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INTRODUCTION 

The Civil Engineering Laboratory (CEL) started its research in 
mooring simulation in FY 78 under the sponsorship of the Naval Facilities 

Engineering Command (NAVFAC). The goal of this development effort, 

called the Mooring Systems Prediction Project, is to develop and demon- 

strate a validated mooring analysis capability; the effort is being 

supported under the Ocean Facilities Engineering Exploratory Development 
Program (YF59.556). 

NAVFAC provided CEL with two mooring analysis computer models for 

continued development. The first model, DESMOOR (for DESign MOORings), 
is an inexpensive, simplified model which gives approximate answers. 

The second model, DSSM (Deep Sea Ship Moor), is an advanced finite 

element mooring model for use in the final design stage. Neither model 
was verified by experimental or field measurements. 

After the first year's effort into the problem of mooring simula- 

tions, it was realized that the behavior of moored ships involved complex 

mechanisms that were deeply interrelated. It was clear that an under- 

standing of each of the fields related to the mooring phenomenon was 

necessary before rational decisions could be made regarding the develop- 
ment and use of a general mooring analysis capability. 

SEMINAR 

Background 

CEL sponsored a workshop seminar at the beginning of 1980 for the 

purpose of reviewing the NAVFAC/CEL mooring analysis development effort. 

Specifically, the objectives of the seminar were as follows: 

1. To define the present state of mooring analysis and simulation. 

Included here would be an evaluation of the framework of 
NAVFAC's mooring analysis capability, namely, DESMOOR and DSSM. 

2. To identify the problem areas and uncertainties in the present 
state-of-the-art. 

3. To develop specific guidelines for the further development of 
the Navy's mooring analysis capability. 

4. To identify promising research topics for advancing the 

state-of-the-art of mooring analysis. 

Participants 

CEL invited nine prominent experts to attend. These participants 

were not necessarily experienced in the mooring dynamics area but were 

recognized for their expertise in subjects integral to the mooring 

phenomenon. A list of the attendees and their affiliations follows (in 

alphabetical order): 
il 



Dr. J. S. Bendat -- J. S. Bendat Company 

Dr. R. Bhattacharyya -- U.S. Naval Academy 

Dr. S. Calisal -- U. S. Naval Academy 

Dr. C. J. Garrison -- C. J. Garrison and Associates 

Dr. W. McCreight -- David Taylor Naval Ship Research 
and Development Center 

Dr. B. J. Muga -- Duke University 
Dre Me ken Ocha -- University of Florida 

Dr. J. R. Paulling -- University of California, Berkeley 

Dr. R. L. Webster -- Thiokol Corporation 

The participants displayed a spirit of cooperation that led to the 

success of the meeting. 

Format 

The two-day seminar was organized into three sessions. Session I 
covered the first day and consisted of short presentations by each 

attendee summarizing the problems associated with his particular area of 

expertise. Guidelines as to subject matter for these presentations were 

outlined in advance by CEL to insure complete coverage of the disciplines 

associated with mooring analyses. A short discussion/question period 

followed each presentation. 
Session II was held on the second morning and was the most important 

part of the seminar. Session II was an informal discussion which allowed 
the participants to build on the presentations of the first day. The 
intent of Session I was to brief each participant on the problems and 

limitations within each discipline (vessel motion, cable dynamics, 
etc.), while Session II was an opportunity for a free exchange of questions 

and ideas aimed at evaluating and extending the state-of-the-art in 

mooring analysis. 
Session III was held at the end of the second day and started with 

a description of the Navy's mooring needs as seen by CEL. The intent of 

Session III was to get specific recommendations from the attendees 

regarding the development of a mooring analysis capability. This dis- 

cussion was purposely placed last to avoid any bias in the Session II 

discussions on mooring models in general. 

Session I 

The seminar attendees were carefully chosen to represent all the 
"building blocks" necessary to evaluate and assemble mooring models. 
The presentations on the first day were divided into two groups: mooring 

system behavior and mooring system excitation and analysis. The following 

presentations were made during Session I: 

Mooring System Behavior 

e Mooring Dynamics Models ....... . Dr. B. J. Muga 

e Mooring Cable Dynamics a! «© 5) aoe. 2 Dee Reon Websit¢er 

e Diffraction Theory, Tachndas: 
ntarenay Iyestite Moree | 55 5 6 6 0 6 6 oo Nhe, Co Vs Caiaeisom 

e Vessel Equations of Motion... ... . Dr. R. Bhattacharyya 



Mooring System Excitation and Analysis 

e@ Second-Order Drift Forces ....... . Dr. W. McCreight 
e Random Wave Characteristics ....... Dr. M. K. Ochi 
@ spect rallyAnailysdisi ne) omen) sn DEJ s ay bendat 
e Mooring System Analysis ........ . Dr. J. R. Paulling 
e Mooring Dynamics Model 

Development Example ........ . . Dr. S. Calisal 

Each attendee delivered a short paper concerning his particular 

subject; these are included in a separate section in this report. Each 
of these papers gives a concise overview of the fields important to 
mooring simulation by emphasizing assumptions, limitations, and applica- 

tions. These papers are subjective in nature, and as such they are 
easily read and understood. 

Session II 

The discussions on the second day were intended to give CEL better 
insight into existing state-of-the-art mooring models and to allow the 

participants to delve into new ideas and approaches to mooring analysis 
problems. Both of these goals were achieved. 

Much of the discussion centered on the calculation and importance 
of the slowly varying drift force. Although this force is small, it can 
become very important because it exists at frequencies close to the 

natural frequency of many moored systems. When this dynamic force is 

negligible, a linearized frequency-domain dynamic analysis can be used 

at a very small computation cost. However, if the force has a signifi- 

cant effect on the mooring, a nonlinear time-domain model is required. 

This model requires a great deal of computer time because the statistics 

of the system behavior must be calculated indirectly from several brute- 
force simulations. Thus, the magnitude of the slowly varying drift 

force determines whether an inexpensive frequency-domain or an expensive 

time-domain dynamic computer model is required. Other topics of discussion 

are included in the CONCLUSIONS FROM SEMINAR DISCUSSIONS section. 
The discussions throughout the second day did result in progress 

toward extending the state-of-the-art in mooring analysis. As Dr. Muga 

points out in his paper, a nonlinear stochastic model would be the ideal 

analysis tool for moorings. This imaginary model would give statistical 

information directly and would eliminate the expensive intermediate 

results necessary with current time-domain nonlinear dynamic models. 

Dr. Bendat stated that he felt the time was right to extend linear time 
series analysis techniques and modify existing nonlinear techniques to 
obtain the necessary mathematics to describe nonlinear system behavior. 

Session III 

The final session began with an explanation by Dr. Webster on the 

DSSM computer model and a short summary by CEL on Navy mooring appli- 

cations. This was followed by discussions on the strong and weak points 

of the DSSM model and suggestions on how to improve it. 



A collection of conclusions from each participant, which addresses 

both general and specific conclusions from the seminar, is included in 

this report. Many of the items listed below are developed in these 

summary reports. 

CONCLUSIONS FROM SEMINAR DISCUSSIONS 

Th CEL Mooring Dynamics Seminar fully satisfied its objectives 

(i.e., to define the present state-of-the-art in mooring analysis and 

simulation, to identify the problem areas and uncertainties associated 

with available mooring models, and to recommend guidelines for the 

development of mooring models to suit Navy needs). The Seminar discus- 
sions also initiated a development effort that may lead to significant 

advances in the analyses of nonlinear dynamic systems. Some of the 

major contributions within each objective are outlined below. 

Present Mooring Analysis Capabilities 

As illustrated in Figure 1, there are several models available for 

mooring analysis. Each analysis technique is useful because of trade-offs 

in accuracy versus computational costs, which allow the mooring analyzer 

to choose the model that best suits his particular needs. For example, 
the fully nonlinear time-domain model, although the most accurate, is 

certainly not necessary for all applications. Alternatively, applying a 

large factor of safety and omitting the dynamic analysis, although it is 

very inexpensive, is likewise not appropriate in all cases. 

The majority of available mooring analysis models known to CEL 

assume a ship-dominated system, with the mooring lines treated as massless 

springs. System response is determined in either the time or frequency 

domain. Mooring line tensions are determined in a subsequent quasi-static 

analysis with the ship displacement imposed on the cable. The most 

accurate mooring models have no major restrictions or assumptions, and 

are based on a time-domain representation of vessel and cable response. 

It was generally agreed that DSSM is a very cost-effective mooring 

model. As demonstrated in Figure 1, DSSM uses a fully nonlinear static 
analysis model (finite element) and a fully coupled, but linearized, 

frequency-domain dynamic model. The only major improvement possible 

would be to add a nonlinear time-domain model, that would add at least 

an order of magnitude to the computation costs. Since the degree of 

nonlinearity (i.e., effect of the slowly varying drift force) for moorings 
involving Navy (intermediate-sized) ships is unknown, the need for a 

nonlinear dynamic solution is unknown. It was recognized that the 

accuracy of the linearized dynamic solution in DSSM might be adequate 

for Navy applications, and that major model improvements might not be 

necessary. Further details regarding the evaluation of DSSM are included 
after the next section. 

Problem Areas and Uncertainties 

Identification of the problems associated with state-of-the-art 

mooring simulation will be discussed without reference to any particular 

applications or computational cost limitations. Evaluation of these 

items is left to the reader. Some of the most significant problems are 
discussed below: 

4 



1. The most accurate and complete time-domain models have only one 

restriction — that the buoyancy of the vessel be linear with immersion. 

This does not result in any significant errors for moderate vessel 

motions. However, this restriction does introduce errors for severe 

vessel motion when bow/stern submergence occurs. This restriction is a 

consequence of the mathematics required to transform frequency-domain 

vessel motions to the time domain. Since no available vessel motion 

models can handle extreme vessel motions, this restriction is unimportant. 
However, recent efforts in the OTEC project towards the development of 

an extreme vessel motion model may spur research aimed at the development 

of a corresponding mooring model. 

2. At the present time, there is no accepted technique for pre- 
dicting and simulating the slowly varying drift forces on a floating 

vessel. These forces can be significant in comparison to the other 

environmental loads. Approximate techniques of unknown accuracy are 

available for estimating this load. 

3. Another limitation in reducing the errors associated with 

mooring simulation comes from the uncertainty in defining the environ- 
mental loads, particularly the wind and wind-driven surface waves. 

Errors associated with the use of a wind wave model (Bretschneider, 

Pierson-Moskowitz, etc.) have been shown to approach 100% for spectral 

components as compared to actual measurements. These errors can seriously 

affect the simulation due to the frequency sensitivities of the vessel 
response and the use of the wave spectrum in determining the mean and 

slowly varying drift forces. 

The development of spectral families for wind wave models by Dr. 

Ochi is an important development reported at the seminar. By identifying 

the error bounds (admittedly a statistically averaged value) in these 

wind wave spectral models, much of the uncertainty in the final results 
can be reduced. For many mooring models, the error introduced by using 

a single spectral model was significant compared to the error due to 

approximations in the mooring model itself. 

4. It was also pointed out that developing and using a very accurate 

mooring model may not be cost effective if the criteria by which the 

results are evaluated are not well-defined. This is illustrated in 
Figure 2, which shows the uncertainty (also probability) in the simulated 

results, p(s), and the uncertainty in the criteria, p(c); the bandwidth 
of either curve is analogous to the standard deviation of the error. 
The area of overlap gives an indication of the probability of system 
failure. For example, in long-term applications, p(c) for failure loads 
may be large due to uncertainty in the corrosion, wear, etc. of system 

components. This has important implications because the mooring designer 

could simulate such a system with an inexpensive, simplified model and 

save computation costs from a more refined model. A more detailed 

illustration of model errors versus evaluation criteria is shown in 

Figure 3, using CEL's mooring models as an example. Definition of p(c) 
is dependent on each application, so generalizations would be difficult. 

Recognizing that the evaluation criteria play a role in the choice of 

analysis models is the first step. 



Guidelines for Navy Mooring Research 

The conclusions listed in the previous section are universal and 

are somewhat independent of specific needs. The conclusions in this 

section are applicable to the development of a Navy mooring analysis 

capability. An overview of this development within the CEL Mooring 
Systems Prediction Project can be found in CEL Technical Memorandum 
M-44-80-9.* 

Some of the specific recommendations made during and after the 
seminar are listed below: 

e A few minor additions could be made to DSSM to improve its 
generality. Examples are: 

(1) Build in additional wind wave spectral models and allow 
for shoaling. 

(2) Allow for wave orbital velocities in the dynamic analysis. 
In shallow water, these velocities would approach the magnitude 

of the dynamic motions and should be accounted for. 

(3) Allow for unsteadiness in the wind loading by introducing 
a wind spectrum. 

(4) Allow for cylindrical surface buoys to complement the spherical 

buoy dynamic characteristics already in DSSM. Results from an 

extensive investigation into the dynamic characteristics of 
floating cylinders will be reported soon from the U.S. Naval 

Academy. 

e The relative effect of many of the idealizations used in the 

DSSM model can be determined through parametric studies. 
Examples of this include: 

(5) Errors caused by the use of spheres to represent all surface 

buoys. The dynamics of buoys were considered of secondary 

importance compared to the ship when this section of the model 

was formulated. 

(6) Errors associated with the linearization of the mooring cable 
response for the frequency-domain analysis. The moored ship 

response is first calculated in the frequency domain. A 

second time-domain analysis with fully nonlinear cable response 

is then performed separately, using the linear ship response 

as excitation to the top of the cables. Relative comparisons 
of the cable responses would help determine the significance 
of this linearization. 

(7) Importance of the inclusion or exclusion of the dynamics of 

surface buoys in the dynamic analysis. The wave-induced 

motions of the buoys certainly contribute to the loads in 

*Civil Engineering Laboratory. Technical Memorandum M-44-80-9: A 
review of the CEL mooring systems prediction product area, FY 79 and 

FY 80, by P. A. Palo. Port Hueneme, Calif., Sep 1980. 



the hawsers and mooring lines, but the relative size of this 

contribution relative to the ship-induced dynamic loads has 

never been determined. This is important, since surface buoys 

add additional degrees-of-freedom to the solution and increase 

computation costs. 

(8) Errors associated with the use of current and wind loads 

versus relative heading in the static analysis. Determining 
the sensitivity of typical mooring systems to changes in the 

static load coefficients would be extremely valuable, since 

the available data exhibit a large scatter. 

(9) Determining the sensitivity of the model to errors in any 
input variable would be valuable and practical, particularly 

for actual studies where many values can only be estimated. 

State-of-the-Art Advances 

Discussions which evolved from the use of bispectra for ship resis- 
tance measurements indicated that an advance in the state-of-the-art may 
be possible in the analysis of nonlinear dynamic systems. Development 

of nonlinear systems identification techniques, as discussed under 

Session II, would be a major breakthrough not only for mooring analysis, 

but for all nonlinear dynamic systems. Efforts in this area have been 

initiated. 

SUMMARY 

The two-day Mooring Dynamics Seminar satisfied all of its objectives. 

Recommendations for development of a mooring analysis capability were 

made, and a potential contribution towards advancing the state-of-the-art 

in nonlinear dynamic analysis was initiated. The presentations and 

summary reports included in this report form a unique primer on the 

mooring analysis problem and state-of-the-art analysis techniques. 
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Figure 1. Hierarchy of deterministic mooring models. 
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p(s) 

p(c) 
p(x) 

(0) S Ee x 

a. General case 

1. x = parameter under 

investigation 

s= calculated value from 

the simulation 

p(x) c= criteria for evaluation 

of system reliability/ 

performance 

2. p(x)= uncertainty: 

where {~~ 
® p(x)dx = 1 

0 S C xX 

b. Well-defined evaluation criteria 

Figure 2. Role of uncertainty in system evaluation. 
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Figure 3. Mooring system evaluation using CEL computer models. 
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MOORING DYNAMIC MODELS 

By 
Dr. B. J. Muga 

INTRODUCTION 

It is particularly appropriate that this seminar is being 

sponsored by the Civil Engineering Laboratory. As far as is 

known, this Laboratory was the first (at least in modern times) 

to begin the systematic study of moored ship behavior. The 

earliest group of studies consisted of (1) an aircraft carrier 

moored alongside a conventional pier at Bremmerton, Washington, 

(2) another aircraft carrier anchored off San Nicholas Island 

in what has come to be known as a Single point mooring, and 

(3) an LST moored off a drilling platform in the Gulf of Mexico 

in what is known as a multipoint mooring or spread mooring or 

what in the industry is referred to as a sea berth mooring. 

In addition, a study of the motions of the CUSS I vessel as a 

part of Phase I of Project Mohole was carried out here at this 

Laboratory. 

All of these studies were, for the most part, data collec-— 

tion efforts having rather specific objectives which were satis- 

fied by what would be regarded as crude data analysis. In brief, 

they were field studies of prototypes. It should be remembered 

that when these studies were initiated over 20 years ago, analyses 

techniques were not as highly developed and even those there were 

were not well-known. Computer capability, in terms of what we 

have available today, was in a stage of infancy. Therefore, it 

is no wonder that the course of field studies was taken, even 

though some model studies were also carried out by outside con- 

ea Cie (As a matter of fact, even though field studies are very, 

very expensive, still they were not as expensive, relatively 

speaking, as they are today.) 

The important role of these early studies — aside from 

satisfying the immediate objectives — was in drawing attention 

to the various deficiencies in understanding moored ship behavior. 
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An effort was made to remove some of these deficiencies by 

sponsoring one analysis study which is often cited in the 

literature and is well-known and somewhat of a milestone. This 

study entitled, The Motions of a Moored Construction Type Barge 

and Their Influence on Construction Operations, by Kaplan and 

Putz, was completed in 1962 but interest in the problem seems 

to have waned shortly thereafter. So, now it is refreshing to 

note that the Navy has recognized the need for renewing interest 

in this problem. 

It has been observed that the dynamics of moored ship systems 

is a more general problem of the response of a vessel in a seaway 

or what has been referred to in the literature as the ship motion 

problem. This problem has occupied the attention of some of the 

best researchers and high-level mathematicians for the better 

part of this century. Therefore, nearly all of the analysis 

techniques that have been developed in connection with ship 

motion problems can be applied to the moored vessel problem. 

However, we have three differences. First, we are usually 

interested only in the zero forward speed case. Second, we have 

the added complication of the mooring system, and, third, we are 

usually interested in barges or other vessels which may not have 

a traditional ship plan form. This last difference is more than 

just a superficial interest since many of the simplifications 

which are employed for ship motion studies are no longer appro- 

priate for a moored vessel. 

MODEL CHARACTERISTICS 

One approach toward understanding mooring dynamic models is 

to list all of the various models citing all the references, the 

underlying assumptions, the various limitations, and the valida- 

tion, if any. Unfortunately, such an approach is time consuming, 

laborious and not particularly rewarding. 
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Another approach, as followed herein, has for its basis the 

categorization of the various model characteristics. This approach 

is systematic and therefore, more instructive and illuminating. 

However, it suffers from the disadvantage of requiring some know- 

ledge of the general nature of the problem and of the pertinent 

ship-motion literature. But, this is a meaningful requirement for 

a seminar such as this. Therefore, it iS appropriate to categorize 

the various model characteristics in terms of a hierarchy, as shown 

in Figure 1, and to discuss the representative mathematical models 

in terms of these characteristics. 

Deterministic versus Stochastic Models 

It seems natural to consider that the most important division 

of mooring dynamic model characteristics is the division between 

deterministic and stochastic models, as shown in Figure 1. A few 

comments are in order. We know that if the input is deterministic, 

then the output is deterministic. We also know that if the input 

is stochastic, then the output should be stochastic. But, the 

problem that emerges is - How is it (i.e., the output) computed? 

Is it computed directly or indirectly? How many simulation runs 

are needed? How long should each run be? What will it cost? and 

so on. 

An example of a direct computation stochastic model is one 

for which the non-linear terms appearing in the governing system 

of equations have undergone "equivalent statistical linearization." 

That is to say, that the process of linearizing the non-linear 

terms is one in which the errors (associated with the linearized 

terms) are minimized. 

This is in contrast to equivalent linearization in the 

deterministic sense wherein the energy (or some other variable) 

is averaged over one "cycle". 

Of course, another example of a direct stochastic model is 

one wherein the system is linear. In this case, the output 

statistics are obtained directly. Since there are all kinds of 
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Deterministic versus Stochastic 

Linear versus Non-Linear 

Time versus Frequency Domain 

Quasi-Static versus Dynamic 

(for Cable Stresses) 

Analytical versus Experimental 

Approximate versus Exact 

Figure 1 - Hierarchy Levels of Model Characteristics. 
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non-linearities, we have to be careful to explain precisely what 

is meant by this distinction (linear versus non-linear) which is 

illustrated by the second level in the hierarchy of model 

characteristics (Figure 1). 

In summary, if the system is strictly linear, the output 

statistics can be obtained directly. If the system in non-linear, 

an exact analytical derivation (of the output statistics) is 

generally impossible, except in very specialized cases (Caughey, 

WEXS33)) Thus, two alternatives are possible: an approximate 

analytical solution, or an experimental determination of the 

response statistics by means of analog or digital simulations. 

Approximate Analytical Techniques. If the system inputs 

are small, the usual approach, as cited above, is to linearize 

the non-linear equations and derive the output statistics from 

the resultant approximate linear model. This has been applied 

to problems of vibrating strings (Caughey, 1963) and ship rolling 

(Haddara, 1973) for the purpose of deriving response moments of 

first and second order. If the system non-linearities are small, 

then first and second order response moments for large inputs 

may often be obtained by using a classical perturbation approach 

(Crandall, 1963). For the moored ship, the first and second 

moments are important but they are not the only important statis-— 

tics — estimates of, for example, peak distributions and the 

probabilities of exceeding maximum allowable values of stresses 

or displacements, especially under heavy sea conditions, are 

also needed. 

