > 



. ,, ifx<0 . 



Therefore, for x ^ 0, since A(z ) satisfies (17) and m ^ 1, we obtain 



where 



withtHx| 



Since 



is the maximum for f(t\ we have 




This implies that ^(P^oX ^oP'fcofc^o) l jes outside fl>, contradicting (16). Hence we 
must have p^q when p(z ) ^ 0. 

Now consider the case p(z ) = which corresponds to the corner of the sector q(A). 
Observe that the sector angle of ^(A) is 2n/3 and so p(\z\ = |z |) cannot pass through 
such a corner without itself having a corner and hence the case p(z ) = cannot occur 
for the present form of our lemma. This completes the proof. D 

Lemmas 1 and 2 yield improvements on most of the results of [8]. As an equivalent 
form of Lemma 2 we state 

Theorem 2. Let /Ffo) be as defined by (15) so that 2p'(rj) + rj^Q. Let M(z) = z" -f - - - and 
= z"+:.be analytic in A and such that for some aeC, N satisfies 



Im 



odV(z) 



zN'(z) 



Then 



arg 



Proo/. Consider the function p{z) = M(z)/N(z) and let A(z) = aJV( Z )/zAT'(z). Then by 
hypothesis, pe ^' and all the conditions of Lemma 2 are satisfied. Now it is 
elementary to show that 



and hence Theorem 2 follows from Lemma 2. 



Differential subordination and Bazilevic functions 177 

COROLLARY 1. 

jjj ;. 

fa -L Ifpej/' and if k is a function defined on A such that 

^ 



then 

Re{p(z) 4- A(z)zp'(z)} > implies |argp(z)| < n/3. 

Proof. If we let ^ = ^/3/2 then in this case fi'(ri) = Q in (15) and the corollary now 
follows from Lemma 2. D 

COROLLARY 2. 

Let feB^y, 0). Then we have 

(i) Re /^Y> 2$(l/y) -1, / 

V z I 



(ii) 



<7t/3, 



For the function F defined by F y (z) = - f~ l f y (t) dt, we have 

z Jo 

(iii) ReF(z)( ) > 2<5(l/(y 4- c)) - 1, for y and c real with 0<y + c. 
\ z J 

(iv) argF'(z)( j <7r/3, /or y and c 5wch that < 7 -f c ^ 2/^/3. 

Proo/. Proofs of the above inequalities follow from Lemma 1 and Lemma 2 using the 
techniques of [8]. ^ 

Theorem 3. Let r\>Qbe such that 



where /J'fa) is as defined in (15). Let pes/' andv.^r\. Suppose 

r , . .. 
Re[p( Z ) + a Z p'(z)] 



Then we have 

Re[p(z) + fpp'(z)] > /P(iX |argp(z)| < 7i/3 



IW Rep(z)>2(l- 



Proof. Observe that 



'(z) = 1 -- ]p(z) + -[ 
a a 



178 S Ponnusamy 

Now Lemmas 1 and (19) yield 



(20) 



Taking /(z) = ff in Lemma 2 and a = 77 in Lemma 1, respectively, the theorem 
follows. 

D 

We note that, using Lemma 1 and Theorem 2, we can construct several new 
examples. The result even for the special case a ^ y/3/2 where (3'(^/3/2) = could not 
be found in the literature. 

' and aeC with | Ima|< ^(Rea - v/3/2), we have 

Re{/'(z) + oz/"(z)}>0 



implies 



| arg /'(z) | < 7T/3 and Re f'(z) > 2<5(Re a) - 1. 



We can use Corollary 1 to improve the result obtained by Yoshikawa and Yoshikai 
in [12, Theorem 4] concerning the transformation 



) = /(z)exp-z-' 



, for 



(21) 



of the well-known y-spiral-like functions. His result proves that for | y \ < n/2, 



From Corollary 1, with A(z) = 1/c, we see that we can improve the above implication 



to 



zf'to l- 



implies 



arg 



zF'(z) 



F(z) 



< 7T/3 whenever 



<n/3; 



or, equivalently, if 



1 



arg -- 



< Tt/3, then 



3/2 






c 2 , , 

, v z/'(z) e*-e-^z . rzF(z)l 

e v ----< implies e iy -- 

f(z) l+z * [_ F(z) J i-t-z 

We next prove the following lemma and then apply this to derive Theorem 4. 
Lemma 3. Let a* 0.407 - - be t/ze root of the equation 
a* = tan[(27i-37ra*)/6] 



(22) 



Differential subordination and Bazilevic functions 1 79 

and 6 = a*7i/2. Suppose that /? is the smallest positive root of the cubic equation 



Further let F(z) be a complex function that satisfies 

|argf(z)|<a*7r/2. (23) 

J/pec/' satisfies 



Hh (1 -flzp'(z) - (]S + (1 - j8)p(z))]} >0 (24) 

Rep(z) > m A. 

Proof. First, we write 



and F(z) = X + iY = ReF(z) + ilm F(z). Let us now apply Lemma B. Then for all 
x, y reals and zeA, we have 



From this it is easily verified that 

Rei^(ix, 37; z) < - (Kx 2 + Sx + T) 
for all x real, j> < (1 +x 2 )/2 and all zeA, where 



Therefore Re^(ix, 3;; z)< if, as usual, Rx 2 + Sx + T ^ for all real x. The second 
inequality holds if and only if S 2 ^4RT. By performing further algebraic 
simplifications, it can be easily seen that this is indeed equivalent to 

7 1 < (tan (a*7u/2))AT, i.e., | argF(z) | < a*n/2, 
where the required identity to claim this is . 



180 S Ponnusamy 

Since this automatically follows from the hypothesis, the desired conclusion now 
follows from Lemma B with Q={coeC: Reo)>0} and (7). Therefore the proof is 
complete. D \. 

Theorem 4. Letfestf and /? be as stated in Lemma 3. Suppose that for a ^ ^73/2, 

-. (26) 



This implies feS*(0). 

Proof. Suppose that / satisfies (26). Then taking p(z) = f(z) and rj = *Jl/2 in 
Theorem 3, we obtain 

Re {/'(z) + (j3/2)zf'(z) } > (27) 

and | arg /'(z) | < n/3. Thus from [6, Theorem 5] we get 



arg 

where a* is as in (22). 
Now we need only to show that (27) implies /eS*(/?). For this we let 



Then by performing differentiation and some algebraic simplifications, (27) deduces to 
where 



The theorem now follows from Lemma 3. 
Taking a= 1 in the above theorem we obtain the following. 

COROLLARY 3. 

Let fi be as in Lemma 3. Ifges/ satisfies 



- 
2-(2-73)(21n2-l) 

then the Alexander Operator I(g) defined by 



o 
is in S*(j8), where j8 is as in Lemma 3. 



Differential subordination and Bazilevic functions 181 

Observe that a little computation shows that /? is slightly bigger than the value 
btained in [9, Corollary 3]. Further the above corollary favours the existence of 

family of analytic functions, containing non-univalent functions, mapping onto 
'*(/?) c 5* under the Alexander Operator. 

"heorem 5. Let a be a real number with a < 2/kd. Let M(z) = z n + a n + k z n + k + and 
J(z) = z n + be analytic in A (n ^ 1, k ^ 1) and let N satisfy 

<5, (0 < <5 < 1/n). (28) 

A 



2 



Voo/. If we let Q = {coeC: Re co < )8}, j5 x = 2$ + fc<5a/2 + k(5a, A(z) = N(z)/zN'(z) and 
(z) = (l-/? 1 )" 1 (M(z)/N(z))-jS 1 ), then p(z)= l+p k z k + is analytic in A and the 
ondition (29) implies 

iA(p(z),zp'(z);z)eQ 

/here i//:C 2 x A->C is ^(r,s;z) = jSi +(l~)8 1 )[r-faA(z)s]. 

Since N satisfies (28), we have Re /l(z) > & in A. If X is real and y ^ - fc(l + x 2 )/2 then 
Dr this ^ we have 



ince a < 0, i.e. i^(z'x, j;;z)^Q. Hence (7) is satisfied and Lemma B leads to Rep(z) > 0. 
liis shows the first part of (30). Since l-a>0, this proves (1 -a)Re(M(z)/N(z)) > 
I a)/?!. Moreover, from this and (29) we easily have the second inequality of (30). 
lence the theorem. D 

:OROLLARY 4. 
^t|A|<l andfes/ k .(i)If 

Re{(l 4- Az)[(l .+ aAz)/'(z) + a(l + Azjz/^z)] } < j? (31) 



' 



182 S Ponnusamy 

then for fax + 2(1 + |1|)<0, 
p ->-ri\ 

Ree /(2) 



Proo/. For the proof of (i) we choose M(z) = z/'(z) and N(z) = z/(l + /z). Then 



and 

M'(z) 

+ a = 



Since /GJ^ satisfies (31), we have 
n M(z) 2/3-h 



2 4- 



whenever (5 < 1 - A . 



But ^ can be chosen as close to 1 |A| as we please and so we can allow 6 - 1 | X | from 
below. Thus making (5->l 11| we establish our claim. The proof for the case (ii) 
follows on similar lines taking M(z) = z/'(z) and N(z) = ze A ~. D 

Similar arguments used in Theorem 5 would help us to prove the following more 
general result. 

Theorem 6. Let a be a complex number with Rea< 2n/k6. Let M(z) = z" + 

a n+k z n+k H and N(z) = z n -\ be analytic in A (n ^ 1, k ^ 1) and let N satisfy 

Re(aN(z)/zJV'(z)) < (5, (Rea/n < 5 < - 2/fc). 

, 

/5 mplies 



COROLLARY 5. 

Let aeC be such that Rea < 2m/fe, w/iere m is a positive integer and let (i> 1. 
satis/}; 



Proof. The corollary follows from Theorem 6 taking M(z) = (/(z)) m and N(z) = z m . 

D 

In the following theorem we generalize the concept of a-close-to-convexity [1] 
when a is a complex number. 



Differential subordination and Bazilevic functions 183 

rheorem 7. Let M(z) = z" 4- and N(z) = z" 4- be analytic in A and suppose that 
V satisfies 



Re(JV(z)/zJV'(z))x5, (Q<6<l/n). (33) 

Further let k be a complex number satisfying 

\lmk\^^/DS, 0<D<:(<S"f 2Rek). (34) 

Then 



mplies 

n M(z), 



(35) 



-j^i) and define 

{36) 



hen pe j/'. From (36) and (35), we obtain, as before, Re ^(p(z), zp'(z); z) > 0, where 
iA(r, 5; z) = - /J + kft + (1 - jSJ [kr + 



If we can show that Re \l/(ix, y, z) ^ when y^ (l+x 2 )/2 and x any real, the 
equired conclusion is immediate from Lemma B and (7). But for this \l/ we obtain 



iy (34), we deduce that Rei/^ix, 3;; z) < and so the proof is complete. D 

Examples. Let M(z) = z" + and N(z) = z n H be analytic in A. Then for k eC with 
Im k | < J&(S + 2ft), and Re(AT(z)/zAT / (z)) > <5 > 0, Theorem 7 shows 



As a special case of Theorem 7, let /eja/ and keC with | Imfe | < ^/D < v /l+2Rek. 
n this case, Theorem 7 leads to 



Re(k/'(z) + z/"(z)) > implies Re f'(z) > 



l+2Refc-D' 



184 S Ponnusamy 

In particular, this yields 

Re(fc/'(z) 4- zf"(z)) > ft implies Re f'(z) > (ft < Re fc) 

provided | Im fc | < jl+2fi. This simple fact for /} = has been used in [9, Theorem 3] 
to obtain an affirmative answer to a problem of Mocanu (for details see [9]). 

Problems 

Suppose that pe^', ft<\,p = /? + (! ~^)[2^(Rea)-vl ] and H be defined by 



r i 

-p) (l-a)^ ; 



Now by setting | z| = 1, i.e., z = e ie and H(|z| = 1) = U + iV, we easily obtain 



This, upon simplification for the case a real, yields the parabola 

T/2 _-2(l-p)r .a(l-p)"| -4(l 
-__ + __,_ 



and so for real a, the function H maps the unit disc \z\<\ into the convex domain, say 
>, bounded by the above parabola. Observe that the domain D contains {coeC: 
Rcaj! + ((a + 2)5(a) -( + !))} for ]8<1. 

Also from the sharp subordination relation (11) and a little manipulation we have 
the following implication 

' and p(z) + azp'(z) X H(z) implies p(z) -< 



provided Re a > 0. From this, it is interesting to note that the same bound in Lemma 1 
may be obtained under weaker hypothesis, though the images of A under p, respectively 
under the stated conditions on h and H, are different. Here h is as in the proof of 
Lemma 1 and H as above. 

Problem L Find a (convenient) function G(z) such that G(A) c Jff(A) for which 

/ej/and/'(z) + a z/"(z)xG(z) implies /eS*? D 

For a < - 2, let 

: Re(/'(z) + az/"(z)) < /?}, (/? > 1). 



Differential subordination and Bazilevic functions 185 

For fetf, a < - 2 and Re ] (1 - a) + a/'(z) I < /?, by Theorem 5, we have 

( z \ 



z 2 + a "' v ' 2 + a ' 

However, for aeC, Re a < 2, Theorem 6 yields 

fejtf and Re (/'(z) + az/'(z)) < jB implies Re /'(z) > . 

2 + Rea 

In particular for a < 2 and /? ^ a/2, 
/eP(a, /?) implies Re/'(z) > 
and further it is easy to show that 



Although a function fejtf such that Re/'(z) > in A is univalent, Krzyz [3] showed 
that such a function need not be starlike in A. As pointed out in [10] there are 
functions, say / in jtf satisfying the condition \f'(z) 1 1 < 1 in A, but they are not in 
general starlike in A. However the natural problem is the following: 

Problem 2. Find certain subsets Q of the left half plane, such that /eS*, whenever 
/'(z) 4- az/"(z) belongs to Q for all zeA and a< 2. In particular, under what 
conditions on /? and a, z(F*G)'(z) is starlike in A whenever F and G belong to P(a, /?). 
Here * between two functions denotes Hadamard convolution. D 



For (5^0, define a ^-neighborhood of /(z) = z + a 2 z 2 4- e j/ by 

k\a k -b k \<S 



/c = 2 

^-neighborhoods were introduced by Ruscheweyh [11], who used this to generalize 
the result that N x (z) c 5*. Now for O 0, let 

U(a) = {fes/: R(f'(z) + xzf'W > 0, zeA}. 

It is known [9] that, R (a) c 5* at least when a ^ 0.4269 . Using Lemma 1, it is seen 
that if /ejR(l) then Re/ / (z)>21n2- 1 and hence proceeding as in [11], it is not 
difficult to show that A^ina-iW 1 )) c R ()- 

Interestingly Ruscheweyh proved that if/ is in S*(/3) then there is no value of 5 > 
such that N 6 (S*(P)) c S* for any < j8 < 1. 

In spite of this, it seems reasonable to ask the following: 

Problem 3. Do there exist some conditions on a and <5 such that N d (R(a)) c 5*? If so, 
what is the best possible d for a suitable fixed a? D 



186 S Ponnusamy 

Acknowledgements 

The author is grateful to Prof. V Singh for the present form of Lemma 1 and Dr 
Sankaran for his help in preparing the manuscript. This work has been done with the 
support of National Board for higher Mathematics and the results of this paper is 
a part of an internal report (1990). 

References 

[1] Chichra P N, New subclasses of the class of close-to-convex functions, Proc. Am. Math. Soc. 62 (1977) 

37-43 
[2] Hallenbeck D J and Ruscheweyh S, Subordination by convex functions, Proc. Am. Math. Soc. 52 

(1975) 191-195 

[3] Krzyz J, A counter example concerning univalent function, Mat. Fiz. Chem. 1 (1962) 57-58 
[4] Miller S S and Mocanu P T, Second order differential inequalities in the complex plane, J. Math. Anal. 

Appl. 65 (1978) 289-305 
[5] Miller S S and Mocanu P T, Differential subordinations and Inequalities in the complex plane, J. 

Differ. Equ. 61 (1987) 199-211 
[6] Miller S S and Mocanu P T, Marx-Strohhacker differential subordinations systems, Proc. Am. Math. 

Soc. 99 (1987) 527-534 
[7] Mocanu P T, Ripeanu D and Popovici M, Best bound for the argument of certain analytic functions 

with positive real part, Prepr., Babes-Bolyai Univ., Fac. Math., Res. Semin. 5 (1986) 91-98 
[8] Ponnusamy S and Karunakaran V, Differential Subordination and Conformal Mappings, Complex 

Variables: Theory and Appl. 11 (1989) 79-86 
[9] Ponnusamy S, Differential Subordination and Starlike Functions, Complex variables: Theory and 

Appln. 19(1992)185-194 
[10] Ponnusamy S, Convolution of Convexity under Univalent and Non-univalent Mappings, Internal 

Report (1990) 

[1 1] Ruscheweyh S, Neighborhoods of univalent functions, Proc. Am. Math. Soc. 81 (1981) 521-527 
[12] Yoshikawa H and Yoshikai T, Some notes on Bazilevic functions, J. London Math. Soc. 20 (1979) 

79-85 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 2, May 1995, pp. 187-192. 
Printed in India. 



Convolution integral equations involving a general class of 
polynomials and the multivariable //-function 



K C GUPTA, RASHMI JAIN and PA WAN AGRAWAL 
Department of Mathematics, M.R. Engineering College, Jaipur 302017, India 

MS received 23 December 1993; revised 16 August 1994 

Abstract. In this paper we first solve a convolution integral equation involving product of 
the general class of polynomials and the H-function of several variables. Due to general 
nature of the general class of polynomials and the H-function of several variables which 
occur as kernels in our main convolution integral equation, we can obtain from it solutions 
of a large number of convolution integral equations involving products of several useful 
polynomials and special functions as its special cases. We record here only one such special 
case which involves the product of general class of polynomials and Appell's function 
F 3 . We also give exact references of two results recently obtained by Srivastava et al [10] 
and Rashmi Jain [3] which follow as special cases of our main result. 

Keywords. The convolution integral equation; multivariable H-function; general class of 
polynomials; Laplace transform. 



1. Introduction 

On account of the usefulness of convolution integral equations, a large number of 
authors, notably Srivastava [5], Kalla [4], Buschman et al [1], Srivastava and 
Buschman [8], Srivastava et al [10] and Rashmi Jain [3], have done significant 
work on this topic. In the present paper we develop generalizations of results of the 
last two papers referred to above. Also, Srivastava and Buschman [7, pp. 34-42 and 
4.3] have discussed extensively such family of convolution integral equations as those 
considered here and in the works cited above. 

We start by giving the following definitions and results which will be required later 
on. 

(i) A general class of polynomials [6, p. 1, eq. (1)] 

S M TY! = V - N ' k Y fc N 019 n 1^ 

W L-^J /j . * > n u, i, z, . . . (.i'*-) 

where M is an arbitrary positive integer and the coefficient A Ntk (N, k ^ 0) are arbitrary 
constants real or complex. On suitably specializing the coefficient A Ntky S^ [x] yields 
a number of known polynomials as its special cases. These include, among others, 
Laguerre polynomials, Hermite polynomials and several others [12, pp. 158-161]. 
(ii) A special case of the ./f -function of r variables [11, p. 271, eq. (4.1)] 

187 



188 K C Gupta et al 



r 
H h 

2, 



, i), 



..,; - - - ; (o, D, ( 



Or equivalently [10, p. 64, eq. (1.3)] 



H 



(1.2) 



(1.3) 



lt,,...,fc r =0 



where 



nm-cf+7'% 



i=l,...,r) (1.4) 



= = = 1= 

For the convergence, existence conditions and other details of the multivariable 
H-function refer the book [9, pp. 251-253, eqs. (C.2)-(C8)]. 
(iii) The following property of the Laplace transform [2, p. 131] 



J -' u vv> "j " j \"j \^*W 

holds provided that / (0 (0) = 0, i = 0, 1 , 2, . . . , n - 1, n being a positive integer, where 

L{/(x);s} = I V s */Mdx=/(5). (1-7) 

Jo 

(iv) The well-known convolution theorem for Laplace transform 

L j [V(x - tt)0() du; s j = L{/(x); s}L{g(x); s} (1.8) 

Uo J 

holds provided that the various Laplace transforms occurring in (1.8) exist. 

2. Main result 

The convolution integral equation 



_z r (x~u)_ 



(2.1) 



Convolution integral equations 
has the solution given by 



189 



= r^x- 

Jo 



where Re(J - p - //) > 0, Re(p) > 

g (i) (0) = (i = 0, 1, . . . , / 1), / being a positive integer and Ej is given by the recurrence 
relation 



or by 



and ^ is least J? for which A B ^ 



where 



M + 2 + 1 



oo... o 
o ... o 



=i 



;=! 



1=1 



= r(l - 



- yf fe ( ) 



and 



AT 

'N 



(2.3) 



(2.4) 



(2.5) 

(2.6) 
-i 

(2.7) 

-1 

(2.8) 
(2.9) 



Proof. To solve the convolution integral equation (2.1) we first take the Laplace 
transform of its both sides. We easily obtain by the definition of Laplace transform 
and its convolution property stated in (1.8), the following result 



z r x 



dx f(s) = g(s). 



(2.10) 



190 K C Gupta et al 

Now expressing the Sjjf [( z r+ t )x] and H 



involved in (2.10) in series using (1.1) 



and (1.3), changing the order of series and integration and evaluating the x-integral, 
we obtain 



/( S ) = 



(2.11) 

where A(fc l9 . . . , k r+ x ) is defined by (2.6). Now making use of the known formula [10, 
p. 67, eq. (2.3)], we easily obtain from (2.11) 

(2.12) 



where 1 B is defined by (2.5). 
Again, (2.12) is equivalent to 



B=O 



(2.13) 



If /i denotes the least B for which k B ^ 0, the series given by (2.13) can be reciprocated. 
Writing 



( 2 - 14 ) 

B=O J j=o 

eq. (2.13) takes the following form: 

f(s) = s>- l +*ZEjS-Wg(sn. (2.15) 

J=o 

(2.15) can be written as 

L{f( X );s} = LJ Ej*"'^ 1 ^\L{^( X )i3} (2.16) 

u-o ro + /-Ai-p) J 

[on using (1.6)]. 
Now using the convolution theerem in the RHS of (2.16) we get 



(2.17) 
oj=o 

Finally, on taking the inverse of the Laplace transform of both sides of (2.17) we 
arrive at the desired result (2.2). 



3. Special cases 

If we put r = 2 in (2.1) and reduce the H-function of two variables thus obtained to 
Appell's function F 3 [9, p. 89, eq. (6.4.6)] we find after a little simplification that the 
convolution equation given by 



Convolution integral equations 



191 



(3.1) 



r (l)\p/ r (2h 



has the solution 



(3.2) 

where Re(/ - p - /*) > 0, Re(p)>0, Z^X-M)^!, |z 2 (x-w)|<l, (0 (0) = 
(i = 0, 1,...,/ 1), / being a positive integer and E 7 - are given by recurrence relation 
(2.9) or (2.4) and \JL is least B for which A B ^ 



where in (3.3) 



(3.3) 






and 



o, 



N' 
.M. 

'N" 
M 



(3.5) 



will reduce to A 0t0 which can 



In the main result if we take N = (the polynomial 

be taken to be unity without loss of generality), we arrive at a result given by Srivastava 

etal [10, p. 64, eq. (1.1)]. 

Again, if we put r = 1 , p = q = 0, z 2 = 1 in the main result, and further reduce 
the Fox's //-function thus obtained to exp( zj [9, p. 18, eq. (2.6.2)] and let z 1 -*0, 
the Fox's H-function reduces to unity and we arrive at a result which in essence is 
the same as that given by Rashmi Jain [3, pp. 102-103, eqs (3.5), (3.6)]. 



Acknowledgement 

The authors are thankful to the referee for making useful suggestions. 



References 

[1] Buschman R G, Koul C L and Gupta K C, Convolution integral equations involving the //-function 

of two variables, Glasnik Mat. Ser. Ill 12 (1977) 61-66 
[2] Erdelyi A, Magnus W, Oberhettinger F and Tricomi F G, Tables of integral transforms (1954) (New 

York/Toronto/London: McGraw-Hill), Vol. I 
[3] Jain R, Double convolution integral equations involving the general polynomials, Ganita Sandesh, 

4 (1990) 99-103 



192 K C Gupta et al 

[4] Kalla S L, On the solution of certain integral equations of convolution type, Ada Mex. Cienc. 

Tecnol. 2(1968)85-87 
[5] Srivastava R P, On certain integral equations of convolution type with Bessel-function Kernels, Proc. 

Edinburgh Math. Soc. 15 (1966) 111-116 

[6] Srivastava H M, A contour integral involving Fox's ^-function, Indian J. Math. 14 (1972) 1-6 
[7] Srivastava H M and Buschman R G, Theory and applications of convolution integral equations 

(1-992) (Dordrecht/Boston/London: Kluwer Academic Publishers) 
[8] Srivastava H M and Buschman R G, Some convolution integral equations, Proc. Ned. Akad. 

Wet. Ser A77, Indagationes Math. 36 (1974) 211-216 
[9] Srivastava H M, Gupta K C and Goyal S P, The H-Functions of One and Two Variables with 

Applications (1982) (New Delhi: South Asian Publ.) 
[10] Srivastava H M, Koul C L and Raina R K, A class of convolution integral equations. J. Math. Anal. 

Appl 108 (1985) 63-71 
[11] Srivastava H M and Panda R, Some bilateral generating functions for a class of generalized 

hypergeometric polynomials, J. Reine Angew. Math. 283/284 (1976) 265-274 
[12] Srivastava H M and Singh N P, The integration of certain products of the multivariable H-function 

with a general class of polynomials, Rend. Circ. Mat. Palermo, 32 (1983) 157-187 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 2, May 1995, pp. 193-199. 
Printed in India. 



On L ^convergence of modified complex trigonometric sums 



SATVINDER SINGH BHATIA and BABU RAM 

Department of Mathematics, M.D. University, Rohtak 124001, India 

MS received 20 July 1993; revised 21 June 1994 

Abstract. We study here L 1 -convergence of a complex trigonometric sum and obtain a new 
necessary and sufficient condition for the L 1 -convergence of Fourier series. 

Keywords. L 1 -convergence of modified complex trigonometric sums; L 1 -convergence of 
Fourier series; Dirichlet kernel; Fejer kernel. 

1. Introduction 

It is well known that if a trigonometric series converges in L 1 to a function /eL 1 , 
then it is the Fourier series of the function /. Riesz [1, Vol. II, Ch. VIII 22] gave a 
counter example showing that in a metric space L we cannot expect the converse of 
the abovesaid result to hold true. This motivated the various authors to study 
L 1 -convergence of trigonometric series. During their investigations some authors 
introduced modified trigonometric sums as these sums approximate their limits better 
than the classical trigonometric series in the sense that they converge in L 1 -metric 
to the sum of the trigonometric series whereas the classical series itself may not. 
Let the partial sums of the complex trigonometric series 



be denoted by 

S H (C,t)= Z c k J 

\k\*n 

If the trigonometric series is the Fourier series of some /eL 1 , we shall write c n = f(n) 
for all n and S H (C 9 t) = S H (f, t) = S n (f). 

If a k = o(l) as fc-oo, and ^^ =1 k 2 \A 2 (a k /k)\< 60, then we say that the series 
] =1 a k <!>fc(x), where k (x) is cos fcx or sin foe, belongs to the class R. Kano [2] proved 
that if ZfcLi fl fc*k( x )' belongs to the class IR, then it is a Fourier series or equivalently, 
it represents an integrable function. Ram and Kumari [3] introduced modified cosine 
and sine sums as 



and 

*.(*)= 



7/ 



194 



Satvinder Singh Bhatia and Babu Ram 



and studied their L 1 -convergence. The aim of this paper is to study the //-convergence 
of the complex form of the above sums. 
Let 



- 
sin 



~ t 
2 



^ m=l 



~ 

2sm- 
2 



cos cos n + - \t 

2 V 2; 

2sin- 



and 



4sin 2 - 

2 



sin(n+ 



denote the Dirichlet's kernel, the conjugate Dirichlefs kernel, and the conjugate 
Fejer's kernel respectively. Let E n (0 :=: Z!Uo eik '- Then the first differentials D' n (t) and 
D' n (t) of D H (t) and D n (t) can be written as 



where E' n (t) denotes the first differential of E n (t). The complex form of th^e above 
modified sums is 

g n (C, t) - S n (C, t) -f 



n n _ M . n . 

We introduce here a new class R* of sequence as follows: 
Definition. A. null sequence <c a > of complex numbers belongs to the class #* if 



/clogfc< oo, 



k=l 



< 00. 



(1.1) 



(1.2) 



2. Lemmas. The proof of our result is based upon thefollowing lemmas, of which the first 
three are due to Sheng [4]: 

Lemma L \\D f n (t)\\, =4/7r(nlogn) + o(n) 

Lemma 2. \\ D' n (t) \\ t = o(n log n). 

Lemma 3. For each non-negative integer n, there holds 



Modified complex trigonometric sums 195 

||c n ;W + c_ M / _ n (0|| 1 =o(l), n-oo 

if and only ifnc n log\n =o(l), |n|->oo, where <c n > is a complex sequence. 
Lemma 4. (i) There exist positive constants a and /? such that 
1 aOognXII^WH^ 

(ii) || K' n (t)\\i = o(4 



Proof. The existence of ft follows from the fact that || /)() II i = o(logrc). Further, we 
have 

2n\\K n (t)\\ 1 ^ p n (r)dr 
Jo 



i n r * "i 

- rZ Zd-cosM7 

n+ lfc = oU=o J 



for some constant M, the last step being the consequence of the relation 
" = 1 logi; = logrc!. Using Sterling's asymptotic formula n\ ~^/2nnn n e~ n , we then 
have 



This completes the proof of (i). To prove (ii) we have, 



\D' n (t)\ = 



kcoskt 



and so 



This implies that 

\K' n (t)\dt = o(n). 

/n 

DiiBferentiating ^ n (t) we get 

W^Zi-W-Z 
where 



ln (t) = {cos t - cos(n + l)t} ( 4sin 2 ~\ 



196 Satvinder Singh Bhatia and Babu Ram 



( t 
3n (0 = {2sinrsin(w+ l)f}/(w 4-1)1 2 sin- 1 



Obviously, \L jn (t)\ = o(\t\' 2 ) for 7 = 1,2, and (n + l)|S 3ll (t)| = o(|f|~ 3 ). Using these 
estimates, we get 



Combining the above estimates, we infer that ||XJ,00||i = o(n). 

Lemma 5. Let n ^ 1 and < e < n. Then there exists A & > such that for alls^\t\^n 

(i) \E' n (t)\^A e n/\t\, 

(ii) |E'_ B (t)|<4 8 /i/|t|, 

(iii) \D' n (t)\^2A t n/\t 

(iv) |^(t)|^^ n/|t|. 

Proo/ We have 



Since | M (OI < AJ\t\ for some constant ^4 e , we have 



Since 

L n (t) = (-i)E:(-t), 

we obtain \E'_ n (t)\^A e n/\t\. The other two inequalities follow from D'(i) = E'(t} + 
E'_ n (t) and 2i5;(t) = ;(t) - '.(). 

3. Main theorem 

We prove the following result. 

Theorem. Let c n eR*. Then there exists f(t) such that 

lim g n (C 9 1) =f(t)for allQ<\t\^ n, (3.1) 

-*oo v ' 

f(t)eU(T) and \\ g n (C, t) -f(t) \\ , ='o(l) as n -* oo, (3.2) 

II S n (f, t) -/(t) || j = o(l) as n -> oo if and only iff(n) log | n \ = o(l) as | n \-> oo. 

(3.3) 



Modified complex trigonometric sums 



197 



Proof. We have, by using Abel's transformation, 



n (C,r) = S n (C,)4 -[c n+1 J 
n + 1 



- c 



_ (n+ !,_ 



= 2 
By Lemma 5, we get 



I 

k=l 



and 



fc=3 



where y4i_ is a suitable constant. These imply that 



*=i 

exists and thus (3.1) follows. 
Further, for t ^ 0, we have 

f(t)-g n (C,t) = 2 ; 

= 2 ' 



Thus 



=l 



C -*~ C *W) 



< 00, 



sW 



\K'(t)\dt 



n + 



198 Satvinder Singh Bhatia and Babu Ram 



But, by Lemma 4, 



Also 



+ E 



\E'_ k (t)\dt. 



by the hypothesis of the theorem. Lemma 1 and Lemma 2 imply that 



Therefore, 



A 2 T +0(1) 



^V-^ fclog/c 



= o(l), by the hypothesis of the theorem. 

Since g n (C, t) is a polynomial, it follows that /eL^T), which proves the assertion (3.2). 
We notice further that 



n+1 



and 



-(/(n+i);w-/(- 



= II fc,(C, t) -$.(/) || 1 



/-, 



Since ||/-?.(C,t)|| = o(l), n->oo, by (3.2), and by Lemma 3, B 

/(-n)'_ n (t)|| 1 = o(n), n->oo if and only if J(n)log|n| = o(l), |n|-*oo, the assertion 
(3.3) follows. 



Modified complex trigonometric sums 199 

References 

[1] Bary N K, A Treatise on Trigonometric Series (1964) (London: Pergamon Press), Vol. II 

[2] Kano T, Coefficients of some trigonometric sums, J. Fac. ScL Shinshu Univ. 3 (1968) 153-162 

[3] Ram B and Kumari S, On L 1 -convergence of certain trigonometric sums, Indian J. Pure Appl Math. 

20-(1989) 908-914 
[4] Sheng Shu Yun, The extension of the theorem of C V Stanojevic and V B Stanojevic, Proc. Am. Math. 

Soc. 110 (1990) 895-905 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 2, May 1995, pp. 201-205. 
Printed in India. 



Absolute summability of infinite series 



C ORHAN and M A SARIGOL* 

Department of Mathematics, Faculty of Science, Ankara University, Ankara 06100, Turkey 
* Department of Mathematics, Erciyes University Kayseri 38039, Turkey 

MS received 4 November 1993; revised 22 April 1994 

Abstract. It is shown in [4] that if a normal matrix A satisfies some conditions then |C, l| k 
summability implies \A\ k summability where k ^ 1. In the present paper, we consider the 
converse implication. 

Keywords. Normal matrix; |C, l| fc summability; \A\ k summability. 



1. Introduction 

By uJJ and tJJ we denote, respectively, the Cesaro means of order a (a > 1) of the 
sequences (s n ) and (rj, where (s n ) is the partial sums of the series Ex n and r n = nx n . The 
series Ex n is then called absolutely summable (C, a) with index k, or simply summable 

|C,a| fc ,k>l,if 



(1) 



n= 1 

Since t^ = n(u^ u < ^_ l ), [3], condition (1) can be written in the form 



Z n- l \? H \ k <ao. (2) 

n=l 

Let A =(a nv ) be a normal matrix, i.e., lower-semi matrix with non-zero diagonal 
entries. By ( TJ we denote the ^-transform of the sequence (s n ), i.e., 



We say that the series x n is summable \A\ k , k ^ 1, if 

i^-^r.-T.^l^oo. (3) 

M=l 

Given a normal matrix A = (a nv ), we associate two lower-semi matrices A (d nv ) 
and A = (d) as follows: 



201 



202 C Orhan and M A Sarigdl 

&nv = "nv-an-l.v for H= 1,2,... 

If A is a normal matrix, then A' (a' nv ) will denote the inverse of A. Clearly, if A is 
normal then A = (d nv ) is normal and it has two-sided inverse A' (a' nv \ which is also 
normal (see [2] ). 
Note that, if A is normal then 

n n 'n n 

T n = Z fl mA = Z Z ^m*. = Z ** 
y = w = i = r t' = 

and 

&T n ^ = T n ~ T a ^= Z (<^~^-i, t X = Z V. K-i. = 0), 

y=0 y=0 

which implies 

*= I CAT,., (r_ 1= 0). (4) 

y = 

In connection with the absolute summability we have the following theorem. 
Theorem A. Suppose that, for k ^ 1, 



X (1/^)1^1 =0(l/n) and \&J 

v-1 n = v 

then ifl<x n is summable C, 1 | fc , it is also summable \ A | fc , where M nv = d nv d n v+ 1 [4]. 

Furthermore it is shown in [4] that the conditions of Theorem A are satisfied 
whenever A is (C,a), a>l. This deduces that |C, l| fc summability implies |C,a| fc , 
k ^ 1, a ^ 1, summability which is a well-known result. 

We may now ask what conditions should be imposed on A = (a nv ) so that the 
converse implication holds in Theorem A. It is the object of this paper to answer this 
question, 



2. The main result 

Theorem B. Let A = (a nv ) be a normal matrix such that 
(i) l=0(vaJ 9 



(iii) Z ( + 2)| tf w+2i | = 0(i + l). (5) 

v = i 

If I,x n is summable \A\ k , then it is also summable |C, 1 | k ,fc ^ 1. 



Absolute summability of infinite series 203 

Proof. By T n and t n we denote the A-transform and (C, l)-mean of the series I,x n and 
the sequence (nxj, respectively. Then it follows from (3) that 



(n+l)- 1 

i)=l 



n v-2 

Zv 1 
I 



y=0 r=0 

By considering the equality 

n 

Z ^nk^ = ^t; 5 
/c = u 

where <5 Ml) is the Kronecker delta, we have 

vd' vv + (v + l)4; +lfi; = i;/fl ui; + (t; + 1)(- & v+ i tV /a vv a v+ 



+ltU+l -a v + ltV /a vv a v+ltV+l ']-' l/a vv 
and so 



n(n+l)- 1 (l/OAT n _ 1 +a' 10 AT_ 1 (n+l) 
* 



which implies, by virtue of (5i), (5ii) and (5iii), that 



-1 



To prove the theorem, it is enough to show that 

oo 

Z n " 1 l w nil k< for z=l, 2, 3. 



204 C Orhan and M A Sarigdl 

Now it follows from Holder's inequality that 

m+l f+l ( n ~ l 

B ? 2 n ""*" 1 { l ,? 1 



C m m+l 

= i^ 

(. t = 1 



and 



Finally, 



Z "-'W-O 

=l 



Hence the proof of the theorem is completed. 



3. Applications 

Let (p n ) be a sequence of positive real numbers such that P n = p + P! H ----- hp w , 
P_ 1 =p_ 1 =0. The Riesz (weighted mean) matrix is defined by a nv = p v /P n for 
< v ^ n and <2 ny = for v > n. From now on, we suppose that A = (a nu ) is a weighted 
mean matrix with P n -+co and n - oo. Hence if no confusion is likely to arise, we say 
that Ex rt is summable |/?,pj k ,fc > 1, if (3) holds. 
With this notation we have 

COROLLARY 1 

Let (p n ) be a sequence of positive real numbers such that P n = 0(np n ). Then if Sx rt is 
summable \R,p n \ k9 it is also summable |C, l| k ,fc > 1. 

Proof. Applying Theorem B with A = (a nv ), a weighted mean matrix, we see that (5ii) 
clearly holds and (5i) is reduced to the condition P n = 0(np n \ On the other hand, 
a small calculation reveals that 



and 



if V=n 

otherwise. 



Absolute summability of infinite series 205 

Thus we get 



v-i 

and so the proof is completed. 

COROLLARY 2 

Let (p n ) be a sequence of positive real numbers with np n = 0(P n ). Then if Sx n is 
summable |C, l| k , it is also summable \R,p n \ k , (k ^ 1). 

Proof. Apply Theorem A. 
Now the next result which appears in [5] is a consequence of Corollaries 1 and 2. 

COROLLARY 3 

Suppose that (p n ) is a sequence of positive real numbers such that 

np n = 0(P n ) and P n = (nP n ). 
Then the summability |C, l| fc is equivalent to the summability \R 9 p n \ k ,k^ 1. 

Acknowledgement 

This paper was supported by the Scientific and Technical Research Council of Turkey 
(TBAG-CG2). 

References 

[1] Flett T M, On an extension of absolute summability and theorems of Littlewood and Paley, Proc. 

London Math. Soc. 7 (1957) 113-141 

[2] Cooke R G, Infinite Matrices and Sequence Spaces (Macmillan) (1950) 
[3] Kogbetliantz E, Sur les series absolument sommables par la methode des moyennes arithmetiques, 

Bull. Sci. Math. 49 (1925) 234-256 

[4] Orhan C, On absolute summability, Bull. Inst. Math. Acad. Sinica 15 (1987) 433-437 
[5] Orhan C, On equivalence of summability methods, Math. Slovaca 40 (1990) 171-175 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 2, May 1995, pp. 207-218. 
Printed in India. 



Solution of a system of nonstrictly hyperbolic conservation laws 



K T JOSEPH and G D VEERAPPA GOWDA 

TIFR Centre, P.B. No. 1234, Indian Institute of Science Campus, 
Bangalore 560012, India 

MS received 30 November 1993; revised 17 June 1994 

Abstract. In this paper we study a special case of the initial value problem for a 2 x 2 system 
of nonstrictly hyperbolic conservation laws studied by Lefloch, whose solution does not 
belong to the class of L functions always but may contain ^-measures as well. Lefloch's 
theory leaves open the possibility of nonuniqueness for some initial data. We give here a 
uniqueness criteria to select the entropy solution for the Riemann problem. We write the 
system in a matrix form and use a finite difference scheme of Lax to the initial value problem 
and obtain an explicit formula for the approximate solution. Then the solution of initial 
value problem is obtained as the limit of this approximate solution. 

Keywords. System of conservation laws; delta waves; explicit formula 



1. Introduction 

The standard theory of hyperbolic systems of conservation laws assumes usually the 
systems to be strictly hyperbolic with genuinely nonlinear or linearly degenerate 
characteristic fields, see Lax [6] and Glimm [1]. But many of the hyperbolic systems 
which come in applications do not satisfy these assumptions and such cases were 
studied by many authors [3, 5, 8]. In all these papers solutions are found in the sense 
of distributions, say in the class of L functions. In a very interesting paper, Lefloch 
[7] considered a system of conservation laws, namely 



dv d 

- + (a(u)v) = ^ 

dt dx 

with initial conditions 

M(X, 0) = M O (X), i?(x, 0) = v (x\ (1.2) 

where a(u) = f'(u) and /: R -> R is a strictly convex function. For systems of this type 
generally there is neither existence nor uniqueness in the class of entropy weak 
solutions in the sense of distributions. He has shown that when u Q L 1 (R)r\BV(R) 
and v eL co (R)^L l (R) (1.1) and (1.2) has at least one solution (u, v)eL*(R+,BV(R)) x 
given by 

207 



208 K T Joseph and G D Veerappa Gowda 

u(x,t) = (/*)' | 



where 3; = y (x, minimizes 



min [ P ,, 

-oo<y.<ooLJ-co 



and /* is the convex dual of f(u) and M(R) is the space of bounced borel measures 
on R. Further he proved that if w satisfies 



(1-3) 
dx 

in the sense of distributions for some K , then the problem (1.1) and (1.2) has one 
and only one entropy solution. If we take 

(U L ifx<0 

-, A 

[U R ifx>0 
then (1.3) is equivalent to saying 

R\ <P ^ 



and this will be true for some K Q and for all <peCJ(#), q> ^ 0, iff U L ^ w^. In fact for 
the Riemann problem, i.e., when the initial data for (1.1) is of the form 



(1.4) 
U R ,V R ix>, 

Lefloch [7] has given an infinite number of solution for the case U L < U R . 

In this paper we study a criteria to choose the correct entropy solution. Classically, 
vanishing viscosity method or proper numerical approximations are used to choose 
the correct entropy solution. Following Hopf [2], vanishing viscosity method was 
used by Joseph [4] to pick up the unique solution for the Riemann problem when 
f(u) = w 2 /2 in (1.1). It was shown that in the case, U L < U R , which is the case of non- 
uniqueness, the v component of the vanishing viscosity solution is 

!i? L , if x < u L t 
0, if u L t <x<u R t 
V R , if x > u R t. 

In other words in the rarefaction fan region of u component, the v component is zero. 

In the present paper, we consider the special case f(u) = log [ae u + be'"'], a + b = 1, 
a > 0, b > are constants in (1.1). Then we have 

(1.5) 



ae u -be~ u 
- v =0, 
u ~ u 



Nonstrictly hyperbolic conservation laws 209 

and study the unique choice of solution. Here we use a numerical approximation of 
Lax [6], which he used to pick the correct entropy solution for a scalar conservation 
law. For the Riemann problem, we show that in the rarefaction fan region of M, the 
v component is zero, see Theorem 1. These examples suggest a uniqueness criteria at 
least for the Riemann problem. 

Before stating our main results let us introduce the difference approximation. To 
do this first we note that (1.5) can be written in the matrix form 



+ fre-^)] x = 0, (1.6) 

where 

A u 

Am 



Let Ax and A be spatial and time mesh sizes and let 

A n k ~A(k&x,n&t) 9 fc = 0, 1, 2,..., n = 0,l,2,... (1.8) 

and following Lax [6], define the difference approximation 



where the numerical flux g(A 9 B) is given by 

g(A 9 B) = log[ae A + be-*]. (1.10) 

Here we can take At = Ax = A, since the characteristic speed of the eigenvalues 

ae u .\)Q~ U 
A! = A 2 = - - of (1.5) which are less than one in modulus. Then we note that (1.9) 

ae u + be " 

and (1.10) become 

^ = ^-\4-lo g [a^ : i + ^-<" 1 ]~log[^^ 1 +^-^^] (1.11) 

with initial conditipn 



When 



o 

(1.11) is nothing but the Lax scheme for the scalar equation u t 4- (log[ae u + be~ u ~}) x = 0. 
With the notations 



5 = (log|> u * 4- be~ UR ] - loglX^ + &e~ Ul -])/K - U L ) (1.13) 

and 

x , x of* -be~ u * ae^-be^ 

R(UL> UR, VL, V R) = S ( V R " V L) -- UR ^ , _ UR ^ + ^ . . -^ ^ (1-14) 

a^ R -f fce * a^ L -f oe i - 

we shall prove the following results. 



210 



K T Joseph and G D Veerappa Gowda 



Theorem 1. Let (W A (X, t),v\x, t)) be the approximate solution o/(l.l) defined by (1.11) 
and (1.12) with Riemann initial data (1.4), then 

lim (U A (X, t), t; A (x, t)) = (u(x, t), i;(x, t)) 



m /z sense of distributions and (u(x,t\v(x,t)) is given by the following explicit 
formula: 

(i) When U L > U R , then 

(u(x, t), v(x, t)) = {U L + (U R - u L )H(x - st), V L + (V R - v L )H(x - st) 



where H(x) is the Heaviside function. 
(ii) When U L < U R , then 



v2 - \a t-x 
K, *>*) 
(iii) P^/ien U L = MR = u, then 



., 

if X > 



ae UR -be~ UR 



Theorem 2. Let t/ie im'fia/ data u(x) and i;(x)eL 00 (R)nL 1 ( J R). T/ien (w A (x,r)X(x,r)) 
defined by (1.11) and (1.12) tends to (w(x,r),z;(x,t)) m the sense of distributions and is 
given by 

t + x- y (x, t) 



a t - x + y Q (x 9 1) 



d f 
t?x,t=- 



3; = j; (x, t) maximizes 



max 



Here /*(A) is the convex dual of f(u) = \og[_ae u + be~ u ~] and is given by 



2. Proof of Theorem 1 

As a first step in the proof of Theorem 1, we obtain (W A (X, t), ^ A 
to do this we recall from (1.11), (1.12) and (1.4), 



, 0) explicitly. In order 



Nonstrictly hyperbolic conservation laws 



for n= 1,2,3,. ..,/c = 0,l, 2,..., with 
'11. 



if*< .. 



Let us set 



then, (2.1) becomes 



Let 



Taking summation in (2.4) from k to oo, we have 



211 

(2.1) 

(2.2) 
(2.3) 

(2.4) 
(2.5) 



Following Lax [6], we use the nonlinear transformation, 

D = log 
in (2.6), and obtain 

log E = log - * + log [0e x *(E^ 



(2.6) 



(2.7) 



Simplifying this we get . 

k k 

where 

a = ae AR (ae A * -\-be~ AR )~~ l and /? = 
We note that a + /? = /. It can be easily seen that the solution El of (2.8) is given by 

? -iC 

From (2.2), (2.3), (2.5) and (2.7) we get 

'1 s 
1 



(2.8) 
(2.9) 

(2.10) 



(2.11) 



212 K T Joseph and G D Veerappa Gowda 

Using (2. 11) in (2. 10) we get 



where 




(2.13) 



and 

<= 



>^^^ 



, (2-14) 



Here we used the notation S(n,k,q) = ^n + k-2q-\n+k-2q\). Now 

o o 






(2-15) 



By the transformations (2.3), (2.5) and (2.7) we get, 



Componentwise this becomes 



By using Stirling's fonnula, 
n!f-Y(27cii) 1/2 , 



we get 



n n 



-, asn,<j,n-<?-o. 



Let t = nA, x = kA, y = (n + k - 2$)A be fixed, then 



Nonstrictly hyperbolic conservation laws 

t+x-y ^ 
qA = , (2q - n) A = x - y. . 



213 
(2.19) 



We have, 



lim A log 0J = max Alog ( H ] + Aq loga + A(n - <?)logft 

A-+0 0<(r + ;c-y)/2<f L \#/ 






Also as A ->0 in the above fashion, we have 



, -.U R ) - 1 \og(ae UR + be' UR ) 

(2.20) 



(2.21) 



Alogf") 

W 


x\og 


f 


ft + x- y y + *-/2 ( t -. x + y\-*+'V* 


LV 2 ) ( 2 ) J 



and hence from (2.19)-(2.21), we get 

, lim A log 9 n k = max L-l/2(y-\y\)(u L -u R ) 

A-*0 x-t^y^x + t 



+ (x-y)u R -tlog(ae u * 



-loga + 



-log 6 



log 



. (2.22) 



Let y (x, t) be the value of j; for which maximum is attained on the RHS of (2.22). 
An easy calculation shows that the following is true. 

Lemma. Let y (x,t) be a point where maximum is attained on the RHS of (2.22), then 
y (x,t) is given by the following: 

(i) Let U L > U R , then 

x a(u L )t, if x < st 
x a(u R )t, if x > st. 

Let U L < U R , then 

)x - a(u L )t, if x < a(u L )t 
0, ifa(u L )t<x<a(u R )t 

x - a(u R )t, if x > a(u R )t, 

where 

a(u)~f(u) = (ae u -bt 
and s is given by (1.13). 



214 K T Joseph and G D Veerappa Gowda 



From the above lemma and (2.22) we have if U L >U R , then lim A ^ Alog0J| 
^x, t), where 

- (x-a(u L )t)(u L -u R ) + u R a(u L )t - Hog(ae" 
'1 



A 1 (x,t) = 



2 
if * < st 



a(u R )tu R - t log(ae UR + be" UR ) + 



1~*K) 



flog a 






2 J ~(V 2 
If U L < U R , then lim A ^ Alog&jJ == A 2 (x, t)> where 
(x a(u L ) t)(u L M 



A 2 (x,t} = 






if x < a(u L )t, 



t -\- X t _ X 

XU R - 1 log [ae" R 4- be~ MR ) -I- - log a 4- - log fc + t log t 



(t-hx) (t-x). /t-x 



u R a(u R )t - 1 log ( 



t log a 



Again from (2.13), (2.14) and (2.19), we get 



limA^ = - 

A-0 ffi 



Nonstrictly hyperbolic conservation laws 



215 



no- 
where ,y (x, t) maximizes the RHS of (2.22). Using the lemma we have the following: If 
U L > U K , then 



A-0 



where 



If U L < U R , then 



where 



(x-a(u L )t(v L -v R )) 
v R \_ae UR (a(u L ) - l)r + be' u *(\ 



-(x-a(u L )t)(v L -v R ) 
+ M^ 



v R be ~ UR (t -h x) + i^ 






Now it follows that, if U L > U R 

roo 
Km (u*(y,t)-u R )dy=Ai(x,t\ 

A-*0 J x 

f* 

lim (i; A (y,r) 

A-^Ojjc 

and if W L < U R 

lim I (M A (y,t)-M 

A->Oj;c 



lim I (*\y,t)- 

A-^O J* 



Hence 






be~"*(l +a(u 



, ux>st. 



, if x < ^( 



, if x > a(u R )t. 



216 K T Joseph and G D Veerappa Gowda 

~ 3X v 

> if U L < U R 



dx 
dB 2 



ox 



in the sense of distribution as A-+0. An easy calculation shows that 

dA,_\u L , 
U R - 



dx 



dx U R , if x > st, 



dA 2 



dB 



1, fbt + xl 
-log -- , 
* L^ t~xj 



,-~v R )ll-H(x-st)l 
if x < a(u L )t 
tfa(u L )t<x<a(u R )t 
ifx>a(u R )t, 



t? L , ifx<a(u L )t 

0, ifa(u L )t<x<a(u R )t 



V R , if x > a(u R )t. 
Proof of (iii) is similar. The proof of Theorem 1 is complete. 

3. Proof of Theorem 2 

To prove Theorem 2, we first note that the approximate solutions are defined by 

Al = Al~ l +log[ae j4 - 1 + be~ A * ] log[ae^ +be~^+ 1 ]> (3.1) 

with 

/ t ,o n \ 

(3.2) 



where u = w(fcA) 5 v% == v(kA). Following Lax [6], let us introduce 



and use the nonlinear transformation 



We get as before 

n + 1 ___ 
k 

whose solution is 



00 

,JU" 


(00 
Z 
- + 


\ 

j 1 



Nonstrictly hyperbolic conservation laws 



^= z 



In terms of the original variable A n k , we have 
Carrying out the explicit calculations as before, we get 

n / \ r oo 

Q ya<b"-'expj_ 2 



217 



"2 = log 



Zo 
W J 



Z n = 
j ~~ 



Now let x = fcA, t = nA, 3; = (n + k 2<?) A be fixed and let A -* 0. Lax has shown that 



2 



where y = )> (x, t) maximizes 



max 



(3.3) 



where 



Again the same analysis of Lax [6] gives 

Too oo / 

lim U A (X, r)dy = lim A 0J = i? (z)dz. 

Here again 3; = y (x,t) maximizes (3.3). Since $v*(y,t)dy is a sequence of bounded 
function converging to J* (jct) t; dx for a.e. (x,-t), it follows that ^x,?) converges to 

3 f 00 
^x I 

in distribution. The proof of Theorem 2 is complete. 

Acknowledgements 

One of the authors (KTJ) thanks the Indo-French centre for the Promotion of 
Advanced Research, New Delhi, for the financial support to visit France, where he 
had several fruitful discussions on this problem, and Prof. C. Bardos and Prof. O. 



218 K T Joseph and G D Veerappa Gowda 

Pironneau for their hospitality. The authors are also thankful to the unknown referee 
for his constructive criticism which improved the presentation of the paper. 



References 

[1] Glimm J, Solutions in the large for nonlinear systems of equations, Commun. Pure Appl. Math. 18 

(1965) 697-715 

[2] Hopf E, The partial differential equation u t + uu x - uu xx1 Commun. Pure Appl Math. 3 (1950) 201-230 
[3] Isaacson E L and Temple B, Analysis of a singular Hyperbolic system of conservation laws, J. Differ. 

Equ. 65 (1986) 250-268 
[4] Joseph K T, A Riemann problem whose viscosity solutions contain ^-measures, Asymptotic Analysis 

7 (1993) 105-120 
[5] Keyfitz B and Kranzer H, A system of non-strictly hyperbolic conservation laws arising in elasticity 

theory, Arch. Ration. Mech. Anal 72 (1980) 219-241 

[6] Lax P D, Hyperbolic systems of conservation laws II, Commun. Pure Appl Math. 10 (1957) 537-566 
[7] Lefloch P, An existence and uniqueness result for two nonstrictly hyperbolic systems, in Nonlinear 

Evolution Equations that Change Type (eds) Barbara Lee Keyfitz and Michael Shearer, IMA (1990) 

(Springer- Verlag) Vol. 27 126-138 
[8] Liu T P, Admissible solutions of hyperbolic conservation laws, Am. Math. Soc. Mem. (1981) (AMS, 

Providence RI) Vol. 240. 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 2, May 1995, pp. 219-225. 
Printed in India. 



Oscillation in odd-order neutral delay differential equations 



PITAMBAR DAS 

Department of Mathematics, Indira Gandhi Institute of Technology, Sarang, Talcher, Orissa, 
India 

MS received 15 January 1994; revised 16 June 1994 

Abstract. Consider the odd-order functional differential equation 

(x(t) - ax(t - T)) (W) + p(t)f(x(t - a)) = 0, (*) 

where 0<a<l, T, ae(0,oo), peC([0,oo), (0,oo)), f<=C l (R,R) such that / is increasing, 
xf(x) > for x ^ and / satisfies a generalized linear condition 



liminf 
,-.0 IVdx 

Here we prove that every solution of (*) oscillates if 

liminf a"-" 1 p(s)d5>-(l -a)(n- !)!( -? ] \ 
- J t - ff m e \n-ij 

This result generalizes a recent result of Gopalsamy et al [6]. 
Keywords. Functional differential equations; oscillation of all solutions. 

1. Introduction 

In a remarkable result Ladas [4] proved that every solution of the first-order delay 
differential equation 



(j) = 0, (1) 

where p,cre(0, oo) oscillates (i.e., every solution has an unbounded set of zeros in 
(0, oo)) if and only if 

P<r>. (2) 

e 

The result was extended by authors in [5] for general odd-order differential equation 

x (n \t) + px(t-a) = 9 (3) 

replacing (2) by 



The first result was further improved (see [7]) for equations with variable coefficients 
with the statement that 

219 



220 Pitambar Das 

P 1 

liminf p(s)ds>-, 
I /> 

t--oo Jt-ff ** 

and 

limsup I p(s)ds>- 

t-OO Jt tr & 



L 

are respectively sufficient and necessary conditions for every solution of 



where peC([0, oo),(0, oo)), to be oscillatory. But a similar extension for 



has not been proved yet. 
Recently, Gopalsamy et al [6] proved that 



iminff (t-s)-- 

t-oo >- 



(6) 



implies that every solution of the odd-order differential equation 

(x(t) - ax(t - r)) (n) + p(t)x(t - a) = (7) 

oscillates, where ^ a < 1. Indeed, for a = and p(t) = pe(0, oo), (6) reduces to 
pa" > n!, 

that is, 



n n 



which is the sufficient condition for oscillation of (3). In view of the condition given 
in (4), the lower bound of p l/n (<r/n) in (8) is comparatively larger than that of (1/4 

In this paper we prove a result, a particular case of which shows that all solutions 
of (7) are oscillatory if 

f r 1 f n I"" 1 

lim inf (f 1 ' l p(s) ds > -(1 - a)(n - 1)! < > . (9) 

When p(t) = p(0, oo) and a = 0, the above condition reduces to 

'(n!) 1 /". (10) 



In view of the known inequality 



i/ 



Functional differential equation 



1/n 



__ i 



221 
(11) 



where C(nl,r) is the (r+l)th binomial coefficient in the expansion of 
(1 + l/(n I))"" 1 , our condition is weaker than that of (8). We give examples to 
support our claim. 

2. Main results 

Consider the odd-order nonlinear functional differential equation 

WO x(t ~ T)) (n) + P(t)f(x(t - (7)) = 0, (E) 

with the assumptions that 

p 6 C(R + ,R + \fe C(R, R) such that / is increasing, 

x/(x) > for x + 0, |/(x)| - oo as (x| - oo, ^ a < 1, (H) 

n > 1 is an odd integer and T, <re(0, oo). 

Let <5 = max{t, a] and <^eC([jT <5, T],R). By a solution of (E) in [T, oo), we mean 
a function xeC([T, oo), R) such that x(0 = ^(0 T-d^t^T, (x(t) - ox(t - t))e 
C (n) ([T, oo ), R) and x(0 satisfies (E) for t^T. 

As usual, a solution x(t) of (E) is called oscillatory if it has zeros for arbitrarily 
large t and nonoscillatory, otherwise. 

We say (E) is generalized sublinear if / satisfies 



lim inf 
*-o 

superlinear if 

lim inf 

,-o 

and linear if 

lim inf 



dx 



dx 



dx 



<1 



(12) 



(13) 



which includes the cases f(x) x*, < a < 1, l<a<oo and a = 1, respectively. 
In what follows, we list the following two results for our use in sequel. 

Theorem 1 ([3], Lemma 1). Suppose that 0eC (n) ([T, oo),(0, oo)) such that g (i) (t) has no 
zeros in [T, oo) (i = 1,2, . . .(n - 1)) and g (n \t) ^Ofart^T. If fie(0 9 oo) then 



(n-1)! " 

Theorem 2 ([7], Theorem 2.1.1). //]8e(0, oo), QeC([T, oo),(0, oo)), T>0 and 



f r 
lim inf 

f-oo Jf- 



lim inf Q(s)ds>-, 



222 Pitambar Das 

then the first-order differential inequality 



has no eventually positive solutions. 
Our main theorem is as follows. 

Theorems. Suppose that (H) holds and f satisfies (13). Then (9) implies that every 
solution of(E) oscillates. 



Proof. Since (9) holds, there exists < e < 1 such that 



(l-e) 2 liminf| <r n - 1 

'- Ji-a/ii 



(14) 



To the contrary, assume that x(t) is a nonoscillatory solution of (E). Let x(t) > for 
t ^ t . (The case for x(t) <Q 9 t^t Q may be treated similarly.) Setting 

z(t) = x(r)-ax(t-t), (15) 

from (E) it may be observed that z (n \t) < for f > t -f <r. Consequently, there exists 
7> r + o- such that z (i) (r) (i = 0, 1, 2, 3. . . (n - 1)), has no zeros in [T, oo). 

Suppose that z(t)<0, t^T. Since n is odd, z (n) (r)<0, f^T implies that 
z'(t) < 0, > T. On the other hand, let 



If n = oo, there exists a sequence of real numbers <O?L i such that t n - oo, x(r w ) -+ oo 
as n -* oo and x(s) < x(t n ) for s < *. From (15) we see that 



- ax(t n - T) > (1 - a)x(O, 
which further gives 

lim z(t n ) = oo, 

n-*oo 

a contradiction to the fact that z(t) < 0, r> T. In case /i is finite, there exists a sequence 
O*>*i such that t B -^oo, x(tJ->/i as n-^oo. Since <x(t ll -T)>* s:1 is a bounded 
sequence of real numbers, it admits a convergent subsequence. Let <s n >* =1 be the 
subsequence for which <x(s w -t)>J . 1 converges to a real number A. Clearly A< ji. 
Again x(s w ) -+ ^ as n ~> oo. Now 

lim zfa.) = lim (x(s n ) - ox(s n - T)) > (1 - a)A, 

n-^oo n-*oo 

that is, 



which is a contradiction to the fact that z(t) is negative and decreasing function. Hence f 

z(t) < 0, t ^ T is impossible. 

