
For Reference

NOT TO BE TAKEN FROM THIS ROOM

ECUMOUE

Digitized by the Internet Archive in 2020 with funding from University of Alberta Libraries

https://archive.org/details/Butcher1979

THE UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR GEORGE A. BUTCHER

TITLE OF THESIS ECOLOGY AND TAXONOMY OF HYBRIDIZING CYPRINID FISHES FROM UPPER AND LOWFR KANANASKIS RESERVOIPS, ALBERTA

DEGREE FOR WHICH THESIS WAS PRESENTED MASTER OF SCIENCE YEAR THIS DEGREE GRANTED SPRING, 1979

Permission is hereby granted to THF UNIVERSITY OF ALBERTA LIBRARY to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission. . .

THE UNIVERSITY OF ALBEPTA

ECOLOGY AND TAXONOMY OF HYBRIDIZING CYPRINID FISHES FROM UPPER AND LOWER KANANASKIS RESERVOIPS, ALBERTA

by

GEORGE A. BUTCHER

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND PESEARCH IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ZOOLOGY

EDMONTON, ALBERTA SPRING, 1979

THE UNIVERSITY OF ALBERTA FACULTY OF GRADUATE STUDIES AND RESEARCH

- ~

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research, for acceptance, a thesis entitled ECOLOGY AND TAXONOMY OF HYBRIDIZING CYPRINID FISHES FROM UPPER AND LOWER KANANASKIS RESERVOIRS, ALBERTA submitted by GEOEGE A. BUTCHER in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE. , ,

ABSTRACT

Principal components and canonical variates analyses of hybridizing Couesius rlumbeus (lake chub) and Fhinichthys cataractae (longnose dace) from Upper and Lower Kananaskis Reservoirs, Alberta, using 21 morphological characters, revealed two parental groups bridged continuously by an intermediate hybrid group. This morphological overlap between the hybrids and the parental species indicates that it is not always possible to positively identify 'pure' parental individuals from the Kananaskis. Neither backcross nor hybrid F2 individuals could be identified from the analyses, although the Kananaskis R. cataractae showed effects suggestive of introgression, relative to known R. cataractae from widespread Alberta localities. R. cataractae has also declined in numbers relative to C. plumbeus since last studied in 1961. C. plumbeus does not show similar effects suggestive of introgression.

<u>C. plumbeus</u>, <u>R. cataractae</u>, and their F1 hybrids were electrophoretically examined for five different protein systems. Only the serum prealbumen bands proved to be a reliable biochemical marker for the distinction of the two species. F1 hybrids can be identified by the presence of both parental prealbumen bands.

The effectiveness of the species' reproductive isolating mechanisms was studied in Lower Kananaskis Reservoir. Segregation in spawning time and habitat was not apparant. There was complete overlap in the spring spawning

iv

period of the two species, and habitat isolation was absent in all areas studied except one inlet stream. Artificial crosses of the species, examination of hybrid sex products, and life history data showed no effective postmating isolation. The existence of distinct species' specific mating behaviors was not confirmed. However, ethological isolation is inferred to be important in minimizing this hybridization. Hybrid fertility was not experimentally confirmed.

All of the recognized environmental factors which facilitate the dissolution of species' isolation appear to be important in causing this hybridization. This includes environmental disturbance, paucity of spawning areas, species introductions, and rarity of one parental species. It does not appear possible to single out any of these factors as having the major role in facilitating hybridization.

V

PREFACE

"That old and true method of Natural History observation - must ever have a large share in the study of living things. Together they are omnipotent; disjoined they become impotent fetishes. Biology of today, as we are beginning to realize, has not too much laboratory but too little of living Nature."

> C.O. Whitman (1902) Biological Farm. Biol. Bull. Mar. Biol. Lab., Woods Hole 3: 214-224.

ACKNOWLEDGMENTS

This research was financed by a one year contract from Alberta Environment, two consecutive summer grants from Alberta Fish and Wildlife (Ministry of Parks, Pecreation and Wildlife), and National Research Council of Canada funds granted my supervisor, Dr. J.R. Nursall. Graduate Teaching Assistantships and an Intersession Bursary were provided by the Department of Zoology.

Unfailing field assistance was provided by Martin T. Weckerle for which I am most grateful. I also wish to thank the Cochrane boys, Jim, Les, and John for their enthusiastic, voluntary assistance in both laboratory and field.

The hospitality extended to me by the staff of the Kananaskis Environmental Science Centre (University of Calgary) contributed immeasurably to this research. I thank Dr. Gordon Hodgson and Linda Jones for providing the superb living accommodations and laboratory space as well as the generous use of Centre equipment. It was a pleasure to receive laboratory assistance at the Centre from Drs. Chris Whitely, Peter Wallis, and John Corbin, and Mr. Dennis Jacques. I thank especially Dr. Allan Legge for his refreshing discussions, humour, and sage advice.

Environment Canada (Inland Water Directorate), Calgary, performed the water quality analyses.

Mr. J. Abelseth, Calgary Power Ltd. provided data on reservoir levels and assisted by winching the truck from

vii

numerous mud-holes and welding our boat trailer in the field.

I owe thanks to Mr. Wayne Roberts (UAM7) for the loan of specimens in his care, the loan of the Museum's calipers, and his efficient cataloguing of specimens on short notice.

Dr. John Bell, Genetics Department, University of Alberta, generously loaned his electrophoretic equipment and chemicals in 1977. I would like to thank his technician, Kathy Cornish, who assisted in the early stages of the biochemical genetics study.

I am grateful to Dr. Alan Wells for his invaluable assistance with various computer programs and statistical procedures, and for his insightful discussions on fish systematics. Dr. Jan Vrbik, University of Calgary, also assisted me through the morass of multivariate statistical computer programs.

Dr. J.R. Nursall was responsible for supervision of this study in the Department of Zoology, University of Alberta: his assistance and criticisms were always valuable. I wish to thank the members of my committee, Drs. B. Heming, J.C. Holmes, J.S. Nelson, and M.V.H. Wilson for their criticisms, interest and assistance at various stages of my research.

I am indebted to Dr. Brian Hammond (Environment Alberta) both for his assistance as a funding supervisor and for his friendship through difficult times. To Mr. Fraser McConnel, my solicitor, I owe thanks for his adroit actions

viii

in preventing the escalation of the petty to the ridiculous.

Finally, I acknowledge a debt of gratitude to Diane who sacrificed innumerable weekends and evenings to my pursuit, and who suffered what seemed to be an almost interminable stay in Edmonton.

TABLE	S OF	CON	TENTS
-------	------	-----	-------

Chapter		Page
I.	GENERAL INTRODUCTION	. 1
II.	STUDY SITE	• 5
III.	PAST STUDIES	10
IV.	FISH SAMPLING. METHODS. GENERAL CATCH RESULTS.	. 11
ν.	LIMNOLOGY. INTRODUCTION. METHODS. RESULTS AND DISCUSSION.	• 14 • 15
VI.	IDENTIFICATION OF HYBRIDS USING MULTIVARIATE ANALYSIS. INTRODUCTION. METHODS. SPECIMENS EXAMINED. CHARACTERS USED. STATISTICAL TECHNIQUES. Principal Components Analysis. Canonical Variates Analysis. RESULTS. PRINCIPAL COMPONENTS ANALYSIS. CANONICAL VARIATES ANALYSIS. CVA - VARIANCE TESTS. CVA - COMPARISON OF GROUP MEANS. CVA - PAST COLLECTIONS. PCA - INTRA-GROUP VAPIATION.	 24 24 24 27 30 30 31 32 32 38 51 58 59 62
VII.	ELECTROPHORETIC IDENTIFICATION OF HYBRIDS INTRODUCTION METHODS RESULTS. DISCUSSION.	 74 74 78
VIII.	REPRODUCTIVE ISOLATING MECHANISMS	

STUI	OY OF	PRE	MAT	INC	3]	[so	LA	TI	ON		•		• •	• •	•	• •		• •	•	•	85
	INTR	ODUC	TIO	N				• •					• •	• •	•	• •					85
	METH	ODS.					• •	• •		•••				• •		• •					85
	1	Temp	ога	1]	[so	13	iti	or	1								• •		•		85
		Habi																			87
		Beha																			87
	RESU																				88
		Temp																			88
		Habi																			92
		Beha																			07
	DISC																				09
STH	Y OF																				12
ə 1 U 1	INTR																	-			12
	METH																				13
															-		-		-		
		Hybr				-															13
		Hybr													٠	• •	•	• •	٠	-	15
			Imm										_								_
			Sur														•	• •	•	1	15
			Lon																		
			His	to	ГУ	Cł	aı	ac	te	eri	S	ti	CS	• •	•	• •	•	• •	•		16
	RESU	LTS.						• •							•	• •	•	• •	•	1	17
		Hybr	id	Eml	bry	70	Mo		al	lit	z y	• •	• •		•	• •				1	17
		Hybr																		. 1	21
		1	Imm					-													
			Sur																	. 1	21
			Lon														Ĩ		Ť	•	
			His	0.0															-	. 1	24
			11.4. ~		-																24
																					28
							-														34
	DTCC	neet	0.11																		37
	DISC	0551	ON.			• • •	• • •	• •	• • •	• • •	•	• •	• •	• •	٠	• •		• •	•	• 1	49
GENERAL	DISC	USSI	ON.		• • •			•	• • •		• •	• •	• •	• •	•	• •		• •	• (• 1	42
REFERENC	CES				• • •			•			•		• •	• •	•		•	• •		• 1	47
APPENDIC	CES											• •	• •	• •		• •	•	• •		. 1	61

IX.

·

LIST OF TABLES

Table	Description	Page
1.	Locations and University of Alberta Museum of Zoology catalogue numbers for Alberta control specimens of <u>Couesius plumbeus</u> and <u>Rhinichthys</u> <u>cataractae</u>	26
2.	The 12 most discriminating characters in a CVA using untransformed data, including frenum	43
3.	The 12 most discriminating characters in a CVA using untransformed data, without frenum	47
4.	The 12 most discriminating characters in a CVA using square-root transformed data, including frenum	50
5.	A comparison of variance estimates for the two species from Kananaskis and Alberta groups	55
6.	List of proteins examined in specific tissues	, 77
7.	Comparison of breeding coloration and nuptial tubercles	110
8.	Hatching results for experimental crosses	118
9.	% Pre-hatching mortality. Single classification ANOVA	119
10.	Diameters of eggs (5 days post-fertilization) for each artificial cross type	122
11.	Survival of offspring from experimental crosses over a 4 month period of post-hatching	123
12.	Length distribution of age-groups of <u>Couesius</u> <u>plumbeus</u> from 1 May 1978 sample, Lower	

	Kananaskis Reservoir	125
13.	Length distribution of age-groups of <u>Rhinichthys</u> <u>cataractae</u> from 1977, 1978 collections, Lower Kananaskis Reservoir	129
14.	Length distribution of age groups of <u>Couesius</u> <u>plumbeus x Rhinichthys cataractae</u> hybrids, from 1977, 1978 collections, Lower Kananaskis Reservoir.	130

LIST OF FIGURES

Figure		Page
1.	Map of Upper and Lower Kananaskis Peservoirs	. 7
2.	Spring and summer, 1977 isotherms (in Celsius degrees) from the water quality sampling site, Lower Kananaskis Reservoir	18
З.	Annual water level fluctuations in Upper Kananaskis Reservoir during 1977 and 1978	21
и.	Annual water level fluctuations in Lower Kananaskis Reservoir during 1977 and 1978	23
5.	PCA using untransformed data (frenum included). A. Plot of first and second principal component scores for Alberta 'control' specimens. B. Plot of second and third principal component scores for Alberta 'control' specimens	34
6.	 PCA using untransformed data (frenum included). A. Plot of first and second principal component scores for all Kananaskis specimens. B. Plot of second and third principal component scores for all Kananaskis specimens 	37
7.	CVA using untransformed data (frenum included)	40
8.	CVA using untransformed data (without frenum)	46
9.	CVA using square-root transformed data (with frenum)	49
10.	Variance Test I. Untransformed data; frenum included	54
11.	Variance Test II. Untransformed data; frenum included	57

12.	CVA of Past Collections of Kananaskis <u>Couesius</u> <u>plumbeus</u>	61
13.	PCA of Alberta <u>Rhinichthys</u> <u>cataractae</u> alone	64
14.	PCA of Alberta <u>Couesius plumbeus</u> alone	66
15.	Acrylamide gel electrophoretic patterns of muscle and serum tissues from <u>Rhinichthys</u> <u>cataractae</u> (R.c.), <u>Couesius plumbeus</u> (C.p.), and their F1 hybrid (CxR) sampled from Lower Kananaskis Reservoir, 1978	80
16.	Change in female gonad maturity for <u>Couesius</u> <u>plumbeus</u> and <u>Rhinichthys cataractae</u> , sampled from Lower Kananaskis Reservoir, during the 1978 spawning period.	91
17.	Change in gonadosomatic values (gonad weight/body weight%) of female <u>Couesius plumbeus</u> (upper graph) and female <u>Rhinichthys cataractae</u> (lower graph) sampled from Lower Kananaskis Reservoir during the 1978 spawning period	94
18	Trends in mean ova diameter during spawning period for <u>Couesius plumbeus</u> and <u>Phinichthys</u> <u>cataractae</u> , Lower Kananaskis Reservoir, 1978	96
19.	Catch data for adult <u>Couesius plumbeus</u> , <u>Rhinichthys cataractae</u> , and their putative hybrids from 7 selected sampling sites, Lower Kananaskis Reservoir.	99
20.	Extreme south end of Lower Kananaskis Reservoir showing the approximate progression of shoreline changes during the summer, 1978, filling of the reservoir and the consequent flooding of Interlakes Stream	104
21.	Graphic separation of polymodal length frequencies by probability coordinates for: A. 343 <u>Couesius plumbeus</u> from Lower Kananaskis Reservoir. B. 241 <u>Rhinichthys cataractae</u> from Lower	
	Kananaskis Reservoir	127

- 23. Length-weight regressions for: C 170 <u>Couesius</u> <u>plumbeus</u> (r=0.96) R - 157 <u>Rhinichthys cataractae</u> (r=0.99) CxR - 33 <u>C. plumbeus</u> x <u>R. cataractae</u> hybrids (r=0.98) from Lower Kananaskis Reservoir 136

LIST OF PHOTOGRAPHIC PLATES

Plate	Description	Page
1.	Male <u>Couesius plumbeus</u> captured at height of spawning period, mid-June, 1978, from Lower Kananaskis Reservoir.	154
2.	Female <u>Couesius plumbeus</u> , captured at height of spawning period, mid-June, 1978, from Lower Kananaskis Beservoir.	154
3.	Male <u>Rhinichthys cataractae</u> captured at height of spawning period, mid-June, 1978, from Lower Kananaskis Reservoir (Interlakes Stream).	156
4.	Female <u>Rhinichthys cataractae</u> captured at height of spawning period, mid-June, from Lower Kananaskis Reservoir (Interlakes Stream).	156
5.	Adult male, <u>Couesius plumbeus x Phinichthys</u> <u>cataractae</u> , captured at height of spawning period, mid-June, 1978, from Lower Kananaskis Reservoir.	1 58
6.	Top: <u>Couesius plumbeus</u> (male); Middle: <u>Couesius</u> <u>plumbeus x Rhinichthys cataractae</u> (male); Bottom: <u>Rhinichthys cataractae</u> (male). All specimens captured in 1977, in Lower Kananaskis Reservoir.	158
7.	Electroshocking the lower reaches of Smith-Dorrien Creek near its mouth on Lower Kananaskis Reservoir, early May, 1978 (looking east).	160
8.	Interlakes Stream at south end of Lower Kananaskis Reservoir (looking south), in early June prior to cyprinid spawning peak.	160

I. GENERAL INTRODUCTION

Interspecific and intergeneric hybridization are frequent phenomena among northern temperate, freshwater fish species, especially the cyprinids (Hubbs, 1955). Hybridization - defined here as the successful reproduction between two species (<u>sensu</u> Mayr, 1969) following secondary contact - poses interesting problems and makes contributions to several levels of study, ranging from systematics and evolution to ecology and habitat managemen⁺.

At the taxonomic level, putative hybrid individuals pose a methodological problem of identification. Traditionally, hybrids have been identified by their intermediacy in those characters which discriminate the parental species (Hubbs, 1955). However, the wild-caught hybrid individuals are not always strictly intermediate between that of the parental species. Certain morphological characters of hybrids may be identical to, or approximate those of one parental type, or they may be beyond the range of either parental type (Hubbs and Strawn, 1957). The difficulty of discriminating hybrids in a wild-caught collection from possible uncommon parental variants is additionally complicated by the possible presence of backcrosses and further hybrid generations. These difficulties have been largely ignored in most previous taxonomic investigations. The inadequacy of traditional hybrid index statistical techniques (Smith, 1973) may have contributed to this situation. Multivariate statistical

techniques have been advanced to overcome these problems of hybrid identification, by maximizing the separation of parental taxa, and by revealing the possible presence of backcrosses (Colgan <u>et al.,1976; Smith, 1973).</u> Such claims have not yet been subjected to intense scrutiny.

Apart from a purely morphological identification of hybrid individuals, the taxonomist is presented with the possibility of discriminating hybrids using single isoenzyme characters. This offers a second set of data with which to test the initial identification.

At the evolutionary level of study, two hybridizing populations may be expected to undergo observable and statistically significant evolutionary changes if hybrid fertility occurs (i.e., fusion or character displacement). The investigator is presented with the problem of determining the magnitude and direction of such changes if they exist. Such an approach can contribute to our understanding of evolution, but only with the availability of adequate past specimens from the area of hybridization.

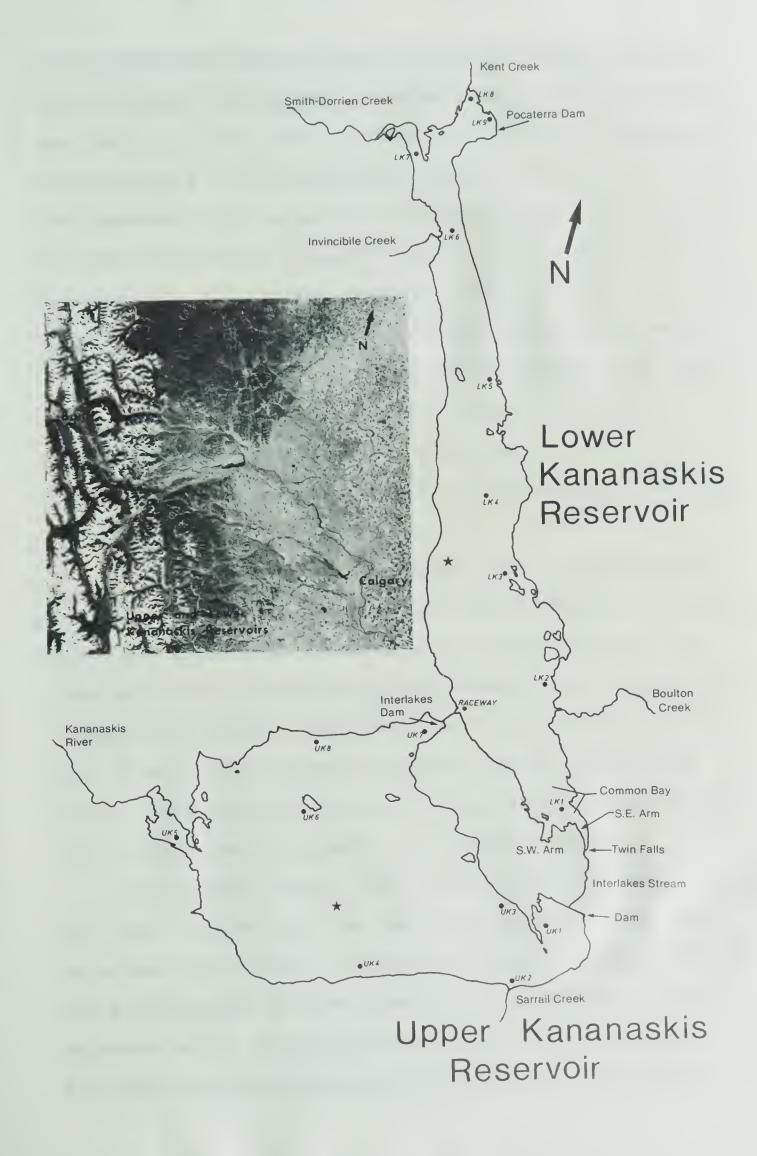
At the ecological level, it is necessary to determine if and how environmental factors were responsible for the dissolution of the species' reproductive isolating mechanisms. Hybridization may indicate a wide overlap in those components of the species' niches concerning habitat preferences and spawning habits. Also, the long-term viability of hybrid individuals has implications for the strength of competitive interactions between the species in

an area of hybridization. Accumulating evidence suggests that hybrids succeed in environments where competition from parental phenotypes is weak (Moore, 1977).

Disturbance of the aquatic environment, either naturally or man-induced, is a primary cause of fish hybridization (Hubbs, 1955). The escalating manipulation of our lakes and rivers for reservoirs and other development purposes poses a threat to the integrity of the resident fish species. At the practical level then, hybridization studies improve our understanding of how environmental changes directly affect species, and may contribute to the mitigation of effects of future development.

Several problems at these levels were undertaken in this study of hybridization between <u>Couesius plumbeus</u> (Agassiz) and <u>Rhinichthys cataractae</u> (Valenciennes) in Upper and Lower Kananaskis Reservoirs, Alberta. At the taxonomic level, this study presents the first multivariate statistical analyses of external morphological data; it examines hybrid variability and investigates the possibility of hybrid fertility. In so doing, the effectiveness of multivariate techniques to yield such information can be practically evaluated. To corroborate the hybrid identification by morphology, an electrophoretic analysis of the population was initiated. The possibility of phenotypic changes in the Kananaskis population, evolving over 17 years of known hybridization, is also examined. The ecology of spawning populations, the effectiveness of the isolating

mechanisms, and the results of artificial cross experiments are described in order to ascertain the causes of hybridization. As a consequence, this research provides the first thorough reproductive and life history data for these species from Alberta.


II. STUDY SITE

The Upper and Lower Kananaskis Reservoirs are located approximately 50 km south of the confluence of the Kananaskis and Bow Rivers, and within 5 km of the headwaters of the Kananaskis River at the continental divide (Fig. 1). Both reservoirs cover original mountain lake basins. The Upper Lake was the first to be modified with the construction of two hydroelectric dams (Interlakes) in 1936 and 1942. The Lower Lake was impounded in 1955, by the Pocaterra Dam. A detailed description of the history of hydroelectric development and the storage characteristics of these reservoirs is provided by Nelson (1962).

Water is stored during the spring and summer run-off and released through the fall and winter to generate electricity. The Upper Reservoir is the last to be filled and the first to be drawn down. Both reservoirs follow the same annual cycle of level fluctuations: extreme high in October and extreme low in April. The amount of water drawn down in late winter is regulated according to the amount of snowfall accumulation. Thus, the amplitude of reservoir level fluctuations may be quite variable from year to year and may differ between the two reservoirs.

The surface area of the Lower Reservoir varies from 283 hectares at low supply level to 648 hectares at full supply level. The surface area of the Upper Reservoir varies from 633 to 855 hectares (data from Nelson, 1962). The extensive area of flooded shoreline is littered with the stump and

Figure 1. Map of Upper and Lower Kananaskis reservoirs (1 cm = 0.55 km). The stars in each reservoir mark positions of water quality sampling stations. Fish sampling sites are marked with dots and site numbers (corresponding to the numbers in Appendix Tables 1. and 2.). The inset photo is copied from a Landsat I false color image shot on 5 October 1972, at an altitude of 920 km and processed by the Canada Centre for Remote Sensing, Ottawa. The image format centre is Lat.N. 51°15', Long.W. 155°00' and corresponds to the National Topographic Survey (Canada) Map 820.

root remnants of trees removed prior to dam construction. The Government of Alberta began partial removal of stumps and roots in June, 1978. The substrate of this 'fluctuation' zone consists of unconsolidated gravel and boulders interspersed with large areas of thick eroded silt (Plate 8). The only benthic fauna to utilize this 'fluctuation' zone are the chironomids (Fillion, 1963).

In the spring, as the reservoirs fill, the spawning fish are presented with flooded shoreline areas and with upstream areas of original inlet creeks. By the time spawning commences in late May (suckers) or early June (cyprinids), the presumed original spawning beds have been flooded.

All inlet streams of the Upper Kananaskis Reservoir flow unrestricted in their natural beds. The flow of Boulton Creek and Invincible Creek into the Lower Reservoir has remained unchanged since pre-impoundment days. However, due to dam construction, Smith-Dorrien Creek and the diverted Kent Creek, which formerly drained into the Kananaskis River, now drain into the Lower Reservoir. All four streams flow unregulated with spring and summer run-off.

The original outlet flow (at the extreme south end of the Lower Reservoir), from the Upper Lake into the Lower Lake, has been reduced to seepage through the earthfill dam (here designated as Interlakes Stream). Similarly, the man-made outlet of the Upper Reservoir into the Lower Reservoir at Interlakes Dam is controlled so that there is

no flow during the spring and summer (i.e., from end of drawdown in April, to its recommencement in October).

III. PAST STUDIES

Previous pre- and post-impoundment studies on the limnology, productivity, and fishes of the Upper and Lower Kananaskis Reservoirs were reviewed by Nelson (1962) in order to establish the chronology of biological changes. Nelson deduced that both C. plumbeus and P. cataractae were introduced to the Upper and Lower Kananaskis Reservoirs as bait fishes, probably from Bow River populations (R. cataractae probably in the 1930's; C. plumbeus probably in the late 1950's). The occurrence of hybridization between these two species in Upper Kananaskis Reservoir was noted by Nelson (1962). The external morphology of hybrids from Upper Kananaskis Reservoir was described by Nelson (1966). The hybrids from both reservoirs were later examined using osteological characters and a hybrid index technique (Nelson, 1973). One juvenile specimen appeared to be intermediate between the majority of hybrids and one parental phenotype.

Hybridization between <u>C. plumbeus</u> and <u>R. cataractae</u> has been noted in several localities outside Alberta (Simon, 1946, in Wyoming; Hubbs and Lagler, 1949, in Lake Superior; Taylor, 1954, in Michigan), but without the substantiating evidence provided by Nelson (1966, 1973).

Identification of <u>C. plumbeus x R. cataractae</u> hybrids by numerical taxonomic or electrophoretic techniques has not been reported. Additionally, the reproductive ecology of the Kananaskis populations has not been studied.

IV. FISH SAMPLING

METHODS

Fish were collected between May 10 and August 29, 1977, from Upper and Lower Kananaskis Reservoirs and between May 1 and July 27, 1978, from Lower Kananaskis Reservoir.

<u>C. plumbeus</u>, and <u>R. cataractae</u> and their hybrids were sampled from the reservoirs proper, using monofilament gillnets (18 mm, 26 mm, and 38 mm stretch mesh), beach seines (8 mm mesh), dipnets, and baited minnow traps. This variety of sampling methods assured the capture of all sizes of specimens. Sampling sites are shown in Figure 1 and site descriptions provided in Appendix Table 1 and Table 2. The relative abundance of the hybridizing species was established for all localities. Data on depth, substrate type, and distance from shore were recorded for all captures. The study of the breeding biology of the cyprinids in 1978, involved intensive sampling of only the Lower Reservoir. The Upper Reservoir presented boat access problems in the early spring.

Inlets of Lower Kananaskis Reservoir were electroshocked (Smith-Root Electroshocker Model VII) beginning in late April 1978, when the majority of the reservoir was ice-covered (95%). A beach seine was stretched across each inlet stream mouth and the stream was electroshocked and the bottom disturbed downstream into the seine (refer to Plate 7). Smith-Dorrien Creek, Boulton Creek, Kent Creek, and the original outlet stream of Upper

Kananaskis Lake (here designated as Interlakes Stream) were sampled in this manner. As spring run-off increased, it became impossible to sample inlet streams (except Interlakes Stream), and gillnets were placed across the stream mouths and minnow traps placed along the edges.

Standard length and sex were recorded for all fish sampled. A representative sample was returned to the laboratory for weighing, gonad and scale removal, and preservation in 10% formalin. Samples of the two species and their hybrids were deposited in the University of Alberta Museum of Zoology (UNMZ).

GENERAL CATCH RESULTS

Cyprinid catch data from 1977 and 1978 for Upper and Lower Kananaskis Reservoirs are summarized in Appendix Tables 1 and 2. Capture method, locality, date, depth, and numbers of specimens are provided.

The ratios of parental species to hybrid individuals captured in each year were as follows: 1977, 133 <u>C. plumbeus</u> to 7 <u>R. cataractae</u> to 1 putative <u>C. plumbeus x P.</u> <u>cataractae</u>; 1978, 174 <u>C. plumbeus</u> to 12 <u>R. cataractae</u> to 1 putative <u>C. plumbeus x R. cataractae</u>. A total of 56 putative hybrids were captured in 1977 and a total of 9 putative hybrids were captured in 1978. A disproportionate cyprinid species' ratio in favour of <u>C. plumbeus</u> was also recorded by Nelson (1962). He found <u>C. plumbeus</u> to be 4.0 to 5.6 times as numerous as <u>R. cataractae</u> in gillnet catches for Lower

and Upper Kananaskis Reservoirs, respectively. Results of the present study (<u>C. plumbeus</u> 14 - 19 times as numerous as <u>R. cataractae</u>) may indicate an increase in the disproportion of species' numbers over the intervening 17 years. It is not known if <u>C. plumbeus</u> is numerically increasing, or if <u>P.</u> <u>cataractae</u> is numerically declining.

Suspected cyprinid hybrids were captured throughout both reservoirs and were not concentrated in a limited number of locations. Relatively large hybrid capture numbers (Appendix Table 1 and Table 2) at certain sites are due to more intensive sampling at these sites. Hybrids were captured alone and with individuals of each species. Capture of the hybrids was both infrequent and unpredictable.

The cyprinids sporadically swarmed in large schools with juvenile suckers over recently flooded inshore areas. The schools were observed only in midsummer on sunny days when the water temperature exceeded 15°C; schooling did not occur on cloudy, windy, or cool days. The majority of the large seined collections came from the infrequent occasions on which such large schools were observed. Hybrids were often collected from such schools. Except for these occasions, the cyprinids generally remained offshore. The mixed schools were involved neither with reproduction (since they occurred after spawning) nor with feeding (since the flooded areas are assumed not to have a developed bottom fauna). The reasons for this mixed schooling remains unstudied.

V. LIMNOLOGY

INTRODUCTION

Changes in environmental factors can trigger fish hybridization (Hubbs, 1955). The modification of a lake to a reservoir is accompanied by an obvious annual change in surface water elevation and basin morphometry. This change may directly affect fish spawning habitat so that miscegenation results.

Less visible are the possible indirect effects of changes in water quality and the thermal regime. Small changes in these factors may upset the competitive balance existing between the species and result in a disproportion of one species (a possible precursor to hybridization). An altered temperature regime may affect the timing of species' spawning activities thereby destroying a temporal barrier to reproductive isolation. Changes in these environmental factors may contribute to what Anderson (1949) termed the "hybridization of the environment" (Anderson, 1949).

Apart from accurate water level statistics, there are only few and rudimentary limnological data available for Upper and Lower Kananaskis Lakes prior to impoundment (Rawson, 1937, 1948; Miller, 1954; Thomas, 1955).

The purpose of this section is to: 1) document the degree of water level fluctuations; 2) document present water chemistry and temperature conditions; and 3) to speculate as to whether the latter have undergone significant changes since impoundment.

METHODS

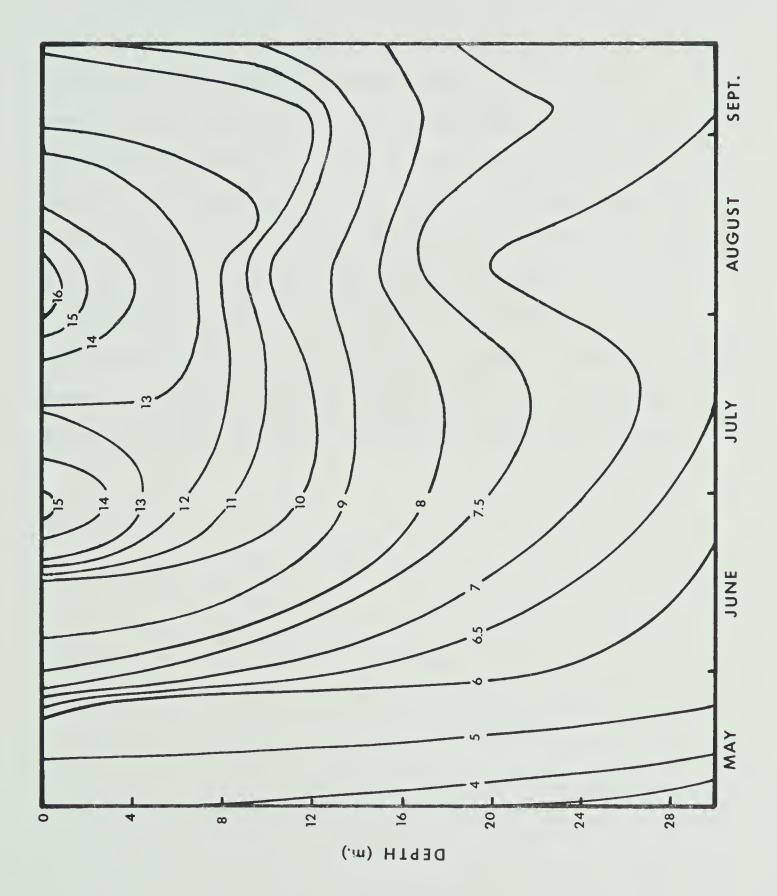
Physico-chemical parameters were measured mid-monthly during June, July, and August, 1977, from three depths (surface, mid-depth, and 1 m off bottom) at one sampling station on each of the Upper and Lower Kananaskis Reservoirs (Fig. 1). The water samples were shipped within 24 hours to Environment Canada, Inland Waters Branch, Calgary, Alberta, for analysis of alkalinity, color, pH, residue (non-filterable), turbidity, total Kjeldahl nitrogen, total phosphorus, and total carbon. Water quality samples were not taken during the summer of 1978. Water temperature profiles were recorded when water samples were collected, and also sporadically through the summer. The dates on which water temperature profiles were taken from Lower Kananaskis Reservoir in 1977, are as follows: May 9,17, 31; June 20,29; July 15; Aug. 8, 16; Sept. 3, 17. Water temperature was measured at 1 m intervals using a Y.S.I. telethermometer. Reservoir elevations were provided by Calgary Power Ltd.

RESULTS AND DISCUSSION

Results of the water quality analysis for Upper and Lower Kananaskis Reservoirs are presented in Appendix Tables 3 and 4. Most of these water quality parameters are reported for the first time from these reservoirs.

Both reservoirs have similar basic pH values. These do not appear to have changed since last studied by Fillion (1963) and Nelson (1962). According to Nelson, no pH change

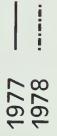
accompanied construction of Lower Kananaskis Reservoir.


Specific conductance values are high for each reservoir as a result of spring run-off. The values for the Lower Kananaskis Reservoir are consistently higher than those of the Upper Reservoir, a trend shown by Fillion. Inorganic carbon values are also higher for the Lower Kananaskis Reservoir.

The remaining parameters - color, residue, turbidity, nitrogen, phosphorus, and organic carbon - show no difference between the reservoirs. An examination of all the above parameters does not reveal any change attributable to reservoir construction. Both reservoirs are characterized by the clarity and nutrient-poor state expected for that of the original lakes.

Spring and summer isotherms from Lower Kananaskis Reservoir, 1977, are shown in Figure 2. These were constructed from the water temperature profile data. Additional temperature data from 1978, are provided in Appendix Table 5. Some thermal stratification occurs during the summer. There have been no thermal changes since the studies by Nelson and Pillion. This probably represents the original thermal situation in the Lower Lake for the spring and summer months. Since Calgary Power Ltd. does not lower the level of Upper Kananaskis Reservoir in the summer, there is no unnatural input of cool hypolimnetic waters into the Lower Reservoir in the summer. There is no reason to believe that the water temperature cue for spawning has been

Figure 2. Spring and summer, 1977 isotherms (in ^OC) from the water quality sampling site, Lower Kananaskis Reservoir.



altered. However, the effects of hypolimnetic input from Upper Kananaskis Reservoir during fall drawdown on fish biology remains unstudied.

Annual water level fluctuations for 1977 and 1978, are shown graphically in Figures 3 and 4 for Upper and Lower Kananaskis Reservoirs, respectively. There is much unpredictability in water level from year to year; the amount of drawdown is adjusted according to the amount of snowfall accruing through the winter. Of more importance, there is significant annual variation in water levels at spawning time: in Upper Kananaskis Peservoir a 0.6 m difference and in Lower Kananaskis Peservoir a 2.0 m difference. These differences are enough to radically alter shoreline characteristics from year to year. Permanent spawning areas cannot be established under this regime.

Figure 3. Annual water level fluctuations in the Upper Kananaskis Reservoir during 1977 and 1978. Elevation is given as above sea level. Data provided by Calgary Power Ltd.

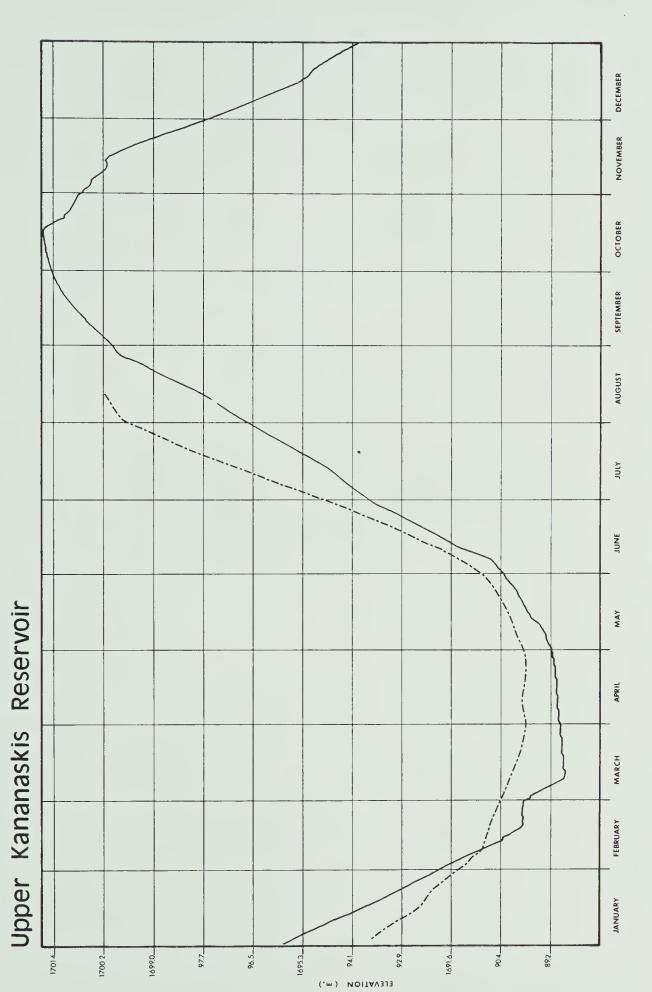
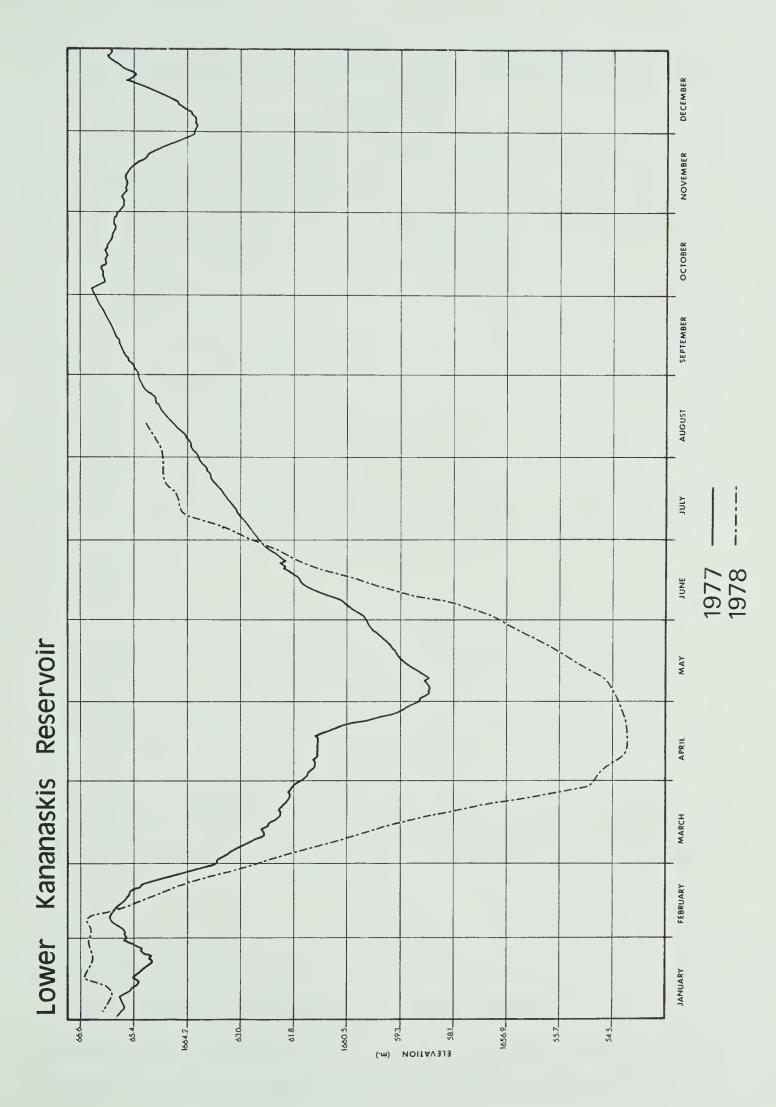



Figure 4. Annual water level fluctuations in the Lower Kananaskis Reservoir during 1977 and 1978. Elevation is given as above sea level. Data provided by Calgary Power Ltd.

VI. IDENTIFICATION OF HYBRIDS USING MULTIVARIATE ANALYSIS INTRODUCTION

Although the Kananaskis cyprinid hybrids were identified and morphologically examined by Nelson (1966, 1973), including analysis by hybrid index, there have been no numerical taxonomic studies attempted.

The advantages of multivariate statistical techniques relative to traditional methods have been reviewed by Smith (1973). Of singular importance is elimination of the necessity to prejudge hybrid or parental origin of the specimens. This is of particular value when hybrids are variable and hybrid fertility is possible. In such cases, it may be impossible to discriminate hybrids from parental individuals.

This section of the study describes principal components and canonical variates analyses of numerous morphological characters of both hybrids and parental individuals. The methods do not require assumptions as to the identity of any Kananaskis specimens. Hybrid variability, possible hybrid fertility, and the effects of hybridization over time on the populations are described.

METHODS

SPECIMENS EXAMINED

The external morphology of representative Kananaskis specimens was compared to: 1) that of museum specimens from Alberta localities where hybridization is presumed not to

occur; and to 2) that of museum specimens collected from these reservoirs in previous years.

All Kananaskis specimens examined in the morphological studies were deposited in the University of Alberta Museum of Zoology (UAMZ numbers 4145-4201).

There was a collecting bias in the field directed equally toward the less common specimens, i.e., typical <u>P.</u> <u>cataractae</u> and all putative hybrids. Typical <u>C. plumbeus</u>, being highly abundant, were randomly collected. A random sample of 137 specimens was chosen from the field collections of each reservoir, irrespective of sex and presumed identity, and were used in the analyses (designated here as the Kananaskis specimens). The sex ratio for the entire Kananaskis sample was 62 females to 75 males.

Fifty <u>C. plumbeus</u> and fifty <u>R. cataractae</u> were selected from widespread Alberta localities in UAMZ collections encompassing several drainage systems (designated here as the Alberta specimens). These control specimens were selected such that the size (standard length) range was similar to that of the Kananaskis specimens. The catalogue numbers, locations, and sex ratios of these collections are given in Table 1. Unfortunately, due to the scarcity of large male <u>R. cataractae</u> in the UAMZ collections, the sex ratio of Alberta <u>R. cataractae</u> was predominantly female. The sex ratio for the entire Alberta sample was 73 females to 27 males.

Past collections of C. plumbeus from Upper and Lower

Species	Locality	Lat. N/Long. W	UAMZ#	Number of Specimens Examined
C. plumbeus	Brazeau Reservoir	52 [°] 57' 115 [°] 35'	566	8
	Red Deer River	52 [°] 19' 113 [°] 06'	3326	8
	Abraham Reservoir	52 [°] 16' 116 [°] 23'	3350	8
	Little Smokey River	54 [°] 44' 117 [°] 10'	1654	8
	Pothole Creek	49 [°] 25' 112 [°] 54'	3843	8
	Winefred River	56 [°] 02' 110 [°] 36'	3451	2
	Bare Creek	49 [°] 14' 110 [°] 00'	3231	3
	McIvor River	58 [°] 18' 118 [°] 03'	3418	3
	N. Saskatchewan River	52 [°] 25' 116 [°] 04'	3325	2
otal sex ratio	of 27 of:23 of			
R. cataractae	N. Saskatchewan River	52°16' 116°23'	3381	7
	N. Saskatchewan River	53 [°] 30′113 [°] 34′	2044	2
	N. Saskatchewan River	52 [°] 16' 116 [°] 23'	3322	1
	Graburn Creek	49 [°] 38′ 110 [°] 01′	1620	7
	Cutbank River	54 [°] 43' 118 [°] 32'	3903	2
		6 c 0 (a t a c a 0 a a t	3435	2
	Horse River	56°43' 111°23'		
	Horse River Abraham Reservoir	52°16' 116°23'	3 36 9	5
			3369 3414	5
	Abraham Reservoir	52 [°] 16' 116 [°] 23'		
	Abraham Reservoir Gregoire River	52 [°] 16' 116 [°] 23' 56 [°] 29' 110 [°] 48'	3414	6
	Abraham Reservoir Gregoire River Pothole Creek	52°16' 116°23' 56°29' 110°48' 49°25' 112°54'	3414 4000	6 2
	Abraham Reservoir Gregoire River Pothole Creek Pothole Creek	52°16' 116°23' 56°29' 110°48' 49°25' 112°54' 49°25' 112°54'	3414 4000 3843	6 2 5
	Abraham Reservoir Gregoire River Pothole Creek Pothole Creek Bare Creek	52°16' 116°23' 56°29' 110°48' 49°25' 112°54' 49°25' 112°54' 49°14' 110°00'	3414 4000 3843 3231	6 2 5 5

TABLE 1. Locations and University of Alberta Museum of Zoology catalogue numbers for Alberta control specimens of Couesius plumbeus and Rhinichthys cataractae.

Total sex ratio of 46 o:4 of

·

Kananaskis Reservoirs were subjected to morphological study to determine any effects of hybridization over time. The 1961 collection of 11 <u>C. plumbeus</u> from Upper Kananaskis Reservoir (UAMZ 863) were analyzed. Twenty-five <u>C. plumbeus</u> were examined from the 1969 collections (UMAZ 2706, 2707, 2518) and 25 from the 1973 collections (UAMZ 3345, 3346) including specimens from both Upper and Lower Kananaskis Reservoirs. Only specimens within the size range of the Kananaskis specimens were selected.

Past Alberta collections of <u>B. cataractae</u> in the UAMZ holdings were few and contained only small specimens beyond the size range comparable to the Kananaskis specimens. These were deemed inadequate for comparison to recent Kananaskis collections. Thus, it was only possible to study the effects of hybridization over time on <u>C. plumbeus</u>.

CHARACTERS USED

The following 21 morphological and meristic characters were recorded for all 298 specimens. These were chosen because all were good descriptors of the fishes' shape and because some are known (Nelson, 1966) to be efficient discriminators of the parental species and of the putative hybrids. Counts and measurements follow the descriptions and diagrams in Hubbs and Lagler (1964) except as otherwise defined. Measurements were made using needle point dial calipers, read to the nearest 0.1 mm. Microscope magnification was used when required. Abbreviations for each

character follow in parentheses.

- 1. standard length (SL)
- 2. head length (HL)
- 3. orbit length (OL)
- 4. snout length (SN)
- 5. interorbital width (IN) (the least fleshy width of the interorbital)
- head depth at nostril (HDN) the distance from the nostril downward to the ventral contour of the head.
- 7. head width at eye (HWE) the greatest dimension from one lateral side of the head to the other lateral side on a line below the orbits.
- 8. mouth length (ML) (length of upper jaw)
- 9. mandible width (MAN) (width of gape)
- 10. snout overhang (SOV) the distance from the tip of the snout along the midline to the most anterior portion of the lower jaw.
- 11. frenum width (FRE) the distance between the grooves separating the upper jaw from the shout.
- 12. isthmus width (IW) the distance between the gill membranes at point of attachment to isthmus.
- 13. body width at dorsal fin origin (WDO) the maximum distance from one lateral side of the body to the other lateral side on a line below the dorsal fin origin.
- 14. snout to dorsal fin origin (SDO) (pre-dorsal length)
- 15. caudal peduncle length (CP)
- 16. snout to anus (STA) distance from the tip of the snout to the anal opening.
- 17. pectoral fin origin to anus (PTA)
- 18. depth of caudal fin fork (CF) the distance from the apex of the caudal fork outward to a straight line connecting the tips of each outstretched caudal fin lobe.

