Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

RECORD OF DECISION

NOXIOUS WEED CONTROL PROJECT FINAL ENVIRONMENTAL IMPACT STATEMENT

PRIEST LAKE RANGER DISTRICT IDAHO PANHANDLE NATIONAL FORESTS BONNER COUNTY, IDAHO BOUNDARY COUNTY, IDAHO PEND OREILLE COUNTY, WASHINGTON

TABLE OF CONTENTS

Page
THE DECISION 1
RATIONALE FOR THE DECISION 2
PUBLIC PARTICIPATION 3
ALTERNATIVES 3
MONITORING 4
FINDINGS REQUIRED BY OTHER LAWS 5
THE ENVIRONMENTALLY PREFERRED ALTERNATIVE 5
IMPLEMENTATION DATE 5
APPEAL RIGHTS AND PROCEDURES 5
CONTACT PERSON FOR MORE INFORMATION 6
APPENDIX A - NOXIOUS WEED TREATMENT TABLE 7

Record of Decision
 Noxious Weed Control Project Final Environmental Impact Statement

Priest Lake Ranger District Idaho Panhandle National Forests Bonner County, Idaho Boundary County, Idaho Pend Oreille County, Washington

THE DECISION

This Record of Decision documents my decision and reasons for implementing Alternative C (manual, cultural, biological, and chemical noxious weed control) on 128 sites, all within the Priest Lake Ranger District of the Idaho Panhandle National Forests (IPNF). The noxious weeds on these sites are scattered over about 2,636 acres. Total treatment would be approximately 320 acres.

Appendix A of this Record of Decision lists the selected treatment for each of these 128 sites. This list is based on an extensive inventory of sites conducted over the past seven years and represents key sites within the Priest River Basin where control of noxious weeds is an important element of ecosystem management for this ecosystem. There is the possibility that some new smaller sites will be discovered in the future while implementing this project. Therefore this Record of Decision will allow for treatment of new weed infestations within the project area. This treatment would be based on an analysis of site characteristics to ensure that the treatment would not add significantly to effects described in the FEIS.

My decision to control noxious weeds on the Forest is guided by the IPNF Forest Plan signed in 1987 and the evaluation of the environmental consequences of proposed treatments in the Noxious Weed Management Project's Environmental Impact Statement. The decision includes specific requirements that apply to each treatment site.

My decision was made after fully considering the physical, biological, economic and other social effects of the various alternatives for each site fully analyzed in the FEIS.

RATIONALE FOR THE DECISION

My decision is based on an evaluation of applicable laws, regulations, and Forest Service policies and an assessment of environmental issues and consequences. Three alternatives were considered: a "No Action" Alternative (Altemative A) and 2 action altematives. The action alternatives included 'Manual, Cultural, and Biological Control' (Alternative B), and 'Manual, Cultural, Biological, and Chemical Control (Altemative C , the selected alternative). I have also reviewed the literature relating to management of noxious weeds as well as weed management plans for State and local agencies. From this evaluation I determined that measures to control noxious weeds are necessary and consistent with State and County weed management plans.

We know a great deal about the aggressiveness of noxious weeds that threaten the biological integrity of the Priest River Ecosystem. It is important and timely that control efforts occur as soon as possible to prevent noxious weeds from severely altering the natural composition of the species present in this ecosystem. A timely response, not to mention State law, precludes the selection of Alternative A, the No Action Alternative.

Alternative B, manual, cultural, and biological control of noxious weeds, is the most environmentally "friendly", but it is limited in its effectiveness. Manual or cultural control has limited application. For some species of noxious weeds such as Canada thistle and the hawkweeds, the root systems re-sprout from segments left in the soil. In addition, the degree of soil disturbance involved with alternative B, would at times, be in contradiction to its environmental appeal. Biological control, by itself, is not always an effective method of noxious weed control. Experience on the Priest Lake Ranger District has shown that many of the weed infestations cannot be controlled by the use of biocontrol methods exclusively. For many noxious weed infestations, the weed population may increase in density and area at a faster rate than the biocontrol agents, therefore, other control methods must be used in conjuction with the biocontrol. In the case of meadow and orange hawkweed, there are no known biological control agents at this time. Meadow hawkweed is the greatest existing threat to the biological diversity of the Priest River Ecosystem.