Let z(t) > 0, t > T. Clearly, it follows that z'(t) < 0, t > T. Indeed, otherwise, z'(0 > 0, 
t ^ T implies that lim inf z(t) > and consequently 



Functional differential equation 223 

lim inf x(t) = lim inf (z(t) + ax(t - T)) > 0. 

t-*QO t-+00 

Integrating (E) from T to t and using the above observation along with the fact that (9) 
implies 



r 



p(s)ds=oo, 



we see that z (w 1) (r)-> oo as t-+co. Consequently, z(f)-+ oo as ~ao, a 
contradiction. Further z (n \t) < implies that 



Consequently, 



and 

lim z(t) 

r-*oo 

If k > 0, then repeating the argument applied earlier we lead to a contradiction. Hence 
k = 0. From (13) it follows that 

lim inf 



iminff ) = 1. 

y-o \dyj 



Taking yCO = z<n ~ 1) (0> and from the definition of limit infimum it follows that for 
every e > there exists a large positive number M such that 



>(l-e) fortttM. (16) 

AyJ 

From (15) we see that 

t), t^T. (17) 



The repeated application of (17) on it, as per the idea in the paper of Gopalsamy 
et al [6] results in 



^ = 

From the above inequality it follows that there exists M^T+Ni such that 



(18) 



, 
(1-a) 

In Theorem 1, replacing g(t) by z(t - a/n) and ft by ( - \a we get 

\ n / 

or. (19) 



224 Pitambar Das 

Using (19) in the inequality obtained by replacing t by t a in (18) we get 

x(t - (r) > Kz (n -"(t-a/n\ t ^ maxfMj + <r, T+ 3d} = T , 
where 



(20) 



Since / is increasing, 

f(x(t-v))^f(Kz (n - l \t-(r/n)), t^ T . (21) 

From (E) and (21) it follows that 

z (n \t) + p(t)f(Kz (n ~ l \t - a In)) < 0, t ^ T . (22) 

Multiplying both sides of (22) by 

(f(y)\ where y = z (n ~ l \t), 
we obtain 

(f(y(t))) -H ( P(t) }f(Ky(t a In)) ^0, t^ T . (23) 
Set 



Now z {n " 1] (t) > 0, t ^ T implies that H(t) > 0, t^ T . From (23) and (16) it follows that 


dt 

Hence H(t) is an eventually positive solution of the differential inequality given in 
Theorem 2, where 



and 

=<7/n. 
But, by (14), 

lim inf Q(s) ds = lim inf ) K(l - e)p(s) ds > -, 

J-*oo Jt <r/n t-*cb Jt-fffn & 

a contradiction to Theorem 2. Hence (E) cannot have a nonoscillatory solution. 
This completes the proof of this theorem. 

Example. Consider the equation 



Since (6) fails to hold, Theorem 4.1 of Gopalsamy et al [6] is not applicable, but 
(9) holds and hpnce Theorem 3 shows that every solution of it oscillates. 



Functional differential equation 225 



Remark. In view of the inequality 
n 



n\e\n-lj J 2 

it follows from (10) that 



(24) 



,nj 2V n 
or in particular, 



(25) 
3 

implies that every solution of eq. (3) oscillates. Indeed, n > 1 and odd gives that 



Since the arithmetic mean exceeds the geometric mean r(n r) < I - I for every r 
and hence 



2 

Consequently, using Binomial theorem we get 

d -d/)) 

(26) 



n \ 2) 2\ nj 2\ n 

Now (24) follows from (11) and (26). Since n ^ 3, (25) follows from (26). 

Acknowledgement 

This research was supported by the National Board for Higher Mathematics, 
Department of Atomic Energy, Government of India. 

References 

[1] Das P, Oscillation criteria for odd order neutral equations, J. Math. Anal Appl. (to appear) 

[2] Das P, A note on a paper of Shreve, J. Math. Phys. Sci. 27 (1993) (to appear) 

[3] Das P, Oscillation of odd order delay differential equations, Proc. Indian Acad. Sci. (Math. Sci.) 103 

(1993) 341-347 

[4] Ladas G, Sharp conditions for oscillations caused by delays, Appl. Anal. 9 (1979), 95-98 
[5] Ladas G, Sficas Y G and Stavroulakis I P, Necessary and sufficient conditions for oscillations of 

higher order delay differential equations, Trans. Am. Math. Soc. 285 (1984) 81-90 
[6] Gopalsamy K, Lalli B S and Zhang B G, Oscillation of odd order neutral differential equations, 

Czech. Math. J. 42 (1992) 313-323 
[7] Ladde G S, Lakshmikantham V and Zhang B G, Oscillation Theory of Differential Equations with 

Deviating Arguments (1987) (New York: Marcel Dekker) 
[8] Swanson C A, Comparison and oscillation theory of linear differential equations (1968) (New York 

and London: Academic Press) 



'roc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 2, May 1995, pp. 227-239. 
D Printed in India. 



lurface waves due to blasts on and above inviscid liquids of finite depth 



C R MONDAL 

Department of Mathematics, North-Eastern Hill University, Shillong 793 022, India 

MS received 21 July 1992; revised 22 April 1994 

Abstract. For the problem of waves due to an explosion above the surface of a homogeneous 
ocean of finite depth, asymptotic expressions of the velocity potential and the surface 
displacement are determined for large times and distances from the pressure area produced 
by the incident shock. It is shown that the first item in Sakurai's approximation scheme for 
the pressure field inside the blast wave as well as the results of Taylor's point blast theory 
can be used to yield realistic expressions of surface displacement. Some interesting features 
of the wave motion in general are described. Finally some numerical calculations for the 
surface elevation were performed and included as a particular case. 

Keywords. Surface waves; inviscid liquid; asymptotic expansion; blast theory; surface 
elevation. 

. Introduction 

'he problem of surface waves caused by the interaction of a blast-generated shock 
/ave with an ideal incompressible fluid has been analysed by Rumiantsev [9], Kisler 
4] and Sen [11], mainly when the fluid is infinitely deep. The problem of waves 
iroduced by explosions above the surface of a shallow liquid has also been touched 
ipon by Kranzer and Keller [5] as an application of the asymptotic Caucny-Poisson 
yave theory for fluids of finite depth. This treatment, however, did not include the 
fleets of the time variation of the pressure distribution on the surface. Choudhuri 
1] and Wen [14] considered the case where the disturbance is over any arbitrary 
egion of the free surface and the water is of uniform finite depth by the method of 
aultiple Fourier transforms. In both the cases the method of stationary phase was 
ipplied to obtain the approximate expression for the potential function and surface 
levation for large values of time and distance. Mondal and Mukherjee [8] considered 
he corresponding problem by Hankel transform method and finally the approximate 
xpressions for the potential function and inertial surface elevation were obtained 
or large distances and times by the method of stationary phase. 

The basic simplifying assumption in this problem is that the large difference between 
he densities of the gas and the fluid make the fluid displacements too small to affect 
he motion of the gas, which is supposed to be known. Here we present the three- 
limensional problem of the generation of waves due to explosions above the surface 
>f a fluid of constant finite depth due to the incident shock and of the area on which 
t acts. After deriving the formal solution of the problem in terms of infinite integrals 
n the usual manner, we use the known asymptotic expansions of the Bessel function 
ind Kummer's confluent hypergeometric function alongwith the method of stationary 

227 



228 C R Mondal 

phase to find approximate expressions of the velocity potential and the surface 

displacement (= ) integrals of large times and distances from the pressure area. For 

the pressure field inside the blast wave, we first make use of an expression closely &+ 

resembling the first term of Sakurai's [10] approximation scheme. It is also easy to 

see that the expressions of ( in the form of infinite series may be obtained by the 

same methods as used by Sen [11], but these will not be deduced here. Instead, we 

describe the more tractable features of the asymptotic wave motion in its general 

form as well as special forms which use the results of the Taylor point blast theory, 

and then place our results on a more realistic footing. 

2. Formulation of the problem 

We assume that surface waves are excited when the spherical shock wave due to a 
point blast in the gas interacts with the fluid surface. An expanding circular region 
of pressure is formed on the free surface as a consequence. Using cylindrical X 

coordinates (r, 6, z), we write the governing equations as follows: f " 

For t > 0, 



(1) 

(2) 



.dt 

dt 2 dz dt' 

<p(r,0,0) = 0, <p,(r,0,0) = , (5) 




= on*--*. (6) 

dz 



The conditions (5) are equivalent to the conditions 

(p = 0, C = at t = 0, 
since p is finite and r-Oast-0-K 

3. Formal solution 

We assume a solution of (2) of the form 

f 00 ' 
q> = A(k, t)J (kr)coshk(z -h Wscch Jkfcdfc 

Jo 
so that (6) is satisfied. 



Surface waves due to blasts , 229 

Substituting for (p in (4), we obtain the following differential equation for A(k,t): 

d f ro(0 

kp- 1 a/ 
St J Q 



here 



'he solution of this equation is 

g fro(5) 



A A Q (k)cos(crt 



Q 

o 



f r 
si 

Jo 



An integration by parts then gives 

A = (k/p) Pcos|>(r - s)]ds | r <S) o/(a,s)J (fox)da. (7) 

Jo Jo 

le velocity potential is therefore 

f coshfc(z-Hh) f r f ro(s) 

<p = p~ 1 kJ (kr) dk cos<r(t-s)ds oc/(a,s)J (/ca)da. 

Jo coshkh J J 

(8) 
"he surface displacement is then determined by (3): 

C= -(gpr 1 r*kJ (kr)dk f sma(t~s)ds f^ a/(a, 5 )J (/ca)da. (9) 
Jo Jo Jo 

. Asymptotic representation of cp and ^ for a uniformly expanding pressure area 

Ve adopt the following model for f(r,t) because it closely resembles the first term 
>f Sakurai's [8] approximation scheme for the determination of the pressure field 
aside the blast wave 

/(r, = (t + t i r n F(r/r (t)) 9 r < r (t) (10) 

^here n(> 1) is non-integral, and r x is the time taken (from the moment of the 
xplosion) by the shock front to just reach the surface. Also, at high pressures, 
l(t 4- tj = the radius of the shock front at time (t + t t ) cc(t + t^ 215 Ref. [6] 

From this result, one can obtain the expression for r (t): 



230 C R Mondal 

Here, however, we assume, alongwith the model (10), that 

r (t) = ut, u = constant, (11) 

for convenience of analysis. 
Then, from (8) 



f 1 f 00 

(p = p~ 1 af(a)da kJ Q (k 
Jo Jo 

x rl(s)(t l + s)~ n co$0(t-s)J Q (kotr Q (s))ds. (12) 

Jo 

To evaluate (12) asymptotically for large r and t, we first replace J (/car (s)) by its 
integral representation, 

f* irfi 

J (/car (s)) = (2/7r) cos (/caws sin 0)d0, (13) 

Jo 



and J (fcr) by the first term of its asymptotic expansion for large fcr, 

J Q (kr) - (2/nkr) 1 ' 2 cos(fcr - n/4). (14) 

The resulting s-integral is expressed in terms of a function T n (ia,t,ti) defined as 
follows: 



) = e iflfl s 2 (t,+s)- n e ias ds 
Jo 



s $ I ( f t l +tl) . (15) 

Here 

sin0}, 7 =1,2. (16) 



and ifi denotes Kummer's confluent hypergeometric function. 
In place of (12), we have now 



' fl f 

1/2 Re F(a)da 
Jo J 



o 



x [exp{irP.(fe)} + exp{i>Q.(fc)}]dk, (17) 

where 



Q/k) = a(t -f t t )r" ' + (- iykiiat 1 r" 1 sin[0 + k - (ir/4r)] 
and K > is such that Kr 1, and the stationary point(s), if any, lies in (K, oc). 



Surface waves due to blasts 231 

The function Qj(k) has no stationary point for ; = 2 in < k < oo, and none either 
in the same interval for; = 1, since ut l r. Therefore, the part of the fe-integral arising 
from Qxp{irQj(k)} in (17) is O^" 1 ), as r- oo. The function P;(fc), on the other hand, 
has one and only one stationary point, k = kj (say), when 

5 + 5'" (' 

where (5 yi is Kronecker's delta function. To show this, we note that 

(i) Pj(k) is continuous in < fe < oo, 

(ii) Pj(k) is strictly monotone decreasing in < k < oo, since PJ(/c) < therein, 
(iii) P'.(k)-*2i 1 + ( I) j uctt 1 r~' l sm0 = a 1 (say) as /c->0 + 
Pj(k)-+( I) j uat 1 r~ 1 sind 1 =a 2 (say), as fc-*oo, 

< for both 7, since ut^ r~ l 1. 

These conditions make P'.(k) vanish once and only once in < k < oo, when 
( fl i)min > 0> that is, when T > - H - S Jl9 as stated above. 

A similar argument shows that the equation [Pj(/c)] M=0 = has one and only one 
non-negative real root fe = k Q (say), independent of j, when t > 1/2 and hence, under 
the condition (19) as well. 

Since ut 1 r~ l 1, an approximate value of kj may be obtained by putting 

kj = k Q + ej (20) 

in the equation P^.(/c) = 0, whence 

e.^( l)- /+1 uat 1 r~ 1 sin0/PJ(fe ). (21) 

Applying the method of stationary phase to evaluate the fe-integral of (17), we obtain 

i: 

x coshfc^ 2 ' 

x Re X TJjafal t, I, )expi{rP ; (fe ; ) - 7t/4} 

j 

(22) 



(npu- 2 /2)q> - aF(a)da 

o o 



The asymptotic expansions of the functions ^ for large arguments [Erdelyi, [2] 
I, 6.13.1 (2)] show that 



(t + tj-^^x.+.o, (23) 

where we suppose n < 2, a restriction required for the Taylor point blast theory. 



232 c R Mondal 

Using the approximations (20) and (23), we get for (22), the expression 

-7 P f*' 2 2 

(npu 2 /2)(p~\ jp(a)da d<9 
Jo Jo 



o 
x cosh [fe (z + ft)] sech fc ft 



. (24) 

j 

By [Erdelyi, [2], I, 7.12. (45)], we have 

|**/2 

(2/7t) sin{k r + (- I) j k utasme}d9 
Jo 

= sin(fe r)J (fe ua) + (- iy(2/)cos(/c r) s 0(0 (fc itfa) (25) 

when T > 1/2 + ~ so that both ^ and fc 2 exist, the Lommel function s M (k utx) 
cancels out in the j-sum of (24). The asymptotic expression for <p thus finally becomes 



F (fe uOsin(/c r), 

(26) 
where 

(27) 



)= | 

Jo 



o 
The result (26) holds under the conditions 

rr (r)r (t 1 ), k rl, *>- + (28) 

A similar process applied to (9) gives for the surface displacement the asymptotic 
expression 



U 2 t 2 



(29) 



under the same conditions (28). 

If F(x) = D, < x < 1, the limiting value of C, as ft-, oo, equals the corresponding 
value of C for the case of infinite depth [Sen [1 1], eqn. (69)]. 

4.1 An illustrative case 

When a concentrated explosion of constant total energy E takes place in a still 
atmosphere of density Po , Taylor's formula for the maximum pressure (which happens 



Surface waves due to blasts 233 

to be on the shock front) is 

^ax = 0- 14 HVo(' + 'l)~ 6 } 1/5 (30) 

when the ratio of specific heats of air is about 1.4. 

If we adopt this law of pressure for an approximation in the present case while 
retaining the hypothesis r (t) = ut for a relatively small spread of the pressure area, 
we have 

n = 6/5, and F(R) = 0-141 (E 2 po) 1/5 for all R 
so that 



Equation (29) then gives 



(E 2 o 3 } 1/5 ut 
-' 141 - 'I W-^-M*.*)"*^) (31) 



subject to the conditions (28). 

5. Wave elevation due to a Taylor point blast above the fluid surface 

At the outset, we transform the general expression (9) for C as follows: 





Writing 



f 00 
_(0p)-itlm vkJ tyr)e iff(st+ti) dk 

Jo 

x f r 2 Q (st)'(t 1 +str n e- ia(st+tl) F(kr (st))ds. (32) 

Jo 



j' 

Jo 



(33) 



We follow the same procedure as shown in 4, it being assumed that the function 
F(kr Q (st)) is sufficiently well behaved, and it does not make T n strongly oscillatory 
or singular for large t. The latter is a pre-requisite for the applicability of the method 
of stationary phase [Stoker, [12], 6.8]. Then 



asr' = (r/7z)->oo . (34) 

where 

P(k) = (t + tjr- ^(gktanhkh) 112 - k + 7i/4r, 

P"(fc) = PJ(jfc) as obtained from (18), and k = fc 
is the non-negative real root of P'(k) = 0. 



234 c R Mondal 

This approximation holds under the conditions 

(t + tj^/ghr'^l, rr (t), fc rl. (35) 

For large t, T^fco^i) approximates to 



). (36) 

Therefore 

C^^prr^VI^Mr 1 ' 2 ^ (37) 

This result is used below to determine the wave height caused by a Taylor point 
blast above the fluid surface. 

5.1 Pressure inside a blast wave: Taylor's formula 

For an intense explosion of constant total energy E occurring at a point 0' at a height 
H above the ground, the pressure p(r,z,t) inside the expanding spherical blast wave 
and the radius R(t) of the shock wave at time t from the moment of the explosion 
are given by the following formulae due to Taylor [13]: 

(38) 
(39) 



,, * 2y Py+1 ^-i"| 
/ifoH-fr - -- ~ 
y + li_ 7 7 J 



(40) 
(41) 



Here n = (7y - l)/(y 2 - 1), y = ratio of specific heats of air ~ 1.4. 
z = depth of a point vertically downwards from 0'. 
r = distance of a point P from the perpendicular O'O on the surface. 
The surface pressure distribution in the present problem may therefore be taken as 




(42) 
, r>r f 

where 

r^t) = J R 2 (t + t 1 )~ J R 2 (t 1 ) (43) 

and t 1 = time taken by the shock to reach the surface. 

5.2 Adjustment of Taylors formula to the wave problem 

The pressure model (10) without the one for r (t) results from the above when H = 0. 
The same model may be retained when H is small compared with r (t) or R. To this 
purpose, a Lagrange expansion (MacRobert [7], 54) of p Q (r,t) is useful. 



Surface waves due to blasts 235 

Writing 



(44) 

/i(\/w=/2(AO 

we get 

and 

f ( \ f i v * fH\ 2m d" 1 " 1 

i m! \r y dju"" 1 020- v ) 

Also 

^ 2 -# 2X - m 



Consequently, 



m=i/=o m!/! 

x (tj(t + t 1 )} 4(m+1)/5 F m (^L ) L when ^ < 1; 

Po (r, = 0, when jU > 1 , (47) 

since 

R(t + tj = (W26r 2l5 (E/p ) 1/5 (t + r,) 2 / 5 

Here ' 

(49) 

(50) 



5.3 Asymptotic wave height 

Subject to the validity of the linearised wave theory, the asymptotic expression for 
C under the conditions (35) is 

C * - 0-129(E*pV s /gp r ){k /\P"(k )\} l > 2 (t + 1,)- 6 ' 5 



m=i /=o ml II 



236 C R Mondal 

where 

/(aV(fc)da. ( 52 ) 



The last result shows that a good approximation to ( for small H is obtained if 
only the first term / ! 2 (fco r oW) * n the square bracket is retained. Further evaluation 
of C can be accomplished, it seems, only by numerical methods. 



6. Some characteristics of the motion 

In both the expressions (29) and (51) for the wave elevation , fc rl. The factor 
cosk r in both therefore changes its sign rapidly so that we may regard fc r as the 
phase and the co-factor of cosfc r as the amplitude of ( in either expression. The 
phase is not directly affected by the velocity parameter u in (29) or by r (t) in (29) 
and (51). 

Since dfc /dt is positive as per (18), the degree of oscillation of level at any point 

becomes more rapid with time. Since (t 2 k Q h) at first diminishes with t (up to 

dt 

the value given by the equation 2T 2 PJ(fc ) = /i) and then increases with it, the 
oscillation at any point in shallow water is somewhat more rapid at first and less 
rapid thereafter than what would happen if the sea were deep. 
Denoting t^/gh/(2r) by T O , we have for 



* - K(T O ), P;(k )[or P"(/c )] ~ (T O /T)[P;(IC) or 
(say) and equation (PJ(fc)) l|SBO = 0) may be written as t/^(K) = 1, where 

[X/c)]- 1 =(7^i/2r)[{tanhfe/i/^} 1/2 + {fcVtanhfcfc} 1/2 sech 2 fcfc]. (53) 
The amplitude of C in (29) then varies as 



From (53), it appears that kh = 0(t 2 ) and P"(K) = O(K~ l ) when Kh(or T) 1. As n is 
usually > 1, one finds that the amplitude ->0 as t- oo when F(x) is 0(x~ i ) or of a 
higher order of smallness as x -> oo. 
The times of maximum amplitude at any point are given by 

2r (a n tanha n ) 1/2 
^ = -7=...^. . . ....,, > n=l,2,3,..., 

where 



satisfy the equation 



Surface waves due to blasts 237 

Therefore, the points of maximum amplitude at a distance r travel outwards with 
the corresponding constant velocities 

tanh a n + a n sech 2 a n 



The amplitude at any point becomes nearly zero at times 

2r 



fc n sech 2 b n 
where 

* = >, n=l,2,3,... 

satisfy the equation F(KUIJ/(K)) = Q. These points of minimum amplitude travel 
outwards with the corresponding constant velocities 

tanh b n -h b n sech 2 b n 



The values of a n and b n increase with n. Hence, the outer rings spread out faster than 
the inner ones. A similar discussion may be given for (51). 



7. A particular case 
Let 



Therefore 

F(k ut) 



-fW 

Jo 

- r 

k ut Jo 

D . 



k^ut 
Then (29) gives 



= ut, k rl. 

(54) 
By (18), we have 

a 112 It + t 1 
" [4feMtanh^)(sech 2 kh)(l + k tanh kh) 



A,, .rz 
4r(fetanhfc/i) 3 

. (55) 



238 



C R Mondal 



0-006- 

0-00<<- 

0-002- 

0- 

- 0-002 

- 0-00* 
-0-006 

- 0-008 
-0-01 

- 0-012 

- 0-OU 

- Q.Q16 

- 0-018 




Figure 1. Variation of C 1 with r. u = 0-05, n = 1, g = 32, r, = 0-5, t = 2, h = 1. 



Now let us take 



2 V/ 2 / 3 , 

cos [k ut--n . 

nk utj \ 4 



Using (55) and (56) in (54), we get 

r~/i \ 1 /2 "1 r~ 
*-! r I V ul -^i 1 V^o ut ) 
C = | -777T II , , . , - 

t + tj JL'* 



(56) 






D * L rk% 2 J L (t + 1 ! ) n J Lr(fc tanh k, 
x [(4fc /itanhfc /zsech 2 /c /i)(l 
(tanh fc ft -f fc ^ sech 2 k ft) 2 ] ~ 1/2 
x cos(k r)cos(fc u 37i/4), r > wt. 



-1/2 



(57) 



The variation of 



_ 



D 



t 



with r as shown in figure 1. 



Acknowledgements 

The author is grateful to Professor A R Sen for his help in the preparation of this 
paper. This work was supported by a Research Fellowship of the CSIR, New Delhi. 
The author is thankful to the referee for suggesting several improvements which have 
since been incorporated in the paper. 



Surface waves due to blasts 239 

References 

[1] Chaudhuri K S, Appl Sci. Res. 19 (1968) 274-284 

[2] Erdelyi A, Higher Transcendental Functions, Vols I & II (New York: McGraw-Hill) (1953) 

[3] Geisler J E, Linear theory of the response of a two-layer ocean to a moving hurricane, Geophys. Fluid 

Dynam. I (1970) 249-272 

[4] Kisler V M, Prikl. Math, Mek (Translated as Appl Math. Mech. 24 (1960) 496-503 
[5] Kranzer H C and Kellar J B, Water waves produced by explosions, J. Appl Phys. 30 (1959) 398-407 
[6] Kynch G J, Blast waves in: Modern Developments in Fluid Dynamics (ed.) L Howarth, Vol. 1 (1953) 

pp. 146-157 

[7] MacRobert T M, Spherical Harmonics (Pergamon) (1947) 
[8] Mondal B N and Mukherjee S, Water waves generated at an inertial surface by an axisymmetric 

initial surface disturbance, Int. J. Math. Educ. Sci. TechnoL 20 (1989) 743-747 
[9] Rumiantsev B N, Prik. Math. Mek. (Translated as Appl Math. Mech.) 24 (1960) 240-8 
[10] Sakurai A, Blast wave theory in: Basic developments in Fluid Dynamics (ed.) M Holt, Vol. 1, p 320, 

(Academic Press) (1965) 

[11] Sen A R, Surface waves due to blasts on and above liquids, J. Fluid Mech. 16, pt i, 65-81 (1963) 
[12] Stoker J J, Water Waves (New York: Interscience) (1957) 
[13] Taylor G I, Proc. R. Soc. London A201 (1950) 159 
[14] Wen S L, Int. J. Math. Educ. Sci. TechnoL 13 (1982) 55-58 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 2, May 1995, pp. 241-249. 
Printed in India. 



Generation and propagation of 577-type waves due to stress 
discontinuity in a linear viscoelastic layered medium 



P C PAL and LALAN KUMAR* 

Department of Applied Mathematics, Indian School of Mines, Dhanbad 826 004, India 
*NIC Unit, Computer Centre, District Collectorate Building, Dhanbad 826001, India 

MS received 19 August 1993 

Abstract. In this paper the generation and propagation of S/f-type waves due to stress 
discontinuity in a linear viscoelastic layered medium is studied. Using Fourier transforms 
and complex contour integration technique, the displacement is evaluated at the free surface 
in closed form for two special types of stress discontinuity created at the interface. The 
numerical result for displacement component is evaluated for different values of non- 
dimensional station (distance) and is shown graphically. Graphs are compared with the 
corresponding graph of classical elastic case. 

Keywords. SH-type waves; stress discontinuity; 



1. Introduction 

The usefulness of surface waves and its investigations in isotropic elastic medium 
have been well recognised in the study of earthquake waves, seismology and geo- 
physics. Wave propagation in a layered medium has been studied extensively by 
many people, especially in the last two decades. Various approximate theories have 
been proposed to predict the dynamic response of layered medium and one of them is 
due to Sun et al [10]. Nag and Pal [7] have considered the disturbance of SH-type 
waves due to shearing stress discontinuity in an isotropic elastic medium. In another 
paper, Pal and Debnath [8] have considered the propagation of SH-type waves due to 
uniformly moving stress discontinuity at the interface of anisotropic elastic layered 
media. 

Due to the effect of viscosity, gravity plays an important role in the propagation of 
surface waves (Love, Rayleigh, etc.). The viscoelastic behaviour of the material is 
described by the mechanical behaviour of solid materials with small voids. The linear 
viscoelasticity generally displayed by linear elastic materials is termed as 'standard 
linear solid', if elastic materials are having voids. 

Kanai [5] has discussed the Love-type waves propagating in a singly stratified 
viscoelastic layer residing on the semi-infinite viscoelastic body under the conditions 
of the surface of discontinuity. Sarkar [9] considered the effect of body forces and 
stress discontinuity on the motion of SH -type waves in a semi-infinite viscoelastic 
medium. The propagation of Sff-waves in nonhomogeneous viscoelastic layer over 
a semi-infinite voigt medium due to irregularity in the crustal layer has been discussed 
by Chattopadhyay [1]. He has followed the perturbation technique as indicated by 

241 



242 P C Pal and Lalan Kumar 

Eringen and Samuels [4]. The viscoelastic behaviour of linear elastic materials with 
voids has been considered by Co win [2]. 

The present paper considers the generation and propagation of SH-type wave due ^ 

to shearing stress discontinuity at the interface of two homogeneous viscoelastic 
media. Fourier transform method combined with complex contour integration 
technique is used to evaluate the displacement function at the free surface for two 
different types of stress discontinuity. Numerical results are obtained for a case only 
with the aid of viscoelastic model as considered by Martineck [6]. Results are shown 
graphically and are found to be in good agreement with classical elastic case. 

Since the material of the earth is viscoelastic of a standard linear type, certain seismic 
observations and calculations may be explained on this basis. Thus the problem 
considered here is of interest in the theory of seismology. 



2. Formulation of the problem and basic equations 

Let us consider a viscoelastic layer of standard linear type (I) of thickness h lying over 
a viscoelastic half-space (II). The origin of the rectangular co-ordinate system is taken 
at the interface. The wave-generating mechanism is a shearing stress discontinuity 
which is assured to be created suddenly at the interface. The geometry of the problem 
is depicted in figure 1. As the SH-typt of motion is being considered /here, we have 
u = w = and v = v(x,z,t). The displacement v is also assumed to be continuous, 
bounded and independent of y. The only equation of motion in two-layered 
viscoelastic media in terms of stress components is given by 



where 



fi t are related to shear moduli and n' t to viscoelastic parameters. Substituting (2.2) in 
(2.1), the resulting equations of motion become 



Assuming that the stress functions are harmonic and decrease with time, we have 

r- 

and correspondingly 

where co is the frequency parameter. 

i 



SH-type waves due to stress discontinuity 
y FREE SURFACE 

' / / / / / / //J//T'}) f / / J> j I J * 



/// 




Figure 1. Standard linear viscoelastic layered model. 

With the help of (2.5), (2.3) becomes 

o^K-W | d2V \ 
** . aj (dx 2 + dz 2 )' 
sre 

G ] = ^ ^ j( . J=12. 



243 



(2.6) 



Method of solution 

us define the Fourier transform V(^ z) of V(x, z) by 



refore 



(3.1) 



(3.2) 



pplying the above transformation into (2.6), it is found that V(,z) satisfies the 
ition 






d 2 v 



244 P C Pal and Lalan Kumar 

where 

' ^ 2 + ^> /-1.2. (3 ' 3) 

Thus for the layers (I) and (II) we have 

)e' 4x d (3.4) 



=^-\ 

211 J 



(3.5) 

The boundary conditions of the problem under consideration are 
(i) stress component must vanish on the free surface i.e. 

(T yz ) 1 =0atz=-h forallt>0 (3-6) 

(ii) displacements must be continuous at the interface i.e. 

V 1 = V 2 at z = for t > (3.7) 

(iii) stress components (shearing) must be discontinuous at the interface z = i.e. 

(V)i = ( T y*)2 = SM*' * at z = 0, for all x and t, (3.8) 

where S(x) is some continuous function of x to be chosen later. 

The above boundary conditions determine the unknown constants A 19 A 2 and B 2 . 
After simplifying we have at the free surface (z = h) 



ni 

(3.9) 
where U() is an unknown function related to S(x) by 

r r / \ I CV \ ( "& \A C\ 1 C\\ 

and 



which is associated with the reflection coefficient in the two media. 



4. Determination of unknown function 

We now consider two different forms of the function S(x) to determine U(Q. ^ 

Case I. Let 

S(x) = P, |x|^a ; 

= 0, elsewhere. . (4.1) 



SH-type waves due to stress discontinuity 245 

This case implies that the stress discontinuity is created in the region a ^ x ^ a. 
Hence 

exp(-ic)cbc (4.2) 



Pi 



From (3.9) and (4.2) we have 



n foo / p i$xi ^pi&2\ 

(x9 - h ) = -r-i m (f - f- \ 

lpi Jo V nit J 



(x x = x - a, x 2 = x 4- 0). (4.3) 

Here we wish to evaluate the integral for a few values of m, say m = 0, 1, 2 only. So 
we have 



where 



= / 01 + / 02 ;(say) (4-5) 



p x2 /sinjx i _sin^ 1 \ . 
Jo V ^i ^i / 

= / n +/ 12 ;(say) ( 4 -6) 

/a . rvf^i-^V' 9 "^ 

2 Jo V ^i ^1 / ~' 

p K3 /sin|x 1 _sin^ 1 \ _i lljl)ld ^ 
Jo V ^i &li J 

= / 21 +/ 22 ;(say). ( 4 - 7 ) 

To evaluate / 02 . / ii.- ir i2' J 2i' / 22. we use the method of contour integration and 
/ 01 is directly evaluated from the Table of Integral Transforms by Eradelyi [3]. 
Thus, we have 



v= 





246 P C Pal and Lalan Kumar 

where K (0) is a modified Bessel's function of argument 9 and of order zero. 

/ =2 I w*"*-*-! ~ SJn X 2 ) f -u/2)[(a>ih 2 /0 2 )-Z 2 



where X A = (xjh\ x 2 = (x 2 //i) and wft/crj > co/i/cr 2 



r _ 

12 



_ 

02 -- 



where 



where 



-Ri 



Figure Z Complex contour integration in 4-plane. 



(49) 



(4.10) 



(4.11) 




(4.12) 



SH-type waves due to stress discontinuity 247 

The integrals in J l5 / 02 ^i 1^12^-- ^ ave branch points at f = coh/<r l9 coh/ff 2 
and a simple pole at = 0. The path of the contour integration is shown in figure 2. 
Hence 



Case II. Let 

S(x) = P/i(5(x), -oo^x<oo. (4.14) 

Factor ft is multiplied on the right side because both sides should maintain the 
dimension of stress. 

Now 

(4.15, 



Therefore, in this case, we have 



Ph f 
1 (x,-fc) = 5 Re 

noiPi J 

f 

J 



Ph _ 

(4.16) 

In this case also, we evaluate the integral on the right-hand side of (4.16) for a few 
values of m only, say m = 0, 1, 2. Hence 

V l (x, - h) = -4 [/o + *i + 7 2 + -1 ( 4 - ! 7 ) 

J = [1-f Ke~'"' I ]d 

Jo >7i 

= / 01 +/ 02 (say) (4.18) 

' cos^xe~ nih _ 2rjih 2 -3,,^-.,^ 
o ^7i 
= / n +/ 12 (say) (4.19) 

J o *7i 
= / 21 +/ 22 (say). (4.20) 

Just like case I, we can evaluate / 01 ,'o2^n>^.i2--- as foU ws: 

(4.21) 



'-f 

J c 




248 



P C Pal and Lalan Kumar 



etc. 



'02= -4 



/ u =-4 



0>/t/<72 



e-t*e~ 7 



+ - 



or 



O) 



'? J 



(4.22) 



(4.23) 



(4.24) 



by 



The integrals in (4.22), (4.23), (4.24) are valid only when (oh/a, > coh/a 2 . 

Hence, m this case the displacement component on the free surface z = - h is given 



e~'Ph 



(4.25) 



h = 37-5 Km 



I - 0-2 

II - 0-5 

III - 0-7 

IY - 2-0 



0-1 
0-1 
0-1 
1-0 



VISCO -ELASTIC ANALOGY 



*5 2 2-5 3 3-5 



4 4*5 5 5-5 6 6-5 7 7-5 




Figure 3. Variation of displacement with distance from the source. 



SH-type waves due to stress discontinuity 249 

Numerical results and discussion 

umerical calculations are performed here for case II only using Gauss quadrature 
rmula and the table of integral transforms (Eradelyi [3]). The values of Kv 1 x 10~ 2 , 
here K = nalp^e^/P are tabulated for different values of x and Q.^ =a)/2/<7 1 and 
jeping 1 2 <z>h/(j 2 constant. The values of non-dimensional parameters f! 1 and f! 2 
e taken from a viscoelastic model considered by Martineck [6]. For comparison 
graph corresponding to isotropic case is drawn (figure 3) and is found to be in good 
;reement with viscoelastic analogy up to a certain value of x. From the curves so 
awn, it is inferred that the displacement v l decreases as x increases and the rate of 
:crease slows down after a certain distance. 



:knowledgement 

ne of the authors (LK) is thankful to Sri S B Singh, NIC, Dhanbad, for his technical 
:lp during the preparation of this paper. 



rferences 

I] Chattopadhyay A, The propagation of SH-waves in nonhomogeneous viscoelastic layer over a semi- 
infinite Voigt medium due to irregularity in the crustal layer, Bull Calcutta Math. Soc. 70 (1978) 
303-312 

>] Cowin S C, The visco-elastic behaviour of linear elastic materials, J. Elasticity 15 (1985) 185-201 

J] Eradelyi A, Table of Integral Transforms Vol. 1 (New York: McGraw-Hill) (1954) 

I] Eringen A C and Samuels C J, On perturbation technique in wave propagation in a semi-infinite 
elastic medium, J. Appl. Mech. 26 (1959) 491-503 

5] Kanai K, A new problem concerning surface waves, Bull. Earthquake Res. Inst. 39 (1961) 359-366 

5] Martineck G, Torsional vibration of a layer in a visco-elastic half-space, Acta Tech. CSA V Bratislava ' 
24(1970)420-429 

7] Nag K R and Pal P C, Disturbance of SH-type due to shearing stress discontinuity in a layered half 
space, Geophys. Res. Bull. 15 (1977) 13-22 

?] Pal P C and Debnath L, Generation of SH-type waves in layered anisotropic elastic media, Int. J. 
Math. Sci. 2 (1979) 703-716 

)] Sarkar A K, On SH-type of motion due to body forces and due to stress discontinuity in a semi- 
infinite viscoelastic medium, Pure Appl. Geophys. 55 (1963) 42-52 

)] Sun C T, Achenbach J D and Herrman G, Stress waves in elastic and inelastic solids, J. Appl. Mech. 35 
(1968) 467-485 



roc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 2, May 1995, pp. 251-257. 
) Printed in India. 



proof of Howard's conjecture in homogeneous parallel shear flows - 
: Limitations of Fjortoft's necessary instability criterion 



MIHIR B BANERJEE, R G SHANDIL and VINAY KANWAR 

Department of Mathematics, Himachal Pradesh University, Shimla 171 005, India 

MS received 4 May 1994 

Abstract. The present paper on the linear instability of nonviscous homogeneous parallel 
shear flows mathematically demonstrates the correctness of Howard's [4] prediction, for 
a class of velocity distributions specified by a monotone function U of the altitude y and 
a single point of inflexion in the domain of flow, by showing not only the existence of a critical 
wave number k c > but also deriving an explicit expression for it, beyond which for all wave 
numbers the manifesting perturbations attain stability. An exciting conclusion to which the 
above result leads to is that the necessary instability criterion of Fjortoft has the seeds of its 
own destruction in the entire range of wave numbers k > k c a result which is not at all 
evident either from the criterion itself or from its derivation and has thus remained 
undiscovered ever since Fjortoft enunciated [3]. 

Keywords. Shear flows; 



Introduction 

tie point of inflexion theorem of Rayleigh [5] and the semicircle theorem of Howard 
>] impose necessary restrictions on the basic velocity field U(y) and the complex 
ave velocity field c = c r -h ic t which are accessible to an arbitrary unstable (c f > 0) 
ave in the linear instability of nonviscous homogeneous parallel shear flows and it is 
' interest to have a similar restriction on the growth rate kc t possible for such an 
istable wave, fe being the wave number and y being the altitude. In his pioneering 
>ntribution (1961; henceforth referred to as Ho), Howard established one' such 
timate in the form 



Max ~, (1) 

Flow domain \ ^ / 

id considering its inability to provide the correct qualitative result for the case of 
ane Couette flow with dU/dy constant, which is known to be neutrally stable with 
: f - as k -> oo remarked "This estimate is not usually sharp for example, the 
ouette flow with dU/dy constant, is known to be neutrally stable but in most cases 
will probably give the correct order of magnitude of the maximum growth rate. It is 
ifficient to show that c t must approach zero as wavelength decreases to zero given 
e boundedness of dU/dy, but there is likelihood that infact kc t .~0 as fc- oo, and 
ith sufficient assumptions the still stronger statement that all waves shorter than 

251 



252 Mihir B Banerjee et al 

some critical wavelength are stable is probably true, as illustrated by the examples of 
Drazin and Holmboe cited in I". 

A rigorous mathematical proof of the first part of this conjectural assertion of 
Howard, namely that kc t -> as k -> oo, was given in an earlier paper by Banerjee et al 
[1] under the restriction of the boundedness of d 2 U/dy 2 in the concerned domain of 
flow and the present paper which is in continuation to the earlier one mathematically 
demonstrates the correctness of the latter part of this assertion, namely that all 
waves shorter than some critical wavelength are stable, that is c { = when k>k c 
where fc c is some critical value of k for the class of velocity distributions specified by 
a monotone function 17 of the altitude y and having a single point of inflexion in the 
domain of flow [2]. 

An exciting conclusion to which this latter part of Howard's assertion leads to 
is that the basic assumption c t ^ in Fjortoffs derivation of his necessary instability 
criterion breaks down, for the class of velocity distributions as specified in the 
preceding paragraph, in the wave number range k>k c where k c has the same 
meaning as given in the abstract, thus rendering the derivation of the criterion 
invalid. This invalidity assumes striking proportions for the wave with wave length 
zero, that is fc~oo, in which case Fjortoffs necessary criterion of instability is 
actually a sufficient criterion of stability as will be shown later. What is really 
surprising is that it has taken such a long time to discover this wave number 
dependence of Fjortoffs necessary instability criterion but it may, possibly, be 
expected on the ground that neither the Fjortoffs discriminant (d 2 U/dy 2 ) (U - U s ) 
which is to be negative somewhere in the domain of flow for any general velocity 
distribution U(y) and negative everywhere in the domain of flow except being zero 
at the point of inflexion of U(y) in the present context, involves any wave number 
implicitly or explicitly nor the derivation of the criterion itself shows any restrictivity 
with respect to some wave number in the set of all admissible wave numbers k > 
where U s =U(y s ), yi<y s <y 2 and d 2 l//dy 2 = at y = y s with 17 being twice 
continuously differentiable in y 1 < j; ^ y 2 . 

Proof of Howard's Conjecture. To facilitate reference to Ho, we shall make use of the 
same notation here and denote the basic velocity field by U(y) while the Rayleigh 
stability equation that governs the linear instability of nonviscous homogeneous 
parallel shear flows is 

(Ho; equation (5.1) with /? = and n = 1) 



^L- k ^H V^ 2 / Q n) 

dy2 k H iTTT-- - (2) 

The boundary conditions are that H must vanish on the rigid walls which may recede 
to oo in the limiting cases and thus 

H(y l ) = H(y 2 ) = Q. (3) 

Multiplying equation (2) by H* (the complex conjugate of H) throughout and 
integrating the resulting equation over the vertical range of y with the help of the 



Howard's conjecture in homogeneous parallel shear flows - II 253 

boundary conditions (3), we derive 



k 2 \H\ 2 )dy + - - dy = 0, (4) 

C 



yi 



where D stands for d/dz. 
Equating the real and the imaginary parts of both sides of equation (4), we obtain 



I 



V2 

2 i 1,2 I L/|2\ 



J.VI 

and 



(|DH| 2 + F|H| 2 )dy+J X (U _ C) 2 + C 2 d y = Q > (5) 



-c r ) 2 



(6) 



Rayleigh's theorem, which states that a necessary criterion of instability (c t > 0) is that 
the velocity distribution U(y) must have at least one point of inflexion at some y = y s 
where y l <y s <y 2 and U s = U(y s ) follows from equation (6) while Fjortoft's more 
stronger theorem, which states that a necessary criterion of instability is that 

(U U s ) < at some point y = y q ^ y s (obviously) 



k "^ 

where y l < y q < y 2 and U a = U(y s ) 9 (7) 

follows from equation 



r 

Jyi 



2 - dj; = 0, (8) 

yi \ ~ C r) + C i 



which is obtained by multiplying equation (6) throughout by the constant factor 
(c r U s ) after cancelling c i > from both sides of it and then adding the resulting 
equation to equation (5). 

Further multiplying equation (2) by d 2 H*/dy 2 throughout, we get 



U-c 



,9, 



and substituting for d 2 H*/dy 2 from equation (2) in the last term of equation (9), we 
derive upon integrating this latter resulting equation over the range of y with the help 
of the boundary conditions (3) 



f 2 r ya 

(\D 2 H\ 2 + k 2 \DH\ 2 )dy-k 2 \ 

Jyi Jyi 



C 



254 Mihir B Banerjee et al 



Equating the real part of both sides of equation (10), it follows that 
J,, 

)W 

y (, . ,dy-0. (ID 



2 

L ) ~T" c 



and adding to equation (11), the equation 



which follows from equation (6) since c t > 0, we obtain 

-7T-A dy- 



U s being the value of 17 at y = y s where y 1 < y s < y z . Writing equation (13) in the form 
(\D 2 H\ 2 + k 2 \DH\ 2 )dy- 



we deriv^ that a necessary criterion of instability is that 

/d 2 l/\ 2 

/d 2 l/\ \d7j 

~" ^s) + ,2 > at some point y = y p ^ y s (obviously) 



~ ~" s ,2 = p s 

if* 
where y 1 <y p <y 2 . (15) f 

The necessary instability criterion expressed by inequality (15) imposes another 
independent restriction, one being imposed by Fjortoft on Fjortoft's discriminant 
(d 2 U/dy 2 )(U - U s \ and is valid for any general velocity distribution U(y). 



Howard's conjecture in homogeneous parallel shear flows - // 



255 



We shall presently show the importance of this necessary instability criterion 
inestablishing the conjecture of Howard for a specific class of velocity distributions. 

Consider the class of velocity distributions specified by a monotone function U of 
the altitude y and a single point of inflexion in the domain of flow j^ ^y ^y 2 . If 
instability is to manifest in such flows then Rayleigh's criterion implies that 
yi<y s < y 2 and Fjortoft's more stronger criterion implies that 



d 2 U 
dy 2 



(U - U s ) ^ everywhere in y l ^ y < y 29 



(16) 



with equality only where y = y s [2]. It may be noted that for a U(y) belonging to this 
class (d 2 Ufdy 2 )(U U s ) can either be < or > everywhere in the domain of flow 
with equality only where y = y s , and it is Fjortoft's criterion which shows that only 
those flows can possibly be unstable for which (d 2 U/dy 2 )(U ~U S )^0 everywhere in 
the domain of flow with equality only where y = y s . Thus, a necessary criterion of 
instability can be derived from inequalities (15) and (16) in the form 



d 2 U 



dy 2 



It/ -17, 



d 2 U 

dy 2 



k 2 



>0 at some point y - y ^ y s (obviously) 



where y 1 <y p <y 2 - 



Hence, if 



fc 2 >/c 2 = Max 

y( & 3>s)eFlow Domain 



d 2 u 



d 2 U 


\TT TJ I 


dy 2 


\ U U s\ 



(17) 



(18) 



then the basic assumption c t > is not tenable and we must have c t = which implies 
stability since Rayleigh's equation (2) and boundary conditions (3) are invariant under 
complex conjugation. 

It is clear from the above mathematical analysis that the conjecture of Howard 
remains valid even for a larger class of velocity distributions U(y) which have a single 
point of inflexion at some y =* y s where y 1 < y s < y 2 and for which (d 2 U/dy 2 )(U L/ s )< 
everywhere iny l ^ 3; < y 2 with equality only where y = y s . 

The following two theorems are, thus true: 

Theorem 1. All nonviscous homogeneous parallel shear flows, with velocity distributions 
specified by a monotone function U of the altitude y and a single point of inflexion in the 
domain of flow, are stable against all infinitesimally smalt perturbations in the wave 
number range 



k>k= 



Max 



Domain 



\ ( d 


2 U\ 2 ' 


(< 


[y 2 ) 


d 2 U 


TJ TJ 1 


[ dy 2 


U u s\ 



256 



Mihir B Banerjee et al 



Theorem 2. All nonviscous homogeneous parallel shear flows with velocity distributions 
U(y) specified by a single point of inflexion in the domain of flow and the constraint 
(d 2 U/dy 2 )(U U s ) ^ everywhere in y l ^ y ^ y 2 with equality only where y y s are 
stable against all infinitesimally small perturbations in the wave number range 



fe > fc c = 



Max 



domain 



d 2 U 


|77 


77 1 


dy 2 


\ U 


U S\ 



An Example. Consider a sinusoidal flow with U(y) = siny(y 1 ^y ^y 2 ) such that 
J>i <0<} ? 2- Rayleigh's necessary instability criterion is thus satisfied and hence we 
cannot draw any conclusion regarding stability or otherwise of the flow. 
Now, let y 2 - y l < n. Then, since 

( -p- }(U-U S )=- smy(smy - sinO) = - sin 2 }; ^ 

everywhere in y l ^ y ^ y 2 , with equality only where y = y s = (origin being the only 
point of inflexion in the flow domain) Fjortoft's necessary instability criterion, in 
addition to Rayleigh's, is also satisfied and hence we cannot draw any conclusion, 
regarding stability or otherwise of the flow, as before. 
Further, since according to the present criterion 

d 2 U 



k 2 

must be greater than zero at some point, other than the point of inflexion obviously, as 
a necessary criterion of instability, we see that it is satisfied only for fc 2 < 1. Hence, for 
k 2 > 1 the flow must be stable. This simple counter-example to Rayleigh's necessary 
instability criterion was given by Tollmien [6] and incidentally it also serves the 
purpose of a counter-example to Fjortoft's necessary instability criterion in the light of 
our present work. 

For velocity distributions U(y) belonging to the class for which Theorem 1 is valid, 
we obtain a necessary criterion of instability for the wave with wave length zero (that 
is k -> oo ) from inequality (15) as 



(U U s ) > at some point y = y p ^ y s (obviously) 

where y l <y p <y 2 > ( 19 ) 



dy 2 



and hence if 



d 2 U 
dy 2 



(V U s ) ^ everywhere in y a < y ^ y 2 with 

equality only where y = y s , (20) 



Howard's conjecture in homogeneous parallel shear flows - // 257 

then we must have c- = which implies stability. It is to be noted that Fjortoft's 
necessary criterion of instability, which is given by 

(U U s ) < everywhere in j^ < y ^ y 2 with 





equality only where y = y s , (21) 

in the present context, has actually become a sufficient criterion of stability for the 
wave with k ~> oo and this is in accordance with Banerjee et a/'s [1] theorem on the 
rate of growth of an arbitrary unstable perturbation. We state this result in the form of 
a mathematical theorem as follows: 

Theorem 3. Fjortoft's necessary criterion of instability, for all nonviscous homogeneous 
parallel shear flows with velocity distributions specified by a monotone U function U of 
the altitude y and a single point of inflexion in the domain of flow, is actually a sufficient 
. condition of stability for the wave with k-+ao and this result is in accordance with the 

* prediction of Howard [4] and its subsequent confirmation by Banerjee et al [1]. 



References 

[1] Banerjee M B, Shandil R G and Kanwar V, A proof of Howard's conjecture in homogeneous parallel 

shear flows, Proc. Indian Acad. Sci. Math. Sci. 104 (1993) 593-596 
[2] Drazin P G and Howard L N, Hydrodynamic stability of parallel flow of inviscid fluid, Advances in 

Applied Mechanics (1966) (New York: Academic Press) vol. 9 
[3] Fjortoft R, Application of Integral Theorems in deriving criteria of stability of laminar flow and for the 

baroclinic circular vortex, Geofys. Publ. 17 (1950) 1-52 

[4] Howard L N, Note pn a paper of John W Miles, J. Fluid Mech. 10 (1961) 509-512 
[5] Rayleigh J W S, On the stability or instability of certain fluid motions, Proc. Lond. Math. Soc. 9 (1880) 

57-70 
[6] Tollmien W, Ein allegemeines kriterium der instabilitat kminarer gesch verteilungen, Nachr. Akad. 

Wiss. Goettingen, Math. Phys. Kl. 50 (1935) 79-1 14 



Lifting orthogonal representations to spin groups and local 
root numbers 

DIPENDRA PRASAD and DINAKAR RAMAKRISHNAN* 

Mehta Research Institute, Allahabad, 2 1 1 002, India, and 

Tata Institute of Fundamental Research, Bombay, 400 005, India 

* California Institute of Technology, Pasadena, C A 9 11 25, USA 

MS received 10 October 1994; revised 16 December 1994 

Abstract. Representations of D* /fc* for a quaternion division algebra D k over a local field k are 
orthogonal representations. In this note we investigate when these orthogonal representations 
can be lifted to the corresponding spin group. The results are expressed in terms of local root 
number of the representation. 

Keywords. Orthogonal representations; spin groups; local root numbers. 



Let D be a quaternion division algebra over a local field k. Then Df/k* is a compact 
topological group, and all its irreducible representations are finite dimensional. It can 
be seen that, in fact, all the irreducible representations are orthogonal, i.e. for any 
irreducible representation V of D/fc*, there exists a quadratic form q on V such that the 
representation takes values in 0(V). Using the natural embedding of O(V) in SO(V C) 
given by Q\- >(0,det0), we get a homomorphism of D/k* into 5O(KC). In this note 
we investigate when this can be lifted to the spin group of the quadratic space V C. 
The results are expressed in terms of the local root number of the representation V, or of 
the corresponding two dimensional symplectic representation of the Weil-Deligne 
group. We recall that by a theorem of Deligne [Dl] the local root number of an 
orthogonal representation of the Weil-Deligne group W' k of a local field fe is expressed 
in terms of the second Stiefel- Whitney number of the representation, or equivalently in 
terms of the obstruction to lifting the orthogonal representation to the spin group. In 
our case we have a symplectic two dimensional representation of the Weil-Deligne 
group and its root number is being related to the lifting problem for the orthogonal 
representation of the quaternion division algebra. The formulation of Deligne's 
theorem is very elegant and has important global consequences. We, however, have not 
succeeded in making such an elegant formulation of our results and have neither 
succeeded in any global application. 

As the problem is trivial in the case of an archimedean field, we will confine ourselves 
to the non-archimedean case only. We have been able to treat the case of only those 
non-archimedean fields with odd residue characteristic; we will tacitly assume this to be 
the case all through, and let q denote the cardinality of the residue field of fc, and a) the 
unique non-trivial quadratic character of F*. 

Lemma 1. Any finite dimensional irreducible representation of D%/k* is orthogonal. 

Proof. If xi-x denote the canonical anti-automorphism of DJ such that x-x = Nrd(x) 
where Nrd(x) is the reduced norm of x, then as an element of Df/k* 9 x = x~ l . By the 

259 



260 Dipendra Prasad and Dinakar Ramakrishnan 

Skolem-Noether theorem, ,x and x are conjugate, and therefore x is conjugate to x ~ 1 in 
DjJV/c*. By character theory, this implies that every representation of D%/k* is self-dual. 
Now it can be proved that for any irreducible representation V of DJ/k*, there exists 
a quadratic extension L of k such that the trivial character of L* appears in V\ see 
Lemma 2 below for precise statement. Since every character of L* appears with 
multiplicity ^ 1 in any irreducible representation of Djf, cf. Remark 3.5 in [P], the 
eigenspace corresponding to the trivial character of L* is one-dimensional. The unique 
non-degenerate bilinear form on V must be non-zero on this one-dimensional sub- 
space, and therefore the bilinear form must be symmetric. 

The following Lemma follows easily from the construction of representations of D; 
it can also be proved using the theorem of Tunnell [Tu]. 

Lemma 2. Let n be an irreducible representation of D%/k* associated to a character of 
a quadratic extension K of k. Let L be the quadratic unramified extension of k if K is 
ramified, and one of quadratic ramified extensions if K is unramified. Then the trivial 
representation of L* appears in n. The trivial representation of K* appears in n if and 
only if K/k is a ramified extension of k, and q = 3 mod (4). 

The proof of Lemma 1 shows more generally that a self-dual irreducible representa- 
tion V of a group G must be orthogonal if we can find a subgroup H such that the 
restriction of K to H is completely reducible and contains the trivial representation of 
H with multiplicity one. From this remark, one gets the following Proposition. 

PROPOSITION 1 

Every irreducible, admissible, self -dual, generic representation V of GL(n,k), k non- 
archimedean, is orthogonal for any n^l. 

Indeed, the theory of new vectors for generic representations of GL(n,fc) (cf. 
[J-PS-S]) gives the existence of an open compact subgroup C such that the space of 
C-invariant vectors in V is one-dimensional. 

According to a program begun by Carayol in [C] for the GL(2) case, representations 
of D* where D is a division algebra over a non-archimedean field, together with 
corresponding representations of GL(n) (assumed to be supercuspidal) and W k are 
expected to appear in the middle dimension cohomology (H"" 1 ) of a certain rigid 
analytic space. Considerations with Poincare duality suggest the following conjecture 
generalising lemma L 

Conjecture. Let D* be the multiplicative group of a division algebra central over 
a non-archimedean local field k. Let a n be the representation of W' k associated by the 
local Langlands correspondence to n. Then whenever a n is self-dual, symplectic, and 
trivial on the SL(2, C) factor of W h ,n}& orthogonal. 

The following Proposition calculates the determinant of a representation of D*/k*, 
and implies in particular that the determinant is never trivial; this was the reason why 
we have to consider the representation K C of D*/k* instead of just V. 

PROPOSITION 2 

Let n be an irreducible representation of D*fk* associated to a character of a quadratic 



Orthogonal representations 261 

extension K of k. Then 



where L K if K is the quadratic unramified extension of k or if K is ramified with 
q~\ mod (4); if K is ramified with q = 3 mod (4), then L is the other ramified quadratic 
extension. 

Proof. Since the kernel of the reduced norm map is the commutator subgroup of Djf, 
we can write det(Tc) as ju Nrd for a character ju of k*. As n is self-dual, its determinant is 
of order < 2, and by class field theory, \JL is either trivial or is co /fc , for a quadratic 
extension E of fe. For any quadratic extension M of fc, write the decomposition of n as 
M*-module as 

*= Z M I ju'^a-ieb-v (i) 

Me* MS* 

where a and h are integers ^ a, b ^ 1, v is the unique character of M*//c* of order 2, 
and X is a finite set of characters of M*/fc* of order ^ 3. Since the dimension of n is 
known to be even, a = b. 

It follows that the determinant of TI restricted to M*/k* is trivial if and only if the 
trivial representation of M* does not appear in n in which case ^ is trivial on the norm 
subgroup Nrd(M*). Lemma 2 now easily completes the proof. 

Remark 1. It should be noted that self-dual representations n of/)* not factoring 
through D*/fc* need not be orthogonal. For instance, for fe = R, n = p(g)det(p)~ 1/2 , 
where p is the standard two-dimensional representation of D*, is a symplectic rep- 
resentation of D*. It will be interesting to characterize self-dual representations of 
Djf which are orthogonal. 

Lemma 3. Let SO(2nH-l, C) correspond to the quadratic form q = x 1 x 2 + ...+ 
X 2n- 1 X 2n + X 2n + 1 > an ^ ^ ^ associated maximal torus. For characters Oh, . . . , &,) o/fln 
abelian group G, /et TT be the representation of G with values in SO (In -f 1, C) given by 
x*~+(Xi (x), Xi l (x), 1 2 (x\ X2 l (x), "-,Xn ( x )> Xn * (x), V- Then the representation nofG lifts 
to Spin (2n+l 9 C) if and only if U" = l Xi = V 2 f or some character p of G, i.e. if and only if 
Il" =1 Xi is trivial on the subgroup G[2] = {geG\2g=l}. 

Proof. The proof is a trivial consequence of the fact that the spin covering ofSO(2n + 1, C) 
when restricted to the maximal torus T = {(z 1 , z 1 , z 2 , z^ l , . . . , z n , z n " 1 , l)|z.eC*} is the 
two-fold cover of T obtained by attaching v/TL^. 

Lemma 4. A homomorphism n:D%/k* -*SO(n) can be lifted to the corresponding spin 
group if and only if n restricted to K*/7e* can be lifted for any quadratic extension K of k. 

Proof. As the two sheeted coverings of a group G are classified by H 2 (G, Z/2), one needs 
to prove that an element of H 2 (D*/k*,Z/2) is trivial if and only if its restriction to 
# 2 (K*//c*, Z/2) is trivial for all quadratic extensions K of k. Let D* be the image in 
D/k* of the first congruence subgroup of D under the standard filtration. Then since 



262 Dipendra Prasad and Dinakar Ramakrishnan 

the residue characteristic of k is odd, //'(*, Z/2) = if i>0. It follows that 
H 2 (D*//c*, Z/2) = H 2 (D*//c*D*, Z/2). Now D*//c*D* is the dihedral group: 

- F* /F* - D*//c* /)? -t Z/2 - 0, 

where F fl is the residue field of k. Dividing Df/k* D* by the maximal subgroup H'of odd 
order of F* 2 /F*, we again get the dihedral group D r = D*/k*D*H f with 
H 2 (D*/fc*, Z/2) s ff 2 (D* //c* D*H', Z/2): 

-+Z/2 r ->>,- Z/2 -+0. 

Clearly Z/2 Z/2 c D r , and it can be seen from the explicit description of cohomology 
of dihedral groups, cf. [Sn, page 24], that H 2 (D r ,Z/2) injects into H 2 (Z/2@Z/2, 
Z/2) H 2 (Z/2 r , Z/2) under restriction. An element of H 2 (Z/2 Z/2, Z/2) is zero if and 
only if its restriction to all the three Z/2's in Z/2 Z/2 is zero. These three Z/2's come 
from the three quadratic extensions; also, Z/2 r comes from the quadratic unramified 
extension, proving the proposition. 

The following Lemma summarizes the information we need about the characters of 
irreducible representations n of D*/k*, for k non-archimedean, cf. [Si, pages 50-51] 
where he calculates the characters of representations of ?GL(2, k). 

Lemma 5. For K a quadratic extension of k, let n = n x be the representation of D*/k* 
attached to a character % of K*. Then we have the following table 



K/k condM 


dim (ft) 


cond(Tc) 


unramified / 
ramified 2f 


V 1 

te+D^- 1 


V 

2/ + 1 



Let L be any quadratic extension of k, and x the unique element of L*/k* of order 2. 
Denote by & n the character of n. Then we have: 



2. // L = X and K/k unramified, 

3. // L = K and K/k ramified, 



where 



We now begin analysing the lifting of orthogonal representations of D*/fc* to spin 
groups. 

PROPOSITION 3 s. 

Jf? 
Let K be an irreducible representation of DJ/fe* with values in 0(V) associated to f 

a quadratic extension K of k. Then the associated representation with values in 
SO(VQ lifts to the spin group, Spin(V C), when restricted to L*//c* for L a quadratic 
extension of k different from K if and only if co( - 2) = - 1 if K is a ramified extension, 



Orthogonal representations 263 

and co( I/" 1 = 1 if K is the unramified extension where 2f is the conductor of the 
representation n. (We recall that a> is the unique non-trivial quadratic character of F*.) 

Proof. Let L = fc(.x ) with x^efc*. Clearly x is the unique element of L*/&* of order 2. 
As n is self-dual, whenever a character \JL of L* appears in n, so does /x~ 1 . Let us now 
write the decomposition of n as L*-module as 

n= Z /* Z A^+fl-l+fc-v (i) 

Me* /*e* 

where a and ft are integers ^ a, fe ^ 1, v is the unique character of L*/k* of order 2, and 
Jf is a finite set of characters of L*/&* of order ^ 3. Since the dimension of n is even, 
a = b. Note that v(x ) = 1 except in the case when L is a quadratic unramified 
extension of k with q = 3 mod (4) in which case v(x ) = 1. 

