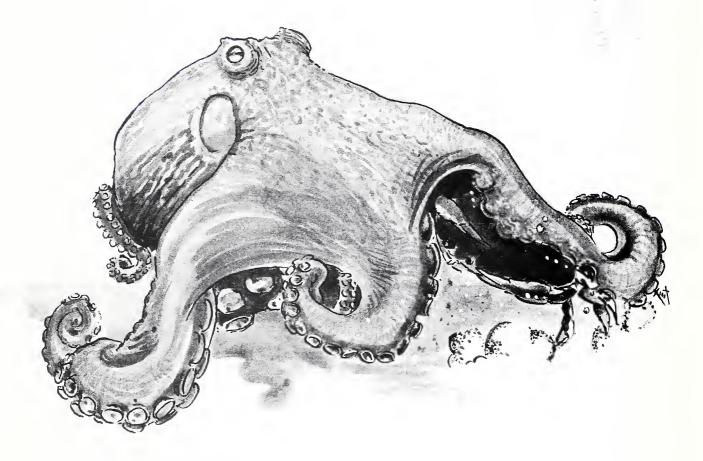
Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

.


Molluscs

United States Department of Agriculture

Agricultural Research Service

National Agricultural Library

Animal Welfare Information Center

AWIC Resource Series No. 22

Information Resources on the Care and Use of Molluscs

May 2003

Published by:

United States Department of Agriculture Agricultural Research Service National Agricultural Library Animal Welfare Information Center 10301 Baltimore Avenue Beltsville, Maryland 20705-2351

Tel.: (301) 504-6212 Fax: (301) 504-7125 Email: <u>awic@nal.usda.gov</u> WWW: <u>http://www.nal.usda.gov/awic</u>

Gregg B. Goodman, M.S., compiler

AWIC Resource Series No. 22

National Agricultural Library Cataloging Record:

Information Resources on the Care and Use of Molluscs.
(AWIC Resource Series; no. 22)
1. Animal welfare - Information resources. 2. Laboratory animals - Information resources.
3. Molluscs-Information resources.
I. Goodman, Gregg B. II. Title.
a HV4701.A94 no.22

Cover image by Tex Jones, Copyright Mote Marine Laboratory

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720–2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Office of Civil Rights, Room 326–W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250–9410 or call (202) 720–5964 (voice and TDD). USDA is an equal opportunity provider and employer.

The use of trade, firm, or corporation names in these pages is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by USDA, or any agency thereof, of any product or service to the exclusion of others that may be suitable.

Information appearing in this publication do not necessarily represent positions or policies of the USDA or any agency thereof.

Information Resources on the Care and Use of Molluscs

Con	tents
-----	-------

How to Use This Guide iv
Laboratory Care/ Research
Bivalves
Cephalopods
Gastropods
Miscellaneous
Aquaculture-Related Resources
Bivalves
Cephalopods
Gastropods
Miscellaneous
World Wide Web Resources
Bivalves
Cephalopods
Gastropods
Miscellaneous
National Agricultural Library Document Delivery Information
Index

How to Use This Guide*

Invertebrates are playing an increasingly important role in biomedical research. Because many of their biological processes are temperature dependant, they have allowed us to view biochemical pathways and intermediate steps in ways that would be impossible with birds or mammals. Some have cells or organs similar to those found in man but greatly enlarged. The giant axon in the squid and the muscle cells in barnacles are the largest in the animal kingdom. Octopuses have the most complex brain of all invertebrates; which include long and short-term memories. Aplysia are used in many different types of nervous system studies. Sea squirts have been used to study kidney stones and squid are used in multiple sclerosis research. From scallop to sea slug, invertebrates have served as models of human and animal disease.

Invertebrates are relatively easy to maintain, less expensive, and less labor intensive than more traditional laboratory animals. From a societal standpoint, invertebrates may be more acceptable as laboratory animals than vertebrates. Many researchers, either by law or policy, are required to consider ways to reduce the number of animals proposed for an experiment, refine their techniques to minimize pain and distress to the animals, and replace the animal model with a non-animal model or a taxonomically lower species. Use of the invertebrate is considered a replacement alternative to the use of vertebrates. Since research has not yet shown invertebrate cognition of what would be considered pain in mammals and birds, their use is also a refinement alternative.

This guide, *Information Resources on the Care and Use of Molluscs*, provides a snap shot of how Molluscs are being used in research and, just as important, how they are cultured, reared, and housed in the laboratory and elsewhere. The bibliographic citations cover the publication years 2002 to approximately 1973. The bibliographic citations resulted from searching numerous scientific and technical databases. The call number is included for materials in the National Agricultural Library's (NAL)collection. NAL's document delivery policies can be found at http://www.nal.usda.gov/ddsb/.

The websites and organizations at the end of some sections are current through April 2003. They were found by running general searches on the World Wide Web. As sites can become outdated or relocated and new sites emerge, a general search on one of the commercial search engines should help locate address changes or new sites if the addresses included in this document no longer function.

* Information included in this portion of this publication and other web-resources sections were adapted from *Information Resources for the Care and Use of Invertebrates* (published previously in AWIC by Michael D. Kreger, Ph.D.) and included with his permission.

Laboratory Care/ Research

Bivalves

2002

Kreeger, D.A.; Gatenby, C.M.; Raksany, D. (2002) Variability in condition index and tissue biochemistry of Elliptic complanata held in the field and laboratory. *Journal of Shellfish Research* 21 (1): 378-379, ISSN: 0730-8000.

NAL CALL NUMBER: SH365.A1J6

DESCRIPTORS: freshwater ecology, environmental sciences, nutrition, Elliptio complanata, freshwater mussel, adult, microalgae, food, lab cultured, animals, nonvascular plants, tissue, biochemistry, carbohydrate, lipid, protein, continuous flow chambers, laboratory equipment, ash, environmental conditions, field conditions, food quality, laboratory conditions, natural seston, physiological condition index, reproductive cycling, seasonal variation, sediment conditions, water quality.

Piano, A.; Asirelli, C.; Caselli, F.; Fabbri, E. (2002) **Hsp70 expression in thermally stressed Ostrea edulis, a commercially important oyster in Europe.** Cell Stress and Chaperones 7 (3): 250-257, ISSN: 1355-8145.

DESCRIPTORS: Ostrea edulis, animal model, commercial importance, thermal stress, Heat shock protein-70, heat induced thermally stressed oyster gill, expression, heat induced thermally stressed oyster mantle expression, Europe.

2001

Barfield, M.L.; Farris, J.L.; Black, M.C. (2001) **Biomarker and bioaccumulation responses of Asian clams exposed to aqueous cadmium.** *J Toxicol Environ Health A* 63(7): 495-510, ISSN: 1528-7394.

NAL CALL NUMBER: RA565 A1J6

ABSTRACT: Measured responses of biochemical or physiological indicators have been suggested to reflect thresholds where pollutants exert their initial effect. Responses in cellulolytic enzyme activity and DNA strand breakage of the Asian clam Corbicula fluminea exposed to cadmium in the laboratory were measured and metal body burdens were determined concurrently. Clams were exposed to aqueous cadmium concentrations of 3, 6, 12, or 25 ppb for 23 and 28 d. Cadmium concentrations in clam tissue were highest in lower cadmium treatments, and body burdens increased with length of exposure in only the 28-d experiment. Cellulolytic enzyme activity decreased with increasing cadmium concentrations for clams in the 28-d experiment. Induced enzyme activities were observed in cadmium treatments for both experiments and are thought to precede declines in activity through the length of exposure. Significant reductions in DNA strand lengths of cadmium exposed clams were observed by wk 3 in the 23-d exposure and by wk 2 in the 28-d exposure. Reduced DNA strand lengths in these cadmium treatments for the 28-d exposure precede significant declines in cellulolytic activity at subsequent sampling events. Combining these data with observations of mortality in higher cadmium treatments suggests that impairment of DNA structural integrity and reduced digestive enzyme activity may indicate metal-induced stress in clams.

DESCRIPTORS: cadmium pharmacokinetics, cellulose metabolism, water pollutants, chemical pharmacokinetics, analysis of variance, biological markers, body burden, cadmium toxicity,

clams, DNA, single stranded drug effects, dose response relationship, drug, tissue distribution, water pollutants, chemical toxicity, biological markers, DNA, single stranded, chemical, cadmium.

Borcherding, J.; Wolf, J. (2001) The influence of suspended particles on the acute toxicity of **2-chloro-4-nitro-aniline, cadmium, and pentachlorophenol on the valve movement response** of the zebra mussel (Dreissena polymorpha). Arch Environ Contam Toxicol 40(4): 497-504, ISSN: 0090-4341.

NAL CALL NUMBER: TD172 A7

ABSTRACT: The Dreissena-Monitor is a biological early warning system for the continuous monitoring of river water quality, based on the valve movements of two groups of 42 zebra mussels (Dreissena polymorpha). Laboratory experiments with Cd, PCP, and 2-chloro-4-nitro-aniline were conducted in combination with suspended particles (a mixture of stinging nettle powder, bentonite, and quartz powder). An increase of suspended particles up to a nominal concentration of 540 mg/L within 5 min did not evoke any reactions by the mussels significantly different from normal. The distribution between water and solids was analyzed for Cd and 2-chloro-4-nitroaniline, with the result that the former quickly adsorbed to the particles, whereas the latter did not bind to the particles at all. The behavior of the zebra mussels revealed that the detection of 2-chloro-4-nitro-aniline was not affected by the presence of suspended matter. In the cases of Cd and PCP, D. polymorpha was able to detect these substances when they were particle-associated at least as well or better as when they were dissolved in the water. The results are discussed with respect to the physiology of the organisms and the bioavailability of toxicants, as well as to the consequences these results may have under field conditions. DESCRIPTORS: aniline compounds toxicity, cadmium toxicity, environmental pollutants toxicity, mussels, mutagens toxicity, pentachlorophenol toxicity, adsorption, aniline compounds pharmacokinetics, behavior, animal, biological availability, cadmium pharmacokinetics, environmental monitoring, environmental pollutants, pharmacokinetics, particle size, pentachlorophenol pharmacokinetics, aniline compounds, environmental pollutants, mutagens, 2-chloro-4-nitroaniline, cadmium, pentachlorophenol, environmental health, toxicology.