If we could effectively control noxious weeds without the use of pesticides, I would have chosen Alternative B. Unfortunately, these methods individually or in combination, as previously stated, are not practical without the aid of chemical treatments. Alternative C provides tools that are practical, effective, and safe. Significant portions of forested ecosystems should retain the broadest spectrum of native species with the use of herbicides as well as manual, cultural, and biological control. I reasonably expect the potential human health impacts from herbicide applications on these sites to be insignificant.

The direct impact to Threatened, Endangered and Sensitive plant and animal species from the application of these herbicides on these sites will be negligible. Specific reference to the potential impacts on Threatened, Endangered, and Sensitive Species are contained in the Biological Evaluations and Assessments in Appendix F of the FEIS.

Our evaluation of herbicide use on the proposed project sites indicates that cumulative impacts on surface water quality will be minimal.

Picloram or clopyralid are selected for sites with low risk of herbicide movement. These chemicals have the advantage of providing relatively selective, long term control of weeds such as hawkweed and knapweed which have seeds that can remain viable in the soil for many years providing a source for reinfestation of these sites.

PUBLIC PARTICIPATION

The NEPA scoping process identified the significant issues to be documented and analyzed in the Draft Environmental Impact Statement (DEIS). Public involvement began in March, 1996 with the publication of a Notice of Intent in the Federal Register, the mailing of a Scoping Notice to 112 interested individuals, and articles and news features in local papers and other publications. Scoping for the DEIS was also announced through the March and July 1996 Schedule of Proposed Actions for the Idaho Panhandle National Forests. Chapter II of the FEIS discusses in detail the public involvement process. Four issues were identified through comments and discussions with the public and through an evaluation by the ID Team of resource needs, legal requirements and Forest Plan standards. These issues are 1) Current and potential impacts of the spread of noxious weeds on the physical, biological, and social environment within the Priest Lake Ranger District; 2) Potential impacts, effectiveness and economics of various weed control methods; 3) Potential effects upon human health from the application of herbicides; and 4) The spread of noxious weeds on the right-of-way for State and County roads within the National Forest boundaries. (See Chapter II of the FEIS for a detailed discussion of the issues.)

The DEIS was released in August, 1996. The Priest Lake Ranger District received 9 responses to the DEIS. The responses came from individuals, organizations, and State and Federal agencies.

> There were no new significant issues raised in comments to the Draft EIS. All respondents supported a program to control noxious weeds. Most supported Alternative C. The EIS was revised, where appropriate, to reflect comments received from the public. Few substantative changes have been made to clarify issues raised in comments on the DEIS. These changes are noted in the responses to individual comment letters located in Chapter VI.

ALTERNATIVES

Three alternatives were considered for managing noxious weeds on the 128 sites. The alternatives were developed based on existing information and on concems expressed by the public during the scoping process.

Following is a brief description of each alternative considered along with the mitigating measures for each. For more detailed descriptions, refer to pages II-9 to II-25 in the FEIS.

Alternative A - No Action

This alternative would continue using the current noxious weed control activities on the Priest Lake Ranger District. Essentially, only timber sale areas where funding would cover weed treatments, and administrative sites such as the Priest Lake airstrip would be treated. Aggressive control of the existing noxious weed infestation would not occur and noxious weeds would become an established part of the ecosystem.

Aternative B - Manual, Cultural, and Biological Control

This alternative would include treatments such as hand-pulling, clipping and mowing, and the release of biological agents. These agents could include parasites, predators or pathogens that have shown promise in reducing weed infestations.

Aternative C - Manual, Cultural, Biological, and Chemical Control

This alternative would include the methods of Alternative B plus application of the herbicides Clopyralid, 2,4-D, Dicamba, Glyphosate, Metsulfuron methyl, triclopyr, and picloram. Herbicides would be applied as per guidelines included in the FEIS. These guidelines include manufacturer's instructions, use precautions contained on the pesticide label, and would be applied under the supervision of State certified applicators.

