(navigation image)
Home American Libraries | Canadian Libraries | Universal Library | Community Texts | Project Gutenberg | Biodiversity Heritage Library | Children's Library | Additional Collections
Search: Advanced Search
Anonymous User (login or join us)
Upload
See other formats

Full text of "Buckling of conical shell with local imperfections"

NASA TECHNICAL 

MEMORANDUM 



I 
X 




i NASA TM X-2991 






BUCKLING OF A CONICAL SHELL 
WITH LOCAL IMPERFECTIONS 

by Paul A. Cooper and Cornelia B. Dexter 

Langley Research Center 
Hampton, Va. 23665 







"^e-isi* 



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JULY 1974 



1. Report No. 

NASA TM X-2991 



2. Government Accession No. 



3. Recipient's Catalog No. 



4. Title and Subtitle 

BUCKLING OF A CONICAL SHELL WITH 
LOCAL IMPERFECTIONS 



5. Report Date 
July 1974 



6. Performing Organization Code 



7. Author(s) 

Paul A. Cooper and Cornelia B. Dexter 



8. Performing Organization Report No. 
L-9331 



9. Performing Organization Name and Address 

NASA Langley Research Center 
Hampton, Va. 23665 



10. Work Unit No. 

743-32-11-01 



11. Contract or Grant No. 



12. Sponsoring Agency Name and Address 

National Aeronautics and Space Administration 
Washington, D.C. 20546 



13. Type of Report and Period Covered 
Technical Memorandum 



14. Sponspring Agency Code 



1 5. Supplementary Notes 



16. Abstract 

Small geometric imperfections in thin-walled shell structures can cause large reduc- 
tions in buckling strength. Most imperfections found in structures are neither axiS5mimetric 
nor have the shape of buckling modes but rather occur locally. This report presents the 
results of a study of the effect of local imperfections on the critical buckling load of a specific 
axially compressed thin-walled conical shell. The buckling calculations were performed by 
using a two-dimensional shell analysis program referred to as the STAGS (STructural Analysis 
of General Shells) computer code, which has no axisymmetry restrictions. 

Results show that the buckling load found from a bifurcation buckling analysis is highly 
dependent on the circumferential arc length of the imperfection type studied. As the cir- 
cumferential arc length of the imperfection is increased, a reduction of up to 50 percent of 
the critical load of the perfect shell can occur. The buckling load of the cone with an 
axisymmetric imperfection is nearly equal to the buckling load of imperfections which 
extended 60° or more around the circumference, but would give a highly conservative esti- 
mate of the buckling load of a shell with an imperfection of a more local nature. 



17. Key Words (Suggested by Author(s)) 

Conical shell buckling 
Conical shell instability 
Shell imperfections 



18. Distribution Statement 

Unclassified - Unlimited 



STAR Category 32 



19. Security aassif. (of this report> 

Unclassified . 



20. Security Classif. (of this page) 

Unclassified 



21. No. of 

21 



22. Price* 

$3.00 



For sale by the National Technical Infornnation Service, Springfield, Virginia 22151 



BUCKLING OF A CONICAL SHELL WITH 
LOCAL IMPERFECTIONS 

By Paul A. Cooper and Cornelia B. Dexter 
Langley Research Center 

SUMMARY 

Small geometric imperfections in thin-walled shell structures can cause large 
reductions in buckling strength. Most imperfections found in structures are neither axi- 
symmetric nor have the shape of buckling modes but rather occur locally. This report 
presents the results of a study of the effect of local imperfections on the critical buckling 
load of a specific axially compressed thin-walled conical shell. The buckling calculations 
were performed by using a two-dimensional shell analysis program referred to as the 
STAGS (STructural Analysis of General Shells) computer code, which has no axisymmetry 
restrictions. , 

Results show that the buckling load found from a bifurcation buckling analysis is 
highly dependent on the circumferential arc length of the imperfection type studied. As 
the circumferential arc length of the imperfection is increased, a reduction of up to 
50 percent of the critical load of the perfect shell can occur. The buckling load of the 
cone with an axisymmetric imperfection is nearly equal to the buckling load of imperfec- 
tions which extended 60° or more around the circumference, but would give a highly con- 
servative estimate of the buckling load of a shell with an imperfection of a more local 
nature. 