Brichette, I.; M. I. Reyero; C. Garcia. A genetic analysis of intraspecific competition for growth in mussel cultures. Aquaculture. Amsterdam : Elsevier Pub. Co., c1972. Jan 15, 2001. v. 192 (2/4) p. 155-169. ISSN: 0044-8486.

NAL CALL NUMBER: SH1 .A6

ABSTRACT: In domestic organisms that are cultured in situations where competition for resources exists, the effect of an individual on the overall yield of the population depends not only on its own growth in the face of competition, but also on its competitive influence on its neighbours' growth. The genetic variability of this influence may be very important and therefore useful in a breeding plan, but is seldom estimated in practice. In this study, we carried out a genetic analysis of the intraspecific competition for growth in cultured mussels, and found that the family genotype had a clear effect on both the competitive influence of each individual on its neighbours, and its response to the competition from them. The limited number of male and female parents available for the experiment prevented a very precise partition of this genetic variability in additive and dominant variances, but in any case the heritability estimates obtained tended to be low (about 10% overall). These low heritabilities could still result in significant responses to artificial selection, given the high selection pressures that can be applied in bivalve molluscs. In addition, and in contrast with what usually happens in plants, the correlation between both kinds of effects in our mussel population was clearly greater than -1, which could allow the use of artificial selection to increase the ability to grow at high population densities and simultaneously to reduce the competitive interference between neighbours.

DESCRIPTORS: Mytilus galloprovincialis, genetic analysis, intraspecific competition, mussel culture, heritability, yields, competitive ability, growth, genetic variation, animal breeding, breeding programs, genotypes, genetic variance, artificial selection, selection pressure.

Butler, R.A.; Roesijadi, G. (2001) **Quantitative reverse transcription polymerase chain reaction of a molluscan metallothionein mRNA.** *Aquat Toxicol* 54(1-2): 59-67, ISSN: 0166-445X.

NAL CALL NUMBER: QH541.5.W3A6

ABSTRACT: A quantitative assay based on competitive reverse transcription polymerase chain reaction (RT-PCR) was developed for metallothionein (MT) mRNA of the mollusc Crassostrea virginica and applied to analysis of MT mRNA of hemocytes. The assay was based on titration of a competitive external standard cRNA derived from the coding region of the oyster MT mRNA. Serial dilutions of the cRNA standard were coamplified with a constant amount of total RNA using biotinylated primers common to both target and standard sequences. Amplified products were bound to streptavidin-coated plates and hybridized to sequence-specific fluorescein-labeled probes. Detection was based on single photon counting of chemiluminescence generated by an alkaline phosphatase-conjugated antifluorescein antibody. For quantification, the target chemiluminescence was normalized to that of the standard, and the amount of target MT mRNA in the sample was derived from the titration. Cadmium-induced MT mRNA equivalent to that in 180 hemocytes was easily detected, and, for routine quantitative analysis, was sufficiently sensitive to quantify basal and induced MT mRNA. Basal hemocyte MT mRNA of 133+/-8 (1 S.E.) amol per microgram total RNA was induced 5-fold to 573+/-14 amol per microgram total RNA by in vitro exposure to 15 microM CdCl(2) for 20 h. DESCRIPTORS: metallothionein genetics, oysters metabolism, RNA messenger analysis, reverse transcriptase polymerase chain reaction, cadmium pharmacology, pharmacology, genetics, metabolism, analysis, messenger RNA, cadmium, metallothionein.

Kelley, M.L.; Winge, P.; Heaney, J.D.; Stephens, R.E.; Farell, J.H.; Van Beneden, R.J.; Reinisch, C.L.; Lesser, M.P.; Walker, C.W. (2001) **Expression of homologues for p53 and p73 in the softshell clam (Mya arenaria), a naturally-occurring model for human cancer.** *Oncogene* 20 (6): 748-758, ISSN: 0950-9232.

DESCRIPTORS: molecular genetics, biochemistry and molecular biophysics, tumor biology, Mollusca, Mya arenaria, animal model, Mollusks, leukemia, blood and lymphatic disease, neoplastic disease, tumor development.

Lares, M.L.; Orians, K.J. (2001) Differences in Cd elimination from Mytilus californianus and Mytilus trossulus soft tissues. *Environ Pollut* 112(2): 201-7, ISSN: 0269-7491. NAL CALL NUMBER: QH545.A1E52

ABSTRACT: Field results have shown that Mytilus californianus is able to release its Cd concentrations significantly in just a few days. The existing paradigm states that Cd elimination from Mytilus soft tissues is a very slow process. This discrepancy was investigated in the laboratory, testing the effect of two Cd levels (10 and 1 microgram 1-1) on its release from Mytilus trossulus and M. californianus soft tissues. After exposure to 10 micrograms l-1, both species showed a significant uptake with no elimination after several days of depuration. After exposure to 1 microgram l-1, the responses were different. No significant Cd uptake was seen in M. trossulus while in M. californianus uptake was significant but returned to the background level after just 1 day of depuration. This response of M. californianus is consistent with that reported from field studies. These results are important for environmental monitoring programs since M. californianus has been used as equivalent to other Mytilus species in the assessment of Cd pollution.

DESCRIPTORS: cadmium pharmacokinetics, environmental pollutants pharmacokinetics, mussels physiology, environmental monitoring, reference values, cadmium, pharmacokinetics, physiology.

Longsha, M.; Feist, S.W.; Matthews, R.A.; Figueras, A. (2001) **Ultrastructural characterisation of Marteilia species (Paramyxea) from Ostrea edulis, Mytilus edulis and Mytilus galloprovincialis in Europe.** *Dis Aquat Organ* 44(2): 137-42, ISSN: 0177-5103. *ABSTRACT*: A focused ultrastructural study of Marteilia spp. found in cultured Ostrea edulis, Mytilus edulis and Mytilus galloprovincialis from France and Spain was conducted with emphasis placed on haplosporosomes, striated plate-like inclusions and spore wall morphology. Two types of haplosporosome were identified, sphaeroid and oblate, which were common to the parasite in all 3 host species. A total of 492 haplosporosomes were measured; those from the Marteilia sp. in Mytilus spp. were marginally smaller than those in Ostrea edulis. Spore wall morphology was found to vary depending on the state of maturity of the parasite--the more mature the parasite, the thicker the wall surrounding it. It is suggested that the current criteria used to distinguish M. maurini from M. refringens are invalid and that M. maurini was relegated to a junior synonym of M. refringens.

DESCRIPTORS: eukaryotic cells ultrastructure, mussels parasitology, oysters parasitology, parasites ultrastructure, aquaculture, eukaryotic cells classification, France, microscopy, electron veterinary, parasites classification, Spain, classification, ultrastructure, veterinary, parasitology, microbiology, biology.

Mullendore, J.L.; Sobsey, M.D.; Carol Shieh, Y. (2001) **Improved method for the recovery of hepatitis A virus from oysters.** *J Virol Methods* 94(1-2): 25-35, ISSN: 0166-0934. NAL CALL NUMBER: QR355.J6

ABSTRACT: Hepatitis A is one of the major infectious diseases epidemiologically associated with worldwide shellfish consumption. Molecular detection using polymerase chain reaction (PCR) to detect hepatitis A virus (HAV) in contaminated shellfish can be hindered by low virus recoveries during the concentration process and by natural PCR inhibitors in shellfish. This study evaluated and modified two major steps of a processing procedure for virus concentration from oysters: acid adsorption-elution and solvent extraction. With the addition of second and third elutions, the acid adsorption-elution step doubled the recovery to 46% of HAV seeded initially. Extraction with chloroform or chloroform-butanol resulted in lower HAV detection limits by reverse transcription-PCR (RT-PCR)-oligoprobing than extraction with the fluorocarbon, Freon. These results led to the following modified procedure: HAV was acid adsorbed at pH 4.8, eluted first with 0.05 M glycine, second with 0.5 M threonine, PEG-precipitated twice, chloroform-extracted twice, RNA-extracted, and RT-PCR (single round) amplified. Using the modified procedure, HAV was detected by RT-PCR in all trials with a seeding density of > or = 1 plaque forming unit (PFU)/g of oyster, and in which the equivalent detection limit was 0.33 PFU of HAV seeded per RT-PCR reaction (corresponding to 111 PCR units). The method developed is capable of detecting low levels of HAV in oysters environmentally contaminated.

DESCRIPTORS: hepatovirus isolation and purification, oysters virology, cell line, DNA probes, hepatovirus genetics, Macaca mulatto, oligodeoxyribonucleotides, solvents, water, genetics, isolation and purification, virology DNA probes, oligodeoxyribonucleotides, solvents, water.

Pfeiffer, T. J.; K. A. Rusch. **Comparison of three culture methods for the intensive culture of northern quahog seed, Mercenaria mercenaria.** *J World Aquac Soc.* Baton Rouge, La. : World Aquaculture Society, c1987. Mar 2001. v. 32 (1) p. 11-20. ISSN: 0893-8849. NAL CALL NUMBER: SH138.W62 DESCRIPTORS: Mercenaria mercenaria, Mollusc culture, techniques, intensive production, population density, hatcheries, populations, survival, rearing techniques, larvae, evaluation, feed rations, Bacillariophyta, water flow, growth rate, length.

