UC-NRLF
*B 531 Tfls
A REVIEW OF ALGEBRA
BY
ROMEYN HENRY RIVENBURG, A.M.
HEAD OF THE DEPARTMENT OF MATHEMATICS
THE PEDDIE INSTITUTE, HIGHTSTOWN, N.J.
AMERICAN BOOK COMPANY
NEW YORK CINCINNATI CHICAGO
copykight, 1914,
By EOMEYN H. RIVENBUEG.
Copyright, 1914, in Gbkat Britain.
a review of alget^ra.
E. P. I
PREFACE
In most high schools the course in Elementary Algebra is
finished by the end of the second year. By the senior year,
most students have forgotten many of the principles, and a
thorough review is necessary in order to prepare college candi-
dates for the entrance examinations and for effective work in
the freshman year in college. Eecognizing this need, many
schools are devoting at least two periods a week for part of the
senior year to a review of algebra.
For such a review the regular textbook is inadequate. From
an embarrassment of riches the teacher finds it laborious to
select the proper examples, while the student wastes time in
searching for scattered assignments. The object of this book
is to conserve the time and effort of both teacher and student,
by providing a thorough and effective review that can readily
be completed, if need be, in two periods a week for a half year.
Each student is expected to use his regular textbook in
algebra for reference, as he would use a dictionary, — to recall
a definition, a rule, or a process that he has forgotten. He
should be encouraged to think his way out wherever possible,
however, and to refer to the textbook only when forced to do
so as a last resort.
3
4 PREFACE
The definitions given in the General Outline should be
reviewed as occasion arises for their use. The whole Outline
can be profitably employed for rapid class reviews, by covering
the part of the Outline that indicates the answer, the method,
the example, or the formula, as the case may be.
The whole scheme of the book is ordinarily to have a page
of problems represent a day's work. This, of course, does not
apply to the Outlines or the few pages of theory, which can be
covered more rapidly. By this plan, making only a part of the
omissions indicated in the next paragraph, the essentials of the
algebra can be readily covered, if need be, in from thirty to
thirty-two lessons, thus leaving time for tests, even if only
eighteen weeks, of two periods each, are allotted to the course.
If a brief course is desired, the Miscellaneous Examples
(pp. 31 to 35, 50 to 52), many of the problems at the end of
the book, and the College Entrance Examinations may be
omitted without marring the continuity or the comprehensive-
ness of the review.
ROMEYN H. RIVENBURG.
CONTENTS
PAGES
Outline of Elementary and Intermediate Algebra . . 7-13
Order of Operations, Evaluation, Parentheses . . 14
Special Rules of Multiplication and Division . . 15
Cases in Factoring ......... 16, 17
Factoring ........... 18
Highest Common Factor and Lowest Common Multiple . 19
Fractions 20
Complex Fractions and Fractional Equations . . . 21, 22
Simultaneous Equations and Involution .... 23, 24
Square Root 25
Theory of Exponents . 26-28
Radicals • . . 29, 30
Miscellaneous Examples, Algebra to Quadratics . . 31-35
Quadratic Equations 36, 37
The Theory of Quadratic Equations ..... 38-41
Outline of Simultaneous Quadratics ..... 42, 43
Simultaneous Quadratics 44
Ratio and Proportion 45, 46
Arithmetical Progression 47
Geometrical Progression 48
The Binomial Theorem 49
Miscellaneous Examples, Quadratics and Beyond . . 50-52
Problems — Linear Equations, Simultaneous Equations,
Quadratic Equations, Simultaneous Quadratics . 53-57
College Entrance Examinations 58-80
OUTLINE OF ELEMENTARY
AND INTERMEDIATE ALGEBRA
Important
Definitions
Special
Rules for
Multiplication
and Division
Factors ; coefficient ; exponent ; power j base ;
term ; algebraic sum ; similar terms ; degree ; ho-
mogeneous expression ; linear equation ; root of an
equation ; root of an expression ; identity ; con-
ditional equation; prime quantity; highest com-
mon factor (H. C. F.) ; lowest common multiple
(L. C. M.) ; involution ; evolution ; imaginary
number ; real number ; rational ; similar radicals ;
binomial surd ; pure quadratic equation ; affected
quadratic equation ; equation in the quadratic
form ; simultaneous linear equations ; simulta-
neous quadratic equations; discriminant; sym-
metrical expression; ratio; proportion; fourth
proportional ; third proportional ; mean propor-
tional ; arithmetic progression ; geometric pro-
gression ; S oo,
1. Square of the sum of two quantities.
(x + yy.
2. Square of the diiference of two quantities.
(x - yy.
3. Product of the sum and diiference of two quan-
tities. (sJ^t){s-t).
4. Product of two binomials having a common
term. (x^r){x + m).
7
OUTLINE
5. Product of two binomials whose correspond-
ing terms are similar.
6. Square of a polynomial.
Special
Rules for
Multiplication
and Division
(continued)
Cases in
Factoring
7. Sum of two cubes.
■ ^y + y^'
0^ 4- y^
x + y
8. Difference of two cubes.
— 11^ = x'^-\-xy -^ ?/2.
X -y
9. Sum or difference of two like powers.
x' -\-y'^ x^ — y^ x^ — y"^ x^~y^
x-\-y^ x~y' x — y' x-\-y
1. Common monomial factor.
mx 4- my — mz = m(x-i- y — z),
2. Trinomial that is a perfect square.
x'^ ± 2 xy -j-y"^ = {x ± yf.
3. The difference of two squares.
(a) Two terms, x^ — y'^ = {x-]- y){x — y).
(h) Four terms.
x^ -^ 2 xy -\- y"^ — w? = {x -\- y -{- m)(x -\-y — m).
(c) Six terms, a? -\-2 xy -{-y"^ — p^ — 2pq — q^
= [(^ + 2/) + (P+g)][(^ + 2/)-(i> + ^7)]-
(d) Incomplete square, oj^ + a;^?/^ -f y^
= 0?^ 4- 2 icy 4- 2/^ — ^V = (^^ + 2/^ + ^y){^^ -\-y^— ^y)'
4. Trinomial of the form x^ -{-hx-\- c.
aj2_5^_^6^(^_ 2)(a; _ 3).
5. Trinomial of the form ax^ -\-hx-{-G.
20aj2 + 7a;-6=(4a? + 3)(5aj-2).
OUTLINE
9
Cases in
Factoring
{continued)
H.C.F.
and
L.C.M.
Fractions
Simultaneous
Equations
Involution
' 6. Sum or difference of
' two cubes. See " Special Rules," 7 and 8.
two like powers. See ^- Special Eules/' 9.
7. Common polynomial factor. Grouping.
fp -^fq — 2 mp —2 7nq
= tKP + g) - 2 m(p + g) = (p + g)(^' - 2 m).
8. Factor Theorem.
0^ + 17 a; - 18 = (a; - l){x' + oj + 18).
a2 + 2(i-3 = (a + 3)(a - 1).
a2+7a+12=(a + 3)(a+ 4).
a^ -f 27 a = a(a + 3)(a2 - 3 a + 9).
H. C. F. = a+3.
L. C. M. = (a + 3)(a - l)(a + ^)a{a^ _ 3 a + 9).
' Reduction to lowest terms.
Reduction of a mixed number to an improper
fraction.
Reduction of an improper fraction to a mixed
number.
Addition and subtraction of fractions.
Multiplication and division of fractions.
Law of signs in division, changing signs of fac-
tors, etc.
, Complex fractions.
f addition or subtraction.
Solved by I substitution.
[ comparison.
Graphical representation.
' Law of signs.
Binomial theorem laws.
f monomials and fractions.
Expansion of { binomials,
trinomials.
10
OUTLINE
Evolution
' Law of signs.
Evolution of monomials and fractions.
Square root of algebraic expressions.
Square root of arithmetical numbers.
. , r Cube root of algebraic expressions.
I Cube root of arithmetical numbers.
Theory of
Exponents
Proofs: a^-a" = a"'+"; — = a"'-^ ; (a*">=a'"";
a"
/^mn^^m. (~j==p {ahcY = a^h^C\
{ fractional exponent.
Meaning of \ zero exponent.
[ negative exponent.
Four rules
To multiply quantities having the
same base, add exponents.
To divide quantities having the
same base, subtract exponents.
To raise to a power, multiply ex-
ponents.
To extract a root, divide the expo-
nent of the power by the index
of the root.
Radicals
Tr an sf ormation
of radicals
Radical in its simplest form.
Fraction under the radical sign.
Reduction to an entire surd.
{ Changing to surds of different
order.
Reduction to simplest form.
. Addition and subtraction of radicals.
OUTLINE
11
Radicals
(cojitiiiued)
Multiplication and di-
vision of radicals
■\/a • ^b = ^s/ab.
f Monomial denominator.
Rationalization { Binomial denominator.
Trinomial denominator.
Square root of a binomial surd.
Radical equations. Always check results to avoid
extraneous roots.
Quadratic
Equations
fPure. x^=^a.
I Affected, ax^ -\- hx -]- c = 0.
Methods of solving
Equations in the quadratic form
' Completing the square.
Formula. Developed from
ax'^ 4- 6a; + c = 0.
Factoring.
Properties of quadratics -
^2 = -
h
, ^/¥~-
-4
ac
2a
' 2
a
h
V62-
-4
ac
2a
2 a
Then .
b
a
Discriminant, 6^—4 ac,
and its discussion.
Nature or character of
the roots.
12
OUTLINE
Simultaneous
Quadratics
Case I.
Case II.
Case III.
Case IY.
Case Y,
Special
Devices
J One equation linear.
\ The other quadratic.
(3x-y = 12,
\ x'-y'^^ 16.
f Both equations homogeneous and of
[ the second degree.
(x^-xy + y^ = 21,
\ y"^ —2 xy =~ 15.
fAny two of the quantities x-\-y,
\ x^ + y% xy, a?^^-2/^ a?—y^, x—y,
[ x^±xy -\- y'^, etc., given.
ra;2 + 2/' = 41,
I 0^ + 2/^9.
' Both equations symmetrical or sym-
metrical except for sign. Usually
one equation of high degree, the
other of the first degree.
I x^ + y^ = 242,
\ x-\-y = 2.
' I. Solve for a compound unknown,
like xy, X -\- y, — , etc., first.
xy
xY ■\-xy = ^,
x-{-2y = — 5.
XL Divide the equations, member
by member.
0^-2/^=20,
•T^ — y"^ = 5.
III. Eliminate the quadratic terms.
4:X -\- 3 y = 2 xy,
7 X — 5 y = 5 xy.
OUTLINE
13
Ratio and
Proportion
Progressions
Binomial
Theorem
( mean,
Proportionals { third,
[ fourth.
1. Product of means equals product
of extremes.
2. If the product of two numbers
equals the product of two other
numbers, either pair, etc.
3. Alternation.
4. Inversion.
5. Composition.
6. Division.
7. Composition and division.
8. In a series of equal ratios, the sum
of the antecedents is to the sum
of the consequents as any ante-
cedent, etc.
Special method of proving four quantities in pro-
portion. Let - = x, « = bXf etc.
Theorems <
Let - = x, a-
b
' Development of formulas.
l^a-\-{n—V)d,
/S' = ^[2a+(n-l)d].
ar" — a
S =
S =
>^oo =
r-
-1
rl-
- a
r —
1
a
1-r
T ^. r f Arithmetical.
Insertion of means < ^ , . -.
1^ Geometrical.
Review of binomial theorem laws. See Involution.
Expansion of (a + by.
^. T ^ , f key number method.
Finding any term by < ,, ^ , . , ,, , , , ^
& J' J y ^xh Qj^. (^. _^ j^yh ^3 method.
A REVIEW OF ALGEBRA
ORDER OF OPERATIONS, EVALUATION, PARENTHESES
Order of operations :
First of all, raising to a power and extracting a root.
Next, multiplication and division.
Last of all, addition and subtraction.
Find the value of :
1. 5.22- V25--5+2'. 8-4-2.
2 28
3. 9. 2-6 + 3-2. 42-- ■V/8-4 +
3.22
Evaluate :
a^ — a^ -{-¥ . c-^/a -f a^hc .
4.
5. ^^^v'^ + ^m, if ^ = 8, m = 27,
, if a = 1, 6 = 2, c = 3.
^ 2 V3 + 2 d + g {^c-d)x .^ ^
3Va -\-h — ex— G 1 ad~ Vabc
a = 5,
6 = 3,
c=-l,
d = -2,
x = 0.
7. a- \5b- [a-(3c-36)+2cT-3(a-26-c)]J,
if a = — 3, 6 = 4, c = — 5. ( Yale.)
Simplify :
8. m — [2m— f3r— (4r — 2m)j].
9. 2a- [5d+{3c-(a + [2(l-3a + 4c])J].
