For Reference

Ex mbais

Digitized by the Internet Archive in 2020 with funding from University of Alberta Libraries
(

THE UNIVERSITY OF ALBEPTA RELEASE FOPN

NAME OF AUTHOR GEORGE A. BUTCHFR

TITLE OF THESTS ECOLOGY AND TAXONONY DF HYBRIDIZING CYPRINID FISHFS FROM OPPEP AND LOAFR KANANASKIS RESERVOIPS, AI.BERTA

DEGREE FOR WHICH THESIS HAS PRESENTFD MASTER OF SCTFNCE YEAR THIS DEGRFE GRANTED SPRING, 1979

Permission is hereby granted to TH UNIVPRSITY OF ALBERTA LIBRARY to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's uritten permission.

THE UNIVERSITY OF ALBERTA

ECOLOGY AND TAXONOMY OF HYBRIDIZING CYPRINID FISHES FROM UPPER AND LOWER KANANASKIS RESERVOTPS, ALBERTA

 GEORGE A B BOTHER

A THESIS

SUBMITtED TO THE FACULTY OF GRADUATE STODIES AND PESEARCH IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOP THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OP ZOOLOGY

THE UNTVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESPARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research, for acceptance, a thesis entitled ECOLOGY AND TAXONONY OF HYBRIDIZING CYPRINID FISHES FROM UPPER AND LOMER KANANASKTS RESERVOIRS, ALBERTA submitted by GPORGE A. BUTCPER ir partial fulfilment of the requirements for the degree of MASTER OF SCIENCE.

ABSTRACT

Principal components and canonical variates analyses of hybridizing Couesius flumbeus (lake chuh) and Ehinichthys cataractae (longnose dace) from upper and Lower Kananaskis Reservoirs, Alberta, using 21 morphological characters, revealed two parental groups bridged continuously by an intermediate hybrid group. This morphological overlap between the hybrids and the parontal species indicates that it is not always possible to positively identify 'pure' parental individuals from the Kananaskis. Neither backcross nor hybriđ $F 2$ individuals could be identifial from the
 effects suggestive of introgression, relative to known R_{E} Cataractae from widespread Alberta localitios. ㄹ. Cataractae has also declined in numbers relative to C glumbeus since last studied in 1961. $C_{\text {. }}$ plumbeus does not show similar effects suggestive of introgression.
C. g lumbeus. B . cataractae, and their F 9 hybrids were electrophoretically examined for five different protein systems. Only the serum prealbumen bands proved to be a reliable biochemical marker for the distinction of the two species. F1 hybrids can be identified by the presence of both parental prealbumen bands.

The effectiveness of the species' reproductive
isolating mechanisms was studied in Lower Kananaskis Reservoir. Segregation in spawning time and hahitat was not apparant. There was complete overlap in the spring spaning
period of the two species, and habitat isolation was absont in all areas studied except one inlet stream. Artificial crosses of the species, examination of hybrid sex products, and life history data showed no effective postmating isolation. The existence of distinct species' specific mating behaviors was not confirmed. However, ethological isolation is inferred to be important in minimizing this hybridization. Hybrid fertility was not experimentally confirmed.

All of the recognized environmental factors which facilitate the dissolution of species' isolation appear to be important in causing this hybridization. This includes environmental disturbance, paucity of spanning areas, species introductions, and rarity of one parental species. It does not appear possible to single out any of these factors as having the major role in facilitating hybridization.

PREFACE

"That old and true method of Natural History -
observation - must ever have a large share in the study of living things. Together they are omnipotent: disjoined they become impotent fetishes. Bioloqy of today, as we are beginning to realize, has not too much laboratory but too little of living Nature."
C.O. Whitman (1902)

Biological Farm.
Biol. Bull. Mar. Biol. Lab.,
Woods Hole 3: 214-224.

ACKNOULEDGMENTS

This research was financed by a one year contract from Alberta Environment, two consecutive summer grants from Alberta Fish and Wildlife (Ministry of Parks, Pecreation and Wildife), and National Research Council of Canada funds
 Assistantships and an Intersession Bursary were provided by the Department of zoology.

Unfailing field assistance was providod by Martin T. Weckerle for which I am most grateful. I also wish to thank the Cochrane boys, Jim, Les, and John for their enthusiastic, voluntary assistance in both laboratory and field.

The hospitality extended to me by the staff of the Kananaskis Environmental Science Centre (University of Calgary) contributed imeasurably to this research. I thank Dr. Gordon Hodgson and Iinda Jones for providing the sunerb living accommodations and laboratory space as well as the generous use of centre equipment. It was a pleasure to receive laboratory assistance at the centre from Drs. Chris Whitely, Peter Hallis, and John Corbin, and Mr. Dennis Jacques. I thank especially Dr. Allan Legge for his refreshing discussions, humour, and sage advice.

Environment Canada (Inland Hater Directorate), Calgary, performed the water quality analyses.

Mr. J. Abelseth, Calgary Power Ltd. provided data on reservoir levels and assisted by winching the truck from
电
난

$$
3
$$

$=$ $1+2$
$-2=$
$=$
（1）
18－
-1
$=$

$+2$

$+2$

$+2$

$+2$ \square \square

 正 正 正 正 \square \square \square \square

\square

\square

\square

\square $=$ $=$ $=$ $=$ or or or or － － － －
－
－
－
－ \square \square \square \square 2 2 2 2$=-$
$=$
numerous madholes and velding our boat trailer in the field.

I owe thanks to Mr. Wayne Roberts (UAMT) for the loan of specimens in his care, the loan of the Museum's calipers, and his efficient cataloguing of specimens on short notice.

Dr. John Bell, Genetics Department, Mniversity of Alberta, generously loaned his electrophoretic equipment and chemicals in 1977. I wuld like to thank his technician, Kathy Cornish, who assisted in the early stages of the biochemical genetics study.

I am grateful to Dr. Alan wells for his invaluable assistance with various computer programs and statistical procedures, and for his insightful discussions on fish systematics. Dr. Jan Vrbik, Dniversity of Calgary, also assisted me through the morass of multivariate statistical computer programs.

Dr. J.R. Nursall was responsible for supervision of this study in the Department of 7oology. Dniversity of Alberta: his assistance and criticisms were always valuable. I wish to thank the members of my committee. Drs. B. Heming. J.C. Holmes, J.S. Nelson, and M.V.H. Wilson for their criticisms, interest and assistance at various stages of m research.

I am indebted to Dr. Brian Hammond (Environment
Alberta) both for his assistance as a funding supervisor and for his friendship through difficult times. To Mr. Fraser McConnel, my solicitor, J owe thanks for his adroit actions
(2)
in preventing the escalation of the petty to the ridiculous. Finally, I acknowledge a debt of gratitude to Diane who sacrificed innumerable weekends and evenings tc my pursuit. and who suffered what seemed to be an almost interminable stay in Edmonton.

TABLE OF CONTENTS

Chapter Page
I. GENERAL INTRODJCTION 1
II. STUDY SITE. 5
III. PAST STUDIES 10
IV. FISH SAMPLING 11
METHODS 11
graseral catch results 12
V. LIMNOLOGY 14
INTRODUCTTON 14
METHODS 15
RESULTS AND DISCUSSION 15
VI. IDENTIPICATION OF HYBRIDS USING MULTIVARIATE ANALYSIS 2.4
INTRODUCTION 2.4
METHODS 24
SPECIMENS EXAMINED 24
CHARACTERS USED 27
STATISTICAL TECHNIODES 30
Principal Components Analysis. 30
Canonical Variates Analysis. 31
RESULTS 32
PRINCIPAL COMPONENTS ANALYSIS. 32
CANONICAL VARIATES ANALYSTS 38
CVA - VARIANCE TESTS 51
CVA - CCMPARISON OF GROUP MEANS 58
CVA - PAST COLLECTIONS 59
PCA - INTRA-GROUP VARIATION 62
DISCUSSION 67
VII. ELECTROPHORETIC IDFNTIPICATION OF HYBRIDS 74
INTRODOCTION. 74
METHODS 74
RFSOLTS 78
DISCUSSION 82
VIII. REPRODUCTIVE ISOLATING MECHANISMS 84
GENERAL INTRODUCTION 84
STDDY OF PREMATING ISOLATION 85
TNTRODUCTION 85
METHODS 85
Temporal Isolztion 85
Habitat Isolation. 87
Behavioral Isolation 87
RESULTS 88
Temporal Isolation 88
Habitat Isolation 92
Behavioral Isolation 107
DISCUSSION 109
STUDY OP POSTMATING ISOLATION 112
INTRODUCTION 112
METHODS 113
Hybrid Embryo Mortality 113
Hybrid Inviability 115
Immediate post-hatching Surviva 115
Long-term Survival and Life
History Characteristics. 116
QESULTS 117
Hybrid Embryo Mortality 117
Hybrid Inviability 121
Immediate post-hatching Survival 121
Long-term Survival and Life History Characteristics 124
a) Age 124
b) Growth Rates 128
c) Length-Weiaht Relations 134
d) Fecundity 1.37
DISCUSSION 142
IX. GENERAL DISCUSSION 142
REPERENCES 147
APPENDICES 161

2. The 12 most discriminating characters in a cVA
using untransformed data, including frenum...... 4.3
3. The 12 most discriminating characters in a CVA
using untransformed data, without frenum......... 47
4. The 12 most discriminating characters in a CVA using square-root transformed data, including
 50
5. A comparison of variance estimates for the two
species from Kananaskis and Alberta groups...... 55
6. List of proteins examined in specific tissues... 77
7. Comparison of breeding coloration and nuptial
tubercles... 110
8. Hatching results for experimental crosses...... 118
9. Pre-hatching mortality. Single classification 119
10. Diameters of eggs (5 days post-fertilization)
for each artificial cross type.......................... 122
11. Survival of offspring from experimental crosses over a 4 month period of post-hatching.
12. Length distribution of age-groups of Couesius plumbeus from 1 May 1978 sample, Lower
Kananaskis Reservoir 125
13. Length distribution of age-groups of Rhinichthys cataractae from 1977, 1978 collections, Lower Kananaskis Reservoir
14. Length distribution of age groups of Couesius plumbeus x Rhinichthys cataractae hybrids, from 1977. 1978 collections, Lower Kananaskis

Reservoir.. 130

LIST OF FIGURES

Figure Page

1. Map of Upper and Lower Kananaskis Peservoirs..... 7
2. Spring and summer, 1977 isotherms (in Celsiusdegrees) from the water quality sampling site,Lower Kananaskis Reservoir.19
3. Annual water level fluctuations in upper Kananaskis Reservoir during 1977 and 1973. 21
4. Annual water level fluctuations in lower Kananaskis Reservoir during 1977 and 1978 23
5. PCA using untransformed data (frenum included).A. Plot of first and second principal componentscores for Alberta 'control' specimens.B. Plot of second and third principal componentscores for Alberta 'control' specimens............ 34
6. PCA using untransformed data (frenum included). A. Plot of first and second principal component scores for all Kananaskis specimens. B. Plot of second an third principal component scores for all Kananaskis spocimens. 37
7. CVA using untransformed data (frenum included). 40
8. CVA using untransformed data (without frenum) 46
9. CVA using square-root transformed data (with frenum) 49
10. Variance Test I. Untransformed data; frenum included 54
11. Variance Test II. Untransformed data; frenum included. 57
12.13.64
12. PCA of Alberta Couesius plumbeus alone. 66
13.

Acrylawide gel electrophoretic patterns ofmuscle and serum tissues from phinichthyscataractae (R.C.), Couesius plumbeus (C.p.), andtheir $F 1$ hybrid ($C x$ P) sampled from lowerKananaskis Reservoir, 197880
16.17.Change in gonadosomatic values (gonadueight/body weight安) of female Couesius plumbeus(upper graph) and female phinichthys cataractae(lower graph) sampled from Lower KananaskisReservoir during the 1978 spauning period.94
18 Trends in mean ova diameter durinq spawning period for Couesius plumbeus and phinichthys cataractae, Lower Kananaskis Reservoir, 1973 95
19. Catch data for adult Couesius plumbeus. Rhinichthys cataractage, and their putative hybrids from 7 selected sampling sites, Lower Kananaskis Reservoir 99
20. Extreme south end of Lover Rananaskis Reservoir showing the approximate progression of shoreline changes during the summer, 1978, filling of the reservoir and the consequent flooding of Interlakes Stream. 104
21. Graphic separation of polymodal length frequencies by probability coordinates for: A. 343 Couesius plumbeus from Lower Kananaskis Reservoir.
B. 241 Rhinichthys cataractae from Lower Kananaskis Reservoir. 127
22. Grouth rate regressions for: C - 140 Couesius pl umbeus $(\mathrm{r}=0.90) \mathrm{P}-130$ Rhinichthys cataractae
 hybrids ($\mathrm{r}=0.93$) from Lowor Kana naskis
peservoir
23. Length-weight regressions for: C - 170 Couesius glumbeus $(\mathrm{r}=0.96) \mathrm{P}-157$ Rhinichthys cataractae
 hybrids ($r=0.98$) from Lower Kananaskis Reservoir 136
24. Fecundity regressions for 25 Couesius plumbeus (C) ($r=0.80$) and 20 Ehinichthys cataractao (R) ($\mathrm{r}=0.70$) from Lower Kananaskis Reservoir.......... 139

LIST OP PHOTOGRAPHIC PLATES

1. Male Couesius plumbeus captured at height of spawning period, mid-June, 1978, from Lover Kananaskis Reservoir.
2. Female Couesius plumbeus , captured at height of sparning period, mid-June, 1978, from Lower Rananaskis Peservoir.
3. Female ${ }^{\text {Phinichthys cataractae captured at height }}$ of spauning period, miflune from lower Kananaskis Reservoir (Interlakes Stream).
4. Top: Couesius plumbeus (male); Middle: Couesius plumbeus x Rhinichthys cataractao (male); Bottom: Rhinichthys cataractae (male). All specimens captured in 1977. in Lower Kananaskis Reservoir.
5. Electroshocking the lower reaches of Smith-Dorrien Creek near its mouth on Lover Kananaskis Reservoir, early May, 1978 (looking east).
6. Interlakes Stream at south end of Lower Kananaskis Reservoir (looking south), in early June prior to cyprinid spawning peak.

I. GENERAL INTRODUCTION

Interspecific and intergeneric hybridization are frequent phenomena among northern temperate, freshwater fish species, especially the cypriniतs (Hubbs, 1955). Hybridization - defined here as the successful reproduction between two species (sensu Mayr, 1959) following secondary contact - poses interesting problems and makes contributions to several levels of study, ranging from systematics and evolution to ecology and habitat managorent.

At the taxonomic level, putative hybrid individuals pose a methodological problem of identification. Traditionally, hybrids have been identified by their intermediacy in those characters which discriminate the parental species (Hubbs, 1955). However, the wild-calrght hybrid individuals are not always strictly intermediate between that of the parental species. Certain morphological characters of hybrids may be identical to, or approximate those of one parental type, or they may bo beyond the range of either parental type (Hubbs and strawn, 1957). The difficulty of discriminating hybrids in a wild-caught collecticn from possible uncommon parental variants is additionally complicated by the possible presence of backcrosses and further hybrid generations. These difficulties have been largely ignored in most previous taxonomic investigations. The inadequacy of traditional hybrid index statistical techniques (Smith, 9973) may have contributed to this situation. Multivariate statistical
techniques have been advanced to overcome these problems of hybrid identification, by maximizing the separation of parental taxa, and by revealing the possible presence of backcrosses (Colgan et al., 1976; Smith, 1973). Such claims have not y et been subjected to intense scrutiny.

Apart from a purely morphological identification of hybrid individuals, the taxonomist is presented with the possibility of discriminating hybrids using single isoonzyme characters. This offers a second set of data with which to test the initial identification.

At the evolutionary level of study, two hybridizing populations may be expected to undergo observable and statistically significant evolutionary changes if hybrid fertility occurs (i.e., fusion or character displacement). The investigator is presented with the problem of determining the magnitude and direction of such changes if they exist. Such an approzch can contribute to our understanding of evolution, but only with the availability of adequate past specimens from the area of hybridization. At the ecological level. it is necessary to determine if and how environmental factors were responsible for the dissolution of the species' reproductive isolating mechanisas. Hybridization may indicate a wide overlap in those components of the species' niches concerning habitat preferences and spauning habits. Also, the long-term viability of hybrid individuals has implications for the strength of competitive interactions between the species in

an area of hybridization. Accumulating evidence suggests that hybrids succeed in environments where competition from parental phenotypes is weak (Moore, 1977).

Disturbance of the aquatic environment, either naturally or man-induced, is a primary cause of fish hybridization (Hubbs, 1955). The escalating manipulation of our lakes and rivers for reservoirs and other development purposes poses a threat to the integrity of the resident fish species. At the practical level then, hybridization studies improve our understanding of how environmental changes directly affect species, anत may contribute to the mitigation of effects of future development.

Several problems at these levels were undertaken in this study of hpbridization between Couesius pluqbeus (Agassiz) and Rhinichthys cataractae (Valenciennes) in unper and Lover Kananaskis Reservoirs, Alberta. At the taxonomic level, this study presents the first multivariate statistical analyses of external morpholoqical data; it examines hybrid variability and investigates the possibility of hybrid fertility. In so doing, the effectiveness of multivariate techniques to yield such information can be practically evaluated. To corroborate the hybrid identification by morphology, an electrophoretic analysis of the population was initiated. The possibility of phenotypic changes in the Kananaskis population, evolving over 17 years of known hybridization, is also examined. The ecology of spauning populations, the effectiveness of the isolating
mechanisms, and the results of artificial cross experiments are described in order to ascertain the causes of hybridization. As a consequence, this research provides the first thorough reproductive and lifo history data for these species from Alberta.

II. STUDY SITE

The Upper and Lower Kananaskis Reservoirs are located approximately 50 km south of the confluence of the Kananaskis and Bow Rivers, and within 5 km of the headwaters of the Kananaskis River at the continental divide (Fig. 1). Both reservoirs cover original mountain lake basins. The Upper Lake was the first to be modified with the construction of two hydroolectric dams (Interlakes) in 1936 and 1942. The Lower Lake was impounded in 1955, hy the Pocaterra Dam. A detailed description of the history of hydroelectric development and the storaqe characteristics of these reservoirs is provided by Nelson (1962).

Water is stored during the spring and summer run-off and released through the fall and winter to generate electricity. The Upper Reservoir is the last to be filled and the first to be drawn down. Both reservoirs follow the same annual cycle of level fluctuations: extreme high in October and extreme low in April. The amount of water dravn down in late winter is regulated according to the amount of srowfall accumulation. Thus, the amplitude of reservoir level fluctuations may be quite variable from year to year and may differ between the two reservoirs.

The surface area of the Lower Reservoir varies from 283 hectares at low supply level to 649 hectares at full supply level. The surface area of the 0pper Reservoir varies from 633 to 855 hectares (data from Nelson, 1962). The extensive area of flooded shoreline is littered with the stump and

Figure 1. Map of Upper and Lower Kananaskis reservoirs ($1 \mathrm{~cm}=0.55 \mathrm{~km}$). The stars in each reservoir mark positions of water quality sampling stations. Fish sampling sites are marked with dots and site numbers (corresponding to the numbers in Appendix Tables 1. and 2.). The inset photo is copied from a Landsat I false color image shot on 5 October 1972, at an altitude of 920 km and processed by the Canada Centre for Remote Sensing, Ottawa. The image format centre is Lat.N. $51^{\circ} 15^{\prime}$, Long.W. $155^{\circ} 00^{\prime}$ and corresponds to the National Topographic Survey (Canada) Map 820.

root remnants of trees removed prior to dam construction. The Government of Alberta beqan partial removal of stumps and roots in June, 1979. The substrate of this 'fluctuation' zone consists of unconsolidated gravel and boulders interspersed with large areas of thick oroतed silt (Plate 8). The only benthic fauna to utilize this fluctuation' zone are the chironomids (Fillion, 1962).

In the spring, as the reservoirs fill, the spawning fish are presented with Elooded shoreline aroas and with upstream areas of original inlet creoks. By the time spawning comences in late May (suckers) or oarly June (cyprinids), the presumed original spauning beds have beon flooded.

A11 inlet streams of the Upper Kananaskis peservoir flow unrestricted in their natural beds. The flow of Boulton Creek and Invincible creek into the Lower peseryoir has remained unchanged since pre-impoundment तays. However, due to dam construction, Smith-Dorrien creek and the diverted Kent Creek, which formerly drained into tho Kananaskis River, now drain into the Lower Reservoir. All four streams flow unregulated with spring and summer run-off.

The original outlet flow (at the extreme south end of the Lower Reservoir), from the Upper Lake into the Lower Lake, has been reduced to seepage through the earthfill dam (here designated as Interlakes Stream). Similarly, the man-made outlet of the 0pper Resorvoir into the Lower Reservoir at Interlakes Dam is controlled so that there is
no flow during the spring and summer (i.e.. from end of drawdown in April, to its recommencement in nctober).

III. PAST STUDIES

Previous pre- and post-impoundment studies on tho limnology, productivity, and Eishes of the upper and Lover Kananaskis Reservoirs were reviewed by Nelson (1962) in order to establish the chronology of biological changes. Nelson deduced that both \underline{c}. $\underline{\text { n }}$ mbeus and pe cataractag were introduced to the Jpper and Lower Kananaskis Reservoirs as bait fishes, probably from Bow River populations (Pcataractag probably in the 1930^{\prime} s; 등 plumpus probahly in the late $\left.1950^{\circ} s\right)$. The occurrenco of hybridization botyeen these two species in Jpper Kananaskis ?eservoir was roter by Nelson (1962). The external morphology of hybrias from uppor Kananaskis Reservoir was described by Nelson (1966). The hybrids from both reservoirs vere lator examined using osteological characters and a hybrid index technique (Nelson, 1973). One juvenile specimen appeared to be intermediate between the majority of hybrids and one parental phenotype.
 been noted in several localities outside Alberta (Simon, 1946. in Hyoming; Hubbs and Lagler, 1949. in Lake Superior: Taylor, 1954, in Michigan), but without the sutstantiating evidence provided by Nelson (1966, 1973).
 by numerical taxonomic or electrophoretic techniques has not been reported. Additionally, the reproductive ecology of the Kananaskis populations has not been studied.

$$
5 \operatorname{sen}
$$

IV. PISH SAMPLING

MFTHODS

Fish were collected between May 10 and August 29 , 1977, from Upper and Lower Kananaskis Reservoirs and between May 1 and July 27, 1978, from Lower Kananaskis Peservoir.
C. plugbeus, and $\underline{\underline{R}}$. $\underline{\text { cataractage }}$ and their hyhrids were sampled from the reservoirs proper, using monofilament gillnets ($18 \mathrm{~mm}, 25 \mathrm{~mm}$, and 38 mm stretch mesh), beach seines (8 mm mesh), dipnets, and baited minnow traps. This variety of sampling methots assured the capture of all sizes of specimens. Sampling sites are shown in Figure 1 and site descriptions provided in Appendix Table 1 and Table 2. The relative abundance of the hybridizing species was established for all localities, nata on dopth, substrate type, and distance from shore were recorded for all captures. The study of the breeding hioloqy of the cyprinids in 1978, involved intensive sampling of only the Lower Reservoir. The Upper Reservoir presented boat access problems in the early spring.

Inlets of Lower Kananaskis Reservoir were electroshocked (Smith-Root Electroshocker Model VII) beginning in late April 1978, when the majority of the reservoir was ice-covered (95\%). A beach seine was stretched across each inlet stream mouth and the stream was electroshocked and the bottom disturbed dounstream into the seine (refer to Plate 7). Smith-Dorrien Creek, Boulton Creek, Kent Creek, and the original outlet stream of upper

Kananaskis Lake (here designated as Interlakes Stream) were sampled in this manner. As spring run-off increased, it became impossible to sample inlet streams (except Tnterlakes Stream), anत gillnets were placed across the stream mouths and minnow traps placed along the edges.

Standard length and sex were recordef for all fish sampled. A representative sample was returned to the laboratory for weighing, gonad and scale removal, and preservation in 10% formalin. Samples of the $t w o$ species and their hybrids were deposited in the University of Alberta Museum of zoolory (JMMZ).

GTNERAL CATCH PESDLTS
Cyprinid catch data from 1977 and 1970 for Upper and Lover Kananaskis Reservoirs are summarized in Appendix Tables 1 and 2. Capture method, locality, date, depth, and numbers of specimens are provided.

The ratios of parental species to hybrid individuals captured in each year vere as follows: 1077,133 C. plumbeus to 7 R. Cataractae to 1 putative \underline{C}. plumbeus x ㅇ. cataractae; $1978,174 \mathrm{C}$. plumbeus to 12 R. cataractae to 1
 hybrids were captured in 1977 and a total of 9 putative hybrids were captured in 1978. A disproportionate cyprinid species' ratio in favour of \underline{C} 。 $\underline{\text { g }}$ lumbeus was also recorded by Nelson (1962). He found $C_{\text {. }}$ plumbeus to be 4.0 to 5.6 times as numerous as \underline{R}. Cataractage in gillnet catches for lower

and Upper Kananaskis Reservoirs, respectively. Results of the present study (C. Cl lumbeus 14 - 19 times as numerous as R. Cataractae) may indicate an increase in the disproportion of species' numbers over the intervening 17 years. It is not known if \underline{C}. plumbeus is numorically increasing, or if $\underline{q}^{(}$ cataractae is numerically declining.

Suspecteत cyprini hybrids were captured throughout both reservoirs and uere not concentrated in a limited number of locations. Relatively large hybrid capture numbers (Appendix Table 1 and Table 2) at certain sites are due to more intensive sampling at these sites. Hybrids were captured alone and with individuals of each species. capture of the hybrids was both infrequent and unpredictable.

The cyprinids sporadically swarped in large schools with juvenile suckers over recently flooded inshore areas. The schools were observed only in midsummer on sunny days When the water temperature exceeded $15^{\circ} \mathrm{C}$: schooling did not occur on cloudy, windy, or cool days. The majority of the large seined collections came from the infrequent occasions on which such large schools were observed. Hybrids were often collected from such schools. Except for these occasions, the cyprinids generally remained offshore. The mixed schools were involved neither with reproduction (since they occurred after spavning) nor with feering (since the flooded areas are assumed not to have a developed bottom fauna). The reasons for this mixed schonling remains unstudied.

V. LIMNOLOGY

INTRODUCTION

Changes in environmental factors can trigger fish hybridization (Hubbs, 1955). The modification of a lake to a reservoir is accompanied by an obvious annual change in surface water elevation and basin morphometry. This change may directly affect fish sparning habitat so that wiscegenation results.

Less visible are the possible indirect offects of changes in water quality and the thermal regime. Smail changes in these factors may upset tho competitive balance existing between the species and result in a disproportion of one species (a possible precursor to hybridization). An altered temperature regime may affect the timing of species' spawning activities thereby destroying a temporal barrier to reproductive isolation. Changes in these environmontal factors may contribute to what Anderson (1949) termed the "hybridization of the environment" (Anderson, 1949).

Apart from accurate water level statistics, there are only few and rudimentary limnological data available for Upper and Lower Kananaskis Lakes prior to impoundment (Rawson, 1937. 1948; Miller, 1954: Thomas, 1955).

The purpose of this section is to: 1) document the degree of water level fluctuations; 2) document present water chemistry and temperature conditions; and 3) to speculate as to whether the latter have undergone significant changes since impoundment.

METHODS

Physico-chemical parameters were measured mid-monthly during June, July, and August, 1977. from three depths (surface, mid-depth, and 1 m off bottom) at one sampling station on each of the Upper and Lower Kananaskis Reservoirs (Fig. 1). The water samples were shipped within 24 hours to Environment Canada, Inland Waters Branch, Calqary, Alberta, for analysis of alkalinity, color, p月, residue (non-filterable), turbidity, total kjeldahl nitrogen, total phosphorus, and total carbon. Water quality samnles were not taken during the summer of 1978. Water temperature profiles were recorded when water samples were collected, and also sporadically through the summer. The dates on which water terperature profiles were taken from Lowor Kananaskis Reservoir in 1977, are as follous: May 9.17. 31; June 20.29; July 15; Aug. 8, 16; Sept. 3,17. Water temperature was measured at 1 m intervals using a $\mathrm{X} . \mathrm{S} . \mathrm{I}_{\mathrm{g}}$ telethermometer. Reservoir elevations were provided by Calgary power Ltd.

RESULTS AND DISCOSSION

Results of the water quality analysis for upper and Lower Kananaskis Reservoirs are presented in Appendix Tables 3 and 4. Most of these water quality parameters are reported for the first time from these resorvoirs.

Both reservoirs have similar basic pH values. These do not appear to have changed since last studied by fillion (1963) and Nelson (1962). According to Nelson, no pH change
电
a ccompanied construction of Lower Kananaskis Reservoir.
Specific conductance values are high for each reservoir as a result of spring run-off. The values for the Lower Kananaskis Reservoir are consistently higher than those of the upper Reservoir, a trend shown by Fillion. Inorganic carbon values are also higher for the Lower Kananaskis Reservoir.

The remaining parameters - color, residue, turbidity, nitrogen, Fhosphorus, and organic carbon - show no difference between the reservoirs. An examination of all the above parameters does not reveal any change attributable to reservoir construction. Both reservoirs are characterized by the clarity and nutrient-poor state expected for that of the original lakes.

Spring and summer isotherms from Lower Kananaskis Reservoir, 1977, are shown in Figure 2. These were constructed from the water temperature profile data. Additional temperature data from 1078 , are provided in Appendix Table 5. Some thermal stratification occurs during the sumper. There have been no thermal changes since the studies by Nelson and Pillion. This probably represents the original thermal situation in the Lower Lake for the spring and summer months. Since Calgary Power Ltd. does not lower the level of Upper Kananaskis Reservoir in the summer, there is no unnatural input of cool hypolimnetic waters into the Lover Reservoir in the summer. There is no reason to believe that the water temperature cue for spawning has been

Figure 2. Spring and summer, 1977 isotherms (in ${ }^{\circ} \mathrm{C}$) from the water quality sampling site, Lower Kananaskis Reservoir.

altered. However, the effects of hypolimnetic input from Upper Kananaskis Reservoir during fall drawdown on fish biology remains unstudied.