Simulation Techniques. In order to obtain satisfactory 

estimates of system responses by simulation, long duration runs 

are required. This means that simulation algorithms used should 

be efficient as well as accurate, with the sampling rate close 

to the Nyquist rate for the bandlimited signals. It also means 

that algorithms for generating synthetic test-input sequences 

on the computer must be capable of being adjusted to give spectral 

characteristics and amplitude distributions similar to those 
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obtained by the sampling of actual (i.e., measured) forcing 

function records. Thus, these simulation studies require: 

(1) Algorithms employing random number generators 

and digital filtering techniques for the 

generation of synthetic correlated input 

sequences having characteristics which can 

be adjusted to closely match those of se- 

quences which can be expected from the 

sampling of actual wave data, and 

(2) Efficient and “Statistically accurate” algo-— 

rithms for the numerical solution of the 

non-linear state equations of the system for 

random inputs as described. 

In regard to the second requirement, there are numerous 

approaches to the problem of numerically integrating both linear 

and non-linear differential state equations, and several compari- 

sons of various methods have been made (e.g., Martens, 1969) for 

homogeneous equations or equations with simple specified 

(deterministic) forcing functions. A comparison of simulation 

algorithms (based on mean-square error criterion) for systems 

with random inputs has recently been completed (Kim, 1978). In 

this study, the system models included simple first and second 

order linear systems, and two highly simplified non-linear models 

for an ocean platform and a moored ship, respectively. The input 

Signals used consisted of synthetically generated independent 

Gaussian sequences and sequences derived by sampling actual ocean 

wave-force records obtained during hurricane conditions. The 

Simulation algorithms were derived using state-transition, 

z-transform and Runge-Kutta methods. Through the use of Shannon 

sampling expansion for bandlimited functions, a new type of state- 

transition algorithm and a modification of the classical fourth- 

order Runge-Kutta method were derived and shown to result in 

increased accuracy over the methods currently in common use. 

This is particularly noticeable for low sampling rates. 
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Linear versus Non-linear 

In order to clarify this characteristic in the model hier- 

archy, it is illuminating to introduce a mooring dynamic model. 

Consider, for example, a general deterministic 'linear' 

model as developed and contributed to by Cummins (1962), 

Ogilvie (1964) and others which has been found useful in analys- 

ing moored-ship behavior. The system of equations appears as 

6 { t 
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M5 is the inertia matrix 

CK; is the matrix of hydrostatic restoring 

force coefficients 

"ies is an impulse response or retardation 

function 

ies is a constant inertia (frequency independent ) 

coefficient matrix 

X(t) is a time-varying exciting force due to winds 

wave, currents and restraining (mooring) forces. 

This system of equations is linear in the sense that the 

integral involves a superposition or summation. Also, although 

the above formulation is written in the time domain, there is 

an equivalent frequency domain description. This can be shown 

by letting the moored vessel perform simple harmonic motion in 

response to harmonic excitation. 

7 



By using the following relations, as provided by Ogilvie 

(1964), the frequency domain relations are obtained. 

Seg") = = (l Dh. (ni) cos wtdw, 

O 

mae =) le (Cy! )), Te A Kee (G@))) Sia Wy woke. 
kj kj 0 kj 

0 

where 

Bed = added mass coefficient (frequency dependent ) 

w' = one particular but artibrary value of w 

hee = damping coefficient (frequency dependent). 

Thus, the third category in model hierarchy (Figure 1) 

which distinguishes between frequency domain and time domain 

model descriptions is shown to be a case in which one is a 

subset of the other. 

At this point, we no longer talk about the system of equations 

in a general way but instead we focus our attention on various 

terms of the equations and examine each in the light of the 

linear-non-linear description. We have already examined the 

impulse response term. 

Consider the various restoration sub-models. The restoration 

forces consist essentially of two components. There are those 

that are due to bouyancy effects in roll, pitch and heave and 

those that are due to the mooring lines. For small motion ampli- 

tudes, these restoration forces are often approximated by linear 

functions. But the roll moment is well-known to be non-linear with 

respect to roll displacement, and the components due to the mooring 

lines are often non-linear with respect to geometry and/or material 

properties or both. For example, the mooring restoration forces 

in the case of a ship at a conventional pier where a combination 

of mooring lines and fenders result is a highly non-linear restor- 

QtwTOnneEuUn cit on. 
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Thus, the restoration forces can be linear or non-linear, 

but, the important point is that given the instantaneous dis- 

placements, these forces can be determined. Also, for ship- 

dominated systems, a quasi-static treatment has been customary 

on the assumption that the system inertia is very large relative 

to the restoration forces. For cable-dominated systems, this may 

be no longer true and in these cases, it becomes necessary to 

consider the cable dynamics. It develops that this division 

constitutes one of model hierarchy characteristics (e.g., static 

or dynamic with respect to cable forces). 

The time-varying excitation term can be linear or non-linear 

in the sense that they are non-linear with respect to amplitude 

or surface elevation. The non-linearities are attributable to 

two different sources but for the same reason. For example, they 

ean result from monochromatic higher-order waves, or from frequency 

interactions between components of wave spectra. Solution of 

the free surface boundary value problem carried to second order 

in either case will disclose these non-linear occurrences. 

In summary, the mooring dynamic model described by Equation 

(1), although 'linear' in one sense (i.e., the integral term), 

is suitable for handling non-linearities which occur in the 

other terms. It should be emphasized that this is a deterministic 

model and therefore will not yield the response statistics directly. 

Also, although the model is consistent for first order solutions, 

there is somewhat of an inconsistency in utilizing the model for 

higher order solutions. This will be illustrated in the next 

section. 

As a final remark, all other time domain deterministic models 

can be shown to be subsets and/or special cases of the model des- 

cribed above. This includes any model having less than six (6) 

degrees of freedom, any model in which the modes are uncoupled, 

any model in which the mooring forces are linearized or any 

model in which the excitations are approximated by any simplifying 

assumption (e.g., slender body assumption leading to strip theory). 



STATE-OF-THE-ART PROCEDURE 

Application of the foregoing mooring dynamic model (as 

formulated in the time domain) to the analysis of inertia- 

dominated systems as exemplified by a tanker is approached by 

the following stepwise procedure: 

1. For each frequency corresponding to the partitioned 

components of the input wave spectrum, the following 

quantities are computed: 

a. First order forces corresponding to the 

sum of the incident and scattered wave 

potentials (that is, the first order 

forces corresponding to the diffraction 

potential). These forces are those that 

would exist if the vessel were fully 

restrained and the theory employed is that 

outlined by Wehausen and Laitone (1960). 

There are no simplifying assumptions in 

this procedure except that for an ideal 

irrotationai fluid. 

b. First order unit amplitude radiation 

potentials and corresponding unit ampli- 

tude transfer functions. The real and 

imaginary components of the latter are 

directly related to the added mass and 

damping coefficients which are frequency 

dependent. Implicit in this process is 

the assumption that the vessel responds 

at the same frequency as the input excit-— 

ing wave frequency. 

ec. Using a frequency domain description of 

the dynamical equations of motion, the 

first order motions (i.e., amplitudes) 

are computed. 
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The first order motions obtained in paragraph 1 (c) 

above are used to scale up the unit amplitude radia- 

tion potentials to the radiation potentials. This is 

done for each frequency as is the next step. 

These radiation potentials are combined with the 

diffracted potentials obtained from 1 (a) to yield, 

after some manipulation, the mean drift forces. The 

main assumption underlying this procedure is the 

far-field approximation (Newman, 1967). 

The mean drift forces corresponding to the various 

frequency components are then combined using the 

procedure outlined by Newman (1974) to yield the 

time-varying drift (or second order) forces. This 

procedure is a recognition of the weak contribution 

from large frequency-difference combinations components. 

In other words, the off-diagonal contributions are 

neglected. 

The first order force time histories are generated 

by superposition (either random phase or artibrarily 

specified phase) and combined with the second order 

force time histories to provide a set of synthetically 

generated excitation time histories corresponding to 

the input wave spectrum. 

Using the relations derived by Ogilvie (1964) the 

constant inertia coefficients and the impulse response 

functions are obtained from the added mass and damping 

cCoectiver1entse 

From the above, the time-domain system of equations is 

solved to yield the resulting motions and line loads 

in the form of time histories. The pertinent statistics 

of interest are computed. To provide additional confi- 

dence in the statistical results, steps 5 and 7 are 

repeated for different phase angles between the components 

of the wave spectrum and different phase relations be- 

tween the first and second order time histories. KEach 
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of the latter constitutes a numerical Simulation. 

These are the so-called "Monte Carlo" simulations. 

The main shortcoming of the above procedure is that it 

is laborious and does not yield the output statistics directly. 

Whereas the input is a stochastic variable, the mechanical model 

is deterministic. What is needed, then, is a mechanical model 

which is stochastic, or, at the least, capable of handling 

stochastic output directly. Such a model would be consistent 

with the nature of the phenomena. 

It is believed that the procedure could easily be expanded 

to include the cable-dynamics effects for restoration-force 

dominated systems. At the same time, Some simplifications might 

be possible. 

CONCLUSIONS 

It is believed that the mooring dynamic model described 

herein could be utilized for the analysis of moored-barge systems 

of interest to the Navy. This may require some modification 

and/or linkage with an existing cable-dynamics model. It is also 

suggested that a stochastic model might be developed which would 

be more consistent with the nature of the problem and potentially 

very rewarding. 
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MOORING CABLE DYNAMICS 

by R. L. Webster 

10 January 1980 

The dynamic responses of the mooring lines themselves become an important 

consideration in deep water moors. It is the purpose of this note to outline 

some of the characteristics of mooring lines, to describe an approach to 

modeling them, and to focus on some of the problems encountered. 

Important Characteristics of Mooring Lines 

long 

Special behavior features which may appear in significant combinations in 

mooring lines are: 

Geometric Nonlinearity - This is a large displacement effect which 

produces a stiffness dependent on the deflections and preloads in the 

line. As an example, consider a simple straight line segment with 

negligible bending stiffness. The stiffness of the segment along its 

axis is 

AE P 

‘Sedat Tee (1) 

where A = cross-section area 

E = Young's modulus 

L = segment length 

P = preload in the segment 

Usually P is small compared to AE and is neglected; however, the stiffness 

transverse to the line is not zero when P is not zero. It is 

(2) reall ae) “Sl ateeseaill is 
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When the displacements are not small, the changes in position of the 

line and the changes in magnitude of P must be accounted for in the 

equations of motion. 

Material Nonlinearity - Most mooring lines exhibit a nonlinear relation- 

ship between load and elongation (i.e., Hooke's Law does not hold). 

Even when the effect is linearized, one must contend with differing 

behavior in tension and compression. The slenderness of mooring lines 

usually results in such low compressive load resistance that it is 

assumed to be zero. In most mooring lines (particularly with synthetic 

materials) , the material damping or hysteresis is also an important 

effect. 

Non-conservative/Nonlinear Loading - The dominant environmental loads 

on mooring lines are of the distributed pressure type (e.g., drag loading). 

This is typically dependent on the square of the relative velocity between 

the line and the fluid. It is also highly sensitive to the orientation 

of the velocity vector relative to the line. Dynamic effects produce 

additional non-conservative loads proportional to the relative acceleration 

(re Morrison's equation). It is common practice to neglect change of 

acceleration effects and to treat the acceleration terms with an added 

mass. The added mass is ususally assumed to be zero for acceleration 

parallel to the line. 

Position Dependent Constraints - Limits must be imposed on the mooring 

components to prevent movement out of the water or below the bottom. 

The bottom interaction of catenary type lines is an important effect in 

moors of moderate to shallow depths. 



Nonlinear Dynamics - The dynamic response of long lines is very compli- 

cated and may produce significantly different effects from those implied 

by the static responses. There may be significant coupling between 

mooring, buoy and ship responses. One should expect various forms of 

harmonic coupling. Thus, excitation at a single frequency may produce 

responses at other frequencies. Subharmonic responses are common and 

super-harmonic responses are possible. Damping and large amplitude/low 

frequency forces (drift forces and swells) are also important factors. 

It should be noted that most moored ship analyses assume the lines are non- 

dynamic components modeled by a simple spring which is usually assumed to be 

linear. In some cases, a material nonlinearity has been introduced, but most 

other nonlinearities of the lines are ignored. Typically these analyses are 

conducted with 6 degrees of freedom (the rigid body components of the ship) 

and some limit the model to 3 degrees of freedom. 

Finite Element Modeling of Mooring Lines 

The finite element method offers an approach to representing the dynamic 

equations of the lines. It is a discrete approach which uses a finite set of 

nodal degrees of freedom to approximate the line behavior. The finite element 

method can be viewed as a special form of the Rayleigh-Ritz method where the 

assumed response functions are defined in finite sub-regions rather than on the 

entire body. Admissibility is readily assured when the assumed functions are 

displacement fields. The finite element approach using assumed displacement 

fields is known as the stiffness method. 

Application of the stiffness method to the modeling of mooring lines 

requires the assumption of the geometric form as well as the displacement field 
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for a typical sub-region or element. The simplest form is a 2-node system 

with a straight line connecting the nodes. The simplest displacement field 

is also linear in form. This field assumes that the displacement of any 

point on the line segment is obtained by simple linear interpolation form 

the displacements of the nodes. This is known as the 1-D simplex element. It 

also assumes there is no bending or torsional resistance so that only the 

spatial positions of the nodes are used. Thus the element has 3 degrees of 

freedom per node in a 3-D problem. The equations of motion for this element are 

obtained by an application of kinematic, material constitutive and energy 

relations. Since the assumed functions are defined only on the single element, 

the entire structure and its dynamic equations are obtained by summing the 

individual element contributions under the obvious assumption that the elements 

are joined at the nodes. 

Element forms of higher order that the 1-D simplex can be used. The most 

readily defined forms are based on polynomials, and the next logical element 

form is one which uses a parabola for the geometry and the displacement fields. 

Such an element uses one more node along the line between the two end nodes, 

and the functional form is obtained using Lagrangian interpolation on the 

three nodes. The process could be extended to cubics and higher orders, but 

there appears to be no justification for doing so. Even though the higher 

order fields are more capable of modeling complicated geometries and responses 

with fewer elements, the number of nodes required does not change much while the 

complexity of the equations and the cost of their calculation increase 

considerably. 

The very regular and orderly form of the stiffness method makes it very 

attractive for coding on a digital computer. The method also makes it very 
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easy to introduce discrete bodies and special constraints. A very attractive 

feature is that the coding is insensitive to the geometric complexity. To be 

sure, more nodes and elements means more computation cost, but the method is 

insensitive to the degree of interconnection, multiplicity of materials and 

the irregularity of the geometry and boundary conditions. 

A very strong feature of the stiffness method is the ability to develop 

the governing discrete equations directly for a variety of solution forms. 

Since it works with the governing equations from mechanics, it is as easy to 

get the incremental equation form as it is to get the total response equations. 

Frequency domain or time domain forms may be chosen. This is of particular 

value in large displacement solutions where dynamic effects occur relative to 

some static preloaded state. This allows the static and dynamic analyses to be 

done using consistent models. This is of very specific value in mooring 

analysis. 

Two very real problems with the use of the finite element method deserve 

mention. First is the fact that this approach (like most discrete methods) 

tends to produce large order simultaneous coupled equations, and solution 

of these equations can be expensive. Often the novice code user will tend 

to “shot gun" the problem with many nodes, many design perturbations and many 

debug runs. Cost may not be a dominant factor if there is no other way and the 

answer must be had; however, one tends to vault from very crude models to 

excessively complex models with little thought about what is in between. Once 

the ability to analyze is given, one may tend to over-—analyze or expect far 

too much from the analysis. The second problem is related to the first. When 

a very complicated problem is solved on the computer, the input generation is 
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a major task and the output is voluminous. One tends to be overwhelmed by it 

all and jumps to the very convenient conclusion that since a successful run 

is finally obtained and it was done using an "all powerful black box" using a 

computer, then the answers obtained must be correct. These are two aspects of 

the "black box syndrome" and they tend to reduce the amount of intelligence 

put into the formulation of an analysis .... Without some careful control, they 

may lead to a very costly pile of garbage! 

Typical Solution Forms 

The most common approach to analyzing mooring dynamics begins with a 

static analysis to establish a stable initial or reference state of the cable 

system. The dominant nonlinearities are present in the static equations and 

all effects mentioned earlier must be accounted for except the dynamics. 

Because of the strong geometric nonlinearity present in most deep water moors, 

this may be a very difficult step in the analysis. Often the static reference 

state is not well defined by a simple connection of the unstretched elements. 

Usually the unpreloaded system represents a mechanism which is unable to 

support loads in one or more directions and/or it violates boundary conditions 

and compatibility constraints. Load resistance (stiffness) is only developed 

as the elements rotate and stretch. 

Once the static reference state is obtained, various dynamic solution 

options are available. Some of them are: 

1. Linearize equations and solve for small displacement perturbations 

about the static reference in the time domain. 

[M] {Aq} + [C]{aq} + [K]{4q} = {AE(t)} (3) 
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2. Linearize equations as above, transform to frequency domain for 

quasi-linear solution where equations are frequency dependent. 

CE = as Cat eo) i} 

fia = Re Cok a) (4) 

Cacim) © ay (Cl = (RIOR = Gor 

3. Direct numerical integration of nonlinear time domain equations. 

[M] {q} = {f} - {g} (5) 

where [M] is the position dependent virtual mass matrix. 

{£} represents the time and position dependent external 
forces (dragloads, point loads, etc.) 

{g} represents the internal loads from the elements, 

reflecting the material and geometric nonlinearities and 

material damping. 

The finite element method allows direct calculation of any of these terms 

for the mooring lines given the material properties (EA, mass, etc.), the 

nodal positions and the unstretched element lengths. The effects of lumped 

bodies; such as, buoys, platforms and ships, can be readily included if they 

are described in functional or tabular form appropriate to the solution form. 

Special rigid link multi-point constraints are used to tie the bodies into the 

mooring model. 

Some Demonstration Solutions 

Single Degree of Freedom System With Geometric Nonlinearity 

Figure 1 shows a single degree of freedom system composed of two linear 

springs attached to a single mass point. It also shows the nonlinearity 
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of its static response. When the mass point is released from a deformed state, 

it will oscillate about the reference state. Without damping, the oscillation 

will continue indefinitely with a period which is dependent on the magnitude 

of the initial displacement. The natural period for this system is 0.2639 

seconds for an initial displacement of 20 cm. If the mass point is forced at 

some other frequency with a force magnitude equal to that required to produce 

the initial static defection, some interesting things occur. Two examples are 

shown in Figures 2 and 3. Excitation below the natural frequency induces a 

response similar to the linear case where the impressed frequency is dominant 

and the response amplitude approximates the static response. The little 

ripple in the response is at the natural frequency and would be expected to 

die out in the presence of appropriate damping. Excitation above the natural 

frequency introduces a new phenomenon. As before, there are two frequencies 

present: one at the imposed frequency and the other at a varying frequency. 

The variable frequency response appears as a damped transient because of the 

numerical damping that was included in the integrator. The varying frequency 

is a direct result of the geometric nonlinearity which causes the natural 

frequency to be a function of the amplitude of the response. An important 

aspect of this behavior is that the decay of the transient is long compared 

to the period of the excitation. 

Figure 4 shows the results of an attempt to force the system at the 

apparent natural frequency. In this solution there is no damping in the model 

nor is there any intentionally in the numerical integrator. Although the plot 

is a crude one which attempts only to show the peaks and valleys, it shows 

behavior not found in the linear problem. The response is not unbounded and is 

quite complicated in form. There is not a single amplitude, and for the most 
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part the frequency of the response is higher than the frequency of the input. 

It does appear that two amplitudes are in the response: one at about 35 cm 

and the other at about 15 ecm. In addition, it appears that the oscillation 

pattern repeats on a period of about ten times the apparent natural period 

(coincidence?). 

Taken together, these three figures are indicative of the typical response 

of a nonlinear oscillator as represented in Figure 5. They also show some of 

the difficulties in using numerical calculations of transient responses to 

correlate with theoretical steady state responses. 

Static Excursion of a Moored Ship 

A diagram of the DD692 Destroyer in a four point moor is shown in 

Figure 6. The lines are essentially catenaries in the quiescent state, and 

substantial lengths of line lie on the bottom. Figure 7 shows the combined 

effects of a 2 kt. surface current and a 30 kt. wind versus the heading relative 

to the ship. Figure 8 shows two calculations of the excursion the c.g. of the 

ship takes as the heading of the wind and current is varied through 180° 

relative to the original quiescent position of the ship. The effect of 

neglecting the bottom interaction with the lines is clearly shown. The moor 

appears much stiffer without the bottom interaction. The differences in 

stiffness as well as the change in ship position could have significant influence 

on dynamic response calculations. See Reference 1 for more details. 

Frequency Domain Dynamic Response Calculations for Moored Ships 

Following the approach represented by Equations (4) for some basic mooring 

configurations offers some insights. Reference 2 gives more detail and presents 

the figures which will be commented on briefly here. 
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The paper notes three important results: 

First —- Contrary to the assumption made in many mooring analyses, the 

mooring has significant influence on the dynamics of the moored vessel. 

This can be seen in the moored and free frequency response curves (Figures 

3-6, 9, 10, OTC). For example, there is a significant reduction in peak 

response and a shift in the frequency where this occurs. This means it is not 

appropriate to analyze mooring legs by simply imposing the free ship motions 

at the upper end of the line. 

Second - Contrary to the assumption made by some to get from 6 to 3 degrees 

of freedom, the use of mooring buoys and hawsers does not effectively isolate 

the moor from the heave/pitch/roll motions of the vessel. See OTC Table 4 

and the discussion. This is due to the geometric stiffening effect of the 

hawser preload. 

