Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

STATION LIERING APPY

Interim Technicol Report AFSWP - 863 September - 1955

AERODYNAMIC CROWN DRAG OF SEVERAL BROADLEAF TREE SPECIES

A99.53

F763

DIVISION OF FIRE RESEARCH FOREST SERVICE U. S. DEPARTMENT OF AGRICULTURE

ACKNOWLEDGMENTS

The author wishes to acknowledge the assistance of F. M. Sauer. W. Y. Pong aided in data reduction and contributed first-hand knowledge of test conditions. V. M. DeKalb and O. J. Brichacek, former staff members, supervised field operations.

Agriculture--Berkeley

AERODYNAMIC CROWN DRAG OF SEVERAL BROADLEAF TREE SPECIES

by

W. Lai

Interim Technical Report AFSWP-863 September 1955

U. S. Department of Agriculture Forest Service Division of Forest Fire Research Washington, D. C. A. A. Brown, Division Chief

Project Leader: W. L. Fons California Forest and Range Experiment Station P. O. Box 245 Berkeley, California

Ξ.

SUMMARY

In order to study the mechanics of wind action on trees, the induced resistance forces must be known. The principle wind resistance mechanism of trees arises from aerodynamic drag of the crown. This investigation was made to determine the aerodynamic drag of broadleaf erowns.

Eight species were tested, six in site class II or better, mixed hardwood stand in Pisgah National Forest, North Carolina, during the summer of 1952. The remaining species were tested in site class II or better, mixed conifer stand in Shasta National Forest, California, during the summer of 1950. A selected tree instrumented and mounted on the bed of a 1-ton truck with crown exposed above the cab was transported over a predetermined level, straight course at various steady speeds. Weight and moisture content of stem, branchwood and foliage, total height, crown length, and diameters at specified locations also were recorded.

The results are presented graphically by plotting drag force normalized with dry foliage weight against moment divided by dynamic pressure normalized with the cube of inside bark diameter at base of crown. Each species has its own curve although their general characteristics are the same.

The drag of two defoliated trees also was studied. Analysis reveals foliated trees offer 2 to 10 times greater aerodynamic drag.

CONTENTS

Summary	P	0	3
List of illustrations	ø	c	5
List of tables	0	٠	Ė
Introduction	۵	ø	7
Experimental procedure	ø	•	8
Data and results	ø	٥	11
Discussion	٥	۹	13
Conclusions	U	o	24
Literature cited	P	o	25
Nomenclature	u	σ	27

ILLUSTRATIONS

Figure	1Schematic diagram of instrumentation used for North	
	Carolina tests	- 9
11	2Dimensionless correlation for (a) silver maple, and	
	(b) sweet birch (full crown)	11
11	3Dimensionless correlation for pignut hickory (full crown).	12
11	4Dimensionless correlation for (a) American beech, and	
	(b) yellow-poplar (full crown)	13
11	5Dimensionless correlation for (a) quaking aspen, (b) Cali-	
	fornia black oak, and (c) scarlet oak (full crown)	14
11	6Variation of center of pressure position with dynamic	
	pressure	17
11	7Variation of average center of pressure position with	
	tree parameters	17
84	8Comparison of full and defoliated crown drag	19
11	9Dimensionless drag correlation summary (full crown)	15
11	10Transpiration effect on drag curve	-24

TABLES

Table	1Foliage characteristics of test trees	10
11	2Data for test trees	15
F1	3Reaction of center of pressure position to increase in	
	velocity	19
н	4Average modulus of elasticity for green wood determined	
	with standard test specimens	20
11	5Moisture content of drag test, static breakage, and crown	
	analysis trees	23

INTRODUCTION

The effect of wind on trees has been studied by many investigators interested in the physiological aspects of the problem. In order to study the mechanics of wind action, the induced resistance forces must be investigated in a manner which enables specification for trees of different size, erown structure, and/or species. These aerodynamic drag forces arise principally from the erown. The following is an analysis of erown drag measurements made on several broadleaf tree species.