- 19. number of lateral line scales (LS)
- 20. number of scales from dorsal fin origin along diagonal to lateral line (ALS) - (number of scales above lateral line).

21. number of scales around caudal peduncle (CPS) This is the order in which the characters were used in all following morphological analyses.

Ratios were specifically avoided in order to eliminate problems with allometry and compounded variance (Marr, 1955; Atchley <u>et al.</u>, 1976). Multivariate analyses were run with untransformed data and square-root transformation, since size differences could lead to vectors not being coplanar (Pimental, 1976). Frenum width for known <u>C. plumbeus</u> was always 0.00, and since several other characters also had values < 1.0, a logarithmic transformation of the data set was inappropriate. The effectiveness of using transformed data was assessed.

These 21 characters were chosen from an original 31 characters because of their significant contribution toward group discrimination. The 10 characters discarded prior to in-depth analysis included: mouth to eye length (distance from corner of the mouth along midline to a vertical line marking the anterior margin of the orbit), cheek depth, dorsal fin origin to pelvic fin origin, dorsal fin height, anal fin height, pelvic fin axillary process (absence, presence), number of gillrakers, number of pectoral rays, number of anal rays, and number of dorsal rays.

Some of these characters, e.g., dorsal fin origin to

.

pelvic fin origin, number of gillrakers, and number of fin rays were discarded because they were ineffective at group discrimination. The rest were removed because they were confounding sources of variation. The characters, mouth to eye length, and cheek depth could not be accurately measured, pelvic fin axillary process could not be accurately scored, and the fin height characters are sexually dimorphic (Wells, 1978). Since each sex was not separately analyzed, characters of known sexual dimorphism were eliminated.

STATISTICAL TECHNIQUES

Principal Components Analysis

Principal components analysis (PCA) (Morrison, 1967; Cooley and Lohnes, 1971; Pimental, 1976) was used to display patterns of morphological similarity of individuals from mixed species' populations with hybrids, relative to populations without hybrids. This method finds the orthogonal axes through the n-dimensional character space in directions of greatest variance. The new axes provide new directions from which to view the group relationships, if any, within the data. The plot of the specimens on the first three components will usually display a great amount of the total variance within the data set.

PCA scores were calculated from the character correlation matrix using the Clustan 1C computer program (Wishart, 1975) for the following two separate data sets: 1)

all 137 Kananaskis specimens; and 2) 100 control Alberta specimens. The projection scores of the specimens in the two data sets were plotted against the first and second axes and also against the second and third axes. Untransformed and square-root transformed data were analyzed. The assumption of a single multivariate normal population for a PCA has been ignored for these reasons: 1) no statistical inferences were drawn from these analyses; and 2) departures from normality are not thought to invalidate the results (Dudzinski <u>et al.</u>, 1975).

Canonical Variates Analysis

The same two data sets (untransformed and square-root transformed) were subjected to canonical variates analysis (CVA) in order to quantify the relationship between individuals (Pimental, 1976). This method requires the <u>a</u> <u>priori</u> identification of two or more known groups within the data set. Axes are calculated which maximally separate these groups while minimizing the within-groups variance. Specimens of unknown origin can then be assigned a position on this axis (calculated using the discriminant function) relative to their similarity to either group.

The BMD 07M computer program (Dixon, 1973) was used to assess the relationship between the Kananaskis specimens (the <u>a priori</u> unknown group) and the control Alberta specimens (the <u>a priori</u> known group). The canonical scores were plotted against the first canonical axis and graphed as

frequency histograms. An examination of further canonical axes did not discriminate more groups than was revealed by the first canonical axis.

In addition to correct <u>a priori</u> identification, CVA assumes a multivariate normal distribution with equal variance-covariance matrices. A Bartlett's test of homogeneity of dispersions (DERS program; Bay, 1969) on the two known groups showed a significant difference between the matrices (F = 2.6, F.05(210,29352) = 1.00). However, it is generally held that CVA has sufficient robustness, so that departures from the assumptions will not be serious (Pimental, 1976).

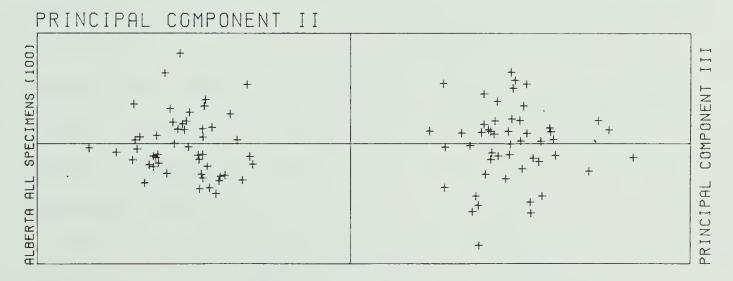
RESULTS

PRINCIPAL COMPONENTS ANALYSIS

The principal component scores for the Alberta specimens, calculated using untransformed data, were plotted against the first three axes (Fig. 5). The results confirm the initial identification of 'pure' specimens representing the two species, with no morphological intermediates.

Component I represents overall size differences among the specimens, ranging from small on the left to large on the right. Component II represents between-species discrimination and Component III represents the largest component of within-species variation (perhaps due to sexual dimorphism or population differences). The variation expressed by the three components represents 91.3% of the

Figure 5. PCA Using Untransformed Data; Frenum Included


- A. Plot of first and second principal component scores for Alberta, 'control' specimens. *Couesius plumbeus*, top cluster; *Rhinichthys cataractae*, bottom cluster. Component I = 59.4% of total variation in 21 character correlation matrix; Component II = 28.3% of variation.
- B. Plot of second and third principal component scores for
 Alberta 'control' specimens. R. cataractae on left;
 C. plumbeus on right. Component III = 3.5% of variation.

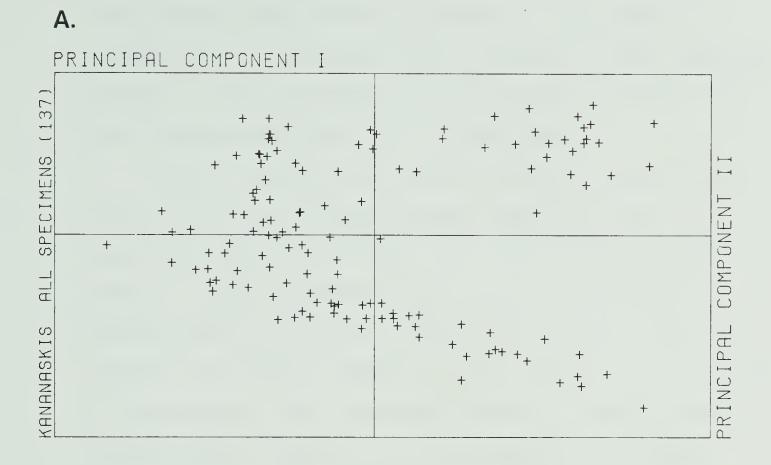
Α.

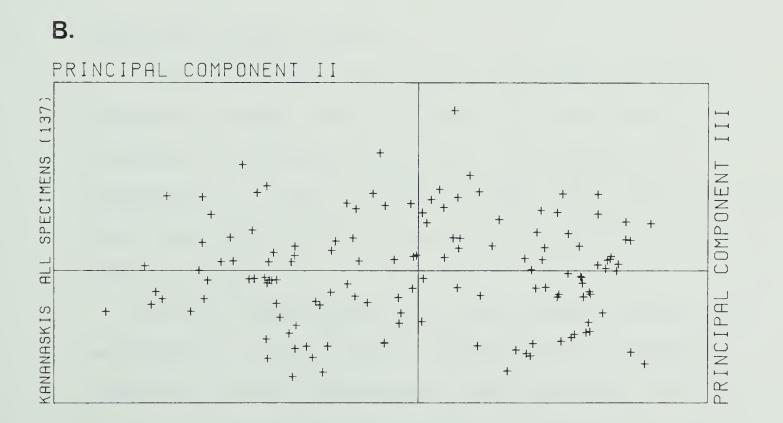
PRINCIPAL COMPONENT Ι + ++++ +ALBERTA ALL SPECIMENS (100) ++ ++ +++ COMPONENT ++++ * ++ ++ PRINCIPAL + ÷

34

Β.

variance in the total data matrix. Investigation of additional components would have been redundant. A summary of the computer results on which these plots are based, is given in Appendix Table 6.


The principal component scores for all Kananaskis specimens, calculated using untransformed data, were plotted against the first three axes (Fig. 6). The projection of scores on components I and II show the elongate clusters, as expected from the control group, but with a dissimilar bridging of the two species' clusters. The specimens of this bridge represent the putative hybrid specimens. The absence of larger hybrid specimens from the Kananaskis sample accounts for the clear discrimination between the two species' clusters to the right of the origin. Large hybrids were available in the collections, and if included in the analysis would presumably occupy this space.


The variation expressed by the three components represents 91.5% of the variance in the total data matrix. The difference in % variation represented by component I between the Alberta group (59.4%) and the Kananaskis group (66.4%) is due to the difference in range of standard lengths between the Alberta group (4.1-11.0 cm) and the Kananaskis group (3.4-12.3 cm).

The intervening hybrid complex, shown on the Kananaskis projection of the second and third axes, obscures discrimination between the two species. This analysis provides evidence that the putative hybrids are not all

Figure 6. PCA Using Untransformed Data; Frenum Included

- A. Plot of first and second principal component scores for all Kananaskis specimens. *Couesius plumbeus* -like specimens towards bottom; *Rhinichthys cataractae* -like specimens towards top, with a hybrid complex bridging the 2 species clusters. Component I = 66.4% of variation.
- B. Plot of second and third principal component scores for all Kananaskis specimens. C. plumbeus -like towards left; R. cataractae -like towards right. Component III = 4.9% of variation.

strictly intermediate. They cover the entire phenotypic range between the parentals suggesting mixed genetic origins, i.e., backcrossing of F1 hybrids to each parental species. A summary of the computer results on which these plots are based is given in Appendix Table 7.

Similar analyses were again performed separately on Alberta specimens, and Kananaskis specimens using square-root transformed data. The resulting plots were similar to those generated using untransformed data. Transformation produced a slightly better discrimination between the smallest members of each species, but produced no new insights. The Kananaskis parental species remain continuously bridged to the same degree by the hybrid complex. Computer results for these analyses are summarized in Appendix Tables 8 and 9.

CANONICAL VARIATES ANALYSIS

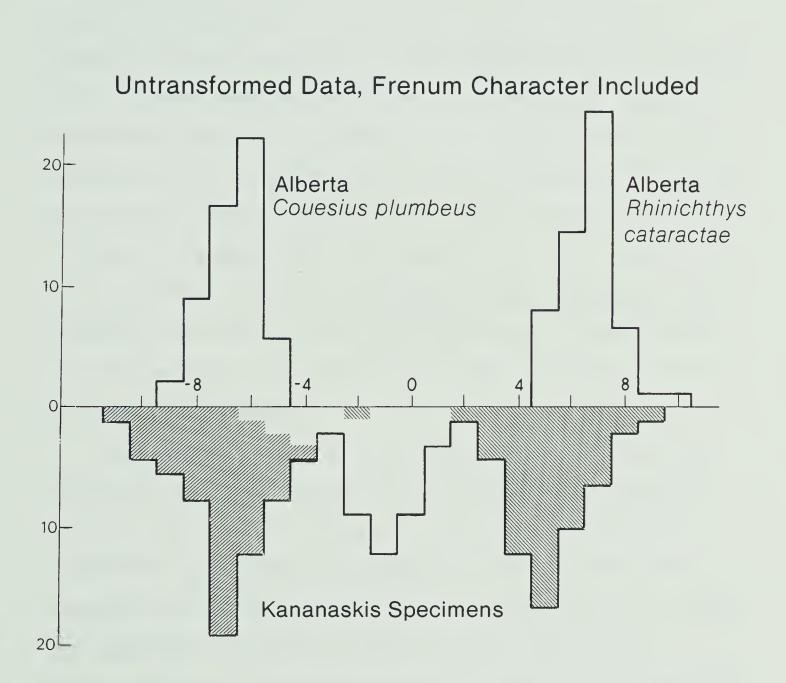
The relationship between the Kananaskis specimens including hybrids, and the Alberta 'control' species can be expressed in a quantitative manner by a frequency distribution of their canonical scores. The results of a CVA using untransformed data with the full character set are given in Figure 7.

The two distributions for each Alberta species are separated by a large gap of approximately 14 standard deviations between their means. The Kananaskis specimens form a continuous distribution with no gap between the

and the second second

Figure 7. CVA Using Untransformed Data; Frenum Included

Frequency histograms of canonical scores on first canonical axis of specimens from Alberta 'control' group (upper histogram) and Kananaskis group (inverted histogram). Alberta species formed 2 a priori known groups; all Kananaskis specimens ran as a priori unknown groups. Units on x-axis are in standard deviations; y-axis is number of specimens. Initial field identifications of Kananaskis specimens are shaded as follows:


Couesius plumbeus

C. plumbeus X R. cataractae

Rhinichthys cataractae

typical parental species.

The apparent trimodality of the Kananaskis distribution was confirmed using Cassie's (1963) graphic method of polymodal frequency separation (\underline{X}^2 test for goodness of fit, $\underline{X}^2 = 25.0$; d.f. = 15, P > 0.05). The two outer modes of Kananaskis specimens are composed of the corresponding typical parental species. The intermediate mode is composed of the hybrid complex. Although the majority of sampled Kananaskis hybrids fall into the intermediate group, as expected for F1 hybrids, the specimens intermediate between the parental modes and the hybrid mode are of contentious origin. It appears from this analysis that the variance of the typical Kananaskis <u>C. plumbeus</u> and <u>E. cataractae</u> modes (taken as the far left and far right modes, respectively) are greater than the variances of their respective Alberta control distributions.

The shading patterns in the Kananaskis distribution represent the initial field identifications of specimens, prior to the analysis (Fig. 7). All specimens initially identified as "good" <u>C. plumbeus</u> fell within the outer <u>C.</u> <u>plumbeus</u> mode. All specimens initially identified as "good" <u>R. cataractae</u>, except one, fell within the outer <u>R.</u> <u>cataractae</u> mode. A re-examination of this one misidentified <u>R. cataractae</u> specimen confirmed its hybrid appearance. Most specimens, initially identified as putative hybrids, were classified in an intermediate position by the CVA. However, several putative hybrids fell within the outer <u>C. plumbeus</u> ,

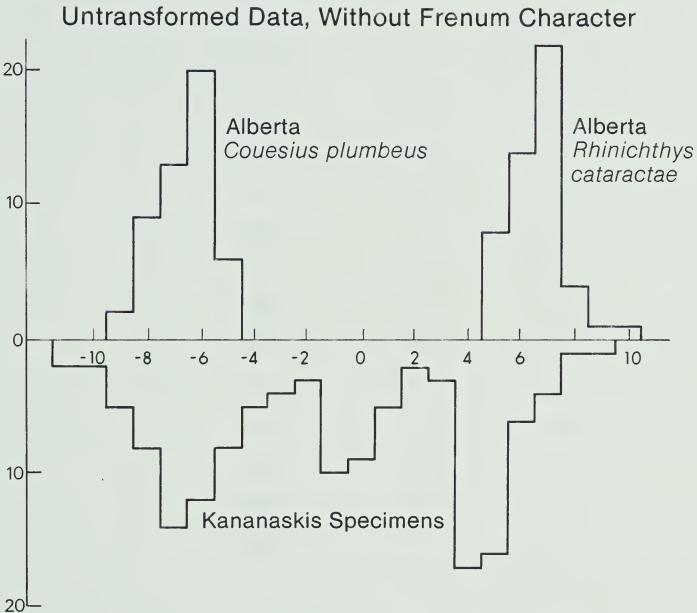
mode. A re-examination of these putative hybrids (with a canonical score > -3.0) revealed the absence of any frenum in all specimens, suggesting an initial misidentification.

The 12 characters contributing most to species' separation in this CVA are given in Table 2 (along with their coefficients and constants for the discriminant functions and their F ratios). The remaining 9 characters with F values > 1.0 contributed little to the discrimination and could have been eliminated from the analysis. The frenum was the most discriminating character with a high F value (F = 1048.10). The computer results for this analysis are summarized in Appendix Table 10.

It should be recalled (see Methods) that abundant <u>C.</u> <u>plumbeus</u> were randomly collected, whereas all <u>E. cataractae</u> and all putative hybrids captured were kept in the field collections (specimens were identified in the field as putative hybrids by their possession of a partial frenum). The objection might be raised that the formation of the intermediate peak on the histogram is an artifact of selective collecting of hybrids. It is true that the relative number of typical <u>C. plumbeus</u> in the population is far greater than indicated by the histogram. However, it is unlikely that the distinctiveness of the intermediate hybrid group was exaggerated since only a random sample of the field collections was analyzed. Moreover, the distinctiveness of this group relative to <u>C. plumbeus</u> was likely minimized since possible backcross individuals (in

TABLE 2. The 12 most discriminating characters in a CVA using untransformed data, including frenum. Characters are in order of decreasing importance with F ratios (1, 98 df) for inclusion and coefficients and constant for canonical variables (1st canonical axis).

 D 1	01		0.551.1.1
 Rank	Character	F	Coefficient
1	FRE	1048.10	-6.65
2	OL	60.69	30.74
3	IW	41.81	-12.41
4	HWE	14.27	7.88
5	CF	13.24	6.08
6	STA	12.09	-2.29
7	HL	3.18	-3.10
8	СР	2.00	-1.76
9	CPS	1.53	-0.07
10	ML	1.41	9.14
11	SN	1.06	5.88
12	ALS	1.05	0.09
			Constant -1.97


the direction of <u>C. plumbeus</u>) were collected more rigorously than typical <u>C. plumbeus</u>.

Although the frenum character is an efficient discriminator, its removal from the analysis does not seriously affect the results. The CVA histogram using untransformed data without the frenum character shown in Figure 8, is essentially identical to the histogram in Figure 7. Again, there appears to be greater variance in the modes of the typical Kananaskis parental species compared to the control distributions. The computer results for this analysis are summarized in Appendix Table 11. The 12 most discriminating characters in this analysis are given in Table 3. A comparison of Tables 2 and 3 illustrates that CVA is heavily weighted to a dependence on only a few characters.

The results of a CVA using square-root transformed data, with frenum character in the data set, are given in Figure 9. Transformation of the character data results in increased discrimination between the two species. The means of the two Alberta species' distributions are separated by approximately 23 units of standard deviation. Although an intermediate hybrid mode remains, its mean is 2 standard deviations to the left of strict intermediacy (toward <u>R</u>. <u>cataractae</u>). This is due to a heavy weighting on the transformed frenum character (F = 3893.55) (Table 4). The troughs between the hybrid and parental modes are spread thinner along the first canonical axis than seen previously.

Figure 8. CVA Using Untransformed Data; Without Frenum

Frequency histograms of canonical scores on first canonical axis of specimens from Alberta 'control' group (upper histogram) and Kananaskis group (inverted histogram). Alberta species formed 2 α priori known groups; all Kananaskis specimens ran as α priori unknown groups. Units on x-axis are in standard deviations; y-axis is number of specimens.

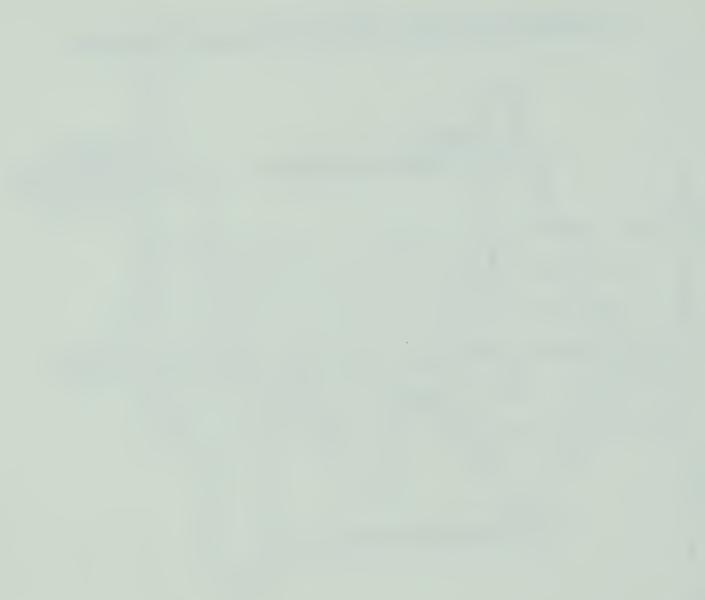
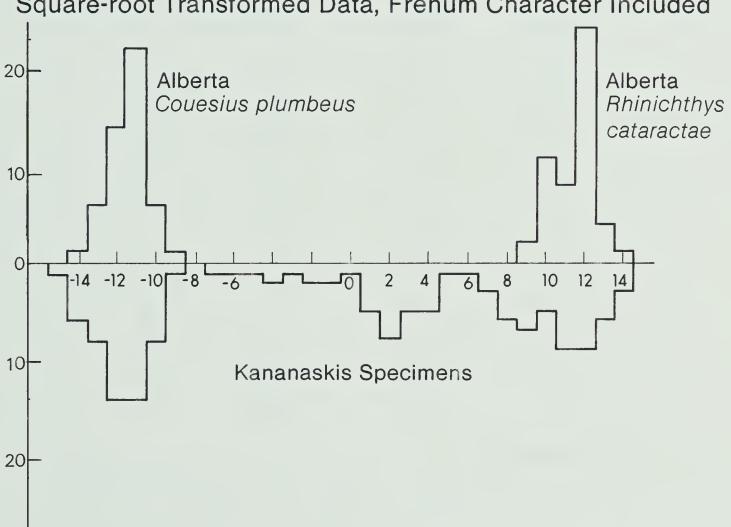



TABLE 3. The 12 most discriminating characters in a CVA using untransformed data, without frenum. Characters are in order of decreasing importance with F ratios (1, 98 df) for inclusion and coefficients and constant for canonical variables (1st canonical axis).

Ran	k Charact	er F	Coefficier	nt
1	IW	682.35	-13.53	
2	OL	207.69	32.87	
3	CF	13.65	6.93	
4	PTA	12.92	0.04	
5	HL	8.41	-3.66	
6	HWE	8.00	8.88	
7	ML	4.95	11.59	
8	СР	3.30	-2.07	
9	CPS	1.58	-0.08	
10	STA	1.52	-2.04	
11	MAN	0.84	-4.48	
12	HDN	0.51	-2.58	
			Constant	-1.06

Figure 9. CVA Using Square-root Transformed Data; Frenum Included

Frequency histograms of canonical scores on first canonical axis of specimens from Alberta 'control' group (upper histogram) and Kananaskis group (inverted histogram). Alberta species formed 2 *a priori* known groups; all Kananaskis specimens ran as *a priori* unknown groups. Units on x-axis are in standard deviations; y-axis is number of specimens.

Square-root Transformed Data, Frenum Character Included

"MBLE 4. The 12 most discriminating characters in a CVA using square-root transformed data, including frenum. Characters are in order of decreasing importance with F ratios (1, 98 df) for inclusion and coefficients and constant for canonical variables (1st canonical axis).

Rank	Character	F	Coefficier	t
1	FRE	3893.55	24.36	
2	OL	49.30	-26.72	
3	IW	20.49	10.31	
4	CF	17.34	-9.33	
5	HWE	13.12	-13.82	
6	STA	7.94	14.96	
7	SOV	3.98	5.82	
8	СР	3.10	3.46	
9	SN	2.72	-12.63	
10	ALS	1.63	-0.13	
11	PTA	1.39	-9.24	
12	SDO	1.15	7.68	
			Constant	6.39

This indicates that there may be specimens which cannot be accounted for as either good parentals or F1 hybrids.

Unlike the results with untransformed data, the CVA using transformed data does not show as great a difference between the variances of the typical Kananaskis species' modes and the variances of the Alberta control species' distributions. Computer results for the CVA using transformed data are summarized in Appendix Table 12.

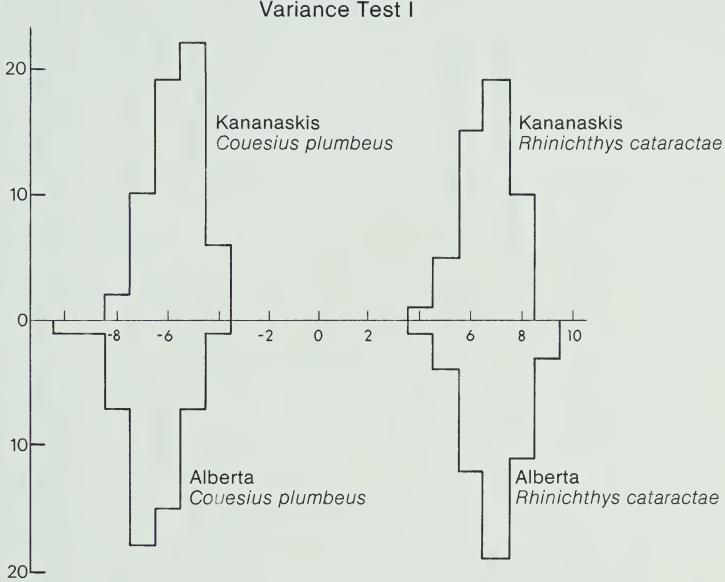
Have the two Kananaskis species been modified by this hybridization relative to the 'control' specimens? If it is assumed that the Kananaskis parental modes ("ig. 7) end at the troughs (tails of the mode) next to the hybrid mode, it becomes apparent that: 1) the Kananaskis parental species have greater variances than the 'control' species; and that 2) the means of the Kananaskis species' modes are shifted toward each other, relative to the means of the 'control' species' distributions. This leads to speculation that the cause of this could be backcrossing between hybrids and parentals, i.e., introgression (sensu Mayr, 1969).

CVA- VARIANCE TESTS

The differences in variance were investigated in order to determine if this could be a reliable indicator of introgression. It is known that the CVA procedure minimizes the within-group variance of the <u>a priori</u> known group, at the expense of the variance of the unknown group (Pimental, 1976). To determine how this affected the variances, the

51

known and unknown groups were switched: the assumed Kananaskis parental species (without presumed hybrids) were run as the <u>a priori</u> known group. The results of Variance Test I (Fig. 10) show a far narrower variance for the Kananaskis parentals, relative to the Alberta parentals, than previously seen (Table 5). Thus, the variance of the <u>a priori</u> unknown group cannot be directly compared to the variance of the <u>a priori</u> known group. The difference in variance (Fig. 7) is an artifact of CVA procedures.


What then is an accurate estimate of the Kananaskis species' variance which can be compared to the Alberta species' variance arrived at in the original CVA (Fig. 7)? Are the Kananaskis species' variances significantly different from the Alberta species' variances? The variance for the Kananaskis parentals from Test I are not truly representative because: 1) the Kananaskis group is the <u>a</u> <u>priori</u> unknown group; and because 2) there is little difference between the variances of the Alberta and Kananaskis groups in Test I, even though the Kananaskis variances are being minimized - indicating that the Kananaskis variances are wider than the Test I estimates.

Variance Test II (Fig. 11) was performed in order to improve the variance estimate for the Kananaskis groups. All specimens of the same species were pooled into two groups irrespective of membership in the Alberta or Kananaskis groups. This was done to relate each specimen to all other specimens of the same species irrespective of group

52

Figure 10. Variance Test I. Untransformed Data; Frenum Included.

Frequency histograms of canonical scores on first canonical axis of presumed pure specimens of Kananaskis species without hybrids (upper histogram) and Alberta 'control' group (inverted histogram). Kananaskis specimens formed 2 *a priori* known groups; Alberta species ran as *a priori* unknowns. Units on x-axis are in standard deviations; y-axis is number of specimens.

Variance Test I

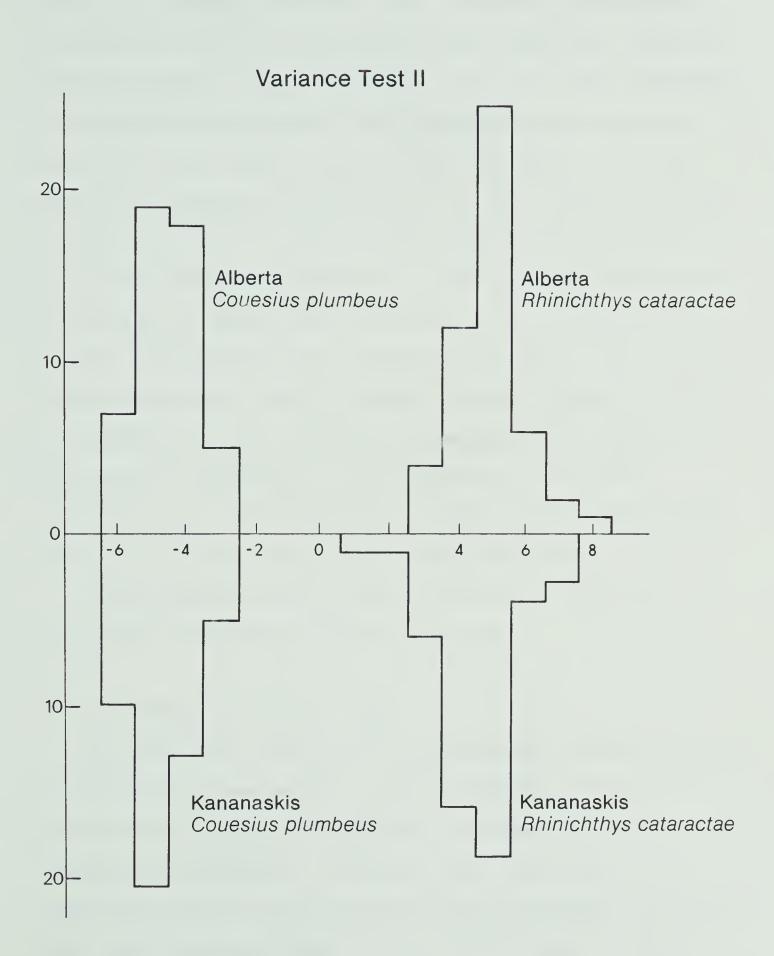
TABLE 5. A comparison of variance estimates for the 2 species from Kananaskis and Alberta

•

groups.

	Kana	Kananaskis	A11	Alberta
	c. plumbeus	R. cataractae	C. plumbeus	C. plumbeus R. cataractae
Original CVA (Fig. 7)	3.21	1.95	06.0	1.07
Variance Test I	0.96	1.03	1.27	1.09
Variance Test II	0.92	1.39	0.71	0.89

Tests for significance of differences between Alberta and Kananaskis species' variances:


C.
$$Plumbeus$$
 $\mathbf{F} = \frac{0.92}{0.71} = 1.30$; $\mathbf{F}_{.05} (49, 49)^{=} 1.67$, $\mathbf{P} > 0.05$.

R. cataractae
$$F = \frac{1.39}{0.89} = 1.56$$
; $F_{.05} (49,49) = 1.67$, $P > 0.05$.

Figure 11. Variance Test II. Untransformed Data; Frenum Included.

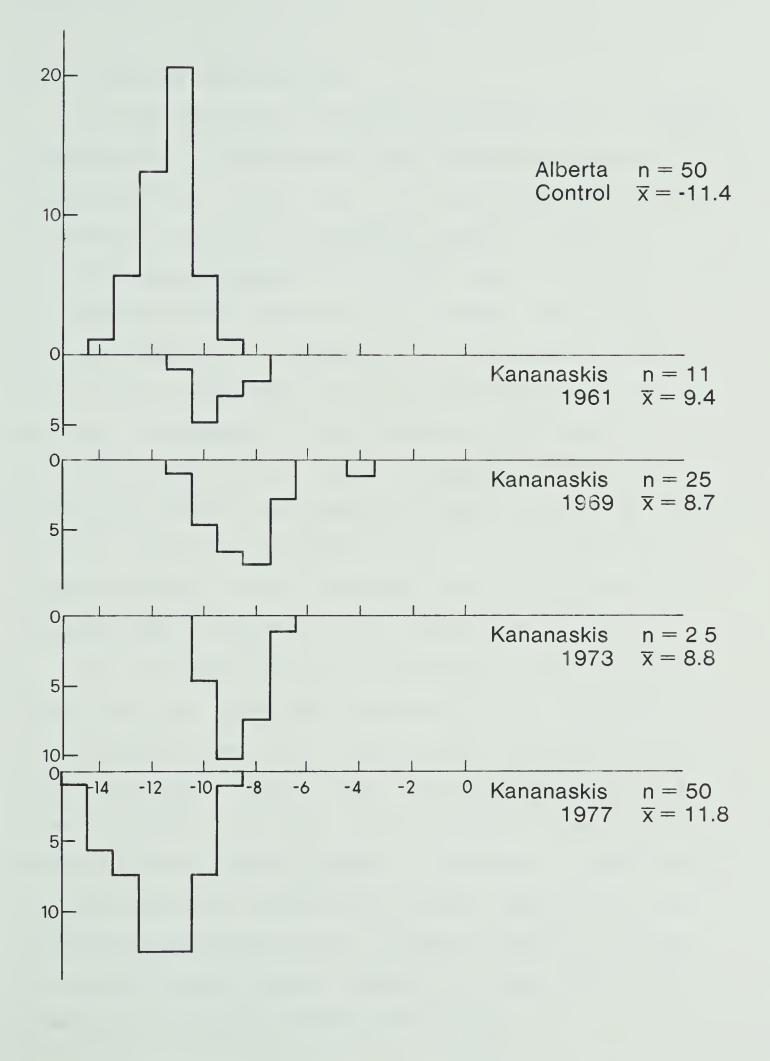
Frequency histograms of canonical scores on first canonical axis of presumed pure specimens of Kananaskis species without hybrids (upper histogram) and Alberta 'control' group (inverted histogram). Kananaskis and Alberta groups of same species were combined to form 2 α priori known groups; there was no unknown group. Alberta and Kananaskis specimens are separated as upper and lower histograms.

membership. The two groups were run in a CVA as a priori knowns. No a priori unknowns were included. Once computed, the canonical scores of the Kananaskis group were separated from the Alberta group and plotted (Fig. 11). The variances of the Kananaskis species' distributions were calculated separately from the Alberta species' distributions. The results of Variance Test II show that the variances of the Kananaskis parental groups are not significantly different (P > 0.05) from the variances of their respective controls (see Table 5). There does not appear to be a significantly greater variability in the Kananaskis parentals than in the Alberta parentals, which could be ascribed to introgression. It is unsafe to draw conclusions concerning introgression from direct comparisons of the variances of species' canonical score distributions. The CVA must be manipulated in order to obtain comparable variance estimates.

The computer results for both Variance Tests are summarized in Appendix Tables 13 and 14.

CVA - COMPARISON OF GROUP MEANS

To avoid the confusion and difficulties associated with performing variance tests, it may be simpler to compare group means in order to determine the presence of introgressive effects. It appears that there has been a significant shift of the Kananaskis <u>R. cataractae</u> group mean away from the control mean (Figs. 7, 8, 9) ($\underline{X}^2 = 31.8, P < 0.05$). The mean of the Kananaskis <u>C. plumbeus</u> group is

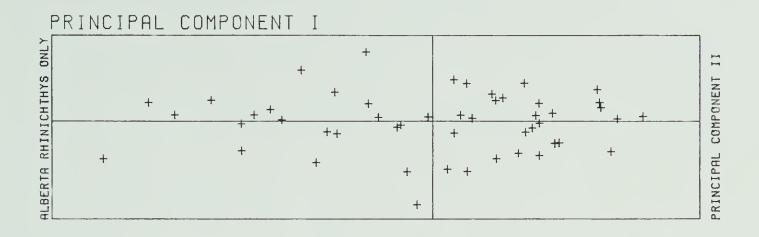

similar to the control group mean (Figs. 7, 8, 9) ($\underline{X}^2 =$ 13.1,P > 0.05). The shift of Kananaskis <u>P. cataractae</u> toward the hybrid group may indicate: 1) the presence of backcrosses to <u>R. cataractae</u>; or 2) phenotypic changes in <u>R.</u> <u>cataractae</u> due to hybrid fertility, i.e., introgression. Conversely, this would indicate an absence of phenotypic change in Kananaskis <u>C. plumbeus</u>.

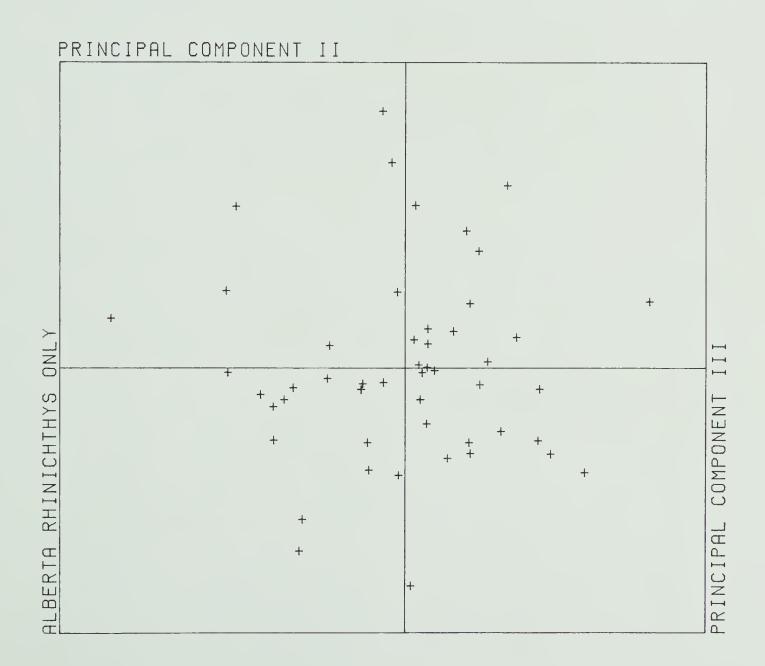
CVA - PAST COLLECTIONS

The group means of the canonical score distributions for typical <u>C. plumbeus</u>, collected in 1961, 1969, 1973, and 1977, were compared (Fig. 12) to determine if this Kananaskis species had been modified by introgressive hybridization over time. The temporal distributions of canonical scores indicates a significant shift in means in 1961, 1969, C. plumbeus toward R. cataractae and a return shift in 1973, 1977, toward the control group mean. There is a significant difference between the control distribution and the 1961 Kananaskis distribution $(X^2 = 31.0, P < 0.05)$, no significant difference between the 1961 and 1969 Kananaskis distributions $(X^2 = 3.9, P > 0.05)$, no significant difference between the 1969 and 1973 Kananaskis distributions ($\underline{X}^2 = 2.9$, P > 0.05), and a significant difference between the 1973 and 1977 Kananaskis distributions ($X^2 = 58.8$, P < 0.05). One specimen in the 1969 UAMZ collection is revealed to be of hybrid origin. The computer results for this analysis are given in Appendix

Figure 12. CVA of Past Collections of Kananaskis *Couesius plumbeus*. Using Square-root Transformed Data; Frenum Included.

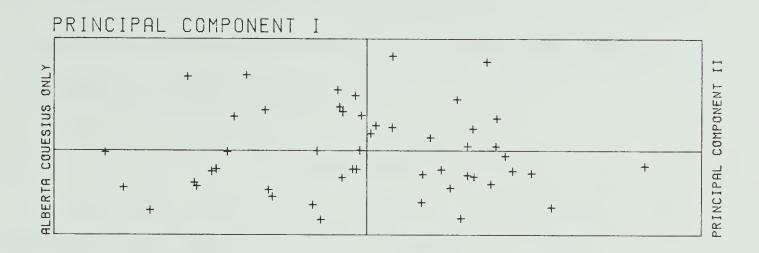
> Frequency histograms of canonical scores on first canonical axis of specimens from Alberta 'control' group 1977 (upper histogram) and Kananaskis groups, 1961, 1969, 1973, 1977 (inverted histogram). Alberta group formed *a priori* known group; all Kananaskis specimens ran as *a priori* unknowns. Units on x-axis are in standard deviations; y-axis is number of specimens. Sample size and group centroid are shown for each collection.

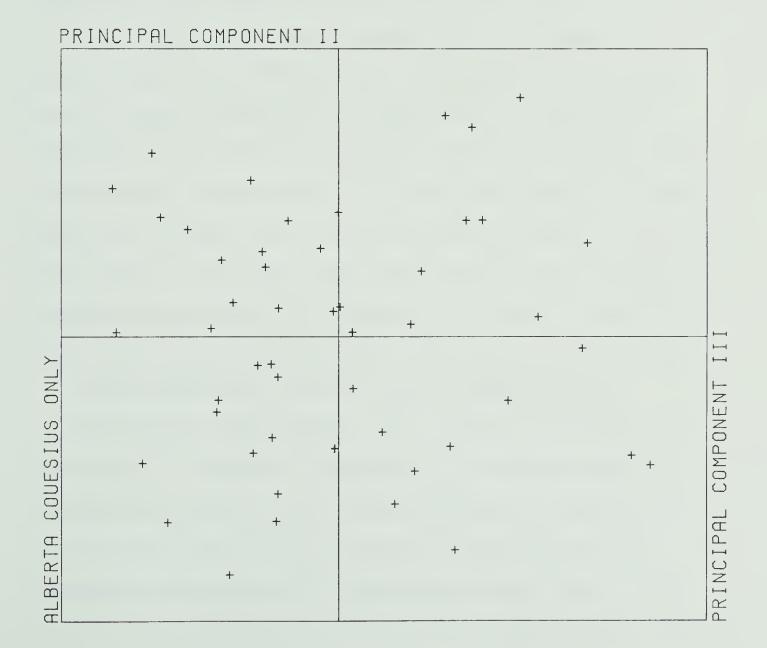

PCA - INTRA-GROUP VARIATION


It was necessary to determine if either sex or unknown inter-population differences were confounding species' discrimination. To test this, two PCAs were performed: one on Alberta 'control' <u>C. plumbeus</u>; another on Alberta 'control' <u>R. cataractae</u>. The results shown in Figures 13 and 14 demonstrate that there are no subgroups within each species' cluster. An examination of the sex and population membership of each point in the clusters did not reveal any pattern attributable to these variables. PCA was not performed separately on typical individuals of the two Kananaskis species. The reason for this was that CVA results indicate that it is impossible to positively discriminate some individuals of the Kananaskis parental species from variant hybrid individuals on a morphological basis.

It is unlikely that the inclusion of individuals from Upper and Lower Kananaskis Reservoirs in the Kananaskis groups would increase the within-groups variability and reduce species' discrimination. The previous inclusion of diverse populations in the Alberta groups did not result in such subgroups reducing species' separation. In addition, the two Kananaskis populations analyzed (Upper and Lower Kananaskis Reservoirs) have a probably similar and recent Bow River origin. Computer results for these analyses are summarized in Appendix Tables 16 and 17.

- Figure 13. PCA of Alberta *Rhinichthys cataratae* alone. Using Square-root Transformed Data; Frenum Included.
 - A. Plot of first and second principal component scores. Component I = 77.5% of variation; Component II = 6.2% of variation.
 - B. Plot of second and third prinicpal component scores. Component III = 4.9% of variation.


•



- Figure 14. PCA of Alberta *Couesius plumbeus* alone. Using Square-root Transformed Data; Frenum Included.
 - A. Plot of first and second principal component scores. Component I = 72.0% of variation; Component II = 6.6% of variation.
 - B. Plot of second and third principal component scores. Component III = 5.2% of variation.

A listing of actual character values for all specimens used in all above multivariate statistical analyses is given in Appendix Tables 18-23.

DISCUSSION

Central to most modern studies of fish hybridization has been the desire to reach a conclusion on the fertility of hybrids from an analysis of morphological data. This stems from the assertion by Hubbs (1955) that not only are F1 hybrids intermediate between their parental species, except for some features reflecting hybrid vigor, but they are also of the same order of variability as are the parental species. Subsequently, when wild-caught hybrids showed increased degrees of morphological variability relative to the parental species, several types of hybrids were reported to be fertile without experimental evidence (Hubbs and Strawn, 1957). More recently, Schueler and Rising (1976) have stated that when individuals representing F2 or backcross generations are present, the hybrid population is found to be more variable than the parental populations.

The assumption of low F1 hybrid morphological variability has been proven false when the morphology of lab-reared F1 hybrids is compared to the morphology of lab-reared controls of the parental species. Hubbs and Strawn (1957) found the artificial F1 hybrids between <u>Etheostoma spectabile</u> and <u>Percina caprodes</u>, from the San Gabriel River, were more variable in all characters analyzed

than their parental controls. Greenfield and Greenfield (1972) found that artificial F1 hybrids between Gila orcutti and <u>Hesperoleucus symmetricus</u> were not strictly intermediate between the parental species; rather the distribution of hybrid index values for known hybrids filled the intervening space between the parental species' distributions. Neff (personal communication, 1977) analyzed numerous morphological characters from 2 separate groups of artificial F1 hybrids (Lepomis cyanella x L. macrochirus and Notropus whipplei x N. spilopterus). Using CVA and PCA, she found greater variation in the known F1 hybrids than in the parental groups. This would preclude the confidant identification of backcrosses (if they were present) from hybrid individuals. Without knowing the genetic history of the hybrids in the above cases, one would have identified non-intermediates as backcrosses or F2 individuals under the erroneous assumption of low F1 hybrid variability.

It is likewise not possible to decide on <u>C. plumbeus</u> x <u>R. cataractae</u> hybrid fertility or to positively identify backcross individuals from the multivariate analyses of Kananaskis cyprinids performed in this study. Non-intermediate, putative hybrid individuals in the trough region of the Kananaskis CVA distribution could represent F2 hybrids, variant F1 hybrids, or backcross individuals.

Smith (1973) using PCA found lone hybrids occupying the area between strict intermediacy and one parental type. These were identified as backcross individuals. Without

knowing the variance of the F1 hybrids, such a conclusion is uncertain.

It may be possible to determine F1 hybrid variance from a morphological study without resorting to the study of artificial F1 hybrids. This may be possible given a large phenotypic distance between parental distributions, and a large hybrid sample forming one intermediate distribution and two smaller non-intermediate distributions toward the parental types. In this idealized case, the variability of the intermediate F1 hybrid group would be established and a backcross interpretation would be warranted for non-intermediate individuals. The results of my study do not reveal such backcross distribution peaks. Moreover, the P1 variance cannot be known with such a continuous phenotypic bridging. In a study where the hybrids bridged the gap to one species and not to the other, a backcrossing interpretation would be warranted, without the need to show F1 variance.

This continuous distribution of hybrids bridging <u>C</u>. <u>plumbeus</u> and <u>R</u>. <u>cataractae</u> indicates that it is not always possible to positively identify 'pure' individuals of the Kananaskis parental species. This strengthens the need to objectively classify all individuals in an area of hybridization relative to known control specimens from areas where hybridization is not known to occur.

It is also possible to use the control specimens as an objective standard against which to compare the morphology

of specimens collected over a long time period in a hybridizing area. If the area is not a stable hybrid zone (sensu Noore, 1977) the following alternatives of evolutionary change may be observed over time: 1) a trend toward fusion of the species by introgression - recognized by a progressive increase in hybrid frequency, skewing of parental distributions toward each other, or an increasing variance of parental distributions relative to the control distribution; 2) a strengthening of species' isolating mechanisms and character displacement - recognized by a progressive decrease in hybrid frequency, skewing of parental distributions away from each other, and no increase in parental variance; 3) extirpation of one species by competitive exclusion and hybridization; or 4) continued low level hybridization as long as the environment remains modified.

Jones (1973) observed the effects of thirty years of hybridization on the toad species, <u>Bufo americanus</u>, and <u>Bufo</u> <u>woodhousii</u>, in this manner. Hybridization with introgression can be best recognized temporally relative to known control groups. This would appear to be a rewarding approach for studies of fish hybridization, provided adequate past collections are available. In my study there were only sufficient <u>C. plumbeus</u> in past collections for morphological comparisons.

Three approaches were used to determine if the Kananaskis populations had changed due to hybridization.

First, the greater variances of the Kananaskis groups compared to the variances of the control groups suggested the effects of introgression. However, using the Variance Tests (I and II), this difference was found to be a property of CVA which obscured the equality of variances between the Kananaskis and Alberta groups. There has been neither an increase nor a decrease in population variance, evidence that neither introgression nor character displacement has occurred. Comparisons of variances (of CVA distributions) is not a preferred indicator of morphological change due to introgression.

The second approach was to compare the position of the Kananaskis group mean (1977) to that of the Alberta group mean, separately for each species. The analysis revealed no difference in the positions of the means for <u>C. plumbeus</u>, but a definite shift in the Kananaskis <u>P. cataractae</u> group mean away from the control mean toward the hybrid mode. This evidence suggests that Kananaskis <u>P. cataractae</u> has been morphologically changed due to hybridization.

The third approach was to determine if the modes of the two Kananaskis parental species were moving toward each other relative to the controls (introgression) or receding from each other (character displacement). The mode of canonical scores for Kananaskis <u>C. plumbeus</u> (presumably pure parental types) does reveal a shift in 1961, and 1969 means toward <u>R. cataractae</u> away from the control <u>C. plumbeus</u> distribution. Subsequently in 1973, 1977, a shift back

toward the control group mean occurred. The shift in means may indicate the initial effects of introgression followed by character displacement. However, this seems implausible for such a short time span. Without investigating the fertility potential of the hybrids by experimental means, this remains speculation. It is also reasonable to attribute the morphological shifts to selection by some unknown environmental changes through the intervening 17 year period.