Third - At some frequencies, the mooring legs act in a nearly linear 

fashion while at others the dynamic behavior is decidedly nonlinear (see 

Figures 13 and 14, OTC). This particular phenomenon is quite difficult to 

predict and probably involves multi-frequency responses and resonances along 

with other large displacement effects. This calls into question the validity 

of the entire frequency domain solution procedure. The OTC paper suggests 

there is general qualitative agreement with the results obtained with the 

frequency domain solution and established mooring design procedures (DM-26), 

but the calculation of specific responses may be erroneous or difficult to 

interpret. 
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CONCLUS LONS 

This brief discussion and the examples presented suggest that proper 

modeling of the deep sea mooring problem (and perhaps shallow water problems 

as well) requires very careful consideration of the nonlinear dynamics of the 

mooring lines. At present, this means that time domain models are preferred 

above frequency domain models. This further means there is a need to develop 

appropriate time domain models of the ships, platforms, buoys and other bodies 

used and to develop the appropriate description of the environment. It may 

also mean that there is a need to develop new solution techniques. Although 

not dealt with in this discussion, low frequency effects such as wave induced 

drift forces and swells acting in combination with wind and waves may require 

that large displacement responses of the mooring be considered even in the 

situations where the frequency domain solution may be an adequate model of the 

first order wave responses. 
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LINE DATA 

WEIGHT = 35 1b/ft 
EA = 3x10" qp 
INITIAL HORIZONTAL LOAD 

= 25000 1b 

WATER DEPTH = 1000 ft 

10 ft 

Finite element model of moored ship. Figure 6. 
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HYDRODYNAMICS OF MOORED VESSELS 

by 
C. J. Garrison 

C. J. GARRISON & ASSOCIATES 

3088 Hacienda Drive 

Pebble Beach CA 93953 

1. INTRODUCTION 

The mathematical formulation and solution of the boundary- 
value problem for the hydrodynamics associated with the motion 
of a moored vessel in a seaway is rather complex due primarily 
to the nonlinear free surface boundary condition. Difficulty with 
the free surface boundary condition has impeded progress on the 
exact solution for wave/body interaction problems and little pro- 
gress has been made. Thus, the more fruitful approach has been to 
pursue linearized solutions as an approximation. The linearized 
problem is also difficult but computer solutions can be obtained 
for bodies of practical interest. Moreover, linearization admits 
the concept of superposition of motions and waves, with which 
comes the powerful concept of wave excitation spectra and the 
motion response spectra. Although some rather broad assumptions 
are made in order to linearize the boundary value problem, linear 
solutions have been found to give physically realistic results for 
cases of practical interest. 

In addition to the dynamic response of a moored vessel to 
wave motion at the frequency of the waves, a second-order effect 
referred to as slowly-varying drift motion also occurs when the 
vessel is subject to random waves. This is a phenomena which has 
received a great deal of attention in recent years and iS an area 
of ongoing research. 

2. LINEARIZED HYDRODYNAMICS OF FLOATING VESSELS 

fhe theory of the motion of a floating vessel is based on the 
following assumptions: 

(a) Inviscid fluid and irrotational flow. 

(b) Small amplitude waves and resulting small amplitude 

response. 
(c) Wave motion and response motion representable by a Super- 

position of regular sinusoids. 
The notion of superposition of both the incident waves and 

the response of the vessel allows one to view the motion of a 
moored vessel in waves as: (a) the wave interaction with the 
vessel held fixed and (b) the motion of the vessel oscillating in 

each of its six degrees of freedom separately in otherwise still 
water. From consideration of (a), the wave excitation forces and 

moments are determined, and from (b) the reaction forces and 

moments resulting from the motion of the vessel are determined. 
The latter are characterized by use of added mass and damping 

tensors. 

A numerical procedure based on distributed three-dimensional 
sources has been presented by Garrison (1974) and Faltinsen and 
Michelsen (1974) for three-dimensional bodies of arbitrary shape. 
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Bai and Yeung (1974) also have developed a numerical procedure 
based on the Green's function method (or boundary integral method 
as it is sometimes called) which utilizes simple sources dis- 
tributed over the surface of the vessel as well as the free sur- 
face, the bottom and an enclosing vertical cylindrical surface: far 

from the vessel. A third numerical method for solution of the 
three-dimensional free surface problems is referred to as the 
hybrid-element method. This procedure, which has been applied by 
Berkhoff (1972), Chen and Mei (1974), Bai and Yeung (1974), 

Chenot (1975), Yue, Chen and Mei (1977) and Bettess and Zienkie- 

wicz (1977), is based on the finite element method and uses a 
"Super-element" at the outer boundary of the discretized region to 
infinity. Of the available methods indicated above, the distri- 
buted source procedures of Garrison, and of Faltinsen and Michel- 
son is believed to be the most versatile and simple st in appli- 
cation, and has been most widely used in practice. 

2.1 Strip Theory 
The solution of the three-diimensional boundary-value problem 

for bodies of arbitrary shape requires computer runs, considerable 
CPU time, and until recent years numerical methods for solving 
three-dimensional problems were not available. Thus, it has been 
common practice to use a strip-theory analysis for elongated 
(shiplike) bodies in which the hydrodynamic coefficients are 
determined by subdividing the body into a number of slices or 
Segments and assuming that each segment acts as a two-dimensional 
body and that segments do not reflect mutual interaction effects. 
The hydrodynamic coefficients for the complete body are obtained 
by summing up the coefficients associated with each segment. 

Clearly, strip theory represents a valid approximation to a 
truly three-dimensional hydrodynamic analysis provided the vessel 
is highly elongated. Of course, one would expect the strip theory 
approximation to break down as the length to beam ratio decreased 
and it would be of practical value to know what value of the 
length to beam ratio might represent a limit on the strip theory 
approximation. An absolute limit for all vessels does not exist 
since it is presumably dependent, if only mildly, on the hull 
shape in addition to the overall proportions, but it appears that 
few studies comparing three-dimensional theory with strip theory 
have been made. In fact, the only such comparison known to this 
writer was made by Migliore and Palo (1979) for rectangular 
barge configurations. For the series of cases considered, the 
results indicated that the strip theory analysis tended to break- 
down when compared to the three-dimensional theory for length to 
beam ratios of less than 8. Thus, it would appear that for 
barges, most cases of practical interest would require the appli- 

cation of three-dimensional theory for predicting hydrodynamic co- 

efficients. 
2.2 Comparison with Experiment 

Experimental results for hydrodynamic coefficients for three- 
dimensional bodies are very limited but results of a few studies 
have been reported. Faltinsen and Michelson (1974) have presente- 

ed experimental results for a model of a simple barge 90 meters 
by 90 meters by 40 meters draft. In general, although the scatt- 

ter in the experimental data is large in some cases, the agree- 

46 



ment with calculations based on linear theory is good as indicat- 

€d in Figures 1 and 2. 
However, the measured heave damping is substantially greater 

Phanwtehempr~edicieulons or  lincammrhcomy.  Emacasesm such mals iehnish 
where a rather large difference occurs between experiment and 
calculated results, the cause can generally be traced to viscous 
effects. In the present instance, the bottom surface of the 
barge acts as the wave generating surface in heave but since it 
is rather deeply submerged its wave-making ability is diminished. 
In this connection it may be noted that the damping coefficient 
in heave is about one-fifth that of Surge. Since the wave-making 
damping in heave is very small the importance of viscosity is rel- 
latively large and this presumably accounts for the experiment-— 
al values being considerably above the values based on the linear, 
inviscid theory. 

Faltinsen and Michelson (1974) present no pitch data but 
Since motion of the barge in pitch typically produces a very 
small radiated wave, the damping coefficient predicted by linear 
theory is normally very small, except in the case of very shallow- 
draft bodies where the wave-making surfaces are very near the 
free surfaces. Thus, a Similar situation to the above may be ex- 
pected. In view of the small radiation damping in pitch, theory 

generally predicts a very large resonance peak which is not ob- 
served in reality. However, it is well-known that damping is 
only important near resonance and, therefore, the motion response 
is generally in error on this account only near resonance. 

Pinkster and van Oortmersen (1977) have also presented ex- 

perimental results and comparisons with linear theory for excitation 
loads and response motions of a barge of 150m length, 50m breadth 
and 10m draft. In general, the linear theory agreed very well 
with the experimental results. The only significant discrepancy 
was the rather large resonance peak in roll which is to be expect- 
ed in view of the above comments regarding roll damping. 

3.VESSEL MOTION 

There are two rather well-known and commonly applied methods 
for treating the motion of a vessel in a seaway. TheSe are refer- 
red to as frequency-domain and time-domain analyses. 

The frequency domain analysis is based strictly on the 
assumption that all forces acting on the floating body are linear 
functions of displacement, velocity or acceleration, and as a re- 
sult the response is directly proportional to the amplitude of 
the incident wave. For a given frequency, the equations of mot- 
tion for the floating body would appear as follows: 

(m, + ™,6) LO) +ny(OEO+ Kj GO>- £C) (1) 

in which 4; denotes the mass matrix of the body, /%4;(d) den- 
notes the added mass matrix, N,j;@ denotes the damping matrix, 

Kij denotes the restoration force matrix due to buoyancy and ela- 
astic forces, and F; denotes the wave excitation force. 

To examine the difficulty in application of Eq.(1) to random 
waves it is enough to consider two frequencies, GO, and@o,. It 

is generally assumed that the response associated with the two 

47 



© 108 PANELS 

OG 48 PANELS 
4 EXP 

8.0 10.0 12.0 14.0 16.0 18.0 20.0 

PERIOD sec. 

© 108 PANELS 

CQ 48 PANELS 
a EXP 

80 10.0 12.0 14.0 16.0 18.0 20.0 

PERIOD, sec. 
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wave components, G, and Gz 7 is represented bythe sum of the re= 
Sponse due to G, alone, which we may call Se 7 AVnel tela we= 
Sponse due tovge alone Set) - However, aS pointed out by 
Wehausen (1971) it is only in the special case that M;j(%) = Mji,(O2) 
eel INAS Csr) = INIA Oem) | elolelic this could in fact be the case since 

it is only then that (Ee ee 2) could represent a solution 
(oC) Glo) EEMENeNCNe ee Welly ord Cue (UG Wn Soles oe wAlS, Swela ecwe= 
tions have been used with some success to describe the motion of 
a vessel in random waves (see, e.g. Fuchs and Mac Camy (1953), 

Fuchs (1954), St. Denis and Pierson (1953) in which the values of 

Ni; and M;; were taken as constant at some average value. It 

aPpears, however, that it is currently common practice to utilize 

the superposition discussed above regardless of the difficulty 
associated with frequency dependent coefficients of mass and damp- 
ing. Wehausen (1971) has discussed a further method of treating 
the linearized motion of floating bodies in random seas when the 

added mass and damping coefficients are frequency dependent as, 
of course, is the case for large-displacement floating bodies. 
The procedure outlined is based on the initial-value problem 
approach. 

3.1 Nonlinear BEEects 
The theory of ship motions is based on linear hydrodynamics. 

This means that the amplitude of waves and the response to these 
waves is considered to be small and, therefore, all terms aris-— 
ing in the analysis which are proportional to such amplitudes to 

the second-power and above are neglected. 
If one considers two wave components of frequency OQ, and Oz 

for instance, and retains terms through the second-order in the 
small amplitude parameter mentioned above, certain "second-order" 

forces and moments arise. These forces are oscillatory and com- 
ponents at frequency (g@,+0,) as well as at (Gi=Ce)) Vawiseaweine 

force occurring at frequency (g,+G,) is of considerably smaller 

magnitude than the first-order wave-induced loads and occurs with- 
sn or above the frequency range of the first-order forces. Thus, 
these small amplitude, high-frequency forces are of little con ~- 

Sequence and are neglected. 
The force (or moment) component at frequency (7,- Oz) falls 

below the first-order excitation force frequency range, and al- 
though the forces are small compared to the first-order forces, 
these second-order forces can have significant effects due to 
the fact that the resonance frequency of the mooring system may 

lie near these frequencies. 
Newman (1974) has developed an approximate method for eval- 

uating the slowly-varying second-order drift-forces in random 
waves which is based solely on the mean drift-force. The mean 
drift-force is simply the diagonal terms in a square matrix of 
coefficientsdescribing the low-frequency force components associa= 
ted with all combinations of the components associated with a 
wave spectrum. Newman's approximation renders the evaluation of 
slowly-varying second-order forces on floating bodies within the 
realm of the computationally feasible for practical floating body 
Situations. Without the use of this approximation the computa- 
tional chore would be formidable for three-dimensional bodies. 

4. EVALUATION OF THE MEAN DRIFT-LOADS 

There are two methods for evaluation of mean drift forces 
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acting on a floating body. It was first pointed out by Haskind 
(1948, 1959) that the mean drift force could be formulated 

through application of the integral momentum equation together 
with a knowledge of first-order potentials. Muro (1960) also 
independently gave a general treatinent of the mean drift-force 
and Newman (1967) extended Muro's results to include the moment 

and, in addition, introduced the slender body approximation into 
the analysis. Faltinsen and Michelsen (1974) applied Newman's 
formulas to evaluate the mean drift-force using the three-dimen- 
Sional distributed source procedure. In Newman's notation the 
formulas for the force components in the horizontal plane and mo- 
ment about a vertical axis are given by 

Ske 27 

fe= Bf jwoy*Ccos- core) Aé (2a) 
o 

oF 

B= 2 f /0e//? (S16 ~ sno) 70 (2b) 
br J, 

ar rors 5 
My = --B ImpHe) wee de +24 prla/ ke[H(] (2c) 

° 

where A(e& is the Kochin function. Without giving further form- 
ulas, it may be noted that the Kochin function requires a know- 
ledge of the first-order potentials associated with diffraction 
of the incident wave as well as the radiation potentials for all 
six degrees of freedom. Thus, the drift-force calculation re- 

quires a knowledge of the first-order motions. 
A second method for calculation of the drift is based on a 

straightforward integration of the pressure over the wetted sur- 
face of the vessel. This procedure was first presented by 

Garrison (1974) for three-dimensional floating bodies although a 
term was left out of the final expression which accounted for the 
the effect of the displacement of the body. Pinkster and van Oor- 

rtmerssen (1977) later gave the correct form of the expression 

for the drift-forces and moments. The force, for instance, is 

given by 

P= gf bf RR, Z°+ by We G20] 7 ds 
‘S., 

+ a coth (kh) ff ( lt, | "+ / Mr, | + /Urz/*) 7 as 

DEA SDI i] eh 
Se 

yal ae kur) CY +k, )] 7 de 

in which &, denotes the total first-order potential, xX,” Povey 
and 2 denote the complex amplitude of the three comp- 

ponents of displacement of a point on the hull, N,6” denotes 
the first-order correction to the unit normal vector on the mean 
Position of the pull denoted by 775 . In (3)isthe first ithree in= 
tegrals are carried out over the wetted surface of the hull below 
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the mean waterline and the last term is a line integral along the 

line defined by the intersection of the hull and the mean free 
surface. This term accounts for the variation of the wetted sur- 
face at the waterline due to run-up of the wave and vertical dis- 

placement of the hull. 
The direct integration of the pressure has Several advanta- 

ages over the integral momentum equation formulation. Firstly, 
all six components of the drift-force can be obtained through 
this procedure and secondly, it appears that it may be possible 
to extend the basic development to compute the complete low- 
frequency second-order forces and moments. The complete second-= 
order force involves the second-order potential, and while the de- 
termination of this may be feasible in principle the overall task 
appears somewhat overwhelming from the viewpoint of computer time. 
The computation of the low-frequency part of the second-order 
force is much more within the realm of the attainable since it is 
strictly dependent only on first-order potentials and motions. 

5. CONCLUSIONS, COMMENTS AND RECOMMENDATIONS 

1. The hydrodynamic coefficients can be computed fairly efficient- 
ly for three-dimensional bodies using the distributed source 
(Green's function) technique. The available experimental data 
agrees quite closely with calculations using linear theory except 

in certain cases where the damping coefficients are rather small. 
In such cases it is suspected the viscous effects become relative- 
ly significant and in order to deal with such cases, some effort 
Should be directed toward development of a "viscous correction" 
for the damping coefficients which is appropriate for barge-like 
shapes. 

2. Because of the frequency-dependency of the coefficients in the 
equations of motion of a floating body, superposition of the mo- 
tion resulting from each component of an incident wave system be- 
comes questionable. 

3. Two methods of evaluating the mean drift-forces and moments 
have been outlined. The pressure integral technique has the ad- 
vantage over the momentum equation formulation of providing all 
six components of the load which may be of value in certain cases. 

4. It appears that it may be possible to evaluate the complete 
Slowly-varying drift-force using the pressure integral formula- 
tion. This could provide a basis for a time-domain simulation 
of the slowlysvarying drift motion of a moored vessel with the 

high-frequency wave-induced motion Superimposed on this motion. 
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VESSEL EQUATIONS OF MOTION 

by 
Dr, R. Bhattacharyya 

For the prediction of ship motions the so-called “strip theory" is 

used universally, although there are many versions of this theory depending 

en the problem formulation, the method of solution as well as the inclusion 

of the forward speed effect. 

The original version as given by Korvin-Kroukovsky and Jacob was de- 

veloped from an engineering point of view and various terms of the equations 

of motion for heaving and pitching motions were based on somewhat arbitrary 

defininition of the relative motion between the vessel and the waves. An im- 

provement of the problem formulation was made by [ 8] from intuitive point of 

view whereas Reference [23] developed a strip theory on the basis of mathema- 

tically consistent perturbation technique. A major significance of the theoreti- 

cal methods was the elimination of the original relative motion approach of 

Korvin-Kroukovsky and instead, as given by Ref [20], the ship motion problem 

was developed as a sum of radiation and diffraction problems. In other words, 

the total forces and moments acting on a vessel in a train of regular waves 

are equal to the sum of the forces and moments acting when the ship is oscillating 

in calm water, together with the wave forces and moments acting on a restrained 

vessel. This is quite a significant result, especially from the point of view 

of model experimentation. 

It should be pointed out, however, that although there are differences in 

various versions of the strip theory it should not be construed that any one 

particular version is significantly better than the other, except in some 

particular cases. 

There are three different methods for the longitudinal motion as given by: 

1) Gerritsma and Beukelman [8] 

2) Ogilvie and Tuck [23] 

3) Salvesen, Tuck and Faltinsen [26] 

5)3, 



For the lateral motions three different approaches are given by: 

1) 

2) 

3) 

Kaplan, Sargent and Raff [15] 

Salvesen, Tuck and Faltinsen [26] 

Grim and Schenzle [12] 

Of all the methods above only Ogilvie and Tuck, and Salvesen et al satisfy 

the Timman-Newman symmetry condition. 

Based on two-dimensional case, there are three different ways for the 

numerical calculation of fluid reactive forces and moments, i.e., added mass 

or added mass moment of inertia and wave damping. 

1) 

3) 

The first and the simplest method is the use of conformal mapping 

techniques with no-free-surface effects, Apart from the classical 

extended Joukowski transformation method of [17] which was improved 

by [16 whereas both [ 41] and [14] applied the Schwarz - Christoffel 

transformation in obtaining the added mass. 

Another method is the use of source distribution over the hull 

surface which can also be attributed to [35]. The practical use 

of the source distribution method is due to [ 7] which is often 

referred to as "Frank Close fit' method. 

As mentioned above, the fluid reactive forces and moments are generally 

known as added mass/moments of inertia and damping because they act in phase 

with the acceleration and the velocity of ship motion, respectively. Presently 

there are four methods available for practical calculation: 

1) 

2) 

3) 

4) 

Infinite frequency approach (no free-surface effect) [16] 

Lewis transformation [ 9 ] 

Tasia close-fit mapping method [ 33 

Frank close-fit source distribution method [7] 
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The calculations carried out by [13] indicate that when the frequency 
2 

parameter Bas greater than 4.5, the wave damping becomes negligible and 
2g 

the use of infinite frequency approach is justified. The difference between 

the Lewis transformation and Tasai close-fit methods is due to the number of 

terms used in the conformal mapping of the flow around the ship section onto 

the flow around a circle. Otherwise they both use a series of multipoles, 

The Frank close-fit method uses a surface source distribution method 

and replaces the section of a vessel with segmental singularities. 

Application of various methods for the sectional heaving added mass and 

damping distribution of a destroyer model with a bulbous bow (Davidson A 

Destroyer Model) is shown in Figs. 1 and 2. [22] 

Atlhough it has often been suggested that the accurate representation 

of the sectional shape is not very important, it is not quite true because 

the determination of the shearing forces andbending and torsional moments 

require accurate description for all sections, whereas in motion calculations 

integration over the length iron out the small errors. Ref. [22] suggests 

that it is not advisable to use the Lewis transformation method, (that is the 

two or three parameter family) when transforming the sections near the fore 

and aft end of the ship except for heaving and pitching predictions of con- 

ventional ship forms. 

An important consideration for the use of the Frank close-fit method is 

the condition that the section contour should satisfy the so-called "Lyapunov" 

regularity conditions [22]. Non-compliance with these conditions throws doubt 

on the validity of the Frank approach; for example, forward sections of a ship 

with a bulbous bow do not fulfill these requirements. In fact, for such shapes 

Frank [1967] has shown that there exist radiationless frequencies. Therefore, 

Ref, [ 22] recommends that for these types of geometry a multipole method such 

as the Tasai close-fit method, shculd be adopted. 



e e TASAI CLOSE FIT 

XX LEWIS TRANSFORM 

OO FRANK CLOSE FIT 

©O MIT PROGRAM 

DAVIDSON A DESTROYER w& 21199 ADDED MASS 

E 

| 3 
Pet eers 

La 3.) ve fo) 

(eo) [e} 

- 3000 

2000 

1000 

oO 
=e 5 10 

SECTION No 

Figure 1 

Distribution of Heaving Added Mass 

58 



e@ e TASAI CLOSE FIT 

XX LEWIS TRANSFORM 

OOFRANK CLOSE FIT 

© © MIT PROGRAM 

DAVIDSON A DESTROYER Ww 1-199 DAMPING 

E 

a fe) & 

ALES Sores 

5000 

3000 

2000 

1000 

fo} 

SECTION No. 

Figure 2 

Distribution of Heaving Damping 

59 



A problem which has yet to be solved satisfactorily is the heaving added 

mass at very low frequencies. Although this may appear unimportant, in reality 

this is not the case because in following waves such low frequencies of encounter 

are highly probable. 

According to the present theory, the heaving added mass tends to infinity 

as the frequency tends to zero and the ship response in this region is obtained 

in practice, by extrapolation based on physical arguments. Ref [27] showed 

that the heaving added mass for a circular cylinder in a finite depth of fluid 

is finite when the frequency tends to zero, and compared their results with 

others. This result suggests that a fictitious depth may be applied in order 

to obtain useful result. 