By Lemma 3, the representation n of L*/k* with values in S0( V@C) lifts to the spin 
group, Spin (7C), if and only if 



As X Q has order 2 in L*/k*, all the characters of L*/fc* take the value 1 on x . Let r be 
the number of characters IJL from X such that /J(X Q ) = 1, and let 5 be the number of 
characters u, from Z such that /i(x ) = 1. From Lemma 5, the character of TT at x is 
zero. Assuming that L is not the quadratic unramified extension with q = 3 mod(4), so 
that v(x ) = 1, we have from the decomposition of n as in (i) 

dim (TT) = 2(r + s) + 2a (ii) 

7t (x ) = 2(r- 5 ) = 0, (iii) 

From (ii) and (iii), 

dim(Tr) = 4s -f 2a. (iv) 

Also, 



From (iv) and (v), and using Lemma 5 for the dimension of TT, it follows that if K is 
a ramified extension of fc, and L is not the quadratic unramified extension of k with 
q = 3 mod (4), the representation n restricted to L*//c* lifts to the spin group if and only 
if q == 5 mod (8) or q = 1 mod (8). Similarly, when K is the quadratic unramified 
extension of /c, the representation n restricted to L*/fc* lifts to the spin group if and only 
if q = 3 mod (4) and/ even. Finally, if L is the quadratic unramified extension of k with 
q = 3 mod (4), then the representation n restricted to L*/k* lifts to the spin group if and 
only if q = 1 mod (8) as follows from a similar analysis. All these conclusions combine to 
prove the proposition. 

We next consider the lifting of a representation n of DJ//c* associated to a quadratic 
field K when restricted to K*/k*. In this case the obstruction to lifting is related to the 
epsilon factor of n. We will assume that the reader is familiar with the basic properties of 
the epsilon factor for which we refer to [T]. We, however, do want to state two theorems 
about epsilon factors which will be crucial to our calculations; the first due to Deligne 



264 Dipendra Prasad and Dinakar Ramakrishnan 

[D2, Lemma 4.L6] describes how epsilon factor changes under twisting by a character 
of small conductor, and the second is a theorem of Frohlich and Queyrut [F-Q, 
Theorem 3]. 

Lemma 6. Let a and /? be two multiplicative characters of a local field K such that 
cond(a) ^ 2 cond(j8). For an additive character if/ of K, let y be an element of K such that 
a(l +x) = *l/(xy) for all xeK with val(x)^ cond(a) if conductor of a is positive; if 
conductor of a is 0, let y = 7r~ cond( ^ where n k is a uniformising parameter of k. Then 



Lemma 7. Let Kbea separable quadratic extension of a local field k, and \j/ an additive 
character of k. Let \I/ K be the additive character of K defined by \l/ K (x) - i//(tr x). Then for 
any character i of K* which is trivial on k*, and any x eK* with tr(x ) = 



In the next proposition we analyse the lifting of a representation n of D$/k* 
associated to a quadratic field K when restricted to K*/k*. 

PROPOSITION 4 

Let n be an irreducible representation of D%/k* with values in 0(V) associated to 
a character x of K* for a quadratic extension K of k. Then the associated representation 
with values in SO(VC) lifts to the spin group, Spin(VC), when restricted to K*//c* if 
and only if B(K) = - co(2) if K is ramified, and o>( - l) f (n) = 1 if K is unramified and the 
conductor of n is 2f. 

Proof. The proof of this proposition is very similar to that of Proposition 3. Since the 
proof is essentially the same in the case when K is unramified or ramified, and in fact 
since the unramified case is much simpler, we will assume in the rest of the proof that 
K is ramified. 

Since k has odd residue characteristic, K*/k* has exactly one character of order 
2 which is an unramified character of K* taking the value 1 on a uniformising 
parameter n K of K; denote this character by v. We fix n K such that n k = n 2 K belongs to 
k so that K = /c(y/7cj. Clearly % is the unique element of K*/fc* of order 2. 

Let us now write the decomposition of n as *-module as in Proposition 1: 

*= Z ^ Z H'^a'lQb'v (i) 



where a and b are integers ^ a, b ^ 1, and X is a finite set of characters of K*/k* of order 
^ 3. Since the dimension of n is (q + l)q f ~ \ it is in particular even. Therefore a = b. 
By Lemma 3, the representation n of K*//c* with values in S0( F C) lifts to the spin 
group Spin(F C) if and only if 



As n K has order 2 in K*/k*, all the characters of K*//c* take the value 1 on n K . Let r be 
the number of characters u from X such that u(n K ) = 1, and let s be the number of 



Orthogonal representations 265 

characters /z from X such that n(it K ) = - 1. Therefore from the decomposition of n as in 
(i) we get, 

dim(Tr) = 2(r -f s) + 2a (ii) 

2(r-s), (iii) 

- 1 ^*- (iv) 

/ 

From (ii) and (iii), 

dim(Ti) - Q n (n K ) = 4s + 2a. (v) 

Using Lemma 5 for the character of n at n K we get 



and as dim(Tr) = (q + l)q f ~ *, we get from (v) that 

(q + 1)*/' * + 2G / o)(2)x(7EK) = 4s + 2a. (vi) 

We next calculate the epsilon factor &(n). As the associated representation of the Weil 
group is induced from the character % of K*. 



Here ^ fc is any additive character of fc, and \// K is the additive character of K obtained 
from \l/ k using the trace map from K to k. 

We now use the theorem of Frohlich and Queyrut to calculate e(%, \I/ K ). As the 
restriction of % to k* is a) K/k and not the trivial character, we cannot directly apply this 
theorem. However, a slight modification works. For this observe that as k has odd 
residue characteristic, the quadratic character co K/fc of /c* is trivial on 1 -I- n k (9 k where & k 
(respectively (9 K ) is the maximal compact subring of k (respectively K). Also, since K is 
a ramified extension, 



Use this isomorphism to extend <o K/k from to <P and then extend this characterof 
0-k* to K* in one of the two possible ways. Denote this extension of co x/k to K* by a>. 
As the conductor of o> is 1, by Lemma 6, 

e(7t) = e(r &-co~ x , il/ 



where j; is the element of K* with the property that 

%&(! + x) = i/^xy) for all x with val(x) ^ f cond ^, 
therefore y = n^ (2f+1) a (x) + higher order terms. It follows that 



266 Dipendra Prasad and Dinakar Ramakrishnan 

From the definition of epsilon factors, 



x = 



and therefore, 



Comparing with the definition of G x , we get 

G x ^o) Klk (a (x)'n k )'e(o) Klk9 \l/ k ). 
Using (vii), 



Finally, we can use (vi) to give the value of s as follows: 

4s + 4a = (g + !)</" 1 4- 2a + 26(n). 
We note that by Tunnell's theorem, the trivial character of X* appears in n if and only if 

e(7c)-e(7rcu jc/fc )= ~o> K/k (- 1). 

But since TI s TC <8> &>*/* and (TI) = 1, the trivial character of X* appears in TT, i.e. a = 1, 
if and only if co x/k ( 1) = 1. Now the proposition can be deduced by a case-by-case 
analysis depending on the values of co(2) and a>(-~ 1). 

Propositions 3 and 4 can now be combined using Lemma 4 to give the following 
theorem. 

Theorem 1. Let n be an irreducible representation of DJ/fc* wif/i values in 0(V) 
associated to a character i of K* for a quadratic extension K of k. Then the associated 
representation wi'rfi values in SO(V C) lifts to the spin group, Spin(VC), if and only if 
co(-2)= - I and &(n) = a)(- 1} if K is ramified, and a>(- Vf~ l = lande(K)= I if 
K is unramified and the conductor of n is 2f. 

Remark 2. We do not know when an orthogonal representation of a connected 
compact Lie group can be lifted to the spin group, say in terms of the highest weight of 
the representation. The question is interesting for finite groups too, for instance the 
symmetric group all whose representations are known to be orthogonal, or for finite 
groups of Lie type. 

References 

[C] Carayol R Non-abelian Lubin-Tate theory, in Automorphic Forms, Shimura varieties, and 

L-functions, Perspect. Maih. 10 (1990) 15-40 
[Dl] Deligne P, Les constantes locales de liquation fonctionnelle de la fonction L d'Artin d'une 

representation orthogonale. Invent. Math. 35 (1976) 299-316 
[D2] Deligne P, Les constantes des equations fonctionelle des fonctions L, Modular functions of one 

variable II, Led. Notes Math. 349 (1973) 501-597 

[F-Q] Frohlich A and Quey rut J, On the functional equation of the Artin L-function for characters of real 
representations. Invent. Math. 20 (1973) 125-138 



Orthogonal representations 267 

[J-PS-S] Jacquet H, Piatetski-Shapiro I and Shalika J A, Conducteur des representations generiques du 

groupe lineaire, C. R. Acad. Sci. Paris, Sir. Math. 292 (1981) 611-616 
[P] Prasad D, Trilinear forms for representations of GL(2) and local ^-factors, Compos. Math. 75 (1 990) 

1-46 

[Si] Silberger A, PGL(2) over p-adics, f Springer- Verlag) Lect. Notes Math. 166 (1970) 
[Sn] Snaith V, Topological methods in Galois representation theory, Canadian Mathematical Society 

series of monographs and advanced texts (A Wiley-Interscience Publication) (1989) 
[T] Tate J, Number theoretic background, in Automorphic Forms, Representations, and L-functions, 

Proc. Symp. Pure Math. 33 (1979) 3-26 AMS, Providence, R.I. 
[Tu] Tunnell J, Local epsilon factors and characters of GL(2), Am. J. Math. 105 (1983) 1277-1307 



Froc. Indian Acad. Sen. (Math. Sci.), Vol. 105, No. 1; August 1995, pp. 269-271. 
Printed in India. 



Irrationality of linear combinations of eigenvectors 

ANTHONY MANNING 

Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK 

MS received 25 November 1994 

Abstract A given n x n matrix of rational numbers acts on C" and on Q". We assume that its 
characteristic polynomial is irreducible and compare a basis of eigenvectors for C" with the 
standard basis for Q". Subject to a hypothesis on the Galois group we prove that vectors from 
these two bases are as independent of each other as possible. 

Keywords. Irrationality; Galois group; eigenvectors. 

A square matrix AeGL(n, Q) can be considered as acting on Q" and on Q" C = C". 
The action on C n is best understood in terms of eigenvectors and that on Q" in terms of 
the standard basis e l , . . . , e n where e { = (<5 fj )] = l . We shall study the possibility of linear 
dependence (over C) between vectors from these two bases. 

An eigenvector corresponding to an irrational eigenvalue clearly cannot lie in Q". 
But can it lie in K C where V is some codimension one subspace of Q"? How many of 
the coordinates of an eigenvector can be rational? And could a non-zero C-linear 
combination of r eigenvectors lie in V C where V is some codimension r subspace of 
Q rt ? Because we can work with A conjugated by a change of basis matrix in GL(n, Q) it 
is sufficient to consider these questions for subspaces spanned by vectors of the 
standard basis of Q". 

To avoid rational eigenvalues let us assume that the characteristic polynomial %(A) is 
irreducible over Q. Since x(A) is separable there are n distinct eigenvalues and A is 
diagonalizable. Moreover, there is no ^-invariant subspace of Q". Now if there was an 
^-invariant subspace U then eigenvectors in U C would be linearly dependent over 
C on vectors that form a Q-basis for U, and we have avoided this type of possibility of 
linear dependence by the hypothesis that %(A) is irreducible. 

Let F denote the splitting field extension of #(,4) over Q and F denote the Galois 
group of this extension. Then F acts on the set of roots ot%(A). This action is transitive 
[1, p. 66]. When 1 ^ r < n we call the action r-homogeneous if, for any two subsets 
consisting of r roots, there is an element of F that takes the elements of the first set to 
those of the second. Certainly the action of F is 1 -homogeneous. It is r-homogeneous if 
and only if it is (n - r)-homogeneous. If F is the symmetric or alternating group on 
n symbols then the action is r-homogeneous for each r. 

Theorem. Suppose that the characteristic polynomial %(A) of AeGL(n, Q) is irreducible, 
so that the eigenvalues a l , . . . , a n of A are distinct. Consider a matrix BeGL(n, C) whose 
i-th row is a left eigenvector of A corresponding to the eigenvalue a,-, l^i^n. Let 
T denote the Galois group of the splitting field extension F:Qof %(A), and fix 1"^ r < n. 
If, for each q with 1 ^ q ^ r, the action of F on {a t , . . . , a B } is q-homogeneous then every 
r x r minor of B has non-zero determinant. 



269 



270 Anthony Manning 

Remark L The determinant of an r x r minor of B is equal (at least up to sign) to the 

determinant of a matrix obtained from B by replacing the n r rows not in that minor 

by the n - r vectors of the standard basis that do not correspond to any of the r columns 

in the minor. Thus the theorem asserts that any set of r eigenvectors and n r vectors ^ 

from the standard basis is independent. (Independence over F is equivalent to 

independence over C since both are equivalent to the vanishing of the determinant.) 

Two corollaries follow immediately. 

COROLLARY 1 

// F is the symmetric or alternating group on n symbols then any set of n vectors taken 
from among the standard basis vectors and eigenvectors corresponding to different 
eigenvalues is independent over C. 

COROLLARY 2 

An eigenvector of A cannot lie in F C when V is a codimension one subspace o/Q n . 

"Si 

Remark 2. If x = (x l , . . . , xJeC" has x l , . . . , x r+ t eQ then x = f l + I] =r + 2 x j e j v c 
for the codimension r subspace V of Q" spanned by fi,e r + 2 ,...,e n where \ 

/ 1 : = Z^iJx j e J eQ n . Thus Corollary 2 implies that no eigenvector can have two \. 

coordinates rational; the conclusion of the Theorem implies that a C-linear combina- 
tion of r eigenvectors can never have r + 1 coordinates rational. However, the precise 
number of coordinates that are rational can change if we change the basis of Q". 

Remark 3. If 

'0 -1\ 



A = 



100 

010 1 

\0 1 0] 

then i(A) = x 4 x 2 -f 1 is irreducible and A has eigenvalues a, a" 1 for a a square 
root of (1 4- z\/3)/2. Then Galois group of %(A) is the Klein four group, which is not 
2-homogeneous. So this case does not satisfy the hypotheses of the theorem if r = 2. 
A has left eigenvectors v l = (1, a, a 2 , a 3 ) and v 2 = (1, - a, a 2 , a 3 ) corresponding to the 
eigenvalues a. But then v l + v 2 = 2e l + 2a 2 e 3 so that these four vectors are linearly 
dependent and the conclusion of the theorem is not satisfied. Thus some hypothesis on 
the Galois group is needed. 

Remark 4. The theorem arose from work on hyperbolic total automorphisms. Here 
A is assumed to have only integer entries and det(,4) = 1. Then A induces an 
automorphism A of the quotient group R W /Z", which is the n-dimensional torus T". 
A vector subspace of R" that has a basis in Q" or Z" corresponds to a lower-dimensional 
torus in T n , If A has no eigenvalue of modulus 1 the toral automorphism A is called 
hyperbolic. A hyperbolic^ has elaborate dynamical properties: on the one hand, for 
some xe T" the orbit {A k x:keZ} is dense in T", on the other hand the periodic (i.e. 
finite) orbits are the orbits of rational points (i.e. points of Q n /Z n ) and these form a dense 
subset of T n . (See Theorems 3.3 and 6.2 of [2] or 1.1 1 of [3].) Study of these dynamical 



Irrationality of combinations of eigenvectors 271 

properties uses R" = E S E U where E s = {veR":A k v-+Q as fe->oo} and E u = {veR": 
A k v-+Q as fc- oo }. Our theorem gives algebraic conditions under which the 
projections of E s and E u to T n are in general position with respect to the lower- 
dimensional tori. Let % r denote the characteristic polynomial of the automorphism 
induced by A on the homology group H r (T"). Then the roots of % r are products of 
r distinct roots of %(A). If x r is irreducible then the action of F is r-homogeneous, which 
helps in checking the hypothesis of the theorem. 

Proof of Theorem. We work in F" where (A OL 1 I)...(A~ z n l) = and each A a,-/ 
has nullity one. For each), choose a left eigenvector VjF" corresponding to a,-. 

Any element a of the Galois group F is a field isomorphism a:F-+F that leaves 
Q fixed pointwise. <r induces a permutation of {a 1? ...,a n } and we shall write 

*fy) = **(,,<;> 

Now <j induces a Q-linear map <j:F"->F n . Up to multiplication by constants, 
<j permutes the eigenvectors of A because d(v^A = d(VjA) = fffajVj) = (7(ctj)a(Vj) so that 
9(vj) = c(<?J)v n(ff)(j) for some non-zero c(<rJ)eF. 

Now suppose, if possible, that r vectors from {v i9 ...,v n } and n rfrom {e i9 ... 9 e n } 
in F n are linearly dependent over F and that r is the least number for which this is 
true. By Remark 1 it suffices to find a contradiction to the existence of such vectors. By 
renumbering if necessary we can assume that the vectors are v 19 ..., v r9 e r + l9 ... 9 e n . 
By the dependence there are /? t , . . . , /? w eF, not all zero, with 



Since r is the least possible, /?,. ^ for 1 ^ j ^ r. 

Since the Galois group F is r-homogeneous we can, for k = 0, 1, . . . , n r, find c^eF 
for which the permutation n(a k ) maps { 1, . . . , r} to {k + 1, . . . , k -j- r}. Apply each a k to 
(1). This gives 



j=l j=r+l 

The n r + 1 vectors on the left hand sides of (2) all lie in the (n - r)-dimensional 
subspace of F" spanned by e r + 1 , . . . , e n so they are linearly dependent over F. Thus, for 
some fc^n r, 2 r j= 1 G k (f} j )c((r k J)v 1t(ffk)( j ) is a linear combination of I* r j=1 ff m (fij) 
C K J K(<r w) u)> ^ m < fe. Now ff k (vj) = c(a k J)v n(ffk)U) = c(a k j)v r+k when; = (n(a k ))' 1 
(r + fe). For this value of 7 it is a k (^ j )c(a k ,j ') that is the (non-zero) coefficient of v r+k and 
so v r +k i s a linear combination of v 1 , . . . , v r+k _ x , which contradicts the independence of 
the eigenvectors, and so completes the proof. 

References 

[1] Garling D, A course in Galois theory (Cambridge: University Press) (1986) 

[2] Smale S, Differentiable dynamical systems, Bull Am. Math. Soc. 73 (1967) 747-817 

[3] Walters P, An introduction to ergodic theory (New York: Springer) (1982) 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 3, August 1995, pp. 273-279. 
Printed in India. 



On the zeros of > (l \s) a (on the zeros of a class of a generalized 
Dirichlet series - XVII)* 

K RAMACHANDRA 

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, 
Bombay 400 005, India 

MS received 10 October 1994; revised 14 December 1994 

Abstract. Some very precise results (see Theorems 4 and 5) are proved about the a-values of 
the /th derivative of a class of generalized Dirichlet series, for / ^ / = I (a) (1 Q being a large 
constant). In particular for the precise results on the zeros of C (/) (s) - a (a any complex constant 
and / ^ / ) see Theorems 1 and 2 of the introduction. 

Keywords. Riemann zeta function; generalized Dirichlet series; derivatives; distribution of 



1. Introduction 

The object of this paper is to prove the following two theorems. 

Theorem 1. Let 5 = ( log f } } ( log- 1 . There exists an effective constant e >0 

V V lo 8 2 /A 2 / 
such that if & is any constant satisfying < e ^ e , then the rectangle 

1 / 3 

^t^(2k + 2)n I log- 

contains precisely one zero of C (0 ( s )> provided I exceeds a constant 1 = I (z) depending 
only on e. This zero is a simple zero. Moreover this zero does not lie on the boundary of this 
rectangle and further lies in 



+ s). 
Here as usual s = a 4- it and k is any integer., positive negative or zero. 

Theorem 2. Let S = (loglog 15) (log 15)" 1 and a any non-zero complex constant. There 
exists an effective constant & >Q such that if e is any constant satisfying < ^ e , then 
the rectangle 



^t^ T + 

where T =(Im log + 7E/ + 2fc7r)(log 15)" S contains precisely one zero of 
provided I exceeds an effective constant 1 = I (a, s) depending only on a and e. This zero is 
a simple zero. Moreover this zero does not lie on the boundary of this rectangle and 
further lies in 

<r^l(S + e). 



* Dedicated to Prof, Paul Erdos on his eighty-first birthday 



274 K Ramachandra 

Here k is any integer, positive negative or zero. 

Remark. In [1] we dealt with slightly different questions on the zeros in <r>^ of 
(0 (s) a where a is any complex constant and / is any fixed positive integer. Interested 
reader may consult this paper. However the results of the present paper deal with large 
/ and are more precise. 

The main ingredient of the proof of Theorems 1 and 2 (and the more general results to 
be stated and proved in 3 and 4) is the following theorem (see Theorem 3.42 on page 
116 on [2]). 

Theorem 3. (Rouche's Theorem). // /(z) and g(z) are analytic inside and on a closed 
contour C, and \g(z)\ < \f(z)\ on C then /(z) and /(z) -f g(z) have the same number of 
zeros inside C. 

Remark 1. In what follows we use s in place of z. 

Remark 2. It is somewhat surprising that we can prove (with the help of Theorem 3) 
Theorems 4 and 5, which are much more general than Theorems 1 and 2. These will be 
stated in 3 and 4 respectively. 



Remark 3. Theorems 4 and 5 can be generalized to include derivatives of C 
L functions and also of C function of ray classes of any algebraic number field and so on 
But we have not done so. 



2. Notation 



{l n }(n = 1, 2, 3, . . .) will denote any sequence of real numbers with A x = 1 and ^ A n+ 1 - 
A n ^A where A( ^ 1) is any fixed constant. {a n } (n = 1, 2, 3, . . .) will denote any sequence 
of complex numbers with ^ = 1 and \a n \ ^ n A . k will be any integer, positive negative or 
zero. S n (n ^ 2) will denote (loglog A B )(log l n )~ l 



3. A generalization of Theorem 1 



Theorem4 Let w 

-l 



^ 

V V toSAio // 

log- 1 ) . Also let A n+ ! < Xl for alln>l. There exists an effective constant 

A no / 

such that if e is any constant satisfying < e ^ 6 , then the rectangle 



where T = ( Im log I -^ ] J 1 log-^ ) , contains precisely one zero of the analytic 

\ V o / / \ ^no / 



function 



Generalized Dirichlet series 275 

provided I exceeds an effective positive constant / = l Q (A,s,n ) depending only on the 
parameters indicated. This zero is a simple zero. Moreover this zero does not lie on the 
boundary of this rectangle and further lies in 

a^l(d + e). 

Remark. Theorem 1 follows by taking n = 2, A n = n and a n = 1 for all n. 

The following lemma will be used in this section and also while applying Theorem 5 
of 4 to deduce Theorem 2. 

Lemma 1. For any (5>0 the function (logx)x'* (of x in x^ 1) is increasing for 
1 <x^exp(5 -1 ) and decreasing for x^exp^" 1 ). It has precisely one maximum at 
x = exp(<5~ 1 ). 

Remark. The maximum value is (ed)~ 1 - The proof of this lemma is trivial and will be left 
as an exercise. 
To prove Theorem 4 we apply Theorem 3 to 



and 



where J n = a n (a^)~ l . It suffices to prove that f(s) + g(s) has its zeros as claimed in 
Theorem 4. 

Lemma 2. The zeros of f(s) are all simple and are given by S = S Q where 



for all possible values of log( a' no+1 ). If s = <T O 4- it Q then 

( **n + 

' i HO ' 

i lo g-r 



log/ Bo 
and 



Also 



/ A n+1 \- 
-<+i))(log-f I 

V 2 no / 



Proo/ The proof is trivial. 
Lemma 3. For a ^ 200 >4, w 

/I 



276 K Ramachandra 

where 

Proof. The proof follows from 



Y i 'if log M 
JrJ " 

and the fact that 



' A. 



Remark. Hereafter we write a = 5 Q l and 



Also we remark that the condition cr ^ /(<5 - e) is the same as a ^ 1(6 e) with a change 
of s. 

Lemma 4. Let S = S(a). Then for <j^l(d s) we have, 



provided / > J = 1 (A, , n ), which is effective. 
To prove this lemma it suffices to prove that 



This will be done in two stages. We have (by Lemma 3) 

-)- z w^ 



In Lemma 5 we prove that exp(6~ 1 )< A no+1 and so by Lemma 1 it follows that 
(log A H )A n ~* is decreasing for n ^ n + 2. Hence it suffices to prove that 



This will be done in Lemma 6. This would complete the proof of Lemma 4 since for all 
large n 



( logA 



; \-5+e 

n \l A n 






Generalized Dirichlet series 211 

is less than a negative constant power of /l n . 
Lemma 5. We have 

Proof. Since for < x < 1 we have - log(l - x) > x, it follows that 
5 = ( log ( 1 I 1 : j-^ 2 - 1 11 ( log-y^ 

A+.V 



This proves the lemma. 
Lemma 6. We have 

-}(T^}' <I - 

t- 1 / \ A n + 2/ 

Proof. We have l no + 2 < l* Q+l and also for < x < 1 we have log(l + x) < x. Using 
these we obtain 



and so 



and since (log A no + 1 ) ~ l < 5, we obtain Lemma 6. Lemmas 2 and 4 complete the proof of 
Theorem 4. 

4. A generalization of Theorem 2 

Theorem 5. Let d ni be the maximum of 6 n taken over all n for which a n ^Q and n>l. 
Suppose that for all n^ 1, n 1 we have 6 ni - d n ^ A" 1 and also k ni -e^A~ l . We further 
suppose that \a ni \^A~ l and put d ni = d. There exists an effective constant such that for 
all e satisfying Q<s^e ,the rectangle 

{a ^ 1(5 ~ el T -n(\oglJ-^t^ T + n(\og AJ- l } 



where T = (Im log( fl Bl ) + 2/c7i)(log>l ni )~ ^ contains precisely one zero of the analytic 
function 

Z ^ 



n=2 



provided I exceeds an effective constant / = 1 (A, e, n x ) depending only on the parameters 
indicated. This zero is a simple zero. Moreover this zero does not lie on the boundary of 



278 K Ramachandra 

this rectangle and further lies in 



Remark. Theorem 2 follows by taking X n = n and a n = ( - 1) /+ 1 a' 1 for all n > 2. Note 
that the maximum of d n occurs when n = 15. It is necessary to check that <5 15 > <5 16 . In 
fact we have 

* e = 15-21. ...logjo^V =0434357... and log^jfe 1 =0434455..., 

by using tables. 
To prove Theorem 5 we apply Theorem 3 to 



and 



where the asterisk denotes the restrictions n ^ 1, n l . 

Lemma 1. The zeros of f(s) are all simple and are given by s = s where 

s = (log(- a ni ) + HoglogAjaog A Wi )- 1 
/or a// possible values of log( - a ni ). // s = <T O 4- zt 05 

<T O 
and 

t 
Also 



Remark. We write <r = <5 / and ^^'"Mlogla^lXlogA^)" 1 + 5. The condition 
<r ^ /(^o e) is the same as o- ^ /(5 - fi) with a change of e. 

Proof. The proof is trivial. 
Lemma 2. For a^l(d s\ we have 



Proo/. LHS is trivially not more than 



for all a ^ 200 A. This proves the lemma. 
Lemma 3. We have for ^^1(8 e), 



Generalized Dirichlet series 279 

Proof. Using log h n = U n ) 6n we obtain, by Lemma 2, 



By the hypothesis of Theorem 5 we see that 6 d n ^ A ~ * (note also that A Wi 
so that <5 ^ - - - r-j if k n i ^ e e ) and so Lemma 3 is proved. 
Lemmas 1 and 3 complete the proof of Theorem 5. 

Open questions 

1) How much can one generalize Theorems 1 and 2? 

2) Whatever the integer constant / ^ 1 and whatever the complex constant a, prove 
that C (0 (s) a has infinity of simple zeros in a > |, (more precisely T simple zeros 
in (cr ^ | + (5, T ^ r ^ 27) for some absolute constant 6 > 0). 

References 

[1] Balasubramanian R and Ramachandra K, On the zeros of C'(s) - a, Acta Arith. 63 (1993) 183-191 
[2] Titchmarsh E C, The theory of functions (second edition) (1939) (Oxford University Press) 



Proc. Indian Acad Sci. (Math. Sci.), Vol. 105, No. 3,- August 1995, pp. 281-285. 
Printed in India. 



A note on the growth of topological Sidon sets 

K GOWRI NAVADA 

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, 

Bombay 400 005, India 

MS received 31 October 1994; revised 14 December 1994 

Abstract. We give an estimate for the number of elements in the intersection of topological 
Sidon sets in R" with compact convex subsets and deduce a necessary and sufficient conditions 
for an orbit of a linear transformation of R" to be a topological Sidon set. 

Keywords. Topological Sidon sets; growth of sets. 



Given a locally compact abelian group G, a subset A of the dual group X is called 
a topological Sidon set if any be/ 00 (A, namely any bounded complex- valued functions 
on A, is the restriction to A of the Fourier transform of a complex bounded Radon 
measure on G. These sets play an important role in harmonic analysis ([LR], [M]). 
When G is compact, X is discrete and the notion of topological Sidon sets coincides 
with that of Sidon sets. ([LR], [M].) 

For any topological Sidon set A as above there exist c ^ 1 and a compact subset K of 
G such that any be/ 00 (A) is the Fourier transform of a measure which is supported on 
K and has norm at most c \\ b \\ ^ . When this condition holds for a c ^ 1 and a compact 
subset K, A is called a (c, K) topological Sidon set. 

Sidon sets are known to be 'thin' set ( [LR], [M], [P] ). Further, estimates are known 
for the number of elements in intersections of Sidon sets with finite subsets (see 
Theorem 3). The purpose of this note is to give the similar estimate for the number of 
elements in intersections of topological Sidon sets in R m with compact convex subsets. 
Let / denote the Lebesgue measure on R m . For a set E we denote by | E \ the cardinality of 
E. Then our result shows in particular the following. 

Theorem 1. Let weN. Then for any compact set K c= R m and c ^ 1, there exist ad>0 
and a neighbourhood UofQeR such that for any (c, K) topological Sidon set A of R m and 
any convex subset A of R m we have 



We deduce from the theorem the following criterion for orbits of linear transform- 
ations to be topological Sidon sets. 

COROLLARY 

Let A:R m h->R m be a linear transformation and veR m . Then {A"(v)\neN} is an infinite 
topological Sidon set if and only if v is not contained in any A-invariant subspace of R m on 
which all the eigenvalues are of absolute value at most 1. 

281 



282 K Gowri Navada 

While the estimate as in the theorem is adequate for the above corollary, it seems 
worthwhile to note that our argument below gives not just existence of a neighbour- 
hood (/, but a concrete way of choosing such a neighbourhood. This is of some interest 
since the right hand side would typically be big when U is small and so for getting 
a better estimate one would be interested in choosing U as big as may be allowable. We 
shall prove the following stronger version of theorem 1. 

Theorem 2. Let raeN. Then for any c ^ 1 there exists a d > such that the following 
holds: for any compact set K of R m , any(c, K) topological Sidon set A of R m and any convex 
subset A of R m we have \ A n4| <dlog(/(X + 3 U)/l(U)), where U = {AeR m |sup X6KuB 
|I?L ! AfXjl < l/47ic}, B being any basis of R". 

We shall now recall a result from [LR], on which our proof of Theorem 2 is based, 
prove some preparatory results and then proceed to prove the theorem. 

A finite subset A of a discrete topological group X is said to be a test set of order M, 
where M ^ 1, if \A 2 A' 1 1 ^ M\A\. 

Theorem 3 [LR]. If E^X is a Sidon set with Sidon constant K ^ 1, then \A r\E\ ^ 
2>c 2 eM log | A | for test sets of order M such that \A\^2. 

The following proposition signifies that any countable set close to a topological 
Sidon set is again a topological Sidon set. It is just a higher dimensional version of 
Lemma 3 of Ch. VI of [M] and is deduced analogously, as indicated below. 

PROPOSITION 1 

Let A = {l n }%L ! be a (c, K) topological Sidon set in R m and p>lbe given. Let e be such 
that (1 - ec)~ 1 = p and let < 6 < & and W = {A6R m |sup X6X |f = l x^l < 6/4n}. For each 
n let X n EA n + W. Then A' = {^}^ =1 is a topological Sidon set and further any function 
b in /(A') is the restriction to A' of the Fourier transform of a measure jueM(R m ) wit/i 



Proof. SinCe A is a topological Sidon set, A is a coherent set of frequencies, (cf : [M], 
Theorem I of Ch. VI for a proof in the case m = 1. The proof actually holds in general) 
We now argue as in the proof of the assertion (a)=>(c) in Theorem X of Ch. IV of [M]: 
The argument there shows that for the set W as above {^ n -h W}^L l are mutually 
disjoint and if. H:A -f VT-*A x W is the (well-defined) map such that 
H(A n + w) = (i n , u\ for all neN, we W, then for each geB(\ x W), gHeB(A + W) and 



_ Let bel*(A') be given. Let/(A n + u) = b(X n \ Vn, Vwe Wand let/ be the restriction of 
/to A. Since A is a (c, K) topological Sidon set, there exists a measure /ieM(R m ) such 
that u = 'f on A and \\u\\ ^cll/H^. Then /z x d yields an element of B(A x ^; we 
denote it by g and put v = gHeB(h + W). Then 



Hencethereexistsameasurev6M(R m )suchthat ||v|| <pc||/|i 00 andv = 
particular \\v\\ < pcll&H^ and v = b on A 7 . 

Let {x i , . . . , x m } be any linearly independent set in R m with m elements. Then any 
translate of the set {=1^10 <*<!} is called a parallelopiped in R m ; further if 
{xj , . . . , x m } is an orthogonal set, then such a parallelopiped is called a box. 



Growth of topological Sidon sets 283 

PROPOSITION 2 

Let A be a compact, convex subset of R m with nonempty interior. Then A contains 
a parallelopiped P such that l(A) ^ (2m) m /(P). 

Proof. By a suitable translation, we can assume that Oe A We define an orthogonal set 
{*!,..., x m } in R m and a linearly independent subset {j>i,...,>' m } of A by induction as 
follows. Let x l = y^eA be an element of maximum norm. Assume that for some 
fc < m 1 , an orthogonal set {x 1 , . . . , x k } and a linearly independent subset {y 1 , . . . , y k } 
are chosen. Let P fc :R w -~><x 1 ,...,x k > 1 be the orthogonal projection map onto the 
subspace of R m orthogonal to {x t , . . . , x k }. Choose x k + 1 to be an element of maximum 
norm in P k (A)\ since A has nonempty interior x k+1 ^0. Let y k+l eA be such that 
PfcOWi) ***!- Clearly {x 19 ... 9 x k+i } is an orthogonal set and {^,...,^+1} are 
linearly independent. By induction this yields the sets {x i9 ...,x m } and {y l , . . . , y m } as 
desired. 

Let / be the box generated by {i 19 ...,x m }, i.e. / = {ZJ" asl f i x |0<f I .< 1}. Let 
J = {I?L ! f f x t . I - 1 < r < 1}. Then l(J) = 2 m /(/). If -ae.4 and (a l , . . . , aj are the coordi- 
nates of a with respect to the vectors x ls ...,x m , then |a.| < ||x ( .|| Vi and hence aeJ. 
Therefore ^4^J and consequently l(A) ^ /(J) = 2 m /(/). Let P be the parallelopiped 
generated by {y 1 /m, . . . , y m /m}, i.e. P = {IJ" = j t f ^/m|0 < t ^ 1}. Since A is convex and 
OeA it follows that P c 4. The matrix of the transformation x <-)>; is lower triangular 
with diagonal entries equal to 1. Therefore /(P) = m m /(/). Hence we get l(A) ^ (2m) m /(P). 

Proof of Theorem 2. Write A = { A rt } rt = 1 . Let B be any basis of R m . Let Oe(Q, l/c) be 
arbitrary and let ee(0, l/c). Let I7 a = {A6R m |sup Jce ^ uB |Zr.i^l< e / 4 ^}; We a PPty 
Proposition 1 to p = (1 -ec)' 1 and e, and U e as above. Clearly, U e is a convex, 
compact and symmetric neighbourhood of 0. Applying Proposition 2 to U e , we get 
a parallelopiped P^I7 e such that l(U e )^(2m) m l(P). Let {z 1 ,...,z m } be such that 
P is a translate of {Z^-zJO^ t^ 1}. Let L be the lattice generated by {z 1? ...,z m }. 
If we choose ^e(A n -h U e )r\L, then A' = {^}^ =1 is a coherent set of frequencies with 
respect to (1,F), where F is a fundamental domain of the annihilator L of L. By 
Proposition 1, A' is a topological Sidon set and any fceL(A') is the restriction to 
A' of the Fourier transform of a measure ueM (R m ) with || \JL || ^ pc || b || w . This implies 
that A' is a (pc, F) topological Sidon set ( [M] ). Since L = R m /L and F is a fundamental 
domain for L in R m , this is equivalent to saying that A' is a Sidon set in L with Sidon 
constant pc. 

Now let A be a compact, convex subset of R m . Put A -h U e = B and B + U e = C. We 
shall prove that CnL is a test set with associated constant (18m)" 1 . We have 



I7 a ) + (C + l/ e ) - (C + 

C 4- U is a convex, compact subset of R m with nonempty interior. Applying Proposi- 
tion 2 we get a parallelopiped P l c C + I7 e such that 

/((C 4- I7 e ) + (C + U e ) - (C + 17,)) ^ (6mr /(Pi). 
Then 

(6mr/(P 1 ) ^ (6m) m /(C + 17.) = (6m) m /(B + L7 + U e ) ^ (6m) m 3 m /(B), 

because B contains a translate of U e . These inequalities and the fact that U e contains 



284 K Gowri Navada 

P yields that 



This proves that C n L is a test set as claimed. By applying Theorem 3 to C n L we now 
get that 



|An A| ^ I An(4 4- U 9 )\ ^ |A' n(A + 2l7 a )| ^ d, log|Ln(4 + 2U 9 )\ 9 
where d l = 2e(pc) 2 (18m) m . Then 

|An A\ ^ d, log(l(A + 2U e + U e )fl(P)) ^ d\og(l(A + 3U 9 )/l(U 9 )) 

where d is a constant depending on c, e and m. By letting -* 1/c we get the required 
result. 
The following theorem is analogous to Theorem II in Ch. VI of [M]. 

Theorem 4. // {A n }^ = l is a sequence in R m such that for some a > 1 we have for all large 
n > IUii + 1 II ^ a ii ^ n II then {A n }J = t zs a topological Sidon set. 

This can be deduced from the following lemma in the same way as Theorem II in 
Ch. VI of [M] from the analogous lemma there. 

Lemma. If {^ n }^ l is a sequence in R m such that U H + 1 \\ > 6||AJ|, Vn, and if {b n }* =i 
is any sequence in T, then there exists a point seR m such that \\s\\ ^ 1/HAj || and 



Proof. Let 1 = (a 1 , . . . 9 a m ) be a nonzero element in R m . Let jB be a ball in R m with radius 
I/ 1| A || and centre at x . Let jS = (a 1 /||A|| 2 ,...,a m /||A|| 2 ). Then the points x are 
contained in the boundary of B and each of the two line segments joining x to x jJ is 
mapped onto T by the map x-><x,A>. Therefore given any feeT we can find a point 
yeB such that <jU> = b and B(y, 1/2||A||) c B. By induction we choose balls and 
points y n eB n such that B n+1 c B(j; w , l/6||A n || ) c B n , Vn as follows: Let B, be the ball 
with centre at and radius = 1/UAJ. Let y l eB l be such that <y 1 ^ 1 > = b 1 and 
^OJi.l/fiPilD^Bi. Suppose B n and y n have been chosen satisfying the above 
conditions. Let B n+1 be the ball with centre at y n and radius = 1/IU W+1 ||. Then 
B n+l ^B(y n ,l/6U n \\)^B n . Choose y n+1 eB n+1 such that <y ll+1 ,A ll+1 > = i ll + 1 and 
(yn+i>V6|K +1 ||)c: M+1 . Let 5 be the point of intersection of {#}. Then 
56 n J B(y n ,1/6 ||/y ) also. Then for all n, || s - y u \\ ^ 1/6 |UJ| and hence KS,^ >- b n \ = 
> - O n U n > I ^ 1; which proves the lemma. 



Proof of the Corollary. There exists a unique largest ^-invariant subspace V of R m 
such that all eigenvalues of A on V are of absolute value at most 1 . Suppose v e V. Using 
Jordan decomposition it is easy to see that there exists a c>0 such that 
II A n (v) || ^ cn m ~ L for all n. Let r n = cn m ~ 1 and B n the ball with centre at and radius r n . If 
{A n (v)}^ l = A is an infinite topological Sidon set then A n (v\ neN, are all distinct and 
hence by Theorem 2 above, we have, n^|B n nA| ^ dlog(/(B n + 3U)/l(U)) for some 
compact neighbourhood U of 0. Therefore there exists a constant D such that 
n^Dlogr n for all n. Since r n = cn m ~ 1 this implies that n/logrc is bounded which is 
a contradiction. 



Growth of topological Sidon sets 285 

Now suppose that v$V. Using Jordan decomposition one can see that there exists 
a c> 1 and an integer k ^ 1 such that \\A n+k (v) \\^c\\ A n (v) \\, for all large n. It follows 
from Theorem 4 that A is a finite union of topological Sidon sets. Since A is uniformly 
discrete it is a topological Sidon set. 



Acknowledgements 

The author thanks Prof. S G Dani for suggesting the problem and for many helpful 
discussions and also wishes to thank the National Board for Higher Mathematics for 
the financial support. Thanks are also due to the referee for useful comments enabling 
improvement of the text of the paper. 



References 

[LR] Lopez J M and Ross K A, Sidon Sets, Lecture Notes in Pure and Applied Mathematics, 13; (New York: 

Marcel Dekker) 
[M] Meyer Y, Algebraic numbers and harmonic analysis (Amsterdam, London: North-Holland Publishing 

Company) (1972) 
[P] Pisier Gilles, Arithmetic characterization of Sidon sets; Bull. Am. Math. Soc. 8 (1983), 87-89 



i Printed in India. 



Characterization of polynomials and divided difference 

P L KANNAPPAN* and P K SAHOO f 

* Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, 

Canada 

Department of Mathematics, University of Louisville, Louisville, Kentucky, 40292, USA 

MS received 24 June 1994; revised 22 February 1995 

Abstract For distinct points x ! , x 2 , . . . , x n in & (the reals), let / [x l , x 2 , . . . , x n ] denote the 
divided difference of/ In this paper, we determine the general solution f,g: &-+ of the 
functional equation 



for distinct x^ ,x 2 , . . . , x n in $ without any regularity assumptions on the unknown functions. 

Keywords. Characterization of polynomials; divided difference; distinct points; unknown 
functions. 

Let ^ be the set of all real numbers. It is well-known that for quadratic polynomials the 
Mean Value Theorem takes the form 



Conversely, if /satisfies the above functional-differential equation, then/(x) = ax 2 + 
bx + c (see [1] and [4] ). A cubic polynomial satisfies the following functional equation 



+ y + 



(1) 



where/ [x, y, z] denotes the divided difference of/. Recently, Bailey [2] has shown that 
if the above functional-differential equation holds, then / is a cubic polynomial. For 
distinct points x x , x 2 , . . . , x n in ^, the divided difference of / is defined as 



ffx x ~l * = - 



where 



c 1 ,x 2 ,...,x n ;/] 
]x 1 ,x 2 ,...,x n ] 



Lx 1 ,x 2 ,...,x n ;/ J 



1 x 
1 xl 

1 Y 



n-2 



v.n 2 



/(*!> 



/(x.) . 



and 



1 X, X? 



287 



288 PL Kannappan and P K Sahoo 

This definition of the divided difference is the same as the one given in [2]. In explicit 

! > *] can be written as 



1=1 j*i \j~ i 1 

Bailey, generalizing a result of Aczel [1], has shown in [2] that if /: 9* -+5R is j 

a differentiable function satisfying the functional equation L 

/[x,y,z] = M* + y + 4 (2) j 

(which is a generalization of functional-differential eq. (1)), then / is a polynomial of \ 

degree at most three. In Bailey's proof the differentiability of/ plays a crucial role. In I 

[2], Bailey wrote "One is also led to wonder if fl_x l , x 2 , . . . , x n ] = h(Xi + x 2 H ----- h *) ; 

and f continuous (or perhaps differentiable) mil imply thatf is a polynomial of degree no \ 

more than n. At this point we have no answer" In this paper, we provide an answer to this j 

problem. Our method is simple and direct. Further, we do not impose any regularity 
conditions like continuity, differentiability or boundedness on/ etc. For characteriz- \ 

ation of polynomials with mean value property, the interested reader should refer to 
M> [2], [3], [4] and [5] and references therein. 

i 

Lemma. Let S be a finite subset of SR symmetric about zero (that is, S = S) and let j 

/, g : 9t -> 5R be functions satisfying the functional equation I 

f(x)-f(y) = (x-y)g(x + y) for all x,>;e5R\5. (3) \ 

Then 

f(x) = ax 2 + bx + c and ()>) = ay + b (4) 

for xeSR\S and ye 91, where a, b, c are some constants. 

Proof. Putting y = x in (3), we obtain f 

/(*) -/(-*) = 2x0(0), forxe<R\S. (5) 

I 
Changing y into y in (3), we get 



which after subtracting (3) from it and using (5) gives, 

(x + y)fo(x - y) - ^(O)) = (x - y)(g(x + y)~ g(0)\ for x, ye<R\S. (6) 



Fix a nonzero ue$R. Let t?e9l such that (uv)/2$S and put x = (w-ht;)/2 and 
y = (w - o)/2. Then x + y = u and x - y = v and by (6) to get 

(^W~^(0)) = %( W )~0(0)), forp6^\(2Sw), (7) 

where 2S u denotes the set {2s + u\seS} u {2s - u\seS}. 

For each fixed w, (7) shows that g is linear in u, that is of the form av 4- b, except on the J\ 

finite set 2S w. To conclude that g is linear on % (reals), one has to note that, if one f 

takes two suitable different values of w, which is now treated as a parameter, the 1. 
exceptional sets involved are disjoint and so g(v) = av + b for all real v with the same 

constants everywhere. \ 



Characterization of polynomials and divided difference 289 

Substituting this for g in (3) yields 

f(x) - ax 2 - bx = f(y) - ay 2 - by, for x, yeW\S. (8) 

Choosing any ye9?\S in (8) yields that f(x) = ax 2 -f bx + c for X6SR\F, for some 
constant c, which is the required form of/ in (4). This completes the proof of the lemma. 

Theorem. Let /, g:$l - 9? satisfy the functional equation 

/[x 1 ,x 2 ,...,x ll ]=0(x 1 +x 2 + -"+x ll ), (FE) 

/or distinct x 1 , x 2 , . . . , x n , tfzar is, /or x t ^ x 7 -(i ^ j, ij = 1, 2, . . . , n). Then f is a polynomial 
of degree at most n and g is linear, that is, a polynomial of first degree. 

Proof. It is easy to see that if/ is a solution of (FE), so also/(x) + ZJ[ I Q a k x k . So, we can 
assume without loss of generality that /(O) = = f(y^ =-'=f(y n _ 2 ) for 3^ , y 2 ,..., y n _ 2 
distinct and difTerent from zero. Obviously there are plenty of choices for 0, j; l , . . . , y n _ 2 . 
Putting in (FE),(x,0,y 1 ,...,^ II _ 2 ) and (x,0,^y 1 ,...,y n _ 3 ) for (x 1 ,x 2 ,...,xj, we get 



(9) 

V k=i / 
and 



(10) 



respectively for x = 0, y i - - y n _ 2 and y ^ x. 
Now (10) can be rewritten as 



f(x) 

where /(x)': = - ^-- - for x, y + 0, y t , . . . , y n _ 3 . Then by Lemma and the 
x(y 1 -x)--(y n _ 3 ~-x) 

arbitrary choice of 0, y^ , . . . , y n _ 3 we get that g is linear and /(x) is quadratic. Hence by 
(9) / is a polynomial of degree at most n. This proves the theorem. 

Remark. The same conclusion can be obtained without using the Lemma as follows. 
Subtracting (10) from (9), we have 



3^ .Vn-2 

f(x) 
where L(x) = - ^ - -, for x,y = 0, y l9 y 2 , . .. 9 y n . 2 . Interchanging x and 

x(y l x)--(y n _2 x) 
y in (11) and adding the resulting equation to (11), we get 

/ n-3 \ / if-2 

(x-y)g[x + y+ X y k )^(x-y n -2)9(x+ Z 

\ k=l / V k=l 



/ n-2 \ 

-(y-y*-2)9\y+ I ^ 

V k=i / 



290 P L Kannappan and P K Sahoo 

y rt _ 2 intheabove,we 



obtain 

(x-y)G(x + y) = xG(x)-yG(y) (W ~. 

where f 

G(x) = g(x + yi + -~+y n ^ + 2y n _ 2 ) l 

forx,)^0,-;y._ 2 ,(j^-;y._ 2 ),/.^ \ 



for x*Q 9 y H . 29 (yi-y n . 2 ) 9 ... 9 (y H . 3 -y n _ 2 ). Replace); by -y in (12) and 
subtract the resultant equation from (12) and use (13) to get 

(x -I- y)(G(x - y) - G(0)) = (x - y)(G(x + y) - G(0)) (14) 



(y n - 3 - y n - 2 ). As in the Lemma, it can be shown that G is linear so that g is also linear, 
g(x) = C& + b. This g in (9) shows that / is a polynomial of degree at most n. 

Acknowledgements 

We express our thanks to Prof S G Dani and the referee for comments which improved 
the presentation of the paper. This research is partially supported by grants from the 
University of Louisville and the University of Waterloo. 

References 

[1] Aczel J, A mean-value property of the derivative of quadratic polynomials without mean values and 

derivatives. Math. Mag. 58 (1985) 42-45 
[2] Bailey D F, A mean- value property of cubic polynomials without mean value. Math. Mag. 65 (1992) 

123-124 
[3] Cross G E and Kannappan P L, A functional identity characterizing polynomials. Aequationes 

Mathematics 34 (1987) 147-152 

[4] Haruki Sh, A property of quadratic polynomials. Am. Math. Mon. 86 (1979) 577-579 
[5] Kannappan P L and Crstici B, Two functional identities characterizing polynomials. Jtinbrant Seminar 

on Functional Equations, Approximation and Convexity, Cluj-Napooa (1989) 1 75-180 



f 

I 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 3, August 1995, pp. 291-296. 
Printed in India. 



A theorem concerning a product of a general class of polynomials 
and the //-function of several complex variables 

V B L CH AURASIA and RAJENDRA PAL SHARMA 

Department of Mathematics, University of Rajasthan, Jaipur 302 004, India 

MS received 16 August 1994 

Abstract. A theorem concerning a product of a general class of polynomials and the 
H-function of several complex variables is given. Using this theorem certain integrals and 
expansion formula have been obtained. This general theorem is capable of giving a number of 
new, interesting and useful integrals, expansion formulae as its special cases. 

Keywords. H-function of several complex variables; general class of polynomials; expansion 
formulae; integrals. 

1. Introduction and the main result 

Srivastava [3, p, 1, eq. (1)] introduced the general class of polynomials 

[/] / _ yj\ 

S:M= I ( *.*, n=o,u,... (i) 

a' = a ' 

where m is an arbitrary positive integer and the coefficients A na ,(n, a' ^ 0) are arbitrary 
constants, real or complex. By suitably specializing the coefficients A nt0l ,, the poly- 
nomials S[x] can be reduced to the well-known classical orthogonal polynomials 
such as Jacobi, Hermite, Legendre, Laguerre polynomials, etc. 

For the H -function of several complex variables defined by Srivastava and Panda 
[4; see also 6, p. 25 1], we derive the following theorem: 

The main theorem 

v 

(l-yr + "-" 2 F 1 (2a,2^;27;y)= a k y k (2) 

k = 

then 



fi / i \ / 1 \ 

2 F, (a,/3;y:f-;}> 2 F! y-a,y-/?;y + 5 ;y 
Jo \ L J \ / 




(3) 
291 



292 V B L Chaurasia and Rajendra Pal Sharma 

where 

h ( > 0, Re ( 1+ ]T hid^/fi 



^ 

arbitrary positive integer and the coefficients A naL ,(n, a' ^ 0) are arbitrary constants, real 
or complex. 



2. Proof of the main theorem 

To prove the main theorem, we have (2, p. 75) 



(4) 



where a fc is given by (2). 

Now, multiply both sides of (4) by S[y h ]H(z 1 y h \...,z r y hr ) and integrate with 
respect to y between the limits and 1, we have 



f 1 

Jo 



1 



1 



= Z 

O fc = O 



(5) 



Express the H -function of several complex variables using [6, p. 251] and a general 
class of polynomials by [3, p. 1, eq. (1)] on the right of (5), then interchange the order of 
integration and summation which is permissible under the conditions mentioned in (3) 
and evaluating with the following result 



f j 

Jo 



[lJ/Wl] ( _-\ 

Z\ *^ /.' 
, ~ F-A.,1 

a' = a 



(6) 



where /z ; >0, R e (r + 1 + ZJ = : ^w/^)) > , |arg(z,.)| < T t n/2, T,>0,i = l,...,r, 
7 = 1,..., w <0 and m is an arbitrary positive integer and the coefficients ,4 B a ,(n, a' > 0) are 
arbitrary constants, real or complex. We arrive at the required result. 



Theorem concerning a product of a general class 293 

3. Applications 

If we put a = y in the main theorem, the value of a k in (2) comes out to be equal to (f!) k 
and the result (3) yields the following interesting integral 



i: 



' V" V (~ n) - A MM 

/ / ^^ ,/T. / ^ ^ 



\_-k-~ ha' :h l ,...,h r ~\, 
\_-k-hu! - I:*!,...,/!,], 



(7) 



where h, > 0, Re(jS) < 1/2, Re(l + ZJ x hffl/Sf) > 0, |arg(zj)| < T f 7c/2, T > 0, 
i= l,...,r; j= l,...,u (I) and m is an arbitrary positive integer and the coefficients 
A n a ,(n, a' > 0) are arbitrary constants, real or complex. 

Take /? = a + 1/2 and a = e (e is a non-negative integer) in (7), we have 



[\F (-e; 

Jo i 



(8) 



where h f >0, Re(l + EJ =1 Mf /f)>0, |arg(z )| < 7^/2, T >0, i = l,...,r; 
7 = 1,...., w (l) and m is an arbitrary positive integer and the coefficients A n(t ,(n^ y! ^ 0) are 
arbitrary constants, real or complex. 

Now evaluating the integral on the left of (8) with the help of (6), we establish the 
following interesting expansion formula 



294 V B L Chaurasia and Rajendrd Pal Sharma 



[(a): 9', . . . , 0] : 



= !> + te' + l) ( " )mg \ 

*' = o a'! 



/(U+l:<ii',t'');...;<ii<'V'-') 



provided that both sides exist. 
4. Special cases 

(i) On taking m = 2 and A^, = (- If in (3); we have 

Theorem 1 (a). 

// 



n/2 oo 



valid under the same conditions as obtainable from (3). 



(ii) When m= land 



Theorem l(b). 



1 + !) . 



in (3), we have 



/? \ ^"^ 

' ' > ^/ ^ "fc 

fc = 



(9) 



(10) 



1 



Theorem concerning a product of a general class 



295 



then 



p 1-, 

Jo" ' ^ ' 7 2 '' 



" * f n + u\ /'n + u + v + a'\ (Aa* 

=.L?O<- "'(-*)( 



valid under the same conditions as obtainable from (3). 

" + " 



(iii) Letting m = 1 and A^. = 



Theorem l(c). 



in (3), we get 



(11) 



2 f !(,/; y + ijyJaF^y- 0,7 -fty + ^ 



a 



(12) 



valid under the same conditions as obtainable from (3). 

(iv) Letting n->0, the theorem given by (3) reduces to a known theorem recently 

obtained by Chaurasia [1, eq. (1.2), p. 193]. 

(v) For n = 0, the results in (6), (7), (8) and (9) reduce to the known results obtained by 

Chaurasia [1, eqs (2.3), p. 194, (3.1) and (3.2), p. 195 and (3.3), p. 195]. 



296 V B L Chaurasia and Rajendra Pal Sharma 



The importance of our results lies in its manifold generality. In view of the generality of i 

the polynomials S [x], on suitably specializing the coefficients A n ^. , and making a free 
use of the special cases of S*[x] listed by .Srivastava and Singh [5], our results can be / 

reduced to a large number of theorems, integrals and expansion formulas etc. involving [ 

generalized Hermite polynomials, Hermite polynomials, Jacobi polynomials and its \ 

various special cases, Laguerre polynomials, Bessel polynomials, Gould-Hopper \ 

polynomials, Brafman polynomials and their various combinations. i 

Secondly, by specializing the various parameters and variables in the H-function of | 

several complex variables, we can obtain, from our theorems, integrals and expansion j 

formulae etc. involving a remarkably wide variety of useful functions (or products of j 

several such functions) which are expressible in terms of , F, G and H functions of one j 

and several variables. Thus, the results presented in this paper would at once yield j 

a very large number of results, involving a large variety of polynomials and various [ 

special functions occurring in the literature. I; 

Acknowledgement 

The authors are grateful to Prof. H M Srivastava (University of Victoria, Canada) for 
his help and suggestions in the preparation of this paper. 

1 
References j 

[1] Chaurasia V B L, A theorem concerning the multi variable //-function. Bull. Inst. Math. Acad. Sinica, 

Vol. 13, No. 2, (1985) 193-196 

[2] Slater L J, Generalized hypergeometric functions, (1966) Cambridge University Press 
[3] Srivastava H M, A contour integral involving Fox's H-function, Indian J. Math. 14 (1972) 1-6 
[4] Srivastava H M and Panda R, Some bilateral generating functions for a class of generalized hyper- 
geometric polynomials, J. Reine Angew. Math. 283/284 (1976) 265-274 

[5] Srivastava H M and Singh N P, The integration of certain products of the multi variable H-function with 
a general class of polynomials, Rendicontidel Circolo Mathematico di Palermo, Ser. //, 32 (1983) 157-187 
[6] Srivastava H M, Gupta K C and Goyal S P, The H-functions of one and two variables with applications, 
(1982) (New Delhi, Madras: South Asian Publ.) 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 3, August 1995, pp. 297-301. 
Printed in India. 



Certain bilateral generating relations for generalized hypergeometric 
functions 

MAYA LAHIRI and BAVANARI SATYANARAYANA 

Section of Mathematics, Manila Mahavidyalaya, Banaras Hindu University, Varanasi 

221005, India 

MS received 30 August 1994; revised 27 January 1995 

Abstract. Recently, we introduced a class of generalized hypergeometric functions 7*[J*} (x, w) 

by using a difference operator A x w , where A xvv /(x) = : - . In this paper an 

w 

attempt has been made to obtain some bilateral generating relations associated with 7*(x, w). 
Each result is followed by its applications to the classical orthogonal polynomials. 

Keywords. Generalized hypergeometric functions; difference operator; bilateral generating 
relations; classical orthogonal polynomials. 

1. Introduction 

In the previous paper [2] we introduced a class of generalized hypergeometric 
functions I^](x 9 w) defined by using a difference operator as follows: 



_ A C Y wV (a+n 
~ n , ( x _ ^[^] A *, w U* w ' 



(a } __ * (b V w 
W* ' l* w 



(1.1) 



where p+l F q denotes the generalized hypergeometric functions (see, for example, 
Srivastava and Manocha [8]). We also derived the following relation: 

I***P)( \_ ( 1+oc )n p-2-i ^ ^ w ' 

n,( q ) n j q.1,0 /i \ 



where F^(x,j;) is a double hypergeometric function (see Srivastava and Karlsson 
[7, p. 27(28)]). 

The following definitions and results given by Konhauser [1, p. 303(3)], Srivastava and 
Manocha [8, p. 243(1 1)] and Manocha [4, p. 687(1.3)] have been used here in regard to 
the bilateral generating relations for the generalized hypergeometric function I*(x, w): 



(1.3) 



where 



a + 1 a + 2 a-h/c 

A(k;l + a ) = r , 7 ,..., r~ fc = 1,2,3...); 
k k k 



(a -+ n + m + 1; 1 + a; - x); (1.4) 

297 



298 Maya Lahiri and Bavarian Satyanarayana 



y 

- 



m! 



x F 



, -m; -a -ft 
^ 



(1.5) 



where Fj is an Appell function [6]. We also derived the extended linear generating 
relation [3] as follows: 



.X 

w' 



X 

w' wt 



1-r 



, w, w 



(1.6) 

where F (3) is Srivastava's general triple hypergeometric series (see, e.g., Srivastava and 
Manocha[8, p. 69(39)]). 

2. Bilateral generating relations 

We have derived the following bilateral generating relations for the generalized 
hypergeometric function /*(*, w): 



= M _ t\- f J7P + 2:0,0,0,1 
V 1 L ! r o + m- i : o,0, 0,0 



: U, 1,0], [(a,): 1,0, 1,1], 



- , /Z, W/Z, 1 



' (2.1) 



[A(k:l+/0:0,l,l,0]:-;-;--;-; 1~?' 
F is a generalized Lauricella hypergeometric function of 4 variables and 

" From (2.1), we have 

X 

In- 



Generalized hyper geometric functions 



299 



__ Y vv Y i 



2:0,0,0,1 
1:0,0,0,0 



):0, 1,1,0]:-; -;-;-; 



wt 
1-t 



, Jl, W/J, W 



[using (1.5)]. 



This completes the proof of (2.1). 

Applications 

(i) By setting p = q and a } = bj(j = 1, 2, ... p) in (2.1), we get 



5 J 5 



- -,, 
i r 



(2.2) 



KvY t 
1 V and J*(x, w) is a modified Jacobi polynomial studied by 
kj t 1 

Parihar and Patel [5]. 

(ii) On taking k=l,p = q, (a,.) = (fy) and letting w -* in (2. 1), we get the known result 
given by Srivastava and Manocha [8, p. 133(9)]. 

The following results can also be deduced by using the same technique as followed in 
the previous result. 



XjF (3) 



W W 



w, - 



wt 



-;(&.):-;! 



[using (1.4)]. (2.3) 



300 Maya Lahiri and Bavanari Satyanarayana 

Applications 

(i) By writing p = q and (a ; ) = (bj) in (2.3), we have 



r 



.-,- ,-,; (Z4) 

where X F 1 is Humbert's function defined in [7, p. 26(21)] and J"(x,w) is a modified 
Jacobi polynomial studied by Parihar and Patel [5]. 

(ii) Taking limit as w -> in (2.4), we obtain the result given by Srivastava and Manocha 
[8, p. 160(70)]. 



4 + 2:0.0,0,0 



Tx "1 

[(a p ):l,l,0,l],[l +y:l,0, 1,1], I- 1:1,0, 0,1J, 
[(&,): l,l,0,l],[l+y:l, 0,0,1], 



w, rh; 



[using (1.5)]. 



(2.5) 



where h= 



The following applications are obvious: 



n! 



w 



where h = {1 +(y + 1 
n! 



wtfr 
(2.6) 



(y + 



, t/z, xt/z 



(2-7) 



Generalized hypergeometric functions 



301 



o ooii 



X X 



1+a;-; 



(2.8) 



Applications 
[As usual, we get] 



; 



(2.9) 



where F^ } is a Lauricella hypergeometric function of n variables (see [8, p. 60(1)]). 



