PLANT COMMUNITIES OF NORTHEASTERN MONTANA: A FIRST APPROXIMATION

Robert L. DeVelice
U.S. Forest Service Chugach National Forest
201 East 9th Avenue
Anchorage, Alaska 99501
Stephen V. Cooper \& J. Tim McGarvey
Montana Natural Heritage Program
1515 East 6th Avenue, Helena, MT 59620
Juanita Lichthardt
Moscow, Idaho 83843
Patrick S. Bourgeron
The Nature Conservancy
Boulder, CO 80302
© 1995 Montana Natural Heritage Program
submitted to
U.S. Department of Interior, Bureau of Land Management
State Office
Billings, Montana
in partial fulfillment of
Assistance Agreement No. 1422-E950-A1-006
Task Orders 12, 23, 26

This document should be cited as follows:
DeVelice, R.L., S.V. Cooper, J. T. McGarvey, J. Lichthardt and P.S. Bourgeron. 1995. Plant communities of northeastern Montana: A first approximation. Montana Natural Heritage Program, Helena, MT. 116 pp.

MISSION STATEMENT

This study is a working component of the Montana Natural Heritage Program's (MTNHP) grasslands/shrublands ecological classification project (GSCP) and The Nature Conservancy's ecology program in the western United States. The Nature Conservancy program provides key information on plant communities to be used for conservation planning, management, research, and moni-toring. Although grasslands and shrublands cover over 75% of the Montana landscape, an exhaustive review of existing information (MTNHP 1990) revealed them to be the least documented vegetation types of the state. Therefore, the GSCP is designed as a first approximation classification over the full range of ecological conditions. This document will serve as a baseline for regional correlations of existing classifications. The information provided by the project will be the basis for programs to model the effects of management, global changes, and other variables on the vegetation types and diversity patterns, and their implications for further management and conservation planning. The project will continue to focus on strong collaborative work with the various state and federal agencies (BLM, USFS, BIA, DOD) and other institutions (e.g. Montana universities) in order to contribute to the development of a tightly integrated state-wide classification system.

Abstract

Interrelationships between vegetation composition and envi-ronment were studied using 125 vegetation plots sampled in a 12.5 million acre ($50,000 \mathrm{~km}^{2}$) area of predominantly mixed-grass prairie in northcentral to northeastern Montana. Using a combination of two-way indicator species analysis, detrended correspondence analysis, and detrended canonical correspondence analysis (DCCA), 24 community types were identified. The patterns in community composition were strongly correlated with soil disturbance and moisture gradients and these relationships are discussed. Keys are provided for each community type sampled (and 54 additional types docu-mented in the literature).

CONTENTS

INTRODUCTION 4
ACKNOWLEDGEMENTS 4
PREVIOUS RESEARCH 4
STUDY AREA 6
Physiography 6
Climate 7
METHODS 7
Data Collection 7
Data Analysis 9
Taxonomic Considerations 12
RESULTS AND DISCUSSION 13
Vegetation Community Type Classification 13
Vegetation-Environment Relationships 14
Conclusions 18
Key to Plant Associations/Community Types of Northeastern Montana Study Area 19
Forests and Woodlands: Scienticfic followed by Common Name:
Juniperus scopulorum/Agropyron spicatum (Rocky Mountain juniper/bluebunch wheatgrass) 34
Juniperus scopulorum/Oryzopsis micrantha (Rocky Mountain juniper/littleseed ricegrass) 34
Pinus fponderosa/Agropyron spicatum (ponderosa pine/bluebunch wheatgrass) 35
P. ponderosa/Carex pensylvanica (ponderosa pine/Pennsylvania sedge) 35
P. ponderosa/Festuca idahoensis (ponderosa pine/ldaho fescue) 36
P. ponderosa/Juniperus horizontalis (ponderosa pine/creeping juniper) 37
P. ponderosa/Juniperus scopulorum (ponderosa pine/Rocky Mountain juniper 37
Pseudostusga menziesii/Symphoricarpos occidentalis (Douglas-fir-western snowberry) 38
Shrubland Community Types
Artemisia cana/Agropyron smithii (silver sagebrush/western wheatgrass) 39
A. cana/Stipa comata (silver sagebrush/needle-and-thread) 39
Artemisia tridentata/Agropyron smithii (big sagebrush/western wheatgrass) 40
A. tridentata/Agropyron spicatum (big sagebrush/bluebunch wheatgrass) 41
A. tridentata-Atriplex confertifolia (big sagebrush/shadscale) 41
Atriplex nuttalliiiperennnial grass (Nuttall saltbush/perennial grass) 42
A. nuttallii/Eriogonum pauciflorum (Nuttall saltbush/few-flowered buchwheat) 43
Ceratoides lanata/Stipa comata (winterfat/needle-and-thread) 43
Juniperus horizontalis/Agropyron dasystachyum (creeping juniper/thick-spiked wheatgrass) 44
Juniperus horizontalis/Andropogon scoparius (creeping juniper/little bluestem) 44
J. horizontalis/Calamovilfa longifolia (creeping juniper/prairie sandgrass) 45
J. horizontalis/Juncus balticus (creeping juniper/Baltic rush) 46
Rhus trilobata/Agropyron spicatum (skunk-bush sumac/bluebunch wheatgrass) 46
Sarcobatus vermiculatus/Agropyron smithii (black greasewood/western wheatgrass) 46
Sarcobatus vermiculatus-Atriplex nuttallii (black greasewood-Nuttall saltbush) 47
Shepherdia argentea/X (silver buffaloberry/ X) 48
Forb-dominated Community Types
Agropyron smithii/Bouteloua gracilis (western wheatgrass/blue grama) 49
A. smithii/Stipa viridula (western wheatgrass/green needlegrass) 49
Agropyron spicatum-Bouteloua gracilis (bluebunch wheatgrass-blue grama) 50
A. spicatum-Poa secunda (bluebunch wheatgrass-Sandberg bluegrass) 51
Andropogon scoparium-Carex filifolia (little bluestem/thread-leaved sedge) 52
Artemisia longifolia/Oryzopsis hymenoides (longleaved sagewort) 53
Calamovilfa longifolia-Carex pensylvanica (prairie sandgrass-Pennsylvania sedge) 53
Stipa comata-Bouteloua gracilis (needle-and-thread (-) blue grama) 54
Stipa comata-Carex filifolia (needle-and-thread (-) thread-leaved sedge) 55
Stipa curtiseta-Stipa viridula (needlegrass-green needlegrass) 56
LITERATURE CITED 57
APPENDIX A. List of Vascular Plant Species Identified in Sample Plots 64
APPENDIX B. Constancy, Average Coverage and Range of Cover Values for Vasular Plant Specie with Greater Than 3\% Canopy Cover in any Given Plot 70
APPENDIX C. Assignment of Plots (Site Numbers in ECADS) to Community Types 107
APPENDIX D. Plant Associations and Community Types Occurring in BLM Havre, Phillips, Valley and Big Dry Resource Areas 112

INTRODUCTION

This study provides a classification of plant communities (primarily grasslands and shrublands) throughout northeastern Montana (Figure 1). The study emphasized locating and describing rare or previously undescribed communities and common communities in good to excellent ecological condition. Such a classification will be useful in identifying sensitive communities and natural areas where management activities may need to be adjusted to maintain habitat values. Additionally, the classification provides a reference system for baseline monitoring of environmental impacts and vegetation recovery and provides an ecological basis for categorizing environmental variation.

This study represents a step towards developing a comprehensive classification of Montana plant communities that will provide land managers and scientists a state-wide perspective of community variation (nation-wide when correlated with other state classifications). Such a perspective is invaluable towards making sound management prescriptions and predictions, designing and interpreting experiments, and identifying areas of critical importance for conservation.

ACKNOWLEDGEMENTS

All financial and personnel support for this study were provided by the Montana Natural Heritage Program and the Montana State Library and USDI Bureau of Land Management. Many resource managers, particularly USDI Bureau of Land Management, USDA Soil Conservation Service, and USDI Bureau of Indian Affairs personnel, provided assistance in locating appropriate sampling sites.

The authors would particularly like to thank Peter Achuff, Lisa Schassberger, David Genter, Margaret Beer, and Cedron Jones for their reviews and feedback during the development of this classification. Lisa Roe contributed much valuable field data as did Robert Ament through his conscientious assistance. Appreciation is also extended to Dorinda Monson and Brooke Wineteer who helped prepare and clean the immense amount of data generated by this study. Especially crucial to the final phase of data analysis and report generation were the programming errorts of Larry Gangi, Michael Quinn and John Caratti whose "beta version" of analysis programs embedded within ECADS proved to be an indespensible tool.

PREVIOUS RESEARCH

Grasslands and shrublands cover over 75 percent of the Montana landscape, yet are the most poorly described vegetation types of the state. Figure 1 highlights both the vast expanse of Montana grasslands and the sparseness of available detailed community characterizations (particularly in northeastern Montana). To date, studies characterizing grassland and shrubland communities of Montana have been of limited geographical and ecological scope. The most extensive existing studies include Mueggler and Stewart's (1980) in western Montana, Jorgensen's (1979) and Harvey's (1982) studies in east-central Montana, and Hansen and Hoffman's (1985) work in southeastern Montana. A recent dissertation (Harvey 1990) describing the major component species of grassland/shrubland communities of south-central Montana in relation to water availability gradients has bearing on community distribution on regional landscapes.

Grassland and shrubland studies available for the northeastern Montana study area, that at least in part are classifications, include Branson et al. (1970), Mackie (1970), and Dusek (1971); but, all of these studies cover relatively small geographic areas and have no associated formal taxonomies (keys to community types or plant associations).

Relevant grassland/shrubland classifications from adjacent states and provinces include: Whitman and Hanson (1939), Coupland (1950; 1961), Hansen et al. (1984), Hansen (1985), Girard et al. (1989), and Jones (1992).

In contrast to grasslands and shrublands, the classification of forest types of Montana is largely complete, at least for late seral (mature) to climax associations. The upland forest classification of Pfister et al. (1977), based largely on sampling National Forest and immediately adjacent lands, has been refined and complemented by the work of Cooper and Pfister (1981; 1985) and Roberts et al. (1979) on Montana indian reservations and Roberts (1980), Hoffman and Hansen (1981), and Hansen and Hoffman (1985) for other publicly held lands. A Montana-wide habitat/community type classification of riparian/wetland sites (including forest-, shrub-, and herb-dominated plant associations and communities) has recently been completed (Hansen et al. 1995).

Prior to initiating field sampling, literature review and data from previous research was used to develop a preliminary classification of northeastern Montana's plant communities. Forested communities in the study area have been largely described by Roberts (1980) and Roberts et al. (1979) while riparian community types have been defined by Hansen et al. (1995). Grasslands and shrublands were found to be the least documented plant communities of the area and were thus the focus of data collection in this study.

[^0] L

STUDY AREA

The study area (Figure 1) includes all lands north of the Missouri River in Blaine, Phillips, Valley, Daniels, Roosevelt, and Sheridan counties; Hill County east of the Milk River; and Hill and Choteau Counties east of the Northeastern Montana Glaciated Plains Ecoregion (as defined by Omernik and Gallant [1987]).

Physiography

The study area encompasses approximately 12.5 million acres and ranges in elevation from about 1,900 feet on the Missouri River at the North Dakota border to 6,900 feet at the summit of Mount Baldy in the Bear's Paw Mountains. Except for the Bear's Paw and Little Rocky Mountains, the area lies entirely within the Glaciated Missouri Plateau section of the Great Plains Physio-graphic Province (see Fig. 6 in Montagne et al. 1982). The southern boundary of this section is defined by the southern limit of continental glaciation during the last ice age (Pleistocene Epoch). For the most part, these plains consist of relatively flat to gently rolling sedimentary (particularly shale) and glacial till surfaces modified by stream erosion and past glaciation (Veseth and Montagne 1980). Some areas of moderately to sharply dissected badlands topography do occur, particularly along the Missouri River and Frenchman Creek drainages.

The Bear's Paw and Little Rocky Mountains occur as isolated "island" uplifts within the study area. A wide range of parent materials occur within these mountain ranges although the central portions of both ranges are predominantly intrusive igneous (Veseth and Montagne 1980).

Climate

Most of the study area experiences the extreme summer heat and winter cold of a continental climate and lies directly in the path of many arctic air masses from the north (Montagne et al. 1982). Average annual precipitation varies from over 30 inches at the crest of the Bear's Paw Mountains to between 10 and 12 inches throughout the bulk of the study area (see sheet 2 in Ross and Hunter 1976). The average length of the freeze-free season varies from less than 70 days at the crest of the Bear's Paw Mountains to greater than 130 days along portions of the Milk River (see Fig. 13 in Montagne et al. 1982).

METHODS

Data Collection

To maximize the efficiency in sampling the range of vegetation and environmental variation, sample sites were selected using a modification of the "gradsect" (gradient transect) method described and evaluated by Gillison and Brewer (1985) and applied successfully by Austin and Heyligers (1989). The method, as applied in the present study, involved selecting a set of USGS $7.5^{\prime}(1: 24,000)$ topographic quadrangle maps containing the maximum perceived range of shrubland/grassland environmental variation in the overall study area. Emphasis was placed on representing the range of moisture, temperature, radiation, and soil nutrient regimes since these factors are presumed (and well documented elsewhere) to have a primary influence on species occurrence and growth.

The following site attribute information was overlaid onto a USGS quadrangle index map of the study area to select quadrangles for sampling among the approximately 470 potentially available:
a) land use (from Fig. 23 of Montagne et al. 1982) - quadrangles falling predominately (i.e., over 50%) in agricultural land uses were excluded from further consideration.
b) average annual precipitation (from Sheet 2 of Ross and Hunter 1976) - three classes were subjectively defined, i.e., <12 inches, $12-16$ inches, >16 inches. This attribute was regarded as an indicator of moisture regime.
c) average length of freeze-free season (from Fig. 13 of Montagne et al. 1982) - three classes were subjectively defined, i.e., <100 days, $100-120$ days, and >120 days. This attribute was regarded as a indicator of temperature regime.
d) surficial geology (from Figs. 9, 13, 17, 21, 23, 25, and 32 of Veseth and Montagne 1980) - the six classes represented by the Veseth and Montagne figures were used (Figs. 21 and 23 were subjectively merged). This attribute was regarded as a surrogate for nutrient regime.
e) Radiation regime was considered and rejected in the process of defining gradsect units since it varies greatly at relatively fine geographic scales for different slopes and aspects, particularly in complex, finely dissected terrain. However plot selection in the field attempted to include a wide range of slope/aspect combinations in each sampling area as a means to capture vegetation response to radiation differences.

A total of 175 plots were targeted for sampling based on the time available for this study (note: only 125 plots were ultimately sampled via the gradsect approach). A total of 5 plots/selected quadrangle were chosen as a reasonable average to represent local-scale patterns in community composition. Thus, 35 quadrangle maps were selected for sampling (i.e., $5 \times 35=175$).

After eliminating agriculturally dominated quadrangles from the pool (this reduced the number of quadrangles from about 470 to 221), a matrix of precipitation/freeze-free classes was constructed and the number of quadrangles in each class was recorded. The percentage in each class relative to the total number of quadrangles (221) was used to determine the number of quadrangles (by class) to be included in the pool to be sampled (e.g., 25% in class $Z \times 35$ sample quadrangles $=9$ plots of class Z in the sample pool).

An attempt was made to maximize surficial geology variation within the sample pool by including as many geologic classes as possible within each of the above sample classes. Also, sample quadrangle selection was biased towards quadrangles that included the greatest number of geologic classes within a precipitation/ freeze-free class. Additionally, an attempt was made to maximize the geographic dispersion of quadrangles selected while maintaining the primary objective of maximizing environmental variation.

Finally, in cases of an equal choice between selecting a quadrangle encompassing primarily private land versus one encompassing primarily public land, the public land quadrangle was selected. This was done to enhance the ease of land access.

To minimize the confounding nature of heavy disturbance on vegetation composition areas intensively grazed (overgrazed), herbicide treated, mechanically disturbed, artificially seeded, or irrigated were not sampled. Plots were established within portions of stands that appeared to be relatively uniform in topography and vegetation structure and compostion. Within an area, one to five plots were chosen to reflect the different topographic positions, aspect/slope combinations and where judgement indicated a marked change in vegetation composition.

Plot selection focused on contemporary stands of vegetation without reference to successional relationships among stands. No attempt was made to solely locate and sample remnants of presettlement vegetation.

The data were recorded on a Natural Heritage Program Community Survey Form for each plot. These forms
basically contain the same information as the general plot data and ocular plant species data forms used by the USDA Forest Service within their ECODATA sampling regime (USDA 1987). Complete lists and canopy cover estimates of vascular plant species were recorded within each $375 \mathrm{~m}^{2}$ circular study plot. Site information such as altitude, slope, aspect, parent material, landform, and erosion type were also recorded for each plot (Table 1). Soil taxon was recorded when a survey report was available for the site.

Two additional partial field seasons were spent collecting community data following the initial data collection and analysis. In 1992 R. DeVelice and L. Roe inventoried additional sites in the Big Dry Resource Area. In 1993 S. Cooper sampled two specific areas that have potential as ACEC's, Saddle Butte just south of the Little Rockies and Bitter and Frenchman Creek drainages, a vast area of badlands-like topography northwest of Glasgow, MT. Data sets from Big Dry R. A., Saddle Butte and Bitter Creek areas were compared with the preliminary classification (DeVelice et al. 1991) and were found to fit, with only minor modifications to the vegetation key and reallocation of plots to community types. Several community types new to the state were discovered with both the extensive sampling in the Big Dry R.A. and with intensive sampling of the Bitter Creek area .

Data Analysis

Analysis focused on using a combination of classification, to determine community types, and ordination (gradient analyses), to describe general patterns of communities in relation to environmental factors. All information regarding site variables and plant composition was converted to an ECODATA database format and analyzed with programs based in ECADS (Ecosystem Classification and Description System, USDA Forest Service R-1). Classification was accomplished using two-way indicator species analysis (TWINSPAN: Hill 1979a) in the ECODATA analysis package. Ordination was achieved using the detrended correspondence analysis (DCA) and detrended canonical correspondence analysis (DCCA) algorithms in the CANOCO computer package (Ter Braak 1988). The input data were species cover values recorded in each plot and. in the case of DCCA, the 18 environmental variables recorded (Table 1; note - radiation index was used in these analyses rather than aspect). Both TWINSPAN and DCA are based on the same mathematical strategy (i.e.. reciprocal averaging; Hill 1979a,b) and thus offer direct comparisons between the results of ordination and classification.

All default options in the TWINSPAN algorithm were used except that pseudospecies cut levels were set at 0 . $2,5,20$, and 50 percent cover. Also, all default options were used in running the ordinations except that rare species were downweighted. First, the entire data matrix of 170 stands and 230 species was analyzed. To reduce the amount of variation being considered, which is substantial in the whole matrix, the data set was also subdivided into forest, shrubland, and grassland groups which were analyzed separately.

In some instances, a particular TWINSPAN class included a plot or plots that, based on field experience and ordination patterns, appeared to be better placed in a different existing TWINSPAN class. These plots were repositioned in the classification as appropriate.

In addition to helping refine the classification, the ordinations assisted in describing and interpreting general patterns of vegetation communities and environment. For example, DCA extracts the dominant compositional gradients from the species data matrix, irrespective of site variables, whereas DCCA extracts the dominant gradients given the constraint that they must be orthogonal linear combinations of the supplied environmental variables (Ter Braak 1988).

Table 1.--Environmental variables measured at each sample plot.

Table 1.--(continued)

ABBREVIATION	VARIABLE	VARIABLE TYPE
stable stable- unstable unstable+	soil surface status stable stable (erosion trend) unstable unstable (stable trend)	categorical
noeros sheet rill shril shgul gully wind	erosion type none sheet rill sheet and rill sheet and gully sheet, rill, and gully wind	categorical
undistur low mod high	ground cov. disturbance undisturbed low moderate high	categorical

Taxonomic Considerations

Nomenclature follows Kartesz and Kartesz (1985) with the exception of graminoids. With the current flux in graminoid taxonomy (e.g. such a common rangeland dominant as bluebunch wheatgrass having scientific epithets Agropyron spicatum, Elymus spicatus, Elytrigia spicata and Pseudoroegneria spicata) we opted to follow the conservative approach of the U.S. Forest Service ECODATA manual, appendix K, 1992). In an preliminary version of this document (DeVelice et al. 1991) we did not discriminate between Stipa spartea var. curtiseta and S. comata in respect to ecological information conveyed by their respective occurrences (only two for S. spartea v. curtiseta). Further sampling in northernmost MT and comparison with ecological classifications of Canandian Provinces (Coupland 1961) and exhaustive taxonomic descriptions by Barkworth (1978) lead to the conclusion that S. comata and S. curtiseta (ne. S. spartea v. curtiseta) are valid taxonomic entities with rather distinct ecologies. Scientific names of all species in this study, their code names, and their synonyms (from GPFA 1986) are listed in Appendix A.

RESULTS

Vegetation/Community Type Classification

Classification of the original 125 plots resulted in the definition of 24 community types. In addition to the 24 types sampled an additional 54 community types were documented thru a literature and database query and these 78 types constituted the vegetation types of the preliminary analysis. With extension of sampling to the Big Dry R.A., the intensive sampling at Birch-Frenchman Creek drainages and Saddle Butte vicinity and a more extensive database and report query, particularly of the Montana Riparian Association reports of vegetation analyses of specific drainages, an additional 35 community types were added to make the regional total 113.

Dichotomous keys to community/habitat types were abstracted from existing classifications and modified to suit any peceived changes in defining parameters for these types. Robert's (1980) keys for forest types of the Little Rockies and Bears Paw Mountains and Missouri River Breaks were only slightly modified to incorporate some forest types with bunchgrass or xeric site rhizomatous grass dominated undergrowth; these drier forest types largely represent range extensions of common types previously described by Pfister et al. (1977) and Hansen and Hoffman (1988). The above noted authors have adequately described the various types and no description is provided herein for types previously described, especially since our n-number is low.

Montana's wetland/riparian vegetation has been classified and described by the Montana Riparian Association (Hansen et al. 1995) and we have followed their Northern Great Plains keys in constructing our study area specific keys. We have modified some of their type defining coverage values to better reflect conditions as we perceived them in study area. Based on an informal agreement to partition sampling between MRA (riparian/wetlands) and MTNHP (uplands) we did not collect wetlands data except in the instance of some badlands areas that had received little sampling by MRA.

The eastern Montana grasslands have been incorporated into a key-accessible classfications only in the work of Hansen and Hoffman (1988) for some districts of the Custer National Forest and Jorgensen (1979) for the Yellow Water Triangle. Mueggler and Stewart's (1980) habitat type classification for western Montana describes many community types that extend with some slight floristic modification (and more signifianct change in landscape position or other defining parameters) to eastern Montana). We have attempted to synthesize these classifications with our interpretations of environment-vegetation relationships to derive workable keys.

Regardless of physiognomic type, in constructing vegetation keys our defining precept has been to identify types in order according to their occurrence on a hypothetical moisture gradient, from wet to dry. Community types with extroidinary defining physical site attributes, such as those of saline playas or erosive shale substrates are also given priority in the keys.

Those community/habitat types with written descriptions in this manuscript have been highlighted in the keys and in the community type listing (Appendix C), that also records their S and G ranks. Appendix D is a listing of plot placement by community type. The constancy/cover tables (Appendix C) can be used to check the cover values listed in the written descriptions of the various types. Constancy is the percentage of plots in which a given species occurs, whereas species cover is the average value for canopy cover computed only for those plots in which the species occurs. Consulting constancy/cover tables gives a more complete picture of community type composition. In order to streamline the constancy/cover tables only species occurring with at least 3% cover are listed; in most cases this has not removed from the tables those species used to characterize certain of the types, however some species never occur with appreciable cover values and thus they may not be listed, though their constancy is high (they will be named in the community type narrative).

Vegetation-Environment Relationships

Plots within a community type/plant association of the DCA and DCCA ordinations (see Figure 3 and Appendix H respectively, see DeVelice et al. 1991) cluster together indicating that they occupy similar compositional and environmental multidimensional space. The primary environmental factors affecting community composition gradients appear to be effective moisture and soil disturbance. Temperature gradients are relatively truncated within the study area (excepting the few mountainous environments with appreciable relief) and inferred to be of minor importance. All of the plots sampled were selected within similar thermal environments characterized by extreme summer heat and winter cold.

DCA ordinations of the initial 125 plot data set revealed that 116 plots cluster near the origin of axes 1 and 2 and that the outliers were composed of the "badlands" types such as Artemisia Iongifolia/Oryzopsis hymenoides and Sarcobatus vermiculatus-Atriplex gardnerii (Figure 2a). When axes 1 and 3 are plotted (Figure 2b) another outlier community type, Juniperus horizontalis/Andropogon scoparius, typical of eroded

Figure 2a. DCA (Detrended Correspondence Analysis) ordinations. The first axis is the horizontal axis and the second axis is the vertical axis. Initial解 plots at that locus on ordination diagram; X, Y, and Z represent 12,54 , and 14 plots at the r respective ordination positions.

[^1]
Figure 2 c . DCA (Detrended Correspondence Analysis) ordinations. Initial 16 forested plots of the original 125 plot sample, plotted on first (horizontal)
and second (vertical) axes. Community types encapsulated and named by six letter species acronyms (see appendix A for listing). 17
"blowout" sites is revealed. Stratification of the dataset by dominant lifeform revealed more detail about environment-vegetation relations by allowing the variability in environmental factors to be displayed, rather than compressed toward the origin as occurs with a highly heterogeneous dataset representing all lifeforms. Similarity indices computed between plots the initial dataset and those of subsequent sampling indicated that the subsequent plots were, with but two exceptions (Juniperus horizontalis- and Populus tremuloidesdominated sites), highly similar to those composing the original dataset and thus further ordinations were deemed superfluous.

CONCLUSIONS

One function of the MTNHP is the development of a statewide database of plant community occurrences. A major limitation is the current lack of a comprehensive grassland/shrubland community classification. This study represents a step towards achieving such a comprehensive classification:

Another function of the MTNHP is to provide information regarding communities and sites for conservation. A classification such as this is necessary to define and identify key elements and sites in northeastern Montana for potential long-term preservation. Similarly, government agencies could use the classification for the identification and design of natural areas.

This classification can be usefully applied in stratifying vegetation/environmental variation to assess management options and results. The classification can also assist in minimizing impacts from intensive management by identifying sensitive plant communities (e.g., PSEMEN/SCHSCO). The classification also provides a tool for baseline monitoring and predicting long-term vegetation responses to management activities. This capability would also assist agencies in meeting regulatory mandates (e.g., requirements of FLPMA).

Even following this study, existing classifications and data inadequately describe the grassland and shrubland communities of Montana. Major additional field sampling is necessary before a comprehensive grassland/shrubland community classification can be developed. This study in eastern Montana will continue over the next two years. This effort will provide additional knowledge regarding community patterns, processes, and physical environment relations. Such knowledge will be invaluable towards developing full capability to inventory eastern Montana communities and to increase predictive capability (e.g., build vegetation and biodiversity models).

Table 2. Key to plant associations/community types of northeastern Montana study area (Bureau of Land Management Havre, Valley, Phillips and Big Dry Resource Areas).