10. 3 c2 + c(2 a - [6 c - 3 a + c - 4 a]).
14
RULES OF MULTIPLICATION AND DIVISION 15
SPECIAL RULES OF MULTIPLICATION AND DIVISION
Give results by inspection :
1. {g + hW- 9. ^=1^.
c — d
3 y in e^±A.
3. (2v-\-:^w){2v-^w).
4. {x-\-:dts){x-l ts).
10.
e + d
11. tjzt,
x-y
12. y .
6. fa-— + c-(^-
^ ^ ^^ 13. (a -.03) (a -.0007).
8.
y^ - 27 P"^ 15. ^^-^' .
y — Slc"" t — v^
17. [(a + 6) + (c + c^)][(a+6)-(c + d)].
18. (p — g + r — s)(p — q — r -\- s).
19. (3 m — n-Z + 2 r)(3m 4-^-^ — 2 r).
20. (a; + 5)(a;-2)(a;-5)(aj + 2).
21. (a2 + &2_c_2(^ + 3e)2.
22. f. + r-^ + ^ + .^Y. 23. -'^^^
5 6 J x + 2
References: The chapter on Special llules of Multiplication
and Division in any algebra.
Special Rules of Multiplication and Division in
the Outline in the front of the book.
16 CASES IN FACTORING
CASES IN FACTORING
The number of terms in an expression usually gives the
clue to the possible cases under which it may come. By apply-
ing the test for each and eliminating the possible cases one by
one, the right case is readily found. Hence, the number of
terms in the expression and a ready and accurate knowledge
of the Cases in Factoring are the real keys to success in this
vitally important part of algebra.
Case I. A common monomial factor. Applies to any num-
ber of terms.
5 ex — 5 ct -{- 5 CO — 15 c^m -h 25 G'm?
= 5 e{x — t-^v — ?>em-\-5 e^m}).
Case II. A trinomial that is a perfect square. Three
terms.
di? ±2 xm -\-m^ =(x ± my.
Case III. The difference of two squares.
A. Two terms. x^—if=ix-\-y){x — y),
B. Four terms.
x^ -\- 2 xy -\- y'^ — w} = {x^ -^2 xy -f i/") — m^
= (x -\-y -^m){x -\- y — m)
C. Six terms, x^ — 2xy-\-y'^ — m^ — 2 mn — n^
=.(x^ — 2 xy + 2/^) — {p^ -h 2 mn + n^)
= (cc — yy- — (m -h ny
= {_{x-y)-\-{m + n)']l(x-y) - (m + ^0]-
D. An incomplete square. Three terms, and
4th powers or multiples of 4.
CASES IN FACTORING 17
c4 _|_ c^fji} + (^4 ^ ^4 _|. 2 cVP + d'- cM?
= (c2 + (^2 _^ cd)(c2 + cZ2 - cd).
Case TV. A trinomial of the form x^ + 5x + c. Three terms.
aj2_^^_30^ (a? + 6)(a; - 5).
Case V. A trinomial of the form ax'^ -{-bx-\-c. Three
terms.
20x'' + 7 x-6 = {4.x + 3)(5 x ~- 2).
Case VI. A. The sum or difference of two cubes. Two
terms.
a;3 + 2/3 = (a; -I- y){x^ — xy + y^) ;
a^ — y^ z= (x—y)(x'^ -\-^y -\" y^)'
B. The sum or difference of two like powers.
Two terms.
x^-y'^=(x- y)(x^ -I- x^y + xy"^ + y^) ;
x^ 4- 2/^ = (ic + y){x'^ — o(^y 4- x^y^ — a?;^^ + y"^).
Case VII. A common polynomial factor. Any composite
number of terms.
t^jj + fq — Pr — g'^p — g\ + g'^r
= t\p-\- q-r)- g\p -\-q-r)
^(p-^q-r)(t'-g')
= (p + q-r)(t-i-g)(t~g).
Case VIII. The Factor Theorem. Any number of terms.
a^-\-17x-lS = (x- l)(aj2 -\-x-\- 18).
REV. ALG. — 2
18 FACTORING
FACTORING
Review the Cases in Factoring (see Outline on preceding
pages) and write out the prime factors of the following :
1. Sa^^^am^l 11. a;^"^ + 13 oj^"^ + 12.
2. x^-\-y\ 12. 4 a262 _ (a2 + &2 _ ^2)2.
3. 4a;2_|_iia;-3. 13. (x" - x- ^){f-x-20),
4. w?-\-n^ — (l-\-2mn). 14. a^ — Sa — a^ + 8.
5. -x^ + 2x-l-^x\ 15. jp3 + 7p2 -^ I4p + 8.
6. x^^-y^\ (Five factors.) 16. 1% a% -^ ^ a¥ -\- bO h\
7. (aj + l)2-5i»-29. 17. a?-lx^Q.
8. a;^ + aj22/2 + 2/4. 18. 24.c'd''-4:lcd-lb.
9. a;^-llaj2+l. 19. (^2 _ ^)2^)2 _ (^2 _ ^^>^2,
10. X2- + 2-I- — . 20. aW- — -x^-\--'
^2m yZ ^ yZ
21. gt-gk-{-gP-{-xt — xJc-\-xP.
22. (?7i - 7i) (2 a2 - 2 a&) + (n - m) (2 a5 - 2 62) .
23. a2 - a;2 - 2/2 4- 62 ^ 2 a6 + 2 i»2/.
24. (2c2 + 3d2)a + (2a2 + 3c2)d
25. ^ ^^ - ^) a-^62 ^ (^ - 1) (n - 2) ^,.3^3.
1-2 ^ 1.2.3
26. (x- xy -h (a;2 - 1)3 + (1 - xy. (M, L T.)
27. (27 yy - 2 (27 y') (8 6^) 4. (8 b^. {Princeton,)
28. (a3 + 8 63)(a4-6)_6a6(a2-2a6 + 4 62). {M.LT.)
Solve by factoring :
29. Q^ = x. 30. z^ — 4:Z-4.5 = 0. 31. aj^ - 0^2 = 4 a; - 4,
Reference : The chapter on Factoring in any algebra.
H. C. F. AND L. CM.
19
HIGHEST COMMON FACTOR AND LOWEST COMMON
MULTIPLE
Define H.C.F. and L. CM.
Find by factoring the H.C.F. and L.C.M.:
1.
3 x^ — 3 a:,
5.
x'-2x^^x'',
12^2(^--1),
2x^-Ax^-4:X-j-6.
18 0^(0^ - 1).
(Yale.)
2.
(x^-l)(x^^5x-{-6),
6.
aj2 + a^ — &2 _|_ 2 ax,
(x''-\-3x)(x''-x-6).
x^..a^^¥-}-2bx,
(Harvard.)
x^ -a? -¥-2 ah.
(Harvard.)
3.
x^-f,
X' + y%
7.
2x^-x-l^,
^ + y%
3a;2_llaj + 6,
a^-hy',
2:>^-x^-13x-^.
a^ — y^.
(College Entrance Board.)
(College Entrance Board.)
4.
aj3 4_ aj2 _ 2,
8.
(tv-vy,
0^3 + 2 a;2 - 3.
v^ - t\
(Oornell)
f - v\
v'^ — 2vt 4- 1\
Pick out the H.C.F. and the L.C.M. of the following:
9. ^(x' + yyXf + zy^m-nyS
12(x' -^y)'^(t''^zy\m-nY,
18(m - n^fXx"^ + yyXf" + zf\
10. \lax\y + zy\y - xy\x + zf\
34aV(?/ + zy\y - xfHx 4- zy\
51a^x\y + z)Xx + zy\y - xf^
Reference : The chapter on H. C. F. and L. C. M. in any algebra.
20 FRACTIONS
FRACTIONS
Define : fraction, terms of a fraction, reciprocal of a number.
Look up the law of signs as it applies to fractions. Except
for this, fractions in algebra are treated exactly the same as
they are in arithmetic.
1. Eeduce to lowest terms :
(a) ^- (U) «"-^ - (c) (S^ + W-{c + dy ,
W 24' W ^4_^4' («) (« + e)^_(6 + rf).- C^-^- ^O
756 G? 4- W'
2. Eeduce to a mixed expression : (a) ; (5) — ^^^^ —
11 a — h
3. Eeduce to an improper fraction :
(a) 451 ; ih) Qfi qt. ; (c) a^ - a& + &2
Add:
a-\-b
A 5_i_7iiii5 K ^ ^^ I 4 — 13 g;
1 . 1 ^^ 1
x{x — a){x—l>) a{a — x)(a — 'b) h{h — x){h — a)
Multiply :
8. ^~y X ^^ + ^^ X ^' + -^^ X - •
a?-\-'if 1)^ -\-^y 6^ + 2/^ c
Divide :
11. (t^y;^^±l-y(t±t^.^±l\. ^Sheffield.)
\x^ — y'^ x^—xyj \x—y xy—y
Simplify :
\x x' J \ X ^ x^ J \ 2x-^5yJ
Reference : The chapter on Fractions in any algebra.
COMPLEX FRACTIONS AND FRACTIONAL EQUATIONS 21
COMPLEX FRACTIONS AND FRACTIONAL EQUATIONS
Define a complex fraction.
Simplify :
7 6
2-
3 4
7 '5
2.
4. %-■
b' +
cb
6-? + ?"
3 2
{Harvard.)
3. 2-
1-
'-^
5. Ifm =
a-^r
(1 + 2
jp:
a + 3
1 — m 1 —
• +
i>
1-p
6. Simplify the expression
1 1 a^ — ^
\^-\-y-
x-\-y
1-
o:;!/ l-aj^ — 2/^
, what is the value of
(Univ, of Penn.)
{Cornell.)
^ + y]
7. Simplify
{x-^yy
1 +
2x1/
{x - yy
1-y
X
1+^
8. Solve ^l+^-
^Z-
2y-l
:7.
9. Solve 2l-?(aj2 + 3)=^' + l-^'. .
3 5 3 o
10. How much water must be added to 80 pounds of a 5 per
cent salt solution to obtain a 4 per cent solution? (Yale.)
Reference: See Complex Fractions, and the first part of the
chapter on Fractional Equations in any algebra.
22 FRACTIONAL EQUATIONS
FRACTIONAL EQUATIONS
1. Solve for each letter in turn - = - + -.
2. Solve and check :
5 a; + 2 fr, _ 3a?~l ^ _ 3 aj + 19 fx-^1
3
/o 3a:-l\ 3aj + 19 /aj + 1 , oN
3. Solve and check:
4. Solve (after looking up the special sho7't method) :
3a;-l 4 a;- 7 ^0? 2 a; -3 7 a;- 15
30 15 ~4 12.^-11 60 *
5. Solve by the special short method :
Jl ^^_1 1_
x — 2 x — 3 X — 4: x — 5'
6. At what time between 8 and 9 o'clock are the hands of a
watch (a) opposite each other ? (b) at right angles ? (c) to-
gether ?
Work out (a) and state the equations for (b) and (c).
7. The formula for converting a temperature of F degrees
Fahrenheit into its equivalent temperature of C degrees Centi-
grade is C==^ (F— 32). Express F in terms of C, and com-
pute F for the values (7= 30 and (7= 28.
(College Entrance Exam. Board.)
8. What is the price of eggs when 2 less for 24 cents raises
the price 2 cents a dozen ? ^ ( Yale.)
9. Solve -^4- ^ ^
-2 4-a;2 a; + 2
Reference : The Chapter on Fractional Equations in any algebra.
Note particularly the special sliort methods, usu-
ally given about the middle of the chapter.
SIMULTANEOUS EQUATIONS 23
SIMULTANEOUS EQUATIONS
Note. Up to this point each topic presented has reviewed to some
extent the preceding topics. For example, factoring reviews the special
rules of multiplication and division; H. C. F. and L. C. M. review factor-
ing ; addition and subtraction of fractions and fractional equations review
H. C. F. and L. C. M. , etc. From this point on, however, the interdepend-
ence is not so marked, and miscellaneous examples illustrating the work
already covered will be given very frequently in order to keep the whole
subject fresh in mind.
1. Solve by three methods — addition and subtraction, substi-
tution, and comparison : ^ ^ ^
\3x-^2y = l.
Solve and check: -
12E,-llE2 = b-\-12c,
r — s __25 _r-{- s
r-f-s — 9 s — r — 6
= 0.
4. One half of A's marbles exceeds one half of B's and C's
together by 2 ; twice B's marbles falls short of A's and C's
together by 16 ; if C had four more marbles, he would have
one fourth as many as A and B together. How many has
each ? (College Entrance Board.)
5. The sides of a triangle are a, b, c. Calculate the radii of
the three circles having the vertices as centers, each being
tangent externally to the other two. (Harvard.)