Another problem in relation to the computation of fluid reactive forces 

and moments arises at the intersection of the hull surface with the free sur- 

face. It is necessary that the wetted surface of the ship should be smooth 

but it also requires this to apply to the closed double-body formed by the 

ship and its mirror image. But this condition is violated for almost all 

vessels near the fore and aft ends, thereby necessitating an additional singu- 

larity distribution at the intersection of the wetted surface and the undi- 

sturbed water surface. 

In spite of the,above-mentioned limitations, predictions of the sectional 

fluid reactive forces and moments by the strip theory have been quite success-— 

ful with the exception of roll damping which has been obtained recently with a 

significant success by [28] which included additional roll damping moment 

caused by appendages etc. 

Approximation by Lewis Form 

A section contour of the forward part of a hull can be approximated 

reasonably well by Lewis-form but there exist considerable differences for 
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the aft of the vessel. Ref. [29], calculated the hydrodynamic forces and the 

ship motions approximating the section contour by the three-parameter family 

and the comparisons between the results thus obtained and those by Lewis form 

approximation are shown in Figs. 3, 4 and 5. Although the approximations by 

the three-parameter family is significantly better than these by Lewis-forn, 

there appears to be no large differences in the calculated values of the 

damping force and of the added mass except for the regions in which the fre- 

quency is large or the motion is small, Thus the Lewis-form approximation is 

considered adequate except for special hull forms. 

Forward Speed Effect 

In a strictly theoretical sense, strip theory (except the version of 

[23] cannot be used for a ship with a steady forward motion. This is because 

the linearized free-surface condition cannot be satisfied on transverse strips. 

Theoretical considerations suggest that the strip theory is valid if the 

forward velocity is small and the frequency of encounter is high. 

In practice, of this has led to the formation of a number of different 

versions of the strip theory. Some representative versions of the fluid 

reactive terms in the equations of motion for the longitudinal and transverse 

motions are given in Tables 1 and 2. Although the differences may seem to be 

significant at first sight, recent computations by [6 ] and [39] for the 

longitudinal motions show that the real differences for the speed and the 

frequency ranges of interest are insignificant except for the coupling terms 

between heave and pitch, where the results of [23] show a different trend. 

The evaluation of the integral term of [23] is difficult and therefore this 

method is impractical. On the other hand the expressions of [37] and [26] 

give a better prediction than the others. Fig. 6 shows the comparison between 

the three approaches [2 ]. 
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Another point of interest regarding the effect of forward motion is 

about the value of the parameter y A 

If y> 0.25, then the waves generated by the ship oscillation travel 

more Slowly than the vessel and hence are confined in the sector behind 

the ship, whereas if y< 0.25 the waves travel faster than and ahead of 

the vessel. As indicated by [36] and [37] and recently [38] this feature is 

not a theoretical anomaly because experimental measurements around the para- 

meter value y = 0.25 show some irregularities and scatter. 

The computation of the wave excitation is carried out either a) from 

the Froude-Krylov theory by using the defined relative motion between the 

ship and the wave, as given in [8], [15], [1] or 2) from the diffraction 

theory by using Haskind-Newman relationship [23], [37], [26]. 

Consideration of the forward speed in the coefficients of equations of 

motion is another source of difference between various strip theories. 

Wave Exciting Forces and Moments 

There are at present two methods for the calculation of wave exciting 

forces and moments, namely: 

1) Korvin-Kroukovsky type of approach 

2) Use of Haskind-Newman formulae 

The first method makes use of the relative motion concept and in a 

way employs Froude-Krylov theory combined with this relative motion definition. 

Consequently, this approximate method is valid only for the medium range of 

frequencies; for the short waves the Froude-Krylov hypothesis is not valid 

whereas for the very long waves the strip theory fails. 

Recently [18] experimentally obtained the magnitude and the distribution 

of wave exciting forces on a segmented tanker model and showed this difference 

between the theoretical predictions of this type and the experimental measure- 

ments for the short wavelengths as illustrated in Figs. 7 and 8. The good 
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agreement is due to the fact that the longitudinal ship motion amplitudes at 

high and very low frequency ranges are insignificant. But in case of spring- 

ing and mooring problems, where the high and very low frequencies are involved 

respectively, this kind of engineering approach may not be satisfactory. 

Use of the Haskind-Newman relationship in calculating the wave exciting 

forces is a useful method so far as avoiding the solution of the diffraction 

problem, while calculating the forces and moments created by the diffraction 

of waves. So the approach is, in a way, equivalent to the solution of the 

wave diffraction problem. The main difference is due to the evaluation of 

the Haskind-Newman relationship. The original approach requires that in the 

evaluation of diffraction force (moment) the perturbation potential oe is the 

three-dimensional potential satisfying the same state equations and radiation 

condition as the diffraction potential, whereas in “strip theory" only the 

two-dimensional potential is available which satisfied different state equa- 

tions and radiation condition. 

Newman [42], however, proved that for the high-frequency range this 

difference does not cause any significant error, 

For longer waves McCreight [43] recently developed a relationship similar 

to that of Haskind-Newman for the computation of wave exciting forces. 

As the numerical evaluation of the wave excitation by the Haskind- 

Newman relationship is not difficult, this approach should be preferred in- 

stead of the previous approach as it eliminates the somewhat arbitrary choice 

on the relative motion between the ship and the waves. 

It should, however, be mentioned that this approach also fails in very 

long waves because of the breakdown of the strip theory. For such long waves 

the approach adopted by [11] is preferrable as it includes the effect of wave 

deformation in an approximate way. 
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Approximate Calculation of the Wave Force 

In the strip method, when calculating the diffraction force, one uses 

approximations in which the orbital-velocity of the regular wave is represented 

by the value in the mean draft. As to the circular cylinder subjected to trans-— 

verse waves, there is exact solution of [31] and [19] compared them with the 

approximate solutions with reference to the force Z. which is proportional to 

the orbital acceleration of the wave and the force Z5 which is. proportional 

to the orbital velocity. Fig. 9 shows the comparison whereas Fig. 10 shows 

the similar calculation for a circular cylinder subjected to longitudinal waves. 

In case of transverse waves, there are considerable differences in the 

regions of high frequency but in case of longitudinal waves there is no 

noticeable difference. However, in case of longitudinal waves, final conclus-— 

ion cannot be drawn at present since it includes the problem of the three- 

dimensional effect. 

Critical Review of Strip Theory 

It must be mentioned that the usefulness of the strip theory approach, 

especially for longitudinal motions and associated predictions, has surpassed 

the imagination of many theorists and engineers. 

Predictions for the transverse motions and the associated effects, how- 

ever, were not so good because of the difficulties arising from the modeling 

and computation of the roll associated parameters, But recent efforts of 

[28] have been proven to be very successful. 

The difficulties in connection with the transom stern (or more generally 

blunt-ended) ships have been removed by the inclusion of end effects, 

In utilizing the results of strip theory one should always remember 

that this approach is valid as long as: 

1) The vessel is slender, smooth and the geometrical variations in 

the longitudinal direction are gradual, and not abrupt. 
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2) Frequencies are high 

3) Forward speed (or Froude number) is low. 

If these conditions are not satisfied, experimentally-determined transfer 

functions should be used for the prediction of ship motions in an irregular 

seaway. 

The accuracy of the strip method is to be investigated with regard to 

longitudinal ship motions, namely, heaving and pitching, The items which 

should be studied are listed as follows; 

1) Three-dimensional effect 

2) Non-linear effect 

3) Approximation by Lewis form 

4) Viscous effect 

5) Approximate calculation of wave forces 

6) Displacement effect 

Thus, from the mathematical point of view the limitations and inaccuracies 

of the classical methods for the ship wave problems are for the following as- 

sumptions: 

1) Viscous/wave interactions 
Se eeeeeinei ieee 

The interactions between the viscous effects and the gravity waves 

are assumed to be small so that potential flow theory can be used for pre- 

dicting ship motions. 

In case of longitudinal motions (i.e. heaving and pitching) the level 

of wavemaking is higher than in case of rolling motion and it can be justify- 

ably said that the viscous effect caused by the bilge-keel etc. occur seldom 

except for the region in which the frequency is high [33]. 

Considering viscous effect another important effect is that of dynamic 

Ee (SON, [4Oll- 
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In case of longitudinal motions there are two cases which can be 

considered as dynamic lift, namely, 

a) One is that proportional to the pitching angle 

b) The other is that proportional to the ratio of the velocity of 

heaving to the advance speed. 

The latter may contribute considerably to the damping force. 

DY Linearization of free-surface conditions 

It is assumed that the wave slopes of the incoming as well as ship 

generated waves are sufficiently small so that the non-linear free-surface 

boundary conditions can be replaced by the linearized condition. 

Ref [4 5] dealt with hull-shape non-linearity and showed that the 

calculated amplitude of motion differs considerably from that of the linear 

calculation. Ref [44], by calculating the second-order approximation of the 

diffraction problem regarding the two-dimensional body, showed that when the 

period of motion is short there are considerable differences from the first- 

order approximation. Also Ref. [30] discussed about the hydrodynamic force 

which is proportional to the product of the perturbed velocity due to the 

forward velocity of the vessel and that due to ship motions and calculated 

its effect on the motions as shown in Fig. lland 12 

Ref. [29] concludes that the ship motion calculations must take into 

account the non-linearity effect which is extremely important for slamming and 

“deck wetness. 

In the strip method, all the perturbed potential which are more 

than the square are neglected. 

In the slender body theory, aside from the effect already stated in 

the non-linear effect as discussed above, the existence of the effect of 

the hydrodynamic force which is proportional to the product of the perturbed 
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velocity of the forward motion, and the oscillatory displacement are considered. 

Ref, [29] call this as "displacement effect" and calculated the effect on the 

motions. 

Figs. lland 12 show the three-dimensional effect, non-linear effect 

and displacement effect for the motion of series 60, Cc. = 0.70. The respec- 

tive effects are significant, but the agreement with the experimental value 

in the totally corrected calculation is still unsatisfactory. 

3) Small amplitude ship motions 

Here it is assumed that the unsteady body displacements are small so 

that the hull boundary condition can be satisfied at the mean position of the 

ship. 

Large-Amplitude Ship Motion 

In linear ship-motion theories, it is assumed not only that the free- 

surface conditions can be linearized, but also that the ship displacements are 

small relative to the ship dimensions. The exact body boundary condition then 

can be approximated by satisfying it at the mean position of the hull. However, 

ship motions are not always small. In fact, they can be on the order of magni- 

tude of the ship dimensions even in typically moderate sea conditions, 

So a method should be developed for predicting large amplitude ship 

motions. This is a difficult non-linear problem both for the boundary con- 

ditions at the hull or at the free-surface, Non-linearities resulting from 

the large amplitude rolling motion influence both the hydrodynamic problem and 

the equations of motion, 

In the hydrodynamic problem, the use of average wetted surface is no 

longer justified as the geometry of the wetted surface changes significantly 

during one cycle of motion, This means that the added inertia is a function 

of the emerllar position and systematic experiments conducted by [37] indicate 

that the added inertia of rolling moti a varies with the amplitude of motion. 
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Recently, [46] used a quasi-steady treatment and calculated the 

hydrodynamic properties at different angles of heel, His treatment may be 

useful at very low frequency range. 

In the dynamic problem, two additional complications arise: 

1) The effect of non-linearity of rolling motion is not confined 

to the equation of motion of this mode alone, but also makes the coupled sway- 

roll-yaw equations non-linear. 

2) The existence of the position-dependent added inertia gives 

rise to the existence of additional velocity-dependent terms which may take 

both positive and negative values. Some of these problems have been considered 

allready byail245lrs 21a. 

However, if it is assumed that the frequency of ship motions is suf- 

ficiently small (which means that the slope of the body generated waves will 

also be small) and that the slope of the incident waves is fairly small, then 

it may be valid to linearize the free-surface conditions even for large body 

displacements. There are some occasions when the oscillation frequency is 

low, e.g., ship motions in following and quartering seas, roll motions in 

beam seas, pitching and heaving in long head waves. 

Chapman [5] is developing such a method (JSR vol. 23, No. 1 

also). 

[ 3] has developed a three dimensional numerical method for predict- 

ing ship motions which solves the complete three-dimensional hydrodynamics 

problem and satisfies correctly all forward speed effects. 

The hydrodynamics problem is solved by distributing three-dimensional 

oscillating (Kelvin) sources (which satisfy the linearized free-surface boundary 

condtion) on the wetted hull surface, The strength of these singularities is 

obtained by solving the hull boundary condition, It is assumed that ship 

motions are small enough that the hull’ boundary condition can be satisfied at 
rn — TS Beem 

the mean position of the hull. —y 
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Fig.15a and15b show some results of added mass and damping co- 

efficients which, next to the exciting forces, are the most important hydro- 

dynamic ingredients needed in predicting ship motions and wave induced loads. 

It is seen that Chang's predictions agree well with the experimental 

results throughout the frequency range whereas the strip-theory results only 

agree well with the experimental values in the high frequency range. 

A complete evaluation of the ship motions by Chang's method is now 

in progress at DINSRDC. 

Chapman [ 4] has shown that by applying slender body theory, the 

three-dimensional problem of a ship oscillating in the lateral modes of 

motion (sway and yaw) can be reduced to a series of transient unsteady two- 

dimensional flow problems in the transverse plane. 

Fig.16 shows some of his results. In some cases Chapman's results 

are even more accurate than Chang's because Chapman takes into account some 

non-linear free-surface effects. 

4) Hull form approximation 

Exact hull boundary condition is replaced by some approximate con- 

dition and so the theories are called, thin-ship theory, strip theory, slender 

body theory, etc. 

Three-dimensional effect 

In the strip method, the three-dimensional ship hydrodynamics problem 

is replaced by a summation of two-dimensional sectional problems and the for- 

ward-speed effects are only satisfied approximately. The strip theory provides 

good results for heaving, pitching motions in moderate seas and moderate ship 

speeds for most conventional hull forms; however, the method gives inadequate 

results for low frequencies, higher ship speeds, local pressure distributions 

and for sway and yaw motions. The forward speed limitations is the most severe 

restriction for naval applications. 
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In case of advancing ship [29] found three-dimensional correction 

factor for each coefficient of the equations of motion of the ordinary strip 

method by the thin ship theory of [ ], Im addition they corrected the co- 

efficients of the equations of motions using the assumption of the slender 

body to which normal ships are subjected. The calculated results of the 

said three-dimensional effect, together with the results as mentioned above, 

are illustrated in Fig. 1 and 2 which show that the three-dimensional effect 

is rather significant. Thus, it is necessary to consider this effect in 

ship motion calculations. 

Also one should be careful in obtaining the longitudinal derivations 

of the two-dimensional (sectional) added mass and damping coefficients as 

these may cause significant errors in the calculated force distribution for 

a ship with forward speed. One should therefore adopt a smoothing procedure 

before the numerical derivation. 

For critical reviews of strip theories one should refer to [30] and 

[48]. 

In order to overcome some conceptual and practical shortcomings of 

the strip theory various attempts have been made to include the effects of 

three-dimensionality. 

However, calculations have shown that these corrections did not pro- 

vide an improved accuracy. In fact, in most of the cases the predictions 

become worse when the three-dimensional corrections were applied. Only the 

technique proposed by [10] may be acceptable. This method proposed an interest— 

ing quasi-three-dimensional method which, however, did not receive wide ac- 

ceptance because of the more complicated calculations needed. 

After investigations of all the topics as mentioned above, [29] made the 

following observations: 

81 



SWAY ADDED-MASS COEFFICIENT 

EXPERIMENTAL 
DATA 

Flat Plate Survey 

NUMERICAL 
METHOD 

2 3 

FREQUENCY 
Figure 16 

STRIP 
THEORY 

Added Mass Coefficients 

82 



1) The study of the three-dimensional correction is found to be 

rather significant. Therefore practical correction factors must be developed 

for prediction of ship motions. 

2) The effects of the dynamic lift on the hull should be examined 

experimentally and theoretically. 

3) Investigations should be performed with regard to non-linear effect 

including the displacement effect, etc. Both theoretical and experimental 

studies should be the basis of this investigation. 

Further Investigations 

1) Combined action of steady and unsteady excitation: 

The equations of motion, which are now in use, are valid in the 

frequency domain, and therefore, if there is also a steady force, for example, 

wind, rudder and drift forces, acting on the ship, these equations are no 

more useful. 

2) Low frequency motions: 

As it is well-known, even for the heaving motion, the results for 

low frequencies may not be realistic. A knowledge in the low frequency range 

is generally very important, especially for the prediction of lateral motions 

(i.e. sway, roll and yaw) in following waves, because of intact and course- 

keeping stability of ships. From its basic assumption it is clear that the 

strip theory may not be suitable for this purpose as three-dimensional effects 

as well as viscous effects will be significant. 

3) Impact pressures: 

Determination of pressures during slamming is important in avoiding 

bow damage and in determining the hull bending moment and springing. The theo- 

retical results are still not satisfactory because of various simplifications 

made in the problem formulation. 

Since‘a solution which should consider the effects of compressibility, 
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viscosity and three-dimensionality is very difficult one may split the problem 

in a number of stages such as contact, immersion and cavity formation (i.e. 

formation of inner free surface and spraying) and then considering each stage 

with different assumptions. 

4) Sea loads on a vibrating ship: 

As it is known, the presently available seakeeping theories are 

valid for rigid body motions. Therefore, as the frequency increases, the 

wave damping vanishes and the natural frequencies obtained by using so-—deter- 

mined added masses does provide correct results, 

5) Wave forces on discontinuous structures 

In the present theories it is assumed that the change in the body 

geometry is gradual. If, however, there are abrupt ends as in the case of 

a barge, the flow around the ends will be different from a potential flow 

due to vortex shedding. As a result, the forces exerted by the fluid on the 

body may differ considerably from the results obtained from potential theory. 

For these types of forms also the effects of viscosity should be included in 

the calculations. 

6) Interaction problems: 

When there is more than one body and each is in close proximity to 

the other, the flow field around each will differ from the case where the 

other bodies are not present. Present methods of super-position of the flow 

fields can provide reasonable approximation, provided the distance between 

the bodies is large compared to the characteristic dimension of the largest 

body. For configurations where the bodies are close, interaction effects 

ought to be considered more carefully. 
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INTRODUCTION 

A body in waves is subject to not only first order zero mean forces proportional 

to wave amplitude but also to second order forces which are proportional to the square 

of the amplitude. In the case of a body free to move, the motions will result in 

hydrodynamic reaction forces which have both first and second order components. 

The second order forces are quite small compared to the first order forces, and 

in seakeeping work are generally neglected. In some circumstances, however, they can 

cause significant effects, and must be accounted for. If a force or moment component 

is not opposed by a corresponding hydrostatic or other force or moment, over a long 

time span large motions can result, as in surge, sway, and yaw of a ship at zero speed 

(Maruo, 1960) or heave for a body submerged but near the surface (Newman and Lee, 1971). 
Added resistance in waves is also a problem for moving ships (Strom-Tejsen et al., 1973, 

Semi-Submersibles, which have a small water-plane area relative to the volume, are 

frequently subject to a tilt in waves which is believed to be caused by second order 

forces (Numata et al., 1976). Moored vessels, with low natural frequencies of the 

vessel-mooring line system, can be excited at resonance by the low-frequency components 

of the second order force (see for example, Hsu and Blenkarn, 1970). 

In the last decade, major advances in the understanding of and ability to predict 
these second order wave induced forces have been made. In this paper, developments 

in the specific area of slowly-varying drift forces will be reviewed. 

EXACT REPRESENTATION OF THE SECOND ORDER FORCE 

If the seaway is assumed to have a discrete spectrum, the wave height can be 

represented as 

c(t) = Rez AL aie (1) 
m 

where A_ is the complex amplitude (with random phase) of the wave component of frequency 
m 

w The force on a body, through second order, can be represented as 

ee) apo! (ek? @ (2) 

where the first order force is 

FY) (4) = RO B A HY Cu ) alone (3) 
m 

and the second order force is 
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P24) = Re re AA 1) (usw Je! Ynten?)® 
mon 

Sho EEA A” 462) (uy ,7W) ye! w,-w,)t (4) 
mon Mins en 

mon 

In these yl) and 4 (2) are the first and second order transfer functions respectively 

and are complex. 

For the usual representation of the seaway as a continuous spectrum, there are 

analogous representations of the forces as single and double integrals over frequency 
(Neal, 1974). In a digital time domain simulation, the seaway will be represented as 
a discrete spectrum, and the form used here is appropriate. The continuous form 

can be derived from a general representation of a nonlinear functional as a Volterra 
functional series. Neal (1974) gave a discussion of this and further references. 
An important requirement for the validity of this form is that of the continuity of 
the functional relationship between the input and the output. This means that such 

phenomena as hysterisis loops may not be modelled by this form of representation. 

Two special cases are of interest. The first is the second order response to 

two waves of complex amplitude A, and A, and frequencies Wy and Ws 

(2) (w, soemuals F (2) (4) RefA,A, H 

2 + AA. H°2) (wr sun)er 2t 
ro) OS) 

it 
+ 

(2) i (w,+w 
2 AA, H (w, wade 1-2 

* (2) is * (2) 
+ AJA H (w,> w,) + AoA, H ( 1 Wy »“Wo) 

No 

rn?) AA, 1°?) (us) s-w,)e! 1 M2) * (5) 

It is clear that if we can calculate the response to two waves for all combinations of 

frequencies, we have all the information required to predict the second order force 

in a random sea. 

The other special case of interest is the second order response to a 
regular wave of amplitude A and frequency w 

F (2) (4) = Rea? H{2) (wy w)eZi@t + a A” H(w,-w)} (6) 

The second term gives the well-known steady drift forces in regular waves. 
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APPROXIMATION OF SLOWLY-VARYING SECOND ORDER FORCE 

If we neglect the first term of p (2) which represents the high frequency 
components, we are left with the low-frequency second order force 

Ea) = Re 2 z A a” Ho (on sca en amon 7) 

If the wave frequencies are evenly spaced, with 

Ww = mAw (8) 

this can be written the computationally more convenient form 

M-1 ; 
(2) ‘J ; eimAwt (9) 

where J depends on A,, A, and He any This expression for the slowly-varying 

force is in the form of a single summation and can be evaluated more rapidly than 

the previous form. 