The following canopy coverage and reproductive success terms are applied when referring to species in the keys.

Present: species on site and not confined to microsite
Absent: species lacking on site or confined to obvious microsite that does not represent overall plot environment

Common:with 1% or more canopy cover, versus
Scarce: having less 1% canopy cover.
Well represented: having 5% or more canopy cover, versus
Poorly represented: having less than 5% canopy cover

Abundant: having 25% or greater canopy cover
 Not abundant: having less than 25% canopy cover
 Reproducing successfully: Generally at least 10 seedlings/ saplings per acre and not confined to microsites

Caveats when using keys: 1) In applying the key to actual field conditions the definitions below may need to be adjusted to the next lower coverage class, e.g. "well represent" becomes "common." This may be necessary when closed canopy stage of forest succession obtains, or when grazing pressure (intense) has altered community composition. 2)In the case of early successional stages, particularly with regard to potentially forested sites, the current stand composition may not "key out" to a described c.t. or h.t.; this is because the keys are intended for use with relatively mature vegetation. See Keane and Arno (1987) or Steele (1988) for an approach dealing with classification and description of seral vegetation (forest).

KEY TO LIFEFORM CATEGORIES

(Note that within each lifeform category there are separate keys for upland sites (listed first), those with better drainage and thought not to meet all three criteria for jurisdictional wetlands (i.e. hydric soils, hydrophytic plants, and wetland hydrology) and wetland and riparian sites; some community types are encompassed in both wetland and upland keys because site conditions may span the range between jurisdictional and functional wetlands (wherein only one of the above listed criteria may be met).

1. Trees (coniferous or deciduous, regardless of size-age class) having at least 25% canopy cover

Forests and Woodlands

1. Trees with less than 25% canopy cover
2. Shrub species (from prostrate forms to tall extremes of woody growth at 25 ft .), singly or considering their combined cover, having at least 10% canopy cover (or in young stands accepting that fututre development willcover

Herbaceous Communities
3. Herbaceous species having less than 5% canopy cover (due either to natural habitat factors or processes or human-
induced impacts . Depauperate sites

KEY TO UPLAND FORESTS AND WOODLANDS

(largely based on Roberts [1989] and Roberts et al. [1979] as being most regionally appropriate classifications, though
certain types are also described by Pfister et al.[1977] and Hansen and Hoffman [1988])

Series Key

1. Abies lasiocarpa (subalpine fir) present and reproducing successfully Abies lasiocarpa Series
2. A. lasiocarpa absent or not reproducing successfully . 2

2

2. Picea spp. (including hyrids) absent or not reproducing successfully
3. Pseudotsuga menziesii (Douglas-fir) present and reproducing successfully Pseudotsuga menziesii Series
3. P. menziesii absent or not reproducing successfully . 4
4. Pinus flexilis (limber pine) present and reproducing successfully (although episodically at times) . . Pinus flexilis Series
4. P. flexilis absent or not successfully reproducing . 5
5. Pinus contorta (lodgepole pine) in virtually pure stands, not necessarily reproducing, lacking evidence as to climax potential

Pinus contorta Series
5. P. contorta absent or not reproducing, Pinus ponderosa (ponderosa pine) and/or Juniperus scopulorum (Rocky Mountain juniper) present and not accidental
6. Pinus ponderosa present, not accidental or confined to microsites

Pinus ponderosa Series
6. P. ponderosa absent or accidental, Juniperus scopulorum the indicated site dominant

Juniperus scopulorum Series

Key to Abies lasiocarpa (subalpine fir) plant associations/community types

1. Linnaea borealis (twinflower) common	Abies lasiocarpa/Linnaea borealis p.a
1. L. borealis scarce	
2. Juniperus communis (common juniper)	inate the undergrowth
	es lasiocarpa/Juniperus communis p.a
2. Not as above	. . Undefined Type, but first consult
Roberts (1980) or Pfister et al. (1977)	

Key to Picea (spruce) spp. plant associations/community types

1. Equisetum spp. (horsetails, principally E. arvense) abundant Picea spp./Equisetum arvense p.a.1. Equisetum spp. not abundant2
2. Cornus stolonifera (C. sericea, red osier dogwood) present Picea spp./Cornus stolonifera p.a
3. C. stolonifera absent
4. Linnaea borealis (twinflower) common Picea spp./Linnaea borealis p.a.
5. L. borealis scarce 4
6. Juniperus communis dominates undergrowth Picea spp./Juniperus communis p.a
7. J. communis not undergrowth dominant Undefined type, but first consult Roberts (1980) or Pfister et al. (1977)
Key to Pseudotsuga menziesii (Douglas-fir) plant associations/ community types
8. Cornus canadensis (bunchberry) common Pseudotsuga menziesii/Cornus canadensis p.a.
9. C. canadensis scarce 2
10. Linnaea borealis (twinflower) common Pseudotsuga menziesii/Linnaea borealis p.a.
11. L. borealis scarce 3 3
12. Two of the following three species present and not confined to microsites; Viola canadensis, Thalictrum occidentalis, Osmorhiza spp. (mostly O. chilensis, respectively Canada violet, western meadworue, mountain sweet-root) Pseudotsuga menziesiiNiola canadensis p.a.
13. Not as above 4
14. Amelanchier alnifolia (western serviceberry) or Spiraea betulifolia (shiny-leaf spiraea) well represented
Pseudotsuga menziesii/Amelanchier alnifolia p.
15. A. alnifolia and S. betulifolia poorly represented 5
16. Berberis repens (creeping barberry) common Pseudotsuga menziesii/Berberis repens p.a.
17. B. repens scarce 6
18. Arctostaphylos uva-ursi (kinnikinnick) well represented Pseudotsuga menziesii/Arctostaphylos uva-ursi p.a.
19. A. uva-ursi poorly represented 7
20. Symphoricarpos occidentalis (western snowberry or S. albus, common snowberry) well represented
Pseudotsuga menziesii/Symphoricarpos occidentalis p.a
21. S. occidentalis (or S. albus) poorly represented 8
22. Muhlenbergia cuspidata (plains muhly) well represented Pseudotsuga menziesii/Muhlenbergia cuspidata p.a
23. M. cuspidata poorly represented 9
24. Juniperus scopulorum (Rocky Mountain juniper) well represented Pseudotsuga menziesii/Juniperus scopulorum p.a
25. J. scopulorum poorly represented 10
26. Agropyron spicatum (Pseudoroegneria spicata, bluebunch wheatgrass) well represented or undergrowth dominant Pseudotsuga menziesil/Agropyron spicatum p.a.10. A. spicatum poorly represented or not the undergrowth dominant11
27. Andropogon scoparius (little bluestem) undergrowth dominant Pseudotsuga menziesii/Andropogon scoparius p.a
28. Not as above, A. scoparius not dominating undergrowth Undefined type, but first consult Roberts (1980)
Pfister et al. (1977)
Key to Pinus contorta (lodgepole pine) plant associations/community types
29. Linnaea borealis (twinflower) common Pinus contorta/Linnaea borealis p.a.
30. L. borealis scarce 2
31. Juniperus communis (common juniper) or Arctostaphylos uva-ursi (kinnikinnick) the dominant undergrowth
Pinus contorta/Juniperus communis p.a.
32. J. communis and/or A. uva-ursi not undergrowth dominants Undefined type but first consult Roberts (1980) or Pfister et al. (1977)
Key to Pinus flexilis (limber pine) plant associations/community types
33. Agropyron spicatum (Pseudoroegneria spicata, bluebunch wheatgrass) well represented or the undergrowth dominant Pinus flexilis/Agropyron spicatum p.a
34. A. spicatum poorly represented, not the undergrowth dominant Undefined/unreported type, see Pfister el al. (1977)
Key to Pinus ponderosa (ponderosa pine) plant associations/community types
35. Amelanchier alnifolia (western serviceberry) well represented (be sure to consider browsing intensity when assigning cover values Pinus ponderosa/Amelanchier alnifiolia p.a.
36. A. alnifolia poorly represented 2
37. Arctostaphylos uva-ursi (kinnikinnick) well represented Pinus ponderosa/Arctostaphylos uva-ursi p.a.
38. A. uva-ursi poorly represented 3
39. Berberis (Mahonia) repens (creeping barberry) well represented Pinus ponderosa/Berberis repens p.a.
40. B. repens poorly represented 4
41. Symphoricarpos occidentalis (western snowberry) well represented
Pinus ponderosa/Symphoricarpos occidentalis p.a.
42. S. occidentalis poorly represented 5
43. Juniperus horizontalis (creeping juniper) or Rhus trilobata (R. aromatica, skunk-bush sumac) common
44. J. horizontalis and R. trilobata scarce6
45. Juniperus scopulorum (Rocky Mountain juniper) well represented Pinus ponderosa-Juniperus scopulorum pa
46. J. scopulorum poorly represented 7
47. Carex pensylvanica (C. inops, C. heliophila, long stolon or sun sedge) and/or Andropogon scoparius (Schizachyrium scoparium, little bluestem) dominate the undergrowth 8
48. Neither C. pensylvanica nor A. scoparius dominate undergrowth 9
49. A. scoparius well represented or dominates the undergrowth Pinus ponderosa/Andropogon scoparius c.t.8. Carex pensylvanica dominates the undergrowth, usually well representedPinus ponderosa/Carex heliophila p.a.
50. Festuca idahoensis (Idaho fescue) or F. scabrella (F. campestris, rough fescue) common
Pinus ponderosa/Festucal idahoensis p.a.
51. F. idahoensis and F. scabrella scarce 10
52. Agropyron spicatum (bluebunch wheatgrass) well represented or the undergrowth dominant
Pinus ponderosalAgropyron spicatum p.a.
53. Not as above...Undefined type, see Hansen and Hoffman (1988)
or Pfister et al. (1977)
Key to Juniperus scopulorum (Rocky Mountain juniper) plant associations/community types
54. Oryzopsis micrantha (littleseed ricegrass) common Juniperus scopulorum/Oryzopsis micrantha p.a
55. O. micrantha scarce, not undergrowth dominant 2
56. Agropyron spicatum well represented or undergrowth dominant Juniperus scopulorum/Agropyron spicatum p.a.
57. A. spicatum poorly represented, not dominant Undefined type, see Pfister et al.(1977)
Key to Upland Shrub Plant Associations/Community Types
58. Combined cover of all species in tall shrub (24.5 ft) layer at least well represented 2
59. Tall shrub species combined cover poorly represented 5
60. Crataegus succulenta (succulent hawthorn) or C. douglasiï (black hawthorn) well represented or the dominant shrubs Crataegus succulenta c.t.
61. C. succulenta and C. douglasii poorly represented 3
62. Shepherdia argentea (silver or thorny buffaloberry) well represented or dominant species of tall shrub layer Shepherdia argentea ct
3 S. argentea poorly represented and not the dominant of the tall shrub layer 4
63. Eleagnus commutata with at least 15% canopy cover Eleagnus commutata c.t
64. E. commutata with less than 15% canopy cover 5
65. Prunus virginiana well represented and dominant species of tall shrub stratum Prunus virginiana c.t. Undefined/unrecorded tall shrub p.a./c.t.
66. P. virginiana poorly represented and not the dominant tall shrub
67. P. virginiana poorly represented and not the dominant tall shrub
68. Sarcobatus vermiculatus (black greasewood), Atriplex nuttallii (A. gardnerii, Gardner's saltsage) or Atriplex confertifolia (shadscale) , singly or in aggregate, well represented or dominants of shrub layer 7
69. S. vermiculatus, A. nuttallii and A. confertifolia, singly or in aggregate, poorly represented, not shrub layer dominants 18
70. A. confertifolia (shadscale) well represented or the layer dominant/co-dominant 8
71. A. confertifolia poorly represented, not layer dominant 9
72. Artemisia spp. poorly represented and not layer dominant/co-dominant
73. Artemisia tridentata (big sagebrush) well represented or layer do-dominant with A. confertifolia
74. Atriplex nuttallii (Gardner's saltsage) well represented or layer dominant/co-dominant 10
75. A. nuttallii poorly represented, not layer dominant 16
76. Shrubs in addition to A. nuttallii (Gardner's saltsage) well represented or layer dominant/co-dominant 11
77. Excepting A. nuttlallii, shrubs poorly represented and not shrub layer dominants/co-dominants 13
78. Sarcobatus vermiculatus (black greasewood) well represented or at least co-dominant with A. nuttallii
Sarcobatus vermiculatus-Atriplex nuttallii c.t.
79. S. vermiculatus poorly represented, not approaching Atriplex nuttallii in degree of dominance
80. S. vermiculatus poorly represented, not approaching Atriplex nuttallii in degree of dominance 12 12
81. Artemisia tridentata (big sagebrush) well represented or layer codominat Artemisia tridentata-Atriplex nuttallii c.t.
82. A. tridentata poorly represented and not the layer dominant/co-dominant Undefined/unrecorded shrub type
83. Eriogonum pauciflorum (few-flowered buckwheat) common or dominant of forb-grass layer
Atriplex nuttallii/Eriogonum paucilforum c.t.
84. E. pauciflorum scarce or not forb-grass layer dominant 14
85. Sporobolus airoides (alkali sacaton) well represented or dominant of forb-grass layer
. Atriplex nuttallii/Sporobolus airoides c.t 1514. S. airoides poorly represented \& not grass-forb layer dominant
86. Agropyron (Pascopyrum) smithii (western wheatgrass) or A. dasystachyum (thickspike wheatgrass) well-represented or layer dominants, singly or combined Atriplex nuttlallii/Agropyron smithii c.t.
87. A. smithii \& A. dasystachyum poorly represented, not layer dominants, singly or combined
Undefined/unrecorded Atriflex nuttallii Series c.ts.
88. Sarcobatus vermiculatus (black greasewood) well represented or layer dominant/co-dominant 17
89. S. vermiculatus poorly represented, not layer dominant/co-dominant
90. Agropyron smithii (western wheatgrass) well represented or layer dominantSarcobatus vermiculatus/Agropyron smithii c.t.
91. A. smithii poorly represented \& not layer dominant Undefined Sarcobatus vermiculatus Series c.ts.
92. Artemisia cana (silver sagebrush) well represented; if other spp. of Artemisia present, coverage of A. cana not more than one cover class less 19
93. A. cana poorly represented or having significantly less coverage than other shrubby Artemisia spp. 23
94. Agropyron smithii (western wheatgrass) or A. dasystachyum (thickspike wheatgrass) well represented (only common if grazing moderate to intensive) Artemisia cana/Agropyron smithii c.t.
95. A. smithii and A. dasystachyum poorly represented (or scarce under intensive grazing) 21
96. Stipa comata (needle-and-thread) or Bouteloua gracilis (blue grama) well represented or dominate the herbaceous layer Artemisia cana/Stipa comata c.t.
97. S. comata and B. gracilis poorly represented, not dominant herbs Undefined/unrecorded Artemisia cana Series c.t.
98. Ceratoides (Eurotia, Krascheninnikovia) lanata (winterfat) well represented 18
99. C. lanata poorly represented 19
100. Stipa comata (needle-and-thread) well represented Ceratoides lanata/Stipa comata c.t.
101. S. comata poorly representedUndefined/unrecorded Ceratoides lanata Series c.t.
102. Juniperus horizontalis (creeping juniper) well represented or the dominant shrub 24
103. J. horizontalis poorly represented or not dominant shrub 30
104. Juncus balticus (baltic rush) or Juncus (rush) spp. common24. J. balticus or Juncus spp. scarce25
105. Andropogon scoparius (Schizachyrium scoparium, little bluestem) well represented
Juniperus horizontalis/Andropogon scoparius c.t.
106. A. scoparius poorly represented 26
107. Agropyron dasystachyum (thickspike wheatgrass), Stipa viridula (green needlegrass) or Stipa curtiseta (porcupine needlegrass) well represented, singly or combined cover, or common under grazing pressure
Juniperus horizontalis/Agropyron dasystachyum c.t.
108. A. dasystachyum, S. viridula, and S. curtiseta, singly or combined, poorly represented 27
109. Carex pensylvanica (C. inops, C. heliophila, long-stonon or sun sedge) well represented
Juniperus horizontalis/Carex pensylvanica p.a.
110. C. pensyivanica poorly represented 28
111. Calamovilfa longifolia (prairie sandgrass) or Calamagrostis montanensis (plains reedgrass) well represented or dominating the herbaceous layer Juniperus horizontalis/Calamovilfa longifolia c.t.
112. C. Iongifolia and C. montanensis poorly represented, or not the layer dominants 29
113. Agropyron spicatum (Pseudoroegneria spicata, bluebunch wheatgrass) well represented (common if under grazing pressure) Juniperus horizontalis/Agropyron spicatum c.t.
114. A. spicatum poorly represented Undefined Juniperus horizontalis Series c.t.
115. Artemisia tridentata (big sagebrush) well represented (adjust cover upwards if burned shrub skeletons on site or try to estimate pre-burn shrub cover) 31
116. A. tridentata poorly represented 36
117. Festuca scabrella (F. campestris, rough fescue) well represented (common, if grazing pressure, including wildife, $>$ moderate) Artemisia tridentata/Festuca scabrella h.t.
118. F. scabrella poorly represented 32
119. Festuca idahoensis (Idaho fescue) well represented (common, if grazing pressure, including wildlife, > moderate)
Artemisia tridentata/Festuca idahoensis p a
120. F. idahoensis poorly represented 33
121. Agropyron spicatum (Pseudoroegneria spicata, bluebunch wheatgrass) well represented (reduce to only common with grazing) Artemisia tridentata/Agropyron spicatum p.a.
122. A. spicatum poorly represented 34
123. Agropyron (Pascopyrum) smithii (western wheatgrass) the dominant grass or if well represented (only common if grazing pressure intensive) Artemisia tridentata/Agropyron smithii c.t.
124. A. smithii not the dominant grass and poorly represented 35
125. Stipa comata (needle-and-thread) and/or Bouteloua gracilis (blue grama) the dominant grasses
Artemisia tridentata/Stipa comata p.a.
126. S. comata and B. gracilis not the dominant grasses Undefined/unrrecorded Artemisia tridentata Series c.t./h t.
127. Rhus trilobata (R. aromatica, skunk-bushwell sumac) well represented or dominant shrub 37
128. R. trilobata poorly represented, not dominant shrub 39
129. Agropyron spicatum (Pseudoroegneria spicata, bluebunch wheatgrass) well represented (common, if grazing moderate to intensive)
Rhus trilobata/Agropyron spicatum p.a.
130. A. spicatum poorly represented 38
131. Calamovilfa longifolia (prairie sandgrass) well representedRhus trilobata/Calamovilfa longifolia p.a38. C. longifolia poorly represented
\qquad/unreportedRhus trilobata Series p.a./c.t.
132. Yucca glauca (soapwell) well represented40
133. Y. glauca poorly represented Shurb-dominated c.t./p.a. undescribed/unreported for study area
134. Calamovilfa longifolia (prairie sandgrass) well representedYucca glauca/Calamovilfa longifolia c.t.40. C. longifolia poorly represented
Undefined/unreported Yucca glauca Series c.t./p.a. for study area
KEY TO UPLAND GRASSLANDS AND FORB-DOMINATED PLANT ASSOCIATIONS/COMMUNITY TYPES
135. Herbaceous vegetation (graminoids \& forbs) dominant; shrubs, if present, widely scattered with coverage less than 5% or is half-shrubs such as Artemisia frigida (fringed sage) or Gutierrezia sarothrae (broom snakeweed); if desire to establish nature of potential natural vegetation determine site's fire and grazing history 2
136. Woody plants well represented or the site indicating potential to support at least 10% shrub coverage
see heading "Upland Shrub Key"
137. Deschampsia cespitosa (tufted hairgrass) or various moist-site Carex spp. dominant (sites supporting Carex spp. such as C.rostrata, C.aquatilis, C. athrostachya, C. nebrascensis tend to wetland conditions and sho uld be tracked through wetland key) Deschampsia cespitosa-Carex spp. c.t
138. Not as above 3
139. Juncus balticus (baltic rush) common, not restricted to microsites Juncus balticus c.t.
140. J. balticus scarce, or confined to microsites 3
141. Poa pratensis (Kentucky bluegrass) abundant or the dominant graminoid (may be wetland site, soils and hydrology need examination; see wetland key of Hansen et al. (1995) Poa pratensis c.t
$4 P$. pratensis not abundant and not the graminoid dominant 5
142. Artemisia longifolia (longleaved sagewort) common or the dominant/co-dominant species on sites with depauperate canopy cover (usually $<10 \%$ total cover) a high percentage of exposed substrate, usually clays typical of badlands topograpy Artemisia longifolia c.t.
143. Not as above, A. Iongifolia not dominant/co-dominant 6
144. Andropogon scoparius (Schizachyrium scoparium, little bluegstem) or A. gerardii (big bluestem) well represented 7
145. Andropogon spp. poorly represented 10
146. A. gerardii (big bluestem) well represented, Calamovilfa longifolia (prairie sandgrass) common
Andropogon gerardii-Calamovilfa longifolia c.t
147. A. gerardii poorly represented 8
148. Muhlenbergia cuspidata (plains muhly) well represented Andropogon scoparius-Muhlenbergia cuspidata ct.
149. M. cuspidata poorly represented 9
150. Carex filifolia (thread-leaved sedge) common Andropogon scoparius-Carex filifolia c.t.
151. C. filifolia scarce Undefined/unrecorded Andropogon spp. c.t.
152. Festuca scabrella (F. campestris, rough fescue) well represented (or only common if grazing pressure appears moderate to intensive 11
153. F. scabrella poorly represented 12
154. F. iahoensis (Idaho fescue) well represented or co-dominant with F. scabrella (rough fescue), Agropyron spicatum a minor component, if present Festuca scabrella-Festuca idahoensis h.t.
155. Not as above Undocumented study area Festuca scabrella Series c.t.
156. Festuca idahoensis (Idaho fescue) well represented (only common with intensive grazing) 13
157. F. idahoensis poorly represented 14
158. Carex heliophila (C. inops, C. pensylvanica, sun or long-stolon sedge) well represented or co-dominant or second in cover to F. idahoensis Festuca idahoensis-Carex heliophila c.t.
159. C. heliophila poorly represented, not co-dominant or second in cover to F. idahoensisUndescribed study area Festuca idahoensis Series c.t.
160. Stipa curtiseta (porcupine needlegrass) well represented (only common if grazing pressure appreciable) 15 16
161. S. curtiseta poorly represented (or scarce if grazed)
162. S. curtiseta poorly represented (or scarce if grazed)
163. Stipa viridula (green needlegrass) well represented Stipa curtiseta-Stipa viridula.c.t.
164. S. viridula poorly represented Undescribed/unrecorded study area Stipa.curtiseta Series c.t
165. Agropyron spicatum (Pseudoroegneria spicata, bluebunch wheatgrass) well represented (only common, if grazing pressure moderate to intensive 17
166. A. spicatum poorly represented (or scarce if grazed) 22
167. Agropyron smithii (western wheatgrass) well represented (only common, if grazed
Agropyron spicatum-Agropyron smithii p.a. 18
168. Muhlenbergia cuspidata (plains muhly) well represented Agropyron spicatum-Muhlenbergia cuspidata c.t.
169. M. cuspidata poorly represented 19
170. Carex filifolia (thread-leaved sedge) well represented and the dominant/co-dominant of low grass layer
Agropyron spicatum-Carex filifolla c t.
171. C. filifolia poorly represented and not dominant/co-dominant of short grasses 20
172. Bouteloua gracilis (blue grama grass) well represented Agropyron spicatum-Bouteloua gracilis c.t.
173. B. gracilis poorly represented 21
174. Rhizomatous wheatgrasses (Agropron spp.) absent; Poa secunda (Sandberg's bluegrass) usually, but not always, present Agropyron spicatum-Poa secunda c.t.
175. Not as above Undescribed/unrecorded Agropyron spicatum Series c.t.
176. Agropyron smithii (western wheatgrass) well represented 23
177. A. smithii poorly represented 23
178. Stipa viridula (green needlegrass) well represented Agropyron smithii-Stipa viridula c.t
179. S. viridula poorly represented 24
180. Carex filifolia (thread-leaved sedge) and C. stenophylla (C. eleocharis, narrow-leaved sedge) singly or combined, well represented and dominant of short grass layer Agropyron smithii-Carex filifolia ct
181. C. filifolia and C. stenophylla poorly represented 25
182. Bouteloua gracilis (blue grama) well represented Agropyron smithii-Boutleloua gracills c.t
183. B. gracilis poorly represented Undescribed/unrecorded Agropyron smithii Series c.t.
184. Calamovilfa longifolia (prairie sandweed) well represented 27
185. C. longifolia poorly represented 28
186. Carex pensylvanica (C. heliophila, C. inops, long-stolon or sun sedge) well represented
Calamovilfa longifolia-Carex pensylvanica c.t.
187. C. pensylvanica poorly represented Undescribed/unreported Calomovilfa longifolia Series c.t.
188. Stipa comata (needle-and-thread) or Boutelous gracilis (blue grama) well represented or dominant/co-dominant grasses 29
189. Not as above Unrecorded/undescribed study area forb-dominated c.t
190. Calamovilfa longifolia (prairie sandreed) well represented or the dominant graminoid
Stipa comata-Calamovilfa longifolia c.t.
191. C. Iongifolia poorly represented, not the dominant grass 30
192. Bouteloua gracilis (blue grama) dominant or co-dominant with S. comata Stipa comata-Bouteloua gracilis c..t.
193. Not as above Undefined/unrecorded Stipa comata Series c.t., see North Dakota classifications
KEY TO RIPARIAN VEGETATION
(based on/modified from Hansen et al. 1995)
Key to Lifeform Groups
194. Coniferous trees present and reproducing successfully, not restricted to microsites Coniferous Tree Communities
195. Coniferous trees absent or, if present, not as successfully reproducing as deciduous tree spp., not microsite restricted 2
196. Fraxinus pennsylvanica (green ash), Acer negundo (box elder) or Populus tremuloides (quaking aspen), singly or combined with at least 5\% canopy cover or deciduous tree species, other than three named above, with single or combined coverages of at least 25\% (abundant) Deciduous Tree Communities
197. Not as above 3
198. Shrub species, singly or their combined cover, at least 10% Shrub Communities
199. Shrub species, singly or combined cover, less than 10% Herbaceous Communities
Key to Coniferous Wetland Communities
200. Picea (spruce) spp. present and reproducing successfully 2
201. Picea spp. absent or not successfully reproducing 3
202. Equisetum arvense (field horsetail) or Equisetum (scouring ruch) spp. abundant PICEA/EQUARV h.t.
203. Equisetum spp. not abundant Undefined PICEA SERIES c.t.
204. Pseudotsuga menziesii (Douglas-fir) present and successfully reproducing 4
205. P. menziesii absent or not reproducing successfully 5
206. Populus (cottonwood) spp. well represented or following species, single or combined cover 1%, Cornus stolonifera (red osier dogwood), Salix (willow) spp., Actaea rubra (baneberry), E. arvense PSEMEN/CORSTO n.t.
207. Not as above Undefined PSEMEN SERIES c.t.
208. Pinus ponderosa (ponderosa pine) present and reproducing successfully 6
209. P. ponderosa absent or not successfully reproducing 8
210. Populus (cottonwood) spp. well represented or Cornus stolonifera common PINPON/CORSTO h.t.
211. Populus spp. poorly represented and C. stolonifera scarce 7
212. Prunus virginiana (common chokecherry) or Amelanchier alnifolia (western serviceberry) well represented, singly or combined cover PINPON/PRUVIR h.t.
213. P. virginiana or A. alnifolia, singly or combined cover, poorly represented Undescribed PINPON wetland c.t.
214. Juniperus scopulorum (Rocky Mountain juniper) present and reproducing and Populus tremuloides (quaking aspen) and Fraxinus pennsylvanica (green ash) poorly represented 9 GO TO DECIDUOUS KEY
215. P. tremuloides or F. pennsylvanica or their combined greater than 5\%
216. P. tremuloides or F. pennsylvanica or their combined greater than 5\%
217. Populus (cottonwood) spp. well represented or C. stolonifera, Poa pratensis, Agrostis stolonifera, singly or combined cover, greater than 1% JUNSCO/CORSTO h.t.
218. Populus spp. poorly represented and C. stolonifera, P. pratensis, A. stolonifera, singly or combined with less than 1% cover Unclassified riparian-wetland site
Key to Broad-leaved, Cold-deciduous, Wetland Forests
219. Fraxinus pennsylvanica (green ash) common (canopy cover $>5 \%$) FRAPEN/PRUVIR h.t.
220. F. pennsylvanica scarce 2
221. Acer negundo (box elder) common ACENEG/PRUVIR h.t.
222. A. negundo scarce 3
223. Populus trichocarpa (black cottonwood) with greater canopy cover than other Populus or Salix (willow) spp. 4
224. P. trichocarpa with less canopy cover than other Populus spp. 6
225. Seedling or sapling classes of Populus trichocarpa (black cottonwood) dominate the site; site a recently deposited alluvial bar POPTRI/RECENT ALLUVIAL BAR c.t.
226. Pole or larger size classes of P. trichocarpa dominate the site (not a'recent gravel bar deposition) 5
227. Shrub species abundant ($>25 \%$ c.c.) POPTRI/CORSTO c.t.
228. Shrub species not abundant POPTRI SERIES c.t. not documented for study area
229. Populus deltoides (Great Plains cottonwood) with greater canopy cover than other tree species 7
230. P. deltoides with less canopy cover than other tree spp. 9
231. Seedling and sapling ($<5.0 \mathrm{in}$) size classes dominate the site; site is recently deposited alluvial bar
POPDEL/RECENT ALLUVIAL BAR c.t
232. Pole and larger ($>5.0 \mathrm{in}$) size classes dominate the site 8
233. Shrub species abundant POPDEL/CORSTOc.t
234. Shrub species not abundant POPDEL/POAPRAc:
235. Salix amygdaloides (peach-leaf willow) with greater canopy cover than other tree species SALAMY c.t
236. S. amydaloides canopy cover less than that of other tree species DECIDUOUS TREE SERIES not documentedfor study area
Key to Wetland Shrub Communities
237. Salix (willow) spp. with at least 10% canopy cover 2
238. Salix spp. having less than 10% canopy cover 5
239. Salix lutea (yellow willow) having at least 10% canopy cover 3
240. S. Iutea with less than 10% canopy cover 4
241. Calamagrostis canadensis (bluejoint reedgrass), C. stricta (slimstem reedgrass) or Deschampsia cespitosa (tufted hair-grass), individual or combined canopy cover, at least $\% 5 \ldots \ldots \ldots$.
242. C. canadensis, C. stricta and D. cespitosa, individually or combined, with less than 5% coverage; undergrowthdominated by one or a combination of following disturbance species; Agrostis stolonifera, Juncus balticus, Phleumpratense, Poa palustris or Poa pratensisSALLUT/POAPRA c.t.
243. Salix exigua (sandbar willow) having greater canopy coverage than any other Salix (willow) spp. (excepting S. bebbiana)
244. Other Salix spp. with greater canopy coverage than S. exigua Unclassified riparian-wetland site
245. Sarcobatus vermiculatus (black greasewood) well represented 6
246. S. vermiculatus poorly represented 7
247. Agropyron smithii (western wheatgrass) the dominant graminoid SARVER/AGRSMI h.t.
248. A. smithii not the dominant graminoid Undefined SARVER SERIES c.t
249. Crataegus succulenta (succulent hawthorn) or C. douglasii (black hawthorn), individually or combined cover, well represented CRASUC c.t.
250. C. succulenta and C. douglasii, singly or combined coverages, poorly represented 8
251. Prunus virginiana (common chokecherry) with at least 10% canopy cover and having greatest canopy cover amongst the tallest statum PRUVIR c.t.
252. Not as above 9
253. Shepherdia argentea (silver buffaloberry) having at least 15% canopy cover and with the greatest canopy cover in the tallest layer SHEARG c.t.
254. S. argentea having less than 15% canopy cover and not having greatest canopy cover of tallest layer species 10
255. Artemisia cana (silver sagebrush) well represented 11
256. A. cana poorly represented 12
257. Agropyron smithii (western wheatgrass) the dominant graminoid ARTCAN/AGRSMI h.t.
258. A. smithii not the dominant graminoid Undescribed wetland site ARTCAN SERIES c.t.
259. Symphoricarpos occidentalis (western snowberry) or S. albus (common snowberry) singly or their combined coverages at least 15\%12. S. albus or S. occidentalis, combined or singly, with less than 15% coverage and lacking most coverof species in tallest layer13
260. Rosa woodsii (woods rose) or R. acicularis (prickly rose), individually or their combined cover, having at least 15% coverage and with the greatest coverage in the tallest layer ROSWOO c.t.
261. R. woodsii and R. acicularis or any combination of the two having less than 15% coverageand without greatest coverage of the tallest layerUnclassified riparian-wetland site
Key to Wetland Herbaceous Communities
262. Carex (sedge) spp. with a combined canopy cover of at least 25% or dominant taxa of herbaceous component 2
263. Carex spp. less than 25% coverage and not the dominant herbceous taxa 5
264. Carex rostrata (beaked sedge), C. versicaria (inflated sedge), or C. atherodes (slough sedge), singly or combined coverages, well represented CARROS h.t.
265. C. rostrata, C. vesicaria or C. atherodes, individually or combined coverages, poorly represented 3
266. Carex aquatilis (water sedge) or C. lenticularis (lentil-fruit sedge), coverages considered separately or combined, well represented CARAQU h.t
267. C. aquatilis or C. lenticularis poorly represented, separate or combined coverages 4
268. Carex nebrascensis (Nebraska sedge) having a greater coverage than any other individual Carex spp. CARNEB c.t.
269. C. nebrascensis not having the greatest coverage of any individual Carex spp
Unclassified wetland c.t. or possibly not wetland site
270. Typha latifolia (common cattail) or T. angustifolia (lesser cattail), individually or combined, having at least 25% coverage TYPLAT n.t.
271. T. latifolia and T. angustifolia, singly or combined, having less than 25% coverage 6
272. Scirpus (bulrush) spp. well represented 7
273. Scirpus spp. poorly represented 10
274. Scirpus acutus (hardstem bulruch) or S. validus (softstem bulrush), individually or combined cover, well represented SCIACU h.t.
275. S. acutus and S. validus, considered singly or combined, poorly represented 8
276. Scirpus maritimus (alkali bulrush) well represented SCIMARh.t.
277. S. maritimus poorly represented 9
278. Scirpus pungens (bulruch) well represented SCIPUN h.t.
279. S. pungens poorly represented Unclassified Scirpus SERIES c.t.
280. Phragmites australis (plume reed) well represented PHRAUS h.t.
281. P. australis poorly represented 11
282. Phalaris arundinacea (reed canarygrass) well represented PHAARU h.t.
283. P. arundinacea poorly represented 12
284. Spartina pectinata (prairie cordgrass) or S. gracilis (alkali cordgrass), individually or their combined coverage, well represented SPAPECht
285. S. pectinata and S. gracilis, singly or combined coverage, poorly represented 13
286. Eleocharis palustris (common spikesedge) or E. acicularis (needle spikesedge), individually or combined well represented ELEPAL h t
287. E. palustris and E. acicularis, singly or combined coverage, poorly represented 14
288. Deschampsia cespitosa (tufted hairgrass) well represented (only common in presence of grazing pressuremeSCES h
289. D. cespitosa poorly represented 15
290. Distichlis spicata (inland or alkali saltgrass) well represented DISSPI h.t
291. D. spicata poorly represented 16
292. Agropyron smithii (western wheatgrass) well represented AGRSMI h.t.
293. A. smithii poorly represented READ THE FOLLOWING KEY
Key to herbaceous communities representing putative seral or anthropogenic conditions
[Before using key do the following: 1) Examine the stand and determine if any shrub species are present. If so, go back through shrub key and reduce all canopy coverages to present class; 2) Lacking shrubs, retrace herbaceous key with coverage classes reduced by one class; 3) If stands still does not fit key, then use the following key to seral or disturbance induced types or unclassified wetland types.]
294. Polygonum amphibium with greater cover than any other herbaceous species POLAMP c.t.
295. Other herbaceous species having greater coverage than P. amphibium 2
296. Salicornia rubra with a greater canopy cover than any other herbaceous species SALRUB c.t.
297. S. rubra with less cover than any single herbaceous species 3
298. Glycyrrhiza lepidota with greater coverage than any single herbaceous species GLYLEP c.t3. G. lepidota having less cover than any single herbaceous species4
299. Juncus balticus well represented or with greater canopy coverage than any other herbaceous species JUNBAL c.t.
300. J. balticus poorly represented and not having greater coverge than any other herbaceous species 5
301. Agrostis stolonifera well represented having a greater coverage than any single herbaceous species
AGRSTO c.t.
302. A. stolonifera poorly represented and other single herbaceous species with greater cover than A. stolonifera 6
303. Hordeum jubatum with greater cover than any other single herbaceous species HORJUB c.t.
304. Other herbaceous species with greater cover than H. jubatum 7
305. Poa pratensis well represented or having greater cover than any other single herbaceous speciesstand. Dominance types are named by species with greatest canopy cover the uppermost layer; however, dominantspecies must have at least 25% cover.