One of the earliest investigations of wind action on trees was carried out by Metzger, who in 1893 proposed his mechanical stem form theory, which states that wind action on trees produces stems behaving as beams of uniform resistance. Since then, numerous workers such as Tirén (14,15), Windirsch (17), and Jacobs (4) have studied the stem growth problem with Metzger's theory. Among those who disagree with Metzger's theory is Jaccard (2) who considers stem form the result not only of mechanical wind action but also of wind effect on transpiration and the force of gravity. Other workers have tried to discover the action of winds on root systems. Among the more recent is Pryor (8)whose studies on Monterey pine show that wind action stimulates growth in horizontal root systems but has little effect on vertical ones. Much literature devoted to the general problem of the action of wind on tree growth exists. Fritzsche (1), Jacobs (3), and more recently Merger (7)discussed the problem quite thoroughly; their discussions covered work done by other investigators not referenced here.

Despite the abundance of literature pertaining to wind action on trees, few workers attempted to measure the drag forces involved. Tirén attempted to estimate crown drag from conifer branch drag measurements made in a wind tunnel as part of his study on stem form. However, weighing the contribution to crown drag from different branch orientations is difficult. A recent crown drag study reported by Sauer (10) gives experimental results for entire conifer crowns rather than individual branches. Crown drag of saplings was measured in a wind tunnel; larger trees were tested by transporting specimens mounted on a truck bed. The data were correlated for each species with dimensionless parameters which permitted crown drag to be estimated from the dynamic pressure and tree characteristics.

Because of the differences in crown and foliage structure between broadleafs and conifers, it was believed that Sauer's conifer results would not apply. Therefore a study was made to determine the aerodynamic drag of several species of broadleafs under steady wind conditions.

1/ Wor underlined numbers in parentheses, refer to Literature Cited, page 25.

7

EXPERIMENTAL PROCEDURE

This investigation was carried out in California and North Carolina. Full crown drag of eight species was studied (table 1); one each of American beech and scarlet oak was tested with defoliated crowns. Except for aspen and California black oak, specimens were selected from a site class II or better, mixed hardwood stand in Bent Creek Experimental Forest, Pisgah National Forest, North Carolina, elevation 2300 feet, in the summer of 1952. Aspen and black oak were selected from a site class II or better, mixed conifer stand in Shasta National Forest, California, elevation 4000 feet, in the summer of 1950. Individual trees were selected for good stem form, crown symmetry, and road accessibility. Foliage characteristics and availability were the basis upon which species were chosen. Test trees were felled in a manner to minimize crown damage.

The vehicle-test technique developed for the conifers study was used (10). Trees were instrumented with ring dynamometers and mounted on the bed of a 1-ton truck. Average velocity, moment force about the base of crown, and drag were measured by transporting these instrumented specimens at various steady speeds over predetermined level, straight courses. Upon completion of drag tests, weight and moisture content of stem, branchwood and foliage, total height, crown length, and diameters at specified locations were recorded for the specimen. These data were reduced and presented graphically in a manner similar to conifer results.

The North Carolina tests course was on highway 276 in the Pisgah National Forest. For the California tests, straight sections along highway 89 east of McCloud were used. Local effects were minimized by testing at the same velocities to and fro along the same course. Tests were performed during the early morning hours when surface winds and road hazards were at a minimum.

A range of speeds from 10 to 55 miles per hour (15 to 70 feet per second) at 5 m.p.h. intervals was used. Time was recorded from a stop watch with 0.002 minute least count. The lengths of test courses were chosen such that the velocity error was less than 2 percent.

The instrumentation system for the California trees was that used in the conifers study. Forces measured with ring dynamometers were recorded with a Foxboro SR-4 circular chart recorder. Readings from the circular charts had a least count corresponding to 10 pounds dynamometer load.

The above instrumentation was modified for the North Carolina tests (figure 1). The dynamometer at the base of crown measured the bending moment about the base of crown. The one close to the stem base, 5.16 below, connected in subtractive circuit with another matched dynamometer at the base of crown, measured the drag force. Measurements

- Figure 1.--Schematic diagram of instrumentation used for North Carolina tests

were recorded with single-channel Sanborn oscillographs operated off 24-V batteries through converters. This change in instrumentation allowed variable sensitivities which could not be obtained with the Foxboro recorder.