Stuart, K. R.; A. G. Eversole; D. E. Brune. Filtration of green algae and cyanobacteria by freshwater mussels in the partitioned aquaculture system. *J World Aquac Soc.* Baton Rouge, La. : World Aquaculture Society, c1987. Mar 2001. v. 32 (1) p. 105-111. ISSN: 0893-8849. NAL CALL NUMBER: SH138.W62

DESCRIPTORS: freshwater Molluscs, algae, cyanobacteria, Mollusc culture, filtration, water flow, organic matter, Microcystis, Scenedesmus, Ankistrodesmus, population density, Mussels.

Uriarte, I.; A. Farias; J. C. Castilla. Effect of antibiotic treatment during larval development of the Chilean scallop Argopecten purpuratus. *Aquac Eng.* Amsterdam, The Netherlands : Elsevier Science. Oct 2001. v. 25 (3) p. 139-147. ISSN: 0144-8609.

NAL CALL NUMBER: SH1.A66

ABSTRACT: The requirement for antibiotic use in a culture depends principally on the quality of water available and on the use of strict husbandry of the materials closely related with the culture. The purpose of the present study was to determine the dose of chloramphenicol resulting in better survival and growth rates of Chilean scallops between the early larvae and pediveliger stages cultured in closed systems with manual dosing of food two times per day. Two experiments with antibiotic application during larval development of the Chilean scallop (Argopecten purpuratus) were conducted. The experiments were carried out at the early larval stage (86 micrometer) and at the eyed stage (213 micrometer). The antibiotic concentration ranged between 0 and 8 mg l(-1) chloramphenicol (CHL) per day. The survival and growth rates of the larvae were monitored for 10 days at each stage. In the experiment with eyed larvae, larval settlement and percent metamorphosis were measured. Use of an antibiotic on the early larvae resulted in significantly better growth and survival. Growth rates were 2.3 +/- 0.3 and 2.6 +/-0.2% per day when using 2 and 8 mg l(-1) CHL per day, respectively, compared with 1.3% +/-0.2 per day for the larvae without antibiotic. Survival was also better with antibiotic treatment reaching 50% compared with 35% without antibiotic. The metamorphosis was highest using of 8 mg l(-1) CHL day(-1), compared with treatment without antibiotic. Between 75 and 79% of the metamorphosed larvae were found settled on the nets in the treatments using 2 and 8 mg l(-1), while only 55.5% were settled in the nets in the treatment without antibiotic. The results of the experiments indicate that concentrations of 2 and 8 mg l(-1) CHL demonstrated effective control of larval contamination. Moreover, the condition of the postlarvae was improved by the addition of 8 mg l(-1) CHL from eyed larvae to postlarvae.

DESCRIPTORS: Argopecten, larvae, biological development, water quality, Mollusc culture, chloramphenicol, survival, growth rate, application rates.

Uthaiwan, K.; N. Noparatnaraporn; J. Machado. **Culture of glochidia of the freshwater pearl mussel Hyriopsis myersiana (Lea, 1856) in artificial media.** *Aquaculture*. Amsterdam : Elsevier Pub. Co., c1972. Apr 2, 2001. v. 195 (1/2) p. 61-69. ISSN: 0044-8486. NAL CALL NUMBER: SH1 .A6

ABSTRACT: The freshwater pearl mussel, Hyriopsis myersiana (Limnoscapha) (Lea, 1856) was cultured in two artificial media at 23 +/- 2 degrees C. Each artificial medium contained a mixture of M199, (Life Technologies, No. 71N0262) horse serum or fish (Oreochromis niloticus) artificial medium plasma as a protein source, and antibiotics/antimycotics at a ratio of 2:1:0.5. Glochidia were reared until they became juveniles, i.e. until the mantle and foot could be observed under a light microscope. The duration of glochidia development until the juvenile stage was 9-10 days in both media. After 1 month of controlled feeding with phytoplankton, the

juveniles showed an elongate of shell with several growth lines. The more suitable artificial culture formula for the transformation from glochidia to juvenile stage was the medium containing protein from fish plasma. Survival from glochidia to juvenile stage was up to 85.3 + 3.9% in fish plasma, while it was equal to 46.2 + 12.7% in horse serum. The transformation from glochidia to juvenile stage was up to 84.3 + 2.3% in fish plasma, while it was equal to 44.3 + 2.3% in fish plasma, while it was equal to 44.3 + 2.3% in horse serum. Percentage survival and transformation from glochidia to juvenile stage were significantly higher in fish plasma than in horse serum (P < 0.01).

DESCRIPTORS: Mollusca, mollusc culture, culture media, blood serum, blood plasma, horses, fish, antibiotics, rearing techniques, developmental stages, duration, phytoplankton, growth, survival.

Wang, Y.P.; Guo, X.M. (2001) Chromosomal mapping of the vertebrate telomeric sequence (TTAGGG)N in four bivalve molluscs by fluorescence in situ hybridization. *Journal of Shellfish Research* 20, N3 (DEC), P. 1187-1190, ISSN: 0730-8000. NAL CALL NUMBER: SH365.A1J6

DESCRIPTORS: FISH, chromosome, telomeric sequence, mapping, evolution, Mollusca.

Weinstein, J.E. (2001) Characterization of the acute toxicity of photoactivated fluoranthene to glochidia of the freshwater mussel, Utterbackia imbecillis. *Environ Toxicol Chem* 20(2): 412-9, ISSN: 0730-7268.

NAL CALL NUMBER: QH545.A1E58

ABSTRACT: The acute photoactivated toxicity of fluoranthene to the glochidial larvae of the paper pondshell, Utterbackia imbecillis, was characterized in the laboratory using three sets of experiments. Toxicokinetic studies revealed that glochidia rapidly bioaccumulated fluoranthene, reaching an apparent steady state in 4 h. Based on a two-compartment model, uptake (Ku) and depuration (Kd) rate constants were 1394 ml/g/h and 0.769/h, respectively. However, experimental data suggested the presence of a fast and slow depuration compartment with a Kd of 0.290 and 0.031/h, respectively. Replicate 24-h acute toxicity tests designed to determine the overall sensitivity of glochidia to photoactivated fluoranthene were conducted under simulated sunlight (ultraviolet [UV]-A = 69.0 +/- 1.0 microW/cm2) (mean +/- standard deviation [SD]). Mean median lethal concentrations (LC50) of fluoranthene at 8, 16, and 24 h were 5.59 +/- 0.59, 4.09 +/- 0.57, and 2.45 +/- 0.45 micrograms/L, respectively. Mean median lethal doses (LD50) at the same time periods were 14.76 + 2.17, 11.66 + 2.82, and 6.98 + 1.31 micrograms/g dry weight, respectively. Acute toxicity tests designed to elucidate the relationship between the rate of mortality and UV intensity were conducted under one of four different UV intensities (UV-A = 15, 31, 50, and 68 microW/cm2). Regression analysis revealed that the time-dependent mortality of glochidia was inversely related to the product of initial tissue residue of fluoranthene and UV intensity. These findings suggest that glochidia of freshwater mussels are among the most sensitive organisms tested to date to photoactivated fluoranthene and the time-dependent mortality of glochidia can accurately be predicted through evaluation of the product of fluoranthene tissue residue and the light intensity to which the glochidia is exposed. DESCRIPTORS: fluorenes toxicity, larva drug effects, ultraviolet rays, water pollutants, chemical toxicity, fluorenes pharmacokinetics, mussels, water pollutants, chemical pharmacokinetics.

2000

Barbariol, V.; Razouls, S. (2000) Experimental studies on the respiratory metabolism of Mytilus galloprovincialis Mollusca bivalvia) from the Mediterranean sea (Gulf of Lion). *Vie et Milieu* 50(2) p. 87-92, ISSN: 0240-8759.

NAL CALL NUMBER: QH91.A1V5

DESCRIPTORS: Mytilus galloprovincialis, metabolism, respiration, environmental factors, Languedoc roussillon, Mediterranean sea, Bivalvia, Europe, France, marine areas, Mollusca, Mytilus, physiological functions, western Europe, animal physiology nutrition.

Boettcher, K.J.; Barber, B.J.; Singer, J.T. (2000) Additional evidence that juvenile oyster disease is caused by a member of the Roseobacter group and colonization of nonaffected animals by Stappia stellulata-like strains. *Appl Environ Microbiol* 66(9): 3924-30, ISSN: 0099-2240.

NAL CALL NUMBER: 448.3 AP5

ABSTRACT: Juvenile oyster disease (JOD) causes significant annual mortalities of hatchery-produced Eastern oysters, Crassostrea virginica, cultured in the Northeast. We have reported that a novel species of the alpha-proteobacteria Roseobacter group (designated CVSP) was numerically dominant in JOD-affected animals sampled during the 1997 epizootic on the Damariscotta River, Maine. In this study we report the isolation of CVSP bacteria from JOD-affected oysters during three separate epizootics in 1998. These bacteria were not detected in nonaffected oysters at the enzootic site, nor in animals raised at a JOD-free site. Animals raised at the JOD enzootic site that were unaffected by JOD were stably and persistently colonized by Stappia stellulata-like strains. These isolates (designated M1) inhibited the growth of CVSP bacteria in a disk-diffusion assay and thus may have prevented colonization of these animals by CVSP bacteria in situ. Laboratory-maintained C. virginica injected with CVSP bacteria experienced statistically significant elevated mortalities compared to controls, and CVSP bacteria were recovered from these animals during the mortality events. Together, these results provide additional evidence that CVSP bacteria are the etiological agent of JOD. Further, there are no other descriptions of specific marine alpha-proteobacteria that have been successfully cultivated from a defined animal host. Thus, this system presents an opportunity to investigate both bacterial and host factors involved in the establishment of such associations and the role of the invertebrate host in the ecology of these marine alpha-proteobacteria. DESCRIPTORS: oysters microbiology, alpha proteobacteria growth and development, alpha proteobacteria pathogenicity, culture media, genes, rRNA, molecular sequence data, phenotype, RNA, ribosomal, 16S genetics, seawater, sequence analysis, DNA, alpha proteobacteria classification, alpha proteobacteria isolation and purification.