TREE-DOMINATED PLANT ASSOCIATIONS/COMMUNITY TYPES:

Juniperus scopulorum/Agropyron spicatum p.a.
(JUNSCO/AGRSPl; rocky mountain juniper/bluebunch wheatgrass; 3 plots
WHTF designation JUNSCOIPseudoroegneria spicata)

Abstract

Environment: This community type was found in low to moderate relief rolling uplands as well as in badland arroyos/drawss, often occurring adjacent to JUNSCO/ORYMIC h.t., but on warmer exposures (not strictly northfacing) with the same moderate to steep slopes. JUNSCO/AGRSPI also has more exposed soil and rock, often exceeding 50%. Three of the four sampled stands were on calcareous substates, though this h.t. is not confined to these substrates.

Vegetation: As a result of past cutting for fencing stands of JUNSCO/AGRSPI were rather open, with coverage of 8 to 12 ft tall Juniperus scopulorum not exceeding 50%; we speculate tree coverage does not much exceed this figure due to limitations of site factors. The higher coverage of shrubs (up to 20% for Artemisia tridentata and A. frigida) reported here than in southeastern Montana (Hansen and Hoffman 1988) is also attributable to seral conditions. The undergrowth is dominated by graminoids, chief among which and diagnostic of the type is Agropyron spicatum, always well represented (40% ave. cover). Carex filifolia and Koeleria cristata have high constancy and Bouteloua curtipendula is consistently present in the easternmost occurrences of this type. Forb diversity is moderately high, but coverages are generally low, not exceeding 10% except in the most open stands.

Other Studies: In a study centered on southeastern Montana Hansen and Hoffman (1988) have best documented this type and Brown (1971) has also described it for badland drainages of the Ashland District, Custer National Forest. This h.t. has been described as relatively common in North Dakota and Wyoming and extends as far south as South Dakota and Colorado.

Juniperus scopulorum/Oryzopsis micrantha p.a.
 (JUNSCO/ORYMIC; Rocky Mountain juniper/little-seed ricegrass; 6 plots)

Environment: JUNSCO/ORYMIC is a minor type within the study area. It is usually associated with unique substates, sandstones or other well-drained surfaces, and predominantly moderate to steep north-facing slopes. In badland topography JUNSCO/ORYMIC it is associated with draws, especially cove-like positions that are protected from winds or that moisture collecting. Adjacent more exposed and warmer positions are often characterized by high erosion rates and early seral commuity types with no characteristic vegetation.

Vegetation: Although Juniperus scopulorum now usually forms a nearly closed canopy 9 to 14 ft tall, all sampled stands had been heavily cut in the past for fenceposts. An occasional Acer negundo was found in moist microsites, usually near ravine toeslopes. The undergrowth is invariably dominated by Oryzoposis micrantha with coverages ranging from 10 to 70%; this species is not found outside these sites. Though grass-dominated, these stands support a rich diversity of forbs, including those associated with relatively mesic sites e.g. Smilacina stellata, Galium boreale, Geum triflorum and Campanula rotundifolia.

Other Studies: This plant association has been described by Hansen and Hoffman (1988) for southeastern Montana and Hansen et al. (1984) for Theodore Roosevelt National Park (North Dakota). Our stands are much more similar to those of southwestern Montana, having much less undergrowth combined canopy cover than those of North Dakota; the presenceand occasionally well represented bunchgrasses indicate these sites are either drier or in earlier seral stages than those described by Hansen and Hoffman (1988).

Pinus ponderosa/Agropyron spicatum p.a.
(PINPON/AGRSPI; ponderosa pine/bluebunch wheatgrass; 9 plots WHTF designation PINPON/Pseudoroegneria spicata)

Abstract

Environment: In areal extent PINPON/AGRSPI is not a major study area h.t. but it is one of the most broadly distributed across MT, occurring on diverse substrates and within quite different climatic zones (due to factor compensation). In the study area this type is found predominantly on non-glaciated, well-drained sedimentary substrates (sandstone, calcareous and non, shale, calcareous and non) but was also sampled on igneous substrates. Over most of the study area in non-mountainous settings PINPON/AGRSPI is found in low to moderate relief landscapes on cooler exposures (northwest thru north to east-facing slopes) and all degrees of slope inclination; it also noted to form a ribbon along slope shoulders. Where the type is found at higher elevations in mountain foothills its position may shift to warmer exposures, including steep south-facing slopes.

All the above-cited environments are fire-prone and several of the sample stands had been recently burned. A lack of trees with fire scars probably reflects low fuel levels but could also reflect effective fire suppression. The amount of exposed substrate and litter varied widely, depending on fire history and vegetation cover, particularly that of the tree layer.

Vegetation: Our sampling included all but early seral stages (lacking trees or with very low density) and oldgrowth stages. This type most often approximates a woodland structure with P. ponderosa canopy cover ranging between 20 and 70%. Juniperus scopulorum may occur as scattered individuals. In a plains environment PINPON/AGRSPI grades to various grassland types (generally Agropyron spicatum dominated) on drier exposures or occasionally to PINPON-JUNSCO. In foothills/mountain settings PINPON/AGRSPI usually represents the driest forested sites.

Shrub cover, even in early seral conditions, generally does not exceed 10% and regularly includes Artemisia tridentata, A. frigida, Rhus trilobata, Rosa arkansana, and Ribes spp. High coverages of Juniperus horizontalis found occasionally in easternmost MT represent a departure from the norm but factors producing this condition were not identified; we have provisionally identified a PINPON/JUNHOR c.t. to represent this condition. Undergrowth is dominated by graminoids with the highest coverages found in early to mid-seral stands; even in this woodland type it appears that higher tree canopy cover tends to depress undergrowth cover. This type is recognized by AGRSPI being at least well represeted, usually it is abundant. Other graminoids with 50% or higher constancy are Carex filifolia, C. rossii, Stipa comata, and Muhlenbergia cuspidata; their coverages seldom exceed 10%. There are no forbs that distinguish this type and species richness varies widely (as few as 4 forbs, as many as 44). Combined forb cover does not exceed 5%, except in the case of introduced species (e.g. Meilotus officinalis).

Other Studies: This h.t. spans a broad geographic range, from just east of the Cascade Crest to Nebraska and south to Colorado, but its greatest areal extent (judged by S-rank) is in Montana. Pfister et al. (1977) first documented its extent in Montana, especially the western portion. Hansen and Hoffman (1988) and Cooper and Pfister (1984) have characterized it for southeastern MT and Roberts (1980) documented it for the Bears Paw Mtns and our study has extended its known range to the Little Rocky Mountains and the study area at large. The study area representation of the type fits, with minor floristic differecnces such as the prevalence of Muhlenbergia cuspidata, the type description for southeastern MT.

Pinus ponderosa/Carex pensylvanica p.a.

(PINPON/CARPEN; ponderosa pine/long-stolon sedge; 5 plots WHTF designation PINPON/Carex inops)

Environment: Sampled at only five locations all within (Garfield Co.) PINPON/CARPEN (syn. C hellophyla of Hansen and Hoffman 1988 and C. inops) is probably only an incidental type within the study area. It occurrs on
both lower slopes and ridge shoulders with sandstone (calcareous and non) substrates. Ground surface has a nearly continuous litter layer, as opposed to more open, woodland-like PINPON stands that have a high percentage of exposed substrate. Adjacent vegetation was Artemisia cana/Agropyron spicatum or ARTCAN/ Stipa comata on flats below and PINPON/AGRSPI on warmer-drier upland sites, denoting this type as relatively more mesic than others in upland landscape mosaics.

Vegetation: PINPON/CARHEL within the study area generally fits the type description outlined by Hansen and Hoffman (1988) for southeastern MT; the overstory is dominated by Pinus ponderosa but is not closed and also includes Juniperus scopulorum well represented. Study area stands were mature so their lack of overstory closure may reflect relatively drier environments than those occupied by this type in southeastern MT (Hansen and Hoffman 1988) or past disturbance (underburning).

Shrub dominance shifted among the four (Artemisia tridentata, Rhus trilobata and Symphoricarpos occidentalis, Juniperus horizontalis) commonly present and combined coverages did not exceed 10%. Undergrowth was graminoid dominated, with Carex pensylvanica usually abundant and Stipa comata and S. spartea important components. Because stands are (still) relatively open, coverages of shade-intolerant Andropogon scoparius remain high. Forbs were recorded in only trace amounts. It is possible in such a fire prone enviroment that some stands of ANDSCO-CARPEN h.t. represent early seral stages of PINPON/CARPEN.

Other Studies: Hansen and Hoffman (1988) have provided the most complete description of this h.t. in MT and study area examples of the type generally fit the type profile in terms of environment and species composition. Hansen and Hoffman (1988) present an argument that a very similar type, PINPON/ANDSCO described by Pfister et al. (1977), though a valid community type, is simply an earlier seral stage of PINPON/CARHEL.
PINPON/CARHEL, or equivalents, have also been described from Colorado (Hoffman and Alexander 1983).
Wyoming, North and South Dakota (Hoffman and Alexander 1987) and possibly Oregon (Bourgeron and Engelking 1994).

Pinus ponderosa/Festuca idahoensis p.a.

(PINPON/FESIDA; ponderosa pine/ldaho fescue; 1 plot)
Environment: We sampled only one stand of PINPON/FES (Saddle Butte vicinity) but noted numerous occurrences in this area south of the main mass of the Little Rocky Mountains; this sampled stand and others observed document the northeasternmost known range of this type (was not described by Roberts [1980] for the Little Rocky Mountains immediately to the north). The sampled stand, typical for the vicinity, was on a moderate, west-facing slope with igneous parent material weathered to a well-drained sandy loam. Other stands noted generally have west- or east-facing aspects. Ground cover is dominated by litter in excess of 80% coverage. Warmer exposures supported PINPON/AGRSPI or Festuca idahoensis-Agropyron spicatum dominated grasslands and on cooler exposures PINPON/FESIDA grades to PINPON/Arctostaphylos uva-ursi or PINPON/Amelanchier alnifolia (also undocumented for the Little Rocky Mountains vicinity).

Vegetation/Other Studies: Little Rocky Mountains occurrences of PINPON/FEIDA qualify as the FESIDA phase, as they lack Festuca scabrella (syn. F. campestris); immediately to the west (Bears Paw Mtns.) Roberts (1980) found only the FESCSA phase. The Little Rocky Mountains do support scattered populations of F. scabrella, but this mountain range and immediate vicinity would appear to be the northeasternmost extent of this important range grass. This area is also at the distributional limits of F. idahoensis. Thus this h.t. is found east of the Cascade Crest extending to eastern MT and south to Colorado and Utah; it has not been cited for the Midwest Regional Classification 1993)

Study area stands have an open, woodland aspect with widely spaced older Pinus ponderosa. The undergrowth is dominated by graminoids, the diagnostic F. idahoensis being well represented unless intensively grazed. Agropyron spicatum and Carex heliophila are also well represented. Forb species present indicating sites more mesic than PINPON/AGRSPI include Galium boreale, Geum triflorum and Campanula rotundifolia. In undergrowth composition study area stands appear closer to the type as described for southeastern MT by

Hanson and Hoffman (1988) and Cooper and Pfister (1984).

Pinus ponderosa/Juniperus horizontalis p.a.

(PINPON/JUNHOR; ponderosa pine/creeping juniper; 3 plots)

Abstract

Environment: The three sampled stand represents a considerable range extension for PINPON/JUNHOR which was previously known only from the calcareous sandstones of the Little Rocky Mountain's foothills (Roberts 1980). These stands were all found on calcareous substrate (shale). They occurred in rolling terrain near the crests of gentle slopes.

Vegetation: These stands conform to the type description of Roberts (1980) wherein Juniperus horizontalis and Rhus trilobata are the dominant species in what is otherwise a relatively depauperate undergrowth; in more open stands J . horizontalis superficially appears to form a sward at 50% and greater coverage. These stands also shared $3 / 4$ of the herbaceous species listed for the type by Roberts (1980).

Other Studies: Only Roberts (1980) has described this type (Little Rocky Mountains foothills). Miller (1978) has described a type from the Rocky Mountain Front, Pinus/JUNHOR/Festuca idahoensis, that apppears to represent an intergrade between PINPON/JUNHOR and Pinus flexilis/JUNHOR. Structurally PINFLE/JUNHOR is very similar to Pinus flexilis/Juniperus communis, also found almost exclusively on calcareous substrates (Pfister et al. 1977).

Pinus ponderosa-Juniperus scopulorum p.a.

$$
\text { (PINPON-JUNSCO; ponderosa pine-Rocky Mountain juniper; } 14 \text { plots) }
$$

Environment: PINPON-JUNSCO was found exclusively on sedimentary parent materials, mostly shales and sandstones, both calcareous and not. It is found predominantly on gentle to steep northerly aspects of roling terrain from Blain County eastward; however in the far eastern portion Montana it is more associated with badlands topography, the coulee slopes thereof. This type is also associated with the tops and shoulders of ridges and draws. Because we sampled relatively young to mature stands substrate conditions varied appropriately, from 70% exposed soil in young stands to $70-90 \%$ litter in older stands. Soil textures were mostly loams and sandy loams.

Vegetation: The variety of seral stages contributes to the broad spectrum of tree coverages from very open (20% canopy cover) to nearly closed with Pinus ponderosa dominating the overstory. Juniperus scopulorum being at least well represented is diagnostic for the type and usually, especially in mid-aged stands it is abundant; in what are ostensibly the oldest stands its cover may drop relative to that of P. ponderosa. Many stands appear to be hybrids between PINPON/ Carex heliophila of southeastern MT, PINPON/Agropyron spicatum of western and central MT, and/or JUNSCO/AGRSPI.

The undergrowth is dominated by varying combinations of Carex heliophila, Agropyron spicatum and Oryzopsis micrantha. Muhlenbergia cuspidata and Carex filifolia have high constancy but low coverage, usually not exceeding 10%. Calamovilfa longifolia was dominant in several young stands developed on sandstone. Forb cover seldom exeeded 5% and forb composition was highly variable in composition; Solidago missouriesis and Psoralea argophylla were the forbs even approaching 50% constancy.

Ŝuly
Other Studies: Roberts (1980) has described PINPON-JUNSCO from the Missouri River Breaks as characterizing the very driest forested slopes (and benches) whereas in badlands of southeastern MT (Ashland District, Custer National Forest) Brown (1971) cited it as occurring on relatively moist, protected exposures. This type is common in North and South Dakota and Wyoming (see Hoffman and Alexander 1987) and extends south to Colorado and New Mexico (Bourgeron and Engelking 1994).

Pseudostuga menziesii/Symphoricarpos occidentalis p.a.
 PSEMEN/SYMOCC; Douglas-fir/western snowberry; 3 plots)

Environment: According to Roberts (1980), PSEMEN/SYMOCC is the driest plant association within the Pseudotsuga menziesii series of north-central MT and the fact that all our sampled stands occurred on southerly exposures with convex surfaces with at least 20% exposed substrate tends to confirm this observation. Our sampled stands occurred just south of the Little Rocky Mountains on syenitic parent materials whereas just north in the Little Rocky Mountains Robests (1980) reported this as a minor type on calcareous parent materials. PSEMEN/SYMOCC occurs in a fine-scale mosaic with PSEMEN/ Amelanchier alnifolia and PSEMEN/Berberis repens, which occupy more moist/sheltered positions, and PSEMEN/ Viola canadensis, which occurs in yet more moist sites, generally downslope in collecting positions. PSEMEN/SYMOCC grades to Pinus ponderosa/Festuca idahoensis and bunchgrass-dominated steppe of yet drier exposures.

Vegetation: Because our samples of this type were of relatively early seral stages (<50 years since'standreplacing wildfire) their membership in this plant association is somewhat speculative. Pseudotsuga menziesii is just beginning to establishon these sites that apparently were intensively burned. Pinus ponderosa is the seral dominant and counter to the observations of Roberts (1980) Populus tremuloides and Pinus contorta are capable of fuctioning as seral species as well; seral success of P. contorta and P. tremuloides may owe to the fact that our stands occupied acidic igneous, rather than calcareous, substrates.

Sample stands may have been subject to underburns since stand-replacing fire because tree cover is low and bunchgrasses (Schizachyrium scoparium, Agropyron spicatum, Koeleria cristata, Stipa comata) are still an important component, their combined coverages generally exceeding 30%. Shrub cover is low in stature owing to heavy ungulate browsing on potentially tall shrubs (Prunus virginana, Amelanchier alnifolia, Shepherdia canadensis) and site severity; Rosa woodsii/acicularis and Symphoricarpos occidentalis dominate the shrub layer but their combined coverage seldom exceeds 10%. Artemisia frigida is constant pointing up the early to mid-seral nuture of these stands. Solidago missouriensis, Achillea millifolium and Thermopsis montana are 100% constant but hardly diagnostic for the type.

Other Studies: PSEMEN/SYMOCC was first described by Roberts (1980) for the core of the Little Rockies and Bears Paw Mountains and its range has now been confirmed for the surrounding high terrain by this study; PSEMEN/SYMOCC is apparently unique to these mountain masses rising in the midst of Montana's Great Plains.