(2x-\-3y = 7,
6. Solve ■{ ■ graphically ; then solve algebra-
ix-y = l,
ically and compare results. (Use coordinate or squared paper.)
Factor :
7. 0^4 + 4. 8. 2di0-1024d. 9. 2(a.«3-l)-7(aj2_l).
References: The chapters on Simultaneous Equations and
Graphs in any algebra.
24 SIMULTANEOUS EQUATIONS AND INVOLUTION
SIMULTANEOUS EQUATIONS AND INVOLUTION
f 3
1. Solve <
-^ = 11
4:X Sy
_3_
2J
Look up the method of solv-
ing vi^hen the unknowns are in
the denominator. Should you
A §_ = IQi
4* clear of fractions ?
2. Solve
1
y
1
z
1
X
1
z
X
1
y'
1
a'
1
1
c
2x-y = 4:,
2x-{-3y = 12.
Sx-\-7y.= 5,
'8x + Sy = -lS,
3. Solve graphically and algebraically
4. Solve graphically and algebraically -
Review :
5. The squares of the numbers from 1 to 25.
6. The cubes of the numbers from 1 to 12.
7. The fourth powers of the numbers from 1 to 5.
8. The fifth powers of the numbers from 1 to 3.
9. The binomial theorem laws. (See Involution.)
Expand : (Indicate first, then reduce.)
10. {b-\-yy, 12. (x'^ + 2ay.
11. r^-lj- 13. (x-y + 2zy,
14. A train lost one sixth of its passengers at the first stop,
25 at the second stop, 20 % of the remainder at the third stop,
three quarters of the remainder at the fourth stop ; 25 remain.
What was the original number ? (M. L T.)
References: The chapter on Involution in any algebra. Also
the references on the preceding page.
SQUARE ROOT 25
SQUARE ROOT
Find the square root of:
1. 1 + 16 m^ - 40 m* -h 10 m - 8 m^ + 25 m\
a"^ 6 a ^ ^ G X x^
^' — H r J--L H I .•
x^ X a cv
3. Find the square root to three terms of x'^ + 5.
4. Find the square root of 337,561.
5. Find the square root of 1823.29.
6. Find to four decimal places the square root of 1.672.
(Princeton.)
7. Add -A_ + -i ^-^.
{x-Vf {l-xf 1-x X
8. Find the value of :
^^'^^-.2x3-g^^7xl+:^I^^-4.0.
24 14 1-12
9. Simplify \{x + y^^ (x - yf] {_{x + iff- {x - 2/)^] .
10. Solve by the short method :
_5 2\x-Z x^Vl lla? + 5 ^Q
1-x 4 8 16
11. It takes f of a second for a ball to go from the pitcher
to the catcher, and i of a second for the catcher to handle it
and get off a throw to second base. It is 90 feet from first
base to second, and 130 feet from the catcher's position to
second. A runner stealing second has a start of 13 feet when
the ball leaves the pitcher's hand, and beats the throw to the
base by i of a second. The next time he tries it, he gets a
start of only 3^ feet, and is caught by 6 feet. What is his
rate of running, and the velocity of the catcher's throw ?
{Cornell?)
Reference : The chapter on Square Eoot in any algebra.
26 THEORY OF EXPONENTS
THEORY OF EXPONENTS
Eeview the proofs, for positive integral exponents, of :
I. a^xa' = a'"+^ IV. Va^ = a"".
II. —z=(f"-". V. '^
a" \bj If
III. {a'^y=cf"". VI. (abcy = a"b"c".
To find the meaning of a fractional exponent.
Assume that Law I holds for all exponents.
If so, a^ • a* • a^ = a^ = al
Hence, a^ is one of the three equal factors (hence the cube root)
In the same way, a^ - a^ - a"" - a^ > a^ = a^ = a\
4
Hence, a' is one of the five equal factors (hence the fifth root)
of a'- .■.a^ = Va\
P
In the same way, in general, a* =Va^.
Hence, the numerator of a fractional exponent indicates the
power, the denominator indicates the root.
To find the meaning of a zero exponent.
Assume that Law II holds for all exponents.
If SO, — = a""""" = a^. But by division, — = 1.
.*. a^ = 1, Axiom I.
To find the meaning of a negative exponent.
Assume that Law I holds for all exponents.
If so, ^ a"* X a""" = a""""" = a^ = 1.
Hence, a'^ X cr"^ = 1.
a"*
THEORY OF EXPONENTS 27
THEORY OF EXPONENTS (Continued)
Eules :
To multiply quantities having the same base, add exponents.
To divide quantities having the same base, subtract exponents.
To raise a quantity to a power, multiply exponents.
To extract a root, divide the exponent of the power by the index
of the root.
1. Find the value of 3^ - 5 x 4^ + 8~~3 + 1*.
2. Find the vahie of 8"^ + 9* - 2-^ + 1"* - 7^
Give the value of each of the following:
3- ?' 4^ S^ 30 X 5, 3 x.5^ 30 X 5«, 30 + 5^ 30 - 50.
4. Express 7^ as some power of 7 divided by itself.
Simplify :
5. 16* ' 2* • 32I (Change to the same base first.)
6 ^[T. 7 (^^)^^^ ■
8. (o; H- 3 o:* - 2 cc*)(3 _ 2 a;"* + 4 x'i).
• \c^d) \aW) VftidA.
>■ (-^:
10. h^ X
11.
\</b
ab-^
Reference : The chapter on Theory of Exponents in any algebra.
28 THEORY OF EXPONENTS
THEORY OF EXPONENTS (Continued)
Solve for x :
1. x^ = 4. 2. x~i = 8.
Factor :
3. xi — 9. 5. aj2a _ ^-e^
4. xi + 27. 6. aM - 3 a* + 5 oj* — 15.
7. Find the H. C. F. and L. C. M. of
a2 + ah^ H- ah^ - b% a^ - ah^ - ah^ - b\
8. Simplify the product of :
(ayx'^y, (hxy-'^y, and (y^a~^b~'^y, (Princeton,)
9. Find the square root of:
25 ah-' - 10 ah~i -49+10 a~h^ -f- 25 a-*6l
10. Simplify yj^^j,'
11. Find the value of ^ -7^ ' ^ + 3^ x --^ — - — + 8"3.
210 (7 a + 5)<^
12. Express as a power of 2 : 8^ ; 4^ ; 4^ • 8^ • 16^.
i_
13. Simplify ^^^j^^—j ^ .
14. Simplify {/?¥--^-^-
. 15. Expand (Va +-^6)^ writing the result with fractional
exponents.
Reference : The chapter on Theory of Exponents in any algebra.
RADICALS 29
RADICALS
1. Review all definitions in Radicals, also the methods of
transforming and simplifying radicals. When is a radical in
its simplest form ?
2. Simplify (to simplest form): ^-; yj—; yjp 3^/-;
tM >S^ ("^''-Vt^.' ^^' *«' -'^'-
'{a + by
3. Keduce to entire surds: 2V3; 2\/3; 6-^/2; ay/b^;
4. Reduce to radicals of lower order (or simplify indices) :
</a'', ^^; -^27^; ^ST^V; ^9^^^^.
5. Reduce to radicals of the same degree (order, or index) :
V7_ and__-\/ii ; -^5 and ^3; ^7 and V3; V^ and V^;
-v/c^ Vc^, and Vc^
6. Which is greater, V3 or -v^I? "v/^S or 2V2?
7. Which is greatest, V3, ^, or -^7? Give work and
arrange in descending order of magnitude.
Collect :
8. Vl28-2V50-f-V72-Vl8.
9. 2V| + iV60-f-Vl5 4-V|.
10. V(m — nya + V(m + nya — Vam^ -f- ^a(n — m)^ — Va.
11. A and B each shoot thirty arrows at a target. B makes
twice as many hits as A, and A makes three times as many
misses as B. Find the number of hits and misses of each.
( Lhiiv, of Col.)
Reference : The chapter on Radicals in any algebra (first part
of the chapter).
30 EADICALS
RADICALS (Continued)
The most important principle in Radicals is the following:
111^ _ _ ____
(aby = a^b" . Hence </ab = v^ . ^6. Or, </a • ^b= </ab.
From this also ^=-^&.
Va
Multiply :
1. 2^4 by 3^/6. 3. a/2 by ^4.
2. V2by-v/3. 4. -\/a-\-Vx by Va-VS.
6. V2 + V3-V5by V2-V3 + V5.
6 _P, Vi>'-4g , p Vp^-4g
2"^ 2 -^ 2 2
Divide :
7. V27 by V3. 9. "v^ by V6.
8. 4Vl8 by 5V32. 10. V3 by ^3.
11. 6 VIM 4- 18 V40 - 45 Vl2 by 3 Vl5. (Short division.)
12. 10Vl8- 4^60+5^100 by 3^30.
Eationalize the denominator :
13 -1.. JL. _^. -1-. _A-
V3' Vt' 2V5' V^' 7^*
14 2 . Va + V6. 3
15.
V2 + V3' -Va-Vb 3-V3
V3 + V2
V6+V3-V2
Eeview the method of finding the square root of a binomial
surd. (By inspection preferably.) Then find square root of :
16. 5 + 2V6. 17. 17-12V2. 18. 7-V33.
Reference: The chapter on Eadicals in any algebra, beginning
at Addition and Subtraction of Eadicals.
MISCELLANEOUS EXAMPLES 31
MISCELLANEOUS EXAMPLES, ALGEBRA
TO QUADRATICS
Eesults by inspection, examples 1-10.
Divide :
1.
2.
ajT7+2/T7
XTT -|_ yil
x — y
i»3 _2/3
m^ -\-'n?
m^ -\-n^
x — y'^
Multiply :
5.
e-^y-
6.
(^-gr-^V-
7.
(^,^;-8m)(^a_;-8»)_
8.
(„-...-.-!)■.
9.
(3^-4-4r^(3^^-7r«).
.0.
(2/-40ir3)(32/*+65 ^3).
4. ^ _ ^ _
■\/x — -\/y^
Factor :
ir. a;3~64. 13. h^ — ^mr^,
12. 2/^ + 27. 14. 3p-8p*-35.
Factor, using radicals instead of exponents :
15. 60-7V3^-66. 16. 15m-2Vmn-247i.
17. a—h (factor as difference of two squares).
18. a—h (factor as difference of two cubes).
19. a — h (factor as difference of two fourth powers).
20. Find the H. C. F. and L. C. M. of a:^ + a;i/* - 2 ?/, 2 ar^ +
5 xy'^ + 2 ?/, 2 aj2 — xy^ — y,
x — 7 x — S_x — 4z X — 5
x—S x—9 x—5 x—6
(Princeton,)
21. Solve (short method)
c a h ^^
22- Simplify ^^^_^_^ X
he ca ah
' (a-Jrh+ cf _ 2
ah -j-hc-^-ca
32
MISCELLANEOUS EXAMPLES
MISCELLANEOUS EXAMPLES,
ALGEBRA TO QUADRATICS {Continued)
1. Solve fori): 2^-3 = 128.
2. Solve for ^: r2=:-27.
3. Eind the square root of 8114.4064. What, then, is the
square root of .0081144064 ? of 811440.64 ? From any of the
above can you determine the square root of .081144064 ?
4. The H. C. F. of two expressions is a{a — 6), and their
L.C.M. is a2&(a -f- 6)(a — &). If one expression is ab(a'^ — b'^),
what is the other ?
5. Solve (short method) :
5 _ 2 j: g; - 3
7-x 4
a;+ll 11 a; -j- 5 _ ^
6. Solve
2 _
m
16
1_1 5^_1^
7n 71 p 2
7. Simplify 21 Vf - 5 V| + 6 V4i- - 10 V3^ + ^ Vlli-
8. Does Vl6 X 25 = 4 X 5 ? Does Vl6 + 25 = 4 + 5 ?
9. Write the fraction -
4 + 2V3
and find its value correct to two decimal places.
-with rational denominator,
10. Simplify
p+ Vq
(Princeton.)
MISCELLANEOUS EXAMPLES 33
MISCELLANEOUS EXAMPLES,
ALGEBRA TO QUADRATICS (Continued)
1. Eationalize the denominator of _*"_"" _ .
V6-V3 4-3V2
(Univ. of Cal.)
2. Simplify ^^""'"y - (^^^^*^- of Perm.)
_x
3. Find the value of -^— — — , when aj = 2. (Cornell)
(8 x)i + 10--2
4. Find the value of a; if J ~ •^ ' (M. I. T.)
5. A fisherman told a yarn about a fish he had caught. If
the fish were half as long as he said it was, it would be 10
inches more than twice as long as it is. If it were 4 inches
longer than it is, and he had further exaggerated its length
by adding 4 inches, it would be ^ as long as he now said it
was. How long is the fish, and how long did he first say it
was? (M.LT.)