Annual water level fluctuations for 1977 and 1978 , are shown graphically in Figures 3 and 4 for Upper and Lower Kananaskis Reservoirs, respectively. There is much unpredictability in water level from year to year; the amount of drawdown is adjusted according to the amount of snowfall accruing through the winter. of more importance, there is significant annual variation in water levels at spawning time: in Opper Kananaskis peservoir a 0.5 m difference and in Lower Kananaskis Reservoir a 2.0 m difference. These differences are enough to radically alter shoreline characteristics from year to year. Permanent spauning areas cannot be established under this regime.
冨

Figure 3. Annual water level fluctuations in the Upper Kananaskis Reservoir during 1977 and 1978. Elevation is given as above sea level. Data provided by Calgary Power Ltd.
Upper Kananaskis Reservoir

1977
1978
(18)

Figure 4. Annual water level fluctuations in the Lower Kananaskis Reservoir during 1977 and 1978. Elevation is given as above sea level. Data provided by Calgary Power Ltd.
Lower Kananaskis Reservoir

(n)

VI. IDENTIPICATION OF HYBRIDS USING MOLTIVARIATE ANALYSIS INTRODOCTION

Although the Kananaskis cyprinid hybrids were identified and morphologically examined by Nelson (1966, 1973). including analysis by hybrid index, there have been no numerical taxonomic studies attempted.

The advantages of multivariate statistical techniques relative to traditional methods have heen reviewed by smith (1973). Of singular importance is elimination of the necessity to prejudge hybrid or parental origin of the specimens. This is of particular value when hyhrids are variable and hybrid fertility is possible. In such cases, it may be impossible to discriminate hybrids from parental individuals.

This section of the study describes principal components and canonical variates analyses of numerous morphological characters of both hybrids and parental individuals. The methods do not require assumptions as to the identity of any Kananaskis specimens. Hybrid variability, possible hybrid fertility, and the effects of hybridization over time on the populations are described.

METHODS

SPECIMENS EXAMINED

The external morphology of representative Kananaskis specimens was compared to: 1) that of museum specimens from Alberta localities where hybridization is presumed not to

occur; and to 2) that of museum specimens collected from these reservoirs in previous years.

All Kananaskis specimens examined in the morphological studies were deposited in the oniversity of Alberta museum of Zoology (DAMZ numbers 4145-4201).

There was a collecting bias in the fiold directed equally tomard the less common specimens, i.e. typical ${ }^{\text {en }}$ Cataractae and all putative hybrids. Typical C. plumbeus. being highly abundant, were randomly collected. A random sample of 137 specimens was chosen from the field collections of each reservoir, irrespective of sex and presumed identity, and were used in the analyses (designated here as the Kananaskis specimens). The sex ratio for the entire Kananaskis sample was 62 females to 75 males.
 from widespread Alberta localities in UAM collections encompassing several drainage systems (designated here as the Alberta specimens). These control specimons were selected such that the size (standard length) range was similar to that of the Kananaskis specimens. The catalogue numbers, locations, and sex ratios of these collections are given in Table 1. Unfortunately. due to the scarcity of large male R_{g} cataractae in the JAM7, collections, the sex ratio of Alberta \underline{R}. Cataractae was predominantly female. The sex ratio for the entire Alberta sample was 73 females to 27 males.

Past collections of \underline{C}. plumbeus from Upper and Lower
(1)

TABLE 1. Locations and Untversity of Alberta Museum of Zoology catalogue numbers for Alberta control spectmens of Couesius plumbeus and Rhinichthys cataractae.

Spectes	Locality	Lat. N/Long. W	UAMZ \#	Number of Specimens Examined
C. plumbeus	Brazeau Reservoir	$52^{\circ} 57^{\prime} 115^{\circ} 35^{\prime}$	566	8
	Red Deer River	$52^{\circ} 19^{\prime} 113^{\circ} 06^{\prime}$	3326	8
	Abraham Reservoir	$52^{\circ} 16^{\prime} 116^{\circ} 23^{\prime}$	3350	8
	Little Smokey River	$54^{\circ} 44^{\prime} 117^{\circ} 10^{\prime}$	1654	8
	Pothole Creek	$49^{\circ} 25^{\prime} 112^{\circ} 54^{\prime}$	3843	8
	Winefred River	$56^{\circ} 02^{\prime} 110^{\circ} 36^{\prime}$	3451	2
	Bare Creek	$49^{\circ} 14^{\prime} 110^{\circ} 00^{\prime}$	3231	3
	McIvor River	$58^{\circ} 18^{\prime} 118^{\circ} 03^{\prime}$	3418	3
	N. Saskatchewan River	$52^{\circ} 25^{\prime} 116^{\circ} 04^{\prime}$	3325	2

Total sex ratio of $27 \rho: 23$ or
R. cataractae
N. Saskatchewan River
N. Saskatchewan River
N. Saskatchewan River
Graburn Creek
Cutbank River
Horse River
Abraham Reservolr
Gregoire River
Pothole Creek
Pothole Creek
Bare Creek
Willson Creek
Wapiti River
Pinto Creek

$52^{\circ} 16^{\prime} 116^{\circ} 23^{\prime}$	3381	7
$53^{\circ} 30^{\prime} 113^{\circ} 34^{\prime}$	2044	2
$52^{\circ} 16^{\prime} 116^{\circ} 23^{\prime}$	3322	1
$49^{\circ} 38^{\prime} 110^{\circ} 01^{\prime}$	1620	7
$54^{\circ} 43^{\prime} 118^{\circ} 32^{\prime}$	3903	2
$56^{\circ} 43^{\prime} 111^{\circ} 23^{\prime}$	3435	2
$52^{\circ} 16^{\prime} 116^{\circ} 23^{\prime}$	3369	5
$56^{\circ} 29^{\prime} 110^{\circ} 48^{\prime}$	3414	6
$49^{\circ} 25^{\prime} 112^{\circ} 54^{\prime}$	4000	5
$49^{\circ} 25^{\prime} 112^{\circ} 54^{\prime}$	3843	5
$49^{\circ} 14^{\prime} 110^{\circ} 00^{\prime}$	3231	4
$51^{\circ} 49^{\prime} 115^{\circ} 13^{\prime}$	3873	1
$55^{\circ} 08^{\prime} 118^{\circ} 18^{\prime}$	269	1
$54^{\circ} 58^{\prime} 119^{\circ} 28^{\prime}$	272	

Total sex ratio of $469: 4 \sigma^{7}$

Kananaskis Reservoirs were subjected to morphological study to determine any effects of hybridization over time. The 1961 collection of 11 c. plumbeus from Upper Kananaskis Reservoir (0AMz 863) were analyzed. Twonty-five C_{2} plumbeus were examined from the 1959 collections fumat 2706. 2707. 2518) and 25 from the 1973 collections (09Mz 3345,334 5) including specimens from both upper and lower Kananaskis Reservoirs. only specimens within the size range of the Kananaskis specimens uere selected.

Past Alberta collections of \underline{P} cataractae in the UAMz holdings were few and contained only small specimons beyond the size range comparable to the Kananaskis specimens. These were deemed inadequate for comparison to recent Rananaskis collections. Thus, it was only possible to stury the effects of hybridization over time on \underline{C}. plumbeus.

CHARACTERS USED
The following 21 morphological and meristic characters were recorded for all 298 specimens. These were chosen because all were good descriptors of the fishes' shape and because some are known (Nelson, 196f) to be efficien+ discriminators of the parental species and of the putative hybrids. Counts and measurements follow the descriptions and diagrams in Hubbs and Lagler (1964) except as otherwise defined. Measurements were made using needle point dial calipers, read to the nearest 0.1 mm . Microscope
magnification was used when required. Abbreviations for each

character follow in parentheses.

1. standard length (SL)
2. head length (HL)
3. orbit length (OL)
4. snout length (SN)
5. interorbital width (IN) - (the least fleshy width of the interorbital)
6. head depth at nostril (HDN) - the distance from the nostril downard to the gentral contour of the head.
7. head width at eye (FHE) - the greatest dimension from one lateral side of the hoad to the other lateral side on a line below the orbits.
8. mouth length (ML) - (length of upper jas)
9. mandible width (MAN) - (width of gape)
10. snout overhang (SOV) - the distance from the tip of the snout along the midline to the most anterior portion of the lower jaw.
11. frenum width (FRE) - the distance between tho grooves separating the upper faw from the snout.
12. isthmus width (IW) - the distance between the gill membranes at point of attachment to isthmus.
13. body width at dorsal fin origin (WDO) - the maximun distance from one lateral side of the body to the other lateral sido on a line below the dorsal fin origin.
14. snout to dorsal fin origin (SDC) - (pre-dorsal length)
15. caudal peduncle length (CP)
16. snout to anus (STA) - distance from the tip of the snout to the anal opening.
17. pectoral fin origin to anus (PTA)
18. depth of caudal fin fork (CF) - the distance from the apex of the caudal fork outward to a straight line connecting the tips of each outstretched caudal fin lobe.
19. number of lateral line scales (LS)
20. number of scales from dorsal fin origin along diagonal to lateral line (ALS) - (number of scales above lateral line).
21. number of scales around caudal peduncle (CPS)

This is the order in wich the characters were used in all following morphological analyses.

Ratios were specifically avoided in order to eliminate problems with allometry and compounden variance (Marr, 1055; Atchley et al., 1976). Multivariate analyses were run with untransformed data and square-rnot transformation, since size differences could lead to vectors not being coplanar (Pimental, 1975). Frenum width for known $C_{\text {- }}$ plumbeus was always 0.00 , and since several other characters also had values < 1.0, a logarithmic transformation of the data set was inappropriate. The effectiveness of using transformed data uas assessed.

These 21 characters were chosen from an original 31 characters because of their significant contribution toward group discrimination. The 10 characters discarded prior to in-depth analysis included: mouth to eye length (distance from corner of the mouth along midine to a vertical line marking the anterior margin of the orbit), cheek depth, dorsal fin origin to pelvic fin origin, dorsal fin height, anal fin height, pelvic fin axillary process (absence, presence), number of gillrakers, number of pectoral rays, number of anal rays, and number of dorsal rays.

Some of these characters, e.g., dorsal fin origin to
pelvic fin origin, number of gillrakers, and number of fin rays vere discarded because they were ineffective at group discrimination. The rest were removed because they were confounding sources of variation. The characters, mouth to eye length, and cheek depth could not be accurately measured, pelvic fin axillary process could not be accurately scored, and the fin height characters are sexually dimorphic (Hells, 1978). Since pach sex was not. separately analyzed, characters of known sexual dimorphism were eliminated.

STATISTICAL TPCHNIQUES
Principal Components Analysis
Principal components analysis (PCA) (Morrison, 1967; Cooley and Lohnes, 1971: Pimental, 1976) was useत to display patterns of morphological similarity of individuals from mixed species' populations with hybrids, relative to populations without hybrids. This methot finds the orthogonal axes through the n-dimensional character space in directions of greatest variance. The new axes provide ne directions from which to view the group relationships, if any, within the data. The plot of the specimens on the first three components will usually display a great amount of the total variance within the data set.

PCA scores were calculated from the character
correlation matrix using the Clustan 1 C computer program (Hishart, 1975) for the following two separate data sets: 1)

톤

[^0]all 137 Kananaskis specimens; and 2) 100 control Alberta specimens. The projection scores of the specimens in the two data sets were plotted against the first and second axes and also against the second and third axes. Untransformed and square-root transformed data were analyzed. The assumption of a single multivariate normal population for a PCA has been ignored for these reasons: 1) no statistical inferences were drawn from these analyses; and 2) departures from normality are not thought to invalidate the results (Dudzinski et al.. 1975).

Canonical Variates Analysis
The same two data sets funtransformed and square-root transformed) were subjected to canonical variates analysjs (CVA) in order to quantify the relationship between individuals (Pimental, 1976). This method requires the a priori identification of two or more known groups within the data set. Axes are calculated which maximally separate these groups wile minimizing the within-groups variance. Specimens of unknown origin can then be assigned a position on this axis (calculated using the discriminant function) relative to their similarity to either group.

The BMD $07 M$ computer program (Dixon, 1073) was used to assess the relationship between the Kananaskis specimens (the \underline{a} priori unknown group) and the control Alberta specimens (the a priori known group). The canonical scores were plotted against the first canonical axis and graphed as
frequency histograms. An examination of further canonical axes did not discriminate more groups than was revealed by the first canonical axis.

In addition to correct \underline{a} prioni identification, cVA assumes a multivariate normal distribution with equal variance-covariance matrices. A Bartlett's test of homogeneity of dispersions (DeRS program; Bay, 1959) on the two known groups showed a significant difference botween the matrices $(F=2.6, F .05(210.29352)=1.00)$. However, it is generally held that CVA has sufficiont robustness, so that departures from the assumptions will not he serious (Pimental, 1976).

RESULTS

PRINCIPAL COMPONENTS ANALYSIS

The principal component scores for the Mlberta specimens, calculated using untransformed data, were plotte? against the first three axes (Fig. 5). The results confirm the initial identification of 'pure' specimons representing the two species, with no morphological intermediates.

Component I represents overall size differences among the specimens, ranging from small on the left to large on the right. Component II represents between-species discrimination and Component III represents the largest component of within-species variation (perhaps due to sexual dimorphism or population differences). The variation expressed by the three components represents 99.3% of the

Figure 5. PCA Using Untransformed Data; Frenum Included
A. Plot of first and second principal component scores for Alberta, 'control' specimens. Couesius plumbeus, top cluster; Rhinichthys cataractae, bottom cluster. Component $I=59.4 \%$ of total variation in 21 character correlation matrix; Component $I I=28.3 \%$ of variation.
B. Plot of second and third principal component scores for Alberta 'control' specimens. R. cataractae on left; C. plumbeus on right. Component III $=3.5 \%$ of variation.
A.

PRINCIPAL COMPONENT I

B.

PRINCIPAL COMPONENT II

variance in the total data matrix. Investigation of additional components would have been rodundant. A sumary of the computer results on wich these plots are based, is given in Appendix Table 6 .

The principal component scores for all Kananaskis specimens, calculated using untransformed data, were plotted against the first three axes (Fig. 5). The projection of scores on components I and II show the elongate clusters, as expected from the control group, but with a dissimilar bridging of the two species' clusters. The specimens of this bridge represent the putative hybrid specimens. The absence of larger hybrid specimens from the Kananaskis sample accounts for the clear discrimination between the two species' clusters to the right of the origin. Large hybrids were available in the collections, and if included in the analysis would presumably occupy this space.

The variation expressed by the threo components represents 91.5% of the variance in the total data matrix. The difference in variation represented by component. I between the Alberta group (59.4\%) and the Kananaskis group (66.4\%) is due to the difference in range of standard lengths between the Alberta group (4.1-11.0 cm) and the Kananaskis group (3.4-12.3 cm).

The intervening hybrid complex, shown on the Kananaskis projection of the second and third axes, ohscures discrimination between the two species. This analysis provides evidence that the putative hybrids are not all

Figure 6. PCA Using Untransformed Data; Frenum Included
A. Plot of first and second principal component scores for a11 Kananaskis specimens. Couesius plumbeus -like specimens towards bottom; Rhinichthys cataractae -like specimens towards top, with a hybrid complex bridging the 2 species clusters. Component $I=66.4 \%$ of variation.
B. Plot of second and third principal component scores for all Kananaskis specimens. C. plumbeus -like towards left; R. cataractae -like towards right. Component III = 4.9% of variation.
A.

PRINCIPAL COMPONENT I

B.

PRINCIPAL COMPONENT II

strictly intermediate. They cover the entire phenotypic range between the parentals suggesting ixixed genetic origins, i.e. backcrossing of $P 9$ hybrids to each parental species. A summary of the computer results on which these plots are based is given in Appendix Table ?.

Similar analyses were again performed separately on Alberta specimens, and Kananaskis specimens using square-root transformed da+a. The resulting plots were similar to those generated using untransformed data. Transformation produced a slightly bettor तiscrimination between the smallest members of each spocies, but produced no new insights. The Kananaskis parental species romain continuously bridged to the same degree by the hybrid complex. Computer results for these analyses are summarized in Appendix Tables 8 and 9.

CANONICAL VARIATES ANALYSIS

The relationship between the Kananaskis specimens including hybrids, and the Alberta 'control' species can be expressed in a quantitative manner by a frequency distribution of their canonical scores. The results of a CVA using untransformed data with the full character set are given in Figure 7.

The two distributions for each Alberta species are separated by a large gap of approximately 14 standard deviations between their means. The Kananaskis specimens form a continuous distribution with no gap between the

Figure 7. CVA Using Untransformed Data; Frenum Included
Frequency histograms of canonical scores on first canonical
axis of specimens from Alberta 'control' group (upper histo-
gram) and Kananaskis group (inverted histogram). Alberta
species formed 2 a priori known groups; all Kananaskis
specimens ran as a priori unknown groups. Units on x-axis
are in standard deviations; y-axis is number of specimens.
Initial field identifications of Kananaskis specimens are
shaded as follows: shaded as follows:

Untransformed Data, Frenum Character Included

typical parental species.
The apparent trimodality of the Kananaskis distribution was confirmed using Cassie's (196?) graphic method of polymodal frequency separation \underline{X}^{2} test for goodness of fit, $\underline{X}^{2}=25.0 ;$ d.f. $\left.=15, \mathrm{P}>0.05\right)$. The two outer modes of Kananaskis specimens are composed of the corresponding typical parental species. The intermediate mode is composed of the hybrid complex. Although the majority of sampled Kananaskis hybrids fall into the intermediate group, as expected for $F 1$ hybrids, the specimens intermediate between the parental modes and the hybrid modo are of contontious origin. It appears from this analysis that the variance of
 (taken as the far left and far right modes, respectively) are greater than the variances of their respective Alberta control distributions.

The shading patterns in the Kananaskis distribution represent the initial field identifications of specimens, prior to the analysis (Fiq. 7). All specimens initially identified as "good" $C_{\text {. }}$ plumbeus fell within the outer $\underline{C}_{\text {. }}$ plumbeus mode. All specimens initially identified as "gooत" R. cataractae , except one, fell within the outer $\mathrm{R}^{\text {. }}$ Cataractae mode. A re-examination of this one misidentified R- cataractae specimen confirmed its hybrid appearance. Most specimens, initially identified as putative hybrids, were classified in an intermediate position hy tho CVA. However, several putative hybrids fell within the outer \underline{C} g \underline{l} umbeus
mode. A re-examination of these putative hyhrids (with a canonical score >-3.0) revealed the absence of any frenum in all specimens, suggesting an initial misidentification. The 12 characters contributing most to species' separation in this CVA are given in Table? (along with their coefficients and constants for the discriminant functions and their F ratins). The remaining 9 characters with F values >1.0 contributed little to the discrimination and could have been eliminated from the analysis. The frenum was the most discriminating character with a high f value $(F=1048.10)$. The computer results for this analysis are sumarized in Appendix Table 10.

It should be recalled (see Methods) that abundant C. glumbeus were randomly collected, whereas all F . $\underline{\text { cataractac }}$ and all putative hybrids captured were kept in the field collections (specimens were identifiod in the field as putative hybrids by t heir possession of a partial frenum). The objection might be raised that the formation of the intermediate peak on the histogram is an artifact of selective collecting of hybrids. It is true that the relative number of typical c. plumbeus in the population is far greater than indicated by the histogram. However, it is unlikely that the distinctiveness of the intermediate hybrid group was exaggerated since only a random sample of the field collections was analyzed. Moreover, the distinctiveness of this group relative to C. plumbeus was likely minimized since possible backcross individuals (in

4B

TABLE 2. The 12 most discriminating characters in a CVA using untransformed data, including frenum. Characters are in order of decreasing importance with F ratios (1, 98 df) for inclusion and coefficients and constant for canonical variables (1st canonical axis).

Rank	Character	F	Coefficient
1	FRE	1048.10	-6.65
2	OL	60.69	30.74
3	IW	41.81	-12.41
4	HWE	14.27	7.88
5	CF	13.24	6.08
7	STA	12.09	-2.29
8	CP	3.18	-3.10
10	ML	1.00	-1.76
11	SN	1.41	-0.07
12	ALS	1.06	9.14
		1.05	5.88

the direction of C. plumbeus) were collected more riqorously than typical $C_{\text {. }}$ plumbus.

Although the frenum character is an efficient discriminator, its removal from the analysis does not seriously affect the results. The CVA histogram using untransformed data without the frenum character shown in Figure 8, is essentially identical to the histogram in Figure 7. Again, there appears to be greater variance in the modes of the typical Kananaskis parental species compared to the control distributions. The computer results for this analysis are sumarized in Appendix table 19. The 12 most discriminating characters in this analysis are given in Table 3. A comparison of Tables 2 and 3 illustrates that CVA is heavily weighted to a dependence on only a few characters.

The results of a CVA using square-root transformed data, with frenum character in the data set, are given in Figure 9. Transformation of the character data results in increased discrimination between the two species. The means of the two Alberta species' distributions are separated by approximately 23 units of standard deviation. Although an intermediate hybrid mode remains, its mean is 2 standard deviations to the left of strict intermediacy (toward P. $^{\text {d }}$ cataracta응. . This is due to a heavy weighting on the transformed frenum character ($F=3893.55$) (Table 4). The troughs between the hybrid and parental modes are spread thinner along the first canonical axis than seen previously.

$$
45
$$

Figure 8. CVA Using Untransformed Data; Without Frenum

Frequency histograms of canonical scores on first canonical axis of specimens from Alberta 'control' group (upper histogram) and Kananaskis group (inverted histogram). Alberta species formed 2 a priori known groups; all Kananaskis specimens ran as a priori unknown groups. Units on x-axis are in standard deviations; y-axis is number of specimens.

Untransformed Data, Without Frenum Character

TABLE 3. The 12 most discriminating characters in a CVA using untransformed data, without frenum. Characters are in order of decreasing importance with F ratios (1, 98 df) for inclusion and coefficients and constant for canonical variables (lst canonical axis).

Rank	Character	F	Coefficient
1	IW	682.35	-13.53
2	OL	207.69	32.87
3	CF	13.65	6.93
4	PTA	12.92	0.04
5	HL	8.41	-3.66
7	MWE	8.00	8.88
8	CP	4.95	11.59
10	STA	1.58	-2.07
11	MAN	1.52	-2.04
12	HDN	0.84	-4.48
		0.51	-2.58

Figure 9. CVA Using Square-root Transformed Data; Frenum Included

Frequency histograms of canonical scores on first canonical axis of specimens from Alberta 'control' group (upper histogram) and Kananaskis group (inverted histogram). Alberta species formed 2 a priori known groups; all Kananaskis specimens ran as a priori unknown groups. Units on x-axis are in standard deviations; y-axis is number of specimens.

Square-root Transformed Data, Frenum Character Included

Kananaskis Specimens
rame 4. The 12 most discriminating characters in a CVA using square-root transformed data, including frenum. Characters are in order of decreasing importance with F ratios (1, 98 df) for inclusion and coefficients and constant for canonical variables (lst canonical axis).

Rank	Character	F	Coefficient
1	FRE	3893.55	24.36
2	OL	49.30	-26.72
3	IW	20.49	10.31
4	CF	17.34	-9.33
5	HWE	13.12	-13.82
6	STA	7.94	14.96
8	SP	3.98	5.82
9	SN	2.10	3.46
10	PTA	1.63	-12.63
11	SDO	1.39	-0.13
12			7.68

This indicates that there may be specimens which cannot be accounted for as either good parentals or $F 1$ hybrids.

Unlike the results with untransformer तata, the cva using transformed data does not show as great a difference between the variances of the typical Kananaskis species' modes and the variances of the Alberta control species' distributions. Computer results for the cVA using transformed data are sumarized in Appendix Table 12.

Have the two Kananaskis species been modified by this hyhridization relative to the 'control' specimens? If it is assumed that the Kananaskis parental modes (pig. 7) end at the troughs (tails of the mode) next to the hybrid mode, it becomes apparent that: 1) the Kananaskis parental species have greater variances than the 'control' species: and that 2) the means of the Kananaskis species modes are shifted toward each other, relative to the means of the 'control' species' distributions. This leads to speculation that the cause of this could be backcrossing between hybrids and parentals, i.e., introgression (sensu Mayr, 1969).

CVA- VARIANCE TESTS
The differences in variance were investigated in order to determine if this could be a reliable indicator of introgression. It is known that the CVA procedure minimizes the within-group variance of the $\underline{\text { a }}$ priori known group, at the expense of the variance of the unknoun group (Pimental, 1976). To determine how this affected the variances, the

knoun and unknown groups were switched: the assumed Kananaskis parental species (without presumed hybrids) were run as the a priori known aroup. The results of Variance Test I (Fig. 10) show a far narrower variance for the Kananaskis parentals, relative to the Alberta parentals, than previously seen (Table 5). Thus, the variance of the a priori unknown group cannot be directly compared to the variance of the a priori known group. The difference in variance (Fig. 7) is an artifact of CVA procedures.

What then is an accurate estimate of the Kananaskis species' variance which can be compared to the Alberta species' variance arrived at in the original CVA (Fig. 7)? Are the Kananaskis species' variances significantly different from the Alberta species' variances? The variance for the Kananaskis parentals from Test I are not truly representative because: 1) the Kananaskis group is tho a priori unknown group; and because 2) there is little difference between the variances of the Alberta and Kananaskis groups in Test I, even though the Kananaskis variances are being minimized - indicating that the Kananaskis variances are wider than the Test I estimates. Variance Test II (Fig. 11) was performe in order to improve the variance estimate for the Kananaskis groups. All specimens of the same species were pooled into two groups irrespective of membership in the Alberta or Kananaskis groups. This was done to relate each specimen to all other specimens of the same species irrespective of group

Figure 10. Variance Test I. Untransformed Data; Frenum Included.

Frequency histograms of canonical scores on first canonical axis of presumed pure specimens of Kananaskis species without hybrids (upper histogram) and Alberta 'control' group (inverted histogram). Kananaskis specimens formed 2 a priori known groups; Alberta species ran as a priori unknowns. Units on x-axis are in standard deviations; y-axis is number of specimens.

Variance Test I

(2)
TABLE 5. A comparison of variance estimates for the 2 species from Kananaskis and Alberta

| groups. | | |
| :--- | :--- | :--- | :--- |
| | Kananaskis | Alberta |

$F=\frac{0.92}{0.71}=1.30 ; \quad \mathrm{F} .05(49,49)=1.67, \mathrm{P}>0.05$.
$\mathrm{F}=\frac{1.39}{0.89}=1.56 ; \mathrm{F} .05(49,49)=1.67, \mathrm{P}>0.05$.
C. plumbeus
R. cataractae

Figure 11. Variance Test II. Untransformed Data; Frenum Included.

Frequency histograms of canonical scores on first canonical axis of presumed pure specimens of Kananaskis species without hybrids (upper histogram) and Alberta 'control' group (inverted histogram). Kananaskis and Alberta groups of same species were combined to form 2 a priori known groups; there was no unknown group. Alberta and Kananaskis specimens are separated as upper and lower histograms.

Variance Test II

membership. The two groups were run in a CVA as ariori knowns. No a priori unknowns were included. nnce computed, the canonical scores of the Kananaskis group were separated from the Alberta group and plotted (rig. 11). The variances of the Kananaskis species' distrihutions were calculated separately from the Alberta species' distributions. The results of Variance rest II show that the variances of the Kananaskis parental groups are not significantly different $(P>0.05)$ from the variances of their respective controls (see Table 5). There does not appear to he a significantly greater variability in the Kananaskis parentals than in the Alberta parentals, which could be ascribed to introgression. It is unsafe to draw conclusions concerning introgression from direct comparisons of the variances of species' canonical score distributions. The CVA must he manipulated in order to obtain comparable variance estimates. The computer results for both Variance Tests are sumarized in Appendix Tables 13 and 14.

CVA - COMPARISON OF GROUP NEANS
To avoid the confusion and difficulties associated with performing variance tests, it may be simpler to compare group means in order to determine the presence of introgressive effects. It appears that there has been a significant shift of the Kananaskis R. Gataractage group mean $^{\text {g }}$ away from the control mean (Figs. 7, 8, 9) ($\underline{X}^{2}=31.8, p<$ $0.05)$. The mean of the Kananaskis $C_{\text {. }}$ plumbeus group is
$8=$

Th
similar to the control group mean (Figs. 7, 8, 9) ($\underline{X}^{2}=$ 13.1. $P>0.05)$. The shift of Kananaskis $\underline{\underline{p}}$. cataractae toward the hybrid group may indicate: 1) the presence of
 cataractae due to hybrid fertility, i.e. introgression. Conversely, this would indicate an absence of phenotypic change in Kananaskis $\underline{C}_{\text {. }}$ glumbous.

CVA - PAST COLLECTIONS
The group means of the canonical score distributions for typical $C_{\text {. }}$ plumbeus, collected in 1961. 1969. 1973, and 1977. dere compared (Fig. 12) to determine if this Kananaskis species had been modified by introgressive hybridization over time. The temporal distributions of canonical scores indicates a significant shift in means in 1961. 1969. C. Cl lumbeus toward P . Cataractae and a return shift in 1973. 1977, toward the control group mean. There is a significant difference between the control distribution and the 1961 Kananaskis distribution $\left(X^{2}=31.0 . \geq<0.05\right)$. no significant difference between the 1961 and 1969

Kananaskis distributions $\left(\underline{X}^{2}=3.9 .0>0.05\right)$, no significant difference between the 1969 and 1973 Kananaskis distributions ($\left.\underline{X}^{2}=2.9 . P>0.05\right)$, and a siqnificant difference between the 1973 and 1977 Kananaskis distributions $\left(\underline{X}^{2}=58.8, p<0.05\right)$. One specimen in the 1969 UAMZ collection is revealed to he of hybrid origin. The computer results for this analysis are given in Appendix

Figure 12. CVA of Past Collections of Kananaskis Couesius plumbeus. Using Square-root Transformed Data; Frenum Included.

Frequency histograms of canonical scores on first canonical axis of specimens from Alberta 'control' group 1977 (upper histogram) and Kananaskis groups, 1961, 1969, 1973, 1977 (inverted histogram). Alberta group formed a priori known group; all Kananaskis specimens ran as a priori unknowns. Units on x-axis are in standard deviations; y-axis is number of specimens. Sample size and group centroid are shown for each collection.

a

Table 15.

PCA - INTRA-GROUP VARIATION
It was necessary to determine if eithor sex or unknown inter-population differences were confounding species' discrimination. To test this, two nCAs were performed: one on Alberta "controls C. glumbeus; another on Alberta 'control' Re cataractae. The results shown in Eigures 13 and 14 demonstrate that there are no subgroups within each species' cluster. An examination of the sex and population membership of each point in the clusters diत not reveal any pattern attributable to these variables. pCA was not performed separately on typical individuals of the two Kanaraskis species. The reason for this was that cVA results indicate that it is impossible to positively discriminate some individuals of the Kananaskis parental species from variant hybrid individuals on a morpholoqical basis.