Ciarelli, A.; Tiscar, P.G.; Dainese, E.; Montauti, A.E. (2000) In vitro activation of prophenoloxidase system in the hemolymph and hemocytes of Mytilus galloprovincialis (Lmk - 1819) in consequence of bacteria exposure. *Atti della Societa' Italiana delle Scienze Veterinarie* v. 54 p. 177-178.

NAL CALL NUMBER: 41.9 SO17

ABSTRACT: In the present study we investigated the response of the marine bivalve Mytilus galloprovincialis serum and hemocytes to different species and concentrations of bacteria, as far as the functional modification of the prophenoloxidase-activating system (proPO-AS) is concerned. The results indicate that the proPO activity, recovered in the serum only, is affected by the type of bacteria species, being more enhanced by Vibrio alginolyticus than by Escherichia coli. Different bacteria concentrations does not yield a dose-dependent response. DESCRIPTORS: Mytilus galloprovincialis, mussels, haemolymph, immunity, Escherichia coli, Vibrio, oxidoreductases, laboratory diagnosis, immune response, biological contamination,

bacteria, Bivalvia, body fluids, body parts, contamination, diagnosis, Enterobacteriaceae, enzymes, immunity, Mollusca, Mytilus, shellfish.

Genthner, F.J.; Fisher, W.S.; Volety, A.K.; Tall, B.D.; Curtis, S.K.; McCarthy, S.A. (2000) **Responses of oysters and their hemocytes to clinical and environmental isolates of Vibrio parahaemolyticus.** *Journal of Shellfish Research* 19 (1): 598-599, ISSN: 0730-8000. NAL CALL NUMBER: SH365.A1J6

DESCRIPTORS: molecular genetics (biochemistry and molecular biophysics), infection, Pelecypoda, Vibrionaceae, facultatively anaerobic gram negative rods, Eubacteria, bacteria, microorganisms, Vibrio parahaemolyticus, clinical isolate 2030, clinical isolate 2062, clinical isolate 2107, isolate 1094, isolate 1163, isolate ATCC 17802, pathogen, oyster, fisheries species, host, animals, hemocyte, blood and lymphatics, immune system, Vibrio parahaemolyticus tdh gene, thermostable direct hemolysin.

Hauton, C.; Hawkins, L.E.; Hutchinson, S. (2000) **The effects of salinity on the interaction between a pathogen (Listonella anguillarum) and components of a host (Ostrea edulis) immune system.** *Comp Biochem Physiol B Biochem Mol Biol* 127(2): 203-12, ISSN: 1096-4959. NAL CALL NUMBER: QP501.C6

ABSTRACT: Data are presented from a study to determine how salinity may modulate the interactions between an opportunistic bacterial pathogen Listonella anguillarum and the immune system of a bivalve host, the European flat oyster Ostrea edulis. Oysters were acclimated to three salinity regimes (32, 25 and 16%, at 15 degrees C) for 7 days within the laboratory and were then inoculated with a sub-lethal dose of live L. anguillarum. Forty-eight hours after inoculation measurements were made of the changes in haemocyte composition, haemolymph hydrogen peroxide concentration and haemolymph lysozyme activity to provide information on both the cellular and humoral components of the immune system. The data indicated that in the majority of cases the effects on the immune system were dose dependent. At 32%, a salinity which promoted the growth of the bacterial inoculate, there was a significant increase in the number of circulating large granulocytes and a significant decrease in the haemolymph hydrogen peroxide concentration. At lower salinities, which were less favourable to the growth of L. anguillarum, there were no significant immune system effects. The data highlight the potential for environment management as a tool in controlling opportunistic pathogens and subsequently disease in commercially important bivalve species.

DESCRIPTORS: Mollusca immunology and microbiology, salts metabolism, gamma Proteobacteria pathogenicity, dose response relationship, drug, hemolymph metabolism, hydrogen peroxide metabolism, immune system drug effects, muramidase metabolism.

Hawkins, A.J.; Magoulas, A.; Heral, M.; Bougrier, S.; Naciri-Graven, Y.; Day, A.J.; Kotoulas, G. (2000) Separate effects of triploidy, parentage and genomic diversity upon feeding behaviour, metabolic efficiency and net energy balance in the Pacific oyster Crassostrea gigas. *Genet Res* 76(3): 273-84, ISSN: 0016-6723.

NAL CALL NUMBER: 443.8 G283

ABSTRACT: Triploid oysters were induced using cytochalasin B upon retention of either the first (meiosis I triploids) or the second (meiosis II triploids) polar body in embryos from a single cohort derived from mixed parentage. Allozyme and microsatellite assays enabled the confirmation of both parentage and triploidy status in each oyster. Comparison of meiosis I triploids, meiosis II triploids and diploid siblings established that improved physiological performance in triploids was associated with increased allelic variation, rather than with the quantitative dosage effects of ploidy status. An unidentified maternal influence also interacted with genotype. Among full sibs, allelic variation measured as multi-locus enzyme heterozygosity

accounted for up to 42% of the variance in physiological performance; significant positive influences were identified upon feeding rate, absorption efficiency, net energy balance and growth efficiency (= net energy balance divided by energy absorbed). Whilst allelic variation was greater in both meiosis I and meiosis II triploids than in diploid siblings, both allelic variation and net energy balance were highest in triploids induced at meiosis I. This suggests that it may be preferable to induce triploidy by blocking meiosis I, rather than meiosis II as has traditionally been undertaken during commercial breeding programmes.

DESCRIPTORS: energy metabolism genetics, oysters genetics, oysters physiology, variation genetics, animals laboratory, biopsy, breeding, cytochalasin B administration and dosage, feeding behavior, genotype, heterozygote, image processing, computer assisted, meiosis drug effects, meiosis genetics, metabolism, microsatellite repeats genetics, oxygen consumption physiology, ploidies, quantitative trait.

Kelley, M.L.; Van Beneden, R.J. (2000) Identification of an E3 ubiquitin-protein ligase in the softshell clam (Mya arenaria). *Mar Environ Res* 50(1-5): 289-93, ISSN: 0141-1136. NAL CALL NUMBER: QH545.W3M36

ABSTRACT: Softshell clams (Mya arenaria) were exposed to dioxin in controlled laboratory experiments in order to study their molecular response to dioxin exposure. A complementary DNA (cDNA) fragment with sequence similarity to E3 ubiquitin-protein ligase appeared to be upregulated in dioxin-exposed clams compared to controls. E3 covalently ligates ubiquitin onto a protein, targeting it for degradation. Our findings suggest that the ubiquitin-mediated proteolytic pathway in the softshell clam may be activated by dioxin exposure. Because the clam E3-predicted amino acid sequence is most similar to a specific vertebrate E3 protein (E6-AP), we hypothesize that dioxin may stimulate ubiquitin-mediated degradation of cell-cycle regulatory proteins, such as the tumor suppressor p53, which promotes cell proliferation. This pathway has been observed in human cervical cancer. Partial cDNA sequence of the clam E3 has been identified using the differential display polymerase chain reaction (ddPCR) and RACE (Rapid Amplification of cDNA Ends) PCR; the full-length sequence is currently being determined. Discovering the molecular mechanism(s) stimulated by dioxin exposure in this invertebrate model may contribute to a better understanding of the effects of dioxin on marine organisms.

DESCRIPTORS: clams enzymology, ligases metabolism, amino acid sequence, clams drug effects, dioxins toxicity, mice, molecular sequence data, random amplified polymorphic DNA technique veterinary, water pollutants, chemical toxicity.

Kono, M.; Hayashi, N.; Samata, T. (2000) **Molecular mechanism of the nacreous layer** formation in Pinctada maxima. *Biochem Biophys Res Commun* 269(1): 213-8, ISSN: 0006-291X.

NAL CALL NUMBER: 442.8 B5236

ABSTRACT: We have cloned the cDNAs that encode two kinds of molluscan shell matrix proteins, namely N66 and N14, in the nacreous layer of Pinctada maxima. N66 is composed of carbonic anhydrase-like and repeat domains, as described for nacrein (1) in the pearls of P. fucata. N14 is homologous to N16, recently found in the nacreous layer of P. fucata (2) and is characterized by high proportions of Gly, Tyr, and Asn together with NG repeat sequences. The molecular weights of these proteins were estimated as 59,814 and 13,734 Da, respectively. Structural differences were clearly indicated in the alignment and length of the repeat sequences of the sets of the homogeneous proteins (N66/nacrein and N14/N16). The longer repeat sequences of N66 and N14 may be responsible for P. maxima's excellent property of calcification. The in vitro crystallization experiments revealed that the mixture of N66 and N14

could induce platy aragonite layers highly similar to the nacreous layer, once adsorbed onto the membrane of the water-insoluble matrix.

DESCRIPTORS: oysters genetics, oysters metabolism, proteins genetics, proteins metabolism, base sequence, carbonic anhydrases chemistry, carbonic anhydrases genetics, carbonic anhydrases metabolism, cloning, molecular, crystallization, DNA, complementary genetics, molecular sequence data, molecular weight, proteins chemistry, repetitive sequences, amino acid, sequence homology, amino acid, chemistry, genetics, metabolism, complementary DNA, proteins, nacrein, carbonic anhydrases.

Lees, D. (2000) Viruses and bivalve shellfish. Int J Food Microbiol 59(1-2): 81-116, ISSN: 0168-1605.

NAL CALL NUMBER: QR115.I57

ABSTRACT: The epidemiological data clearly demonstrates that filter feeding bivalve shellfish can, and do, act as efficient vehicles for the transmission of enteric viruses transmitted by the faecal-oral route. This identified hazard has been documented as a cause for concern by various international agencies and has a long history. Disease outbreaks can occur on an epidemic scale as graphically illustrated by an outbreak of Hepatitis A in Shanghai, China in 1988 involving about 300,000 cases. Improvement of harvesting area water quality offers the most sustainable route to improvement in the virological quality of bivalve shellfish sold live. However there is growing awareness, and concern, that current regulatory standards based on faecal coliform monitoring do not fully protect the shellfish consumer from viral infection. New viral test methods based on PCR, and the development of alternative more reliable faecal pollution indicators, offer new approaches for the further development of public health controls. However, further work is required to build a scientific consensus and to understand the implications of their introduction into legislation.