Of these alternatives, only Alternative C will likely meet the objectives identified in the Purpose and Need section of Chapter I. Alternative A would not meet these objectives. Alternative B would partially meet the objectives, but it would be much more costly and require more resources and personnel than Altemative C.

The same prognosis holds for the ability of each alternative to meet the first of the four issues raised for this project. The first issue is the potential impact of the spread of noxious weeds to the physical, biological and social environments. Alternative A would be extremely limited in its effectiveness to prevent the spread of noxious weeds, Alternative B would be more effective than Altemative A but still limited in its ability to significantly reduce the spread of identified weed populations. Alternative C would be the most effective at reducing the spread, especially in the long term.

The second significant issue is the potential impacts, effectiveness and economics of various weed control methods. There would be no impact, effectiveness and minimal cost (\$24,000 over the next three years) from the No Action Alternative. Under Altemative B, the greatest impact would be the amount of exposed earth produced in manually or mechanically removing the root systems of some of the noxious weed species. Effectiveness of Altemative B would consist of eliminating or greatly reducing populations on about 28% of the project area. The cost would be the highest of all the alternatives ($\$ 1,130,000$ for three years). Alternative C would have minimal impacts to the environment from chemical control. The impacts to any resource was not found to be significant other than the potential benefit to vegetative diversity. Effectiveness of Alternative C would consist of eliminating or greatly reducing populations on about 94% of the project area. The cost of this alternative would be significantly less than Altemative $\mathbf{B}(\$ 86,500)$.

The third issue focused primarily on the effects to human health from herbicide application. A thorough review of this subject was conducted and well documented in Chapter IV of the EIS. The basic conclusion of this analysis was that human health impacts from herbicide application would be insignificantly small.

The fourth issue has to do with the spread of noxious weeds on State and County road rights-of-way within the National Forest. Alternative A would do nothing to decrease the spread of weeds. Alternative B would be somewhat effective at reducing the spread of weeds on these roads, but would not be as effective as Alternative C , and would cost almost thirteen times as much.

MONITORING

Monitoring requirements are discussed in Chapter II of the FEIS. Monitoring is important to ensure that implementation of the selected alternative occurs as planned. Monitoring is gathering information and observing activities to provide a basis for periodic evaluation of project goals and objectives. Monitoring can be divided into the following categories:

Implementation Monitoring

The administration of each weed control project will be monitored to determine if the project was carried out as planned. For example, was the site sprayed or pulled at the planned time of year, was the correct amount of chemical applied and were safety precautions followed.

Effectiveness Monitoring

Representative sites will be measured before and after treatment to determine if the goals and objectives for that particular project were met.

FINDINGS REQUIRED BY OTHER LAWS

Lack of weed control with a No Action Alternative (Alternative A) could conflict with State law (Idaho Noxious Weed Law, Idaho Code 22 Chapter 24) and State, County and adjacent landowners' weed control plans. The State law directs district (County) weed boards to develop weed control districts to plan and implement weed control efforts.

The National Forest Management Act and accompanying regulations require that "All resource plans...must be consistent with the Forest Plan" [16 U.S.C. 1604 (i)]. The Idaho Panhandle National Forests Plan chose Integrated Pest Management (IPM) principles in managing various pests. In keeping with its management responsibilities, the Forest Service must consider methods to prevent the introduction and spread of non-native vegetation that might severely disrupt sensitive resources of the National Forest. Prevention strategies regarding the use of weed-free seed forage are currently being developed. Inventory, seeding roadsides and trailheads, and promoting public education on recognizing and preventing noxious weeds will continue to be an important aspect of the District noxious weed program.

IDENTIFICATION OF THE ENVIRONMENTALLY PREFERABLE ALTERNATIVE

Alternative B, manual, biological and cultural control, is the alternative that is environmentally preferred for all sites.

IMPLEMENTATION DATE

Implementation of the Selected Alternative will begin no earlier than 45 days after legal notice of this decision is published in the Spokesman-Review newspaper, Spokane, Washington.