Hsu and Blenkarn (1970) proposed an approximate method for calculating the slowly- 

varying force due to a random seaway. Each successive wave is assumed to apply a 

force corresponding to a regular wave of the same height and period. They show 
good comparisons for predicted and measured surge for two cases of moored vessels, 
which supports this intuitive approach. Pijfers and Brink (1977) have developed a 
more sophisticated version of this approach, in terms of the square of the wave 

envelope and the regular wave drift force at a ''momentary frequency,'' which they 
define. 

Newman (1974) proposed an approximation based on the assumption 

(2) z in) Ns a H (w > w) = H (w> w) + O(w w) (10) 

That is, the contributions to the slowly-varying forces come from wave pairs of 
nearly the same frequency, and in this case, the second order transfer function 

can be adequately approximated by the regular wave steady second order force. 

Newman showed that this was a good approximation to the second order pressure 
underneath a system of random waves, but that a further approximation to convert 

the formula into a single summation (but not that given above), did not yield such 
good results. Loken and Olsen (1979) compared results of this approach with results 

of the full equation and found generally good results. 
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CALCULATION OF SECOND ORDER TRANSFER FUNCTIONS 

So far the problem of obtaining the second order transfer functions has not been 
discussed. These may be obtained either from experiment or calculation. 

Measurement of drift forces in regular waves is difficult, and two-wave 

tests are even more difficult. One problem is that the forces involved are small 

compared to the first order forces. Dalzell (1974) has applied cross-bi-spectral analysis 
to obtain this data for added resistance. This involves very long test runs and equally 
lengthy statistical analysis. 

Calculation of the steady drift force is relatively easy, since this may be obtained 
using the first order velocity potentials for the incident, diffracted, and radiated 
waves. Maruo (1960) and Newman (1967) have derived formulas for the steady drift force 
and moment based on conservation of momentum. 

These results can be applied using potentials obtained by a variety of methods. 
For example, Faltinsen and Loken (1978) use a strip theory potential including a correct 

"Helm holz!! diffraction potential in Newman's result, Molin (1979) applied Maruo's 
formula using a potential obtained from a 3-D finite element approach, and Faltinsen 

and Michelson (1974) used a potential from a 3-D pane] method with an intermediate 
result of Newman (1967). Because the steady drift forces are to be covered elsewhere, 

we will not consider this topic further here. 

To calculate the second order force due to the waves of different frequency, it 
is necessary to integrate the second order pressure over the hull, taking account of 

the change in hull shape due to the wave elevation and the motion of the hull. This 
has been done by Faltinsen and Loken (1978) for beam seas by means of a strip theory. 
Kim and Dalzell (1979) apply a strip theory to find the result in oblique waves, but 
omit the second order potential. This is not serious for small difference frequencies, 
as will be discussed shortly. Pinkster (1979) has used a 3-D panel method for the 
first order potential and an approximate second order potential. This approximation involves 

including the second order term in the incident wave potential, and finding the 

resultant diffraction potential, which can be done quite easily. Second order contri bu- 

tions from the interaction of the incident, diffracted, and radiated waves, and from the 

hull boundary condition are not included. 

Faltinsen and Loken's beam seas calculations, and Pinkster's approximate calculations 

show that the second order potential contributions go to zero as the difference 
frequency goes to zero, while contributions obtained from the first order potential | 

become increasingly important. Thus Pinkster's approximation, and Kim and Dalzell's 
neglect of this term is reasonable, if only the low frequency drift forces are desired. 

CONCLUSIONS 

Recent developments in predicting slowly-varying forces on a body have been reviewed. 

An approximation is available for calculating this using only the mean drift forces. 
Evidence for the usefulness of this approximation is sparse but encouraging. More accurate 

Prediction methods are also available, although the complete second order solution is 

available only for beam seas acting on a cylinder. 1|t should be noted that all of these 
developments are for long-crested (uni-directional) seas. Information regarding short- 

crested seas is not available. 
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WAVES FOR MOORING SYSTEM DESIGN 

Michel K. Ochi 

INTRODUCTION 

The statistical prediction of responses of ships and ocean structures 

in a seaway has become common practice in design following the technology 

developed on the modern probabilistic approach. The prediction of motions 

and associated forces of a mooring system is not an exception. 

The probabilistic prediction of responses of a mooring system can be 

carried out in either the time domain or the frequency domain. In either 

case, application of the linear superposition principle which is often used 

in predicting responses of ships and ocean structures in a seaway may not 

be applicable for the mooring system because of strong nonlinear behavior 

of the system in a seaway. Apart from the nonlinear characteristics of 

the system, wave information is required as an input (excitation) in 

applying the probabilistic approach to estimate the responses for design 

consideration. 

In most design methodologies of a marine system, in general, fairly 

heavy emphasis is placed on the prediction of extreme wave heights and the 

corresponding responses that are expected to occur during the system's 

lifetime as a result of these waves. Since the response of a system in a 

seaway is frequency dependent, both wave height and wave frequency (or 

period) should be considered. This may be of particular importance for 

the design of a mooring system. More specifically, it is necessary to 

estimate extreme wave heights for periods that are critical for the moor- 

ing system. These estimates can be obtained from the joint probability 

function of wave height and period. However, before this methodology is 

applied, we have to consider the moored system to encounter various sea 

severities which are most commonly expressed in terms of significant wave 

height. Furthermore, in a given sea condition, the mooring system will 

encounter an infinite variety of wave conditions which are represented by 

wave spectral shapes. Hence the variability of wave conditions for various 

sea severities and the frequency of occurrence of these wave conditions has 

to be reflected in the prediction. 



Thus, for rational design of a mooring system, it is necessary to 

consider (a) various sea severities (significant wave heights) expected 

in the area where the system is located, and (b) various wave conditions 

(spectra) in a given sea severity. Then the responses such as motions 

and wave-induced forces of the system can be evaluated. The design 

values can be determined by applying extreme value statistics to the 

responses. Another way to evaluate the design value is to obtain the 

responses to extreme wave heights for wave periods that are critical for 

the system. For either approach, it is highly desireable to estimate the 

extreme value responses expected to occur over a period of time sufficiently 

long to cover the desired lifetime of the system. 

In general, there are two approaches for estimating the extreme 

responses expected to occur in the lifetime of the mooring system, i.e., 

the long-term prediction approach and the short-term prediction approach. 

The former approach considers responses to all wave heights associated 

with all sea conditions expected to be encountered by the system irre- 

spective of their magnitude, while the latter approach considers responses 

to wave heights within a specified sea condition (significant wave height) 

taking into account the total exposure time during the system's lifetime 

in that short-term sea condition. 

It may appear that estimation through the long-term prediction 

approach is superior to that through the short-term prediction approach, 

since it deals with the accumulation of responses to all waves. However, 

in reality, the method of estimating the extreme value through the long- 

term approach appears to be insensitive to the frequency of occurrence 

of mild sea conditions, but is sensitive to the frequency of severe sea. 

The magnitude of responses will not reach the level critical for the 

system irrespective of how long time the system is operated in relatively 

mild seas. While, the magnitude reaches the critical level within a few 

hours when the system is in severe seas. Hence, the short-term appraoch, 

which involves only the more severe sea conditions, is appropriate for 

estimating the extreme values. The approaches for evaluating the extreme 

responses of the mooring system are summarized in Figure l. 
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ESTIMATION OF THE SEVEREST SEA 

As mentioned earlier, the sea severity is most commonly expressed in 

terms of the significant wave height. For estimation of the severest sea 

condition, it is necessary to prepare statistical information on signifi- 

cant wave height in the are where the mooring system is located. The 

severest sea condition (the extreme significant wave height) expected to 

occur during a specified period of time can be estimated by applying order 

statistics if the probability function which governs the significant wave 

height is know precisely. Unfortunately, the probability function which 

is uniquely applicable to significant wave height has not yet been found. 

Figure 2 shows an example which indicates that neither the Weibull nor 

the log-normal distribution represents the data obtained in the North 

Sea. Hence, the extreme significant wave height may best be evaluated 

by applying the concept of asymptotic distribution of extreme values 

which is applicable for any probability distribution. 

Let us assume that the cumulative distribution function of significant 

wave height can be expressed in the following form: 

~ $00) 

Fix) = |- €@ (1) 

where, q(x) is a monotomically increasing function. Then, it can be 

proved that the probable extreme value expected to occur in n-observations, 

denoted by Fine is given for large n as, 

Fe = | (lan) @) 
The recent method is to express q(x) as a combination of an exponen- 

tial and power of the significant wave height, such as, 

k 
-pX% 

9(0)= au. e (3) 

The constants involved in the function q(x) are determined numerically 

by applying a nonlinear least squares fitting method for representing the 

data of significant wave height by the formulation q(x) (Ochi and Whalen, 

1980). The cumulative distribution function computed by using the method 
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given in Equation (3) is included in Figure 2. As can be seen in the 

figure, the probability distribution thus derived represents well the 

observed data over the entire range of the cumulative distribution function. 

The magnitudes of significant wave height most likely to occur in 10 years 

and 50 years are estimated from the distribution function and are shown in 

Figure 3. 

WAVE SPECTRA 

The sea condition in a specified sea severity (significant wave height) 

varies considerably depending on the geographical location, duration and 

fetch of wind, stage of growth and decay of a storm, and existence of swell. 

Hence, the question always remains as to how realistic the predicted marine 

system's responses are if we use commonly available simple spectral formu- 

lations which have been developed for some idealized conditions. Since a 

mooring system encounters a variety of wave conditions even though the 

significant wave heights are the same, the variability of wave conditions 

(wave spectra) has to be reflected in the prediction. 

One way to cover a variety of spectral shapes which the mooring 

system may encounter in a sea is to use a series (family) of wave spectra 

consisting of several members for any specified sea severity. 

A significant benefit obtained by using a family of wave spectra for 

predicting responses of a marine system in a seaway is that, for each sea 

severity, one of the family members yields the largest response, while 

another yields the smallest response with a statistical confidence 

coefficient of 0.95, for example. Hence, by connecting the largest and 

smallest values obtained in each sea severity, we have the upper and lower 

bounds of responses. The results of computation made on wave-induced 

forces of an offshore structure have indicated that the bounds reasonably 

cover the variation of responses computed by using spectra measured at 

various oceanographic locations in the world (see Figure 4) (Ochi 1978). 

The following are the families of wave spectra developed for open and 

fetch-limited seas: 

1. Two-Parameter Wave Spectra Family 

The two-parameter wave spectra family consists of nine members for an 

arbitrarily specified significant wave height. It is based on the two- 

parameter spectral formulation given by (Bretschneider 1959), 
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AS Sin ye (4) 

pg ing tas re | 
where, He = significant wave height 

Oni modal frequency 

In order to generate a family of spectra, the probability function which 

governs the modal frequency for a given significant wave height was estab- 

lished from statistical analysis of available data, and a total of nine 

modal frequencies were derived as a function of significant wave height 

(Ochi 1978). The values of these modal frequencies are given in Table 1 

together with the weighting factor assigned to each frequency. Examples of 

the family of wave spectra for significant wave height of 3.0 m (9.8 ft) 

and 9.0 m (29.5 ft) are shown in Figures 5 and 6. 

2. Six-Parameter Wave Spectra Family 

In order to cover a variety of wave spectra associated with the growth 

and decay of a storm including the existence of swell, the six-parameter 

family consisting of eleven members for a specified significant wave height 

was derived (Ochi 1976). It is given by, 

, Ah e{\/ Wy; 

W. rie N 4 W (5) 
| Ae ots 54 

Se a eT j PA) een” 

where, j = 1, 2 stands for the lower and higher frequency components 

respectively 

He = significant wave height 

Ut aie modal frequency 

A} = shape parameter 

The values of six-parameters, How Hoo? Wo? m2? Aye and Ay are given 

in Table 2 as a function of sea severity (significant wave height). The 

weighting factor for the most probable spectrum is 0.50, and is 0.05 for 

all other spectra of the family. Examples for the family of wave spectra 

for significant wave height of 3.0 m (9.8 ft) and 9.0 m (29.5 ft) are 

shown in Figures 7 and 8. 
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3. JONSWAP Wave Spectra Family 

The JONSWAP wave spectra family consisting of five members for a 

specified significant wave height was derived for evaluating reponses of 

a marine system operating in fetch-limited seas (Ochi 1979 b). It iis based 

on the following JONSWAP wave spectral presentation: 

2 

a allt) 
a 216 W, 

q ) Ww e (6) 

Q) 

where, a = 0.076 Grice 
ie & A538} 

Wn 2m (3.5)55 (X) 

X = fetch length 

U = wind speed 

Y = peak shape parameter 

(o} = 
ie for w < w 

— “mM 

-09 for w > w 
m 

From a statistical analysis of the measured data, five values of the 

peak shape parameter, y, and the associated weighting factors are determined 

as given in Table 3. It is noted that the JONSWAP spectral formulation is 

given as a function of wind speed. Hence, for the design of mooring system, 

it is necessary to estimate the extreme value of wind speed expected in the 

area where the system is located. However, for a location where the effect 

of fetch length as well as the effect of bottom topography on wind-generated 

sea may exist, statistical information of both wind and significant wave 

height are required. In this case, the extreme value of significant height 

should be estimated first, then evaluate the equivalent wind speeds for deep 

water by the following formulation: 

_ IS 68 
U = ile vf ae (7) 

S 

where, k = constant given in Table 4 

H_ = significant wave height 
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As an example, a family of wave spectra for fetch length X = 150 NM 

(185 km) and for significant wave height of 4.0 m (13.1 ft) is shown in 

Figure 9. 

It is of interest to see a comparison of spectral shapes for three 

different families. Since these families of wave spectra consist of 

several members, it is not convenient to compare them by assembling all 

members into one figure. Hence, a comparison will be made on three members 

taken from each family. These three represent (i) the spectrum which is 

most likely to occur, and (ii) the spectrum which has the smallest modal 

frequency, and (iii) the one which has the largest modal frequency. 

Figure 10 shows a comparison made for a significant wave height of 

8.2 m (26.9 ft) in the North Sea. The fetch length is 250 NM for the 

JONSWAP family. As can be seen in the figure, the shapes of the JONSWAP 

family are significantly different from those of the families for open 

seas. That is, the range of modal frequencies is much smaller and the 

shapes are much sharper for the JONSWAP family than those of the open sea. 

This may cause a significant difference in the magnitude of responses of 

mooring systems in a seaway; and therefore, serious consideration must be 

given to this for the design of mooring systems located in fetch-limited 

areas. 

EXTREME WAVE HEIGHT CRITICAL FOR THE SYSTEM 

It was stated in the Introduction that the concept of estimating 

extreme wave height along with its associated period is highly desirable 

for design consideration. This is because if the wave period is either 

sufficiently long or short in comparison with the natural motion periods 

of a mooring system, then the system may not be in danger even though the 

wave height is large. Hence, for more rational design of a mooring system, 

it is necessary to estimate extreme wave height for periods critical for 

the system. These estimates can be achieved through the use of a joint 

probability function of wave height and period. That is, we estimate the 

extreme wave height under the condition that wave periods fall into a 

certain range critical for the system's behavior in a seaway. 

Longuet—Higgins (1975) has derived the following probability density 

function of wave height and period: 
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where, € and n are non-dimensional wave amplitude and period, respectively, 

given by 

Q 
Se (9) 

ym, 

eal 
VF 

where, = wave amplitude 

wave period 

H| 4 Dp 

M] 

= mean wave period = 2n(m_/m,) 

any, Be v mm, /m> iL, 

k-th moment of the wave spectrum z= 
Let us consider the conditional probability that the wave amplitude will 

exceed a certain value, ¢ , given that wave periods fall into a certain 

range of values, ny and Nos It is given by 

2 

{ [sus n045 d? 

Te ey ee (10) 

( \se0e d? 

7, 0 

Here, cis the extreme wave amplitude in non-dimensional form and is 

unknown at this stage. The values of non-dimensional period, n., and No in 

Equation (10) are for the range of wave periods for which the syaeene 

behavior in a seaway becomes critical. They may be chosen in practice as 

the lower and upper bound period for which the response characteristics 

of the system are large. Using the joint probability density function 

given in Equation (8), Equation (10) becomes (Ochi and Whalen 1979a), 
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where, 

Frappe il ola 
T= -e\ dul 

Thus, the conditional probability of wave height, &, for a given 

spectrum can be evaluated by Equation (11). Since we use a family of 

spectra, the conditional probability has to be weighted. For this, let 

us write the non-dimensional wave height, &, given in Equation (11) as 

= identifying that it is applicable for the j-th member of the spectral 

family. Then, the conditional probability applicable for the short-term 

is given by, 

Dh BL E>5/2<2 <u} 
2 DF Fi 

pa E>5 | S24 (Al cao 
(12) 

where, De weighting factor assigned to the j-th wave spectrum 

number of wave cycles per unit time for the j-th spectram 

in a specified sea 

m= k-th moment of the wave spectrum 

Finally, the unknown non-dimensional extreme wave height in Equation 

(12) can be evaluated by equating Equation (12) with the probability 1/N, 

where N is the total number of wave cycles in a specified sea, that is, 



‘Lc 

N= ¥ 0 b Tx 60) | (50 ade dz. 
; 0 d ’ 

( 2 24 u ( 13 ) 

free Vee 

where, T = total time considered for a specified sea in hours. 

As a numerical example of estimating the extreme height with specified 

periods, computations are carried out using the six-parameter wave spectra 

family for a sea of a significant wave height 7.5 m (24.6 ft) with various 

ranges of period as shown in Table 4. The time T in this sea is estimated 

from the available data as 78.8 hours in 50 years. As can be seen in the 

table, the magnitudes of the conditional extreme wave height decreases 

substantially for the range less than 7 sec. in this particular sea. 

This implies that if a system is designed such that the ranges of periods 

critical for the system's behavior is less than 7 sec., then the extreme 

wave height for design consideration may be reduced in this sea condition. 
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Table 4 Modal frequencies for the two-parameter 

wave spectra family (, in rps, He in meters) 

Weighting 
W — value 
m factor 

0.048(8.75 - £nH.) 0.0500 

0.054(8.44 -{nH .) 0.0500 

0.061(8.07 - £nH_) 0.0875 

0.069(7.77- £nH.) 0.1875 

0.079(7.63- fn.) 0.2500 ( 

0.099 (6.87 - £nH.) 0.1875 

0.111(6.67 - £nH,) 0.0875 

0.119(6.65 - £nH.) 0.0500 

0.134(6.41- én H_) 0.0500 

Table 2 Values of six parameters as a function of 

significant wave height (H in meters) 

Most cue a 

extreme value 
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Table 3 y-value and weighting Table 4 k-value to evaluate equivalent 

factor for the family of JONSWAP wind speed for a given fetch and sig- 

spectra nificant wave height 

iat Weighting 

eae 

1.75 0.081 

k-Value 

2.64 

3.30 ( sonswap) 
3.96 

4.85 

Table 5 Extreme wave heights for various 

ranges in wave period. Significant wave 

height = 7.5 m (24.6 ft), Tetal-time T = 78.8 

hours in 50 years. 

Period range 1780) =). 920 9.0 - 5.5 7.0 - 4.5 

in sec. 

Frequency range Os = 0.70 Wn.70 2 Lois 0.90 - 1.40 
in rps. 

Number 15.38 x 103 10.86 x 10° 4.86 x 10° 

Extreme wave 16.46 16.25 13.59 

height in m. 
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CUMULATIVE DISTRIBUTION 

Severest sea expected in 

the area where the mooring 

system is located 

Various wave spectra in 

the sea 
Extreme wave heights for 

wave periods critical 

for the system 

Responses to each wave 

spectrum 

Extreme values of 

responses 

Figure 1 Approaches for evaluating the extreme 

value of mooring responses in random seas 
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Figure 2 Comparison of distribution for North Sea data 
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Figure 3 Evaluation of the severest significant 

wave height for North Sea data 

SIGNIFICANT WAVE HEIGHT IN FT. 

10 20 30 40 50 
45 igs T T T T aT T T zeal 

ao. NORTH PACIFIC va 
"| s NEAR ARGUS ISLAND Ve 7 

¢ NEAR BRITISH ISLES 

3.5 - MEDITERRANEAN ye 
- SOUTH ATLANTIC 

in N W o a o T T T 

FORCE IN TONS x 10°3 

sre a T 

1.0 |- 

-—— -—— 2-PARAMETER SPECTRA | 

6-PARAMETER SPECTRA 

0 2 4 6 8 10 12 14 16 

SIGNIFICANT WAVE HEIGHT IN M. 

Figure 4 Extreme values of the wave-induced transverse 

force on a semi-submersible platform in a seaway. 

Comparison between the upper and lower bounds of the 

forces and those computed using the worldwide measured spectra. 
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SPECTRAL DENSITY IN M2-SEC 
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Figure 5 Family of two-parameter Figure 6 Family of two-parameter 

wave spectra for significant wave wave spectra for significant wave 

height 3.0 m (9.8 ft) height 9.0 m (29.5 ft) 
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Figure 7 Family of six-parameter Figure 8 Family of six-—parameter 

wave spectra for significant wave wave spectra for significant wave 

height 3.0 m (9.8 ft) height 9.0 m (29.5 ft) 
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Figure 9 Family of JONSWAP spectra for 

fetch length 150 NM (185 Km) and signifi- 

cant wave height 4.0 m (13.1 ft) 
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SPECTRAL ANALYSIS TECHNIQUES FOR SYSTEM IDENTIFICATION 

J. S. Bendat 

1. Introduction 

In the past few years, new analytical procedures have been developed 

for optimum linear system identification using spectral analysis techniques 

[1-3]. These techniques apply to: 

(a) single input/single output problems. 

(b) single input/multiple output problems. 

(c) multiple input/single output problems. 

(d) multiple input/multiple output problems. 

The key to carrying out this work is the implementation of new practical 

computational algorithms showing how to decompose output records from 

input records. Data are allowed to be realistic stationary random or tran- 

sient random records with arbitrary correlation properties between the 

records. 

This problem was previously treated in [4] and in other books where 

the general solution is derived by involved matrix computations or equiva- 

lent algebraic operations that are difficult to carry out and interpret. 