(2.10) 



Acknowledgements 

The authors take this opportunity to express their sincere thanks to Prof. H M Srivas- 
tava (University of Victoria, Canada) for his valuable suggestions and helpful criticism 
in the preparation of this paper. 



References 

[1] Konhauser, Joseph D E, Biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. 

Math. 21 (1967) 303-314 
[2] Lahiri M and Satyanarayana B, A class of generalized hypergeometric functions defined by using 

a difference operator, Soochow J. Math. 19 (1993) 163-171 
[3] Lahiri M and Satyanarayana B, Extended linear and bilinear generating relations for a class of 

generalized hypergeometric functions, Indian J. Pure Appi Math. 24 (1993) 705-710 
[4] Manocha H L, Bilinear and trilinear generating functions for Jacobi polynomials, Proc. Cambridge 

Philos. Soc. 64 (1968) 687-690 

[5] Parihar C L and Patel V C, On modified Jacobi polynomials, J. Indian Acad. Math. 1 (1979) 41-46 
[6] Rainville E D, Special functions, (New York: Macmillan) (1960) 
[7] Srivastava H M and Karlsson P W, Multiple Gaussian hypergeometric series, (Ellis Horwood Limited, 

Chichester; Halsted Press) (New York: John Wiley) (1985) 
[8] Srivastava H M and Manocha H L, A treatise on generating functions, (New York: Halsted Press, John 

Wiley) (1984) 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 3, August 1995, pp. 303-314. 
Printed in India. 



A localization theorem for Laguerre expansions 

P K RATHNAKUMAR 

Statistics and Mathematics Unit, Indian Statistical Institute, 8th Mile, Mysore Road, 
Bangalore 560059, India 

MS received 30 October 1994; revised 7 February 1995 

Abstract. Regularity properties of Laguerre means are studied in terms of certain Sobolev 
spaces defined using Laguerre functions. As an application we prove a localization theorem for 
Laguerre expansions. 

Keywords. Laguerre means, Laguerre series, Sobolev spaces. 

1. Introduction 

The Laguerre polynomials L(x), of type a > 1 are defined by the generating function 
identity 



r) , |t|<l. (1.1) 

o 

The associated Laguerre functions are defined by 

&i(x)= L*(x)e~ x/2 x* /2 (1.2) 

and they are the eigenfunctions of the Laguerre differential operator 



/ n \ \ ' ~ 
Moreover the normalized functions ^*(x) = I - ) <&*(x) form an or- 

\ V ' / 

thonormal basis for L 2 [(0, oo),dx]. Therefore for any fe L 2 (0, oo) we have the eigen- 
function expansion 

/=IX^M ( L4 ) 

o 

with 



Three types of Laguerre expansions have been studied in the literature. The first one 
is concerned with the Laguerre polynomials LJJ(x), a > - 1, which form an orthonor- 
mal basis for L 2 [(0, oo),e~*x a dx]. The second type is concerned with the Laguerre 
functions (1.2) which form an orthogonal family in L 2 [(0,oo),dx]. Considering 

/ r(+ 1) Y /2 

the functions /JJ(x)= - - - 1 L*(x)e~ x/2 as an orthonormal family in 



L [(0, co), x a dx], we get a third type of expansion. 

303 



304 P K Rathnakumar 

Several authors have studied norm convergence and almost everywhere convergence 
of Riesz means of such expansions. Some references are Askey-Wainger [2], Mucken- 
houpt [6], Gorlich-Markett [3], Markett [5], Stempak [7], Thangavelu [10]. Various 
results can also be seen in [12], [1]. 

Recently by invoking an equiconvergence theorem of Muckenhoupt for Laguerre 
expansion, Stempak [8] has proved the following almost everywhere convergence 
result for expansions with respect to f* n (x) as well as /"(x). 

(1) Z%(g,<e c k ) L2(dx) e ( k (x)->g(x) for almost every xe!R+ as N-oo for f <p<4 if 
oc> - , and for pe ( ( 1 +- ) ,4 ] otherwise. 



(2) !Q(#, /fc) L 2 (xMx) /fc(x)->0(x) for almost every xeR+ as JV-> oo for < p < 

2a -f 3 

if a > 4, and for 1 < p < oo otherwise. 

(Zcf. + 1) 

In this paper we study the twisted spherical means associated with the Laguerre 
expansions which we will call Laguerre means. We consider expansions with respect to 
the system <p(x) = Lj;(x 2 )e~* 2/2 . Then the normalized functions 



form an orthonormal basis for L 2 [(0, oo),x 2ot+1 dx]. We have the mapping 
T: L 2 [x 2a + 1 dx] -> L 2 [x a dx] defined by Tf(x) = -A=/(>/x), which is a unitary map- 



pmg which takes t/^(x) to l* k (x). Therefore the expansion in \f/l is equivalent to the 
expansion in /. 

We prove a localization theorem for Laguerre expansion with respect to ^J without 
appealing to the equiconvergence theorem. Clearly a localization theorem follows from 
the almost everywhere convergence result of Stempak given above, but this result only 
says that if / = in a neighbourhood of a point ze(0, oo), then S N f(\v) - for almost 
every w in this neighbourhood. But using the method of Laguerre means we could 
identify the set on which S N /(w) -* 0. 

The twisted spherical mean of a locally integrable function / on " is defined to be 



= I 

J 



(1-6) 



where d/i r (w) is the normalized surface measure on the sphere {|w| = r} in C n . Such 
spherical means have been considered by Thangavelu in [11], where its regularity 
properties are used to prove a localization theorem for the special Hermite expansion 
of L 2 functions on <". The special Hermite expansion of a function/ is given by 



(L?) A 

f 

where <p fc (z) = L n k 1 (l|z | 2 )e 1/4|z|2 . Here LJ" 1 (r) stands for the Laguerre polynomial of 
type n - I . Measuring the regularity of /> P (z) using a certain Sobolev space denoted by 
H^(R + ), he proved the following localization theorem: 



A localization theorem for Laguerre expansions 305 

Theorem 1. (S. Thangavelu) Let f be a compactly supported function vanishing in 
a neighbourhood of a point ze( n . Further assume thatfu r (z)e W"^ 2 (R+ ) as a function of 
r. Then S N f(z)^Q as N-+ oo. 



By assuming certain regularity of f^ r (z) as a function of r he could also establish an 
almost everywhere convergence result for special Hermite expansion. In the study of 
y> r (z) a crucial role is played by the following series expansion: 

00 

) (1.8) 



jt = IA T H AJI 

for the twisted spherical means. Here fq> k denotes the twisted convolution of/ and cp k , 
where twisted convolution of two functions / and g on f n is defined by 



"1 



(e i/2/m(z.H-) dw ( 19 ) 

C n 



For a radial function / we have 

M(z) = (27c)-" J R k (/)( Pk (z), (1.10) 

where 



Therefore from (1.8) it follows that for a radial function/ the special Hermite expansion 
becomes the Laguerre expansion with respect to the family L n k ~ l {j\z\ 2 )e~ 1/4lz] *. The 
above observation suggests that we can also study the localization problem for 
Laguerre expansion with respect to the orthogonal family L(r 2 )e~ l/2r \ a > 1. What 
we need is something similar to twisted spherical means. Using the local co-ordinates 
on the sphere |z| = r in $ n it is easy to see that 



(1.11) 



for a suitable constant c n . 

We define the Laguerre means of order a to be 



fVc 
Jo 



2n 

(1.12) 



(rzsin0) a ~ 1/2 

Then T? is a bounded self adjoint operator on L 2 (R + ,x 2flt+ MX). 
We have the interesting formula, see [12] 



*. 

for oc> ~^,r ^0,z^0. From the series expansion for 7?/(z) in terms of (JP(Z) and 



306 . P K Rathnakumar 

using the above formula it is easy to see that T*f(z) has the series expansion 



r^0,z^0,a> - 3, where <p(r) = L(r 2 )e~ 1/2r \ Here (,) a denotes the inner product in f 

the Hilbert space L 2 [# + ,x 2a+1 ]. Using this notion of Laguerre means we establish j 

a localization theorem for Laguerre series expansion for fe L 2 [(R + ,x 2a+1 dx] with j 

respect to the orthogonal family <p(r). Our main result is the following: \ 

Theorem!. Ler/eL 2 [R + ,x 2a+1 dx],a> - 4 be a funct ion vanishing in a neighbour- 

hood B z of a point zeU + .IfweB z is such that TJ/(w)e W ( f+ 1)/2 (iR + ), as a function of >, ; 

then S N /(w)->0 as N-oo. [ 

We use the following notation: L*(R + ) stands for the space L 2 [R + , x 2a+ 1 dx], and | 

the norm and the inner product in this space are denoted by || . || a and (. , .) a respectively. j 

2. The Sobolev space W' 9 (R + ) * 

/ 
The usual Sobolev space H*(R"), for s ^ is defined to be j 

H S (R") = {fe L 2 (R M ): (- A + l) s /e L 2 (R n )} 

d 2 d 2 

using the operator A = j + - - - + T-? - Since we are interested in studying the regular- I 

dx 2 dx; \ 

ity of the function r-> TJ/(z), motivated by the expansion (1.14) we define the Sobolev 

space W*(R + ) using the operator L a = - ? + ^ 2 I which is a positive 

|_dx 2 x dx J 

definite symmetric operator and the <pj's form the family of eigenfunctions with 

(a-h 1\ 
k + r- 1. Also we have the normalized functions \l/l(z) 

forming an orthonormal basis for L 2 (1R + ). We define for 5 ^ L 

W s a (U + ) = {feL 2 l (R + ):L s JeL 2 (R + )}. (2.1) f 

where L^ is defined using the spectral theorem. In other words 

30 ! 

f X"" 1 / I d\ / a 



fc = 



belongs to W^ if and only if, 

2 



z 



< 00. 



We now prove the following useful proposition which is needed for the proof of the 
main theorem. 

PROPOSITION 3 

Let a > - 1 and let (pbea smooth function onR + which satisfies the following conditions 
(i) cp = Q near the origin in R + 



(if) 



dV 



A localization theorem for Laguerre expansions 307 

1 



-. ) as r - oo /or 7 = 0, 1, 2, 3, . . . , 2m. 



TTierc t/te operator M v :W S X -+ W s a+l defined by M 9 f = <p.f is a bounded operator Vs such 
that 



The proof of this proposition needs the following lemmas. Before stating the first 
lemma we introduce, for each non-negative integer fc, the class C k , consisting of all 
smooth functions on R + , vanishing near and which also satisfies the decay condition, 

dV / 1 \ 

a = O , . . , . as r-oo. The class C fc satisfies the following properties: (i) 

dr/ \^ r *+*+jj 

C k + l a C k9 (ii) If (peC k ,-<peC k+1 , r<peC k __ 13 for k> 1, (iii) If cpeC k , (p (J] eC k+j . 
Lemma 4. Under the above assumptions on m, cp and a we have L^^^M^ 

Y 

d - 1 L\ m with <p k>t eC k . 

Proof. We claim that L^ + j_ M^ can be written as a linear combination of the form 

with (p kt eC k . (2.2) 

r +fc ^ \ary ^ 

First we note the following relations 

d n 7^ 

Qr 

L~t- **-*- <> 

rdr 

Using this relation in the above we get 



We also use the relation, 






where b^ c 1 , c 2 , are constants. This can be easily proved by induction on k. We prove 
(2.2) by induction on m. (2.2) is clear for m = 1. Assume (2.2) for m =;'. Now, 



308 P K Rathnakumar 



In the above computation we have used (2.3). In view of (2.6), the first term of the 
above is 



k-l /i\i /A k-i 



ar 

- I Afm-z*, z ; 

t + k<j+l A ar / i = r-fk<j\ r / ar 

+ I c^riY'V I.c 2 (^Y" 2 Ii 

t+fc^j ar ar 



Now by induction hypothesis we have cp kt eC k . Note that in the second term of the 
above the coefficient of I j L t a is(l/r) i cp kr WQhavQ(l/r) i cp kt eC k+i aC k c: C k _ i for 

i > and also rcp kt eC k _ 1 . Hence the first term in (2.7) is of the required form. The 

/ d Y 
second term of (2.7) can be written as -2 t+k<m M- i I 1 L' a , and <? M eC fc by 

induction hypothesis. Therefore ^J t _ 1 t eC k in view of (iii). Hence the second term of 

/ d \ k 

(2.7) is also of the required form. In the third term the coefficient of L; is 

\drj 

M " _4_2v and <p' k ^ t H 9k,t ^k+2 c Q by induction hypothesis and in view of 

k. t t r V*,r ' Y 

(i), (ii) and (iii). Similarly - <p' ktt occurring in the fourth term belongs to C k + 2 c= C k . Also 

-<p k ft occurring in the fifth term C k + 1 <= C k . Therefore (2.2) holds for m =7 -h 1 also. 

/ d\ k 
Thus we have T m f = L + 1 M V L~ m f = E^^M^ L*~ m f- Which proves the 

\ / 
first lemma. 



I 



A localization theorem for Laguerre expansions 309 

Lemma 5. f J Z4:L 2 (R + )-> L^(R + ) is a bounded operator whenever i is a non- 
negative integer and i 4- 1 ^ 

Proof. We prove that L, is a bounded operator on L 2 (R + ) for 1 + t < 0. We first 
note that 



- 
This can be seen as follows. We have 



+ _ \ 



Here we have used the relations 



(i) ^(r)=-L^} 
and, 

/::\ ra+1 _ ra+l_ r a 

W H ^-i H 

Now (2.9) follows from the definition of i/^. Let /e L 2 (IR + ). By definition 



L'J(r) = 4' 
ar 

and using (2.9) we get 



^rS/^) (2.10) 

where 



and 



310 P K Rathnakumar 

Therefore, 

d 
dr a 



\\rSj \r 



(2.13) 



Now using the expansion (2.11) we calculate, 

l|rr/(r)|| 2 = 



o 



Jo 



= |T/(r)| 2 r 2 +3 dr 
!o 



2 ' +1 



Using (2.14) and (2.15) in (2.13) we see that 

one can show that , 

dr 



Z4 2 ' 



= II/L 2 (2-14) 

since 1 + 1 ^ 0. Similarly one can see that 

(2.15) 

: 2 1| / 1| a for 1-hf^O. Similarly 

^ c II / II a f r some constant c, whenever j + 1 < 0, which 
* 
proves the second lemma. 

Proof of proposition 3. We have by definition W s a = L~ S (L*(R + )). Therefore it is 
enough to prove that 

J4+iAf v L~ S :L^((R + )-* Lj +1 (R + ) (2.16) 

is a bounded operator. Put 

where !+ 1 and L~* are defined using spectral theorem. Then clearly, 



(2.18) 

for some constant c independent of/. We will also prove that, for any positive integer m 
Hr m /L +1 <c 1 ll/iU (2.19) 

for some constant c t independent of/. 



V, 



A localization theorem for Laguerre expansions 3 1 1 

Assuming (2.19) for a moment choose f l eLl(R + ) and ge L* +l (U+) to be finite 
linear combinations of i/^'s and \l/% + 1 's, respectively. Consider the function h which is 
holomorphic in the region < Re(z) < m and continuous in ^ Re(z) ^ m, defined by: 

h(z) = (T'f l9 g l ) n+1 =(L: +l oM^L-'f l9 g l ) a+l ' (2.20) 

Then by (2. 18) we have, 



where 7i = L~ i); /i > and g l = L~.ft # x . Therefore, 



<^o HAIL llsi IUi 

and since both L~ iy and L^ are unitary operators, we get 



Similarly by using (2.19) we get 



Thus we have 

IM^Kcoll/JIJI^H^! . (2.21) 

IMm + ^KcJ/JJI^IUi ' (2-22) 

Since /i is a bounded function we have by three lines theorem 



for < t < m. In particular, 

IfcWKcS-^v^llAil.ll^lL^, 

that is, 

KT7i^i)l<4~ r/m 4 /m ll/ilUl^ill a+ i- (2.23) 

Now taking supremum over all such g^L^ +1 with ||0ill a +i^* we get 
H T 'fi II + 1 < cj~ r/m c r / m || /! || a . Therefore T r is a bounded operator on a dense subset of 
L^. Therefore it has a norm preserving extension to L*. Thus we have 

H^/ll a+ i^^ll/LV/eL a 2 (R + ), forO<t<m (2.24) 

which proves (2. 16). 

To prove (2.19) we proceed as follows. By Lemma (4) we have T m / = I> t+k *m M (p ktt 

(dr) L ^~ m ' And by Lemma ( 5 )' (j") L a' m is a bounded operator on Lf(R+), 
whenever fe -h (t m)< 0. Also note that since q> ktt satisfies the conditions (1) and (2) of 



312 P K Rathnakumar 

the Proposition 3 for; = 0, M^ ( maps L 2 (IR + )- Ll + 1 ((R + ) boundedly. Thus we get 
||T m /|| a+1 ^Cill/lla. This completes the proof of the proposition. 

3. Regularity of r r a /(z) 

In this section we prove that the Laguerre means T"/(z) are slightly more regular than 
/, for z ^ 0. To prove this fact we use the series expansion (1.14) for T* r f(z). Let/e W s a . 
Then 

'> 



converges in L(R + ). We also use the following asymptotic estimates, (see [4] or [9]) 

(3.2) 

. = -$ .,. 0.3, 

i/^(0) /c a/2 as /c -> oo (3.4) 

From (1.1 4) we have 



r , .. 

* = o * V^ T -h ij 



for z = 0, in view of (3.2) and (3.3). Also 

2 forz = (3.6) 



f 

Jo 



in view of (3.2) and (3.4). Comparing (3.1) and (3.5) we see that /e W^r-* T*f(z)e 
^s +(a /2)-f ( i/4) comparing (3.1) and (3.6) we see that/e W 5 a if and only if T*f(z)e W^. 
Thus we have proved the following: 



Lemma 6. (i) /e W*=>r- T*/(z)e j^+</2)+(i/4) jZ ^ 0. 

(w) /e ^ i/ and on/y i/ r -* TJ/(0)e W^. 

Now we prove some properties of Laguerre means 



Lemma 1. (i) Iff is supported in z^b, then T"/(z) as a function of r is supported in 
r^b + z. 

(ii) If f vanishes in a neighbourhood of z then T*f(z) as a function of r vanishes in 
a neighbourhood of origin inU + . 

Proof, (i) If / is supported in z^b then the integral (1.12) vanishes unless 
(r 2 + z 2 -h2rzcos0) 1/2 s:b. This implies (r~z) 2 O 2 . Therefore the integral (1.12) 
vanishes unless |r~z|^feorr^b + z. 

(ii) Again if/ vanishes in a neighbourhood {| y - z\ < a], a > of z, the above integral 
(1.12) is zero if |(r 2 + z 2 + 2rzcos 0) 1/2 - z\^ a. Since z is fixed this says that the above 



A localization theorem for Laguerre expansions 313 

inequality holds for r in a neighbourhood of 0. Now consider the continuous function 

g(r) = |(r 2 + z 2 + 2rz cos 0) 1/2 - z| - a, 

defined on R + . We have 0(0)= a<0. Therefore #<0 in a neighbourhood of 
as well. This means that for r in some neighbourhood of we have 
|( r 2 + z 2 4- 2rz cos 0) l/2 z| < a. Thus T?/(z) = in that neighbourhood. 

4. A localization theorem for Laguerre expansions 

Now we are in a position to prove Theorem (2) stated in the Introduction. From (1.14) 
using the orthogonality of i/r J we get 

T*f(z)(p* k (r)r 2 * + x dr = T(a + 1" 
o 

Again from (1.14) we get, 



fc = 



T r f(z) ^(r)r 2 " + Mr 



o 



1))- 2 r?/(z)< Hr)r 2a+ Mr. (4.2) 



o 



Here we have used the relation g LJ(x) = L" N +1 (x). We use the above representation 
for S' N f(z) to prove Theorem (2). The proof uses the following fact: If ge L, (R + ), then 
the Fourier-Laguerre coefficients to,^) a -0 as k-oo. Recalling the definition of 
\l/l this means that 



Jo 



f 

Jo 



1 

Also if ge W^(R+) then, 

_ s+a/2 /44) 

I o 
From (4.2) we get 

T a f (Z) xl /N 9*+^J ^451 

J^~ - m* +1 (r)r 2 dr. ^- J ' 

!o r 

Let h be a smooth function on (R + ) such that h(r) * 1 on the support of T*,f(z) and 
h(r) = in a neighbourhood of the origin in R + . Put h(r) = -^- . Thus we get 



SJ/W = (T( + I))' 2 f " Mr) T?/(z)< Hr)r dr ( 4 -6) 

Jo 
Now if T}f(z)e W ( * + 1)/2 , we have by Proposition 3 fc(r) rj/(z)e ^ + 1 



314 P K Rathnakumar 

by (4.3), 



as N - oo. Therefore S/(z) -*0 as N -* oo, which proves the theorem. 

In view of Lemma 6, if /e H^ 1/2 , then T* r f(z)e W ( f + 1)/2 , for z ^ 0. Thus we have the 
following corollary to the above theorem. 

COROLLARY 8 

If fe W 1 J 2 then the conclusion of Theorem 2 holds at points z^O. 

Acknowledgement 

The author thanks Prof. S Thangavelu for suggesting this problem and also for many 
useful discussions he had with him. He also thanks The National Board for Higher 
Mathematics (India) for the financial support. 

References 

[I] Akhiezer N I, Lectures on integral transforms, Am. Math. Soc. Providence, Rhode Island., (1988) 

[2] Askey R and Wainger S, Mean convergence of expansions in Laguerre and Hermite series, Am. J. 

Math., 87 (1965) 695-708 
[3] Gorlich E and Markett C, Mean cesaro summability and operator norms for Laguerre expansions, 

Comment. Math. Prace Mat., tomus specialis II, (1979) 139-148 

[4] Lebedev N N, Special functions and their applications, (New York: Dover Publ.) (1992) 
[5] Markett C, Mean cesaro summability of Laguerre expansions, and norm estimates with shifted 

parameter, Analysis Math., 8 (1982) 19-37 
[6] Muckenhoupt B, Mean convergence of Laguerre and Hermite series II. Trans. Am. Math. Soc, 147 

(1970) 433-460 

[7] Stempak K, Almost everywhere summability of Laguerre series, Stud. Math., 100(2) (1991) 
[8] Stempak K, Transplanting maximal inequality between Laguerre and Hankel multipliers, preprint. 
[9] Szego G, Orthogonal polynomials, Am. Math. Soc., (Providence: Colloq. Publ.) (1967) 
[10] Thangavelu S, Summability of Laguerre expansion, Anal. Math. 16 (1990) 303-315 

[II] Thangavelu S, On regularity of twisted spherical means and special Hermite expansions, Proc. Indian 
Acad. ofSci., 103, 3 (1993) 303-320 

[12] Thangavelu S, Lectures on Hermite and Laguerre expansions, Math, notes, 42, (Princeton: Princeton 
Univ. Press) (1993) 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 3,- August 1995, pp. 315-327. 
Printed in India. 



Degree of approximation of functions in the Holder metric by 
(#, c) means 

G DAS, TULIKA GHOSH and B K RAY + 

Department of Mathematics, Utkal University, Bhubaneswar 751 004, Orissa, India 

+ Department of Mathematics, BJB Morning College, Bhubaneswar 751 014, Orissa, India 

MS received 15 January 1994; revised 5 December 1994 

Abstract. Degree of approximation of functions by the (e, c) means of its Fourier series in the 
Holder metric is studied. 

Keywords. Fourier series; Holder metric; Banach space. 

1. Definitions and notations 

Let/ be a periodic function with period 2n and integrable in the sense of Lebesgue over 
[ TC, TI]. Let the Fourier series of/ at t = x be 

1 

-a + (a k coskx + b k sinkx). (1) 

^ k=i 
Let 

**W = *{/(* + ') + f(x - ~ 2/(x)}. (2) 

Let S t (/; x) be the fcth partial sum of the Fourier series (1). Then it is easily seen that (see 
C9], p. 50) 

' ,. (3) 



Let C 2K denote the Banach space of all 27r-periodic and continuous functions defined on 
[ 7i, TT] under the sup-norm. For < a < 1 and some positive constant K, the function 
space H a is given by the following: 

K\x-yr.. (4) 



The space H a is a Banach space [7] with the norm ||- || a defined by 




where 

||/|| c = sup |/(x)| (6) 

-7C*$X^Jl 

and 

,7, 



We shall use the convention that A/(x, y) = 0. The metric induced by the norm (5) on 
H a is called a Holder metric. It can be seen that ||/||, ^ (2n)'~ f ||/|| for < ft < a < 1. 

315 



316 GDasetal 

Thus (H a , ||-|| a ) is a family of Banach space which decreases as a increases, i.e. 
C 2;t 2 Hp 3 H a for (K J8 < a < 1. 

DEFINITION 

An infinite series 2*^ c w with partial sums {} is said to be summable (e,c)(c > 0) to 
sum 5, if 



where it is understood that C n + k = when n + k < 0. 

The (e,c) summability method which is a regular method of summation was 
introduced by Hardy and Littlewood [4] (cf. also [5] ) as an auxiliary method to prove 
Tauberian theorem for Borel summability. 

It is known [6] that, if c n = 0(1) and 

c-i k -i + q ( 9) 

C "~2 a ~2(l-/c)~ 2q U 

then summability of Ec n by any one of the methods (e, c), Borel exponential method 
(JB, a), Borel integral method (', a), a > 0, Euler method (E, q)(q > 0) and circle method 
(y, k)(0 < fe < 1) implies its summability to the same sum by any of the others. 

2. Introduction 

Alexits [1] studied the degree of approximation of function of H a by the Cesaro mean of 
their Fourier series in the sup-norm. Since C 27C 3 H a 2 H^ for ^ j? < a < 1, Prosdorff 
[7] obtained an estimate for \\(r n (f) - /||^ for/e/f a , where <r n (/) is the Fejer means of 
the Fourier series of/. Precisely he proved the following: 

Theorem A ([7], Theorem 2). Let /eH a (0 < a ^ 1) and ^ ft < a. Then 



nOogny- 1 (a l) ' 

The case j? = of Theorem A is that of Alexits referred to earlier. Recently Chandra 
has studied the degree of approximation of functions in Holder metric by Borel's means 
[3] and by Euler's means [2]. Precisely, he proved 

Theorem B [3]. Let ^ < a ^ 1 and let /eH a . Then 



where B n (f) is the Borel exponential mean of 5 n (/; x). 
Theorem C [2]. Let ^ ft < a ^ 1 and let /eff a . Then 



where E q n (f) is the Euler (E, q) 9 q > mean of S n (f; x). 



Degree of approximation of functions 



317 



The object of this paper is to find the degree of approximation of functions by the 
(e, c)-mean of its Fourier series in the Holder metric. Denoting the (e, c)-mean of (/; x) 



(10) 



*(/,*) = <(/;x) = exp-S n+fc (/;x), 

where S n+x (f; x) = 0, n + k < 0, we prove the following theorems: 
Theorem 1. Let Q< oi ^ I and ^ ^ x. Let feH x . Then 



) -/!!, = 0(1) 



logn 



Theorem 2. Let Q x ^ I and Q ^ ft <a and let feH x . Further, if 

*' tlogn/ "" 2 < 



then 



2jc/2n 



II .(/)-//, = 0(1) 



(lognp 



3. Additional notations and estimates 

We use the following additional notations: 



c " ck 2 \ 

K n (t)= h+2 Y exp (.- Icosfct 
- P 



-r t 



e=6(n)= - 





ck 2 
exp( - 



'/='/() = 



2n+l 
Ttlogn 



N=AT(n) = 

n ' 

i 

l ~^c 
F(t)=<D x (r)-*(t) 



(11) 



(12) 
(13) 
(14) 
(15) 
(16) 
(17) 

(18) 
(19) 



318 GDasetal 

Estimates. We need the following estimates: 
If/sH a ,0<a<l,then 

(20) 

y| a ) (21) 

and 



exp(- nA(r + >7) 2 ) - exp(- nit 2 ) = 0(t + *?)exp(- nit 2 ) (23) 

K n (t) = exp(-nAf 2 ) + iMtt), where ^(n) = 0(e~^), c><5>0 (24) 
L rt (r)=0(re-^), (c>5>0) ( 25 ) 



If there is no confusion, we shall write throughout S as a suitably chosen positive 
constant not necessarily the same at each occurrence. ^ 

Proof of the estimates. Estimates (20) and (21) follow immediately from the definition 
of<3> x (r)and# a . Now 



and 



Hence (22) follows at once. 

Proof of (23). We put g(x) = exp( - nix 2 ). By mean value theorem for some < < 1 
exp(- nA(t + ??) 2 ) -exp(- nAt 2 ) = g(t + 1?) - ^W = w'(t 4- ^), 



from which (23) follows at once. 

Proof of (24) is contained in (Siddiqui [8], p. 122), and proof (26) can be found in 
(Hardy [6], p. 205). 



Proof of (25). We have 



ck 2 
ex p -i-sin n 



00 

X /cexp - 



xexpf- 

n-fl V 



Degree of approximation of functions 319 



Proof of Theorem 1. From (3), (10) and (15), we get taking S n+t (/;x) = 0, when k< -n 



2 c 



" / c/c 2 \ . / 1\ \ 

exp -- sin \n+k+- }t dt 

-. V / \ 2 / / 



We have 



C/C 2 \ 



.(')-./- 1 exp|- v sm.n + fc+ -) t 



' [7r " ( ck 2 \ . / , 1\ 
= / E exp -- sin [n + k+-]t 
^nnl k ^_ n P V / V 2; 

+ exp(-^-)sin( + k + ^)t 

*=+i V n / V 2 / J 

/ c fc2Ny \ / A 

2yexp -- coskt sin \n + - }t 
k- 1 \ / ./ V 2 ; 

/ c^ 2 \ . / , 1\ 1 

+ I exp -Isin + * + -) 

*=+! \ " / V 2 / J 




using (13) and (14). 

From (27), (28) and (24), we get 



Let 
Then using (12) and (19), we obtain 

'(*) = /.(y) = ^ p 2^n% e (t)dr + (0(n) ~ 1)(/(x) ~ /0;)) - (27) 



(28) 



2 

+ (0(n) - l)(/(x) - /(y)) (29) 

n J 



320 G Das et al 



L - (r)dr 



Using (20), (21) and (24), we get 



L, say. 



Using (31) and (32) 
J = Ji -/ 



and 



using (26), we get 



Similarly (argue as in J) 



We write 



Using (20), we get 



= 0(1) 



f 

Jo 



(30) 



(31) 



(32) 



(33) 



(34) 



(35) 



(36) 



Degree of approximation of functions 321 

Using (21), we get 



f* 

**0(l)\x-y\*n\ dt = 0(\x-y\ a ). (37) 

Jo 

Using (20), we get 



= 0(1) a " 1 e"" ;ua dt 

JN 

= 0(l)e~ nAJV2 f a ~ Mr (as e~" At2 is decreasing) 

J N 



= 0(l)(e" A1 8n ) (A > however large) 



Using (21), we get 

pc. e -A*> 

-yn dt 

JN l 



= O(|x - y D( -T ) (A > however large) (39) 

\ n J 



as in (38). 

Now 



_H r *.,,.(. + ' 

J,2sinft V 2 

2 fF(t) . . / 1\ . 
= - ^e"** sin n + -tdt 






+ F(t) ..e-^sin + 

TrJ, w L2sm^ tj V 

= / 2ll + / 2>2 ,say. (40) 



322 G Das et al 

Using (20) and the fact that 



we get 



"~KL * w l2sinif f 

v 1J L_ * 

= 0(1) rVv 1 *' 

J 1J 



- 1 ) f t a ~(e~ ;int2 )dt 

J rj dt 

= (n ~ x " a ) (integrating by parts). 
Next, we write 



= fVW 
)n\ t 



F 

"' - 

f . \ 



\ 2 



( 1 " 
(n + l -)tdt 

\ 



(since sin(n + %)(t -f jy) = sin(n + ^) 



2 
= M! 4- M 2 -f M 3 + M 4 + M 5 , say. ( 42 ) 



Degree of approximation of functions 323 

Using (22), we have 

fw e -*> f"dt rt /logn\ .... 

M, = O(^) ^- dt=o(^) 7 = (--- (43) 

J 1\ J tj 

Using (20) and (23) 

pN 

(r + i/) a ~ l e~ Al " a (t 

J ? 



r-* a dt 



= O(n~ a ) (integrating by parts). ( 44 ) 

Using (20), we get 



and 



f2ri 

4 = 0(l) t a - 1 e- A " |1 dt = 

J >; 

pN + r, 

5 = 0(l) f^'^dt 

JN 

fN + r, 

= O(l)e" A " Jva f'Mt 

JN 



(A however large) 

( 46 ) 

Now, we write 

2M 2 = 



aN [N+n pn [N + n 
, + L + J, -L 




x sm 

^ 






324 G Das et al 



,. 
Using (20) and the fact that 



it can be proved employing the argument used in proving (45) and (46) that 

(48) I 

j 

(49) [, 
By formal computation, we get ' j 

i 



As 



we obtain using (20) 



p 2 = od) r^( 



,. 
Using (22), we get l ; 



\ 

'M 
/ 

(51) f 



Lastly using (20) and (23), we get 

- 1 df = Q/f!s^ A 

(53) 



(52) v 






Degree of approximation of functions 
Collecting the results of (42)-(53), we get 

7 - 
^.i^ 



From (40), (41) and (54), we have 



325 



(54) 



(55) 



Using (21), we also get 



= 0(|x-3>| a ) | N y = 



(56) 



Writing 

/ = /l-/3/ar0/a (fc _ 1 7 ^ 
i fc J fc J fc yc 1,Z,, JJ 

and using the estimates (36), (37) for I 19 (55), (56) for I 2 and (38), (39) for / 3 we get 



-yl^-j, A>0, however large. 
From (35), (57), (58) and (59), we get 



(57) 
(58) 

(59) 



(60) 



Using (25), we get 



' ^;W>* 



From (61), we get (writing K=K l -^K? 1 *) 

Collecting the results of (30), (33), (34), (52) and (62) we get 

Hence 



-L, 

V" 



(61) 



(62) 



(63) 



326 



G Das el al 



Again /eH I =><J> x (r) = 0(|rn and so proceeding as above, we get 

log" A , 



U= sup | 

Tt^.X^Tt 



(64) 



Theorem 1 is completely proved by combining (63) and (64). 

Proof of Theorem 2. We proceed as in the proof of Theorem 1 and retain all the 
estimates of J, K and JL As regards 7, we retain all the estimates of the components of 
/ except the one given in (43) for M^ which contributes the estimation 0(log n/n*). By 
(11) of the hypothesis of Theorem 2 



sin 



i A 

- rdr 

*- 



= 0(1) 



dr 



Using (65) instead of (43), it can be proved that 



Now using (56) and (66) 



(65) 



(66) 






P*it-\ (67) 

Proceeding as in Theorem 1 and using (67) and the estimates of I and / 3 from (57), 
we obtain 



(68) 



Arguing as in Theorem 1 and using (11) as employed above in the estimation of / 2 , it 
can be shown that 



(69) 



Now Theorem 2 follows at once from (68) and (69). 



Degree of approximation of functions 327 

Acknowledgement 

We thank the referee for his helpful suggestions. 

References 

[1] Alexitis G, Ober die Annaherung einer stetigen Function durch die Cesaroschen Mitteel ihrer Fourier- 

reihe, Math. Annalen 100 (1928) 264-277 
[2] Prem Chandra, Degree of approximation of functions in the Holder metric, J. Indian Math. Soc. 53 

(1988)99-114 
[3] Prem Chandra, Degree of approximation of functions in the Holder metric by BoreFs means, J. Math. 

Anal. Appl. 149(1990) 236-246 
[4] Hardy G H H and Littlewood J E, Theorems concerning the summability of series by Borels exponential 

method, Rend. Circ. Mat. Palermo 41 (1916) 36-53 
[5] Hardy G H H and Littiewood J E, On the Tauberian theorem for Borel summability, J. London Math. 

Soc. 18(1943)194-200 

[6] Hardy G H, Divergent series, (1949) Oxford 
[7] Prossdorf S, Zur Konvergenz der Fourierreihen Holderstellger Funktionen, Math. Nachr. 69 (1975) 

7-14 
[8] Siddiqui J A, A criterion for (e, c)-summability of Fourier series, Math. Proc. Camb. Philos. Soc. 92 (1982) 

121-127 
[9] Zygmund A, Trigonometric series, (1959) (Cambridge University Press, New York) Vol. 1 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 3, August 1995, pp. 329-339. 
(Q Printed in India. 



The algebra A p ((, oo)) and its multipliers 

AJIT IQBAL SINGH* and H L VASUDEVA f 

* Department of Mathematics, University of Delhi South Campus, Benito Juarez Road, 

New Delhi 110021, India 

Department of Mathematics, Panjab University, Sector 14, Chandigarh 160014, India 

MS received 22 April 1994; revised 18 February 1995 

Abstract. Let I = {xeR: 0<x< oc} be the locally compact semigroup with addition as 
binary operation and the usual interval topology. The purpose of this note is to study the 
algebra A p (I) of elements in Lj (/) whose Gelfand transforms belong to L p (I), where / denotes 
maximal ideal space of Lj(7). The multipliers of A p (I) have also been identified. 

Keywords. Binary operation; interval topology; Gelfand transforms, maximal ideal space. 

1. Introduction 

Let G be a locally compact Hausdorff Abelian group and G denote the dual group of G. 
The algebra A p (G\ l^p^ao, of elements in L 1 (G) whose Fourier transforms belong to 
L p (G), and the multipliers for these algebras have been studied by various authors 
including Larsen, Liu and Wong [8], Reiter [10], Figa-Talamanca and Gaudry [3], 
and Martin and Yap [9]. The algebra ^4 p ((0, oo)) with order convolution, in short, A p (I) 
of elements in L t (7) whose Gelfand transforms belong to L p (I) and the multipliers for 
these algebras, where / is the locally compact idempotent commutative topological 
semigroup consisting of the open interval (0, oo) of real numbers from to oo equipped 
with the usual topology and max. multiplication and 7 is the maximal ideal space of 
L! (/), have been studied by Kalra, Singh and Vasudeva [6]. The purpose of this note is 
to study the algebras A p (I) of elements in LJ7) whose Gelfand transforms belong to 
L p (I) and the multipliers for these algebras, where / = {xeR: ^ x < 00} is the locally 
compact semigroup with addition as binary operation and the usual interval topology 
and /is the maximal ideal space of 1^(7). Whereas the algebras A p ((Q, oo)) with order 
convolution studied in [6] are dissimilar to the order convolution algebra L 1 ((0, oo)), 
the algebra A p (I) proposed to be studied in this note show similarities to the algebra 
7^(7). In particular we shall see that the maximal ideal space j\(A p (I)) of A p (I) is the 
same as that of 7^(7). The situation is thus akin to the group algebras Lj(G) and its 
subalgebras A p (G) studied by Larsen, Liu and Wong [8]. It turns out that the algebras 
A p (I) are not regular, whereas the algebras A p (G) [8] and A p ((Q, oo)) with order 
Convolution [6] are regular. Moreover, the algebras of multipliers of A p (I) contain the 
"algebras of multipliers of L^(I). We establish below our notations and then proceed to 
describe the results. 

Let 7 = {xeR:0<x<oo}bethe locally compact semigroup with addition as binary 
operation and the usual interval topology. Let E = {zeC: Rez > 0} and E denote the 
closure of E. The measure associated with E or E shall be the usual planar measure. The 
Fourier transform of a measureable function /, whenever it is meaningful, shall be 
denoted by/ C c (7) (resp. C*(I)) shall denote the space of continuous complex-valued 
functions (resp. infinitely differentiable functions) with compact support in 7. The 

329 



330 Ajit Iqbal Singh and H L Vasudeva 

index conjugate to p, 1 ^p*$ oo, shall be denoted by p', i.e., p and p' are positive 

numbers greater than or equal to 1 such that - + r = 1. Let M(I) denote the Banach 

P P 

algebra of all finite regular Borel measures on / under convolution product * and total 
variation norm. Then the Banach space L (I) of all continuous measures in M(7) which 
are absolutely continuous with respect to Lebesgue measure on 7 becomes a com- 
mutative semisimple Banach algebra in the inherited product *. More specifically, for 



= [*f(x-y)g(y)dy, 11/11!= [ l/W|dx 
Jo Jo 



satisfy \\f*g\\ < \\f\\t \\g\\ lf The maximal ideal space 7 of 7^(7) can be identified [4] 
with Z and the Gelfand transform of an/e 7^(7) is its Laplace transform, i.e., 



The function/ is analytic in S. It, therefore, follows that LJ7) is not regular, a fortiori, 
no subalgebra of L t (7) under any norm with the same maximal ideal space can be 
regular. Clearly, for x ^ 0, the function y. - f(x -f iy) is ^/2nf x , where f x L l (R) is given 
by f x (t) = f(t)Q~ tx for te7 and in JR /. For these and other results that may be used 
in the sequel, the reader is referred to [4], [12]. 

Let l^p^oo. The algebras A p (I) consist of all those feL^I) whose Gelfand 
transforms /belong to L p (I). A p (I) form an ascending chain of ideals in 7^(7). A p (I) 
equipped with suitable norms become Banach algebras. These algebras do not have 
bounded approximate identity nor are these algebras regular. However, these algebras 
are semisimple. The maximal ideal space A(v4 p (7)) can be identified with Z. The above 
and other related results are contained in 2. 

A mapping T on a commutative Banach algebra A to itself is called a multiplier if 
T(xy) = ( Tx)y for x, y e A For results on multipliers, we refer to Larsen [7] rather than 
original sources. As A p (I) is semisimple, every multiplier of A p (I) is bounded and we 
may define a multiplier of ,4^(7) to be a bounced continuous function on 2 such that 
(j>fA p (I), whenever feA p (l\ where A P (I) = (f:feA p (I)} is the Banach algebra under 
pointwise operations and norm ||/| = ||/Hi + ||/|| p . In 3, we prove an analogue of 
Paley- Wiener theorem. This, in turn, helps us provide a set of sufficient conditions and 
a set of necessary conditions on <f) such that (t>feA p (I) whenever feA p (I). 

2. The Banach algebras A f (I) 

As the Gelfand transform of a function in L 1 (7) belongs to C (7), it is evident that 
,4^(7)= L t (7) and each A p (I) is an ideal in 7^(7). Moreover, A p (I)^A r (I) if p<r. 
Indeed, if fA p (I) and p < r < op, then 



The case r = oo is trivially true. For each p, 1 < p < oo, we define 

I/lllp = 11/11 1 + 11/11,, feA p (I). 



The algebra A p ((0, oo)) and its multipliers 331 

It can be verified as in Larsen, Liu and Wong [8] that ||| ||| p defines a norm on A p (I) and 
that A p (I) is a commutative Banach algebra under convolution. As observed earlier the 
algebras LJ/) and A^(l) are identical. Since 

n/ii,^ u/iii + H/II oo = ni/iiicc <2ii/n 19 

for feA^(I\ it follows that || || l and ||| HJ^ are equivalent norms on A X (I). 

The mapping :A p (I)-> L t (/) x L p (I) defined by *(/) = (/,/), feA p (I) is clearly 
an isometry of A p (I) into the Banach space L 1 (/)xL p (f) with the norm 
II (/0) II = 11/11 1 + H0lljr Thus A p (I) may be regarded as a closed subspace of 
L x (/) x L p (I). For each p, 1 <p< oo, the dual A*(I) of A p (I) is isometricallyisomorphic 
to L 00 (/) x L p ,(/)/Ker<]>*, where <3>* is the adjoint of the map <X> and p' is such that 

- + = 1 [see Theorem 2 [8]]. 
P P 

PROPOSITION 1 



Proof. Let, for neN,u n be the function n% [Q jl/B) . Then \\u n \\ = 1. Also for zeE and 

r ^ ^i 
,u n (z) = (e- zln -\)/(-z/n) = u 1 (z/n)znd therefore. \u n (z)\ ^min]-^, 1 [. Further 



for Rez^n, \u n (z)\^n( \--\z\. Observe that u n eA p (I) for p>2 and M B 
Indeed for p > 2, 



I |y|*l 

r 

T*, 



L.L 



where 



' f f sSLj 

J0<x^l J|y|>l V^ "^i J 



and 



|y|<l 

Thus i/ n e L (/), p > 2, and consequently u n eA p (I). 



332 Ajit Iqbal Singh and H L Vasudeva 

We next show that u n $A 2 (I). Indeed, 

,_ r A 2 r 

! n i 



,112= | i<wr<fc> | '(i-^ 



IK 



= n 2/ / 1 _lVf l| tan -l (j ;/ X 
" V e ) J X al1 

= 7t/J 2 fl--Y f -dx=00. 
V e J Jx>.* 



Again u n *u,iA 1 (l). Indeed, MU.(Z) = (A(z)) 2 and J Re2 ^ol( n ( z )) 2 |dz = J Rez ^ 
|(u M (z))| 2 dz ^ oo, as shown above. 

Also n *u n 6^ p (7) for p>l. Indeed, u^w n (z) = (u n (z)) 2 and j Rez>0 l(" n ( z )) 2 l P dz = 
JRe^ol(^( z ))l 2pdz = | R eopl( n (z))l'dz, where ^ = 2p>2 and the right hand side is 
finite as shown above. It is also a consequence of above that u n *u n *u n eA l (I). So for 



Now, let 1 < p < r < oo. Let, if possible, A p (I) = ^4 r (^)- Then there exists K > such 
that |||/||| p < Kill/ III for/6X p (J). For neN and l<s<oo, IK*uJ|| s = ]]* ||, 
+ H 2 |l s =ll n *Jl 1 +n 2/s || 2 |l s =l+ 2/i p 2 || s . Consequently, n 2 /"-^||u 2 || p ^ 
K(n 2/r + ||i2 2 || r ). On letting n-> oo, the left hand side of the preceeding inequality tends 
to infinity whereas the right hand side tends to a finite limit. This contradiction 
completes the proof in this case. 

Now, let 1 < p < oo. Since A p (I) c A 2p (I) c ^^(7), we cannot have A p (I) = A X (I). 

PROPOSITION 2 

Let/ be a function defined on [0, oo) such thatf, f" exists and satisfies /(O) = /'(O) = 

/"(O) and = lira /'(x) = lim /"(x). Further suppose t/iat f,f',f"e L t (/). Then 

x-*oo x-c 

(&)feA p (I)forp>l, 

j (/) i//" = on (0, c) for some c> 0, 

^T) if/"' ^xisto an^ is in L^/),/"'^) = and/"'(x)^0 as x-> oo. 



r 
/>) = 

Jo 



Froo/. Observe that for zel, z ^ 0, 

-rz _ ! ^ 

^ 

using/(t) ->0 as t-> cc and |e~ tz | = e~ u -^0 as t -> oo. On applying the above argument 
to/' and in case (c) also to/", one obtains respectively, /(z) = -7/"(z) and in case (c) 



(a)l/(^l = ^inz)l^ll/l, 



The algebra A p ((0, oo)) and its multipliers 333 

Now, 



where 



i|"dxdy+ |/(x + iy)|dxdy 



and 



Thus /6X P (/) for p> 



o 

-JL 
^ e HP 



The proof from now onwards is the same as in case (a). 



If we write II/IU = T x H- T 2 + T 3 as above, then 



and 

^3 < 2 1| /|| j , as above. This completes the proof. 

Theorem 3. A p (I) is \\ \\ r dense ideal in L^I). 

Proof. A p (I) is an ideal in L x (/) was observed in the beginning paragraph of 2. That it 
is dense in 1^(7) follows from Proposition 1 on noting that C c (/) is dense in 



DEFINITION 4 [BURNHAM] 

Let (A, || D be a Banach algebra. The subalgebra B of A is an 4-Segal algebra in case 



334 Ajit Iqbal Singh and H L Vasudeva 

(i) B is a dense left ideal of A, 
(ii) B is a Banach space with respect to norm || || B , 
(iii) There exists C > such that ||/|| A < C ||/|| B for all feB, and 
(iv) There exists K>0 such that \\fg\\ B <K\\f\\Jg\\ B foT&geB. 

Remark 5. (i) It is clear from the foregoing that A p (I) is an L^-Segal algebra. The 
above proofs have been included in view of their intrinsic value even though Burnham 
([2], ex. 19) cites an example of a Segal algebra which includes the one studied in this 
note. 

(ii) In view of the fact that for 1 < p < oo, A p (l) is an L^/J-Segal algebra, the following 
results follow from the general theory of ,4-Segal algebras [2]. Let 1 ^ p < oo. (a) The 
maximal ideal space A(/4 p (/)) of A p (I) is homeomorphic to , (b) A p (I) has no bounded 
approximate identity. 

(iii) It follows from (ii) (a) that for each p, 1< p < oo, A p (I) is a semisimple commutative 
Banach algebra. 
Our next result provides a characterization of A 2 (I). 

Theorem 6. Let /e L^I). Then feA 2 (I) iff t-+f(t)/yft is in L 2 (l\ 
Proof. 

^~ T r |/(x + OOI 2 d*dy = f [" l7(y) 

27C JO J-oo JO J-oo 



/*QO /*00 

JO J -o 



2 

dt, 



using Plancherel Theorem. 
Our next result shows that C C (I) is contained in A p (I) 9 p > 2. 

PROPOSITION 7 

Suppose 2<p<cc and p' is such that - -f = 1. Choose u and u' such that 1 < u' < p/p f 

P P 

and - + - = !. Then L^/Jn L p (/)n L up ,(I) c A p (I). So LJ/Jn 1^(1) is contained in 
A p (I) for p > 2. In particular, C C (I) is contained in A p (I),p> 2. 

Proof. Suppose /eL^/Jn L p .(I)n L up ,(I). Let xel. Since feL p .(I), f x eL p .(R). So 
\\7x\\p < ll/xllp' 5 using Hausdorff- Young inequality. Moreover, \\f x \\ p , < ||/|| p ,. Also 

\\f x \\ p p '= \f(t)\ p 'e- txp 'dt 

1/ M ' 



p 

o 



a 00 Nl/U/ / \ 

|/(t)r'dt e-<*"'>'dr 

o / \Jo / 

Consequently, 



The algebra A p ((Q, oo)) and its multipliers 335 

Hence 

(2n)- pl2 \\f\\ p p = 



11?.+ 



This completes the proof. 

Remark 8. Though A p (I) does not possess a bounded approximate identity, yet it does 
always have an approximate identity as the following theorem shows. 

Theorem 9. The sequences {u n },{u n * u n } and { u n * u n * u n }, where u n denotes the function 
n #[o,i/)> act as approximate identities for A p (I) with 2<p^oo, l<p^oo and 
l^p^oo, respectively. In particular each A p (I) possesses an approximate identity 
present in A ^(I). 

Proof. It is well-known that {u n } is an approximate identity for L^I). We shall show 
that v n = u n *u n *u n ,n=l,2 9 ... is an approximate identity for A^I). It has been 
observed that {v n } is contained in A^(I) [Proposition 1]. Suppose feA^I). Then 



So \\f*v n /Hj-^Oas n-^oo. 

There exists a compact set K c Z such that H/l^cll ^ < e/4. 
Now, 



where /^(X) denotes the planar measure of K. Also, 



Choose n so large that ||/*i? n /Id </6/^(X). Consequently, for this n, 
H/*!?,, /Id < e. This completes the proof in the case p = 1. The proof for the case p> 1 
is similar and is, therefore, not included. 



Remark 10. (a) It follows from Theorem 9 above that for 1 ^ p ^ oo, A^^A^I) is 
dense in A p (I). Since A^I) is an ideal in L^I) this gives that A^I) is dense in A p (I) 
which, in turn, gives that for 1 ^ r <p ^ oo, A r (I) is dense in A p (I). 
(b) It follows from Theorem 9 that Li(I)*A p (I) is dense in A p (I). This observation 
together with ([5], 32.22) implies that L t (/)* A p (I) = A p (I). Now ([5], 32.33 (a)) implies 
that {e a } is an approximate identity in L t (/) which is present in A P (I\ then it is an 
approximate identity for A p (I) as well. 



336 Ajit Iqbal Singh and H L Vasudeva 

Finally, we state without proof the following result regarding ideals in A p (I). The 
proof follows from the fact that A P (I) is an L^TJ-Segal algebra and Burnham ([12], Th. 13) 
result on ideal theory of Segal algebras. 

Theorem 11. For each p, 1 ^ p < oo, the following statements hold: 
(i) // J l is a closed ideal in L t (7), then J = J 1 nA p (I) is a closed ideal in A p (I). 
(ii) // J is a closed ideal in A p (I) and J 1 is the closure of J in L 1 (/), then Jj is a closed 

ideal in L x (7) and J J L n A(I). 



3. Multipliers of A p (I) 

In this section we attempt to identify the multipliers of A p (I). In view of ([7], 1.2.2) and 
results proved in 2 above, every multiplier T ofA p (I) is bounded and corresponds to 
a bounded continuous function (j> on Z. It follows from the analyticity of f,feA p (I), that 
is analytic on Z. Since for feA p (I) and-0 bounded and continuous on Z, \j/ = 0/is in 
L p (Z) with \\il/\\ p ^ ll^llooll/llp, the_problem reduces to that of identifying those <'s 
which are bounded continuous on Z and analytic on Z such that for each/e,4 p (7), </>/is 
h for some he 7^(7). Remark 10(b) further reduces it to requiring 0/to be ft for some 
jueM([0, oo)). Thus a multiplier on A p (I) into M([0, oo)) is in fact a multiplier of A p (I) 
and keeping in view 10(a), we have that for 1 ^ p < r ^ oo, a non-zero multiplier of A r (I) 
induces a non-zero multiplier of ^(7) via restriction. The following analogue of 
Paley- Wiener Theorem ([11], Th. 19.2) helps us in expressing, foifeA p (I) and certain 
0's, 0/and h for some he L t (7). 

Theorem 12 (Paley- Wiener). Let l^r^2 and r' be the number given by - 4- -= 1. 
Let \l/e L r (Z) be analytic on Z. Then there exists a ge 7,^(7) such that \j/ =^ on Z. 
T/iis gfeL 1 (7) ij^* a=ess lim infL^L < oo and then */2n\\g\\ 1 =a and if b = 

X-+04- 

j 

ess lim inf|| :c ^|| r <oo then geL r ,(I) with \\g\\ r ,^=b 9 where, for xe7, 

x -" 
x \l/(y) = \ 



Proof. We shall modify the detailed proof given in ( [1 1], Th. 19.2). We fix x, jc' in 7 with 
x< x' and write J = [x,x r -]. For ae7, let T a be the rectangular path with vertices at 
x + ia, x ia, x' - ia and x' + ia. It follows from Cauchy theorem that J r i/^(z)e rz dz = 
for teR. For a,jSeR, let x F(t,j?) = fX M + i)3)e t(u+w du, AOJ) = f J |^(uV ift| r dti and 
Ix'-x^^'maxle^e^'} with the convention that r = l for r>0. Then 
)| ^ A(j?) 1/r M(r). Now, by Tonelli's theorem 



I A(j?)djS= f ( { 
JR JJ\JR 



./Mdi*=IM|;<oo. 

So A(/J) -f A( /?) is not bounded below away from zero as P -* oo and, therefore, there is 
a sequence {a,-} in 7 such that a,. -* oo and A(a ; ) + A( a,-) -+ and j -> oo . We note that {a,.} 
is independent of t and for reJR, ^(^a^-^O and *(t, a^-^O as 7-^00. Now since 
^e L r (Z), u \l/e L r (R) for almost all ue7, say, in a set S with m(7 - S) = 0. Then for ueS, 



The algebra A p ((0, oo)) and its multipliers 337 



tt ^X[-aj^}^u^ in L rW and therefore, by HausdorflF- Young inequality, 
( u \l/r in J L r .(R). So for x,x'eS, there exists a strictly increasing sequence {,-} in N with 
(>*[- , ]r-(*^r and (>Jt[- vfl gr^(*^r almost everywhere in R. But for 
each n;GJVand reK, ^(^-^iT (- Oe" and ^(^[-cc^r (- *)e'*' are 
the integrals of \l/(z)t tz along the vertical lines of r^ and therefore for each 

X[- v ^ 



r)e lx = ( x .^r(--t)e' x ' for almost all tejR. We take as the function 
)-(_ t) e tx which is independent of xeS. 



If r = 1, then for each xeS, (^eC W and J2n ||(>r L < ||> II i- Since for each 
as x~0+ in S. we have 2^11011^ ^b = ess lim infllj^llj. and 

x-*0 + 
'* /T-.. .... /T-r -,v, i, = ess lim j n . 



Now, for ae/, t<0 



27cjo 



So letting a - oo, we obtain that g(t) = for t < 0. By continuity of 0, 0(0) = 0. Thus 
ge Ll (1\ Further \g(t)\ ^ f IIAII i for te/. Thus for xe5,(^ e L X (R) and as > is also 
in L^Rl iA(x + r = ^(v) = (^(~j) = J"^We" xf e-^dt. Since iA as well as the 
function z = x + ty -^ J^0(r)e- rr dr = 0(z), ([12], Th. 6.3) are both continuous on L, we 
conclude that ^ = g on Z. 
If r > 1, then, on using Hausdorff- Young inequality, we get 



f oo / r ' foo / r y/'' 

(2;rr 2 e-^|0(t)r'dO r/r 'dx= IU)^(-Ol r dt dx 

Jo \JR JO VJl? / 

f 

^ Jo X ' *~~ ' * 

So the function x -> J R e " r/xr 1 0(t) | r ' dt is not bounded below away from zero as x -> oo . So 
there is a sequence {x^} in / with x,->oo and $ R c- r ' tx >\g(t)\ r 'dt-+0 as;~>oo. Since 
f-oJ^Wr 'dt ^ j- oc e~ r ' fxj |0(t)r dr for each;, we conclude that = a.e. on ( oc,0). 
Now, for ae/,xeS, 



72^ f"| ff (t)|dt= f 
Jo Jo 

<||^|| r a 1/r S"<oo.' 
So ^e L, 1 ,,^/). Since I-2S = 2(I- S) has measure zero, we have that m(J S n 2S) = 



338 Ajit Iqbal Singh and H L Vasu'deva 

as well. For xeSn2S, 

^ - 



2n J2n 



Since x/2eS, ( x/2 ^r = L r ,(R) and therefore f -> g x (t) = -j=( x \J/r( - 1) is in L 1 (I). Since 

V/27C 



m(J-Sn2S) = 0, Sn2S is dense in /. So g^eLJI) for all xe/. Consequently is 
defined on E and is given by 



= f 

Jo 



which for xeS is 



271 JO 



since x ^e L r (.R) and ( x il/)~~e L^R) ([11], Th. 9.11). Because ^ and # are both continu- 
ous, we conclude that \l/ = g on I. 
Further ge L^]^) iff a = ess lim inf || ( x i/0" || i < oo and then ^/2n \\g\\ i = a simply 

JC-fO + 

because for any sequence {xj} in 5 with Xj-^0, 



\ 

Jo 



= lim I 

j-* oo J-* oo 



We note that in this case g is defined on Z and extends ^ to a bounded continuous 
function on . Finally, for any sequence {x^-} in S, x^O, we have, by Monotone 
Convergence Theorem, 

/ " 

oo J ./- oo j-* oo 



and, therefore, vll^llr' ^ b = ess lim inf || x 



COROLLARY 13 

Let 1 ^p < oo,$ a bounded continuous function on E, which is analytic on and 
). Then / = K for some /ie ^(J) if 1 ^ p ^ 2 or p > 2 and $e L 2 , 2 (S). This 



ess 



lim inf 

^ 0+ Jo JK 



iy)e iyt dy\dt < oo. 



f. We take r = pifl^p^2 and r = 2 if p > 2 so that </e L r (I) under the stated 
^conditions and then apply Theorem 12 above. 

Theorem 14. Let 1 ^ p < oo and </> be a bounded continuous function on which is 
analytic on Z. 



The algebra A p ((Q, oo)) and its multipliers 339 

(i) (f) induces a multiplier of A p (I) if (a) I ^p^2 or p>2 together with 06 L 2plp _ 2 (L) 
and (b) ess lim inf J* | J^(x + iy)f(x -f iy)e iyt dy |dr < oo for all feAJI). 



p 
(ii) (j) induces a multiplier of A p (I) only if 



ess lim 



inf I 

Jo 



x+iy 



e iyt dy 



dt< oo 



/or each'neN, where s = 2if p 2,1 if p>2 and 3 if p<2. 



Proof. We apply the above corollary and use the fact that u* s eA p (I) for each n, where 
u n = X(o,i/n] an d *s denote the sth convolution power. 

Remark 15. Even though A p (I) is not regular, it contains functions/ with/ vanishing 
nowhere on S, for instance, w* s in the proof above. Such /are bounded below away 
from zero on compact subsets of and thus the strict topology T on M(/4 p (/)) (i.e., 
strong topology on a subalgebra of the algebra B(A p (I)) of bounded linear operators on 
A p (I) to itself) is stronger than the topology of uniform convergence on compact 
subsets of I. By ([7], 1.1.6) and Theorem 9 above A p (I) is dense in (M(A p (I), T S )), where 
geA p (I) is identical with the multiplication operator M g given by M g (f) = #*/and, 

/N /\ 

a fortiori, (A p (I)) is dense in (M(A p (I)'), topology of compact convergence on ). 

Acknowledgements 

Ajit Iqbal Singh would like to thank the centre for Advanced Study in Mathematics, 
Panjab University for its generous hospitality where part of this work was carried out. 

References 

[1] Burnham J T, Closed ideals in subalgebras of Banach algebras I, Proc. Am. Math. Soc. 32 (1972) 

551-555 
[2] Burnham J T, Segal algebras and dense ideals in Banach algebras, Lecture Notes in Mathematics 399, 

(1973) 33-58 (Berlin: Springer- Verlag) 
[3] Figa-Talamanca A, Gaudry G I, Multipliers and sets of uniqueness of L p . Mich. Math. J. 17 (1970) 

179-191 

[4] Gelfand I M, Raikov D A and Silov G E, Commutative normed rings, (Chelsea, New York) 
[5] Hewitt E, Ross K A, Abstract Harmonic Analysis, Vol. II: Structure and analysis for compact groups and 

locally compact abelian groups, (New York: Springer- Verlag) 1970 
[6] Savita Kalra, Ajit Iqbal Singh and Vasudeva H L, The algebra ^((0, oo)) with order convolution and 

its multipliers, J. Indian Math. Soc. 54 (1989) 47-63 

[7] Larsen R, An introduction to the theory of multipliers, (New York: Springer- Verlag) 1971 
[8] Larsen R, Liu T S and Wong J K, On functions with Fourier transforms in L p , Mich. Math. J. y 1 1 (1964) 

369-378 
[9] Martin J C and Yap L Y H, The algebra of functions with Fourier transform in L p , Proc. Am. Math. Soc. 