In summary, there is no clear evidence of introgressive effects of hybridization upon Kananaskis <u>C. plumbeus</u>. However, Kananaskis <u>R. cataractae</u> does show a morphological change suggestive of introgression, or the presence of backcrosses. It is also possible for this difference in means to be a result of population variation due to the Founder Effect (<u>sensu</u> Mayr, 1969). Further evidence, especially from breeding tests, is required to test this hypothesis. Apart from this slight change, there does not appear to be a significant trend toward breakdown of the species' integrity.

Both <u>R. cataractae</u> and individuals of hybrid origin have remained at low frequencies during the past 17 years. Although the rate of hybridization has remained at a low level, there is some evidence of a trend toward extirpation of <u>R. cataractae</u> from the reservoirs (alternatives 3 and 4 from above).

This study has assessed the relative importance of the

morphological characters of <u>C. plumbeus</u> and <u>B. cataractae</u>. Nelson's (1966) finding that the best hybrid discriminators are from the head, i.e., frenum width, snout length, isthmus width, and orbit length has been confirmed. Future workers may find the canonical coefficients and constants given in Tables 2-4 to be valuable in classifying putative hybrid specimens.

VII. ELECTROPHORETIC IDENTIFICATION OF HYBRIDS

INTRODUCTION

Electrophoretic results can provide a second set of data to test the hypothesis of hybrid origin of certain specimens based on morphological criteria. The advantage of electrophoresis over a purely morphological analysis is that the genetic contributions from each parent may be detected in a single individual.

Nyman (1970) has listed all possible types of protein patterns found in fish hybrids, reflecting simple codominant expression of allelic genes. Hybrid protein patterns can be: 1) identical to one or the other parental species; 2) a complete summation of the two species; 3) a partial summation; or 4) the hybrid pattern and the two parental species' patterns can all be identical. For a protein to be a useful discriminator of hybrids, it must be present in a high frequency as a variant form in each parental species. The hybrid then, inherits a summation of the parental banding patterns (Reinitz, 1977). The confirmation of "hybridity" in this study was an empirical search for such hybrid specific biochemical markers.

METHODS

Adult <u>C. plumbeus</u>, and <u>R. cataractae</u> and their putative, wild hybrids were collected from Lower Kananaskis Reservoir during the summer of 1978 for electrophoretic examination. Specimens from outside the system were not

examined. Adult fish of comparable age were chosen in order to exclude electrophoretic variation due to developmental differences.

To ensure that individuals representing the parental species were 'pure', the same 21 morphological characters used for PCA and CVA were measured, and the canonical scores calculated. Individuals with canonical scores within one standard deviation unit of the control parental means (from the multivariate morphological analysis Fig. 7) were used to represent 'pure' parental types.

Only hybrids with intermediate canonical scores (in the presumed F1 portion of the Kananaskis distribution on the first canonical axis, Fig. 7) were electrophoresed. Putative hybrids, with canonical scores intermediate between the parental species and the presumed F1 mode (possible backcrosses) were unfortunately not available in either a fresh or frozen state necessary for electrophoresis. The progeny of the experimental crosses had not reached sufficient size to permit electrophoretic examination.

Protein extracts were obtained from blood sera and skeletal muscle of the same specimens. Blood sera were obtained from live fish in the laboratory by severing the caudal peduncle, withdrawing the blood into heparinized capillary tubes, and spinning down the corpuscles in a Hematocrit centrifuge for 4 min.. The corpuscles were discarded and the pure sera frozen at -5.0°C. The fish were then frozen.

Skeletal muscle samples from all frozen fish were electrophoresed within six weeks of collection. Fish skeletal muscle, frozen more than a few days, has been found to be readily extractable, and muscle proteins quite stable under frozen storage (Utter <u>et al</u>., 1974).

One cc of the frozen dorsal musculature from each specimen was ground in a glass tissue grinder with an equivalent volume of distilled water. The creamy muscle homogenate was then centrifuged for 15 min. at X20,000 g in a Dupont Ultracentrifuge. The resulting clear supernatant was stored frozen at -5.0°C. Frozen samples of this supernatant gave identical electrophoretic patterns to freshly prepared ones and they were used as convenience dictated.

The number of typical parental specimens and hybrid specimens used for the electrophoresis of the two tissue types is given in Table 6.

Vertical polyacrylamide disc gel electrophoresis was performed at room temperature with a Buchler power supply (set on constant current) using the techniques described by Davis (1964) and Smith (1969). Seven percent polyacrylamide gels were made without sample or spacer gels according to a recipe modified from Clarke (1964) (refer to recipe in Appendix). A cold, continuous tris-glycine buffer (pH 8.3) was used for the electrode buffer in order to minimize column heating.

It was found experimentally that 8 µl was the optimal

TABLE 6. List of proteins examined in specific tissues. Numbers of fish specimens analysed for each protein is given. R - <u>R. cataractae</u>: C - <u>C. plumbeus</u>; H - <u>C. plumbeus</u> <u>x <u>R. cataractae</u> hybrid. LDH: lactate dehydrogenase; GPD: glycerophosphate dehydrogenase; MDH: malate dehydrogenase.</u>

Proteins	Serum	Muscle	Repl	Replicates		
LDH		x	15C	9 R	3 H	
\propto GPD		Х	8C	8R	2H	
MDH		X	3C	2 R	2 H	
Serum protein	X		14C	12R	5H	
Muscle protein		Х	14C	12R	5H	

amount of extract of both tissue types for electrophoresis. An equal volume of a 40% sucrose solution was mixed with the sample extract. The entire solution was then layered between the top of the gel surface and the less dense buffer above. All samples were applied within 5 min..

One ml of 0.001 percent Bromophenyl Blue in water was added to the upper reservoir as a tracking dye. Simultaneous electrophoresis of 9 gels was begun with a current of 1.5 mA/tube for the first 10 min. to prevent undue diffusion of the sample. This was increased to 4.0 mA/tube for the remainder of the run once the tracking dye was 2 mm into the gel. Electrophoresis was completed in approximately 75 min. when the tracking dye had reached the end of the gel. Only the anodic portion of the samples was studied.

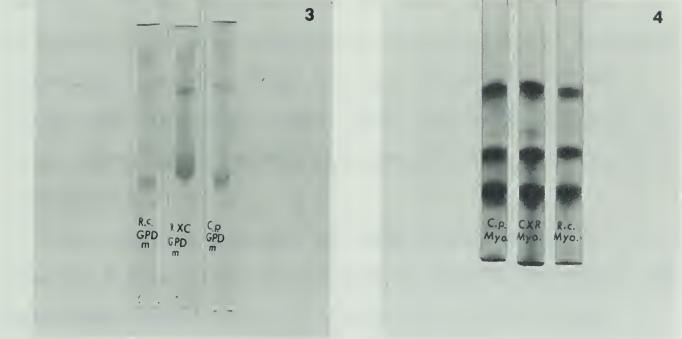
Gels were stained with amido black 10B (1 gm in 100 ml of 7% acetic acid) for one hour to discern the general

protein patterns of both the sera and muscle extracts from the two species and their hybrid. Destaining was accomplished in the same apparatus using a 7% acetic acid wash solution with a current of 10 mA/tube. Destaining was complete in 60-90 min..

Specific enzymes, lactate dehydrogenase (LDH), \propto -glycerophosphate dehydrogenase (\propto -GPD) and malate dehydrogenase (MDH) were visualized using the staining procedures of Shaw and Prasad (1970). However, the gels used to separate these enzymes were not run with the recommended electrode buffers. Bather, the gel pH was adjusted closer to the stain pH by immersing the gels in the appropriate stain buffer for 15 min. prior to staining.

Gels were stored in test tubes containing 7% acetic acid and were photographed (Kodak Plus-X film) directly in the destaining tubes with no liquid interface using diffused back lighting.

RESULTS


The polymorphic banding pattern of muscle LDH was identical in all individuals of each species and hybrids that were tested (Fig. 15, #1). The appearance of three muscle LDH isozyme bands in this study is contrary to the results of Clayton and Gee (1969) who found five muscle LDH isozyme bands in both <u>Rhinichthys atratulus</u> and <u>R.</u> <u>cataractae</u> collected in Manitoba. The species were distinguished by the occurrence of a variant muscle LDH in

- Figure 15. Acrylamide gel electrophoretic patterns of muscle and serum tissues from *Rhinichthys cataractae* (R.c.), *Couesius plumbeus* (C.p.) and their F. hybrid (CxR) sampled from Lower Kananaskis Reservoir, 1978.
 - 1 muscle myogen extract stained for lactate dehydrogenase
 (LDH)
 - 2 serum proteins stained with amido black, a general protein stain. Arrows indicate the 2 variant forms of prealbumen.
 - 3 muscle myogen extract stained for α glycerophosphate dehydrogenase (GPD)
 - 4 muscle myogen extract stained with amido black, a general protein stain.

Anode is towards the bottom.

<u>R. cataractae</u>. Although our techniques differed, it is likely that my results are misleading. Given a longer electrophoretic running time, the large, most-cathodal band may have resolved into three bands of differing mobility, thereby producing a five band pattern. This was not tested in this study.

Muscle GPD (Fig. 15, #3) was polymorphic in each parental species and the F1 hybrids. Each possessed identical variant forms. Muscle MDH was expressed as a single nonvariant band with equivalent electrophoretic mobilities in each parental species and their F1 hybrids.

Muscle myogen phenotypes have been touted as an efficient method to identify hybrid individuals between other species (Tsuyuki and Roberts, 1965; Aspinwall and Tsuyuki, 1968). This was not the case in this study. All individuals of each species and all hybrids had identical three band patterns (Fig. 15, #4) for muscle extract visualized with amido black. There was some variation in the faint minor bands between the species but these were not reproducible.

The banding patterns of serum proteins for the two species differ in the possession of dissimilar, fast moving prealbumen bands (Fig. 15, #2). All specimens of <u>R</u>. <u>cataractae</u> tested, were characterized by the front band of slower anodal mobility, whereas <u>C. plumbeus</u> was characterized by a faster variant. All 'pure' F1 hybrids tested, were characterized by the possession of both bands,

i.e., a summation of the parental bands. These bands clearly defined a difference between the species. Although there are probably similar differences in the slowest bands, these were not investigated. The differences in banding patterns were independent of sex and were repeatable with several subsamplings of the same tissue of one individual. Electrophoretic phenotypes were not observed in the major bands of the two species' serum protein patterns.

Serum proteins appear to be influenced by environmental factors e.g., diet and physiology. It is unlikely that this could be a confounding variable in this study since the fish were sampled from the same reservoir, at the same time of the year, and presumably matured under the same conditions.

DISCUSSION

Electrophoretic serum protein analysis indicates that putative <u>C. plumbeus x R. cataractae</u> hybrids possess two prealbumen bands. These correspond in electrophoretic mobility to the single prealbumen bands of each of the parental species. This substantiates the morphological and reproductive evidence of hybridization between <u>R. cataractae</u> and <u>C. plumbeus</u>.

Different hybrid specific protein patterns have been similarly described in only two other North American cyprinid hybrids: redside shiner (<u>Pichardsonius balteatus</u>) x peamouth chub (<u>Mylocheilus caurinum</u> (Aspinwall and Tsuyuki, 1968), and longnose dace (<u>Rhinichthys cataractae</u>) x

blacknose dace (R. atratulus) (Clayton and Gee, 1969).

Any <u>R. cataractae, C. plumbeus</u> or F1 hybrid specimens from Lower Kananaskis Reservoir could be classified as such solely by their serum phenotype. It would seem reasonable to assume that this is true for other populations of these species. Thus it should be possible to test the purity of sympatric <u>C. plumbeus</u> and <u>R. cataractae</u> populations and to confirm F1 "hybridity" by the use of this single biochemical character.

Nyman (1970) compared the efficiencies of electrophoretic and morphological techniques in detecting natural fish hybrids. He found that electrophoresis was more reliable in identifying F1 hybrids, but that the two methods were equally inefficient in identifying F2 hybrids. This is a result of the almost complete dominance of one parent's genes over the other, in the F2. However, Nyman did find 4 out of 32 protein systems in F2 hybrids (<u>Salmo salar x S.</u> <u>trutta</u>) possessing distinct banding patterns. A thorough electrophoretic survey should be undertaken by future workers in order to test the hypothesis of introgression between <u>C. plumbeus</u> and <u>R. cataractae</u> in Lower Kananaskis Reservoir.

VIII. REPRODUCTIVE ISOLATING MECHANISMS

GENERAL INTRODUCTION

Hybridization results from the dissolution of the reproductive isolating mechanisms which formerly preserved the integrity of the species' gene pools. An understanding of which isolating mechanisms are inoperative can suggest the environmental factors which facilitated the hybridization.

Reproductive isolation between sympatric <u>C. plumbeus</u> and <u>R. cataractae</u> populations has not been previously studied. In fact, published material on the breeding biology of these species is scant. The reproductive habits of <u>R.</u> <u>cataractae</u> have been comprehensively described only from Manitoba (Bartnik, 1970). The most comprehensive report for <u>C. plumbeus</u> is from Saskatchewan (Brown, 1°69). However, it should be noted that according to Wells (1978), the Kananaskis <u>C. plumbeus</u> are of the 'dissimilis' morphological form while Brown's population consisted of the 'plumbeus' form. Whether there are significant biological differences between these forms is not presently known.

This section of the study investigates the effectiveness of the species' premating and postmating isolating mechanisms through ecological field studies and artificial crossing experiments. Ecological and life history data for the Kananaskis cyprinids are presented for the first time.

STUDY OF PREMATING ISOLATION

INTRODUCTION

Premating isolating mechanisms prevent the wastage of gametes and are thus more efficient than postmating isolating mechanisms. Premating isolation involves the reduction of contact between the species (i.e., spatially and temporally) and the reduction of interspecific mating by species' specific behaviors. The latter, ethological isolation, has been found to be generally more important than the other isolating mechanisms (Littlejohn, 1969).

The purpose of this section is to determine the following biological characteristics: 1) extent of differences in spawning habitat and spawning time between the two species; and 2) degree of interspecific mate preference.

METHODS

Temporal Isolation

The time of spawning for each of the parental species was followed using three different methods. The first method from Nelson (1968) entailed making a qualitative judgement on the degree of female gonad development. The following qualitative criteria were used to describe female gonad maturity:

ripe - eggs near maximal size; cream colored; extruded only under firm finger pressure.

fully ripe - eggs at maximal size; golden colored;

extruded spontaneously due to handling by experimenter.

spent - few or no golden eggs extruded from body cavity; abdomen visibly sunken.

The peak time in which fully ripe females were present in the Lower Kananaskis Reservoir was compared between the two species.

The second method was quantitative. The spawning period for each species was followed by determining the percentage contribution of female gonads to body weight. Total body weight and gonad weight (both sides) were measured fresh to the nearest 0.01 gm. These gonadosomatic indices (7 gonad weight into total body weight) of each species were pooled for sampling dates and plotted over the spawning period.

The third method was also quantitative. This involved measuring the mean diameter of 10 ova per sample female using needle point dial calipers under magnification (read to the nearest 0.01 mm). The grand mean of ova diameters from all sample females was graphed over time.

Fish sampled from three different locations on Lower Kananaskis Reservoir were used for all three methods and were included in the graphic analysis, irrespective of origin. The three locations were: Interlakes Paceway, mouth of Boulton Creek, and Common Bay. The purpose of pooling locations was to generate a large sample size, and to give a general picture of the spawning period for the entire Lower Reservoir, without specific site variability. Time

limitations prevented an in-depth study of spawning periods on Upper Kananaskis Reservoir. The occurrence of diel (temporal) isolation was not investigated.

Habitat Isolation

The concurrent abundance of the two species and their putative hybrids at the sampling sites was monitored using all capture techniques throughout the spawning period. Catch data were reviewed to see if there was habitat segregation by depth, current or substrate.

Behavioral Isolation

Several ripe males and females of each parental species, captured between May 26 and June 5, 1978, were returned alive to the laboratory and were kept in separate tanks. On June 6, 1978, the following reciprocal, interspecific matches were established for observations of behavioral interactions and mating:

Tank	A	<u>C.</u>	<u>plumbeus</u> -	4	females	
		<u>R.</u>	<u>cataractae</u>	-	2 males	
Tank	В	<u>C</u> .	<u>plumbeus</u> -	3	males	

<u>R. cataractae</u> - 2 females

Two ripe male hybrids captured on June 7, 8, 1978, were put into the same aquaria with three ripe female <u>C.</u> <u>plumbeus</u> on June 10, 1978:

Tank C R. cataractae x C. plumbeus hybrids 2

males

C. plumbeus - 3 females

All aquaria were kept in a controlled environment chamber which replicated the reservoir's light and temperature regime. The three 20 l tanks were started at 10°C on June 6, 1978, and increased to 14°C by June 15, 1978, (similar to the temperature rise in the reservoir). The photoperiod was a constant 15.5 hours of daylight (0600-2130 hr). Throughout the holding period, fish were fed TetraMin flakes and frozen brine shrimp.

Descriptions of breeding colors and tubercle patterns were made for each sex of the two species immediately after capture, and upon return to the laboratory. Color photographs were taken.

RESULTS

Temporal Isolation

Spawning at different times of the year constitutes an important deterrent to interspecific breeding in sympatric fish species. At present, there exist only a few records of spawning times for <u>R. cataractae</u> and <u>C. plumbeus</u> from widespread localities across Canada (Scott and Crossman, 1973). What are the spawning times of these species in Lower Kananaskis Peservoir? To what extent is temporal isolation operative?

Temperature appears to be the single, most important factor inducing spawning in these two species, as is true for most temperate, freshwater fishes. Ahsan (1966) showed

that temperature was the dominant regulator of the spermatogenetic activity of male <u>C. plumbeus</u>. Females, judged to be in a fully ripe state, were first collected in late May and early June after the rapid increase in surface water temperature from 5°C, May 25 to 10°C, June 4, 1978. Data from at least two years would be reguired to show a strict correlation of temperature wi+h initiation of spawning.

Neither <u>R. cataractae</u> nor <u>C. plumbeus</u> were observed to undergo spawning migrations up any of the flowing inlets to the Lower Kananaskis Peservoir. Thus, it was not possible to use timing of spawning migrations as a measure of temporal isolation.

A meaningful measure of temporal isolation is overlap in the time of fully ripe females in the spawning area (Nelson, 1968). The results of the first of the three methods, involving a qualitative judgement as to the state of female gonad maturity, are presented in Figure 16 and in Appendix Table 24.

Fully ripe females of the two species were present for the first three weeks in June, 1978, during the height of spawning. <u>C. plumbeus</u> females outnumbered <u>R. cataractae</u> females in all three different gonad states. Fully ripe male <u>C. plumbeus</u> similarly outnumbered fully ripe male <u>R.</u> <u>cataractae</u>. The first male <u>C. plumbeus</u> with freely flowing milt was captured May 17; the first such male <u>R. cataractae</u> was captured May 18, 1978. The last fully ripe male <u>C.</u>

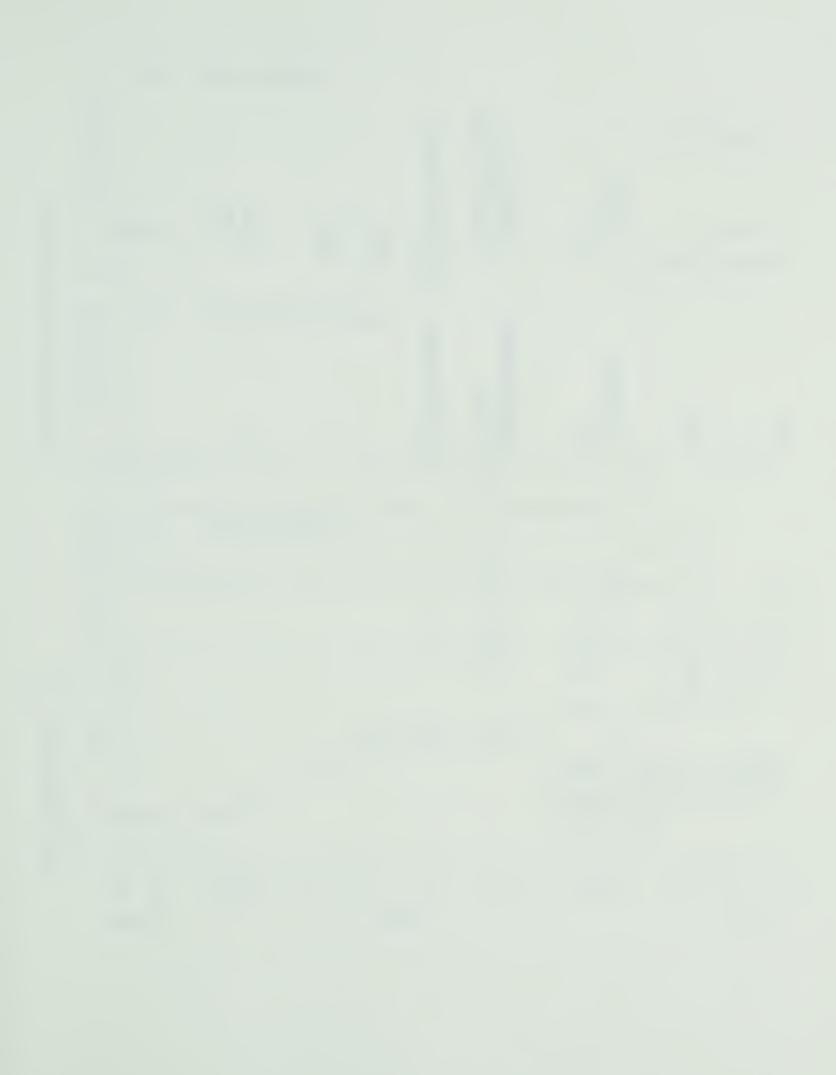
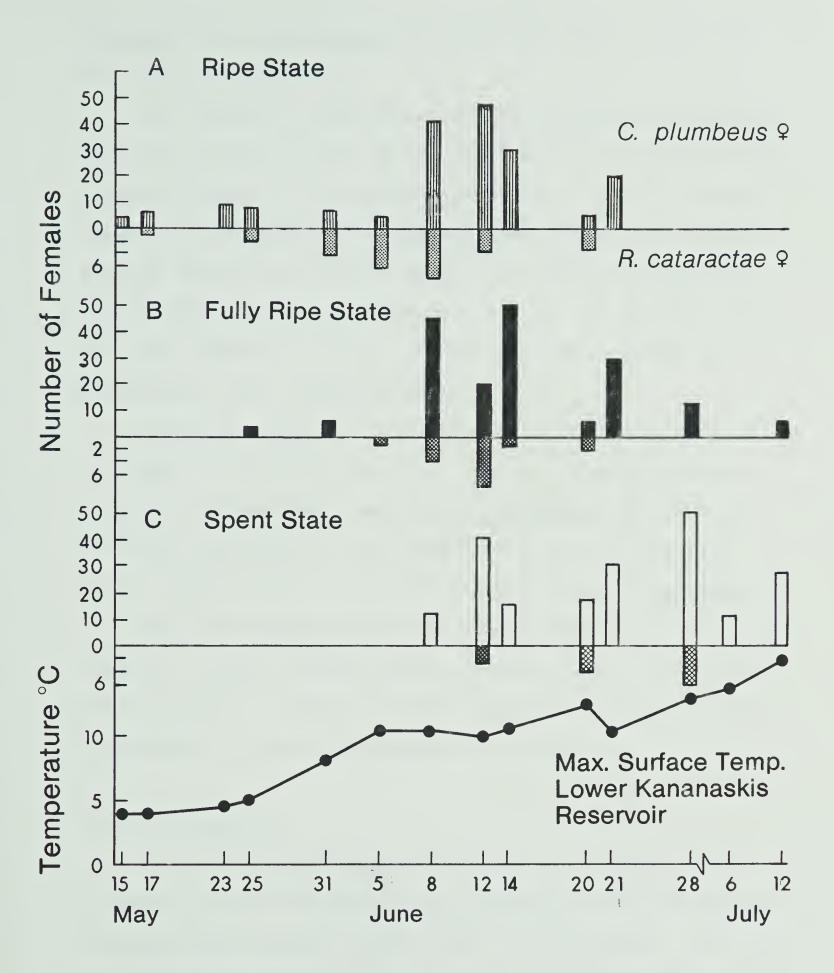
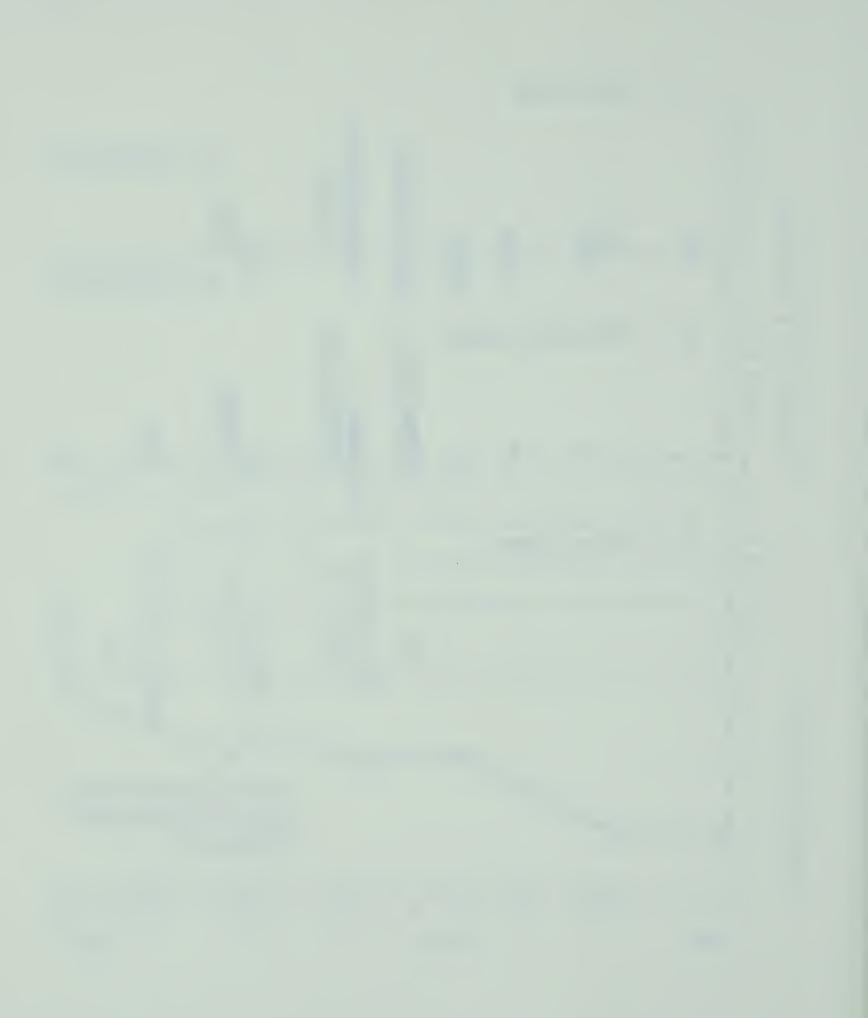




Figure 16. Change in female gonad maturity for *Couesius plumbeus* and *Rhinichthys cataractae*, sampled from Lower Kananaskis Reservoir, during the 1978 spawning period. Maximum surface temperatures (mercury thermometer) are also presented.

<u>plumbeus</u> and <u>R. cataractae</u> were captured July 11 and June 29, 1978, respectively.

The results of the second method, involving changes in the actual gonad weight of the females of each species are shown in Figure 17 and Appendix Table 25. There is complete overlap in the period of maximum gonad weight (or spawning period) between the curves of the two species. Similarly, the results of the third method (Fig. 18 and Appendix Table 26) show synchrony between the species for a period of maximum ova size (spawning period).

Spawning activities were not actually observed due to the depth at which it occurred. However, gillnet capture records indicate that numbers of <u>C. plumbeus</u> increased in the early morning and late afternoon, over the spawning sites. Comparable data are not available for <u>R. cataractae</u>.

It is not known if the two species spawn at different times of the day. These results indicate that, apart from diel isolation, there is little temporal isolation between the species in Lower Kananaskis Reservoir.

Habitat Isolation

There is little known of the type of spawning habitat selected by the two species. <u>R. cataractae</u> probably spawn in riffles over a gravel bottom (Scott and Crossman, 1973), and <u>C. plumbeus</u> are known to spawn either along lakeshores or in streams (Geen, 1955) amid large rocks (Brown <u>et al.</u>, 1970). The intention of this portion of the study was to determine

Figure 17. Change in gonadosomatic values (gonad weight/body weight%) of female *Couesius plumbeus* (upper graph) and female *Rhinichthys cataractae* (lower graph) sampled from Lower Kananaskis Reservoir during the 1978 spawning period. Points on hatched line represent sample means of gonadosomatic values, bars represent sample standard deviations and lines represent range of sample values. Sample range and standard deviation are not given when n < 5.</p>

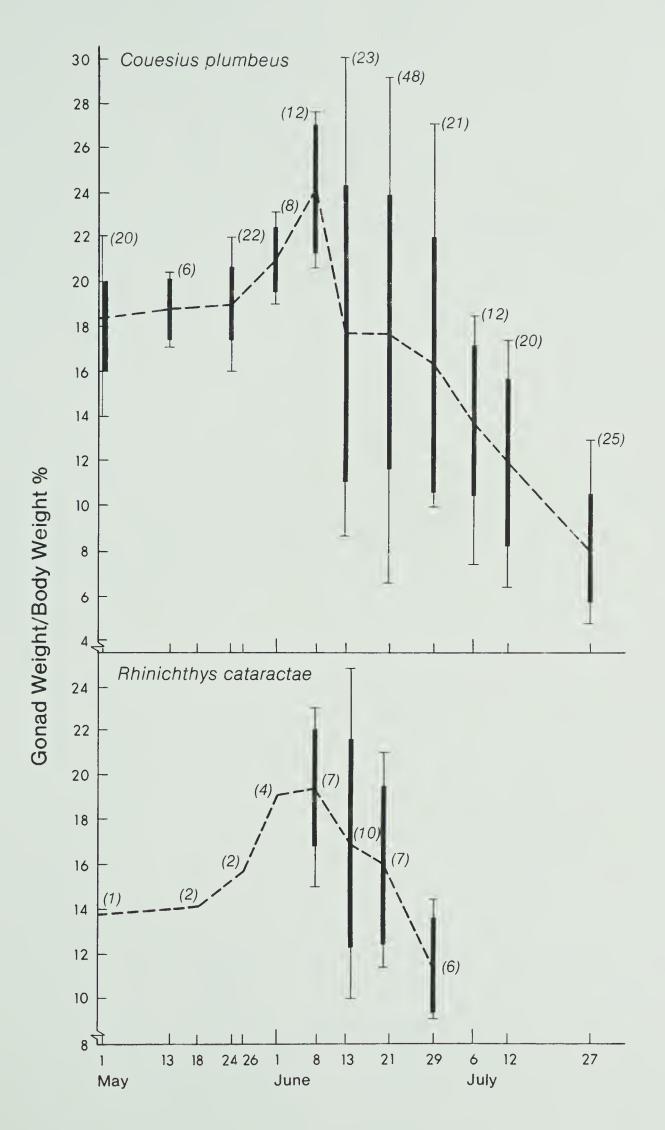
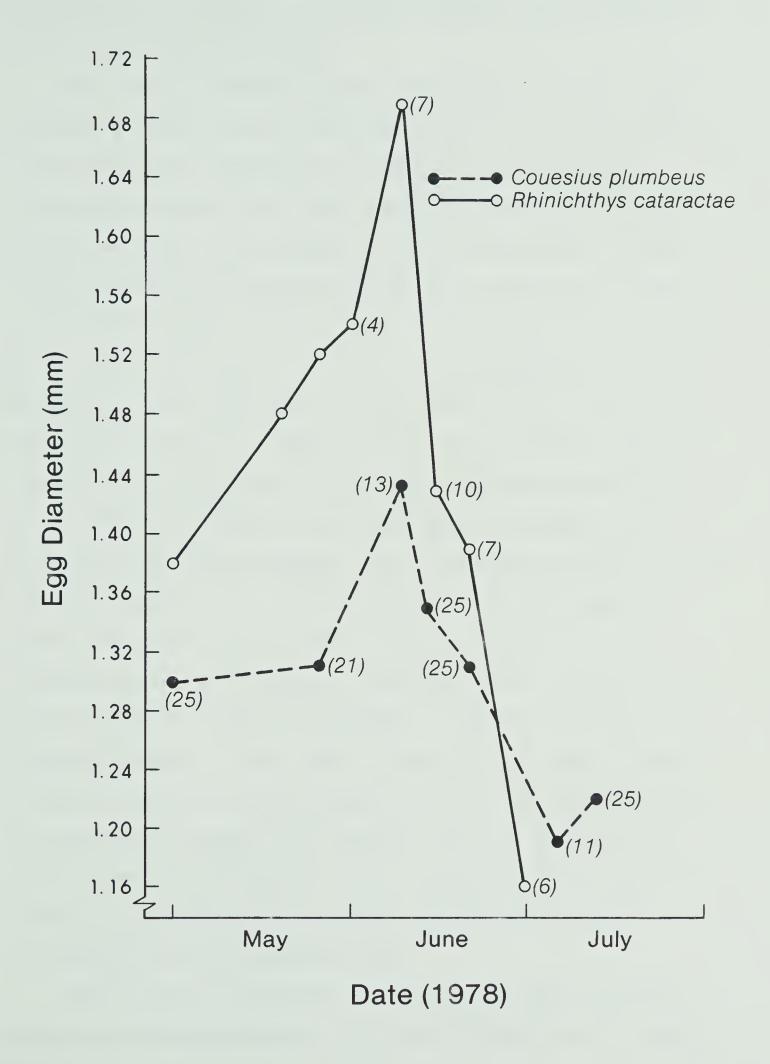



Figure 18. Trends in mean ova diameter during spawning period for Couesius plumbeus and Rhinichthys cataractae, Lower Kananaskis Reservoir, 1978. Sample size in parentheses (not presented if n = 1).

the degree of habitat segregation between these species in Lower Kananaskis Peservoir.

The inlet streams of Lower Kananaskis Reservoir were carefully monitored from when they were still ice-covered until the end of spawning in order to observe species' spawning movements and areas occupied. Due to spring-time access problems, the streams of Upper Kananaskis Reservoir were not similarly studied. There was no observed spawning migration of either species into Smith-Dorrien Creek during May, June, or early July. Only a few C. plumbeus and one E. cataractae were gillnetted at the mouth of the creek during this period (Fig. 19; Appendix Table 27). Neither species were captured upstream of the mouth. Electroshocking the creek (Plate 7) yielded migrating Salmo gairdneri, and baited minnow traps captured small <u>Salvelinus malma</u> (< 10 cm standard length). The current velocity of Smith-Dorrien Creek increased rapidly from 0.8 m/s on April 30 to a torrential 2.5 m/s on June 8 (Appendix Table 28) due to the spring melt. It became impossible to sample this creek for cyprinids except in the lower reaches at the mouth. High current velocities probably make this creek unsuitable for the cyprinids during their spawning season. There may be some shoreline spawning by the two species in the flooded inlet at the mouth of this creek, although my limited collections do not indicate this.

There were no observed spawning migrations of either species within Kent Creek, or in the vicinity of its mouth.

Figure 19. Catch data for adult *Couesius plumbeus*, *Rhinichthys cataractae*, and their putative hybrids from 7 selected sampling sites, Lower Kananaskis Reservoir. The time interval shown includes the period of maximal spawning activity for these species in 1978. Actual numbers of individuals caught by gillnets, minnow traps, and seines are shown by size of histograms.

Number of Specimens

The creek is steep and swift during the spawning season (> 2.0 m/s; Appendix Table 28), with little suitable spawning habitat. The mouth area of this creek was not extensively sampled (Appendix Table 1), and it may be used by one or both species for spawning.

Cyprinid spawning migrations were not observed during June in Invincible Creek due to i+s swift current (Appendix Table 28), and silty nature (Secchi disc = 5 cm, June 8, 1978). Fully ripe individuals of each species were captured in the silty outfall of the creek beyond its mouth during the peak spawning period (Fig. 19). Although <u>C. plumbeus</u> outnumbered <u>P. cataractae</u>, the two species appeared to be spawning in a common area without habitat segregation. The capture of one putative hybrid at this site on June 8 might suggest that miscegenation has occurred here.

No spawning individuals of either cyprinid species were found migrating up Boulton Creek in May or June, 1978. Intensive collecting effort up the Creek from its mouth to the edge of the forest did not yield a single cyprinid. Individuals of each species in spawning condition were captured beyond the mouth of Boulton Creek and nearby vicinity (Fig. 19 and Appendix Table 1). An overlap of the species' spawning habitats near Boulton Creek mouth may be indicated by the capture of one hybrid specimen on May 26, 1978.

The outfall of Boulton Creek is often extremely silty due to intermittent rainstorm run-offs and increased melt

flow (see Secchi disc results, Appendix Table 18). This factor is also the case in Invincible Creek and may abet the interspecies hybridization occurring in both locations.

The substrate over which the spawning <u>C. plumbeus</u> individuals were captured was silty mud of a uniform fine texture. This was not original lake bottom but part of the reservoir's littoral flood plain. The flooded meandering hed of Boulton Creek presented the only original pre-reservoir substrate. Capture rate did not appear to rise with increasing proximity to the original creek hed. <u>P.</u> <u>cataractae</u> were captured here in disproportionately greater numbers than in other nearby shoreline areas of equal small size.

Mature cyprinids were common within the confines of Power Plant Raceway (Interlakes Dam). There was no flow of water through the Power Plant during May, June, or July; however, there was a small flow of runoff via a drainage conduit. The raceway forms a deep trench into the original lake basin and the resultant thermal stability may be attractive to the spawners. Fully ripe males and females of each species were captured within the raceway on June 8, 1978, without any observed habitat segregation (Fig. 19; Appendix Table 1). The substrate was a uniform mixture of large boulders (mean diameter 0.3 m) over gravel.

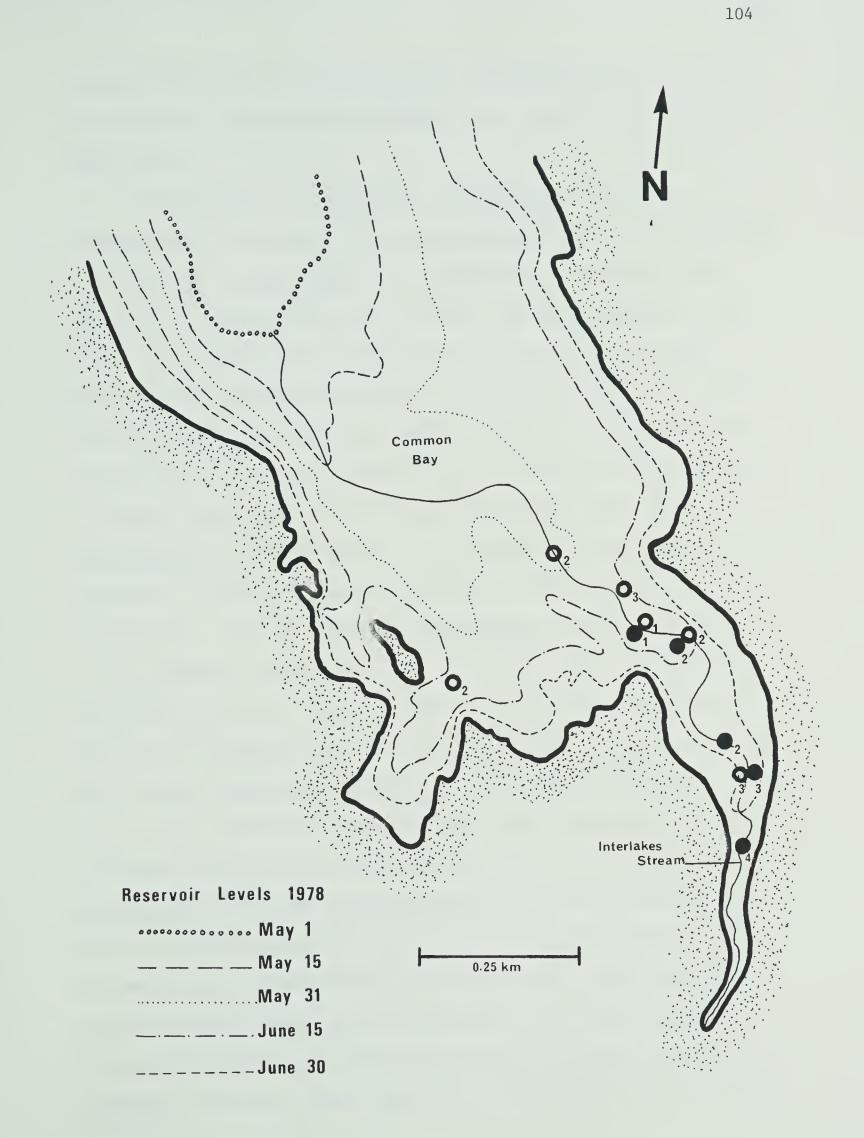
The south end of Lower Kananaskis Peservoir was the most extensively collected area on the entire reservoir. A gently flowing stream (Interlakes Stream), the original

outlet for the Upper Kananaskis Lake (Plate 8) with riffle habitat eminently appropriate for <u>R. cataractae</u>, emptied into the reservoir in this area. Its flow was controlled so that it did not increase with spring run-off beyond the suitability for spawning habitat. Under present reservoir conditions, this stream flows across an extensive area of exposed mudflats, which are progressively flooded as the reservoir level rises in the spring (Fig. 20).

The mouth of Interlakes Stream is constantly receding relative to the advance of Common Bay. The following dynamic habitat types were sampled at this end of the reservoir prior to and during the cyprinid spawning season.

- Interlakes Stream was sampled as one habitat in its entirety from source to mouth, wherever the latter occurred.
- Interlakes Stream Mouth the immediate vicinity of the entrance of Interlakes Stream into Common Bay was sampled as one habitat wherever it occurred.
- 3) Common Bay an area at least 100 m beyond the mouth of Interlakes Stream was sampled as one habitat.

The sampling sites for each habitat type were continuously moving upstream (southwards) as the reservoir filled, but the position of each habitat type remained fixed relative to the others. The types of fish occupying each moving habitat could then be compared.


<u>C. plumbeus</u> was abundant in the deeper waters of Common Bay, but only one hybrid and one <u>R. cataractae</u> were captured. The <u>C. plumbeus</u> captured here appeared to be spawning in the absence of <u>R. cataractae</u>. The substrate

.

103

Figure 20. Extreme south end of Lower Kananaskis Reservoir showing the approximate progression of shoreline changes during the summer, 1978, filling of the reservoir and the consequent flooding of Interlakes Stream (1 cm = 0.07 km). Common Bay is designated as the open water beyond the mouth of Interlakes Stream. The capture location of fully ripe and/or spent individuals of each species are presented for selected dates as follows:

o C. plumbeus	1 - June 8
	2 - June 12, 13
	3 - June 20, 21
• R. cataractae	1 - June 8
	2 - June 12, 13
	3 - June 19, 20
	4 - June 29

ranged from gravel in the flooded Interlakes Stream bed to silty mud on the flooded mudflats in a depth of 2.5 to 3.6 m (Fig. 19).

In contrast to Common Bay, Interlakes Stream was predominantly occupied by R. cataractae during the May, June 1978 period. C. plumbeus were occasionally captured here (Fig. 19). A low population of adult P. cataractae of both sexes remained in the diminishing length of the stream throughout the spawning period and likely spawned here. The substrate of the stream was highly variable, ranging from large patches of silt and detritus in areas of slow current to gravel and boulders in the riffle areas. Most \underline{R}_{\cdot} cataractae were sighted and captured among rocks (10 cm mean diameter) in riffles under a depth of less than 15 cm. Presumably, this is where R. cataractae were spawning. The 52 C. plumbeus captured on May 18, 1978, were mainly small immature specimens (mean standard length 34.3 mm) as were the two C. plumbeus captured May 22, 1978, (17 mm and 25 mm SL). The C. plumbeus captured in the stream on June 5, 1978, were larger specimens (mean SL 63.5 mm) including one fully ripe male and several ripe females (Fig. 19). The R. cataractae specimens captured on the same date were all larger females (mean SL 58.3 mm), some of which were ripe. Spawning among these fish was not observed, nor were any females sufficiently ripe on June 5, 1978, for spawning. Intensive sampling of the stream did not yield further C. plumbeus specimens until June 21, 1978, when two fully ripe

males were collected (70.0 and 72,0 mm SL) at the peak of the spawning period. In late June the reservoir level had flooded approximately half of the Interlakes Stream length within the S.E. Arm. These two <u>C. plumbeus</u> males were found 15 m upstream of the mouth and likely represent exploratory movements, but not a typical pattern. Their presence does suggest the possibility of interspecific spawning with the resident <u>R. cataractae</u> females. Spawning was not observed at any time in Interlakes Stream.

The Interlakes Stream mouth habitat was intermediate between the other two habitats in terms of the simultaneous presence of <u>C. plumbeus</u> and <u>R. cataractae</u> males and females in fully ripe and spent spawning conditions (Fig. 19; Appendix Table 1). There was no noticeable habitat separation between the two species. They were captured in the same gillnets over a substrate ranging from gravel, in the original stream bed, to silt on the flooded mudflats. The depth of the water ranged from 1.7 to 2.6 m. There was a slight, but continual current of < 1.0 m/s at the mouth of the creek. Thus, it was impossible to determine if the species segregated themselves according to current regimes. One <u>C. plumbeus x E. cataractae</u> hybrid specimen was captured on June 8, 1978, along with individuals of the two species.

<u>C. plumbeus</u> numerically outnumbered <u>R. cataractae</u> in the Interlakes Stream mouth habitat. However, both are represented in an intermediate frequency relative to the <u>C.</u> <u>plumbeus</u> -dominated deeper waters of Common Bay and the <u>R.</u>

<u>cataractae</u> -dominated riffle habitat of Interlakes Stream. Partial habitat isolation is achieved in the latter two habitats, but not in the intermediate habitat where the rising reservoir level brings the two species into contact.

It is reasonable to hypothesize that <u>C. plumbeus</u> spawners, in maintaining their spawning proximity to the stream mouth, advance into the newly flooded lower reaches of the stream. Here, <u>R. cataractae</u> maintain their spawning positions over the gravel and cobble rock of the flooded stream bed. Where habitat segregation occurred in the south end of the Lower Reservoir, <u>C. plumbeus</u> presumably spawned offshore in a depth of 2.0 - 3.0 m over a barren silt substrate while <u>R. cataractae</u> are inferred to spawn in very shallow riffles of slight current amid cobble-sized rock.

Behavioral Isolation

Behavioral blocks to hybridization form a final line of premating defense in the event of habitat and temporal overlap between reproducing species. However, Hubbs (1961) noticed that while a behavioral barrier to miscegenation occurs in an area where species have been sympatric for a long time, these behaviors may break down in areas where they have recently come together.

Little information concerning reproductive behaviors of the two species is available. <u>C. plumbeus</u> neither builds a nest nor guards the eggs, whereas <u>B. cataractae</u> may both establish a territory and guard the nest (McPhail and

Lindsey, 1970). Nests of <u>R. cataractae</u> were not found in the intensively sampled Interlakes Stream where <u>R. cataractae</u> was inferred to spawn in the absence of <u>C. plumbeus</u>. Nest guarding behaviors were not observed in members of <u>R.</u> <u>Cataractae</u>, although some site specificity was indicated. When disturbed from one area, they would invariably be observed returning to the same site. Turning over the rocks and sieving the substrate in such locations did not yield eggs or nests. Nest-guarding adults were not observed when the flooded portion of Interlakes Stream in the S.E. Arm was observed underwater using S.C.U.B.A. on June 28 and July 12, 1978.

Laboratory, aquaria-held fish showed no meaningful behavioral differences when held in the reciprocal, interspecific matchings as opposed to conspecific situations. Neither mating behaviors nor aggressive interactions were observed at any time. Individuals of each sex of each species, while held in tanks, displayed similar fright behaviors and escape responses.

The male hybrids and female <u>C. plumbeus</u> in Tank C were not observed to elicit mating behaviors and tank breeding did not occur. When autopsied on June 28, the females had regressed gonads suggesting that tank conditions were inappropriate for breeding. Although the male hybrids were of equivalent size to the females, they reacted more vigorously to tank disturbance, swam faster, and dominated the feeding by rapidly snatching up the food.

The existence of distinct species' specific breeding behaviors in C. plumbeus and R. cataractae cannot be confirmed in this study. Their isolative value remains unknown. However, it is possible to evaluate species' differences in breeding coloration and nuptial tubercles (Plates 1-6). These differences may provide criteria for favoring conspecific mates. The results of this comparison (Table 7, Plates 1-6), reveal many species' differences, which may act to increase the species' reproductive isolation. Similarly, there are many morphological differences between the species, especially in head characters (previously discussed in text) of potentially high isolative value, assuming such characters are used for mate recognition. Confounding these differences is that in each species smaller males mate with larger females. Thus, mate selection on this criterion would not disfavour interspecific matings.

Without successful, controlled mating experiments, these hypothesized isolating factors remain untested speculations.