Complicated formulas were given for desired multiple coherence functions 

and partial coherence functions which did not provide significant engineering 

insight to inherent relationships of interest. Straightforward engineering 

interpretations are now being obtained by the new procedures. 

The purpose of this paper is to outline some special features in these 

recent developments to help engineers conduct this analysis. Many 
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applications exist today where these results can identify acoustics and 

vibration sources, and can predict their separate and combined effects at 

any output point in a general evnironment. In particular, differences 

can be detected due to system changes between excitation points and response 

points indicating system failures. These techniques can also be used to 

quantify overall nonlinear system features that may be present at different 

frequencies. 

When input noise sources are not related or when mechanical systems 

are not structurally connected, then ordinary coherence functions and 

associated coherent output spectra can provide many useful answers as 

discussed in [Be However, when multiple noise sources are measured on 

structurally connected systems, the ordinary coherence function will not 

separate out the effects of the various sources or distinguish between the 

possible transmission paths. Use of the ordinary coherence function by itself 

in these situations will give erroneous results and lead to wrong interpre- 

tations. For these physical cases, correct results can be obtained only by 

using partial coherence functions and multiple coherence functions as employed 

in [6]. 

Material to follow discusses multiple input/output models for given 

arbitrary input records and for derived ordered sets of conditioned input 

records. Iterative computational formulas are explained to compute conditioned 

spectral density functions, partial and multiple coherence functions. Results 

are then illustrated for a general three input/output model. 

2. Multiple Input/Output Models for Arbitrary Inputs 

As shown in Figure 1, the input records are assumed to pass through 

physically realizable constant parameter linear systems described by frequency 



response functions {H.(F)}, VS ilo Bo cncg Go Une Olneouie freeorel (ie) 

is assumed to be the sum of the individual outputs due to passage of the 

individual inputs {x,(t)}, plus an unknown independent noise record n(t) 

which accounts for all unknown nonlinear operations as well as extraneous 

noise effects. 

Note in Figure 1 that q! different configurations are possible 

depending upon which record is chosen as x, (t) > which is then selected 

as Xo(t), and so on. The analysis to follow is based on choosing a par- 

ticular ordering of the inputs and sticking with this order. Similar results 

apply to any other desired ordering. Special attention will be given in this 

paper to the case of three inputs since the formulas can be listed for this 

case without difficulty and it is representative of the general case. 

Figure 2 gives the result for the total output spectral density function 

Sy = Syy(F) in terms of other quantities for the three input case, where 

the dependence upon frequency f has been omitted in all these terms for 

simplicity in notation. This will also be done in later equations of this 

paper. Note that Syy can be either a power or an energy spectral density 

function depending upon whether the data is either stationary random data 

or transient data. The output noise spectral density function Se repre- 

sents the difference between Syy and results predicted from Xq> Xo and 

X. by passage through any linear systems, Hi> Ho and H.. Because of 

the cross-terms between inputs, it is not clear here how much of the output 

is due to any particular input. 

Optimum linear systems are defined by least-squares prediction techniques 

as those systems which produce minimum mean square system error. This will 

occur if >a is minimized as a function of H. for: jail! ® a=. 20 Soe 

leading, in general, to a set of complicated equations with many interacting 
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input terms. However, for mutually uncoherent inputs, these equations 

simplify greatly since each optimum linear system can be determined from its 

own particular input independently of the other inputs. 

For the three input case of arbitrary inputs, the three optimum fre- 

quency response functions will satisfy the equations listed in Figure 3. 

The terms shown in the numerators and denominators are conditioned (residual ) 

spectral density functions found by computational algorithms developed in 

[1,2]. 
In Figure 3, the particular conditioned quantities in H. are defined 

as follows with similar definitions for Hy and Ho 

S = spectral (power or energy) density function of x,(t) 
33-1,2 

when the linear effects of both x, (t) and Xo(t) are 

removed from x,(t) by optimum least-squares prediction 

techniques. 

S3y.] 5 = cross-spectral density function between x(t) and y(t) 

when the linear effects of both x, (t) and Xo (t) are 

removed from either x(t) or y(t), or from both, by 

optimum least-squares prediction techniques. 

3. Multiple Input/Output Models for Conditioned Inputs 

Figure 4 shows a multiple input/output model for conditioned inputs 

x, (t), Xy_1(t) and X39 o(t)> and so on, which are obtained from the 

original inputs x(t). x,(t) and x(t), and so on, shown in Figure 1. 

These conditioned inputs are defined in the following ordered way: 

Giaeihea fist ainput x, (t) is left alone. 
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(2) The second input x(t) is replaced by Xo 1 (t) obtained 

by removing the linear effects of x, (t) from x(t) by 

optimum least-squares prediction techniques. 

(3) The third input x(t) is replaced by X30] o(t) obtained 

by removing the linear effects of both x, (t) and X,(t) 

from x(t) by optimum least-squares prediction techniques. 

This procedure can be extended to any number of inputs. 

The systems in Figure 4 are denoted by {L.(f)} instead of by {H.(#)} 

as in Figure 1 to distinguish these two distinct types of models. The 

terms n(t) and y(t) are exactly the same in both models. Relationships 

between these systems are derived in he Note that the set of conditioned 

inputs in Figure 4 will be mutually uncoherent. Optimum frequency response 

functions for the three input case will now satisfy the equations listed 

in Figure 5. The systems Ly and L, are simpler to compute then H 
2 

is the same as H 

1 

and Ho in Figure 3, while L 
3 3 

4. Conditioned Spectral Density Functions 

Conditioned spectral density functions can be obtained by the iterative 

computational formulas shown in Figure 6. Observe that the formula for 

Soy.1 includes S594 and el as special cases. This formula also 

* 2 

gives $53.4 and SVP] = reo] Similarly the formula for Say AI2 in- 

* 

cludes 338}]|_2 and Syy alae as special cases, and gives SyAe12 = 33y-1 52° 

) When there are only three inputs, as assumed here, the term Syys Ween = San 

the spectral density function of the output noise n(t). 

5. Partial and Multiple Coherence Functions 

Definitions for partial coherence functions are stated in Figure 7. 

Specific formulas follow by substituting the particular conditioned spectral 
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density functions computed from Figure 6. Note that partial coherence 

functions are really ordinary coherence functions of conditioned variables 

and hence are bounded between zero and unity. 

A general definition for the multiple coherence function is given 

at the top of Figure 8 that applies both to arbitrary inputs as in Figure 

1 and to ordered conditioned inputs as in Figure 4. Formulas for cases of 

one, two or three inputs are listed in Figure 8 which reveal new relation- 

ships between multiple and partial coherence functions. 

6. Decomposition of Three/OQutput Model 

The preceding analysis yields the frequency domain decomposition of 

the conditioned three input/output model as shown inFigure 9 where the 

{L;} are the optimum frequency response functions of Figure 5. It follows 

that the total output spectral density function Syy is decomposed here 

into four distinct terms where: 

Vqy Syy = spectral output at y(t) due to linear effects 

of x, (t) as x, (t) passes through Ly; 

2 x : 
Yoy-1 Syy-l = spectral output at y(t) due to linear effects 

of X54 (t) as Xo ,4(t) passes through L.; 

2 pe u 
Y¥3y-1,2 yale = spectral output at y(t) due to linear effects 

of X3.1 2(t) as X3.1 9(t) passes through L4; 

S = spectral output at y(t) due to unknown 
WATE ae) = nn 

independent terms n(t). 

This procedure can be extended to any number of inputs. 
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7. Conclusion 

This paper has outlined some procedures to follow to analyze and 

predict useful frequency relationships in measured multiple input/output 

data. Many important engineering applications can be solved with the help 

of these techniques. To interpret results pronerly, since the data are 

statistical in nature and available records are limited in both duration 

and number, these applications also require appropriate statistical error 

analysis of any measured results as discussed in [al Physical interpre- 

tations for all of these concepts with engineering examples and extended 

details for recommended data analysis procedures will soon be available 

in a new book [8]. 
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FIGURE 2 

OUTPUT TERMS FOR ARBITRARY INPUTS 

Three Input Case 
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FIGURE 5 

OPTIMUM FREQUENCY RESPONSE FUNCTIONS 

FOR CONDITIONED INPUTS 

Three Input Case 

FIGURE 6 
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FIGURE 7 
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THE RESPONSE OF MOORED FLOATING PLATFORMS TO OCEAN WAVES 

by 

J. R. PAULLING 

Professor 
Department of Naval Architecture 

University of California 
Berkeley, California 

WoSofo 

iN RODUEEON 

The principal loads which are exerted on a floating structure 

by the sea depend on the relative motion between water and platform, 

thus, both the motion of the sea and the motion of the platform 

must be known in order to completely determine these fluid forces. 

Since the motion of the platform constitutes its response to the 

total external force system, it is seen that simultaneous solutions 

to the loads and motions problems must, in general, be performed. 

In addition to the fluid loads from waves, currents and platform 

motion, there are additional forces from external phenomena such 

as wind and those which result from the mooring or positioning 

system which is used to maintain the platform in its mean position. 

The hydrodynamic forces caused by wave and platform motion, 

in general, have a complex dependence on the platform geometry and 

on the motions of fluid and platform. In order to develop a 

practical procedure for estimating these forces, it is invariably 

necessary to make some retreat from reality. The usual simplifying 

assumptions in this regard involve restrictions to either special 

geometric configurations of the platform or restrictions on the 

amplitudes of the fluid and platform motions. In the former cate- 

gory, One procedure has been developed which assumes that the 

platform configuration consists of a space frame assembly of slender 

cylindrical members. A second widely used procedure is restricted 

to platforms whose main elements consist of one or more slender 

ship-like hulls floating either at the water surface or submerged. 
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Several types of mooring systems or devices may be used to 

maintain the platform in its mean position. Examples are: 

(1) Vertical or slanted taut cables. 

(2) Catenary chain moorings, sometimes with buoys or 

additional clump weights. 

(3) Dynamic positioning. 

In each of these cases, it iS usually necessary to represent 

the mooring device by a somewhat Simplified analytical model in 

order to develop a practical analysis procedure. As an example, 

Tee the) pilattorm motlonsmanTevexpeccedmeo, oem smal la meine nonlinear 

force/displacement characteristics of a catenary chain mooring 

line may be replaced by a constant coefficient equal to the deri- 

vative of the force versus displacement graph at the mean position 

of the platform. 

In the case of the fluid forces, it is frequently possible to 

consider the motion of both fluid and platform as small. In this 

case, the forces caused by the waves can be computed independently 

of the forces caused by platform motions and the latter are found 

to be proportional to the motion variables and their derivatives. 

This forms the basis for the linear spectral technique of deter- 

mining the platform response to a random wave system by super- 

position of the responses to a number of different elementary 

regular wave systems. The procedure has found wide application to 

such diverse problems as the prediction of sea state imposed 

limitations on platform operations, or the long term cumulative 

structural damage due to fatigue. 

In some cases, however, information concerning the effect of 

specific nonlinear phenomena is required and the simplifications 

noted above are not possible. Examples of such cases involve the 

motion response of the platform to an extremely high wave, possibly 

involving capsize or other hazard, or the effect on motion response 

of a nonlinear dynamic position keeping system. It is seldom 

possible to obtain a complete and exact nonlinear representation 

of platform response including all relevant effects. Instead, it 
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is usually necessary to formulate the problem in such a way that 

the nonlinear effects thought to be of importance to the phenomenon 

of interest are included, and other, less important quantities are 

represented only approximately. It is clear that such an avproach 

depends heavily on the insight and experience of the analyst for 

its success. Model experiments and full scale obServation of 

similar structures may contribute much to the understanding 

required for the formulation of this approach. 

Ii. THE EQUATIONS OF MOTION 

The general procedure followed in analyzing the dynamic response 

of a floating platform to waves is based upon the assumption that 

it behaves as a rigid body having six degrees of motion freedom, 

and that any effects of the elastic deformation of the platform 

are negligible. The external forces acting on the platform in- 

clude those which result from the relative motion with respect to 

the water, those exerted by the mooring or positioning system and 

other external effects such as wind. 

In deriving the equations of motion, it is first necessary to 

define two coordinate systems which are shown in Figure 1. The 

first is labelled OXYZ and is assumed fixed in the platform with 

its origin located at the center of gravity. The second, oxyz, 

is fixed in space and its location is defined with some reference 

to the first system. For example, if we are analyzing the wave- 

induced oscillatory motion of the platform about its mean position 

it may be convenient to define the space coordinate system in such 

a way that it occupies the mean position of the platform system. 

In the case that there is no mean position of the platform, the 

space coordinate system might coincide with the initial position 

of the platform system. In general, the equations of motion are 

formulated in such a way as to describe the time-varying position 

of one coordinate system with respect to the other. 

The complete equations of motion are given in the Appendix 

where it is noted that the equations of rotational motion contain 

nonlinear terms involving products of the angular velocities and 

trigonometric functions of the angles which relate the position 
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of one coordinate system to the other. If the angular motions of 

the platform are small so that the products of small quantities may 

be neglected in comparison to the first order terms, all of the 

nonlinear terms noted above may be neglected. Next, recall that 

the external forces and moments which form the right hand side of 

the equations of motion depend on the incident waves and on the 

motion of the platform. As noted earlier, if the motions of the 

platform and the waves are small, the motion-dependent forces are 

decoupled from the wave-dependent forces and the equations of 

motion may be rewritten in the form of a set of linear differential 

equations: 

ny Oo Ra a Stat Sede e ae a nsen ea en Ce ( 4s a4! 4 ee C4 4%Xs 4 | ) (aL) 

Here 2a a0 eae and c,, are coefficients in the expressions for the 

motion-dependent forces termed "added mass", "damping" and "restoring 

constant" and Be) is the wave-induced time-dependent exciting 

force. 

In the case of a platform containing an appreciable portion 

of its volume near the water surface, the damping and added mass 

coefficients are found to be frequency dependent and equation (1) 

can be considered strictly applicable only for the case of excita- 

tion due to a system of sinusoidal regular waves. In this case, 

the system of differential equations is reduced to an equivalent 

system of algebraic equations in the amplitudes of the motion 

responses for the given wave frequency. The principle of linear 

superposition may still be utilized in obtaining the response to 

random seas by first decomposing the sea into its regular wave 

components and solving for the response to each. These are then Superimposed 

to obtain the total response. Such "frequency-domain" analysis 

procedures are well established in other fields such as control 

system design. 

In the case of nonlinear motions analysis, the equations of 

motion must usually be integrated in the time domain using a 

step-by-step procedure. If a complicated relationship is assumed 
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between the fluid forces and the motion variables or if a simulation 

of an extended time period of platform operation is required in 

order to obtain, e.g., the response statistics in random seas, 

this procedure may become quite demanding of computer resources. 

Iii. THE EXTERNAL FORCES 

The external force system acting upon the structure usually 

originates in four sources: 

(1) The incident waves and currents. 

(2) The motions of the structure itself. 

(3) The anchoring or other position keeping system. 

(4) Wind. 

The first two categories comprise fluid forces resulting from 

the relative motion between the water and the structure. In computing 

these forces, several simplifying assumptions may be made, which 

depend upon the geometry of the structure, the expected severity 

of the motion, and the nature of the computational process to be 

used in the motion analysis. 

structure made up of sllender members. As an example of the simpli- 

fication noted above, consider a structure comprising a space frame 

made up of slender cylindrical members. In this case, it is pos- 

sible to obtain a good estimate of the total fluid force by computing 

the force which would act on each member individually in the 

absence of any hydrodynamic interference between individual members, 

and then taking the sum of such forces for all members. Examples 

of platform motion analyses using this procedure may be found in 

papers by Burke (1969), Paulling (1970) and Hooft (1971). 

It is assumed that a variation of Morison's formula (Morison, 

et al (1951)) may be applied to the computation of the fluid forces 

on a slender cylinder oriented at an arbitrary inclination to the 

flow direction. The fluid force is assumad to be dependent upon 

the pressure gradient in the flow field, and the components of 

relative fluid velocity and acceleration which are normal to the 

centerline of the cylindrical member, this is illustrated in 

Figure 2. 

129 



F = -Jfp n ds + eran frou |] cel + ([eeawalt (2) 

Note that the first term, which is sometimes called the 

Froude-Krylov force, was included with the added mass term in the 

original Morison paper, and this is approximately correct for a 

slender stationary cylinder. In the case considered here of a 

moving body, however, the relative acceleration term includes 

components due to both body motion and fluid motion while the 

Froude-Krylov term is dependent upon fluid motion alone. 

The pressure, p, is determined from Bernoulli's equation and 

the velocity potential appropriate for the wave motion. For 

infinitisimal, deep water waves the potential function is given by 

= ll simliss o we), (3) 

and the pressure by 

oa 2 SG) Rel 2 2 2 > = ogi Fe we Oe Me Me (4) 

In a linearized motion analysis procedure, the last term in 

the expression for the pressure is neglected since it involves the 

square of the (small) wave-induced fluid velocity. 

The second term in equation (2) involves the square of the 

relative velocity between fiuid and member and is chosen by analogy 

to the conventional representation of the fluid force on a body ; 

immersed in a steadily flowing fluid. In order to obtain a linearized 

formulation of the problem, this quadratic drag force is sometimes 

replaced by an equivalent linear drag force, Coun: The equivalent 

linear drag coefficient Ch is chosen in such a way that the temporal 

mean Square error between the linear drag and the "exact" quadratic 
; 

) 

drag is minimized. In regular waves, this results in | 

res LEBTGn H 

1D) = Bar DA (5) ; 
i 

where eer amplitude of the relative velocity. 

In random waves, 

4 el 8 pecan 

SD Vi op Un 

where uu = RMS value of the normal relative velocity. 
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Structure having ship-like hulls. In the case of a platform having 

one or more ship like hulls floating either at the surface or sub- 

merged, a technique termed "strip theory" has been developed prin- 

cipally in connection with the prediction of the wave induced 

motions of surface ships. In this procedure, the solution of the 

potential flow problem for the pressure distribution and, therefore, 

the fluid loading on the three-dimensional ship hull is obtained 

from the solution for the flow about two-dimensional bodies having 

cross sections similar to the transverse cross sections of the 

ship. The two-dimensional problem is relatively easy to solve and 

several methods have been developed which are suitable fouz either 

single or multiple hulls. The damping, added mass and wave exciting 

forces are first obtained for two-dimensional shapes similar to 

the transverse sections of the ship, for the wave-frequencies of 

interest, and these two-dimensional forces are then integrated 

over the length to obtain the three-dimensional forces and moments. 

The usual procedures are based upon assumptions of small motion 

amplitude and inviscid irrotational fluid theory and yield results 

suitable for inclusion in a linear motions analysis procedure. 

An example of the two-dimensional forces, expressed as damping 

and added mass coefficients, is shown in Figure 3. In this case 

the geometry consists of twin circular sections having proportions 

typical of some twin-hulled semisubmersible platforms. The figure 

illustrates two features of the behavior of these forces. First, 

the dependence of damping and added mass on the motion frequency 

is clearly seen. Second, in the lower part of the figure, an 

additional viscous damping is shown for comparison with the wave 

damping which is predicted by the two-dimensional potential flow 

theory. The viscous damping is assumed proportional to the square 

of the velocity and, therefore, in this nondimensional plot, 

depends on the amplitude of motion. Several different combinations 

of drag coefficient and amplitude of motion are shown in order to 

illustrate the relative importance of viscous and wave damping 
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Second order, slowly varying wave forces. In addition to the 

wave-frequency forces described above, there will be a system of 

forces which depend upon wave reflection and interference between 

the ship motions and the incident wave system. These forces are 

proportional to the squares and products of wave height and ship 

motions, and consequently are neglected in a linearized motion 

analysis. 

For a moored ship or platform, they may be of considerable im- 

portance to the mooring response and must usually be included. In 

regular waves, the wave reflection force is constant and merely 

causes a mean offset. In random waves, however, this atfact gives 

rise to a slowly varying force having important frequencies equal 

to the frequencies of the envelope of the wave time history. These 

low frequency forces may excite resonance of the platform/mooring 

system which in turn may lead to high loads in mooring lines. 

The computation of the low frequency wave loads is beyond 

the scope of this paper, but a paper by Newman (1974) discusses 

the important fluid dynamics aspects. 

IV. APPLICATION OF ANALYSES PROCEDURE 

There are a number of design or operational problems to which 

the hydrodynamic loading and motions analysis procedures described 

in the preceeding section may be applied. We shall describe several 

of them here. 

Performance prediction. A vital element in any design procedure is 

the ability to predict the performance of the system being developed 

at an early phase of the design process. Two performance parameters 

of great importance in the design of offshore platforms are the 

motions of the platform and the forces in the mooring system. 

Figures 4 and 5 illustrate two different types of stable platforms 

with which we are concerned here. The first type is the conventional 

twin-hulled semisubmersible, and Figure 4 depicts a somewhat simpli- 

fied version of an actual design. The second, Figure 5, is a tension 

leg platform which is an innovative concept currently attracting 

considerable interest as a candidate for deep water drilling and 

production. The tension leg platform illustrated here is a small 

experimental platform which has been tested at sea off the coast 
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of California. In the case of both of the platforms depicted 

here, model test data have been published for structures of similar 

although not identical configuration to those depicted. For the 

semisubmersible, data for the pitch and heave motions in head seas 

are shown in Figures 6 and 7. The computed response is shown by 

the solid line and the correlation with experimental data may 

be considered typical of that obtainable using the twin-hull strip 

theory procedure. In the case of the tension leg platform, data 

are shown in Figure 8 for the surge motion and in Figure 9 for 

the wave induced tension variations in an anchor line. In these 

figures, the theoretical predictions were performed using the 

slender member-space frame procedure. Here, an excellent prediction 

of the motion is obtained, but the mooring tension prediction is 

not quite in so good agreement with experiments. This behavior 

has been observed rather generally and indicates that the mooring 

system may be more sensitive to nonlinear effects that are the 

motions. 