6. The force P necessary to lift a weight W by means of a
certain machine is given by the formula
P=a+bW,
where a and b are constants depending on the amount of fric-
tion in the machine. If a force of 7 pounds will raise a weight
of 20 pounds, and a force of 13 pounds will raise a weight of 50
pounds, what force is necessary to raise a weight of 40 pounds ?
(First determine the constants a and b.) (Harvard,)
7. Reduce to the simplest form : -vIt^— g*? — ^—^ ^ ^•
^ ^" x^ — a^
8. Determine the H. C. F. and L. C. M. of (xy - y^ and
y^ — x^y. (College Entrance Board.)
REV. ALG. — 3
34 MISCELLANEOUS EXAMPLES
MISCELLANEOUS EXAMPLES,
ALGEBRA TO QUADRATICS {Continued)
1. Simplify ^-^^^ -2aM.
a3 _ 2 m3
2. Simplify, writing the result with rational denominator :
.1+ iv-r-i.-.*^^
"^ ^ ' ■ 1-. {M. I. T,)
3. Find Vj-VlS.
4. Expand (Va^-VP)^
5. Expand and simplify (1 -2V3 + 3V2)2.
6. Solve the simultaneous equations J ^ ^ + ^2/ ^=6?
I 2 .T-i - y-i = 2.
(FaZe.)
7. Find to three places of decimals the value of
4
(a + &)~'3- (a^ _ 53)-
(11 a + 52)6 (ct _ 5)2
when a = 5 and & = 3. (Columbia.)
8. Show that — ^^^ ^ is the negative of the reciprocal of
5 + 3 V5
=-. (Columbia,')
5-3V5 ^
9. Solve and check — 1== = V3 a; -f 2 + V3 a; — 1.
V3 a? + 2 ^
10. Assuming that when an apple falls from a tree the dis-
tance {S meters) through which it falls in any time {t seconds)
is given by the formula S = ^yf (where ^ = 9.8), find to two
decimal places the time taken by an apple in falling 15 meters.
(College Entrance Board.)
MISCELLANEOUS EXAMPLES 35
MISCELLANEOUS EXAMPLES,
ALGEBRA TO QUADRATICS {Continued)
Excellent practice may be obtained by solving the ordinary
formulas used in arithmetic, geometry, and physics orally, for
each letter in turn.
Arithmetic
p = br a = p -\- prt
J =prt
Geometry
K =
:\hh
K =
:bJl
K =
4
K =
■•i{b + b')h
K =
■■irE'
C =
.2irR
K =
-itRL
S =
= 4 7ri22
V-
= gt
s-
= igt'
s -
2^
C--
E
E
E-.
2g
e -
bh^m
E-.
mv^
Physics
E'H
R'
V=i7rR^H
3
ttR^E
KJ -
180
G
C
R
' R'
K
R^
K'~
R'^
tz
F=
r
mil -
2^
R-.
V -
_ g^
4 uH^w
(7 = 1 (F- 32)
36 QUADRATIC EQUATIONS
QUADRATIC EQUATIONS
1. Define a quadratic equation ; a pure quadratic ; an affected
(or complete) quadratic ; an equation in the quadratic form.
2. Solve the pure quadratic = - .
Eeview the first (or usual) method of completing the square.
Solve by it the following:
3. x'' + 10x = 24.. 5. ?il^+^_ = 2i
2 X— 1
4. 2 ic2 — 5 a; = 7. 6. ax"^ + bx + c == 0.
Eeview the solution by factoring. Solve by it the following :
7. a;2 4-8a;4-7 = 0. 9. 3 = 10 a?- 3 a?^.
8. 24 aj2 = 2 0^ + 15. 10. - 7 = 6 a; — x\
Solve, by factoring, these equations, which are not quadratics :
11. a^ = 16. 12. a^ = 8. 13. x^ = x.
Review the solution by formula. Solve by it the following:
14. 5x^-6x = S.
15. 1(0^+1) _|(2a.-l) = -12.
16. x'^-{-4:ax = 12a\
17. 3x^ = 2rx-\-2 r\
«.
Solve graphically:
18. x^-2x-S = 0. 19. x^^x-2 = 0.
Reference : The chapter on Quadratic Equations in any algebra
(first part of the chapter).
QUADRATIC EQUATIONS 37
QUADRATIC EQUATIONS (Continued)
1. Solve by three methods — formula, factoring, and com-
pleting the square : x^ ■j-10x = 24.
Eeview equations in the quadratic form and solve :
£i±-^ -1- 6 = 5\/^±^. (^Let y = a /^^ and substitute.^
X— l^ ^x — 3v ^ X — 3 /
X— 3 ^ X — 3 \
5. 3x^-4.x-{-2V3x''-4.x-6 = 21,
6. x^ -j- 5x— 5 =
x^ -^ 5x
Solve and check :
7. v^+T+ VS'^'^=^= ^'""^^
V3 a; - 2
8. v'a^2-o + — ==-5.
10 1/;
9. — VlO 10-^2= ^ z'
VlO z(; - 9 VlO w-9
Give results by inspection :
10. ' ( Va + V&)( Va - V6).
11- (Vro+ vT9) (VlO - vr9).
12. How many gallons each of cream containing 33 %
butter fat and milk containing 6 % butter fat must be mixed
to produce 10 gallons of cream containing 25 % butter fat ?
13. I have $ G in dimes, quarters, and half-dollars, there being
33 coins in all. The number of dimes and quarters together is
ten times the number of half-dollars. How many coins of
each kind are there ? (College Entrance Board,)
Reference: The last part of the chapter on Quadratic Equa-
tions in any algebra.
38 THE THEORY OF QUADRATIC EQUATIONS
THE THEORY OF QUADRATIC EQUATIONS
I. To find the sum and the product of the roots.
The general quadratic equation is
ax^-\-bx-\-c = 0, (1)
Or, x''-{--x-{-- = 0. (2)
a a
To derive the formula, we have by transposing
9 , & c
a a
Completing the square,
x^-\--x-{-(
a \2 aj Aa^ a 4 a-
Extracting square root, x + —— =
2 a 2 a
rn • b , -\/b^ — 4 ac
Transposing, a? = - 7— ±
2a 2a
XT -b± Vb^ - 4 ac
Hence, x = ^^—
These two values of x we call 'roots.
For convenience represent them by 7\ and rg.
Hence,
Adding, rj + r2 = - — - = (3)
r2 =
2a"^
b
V62-
^ 2
-4
a
ac
V62-
-4
ac
2a
2
a
n
+ ^2 =
2b_
2a
a
THE THEORY OF QUADRATIC EQUATIONS
39
Also,
Ti
h
, V52-4
ac
=
2a
b
2a
' 2a
n
2a
ac^
r.r^
52
b^ — 4:aG
b"^ — b^ -\- 4: ac __4: ac _c
' 4a2 ~4a2 ""a'
(4)
Hence we have shown that -
^1 + ^2 = ,
a
and rir2 = - •
a
Or, referring to equation (2) above, we have the following rule :
When the coefficient of x^ is unity, the sum of the roots is the
coefficient of x ivith the sign changed; the product of the roots is
the independent term.
Examples :
1. a;2-9a; + 21 = 0.
r Sum of the roots = 9.
\ Product of the roots = 21.
2. 3a;2-7a;-18 = 0.
3. -21x = ll -4.x\
II. To find the nature or character of the roots.
Sum of the roots = |-.
[ Product of the roots = — 6.
f Sum of the roots = ^^-.
\ Product of the roots = — ^-.
As before.
2 a
b__
2a
ro==-
V&2-
-4
ac
2
a
V&2-
-4
ac
2a
The V&2 — 4 ac determines the nature or character of the
roots : hence it is called the discriminant.
40 THE THEORY OF QUADRATIC EQUATIONS
If &2 — 4 ac is positive, the roots are real, unequal, and
either rational or irrational.
If &^ — 4 ac is negative, the roots are imaginary and unequal.
If 6^ — 4 ac is zero, the roots are real, equal, and rational.
Examples :
1. x^-Ax-^2 = 0.
V&^ — 4 ac = VI6 — 8 = Vs. .*. The roots are real, unequal,
and irrational.
2. x^ — 4.x + 6 = 0.
V&^ — 4 ac = V16 — 24 = V— 8. .*. The roots are imaginary
and unequal.
3. x'^-Ax-\-4: = 0.
V&^ — 4 ac = VI6 — 16 = VO. .*. The roots are real, equal,
and rational.
III. To form the quadratic equation when the roots are given.
Suppose the roots are 3, — 7.
x = 3, ic — 3 = 0,
Then, \ Or, '
Multiplying to get a quadratic, (x — 3){x -f-7) = 0.
Or, a;2 + 4 a; - 21 = 0.
0}% use the sum and product idea developed on the preced-
ing page. The coefficient of x^ must be unity.
Add the roots and change the sigii to get the coefficient of x.
Multiply the roots to get the independent term.
. *. The equation is a^^ + 4 cc — 21 = 0.
In the same way, if the roots are ^^ , '^^^ , the equa-
tion is
THEORY OF QUADRATIC EQUATIONS 41
THE THEORY OF QUADRATIC EQUATIONS ^Continued)
Find the sum, the product, and the nature or character of
the roots of the following :
2. 9 a?2 _ 6 .T + 1 = 0.
3. 0^2 + 2 a; + 9734 = 0.
X — '6
6. (i» + 7)(x- 6)= 70.
7. x'-x^2 = 3.
^' . ^ + ^ ~ ^* 8. pr2 + gr + s = 0.
Form the equations whose roots are :
9. 5, -3. 2±V^"3
13. - .
14. I + I V37, I - |V37.
2±V-2
10.
2 5
3? 3-
11.
c 4- d, c — (^.
12.
- 3, - 5.
15.
2
16. Solve a;^ — 3 a: -f 4 = 0. Check by substituting the
values of x ; then check by finding the sum and the product of
the roots. Compare the amount of labor required in each case. .
17. Solve (x - ?>){x + 2){x' + 3a? - 4)= 0.
18. Is e^' + 2 e^^ + e^z ^ 2 e^ + 2 + g-^^ a perfect square ?
19. Find the square root (short method) :
(a;2 - l)(a;2 _ 3 a; -f 2)(a;2 - x - 2).
„^ ci 1 1.2 a? — 1.5 , .4a?-f 1 .4a;+l
20. Solve -X^ + :2^^ = — 5-
• 21. The glass of a mirror is 18 inches by 12 inches, and it
has a frame of uniform wddth whose area is equal to that of
the glass. Find the width of the frame.
42
OUTLINE OF SIMULTANEOUS QUADRATICS
OUTLINE OF SIMULTANEOUS QUADRATICS
f One equation linear.
Simultaneous
Quadratics
Case I.
Case II. ^
[The other quadratic.
r2x-\-y = 7,
1^2 _p 2^/2 = 22.
Method : Solve for x in terms of 2/,
or vice versa, in the linear and sub-
stitute in the quadratic.
Both equations homogeneous and
1^ of the second degree.
{ x"^ — xy -^ y"^ = 39,
\2x^-3xy-]-2y'' = 4.3.
Method : Let y = vx, and substitute
in both equations.
Alternate Method : Solve for x in
terms of y in one equation and sub-
titute in the other.
Case III.
x^y
x" +2/'
•
xy
Any two of the
x — y
^give
quantities
^^ _l_ ^
:k? — f
x^ -\- xy-\-y'^
*.
.aj2_ xy-^y'^^
^x-\-y = 5,
\x^ -xy -{-y'^
= 7.
Method : Solve iov x -[- y and x —y\
then add to get cc, subtract to get y.
OUTLINE OF SIMULTANEOUS QUADRATICS
43
Simultaneous
Quadratics
{Continued)
Case
IV.
Both equations symmetrical or symmet-
rical except for sign. Usually one
equation of high degree, the other of
the first degree.
' x'^-^-y^^ 242,
Method : Let x = u -\- v and y = u— v,
and substitute in both equations.
I. Consider some compound quantity
Special
Devices
like xy, -y/x — y, -y/xy, - j ^^c, as
the unknown, at first. Solve for
the compound unknown, and
combine the resulting equation
with the simpler original equa-
tion.
f x'^y'^ -{- a??/ = 6,
i oj + 2 2/ = - 5.
II. Divide the equations member by
member. Then solve by Case I,
II, or III.
(:^-y^ = 152,
Vx-y = 2.
III. Eliminate the quadratic terms.
Then solve by Case I, II, or III.
(xy-\-x = 15,
Vxy -^y = l&.
44 SIMULTANEOUS QUADRATICS
SIMULTANEOUS QUADRATICS
Solve:
^ (x-\-y = 7, ^ U3x~2y)(2x-3y)=26,
' \x^-i-4:xy = 57. ' [x-\-l = 2y.