It is unlikely that the inclusion of individuals from Upper and Lower Kananaskis Reservoirs in the Kananaskis groups would increase the within-groups variability and reduce species' discrimination. The previous inclusion of diverse populations in the Alberta groups did not result in such subgroups reducing species' separation. In addition, the tyo Kananaskis populations analyzed (Upper and Lower Kananaskis Reservoirs) have a probably similar and recent Bow River origin. Computer results for these analyses are summarized in Appendix Tables 16 and 17.

Figure 13. PCA of Alberta Rhinichthys cataratae alone. Using Square-root Transformed Data; Frenum Included.
A. Plot of first and second principal component scores. Component $I=77.5 \%$ of variation; Component $I I=$ 6.2% of variation.
B. Plot of second and third prinicpal component scores. Component III $=4.9 \%$ of variation.

PRINCIPAL COMPONENT I

PRINCIPAL COMPONENT II

Figure 14. PCA of Alberta Couesius plumbeus alone. Using Square-root Transformed Data; Frenum Included.
A. Plot of first and second principal component scores. Component $\mathrm{I}=72.0 \%$ of variation; Component $\mathrm{II}=$ 6.6% of variation.
B. Plot of second and third principal component scores. Component III $=5.2 \%$ of variation.

PRINCIPAL COMPONENT I

PRINCIPAL COMPONENT II

A listing of actual character values for all specimens used in all above multivariate statistical analyses is given in Appendix Tables 18-23.

DISCUSSION

Central to most modern studies of fish hybridization has been the desire to reach a conclusion on the fertility of hybrids from an analysis of morpholoqical data. This stems from the assertion by Hubhs (1955) that not only are F1 hybrids intermediate betweon their parental species, except for some features reflecting hybrid vigor, but they are also of the same order of variability as are the parental species. Subsequently, when wild-caught hybrids showed increased degrees of morphological variability relative to the parental species, several types of hybrids were reported to be fertile without experimental evidence (Hubbs and Strawn, 1957). More recently, Schuoler and Rising (1976) have stated that when individuals representing $F 2$ or backcross generations are present, the hybrid population is found to be more variable than the parental populations.

The assumption of low F 1 hybria morphological
variability has been proven false when the morphology of lab-reared F 1 hybrids is compared to the morphology of lab-reared controls of the parental species. Hubbs and Strawn (1957) found the artificial f9 hybrids between Etheostoma spectabile and percina caprodes, from the san Gabriel River, were more variable in all characters analyzed

표里 4 $=1$
a浣

\qquad $+$
\qquad
-2
$=$

than their parental controls. Greenfield and Greenfield (1972) found that artificial F1 hybrids between Gilag orcutti and Hesperoleucus symmetricus ere not strictly intermediate between the parental species; rather the distribution of hybrid index values for known hybrids filled the intervening space between the parental species' distributions. Neff (personal communication, 1977) analyzed numerous morphological characters from 2 separate qroups of artificial f1 hybrids (Lepomis cyanella x Le macrochirus and Notropus whipplei x N. spilopterus). Dsing cVa and rCA, she found greater variation in the known F hybrids than in the parental groups. This would preclude the confidant identification of backcrosses (if they were present) from hybrid individuals. Without knowing the genetic history of the hybrids in the above cases, one would have identified non-intermediates as backcrosses or F ? individuals under the erroneous assumption of low F 1 hybrid variability. It is likewise not possible to decide on C. plumbeus x R - cataractae hybrid fertility or to positively identify backcross individuals from the multivariate analyses of Kananaskis cyprinids performed in this study.

Non-intermediate, putative hybrid individuals in the trough region of the Kananaskis CVA distribution could represent $F 2$ hybrids, variant $F 1$ hybrids, or hackcross individuals.

Smith (1973) using pCA found lone hybrids occupying the area between strict intermediacy and one parental type. These were identified as backcross individuals. Without

knowing the variance of the F 1 hybrids, such a conclusion is uncertain.

It may be possible to determine F 1 hybrid variance from a morphological study without resorting to the study of artificial F 1 hybrids. This may be possible given a large phenotypic distance between parental distributions, and a large hybrid sample forming one intermediate distribution and two smaller non-intermediate distributions toward the parental types. In this idealized case, the variability of the intermediate F? hybrid group would he established and a backcross interpretation would be warranted for non-intermediate individuals. The results of my study do not reveal such backcross distribution peaks. Moreover, tho F1 variance cannot be known with such a continuous phenotypic bridging. In a study where the hybrids bridged the gap to one species and not to the other, a backcrossing interpretation would be warranted. without the need to show F1 variance.

This continuous distribution of hybrids bridging C. plumbeus and ${ }^{\text {P. }}$ - Cataractae indicates that it is not always possible to positively identify 'pure' individuals of the Kananaskis parental species. This strengthens the need to objectively classify all individuals in an area of hybridization relative to known control specimens from areas where hybridization is not known to occur.

It is also possible to use the control specimens as an objective standard against which to compare the morphology
of specimens collected over a long time period in a hybridizing area. If the area is not a stable hybrid zone (sensu Moore, 1977) the following alternatives of evolutionary change may be observed over time: 1) a trend toward fusion of the species by introgression - recognized by a progressive increase in hybrid frequency, skewing of parental distributions toward each other, or an increasing variance of parental distributions relative to the control distribution; 2) a strengthening of species' isolating mechanisms and character displacement. - recognized by a progressive decrease in hybrid frequency, skewing of parental distributions away from each other, and no increase in parental variance; 3) extirpation of one species by competitive exclusion and hybridization; or 4) continued low level hybridization as long as the onvironment remains modified.

Jones (1973) observed the effects of thirty years of hybridization on the toad species, Bufo americanus, and Bufo woodhousii, in this manner. Hybridization with introgression can be best recognized temporally relative to known control groups. This would appear to be a rewarding approach for studies of fish hybridization, provided adequate past collections are available. In my study there were only sufficient \underline{C}. plumbeus in past collections for morphological comparisons.

Three approaches were used to determine if the Kananaskis populations had changed due to hybridization.

Pirst, the greater variances of the Kananaskis groups compared to the variances of the control groaps suggestod the effects of introgression. However, using the variance Tests (I and II), this difference was found to be a property of cVA which obscured the equality of variances between the Kananaskis and Alberta groups. There has been neither an increase nor a decrease in population variance, evidence that neither introgression nor character displacement has occurred. Comparisons of variances (of CVA distributions) is not a preferred indicator of morphological change due to introgression.

The second approach was to compare the position of the Kananaskis group mean (1977) to that of the Mlberta group mean, separately for each species. The analysis revealed no difference in the positions of the means for C_{0} plumbeus, but a definite shift in the Kananaskis $\underline{\underline{p}}$ cataractao group mean away from the control mean toward the hybrid mode. This evidence suggests that Kananaskis $\underline{\underline{R}}$ - Cataractae has been morphologically changed due to hybridization.

The third approach was to determine if the modes of the two Kananaskis parental species were moving toward each other relative to the controls (introgression) or receding from each other (character displacement). The mode of
 parental types) does reveal a shift. in 1961 , and 1969 means
 distribution. Subsequently in 1973. 1977, a shift back
toward the control group mean occurred. The shift in means may indicate the initial effects of introgression followed by character displacement. However, this seems implausible for such a short time span. Without investigating the fertility potential of the hybrids by experimental means, this remains speculation. It is also reasonable to attribute the morphological shifts to selection by somo unknown environmental changes through the intervening 17 year period.

In summary, there is no clear evidence of introgressive effects of hybridization upon Kananaskis co glumbeus. However, Kananaskis \underline{R} - cataractage does show a morphological change suggestive of introgression, or the presence of backcrosses. It is also possible for this difference in means to be a result of population variation due to the Founder Effect (sensu Mayr, 1959). Further evidence. especially from breeding tests, is required to test this hypothesis. Apart from this slight change, there does not appear to be a significant trend toward breakdown of the species' integrity.

Both R . cataractage and individuals of hybrid origin have remained at 10 frequencies during tho past 17 years. Although the rate of hybridization has remaineत at a low level, there is some evidence of a trend tovard extirpation of R. $^{\text {cataractae }}$ from the reservoirs (alternatives 3 and 4 from above).

This study has assessed the relative importance of the

 Nelson's (1965) finding that the best hybrid discriminators are from the head, i.e. frenum width, snout length, isthmus width, and orbit length has been confirmed. Future workers may find the canonical coefficients and constants given in Tables $2-4$ to be valuable in classifying putative hybrid specimens.

VII. ELECTROPHORETIC IDENTIFICATION OP HYBRIDS INTBODDCTION

Electrophoretic results can provide a second set of data to test the hypothesis of hyhrid origin of certain specimens based on morphological criteria. The advantage of electrophoresis over a purely morphological analysis is that the genetic contributions from each parent may be detected in a single individual.

Nyman (1970) has listed all possible types of protein patterns found in fish hybrids, reflecting simple codominant expression of allelic genes. Hybrid protein patterns can be: 1) identical to one or the other parental species; 2) a complete summation of the two species; 3) a partial summation; or 4) the hybrid pattern and the two parental species' patterns can all be identical. For a protein to be a useful discriminator of hybrids, it must he present in a high frequency as a variant form in each parental species. The hybrid then, inherits a summation of the parental banding patterns (Reinitz, 1977). The confirmation of "hybridity" in this study was an empirical search for such hybrid specific biochemical markers.

METHODS

 putative, wild hybrids were collected from Lower Kananaskis Reservoir during the summer of 1978 for electrophoretic examination. Specimens from outside the system were not
examined. Adult fish of comparable age were chosen in order to exclude electrophoretic variation due to developmental differences.

To ensure that individuals representing the parental species were 'pure', the same 21 morpholoqical characters used for PCA and CVA vere measured, and the canonical scores calculated. Individuals with canonical scores within one standard deviation unit of the control parental means from the multivariate morphological analysis Fiq. 7) were used to represent 'pure' parental types.

Only hybrids with intermediate canonical scores (in the presumed $F 1$ portion of the kananaskis distribution on the first canonical axis. Fig. 7) were electrophoresed. Dutative hybrids, with canonical scores intermediate between the parental species and the presumed F^{1} mode (possible backcrosses) vere unfortunately not availahle in either a fresh or frozen state necessary for electrophoresis. The progeny of the experimental crosses had not reached sufficient size to permit electrophoretic examination.

Protein extracts were obtained from hlood sera and skeletal muscle of the same sperimens. Blood sera were obtained from live fish in the laboratory by severing the caudal peduncle, withdrawing the blood into heparinized capillary tubes, and spinning down the corpuscles in a Hematocrit centrifuge for 4 min.. The corpuscles were discarded and the pure sera frozen at -5.00 C . The fish were then frozen.
 $=-$ \qquad

\qquad

 $x-2=-2$$0-2$
-

$1+$

Skeletal muscle samples from all frozen fish were electrophoresed within six weeks of collection. Fish skeletal muscle, frozen more than a few days, has been found to be readily extractable, and muscle proteins quite stable under frozen storage (Utter et al.. 1974).

One cc of the frozen dorsal musculature from each specimen was ground in a glass tissue grinder with an equivalent vclume of distilled water. The creamy muscle homogenate was then centrifuged for 15 min . at $\mathrm{X} 20,000 \mathrm{~g}$ in a Dupont Ultracentrifuge. The resulting clear supernatant was stored frozen at -5.00 C . Frozen samples of this supernatant gave identical electrophoretic patterns to freshly prepared ones and they were used as convenience dictated.

The number of typical parental specimens and hytrid specimens used for the electrophoresis of the two tissue types is given in Table 6.

Vertical polyacrylamide disc gel electrophoresis was performed at room temperature with a Buchler power supply (set on constant current) using the techniques described by Davis (1964) and Smith (1969). Seven percent polyacrylamide gels were made without sample or spacer gels according to a recipe modified from Clarke (1964) (refer to recipe in Appendix). A cold, continuous tris-glycine buffer (pH 8.3) was used for the electrode buffer in order to minimize column heating.

It was found experimentally that $8 \mu l$ was the optimal
\qquad

TABLE 6. List of proteins examined in specific tissues. Numbers of fish specimens analysed for each protein is
 x 요 Cataractae hybrid. LDH: lactate dehydrogenase: GPD: glycerophosphate dehydrogenase: MDH: malate dehydrogenase.

Proteins	Serum	Mus	Replicates		
L DH		X	15 C	9 R	3H
$\alpha G P D$		X	8 C	8R	2 H
MDH		X	3 C	2R	2H
Serum protein	X		14 C	12R	5H
Muscle protein		X	14 C	12R	5H

a mount of extract of both tissue types for electrophoresis. An equal volume of a 40% sucrose solution was mixed with the sample extract. The entire solution was then layered between the top of the gel surface and the less dense buffer above. All samples were applied vithin 5 min..

One ml of 0.001 percent Bromophenyl Blue in water was added to the upper reservoir as a tracking dye. Simultaneous electrophoresis of 9 gels was begun with a current of 1.5 $m A / t u b e$ for the first 10 min. to prevent undue diffusion of the sample. This was increased to $4.0 \mathrm{~mA} /$ tube for the remainder of the run once the tracking dye was 2 mm into the gel. Electrophoresis was completed in approximately 75 min. when the tracking dye had reached the end of the gel. Only the anodic portion of the samples was studied.

Gels were stained with amido black 10B (1 gm in 100 ml of 7% acetic acid) for one hour to discern the general
protein patterns of both the sera and muscle extracts from the two species and their hybrid. Destaining was accomplished in the same apparatus using a 7 g acetic acid wash solution with a current of $10 \mathrm{~m} /$ tuhe. Destaining was complete in 60-90 min..

Specific enzymes, lactate dehydrogenase (LDH), $\alpha-g l y c e r o p h o s p h a t e ~ d e h y d r o g e n a s e ~(\alpha-G P D)$ and malate dehydrogenase (MDH) were visualized using the staining procedures of Shaw and Prasad (1970). However, the qels used to separate these enzymes were not run with the recommended electrode buffers. Pather, the gel ph was adjustod closer to the stain pH by immersing the gels in the appropriate stain buffer for 95 min. prior to staining.

Gels were stored in test tubes containing 7 署 acetic acid and were photographed (Kodak Plus-X film) directly in the destaining tubes uith no liquid interface using diffused back lighting.

RFSULTS

The polymorphic banding pattern of muscle LDH was identical in all individuals of each species and hybrids that were tested (Fig. 15, \#1). The appearance of throe muscle LDH isozyme bands in this study is contrary to the results of clayton and Gee (1959) who found five muscle LDH
 cataractae collected in Manitoba. The species were distinguished by the occurrence of a variant muscle LDH in

Figure 15. Acrylamide gel electrophoretic patterns of muscle and serum tissues from Rhinichthys cataractae (R.c.), Couesius plumbeus (C.p.) and their F. hybrid (CxR) sampled from Lower Kananaskis Reservoir, 1978.

1 - muscle myogen extract stained for lactate dehydrogenase (LDH)

2 - serum proteins stained with amido black, a general protein stain. Arrows indicate the 2 variant forms of prealbumen.

3 - muscle myogen extract stained for α glycerophosphate dehydrogenase (GPD)

4 - muscle myogen extract stained with amido black, a general protein stain.

Anode is towards the bottom.

1

R- cataractae. Although our techniques differed. it is likely that my results are misleading. Given a longer electrophoretic running time, the large, most-cathodal band may have resolved into three bands of differing mobility, thereby producing a five band pattern. This was not tested in this stury.

Muscle GPD (Fig. 15. \#3) was polymorphic in each parental species and the F1 hybrids. Each possessed identical variant forms. Muscle MDH was expresser as a single nonvariant band with equivalent electrophoretic mobilities in each parental species and their F h hybrids. Muscle myogen phenotypes have been touted as an efficient method to identify hybrid individuals between other species (Tsuyuki and Roberts, 1965; Aspinwall and Tsuyuki, 1968). This was not the case in this study. All individuals of each species and all hybrids had identical three band patterns (Fig. 15. \#4) for muscle extract visualized with amido black. There was some variation in the faint minor bands between the species but these were not reproducible.

The banding patterns of serum proteins for the two species differ in the possession of dissimilar, fast moving prealbumen bands (Fig. 15. \#2). All specimens of R. $_{\text {. }}$ cataractae tested, were characterized by the front band of slover anodal mobility. whereas $\underline{C}_{\text {. }}$ plumbeus was characterized by a faster variant. All 'pure' fl hybrids tested, vere characterized by the possession of both bands,

i.e.. a summation of the parental bands. These bands clearly defined a difference between the species. Although there are probably similar differences in the slowest bands, these were not investigated. The differences in banding patterns were independent of sex and were repeatable with several subsamplings of the same tissue of one individual. Electrophoretic phenotypes were not observed in the major bands of the two species' serum protein patterns.

Serum proteins appear to be influenced by environmental factors e.g., diet and physiology. It is unlikely that this could be a confounding variable in this study since the fish were sampled from the same reservoir, at the same time of the year, and presumably matured under the same conditions.

DISCUSSION

Electrophoretic serum protein analysis indicates that
 prealbumen bands. These correspond in electrophoretic mobility to the single prealbumen bands of each of the parental species. This substantiates the morphological and reproductive evidence of hybridization between 응 cataractae and C g pl umbeus.

Different hybrid specific protein patterns have been similarly described in only two other North American cyprinid hybrids: redside shiner (Pichard $\underline{\underline{c}}$ onius balteatus) x peamouth chub (Mylocheilus caurinum (Aspinwall and Tsuyuki, 1968), and longnose dace (Rhinichthys cataractae) x
51 5 0-1

$$
\square=
$$

$$
+=-6
$$

$$
-2
$$

blacknose dace (\underline{P}. atratulus) (clayton and fee, 1969).
 from Lower Kananaskis Reservoir could be classified as such solely by their serum phenotype. It would seem reasonable to assume that this is true for other populations of these species. Thus it should be possible to test the purity of
 confirm $P 1$ "hybridity" by the use of this single biochemical character.

Nyman (1970) compared the efficiencies of electrophoretic and morohological techniques jn detecting natural fish hybrids. He found that electrophoresis was more reliable in identifying $F 9$ hybrids, but that the two methoas were equally inefficient in identifying F_{2} hybrids. This is a result of the almost complete dominance of one parent's genes over the other, in the F2. However, Nyman did find u out of 32 protein systems in $F 2$ hybrids (Salmo salar x S. trutta) possessing distinct banding patterns. A thorough electrophoretic survey should be undertaken by future workers in order to test the hypothesis of introgression between $C_{\text {. }}$ plumbers and R. Cataractae in Lowor Kananaskis Reservoir.

VIII. REPRODUCTIVE ISOLATING MECHANISMS

GENERAL INTBODOCTION

Hybridization results from the dissolution of the reproductive isolating mechanisms which formorly preserved the integrity of the species' gene pools. An understanding of which isolating mechanisms are inoperative can suggost the environmental factors which facilitated the hybridization.

Reproductive isolation between sympatric $C_{\text {. }}$ plumbeus and \underline{R}. Catagactag populations has not been proviously studied. In fact, published material on the breeding biology of these species is scant. The reproductive habits of ? Cataractag have been comprehensively described only from Manitoba (Bartnik, 1970). The most comprehensive report for C. plumbeus is from Saskatchewan (Brown, 106?). However, it should be noted that according to Wells (1978), the Kananaskis $C_{\text {g }}$ plumbeus are of the 'הissimilis' morphological form while Brown's population consisted of the 'plumheus' form. Whether there are significant biological differences bet ueen these forms is not presently known.

This section of the study investigates the
effectiveness of the species' premating and postmating isolating mechanisms through ecological fiold studies and artificial crossing experiments. Ecological and life history data for the Kananaskis cyprinids are presented for the first time.

STUDY OF PREMATING ISOLATION

INTRODUCTION
Premating isolating mechanisms prevent the wastage of gametes and are thus more efficient than postmating isolating mechanisms. Premating isolation involves the reduction of contact between the species (i.e., spatially and temporally) and the roduction of interspecific mating by species' specific behaviors. The latter, ethological isolation, has been found to he qenerally more important than the other isolating mechanisms (Littlojohn, 1959).

The purpose of this section is to determine the following biological characteristics: 1) extent of differences in spawning habitat and spawning time between the two species; and 2) degree of interspecific mate preference.

METHODS

Temporal Isolation
The time of spaning for each of the parental species was followed using three differont methods. The first method from Nelson (1968) entailed making a qualitative judgement on the degree of female gonad development. The following qualitative criteria were useत to describe female gonad maturity:
ripe - eggs near maximal size: cream colored; extruded only under firm finger pressure.
fully ripe - eggs at maximal size; golden colored;
extruded spontaneously due to handing by experimenter.
spent - few or no golden eggs extruded from body cavity: abdomen visibly sunken.

The peak time in which fully ripo females were present in the Lower Kananaskis Reservoir was compared between the two species.

The second method was quantitative. m he spawning period for each species was followed by dotermining the percentage contribution of female gonads to body weight. Total body weight and gonad weight (both sides) were measured fresh to the nearest 0.01 gm . These gonadosomatic indices (\% gonad weight into total body veight) of each species were pooled for sampling dates and plotted over the spawning period.

The third method was also quantitative. This involved measuring the mean diameter of 10 ova per sample female using needle point dial calipers under magnification (read to the nearest 0.01 mm . The grand mean of ova diameters from all sample females was graphed over time.

Fish sampled from three different locations on Lower Kananaskis Reservoir were used for all three methods and were included in the graphic analysis, irrespective of origin. The three locations were: Interlakes paceway, wouth of Boulton Creek, and Common Bay. The purpose of pooling locations vas to generate a large sample size, and to givo a general picture of the spawning period for the entire Lower Reservoir, without specific site variability. Time
limitations prevented an in-depth study of spawning periods on Upper Kananaskis Reservoir. The occurrence of diel (temporal) isolation was not investigated.

Habitat Isolation
The concurrent abundance of the two species and their putative hybrids at the sampling sites was monitored using all capture techniques throughout the spawning perind. Catch data were reviewed to see if there was habitat segregation by depth, current or substrate.

Behavioral Isolation
Several ripe males and females of each parental species, captured between May 26 and June 5 , 1978, were returned alive to the laboratory and were kept in separate tanks. On June 5. 1978, the following reciprocal, interspecific matches were established for observations of behavioral interactions and mating:

Tank A \quad C. plumbeus - 4 females
R. Cataractactal - males

Tank $B \quad C_{2}$ plumbeus - 3 males

$$
\text { R. Cataractae - } 2 \text { females }
$$

Two ripe male hybrids captured on June 7, 8, 1978, were put into the same aquaria with three ripe fomale C. glumbeus on June 10, 1978:

Tank C R \quad cataractae x $C_{\text {g }}$ glumbeus hybrids 2

C. plurbeus - 3 females

All aquaria were kept in a controlled environment. chamber which replicated the reservoir's light and temperature regime. The three 201 tanks were started at 100 C on June 5,1978 , and increased to 140 C by June 15 , 1978, (similar to the temperature rise in the reservoir). The photoperiod was a constant 15.5 hours of daylight $10500-2130$ hr). Throughout the holding period, fish were fed Tetramin flakes and frozen brine shrimp.

Descriptions of breeding colors and tubercle nattorns were made for each sex of the two species immediately after capture, and upon return to the laboratory. color photographs were taken.

RESULTS
Temporal Isolation
Spawning at different times of the year constitutes an important deterrent to interspecific breeding in sympatric fish species. At present, there exist only a few records of spauning times for \underline{R} cataractae and C - glumbeus from widespread localities across Canada (Scott and Crossman, 1973). What are the spauning times of these species in Louer Kananaskis Reservoir? To what extent is temporal isolation operative?

Temperature appears to be the single, most important factor inducing spawning in these two species, as is true for most temperate, freshwater fishes. Ahsan (1966) showed
that terperature was the dominant regulator of the spermatogenetic activity of male $\underline{\text { c }}$ plumbeus. Females, judged to be in a fully ripe state, were first collected in late May and early June after the rapid increase in surface water temperature from $5^{\circ} \mathrm{C}$, May 25 to $10^{\circ} \mathrm{C}$, June $4,1979$. Data from at least two years would be reguired to show a strict correlation of temperature with initiation of spawning.

Neither R_{-}cataractae nor $C_{\text {. }}$ plumbeus wore observe? to undergo spawning migrations up any of the flowing inlets to the Lower Kananaskis Peservoir. Thus, it was not possible to use timing of spawning migrations as a measure of temporal isolation.

A meaningful measure of temporal isolation is overlap in the time of fully ripe females in the spawninq area (Nelson, 1968). The results of the first of the three methods, involving a qualitative judgement as to the state of female gonad maturity, are presented in Figure 16 and in Appendix Table 24.

Pully ripe females of the two species were present for the first three weeks in June, 1978, during the height of
 females in all three different gonad states. Fully ripe male C. $\underline{\text { plugbeus }}$ similarly outnumbered fully ripe male $\underline{\underline{G}}$. cataractae. The first male C. plumbegs wi+h freely flowing milt was captured May 17 ; the first such male R. Cataractae was captured May 18, 1978. The last fully ripe male $\mathrm{C}_{\text {. }}$

Figure 16. Change in female gonad maturity for Couesius plumbeus and Rhinichthys cataractae, sampled from Lower Kananaskis Reservoir, during the 1978 spawning period. Maximum surface temperatures (mercury thermometer) are also presented.

plumbeus and $\underline{\underline{R}}$. Cataractae were captured July 11 and Junc 29. 1978, respectively.

The results of the second method, involving changes in the actual gonad weight of the females of each species are shown in Figure 17 and Appendix Table 25. There is complete overlap in the period of maximum gonad weight for spawning period) between the curves of the two species. Similarly, the results of the third method (Fig. 18, and Appendix Table 26) show synchrony between the species for a period of maximum ova size (spaning period).

Spawning activities were not actually observed due to the depth at wich it occurred. However, gillnet capture records indicate that numbers of c. plumbeus increased in the early morning and late afternoon, over the spawning sites. Comparable data are not available for $\underline{\text { R }}$ cataractae.

It is not known if the two species spawn at different times of the day. These results indicate that, apart from diel isolation, there is little temporal isolation between the species in Lower Kananaskis Reservoir.

Habitat Isolation
There is little known of the type of spawning habitat selected by the two species. R. Cataractag probably spawn in riffles over a gravel bottom (Scott and Crnssman, 1973), and C. plumbeus are known to spawn either along lakeshores or in streams (Geen, 1955) amid large rocks (Brown et al., 1970). The intention of this portion of the study was to determine

Figure 17. Change in gonadosomatic values (gonad weight/body weight\%) of female Couesius plumbeus (upper graph) and female Rhinichthys cataractae (lower graph) sampled from Lower Kananaskis Reservoir during the 1978 spawning period. Points on hatched line represent sample means of gonadosomatic values, bars represent sample standard deviations and lines represent range of sample values. Sample range and standard deviation are not given when $n<5$.

Figure 18. Trends in mean ova diameter during spawning period for Couesius plumbeus and Rhinichthys cataractae, Lower Kananaskis Reservoir, 1978. Sample size in parentheses (not presented if $n=1$).

the degree of habitat segregation between these species in Lower Kananaskis ?eservoir.

The inlet streams of Lower Kananaskis Reservoir were carefully monitored from when they were still ice-covered until the end of spawning in order to observe specios' spawning movements and areas occupied. Due to spring-timo access problems, the streams of Upper Kananaskis Peservoir were not similarly studied. There was no observed spawning migration of either species into Smith-Dorrien Creek during
 Cataractae were gillnetted at the mouth of the creek during this period (Fig. 19; Appendix Table 27). Neither species were captured upstream of the mouth. Slectroshocking the creek (plate 7) yielded migrating Salmo qairineri. and baited minnow traps captureत small Salvelinus malma $\ll 10 \mathrm{~cm}$ standard length). The current velocity of Smith-Dorrien Creek increased rapidly from $0.8 \mathrm{~m} / \mathrm{s}$ on April 30 to a torrential $2.5 \mathrm{~m} / \mathrm{s}$ on June 8 (Appendix Table 28) due to the spring melt. It became impossible to sample this creek for cyprinids except in the lower reaches at the mouth. High current velocities probably make this creek unsuitable for the cyprinids during their spawning season. There may be some shoreline spawning by the two species in the flooded inlet at the mouth of this creek, although my limited collections do not indicate this.

There were no observed spawning migrations of either species within Kent Creek, or in the vicinity of its mouth.

Figure 19. Catch data for adult Couesius plumbeus, Rhinichthys cataractae, and their putative hybrids from 7 selected sampling sites, Lower Kananaskis Reservoir. The time interval shown includes the period of maximal spawning activity for these species in 1978. Actual numbers of individuals caught by gillnets, minnow traps, and seines are shown by size of histograms.
suəu!⿰ədS 10 ıəquinN

The creek is steep and swift during the spawning season (> $2.0 \mathrm{~m} / \mathrm{s}:$ Appendix Table 28). With little suitable spanning habitat. The mouth area of this creek was not extensively sampled (Appendix Table 1), and it may be used by one or both species for spawning.

Cyprinid spawning migrations were not observed during June in Invincible Creek due to its swift current (Appendix Table 28), and silty nature (Secchi disc $=5 \mathrm{~cm}$, June 8 , 1978). Fully ripe individuals of each species were capturea in the silty outfall of the creok beyond its mouth during the peak spawning perind (Fig. 19). Although E. plumbeus outnumbered $\underline{\text { g }}$ cataractae, the two species appeared to be spawning in a comon area without habitat segregation. The capture of one putative hybrid at this site on June 8 might suggest that $\begin{aligned} & \text { iscegenation has occurred here. }\end{aligned}$

No spawning individuals of either cyprinid species were found migrating up Boulton Creek in May or June, 1978. Intensive collecting effort up the creek from its mouth to the edge of the forest did not yield a single cyprinid. Individuals of each species in spawning condition were captured beyond the mouth of Boulton Creek and nearby vicinity (Fig. 19 and Appendix Table 1). An overlap of the species' spawning habitats near Boulton creek mouth may be indicated by the capture of one hybrid specimen on May 26 . 1978.

The outfall of Boulton creek is often extremoly silty due to intermittent rainstorm run-offs and increased melt

里

Corn

$5-2$
\qquad

$1+\square=$
flow (see Secchi disc results, Appendix Table 18). This factor is also the case in Invincible creek and may abet the interspecies hybridization occurring in both locations. The substrato over which the spawning $C_{\text {- }}$ plumeus individuals were captureत was silty mud of a uniform fine texture. This was not original lake bottom but part of the reservoir's littoral flood plain. The flooder meandering hed of Boulton Creek presented the only original pre-reservoir substrate. Capture rate did not appear to rise with increasing proximity to the original creek hed. P. cataractag were captured here in disproportionately greater numbers than in other nearby shoreline areas of equal small size.