Effects of high waves. It was noted earlier that a numerical inte- 

gration of the nonlinear equations of motion may be performed in 

order to investigate certain specific nonlinear effects. Such an 

effect, which may be of importance in the operation of a tension 

leg platform, is the mean offset from the initial position caused 

by high waves. To visualize the effect in question, refer to 

Figure 10 and recall that the vertical tensioned mooring system 

will effectively suppress the heave motion of the platform, one 

column of which is shown in this figure. It is clear, that when 

a wave crest is centered at this column, the length of member 

immersed is much greater than it is in a trough. If the wave is 

moving from left to right in the figure, the result will be that 

a considerably greater drag force will act on the member when in 

a wave crest, than when the member is in the trough, solely because 

of the difference in the immersed length. In the wave crest, the 

fluid vellocities, thus the drag force is to the rrght), while ian the 

trough. the velocity and drag force are directed to the left. As 

a result, an average force directed to the right will act on this 

member as well as others comprising the platform, causing a mean 
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offset of the platform in the downwave direction. This effect 

is clearly seen in Figure 11 which gives the results of a nonlinear 

time-domain integration of the equation of surge motion. The 

effect is found to be closely related to the wave steepness. The 

mean force is a nonlinear function of the wave height, but in 

this case, unlike the wave reflection force discussed earlier, 

the force depends on viscous drag. 

VII. APPENDIX 

The rigid-body equations of motion. The two coordinate systems, 

one fixed in space and one fixed in the platform are illustrated 

in Figure 1. The objective of the motions analysis, simply 

stated, is to describe the time varying position of one system 

with respect to the other. The translatory position of the origin 

of the platform coordinates is given by the three coordinates 

(xi, X51 x3) measured in the directions of the three space axes. 

The angular motion is expressed in terms of the three components 

of the platforms angular velocity (ws, Wor 03) resolved in the 

‘directions of the axes fixed in the platform. The details of the 

derivation of the equations of motion of a rigid body having six 

degrees of freedom are given in standard textbooks on dynamics and 

need not be repeated here. In vector form the equations may 

be written as follows: 

a? 

mie) = i 

dw 
[01] Uped > lao x {Iw} = {mM} (7) 

Here {F}, {M} = vectors of external forces and moments respectively. 

{F} is expressed in the space coordinate system and 

{M} in body coordinates. 

{m] = 3 x 3 diagonal matrix in which the three nonzero 

terms are the platform mass. 

[I] = 3 x 3 matrix containing the moments and products 

of inertia of the platform. 
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SS vector of the second derivatives. 

{w} = angular velocity vector expressed in coordinates 

along the body axes. 

In order to express the angular position of the structure 

with respect to the fixed inertial coordinate system, it is neces- 

Sary to utilize a set of three Euler angles. These are defined as 

follows; let the body axes initially coincide with the axis system 

fixed in space, Figure 1. The structure first rotates in yaw 

through angle 9, about oy, then through the pitch angle, Go, about 
2 

the new position of oz, and finally, through the roll angle aT 

about the final position of ox. The relationship between the two 

coordinate systems is now: 

xX cos8,cos€, sin®, -sin®,cos@, XX 

. ° ) 9 A 
. 3 sin®, sind, cos8cosb., cos ,Sin8,sin®, ae a 

= “4 ye { mice 
cost,cos8,sin0, +sin6)cos6, 2 

‘ sin®,cos6,sin0, -sin8,cos®, cos6, cos0, ee 

+cos6, sino, ee | 3 

2 W3) are the components of the instantaneous 

angular velocity along the body axes, the relationship between {w} 

Now, if {w} =(W), 

and the time derivatives of the Euler angles is 

{w} = [B] {6} 

where 

il siné, 0 

[B] = 0 cos8,cos8, sind, (9) 

0 ~sin0,cos0, cost, 

In the case of small angular motions, we see that sin6 , wy 6, (small) 

and cos6; 2 ip FO 

[B] w& iL 
(10) 
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Thus, for small angular motions, the angular velocity com- 

ponents are approximately equal to the time derivatives of the 

Euler angles. The equations of motion, (7) may be written in a 

mone COMpact Matrix Lorman) thas case: 

ee lirnll feta (10a) 

where F = vector of all six eternal forces and moments. 

[m] = 6 x 6 matrix containing mass, moments of inertia and 

jOratorchbiias) Cue alinSicieste) Ose wee jollevierc@iam, 

{x} = vector containing three translational displacements 

of the platform center of gravity and three rotations 

about the coordinate axes. 

If the vector {F} may be expressed in terms of linear functions 

of all relevant motion variables, equations (10a) form the basis 

for a linearized motion response computation. 

In general, however, the force system contains nonlinear terms 

in such quantities as the motions (displacements, velocities and 

accelerations) and incident wave height. The latter may be of 

importance in computing the large amplitude motions in high waves. 

Im thus case, at as Conventent torimeroduce anew varnrabiley 

lie ax 
{v} = brs 

which may be combined with equations (7) and (9) to yield the 

complete nonlinear motion equations as 

av» a =} 
tel = [m] CEs 

ax =. 
(ae = {v} 

(11) 
CO) = ey fem Ge) Cae) 

(Fy = fal ok 

Equations (11) form a system of twelve first-order differential 

equations im state variables {vj}, {x}, (ow! and 10) which express) the 
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velocities and position of the body as functions of time. Nonlinear 

terms of two types are retained in this system of equations: 

GD) ether lols eka anad [iB] 2 terms 

(2) Nonlinear terms in the relationships between the external 

forces andeither the platform motions or the wave ampli- 

tudes. 

The Mooring System. A cable or chain mooring device is usually 

thought of as exerting a force on the moored ship or platform which 

depends only on position. The dynamic characteristics of the line 

itself and fluid forces exerted on it by virtue of its motion 

relative to the water are usually ignored. For moderate water 

depths, line tensions, and wave motion, this assumption is reasonably 

good. In many realistic cases, however, the fluid and dynamic 

effects become important in just the cases of greatest interest, 

i.e., the case of survival of ship and mooring in extreme sea 

conditions. The following development is based upon the static 

model of the mooring, but the procedures may be easily extended 

to more complete models. 

Assume that the force exerted by the mooring line on the 

platform at the point of attachment may be expressed by three 

components in the global oxyz coordinate system. In a linearized 

motion analysis, these will be identical to the components in 

the platform coordinate system. The coordinates of the point of 

attachment are given by (XU, en Z,) in the platform system. 

Now, assume that the force versus displacement characteristics of 

this end are also known. For a linear motions analysis, the forces 

may be related to the displacements of the mooring line by a 

3 x 3 stiffness matrix [k_]. 

{F,} ali altace 3 (12) 

io = xyz - forces by mooring line on platform 

[k_] = stiffness matrix. 

{x} = xyz - displacements of end of mooring line. 
WL 3)7/ 



The three motions of the attachment point are related to 

the motions of the platform CG by the inverse of equation (8). 

If the two coordinate systems coincide initially, the displace- 

ments of the point are 

zh ee {x} = {x, } EAC UA [eral eae eas)) 

Hewe (se ]}) = txengllatiloms of Hae CG = (i, a5 5) 4 
iL i yD, 3} 

[A] = coordinate transformation defined by (8). 

{XJ} = coordinates of anchor line end, (Koy Yor Z Je 

{I] S winate imeercsls:. 

For a linear motions analysis, we retain only first order terms 

in (13) and replace the trigonometric functions by the small angle 

approximation, Sane) + Cp wcoso. Sal. | NOtimGithatiGS) consitemtetitcors 

an orthogonal transformation, therefore the inverse of [A] equals 

the transpose, and after multiplying and rearranging, we obtain 

L Z ae E 
S i 

ec ie a ae 0 Ko} 18> (14) 

ae Foe 0 ye 

Equation (14) may be rewritten as 

tse) = [ol o ile) (8) 

where 

{x} = vector of six platform motions = {x1, Xo eae 65} 

1 0 0 0 Zo Ree 

Dy} = 1 O il 0 moe 0 Xo 

0 0 il Me ON 0 
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Lies lainearszed mooning ine srorce gus mehengaiven; sin texmswok jpollat— 

form motions by 

{F,} = ead UDI} ya (16) 

The three forces UES are transformed back to three centroidal 

forces and three moments about xyz by the transpose of [D] 

= T fey a= wale 

i= 3 Dioula (ec) ie (LF) 

This enables us to define the centroidal 6 x 6 mooring line 

stiffness matrix 

= te 5 Ms =) DS os © Lol, (18) 
from which, 

[Fo] = [k 1] {x} : (19) 

The mooring line spring constant matrix [k.] is defined according 

to the type of mooring. A simple example will be described here, 

a vertical taut cable or "tension leg" mooring line. The nomen- 

clature for such a mooring is shown in Figure 12. 

Phe sna eraliengtnmok the cabilicwinmtnernyersticaluposHit=l ones 

L and the initial tension is T. In the displaced position, the 

cable is inclined to a small angle 8 and stretchedby a small 

amount 6L. The new tension is given by 

T. OL ave IP Teil, (20) 

where k = elaStic constant of the line. 

Typically, k = ae F 

where A = cross sectional area of the line, 

E = Young's modulus. 

The forces, in the horizontal and vertical directions, exerted 

on the platform by the mooring line are 

Sy) 



iB 
x 

1s 
Vv 

made a Ob) Soinh , 

Il tT, @ - cosf) - sTcosB : (2 AL) 

For small 8 and small 6é6L s&s Sy, these become, 

T eee — 5O Rs mS Ses 25x 

Sit a~BE RS on ON : (22) 

The 3 x 3 spring constant matrix [kJ may, therefore, be 

written for the vertical tension leg as 

ae 0 0 
fe) 

Be J=e -£ | oO we 6 
a L (23) 

0 0 Do 
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Figure 12: Nomenclature for vertical taut cable mooring line. 
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MOORING DYNAMICS SEMINAR 

By 
Die, So Cailagsazail 

INTRODUCTION 

A computer program to obtain a computer solution to sizing and 

locating mooring tackle based on moored ship dynamics at sea is under 

development at the U.S. Naval Academy. The important features of this 

program are that it should require a minimum of input data and that the 

output should be easily understood by users who are not necessarily 
specialists in the field of ship or cable dynamics. 

A survey of the expected input variables was first done. To our 

surprise, most of the variables required for input for a classical ship 

dynamics problem can at best be based on "guessed" quantities. This 
fact forced us to study possible sets of assumptions not normally required 

for the solution of a ship dynamics program. During the early stage of 
the model development, the major problem we faced was selecting the 

assumptions that could be accepted. For a successful model, the assump- 
tions had to be: 

a. realistic 

b. consistent 

A flow diagram of the calculation can be represented as in Figure 1. 

The assumptions in each block had to have the same implication and same 

order of importance. The following is an attempt to point out some of 

the assumptions observed in the literature and used to build the total 

model. 

SHIP GEOMETRY AND WEIGHT DISTRIBUTION 

The first question encountered was: "how accurately should the 

ship impermeable boundary be represented?" In Naval architecture, a 

ship is defined with a table of offsets and continuous curves; surfaces 

are assumed to exist between the defined points. Ship surface definition 

is still a continuous field of research and development, and Figure 2 

shows one such effort from the Abkowitz paper (1966). The purpose is to 
have a mathematical function to define the stations. Van Oortmerssen 

(1976), on the other hand, used plane surface elements, while Raichlen 

(1965) and Bomze (1974) used “equivalent displacement" rectangular 

blocks for frequency and time domain solutions. 

For wind-induced resistance, the geometry of the ship above water 

is certainly important. The general trend is to have a representation 

based on projected area and the centroid of this area only. 

For simplicity of input requirements, and noting that the coefficients 

in the dynamic equations require integration and moments of distributed 

quantities and also the good correspondence reported between experimental 

and theoretical values, an equivalent box representation is adopted. 

This is not a limitation, however, as the program has a modular design 

and this subroutine can be replaced by more sophisticated ones. 
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ASSUMPTIONS ON DYNAMIC EQUATION 

The dynamic equations require an inertial frame, while the ship 
geometry is constant in the ship frame. The study of ship dynamics 
requires two sets of reference frames. Two frames coincide at the 

undisturbed conditions and the origin is taken at the ship center of 

gravity. As (d/dt). (d/d on wx , and neglecting the 

flexibility of the Si igh. aqmaticls iBe ee translation can be 

written as: 

If all the terms in the parentheses are of order €, then one can simplify 

the above equation and obtain an uncoupled linear equation as: 

This assumption should be valid outside the range of resonance or 
large motion amplitude. This, in turn, implies that the solution will 

not be accurate at or close to resonance. Similarly, for moment equi- 

librium, one can write: 

Even though the exclusion of nonlinear terms cannot be easily justified, 

they are adopted for simplicity and linearization required in the other 

building blocks of the model. The major question is how to interpret a 

large value of motion. The formulation adopted is the one due to Kaplan 

(1970). 

HYDRODYNAMIC FORCES AND MOMENTS 

The force acting on the ship can be decomposed into: 

KE = & ar lt. + F ; 
pressure viscous restoring 

should, in general, represent the effect of fluid flow 

about PRESS ip. This force is usually computed for the ship in equilib- 
rium and fixed, assuming that the ship is transparent to incoming waves 

(i.e, "Froude-Krylov hypothesis"). The integration of pressure is 
usually done on the still-water-wetted surface or its projection. This 

calculation avoids harmonics that one can obtain by integrating up to 

the calculated wave height. Motion-induced pressure forces are repre- 

sented under the group of forces added mass and damping coefficients. 

In their usage it is possible to see terms like 

Fy = jurs(Gri 5%) 
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where M* is the added mass, ti is the volume-averaged water particle 
acceleration, and x is the acceleration of the ship. This brings no 
complication to linearized equations except that it seems inconsistent 

with the definition of added mass, but it is probably not incorrect. We 

decided to ignore this possible correction term. 
Viscous terms are normally expressed with the help of a viscous 

resistance coefficient and wetted surface area. In the application, one 

can find the usage of net velocity as: 

nom eS e ie ° 

aeeore 2 a i s(u x) Cu x) 

or in linearized form 

=) ea 
viscous OS 

* s(u - x) 

These definitions exclude separation and form drag. Dynamic viscous 

effects are neglected in the present calculations in comparison to wave 

pressure loads. 
Added mass and damping coefficient values for shiplike shapes are 

available for periodic motions for high frequencies (Lewis form) and for 
variable frequencies to the first or higher orders. These values are 

then assembled according to the relevant theory, such as strip theory. 

End effects are, therefore, usually neglected, and L is assumed to be 

very high compared to B and D. The real limitation from these calcula- 
tions is that the values obtained make sense only for periodic motion. 

Calculation of hydrostatic restoring forces is done using the 

well-known ship parameters TPI, GM, GM', etc. Again, pitch and roll 
interaction effects have to be neglected due to linearization. The 

assumption that the mean position of the ship is the upright one is not 

always valid as external effects, operation conditions, and damaged 

ships might have a large trim or heel, and a correction term is therefore 

necessary for these calculations. A complete, tested program is being 

coupled to the main program for the computation of hydrodynamic forces. 

ASSUMPTIONS ON EXTERNAL CONDITIONS 

It is assumed that the wind speed and its direction are constant 

and the boundary layer effect is neglected. Similarly, current speed 

and direction are taken as constant. Incoming waves are assumed to be 

periodic, small in amplitude, and consistent with linearizations so far 

introduced. Superposition is accepted in the form of known spectral 
densities (), such as Pierson-Moskowitz or Bretschneider, of the form: 

Nai apd 
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with the possible fetch effects. Different spectra are available for a 
specific selection. An important question here is that these spectra 

are verified mainly for the North Atlantic conditions. Solitary waves 
cannot and should not be used for the calculation even though they might 
generate a more serious mooring condition. 

Wind and current force and moments are approximated by functions of 

the form: 

F = A sin B and M = Bcos 2 B 

using the experimental data in DM-26 for Naval ships. 

MOORING SYSTEM LOADS 

These forms are observed to be more complex to describe than the 

previous ones. They are usually linearized, and the major new assump- 

tions are the symmetry in the mooring system and continuity in mooring 

load. Elastic characteristics of the mooring line are reported to be of 
the form: 

R and m values are usually assumed to be constant. R is reported to 
change for wet, dry, new, and old mooring lines except for chains. 

Fenders are not always preloaded and cannot be studied by these equations 

as, in general, their responses are nonlinear and discontinuous. Such 
systems, on the other hand, have very important dynamic responses as 
they generate jumps and subharmonics (Wilson, 1973). 

Lines are assumed to be pretensioned, and a geometric "catenary" 
description is used to find the "quasi-static" tension in the lines. 
For fixed anchor points, the maximum horizontal distance from anchor 

points to line connection points on the ship is calculated using the 
solution of dynamic equations. Line vibration stress is obtained by 

multiplying the quasi-static stress by a dynamic load factor. 
Based on the survey of the above assumptions and built in the 

model, one can claim that a mooring system load calculation can be 
successfully computed by this computer program if: 

1. The mooring system is symmetric and pretensioned. 

2. The ship is in an environment where the sea can be represented 
by a spectrum, and the wind and current are constant in 

magnitude and direction. 

3. The influence of other boundary and initial conditions is not 
significant, such as very shallow water or other ships in 

proximity. 
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4. Angular and translational velocities are moderate. 

5. Viscous forces are small compared to other forces. 

It seems that for other cases, calculations should be based on time 
domain solutions. 

( ) 

. 
ea we 

Figure 2 
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Evaluation of 

Mooring Dynamics Seminar 

Civil Engineering Laboratory 
Port Hueneme, California 

January 10, 11, 1980 

by 

Bruce J. Muga 

There were a number of discussions and points made during 
this seminar that were of specific interest. They are discussed 

below in somewhat random order. 

Ie The presentation by Dr. Ochi was particularly interesting 

since he has provided a rational explanation for what has 
been known but for which there has been no systematic 

development, explanation or description. This has sub- 

Stantial implication for design of systems to be deployed 

on a Short term basis, and for scheduling of the deployment. 

It also clearly shows the site dependence of the climatic 

conditions. On a large global scale, this is to be expected. 

A case in point is the trade winds in the lower latitudes. 

On a smaller scale, sometimes these site dependent effects 

are obscured by the extreme variability of other processes. 

The discussion concerning the second order wave force 
determination was an important part of the seminar. Un- 

fortunately, a number of crucial details were not available. 

A number of methods for calculating the mean wave drift 
force were discussed. Essentially, they are: 

Hull General 
Surface Boundary or Comparisons © 

Method Description Evaluation Specific (Accuracy ) 

Newman (1967) Strip Far Field All Wave None 

Directions 

Faltinsen & 3-D Source Far Field All Wave Appropriate 

Michelsen Sink Directions for Barges 
(1974) (Diffraction) (Memonstrate 

that strip 

theory is not 

Suitable for 

barges) 

d)5 



Hull General 

Surface Boundary or Comparisons 

Method Description Evaluation Specific (Accuracy) 

Pinkster & Strip Near Field Beam Limited 
Van Oortmerssen waves 
CIS )) only 

Kim & Dalzell Strip Near Field All wave Limited 
(1979) Directions to 

Slendership 

Molin (1979) 3-D Source Far Field - Similar to 
Sink Faltinsen & 
(Diffraction) Michelsen 

It appears that for determination of the mean drift force, 
the method of Faltinsen and Michelsen (1974) has the most 

general and immediate applicability, whereas, the method of 

Kim and Dalzell (1979) offers significant advantages for the 
future. 

For the problem of predicting the slowly varying forces, the 

method of Kim and Dalzell (1979) is a very rigourous and 
sophisticated approach from which the mean drift force may 

also be obtained. The unique feature of this approach is the 
"near field" evaluation of the boundary condition where the 

pressures are integrated over the hull surface. This approach 
discloses the effects of the response motions and other body 

properties, which are obscured and/or averaged out with the 
"far field" approach. 

The mean drift force was shown to be composed of five terms 

which are a function of: 

a. (Relative wave height )~ 

b. Integral (around the hull surface) of the square 
of the velocity. In other words, the Bernoulli 

quadratic. 

c.\{ Two terms related to the radiation potential: 

One term is due to gyroscopic coupling, and 

d.| the other is a force rate x displacement 

e. Second order potential. 

Kim and Dalzell (1979) have shown that (in at least one case) 
the first two terms are dominant and that the second order 

potential term may be neglected. It should be remarked that 

the procedures reported by Kim and Dalzell and by Pinkster 
and Van Oortmerssen both make use of the "weak scattering" 

assumption introduced by Salvesen. This is not quite the 
same as the slender body assumption although for certain wave 
directions, the assumptions have the same effect. 
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In summary, the method developed by Kim and Dalzell (1979) 
appears to be an accurate, rigorous method which could be 

extended to include 3-D source representations. This was 

indicated as being possible by Dr. J. Bendat. Moreover, 

such a procedure when combined with an appropriate mechanical 

model would yield the response statistics directly. 

Following another approach of a general deterministic nature, 

there seemed to be general agreement that the Newman approxi- 

mation (1974), in which only the diagonal elements are 

employed for determination of the time varying drift force 

from the mean drift force, iS a Suitable and appropriate 

engineering tool. 

However, there did not seem to be clear and definitive agree- 

ment on the relative importance of the radiation potential 

as compared with the diffracted potential in determination of 

the mean drift force for either inertia or restoration force 

dominated systems. 

In order to avoid the difficulties associated with determina- 

tion of the second order force (which depends upon the first 

order motions), Several possibilities were discussed. It was 

pointed out that the second order force could be evaluated by 

employment of a double convolution integral corresponding to 

that contribution generated by the radiation potential. 

It is believed that this discussion could have benefited from 
more available time. For example, consider the case of an 

inertia dominated system such as a tanker. For such a system, 
the ship is very unresponsive to the exciting waves. Therefore, 

the motions at frequencies corresponding to the exciting wave 
periods are very small. As a result, although the ship has a 

large surface area, the wave system radiated (by the ship 

motions) is small as compared with the incident and/or diffract- 

ed wave systems. Therefore, one might conclude that that part 

of the second order drift force attributable to the radiation 

potential could be approached by an iterative method (as 

suggested, and, incidentally, as it has been done). 

On the other hand, for a restoration-force dominated system, 

one might arrive at a completely different conclusion. 

All in all, there were a number of aspects of this topic that 

should have been explored in more detail. 