24(1970)217-219 

[10] Reiter H, Subalgebras of L^G), Indagationes Math. 27(1965) 691-696 
[11] Rudin W, Real and complex analysis, (New York: McGraw Hill Book Company) 
[12] Widder D V, The Laplace transform, (Princeton: University Press) *" 



Proc. Indian Acad. Sci. (Math. Sd), Vol. 105, No. 3, August 1995, pp. 341-351. 
Printed in India. 



Reflection of P-waves in a prestressed dissipative layered crust 

SUJIT BOSE* and DIPASREE DUTTA f 

*S. N. Bose National Centre for Basic Sciences, Calcutta 700064, India 
f Women's College, Durgapur 713 209, India 

MS received 30 August 1994; revised 23 November 1994 

Abstract. The paper deals with overall reflection and transmission response of seismic 
P-waves in a multilayered medium where the whole medium is assumed to be dissipative and 
under uniform compressive initial stress. The layers are assumed to be homogeneous, each 
having different material properties. Using Biot's theory of incremental deformation, analyti- 
cal solutions are obtained by matrix method. Numerical results for a stack of four layers - 
modelling earth's upper layers, show a decreasing trend in both the Reflection Coefficients 
R and R of the reflected P and S-waves. 

Keywords. Reflection; P-wave; S-wave; dissipative; homogeneous layers; Biot's theory; 
matrix method; reflection coefficients. 

1. Introduction 

The study of reflection and transmission of seismic body waves through multilayered 
media is an important part of seismic sounding techniques. It is recognized that these 
studies provide a very convenient method of investigating the earth's interior. Although 
other approximations are possible, the simplest representation of the system of rocks 
beneath the earth's surface might be supposed to consist of a series of plane, parallel 
layers, each having its own characteristic - but constant within the layer - parameters 
of velocity and density [12]. Observation of propagation of stress waves in solids (or 
fluids) show that dissipation of strain energy occurs even when the waves have small 
amplitude. This dissipation results from imperfection in elasticity, loss by radiation, by 
geometrical spreading and scattering [5, 7-1 1, 13, 14]. A convenient measure of attenu- 
ation in waves is the dimensionless loss factor (or specific dissipation constant) Q~ *. It 
is related to the rate at which the mechanical energy of vibration is converted 
irreversibly into heat energy and does not depend on the detailed mechanism by which 
energy is dissipated. For P-waves Q" 1 is given by [12]. 

^ i 2u 

ar =7 

where V and v are the real and imaginary parts of the complex P-wave velocity. It is 
also known that, surprisingly, Q~ 1 is independent of frequency, pressure and tempera- 
ture [5]. 

In the focal region, prior to an earthquake, considerable tectonic thrust builds up as 
a uniaxial stress system. It is of some interest to investigate reflection characteristics, 
through a theoretical model of a stack of layers under uniaxial compressive prestress. 
Biot [2] has provided a detailed theory of incremental deformation of a medium in 
a state of prestress brought about by even arbitrary finite deformation. Later, Dahlen 
[3], in a limited context of initial elastic deformation arrives at identical set of equations, 
excepting the constitutive equations for the incremental stresses. If restricted to 

341 



342 



Sujit Bose and Dipasree Dutta 



two-dimensions, Dahlerf s equations fail to reduce to the equations for incompressible 
medium derived elaborately by Biot. Secondly, the elastic moduli in the transverse 
direction also change due to the uniaxial prestress. Consequently, we adhere com- 
pletely to Biot's theory. 

For treatment of the equations for a stack of layers, we adopt a simple matrix method 
based on Kennett [6]. In this paper we restrict to two-dimensional propagation. 

2. Formulation of the problem 

Consider an initially stressed, dissipative medium consisting of 'n' parallel homogene- 
ous layers overlying a half-space. The interfaces are ordered as Z 1 , Z 2 , . . . , Z n where the 
origin Z = < Z t is on a hypothetical free surface from which P-wave originate and 
travel downwards, ultimately as plane waves. The reflected waves are received at the 
same surface. To keep the analysis simple in the first instance, as is often done, we 
disregard stress-free condition on Z = 0, that is to say, regard the top layer Z < Z^ as 
semi-infinite. The topmost layer is layer number 1 and the bottom layer n + 1 and 
thicknesses of the intermediate layers are designated as H 2 , // 3 , ...,// (figure 1). The 
physical quantities associated with layer number 'm' will be denoted by symbols with 
suffix m. 

In general, if we have an isotropic elastic solid under uniform initial horizontal 
compression S n (tensile S n <0) parallel to x-axis, which undergoes additional 
infinitesimal deformation, then according to Biot [2], the incremental stresses consist 
of two parts: one part due to additional deformation and the other due to infinitesimal 
rotation o> 2 acting to rotate the initial stress system: 



33' 



(1) 




ir 
Z 




"m-i 



m 



Figure 1. Geometry and schematic of the problem. 



Reflection of P-waves in a prestressed dissipative layered crust 343 

where s tj are incremental stresses referred to axes which rotate with the medium (Biot 
[2], eq. (4.13)) and 



For infinitesimal incremental strain e tj , the incremental stress s tj will be linear 
functions of e tj . Assuming these to be orthotropic in nature we can write 

du 



dw 

e **= (3 > 

v du 
< -dz 

Also, after careful consideration of existence of strain-energy, 



(Biot [2], eq. (6.2)). The elastic constants B u , . . . , Q in general may depend on the initial 
stress S l ^ . Biot ([2], eq. (8.3 le)) after analysis of an incompressible medium, selects for an 
original isotropic compressible medium (Lame constants A,^), relations equivalent to 



*3i=^ B 3 3 = * + 2* Q = n. (5) 

A salient feature of these relations is that the moduli in the x-direction (the direction of 
initial stress) increases due to the initial compressive stress while those in the transverse 
z-direction remain unchanged. To account for dissipation in the medium A 1 and p. are to 
be regarded complex: A = A r 4- U f , \JL = ju r -f i^i . 
The two-dimensional dynamical equations of motion as obtained by Biot [2] are 



dx dz u dz ~ dt 2 



For time-harmonic plane wave propagation of frequency / = co/2n, we may assume a 
factor exp [i(cot /ex)]. Insertion of (3) with (5) in (6) results in two O.D.E's for u and w, the 
displacement components. However, for developing a matrix method we introduce stresses 



T 13 = s 13 -S 11 o 2 (7) 

and the quantities [6] 

TI/ rr T o /Q\ 

W=iw, U = u, T = n 33 , S = T 13 . (8) 

Constructing the stress-displacement vector 



344 Sujit Base and Dipasree Dutta 

eq. (6), with the aid of (7) and (3) can be written as a first order system. For subseq 
computational purpose we nondimensionalize all quantities: the displacements b 
(thickness traversed by the waves in the top layer) and stresses by ^ lr , the real pa 
shear modulus of the top layer. Denoting the respective nondimensional quantitie 
superscript *, the first order system can be written as 



dz* " - 
where 

JJ > 1 J. 

- 

-kz 



Q'-o-ss* 



, 

p 



Mi? Pi 

\j j j __ _ ._ __ I fc g fag \j 



is the coefficient matrix, p = k/co is the wave slowness (reciprocal of phase velocit 
propagation in the x-direction) and p l = (^Jp^) 112 is the shear wave velocity in 
topmost layer. For reflection and transmission of body waves, p remains constant ii 
the layers. Finally, S* x = S ll /fjL lr . 

The incremental boundary forces have also been carefully examined by Biot ( [2], 
17.56)). In our case, where the boundaries are z = const., the components turn out t( 
T 13 and T 33 , so that at an interface z = z m b* is a continuous vector when per 
bonding is assumed. 

3. Propagation in the stack 

In an intermediate mih layer, the solution of (10) is 



where b*_ 1 is the stress-displacement vector at the interface z* = z* _ 1 . Hence at z* = 
b* = e^b_, , 

where H* = z*~z*_ l is the nondimensional thickness of the mth layer. Hei 
recursively 

b* = e^We^-^-s . . . , e^b* Eb*. , 

All the exponentials involved above are 4 x 4 matrix exponentials. 

For b* we note that it consists of the down going incident P type wave and reflec 
up going P and S type waves (figure 1). We construct the contributions from eacl 
these separately and superpose. Suppressing the time harmonic term, we can write 
the down going incident wave 



Reflection of P-waves in a prestressed dissipative layered crust 



345 



where the predominant z-component of the amplitude has been taken to be unity 
Inserting m the equations of motion (6) with (3) and (5) and assuming 



so that 6 is the angle of incidence, we get 



(16) 



(17) 

and the velocity of propagation co/k is given by a quadratic equation whose roots are 
a 2 1 



where 



If S n is neglected, the positive sign in (18) yields P-waves and the negative sign, 
S-waves. In the presence of S l 1 , the velocities are p, that is, direction dependent and the 
waves are not pure, in the sense that P-waves are accompanied by some transverse 
component and S-waves by some longitudinal component [4]. Stresses corresponding 
to (15) can be readily calculated from (3) and (5). We thus obtain 



(20) 



ID' 



Kzi [A Afsin -f (AJ + 2/iJ )cos 0} 
- iJKz! {^(ji* - O-SSJJcos 6 -h (/it 4- 05Sf Jsin 
p - the constant for all the layers - in (17), can be computed from the equation 



l/2 



(21) 



which is arrived at from (16) and (18). Here 6 is given so (pjSJ is to be obtained by 
solving the above nonlinear equation. 

For up going reflected P type wave, we have to use the representations 

u* = ^ 2 e^ (z - Zl) e"^, w* = B 2 e i * ( *-** ) e" to . . (22) 

Analysis similar to the above leads to 



(23) 



.(^ _ Q-5S*! )cos 
B 2 



* ) cos e 
? + 0-5S*, )sin 



346 



Sujit Base and Dipasree Dutta 



where A 2 /B 2 = - A 1 is obtained from ( 1 7). For up going reflected S type wave we again 
use representation of the type (22) with amplitudes A 39 B 3 instead ofA 2 ,B 2 . We thus 
obtain b* similar to (23) with A 2 /B 2 replaced by A 3 /B 3 = -A l and 9 replaced by 9 s 
given by 



(24) 



appropriate for S type waves. Here Re means real part of. The total stress-displacement 
vector in the top layer is thus 

b*. (25) 



Finally, for the bottom most (n + l)th layer, only down going P and S type waves are 
sustained. For the former we take 

As in the case of b^ we obtain 



n+ 1 



-'*M IT 



+Wf +1 



n+1 



(27) 



where 



(28) 



Rf+ 1 and S*+ 1 are quantities identical to RJ and SJ (cf. eq. (19)), save that ^ and /^ are 
to be replaced A n + 1 and n n +i- Similarly AJB 4 is given by an expression like that of A l 
(eq. 1 7)) save for A x , /z x , 6 we have to write ^ + 1 , /* + 1 > ^+ 1 F r ^e down going S type 
waves we get in a similar manner b* ^ D with a form similar to (27) except that A 49 B 4 
are to be replaced by similar amplitudes A 5 , B 5 and (% + x replaced by 0+ 1 given by 



and A$/B 5 given by right hand side of (17) with ^,^,0 replaced by A w+1 , 
Thus, 



(29) 



+ r 



D- (30) 

The expressions for b* and b*+ 1 from (25) and (30) can now be inserted in (14). If we 
denote the successive vectors [ ] in the expressions for b*, b*, b*, b*^ D , b** ID by 

v i * V 2 > V 3 > V 4 and V s , we get the system of equations 



(31) 



Reflection of P-waves in a prestressed dissipative layered crust 



347 



Solving these equations we get "reflection coefficients", R = B 2 , R = B 3 and "trans- 
mission coefficients", T P = B 4 , T]^ = B 5 . 

4. Numerical calculations for model crust 

In general the earth's continental crust consists of three layers: granitic, basaltic and 
a thin sedimentary layer at the top. For computations of reflection (and transmission) 
coefficients we consider the earth's crust beneath the Indo-Gangetic plain, which lies 
between the Himalayas and the Peninsula. Surface wave dispersion across this region 
has been investigated by several investigators [1]. Inversion of these data gives the 
crastal and upper mantle structure of the region. Such a model of crust is given by 
Bhattacharya [1] and is given below: 

Region 



1. Sedimentary 

2. Granitic 

3. Basaltic 

4. Upper Mantle 



Thickness 


P-wave 


S-wave 


Density 


of layer 


velocity 


velocity 


(gm/cm 3 ) 


(km) 


(km/sec) 


(km/sec) 




3-5 


340 


2-00 


2-00 


16-5 


6-15 


3-55 


2-60 


23-0 


6-58 


3-80 


3-00 


00 


8-19 


4-603 


3-30 




ia40 20JDO 



4JX) 



5.60 



720 



Figure 2. Amplitudes of reflection coefficients |l| and |R| for near vertical propagation: 

6 = 1. 



Sujit Bose and Dipasree Dutta 



550 600 650 7DO 750 8UOO 



350 4.00 450 5J 




4JOO 450 500 550 6JGO 




Reflection of P-waves in a prestressed dissipative layered crust 



349 



& 

0. O 





100 

053 
0.86 

0.79 
QJ2 

0.65 
038 
051 
0.44 
037 
030 



100 



(c) 






330 



4.00 



430 



5.00 



530 
f 



6LOO 



630 



7.00 



730 



aoo 



Figure 3 (Continued). Amplitudes of reflection coefficients \R\ and \R\ for wide angle 
propagation: (a) = 2 (b) 9 = 5 (c) 6 = 10. 



The above yield the real part of Lame constants of each layer. For the imaginary parts, 
the loss factors Q ~ 1 of P- waves as given in Waters [12] 

<2 a (granite) = 311, e a (basalt) = 561 

Q a for sedimentary rocks is highly disperse, so, as an example we take old red sandstone 
for which Q a = 93 - a figure nearing the mean of dispersal of the values. Since the role of 
dissipation is small, the computed values are not expected to change very much on 
account of actual deviation. For the upper mantle we take Q a = 849 from data 
discussed in Ewing et al ([5], p. 278). Further data on imaginary part of shear modulus 
are provided by loss factor Qp 1 of S-waves: 



which is obtained from the often used assumption of zero dilatational viscosity [12, 5]. 

For initial stress-free basalt rock, strength ^ 11,000 atmospheres and if we consider 
hydrostatic pressure at a depth of 40 km to be present, the approximate range of the 
compressive initial stress f == SJ X could be (0, 0-3). We therefore consider the 
parametric values = 0,0-1,0-3 and 0-5, over a slightly enhanced range. 

For selecting suitable frequency range, we consider the cases of seismic prospecting 
method of weight-dropping devices in which near vertical propagation takes place and 



350 Sujit Base and Dipasree Dutta 

explosion seismology technique where it is wide angle propagation. In the former case, 
/ is taken within the range of 4-20 Hz [12] with 9 = 1. In the second case the range 
chosen is 3-8 Hz ( [5], p. 202) with ranging from 2 to 10. 

In the numerical treatment of (31) we use Gauss's method for matrix inversion. 
The computation of the matrix exponentials in E (eq. (14)) is performed using the 
Cayley-Hamilton theorem. The latter requires the eigenvalues of matrices like A* (eq. 
(11)), which is a simple task, because of the fact that the characteristic equation for the 
eigenvalues A of A* reduces to a quadratic in A 2 . The solution of (21) is performed by 
Mullet's method. 

We restrict presentation of the results to R and R only. In figures 2 and 3, we 
present the variation of the amplitudes of these quantities with frequency/, for different 
values of initial stress parameter In figure 2, the results for near vertical propagation 
are presented. There is a general trend of diminution in the reflection coefficients for 
increasing , which becomes significant towards the higher frequencies in the band. The 
results for wide angle propagation for = 2, 5 and 10 are presented in figures 3 (a), (b) 
and (c) respectively. Here too, is a general trend of diminution in the reflection 
coefficients for increasing . The trend of diminution increases with increasing 0. 

It may be mentioned here that when P-waves propagate vertically in an unbounded 
initially stressed homogeneous medium, there is no effect of initial stress on the velocity 
of propagation [4]. This fact can be verified from (18), (19), with k = p = for the 
case. For reflections from the stack, there are no up going S-waves, A l = (verifiable by 
the limit 0->0 in (17)), A z = A 4 = and the reflection and transmission coefficients 
B 2 , J5 4 are given by a pair of equations similar to (31). 



5. Conclusion 

The focal regions at plate boundaries of the earth prior to earthquakes are at 
considerable thrust due to tectonic movement. For understanding the reflection and 
transmission characteristics of body waves in such regions appropriate mathematical 
model studies are required. Herein, is considered; a stack of dissipative layers under 
uniaxial thrust to which the theory of incremental deformation given by Biot [2] is 
applicable. The governing equations can be compactly treated by matrix method, as in 
the case of initial stress free case, for the reflection and transmission of body waves. 
A numerical model study of a stack of four layers - sedimentary, granitic, basaltic and 
upper mantle, for near vertical as well as wide angle reflections, shows significant 
diminution in the magnitudes of both P and S waves. 

References 

[1] Bhattacharya S N, Crustal and upper mantle velocity structure of India from surface wave dispersion, 

Curr. ScL, 62 (1992) 94-100 

[2] Biot M A, Mechanics of incremental deformation (1965)'(New York: John Wiley and Sons Inc.) 
[3} Dahlen F A, Elastic dislocation theory for a self-gravitating elastic configuration with an initial static 

stress field, Geophys. J. JR. Astron. Soc., 28 (1972) 357-383 . 

[4] Dey S, Roy N and Dutta A, Propagation of P and S waves and reflection of SV wave in a highly 

pre-stressed medium, Acta Geophys. Pol. 33 (1985) 25-43 
[5] Ewing M, Jardetzky W S and Press F, Elastic waves in layered media (1957) (New York: McGraw-Hill 

Book Co) , 

[6] Kennett B L N, Seismic wave propagation in stratified media, (1983) (London: Cambridge University 
- Press) 



Reflection of P-waves in a prestressed dissipative layered crust 351 

[7] Knopoff L and MacDonald J F, Attenuation of small amplitude stress waves in solids, Rev. Mod. Phys. 

30(1958)1178-1192 
[8] Kuster G T and Toksoz M N, Velocity and attenuation of seismic waves in two phase media, Part I: 

Theoretical formulation, Geophysics, 39 (1974) 587-606 
[9] Mai A K and Bose S K, Dynamic elastic moduli of a suspension of imperfectly bonded spheres, Proc. 

Cambridge Philos. Soc. 76 (1974) 587-600 
[10] O'Brien P N S, A discussion on the nature and magnitude of elastic absorption in seismic prospecting, 

Geophys. Prospect., 9 (1961) 261-275 
[11] Schoenberger M and Levin F, Apparent attenuation due to intrabed multiples, Geophysics 39 (1974) 

278-291 
[12] Waters K H, Reflection seismology: A tool for energy resource exploration (1978) (New York: John 

Wiley and Sons Inc.) 
[13] White J E, Seismic waves: Radiation, transmission and attenuation, (1965) (New York: McGraw-Hill 

Book Co.) 
[14] White J E, Computed seismic speeds and attenuation in rocks with partial gas saturation, Geophysics, 

40(1975)224-232 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 3, August 1995, pp. 353-369. 
Printed in India. 



Computer extended series solution to viscous flow between 
rotating discs 

N M BUJURKE, N P PAI and P K ACHAR 

Department of Mathematics, Karnatak University, Dharwad 580003, India 

MS received 19 July 1994; revised 28 September 1994 

Abstract. The problem of injection (suction) of a viscous incompressible fluid through a 
rotating porous disc onto a rotating co-axial disc is studied using computer extended series. 
The universal coefficients in the low Reynolds number perturbation expansion are generated 
by delegating the routine complex algebra to computer. Various cases leading to specific types 
of flows are studied. Analytic continuation of the series solution yields results which agree 
favourably with pure numerical findings up to moderately large Reynolds number. The precise 
variation of lift as a function of R is established in each case. 

Keywords. Series solution; Pade' approximants; reversion of series; Euler transformation; 
analytic continuation; Brown's method. 

1. Introduction 

Flows driven by rotating discs have constituted a major field of study in fluid mechanics 
for the later part of this century. These flows have technical applications in many areas, 
such as rotating machinery, lubrication, viscometry, computer storage devices and 
crystal growth processes. However, they are of special theoretical interest, because they 
represent one of the few examples for which there is an exact solution to the 
Navier-Stokes equations. This problem was first discussed by Batchelor [1] who 
generalized the solution of von Karman [2] and Bodewadt [3] for the flow over a single 
infinite rotating disc. Further this problem was discussed by Stewartson [4] who 
obtained approximate perturbation solution for the small Reynolds number. Later, 
Hoffman [5] has studied this problem using computer extended series. The numerical 
solutions for this problem have been obtained by Lance and Rogers [6], Mellor el a\ 
[7] and Brady and Durlofsky [8]. Flow between rotating and a stationary disk has 
been studied by Phan-Thein and Bush [9]. The problem of injection of a viscous 
incompressible fluid through a rotating porous disc onto a rotating co-axial disc was 
studied by Wang and Watson [10]. Through this span of a period of half a century, 
since the Batchelor-Stewartson contributions, the interaction* between physically 
based conjectures, numerical calculations, formal asymptotic expansions and rigorous 
mathematical treatment has been quite intensive. In the present paper we have used 
semi-analytical numerical technique to understand the effect of both injection and 
suction separately. For simple geometries the semi-analytical numerical method 
proposed here provides accurate results and have advantages over pure numerical 
methods like finite differences, finite elements, etc. In numerical methods a separate 
scheme is to be developed for calculating derived quantities. If the computation of 
derivatives are required the numerical scheme to be used will be very sensitive to the 
grid/step size. This itself will be an elaborate numerical scheme. However, this difficulty 
is not there in the case of series solution method. A single computer run yields the 
solution for a large range of the expansion quantity rather than a solution for a single 

353 



354 



N M Bujurke et al 



value. In addition the method reveals an analytical structure of the solution which is 
absent in numerical solution. Van Dyke [11] and his associates have successfully used 
these series methods in unveiling important features of various types of fluid flows. 
Recently, in the analysis of thrust bearings, Bujurke and Naduvinamani [12] have used 
series analysis satisfactorily. 

The physical problem considered in this paper is of great importance in lubrication 
theory. So calculation of lift is of interest in all these cases. The present analysis is 
primarily concerned with possible extension of Wang's [10] low Reynolds number 
perturbation series by computer and its analysis. The forms of the few manually 
calculated functions in low Reynolds number perturbation solution of two point 
boundary value problem allows to propose the generation of universal functions in 
compact form which are solutions of infinite sequence of linear problems^ Using these 
universal coefficient functions we obtain series solution and calculate various physical 
parameters of interest. The present series, which is expected to be limited in conver- 
gence by the presence of a singularity, may be extended to moderately high Reynolds 
number by analytic continuation. 

The aims of the present work are two folds. First, to calculate enough terms of the 
low-Reynolds number perturbation series by computer so that the nature and location 
of the nearest singularity (which limits the convergence) can be determined accurately, 
second, to show that the analytic continuation can be used effectively to extend the 
validity of perturbation series to moderately high Reynolds number. 

2. Formulation 

As shown in figure 1 we denote the spacing between the discs by 'd', the angular velocity 
of bottom disc by Q! , and that of the upper disc by Q 2 . Let the injection (or suction) at 
the lower disc be W( - W for suction) and let M,I?, w be the velocity components in the 
direction r, 0, z respectively (figure 1). The governing equations of the problem are 




r 




P 



uv (, v 

\vv z -\ = vl V 2 v - 



(1) 



(2) 



w I 




Figure 1. Schematic diagram of the problem. 



Computer extended series solution 355 

uw r + ww 2 = - + v V 2 w (3) 

P 

(ru) r + nv z = (4) 

where 

V 2 = -r-^H ---- I-T^T, subscripts denote p.d.e. w.r. to the variable, p is the pressure, 
dr 2 r dr dz 2 

p the density and v is the kinematic viscosity. 
The boundary conditions are 

u = 0, i; = r^ , w = + W at z = 0, (5) 

u = 0, i> = rQ 2 , w = 0. atz = d. (6) 

For similarity solution, the boundary conditions and the continuity equation suggest 
the transformations [10] 

W W 

-r, v = rg(ri), W=-2f(ri)W (7) 

a a 

W 2 



where Y\ = z/d and A is a constant to be determined. With these transformations the 
equations of motion reduce to 



r (9) 



or after differentiation, we have 



2R(f'g-fg') = g" (11) 

/ f\ 

P(tl) = - pi - 2/ 2 H^ 2 - 2v + P 



Here R = ( Wd/v) is the cross flow Reynolds number. The constant P is determined by 
the pressure at the edge of the discs. The boundary conditions take the forms 



= a, 



(13) 



(14) 



In order to investigate the mutual interaction of rotation and injection (suction), we 
shall assume a and j3 to be of order of unity. This includes many interesting cases where 
both rotation and injection (suction) are not minor perturbations. Differential eqs (10) 
and (11) are solved usually by direct integration which frequently involves more than 
One integration process because of the two point nature of the boundary conditions. 
The use of series solution provides an attractive alternative approach. Not only the 
difficulties associated with two point boundary value problems are relieved, but also 



356 N M Bujurke et al 

the terms of series method are capable of providing results to any desired degree of 
accuracy with minimum time and less storage requirement of computer. 

3. Method of solution 

We seek the solution of (10) and (11) in power series of jR in the forms 



Substituting (15), (16) into (10), (11) and comparing like powers of R on both sides, we 
get 

1 _, + ^- 1 - r ) (17) 



(18) 



The relevant boundary conditions are 



) = 0, / (0)=-j /' (1) = 



/:(0)=o, /;,(!) =o, / B (0)=o, /(!)= o (19) 

ffo(0) = o, g (l) = P 

.(0) = 0, ^ n (l) = (20) 

n = l,2,3,... 
The solutions of above equations are 



11 2 13 3 1 4 1 6 1 . 

"- I + I -4 I ^ + 20 I '-70 1 ' 

-2^ + , 4 )-^!(2 > , 2 -3^+^) (21) 

~ 5f74 ~ 10>?2 " 



The slow convergence of the series ((15), (16)) requires large number of terms for 
obtaining the approximate sum. As we proceed for higher approximations, the algebra 
becomes cumbersome and it is difficult to calculate the terms manually. We propose 



Computer extended series solution 357 

a systematic series expansion scheme with polynomial coefficients so that whole 
process can be made automatic using computer. For this purpose, we consider / and g n 
to be of the forms 



k = 2 



= (!-*) Z *W (23) 



in (15) and (16) respectively. This expression yields exactly the above calculated terms 
f 1 and 0! besides this it enables us to find / ( and & for i ^ 2 using computer. We 
substitute (22), (23) into (17), (18) and equate various powers of r\ on both sides and 
obtain two recurrence relations for unknowns A^ and B n(k) in the forms 

A 7A A -4 __ 

A n) ~ ^n(k+ 1) 1n<*+ 2) T 



X Z 4.- 1 M lk + 2-0 P ( k + 2-0 + Z B(,-l 



n-2 F 4 nk+i 

Z Z Zi ^r(f+l-nfc-)^(-D(-2) 
r=l L i = j=l 

2 k + i 

Z Z ^.--o B (-iK.-3)e*+^- 3 ) r (24) 



/r-2 3 nk-l-i "I 

+ Z Z Z ^^i- t -o B (-ix.-3)n + -('+l-*-^-3) 

r=l i = j"l -I 

K = l,2,...,4n (25) 

where 

m = n r, l = 



1 (fc) = /c(fe-l)(fe-2), 



P 3 (fc) = - (3fc(k - l)(k - 2) - (k + 2)(fc + 1) k), 
P 4 (k) = (2fc(k - l)(k - 2) + 6(k + l)k(k - 1) + 12), 
P 5 (k) = - (4(k + l)k(k - 1) + 3(k + 2)(k + l)(fc - 1) + 24), 
P 6 (k)=(2(k + 2)(fc+l)k + 12), 
P 7 (k 1 )=-2fc 1 (k 1 -l)(k 1 -2), 
P 8 (k 1 ) = 4(k 1 + IJJk^ki - !) + 4k 1 (k 1 - .l)(fc! -2), 



N M Bujurke et al 

t + l)M*i - l)-2M*i -0(*i -2X 
l)M*i - 1), 



<2 2 (k) = - 2k(fi - a) + 2(k + l)a - 2(0 - a), 



T 1 (/c)=fc, T 2 (fc)=-(k+l), T 3 (k)=-(3fc-6), T 4 (/c) = (5/c-9), 



-3k 1 +2), T 9 (fc,fc 1 ) = 2(-k + k 1 -l), 
T;(fc) = 2fca, T' 2 (k) = 2()3 - a)fc - 4(fc + l)a - 2(0 - a), 
T' 3 (fc) = - 4(j8 - a)(k + 1) + 2(k + 2)a + 4(j9 - a), 



70 12^ ' 30 ' 



4 
"70 60~' " 14 = 13ff " 15= ~TQ' 



A VF ' A _ 4 

^^""TA /en A i4~TlA' ^15~"~^: 



2 20 12 20 

(/S-a) 



2 20 / 14 5 
or the radial velocity profile/'(j), we have 



he constant ,4 in (9) which is proportional to the lift is given by 



4w+l 

02 



oo 

X R" 

w=l fc=2 

(26) 



-0 2 

(27) 



Computer extended series solution 



359 



Case (1): a = 0, /? = which corresponds to the case when both discs are stationary and 
the flow is due to injection only. In this case the coefficients of the series for/'"(l), which 
is used to calculate A, has terms which are all positive after third term (table 1). Using 
the computed coefficients we draw Domb-Sykes plot (figure 2) for/'"(l) (series (27)) to 
find the nature and location of the nearest singularity which restricts the convergence of 
the series. In this case singularity is found to be a square root singularity at R 1 7-9826. 
This singularity on the positive real axis is not a real singularity, but an indication of 
double valuedness of the function. This artificial restriction on convergence can be 
eliminated by reverting the series. This type of reversion was successfully employed 
earlier by Richardson [13] and Schwartz [14]. Towards this goal the reversion of the 
series (27) for/"'(l) is performed as follows. Consider 



Let 



/'"(!)=- 6 + 



Y =/'"(!) + 6= "n 



(28) 



Reverting the above series, we have 



where 



= I B n Y n 
1 



(29) 



1 



m-2 



i=o 



fc-t+i 



Table 1. The coefficients a n of the series (27) for /"' ( 1) in the case of a = 0, ft = 0. 



No 



No 



1 


- 6-OOOOOOOOOOOOOOE-OO 


14 


3-6058013122139E-011 


2 


-7-7142857142857E-001 


15 


2-8303130882864E-012 


3 


-3-2003710575139E-002 


16 


2-1564675357485E-013 


4 


5-6407538040317E-004 


17 


1-6028392195738E-014 


5 


9-4914049735636E-003 


18 


1-1664258107783E-015 


6 


2-2591450404529E-003 


19 


8-3319098951704E-017 


7 


3-7542463046543E-004 


20 


5-8565624104072E-018 


8 


5-0483529518823E-005 


21 


4-0599933881679E-019 


9 


5-8577314766192E-006 


22 


2-7794211813578E-020 


10 


6-0972460009191E-007 


23 


1-881 1986978930E-021 


11 


5-83546416825 13E-008 


24 


1-2608050796818E-022 


12 


5-2237099823 177E-009 


25 


8-37540970962 18E-024 


13 


4-4337512718581E-010 


26 


5-5163592628791E-025 



360 JV M Bujurke et al 

0-3 



0-2 



0-1 



0-05 0-1 0-15 

1/n 

Figure 2. Domb-Sykes plot for series (27) in the case of a = 0, /? = 0. 



0-2 



Besides reversion we use Fade 7 approximants for summing the reverted series (29) 
which yields analytic continuation. The details about Fade' approximants are given in 
Appendix. These results are shown in figure 3. 

Case (2): a = 4, j? = 0, lower disc is rotating and the upper disc is stationary. The 
coefficients (a n ) of the series (27) for /"'(I) are listed in table 2. They are decreasing in 
magnitude and have no regular pattern of sign. We invoke Fade' approximants to 
achieve analytic continuation of the series (27) [11] and the corresponding results are 
shown in figure 4. 



12 



numerical [16] 

[2/2]Pade' approximants 

[2/3] " 

*- - Brown's method 




10 20 30 40 50 60 

R * 

Figure 3. Values of A as a function of R(cx. = 0, ft = 0). 



Computer extended series solution 



361 



Table 2. The coefficients a n of the series (27) for /"' ( 1) in the case of a = 4, ft = 0. 



No 



No 



1 


- 6-OOOOOOOOOOOOOOE-OO 


14 


4-3651028454742E-007 


2 


4-02857142857140E-00 


15 


- 3-8077592733234E-007 


3 


- 2-6924345495784E-002 


16 


H081633809731E-008 


4 


- 1-2306126753066E-001 


17 


2-754430222 1770E-008 


5 


1-3750340358019E-001 


18 


-5-0110664501736E-009 


6 


9-5410260700099E-002 


19 


- H312815967417E-009 


7 


8-2631707941841E-003 


20 


4-6747879187209E-010 


8 


- 1-7355299293887E-002 


21 


2-653 1328428935E-011 


9 


2-971 7102085349E-005 


22 


-3-8735009780784E-011 


10 


2-9683069 164996E-004 


23 


3-8598232577803E-012 


11 


-3-0384182421661E--005 


24 


2-0690368287353E-012 


12 


- 1-82301 18955959E-005 


25 


-5-1032148957020E-013 


13 


5-0851049208551E-006 


26 


-8-7096012910697E-014 



Case (3): a = 0, j? = 0-5 in this case the upper disc is rotating and the lower one is 
stationary. The coefficients (a n ) of the series (27) for/'"(l) are listed in table 3. They are 
decreasing in magnitude but have no regular pattern of sign. So, as in the previous case we 
use Fade' approximants to sum the series. The results obtained are shown in figure 5. 

Case (4): a = 1, j? = 1 in this case discs are corotating (with same speed). The coefficients 
(a n ) of the series (27) for /"'(I) are listed in table 4. They are decreasing in magnitude and 
alternate in sign after llth term. Using the computed coefficients we draw Domb- 
Sykes plot (figure 6) for/'"(l) (series (27)) to find the nature and location of the nearest 
singularity which restricts the convergence of the series. In this case singularity is found 
to be at R = 2-579849 on the negative real axis. The bilinear Euler transformation will 
help in recasting the series into new series whose region of validity is increased 



A 



-2 



numerical [10] 

[2/2] Fade' approximants 

[2/3] " 

Brown's method 




10 



20 30 

R """* 

Figure 4. Values of A as a function of R(ot = 4, /( = 0). 



50 



60 



362 



N M Bujurke el al 



Table 3. The coefficients a n of the series (27) for /'"(I) in the case of a = 0, 
= 0.5. 



No 



No 



1 


- 6-OOOOOOOOOOOOOOE-OOO 


14 


3-1356929508470E-009 


2 


-9-4642857142857E-001 


15 


3-3582404952799E-011 


3 


-6-1091012162441E-002 


16 


- 1-329911951 1885E-010 


4 


3-78589355301 74E-002 


17 


1-8233492599838E-011 


5 


6-065764368 1146E-003 


18 


2-0308395587595E-012 


6 


6-43802385 141 8 1E-.004 


19 


- 6-6509 147430890E-0 13 


7 


5-9793 18921 1569E-004 


20 


-6-1403723963494E-014 


8 


7-6918357469503E-005 


21 


4-7938734279652E-014 


9 


- 5-9467326297197E-006 


22 


-7-0845088542235E-015 


10 


8-86224061 12891E-007 


23 


6-2683407300982E-018 


11 


5-0127735327728E-007 


24 


1 -37998041 66256E-0 17 


12 


-5-5929925021510E-008 


25 


6-2326271557991E-017 


13 


- 7-7492242493884E-009 


26 


-2-3804925454199E-017 



compared to the original series (27). Consider the Euler transformation 



then R = coR /(l - co) and 

/'"(i)= -6+ ; 

n 

where 

D 1 = 6, 

D 2 = a 2 R , 



n=l 



(30) 



8 
6 
4 
2 

-2 



numericoinO] 

[3/4] Pade' approximates 

13/3 " 

--- Brown's method 




10 20 

R - 

Figure 5. Values of A as a function of R(a == 0, jft = 0-5). 



30 



40 



Computer extended series solution 



363 



with 



Table 4. The coefficients^ of the series (27) for /'"(I) in the case of a = !,/?= 1. 



No 


a n 


No 


a. 


1 


-6-000000000000000000 


14 


1-3686820085834E-006 


2 


-7-7142857142857E-001 


15 


- 1-9036823867936E-007 


3 


- 2-7486085343228E-001 


16 


8-975672269942 1E-008 


4 


1-48 14962475 167E-001 


17 


- 6-0920523719445E-008 


5 


- H3224033836UE-002 


18 


2-2416431500647E-008 


6 


-4-6167826401268E-003 


19 


-5-3363130655523E-009 


7 


-2-9912751714986E-005 


20 


1-4329467638064E-009 


8 


1-4864726973501E-003 


21 


-6-7360950377740E-010 


9 


- 4-73733480 18575E-004 


22 


2-9287892083304E-010 


10 


2-8876377 167786E-005 


23 


-9-3478798663218E-011 


11 


4-8008012782765E-007 


24 


2-6176956621819E-011 


12 


1-0028862586723E-005 


25 


-9-1174262387237E-012 


13 


-5-9189631736138E-006 


26 


3-7433180023877E-012 



3a 4 



(31) 



e j = (-R ) j ' 1 a J . 



12 





\ 

I \ 

I \ 

' \ 

I 

I 

I 

I 



\ 



Case 4 
- Case 5 



nran 



0-2 



0-6 



0-8 



1/n 



Figure 6. Domb-Sykes plot for series (27) in the case of a = 1,0 = 1 and a = 1, ft = - 1. 



364 



N M Bujurke et al 



Brown's method 

Eulerised series 




Figure 7. Values of A as a function of K(cc = 1 , = 1) and (a - 1, f - - D- 



This transformation maps the dominant singularities to . 

remains fixed Points close to the dominant singularities are mapped far from the origin 

aZentoSLunitcircleinth^ 

shown in figure 7. 

Case (5V a = 1 B = - 1 in this case discs are counterotating (with same speed). The 
coS L s (a ) of the series (27) for/"' (1) are listed in table 5. They are decrying 
magnitude and alternate in sign after 10th term. Using the computed coeffic ents we 
draw Domb-Sykes plot (figure 6) for /'"(D (series (27)) to find the nature and oca ion 
of the nearest singularity which restricts the convergence of the series. In this case 



Table 5. The coefficients a, of the series (27) for /'"(I) in the case of a - 1, 
J3=-l. 



No 


*. 


No a. 


1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 


_ 6-000000000000000000 
- 1-571428571428600000 
- 2-1210059781490E-002 
-2-7858353362435E-001 
- 1-4495845921663E-002 
- 3-2775029096463E-003 
2-0976832622669E-003 
-4-9288165348855E-004 
- 7-5443633168820E-006 
-8-6986972673174E-006 
7-667501484U31E-006 
-3-5515893049259E-006 
5-6651432024791E-007 


14 -9-2298357740712E-008 
15 3-3221879279623E-008 
16 _ 1-8249751078357E-008 
17 5-3594587988598E-009 
18 -H691594163933E-009 
19 2-6218335178891E-010 
20 - 9-821 1386423030E-01 1 
21 3-5209099021094E-011 
22 - 1-0026682644541E-01 1 
23 2-4337119787355E-012 
24 -6-7971322153644E-013 
25 2-241 1087467669E-013 
26 - 7-1355223824464E-014 



Computer extended series solution 365 

singularity is found to be at R = 2-623517 on the negative real axis. As in the previous 
case we have used Euler Transformation to increase the region of validity. So 

/'"(D = -6-f f a n+l (<DR /(l-co)r= DX" 1 (32) 

n 1 n= 1 

The variation of A with R is shown in figure 7. 
Equations (10)-(14) are also solved by power series method. 

4. Power series method 

We assume power series solution to (10)-(14) in the forms 

00 

/= I d n (\-riT +l (33) 

= /?+Z b m (\-rjf (34) 

where 



> B + 0=a (35) 

=i 
and 



P"-W-* (36) 



2Rpb n+l _ 2R _ 

11+3 " (n + 4)(n + 3)(n -f 2) + (n + l)(n + 2)(n + 3)(n + 4) 



Expression (35) comes from the boundary conditions at r\ = and (36) and (37) are 
obtained from (10) and (1 1) respectively. If b l , d 1 and d 2 are known then rest of (b n } and 
{d n } can be found from the recursive relations (36) and (37). 

Effectively we have transformed a two point boundary value problem into solving 
a system of nonlinear equations. We wish to find b l ,d 1 and d 2 such that conditions (35) 
are satisfied. To solve this system of nonlinear equations Brown's method is useful. The 
details of this procedure are given in Byrne [18]. It is found that the series (33), (34) 
converge much faster and also more accurate solution with very little computer time 
can be obtained. It is implemented in analysing all the five cases considered. The first 
two coefficients of the series and lift at different Reynolds numbers are calculated. All 



366 N M Bujurke et al 

these values are accurate to six significant figures. The number of significant figures for 
accuracy was determined by increasing the number of terms in the series from 30 to 350. 
The time taken by the computer is also comparatively less whereas other methods 
[9, 10, 16] require more computer time and large storage. 

5. Discussion of results 

Here the problem of injection (suction) of a viscous incompressible fluid through 

a rotating porous disc onto a rotating co-axial disc is studied using computer extended 

series analysis. The motion of the fluid is governed by a pair of coupled nonlinear 

ordinary differential (10) and (11) together with the boundary conditions (13) 

and (14). The series expansion scheme with polynomial coefficients ((22), (23)) proposed 

enables in obtaining recurrence relations (24) and (25). Using these interactive relations 

we generate large number (n = 25) of universal coefficients ((A n(k} , k = 2, 3, . . . , 4n + 1), 

n = 1, 2, . . . , 25) and ((J5 B(fc) , k = 1, 2, . . . , 4n), n = 1, 2, . . . , 25). To this order there are 

1300 coefficients A n(k) and 1300 coefficients B n(kr A careful FORTRAN program 

consisting of number of DO loops makes it possible in performing complex algebra 

involved. Using the universal coefficients of the series ((22), (23)) we obtain series 

expansion for A which is directly proportional to the lift. The coefficients a n of the 

series (27) for A in the case of a = 0, j? = are listed in table 1. They decrease in 

magnitude and have same sign after third term. Figure 2 shows the Domb-Sykes plot 

for series (27) in the case of a == 0, jS = 0. The slope of the curve indicates square root 

singularity corresponding to double valuedness of the solution (by using rational 

extrapolation exact position of the singularity is found to be at R = 17-9826 with an 

error of order 10 ~ 5 ). So the region of validity of the series (27) for A in the case of 

a = 0, fl = will be increased by reverting the series (by changing the role of dependent 

and independent variables). We use Fade' approximants for summing the reverted 

series (29) which accelerates the convergence and yields its analytic continuation. 

The results agree most favourably with results of Wang [16] (numerical), Bujurke and 

Naduvinamani [12] (semi-numerical) and Phan-Thien ad Bush [9] (power series). It is 

of interest to note that [2/2] and [2/3] Fade' approximants bracket [The Fade' 

approximants P^(l) and P^l) form upper and lower bounds for the numerical value 

of lift force [15]] the Numerical results of Wang [16] (figure 3). Double precision 

arithmetic used guarantees the accuracy of Fade' approximants. Also, the round off 

errors will be of negligible order as the Fade' approximants bracketing the numerical 

results are of the form where denominators are polynomials of degree ^ 4 [17]. Table 2 

contains the list of coefficients a n of the series (27) for the case of a = 4, $ = 0. These 

coefficients decrease in magnitude but have no regular sign pattern. We invoke Fade' 

approximants to achieve analytic continuation of the series (27). The results agree 

favourably with earlier numerical findings [10]. Also, we observe that [2/2] and [2/3] 

Fade' approximants bracket the numerical results which are given in figure 4. The 

coefficients a n for the case of a = 0, jS = 0-5 are listed in table 3. In this case also 

coefficients are decreasing in magnitude and have no regular sign pattern. As in the 

previous case analytic continuation of the series (27) is achieved by using Fade 7 

approximants. The [3/4] Fade' approximant is found to be very near to the numerical 

results [10] which are shown in figure 5. The coefficients a n of the series (27) for A in 

he case of a = 1, /? = 1 are listed in table 4. They decrease in magnitude and have 

ilternate sign after llth term. Figure 6, the Domb-Sykes plot for series (27) in the 



Computer extended series solution 



367 



Table 6. Comparison of Brown's method with optimization method. 







Terms (N) 
(required 
for the 




Terms (N) 
(required for 
the conver- 


R 


Lift 
(Brown's Method) 


convergence 
of Brown's 
Method) 


Lift 
(Optimization) 


gence of the 
optimization 
method) 


1 


6-80278 


30 


6-80278 


50 


5 


2-10850 


50 


2-10850 


100 


10 


1-58847 


75 


1-58847 


200 


15 


1-42121 


150 


1-42846 


500 


18 


1-38127 


200 


1-39342 


750 


22 


1-35841 


350 









case of a = 1, = 1 shows the singularity on the negative real axis after extrapolation 
at R = 2-579849 with an error of 10~ 4 . The region of validity of the series is increased by 
Euler Transformation. The results obtained are shown in figure 7. In case 5 the analytic 
continuation is achieved exactly in the way like case 4. The results obtained are shown 
in figure 7. This problem is also solved by power series in conjunction with Brown's 
method for different cases [a = 00 = 0, a = 4)3 = 0, a = 00 = 0-5, a = 10 = l, 
a = 1 ft = 1] and the results obtained are shown in figures (3-5 and 7). Details of case 
1 (a = 0, = 0) (table 6) corresponding to stationary disks with injection shows the 
efficiency of Brown's method. The series (26) representing radial velocity profiles in 
various cases (a = 0, = 0; a = 4, = 0; a = 0, = 0-5) are analysed using Fade' 
approximants and these results are shown in figures 8 and 9). It is observed that velocity 
attains peak values for a = 0, = 0-5 and it is much higher than first two cases. 



1-5 

1 

,0.5 



-0-5 




0-2 0-4 0-6 0-8 1 

7? ' 

Figure 8. Radial velocity distribution /'(*/) at R = 16. 



368 N M Bujurke et al 

1-5 




-0-5 



0-2 0-4 0-6 0-8 1 

7? 

Figure 9. Radial velocity distribution f'(r\) at R = 20. 

The method proposed here is quite flexible and efficient in implementing on 
computer compared with the pure numerical methods. Once the universal coefficients 
are generated rest of the analysis can be done at a stretch requiring hardly any 
computer time and storage. Whereas other methods [9, 10, 16] require more computer 
time and large storage. 

Acknowledgement 

The authors thank the referee for useful suggestions on the earlier version of the paper. 

Appendix 

Fade' Approximants 

The basic idea of Fade' summation is to replace a power series 



by a sequence of rational functions of the form 

N 



where we choose B = 1 without loss of generality. We determine the remaining 
(M + N + 1) coefficients A^A^A 2 ^..A N ;B^B 2 ,...B M so that the first (M + N + 1) 
terms in the Taylors series expansion of P^-R) match with first (M + N + 1) terms of 
the power EC w R n . The resulting rational function PM(&) is called a Fade' approximant. 
If EC w jR n is a power series representation of the function f(R) than in favourable cases 



Computer extended series solution 369 



, pointwise as N, M - oo. There are many methods for the construction of 
Fade' approximants. One of the efficient methods for constructing Fade' approximants 
is recasting of the series into continued fraction form. A continued fraction is an infinite 
sequence of fractions whose (N + l)th member has the form 



+ DjjR 



l+D 2 R 



l+D N R 

The coefficients D n are determined by expanding the terminated continued fraction 
F N (R) in a Taylor series and comparing with those of the power series to be summed. 
An efficient procedure for calculating the coefficients D n 's of the continued fraction (E) 
may be derived from the algebraic identities (8.4.2a)~(8.4.2c) [15]. Contrary to repre- 
sentations by power series, continued fraction representations may converge in regions 
that contain isolated singularities of the function to be represented, and in many cases 
convergence is accelerated. Based on these D M 's we get terminated continued fractions 
of various order from other algorithms ((8.4.7), (8.4.8a) and (8.4.8b) [15]). 

Fade' approximants perform an analytic continuation of the series outside its radius 
of convergence. It is clear that it can approximate a pole by zeros of the denominator. 
With branch points it extracts a single- valued function by inserting branch cuts, which 
it simulates by lines of alternating poles and zeros [19]. 

References 

[1] Batchelor G K, Q. J. Mech. Appl. Math. 4 (1951) 29 

[2] Von Karman T, Z. Angew. Math. Mech. I (1921) 233 

[3] Bodewadt U T, Z. Angew. Math. Mech. 20 (1940) 241 

[4] Stewartson K, Proc. Cambridge Philos. Soc. 49 (1953) 333 

[5] Hoffman G H, J. Comput. Phys. 16 (1974) 240 

[6] Lance G N and Rogers M H^Proc. R. Soe. (London) A226 (1962) 109 

[7] Mellor G L, Chappie P J and Stokes V K, J. Fluid. Mech. 31 (1968) 95 

[8] Brady J F and Durlofsky L J, J. Fluid. Mech. 175 (1987) 363 

[9] Phan-Thien N and Bush M B, Z.A.M.P., 35 (1984) 912 
[10] Wang C Y and Watson L T, Z.A.M.P., 20 (1979) 773 
[1 1] Van Dyke M, Q. J. Mech. Appl. Math. 27 (1974) 423 
[12] Bujurke N M and Naduvinamani N B, Z.A.M.P. 43 (1992) 697 
[13] Richardson S, Proc. Cambridge Philos. Soc. 74(1973) 179 
[14] Schwartz L W, J. Fluid. Mech. 62 (1974) 553 
[15] Bender C M and Orszag S A, Advanced Mathematical Methods for Scientists and Engineers, Third 

Internation Edition (1987) (London: McGraw Hill Book Co.) 
[16] Wang C Y, A.S.M.E. J. Appl. Mech. 41 (1974) 343 
[17] Graves-Morries P R, Lecture Notes in Mathematics, (1980) (Berlin: Springer-Verlag) Vol. 765 

pp. 231-245 
[18] Byrne G and Hall C (eds) Numerical Solution of Systems of Nonlinear Algebraic Equations, (1973) 

(New York: Academic Press) 
[19] Baker G A, Essentials of Pade' Approximants (1975) (New York: Academic Press) 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 4, November 1995, pp. 371-380. 
Printed in India 



The Hodge conjecture for certain moduli varieties 

V BALAJI 

School of Mathematics, SPIC Science Foundation, 92 G.N. Chetty Road, T. Nagar, 
Madras 600 01 7, India 

MS received 20 March 1995 

Abstract For smooth projective varieties X over C, the Hodge Conjecture states that every 
rational Cohomology class of type (p, p) comes from an algebraic cycle. In this paper, we prove 
the Hodge conjecture for some moduli spaces of vector bundles on compact Riemann surfaces 
of genus 2 and 3. 

Keywords. Chow groups; Abel-Jacobi maps; moduli spaces; normal functions; Hecke 
correspondences. 

Introduction 

For smooth projective varieties X over C, the field of complex numbers, the Hodge 
conjecture states that every rational cohomology class of type (p, p) comes from an 
algebraic cycle. More precisely, consider the Hodge decomposition 



Let C P (X) denote the Chow group of algebraic cycles of codimensionp on X, modulo 
rational equivalence. Then one has the 'class map' 



tf x : C p (X) Q -> H 2p (X, Q) n 

Then the Hodge (p,p) conjecture states that X p x is surjective. 

Let C be an irreducible smooth projective curve if genus g ^ 2, and let M(n, ) be the 
moduli space of stable vector bundles V on C, of rank n, det V ^ & a line bundle of 
degree d such that (n,d) = 1. The aim of this paper is to prove the Hodge (p,p) 
conjecture in the case when g=--2, 77 = 3 (dimM(3,) = 8). In the case when = 2, 
g = 2, 3, 4, the Hodge conjecture can be proved by elementary means which we indicate 
at the end of the paper. 

The case we consider is of interest, as it gives a non-trivial family of examples where 
the general method of normal functions is used to prove the conjecture. Geometric 
descriptions given in [T] in the rank 2 case lead to elementary proofs, of the Hodge 
conjecture. In the rank 3 case, any such description does not give elementary proofs of 
the Hodge conjecture, (cf. Remark 4.3, 4.4) 

The Poincare-Lefschetz theory of normal functions was generalized and developed 
by Griffiths and Zucker and had the proof of the Hodge (p,p) conjecture as a primary 
goal In this paper we give a natural construction of a smooth projective variety and 
a proper generically finite morphism onto the moduli of rank n, degree (ng - n) bundles 
which plays the role of the Lefschetz pencil in the context of normal functions. From the 
remarks of Zucker (cf. [Z-2], pp. 266) all the known examples where normal functions 
have been used to prove the Hodge conjecture, more elementary methods have been 

371 



372 VBalaji 

successful (cf. [M], [Z-2], and [Sh] for a full survey of the Hodge conjecture); however, 
in the present case this seems unlikely. 

In 1, we recall some general facts. Section 2, contains a theorem giving a criterion 
for a variational Hodge (p, p) conjecture to hold under some stringent conditions. In 3, 
we give a pencil type construction in the context of moduli. Section 4, gives the proof of 
the conjecture for M(3, ). 

Some notations. Let X be a smooth projective variety defined over C the field of 
complex numbers. We state at the outset that our base field is C. Let C P (X) denote the 
Chow group of cycles of codimension p modulo rational equivalence and 
A P (X) c: C P (X) the subgroup of cycle classes algebraically equivalent to zero. 

1. Preliminaries 

Lemma 1.1. (cf. [2-1] A.2) Let X and Y be smooth projective varieties, f:X-*Y be 
a proper generically finite surjection. If the Hodge (p,p) conjecture is true for X, then it is 
true for Y. 

Proof. We note that, /*/* = multiplication by d, both on cycles and cohomology, 
where d= [k(X):k(Y)']. Therefore, if yeH p * p (Y 9 \ f*yeH p > p (X,Q); so if f*y is 
a rational cycle Z, then 



implying y is a rational cycle l/d(f^z) on 7. 

Lemma 1.2. Let Ebea vector bundle of rank r = e+l,andletP = P(E). Letf:P -+Xbe 
the associated projective bundle. Then the Hodge (p, p) conjecture is true for X if and only 
if it is true for P. 

Proof. Let h be the relative ample class 0p(l), and h = c 1 (^ P (l)). Then we have the 
well-known decompositions of the Chow groups and cohomology groups of P, and we 
have the diagram: 

c*(p) = f*c p (x) hf*c p ~ l (x) .-0 h e f*c p ~ e (X) 

m i% ur 1 ur* 

H 2p (P) = f*H 2p (X) hf*H 2p ~ 2 (X) ... h e f*H 2p ~ 2e (X) 

From this diagram, the proof follows easily, noting the fact that /* is an injection both 
on cycles and cohomology. 

Lemma 1.3. Let X be a smooth projective variety, Yc+X a smooth closed subvariety of 
codimension r; let U c+ X be X - Y, f (resp.j) the inclusion ofY(resp. U) in X. Then we 
have the folio-wing commutative diagram: 

C~ r (Y) Jl> C(X) > C q (U) ->0 

>Uy l*x I 

H 2 ~ 2r (Y) Gysin > H 2q (X) -* H 2 (U) 

Proof. This follows from the existence of the Gysin map i^ which is functorial with 
respect to the class map L (cf. J Milne, Etale Cohomology, Proposition 9.3, Ch. VI). 



373 



The Hodge conjecture 



DEFINITION 1.4 

Let J'(X) be the pth Griffiths-mtemediate Jacobian of X based on 

([G],[Z-2])andlet 






cohomology of a proj 



we have 






to 



the one induced by (4 Therefore, one has 



* (X) - 



Further, one has a similar decomposition for ,he Chow groups 

A>(P) = A'(X>&A'-'W- A ' ' (X) ' 
Combining h,s ith d. functorialit, of the Abel-J.cobi maps, we get 



is similar. 

2. Normal functions 

Let f:X -*S be a proper smooth 
-singula: 



^ for x 



[Z-3], [Z-4]). 
conditions hold: 



issurjectiveVseS. 



374 VBalaji 

Then Hodge (p,p) holds for X. 

Proof. Consider the Leray filtration {I/} on H*(X) associated to the morphism /. 
Since the spectral sequence degenerates (cf. [G]), we have: 

L^L^L 2 . 
We need the following description of the Leray filtration from ([Z-3], pp. 194): 

L 1 = ker {H 2p (X) -> H 2p (X s )} 

L 2 = ker [H 2p (X) -+H 2p (X - X s )} 

= Im {H 2p ~ 2 (X s ) Gys ' m > H 2p (X)} (cf. Lemma 1.3) 
for any seS, and 



We need to handle the (p,p) classes in the rational cohomology of X, which come 
from the various parts of the Leray filtration. 
The primitive class i.e. the (p, p) classes lying in L 1 can be dealt with as follows: 

(i) Observe firstly that L l /L 2 ~ H l (S, # 2p ~V*Q). Integral (p,p) classes in L^L 2 , thus 
arise as cohomology classes of normal functions i.e. holomorphic sections of the 
intermediate Jacobian bundle, J P (X S ) -S. This is a consequence of Theorem 2.13 of 
[Z-4]. Our assumption (b) then ensures by [Z-l], that this normal function comes 
from a relative algebraic cycle on X. 

(ii) (p,p) classes which lie in L 2 : Note that 

L 2 = Im {H 2p ~ 2 (X s ) Gysin > H 2p (X)} 

and by assumption (a) and Lemma 1.3 of 1, since Hodge (p 1, p 1) holds for X s , 
(p, p) classes in L 2 come from algebraic cycles. 

Now for the remaining classes, in L /^ 1 , let 7 be a (p,p) class in H 2p (X\ which 
restricts to non-zero classes y s on X s for all seS. Let ^ d x/s denote the Chow variety (or 
reduced Hilbert scheme) of relative codimension p cycles of degree d on X. By the 
theory of Hilbert schemes, for some d 0, the natural morphism 



x/s 

is a surjection. Hence for all A ^ 1, ^ s -* S is surjective. 
Let V' Ad be the non-empty open subset of S for all A ^ 1, such that 



is flat. (Such a non-empty V exists since < a is a proper surjective morphism.) By 
a Baire argument, it is easy to see that H^ { V u * <; choose an se n ; . > i ^ Ad and fix this s. 
Consider 7 1 Js = 7 S ; then by (a) of Theorem 2.1, since Hodge (p,p) is true for X s , express 
y s = oc s - p where a s and p s are effective codim p-cycles on X s of degree / and 
m respectively. Since we are interested only in rational cohomology, we may assume, 
without loss of generality that / and m are multiples of d. 

Therefore, by choice se V l n F m , and a s e< ~ x (4 Since ^ is flat over V 1 , all irreducible 
>mponents of $^(V*) dominate V 1 (S being a smooth curve). Choose an irreducible 



The Hodge conjecture 



component of <f>~W which contains a, Then it is easy to see, (bv choosing a cune 
C through a s and taking its closure in U that we get a curve S' and a finite morphia 
i -* S, such that (we could assume S' is also smooth without loss of generality bv aoins 
to the normalization if need be). ~ . . - - 



I I 
S' -* S 

and there is a section for ' over S', which passes through x s . That is if 
X' JL+X 

1 I 

S' > S 

then, there exists an effective codimension p-cycle a of degree / on X', such that 2 v = x s : 
where s' -* s. We can similarly get a /? of deg m over another finite extension, and \ve can 
therefore get T, a smooth curve, with a finite morphism 

r-s, 

such that 

Y JL> X 

I I 

T > S 



and a and /? give codimension p-cycles on Y of degree / and m respectively, s.t. 

oc| rt =a s , ^| yt = /? r 
Thus, 



e= [>*}>- (a -j3)] 
is a cohomology class which (by (*)) lies in 



Hence e is a primft ie cofcomo/offy class on Y; observe that fibres of V-* J are the same as 
those of X -S, and hence thehypothesesofTheoremll.holdforthefibresotlpT-to 

well. So by the first part of our proof, e comes from a codimension p-algebraic cycle , on 
Y. i.e. 



is algebraic. Since : 7- X is a proper finite surjection, by Lemma 1.1. it follows that 
y itself is algebraic. 

3. A pencil-type construction for moduli 

In the discussion that follows, we describe 
moduli spaces of vector bundles. We remark that 



376 VBalaji 

hyperplane section in the moduli space is not very transparent and so the usual theory 
of normal functions and Lefschetz pencil cannot be applied in this setting. We begin by 
proving a lemma which is essential in the construction. 

Lemma 3.1. Let Wbe a stable vector bundle of rank 2 and degree 3. Let V be a non-split 
extension 



Then V is semi-stable. 

Proof. This is an elementary consequence of Propositions 4.3, 4.4. and 4.6 of [N-S]. To 
see this, suppose that V is not semistable, then by Proposition 4.6 there exists an F, 
stable of rank ^ 2 such that 



and a non-zero element /eHom(F, V). Thus /z(JF) ^ jj.(W). Thus v/eHom(F, W\ If 
v o/ is zero, / must factor through & which gives an immediate contradiction. If v of is 
non-zero, by Proposition 4.4 of [N-S], if W 1 is the subbundle of W generated by 



. 

Since W is stable, it implies W l ^W and vo/ is an isomorphism, which gives 
a splitting for v, q.e.d. 

Let M L = M(3, L), be the moduli space of semi-stable bundles of rank 3, deg 3g - 3, 
A n V ^ L, g being the genus of C, i.e. deg (L) = 3# - 3, # = 2. 
Consider the -divisor in M L which is defined as follows: 

= {FeM L |/i(F)>0}. 
More generally, we can define for all e J(C) ? the divisor 



Let Hr^ be the universal family on C x M(2,L) and consider the bundle of 
extensions given by 



where p:C x M(2,L)->M(2,L). Observe that, if WeM(2^L\ then the 
points of P 5 lying above W are given by non-split extensions 

Q^Q^V-*W-+Q. (1) 

By Lemma 3.1, we see that bundles V obtained above are semistable. Thus we can 
define a morphism 



^ote that since det V ~ L, det(K ( 1/3 )*) = L. Also this map is well-defined since 
P$ parameterizes a universal family and M(3,L) has the coarse moduli property. 

It is easy to see that Im <^ c (when rj = 1/3 ). Further, by ([S] Theorem IV, 2.1), 
the component of Im 0* in B n is of codimension at least 2 (in general for rank n it is n - 1) 



The Hodge conjecture 377 

and therefore contains a non-empty open subset of 0^, hence by the properness of <p^ 



(in fact by [S], ^ is birational). 