Mature cyprinids were common within the confines of Power Plant Raceway (Interlakes Dam). There was no flow of water through the Power Plant during May, June, or July; however, there was a small flow of runoff via a drainage conduit. The raceway forms a deep trench into the original lake basin and the resultant thermal stability may be attractive to the spawners. Fully ripe males and females of each species were captured within the raceway on June 8 , 1978. without any observed habitat segregation (Fig. 19; Appendix Table 1). The substrate was a uniform mixturo of large boulders (mean diameter 0.3 m) over gravel.

The south end of Lower Kananaskis Reservoir was the most extensively collected area on the entire reservoir. A gently flowing stream (Interlakes Stream), the original
outlet for the Upper Kananaskis Lake (Plate 9) with riffle habitat eminently appropriate for $\underline{\text { g }}$ - cataractae, emptied into the reservoir in this area. Its flow was controlled so that it did not increase with spring run-off beyond the suitability for spawning habitat. Under present reservoir conditions, this stream flows across an extensive area of exposed mudflats, which are progressively flooded as the reseryoir level rises in the spring (Fig. 20).

The mouth of Interlakes Stream is constantly receding relative to the advance of common Bay. The following dynamic habitat types were sampled at this end of the reservoir prior to and during the cyprinid spaning season.

1) Interlakes Stream - was sampled as one habitat in its entirety from source to mouth, wherever the latter occurred.
2) Interlakes Stream Mouth - the immediate vicinity of the entrance of Interlakes Stream into Common Bay was sampled as one habitat wherever it occurred.
3) Common Bay - an area at least 100 m beyond the mouth of Interlakes Stream was sampled as one habitat.

The sampling sites for each habitat type were continuously moving upstream (southwards) as the reservoir filled, but the position of each habitat type remained fixed relative to the others. The types of fish occupying each moving habitat could then be compared.
C. plumbeus was abundant in the deeper waters of comon Bay, but only one hybrid and one $\underline{\text { g }}$ cataractae were captured. The $\underline{C}_{\text {. }}$ plumbeus captured here appeared to be spawning in the absence of R. Cataractae. The substrate

Figure 20. Extreme south end of Lower Kananaskis Reservoir showing the approximate progression of shoreline changes during the summer, 1978, filling of the reservoir and the consequent flooding of Interlakes Stream ($1 \mathrm{~cm}=0.07 \mathrm{~km}$). Common Bay is designated as the open water beyond the mouth of Interlakes Stream. The capture location of fully ripe and/or spent individuals of each species are presented for selected dates as follows:

- C. plumbeus 1 - June 8

2 - June 12, 13
3 - June 20, 21

- R. cataractae 1 - June 8

2 - June 12, 13
3 - June 19, 20
4 - June 29

4 밥

ranged from gravel in the flooded Interlakes Stream bed to silty mud on the flooded mudflats in a depth of 2.5 to 3.6 m (Fig. 19).

In contrast to Common Bay, Interlakes Stream was predominantly occupied by R - cataractae तuring the May, June 1978 period. C. plumbeus were occasionally captured here (Fig. 19). A low population of adult $\underline{\text { g. Gataractae of both }}$ sexes remained in the diminishing length of the stream throughout the spawning period and likely spawned here. The substrate of the stream was highly variable, ranging from large patches of silt and detritus in areas of slow current to gravel and boulders in the riffle areas. Most E . cataractae uere sighted and captured among rocks (10 cm mean diameter) in riffles under a depth of less thar 15 cm . Presumably, this is where R , cataractae were spawning. The 52 C. plumbeus captured on May 19 , 1978, were mainly small immature specimens (mean standard length 34.3 mm) as were the two C_{0} pluqbeus cantured May 22, 1978, (17 mm and 25 mm SI). The C_{-}plumbeus captured in the stream on June 5, 1978. were larger specimens (mean SL 53.5 mm) incluaing one fully ripe male and several ripe females (Fig. 19). The \mathbf{I}_{E} cataractae specimens captured on the same date were all larger females (mean SL 58.3 mm), some of which were ripe. Spawning among these fish was not observed, nor were any females sufficiently ripe on June 5, 1978 , for spawning. Intensive sampling of the stream did not yield further $\mathbb{C}_{\text {- }}$ glumbeus specimens until June 21. 1978, wen two fully ripe

males were collected $(70.0$ and 72.0 mm SL) at the peak of the spawning period. In late June the reservoir level had flooded approximately half of the Interlakes Stream length within the S.E. Arm. These two C. pl umbeus wales were found 15 m upstream of the mouth and likely reprosent exploratory movements, but not a typical pattern. Their presence does suggest the possibility of intersperific sparning with the resident $\underline{\underline{R}}$. cataractage females. Spawning was not observed at any time in Interlakes Stream.

The Interlakes Stream mouth habitat was intermediate between the other two habitats in terms of the simultaneous
 in fully ripe and spent spawning conditions flig. 19; Appendix Table 1). There was no noticeable habitat separation hetween the two species. They wero captured in the same gillnets over a substrate ranging from gravel, in the original stream bed, to silt on the flooded mudflats. The depth of the water ranged from $1.7 \pm 02.5 \mathrm{~m}$. There was a slight, but continual current of $<1.0 \mathrm{~m} / \mathrm{s}$ at the mouth of the creek. Thus, it was impossible to determine if tho species segregated themselves according to current regimes. One $C_{\text {. }}$ plumbeus x 응 cataractao hybrid specimen was captured on June 8, 1978, along uith individuals of the two species. C. plumbeus numerically outnumbered $\underline{\text { P. Cataractage in }}$ the Interlakes Stream mouth habitat. Howevor, both are represented in an intermediate frequency relative to the $\mathbb{C}_{\text {. }}$ plumbeus - dominated deeper waters of Common Bay and the R_{g}

Cataractae - dominated riffle habitat of Interlakes Stream. Partial habitat isolation is achieved in the latter two habitats, but not in the intermediate habitat where the rising reservoir level brings the two species into contact. It is reasonable to hypothesize that C_{2} plumbeus spawners, in maintaining their spauning proximity to the stream mouth, advance into the newly floodod lower reaches of the stream. Here, \mathcal{R}. Cataractae maintain their spawning positions over the gravel and cobble rnck of the flooded stream bed. Where habitat segregation occurred in the south end of the Lower Reservoir, \underline{C}. plumbeus presumably spaned offshore in a depth of $2.0-3.0 \mathrm{~m}$ over a harren silt substrate while R $^{\text {cataractae }}$ are inferred to span in very shallow riffles of slight current amin cobble-sized rock.

Behavioral Isolation
Behavioral blocks to hybridization form a final line of premating defense in the event of habitat and temporal overlap between reproducing species. However. Hubbs (1961) noticed that while a behavioral barrier to miscegenation occurs in an area where species have been sympatric for a long time, these behaviors may break down in areas where they have recently come together.

Little information concerning reproductive behaviors of
 nest nor guards the eggs, whereas ㅇ. Cataractae may both establish a territory and guard the nest (McPhail and

Lindsey, 1970). Nests of R $_{\text {. Cataractag }}$ were not found in the intensively sampled Interlakes Stream where R. Cataractae was inferred to spaun in the absence of C. plumbeus. Nest guarding behaviors were not observed in members of ? Cataractae, although some site specificity was indicated. When disturbed from one area, they would invariably be observed returning to the same site. Turning over the rocks and sieving the substrate in such locations did not yield eggs or nests. Nest-guarding adults were not observed when the flooded portion of Interlakes Stream in the S.E. Arm was observed underwater using S.C.U.B.A. on June 28 and July 12. 1978.

Laboratory, aquaria-held fish showod no meaningful behavioral differences when held in the reciprocal, interspecific matchings as opposed to conspecific
situations. Neither mating behaviors nor aggressive interactions were observed at any time. Individuals of each sex of each species, while held in tanks, displayed similar fright behaviors and escape responses.

The male hybrids and female C plumbeus in Tank C kere not observed to elicit mating behaviors and tank breeding did not occur. When autopsied on June 28 , the females har regressed gonads suggesting that tank conditions were inappropriate for breeding. Although the male hybrids were of equivalent size to the females, they reacted more vigorously to tank disturbance, swam faster, and dominated the feeding by rapidly snatching up the food.

The existence of distinct species' specific breeding behaviors in $C_{\text {. }}$ plumbeus and \underline{R}. Cataractae cannot be confirmed in this study. Their isolative value remains unknown. However, it is possible to evaluate species' differences in breeding coloration and nuptial tubercles (Plates $1-5$). These differences may provide criteria for favoring conspecific mates. The results of this comparison (Table 7, Plates 1-6), reveal many spocies' differences, which may act to increase the species' reproductive isolation. Similarly, there are many morphological differences between the species, especially in head characters (previously discussed in text) of potentially high isolative value, assuming such characters are used for mate recognition. Confounding these differences is that in each species smaller males mate with larger females. Thus, mate selection on this criterion would not disfavour interspecific matings.

Without successful, controlled mating experiments, these hypothesized isolating factors remain untested specalations.

DISCUSSION

Temporal isolation may be inoperative in preventing hybridization in Lower Kananaskis Reservoir (although diel isolation was not investigated). There is total overlap in the period of fully ripe females between the two species. The peak of the spawning period for each species occurred in

TABLE 7. Comparison of Breeding Coloration and Nuptial Tubercles. Refer to Plates 1-6.

Couesius plumbeus
Rhinichthys cataractae

MALE

- vivid red patch at pectoral fin base, spreading posteriorly. No coloration at bases of pelvic or anal fins.
- red patch on top of opercle.
- may have red pelvic axillary processes, if these are present.
- small red patch at corners of mouth.
- no coloration near isthmus.
- all fin rays, membranes without color.
- fine white tubercles on dorsal surface of pectoral rays.
- always brighter red coloration than females.

FEMALE

- red patch at base of pectoral fin, spreading posteriorly.
- red patches at top of opercle and at corners of mouth (on cheek) may be present.
- fin rays, membranes without coloration.
- color patches are yellow to light red, never vivid red.
- fine tubercles may be present on dorsal surface of head and posteriorly to dorsal origin.

MALE

- vivid red-orange patches at bases of pectoral, pelvic and anal fins.
- no red patch on top of opercle.
- red pelvic axillary processes.
- red-orange patch at corners of mouth
- (upper mandible may be entirely colored while lower mandible is less extensively colored.
- red-orange color scattered beneath gills at isthmus.
- all fin rays, membranes may have a red-orange tinge.
- fine white tubercles on dorsal surface of head (may extend posteriorly to origin of dorsal fin) and on dorsal surface of pectoral rays. (Tubercles usually restricted to head only).
- usually brighter red coloration than females.

FEMALE

- may have a small red-orange patch at base of pectoral fin.
- no red patch on top of opercle, or on cheek at corner of mouth.
- all fin rays, membranes usually with a red-orange tinge.
- color patches are orange-red.
- tubercles not present.

mid-June at approximately $10^{\circ} \mathrm{C}$ and endeत prior to July in 1978: spawning did not continue into late August in either 1977 or 1978 as has been reported for Kananaskis cyprinids by McPhail and Lindsey (1970) and Scott and crossman (1973) (probably based on Nelson's 1965 observation of ripe females being found on 8 August in 1951).

Previous reports have shown different temperature responses for the two spocies. Re cataractae in Manitoba reached a spawning peak on May 16 at 150 C in Mink River (Bartnik, 1970) and during mid-July at 150 C in Lake Winnipeg (Gee and Machniak, 1972). Kuehn (1949) roporteत that R. Cataractae in Minnesota spawned from late June through August. Brazo et \mathfrak{a} l. (1978), found the peak spawning period
 July at $14-190 \mathrm{C}$. $\mathrm{C}_{\text {- }}$ plumbeus have snawned in the Montreal River, Sask. in early May at $4-8^{\circ} \mathrm{C}$, Lac la Ronge, Sask. in mid-June at $10^{\circ} \mathrm{C}$ (Brown et al. 1970), and Lac Saugay, Que. in early June at 190 C (Scott and Crossman, 1973). These may be population differences.

There appears to be no effective habitat isolation between the species. They swarm in mixed schools over the mud flats at Pocaterra Dam in the summer and were captured together at spawning time along the shoreline and at the mouths of all inlet streams. However, habjtat isolation was achieved by spauning $\underline{R}_{\text {. }}$ cataractag migrating alone in modest numbers into Interlakes Stream. Presumabley no other inlet stream offered the appropriate current, temperature, and

substrate regimes to allow species' segregation. There are no other reports in the literature outside Kananaskis of such close habitat sharing between C. plumbeus and … cataractae.

Satisfactory evidence regarding the strength of the behavioral barrier betueen the two species is lacking in this study. However, the failure of the other possible isolating mechanisms, and the low frequency of hybrids,
 most species (Mayr, 1959). othologiral isolation is of primary importance. Differences in morpholoqy, color, tuberculation, and the suggested territoriality of P_{E} cataractae (McPhail and Lindsay, 1970) are possibly involved. Ethological barriers are also inferred to be of major importance in maintaining species' identity in hybridizing populations of Catostomus cormersonii and $\underline{C}_{\text {. }}$ macrocheilus (Nelson, 1968).

STUDY OF POSTMATING ISOLATION

INTRODUCTION
Postmating isolating mechanisms involve the reduction of hybrid survival and the reduction of gene flow through the hybrids. Effective postmating isolation is not a general characteristic of sympatric species (Littlejohn, 1969) as it is not open to the operation of natural seloction.

The purpose of this section is to determine the importance of postmating isolating mechanisms in maintaining

species' distinctness. The mortality and viability of artificially reared hybrid embryos is compared relative to that of parental embryos. Certain life history characteristics of wild-caught hybrids are compared to those of the parental populations in order to assess thoir relative survival success under natural conditions.

METHODS

Hybrid Embryo Mortality
Embryo mortality experiments were conducted in a controlled environment chamber commencing June 8 and terminating July 1. 1978, with the final hatching of all embryos. Fully ripe adults, caught in Lover Karanaskis Reservoir using gillnets, dipnets, and seines were returned to the laboratory where they were stripped of eggs or milt. Some adults were held in aquaria for as long as two days prior to stripping, while waiting to collect the parental type with which they were crossed. Fertilization procedures were adapted from Davis (1953) and Strawn and Hubbs (1956). No attempt was made to extract the same number of eggs for all crosses. Each cross received the maximum number of eggs which could be expressed from the female. The fertilized eggs of each cross were placed in separate glass finger bowls and each was covered with a fine Nitex mesh (36 meshes $/\left(\mathbb{m}^{2}\right)$. As many as three finger bowls of the same cross type vere submerged into the same 201 aquarium. This procedure allowed simultaneous experiments to be run without
the danger of accidental interchange of embryos.
Once hatching began, each cross was soparater into its own aquarium. All aquaria were held at a constant temperature of 150 C and were constantly aerated. There was no continuous water flow into the aquaria, rathor the water was changed approximately every five days. Chemical fungal retardants were not used.

There was a total of 21 crosses (9 homospecific crosses, 11 heterospecific crosses, and 1 cross of two F1 hybrid individuals). Each cross involved different parents. Hybrid and parental crossos were treated identically. Prior to hatching, eggs of all crosses were examined once every 24 to 36 hours. Dead embryos, identified by their opaque, white color, were counted daily and discarded using a pipette. When hatching began, the crosses were examined twice daily and the number of hatched fry recordeत, A mean hatching date was determined for each cross. latching time data vere analyzed using a single classification analysis of variance (Sokal and Rohlf, 1969) and a Duncan's multiple range test (Zalik, 1977).

The diameters of 15 embryos (five तays postfertilization) from four crosses (the two parental cross types and the two reciprocal hybrid cross types) were measured under a microscope using needle-point dial calipers (read to the nearest 0.1 mm). Egg diameter data were analyzed using a single classification analysis of variance (Sokal and Rohlf, 1969) and a Duncan's multiple range test

(Zalik. 1977).
The $\%$ pre-hatching mortality results for all crosses were arcsin transformed (Zalik, 1977,) and analyzed using a single classification analysis of variance (with unequal sample sizes) (Sokal and Rohlf, 1969).

Hybrid Inviability
Immediate Post=hatching Survival
The products of all four artificial cross types wore reared beyond the hatched fry stage in several 8 l qquaria. Space limitations necessitated tho pooling of replicatos from the same cross type. All aquaria were held under the conditions of a constant $150^{\circ} \mathrm{C}$ temperature, continual aeration and water changes as needed. The developing fry were fed Liquifry, Tetramin baby fish food, and live zooplankton from Lower Kananaskis Reservoir.

The number of live fry 4 days post-hatching was recorded for each cross type replicate and the data wore analyzed using a single classification analysis of variance (Sokal and Rohlf, 1969). Thereafter, the number of live fry was recorded once per month until 3 November, 1978. These long-term survival data vere not statistically analyzed but simply compared to detormine if any differonces existef in survivorship beween the cross types in the first months of life.

Long=term Survival and Life History Characteristics

The success and long-term viahility of the wild-caught putative hybrids was compared to that of the two parental species by their age, growth, and length-weight data.

Age yas determined by scales, read under magnification independently by two people. Where disagreement occurred, the readers conferred until a consensus was reached. Scales were removed from preserved fish in the small area above the lateral line and below the dorsal midline ir front of the dorsal fin. Thirty-six putative hybrids with intermediate canonical scores (in the presumed F^{1} portion of the Kananaskis CVA distribution) were aged. gging by the scale method was corroborated using the qraphic method of polymodal separation of length frequencies (Cassie. 1963).

Growth rates of these representatives of the hyhrid group and the two typical parental species were calculated by plotting the mean size at each age, as derived from the scale analysis, against age-class. Growth rates were then estimated from regressions of logarithms of length on age-class. An analysis of covariance was performed on the same data using the SPSS computer program (Nie et al... 1975). This provided an objective method of determining significant differences between regression lines.

Length-weight relationships for the same subsamples of the three groups were determined according to the methods of Ricker (1971). The relationship was described by a regression of logarithm of length on logarithm of weight. An
(
analysis of covariance was performed on these data using the SPSS program.

Ferale fecundity was determined for $2{ }^{5}$ C. glumbeus, 20 ㄹ. Cataractae, and 7 hybrids. All ova from one female were spread evenly in a dish divided into quadrats; only one quadrat was actually counted. This value was multiplied by four to give the total number of ova. The fecundity relationship was descrihed by a regression of logarithm of ova number on logarithm of standard length for $C_{\text {g }}$ glumbus and \underline{R}_{-2} cataractae. The hybrid sample size was too small to generate a meaningful regression.

RESULTS
Hybrid Embryo Mortality
Successful artificially induced hybridization may
confirm the origin of putative hybrids. It can also provide insight into the relative degree of selection against hybrid cross products. The hypothesis of equal hatching success between hybrid crosses and parental crosses was tested (Table 8).

Fach of the heterospecific crosses suffered 100% pre-hatching mortality in one replicate, as did the only hybrid backcross replicate. All replicates of the homospecific crosses had some hatching. However, there is no significant difference in pre-hatching mortality between the four different cross types, excluding the hybrid backcross (P > 0.05. Table 9). Given only one hybrid backcross

TABLE 8. Hatching resulte for experimental crosses, 1978 , at $15^{\circ} \mathrm{C}, \mathrm{C}$ - Couctius flumbeus R - Rhinichthys catanaotas II - C. plumbeus x K. caturactae F_{1} Hybrid

					Heterospe	cific Cro	saes				
	$d^{\prime} C \times q^{R}$				$q^{\prime \prime} \times \delta^{\prime} \mathrm{R}$						
Date Started	19 June	19 June	19 June	19 June	13 June	13 June	16 June	8 June	20 June	20 June	20 June
Mo. Started	181	90	90	205	500	438	373	200	123	400	220
No. Hatched	128	0	73	156	227	326	0	7	49	177	48
Z Pre-hatch Mortalicy	29.3	100.0	18.8	23.9	54.6	25.6	100.0	96.5	60.2	55.8	78.2
$\overline{\mathrm{x}}$ Hetch Time (daya)	10.0	-	10.0	11.0	9.5	10.0	-	10.0	10.0	9.5	10.0
\% 4 Day Posthatch Mortality	98.4	-	2.7	7.0	1.3	0.6	-	0	8.2	42.3	100.0
No. Alive 4 Day Poat-hatching	2	0	71	143	224	324	0	j	45	102	0

	Homospeciflc Crosses									Hybrid Backcross $\mathrm{O}^{\mathrm{H} \times \mathrm{q} \mathrm{C}}$
	$\mathrm{C} \times \mathrm{C}$					$R \times \mathrm{R}$				
Date Started	13 June	13 June	\% June	20 June	20 June	19 June	19 June	20 June	20 June	8 June
No. Started	280	380	240	240	136	43	90	246	115	62
No. Hatched	59	98	38	219	94	12	17	84	33	0
* Pre-hatch Mortality	78.9	74.2	84.2	8.8	30.9	72.1	81.1	65.9	71.3	100
\bar{x} Hetch Time (daya)	4.0	9.0	9.5	9.0	8.5	11.0	12.0	12.0	11.0	
\% 4 Day Poathatch Mortality	3.4	3.0	0	49.3	3.2	0	5.9	28.6	6.1	
No. Allve 4 Day Poat-hatching	57	4')	IH	111	91	12	16	60	31	

TABLE 9. \% pre-hatching Mortality. Single classification analysis of variance with unequal sample sizes. The single replicate of the hybrid backcross suffered 100% pre-hatching mortality and was not included in this analysis.

Arcsin Transformed Data								
Crosses				ANOVA TABLE				
CC	${ }^{8} \mathrm{C} q \mathrm{R}$	$¢_{\text {cot }}$	RR					
62.7	32.8	47.6	58.1	Source of Variation	SS	df	MS	F
59.5	90.0	30.4	64.2	Among Crosses	743.6	3	247.9	0.59
66.6	25.7	90.0	54.3	Within Crosses	7185.6	17	422.7	
17.3	29.3	79.2	57.6	Total	7929.2	20		
33.8		50.9		${ }^{F} .05(3,17)=3.2$				
		48.3						
		62.2		$P>0.5$				

\% 4 Day Post-hatching Mortality. Single classification analysis of variance with unequal sample sizes.

Arcsin Transformed Data
Crosses ANOVA TABLE

CC	ธCor	¢CÓR	RR					
10.6	82.7	6.6	0.0	Source of Variation	SS	df	MS	F
10.0	0.0	4.4	14.1	Among Crosses	449.4	3	149.8	0.20
0.0	9.5	0.0	32.3	Within Crosses	12479.0	17	743.1	
44.6	15.3	0.0	14.3	Total	12928.4	20		
10.3		16.6		$F_{.05(3,17)}=3.2$				
		40.6						
		90.0		$p>0.5$				

replicate, it is not possible to make any conclusions on the sterility of hybrids. I suspect the eqgs used in this cross were not fully ripe.

Hybrid crosses hatch as successfully as do control crosses. On the basis of this experiment, hybrid embryo mortality cannot be operative as a postmating isolating mechanism.

There is a significant difference in hatching times for cross types $(F=28.0$, P. $05(3.14)=3.34)$. The hatching times for pure $\mathbb{R}_{\text {. }}$ Cataractae emhryos and pure $C_{\text {. }}$ plumbous embryos are significantly different from all other cross types . The hatching time for embryos of the two reciprocal hybrid cross types aro not significantly different (latter results from Duncan's test). Mean hatching time for pure $\underline{C}_{\text {. }}$ glumbeus crosses is 9.0 days: relatively short compared to pure ${ }^{\text {g }}$ cataractae at 12 days. The hatching times of the heterospecific crosses are intermediato: malo C. plumbeus x
 male R. cataractae, 9.8 days. This may show a trend for the hybrids to develop at rates similar to that of their maternal controls, as reported by Hubbs and Strawn (1957). Hybrid fertilized egq sizes are also intermediate between the parental values (Table 10). There is a significant difference in embryo sizes for cross types ($\mathrm{F}=26.9$, $\mathrm{F} .05(3,56)=2.76)$. Pure C . plumbeus embryos are significantly smaller than embryos from the other three cross types, which are not significantly different from each
other in size (latter results from Duncan's test).
There may be a causal relationship here, i.e., the larger ${ }^{2}$. cataractae egg requiring a longer development time than the

Hybrid Inviability
It is probable that hybrids are nccasionally produced in nature by an accidental mechanism such as drifting sperm. In a natural environment, as opposed to a modified environment, these individuals may be at a selective disadvantage and may die prior to reproducing. The hypothesis that artificially produced hyhrids of Kananaskis origin kere not selected aqainst was tested.

Immediate Post=hatching Survival
Percent 4 day post-hatching mortality rosults (Table 9) show no significant difference (P > 0.05) between the replicates of the four cross types. The highost percent mortality is in two heterospecific cross replicates: more than twice the highest percent mortality recorded for the homospecific crosses. There apnoared to be no difference between the cross types in the number of highly deformed individuals that contributed to these mortality figures.

The results of the four month rearing experiment (Table 11) show unexpected differences in viability between the cross types. All ${ }^{\text {P. Gataractae control cross individuals }}$ died between two and three months after hatching. No other cross type suffered total wortality during the rearing
电

Table 10. Diameters of Eggs (5 days post-fertilization) for each artificial cross type.

Cross type No. of Eggs mean diameter(mm) Std. Deviation

C	c	15	2.03	0.08
C 9	R $0^{\prime \prime}$	15	2. 28	0.12
Rif	Co	15	2.23	0.11
R	R	15	2.35	0.08

TABLE 11. Survival of offspring from experimental crosses over a 4 month period (post-hatching). Some replicates of the same cross type were lumped together for economy during rearing as indicated. Survival values for each time period are given as absolute number of live individuals. The mean hatching date for all crosses is taken as June 27, 1978. R:- R. cataractae; C:- C. plumbeus.

Cross	Replicates (identified by	No. lumped 4th day	Survival (days post-hatching)							
Type	no. hatched)	Post-hatching		35		65		91		124
¢C ${ }^{\circ} \mathrm{C}$	59, 98, 38	190	131	(55.1)	102	(46.3)	64	(35)	62	(34.3)
	219, 94	202	137	(41.4)	127	(39.6)	104	(35.2)	82	(30.1)
$q^{R} \delta^{\prime} R$	17, 12	28	24	(65.5)		0		0		0
	84	60		0		0		0		0
	33	31		0		0		0		0
¢R óc	73	71	62	(67.2)	12	(23.9)	9	(20.6)	8	(19.3)
	156	145		0		0		0		0
	128	2		0		0		0		0
${ }_{\text {¢ }} \mathrm{C}$ ÓR	227	224	183	(63.9)	142	(52.3)	99	(41.3)	56	(29.8)
	326	324	260	(63.3)	83	(30.3)	74	(28.5)	67	(26.9)
	7	3		0		0		0		0
	49, 177	147	137	(51.1)	78	(36.0)	33	(22.5)	30	(21.4)
	48	0		0		0		0		0

period. The hybrid cross of $\underline{\text { R. }}$ cataractae maternal descent also suffered 100 mortality in two of its three replicates in the first month of rearing.

In contrast, the hybrid cross of C. plumheus maternal descent had bigher viability success with 100% mortality in only two of its five replicates. There were no complete die-offs in either replicate of the C. $\underline{\text { l }}$ umbeus control cross.

The results suggest disproportionate selection against R. Cataractae control specimens and hybrias of pe cataractae maternal descent under artificial conditions.

Long=term Surviyal and Life History Characteristics
a) Age

The presence of five age-classes in the $C_{\text {g }}$ plumbeus sample is indicated by scale annuli. The lengths of the fish at each annulus formation are presented in Table 12. Separation of polymodal length frequencies by probability coordinates verified the presence of five age-classes fig. 21). A chi-square test showed no significant differences (P > 0.05) between the observed and expected normal distributions of length frequencies in each of the age-classes. There is close correspondence hetween the results of the two methods. The size ranges at each age, determined by the scale method. fell within the size ranges at each age determined by the polymodal prohability method. Bruce and Parsons (1976) found no spawning C. plumbeus from Labrador older than $4+$ years. Howover, Brown (1969) found

TABLE 12. Length distribution of the age-groups of Couesius plumbeus from May l, 1978 sample,
Lower Kananaskis Reservoir ($n=137$). (Numbers in parentheses represent the \% of each age-group in each length range.)

Standard Length Interval (cm)	Age-group and Sex									
	0		1		2		3		4	
	M	F	M	F	M	F	M	F	M	F
1.0-1.9	$1(50$									
2.0-2.9	1(50									
3.0-3.9			7 (30)	8(36)						
4.0-4.9			11(48)	8(36)		1 (4)				
5.0-5.9			5 (22)	5 (23)	4 (11)	7 (25)				
6.0-6.9				1 (5)	14 (38)	$9(32)$				
7.0-7.9					16(43)	10 (36)				
8.0-8.9					3 (8)	1 (4)	4 (50)	5 (42)		
9.0-9.9							4 (50)	7 (58)		1 (25)
10.0-10.9									1 (100)	2 (50)
11.0-11.9										1 (25)
Subtotals	2	0	23	22	37	28	8	12	1	4

Figure 21. Graphic separation of polymodal length frequencies by probability coordinates for:
A. 343 Couesius plumbeus from Lower Kananaskis Reservoir. χ^{2} test for departure from normality $\left(\chi^{2}=19.90\right.$; $\left.\chi^{2} .05(43 \mathrm{df})=55.7, \mathrm{P}>0.05\right)$.
B. 241 Rhinichthys cataractae from Lower Kananaskis Reservoir. χ^{2} test for departure from normality $\left(X^{2}=3.32 ; X^{2} .05(40 d f)=55.8, \mathrm{P}>0.05\right)$.

Numerals are age-class designations. Solid dots are total cumulative frequencies and starred circles are cumulative frequencies within size groups.

spawning C_{-}plutbeus 5 years and older in Saskatchewan.
 scale annuli. The lengths of the fish at each annulus formation are represented in Table 13. Separation of polymodal length frequencies by probability coordinates revealed the presence of only 5 ago-classes (ig. 21). However, this is likely due to the low frequency of older $5+$ R. Cataractag. A chi-square test showed no significant differences $(P>0.05)$ between the observed and expected normal distribution of length frequencies in each of the age-classes. Six age-classes have also been reporten from Lake Michigar populations of $\underline{B}_{\text {. }}$ Cataractae (Rrazo et al.. 1978).

Four age-classes are indicated for the hybrid sample by counts of the scale annuli (Table 14). Although age-class 0 hybrid individuals were available they are not included in the analysis. No hybrid individuals were older than 4 years and there were no male hybrids older than 3 years. The hybrid sample is small $(n=36)$ and contains mostly small hybrias in the younger age-classes. The low frequency of hybrid individuals precludes age verification by polymodal probability method. Age analysis has not been previously reported for $C_{\text {g }}$ plumbeus x R. cataractae hybrids.
b) Grouth Rates

Growth rates of the two species and the hybrids are described by the following equations:

$$
\text { C. } \mathrm{p} \text { lumbeus } \log \mathrm{L}=0.513+0.147 \mathrm{~T}
$$

TABLE 13. Length distribution of the age-groups of Rhinichthys cataractae from 1977, 1978 collections, Lower Kananaskis
Reservoir ($n=131$). Numbers in parentheses represent the \% of each age-group in each length range.