INTRODUCTION 

Small geometric imperfections in thin-walled shell structures can cause large 
reductions in buckling strength. Much work has been done to establish the buckling 
imperfection sensitivity of shell-of-revolution structures containing small geometric 
imperfections either axisymmetric in shape or in the shape of classical buckling modes. 
(See, for example, refs. 1 to 3.) In practice, however, most imperfections found in 
structures are neither axisymmetric nor have the shape of buckling modes but rather 
occur locally. This report presents the results of a study of the effect of local imper- 
fections on the critical buckling load of a specific axially compressed thin-walled conical 
shell. The study was motivated by a need to establish the degradation of the axial load 
carrying ability of a thin-walled conical portion of a fielded missile system which had 
sustained local damage during routine handling and shipping. The buckling calculations 



were performed by using a two-dimensional shell analysis program referred to as the 
STAGS (STructural Analysis of General Shells) computer code (ref. 4), which has no 
axisymmetry restrictions. 

SYMBOLS 

E Young's modulus 

m- multiple of thickness such that m_t defines axial extent of imperfection 

X X 

n- one-half of multiple of thickness such that 2n_t defines lineal circumferen- 

y y 

tial extent of imperfection 

P critical axial buckling load 

Ppj. . classical critical axial buckling load (see eq. (2)) 

R nominal radius of cone at central location of imperfection 

t shell wall thickness 

u meridional displacement 

V circumferential displacement 

w normal displacement 

w maximiun amplitude of buckled shell 

max ^ 

W normal measure of imperfection measured from nominal cone surface 

W maximum amplitude of imperfection 

max ^ ^ 

X lineal axial distance measured from small radius end of cone 

X local axial distance measured from the beginning of the imperfection 

y angular circumferential distance measured from center of imperfection, rad 



a semivertex angle of cone 

/3 circumferential extent of imperfections, deg 

coordinate in the circumferential direction measured from center of 

imperfection, deg 

(i poisson's ratio 

(p meridional edge rotation 

PROBLEM DEFINITION 

Shell Geometry, Edge Condition, and Loading 

The shell segment, with dimensions as shown in figure 1, is an idealization of an 
unstiffened aluminum truncated conical shell with stiff end rings. The end rings are 
assumed to be rigid in the end plane and, thus, are approximated by simply supported 
boundary conditions such that the normal displacement w and the circumferential dis- 
placement V are fixed. At the upper edge (small radius edge), the meridional displace- 
ment u and the edge rotation (p are free. At the lower edge, the edge rotation is 
also free but the in-plane displacement u is fixed to support the applied load. A uni- 
form compressive meridional unit line load is applied at the small radius edge. Any 
normal load component which might occur in the actual missile system is assumed to 
be equilibrated by the stiff end ring idealization. 

Imperfection Geometry 

The imperfection sizes of immediate interest in this report have an axial extent of 
50t, with a maximum inward depth nomial to the surface of 5t and various circumferen- 
tial lengths, where t is the shell wall thickness. The imperfection covers a portion of 
the shell bounded by two meridians and two parallel circles. The meridional center of 
the imperfection is located about two- thirds of the axial distance from the small radius 
edge of the cone (fig. 2(a)). In this study, the circumferential extent of the imperfection 
is varied from 0° to 180°. A highly localized imperfection (i.e., one contained within a 
small region of the shell) with a meridional length of 50t, circumferential arc length of 
50t, and maximum normal amplitude of St.was studied in detail, and results for this case 
are presented in a subsequent section. The imperfection is assumed to have a shape 
defined by 



w 



H^-)h^ 



(1) 



To make use of symmetry properties in the analysis, a diametrical plane of symmetry 
is assumed so that two imperfections centered 180° apart are assumed to exist for all 
studies made in this report. For an extent of 180°, the two diametrical imperfections 
meet. 

ANALYSIS 

All asymmetric imperfection calculations were performed with the STAGS com- 
puter code. The STAGS code uses a two-dimensional finite-difference scheme to approx- 
imate the shell energy equations which are minimized to obtain the stress distribution 
and/or stability of thin general shell structures. As shown in equation (1), the imper- 
fection is formed by using the normal displacement only, and only the first partial deriv- 
atives of the imperfection function are used in the STAGS analysis. This method of 
representing the imperfection is an approximation to the accurate shell equations which 
would strictly define the imperfection and is probably accurate only for imperfections of 
shallow amplitudes (less than lOt). The STAGS code is capable of calculating either a 
nonlinear collapse load or a bifurcation buckling load away from a linear prebuckled 
state. In this study, only a bifurcation buckling analysis is performed and prebuckling 
rotations are not taken into account. 