DESCRIPTORS: food microbiology standards, shellfish virology, viruses isolation and purification, Adenoviridae, Astrovirus, Caliciviridae, Enterovirus, Gastroenteritis epidemiology and virology, Great Britain, Hepatitis A epidemiology, Hepatitis A virology, Rotavirus.

Marin, F.; Corstjens, P.; De Gaulejac, B.; De Vrind De Jong, E.; Westbroek, P. (2000) Mucins and molluscan calcification. Molecular characterization of mucoperlin, a novel mucin-like protein from the nacreous shell layer of the fan mussel Pinna nobilis (Bivalvia, pteriomorphia). J Biol Chem 275(27): 20667-75, ISSN: 0021-9258.

NAL CALL NUMBER: 381 J824

ABSTRACT: A cDNA expression library constructed from mantle tissue mRNA of the Mediterranean fan mussel Pinna nobilis was screened with antibodies raised against the acetic acid-soluble shell matrix of the same species. This resulted in the isolation of a 2138-base pair cDNA, containing 13 tandem repeats of 93 base pairs. The deduced protein has a molecular mass of 66.7 kDa and a isoelectric point of 4.8. This protein, which is enriched in serine and proline residues, was overexpressed, purified, and used for producing polyclonal antibodies. Immunological in situ and in vitro tests showed that the protein is localized in the nacreous aragonitic layer of P. nobilis, but not in the calcitic prisms. Because this protein of the nacre of P. nobilis exhibits some mucin-like characteristics, we propose the name mucoperlin. This is the first paper reporting the cloning of a molluscan mucin and the first molecular evidence for the involvement of a mucin in molluscan calcification. This finding corroborates our previous hypothesis that some of the proteinaceous constituents of the molluscan shell matrix would derive from mucins, common to many metazoan lineages of the late Precambrian (Marin, F., Smith, M., Isa, Y., Muyzer, G. and Westbroek, P. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 1554-1559). The adaptation of an ancestral mucin to a new function, the regulation of the mineralization process, may be one of the molecular events, among others, that would explain

the simultaneous emergence of organized calcification in many metazoan lineages during the Cambrian explosion.

DESCRIPTORS: Mollusca genetics, mucins genetics, amino acid sequence, amino acids analysis, calcification, physiologic, calcium metabolism, calcium carbonate metabolism, calcium binding proteins chemistry, cloning, molecular, evolution, glycosylation, immunohistochemistry, Mediterranean Sea, molecular sequence data, Mollusca metabolism, mucins chemistry, recombinant proteins chemistry, sequence alignment, tandem repeat sequences.

Martinez, G.; Olivares, A.Z.; Mettifogo, L. (2000) In vitro effects of monoamines and prostaglandins on meiosis reinitiation and oocyte release in Argopecten purpuratus Lamarck. *Invertebrate Reproduction & Development*, V. 38, N1 (OCT), P. 61-69, ISSN: 0168-8170.

NAL CALL NUMBER: QP251.I628

DESCRIPTORS: Argopecten purpuratus, scallops, reproduction, spawning, meiosis, mussel, Dreissena polymorpha, zebra mussel, Patinopecten yessoensis, bivalve Mollusks, reproductive process, arachidonic acid, serotonin, maturation, scallop, induction.

McFadzen, I.; Eufemia, N.; Heath, C.; Epel, D.; Moore, M.; Lowe, D. (2000) **Multidrug** resistance in the embryos and larvae of the mussel Mytilus edulis. *Mar Environ Res* 50(1-5): 319-23, ISSN: 0141-1136.

NAL CALL NUMBER: QH545.W3M36

ABSTRACT: Cells exhibiting the multidrug resistance (MDR) phenotype demonstrate a decreased intracellular drug accumulation due to an active outward transport and decreased intracellular flux. This study demonstrates the inhibition of MDR in mussel (Mytilus edulis) embryos and larvae based on a simple bioassay. The development of embryos was assessed and abnormalities identified at key stages of development, including gastrulation, trochophore and prodissoconch stages. The incidence of developmental abnormalities was significantly increased in the presence of vinblastine, MMS, chloroquine, mitomycin-C, cadmium chloride and colchicine, compared to clean seawater. Consistently, there was a further increase in the number and severity of deformities observed when each toxin was added in the presence of verapamil. Larval growth was also significantly impaired in the presence of verapamil. Increased accumulation of fluorescent MDR dyes, such as rhodamine B, has been measured and shown to be verapamil sensitive. This bioassay encompasses a period of intense cellular activity during which the impairment of a number of critical processes results in abnormal growth and development.

DESCRIPTORS: mussels drug effects, mussels embryology, water pollutants, chemical toxicity, biological assay methods, biological assay veterinary, cadmium chloride toxicity, chloroquine toxicity, colchicine toxicity, drug resistance, multiple, drug synergism, larva drug effects, methyl methanesulfonate toxicity, mitomycin toxicity, phenotype, seawater, verapamil toxicity, vinblastine toxicity.

Moura, G.; Vilarinho, L.; Machado, J. (2000) **The action of Cd, Cu, Cr, Zn, and Pb on fluid composition of Anodonta cygnea (L.): organic components.** Comp Biochem Physiol B Biochem Mol Biol 127(1): 105-12, ISSN: 1096-4959.

NAL CALL NUMBER: QP501.C6

ABSTRACT: The heavy metals, Cd, Cu, Cr, Zn, and Pb, were used to incubate healthy specimens of the freshwater mussel species, Anodonta cygnea. Afterwards, their biological fluids, either haemolymph or extrapallial fluid were analyzed for the presence of several organic constituents, known to be important for biomineralization, such as proteins, glycosaminoglycans (GAGs) and glucosamine. Proteins were subjected to further study, namely through the total amino acid

determination after acid hydrolysis. The most disturbing pollutants tested seem to be Pb, Zn, and Cr, which caused highly decreased overall compositions, namely with respect to protein, and glucosamine, in comparison to the control group. This suggests that this group contributes to a decrease of the metabolic activity, and thus mineralization, in the exposed animals. DESCRIPTORS: cadmium pharmacology, chromium pharmacology, copper pharmacology, lead pharmacology, mussels metabolism, zinc pharmacology, glucosamine metabolism, glycosaminoglycans metabolism, hemolymph drug effects, hydrolysis, proteins drug effects, time factors.

Pavlica, M.; Klobucar, G.I.; Vetma, N.; Erben, R.; Papes, D. (2000) **Detection of micronuclei in** haemocytes of zebra mussel and great ramshorn snail exposed to pentachlorophenol. *Mutat Res* 465(1-2): 145-50, ISSN: 0027-5107.

NAL CALL NUMBER: QH431.M8

ABSTRACT: The frequency of micronuclei (MN) induced by pentachlorophenol (PCP) in haemocytes of zebra mussel, Dreissena polymorpha Pall. and great ramshorn snail, Planorbarius corneus L. was determined over a 14 days of exposure (sampling after 4, 7 and 14 days) under laboratory conditions. PCP doses for zebra mussel ranged from 10 to 150 microg/l, and for ramshorn snail from 10 to 450 microg/l. Micronuclei were detected after bisbenzimide fluorescent staining. Positive responses were observed in both species. The mean MN frequencies in treated mussels ranged between 0.69 and 7.50 per thousand, and between 2.07 and 13.80 per thousand in treated snails. The spontaneous MN levels in mussels averaged from 0.5 to 2.75 per thousand, and in snails from 1.56 to 2.00 per thousand. Our results suggest that haemolymph of both species represent an appropriate test tissue in environmental genotoxicity assessment.

DESCRIPTORS: hemocytes drug effects, micronuclei drug effects, mutagens toxicity, pentachlorophenol toxicity, hemocytes ultrastructure, micronucleus tests methods, mussels, snails, species specificity, drug effects, ultrastructure, methods, toxicity, mutagens, pentachlorophenol, cytogenetics.

Ringwood, A.H.; Conners, D.E. (2000) **The effects of glutathione depletion on reproductive success in oysters, Crassostrea virginica.** *Mar Environ Res* 50(1-5): 207-11, ISSN: 0141-1136. NAL CALL NUMBER: QH545.W3M36

ABSTRACT: Glutathione (GSH) is a ubiquitous tripeptide that functions as a very important modulator of cellular homeostasis, including detoxification of metals and oxyradicals. Therefore, depletion of GSH may predispose organisms to pollutant stress. Reproductively active oysters (Crassostrea virginica) were exposed to buthionine sulfoximine in the laboratory to deplete gonadal GSH. The effects of metal exposures (Cd and Cu) on fertilization and developmental assays were evaluated using gametes from control and GSH-depleted adults. Fertilization success was not affected by GSH status, i.e. the fertilization rates of gametes derived from GSH-depleted adults were the same or slightly higher. However, GSH depletion did increase the susceptibility of developing embryos to metal toxicity, i.e. adverse effects on embryonic development were observed at lower metal concentrations with gametes derived from GSH-depleted adults. These effects may be related to diminished removal of free radicals or increased availability of metals. Whereas sperm penetration of embryonic membranes and fertilization success may be facilitated by free radicals, the persistence of free radicals during subsequent developmental periods may adversely affect differentiation and normal development. GSH probably also plays an important role in scavenging toxic metals and reducing metal interactions with essential developmental processes. These results suggest that parental depletion of GSH may increase the susceptibility of embryos to metal toxicity.

DESCRIPTORS: glutathione physiology, oysters physiology, reproduction physiology, cadmium toxicity, copper toxicity, free radicals, oysters embryology, sperm ovum interactions, water pollution, animal, female, male.