2 '2a;2 = 46+2/^ (^x^ -i-Sxy -\-2y'' = lS,
xy + y^ = 14:. ' [Sx''-\-2xy-y'' = 3.
V + 2/' = 25, (x' + y' = 242,
3. i 10. '
x + y=zl, [x-\-y = 2.
^ :^^ + 2/' = 2, ^^ ^x-y+Vx-y = 6,
x — y = 2. ' [xy = 5.
a^-^y' = 28, ^4.x''- x +y= 67,
^y + xy — 12 = 0, fx — y — -yjx — y = 2,
x-\-y = 4.. ^^' [ 0^3-^3^2044. {Yale.)
2xy — x-\-2y = 16, f x'^ -\- xy -\- x = 14,
14
Sxy-\-2x-4y = 10. ' [y"^ ^ xy -^y = 2S.
(Princeton.)
[2/2 = 4(x — 2). Plot the graph of each equation.
[Cornell.)
^g {x^^y^ = xy+37,
\x-\-y = xy —17. {Columbia.)
hi grouping the answers, he sure to associate each value of
X with the corresponding value of y.
17. The course of a yacht is 30 miles in length and is in the
shape of a right triangle one arm of which is 2 miles longer
than the other. What is the distance along each side ?
Reference: The chapter on Simultaneous Quadratics in any
algebra.
RATIO AND PROPORTION 45
RATIO AND PROPORTION
1. Define ratio, proportion, mean proportional, third pro-
portional, fourth proportional.
2. Find a mean proportional between 4 and 16 ; 18 and 50 ;
12 m'^n and 3 m^i^.
3. Find a third proportional to 4 and 7 ; 5 and 10 ; a^ _ 9
and a — 3.
4. Find a fourth proportional to 2, 5, and 4 ; 35, 20, and 14.
5. Write out the proofs for the following, stating the
theorem in full in each case :
(a) The product of the extremes equals etc.
(6) If the product of two numbers equals the product of two
other numbers, either pair etc.
(c) Alternation. (e) Composition.
{d) Inversion. (/) Division.
(g) Composition and division.
(h) In a series of equal ratios, the sum of the antecedents
is to the sum of the consequents etc.
(^) Like powers or like roots of the terms of a proportion etc.
6. If a; : m : : 13 : 7, write all the possible proportions that
can be derived from it. [See (5) above.]
7. Given rs = 161 m ; write the eight proportions that may-
be derived from it, and quote your authority.
8. (a) What theorem allows you to change any proportion
into an equation ?
(b) What theorem allows you to change any equation into a
proportion ?
9. If xy=rg, what is the ratio oi xtog? oiytor? of y tog?
10. Find two numbers such that their sum, difference, and
the sum of their squares are in the ratio 5 : 3 : 51. ( Yale.)
Reference : The chapter on Ratio and Proportion in any algebra.
46 RATIO AND PROPORTION
RATIO AND PROPORTION (Continued)
An easy and powerful method of proving four expressions in
proportion is illustrated by the following example :
Given a :b = c :d;
prove that S a^ -\- 6 ab'^ : S a^ - b ab^ = S c^ + 6 cd^ :S c^ - 6 cd^
Let « = r.
b
.-. a =
br.
Also - = r.
d
,\ c =
dr.
Substitute the value of a in the first ratio, and
. c in
the second :
Then ^«:
3a3
+ 5 a52
-5a62
_ 3 &V + 5 bh^ _
3 &3^3 _ 5 ^3r
_ b^r(S r2
63r(3 r2
+ 5)
-6)
_ 3 r2 + 5.
3r2-5
Also 3c3 + 5c^2
3 C3 - 5 C(^2
_ 3 (?3^3 + 5 d¥ _
3 d¥3 - 5 d^r
_ d^r(S r2
d3r(3 r2
+ 5)
-5)
_ 3 r2 + 5.
3r2- 5
3a3
+ 5 ab^
_ 3 c3 + 6 c^2
3a3
-6ab^
3 c3 - 6 cd2
Axiom 1.
Or, S a^ + 6 ab^ :S a^ - 6 ab^ = S c^ + 6 cd^iS c^ ^ 6 cd^.
If a:b = c: dy prove :
1. a2 + &2 : ^2 = c2 + d2 : c\
2. a^ + 3 62 : a2 - 3 62 = c2 + 3 (^2 . (.2 _ 3 c^2^
3. a' + 2b^:2b'' = ac + 2bd:2bd.
4. 2a + 3c:2a-3c = 864-12d:86-12d
5. a^ - a6 + 6^ : ^' ~ ^' =0^ - cd + ^2 . gL:^' .
a c
6. The second of three numbers is a mean proportional
between the other two. The third number exceeds the sum of
the other two by 20 ; and the sum of the first and third exceeds
three times the second by 4. Find the numbers.
7. Three numbers are proportional to 5, 7, and 9 ; and their
sum is 14. Find the numbers. (College Entrance Board.)
8. A triangular field has the sides 15, 18, and 27 rods,
respectively. Find the dimensions of a similar field having
4 times the area.
ARITHMETICAL PROGRESSION 47
ARITHMETICAL PROGRESSION
1. Define an arithmetical progression.
Learn to derive the three formulas in arithmetical progression:
1 = a-\-(7i — l)d,
2. Find the sum of the first 50 odd numbers.
3. In the series 2, 5, 8, •••, which term is 92 ?
4. How many terms must be taken from the series 3, 5, 7,
•••, to make a total of 255 ?
5. Insert 5 arithmetical means between 11 and 32.
6 Insert 9 arithmetical means between 7|- and 30.
7. Find x, if 3 -{-2 x, 5 -\-6x, 9 + 5 x are in A. P.
8. The 7th term of an arithmetical progression is 17, and
the 13th term is 59. Find the 4th term.
9. How can you turn an A. P. into an equation ?
10. Given a = — f, n = 20, 8 = — ^, find d and I.
11. Find the sum of the first n odd numbers.
12. An arithmetical progression consists of 21 terms. The
sum of the three terms in the middle is 129 ; the sum of the
last three terms is 237. Find the series. (Look up the short
method for such problems.) (Mass. Inst, of Technology.)
13. B travels 3 miles the first day, 7 miles the second day,
11 miles the third day, etc. In how many days will B over-
take A who started from the same point 8 days in advance and
who travels uniformly 15 miles a day ?
Reference: The chapter on Arithmetical Progression in any
algebra.
48 GEOMETRICAL PROGRESSION
GEOMETRICAL PROGRESSION
1. Define a geometrical progression.
Learn to derive the four formulas" in geometrical progression :
rl — a
I. / = ar""\
11. ^^ar^-a
III. S = -
r-1
IV. ^OD=^
1 — r
r-1
2. How many terms must be taken from the series 9, 18,
36, --to make a total of 567 ?
3. In the a. P. 2, 6, 18, ..., which term is 486?
4. Find Xy if 2 x — 4, 5 a; — 7, 10 oj + 4 are in geometrical
progression.
5. How can you turn a G. P. into an equation ?
6. Insert 4 geometrical means between 4 and 972.
7. Insert 6 geometrical means between ^^ and 5120.
8. Given a = — 2, n ^ 5, Z = — 32 ; find r and S.
9. If the first term of a geometrical progression is 12 and
the sum to infinity is 36, find the 4th term.
10. If the series 3^, 2^ ••• be an A. P., find the 97th term.
If a G. P., find the sum to infinity.
11. The third term of a geometrical progression is 36; the
6th term is 972. Find the first and second terms.
12. Insert between 6 and 16 two numbers, such that the
first three of the four shall be in arithmetical progression, and
the last three in geometrical progression.
13. A rubber ball falls from a height of 40 inches and on
each rebound rises 40 % of the previous height. Find by
formula how far it falls on its eighth descent. (Yale.)
Reference : The chapter on Geometrical Progression in any
algebra.
THE BINOMIAL THEOREM 49
THE BINOMIAL THEOREM
1. Eeview the Binomial Theorem laws. (See Involution.)
Expand :
2. (h-ny. 5. i-^-^'xy
3. {x^x-y, 6. (a;2-aj + 2)3.
V^ ay * ' \ y &' /
8. (fl + by =:or -^ na"-^h + ^^^ ~J'^ a'-^Ij^
1 * <o
n(n - l) (n - 2) 3 „(„ _ !)( „ _ 2)(n - 3) ^m , ...
^ 1-2-3 1-2. 3-4 ^"
Show by observation that the formula for the
(r + l)th term = /^(^L^AKg - ^) '" (n - r ±l)^n-r^,
9. Indicate what the 97th term of (a + by would be.
10. Using the expansion of (a + by in (8), derive a formula
for the rth term by observing how each term is made up, then
generalizing.
Using either the formula in (8) or (10), whichever you are
familiar with, find :
/ 1 \ 30
11. The 4th term ofla-\--\ .
12. The 8th term of (1 + xVyY^.
13. The jniddle term of (2 a* -y \/ay^
2X12
xj
15. The term containing x^^ in \ 'y?- ) .
V ^J
Reference: The chapter on The Binomial Theorem in any algebra.
REV. ALG. — 4
14. The term not containing x in [qi? —
50 MISCELLANEOUS EXAMPLES
MISCELLANEOUS EXAMPLES, QUADRATICS AND BEYOND
1. Solve the equation oi? — 1.6 a? — .23 = 0, obtaining the
values of the roots correct to three significant figures.
{Harvard^
2. Write the roots of (x^ -\-2 x){x' -2 x -?>){x^ - x^V) =^,
{Sheffield Scientific School.)
3. Solve 2V2¥+2 + V2¥+l = ^ ^ ^ + 4 ^ (Yale^
TT
4. Solve the equation F= — (B -\-x-\- VBx) for x, taking
o
11= 6, J5 = 8, and V= 2S ; and verify your result. (Harvard,)
Solve {^^2/ = 2:3,
V-f-2/2 = 5(a^ + 2/) + 2.
6. Solve2a;2_4a;+3Vaj2-2a;-h6 = 15. (Coll. Ent. Board.)
7. Find all values of x and ?/ which satisfy the equations :
r Va; + V?/ = 4,
: y. (Mass. Inst, of Technology.)
-Vx H- 1 — 'Vx -Vx + 1 4- Va?
8. If ot and yS represent the roots of px'^ -^qx -\- r = Oy find
a + p, a — /3, and a/? in terms of p, q, and ?\ (Princeton.)
9. Form the equation whose roots are 2H-V— 3 and
10. Determine, without solving, the character of the roots of
9 x^ —24 x-\-16 =0. (College Entrance Board.)
11. li a:b = c:d, prove that a-{-b: c-\-d = Va^^b'^ : Vc^-{-d\
(College Entrance Boai'd.)
12. Givena:6 = c:d Prove that a^H-^^ .- -^ = 02 + ^2:- ^'
a-\-l) c-\-d
(Sheffield.)
13. The 9th term of an arithmetical progression is \ ; the
16th term is f. Find the first term. (Regents.)
MISCELLANEOUS EXAMPLES 51
MISCELLANEOUS EXAMPLES, QUADRATICS AND BEYOND
(Continued)
Solve graphically :
1. x^-x-6 = 0. 2. aj2_,_3^_io^O.
3. Find four numbers in arithmetical progression, such
that the sum of the first two is 1, and the sum of the last two
is - 19.
4. What number added to 2, 20, 9, 34, will make the
results proportional ?
/ hi
5. Find the middle term of ( 3 a^ + ^
V 2
6. Solve -^±i- = ?-5jIl|_l ^ (Princeton.)
7. A strip of carpet one half inch thick and 29|- feet long
is rolled on a roller four inches in diameter. Find how many-
turns there will be, remembering that each turn increases the
diameter by one inch, and that the circumference of a circle
equals (approximately) ^-^- times the diameter. (Harvard.)
8. The sum of the first three terms of a geometrical progres-
sion is 21, and the sum of their squares is 189. What is the
first term ? ( Yale.)
9. Find the geometrical progression whose sum to infinity
is 4, and whose second term is f .
10. Solve 4.x + W3x''-7 x + S = 3x'^-3x + 6.
11. Solve p.^ + 3^^-5^-4,
1 2xy + 3y' = -S.
12. Two hundred stones are placed on the ground 3 feet
apart, the first being 3 feet from a basket. If the basket and
all the stones are in a straight line, how far does a person
travel who starts from the basket and brings the stones to
it one by one ?
52 MISCELLANEOUS EXAMPLES
MISCELLANEOUS EXAMPLES, QUADRATICS AND BEYOND
{Continued)
Solve graphically ; and check by solving algebraically :
^x-\-y = 1.
2. x2- 3 0.^-18 = 0. 3. .t2^ 3 a? -10 = 0.