The least count of the oscillograph record is 1 millimeter. The least count of the reduced data varies with the gain and attenuation settings according to K_D^A where K is 31.4 pounds for drag measurements, and 20 pounds for moment measurements. An account of these least count variations is found in table 2 in Data and Results, under the heading "least count accuracy."

9.

Table 1.- Foliage characteristics of test trees

| |

	And the second se		
Species	Leaf arrangement	Leaf shape	Leaf size range
Silver maple (Acer saccharinum L.)	Opposite, simple, deciduous	Circular-deeply palmately 5-lobed	6 to 7 in. diameter petioles 4 in. long
Sweet birch (Betula lenta L.)	Alternate, simple, deciduous	Ovate to oblong- ovate	2-1/2 to 5 in. long 1-1/2 to 2 in. wide petioles 1/2 to 3/4 in. long
Pignut hickory (Carya glabra Sweet)	Alternate, pinnately compound; 5 (rarely 7); sessile	Lance-shaped leaflets	8 to 12 in. long leaflets 4 to 6 in. long, 2 to 3 in. wide
American beech (Fagus grandifolia Ehrh.)	Alternate, simple, clustered at end of branchlets, deciduous	Oblorg-ovate	2-1/2 to 5 in. long 1 to 2-1/2 in. wide petioles 1/4 to 1/2 in. long
Yellow-poplar (Liriodendron tulipifera L.)	Alternate, simple, deciduous	Tulip-like, usually 4-lobed with 2 lower broadest	4 to 6 in. long and wide
Quaking aspen (Populus tremuloides Michx.)	Alternate, simple, deciduous	Suborbicular to broadly ovate	l-1/2 to 2 in. diameter petioles l-1/2 to 3 in. long
Scarlet oak (Quercus coccinea Muenchh.)	Alternate, simple, deciduous	Ovate or oblong- ovate	3 to 7 in. long 2 to 5 in. wide petioles 1 to 2-1/2 in. long
California black oak (Quercus kelloggii Newb.)	Alternate, simple, deciduous	Ovate or oblong- ovate	3 to 6 in. long about 2/3 length (width)

10

DATA AND RESULTS

The data have been correlated with dimensionless parameters that depend upon wind forces and tree characteristics (figures 2 to 5). These correlations are similar to the ones developed for conifers. The data are tabulated in table 2. Data for the defoliated trees are poor; hence no correlation is shown. Figure 6 shows the position of the center of pressure as a function of the dynamic pressure for several specimens tested. Estimation of an average center of pressure position may be obtained from figure 7 from tree parameters.

Figure 3.--Dimensionless correlation for pignut hickory (full crown)

DISCUSSION

Aerodynamic drag of a nonflexible body in submerged flow is a function of the geometry of the body, velocity, and fluid properties; specifically it is the product of drag coefficient, frontal area, and dynamic pressure. Drag coefficient is a function of Reynolds and/or Mach numbers. At low velocities, such as the range considered here, Reynolds number dominates.

Figure 5.--Dimensionless correlation for (a) quaking aspen, (b) California black oak, and (c) scarlet oak (full crown)

For a flexible, porous body such as a tree crown, the area and porosity change constantly with dynamic pressure. These changes affect the drag coefficient and hence drag. Tirén (14,15) concluded that the exponent for the velocity is not constant with crown drag. Sauer (10) attributes the nonconformity of crown drag with rigid bodies to the change in drag coefficient and area. Since this study was patterned after the work of Sauer, the role of Reynolds number has been subjugated as was done for conifers. The above considerations indicate that crown drag coefficient and area must be represented with measurable tree crown characteristics. .