Shepard, J.L.; Olsson, B.; Tedengren, M.; Bradley, B.P. (2000) **Protein expression signatures identified in Mytilus edulis exposed to PCBs, copper and salinity stress.** *Mar Environ Res* 50(1-5): 337-40, ISSN: 0141-1136.

NAL CALL NUMBER: QH545.W3M36

ABSTRACT: Applied to environmental toxicology, proteome analysis may be used to isolate chemical-specific protein expression signatures (PES). In this project specific PES were isolated in mussels, Mytilus edulis, from the Baltic Sea subjected in the laboratory to treatment with copper (70 ppb), Aroclor 1248 (1 ppb), and to lowered salinity. Four mussels in each treatment group were acclimated in the laboratory for 24 h before beginning the 7-day exposure. Whole body tissue was homogenized and separated using two-dimensional gel electrophoresis. The protein gels were scanned to TIFF files and compared using MELANIE II 2D gel analysis software (BioRad). Protein expression signatures including proteins induced and repressed by exposure were isolated for each treatment group. The specificity of PES due to environmental changes shows promise in bioindication, toxicity testing and in helping identify possible toxicity mechanisms.

DESCRIPTORS: copper toxicity, mussels drug effects, polychlorinated biphenyls toxicity, proteins biosynthesis, sodium chloride toxicity, toxicology methods, aroclors toxicity, electrophoresis, gel, two dimensional, sodium chloride administration and dosage.

Shieh, Y.; Monroe, S.S.; Fankhauser, R.L.; Langlois, G.W.; Burkhardt, W. 3rd; Baric, R.S. (2000) **Detection of norwalk-like virus in shellfish implicated in illness.** *J Infect Dis* 181 Suppl 2: S360-6, ISSN: 0022-1899.

NAL CALL NUMBER: 448.8 J821

ABSTRACT: In the 1990s, Norwalk-like viruses (NLVs) were identified in patient specimens as the primary pathogen associated with shellfish-borne gastroenteritis in the United States. Identification of these viruses from implicated shellfish has been difficult due to inefficient recovery of viruses, natural polymerase chain reaction (PCR) inhibitors in shellfish, and low virus contamination. Recent improvements to the method of detecting NLVs in shellfish include enhanced processing of virus and shellfish samples, application of nested PCR and nucleotide sequencing, and increased knowledge of NLV genetic diversity. Using a newly developed and sensitive method, an NLV G2 strain was identified in 2 oyster samples implicated in a 1998 California outbreak involving 171 cases. NLV capsid primers demonstrated a greater specificity of PCR detection than did polymerase primers. The 175-base viral capsid nucleotide sequences derived from oysters were 100% identical to those derived from a patient stool sample. This finding supports the epidemiologic associations indicating that contaminated shellfish serve as the vehicle for NLV transmission.

DESCRIPTORS: Norwalk Virus isolation and purification, shellfish virology, disease outbreaks, gastroenteritis epidemiology, gastroenteritis etiology, gastroenteritis prevention and control, oysters virology, polymerase chain reaction, epidemiology, etiology, prevention and control, isolation and purification, virology, communicable diseases.

Teh, S.J.; Werner, I.; Hinton, D.E. (2000) Sublethal effects of chromium-VI in the Asian clam (Potamocorbula amurensis). *Mar Environ Res* 50(1-5): 295-300, ISSN: 0141-1136. NAL CALL NUMBER: QH545.W3M36

ABSTRACT: Previously, we have shown that Asian clams (Potamocorbula amurensis) with highest metallic body burdens have highest prevalence of disease and lowest reproduction. The

present study was designed to assess and validate potential sublethal toxicity of hexavalent chromium (Cr-VI) in clams under controlled laboratory exposure. For 7 days, three replicates of clam (n = 10 per replicate) were exposed to aqueous solution containing 0.00, 0.92, 8.40, or 25.6 mg l-1 of Cr-VI at 15 degrees C and 15 g l-1 salinity. Mortality reached 100% in the 25.6 mg l-1 group within 7 days. There was no significant difference in mortality among the control, 0.92, and 8.40 mg l-1 groups. Western blot analyses revealed significantly elevated stress protein hsp70 levels in the 8.40 mg l-1 treatment group. Histopathologic analyses revealed mild digestive gland (DG) atrophy in the control group. Clams exposed to 0.92 mg l-1 Cr-VI showed moderate DG atrophy, moderate granulomatous inflammation and necrosis in DG, ovary and testis. Lesions observed in the 8.40 mg l-1 treatment group included severe DG atrophy, severe granulomatous inflammation and necrosis in byssal gland, DG, gill, kidney, ovary and testis. In gills and testes of treated groups, apoptotic cells outnumbered mitotic cells. In addition, gills from clams in the 8.40 mg l-1 group showed enhanced hsp70 staining. Our studies support a cause-effect relationship between contaminants and reduced health in Asian clams and indicate the DGs, gills, and reproductive organs are principal targets of Cr-VI toxicity at sublethal concentrations. Results from this study suggest that Cr-VI may have played a role in the increased incidence of diseased clams seen in previous studies and these adverse effects may be working to decrease clam populations at sites with highest metallic contamination in the San Francisco Bay Estuary.

DESCRIPTORS: carcinogens, chromium toxicity, clams drug effects, chemical toxicity, carcinogens, environmental administration and dosage, chromium administration and dosage, dose response relationship, drug, chemical administration and dosage.

Werner, I.; Hinton, D.E. (2000) Spatial profiles of hsp70 proteins in Asian clam (Potamocorbula amurensis) in northern San Francisco Bay may be linked to natural rather than anthropogenic stressors. *Mar Environ Res* 50(1-5): 379-84, ISSN: 0141-1136. NAL CALL NUMBER: QH545.W3M36

ABSTRACT: Multi-year investigations in northern San Francisco Bay by United States Geological Survey have linked reduced condition indices in populations of Asian clam (Potamocorbula amurensis) with elevated cadmium tissue concentrations. Our study seeks to determine whether levels of hsp70 proteins in P. amurensis can be correlated with these findings, and/or are related to histopathologic alterations and concentrations of metallothionein-like proteins. Here we present our results on stress proteins in clams collected monthly from four field stations between July 1996 and January 1998. In addition, animals were exposed in the laboratory to a range of salinities. Stress proteins were analyzed by Western blotting using monoclonal antibodies. Hsp70 protein levels in field-collected clams were significantly higher at the seaward (high salinity/low cadmium) stations (12.5, 8.1) than at the landward (low salinity/high cadmium) stations (6.1, 4.1). Laboratory studies showed that clams exposed to 0.1 ppt salinity had markedly lower hsp70 levels than clams exposed to higher salinities. In view of our previous laboratory studies showing that cadmium induces hsp70 in P. amurensis, our present results indicate that reduced hsp70 protein levels in field-collected clams may be linked to salinity effects rather than cadmium tissue concentrations.

DESCRIPTORS: clams metabolism, heat shock proteins 70 chemistry, antibodies, monoclonal, blotting, western veterinary, cadmium analysis, geology, San Francisco.

Yamada, A.; Yoshio, M.; Kojima, H.; Oiwa, K. (2000) In vitro reconstruction of 'catch' state of molluscan smooth muscle. *Biophysical Journal* 78 (1 Part 2): 114A, ISSN: 0006-3495. NAL CALL NUMBER: 442.8 B5238

DESCRIPTORS: muscular system (movement and support), Pelecypoda, Mytilus byssus, animal model, retractor muscle, in vitro catch state reconstruction, muscular system.

1999

Anderson, R.S. (1999) **Perkinsus marinus secretory products modulate superoxide anion production by oyster (Crassostrea virginica) haemocytes.** *Fish and Shellfish Immunology* 9(1) p. 51-60.

NAL CALL NUMBER: QL638.97 F55

DESCRIPTORS: sporozoa, Bivalvia, oysters, Crassostrea virginica, blood cells, phagocytes, optical properties, immunosuppression, chemicophysical properties, immunotherapy, Protozoa, shellfish, therapy.

Anderson, R.S.; Patel, K.M.; Roesijadi, G. (1999) **Oyster metallothionein as an oxyradical scavenger: implications for hemocyte defense responses.** *Dev Comp Immunol* 23(6): 443-9, ISSN: 0145-305X.

NAL CALL NUMBER: QR180.D4

ABSTRACT: In order to better understand the interplay between metallothionein (MT) and reactive oxygen species (ROS) in oyster hemocytes, studies of the hydrogen peroxide (H2O2) scavenging properties of MT were carried out in a cell-free system. Mammalian MT is involved in protection against oxidative stress by virtue of its ability to scavenge free radicals; therefore, the H2O2 scavenging potentials of Crassostrea virginica and rabbit MTS were compared. Oyster and rabbit MTs showed similar dose-dependent suppression of H2O2-stimulated, luminol-augmented chemiluminescence (CL); the EC50 for CL (25 microM H2O2) was approximately 1.0 microM MT for both species. The interaction of ROS with MT in hemocytes could play a role in protection of the cells and surrounding tissues from oxidants associated with antimicrobial responses. Mobilization of bound zinc from MT by hemocyte-derived ROS may produce aberrant regulatory effects on various cellular processes. The data suggest that MT may be involved in immunoregulatory pathways in oyster hemocytes as a result of its ability to scavenge antimicrobial ROS.

DESCRIPTORS: free radical scavengers metabolism, hemocytes physiology, metallothionein physiology, oysters metabolism, reactive oxygen species metabolism, liver metabolism, rabbits.

Bramble, L.H.; Anderson, R.S. (1999) Lack of involvement of reactive oxygen species in the bactericidal activity of Crassostrea virginica haemocytes in contrast to Morone saxatilis phagocytes. *Fish and Shellfish Immunology* 9(2) p. 109-123.