Standard Length Interval (cm)	Age-group and Sex											
	0		1		2		3		4		5	
	M	F	M	F	M	F	M	F	M	F	M	F
1.0-1.9												
2.0-2.9	2 (100)	2 (100)	6 (40)									
3.0-3.9			6(40)	9 (64)								
4.0-4.9			2(13)	5 (36)	7 (33)	6(25)						
5.0-5.9			1 (7)		12(57)	11 (46)						
6.0-6.9					2 (10)	4(17)	9 (82)	4(14)				
7.0-7.9						3(12)	2(18)	11 (39)				
8.0-8.9								10 (36)		2(17)		
9.0-9.9								3 (11)	1(100)	9 (75)		
10.0-10.9										1(8)		1(100)
Sub totals	2	2	15	14	21	24	11	28	1	12	0	1

TABLE 14. Length distribution of the age-groups of Couesius plumbeus x Rhinichthys cataractae hybrids,
from 1977, 1978 collections, Lower Kananaskis Reservoir ($n=36$). Numbers in parentheses from 1977, 1978 collections, Lower Kananaskis Reservoir (n
represent the \% of each age-group in each length range.

Standard Length Interval (cm)	Age-group and Sex									
	0		1		2		3		4	
	M	F	M	F	M	F	M	F	M	F
1.0-1.9										
2.0-2.9										
3.0-3.9			2(40)							
4.0-4.9			3(60)	3(100)						
5.0-5.9					10 (83)	6(75)				
6.0-6.9					2(17)	2(25)	$2(40)$	1(100)		
7.0-7.9							3(60)			
8.0-8.9										
9.0-9.9										1 (50)
10.0-10.9										
11.0-11.9										1 (50)
Subtotals	0	0	5	3	12	8	5	1	0	2

(2)
C. pl umbeus $\times \mathrm{R}$ - cataractae $\log \mathrm{l}=0.494+0.124 \mathrm{~T}$
R. Cataractage $\log \mathrm{L}=0.425+0.145 \mathrm{~T}$

Where $L=$ standard length, $T=$ age-class and the regression coefficients equal the instantaneous grouth rates. Data from each sex were pooled to calculate the rearession for each species.
C. plumbeus appears to have the fastest growth rate. The growth rates for C. glumbens were dotermined from Saskatchewan (Brown et al.. 1970) using the Peterson method and from Labrador (Brazo et al., 1978) using back calculations. Thus, their results are not directly comparable to those in this study.

Comparison of the regression lines by inspertion reveals that ? cataractae has the slowest growth rate for fish younger than 3 years. The hybrids have a generally intermediate growth rate between the parental species, but after 3 years age it declines below the growth rate of . cataractae (Fig. 22). If the grouth rates are extended back beyond the Y-axis to include all growth in the first year, it appears that the hybrid growth rate initially exceens that of the two parentals. The hybrid offspring of the experimental crosses also showed a faster growth rate than that of the parental offspring. This apparent decline in the hybrid growth rate may suggest the accumalative effects of some selective disadvantage.

However, an analysis of covariance (Nie et al .. 1975)
was performed to test for significant differences between

Figure 22. Growth rate regressions for:
C - 140 Couesius plumbeus ($r=0.90$)
R-130 Rhinichthys cataractae ($\mathrm{r}=0.91$)
C x R - 36 C. plumbeus x. cataractae hybrids ($\mathrm{r}=0.93$)
from Lower Kananaskis Reservoir.

要
the regressions (Appendix Table 2\%). Statistically, there is no significant difference ($p>0.05$) botween the slopes of the three regression lines: there is significant difference $(P<0.05)$ between the intercepts of \underline{R}. Cataractae and $C_{\text {。 }}$ glumbeus and between P . cataractag and the hybrid but no significant difference $(P>0.05)$ between the intercepts of C. plumbeus and the hybrid.
c) Length-Weight Relations
C. plumbeus. R. Gataractap and the hybric
populations each approximate isomotric growth, as described by the equations:
C. plumbeus $\log W=-1.781+3.064 \log \mathrm{~L}$
C. plumbeus x R. cataractae $\log W=-1.725+2.813 \log \mathrm{~L}$ R. cataractae $\log \pi=-1.899+3.120 \log L$ where $\boldsymbol{W}=$ weight and $L=$ standard length. Data from both sexes were pooled. Comparison of the three length-weight regressions (Fig. 23) by inspection reveals no apparent differences betyeen the three populations. Analysis of covariance between the regressions shows no significant differences (P >0.05) between the slopes but significant differences ($P<0.05$) between the intercepts. Length-weight regressions calculated separately for the sexes of each population are given in Appendix Table 30.
C. plumbeus from Saskatchewan (Brown, 1969) are heavier for any given length $(\log =-3.00 \times 106+3.20 \log \mathrm{~L})$ than the Kananaskis $C_{\text {g }}$ plumbeus. Additionally, $\underline{C}_{\text {• }}$ plumbeus from Labrador (Bruce and Parsons, 1976) weigh less for any given

Figure 23. Length-weight regressions for: C - 170 Couesius plumbeus ($\mathrm{r}=0.96$) R-157 Rhinichthys cataractae ($\mathrm{r}=0.99$) C x R - 33 C. plumbeus $x R$. cataractae hybrids $(\mathrm{r}=0.98)$ from Lower Kananaskis Reservoir.

length $(\log W=-1.88+2.88 \log L)$ than the Kananaskis $C_{\text {. }}$ glumbeus. Length-weight regressions have not been previously
 hybrids.
d) Fecundity

The relationship of fecundity to standard length for $\underline{C}_{\text {. }}$ glumbeus and R. cataractae can be described by the following equations:
C. Dlugbeus $\log F=0.673+2.534 \log L$
R. Cataractae $\log F=0.922+9.954 \mathrm{log}$,

Analysis of covariance shows significant differences ($\mathrm{P}<$ $0.05)$ between these rogressions in both slopes and intercepts (Appendix Table 29). The fecundity regressions of the parental species are presented as a contribution to our knouledge of their life histories (Fig. 24).

Of the seven adult, femalo hybrids examined, four had regressed gonads with very small, indistinguishable eggs. These here captured July 27 , 1977, and were probably in a post-spawning state. Another post-spawning hybrid female (SL $=62 \mathrm{~mm}$) had 92 ova. Two hybrid females were captured during the spawning season: one was captured June 15, 1977. (SL = 96 mim and was fully spent with only 38 ova remaining; the other female was captured May 26,1978 , (SL $=114 \mathrm{~mm}$) and was fully ripe with 1038 ova.

Brown et al. (1970) gave a range of 450-2450 eggs for 20 C. plumbeus with a total length range of $9.0-13.2 \mathrm{~cm}$. The fecundity regression for this Saskatchewan population was

Figure 24. Fecundity regressions for 25 Couesius plumbeus (C)

$$
\begin{aligned}
& (r=0.80) \text { and } 20 \text { Rhinichthys cataractae (} R \text {) }(r=0.70) \\
& \text { from Lower Kananaskis Reservoir. }
\end{aligned}
$$

$\log F=-3.243+3.095 \log L$. Additionally, Bruce and Parsons (1976) gave a range of 573-1158 eggs for 10 c . plumbeus with a fork length range of $9.2-11 . ? \mathrm{~cm}$. The fecundity regression for this Labrador population was Log $F=$ $-0.441+3.356 \log L$. The number of eggs for $C_{\text {. }}$ plumbeus in this study ranged from 380-2316 egas for 25 fish with a standard length range of $5.1-11.2 \mathrm{~cm}$.

Brazo et al. (1978) gave a range of $870-9953$ eggs for 33 R. catacactae from Lake Michigan with a total length range of $7.4-11.7 \mathrm{~cm}$. The number of eggs for \mathbb{R} g cataractae in this study ranged from 364-1121 eggs for 70 fish with a standard length range of $6.6-10.0 \mathrm{~cm}$.

DISCUSSION

Embryo mortality tests revealed no difference in hatching success between homospecific and heterospecific crosses. The artificial backcross was a failure, but conclusions as to hybrid fertility from one replicate would not be sound. Also, there was no difference in long-term survival between artificially produced hyhrids and individuals of parental species oriqin. In fact, hybrid offspring survived in aquaria better than did pure R_{o} cataractae individuals.

Wild-caught hybrids have similar growth rates and attain a similar age structure compared to the parental species. Also, there is no statistical difference between the length-weight relationships of the hybrids and the

$\operatorname{tax}-\underline{-2}$
 1

h) 4 then
parental species. The life history data suggest that the hybrids may not be facing excessive competition from the parental species. Thus, neither gametic mortality nor hybrid inviability are operative barriers preventing hybridization between $C_{\text {- }}$ plumbeus and $\underline{\text { g. }}$ cataractae.

Hybrid gonads were not examined histologically, but the hybrid gonads did not appear to be deformed or superficially different from those of the parental species. Fully ripe male and female hybrids were captured and exuded sex products similar to individuals of the parontal specios. Hybrid sperm was observed microsconically ant found to be motile. Hybrid eggs appeared to be of similar shape and condition as parental eggs. Additionally. it is not known experimentally if hybrids are sterile, hut it can be inferred from the results of the morphological analysis that at least the barrier is low. Introgression does not appear to put the species' status in peril. The sex ratio of the hybrids was biased tovard males.

The occurrence of this hybridization hetween $C_{\text {. }}$ plumbeus and $\mathrm{R}_{\text {- }}$ cataractae does not alter the systematic position of these two species within cyprinid genera that are generally held to be distantly related. Fish
hybridization in areas of environmental disturbanco no more imperils the generic or specific status of the animals involved than do the multitude of possible artificial crosses (Hubhs, 1961). The fact that these two typos of cyprinid remain distinct in most other localities of their range overlap confirms the recognition of the two types as distinct species (sonsu Mayr, 1959).

Certain recognized environmental factors, which facilitate the dissolution of species' reproductive isolating mechanisms (Hubbs, 1955: Mayr, 1069), all appear to be important in causing hybridization between C. plumbeus and \mathcal{R}^{-}Gataractag in Lower Kananaskis peservoir.

1) Environmental Disturbance; Paucity of Spawning Areas Disturbance of the environment is often alluded to as the most frequent cause of hybridization of both plants and animals (Mayr. 1969; Anderson. 1949. 1953: Hubbs et al.. 1943; Sibley, 1961: Mecham, 1960). However, its method of operation has not been demonstrated in any rigorous way.

The Lover Kananaskis Reservoir is a disturbed environment in terms of the annual level fluctuations associated with filling and lowering. The change from a lake to a reservoir may indirectly contribute to hybridization.

Spawning species may be brought together because flooding causes the loss and reduction of originally distinct spauning habitats. Also, with variability in drawdown levels from year to year, there is unprenictability in normal shoreline features which could be used for new spawning sites. 月ithout predictable flooding during the spawning season, it is likely that species' habitat segregation breaks down.
C. g lumbeus is an adaptable species which can lake spawn and undergo spawning migrations up rivers and streams (Brown et al., 1970). R. Cataractae probably prefers spawning in riffles (Scott and Crossman, 197?). With the possible exception of $\underline{\underline{g}}$ cataractae moving into Interlakes Stream, neither species underwent spawning migrations up inlet streams. Although each species has a preference for inlet strear spawning, it appears that the streams are unavailable (except Interlakes Stream) during the spawning season due to fast currents and low temperatures. (Why the unflooded portions of Tnterlakes Stream were not utilized more for spawning by the two species, remains unknown.l It is likely that the two species have been restricter to spawning along the shoreline and at stream mouths since their initial introduction to the lakes. Reservoir construction could neither have caused nor altered this spauning relationship with inlet streams. Lower Kananaskis Lake was equally depauperate in appropriate spawning areas, as the Reservoir is today.

However, while spawning habitat segregation was possible under original, predictable lake conditions, fluctuating reservoir levels may have disrupted this tenuous segregation. Evidence provided in this study indicates that rising reservoir levels at. Interlakes stream mouth brought together fully ripe indiviतuals of each species. Hybridization may result because of the action of an hypothesized difference between the two species in their reaction to advancing water levels. C. plumbeus, in maintaining their depth distribution and their proximity to the stream mouth, advance into the newly flooded lower reaches of the stream. Here, P. cataractae maintain their positions relative to the stream perhaps due to spaning territoriality. as cited by McPhail and Lindsey (1970). This series of events may be inferred to occur at the other stream mouths where habitat segregation is not so apparent. The generality of this model requires verification from other resorvoirs where these species are sympatric.

Without pre-impoundment information on where the species were spawning or whether hybridization occurred, it is difficult to evaluate the contribution of reservoir construction to fish hybridization. Environmental impact statements must provide these data to rigorously assess both the beneficial and adverse effects of future reservoir construction.
2) Species Introduction; Parity of One Parental Species

Nelson (1966) advanced the idea that the two species were introduced as live bait into the oriqinal Kananaskis Lakes: \underline{R} - Cataractae prior to 1935 and C_{-}pluqbous prior to 1961 (in the late 1950° s). The introduction of one or both species to a new environment appears to be one of the many precursors to hybridization (Hubbs et al.. 1943: Hubbs. 1961: Greenfield and Greenfield, 1972). The effects of introduction will depend upon the abundance of each species, their genetic similarity, and the strength of the species' isolating mechanisms.

In Lower Kananaskis Reservoir, the introduction of C. glumbeus has successfully resulted in devolopment of a largo population size. Introduced \underline{R}. cataractae have not adapted as well and have attained a small population size relative
 the margin of their normal habitat range in Lower Kananaskis Reservoir, which is without abundant riffle habitat. In Lower Kananaskis Reservoir, this low frequency of $\underline{\text { ? }}$ Cataractae relative to \underline{C}. p lumbeus is a contriruting factor to hybridization. In the absence of appropriate mating stimuli, individuals of the less common species may have no alternative but to respond to inappropriate stimuli from individuals of the abundant species (Mayr, 1959). Hybridization has long been attributed to a disproportion in the abundance of species (Hubbs et. al. 1943; Mecham, 19E0; Stebbins, 1959). Whether R_{O} cataractae will mate with C . plumbeus in the absence of conspecific mates is unknown.

Such mating did not occur during the mating tests conducted in this study.
3) Overview of Environmental Eactors

Given the absence of appropriate historical information on the ecology and abundance of these two species, it is not possible to single out one of the above factors as having the major role in facilitating hybridization.

REFERENCES

Ahsan, S.N. 1966. Effects of terperature and light on the cyclical changes in the spermatogenetic activity of the lake chub, Couesius plumbeus (Agassiz). Can. J. Zool. 44:161-171.

Anderson, E. 1949. Introgressive hyhridization. John hiley, New York, N.Y., 109p.

Anderson, E. 1953. Introgressive hybridization. Eiol. Eov.. 28(3):280-307.

Aspinwall, N. and H. Tsuyuki. 1968. Inhoritance of muscle proteins in hybrids between the redside shiner

 $25(7): 1317-1322$ 。

Atchley, W.R. C.T. Gaskins, and D.A. Anderson. 1976. statistical properties of ratios. I. rmpirical results. Syst. Zool. 25(2):137-148.

Bartnik. V.G. 1970. Reproductive isolation between two
 in Manitoba. J. Fish. Res. Board can. 27:2725-2 $\frac{7}{4}$.

Bay. K. 1969. Generalized Bartlett-Box test for homoqeneity of variance. DFRS (Division of educational research services) statistical package. Univ. Alberta, $5 d m o n t o n$, $5 p$.

Brazo, D.C., C.R. Liston, and R.C. Andersor. 1978. Life history of the longnose dace, phinichthys cataractae, in the surge zone of eastern Lake Michigan near Ludington, Michigan. Trans. Am. Fish. Soc. 107 (4):550-556.

Brown, J.H. 1969. The life history and ecology of the northern lake chuh (Couesius plumbeus) in the la fonge region of Saskatchewan. M.S. Thesis, Univ. Saskatchewan, Saskatoon. 152p.

Brown, J.H., U. T. Hammer, and G.D. Koshinsky. 1970. Breeding biology of the lake chub, Couesius plumbeus, at Lac la Ronge, Saskatchewan. J. Fish. Pes. Board can. 27:1005-1015.

Bruce, W.J. and R.F. Parsons. 1975. Age, qrowth and maturity of lake chub (Couesius pluqbeus) in Mile 56 Brook, Ten Mile Lake, Western Labrador. Environment Canada, Eish. Mar. Serv. Pes. Dev. Tech. Rep. 683:13p.

Cassie. R.M. 1963. Tests of significance for probability paper analysis. N.Z.J. Sci. 6:474-482.

Clarke, J. T. 1964. Simplified 'disc' (polyacrylamide gel) electrophoresis. Ann. N. Y. Acad. Sci. 121:428-435.

Clayton, J.W. and J.H. Gee. 1969. Lactate dehydrogenase isozymes in longnose and blacknose dace lphinichthys
 Res. Board Can. 26:3049-3053.

Colgan.P.W., P.K. Ballantyne anत M.V.H. Wilson. 1976. Numerical taxonomy of hybridizing Lepomis (Centrarchidae) in Lake opinicon, ontarin. Can. J. zool. 54: 42-47.

Cooley. W.W. and P.R. Lohnes. 1971. Multivariate data analysis. Wiley and Co.. Now York, 364p.

Davis, B.J. 1964. Disc electrophoresis IT: method and application to human serum proteins. Ann. N. Y. Acad. Sci. 121:404-427.

Davis, H.S. 1953. Culture and diseases of game fishes. Univ. Calif. Press, Berkeley, Calif. 332p.

Dixon, 够. J. (Ed.). 1973. BMD: biomedical computer programs. 3rd ed. Iniv. California Press, Los Angeles. 773p.

Dudzinski, M.L.. J.M. Norris, J.T. Chmura and C.B. H. Edwards. 1975. Repeatability of principal comporents in samples: normal and non-normal data sets compared. Multivariate Rehavioral Research $10(1): 109-117$.

Fillion, D.J. 1963. The benthic fauna of three mountain reservoirs in Alberta. M.Sc. Thesis, Univ. Alberta. Edmonton. 160 p .

Gee, J.H. and K. Machniak. 1972. Ecological notes on a lake-dwelling population of longnose dace (Ohinichthys cataractae). J. Fish. Res. Board Can. 29:330-332.

Geen, G.H. 1955. Some features of the life history of the lake chub Couesius plumheus qreeni Jordan) in British Columbia. B.A. Thesis. Oniv. British Columbia. Vancouver, B. C. 3.3 p .

Greenfield. D. W. and T. Greenfiصld. 1972. Introgressivo hybridization between Gila orcutti and Hesperoleucus symmetricus (Pisces: Cyprinidae) in the Cuyama River Basin, California: I Meristics, morphometrics and breeding. Copeia 3:417-427.

Hubbs, C.L. 1955. Hybridization between fish species in nature. Syst. Zool. 4:1-20.

Hubbs, C.L. 1961. Isolating mechanisms in the speciation of
fishes. p. 5-23. In W.F. Blair (Ed.), Vertebrate speciation. Univ. Texas Press, Austin, Texas, f42p.

Hubbs. C.L. and K.F. Lagler. 1949. Fishes of Isle Doyale. Lake Superior, Michiqan. Papers Mich. Acad. Sci. 33:73-133.

Hubbs. C.L. and K.F. Lagler. 1964. Fishes of the Great Lakes region. Univ. Michigan Press, Ann Arbor, Mich. 213 p .

Hubbs, C. and K. Strawn. 1957. Relative variability of hybrids between the darters. Ftheostoma spectahile and percina caprodes. Eyolution $11(1): 1-90$.

Hubbs, C.L.. L.C. Hubbs, and R.E. Johnson. 1943. Hybridization in nature between species of catostomid fishes. Contr. Lab. Vert. Biol., Univ. Michigan, 22:1-75.

Jones, J.N. 1973. Fffects of thirty years hybriłization on the toads Bufo americanus and Rufo woodhousii forleri at Bloomington, Inत̄iana. Evolution $27: 4 \overline{3}=44 \overline{8}$.

Kuehn, J.H. 1940. A study of a moplatjon of longnose dace (Rhinichthys cataractae). Proc. Minn. Acad. Sci. 17: $81-87$ 。

Littlejohn. M.J. 1969. The systematic significance of isolating mechanisms. D. 459-493. In Systematic biology: Proceodings of an international conference. Nat. ncad. Sci. Publ. 1692. 632p.

Marr, J.C. 1955. The use of morphometric data in systematic, racial, and relative growth studies in fishes. Copeia $1955(1)=23-31$.

Mayr, E. 1969. Populations, species and evolution. Belknap press, Cambridge Mass. 453p.

McPhail, J.D. and C.C. Lindsey. 1970. Preshwater fishes of northwestern Canada and Alaska. Fish. Res. Board Can. Bull. 173:1-381.

Mecham, J. S. 1960. Introgressive hybridization between two southeastern treefrogs. Evolution 14:445-457.

Miller, R.B. 1954. Effect of the pocaterra power development on Lower Kananaskis Lake. Unpubl. Rep. ALberta Dept. Lands and Porests, Edmonton, 23p.

Moore, $\mathrm{M}^{\circ} \mathrm{S}$. 1977. An evaluation of narrow hybrid zones in vertebrates. Quart. Rey. Biol. 52:253-277.

Morrison, D.F. 1967. Multivariate statistical methods.

McGraw-Hill Inc. New York, Э39p.
Nelson, J.S. 1952. Effects on fishes of changes within the Kananaskis River System. M. Sc. Thesis, Univ. Alberta, Edmonton. 107 p .

Nelson, J.S. 1966. Hybridization hetween two cyprinia fishes, Hybopsis plurbea and phinichthys cataractae, in Alberta. Can. J. Zool. 44:963-958.

Nelson, J. S. 1968. Hybridization and isolating mechanisms between Catostomus commersonii and C. macrocheilus (Pisces : Catostomidae). J. Eish. Rns. Board Can. 25(1): 101-150.

Nelson, J.S. 1973. Morpholoqical तifferences between the Teleosts Couesius plumbeus (lake Chub) and phinichthys cataractae (Longnose Dace) and their hybrids from Alberta. J. Morph., 139(2):227-233.

Nie, N.H., C. H. Hull, J.G. Jenkins, K. Stoinbrenner, and D.H. Bent. 1975. SPSS : statistical package for the social sciences. 2nd od. McGraw Hill Co., New York. N.Y., 575 p .

Nyman, 0.L. 1970. Electrophoretic analysis of hybrids between salmon (Salmo salar L.) and trout (Salmo trutta L.) . Trans. Am. Fish. Soc. 1:229-236.

Pimental, R.A. 1976. Morphometrics: the multivariate analysis of biological data. Calif. Polytechic state Univ., San Luis Obispo, CA. 149p.

Rawson, D.S. 1937. Biological examination of the Kananaskis Lakes, Alberta. Unpubl. Rep., Alherta Dept. Lands and Mines, Fidmonton, 12p.

Rawson, D.S. 1948. Biological examinations on the Bow and Kananaskis Rivers. Unpubl. M.S., Jniv. Sask. Saskatoon, 79p.

Reinitz, G.L. 1977. Electrophoretic distinction of rainhow trout (Salmo gairdneri), west-slope cutthroat trout (Salmo $\underline{\underline{c}} \underline{\underline{a} \underline{\underline{c}} \underline{i} \text {) , and their hybrids. J. Fish. Res. Board }}$ Can. 34: 1236-1239.

Ricker, W.E. 1971. (ed.) Methods for assessmont of fish production in freshwaters. IBP Handbook No. 3, 2 nd ed. Blackwell Scientific Publications, Oxford, England. 348p.

Schueler, F. W. and J. D. Rising. 1976. Phenetic evidence of natural hybridization. Syst. 7ool. 25:283-288.

Scott，W．B．and E．J．Crossman．1973．Freshwater fishes of Canada．Fish．Res．Board Can．Bull．184：1－06f．

Shaw，C．R．and P．Prasad．1970．Starch gel electrophoresis of enzymes－a compilation of recipes．Riochemical Genetics 4：297－320．

Sibley，C．G．1961．Hybridization and isolating mechanisms， p．69－88．In W．F．Blair（Ed．）．Vertobrate speciation． Univ．Texas Press，Austin，Texas，64？p．

Simon，J．P．1946．Hyoming fishes．Bull．No．4，Ryoming Game Fish Dept．，Cheyenne，只yo． 129 p．

Smith，G．R．1973．Analysis of several hybrids cyprinid fishes from Western North America．Copeia 3：395－410．

Smith，I．1969．（ed．）Acrylamide gel तisc electrophoresis． In I．Smith（ed．），Chromatographic and electrophorotic techniques，Vol．IT，3rd ed．Tnterscience Pub．，Now York，N．Y．347p．

Sokal．R．R．and F．J．Rohlf．1959．Biometry，the principles and practises of statistics in biological research．${ }^{\text {t．}}$ ． H ． Freeman and Co．，San Francisco， 775 p ．

Stebhins，G．L．1959．The role of hybridization in evolution． Proc．Aq．Phil．Soc． $103(2): 231-251$.

Strawn，K．and C．Hubbs．1956．Observations on stripping small fishes for experimental purposes．Copeia 1956（2）：114－116．

Taylor，\quad ．R．1954．Records of fishes in tho John N．Lowe collection from the Upper Peninsula of Michigan．Misc． Publ．Museum Zool．Univ．Mich．，No．87：ィー50．

Thomas，R．C．1955．A report on conditions in the Kananaskis watershed in early June，1965．＂npubl．Pep．Alberta Fish and Wildife Div．，Edmonton， 12 p ．

Tsuyuki，H．and F．Roberts．1965．Zone electrophoretic comparison of muscle mogens and blood proteins of artificial hybrids of Salmonidae with their parental species．J．Fish．Res．Board Can．，22（3）：7f7－773．

Utter，F．M．H．O．Hodgins and F． ．Allendorf． 1974. Biochemical genetic studies of fishes：potentialities and limitations．D．213－238．In D．C．Malins and J．P． Sargent（Ed．），Biochemical an $\begin{gathered}\text { biophysical perspectives }\end{gathered}$ in marine biology．Academic Press，New York，N．Y．．213p．

Hells，A．H．1978．Systematics，variation，and zoogeography of two North American cypriniA fishes．Ph．D．Thesis．

Univ. Alberta, Edmonton. 295p.
Wishart, D. 1975. Clustan 1C. Univ. College London, London. 124 p .

Zalik, S. 1977. Outline of statistical methods for biological and medical research. Univ. Alberta, Eतmontion. 152p.

Plate 1. Male Couesius plumbeus captured at height of spawning period, mid-June, 1978, from Lower Kananaskis Reservoir.

Plate 2. Female Couesius plumbeus captured at height of spawning period, mid-June, 1978, from Lower Kananaskis Reservoir.

Plate 3. Male Rhinichthys cataractae captured at height of spawning period, mid-June, 1978, from Lower Kananaskis Reservoir (Interlakes Stream).

Plate 4. Female Rhinichthys cataractae captured at height of spawning period, mid-June, 1978, from Lower Kananaskis Reservoir (Interlakes Stream).

Plate 5. Adult male hybrid, Couesius plumbeus x Rhinichthys cataractae, captured at height of spawning period, mid-June, 1978, from Lower Kananaskis Reservoir.

Plate 6. Top: Couesius plumbeus (male)
Middle: Couesius plumbeus x Rhinichthys cataractae hybrid (male)

Bottom: Rhinichthys cataractae (male)
All specimens captured in 1977, Lower Kananaskis Reservoir.

Plate 7. Electroshocking the lower reaches of Smith-Dorrien Creek near its mouth on Lower Kananaskis Reservoir, early May, 1978 (looking east).

Plate 8. Interlakes Stream at south end of Lower Kananaskis Reservoir (looking south), in early June prior to cyprinid spawning peak. This illustrates Interlakes stream habitat before it is flooded with the rising reservoir level.

APPENDIX TABLE 1. Sumary of cyprinid catch data from Upper and Lower Kananaskis Reservoirs, 1977. Size of gillnet mesh given in followed by number of hours set (in parentheses).