The above construction of P^ can be globalized as follows: 

Let M(2,3) be the moduli space of vector bundles of rank 2 and degree 3. Let 
if -> C x Af(2, 3) be the universal family. Define P = P(R l p^"*). Then the morphism 
</>,, globalizes to give: 



(the ambiguity of 'cube roots' can be resolved to by pulling back P by the following 
diagram: 



(so in fact, (j) is well-defined as a morphism <p : P' -* M(3, L)). Define P c by the following 
base-change diagram: 

P-*?' 



C 



where Cc+Jby mapping a base point x to the fixed degree 3 line bundle L. (Note that 
C is in fact connected). Then <p induces a morphism 



We claim that is surjective. This is not hard to see since Im <t> contains the 0-divisor; 
further, one can easily get a point in M L - in Im 0. Now surjectivity follows from the 
fact that P c and M L are irreducible and is a proper morphism, such that Im $ 
properly contains a divisor. 
Since 

dim P c = dim + dim C = dim M L , 
gives a generically finite proper surjection. 

Remark 3.2. We remark that the above construction can be done for all ranks by using 
the construction of desingularization of the 0-divisor in [RV] Our variety P can be 
related to their but we would not go into it here. 

4. Proof of the Hodge conjecture for M(3, ij) 

In this section we complete the proof of the Hodge ( p, p) conjecture for M(3, r\\ where 
deg Y\ = 1 or 2, g = 2. The strategy is to relate the geometry of M(3, 17) and M(3, L) by the 
Hecke correspondence (cf. [B]). 



378 VBalaji 

PROPOSITION 4.1 

Let M L = M(3, L), deg L = 30 ~ 3. Let = 2 and consider the moduli space P c construc- 
ted in 3. Then Hodge (p, p) is true for P c for all p. 

Proof. By Theorem 2.1, it is enough to prove the properties (a) and (b) in its statement 
for n~ l (y) for all yeC, where 



By 3, n~ 1 ( j;)'s are the moduli spaces P%. Since P^ is a projective bundle on M (2, ^ L) 
associated to a vector bundle, to prove (a) and (b) of Theorem 2.1 for P^ it is enough to 
check them for M(2, L) because of Lemma 1.2 and Lemma 1.5. Since M(2, L) is 
a 3-fold, the Hodge conjecture follows from the Lefschetz (1,1) theorem. That 
A 2 (M(2,cL)) has the Abel-Jacobi property follows from ([B-M] pp.78) since 
M(2, f L) is a rational 3-fold. 

We could also prove the above Proposition for P c more directly by using the follow- 
ing fact: 

By Thaddeus [T], (cf. also [N]), we could, consider the variety obtained by blowing 
up the curve C embedded in a suitable projective space of extensions. It corresponds to 
the variety M l in [T]. Denote this by Af (2, L). Then, when g = 2, it is easy to see 
that 



is a birational morphism. Since M'(2,^L) also parameterizes family of vector 
bundles (in fact a family of pairs!), we have a variety P^, a projective bundle associated to 
a vector bundle on M'(2, L) and a birational morphism 



Properties (a) and (b) of Theorem 2.1 are fairly simple for P . Now construct globally 
the variety P^ such that 

PC -Pc 

I I 
C - C 

Observe that by Theorem 2.1, Hodge (p 9 p) is true for P' c . Since P^ -> P c is a generically 
finite surjection, Hodge (p,p) for P c follows from Hodge (p,p) for P' c , by Lemma 1.1. 

Theorem 42. The Hodge (p,p) conjecture is true for M(3,??), where degrj = 1 and 2. 
to = 2). 



. We prove it for deg r\ = d = 1. Proof for d = 2 follows along identical lines. 

Let P^ be the moduli space of parabolic stable bundles, (7, A), V of rank 3, 
deg 3g - 3 = 3, det V ^ L, with parabolic structure A at xeC given by 



F 2 V X a subspace of dim 1, and weights taken sufficiently small (cf. [B], . . . ). Then, we 



The Hodge conjecture 379 

have the Hecke correspondence 




M L 
where r\ is a line bundle of deg Y\ = 30 5 = 1. The morphisms \l/ and h are given by 



where W is obtained from the following exact sequence. 

T being a torsion sheaf of height 2 given by 

T JVJF 2 V X at x 

[0 elsewhere. 

Then it is known that ^ is a projective bundle associated to a vector bundle on M(3, YJ) 
(cf. [B]) and the map h (in (*) above) is generically a projective bundle over the stable 
points of M L . Therefore by Lemma 1.2, it is enough to prove the theorem for P x . 

Now P c by construction parameterizes a universal family i' -* C x P c . By the 
definition of and h, it is easy to see that P x ^ P>(f *), where V~ x is the bundle on P c 
obtained by restriction of V to x x P c , and 1^* its dual. Thus by the coarse moduli 
property of parabolic bundles for P^, we have a morphism $: P x - P x and the following 
commutative diagram: 



By Proposition 4.1, Hodge (p,p) is true for P c and hence by Lemma 1.2, it is true 
for P x . Thus by Lemma 1.1, since $ is a generically finite surjection, Hodge (p 9 p) is true 
for P x for all p, which proves the theorem. 

To prove it when deg rj = 2, we modify the parabolic structure by giving F 2 V x c K x , 
as a subspace of dim 2 and the rest of the argument is similar. 

Remark 4.3. (The Hodge (p, p) conjecture for rank 2 moduli when = 3, 4). 

In these cases when rank is 2, there is a geometrical picture due to Thaddeus (cf. [T]); 
in his notation, if d > 2g - 2, d being the degree, then the moduli space of stable pairs P , 
z = (d- 1)/2, dominates M (2, ) d() = i Further, when d = 20 - 1, P , z = (d - l)/2, has 
the property that 



is a birational surjection. Thus, in the case when = 3, (resp. 4) d = 5 (resp. 7), the index, 
f = 2 (resp. 3). 

Now, the variety P 2 (resp. P 3 ) is obtained by a sequence of blow-ups and blow-downs 
where the centres are smooth and Hodge conjecture is easily verified by using the 



380 VBalaji 

Ibrmule-clef which expresses the Chow ring (resp. cohomology) of the blow-up i: 
terms of the Chow ring (resp. cohomology) of the base and the centre of the blow-uj. 
Then by Lemma 1.1, using 0, Hodge (p,p) follows for M(2, ). When = 5, the centre 
blown-up are projective bundles over S 4 C, the 4th symmetric power of C and henc 
Hodge (p,p) would follow, once it is known for S"C, n ^ 4. 

Remark 4.4. In the rank 3 case, even when = 2, the centres of blow-ups in any attemp 
at such descriptions seem much more complicated, vis-a-vis the Hodge conjectur< 
Also, it is not clear if the centres are smooth in the first place. Our proof, which i 
inductive, uses the simple nature of the geometry of rank 2 moduli spaces. 

Acknowledgements 

It gives the author great pleasure to thank P A Vishwanath for his invaluable help. H 
also thanks Profs M S Narasimhan and C S Seshadri for useful discussions an 
D S Nagaraj for pointing out some corrections. 

References 

[B] Balaji V, Intermediate Jacobian of some moduli spaces of vector bundles on curves, Am. J. Math. 11 

(1990)611-630 
[B-M] Bloch S and Murre J P, On the Chow group of certain types of Fano threefolds, Compos. Math. 2 

(1979)47-105 

[G] Griffiths P, Periods of integrals on algebraic manifolds III, Publ Math. I.H.E.S. 38 (1970) 125-18 
[M] Murre J P, On the Hodge conjecture for unirational fourfolds, Indagationes Math. 80 (197 

230-232 
[N] Newstead P E, Stable bundles of rank 2 and odd degree on a curve of genus 2, Topology 7 (196 

205-215 
[N-S] Narasimhan M S and Seshadri C S, Stable and unitary vector bundles on a compact Riemar] 

surface, Ann. Math. Vol. 82, 3 (1965) 540-567 
[R-V] Raghavendra N and Vishwanath P A, Moduli of pairs and generalized theta divisors, Tohoku Mat 

J. 46 (1994) 321-340 
[SH] Shioda T, What is known about the Hodge conjecture?, Advanced Studies in Pure Mathematics - 

(1983) pp. 55-68 

[S] Sundaram N, Special divisors and vector bundles, Tohoku Math. J. (1987) pp. 175-213 
[T] Thaddeus M, Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117 (1994) 3 1 7-3 f 
[Z-l] Zucker S, The Hodge conjecture for cubic fourfolds, Compos. Math. 34 (1977) 199-209 
[Z-2] Zucker S, Intermediate Jacobians and normal functions, Ann. Math. Stud. (1984) (Princeton Uni 

Press, New Jersey) No. 106 
[Z-3] Zucker S, Generalized intermediate Jacobians and the theorem on normal functions, Invent. Mat 

33(1976)185-222 

[Z-4] Zucker S, Hodge theory with degenerating coefficients: L 2 cohomology in the Poincare metric, An 
Math. 109(1979)415-476 



Pro , Indian Aca, So, (Mat, So,), Vol. 105. No. 4, Nove.be, 1995, P, 381-391. 
Printed in India. 



Bavarian, cobordism of Grassmann and Bag manifolds 



Madras 600 017, India 

MS received 3 January 1995; revised 27 March 1995 

Abstract. We considerce 



on real Grassrnann and flag manifolds 
with finite stationary point sets and 



Id; fl a g d; tan g enti a , 



representation. 



action 
closed G- 






u 
of equiv ai en ce 



1. Introduction ., , 

LetCbeacompactLiegro^^^ 

denoted by (M, *), where J:G x M - M denotes^ ^ ^^^ ^ ^.^ 

called a stationary point rf J to, ^) = ^ or al ^ ^ A smoot h closed n-dimensional 
erou S (ZandS 1 w 1 thfin 1 testatonary 

^^ 

^^ } Two & 

l^ i^teLtio^point sets, anjsaid to 

, - * J^^ union (M u M",,^ u ^ bounds 
eunoidyif 

equivariantly. This is an 

cLses is denoted by Z n (G). 

disjoint union this becomes an abehan 

with diagonal action makes the ^ 

algebra. For a smooth closed oriente 

every geG, <I>,M-+ M, x^x 

set, we say (M", *) is an onent 

( W^ <D)ona compact onen 

( dTffeomorphism for which the induced 

diffeomorphic to (M", flby o^ 
(- M'.fl, by just reversing the 



!S 



e, 
product of G-mamfolds 
& commu tative 

.^ (M", ^ (so that for 
} having fini te stationary point 
\, and only if there is an action 
a group of orientation presemng 
8 $/ W " +1 ) is equivanantly 
m S P hism. We take - (M^) 
. Two smooth closed onented 
point sets, 



382 Goutam Mukherjee 

a representative M on which there exists an action of S l with finitely many stationary 
points. Thus in the case G = S 1 , the map is surjective. 

The aim of this paper is to consider certain natural (Z 2 ) n actions on real Grassmann 
and flag manifolds and S l actions on complex Grassmann manifolds with finite 
stationary point sets and generate elements in the kernel of s and &. Group actions 
with finite stationary point sets are particularly interesting, as in this case, the 
tangential representations of the group G = (Z 2 )", at stationary points, completely 
determine the equivariant cobordism class of manifolds [3]. In case G = S 1 , although 
the tangential representations do not determine the equivariant cobordism class 
of a manifold completely, they carry lot of information about the bordism structure 
of the manifold. As for example, Atiyah-Singer [1] and Bott [2] have shown that if 
S 1 acts on an oriented compact manifold M with a finite stationary point set S, 
then the oriented RS ^modules {T x M:xeS} determine the Pontrjagin numbers of M, 
(also cf. 2). 

For G = Z 2 x Z 2 , Conner and Floyd have described the structure of Z^(G) completely 
(cf. [3]). Stong and Kosniowski [4], have also derived this result from a more general 
consideration. They showed that Z JG) is the polynomial algebra over Z 2 generated by 
the class [^P 2 ,<] 2 , where </> is given by the generators T 1 and T 2 as follows. 
Ti([x,y,z]) = [ -x,;y, z] and T 2 ([x,j>,z]) = [x, y,z]. In particular, the kernel of 8 is 
trivial in this case. No neat description of Z J|C (G) for G = (Z 2 ) n , n > 2, is known. Our 
results show that in general the kernel of & is nontrivial. a cobordism class 
[M d , <p'] 2 eZ d ((Z 2 ) n ) is equivariantly decomposable if (M d , </>) is equivariantly cobordant 
to a disjoint union of products of lower dimensional manifolds with (Z 2 ) w action with 
finite stationary point sets, otherwise it is equivariantly indecomposable. The first step 
towards understanding the structure of Z^G) in general, would be to know the 
indecomposable elements in Z Hs (G), which may be considered as the generators. 
Unfortunately, there is no indecomposability criterion known in the equivariant case. 
Clearly if [M] 2 eMO Hc is indecomposable (in the non-equivariant sense) and M admits 
an action of (Z 2 ) n , with finite stationary point set, then [M, </>] 2 is indecomposable. But 
there exist some elements in the kernel of & which are indecomposable in Z :Je ((Z 2 )"). For 
example, it is easy to argue that [RP 3 , 0] 2 is indecomposable in Z^((Z 2 ) 3 ), where $ is 
given by the generators as follows. r 1 ([x,y,z,w]) = [~x,3;,z,w], T 2 ([x,y,z,w]) = 
[x, -y,z,w] and T 3 (|>,y,z, w]) = [x,y 9 - z,w]. By knowing enough elements in the 
kernel, perhaps it would be possible to get an idea about the indecomposable elements 
in general. We believe that all the elements in the kernel given by Theorem 1.1 and 
Theorem 1.2 are indecomposable. This motivates our study of these actions. 

To determine which real flag manifolds bound, in [9] the authors gave a 
partial answer to this question. Real Grassmann and flag manifolds come equipped 
with certain natural (Z 2 ) n actions having finite stationary point sets, to be made precise 
later. Although, it seems difficult to determine the unoriented cobordism class of flag 
manifolds, the determination of (Z 2 )"-cobordism class of flag manifolds is easy. In the 
present paper, which real flag manifolds and Grassmann manifolds bound equivariant- 
ly, is completely determined. More precisely, we prove 

Theorem 1.1. (a) (G n/c ,$) bounds equivariantly if n = 2L 
CO ( G n^ <t>) does not bound equivariantly ifn ^ 2L 

Theorem 1.2. (G(n l3 n 2 ,...,n s ),0) bounds equivariantly if and only if n i = n j for some 



Equivariant cobordism ofGrassmann and flag manifolds 383 

Precise definitions of the actions <p on Grassmann and flag manifolds are given in the 
subsequent sections. Perhaps, by knowing sufficiently many elements in the kernel of 
8 it would be possible to determine whether the unoriented (Z 2 )"-cobordism class of flag 
manifolds lie in the kernel of & or not, and that might lead to a complete answer to the 
question, which real flag manifolds bound? We also consider certain natural S ^actions 
on complex Grassmann manifolds to produce nontrivial elements in the kernel of (cf. 
Theorem 3.4). In this case, our result produce an infinitely many nontrivial elements in 
the kernel of e. As a consequence, we deduce that for each d > 1, J r 2d (5 1 ) is not finitely 
generated as abelian group. 

2. Representation and cobordism 

In this section we briefly recall [3] the relation between tangential representations at 
stationary points and cobordism and a result of Stong. 

Let G be a finite group. Let R n (G) denote the vector space over the field Z 2 , with basis 
the set of representation classes of degree n. The elements in R n (G) are formal sums of 
n-dimensional representation classes with coefficients in Z 2 . If R*(G) = ^R n (G\ then 
RX (G) admits a graded commutative algebra structure with unit over Z 2 . The product is 
given as follows. Suppose (V l9 G), (F 2 , G) are representations. We take (^ V 2 , G) to be 
g(v i9 v 2 ) = (gv l9 gv 2 ). Then the product is (F 1 ,G)-(F 2 ,G) = (K 1 V 2 ,G). The identity 
element is the representation class of degree 0. In fact, R*(G) is the graded polynomial 
ring over Z 2 generated by the set of isomorphism classes of irreducible finite dimen- 
sional real representations of G. 

Consider now an action (M n , </>) with finite stationary point set S. For each xeS, we 
have a real linear representation of G on the tangent space to M" at x. We denote the 
resulting representation class by X(x)eR n (G). Since x is an isolated stationary point, it 
is clear that X(x) contains no trivial summand. To (M",</>) we assign the element 
^ xeS X(x)eR n (G). This element is zero in R n (G) if and only if each tangential representa- 
tion class which occurs is present at an even number of stationary points. The 
correspondence (M w , $) i-^es X(x) induces an algebra homomorphism rj:Z^(G) - R+(G) 
with image S+(G). Stong [11] showed that for G = (Z 2 )\Z^(G)^S^(G). In other 
words, (M 19 0J and (M 2 > <p 2 ) are G-cobordant if and only if ^ xeSi X(x) = S ve s 2 X(y)> 
where ^ 6Sl X(x) and ^5, X(y) correspond to (M l5 ^J and (M 2 , <J> 2 ) respectively. In 
particular, if xeS JT(x) = for (M rf ,<), then [M d ,<] 2 = in Z d ((Z 2 ) n ). Thus the 
unoriented cobordism class [M] 2 of a manifold M on which there exists an action of 
(Z 2 ) M with finite stationary point set S is determined by the tangential (Z 2 )"-modules 
{T x M:xeS}. 

To deal with the oriented case of S 1 action on complex Grassmann manifolds, we 
need an 'oriented' version of representation ring, which is briefly introduced. 

Let G be a compact connected Lie group. For our purpose G will be the circle group 
S 1 . Let V be a (finite dimensional) oriented real representation space. If dir% V> 0, 
then denote by - V the same R G-module but with opposite orientation on it. If V and 
W are oriented [RG-modules, then V W is the oriented R G-module where G acts 
diagonally and the orientation is the 'direct sum' orientation. We regard the 0- 
dimensional vector space as having a unique orientation. Then for any two oriented 
[RG-modules V and 'W 9 V@W^(-\f mV '* imW (W V) as oriented PG-modules, and if 
dimV and dimW are positive, (~V)W^V@(-W)^-(V@W) as oriented RG- 
modules. Note that if dimF is odd, then V^ - V as oriented IRG-modules because 



384 Goutam Mukherjee 

id: V-+ V is an orientation reversing isomorphism. It is now easy to check that for any 
two oriented RG-modules V and W,V@W^W@V. 

We now define the graded ring *(G) which is the analogue in the oriented case of 
R*(G) defined above. For n^ I denote by R n (G) the free abelian group on the 
isomorphism classes of oriented [RG-modules of (real) dimension n modulo the 
subgroup generated by elements of the form [K] + [ K]; [V~\ stands for the isomor- 
phism class of the oriented [RG-rnodule V. R (G) is defined to be the free abelian group 
on [0], the class of the 0-dimensional RG-module. Let JR*(G) = Z^o^( G ) and define 
as before [F]-[W] tobe[K W], where K]/F is given the direct sum orientation and 
diagonal G action. It is straightforward to check that this gives rise to a well-defined 
multiplication which makes -R^(G) a commutative graded ring with unit [0]. Note that 
2x = for all xejR n (G) if n is odd. Let B be the set of all isomorphism classes of 
irreducible oriented RG-modules, and let B { = {xeB:dimx = i mod2}, i = 0, 1. Then it 
can be shown that 



the quotient of the polynomial ring over integers Z in the variable B by the ideal 
generated by {Ib'.beB^. 

Now suppose that (M ", 0), n > 1 is a smooth closed oriented G-manifold with a 
finite stationary point set S. Let xeS, then the tangent space T X M at x to M, which 
is an oriented vector space, is an RG-module. Since x is an isolated stationary point 
T X M does not contain any trivial [RG-submodule other than 0. To (M,0) we 
associate the element fj(M, </>) = ^^[^Mje^fG). For a 0-dimensional manifold X, 
the only G-action is the trivial one. We define fj(X, trivial) = \X\'[0]eR Q (G). We now 
state a result, which may be well-known to the experts but an explicit reference is not 
known and which says that the function ijf behaves well with respect to G-cobordism 
relation. 

PROPOSITION 2.1 

Suppose (M, (j>) and (M ',</>') are equivariantly cobordant as oriented G-manifolds with 
finite stationary points. Then fj(M, 0) = rj(M\ 0') in R#(G). 

The proof of the above result goes along the line of the proof of the corresponding 
result in unoriented case, (cf. 32 of [3]). Thus by Proposition 2.1, we obtain 
a well-defined map fj: ^(G) -> jR + (G). It is straightforward to check that the map ?? is 
a homomorphism of graded rings. Moreover, it can be shown that kernel of fj consists of 
elements having representatives (M, <j>) where G acts without fixed point on M. In fact, 
for G = S 1 , kernel of fj is precisely the inverse image of Torsion (MSO^) under the map 
2(cf.[10]). 

3. Action on Grassmann manifolds 

Let O(n) denote the orthogonal group of n x n matrices. The subgroup of 0(n) 
consisting of diagonal matrices can be identified with (Z 2 )". Let e^e 2 ,...,e n be the 
standard basis of {R M , and 7} be the involution 



Equivariant cobordism ofGrassmann and flag manifolds 385 

Then there exists an action of (Z 2 ) rt on U n given by the pairwise commuting actions of 
T t s. This action induces an action of (Z 2 )" on G n fe , the real Grassmann manifold of 
/c-dimensional subspaces in R B , and this action has finite stationary point set. A k-plane 
X in R n is fixed by this action if and only if Jf = <e lV e ia ,...,e. fc >=: fle where 

a =: 1 ^ i l < i 2 < < i k ^ n. Thus there are I I stationary points for this action. 



A Grassmann manifold G nk along with this action of (Z 2 ) n will be denoted by (G njk , 0). 
In [8], [12], it was proved that G nk bounds if and only if v(n)>v(k) where for 
a positive integer n, v(n) denotes the integer such that 2 V(W) divides n and 2 V( " )+ * does not 
divide n. In this section, the Grassmann manifolds (G n fc , 0), which bounds equivariant- 
ly, that is, [G nfc ,0] 2 =0 in Z k(n ^ k) ((1 2 ) n ) is determined completely. We need the 
following lemma. 

Lemma 3.1. Let G be a compact Lie group, X a closed smooth G-manifold. Let t:X-*X 
be a smooth fixed point free involution on X such that gt(x) = t(gx)for all geG. Then 
X bounds equivariantly. Moreover, if X is a smooth closed oriented G-manifold and 
t:X-*X is a smooth fixed point free orientation reversing involution on X such that 
gt(x) = t(gx)for all geG, then X is an oriented equivariant boundary. 

Proof. Let W=X x [- 1, 1]/-, where - is given by (x,s)~(t(x), -5). Then W is 
a compact manifold. An element of W is an equivalence class [x,s], xeX, se[ 1, 1]. 
Define an action of G on W as follows. For #eG, [x, s]e W, g [x, s] = [#x, s]. Note that 
(gt(x), -s) = (t(gx), -s) ~ (gx,s). Thus the above definition makes sense. Hence W is 
a smooth compact G-manifold with boundary and dW=X x { !,!}/ ~ is G-dif- 
feomorphic to X by the map [x,s]i->x when s = 1. Moreover, if X is oriented, then 
(x,s)h->(t(x), -5) is an orientation preserving fixed point free involution on X x [ 1, 1] 
(as t is orientation reversing), hence W becomes an oriented G-manifold. M 

Proof of Theorem 1.1. (a) Suppose n = 2k. Then if X is a k-plane in R 2 \ X\ the 
orthogonal complement is also a k-plane in R 2k . Thus Xt-+X L gives a smooth fixed 
point free involution on G 2kk which is easily seen to commute with each 7}, 
j = 1, 2, . . . , n. The result follows by Lemma 3.1. 

(b) Suppose k ^ n/2. Let A be any subset of { 1, 2, . . . , n} consisting of k elements, that 
is, |A| = k. We shall write elements of A in increasing order. Let e } = {e^ieA}. Thus for 
each such A there correspond a stationary point of G nk which is the k-plane E- spanned 
by the vectors in e-. Let y^ k be the canonical k-plane bundle over G n , k . Then the tangent 
bundle rG nk has the following description [5], i;G n ^y n , k y^ k . Thus the tangent 
space at any point XeG n fc is X X\ where X L is the orthogonal complement of X in 
R". Let Ar ; ;.= T E .G nk denote the tangent space at the fixed point corresponding to L 
Then the standard basis of the tangent space X ; is given by fc(n-fc) vectors 
[e lrj = e ir ej} r= It2 fc , where i l <i 2 <-~< i k are elements of A and je{l,2, . . . , n} - L 
Note that the action of (Z 2 ) n on X^ is given by the pairwise commuting actions of the 
involutions T a , a = 1, 2, . . . , n, thus, 

Ue irj ) = 

These give the representation class X(X) of (Z 2 ) w on X>. Let co c { 1, 2, . . . , n} be given by 
co = { 1, 2, . . . , k}. We claim that the representation class X(co) never occurs at any other 



386 Goutam Mukherjee 

stationary point; in other words, if A ^ co then the representation of (Z 2 ) n at X x is not 
equivalent to the representation at X^. Suppose, A^O. We can choose aeco such that 
aA. Now a basis at X^ is given by {e y }, f e{ 1, 2, . . . , fc} and jejfc + 1, . . . , w}, where the 
span of e t j is a (Z 2 )"-module for any i ^ fc and; > fc. Thus the action of T x on Jf^, has 
( l)-eigen space of dimension n fc, whereas the action of T a on X A has ( l)-eigen 
space of dimension k. If there exists a (Z 2 ) n -isomorphism between X^ and Z A , then we 
must have fc = n fc, which is impossible as k ^ n/2. Thus X(A) is distinct from X((o), as 
claimed. Hence the element ^X(X)eS k(n _. k) ((l 2 ) n ) is not zero. It follows from 2 that 



Remark 3.2 1. The proof of part (b) actually shows that the representation classes X(X) 
and Z(jti) are distinct if A ^ ju, A, // c (1,2, . . . , n}, as we have not made any use of the 
special choice co. 

2. Note that v(n) > v(fc) is a necessary condition for (G n k , 0) to bound equivariantly. 
For if [G M)k , 2 ] = in Z k(n _ k) ((Z 2 )) then [G Bt J 2 = in MO k(/J _ k) , hence v(n) > v(fc) by 
Theorem 1.1 of [8]. Moreover, note that the above theorem produces elements in the 
kernel of the homomorphism s, for [G n >k , <] 2 belongs to kernel of s whenever v(k) < v(n) 
and k ^ n/2. 

3. In the case (a), that is when n = 2fc, if /,c{l,2,...,n} such that |A| = fc, then 
A' = {1, 2, ...,} A has cardinality fc. In this case, one can check alternatively, that 
X(A) = X(A'), so that each representation class X(A) occurs twice. As a result, 
A X(A) = 0. It follows from Stong's theorem that [G M<k , </>] 2 = 0. 

Next, we consider certain natural 5 1 action on complex Grassmann manifolds CG n fc . 
For weS 1 , let <^ w : C" -> C" denote the unitary map defined by 

< w (z l9 z 2 , . . . , z n ) = (wz l5 w 2 z 2 , . . . , w"z n ). 

This induces an action of S 1 on the complex Grassmann manifold CG^ of fc- 
dimensional complex subspaces of C n . Let e 1 ,e 2 ,...,e n denote the standard basis 
of C". This action of S 1 on CG n tk has finite stationary point set and the stationary 
points are given by {<X v e ia , . . . ,e ifc >: 1 < i\ < i 2 < < i fc *S n}, where <e^e iz , . . ., e ik ) is 
the space spanned by {e i , . . . , e ik } (cf. [9], 4). We denote this action by 0. We now 
prove 

Theorem 3.3. a) If k or n k is even then (CG n k , 0) does not bound equivariantly. 
b) // n is even and k is odd then (CG Btfc , </>) bounds equivariantly. 

Proof, (a) In [7] it was proved that if k or n - k is even then the signature of CG n k is 
non-zero and [CG n k ] generates an infinite cyclic group of MS0 2k(n _ ky It follows 
immediately that [CG n k ,0] ^0 in ^(n-*)^ 1 )- Alternatively, one can check that 
X A X(A)^0 in ^(S 1 ), just as in 1.1, "and get the result, as ^^(S 1 )-^^ 1 ) is 
a homomorphism. Here, X(A) denote the oriented representation class at 
Xi-TtoCG^. 

(b) Let k be odd and first assume that fc = n/2. In this case X\-^X- L gives a smooth 
involution of CG n fc , without fixed point. This commutes with the given action of S \ as 
this action preserves innerproduct. We claim that this involution is orientation 
reversing. To see this, note that # 2 (CG 2kik ;Z) is generated by the first Chern class 
6 'i(?2/c,/t) f ^e canonical k-plane bundle over CG 2kk . Let 0:f 



Equivariant cobordism ofGrassmann and flag manifolds 387 

jFf*(CG 2/ck ;Z) denote the isomorphism induced by l:CG 2k<k -CG 2JU . Note that the 
involution J_ is covered by the bundle map which sends y 2fcfe to y 2kk and hence 
^( c i(} J 2fc,/c)) ~ ~~ c i(>'2fc,fc)- Now, c k ^(y 2k ^ k )eH 2kZ (CG 2k ifc ; Z) is a non-zero element, there- 
fore there exists a unique aeZ {0} such that cf (y 2k >fc ) = a-t/, where u is a generator of 
# 2fc ~(CG 2kfc ;Z). But as fc is odd and d(c l (y 2k ^ k ))= c l (y 2k ^ k ), we have 
( ck i(y2k,k}) ( ~ I) c i 2 (}'2*j;)- This implies 0(w) = u. Hence the involution 1 is orienta- 
tion reversing. The result follows from Lemma 3.1. 

Next consider the case k is odd, n is even and k / n/2. Let n = 2m. We regard C" as an 
m-dimensional right H-space, where H is the division ring of quaternions. If (z ls z 2 ) is 
a pair of complex numbers then it can be considered as a quaternion z t + z 2 j. Since 
7'z = f/ for any complex number z, we have; (2 1 H-z 2 ./) = i 2 -hzj. Write elements of C K 
as (z l5 z 2 , . . . , z w ) with respect to the basis e x , <? 2m , e 2 , e 2w _ 1? . . . , e m , m + 1 and consider C" 
as the m-tuple of quaternions H m with basis e l +e 2m j, e 2 + e 2m _ l j,...,e m j re m+1 j. 
Then we can define a map/ : C 77 -> C" by j (z ls z 2 , . . , z n ) = ( z 2 , z l5 . . . , z n , z w _ x ). Note 
that 7 is conjugate linear and hence if X is a C-linear subspace of C" then y'PO is again 
a C-linear subspace of C". Moreover, we have; 2 = id. Thus j induces an involution 
J on CG Mjt , clearly J is a smooth involution on CG rt k . We claim that J is a fixed point 
free involution. For suppose, J(X) = X, XeCG nik . Then X is a left H-space and J 2 = id, 
so dim c X = k must be even, as dim H X = ( 1/2) dim c X\ which is a contradiction as k is 
odd by our assumption. Next, we claim that the action on CG nk commutes with J. To 
see this, note that for each e t and weS 1 , w (e f .) = w*e f . Thus if (z 1 ,z 2 ,...,z 2m ) is the 
coordinate of a point in C n with respect to the basis e^ e 2m , e 2 , . - . , e m , e m+l , then 



Hence the induced maps J and cf) w on CG W k commutes with each other for each 
Next, we show that the involution J is orientation reversing. Since CG Htk is path- 
connected, it is enough to check it at one point. Note that the orientation of CG n fc as 
a real manifold is given by the orientation of each /c-plane in C" considered as an 
oriented real vector subspace of (R 2w , with the standard orientation on IR 2 ". The oriented 

real basis of O i , e iy? . . . , e ik > is {e tl , . . . , e ik , >/-! *,v > V^ ^J> where l^h<h<~' 
<i k ^n. Moreover note that j(e r ) = e n+1 _ r ; hence Je ij ,...,ej fc = 
<^ M+ i _ IV . . . , e n+ 1 _ fte >. From this one can show that J is orientation reversing, as k is 
odd. The result now follows again by Lemma 3.1. 

It is proved in [9] that CG M k is an oriented boundary if n is even and k is odd. Thus 
the above action does not give any non-trivial element in the kernel of e. However, we 
can perturb the above action of S 1 on CG n k in a suitable way to generate infinitely 
many elements in the kernel of I Before we do that, let us have a close look at the 
representation class of (CG^,^) in the case n is even and fc is odd. Since rjf is 
a homomorphism, it is clear from the above theorem that ^([CG n>k ,<^]) = 0. Let us 
establish this, alternatively, by analysing the tangential representations at stationary 
points. This description will be useful in proving the next theorem. The tangent bundle 
of CG n<k has the following description [5]: TCG^y^^, where y w<k is the 
canonical fc-plane bundle, y^ k its orthogonal complement and y Hffc = Hom c (y lltfc ,C) 
is its conjugate. Let -I = {r l9 r 29 .,.,rjc{l,2,... 9 w} and A be the stationary point 
corresponding to L Let X> be the tangent space at A . Then X ; = < ri , . . . , e rk ) <e/j ^ r 1? 
r 2 ,--.,r k >, where {e ri ,.'..,e rk } is a basis of Hom c ( ; jC). Note that for each 
1 , (/> w (8j) = w j j and the induced action on e j is (j>^(e^ = w"- 7 '^. Note that a natural 



388 Goutam Mukherjee 

complex basis of X x is given by e { e p zeA, ;<A, written in dictionary ordering with 
respect to the subscripts. In fact, {e i e j9 ieA,jfA}, forms a basis of eigen vectors for 
<j) w :X x -*X^\veS 1 . Clearly, the complex representation of S 1 at X^ is the sum of 
1 -dimensional irreducible complex representations of S 1 with corresponding eigen 
values w j '~ r . Note that since n is even and k is odd, the number of stationary points is 
even, moreover if A = {r 15 r 2 , . . . , r k }, then A' = {n + 1 r l9 . . . , n 4- 1 r k } is distinct 
from L It is now easy to check that, the assignment 



extends to a conjugate linear isomorphism between X^ and X^ which preserves the 
group action. Since dim c X A is odd, it follows that there is an orientation reversing 
S^equi variant isomorphism X^^X X .. Consequently, according to our definition of 
RJG), [X J + [X^ = 0. Since 1 c { 1, . . . , n} is arbitrary, it follows that fj(CG n ^ 0) = 0. 
Next, we consider a different action of S 1 as follows. We choose distinct integers 
v t , v 2 , . . . , v n such that |v Vj| ^ |v k v z | for any z ^ j, fe ^ / and {z,j} ^ {/c, /}. For each 
1 define \l/ w :C"->C a by 



^ W (z l9 z 2 , . . . , zj = (w vi z l5 w V2 z 2 , . . . , w v "z n ). 

As before, this induces an action ^ of S 1 on CG n fc . We claim that this action of S 1 has 
finite number of stationary points of CG n k . Since ^ w (e ) = w v ''e ? it is clear that for any 
A = {r l5 r 2 , . . . , r k } c: { 1, 2, . . . , n}, E x = <e ri . . . , e rk > is a stationary point. We shall show 
that these are the only stationary points of this action. Let X be a fe-dimensional 
subspace of C" such that i/^PO = X for all weS 1 . Let {i? ls 2 , . . . , t? k } be a basis for X. 
Write each ^ as a linear combination a iei . of the canonical basis vectors. Let 
A = {z l9 z' 29 . . . , zj c {1, 2, . . . , n} be such that e fr , i r eA, appears in the representation of Vj 
as above for at least one;. Clearly, I = |A| ^ fe. If we show that e ir belongs to X for each 
z r eA, then it will follow that / = k and X = <g. t , . . . , e ifc >. So let t? = v t and t; = r= x a r e ir , 
we may assume without any loss of generality that a r ^ for each r = 1, 2, ...,/. Since 
^ W PO = X for all weS 1 and eX, ilr Vf (v) = 2! r , l a r w vt 'e ir eX. We may choose 
w l9 w 2? . . . , v^eS 1 such that det P^^ 0, where W is the / x / matrix, W= (w v s ir ). In fact, 
detVT= Vandermonde determinant x a certain Schur function and we can choose 
w ls w 2 , . . . , w h algebraically independent over Q (the field of rationals) so that the Schur 
function is never zero, (cf. [6]). Set u j = 1/^(1;) = U l a r w] if e ir X, 1 < j ^ /. Then we 
have an Ixl matrix (a rs ) = (a r wj fr ). Clearly, det(a rs ) = a 1 -fl 2 r ---a / detP^^O. Since 
det (a rs ) 7^0, it is now straightforward to check that for each i,eA, there exist jS l5 
/? 2 - - > J?i 5 not all zero, such that e ir = ^! jssl fift. Thus e ir eX. Therefore, the action \// on 
CG n fc has finite stationary point set. We now prove with \j/ as above, 



Theorem 3A [CG^, ft = in & m - k} (S 1 ) ifn=2k and k is odd and [CG n k , | ^ m 



Proof. If fc orn - fe is even or if n = 2/c and fc is odd, then the proof is same as the 
corresponding cases of 3.3. So we assume that n is even, k is odd and k ^ n/2. Since 
fj: ^(S 1 ) -> R^S 1 ) is a homomorphism, it is enough to prove that rj(CG ntk , \l/) ^ 0. Let 
Ac{l,2,...,n} and A be the corresponding stationary point. Then from the discussion 
following Theorem 3.3, it is clear that the complex representation at X A is decomposed into 
irreducible 1-dimensional complex representations characterized by the corresponding 
eigen values w vj ~ v \ /eAj^A. If A'c{l,2,...,n} is distinct from A then we can always 



Equivariant cobordism ofGrassmann and flag manifolds 389 

choose per, #* such that for every i6 A,#A, {p,}*{ij}. By our choice 
Iv r vj^-vj. Therefore, unlike the previous action/ there "does not e4t an 
S -equivanant orientation reversing isomorphism between the RS l -modules X and 
A A , As a result, there will be no cancellation. Hence fj(CG n k , i '" 



Remark 3.5. By Theorem 3.1(ii) of [9], [CG. J = if n is even and k is odd. Therefore 
Theorem 3.4 implies that [CG Hjk> <A] belongs to kernel of a whenever n is even k is odd 
and k ^ n/2. It is also interesting to note that in the case when n is even, k is odd and 
k * n/2, we can choose integers v l5 v 2 , . . . , v n , v ;, v' 2 , . . . , v' H , in an arbitrary way, satisfying 
the mentioned condition so that [CG^,^[CG rtJt ,f ], where f is same as ^ 
replacing v- by vj. Thus we have infinitely many nontrivial elements in the kernel of 

For any n ^ 3 we can choose a sequence {v r } of finite sequences v r = (v r 15 v;, . . . , v r j of 
length n so as to satisfy |vj - vj| * |v* - v|, for i *j 9 p ^4 and {ij} * {p, 9} and for any 
r and s (including the case r = s) and |vj - vj| ^ |v? - vj| for any r, s, r ^ s, and ij, f *j. 
For instance, choose natural numbers p l9 p 2 , . . . , p r , . . . , Pl > 1, Pr > p_ 1 f or r ^ 2, and 
set v r = (p r , p r 2 , . . . , p;}. Now for fc < n, let \jj r denote the action of S 1 on CG nJt defined by 
v r as above. We exclude the case when n = 2k and fc is odd. Then for any such choice of 
{v r }, [CG W fc , iA r ] ^ [CG ntfc , A S ] for r ^ s, as mentioned in the above remark and more- 
over, any finite number of these classes [CG n k , ^J, r ^ 1, are linearly independent over 
Z. This can be seen easily by applying the homoinorphism rj and comparing the 
monomials in Z [B ] (cf. 2 and note that all irreducible real representations of S 1 are 
2-dimensional). In particular, we can take k = 1 and d > 1 and consider CG rf+ K1 so that 
dim R C G d + ! a = 2d. This yields, 



Theorem 3.6. For any d > 1, /Ymfc J 2r 2d (S 1 ) fs not finite. 

4. Action on flag manifolds 

Let G(n 1? n 2 , . . . , n s ), n = n l +n 2 -\ ----- h n s , 5 ^ 3 denote the real flag manifold of all flags 
(y4 l5 A 2 , . . . , yl s ) where yl is a left vector subspace of R n , A t JLA p for z ^7, dim R A { = w , 
1 < f, 7* < s, G(n l5 2 , . . ., s ) is a smooth manifold of dimension , <I<J<S f ^ Alternat- 
ively, it can be described as the homogeneous space OW/Ofo) x - x 0(n $ ). The group 
(Z 2 ) n acts on G(n l9 n 29 ... 9 n s ) by pairwise commuting involutions T a , a = l,2,...,n, 
having finite stationary point set. This action is induced from the actions of T a s on ST as 
described in the last section. The number of stationary points of the action of (Z 2 f on 
l9 n 2 , . . . , n s ) is nl/nj - * n s l We denote this action by (G(n l9 2 , . . . , nj, ^)- 



Proof of Theorem 1 .2. Suppose n f = w ; for some i +j. In this case there exists an obvious 
smooth fixed point free involution which interchanges the i th and thejth component of 
each flag in G(n l5 n 2 , . . . , n s ) which is easily seen to commute with each T a . Hence by 
Lemma 3.1 [G(n 1 ,n 2 ,...,n 5 ),0] 2 =0. 

Next suppose that n t * n j for i ^j. We may without loss of generality always wnte n,. 
in increasing order. 



Let A = (l 1 ,A 2 ,...,x s ) be a partition of {1,2... .,n}, 

where the subset A' has cardinality n { . 
We shall write elements of A' in increasing order. 



(i) 



390 Goutam Mukherjee 

Let e^ = {e k :ke)J}. Then the fixed points of G(n l9 n 2 , . . . , n s ) are 

{((^i), < g AX > <;.* : for a11 partition A = (/.*, A 2 , . . . , /1 s ) as stated in (1)}, 

where < A ,> = Ai (say) is the space spanned by ;i . Thus for each X as stated in (1) there 
exists a fixed point of (G(n 1 ,n 2 ,...,n s ),<^>) and as before, we shall denote by X^ the 
tangent space to G(n t , rc 2 , . . . n s ) at the stationary point corresponding to A. Then by [5] 



A basis of this is given by {e^, 1 < i <] ^ 5}, where e^ = {e k e t : keA\ lel j }. The 
representation of (Z 2 )" on X^ is given by its action on the basis element: 

*-*<>" (3) 

otherwise 

Let us now consider the partition co = (co 1 , co 2 , . . . ,-co s ), where 



co s = {H! + n 2 -\ ----- \-n s _ l + l,...n 1 + h n s }. 
Then 

rJEa> = e Uf< ^ s i^ (4) 

We claim that if A 7^ co then X(A) is distinct from X(co), where X(A) is the representation 
class of (Z 2 ) n at X(X). To see this, suppose A ^ co. Then co ( ^ A 1 ' for some i. Choose aeco 1 
such that a^ A . Let ae A J , i ^7. Then from (3) and (4) it follows that the action of T a on X^ 
has ( l)-eigen space of dimension n 1 H ----- \-n i _ l + n i+l -{ ----- h n s = n n { , whereas 
from (2) and (3) it follows that the action of 7^ on X x has ( l)-eigen space of dimension 
n l ~\ ----- \-n j _ l + n j + 1 -\ ----- h n s = n rij. If there exist an equivariant linear isomor- 
phism X x X m9 then we must have n n^n- n p that is n t = rij for i *j 9 which is 
impossible. Thus the representation class X(co) does not occur at any other stationary 
point In other words j^A)eS d ((Z 2 ) n ) is non-zero, where d = Y J i^ i<j ^ s n i n j * s ^ 
dimension of G(n l5 . . . , n s ). Hence [G(n l5 . . . , n s \ 0] 2 ^ 0. This completes the proof. 

Remark 4.1. (a) In [9] it was proved (Theorem 2.2(a)) that [G(n x , . . . , n s )] 2 = if n = nj 
for some i ^ j, 1 ^ i, j ^ s, or for some v(n t ) < v(n\ where v(n) is as in 3. Thus Theorem 
1.2 implies that [G(n l5 n 2 , . . . , n s ), c/>] 2 is a nontrivial element of kernel of s if n t ^ n ; for 
i 7^7 and v(n f ) < v(n) for some L 

(b) To get a complete answer to the question 'Which flag manifolds bound?' it would be 
enough to determine whether [G(n l5 . . . , n s \ c/>] 2 belongs to kernel of g or not, in the case 
when n is odd and n f s are distinct. 

Acknowledgement 

The author would like to thank Dr P Sankaran for his help and many useful 
iiscussions. 

References 

[1] Atiyah M F and Singer I M, The index of elliptic operator-Ill. Ann. Math. 87 (1968) 546-604 
[2] Bott R E, Vector fields and characteristic number. Mich. Math. J. 14 (1967) 231-244 



Equivariant cobordism ofGrassmann and flag manifolds 391 

[3] Conner, P E, Differentiable periodic maps. Lee. Notes in Math., 738 (Springer- Verlag) (1979) 

[4] Kosniowski C and Stong R E, (Z 2 )*-Actions and characteristic numbers. Indiana Univ. Math. J. 28 

(1979) 725-743 
[5] Lam K Y, A formula for the tangent bundle of flag manifolds and related manifolds. Trans. Am. Math. 

Soc. 213 (1975) 305-314 

[6] Macdonald I G, Symmetric functions and Hall polynomials. (Oxford Mathematical Monographs) (1979) 
[7] Mong S, The index of complex and quaternionic Grassmannians via Lefschetz formula. Adv. math. 15 

(1975) 169-174 
[8] Sankaran P, Determination ofGrassmann manifolds which are boundaries. Bull Can. Math. 34 (1991) 

119-122 
[9] Sankaran P and Varadarajan K, Group actions on flag manifolds and cobordism. Can. J. Math, 45 

(1993) 650-661 

[10] Stong R E, Stationary point free group actions. Proc. Am. Math. Soc. 18 (1967) 1089-1092 
[1 1] Stong R E, Equivariant bordism and (Z 2 ) k actions. Duke. Math. J. 37 (1972) 779-785 
[12] Stong, R E, Math. Reviews, 89d, 57050 " 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 4, November 1995, pp. 393-397. 
Printed in India 



Local behaviour of the first derivative of a deficient cubic spline 
interpolator 

SURENDRA SINGH RANA 

Department of Mathematics and Computer Science, R.D. University, Jabalpur 482 001, India 

MS received 30 August 1994 

Abstract. Considering a given function /eC 4 and its unique deficient cubic spline interpo- 
lant, which match the given function and its derivative at mid point between the successive 
mesh point, we have obtained in the present paper asymptotically precise estimate for s' /'. 

Keywords. Local behaviour; deficient cubic spline; mid point interpolation; precise estimate. 

1. Introduction 

Let P:0 = x < jjq , < - < x n = 1 denote a partition of [0, 1] with equidistant mesh 
points so that h = x t x _ 1 = l/n. Let fl m be the set of all real algebraic polynomials of 
degree not greater than m. For a function s defined over [0, 1] we denote the restriction 
of s over [x^^xj by s t . The class of periodic deficient cubic splines over [0, 1] with 
mesh P is defined by 

S(3, P) = {s: 5 ,en 3 , seC 1 [0, 1], s^O) = s (J \l\ j = 0, 1}. 

Considering a nondecreasing function g on [0,1] such that g(x + h) - g(x) = 
tf (const) = JJ dg, xe[0, 1 - K], Rana and Purohit [4] have proved the following for 
deficient cubic splines: 

Theorem 1. LetfeC 1 [0, 1]. Then there exists a unique 1-periodic spline seS(3, P) "which 
satisfies the following interpolatory conditions, 

0, i=l,2,...,n, (1.1) 

i + *i-i)A i=l,2,..., n. ' (1.2) 

It is interesting to observe that condition (1.1) reduces to different interpolatory 
conditions by suitable choice of g(x). Thus, if g is a step function with a single jump of 
one at h/2 then condition (1.1) reduces to the interpolatory condition, 



Considering a function /eC 4 and its unique spline interpolant s matching at the 
mesh points, Rosenblatt [5] has obtained asymptotically precise estimate for s' /'. 
For further results concerning asymptotically precise estimate for cubic spline interpo- 
lant reference may be made to Dikshit and Rana [3]. Similar to the result of Rosenblatt 
[5], we obtain in the present paper a precise estimate for s r f concerning the deficient 
cubic spline interpolating the given function and its derivative at mid points between 
the successive mesh points. It may be worthwhile to mention that Boneva, Kendall and 

393 



394 



Surendra Singh Rana 



Stefanov [2] have shown the use of derivative of a cubic spline interpolator for 
smoothing of histograms. 

Without any loss of generality, we consider for the rest of this paper that the deficient 
cubic spline s under consideration satisfies the condition s'(0) = 0. Thus, we have from 
the proof of Theorem 1 that the system of equations for determining the first derivative 
m . = s '(x.) of the deficient cubic spline interpolant s is written as, 

m I .. 1 )/2 = F i , i= l,2,...,n- 1 (1.4) 



where F i =12{/ 



2. Estimation of the inverse of the coefficient matrix 

Ahlberg, Nilson and Walsh [1] have estimated precisely the inverse of the coefficient 
matrix appearing in the studies concerning cubic spline interpolant matching at the 
mesh points. Following Ahlberg et al we propose to obtain here a precise estimate for 
the inverse of the coefficient matrix in (1.4). It may be mentioned that this method 
permits the immediate application to the spline to standard problem of numerical 
analysis (see [1], p. 34). For this we introduce the following square matrix of order n. 



2b a 0-00 

a 2b a 
a 2b - 



000 
000 



a 2b a 
a 2b 



where a and b are given real numbers such that b 2 > a 2 . By using the induction 
hypothesis it may be seen easily that |DJ satisfies the following difference equation, 



with | 



\D.(a,b)\=2b\D lt _ l (a,b)\-a 2 \D ll _ 2 (a,b)\ 

(a,b)| = 0, |D (a, b)\ = 1 and II^M)! = 2b and for a = (b 2 - a 2 ) 1 ' 2 , 
2ot\D n (a,b)\=(b + x)" +i -(b-a)" +l , b 2 >a 2 

\D a (a,b)\=(n+l)b", otherwise. 
Further, it may be observed that the system of eq. (1.4) may be written as 



(2.1) 



(2-2) 



-F (2.3) 

where the coefficient matrix A is a square matrix of order n 1, M and F are the 
transposes of the matrices [m 1 ,m 2 ,...,m n _ 1 ] and \_F l ,F 29 ...,F n . 1 '] respectively. In 
order to determine the inverse of the coefficient matrix A we first observe that for 
a = - 1/2, 



where - r = 



+ r)\D n (a,b)\ = 2b(l ~r 2 ") 
l = 2[b - (b 2 - 1/4) 1 / 2 ]. 



-r 



2 "~ 2 



)/2 



(2.4) 



Local behaviour of the first derivative. 395 

Taking 2b = 5 and a = 1/2 in \D n (a,b)\, we observe that the coefficient matrix 
A satisfies the following difference equation, 



n _ 2 (- 1/2,5/2)1 -\D n _ 3 (- 1/2, 5/2) |, (2.5) 

Thus, using (2.4) in (2.5) we have 

(5 -f r)p 2 -"\A\ = (5 + r/2) 2 - r 2 "~ 6 (5r + 1/2) 2 . (2.6) 

We get the elements a itj of ^4~ 1 from the cofactors of the transpose matrix. Thus, for 
< i^j ^ n - 2 or z =} = (cf. [1, pp. 35-38]) 

| ^K J = (/^r </);(- l/2,5/2)ZV 7 ._ 2 (- 1/2,5/2) (2.7) 

and 



\A\a QJ =(p-ryD n -j- 2 (- 1/2,5/2) forO<^n-2. (2.8) 

Thus, in view of (2.4) and (2.5), we have for < i ^y < n 2 



(5 + r/2)(l - r 2 ")a oj = r j (l - r 2n ' 2 ~ 2j ), for <j < n - 2, 
and 



From the above expression, we observe that A ~ 1 is symmetric. Now considering a fixed 
value x such that < x < 1, we see that for fixed > and e < i/n, ;/n < 1 s the 
elements a fj of A~ l may be approximated asymptotically by r {j ~ il /(5 + r). 
We thus complete the proof of the following: 

Theorem 2. The coefficient matrix A of (2.3) is invertible and if A ~ 1 = (a t j), then a tj can 
just be approximated asymptotically by r lj ~~ il /(5 + r) and the row max norm of its inverse; 
that is, 



where r = 2 x /6 5. 



Remark 1. It is worthwhile to mention that the estimate (2.9) is sharper than that 
obtained in terms of the infimum of the excess of the positive value of the leading 
diagonal element over the sum of the positive values of other elements in each row. For 
adopting the latter approach, we observe from (2.3) that \\A~ 1 1| < 0.25 whereas (2.9) 
shows that the \\A~ l \\ does not exceed 1/6. 

Since A is invertible, it follows from the proof of Theorem 1 or more precisely (2.3), 
that there exists a unique spline seS(3, P) satisfying the interpolatory conditions (1.2) 
and (1.3). 

3. Error bounds 

Considering a 1-periodic function /eC 4 in this section of the paper we shall estimate 
the precise bounds of the function e' = s' - /' where s is the deficient cubic spline 



396 Surendra Singh Rana 

interpolant of a 1-periodic function/ which satisfies the interpolatory conditions (1.2), 
(1.3). Considering the interval [x _ 15 x ], we see that, since sf is quadratic, hence in the 
interval [x ls x ], we may write 

h 2 s'(x) = h(x x t _ Jw; + h(Xi - x)m._ 1 4- (x x^_ 1 )(x x)c (3.1) 



where the constant c t is to be determined. Using the interpolatory condition (1.2), we 
notice that, 



) + c i . (3.2) 

Now applying (3.2) in (3.1), we get 



(3-3) 

Thus, replacing now m by e'(x t ) in (3.3), we have 
fcV(x) = (x - x _ J[h - 2(x. - x)M*<) 

+ (x i -x)lh-2(x-x i . l W(x i _ l ) + R l (f) (3.4) 

where ^-(/) = (x-x^ 1 )lh-2(x i -x)lf'(x i ) + (x i -x)[h-2(x-x t _ J 



Now using the fact that /eC 4 , we see by Taylor's theorem that ,.(/) may be 
expressed as a linear combination of the values of the fourth derivative/ (4) of/. Thus, 



Kf(/) = fe 2 /' W + / (4) (x)(x - x _ x )(x f - x)(2x - x - x _ x ) 

(3.5) 

where x is an appropriate point in (x t _ 19 x ) which is not necessarily the same at each 
occurrence. Rewriting (2.3) as, 

A(e>( Xi )) = (F f ) - A(/'(x )) = (H X (3.6) 

say, we first estimate (H ,-). Thus, applying Taylor's theorem again to the right hand side 
of (3.6), we get 



(3.7) 
Recalling eq. (3.6) and noticing that A~ * = (a j; ), we have 



say, where m is a sufficiently large but fixed positive integer. We shall estimate R^ and 
jR 2 separately. Suppose that x is a fixed point in (0, 1) and let x = [nx]/n where [nx] 
denotes the largest integer less than or equal to nx. Then it is clear that as n -* oo, i ^ nx 
and n - i s n(l - x). Now assuming that/ (4) is monotonic, we get from Theorem 2 



(3.8) 

where d l is some positive constant. 
Next, we see that the points x k for the values of fc occurring in R 2 satisfy 

(3.9) 



Local behaviour of the first derivative - 397 

Thus, using the continuity of / (4) and applying the result of Theorem 2 alongwith (3.7), 
we have 

(#2)- Z 71 :(- fc3 / <4) (*)/6) =0(/i 3 ). (3.10) 

|lc-i|<m( 5 + r ) 

Combining the estimates of (R l ) and (R 2 ) and noticing that m is arbitrary, we prove the 
following: 

Theorem 3. Let s eS(3, P) be the deficient cubic spline interpolant of a I -periodic function 
f satisfying the interpolatory conditions (1. 2) and (1.3). Let / <4) exist and be a nonnegative 
monotonic continuous function. Then for any fixed point x such that < x < 1, 



(3.11) 
as n->oo. 

Remark 2. It may be interesting to investigate the similar precise estimate for deficient 
cubic spline in the case of nonuniform mesh. 

References 

[1] Ahlberg J H, Nilson E N and Walsh J L, The theory of splines and their application, (New York: 

Academic Press) (1967) 
[2] Boneva L I, Kendall D G and Stefanov I, Spline transformation, three new diagnostic aids for the 

statistical data analyst. J. R. Stat. Soc., B33 (1971) 1-70 
[3] Dikshit H P and Rana S S, Local behaviour of the derivative of a mid point cubic spline interpolator, Int. 

J. Math. Math. Sd., 10(1987) 63-67 

[4] Rana S S and Purohit M, Deficient cubic spline interpolation, Proc. Jpn. Acad. 64 (1988) 111-1 14 
[5] Rosenblatt M, The local behaviour of the derivative of cubic spline interpolator, J. Approx. Theory, 15 

(1975) 382-387 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 4, November 1995, pp. 399-404. 
Printed in India. 



On the partial sums, Cesaro and de la Vallee Poussin means of convex 
and starlike functions of order 1/2 

RAM SINGH and SUKHJIT SINGH 

Department of Mathematics, Punjabi University, Patiala 147002, India 

MS received 3 October 1994; revised 15 May 1995 

Abstract. In this paper we study certain properties of partial sums, cesaro and de la vallee 
Poussin means of convex and starlike functions. 

Keywords. Partial sums; Cesaro; de la Vallee Poussin means. 

1. Introduction 

Let S denote the class of functions f(z) = z + a 2 z 2 H which are regular and univalent 
in the unit disc E = {z/ 1 z | < 1 } . Denote by S t and K the usual subclasses of S consisting 
of functions which map E onto starlike (with respect to origin) and convex domains, 
respectively. Let S t (l/2) c S t be the class of functions which are starlike of order 1/2. It is 
known that KcS t ( 1/2). 
For a given function /(z) = z + Z*= i a n z n and neN, let s rt (z,/) = z-ha 2 z 2 4- 

n , n(n-l) n(n-l)(n-2)...3-2-l ,. 

n \ 7 T \ ~~ 7 i ___________________ ft "7*" _|_ . . . _l_ ___________________-_-__-- n 7 

v nV">J f , 1 ^ ' / , iw_, , ">\ W 2^ ~ ' /, i 1\/,- i ''U /O,^ w ' 



ff .--f) = Z | (B ~ 1) a z 2 + ( ^-^i 
n n 

and 

Y2W_ ^ _ , W(W-1). _ 2 , (H-i; 



denote, respectively, the nth partial sum, the nth de la Vallee Poussin mean, the nth 
Cesaro mean of first order and the nth Cesaro mean of second order of /. 

A function / is said to be subordinate to a function F (in symbols /(z)-<JF(z)) in 
\z\ < r if F is univalent in |z| < r, /(O) = F(0) and f(\z\ <r)c F(\z\ < r). 

For every feK the following results are well-known: 

(i) z/2 = s 1 (z,/)/2 = (7 ( 1 1) (z,/)/2 = 4 2 >(z,/)/2x;/(z)in [2]; 
(ii) (4/9)s 2 (z,/K/(z)inE[10]; 



(iv) v m (z,f)<f(z)mE. 

The fascinating result (iv) is due to Polya and Schoenberg [6] (see also Robertson 
[7]). 

In the present paper, we establish the analogue of the Polya-Schoenberg theorem for 
a certain transformation of the nth partial sum, s n (z, /), and the nth Cesaro mean of first 
order, <r(z 9 f) 9 of feK. We also prove that for every feS t (l/2) and for every positive 

399 



400 jRam Singh and Sukhjit Singh 

integer n, Re(i; n (z,/)/crJ J 2) (z,/))>0, zeE. An alternative and simple proof of a well- 
known result of Basgoze, Frank and Keogh [1] pertaining to subordination of the 
partial sums of convex functions is also given. 

2. Preliminaries 

We shall need the following definitions and results. 

DEFINITION 2.1 

A sequence {& M }f of complex numbers is said to be a subordinating factor sequence if, 
whenever /(z) = z -f ^= 2 a n z n is regular, univalent and convex in , we have 

OC 

a B b n z"</(z), (a x = l) 

n=l 

in E. 

DEFINITION 2.2 

A sequence {c n }$ of non-negative numbers is said to be a convex null sequence if c n -* 

as n - oo and 



Lemma 2.1. (Wilf [1 1]). A sequence {b n }* of complex numbers is a subordinating factor 
sequence if and only if Re[l + 2* = l \> n f\ > 0, zeE. 

Lemma 22. 



Lemma 2.2 is due to Rogosinski and Szego [8]. 

Lemma 2.3. (Fejer [4]). Let {c n }% be a convex null sequence. Then the function 



^ n-1 

is analytic in E and Re^(z) > 0, zeE 
Lemma 2.4. Let 



TheiiReg ll (z)>Om. 

In view of the minimum principle for harmonic functions, we have 
z)= min 



Partial sums, Cesdro and . . . 
= min Re 



= mn 



- sin(n + 



, 
2sin 2 (0/2) +I 4sin 2 (0/2) - (p3 ' 



Lemma 2.5. Let f and g be starlike of order 1/2. Then for each function F analytic in 
E and satisfying 

ReF(z)>0 (zeE), 
we have 

/(z)*F(z)g(z) 

^ e 771 TT~" >0 ( zejE )- 
f(z)*g(z) 

Lemma 2.5 is due to Ruscheweyh and Sheil-Small [9]. 
3. Theorems and their proofs 

Theorem 3.1. Let feK and let s n (z,f\ neN, denote its nth partial sum. Then 
S n (z,/)=4(* Z s.(t,f)dt<f(z) 

ZJ 

in Efor every n = 1, 2, 3 ____ 

Proof. Let f(z) = z + ^2 fl ^ b ^ in K. Then 



In view of the Definition 2.1, the desired conclusion will follow if and only if the 
sequence < 1/2, 1/3, . . . , l/(n -h 1), 0, . . . > is a subordinating factor sequence. By Lemma 
2.1, this will be the case if and only if 

, zeE. (3.1) 

k=1 



Putting z = re iB , 0<r<l, n^0^n and making use of the minimum principle for 
harmonic functions along with Lemma 2.2, we have 



showing that the inequality (3.1) holds and, therefore, the proof of our theorem is 
complete. 

Taking n = 1, we obtain the following well-known result (also cited in the 
Introduction). 

COROLLARY 3.1 

(l/2)z</(z)m, for all feK. 



402 Ram Singh and Sukhjit Singh 

Theorem 3.2. For all elements f of K and for all positive integers n, we have 



in E. This result is sharp for every n. 