NAL CALL NUMBER: QL638.97 F55

DESCRIPTORS: oxygen, antimicrobial properties, morone, Crassostrea virginica, Bivalvia, oysters, Percoidei, macrophages, optical properties, blood cells, nonspecific immunostimulation, phagocytes, antibiotic properties, Bivalvia, blood, bony fishes, cells, chemicophysical properties, elements, fishes, immunostimulation, immunotherapy, Mollusca, nonmetals, Percoidei, phagocytes, shellfish, therapy, animal diseases, aquaculture production.

Cadet, P.; Stefano, G.B. (1999) **Mytilus edulis pedal ganglia express mu opiate receptor transcripts exhibiting high sequence identity with human neuronal mu1.** *Molecular Brain Research* 74 (1-2): 242-246, ISSN: 0169-328X.

DESCRIPTORS: cell biology, nervous system (neural coordination), Pelecypoda, Mytilus edulis, animal model, human neuronal mu 1 receptor, pedal ganglia, nervous system, mu opiate receptor transcripts, expression, high sequence identity.

Canesi, L.; Ciacci, C.; Betti, M.; Malatesta, M.; Gazzanelli, G.; Gallo, G. (1999) Growth factors stimulate the activity of key glycolytic enzymes in isolated digestive gland cells from

mussels (Mytilus galloprovincialis Lam.) through tyrosine kinase mediated signal transduction. *General and Comparative Endocrinology* 116 (2): 241-248, ISSN: 0016-6480. NAL CALL NUMBER: 444.8 G28

DESCRIPTORS: endocrine system (chemical coordination and homeostasis), digestive system (ingestion and assimilation), Pelecypoda, Mytilus galloprovincialis, animal model, animals, Invertebrates, Mollusks, digestive gland cells, digestive system, growth factors, key glycolytic enzymes, activity stimulation, signal transduction, tyrosine kinase mediated.

Denardou-Queneherve, A.; Grzebyk, D.; Pouchus, Y.F.; Sauviat, M.P.; Alliot, E.; Biard, J.F.; Berland, B.; Verbist, J.F. (1999) **Toxicity of French strains of the dinoflagellate Prorocentrum minimum experimental and natural contaminations of mussels.** *Toxicon* 37(12): 1711-9, ISSN: 0041-0101.

NAL CALL NUMBER: 391.8 T66

ABSTRACT: Mediterranean strains of Prorocentrum minimum do not appear to have the same toxic component as Japanese strains since they showed no cytotoxicity for hepatocytes in culture. However, their toxic components, which appear to block calcium channels, were detectable by the immobilisation test on Diptera larvae. A bio-accumulation experiment in the laboratory showed that the toxins could accumulate in nearly equivalent amounts in the hepatopancreas and meat of cultured mussels. The same toxicity was found in natural samples collected in a period of bloom of P. minimum. These results suggest that P. minimum could be responsible for shellfish toxicity in the natural environment and thus present a risk for human health.

DESCRIPTORS: Dinoflagellida, marine toxins toxicity, mussels drug effects, brain drug effects, brain metabolism, cells cultured, digestive system drug effects, digestive system metabolism, Diptera drug effects, heart drug effects, liver drug effects, marine toxins isolation and purification, marine toxins pharmacokinetics, mice, mussels metabolism, neurotoxins toxicity, Rana esculenta, rats, toxicity tests.

De Voogt, P.; Bleeker, E.A.; van Vlaardingen, P.L.; Fernandez, A.; Slobodnik, J.; Wever, H.; Kraak, M.H. (1999) Formation and identification of azaarene transformation products from aquatic invertebrate and algal metabolism. *J Chromatogr B Biomed Sci Appl* 724(2): 265-74, ISSN: 1387-2273.

NAL CALL NUMBER: QD272.C4J682

ABSTRACT: The metabolism of two azaarenes, viz. acridine and phenanthridine, by aquatic organisms was studied in short-term and chronic laboratory tests. The identity of metabolites observed in the test waters was investigated with different analytical methods, including HPLC, GC and hyphenated LC- or GC-MS. The Zebra mussel (Dreissena polymorpha), one green alga species (Selenastrum capricornutum) and periphyton or bacteria transformed acridine into 9[10H]-acridinone. Phenanthridine was transformed into 5[6H]-phenanthridinone by midge (Chironomus riparius) larvae. The findings indicate that closely related isomers may undergo species-specific biotransformation. It was concluded that keto-metabolites are major products in the aquatic fate of benzoquinolines, which may be overlooked in the risk assessment of parent compounds. This study illustrates the typical problems with, as well as the potency of, chromatographic methods in the elucidation of metabolic routes of organic contaminants. DESCRIPTORS: acridines pharmacokinetics, algae green metabolism, mussels metabolism, phenanthridines pharmacokinetics, biotransformation, chromatography, high pressure liquid, mass fragmentography, species specificity, spectrophotometry, ultraviolet.

Inoue, T.; Yoshiya, M.; Itani, M.; Douke, A. (1999) Feeding behavior of the starfishes to the manila clam [Ruditapes philippinarum]. Bulletin of the Kyoto Institute of Oceanic and Fishery Science (no.21) p. 8-13, ISSN 0386-5290.

DESCRIPTORS: Ruditapes philippinarum, predator prey relations, Asteroidea, feeding habits, benthic environment, sand, laboratory experimentation, aquatic environment, behaviour, Bivalvia, Echinodermata, environment, experimentation, Mollusca, predation, rock, ruditapes, aquatic ecology.

Jorquera, M.A.; C. E. Riquelme; L. A. Loyola; L. F. Munoz. **Production of bactericidal** substances by a marine vibrio isolated from cultures of the scallop Agropecten purpuratus. *Aquac Int.* Dordrecht, The Netherlands : Kluwer Academic Publishers. 1999. v. 7 (6) p. 433-448. ISSN: 0967-6120.

NAL CALL NUMBER: SH1.A627

DESCRIPTORS: Vibrio, Argopecten, Listonella anguillarum, growth, inhibition, antibacterial properties, strain differences, sea water, Mollusc culture, chemical composition, bioassays, ethers, Vibrio parahaemolyticus.

Sallenave, C.; Pouchus, Y.F.; Bardouil, M.; Lassus, P.; Roquebert, M.F.; Verbist, J.F. (1999) Bioaccumulation of mycotoxins by shellfish: contamination of mussels by metabolites of a Trichoderma koningii strain isolated in the marine environment. *Toxicon* 37(1): 77-83, ISSN: 0041-0101.

NAL CALL NUMBER: 391.8 T66

ABSTRACT: To determine whether toxic metabolites produced by fungi could cause shellfish toxicities, mussels were contaminated in laboratory conditions by sterile filtrates of a liquid culture of a strain of the fungus Trichoderma koningii previously isolated from a shellfish, the cockle (Cerastoderma edule). Mussels were kept in aerated natural seawater and fed with a culture of the microalga Isochrysis galbana, to which a filtrate of liquid fungal culture was added. Mussels were exposed to contamination for 7 days at 16 or 20 degrees C and extractions were then performed and their activity tested on blowfly larvae. The same toxicity was found in the fungal filtrate and the shellfish, indicating bioaccumulation. The digestive gland was the most toxic part of the mussel, confirming contamination by filtration. Treated mussels produced a mucus which appeared to be a means of eliminating toxic metabolites.

DESCRIPTORS: food contamination analysis, marine toxins metabolism, mussels metabolism, mycotoxins metabolism, shellfish analysis, Trichoderma metabolism, algae metabolism, Cnidaria, larva, mucus metabolism, temperature.

Shieh, Y.C.; Calci, K.R.; Baric, R.S. (1999) A method to detect low levels of enteric viruses in contaminated oysters. *Appl Environ Microbiol* 65(11): 4709-14, ISSN: 0099-2240. NAL CALL NUMBER: 448.3 AP5

ABSTRACT: Direct isolation and identification of pathogenic viruses from oysters implicated in gastroenteritis outbreaks are hampered by inefficient methods for recovering viruses, naturally occurring PCR inhibitors, and low levels of virus contamination. In this study we focused on developing rapid and efficient oyster-processing procedures that can be used for sensitive PCR detection of viruses in raw oysters. Poliovirus type 3 (PV3) Sabin strain was used to evaluate the efficacy of virus recovery and the removal of PCR inhibitors during oyster-processing procedures. These procedures included elution, polyethylene glycol precipitation, solvent extraction, and RNA extraction. Acid adsorption-elution in which glycine buffer (pH 7.5) was used was found to retain fewer inhibitors than direct elution in which glycine buffer (pH 9.5) was used. RNA extraction in which a silica gel membrane was used was more effective than single-step RNA precipitation for removing additional nonspecific PCR inhibitors. The final

10-microl volume of RNA concentrates obtained from 2 g of oyster tissue (concentration factor, 200-fold) was satisfactory for efficient reverse transcription-PCR detection of virus. The overall detection sensitivity of our method was 1 PFU/g of oyster tissue initially seeded with PV3. The method was utilized to investigate a 1998 gastroenteritis outbreak in California in which contaminated oysters were the suspected disease transmission vehicle. A genogroup II Norwalk-like virus was found in two of three recalled oyster samples linked by tags to the harvest dates and areas associated with the majority of cases. The method described here improves the response to outbreaks and can be used for rapid and sensitive detection of viral agents in outbreak-implicated oysters.

DESCRIPTORS: Enterovirus isolation and purification, oysters virology, shellfish virology, Enterovirus genetics, polymerase chain reaction methods, RNA, viral isolation and purification, reverse transcriptase polymerase chain reaction methods, rhabdomyosarcoma, seasons, sensitivity and specificity, tumor cells, cultured, United States.

Steffen, W.; Kuznetsov, S.A.; Holzbaur, E.L.F.; Langford, G.M.; Weiss, D.G.; Palazzo, R.E. (1999) **The dynein-dynactin complex is required for cytaster assembly but not for centrosome-dependent aster formation in vitro.** *Molecular Biology of the Cell* 10 (SUPPL.): 17a, ISSN: 1059-1524.