LOWER KANANASKIS RESERVOIR

LK1 - extreme S. end of reservoir	May 10	Gillnet $26 \operatorname{mm}(24)$	3.0 m	9
LK1 - extreme S. end of reservoir	May 11	Gillnet 26 mm		4
LKl - as above \& off E. shore	May 27	Gillnet 18 mm (31)	$1.5-2.5 \mathrm{~m}$	8
LKl - extreme S. end of reservoir	June 2	Gillnet 18 mm		12
LK1 - as above \& mouth to S.E. Arm	June 14	Gillnet $26,18 \mathrm{~mm}(27)$		74
LKI - as above \& mouth to S.E. Arm	June 15	Gillnet 18 mim (26)	$2.0-4.0 \mathrm{~m}$	11
LK1 - as above \& mouth to S.E. Arm	June 15	Gillnet $26 \mathrm{~mm}(26)$	$2.0-4.0 \mathrm{~m}$	22
LK1 - as above \& mouth to S.E. Arm	June 23	Gillnet 26 mm (19)	$4.0-6.0 \mathrm{~m}$	23
LK1 - as above \& mouth to S.W. Arm	June 23	Gillnet $26,18 \mathrm{~mm}(18)$		8
LK1 - as above \& mouth to S.W. Arm	June 23	Seine		75
LK1 - as above \& mouth to S.W. Arm	June 24	Gillnet 26, $18 \operatorname{mm}(21)$	$5.5-6.0 \mathrm{~m}$	41
LK1 - as above \& mouth to S.E. Arm	July 6	Gillnet $26,18 \mathrm{~mm}(20)$	5.86 .5 m	54
LKI - as above \& mouth to S.W. Arm	July 8	Seine		522
LKl - as above \& mouth to S.W. Arm	July 15	Seine		28
LK1 - as above \& near campsites W. shore	July 21	Seine		998
LK1 - as above \& near campsites W. shore	July 27	Gillnet $26 \mathrm{~mm}(21)$	4.5 m	28
LK1 - as above \& mouth to S.E. Arm	Aug. 9	Gillnet $26,18 \mathrm{~mm}(22)$	8.0 m	50

Capture Site Description	Date	Method of Capture	Depth	Numbe c. plumbeus	rs of Specimens R. cataractae	Captured Putative Hybrids
LOWER KANANASK1S RESERVOIR						
LK2 - E. shore; N. of Boulton Cr.	June 3	Gillnet 26, $18 \mathrm{~mm}(24)$	2.0 m	13		1
LK2 - E. shore; N. of Boulton Cr.	June 14	Seine		14		
LK2 - E. shore; N. of Boulton Cr.	June 15	Gillnet $18 \mathrm{~mm}(26)$		40		
LK2 - E. shore; N. of Boulton Cr.	June 16	Gillnet $18 \mathrm{~mm}(25)$		7		
LK2 - E. shore; N. of Boulton Cr.	June 22	Gillnet $26 \mathrm{~mm}(24)$	$2.0-2.6 \mathrm{~m}$	7		
LK2 - E. shore; N. of Boulton Cr.	June 24	Gillnet 26 mm (22)	4.0-5.0 m	11		
LK2 - E. shore; N. of Boulton Cr.	July 27	Seine		110		
LK2 - E. shore; N. of Boulton Cr.	July 27	Seine		3		2
LK4 - E. shore; near cottages	July 27	Seine		530	149	2
LK4 - E. shore; near cottages	July 27	Seine		3		
LK5 - mouth of Muskeg Cr.	June 1	Gillnet $26,18 \mathrm{~mm}(29)$	2.5-12 m	24	1	
LK6 - mouth of lnvincible Cr.	June 1	Gillnet $26 \mathrm{~mm}(28)$	2.0 m	18		
LK6 - mouth of Invincible Cr.	June 27	Gillnet $26,18 \mathrm{~mm}$		11		
LK7 - mouth of Smith-Dorrien Cr.	May 17	Gillnet $26,18 \mathrm{~mm}(25)$	2.0 m	5		
LK7 - mouth of Smith-Dorrien Cr.	May 18	Gillnet 18 mm(24)	3.0 m		1	
LK7 - mouth of Smith-Dorrien Cr.	June 9	Gillnet 26 mm		2		
LK7 - mouth of Smith-Dorrien Cr.	July 11	Seine		62		
LK8 - mouth of Kent Cr.	July 11	Seine		199		2
LK8 - mouth of Kent Cr.	July 11	Seine		62		
LK8 - mouth of Kent Cr.	July 20	Seine		732	94	12
LK9 - flats N. of Pocaterra Dam	July 11	Seine		1227	95	12
LK9 - flats N. of Pocaterra Dam	July 27	Seine		1271		
LK9 - flats N. of Pocaterra Dam	July 27	Seine		29		
LK9 - flats N. of Pocaterra Dam	Aug. 8	Seine		344		
1nterlakes P.P. Raceway	June 16			97	5	

APPENDIX TABLE 2. Cyprinid cap tures, Liwer Kananask
(LK1 Stream $=$ Interlakes Stream)

$\begin{gathered} \text { Date } \\ 1978 \end{gathered}$	Location	Capture Mcthod	Depth	Substrate	Crucrius frimbicis						Stin'shurs entmueta						c. Flumbrun \times H. cataructa.		
					Sex	total	$\begin{aligned} & \text { Not } \\ & \text { Rinon } \end{aligned}$	Kıpe	$\begin{aligned} & \text { Fully } \\ & \text { Ripe } \end{aligned}$	spent	Sex	Fotal	$\begin{aligned} & \text { Noo } \\ & \text { Bire } \end{aligned}$	A1se	$\begin{aligned} & Y_{u 11 v} \\ & r_{1 p e} \end{aligned}$	spent	Total	$\begin{aligned} & \text { Not } \\ & \text { R1p } \end{aligned}$	Ripe
May 1	Common Bay (E. shore)	seine	0.3 m	fine stif	8	250	250				$\stackrel{\square}{9}$	1	3						
					8	161	161				σ	4	4						
May 7	Smith-Dorrien Cr. Mouth	minnove trap	1 m	sandy silt	5	1													
May 9	Common Bay (E. shorr)	mi now trap	0.5 m	silt	6	1													
May 13	LK1 Stream	selne	0.4 m	sandy silt	8	6	5	1											
					α	2													
May 15	1 1.1 Stream	scine	0.2 m	fine silt	9	3		3											
May 16	Smith-Cortien Cr. Mouth	gillinet 18, 26 mm (28.5)	1 m	sllt	8	3	3												
May 17	Smith-Dorrien Cr. Mouth	gillnet 26 mm (24)	1.25 m	sHt	8	1	1												
					σ	1			1										
May 18	Smith Dorrien Cr. Mouth	gill 1 net 18, 26 nmin (22)	1.25 m	s11.	8	6		6			9	1		1					
					${ }^{\circ}$	2													
May 18	Lx1 Stream	seine	-0.5 m	mud	8	3	3				8	1	1						
					c	5					$\stackrel{ }{\circ}$	1							
					jeuv.	44													
May 22	LX1 Strean	seine		sft	jeuv.	2													
May 22	$1 . \mathrm{X}$ Stream Mouth	seine	0.1 m	s11t	\bigcirc	1	1												
					3euv.	57													
May 23	Common bay	8111net $15,26 \mathrm{~mm}$ (22.5)	10 m	st1t	no cy	prinidae	captu												
May 24	Cemmen Bay	p:11nct 18, 26 mm (26)	4 m	sllt	8	6		6											
May 24	Smith-Dorrien Cr. Mouth	gillinet 18, 26 mm (24)	1 m	silt \& pravel	9	4	1	3											
May 25	Incerlakes Raceway	2thnet 18 mm (23)	15 m	boulder	8	?	1	2											
may 25	Smith-Dorrien Cr, Mouth	RH11net 18, 26 man (22)	5 m	silt	8	9	9												
May 26	Smith-Dorrien Cr. Mouth	pillinet 18, 26 mm (25)	1.3 =	grave 1	no $\mathrm{cy}^{\text {y }}$	prinidae	captu												
May 26	Boulton Cr. Mouth	gillinet 18, 26 mm (20)	$1-3.0$ =	silt, stumps	$\stackrel{\square}{9}$	9		6	3		9	3	1	2			82	1	1
					$\stackrel{ }{ }$	3			3		δ	2							
May 27	Smith-Derriten Cr. Mouth	githet 18, 26 mm (22)	${ }^{1-3.0}$ a	silt \& gravel	no C^{\prime}	prinidae	captu												
May 27	Boulton Cr. Mouth	${ }_{\text {gillnet }} 18,26 \mathrm{~mm}$ (26)	$1-3.0$ m	silt	9	1		1											
June 1	Interlakes raceway	pillinet 26 mom (29)	1.1-3.2 m	boulder	8	is	'	3	s		8	4		4					
					\checkmark	5													
June 1	L21 Stream Mouth	gillnet 18 mm (27)	1.2 m	silt	8	3		2	1		\%	1							
June 1	Kent Cr. Mouth	gillinet 18. 26 mm (52)	$1-3.0 \mathrm{~m}$	Rravel	8	-		2											
June 5	LK1 Stream	seline, dipnet	0. 1 m	boulder of sht	9	9	4	s			9	10	3	6	1				
					\cdots	9			2		jeuv.	2							
June 5	Lx1 Common Bay	Rillinet $18,26 \mathrm{~mm}$ (19)	17.5 m	s11t	*	${ }^{2}$			2										
Junc 7	Lki Common Bay	pillnet 18 mm (48)	17 m	silt	${ }^{\circ}$,			2										
June ?	Boulton Cr. Mouth	gillinet 26 mm (48)	1.5 m	si1t	8	10													
					-	1													
Junc ${ }^{\text {r }}$	1.151 Stream	Seline, dipnet	0.05-0.5 m	boulter 6 silt							\checkmark	5			4		82	1	1
												sex unk							
June 7	LX1 Stream Mouch	R111 net 26 mm (22)	2.8 m	silt	$\stackrel{\square}{9}$	11	1	4	s		$\stackrel{\square}{8}$	3		2	1				
					8	4			3		\%	1							

appendix table 2. Continued.

APPENDIX TABLE 3. Water quality data, Upper Kananaskis Reservoir (1977). S - surface; M - mid-depth; B - 1 m off bottom;
N.A. - not available.
$1-1-1+1=$
$18+5$

1
APPENDIX TABLE 4. Water quality data, Lower Kananaskis Reservoir (1977). S - surface; M - mid-depth; B - 1 m off bottom; N.A. - not availabe.

PARAMETER	June 20			July 15			August 15		
	S	M	B	S	M	B	S	M	B
Total Alkalinity (mg/l CaCo_{3})	102.0	104.0	101.0	103.0	103.0	100.0	104.0	107.0	103.0
Color	< 5	< 5	< 5	< 5	<5	<5	< 5	< 5	< 5
pH	8.4	8.3	8.3	8.6	8.2	7.9	8.5	8.3	7.9
Residue Non-filterable (mg)	15	15	15	15	15	15	15	15	15
Specific Conductance (us/cm)	217	232	218	N.A.	N.A.	N.A.	216	230	218
Turbidity (JTU)	1.6	2.2	2.8	1.5	1.5	2.5	1.5	2.5	2.0
Dissolved Nitrogen ($\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{mg} / 1 \mathrm{~N}$)	<0.01	0.03	0.02	0.01	0.01	0.02	<0.01	0.03	0.02
Total Kjeldahl Nitrogen (mg/l)	0.27	0.21	0.27	<0.10	0.10	< 0.10	<0.10	<0.10	<0.10
Total Phosphorus (mg/l)	0.006	0.007	0.013	0.010	0.006	0.005	0.005	0.008	0.013
Total Organic Carbon (mg/l)	4	3	6	1	2	2	3	3	3
Total Inorganic Carbon (mg/l)	21	22	21	24	24	23	23	24	23

APPENDIX TABLE 5. Temperature profiles of Lower Kananaskis 貝eservoir, 1978. Taken using a YSI telethermometer at Water Quality Sampling Site.

Depth (m)	Temperature ${ }^{\circ} \mathrm{C}$		
	May 18	June 8	June 29
0	3.0	10.5	13.0
1	4.0		13.0
2	4.0		12.6
3	4.0	8.8	11.6
4	4.0		11.2
5	4.0		10.5
6	4.0	7.1	9.9
7	3.8		9.0
8	3.5		8.4
9	3.4		7.7
10	3.4		7.5
11	3.4		7.3
12	3.3	6.0	7.0
13	3.2		6.9
14	3.1		6.9
15	3.0	5.1	6.4
16	2.9		6.2
17	2.9		6.1
18	3.0	5.0	5.9
19	3.0		5.9
20	3.0		5.9
21		5.0	5.9
24		4.5	5.8
25			5.5

APPENDIX TABLE б.

EIGENVALUES

| 12.48 | 5.95 | 0.74 | 0.55 | 0.34 | 0.25 | 0.19 | 0.11 | 0.07 | 0.06 | 0.05 | 0.05 | 0.04 | 0.03 | 0.03 | 0.02 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.02 | 0.61 | 6.01 | 0.01 | 0.00 | | | | | | | | | | | |

percentage variance

| 59.41 | 28.31 | 3.53 | 2.60 | 1.61 | 1.20 | 0.92 | 0.51 | 0.36 | 0.30 | 0.25 | 0.23 | 0.19 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | 0.1310 .120 .10

cumulative variance
 $99.85 \quad 99.91 \quad$ צ5.96 99.98 100.00

EIGENVECTORS - BY ROAS
VECTOR 1
 $0.0370 .010 \quad 0.028$

VECTOR 2
 0.273-0.277 0.354

VECTOR 3
$0.711 \quad 0.566 \quad 0.160$

												-6. 954	1. 644	0.284
5	1	4. 145	-2.872	-0.505	S	34	6.051	-2.940	-C. 962	S		-7.059	1.398	-1. $\mathbf{1} 0$
S	2	-0.071	-2.394	0.522	5	35	5. 273	-2.749	-0.247	S	69	-2.470	2. 113	0.206
5	3	-4.879	-2.168	-0.270	5	36	4.513	-3.35u	-0.184	S		-4.204	1.434	$0.3 \cup 6$
s	4	-1.543	- 1.603	U. 121	5	37	1. 301	- 2.103	-0.247	5	71	-4. 235	1.407	-0.067
S	5	1. 135	-2.766	0.225	5	38	-0.6y2	-2.778	-0. 323	5	72	-5.c4y	1.381	1. 545
S	6	2.405	-3.050	-0. 113	5	39	-3. 181	-2. 123	-0. 747	S	73	0.792	1.70y	-0.028
S	7	-3.037	-1.647	-v.801	5	40	-4.721	-2.035	-0.542	5	74	-2.501	2. $0^{1} 06$	0.327
S	8	-1.152	-2. 260	1.132	5	41	3.767	-3.075	U. 115	5	75	- U. 835	1. 182	0.334
5	9	-0.307	-2.815	-0.28 5	5	42	1.154	-2.434	2.304	S	76	-1.889	c. 031	0.371
S	10	-1.069	-2.249	0.813	5	43	$4.00 y$	-2.33d	0.593	5	77	-2. 716	1.050	-1.311
S	11	-4.725	-2.310	-0.058	5	44	3.710	-3.116	-0.378	5	78	4. 760	$3.0 \cup 1$	-0.268
S	12	-C.950	-2.533	0.566	5	45	3.327	-2.100	U. 395	5	79	3.034	2.544	0.979
S	13	-7.352	-1.778	-0.772	5	46	4.466	-2.814	-U. 558	5	80	3.200	2.517	-0.007
S	14	-0. 155	-2.369	U. 367	5	47	2.853	-2.513	0.026	5	81	2.859	2.637	-1.452
S	15	-6.332	-1.909	-1.239	5	48	2.370	- 2.617	-0.723	S	82	2. 303	1. 991	-0.743
5	16	-U. Ey3	-2.574	0.903	5	49	0.025	-2.463	0.38 \%	5	83	2.449	2. 348	0.012
S	17	4.054	-2.640	1.810	5	50	2.295	-2.148	-1.115	5	34	2.610	2.580	U. 283
S	18	1. 813	-2.101	-0.843	5	51	-0.052	2. 124	0.605	5	85	4. 337	2.153	1. C8s
S	19	3. 110	-3.095	1.025	5	52	-6.815	-. 333	-0.250	5	86	4.474	2.909	0.123
	20	3.102	-2.74v	-0.464	5	53	-1.254	1.964	0.514	5	87	2.787	2.325	U. 331
S	21	-4. 255	-1.764	0.436	5	${ }_{5}{ }_{5}$	-3.484	2. 371	0.648	5	88	1.770	2.467	0.610
5	22	-5. 133	-1. 525	-0.889	5	55	-4.314	2. 285	-C.806	5	d9	2.476	2.416	1. 6.22
5	23	-5. 535	-2.c79	0.972	5	56	4. 542	3.484	-0.675	;	90	0.734	2.447	0.036
S	24	-7. 513	-1.421	-0.297	S	57	1. 517	2.416	0.422	-	91	0.550	2.300	1.421
5	25	1. 734	-3.000	U. 193	5	58	2.932	2.931	0.324	5	92	3.457	2.680	-0.341
5	26	-0.406	-2.098	U. 185	5	59	0.604	3.615	0.608	5	43	2. 553	2.006	-0.379
S	27	-1.1uy	-2.155	-0.369	5	60	4.044	4.124	-0.324	5	94	U. 465	4.700	-0.426
S	28	-1.962	- 1.805	- 0.912	5	01	1. 307	3.773	0.369	5		0.845	4.045	-1.725
	29	-1.789	-2.008	-1.089	5	62	-2.451	2.082	-0.207	5	96	-0. 152	1.897	-2.542
S	30	-3.942	-1.450	1. 521	5	63	-1.900	2.580	1.534	5	97	-0.420	1.747	-1.695
S	31	-5.451	-1.379	-0.491	S	64	-3.024	2. 363	1. 836	5	98	U. 330	1.885	-1.528
S	32	-3.425	-1.702	0.777	S	65	-3.624	1.961	1.282	5		1. 916	2.807	-1.298
	33	3.425	. 740	-0.08 4	S	64	-5.815	2.173	-0.279		00	5.672	2.780	0.083

APPENDIX TABLE 7.

percentage vadiance
$\begin{array}{rrrrllllllllllllll}66.36 & 20.31 & 4.87 & 2.63 & 1.55 & 0.96 & 0.66 & 0.50 & 0.39 & 0.31 & 0.36 & 0.25 & 0.24 & 0.17 & 0.13 & 0.10\end{array}$
comolative variance
$\begin{array}{llllllllllllllllllll}66.36 & 86.67 & y 1.53 & 94.21 & 95.76 & 96.72 & 97.38 & 97.88 & 98.27 & 98.58 & 98.88 & 9 y .13 & 9 y .37 & 9 y .54 & 95.68 & 91.78\end{array}$ $\begin{array}{llll}9.96 & 99.98 \quad 100.00\end{array}$
eigenvectors - by rows
vector 1

VECTOR 2
 0.189-0.279 0.385

VECTOR 3
 $0.826 \quad 0.5010 .204$

APPENDIX TABLE 8.

ALBERTA ALL SPECIMENS（100）
PRINCIPAL COMPONENTS ANALYSIS－CLUSTAN 1C
KJHBER OF CAJZS＝VUU
NUMBER OF BINARY VARIABLES＝
MUMBER OF NUMERIC VARIABLES $=0$
（S QUARE－ROOT TRANSFORMED DATA）
NUAERIC MEANS AND STAMUARD OEVIATIONS
vapiable minimum value
MAXIMJM VALUE

2．0730	3.3166
1.0149	1．6462
0.4243	0.1550
0.5190	1．JJue
0.5811	0.9198
C． 5385	U． 9327
C． 6708	1． 1489
C． 500 u	U． $8+85$
0.5477	0． 1539
c．0uju	0.5477
0.0000	0.7550
0.2046	0.9899
0.7071	1.4107
1.4900	2.4160
0.9695	1． 3469
1.0125	2.7258
1.257 u	2． 2782
0.4899	U．9434
5d．Jưu	74.0000
g．uJus	15.0000
21．0100	33．Uuve

1.6462
0.1550

1． .4000
0.9148

U． 9327
1． 1489
0.8485
0.3539
0.5477
0.7550
0.9499

1．4107
2． 4160
1.3404
2.7258
2.2782
0.9434
74.0000
15.0000

35．U0U0

EIGENVALUES

2.6773	U． 2713
1.3192	U． 1277
0.5096	U． 0745
0.761 u	U． 116 d
0.7645	J． 0789
0.743 y	0.0845
0.8994	0． 0998
0.0534	U． 0724
0.7632	U． 0903
0.3054	U． 1593
0.3055	U． 3103
0.0117	U． 2299
1.0007	U． 1169
1.1280	U． 1930
1.3227	U． 1445
2.1256	U． 2247
1.7081	U．19Y1
0.7439	U． 1976
$65 . v y u 0$	4． 1734
12.3700	1． 2078
25.92 u	3.0309

12.62	5.87	0.73	0.52	0.34	0.23
0.02	0.01	0.01	0.01	0.00	

$0.19 \quad 0.09$

－．0．00
percentage variance

cumuiative variamce
 99.67 99．92 צ9．56 99．98 10U．C0

EIGENVECTURS－oy hums
VECTOR 1

U．U3G O．LUY U．U30
VECTO？ 2
 $0.270-$ C゙． 2 は 2 U．355

VECTOR 3
 U． $716 \quad 0.594 \quad 0.159$

FIRST 3 EACTSUR JOKES

S	1	U． 143	2． 197	U． 574	5	35	4． 225	1．yto	1． 171			1． 3 守	－L．ubs	－v．3v 3
S	2	－0．632	2.421	－0． 105	5	34	4． 313	＜．001	U． 140		64	3． 111	－3．021	C． 445
5	3	－1．070	¢． 102	U． 462	5	37	2． 234	＜．<04	U． 202	S	70	3.174	－2．033	－－． 480
S	4	－3．410	＜． 062	$\cup .560$	5	30	1.8 is	2.435	U． 571	S	71	－4． 210	－2． 124	0.504
S	5	－4．340	＜． 641	－U． 95 y	S	39	2．534	2． 361	1．5yt	s	72	－5．372	－1．874	$-\mathrm{U} .799$
S	6	4． 353	2．940	－U． 585	S	40	0.910	2.547	U．Jく5	S	73	－5．347	－2．312	1．07t
5	7	1． 577	2.647	0.530	5	41	0.745	$=.400$	1． 300	S	74	－3． 290	－1．304	－U． 179
5	6	2．9 ${ }^{\text {c }}$	2.022	U． 413	S	42	3． 367	C． 100	－ .2 .203	S	15	1．8jo	－2．944	C． 211
5	9	U． 747	3.50 c	0.619	5	43	2． 543	1.167	－ 0.211	S	76	－13． 190	－2．090	U． 161
S	10	3.926	3．70．9	-0.245	5	44	J．tis	c． 081	－0．424	S	77	－0．90u	－ 2.117	－0．3a9
S	11	1.393	3． 500	0.428	S	45	0.972	Z． 542	－1．714	s	78	－1．703	－1． 9 cJ	－U．310
S	12	－2．313	－． 110	－ 0.200	5	46	u．U03	1．949	－2．54 3	S	74	－1．595	－1．4yy	-1.143
S	13	－1．731	－．67）	1． 511	5	47	－0． 253	1．didt	－1．67E	S	80	－3．924	－1． 5.54	1.561
S	14	-2.932	2.650	$1.70<$	5	48	4.404	1．81）	－1．474	s	d 1	－5．05\％	－1．474	－0．47y
S	15	－3． 576	2.273	1． 241	S	45	1.701	2.733	－1．226	S		－3．305	－1．705	0.006
S	16	－6．1us	C． 530	－ 2.350	S	50	5.371	2.477	U．17d	S	d3	8.811	-3.330	－U． 175
S	17	－6．484	2.110	l． 259	S	51	4.045	－－． 60.15	－0． 555	5	84	5.743	－2．609	－1．uU5
S	18	－7．E 14	1．${ }^{\text {a }} 35$	－1． 11 E	S	52	0.034	－2．042	こ．cuo	5	85	5.034	－ 2.503	- － 303
5	19	－2．356	－．23）	U． 257	5	53	－4． 190	－2． 674	－C．くらし	s	86	4．3त9	－3．153	－U．14 5
S	20	－4． 237	2．233	U．27i	S	54	－1．411	－1．E3y	0．116		87	1． 573	－1．980	－ 0.292
S	＜1	－4．239	1.759	－U． 111	S	55	1.179	－2．013	U． 304	¢	88	$-3.4 .35$	－ 2.70 u	－ 0.324
S	22	－5．197	1.736	1． 542	S	56	2．40s	－2．553	－v． 176	5	84	－3．030	－2．<11	－c． 740
S	23	C． 960	1.709	-0.043	S	57	－2．92）	－1．903	－6．J． 3	3	90	－4．434	－2．261	－0．4d7
S	24	－2．4 46	二．$\angle 72$	U． 271	S	58	－0．451	－2．090	1．153	S	91	3.730	－2．050	3.100
S	25	－0．648	1．220	U． 310	S	59	－0．141	－＜． 932	$-v .2 y t$	S	92	1． $1<2$	－2．tso	c．12t
5	$2{ }^{2}$	－1．744	$\therefore .064$	0.371	S	60	－0． 802	－ 2.35 \％	0.820	S	93	3.483	－2．157	U． 610
5	27	－2．577	－．．vbe	－1．377	S	61	－4．800	－ 2.379	－6．320	S	44	3． 1.54	－3．0レ9	－ 0.416
5	28	4． 505	c． 710	-4.301	S	F． 2	－ 0.787	－2．645	C． 617	S	95	3． 345	－1．394	3.406
S	29	3.000	く．50，	U．+5 d	S	63	－6．415	－1．93t	－ 0.722	S	9 E	4． 35 J	－2．0013	－0．511
S	30	ミ．1y3	A．314	－v．c2y	S	64	0.053	－2． 332	U． $3 \rightarrow 5$	s	¢ 7	2．${ }^{2} 12$	-2.140	4． 345
5	31	2． 7 7，	C．5：7	－1．461	S	65	－6．302	．． 301	－ 1.128	S		2.478	－2．474	－U． 115
S	32	2． 381	1． 741	－L． 761	S	68	－0．503	－2．6Uu	6.944	5		0.133	－ 2.516	0.400
5	33	2．52\％	4．2y4	－u．vou	S	67	3.905	553	1.703		1u	2.413	－1．764	－1．184
S	34	2.003	2.422	0.312										

APPENDIX TABIR

percentage variance
$\begin{array}{rrrlllllllllllllllll}65.87 & 20.19 & 4.74 & 2.04 & 1.44 & 1.10 & 0.94 & 0.62 & 0.46 & 0.33 & 0.3 u & 0.27 & 0.24 & 0.18 & 0.14 & 0.11 \\ 0.10 & 0.06 & 0.04 & 0.02 & 0.02 & & & \end{array}$
cumolative variance
 EIGENVECTORS - by RUES

VECTOR 1
 $0.005-c .064$ 0.05s
Dector 2
 $0.203-0.2740 .397$
VECTOR 3
 0.8120 .5420 .166

FIRST 3 PACTUR SCOKES

S	1	6.0313	2.286	-0.518	S	47	-2.880	2.057	-1.149	ธ93	-2.783	-1.071	0.187
S	2	c. 738	1.257	-1.078	5	48	-2.y51	2.784	-C.030	S 94	-1.920	-2.204	0.30 t
s	3	4.453	2.442	-0.761	S	49	-2.6.6)	2.390	-0.154	S 95	-2.473	-2.387	U. U25
S	4	7.271	2.607	0.151	S	50	-4. 630	2.892	-0. 549	596	-1.502	-1.744	-1.637
S	5	c. 363	1.9du	C. 006	5	51	4.257	-2.787	0.554	S 97	-0.751	-2.130	-0.10c
S	6	4.844	2. 372	-0.284	5	52	6.45 J	-3.010	1.418	S 98	-4.501	-1. 510	0.680
S	7	5.522	2.933	0.535	S	53	7.295	-3.747	-0.779	S 99	-6.292	-1. 120	-0.539
S	8	$5.60 y$	2.055	0.172	S	54	5.820	-3.400	0.106	S 100	- C. 800	-1.48u	-0.052
S	9	7.280	1.881	1.125	S	55	3.70)	-2.042	1.103	S 101	0.458	-1.785	-1.394
S	10	4.019	2.374	-c. 173	S	56	4.545	-2. 450	-0.784	S 102	- ©. 75)	-1.0y4	1.314
S	11	5.200	2.351	-1.01d	S	57	2.775	-2. 171	1.46E	S103	-1.830	0.803	0.429
S	12	6.384	1.53)	0.234	S	58	2.945	-2. 327	U. Vó 1	S104	-2. 141	- C. 189	0.149
S	13	5. 842	3.034	C. 844	S	59	1.641	- 2.582	0.455	S105	0.330	-1.501	0.548
S	14	S. 686	2.257	-1.114	S	60	0.964	-2.114	1. 673	S 106	-0.722	-6.431	1. ECE
5	15	4.803	2.010	1.120	5	61	2. 803	-3.583	-0.302	5107	c.tuy	0.215	1. 104
5	16	0.990	1.023	-0.346	S	62	-0.407	-2. 312	-1.262	S103	-1.523	-0.441	1.217
S	17	-2.14	1.972	-0.283	5	63	-c. 760	$-1.34<$	-1.144	S 109	-2.41J	0.146	1.100
5	18	-0.790	1.733	-1.647	5	64	-1.700	-2.248	- 6.819	S110	-2.739	0.506	1.223
S	19	-3.033	1. 645	-1.512	S	65	-C.054	-1.92y	-2.031	S111	-3.38)	1.24u	0.418
S	20	1.413	1.643	0.101	S	66	-0.0227	-1.351	0.356	S 112	-3.990	0.734	3.097
S	21	3.407	2.429	-1.581	5	67	-1.281	-1.917	-0.997	S 113	-2.973	C. 549	1.590
S	22	4.272	3.026	-1.796	S	¢8	-4.927	-1.706	0.493	S 114	-5.481	0.22 d	0.903
5	23	2. CH_{4}	2.678	0.209	S	69	-2.77,	-2.044	-1.374	S 115	-3.292	1. 103	1.475
S	24	5.650	2.202	-0.09	S	70	7.557	-2.811	-v. 494	S 11 E	-4.849	-1.107	1.275
5	25	5.371	1.453	-1.412	S	71	3.503	-2.308	2.078	S 117	-4.337	-0.55d	-0.731
S	26	2. 124	\%. 505	-0. 505	S	72	c. 744	-3.161	-0.540	S 118	-3.223	1.412	C. 419
S	27	0.205	2.333	-1.361	S	73	5. 304	- .6007	1.403	5119	-4.941	-0.728	-1.117
5	28	4.434	1.716	0.780	S	74	1.674	-2.039	0.355	S120	-1.751	-1.117	- C. 180
S	29	-2.971	2.654	-0.512	5	75	1.410	-2.009	-0.15t	S121	-v. 8 d1	C. 197	U. 268
5	30	-2.915	2.800	C. 907	S	76	-2. 217	-1.416	-0.373	S122	-3.322	C. 257	-0.114
S	31	-3.028	3. 191	C. 859	5	77	2. 559	- 2.716	0.228	S123	-2. 531	0.108	-0.337
S	32	-3.014	-. 192	-0.560	S	78	0.962	-1.997	-0.572	S 124	-4.05)	-1.670	-1.342
S	33	-3. 110	2.025	0.413	S	79	0.666	-2.146	-0.162	5125	-3.131	-6.674	2.328
S	34	-3.283	2. 137	1.431	S	80	0.047	-1.973	0.217	S126	-0.298	-0.430	-C.987
5	35	-2.87v	1.090	-0.420	5	81	-1.481	-2.287	-0.041	S127	-E. 760	-0. 516	-0.414
5	36	-4.74d	2.035	U. 176	S	82	1. 543	-2.319	0.853	S 128	-1. 108	C. 980	1.758
S	37	-3.880	3. 218	0.463	5	83	4.940	-2.234	c. 509	S129	-1. 371	C. 402	1. 367
5	38	3. 25 \%	-. 207	-1.231	5	84	1.094	-2.307	-0.075	5130	-2.955	-C. 110	0.315
S	19	5.851	2.799	-0.063	5	85	0.051	- 2.535	-0.000	S131	-4.260	-C. 475	-1.374
S	40	-0. 236	2.493	0.402	S	86	0.201	-. 250	-1.013	5132	-3.652	C.t 15	0.591
S	41	-0. 128	0.733	-1.415	5	87	-3. 887	-1.324	0.661	5133	-6.530	0.755	0.614
S	42	0.203	2.620	1.46 B	S	88	-5. 401	-1.400	-0.404	5134	-1.735	-0.052	-C. 944
S	43	-2.373	2.966	U. 161	5	49	5. 301	-3.305	-0.026	S135	-1.863	C. 80 s	-0.34
S	44	-3.274	-. 256	$-1.41<$	S	90	3. 904	- 2.735	-0.082	S136	4.644	C. 967	1. 344
S	45	-1.8\%4	1.777	-1.416	5	91	-4. 607	-2.052	-0.404	S137	-0.432	-. 051	U. 219
5	46	0.004	2.716	C. 114	S	92	-3.497	-1.730	-1.800				

(

こマママニッニッマ	
	ニンさロニッマ

 numatr of vagables pping padbagilities

	$\begin{gathered} \substack{2 \\ \begin{subarray}{c} { 3 \\ \begin{subarray}{c}{3{ 3 \\ \begin{subarray} { c } { 3 } } \\ {j} \end{subarray}} \\ {\hline} \end{gathered}$

	a \vdots \vdots	
		号こここきッさこきた？
 		$\begin{aligned} \text { - } \end{aligned}$
	结	

```
- *)
```



```
M*****)
M*****)
M*****)
M*****)
M*****)
```


H1\％	？rumb	norm：
（1）		为
	muscioin	（axito
	nitsion	为
ativiob	tand	ntic：
	monen	armin
comer	Smisen	atimon
	atamen	cismind
furrion	copren	\％orn：
	arsmen	comb
，		＂ ance，$^{\text {a }}$

年
艮为
2000

Tr

APPENDIX TABLE 13.