SHRUB-DOMINATED PLANT ASSCIATIONS/COMMUNITY TYPES:

Artemisia cana/Agropyron smithii p.a.
(ARTCAN/AGRSMI; silver sagebrush/western wheatgrass; 6 plots
WHTF designation ARTCAN/Pascopyrum smithin)

Abstract

Environment: The ARTCAN/AGRSMI h.t. is found on level to gently sloping, narrow to extremely broad alluvial (floodplain) terraces and coalescing alluvial fans and upslope may occur in swales and gentle depressions. These sites are moister than contiguous upslope vegetation and in some cases may constitute wetland sites (none of our sampled stands were, this can only be determined by hydrological monitoring or examination of soil characteristics). Substrates are generally moderately fine to fine textured, being derived from sediments deposited in low energy environments (or in the case of basins and swales from slopewash), have a high water holding capacity and are well- to imperfectly drained. As speculated in other studies (Jorgenson 1979, Hansen et al 1991) perched or high water tables may influence the rooting zone for a portion of the year. A variety of community types were found to occur adjacent on upland sites, most commonly Stipa comata-Bouteloua gracllis and Agropyron smithii-Stipa comata, whereas moister positions were frequently dominated by the Symphoricarpos occidentalis, Rosa woodsii c.ts. or Sarcobatus vermiculatus-dominated types in highly erosive to badlands topography.

Vegetation: Artemisia cana having at least 5% canopy cover is diagostic of this type, but its cover usually exceeded 30%. None of the sites supported the robust 4-5 ft tall specimens cited by Hansen and Hoffman (1988) or Mueggler and Stewart (1980) for favorable site conditions. Artemisia frigida was consistently present in low amounts (greater than 10% where cattle grazing intensive) and other shrub species were only sporadic. Graminoids dominate the herbaceous layer with Agropryon smithii usually dominant, but in our samples Stipa viridula, S. comata and Bouteloua gracilis were all dominant or co-dominant in at least one stand (also had greater than 75% constancy). This variability is speculated to reflect differing grazing pressure as stands were not chosen for pristine condition (stand with B. gracilis dominant had A. smithii and S. viridula confined to canopies of A. cana). The forb component is insignificant; none had even 50% constancy.

Other Studies: This, or closely related, types have been documented in other areas of MT; southeastern (Hansen and Hoffman 1988), southwestern (Mueggler and Stewart 1980) and central (Jorgensen 1979). The most comprehensive sampling (43 stands) of this type is that performed by the Montana Riparian Association (Hansen et al. 1995) for the entire state. This type has been described only for Montana, North and South Dakota (Hansen et al. 1984).

Artemisia cana/Stipa comata c.t.

(ARTCAN/STICOM; silver sagebrush/needle-and-thread; 9 plots)
Environment: ARTCAN/STICOM is a newly described minor c.t. distributed sporadically across northern MT. from Blaine to Garfield Counties. It is found on benches to gently inclined slopes (extreme of 30% inclination) often in the vicinity of breaklands. It was sampled on well-drained alluvium, sandstone and igneous parent materials but most often encountered on mixed-origin glacial till. The ground cover was highly variable with some plots having a sward of Selaginella densa and lichens and other sites had 70% litter and trace amounts of S. densa; only one plot had as much as 10% exposed soil, gravel or rock (combined cover). ARTCAN/STICOM apparently is the driest environment capable of supporting Artemisia cana; this c.t. grades to a variety of graminoid-dominated, upland range sites, most often STICOM- Bouteloua gracilis or STICOM- Carex filifolia. Adjacent moister sites often support ARTCAN/AGRSMI or SARVER/AGRSMI.

Vegetation: All of the sites were sampled following three years of lower than normal precipitation and were in the midst of range that had been intensively grazed for years. Because only one protected site could be found (and this due to extraordinary topographic features) this species assemblage is noted as a community type. Sites are
recognized by Artemisia cana being at least well represented; its cover averages 27% and usually does not exceed 40%, relatively low values for a shrub type. Artemisia frigida is the only other shrub exceeding 50% constancy and its cover does not exceed 3\%.

Graminoids are definitely the dominant component with an average cover of 42%. Stipa comata with well represented coverage is diagnostic for the type but its average coveris 38% and on favorable sites is as great as 70%; other grasses had as high or higher cover values in several stands. Stipa comata is primarily associated with sandy substrates as are two other grasses consistently present within this community type, Calamovilfa longifolia and Andropogon scoparius (very reduced in cover due to high palatability). The grass composition and cover is quite variable, possibly reflecting past grazing practices. In stands judged to be intensively grazed Bouteloua gracilis had higher cover and Selaginella densa formed a nearly continuous carpet. Forbs are an insignificant component, present in only trace amounts; only Sphaeralcea coccinea, Psoralea argophylla and Gaura coccinea were at least 50% constant.

Other Studies: This c.t. has not been described in the literature and we fail to see what other recognized type of which ARTCAN/STICOM could possibly be a degraded representative. ARTCAN/STICOM occupies unique landscape positions (drier) relative to those of other A. cana-dominated types. Some stands have trace amounts of palatable species but also have significant coverages of other palatable species arguing that disturbance has not totally altered this type's expression.

Artemisia tridentata/Agropyron smithii h.t.

(ARTTRI/AGRSMI; big sagebrush/western wheatgrass; 13 plots WHTF designation ARTTRI/Pascopyrum smithii)

Environment: ARTTRI/AGRSMI is an extensive h.t. in the western portion of the study area but its coverage drops dramatically to the east and in Valley County only widely scattered, generally less than 5 acre stands are present. This h.t. is typically found on gently rolling (slope inclination < 10\%), till-mantled surfaces; it is also found in breaklands and on well-drained alluvial terraces. Others (Hansen and Hoffman 1988, Hansen et al. 1984, Tisdale and Hironaka 1981, Jorgensen 1979, Mackie 1970) have described this type as an edaphic or topoedaphic climax, associated with heavy soils in southeastern MT or shallow, gravelly, or claypan surface soils in north-central MT; lacking adequate soils information we can only speculate based on landscape positionthat most of our sites represent edaphically controlled conditions. The amount of exposed substrate is generally considerably higher (ave. 50%, ranging to 80%) than for adjacent communities.

Vegetation: This type is recognized (in part) by Artemisia tridentata being well represented in the shrub layer, usually its cover does not exceed 50%, averaging 32%. Therer are no other shrubs with high constancy but Chrysothamnus nauseosus, Artemisia frigida and Gutierrezia sarothrae are regularly present with low coverages. Well represented Agropyron smithii is diagnostic for the herbaceous layer, though intensively grazed areas may have lower coverages (ave. cover 19\%). Ease of livestock access makes these sites prone to overgrazing; none of the sampled sites were even close to pristine. Even in livestock exslosures weedy or invader species (e.g. Melilotus officinalis, Taraxacum officinalis, Bromus tectorum) are agressively expanding (having gained a foothold prior to exclosure creation). Somewhat inexplicably Selaginella densa does not seem to increase on these sites tha way it does on say ARTCAN/STICOM or other grassland sites, but it can occur with high cover values.

Graminoids with moderate to high constancy are Stipa viridula, Koeleria cristata, Poa secunda, and Carex filiffolia (or C. stenophylla); of these, only S. viridula was noted to be an occasional layer dominant, as was Agropyron spicatum. Stipa comata was well represented on sandier sites (sandy loams). Forbs are a minor component, those with greater than 50% constancy are Sphaeralcea coccinea and Vicia americana.

Other Studies: ARTTRI/AGRSMI is distributed from central MT (Jorgensen 1979, Mackie 1971) east to southeastern MT and contiguous portins of North and South Dakota (Hansen and Hoffman 1988, Hansen et al. 1984) and south to Wyoming, Utah and Colorado; it is absent from far northeastern MT and not reported for the Canadian prairies.

Artemisia tridentata/Agropyron spicatum h.t.
(ARTTRI/AGRSPI; big sagebrush/bluebunch wheatgrass; 5 plots
WHTF designation ARTTRI/Pseudoroegneria spicata)

Abstract

Environment: ARTTRI/AGRSPI is a major shrubland type throughout non-forested regions of MT, except for the extreme norhteastern corner. Within the study area it is associated with gently rolling upland of low to moderate relief of the till-mantled glaciated plains and is also found in breaklands and on well-drained alluvial terraces. No difinitive environmental breaks could be identified to separate ARTTRI/AGRSPI from ARTTRI/AGRSMI sites but the explanation likely resides in the soil/substrate component. Jorgensen (1979) has noted both ARTTRU/AGRSPI and ARTTRI/ Agropyron dasystachyum-Agropyron spicatum phase (our ARTTRI/AGRSMI h.t.) on the certain members of the Colorado shale formation in the same restricted geographic area and speculated the difference is the degree of soil development. The young soils lack horizonation and are vertically active, features favoring A. smithii and Stipa viridula over A. spicatum because of differences in their rooting response to vertical mixing. From our cursory data it would appear ARTTRI/AGRSPI is developed on coarser textured substrates than is ART/AGRSMI.

Vegetation: Well represented Artemisia tridentata and Agropyron spicatum are diagnostic for this type Shrubs with high constancy include Gutierrezia sarothrae, Artemisia frigida and Opuntia polyacantha, all recognized increaser species with overgrazing. Rhizomatous wheatgrasses A. dasystachyum and A. smithii are poorly represented, if present. High constancy graminoids are Stipa viridula, Carex filifolia, Poa secunda and Bouteloua gracilis, the last three being recognized increasers in this type. On sandstone substrates Muhlenbergia cuspidata Stipa comata and Calamovilfa longifolia were present, frequently well represented. Though we attempted to sample at least good condition sites the accessibility ARTTRI/AGRSPI to livestocks coupled with the potential to support highly palatable grasses and fire susceptibility of the shrub component has resulted in wholesale alteration of the vegetation. Burned sites require years for A. tridentata to reestablish; in interval they support the AGRSPIBouteloua gracilis or AGRSPI-Carex filifolia or Stipa comata-BOUGRA community types.

The combined forb coverage is generally less than 5% with only Sphaeralcea coccinea and Vicia americana having high constancy. Despite intensive grazing pressure these sites have only trace amounts of Selaginella densa; a similar condition was observed by Jorgensen (1979) for this type in central MT.

Other Studies: This is a broadly distributed habitat type, from Washington State where it constitutes the climatic climax of vast acreages east of the Cascade Crest (Daubenmire 1970) east to extreme southeastern MT where it is a topographic climax (Hansen and Hoffman 1988, Brown 1971). In central MT ARTTRI/AGRSPI is considered primarily a climatic climax type, at least in areas where the prevailing substrates are Colorado Shales; in western MT it constitutes a climatic climax type under much of a 12-18 precipitation zone. Study area representations of the type conform to the type desciption given for western (Mueggler and Stewart 1980) and central MT (Jorgensen 1971) in regard to flora, landscape positions occupied and the fact that it is found on diverse parent materials.

Atriplex confertifolia-Artemisia tridentata c.t.

(ATRCON-ARTTRI; shadscale-big sagebrush; 5 plots)
Environment: Within the study area ARTCON-ARTTRI is found exclusively on badlands/breaklands. The possibly unique physical/chemical nature of these sites seem to be the major factor exerting control on the distribution of this and allied communities; this borne out by fact that the community was found on contrasting aspects and positions, from low-gradient toeslopes and benches to steep slopes. Substrates were not characterized as to geological formation, but they were noted to be fine-textured (clay loams and silty clays), high in shrink-swell clays (noted by surface fissures) and highly erosive, to both water (rill and gully features, pedicelling of larger forbs and grasses) and wind (blowout depressions). The sparse vegetation contributes little litter and typically sites have 80% plus exposed substrate. Some sites have in excess of 60% exposed gravel; it could originate from surface deflation or as slopewash from upslope postions. This type often graded to ARTTRI/Agropyron spicatum or Stipa comata-Bouteloua gracilis on more conventional substrates and to Atriplex nuttallii/Sporolobus airoides on other badland surfaces.

Vegetation: Low ($<10 \%$) to moderate ($<40 \%$) combined coverages of Artemisia tridentata and Atriplex confertifolia characterize this type; in all but one plot A. tridentata cover exceeded that of A. confertifolia Other shrubs are poorly represented and only Atriplex nuttallii had greater than 50% constancy. Graminold coverage is highly variable, highest on benchlands and less than 10% on moderate to steep, south-facing slopes. Grasses having higher cover and constancy here as opposed to adjacent communities on more normal soils include Sporolobus airoides, Aristida longiseta, and Oryzopsis hymenoides. Agropyron spicatum may be abundant. relating these sites to ARTTRI/AGRSPI. Forbs and bryophytes are present in only trace amounts: Oenothera cespitosa and Eriogonum pauciflorum are forbs more associated with badlands than zonal sites.

Other Studies: Study area examples of ATRCON-ARTTRI appear to be very similar in vegetation and environment to a c.t. of same name described by Brown (1971) for southeastern MT badlands; our conception of ATRCON-ARTTRI includes a additional Brown-defined type (ATRCON-ARTTRI/Agropyron spicatum) described as being the most extensive of southeastern badland types. In southcentral MT the Pryor Mountains vicinity and Bighorn Canyon NRA support a compositionally similar type termed ARTTRI-ATRCON by DeVelice and Lesica (1993) and sagebrush desert shrubland by Knight et al. (1987). ARTTRI-ATRCON occurs on very different habitat, terraces and alluvial fans derived from calcareous sandstone and having a silty texture.

Atriplex nuttallii/perennial grass c.t.

(ATRNUT/GRASSP; saltsage/perennial grass; 4 plots)
Environment: ATRNUT/GRASSP is a minor type restricted to badiand sites with highly erodable substrates derived from dark shales and mudstone. Please note that that in the vegetation key and various appendices, such as constancy/cover, that ARTNUT/GRASSP is split into three tentative types, ATRNUT/Agropyron smithii, ATRNUT/Sporobolus airoides, and ATRNUT/Agropyron spicatum. Insufficient plot data did not permit unequivocal recognition of these tentative community types, thus they have been lumped under ATRNUT/GRASSP until such time that they can be individually substantiated by plot data and their ecological conditions described.
ATRNUT/GRASSP was sampled on moderate to steep slopes of various aspects. Combinations of the above conditions result in nearly continuous sheet, rill and gully erosion and more than 80% exposed soil and gravel preclude significant soil development. Though the fine soil fraction is dominated by clay and silt at least 40% of the soil consists of sand-and gravel-sized shale shards resulting in relatively well-drained substrates. This type usually exists in a matrix of other badland types, Sarcobatus vermiculatus-ATRNUT, ATRNUT/ERIPAU, Artemisia tridentata-Atriplex confertifolia and Juniperus horizontalis/Andropogon scoparius (on more mesic sites).

Vegetation: Sites are depauperate with combined canopy cover not exceeding 50%, the shrub and grass components sharing dominance. These sites differ from other badland sites by having at least 5% cover of perennial grasses, of which the following have dominated at least one site, Agropron dasystachyum, A. spicatum, Sporobolus airoides and Oryzopsis hymenoides. Only S. airoides is associated with adverse soil conditions of high alkali content suggesting these sites span a catena of soil chemistry and water balance. Either Atriplex nuttallii or Sarcobatus vermiculatus is always well represented. Artemisia tridentata and Gutierrhiza sarothrae are consistently present but generally poorly represented. The forb component is negligible with no species even moderately constant.

Other Studies: For central MT Harvey (1982) has described (from one plot) a ATRNUT/Agropyron smithii c.t. on shale derived alluvium; site conditions are not those of a badland and high vegetative cover reflects the less adverse site conditions relative to ATRNUT/GRASSP. In the Pryor Mountains vicinity DeVelice and Lesica (1993) describe compositionally similar types, ARTTRI-ATRNUT and ATRNUT/ Monolepsis nuttalliana, that possibly because of livestock grazing have a very sparse grass cover; badland conditions also obtain at these sites with erosive bentonitic soils and conspicuous rill and gully erosion.

Atriplex nuttallii/Eriogonum pauciflorum c.t.
 ATRNUT/ERIPAU; saltsage/few-flowered wild buckwheat; 4 plots)

Abstract

Environment: This c.t. has been documented from only Rosebud County where it is a minor type restricted to benches or flats with heavy-textured, shrink-swell-cracked, poorly drained soils derived from shale (formation unidentified). With vegetation sparse the amount of exposed soil and gravel usually exceeds 90% and sheet and rill erosion is ubiquitous; though relief is slight these would be considered "badland" sites.

Vegetation: These site are depauperate in cover (combined cover usually less than 40\%) and diversity (average 8 species per plot). The shrub layer dominant Atriplex nuttallii is well represented but seldom abundant. Chrysothamnus nauseosus is 100% constant, its cover not exceeding 10%. Artemisia tridentata dominated one stand on an area transitional to ARTTRI/AGRSPI, the most commonly noted bordering community. Agropyron dasystachyum and Oryzopsis hymenoides are grasses with the highest cover (not exceeding 5\%) and constancy $(>50 \%)$. Eriogonum pauciflorum is the dominant forb (cover to 30%) and often the only forb noted over broad expanses.

Other Studies: There are a number of community types recognized for MT with Atriplex nuttallii dominant/codominant but only ARTNUT/ Monolepsis nuttallii in the Pryor Mountains vicinity (DeVelice and Lesica 1993) and ATRNUT/ Oryzopsis hymenoides of southwestern MT (DeVelice 1992) occur in similar habitats, sedimentary (mostly shale) badlands with poorly-drained substrates. ATRNUT/ERIPAU sites occur in the same types of landscapes with ostensibly similar substrates (shales, bentonite) as the Artemisia longifolia-Eriogonum pauciflorum c.t. and share the same forb dominant. ATRNUT/ERIPAU may simply represent a local variation of types common to shale-derived badland environments throughout the Intermountain West (Bourgeron and Engelking 1991).

Ceratoides lanata/ Stipa comata c.t.

(CERLAN/STICOM; winterfat/needle-and-thread; 5 plots
WHTF designation Krascheninnikovia lanata/Stipa comata)
Environment: This type is tentatively referred to as CERLAN/ Stipa comata c.t.; with the input of plots from the Big Dry R.A. and reanalysis it appears this is a type potentially dominated by Agropyron spicatum. We speculate Stipa comata is currently dominant due only to intensive cattle grazing and thus this type represents a seral stage of a putative CERLAN/ Agrpyron spicatum plant association (it should be noted that there is no CERLAN/ Agropyron spicatum p.a. recognized in the western U.S.). CERLAN/STICOM is a minor c.t. scattered across the complete extent of study area, on the periphery of badlands or breaklands, usually on flats and footslopes of gentle terrain. CERLAN/AGRSPI frequently forms sharp ecotones with sites dominated by AGRSPI-Carex filifolia or STICOM-CARFIL. Various investigators (Daubenmire 1970, Gates et al. 1956) have tried without success to establish what soil variables lead to the frequently noted sharp discontinuites between Ceratoides-dominated stands and adjacent vegetation; neither excessive CaCO_{3} nor defieciency of $\mathrm{N}, \mathrm{P}, \mathrm{K}$ or S seem to controlling.

Vegetation: All but two of the sampled stands had been highly impacted by grazing; both Ceratoides lanata and Agropyron spicatum the potential dominants of shrub and herb layer, respectively are highly preferred browse/forage and have been severely impacted, leading to the increase of S. comata Carex filifolia and Bouteloua gracilis. Both stands lightly to ungrazed (far from water) had double to triple the cover of C. lanata and A. spicatum of grazed stands. Stipa viridula also had higher cover under reduced grazing. Artemisia frigıda and
A. tridentata were the only shrubs exceeding 50% constancy and only A. frigida was well represented; apparently
A. frigida does not expand on CERLAN/AGRSPI as it does on other rangeland sites. Forbs are a minor component, only Sphaeralcea coccinia and Plantago patagonica (a weed) were at least 50% constant. This type is notable for not supporting Selaginella densa as a major increaser species.

Other Studies: The only other documented example of Ceratoides (Eurotia) lanata/Stipa comata c.t., that of Washington State, is noted to be quite rare (S1); its composition and site characteristics are not currently published (Bourgeron and Engelking 1991).

Juniperus horizontalis/Agropyron dasystachyum c.t.
(JUNHOR/AGRDAS; creeping juniper/thick-spike wheatgrass; 7 plots
WHTF designation Juniperus horizontalis/Elymus lanceolatus)

Abstract

Environment: JUNHOR/AGRDAS was found only as small patches (<< 1 acre) in erosion prone landscapes associated with or in vicinity of badlands in Phillips and Valley Counties; it can be expected in other localities where similar substrates exist. Usually patches of JUNHOR/AGRDAS are embedded in a matrix of eroded bare spots, JUNHOR/ANDSCO, JUNHOR/JUNBAL and grades to AGRSMI-STIVIR and STICUR-STIVIR.

JUNHOR/AGRDAS sites are generally characterized by weathered shales, including bentonite deposits and alluvium, and bedded shales with a thin layer of glacial drift. All sites evidenced some degree of sheet erosion, most were both rilled and gullied and still others are sinks for erosional processes. Soils were high in clays and two sites had weak mottling and gleying. Several sites had soils with a textural fraction dominated by shales decomposed to sand-sized or larger particles and supported Calamovilfa longifolia and Calamagrostis montanensis, grasses associated with sandy soils. Positions ranged alluvial terraces to all variety of slope features from toeslopes to slope shoulders, but never on warmer aspects. Ground cover characteristics varied widely, the most typical situation being a high percentage ($>60 \%$) of exposed soil (due to erosion) or low gradient slopes and flats having a nearly continuous litter layer. Only one stand had abundant Selaginella densa so typical of adjacent upland sites.

Vegetation: Juniperus horizontalis well represented is diagnostic; it's cover ranged from 10 to 60%, averaging 42%. It apparently spreads relatively rapidly, colonizing areas recently denuded. Shrubs associated with moister environments, Symphoricarpos occidentalis, Rosa spp., and Artemisia cana are more than 50% constant, but their coverages do not exceed 5%. Grass cover ranges widely depending in part on degree of active erosion and probably length of time since colonization. Agropyron dasystachyum is 100% constant, usually dominant and diagnostic at the well represented level, but in some areas shares dominance with A. smithii. On moister positions Stipa curtiseta and Stipa viridula are present with as much as 30% canopy cover. Carex pensylvanica (C. inops) is an important graminoid on more than half the plots. Vicia americana is the only forb exceeding 50% constancy. The presence of Eriogonum pauciflorum and Artemisia longifolia reflect the badland setting of these sites.

Other Studies: Jorgensen (1979) describes for the Yellow Water Triangle a very similar type, JUNHOR/Carex parryana (lacking only A. dasystachyum), developed on "sandy" shales; he hypothesizes JUNHOR/CARPAR to be seral to ARTTRI/AGRDAS. In central and southcentral Montana Miller (1978) sampled several plots that would key to JUNHOR/AGRDAS (by virtue of A. smithii cover). In southeastern Montana a number of plots within what Hansen and Hoffman (1988) consider a topoedaphic climax, JUNHOR/ Carex heliophila h.t. (syn. C pensy/vanica), appear closely similar in vegetation to JUNHOR/AGRDAS but occur only on sandy substrates This community type or homologues confined to sandy soils extend into western North Dakota (Redmann 1975. Hansen et al. 1984, Hanson and Whitman 1938).

Juniperus horizontalis/Andropogon scoparius c.t.

(JUNHOR/ANDSCO; creeping juniper/little bluestem; 11 plots; WHTF designation JUNHOR/ Schizachyrium scoparium)

Environment: This newly defined type occurs as small patches (<1 acre), often part of a J. horizontalisdominated complex, in the midst of badlands or breaklands or on adjacent gently rolling terrain. It develops mostly on benches (alluvial terraces) but positions included toe or footslopes and backslopes (to the crest). Substrates are sedimentary, mostly shales decomposed to gravelly sands (fines outwashed?) or glacial drift. These sites are highly erosive and and where J. horizontalis cover is low there is extensive sheet, rill, and gully eroion. Even where sites are stabilized by appreciable vegetation ($>70 \%$) erosion encroaches from all sides due to alluvial processes from below and above and wind generated blowouts from above. JUNHOR/ANDSCO is found in a complex with JUNHOR/JUNBAL (moister positions), JUNHOR/AGRDAS (unknown relationship), JUNHOR/CALLON (coarser-textured substrates) and grades to ARTTR//AGRSPI, AGRSPI-BOUGRA, AGRSPICARFIL and STICOM-CARFIL on the uplands.

Vegetation: Juniperus horizontalis dominates the shrub layer, occurring in widely varying ($20-80+\%$) coverages. Rosa arkansana is the only other shrub with constancy exceeding 50%, but occurs with low cover values. Scattered Symphoricarpos occidentalis, Shepherdia argentea and Arctostaphylos uva-ursi occur on sites presumed to be more moist. Well represented (common where grazing impact significant) Andropogon scoparius and/or Agropyron spicatum are diagnostic for this type. The preliminary classification recognized two types (JUNJOR/ANDSCO \& JUNHOR/AGRSPI) but subsequent analysis could find no difference in their site parameters and continuous variation in cover of diagnostic species; these observations resulted in a merging of the types. Both grasses are highly palatable and relative grazing impacts cannot be addressed without exclosure studies. Graminoids with high constancy include Carex filifolia and Koeleria cristata. Calamovilfa longifolia was well represented on sites well drained and sandy. Though poorly represented, the mere presence of Juncus balticus and Agropyron dasystachyum denotes transitions to moister sites. The forb component has slightly greater coverages than in other non-wetland shrub types; Thermopsis rhombifolia was well represented in about 30% of the plots.

Other Studies: The study area examples of JUNHOR/ANDSCO are compositionally intermediate between JUNHOR/Carex heliophila (syn. C. pensylvanica, C. inops) h.t. of southeastern MT and contiguous portions of North and South Dakota (Hansen and Hoffman 1988) and JUNHOR/ANDSCO described for western North Dakota (Hansen et al. 1984). Both JUNHOR/CARHEL and JUNHOR/ANDSCO (ND) occur as a topoedaphic climaxes on steep, north-facing slopes with sandy substrates. In Custer County Culwell and Scow (1982) describe a JUNHOR/sidehill type (A. scoparius dominant) for sandy, north-facing slopes; this type is a homologue of both JUNHOR/ANDSCO and JUNHOR/CARFIL. Jorgensen (1979) describes a JUNHOR/ Carex parryana (C pensylvanica ?) h.t. for central Montana that occurs on sites very similar (sandy shales) to those of study area and which he considers successional to ARTTRI/AGRSPI. Miller's (1978) extensive J. horizontalis study included plots identified as JUNHOR/AGRSPI and JUNHOR/ANDSCO-FESIDA that would be placed in our JUNHOR/ANDSCO c.t. J. horizontalis-dominated vegetation has been descibed for Alberta (Coupland 1961) but not south of MT.

Juniperus horizontalis/Calamovilfa longifolia c.t.
 (JUNHOR/CALLON; creeping juniper/prairie sandreed; 4 plots)

Environment: JUNHOR/CALLON is a minor type associated with the badland topography northwest of Glasgow, MT and probably can be expected in similar highly erosive, shale-dominated environments. Whether found on butte tops or slopes, toeslopes or alluvial bottoms erosion was a dominant process (mostly sheet and rill) with up to 90% exposed substrate. Soils are single-grained and, even though derived from shales or siltstones, are dominated by sand and larger-sized particles. We posit that this type is a relatively early seral stage of other J . horizontalis-dominated (e.g. JUNHOR/ANDSCO) or possibly grassland types. It occurred both on wetland sites (gleyed and mottled soils) and well-drained sandy uplands with the only compositional differences between the two situations being cover of species represented.