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Gpa iss These Rese Rese Rese Pinnut hiskory 7 $22_{cm} = 6.5$ mm. Joseful Jahra 7 $22_{cm} = 6.5$ mm. Joseful Jahra $21_{cm} = 7.2$ for Mc 2 6.2.006 $21_{cm} = 7.2$ for $12_{cm} = 7.2$ for $21_{cm} = 7.2$ for Mc 2 6.2.006 $21_{cm} = 7.2$ for $12_{cm} = 7.2_{cm}$ $21_{cm} = 7.2_{cm}$ for $12_{cm} = 7.2_{cm}$ $21_{cm} = 7.2_{cm}$ for $12_{cm} = 7.2_{cm}$ $12_{cm} = 7.2_{cm}$ for <td< th=""><th></th></td<>	
--	--	--	--

Count -	1	100440 A0F	4019404155186	4 4 9 1 1 2 8 8 8 8 9 9 9 1 1 9 9 9 9 8 8 9 9 9 1 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	23.5 23.5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
K	1 888	1000 1000 1000 1000 1000 1000 1000 100	12002200000000000000000000000000000000	8.8.8.8.8.8.9.9.9 8.8.8.8.8.8.9.9 8.8.8.8.		22222222222222222222222222222222222222
Seast Sount	- 0-2 		10100000000000000000000000000000000000	000 100 00 10	01010 0100 01010 01010 01010 01010 01010 01010 01010 01010 01010 01010 01010 01010 01010 01010 01010 01010 01010 0100 0100 0100 0100 0100 0100 0000 0000 0000 0000 0000 0000 0000 0000	* * * * * * * *
	5.0 1.25			44 44 64 64 64 64 64 64 64 64 64 64 64 6	374 374 359 359 359 359 350 36 36 36 36 36 36 36 36 36 36 36 36 36	11 0 11 0 10 0 10 0 10 0 10 0 10 0 10 0
¥.	<u>के</u> स		ŵ	6 6		ст. Ф. Б. Б. Б. Ч. Б.
**	1 초중왕: 1	12223 6 888333	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	5.5.5.5.5.5.5. 5.5.5.5.5.5.5.5.5.5.5.5.		1979 1979 1979 1979 1979 1979 1979 1979
-1.	1997 - 198 1997 - 198 1997 - 198	888	Стак 66 гг. 61 Стак 66 гг. 61	С. с. е. в. С. е. е. С. е. е. в. С. е. е. е.		1604 1673 2605 1346 1346 1579
Tree characteristics	$\frac{2}{2}\hat{w}_{25} = 7.5 \text{ fm}.$ $\frac{2}{2}\hat{d}_{c} = 2.0 \text{ fm}.$	۳۵۵ = 40-4 IC. Ho = 22-0 ft. Wdf = 0.0 <u>tab</u> 	25 ₅ h = 9.5 in. 4c = 1.2 in. Hoh = 56.9 ft. H _C = 22.3 ft. M ₂₅ = 3.00	2,225 = 9.6 in. 4.2 = 4.5 in. Hit = 4.9.8 fr. He = 23.2 ft. Wer = 18.4 lb.	¥35 2.09 2bt 2.05 4c ± 4.5 Hbh Hc = 13.5 Hc = 13.5 Wdf = 7.3	
No.	~ 2	~	5 X 5 5	1 10	a m	L I M I
Species	Sourlet car (continued)	We - 36.12	wc : 58.05	We = 71.576	California tiatk oak (Auerous (keiloggii Nech.)	14 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
Least count virraiy	ц 1 1 1 г 1 г	111409988	25.65 119-0 25.64	~ 4 4 9 8 8 8 8 7 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0. 0. 0. 0.	
>	181 192 192 192 192 192 192 192 192 192 19			6, 130 9, 530 15, 500 35, 500 35, 500 35, 500 35, 100 35, 100	4, 4, 5, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	13,55 25,555 25,5555 25,5555 25,5555 25,5555 25,5555 25,5555 25,5555 25,5555 25,5
Least Sourt			and the a	0 H 0 H F F 0 0 0 0 H 0 H F F F	0 	1849 1840 1840 1840 1840 1840 1840 1840 1840
е П	201 201 201 201 201 201 201 201 201 201	3611 265.0 2	66-5 66-5 26-5 33-4	39.0 70.6 70.6 70.6 70.6 70.6 70.6 70.6 70	42.6 	116-0 65-9 65-9 1129-0 1125-0 238-0 238-0 238-0
(- 6		£	4 1~	10 m = - 4 = - 4 = = = = = 0 = = = = = = = = = = = = =	" Ж
+	minutes 	2410 1420 1420 1420 1420 1420 1420 1420	1000 1000 1000 1000 1000 1000 1000 100	1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	001 001 001 001 001 001 001 001 001 001	220 232 232 232 232 232 232 232 232 232
-11	530 5 1 1	• • · · · · · · · · · · · · · · · · · ·	135 - 56	0, z e e 0, e z e	2500 2500 2500 2500 2500 2500 2500 2500	1573 500 1500 1500
Ci.a. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Аль 8.2 л. Ва, в 1.2 л. ва, в 4.1 л.	1944	Dr: = 0.2 in. 4 1 = Ho: = Ho: = 7 = *2 = 13.5 in. *2 = 13.5 in. *2 = 3.07	⁴ ⁴ ⁴ ⁴ ⁵ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴	$\frac{2}{4}$, $\frac{2}{6}$, $\frac{2}{64}$ = 10.2 in. $\frac{4}{64}$ = 4.5 in. $\frac{8}{64}$ = 5.5 ft. $\frac{4}{64}$ = 15.7 ft. $\frac{6}{64}$ = 4.92	$ \frac{d_{2}}{d_{2}} b_{2, n} = 7.5 \text{ in}, 4 d_{3} = 4.0 \text{ in}, 5 \text{ b, } = 4.0 \text{ in}, 8 \text{ b, } = 4.0 \text{ in}, H_{3} = 4.2 \text{ c}, \text{ f}, H_{3} = 4.2 \text{ c}, \text{ f}, \frac{1}{2} d_{3} = 3.44 $
	E S	4 , 2. 9,	ی در ۵۰ گ	3 35 09		7 57 V
a a a tre a D	Yellopoplar (LiriJendror tulipifera L.)	51/10	c = 56,166	- 35.264	Claric alpen (Populs tread- loider Mixix.)	Samiet cer (unerus conices Muscult.) (, : 4(, 6 2
		, 1 ≫	3	We	We	-