DISCUSSION

Temporal isolation may be inoperative in preventing hybridization in Lower Kananaskis Reservoir (although diel isolation was not investigated). There is total overlap in the period of fully ripe females between the two species. The peak of the spawning period for each species occurred in

Couesius plumbeus	Rhinichthys cataractae
MALE	MALE
- vivid red patch at pectoral fin base, spreading posteriorly. No coloration at bases of pelvic or anal fins.	 vivid red-orange patches at bases of pectoral, pelvic and anal fins.
- red patch on top of opercle.	- no red patch on top of opercle.
 may have red pelvic axillary processes, if these are present. 	- red pelvic axillary processes.
- small red patch at corners of mouth.	 red-orange patch at corners of mouth (upper mandible may be entirely colored while lower mandible is less extensivel colored.
- no coloration near isthmus.	 red-orange color scattered beneath gills at isthmus.
- all fin rays, membranes without color.	 all fin rays, membranes may have a red-orange tinge.
- fine white tubercles on dorsal surface of pectoral rays.	 fine white tubercles on dorsal surface of head (may extend posteriorly to origin of dorsal fin) and on dorsal surface of pectoral rays. (Tubercles usually restricted to head only).
- always brighter red coloration than females.	- usually brighter red coloration than females.
FEMALE	FEMALE
 red patch at base of pectoral fin, spreading posteriorly. 	 may have a small red-orange patch at base of pectoral fin.
 red patches at top of opercle and at corners of mouth (on cheek) may be present. 	 no red patch on top of opercle, or on cheek at corner of mouth.
- fin rays, membranes without coloration.	- all fin rays, membranes usually with a red-orange tinge.
 color patches are yellow to light red, never vivid red. 	- color patches are orange-red.
- fine tubercles may be present on dorsal surface of head and posteriorly to dorsal origin.	- tubercles not present.

TABLE 7. Comparison of Breeding Coloration and Nuptial Tubercles. Refer to Plates 1-6.

mid-June at approximately 10°C and ended prior to July in 1978: spawning did not continue into late August in either 1977 or 1978 as has been reported for Kananaskis cyprinids by McPhail and Lindsey (1970) and Scott and Crossman (1973) (probably based on Nelson's 1965 observation of ripe females being found on 8 August in 1961).

Previous reports have shown different temperature responses for the two species. <u>R. cataractae</u> in Manitoba reached a spawning peak on May 16 at 15°C in Mink River (Bartnik, 1970) and during mid-July at 15°C in Lake Winnipeg (Gee and Machniak, 1972). Kuehn (1949) reported that <u>R.</u> <u>cataractae</u> in Minnesota spawned from late June through August. Brazo <u>et al</u>. (1978), found the peak spawning period for Lake Michigan <u>R. cataractae</u> to be late June and early July at 14-19°C. <u>C. plumbeus</u> have spawned in the Montreal River, Sask. in early May at 4-8°C, Lac la Ronge, Sask. in mid-June at 10°C (Brown <u>et al</u>., 1970), and Lac Saugay, Que. in early June at 19°C (Scott and Crossman, 1973). These may be population differences.

There appears to be no effective habitat isolation between the species. They swarm in mixed schools over the mud flats at Pocaterra Dam in the summer and were captured together at spawning time along the shoreline and at the mouths of all inlet streams. However, habitat isolation was achieved by spawning <u>R. cataractae</u> migrating alone in modest numbers into Interlakes Stream. Presumabley no other inlet stream offered the appropriate current, temperature, and

substrate regimes to allow species' segregation. There are no other reports in the literature outside Kananaskis of such close habitat sharing between <u>C. plumbeus</u> and <u>P.</u> <u>cataractae</u>.

Satisfactory evidence regarding the strength of the behavioral barrier between the two species is lacking in this study. However, the failure of the other possible isolating mechanisms, and the low frequency of hybrids, suggests that with <u>C. plumbeus</u> and <u>B. cataractae</u>, as with most species (Mayr, 1969), ethological isolation is of primary importance. Differences in morphology, color, tuberculation, and the suggested territoriality of <u>E.</u> <u>cataractae</u> (McPhail and Lindsay, 1970) are possibly involved. Ethological barriers are also inferred to be of major importance in maintaining species' identity in hybridizing populations of <u>Catostomus commersonii</u> and <u>C.</u> <u>macrocheilus</u> (Nelson, 1968).

STUDY OF POSTMATING ISOLATION

INTRODUCTION

Postmating isolating mechanisms involve the reduction of hybrid survival and the reduction of gene flow through the hybrids. Effective postmating isolation is not a general characteristic of sympatric species (Littlejohn, 1969) as it is not open to the operation of natural selection.

The purpose of this section is to determine the importance of postmating isolating mechanisms in maintaining

species' distinctness. The mortality and viability of artificially reared hybrid embryos is compared relative to that of parental embryos. Certain life history characteristics of wild-caught hybrids are compared to those of the parental populations in order to assess their relative survival success under natural conditions.

METHODS

Hybrid Embryo Mortality

Embryo mortality experiments were conducted in a controlled environment chamber commencing June 8 and terminating July 1, 1978, with the final hatching of all embryos. Fully ripe adults, caught in Lower Kananaskis Reservoir using gillnets, dipnets, and seines were returned to the laboratory where they were stripped of eggs or milt. Some adults were held in aquaria for as long as two days prior to stripping, while waiting to collect the parental type with which they were crossed. Fertilization procedures were adapted from Davis (1953) and Strawn and Hubbs (1956).

No attempt was made to extract the same number of eggs for all crosses. Each cross received the maximum number of eggs which could be expressed from the female. The fertilized eggs of each cross were placed in separate glass finger bowls and each was covered with a fine Nitex mesh (36 meshes/cm²). As many as three finger bowls of the same cross type were submerged into the same 20 1 aguarium. This procedure allowed simultaneous experiments to be run without

the danger of accidental interchange of embryos.

Once hatching began, each cross was separated into its own aquarium. All aquaria were held at a constant temperature of 15°C and were constantly aerated. There was no continuous water flow into the aquaria, rather the water was changed approximately every five days. Chemical fungal retardants were not used.

There was a total of 21 crosses (9 homospecific crosses, 11 heterospecific crosses, and 1 cross of two F1 hybrid individuals). Each cross involved different parents. Hybrid and parental crosses were treated identically. Prior to hatching, eggs of all crosses were examined once every 24 to 36 hours. Dead embryos, identified by their opaque, white color, were counted daily and discarded using a pipette. When hatching began, the crosses were examined twice daily and the number of hatched fry recorded. A mean hatching date was determined for each cross. Hatching time data were analyzed using a single classification analysis of variance (Sokal and Rohlf, 1969) and a Duncan's multiple range test (Zalik, 1977).

The diameters of 15 embryos (five days postfertilization) from four crosses (the two parental cross types and the two reciprocal hybrid cross types) were measured under a microscope using needle-point dial calipers (read to the nearest 0.1 mm). Egg diameter data were analyzed using a single classification analysis of variance (Sokal and Rohlf, 1969) and a Duncan's multiple range test

(Zalik, 1977).

The % pre-hatching mortality results for all crosses were arcsin transformed (Zalik, 1977,) and analyzed using a single classification analysis of variance (with unequal sample sizes) (Sokal and Rohlf, 1969).

Hybrid Inviability

Immediate Post-hatching Survival

The products of all four artificial cross types were reared beyond the hatched fry stage in several 8 1 aguaria. Space limitations necessitated the pooling of replicates from the same cross type. All aquaria were held under the conditions of a constant 15°C temperature, continual aeration and water changes as needed. The developing fry were fed Liquifry, TetraMin baby fish food, and live zooplankton from Lower Kananaskis Reservoir.

The number of live fry 4 days post-hatching was recorded for each cross type replicate and the data were analyzed using a single classification analysis of variance (Sokal and Rohlf, 1969). Thereafter, the number of live fry was recorded once per month until 3 November, 1978. These long-term survival data were not statistically analyzed but simply compared to determine if any differences existed in survivorship beween the cross types in the first months of life.

Long-term Survival and Life History Characteristics

The success and long-term viability of the wild-caught putative hybrids was compared to that of the two parental species by their age, growth, and length-weight data.

Age was determined by scales, read under magnification independently by two people. Where disagreement occurred, the readers conferred until a consensus was reached. Scales were removed from preserved fish in the small area above the lateral line and below the dorsal midline in front of the dorsal fin. Thirty-six putative hybrids with intermediate canonical scores (in the presumed F⁴ portion of the Kananaskis CVA distribution) were aged. Aging by the scale method was corroborated using the graphic method of polymodal separation of length frequencies (Cassie, 1963).

Growth rates of these representatives of the hybrid group and the two typical parental species were calculated by plotting the mean size at each age, as derived from the scale analysis, against age-class. Growth rates were then estimated from regressions of logarithms of length on age-class. An analysis of covariance was performed on the same data using the SPSS computer program (Nie <u>et al</u>., 1975). This provided an objective method of determining significant differences between regression lines.

Length-weight relationships for the same subsamples of the three groups were determined according to the methods of Ricker (1971). The relationship was described by a regression of logarithm of length on logarithm of weight. An

analysis of covariance was performed on these data using the SPSS program.

Female fecundity was determined for 25 <u>C. plumbeus</u>, 20 <u>R. cataractae</u>, and 7 hybrids. All ova from one female were spread evenly in a dish divided into guadrats; only one quadrat was actually counted. This value was multiplied by four to give the total number of ova. The fecundity relationship was described by a regression of logarithm of ova number on logarithm of standard length for <u>C. plumbeus</u> and <u>R. cataractae</u>. The hybrid sample size was too small to generate a meaningful regression.

RESULTS

Hybrid Embryo Mortality

Successful artificially induced hybridization may confirm the origin of putative hybrids. It can also provide insight into the relative degree of selection against hybrid cross products. The hypothesis of equal hatching success between hybrid crosses and parental crosses was tested (Table 8).

Each of the heterospecific crosses suffered 100% pre-hatching mortality in one replicate, as did the only hybrid backcross replicate. All replicates of the homospecific crosses had some hatching. However, there is no significant difference in pre-hatching mortality between the four different cross types, excluding the hybrid backcross (P > 0.05, Table 9). Given only one hybrid backcross

					Heterospe	cific Cro	5868				
		ďC	x ç R					ç (°x d [#] F	ł		
Date Started	19 June	19 June	19 June	19 June	13 June	13 June	16 June	8 June	20 June	20 June	20 June
No. Started	181	90	90	205	500	438	373	200	123	400	220
No. Hatched	128	0	73	156	227	326	0	7	49	177	48
% Pre-hatch Mortality	29.3	100.0	18.8	23 .9	54.6	25.6	100.0	96.5	60 .2	55.8	78.2
x Hatch Time (daya)	10.0	-	10.0	11.0	9.5	10.0	-	10.0	10.0	9.5	10.0
% 4 Day Post- hatch Mortality	98.4	-	2.7	7.0	1.3	0.6	-	0	8.2	42.3	100.0
No. Alive 4 Day Poat-hatching	2	U	71	145	224	324	0	ε	45	102	0

TABLE 8. Hatching results for experimental crosses, 1978, at 15°C.C - Coucsius plumbeusR - Rhinichthys cataraotaeII - C. plumbeus x R. oataractae F_1 Hybrid

			,							Hybrid
			СхС	Hom	ospecific Cr	08565	R	x R		d H x Q C
Date Started	13 June	13 June	8 June	20 June	20 June	19 June	19 June	20 June	20 June	8 June
No. Started	280	380	240	240	1 36	43	90	246	115	62
No. Hatched	59	98	38	219	94	12	17	84	33	0
& Pre-hatch Mortality	78.9	74.2	84.2	8.8	30.9	72.1	81.1	65.9	71.3	100
Hatch Time (daya)	9.0	9.0	9.5	9.0	8.5	11.0	12.0	12.0	11.0	
4 Day Post- match Mortality	3.4	3.0	0	49.3	3.2	0	5.9	28.6	6.1	
No. Alive 4 Day Poat-hatching	57	95	38	111	91	12	16	60	31	

TABLE 9. % pre-hatching Mortality. Single classification analysis of variance with unequal sample sizes. The single replicate of the hybrid backcross suffered 100% pre-hatching mortality and was not included in this analysis.

Arcs	in Trans	sformed	Data					
	Cros	sses			ANOVA TA	BLE		
СС	₫ĊჹŔ	ç C∂ [®] R	RR					
62.7	32.8	47.6	58.1	Source of Variation	SS	df	MS	F
59.5	90.0	30.4	64.2	Among Crosses	743.6	3	247.9	0.59
66.6	25.7	90.0	54.3	Within Crosses	7185.6	17	422.7	
17.3	29.3	79.2	57.6	Total	7929.2	20		
33.8		50.9		$F_{.05(3,17)} = 3.2$				
		48.3						
		62.2		P > 0.5				

% 4 Day Post-hatching Mortality. Single classification analysis of variance with unequal sample sizes.

Arcsi	in Trans	formed	Data						
	Cros	ses			ANOVA TAB	LE			
CC	đCọR	çCổR	RR						
10.6	82.7	6.6	0.0	Source of Variation	SS	df	MS	F	
10.0	0.0	4.4	14.1	Among Crosses	449.4	3	149.8	0.20	
0.0	9.5	0.0	32.3	Within Crosses	12479.0	17	743.1		
44.6	15.3	0.0	14.3	Total	12928.4	20			
10.3		16.6		$F_{.05(3,17)} = 3.2$					
		40.6							
		90.0		P > 0.5					

replicate, it is not possible to make any conclusions on the sterility of hybrids. I suspect the eggs used in this cross were not fully ripe.

Hybrid crosses hatch as successfully as do control crosses. On the basis of this experiment, hybrid embryo mortality cannot be operative as a postmating isolating mechanism.

There is a significant difference in hatching times for cross types (F = 28.0, F.05(3,14) = 3.34). The hatching times for pure <u>R. cataractae</u> embryos and pure <u>C. plumbeus</u> embryos are significantly different from all other cross types. The hatching time for embryos of the two reciprocal hybrid cross types are not significantly different (latter results from Duncan's test). Mean hatching time for pure <u>C.</u> <u>plumbeus</u> crosses is 9.0 days: relatively short compared to pure <u>R. cataractae</u> at 12 days. The hatching times of the heterospecific crosses are intermediate: male <u>C. plumbeus</u> x female <u>R. cataractae</u> cross, 10.5 days; female <u>C. plumbeus</u> x male <u>R. cataractae</u>, 9.8 days. This may show a trend for the hybrids to develop at rates similar to that of their maternal controls, as reported by Hubbs and Strawn (1957).

Hybrid fertilized egg sizes are also intermediate between the parental values (Table 10). There is a significant difference in embryo sizes for cross types (P=26.9, F.05(3,56) = 2.76). Pure <u>C. plumbeus</u> embryos are significantly smaller than embryos from the other three cross types, which are not significantly different from each

other in size (latter results from Duncan's test). There may be a causal relationship here, i.e., the larger <u>R.</u> <u>cataractae</u> egg requiring a longer development time than the smaller egg of <u>C. plumbeus</u>.

Hybrid Inviability

It is probable that hybrids are occasionally produced in nature by an accidental mechanism such as drifting sperm. In a natural environment, as opposed to a modified environment, these individuals may be at a selective disadvantage and may die prior to reproducing. The hypothesis that artificially produced hybrids of Kananaskis origin were not selected against was tested.

Immediate Post-hatching Survival

Percent 4 day post-hatching mortality results (Table 9) show no significant difference (P > 0.05) between the replicates of the four cross types. The highest percent mortality is in two heterospecific cross replicates: more than twice the highest percent mortality recorded for the homospecific crosses. There appeared to be no difference between the cross types in the number of highly deformed individuals that contributed to these mortality figures.

The results of the four month rearing experiment (Table 11) show unexpected differences in viability between the cross types. All <u>R. cataractae</u> control cross individuals died between two and three months after hatching. No other cross type suffered total mortality during the rearing

Table 10. Diameters of Eggs (5 days post-fertilization) for each artificial cross type.

Cross	Туре	No. of	Eggs	mean	diameter(mm)	Std.	Deviation
С	с	15			2.03		0.08
Сş	R of	15			2.28		0.12
Rq	Cof	15			2.23		0.11
R	R	15			2.35		0.08

*

Some replicates of the same cross type were lumped together for economy during rearing TABLE 11. Survival of offspring from experimental crosses over a 4 month period (post-hatching). live individuals. The mean hatching date for all crosses is taken as June 27, 1978. as indicated. Survival values for each time period are given as absolute number of

	live individuals.		ching date for	all crosses 1	Ine mean hatching date for all crosses is taken as June 2/, 19/8.	21, 19/8.
	R:- R. cataractae; C:-	tae; C:- C. plumbeus.	eus.			
	Replicates	No. lumped				
Cross	(identified by	4th day	Su	Survival (days post-hatching)	ost-hatching)	
Type	no. hatched)	Post-hatching	35	65	91	124
qc dc	59, 98, 38	190	131 (55.1)	102 (46.3)	64 (35)	62 (34.3)
	219, 94	202	137 (41.4)	127 (39.6)	104 (35.2)	82 (30.1)
₽R đR	17, 12	28	24 (65.5)	0	0	0
	84	60	0	0	Û	0
	33	31	0	0	0	0
qR dC	73	71	62 (67.2)	12 (23.9)	9 (20.6)	8 (19.3)
	156	145	0	0	0	0
	128	2	0	0	0	0
oc dr	227	224	183 (63.9)	142 (52.3)	99 (41.3)	56 (29.8)
	326	324	260 (63.3)	83 (30.3)	74 (28.5)	67 (26.9)
	7	ũ	0	0	0	0
	49, 177	147	137 (51.1)	78 (36.0)	33 (22.5)	30 (21.4)
	48	0	0	0	C	0

123

period. The hybrid cross of <u>R. cataractae</u> maternal descent also suffered 100% mortality in two of its three replicates in the first month of rearing.

In contrast, the hybrid cross of <u>C. plumheus</u> maternal descent had higher viability success with 100% mortality in only two of its five replicates. There were no complete die-offs in either replicate of the <u>C. plumbeus</u> control cross.

The results suggest disproportionate selection against <u>R. cataractae</u> control specimens and hybrids of <u>R. cataractae</u> maternal descent under artificial conditions.

Long-term Survival and Life History Characteristics

a) Age

The presence of five age-classes in the <u>C. plumbeus</u> sample is indicated by scale annuli. The lengths of the fish at each annulus formation are presented in Table 12. Separation of polymodal length frequencies by probability coordinates verified the presence of five age-classes (Fig. 21). A chi-square test showed no significant differences (P > 0.05) between the observed and expected normal distributions of length frequencies in each of the age-classes. There is close correspondence between the results of the two methods. The size ranges at each age, determined by the scale method, fell within the size ranges at each age determined by the polymodal probability method. Bruce and Parsons (1976) found no spawning <u>C. plumbeus</u> from Labrador older than 4+ years. However, Brown (1969) found

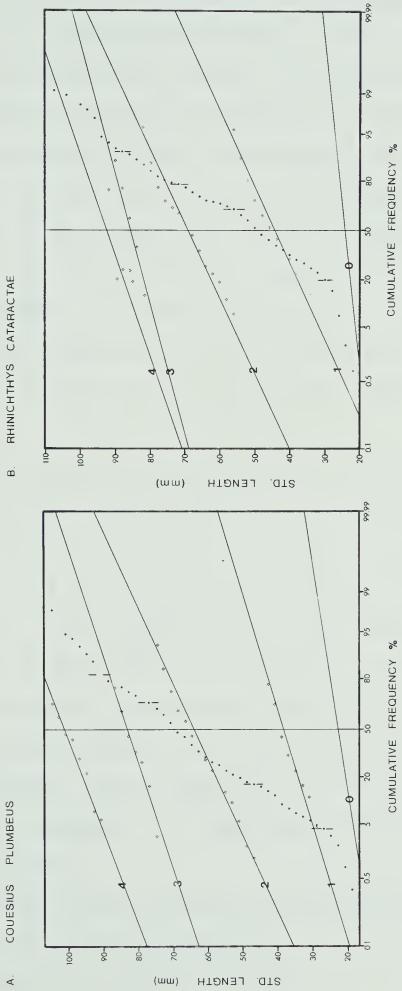

Standard					Age-group	and Sex				
Length	0			Т		2		en	4	
Interval (cm)	¥	řu I	Σ	Eu	×	Γu	W	Fra	¥	۲ų.
1.0-1.9	1 (50)									
2.0-2.9	1(50)									
3.0-3.9			7(30)	7(30) 8(36)						
4.0-4.9			11(48)	8(36)		1(4)				
5.0-5.9			5(22)	5(23)	4(11)	7(25)				
6.0-6.9				1(5)	14(38)	9(32)				
7.0-7.9					16(43)	10(36)				
8.0-8.9					3(8)	1(4)	4(50)	4(50) 5(42)		
6.0-9.9							4(50)	4(50) 7(58)		1(25)
10.0-10.9									1(100)	2(50)
11.0-11.9										1(25)
Subtotals	c	0		0	r c		c			

TABLE 12. Length distribution of the age-groups of Couesius plumbeus from May 1, 1978 sample,

- Figure 21. Graphic separation of polymodal length frequencies by probability coordinates for:
 - A. 343 Couesius plumbeus from Lower Kananaskis Reservoir. χ^2 test for departure from normality (χ^2 = 19.90; $\chi^2_{.05(43df)}$ = 55.7, P > 0.05).
 - B. 241 Rhinichthys cataractae from Lower Kananaskis Reservoir. χ^2 test for departure from normality $(\chi^2 = 3.32; \chi^2_{.05(40df)} = 55.8, P > 0.05).$

Numerals are age-class designations. Solid dots are total cumulative frequencies and starred circles are cumulative frequencies within size groups.

spawning <u>C. plumbeus</u> 5 years and older in Saskatchewan.

Six age-classes are indicated for <u>R. cataractae</u> from scale annuli. The lengths of the fish at each annulus formation are represented in Table 13. Separation of polymodal length frequencies by probability coordinates revealed the presence of only 5 age-classes (Fig. 21). However, this is likely due to the low frequency of older 5+ <u>R. cataractae</u>. A chi-square test showed no significant differences (P > 0.05) between the observed and expected normal distribution of length frequencies in each of the age-classes. Six age-classes have also been reported from Lake Michigar populations of <u>R. cataractae</u> (Brazo <u>et al</u>., 1978).

Four age-classes are indicated for the hybrid sample by counts of the scale annuli (Table 14). Although age-class 0 hybrid individuals were available they are not included in the analysis. No hybrid individuals were older than 4 years and there were no male hybrids older than 3 years. The hybrid sample is small (n= 36) and contains mostly small hybrids in the younger age-classes. The low frequency of hybrid individuals precludes age verification by polymodal probability method. Age analysis has not been previously reported for <u>C. plumbeus x R. cataractae</u> hybrids.

b) Growth Rates

Growth rates of the two species and the hybrids are described by the following equations:

C. plumbeus log L = 0.513 + 0.147T

Length						Age-	Age-group and Sex	Sex				
)	0			1	2			3	7	4		5
Interval (cm)	W	j.	Ψ	j.	Ψ	Ē	M	Æ	W	j Fr	M	Ę.
1.0-1.9												
2.0-2.9	2(100)	2(100) 2(100)	6 (40)									
3.0-3.9			6(40)	(79) 6 (07) 9								
4.0-4.9			2(13)	5 (36)	7(33)	6(25)						
5.0-5.9			1(7)		12(57)	11(46)						
6.0-6.9					2(10)	4(17)	9(82)	4(14)				
7.0-7.9						3(12)	2(18)	11(39)				
8.0-8.9								10(36)		2(17)		
6.0-0.6								3(11)	1(100)	9(75)		
10.0-10.9										1(8)		1(100)
Subtotals	5	2	15	14	21	24	11	28		12	0	

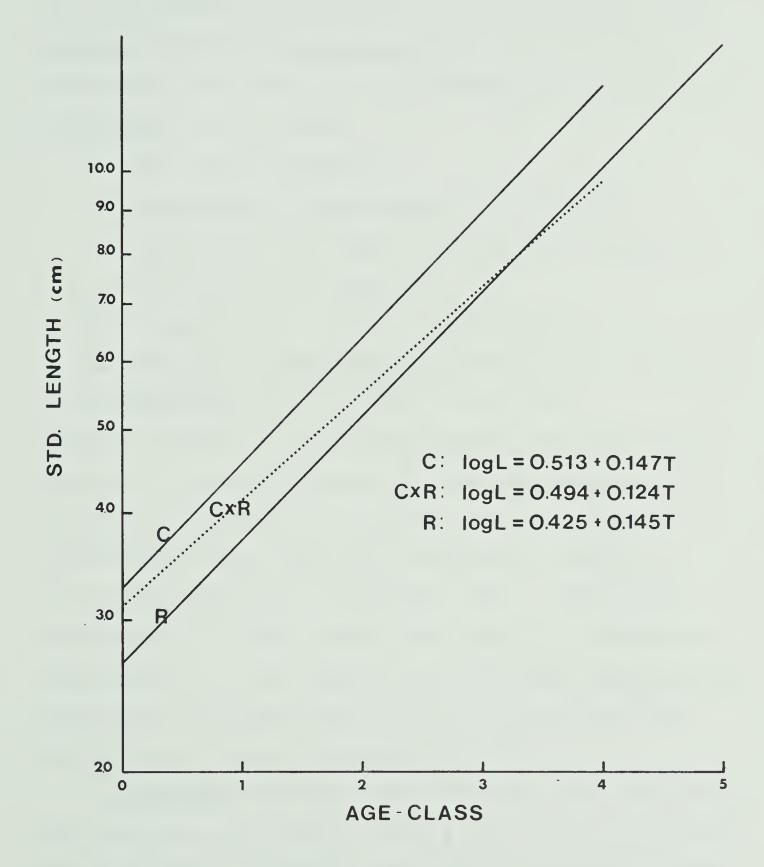
1(50) 1(50) í۳. from 1977, 1978 collections, Lower Kananaskis Reservoir (n = 36). Numbers in parentheses 4 2 Σ 0 2(40) 1(100) <u>آتا</u> С 3(60) Σ Ś Age-group and Sex 2(25) 10(83) 6(75) represent the % of each age-group in each length range. <u>آتا</u> ∞ 2 2(17)Σ 12 3(60) 3(100) ۲щ \sim Ч 2(40) Σ ഗ ř±1 0 0 Z 0 Standard Interval 10.0-10.9 11.0-11.9 Subtotals Length 4.0-4.9 6.0-6.9 7.0-7.9 8.0-8.9 9.0-9.9 1.0-1.9 2.0-2.9 3.0-3.9 5.0-5.9 (cm)

TABLE 14. Length distribution of the age-groups of Couesius plumbeus x Rhinichthys catavactae hybrids,

C. plumbeus x P. cataractae log L = 0.494 + 0.124T

 $R_{\bullet} cataractae log L = 0.425 + 0.145T$

where L = standard length, T = age-class and the regression coefficients equal the instantaneous growth rates. Data from each sex were pooled to calculate the regression for each species.


<u>C. plumbeus</u> appears to have the fastest growth rate. The growth rates for <u>C. plumbeus</u> were determined from Saskatchewan (Brown <u>et al.</u>, 1970) using the Peterson method and from Labrador (Brazo <u>et al.</u>, 1978) using back calculations. Thus, their results are not directly comparable to those in this study.

Comparison of the regression lines by inspection reveals that <u>R. cataractae</u> has the slowest growth rate for fish younger than 3 years. The hybrids have a generally intermediate growth rate between the parental species, but after 3 years age it declines below the growth rate of <u>P.</u> <u>cataractae</u> (Fig. 22). If the growth rates are extended back beyond the Y-axis to include all growth in the first year, it appears that the hybrid growth rate initially exceeds that of the two parentals. The hybrid offspring of the experimental crosses also showed a faster growth rate than that of the parental offspring. This apparent decline in the hybrid growth rate may suggest the accumulative effects of some selective disadvantage.

However, an analysis of covariance (Nie <u>et al</u> ., 1975) was performed to test for significant differences between

Figure 22. Growth rate regressions for:

C - 140 Couesius plumbeus (r = 0.90)
R - 130 Rhinichthys cataractae (r = 0.91)
C x R - 36 C. plumbeus x R. cataractae hybrids (r = 0.93)
from Lower Kananaskis Reservoir.

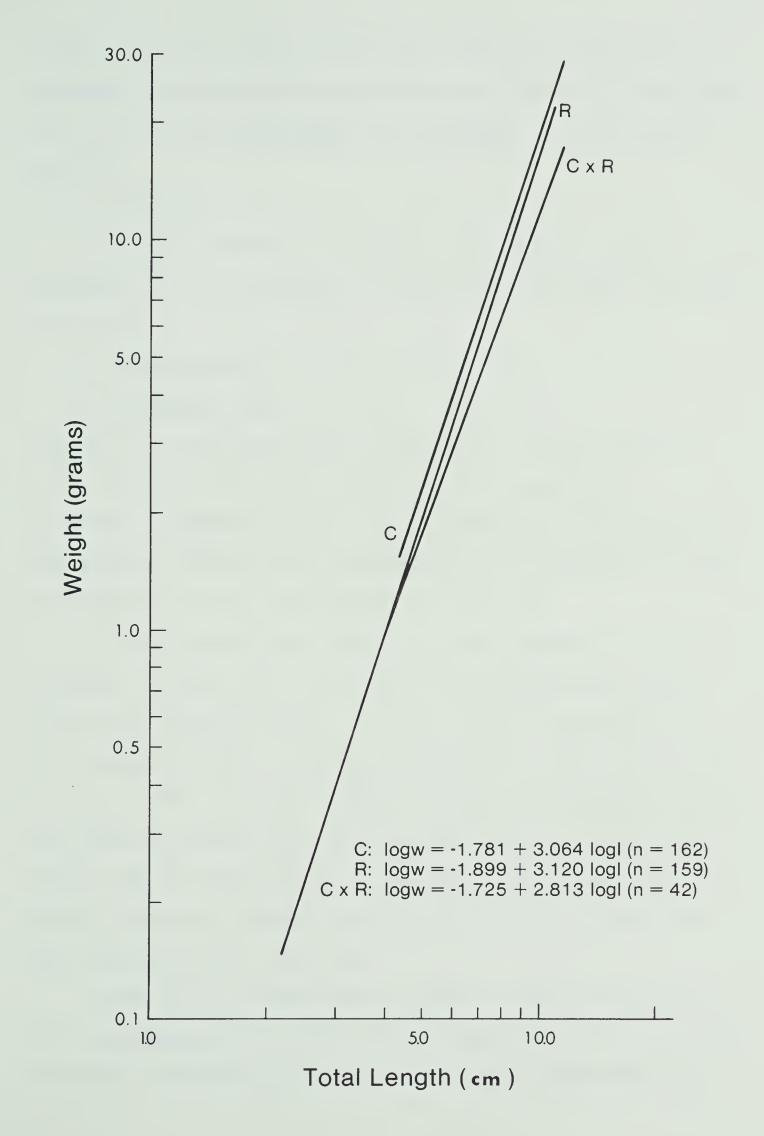
the regressions (Appendix Table 29). Statistically, there is no significant difference (P > 0.05) between the slopes of the three regression lines: there is significant difference (P < 0.05) between the intercepts of <u>R. cataractae</u> and <u>C.</u> <u>plumbeus</u> and between <u>R. cataractae</u> and the hybrid but no significant difference (P > 0.05) between the intercepts of <u>C. plumbeus</u> and the hybrid.

c) Length-Weight Relations

<u>C. plumbeus, R. cataractae</u> and the hybrid populations each approximate isometric growth, as described by the equations:

<u>C. plumbeus</u> $\log W = -1.781 + 3.064 \log L$

C. plumbeus x R. cataractae log $W = -1.725 + 2.813 \log L$


<u>R. cataractae</u> log W = -1.899 + 3.120 log L where W = weight and L = standard length. Data from both sexes were pooled. Comparison of the three length-weight regressions (Fig. 23) by inspection reveals no apparent differences between the three populations. Analysis of covariance between the regressions shows no significant differences (P > 0.05) between the slopes but significant differences (P < 0.05) between the intercepts. Length-weight regressions calculated separately for the sexes of each population are given in Appendix Table 30.

<u>C. plumbeus</u> from Saskatchewan (Brown, 1969) are heavier for any given length (Log = $-3.00 \times 10^6 + 3.20$ Log L) than the Kananaskis <u>C. plumbeus</u>. Additionally, <u>C. plumbeus</u> from Labrador (Bruce and Parsons, 1976) weigh less for any given

Figure 23. Length-weight regressions for:

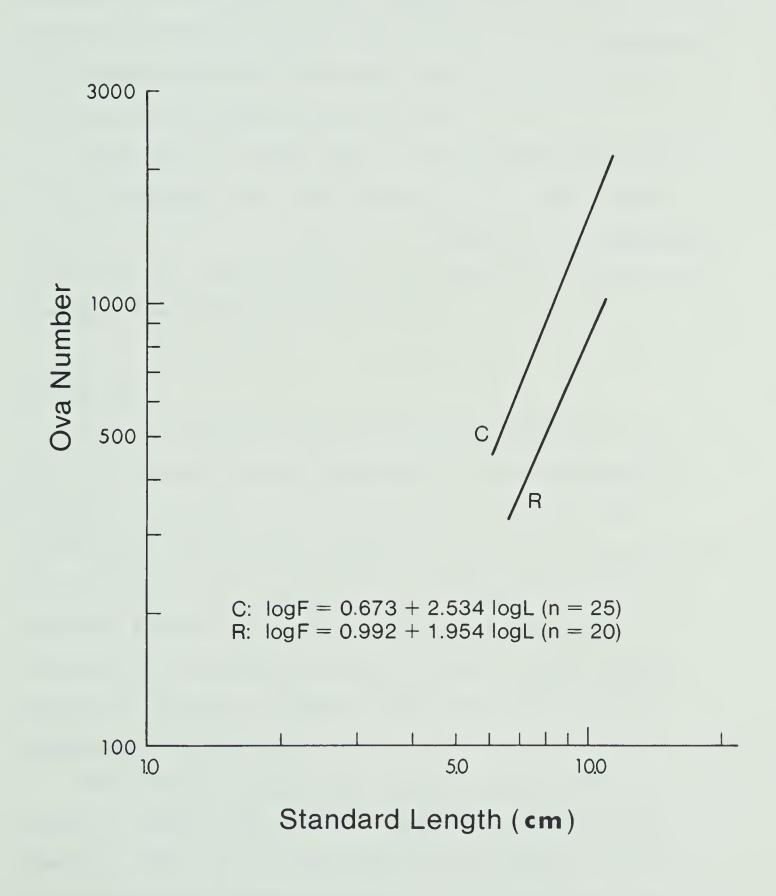
C - 170 Couesius plumbeus (r = 0.96)
R - 157 Rhinichthys cataractae (r = 0.99)
C x R - 33 C. plumbeus x R. cataractae hybrids (r = 0.98)
from Lower Kananaskis Reservoir.

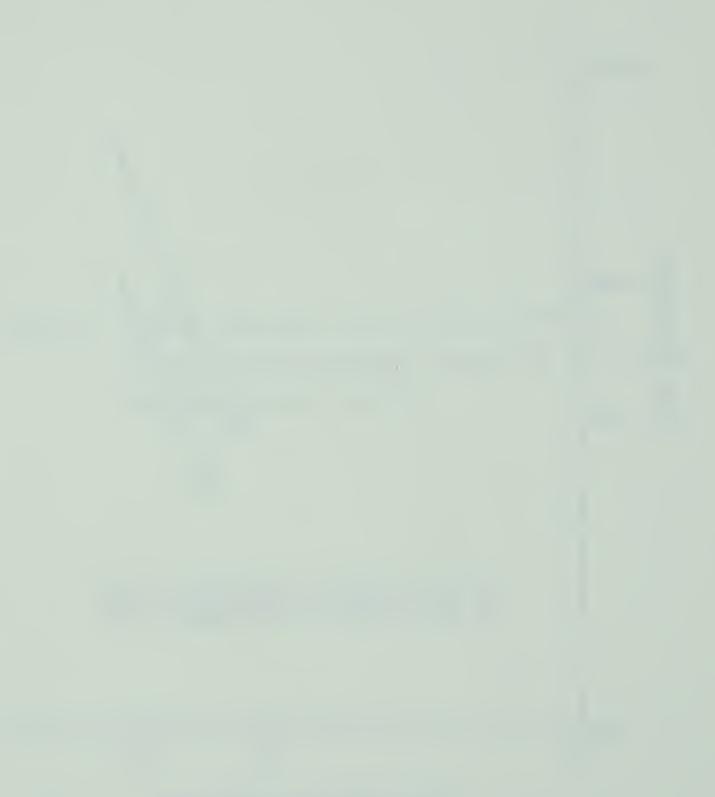
length (Log W = -1.88 + 2.88 log L) than the Kananaskis <u>C</u>. <u>plumbeus</u>. Length-weight regressions have not been previously reported for <u>R</u>. <u>cataractae</u> or <u>C</u>. <u>plumbeus</u> x <u>P</u>. <u>cataractae</u> hybrids.

d) Fecundity

The relationship of fecundity to standard length for \underline{C}_{\cdot} <u>plumbeus</u> and <u>R. cataractae</u> can be described by the following equations:

<u>C. plumbeus</u> Log $F = 0.673 + 2.534 \log L$


<u>R. cataractae</u> Log F = 0.922 + 1.954 log L Analysis of covariance shows significant differences (P < 0.05) between these regressions in both slopes and intercepts (Appendix Table 29). The fecundity regressions of the parental species are presented as a contribution to our knowledge of their life histories (Fig. 24).


Of the seven adult, female hybrids examined, four had regressed gonads with very small, indistinguishable eggs. These were captured July 27, 1977, and were probably in a post-spawning state. Another post-spawning hybrid female (SL = 62 mm) had 92 ova. Two hybrid females were captured during the spawning season: one was captured June 16, 1977, (SL = 96 mm) and was fully spent with only 38 ova remaining; the other female was captured May 26, 1978, (SL = 114 mm) and was fully ripe with 1038 ova.

Brown <u>et al</u>. (1970) gave a range of 450-2450 eggs for 20 <u>C. plumbeus</u> with a total length range of 9.0-13.2 cm. The fecundity regression for this Saskatchewan population was

Figure 24. Fecundity regressions for 25 Couesius plumbeus (C)
 (r = 0.80) and 20 Rhinichthys cataractae (R) (r = 0.70)
 from Lower Kananaskis Reservoir.

Log F = -3.243 + 3.096 log L. Additionally, Bruce and Parsons (1976) gave a range of 573-1158 eggs for 10 <u>C</u>. <u>plumbeus</u> with a fork length range of 9.2-11.2 cm. The fecundity regression for this Labrador population was Log F= -0.441 + 3.356 log L. The number of eggs for <u>C</u>. <u>plumbeus</u> in this study ranged from 380-2316 eggs for 25 fish with a standard length range of 6.1-11.2 cm.

Brazo <u>et al</u>. (1978) gave a range of 870-9953 eggs for 33 <u>R. cataractae</u> from Lake Michigan with a total length range of 7.4-11.7 cm. The number of eggs for <u>R. cataractae</u> in this study ranged from 364-1121 eggs for 20 fish with a standard length range of 6.6-10.0 cm.

DISCUSSION

Embryo mortality tests revealed no difference in hatching success between homospecific and heterospecific crosses. The artificial backcross was a failure, but conclusions as to hybrid fertility from one replicate would not be sound. Also, there was no difference in long-term survival between artificially produced hybrids and individuals of parental species origin. In fact, hybrid offspring survived in aguaria better than did pure <u>R.</u> <u>cataractae</u> individuals.

Wild-caught hybrids have similar growth rates and attain a similar age structure compared to the parental species. Also, there is no statistical difference between the length-weight relationships of the hybrids and the

parental species. The life history data suggest that the hybrids may not be facing excessive competition from the parental species. Thus, neither gametic mortality nor hybrid inviability are operative barriers preventing hybridization between <u>C. plumbeus</u> and <u>P. cataractae</u>.

Hybrid gonads were not examined histologically, but the hybrid gonads did not appear to be deformed or superficially different from those of the parental species. Fully ripe male and female hybrids were captured and exuded sex products similar to individuals of the parental species. Hybrid sperm was observed microscopically and found to be motile. Hybrid eggs appeared to be of similar shape and condition as parental eggs. Additionally, it is not known experimentally if hybrids are sterile, but it can be inferred from the results of the morphological analysis that at least the barrier is low. Introgression does not appear to put the species' status in peril. The sex ratio of the hybrids was biased toward males.

IX. GENERAL DISCUSSION

The occurrence of this hybridization between <u>C.</u> <u>plumbeus</u> and <u>R. cataractae</u> does not alter the systematic position of these two species within cyprinid genera that are generally held to be distantly related. Fish hybridization in areas of environmental disturbance no more imperils the generic or specific status of the animals involved than do the multitude of possible artificial crosses (Hubbs, 1961). The fact that these two types of cyprinid remain distinct in most other localities of their range overlap confirms the recognition of the two types as distinct species (sensu Mayr, 1969).

Certain recognized environmental factors, which facilitate the dissolution of species' reproductive isolating mechanisms (Hubbs, 1955; Mayr, 1969), all appear to be important in causing hybridization between <u>C. plumbeus</u> and <u>R. cataractae</u> in Lower Kananaskis Reservoir.

1) Environmental Disturbance; Paucity of Spawning Areas

Disturbance of the environment is often alluded to as the most frequent cause of hybridization of both plants and animals (Mayr, 1969; Anderson, 1949, 1953; Hubbs <u>et al</u>., 1943; Sibley, 1961; Mecham, 1960). However, its method of operation has not been demonstrated in any rigorous way.

The Lower Kananaskis Reservoir is a disturbed environment in terms of the annual level fluctuations associated with filling and lowering. The change from a lake to a reservoir may indirectly contribute to hybridization.

Spawning species may be brought together because flooding causes the loss and reduction of originally distinct spawning habitats. Also, with variability in drawdown levels from year to year, there is unpredictability in normal shoreline features which could be used for new spawning sites. Without predictable flooding during the spawning season, it is likely that species' habitat segregation breaks down.

C. plumbeus is an adaptable species which can lake spawn and undergo spawning migrations up rivers and streams (Brown et al., 1970). R. cataractae probably prefers spawning in riffles (Scott and Crossman, 1973). With the possible exception of <u>P. cataractae</u> moving into Interlakes Stream, neither species underwent spawning migrations up inlet streams. Although each species has a preference for inlet stream spawning, it appears that the streams are unavailable (except Interlakes Stream) during the spawning season due to fast currents and low temperatures. (Why the unflooded portions of Interlakes Stream were not utilized more for spawning by the two species, remains unknown.) It is likely that the two species have been restricted to spawning along the shoreline and at stream mouths since their initial introduction to the lakes. Reservoir construction could neither have caused nor altered this spawning relationship with inlet streams. Lower Kananaskis Lake was equally depauperate in appropriate spawning areas, as the Reservoir is today.

However, while spawning habitat segregation was possible under original, predictable lake conditions, fluctuating reservoir levels may have disrupted this tenuous segregation. Evidence provided in this study indicates that rising reservoir levels at Interlakes Stream mouth brought together fully ripe individuals of each species. Hybridization may result because of the action of an hypothesized difference between the two species in their reaction to advancing water levels. C. plumbeus, in maintaining their depth distribution and their proximity to the stream mouth, advance into the newly flooded lower reaches of the stream. Here, P. cataractae maintain their positions relative to the stream perhaps due to spawning territoriality, as cited by McPhail and Lindsey (1970). This series of events may be inferred to occur at the other stream mouths where habitat segregation is not so apparent. The generality of this model requires verification from other reservoirs where these species are sympatric.

Without pre-impoundment information on where the species were spawning or whether hybridization occurred, it is difficult to evaluate the contribution of reservoir construction to fish hybridization. Environmental impact statements must provide these data to rigorously assess both the beneficial and adverse effects of future reservoir construction.

2) Species Introduction; Rarity of One Parental Species

Nelson (1966) advanced the idea that the two species were introduced as live bait into the original Kananaskis Lakes; <u>R. cataractae</u> prior to 1936 and <u>C. plumbeus</u> prior to 1961 (in the late 1950's). The introduction of one or both species to a new environment appears to be one of the many precursors to hybridization (Hubbs <u>et al</u>., 1943; Hubbs, 1961; Greenfield and Greenfield, 1972). The effects of introduction will depend upon the abundance of each species, their genetic similarity, and the strength of the species' isolating mechanisms.

In Lower Kananaskis Reservoir, the introduction of C. plumbeus has successfully resulted in development of a large population size. Introduced R. cataractae have not adapted as well and have attained a small population size relative to that of <u>C. plumbeus</u>. <u>R. cataractae</u> are possibly beyond the margin of their normal habitat range in Lower Kananaskis Reservoir, which is without abundant riffle habitat. In Lower Kananaskis Reservoir, this low frequency of P. cataractae relative to C. plumbeus is a contributing factor to hybridization. In the absence of appropriate mating stimuli, individuals of the less common species may have no alternative but to respond to inappropriate stimuli from individuals of the abundant species (Mayr, 1959). Hybridization has long been attributed to a disproportion in the abundance of species (Hubbs et al., 1943; Mecham, 1960; Stebbins, 1959). Whether R. cataractae will mate with C. plumbeus in the absence of conspecific mates is unknown.

Such mating did not occur during the mating tests conducted in this study.

3) Overview of Environmental Factors

Given the absence of appropriate historical information on the ecology and abundance of these two species, it is not possible to single out one of the above factors as having the major role in facilitating hybridization.

REFERENCES

- Ahsan, S.N. 1966. Effects of temperature and light on the cyclical changes in the spermatogenetic activity of the lake chub, <u>Couesius plumbeus</u> (Agassiz). Can. J. Zool. 44:161-171.
- Anderson, E. 1949. Introgressive hybridization. John Wiley, New York, N.Y., 109p.
- Anderson, E. 1953. Introgressive hybridization. Biol. Bev., 28(3):280-307.
- Aspinwall, N. and H. Tsuyuki. 1968. Inheritance of muscle proteins in hybrids between the redside shiner (<u>Richardsonius balteatus</u>) and the peamouth chub (<u>Mylocheilus caurinum</u>). J. Fish. Pes. Board Can. 25(7):1317-1322.
- Atchley, W.R., C.T. Gaskins, and D.A. Anderson. 1976. Statistical properties of ratios. I. Empirical results. Syst. Zool. 25(2):137-148.
- Bartnik, V.G. 1970. Reproductive isolation between two sympatric dace, <u>Rhinichthys atratulus</u> and <u>P. cataractae</u>, in Manitoba. J. Fish. Res. Board Can. 27:2125-2141.
- Bay, K. 1969. Generalized Bartlett-Box test for homogeneity of variance. DERS (Division of educational research services) statistical package. Univ. Alberta, Edmonton, 5p.
- Brazo, D.C., C.R. Liston, and R.C. Anderson. 1978. Life history of the longnose dace, <u>Phinichthys cataractae</u>, in the surge zone of eastern Lake Michigan near Ludington, Michigan. Trans. Am. Fish. Soc. 107(4):550-556.
- Brown, J.H. 1969. The life history and ecology of the northern lake chub (<u>Couesius plumbeus</u>) in the La Ponge region of Saskatchewan. M.S. Thesis, Univ. Saskatchewan, Saskatoon. 152p.
- Brown, J.H., U.T. Hammer, and G.D. Koshinsky. 1970. Breeding biology of the lake chub, <u>Couesius plumbeus</u>, at Lac la Ronge, Saskatchewan. J. Fish. Pes. Board Can. 27:1005-1015.
- Bruce, W.J. and R.F. Parsons. 1976. Age, growth and maturity of lake chub (<u>Couesius plumbeus</u>) in Mile 66 Brook, Ten Mile Lake, Western Labrador. Environment Canada, Fish. Mar. Serv. Pes. Dev. Tech. Rep. 683:13p.
- Cassie, R.M. 1963. Tests of significance for probability paper analysis. N.Z.J. Sci. 6:474-482.

- Clarke, J.T. 1964. Simplified 'disc' (polyacrylamide gel) electrophoresis. Ann. N.Y. Acad. Sci. 121:428-436.
- Clayton, J.W. and J.H. Gee. 1969. Lactate dehydrogenase isozymes in longnose and blacknose dace (<u>Phinichthys</u> <u>cataractae</u> and <u>R. atratulus</u>) and their hybrid. J. Fish. Res. Board Can. 26:3049-3053.
- Colgan, P.W., P.K. Ballantyne and M.V.H. Wilson. 1976. Numerical taxonomy of hybridizing <u>Lepomis</u> (Centrarchidae) in Lake Opinicon, Ontario. Can. J. Zool. 54:42-47.
- Cooley, W.W. and P.R. Lohnes. 1971. Multivariate data analysis. Wiley and Co., New York, 364p.
- Davis, B.J. 1964. Disc electrophoresis II: method and application to human serum proteins. Ann. N.Y. Acad. Sci. 121:404-427.
- Davis, H.S. 1953. Culture and diseases of game fishes. Univ. Calif. Press, Berkeley, Calif. 332p.
- Dixon, W.J. (Ed.). 1973. BMD: biomedical computer programs. 3rd ed. Univ. California Press, Los Angeles. 773p.
- Dudzinski, M.L., J.M. Norris, J.T. Chmura and C.B.H. Edwards. 1975. Repeatability of principal components in samples: normal and non-normal data sets compared. Multivariate Behavioral Research 10(1):109-117.
- Fillion, D.J. 1963. The benthic fauna of three mountain reservoirs in Alberta. M.Sc. Thesis, Univ. Alberta, Edmonton. 160p.
- Gee, J.H. and K. Machniak. 1972. Ecological notes on a lake-dwelling population of longnose dace (<u>Phinichthys</u> <u>cataractae</u>). J. Fish. Res. Board Can. 29:330-332.
- Geen, G.H. 1955. Some features of the life history of the lake chub <u>Couesius</u> <u>plumbeus</u> <u>greeni</u> Jordan) in British Columbia. B.A. Thesis. Univ. British Columbia, Vancouver, B.C. 33p.
- Greenfield, D.W. and T. Greenfield. 1972. Introgressive hybridization between <u>Gila orcutti</u> and <u>Hesperoleucus</u> <u>symmetricus</u> (Pisces: Cyprinidae) in the Cuyama River Basin, California: I Meristics, morphometrics and breeding. Copeia 3:417-427.