Vegetation: J. horizontalis is well represented but coverages are not, on the average, so high as in other J . horizontalis -dominated types. Calamagrostis montanensis and Calamovilfa longifolia are well represented on all sites; Andropogon scoparius is also 100\% constant but occurrs in only trace amounts. Forb composition is much like that of JUNHOR/JUNBAL, depauperte with Thermopsis rhombifolia and Solidago nemoralis 100% constant.

Other Studies: Miller (1978) named a JUNHOR/CALLON type but compositionally it bears little resemblance to the type named identically and described herein, though Miller does characterize the sites as having much bare ground and evidence of erosion. No other examples of this type have been descibed.

Juniperus horizontalis/Juncus balticus c.t.

(JUNHOR/JUNBAL; creeping juniper/Baltic rush; 4 plots)

Environment: JUNHOR/JUNBAL is a minor c.t. described only from the badlands northwest of Glasgow, MT. This type occurs as small patches on narrow alluvial benches intercalated between drainages and upslope postions; it extends to toeslope postions of north-facing slopes. Substrates are alluvium (stream and slope-wash depostitions) derived from shales, including bentonite. All plots had weakly mottled and gleyed soil (at 8 in depth) which points to their quite probably being wetland sites. These sites are subject to erosion through overland flow but due to cladding effect of high J. horizontalis coverages the erosion amounts are minimal, less than 5% of the surface area. Adjacent sites are often part of a J. horizontalis-dominated complex, including JUNHOR/ANDSCO and JUNHOR/CALLON.

Vegetation: J. horizontalis coverage generally exceeds 30% and was noted to completely blanket some sites (unsampled). Rosa spp. are 100% constant. Juncus balticus is at least well represented, often abundant. Calamagrostis montanensis, Calamovilfa longifolia and Andropogon scoparius were 100% constant, occasionally more abundant than J . balticus. The combined cover of graminoids appears to be inversely related to J . horizontalis cover. Thermopsis rhombifolia, Achillea millifolium and Antennaria neglecta were characteristic of a depauperate forb layer; only T. rhombifolia was well represented.

Other Studies: JUNHOR/JUNBAL has not been previously described, nor has J. horizontalis been previously identified as a wetland dominant. Juncus balticus is associated with anthropogenically modified wetlands (Hansen et al. 1994) but not even trace amounts of possibly displaced previous true wetland species (graminoids) could be found on sampled sites.

Rhus trilobata/Agropyron spicatum h.t.

(RHUTRI/AGRSPI; skunk-bush sumac/bluebunch wheatgrass; 3 plots; WHTF designation Rhus aromaticalPseudoroegneria spicata)

Environment: RHUTRI/AGRSPI is a minor type in the study area, occurring as small patches on gently to steeply sloping breaklands, mostly on slope shoulders but capable of extending to footslopes. Exposures are generally the warmest in a local mosaic. Substrates included calcareous sandstones and shales and a lone instance on an extrusive volcanic; all soils were shallow and coarse-textured. Surface coverage varied between high coverages of soil/gravel ($>50 \%$) and swards of Selaginellla densa (on overgrazed land). Adjacent c.ts. are often of the Artemisia tridentata series or Stipa commata-Boutloua gracilis (on uplands).

Vegetation: Well represented Rhus aromatica is diagnostic for the type; coverage ranges to 20%. Other shrubs include Artemisia frigida, Gutierrezia sarothrae and Yucca glauca. Agropyron spicatum is well represented, but due to site severity (and grazing), does not exist in high coverages. Stipa comata and Muhlenbergia cuspidata have 100% constancy and S. comata tends to have relatively higher coverage on accessible sites with grazing pressure. Phlox hoodii and Liatris punctata were present in all plots.

Other studies: Brown (1971) first described this c.t. for slope shoulders in southeastern MT badlands (porcellanite substrates). Hansen and Hoffman (1988) described virtually the same type over a greater extent in southeastern MT. Mueggler and Stewart (1980) extended the known occurrences to breaklands of the Missouri River's major tributaries, especially in the vicinity of the Yellowstone River drainage; though floristic composition differs slightly their type is essentially the same in landscape position and environmental variables as described herein.

> Sarcobatus vermiculatus/Agropyron smithii c.t.
> SARVER/AGRSMI; black greasewood/western wheatgrass; 3 plots; WHTF designation SARVER/Pascopyrum smithil)

Environment: Based on our small sample size SARVER/AGRSMI would appear to be a minor c.t., but Hansen et al. (1991), having extensively sampled characteristic habitats of this c.t., state it to be a major type of central and eastern MT. Our sampled stands were associated with older alluvial terrace deposits derived from shale (or at
least fine-grained sedimentary material). Sites were in a matrix of badland washes and no doubt received considerable input from overland flow. We speculate for at least for a portion of the year soils, due to the water perching potential of the heavy-textured soils, are saturated at a depth tapped by S. vermiculatus. None of our sites possessed hydric soils and hydrologic regime necessary to confirm a jurisdictional wetland, as found for a portion of this c.t. by Hansen et al. (1995).

Vegetation: As noted elsewhere (Mueggler and Stewart 1980) this type has a shrubland aspect, despite S vermiculatus cover often not exceeding 10%, due to the robust stature of S. vermiculatus compared to that of the herbaceous layer. As noted by Branson et al. (1970), Johnson and Nichols (1982) and Brown (1971) S. vermiculatus has high alkali (especially sodium) tolerance, but other factors must be invoked to explain its floodplain presence. Other shrubs present include Artemisia frigida, A. cana and A. tridentata (occasionally noted to be well represented). Agropyron smithii dominated the herbaceous layer despite being heavily grazed; no other herbs were consistently present.

Other Studies: In Montana Mackie (1970) first described this c.t. (as SARVER/ Agrpyron spp. h.t.) for the Missouri River Breaks. Mueggler and Stewart (1980) noted its presence on floodplains of arid portions of western MT and playas and lakeshores of north-central MT. Hansen et al. (1995) are the source of the most encompassing vegetation description. Jorgensen's (1978) SARVER/Agropyron dasystachyum h.t., described from the Yellow Water Triangle, is an ecological analogue both in flora and environmental variables. Branson et al. (1970) describe how communities very similar to this c.t. relate to several Valley County badland soil catenas and driving variables of vegetation composition.

Sarcobatus vermiculatus-Atriplex nuttallii c.t.
(SARVER-ATRNUT; black greasewood-Gardner's saltsage; 10 plots; WHTF designation SARVER- Atriplex gardneri)

Environment: This is a common type restricted to "badlands" characterized by acid shale, bentonite or some other highly erodable heavy-textured substrate. Rill, gully and sheet erosion is natural to and omnipresent on these moderately to steeply sloping sites. The strength of substrate as controlling factor is reflected in fact that SARVER-ATRNUT occurs on steep slopes of all aspects. The principal factors controling plant distribution are low infiltration rates, low available water holding capacity and high total soluble cations (alkaline) and sodium (saline) Branson et al. (1970). All stands had at least 80% exposed soil and gravels; only trace amounts of rock were exposed. With few exceptions litter cover is less than 5%. Adjacent c.ts. on non-badlands substrates were usually Stipa comata-Bouteloua gracilis, STICOM-Carex filifolia and Artemisia tridentata-dominated community types or SARVER/Agropyron smithii on water receiving positions.

Vegetation: Shrubs are the dominant lifeform on these sites but their combined cover seldom exceeds 40%. Well represented Sarcobatus vermiculatus or Atriplex nuttallii are diagnostic for the c.t. but on especially eroded or otherwise inimical substrates (small patches) they may be poorly represented. Atriplex confertifolia is consistently present in the easternmost examples of this type whereas A. nuttallii is more likely to occurr in the northcentral counties. Artemisia tridentata is present in increasing amounts where SARVER-ATRNUT grades to ARTTRI/AGRSMI. Graminoids are notably low in cover, not exceeding 5% in the aggregate. Forb coverage is highly variable in cover and composition. The annual, Atriplex dioica, was abundant on several sites; only Iva axillaris, Suaeda moquinii and Machaeranthera canescens had constancies approaching 50%

Other Studies: DeVelice and Lesica (1993) have described a SARVER/Atriplex nuttallii c.t. from bentonite substrates in the Pryor Mtns. of MT; in the same vicinity SARVER-ATRNUT is subsumed within the saltbush desert shrubland of Knight et al. (1987). Brown (1971) also described a SARVER type and documented associated soil properties; his SARVER type had notably higher sodium concentrations and pH values than the next most alkaline c.t., Atriplex confertifolia-Artemisia tridentata. The SARVER c.t. described here includes all of the above-cited types. This c.t. extends into Wyoming (Bourgeron and Engelking 1992) on substrates comparable to those of MT. Branson et al. (1970) describe the assciation between chemical/physical properties of Bearpaw shales of northeastern MT and alluvium derived therefrom to plant communities, including several dominated by A.
nuttallii and S. vermiculatus and a combination of the two species. Other S. vermiculatus-dominated types with an appreciable grass component probably differ in site factors.

Shepherdia argentea c.t.

(SHEARG; thorny buffaloberry; 3 plots)
Environment: SHEARG is a minor study area c.t., documented only from Valley and Phillips Counties where it occurs as small stands (mostly < $1 / 5 \mathrm{acre}$) on the most mesic positions in a rolling uplands or badlands landscape mosaic. (In our sampling scheme we have not found SHEARG to be associated with alluvial bottoms, with the exception of drainage headlands; this constrasts with observations of Hansen et al. [1991] who targeted riparian areas specifically and found the type along the Sun, Milk, Missouri and Yellowstone Rivers.) Stands are not only small, but show much internal heterogeniety in both microtopography and vegetation, with clumpy distribution of S. argentea (and other shrubs). The smallest stands, not much more than individual clumps or stringers of S . argentea, occur on lee-slope positions, freqeuently on northwest- to east-facing slope brows and in swales; these are moisture-collecting positions, either as snow or runoff.

Soils were developed from glacial drift or shales. One sampled stand at drainage headiands qualified as jurisdictional wetland with gleying and mottling within 6 in of surface. Being productive sites, the ground cover is primarily litter, though much bare soil is exposed where animal trails are concentrated.

Due to position and structure these sites are heavily used by wild ungulates for cover; domestic stock also use these sites preferentially. Either/both of these groups are probably implicated in the introduction of Euphorbia esula (leafy spurge) to these moist habitats that are so favorable to its propogation.

Vegetation: Shepherdia argentea, mostly 4 to 7 ft tall, is usually abundant, forming a patchily distributed dominant shrub stratum, though Symphoricarpos occidentalis or Juniperus horizontalis may have greater cover, but in a low shrub layer. Ribes setosum is consistently present as a mid to tall shrub. The forb layers form two sampled stands were very different, apparently reflecting differences in soil moisture. The wet-site stand herb layer was dominated by Poa palustris whereas the drier stands were dominated by Agropyron smithii.

Other Studies: For Montana, SHEARG was first described in the southeast by Hansen and Hoffman (1988) and subsequently documented to range from southwestern, through central, to eastern sections by Hansen et al. (1995). Other northern Great Plains occurrences are described from North Dakota (Nelson 1961 and Boldt et al. 1978) and cited from South Dakota (Faber-Langendoen 1993).

GRASS- AND FORB-DOMINATED PLANT ASSOCIATIONS/COMMUNITY TYPES

Agropyron smithii-Bouteloua gracilis c.t.
(AGRSMI-BOUGRA; western wheatgrass-blue gramma; 24 plots
WHTF designation Pascopyrum smithii-BOUGRA)

Abstract

Environment: The largest expanses of AGRSMI-BOUGRA, an important grassland type, occur on alluvial flats and basins and upper level stream terraces where fines (silts and clays) have accumulated in low energy environments. It is also found extensively on rolling upland sites where glacial drift is shallow or nonexistent and the underlying fine-textured soils are derived from shales and siltstone or even sandstone (with higher coverages of Stipa comata and Calamovilfa longifolia). Small stands are associated with swales or other collecting positions (toeslopes). Soils range from sandy loams to clay loams. Ground cover is characterized by high coverages ($>60 \%$) of either Selaginella densa (presumed result of overgrazing) or exposed soil; litter cover seldom exceeds 10\%. AGRSMI-BOUGRA often grades to STICOM-BOUGRA and STICOM-CARFIL h.ts., which are found on better drained positions with coaser-textured soils, or the STICOM-BOUGRA c.t . which represents a grazing impacted area.

Vegetation: The accessibility of this type and palatability of the putative dominant (and diagnostic) species, Agropyron smithii and A. dasystachyum, has resulted in marked alteration of composition. Severe overgrazing alters this c.t. to STICOM-BOUGRA, BOUGRA (appearance of short-grass prairie) or weed-dominated pastures; we have documented fenceline contrasts with $90 \% \mathrm{~A}$. smithii on the protected side and virtual extirpation on impacted side. The relative proportions A. smithii/dasystachyum versus B. gracilis and Carex filifolia appear inversely related to grazing intensity; a similar response has been documented for this type on Canadian prairies (Coupland et al 1960). Koeléria cristata and Carex filifolia exhibit high constancy and coverages occasionally exceeding 20\%. Muhlenbergia cuspidata and Andropogon scoparius colonize areas where disturbance has resulted in localized erosion. We speculate that the high coverages of Stipa comata found in some stands (and not on sandsstone derived soils) result from grazing-reduced competition from rhizomatous grasses. Hansen and Hoffman (1988) note S. comata cover does not exceed 5\% in undisturbed stands of Agropyron smithii-Carex filifolia, a very similar type of southeastern Montana and southwestern North Dakota.

Artemisia frigida is the only shrub of note (nearly 100% constant) but its cover seldom exceeds 5%, even with overgrazing. Aggregate cover of forbs does not exceed trace amounts except under intensive grazing where increaser species (Plantago patagonica, Opuntia polyacantha, Phlox hoodii, etc.) proliferate; P. hoodii, O. polyacantha and Sphaeralcea coccinea are the only forbs with greater than 50% constancy.

Other Studies: Under various designations, this c.t. is well documented to occur on gentie terrain with finetextured soils (having a greater than normal proportion of clay/sit); from the brown soil zone of southern Canada as Bouteloua-Agropyron faciation (Coupland 1961), western ND as Agropyron smithii-Bouteloua gracilis-Carex spp. (Hanson and Whitman 1938, Quinnald and Crosby 1958) and AGRSMI-CARFIL (Hansen et al. 1984 and Hansen and Hoffman 1988), southeastern MT as AGRSMI-CARFIL (Hansen and Hoffman 1988), central and eastern MT as BOUGRA-AGRSMI (Anderson 1973), Custer County as AGRSMI-BOUGRA-Buchloe dactyloides (Culwell and Scow 1982) and Bull Mountains as BOUGRA-AGRSMI (Culwell 1977c). We have conservatively employed the designation AGRSMI-BOUGRA c.t. because it reflects the indicator significance of A. smithii regarding soil conditions and the generally greater constancy and coverage of B. gracilis (versus C. filifolia).

Agropyron smithii-Stipa viridula c.t.

(AGRSMI-STIVIR; western wheatgrass-green needlegrass; 23 plots WHTF designation Pascopyrum smithii-Nasella viridula)

Environment: AGRSMI-STIVIR was probably a major community type throughout the study area (Coupland 1961) but has been put to the plow because of its favoribility for agriculture. Its occurrence is also much reduced and degraded because the gentle terrain affords ready access to cattle. AGRSMI-STIVIR is found on a broad variety of topographic positions, from rolling upland of low to moderate relief to swales of breaklands and moderate to steep, cooler aspects of coulees. It occurs on protected exposures, moister or water receiving
positions in the landscape that possess fine-textured soils, though frequently a thin mantle of glacial drift may cover the sedimentary substrates which provide the majority of rooting medium. This type often grades to STICOM-BOUGRA, STICOM-CARFIL or AGRSMI-BOUGRA on adjacent uplands and Artemisia cana -dominated or Symphoricarpos occidentalis communities on lowland positions. Intensive grazing of AGRSMI-STIVIR has resulted in much conversion to STICOM-BOUGRA and ASRSMI-BOUGRA c.ts. or weed-dominated c.ts. with a high percentage of introduced annual grasses (Bromus japonicus, B. tectorum, Festuca octoflora, etc.).

Vegetation: Agropyron smithii and/or A. dasystachyum andStipa viridula well represented are diagnostic for this type, however fenceline contrasts indicate that A. smithii can be reduced to trace amounts and even extirpated by intensive grazing. On lightly grazed rolling terrain A. smithii cover approached 95%. Ascertain intensity of grazing before relaxing cover criteria for type identification. Stipa viridula was chosen as an indicator of "favorable habitats" being associated with "heavy soil, by protection from wind, or by extra moisture from runoff.", Coupland 1961. Bouteloua gracilis and Carex filifolia (S. comata on sites with better drainage) are capable of dramatic increase with grazing and prolonged drought (Coupland 1961). Various mixes of Carex spp. (C. stenophylla, C. filifolia, C. heliophyla) and Koeleria cristata are highly constant and range widely in cover values.

Selaginella densa cover is high (>70\%) on severely overgrazed lands; other overgrazed sites support only trace amounts. High constancy forbs include Phlox hoodii, Sphaeralcea coccinea, Antennaria parviflora and Psoralea argophylla. Artemisia frigida is the only shrub with greater than 50% constancy; on overgrazed pastures its cover approaches 20\%.

Other Studies: Moore and Culwell (1981) described a community type, identically named, from the Bull Mountains of Musselshell County, MT. Culwell and Scow (1982) sampled two c.ts. (AGRSMI-BOUGRA-BUCDAC and STICOM-AGRSMI) for Custer County that contained plots that would key to AGRSMI-STIVIR. Hansen and Hoffman (1988) describe a AGRSMI-CARFIL. h.t. for southeastern MT and western North and South Dakota containing stands with S. viridula prominent; these stands are comparable to AGRSMI-STIVR in site variables and composition. In general the Agropyron smithii -dominated c.ts. described for western North Dakota (Hanson and Whitman 1938, Hansen et al. 1984, Quinnald and Crosby 1958) reflect more xeric conditions than those of AGRSMI-STIVIR. However, data presented by Quinnald and Crosby (1958) for ungrazed North Dakota mesas shows S. viridula to be an important component of A. smithii- and A. dasytachyum-dominated stands and Whitman (1976) documents a AGRSMI-STIVIR-BOUGRA c.t from southwestern ND occurring on silty clays, clay loams, and clays. For the prairies of Alberta the community closest in composition is Agropyron (mostly dasystachyum)-Koeleria (cristata) faciation (Coupland 1961) and is described as occurring only on rolling terrain with lacustrine clay soils.

Agropyron spicatum-Bouteloua gracilis c.t.

(AGRSPI-BOUGRA; bluebunch wheatgrass-blue grama; 4 plots;
WHTF designation Pseudoroegneria spicata-BOUGRA)
Environment: AGRSPI-BOUGRA is a common type in western MT, east of the Continental Divide, declining in prominence to the east. Within the study area it most common in foothills to Little Rockies and Bears Paw Mountains, generally associated with warmer exposures and well-drained soils. and becomes very sporadic in the easternmost counties (where associated with protected positions). It is Study area soils were derived only from sandstone (calcareous and non-calcareous) or glacial drift but this type was noted to develop on other substrates. It was most often observed to grade to STICOM-BOUGRA and AGRSPI-POASEC on drier exposures and ARTTRI/AGRSPI, AGRSMI-BOUGRA on gently rolling topography. Several fenceline contrasts reveal that Agropyron spicatum can be virtually extirpated by grazing. This type was sampled only on range minimally impacted by grazing. Given the accessibilty of this type and its vulnerbility to grazing, it is quite probable its potentially occupied acreage is much greater than that currently occupied.

Vegetation: Sites are dominated by Agropyron spicatum (20-70\% cover); other highly constant graminoids include Bouteloua gracilis, Stipa comata, Carex filifolia and Muhlenbergia cuspidata. The first three named graminoids increase storngly with grazing. Combined cover shrub layer may exceed 5%, but individual species cover does not, with the exception of Yucca glauca (one site). Artemisia frigida, Gutierrhizia sarothrae, and Yucca
glauca are the only high constancy ($>75 \%$) shrubs. Although forb diversity is relative high (>15 species per plot), only Phlox hoodii and Opuntia polyacantha are highly constant.

Other Studies: Mueggler and Stewart (1980) have documented this as an important type for western Montana; it is very similar in composition and landscape position to AGRSPI-POASEC. In southeastern MT Hansen and Hoffman (1988) descibe two types, AGRSPI-Carex filifolia and AGRSPI-Bouteloua curtipendula, similar to AGRSPI-BOUGRA, but both types lack the importance of B. gracilis. Ross et al. (1973) list several near pristine occurrences of AGRSPI-BOUGRA on the sedimentary plains of eastern MT. This type ranges south into Wyoming and Colorado as a very extensive cover type (Bourgeron et al. 1994).

Agropyron spicatum-Poa secunda h.t.

(AGRSPI-POASEC; bluebunch wheatgrass-Sandberg's bluegrass; 7 plots; WHTF designation Pseudoroegneria spicata-POASEC)

Abstract

Environment: This bunchgrass-dominated type is common in western MT (Mueggler and Stewart 1980), progressively declining in importance to the east; it is sporadically distributed within the western portion (Blaine and Phillips Counties) of the study area, extends as far as Rosebud Co. and not documented from the counties bordering ND. It was found on glacial drift and various igneous materials weathered to loams and sandy loams. It is found on southerly aspects of higher terrain such as foothills of and within the Little Rockies and Bears Paw Mountains, as well as on cooler exposures within rolling uplands. Ground cover is highly variable with high coverages of Selaginella densa on overgrazed sites, high moss cover on sheltered sites and exposed soil and gravel exceeding 70\% on others. In Little Rocky Mtns vicinity this type is noted to be a seral community on PINPON/AGRSPI following fire. AGRSPI-POASEC was noted to grade to PINPON/AGRSPI or FESIDAdominated c .ts. on moister positions and to Stipa comata-Bouteloua gracilis of drier positions.

Vegetation: Agropyron spicatum well represented is diagnostic for the type but its coverages may range from trace to 80% plus. Because A. spicatum is highly preferred forage for cattle and AGRSPI-POASEC sites are quite accessible resulting in severe grazing impacts to this type. We lowered criteria (A. spicatum well represented, $>5 \%$ canopy cover) for inclusion in this type where grazing intensive had been severe. Several fenceline contrasts suggested more than 80% reduction in current season A. spicatum cover; Mueggler and Stewart (1980) and Daubenmire (1970) document the longterm reduction in palatable forage (virtual extirpation of A. spicatum) due to excessive grazing. Bromus tectorum and B. japonicus are strong increasers with disturbance. Poa secunda and Koeleria cristata are 100\% constant though their coverages don't exceed 20\%. P. secunda need not be present for type identification; Mueggler and Stewart (1980) and this study treat AGRSPI-POASEC as a default type within the AGRSPI series. About half our stands have conspicuous amounts of Stipa comata, denoting the STICOM phase of Mueggler and Stewart (1980).

The subshrub Artemisia frigida is omnipresent but only exceeds trace amounts with intensive grazing. Contrary to the relatively high (30% average) cover cited by Mueggler \& Stewart (1980), total forb cover in our samples generally does not exceed 10% except in the case of heavy grazing, where Cerastium arvense, Phlox hoodii, Comandra umbellata and other increaser forbs totaled as much as 40% cover. Gaillardia aristata, Liatris punctata, Thermopsis rhombifolia and Chrysopsis villosa are the only forbs with greater than 50% constancy.

Other Studies: The center of importance of AGRSPI-POASEC lies west of the Cascade Crest in Washington (Daubenmire 1970), Oregon (Johnson and Simon 1987, Hall 1973), and British Columbia (Samilkameen Valley, McLean 1970) however, the type extends with various floristic and environmental permutations to Idaho, Wyoming, Utah and Montana. AGRSPI-POASEC is scattered throughtout western MT (Mueggler and Stewart 1980) but decreases in importance to the east (northeast especially) where both diagnostic grasses approach their distributional limits (western ND and SD). Hansen and Hoffman (1988) describe a AGRSPI- Carex filifolia h.t. of very limited extent for southeastern MT which is virtually identical to the STICOM phase of AGRSPI-POASEC. especially when the ecological similarity (and taxonomic intergradation) of P. secunda and P. canbyi are considered.

Andropogon scoparius-Carex filifolia c.t.

Environment: This is a minor type that apparently increases in abundance in the study area from west to east; it was found mainly as small ($<.1$ acre) patches. Landscape position varied from slope brow to backslope to toeslope and alluvial flat. Slope exposure included steep southwest (slope shoulders) to protected northeast aspects (backslopes). Soils are mostly sandy loams and loamy sands derived from sandstone (calcareous and not), shale and alluvium (including fluvio-glacial material). Active rill and sheet erosion was nearly ubiquitous and some sites had developed gullies. Southerly aspects had been more eroded, with more exposed soils and gravel (to 80\%), and considerably lower herbaceous cover.

Vegetation: Cover of the diagnostic (well represented) Andropogon scoparius varies widely; 10% on south-facing slopes to 80% on steep north-facing slopes, toeslopes and subirrigated terraces. Carex filifolia is 100% constant and second in coverage (average 28\%) to A. scoparius. High constancy graminoids generally associated with sandy substrates include Calamovilfa longifolia, Stipa comata, and Muhlenbergia cuspidata; other psammophytes sporadically present include Oryzopsis hymenoides, Aristida longiseta and Sporobolus cryptandrus. Grazing pressure appreared less here than adjacent types, though occasionally more than 80% of A. scoparius annual production was consumed.

Only two shrubs, Rhus trilobata and Yucca glauca, exceed 50% constancy; their cover was always less than 5%. Combined forb cover seldom exceeds 1%; those exceeding 50% constancy are Liatris puctata, Psoralea argophylla, and Lygodesmia juncea. Echinacea angustifolia is present with greater frequency in this type than all other c.ts.

Other studies: For western North Dakota Hanson and Whitman (1938) descibe an Andropogon scoparius c.t. from steep north-facing slopes and areas of snow accumulation; they speculate A. scoparius is established during erosional episodes, acts to protect slopes from excessive erosion, and thus may be merely a seral stage (albeit longlived). None of following cited studies indicate a successional status for this, or closely allied types. Redmann (1975) also describes an A. scoparius-dominated type from western North Dakota occurring on steep south-facing slopes that receive above average moisture due to slope runoff and winter snowdrifts. Redmann (1975) also notes A. scoparius-dominated vegetation occurs on uplands having sandy soils, a common association noted for the whole of the tall-grass prairie.

Hansen and Hoffman (1988) report a habitat type with the name used here, ANDSCO-CARFIL, that is ubiquitous across southeastern MT, northwestern SD and southwestern ND and note its similarity to ANDSCO-CARFIL (Hansen et al. 1984) of west-central ND. These authors and Morris and Lovegrove (1975) treat ANDSCO-CARFIL as a topoedaphic climax associated with coarse-textured soils and slope shoulders and cooler, northwest- through northeast-facing slopes. These sites are both more mesic than other upland sites due to moisture redistribution and reduced insolation; their coarse texture favors deep percolation of moisture and the following rootsystems of A. scoparius and Calamovilfa longifolia. Dense layers of litter and duff (relatively undisturbed stands) and the importance of Bouteloua curtipendula are features distinguishing our type from the samples of Hansen and Hoffman (1988), Morris and Lovegrove (1975) from southeastern MT, Culwell and Scow (1982) from Custer Co and Quinnild et al. (1978) from Richland Co.