Table 2.- Data for test trees (continued)

Se

16

lyor definition of symbols, see NomeroLaiure, wre 2°. 20 averate simospnerir pressure for the sumarr ast med, 2°.30 in meroury. 201aside bark.

Figure .--Veriation of center of pressure position with dynamic pressure

igar (.-- Jorialion of average center of pressure

The bending of tree or we and stem under the influence of wind forces results in a restoring suple, the magnitude of which is dependent upon the magnitude of the drag force and mechanical properties of the wood. This couple and drag force together with the dynamic pressure and tree characteristics must therefore combine to express the aerodynamic behavior of the crown.

Figures 2 to 5, inclusive, show the empirically correlated aurves between drag force and moment about the base of crown normalized with dynamic pressure and tree parameters. These correlation groupings are similar to those used for conffers. The moment was chosen about the base of crown to indicate the degree of crown movement.

Comparison of rew data for conifers, North Carolina broadleafs, and California broadleafs indicates a greater variability for the North Carolina data. This variation cannot be reduced by correlation.

The tree characteristics used differ from those found to be important for conifers. Drug for conifers was normalized with dry grown weight. Broadleaf trees, unlike conifers, often do not exhibit a central stem. Their branchwood weights constitute the major portion of the grown weight (table 2). If drag per unit dry grown weight were used, the effect of foliage would be overshadowed. For this reason, the drag was computed on the basis of per unit dry foliage weight.

Dry branchwood to foliage weight ratio was shown to be important for conifers (10). Because of the size range of broadleaf trees, variations in this ratio were small in most capet. For specimens with large differences, scatter of the data hid its effect on the correlation. Because of this, the ratio was eliminated from consideration.