Hubbs, C.L. 1955. Hybridization between fish species in nature. Syst. Zool. 4:1-20.

Hubbs, C.L. 1961. Isolating mechanisms in the speciation of

fishes. p. 5-23. <u>In</u> W.F. Blair (Ed.), Vertebrate speciation. Univ. Texas Press, Austin, Texas, 642p.

- Hubbs, C.L. and K.F. Lagler. 1949. Fishes of Isle Poyale, Lake Superior, Michigan. Papers Mich. Acad. Sci. 33:73-133.
- Hubbs, C.L. and K.F. Lagler. 1964. Fishes of the Great Lakes region. Univ. Michigan Press, Ann Arbor, Mich. 213p.
- Hubbs, C. and K. Strawn. 1957. Relative variability of hybrids between the darters, <u>Etheostoma spectabile</u> and <u>Percina caprodes</u>. Evolution 11(1):1-10.
- Hubbs, C.L., L.C. Hubbs, and R.E. Johnson. 1943. Hybridization in nature between species of catostomid fishes. Contr. Lab. Vert. Biol., Univ. Michigan, 22:1-75.
- Jones, J.M. 1973. Effects of thirty years hybridization on the toads <u>Bufo americanus</u> and <u>Bufo woodhousii fowleri</u> at Bloomington, Indiana. Evolution 27:435-448.
- Kuehn, J.H. 1949. A study of a population of longnose dace (<u>Rhinichthys cataractae</u>). Proc. Minn. Acad. Sci. 17:81-87.
- Littlejohn, M.J. 1969. The systematic significance of isolating mechanisms. P. 459-493. <u>In</u> Systematic biology: Proceedings of an international conference. Nat. Acad. Sci. Publ. 1692, 632p.
- Marr, J.C. 1955. The use of morphometric data in systematic, racial, and relative growth studies in fishes. Copeia 1955(1):23-31.
- Mayr, E. 1969. Populations, species and evolution. Belknap Press, Cambridge Mass. 453p.
- McPhail, J.D. and C.C. Lindsey. 1970. Freshwater fishes of northwestern Canada and Alaska. Fish. Bes. Board Can. Bull. 173:1-381.
- Mecham, J.S. 1960. Introgressive hybridization between two southeastern treefrogs. Evolution 14:445-457.
- Miller, R.B. 1954. Effect of the Pocaterra power development on Lower Kananaskis Lake. Unpubl. Rep., Alberta Dept. Lands and Forests, Edmonton, 23p.
- Moore, W.S. 1977. An evaluation of narrow hybrid zones in vertebrates. Quart. Rev. Biol. 52:263-277.

Morrison, D.F. 1967. Multivariate statistical methods.

McGraw-Hill Inc., New York, 338p.

- Nelson, J.S. 1962. Effects on fishes of changes within the Kananaskis River System. M.Sc. Thesis, Univ. Alberta, Edmonton. 107p.
- Nelson, J.S. 1966. Hybridization between two cyprinid fishes, <u>Hybopsis plumbea</u> and <u>Rhinichthys cataractae</u>, in Alberta. Can. J. Zool. 44:963-968.
- Nelson, J.S. 1968. Hybridization and isolating mechanisms between <u>Catostomus commersonii</u> and <u>C. macrocheilus</u> (Pisces : Catostomidae). J. Fish. Bes. Board Can. 25(1):101-150.
- Nelson, J.S. 1973. Morphological differences between the Teleosts <u>Couesius plumbeus</u> (Lake Chub) and <u>Rhinichthys</u> <u>cataractae</u> (Longnose Dace) and their hybrids from Alberta. J. Morph., 139(2):227-238.
- Nie, N.H., C.H. Hull, J.G. Jenkins, K. Steinbrenner, and D.H. Bent. 1975. SPSS : statistical package for the social sciences. 2nd ed. McGraw Hill Co., New York, N.Y., 675p.
- Nyman, O.L. 1970. Electrophoretic analysis of hybrids between salmon (<u>Salmo salar</u> L.) and trout (<u>Salmo trutta</u> L.). Trans. Am. Fish. Soc. 1:229-236.
- Pimental, R.A. 1976. Morphometrics: the multivariate analysis of biological data. Calif. Polytechic State Univ., San Luis Obispo, CA. 149p.
- Rawson, D.S. 1937. Biological examination of the Kananaskis Lakes, Alberta. Unpubl. Rep., Alberta Dept. Lands and Mines, Edmonton, 12p.
- Rawson, D.S. 1948. Biological examinations on the Bow and Kananaskis Rivers. Unpubl. M.S., Univ. Sask., Saskatoon, 79p.
- Reinitz, G.L. 1977. Electrophoretic distinction of rainbow trout (<u>Salmo gairdneri</u>), west-slope cuthroat trout (<u>Salmo clarki</u>), and their hybrids. J. Fish. Res. Board Can. 34:1236-1239.
- Ricker, W.E. 1971. (ed.) Methods for assessment of fish production in freshwaters. IBP Handbook No. 3, 2nd ed. Blackwell Scientific Publications, Oxford, England. 348p.
- Schueler, F.W. and J.D. Rising. 1976. Phenetic evidence of natural hybridization. Syst. Zool. 25:283-288.

- Scott, W.B. and E.J. Crossman. 1973. Freshwater fishes of Canada. Fish. Res. Board Can. Bull. 184:1-966.
- Shaw, C.R. and E. Prasad. 1970. Starch gel electrophoresis of enzymes - a compilation of recipes. Biochemical Genetics 4:297-320.
- Sibley, C.G. 1961. Hybridization and isolating mechanisms, p. 69-88. <u>In</u> W.F. Blair (Ed.), Vertebrate speciation. Univ. Texas Press, Austin, Texas, 642p.
- Simon, J.P. 1946. Wyoming fishes. Bull. No. 4, Wyoming Game Fish Dept., Cheyenne, Wyo. 129p.
- Smith, G.R. 1973. Analysis of several hybrids cyprinid fishes from Western North America. Copeia 3:395-410.
- Smith, I. 1969. (ed.) Acrylamide gel disc electrophoresis. In I. Smith (ed.), Chromatographic and electrophoretic techniques, Vol. II, 3rd ed., Interscience Pub., New York, N.Y. 347p.
- Sokal, R.R. and F.J. Rohlf. 1969. Biometry, the principles and practises of statistics in biological research. W.H. Freeman and Co., San Francisco, 776p.
- Stebbins, G.L. 1959. The role of hybridization in evolution. Proc. Am. Phil. Soc. 103(2):231-251.
- Strawn, K. and C. Hubbs. 1956. Observations on stripping small fishes for experimental purposes. Copeia 1956(2):114-116.
- Taylor, W.R. 1954. Records of fishes in the John N. Lowe collection from the Upper Peninsula of Michigan. Misc. Publ. Museum Zool. Univ. Mich., No. 87:1-50.
- Thomas, R.C. 1955. A report on conditions in the Kananaskis watershed in early June, 1965. Unpubl. Pep., Alberta Fish and Wildlife Div., Edmonton, 12p.
- Tsuyuki, H. and E. Roberts. 1965. Zone electrophoretic comparison of muscle myogens and blood proteins of artificial hybrids of Salmonidae with their parental species. J. Fish. Res. Board Can., 22(3):767-773.
- Utter, F.M., H.O. Hodgins and F.W. Allendorf. 1974. Biochemical genetic studies of fishes: potentialities and limitations. P. 213-238. <u>In</u> D.C. Malins and J.P. Sargent (Ed.), Biochemical and biophysical perspectives in marine biology. Academic Press, New York, N.Y., 213p.
- Wells, A.W. 1978. Systematics, variation, and zoogeography of two North American cyprinid fishes. Ph.D. Thesis,

Univ. Alberta, Edmonton. 295p.

- Wishart, D. 1975. Clustan 1C. Univ. College London, London. 124p.
- Zalik, S. 1977. Outline of statistical methods for biological and medical research. Univ. Alberta, Edmonton, 152p.

Plate 1. Male *Couesius plumbeus* captured at height of spawning period, mid-June, 1978, from Lower Kananaskis Reservoir.

Plate 2. Female *Couesius plumbeus* captured at height of spawning period, mid-June, 1978, from Lower Kananaskis Reservoir.

· · ·

,

.

Plate 3. Male *Rhinichthys cataractae* captured at height of spawning period, mid-June, 1978, from Lower Kananaskis Reservoir (Interlakes Stream).

Plate 4. Female *Rhinichthys cataractae* captured at height of spawning period, mid-June, 1978, from Lower Kananaskis Reservoir (Interlakes Stream).

·

Plate 5. Adult male hybrid, *Couesius plumbeus* x *Rhinichthys cataractae*, captured at height of spawning period, mid-June, 1978, from Lower Kananaskis Reservoir.

- Plate 6. Top: Couesius plumbeus (male)
 - Middle: Couesius plumbeus x Rhinichthys cataractae hybrid (male)
 - Bottom: Rhinichthys cataractae (male)
 - All specimens captured in 1977, Lower Kananaskis Reservoir.

Plate 7. Electroshocking the lower reaches of Smith-Dorrien Creek near its mouth on Lower Kananaskis Reservoir, early May, 1978 (looking east).

Plate 8. Interlakes Stream at south end of Lower Kananaskis Reservoir (looking south), in early June prior to cyprinid spawning peak. This illustrates Interlakes stream habitat before it is flooded with the rising reservoir level.

APPENDIX TABLE 1. Summary of cyprinid catch data from Upper and Lower Kananaskis Reservoirs, 1977. Size of gillnet mesh given in mm followed by number of hours set (in parentheses).

UPPER KANANASKIS RESERVOIR UK1 - East Bay near main dam Ma UK1 - East Bay near main dam Ma UK2 - mouth of Sarrail Cr. Ju UK2 - mouth of Sarrail Cr. Ju UK2 - mouth of Sarrail Cr. Ju UK2 - mouth of Sarrail Cr. Ju UK3 - E. shore; 300 m N of rocky pt. in East Bay UK5 - mouth of Kananaskis R. Ju UK5 - mouth of Kananaskis R. Ju UK7 - inlet to Interlakes penstock Ju UK7 - inlet to Interlakes penstock Au UK8 - N. shore; midway from Interlakes to Kananaskis R. LOWER KANANASKIS RESERVOIR LK1 - extreme S. end of reservoir Ma LK1 - as above & off E. shore Ma LK1 - extreme S. end of reservoir Ju	y 25 y 27 ne 14 ne 16 ne 21 y 27 y 27	Method of Capture Gillnet 26 mm(24) Gillnet 26 mm(48) Gillnet 26 mm(24) Gillnet 26 mm(48) Gillnet 18 mm(24) Gillnet 26 mm(43) Gillnet 26 mm(24)	Depth 4.5 m 2.0 m 3.5-5.5 m 6.0-7.0 m 4.5-6.5 m	C. plumbeus 9 2 27 7 10 29	R. cataractae 4 7	Putative Hybrids
UK1 - East Bay near main dam Ma UK1 - East Bay near main dam Ma UK2 - mouth of Sarrail Cr. Ju UK3 - E. shore; 300 m N of rocky pr. in East Bay UK5 - mouth of Kananaskis R. Ju UK5 - mouth of Kananaskis R. Ju UK7 - inlet to Interlakes penstock Ju UK7 - inlet to Interlakes penstock Ju UK8 - N. shore; midway from Interlakes to Kananaskis R. LOWER KANANASKIS RESERVOIR LK1 - extreme S. end of reservoir Ma LK1 - as above & off E. shore Ma	ny 27 ne 14 ne 16 ne 21 ne 29 ny 27	Gillnet 26 mm(48) Gillnet 26 mm(24) Gillnet 26 mm(48) Gillnet 18 mm(24) Gillnet 26 mm(43)	2.0 m 3.5-5.5 m 6.0-7.0 m	2 27 7 10		1
<pre>UK1 - East Bay near main dam Ma UK2 - mouth of Sarrail Cr. Ju UK3 - E. shore; 300 m N of rocky pt. in East Bay UK5 - mouth of Kananaskis R. Ju UK5 - mouth of Kananaskis R. Ju UK7 - inlet to Interlakes penstock Ju UK7 - inlet to Interlakes penstock Au UK8 - N. shore; midway from Interlakes to Kananaskis R. LOWER KANANASKIS RESERVOIR LK1 - extreme S. end of reservoir Ma LK1 - extreme S. end of reservoir Ma LK1 - extreme S. end of reservoir Ma</pre>	ny 27 ne 14 ne 16 ne 21 ne 29 ny 27	Gillnet 26 mm(48) Gillnet 26 mm(24) Gillnet 26 mm(48) Gillnet 18 mm(24) Gillnet 26 mm(43)	2.0 m 3.5-5.5 m 6.0-7.0 m	2 27 7 10		1
UK2 - mouth of Sarrail Cr. Ju UK2 - mouth of Sarrail Cr. Ju UK3 - E. shore; 300 m N of rocky pt. in East Bay UK5 - mouth of Kananaskis R. Ju UK5 - mouth of Kananaskis R. Ju UK7 - inlet to Interlakes penstock Ju UK7 - inlet to Interlakes penstock Au UK8 - N. shore; midway from Interlakes to Kananaskis R. LOWER KANANASKIS RESERVOIR LK1 - extreme S. end of reservoir Ma LK1 - as above & off E. shore Ma LK1 - extreme S. end of reservoir Ju	nne 14 nne 16 nne 21 nne 29 ny 27	Gillnet 26 mm(24) Gillnet 26 mm(48) Gillnet 18 mm(24) Gillnet 26 mm(43)	3.5-5.5 m 6.0-7.0 m	27 7 10		1
UK2 - mouth of Sarrail Cr. Ju UK2 - mouth of Sarrail Cr. Ju UK2 - mouth of Sarrail Cr. Ju UK3 - E. shore; 300 m N of rocky pt. in East Bay UK5 - mouth of Kananaskis R. Ju UK5 - mouth of Kananaskis R. Ju UK7 - inlet to Interlakes penstock Ju UK7 - inlet to Interlakes penstock Au UK8 - N. shore; midway from Interlakes to Kananaskis R. LOWER KANANASKIS RESERVOIR LK1 - extreme S. end of reservoir Ma LK1 - as above & off E. shore Ma LK1 - extreme S. end of reservoir Ju	nne 16 nne 21 nne 29 ny 27	Gillnet 26 mm(48) Gillnet 18 mm(24) Gillnet 26 mm(43)	6.0-7.0 m	7 10		1
UK2 - mouth of Sarrail Cr. Ju UK2 - mouth of Sarrail Cr. Ju UK2 - mouth of Sarrail Cr. Ju UK3 - E. shore; 300 m N of rocky pr. in East Bay UK5 - mouth of Kananaskis R. Ju UK5 - mouth of Kananaskis R. Ju UK7 - inlet to Interlakes penstock Ju UK7 - inlet to Interlakes penstock Au UK8 - N. shore; midway from Interlakes to Kananaskis R. LOWER KANANASKIS RESERVOIR LK1 - extreme S. end of reservoir Ma LK1 - as above & off E. shore Ma LK1 - extreme S. end of reservoir Ju	une 21 une 29 uy 27	Gillnet 18 mm(24) Gillnet 26 mm(43)		10	7	1
UK2 - mouth of Sarrail Cr. Ju UK3 - E. shore; 300 m N of rocky pt. in East Bay UK5 - mouth of Kananaskis R. Ju UK5 - mouth of Kananaskis R. Ju UK7 - inlet to Interlakes penstock Ju UK7 - inlet to Interlakes penstock Au UK8 - N. shore; midway from Interlakes to Kananaskis R. LOWER KANANASKIS RESERVOIR LK1 - extreme S. end of reservoir Ma LK1 - as above & off E. shore Ma LK1 - extreme S. end of reservoir Ju	une 29 ny 27	Gillnet 26 mm(43)	4.5-6.5 m		7	
UK3 - E. shore; 300 m N of rocky pt. in East Bay UK5 - mouth of Kananaskis R. Ju UK5 - mouth of Kananaskis R. Ju UK7 - inlet to Interlakes penstock Ju UK7 - inlet to Interlakes penstock Au UK8 - N. shore; midway from Interlakes to Kananaskis R. UWER KANANASKIS RESERVOIR LK1 - extreme S. end of reservoir Ma LK1 - as above & off E. shore Ma LK1 - extreme S. end of reservoir Ju	ıy 27		4.5-6.5 m	29	7	
Ma pt. in East Bay UK5 - mouth of Kananaskis R. Ju UK5 - mouth of Kananaskis R. Ju UK7 - inlet to Interlakes penstock Ju UK7 - inlet to Interlakes penstock Au UK8 - N. shore; midway from Interlakes to Kananaskis R. LOWER KANANASKIS RESERVOIR LK1 - extreme S. end of reservoir Ma LK1 - extreme S. end of reservoir Ma LK1 - as above & off E. shore Ma		Gillnet 26 mm(24)			/	
pt. in East Bay UK5 - mouth of Kananaskis R. Ju UK5 - mouth of Kananaskis R. Ju UK7 - inlet to Interlakes penstock Ju UK7 - inlet to Interlakes penstock Au UK8 - N. shore; midway from Interlakes to Kananaskis R. LOWER KANANASKIS RESERVOIR LK1 - extreme S. end of reservoir Ma LK1 - as above & off E. shore Ma LK1 - extreme S. end of reservoir Ju		G111net 26 mm(24)				
<pre>UK5 - mouth of Kananaskis R. Ju UK7 - inlet to Interlakes penstock Ju UK7 - inlet to Interlakes penstock Au UK8 - N. shore; midway from Interlakes to Kananaskis R. LOWER KANANASKIS RESERVOIR LK1 - extreme S. end of reservoir Ma LK1 - extreme S. end of reservoir Ma LK1 - as above & off E. shore Ma LK1 - extreme S. end of reservoir Ju </pre>	ne 21			1		
<pre>UK7 - inlet to Interlakes penstock Ju UK7 - inlet to Interlakes penstock Au UK8 - N. shore; midway from Interlakes to Kananaskis R. LOWER KANANASKIS RESERVOIR LK1 - extreme S. end of reservoir Ma LK1 - extreme S. end of reservoir Ma LK1 - as above & off E. shore Ma LK1 - extreme S. end of reservoir Ju</pre>		Gillnet 26 mm(23)	3.0-4.0 m	6		l
<pre>UK7 - inlet to Interlakes penstock Au UK8 - N. shore; midway from Interlakes to Kananaskis R. LOWER KANANASKIS RESERVOIR LK1 - extreme S. end of reservoir Ma LK1 - extreme S. end of reservoir Ma LK1 - as above & off E. shore Ma LK1 - extreme S. end of reservoir Ju</pre>	1y 21	Seine		10		
UK8 - N. shore; midway from Interlakes to Kananaskis R. LOWER KANANASKIS RESERVOIR LK1 - extreme S. end of reservoir Ma LK1 - extreme S. end of reservoir Ma LK1 - as above & off E. shore Ma LK1 - extreme S. end of reservoir Ju	1y 21	Seine		182	1	
Ju Interlakes to Kananaskis R. LOWER KANANASKIS RESERVOIR LK1 - extreme S. end of reservoir Ma LK1 - extreme S. end of reservoir Ma LK1 - extreme S. end of reservoir Ju	ıg. 9	Seine		378	2	7
Interlakes to Kananaskis R. LOWER KANANASKIS RESERVOIR LK1 - extreme S. end of reservoir Ma LK1 - extreme S. end of reservoir Ma LK1 - as above & off E. shore Ma LK1 - extreme S. end of reservoir Ju						
LK1 - extreme S. end of reservoir Ma LK1 - extreme S. end of reservoir Ma LK1 - as above & off E. shore Ma LK1 - extreme S. end of reservoir Ju	1y 21	Seine		1		
LK1 - extreme S. end of reservoir Ma LK1 - extreme S. end of reservoir Ma LK1 - as above & off E. shore Ma LK1 - extreme S. end of reservoir Ju						
LKl - extreme S. end of reservoir Ma LKl - as above & off E. shore Ma LKl - extreme S. end of reservoir Ju						
LKl - as above & off E. shore Ma LKl - extreme S. end of reservoir Ju	y 10	Gillnet 26 mm(24)	3.0 m	9	1	
LK1 - extreme S. end of reservoir Ju	y 11	Gillnet 26 mm		4		
	y 27	Gillnet 18 mm(31)	1.5-2.5 m	8		
IK1 - as showe & mouth to S.F. Arm I	ine 2	Gillnet 18 mm		12		
THE AS SOOVE & MOULI LO S.E. AIM SU	me 14	Gillnet 26, 18 mm(27)		74	4	1
LK1 - as above & mouth to S.E. Arm Ju	ne 15	Gillnet 18 mm(26)	2.0-4.0 m	11		
LK1 - as above & mouth to S.E. Arm Ju	ne 15	Gillnet 26 mm(26)	2.0-4.0 m	22		
LK1 - as above & mouth to S.E. Arm Ju	ne 23	Gillnet 26 mm(19)	4.0-6.0 m	23		
LK1 - as above & mouth to S.W. Arm Ju	ne 23	Gillnet 26, 18 mm(18)		8		
LK1 - as above & mouth to S.W. Arm Ju	ne 23	Seine		75		
LK1 - as above & mouth to S.W. Arm Ju	ne 24	Gillnet 26, 18 mm(21)	5. 5-6 .0 m	41		
LK1 - as above & mouth to S.E. Arm Ju	ly 6	Gillnet 26, 18 mm(20)	5.8 6.5 m	54		
LK1 - as above & mouth to S.W. Arm Ju	ly 8	Seine		522		2
LK1 - as above & mouth to S.W. Arm Ju	ly 15	Seine		28		
LK1 - as above & near campsites						
Ju W. shore	1y 21	Seine		998	17	13
LK1 - as above & near campsites						
	ly 27	Gillnet 26 mm(21)	4.5 m	28		
	g. 9	Gillnet 26, 18 mm(22)	8.0 m	50		

APPENDIX TABLE 1. Continued

				Numbe	ers of Specimens	Captured
Capture Site Description	Date	Method of Capture	Depth	C. plumbeus	R. cataractae	Putative Hybrids
LOWER KANANASK1S RESERVOIR						
LK2 - E. shore; N. of Boulton Cr.	June 3	Gillnet 26, 18 mm(24)	2.0 m	13		1
LK2 - E. shore; N. of Boulton Cr.	June 14	Seine		14		
LK2 - E. shore; N. of Boulton Cr.	June 15	Gillnet 18 mm(26)		40		
LK2 - E. shore; N. of Boulton Cr.	June 16	Gillnet 18 mm(25)		7		
LK2 - E. shore; N. of Boulton Cr.	June 22	Gillnet 26 mm(24)	2.0-2.6 m	7		
LK2 - E. shore; N. of Boulton Cr.	June 24	Gillnet 26 mm(22)	4.0-5.0 m	11		
LK2 - E. shore; N. of Boulton Cr.	July 27	Seine		110		
LK2 - E. shore; N. of Boulton Cr.	July 27	Seine		3		2
LK4 – E. shore; near cottages	July 27	Seine		530	149	2
LK4 - E. shore; near cottages	July 27	Seine		3		
LK5 - mouth of Muskeg Cr.	June 1	Gillnet 26, 18 mm(29)	2.5-12 m	24	l	
LK6 - mouth of lnvincible Cr.	June 1	Gillnet 26 mm(28)	2.0 m	18		
LK6 - mouth of Invincible Cr.	June 27	Gillnet 26, 18 mm		11		
LK7 - mouth of Smith-Dorrien Cr.	May 17	Gillnet 26, 18 mm(25)	2.0 m	5		
LK7 - mouth of Smith-Dorrien Cr.	May 18	Gillnet 18 mm(24)	3.0 m		1	
LK7 - mouth of Smith-Dorrien Cr.	June 9	Gillnet 26 mm		2		
LK7 - mouth of Smith-Dorrien Cr.	July 11	Seine		62		
LK8 - mouth of Kent Cr.	July 11	Seine		199		2
LK8 - mouth of Kent Cr.	July 11	Seine		62		
LK8 - mouth of Kent Cr.	July 20	Seine		732	94	12
LK9 - flats N. of Pocaterra Dam	July 11	Seine		1227	95	12
LK9 - flats N. of Pocaterra Dam	July 27	Seine		1271		
LK9 - flats N. of Pocaterra Dam	July 27	Seine		29		
LK9 - flats N. of Pocaterra Dam	Aug. 8	Seine		344		
lnterlakes P.P. Raceway	June 16			97	5	

.

APPENDIX TABLE 2. Cyprinid captures, Lower Kananaskis Reservoir, 1978. (LK1 Stream = Interlakes Stream)

								Į.									
Date	Location	Capture Method	Depth	Substrate		פירש	Generrue parmhere	11			1141	N-L	ALTH CALIFIC COLORDO		c. prumbrun x K. carawatae	R. Cala	uctar
1978					Sex 7	Total	Rine R.	Ripe Ripe	y Spent	Sex	Total	Rife	Alpe Alpe Sp	Spont	Totat	Not Ripe F	Ripe
May 1	Common Bay (E. shore)	seine	0.3 m	fine silt	04	250	2 50			04	1	e					
					م	161	161			۰	4	4					
May 7	Smith-Dorrien Cr. Mouth	minnow trap	1 m	sandy silt	°D	I											
May 9	Common Bay (E. shure)	minnow trap	0.5 m	silt	Ŷ	1											
May 13	LK1 Stream	selne	0.4 m	sandy silt	0*	9	5	1									
					÷c	2											
May 15	I.K.I. Stream	scine	0.2 m	fine silt	C+	۳		~									
May 16	Smith-Oorrien Cr. Mouth	gillnet 18, 26 min (28.5)	1 m	silt	04	۳	3										
May 17	Smith-Dorrien Cr. Mouth	gillnet 26 mm (24)	1.25 m	silt	O4	I	1										
					q	ī		1									
May 18	Smith Dorrien Cr. Mouth	gillnet 18, 26 mm (22)	1.25 m	sllt	04	9		ç		04	1		1				
					0°	2											
May 18	LK1 Stream	seine	< 0.5 m	тид	04	3	2			0*	-	1					
					e D	S				0*	1						
					jeuv.	44											
May 22	LK1 Stream	seine		silt	jeuv.	2											
May 22	l.K1 Stream Mouth	seine	0.1 m	silt	¢.	1	1										
					}euv.	57											
May 23	Common Bay	gilinet 16, 26 mm (22.5)	10 m	silt	no Cyprinidae		captured										
May 24	Common Bay	gillnet 18, 26 mm (24)	á m	sllt	04	9		ę									
May 24	Smith-Dorrien Cr. Mouth	gillnet 18, 26 mm (24)	1 m	silt & gravel	04	4	1	٣									
May 25	interlakes Raceway	gillnet 18 mm (23)	15 m	boulder	04	٣	1	2									
May 25	Smith-Dorrien Cr. Mouth	giilnet 18, 26 mm (22)	5 m	silt	0*	6	6										
May 26	Smith-Dorrien Cr. Mouth	gilinet 18, 26 mm (25)	1.3 m	grave l	no Cypr	inidae -	no Cyprinidae captured										
May 26	Boulton Cr. Mouth	gillnet 18, 26 mm (20)	1+3.0 m	silt, stumps	0+	6		6 3		04	ĉ	1	2		2 2	1	Ι
					۴Ŀ	9		3		°	2						
May 27	Smith-Dorrien Cr. Mouth	gillnet 18, 26 mm (22)	1-3.D m	silt & gravel	по Сург	inidae	no Cyprinidae captured										
May 27	Boulton Cr. Mouth	gillnet 18, 26 mm (24)	1-J.O m	silt	0*	-		I									
June l	Interlakes Raceway	gillnet 26 mm (29)	1.1-3.2 m	boulder	o≁ *⊂	1 2 2	7	3		04	4		7				
June 1	LK1 Stream Mouth	g111net 18 mm (27)	1.2 m	silt	~ ~			2 1		0*	1						
June 1	Kent Cr. Mouth	gillnet 18, 26 mm (52)	l−3.0 m	gravel	04	ч		2									
June 5	LK1 Stream	seine, dipnet	D.1 m	boulder é silt	0*	6	4	5		0+	10	3	6 1				
					م	6		2		jeuv,	, 2						
June 5	LK1 Common Bay	gillnet 18, 26 mm (19)	17.5 m	sllt	84.	2		2									
June 7	LK1 Common Bay	g111net 18 mm (48)	17 m	silt	*0	~		2									
June 7	Boulton Cr. Mouth	gillnet 26 mm (48)	1.5 m	si)t	o* *0	10											
										,							
June /	LKI Stream	seine, dipnet	0.05-0.5 m	boulder & silt						2 q	5 sex unknown	TIMO	7		° 5	1	1
June 7	LK1 Stream Mouth	gillnet 26 mm (22)	2,B m	silt	0*	11	1	4 5		0+	3		2 1				
					ş	4		6		*⊳	-						

Continued.
2.
TABLE
APPENDIX

	Ripe		~		-																													
	r x //, Not Ripe		-																															
•••••	C. //burbriar & K. Aufuruchur Not Total Ripe Ripe		2€ 2€		<i>د 1</i>																													
	1 u.idg																												1					
	Fully Ripe		-	- 5				4						œ										-		1	-	-						
	Rhinfehthur east martan Not Fully al Ripe Ripe Ripe	-	ę										-	5			-			-								m						
1									UM										-	-	1	Ę											1	
	Rhin Total		2	2				4	4 - sex unknewn				1	13			-		7	2	~	1 - sex unknown		1		_	<u>n</u>	2	-				7	
	G ₄ Cr X	0+ °C	0+	or *c				0*	4 – s				04	0*			04		04	74	*C	- s		04		o+ *	5	э t	24				54 ¹⁶ 5	
	Sinnt		11							7		2		5		15	1.					2	11							17				18
	Fully Rtpr		36	2	20						4) 13	12	1	_	Ĺ	ŗ			23	27		ų					7	3	Ą		6 4
	(100.57.00 / 100.045 Not Fully Ripe Ripe Ripe		24	e	6							4		30(12 state unknown) 13		2	32		5-1 1			-	31							-				~
	o <i>Birer </i> Not RIpe		21		22									state			ç		~			2	2						۰,	٠			-	-
1	1		54	5 20	31 26	26	7			01	4	ас		30(17	39	23	15	4	2	61		31	11	12	9				4	b,	~	ar.		30 8
	Sev		or *≎	o* *o	o* *o	}env.	م* ⇒			C+	*:	~		04	*~	•	>+	*:	0+	jeuv.		0*	D4	*	ئ				⊃+	04	۳ <u>.</u>	ۍ•	o+ *;	ి క
	rate	or k					rave1	y re																		ock		ork					4.10	silt
-	Substrate	cobble rock	sllt	boulder	silt.		silt é gravel	cobblic rock		gravel		sllt	sand	gravel		sllt	sllt		silt		silt	s11(bonhler	buss		cobble rock		robble rock	boulder	sllt		silt	voble rock	pravel & stit
and the state of the	Depth		2.0 m	а С	. 1.0 m		m 0.4	0.2 m				3.7 m	0.3 m	1.8 m		3.7 m	2.1 m				0.3 т	ш., т	2.5-5.0 m	m 8.1		0.1 m		0.2 m	2.5 ш	m 0.7		2.3 ш	0.1 m	3.6 m
	Capture Method	dipnet	g111net 26 mm (25)	gilinet 18 mm (28)	setne		glilnet 18 mm (26)	dipnet		gilluet 18 mm (10)		gillmit 26 mm (10)	minnow trap	gillnet 18 mm (13)		gillnet 26 mm (6)	gillnet 18, 26 mm (18)		svine		minnow trap	gillnet 26 mm (30)	gillnet 26 mm (20)	gllhet 18 mm (24)		dipnet		dfpne t	g111net 18 mm (25)	gillnet 26 mm (17)		gilinet 26 mm (15)	minnuw trap 6 dipnet	gillnet 18, 26 mm (16)
	Location	LKL Stream	LK1 Stream Mouth	Interlakes Raceway	Invincible Cr. Mouth		Smith-Dorrien Cr. Mouth	LK1 Stream		LK1 Stream Mouth		LK1 Common Bay	LK1 Stream	LK1 Stream Mouth		1.K1 Common Bay	Boulton Ct. Mouth		Invincible Cr. Mouth		LK1 Stream	LKI Common Bay (SW)	Interlakes Raceway	Invincible Cr. Mouth		LK1 Stream		LK1 Stream	lnterlakes Raceway	Boulton Cr. Mouth		Invincible Cr. Mouth	LKI Stream	LK1 Common Ray
	Date 1978	June 8	June 8	June 8	June 8		Jane 8	June 12		June 12		June 12	June 13	June 13		June 13	.fune 13		June 13		June 14	June 14	June 14	June 14		June 19		lune 20	June 20	June 20		June 20	June 21	June 21

PPENDIX TABLE 2. Continued.

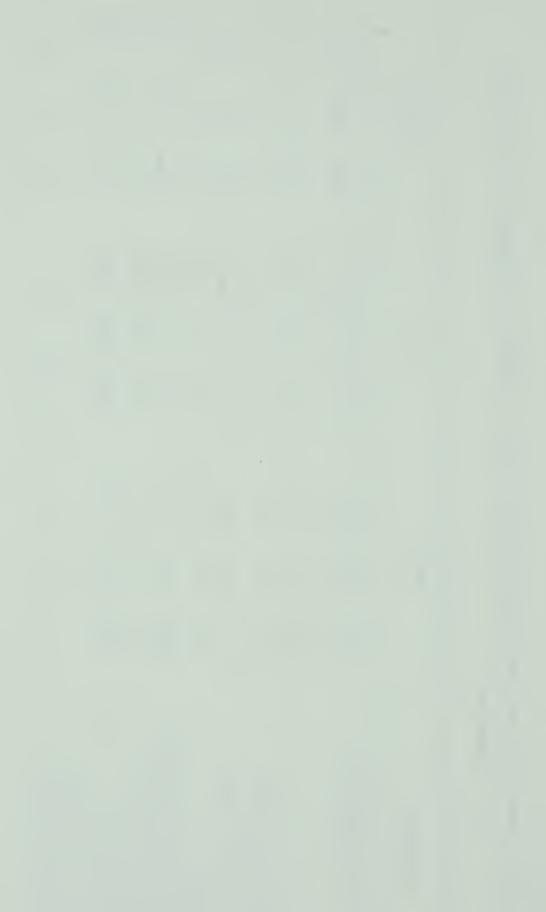
APPENDIX 1	APPENDIX TABLE 2. Continued.															
Date 1978	Location	Capture Method	Depth	Substrate	CC Sex Total	Couesius plumbeus Not Ripe F	beus Fully e Ripe	Spent	Sex	Rhinich NG Total R1	Rhinichthine cataractae Not Full al Ripe Ripe Ripe	<u>></u> .	Spent	C. plumbeus x R. vataruatae Not Total Ripe Ripe	x R. Nata Not Ripe	inuctae Ripe
June 21	Interlakes Raceway	gillnet 26 mm (23)	5.5 m	boulder	9 69	17 17	7 22	13								
					đ 2		1									
June 21	Invincible Cr. Mouth	seine	0.2	silt	φ 2		1									
June 21	Smith-Oorrlen Cr. Mouth	gillnet 18, 26 mm (20)	2.4-4.0 m	silt & gravel	2 l											
June 21	Midpoint off Interlakes	gillnet 18 mm (18)	20.0 m	silt	no Cyprinidae captured	e captured										
June 21	Kent Cr. Mouth	glllnet 18 mm (22)	5.0 m	grave l	φ 2	2										
June 29	LK1 Stream	minnow trap & dipnet	0.1 m	cobble rock					04	9			7			
									₩D	9		7				
June 29	LK1 Common Bay	gillnet 18, 26 mm (28)	1.8-2.4 m	grave]	ę 55	1	12	42						ď 1	1	
					ð 5		S									
June 29	Boulton Cr. Mouth	gillnet 18, 26 mm (27)	2.4-3.0 m	silt	ş 15(4	15(4 state unknown)	own) 1	10								
July 6	Interlakes Raceway	gillnet 26 mm (7)	e 9	boulder	ę 12			12								
July 6	LKL Common 8ay	glilnet 18, 26 mm (7)	4.4 m	silt	no Cyprinidae captured	e captured										
July 12	LK1 Common 8ay	gillnet 18, 26 mm (19)	H 0.4	silt	ç 13		2	8								
					d 1		1									
July 12	Interlakes Raceway	gillnet 18, 26 mm (19)	€,5 m	boulder	Q 20		2	18								
July 27	LK1 Common Bay	gillnet 26 mm (19)	4.0-6.0 m	silt	¢			8								
July 27	Interlakes Raceway	gillnet 26 mm (3.5)	8.8 ш	boulder	no Cyprinidae captured	e captured										
July 27	Pocaterra Dam flats	seine	0.3 m	gravel	<u> </u>			20						đ 1	1	
July 27	Smith-Dorrien Cr. Mouth	seine	0.3 m		ç 23			23								
				-												

.

APPENDIX TABLE 3. Water quality data, Upper Kananaskis Reservoir (1977). S - surface; M - mid-depth; B - 1 m off bottom;

N.A. - not available.

							ĺ		
DADAMETED		June 20			July 15			August 15	
	S	М	В	S	Ж	В	S	М	В
Total Alkalinity (mg/l CaCo ₃)	83.9	84.4	84.6	83.0	85.0	86.0	79.0	84.0	85.0
Color	Ŋ	ß	5	Ŋ	2	5	Ŋ	5	Ŝ
pH	8.3	8.2	8.0	8.3	8.1	8.1	8.5	8.1	8.0
Residue, Non-filterable (mg)	15	15	15	15	15	15	15	15	15
Specific Conductance (us/cm)	173	177	174	N.A.	N.A.	N.A.	155	166	167
Turbidity (JTU)	1.4	1.2	2.8	1.5	2.5	3.5	1.5	3.1	2.0
Dissolved Nitrogen (NO ₃ NO ₂ mg/l N)	0.02	0.05	0.05	0.03	0.05	0.05	0.01	0.06	0.01
Total Kjeldahl Nitrogen (mg/l)	0.28	0.21	0.23	0.10	0.10	0.10	0.10	0.10	0.10
Total Phosphorus (mg/1)	0.007	0.005	0.009	0.014	0.005	0.010	0.003	0.005	0.009
Total Organic Carbon (mg/l)	4	2	4	l	Ś	1	2	1	1
Total Inorganic Carbon (mg/1)	17	17	18	19	19	20	17	19	19


APPENDIX TABLE 4. Water quality data, Lower Kananaskis Reservoir (1977). S - surface; M - mid-depth; B - 1 m off bottom;

N.A. - not availabe.

		Inno 20			15 עריין		A.	Auoust 15	
PARAMETER								640 L T	
	S	W	В	S	Ψ	В	S	M	В
Total Alkalinity (mg/l CaCo ₃)	102.0	104.0	101.0	103.0	103.0	100.0	104.0	107.0	103.0
Color	< S	< 5	∧ ∪	∧ ∪	< 5	< 5	< 5	< 5 2	< 5 5
рН	8.4	8.3	8.3	8.6	8.2	7.9	8.5	8.3	7.9
Residue Non-filterable (mg)	15	15	15	15	15	15	15	15	15
Specific Conductance (us/cm)	217	232	218	N.A.	N.A.	N.A.	216	230	218
Turbidity (JTU)	1.6	2.2	2.8	1.5	1.5	2.5	1.5	2.5	2.0
Dissolved Nitrogen (NO_3NO_2 mg/l N)	10°C >	0.03	0.02	0.01	0.01	0.02	< 0.01	0.03	0.02
Total Kjeldahl Nitrogen (mg/l)	0.27	0.21	0.27	< 0.10	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Phosphorus (mg/l)	0.006	0.007	0.013	0.010	0.006	0.005	0.005	0.008	0.013
Total Organic Carbon (mg/l)	4	e	9	1	2	2	3	ĉ	£
Total Inorganic Carbon (mg/l)	21	22	21	24	24	23	23	24	23

•

.

Dopth (-)		Temperature ^O C	
Depth (m)	May 18	June 8	June 29
0	3.0	10.5	13.0
1	4.0		13.0
2	4.0		12.6
3	4.0	8.8	11.6
4	4.0		11.2
5	4.0		10.5
6	4.0	7.1	9.9
7	3.8		9.0
8	3.5		8.4
9	3.4		7.7
10	3.4		7.5
11	3.4		7.3
12	3.3	6.0	7.0
13	3.2		6.9
14	3.1		6.9
15	3.0	5.1	6.4
16	2.9		6.2
17	2.9		6.1
18	3.0	5.0	5.9
19	3.0		5.9
20	3.0		5.9
21		5.0	5.9
24		4.5	5.8
25			5.5

APPENDIX TABLE 5. Temperature profiles of Lower Kananaskis Reservoir, 1978. Taken using a YSI telethermometer at Water Quality Sampling Site.

APPENDIX TABLE 6.

	ALL SPECIM OF CASES =		l i		PRINC	IPAL CON	PONENT:	S ANALYS	SIS - CI	LUSTAN]	LC			
NUMBER	OF BINARY V OF NUMERIC	ARIABLES			(UNTR	ANSFORME	ED DATA)						
NUMERIC	MEANS AND	STANDARD	DEVIATI	ONS	VARI	ABLE MIN	INUN V	ALUE	NAXIMU	M VALUE	:			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	7.2409 1.7565 0.3299 0.5926 0.5907 0.60137 0.4321 0.5906 0.1184 0.1890 0.4265 1.0150 3.7543 1.7702 4.5683 2.9569 0.5628 6.5.0900 12.3700 25.9200		4340 3337 0864 1791 1215 1241 1781 0953 1371 0949 2826 2361 7397 3736 9460 6750 1435 1734 3078 0309		1 2 3 4 5 6 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21		1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3000 0300 1800 2700 3400 2900 2500 2500 3000 0000 0700 5000 2200 9400 6000 9400 5800 22400 9400 0000		$\begin{array}{c} 11.0000\\ 2.7100\\ 0.5700\\ 1.0000\\ 0.9600\\ 0.3700\\ 1.3200\\ 0.7200\\ 0.9100\\ 0.9100\\ 0.9100\\ 0.9100\\ 0.5700\\ 0.5700\\ 0.5700\\ 0.5500\\ 7.4300\\ 5.9000\\ 7.4300\\ 5.9000\\ 7.4300\\ 5.9000\\ 7.4300\\ 0.8900\\ 7.4300\\ 0.8900\\ 7.4300\\ 0.9000\\ 7.4300\\ 7.900\\ 7.9000\\$				
FIGENVAL														
12.48	5.95 0.74 0.01 C.0		0.34 0.00	0.25	0.19	0.11	0.07	0.06	0.05	0.05	0.04	0.03	0.03	0.02
PERCENTA	GE VARIANCE													
	28.31 3.5 0.06 0.0		1.61 0.02	1.20	0.92	0.51	0.36	0.30	J.25	0.23	J. 19	0.13	0.12	0.10
CUMULATI	VE VARIANCE													
	87.72 91.2 99.91 95.9			96.66	97.57	98.08	98.44	98.73	98.98	99.21	99.41	99.54	99.66	99.76
	TORS - BY R													
VECTOR	1													
0.279 U. 0.037 D.	277 0.148 0 010 0.028	.204 0.24	5 0.274	0.272	0.249	0.258 0.	117 J.J	051 0.08	5 0.242	0.280	0.2 7 2 0	.276 C.	270 0.2	41
VECTOR														
-0.040 0	.022-0.339 .277 0.354	0.2 7 0-0.1	83 0.01	7-0.030	-0.164	0.147 J	.361 v.	396 U.3	82-0.02	0-0.019	0.022-	-0.065-0	.085-0.	057
VECTOR														
-0.001-0	.051 0.012-	0.116 0.0	06 0.07	8-0.048	-0.001	-0.051-0	۰119 v.	.012-0.0	37 0.23	1 ປະປປຈ	-0.016-	0.00 0 0	074-0	214
0.711 0	.566 0.160 3 FACTOR SC											0.004 0		210
S 1	4.145 -2.8		5 S 3	4 6	.051 -	2.940 -0	. 96 2	S 67 S 68	-6.15		14 0.21 98 -1.00			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S S <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>513 +</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>. 184 .247 .323 .747 .542 .304 .593 .304 .593 .378 .395 .558 .026 .723 .308 .115 .605 .250 .115 .605 .2514 .848 .865 .675 .324 .608 .324 .324 .369 .207 .538 .328 .338 .328 .338 .328 .338 .328 .32</td> <td>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td> <td>- 2. 47 - 4. 20 - 4. 20 - 4. 20 - 5. 04 0. 79 - 2. 50 - 0. 83 - 1. 88 - 2. 71 4. 33 3. 22 2. 85 2. 34 2. 44 2. 61 4. 33 2. 78 1. 77 2. 85 2. 33 2. 44 2. 50 3. 45 3. 45</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>U 6 57 528 228 227 31 31 32 34 37 37 37 37 33 33 33 33 33 33 33 33 33</td> <td></td> <td></td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	513 +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 184 .247 .323 .747 .542 .304 .593 .304 .593 .378 .395 .558 .026 .723 .308 .115 .605 .250 .115 .605 .2514 .848 .865 .675 .324 .608 .324 .324 .369 .207 .538 .328 .338 .328 .338 .328 .338 .328 .32	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- 2. 47 - 4. 20 - 4. 20 - 4. 20 - 5. 04 0. 79 - 2. 50 - 0. 83 - 1. 88 - 2. 71 4. 33 3. 22 2. 85 2. 34 2. 44 2. 61 4. 33 2. 78 1. 77 2. 85 2. 33 2. 44 2. 50 3. 45 3. 45	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U 6 57 528 228 227 31 31 32 34 37 37 37 37 33 33 33 33 33 33 33 33 33		

RANANASKIS ALL SPE NUMBER OF CASES = NUMBER OF BINARY VA NUMBER OF NUMCRIC V	137 RIABLES = 0	PRINCIPAL CO		(SIS - CLUSTAN)	10	
NUMERIC MEANS AND S	TANDARD DEVIATIONS	VARIABLE MINI	MUM VALUE	MAXIMUM VALUE		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.9825 0.4117 0.0951 0.2058 0.1584 0.2665 0.1638 0.2000 0.0958 0.1833 0.2401 0.3338 1.0151 0.4759 1.3369 0.9467 0.1482 3.5143 1.2217 2.7813	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	3.4000 C.9000 0.1800 0.2200 0.3100 L.2800 0.2300 0.2600 0.0000 0.0000 0.0000 0.0000 0.4400 1.8000 0.7500 2.1900 0.2100 59.0000 10.0000	$\begin{array}{c} 12.300\\ 2.6900\\ 0.6000\\ 1.100\\ 1.0500\\ 1.9600\\ 1.9600\\ 1.9600\\ 0.9600\\ 0.9700\\ 0.6200\\ 0.9200\\ 1.7800\\ 0.9200\\ 1.7800\\ 0.9200\\ 1.7800\\ 0.9200\\ 1.7800\\ 0.9200\\ 1.7800\\ 0.9200\\ 1.7800\\ 0.9200\\ 1.7800\\ 0.9200\\ 1.7800\\ 0.9200\\ 1.7800\\ 0.9200\\ 1.7800\\ 0.9200\\ 1.7800\\ 0.9200\\ 1.7800\\ 0.9200\\ 0.9200\\ 1.7800\\ 0.9200\\ $		
13. 34 4. 26 1. 0. 0. 02 0. 01 C. 0		20 0.14 0.10	0.08 0.06	0.06 0.05	0.05 0.04	C.03 U.02
PERCENTAGE VANIANCE						
66.36 20.31 4.8 0.08 0.06 0.01		96 0.66 0.50	0.39 0.31	0.30 0.25	0.24 0.17	0.13 0.10
EIGENVECTORS - BY R VECTOR 1 0.260 0.264 0.144 0.007-0.068 0.065 VECTOR 2		263 0.250 U.262 C	.173 0.115 0.1	48 J.259 J.262	0.255 0.262 (0.255 U.216
0.052 0.015 0.006-0	0.018 0.050-0.027-0.	019 0.015-0.006-0	.685-0.028-0.00	53-0.JJ3 0.J37	0.031 0.027 0	032-0.322
0.826 0.501 0.204 FIRST 3 FACTUR SC						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -4, 615 \\ -4, 615 \\ -0, 444 \\ -1, 824 \\ -0, 970 \\ -1, 165 \\ -0, 970 \\ -1, 165 \\ -0, 970 \\ -1, 205 \\ -1, 205 \\ -3, 102 \\ -0, 515 \\ -3, 102 \\ -0, 515 \\ -3, 102 \\ -0, 515 \\ -3, 102 \\ -0, 515 \\ -3, 102 \\ -0, 515 \\ -3, 102 \\ -0, 515 \\ -3, 102 \\ -0, 915 \\ -3, 102 \\ -0, 915 \\ -3, 102 \\ -0, 915 \\ -1, 970 \\ -0, 235 \\ -1, 970 \\$	$\begin{array}{c} \text{S} & 0.178\\ \text{S} & -\text{U}.118\\ \text{S} & -\text{U}.118\\ \text{S} & -\text{U}.165\\ \text{S} & 0.585\\ \text{S} & 0.585\\ \text{S} & 0.585\\ \text{S} & -\text{U}.646\\ \text{S} & -1.479\\ \text{T} & 1.310\\ \text{T} & 0.446\\ \text{U} & 0.225\\ \text{T} & 1.323\\ \text{T} & 1.248\\ \text{T} & 1.233\\ \text{T} & 1.235\\ \text{T} & 1.375\\ \text{T} & 1.378\\ \text{T} & 1.378\\ \text{T} & 1.379\\ \text{T} & 1.379\\ \text{T} & 0.393\\ \text{T} & 0.994\\ \text{T} & -0.310\\ \text{D} & 1.421\\ \end{array}$	

APPENDIX TABLE 8.