 $\stackrel{\bullet}{0}$

 IN A PRIORI KNOWN
COUESIUS $\mathrm{X} C^{\text {RHINICITHYS }}$ B

0.00002	0.00002
-0.00000	-0.00000

こここここニこさこの

言

$$
\begin{aligned}
& \text { 总 } \\
& \text { 膏 }
\end{aligned}
$$

APPENDIX TABLE 15

1.003

2020

$\begin{array}{ll}3 \\ 3 & 0 \\ 3 & 0\end{array}$

Mavaz
Mavaz
 号
年
CIFFfink

APPENDIX TABLE 16.

ALEEFIA PHINICETHYS ONLY

CUMULATIVE VAEIANCE
$\begin{array}{lllllllllllllllllllllllllll}77.51 & 63.72 & 88.59 & 92.33 & 94.80 & 96.02 & 96.98 & 97.54 & 97.97 & 98.36 & 98.71 & 98.99 & 99.26 & 99.47 & 95.65 & 99.76\end{array}$ $99.84 \quad 99.91 \quad$ g9.96 ç.g8 100.00
EIGENVECTOFS - EY FOhS
VECTOF 1
$\begin{array}{lllllllllllllllllllll}0.245 & 0.242 & 0.22 \epsilon & 0.240 & 0.240 & 0.238 & 0.238 & 0.240 & 0.241 & 0.234 & 0.212 & 0.232 & 0.226 & 0.243 & 0.236 & 0.243 & 0.238 & 0.208\end{array}$ $0 . C 330.01$ E 0.07ϵ

VECTOF 2
-0.033-0.015 0.000-0.087 0.025 0.051-0.049 0.017-0.009-0.094 0.166-0.041 0.089-0.024-0.069-0.051 0.038-0.210 $0.569 \quad 0.5010 .558$

VECTOF 3
$-0.0490 .056-0.054 \quad 0.063 \quad 0.003-0.068 \quad 0.031-0.033 \quad 0.030 \quad 0.080 \quad 0.1 \in 5-0.009-0.113-0.076-0.05 \in-0.019-0.082 \quad$ U. 162 -0. $\in 480.6730 .106$

FIRST		3 FACtCR SCCEES						
S	1	-0.072	0.193	-0.322	S 26	-1.870	0.707	1.455
5	2	-1.010	-ก. 211	-0.140	S 27	-3.453	-1.561	-0.26
S	3	-1.5t 9	0.180	0.043	S 28	5.4E1	-1.13t	- 1.921
S	4	-4.475	0.051	-2. 293	S 29	3.297	0.734	-0.775
S	5	-5.679	-1.103	-1.586	S 30	3. 76.6	-0. 627	-0.097
S	6	5.6.7	0.128	0.309	531	3.300	-1. 300	-0.322
S	7	1. 982	0.845	1. 244	S 32	2.673	-1.204	-0.197
S	8	3.697	0.353	-0.017	533	2.879	-0.384	-0.777
S	9	$1.09 t$	1.504	-0.753	¢ 34	3.193	0.271	0.016
3	10	5.129	0.751	-0.893	S 35	5.057	1.261	C. 334
S	11	1. 8 ¢ 1	1.093	-0.657	S 36	5.169	0.558	0.397 -1.119
S	12	-2.818	-0.455	-0.215	S 37	3.302	-0.042	-1.119
S	i3	-1.934	2.738	0.711	538	2. 194	0.943	0.077
S	14	-3.893	2.020	-1.093	S 39	2.847	1.516	-0.211 -0.575
S	15	-4.815	0.499	-0.941	S 40	0.911	0.268	-0.575
5	16	-7.701	0.279	0.265	541	0.712	1.639	-0.895 0.248
S	17	-8.4R5	0.748	0.692	$\begin{array}{ll}5 & 42 \\ 5 & 43\end{array}$	3.904 3.085	-0.804	2.719
S	18	-9.84t	-1.421	-0.396	43 44	3.085 0.714	-0.439	-0.157
5	19	-2.887	1.159	1.936	44	0.714		
5	20	-5.318	0.277	0.422	545	1.114	-1.922	-0.036
S	21	-5.692	-0.057	0.812	S 46	-0.412	- 3.206	0.542
5	22	-6. 601	0.856	-C. 162	47		-1.837	1.716
5	23	1. 266	0.145	1.729 -1.063	548 5	2.001	-1.819	-0.747
S	24	-3.121	-0.372	-1.063	$\begin{array}{ll}5 & 49 \\ 5 & 50\end{array}$	2.0018	- 0.215	-0.039

APPENDIX TABLE 17.

percentage vagiance

72.04	6.57	5.16	3.49	2.60	2.11	1.01	0.56	0.47	0.24	0.23	0.19	0.15	0.12	0.10	0.06
0.04	0.02	0.01	0.01	0.0											

cugulative variance

$\begin{array}{llllllllllllllllllllllllllll}72.04 & 78.61 & 63.77 & 87.27 & 89.86 & 91.98 & 92.99 & 93.55 & 94.01 & 94.31 & 94.54 & 94.73 & 94.87 & 94.99 & 95.09 & 95.15\end{array}$ $95.20 \quad 95.22 \quad 55.23 \quad 55.24 \quad 95.24$
EIGENVECTORS - EY ROHS
vector 1
$\begin{array}{lllllllllllllllllllllllllll}1.255 & 0.254 & 0.248 & 0.251 & 0.253 & 0.251 & 0.252 & 0.246 & 0.252 & 0.177 & 0.0 & 0.190 & 0.220 & 0.255 & 0.249 & 0.254 & 0.250 & 0.241\end{array}$ $0.0430 .02 €-0.006$

VECTOR 2
$0.006-0.025-0.005-0.055-0.019 \quad 0.032-0.017-0.014-0.042-0.2460 .0$-0.073 0.117 $0.010 \quad 0.0170 .014 \quad 0.029 \quad 0.014$ U. $690 \quad 0.648 \quad 0.127$

VECTOE 3
$\begin{array}{llllllllllllll}-0.061 & 0.026 & 0.071 & 0.037 & 0.033-0.036 & 0.037-0.044 & 0.017 & 0.272 & 0.0 & 0.052 & 0.000-0.065-0.088-0.054-0.059-0.007 \\ -0.230 & 0.196 & 0.893 & & 0.00\end{array}$ $-0.2 \vdots 0 \quad 0.196 \quad 0.893$
FIRST '3 PACTOF SCCRES

S	1	4.036	-0.913	-2.034	S 26	-0.140	0.037	0.264
5	2	-0.080	1.023	-1.824	S 27	-0.704	-0.729	1.351
S	3	-4.715	-0.496	-1.343	S 28	-1.636	-1.494	1.032
S	4	-1.497	0.023	1.075	S 29	-1.389	-1.911	1. 282
S	5	0.896	$0.67 t$	-1.146	S 30	-3.756	2.158	0.814
5	6	2.454	-0.510	-1.578	S 31	-5.419	-0.876	0.304
S	7	-2.925	-1.268	0.929	¢ 32	-3.168	1.168	1.807
S	8	-0.837	1.735	0.180	S 33	8.932	-0.408	1.004
5	9	-0.251	-0.496	-0.338	S 34	5.962	-1.573	1.585
S	10	-0.784	1.257	1.006	535	5.337	-0.607	0.609
S	11	-4.362	-0.009	-0.951	S 36	4.491	-0.129	0.767
S	12	-0.684	1.120	1.006	S 37	1.868	-0.633	0.739
S	11	-7.669	-1.007	-0.537	¢ 38	-0.365	-0.494	0.251
S	14	0.377	0.732	0.569	S 39	-3.058	-1.069	0.479
S	15	-6.821	-1.653	-1.080	S 40	-4.867	-0.555	-0.226
S	16	-0.287	1.578	2.063	S 41	4. 195	0.143	0.047
5	17	3.901	2.537	-1.012	S 42	0.896	2.698	-1.099
5	18	1.827	-1.441	-1.588	543	4.222	0.941	1.908
S	19	2.963	1.474	-0.540	344	3.500	-0.708	-0.991
S	20	3.296	-0.666	-0.237	S 45	3.463	0.644	0. 114
S	21	-4.149	0.980	-0.938	S 46	4.737	-0.549	-0.859
5	22	-5.33t	- 0.978	0.668	S 47	3.293	0.150	-0.437
S	23	-5.634	2.112	-0.089	548	2.751	-1.021	-0.039
	24	-8.253	-0.020	0.224	S 49	0.211	0.506	-1.429
S	25	2.101	0.402	-0.808	S 50	3.087	-1.877	0.046

Alberta control Couesius plumbeus; Raw character values, $\mathrm{n}=50$.

$\begin{aligned} & \text { AT,RFRTA } \\ & 601 \text { a } \end{aligned}$	3.	$\begin{gathered} \text { iFSTUE } \\ \% \text { UB } \end{gathered}$	$\begin{gathered} \text { PLUMDE:- } \\ W .44 \end{gathered}$	U. ${ }_{\text {U }}^{5}$	J. ?	3.7	1.01	U. 55	0.63	0.05
6020		$\because 12$	5.00	2.24	$0.0 y$	4.15	$\bigcirc .14$	cy.ue	12.00	21.00
602 A 0.0	7.50	1.71	0.39	0.45	0.61	0.56	0.84	0.47	0.53	0.0
$603 \mathrm{~A}^{0.0}$	0.17 5.40	0.96 1.28	3. 87	1.77	4.93	3.32	0.55	66.00	13.00	22.00
$603 \mathrm{~A}{ }_{0.0}$	5.40	1.28	0.34	0. 32	0.49	0.39	0.62	0.36	0.36	0.03
604 A	0.11	0.69	2.76	1. 26	3.37	2. 12	0.42	62.00	13.00	21.00
604A 0.0	6.5 C	1.55	0.36	0.42	0.63	0.58	0.76	0.46	0.50	0.02
6058	0.11	0.8 E	3.34	1.40	4.31	2.83	0.51	65.00	12.00	26.00
0.0	8. 10	1.82	0.42	C. 50	0.68	0.56	0.83	0.53	0.57	0.0
606 A	0.12	1.00	4.19	1.96	5.25	3.64	0.57	64.00	13.00	23.00
0.0	0.15	1.21	4.30	1.81	5.73	0.66	0.98	0.54	C. 63	0.04
607 A	6. 00	1.43	0.37	0.38	0.56	0.50	0.59	62.00	13.00	21.00
0.0	0.10	0.77	3.16	1.39	3.94	2.58	0.46	6.0 .00	12.46 12.00	0.02 25.00
608A	7.00	1.71	0.38	0.45	0.60	0.52	0.76	0.44	0.48	0.03
0.0	0.13	0.90	3.58	1.67	4.43	2.82	0.53	67.00	14.00	24.00
609 A	7.30	1.71	0.42	0.48	0.68	0.51	0.81	0.46	0.53	0.01
0.0	0.10	1.14	3.78	1. 73	4.63	2.93	0.51	60.00	13.00	23.00
610 A	$t .90$	1.56	0.40	C. 46	0.64	0.49	0.77	0.40	0.49	0.02
0.0	0.17	1. 55	3.61	1. 59	4.40	3.05	0.54	64.30	14.00	25.00
0.11 A 0.0	5.30 0.12	1.29 0.76	0.35	0.39 1.16	3.47	0.34	0.63	U. 35	0.39	2. 63
612 A	t. 80	1.62	2.76 0.42	1.16 0.45	3.38 0.62	2.10 0.51	0.46 0.81	61.00 0.45	14.06 0.49	21.00 0.01
0.0	0.13	1.06	3.52	1.53	4.39	2.81	0.61	63.00	14.00	25.00
613 A	4.30	1.05	0.28	0.30	0.40	0.29	0.50	0.31	0.30	0.01
0.0	0.11	0.55	2.22	1.01	2.60	1.58	0.36	59.00	13.00	22.00
614 A	7.20	1.64	0.41	0.48	0.67	0.56	0.80	0.42	0.55	0.03
0.0	0.21	1.03	3.75	1.82	4.44	2.93	0.66	63.00	14.00	24.00
615 A	4.6 .0	1. 15	0.30	0.30	0.44	0.35	0.57	0.35	0.35	0.0
0.0	0.08	0.64	2.43	1.12	2.89	1.73	0.34	58.00	12.00	22.00
616 A	6.90	1. 64	0.42	0.45	0.65	0.55	0.81	0.43	0.49	0.02
0.0	0.17	1.06	3.47	1.79	4.28	2.78	0.59	62.00	15.00	2 t .00
617 A	4.50	2.01	0.46	0.55	0.76	0.72	1.02	0.51	0.68	0.02
0.0	0.19	1.35	4.63	2. 36	5.91	3.94	0.67	70.00	14.00	23.00
618 A	8.40	1.81	0.42	0.5 ?	0.70	0.63	0.83	0.46	0.63	0.05
0.0	0.11	1.16	4.21	2.25	5.07	3.34	0.71	64.00	12.00	22.00
619A	8.90	1. 92	0.46	0.53	0.80	0.66	0.93	0.53	0.62	0.04
0.0	0.10	1.20	4.58	2.15	5.65	3.88	0.66	66.00	14.00	23.00
620A	9.00	1.96	0.45	0.62	0.75	0.66	1.01	0.53	0.69	C. 04
0.0	0.18	1.17	4.37	2. 18	5.55	3.60	0.67	61.00	13.00	23.00
621 A	5.60	1.34	0.31	0.36	0.48	0.42	0.64	0.37	0.43	0.01
0.0	C. 12	0.68	2.88	1.41	3.51	2.14	0.47	64.00	14.00	22.00
622A	5.00	1.32	0.32	0.35	0.50	0.37	0.65	0.36	0.39	0.0
0.0	0.11	0.67	2.60	1.28	3.11	1.86	0.41	60.00	12.00	25.00
623 A	4.90	1.18	0.30	0.32	0.46	0.35	0.58	0.35	0.35	0.01
0.0	0.08	0.59	2.58	1. 10	3.23	2.03	0.53	65.00	15.00	23.00
624 A	4.30	1.03	0.28	0.27	0.37	0.31	0.52	0.27	0.32	0.0
0.0	0.07	0.50	2.28	0.94	2.68	1.63	0.34	61.00	13.00	24.00
625A	8.2 C	1.93	0.43	0.49	0.69	0.58	0.86	0.53	0.60	0.02
0.0	0.27	1.22	4.06	1.97	5.15	3.37	0.70	62.00	14.00	22.00
626 A	7.10	1.70	0.37	0.44	0.64	0.57	0.80	0.47	0.56	0.03
0.0	0.17	1.08	3.58	1.73	4.47	2.96	0.54	63.00	13.00	24.00
627 A	6.90	1.68	0.40	0.44	0.61	0.52	0.88	0.43	0.53	C. 04
0.0	0.16	0.96	3.43	1. 55	4.35	2.83	0.49	60.00	13.00	25.00
628A	6.50	1.56	0.38	0.43	0.56	0.47	0.75	0.38	0.49	0.02
0.0	0.17	1.05	3.23	1.57	4.19	2.72	0.54	59.00	12.00	25.00
6298	$\epsilon .70$	1.55	0.40	0.47	0.60	0.43	0.76	0.40	0.49	0.04
0.0	0.14	1.03	3.32	1.63	4.17	2.79	0.49	58.00	12.00	25.00
630 A	5.60	1.40	0.33	0.37	0.52	0.42	0.66	0.36	0.42	0.02
0.0	0.12	0.84	2.95	1. 30	3.60	2.28	0.41	68.00	14.00	25.00
631 A	5.0 C	1.22	0.32	0.30	0.45	0.36	0.60	0.30	0.38	0.02
0.0	0.13	0.76	2.55	1. 15	3.14	2.16	0.44	62.00	12.00	24.00
632 A	t. 00	1.46	0.35	0.36	0.51	0.43	0.69	0.39	0.44	0.03
0.0	C. 13	0.78	3.07	1.42	3.71	2.43	0.44	64.30	14.00	26.00
633 A	11.00	2.71	0.57	0.72	0.96	0.87	1. 32	0.72	0.41	0.13
0.0	0.23	1.72	5.84	2.55	7.43	5.19	0.89	60.00	14.00	24.00
634 A	9.90	2.47	0.50	0.66	0.85	0.73	1.11	0.62	0.77	0.10
0.0	0.26	1.34	5.11	2.22	0.56	4.21	0.76	58.00	13.00	25.00
635 A	9.50	2.22	0.49	0.63	0.81	0.76	1.12	0.58	0.73	0.09
0.0	0.25	1. 34	4.80	2.11	6.28	4.20	0.77	62.00	13.00	24.00
636 A	9.00	2.28	0.48	0.62	0.82	0.65	1.00	0.62	0.70	0.05
0.0	0.19	1.25	4.69	2.06	0.10	4.06	0.73	60.00	14.00	24.00
637 A	8.00	1.90	0.40	$0 .{ }^{\text {c }} 6$	0.73	0.54	0.92	0.51	0.61	0.09
0.0	0.20	1.17	4.05	1.91	4.92	3.05	0.61	62.30	13.00	24.00
6384	7.10	1.f. 0	0.39	0.49	0.60	0.52	0.78	0.44	0.52	0.03
0.0	c. 15	1.02	3.74	1.66	4. 82	3.21	0.53	58.00	14.00	23.00
6391	6.00	1.48	0.33	0.37	0.52	0.43	0.69	0.40	0.47	0.04
0.0	0.09	0.80	3. 12	1.49	3.79	2.50	0.49	59.00	13.00	23.00
6401	5.50	1.36	0.71	0.37	0.49	0.38	0.56	0.36	0.38	0.01
0.0	0.07	0.70	2.81	1.17	3.56	2.85	0.46	E. 00	13.00	23.00
641 A	9.30	2.18	0.50	0.56	0.77	0.70	0.99	0.54	0.62	0.05
0.0	0.35	1.10	4.77	2.20	5.76	3.90	U.69	62.30	14.00	23.00
642 A	7.50	1.72	0.40	0.46	0.62	0.57	0.83	0.46	0.54	0.0
0.0	0.19	1.99	3.90	1.80	4.92	3.30	0.58	68.00	14.00	23.00
643 A	8.80	2.23	0.45	0.63	0.79	0.73	1.05	0.62	0.65	0.10
0.0	0.20	1.09	4.60	2.08	5.55	3.67	0.72	65.00	14.00	26.00
644 A	8.90	2.18	0.43	0.61	0.79	4.73	1.00	0.64	0.66	0.04
0.0	0.13	1.15	4.51	2.18	5.65	3.75	0.60	61.00	13.00	22.00
645 A	8.60	2.00	0.43	0.58	0.72	0.73	0.94	0.59	0.68	0.09
0.0	0.15	1.11	4.32	2.23	5.39	3.49	0.78	67.00	13.00	24.00
646 A	9.40	2.16	0.48	0.65	0.79	0.75	0.97	0.59	0.68	0.07
0.0	0.26	1.08	4.82	2.33	5. 74	3.61	0.85	. 3.00	13.00	22.00
647 A	8.60	2. 10	0.45	0.60	0.70	0.64	0.93	0.60	0.57	0.05
0.0	0.27	1.10	4.41	2.01	5.51	3.43	0.76	5.00	13.00	23.00
648 A	8.40	1.98	0.40	0.58	0.72	0.63	0.96	0.58	0.63	0.07
0.0	0.23	1.03	4.40	1. 84	5.34	3.49	0.71	61.00	13.00	22.00
6498	7.50	1.72	0.40	0.44	0.62	0.57	0.85	0.47	0.54	0.01
0.0	0.18	0.97	3.84	1.79	4.94	3.36	0.53	65.50	13.00	22.00
650 B	8.40	1.93	0.45	0.55	0.75	0.63	0.88	0.51	0.59	0.10
0.0	0.38	1.11	4.23	2.07	5.17	3.32	0.76	61.00	12.00	23.00

APPENDIX TABLE 19. Alberta control Rhinichthys cataractae; Raw character values, $\mathrm{n}=50$.

-01A	1.50	1. 13	0.19	い, い		v. 24	0.71	4		1
0.37	2. 71	1. 1.1	3.78	1.52	4.45	2.84	0.52	70.00	12.00	20.
402 A	7.00	1.68	0.24	0.68	0.55	0.57	0.75	0.38	12.62	0.17
0.41	c. 58	0.92	3.46	1.89	4.15	2.55	0.45	67.00	11.00	28.00
403 A	6.70	1. 68	0.24	0.63	0.51	0.56	0.68	0.35	0.57	0.18
0.37	0.57	1.02	3.41	1.69	4.29	2.82	0.43	68.00	12.00	27.00
404 A	6.00	1.46	0.23	0.52	0.47	0.45	0.61	0.32	0.50	0.12
0.30	0.57	0.83	3.09	1.43	3.61	2.24	0.35	74.00	10.00	26.00
4058	5.50	1.35	0.21	0.49	0.44	0.45	0.62	0.29	0.40	0.12
0.28	0.52	0.77	2.85	1.48	3.36	2.20	0.30	67.00	9.00	27.00
409 A	8.50	2.30	0.32	1.00	0.69	0.71	0.96	0.48	0.88	0.29
0.57	0.84	1.27	4.48	2.05	5.24	3.44	0.78	67.00	11.00	31.00
410 A	7.50	2.05	0.24	0.83	0.58	0.56	0.81	0.43	0.76	0.28
0.51	0.68	1.00	4.01	$1.7 €$	4.78	3.09	0.69	69.30	13.00	29.00
411 A	8.10	2.64	0.29	0.87	0.63	0.63	0.87	0.47	0.83	0.26
0.50	0.81	1.16	4.28	1.90	5.02	3.15	0.76	71.00	12.00	28.00
412 A	7.10	1.89	0.28	0.77	0.54	0.61	0.79	0.37	0.69	0.22
0.45	0.72	1.00	3.74	1.84	4.34	2.73	0.65	73.00	11.00	32.00
415A	8.60	2.23	0.29	0.94	0.65	0.66	0.90	0.50	0.85	0.30
0.52	0.86	1.22	4.39	2.10	5.51	3.63	0.6ε	70.00	10.00	33.00
416 A	7.40	2.06	0.25	0.81	0.55	0.59	0.80	0.44	0.71	0.26
0.47	0.77	1.00	3.90	1.85	4.58	2.81	0.69	73.00	11.00	31.00
4178	6.20	1.54	0.26	0.56	0.47	0.49	0.65	0.32	0.54	0.18
0.36	0.59	0.42	3.19	1.54	3.89	2.49	0.45	67.00	11.00	27.00
419 A	¢. 30	1.53	0. 26	0.59	0.47	0.52	0.74	0.37	0.60	0.13
0.41	6.67	0.89	3.26	1.53	4.02	2.56	0.41	70.00	13.00	33.00
426A	t.00	1.44	0.22	0.51	0.45	0.47	0.63	0.35	0.50	0.11
0.27	0.64	0.99	3.07	1.49	3.57	2.42	0.40	74.00	12.00	30.00
427A	5.80	1.39	0.20	0.50	0.41	0.45	0.54	0.32	0.53	0.12
0.30	0.59	0.85	3.14	1.35	3.64	2.42	0.39	73.00	12.00	25.00
4281	5.00	1.29	0.20	0.46	0.39	0.36	0.52	0.26	0.42	0.10
0.25	0.50	0.61	2.56	1.29	2.85	1.62	0.36	66.30	11.00	30.00
429 A	4.00	1.21	0. 18	0.41	0.37	0.36	0.50	0.26	0.40	0.08
0.20	0.46	0.72	2.53	1.11	2.94	1.88	0.31	65.00	12.00	30.00
431 A	4.50	1.12	0.19	0.39	0.34	0.35	0.45	0.25	0.36	0.07
0.19	0.43	0.6 .2	2.56	1.00	2.82	1.66	0.24	63.00	10.00	26.00
441 A	t. 10	1.6 .8	0.22	0.63	0.50	0.50	0.67	0.35	0.54	0.17
0.39	0.55	0.24	3. 0	1.38	3.69	2.32	0.42	64.00	13.00	31.00
443 A	5.6:0	1.41	0.22	0.52	0.46	0.41	0.60	0.26	0.46	0.16
0.28	0.53	0.78	2.89	1.47	3.36	2.15	0.36	67.00	12.00	28.00
444 A	5.60	1.40	0.21	0.48	0.43	0.42	0.58	0.29	0.47	0.12
0.27	0.45	0.81	2.91	1.34	3.52	2.27	0.36	64.30	12.00	28.00
4468	5.0 C	1.40	0.23	0.47	0.44	0.42	0.48	0.29	0.44	U. 12
0.25	0.49	0.72	2.78	1.26	3.09	1.88	0.32	72.00	13.00	25.00
433A	7.10	1.79	0.29	0.72	0.61	0.61	0.85	0.38	0.69	C. 18
0.42	0.79	1.19	3.66	1.76	4.65	2.92	0.60	63.00	13.00	29.06
434 A	1.00	1.50	0.26	0.55	0.42	0.50	0.59	0.36	0.56	0.17
0.28	0.64	0.99	3.16	1.52	3.74	2.45	0.46	70.00	11.00	26.00
435A	6.80	1.75	0.26	0.64	0.51	0.55	0.73	0.36	0.59	0.19
0.40	0.63	1.03	3.53	1.72	4. 30	2.81	0.49	63.00	14.00	26.00
436A	6.40	1.69	0.26	0.63	0.48	0.50	0.67	0.34	0.90	0.17
0.42	0.70	0.83	3.31	1.62	4.11	2.57	0.51	66.00	13.00	29.00
440A	6.00	1.51	0.25	0.56	0.46	0.50	0.63	0.34	0.52	0.16
0.30	0.55	0.82	3.09	1.52	3.80	2.44	0.52	64.00	10.00	27.00
449A	8.90	2.19	0.32	0.97	$0.6 €$	0.78	1.04	0.49	0.81	0.28
0.42	0.88	1.38	4.80	2.23	5.44	3.56	0.63	71.00	10.00	26.00
450 A	8.50	1.90	0.27	0.80	0.58	0.69	0.91	0.45	0.68	0.22
0.38	0.77	1.27	4.38	2.31	5.28	3.56	0.69	72.00	12.00	29.00
451 A	3.30	2.03	0.29	0.80	0.60	0.67	1.06	0.44	0.72	0.26
0.45	0.79	1.28	4.48	2.11	5. 20	3.44	0.66	66.00	11.00	28.00
452 A	8.50	1.98	0.30	0.76	0.58	0.61	0.99	0.43	0.73	0.25
0.37	0.80	1.17	4.35	2.36	5.12	3.32	0.70	64.00	10.00	30.00
453 A	0.20	1. 8 E	0.30	0.78	0.60	0.68	0.90	0.45	0.72	0.21
0.39	0.75	1.09	4.29	2.21	5.05	3.35	0.57	65.00	11.00	27.00
454A	8.26	1.93	0.29	0.79	0.59	0.65	0.92	0.46	0.68	0.23
0.38	0.76	1.28	4.37	2.07	5.15	3.44	0.54	68.00	11.00	28.00
455A	8.00	1.92	0.29	0.80	0.61	0.60	0.97	0.45	0.73	0.25
0.40	6.83	1.18	4.17	2.04	4.91	3.20	0.68	64.00	12.00	29.00
456A	8.90	2.12	0.33	0.84	0.64	0.72	1.11	0.52	0.81	0.24
0.45	0.76	1.27	4.68	2.10	5.70	3.88	0.53	69.00	13.00	30.00
457 A	e. 70	2.20	0.28	0.8t	0.65	0.77	1.10	0.50	0.81	0.29
0.45	0.84	1.27	4.65	2.33	5.40	3.47	0.61	67.00	12.00	31.00
458 A	8.20	1.95	0.30	0.78	0.65	0.66	0.95	0.48	0.70	0.23
0.39	0.76	1.27	4.40	2.04	5.18	3.47	0.55	70.00	11.00	28.00
459A	7.70	2.00	0.28	0.80	0.60	0.66	0.97	0.44	0.68	0.21
0.44	0.67	1.13	$4.1 €$	1.97	4.93	3.23	0.40	68.00	12.00	30.00
460 A	\&. 10	1.90	0.27	0.77	0.62	0.70	1.00	0.45	0.73	0.22
0.40	0.75	1.19	4.23	2.12	5.04	3.34	0.48	72.00	13.00	29.00
461 A	7.50	1.77	0.27	0.68	0.56	0.55	0.91	0.42	0.68	0.20
0.35	C. 71	1.09	4.00	1.95	4.70	3.05	$0.4 t$	68.00	11.00	30.00
462 A	7.40	1.79	0.28	0.68	0.57	0.59	0.86	0.43	0.62	0.19
0.37	0.03	0.98	4.01	1.88	4.81	3.15	0.42	73.00	12.00	30.00
463 A	8.10	2.06	0.28	0.93	0.58	0.65	1. 10	0.47	0.82	0.26
0.46	0.83	1.14	4.16	2.19	4.92	3.16	0.82	69.00	12.00	26.00
464 A	7.80	2.00	0.27	0.88	0.58	0.61	1.00	0.48	0.77	6.27
U. 48	0.77	1.04	4.02	2.14	4.8 .1	2.95	0.77	63.30	14.00	28.00
465 A	7.40	1.90	0.26	0. 8.2	0.55	0.53	0.84	0.38	0.63	0.23
0.42	0.18	0.95	3.98	1.80	4.60	2.96	0.56	68.00	11.00	28.00
466 A	7.40	1.89	0.26	0.83	0.55	0.53	0.87	0.40	0.69	0.22
0.41	0.77	1.00	4.10	1.72	4.54	2.96	0.66	64.00	10.00	27.00
467A	7.10	1.81	0.24	0.75	0.53	0.55	0.79	0.38	0.63	0.20
0.34	0.79	0.86	3. 6.4	1. 81	4.72	2.54	0.65	60.00	10.00	25.00
468 A	7.00	1.80	0.25	0.72	0.51	0.51	0.80	0.42	0.62	0.19
0.31	0.68	0.81	3.55	1.76	4.52	2.58	0.65	62.00	11.00	27.00
$4 \in 9$ A	7.20	1.79	0.26	0.78	0.54	0.53	0.86	0.40	0.66	0.24
0.33	0.80	0.99	3.66	1.84	4.54	2.73	0.64	60.00	12.00	27.00
470 A	7.80	1.97	0.26	0.84	0.56	0.58	0.96	0.45	0.69	0.25
0.35	0.73	0.90	4.07	2.04	5.12	3.02	0.76	68.00	10.00	28.00
471 A	4.50 0.98	2.26 1.24	0.32 4.93	C. 95	0.68 5.93	0.82 3.60	1.13 0.80	0.51 9.00	0.80 2.00	0.27 0.00