APPEAL RIGHTS AND PROCEDURES

The decision is subject to administrative appeal pursuant to 36 CFR Part 215.7. Appeals must be postmarked or received within 45 days of publication of the legal notice in the Spokesman-Review. The notice of appeal must be sent to the following Reviewing Officer:

USDA Forest Service, Northern Region
ATTN: Appeals Deciding Officer
P.O. Box 7669

Missoula, MT 58807
The notice of appeal must be fully consistent with 36 CFR 215.14 (Contents of the Notice of Appeal) and must provide sufficient evidence to the reviewing officer to show why the decision should be changed.

CONTACT PERSON FOR MORE INFORMATION

For additional information or questions concerning this decision or the appeal process, please contact:

Kent Dunstan
District Ranger
Priest Lake Ranger District
HR 5 Box 207
Priest River, ID 83856
(208) 443-2512

Copies of the Noxious Weeds Management Projects FEIS can be obtained at the Priest Lake Ranger District Office in Priest Lake, Idaho.

\qquad
KENT L DUNSTAN
Date
District Ranger

 흔 흔 8 8 8 3

敦鬼名Ill妾： N in in

Propositd TREATMENT
 Herbicide／Manual Control

 등 ざ ～우 춘
 $\stackrel{\hat{\sim}}{\mathrm{i}}$ ～ $\stackrel{N}{\approx}$ $\stackrel{\stackrel{4}{4}}{\pi}$ \div \sim

trol
$\stackrel{2}{\gtrless}$ is i $\underset{\sim}{\text { in }} \underset{\text { N }}{\text { N }}$

 춘 $\stackrel{\circ}{\circ}$ 8 $8 \frac{8}{8}+\infty$
 Legal lochation
T61N R5W S1，T62N R5W $\$ 36$ T62N R5W S24，25，26，27，34
T38N R45E $\$ 23,26$
T62N R4W．T62N R5W T62N R4W S9 T62N R4W S 19，20，21，30 T62N R5W S 24 T6ON R5W S 2.11
TGON R5W S 3
T61N R5W，T60N R5W
TGON R5W，T61N R5W
TGON R5W S 11，12
T6ON R5W S9，16，21
TGON R5W，TG1N R5W
Herbicide／Manual Control
Herbicide／Manual Control
$\stackrel{n}{\mathrm{~N}} \quad \bar{\sigma} \stackrel{9}{=}$
ก．＊$\stackrel{\leftrightarrow}{\sim}$
｜相

$\begin{array}{ll}\text { 흥 } & \text { 흔 } \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 8 & 8 \\ 3 & 3\end{array}$

는
문
0
0
8
3
흘
0
8
0
8
3

 $\begin{array}{ll} & \\ \text { 은 } & \frac{0}{6} \\ 0 & \frac{0}{5} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 3 & 3 \\ 3 & 3\end{array}$ $\begin{array}{lll} & & \\ \text { 응 } & \text { 흔 } & \frac{0}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 8 & 8 & 8 \\ 3 & 3 & 3\end{array}$ Recreation site Prime rangelands

 N $\stackrel{\bar{N}}{ }$ $\bar{\circ}$ $\stackrel{\text { N }}{\text { N }}$ N ©
 N \sim N n -

 $\stackrel{\mathscr{B}}{\dot{\sim}} \sim \stackrel{\infty}{\underset{\sim}{\sim}} \underset{\oplus}{\infty}$ $\stackrel{4}{4}$ $\stackrel{\substack{n \\ \sim}}{\sim}$ $\stackrel{\infty}{\stackrel{\infty}{\infty}}$

 $\stackrel{\infty}{\sim} \quad$ ㅇ $\quad \infty$ ロ~ ~~~ ๓ $\cong \quad \stackrel{\infty}{\sim} \stackrel{\infty}{\square}$

11
0

$\begin{array}{ll}18 & \infty \\ 0 & \stackrel{\infty}{N} \\ 0 & 0\end{array}$ $\stackrel{8}{\circ}$ กั．ล๐ －