ALBERTA ALL SPECIMENS	(100)	PRINCIPAL	COMPONENTS ANAI	LYSIS - CLUSTAN 1C	
KUMBER OF CAJES = 10 NUMBER OF BINARY VARI BUMBER OF NUMERIC VAR	ABLES = 0	(SQUARE-RO	OT TRANSFORMED	DATA)	
NUMERIC MEANS AND STA	NDARD OEVIATIONS	VAPIABLE MINI	NUN VALUL	MAXINUM VALUE	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.2713\\ 0.1277\\ 0.0745\\ 0.1168\\ 0.0789\\ 0.0845\\ 0.0998\\ 0.0724\\ 0.0908\\ 0.1593\\ 0.3103\\ 0.2299\\ 0.1169\\ 0.1936\\ 0.1445\\ 0.2247\\ 0.1936\\ 0.1445\\ 0.2247\\ 0.1991\\ 0.0976\\ 4.1734\\ 1.3078\\ 3.0309 \end{array}$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	$\begin{array}{c} 2.0736\\ 1.0149\\ 0.4243\\ 0.5196\\ 0.5831\\ (.5385\\ (.6708)\\ (.5000)\\ 0.5477\\ (.000)\\ 0.5477\\ (.000)\\ 0.2046\\ 0.7071\\ 1.4900\\ 0.9695\\ 1.6125\\ 1.2570\\ 0.4899\\ 5.0000\\ 9.0000\\ 9.0000\\ 21.0000\\ \end{array}$	$\begin{array}{c} 3.3166\\ 1.6462\\ 0.7550\\ 1.000\\ 0.9798\\ 0.9327\\ 1.1489\\ 0.8485\\ 0.9539\\ 0.5477\\ 0.7550\\ 0.9599\\ 1.4107\\ 2.4166\\ 1.5969\\ 2.7258\\ 2.2782\\ 0.9434\\ 74.0000\\ 15.0000\\ 33.0000\\ \end{array}$	
12.62 5.87 0.73 0.02 0.01 0.01	0.52 0.32 0.23 0.01 0.00	J.19 0.09	0.08 0.00	U.U5 U.J5 J.J4	. ú.04 0.03 0.02
PERCENTAGE VARIANCE					
60.11 27.97 3.48 0.09 0.05 0.04	2.49 1.51 1.10 0.03 0.02	0.89 0.43	0.39 0.31	U.26 U.22 U.20	
CUMULATIVE VARIANCE					
99.67 99.92 99.56 EIGENVECTORS - 87 KO VECTOR 1	99.98 100.00				99.68 99.68 99.78
0.035 0.005 0.030	210 0.240 J.273 0.271	1 0.249 0.239 0	• 110 0.00	01 3.240 0.213 3.211	0.270 6.207 0.240
VECTOR 2					
-0.035 0.024-0.343 0 0.276-0.282 0.355 VECTOR 3	.261-0.184 0.020-0.03	36-0.164 J.141	0.353 J.404 U.	382-02015-02015 0202	3-0.360-0.078-0.068
	.101 0.004 0.074-0.04	v∃ 0.005-0.044-	0.125 0.005-0.0	USI U.196 U.UU6-0.U2	<u>ე-ე.009 ქ.367-შ.189</u>
FIRST 3 FACTOR SCO	K E S				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} J.213 & S & 76 \\ (J.424 & S & 77 \\ 1.714 & S & 78 \\ 2.543 & S & 79 \\ 1.676 & S & 90 \\ 1.474 & S & 81 \\ 1.226 & S & 82 \\ 0.178 & S & 43 \\ 0.555 & S & 84 \\ 0.555 & S & 84 \\ 0.555 & S & 86 \\ 0.116 & S & 87 \\ 0.304 & S & 89 \\ 0.304 & S & 91 \\ 0.234 & S & 92 \\ 0.304 & S & 93 \\ 0.226 & S & 93 \\ 0.220 & S & 94 \\ 0.617 & S & 95 \\ 0.722 & S & 96 \\ 0.395 & S & 97 \\ \end{array}$	3. $194 - 2.033 - 0.$ -4. $296 - 2.124 - 0.$ -5. $372 - 1.874 - 0.$ -5. $827 - 2.322 - 1.$ -8. $293 - 1.804 - 0.$ -3. $190 - 2.944 - 0.$ -0. $190 - 2.944 - 0.$ -0. $190 - 2.090 - 0.$ -1. $703 - 1.909 - 0.$ -1. $703 - 1.909 - 1.$ -3. $924 - 1.554 - 1.$ -5. $059 - 1.479 - 0.$ -3. $300 - 1.705 - 0.$ 8. $831 - 3.35 - 0.$ 5. $743 - 2.009 - 1.$ 5. $064 - 2.503 - 0.$ 4. $369 - 3.153 - 0.$ 4. $369 - 3.153 - 0.$ -3. $300 - 2.211 - 0.$ -3. $300 - 2.211 - 0.$ -3. $300 - 2.261 - 0.$ 3. $730 - 2.2050 - 0.$ 1. $122 - 2.638 - 2.$. 995 .446 .504 .799 .076 .179 .211 .161 .335 .935 .143 .551 .443 .551 .479 .006 .175 .005 .303 .185 .292 .303 .185 .292 .324 .740 .487 .100 .125 .511 .345 .715 .400

APPENDIX TABLE ?.

KANANASKIS ALL SPECIMENS (137) NUMBER OF CASES = 137 NUMBER OF BINARY VARIABLES = 0 NUMBER OF NUMBRIC VARIABLES = 21

(SQUARE-ROOT TRANSFORMED DATA)

NUMERIC MEAN	S AND STA	NUARE EEVI	LATIONS	VARIA	BLE MIN	Idom Val	.0 E	5AX160M	VALUE				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0979 .3190 .5792 0.7611 0.7004 0.9358 0.6315 0.2932 0.3134 0.9358 0.2932 0.3134 0.5988 1.0066 1.9339 1.0066 1.9339 1.0066 1.9339 1.3275 2.1575 0.7229 5.4234 2.9927 5.4254	0.359 0.153 0.030 0.129 0.101 0.122 0.135 0.124 0.1567 0.277 0.136 0.162 0.162 0.162 0.162 0.2565 0.177 0.3027 0.265 0.100 3.5143 1.2217 2.7813	5 4 5 7 7 7 7 4 4 8 8 7 7 4 4 9 8 7 7 4 4 9 8 7 7	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21		$\begin{array}{c} 1. \ 84\\ 0. \ 42\\ 0. \ 42\\ 0. \ 46\\ 0. \ 52\\ 0. \ 52\\ 0. \ 52\\ 0. \ 52\\ 0. \ 50\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	87 43 90 64 25 25 25 25 00 00 24 33 16 60 59 51 9 83 30 00	((((((((((((((((()))))))	3. 5071 1. 6401 0. 7746 1. 0536 1. 0247 1. 0438 1. 2270 1. 2478 1. 2270 1. 2478 1. 24788 1. 24788 1. 24788 1. 24788 1. 24788 1. 24788 1. 247				
13.d3 4.2 0.02 0.0			.30 ∪.24 .00	C.20	0.13	0.10	ů.07	υ.υь	0.06	υ.υ5	0.04	0.03	0.02
PERCENTAGE V	ARIANCE												
65.87 20.1 0.10 0.0			•44 1•16 •02	0.94	0.62	0.48	0.33	U.3u	0.27	0.24	v. 1d	0.14	U.11
CUMOLATIVE V	ARIANCE												
65.87 86.0 99.86 99.9	6 90.85 2 99.96	93.55 94 95.98 100	.99 96.15 .ບບ	97.08	97.71	98.18	98.52	98.81	¥9.09	99.33	99.50	99.65	99.76
EIGENVECTORS	S - BY ROW	S											
VECTOR 1	5 0 152 0		0.054.50									0 050 0	
0.263 0.26 0.005-0.06 VECTOR 2	4 0.059	.244 0.250	0.239 0.2	64 U₂∠∋∠	: U.202	U.160 U.	.028 0.1	0200	1 0.203	0 0.200	0.200	0.258 0.	. 221
-0.087-0.020)-0.179 U.	1d3-0.150	0.063-0.0	0-0.010	0. 072	U.321 J.	44 É U.3	89-0.02	7-0.059	-0.072-	-0.069-	0.103-0.	175
0.203-0.27. VECTOR 3	6 0.391												
0.052 0.01	0.031-0.	023 0.058-	-0.025-0.0	14 0.007	-0.010-	0.045-0.	.011-0.0	73-0.01	4 0.034	0.023	0.025	0.031-0.	027
0.81∠ 0.54.	ACTOR SCO												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S 48 S 5 51 S 5 55 S 5 5 S	$\begin{array}{c} -4 & 0 \\ +4 & $	$\begin{array}{c} 2,950 \\ -2,171 \\ -2,927 \\ -2,927 \\ -2,927 \\ -2,928 \\ -3,929 \\ -1,929 \\ -1,929 \\ -1,929 \\ -1,929 \\ -1,929 \\ -1,929 \\ -1,929 \\ -1,971 \\ -2,308 \\ -2,044 \\ -2,308 \\ -2,044 \\ -2,308 \\ -2,044 \\ -2,308 \\ -2,049$	$\begin{array}{c} \text{-} 0 \ 3 \ 0 \ 0 \ 15 \ 4 \ 0 \ 55 \ 4 \ 1 \ 41 \ 3 \ 0 \ 55 \ 4 \ 1 \ 41 \ 3 \ 0 \ 55 \ 4 \ 1 \ 41 \ 3 \ 0 \ 55 \ 4 \ 1 \ 41 \ 3 \ 0 \ 55 \ 4 \ 1 \ 41 \ 3 \ 5 \ 5 \ 4 \ 1 \ 41 \ 3 \ 5 \ 5 \ 4 \ 1 \ 4 \ 5 \ 5 \ 5 \ 4 \ 1 \ 4 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5$	<pre>S 93 S 94 S 95 S 96 S 97 S 98 S 90 S 100 S 101 S 102 S 103 S 104 S 106 S 107 S 106 S 107 S 106 S 107 S 106 S 107 S 106 S 107 S 108 S 109 S 110 S 112 S 113 S 114 S 115 S 116 S 117 S 118 S 119 S 122 S 123 S 124 S 125 S 126 S 127 S 128 S 128 S 127 S 133 S 134 S 133 S 134 S 135 S 136 S 137 S 137 S</pre>	$\begin{array}{c} -1, 9\\ -2, 4\\ -2, 4\\ -2, 4\\ -2, 4\\ -2, 7\\ -4, 5\\ -0, 7\\ -4, 2\\ -6, 8\\ 0, 4\\ -6, 7\\ -1, 8\\ -2, 1\\ -1, 8\\ -2, 1\\ -1, 8\\ -2, 1\\ -1, 8\\ -2, 4\\ -2, 7\\ -1, 8\\ -2, 4\\ -2, 7\\ -1, 8\\ -2, 9\\ -2, 9\\ -2, 9\\ -3, 2\\ -4, 8\\ -3, 2\\ -4, 8\\ -3, 2\\ -4, 9\\ -3, 2\\ -4, 9\\ -3, 2\\ -4, 9\\ -3, 2\\ -4, 9\\ -3, 2\\ -4, 9\\ -3, 2\\ -4, 9\\ -3, 2\\ -4, 9\\ -3, 2\\ -4, 9\\ -3, 2\\ -4, 9\\ -3, 2\\ -4, 9\\ -3, 1\\ -2, 9\\ -4, 2\\ -4, 2\\ -6, 5\\ -6,$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06 1257 100 100 100 100 100 100 100 100 100 10		

APPENDIX TABLE 10.

OF VARTABLES 21 OF GRUUPS J	NUMBER OF CASES IN EALH GHOUP 50 PPIOR PROBARILITIES 0.1334 			7,32797 1,73019 0,47600 0,64220				0.54240 67.70000 62.48000 11.54000 62.48000		ABLE VARIAELE		2400 200 200 200 200 200 200 200 200 200			0.2517 0.1417 0.1417 0.2141 0.1920 0.19220 0.0728		0.00000 -0.00000 -0.00008 -0.00014		U.U0140 0.00062 U.C0899 J.01174	ENTS FOR CANONICAL VARIALE 1 1 0.11743 10 0. -1.10259 11 -6. 5.05619 12 -1.2. 5.05619 13 -1. -2.218694 14 -1.
	50 - 137 0.0		×	7.40723 1.76320 0.34541 0.54541 0.54541	0.89496 0.83226 0.83226 0.11036	0.17460 0.39226 1.03934	1.79157 4.74598 J.08666	0.53255 65.42335 12.99270	0.0004.527	F VALUE TO		564 5921 4000 1925 711 171	1113 1769 1267	029	2517 1414 21414 21417 2501 1920 1920 0076	0-0006	-0.0000	0-00769	0.00073	54233 54233 405845 24944 26944 26575 75560
(UNTRANSFOR) ALRERTA GROUPS P. KANNASKIS GROUP	STANDARD	THEAR IS	VAPIABLE		er æð 2	112	15	18 20	- 2	NUMBER OF NUMBER OF	ABLES INLLUVE	- こうまいので、	o o C E	21	2002 2008 2008 2008 2008 2008 2008 2008		-0-00000-	ŭ.0064∪ U.I		19 0.03492 20 0.03440 21 -0.06332 21 -1.45546 71.45546
AED 	DEVIATIONS			1.20345 0.25055 0.03511 0.05776 0.06439	0.07361	0.04256 0.12494 0.19179 0.61780	0.33823 0.74056 0.54326	0.15064 1.60978 1.14660		U-STATISTIC	4	0.0140 0.0140 0.01420000000000000000000000000000000000	0.0228	0.0220	1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0	· ~	-u-uaaud -u-Ud	u.00562 u.00	· ·	10 N 2
DATA) A PRIORI KNOWN (A PRIORI UNENOW)			J	01010000000000000000000000000000000000	0.10179	U.U U.VEH18 0.47542 0.83550	0,40690 1,08340 0,77528	0.13442 2.47309 0.45714	9 	,						10000.0		12600°0 26500	0	
KNOND CROUPS PADDAD NANNAND			×	- 41177 0.41177 0.20576 0.1584 0.1584	0, 20000 0, 20000 0, 20000	0.14330 0.24006 0.33377 1.0149U	0.47593 1.35665 0.94653	0.14819 3.51404 1.22171 2.72114								U. 0000 1	- N -	0.00233	0	
	X	dnods	CASE	⊷ ເ≀ຕ ສ ທ			X	GROUP	CASE	4399660	9 ° 2		CASE	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		36 DI 26 C	1 0 4 1 0 4	101	1971 1971 1971 1971 1971 1971 1971 1971
	= FIRST C = SECOND	ε: α	×	-7.426 -6.456 -6.4947 -6.181	-7.548 -7.714 -7.222 -6.408	118-6-	= FIRST C	с U		5 + 5 + 5 5 + 7 + 4 5 + 7 + 7 + 4 5 + 7 + 7 + 7 + 7 5 + 7 + 7 + 7 + 7 5 + 7 + 7 + 7 + 7 + 7 5 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 +		= SECOND	E.	-7.142	- 2, 492 - 5, 739 - 5, 295 - 5, 295 - 6, 774 - 4, 74 - 474 - 474	7. 524 10.442 9.947	9.705 5.986 8.513	H 0 1H	166	- 1- 254 4. 159 4. 159 1. 453 2. 373 2. 373 2. 155 2. 155 2. 155 2. 155
	FLRST CANONICAL VARIABLE Second Canonical Variable	EAN CUU	Y	1,295 0,245 0,245 0,04 2,07 2,07 2,07 2,07	0.406 0.708 0.938 -1.008	- 0. 54 0	FIRST LANONILAL VANIABLE SECCNU LANUNILAL VANIABLE	LAN CUU	U. 655	0.723 -0.476 -0.476 -0.746 -0.745 -0.745	- 0. 544	LECHJ LANUNICAL VAPIABL	EAB	1.648	0.007 3.124 3.124 4.075 4.075 4.075 4.075 4.075	051.0	1, 135 0, 718 1, 997	3. 328 1. 465 1. 400 0. 624	2,372	
	VARIABL L VARIAB	GUINATES	L A.+ E				L VAHIAU	KUINATES				тартан. Тартан.	COUMLINATES Y LASE					14 14 14 14 14 14 14 14 14 14 14 14 14 1		
	L LL	-0.612	×	-8. 343 0 -5. 900 0 -6. 218 -0 -6. 318 -0			L F	0 + 6 7 2	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1601 J 1707 -0 5440 J 7675 -1 1602 U	96.0 97.0	يد 1- يد	1.242 X		2 0 0 0 0 0 0 0 0 0 0 0 0 0				597 828	
		-0.000	٢	0.031 2 0.450 2 1.346 2 1.346 2 0.838 2				.00.					- U. 02U Y C		2.084 1.0555 1.0555 1.0555 1.0555 1.0555 1.0555 1.0555 1.0555 1				122	NI 224 106 11 21 126 10 21 126 10 10 10 10 10 10 10 100 100 100 100 10
			CASE	21 -5, 135 22 -5, 012 23 -7, 305 24 -5, 536 26 -678					-1	222 222 222 222 222 222 222 222 222 22			CASE		22 -9,183 29 -6,170 25 -6,170 25 -6,170 26 -5,413 27 -5,413 27 -5,177 27 -5,777 27 -5,177 28 -5,487 29 -1,687 29 -1,687 20 -1,					
				1		-		1		5.924 -0.5 5.424 0.5 5.473 0.5 7.1473 0.5 7.1473 0.5			×							1110
				11 11 11 11 11 11 11 11 11 11 11 11 11	917 126 120 120	л О 7				-0.576 33 0.547 34 1.239 35 0.374 34 1.034 35			۲ ۲							251 111 112 112 112 112 113 113 113 113 113
			LASE	-6.444 - 5.444 - 7.160 - 6.571						4.410 6.47H 7.760 8.47H 8.474			د المنافع	14.46 -	1					
				84 1.544 36 0.0222 01 0.503 01 0.503 01 0.503 01 0.503						18 - 0, 120 19 - 0, 154 00 - 0, 124 11 - 1, 054 19 - 1, 054 10, 154									- n	
			ŕ	4 4 4 4 4 4 4 4 4 4 4 7 7 4 4 7 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									ť char					-	25	1072 1072 504 504
				- 6. 4 05 - 5. 0 03 - 5. 561 - 5. 642 - 6. 642					1.12	7. 914 7. 210 7. 410 7. 411	2		بر د				0. 2 . 5 . 1 . 5 . 1 . 5 . 1 . 5 . 1 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5	145.55 145.65 171.62 171.62		
										2000 200 2000 2										

11 APPENDIX TABLE

100-2 100-20

5.55 7.55

548400.5FF

APPENDIX TABLE 12.

Tr - PFLINAR

				CAS	12000	P	0 h			U I	31 32 35 35	3 6 E 9 6 E 9 6 E	5		CAS	9095-009 0095-009	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	19 19	131 132 133	136
				¥	1.825 -2.174 -1.233 0.869	0.824	U. 144 2.664			>	-0.680 -J.697 1.173 U.950 -0.129	-0.613 0.583 -0.633 -0.506	۳ ۵ ۶		Y	-0. 822 -1. 183 -0. 916 -0. 825 -0. 811 -0. 812 -1. 284 -1. 28	-3.1%1 0.498 -4.251 -1.560 -2.100 -2.477	-4.053 -4.053 0.518	1.047 4.629 0.809 0.846	- 3. 418 - 3. 418 1. 547 2. 458 2. 458 2. 458
				ж	10.240 9.515 11.642 10.173 12.099	977.9 977.6 11.578	11.907			*	-10.277 -11.749 -11.8447 -11.8447 -10.557 -11.008	- 10.497 - 11.636 - 10.63H - 11.681	444		×	12.463 14.42H 11.239 12.345 10.751 11.013 11.416 8.719 8.719 8.719	-12,267 -15,565 -15,565 -11,8995 -11,8995 -12,4800	-12. 306 -12. 306 -10. 458 -11. 732	1.305 4.129 2.322 -6.540	67.9.2 - 916.99 186.94 186.18 186.0 186.0
			2	CASE	21 22 24 25	24 27 28	2 J ()			C.LCF	225			2	CASE	22			121	12661126
			9 -0.000	Y	0.544 1.249 -0.544 -1.089 -0.908	J.023 -1.004 -0.751	1.506 -0.594			nnn - 61	0.016 1.030 -0.456 -1.965 -1.457	-0.557 J.552 J.984 L.271	- 0 - -	1.23 U	X	4,673 6,772 6,7772 1,004 1	0.852 0.852 - 1.240 - 0.305 - 0.305 - 0.745 - 0.745	-0.557 -0.557 -4.371 -0.475		-2.653 -2.653 9.711 7.592 7.592
	u a	ABLE	11		12.504 11.679 12.608 10.036 11.777			10.L E A H L E			- 11, 522 - 13, 231 - 3, 948 - 11, 557 - 10, 620		5 2	5 -0.460		12.500 12.006 12.006 13.419 12.004 12.004 12.004 12.004 12.004 12.547	-13.599 -13.110 -11.866 -11.2.219 -10.758		3.699 2.147 2.713 2.713	
	4 1 0 T 4	L VARI	LINATES	LASE	11 71 12 12 12 12 12 12 12 12 12 12 12 12 12	16 17 13	19 20	VARIA VARIA 4 VARI		KUINATES	11 11		- 02 AINAV ARIAV	RLINATES	ú A à E	2284565853				1120
	18.01 aces	CANONICAL VARIABLE CANONICAL VARIABLE	AEAN COURT	¥	U. 009 1. 142 0. 224 0. 344	0.486 0.925 0.498	0.212 1.434	ALUNICAL VARIABLE CANONLAA VARIABLE		2	1.462 -C.648 1.547 -C.647 -U.408 -C.114	6. 319 0. 244 0. 577 1. 388	-6.303 20 -12." Lanualeal Variable Canurical Variable	EAN COUR	Y	1.496 2.817 2.817 2.817 4.913 4.913 4.913 4.913 1.491 1.491	-2.098 2.474 0.211 -0.937 -2.P64	-1.665 0.271 -1.613	7.147 -3.745 1.903	1000 100 1000 1
	10 C C C C	SECOND C	R	×	12.178 12.492 12.393 11.187 - 104	1 2 4 9 5 4 8 3 d	120	FIRST CAP SECOND UN		χ υ 1	10-5	11.983 11.069 11.137 12.202	12.062 FIRST SECCNU	н Ч	Х	14.662 10.292 11.940 13.149 12.172 12.172 11.7394 11.129 13.476 11.720 13.140	-12,779 -13,578 -14,514 -14,514 -14,535 -11,097	150	0.543 5.317 4.433	
			d ND 40	CASE	- 0 - 3 V			* # • *		GKOUP			I III.	GR00.P	CASE	е имацки роб				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
. Liberta. Base de las				. 15.13. A	0,15346 0,015346 0,12354 0,10110 0,12121 0,12121 0,12214	0.13410 0.13865 0.12403	0.1%72 9.27740	0.10401 0.15250 0.25694 0.17723 0.17723	0.05993 1.51404 1.51404	1.2.171							1, 0000 - - 0, 0010 3	0.)0412	23500°C	
(TA) BT FROWN CROOP OLI UNESDOWN CBOOP				1 ()	10000 1112	0.9e%6 0.7455 0.86%1	0	0 6 0 2 8 1 3 4 6 7 2 1 4 2 H 1 5 4 1 4 2 5 4 1 4 2 5 4 5 4	ubd4t 1314	85714 41652							1 0000 *0 - 2 0000 *0 -	47,200,0	14.600.0	
VNSTORING DATA		1.0.0	-									ATL	11111111111111111111111111111111111111	ر'۲۵۰۰ . ۱۹۰۵ ک		0,007 0,007 0,007 0,007 0,007 0,007 0,10000000000	0,000 - 0 - 0	11 Jun 1	0.101 °	
COLOR -ROUT TRANS ALBLETA GROUP - R., EMANAS FIS GROUP - F		AD DEVIATION		BLE		0.1.0	0.070		0.10	1.14		11474-0 114460	0.10.000.5		2.2 4		1	u. U.U.4 M	0.0 1 26	8118 803 80
LUULAR ALBERTZ ALBERTZ		1.77 A.17 A.17	с) с с С	-6	-1-302	ت æ م :	51	N 7 2 4 4 1	PL	227		2 ¥		¥ 6					14000°0	
		(° ()										I STANLER APPEAR					1			19 20 21 CUNSTANT
	111 - 117	J. 1113		¥.	2	14144 0.44144 0.44144	0.43338	0.6100M 1.12057 1.43594 1.43594 2.15755 2.15755	1.72434	1 112.70		20 E * 11 V	******	: 1	_n -, e		f edito = o	-1111 u	1760.00	1112 1112
	2	1:12:0			2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,							፣ 26 በት 254 የሆኑት 254	241, 241, 241, 241, 241, 241, 241, 241,	1.192	1. 1H- 71 t	1.147. 1.147.		28116-0	00°°''	ας >>
NIERRE OF ZANIAHL	Aud would											AN LANN- ED UNWOVEN					1,000,000,000,000,000,000,000,000,000,0	1911 1912 1912 1912 1912 1912 1912 1912	-00-42 -4101r	. Atto . C
2.8.42.861 +1.44 +	(A 18	an tartar a tar	5 ° 1 N *	-	2.000000 1.8000 0.0017 0.0017 0.0018 0.0019 0.0000 0.0000	1. 410 C	J. 44 14 1.44 14 J. 63-995	0.42486 1.01146 1.32691 1.33692	1.11111	11. 403L	1 	441 ALU	5722272		~ * -			es est	~ ~	1747 - 248 - 4 - 1, 157 / - 1, 157 / - 1, 194 07 - 1, 194 07 - 1, 194 04 - 1, 194 04 - 1, 194 15 - 1,
an dana. V	1 9194614	2	- Z &	VA DTANL ^E							۲- ۵. 42	日本の	- 1-3- 10	1 5	217	2000 2000 2000 2000 2000 2000 2000 200	6187844464 144,4411 144441 144441 -04444	4 61.6 LLA.	νυ . υ νυ . Ι	CUFFFICLENT VAPIGINAL VAPIGINAL

	-0.286 0.552 0.552 0.552 0.552 0.552 0.552 -0.258 -0.404 0.404				11.345 -0.446 -0.446 -0.446 -0.446 -0.444 -1.441 -2.7400 -2.74000 -2.74000 -2.74000 -2.74000 -2.74000 -2.74000 -2.74000 -2.74000 -2.74000000 -2.7400000000
	11.606 9.582 11.622 11.622 11.622 12.136 12.437 10.437 10.437 11.992				4.247 9.523 9.523 9.523 9.523 10.354 10.354 11.2354 11.2354 11.257 11.257 11.257 11.257 11.257 11.257 11.257 11.257 11.257 11.257 11.257
	7777777777 17777777770 1770270200		0 4 E 1 9 V F M F M F M F M		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3	r 1.355 0.053 0.064 0.012 0.012 0.012 0.132 0.2132 -0.2132 -1.067 -1.067	×	0.0.1400.21400.21400.21400.21400.224000.224000.224000.224000.224000.224000.224000.224000.224000.224000.224000.224000.22400000000		Y 2.562 2.562 -0.4957 -0.4957 -0.4957 -0.4957 -0.4957 -0.4957 -0.4957 -0.4957 -0.4957 -1.057 -1.4954 -1.49577 -1.49577 -1.49577 -1.49577 -1.49577 -1.49577 -1.495777 -1.495777 -1.4957777 -1.495777777777777777777777777777777777777
	A A A A A A A A A A A A A A A A A A A	×			2014 2014
	C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10	0 9 9 4 4 6 6 6 6 6 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1		C C C C C C C C C C C C C C C C C C C
	Y 1.825 -2.174 -1.233 -1.603 0.663 0.669 0.650 0.820 0.820 0.820 0.820 0.820 0.820 0.820 0.820 0.820 0.820 0.8669	24	-0.680 -1.173 -1.173 -0.476 -0.476 -0.476 -0.563 -0.903 -0.903		Y -0-916 -0-916 -0-916 -0-916 -0-916 -0-117 -1-124 -1247 -12
:	x 9.51240 9.51240 11.642 12.777 12.777 12.777 11.578 11.578 11.907 11.907	×	-10.277 -11.749 -11.749 -10.557 -11.658 -10.498 -11.838 -11.838 -11.497 -11.445		X 12.461 11.23 11.23 11.23 11.23 11.23 11.23 11.25 11.25 12.55 11.25 12.55 11.25 12.55 11.25 12.55 12.
	CASE 22 22 25 25 25 25 25 25 25 25 25 25 25	0.0 CASF	0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1	CASE 25 25 25 25 25 25 25 25 25 25 25 25 25
20 ° C · · ·	Y 0.5444 1.249 1.249 -0.908 -0.908 -0.23 -0.23 -1.004 -1.504 -0.594		1.016 1.016 1.457 1.457 1.457 1.457 1.457 1.552 1.552 1.271 2.273	6U U_23	Y 1.012 2.172 2.172 2.170 2.170 1.012
-	x 11.679 12.679 12.604 10.036 11.759 12.104 10.105 11.154 10.105 11.102 12.267		- 11. 522 - 12. 541 - 14. 547 - 11. 567 - 11. 459 - 11. 459 - 11. 459 - 11. 459 - 11. 459 - 11. 459 - 11. 450 - 11.	fs - U.4	A 12.000 12.000 12.000 4.405 4.405 4.405 4.405 4.405 7.909 7.909 7.909 7.909 7.909 7.909 7.9000 7.90000 7.9000 7.90000 7.90000 7.90000 7.90000000000
	CASE 112 116 116 116 116 116 116 116 116 116		11 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	LINAT	CASE CASE 666 666 666 666 666 666 7111 1111 1111
1 F 4 4 (CO) K	Y 1.142 1.142 0.223 0.224 0.492 0.492 0.492 0.492 0.492 0.252 0.492 0.252 0.492 0.252 0.492 0.252 0.0320 0.0320 0.0320 0.0320000000000		-1.462 -5.008 -5.008 -5.119 -6.119 -6.119 -6.199 -7.7 -6.108 -1.449 -6.108 -6.108 -6.008 -7.0	REAN COUR	Y 2.017 2.017 2.017 2.014 2.014 2.014 1.014
	x 12.47 12.492 11.992 11.194 11.11 12.954 11.12 12.954 11.470 13.950 11.470	= FIAST = SECONJ C	- 10.572 - 11.244 - 11.244 - 11.392 - 11.394 - 11.989 - 11.069 - 11.062 - 12.062 - 12.062 - 12.062 - 12.062	ž	x 11.612 11.612 11.942 11.942 11.942 11.942 11.942 11.742 11.742 11.742 11.742 11.745 11.7555 11.7555 11.7555 11.7555 11.7555 11.7555 11.7555 11.7555 11.755
40045	CASE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	X Y GKOUP CASE	-~~*~ - ~~*~	GR00 P	0 0 0 0 0 0 0 0 0 0 0 0 0 0

APPENDIX TABLE 13.

		117.	1030 1030 1040	-0-145 -0-212 402-3 125	- 70 -				-645 501	205 2424 147		1.5.1 2.0.0 1.40%				- 1		0.00	10.7			24	5-14 - 5-14 -		1,417,5 11,417,5 1,417,5 1,417,5 1,417,5							
										• •																						
		-9- -		-3.120 -7.049 -7.049	01					0 - 2 0 - 2 0 - 2		1.1.1.1 1.1.1.1 1.1.1.1 1.1.1.1 1.1.1.1 1.1.1.1 1.1.1.1 1.1.					-2-10-															
												1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													1 							
	Ă			U.577 2.249 1.186 1.395				¥	-U-44		10.0	εζα.Γ εν∠.Γ- ₽Γυ.Ο			-	-0-56	0.071		10-0-						529 ~1 - 828~0 962 ~1 -							
	м	9 # Ç * 9-	-0.570 -0.570 -0.358	-7.783 -5.090 H29.7- 101-7-	-752			X	1.124	1.4.1 5.14.2 720.2	6.507	127.0 727.0 82494			¥	-H. Jou	-0	-11.1-	uch. 1-			×	1,4,4,4 1,4,5 1,1,5	5.711	195-3 115-7 125-4 125-4							
	CASE			9F 77 8F								96 94 07			LADE	1.E 2.8	(n 1 1	5 9 2 3	0 6 7 7 7 7						5 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5							
	۲	111-1-	2.20% 1.738 -1.744	141.152	116.0			٨	-0-094 1.330	2.700 2.47.0 2.47	-0-1-4-0-	-1.331 			ž	495-1-	-0.154 0.657	1.14 1.14 1.143	0.572 -1.20b						0.70 1.541 1.524 1.524							
	ł	1 #6 * 5-	-4.2/9 -5.234 -5.054		-0.276			X	0.148 0.000	1.0000 7.0000 7.145	0.109 201.0 201.03	5.758 195.2 040.0			×	016.6- 090.1-	-1-1- -1-1-	10, 10 10, 10 10, 10 10, 10	- 4 - 1 - 4			×	4 . M14 6 . UUU 4 . 54 .	1407-0 1409-1 1-140-1	1.112 4.886 4.540 6.630							
	S⊌4 C≜SE	2.1	2.5	27 27 28	30		a2#.	CASF	21	242	07	2U 24 30		000.	CASE	17	172	97	97 767 30		. 00 .	CASE			24 24 30							
	0 1	-6.712	-0.421 -0.395 -0.395	10.0- 10.0- 091.1	٤		0	,	014.0 EE0.1	1.700	1.070	-0.799 424.1 404.0-		0 -		101.0-	-0-122	256°.0- 256°.0-	1.176 0.679 1.176)•∩- ≁£a•	ĩ	-02-0 -025-0 -	-0.130 0.160 1.299	510-0 515-0 472-0 402-0-							
91E 916	5 -6.694	617.8-	-7.12.72	-7.467 -6.838 -6.128	797-9-	3LE Able	5 0.6UZ		0.415	5-596 0-730	1.404	7.202 9.075 512.8	31.2 861.6	2 -0 - 645	×	-7.330	-7.5C1	-7.51	491.9- 960.7- 706.2-	ult Ault	ç	×	1.531 6.11.0	0.5217 0.5217 5.017	5.042 5.042 5.042 5.042							
. VARIABLE 1. VARIABLE	DI#ATES CASE	Ę		2623		VAMIA L VARIA	OINATES	CASE	11	22	222	14 14	L VANIA	COURLINATES	CASE		111			L VAHIAHLE Ni Vamiaule	COURDINATES	CASE	:22	200	17 16 19 20							
BONICAL	AN CUUR	****	0.067 0.461 0.185	0.567	0.732	HST CARUMICAL VAMIABLE COMO CAMUMICAL VARIABLE	AN COOK!	pa	2.110	1-147	1.20.0 120.0	-0.114 024.0	CANUNICAL VANJABLE CANUNICAL VANJABLE	KAN COUR		662.0	0.165 0.165	170	41 5 - 7 7 - 7 - 7 7 - 7 - 7 7	NUNICA	REAN COUL	٢	-2.74H	151.2	-0.476 0.864 -1.506	0.10h		-1-10-0-				
FIEST CA#ONICAL Secord Ca#ONICAL	11 11 11 11 11 11 11 11 11 11 11 11 11			-7.502 -8.135 -6.738		HST CA	C REAN	х				6-277 6.277 7.345	PINST CA SECUND C	л Ц Ц			-7.214			FINST CANUNICAL '	Y ne				. 190.7 HFE.o 151.2							
ы н н н н	GEOBP CASE					ж н 2 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	GEORP	CASE				9 9 0 0 0 0	ы 11 11 11 11 11 11		CASE		, 			il il mom	GROUP	ਮ			r 2 5 1							
	8						1	1						4 9							19				3.5		د 1 50					
ROUPS				X	20		116	260	261	200 115 Bod	040	20 191 225	×	141	060	201	6L9 000	75.0	150 150 150	978 000					00000-0- 00000-0-		0.001∠1 0.00050					
I KNOWN GROUPS					0.117	97911-0 %1871-0	0.138	991°0 171°0	0 142	0.110	FL 0	21 4 1 91 9 0 91 9 0		0.071	0.10	0.01.0	0.10	10.0	0.08126 0.08962 0.12691	3 - 500					-0.•0007		0.00200 0.200					
A PRIORI				GROUP GROUP	2260	102001-0 51111-0 740801-0	2541 2856	1814 3564 4346	1512 1943	2060 2349 2541	1812	7118 2254 1451	ບ	0240 9588 7006	04,20	1350	6750 1941	1862	110200	7304 4175 7654												
1 X.Y =	5 ×				ABLE U. 1.	0000	0.0		1.00	000		2°8		200	0.00	533	.05.		و، د د. د	-10					0.000,00-		04800°0					
VARIANCE TEST KANANASKIS GROUPS	BERTA GROUP			STANDARO	VABLA T	04 m # vî	9	ဆေးက်မှု	:12	1 1 1 1 1 1	295	19 20 20	VA 6 1 A	- ~ -	3 √	0 ~ 1	°7 ₽;	125	2225	19 20 20					1 0000 ° 0-		0,00404 0,00320			7.85377		
U KANAN	14	-50	0-0		*	0.84808 0.24505 -0.58841 -0.16079	-0.27342	-0.10347 -0.40956	10691 0-	-0.00247	0.24747 6.64238 0.44602	-UZHJ67 01.70000 11.54000				U-STATISTIC	6,2684 0,0755 0,0402	7760-0	0.0244 0.0244 0.0268	7220.0 7220.0 7220.0	0.0256	0.6256 U.U.56 0.0756	9520.0		L 0000 * 0-		0.0029/					
. 4		50 - 50	500 0.		c	• 0• 65 3• 0 • 6 7 2 2 0 • 6 4 0 4 9 4 • 0 - 4 0 4 9 4 • 0 - 4 5 4 4 • 0 - 4 5 4 4 • 0 - 4 5 4 4 • 0 - 6 5 5 4 4 • 0 - 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	EF727-0	0.0916H	-0.27944 -1.67149 -0.42020	0.50420	0.42760 0.65760 0.47154.0	-0-24 560 52.46000 13.20000	6665b*F7		NUMBER UP	VAHIAULES	1 7 7	ានហំរ	ر ت م : د	01 21 21	22	461	50 70		0,0000-0- 0,00000-0-		0.00150	ł		2000 C 0200 C 02		. 18583
- STREVISE DISCERMINANT ANALTSIS Sciences computing facility, ucla		45 dill	-2500			0 . + 6 7 9 2 0 . + 6 4 6 2 - 0. 5 4 6 16 - 10 . 1 4 1 10									ž		0.37h4 4.9575 4.04 M	1665-1 1665-1 10-1	1.7050 1.7050 1.7050	1,747,1 7472,0 2905,0	4691.J	0.0550 0.0346	0.0244 0.0194 0.0040		0.0000a -0.00000		62100.0	AL VALIABLE			04590 04592	
LE DISCRIMIN COMPUTING 2	3LES 20		5 J 8																						€ 000°0- 00000°0- 0000°0-	CURBELATIONS	0.0147	PUR CANUNICAL	-	22410 2253 2010 2010 2010 2010	7.78173 1.94627 1.97851 0.41967 2.41967	193583
- STEPNIS Sciences	5	5	PROBABILITIES		GEOOF GEOOF	0.87108 0.23557 -0.36348 -0.4448	-0.206	-0-056	-0-20 -01-0-	0.577	0.675	77. E 9	46.62	AFY LAULS	7	ER VANTADLE				2 M 4 3				EI GENNALUES	0407.128 0.0000.0 0.0000.0-	CANUNICAL CUR	0.008924 0.00041	CURFFICIENTS	URIGINAL VAMIABLE	-20-10-10-10-10-10-10-10-10-10-10-10-10-10		
670070 622121	NURBER	NOR IN CR	PH104	REANS	A A H A A	- ~ m 3	2.00	• ~ •	° ₽ ₽	122	¥ 21 \$	191	70	SURFAF	14.15	NUMP	- 7	m # A	0.~ 0. 7	217	155	11	35 20 20	K 1 6		CAN		CUE	URI	- 1 - 1 +	~ ~ ~ * *	10

			,	* 3 # 1	7 10 13 17	******	6 01			U.		3339	666	66666	10						
		,	-0.512	-0.557 0.124 -0.607	-0.038	1.139 -0.319 0.040 -0.537 1.061 -0.431 -0.431 2.218	0.407			ł	-0.513 -0.793 1.292 0.084	-1.178 -1.178 2.352 -0.348 -0.175	-1.187 -0.263 -0.998	0.517 0.904 -0.001 -2.815 0.763	-2.692 -0.196						
		,	-5-348 -4.284	-4.931	-5.248	-4.910 -1.762 -1.762 -1.927 -1.927 -2.599 -4.739				X	3.553 3.486 6.740 4.386 4.961	3-727 3-727 4-516 3-656 3-402		r. 550 5. 216 4. 810 3. 482 1. 216							
		0 0 0	31 31 32 33	45 26 26	86 66 67	893 893 893 893 893 893 893 893 893 893				CASE	25665	16 37 39 40	E E E E	84 85 85 88	66						
			-1.681 0.505 1.167	-0.017 -0.497 0.692	-0.126	-1.378 0.470 0.169 -0.358 -0.358 1.154 1.154 1.138	0.696 0.696			Ŧ	-0.087 0.257 0.906 -0.248 -0.897	-0.49/ 0.087 0.018 0.018 0.018	2.593 -0.689 3.799	2-158 -0.045 1.840 -1.454	0-674						
			-4.392 -2.505 -4.333	- 3.243 -4.152 -4.549	-5.521 -5.521 -5.170	-7.372 -6.610 -6.610 -6.3105 -5.915 -5.915 -4.597 -4.234				×	3.546 3.705 4.570 3.155 5.124	1. 580 4. 012 7. 765 4. 449 3. 309	294 401	4, 843 6, 150 3, 051 4, 205	66 7						
	s		21 22 23 23	24 25 26		71 72 75 75 75 78			c	CASE	23	23 23 30	712	74 75 75	79						
	000		-0.455 -0.346 0.909	-0.816 0.270 -1.057	-1.711	-1.372 -0.073 0.582 1.116 0.280 0.249 -1.845 0.556	107-0-1-		000-0-1	J.	-0.075 0.484 -0.479 0.510 0.012	-0.061 -0.628 -0.643 -1.207	0.127 0.374 0.515	0.300 1.735 -0.355 -0.150 0.567	0.124 - C.922						
	ABLE 148LE 		100	5 1 9 8 8 3 8		100 - 4. 799 - 4. 243 - 4. 819 - 4. 210 - 7. 394 - 7. 209 - 3. 635	6 0 4 4 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	8LE A ALE		-	5. 158 6. 097 3. 698 4. 497 4. 497	255	6-985 6-076 5.080	5. 313 5. 669 4. 093 2. 509 3. 811	4. 552 5. 453						
	TCAL VABIA	0	22 - 00 -	# 10 10 h				TAPIA L VARI	COPPLKATES	¢0 €	12 1 1 2 1	11 11 20	61 61 63	х 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	69 70						
	FIRST CAMONICAL VARIABLE SECOND CANONICAL VANIABL MANANONIMANE		инък ППР. - 0. 847 - 1. 252 - 0. 220	-0.697 -0.058 -0.293	0.008 0.100 0.648	45 KUUNKU - 1. 619 0. 122 - 0. 389 - 1. 776 0. 772 0. 347 0. 347 0. 339	0.086	PIRST CANONICAL VAPIABLE Second canonical variable	TPAN COOP	¥ OUTSH'S LS	0.905 1.041 0.687 0.092 1.699	0-949 0-764 0-779 0-574 1.563	-0.702 -1.697 -1.697 -1.081	-1.301 0.221 -0.880 -2.341 -0.021	-1.428 -0.320						
		: 5 +	ALBERTAH -5.042 -5.141	-4.107 -4.485 -5.765	-4.877 -5.321 -7.867	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	- 4. 317 - 5. 389		U	х И ВІ КТА (4.998 0.905 4.366 1.041 4.832 -0.687 3.711 0.092 5.218 1.699	5.063	Ż	5.319 4.688 5.206 5.954 6.169							
	= 1 00000			34.05		222222228		н I I	GROUP I		- ~ - ~ - ~ ~		52555	54 55 56 58	60 60						
	t	0							6							0.00002		0.00177 0.00438			
	GROUPS															001		60233			
	KNOWN GRO X C															0.0000-0-		0-00			
	PRIORI ESIUS NICUTHYS				х С 1.88311	0. 19275 0. 07025 0. 12875 0. 14718 0. 15865 0. 15866 0. 15868 0. 15699 0. 13151	0.06654 0.10031 0.94467 0.94467 1.24249 0.90604 0.14409 0.95695 1.48677									0-00001-0-0-01001		0.00303 0.00330			
	TEST II DED IN A KKIS COU			SNC	a: eo				13T IC	500	0601 0554 0519 0482	6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	23	27		30		33.55			
	IANCE INCLUI ANANAS ANANAS			0	GROUP 1.66176	0-36070 0-0469 0-12711 0-191963 0-1771 0-1775 0-1775	0.16087 0.26750 0.26750 0.41949 1.14151 1.14151 0.77960 0.77960 0.77960 1.14151 1.92526 1.92526		R-STATISTIC	0 20			00000			0.00002		0.00465 0.00193		1. 14591	
	U GROUP SRTA +			STANOARO	RIAALE 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		NCLUDED							00000		00478 00152		ι	
	ALL ALBE			ST	A A				MIMBER 1		. ~ ± V & A	8 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1	E 35 4 1	19		0.0-		0.0		CONSTA	
						, v a a o a c o v v	ი ტიფილი ს ფი ტი.		N ARIA							0.00001-0-0-0		.000400.			
4.	S LA		100 0.5000		7.5579	++ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.4285 1.07219 1.90418 1.90418 1.9074 4.82074 3.13462 6.56524 5.034999 12.57000 12.57000		TO RMOVE							0-0-		0.0		1.18479 .18479 .48315	-02005 -021916 021916 4.41164 -002058 -002826
+	RALTSI TT, UCI		100						P VALUE T RMTPR OR RE	9.1096	40.2512 16.7103 13.0501 14.4820	1. 2769 1. 2769 1. 8769 2. 3979	1.0251	0,000 0,0050 0,0050 0,000 0,000 0,000 0,000		00000		00831	ALL P	30-0	1 1 1
TABLE	 STEPMISE OISCHIMINANT ANALYSIS SCIENCES COMPOTING PACILITY, UCLA OP VARIABLES 		GRODP 0.50		70794		0.18789 1.06789 1.92376 1.94109 4.77753 3.25996 63.109999 63.109999 13.53999		d L N G	62	3					0-0		00	L VARIAUL	11 51 61	15 17 17 17 17 20 20
	POTING 20	2	PACH		~ •	-000000000			VAGIARIE EMTEPED RPMOVPD							00015	LATICNS	01229	CAY OF ICAL		
XIC	WISE O Es con IABLES	Selo	CASES IN RAPILITIPS		41294 41294	73779 73779 56569 68069 68069 68069 68069 68160 88160 88160 88760	1. C7649 1. C7649 1. R1469 1. P3959 4. 72894 3. 01119 3. 01119 3. 01119 66. 97959 66. 97959 11. 78000 28. 51999		PED R							-0- 0	BRE	9°°0	e Ú J	1 05486 91379 49013 21373	2.81261 -1.09117 0.5P412 6.644307 -2.05565 -4.07406
APPENDI	- STEPNISE 0 Sciebces com of Variables	OF GROUPS	PROBABILITIES	;	6.1			-	1 TH 2	= ^	r cerc			 	52078	42146 00000 00005	CAL CO	с7А4 7 00120 00683	CORPETCIPATS	LF	
APP	BROO74 BEALTH NURBER	NO 98 88	9 80199 9 80199	SHYLL	VARIARLI 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2112 2112 2112 2112 212 212 212 212 212	SORTAR	STPP NDM8PR	- ^	1 m a v + h	e e 515		51 51	SULVENENTS	22-0-	CANDUICAL	0.00	LIARDU	19 19 19 19 19 19 19 19 19 19 19 19 19 1	

 X
 Y
 Y

 -4.557
 2.001
 -0.449

 -4.557
 -0.651
 -0.449

 -5.011
 0.874
 -0.495

 -5.011
 0.873
 -0.651

 -5.012
 0.873
 -0.651

 -5.013
 0.875
 -0.657

 -5.014
 0.515
 -1.278

 -5.015
 0.5155
 0.5156

 -5.125
 0.1576
 -0.757

 -5.049
 -0.725
 -0.675

 -5.049
 -0.725
 -1.278

 -5.049
 -0.725
 -1.278

 -5.049
 -0.725
 -1.277

 -5.049
 -0.725
 -1.278

 -5.049
 -0.725
 -1.277

 -5.049
 -0.725
 -1.275

 -5.049
 -0.725
 -1.275

 -5.049
 -0.725
 -1.275

 -5.049
 -0.725
 -1.267

 -5.1719
 -0.725
 -1.267

 -5.1719
 -0.725
 -1.267

 -5.1719
 -0.725

Construction (Construction) Construction (Co

APPENDIX TABLE 15.