Two defoliated trees were tested with the same procedure. Unfortunately the data are too meager for correlation. Nevertheless, comparison of the raw data shows that presence of foliage increases the drag from two- to tentold (figure 8). This fact was brought out quantitatively by Sauer (10).

The center of pressure position calculated from the data remained fairly constant for the most part over the dynamic pressure range studied (figure 6). Below a dynumic pressure of approximately 2 pounds per square foot, which is equivalent to about 44 feet per second wind velocity, the center of pressure position for some trees ascended, some remained substantially constant, while others descended. Quantitative considerations indicate variation in position of center of pressure with wind velocity depends upon combinations of stem and branch properties (table 3).

Branch and stem stiffness was not measured. Examination of figure 6 indicates a maximum change on location of the pressure center of about 20 percent. Since the data do not illow rectification of these changes, a plot of the average center of pressure position is given (figure 7).

Figure 8.--Comparison of full and defoliated crown drag (VT-11 Sweet birch, VT-2 Scarlet oak)

to	Increase in velocity	ý
Branch	Stem	Reaction
stiff limber limber	stiff stiff limber	remain constant ascend descend

Table	3	Rea	action	of	cer	nter	of	pres	ssure	position	
		Approximate a request	the second se	And in case of the local diversion of the loc	and so that the paper will be	Marco - Marcollingue - Marcollingue		The second se	the second se	Contraction of the second seco	
		to	increa	ase	in	vel	ocit	зу			

The mechanical properties of the stem, important from the standpoint of strength of miterials, have been left out because their effect on the data does not justify complicating the correlation. The role of mechanical properties can be determined only by more experimentation.

A basic mechanical property which enters into stress determinations is the modulus of elasticity. Table 4 lists the average procen modulus of elasticity for the various test specimens in descending order. The more supple, hence smaller modulus of elasticity, tree will bend more for a given dynamic pressure. Therefore, the drag will be less and a higher dynamic pressure will be necessary to produce the same drag. Figure 9 shows that the order in the table follows approximately the order of the curves from right to left.

<u>aetermined</u>	with standard test specimens#
Species	Modulus of elasticity of green wood (thousand psl)
Hickory, pignut	1650
Birch, swcet	1650
Oak, scarlet	1480
Beech	1380
Poplar, yellow	1090
Maple, silver	940
Aspen	063
Oak, California black	740

Table 4.- Average modulus of elasticity for green wood determined with standari test specimens-

Little is known about the modulus of elasticity of -living trees

2See (5)

If the order of the curves were proportionally distributed, division of the independent variable by the modulus of elasticity to some power should bring the curves together. Since the order is not proportional, the curves cannot be brought together with the modulus of elasticity alone.

The influence of folloge characteristics on drag is inconclusive. However, it is interesting to note (figure 9) that hickory and appen are at the two extremes of the band of curves. Table 1 shows that hickory has alternate pionately compounded leaves 8 to 12 inches long while aspen has simple alternate leaves, 1-1/2 to 2 inches in diameter.

2/ Tiren measured for branch drag and found supple branches afford less resistance per given wind velocity.

It is known that transpiration continues after a tree is felled (6). The presence of viad and sunlight show hereases the rate of transpiration (2; 2, pp. 1/0-1/2; 1). When sufficient water transpires, the leaves begoing flace if and the wood becomes shifter (the modulus of elasticity increases). The rate of change of modulus of elasticity with moisture content has been studied by Trumann (2, 13) and Wilson (16). The rate of change of leaf strength of the modulus of the not known, and requires further study.

Test specimens were folled and mounted the night before each run. Runs were started at about 6 a.m. and continued until all data were collected for a particular tree. At the completion of tests, observations showed that in all cases the leaves were flactid. In many cases a small amount of leaves was form off during the dourse of runs.

Moisture content samples were taken only at the end of each test. Therefore, the moisture loss of test trees is not known. Comparison of test trees with trees used for static breakage and crown analysis indicates a substantial loss of moisture in all North Carolina specimens (table 5). Comparable data for California black oak and aspen could not be found.

Due to limpness of leaves in flaceid crowns, their wind resistance will be lead for the same dynamic pressure; also stiffer crown components will require less dynamic pressure for the same drag. Therefore, the experimental curves are less steep than they should be (figure 10).