APPENDIX TABLE 2J. Kananaskis typical Couesius
plumbeus; Raw character
valucs, $\mathrm{n}=50$.
KANANASKIS APPARANT OLEEELUE PLLMEFL:

cataractae；Raw character
values， $\mathrm{n}=50$ ．

KANA）	I	APPARA	RHTCI	THE	Ra						
＋1） 1		16.	1．4	1 －	101	！．－＇		1			
	0．5\％	0.58	1．t．2	ᄃ． 30		$\because{ }^{5}$ \％	4.10	U－3：	ち！．」」	：1．．n	．uu
401		4.70	2.41	0.37	1.30	0.79	1.10	1.31	0.81	0.97	0.27
	0.46	0.74	1.40	5.00	2.27	6.61	4.04	0.75	54.00	12.00	28.00
403		8.70	2.24	0.31	0.94	0.70	0.89	1.26	0.75	0.87	0.31
	0.48	0.88	1.52	4.62	2.01	5.36	3.54	0.58	64.10	12.00	24.00
404		16.76	2.61	0.35	1.11	0.81	1.08	1.47	0.98	1.05	0.37
	0.57	0.90	1.60	5.71	2.49	7.15	4.53	0.71	67.30	12.00	31.00
405		9.80	2．25	0.34	0.91	0.76	0.53	1.36	0.81	0.94	0.32
	0.50	0.90	1.64	4．88	2.48	6.33	4.29	0.54	¢9．00	13.00	27.00
406		9.6 C	2.26	0.31	0.92	0.71	0.85	1.19	0.74	0.93	0.26
	0.46	0.73	1． 5.12	5.03	2.36	6.36	4.18	0.54	65.00	12.00	31.00
407		9.60	2.18	0.33	0.97	0.73	0.94	1.32	0． H	0.4 t	C． 29
	0.50	0.87	1． 55	5.00	2.30	6.35	4.38	0.61	71.00	11.00	34.00
408		10.00	2.30	0.31	0.97	0.71	0.85	1.20	0.83	0.94	U． 28
	$0.5 t$	C． 87	1.01	5.10	2.41	6.93	4.39	0.79	67.20	12.00	32.00
405		11.2 c	2.45	$0.3 t$	1.10	0.90	1.02	1.40	0.82	1.03	0.26
	0.51	0.88	1.6 .7	5.76	2.84	7.05	4.53	0.85	69.00	13.00	31.00
410		8.90	2.10	0.28	0.83	0.70	0.91	1.31	0．f 6	0.93	0.17
	0.50	0.78	1.27	4.78	2.28	5.92	3.66	0.54	66.00	12.00	30.00
411		9.4 C	2.15	0.29	0.97	0.68	1.02	1.32	0.79	0.98	0.25
	0.54	0.79	1． 54	4.85	2.39	6.07	3.46	0.72	65.00	11.00	28.00
412		10.96	2.44	0.35	1.02	0.86	0.96	1.28	0.80	0.49	0.27
	0.49	0.82	1.46	5.60	2.65	6.94	4.55	0.72	68.30	12.00	27.60
413		9.60	2.51	0.35	3.06	0.80	0.41	1.32	0.88	0.89	0.32
	0.62	c． 91	1.37	5.14	2.47	0.39	3.98	0.64	70.00	12.30	32.00
414		10.00	2.43	0.71	1.01	0.75	0.92	1.26	0.89	0.98	0.36
	0.46	0.87	1.40	5.33	2.50	6.75	4.29	0.53	¢ 2.20	12.00	29.00
415		9.70	2.33	4.31	0.98	0.70	0.88	1.17	$\checkmark .79$	C． 8 A	0.26
	0.45	0.74	1.47	C． 10	2.38	6.3 .3	4.00	0.58	70.00	13.00	28.00
416		7.20	1.76	0.30	0.72	0.55	0.74	0.97	U． 50	0.70	0.17
	0.31	c．f． 7	1.13	3.59	1.90	4.72	2.93	0.51	64.00	13.00	24.00
417		5.80	1.57	U． 21	0.64	0.48	3.55	0.71	3． 40	0.56	0.20
	0.29	c． 47	0.75	3.00	1.40	3.59	2.31	0.45	6.3 .30	14.00	28.00
418		t． 30	1.18	0.26	0.64	0.48	0.52	0.82	0.40	0.66	0.17
	0.30	0.57	0.94	3.22	1． 57	4.21	2.61	0.52	61.30	12.00	27.00
419		5.30	1.47	0.19	0.58	0.44	0.52	0.65	0.43	0.51	0.12
	0.23	c． 46	0.72	2.86	1． 26	3.40	2.01	0.39	60.00	13.00	26.00
420		7.50	1.82	0.27	0.75	0.57	0.71	0.98	0.43	0.74	0.27
	0.34	0.65	1.05	4.05	1.47	5.14	3.14	0.58	67.00	17.06	25.04
421		8.50	2.12	0.31	0.38	0.67	0.87	1． $2 t$	u．tb	O．he	1．27
	0.43	0.89	1.47	4.41	2.65	5.53	3.52	J． 49	02.03	11.0 L	11.64
422		9.00	2.09	0.33	0.89	0.71	0.95	1.28	0.51	0.93	0.31
	0.48	0.92	1.43	4.93	2.17	5.95	3.85	0.48	63.00	10.00	30.00
423		7.90	1.95	0.28	0.82	0.61	0.75	1.15	0.38	0.79	0.28
	0.39	0.72	1.25	4.11	1． 44	5.30	3.34	0.48	71.00	11.00	$2 t .00$
424		14.20	2.47	0.36	1.08	0.84	0.92	1.31	0.00	1.01	0.32
	0.50	0.85	1.51	5.27	2.50	6.51	4.12	0.54	69.00	11.00	26.00
425		9.60	2.41	0.37	1.00	0.78	1.04	1.29	0.57	0.97	0.32
	0.45	0.82	1．38	5.09	2.24	6.57	4.33	0.67	61.00	12.00	27.00
426		7.80	1.93	0.29	0.74	0.59	0.68	1.06	0.48	0.80	0.23
	0.41	0.66	1．2t	4.14	2.02	5.18	3.35	0.57	67.00	11.00	29.00
427		7.10	1． 6.4	0.27	0.61	0.51	0.61	0.95	0.42	0.67	0.15
	0.33	0.65	1.22	3.77	1.74	4.70	3.13	0.38	06.50	10.00	26.00
428		c． 20	2.23	0.32	0.89	0.69	0.88	1.23	0.66	0.90	0.25
	0.47	0.77	1.38	4.87	2.19	6.28	4.03	0.69	69.00	13.00	27.00
429		5.40	1.41	0.24	0.53	0.42	0.40	0.67	0.35	0.51	0.12
	0.27	0.5 C	0.73	2.93	1.29	3.49	2.00	0.41	65.30	12.00	31.00
430		5.40	1.43	0.22	0.53	0.41	0.44	0.66	0.33	0.56	0.12
	0.29	0.48	0.75	2.83	1.31	3.50	2.13	0.47	72.00	12.00	29.00
431		5.20	1.44	0.21	0.54	0.41	0.47	0.72	0.31	0.56	0.16
	0.28	0.59	0.82	2.89	1.17	3.55	2.07	0.34	72.00	12.00	28.00
432		5.50	1.50	0.24	0.52	0.43	0.46	0.63	0.35	0.50	0.12
	0.27	C． 51	0.73	2.81	1.48	3.40	2.10	0.34	63.00	13.00	30.00
433		5.60	1.44	0.21	0.53	0.40	0.44	0.64	0.30	0.48	0.14
	0.27	c． 40	0.74	2.94	1.41	3.58	2.19	0.41	68.00	13.00	27.00
434		5.40	1.45	0.18	0.50	0.43	$0.4 t$	0.69	0.31	0.52	0.13
	0．28	0.36	0.75	2.90	1．27	3.46	2.23	0.39	70.00	14.00	29.00
435		5.70	1.54	0.28	0.55	0.47	0.42	0.75	0.33	0.52	0.13
	0.23	0.38	0.75	3.04	1．39	3.76	2.27	0.28	62.00	14.00	27.00
436		4.70	1.27	0.22	0.42	0.40	0.42	0.61	0.29	0.43	0.09
	0.23	0.41	0.71	2.50	1． 18	2.92	1.89	0.25	67.00	13.00	27.00
437		5.10	1.35	0.20	0.47	0.43	0.41	0.63	0.28	0.45	0.14
	0.26	C． 44	0.70	2.65	1.22	3.17		0.36			32.00
438		8.50	2.03	0.32	0.82	0.60	0.78	1.10	0.51	0.77	0.24
	0.43	0.68	1.30	4.60	2.14	5.79	3.80	0.69	63.00	11.00	31.00
439		10.20	2.45	0.33	1.04	0.77	1.01	1．34	0.63	1.05	0.28
	0.51	0.80	1.50	5.41	2.28	6.56	4.25	0.65	68.00	11.00	31.00
440		7.00	1.66	0.26	0.55	0.52	0.59	0.91	0.40	0.65	0.16
	0.30	0.65	1.11	3.76	1.75	4.53	2.96	0.37	69.00	12.00	29.00
441		7.10	1．79	0.29	0.67	0.59	0.62	0.85	0.42	0.67	0.18
	0.32	0.08	1.05	3.54	1.79	4.42	2.65	3.48	63.00	11.00	$2 t .00$
442		7.10	1.78	0.31	0.72	0.52	0.62	0.91	0.42	0.67	0.22
	0.35	0.72	1.02	3.72	1.64	4.46	2.69	0.40	72.00	13.00	29.00
443		5.80	1.51	0.22	0.54	0.42	0.53	0.66	U． 35	0.52	0.16
	0.28	0.52	0.77	2．98	1.45	3.56	2.17	0.46	6 6 .50	12.00	31.00
444		5.50	1.40	0.20	0.52	0.42	0.48	0.56	0.32	0.49	0.15
	0.25	0.49	0.72	2.85	1.38	3． 35	1.90	0.44	62.00	12.00	28.00
445		f． 00	1． 62	0.26	0.61	0.44	0.51	0.68	0.37	0.51	0.16
	0.28	0.53	0.76	3.20	1.39	3.95	2.51	0.49	62.00	12.00	27.00
446		7.00	1.66	0.25	0.68	0.50	0.65	0.91	0.44	0.71	0.20
	0.40	0.67	1.00	3.52	1.78	4.49	2.48	0.47	68.00	12.00	28.00
447		5.50	1.42	0.19	0.55	0.41	0.45	0.61	0.30	0.48	0． 14
	0.24	0.50	0.76	2.86	1.34	3． 38	2.93	0.44	64.00	11.50	29.00
448		5．to	1.45	0.23	0.47	0.48	0.47	0.58	0.35	0.51	0.12
	0.26	0.46	0.4 .8	2.86	1.41	3.44	2.11	0－4 1	69.00	11.00	30.00
449		5.70	1.46	0.22	0.54	0.43	0.48	0.67	0.35	0.52	C． 12
	0.24	0.48	0.75	2.97	1.39	3.50	2.22	0.45	67.00	12.00	29.00
450		5.00	1．31	0.19	0.46	0.40	0.42	0.61	0.32	0.47	0.09
	0.21	0.51	0.69	2.72	1.22	3.21	1.91	0.38	66.00	12.00	27.00

APPENDIX TABLE 22. Kananaskis suspected hybrids Couesius plumbeus x
Rhinichthys cataractae; Raw character values, $n=37$.
KANANASKIS SUSPECTED HYBRIDS COUESIUS PLUMBEUS X RHINICHTHYS CATARACTAE (1977)

501		7.60	1.72	0.43	0.46	0.61	0.71	1.00	0.52	0.69	0.0
	0.21	0.40	1.08	4.00	1.89	4.69	2.85	0.63	60.30	13.00	22.00
502		7.10	1. 69	0.32	0.55	0.62	0.60	0.79	0.46	0.52	0.0
	0.03	C. 35	0.83	3.68	1.81	4.61	3.00	0.60	69.00	14.00	25.00
503		t. 30	1.63	0.29	0.54	0.51	0.50	0.72	0.36	0.51	0.09
	0. 22	0.41	0.80	3.26	1.44	4.16	2.63	0.48	68.00	13.00	25.00
504		6.20	1.58	0.31	0.51	0.48	0.52	0.69	0.41	0.50	0.03
	0.08	0.32	0.82	3.19	1. 55	3.86	2.52	0.49	67.00	13.00	24.00
505		8.10	1.70	0.43	0.51	0.64	0.57	0.85	0.47	0.54	0.10
	0.04	0.31	1.05	4.04	2. 17	4.95	3.28	0.51	66.00	14.00	23.00
506		7.10	1. 52	0.39	0.45	0.59	0.54	0.77	0.42	0.55	0.03
	0.21	0.38	1.10	3.63	1.79	4.56	3.19	0.50	70.00	14.00	25.00
507		7.60	1.82	0.33	0.64	0.66	0.68	0.89	0.47	0.65	0.11
	0.17	0.35	1.02	3.88	1.87	4.87	3.23	0.49	69.00	14.00	26.00
508		€. 60	1.66	0.29	0.53	0.58	0.58	0.78	0.40	0.55	0.08
	0.0	0.31	0.81	3.43	1.38	4.05	2.67	0.52	67.00	15.00	27.00
509		6.20	1.52	0.33	0.43	0.53	U. 52	0.73	0.38	0.48	0.02
	0.18	0.22	0.86	3.15	1.50	3.92	2.48	0.39	70.00	13.00	26.00
510		6. 10	1.48	0.25	0.50	0.52	0.46	0.67	0.39	0.47	0.07
	0.16	0.24	0.81	2.97	1.48	3.75	2.37	0.40	69.30	14.00	26.00
511		$\therefore .80$	1.29	0.28	0.45	0.45	0.51	0.61	0.30	0.46	0.05
	0.20	0.25	0.94	2.73	1.23	3.44	2. 20	0.38	57.10	13.00	29.00
512		5.70	1.30	0.24	0.40	0.48	0.42	0.63	0.33	0.45	0.05
	0.17	0.27	0.67	2.78	1.19	3.34	2.17	0.42	73.00	16.00	28.00
513		5.80	1.44	0.26	0.48	0.49	0.45	0.67	0.35	0.48	0.07
	0.16	0.36	0.81	2.98	1.39	3.58	2. 35	0.43	69.00	15.00	26.00
514		4.80	1.17	0.25	0.40	0.40	0.37	0.54	0.26	0.36	0.03
	0.15	0.22	0.57	2.38	1.19	3.00	1.93	0.35	69.00	14.00	23.00
515		5.60	1.35	0.25	0.44	0.45	0.47	0.65	0.32	0.47	0.06
	0. 18	0.33	0.72	2.95	1.36	3.51	2.31	0.47	70.00	14.00	28.00
516		4.90	1.22	0.34	0.33	0.44	0.42	0.72	0.25	0.40	0.03
	0.0	0.22	0.74	2.49	1.07	3.00	2.00	0.39	68.00	15.00	24.00
517		5.60	1.26	0.34	0.35	0.43	0.46	0.58	0.29	0.40	0.0
	0.24	C. 14	0.70	2.83	1.30	3.50	2.27	0.36	62.90	13.00	26.00
518		5.6 C	1.39	0.24	0.52	0.40	0.49	0.69	0.34	0.45	0.10
	0.12	0.32	0.68	2.86	1.31	3.t 1	2.24	0.45	70.00	13.00	27.00
519		5.20	1.23	0.26	0.34	0.42	0.40	0.58	0.26	0.38	0.0
	0.06	0.20	0.69	2.59	1.27	3.20	2.20	0.40	60.00	13.00	25.00
520		6.70	1.60	0.41	0.45	0.54	0.48	0.80	0.38	0.50	0.0
	0.20	0.27	0.87	3.53	1. 52	4. 15	2.73	0.52	62.00	14.00	27.00
521		6.70	1.69	0.33	0.56	0.58	0.56	0.82	0.43	0.58	0.07
	0.15	0.39	0.84	3.57	1.45	4.45	2.78	0.52	67.00	13.00	25.00
522		5.80	1.41	0.23	0.43	0.48	0.45	0.69	0.32	0.44	0.06
	0.18	0.26	0.76	2.93	1.44	3.58	2.23	0.45	61.00	15.00	28.00
523		t. 10	1.43	0.25	0.43	0.54	0.47	0.71	0.38	0.53	0.04
	0.13	C. 32	0.82	3.00	1.50	3.88	2.53	0.45	62.00	14.00	27.00
524		5.60	1.35	0.33	0.36	0.48	0.44	0.68	0.29	0.42	0.0
	0.02	0.15	0.71	2.85	1.40	3.56	2.26	0.36	60.00	13.00	23.00
525		E. 00	1.42	0.36	0.40	0.51	0.49	0.70	0.32	0.48	0.0
	0.10	0.21	0.77	3.07	1.49	3.87	2.46	0.38	71.00	15.00	27.00
526		4.4 C	1.20	0.23	0.26	0.38	0.33	0.50	0.29	0.35	0.0
	0.0	0.23	0.57	2.27	1.01	2. 81	1.73	0.37	64.00	12.00	24.00
527	0.0	3.40	0.90	0.24	0.22	0.31	U. 28	0.40	0.23	0.20	0.01
	0.02	0.10	0.44	1.80	0.75	2.19	1.35	0.21	63.00	14.00	23.00
528		7.20	1.76	0.31	0.55	0.47	0.58	0.79	0.41	0.60	0.06
	0.16	0.20	0.80	3.57	1.85	4.49	2.86	0.36	72.00	13.00	29.00
529		6.70	1.65	0.31	0.50	0.57	0.51	U. 68	0.43	0.49	0.05
5	0.18	0.30	0.68	3. 35	1.59	4.20	2.48	0.39	69.00	14.00	27.00
530		6.00	1.49	0.32	0.44	0.48	0.46	0.70	0.39	0.52	0.0
530	0.17	0.32	0.71	3. 10	1.46	3.71	2.28	0.41	67.00	13.00	25.00
539		5.50	1.33	0.26	0.39	0.42	0.49	0.62	0.32	0.39	0.02
5	0.06	0.23	0.59	2.86	1.42	3.21	1.94	0.40	63.00	12.00	21.00
532		5.60	1.34	0.27	0.41	0.46	0.45	0.57	0.34	0.41	0.03
532	0.16	c. 24	0.82	2.93	1.29	3.49	2.25	0.42	68.30	13.00	27.00
533	0.16	4.30	1.11	0.25	0.33	0.38	0.32	0.46	0.23	0.32	0.05
53	0.09	$0.2 t$	0.48	2.21	1.08	2.65	1.55	0.28	67.00	14.00	26.00
534		t. 50	1.6.2	0.27	0.54	0.52	0.49	0.71	0.39	0.52	0.12
534	0.14	C. 34	0.76	3.42	1.51	4.25	2.73	0.50	60.00	14.00	25.00
535		t.00	1.58	0.25	0.52	0.43	0.50	0.62	0.55	0.64	0.12
	0.09	0.44	0.7 t	3. 04	1.48	3.90	2.48	0.52	65.00	13.00	25.00
536		10.00	2.41	0.42	0.82	0.86	0.91	1. 20	0.71	0.95	0. 15
536	0.35	0.44	1.42	5.21	2.31	6.47	4.27	0.39	72.00	12.00	27.00
537		¢. 90	1. 56	0.31	0.53	0.54	0.64	0.86	0.41	0.63	0.13
5	0.12	0.38	0.95	3.44	1.73	4.39	2.76	0.60	69.00	12.00	25.00

APPENDIX TABIE 23. Past Kananaskis Couesius plumbeus,
Raw Character values, $n=61$.
PAST KANANASKIS

APPENDIX TABLE 24. Summary of changes in female gonad maturity for both Couesius plumbeus and

APPENDIX TABLE 25. A. Data summary for female R. cataractae Gonadosomatic Index values (GSI), Lower Kananaskis Reservoir, 1978.

Date	n	$\overline{\mathrm{X}}$	${ }^{\mathrm{s}_{\mathrm{D}}}$	Range
May 1	1	13.8	-	-
May 18	2	14.1	-	$12.6-15.6$
May 26	2	15.6	-	$14.9-16.2$
June 1	4	19.1	0.3	$18.8-19.5$
June 8	7	19.4	2.6	$15.0-23.0$
June 14	10	17.0	4.6	$10.0-24.8$
June 20	7	16.0	3.5	$11.4-21.0$
June 29	6	11.4	2.1	$9.1-14.4$

APPENDIX TABLE 25. B. Data summary for female C. plumbeus Gonadosomatic Index values (GSI), Lower Kananaskis Reservoir, 1978.

Date	n	$\overline{\mathrm{X}}$	${ }^{\mathrm{s}} \mathrm{D}$	Range
May 1	20	18.4	2.2	$14.0-22.0$
May 13	6	18.8	1.4	$17.1-20.4$
May 24, 25	22	19.0	1.6	$16.6-22.0$
June 1	8	21.0	1.4	$19.0-23.2$
June 8	12	24.2	2.9	$20.6-27.6$
June 13	23	17.7	6.6	$8.7-30.1$
June 21	48	17.7	6.1	$6.7-29.2$
June 29	21	16.3	5.6	$9.9-27.1$
July 6	12	13.7	3.3	$7.4-18.4$
July 12	20	11.9	3.6	$6.4-17.3$
July 27	25	8.1	2.3	$4.8-12.9$

APPENDIX TABLE 26. Summary of ova diameter statistics for both Couesius plumbeus and Rhinichthys cataractae from Lower Kananaskis Reservoir, 1978.

| Date | Single | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Values (mm) | n | $\overline{\mathrm{X}}(\mathrm{mm})$ | $\mathrm{s}_{\mathrm{D}} \quad$ Range |

Couesius prumbeus

May 1	25	1.30	0.11	$1.01-1.48$
May 24	21	1.31	0.07	$1.17-1.39$
June 8	13	1.43	0.07	$1.31-1.53$
June 13	25	1.35	0.23	$0.95-1.88$
June 21	25	1.31	0.23	$0.88-1.70$
July 6	11	1.19	0.15	$0.94-1.36$
July 12	25	1.22	0.16	$0.88-1.46$

Rhinichthys cataractae

May 1	1.38	1			
May 18	1.48	1			
May 26	1.52	1			
June 1		4	1.54	0.05	$1.49-1.60$
June 8		7	1.69	0.05	$1.62-1.78$
June 14		10	1.43	0.27	$0.91-1.68$
June 20		7	1.39	0.26	$0.88-1.69$
June 29		6	1.16	0.22	$0.96-1.48$

保
APPENDIX TABLE 27. Summary of catch data for Couesius plumbeus (C), Rhinichtins cataractae (R) and their
putative hybrids (H) from 7 different selected habitats on Lower Kananaskis Reservoir.
All samples of these species taken during the time period of maximal spawning activity
in 1978 are listed below.

putative hybrids (H) from 7 different selected habitats on Lower Kananaskis Reservoir. All samples of these species taken during the time period of maximal spawning activity in 1978 are listed below.							
Sampling Date	LK1 Stream (Interlakes Stream)	IK1 Stream (Interlakes) Mouth	Habita LK1 Common (Interlakes) Bay	L Locations Interlakes Raceway	Boulton Cr . Mouth	Invincible Cr. Mouth	Smith-Dorrien Cr. Mouth
May 18	C-52, R-2						C-8, R-1
22	C-2	C-58					
24			C-6				C-4
25				C-3			C-9
26					$\mathrm{C}-12, \mathrm{R}-5, \mathrm{H}-1$		
June 1		C-3, R-1		C-20, R-4			
5	C-18, R-12		C-2				
7	R-7, H-1	C-15, R-4	C-2		C-11		
8	R-4	$\mathrm{C}-101, \mathrm{R}-7, \mathrm{H}-2$		C-25, R-3		C-81, H-1	C-5
12	R-8	C-14	C-8				
13	R-1	C-69, R-13	C-23		C-55, R-1	C-68, R-3	
14	R-1		C-31, R-1	C-71		C-18, R-1	
19	R-3						
20	R-9			C-4, R-1	C-32	C-8	
21	C-5, R-3		C-38	C-71		C-2	C-1
29	R-14		C-64, H-1		C-15		
July 6				C-12			

APPENDIX TABLE 28. Lower Kananaskis Reservoir inlet stream surface temperatures (${ }^{\circ} \mathrm{C}$, Hg thermometer), approximate current speeds

Date	Smith-Dorrien Creek	Kent Creek	Invircible Creek	Boulton Creek		LKl Stream	
April	5.5	5.0		3.0			
	4.5						
	$6.0 \quad 0.9 \mathrm{~m} / \mathrm{s}$			3.0			
May						7.0	$0.5 \mathrm{~m} / \mathrm{s}$
	5.5						
						4.4	
						4.0	$0.7 \mathrm{~m} / \mathrm{s}$
	$3.3 \quad 1.0 \mathrm{~m} / \mathrm{s}$						
	4.0					7.0	
						8.0	
	4.9 - mouth	2.7					
	$\begin{aligned} & 3.3 \text { - upstream } \\ & 1.7 \mathrm{~m} / \mathrm{s} \end{aligned}$						
	3.8		$1.0 \mathrm{~m} / \mathrm{s}$	5.0	Secch $\mathrm{i}=0.2 \mathrm{~m}$		
		2.5					
						4.0	
June				4.5			
				3.5		17.5	
	6.5				Secchi $=0.3 \mathrm{~m}$	16.5	$0.2 \mathrm{~m} / \mathrm{s}$
	4.3 2.5 m/6	$3.8 \quad 2.0 \mathrm{~m} / \mathrm{s}$	$\begin{aligned} & 4.0 \\ & \text { Secchi }=0.05 \mathrm{~m} / \mathrm{s} \\ & \hline \end{aligned}$				
		64 cfs (CPL)					
			12.5 Secch $\mathrm{i}=0.04 \mathrm{~m}$	8.2	Secchi $=0.4 \mathrm{~m}$	10.5	$0.2 \mathrm{~m} / \mathrm{s}$
	5.2						
	4.8	$7.22 .2 \mathrm{~m} / \mathrm{s}$	12.0				

APPENDIX TABLE 29. Analysis of Covariance of Viability Regressions.
A. Growth Rate Regressions (Fig. 23 in text)

		F	$F .05(\mathrm{df} 1, \alpha)$	
R. cataractae + C. plumbeus	slope	0.017	3.84	$\mathrm{P}>0.05$
	intercepts	21.20	3.84	$\mathrm{P}<0.05$
R. cataractae + Hybrid	slope	2.27	3.84	$\mathrm{P}>0.05$
	intercepts	4.68	3.84	$\mathrm{P}<0.05$
C. plumbeus + Hybrid	slope	2.83	3.84	$\mathrm{P}>0.05$
	intercepts	0.407	3.84	$\mathrm{P}>0.05$

B. Length-Weight Regressions (Fig. 24 in text)

R. cataractae + C. plumbeus	F F.05(df 1, α)				
	slope	0.86	3.84	P	> 0.05
	intercepts	48.66	3.84	P	< 0.05
R. cataractae + Hybrid	slope	0.19	3.84	P	> 0.05
	intercepts	13.69	3.84	P	<0.05
C. plumbeus + Hybrid	slope	0.91	3.84	P	> 0.05
	intercepts	14.62	3.84	P	<0.05

C. Fecundity Regressions (Fig. 25 in text)

$$
\begin{array}{llccc}
& & F & F \\
\text { R. cataractal }+ \text { C. plumbeus } \\
\text { slope } & 12.959 & 4.08 & \mathrm{P}<0.05 \\
& \text { intercept } & 6.878 & 4.08 & \mathrm{P}<0.05
\end{array}
$$

APPENDIX TABLE 30. Length-weight regression summary.

Disc Gel Acrylamide Electrophoresis Recipes

1 NHCl
21.55 ml conc. reagent (36.0%) to 250 ml

Stock A

pH 8.9
48 ml 1 N HCl
36.6 g THAM (TRIS)
0.23 m 1 TEMED
to $100 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$

Small Pore Ge1
$5 \mathrm{ml} \mathrm{A} \quad 10 \mathrm{ml} \mathrm{C} \quad 5 \mathrm{ml} \mathrm{H}_{2} \mathrm{O} \quad 20 \mathrm{ml}$ catalyst ge1 stock good for 4000 runs.

Buffer
6.0 g THAM (TRIS) - dilute to $1 / 10$ strength for run
28.8 g Glycine - ignore for various enzyme systems
to $1000 \mathrm{ml}\left(\mathrm{H}_{2} \mathrm{O}\right)$
pH 8.3

Destain
50:50:10 methanol: $\mathrm{H}_{2} \mathrm{O}$:glacial acetic acid

Storage

7\% Acetic Acid

Tracking Dye
0.1 g Bromopheny1 Blue to $1000 \mathrm{ml}\left(\mathrm{H}_{2} \mathrm{O}\right)$
(1)

THE UNIVERSITY OF ALBEPTA

RELEASE PORN

NAME OF AUTHOR
TITLE OF THESIS GEDRGE A. BUTCHER

ECOLOGY AND TAXONOMY OF HYBRIDIZING CYPRINID PISHES FROM DPPER AND LORFR KANANASKIS RESERVOIPS, ALBERTA DEGREF FOR WHICH THESIS HAS PRESENTFD MASTER OF SCIENCE YEAR THIS DEGREE GRANTED SPRING, 1979

Permission is hereby granted to THP UNIVERSITY OF AL.BERTA LIBRARY to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced withont the author's uritten permission.

[^0]: =