					- 0, - 1, - 1, - 1, - 1, - 1, - 1, - 1,						10/ -1- 	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-2.1)5			¥	1	-4.786 -6.132							
					11.606 9.582 11.057 11.52 11.11 12.135	1 17					- 11, 0, 11, - - 10, 012 - 12, 400 - 12, 4, 13 - 12, 1, -						- 7. 673 								
											• • • • • • • •					0	1								
				¥		- 1 - 1 - 1				,	2410 2410 2410 2410 2410 2410 2410	-10.01- 72+.0- 71.11.11 711.11	l.∡no			ж	- 1, 66 J - 4, 24 0 - 4, 235 - 4, 232 - 4, 232 - 4, 50 J - 4, 50 J - 4, 50 J	1961-1-5							
				×	11.00 11.00 12.00 11.25 11.25 11.220	11.572				~	-10.533 -10.653 -13.736 -11.247	-13.47 	رد ن. ۱۱ -					697°6-							
																CASE	1	1 1 1 1							
				Y	1.825 -1.825 -1.213 -1.203 -1.203 0.8505 0.505	J. 424 -1. JU5 U. 149 Z. 659				Y	-0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	-0, 415 0, 543 -0, 543 -0, 546	€ ℃ € °∩-				- 3, 246 - 4, 320 - 4, 320 - 4, 320 - 14, 546 - 14, 557 - 3, 041 - 3, 041								
					10.240 9.515 11.642 10.173 10.173 12.299	9.126 11.578 11.407 12.293				×	-11.277 -11.744 -11.447 -11.447 -10.557 -11.408	- 10, 497 - 11, 833 - 11, 848 - 11, 641	- 1.0 . 4 46			×	-7.417 -7.422 -8.360 -8.582 -7.682 -7.632 -7.632 -9.524 -9.524 -8.454	-10.767 -н.695							
			000		24 25 24 26 26 26				(n		22223				Ť 7	S S	57777777777777777777777777777777777777								
			34 -1.	¥	0.544 -0.544 -0.544 -1.021 0.021	-1.004 -0.731 -0.731 -0.506 -0.504			()),,)- + è	¥	v.Ulo 1.030 -0.456 -1.965 -1.965	-0.557 -0.552 1.484 2.211	- J. 24 J		ö•€- č⊭b	¥	- 3, 075 - 3, 075 - 1, 516 - 1, 516 - 4, 340 - 4, 340 - 2, 451 - 2, 451	-1.372 -4.699	- 4 . 4] 7						
	4 1 1 N	LADLE	£5 11.4		12. 904 11. 679 12. 008 11. 777 11. 773	4,104 10,155 11.802 11.802		AULE IAULE	Ei - 11.4	~	-11.522 -14.241 -14.246 -11.5520 -10.620	-12,459 -11,85 -11,315 -12,734	-1.45 SB5	Adwe LAble	- Q	y	- 6.523 - 6.232 - 9.2024 - 9.2024 - 10.148 - 9.23 - 9.303 - 9.103	-10.051 -8.470	-8-543-						
	THAY	AL VAR	HDINATES		[]]]]]]]]			I FAV IA	CUURDINATER	LASE	2 7 7 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1225	07	HVA TV TXVA T	L L				41						
	A NUNICA	SPCOND CANONICAL VARIAGLI	MEAN LUU	X	0.005 1.142 1.142 0.344 0.344 0.466	4-4-4 0-434 0-434 -1-434		FITST CANDALCAL VASIABLE SFCONJ CANONICAL VARIABLE	*EAN COU	Y	1.445 - 0.04 1.547 0.400 - 0.114	u. 319 U. 244 U. 577 1. 348	- L. JUB	FIFSI LANUNICA∟ VANIAULE SFCCNJ LANUNICAL VANIAULE	KeAN LUO	¥		- 1. 740	- 5. 274 - 4. F11 - 4. 645 - 5. 645 - 657 - 657	-4, 364 -3,960 -5,6007 -5,007					
		= SPCOND	Ł	×	12.492 12.492 12.993 11.104 11.104	12. 354 12. 338 11. 470 13. 950		= FIVST =	J	×	-10.572 -11.447 -10.286 -11.392 -11.392	-11.349 -11.069 -11.137	-12.042	= 5£C¢01 = 2£C¢01	<u>-</u>	×	-10.204 -10.556 -10.331 -8.007 -8.194 -9.796 -9.136 -9.136	1 5 1 " P -	-4, 74 -8, 976 -10, 174 -9, 171 -9, 131 -9, 131	-7.502 -1.521 -10.236 -6.925					
		× ×	\$800 P	CASE	F 01 7 3 6 2	7 8 10		* *	d no An	LASE		~~ r ~ 7	10	* *	GPOUP		- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~								
an P GROUP			¢.	. 286 15	0.12435 0.04710 0.07171 0.08290 0.47807 0.47807	.06581 .08658 .06634 .01811	11489 11489 11307	0.07	- 67 47 U • 11361 • 40042	. 1691 .									3. 50002 -0.0003	. ເມີນ ເ	1, 11 15 5 5				
durono regionaria. durono regionaria																			1.001 (.b.	1,1057	1410				
BARA RIORI RIORI				J 10 10 10 1 10 10	0.2014 2.205 2.205 2.205 2.205 2.205 2.25 2.25	0.0140 0.0140 0.0149 0.0	U. 0 40 20 20 20 20 20 20 20 20 20 20 20 20 20	0.1.5474 U.25474 U.22594	0.03340 2.87304 2.87304	1.41652									1						
TRANSFORMED S. R. C. A. P. OTT K. A. P.		- 14 - 1										1 - 1 - 1 - 1	1+1-1		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1100	7 4 6 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 / m	1 11 6 0 0 4 m -	4.441	0.4 J. v 1.0				
COMMERCIAL TRANSFO ALBORTA CROUPS B. C MANANASE D. DEUTE K (TOOL, TOOL, TOOLS)		Deviation	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	012-0	0. 11110 0. 0449. 0. 04650 0. 07675 0. 07675	25-10-0 25-10-0 25-10-0 25-10-0	0.11.7		1.1.1.4 5.4.14	1010.2		e state e		::::::	* * * * * * *			1		< 51 0 C * L	u 1×0				
(*QEARE-ROLD) ALIO.RTA GROUP MANASET CORR LTOOL, TOOL, LU		STARDAF D		PIANLE 1	~~======		-1	v =	ນາຕ	-		it LUL alb							1 0000 - 0-				-0,04418 -0,11204	U. 01949 h. \$6768	
1.1.1		115		4 A P			'		,	~		NBRAL OF	ſ	1* 3 V 2 ~ 1	+ 6 J	11		17	01 000 4 0 -	14100.0	116-06 -0		0- 41 70 -07	TANT	
	Ţ.	0 5151-0	۵.	177	1.23885 U-59900 U.6546J U.73526 U.69002	1 36 / 38 90 700 4 5 184 34 02 52	50 160 4004 7 315 75	16210	70894 94360 24508	11475		1.42 VAS							1 000 00	111.0	12100.				<u>بد</u> ا
۲.1. ترله				5°-1	~~~~~	, , , , , , , , , , , , , , , , , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.21	1		LJ - TL Uk h 40	~ 2 7 7	1411 1411 1412 1413 1413 1413 1413	10.4	1162	1.14/7 14/2 1.12/2 1.12/2 1.12/2 1.12/2 1.12/2 1.12/2 1.12/2 1.12/2 1.12/2 1.12/2	1 1 1				Ļг	' 0. 1 J. 4 . 35.06	11. 31277 2. 060 11 7. 64. 11 1. 45776 14. 97769 14. 97769	1.121.4
ANT ASA4 A.L.LTT?,	-	166,0			1, 50 / 2 8 0, 6 4 0 0 2 0, 6 4 9 0 2 0, 6 4 9 0, 7 1 6 4 7 0, 7 1 6 4 7	19437 1942 2006 1-840	1 10/21 2 1 0 1 1 2 1 0 1 1 2 1 0 1	11011	75671 44034 24 34	6.07 § 8		1 1.1.1 - 1. - 1 1 1 1.	349 J.					5		4110.V	0.00247 0.01:44	L VANIAUL			
 Therefore advantables Askered. a point of contract sheet. b factors 	EAL IS	- 1.										VANTAULS 							01000°0 1000°°0	0.1744	u., J. 1, 4, 2 u., v. 10, 16	K LANURICAL			
 Trietor Trietor Trietor Trietor 	s alla s a s a s a	14 F L L L T L	1 î.	and the state of	1. 11045 0. 10915 0. 75176 0. 75176	0.0111 0.0111 0.0111 0.0111 0.01110	1, 121 1	U 113 .1	1.1.1.1	6.501 "0."	**. 2.	ا میکام اندامین ۱۹۰	11	- 1726	272	3			- 1 .	H et C	U. JUDE 1	5.T.S	E 1 157 = 1, 157 = 1, 157	- 11, 11776 - 12, 12, 23 94 - 2, 11104 - 13, 43 35 2 - 13, 43 35 2	
1981-0299 1982-0291(2 1981-021	NUMPER OF	PREMI PARMARLUITIC *-A%		^	- N ~ 3 / 2 '						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	atter Vinter	-			252		2 F 7	<pre>x10F54444x1x - x11F 181, x211F</pre>	L R WIR JURL	0°°C	COFFFIC TENTS	DATGINAL VAPIACLE 1 2	- = = = = = = = = = = = = = = = = = = =	e 7
21 22 X		- 1																							

178

APPENDIX TABLE 16.

25 S

ALBERTA PHINICFTHYS ONLY PRINCIPAL COMPONENTS ANALYSIS - CLUSTAN 1C NUMBLE OF CASES = 50 NOMBLE OF BINARY VARIABLES = 0 NUMBER OF NUMERIC VARIABLES = 21 (SQUARE-ROOT TRANSFORMED DATA) NOMERIC MEANS AND STANDARD DEVIATIONS VAHIABLE MIN1MUM VALUL MAXIMUM VALUE 1 2-6650 0-2303 2.1213 3.0822 1.3307 1.0583 0.1113 1.5166 0.5745 1.0000 2 3 0.0350 3 0.8367 0.0965 0.6245 4 5 0.7320 0.0588 0.0743 5 C.8307 U.9055 6 0.5916 6 7 0.1032 0.8937 7 1.0630 0.6270 8 8 9 0.5000 0.7211 0.0827 9 0.6000 0.9381 0.4419 10 11 10 11 0.2646 0.5477 0.6110 0.0693 12 13 0.8268 0.0769 0.6557 12 0.9899 0.0969 13 1.1747 1.928° 1.3361 0.1677 14 15 14 1.5906 2.2204 15 1.0000 1.5362 2.1034 0.1903 16 17 16 17 1.6793 2.4352 1.9698 0.7290 67.7000 18 0.1046 0.9055 18 0.4899 19 3.6100 19 60.0000 11.5400 1.1466 20 20 9.0000 14.0000 21 2,0001 21 25.0000 33.0000 EIGENVALUES 1.31 1.02 0.01 0.01 0.79 0.52 0.26 0.20 0.12 0.09 0.08 0.07 0.06 0.06 0.04 16,28 C.04 0.02 0.00 0.02 0.00 PERCENTAGE VAFIANCE 77-51 €.22 4 . BF 3.74 2.47 1.22 0.96 0.56 0-42 0-40 0.35 0.28 0.27 0.19 0.21 0-11 0.07 0.05 0.02 0.02 0.09 CUMULATIVE VAFIANCE 77.51 63.72 88.59 92.33 94.80 96.02 96.98 97.54 97.97 98.36 98.71 98.99 99.26 99.47 95.65 99.76 99.84 99.91 99.96 99.98 100.00 EIGENVECTOFS - EY FOLS VECTOR 1 0.245 0.242 0.226 0.240 0.240 0.238 0.238 0.240 0.241 0.234 0.212 0.232 0.226 0.243 0.236 0.243 0.238 0.208 0.033 0.015 0.076 VECTOR 2 -0.033-0.015 0.000-0.087 0.025 0.051-0.049 0.017-0.009-0.094 0.166-0.041 0.089-0.024-0.069-0.051 0.036-0.210 0.569 0.501 0.558 VECTOF 3 -0.049 0.056-0.054 0.063 0.003-0.068 0.031-0.033 0.030 0.080 0.165-0.009-0.113-0.076-0.058-0.019-0.082 v.162 -0.648 0.673 0.106 FIRST 3 FACTOR SCOFES -0.072 0.193 -0.322 -1.010 -0.211 -0.140 -1.569 0.180 0.043 -4.475 0.091 -2.293 -5.679 -1.103 -1.586 5.667 0.128 0.309 -1.870 0.707 1-455 S 26 S 27 S 1 2 S S 28 S 29 S 3 4 5 S s 30 s 31 S 5.667 6 0.845 1.244 0.353 -0.017 S 32 S 7 \$ 33 8 9 3.697 S 1.504 -0.753 0.751 -0.893 5 34 5 35 1.096 S 5.057 1.261 0.334 5.129 1.861 10 ŝ 0.558 0.397 1.093 -0.657 5 36 5.169 0.558 0.397 3.302 -0.042 -1.119 2.194 0.943 0.077 2.847 1.516 -0.211 0.911 0.266 -0.575 0.712 1.639 -0.895 2.000 0.200 S 11 -2.818 -0.455 -0.215 -1.934 2.738 0.711 s 37 12 13 S 2.738 0.711 S 38 S s 39 s 40 S 14 -3.893 0.499 -0.941 0.279 0.265 -4.815 15 S 5 41 5 42 16 17 -7.701 3.904 -0.804 0.248 3.085 -0.215 2.719 0.714 -0.439 -0.157 -8.485 0.748 0.692 -9.846 -1.421 -0.396 -2.887 1.159 1.936 S 5 43 5 44 18 -2.887 19 S 1.114 -1.922 -0.036 -0.412 -3.206 0.541 -0.704 -1.941 0.826 0.510 -1.837 1.716 -5.318 0.277 -5.692 -0.057 S 45 S 46 0.422 20 21 S -5.692 -0.057 -6.601 0.856 0.812 -5.092 -0.057 0.812 -6.601 0.656 -0.162 1.266 0.145 1.729 -3.121 -0.372 -1.063 -0.888 -0.118 2.176 S s 47 s 48 22 23 S S 2.001 -1.419 -0.747 S 49 S 50 24

6.448 0.219 -0.039

24 S \$ 25

\$ 50

ALBERTA COUESIUS ONLY PRINCIPAL COMPONENTS ANALYSIS - CLUSTAN 1C NUMBER OF CASES = 50 NUMBER OF BINARY VARIABLES = 0 NUMBER OF NUMERIC VAFIABLES = 21 (SQUARE-ROOT TRANSFORMED DATA) NUMERIC MEANS AND STANDARD DEVIATIONS VARIABLE MINIMUE VALUE MAXIMUM VALUE 2.6897 0.3089 2.0736 3.3166 1 1 1-3078 1.0149 1.6462 0.1425 3 0.5292 0.5196 3 0.7550 Ц 0.6853 0.0809 4 0.8485 5 0.7971 0-0834 5 0-6083 0-9798 6 0.7369 0.0937 0.5385 0.9327 6 7 0.9050 0.0970 0.7071 1.1489 8 0.6798 0.0746 8 0.5196 0.8485 0.7301 0.1688 0.0870 0.5477 0.9539 9 9 10 11 10 11 0.0909 0-0000 0.3606 0.0 1.0000 0.0 0.0 12 13 0.6164 12 13 0.3966 0.0803 0.2646 1.0002 0-1349 0.7071 1.9271 1.3093 0.2183 0.1582 14 15 14 15 1.4900 2.4166 0.9695 1..5969 2.1479 1.7367 0.2547 16 17 16 1-6125 2.7258 17 1.2570 2.2782 18 C.7588 0.0885 18 0.5831 0.9434 58.0000 62.4800 2.8734 70.0000 19 0-8572 1-4168 15-0000 20 13.2000 20 26.0000 23.4400 21 21-0000 EIGENVALUES 15.13 1.38 1.08 0.73 0-55 0.44 0.21 0.12 0.10 0.06 0.05 0.04 0.03 0.02 0.02 0.01 0.00 0.00 0-01 0.00 0_0 PERCENTAGE VABIANCE 0.19 0.12 0.10 72.04 6.57 5.16 3.49 2.60 2.11 1_01 0.56 0.47 0-29 0.23 U.15 0.06 0.02 0.01 0-04 0.01 0.0 CUMULATIVE VARIANCE 72.04 78.61 83.77 87.27 89.86 91.98 92.99 93.55 94.01 94.31 94.54 94.73 94.87 94.99 95.09 95.15 95.20 95.22 95.23 55.24 95.24 EIGENVECTORS - EY ROWS VECTOR 1 U-255 U-254 U-248 U-251 U-253 U-251 U-252 U-246 U-252 U-177 U-0 U-190 U-220 U-255 U-249 U-254 U-250 U-241 0-043 0-02E-0-006 VECTOR 2 0.006-0.025-0.005-0.055-0.019 0.032-0.017-0.014-0.042-0.246 0.0 -0.073 0.117 0.010 0.017 0.014 0.029 0.014 U.690 0.648 0.127 VECTOR 3 -0.061 0.026 0.071 0.037 0.033-0.036 0.037-0.044 0.017 0.272 0.0 0.052 0.000-0.065-0.088-0.054-0.059-0.007 -0.230 0.196 0.893 FIRST '3 FACTOR SCORES S 1 4.036 -0.913 -2.034 S 26 S 27 -0.140 0.037 -0.704 -0.729 -1.636 -1.499 0.264 -0.080 1.023 -1.824 -4.715 -0.496 -1.343 -1.497 0.023 1.075 S 2 1.351 S 3 S 28 1.032 5 29 S 30 -1.497 0.023 1.075 -1.389 -1.911 S 4 1.282 0.856 0.676 -1.146 2.454 -0.510 -1.578 -3.756 2.158 -5.419 -0.876 5 S 0.814 S 30 S 31 S 32 S 33 S 34 0.304 S 6 0.929 0.180 2.925 -1.268 -3.168 S 1.168 1.807

 3. 168
 1. 168

 8. 932
 -0.408

 5. 962
 -1.573

 5. 337
 -0.607

 4. 491
 -0.129

 1.004 8 -0-837 1.735 S -0.251 -0.496 -0.338 S -0.784 1.257 -4.362 -0.009 1_006 -0_951 0.609 s 10 \$ 35 S 36 -0.684 1.120 1.006 -7.669 -1.007 -0.537 S 37 S 38 1.868 -0.633 -0.365 -0.494 -3.058 -1.069 0.739 S 12 13 S 14 0.377 0.732 0.569 S 39 0.079 15 -6-821 -1-653 -1.080 -4.867 -0.555 -0.226 S 40 2.063 -1.012 0.143 0.047 2.698 -1.099 0.941 1.908 S 16 -0.2871-578 S 41 4-195 S 42 S 43 17 3.901 2.537 0.896 1.827 -1.441 -1.588 4.222 18 5 2.963 1.474 -0.540 3.296 -0.666 -0.237 4.149 0.980 -0.938 3.500 -0.708 -0.991 5 44 20 S 45 S 46 3.463 0.644 0.114 5 21 22 -4.149 0.980 -5.33t -0.978 3.293 0.150 -0.437 2.751 -1.021 -0.639 S 47 0.668 S -5.634 2.112 -0.089 -8.253 -0.020 0.224 2.101 0.402 -0.808 5 48 5 49 s 23 0.211 0.506 -1.429 3.087 -1.877 0.046

APPENDIX TABLE 18. Alberta control Couesius plumbeus; Raw character values, n = 50.

ALBERTA CO	NTRD OF	- FSTUS	Dition r			, araa	,		•	
601A	9.4,	2-08	PLUMBELS 0.44	·N 50 0.54	J. 7 -	0.70	1.07	0.55	0-63	0.05
U.O 602A	0 1 7 . 5 0	1.12 1.71	5.00 0.39	2.24 0.45	0.09	4.15	J.12	64.00	12.00	21.00
0.0	0.17	0.96	3.87	1.77	0.61 4.93	0.56 3.32	0.84 0.55	0_47 66.00	0.53 13.00	0.0 22.00
603A 0.0	5.40 0.11	1.28 0.69	0.34 2.76	0.32	0.49	0.39	0.62	0.36	0.36	0.03
604A	6.50	1.55	0.36	1.26 0.42	3.37 0.63	2.12 0.58	0.42 0.76	62.00 0.46	13.00 0.50	21.00 0.02
0.0 605a	0.11 6.10	0.8€	3.34	1.40	4.31	2.83	0-51	65.00	12.00	26.00
0.0	0.12	1.82 1.00	0.42 4.19	C.50 1.96	0.68 5.25	0.56 3.64	0.83 0.57	0.53 64.00	0.57 13.00	0.0 23.00
606A	8.20	1.98	0.43	0.53	0.73	0.66	0.98	0.54	0.63	0.04
0.0 607a	0.15 6.00	1.21 1.43	4.30 0.37	1.81 0.38	5.58 0.56	3.83 0.50	0.59 0.71	62.00	13.00	21.00
0.0	0.10	0.77	3.16	1.39	3.94	2.58	0.46	0.37 60.00	0.46 12.00	0.02 25.00
608A 0.0	7.00 0.13	1.71 0.90	0.38 3.58	0=45 1=67	0.60	0.52	0.76	0.44	0.48	0.03
609A	7.30	1.71	0.42	0_48	4.43 0.68	2.82 0.51	0.53 0.81	67.00 0.46	14.00 0.53	24.00 0.01
0.0 610a	0.10 6.90	1 .1 4 1 . 56	3.78	1.73	4.63	2.93	0.51	60.00	13.00	23.ù0
0.0	0.13	1.05	0.40 3.61	0.46 1.59	0.64 4.40	0.49 3.05	0.77 0.56	64.30	0.49 14.00	0.02
611A 0.0	5.30 0.12	1.29 0.76	0.35 2.76	0.39	0.47	0.39	0.63	ů.35	0.39	0.03
612A	6.80	1.62	0.42	0.45	3.38 0.62	2_10 0.51	0.46 0.81	61.00 0.45	14.UC 0.49	21.00 0.01
0.0 613a	0.13 4.30	1.06 1.05	3.52	1.53	4.39	2.81	0.61	63.00	14.00	25.00
0.0	0.11	0.55	0.28 2.22	0.30 1.01	0.40 2.60	0.29 1.58	0.50 0.36	0.31 59.00	0.30 13.00	0.01 22.00
614A U.O	7.20	1.64	0.41	0.48	0.67	0.56	0.80	0.42	0.55	0.03
615A	0-21 4-60	1.03 1.15	3.75 0.30	1.82 0.30	4_44 0_44	2.93 0.35	0.66 0.57	63.00 0.35	14.00 0.35	24.00 0.0
0.0 616A	0.08	0.64	2.43	1.12	2.89	1.73	0.34	58.00	12.00	22.00
0.0	6.90 0.17	1.64 1.06	0.42 3.47	0.45 1.79	0.65 4.28	0.55 2.78	0.81 0.59	0.43 62.00	0.49 15.00	0_02 26_00
617A	9.50	2.01	0.46	0.55	0.76	0.72	1.02	0.51	0.68	0.02
0.0 618A	0.19 8.40	1.35 1.81	4.€3 0.42	2.36 0.52	5.91 0.70	3.94 0.63	0.67 0.83	70.00 0.46	14.00 0.63	23.00
0.0	0.11	1.16	4.21	2.25	5.07	3.34	0.71	64.00	11.00	22.00
619A 0.0	8.90 0.10	1.92 1.20	0.46 4.58	0.53 2.15	0.80 5.65	0.66 3_88	0.93	0.53	0.62	0.04
620A	5.00	1.9€	0.45	0.62	0.75	0.66	0.66 1.01	66.00 0.53	14.00 0.69	23.00 C.C4
0.0 621A	0.18 5.60	1.17 1.36	4.37	2.18	5.55	3.60	0.67	61.00	13.00	23.00
0.0	0.12	0.68	0.31 2.88	0.36 1.41	0.48 3.51	0.42 2.14	0.64 0.47	0.37 64.00	0.43 14.00	0.01 22.00
6228	5.00	1.32	0.32	0.35	0.50	0.37	0.65	0.36	0.39	0.0
0.0 623A	0.11 4.90	0.67 1.18	2.60 0.30	1.28 0.32	3.11 0.46	1.86 0.35	0.41 0.58	60.00 0.35	12.00 0.35	25.00 0.01
0.0	0.08	0.59	2.58	1.10	3.23	2.03	0.53	65.00	15.00	23.00
624A 0.0	4.30 0.07	1.03 0.50	0.28 2.28	0.27 0.94	0.37 2.68	0.31 1.63	0.52 0.34	0.27 61.00	0.32 13.00	0.0 24.00
625A	8.20	1.93	0.43	0.49	0.69	0.58	0.86	0.53	0.60	0.02
0.0 626A	0.27 7.10	1.22 1.70	4.06 0.37	1.97 0.44	5.15 0.64	3.37 0.57	0.70 0.80	62.00 0.47	14.00 0.56	22.00
0.0	0.17	1.08	3.58	1.73	4.47	2.96	0.54	63.00	13.00	24.00
627A 0.0	6.90 0.16	1.68 0.96	0.40 3.43	0.44 1.55	0.61 4.35	0.52 2.83	0.88 0.49	0.43 60.00	0.53 13.00	C.04 25.00
628A	6.50	1.56	0.38	0.43	0.56	0_47	0.75	0.38	0.49	0.02
0.0 629A	0.17 6.70	1.05 1.55	3.23 0.40	1.57 0.47	4.19 0.60	2.72 0.43	0.54 0.76	59.00	12.00	25.00
0.0	0.14	1.03	3.32	1.63	4.17	2.79	0.49	0.40 58.00	0.49 12.00	0.04 25.00
630A 0.0	5.60 0.12	1.40 0.84	0.33 2.95	0.37 1.30	0.52 3.60	0.42 2.28	0_66 0.41	0.36	0.42	0.02
631A	5.00	1.22	0.32	0.30	0.45	0.36	0.60	68.00 0.30	14.00 0.38	25.00 0.02
0.0	0.13	0.76	2.55 0.35	1.15	3.14	2.16	0.44	62.00	12.00	24.00
632A 0.0	6.00 C.13	1.46 0.78	3.07	0.36 1.42	0_51 3.71	0.43 2.43	0.69 0.44	0.39 64.00	0.44 14.00	0.03 26.00
633A	11.00	2.71	0.57	0.72	0.96	0.87	1.32	0.72	0.91	0.13
0.0 634A	0.23 9.90	1.72 2.47	5.84 0.50	2.55 0.66	7.43 0.85	5.19 0.73	0.89 1.11	60.00 0.62	14.00	24.00 0.10
0.0	0.26	1.34	5.11	2.22	6.56	4.21	0.76	58.00	13.00	25.00
635A 0.0	9.50 0.25	2+22 1-34	0.49 4.80	0.€3 2.11	0.81 6.28	0.76 4.20	1.12 0.77	0.58 62.00	0.73	0.09 24_00
636A	9.00	2.28	0.48	0.62	0.82	0.65	1.06	0.62	0.70	0.05
0.0 637a	0.19 8.00	1.25 1.90	4.69 0.40	2.06 0.56	6.10 0.73	4.06 0.54	0.73	60.00 0.51	14.00 0.61	24.00
0.0	0.20	1.17	4.05	1.91	4.92	3.05	0.61	62.00	13.00	24.00
638A 0.0	7.10 0.15	1.€0 1.02	0.39 3.74	0.49 1.66	0.60 4.82	0.52 3.21	0.78 0.53	0.44 58.00	0.52 14.00	0.03 23.00
639N	6.00	1.48	0.33	0.37	0.52	0.43	0.69	0.40	0.47	0.04
0.0 6401	0.09 5.50	0.80 1.36	3.12 0.31	1.49 0.37	3.79 0.49	2.50 0.38	0.49 0.56	59.00 0.36	13.00 0.38	23.00
υ_Ο	0.07	0.70	2.81	1.17	3.56	2.35	0.46	EJ.00	13.00	23.00
641A 0.0	9.30 0.35	2.1E 1.10	0.50 4.77	0.56 2.20	0.77 5.70	0.70 3.90	0.99 0.69	0.54 62.00	0.62	0.05 23.00
642A	7.50	1.72	0.40	0.46	0.62	0.57	0.83	0.46	0.54	0.0
0.0 643A	0.19 8.80	1.99 2.23	3.90 0.45	1.80 0.63	4.92 0.79	3.30 0.73	0.58 1.05	68.00 0.62	14.00 0.65	23.00
0.0	0.20	1.09	4.60	2.08	5.55	3.67	0.72	65.00	14.00	0.10 26.00
644A	8.90	2.18	0.43	0.61	0.79	0.73	1.00	0.64	0.66 13.00	0.04
0.0 645A	0.13 8.60	1.15 2.00	4.51 0.43	2.18 0.58	5.65 0.72	3.75 0.73	0.60 0.94	61.00 0.59	0.68	22.00 0.09
0.0	0.15	1.11	4.32	2.23	5.39	3.49	0.78	67.00	13.00	24.00
646A 0.0	9.40 0.26	2.16 1.08	0.48 4.82	0.65	0.79 5.74	0.75 3.61	0.97 0.85	0.59 63.00	0.68 13.00	0.07 22.00
647A	8.60	2.10	0.45	0.60	0.70	0.64	0.93	0.60	0.57	0.05
0.0 648A	0.27 8.40	1.10 1.98	4.41 0.40	2.01 0.58	5.51 0.72	3.43 0.63	0.76 0.96	65.00 0.58	13.00 0.63	23.00
0.0	0.23	1.03	4.40	1.84	5.34	3.49	0.71	61.00	13.00	22.00
649A 0.0	7.50 0.18	1.72 0.97	0.40 3.84	0.44 1.79	0.62 4.94	0.57 3.36	0.85 0.53	0.47 65.J0	0-54 13-00	0.01 22.00
650A	8.40	1.93	0.45	0.55	0.75	0.63	0.88	0.51	0.59	0.10
0.0	0.38	1.11	4.23	2.07	5.17	3.32	0.76	61.00	12.00	23.00

-

				Kaw	charac	ter	values	s, n	= 50.	
ALBERTA CON	TROL	RHINICHTH	AIAL ST	RACTAE	N 50					
401A	1.50	1.73	0.23	0.05	0.00	0.04	0.75	0.40	U. tZ	0.11
0.37	0.71	1.01	3.78	1.52	4.45	2.84	0.52	70.00	12.00	27.00
402A	7.00	1.68	0.24	0.68	0.55	0.57	0.75	0.38	0.62	0.17
0.41	0.58	0.92	3.46	1.89	4.15	2.55	0.45	67.00	11.00	28.00
403A 0.37	6.70	1.68	0.24	0.63	0.51	0.56	0.68	0.35	0.57	0.18
404A	0.57 6.00	1.02 1.46	3.41 0.23	1.69 0.52	4.29	2.82	0.43	68.00	12.00	27.00
0.30	0.57	0.83	3.09	1.43	0.47 3.61	0.45	0.61 0.35	0.32 74.00	0.50 10.00	0.12 26.00
405A	5.50	1.35	0.21	0.49	0.44	0.45	0.62	J.29	0.46	0.12
0.28	0.52	0.77	2.85	1.48	3.36	2.20	0.30	67.00	9.00	27.00
409A	8.50	2.30	0.32	1.00	0.69	0.71	0.96	0.48	0.88	0.29
0.57	0.84	1.27	4.48	2.05	5.24	3.44	0.78	67.00	11.00	31.00
410A 0.51	7.50	2.05 1.00	0.24 4.01	0.83	0.58	0.56	0.81	0.43	0.76	0.28
411A	8.10	2.04	0.29	1.7E 0.87	4.78 0.63	3.09 0.63	0.69 0.87	69.JO 0.47	13.00 0.83	29.00 0.26
0.50	0.81	1.16	4.28	1.90	5.02	3.15	0.76	71.00	12.00	28,00
412A	7.10	1.89	0.28	0.77	0.54	0.61	0.79	0.37	0.69	0.22
0.45	0.72	1.00	3.74	1.84	4.34	2.73	0.65	73.00	11.00	32.00
415A	8.60	2.23	0.29	0.94	0.65	0.66	0.90	0.50	0.85	0.30
0.52 416A	0.86 7.40	1.22 2.06	4.39 0.25	2.10	5.51 0.55	3.63	0.66	70.00	10.00	33.00
0.47	0.77	1.00	3.90	0.81 1.85	4.58	0.59 2.81	0.80 0.69	0.44 73.00	0.71 11.00	0.26 31.00
4174	6.20	1.54	0.26	0.56	0.47	0.49	0.65	0.32	0.54	0.18
0.36	0.59	0.92	3.19	1.54	3.89	2.49	0.45	67.00	11.00	27.00
419A	E.30	1.53	0.26	0.59	0.47	0.52	0.74	0.37	0.60	0.13
0.41	6.67	0.89	3.26	1.53	4.02	2.56	0.41	70.00	13.00	33.00
426A 0.27	t.00 0.E4	1.44 0.99	0.22 3.07	0.51	0.45	0.47	0.63 0.40	0.35	0.50	0.11
427A	5.80	1.39	0.20	0.50	3.57 0.41	0.45	0.55	74.00	12.00 0.53	30.00 0.12
0.30	0.59	0.85	3.14	1.35		2.42	0.39	73.00	12.00	25.00
42BA	5.00	1.29	0.20	0.46	0.39	0.36	0.52	0.26	0.42	0.10
0.25	0.50	0.61	2.56	1.29	2.85	1.62	0.36	66.00	11.00	30.00
429A	4.00	1.21	0.18	0.41	0.37	0.36	0.50	0.26	0.40	0.08
0-20 431A	0.46 4.50	0.72	2.53 0.19	1.11 0.39	2.94 0.34	1.88	0.31 0.45	65.00 0.25	12.00 0.36	30.00
0.19	0.43	0.62	2.56	1.00	2.82	1.66	0.24	63.00	10.00	26.00
441A	£.10	1.68	0.22	0.63	0.50	0.50	0.67	0.35	0.54	0.17
0.39	0.55	0.24	3 0	1.38	3.69	2.32	0.42	64.00	13.00	31.00
443A	5.60	1.41	0.22	0.52	0.46	0.41	0.60	0.26	0.46	0.16
0.28 444A	0.53 5.60	0.78	2.89	1.42	3.36	2.15	0.36	67.00	12.00	28-00
0.27	0.45	1_40 0_81	0.21 2.91	0.48	0.43 3.52	0.42	0.58 0.36	0.29 64.30	0.47 12.00	0.12 28.00
4464	5.00	1.40	0.23	0.47	0.44	0.42	0.48	0_29	0.44	0.12
0.25	0.49	0.72	2.7B	1.26	3.09	1.88	0.32	72.00	13.00	25-00
433A	7.10	1.79	0.29	0.72	0.61	0.61	0.85	0.38	0.69	C. 18
0.42	0.79	1.19	3.66	1.76	4.65	2.92	0.60	63.00	13.00	29.00
434A 0.28	6.00 0.64	1.50 0.99	0.26 3.16	0.55 1.52	0-42 3.74	0.50	0.59 0.46	0.36 70.00	0.56	0.17 26.00
435A	6.80	1.75	0.26	0.64	0.51	0.55	0.73	0.36	0.59	0.19
0.40	0.63	1.03	3.53	1.72	4.30	2.81	0-49	63.00	14.00	26.00
436A	6.40	1.69	0.26	0.63	0.48	0.50	0-67	0.34	0.50	0.17
0.42	0.70	0.83	3.31	1.62	4.11	2.57	0.51	66.00	13.00	29.00
440A 0_30	6.0C 0.55	1.51 0.82	0.25 3.09	0.56 1.52		0.50	0.63 0.52	0.34 64.00	0.52 10.00	0.16 27.00
449A	8.90	2.19	0.32	0.97	3.80 0.66	0.78	1.04	0.49	0.81	0.28
0.42	0.88	1.38	4.80	2.23	5.44	3.56	0.63	71.00	10.00	26.00
450A	8.50	1.90	0.27	0.80	0.58	0.69	0.91	0.45	0.68	0.22
0.38	0.77	1.27	4.38	2.31	5.28	3.56	0.69	72.00	12.00	29.00
451A	8.30 0.79	2.03	0.29 4.48	0.80	0.60 5.20	0.67	1.06 0.66	0.44 66.00	0.72	0.26 28.0C
0.45 452A	8.50	1.28 1.98	0.30	2.11 0.76	0.58	0.61	0.99	0.43	0.73	0.25
0.37	0.80	1.17	4.35	2.36	5.12	3.32	0.70	64.00	10.00	30.00
453A	8.20	1.8E	0.30	0.78	0.60	0.68	0.90	0.45	0.72	0.21
0.39	0.75	1.09	4.29	2.21	5.05 0.59	3.35	0.57 0.92	65.00 0.46	11.00 0.68	27.00
454A 0.38	8.2C 0.76	1.93 1.28	0.29 4.37	2.07	5.15	3.44	0.54	68.00	11.00	28.00
455A	8.00	1.92	0.29	0.80	0.61	0.60	0.97	0.45	0.73	0.25
0.40	6.83	1.18	4.17	2.04	4.91	3.20	0.68	69.00	12.00	29.00
456A	8.90	2.12	0.33	0.84	0.64 5.70	0.72 3.88	1.11 0.53	0.52 69.00	0.81 13.00	0.24 30.00
0.45 457A	0.76 8.70	1.27 2.20	4.68 0.28	2.10 0.86	0.65	0.77	1.10	0.50	0.81	0.29
0.45	0.84	1.27	4.65	2.33	5.40	3.47	0.61	67.00	12.00	31.00
458A	8.20	1.95	0.30	0.78	0.65	0.66	0.95	0.48	0.70	0.23
0.39	0.76	1.27	4.40	2.04	5-18	3.47	0.55	70.00	11.00	28.00
459A	7.70	2.00	0.28	0.80	0.60	0.66	0.97	0.44	0.68 12.00	0.21 30.00
0.44 460x	0.67 8.10	1.13 1.90	4.1E 0.27	1.97 0.77	4.93 0.62	3.23 0.70	0.40	68.00 0.45	0.73	0.22
0.40	0.75	1.19	4.23	2.12	5.04	3.34	0.48	72.00	13.00	29.00
461A	7.50	1.77	0.27	0.68	0.56	0.55	0.91	0.42	0.68	0.20
0.35	C.71	1.09	4.00	1.95	4.70	3.05	0.46	68.00	11.00	30-00
462A	7.40	1.79	0.28	0.68	0.57	0.59	0.86	0.43	0.62	0.19
0.37	0.63	0.98 2.06	4.01 0.28	1.88 0.93	4.81 0.58	3.15 0.65	0.42 1.10	73.00	12.00 0.82	30.00 0.2€
463A 0.46	0.83	1.14	4.16	2.19	4.92	3.16	0.82	69.00	12.00	26.00
4648	7.80	2.00	0.27	0.88	0.58	0.61	1.00	0.48	0.77	6.27
0.48	0.77	1.04	4.02	2.14	4.81	2.95	0.77	63.30	14.00	28.00
465A	7.40	1.90	0.26	0.82	0-55	0.53	0.84	0.38	0.63	0.23
0.42	0.68	0.95	3.98	1.80	4.60 0.55	2.96 0.53	0.56 0.87	68.00 0.40	11.00 0.69	28.00 0.22
466A 0.41	7.40 0.77	1.89 1.00	0.26 4.10	0.83	4.59	2.96	0.66	64.00	10.00	27.00
467A	7.10	1.81	0_24	0.75		0.55	0.79	0.38	0.65	0.20
0.34	0.69	0.86	3.64	1.81	4.72	2.59	0.65	60.00	10.00	25.00
468A	7.00	1.80	0.25	0.72	0.51	0.51	0.80	0.42	0.62	0.19
0.31	0.68	0.81	3.55	1.76	4.52 0.54	2.58 0.53	0.65 0.86	62.00 0.40	11.00 0.66	27.00
469A 0.33	7.20 0.80	1.79 0.99	0.26 3.66	0.78	4.54	2.73	0.64	60.00	12.00	27.00
470A	7.80	1.97	0.26	0.84	0.56	0.58	0.96	0.45	0.69	0.25
0.35	0.73	0.90	4.07	2= 04	5.12	3.02	0.76	68.00	10.00	28.00
471A	5.50	2.26	0.32	0.95		0.82		0.51	0.80	0.27
0.42	0.98	1.24	4.93	2.30	5.93	3.60	0.80	69.00	12.00	30.00

plumbeus; Raw character

values, n = 50.

KANANASKIS	APPARANT	COUESIU	S PLUMBE	1.5						
601 0.0	10.20	2.31 1.62	0.49 4.95	U. 67 2.48	J.82 6.57	0.78	1.18	3-64	U-ot	0.65
602	12.10	2.57	0.58	0.75	0.92	4.52 0.89	0.72 1.32	65.00 0.75	14.00 0.88	24.00 0.11
0.0 603	0.22	1.78	6.10 0.60	2.72 0.79	7.63	5.31	0.85 1.58	68.00 0.70	14.00	25.00
U.O 604	6.26 11.50	1.75	6.26 0.55	2.75 0.76	8.15 0.91	5.72	0.84	61.00	13.00	22.00
0.0	0.22	1.55	5.38	2.88	7.27	4.97	1.26 0.90	0.71 60.00	0.94 15.00	0.06 27.00
605 0.0	10.00	2.21	0.50 5.16	0.61 2.33	0.83 6.38	0.77 4.40	1.10 0.71	0.58 65.00	0.78	0.05
606 0.0	10.60	2.35	0.51 5.25	0.72	0.85	0.79	1.20	0.69	0.83	0.04
607	9.80	1.97	0.50	2.40 0.60	6.74 0.79	4.47 0.71	0.78 1.07	61.00 0.55	13.00	24.00
0.0 608	0.12 9.50	1.21	4.73 0.52	2.28	5.86 0.78	3.90 0.75	0.77 1.13	70.00 0.54	13.00 0.76	27.00 U.03
0.0	0.28 8.70	1.27	4.85 0.48	2.11 0.58	6.08 0.73	4.20	0.71	63.00	14_00	24.00
0.0	0.19	1.20	4.32	1.97	5.42	3.52	1.07 0.62	64.30	U.70 14.00	0.05 24.00
610 0.0	P.20 0.22	1.85	0.46	0.57 1.92	0.65 5.10	0.60 3.27	1.04 0.65	0.49 63.00	0.69 15.00	0.03 26.00
611 0.0	5.E0 0.20	2.15 1.26	0.52	0.61 2.20	0.78	0.67	1_11	0.55	0.71	0.04
612	7.40	1.68	0.44	0.48	0+64	6.47	0.71 0.92	62.00 0.49	14.00 0.58	21.00 0.03
0.0 613	0.17 7.00	0.99 1.72	3.74 0.43	1.70 0.49	4.69	3.15 0.55	0.54 0.88	62.00 0.45	12.00 0.52	22.00
0.0	0.17 €.60	0.91	3.59	1.84 0.43	4.42 0.58	2.78 0.47	0.50	60.00	13.00	25.00
0.0	0.15	0.92	3.27	1.56	4.26	2.86	0.75 0.54	0.44	0.48	0.02 23.00
615 0.0	₹.90 0.20	1.59	0.41 3.46	0.44 1.84	0.60 4.47	0.56 3.01	0.78 0.63	0.48 61.00	0.50 11.00	0.05 22.00
616 0.0	7.10	1.66	0.40	0.49	0.64	0.57	0.79	0.43	0.52	0.05 24.00
617	7.00	1.60	0.36	0-46	0.63	2.87 0.44	0.54 0.75	65.00 0.42	14.00 0.49	v. 05
0.0 618	0.17 5.30	0.97	3.45 0.32	1.80 0.32	4.32 0.46	2.80	0.57	61.00 0.37	13.00	24.00 0.01
0.0	0.11 £.00	0.60 1.47	2.70 0.38	1.35	3.33 0.50	2.18 0.49	0.37	66.00 0.40	14.00	23.00
0.0	C.25	0.86	3.09	1.44	3.75	2.35	0.51	60.00	13.00	23.00
620 0.0	1C.00 0.24	2.19 1.32	0.50 4.95	0.67	0.80 6.19	0.71 4.22	1.08 0.74	0.59 63.30	0.74 13.00	0.10 22.00
621 0.0	5.80 0.17	2.23	0.48	0.67	0.80	0.72	1.09	0.66	0.76	0.11 26.00
622	11.00	2.44	0.53	0.76	0.97	0.76	1.31	0.71	0_93	0.10
0.0 623	0.22	1.57 2.53	5.38 0.52	2.52 0.84	7.03 0.82	4.95 0.52	1.00 1.26	62.00 0.72	13.00	24.00
0.0	0.27 8.50	1.48 1.93	5.60 0.44	2.55	7.76	4.77	0.90 1.00	66.00 0.54	15.00	27.00 0.0{
0.0	C.16	1.15	4.44	2.38	5.38	3.63	0.60	66.00	13.00	25.00
625 0.0	8.26 0.17	1.93 1.24	0_46 4.40	0.59 2.04	0.68	0.56 3.56	1.01	0.53 64.00	0.60 13.00	0.08 25.00
626 0.0	6.40 0.21	1.54 0.75	0.37 3.41	0.43 1.53	0.50	0.42	0.73	0.40	0.47	0.05 24.00
627	9.20	2.10	0.46	0.56	0.78	0.65	1.08	0.50	0.72	0.08
0.0	0.15 7.70	1.32 1.80	5.01 0.44	2.07 0.55	6.05 0.74	4.39 0.69	0.65 1.00	66.00 0.46	13.00	22.00
0.0 629	0.25	1.30 1.76	3.59	2.12 0.55	4.82 0.67	3.43 U.59	0.51 0.93	63.00 0.46	13.00 0.65	23-00 U-07
0.0	0.25	1.2ť	3.92	1.94	4.96	3.38 0.55	0.61	63.00 0.46	14.00	23.00 C.U7
630 0	C. 1.	1,73	4.93	1. 12	4.63	3.34	J. (C	66.))	13.00	24.30
031 0.0	1.5. 5. 17	1 - 4	3.44	1.76	6.63 4.14	0.40 1.66	J. HE U. 47	0-42 04-30	0.52 14.00	0.08 21.00
632 0.0	6.3C 6.18	2.00 1.18	0.43	0.55 2.00	0.7(5.34	0.69 3.56	0.96 0.66	0.53 67.00	0.65	0.09 23.00
633	10.80	2.25	0.47	0.70	0.87	0.75	1.14	0.62	0.79	0.09
0.U 634	(J. 34 7.70	1.72 1.80	5.49 0.45	2.86	€.39 0.71	4.30 0.69	0.94 1.00	67.00	13.00 0.68	25.00
0.0 635	0.21 7.(0	1.15 1.80	3.94 0.43	2.07	4.87 0.66	3.33 0.50	0.65	63.00 0.50	14.00	24.00
0.0 63£	6.14 7.60	1.17	3.93	1.73	4.97	3.43	0-51 0.84	63.00	14.00	23.00
0.0	C.16	1.09	3.96	1.93	4.80	3.29	0.62	61.00	12.00	21.00
637 0.0	5-90 C-12	1.26	0.31 2.87	0.38	0.43 3.43	0.43 2.21	0.65	0.37 69.30	0.41 13.00	0.01 23.00
638 V.O	4.70 0.15	1.15 0.€8	0.30 2.50	0.27	0.41 3.05	0.39 1.93	0.60 0.37	0.33 62.00	0.38 14.00	0.0 25.00
639	11.50	2.51	0.54	0.69	0.90	0.87	1.32	0.60	0.89	0.06
0.0	0.26 10.00	1.50	5.80 0.48	2.07	7.52 0.79	5.30 0.87	0.80 1.15	62.00 0.55	13.00 0.87	22.00
0.0 641	U.37 5.40	1.39 1.35	5.24 0.34	2.22	6.51 0.40	4.39 0.38	0.67	61.00 0.36	15.00 0.32	23.00
0.0	0.15	0.59	2.62	1.36	3.35	2.14	0.40	62.00	14.00	23.00
642	5.80 0.19	1.42 0.68	0.35 2.89	0.39 1.42	0.45 3.64	0.43 2.27	0.67	0.39	0.40	0.01
643 0.0	(.00 0.23	1.45	0.34 3.13	0.40	0.51 3.85	0.50 2.63	0.68 0.47	0.38 69.00	0.46 12.00	0.02
644	t.50	1.51	0.38	0.48	0.54	0.48	0.77	0.43	0.48	0.05
0.0 645	0.24 6.30	0.85 1.54	3.24	1.62	0.50	2.64 0.48	0.54	64.00	0.45	0.03
0.0 646	0.21 6.50	0.85	3.21 0.41	1.43 0.45	4.08 0.56	2.60 0.52	0.48 0.79	60.00 0.40	16.00 0.53	24.00
0.0	0.13	0.90	3.38	1.50	4.60	2.65	0.55	60.00	12.00	25.00
647 0.0	7.10 0.19	1.70 0.91	0.42 3.61	0.47	0.58	0.54 2.82	0.82	0.47 63.00	0.54	0-05
648 U.O	5.40 0.15	1.22 0.67	0.32 2.73	0.34 1.28	0.44 3.26	0.42 2.05	0.62 0.38	0.35	0.41	0.02 24.00
649 0.0	4.40 0.16	1.03	0.31 2.24	0.25	0.39	0.35	0.54	0.29	0.35	0.0 23.00
650	t 8 C	1.53	0.42	0.46	0.58	0.56	0.83	0.48	0.52	0.05
0.0	6.28	0.99	3.43	1.81	4.20	2.87	0.57	65.00	12.00	23.00

APPENDIX TABLE 21. Kananaskis typical Rhinichthys

cataractae; Raw character

values, n = 50.