To perform the analysis most efficiently, only a 90° portion of the shell (fig. 2(b)) 
was studied. Thus, symmetry conditions were enforced aloi^ the meridian at 0=0° 
and 90 . In this study, the number of finite -difference stations along the meridian is 33 
and the number of stations along one-fourth of the circumference is 51. A preliminary 
study showed that the grid size resulting from the use of this number of stations was 
sufficiently fine to give an accurate solution. This grid point network contains approxi- 
mately 5000 degrees of freedom. The locations of the finite -difference stations along the 
meridian and along the circumference are shown in figures 2(a) and 2(b), respectively, 
for the imperfection with a circumferential extent of 50t. Regions of large stress grad- 
ients have a denser grid spacing. All analyses with the exception of the perfect cone 
(i.e., a cone with no imperfection) use the same number of degrees of freedom and same 
location of stations along the meridian. The number of stations along the circumference 
is the same for all problems, but the spacing of the stations is adjusted for each circum- 
ferential imperfection length investigated so that close spacing is attained in the region 
of the imperfection. 



RESULTS AND DISCUSSION 

The results are presented in two parts. First, the results for a series of imper- 
fections of 50t axial length, 5t depth, and various circumferential lengths up to an 
included arc length of 180 are discussed and then results from an in-depth study of a 
local imperfection with a circumferential arc length of 50t are examined in detail. 

Effect of Circumferential Extent of Imperfection 

Figure 3 is a plot of the critical buckling ratio Pcr/^cr ^^ *^® circumferential 
arc length of the imperfections ^ is increased from 0° to 180°. The classical buckling 
load P is approximated by the equivalent cylinder buckling formula 

■^ _ 27rEt^cos2a /„x 

cr 1 ^ ' ^^f 

p{l - m2) 

which is given in reference 5 and for the shell of figure 1 would be 
Ppj. = 665.9 kN (149 700 lb) 

For values of /3 less than 15°, there is essentially no change in buckling strength. 
For values of p from 15° to 70°, a rapid drop in buckling load is observed; whereas, for 
^ values between 70° and 140°, the critical load remains nearly constant at about 55 per- 
cent of the critical load of the perfect cone. This behavior is similar to experimental 
and analytical results reported for cylindrical shells with cutouts (e.g., ref. 6). As the 
edges of the opposing imperfections approach each other, the critical load once again 
starts to drop and at /3 = 180°, when the edges of the two imperfections begin to overlap, 
the buckling load has reduced to approximately 40 percent of the critical load of the per- 
fect cone. 

The buckling load of the cone with an axisymmetric imperfection defined by equa- 
tion (1) with y = was determined by using a computer prc^ram for bifurcation 
buckling of shells of revolution about an axisymmetric prebuckling state (ref. 7). The 
buckling load is 54 percent of the critical load of the perfect cone and the cone buckles 
into eight circumferential waves. The buckling load is shown as a horizontal line in 
figure 3 for comparison purposes. The axisymmetric results give a fairly accurate 
prediction of the critical buckling load for imperfections which extend over 60° or more 
of included angle aroxmd the circumference, but the prediction is highly conservative for 
imperfections of more local nature. The axisymmetric imperfection results differ from 
the results for two diametrically opposed imperfections of 180° extent since the 



amplitude of the latter imperfections varies sinusoidally in the circumferential direction, 
whereas the amplitude of the axisymmetric imperfection is constant. 