Determine the value of m for which the roots of the equa-
tion will be equal : (Hint : See page 40. To have the roots equal,
6'^ — 4 ac must equal 0.)
4. 2 0^2 _ ^^^y, _|. 12 1 = 0.
5. (m — l)i^2 + mo? H- 2 ??i — 3 — 0.
6. If 2 a -I- 3 & is a root of ^^^ _ 5 ^^, _ 4 ^2 _^ 9 ^2 ^ q^
find the other root without solving the equation.
(Univ. of Penn»)
7. How many times does a common clock strike in
12 hours ?
2 1 1
8. Find the sum to infinity of
— >
V2 V2 2V2
e. Solve (f+^y-6(| + ^-)+8 = 0.
10. Find the value of the recurring decimal 2.214214 —.
11. A man purchases a $500 piano by paying monthly
installments of $ 10 and interest on the debt. If the yearly
rate is 6%, what is the total amount of interest?
12. The arithmetical mean between two numbers is 42^, and
their geometrical mean is 42. Find the numbers.
(College Entrance Exam. Board.)
13. If the middle term oi fSx =. ) is equal to the fourth
V 2VxJ
term of f 2Va^H ) , find the value of x. (M. L T.)
2 xj
PROBLExMS 53
PROBLEMS
Linear Equations, One Unknown
1. A train running 30 miles an hour requires 21 minutes
longer to go a certain distance than does a train running
36 miles an hour. How great is the distance? (Oornell.)
2. A man can walk 2| miles an hour up hill and 3^ miles an
hour down hill. He walks 56 miles in 20 hours on a road no
part of which is level. How much of it is up hill ? (Yale.)
3. A physician having 100 cubic centimeters of a 6 % solu-
tion of a certain medicine wishes to dilute it to a 3^ % solution.
How much water must he add ? (A 6 % solution contains 6 %
of medicine and 94 % of water.) (Case.)
4. A clerk earned $501 in a certain number of months. His
salary was increased 25 %, and he then earned $450 in two
months less time than it had previously taken him to earn
$504. What was his original salary per month ?
(College Entrance Board.)
6. A person who possesses $15,000 employs a part of the
money in building a house. He invests one third of the money
which remains at 6 %, and the other two thirds at 9 %, and
from these investments he obtains an annual income of $500.
What was the cost of the house ? (M. I. T.)
6. Two travelers have together 400 pounds of baggage. One
pays $1.20 and the other $1.80 for excess above the weight
carried free. If all had belonged to one person, he would have
had to pay $4.50. How much baggage is allowed to go free?
(Yale.)
7. A man who can row 4^ miles an hour in still water rows
downstream and returns. The rate of the current is 2\ miles
per hour, and the time required for the trip is 13 hours. How
many hours does he require to return ?
54 PROBLEMS
Simultaneous Equations, Two and Three Unknowns
1. A manual training student in making a bookcase finds
that the distance from the top of the lowest shelf to the under
side of the top shelf is 4 ft. 6 in. He desires to put between
these four other shelves of inch boards in such a way that the
book space will diminish one inch for each shelf from the bot-
tom to the top. What will be the several spaces between
the shelves?
2. A quantity of water, sufficient to fill three jars of differ-
ent sizes, will fill the smallest jar 4 times, or the largest jar
twice with 4 gallons to spare, or the second jar three times with
2 gallons to spare. What is the capacity of each jar? (Case,)
3. A policeman is chasing a pickpocket. When the police-
man is 80 yards behind him, the pickpocket turns up an alley;
but coming to the end, he finds there is no outlet, turns back,
and is caught just as he comes out of the alley. If he had dis-
covered that the alley had no outlet when he had run halfway
up and had then turned back, the policeman would have had to
pursue the thief 120 yards beyond the alley before catching
him. How long is the alley ? (Harvard.)
4. A and B together can do a piece of work in 14 days.
After they have worked 6 days on it, they are joined by C who
works twice as fast as A. The three finish the work in 4
days. How long would it take each man alone to do it ?
(Columbia.)
5. In a certain mill some of the .workmen receive $ 1.50 a
day, others more. The total paid in wages each day is $ 350.
An assessment made by a labor union to raise $ 200 requires
$1.00 from each man receiving $1.50 a day, and half of one
day's pay from every man receiving more. How many men
receive $ 1.50 a day ? (Harvard.)
PROBLEMS 56
6. There are two alloys of silver and copper, of which one
contains twice as much copper as silver, and the other three
times as much silver as copper. How much must be taken
from each to obtain a kilogram of an alloy to contain equal
quantities of silver and copper ? {M. I. T.)
7. Two automobiles travel toward each other over a distance
of 120 miles. A leaves at 9 a.m., 1 hour before B starts to
meet him, and they meet at 12 : 00 m. If each had started at
9 : 15 A.M., they would have met at 12 : 00 m. also. Find the
rate at which each traveled. {M. I. T.)
Quadratic Equations
1. Telegraph poles are set at equal distances apart. In
order to have two less to the mile, it will be necessary to set
them 20 feet farther apart. Find how far apart they are now.
{Yale.)
2. The distance S that a body falls from rest in t seconds
is given by the formula aS = 16 f^. A man drops a stone into
a well and hears the splash after 3 seconds. If the velocity
of sound in air is 1086 feet a second, what is the depth of the
well? (Yale.)
3. It requires 2000 square tiles of a certain size to pave a
hall, or 3125 square tiles whose dimensions are one inch less.
Find the area of the hall. How many solutions has the equa-
tion of this problem ? How many has the problem itself ?
Explain the apparent discrepancy. {Cornell.)
4. A rectangular tract of land, 800 feet long by 600 feet
broad, is divided into four rectangular blocks by two streets of
equal width running through it at right angles. Find the
width of the streets, if together they cover an area of 77,500
square feet. {M. I. T.)
56 PROBLEMS
5. (a) The height y to which a ball thrown .vertically upward
with a velocity of 100 feet per second rises in x seconds is
given by the formula, y = 100 x— 16 x^. In how many seconds
will the ball rise to a height of 144 feet ?
(h) Draw the graph of the equation y = 100 x — lQ> x'^.
. (College Entrance Board.)
6. Two launches race over a course of 12 miles. The first
steams 7^ miles an hour. The other has a start of 10 minutes,
runs over the first half of the course with a certain speed, but
increases its speed over the second half of the course by 2
miles per hour, winning the race by a minute. What is the
speed of the second launch ? Explain the meaning of the
negative answer. (Sheffield ScientifiG School.)
7. The circumference of a rear wheel of a certain wagon is
3 feet more than the circumference of a front wheel. The
rear wheel performs 100 fewer revolutions than the front
wheel in traveling a distance of 6000 feet. How large are the
wheels ? (Harvard.)
8. A man starts from home to catch a train, walking at the
rate of 1 yard in 1 second, and arrives 2 minutes late. If he
had walked at the rate of 4 yards in 3 seconds, he would have
arrived 2i minutes early. Find the distance from his home to
the station. (College Entrance Board.)
Simultaneous Quadratics
1. Two cubical coal bins together hold 280 cubic feet of coal,
and the sum of their lengths is 10^ feet. Find the length of
each bin.
2. The sum of the radii of two circles is 25 inches, and the
difference of their areas is 125 tt square inches. Find the
radii.
PROBLEMS • 57
3. The area of a right triangle is 150 square feet, and its
hypotenuse is 25 feet. Find the arras of the triangle.
4. The combined capacity of two cubical tanks is 637 cubic
feet, and the sura of an edge of one and an edge of the other
is 13 feet, (cx) Find the length of a diagonal of any face of
each cube, (h) Find the distance from upper left-hand corner
to lower right-hand corner in either cube.
5. A and B run a raile. In the first heat A gives B a start
of 20 yards and beats hira by 30 seconds. In the second heat
A gives B a start of 32 seconds and beats hira by 9j-\ yards.
Find the rate at which each runs. {Sheffield.)
6. After street improvement it is found that a certain corner
rectangular lot has lost -^-^ of its length and -^^ of its width.
Its perimeter has been decreased by 28 feet, and the new area
is 3024 square feet. Find the reduced diraensions of the lot.
(College Entrance Board)
7. A man spends $ 539 for sheep. He keeps 14 of the flock
that he buys, and sells the remainder at an advance of $2
per head, gaining % 28 by the transaction. How many sheep
did he buy, and what was the cost of each ? ( Yale.)
8. A boat's crew, rowing at half their usual speed, row 3
miles downstream and back again in 2 hours and 40 minutes.
At full speed they can go over the same course in 1 hour and
4 minutes. Find the rate of the crew, and the rate of the cur-
rent in miles per hour. {College Entrance Board.)
9. Find the sides of a rectangle whose area is unchanged if
its length is increased by 4 feet and its breadth decreased by
3 feet, but which loses one third of its area if the length is
increased by 16 feet and the breadth decreased by 10 feet.
(M. I. T.)
COLLEGE ENTRANCE EXAMINATIONS
UNIVERSITY OF CALIFORNIA
ELEMENTARY ALGEBRA
1. If a = 4, & = — 3, c = 2, and d = — 4t, find the value of :
(a) aW - 3 cc?2 _^ 2(3 a - h)(c - 2 d),
(6) 2 a^ - 3 6^ + (4 c^ + c?3)(4 c^ + d"),
2. Reduce to a mixed number :
3 g^ - 4 g^ - 10 g^ + 41 g - 28
g2 - 3 g + 4
Simplify :
g+2 6-2
g2 + 3 g — 40 g& - 5 & + 3 g - 15
/ 2 - 3 6 - 2c\ g2-4c2 4-9&2 + 6g&
V g + 2 J 2g2 + g-6
5. A's age 10 years hence will be 4 times what B^s age was
11 years ago, and the amount that A's age exceeds B\s age is
one third of the sum of their ages 8 years ago. Find their
present ages.
6. Draw the lines represented by the equations
3 aj ~ 2 2/ = 13 and 2 x-[-by = — 4.,
and find by algebra the coordinates of the point where they
intersect.
o. -. .1 . . {hx — ay ^ly^ — ah,
7. Solve the equations \ 70/ ox
^ [^ ^_^=3 2(a; — 2g).
8. Solve {2 x-\-l){3 x-2)-{5 X -l){x -2) = 41.
58
COLLEGE ENTRANCE EXAMINATIONS 59
COLORADO SCHOOL OF MINES
ELEMENTARY ALGEBRA
1. Solve by factoring : ot^ -]- 30 x = 11 x\
2. Show that 1 _f a' + b''-c'' V
= (a + 6 + G)(a + & - c){a - & 4- c)(b + c - a) ^4.o?h\
3. How many pairs of numbers will satisfy simultaneously
the two equations
x-^y = 3?
Show by means of a graph that your answer is correct.
What is meant by eliminating x in the above equations by
substitution? by comparison? by subtraction?
4. Find the square root of 223,728.
5. Simplify: (a) V|+Vl2-Vf.
(P) (_V_3V^4)4.
6. Solve the equation
.03 x" - 2.23 X + 1.1075 = 0.
7. How far must a boy run in a potato race if there are n
potatoes in a straight line at a distance d feet apart, the first
being at a distance a feet from the basket?
60 COLLEGE ENTRANCE EXAMINATIONS
COLUMBIA UNIVERSITY
ELEMENTARY ALGEBEA COMPLETE
Time : Three Hours
' Six questions are required ; two from Group A, two from Group B,
and both questions of Group C. No extra credit will be given for more
than six questions.
Group A
(a) Eesolve the following into their prime factors :
(1) {x^-fy-y^.
(2) 10x^-1 x-Q,
(b) Find the H. C. F. and the L. C. M. of
x^-3x^-j-x-3,
a^-Sa^-x-i-S.
2. (a) Simplify
y ^ " . y X
i_^i "^ i_i
X y x y
(h) If x'.y = {x — zy : {y — zf, prove that a; is a mean pro-
portional between x and y.
3. A crew can row 10 miles in 50 minutes downstream, and
12 miles in an hour and a half upstream. Find the rate of
the current and of the crew in still water.
COLLEGE ENTRANCE EXAMINATIONS 61
COLUMBIA UNIVERSITY {Continued)
Group B
4. (a) Determine the values of k so that the equation
(2 + k)x'' 4- 2 A;aj + 1 =
shall have equal roots.
(h) Solve the equations
2x--3tj = 0.
(c) Plot the following two equations, and find from the
graphs the approximate values of their common solutions :
x'-\-f = 25,
Ax'-\-9y' = lU,
5. Two integers are in the ratio 4 : 5. Increase each by 15,
and the difference of their squares is 999. What are the
integers ?
6. A man has $539 to spend for sheep. He wishes to keep
14 of the flock that he buys, but to sell the remainder at a
gain of $2 per head. This he does and gains $28. How
many sheep did he buy, and at what price each ?