In summary, I believe that it was realized that the problem 

could be approached in two fundamentally different ways. 

a. A deterministic (SEADYNE/DSSM) approach in which 
the output statistics are obtained from multiple 
simulations (i.e., essentially "Monte Carlo"). 



b. A stochastic approach making use of cross 

bi-spectral analysis for determination of 

the exciting forces (both first and second 
order) and multiple input-output analyses 

for determination of system properties. In 
this approach, the mechanical model (linear 
or non-linear) is geared toward capability 

of handling stochastic input and output. 

It is speculated that the latter method is potentially very 

rewarding and that the additional effort that is required in 

order to apply it to problems of interest more than justify 

its development. In addition, there are a number of parallel 
studies that should be carried out. These are: 

(1) Delineation of inertia and restoration 

dominated systems. 

(2) Evaluation of relative importance of forces 

due to radiation potential for 

(a) inertia dominated system, 

(b) restoration force dominated system. 

(3) Evaluation of criteria for including dynamic 

cable effects. 

(4) Evaluation of criteria for determination of 
linear, weakly non-linear, moderately non- 

linear, and strongly non-linear systems. 

All of the above would be useful studies resulting in enhance- 

ments to the essential development effort. 

I believe that the seminar probably achieved its purpose but 
in a round about way that was somewhat inefficient and redun- 

dant. In retrospect, I believe the format may have been too 
structured and the agenda not geared toward achieving the goals. 

For example, a clear statement of how the Navy breaks the 

problem down (into the various tasks), how the tasks are re- 
lated and their priorities, what results are expected, how 

accurate the results should be, etc., etc., should have 

preceeded the presentation of papers. 

All-in-all, the discussions could have benefited from more 

decisive stimulation with summaries of each topic by the 
moderator (or someone designated by the moderator) at the 

conclusion of each discussion period. 
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MOORING CABLE DYNAMICS SUMMARY 

By 
Dr. R. L. Webster 

The two-day mooring dynamics seminar sponsored by CEL on 10 and 11 

January 1980 covered various disciplines related to mooring vessels and 

platforms in unprotected waters. The participants were well chosen to 

provide broad coverage to the problem from practical as well as theoretical 

aspects. Attempts at ranking the presentations appear futile since they 

covered such diverse topics and points of view. The presentation by 

Bruce Muga pointed out some categories of approach to or features of 

mooring analysis that are useful. His classifications included (not 

necessarily in his order): 

Ship Dominated vs. Mooring Dominated 

Linear vs. Nonlinear 

Frequency Domain vs. Time Domain 

Stochastic vs. Deterministic 

Muga further pointed out that the majority of mooring analyses presume 

ship-dominated linear systems that are treated either in the time or 

frequency domain with essentially deterministic methods. Treatment of 

nonlinearities requires time domain methods at present. Probabilistic 

data about the mooring responses are obtained from the time domain data 

by statistical evaluation of the output using a knowledge of the statis- 

tical nature of the input. Frequency domain solutions typically generate 

response spectra from superposition of discrete responses for waves 

selected from a wave spectrum or set of spectra. 

Webster's paper emphasized the role of the mooring lines and their 
effect on the system response. It was suggested that ship-dominated 

systems are much less common than they are assumed to be. Both Paulling's 
and Webster's papers emphasized the importance of the geometric stiffening 

effect of the preloads in the mooring lines. The common assumption that 

mooring line dynamics have little consequence in ship-dominated systems 

may be justified in situations where small excursions occur that do not 

significantly reorient or stretch the lines. However, even in these 

situations, the effect of the mooring line preload on motions transverse 

to the line must be accounted for in the forces applied to the vessel. 

It is not correct to represent a mooring line as a single-force member 

(simple spring) with stiffness in only one line of action. 
The major focus of the seminar was on the methods available for 

treating the mooring-dominated situation (be it in shallow or deep 

water) where the dynamics and nonlinearities of the lines cannot be 

ignored. Dynamic effects in the lines refer to mass- and stiffness- 

related phenomena such as resonances in the lines themselves as well as 

in the coupled system. Nonlinearities include material nonlinearities 

and slack/snap phenomena, bottom interaction, and geometric nonlinearities 

(large displacements). 
All present appeared to agree that realistic analysis of mooring- 

dominated responses of a moored vessel or platform is a very formidable 

problem. The major difficulty is the development of the equations of 
motion for the vessel or platform and the expressions for the wave-induced 
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loads. A particularly troublesome aspect of this is the evaluation of 

the effects of the second order wave-induced drift forces. These forces 

have two components: one at high frequency and one at low frequency. 

The high-frequency component is generally of sufficiently high frequency 

and low amplitude that it can be neglected. The low-frequency component 

cannot be ignored since it can produce large-amplitude, low-frequency 

excursions of the system, thereby involving the nonlinearities of the 

mooring. Calculation of these second order forces is greatly complicated 

by the fact that they depend on the motion of the moored body, which in 

turn depends on the characteristics of the mooring, which change signif- 

icantly as the system moves. Although it was emphasized that the major 

interest was in designing and evaluating the adequacy of the mooring 

system and not in the specific motion of the moored object, it is apparent 

that you cannot get one without the other. 

The SEADYN/DSSM approach was discussed briefly. The setting of the 

presentation (following an extensive discussion of possible approaches) 

precluded much critical discussion of the DSSM approach. In general, 

the feeling appeared to be that the approach was sound but did not go 

far enough. Questions were raised about the spectra used, the nature of 

the statistical calculations, and that it does not deal with the unsteady 

part of the second order drift forces. 
Three general approaches to the problem emerged from the discussions. 

There was not time in the seminar, nor was it the appropriate place, to 

explore them enough to completely define them, but some rough outlines 

were developed. These three approaches are briefly described below. 

APPROACH A — EXTEND THE PRESENT DSSM SOLUTION 

1. Calculate the initial static reference state with steady 

components of wind, current, workloads, etc. 

2. Solve frequency domain dynamics of a coupled system with 

appropriate wave spectra to estimate the steady part of 

second order drift forces. 

Adjust the reference state for steady drift forces. 

4. Repeat the dynamic solution to evaluate changes (repeat step 3 

if needed) and estimate the unsteady second order drift forces. 

5. Perform large displacement time domain solutions to get the 

response to the unsteady drift forces. The small displacement 

dynamics represented by the frequency domain solution are 

neglected in this step. 

6. Locate the extreme states from step 5, and repeat the frequency 

domain solution at each of these states to identify the worst 

combined conditions and make statistical estimates. 

Changes required in SEADYN: 

e New wave spectra form 
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e Improved calculations of steady drift forces 

e More reliable static solution method 

e Calculation of unsteady drift forces 

e New capability in DYN solution to deal with rigid-body dynamics 
including slave/master constraints 

e Improved statistical evaluations 

e General logic development to tie the steps together 

APPROACH B — TIME DOMAIN SOLUTION 

1. Calculate the initial static reference state with steady 
components of wind, current, workloads, etc. 

2. Generate the retardation function for the moored body in the 
reference state. 

3. Generate the time sequence of wave loads representing the wave 
spectra. 

4. Solve the large displacement time domain equations until 
Significant motion occurs. 

Repeat steps 2 through 4 until the time span is completed. 

Make statistical evaluations of the output. 

Changes required in SEADYN: 

e Completely new coding representing steps 2, 3, and 6 

e New capability in DYN to deal with the convolution equation form 
and the slave/master constraints 

e A reasonable algorithm for estimating when significant movement 
occurs (step 4) 

e General logic development to tie the steps together 

APPROACH C — STOCHASTIC METHODS 

This is a very loosely defined approach that would rely on the 
generation of second order transfer functions for the coupled mooring 

system. The fact that second order terms are contained in the transfer 

functions makes it possible to include the second order drift forces 

directly. It is obvious that a static reference state must be obtained 
first as in the other approaches, but the procedure beyond that point is 
not clear. The second order transfer function depends on the static 

reference state since it is based on a Taylor Series expansion relative 
to that state. The procedure for dealing with large shifts in the 
reference state is undefined. Work is also needed to define the second 

order terms for the mooring line stiffness, damping, and mass. The 
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second order approximations for the drag effects on the lines would also 

need to be developed. It is also probably true that the second order 

terms would have to be developed for ships and platforms. 
Much more study is required before any of these approaches can be 

clearly defined and compared. Some things that may help in this study 

could be obtained through sensitivity studies on the present DSSM computer 

program. Consideration might be given to the importance of mass and 
damping of the mooring lines, changes in the reference state, etc. 
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Comments Regarding the CEL Seminar Discussion on 
Mooring Dynamics - Co. Jo Garirisom 

The discussion was primarily directed toward the various mathe- 
matical models and assumptions which might be appropriate to the 
mooring of ships or barges in random seas. Very quickly the 
discussion converged on the question of the modelling of slowly 
varying drift-—forces and resulting motion. 

Provided one dealt with both the high-frequency motion and slowly 
varying drift forces within the realm of the frequency-domain, 
no difficulties should arise. However, while the mooring lines can 
generally be adequately treated by use of a linear approximation 

for relatively small oscillations about a mean position, this is 

not the case for the large displacement oscillations resulting from 
the slowly varying drift-forces. Thus, it seems obvious that a 
time-domain analysis should be used to treat the slowly varying 
motion while a frequency-domain analysis could be used for the 
high-frequency motion. The difficulty in this approach is that 
considerable interaction between the high-frequency motion and the 
slowly varying motion exists. The frequency response of the 

vessel is dependent on the mooring line tension which in turn is 
dependent on the slowly varying drift. On the other hand the slowly 
varying drift-force is strongly dependent on the high-frequency 
response. It appeared that by the conclusion of the meeting this 
difficulty remained and no obvious solution seemed to be forth- 
coming. 
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SUMMARY 

MOORING DYNAMICS SEMINAR McCreight 

The principal question considered during the discussion of the assembly and 

evaluation of consistent mooring models concerned inclusion of slowly-varying drift 
forces into the time-domain model. It was quickly agreed that direct evaluation of 

the double convolution Uneegral model is far too expensive computationally for use 
in a practical model. Newman's single summation approximation using the steady ee 
drift force data appears to be a good model for time-domain simulation of the Sos ae 

varying drift force. 

There are several problems in applying this model, aside from obtaining the 

steady drift force data in the first place. The principal difficulty is that the 

coefficients H‘4/(w_,-w_) depend on the first-order motions of the ship, which in 
turn are affected by the drift force which causes the stiffness and geometry of the 
mooring system to change as the ship moves in response to the drift forces. The 

variation of the phase of the wave components with position must also be accounted 

for. Muga stated that in his experience the drift motions do not change the first- 
order oscillatory motions sufficiently to significantly affect the results. He 
attributes this to the relative importance of the diffraction and radiation potentials 
for the slowly-varying drift force. In general, however, we must allow for the 
possibility of these effects. There is some data from Stevens Institute fora 

Series 60 hull which shows quite large differences between drift forces for the 
fixed and free hull cases, and consequently if the first-order motions are ahi ocd 

by the drift motions there will be a problem if this effect is neglected. . 

Methods of including this effect were discussed. One approach is an.iterative 

calculation in which the drift force in a given iteration is calculated based on 
the first-order motions from the previous iteration. This would be a quite expensive 
procedure, and convergence is an open question. a 

Pauling proposed a method in which time histories of the slowly-varying drift 

force are precomputed for a grid of ship positions (surge, sway, and yaw). During 

the actual run, the slowly-varying drift force would be interpolated using these 
precomputed time histories. This approach would also avoid the difficulty-of 

extracting amplitude and phase for each component of the linear response, which 

is the form in which the first-order responses are actually required as these 
responses would be computed in the frequency domain using the existing linear 

frequency-domain model. A possible drawback is that an excessively fine grid may 

be required for accurate interpolation, which would increase the number of time 
histories to be precomputed. It is otherwise a rather attractive approach. 

A direct method requiring neither iteration nor multiple precomputed drift 
force time histories would be very desirable for those cases in which the drift 
motions do affect the first-order motions. 

The possibility of a second-order frequency domain simulation as an alternative 

to the time-domain simulation was discussed. If it is possible to extend the 

linearized cable dynamics model to compute the second-order response to two 

simultaneous sinusoidal incident waves’, this could be combined with the second-order 



ship motions and drift force model to obtain the corresponding second-order system 

response. From such a model various statistics of the system responses can be 

calculated, as discussed in several of the references to the presentation. Deve lop- 

ment of this approach would be a very ambitious project, but could yield an accurate, 

efficient model taking into account the most important nonlinear effects, and should 

be considered. 
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SUMMARY NOTES ON MOORING DYNAMICS SEMINAR 

Michel K. Ochi 

Comments and remarks on some important subjects associated with mooring 

dynamics are summarized as follows: 

1. Waves for Mooring System Design 

(a) Since a mooring system encounters a variety of wave conditions even though 

the sea severity (significant wave height) are the same, and since the system 

responds strongly to low frequency components of wave spectra, it is highly 

recommended to use a series (family) of wave spectra consisting of several 

members for any specified sea severity. 

(b) It is recommended to use the fetch-limited wave spectra for evaluating 

responses of a mooring system located in the area where the fetch length 

has to be considered. The shapes of the fetch-limited wave spectra are signi- 

ficantly different from those for open sea spectra. 

(c) For mooring in coastal zones including the continental shelf, the wave 

spectra should be modified taking into account the effect of water depth on 

spectra. This can be done by developing a computer program to modify the 

wave spectra from deep to shallow water area. 

(d) The estimation of extreme values, such as the maximum tension of the mooring 

lines, etc., has to be precise based on extreme value statistics. The method 

of evaluating the maximum tension loads given in the available literatures 

appears to be inadequate. 

(e) It is recommended to consider the directional wave spectra for more accurate 

prediction of responses of a mooring system in a seaway although the computa- 

tion would be extremely complicated. 

2. Nonlinear Behavior of Mooring System 

It is apparent that the nonlinear dynamic response has to be considered 

for a mooring system in a seaway. Many nonlinear dynamic response problems 
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which appeared in naval and ocean engineering have been solved by applying 

either the equivalent linearization technique or the perturbation method. 

However, the compiexity involved in this particular nonlinear dynamic system 

has not been fully explored, and hence it is somewhat difficult to recommend 

the approach which is most appropriate to solve this particular problem. 

Some approach suggested during the Seminar appears to be highly desirable, 

but the approach may not be feasible in practice. For example, the non- 

linear response of a system may be expressed as follows: 

JO= GOs Ye) 

a 

= { fe 2S) GE Fr {| R(t, %) U(t-T) L-T)AT dB 

where, the first term represents the linear response, and h(T) can be evaluated 

from the frequency response function of the system without any difficulty. 

On the other hand, h(t ,T,) involved in the second term can be evaluated only 

through the cross bispectrum of the system. It is unknown, in general, 

unless the results of either model experiments or full scale trials carried out 

on the individual mooring system are available. This results in the approach 

shown in the above equation appears to be not feasible, in practice. 

Judging from the information available on the nonlinear mooring dynamics, 

the iteration method in the frequency domain appears to be a promising approach. 
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RECOMMENDATIONS FROM CEL MOORING DYNAMICS SEMINAR 

J. S. Bendat 

A two-day seminar on mooring system dynamics was held at CEL on 

10-11 January 1980 where various aspects of this field were discussed. 

The first day was devoted to separate presentations by nine invited parti- 

cipants on topics dealing with mooring systems analysis and cable models, 

mean and second-order drift forces, vessel equations of motion, random wave 

characteristics, and spectral analysis techniques for system identification. 

The CEL cable dynamics/moored vessel model was outlined that employs finite- 

element techniques to account for various linear and nonlinear system 

properties. 

Group discussions on the second day concerned desired results from 

any mooring system model and the particular results obtained by the CEL 

model. A major open problem was pointed out on the need to obtain actual 

experimental input/output data to provide detailed evaluations and compari- 

sons between model predicted results and measured results. It was also 

clear from this discussion that a strong requirement exists to be able to 

determine the overall linear and nonlinear features of the total mooring 

system that has been included in the CEL model from input points to output 

points, as well as the specific linear and nonlinear system properties be- 

tween certain measurement points. 

Recommendations 

1. The first recommendation is that computer simulation studies be performed 

to determine the overall linear and nonlinear features in the present — 

CEL model and in later revisions of this model, Presently available 

coherence analysis techniques can be used for this work. In particular, 

a coherent output spectrum calculation can decompose the total measured 

output spectrum at any frequency into two parts representing (a) the 

overall optimum linear features and (b) the remaining uncorrelated noise 

due to nonlinear effects as well as other causes. 
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2. The second recommendation is that an investigation be undertaken to 

develop new techniques to determine from measured input/output data 

specific linear and nonlinear system properties between input wave 

spectra and output response spectra. Practical digital computer pro- 

cedures are desired where the analysis is conducted in the frequency 

domain rather than in the time domain. 

(a) Linear systems should be found based on analysis of autospectral 

and cross-spectral density functions using current known procedures. 

(b) Nonlinear systems should be found based on analysis of appropriate 

bispectral and cross-bispectral density functions by developing 

new methods that can provide useful engineering interpretations. 

(c) Special nonlinear coherence functions should be defined to deter- 

mine the validity of proposed nonlinear models. 

(d) Output spectra should be decomposed into linear components, non- 

linear components, and remaining uncorrelated noise. (These results 

will provide the basis for future evaluations and comparisons of 

measured results with predicted results from CEL models.) 

3. This participant believes it is now feasible to carry out the above work 

to identify nonlinear system properties and their effects from measured 

input/output data, where the practical procedures to be developed can 

be direct extensions of current methods used to obtain optimum linear 

systems from such data. Recommended tasks are as follows: 

1. Study of past published work on bispectra analysis. 

2. Development of new detailed analytical procedures. 

3. Writing of digital computer programs. 

4, Verification by computer simulation studies. 

pA Berd 
J. S. Bendat 
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SUMMARY OF THE RESPONSE OF MOORED FLOATING PLATFORMS TO OCEAN WAVES 

By 
res dig Ro iPelmlilsias 

I appreciate being given the opportunity to participate in the 

Mooring Dynamics Seminar on January 10-11 and feel that it was an effec- 
tive and worthwhile meeting. I believe that you were able to bring 

together an enthusiastic group of people, representing all of the scien- 

tific and engineering disciplines which are of importance in dealing 

with mooring problems, and all participants seemed to have some signif- 

icant contributions to the discussions which took place. One feature 

which made the meeting especially worthwhile was the small size of the 
group, which eliminated any feeling of formality and made possible some 

very spontaneous and stimulating discussions. 
In reviewing my notes on the discussions, there are two points 

which I think should be considered in directing your future work, and I 

have outlined them below. 

1. The methodology for solving the response of a moored ship involves 

the simultaneous solution for linear and nonlinear motion effects. This 

is because the wave frequency ship motions are reasonably well predicted 

by linear methods (e.g., strip theory), while the slow drift forces, 
which are important to the mooring dynamics, depend in part on two 

nonlinear effects: the wave reflection, which is proportional to the 

square of the wave amplitude, and the nonlinear interaction between the 

waves and ship motion, which is neglected in strip theory. 
The simultaneous solution might be approached in either of two 

ways, and the optimum is not completely clear at this point. The first 

is to use a sort of "brute force" direct numerical integration of the 

complete equations of motion, which include both the linear and nonlinear 

effects. The potential drawbacks to this procedure are the computer 

time requirements for direct integration and, second, the complication 

of including the frequency-dependent hydrodynamic forces on the ship. 

The latter can be overcome by a convolution integral technique, and has 

been applied to ship steering problems by a student of mine, Dr. Leo 

Perez. The second procedure would involve several steps as follows: 

Solve for the linear response of the moored ship. 

b. Compute the nonlinear slow drift forces using this response 

combined with the assumed wave spectrum. 

c. Solve for the nonlinear response of the moored ship to the 
slow drift forces of b. 

d. If the slow drift large amplitude motion results in sufficient 
change in the mooring configuration to appreciably affect the 

linear response, repeat steps a-c. Several iterations may be 

required before the process converges. 

This procedure has the possible advantage of breaking the total problem 

down into two somewhat simpler ones which are then solved separately. I 

do not know of its having been tried in a similar context, and it is not 

certain that convergence will be assured. 
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The first procedure described above is essentially already being 

used in your programs developed by Dr. Webster except, as I understand, 

the wave frequency dependence of the forces is not included. 

2. The method of bispectral analysis was suggested as a promising means 

of obtaining the slow drift forces and other nonlinear effects from 

experimental data either on model scale or full size. I would certainly 
agree that this method should be explored and its full potential evaluated, 

but I have one serious reservation. This concerns our ability to measure 

the input (i.e., the waves with the required precision). In full-scale 

measurements especially, but also in model scale, the presence of the 

ship significantly distorts the input waves by diffraction. It is, 

therefore, not possible to measure the "pure" input signal, although the 

output or ship response can be measured quite precisely. In the labo- 
ratory, we can approach this pure signal by first recording the waves 

with the model removed and then replaying exactly the same control 
signal through our wave generator with the model in place. There is 

still a source of error due to imperfect synchronization and other 
imperfections in the apparatus. In full scale at sea we can only measure 

waves in the near vicinity of the ship and accept the distortion. I 
think, therefore, that these problems must be addressed simultaneously 

with further exploration of the bispectral approach in order to fully 
evaluate the accuracy of any results which might be obtained in that 

way. 
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SUMMARY OF CEL MOORING DYNAMICS SEMINAR 

By 
Dr. S. Calisal and Dr. R. Bhattacharyya 

The Mooring Dynamics Seminar at the Civil Engineering Laboratory 

brought together specialists related to the field. The presentations 

and discussions during the first day indicated the necessity of close 

cooperation between different fields contributing to the formation and 
solution of the problem. The discussions during the second day indicated 

to this participant that: 

1. Most computer programs that are available today seem to have a 

weak link in their procedures. 

2. A hierarchy of computer programs should be available to CEL. 

3. A reliability factor should be attached to computer programs 

not only by numerical tests but also by comparing predicted 
results with full-scale or model tests. 

4. Second order effects should be included for calculations that 

require special accuracy either in magnitude or phase of 
physical variables. 

We would like to thank CEL for giving use a chance to explain the 

set of assumptions used in the mooring program under development at the 

U.S. Naval Academy and other participants for their constructive criticism. 
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