Local Imperfection 

The prebuckling and buckling results for the specific imperfection shown in fig- 
ure 2(b) with a circumferential extent of 50t (^3 = 10.5°) are now presented in more detail. 
As shown in figure 3, the buckling load for this imperfection is essentially the same as 
the classical buckling load for the perfect cone. The axial distribution of meridional 
prebuckling stress for the 50t circumferential imperfection is given in figure 4. For a 
cone with no imperfection, the meridional prebuckling stress varies linearly along the 
meridian. As indicated in figure 4(a), a meridional distribution at 0=1° shows a 
rapid reduction in compressive stress in the imperfection to essentially zero stress in 
the imperfection center. The stress variation along the meridian at 9 = 38° is pre- 
sented in figure 4(b) and is seen to be nearly linear and to approximate nominal perfect 
shell behavior. Figure 4(c) shows the stress variation along a circumference taken near 
the lower edge of the imperfection. The stress is zero at the center of the imperfection 
{6 = 0°) with a peak in stress occurring at the edge of the imperfection. The stress then 
rapidly damps to the perfect shell value of -0.84 for a unit applied load and remains uni- 
form from 9 = 20° to 90°. This relatively large stress concentration at the edge of the 
imperfection is caused by a stress redistribution around the imperfection. Since the 
total axial load must be the same as the applied axial load at the top edge, the stress 
peak is expected since the center of the imperfection has zero stress. The maximum 
in-plane stress occurs at the meridional center of the imperfection just outside the 
circumferential edge of the imperfection (x = 54.8 cm (21.57 in.)) and is 1.56; this is a 
56-percent increase over the maximum in-plane stress of the perfect shell. 

Figures 5(a) and 5(b) show the normal displacement buckling mode normalized 
with respect to w„„„ along a circumference which cuts close to the center of the 
imperfection (x = 55.1 cm (21.7 in.)) and along a meridian which nearly cuts through the 
center of the imperfection {9 = 1 ). The maximum displacement occurs in the vicinity 
of the imperfection. However, the buckling amplitudes do not damp appreciably and the 
instability may be classified as a general instability rather than a local instability. 

The critical load with two diametrically opposed imperfections each of 90° extent 
is 52 percent of the classical critical load. Figures 6 and 7 which show the prebuckling 
meridional stress resultant and normal displacement buckling mode, respectively, are 
included to demonstrate the difference in the behavior of the structure when the circum- 
ferential extent of the imperfection has been increased from a highly local extent to 90°. 
A local stress rise occurs near the edge of the imperfection as shown in figure 6(a). 
This large stress rise can be contrasted with the slight stress increase along a meridian 

6 



at a location outside the imperfection {6 = 70°) as shown in figure 6(b). This stress 
distribution character along the circumference is illustrated in figure 6(c) where the 
effect on stress of the imperfection rapidly dissipates outside the imperfection. The 
local character of the buckling mode in the meridional direction as shown in figure 7(a) 
can be contrasted with the more global character of the buckling mode shown in figure 
5(b) for the local imperfection. The more local character of the buckling mode along 
the circumference can be seen by comparing the modal behavior shown in figure 7(b) 
with that of figure 5(a). The buckling displacements remain local to the imperfection 
and damp rapidly away from the imperfection in both the meridional and circumferential 
directions. 

CONCLUDING REMARKS 

A brief study was made of the effect of a particular type of local imperfection on 
the buckling of an axially compressed thin -walled conical shell. Results show that the 
buckling load foimd from a bifurcation buckling analysis is highly dependent on the cir- 
cumferential arc length of the imperfection type studied. As the circumferential arc 
length of the imperfection is increased, a reduction of up to 50 percent of the critical 
load of the perfect shell can occur. The buckling load of the cone with an axisymmetric 
imperfection is nearly equal to the buckling load of imperfections which extended 60° or 
more around the circumference, but would give a highly conservative estimate of the 
buckling load of a shell with an imperfection of a more local nature. 

The bifurcation buckling analysis of a highly localized imperfection shows no sig- 
nificant drop in buckling load but the linear static stress analysis shows that the imper- 
fection does cause a local stress rise of over 50 percent above the maximum stress in 
the perfect cone. For small imperfections the buckling mode can be classified as a 
general shell instability, but the buckled region tends to remain local to the imperfection 
as the imperfection size is increased circumferentially. 

Langley Research Center, 

National Aeronautics and Space Administration, 
Hampton, Va., May 2, 1974. 



REFERENCES 

1. Stein, Manuel: Some Recent Advances in the Investigation of Shell Buckling. AIAA J., 

vol. 6, no. 12, Dec. 1968, pp. 2339-2345. 