 $d_c^3 2 /$ Finare $d_c = (1 - n)pin(1)^2 + c^2(eqt on drag curve)$

.

		CITY/CITY/DIA	ULCCO 	age - Lannage - Springersation - Springersation - Springers						
	Moisture content									
Species	Vehiele-test trees ¹			Breakage-analysis trees ²						
	Foltage	Branch	Stem	Follage	Branch	Stem				
	م م مد الله الله الله الله الله الله الله الل	****	<u>per</u>	ent	ar 10 an 1 a 1 a 1 a 1 an 1 a 1 a 1 a 1 a 1					
Silver maple (Acer saccha- rinum L.)	98.5 108.6	61.4 62.7	54.1 76.0	122.5 151.8 165.2 195.6 142.2	80.7 70.9 74.4 72.5 78.0	69.5 66.3 72.7 66.9 74.3				
Sweet birch (Botula lenta L.)	122 .9 105 . 2	60.2 54.8	56.4 52.2	177.8 158.9 132.0 184.3 135.4	69.1 68.6 87.1 83.9 72.8	71.6 71.4 71.4 77.2 58.9				
Pignut hickory (Carya glabra Sweet)	133.2 118.0	57.1 68.2	59.6 59.2	168.0 144.5 225.7 218.2 201.5	64.1 67.8 72.6 80.2 68.5	53.2 70.5 58.7 63.1 49.5				
American beech (Fagus grandi- folia Ehrh.)	75.6 83.5	66.2 50.9	66.5 77.8	142.1 151.3 121.4 121.2 131.1	11.8 93.2 110.6 110.6 110.4 66.3	73.2 80.3 75.0 89.4 81.0				
Yellow-poplar (Liriodendron tulipifera L.)	76.0 221.0 142.5	65.7 99.4 80.3	102.7 81.3 132.6	216.3 315.0 255.9 329.1 311.4	105.7 115.8 128.5 1.8.6 115.3	102.0 104.1 130.7 100.0 106.2				
Scarlet oak (Quercus coc- cinea Muenchh.)	84.1 92.2 92.4	55.2 88.1 62.1	68.5 83.2 76.1	154.1 109.7 127.0 121.9 145.4	83.1 68.4 62.4 73.8 66.3	84.4 94.4 67.6 72.8 93.8				

Table 5.- Molature content of drag test, statte breakage, and enown applyois trees

l'These trees arranged in sume order as in table 2. Moisture samples collected after completion of drag tests.

ESample trees from "Crown Characteristics of Several Broadlear and Palm Tree Species," T. G. Storey (in preparation), and trees used by W. Y. Pong for static breakage analysis.

Preliminary analysis by Storey^{-1} seems to indicate geometric similarity between young and mature broadleafs. In order to establish the general applicability of the empirical curves, dynamic similarity for broadleafs must be established as was done for conifers (10). This can be done by testing larger as well as smaller trees.

Table 2 shows the restricted number and size of test species. The limited samples also indicate the necessity for further experimentation. A larger size range of test trees will reveal also the role of dry branchwood to foliage weight ratio.

The preceding discussion has brought out many interesting points which have not been studied adequately. To recapitulate, influence of foliage characteristics, crown geometry, strength properties of leaves, branches, and stem, and change of moisture content should be investigated for complete understanding of the broadleaf aerodynamic crown drag mechanism.

CONCLUSIONS

1. Empirical curves based on wind forces and tree parameters have been developed for the prediction of aerodynamic drag of foliated crown for several species of broadleaf trees.

2. Each species has its own curve although the general characteristics of all curves are similar.

3. Foliage contributes a major portion to crown drag. For the trees tested, a difference of two- to tenfold exists between defoliated and full crowns.

3/ Storey, T. G., Crown characteristics of several broadleaf and palm tree species--relation between weight of crown, branchwood and foliage, and stem dlameter (in preparation).