Proof. Let f(z) = z + ^ = 2 a n z n be any element of K. Since 
n , 1W ^ n rc 1 , n 2 , 



in the light of Definition 2.1, the assertion (w/(n +1)) a(z 9 /) < /(z) in E will hold if and 
only if the sequence < n/(n -f 1), (n - 1 )/(n + 1), . . . , l/(n + 1), 0, 0, . . . > is a subordinating 
factor sequence. By Lemma 2.1, we see that this is equivalent to 



Re 

or 

Re 



1+ -(nz + (n-l)z 2 +(tt-2)z 3 + +") >0, 

L n + 1 J 



which is true in view of Lemma 2.4. To establish the claim regarding sharpness we 
consider the function h(z) = z/(l z) which is a member of K. For any positive real 
number p., we have 



(n+l) sin 2 [(n+l)g/2] .(n+ I)sin0-sin(n+ 1)0 



2~ 2 sin 2 (9/2) 4sin 2 (0/2) 

Now let 9 = = 27i/(n -f 1). Then 



v > *v ^ 

2 n 

Now, if p > n/(n -h 1), then it follows that Re po^ } (z 9 h)<- 1/2 and hence (since h maps 
E onto the right half plane Rew> - 1/2) we conclude that pa ( n 1} (z,h) will not be 
subordinate to h in E. 
Taking n = 2, we obtain the following result of Singh and Singh [10]. 

COROLLARY 3.2 

(2/3)cr ( 2 1) (z > /) X /(z) in E, /or every feK. 

In the next theorem we present a simple and interesting proof of a well-known result 
which was established by Basgoze, Frank and Keogh [1] in 1970. 

Theorem 33. Let f(z) = z + ^ =2 a n z n eK and let s n (z,f) denote its nth partial sum. 
Then 

s n (z/2,/)</(z) 
in Efor every n = 1, 2, 3, .... The constant 1/2 cannot be replaced by a larger one. 



Partial sums, Cesdro and . . . 403 



Proof. Since s n (z/2 ? /) = (l/2)z + (l/2 2 )a 2 z 2 + (!/2 3 )a 3 z 3 + + (l/2 n )a n z\ the con- 
clusion s fl (z/2, /) -< /(z) in E will follow if and only if the sequence < 1/2, 1/2 2 , . . . , 1/2", 
0, 0, . . .> is a subordinating factor sequence. In view of Lemma 2.1, this will be the case if 
and only if 

" (3.2) 

It is readily seen that the sequence {c k }$ defined by c = 1, c k = 1/2*, k = 1, 2, 3, . . . , 77 
and c fc = if/c = n + l,w-h2,..., is a convex null sequence. Thus using Lemma 2.3 
we get 



which in turn shows that the inequality (3.2) holds. The function h(z) = zj(l - z)eK, 
which maps E onto the half plane Re w > - 1/2, shows that the constant 1/2 cannot be 
replaced by any larger number. This completes the proof of our theorem. 
Egervary [3] has shown that 



[(n + l)nz + n(n - l)z 2 + (n - l)(n ~ 2)z 3 4- - - 4- 2- 1 



is a member of S t (l/2). Using this fact and the well-known result of Ruscheweyh and 
Sheil-Small (Theorem 3.1, [9]) we conclude that for every /eS t (l/2) 



is a member of S t ( 1/2). 

Theorem 3.4. Letf(z) = z -f ^ =2 a n z n be any member ofS t (l/2). Then for every positive 
integer w, we have 



. Consider the function F n defined by 



.2, - ,3 



2)(n + 3) (n + 2)(n + 3)(n + 4) 



"' v* '__ ' 4 i 



n 2 (n-l),...,3 1 
'" + (n+l)(n + 2),...,(2n) J' 



(3.3) 

Obviously F n is regular in E (in fact it is an entire function), and we can write it in the 
form 

r, / x n n / n-f 



404 Ram Singh and Sukhjit Singh 

.""(^ 



n* /. n-l\ 3 



i 1 i 

+ 2)(w + 3) I ~w + 4/ 



n 2 (n-l)(n~2),...,4 

i i 

2n 



-z". 



In view of (3.3) and (3.4) it is now easy to see that in E we have 

. ReF n (z)^F n (|z|)>F(l) = 0. 
In Lemma 2.5 taking /(z) = 0(z,f), g(z) = z/(l - z) and F(z) = F n (z) we get 



This completes the proof. 
References 

[1] Basgoze T, Frank J L and Keogh F R, On convex univalent functions, Can. J. Math. 22 (1970) 123-127 

[2] Peter L Duren, Univalent functions, (New York: Sp ringer- Verlag) (1983) 

[3] Egervary E, Abbildungseigenschaften der arithmetischen Mittel der geometrischen Reihe, Math. Z. 42 

(1987)221-230 
[4] Fejer L, Uber die positivitat Von summen, die nach trigonometrischen order Legendreschen 

funktionen fortschreiten, Acta Litt. Ac. Sci. Szeged (1925) 75-86 
[5] Goodman A W, Univalent functions, (Mariner Publishing Company) Vol. I 
[6] Polya G and Schoenberg I S, Remarks on de la Vallee Poussin means and convex conformal maps of 

the circle, Pac. J. Math. 8 (1958) 295-334 
[7] Robertson M S, Applications of the subordination principle to univalent functions, Pac. J. Math. 11 

(1961)315-324 
[8] Rogosinski W and Szego G, Uber die Abschimlte Von potenzreihen die inernein Kreise be Schrankt 

bleiben, Math. Z. 28 (1928) 73-94 
[9] Ruscheweyh St and Sheil-Small T, Hadamard products of Schlicht functions and the Polya-Schoen- 

berg conjecture, Comment. Math. Helv. 48 (1973) 1 19-135 

[10] Singh S and Singh R, Subordination by univalent functions, Proc. Am. Math. Soc. 82 (1981) 39-47 
[1 1] Wilf H S, Subordinating factor sequence for convex maps of the unit circle, Proc. Am. Math. Soc. 12 
(1961)689-693 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 4, November 1995, pp. 405-409. 
Printed in India. 



Uniqueness of the uniform norm and adjoining identity in 
Banach algebras 

S J BHATT and H V DEDANIA* 

Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar 388 120, India 
* Department of Mathematics, University of Leeds, Leeds LS2 9JT, UK 

MS received 14 October 1994 

Abstract. Let A e be the algebra obtained by adjoining identity to a non-unital Banach 
algebra (A, \\ ||). Unlike the case for a C*-norm on a Banach *-algebra, A e admits exactly one 
uniform norm (not necessarily complete) if so does A. This is used to show that the spectral 
extension property carries over from A to A e . Norms on A e that extend the given complete 
norm || || on A are investigated. The operator seminorm |j j| op on A e defined by ]| || is a norm 
(resp. a complete norm) iff A has trivial left annihilator (resp. || || op restricted to A is equivalent 
to I! -||). 

Keywords. Adjoining identity to a Banach algebra; unique uniform norm property; spectral 
extension property; regular norm; weakly regular Banach algebra. 

1. Introduction 

Let A e = A 4- Cl be the algebra obtained by adjoining identity to a non-unital Banach 
algebra (A, \\ ||) [8]. There are two natural problems associated with this elementary 
unitification construction: (1) which are (all) algebra norms |-| on A e that are closely 
related with (e.g. extending) ||-|| on Al (2) Which properties of the Banach algebra 
(A 9 1| ||) are shared by the normed algebra (A & \ |)? In the present paper, it is shown that 
A has unique uniform norm (not necessarily complete) (resp. spectral extension 
property [9]) iff A e has the same. This is interesting in view of the fact that for a Banach 
* -algebra (A, || ||) with a unique C*-norm, A e can admit more than one C*-norm [1, 
Example 4.4, p. 850]. This holds in spite of apparent similarity between the defining 
properties || x 2 1| = ||x|| 2 and ||x*x|| = ||x|| 2 of uniform norms and C*-norms respective- 
ly. This main result, together with a couple of corollaries, is formulated and proved in 
3. Their proofs require some properties of norms on A that are regular [5]. There are 
twostandardconstructsofnormson/4 e ,viz.the/ 1 -norwi||x + Al|| 1 = ||x|| +m and the 
operator norm \\x + M || op = sup{||xj;-f- Ay||:||y|| < 1, yeA}. In general, Hop need 
neither be a norm nor be complete [6, Example 4.2] . Also, in general, || - 1| OP \A 9* || || . It is 
easy to see that if p is any algebra seminorm on A e such that pn=IHI, then 
II + xl ||op < p(a + xl) < p(l) || a + Al || x . The norm || -\\onA is regular (resp. weakly 
regular) if the restriction of || || op onA\\- \\ OP \A = H (resp. || || op ix is equivalent to || ||). 
These are essentially non-unital phenomena, for if A is unital (resp. having a bai (e$> 
then any norm | -| on A with 1 1|< 1 (or \e t \ ^ 1) is regular [5]. It is shown in 2 that || -Hop 
is a norm on A e iff the left annihilator Ian (A) = {0}; and in this case, || || op is complete iff 
II || is weakly regular iff || || r is equivalent to || || op on A e . 

Throughout, A is a non-unital algebra. By a norm on A, we mean an algebra norm; i.e. 
a norm satisfying || xy || ^ || x || || y \\ for all x, y. A uniform norm on A (resp. a C*-norm on 
a * -algebra) is a norm satisfying the square property ||x 2 H = ||x|| 2 (resp. the C*~ 
property || x*x || = || x || 2 ) for all x. 

405 



406 S J Bhatt and H V Dedania 

2. Weakly regular norms 

Let (A, \\ - 1| ) be a normed algebra. The following shows that if || || op is a norm on A e , then 
Hop is also a norm on A e for all norms |-| on A. The left annihilator of A is Ian (A) 



PROPOSITION 2.1 

The seminorm \\ || op is a norm on A e iff lan(A) = {0}. 

Proof. Let ||-|| op be a norm on A e . Let aelanU). Then ax = (xeA), hence 
|| a ||op = sup { || ax i| : ||x|| ^ 1, xeA} = 0, so that a = 0. Hence Ian (4) = {0}. Conversely, 
assume that Ian (A) = {0}. Let || a + Al || op = 0. Then ax + AX = for all xeA. Suppose 
A 7* 0. Then - )~ l ax = x (xeA). Define L e (x) = ex (xeA), where e = - A" r a. Then L e is 
an identity operator on A. Then, for xeA, L x L e = L e L x , i.e. jcey = L x L c (;y) = 
L c L x (j;) = exy (ye A), i.e. (xe-ex)j; = (ye A). Hence, xe = ex = x. Thus A has an 
identity which is a contradiction. Thus A = 0. This implies ax = for all xeA, hence 
a = 0. This completes the proof. 

PROPOSITION 2.2 

(a) Let \-\be a uniform norm on A. Then \-\is regular and |-| op is a uniform norm on A e . 

(b) Let A be a * -algebra. Let |-| be a C*-norm on A. Then \- is regular and |-| op is 
a C*-norm on A e . 

Note that if a Banach algebra admits a uniform norm, then it is commutative and 
semisimple. In the above, the proof of (a) is similar to that of (b) in [4, Lemma 19, p. 67]. 
In the following, the proof of (1) implies (2) is along the lines of [7, Theorem 1]; whereas 
that of the remaining part is simple. 

PROPOSITION 2.3 

Let (A, || - 1| ) be a Banach algebra. Then the following are equivalent. 

(1) || || is weakly regular (so that \\ a || op ^ || a \\ ^ m \\ a || op (aeA\for some m > 0). 

(2) ||a + Al|| op ^||a4-Al|! 1 ^2(2-f 

(3) || ||op is a complete norm on A e . 

If || || is regular, then m^lso that \\ a + Al || op ^ || a + A 1 1| t ^ 6(expl) || a + xl || op far 
all a 4- /AeA e [7, Theorem 1]. 

3. Uniqueness of uniform norm and unitification 

A Banach algebra (A.H) has unique uniform norm property (UUNP) if A admits 
exactly one (not necessarily complete) uniform norm. The uniform algebra C(X) has 
JUUNP, whereas the disc algebra does not have. In [2] and [3], Banach algebras with 
UUNP have been investigated. Such an A is necessarily commutative, semisimple and 
the spectral radius r( = r A (-)) is the unique uniform norm. We denote the HausdorfT 
completion of (A, r) by U(A). The spectral radius on U(A) is the complete uniform norm 
on U(A). A norm |-| on A is functionally continuous (FC) if every multiplicative linear 
functional on A is | - (-continuous. A subset F of the Gelfand space of A is a set of 
uniqueness for A if ]x| F = sup {|/(x)|:/eF} defines a norm on A. 



Uniqueness of uniform norm 407 

Theorem 3.1. A Banach algebra (A, \\ - 1|) has UUNP iff A e has UUNP. 

We shall need the following. The proofs are straightforward. For details we refer 
to [3]. 

Lemma A. Let \ - \ be an FC norm on any commutative algebra A. Let B be the completion 
of(A,\-\). Then the Gelfand space A(A) (resp. Silove boundary dA) is homeomorphic to 
A(B) (resp. dB). 

Lemma B. Let A be a semisimple commutative Banach algebra. Then the following are 
equivalent. 

(1) A has UUNP. 

(2) U(A) has UUNP; and any closed set F in A( U(A)) which is a set ofuniquenessfor A, 
is also a set ofuniquenessfor U(A). 

(3) U(A) has UUNP; and for a non-zero closed ideal I ofU(A) with I = k(h(I)) (kernel 
of hull of I), Ir\A is non-zero. 

Lemma C. Let A be a Banach algebra with UUNP, and I be a closed ideal such that 
I = k(h(I)). Then I has UUNP. 

Proof of Theorem 3.1. Assume that A has UUNP. 

Case 1. Let || || have the square property. By Proposition 2.2 (a) and Proposition 2.3, 
(A* II ' Hop) is a Banach algebra, || || op has square property and || || op is equivalent to || || r . 
Let |-| be any uniform norm on A & then 1 1 1 \A is a uniform norm on A. Since A has 

UUNP, l-lU=|H|.Hence|h|| p^|-|<M| 1 ^6(expl)||-i|opOn^.Thus||-||o P andH 
are equivalent uniform norms on A e . Since equivalent uniform norms are equal, 
Ml op = H on A e . Thus A e has UUNP. 

Case 2. In the general case, note that U(A) is an ideal of U(A e ) and, by Lemma A, the 
Gelfand space A(U(A e )) is homeomorphic to the one point compactifications of each of 
AU) and &(U(A)). Define K = {xeU(A e ):xU(A) = {0}}. We prove that K = {0}. Let 
xeK. Then its Gelfand transform :&(U(A e ))-+C is continuous. Since xeK, xy = 
(ye U(A}). We prove that x is zero on &(U(A e )). Since A (17(4)) is dense in A(l/C4 e )), it is 
enough to prove that x is zero on A(U(A)). Suppose there exists (j>e&(U(A)) such that 
<p(x) ^ 0. Since is non-zero, there exists j; in U(A) such that (f)(y) is non-zero. This 
implies j>(xy) ^ 0, hence xy ^ which is a contradiction. Thus K = {0}. By Lemma B, it 
is enough to prove that U(A e ) has UUNP; and for every non-zero closed ideal / of 
U(A e ) with / = k(h(I)\ A e r\Iis non-zero. Let I be a non-zero closed ideal of U(A e ) such 
that I = k(h(I)). We prove that / n A e {0}. Let J = I n U(A). Then, first, we prove that 
J = k(h(J)) in U(A). Clearly J c k(h(J)). Let xe U(A) such that xJ. Then x$I, hence 
there exists <t>eh(I) c A(I7(X e )) such that <j>(x) + 0. Then \j/ = (j)\u(A) is zero on J and 
\l/(x) ^ 0. Thus x$k(h(J)) f and so J = k(h(J)\ From K = {0}, / * {0} and IU(A) J, it 
follows that J ^ {0}. Since A has UUNP and J is a non-zero closed ideal of U (A) such 
that J = k(h(J)\AnI = A n J ^ {0} by Lemma B. Hence/n,4 e ^ {0}. Finally, we show 
that U(A e ) has UUNP. Note that, by Proposition 2.2 (a) and Proposition 2.3, the 
operator norm on U(A) e is a complete uniform norm; and is the spectral radius 
rv(A). itself. Further, U(A) e , is clearly isometrically isomorphic to U(A e ) via the map 
T: U(A) e -*U(AJ, T(a + Al) = a + ^ where e is the identity of U(A e ). By Lemma C, 



408 S J Bhatt and H V Dedania \ 

U(A) has UUNP, hence by the isomorphism T and by Case 1, U(A e ) has UUNP. \ 

Conversely, if A e have UUNP, then, A being a closed ideal of A e satisfying A = k(h(A)) 

in A & A has UUNP by Lemma C. This completes the proof. > 

Following [1], a Banach *-algebra B has unique C*-norm (i.e. B has UC*NP) if ( 

B admits exactly one C*-norm (not necessarily complete). In spite of the apparent 
similarity between the square property and the C*-property of norms the above result 
differs from the corresponding situation in B, viz. UC*NP for B need not imply 
UC*NP for B e [1, Example 44, p. 850]. In fact, by [1, Theorem 4.1, p. 849], for 
a non-unital B with UC*NP, B e has UC*NP iff the enveloping C* -algebra C*(B) is 
non-unital. Like C*(J5) for J5, the uniform Banach algebra U(A) is universal for A in an 
appropriate sense. Unlike the case of B, it happens that A is unital iff U(A) is unital. This 
explains why the above result for A differs from the corresponding result for B. 

A Banach algebra (A, ||-||) has the spectral extension property (SEP) [9] (i.e. A is 
a permanent Q-algebra [10]), if for every Banach algebra B such that A is algebraically 
embedded in J5, r A (x) = r B (x) for all xeA; equivalently, every norm |-| on A satisfies 
^(*) < 1*1 for all xeA [9, Proposition 1]. 

COROLLARY 3.2 

Let (A, \\-\\) be a semisimple commutative Banach algebra. Then A has SEP iffA e has SEP. 

Proof. Let A have SEP. Then, by [2, Proposition 2. 1] and Theorem 3. 1, A. has UUNP. 
By [2, Proposition 2.6], it is enough to prove that A e has (P)-property; i.e. every 
non-zero closed ideal / of A e has an element a + Al such that r x (a + U) > 0, where 
rja + Al) = inf (| a + Al |: |-| is a norm on A e } 9 called the permanent radius of a + Al in 
^ e [9]. Let I be a non-zero closed ideal of A e . Then J = I n >4 is a non-zero closed ideal 
of A by [8, Theorem 1.1.6, p. 11]. Since A has SEP, by [2, Proposition 2.6], it has 
(P)-property, hence there exists ae J such that the permanent radius, say r 2 (a), of a in 
A is positive. Then clearly r l (a)^r 2 (a)>Q. Thus A e has (P)-property. Conversely, 
assume that A e has SEP. Let |-| be any norm on A. Then, since A is semisimple, 
Proposition 2.1 implies the operator norm |-| op is a norm on A e . Since A has SEP, 
TAW - r A .(a) ^ IflUp ^ |<z| (aeA). Thus r A (a) ^ \a\ for all a in 4 and for any norm -| on 
A. Hence, 4 has SEP. This completes the proof. 

By [9, Corollary 2], a regular Banach algebra has SEP. In understanding the relation 
between UUNP and SEP, a weaker notion of regularity has been found useful in [2], 
viz. a semisimple commutative Banach algebra U,||-||) is weakly regular if for any 
proper closed subset F of the Gelfand space A(4) of A, there exists a non-zero element 
a in 4 such that d | F = 0. 

COROLLARY 3.3 



wafcl l] r ^ r emisimple commu ^ive Banach algebra. Then A is weakly regular iff A e 



re ^ ular - Then > b y R Corollary 2.4(11)], A has UUNP and 
~ A ^ f V boundar ^ of A * % Theorem 3.1, X. has UUNP. Note that 



MA\ ., . . 

lnlr ~ K ^ i^ ^^ iG A W > and dA * is dosed - ^se imply dA e = A(^ e ). 
Hence,agamby [2, Corollary 2.4 (II)]^ e i s weakly regular. Conversely, assume that X 



Uniqueness of uniform norm 409 

is weakly regular. The proof of Lemma C will work for the following statement; If A is 
weakly regular and / is a closed ideal of A such that / = k(h(I)), then / is also weakly 
regular. Since A is a closed ideal of A e with k(h(A)) = A, A is weakly regular. 

Acknowledgement 

One of the authors (HVD) is thankful to M H Vasavada for encouragement and to the 
National Board for Higher Mathematics, Government of India, for a research fellow- 
ship. The authors are also thankful to A K Gaur for making available reprints of his 
papers. 

References 

[1] Barnes B A, The properties * -regularity and uniqueness of C*-norm in a general * -algebra, Trans. Am. 

Math. Soc. 279 (1983) 841-859 
[2] Bhatt S J and Dedania H V, Banach algebras with unique uniform norm, Proc. Am. Math. Soc. (to 

appear) 
[3] Bhatt S J and Dedania H V, Banach algebras with unique uniform norm II: permanence properties and 

tensor products, (communicated) 
[4] Bonsall F F and Duncan J, Complete Normed Algebras, (Berlin, Heidelberg, New York: Springer 

Yerlag)(1973) 

[5] Gaur A K and Husain T, Relative numerical ranges, Math. Jpn. 36 (1991) 127-135 
[6] Gaur A K and Kovarik Z V, Norms, states and numerical ranges on direct sums, Analysis 11 (1991) 

155-164 
[7] Gaur A K and Kovarik Z V, Norms on unitizations of Banach algebras, Proc. Am. Math. Soc. 117 (1993) 

111-113 

[8] Larsen R, Banach Algebras, (New York: Marcel Dekker) (1973) 
[9] Meyer M J, The spectral extension property and extension of multiplicative linear functional, Proc. 

Am. Math. Soc. 112 (1991) 855-861 
[10] Tomiuk B J and Yood B, Incomplete normed algebra norms on Banach algebras, Stud. Math. 95(19 89) 

119-132 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 4, November 1995, pp. 411-415. 
Printed in India. 



Weakly prime sets for function spaces 

H S MEHTA and R D MEHTA 

Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar 
388 120, India 

MS received 3 November 1994; revised 24 April 1995 

Abstract. We define and study weakly prime sets for a function space and 
show that it coincides with the known concept of weakly prime sets for function 
algebras and spaces of affine functions. 

Keywords. Weakly prime set; function space; function algebra; space of affine 
functions. 

1. Introduction 

A function space A on a compact Hausdorff space X is a closed subspace of the space 
C(X) of all continuous, complex-valued functions on X separating points and contain- 
ing constants. If A is an algebra, it is called a function algebra. The Bishop and Silov 
decompositions play an important role in characterizing function algebras. Later on 
these decompositions were studied for function spaces [6]. Ellis [3] defined and studied 
these decompositions for the spaces of affine functions on a compact convex set. 

For a function algebra, certain decompositions finer than the Bishop and Silov 
decompositions have been defined and studied [6]. One such decomposition of weakly 
prime sets, was defined and discussed by Ellis [4] for function algebras as well as for 
spaces of affine functions. Here we generalize this concept for a function space, study its 
properties and show that it coincides with the corresponding definitions of Ellis. 

We also give examples of function spaces whose family of maximal weakly prime sets 
differ from the corresponding families of its induced algebras. 

2. Function space 

Let X be a compact Hausdorff space. Throughout this paper we assume that A is 
a function space on X. For a closed subset E of X, we define 



fgeA\ E for allgeA\ E }. 

For the concepts like peak set, p-set, etc. related to a function space and for the 
various properties of a decomposition for a function space, we refer to [2], [5] and [7]. 

DEFINITION 2.1 

A closed subset E of X is called a weakly prime set for A if E = Gu#, with G and 
H generalized peak sets for N(A\ E ), then either G = E or H = E. 
The function space A is called weakly prime if X is a weakly prime set for A. 

Remarks 2.2. (i) If A is an algebra, then N(A\ E ) = A\ E and hence Definition 2.1 
coincides with the definition for a function algebra given by Ellis [4]. 

411 



412 H 5 Mehta and R D Mehta 

(ii) It can be shown that each weakly prime set is contained in a maximal weakly prime 
set for A. 

The collection of all maximal weakly prime sets for A is denoted by &(A). 
(iii) It is easy to check that <P(A) is finer than the Bishop decompositions for A and 
hence &(C(X)) = {{x} : xeX}. 

(iv) It can be easily verified that A is weakly prime if and only if N(A) is weakly prime. 
Further, for a closed subset E of X, N(A)\ E <=N(A\ E ) and so, &(A) is weaker than 
&(N(A)). But, in general, &(A)^&(N(A)) (see Example 2.6(i)). 

As in case of a function algebra, we shall show that here also every member of^(A) is 
a p-set and &(A) has the (GA)-property [5] for A. 
We shall need the following lemma. 

Lemma 2.3. // E is a p-set for A and F a E is a generalized peak set for N(A\E\ then F is 
a p-set for A. 



Proof. Let /.ieA 1 and e>0 be given. Then there is an open set U in X such that 
|ju|([7 - F) < 8. Clearly, E n U is open in E and F cz E n U. Since F is a generalized peak 
set for N(A {E ), there is a peak set T for N(A\ E ) such that FaTciEnU. LetfeN(A\ E ) be 
a peaking function for T. Define /Ton E by h = 1 on T and h = on \ T. Then/" 
converges pointwise and boundedly to h on E. 
Now let g e A. Then 



But j #/ n dju = 0, as/^ 1 6 A, and is a p-set for A. Thus JV 

Now 



Since e is arbitrary, | Jf^d^l = or F is a p-set for A. 

PROPOSITION 2.4 

A maximal weakly prime set for A is a p-set for A. 

Proof. Let E be a maximal weakly prime set for A and let F denote the smallest p-set for 
A which contains E. We shall show that F is a weakly prime set for A. 

Let F! and F 2 be generalized peak sets for N(A\ F ) with F 1 uF 2 =F. Then 
E = (F 1 n)u(F 2 n) and since N(A|f),c N(X|), F x n and F 2 n are generalized 
peak sets for N(A [E ). Since is a weakly prime set for A, either F l nE = E or 
F 2 n = , i.e., either E G F t or E c F 2 . If E c F x , then c F x c F where F is a p-set 
for A and F 1 is a generalized peak set for N(^ (F ). So, by Lemma 2.3, F x is a p-set for 
/I and hence F 1 = F. Similarly, if cz F 2 , then F 2 = F. Thus F is a weakly prime set for 
A and by the maximally of , we have = F. 

Next, we show that the family &(A) characterizes a function space A in the sense that 
it has the (D)-property for A [5.7], i.e. if/eC(X) and/ i 6(^, )- for every Ee&(A), then 



Weakly prime sets for function spaces 413 



/e A. Actually the Bishop's theorem can be restated as "The Bishop decomposition has 

the (D)-property for A". In fact the Bishop decomposition has a stronger property than 

the (D)-property, namely the (GA)-property. 

By (GA)-property for a family ^ of closed subsets of X for A [7] we mean that for 
ch [teb(A L ) e , suppp c F for some FeJ^, where b(A^-) e denotes the set of extreme 

points of the unit ball of A L . 



. 
the (D)-property, namely the (GA)-property. 

B 

each 

oin . 

We shall show that &(A) has the (GA)-property for A. 

Theorem 2.5. &(A) has the (GA)-propertyfor A. 



Proof. Let neb(A L } e , the set of extreme points of the unit ball in A L and let S = supp/z. 
It is enough to show that S is a weakly prime set for A. 

Let G and H be generalized peak sets for N(A ]S ) with S = Gu H. Let / u 1 = j/ |G , 5 // 2 = 
ju Hi and geA. Since p. = /^e^ 1 and G is a generalized peak set for N(A ]S ), by Lemma 
2.3, we get J G 0d/* = 0. Thus ^eX 1 and hence ^e^l 1 . Also, H//H = 1 = II^JI + ll/^il- 
Hence /^ 1 = \JL or // 2 = /z, as j ueb(^4 1 ) e , i.e., G = Sor H = S. Thus 5 is a weakly prime set 
for A 

Examples 2.6. (i) Let X be the union of a line segment F and a sequence of disjoint solid 
rectangles {F n ; n = 1,2, . . . } converging to F. Let y4 be the set of all/ in C(X) such that 
/ |FM is a polynomial of degree atmost n. Then A is a function space on X and as in [7] it 
can be checked that ^(^) = {F n |weM}u{{x}; xeX}. Note that, here N(A) = 
{fe(X):f lFn is constant, for each neM} and hence &(N(A)) = {F n :neN}u{F}. 
Therefore, /(A] * &(N(A)). 

(ii) Let T denote the unit circle in C and A(T) denote the disc algebra on T. Let Oe 4(T) 
be such that <D ^0 on T. Define ,4 = {*" l f:feA(T)}. Then /I is a function space on 
T and AT(y4) = A(T) [8]. It is clear that N(/l) is weakly prime and hence by Remark 
2.2 (iv), A is also weakly prime, i.e., &>(A)= {T}. Since A(T) is a maximal function 
algebra on T and 4(T) S X, the algebra generated by A will be C(T). But &(C(T)) = 
{{xj: .xeT} by Remark 2.2 (iii) while &>(A) = {T}. 

3. Space of affine functions 

Let K be a compact convex subset of a locally convex Hausdorff space and let A(K) 
denote the Banach space of all real-valued continuous affine functions on K with the 
supremum norm. The set of extreme points of K will be denoted by dK. 

Ellis [4] has defined weakly prime sets* for A(K) with the help of concepts of 
convexity. Now A(K) can also be looked upon as a function space on K. So we can 
discuss &(A(K)) for A(K). But, since the functions in A(K) are determined by their 
values on dK, we shall consider the space A(K) ldK . In fact, weakly prime sets defined by 
Ellis, are also subsets ofdK. In this section, we shall prove that &(A(K\ dK ) coincides 
with the family of maximal weakly prime sets as defined by Ellis. 

For the definitions and results regarding compact convex sets and space of affine 
functions, we refer to [1] and [2]. 

Let us recall the definition due to Ellis [4]. 

DEFINITION 3.1 

A subset E of dK is called a weakly prime set for A(K) if E = dG for some closed face G of 



414 H S Mehta and R D Mehta 

K and if every proper facially closed subset of G has empty interior in the facial 
topology of G. 

Equivalently, for a closed face G of K, dG is weakly prime if whenever G = Co(H l u H 2 ) 
for some closed split faces H 1 and H 2 of G, then either H l = G or H 2 = G. 

If cK is a weakly prime set, then A(K) is called weakly prime. 

We shall denote the family of maximal weakly prime sets for A(K) according to 
Definition 3.1 by & E (A(K)\ 

The following proposition can be easily proved. 

PROPOSITION 3.2 



where Ce(A(K)) = {feA(K):fg ]fK eA(K\ pK for every geA(K)}, the centre of A(K\ 

Since Ce(y4(K)),^ is the set of facially continuous functions on cK [2, Theorem 1.4, 
p. 105], we immediately get the following result. 

COROLLARY 3.3 

A subset E of oK is a facially closed subset of oK if and only if E is a generalized peak set 
for N(A(K) ldK ). 

PROPOSITION 3.4 

// Ee&(A(K\ dK ) 9 then Co, the closed convex hull o/, is a closed split face ofK. 

Proof. Let F be the smallest closed split face of K containing CoE. Then 
E c Co n dK <=. F n cK = 3F, as F is a face. It is enough to show that dF is a weakly 
prime set for A(K) { . 

Let H! and H 2 be generalized peak sets for N((A(K\ K \ fF ) with dF = H l uH 2 . Then 
E = EncF = (H l r^E)u(H 2 r\E) and fi^nE, H 2 nE'are generalized peak sets for 
N((A(K\ rK ) l ). Since is a weakly prime set" for A(K\ , either H 1 nE = E or 
H 2 n = . Thus, either c H! or c H 2 . 

Now, since F is a closed split face of K 9 (A\K\ ?K ), CF = A(K\. F = A(F)^ f . So, H^ and H 2 
are generalized peak sets for N(A(K\. K ) and hence by Corollary 3.3, H x and H 2 are 
facially closed subsets of dF, i.e., H l = 8G l and H 2 = 5G 2 for some closed split faces G l 
and G 2 of F. Since F is a closed split face of K, G 1 and G 2 are closed split faces of K. Now 
Ec:H 1 =>CoE c= CoH ! = G! . Thus we get Co c G L c F and hence G x = F, as F is the 
smallest closed split face containing Co, i.e., H l = dF. Similarly, if c H 2 , then we get 
H 2 = 5F. So cF is a weakly prime set for A(K)^ ,. 

If CoH is a closed face of K for H c 3X, then 3(CoH) = H and hence we get the 
following result. 

COROLLARY 3.5 

IfEe&(A(K\ K ) 9 then E is facially closed. 
Now we prove the main result. 

Theorem 3.6. 



Proof. Let Fe& E (A(K)). We want to show that F is a weakly prime set for A(K) ldK . 



Weakly prime sets for function spaces 415 

Let H 1 and H 2 be generalized peak sets for N((A(K) [riK ) lF ) with H l (jH 2 = F. Since 
Fe& E (A(K)) 9 F is facially closed [4], i.e., F = cG for some closed split face G of K. 
Hence A(K\ G = A(G) and so (^(&) irK ) if = A ( G \- G > Thus H ! and H 2 are generalized peak 
sets for N(A(G\ rc ). So by Corollary 3 .3, H i and H 2 are facially closed subsets of G. Also, 
by definition, F = <3G, where G is a closed face of K and F = H 1 u H 2 . Since F is a weakly 
prime set for A(K) 9 either H i = ForH 2 = F. Hence F is a weakly prime set for A(K) } . ,. 

Conversely, let Fe#(A(K) } ). Then by Proposition 3.4, CoF is a closed split face of 
K. Let CoF = G. Then F = cG and A(G\ dG = (A(K) lfK \ F . Suppose F = H l uH 2 , where 
FT ! and H 2 are facially closed in G. Then by Corollary 3.3, H l and H 2 are generalized 
peak sets for N((A(K)\ dK )\ F ). Since F is a weakly prime set for A(K)^ K < either H l =F OY 
H 2 = F. Hence F is a weakly prime set for A(K). Consequently, &(A(K) {dK ) = ^(/KK)). 

COROLLARY 3.7 

A(K) is weakly prime if and only ifA(K)^ , is weakly prime. 

References 

[1] Alfsen E M, Compact convex sets and boundary integrals (Berlin: Springer- Verlag) (1971) 

[2] Asimov L and Ellis A J, Convexity theory and its applications in Functional Analysis (Academic Press) 

(1980) 
[3] Ellis A J, Central decompositions and essential set for the space A(Kl Proc. Lond. Math. Soc. 26(3) (1973) 

564-576 
[4] Ellis A J, Weakly prime compact convex sets and uniform algebras, Math. Proc. Cambridge Philos. Soc. 

81(1977)225-232 

[5] Hayashi M, On the decompositions of function algebras, Hokkaido Math. J. I (1974) 1-22 
[6] Mehta H S, Decompositions associated with function algebras and function spaces (Ph. D. Thesis, Sardar 

Patel University) (1991) 
[7] Mehta H S, Mehta R D and Vasavada M H, Bishop type decompositions for a subspace of C(X\ Math. 

Jpn.31(l992) Ill-Ill 
[8] Yamaguchi S and Wada J, On peak sets for certain function spaces, Tokyo J. Math. 11(2) (1988)415-425 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 4, November 1995, pp. 417-423. 
Printed in India. 



Oscillation of higher order delay differential equations 

P DAS, N MISRA* and B B MISHRA 

Department of Mathematics, Indira Gandhi Institute of Technology, Sarang, Talcher, Orissa, 

India 

* Department of Mathematics, Berhampur University, Berhampur 760007, India 

MS received 25 October 1994 

Abstract. A sufficient condition was obtained for oscillation of all solutions of the odd-order 
delay differential equation 



where p t (t) are non-negative real valued continuous function in [T^oo] for some T^O and 
<7 e(0, oo ) (i = 1, 2, . . . , m). In particular, for p t (t) = p/(0, oo) and n > 1 the result reduces to 

i / V (nV 

HZ (Pi*?) 1 ' 2 ) >("-2)!^-, 

\i=i / e 

implies that every solution of (*) oscillates. This result supplements for n > 1 to a similar result 
proved by Ladas et al [J. Diff. Equn., 42 (1982) 134-152] which was proved for the case n - 1. 

Keywords. Odd order; delay equation; oscillation of all solutions. 

1. Introduction 

This paper was motivated by certain results of the paper [7] and [8] due to Ladas et al. 
In [7] authors proved that all solutions of the odd-order delay differential equation 

* (n) + Z P*(t-<r ) = 0, (1) 

i=l 

oscillates (i.e., every solution x(t) has zeros for arbitrarily large t) if and only if the 
associated characteristic equation 

*"+ Z p e-*-< = (2) 

;=i 

has no real roots, where p t and 0^6(0, oo) for i = 1, 2, . . . , m. Further, it was proved that 
(2) has no real roots if and only if 



In the literature, it was observed that the odd-order differential equations of the form 

(T i ) = 0, (3) 



where p f e C( [ r, oo), (0, oo)), T ^ and <7 e(0, oo), is least studied. In this connection, we 
may refer, in particular, to [4], [5], [9] and the references therein. For n = 1, (3) is almost 
well-studied. In this case there are several results associated with its characteristic 

417 



418 PDasetal 

equation (see [3] and [7]) as well as conditions on coefficients and deviating arguments 
which ensures that every solution of (3) oscillates. In [8], authors proved that if 
p f eC([T, oo),(0,oo)), d f .6(0, oo)(i= l,2,...,m)andw = 1 then 



lim inf p t (s)ds > (i = 1, 2, . . . , m) (4) 

r-oc J f ffij 2 

and 

1 m f p \ 

- X lim inf p t .(s)ds 

m i=l\r-*oc J t- ffl - / 

2 m [~Y P W P Ml 

+ - X lim inf Pl .(s)ds lim inf Pj (s)ds >- (5) 

m *<j L\r-*oo J t-ffj / \t-*oo J f-ffi /J ^ 

U=i 

then every solution of (3) oscillates. If p t (t) = p f e(0, oo)(f = 1, 2, . . . , m) then the above 
result becomes 



i 



implies that every solution of (3) oscillates. In this paper an attempt has been made to 
obtain a similar result which shows that every solution of (3) oscillates. Our result fails 
to hold when n = 1. Indeed, when p^t) = p f e(0, oo), the main result of this paper shows 
that if 



\i=l 

then every solution of (3) oscillates. Although our result does not generalize the result of 
Ladas et al [8], but certainly supplements for higher order equations. 

2. Main results 

In the beginning of this section we prove a lemma for its use in the sequel. 

Lemma 1. Let feC (n} (\_T, oo), (0, oo)), 7>0 such thatf (n \t) ^ 0, 1 2* T. If n is odd and 
(76(0, oo) then there exists T ^ T such that 



Proof. Since f(t) ^ and f (n \t) ^Qfor t^T, there exists T 
such that 



and 

/ (J) W/ a+1) (r)<0 for fc <;<-!. 
Expanding /(t) by Taylor's theorem, there exists xe(t - a, f) such that 



(7) 



Oscillation of higher order delay differential equations 419 

Similarly, expanding /<*> by Taylor's theorem we get 



Replacing t by t - a in the inequality (7) we get 



Further, using (8) in (9) along with the fact that *!(-*- 1)! < ( - ! and setting 
TO = 7^ + 2(j we have our proposed inequality. 
This completes the proof of the lemma. 

Theorem 1. Suppose that Pi eC([T, oo). (0, oo)X T>0 and er | (Q,oo) (i= 1,2,3,. .,m). 
Further if 



liminff p f (s)ds 

r-*oo J t-o)ffi 



A (1) 

and / y,-i v 

1 m 9 "L 1 vi /i . / 1\|V'V 



= 

J t 



t UKfj 

and 

f n-\ 



then euery so/uion o/ (3) oscillates. 

Proof. On the contrary, suppose that x(t) > for t > t . Dividing (3) throughout by 

x 01 " 1 ^) we get 



. PV-D^-oxr,) x { "- "(t) 



By Lemma 1, there exists t t > f such that 



and the use of this inequality in (12) results 



*-> _r-_L 

where 

=; 



420 P Das etal 

Integrating both sides of (13) from t - a)a k to t we get 

/x^0-o^)\ p x'-^s-^) 

10g (- x"- W r^H-.,/^ x'- 1 ^) 
Setting 



and 



P 
p. k = lim inf Pi(s)ds i, j = 1, 2, . . . , m 

t-oo J l-o>fffc 



we see that 

m 

log(a fe )> -X 

i=l 

Suppose that a fc < oo for k = 1, 2, 3, . . . ,m. In this case, dividing both sides of the above 
inequality by a fc and using the fact that 

! foroc^l, 



and a fc ^ 1 (since x (w ~ 1} (t) is positive decreasing) it follows that 
1 <*i 

Summing the above inequality for k = 1, 2, . . . , m we obtain 

^ - V V f a i 

7^ L Z- K iPik- 

e fc=l i=l a /c 

that is, 



Rearranging the right hand side elements of the above inequality first along the 
diagonal then above and below the diagonal respectively, we get 



that is, 



i,J=l 



Oscillation of higher order delay differential equations 



421 



Since the arithmetic mean is greater than the geometric mean 

a ; 



\l/2 



In view of ( 1 6), ( 1 5) reduces to 



m 
e 



Putting the value of K f and Kj in the above inequality we obtain 
i m 2 m 

" - 



(16) 



which is a contradiction to our assumption. 
Next, assume that a = oo for some i = 1, 2, . . . , m. That is, 



for some i = 1, 2, . . . , m. From (3) it follows that 



for the value of z for which (17) holds. From the inequality above (13) it follows that 



From (17) and (18) it follows that 



_ C^T.) ^ 0. 



(19) 



Integrating both sides of (19) from t - a>oJ2 to t and using the fact that x (n ~ 1} (t) > and 
decreasing we get 



< 0. 



(20) 



(n 1)1 J ,-0,^ 

Dividing both sides of (20) first by x (n ~ 1} (t) and then by x (n ~ 1] (t - co^/2) we have the 
following inequalities respectively: 






and 



1 . 



(n - 1)! x<" 
In view of (10), (17) and (21) we obtain 



p(s)d5<0 



(22) 



(23) 



422 ? Das et al 

Using (23) in (22) along with (10) we see that 



l-*co A V wui/^j 

Replacing t by 1 4- coa t /2 in the above inequality we get 
lim (-iw \'' 1 < ' 

t->oo -^ w 

which is a contradiction to (23). 
This completes the proof of the theorem. 

COROLLARY 1. 

If p t (t) = p f e(0 5 oo) and ^6(0, oo) then 



implies that every solution of (3) oscillates. 

Proof. In this particular case 
n-l 



and hence (10) reduces to 



that is, (24) holds. Hence the proof follows from Theorem 1. 
Example 1. The equation 



x(t _ 1} + 6 + x(t _ 2 ) = 0, 

satisfies the hypotheses of Theorem 1 and hence every solution of it oscillates. But 
Theorem 5.2 of [8] is not applicable to it. 

Example 2. Consider the equation 



\ 

By Theorem 5.2 of [8], every solution of it oscillates. But Theorem 1 of this paper is not 
applicable to this equation. This is due to the fact that Theorem 1 holds only for n > 1 
and is an odd integer. 

Acknowledgement 

Research of the first author was supported by the National Board for Higher 
Mathematics (Deptt. of Atomic Energy), Government of India. 



Oscillation of higher order delay differential 



423 









, 44 (1982) 134-152 



I. 162 (1992) 452-475 



theory of differential equations 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 4, November 1995, pp. 425-444. 
Printed in India. 



Nontrivial solution of a quasilinear elliptic equation 
with critical growth in R n 

RATIKANTA PANDA 

T.I.F.R. Centre, P.O. Box No. 1234, 1.I.Sc. Campus, Bangalore 560012, India 

MS received 10 February 1995; revised 16 June 1995 

Abstract. Suppose A n w = div ( j Vw | " " 2 Vw) denotes the rc-Laplacian. We prove the existence of 
a nontrivial solution for the problem 



where /(x, t) = o(t) as t -> and | /(.x, t) \ ^ C exp(a n 1 1 \ nl(n ~ l ') for some constant C > and for all 
'.xeR'VfeIR with a n = naj l n l( "~ u , a> n = surface measure of S n ~ l . 

Keywords. Elliptic equation; critical growth; Palais-Smale condition; concentration 
compactness; mountain pass lemma. 

1. Introduction 

Suppose A n u = div(| Vu\ n ~ 2 Vu) denotes the n-Laplacian. We look for a solution of the 
problem 

(-~k n u + \ur 2 u~f(x,u)u n ~ 2 in R" 
\ueW l < tt (R tt ) ' 

where f(x 9 t) =o(t) as f-0 and \f(x 9 t)\ ^ Cexp(aJt| M/(M - 1) ) for some constant C>6 
and for all xelR", teR with a n = na) l n l(n ~ l \ co n =surface measure of S n ~ l . 

In the case where 1 c R" is a bounded smooth domain, and f(x, t) == 
h(x,t)exp(ai n \t\ nl(n ~ 1} ) with h(x 9 t) a lower order term in t, the problem (1.1) with 
Dirichlet boundary condition has been considered by Adimurthi [1] and with 
Neumann boundary condition by the author [9]. In case of n = 2, D M Cao [5] has 
shown the existence of a nontrivial solution for the problem (1.1). In this paper, 
applying the concentration-compactness principle of P L Lions [6, 7], we show that the 
functional associated with (1.1) satisfies (Palais-Smale), (in short (PS) C ) condition for all 
ce(0,J) for some J>0 (for definition of J see 3). Then we show the existence of 
a nontrivial solution for (1.1) by using Mountain Pass lemma as given in [4] and 
constructing a critical point of the functional with critical value in (0, J). The main 
difficulty here is to show that whenever a Palais-Smale sequence u m > u weakly in 



\Vu m \ n - 2 Vu m -^\Vu\"- 2 Vu weakly in (L^"" 1 ^")) 11 
We need the following assumptions on the nonlinearity f(x, t)eC(R n x R): 
(/i) l/(x, 01 ^ Cexp(aJ t\n/(n - 1)) for xeR", teR, where C > is some constant. 
(/ 2 ) /feO^" 1 =/(x, -r)(- tr-^orxe^teRj^^isnondecreasingwith respect 

425 



426 Ratikanta Panda 

to t, for t > 0; 

lim = uniformly with respect to xeU": 

f-*0 t 

lim ~ = uniformly with respect to xe R". 

t-oo ^ 

(/ 3 ) There exists 0e( 0, - ) such that 
V n J 

F(x,t)^9t n ~ l f(x,t) for xeRVeR, 

where F(x,t) = ^f(x,s)s n ' 2 ds _ 
(/ 4 ) 3/(t) such that lim |xhoo /(x, t) = f(t) uniformly for t bounded, more precisely, 

1 for |x|>R, 



where s(R) -+ as -+ oo. 

(/ 5 )3p>n such that f(x,t)^f(t)^C p t p -+ 1 >(p/n)S p p (l - n 0) 1 ~ (p/n) t p ~ n+1 for 
xeR", te!R + , where 

S p = w jnf 

u^O 

For we ^-"(R 11 ) let 



r _ 
c- F(u)dx, (1.2) 

JR 

where F(t) = f /(s)s w ~ 2 ds. The main results in this paper are as follows. 



Theorem 1.1. Suppose /(x, t) = f(t) does not depend on x and satisfies (/aH/a) and (fs)- 
Then (1.1) has a nontrivial solution u . Moreover I(u Q ) < (l/n) - 9. 

Theorem 1.2. Suppose /(x, t) satisfies (fj-(f 5 ) andf(x 9 1) ^ f(t) for fixed t with respect 
to xelR". Then (1.1) has a nontrivial solution. 

We remark that the (PS) condition is not needed for the proof of Theorem (1. 1). 

2. Preliminaries and notations 

We shall denote j to mean J Rn dx. Define 

for ueW l *(te) (2.1) 



t|M for ueL q (U"). (2.2) 

The variational functional associated with (1.1) is 

where F(x, t) = f 



Quasilinear elliptic equation 
Let /() be as in (1.2), 

|u||" =["-'/() 



/^CXD __ 



inf { 



oo, 



if M 00 = <t>, 



427 

(2.4) 
(2.5) 



Remark. If f(t) satisfies (/ x ) and (/ 2 ) then /* > 0. 

Prcx?/. Suppose, on the contrary, 1% = 0. Then there exists a sequence {u m } in 
such that 



Then by (fj, (/ 2 ) and Lemma 2.3 (to be proved) 



where C 1? C 2 > are some constants. Thus 



and therefore | Vw m | n ^ l/2nC 2 , a contradiction which proves the remark. 
Remark. If /(() satisfies (/jH/a) then C > 0. 
Proo/. Suppose M ^ </). For ueM , using (/ 3 ) we get 



Q 



Since f(t) satisfies (/ t ) and (/ 2 ) we have 



428 Ratikanta Panda 

and therefore as in the above Remark we obtain 



for some positive constant C 2 . Therefore by above estimate C ^ ((1/n) - 0)C 2 . This 
proves the Remark. D 

Similar to the imbedding of Moser [8] we have 
Lemma 2.1. Suppose ueW^"(U n ), \Vu\ n n ^ r < 1, |M| B < M < oo. Then 

rr n ~ 2 a m M nm/(n ~ ir i 

expfcjur- 1 ')- X 51II1.5 - ^ C(M,r), (2.6) 

J L - m = m ' J 

C(M, r) > is a constant independent ofu. 



Proof. As in Moser [8] we use the method of symmetrization. Let w* be the symmetriz- 
ation of u. Then u* is a radial, nonnegative and nonincreasing function. Further, 



111*1'== M p , l<p<oo (2.7) 

J 

G(u)= [G(U*), (2.8) 



f f 

|Vu*T< |Vu|", (2.9) 

J J 

where G(u) is the integrand on the l.h.s. of (2.6). We have 

f f r 

jG(u)= G(*)= G(u*)+\ G(u*) (2.10) 



where s > is a number to be determined. 

First we estimate the second integral in (2.10). By the radial Lemma A. IV in [3] we 
have 

/ n \ 1/1. 
!*(*)! <() I^LI^r 1 for x^O. . (2.11) 

\ n/ 

Thus 



f ^, x aT 1 !"*!!! f / a" I |*r i A 
G(u)= " J '+ ( " ,""M 



if s>n|u*| B . (2.12) 



Quasilinear elliptic equation 429 

To estimate the first integral in (2. 1 0), let us put ] x \ n = s"e ~\v (t) = n (n ' 1 }/ " u* (x). Then 

|Vu*T, (2.13) 



exp(li;(r)r /(w ~ 1) -f)dr = - exp(ajM*r /(ll " 1) )dx, (2.14) 

o V J|*K.s 

where v = dv/dt. By Holder inequality we have 



0(0) + ( I |(s)|" r 

(2.15) 



where x is some unit vector in R n . Now 



G(u*)< 

|.x|<.v 



(2.16) 

Combining (2.11), (2.12) and (2.16) we have (2.6). D 

Lemma 2.2. There exists = J?(n) > swch t/zat/or all ueW l -"(R n ) with \Vu\ tt n < l/a B j8e, 
we 



where C > is a constant independent ofu. 

Proof. By the result of Talenti [10] (or of Aubin [2]) we know that if t, s > 1, t < . w and 
1/s = 1/t - 1/n, then all (pGW^(R tt ) satisfy 

Icpl^K^OIVcpl, (2-17) 

with 



Let us set <p = || v , where v = ((n- 1) 2 +nm)/(nm-n + 1), m^2. Then |V<p| = 
v|w| v ~ 1 1 Vu|. Taking s = (n/(n - l))m - 1, t = n - (n 2 (n - !))/(( - I) 2 + nm) and using 



430 Ratikanta Panda 

Holder inequality we get 



f ^-D-H,-! ,,<- 1>- iff v-l) ,\ 

j|u| ^( v y u j 



/( B -l)-l (2.18) 

Now 



where C(n) is a constant dependent on n. Since r < n we get (f l)/t < (n 1 )/n. Also for 
all m > 2, n ^ 2 we have ((n - I) 2 + nm)/n 2 (n - 1) < m and v ^ C t (n), a constant depend- 
ent on n. Hence we get (Kv) Rm/(n " l) ~ 1 ^ C(j?m) w for some = fi(n) > and C = C(n) > 0. 
Therefore by (118) 



f B -l /(-.-lh_ _ ,./(. 

J|u|" (exp(a n | M | )- -,|u| 



2 ' 



For m > 2 we have m/(n - 1) - 2> m/(n - 1). Thus for | Vu|^ /( "~ u < !/ ]8e we have 

( 

I |u|"- 1 (exp( 11 |ur-- 1) )- 1 -ajul"*' 1 ') 



where we have used the same C to denote various constants. D 

Lemma 2.3. Letf(t) satisfy (/J and (/ 2 ). Suppose there exists u Q eW l ' n (R")\{Q} such that 
JF(M ) ^ (l/n)f |u |" and | Vu C < 1. Tten / to actta*d. Moreover /? ^ | Vii C. 



Proo/. Using (/ 2 ) and the hypothesis that f F(u ) ^ ( 1/n) \ u \ n n it is easy to see that there 
exists t (0,l] such that jF(t u ) = (l/n)J|t u r Thus /?<J|Vu | n . Let {u m } be 
a minimizing sequence for JJ* . Without loss of generality we can assume that J | Vu m \ n < 
r< 1. Denote by w* the symmetrization of u m . Then w* is a radial, nonincreasing 
function. Furthermore, 



Quasilinear elliptic equation 431 



Thus {w*} is still a minimizing sequence of /^. We denote it simply by {u m } in what 
follows. Without loss of generality we can assume that |w m | B = 1. Thus {u m } is bounded 
in W l - n (R n ) and so there exists we W rlt "(R 11 ) such that for a subsequence 



w w -*w weakly in HP ^" 
u m -> w a.e. in [R w . 
We want to use a compactness lemma of Strauss (see Theorem A.I. of [3]). Set 



j 

t\ njl(n ~ 1} + \t\*. 



Then using (/J we get lim, rHoo P(t)/Q W = and using (/ 2 ), lim |fKO P(*)/Q(f) = 0. Again 
by radial lemma A.IV of [3] we get (2.11) and so as |x| -* oo, M m (x)-^0 uniformly in m. 
Further by Lemma 2.1, 



(fi(ii 

J 



supfi(iiJ<C. 

M J 

Thus all the conditions of Strauss' lemma are satisfied and we get 



lim 

m-*oo 



Since f F(w m ) = | we get u ^ 0. Now 

- [N"<- lim inf L m | n = lim inf 

Wj nm-oo J m-*oo 



f| 

J 



and so J* is achieved by u. If on the other hand (l/n)J| Vu\ n < fF(w), then there exists 
(6(0, 1) such that (1/n) J| tu\* = jF(rw). Hence 

r r r 

I < M I Vw|" < I Vw| n < lim inf | Vu m \ n = /J, 

J J m-oo J 

a contradiction which proves the lemma D 

Lemma 2 A Suppose {u m } <=. W^ n (U n ) satisfies \Vu m \ n <l,\u m \*<M and 

lim sup (I Vw m | n -h |w m | n )dx = for some R > 0, 

m ^y^ n J y+ B R 



432 Ratikanta Panda 

where B R = {xeR n ; \x\ < R}. Then 



lim 

m-*x 



lim 

m-+:c 



Proof. Let eC%(U n ) be such that c = l for |x|<R/2; 
| Vc| < 4rc/R; Let c v =<;(- y). Then 



(2.19) 
for 1x1 >R and 



(2.20) 



In view of (/ t ) and (/ 2 ), given 8 > there exists C f > such that 



For m large enough | V( y u m )\" n < l/a n j?e and hence Lemma 2.3 gives 



u"dx 



We cover R" by balls B R , 2 (x ; ) in such a way that any point of R" is contained in at most 
k balls B R (.x ; ) of radius R. For large m we have 



|F(.x,u 

JR" 



R 



Making w- oc and then -+0 + in (2.21) we obtain 



lim 

m-*x 



(2.21) 



(2.22) 



Quasilinear elliptic equation 
Similarly we have 



lim 

m t-oo 



3. Proof of the main results 

First we prove the following 

Lemma 3.1. Let C* be as in (2.5) and 

J = min(C 00 , --6M. 
\ ' n ) 

Suppose f(x, t) satisfies (AH/J. Then I(u) satisfies (PS) C condition for ce(0, J). 
Proo/. Let {u m } be a (PS) C sequence in W l '"(R"). That is, 



Then 



433 



(2.23) 
D 



where o(l) denotes the quantities that tend to as m -> oo and 
Taking <p = w m in (3.2) we obtain 



in 



From (3.1) and (3.3) we get 

C (Y 11 \u n ~ l ~F(Y u Y\ 
(X, U m ) U m r (X, U m ) J 

Thus using (/ 3 ), 

and hence in view of (3.3) {u m } is bounded. Further (3.3) gives 
nc 



(3.1) 
(3.2) 



(3-3) 



as desired. 



434 Ratikanta Panda 

Thus for m large enough 

IVuJ^r (3.4) 

where re(0,l) is some fixed number, and there exists ueW l ' n (R") such that for 
a subsequence 

W M -+M weakly in ^'"(IR") 

,->M a.e. in R" 

Vu m \ n + |H m | w )dx-+d^ in measure 
jVuJ"- 2 Vu m ->T weakly in (L n/( "~ 1) ((R''))' 1 - 
Without loss of generality we may assume 



Claim 2: />0. 

If not, suppose / 0. Then by (/J, (/ 2 ) and Lemma 2.3 



Similarly I jF(x,uJI^O. 
So /( m ) = (l/w)l|ti m ir-jF(x,M m )-^0, which contradicts the fact that 



We want to apply concentration-compactness principle of P L Lions [6, 7] to the 
sequence {p m } where p m = | VwJ" -f | wj". Applying Lemma 1.1 of [6] we conclude that 
for a subsequence one of the three possibilities holds: (a) vanishing, (b) dischotomy (c) 
compactness. We use contradiction argument to show that only (c) compactness 
occurs. 

Step 1 : Vanishing does not occur. 
Suppose instead that 

Urn sup I (| VuJ" 4- \u m \ n ) =0 for all R > 0. 
Then Lemma 2.4 yields 



This implies, in view of (33), that i|u m || M -^0, which is not possible since />0. So 
vanishing does not occur. 



Quasilinear elliptic equation 

Step 2- Dichotomy does not occur. 
Suppose dichotomy occurs. Let Q w (t) - sup^ J 
function of Pm . Then {ft.} is a sequence of n 
bounded functions on R + . As m [6], by ex 
there exists Q(t) such that Q m (t) -^ W 
(0, I). For any > 0, e < l/(2n)"a B 0e, we 

c > t . Then for m large enough a - (em 

exists |y m }cR" such that 






435 



(x )d.x denote the concentration 
nonnegative uniformly 
we can assuine that 

, fcn_Q(t) - 
^ Q(t) ^ a _ (/4 ) rf 

tf ^ Furth ermore, there 
(3.6) 



for t ^ t 



and m large enough. Also we can find t. 



oo such that 



(3.7) 



By computation we deduce 



C 

' 



Choosing t, large enough we have 



(3.8) 



<. 



With m large enough so that t m > 3t 1; using (f,), (h) 



(3.9) 






_ if , _ |<tl0r x- 



r f 

|V(u u.)l"<2" [|VjJ" 

J J 



436 Ratikanta Panda 

Hence applying Lemma 2.3 we get 



|f? m l'- 1 (exp(.|? m m r /( '- 1) )- 1 - 



Similarly we have for m large, 



Combining (3.6), (3.8) with (3.11) we get 
J " m 



Also using (/i) and (/ 2 ) we get 



<Ce. 



L <, 

and as in the proof of (3.10) we obtain 

r 

I [ffa w m) ~~ F( x > V m) ~ F( X > W m)l 

From (3.13), (3.14) and (3.15) we have 



(3.11) 
(3.12) 

(3.13) 
(3.14) 



(3-15) 



-Ce (3.16) 

and this proves the claim. 

We will now consider two cases, Case 1: {y m } is bounded, and Case 2: {y m } is 
unbounded. 



Case 1: {y m } is bounded. 



Quasilinear elliptic equation 



437 



lim 4: I(wJ Js /(wj -O(e) - 0(1) as e->0+, m-> oo. 
iVe have 



- [F(x,wJ-F(wJ] 



dfor<5>0, 



*nl^W'*)- F < w ' 



(3.17) 



lere e(rj->0 as t m ->oo. Here we have used the assumption that {y m } is bounded, 
so when |x| is large enough, for | wj< V<5, 



ms 



(/j) and (f s ), for t > we have 



- - uniformly in x and 



= 0. 



ence by (3.4) and Lemma 2.1 
F(x,wJ 



F(.x,wJ 



. Similarly 



F(wJ 



(3.18) 



(3.19) 



(3.20) 



438 Ratikanta Panda 

Thus (3. 17)-(3.20) imply 

[F(x,wJ-F(wJ] ^0. (3.21) 

Therefore we get, as desired 

(3.22) 



where 0()-0as ~*0and o(l)->0as m-oc. 

Cto'm5: /(w w )> C x -0(e)- 0(1). 
We have 

< f(w m ), w m > = <I*'(w J, w m > + [- 7(w J ~ <- 7(*> vv J). 
Arguing as in the proof of (3.21) we can prove that 

wr l /(" j - c 7(*, <a = o(D- (3 - 23) 



Also by using (3.3), (3.6), (3.11) and (3.12) we can get 
OJ, w m > = <J'(u J, <> +0( ) 

= o(l) + 0(e). 
Hence 

</ x '(wJ,w m > = o(l) + 0( ). (3.24) 

With w m (.x) = w m (trx) we have 



= (1 - ff -") I* | VwJ" + a-</-'(w m ), w m >. (3.25) 

J 



We want to choose <r m close to 1 in such a way that w w 6M oc . First we show that | Vw m |^ 
has a lower bound A > independent of e small enough and independent of m. If not, 
then there is a sequence <5 fc -y0 such that 



where w m (<5^) is a subsequence selected by the above process for each S k . Now, by 
dichotomy we have 



1 *&) > I - a - & k . (3.26) 

On the other hand using (3.24), (/ t ), (/ 2 ) and Lemma 2.3 



439 



Qtiasilinear elliptic equation 



Thus |V 
Therefore 



which contradicts (3.26). 



lim |Vw 

m-*-oc 



I" > A > for & small enough. 

i i *"'' 

r" we see from (3.25) 



, which 

, 



(C , 1 + OW + <-(. 

Again, in view of (3,11) we can assume that 
therefore }F(w.) is bounded. Hence 



r<(1 + r)/2tors small enough, an, 
|V.I, < U + 



Thus, in view of (3.22), we obtain 



and this proves the claim. 
Now as in (3.24) we obtain 



So, in view of (/ 3 ) we have 



" / 
Therefore (3.16) and (3.27) imply 



(3.27) 



(3.28) 



440 



Ratikanta Panda 



Letting m-oc and then s-+0 we get c> C* + ((l/n) 0)oc, a contradiction. This 
completes the case of bounded { v w j. 

Case 2: { y m } is unbounded. 

In this case we change the role of { v m } and { w m ] and then we can still get a contradiction 
as above. 

Thus we have ruled out dichotomy and therefore by Lemma 1.1 of [5] there exists 
{y m } in R" such that for any s > 0, there is t = t(s) > such that 

(|VuJ n +|w !")<. (3.29) 



\x-y m \>t 

Claim 6: {j; m } is bounded. 