2. Amazigo, J. C; and Budiansky, B.: Asymptotic Formulas for the Buckling Stresses 

of Axially Compressed Cylinders With Localized or Random Axisymmetric Imper- 
fections. Trans. ASME, Ser. E: J. Appl. Mech., vol. 39, no. 1, Mar. 1972, 
pp. 179-184. 

3. Narasimhan, K. Y.; and Hoff, N. J.: Snapping of Imperfect Thin-Walled Circular 

Cylindrical Shells of Finite Length. Trans. ASME, Ser. E: J. Appl, Mech., 
vol. 38, no. 1, Mar. 1971, pp. 162-171. 

4. Almroth, B. O.; Brogan, F. A.; and Marlowe, M. B.: Collapse Analysis for Shells of 

General Shape. Volume I - Analysis. AFFDL-TR-71-8, U.S. Air Force, 
Aug. 1972. 

5. Anon.: Buckling of Thin -Walled Truncated Cones. NASA SP-8019, 1968. 

6. Starnes, James H., Jr.: Effect of a Circular Hole on the Buckling of Cylindrical 

Shells Loaded by Axial Compression. AIAA J., vol. 10, no. 11, Nov. 1972, 
pp. 1466-1472. 

7. Cohen, Gerald A.: Computer Analysis of Ring-Stiffened Shells of Revolution. NASA 

CR-2085, 1973. 



Unit line load 




82.3 cnr; 



Figure 1.- Shell geometry. 





38.86 


cm 










1 








»i< t =0.16 cm 








1 50.8 cm 












82 


r 








) 8.0 cm 

/ ( 50 t ) 








1 t 




'ir 0.8 cm 

1 ' ( 5 t ) 


\ 




46.35 cm 








1 


■ 



Finite-difference 
stations 




(a) Axial grid at = 0°. (b) Circumferential grid at x = 54.8 cm. t = 0.16 cm. 

Figure 2.- Typical finite -difference representation. 



JQ-" 



1.0 



0^ .8 



o 



T3 

a 
o 



c 



.6 - 



o 



o 

.y .2 



o 



X 




{ V > 


\ 




\ 


. 




'r- 




_ 


\^_ 


A-y3^ 


"T 






^^ — • Axisymmetric 






^^^ 




imperfection 








1 


1 1 1 


I 1 


1 


1 



20 



40 



60 



80 



100 



120 



140 



160 



180 



Circum-ferential arc length of imperfections, /9, deg 



Figure 3.- Effect of the circumferential extent of local imperfection on the critical 
buckling load of a small-angle cone. P = 665.9 kN. 



n 
o 
o 

4) 

c 



c 

3 
4) 

a. 

o 



3 
C 

o 



(A 

« 

(A 

c 
o 



c 
o 



a> 




Center of 
imperfection 



Perfect cone 

( no imperfections) 



40 60 

Axial distance, x, cm 



80 



100 



(a) 6=1 (near center of imperfection). 

Figure 4.- Prebuckling meridional in-plane stress resultant distribution due to unit 
loading for a cone with highly localized imperfection. (Circumferential arc 
length of imperfection equals 50t.) 



12 



T3 
D 
O 

<1> 

C 



c 

.2 

"5. 

a 
o 



3 

C 
O 

"S 

V> 

i_ 

c/> 
(A 



c 
o 

Q. 
I 

C 



o 

c 
o 



a> 




40 60 

Axial distance, x, cm 

(b) = 38°. 
Figure 4.- Continued, 



J 

00 



13 



c 
o 



(A 



•o — 



<u o 

w. O 



(A 



a> 



a> — _ 4 J 






.^ Q. 



O o 

c ••- 
O 



.2 






















.4 






















.6 


- 




















.8 


— 


u 


















.0 


r 














"? 




1 


1 


1 


1 


1 


1 


1 


1 


1 



10 20 30 40 50 60 70 
Circumferential angle, d, deg 

(c) X = 58.4 cm (lower edge of imperfection). 
Figure 4.- Concluded. 



80 90 



14 



o 
E 



c 
a> 

E 

V 

u 
o 

Q. 

.52 

o 

E 

o 

z 




20 30 40 50 60 70 80 
Circumferential angle, 6^ deg 

(a) X = 55.1 cm (near center of imperfection). 

Figure 5.- Normal displacement buckling mode of a cone with highly 
localized imperfection. (Circumferential arc length of 
imperfection equals 50t.) 