Artemisia longifolia/Oryzopsis hymenoides c.t.
 (ARTLON/ORYHYM; long-leaved sagewortindian ricegrass; 4 plots)

Abstract

Environment: This is a minor community type associated with highly distinctive sites, eroded acid-shale badlands. The sampled stands occurred on steep (>40\%) slopes with south- to west-facing aspects, but the type was noted to occupy other less stressful, less eroded positions. These sites are so unfavorable for vegetation that plant cover seldom exceeds 20%, often not reaching even 10%. Given the active erosion and that litter production is virtually nill and it follows that exposed soil approaches 100% cover. Soils evidence no horizonation. Though derived from shales, these soils may be reacted to by vegetation as sands because though the fine, weathered fraction is clay-dominated more than 50% of the volumn is occupied by coarse shale shards. Without soil chemistry profiled, factors distinguishing this type from adjacent badland types, SARVER-ATRNUT most characteristically, cannot be identified.

Vegetation: Shrubs rarely establish on these sites. The taprooted forb Artemisia longifolia generally has the greatest cover but may share this status with Eriogonum pauciflorum, another forb characteristic of badiands. Calamovilfa longifolia and Orzopsis hymenoides (spp. generally associated with sandy soils) are also regularly present in trace amounts.

Other Studies: This type or a close homologue has been described from dark shales (Colorado, Clagget, and Bearpaw) in Musselshell and Petroleum Counties by Harvey (1982). Most notably Harvey characterized the soils as acid ($\mathrm{pH}<5$) with low conductivity. He notes this to be a pioneer community of shale barrens but it may also be the long-term stable community due to the predominance of ongoing erosion.

Calamovilfa longifolia-Carex pensylvanica c.t.
(CALLON-CARPEN; prairie sandreed (-) long-stolon sedge; 9 plots)

Environment: CALLON-CARPEN is a minor c.t. occurring as small stands ($<1 / 2$ acre) restricted to upland sites with sandy soils (derived from sandstone) or on toeslopes and badland benches mantled with coarse-textured colluvium and slopewash derived from various sedimentary parent materiais, including shales and bentonite. Generally narrow ecotones, indicating a steep soil (moisture?) gradient, exist between CALLON-CARPEN and adjacent c.ts. (most often STICOM-CARFIL, STICOM-BOUGRA, and ARTCAN/STICOM). Erosion (sheet. rill. and gully) is a consistent process on these sites, even on low gradient examples, but is more prominent on moderate to steep slopes. Given the ubiquity of erosion the percentage of exposed soil and gravel is generally high ($>50 \%$)

Vegetation: Cover of the diagnostic species, Calamovilfa longifolia and Carex pensylvanica (syn. C. inops, C heliophila), is highly variable. Graminoid cover generally is higher (to 80%) on the upland sites with sandy soil and gentle slopes, the same habitat described for this type in southeastern MT (Hansen and Hoffman 1988). Andropogon scoparius is sometimes well represented on collecting positions whereas Calamagrostis montanensis and Stipa comata are more apt to have high coverages (may even be dominant) on upland sites. Forb cover and richness is low; averaging only trace amounts and 10 species, respectively. Thermopsis rhombifolia is the only forb exceeding 50% constancy. Rosa spp. are consistenty present in the toe-slope and lower terrace stands whereas Yucca glauca, Rhus aromatica and Artemisia spp. occur in trace amounts on upland sites.

Other Studies: Hansen and Whitman (1938) describe a Calamovilfa longifolia type for sandy ridges and hills of western North Dakota. They speculate the CALLON type is seral to STICOM-BOUGRA-CAREX type, but in the described state it is very similar to our CALLON-CARPEN c.t. Whitman (1976) records a type for southwestern North Dakota, CALLON-STICOM-CAREX, that is similar to ours in composition and especially in range of togographic positions occupied. We have retained the name CALLON-CARPEN applied by Hansen and Hoffman (1988) to similar communities/habitats of southeastern MT, but used c.t. because some of our stands are clearly seral. In brown soil zone of Canada, Coupland (1961) recognizes a successional community of sandy sites dominated by a suite of tall "sand" grasses (Sporobolus cryptandrus, Oryzopsis hymenoides, Elymus canadensis, Calamagrostis montanensis) foremost of which is C. Iongifolia. Coupland (1961) envisions autogenic processes driving these sites to the Stipa (comata)-Bouteloua (gracilis)-Agropyron (dasystachyum) faciation (broad c.t.) but we agree with Hanson and Hoffman that this type is an edaphic climax. Under current conditions (grazing, climate) autogenic soil forming processes can't keep pace with the ubiquitous erosional processes.

Stipa comata-Bouteloua gracilis p.a.

Environment: STICOM-BOUGRA is a major plant association throughout the study area on upland sites with well drained substrates, mostly derived from materials associated with glacical processes. It was also found on residual sandstone. Soils are predominantly sandy loams, loamy sands and loams; numerous others (Daubenmire 1970, Coupland 1961, Dix 1960, Hansen et al. 1984) have noted the association between the high sand content of soils and the dominance of Stipa comata. STICOM-BOUGRA also occurs on gentle to steep slopes with west- through south-facing aspects. STICOM-BOUGRA also represents a seral condition (usually grazing, occasionally fire induced) for more productive sites that would support long-term stable dominance of Agropyron smithii, A. dasystachyum and/or Agropyron spicatum.

This c.t. is most frequently noted to grade to STICOM-Carex filifolia or Agropyron smithii-BOUGRA c.ts. (on moister sites or with finer textured soils).

Vegetation: The easy accessibility of this type has led to its being intensively grazed across its range. No exclosures were sampled so a description of unimpacted sites is not possible but based on several fenceline contrasts observed we hypothesize much compositional alteration has occurred. In the less impacted examples S. comata is a strongly dominant mid-grass (coverages to 70%) with Bouteloua gracilis usually dominating the short-grass layer. Intensively grazed sites may have only trace amounts of S. comata and B. gracilis whereas Selaginella densa has increased to create a green sward (early season aspect). Koeleria cristata may dominate portions of degraded sites. Other graminoids with greater than 50% constancy are Poa secunda, Carex filifolia, C stenophylla, and Agropyron smithii (or its near ecological equivalent, A. dasystachyum). On especially sandy or eroded sites Calamagrostis montanensis and/or Calamovilfa longifolia may be well represented.

Artemisia frigida is a ubiquitous shrub in this type and increases notably with increased grazing. No forbs, with the exception of S. densa, occur with greater than 5% coverage; those with greater than 50% constancy include Sphaeralcea coccinea, Opuntia polyacantha, Phlox hoodii and Chrysopsis villosa. All the above forbs apparently increase with increased grazing. Observed, but unsampled, examples of badly degraded range of this community type were dominated by Plantago patagonica, Hedeoma hispidula, Alyssum alyssoides and various other "weedy" species.

Other studies: Our results are difficult to relate to published results because other studies have concentrated on sampling "relatively undisturbed" vegetation. For the northern prairies Coupland (1950) originally described a Stipa (comata \& curtiseta?)-Bouteloua (gracilis) faciation (later proposed as STICOM-BOUGRA-CAREX spp. faciation [Coupland 1961]) and a Bouteloua-Stipa faciation (later changed [Coupland 1961] to Bouteloua-Stipa facies to denote a syntaxonomic unit of seral conditions). Both syntaxa are characteristic of undifferentiated glacial till deposits on rolling topography in the drier part of the brown soil zone (which would include eastern MT). Faciations are generally more inclusive than community or habitat types. Coupland provides insufficient quantitative criteria for discriminating between his two named syntaxa, but most of BOUGRA-STICOM and the drier portions of STICOM-BOUGRA correspond in composition to what we have described here as STICOMBOUGRA c.t. Because we have not been able to separate grazing effects from vegetation composition conditioned by intrinsic site variables our type spans a greater environmental range.

For Montana, Mueggler and Stewart (1980) describe a STICOM-BOUGRA h.t. from intermountain valleys east of the Continental Divide; of the two phases AGRSMI is quite similar floristically and in topographic setting to the type described here. Given the palatability of A. smithii and A. dasystachyum we feel that where these species occur with 5% or greater coverage, especially in areas with appreciable grazing pressure, that they are indicative of different site conditions (more mesic) than would be indicated by their absence. Hansen et al. (1984) and Hansen and Hoffman (1988) have described for western North Dakota and southeastern Montana, respectively, a STICOM-Carex filifolia h.t., that in composition and environment, is very similar to STICOM-BOUGRA; we have discriminated these types based only on the abolute amounts of C. filifolia and B. gracilis present (which may be quite artificial given that both are increasers under grazing and respond dramatically to short-term climatic fluctuations). Coupland (1961) has remarked that C. filifolia increases in abundance southward from Canadian prairies, thus northeastern MT may be a transition zone with mixed representation of STICOM-BOUGRA and

STICOM-CARFIL as the dominant climatic climax types.

Stipa comata-Carex filifolia c.t.

 (STICOM-CARFIL; needle-and-thread (-) thread-leaved sedge; 14 plots)Environment: Within the study area the habitat of STICOM-CARFIL virtually matches that of STICOM-BOUGRA; rolling uplands of low to moderate relief, usually mantled with glacial drift or with soils derived from coarser textured sedimentaries. It also occurs on gentle to moderate slopes with southerly exposures. Soils are well drained, ranging from loams to loamy sands. Ground cover characteristics are related to history of use with intensively grazed stands having either a high cover of Selaginella densa or much ($>60 \%$) exposed soll and gravel (recent grazing intensive). Litter cover exceeded 40% only on those few stands judged lightly grazed STICOM-CARFIL grades to STICOM-BOUGRA (site differences unknown) and AGRSMI-BOUGRA on finer textured substrates or collecting positions.

Vegetation: Stipa comata and Carex filifolia well represented are diagnostic for this type, but on heavily grazed areas S. comata coverage may be less than 5%. The only notable compositional difference in graminoids between STICOM-CARFIL and STICOM-BOUGRA is the relative amount of B. gracilis and C. filifolia. Reasoning that because B. gracilis increases more strongly with (over)grazing than does C. filifolia we would recognize a significant coverage of C. filifolia a better register of site differences and hence gave STICOM-CARFIL priority in the key. Graminoids with constancy greater than 70% are Koeleria cristata, B. gracilis, Poa secunda, and Agropyron smithil/dasystachyum. Stands or microsites with sandier soils (derived from sandstone) or actively being eroded support Muhlenbergia cuspidata, Sporobolus cryptandrus and Andropogon scoparius. The low coverages ($<5 \%$) of A. smithii/dasystachyum in study area examples of STICOM-CARFIL relative to those reported for a c.t. of same name in southeastern Montana (Hansen and Hoffman 1988) reflect our interpretation of the significance of these species' presence as indicators of more mesic conditions (different plant associations); their absence or highly reduced cover is potentially indicative of overgrazing.

Artemisia frigida is present and generally well represented in more than 90% of the plots; Gutierrhizia sarothrae and Ceratoides lanata are the only other shrub with more than 50% constancy. If these sites have been intensively sheep-grazed then C. lanata coverages, which are currently 5% or less, may be much reduced from potential (and indicative of CERLAN/STICOM c.t.). Aggregate forb cover (excepting Selaginella densa) seldom exceeds 5\%; those with 50% or greater constancy are Phlox hoodii, Antennaria parvifolia, Gaura coccinia, Sphaeralcea coccinea, Chrysopsis villosa and Liatris punctata. Stand to stand cover of viability of Selaginella densa (0 to 90%) is notable. If S. densa is the increaser it is reputed to be, then 70% of the plots have been heavily impacted, at least in the past. Some currently intensively grazed pastures were noted to have no S. densa but a prolific weed population.

Other Studies: This c.t. was first described by Hanson and Whitman (1938) under the name Bouteloua-StipaCarex. STICOM-CARFIL c.t. has been further documented (as h.t. of same name) from near pristine and lightly impacted sites in western North Dakota (Hansen et al. 1984) and southeastern Montana (Hansen and Hoffman 1988); these examples of the type have slight vegetation differences as noted above (vegetation section). The Agropyron smithii phase of STICOM-BOUGRA described by Mueggler and Stewart (1980) for western MT is very similar in habitat to our STICOM-CARFIL c.t. and has only minor floristic and vegetation differences (higher B. gracilis and A. smithii cover). The Stipa-Bouteloua (Carex spp. ?) faciation described for brown soils of southern Canadian prairies (Coupland 1961) is very similar to STICOM-CARFIL, occurring in more xeric positions than the faciation that dominates most of the landscape, Stipa-Agropyron (dasystachyum). Coupland (1961) describes how the relative proportions of A. dasystachyum and B. gracilis shift with extended periods of drought and above average moisture; cover changes are sufficient to shift stands between c.ts. (faciations).

Stipa curtiseta-Stipa viridula p.a.

(STICUR-STIVIR; porcupine needlegrass-green needlegrass; 9 stands)

Abstract

Environment: This c.t. has not previously been described from Montana: it was sampled only in the northern portion of Phillips and Valley Counties and is subsumed within what Coupland (1950) termed the Stipa (curtiseta)Agropyron (dasystachyum) Faciation. We speculate that STICUR-STIVIR possibly constituted a significant fraction of the landscape put to the plow in this vicinity. Remnants of this c.t. are found on sheltered (e.g. northand east-facing draw slopes, swales) and collecting positions (toeslopes and swales and lee slopes of ridges). Most of the stands were developed on glacial drift over sedimentary substrates (mostly shales). Substrate surfaces were highly variable from 80% cover of litter to 80% cover of Selaginella densa, mosses and lichens; in general exposed soil does not exceed 40%.

The sampled expressions of STICUR-STIVIR were mostly beyond the distribution limits of Festuca scabrella, F. idahoensis and Agropyron spicatum, or at least where these species constitute community dominants. STICURSTIVIR most often grades to STICOM-CARFIL and STICOM-BOUGRA on uplands and adjacent drier exposures.
Vegetation: Artemisia frigida and Ceratoides lanata are the only shrubs with 50% or greater constancy, their cover not exceeding 5%. Stipa curtiseta or S. viridula, considered singly or combined having at least 5% cover, are considered diagnostic for the type. In several stands Agropyron dasystachyum was the dominant grass creating an aspect virtually identical to the condition described for relatively undisturbed stands of STIPAAGROPYRON faciation (Coupland 1961) on Canadian mixed-grass prairies. The relatively large stature of the above grasses when contrasted with the low coverage of short grasses gives ungrazed examples of this type a more luxuriant aspect than those types of the surrounding grassland matrix. Several stands with an abundance of Calamovilfa longifolia and/or Stipa comata had loamy-sand soils. Appreciable coverages of Muhlenbergia cuspidata appear to be associated with sandy or eroded substrates. Andropogon scoparius was present in about 50% of the plots but coverages were less than 5%. Psoralea argophylla was the only forb with greater than 50% constancy. With the exception of Selaginella densa, found in high coverages on grazing impacted sites, forb cover seldom exceeds 5%, even in the aggregate.

Other studies: This type has not been previously described from Montana or the western US, quite possibly because S. curtiseta has not been long recognized at the species level (Barkworth 1978). S. curtiseta has previously been recognized as S. spartea var. curtiseta in the northwestern U.S. and Canada; often researchers did not track it as a separate taxon at the variety level. Coupland's monographs (1950, 196?) regarding northern Great Plains grassland classification describe a Stipa-Agropyron faciation which subsumes our STICUR-STIVIR c.t. Coupland notes that Stipa comata and S. curtiseta are coextensive dominants throughtout the Canadian Prairie Provinces on brown and dark brown soil zones but that S. curtiseta is confined, at least as a dominant, to north of 49 N . Where coextensive, S. curtiseta occurrs in much higher coverages on north slopes and protected positions whereas S. comata is more abundant on south-facing exposures. For western North Dakota Redmann (1975) has reported a mesic S. spartea v. curtiseta c.t. occupying north-facing slopes, well below the slope break; it is also floristically similar to STICUR-STIVIR. At this time it would appear that the Montana occurrences define the southern limit of this type and that it (or a floristically quite similar type) extends as far north as the boreal forest zone where, owing to factor compensation, it occurs on better drained, south-facing slopes (Redmann and Schwarz 1986).

LITERATURE CITED

Austin, M. P. and P. C. Heyligers. 1989. Vegetation survey design for conervation: gradsect sampling of forests in northeastern New South Wales. Biological Conservation 50: 13-32.

Barkworth, M. E. 1978. A taxonomic study of the large-glumed species of Stipa (Gramineae) occurring in Canada. Canadian Journal of Botany. 56: 606-625.

Barkworth, M. E. 1993. North American Stipaea (Gramineae): Taxonomic changes and other comments. Phytologia. 74(1): 1-25.

Boldt, C. D., D. W. Uresk, and K. E. Severson. 1978. Riparian woodlands in jeopardy on Northern High Plains. In: Strategies for protection and management fo floodplain wetlands and other riparian ecosytems. General Technical Report WO-12. Washington, DC: U.S. Department of Agriculture, Foreest Service: 184-189.

Branson, F. A., R. F. Miller, and I. S. McQueen. 1967. Geographic distribution and factors affecting the distribution of salt desert shrubs in the United States. The Journal of Range Management 20(5): 287-296.

Branson, F. A., R. F. Miller, and I. S. McQueen. 1970. Plant communities and associated soil and water factors on shale-derived soils in northeastern Montana. Ecology. 51(2): 391-407.

Brand, M. D. and H. Goetz. 1986. Vegetation of exclosures in southwestern North Dakota. Jounal of Range Management. 39(5): 434-437.

Bourgeron, P. S. and L. D. Engelking. eds. 1994. A preliminary vegetation classification of the western United States. Unpublished report prepared by the Western Heritage Task Force for The Nature Conservancy, Boulder, CO.

Brown, R. W. 1971. Distribution of plant communities in southeastern Montana badlands. The American Midland Naturalist 85(2): 458-477.

Butler, J. and H. Goetz. 1986. Vegetation and soil-landscape relationships in the North Dakota badlands. The American Midland Naturalist 116(2): 378-386.

Cooper, S. V. and R. D. Pfister. 1981. Forest habitat types of the Blackfeet Indian Reservation. Review Draft, 5/21/81, for Bureau of Indian Affairs, Billings Area Office. 87 pp.

Cooper, S. V. and R. D. Pfister. 1984. Forest habitat types of the Crow and Northern Cheyenne Indian Reservations. Termination report Bureau of Indian Affairs, Billings Area Office (draft). U. S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. Ogden, UT. 114 pp.

Coupland, R. T. 1950. Ecology of mixed prairie in Canada. Ecological Monographs 20(4): 271-315.

Coupland, R. T. 1961. A reconsideration of grassland classification in the northern Great Plains of North America. Journal of Ecology 49(1): 135-167.

Coupland, R. T. and T. C. Brawshaw. 1953. The fescue grassland in Saskatchewan. Ecology 34: 386-405.

Culwell, L. D. and D. J. Ramsden. 1978. Vegetation inventory of the Zortman and Landusky areas, Little Rocky Mountains, Montana. Western Technology and Engineering, Inc. 2301 Colonial Dr., Helena, MT. 69 pp.

Culwell, L. D. and K. L. Scow. 1982. Terrestrial vegetation inventory Dominy Project Area, Custer County, Montana, 1979-1980. Western Technology and Engineering, Inc., 2301 Colonial Dr., Helena, MT. 133 pp.

Daubenmire, R. 1952. Forest vegetation of northern Idaho and adjacent Washington, and its bearing on concepts of vegetation classification. Ecological Monographs 22(4): 301-330.

Daubenmire, R. 1959. A canopy-coverage method of vegetation analysis. Northwest Science 33(1): 43-64.

Daubenmire, R. 1970. Steppe vegetation of Washington. Technical Bulletin 62. Pullman, WA: Washington Agricultural Experiment Station, Washington State University. 131 pp.

Daubenmire, R and J. B. Daubenmire. 1968. Forest vegetation of eastern Washington and northern Idaho. Technical Bulletin 60. Pullman, WA: Washington Agricultural Experiment Station, Washington State University. 104 pp .

DeVelice, R. L., J. L. Lichthardt and P. S. Bourgeron. 1991. A preliminary classification of the plant communities of northeastern Montana. Montana Natural Heritage Program. Helena, MT. 144 pp .

DeVelice, R. L. and P. Lesica. 1993. Plant community classification for vegetation on BLM lands, Pryor Mountains, Carbon County, Montana. Montana Natural Heritage Program. Helena, MT. 78 pp.

Dorn, R. D. 1984. Vascular plants of Montana. Mountain West Publishing, Cheyenne, WY.
Dusek, G. L. 1971. Range relationships of mule deer in the prairie habitat, northcentral Montana. Bozeman, MT. Thesis submitted to Montana State University. 63 pp.

Frank, E. C. and R. Lee. 1966. Potential solar beam irradiation on slopes: Tables for 30° to 50° latitude. Research Paper RM-18. Fort Collins, CO: U. S. Department of Agriculture, Forest Service.

Gillison, A. N. and K. R. W. Brewer. 1985. The use of gradient directed transects of gradsects in natural resource surveys. Journal of Environmental Management 20:103-127.

Girard, M. M. 1985. Native woodland ecology and habitat type classification of southwestern North Dakota. Fargo, ND: Ph.D. dissertation, University of North Dakota. 179 pp.

Girard, M. M., H. Goetz and A. J. Bjugstad. 1989. Native woodland habitat types of southwestern North Dakota. Research Paper RM-281. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 36 pp.

Great Plains Flora Association. 1986. Flora of the Great Plains. University of Kansas Press, Lawrence, KS. 1392 pp.

Hall, F. C. 1973. Plant communities of the Blue Mountains in eastern Oregon and southeastern Washington. Area Guide 3-1. Portland, OR: U. S. Department of Agriculture, Forest Service, Pacific Northwest Region R6. 62 pp.

Hansen, P. L. and G. R. Hoffman. 1988. The vegetation of the Grand River/Cedar River, Sioux, and Ashland Districts of the Custer National Forest: A habitat type classification. General Technical Report RM-157. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 68 pp.

Hansen, P. L., G. R. Hoffman, and A. J. Bjugstad. 1984. The vegetation of Theodore Roosevelt National Park, North Dakota: A habitat type classification. General Technical Report RM-113. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 35 pp.

Hansen, P. L., R. D. Pfister, K. Boggs, B. J. Cook, J. Joy, and D. K. Hinckley. 1995. Classification and management of Montana's riparian and wetland sites. Miscellaneous Publication No. 54. Missoula, MT: University of Montana, School of Forestry, Montana Forest and Conservation Station. 646 pp.

Hanson, H. C. and W. Whitman. 1938. Characteristics of major grassland types in western North Dakota. Ecological Monographs 8(1): 57-114.

Hanson, H. C. and W. Whitman. 1939. Plant succession on scoria buttes of western North Dakota. Ecology 20(2): 335-336.

Harvey, S. J. 1982. Vegetation of Musselshell and Petroleum Counties, Montana. Report to Soil Conservation Service, Roundup, MT. 28 pp. plus appendices.

Hill, M. O. 1973. Diversity and evenness: A unifying notion and its consequences. Ecology 54: 427-432.

Hill, M. O. 1979a. TWINSPAN: A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Ecology and Systematics, Cornell University, Ithaca, New York.

Hill, M. O. 1979b. DECORANA: A FORTRAN program for detrended correspondence
analysis and reciprocal averaging. Ecology and Systemsatics, Cornell University, Ithaca, New York.

Hitchcock, C. L. and A. Cronquist. 1973. Flora of the Pacific Northwest. University of Washington Press, Seattle. 730 pp.

Hoffman, G. R. and R. R. Alexander. 1983. Forest vegetation of the White River National Forest in western Colorado: a habitat type classification. Research Paper RM-221. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 36 pp .

Hoffman, G. R. and R. R. Alexander. 1987. Forest vegetation of the Black Hills National Forest in western South Dakota and eastern Wyoming: a habitat type classification. Research Paper RM-270. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 48 pp.

Johnston, A. 1961. Comparison of lightly grazed and ungrazed range in the fescue grassland of southwestern Alberta. Canadian Journal of Plant Science 41: 615-622.

Johnson, J. R. and J. T. Nichols. 1982. Plants of South Dakota grasslands. Agricultural Experiment Station Bulletin 566. Brookings, SD. South Dakota State University, 166 pp.

Johnson, C. G. Jr. and S. Simon. 1987. Plant associations of the Wallowa-Snake Province R6-ECOL-TP-255B-86. Portland, OR: U. S. Department of Agriculture, Forest Service, Wallowa-Whitman National Forest. 373 pp.

Jones, G. 1992. Wyoming plant community classfication. Laramie, WY: Wyoming Natural Diversity Database, The Nature Conservancy. 183 pp.

Jorgensen, H. E. 1979. Vegetation of the Yellow Water Triangle, Montana. Wildlife Division, Montana Department of Fish and Game and Bureau of Land Management, U. S. Dept. of the Interior. 57 pp .

Knight, D. H., G. P. Jones, Y. Akashi, and R. W. Myers. 1987. Vegetation ecology in the Bighorn Canyon National Recreation Area. Unpublished report submitted to the University of Wyoming-National Park Service Research Center. 114 pp.

Kratz, A. 1988. Preliminary descriptions of Great Basin-type vegetation occurring in Carbon County, Montana, U. S. A. Proceedings of the Montana Academy of Sciences 48: 47-55.

Mackie, R. J. 1970. Range ecology and relations of mule deer, elk, and cattle in the Missouri River Breaks, Montana. Wildlife Monographs No. 20. Wildlife Society, Bethesda, MD. 79 pp.

Marlow, C. B., L. R. Irby, and J. E. Norland. 1984. Optimum carrying capacity for bison in Theodore Roosevelt National Park. Denver, CO. Termination report submitted to the National Park Service,, in compliance with contract No. CX-1200-2-b035. 149 pp.

McLean, A. 1970. Plant communities of the Similkameen Valley, British Columbia, and their relationships to soils. Ecological Monographs 40(4): 403-424.

Miller, J. G. 1978. An ecological study of creeping juniper (Juniperus horizontalis Moench.) in Montana. M. S. thesis, 130 pp . Montana State University, Bozeman.

Montagne, C., L. C. Munn, G. A. Nielsen, J. W. Rogers and H. E. Hunter. 1982. Bulletin 744. Bozeman, MT: Montana Agricultural Experiment Station, Montana State University, 95 pp .

Montana Natural Heritage Program. 1990. Guide to the natural vegetation of Montana (draft). Helena, MT. 389 pp . plus appendices.

Morris, M. S. 1946. An ecological basis for the classification of montane grasslands (a summary). Proceedings of the Montana Academy of Sciences 5: 41-44.

Morris, M. S. and R. E. Lovegrove. 1975. The topographic and edaphic distribution of several plant communities of warm and cool season species in southeastern Montana. Billings, MT: Proceedings Fort Union Coal Field Symposium 5: 684-702. Montana Academy of Science.

Morris, M. S., R. G. Kelsey, and D. Griggs. 1976. The geographic and ecological distribution of big sagebrush and other woody Artemisias in Montana. Proceedings of the Montana Academy of Sciences 36: 56-79.