						-				
KANANASKIS	APPARAN 16 7	T RHINIC	AS SYHTH							
0.52	0.66	1.62	5.30	1 01 2.52	$\frac{1}{4} = \frac{1}{2}$ $\frac{1}{4} = \frac{1}{2}$	1 J.1 4 - 10	1 1- 0-59	61.00	11-30	21.00
402	9.70	2-41	0.37	1.00	0.79	1.10	1.31	0_81	6.97	0.27
0.46 403	0.74 8.70	1.40 2.24	5.00 0.31	2.27 0.94	6.61 0.70	4.04 0.89	0.75 1.26	59.00 0.75	12.00 0.87	26.00 0.31
0.48	88.0	1.52	4.62	2.01	5.96	3.94	0.58	64.)0	12.00	29.00
404 0.57	10.7C 0.90	2.61 1.60	0.35 5.71	1.1 1 2.49	0.81 7.15	1.08	1_47 0.71	0.96 67.00	1.05 12.00	0.37
405	9.80	2.25	0.34	0.91	0.76	0.93	1.36	0.81	0.94	0.32
0-50 406	0.90 9.60	1.64 2.26	4.88 0.31	2.48 0.92	6.33 0.71	4.29 0.85	0.54 1.19	£9.00	13.00	27.00
0.46	0.73	1.52	5.03	2.36	6.36	4 .1 8	0.54	0.79 65.00	0.93	0.26 31.00
407 0.50	9.6C 0.87	2.18 1.65	0.33 5.00	0.97 2.30	0.73	0.94	1.32	0.82	0.96	6.29
408	10.00	2.30	0.31	0.97	6.35 0.71	4.38 0.85	0.61 1.20	71.00 0.83	11.00 0.94	30.00 0.28
0-5E 409	0_87 11_20	1.01 2.49	5.10 0.36	2.41 1.10	6.53	4.39	0.79	67.00	12.00	32.00
0.51	0.88	1.67	5.76	2.84	0.90 7.05	1=02 4=53	1.4C 0.85	0.82 69.00	1.03 13.00	0.26 31.00
410 0.50	8.90 0.78	2.10 1.27	0.28 4.78	0.83	0.70	0.91	1.31	0.66	0.93	0.17
411	9.40	2.19	0.29	0.97	5.92 0.68	3.66 1.02	0.59 1.32	66.00 J.79	12.00 0.93	30.00
0.54 412	0.79 10.90	1.54 2.44	4.85 0.35	2.39	6.07	3.96	0-72	65.00	11.00	28.00
0.49	0.82	1.46	5.60	1.02 2.65	0.86 6.99	0.96 4.55	1.28 0.72	0.80	0.99 12.00	0.27 27.60
413 0.62	9.60 0.91	2.51	0.35	1.06	0.80	0.91	1.32	0.88	0.89	0.32
414	10.00	1.37 2.43	5.14 0.31	2.47 1.01	6.39 0.75	3.98 0.92	0.64 1.26	70.00	12.00 0.98	32-00 0-36
0.46 415	0-87	1_40	5-33	2.50	6.75	4.29	0.53	62.00	12.00	29.00
0.45	9.70 0.74	2.33 1.47	0.31 5.10	0.98 2.38	0.70	0.88	1.17 0.58	J.79 70.00	6.88 13.00	0.2t 28.00
416	7.20	1.76	0.30	0.72	0.55	0.74	0.97	0.50	0.70	∂_17
0.31 417	C.F7 5.B0	1.13 1.57	3.65 0.21	1.90 0.64	4.72	2.93 0.55	0.51 0.71	64.00 0.40	13.00 0.56	29.00
0.29	0.47	0.75	3.00	1_40	3.59	2.01	0.45	63.00	14.00	28.00
418 0.30	£.30 0.57	1.18 0.94	0-26 3-22	0.04 1.57	0.48 4.21	0.52 2.66	0.82	0.40 61.90	0.66	0.17 27.00
419	5.30	1_47	0.19	0.58	0.44	0.52	J.65	0.43	0.51	0.12
0.23 420	0.46	0.72	2.86 0.27	1.26 0.75	3.40 0.57	2.01 0.71	0.39 0.98	60.00 0-43	13.00 0.74	26.00
0.34 421	0.65	1.00	4.05	1. 97	5.14	3.16	0.58	67.00	13-06	25.30
0_43	8.50 0.89	2.12 1.47	0.31 4.41	0.88 2.05	0-63 5-53	0.87 3.52	1_2€ J_49	0-46 02-00	0.66 11.06	€.27 31.60
422 0.48	9.00 0.92	2.09 1.43	0.33 4.93	0.89 2.17	0.71 5.95	0.95	1-28	0.51	0.93	0.31 30.00
423	7.90	1.95	0.28	0.82	0.61	3.85 0.75	0.48 1.15	63.00 0.38	10.00	0.28
0.39 424	0.72	1.25	4.11 0.36	1.94 1.08	5.30	3.39 0.92	0.48 1.31	71.00	11.00	26.00
0.50	0.85	1.51	5.27	2.50	0.84 6.51	4.12	0.54	69.00	1.01 11.00	0.32 26.00
425 0.45	9.60 0.82	2.41	0.37	1.00	0.78	1.04	1.29	0.57	0.97 12.00	0.32
426	7.80	1.38 1.93	5.09 0.29	2.24 0.74	6.57 0.59	4.33 0.68	0.67 1.06	61_00 0_48	0.80	27.00
0.41 427	0.66 7.10	1.26 1.64	4.14 0.27	2.02 0.61	5.18 0.51	3.35 0.61	0.57 0.95	67.00 0.42	11.00 0.67	29.00 0.15
427	0.65	1.22	3.77	1.74	4.70	3.13	0.38	0.42	10.00	26.00
428 0 . 47	9.20 0.77	2.23 1.38	0.32 4.87	0.89 2.19	0.69	0.88	1.23	0-66 69-00	0.90 13.00	0.25 27.00
429	5-40	1.41	0.24	0.53	0.42	0.46	0.67	0.35	0.51	0.12
0.27 430	0.5C 5.40	0.73	2.93 0.22	1.29 0.53	3.49 0.41	2.00 0.44	0.41	65.JO 0.33	12.00 0.56	31.00 0.12
0.29	0.48	0.75	2.83	1.31	3.50	2.13	0.47	72.00	12.00	29.00
431 0.28	5.20 0.59	1.44 0.82	0.21 2.89	0.54	0.41 3.55	0.47 2.07	0.72 0.34	0.31 72.00	0.56	0.16 26.00
432	5.50	1.50	0.24	0.52	0.43	0.46	0.63	0.35	0.50	0-12
0.27 433	0.51 5.60	0.73	2.81 0.21	1.48 0.53	3.40 0.40	2.10 0.44	0.36 0.64	63.00 0.30	13.00 0.48	30.00 0.14
0.27	C.4C	0.74	2.94	1.41	3.58	2_19	0.41	68.00	13.00	27.00
434 0.28	5.40 0.36	1.45 0.75	0.18 2.90	0.50 1.27	0.43 3.46	0-46 2-23	0.69 0.39	0.31 70.00	0-52 14-00	0.13 29.00
435	5.70	1-54	0.28	0.55	0.47	0.42	0.75	0.33	0.52	0.13
0.23 436	0.38 4.70	0.75	3.04	1.39 0.42	3.76 0.40	2.27 0.42	0.28 0.61	62.00 0.29	14.00	27.00
0.23	0.41	0.71	2.50	1.18	2.92	1.89	0.25	67.00	13.00	27.00
437 0.26	5.10 C.44	1.35 0.70	0.20 2.65	0.47 1.22	0.43 3.17	0.41	0.63 0.36	0.28 69.00	0.45 12.00	0.14 32.00
438	8.50	2.03	0.32	0.82	0.60	0.78	1.10	0.51	0.77	0.24
0.43 439	0.68 10.20	1.30 2.45	4.60 0.33	2.14 1.04	5.79 0.77	3_80 1_01	0.69 1.34	63.JO 0.63	11.00 1.05	31.00 0.28
0.51	0.80	1.50	5.41	2.28	6.66	4.25	0.65	68.00	11.00	31.00
440 0-30	7.00 0.65	1.66	0.26 3.76	0.55 1.75	0.52 4.53	0.59 2.96	0.91 0.37	0.40 69.00	0.65 12.00	0.16 29.00
441	7.10	1.79	0.29	0.67	0.59	0.62	0.85	0.42	0.67	0.18
0.32 442	0.08 7.10	1.05 1.78	3.54 0.31	1.79 0.72	4.42 0.52	2.65 0.62	0.91	63.00 0.42	11.00 0.67	26.00
0.35	0.72	1.02	3.72	1.64	4.46	2.69	0-46	72.00	13.00	29.00
443 0.28	5.80 0.52	1.51 0.77	0.22 2.98	0.54 1.45	0.42 3.56	0.53 2.17	0.66 0.46	0.35 68.00	0.52	0.16 31.00
444	5.50	1_40	0.20	0.52	0.42	0.48	0.56	0.32	0.49	0.15 28.00
0.25 445	0-49 f.00	0.72	2.85 0.26	1.38 0.61	3.35 0.44	1.90 0.51	0.44 0.68	62.00 0.37	12.00 0.51	0.16
0.28	0.53	0.76	3.20	1.39	3.95	2.51	0.49 0.91	62.00 0.44	12.00 0.71	27.00 0.20
446 0_40	7.00 0.67	1.66 1.00	0.25 3.52	0.68 1.78	0.50 4.49	0₊65 ∠₌48	0.47	68.00	12.00	28.00
447	5.50	1_42	0.19	0.55	0_41	0.45	0.61 0.44	0-30 64.00	0.48 11.30	0.14 29.00
0.24 448	0.50 5.t0	0.76 1.45	2.86 0.23	1.34 0.47	3.38 0.48	0.47	0.58	0.35	0.51	0.12
0.26	0.46	0.tB	2.86	1_41	3.4∠ 0.43	2.11 0.48	0-41 0.67	69.00 0.35	11.00 0.52	30.00 0.12
449 0.24	5.70 0.48	1.46 0.75	0.22 2.97	0.54 1.39	3.50	2.22	0.45	67.00	12.00	29.00
450	5.00	1.31	0.19 2.72	0.46 1.22	0.40 3.21	0.42 1.91	0.61 0.38	0.32	0_47 12.00	0.09 27.00
0.21	0.51	0.69	2.012		3.2.1		5. 50			

Rhinichthys cataractae; Raw character values, n = 37.

KANANASKIS	SUSPECTED	HYBRIDS	COUFSI	TIC PITIN	ABRIIC V	DUTNICUMUV	C () ()		19771	
501	7.60	1.72	0.43	0.46	0.61	0.71	1.00	0.52	0.69	0.0
0.21	0=40	1.08	4.00	1.89	4.69	2.85	0.63	60.00	13.00	22.00
502	7.10	1.69	0.32	0.55	0_62	0.60	0.79	0.46	0.52	0.0
0.03 503	0.35 £.30	0.83	3.68	1.81	4.61 0.51	3.00	0.60	69-00	14.00	25.00
0=22	0.41	0.80	0.29	0-54 1-44	4.16	0.50 2.63	0.72	0.36 68.00	0.51 13.00	0.09 25.00
504	6.20	1.58	0.31	0.51	0_48	0.52	0.69	0.41	0.50	0.03
0.08	0-32	0.82	3.19	1.55	3.86	2.52	0.49	67.00	13.00	24.00
505	8.10	1.70	0.43	0.51	0.64	0.57	0.85	0.47	0.54	0.10
0-04 506	0.31 7.10	1.05	4.04	2.17	4.95	3.28	0.51	66.00	14.00	23.00
0.21	0.38	1.52 1.10	0.39 3.63	0.45 1.79	0.59 4.56	0.54 3.19	0.77 0.50	0.42 70.00	0.55	0.03 25.00
507	7.60	1.82	0.33	0.64	0.66	0.68	0.89	0.47	0.65	0.11
0.17	0.35	1.02	3.88	1.87	4.87	3.23	0.49	69.00	14.00	26.00
508	£.60	1.66	0.29	0.53	0.58	0.58	0.78	0.40	0.55	0.08
0.0	0.31	0.81	3.43	1.38	4.05	2.67	0.52	67.00	15.00	27.00
509 0 .1 8	6.20 0.22	1.52 0.86	0.33	0.43 1.50	0.53 3.92	0.52 2.48	0.73 0.39	0.38 70.00	0.48 13.00	0.02 26.00
510	6.10	1.48	0.25	0.50	0.52	0.46	0.67	0.39	0.47	0.07
0.16	0.24	0.81	2.97	1.48	3.79	2.37	0.40	69.00	14.00	26,00
511 0.20	5.80	1.29	0.28	0.45	0.45	0.51	0.61	0.30	0.46	0.05
512	0.29 5.70	0.94 1.30	2.73 0.24	1.23 0.40	3.44 0.48	2-28 0-42	0.38 0.63	67.00 0.33	13.00 0.45	29.00 0.05
0.17	0.27	0.67	2.78	1.19	3.34	2.17	0.42	73.00	16.00	28.00
513	5.80	1.44	0.26	0.48	0.49	0.45	0.67	0.35	0.48	0.07
0.16	0.36	0.81	2.98	1.39	3.58	2.35	0.43	69.00	15.00	26.00
514	4.80	1.17	0.25	0.40	0.40	0-37	0.54	0.26	0.36	0.03
0.15 515	0.22 5.60	0.57	2.38 0.25	1.19 0.44	.3.00 0.45	1.93 0.47	0.35 0.65	69.00 0.32	14.00 0.47	23.00 0.06
0.18	0.33	0.72	2.95	1.36	3.51	2.31	0.47	70.00	14.00	28.00
516	4.90	1.22	0.34	0.33	0.44	0.42	0.72	0.25	0.40	0.03
0.0	0-22	0.74	2.49	1.07	3.00	2.00	0.39	68.00	15.00	24.00
517	5.60	1.26	0.34	0.35	0.43	0.46	0.58	0.29	0.40	0.0
0-24 518	C.14 5.6C	0.70 1.39	2.83 0.24	1.30 0.52	3.50 0.40	2.27 0.49	0.36 0.69	62.00 0.34	13.00 0.45	26.00 0.10
0.12	0.32	0.68	2.86	1.31	3.61	2.24	0.45	70.00	13.00	27.00
519	5.20	1.23	0.26	0.34	0.42	0.40	0.58	0.26	0.38	0.0
0.06	0.20	0.69	2.59	1.27	3.20	2 - 20	0.40	60.00	13.00	25.00
520	6.70	1.60	0.41	0.45	0.54	0.48	0-80	0.38	0.50	0.0
0.20 521	0.27 6.70	0.87	3.53 0.33	1.52 0.56	4.1 5 0 . 58	2.73 0.56	0.52 0.82	62.00 0.43	14.00	27.00 0.07
0.15	0.39	0.84	3.57	1.45	4.45	2.78	0.52	67.00	13.00	25.00
522	5.80	1.41	0.23	0.43	0.48	0.45	0.69	0.32	0.44	0.06
0-18	0.26	0.76	2.93	1.44	3.58	2-23	0.45	61.00	15.00	28.00
523			0.25						0.53	
0.13 524	0.32 5.60	0.82	3.00 0.33	1.50 0.36	3.88 0.48	2.53 0.44	0.45 0.68	62.00 0.29	14.00	27.00 0.0
0.02	0.15	0.71	2.85	1.40	3.5€	2.26	0.36	60.00	13.00	23.00
525	6.00	1.42	0.36	0.40	0.51	0.49	0.70	0.32	0.48	0.0
0.10	0.21	0.77	3.07	1.49	3.87	2.46	0.38	71.00	15.00	27.00
526 0.0	4.4C 0.23	1-20 0-57	0.23	0.26 1.01	0.38	0.33 1.73	0.50 0.37	0.29 64.00	0.35 12.00	0.0 24.00
527	3.40	0.90	0.24	0.22	0.31	0.28	0.40	0.23	0.26	0.01
0.02	0.10	0.44	1.80	0.75	2.19	1.35	0-21	63.00	14.00	23.00
528	7.20	1.76	0.31	0.55	0.47	0.58	0.79	0.41	0.60	0.06
0.16	0.20	0.80	3.57	1.85	4.49	2-86	0.36 U.68	72.00 0.43	13.00 0.49	29.00 0.05
529 0.18	6.70 0.30	1.65 0.68	0.31	0.50	0.57	0.51 2.48	0.39	69.00	14.00	27.00
530	6.00	1.49	0.32	0-44	0.48	0.46	0.70	0.39	0.52	0.0
0-17	0.32	0.71	3.10	1_46	3.71	2.28	0.41	67.00	13.00	25.00
531	5.50	1.33	0.26	0.39	0.42	0.49	0.62	0.32	0.39	0.02
0.06	0.23	0.59	2.86	1.42	3.21	1.94	0.40 0.57	63.00 0.34	12.00	21.00 0.03
532 0.16	5.60 C.24	1.34 0.82	0-27 2-93	0 .41 1.29	0.46 3.49	0.45 2.25	0.42	68.00	13.00	27.00
533	4.30	1.11	0.25	0.33	0.38	0.32	0.46	0.23	0.32	0.05
0.09	0.26	0.48	2.21	1.08	2.65	1.55	0.28	67.00	14.00	26.00
534	£.50	1.62	0.27	0.54	0.52	0.49	0.71	0.39	0.52	0.12
0.14	0.34	0.76	3.42 0.25	1.51 0.52	4.25 0.43	2.73 0.50	0.50	60.00 0.55	14.00 0.64	25.00 0.12
535 0.09	E.00 0.44	1.58 0.76	3.04	1.48	3.90	2.48	0.52	65.00	13.00	25.00
536	10.00	2.41	0.42	0.82	0.86	0.91	1.20	0.71	0.95	0.15
0.35	0.44	1.42	5.21	2.31	6.47	4.27	0.39	72.00	12.00	27.00
537	€.90	1.56	0.31	0.53	0.54	0.64 2.76	0.86 0.60	0.41 69.00	0.63	0.13 25.00
0.12	0.38	0.95	3.44	1.73	4.57	2.070	0.00	0,000	12.00	23.00

APPENDIX TABLE 23. Past Kananaskis *Couesius plumbeus*, Raw Character values, n = 61.

PAST MANANA	SKIS	CO	ם פוודפקוו	t Hypr.te						
196101	5.7J	1. 27	1.34	U. 4U	J	J. 47	25	11.41	+ 1	د در
0.0 136102	0.12 0.20	د". دد.ا	t ۲ د د	1. n 3 V. 4 5	4.1 J.00	2 7 0.50	2145	15-12	13.00	4 6 0 J
0.0	0.24	1.04	4.07	2.01	5.13	3.48	J.ວ1 J.ວ1	U.40 70.00	0.55 13.00	0.0 20.00
196103 0.0	ຢ.5⊍ ⊍.27	1.ਤ3 1.ਹ੫	U.4J 4.35	J.53 1.78	0.08 5.45	0.62 3.00	0.30 0.73	ປະວາ ເວັ.ປະ	7 د . <i>د</i> 13 . ا د	1. J 1 23. JU
196104 ა.0	6. C V	1.oJ	دد. ن	J. 43	0.55	0.50	0.74	0.43	U CI	10 22 4 20 23
196105	1 ב. ט ט ב. ס	0.06 1.53	3.53 V.34	1.⊃9 J.40	4.07 0.50	2.40	J.35 J.3J	03.JU 1.1:	لىنىدا تەرك	24.00
ن.0 196106	0.20	0.77	3.19	1.54	3.01	2.40	J.55	64.JV	13.00	_0.JJ
0.0	7.00 0.26	1.o⊃ V.⊎1	J. 37 3.59	J.46 1.05	J.50 4.34	0.52 2.90	ປ ⊿71 ປຸ່ຽວ	ق⊢ "ل (ل داد ت	0.02 12.00	ປະປີ 24.ປປ
196107 0.0	0.00 0.23	1.57 v.77	0.30	0.42	J. 52	0.54	J.7J	U. 41	2.22	J. J.
196108	5.0U	1.41	ქ.3ძ J.34	1.50 0.40	4.17 0.45	2.57 J.48	J.5∪ J.o1	U.30	13.JU J.43	27.JJ J.J
0.0 196109	ა.17 5.50	0,71 1,35	3.JJ J.J2	1.34 J.36	3.73	2.39	0.47	50.00	13.00	+ 2 = JU
0.0	J. 18	U.64	2.75	1.30	3.33	0.44 2.02	J.30 J.44	ປ.in 58.J∪	J.41 1∠.JU	2.00 22.00
196110 0.0	5.30 0.16	1.24	J.31 2.71	3 د دل 1 • 3 3	0.41 3.37	0.39 2.11	0.51 0.35	J.34 6∠.00	J.37	0.0
136111	4.00	1.∠7	0.24	J. 32	0.30	0.34	0.4c	02.00	14.JJ U.J2	د 1. J∪ ا د J
ა.ე 196901	0.17 6.∃u	0.54 1.48	2.59 U.34	1.10 0.43	3.JU 6.50	1.91 0.42	0.36 J.53	65.00 ولار	ل ر . د [د ب . ن	تت ₀ئ∠ تل₀ل
0.0 196902	U. 24	0.39	3.05	1.57	3.73	2.33	J.45	60.00	12.00	د 1. ∪ ∪
0.0	4.00 J.10	1.13	U.32 2.45	J.29 1.22	0.38 2.06	0.35 1.71	0.50 0.39	ປ.31 ບ7.ປປ	0.30 12.JJ	U.J1 23.JJ
196903 0.0	5.0U J.15	1.34 0.72	U.32 2.75	ປ.3ະ 1.35	0.51 3.47	ป.45 2.08	1.04	J.15	V.4.)	J. U1
196904	5.20	1.30	50.02	J.35	0.43	0.39	0.45 J.54	01.JU J.33	11.ປປ ປ <u>.</u> ປປ	ل ان مات <u>م</u> به ل مال
0.0 196905	0.∠1 ⊳.1∪	0.07 1.47	د 3 م∠ د 3 م	1.∠1 0.41	3.22	2.09	0.42 J.01	64.JJ J.37	11.Ju J.40	U . U . U . C . U .
0.0	J. 25	J.77	3.11	1.47	3.71	2.36	U.49	12.00	11.JJ	23.00
196906 0.0	0.23 0.23	1.52 v.30	0.37 3.11	ป.44 1.58	0.50 3.05	0.45 2.49	0.65 v.52	0.40 0.40	0.48 12.00	تال•دل للا•غي≃
196907 0.0	5.40 0.20	1.30 0.55	V.32	J_37	0.40	0.40	Ũ.56	o£.U	v.⇒1	0.04
196908	5.40	1.35	2.65 0.36	1.38 0.40	3.19 0.47	2.30 0.42	J.45 J.57	63.JJ J.37	1∠.JU U.JU	23.JU J.US
0.0 196909	0.20 5.70	0.07 1.42	2.7C J.33	1.23 0.42	3.26 0.43	1.98 0.42	U.48 J.51	50.UU 0.38	1∠.Ju ∪.⊍⊃	20.00
0.0	0.17	0.70	2.93	1.25	3.50	2.21	0.47	64.00	11.00	u,u6 ∠1,u0
196910 0.0	5.30 U.20	1.32 0.64	0.30 2.65	0.35 1.32	0.43 3.23	0.37 2.01	ປ.51 ປ.42	ປະວ 1 ຽງເປັບ	ں.⊶ں 1∠.JJ	بەل مال (1 مال 2
1969 11 ປູບ	5.20	1.27	0.29	J.35	0.45	0.36	J.54	0.34	J.ja	LU.U
196912	U.∠4 5.1J	ປ.ຍປ 1.19	2.66 J.31	1.32 J.34	3.22 0.45	1.99	J.55	17.Ju J.J.	11.JJ J.4J	∠1.JJ J.J1
0.0 196913	J.∠6 5.50	₩.01 1.38	2.07 U.33	1.25 U.38	3.17 0.44	2.01 0.39	U.40 J.57	∪1.JJ ∪.37	ں ∪ م∠1 1 ⊶ 1	ل ∪ ماد ے ۋلن ⊾ل
0.0	0.23	V.06	2.79	1.31	3.50	2.17	U.45	62.00	ي∪. 1	22.00
196914 0.0	5.20 0.20	1.25 J.05	J. JJ ∠. h9	0.34 1.29	0.43 1.31	0.34 2.19	0.50 0.44	0.32	J.92 12200	لەل⊾∪ ∪لىدكـ
196915 0.0	0.80 ビッシン	1.01 J.83	U.37 3.05	J.48 1.52	0.57	J.51 ∠.60	J. 75 J. 5 J	3.43	0.00	1.11
196916	0.20	1.44	0.36	0.42	0.54	0.48	0.70	J.37	دل. به (و به دل	ں لا ہ لا ے 5 لا ہ ل
0.0 196917	0.23 5.00	0.79 1.40	3.17 0.30	1.41 J.39	3.85 0.47	2.50 J.43	ა. 47 ა. ჩა	60.00 0.35	ل∪بد1 دبد	20.00
0.0 196918	0.20	v.65	2.77	1.35	3.45	2.19	0.44	é≟.∪U	12.00	21.VU
υΟ	5.10 0.17	1.25 0.55	υ.34 ∠.57	ರಿ.34 1.28	0.41 3.11	0.41 1.92	J.55 J.41	0.34 c7.JU	لااد ₀ل ∪ل ₀ ∠1	J.Ù ∠2.UJ
196919 0.0	5.10 0.17	1.20	0.29 2.53	0.35 1.25	0.43 3.16	J.40 2.04	0.56 0.41	0.35 +2.00	0.42 11.00	0.04 17.00
196920	5.50	1.35	0.33	0.39	0.40	0.40	0.58	U.37	J.+3	U. U.D
0.0 196921	0.23 5.00	u.71 1.26	2.7J 0.30	1.32 J.34	3.41 0.43	2.13 0.39	0.45 0.54	60.JJ 0.33	ں ں ۔ د 1 ت 3 ہ ں	ں ان ⊾ کے غ 1 ∪ ⊾ ∪ 1
0.0 196922	0.∠5 5.10	0.02 1.28	2.44	1.26	3.03	1.85	0.41 0.50	54.00	14.00	23.00
0.0	0.22	0.00	0.33 2.05	0.39 1.21	3.13	0.39 1.91	U.30 J.36	0.16 64.00	0.20 12.00	0.03 22.00
196923 0,02	4.60 0.13	1.09	0.20 2.36	0.31 1.08	0.43 2.88	0.35 1.73	0.51 v.37	-5°C	0.35 12.JU	0.J3 22.UU
196924	5.00	1.21	J. 35	J_31	0.43	0.37	J.5U	0.32	U.37	0.04
0.0 196925	J.25 4.80	0.6J 1.15	∠.55 U.29	1.30 0.34	3.J1 0.41	1.89 0.37	0.40 0.49	0.30	14.JJ U.J4	23.Ju J.U3
0.0 197301	U.10	0.05	2.44	1.17	2.96	1.82 0.55	J.35	59.06	11.00	21.JU
0.0	7.70 J.3J	1.86 0.90	0_45 4.03	0.55 1.78	0.04 4.35	3.18	0.72 0.59	J.46 57.JD	0.52 13.00	U.J0 ∠∠.JV
197302 0.0	7.7J J.3∠	1.34 J.96	0.45 3.92	0.55 1.81	J.63 4.79	0.50 3.13	U.7E J.53	0.50 61.00	ບ.55 1∠.JU	0.00 25.JJ
197303	8.03	1.88	0.43	0.56	0.67	0.60	ປະຮັບ	0.54	V.03	U. J0
0.0 197304	0.34 0.40	1.∪6 1.56	4.16 J.3d	1.87 J.43	5.11 0.58	3.52 0.45	0.58 J.69	65.JU J.43	12.JJ J.47	20.JU J.U5
0.0	J.25	ប.៥1	3.38	1.56	4.00	2.59	0.50	65.00	11.00	∠4.00
197305 0.0	7.40	1.68 0.90	U.39 3.74	ป.46 1.78	0.57 4.53	0.55 2.95	0.70 0.55	0.41 (3.00	ປ.5ບ 14.ປປ	J.07 24.00
197306 0.0	0.20 0.23	1.43 0.80	0.37 3.22	J.40 1.54	0.55 3.45	0.45 2.40	0.03 0.45	J.37 64.00	0.47 11.00	ປ.ປວ 2 J.ປປ
197307	7.00	1.68	0.41	0.48	0.61	0.49	0.03	0.43	0.49	J. J7
0.0 197308	0.26 7.00	ป.ชช 1.71	Э.48 0.41	1.74 J.45	4.3U V.02	2.73 0.00	J.54 J.75	69.00 0.47	12.00	∠1.JJ J.U5
0.0	J. 32	0.40	3.98	1.95	4.68	3.13	0.00	65.VJ	13.00	40.JJ
197309 0.0	5.40 0.23	1.33 J.75	0.32 2.73	0.36 1.22	0.50 3.40	0.44 2.13	0.30 0.39	0.35 67.00	ບ . 4 1 1⊿.ປປ	£ل.∪ ∪∪.+∠
197310	6.10	1.48	0.36	0.39 1.51	0.56	0.46 2.53	U.07 J.41	0.30	0.40	U.U4 22.UU
0.0 197311	0.26 7.40	ป.80 1.73	0.43	0.50	3.88 0.62	0.54	0.80	66.00	11.00 0.52	ປະປະ
0.0	0.29 8.70	1.ปช 1.У1	3.82 0.42	1.74 0.54	4.50 0.70	3.25	0.37 0.84	63.JV 0.50	12.00 0.00	0.00 0.00
0.0	J.35	1.20	4.37	2.25	5.31	3.59	V.66	68.00	14.00	24.00
197313 0.0	9.80 9.39	2.04 1.32	0.47 4.70	0.57 1.99	0.76 5.79	0.64 4.03	0.94 0.60	0.56 65.00	0.00 1∠.00	0.07 23.00
197314 0.0	4.80 0.39	∠.00 1.15	0.41 4.61	0.59 2.20	0.75	0.70 4.12	0.91 0.72	0.5b 65.00	ა.71 11.JJ	0.07 27.00
197315	0.00	∠.01	0.43	0.62	0.79	0.66	0.35	J.57	V.o5	0.07
0.0 197316	0.38 8.90	1.∪5 ∠.∪1	4.59 0.46	2.07 0.57	5.42 0.70	3.45 0.64	ပ.စပ ပဲ.ဗပ	7J.JU J.53	12.00 0.07	26.JU 0.U7
0.0	0.39	1.21	4.72	2.01 0.59	5.09 0.77	3.92 0.63	0.69 0.y3	66.00 0.56	13.00	24.00
197317 0.0	9.00 0.36	1.20	4.63	2.20	5.82	4.11	U.75	73.00	12.00	25.00
197318 0.J	ช.70 ป.48	2.11 1.18	0.44 4.36	0.61 2.13	0.77 5.40	0.66 3.02	J.37 J.75	0.50 60.00	0.70 13.00	0.03
197319	6.4U	1.70	0.34	0.42 1.59	0.59	0.44 2.42	0.71 J.40	ل . 4 4 د . ر ر ا	0.53 1.JJ	U.U3 2.J.U
0.0	ປ•∠ອ 5-ອປ	J.93 1.32	3.20 0.32	0.38	0.51	0.40	0.53	0.34	J = → 4	5.33
0.0 197321	U.23 5.10	J. 75 1.22	2.91 0.30	1.44 6.34	3.53 0.44	2.32 0.37	J.42 0.49	(4.1) U.32	∪ر.د1 81.∙∪	24,170 U.U.Z
0.0 197322	0. ∠1 5.00	J. 59 1. 24	2.68 0.28	1.20 0.32	3.10 0.44	2.00 0.36	0.39 0.50	63.JU J.34	12.00 0.37	23.00
0.0	J_ 19	0.02	2.62	1.25	3.10	1.96	0.30	70.00	12.00	10.00
197323 0.0	11.20 ປ.48	2.53 1.46	V.53 5.58	J_71 2.68	0.10 7.20	0.01 4.96	1.15 0.81	0.00 n7.00	∪.07 14.00	0.10 22.00
197324	9.80 0.40	2.20	0.48 5.24	J.62 2.25	0.86 6.50	0.75 4.64	0.98 J.74	0.58 64.00	J.70 11.JU	ა.1ა ∡1.სს
197325	d.90	2.u5	U.42	U. 57	0.74	0.66	0.85	v.55	60.V	0.00
0.0	0.34	1.16	4.70	2.19	5.75	3.94	0.00	71.00	12.00	24.00

Rhinichthys cataractae and surface water temperature during spawning period, 1978, Lower Kananaskis Reservoir. These data were extracted from total catch data in Summary of changes in female gonad maturity for both Couesius plumbeus and APPENDIX TABLE 24.

Temperature **0°** † 4 •0 4.5 5.0 10.5 10.5 13.0 8.2 10.5 10.0 12.5 16.0 10.5 13.7 ပ္ Spent ო ഗ 4 R. cataractae Fully Ripe 2 -4 ∞ -Ripe m 2 9 σ 4 -4 Spent 13 1612 41 17 31 52 26 C. plumbeus Table 2 in Appendix. Fully Ripe 44 20 50 Ì3 \sim 9 \sim 31 7 Ripe 48 32 15 20 44 ∞ ഹ ო 9 σ 5 May 31, June 1 20 22 29 12, 13 26 17, 18 May 15, 16 23, 24 ∞ Date 19, 21, 28, 25, 7, 1412 July 6 27 June 5 9

Date	n	x	s _D	Range
May 1	1	13.8	-	_
May 18	2	14.1	-	12.6 - 15.6
May 26	2	15.6	-	14.9 - 16.2
June 1	4	19.1	0.3	18.8 - 19.5
June 8	7	19.4	2.6	15.0 - 23.0
June 14	10	17.0	4.6	10.0 - 24.8
June 20	7	16.0	3.5	11.4 - 21.0
June 29	6	11.4	2.1	9.1 - 14.4

APPENDIX TABLE 25. A. Data summary for female R. cataractae Gonadosomatic Index values (GSI), Lower Kananaskis Reservoir, 1978.

APPENDIX TABLE 25. B. Data summary for female C. plumbeus Gonadosomatic Index values (GSI), Lower Kananaskis Reservoir, 1978.

Date	n	X	s _D	Range
May 1	20	18.4	2.2	14.0 - 22.0
May 13	6	18.8	1.4	17.1 - 20.4
May 24, 25	22	19.0	1.6	16.6 - 22.0
June 1	8	21.0	1.4	19.0 - 23.2
June 8	12	24.2	2.9	20.6 - 27.6
June 13	23	17.7	6.6	8.7 - 30.1
June 21	48	17.7	6.1	6.7 - 29.2
June 29	21	16.3	5.6	9.9 - 27.1
July 6	12	13.7	3.3	7.4 - 18.4
July 12	20	11.9	3.6	6.4 - 17.3
July 27	25	8.1	2.3	4.8 - 12.9

	Couesi	us plumbe	us and Rhini	chthys cat	caractae from
	Lower	Kananaski	s Reservoir,	197 8.	
Date	Single Values (mm)	n	X (mm)	s _D	Range
Couesius p	olumbeu s				
May 1		25	1.30	0.11	1.01 - 1.48
May 24		21	1.31	0.07	1.17 - 1.39
June 8		13	1.43	0.07	1.31 - 1.53
June 13		25	1.35	0.23	0.95 - 1.88
June 21		25	1.31	0.23	0.88 - 1.70
July 6		11	1.19	0.15	0.94 - 1.36
July 12		25	1.22	0.16	0.88 - 1.46
Rhinichthy	is cataractae				
May 1	1.38	1			
May 18	1.48	1			
May 26	1.52	1			
June 1		4	1.54	0.05	1.49 - 1.60
June 8		7	1.69	0.05	1.62 - 1.78
June 14		10	1.43	0.27	0.91 - 1.68
June 20		7	1.39	0.26	0.88 - 1.69
June 29		6	1.16	0.22	0.96 - 1.48

APPENDIX TABLE 26. Summary of ova diameter statistics for both

All samples of these species taken during the time period of maximal spawning activity putative hybrids (H) from 7 different selected habitats on Lower Kananaskis Reservoir. APPENDIX TABLE 27. Summary of catch data for *Souesius plumbeus* (C), *Rhinichthys cataractae* (R) and their

~

		Smith-Dorrien	Cr. Mouth	, R-1																
		Smi	Cr.	C-8,		C-4	C9					C-5						C-1		
		Invincíble	Cr. Mouth									C-81, H-1		C-68, R-3	C-18, R-1		C-8	C-2		
		Boulton Cr.	Mouth					C-12, R-5, H-1			C-11			C-55, R-1			C-32		C-15	
	Habitat Locations	Interlakes	Raceway				C-3		C-20, R-4			C-25, R-3			C-71		C-4, R-1	C-71		C-12
elow.	Habita	LK1 Common	(Interlakes) Bay			C-6				C-2	C-2		C-8	C-23	C-31, R-1			C-38	С-64, Н-1	
in 1978 are listed below.		IK1 Stream	(interlakes) Mouth		C-58				C-3, R-1		C-15, R-4	C-101, R-7, H-2	C-14	C-69, R-13						
in		LK1 Stream	(Interlakes Stream)	C-52, R-2	C-2					C-18, R-12	R-7, H-1	R-4	R-8	R-1	R-1	R-3	R-9	C-5, R-3	R-14	
		Sampling	Date	May 18	22	24	25	26	June 1	2	٢	80	12	13	14	19	20	21	29	July 6

190

(calculated from timed passage of a floating object over 10 m) and Secchi disc readings. CPL:- data from Calgary APPENDIX TABLE 28. Lower Kananaskis Reservoir inlet stream surface temperatures (⁰C, Hg thermometer), approximate current speeds

reek 3.0 3.0 1.0 m/s 5.0 1.4 m/s 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	c Ltd., flow stati rrien	low station. Kent		Invircible		Boulton	LK1	LK1 Stream
1.0 m/s = 5.0 $2.0 $ $7.0 $ $7.0 $ $4.4 $ $4.4 $ $4.0 $ $8.0 $ $8.0 $ $8.2 $ 8.2	Creek Creek	Creek		Creek		Creek		
3.0 7.0 4.4 4.4 4.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 1.4 m/s 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.5 5.0	5.0			3.0			
3.0 7.0 7.0 4.4 4.4 7.0 8.0 8.0 8.0 1.0 m/s 5.0 Secchi = 0.2 m 4.0 4.5 3.5 Secchi = 0.3 m 16.5 1.4 m/s 0.05 m 8.2 Secchi = 0.4 m 10.5 Secchi = 0.04 m								
$1.0 \text{ m/s} = 5.0 \text{Secchi} = 0.2 \text{ m}$ $1.0 \text{ m/s} = 5.0 \text{Secchi} = 0.2 \text{ m}$ $\frac{7.0}{8.0}$ $\frac{4.4}{8.0} \frac{4.0}{3.5} \frac{4.0}{10.5 \text{ m}}$ $\frac{1.4 \text{ m/s}}{3.5} \text{Secchi} = 0.3 \text{ m} 16.5$ $\frac{1.4 \text{ m/s}}{3.5} \text{Secchi} = 0.4 \text{ m} 10.5$ $\text{Secchi} = 0.04 \text{ m}$	6.0 0.9 m/s				3.0			
$1.0 \text{ m/s} = 5.0 \text{Secchi} = 0.2 \text{ m}$ $1.0 \text{ m/s} = 5.0 \text{Secchi} = 0.2 \text{ m}$ $\frac{4.4}{4.5}$ $\frac{4.5}{3.5} \text{Secchi} = 0.3 \text{ m} 16.5$ 1.4 m/s $3.5 \text{Secchi} = 0.3 \text{ m} 16.5$ $\frac{1.4 \text{ m/s}}{5.0 \text{ secchi} = 0.4 \text{ m} 10.5$ $\text{Secchi} = 0.04 \text{ m} 10.5$							7.0	0.5 m/s
1.0 m/s 5.0 8.0 8.0 8.0 8.0 8.0 4.0 4.5 4.5 3.5 3.5 8.2 $8.2 \text{ Secchi = 0.4 \text{ m} 10.5$ $6.6 \text{ chi = 0.04 \text{ m} 10.5$ $8.2 \text{ Secchi = 0.4 \text{ m} 10.5$	5.5							
1.0 m/s 5.0 Secchi = 0.2 m 7.0 8.0 8.0 8.0 1.0 m/s 5.0 Secchi = 0.2 m 4.0 4.0 4.0 17.5 3.5 Secchi = 0.3 m 16.5 1.4 m/s 0.05 m 8.2 Secchi = 0.04 m 10.5 5 5ecchi = 0.04 m 10.5 5							4.4	
$1.0 \text{ m/s} \qquad 5.0 \qquad \text{secchi} = 0.2 \text{ m} \qquad 4.0 \\ 4.5 \qquad 4.5 \qquad 4.0 \\ 4.5 \qquad 17.5 \qquad 3.5 \qquad 5.0 \qquad \text{secchi} = 0.3 \text{ m} \qquad 16.5 \\ 1.4 \text{ m/s} \qquad 16.5 \qquad 17.5 \\ 0.05 \text{ m} \qquad 8.2 \qquad \text{secchi} = 0.4 \text{ m} \qquad 10.5 \\ \text{secchi} = 0.04 \text{ m} \qquad 10.5 \end{aligned}$							4.0	0.7 m/s
1.0 m/s = 5.0 secchi = 0.2 m $4.0 4.0 4.5 4.5 4.0 4.0 4.0 17.5 17.5 12.4 10.5 16.5 12.4 10.5 16.5 12.4 10.5$	3.3 1.0 m/s							
$1.0 \text{ m/s} \qquad 5.0 \qquad \text{Secchi} = 0.2 \text{ m} \qquad 4.0 \\ 4.5 \qquad 4.5 \qquad 4.0 \\ 4.5 \qquad 3.5 \qquad 5.0 \qquad 8.1 \qquad 17.5 \\ \text{Secchi} = 0.3 \text{ m} \qquad 16.5 \\ 1.4 \text{ m/s} \qquad 8.2 \qquad \text{Secchi} = 0.4 \text{ m} \qquad 10.5 \\ \text{Secchi} = 0.04 \text{ m} \qquad 10.5 \end{aligned}$	4.0						7.0	
1.0 m/s 5.0 Secchi = 0.2 m 4.5 2 4.0 4.5 3.5 Secchi = 0.3 m 16.5 1.4 m/s 0.05 m 8.2 Secchi = 0.4 m 10.5 Secchi = 0.04 m 10.5							8.0	
1.0 m/s 5.0 Secchi = 0.2 m 4.0 4.5 $\frac{4.5}{3.5}$ Secchi = 0.3 m 17.5 1.4 m/s 3.5 Secchi = 0.3 m 16.5 1.4 m/s 5.0 Secchi = 0.4 m 10.5 m	4.9 - mouth 2.7	2.7						
1.0 m/s 5.0 Secchi = 0.2 m 4.0 4.0 4.5 3.5 Secchi = 0.3 m 17.5 3.5 Secchi = 0.3 m 16.5 1.4 m/s 0.05 m 8.2 Secchi = 0.4 m 10.5 Secchi = 0.04 m 10.5 Secchi =	3.3 - upstream							
1.0 m/s 5.0 Secchi = 0.2 m 4.0 4.0 4.5 $\frac{4.5}{3.5}$ 5.0 Secchi = 0.3 m 16.5 1.4 m/s 16.5 3.5 Secchi = 0.3 m 16.5 0.05 m 8.2 Secchi = 0.4 m 10.5 Secchi = 0.04 m 10.5 Secchi = 0	l.7 m/s							
4.0 4.5 3.5 Secchi = 0.3 m 16.5 1.4 m/s 0.05 m 8.2 Secchi = 0.4 m 10.5 secchi = 0.04 m	3.8			1.0 m/s	5.0	Secchi = 0.2 m		
$\begin{array}{cccc} 4.5 & & & & & & & & & & & & & & & & & & &$	2.5	2.5						
4.5 3.5 1.4 m/s 0.05 m Secchi = 0.3 m 16.5 1.4 m/s 8.2 Secchi = 0.4 m 10.5 Secchi = 0.04 m							4.0	
3.5 3.5 17.5 l.4 m/s 0.05 m secchi = 0.04 m 10.5 secchi = 0.04 m					4.5			
1.4 m/s 1.4 m/s 0.05 m 8.2 Secchi = 0.4 m 10.5 Secchi = 0.04 m					3.5		17.5	
1.4 m/s 0.05 m 8.2 Secchi = 0.4 m 10.5 Secchi = 0.04 m	6.5					= 0.3	16.5	0.2 m/s
8.2 Secchi = 0.4 m 10.5	4.3 2.5 m/s 3.8 2.0 m/s 4.0 Secchi = 1	2.0 m/s	4.0 Seccl	1.4 m/s 11 = 0.05 m				
8.2 Secchi = 0.4 m 10.5	64 cfs (CPL)							
	12.5	12.5	12.5		8.2	Secchi = 0.4 m	10.5	0.7 m/s
				Secchi = 0 .				0/m 7.0
	5.2							
	4.8 7.2 2.2 m/s 12.0	2.2 m/s	12.0					

191

APPENDIX TABLE 29. Analysis of Covariance of Viability Regressions.

A. Growth Rate Regressions (Fig. 23 in text)

		F I	^F .05(df 1, ∘	ι)
R. cataractae + C. plumbeus	slope	0.017	3.84	P > 0.05
	intercepts	21.20	3.84	P < 0.05
R. cataractae + Hybrid	slope	2.27	3.84	P > 0.05
	intercepts	4.68	3.84	P < 0.05
C. plumbeus + Hybrid	slope	2.83	3.84	P > 0.05
	intercepts	0.407	3.84	P > 0.05

B. Length-Weight Regressions (Fig. 24 in text)

		F	^F .05(df 1, α)	
R. cataractae + C. plumbeus	slope	0.86	3.84	P > 0.05
	intercepts	48.66	3.84	P < 0.05
R. cataractae + Hybrid	slope	0.19	3.84	P > 0.05
	intercepts	13.69	3.84	P < 0.05
C. plumbeus + Hybrid	slope	0.91	3.84	P > 0.05
	intercepts	14.62	3.84	P < 0.05

C. Fecundity Regressions (Fig. 25 in text)

		F i	^F .05(df 1,	41)
R. cataractae + C. plumbeus	slope	12.959	4.08	P < 0.05
	intercept	6.878	4.08	P < 0.05

	Sample	Correlation	
Species & Sex	Size	Coefficient	Regression Equation
C x R combined	42	0.980	log w = 1.725 + 2.813 log &
q & 0 ⁴			
C x R of only	24	0.975	log w = 1.759 + 2.858 log l
$C \propto R \ q$ only	18	0.986	log w = 1.698 + 2.774 log l
C combined	162	0.962	log w = 1.781 + 3.064 log l
C d only	65	0.957	log w = 1.710 + 2.967 log l
C ç only	97	0.962	$\log w = 1.782 + 3.072 \log \ell$
R combined	159	0.985	log w = 1.899 + 3.120 log l
R d only	62	0.959	log w = 1.955 + 3.239 log l
R q only	94	0.992	log w = 1.885 + 3.093 log l

APPENDIX TABLE 30. Length-weight regression summary.

Disc Gel Acrylamide Electrophoresis Recipes

<u>1 N HC1</u>

21.55 ml conc. reagent (36.0%) to 250 ml

Stock A	Stock C	Catalyst
рН 8.9		
48 ml l N HC1	70 g Acrylamide	2.8 g to 1000 ml
36.6 g THAM (TRIS)	1.84 g Bis	Ammonium Persulfate
0.23 ml TEMED	to 250 ml (H ₂ O)	
to 100 ml H_2O		
Small Pore Gel		
5 ml A 10 ml C	5 ml H ₂ 0 20 ml ca	atalyst
gel stock good for	4000 runs.	
Buffer		
6.0 g THAM (TRIS)	- dilute to 1/10 st	rength for run

	411000		L, LO D U L		
28.8 g Glycine	- ignore	for	various	enzyme	systems
to 1000 ml (H ₂ O)					
рН 8.3					

Destain

50:50:10 methanol: H_20 :glacial acetic acid

Storage

7% Acetic Acid

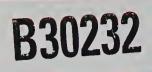
Tracking Dye

0.1 g Bromophenyl Blue to 1000 ml (H_2O)

the second second second

Dept cop/

THE UNIVERSITY OF ALBEPTA


RELEASE FORM

NAME OF AUTHOR	GEORGE A. BUTCHER
TITLE OF THESIS	ECOLOGY AND TAXONOMY OF HYBRIDIZING
	CYPRINID FISHES FROM UPPER AND LOWFR
	KANANASKIS RESEPVOIPS, ALBERTA

DEGREE FOR WHICH THESIS WAS PRESENTED MASTER OF SCIENCE YEAR THIS DEGREE GRANTED SPRING, 1979

Permission is hereby granted to THE UNIVERSITY OF ALBERTA LIBRARY to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