If not, then without loss of generality suppose y m -^ oo. Now 



Let ?j m be cut-off functions such that < i\ m < 1, i\ m = for \x - y m |< t; 
- y m \ ^ f + 1, 1 V/? m | ^ 2n. Then for < l/a n (4n)"j8e and m large, 



(3.30) 
= 1 for 



Then by Lemma 2.3 and (3.29) 



Similarly 



0(e). 



Again as in the proof of (3.21), using the assumption y m -^ oo we obtain 



asm-^oo. 



(3.31) 
(3.32) 

(3.33) 



Thus I(u m )^I y '(u m )-O(8)-o(l). Again as earlier we can choose a m such that 
a m = 1 - 0(e) -f o(l), u m (.x) = u w (a m .x) is in M x and 



I(u m ) 



C 00 ~ 



Quasilinear elliptic equation 441 

Taking W-+GO and then -0 we obtain c^ C, a contradiction which proves the 
claim. 

Therefore, for any > 0, there exists t = t(s) > such that 



:e. (3.34) 

|*|>r 

To use Strauss' lemma as in [3] we set P(s) = s ll ~ 1 /(x,s), 2(s)= exp((2a n /(l +r)) 
| 5 |/(- D) _ Li-o(l/m!)(2a ll /(l + r)) w |s|" /(B " 1} + |s| B , so that lim |jHao P(5)/fi(5) = 0. Also 
by Lemma 2.1, jQ(w m ) ^ C for some constant C > 0. Therefore by Strauss' lemma, for 
any bounded Borel set Q 



lim 

In particular 

f f 

lim u^" 1 /(.x,Mj= u n ~ l f(x,u). (3.35) 

Again, as in the proof of (3.21) we obtain 

(3.36) 



|x|>t 

Thus 



lim u^ 1 /(.x,uj= "- l f(x,u). (3.37) 

m--oo I I 

J J 

Claim?: w m ->uin P^ 1 ' n ([R w ). 

Since u m -^u weakly in ^^"(R") we have by Rellich's lemma u m -^u strongly in L n (Q) 
for any bounded smooth Q. In particular, 



f 

J\x 



Thus using (3.29) we get 

(3.38) 
As in (3.35), we have for any (peC$(R n \ 

^. (3.39) 



Now, for any (peC?(R n ) we have, by (3.5), (3.38) and (3.39) 
0=lim<I'(uJ,p> 



(3.40) 



442 Ratikanta Panda 

= lim (r(u m ),u m (py 

m-oc 

r r 

= (pd^-h uT-V(p 



= \uT-V(p+ \<pT-Vu + \\u\"(p- \f(x,u)u"- l <p. (3.42) 

Thus 



|uT-V<p= |/(x,u)u"-V- 

J t/ J 

and substituting in (3.41) we get 



In view of (3.5) we get J^|ViU"-^f<pr-V M and hence f, x|<t |VM 
implies, using (3.29), || Vu m \ n -^JT-Vw. That is, 



lim |VuJ"=lim 

wi-oc j m 'X 

Then 



lim 

m-oc 

which implies 

r 

7u m -Vw| M =0, 



by using an inequality 

\a~~b\ p ^2 p - l (\a\ p ~ 2 a-\b\ p - 2 b)'(a~b) 
for any a, beR", p > 2. Therefore w m -^w strongly in ^ Uw ([R w ) as desired. D 

Proof of Theorem 1.1: By the definition of S pJ for any e > there exists u e W l ' n (R") 
such that (KH/|tt,| p )<S p + e. Let i? = ((l -n9) lln /\\u e \\)\u e \ p . Then \\v t \\*=l-n0 9 



Claim: $F(v )>(l/n)\v E \ n n . 

Choose e small enough so that C p >(p/n)(S p + 2s) p (l - ndY~ (pln \ Now S p 

Ikvll/kvLandso 



and this proves the claim. 



Quasilinear elliptic equation 443 

Therefore by Lemma 2.2 1% is achieved by some w and / J ^ 1 n6. Then 

for some Lagrange multiplier AeR. By (/ 3 ) we have 

_ 1 

w , 

Also we know that / >0. Thus A>0. Let W(X)=W O (A~ I/W X). Then u satisfies (1.1), 
fF(tt) = (l/H)J|Mr and /(w) = (l//7)J|Vwr = (l/n)J|Vw o r <(!/)- 0. This proves the 
theorem. D 

Proof of Theorem 1.2: By the assumptions we see that f(t) satisfies the conditions of 
Theorem 1.1. Thus there exists ueW l ' n (R n ) satisfying 

~-A n u + \u\ n - 2 u = f(u)u n ~ 2 inR". - (3.43) 

Moreover, / x (u) <(!/) ~ 9. Let 

t" 



lwl"]- (rfi). 



By (/ 2 ) and (3.43) we have 



ft'(r)^0 forr>l. 

Hence / x (w) = max^ / x (rw). Further, since J(rw)--oo as r-^co, there exists 
t e(0,oc)_such that /(r u) = max^ /(rw). Now, by (/ 5 ) and the hypothesis that 
/(.x, t) = /(f) we have 

/(t fi) < /"'(.to*) ^ max /(m) = /*(ii). (3.44) 

t^O 

We claim that C x = /(M). Clearly C ^I%= /(M). Further, given > 0, we can find 
weM x such that / x (w) < C x -f e. Using (/ 2 ) we can find teR + such that Jf(x,rw) = 
(l/n)\tu\ n n . Again as above we can show that /(w) =max t>0 / oc (t4 Thus 

I^(u) = !%** I(tu) ^ I*(tu) ^ I(u) <* + , 

which gives the other inequality, since > was arbitrary. 
Therefore from (3.44) we get 

. I(t u)<r(u)^C<--6. (3-45) 

It is easy to see, using (f^ (f 2 ) and Lemma 2.3, that there exist p, a > with 
I(u) > a for all u satisfying \\u\\ = p. 

Choose t 1 > t sufficiently large so that l(tu) < for t > t^ Let F be the set of all 
continuous paths connecting and l^u. Define 

c==infsup/(u). (3-46) 

" 



444 Ratikanta Panda 

Then c> a. Also 

c< max /(ru)< 

n 

By Mountain Pass lemma (see [4]), there exists a sequence {u m } in W lttt (R n ) such that 
/("J-^ /'(Hj-^0 in (^-"(R"))*. 

By Lemma 3.1, for a subsequence u m ~^u strongly in W 1 ' n (IR n ). Thus /(w) = c, /'(M) = 0, 
which implies that u ^ and u is a nontrivial solution of (1.1). This completes the proof 
of the theorem. D 

Acknowledgement 

The author would like to thank Prof. Adimurthi for his valuable advice and the 
National Board for Higher Mathematics, India for the financial support. He would also 
like to thank Prof. Tilak Bhattacharya for his valuable suggestions. 

References 

[1] Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for 

the w-Laplacian, Ann. Scu. Norm. Sup. Pisa 17 393-413 (1990) 
[2] Aubin Th, Nonlinear analysis on manifolds: Monge- Ampere equations. (New York: Springer- Verlag) 

(1982) 
[3] Berestycki H and Lions P L, Nonlinear scalar field equations, I. Existence of ground state, Arch. Ration. 

Mech. Anal. 82 (1983) 313-346 
[4] Brezis H and Nirenberg L, Positive solutions of nonlinear elliptic equations involving critical Sobolev 

exponent, Commun. Pure Appi Math. 36 (1983) 437-477 
[5] Cao D M, Nontrivial solution of semilinear elliptic equations with critical exponent in !R 2 , Commun. 

Partial Differ. Equ. 17 (1992) 407-435 
[6] Lions P L, The concentrated-compactness principle in the calculus of variations. The locally compact 

case, part I, Ann. I.H.P. Anal. Nonlin. 1 (1984) 109-145 
[7] Lions P L, The concentrated-compactness principle in the calculus of variations. The locally compact 

case, part II, Ann. I.H.P. Anal. Nonlin. 1 (1984) 223-283 

[8] Moser J, A sharp form of an inequality by N Trudinger, Indiana Univ. Math. J. 20 (1971) 1077-1092 
[9] Panda" R, On semilinear Neumann problems with critical growth for the rc-Laplacian, Nonlinear 

analysis, theory, methods and applications 
[10] Talenti G, Best constants in Sobolev inequality, Ann. Mat. Pura. Appl. 110 (1976) 353-372 



Proa Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 4, November 1995, pp. 445-459. 
Printed in India. 



An axisymmetric steady-state thermoelastic problem 
of an external circular crack in an isotropic thick plate 

RINA BHOWMICK and BIKASH RANJAN DAS 

Department of Mathematics, Jadavpur University, Calcutta 700032, India 

MS received 22 September 1994 

Abstract. A steady state thermoelastic mixed boundary value problem for an isotropic thick 
plate is considered in this paper. The faces of an external circular crack situated in the 
mid-plane of the plate are opened up by the application of temperature while the bounding 
surface of the plate are maintained at a constant zero temperature. Solution valid for large 
values of the ratio of the plate thickness to the diameter of the crack has been obtained. 
Expressions for various quantities of physical interest are derived by finding iterative solutions 
of the equations and the results are shown graphically. 

Keywords. Axisymmetric; steady-state; external circular crack; stress-intensity factor. 

1. Introduction 

The strength of a material with cracks is an interesting problem in fracture as well as 
structural mechanics and the knowledge of the elastic stress field is potentially useful 
for strength estimation based upon brittle fracture theory. 

Several papers have appeared which treat distributions of stress in an infinite solid 
due to the application of temperature or normal pressure on the faces of a flat internal 
circular crack (Das and Ghosh [2], Lowengrub [5], Bandy opadhyay and Das [1]). The 
problem of an infinite body containing an external circular crack covering the outside 
of a circle, due to the application of normal pressure has been considered by Uflyand 
[12] using toroidal coordinates and by Lowengrub and Sneddon [6] from the dual 
integral equation point of view. Lowengrub [7] has also solved the two-dimensional 
plane strain problem for an external crack y = 0, | x| > 1 opened up by normal pressure, 
using dual trigonometric equations. Distribution of stress in a thick plate containing an 
external circular crack opened up by the application of pressure has been considered by 
Dhawan [4]. 

This paper determines the thermoelastic stress distribution in the vicinity of an 
external circular crack situated in the mid-plane of an isotropic elastic plate of finite 
thickness and infinite radius. The temperature, the shear component of stress tensor 
and the normal component of displacement vector vanish over the plane boundaries 
while the crack is opened up by the application of a prescribed axially symmetric 
temperature to its faces. The method of solution is to seek suitable representations of 
the potential of thermoelastic displacements and the Love function and then to reduce 
the problem to the solution of two pairs of dual integral equations. Finally, these dual 
integral equations have been further reduced to Fredholm integral equations of the 
second kind which are solved in terms of power series. The results are illustrated by 
a number of diagrams (figures 2-7). 



446 Rina Bhowmick and Bikash Ranjan Das 

2. Basic equations of thermoelasticity 

We consider the temperature and displacement fields in an isotropic elastic solid which 
is conducting heat. If we assume that there is symmetry about an axis, which we take to 
be the z-axis, then the position of a typical point of the solid may conveniently be 
expressed by the cylindrical polar, coordinates (r, 0, z) and the displacement vector will 
have the components (w rs 0, wj. The non-vanishing components of the stress tensor will 

In the absence of body forces or heat sources within the solid, the steady-state 
equations of thermoelasticity with symmetry about z-axis are (Sneddon and Berry 

[10], p. 125) 

2(l-v)f^ + i^-^ + (1 - 2v) ^ + ^ = 2(1 + v)a ^ 

\ dr" r or r" J dz* or 02 or 

(1 _ 2v) fe + i^ +2(1 _ v) ^ + ^f^ + ^ =2(1+v)a f: 

\ or" r dr J dz dz \ or r J oz 

(1) 
and 

V 2 T = 0, (2) 

where T = T(r, z) is the deviation of the absolute temperature of the solid from that in 
a state of zero stress and strain, a is the co-efficient of linear thermal expansion of the 
solid, v is its Poisson ratio and 

y2 | | /3\ 

dr 2 r dr dz 2 ' 

3. Boundary conditions 

With a suitable choice of our unit of length we can assume that the faces of the crack are 
described by the relations z = ,r > 1. The thickness of the plate is assumed to be 
<5-times the diameter of the crack. We suppose that there is no external force acting on 
the crack-faces and that the face z = 0+,r^lis heated (or cooled) exactly in the same 
way as the face z = 0-, r^l. Then following Sneddon [9] we reduce the crack 
problem for the thick plate r > 0, |z| ^ 8 to the mixed boundary value problem for the 
layer r ^ 0, ^ z ^ <5 for which the thermal and elastic conditions are: 
on z = 0: 

T(r,0) = /(r), l<r<oo (5) 

(^(r, 0)=0, 0<r<oo (6) 

u a (r,0) = 0, 0^r<l (7) 

<r sz (r,0)=0, l<r<oo (8) 

on z = <5: 



An axisymmetric steady-state thermoelastic problem 



447 



T=0, OJ1 Z =0, U z = 



= f(r) 






cr rz =o,u z :=o 



26 



T = , C z = , U z = 



T = f (r) 



Figure 1. 



<oo (10) 

u,M) = 0, 0<r<oo, (11) 

where/(r) is prescribed. 

We further assume that the disturbance is localized i.e. the temperature and the 
components of stress and displacement all vanish as ^/(r 2 4- z 2 )-* oo. Position of the 
crack and the boundary conditions for the plate are indicated in figure L 

4. The heat conduction problem 

A suitable Hankel integral representation of the temperature field satisfying the 
Laplace's equations (2) and (9) and vanishing at infinity is taken in the form 



f 

)= 

J o 



(12) 



where B() is an unknown function to be determined from the boundary conditions. 
Conditions (4) and (5) are fulfilled if the function B({) is a solution of the set of dual 
integral equations 



where 



f 

J c 

f 

J c 



= 0, 0<r<l 



-=/(r), l<r<oo, 



(13) 
(14) 



To reduce the above equations to a single integral equation, we apply Sneddon's 
method [11] and put 

/j ^\ 

where, for the convergence of the integral, we assume that 

lim\l/ l (t) = Q. (^ 



448 Rina Bhowmick and Bikash Ranjan Das 

Integrating by parts and making use of (17) we rewrite (16) in the form 



where the prime (') denotes differentiation. 

Substituting from (18) and making use of the result ( [13] p. 405) 



J (6-)cos(c;f)dc = 



0, 



r<t 



7, r>t 



we can show that 



0, 



= 



1 



f r \l/\(t) , 
H- . , , df. l<r<oo. 

- 2 - 2 



It is clear from (20) that the form (16) satisfies (13). Now, from (14) we have 



J 1 

Making use of the result [13], p. 405 

1 



J (cr)sin(ct)dc= 



0, 



r<t 



t<r 



we find from (21) 



(18) 



(19) 



(20) 



(21) 



(22) 



Kr<oo. 

(23) 



If we replace J (cr) by its integral representation, 

2 



we find that the second term on LHS is equal to 



Simplifying and interchanging the order of integrations the second term on LHS 
becomes 



1 



dt 



An axisymmetric steady-state thermoelastic problem 449 

where 

flf(o>)= I* H^cosf^du. (24) 

Jo \ / 

Then from (23) we have 



= /(r), 1 < r < oo 
or, 



^[^ 



= /(r), l<r<oo, 
which on inversion gives 

I ^(t\ - 



= _2d f 00 rf(r) 
or, 



2 d 

r, KKCO. 



(25) 
where 

KI(U, t) = H*(t-u)- H*(t + M). (26) 

5. The thermoelastic problem 

* The potential <D of thermoelastic displacement satisfying the Poisson equation 

(Nowacki [8], p. 12) V 2 <& = mT, where m = (1 + v)a/(l - v), is 



2 o 



fr)df. (27) 

The Love function satisfying the Inharmonic equation (Nowacki [8], p. 17) V 4x F = 0, 
is sought in the form of the Hankel integral 



- z) - <5 sinh(^z)cosech(^<5)] J ({r)df (28) 



which vanishes at infinity. 

Using basic equations, we have 



- z 



450 Rina Bhowmick and Bikash Ranjan Das 



+ C(f)cosech(5)[2(l - v)sinh (5 - z) + z cosh (d - z) 
o 



(29) 



-z) + z sinh (<5 - z) 
o 

cosh((?z)cosech(c<5)] J (^)dC (30) 

o 

B(?)sech(^)sinh {(5 - z) J^r)^ 

-2/x 

J o 



r)d. (31) 

Equations (6), (10) and (11) are automatically satisfied. Using boundary conditions (7) 
and (8) we get, 

1 (32) 

= ~ ?/(>*), l<r<oo (33) 



o 
where 






Following Lowengrub and Sneddon [6] we put 

C()= I iA 2 (t)cos(^)dt, (35) 

where we assume that 

lim^ 2 (t) = 0. (36) 

r-*oo 

Integrating by parts and making use of (36) we rewrite (35) in the form 

, (37) 



where the prime (') denotes differentiation. Substituting (35) and making use of the 
result (19) we have 

0, 0^r<l 

(38) 
, 1 <r< oo. 



An axisymmetric steady-state thermoelastic problem 451 

It is clear from (38) that the form (35) satisfies (32). From (33) we have 



m 

=--/(r), l<r<oo. (39) 

z 

The first term on the LHS of the above integral equation (39) becomes 



Replacing J (r) by its integral representation 

2 



the second term on the LHS of the above integral equation (39) becomes 
2 



Interchanging the order of integration and simplifying the above term becomes 
1 f 00 dt 



where 

r / '// -A 

?. (40) 





Thus (39) becomes 



m 



or, 



] 



= -/W> l<r<oo, 



which on inversion gives 

1 f 00 ' * * m d p r/(r)dr 

2t+7 ^Ji 2t 2 ^ TrdrJ, V(r 2 -r 2 )' 

l<t<oo. (41) 

Assuming that /(r) is continuous differentiate in (1, oo), we integrate (41) between 
the limits t to oo and on making use of (36), we obtain the following Fredholm integral 



452 Rina Bhowmick and Bikash Ranjan Das 

equation of the second kind 



where 



K 2 ( M ,f) = 



(42) 
(43) 



6. Method of solution 

Assuming that 6 1, we can write (15) and (34) as 



and 



Using (24) and (44) we have from (26) 



(44) 
(45) 



3605 6 



where 



(46) 
(47) 



To solve the Fredholm integral equation (25) we assume a series solution in the form 



(48) 



Then from the Fredholm integral equation (25), we have 



7i df 



; 2j 
n 



(49) 



etc. 



An axisymmetric steady-state thermoelastic problem 453 

Similarly for the Fredholm integral equation (42), we assume a series solution in 
the form 



and we obtain a set of equations of the form (49). 

7. Solution for a particular type of temperature distribution: Quantities of physical interest 

In this section we solve the integral equations (25) and (42) for large values of (5, by 
giving a particular value of/(r) which is important from the physical point of view. 
Let /(r) be defined as 

/(r)=-/ H(fl-r), a>\ (51) 

where H(t) is the Heaviside unit function. 
Then 



t<a 

(52) 



t>a. 



Substituting this value in (25) we get 
i) For t > a: 



It can be shown that its trivial solution is 



ii) Forr<a: 

In this case integral equation (25) becomes 



which on considering terms up to 6 6 gives 
., M _ 2/o t 



(55) 



454 Rina Bhowmick and Bikash Ranjan Das 



+ t 



3a 4 



Substituting the above values for ^(r) we have from (12) 



, 



, 



where 



A = ^ cos -ii ^ 
11 2 a 

12 ~ cos - + 

A 12 =~-cos" 1 - + 
16 a 



48 



and 



(56) 



(57) 



(58) 



Similarly we get a trivial solution \j/ 2 (t) = of the Fredholm integral equation (42), 
for t > a. 

ii)' For t < a: 
In this case 



X, 



+ 



HM fa 6 -* 6 



4 - 4 2 



120<5 6 6 



where 



(59) 
(60) 



An axisymmetric steady-state thermoelastic problem 455 

Using the method used earlier an iterative solution for i// 2 (r) is obtained in the form 







vhere 



' , (61) 
'. (62a) 



Now we derive expressions for quantities of physical interest. 
Using (35) in (29) we have on the crack plane z = 0, 



M s (r,0) = 2(l- 



J (cr)cos(a)dc;. 



Nfow substituting the value of ^ 2 (0 from (61), we can easily find that 



o r r.j 

I ' F(/) 



l -N(r) 



vhere 



H -> 



i 1 o -i 1 

- = - 



a" - -r- | cos ' 

r 



r 2 



a(3r 2 + 2a 2 )J(r 2 -a 2 ) (3r 2 



(63) 



(64) 



(65) 



,(66) 



456 Rina Bhowmick and Bikash Ranjan Das 

and 

E(a/r\ E(j!,fl/r), K(a/r\ F(fra/r) are elliptic integrals. 

The normal component of stress on z = is given by 



3(a 2 -l) 



l)(2a 2 - a - 1) 



+3B 12 Q(r) 






'11 



3 
STCO 



where 



48 



The stress intensity factor is given by 



N= Urn 

r-*l- 



(67) 
(62b) 

(68) 



0-2 0-4 0-6 0-8 1-0 




-0-5 



Figure 2. Variation of T(r,0)/(2/ /7r) with r for a = 1-2, 1-6, 2-0 and 6-5. 



An axisymmetric steady-state thermoelastic problem 



457 



0-2 0-4 0-6 0-8 1-0 




Figure 3. Variation of T(r, 0)/(2/ /*) with r for a = 1.2, 1.6, 2.0 and 8 = 7. 



0-2 0-4 0-6 0-8 1-0 




Figure 4 Variation of <7(r, 0)/(2 mju/o/rc) with r for a = 1.2, 1.6, 2.0 and 8 = 5. 



Using (67) we have from (68) 



(69) 



Quantities of physical interest namely, the temperature and the normal components 
of stress and displacement on the crack plane z = have been calculated for a ==1.2 IA 
2.0 and 5 = 5, 7. Variations of T(r, 0), <r Z2 (r, 0) and ,(r, 0) with r are shown graphically m 
figures 2-7 respectively. 



Rina Bhowmick and Bikash Ranjan Das 



0-2 0-4 0-6 0-8 LO 




Figure 5. Variation of a : J(r, 0)/(2 m/*/ /rc) with r for a = 1.2, 1.6, 2.0 and 6-1. 




Figure 6. Variation of w,(r,0)/(2(l - v)m/ /7r) with r for a = 1.2, 1.6, 2.0 and 6 = 5. 



8. Conclusions 

When (5 -^ oo, the problem reduces to that of an infinite medium containing an external 
circular crack which has been solved by Das [3]. It is found that the limiting values as 
8 -> oc of the temperature, stress intensity factor and the normal components of stress 



An axisymmetric steady-state thermoelastic problem 



459 




Figure 7. Variation of w s (r, D)/(2(l - v)m/ /7r) with r for a = 1.2, 1.6, 2.0 and <5 = 7. 

and displacement given by (56), (69), (67) and (64) are the same as those obtained by 
Das. 



References 

[1] Bandyopadhyay S and Das B R, Stress in the vicinity of a penny-shaped crack in a transversely 

isotropic thick plate, Proc. Indian Nat. Sci. Acad. A60 (1994) 503-512 
[2] Das B R and Ghosh S, Thermoelastic stresses in a thick plate containing a penny shaped crack in the 

mid-plane, Geophys. Res. Bull 15 (1977) 65-70 
[3] Das B R, Some axially symmetric thermal stress distributions in elastic solids containing cracks-I: An 

external crack in an infinite solid, Int. J. Engg. Scl 9 (1971) 469-478 
[4] Dhawan G K, The distribution of stress in the vicinity of an external crack in an infinite elastic thick 

plate, Ada Mech. 16 (1973) 255-270 

[5] Lowengrub M, Stress in the vicinity of a crack in a thick elastic plate, Q. J. Appl. Math. 19 (1961) 1 19 
[6] Lowengrub M and Sneddon I N, The distribution of stress in the vicinity of an external crack in an 

infinite elastic solid, Int. J. Engg. Sci. 3 (1965) 451 

[7] Lowengrub M, A two-dimensional crack problem, Int. J. Engg. Sci. 4 (1966) 289-299 
[8] Nowacki W, Thermoelasticity (London: Pergamon Press) (1962) 
[9] Sneddon I N, The distribution of stress in the neighbourhood of a crack in an elastic solid, Proc. R. Soc. 

London AIM (1946) 229 
[10] Sneddon I N and Berry D S, The classical theory of elasticity Handbuch der Physik, Bd. VI. (Springer), 

(1958) 

[1 1] Sneddon I N, The elementary solution of dual integral equations, Proc. Glasg. Math. Asso. 4 (1960) 108 
[12] Uflyand Ya S, Elastic equilibrium in an infinite body weakened by an external circular crack, J. Appl. 

Math. Mech. 23 (1959) 134 
[13] Watso.n G N, A Treatise on Bessel functions (1st paperback edition) (Cambridge: University Press) 

(1966) 



Proc. Indian Acad. Sci. (Math. Sci.), Vol. 105, No. 4, November 1995, pp. 461-469. 
Printed in India. 



Some characterization theorems in rotatory magneto 
thermohaline convection 

JOGINDER SINGH DHIMAN 

Department of Mathematics, Government Senior Secondary School, Jalag (Kangra) H.P. 
176094, India 

MS received 22 August 1994; revised 10 January 1995 

Abstract. The present paper extends the results of Banerjee et al [2] for the hydromagnetic 
thermohaline convection problems of Veronis' [9] and Stern's [8] types to include the effect of 
a uniform vertical rotation. 

Keywords. Hydromagnetic thermohaline convection; uniform vertical rotation. 



1. Introduction 

The establishment of non-occurrence of any slow oscillatory motions which may be 
neutral or unstable imply the validity of the principle of exchange of stabilities (PES). 
The validity of PES in a certain class of stability problems eliminates the unsteady 
terms from the linearized perturbation equations which results in notable mathemat- 
ical simplicity since the transition from stability to instability occurs via a marginal 
state which is characterized by the vanishing of both real and imaginary parts of the 
complex time eigenvalue associated with the perturbation. Pellew and Southwell [5] 
proved the validity of PES for the classical Rayleigh-Benard convection problem 
(RBCP). Chandrasekhar [3] in his investigations of hydromagnetic RBCP conjectured 
that if the total kinetic energy associated with a perturbation exceeds the total magnetic 
energy associated with it, then PES is valid. Sherman and Ostrach [7] established the 
above conjecture of Chandrasekhar for a more general problem when the fluid is 
confined in an arbitrary region and the uniform magnetic field is applied in an arbitrary 
direction. However, the result of Sherman and Ostrach is of limited value since one 
cannot a priori be certain when their criterion will be satisfied. Banerjee et al [1] 
established that for the hydromagnetic RBCP if Q^ l /n 2 ^ 1, where Q is the Chan- 
drasekhar number and <T I is the magnetic Prandtl number, then the total kinetic energy 
associated with an arbitrary perturbation which may be neutral or unstable is greater 
than the total magnetic energy associated with it and consequently PES is valid in this 
parameter regime. Banerjee et al [2] further extended these energy considerations to 
the hydromagnetic thermohaline convection problems of Veronis' [9] and Stern's [8] 
types. The aim of the present paper is to extend the results of Banerjee et al for the 
hydromagnetic thermohaline convection problems of Veronis' and Stern's types to 
include the effect of a uniform vertical rotation. 

2. Basic equations and boundary conditions 

The non-dimensional linearized perturbation equations governing thermohaline con- 
vection problem in the presence of a uniform vertical rotation and magnetic field are 

461 



462 Jocjinder Singh Dhiman 

given by (cf. Gupta et al [4]). 

(D 2 -a 2 )(D 2 -a 2 -p!a)\v = Ra 2 9-R s a 2 (j)~QD(D 2 -a 2 )h^ TDZ (1) 

(D 2 -fl 2 -p)0=-w (2) 

(D 2 ~a 2 -p/i)<p=-w/T (3) 

(D 2 -a 2 -pa l /ff)h s =-Dw (4) 

(D 2 - a 2 - p/<r)Z = - Dw - QDX (5) 

(D 2 -a 2 ~paJa}X = -DZ (6) 

together with the boundary conditions 

w = = = < = Dw = Z = DX = h : at i = ,1 . (7) 



The various symbols occurring in the above equations are defined as follows: 

z is real independent variable such that ^ z ^ 1 and stands for vertical coordinate, 
D = d/dz denotes the derivatives with respect to z. a 2 is the square of the wave number, 
a is the thermal Prandtl number, i is the Lewis number, a l is the magnetic Prandtl 
number, jR is the thermal Rayleigh number, R s is the thermohaline concentration 
Rayleigh number, is the Chandrasekhar number, T is the Taylor number and 
P = Pr + 'Pi is a complex constant in general representing the complex growth rate. 
Further \v, 0, fa Z, X and h z are complex valued functions of z and stand respectively for 
the vertical velocity, temperature, concentration, vertical vorticity, vertical current 
density and vertical magnetic field. We note that R>0 and R s > for Veronis 1 
configuration whereas for Stern's configuration, we have R < and R s < 0. 

System of eqs (l)-(7), constitute an eigenvalue problem for p for given values of 
a 2 ,R<R s ,Q, T, o and a l and a given state of the system is stable, neutral or unstable 
according to p r < or p r = or p r > 0. Further, if p r = implies p f = for all wave 
numbers a 2 , then the principle of exchange of stabilities (PES) is valid, otherwise we will 
have overstability at least when instability sets in certain modes. 

3. Mathematical analysis 

We prove the following theorems: 

Theorem 1. A necessary condition for the existence of a nontrivial solutions 
(p, w, 0, fa /!_, X, Z) of eqs (l)-(7) with R > 0, R s > and. p = p r -f ip., p. ^ is that 

^i<(-/2 + J r 3 + ^) 5 (8) 

where 



(9) 
(10) 



Rotatory magneto thermohaline convection 463 

and 

J 4 =rf 1 |z| 2 dz. (ii) 

J 

Proof, Multiplying eq. (1) by w* (the complex conjugate of w) integrating the resulting 
equation over the range of z, we have 

, , , , , f 1 , f 1 

^ ~a~)(D~ a~ p/<7)wdz = Ra" w*6dz R s a~ w*<pdz 

o Jo Jo 

pi pi 

+ T\ w*DZdz-g w*Z)(Z) 2 -0 2 )/z 3 dz. (12) 

Jo Jo 

Using eqs (2)-(6) and boundary conditions (7), we can write 

f 1 f 1 

Ra 2 u'*0dz= -/ta 2 0(Z) 2 -fl 2 p*)#*dz, (13) 

Jo Jo 

pi pi 

-R s a 2 w*(f)dz = R s a 2 <f)(D 2 - a 2 -p*/r)^*dz, (14) 

Jo Jo 

i ri 



Jo 

i 

o 
i pi pi 

w*DZdz=- Dw*Zdz= Z(D 2 -a 2 -p*/a)Z*dz 
o Jo Jo 

pi pi pi 

+ Q ZDX*dz= Z(D 2 -a 2 -p*/v)Z*dz-Q DZX*dz 
Jo Jo Jo 

1 /! 



o o 

(16) 



It follows from eqs (12)-(16) that 



1 pi 

vv*( J D 2 -a 2 )(D 2 -fl 2 -p/cr)wdz= - Ra 2 6(D 2 -a 2 -p*)0*dz 
o Jo 

i 



r 2_ 2__ 

Jo P 

1 

2 ^,2 1*\V*A^ nj\ 

Integrating various terms of eq. (17) by parts for an appropriate number of times and 
making use of boundary conditions (7), we have 

^1+^2+^3 + ^4 + ^5 +^6 = 0> (18) 



464 Joginder Singh Dhiman 

where 





1 



I 2 = - Ra 2 



I= 



4 

o 



/ 5 = 



and 



Equating the imaginary parts of both sides of eq. (18) and cancelling p,.( ^ 0) through- 
out, we have 

i pi pi 

(|Dw| 2 +<r|w 2 )dz-fRa 2 <7 Iflpdz + QTo-! |*| 2 dz 
o Jo Jo 

-<R s a 2 a I |<| 2 dz+ 
J o 

(19) 



|X| 2 dz = 0. (20) 
o o 

Equation (20) clearly implies that 



This completes the proof of the theorem. 

We note that expressions for J l , J 2 , J 3 and J 4 as given by eqs (8)-(l 1) respectively, 
represent the total kinetic energy, magnetic energy, concentration energy and rota- 
tional energy. In view of this, Theorem 1 can be restated as follows: 

A necessary condition for the existence of oscillatory motion which may be stable, 
neutral or unstable for Veronis" thermohaline convection problem in the presence of 
a uniform vertical rotation and magnetic field is that the sum total of magnetic, 
concentration and rotational energies must exceed the total kinetic energy or, equival- 
ently, if the total kinetic energy exceeds the sum total of magnetic, concentration and 
rotational energies, then the oscillatory motions are not allowed. 

The above result, no doubt yields us a condition in terms of energies of the system for 
the non-occurrence of oscillatory motions, however, it is of limited value, since one can 



Rotatory magneto thermohaline convection 465 

not a priori be certain when this condition will be satisfied as it involves the unknown 
eigen functions of the problem. It will therefore be more useful to express this condition 
in terms of the parameters of the problem prescribed by the fluid properties. We 

PCtaKlieh tVno in tVi<a fr\11r\\x/inrr tt*A/"\rp>m 



establish this in the following theorem. 



Theorem 2. // (p,w,0,<k/z z ,Jr,Z), p = p r + ipi,Pi>Q, P r >0, R>0 and R s >0 is a 
solution of eqs (l)-(7) and ^ + ^ + -7 < 1, then, J l > (J 2 + J 3 + J 4 ). 

[_ 71 2T"7T 7C J 

Proof. Multiplying eq. (3) by its complex conjugate, integrating over the range of z by 
parts a suitable number of times and making use of boundary conditions (7), we have 



Since, p r ^ 0, therefore eq. (21) gives 

f 1 1 f 1 

la 2 |>0| 2 dz< |w| 2 dz 

Jo T ~ J o 

which upon using Poincare inequality [6] 

f 1 ' f 1 

7i 2 \ |</>| 2 dz^ |D0| 2 dz (since0(0) = 0: 

Jo Jo 

yields that 

f 1 1 f 1 

a 2 |</>| 2 dz< 7T 2 |w| 2 dz. (22) 

Jo 2t~ J 

Further, since w(0) = = w(l) also, therefore 



|Dw| 2 dz. (23) 

IL J 

Combining inequalities (22)-(23), we have 



|w| 2 )dz. (24) 

Multiplying eq. (4) by /z? (the complex conjugate of h s \ integrating the resulting 
equation by parts a suitable number of times in the range of z, making use of boundary 
conditions (7) and then equating the real parts from both sides of the resulting equation, 
we have 

ri n 

\h,fdz 
o 



466 Joginder Singh Dhiman 



r P 

= real part of wDh*dz 
LJo 

f 1 

^ 

J o 






w||D/L|dz 



i "li/2 r pi 11/2 

|w 2 dz |D/i_| 2 dz 

o J LJ o 



(by Schwartz inequality). 
Since p r ^ 0, therefore inequality (25) implies that 

|D/i = | 2 dz< |w| 2 dz . 



(25) 



(26) 



Combining inequalities (23), (25) and (26), we get 

1 f 1 

5 ") i i i ) , . J- 



iDw| 2 dz 



I o 

4,f. 

n ~ Jo 



(27) 



Now, multiplying eq. (5) by Z* (the complex conjugate of Z\ integrating by parts 
a suitable number of times, using boundary conditions (7) and equating the real parts of 
the resulting equation, we have 

fi 

(|DZ| 2 + a 2 |Z| 2 + p>|Z| 2 )dz + Q (|Djq 2 + a 2 |*| 2 -f p r < 
o Jo 



= real part of ( Z*Dwdz 

I o 



= real part off - wDZ*dz 



wDZ*dz 



1/2 r pi 

|DZ| 2 dz 
'o J LJo 

(by Schwartz inequality) 
which by virtue of inequality (23) and the fact that p r ^ gives 

|DZ| 2 <-if 1 |Dw| 2 dz 



- wDZ*dz 
J o 

|w||DZ|dz 



Rotatory magneto thermohaline convection 467 

|Dw| 2 + a 2 |w| 2 )dz. (28) 

Inequality (28) together with the Poincare inequality 

\DZ\ 2 dz 



leads to the inequality 



l \Z\ 2 dz<\ r(|>wJ 2 + 2 |wi 2 )dz. (29) 



il J 



Combining inequalities (24), (27) and (29), we have 

" < 30 > 



Inequality (30) clearly implies that if 

/? T "1 



Theorem 2 implies that if ~ + "7" 4 + 4 | ^ U then the total kinetic energy 



then 

J 1 >(J r 2 H-J 3 +J 4 ). 

This completes the proof of the theorem. 

L 

2l 2 7I 4 ' ^? 

associated with an arbitrary oscillatory (p f ^ 0) perturbation which may be neutral 
(p r = 0) or unstable (p r > 0) exceeds the sum total of its magnetic, concentration and 
rotational energies. In particular, it follows that, in the parameter regime 

rH I-^H- ^ 1, the principle of exchange of stabilities is valid for the 

problem under consideration. 

Theorem 3. A necessary condition for the existence of a nontrivial solutions 
(p, vv, 0, 0, /i., X, Z) of eqs (l)-(7) with R < 0, jR s < and p = p r -f ip h p t ^ is that 



where J t , J 2 anrf J 4 are as a/y^n by egs (8), (9), anJ (11) and 



\9\ 2 dz. (31) 



Proof. Putting R = \R\ and R s = \R S \ in eq. (18) and proceeding exactly as in 
Theorem 1, we get the desired result. Keeping in view the fact that J 5 represents the 
thermal energy, Theorem 3 can be restated as follows: 

A necessary condition for the existence of oscillatory motions which may be stable, 
neutral or unstable for Stern's thermohaline convection problem in the presence of 
a uniform vertical rotation and magnetic field is that the sum total of magnetic, thermal 
and rotational energies must exceed that total kinetic energy, or, equivalently, if the 



468 Joginder Singh Dhiman 

total kinetic energy exceeds the sum total of magnetic, thermal and rotational energies 
then the oscillatory motions are not allowed. Further, Theorem 3 is qualitatively of the ^ 

same form as Theorem 1 and possesses the same drawback. We remedy this in the ^ 

following theorem analogous to Theorem 2. 

Theorem 4. // (p,w,fl,<,/i_,jr,Z),p== j p r + /p,.,p ( .^0,p r ^O,R <0 and R s <0 is the 
solution of the eqs(l)-(l) and ^ + V~ + , U: 1, then 

7T 27T 7T 



Proof. Multiplying eq. (2) by its complex conjugate, integrating by parts a suitable 
number of times over the range of z, using boundary condition (7) and equating the real 
parts of the resulting equation, we have 



(\D9\ 2 
o 



f| 
Jo 



|fl| 2 dz = lwfdz. (32) 



o 



Since, p r ^ 0, it follows from eq. (32) that 
n ri 

Jo Jo 

which upon using the Poincare inequality 

M 6H2 d ~<lf l 2 

n ~ J 

and inequality (23) gives 

f 1 1 f 1 

a 2 |0| 2 dz< |Dvv| 2 dz 
Jo 27C J o 



It follows from inequalities (24), (29) and (33) that 



(33) 



l (34) 

Inequality (34) clearly implies that if 



then 

J 1 >(J 2 +J 4 -hJ 5 ). 

This completes the proof of the theorem. 



Rotatory magneto thermohaline convection 469 

Theorem 4 implies that if =~ + - ~- + -^ < 1, then the total kinetic energy 

L TT 2;r it J 

associated with an arbitrary oscillatory perturbation which may be neutral or unstable 
exceeds the sum total of its magnetic, thermal and rotational energies. In particular it 

follows that in the parameter regime ~ H -r- + z ^1, the PES is valid for the 

L *- 2 * n J 

problem under consideration. Theorems 1-4 clearly provide a natural extension of the 
results of Banerjee et al [12] as could be easily seen by putting T = 0. 

Acknowledgement 

Thanks are extended to the learned referee for his valuable comments on an earlier 
version of the paper. 

References 

[1] Banerjee M B and Gupta J R, Studies in hydrodynamic and hydromagnetic stability, (Shimla, India: 

Silver-line Publ.)(1991) 
[2] Banerjee M B, Gupta J R and Katyal S P, A characterization theorem in magneto thermohaline 

convection, J. Math. Anal. Appi 144 (1989) 141-146 

[3] Chandrasekhar S, Hydrodynamic and hydromagnetic stability, (Oxford: Clarendon Press) (1961) 
[4] Gupta J R, Sood S K and Bhardwaj U D, The characterization of non-oscillatory motions in rotatory 

hydromagnetic thermohaline convection. Indian J. Pure AppL Math. 17 (1986) 100-107 
[5] Pellew A and Southwell R V, On the maintained convective mo tion in a fluid heated from below, Proc. R. 

Soc. London A176 (1940) 312-343 

[6] Schultz M H, Spline Analysis, (New Jersey: Prentice Hall) (1973) 
[7] Sherman M and Ostrach S, On the principle of exchange of stabilities for the magnetohydrodynamic 

thermal stability problem in completely confined fluids, J. Fluid Mech. 23 (1966) 661-671 
[8] Stern M E, The salt fountain and thermohaline convection, Tellus 12 (1960) 172-175 
[9] Veronis G, On finite amplitude instability in thermohaline convection, J. Mar. Res. 23 (1965) 1-17 



Proceedings (Mathematical Sciences) 



Volume 105, 1995 



SUBJECT INDEX 



\A\ k summability 
Absolute summability of infinite series 201 

Abel-Jacobi maps 

The Hodge conjecture for certain moduli varieties 

371 

Adjoining identity to a Banach algebra 
Uniqueness of the uniform and adjoining identity 
in Banach algebras 405 

Analytic continuation 

Computer extended series solution to viscous 
flow between rotating discs 353 

Asymptotic expansion 

Surface waves due to blasts on and above inviscid 
liquids of finite depth 227 

Auxiliary functions 

A bibasic hypergeometric transformation as- 
sociated with combinatorial identities of the 
Rogers-Ramanujan type 41 

Axisymmetric 

An axisymmetric steady-state thermoelastic pro- 
blem of an external circular crack in an isotropic 
thick plate ' 445 

Banach space 

Degree of approximation of functions in the 
Holder metric by (e, c) means 315 

Bibasic hypergeometric series 
A bibasic hypergeometric transformation as- 
sociated with combinatorial identities of the 
Rogers-Ramanujan type 41 

Bilateral generating relations 
Certain bilateral generating relations for gene- 
ralized hypergeometric functions 297 

Binary operation 
The algebra /4 p ((0, oo)) and its multipliers 329 

Biot's theory 

Reflection of P-waves in a prestressed dissipative 
layered crust 341 

Blast theory 

Surface waves due to blasts on and above inviscid 
liquids of finite depth 227 

Brown's method 

Computer extended series solution to viscous 
flow between rotating discs 353 

| C, 1 | fc summability 

Absolute summability of infinite series 201 

Caratheodory condition 

A note on integrable solutions of Hammerstein 

integral equations 99 

Cesaro 

On the partial sums, Cesaro and de la Vallee 



Poussin means of convex and starlike functions of 
order 1/2 399 

Characterization of polynomials 
Characterization of polynomials and divided 
difference 287 

Chern-Simons forms 

Flat connections, geometric invariants and energy 
of harmonic functions on compact Riemann 
surfaces 23 

Chow groups 

The Hodge conjecture for certain moduli varieties 

371 

Classical orthogonal polynomials 
Certain bilateral generating relations for gene- 
ralized hypergeometric functions 297 

Compact quantum group 
Induced representation and Frobenius reciprocity 
for compact quantum groups 157 

Complexity 

Symmetrizing a Hessenberg matrix: Designs for 
VLSI parallel processor arrays 59 

Concentration compactness 
Nontrivial solution of a quasilinear elliptic 
equation with critical growth in U" 425 

Critical growth 

Nontrivial solution of a quasilinear elliptic 
equation with critical growth in (R n 425 

Decentralized control 

Control of interconnected nonlinear delay 
differential equations in W 73 

Deficient cubic spline 

Local behaviour of the first derivative of a 
deficient cubic spline interpolator 393 

de la Vallee Poussin means 
On the partial sums, Cesaro and de la Vallee 
Poussin means of convex and starlike functions of 
order 1/2 399 

Delay equations 

Oscillation of higher order delay differential 
equations 417 

Control of interconnected nonlinear delay 
differential equations in W ( ^ } 73 

Delta waves 

Solution of a system of nonstrictly hyperbolic 
conservation laws 207 

Depression 

Control of interconnected nonlinear delay 
differential equations in W ( ? 73 

Derivatives 

On the zeros of (^ - a (on the zeros of a class of 
a generalized Dirichlet series - XVII) 273 



471 



472 



Subject index 



Difference operator 

Certain bilateral generating relations for gene- 
ralized hypergeometric functions 297 

Differential subordination 
Differential subordination and Bazilevic functions 

169 

Diophantine approximation 
Badly approximate p-adic integers 123 

Dirichlet kernel 

On L 1 -convergence of modified complex trigono- 
metric sums 193 

Dissipative 

Reflection of P-waves in a prestressed dissipative 
layered crust 341 

Distinct points 

Characterization of polynomials and divided 
difference 287 

Distribution of zeros 

On the zeros of C|^ - a (on the zeros of a class of 
a generalized Dirichlet series - XVII) 273 

Divided difference 

Characterization of polynomials and divided 
difference 287 

Eigenvectors 

Irrationality of linear combinations of eigenvectors 

269 

Elliptic equation 

Nontrivial solution of a quasilinear elliptic 
equation with critical growth in R" 425 

Energy of maps 

Flat connections, geometric invariants and energy 
of harmonic functions on compact Riemann 
surfaces 23 

Equivalent symmetric matrix 
Symmetrizing a Hessenberg matrix: Designs for 
VLSI parallel processor arrays 59 

Equivariant cobordism 

Equivariant cobordism of Grassmann and flag 
manifolds 381 

Euler transformation 

Computer extended series solution to viscous 
flow between rotating discs 353 

Expansion formulae 

A theorem concerning a product of a general class 
of polynomials and the H-function of several 
complex variables 291 

Explicit formula 

Solution of a system of nonstrictly hyperbolic 
conservation laws 207 

External circular crack 

An axisymmetric steady-state thermoelastic pro- 
blem of an external circular crack in an isotropic 
thick plate 445 

Fejer kernel 

On L 1 -convergence of modified complex trigono- 
metric sums 193 



Flag manifold 

Equivariant cobordism of Grassmann and flag 
manifolds 381 

Flat connections 

Flat connections, geometric invariants and energy 
of harmonic functions on compact Riemann 
surfaces 23 

Fourier series 

Degree of approximation of functions in the 
Holder metric by (e, c) means 3 1 5 

Fourier transform 

Uncertainty principles on certain Lie groups 

135 

Frobenius theorem 
Fibred Frobenius theorem 31 

Function algebra 
Weakly prime sets for function spaces 41 1 

Function space 
Weakly prime sets for function spaces 41 1 

Functional differential equations 
Oscillation in odd-order neutral delay differential 
equations 219 

Galois group 

Irrationality of linear combinations of eigen- 
vectors 269 

Gelfand transforms 
The algebra X p ((0, oo)) and its multipliers 329 

General class of polynomials 
Convolution integral equations involving a 
general class of polynomials and the multivariable 
H-function 187 

A theorem concerning a product of a general class 
of polynomials and the H-function of several 
complex variables 291 

Generalized Dirichlet series 
On the zeros of ( ^ - a (on the zeros of a class of 
a generalized Dirichlet series - XVII) 273 

Generalized hypergeometric functions 
Certain bilateral generating relations for gene- 
ralized hypergeometric functions 297 

Grassmann manifold 

Equivariant cobordism of Grassmann and flag 
manifolds 38 1 

Gravity waves 

On over-reflection of acoustic-gravity waves 
incident upon a magnetic shear layer in a 
compressible fluid 105 

Growth of capital stock 

Control of interconnected nonlinear delay 
differential equations in W\ i} 73 

Growth of sets 

A note on the growth of topological Sidon sets 

281 

h-conformal tensor 

On infinitesimal /i-conformal motions of Finsler 
metric 33 



Subject index 



473 



//-function of several complex variables 
A theorem concerning a product of a general class 
of polynomials and the H-function of several 
complex variables . 291 

Hammerstein integral equation 
A note on integrable solutions of Hammerstein 
integral equations 99 

Harmonic maps 

Flat connections, geometric invariants and energy 
of harmonic functions on compact Riemann 
surfaces 23 

Hausdorff dimension 
Badly approximate p-adic integers 123 

Hecke correspondences 

The Hodge conjecture for certain moduli varieties 

371 

Heisenberg group 
Uncertainty principles on certain Lie groups 

135 

Hessenberg matrix 

Symmetrizing a Hessenberg matrix: Designs for 
VLSI parallel processor arrays 59 

Hilbert C*-module 

Induced representation and Frobenius reciprocity 
for compact quantum groups 157 

Holder metric 

Degree of approximation of functions in the 
Holder metric by (e, c) means 315 

Homogeneous layers 

Reflection of P-waves in a prestressed dissipative 
layered crust 341 

Hydromagnetic thermohaline convection 
Some characterization theorems in rotatory 
magneto thermohaline convection 461 

Induced representation 

Induced representation and Frobenius reciprocity 
for compact quantum groups 157 

Infinitesimal /i-conformal motion 
On infinitesimal /z-conformal motions of Finsler 
metric 33 

Infinitesimal homothetic motion 
On infinitesimal /i-conformal motions of Finsler 
metric 33 

Integrals 

A theorem concerning a product of a general class 
of polynomials and the H-function of several 
complex variables 291 

Interval topology 
The algebra X p ((0, oc)) and its multipliers 329 

Inviscid liquid 

Surface waves due to blasts on and above inviscid 
liquids of finite depth 227 

Irrationality 

Irrationality of linear combinations of eigen- 
vectors 269 



L 1 -convergence of Fourier series 
On L 1 -convergence of modified complex trigono- 
metric sums 193 

L 1 - convergence of modified complex trigonometric 

sums 

On L 1 -convergence of modified complex trigono- 
metric sums 193 

Laguerre means 

A localization theorem for Laguerre expansions 

303 

Laguerre series 

A localization theorem for Laguerre expansions 

303 

Laplace transform 

Convolution integral equations involving a 
general class of polynomials and the multivariable 
H-function 187 

Large-scale systems 

Control of interconnected nonlinear delay 
differential equations in W\ l) 73 

Lie group 
On subsemigroups of semisimple Lie groups 

153 

Local behaviour 

Local behaviour of the first derivative of a 
deficient cubic spline interpolator 393 

Local root numbers 

Lifting orthogonal representations to spin groups 
and local root numbers . 259 

Lusin theorem 

A note on integrable solutions of Hammerstein 
integral equations 99 

Magnetic shear layer 

On over-reflection of acoustic-gravity waves 
incident upon a magnetic shear layer in a 
compressible fluid 105 

Matrix method 

Reflection of P-waves in a prestressed dissipative 
layered crust 341 

Maximal ideal space 
The algebra A p ((Q, oc)) and its multipliers 329 

Mid-point interpolation 

Local behaviour of the first derivative of a. 
deficient cubic spline interpolator 393 

Moduli spaces 

The Hodge conjecture for certain moduli varieties 

371 

Motion group 
Uncertainty principles on certain Lie groups 135 

Mountain pass lemma 

Nontrivial solution of a quasilinear elliptic 
equation with critical growth in R" 425 

Multivariable H-function 
Convolution integral equations involving a 
general class of polynomials and the multivariable 
H-function 187 



474 



Subject index 



Normal functions 

The Hodge conjecture for certain moduli varieties 

371 
Normal matrix 

Absolute summability of infinite series 201 

Odd order 

Oscillation of higher order delay differential 
equations 417 

Orthogonal representations 

Lifting orthogonal representations to spin groups 
and local root numbers 259 

Oscillation of all solutions 

Oscillation in odd-order neutral delay differential 
equations 219 

Oscillation of higher order delay differential 
equations 417 

Over-reflection 

On over-reflection of acoustic-gravity waves 
incident upon a magnetic shear layer in a 
compressible fluid 105 

P-wave 

Reflection of P-waves in a prestressed dissipative 
layered crust 341 

Fade approximants 

Computer extended series solution to viscous 
flow between rotating discs 353 

p-adic numbers 

Badly approximable p-adic integers 123 

Palais-smale condition 

Nontrivial solution of a quasilinear elliptic 
equation with critical growth in R" 425 

Partial sums 

On the partial sums, Cesaro and de la Vallee 
Poussin means of convex and starlike functions of 
order 1/2 399 

Precise estimate 

Local behaviour of the first derivative of a 
deficient cubic spline interpolator 393 

Principal G-bundle 

Flat connections, geometric invariants and energy 
of harmonic functions on compact Riemann 
surfaces 23 

<3f-hypergeometric identities 

A bibasic hypergeometric transformation as- 
sociated with combinatorial identities of the 
Rogers- Ramanujan type 41 

Reflection 

Reflection of P-waves in a prestressed dissipative 
layered crust 341 

Reflection coefficients 

Reflection of P-waves in a prestressed dissipative 
layered crust 341 

Regular norm 

Uniqueness of the uniform and adjoining identity 
in Banach algebras 405 



Reversion of series 

Computer extended series solution to viscous 
flow between rotating discs 353 

Riemann zeta function 

On the zeros of (l * - a (on the zeros of a class 
of a generalized Dirichlet series - XVII) 273 

S-wave 

Reflection of P-waves in a prestressed dissipative 
layered crust 341 

S/f-type waves 

Generation and propagation of SH-type waves 
due to stress discontinuity in a linear viscoelastic 
layered medium 241 

Schauder fixed point theorem 
A note on integrable solutions of Hammerstein 
integral equations 99 

Scorza Dragoni theorem 

A note on integrable solutions of Hammerstein 
integral equations 99 

Semisimple 
On subsemigroups of semisimple Lie groups 

153 

Series solution 

Computer extended series solution to viscous 
flow between rotating discs 353 

Shear flows 

A proof of Howard's conjecture in homogeneous 
parallel shear flows - II: Limitations of Fjortoft's 
necessary instability criterion 251 

Sobolev spaces 

A localization theorem for Laguerre expansions 

303 

Space of affine functions 
Weakly prime sets for function spaces 41 1 

Spectral extension property 
Uniqueness of the uniform and adjoining identity 
in Banach algebras 405 

Spin groups 

Lifting orthogonal representations to spin groups 
and local root numbers 259 

Starlike and convex functions 
Differential subordination and Bazilevic 
functions 169 

Steady-state 

An axisymmetric steady-state thermoelastic pro- 
blem of an external circular crack in an isotropic 
thick plate 445 

Stress discontinuity 

Generation and propagation of SH-type waves 
due to stress discontinuity in a linear viscoelastic 
layered medium 241 

Stress intensity factor 

An axisymmetric steady-state thermoelastic pro- 
blem of an external circular crack in an isotropic 
thick plate 445 

Subintegral extensions 
The structure of generic subintegrability 1 



Subject index 



475 



Subrings of polynomial rings 
The structure of generic subintegrability 1 

Subsemigroup 
On subsemigroups of semisimple Lie groups 

153 

Summability methods 

Some theorems on the general summability 
methods 53 

Surface elevation 

Surface waves due to blasts on and above inviscid 
liquids of finite depth 227 

Surface waves 

Surface waves due to blasts on and above inviscid 
liquids of finite depth 227 

Symmetrizer 

Symmetrizing a Hessenberg matrix: Designs for 
VLSI parallel processor arrays 59 

System of conservatiop laws 
Solution of a system of nonstrictly hyperbolic 
conservation laws 207 

Systolic array 

Symmetrizing a Hessenberg matrix: Designs for 
VLSI parallel processor arrays 59 

Tangential representation 

Equivariant cobordism of Grassmann and flag 
manifolds 381 

The convolution integral equation 

Convolution integral equations involving a 
general class of polynomials and the multivariable 
H-function 187 



Topological Sidon sets 

A note on the growth of topological Sidon sets 

281 

Uncertainty principle 
Uncertainty principles on certain Lie groups 135 

Unibasic hypergeometric series 
A bibasic hypergeometric transformation as- 
sociated with combinatorial identities of the 
Rogers-Ramanujan type 41 

Uniform vertical rotation 
Some characterization theorems in rotatory 
magneto thermohaline convection 461 

Unique uniform norm property 
Uniqueness of the uniform and adjoining identity 
in Banach algebras 405 

Univalent 

Differential subordination and Bazilevic functions 

169 

Unknown functions 

Characterization of polynomials and divided 
difference 287 

VLSI processor array 

Symmetrizing a Hessenberg matrix: Designs for 
VLSI parallel processor arrays 59 

Weakly prime set 
Weakly prime sets for function spaces 41 1 

Weakly regular Banach algebra 
Uniqueness of the uniform and adjoining identity 
in Banach algebras 405 



AUTHOR INDEX 



! 



Abercrombie A G 

Badly approximable p-adic integers 123 

Achar P K 

see Bujurke N M 353 

Agrawal Pawan 

see Gupta KC 187 

Bagewadi C S 
see Nagaraja H G 33 

Balachandran K 

A note on integrable solutions of Hammerstein 
integral equations 99 

Balaji V 

The Hodge conjecture for certain moduli varieties 

371 

Banerjee Mihir B 

A proof of Howard's conjecture in homogeneous 
parallel shear flows-II: Limitations of Fjortoft's 
necessary criterion 251 

Bhatia Satvinder Singh 

On L 1 -convergence of modified complex trigono- 
metric sums 193 

Bhatt S J 

Uniqueness of the uniform norm and adjoining 
identity in Banach algebras 405 

Bhowmick Rina 

An axisymmetric steady -state thermoelastic 
problem of an external circular crack in an 
isotropic thick plate 445 

Bose Sujit 

Reflection of P-waves in a prestressed dissipative 
layered crust 341 

Bujurke N M 

Computer extended series solution to viscous 
flow between rotating discs 353 

Chaurasia V B L 

A theorem concerning a product of a general class 
of polynomials and the //-function of several 
complex variables 291 

Chukwu E N 

Control of interconnected nonlinear delay 
differential equations in W ( ^ 73 

Das Bikash Ranjan 
see Bhowmick Rina 445 

DasG 

Degree of approximation of functions in the 
Holder metric by (e, c) means 3 1 5 



DasP 

Oscillation of higher order delay differential 
equations 417 

Das Pitambar 

Oscillation in odd-order neutral delay differential 
equations 219 

Dedania H V 
see Bhatt S J 405 

Dhiman Joginder Singh 

Some characterization theorems in rotatory 
magneto thermohaline convection 461 

Dutta Dipasree 
see Bose Sujit 341 

Gadea Pedro M 
Fibred Frobenius theorem 31 

Ghosh Tulika 
see Das G 315 

Gupta K C 

Convolution integral equations involving a 
general class of polynomials and the multi- 
variable //-function 1 8 7 

Guruprasad K 

Flat connections, geometric invariants and energy 
of harmonic functions on compact Riemann 
surfaces 23 



Ilamaran S 

see Balachandran K 
Izumi H 

see Nagaraja H G 



99 

33 



Jain Rashmi 
see Gupta KC 187 

Joseph K T 

Solution of a system of nonstrictly hyperbolic 
conservation laws 207 

Kandaswamy P 

On over-reflection of acoustic-gravity waves 
incident upon a magnetic shear layer in a com- 
pressible fluid 105 

Kannappan P L 

Characterization of polynomials and divided 
difference 287 

Kanwar Vinay 
see Banerjee Mihir B 25 1 

Kelly-Lyth D 
On subsemigroups of semisimple Lie groups 

153 



476 



Author index 



477 



Kumar F R K 

Symmetrizing a Hessenberg matrix: Designs for 
VLSI parallel processor arrays 59 

Kumar Lalan 
see Pal P C 241 

Lahiri Maya 

Certain bilateral generating relations for general- 
ized hypergeometric functions 297 

Manning Anthony 

Irrationality of linear combinations of eigen- 
vectors 269 

Masque J Munoz 
see Gadea Pedro M 3 1 

McCrudden M 
see Kelly- Lyth D 153 

Mehta H S 
Weakly prime sets for function spaces 41 1 

Mehta R D 
see Mehta HS 411 

Mishra B B 
see Das P 417 

Misra N 
see Das P 417 

Mondal C R 

Surface waves due to blasts on and above inviscid 
liquids of finite depth 227 

Mukherjee Goutam 

Equivariant cobordism of Grassmann and flag 
manifolds 381 

.Nagaraja H G 

On infinitesimal /z-conformal motions of Finsler 

metric 33 

Navada Gowri K 

A note on the growth of topological Sidon sets 

281 
Orhan C 

Absolute summability of infinite series 201 

PaiNP 
see Bujurke N M 353 

Pal Arupkumar 

Induced representation and Frobenius reci- 
procity for compact quantum groups 157 

Pal PC 

Generation and propagation of SH-type waves 
due to stress discontinuity in a linear viscoelastic 
layered medium 241 

Panda Ratikanta 

Nontrivial solution of a quasilinear elliptic 
equation with critical growth in R" 425 



Ponnusamy S 
Differential subordination and Bazilevic 

c functions 169 

Prasad Dipendra 

Lifting orthogonal representations to spin groups 
and local root numbers 259 

Ram Babu 

see Bhatia Satvinder Singh 1 93 

Ramachandra K 

On the zeros of f ^ - a (on the zeros of a class of 

a generalized Dirichlet series-XVII) 273 

Ramakrishnan Dinakar 

see Prasad Dipendra 259 

Rana Surendra Singh 

Local behaviour of the first derivative of a 

deficient cubic spline interpolator 393 

Rathnakumar P K 

A localization theorem for Laguerre expansions 

303 
Ray BK 

see Das G 315 

Reid Les 

The structure of generic subintegrability 1 

Roberts Leslie G 

see Reid Les 1 

Sahoo P K 
see Kannappan P L 287 

Sarigol M A 
see Orhan C 201 

Satyanarayana Bavanari 
see Lahiri Maya 297 

SenSK 
see Kumar F R K 59 

Shandil R G 
see Banerjee Mihir B 25 1 

Sharma Rajendra Pal 
see Chaurasia V B L 291 

Singh Ajit Iqbal 
The algebra A ((0, oo)) and its multipliers 329 

Singh Balwant 
see Reid Les 1 

Singh Ram 

On the partial sums, Cesaro and de la Vallee 

Poussin means of convex and starlike functions of 

. order 1/2 399 

Singh Sukhjit 
see Singh Ram 399 

Singh U B 

A bibasic hypergeometric transformation as- 
sociated with combinatorial identities of the 
Rogers-Ramanujan type 41 



478 Author index 

Sitaram A Thangavelu S 

Uncertainty principles on certain Lie groups 135 see Sitaram A 
Sulaiman W T 

Some theorems on the general summability Vasudeva H L 

methods 53 

Sundari M 

see Sitaram A 135 



see Singh Ajit Iqbal 
Veerappa Gowda G D 
see Joseph K T 



135 

329 
207 



\