Mueggler, W. F. and W. L. Stewart. 1980. Grassland and shrubland habitat types of western Montana. General Technical Report INT-66. Ogden, UT: U. S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 154 pp.

Nelson, J. R. Woody plant communities in the badlands of western North Dakota. Proceedings North Dakota Academy of Sciences 15: 42-44.

Omernik, J. M. 1987. Ecoregions of the conterminous United States. Annals of the Association of American Geographers 77: 118-125.

Omernik, J. M. and A. L. Gallant. 1987. Ecoregions of the west-central United States. Corvallis, OR: Environmental Research Laboratory, U. S. Environmental Protection Agency, EPA/600/D-87/317. map.

Pfister, R. D., B. L. Kovalchik, S. F. Arno, and R. C. Presby. 1977. Forest habitat types of Montana. General Technical Report INT-34. Ogden, UT: U. S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 175 pp.

Quinnild, C. L. and H. E. Cosby. 1958. Relicts of climax vegetation on two mesas in western North Dakota. Ecology 39(1): 29-32.

Redmann, R. E. 1972. Plant communities and soils of an eastern North Dakota prairie. Bulletin of the Torrey Botanical Club 99(2): 65-76.

Redmann, R. E. 1975. Production ecology of grassland plant communities in western North Dakota. Ecological Monographs 45(1): 83-106.

Redmann, R. E. and A. G. Schwarz. 1986. Dry grassland plant communities in Wood Buffalo National Park, Alberta. Canadian Field Naturalist 100(4): 526-532.

Roberts, D. W. 1977. Forest habitat types of the Bear's Paw Mountains of and Little Rocky Mountains, Montana. Missoula, MT: M.S. thesis, Universityof Montana. 116 pp.

Roberts, D. W., J. I. Sibbernsen, and R. D. Pfister. 1979. Forest and woodland habitat types of northcentral Montana. Vol. 2: The Missouri River breaks. School of Forestry, Universityof Montana. IFRES for Bureau of Land Management, State Office, Res. Div., Billings, Montana. Order \# YA-512-CT6-84. 24 pp.

Ross, R. L. and H. E. Hunter. 1976. Climax vegetation of Montana based on soils and climate. Bozeman, MT: U. S. Department of Agriculture, Soil Conservation Service. 64 pp.

Ross, R. L., E. P. Murray, and J. G. Haigh. 1973. Soil and vegetation inventory of nearpristine sites, Montana. U. S. Department of Agriculture, Soil Conservation Service, Bozeman, MT. 55pp.

Terwilliger, C. Jr., K. Hess, and C. Wasser. 1979. Key to the preliminary habitat types of Region 2: Addendum to initial progress report to habitat type classfication. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station and Colorado State University. Cooperative Agreement No. 16-845CA.
U. S. Department of Agriculture, Forest Service. 1987. Ecosystem classification handbook. Forest Service Handbook 12/87 R-1 Supp. 1. Missoula, MT: USDA, Forest Service, Northern Region.

Veseth, R. and C. Montagne. 1980. Geologic parent materials of Montana soils. Bulletin 721. Bozeman, MT: Montana Agricultural Experiment Station, Montana State University, 117 pp.

Whitman, W. C. and H. C. Hanson. 1939. Vegetation on scoria and clay buttes in western North Dakota. Ecology 20(3): 455-457.

Whitman, W. C. 1979. Analysis of grassland vegetation on selected key areas in southwestern North Dakota. Fargo, ND: North Dakota Regional Environmental Assessment Program, Report No. 79-14. North Dakota State University. 199 pp.

Wilkenson, K. and E. A. Johnson. 1983. Distribution of prairies and solonetzic soils in the Peace River district, Alberta. Canadian Journal of Botany 61: 1851-1860.
（Northern Region） a） ithin lifeform（457 total taxa
SHRUBS CONTINUED：

D：
woods
geyer
lutea
scouler
vermicul
\qquad
scouleriana
canadensis
betulifolia
n
0
0
0
0
0
occidentalis

taxa）：
caninum
cristatum dasystachyum repens Bentgrasass

Tickle－grass
 uəzsanta pues
ssexbyeaum чounqants Little Bluestem Red Threeawn
Red Threeawn Sideoat Grama

 Soft Brome
 paəxpues əケィṬメd abpas paxeaq－7xous

Sand Dropseed
Needle-and-thread
Porcupine Needlegrass
Western Needlegrass
Porcupine-grass
Green Needlegrass
Trisetum
Spike Trisetum
Six-weeks Fescue

SPOCRY Sporobolus	cryptandrus
STICOM Stipa	comata
STICUR Stipa	curtiseta
STIOCC Stipa	occidentalis
STISPA Stipa	spartea
STIVIR Stipa	viridula
TRISET Trisetum	spp.
TRISPI Trisetum	spicatum
VULOCT Vulpia	octoflora
FORBS (319 taxa) :	
ACHMIL Achillea	millefolium
AGOGLA Agoseris	glauca
ALLCER Allium	cernuum
ALLGEY Allium	geyeri
ALLTEX Allium	textile
ALYALY Alyssum	alyssoides
ALYDES Alyssum	desertorum
ANDOCC Androsace	occidentalis
ANDSEP Androsace	septentrionalis
ANEMUL Anemone	multifida
ANENUT Anemone	nuttalliana
ANEPAT Anemone	patens
ANTCOR Antennaria	corymbosa
ANTMIC Antennaria	microphylla
ANTNEG Antennaria	neglecta
ANTPAR Antennaria	parvifolia
APOAND Apocynum	androsaemifolium
APOCAN Apocynum	cannabinum
APOSIB Apocynum	sibiricum
ARABIS Arabis	spp.
ARADRU Arabis	drummondii
ARAHIR Arabis	hirsuta
ARAHOL Arabis	holboellii
AREACU Arenaria	aculeata
ARECAP Arenaria	capillaris
ARECON Arenaria	congesta
ARELAT Arenaria	lateriflora
AREMAC Arenaria	macrophylla
ARENAR Arenaria	spp.
ARENUT Arenaria	nuttallii
ARNCOR Arnica	cordifolia
ARNFUL Arnica	fulgens
ARTCAM Artemisia	campestris
ARTDRA Artemisia	dracunculus
ARTLON Artemisia	longifolia

Thread-leaved Sedge
Silvertop Sedge Thread
Silvertop Sedge
Blunt Sedge Long-stolon Sedge
Liddon's Sedge Clustered Field sedge Ross Sedge Narrow-leaved Sedge Onespike Oatgrass Tufted Hairgrass Inland Saltgrass Blue Wildrye Idaho Fescue
Six-weeks Fescue Six-weeks Fescue
Sheep Fescue Rough Fescue
Foxtail Barley Baltic Rush
Prairie Junegrass Prairie Junegrass ssexbaวty jeətuธnoy Little-seed Ricegrass Common Reed ssexbanta jeat-oted
ssexbanta s, yotsnj Pale-leaf Bluegrass
Inland Bluegrass Inland Bluegrass
Alkali Bluegrass
Wheeler's Bluegra Wheeler's Bluegrass
Nevada Bluegrass Nevada Bluegrass
Fowl Bluegrass Kentucky Bluegrass Sandberg's Bluegrass
 Tumblegrass Bottlebrush
Squirreltail Alkali Cordgrass Prairie Cordgrass Alkali Sacaton
Rough Dropseed
GRAMINOIDS CONTINUED: CARFIL Carex $\begin{array}{ll}\text { CARFOE Carex } & \text { foenea } \\ \text { CAROBT Carex } & \text { obtusata } \\ \text { CARPEN Carex } & \text { pensylvanica }\end{array}$ pensylvanica petasata praegracilis rossil
rostrata
 spicata
stricta

0
0
0
0
4
4
0
0
0
4
4
0
0

-
-

0
0
0
0
0
0
0
0 jubatum

 hymenoides communis arida cusickii glaucifolia
interior juncifolia nevadensis

10
-1
0
0
0
0
0
0
0
0
0
0

 gracilis
pectinata
airoides
asper EESIDA Festuca FESOCT Festuca
FESOVR Festuca HORJUB Hordeum
JUNBAI Juncus

 o
 Poa
Puccinellia
Schedonnardus
Sitanion

Flodman's Thistle
Thistle
Wavy-leaved Thistle
Narrow-leaf Collomia
Small-flowered
Blue-eyed Mary
Bastard Toad-flax
Horsewed
Mustard Hare's Ear
Striped Coral-root
Pincushion Cactus
Western Hawksbeard
Hawksbeard
Northern Cryptantha
Annual Cryptantha
White Prairie-clover
Nine-anther
Praiirie-clover
Purple Prairie-clover
Little Larkspur
Larkpur
Pinnate Tansymustard
Richardson's
Tansymstard
Flixweed Tansymustard
Wartberry Fairy-bell
Fewseeded Draba
Carolina Whitlow-grass
Pale Purple Coneflower
Fireweed
Autumn Willow-herb
Anual Buckwheat
Tufted Fleabane
Cut-leaved Daisy
Yellow Buckwheat
Daisy; Fleabane
Common Eriophyllum
Buff Fleabane
Buckwheat; Wild
Buckwheat
Cushion Buckwheat
Few-flowered Wild
Buckwheat
Shaggy Eleabane

CIRFLO Cirsium	flodmanii
CIRSIU Cirsium	spp.
CIRUND Cirsium	undulatum
COLIIN Collomia	linearis
COLPAR Collinsia	parviflora
COMUMB Comandra	umbellata
CONCAN Conyza	canadensis
CONORI Conringia	orientalis
CORSTR Corallorhiza	striata
CORVIV Coryphantha	vivipara
CREOCC Crepis	occidentalis
Crepis Crepis	spp.
CRYCEL Cryptantha	celosioides
CRYMIN Cryptantha	minima
DALCAN Dalea	candida
DALENN Dalea	enneandra
DALPUR Dalea	purpurea
DELBIC Delphinium	bicolor
DELPHI Delphinium	spp.
DESPIN Descurainia	pinnata
DESRIC Descurainia	richardsonii
DESSOP Descurainia	sophia
DISTRA Disporum	trachycarpum
DRAOLI Draba	oligosperma
DRAREP Draba	reptans
ECHANG Echinacea	angustifolia
EPIANG Epilobium	angustifolium
EPIPAN Epilobium	paniculatum
ERIANN Eriogonum	annu
ERICAE Erigeron	caespitosus
ERICOM Erigeron	compositus
ERIFLA Eriogonum	flavum
ERIGER Erigeron	spp.
ERILAN Eriophyllum	lanatum
ERIOCH Erigeron	ochroleucus
ERIOGO Eriogonum	spp.
ERIOVA Eriogonum	ovalifolium
ERIPAU Eriogonum	pauciflorum
ERIPUM Erigeron	pumilus
FORBS CONTINUED:	
ERISPE Erigeron	speciosus
ERIUMB Eriogonum	umbellatum
ERYASP Erysimum	asperum
ERYCHE Erysimum	cheiranthoide
ERYINC Erysimum	inconspicuum
Wallflower	
EUPESU Euphorbia	esula
EUPGLY Euphorbia	glyptosperma

FORBS CONTINUED:
FORBS Artemisia ludoviciana

Silvery Bladderpod
Bladderpod
Dotted Blazing-star
South-wind Flax
Wild Blue Flax
Blue Flax
Yellow Flax
Yellow Gromwell
Western Gromwell
Biscuit-root;
Desert-parsley
Cous Biscuit-root
Fennel-leaved
Desert-parsley
Bigseed Desert-parsley
Nine-leaf Lomatium
Spanish-clover
Silvery Lupine
Rusty Lupine
Silky Lupine
Drummond Campion
Rush-like Skeletonweed
Hoary Aster
Nuttall's Goldenweed
Spiny Goldenweed
Tansy Aster
White Sweet-clover
Yellow Sweet-clover
White-stemmed
Mentzelia
Evening Star
Blazing-star Mentzelia
Dwarf Mentzelia
Nodding Microseris
Microseris

LESLUD Lesquerella	ludoviciana
LeSQUE Lesquerella	spp.
LIAPUN Liatris	punctata
LINAUS Linum	australe
LINLEW Linum	lewisii
LINPER Linum	perenne
LINRIG Linum	rigidum
LITINC Lithospermum	incisum
LITRUD Lithospermum	ruderale
LOMATI Lomatium	spp.
LOMCOU Lomatium	cous
LOMFOE Lomatium	foeniculaceum
LOMMAC Lomatium	macrocarpum
LOMTRI Lomatium	triternatum
LOTPUR Lotus	purshiana
LUPARG Lupinus	argenteus
LUPPUS Lupinus	pusillus
LUPSER Lupinus	sericeus
LYCDRU Lychnis	drummondii
LYGJUN Lygodesmia	juncea
MACCAN Machaeranthera	canescens
MACGRI Machaeranthera	grindelioides
MACPIN Machaeranthera	pinnatifida
MACTAN Machaeranthera	tanacetifoli
MELALB Melilotus	alba
MELOFF Melilotus	officinalis
MENALB Mentzelia	albicaulis
MENDEC Mentzelia	decapetala
MENLAE Mentzelia	laevicaulis
MENPUM Mentzelia	pumila
MICNUT Microseris	nutans
MICROS Microseris	spp.
FORBS CONTINUED:	
MIRLIN Mirabilis	linearis
Four-0'clock	
MONFIS Monarda	fistulosa
MONNUT Monolepis	nuttalliana
MUSDIV Musineon	divaricatum
OENCES Oenothera	cespitosa
Evening-primrose	
OENNUT Oenothera	nuttallin
OENOTH Oenothera	spp.
OPUFRA Opuntia	fragilis
OPUPOL Opuntia	polyacantha
OROEAS Orobanche	fasciculata
OROLUD Orobanche	Ludoviciana
OROUNI Orobanche	uniflora
ORTLUT Orthocarpus	luteus
OSMCHI Osmorhiza	chilensis

	Rocky Mountain Spurge
	Spatulate-leaved Spurge
	Field Filago
	Forb
	Perennial Forb
	Forb
	Virginia Strawberry
	Checker Lily
	Yellow Bell
	Blanket-flower
	Goose-grass
	Northern Bedstraw
	Sweetscented Bedstraw
	Scarlet Gaura
	Northern Gentian
	Geranium; Crane's-bill
	Sticky Geranium
	Prairie Smoke
	American Licorice
	Curlycup Gumweed
	Frog Orchis
	Showy Stickseed
	Cushion Goldenweed
	Thrift Goldenweed
	Woolly Goldenweed
	Spiny Goldenweed
	Drummond False Pennyroya
	Rough Pennyroyal
	Yellow Hedysarum
	Common Sunflower
	Maximilan's Sunflower
	Nuttall's Sunflower
	Hairy Golden-aster
	Richardson's Alumroot
	Stemless Hymenoxys
	Columbia Cut-leaf
	Columbia Cut-leaf
	Richardson's Hymenoxys
	Rocky Mountain Iris
	Poverty-weed
	Ealse-boneset
	Blue Lettuce
	Blue Lettuce
	Prickly Lettuce
	Bristly Stickseed
	Bristly Stickseed
	Western St:心Fseed
	Bristly Stlotiseed
	Prairle Peplraseea
	Pepperweed
	Clasping
	Branched F-pra l \%- - !
	Alpine Blas, ' U'
	Sand Biacda-: , ,

robusta
spathulata
arvensis
perennial
virginiana
atropurpurea
pudica
aristata
aparine
boreale
triflorum
coccinea
amarella
spp.
viscosissimum
triflorum
lepidota
squarrosa
viridis
floribunda
acaulis
armerioides
lanuginosus
spinulosus
drummondii
hispida
sulphurescens
annus
maximiliani
nuttallii
villosa
richardsonii
acaulis
filifolius
polycephalus
richardsonii
missouriensis
axillaris
eupatorioides
oblongifolia
pulchella
serrlola
echinata
myosotis
reaowskil
squarrosa
densifiorum
spp.
perfolsatum
ramosissimum
alpina
arenusa

SOLIDA Solidago	spp.	Goldenrod
SOLMIS Solidago	missouriensis	Missouri Goldenrod
SOLMOL Solidago	mollis	Velvety Goldenrod
SOLNEM Solidago	nemoralis	Gray Goldenrod
SOLRIG Solidago	rigida	Stiff Goldenrod
SOLSPA Solidago	spathulata	Dune Goldenrod
SOLTRI Solanum	triflorum	Cut-leaved Nightshade
SONASP Sonchus	asper	Prickly Sow-thistle
SPHCOC Sphaeralcea	coccinea	Red Globe-mallow
STAPIN Stanleya	pinnata	Bushy Princesplume
STELON Stellaria	longipes	Longstalk Starwort
STEMED Stellaria	media	Chickweed
STERUN Stephanomeria	runcinata	Runcinate-leaved Skeltonweed
SUAINT Suaeda	intermedia	Tall Seablite
SUAMOQ Suaeda	moquinii	Tall Seablite
TARLAE Taraxacum	laevigatum	Red-seeded Dandelion
TAROFF Taraxacum	officinale	Common Dandelion
TETACA Tetraneuris	acaulis	Stemless Hymenoxys
THAOCC Thalictrum	occidentale	Western Meadowrue
THERHO Thermopsis	rhombifolia	Round-leaved
		psis
ThLARV Thlaspi	arvense	Field Pennycress
TRADUB Tragopogon	dubius	Goat's Beard
TRAOCC Tradescantia	occidentalis	Prairie Spiderwort
TRIFOL Trifolium	spp.	Clover
TRILEP Triodanis	leptocarpa	Western
Venus'-looking-glass		Western
FORBS CONTINUED:		
TRILON Trifolium	longipes	Long-stalked Clover
VICAME Vicia	americana	American Vetch
VIOADU Viola	adunca	Hook Violet
VIOCAN Viola	canadensis	Canada Violet
VIOLAX Viola	spp.	Violet
VIONUT Viola	nuttallii	Yellow Prairie Violet
ZIGELE Zigadenus	elegans	Glaucous Zigadenus
ZIGVEN Zigadenus	venenosus	Meadow Death-camas
FERNS \& ALLIED	TAXA:	
CRYCRI Cryptogramma	crispa	Parsley-fern
CYSFRA Cystopteris	fragilis	Brittle Bladder-fern
EQULAE Equisetum	laevigatum	Smooth Scouring-rush
SELDEN Selagine:la	densa	Compact Selaginella
WOOPE Woodsia	oregana	Oregon Woodsia

[^2]

[^3]

 ヵ品

[^4]
APPENDIX B. CONSTANCY, AVERAGE COVER AND RANGE OF COVER VALUES FOR VASCULAR PLANT SPECIES WITH GREATER THAN 3\% CANOPY COVER IN ANY GIVEN PLOT.

Constancy is expressed as the percentage (to nearest whole number) of (sites) within a given community type or plant association in which a given species occurrs. Average canopy cover is computed by summing the midpoints values of the cover classes for a given species and community type and dividing this value by the number of plots in which the species occurs. The range of canopy cover is expressed as the minimal value and maximal canopy cover value for a given species within a given community type. The community types/plant associations are ordered by decreasing size of dominant lifeform (forests, shrublands, herb-dominated) and aphabetically within lifeform category.

11111111 OOOHOOOO नo○000000नHनmoomonomomoo ○○○ーからす。 ～－～～～${ }^{-}$－ 000000000
 －こー－－－－－－－－－－－－－－－－ OO O
号
50000500

 OOOHOOOOHOHOMOOOOHOOOOOO ールールールールールルールールールールールールールー

 000800000080800000000000

MOOOOOOO							
111111							
mooo oomo							
ーーールーーール							
○OOOOO							

○नロOOOOOOJOनOOOOOMOMOMOO 1 O－1000000000－100000momotor

 080000000000000 in in ing in

[^5]Э00
 OOOMOOOOOOHOOOOOO $\widehat{0} \widehat{0} \widehat{0} \widehat{0} \widehat{0} \widehat{0} \widehat{0} \widehat{0}$

 Hन
 PINELE／AGRSPI $\mathrm{LE} / \mathrm{AGRSPI}$
$\mathrm{N}=1$

 11111111111111111 00000000001000000
 ОООО
 00000000000000000
 111111 НनFनOMOMMनHOननOHO
 जึโค
 Nmonoroormmoooroorro
 TUNSCO／AGRSPI PINCON／JUNCOM

JUNSCO／ORYMIC JUNSCO／AGRSPI
$\mathrm{N}={ }^{*}$ $\mathrm{N}=3$
$* * * * * * * *$
$\star * * * * * * * *$
｜｜1 1 1 1 1 1 1 1 1 1 1 1 1 1 OHONOMNHOOOOONनHMO
 Мस円

न00000 Wo
नた 1111111111111111 Hनmoooonnomoooo
 न－
 OOOOOOOOOOOOOOO 00000000000000

111 1 1 1－1 1 \＆ $00000000000 \rightarrow 400$
 $\widehat{0} \widehat{0} \widehat{O} \widehat{0} \widehat{0} \mathbf{O}=\overline{0}$ －－－N－N－－－N－－－ 0000000000000
 $\begin{array}{lcccccccccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & H & 0 & 0 & 0 & 0 & 0 & -1 & 0\end{array}$
 О－ 00000000000000

MOOMOOOOWMWOOO

 न〇〇心ふ心 －－－－－－－－－－．－．－

 नooo oonoomoomoo $\widehat{H} \widehat{O} \widehat{O} \widehat{O} \widehat{O} \widehat{O}$ －－－－－－－－－－－．－ rooooormoomor

OOMOOO50

 00000000000 moO 00000 HOHOO 00000 moo
ーーーぃー シーぃ
OOOOOOOO
ーーーーーシーー
00000800

 11111111111111111
 ○OOOOHOOOMOOMOOOO
 －M M－－－－－－－－－ $\begin{array}{rrrrr}000000000000000 \\ r & H & H & - & 1\end{array}$
ОО
जन0000050れた
11111111111111111
OMOOHOOOMOHOHनOHO
ーー怘ールーーーーールールーールー

MOOSOOOOOOOOMOOOO

$$
\begin{array}{llllllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
$$

MHOOOHHOOOOOHनOOO

앙ㅇN OOOOOOOOOOOOON
Hन000000000円નOOO

앙ㅇㅇNㅇN

11111111111111111
OHHHOMHOHNHOHनOHO
ールールールールールールールールール

｜｜1｜｜1｜｜1｜｜｜｜｜｜1 1 नHMOOOOOOHनHOOOHO

NNHOOOOOONHNNNOOONO

MOOOOOOO

＊$* *$
－1．1
ーールーーー灾ー
－ิ．
－0000080

005000Nm

00000mनm
ーーーーーールーー

 000000000000000 mommomog

50505505050505550

WOOODOO $\begin{array}{lllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$ 00moooooon О〇心न

-1000000000000000 1 1 $1 \quad 1 \quad 1$ 00000000000000000

 00000000000000000
 $\begin{array}{lllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$ HWHOOOOOOOOOOMNHO
 - N-N N $\begin{array}{lll}000 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & H & 0 \\ H & 0 & 0 \\ H\end{array}$
 $\begin{array}{llllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$ HoनOOOOOOनHनOOOMO NO

 11111111111111111 OHOOOOOMOOOOOHHनO
 ОАЫО - - m

О0
 चनo
 नन
 nrooorroorno

[^6]

1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	-1	0	-1	-1	0	0	0	0

ーーーーーーーーーーーー ーー

$1 \quad 1 \quad 1$
－OOHOHOOMOOOOHOONOOOOOOOन

－ت～M
－

OOHOOHOMmOOOHMOMOOHOHOOO

0

 $\begin{array}{llllllllllllllllllllllll}1 & 1 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & H & 0 & 0 & 4 & -1 & -1 & 0 & 0 & 0\end{array}$

 －

\square

$$
\begin{array}{llllllllllllllllllllllll}
1 & 1
\end{array}
$$

OOHNOHOHrooonoonooonoomr

엉NOOOज

МOOOO
$\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 \\ -1 & 0 & m & -1 & 0 & 0 & \cdots & \ldots\end{array}$
ーームーーーー・••• OOOM二すごい moogmocn，

$$
\begin{aligned}
& 1111111111111111111 \\
& \text { HOOHOHOOOHनOOHOOHOO }
\end{aligned}
$$

 $\begin{array}{ccccccccccccccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ m & -1 & 0 & - & - & -1 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 & -1\end{array}$ ーーーーーーーールーールーーーールーー
 ーールールールールールーールールール

 111.111111111111111 rôOHOHOOOHOOOHOOMOO

 －

inued
(0$)$

Hororoo운
Graminoids
BROTEC
CALION
CALMON
CAREIL

z.
茿
岂

 䛼

出曷
0
0
0
N
缶

-4
足

s
M
品
㟔

 POASEC
 SPOAIR
 SPOASP
STICOM
STICOM
STICUR
STICQUR
STICURR

111111111111111 $00000000000+0+0$
ぃールールールールールーーーー
 －－－－－－－－－－－－ 00000000000080

 －1000－10000－10－10－10 ーーーーーールーールールーーー
 －－－－－－－－－－－－ OOOONOOOOOOOOO
 1 1 1 1 1｜｜1 1 1 1 1 1 HOOOHOOOOHHHMOO ーールーールーーーーーーーーー
 ー－ーーーーーーーールールーー mooon
 । ।｜। 1 ｜ 1 । 1 ।｜ mHoOnOHOOHOHODO

 $\vec{H} \rightarrow 00 \mathrm{momocsin}$
 ｜1 1｜1｜1｜1 1 1 1 1 HoOOHOOOOOHHC00 ーーーーールールールールーーー

－50न05050
111111111111111111111111 $0-1000000 \mathrm{H} 000 \mathrm{H} 000000000000$
$-$
ーぃー 던 000न00000
ОЯОО
－－－－－－－－－－－－－－－－－－－－－－
0000800000000800000000000

○ OOHHOOOOHOOOHOOOOOOOOOOO

ООनニО

－OONNOOOOOOOOOOOOOOOOOO

$1 \begin{array}{llllllllllllllllllllllllll}1 & 1\end{array}$
$000 \mathrm{H000000000000000000000}$
ー ーーールーコールールールー பーーーーーールールーーー

$1 \begin{array}{lllllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
000000000 HHOOHOOOO 000 HO 00

－－－－ホー－－－－－－－－－－－－－－－
0000000000000000000000000

$\begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ m & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
ตoooooooo
 －－－N－v－ OOOOO0000 नOOOOOOOO

000
00 HMOOOOOOOOOHT000000000
000 HMOOOOOOOOOHNOOOOOOOOO
$000-10000$
ーールーーーーーー
ลิ〇へへ－
－－－－－－－
000080000
500005050050500050 ЈЈ5000000000000
500005050000050500007

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0

ーーーーーーーーーーーールールールールール ー

ールールールールールールールールーールー -
0000000 N0000000000000 0

OOHOOHOOOOOH0000000000
ーーーーーーーーーーーーーーーーーールーー ー

0080080000000000000000
5000न0505000050505050
1111111111111111111111
0000 HOOHOOOOO 000000000

0000 亿00000008000000000

1 1
HoOOOHOOOOOOOOHOOOOOH H -

100000000000000000000 in

SELDEN

 $\begin{array}{llllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$ OMMOHMOOनHFOOOOOOOO О心न －＂－1