Group C
7. (a) Find the seventh term of [ a + -Vl
(b) Derive the formula for the sum of n terms of an arith-
metic progression.
8. A ball falling from a height of 60 feet rebounds after
each fall one third of its last descent. What distance has
it passed over when it strikes the ground for the eighth time ?
62 COLLEGE ENTRANCE EXAMINATIONS
CORNELL UNIVERSITY
ELEMENTARY ALGEBRA
1. Find the H.C.F:
a^ — xy^ + x^y — y^,
x^-^2 xy - 3 y\
2. Solve the following set of equations :
xi-y = -l,
x-\-3y-^2z = -4.,
X — y -{-4:Z = 5.
3. Expand and simplify :
(-4)'
4. An automobile goes 80 miles and back in 9 hours. The
rate of speed returning was 4 miles per hour faster than the
rate going. Find the rate each way.
5. Simplify :
"''''Mm
aj-f-lV fx — 1
x — lj \x-\-l
6. Solve for x :
l^±l-6 = .
x''-{-2x-S
7. A, B, and C, all working together, can do a piece of
work in 2| days. A works twice as fast as C, and A and C
together could do the work in 4 days. How long would it
take each one of the three to do the work alone ?
COLLEGE ENTRANCE EXAMINATIONS 63
CORNELL UNIVERSITY
INTEEMEDIATE ALGEBRA
1. Solve the following set of equations :
2. Simplify: (a)V6-V20. (h) 1+V^ _±i
iJ^^x' + l + x"
3. Find, and simplify, the 23d term in the expansion of
f2_^ _ 3 Y^
3 4J •
4. The weight of an object varies directly as its distance
from the center of the earth when it is below the earth's sur-
face, and inversely as the square of its distance from the center
when it is above the surface. If an object weighs 10 pounds at
the surface, how far above, and how far below the surface will
it weigh 9 pounds ? (The radius of the earth may be taken as
4000 miles.)
5. Solve the following pair of equations for x and y :
a;2 _|_ ^2 ^ 4,
a; = (l+V2)2/-2.
6. Find the value of — 1+A-^ — , when x = 2.
(8^)* + 10^-'
7. From a square of pasteboard, 12 inches on a side, square
corners are cut, and the sides are turned up to form a rectan-
gular box. If the squares cut out from the corners had been
1 inch larger on a side, the volume of the box would have
been increased 28 cubic inches. What is the size of the square
corners cut out ? (See the figure on the blackboard.)
64 COLLEGE ENTRANCE EXAMINATIONS
HARVARD UNIVERSITY
ELEMENTARY ALGEBEA
Time : One Hour and a Half
Arrange your work neatly and clearly, beginning each question on a
separate page.
1. Simplify the following expression :
a b -}- c
1 1
a b -{- c
^ 2 be
2. (a) Write the middle term of the expansion of (a — by^
by the binomial theorem.
(b) Find the value of aW, if
a = x^y~^ and b = ^ ^~^y^y
and reduce the result to a form having only positive exponents.
3. Find correct to three significant figures the negative root
of the equation r> a ^
1 - -^ + =0.
^^ + 1^(^4.1)2
4. Prove the rule for finding the sum of n terms of a geomet-
rical progression of which the first term is a and the constant
ratio is 7\
Find the sum of 8 terms of the progression
5 + 3^ + 2|+....
5. A goldsmith has two alloys of gold, the first being | pure
gold, the second ^ pure gold. How much of each must he take
to produce 100 ounces of an alloy which shall be | pure gold ?
COLLEGE ENTRANCE EXAMINATIONS 65
HARVARD UNIVERSITY
ELEMENTAEY ALGEBRA
Time : One Hour and a Half
1. Solve the simultaneous equations
X -{- a b
and verify your results.
2. Solve the equation x^ — 1.6 x — 0.23 = 0, obtaining the
values of the roots correct to three significant figures.
3. Write out the first four terms of (a — by.
Find the fourth term of this expansion when
ct = -Vx-'yi, & = V9 xyS
expressing the result in terms of a single radical, and without
fractional or negative exponents.
4. Reduce the following expression to a polynomial in a
^^^^' 6a' + 7 ab^-{- 12¥ 1
3 a2 - 5 a6 - 4 62 _3 5a + 46
19 b 19 a2
5. The cost of publishing a book consists of two main items :
first, the fixed expense of setting up the type ; and, second, the
running expenses of presswork, binding, etc., which may be
assumed to be proportional to the number of copies. A certain
book costs 35 cents a copy if 1000 copies are published at one
time, but only 19 cents a copy if 5000 copies are published at
one time. Find (a) the cost of setting up the type for the
book, and (b) the cost of presswork, binding, etc., per thou-
sand copies.
REV. ALG. 5
66 COLLEGE ENTRANCE EXAMINATIONS
HARVARD UNIVERSITY
ELEMENTARY ALGEBEA
Time : One Hour and a Half
1. Eind the highest common factor and the lowest common
multiple of the three expressions
a'-b'-, a' + b'-, a' -{- 2 a^b -{- 2 ab^ -\- b\
\j 2. Solve the quadratic equation
x^-1.6x + 0.3 = 0,
computing the value of the larger root correct to three signifi-
cant figures
3. In the expression
x^ — 2xy-{'y^ — W2(x + 2/) + 3,
substitute for x and y the values
u -\- V -{-1 u — V -{- 1
X= ! ! y= ^
and reduce the resulting expression to its simplest form.
4. State and prove the formula for the sum of the first n
terms of a geometric progression in which a is the first term
and r the constant ratio.
5. A state legislature is to elect a United States senator, a
majority of all the votes cast being necessary for a choice.
There are three candidates, A, B, and C, and 100 members
vote. On the first ballot A has tlie largest number of votes,
receiving 9 more votes than his nearest competitor, B; but he
fails of the necessary majority. On the second ballot C's name
is withdrawn, and all the members who voted for C now vote
for B, whereupon B is elected by a majority of 2, How many
votes were cast for each candidate on the first ballot ?
COLLEGE ENTRANCE EXAMINATIONS 67
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ALGEBEA A
Time : One Hour and Three Quarters
1. Factor the expressions :
oc^ -\- x^ — 2 X.
/)i3 _1_ /V.2 A /y
X
-f ic^ — 4 oj — 4.
2. Simplify the expression :
?;2\ f^__ab- 62'
\ a^J \ o? J a? -\- W a^ -\- b^
3. Find the value of x -{- Vl + •'»^ when x= -f -W \~ V
4. Solve the equations :
7x + 6 , ^^ ,^__ 5a?-13 8y-a?
^^^ + 2/- lt> - — y— - — ^— ,
3(3a?H-4)=102/-15.
5. Solve the equations :
A + (7 =2,
2A-B-{-2C + D = 5,
B -\-D = l.
6. Two squares are formed with a combined perimeter of
16 inches. One square contains 4 square inches more than the
other. Find the area of each.
7. A man walked to a railway station at the rate of 4 miles
an hour and traveled by train at the rate of 30 miles an hour,
reaching his destination in 20 hours. If he had walked 3 miles
an hour and ridden 35 miles an hour, he would have made the
journey in 18 hours. E-equired the total distance traveled.
68 COLLEGE ENTRANCE EXAMINATIONS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ALGEBEA B
Time : One Hour and Three Quarters
1. How many terms must be taken in tlie series 2, 5, 8, 11,
• • so that the sum shall be 345 ?
2. Prove the formula x = —^-^^ — i^ for solving the
2a
quadratic equation ax^ -\-bx-]- c = 0,
3. Find all values of a for which Va is a root of
x^ -{- x -\- 20 = 2 ay and check your results.
4. Solve \ Q r ^nd sketch the graphs.
\^ X — y — Zy j
5. The sum of two numbers x and y is 5, and the sum of
the two middle terms in the expansion of (x-{-yy is equal to
the sum of the first and last terms. Find the numbers.
6. Solve x*-2o(^-\-3x''-2x-{-l = 0.
(Hint : Divide by x^ and substitute x + - = z,)
X
7. In anticipation of a holiday a merchant makes an outlay
of $50, which will be a total loss in case of rain, but which
will bring him a clear profit of $ 150 above the outlay if the
day is pleasant. To insure against*" loss he takes out an insur-
ance policy against rain for a certain sum of money for which
he has to pay a certain percentage. He then finds that whether
the day be rainy or pleasant he will make $ 80 clear. What is
the amount of the policy, and what rate did the company
charge him ?
COLLEGE ENTRANCE EXAMINATIONS 69
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ALGEBRA A
Time : Two Hours
1. Simplify ( m -\ — ) +f^ + "l -hf mn H )
\ mj \ nj \ mnj
— [m-\ — \\n-\-- ]( mn -\
\ mj\ nj\ mn
' 2. Find the prime factors of
(a) (x-xy-\-{a^-iy-\-(l-xy.
(b) (2x + a-by-(x-a-\-b)\
(6) Show that A/ Va^ ^ V^- Vx _
4. Define homogeneous terms.
For what value of n is a?"/~l + aj"+y"~^ a homogeneous
binomial ?
5. Extract the square root of
x(x- -V2)(x - VS)(x - V18) + 4
6. Two vessels contain each a mixture of wine and water.
In the first vessel the quantity of wine is to the quantity of
water as 1 : 3, and in the second as 3 : 5. What quantity must
be taken from each, so as to form a third mixture which shall
contain 5 gallons of wine and 9 gallons of water?
7. Find a quantity such that by adding it to each of the
quantities a, &, c, d, we obtain four quantities in proportion.
8. What values must be given to a and &, so that
■ — - — ■ , — ^^ — , and 4—0 a— 13 may be equal r
70
COLLEGE ENTRANCE EXAMINATIONS
MOUNT HOLYOKE COLLEGE
ELEMENTAEY ALGEBEA
Time : Two Hours
1. Factor the following expressions :
(a) a? — bi.
(b) x^yh^ — xh — y'^z -\- 1,
(c) 16{x^yy-{2x-yy,
2. (a) Simplify
_b'
(a' + b')'
b^-o?
--4--
Va -\-b a — b J
(b) Extract the square root of x^ — 2x^ -\- 5 x^ — 4:X -\- 4:,
3. Solve the following equations :
(a)
(&)
(«)
4. Simplify :
(a)
(P)
(c) Find
X y
l + i = 13.
x"^ y^
>_5aj + 2 = 0.
V27 x^\ = 2 - 3 V3^.
7^54+^256 + ^-^
432
250*
+ -
(a - 6)(& - c) (c - a)(6 - a)
Vl9 - 8 V3.
COLLEGE ENTRANCE EXAMINATIONS 71
MOUNT HOLYOKE COLLEGE (Continued)
5. Plot the graphs of the following system, and determine
the solution from the point of intersection :
x-2y = 0,
2x-Sy = A.
6. (a) Derive the formula for the solution of
ax^ -\- bx + c = 0.
(b) Determine the value of 7n for which the roots of
2 a^ -^ 4:X -\- m = are (i) equal, (ii) real, (iii) imaginary.
(c) Form the quadratic equation whose roots are *
2+V3 and 2-V3.
i/ 7. A page is to have a margin of 1 inch, and is to contain
35 square inches of printing. How large must the page be,
if the length is to exceed the width by 2 inches ?
8. (a) In an arithmetical progression the sum of the first
six terms is 261, and the sum of the first nine terms is 297.
Find the common difference.
(b) Three numbers whose sum is 27 are in arithmetical
progression. If 1 is added to the first, 3 to the second, and
11 to the third, the sums will be in geometrical progression.
Find the numbers.
(c) Derive the formula for the sum of n terms of a geo-
metrical progression.
9. (a) Expand and simplify (2 a^ — 3 x^y.
(b) For what value of x will the ratio 7 + a? : 12 + cc be
equal to the ratio 5 ; 6 ?
72 COLLEGE ENTRANCE EXAMINATIONS
UNIVERSITY OF PENNSYLVANIA
ELEMENTARY ALGEBRA
1. Simplify :
Time : Three Hours
a -\-x a — x\ 4: ax
\a — X a -\- xj a^ — Qi?
2. Find the H. C. F. and L. C. M. of
10 ah\x' - 2 ax), 15 a'bix' -ax -2 a^), 25 b\x'' - a^.
3. A grocer buys eggs at 4 for 7 ^. He sells \ of them at
5 for 12 ^, and the rest at 6 for 11 ^, making 27 ^ by the trans-
action. How many eggs does he buy ?
4. Solve for ^: — ' ' =—3.
t-\- a-\-'b t -\- a — b
3 1
5. Find the square root of a^— f a^ — f a^ + ^^a-\-l.
6. (a) For what values of m will the roots of 2x^ -{-3mx
= —2 be equal?
(6) If 2 a + 3 6 is a root of x'' - 6bx- ^a^ -^9 b"" = 0,
find the other root without solving the equation.