ल్లু ल̈
\％
$\stackrel{\text { O}}{\circ}$

Weed corridor，prime rangelandsWeed corridor
Unique habitats，rangelands
Weed corridor
Weed corridor
Weed corridor
Unique habitats
Important wildlife habitats
Weed corridor
Weed corridor
Weed corridor
Access to Research Natural Area
Weed corridor
Weed corridor
Important wildife habitats
 20.09
7.47 ぶ $\stackrel{m}{\square}$
$\stackrel{\text { が }}{ \pm}$

$\begin{array}{ll}\stackrel{\omega}{\infty} & \stackrel{\infty}{\infty} \\ \stackrel{\oplus}{\infty}\end{array}$$\stackrel{\bar{\circ}}{\circ} \stackrel{\varrho}{\circ} \stackrel{\otimes}{\circ} \stackrel{-}{\circ}$ | 8 |
| :--- |
| | g $\stackrel{\text { N }}{\sim}$ à 4.36 \square 8

i $\stackrel{\infty}{\sim} \stackrel{n}{\sim}$ $\stackrel{\bar{m}}{\underset{\sim}{\sim}}$

 T34N R46E

T33N R45E S8
T58N R5W S 3,

T58N R5W S 9，10

T58N R5W S 9，10

T58N R5W S 20，28，29，30，T33N R46E S 18

$\because \hat{\sim} \dot{\sim}$
$\hat{0} \quad \stackrel{(}{\sim} \quad \underset{\sim}{n}$ Ñ
LEGAL LOCATION

DISTRICT BOUNDARY

ROAD 1312 AND 2291 ROAD SYSTEMS

ROAD 2250 YSTEM

ROAD 1353 SYSTEM
OJIBWAY RIDGE ROAD ALONG DISTRICT BOUNDARY

MOORE－DUBIUS ROADS
BEAD LAKE SPUR ROADS AND MOSQUITO BEAD LAKE SPUR ROADS AND MOSQUITO
POINT ROADS

ROAD 1041 SYSTEM
HAMMOND RANCH ROAD

HIGHWAY 57 TO QUARTZ CREEK

T58N R5W S 33，34，35，36
T57N R5W S 14，15，23，24 T57N R5W S 14，15，23，24

 Herbicide／Manual Control Herbicide／Manual Control

Herbicide／Manual Control Herbicide／Manual Control Herbicide／Manual Control Herbicide／Manual Control Herbicide／Manual Control
Herbicide／Manual Control Herbicide／Manual Control
Herbicide／Manual Contro
 Herbicide／Manual Control Herbicide／Manual Control

1092A， 1113
 ＇－11001＇3เทロ｜

1041E，1041F，
1041H

 2291E，2291F，
2291J 2291J
1301 ＂

1098
1084 T33N R45E S 10，11，13，14，15，22，23
T57N R5W S 5，8，17 T33N R45E S 10，11，13，14，15，22，23
T57N R5W S 5，8，17 T57N R5W，T58N R5W，T33N R 45E T33N R46E，T34N R45E

T59N R4W S 19，T58N R4W S
T57N R4W，T58N R4W
T58N RSW S 2，3，11，12
T59N R4WS 19
T59N R5W S 10，11，12，13 TGON R5W S 33，34 T59N R5W，T6ON R5W
T57N R5W S 31，32，33，34，

T57N R5W S 31，32，33，34，35，36

ROAD
OJIBWAY LOOP ROAD OJIBWAY LOOP ROAD PETERSON ROAD HIGHWAY 57 TO PENINSULA
GLEASON BOSWELL ROAD
JOHNSON CUTOFF ROAD
BEAR PAW ROAD TO DISTRICT BOUNDARY

SCATTERED SITES ALONG LOWER PRIEST RIVER

McABEE FALLS ROAD 334 JUNCTION TO

 McAbee fallsMCABEE FALLS ROAD HIGHWAY 57 TO 334A JUNCTION DICKENSHEET JUNCTION TO DICKENSHEET bRIDGE

BINARCH CREEK ROADS G39N AND 1116 BINARCH RIDGE ROAD

ROAD FROM LAMB CREEK OVER BINARCH
MOUNTAIN TO HIGHWAY 57
ROAD 984 FROM HIGHWAY 57 TO STONE JOHNNYあ