 OHOHनOOOMनHनOHOOHOO

 －

 OHनHMOOOONOOMOOMM
 Oी
 \mapsto

$1 \quad 1 \quad 1$
नHONOHOOOHNOOHOONOH

若－
펻웅
${ }^{\circ}{ }^{\circ}$
8 0 Noo $\begin{array}{ll}10) & 0 \\ (0) & 0 \\ (1)\end{array}$ 80 008 － 000 －7 BROTEC CALMON ㅂ
解
4
4
4
 a香氐星

曷思品
品
品品品品
N
0
0
0
0
0 0
0
0
0
0
0
0
0 s
0
品
H
曷

| | | |
| :---: | :---: | :---: | Hmmonmmo OOOM．．．．．．．

 1 1 1 1 1 1 1 1 1 1 1 1 1 H0000000000H00m ーールーールーーーーーーーーー
 © 0000000000000 N

[^7]

 \(\begin{array}{cccccccccccccccccccccc}1 & 1 \\ -1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & -1 & -1 & -1 & 0 & 0 & -1 & 0 & 0\end{array}\)

No noonnono

НनOOOOMनMOOHOHHOनOOMन O

11111111111111111111111
OHOOOOOOHOOHOHHOOOOOH
ОПООООООनООनОनનОООООन

000000008000008000000808

$\begin{array}{llllllllllllllllllllll}1 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0 & -1 & -1 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

d0000000OOOOOOOOOOOOOO

毋505050555050500
 111111111111111111111 ○Mm○円ーHOOOHOOOOOOOOM
ОलिОनलООО

OनOOOOOOOOनHOHOOOOO
ーーーールーーーールールールエールールー

0 OOOOOOOOOOOOOOOOO
ज505050005070न50 1111111111111111 $00000000+00+0-100$ ーールーーーーーーーーーーーーール

 0000000000000 NO

$\begin{array}{lllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
OOOOOHOOOHMOOHOOHOO
ーールールールールールーールールールールール

00000 mooormoog

 OOOOनOOMrooooroo ールーぃーーーーーールールーール
050000500m000000 000
1111111111111111111
000 moO 000 mHo 0000 HOO
ーーレールールーーールールールールーーーー

000 た 00000 m ко 00000000

$\begin{array}{ccccccccccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ -H & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & \ldots & \cdots . . & \ldots & - & \cdots\end{array}$
ーーーーーーーーーー－－－－．．．．

m ooooooocmorn min

$1 \mid 11.111111111111$
－10000000000－10000
OMHOHOOOOOOOOOOOOOO
Н0000000000н0000

－－－－－－－－－－－－－－
in 0000000000 N 0000

$1 \quad 1 \quad 1$
OHOHOHनOOOOHOOOOOHOH
$ー ー ー ー$

$\circ \underset{m}{ } \circ \underset{m}{0} 00000 \mathrm{~m} \circ 0000 \mathrm{~m} \circ \mathrm{~m} \mathrm{~m}$

$11 \mid 1111111111111111111$
$00000 \mathrm{HHOOOHOOOOOOOMO} O$

00000 mmooog m
O00000000000070700OO O

0000000000000 HOHOOHO 0

\square

omoooonoooooooo 00000000mooonooooo
ーールールールールー上ールール
ОलОООО
-- - - - - - - - - N
080000800000008
"OFOOOMOmOO5O5m
1 1 1 1 1 1 1 1 1 1 1 1 1 1
OHHOOOHOMOOOOOM
ーーーNールールーーーールールー

--vN-~- - - - - - - -
$00 \mathrm{~mm} 00 \mathrm{~m} \circ \mathrm{~m} 00000 \mathrm{~m}$

1 1 1 1 1 1 1 | 1 1 1 1 1
OHMOHOHOHOHOOOH
ールーレーーールーーーーーーーー
oo oomoontooononoom

ーールールールールールールー~

-
111111111111111

ルーーーーールールールールールー

লomnommoono

1 1 1 1 1 1 1 1 1 1 1 | 1 1
नHWHOMNOOOHOOनm

ーーー~~~ー~ールールールー

ООО

111111111111111111
omoonorroo 00000000 H

○mooroom

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

๓ลิ-

ホm○の

500000700050050500 AGRSPI-CARFIL

[^8] AGRSPI-BOUGRA
$\mathrm{N}=3$
*

AGRSPI-AGRSMI

* *

AGRSMI-STIVIR *** $\begin{array}{ll}\text { Community } & * \\ \# \text { Sites } & * \\ \mathrm{~N}=\mathrm{B} & =24\end{array}$ $\star \star \star \star \star \star \star \star \star \star * * * * * * * * * *$ Graminoids Continued

1111111111111111111111 $000000-100000000000$ $\widehat{O} \widehat{O} \widehat{O} \widehat{O} \widehat{O} \widehat{O} \widehat{O} \widehat{O} \widehat{O}$
 000000000000000000 - $\quad 1$
 111111111111111111 00000 HOOOOOO
 ООООО
 00000 moO 000000000 m

000

1 1 1 1 1 1 1 1 1 1 1 1 1 1 | OOOOOHNOOOOHOOONOM
 ООООО जЫ
 000000 moO 00000 mo
 $\begin{array}{llllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$ OOOMOHनOOOHनOOOHOH上

O-Wm No

0おणन

- 1 | | | 1 1 | 1 | 1 1 1 i
$00000-1000100100$ How

ОО

00000 moO 0 mocmoon

1 | | | 1 | | 1 | 1 1 | | 1 1 H-10 OOHOOHWHNHNO
 ПААО

$$
\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
$$

Hतन HWOOHHHHNHWO

$$
\sim \sim-\sim-\sim \sim-\sim \sim-\sim \sim-\cup
$$

जraonmownom

$$
\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
$$

$$
\cdots-\cdots-\cdots-\cdots \sim \cdots \cdots \cdots \cdots \cdots \cdots
$$

OOOOOOOHOOOHOHOOOOHOOOHO OO

- - - - - - - - - - - - - - - - - - - - ~ N

नOOOHONHONOHNHOOHनHMOOHन HO

जmन
$\begin{array}{llllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$ सन नWHOHMNOMOOOन

 －－－－－－－－－－－－－ MNMNMOHNHNHONOOOM

नomono
$\begin{array}{lllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
HWMOOOHOONHOOHm

$$
\begin{array}{llllllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
$$ 000000000000000000 ーールーざこールーーーーーーーーーー －00000000000000000

 111111111111111111 000000 HOOOOOHHO H ーーーーーーーーーールーーーーーーー
 ー－ー－－－－－－－－－－－－－ 000000 N 000 Nm 0000
Јनロロनロ
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 OHOOHHOOHOOOHOMOMm

 ○HOOHFOHOOOONOMOHH
 $111111111111: 1111$ $0000+0$
ООООニス

 11111111111111111111 ㅇooomoooomooooooon

ОООन50 111111111111111111 OOOHOHHOOOOHOOHHOM ーールールールーールールールーレールールー・ ОООニОに

5000000000000000 111111111111111111 000000000000000000 ールールールールールールールールールール

 000000000000000000

O50000m00000500\％

$$
\begin{array}{lllllllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
$$

$$
00000 \mathrm{HHO} 000 \mathrm{HOOOmOO}
$$

$$
\begin{aligned}
& 00 \\
& \stackrel{0}{9}- \\
& \underset{c}{4} 0
\end{aligned}
$$

OOOOOOMOOOOHOOOHOO

1 1｜1 1｜1 1 1 1 1 1 1 1 ○○ーOOnMOOnOHr． 0 min
ールールーーーーーーールールールール

 ○○

050505050505000m 1111111111111111 000000 molog 0000 H ールーーールールーールールールー

 0000000000000000
 ｜1 1 1 1 1 1 1 1 1 1 1 1 1 1｜ H－throo 000000 HmHm

 NNMMoooooo omin．．．．．．
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 －10m○
 －－－－－－－－－－－－－

Monmoon wo moonow
11 НनH

 NOR MOO サOOONOOO～न
MOजm ○mo
 H－HनNOOनNONनOOOO
 Nनन ールーールー～～ー～～～～～～

 111111111111111.11111

 Оन ज़न

 0000m0
 000 HOOOOOOMOOO
 0000 monoO 000 HOO 0 oromooo Оी －－－－－－－－－－－－－－ 000 moOOOOOMOOOO
 －－－－－－－－－－ 0000 mol 0000 mm 0000
OOOO5O505000505050

O50000050000000000

0500000000050 N 00000
1111111111111111111
$0000000000000-10000$
すООООО

 SPAPEC－SPAGRA＊STICOM－BOUGRA＊STICOM－CARFIL
11111111111111111111
○оmoornooonrooooor
川－न－

ールールールールールールーールツー・
 －－－－－－－－－－－－－－ サーヴNOOONNNONNWOO
МननFOनOOOOFJनOOW
500005w
111111111111111111
00000 HO 000 HOOOHOH
ールールールールーーーーールールールー
ОООООААООООАОООООニ

$00000 \ln _{\infty} 0000000000001$
505050505 5050500
 000000000 H000000 ーールールーーーーーールーーーーー

500050 50500050

000000500050

ー－～－～～ー－～－－－－－－－ 0000000000000000 $\stackrel{-}{\circ}$

1111111111111111 000000 mol 0000000 ールールールールールールールールーー
 －－－－－－－－－－－－－ 0000000000000000 1111111111111111 000000000 moOHOOO ーーーーーーぃールーーーールールー・

 000000000000 m

号
号
品

号
足
0 man
 웅
 OOOOHONHOHनHHMOOHOHOOHNO HO

6°

000000000000000000000m00 50
11111111111.1111111111111111
$000000000000000000000-100$

000 m 00000000000000000800
Јल0050050505050050000000 00
$111111111111111111111 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1$
omooo0000000000000000000

080000000000000000000000
100
5050050505050505飞5000500
00
$\begin{array}{lllllllllllllllllllllllll}1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -1 & 0 & 0\end{array}$

- 0
ーー
ООООООООООООООО
- - - - - - - - - - - - - - - - - - - - - 氐 -
四000000000000000000000800
${ }_{0}^{2} \bigcirc 0$

WOOORE
号
Appendix B-3 (cont.

VIR
9
$\star * * *$

 Community

7. NHMT320392LROO61

3unity Types and
3. NHMT310593SC0053
6. NHMT310593SC0015

 2

JUNSCO/AGRSPI

1. NHMT320392LR0096
2.

APPENDIX C: Assignment of plots
groupings.
APPENDIX C: Assignment of plots
groupings.
Forested
11. NHMT310493SC0010

4. NHMT320392LRO097 9. NHMT310593SC0017
3. PINCON/JUNCOM
10. NHMT310493SC0006
4. PINFLE/AGRSPI
12. NHMT 320392RD0005
5. PINPON/ARCUVA
13. NHMT310493SC0004

15. NHMT310493SC0011
20. NHMT320392LR0068

PINPON/CARPEN

24. NHMT320392LR0088
25. PINPON/FESIDA
26. NHMT310493SC0005
27. PINPON/JUNHOR
28. NHMT320392LR0100
29. PINPON/SYMOCC

PINPON/SYMOCC
33. NHMT310490R
OJSNOC-NOdNId 'TT
34. NHMT 310590 RDOO22

12. PSEMEN/AMEALN
48. NHMT 310493 SCCO13

PSEMEN/SYMOCC
50. NHMT 310493 s
14. PSEMEN/VIOCAN
53. NHMT 31049350
Site Numbers:
5. NHMT 310490 JL0069
11. NHMT310390RD0041
20. NHMT 310490JL0029
25. NHMT 310490 JLO025
33. NHMT 320392 RD0003
38. NHMT 320392LRO010

3. NHMT320392LROO59
9. NHMT310390JL0052
14. NHMT320392LR0065
18. NHMT310590JL0007
23. NHMT310390RD0032
28. NHMT310490JL0074
31. NHMT320392LR0004
36. NHMT320392LR0067

1. ARTCAN/AGRSMI
2. NHMT310593SC0052
3. NHMT320392LR0063
4. ARTCAN/STICOM
5. NHMT310390RD0039
6. NHMT310490JL0023
7. ARTTRI/AGRSMI
8. NHMT310490RD0002
9. NHMT310390JL0058
10. NHMT310490JL0042
11. ARTTRI/AGRSPI
12. NHMT310390RD0036
13. ARTTRI/ATRCON
14. NHMT310390RD0030
15. ARTTRI/FESSCA
16. NHMT310390RD0027
17. ATRNUT/AGRSMI
18. NHMT320392LR0048
19. ATRNUT/AGRSPI
20. NHMT320392RD0017
21. ATRNUT/ERIPAU
22. NHMT320392LRO047
23. ATRNUT/SPOAIR
24. NHMT320392RD0008
25. CERLAN/STICOM
26. NHMT310590JL0002
27. ELECOM/X
28. NHMT310590RD0017
29. JUNHOR/AGRDAS
30. NHMT310593SC0005
31. NHMT310493SC0036
APPENDIX C (cont.) Shrub Community Types and Their Assigned Site Numbers Continued:

32. NHMT 320392 RDOO
33. NHMT 320392 RDOO14
34. NHMT320392LRO066
35. NHMT320392LRO079
36. NHMT 320392LR0017
37. NHMT310490JL0070
38. NHMT310593SC0008
39. NHMT310593SC0013

40. NHMT310490JL0068
41. NHMT310490JL0066
42. NHMT320392RDOO15
43. NHMT310493SC0046
44. NHMT320392LR0098
45. NHMT310490JL0076
46. NHMT310390JLOO59
47. NHMT310490JL0041
APPENDIX C（cont．）Herbaceous Community Types and Their Assigned Site Numbers：

$$
\begin{aligned}
& \text { 1. AGRSMI-BOUGRA } \\
& \text { 1. NHMT310590RD0001 } \\
& \text { 6. NHMT310593SC0002 } \\
& \text { 11. NHMT10390JL0055 } \\
& \text { 16. NHMT310593SC0055 } \\
& \text { 21. NHMT } 10490 \mathrm{JL} 0022
\end{aligned}
$$

3．AGRSPI－AGRSMI
48 ．NHMT 310490 JL0034
4．AGRSPI－BOUGRA
51．NHMT310493SC0008 45．NHMT310590JL0001
30.
35.
40.

$$
\begin{aligned}
& \text { 2. NHMT310590RDO020 } \\
& \text { 7. NHMT 310593SC0010 } \\
& \text { 12. NHMT } 310590 \text { RDO018 } \\
& \text { 17. NHMT310593S0043 } \\
& \text { 22. NHMT 310390JLO050 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 27. NHMT310490JL0021 } \\
& \text { 32. NHMT310590RDOO16 } \\
& \text { 37. NHMT310490JL0024 } \\
& \text { 42. NHMT320392LRO011 } \\
& \text { 47. NHMT310593SC0042 } \\
& \text { 50. NHMT310490JL0075 } \\
& \text { 53. NHMT 320392LR0012 }
\end{aligned}
$$

5．NHMT310490JLOO45
10．NHMT320392LRO002
15．NHMT310490JL0015
20．NHMT320392LR0016

$$
\begin{aligned}
& \text { 52. NHMT320392LR0056 }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { NHMT 310590JL0010 } \\
\text { NHMT320392RDDO11 } \\
\text { NHMT 310590JL0009 } \\
\text { NHMT320392LRO013 } \\
\text { NHMT320390RD0008 } \\
\text { NHMT310390JL0053 } \\
\text { NHMT320392LRO095 } \\
\text { NHMT310390JL0064 } \\
\text { NHMT320392LRO106 }
\end{array} \\
& \text { テウ்ฺ்ウ }
\end{aligned}
$$

5．AGRSPI－CAREIL
54．NHMT320392LR0015

6．AGRSEI－POASEC
55．NHMT310390RDOO40
60．NHMT310390RDOO51
7．ANDSCO－CAREIL
62．NHMT320390RD0010
67．NHMT310590RDOO13
8．ARTLON／ORYHYM
71．NHMT310390RD0035
9．CALLON－CARPEN
75．NHMT 310590 JLOOO3
80．NHMT310490JL0033 10．DESCES／X
$\begin{array}{lll}\text { 73．NHMT310390RD0037 } & \text { 74．NHMT310493SC0047 } & \\ \text { 77．NHMT310493SC0037 } & \begin{array}{l}\text { 78．NHMT320392LR0062 }\end{array} \\ \text { 82．NHMT320392LR0105 } & \text { 83．NHMT320392LR0054 } & \end{array}$ $\begin{array}{ll}\text { 73．NHMT310390RD0037 } & \text { 74．NHMT310493SC0047 } \\ \text { 77．NHMT310493SC0037 } & \text { 78．NHMT320392LR0062 }\end{array}$ 79．NHMT320392RD0010 $\begin{array}{ll}\text { 73．NHMT310390RD0037 } & \text { 74．NHMT310493SC0047 } \\ \text { 77．NHMT310493SC0037 } & \text { 78．NHMT320392LR0062 }\end{array}$ 79．NHMT320392RD0010
65．NHMT320392LRO058
70．NHMT320392LR0082 57．NHMT310390JL0056
64．NHMT320392LR0014
69．NHMT320392LR0057
58．NHMT310493SC0015
59．NHMT310390RDOO44
66．NHMT 320392LR0093 ？

84．NHMT $3105935 C 0022$
11．JUNBAL／X
11．JUNBAL／X
85．NHMT310593SC0026
12．PHRAUS／X
87．NHMT310493SCO038
86．NHMT 310593 SCOO12

90．NHMT310593SCOO32

89．NHMT310493SC0050
72．NHMT 310493 SCO 040
76．NHMT 310593 SC 0030
81．NHMT310593SC0031
60004TZ6£0Zを山WHN • ε 68．NHMT310590RD0033
56．NHMT 310390 RD0049

61．NHMT 320392 LR 0049 | 8 |
| :--- |
| |
| |
| |
| |
| |
| |
| |
| |

$\stackrel{H}{0}$	or
	－7\％
	5 5
¢	앙앙
	－${ }^{\circ} \mathrm{O}$
¢ ${ }_{\text {¢ }}^{\text {¢ }}$	$\stackrel{\rightharpoonup}{m}$
	雷㫨
身昡	${ }^{\text {c }}$
	2 z
¢o	$\dot{\square}$
or	易学少

Nr-	＋${ }^{\text {d }}$
	－780
\％	育号
	웅
ल ${ }^{\circ} \mathrm{O}$	
	暏
\％응	${ }^{\circ} \mathrm{H}=$

91．NHMT320392RD0001	92．NHMT320390RD0006
96．NHMT310593SC005I	97．NHMT310590RD014
101．NHMT310593SC0007	102．NHMT310593SC0018
15．STICOM－CAREIL	
104．NHMT310590RD0011	105．NHMT310490JL0020
109．NHMT310390RD0046	110．NHMT320392LR0060
114．NHMT310390JL0054	115．NHMT310490JL0067
16．STICUR－STIVIR	
I18．NHMT310593SC0027	119．NHMT310593SC0041
123．NHMT310493SC0034	124．NHMT310593SC0028

APPENDIX D: Plant associations and community types occurring in Bureau of Land Management Havre, Phillips, Valley and Big Dry Resource Areas; listed by decreasing size of dominant lifeform and alphabetically within lifeform (includes their accompanying G- and S-ranks [S-rank for whole state, not merely study area]).

CONIFER-DOMINATED FOREST \& WOODLANDS: G-rank S-rank

Abies lasiocarpa Series		
/Juniperus communis	5	3
/Linnaea borealis	5	5
Picea species Series		
/Cornus stolonifera (C. sericea)	3	3
/Equisetum arvense	4	4
/Juniperus communis	2	2
/Linnaea borealis	4	4
Juniperus scopulorum Woodland Series		
/Agropyron spicatum (Pseudoroegneria spicata)	4	4
/Oryzopsis micrantha	3	3
Pinus contorta Series		
/Juniperus communis	5	3
/Linnaea borealis	5	5
Pinus flexilis Woodland Series		
/Agropyron spicatum (Pseudoroegneria spicata)	4	4
Pinus ponderosa Forest Series		
/Amelanchier alnifolia	2	2
IAndropogon scoparius (Schizachyrium scoparium)	2	2
/Arctostaphylos uva-ursi	5	3
/Berberis repens	3	3
ICarex heliophila	3	3
/Festuca idahoensis	5	4
/Juniperus scopulorum	4	4
IPrunus virginiana	4	4
/Symphoricarpos occidentalis	3	3
Pinus ponderosa Woodland Series		
/Agropyron spicatum (Pseudoroegneria spicata)	4	4
/Andropogon spp.	2	2
/Juniperus horizontalis	3	3

APPENDIX D (cont.)
Pseudotsuga menziesii Forest Series
/Amelanchier alnifolia G-rank S-rank
/Arctostaphylos uva-ursi 4
/Berberis repens (Mahonia repens) 5
/Cornus canadensis 3
LLinnaea borealis 4
/Symphoricarpos occidentalis 3
Niola canadensis 3 3
Pseudotsuga menziesii Woodland Series
/Agropyron spicatum (Pseudoroegneria spicata) 5
/Andropogon scoparius (Schizachyrium scoparium) 3
/Muhlenbergia cuspidata 2
BROAD-LEAVED, MAINLY COLD-DECIDUOUS FORESTS:
Fraxinus pennsylvanica/Prunus virginiana 3
Salix amygdaloides 3
Acer negundo/Prunus virginiana 3
Fraxinus pennsylvanica-Ulmus americana/Prunus virginiana 1
Populus deltoides/Cornus stolonifera (C. sericea) 4
Populus deltoides/ Herbaceous c.t. 5?
Populus deltoides/Recent Alluvial Bar 5?
Populus trichocarpa/Cornus stolonifera (C. sericea) 4
SHRUBLANDS AND THICKETS:
Artemisia cana/Agropyron (Pascopyrum) smithii 4 4
A. cana/Stipa comata 3 3
Artemisia tridentata/Agropyron (Pascopyrum) smithii 5 5
A. tridentata/Agropyron spicatum (Pseudoroegneria spicata) 5 5
A. tridentata-Atriplex confertifolia 4 4
A. tridentata-Atriplex nuttallii (A. gardneri) 3
A. tridentata/Festuca idahoensis 4
A. tridentata/Festuca scabrella 3
A. tridentata/Stipa comata 5
Atriplex confertifolia 53434
APPENDIX D (cont.)
SHRUBLANDS AND THICKETS CONTINUED G-rank S-rank
Atriplex nuttallii (A.gardneri)/Agropyron (Pascopyrum) smithii 3 3
A. nuttallii (A. gardneri)/Sporobolus airoides ? ?
A. nuttallii (A. gardneri)/Eriogonum pauciflorum ? ?
Ceratoides (Krascheninnikovia) lanata/Stipa comata 3 3
Crataegus succulenta 2 2
SR
Eleagnus angustifolia SR
2
Eleagnus commutata
2
Eleagnus commutata/Agropyron smithii
4
Juniperus horizontalis/Andropogon scoparius 4
J. horizontalis/Agropyron dasystachyum (Elymus lanceolatus ssp. lanceolatus) 3 ? 3 ?
J. horizontalis/Agropyron spicatum (Pseudoroegneria spicata) 3? $3 ?$
J. horizontalis/Calamovilfa longifolia 3 ? 3?
J. horizontalis/Carex pensylvanica (C. inops) 4 4
J. horizontalis/Juncus balticus 4? $4 ?$
Prunus virginiana 4 4
Rhus trilobata (R. aromatica)/Agropyron spicatum (Pseudoroegneria spicata)44
R. trilobata (R. aromatica)/Calamovilfa longifolia 5
Rosa woodsii 4
Shepherdia argentea 4
Symphoricarpos occidentalis 4
Salix exigua 5
Salix lutea/Poa pratensis 4
Sarcobatus vermiculatus/Agropyron (Pascopyrum) smithii 4 4
S. vermiculatus-Atriplex nuttallii (A. gardneri) 4
Yucca glauca/Calamovilfa longifolia 434

APPENDIX D (cont.)

GRASSLANDS and FORB-DOMINATED COMMUNITIES	G-rank	S-rank
Agropyron (Pascopyrum) smithii	4	4
A. smithii-Bouteloua gracilis	5	4
A. smithii-Carex filifolia	4	4
A. smithii-Stipa viridula	4	4
Agropyron spicatum-A. smithii	5	4
A. spicatum-Bouteloua gracilis	5	4
A. spicatum-Calamovilfa longifolia	$?$	$?$
A. spicatum-Carex filifolia	4	4
A. spicatum-Muhlenbergia cuspidata	4	3
A. spicatum-Poa sandbergii	5	4
Agrostis stolonifera	3	5
Andropogon gerardii/Calamavilfa longifolia	4	2
Andropogon scoparius-Carex filifolia	2	3
A. scoparius-Muhlenbergia cuspidata	3	2
Artemisia longifolia	$3 ?$	3
A. longifolia/Oryzopsis hymenoides	3	$1 ?$
Calamovilfa longifolia/Carex heliophila	3	2
Carex aquatilis	5	4
Carex nebrascensis	4	4
Deschampsia cespitosa	4	4
Distichlis spicata	4	4
Eleocharis palustris	4	4
Festuca scabrella-Festuca idahoensis	4	4
Festuca idahoensis-Carex pensylvanica	4	4
Hordeum jubatum	4	4

44
APPENDIX D (cont.)
GRASSLANDS and FORB-DOMINATED COMMUNITIES (CONT.) G-rank
Juncus balticus 53
Poa pratensis 5
Scirpus acutus 5
Scirpus maritimus 4
Scirpus pungens 4
Spartina pectinata 3 3
Stipa comata-Bouteloua gracilis 5 5 5
2?
Stipa comata-Calamovilfa longifolia 2?
?
Stipa curtiseta-Stipa viridula ??
Typha latifolia 55

[^0]: Figure 1. Number of grassland plant community Element Occurrence Records (EOR's) in the Montana Natural Heritage Program database (as of
 $11 / 21 / 89$), by county. The shaded area represents grassland ecoregions of Montana as defined by Omernik (1987). The northeastern Montana study
 area is delimited by the thick black line.

[^1]: Figure 2b. DCA (Detrended Correspondence Analysis) ordinations. The first axis is the horizontal axis and the vertical axis displays the variation of indicate the number of multiple plots at positions.

[^2]: Indian Bread-root
 Lemon Scurf-pea
 Slender-flowered

 Pink Wintergreen
 One-sided Wintergreen
 Prairie Coneflower
 Curly Dock
 Russian Thistle
 Lanceleaf Sage
 Lance-leaved Stonecrop
 Woolly Groundsel
 Prairie Groundsel
 Campion; Catchfly
 Scouler's Silene
 Tumblemustard
 Blue-eyed Grass
 Mountain Blue-eyed
 Grass
 False Spikenard
 Starry Solomon-plume

[^3]: racemosa
 siellata

[^4]: SMIRAC Smilacina
 SMISTE Smilacina

[^5]: BETPAP RAPEN JUNSCO 덱
 學
 -1
 0 PINRON PSEMEN Shrubs ジAnつY甘

 呆
 a
 40
 0
 5
 5

 5 | $\sum 9$ |
 | :--- |
 | 00 |
 | 0 |
 | 2 |
 | \vdots |

 H
 岕
 世
 0
 0
 0 80
 8
 3
 0
 0
 0
 出

 0
 0
 $\sum_{0} 0$
 0
 0

[^6]:

[^7]:

[^8]: *