90 



15 




40 60 

Axial distance, x, cm 

(b) 0=1 (near center of imperfection). 
Figure 5.- Concluded. 



100 



16 



-.9 ^- 



o 
o 



T3 

a 
o. 

o 



3 

•o 

c 
o 

Q> 

w 

</> 

a> 

c 
o 

Cl 
I 

c 



o 
c 
o 



2 








20 



80 



40 60 

Axial distance , x , cm 

(a) = 41.1° (near edge of imperfection). 

Figure 6.- Prebuckling meridional in-plane stress resultant distribution due to unit 
loading for a cone with imperfection extending 90° along the circumference. 



17 



,99 r 



T3 

O 




o 




^^ 


-1.00 


Q) 




C 




,^ 




"c 


- I.OI 


3 




T3 




Q) 




Q. 


-1.02 


O 




O 








<D 


- 1.03 


3 




T3 




^_ 




C 




o 


-1.04 


"5 




(A 




0) 




w 






- 1.05 


CO 




<A 




a> 




k. 




*■ 




(/> 


-1.06 


0> 




c 




o 




Q. 




1 

c 


-1.07 


o 




c 




q 


-1.08 


*;o 




^ 




<i> 




S 






-1.09 




40 60 

Axial distance, x, cm 

(b) 9 = 70°. 
Figure 6. - Continued. 



100 



18 



-.3 r 






in 

ID 



CO 



.£ f 



'i5 'S 




10 20 30 40 50 60 70 
Circumferential angle, 0, deg 

(c) X = 58,4 cm (lower edge of imperfection). 
Figure 6.- Concluded. 



80 90 



19 



.2r 



K 

e 
E 



e 

E 
« 



Q. 



o 

E 




40 60 

Axial distance , x, cm 

(a) 9 



41.1°. 



80 



100 



Figure 7.- Normal displacement buckling mode for a cone with imperfection 
extending 90 along the circumference. 



20 



o 

E 



c 

E 

a> 
u 
_o 

ex 



o 
£ 



o _ 




20 30 40 50 60 70 
Circumferential angle, 9, cleg 

(b) X = 55,1 cm (near center of imperfection). 
Figure 7.- Concluded. 



80 90 



NASA-Langley, 1974 L-9331 



21 



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
WASHINGTON. D.C. 20546 



OFFICIAL BUSINESS 
PENALTY FOR PRIVATE USE $300 



SPECIAL FOURTH-CLASS RATE 
BOOK 



POSTAGE AND FEES PAID 

NATIONAL AERONAUTICS AND 

SPACE ADMINISTRATION 

451 




POSTMASTER ; 



It Undeliverable (Section 158 
Postal Manual) Do Not Return 



"The aeronautical and space activities of the United States shall be 
conducted so as to contribute . . . to the expansion of human knowl- 
edge of phenomena in the atmosphere and space. The Administration 
shall provide for the widest practicable and appropriate dissemination 
oj information concerning its activities and the results thereof." 

— National Aeronautics and Space Act of 1958 



NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 



TECHNICAL REPORTS: Scientific and 
technical information considered important, 
complete, and a lasting contribution to existing 
knowledge. 

TECHNICAL NOTES: Information less broad 
in scope but nevertheless of importance as a 
contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: 
Information receiving limited distribution 
because of preliminary data, security classifica- 
tion, or other reasons. Also includes conference 
proceedings with either limited or unlimited 
distribution. 

CONTRACTOR REPORTS: Scientific and 
technical information generated under a NASA 
contract or grant and considered an important 
contribution to existing knowledge. 



TECHNICAL TRANSLATIONS: Information 
published in a foreign language considered 
to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information 
derived from or of value to NASA activities. 
Publications include final reports of major 
projects, monographs, data compilations, 
handbooks, sourcebooks, and special 
bibliographies. 

TECHNOLOGY UTILIZATION 
PUBLICATIONS: Information on technology 
used by NASA that may be of particular 
interest in commercial and other non-aerospace 
applications. Publications include Tech Briefs, 
Technology Utilization Reports and 
Technology Surveys. 



Defaih on the availabilitY of these publications may be obtained from: 
SCrENTIFIC AND TECHNICAL INFORMATION OFFICE 
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Washington, D.C. 20546