7. (a) Solve for x : V2 a? — 3 a + V3 x — 2a = 3 Va.
(b) Solve form: 1 L_ =_Jl_4. !??:Jzl. •
8. Solve the system : a?^ + 2 ^/^ = 17 ; xy — y^ = 2.
9. Two boats leave simultaneously opposite shores of a
river 2\ mi. wide and pass each other in 15 min. The faster
boat completes the trip 6| min. before the other reaches the
opposite shore. Find the rates of tliQ boats in miles per hour.
10. Write the sixth term of f — ^ - ^Y without writing
the preceding terms. \2V.v^ x J
11. The sum of the 2d and 20th terms of an A. P. is 10, and
their product is 23^. What is the sum of sixteen terms ?
COLLEGE ENTRANCE EXAMINATIONS 73
PRINCETON UNIVERSITY
ALGEBEA A
Time : Two Hours
Candidates who are at this time taking both Algebra A and Algebra B
may omit from Algebra A questions 4, 5, and 6, and from Algebra B
questions 1 («), 3, and 4.
1. Simplify
a^j^a^h + ah^ _( a^ -[- ^ ah - 1 Jy" a^ -W 1
a2 _ 3 a6 - 4 62 \a? -^-^ ah -^¥ o? -1 ah + 12 h^J
2. (a) Divide a^-\-ah^-{-hi—2 ah'^—ah by a^ — hi-^-ah — ahh
(h) Simplify —-l-—^.{xWyy-\-l.
3. Factor: (a) (x" -3 xf -(2 x-6y.
(h) a2 + ac-462_26c.
4. Solve -J__-l- L^ + ^_ = 0.
x-\-l x—1 x — o X -- 5
5. Solve for x and y : mx -\- ax = my — hy,
x — y = a + h,
6. The road from A to B is uphill for 5 mi., level for 4 mi.,
and then downhill for 6 mi. A man walks from B to A in 4 hr. ;
later he walks halfway from A to B and back again to A in
3 hr. and bh min. ; and later he walks from A to B in 3 hr. and
52 min. What are his rates of walking uphill, downhill, and
on the level, if these do not vary ?
ALGEBRA B
1. Solve: (a) —^-\ ^4- ^ =0.
^ ^ x-2 x-{-l 1-x
(h) V2aj + 7+V3.T-18-V7aj + l = 0.
(c) — - — = 5-2x-x\
74 COLLEGE ENTRANCE EXAMINATIONS
PRINCETON UNIVERSITY {Continued)
2. Solve for x and y, checking one solution in each problem :
(a) 2x-\-^y = l, (h) x' = x-^y,
^ + - = 2. y^ = ^y-x,
X y
^ 3. A man arranges to pay a debt of $ 3600 in 40 monthly
payments which form an A. P. After paying 30 of them he
still owes \ of his debt. What was his first payment ? '
4. If 4 quantities are in proportion and the second is a
mean proportional between the third and fourth, prove that
the third will be a mean prop, between the first and second.
5. In the expansion of [2x-\ ) the ratio of the fourth
term to the fifth is 2 : 1. Find x,
6. Two men A and B can together do a piece of work in
12 days ; B would need 10 days more than A to do the whole
work. How many days would it take A alone to do the work ?
ALGEBRA TO QUADEATICS
1. Simplify (a^'V)* • (a^&^^-s)* + ^^.
2. Simplify ^ + -^ + ? .
^ ^ (a - h){a - c) (6 - c){h -a) {c- a){c - b)
3. Factor (a) x^~10x^-{-9, (b) x^ + 2 xy -a^ -2 ay.
(c) (a + by + (« + c)2 - (c + df - (5 + d)\
4. Find H.C.F.of x' -x? -^2 x^ ^ x ^^ and (^ + 2)(a^-l).
5. Solve ^_ + ^:^ = ^±i + ^-S-
x-2 x — 1 x — 1 a? — 6
6. The sum of three numbers is 51 ; if the first number be
divided by the second, the quotient is 2 and the remainder 5 ; if
the second number be divided by the third, the quotient is
3 and the remainder 2, What are the numbers ?
COLLEGE ENTRANCE EXAMINATIONS
SMITH COLLEGE
75
ELEMENTAEY ALGEBRA
1. Factor e^^ - 2 + e-^, x^^ - S, x'^ - x- y^ - y, 18 aV -
24 axy — 10 z/l
2. Solve V7 + 4 aj + 3 V2 ^2_^5x + 7-3 = 0.
3. The second term of a geometrical progression is 3\^,
and the fifth term is ^q. Find the first term and the ratio.
4. Solve the following equations and check your results by
plotting :
jx^ -^y^ — xy = 7,
\x-{-y = 4:.
5. Solve
1 1 ^ 243
x^ y^ 8 '
1+1 = 9.
X y 2
6. In an arithmetical progression d = — 11, 7i = 13, s = 0.
Find a and 1.
7. Expand by the binomial theorem and simplify :
^2 X y^ ^^
y6
ic^V — 6
8. The diagonal of a rectangle is 13 ft. long. If each side
were longer by 2 ft., the area would be increased by 38 sq. ft.
Find the lengths of the sides.
76 COLLEGE ENTRANCE EXAMINATIONS
SMITH COLLEGE
ELEMENTARY ALGEBRA
1. Find the H. C. F. of 8 aj^ - 27, 32 x' - 243, and Ga^-dx"
+ 4 a; - 6.
2. Solve:
(a) (2 a; 4- 5)-^ + 31(2 a^ + 5)"4 = 32.
(b) (x - l)i + (3 oj + 1)* = 4.
3. A farmer sold a horse at $ 75 for which he had paid x
dollars. He realized x per cent profit by his sale. Find x.
4. Find the 13th term and the sum of 13 terms of the
arithmetical progression
V2-1 V2 1
2 ' 2 ' 2(V2-iy
5. The difference between two numbers is 48. Their arith-
metical mean exceeds their geometrical mean by 18. Find the
numbers.
6. Expand by the binomial theorem and simplify
1 1^3
X y 2'
1 + 1 = 5.
x^ y' 4 '
8. Solve the following equations and check the results by
finding the intersections of the graphs of the two equations :
(x'^ = 4:y,
\x + 2y = 4..
7. Solve:
COLLEGE ENTRANCE EXAMINATIONS 77
VASSAR COLLEGE
ELEMENTARY AND INTEEMEDIATE ALGEBRA
Answer any six questions.
1. Find the product of
\ , 2a 5a'^\ -i /o Sa , a'^\
l+_-_jand(^2-_ + -J.
2. Resolve into linear factors :
(a) 4x2-25; (b) 6x\-x-12', (c) a^b'' -{- 1 - a" - b^ ;
(d) f+(x-3)f-{3x-2)y-{-2x.
3. Reduce to simplest form :
(«) 1^ + ^ ^- (^) |-(a^)4jix(4r')i.
± __± ^ y i__
X y X y
4. (a) Divide x^ — x~^ by x^ — x~^.
(b) Find correct to one place of decimals the value of
V5 + V7 .
2-V3 *
5. (a) If - = ^, show that ^^-±^ = ^.
^ ^ b d' b^ + d^ bd
(b) Two numbers are in the ratio 3 : 4, and if 7 be subtracted
from each the remainders are in the ratio 2 : 3. Find the
numbers.
6. Solve the equations :
^ ^ ~2~ ^-3 ~6~ ^'^ [x-^y = 20.
(b) 11 a;2 - 11^ = 9 oj.
7. A field could be made into a square by diminishing the
length by 10 feet and increasing the breadth by 5 feet, but its
area would then be diminished by 210 square feet. Find the
length and the breadth of the field.
78 COLLEGE ENTRANCE EXAMINATIONS
VASSAR COLLEGE
ELEMENTAEY AND INTEEMEDIATE ALGEBRA
Answer six questions, including No. 5 and No. 7 or 8. Candidates in
Intermediate Algebra will answer Nos. 5-9.
1. Find two numbers whose ratio is 3 and such that two
sevenths of the larger is 15 more than one half the smaller.
2. Determine the factors of the lowest common multiple of
3 x' {x^ - y^), 15 (x' - 2 xY + y'), and 10 y (a;* + ^Y + y^)-
3. Find to two decimal places the value of
-^4 oT^ + h^ Va6^, when a = - 32 and 6 = - 8.
J 4. Solve the equations : 2x-\-5 y = 85,
2y-i-5z=103,
2z-i-5x = 57.
5. Solve any 3 of these equations :
(a) x'' + U-15x = 0. (c) x'-^Sx--V4.x'-h32x-\-12 = 21.
.. 2_^^_^_223 ... 5 8 ^ 12
^^x 5 20 30* ^ ^ x-{-l x-2 4.0 - 2 x'
X/' 6. The sum of two numbers is 13, and the sum of their
cubes is 910. Find the smaller number, correct to the second
decimal place.
7. The sum of 9 terms of an arithmetical progression is 46 ;
the snm of the first 5 terms is 25. Find the common difference.
' 8. Explain the terms, and prove that if four numbers are in
proportion, they are in proportion by alternation, by inversion,
and by composition. Find x when '
3 — X M) — x^
9. Find the value of x in each of these equations :
(a) 1x^-3x^ = 2, (h) (x^J^2f-\- ^ =4.x'-\-S,
■\/x^ -f- 2
COLLEGE ENTRANCE EXAMINATIONS 79
YALE UNIVERSITY
ALGEBEA A
Time : One Hour
Omit one question in Group 11 and one in Group III. Credit will be
given for six questions only.
Group I
1. Resolve into prime factors : (a) 6 x^ — 7 x — 20;
(b) (x''-5xy-2(x'-5x)-24; (c) a' -{- 4. a^ ^ 16.
2. Simplify /^5_ a^-19^^ \ /3_ a-5a. Y
3. Solve 2(0^-7) ^2-x_^±3^Q^
a;2 4_ 3 ^^ _ 28 4 - a; x-{-7
Oroiip II
4. Simplify — _ "*" "^ , and compute the value of the frac-
V2-V12
tion to two decimal places.
5. Solve the simultaneous equations
-i + 22/-^ = |,
2x 2 — 2/ 2 =
3*
Group III
6. Two numbers are in the ratio of c : d. If a be added to
the first and subtracted from the second^ the results will be in
the ratio of 3 : 2. Find the numbers.
7. A dealer has two kinds of coffee, worth 30 and 40 cents
per pound. How many pounds of each must be taken to make
a mixture of 70 pounds, worth 36 cents per pound ?
8. A, B, and C can do a piece of work in 30 hours. A can
do half as much again as B, and B two thirds as much again as
C. How long would each require to do the work alone ?
80 COLLEGE ENTRANCE EXAMINATIONS
YALE UNIVERSITY
ALGEBEA B
Time : One Hour
Omit one question in Group I and one in Group II. Credit will be
given for Jive questions only.
Group I
,/-. ai x-\- a , x-\-h 5
i/ 1. Solve ^ + =7z'
X -\- b x-i- a 2
( xY-\-2Sxy-AS0 = 0,
2. Solve the simultaneous equations ■{ ^
l2x+y=ll.
Arrange the roots in corresponding pairs.
3. Solve 3x~^+20x~^=z32.
Group II
4. In going 7500 yd. a front wheel of a wagon makes 1000
more revolutions than a rear one. If the wheels were each 1 yd.
greater in circumference, a front wheel would make 625 more
revolutions than a rear one. Find the circumference of each.
5. Two cars of equal speed leave A and B, 20 mi. apart, at
different times. Just as the cars pass each other an accident
reduces the power and their speed is decreased 10 mi. per hour.
One car makes the journey from A to B in 56 min., and the
other from B to A in 72 min. What is their common speed ?
Group IIL
/ 6. Write in the simplest form the last three terms of the
expansion of (4 a^ — a^x^y.
. 7. (a) Derive the formula for the sum of an A. P.
(b) Find the sum to infinity of the series 1, — ^, ^,
— i, •... Also find the sum of the positive terms.
, 14 DAY USE
' RETURN TO DESK FROM WfflCH BORROWED
i LOAN DEPT.
This book is due on the last date stamped below, or
on the date to which renewed.
Renewed books are subject to immediate recall.
RFCFfVFD
JAN 31 '67 HAM
LOAN UbHT.
JUL !^ 1969^^
JUL 30 ^69-1 PM
SEP 4 1969 87
RECp LP I
OCT r 1968 7
AH6 21'69-2 PW
Z R&iCEIVEO
m 8 '69 -2 PM
LD 21A-60m-7,'66
(G4427sl0)476B
Ml
Berkeley
(D3279sl0)476B
-^ * eleP \jr
Berkeld
ivi306r)53
THE UNIVERSITY OF CALIFORNIA LIBRARY