24

LITERALURE CITED

1. Fritzsche, T. K.

- 1933. /Storm menace and adaptation7. Tharandtar Forstliches Jahrbuch 84(1): -104. /Transl. No. 143, Div. Silvics, U. S. Forest Service.7
- 2. Jaccard, P.
 - 1930. /The mechanical and physiological effect of the wind on the form of the tree trunks Separatabdruck Aus Der Schweizer, Zeitschrift Fur Forestwesen. /Transl. No. 173, Div. Silvies, U. S. Forest Service. 2 12 pp., illus.
- Jacobs, M. R.
 1936. The effect of wind on trees. Australian Forestry 1(2):25-32. 22 references.
- 4. 1939. A study of the effect of sway on trees. Commonwealth For. Bur., Australia, Bul. No. 26. 17 pp., illus.
- 5. Markwardt, L. J., and Wilson, T. R. C.
 - 1935. Strength and related properties of woods grown in the United States. Tech. Bul. 479, U. S. Dept. Agric., For. Products Lab. 99 pp., illus.

6. McIntosh, D. C.

1949. Observation of trees felled and left with foliage intact. Canada For. Products Laboratories. (Mimeo. 0-141). 16 pp., illus.

- 7. Merger, F. 1954. Mechanical aspects of wind-breakage and windfirmness. Jour. For. 52(2):119-125. 16 references, illus.
- Pryor, L. D.
 1937. Some observations on the roots of Pinus radiata in relation to wind resistance. Australian For. 2(2):37-40, illus.
- Robbins, W. W., and Weier, W. W. 1950. Botany, an introduction to plant science. 480 pp., illus. New York.

10. Sauer, F. M., Fons, W. L., and Arnold, R. K.

1951. Experimental investigation of aerodynamic drag in tree crowns exposed to steady wind--conifers. Div. Fire Res., U. S. Forest Service (mimeo.). 19 pp., illus.

- 11. Taisitiroo, Jatou.
 - 1948. Effection wind on transpiration of new and old leaves of some trees. But. Tokyo Univ. Forests No. 36. 29 pp., illus.

- Marild charde

the make of the set

- 12. Tiemann, H. D. 1906. Effect of moisture upon the strength and stiffness of wood.
 - Bul. 70, U. S. Forest Service. 130 pp., illus.
- 13.
- 1907. The strength of wood as influenced by moisture. Circ. 108, U. S. Forest Service. 42 pp., illus.
- 14. Tiren, L.
 - 1926. Nagra undersokninger over staniformen. Skogvards Foreningens Tidskrief, Vol. 24. /In Swedish, staff translation_7 Haft 1-2, pp. 23-88, illus.
- 15.
- 1928. Einige untersuchungen über die schaftform. Meddelanden Fran Statens Skogsforsoksanstalt, Hafte 24, No. 4, Vol. 5, pp. 81-152, illus., 16 references. /In German.7
- 16. Wilson, T. R. C.
 - 1932. Strength-moisture relations for wood. Tech. Bul. 282. U. S. Dept. Agric., Forest Products Laboratory. 88 pp., illus.
- 17. Windirsch, J.
 - 1936. /The structure of forest trees on a static basis.7 Thorandier Forstliches jahrbuch 87(7):533-536. /Transl. No. 260, Div. Silvics, U. S. Forest Service.7 15 references, illus.

NG15NCLATERE

Δ	Ξ	oscillograph attenuation setting
d_{bh}		outside bark diameter at breast height, in.
d _e	27	inside bork diameter at base of crown, in.
D	11	drag force, 1b.
H _{bh}	=	stem length above breast height, ft.
H _a	=	length of erown, ft.
H		stem length from tip to center of pressure, ft.
IB		incide bark
K	=	dynamometer constant, 1b.
L		length of test course, ft.
Μ	Ŧ	moment about base of crown, in1b.
OB	=	outside bark
t	=	time, min.
Т	=	temperature, ^O F
V	=	velocity, ft./sec.
Wdb	=	total weight of dry branchwood, lb.
[₩] df		total weight of dry foliage, lb.

- ρ
- = mass density of air, lb.-sec.²/ft.