NAL CALL NUMBER: QH604.C452

DESCRIPTORS: Pelecypoda, Spisula, animal model, female, dynein-dynactin complex, cytaster assembly requirement, in-vitro study, negative centrosome dependent aster formation requirement, oocyte expression.

Walker, C.W. (1999) Apoptosis following treatment of clam leukemia cells with etoposide: A p53-dependent mechanism? *Molecular Biology of the Cell* 10 (SUPPL.): 431a, ISSN: 1059-1524.

NAL CALL NUMBER: QH604.C452

DESCRIPTORS: biochemistry and molecular biophysics, blood and lymphatics (transport and circulation), tumor biology, Pelecypoda, Mya arenaria [soft-shell-clam], animal model, DNA, etoposide, topoisomerase II inhibitor, p53, Mya arenaria p53 gene, acute myelocytic leukemia, blood and lymphatic disease, immune system, disease, neoplastic disease.

Won, S.J.; Flynn, A.; Ammerman, M.; Callard, I. (1999) **Putative vitellogenins in the fresh water mussel, Elliptio complanata.** *Biology of Reproduction* 60 (SUPPL. 1): 184, ISSN: 0006-3363.

NAL CALL NUMBER: QL876.B5

DESCRIPTORS: reproductive system, Pelecypoda, Elliptio complanata, fresh water mussel, animal model, female, Patinopecten yessoensis, scallop, animals, putative vitellogenins, ovarian yolk proteins, fresh water mussel synthesis.

1998

Bramble, L.H.; Anderson, R.S. (1998) A comparison of the chemiluminescent response of Crassostrea virginica and Morone saxatilis phagocytes to zymosan and viable Listonella anguillarum. *Dev Comp Immunol* 22(1): 55-61, ISSN: 0145-305X. NAL CALL NUMBER: QR180.D4

ABSTRACT: If reactive oxygen species (ROS) produced by hemocytes of the eastern oyster, Crassostrea virginica, impart bactericidal activity, exposure of hemocytes to bacteria should result in increased ROS generation. In an earlier study, this hypothesis was tested using luminoland lucigenin-augmented chemiluminescence (CL) to measure ROS production. The bacterium Listonella anguillarum did not stimulate a net increase in hemocyte-derived CL, and it was suggested that bacterial antioxidants might suppress hemocyte CL. In the present study a comparison was made, under identical assay conditions, of the zymosan- and bacteria-enhanced luminol CL produced by eastern oyster hemocytes and by striped bass (Morone saxatilis) macrophages, for which L. anguillarum has been shown to be a stimulus in CL reactions. The response to zymosan produced by bass phagocytes was two orders of magnitude greater than that generated by eastern oyster hemocytes. Whereas an increase in net ROS production was not evident when oyster hemocytes were exposed to L. anguillarum, significant stimulation of striped bass macrophage-derived CL occurred. These data suggest that striped bass macrophages have a greater capacity to generate ROS than oyster hemocytes, enabling them to surpass the antioxidant capability of L. anguillarum and produce a luminol CL response. DESCRIPTORS: bass immunology, oysters immunology, phagocytes immunology, macrophages immunology, vibrio immunology, zymosan immunology.

Donovan, T.J.; Gallacher, S.; Andrews, N.J.; Greenwood, M.H.; Graham, J.; Russell, J.E.; Roberts, D.; Lee, R. (1998) **Modification of the standard method used in the United Kingdom for counting Escherichia coli in live bivalve molluscs.** *Commun Dis Public Health* 1(3): 188-96.

ABSTRACT: The standard method for counting Escherichia coli in live bivalve molluscs is labour intensive and takes three days to obtain a result. Modifications to the standard method were investigated in a collaborative trial conducted in five centres. No significant difference was found between results based on the presence of acid at 24 hours (h) in first stage tests and those based on the presence of acid and gas after 48 h (standard method). The use of the chromogenic medium BCIG (5-bromo-4-chloro-3-indolyl-beta-D glucuronide) agar incubated at 44 degrees C to confirm first stage tests was also found to give equivalent results to conventional confirmation tests. The preferred, modified method removes the presence of gas as a criterion of detection, uses a chromogenic agar medium to confirm the presence of E. coli, and gives results within 48 h. A distribution of simulated samples and selected strains of E. coli to other laboratories using the PHLS external quality assurance scheme for shellfish found no significant difference between results obtained by the standard and modified methods.

DESCRIPTORS: colony count, microbial methods, Escherichia coli isolation and purification, microbiology, shellfish microbiology, bacteriological techniques, Great Britain, reproducibility of results.

Ford, S.E.; Ashton-Alcox, K.A. (1998) Altered response of oyster hemocytes to Haplosporidium nelsoni (MSX) plasmodia treated with enzymes or metabolic inhibitors. J Invertebr Pathol 72(2): 160-6, ISSN: 0022-2011.

NAL CALL NUMBER: 421 J826

ABSTRACT: To avoid phagocytosis, parasites may mask themselves with host-like molecules that prevent recognition as nonself or they may produce substances that interfere with host cellular defenses. The protozoan parasite Haplosporidium nelsoni, which causes MSX disease in the eastern oyster Crassostrea virginica, is not ingested by host hemocytes. To assess potential avoidance mechanisms, oyster hemocytes were incubated with plasmodial stages of the parasite that had been pretreated with one of a variety of enzymes (proteases and carbohydrases) to alter surface molecules or with metabolic inhibitors to prevent the synthesis or active uptake of "masking" molecules, as well as the production and discharge of inhibitory substances. The maximum increase in phagocytosis resulting from treatment with carbohydrases was 12.5% (beta-galactosidase) and with proteases was 18% (Proteinase K). Inhibitors of aerobic

metabolism resulted in a similar level of enhancement. In contrast, treatment of parasites with the glycolysis inhibitor iodoacetate enhanced phagocytosis by up to 66%. Thus, the process that obstructs phagocytosis involves aerobic and, especially, anaerobic pathways. The greater effect of a metabolic inhibitor compared to enzymes suggests that the mechanism involves more than just surface modification and may include the production of interference molecules. DESCRIPTORS: enzyme inhibitors, hemocytes immunology, hydrolases, iodoacetates, oysters immunology, phagocytosis immunology, Protozoa immunology, hemocytes parasitology.

House, M.L.; Kim, C.H.; Reno, P.W. (1998) **Soft shell clams Mya arenaria with disseminated neoplasia demonstrate reverse transcriptase activity.** *Dis Aquat Organ* 34(3): 187-92, ISSN: 0177-5103.

ABSTRACT: Disseminated neoplasia (DN), a proliferative cell disorder of the circulatory system of bivalves, was first reported in ovsters in 1969. Since that time, the disease has been determined to be transmissible through water-borne exposure, but the etiological agent has not been unequivocally identified. In order to determine if a viral agent, possibly a retrovirus, could be the causative agent of DN, transmission experiments were performed, using both a cell-free filtrate and a sucrose gradient-purified preparation of a cell-free filtrate of DN positive materials. Additionally, a PCR-enhanced reverse transcriptase assay was used to determine if reverse transcriptase was present in tissues or hemolymph from DN positive soft shell clams Mya arenaria. DN was transmitted to healthy clams by injection with whole DN cells, but not with cell-free filtrates prepared from either tissues from DN positive clams, or DN cells. The cell-free preparations from DN-positive tissues and hemolymph having high levels of DN cells in circulation exhibited positive reactions in the PCR-enhanced reverse transcriptase assay. Cell-free preparations of of hemolymph from clams having low levels of DN (<0.1% of cells abnormal), hemocytes from normal soft shell clams, and normal soft shell clam tissues did not produce a positive reaction in the PCR enhanced reverse transcriptase assay. DESCRIPTORS: clams virology, RNA directed DNA polymerase analysis, Retroviridae isolation and purification, clams enzymology, hemolymph enzymology, neoplasms virology, polymerase chain reaction, Retroviridae enzymology, tumor virus infections transmission, tumor virus infections virology.

Konishi, K.; Kawamura, K.; Furuita, H.; Komaru, A. (1998) **Spermatogenesis of the freshwater clam Corbicula aff. fluminea Muller (Bivalvia: Corbiculidae).** Journal of Shellfish Research V 17, N1 (JUN) p. 185-189, ISSN: 0730-8000. NAL CALL NUMBER: SH365.A1J6 DESCRIPTORS: spermatogenesis, ultrastructure, flagella, hermaphrodite, Corbicula, ultrastructure, sperm, spermatozoa, Unionidae.

Madon, S.P.; Schneider, D.W.; Stoeckel, J.A. (1998) In situ estimation of zebra mussel metabolic rates using the electron transport system (ETS) assay. *Journal of Shellfish Research* V. 17, N1 (JUN), P. 195-203, ISSN: 0730-8000.

NAL CALL NUMBER: SH365.A1J6

DESCRIPTORS: zebra mussels, ETS assay, in-situ metabolic rates, Dreissena polymorpha, bioenergetics model, oxygen consumption, marine zooplankton, great lakes, impact, respiration, region, river, populations.

Martinez, G.; Mettifogo, L. (1998) **Mobilization of energy from adductor muscle for gametogenesis of the scallop, Argopecten purpuratus Lamarck.** *Journal of Shellfish Research* V 17, N1 (JUN), P. 113-116, ISSN: 0730-8000. NAL CALL NUMBER: SH365.A1J6 DESCRIPTORS: scallops, gametogenesis, Argopecten purpuratus, reproduction, adductor muscle, clyde sea area, biochemical composition, bay scallop, Placopecten magellanicus, Irradians concentricus, seasonal variation, Pecten maximus, cyclic AMP, reproduction, Yessoensis.

OConnor, W.A.; Heasman, M.P. (1998) **Ontogenetic changes in salinity and temperature tolerance in the doughboy scallop, Mimachlamys asperrima.** *Journal of Shellfish Research* V. 17, N1 (JUN), P. 89-95, ISSN: 0730-8000.

NAL CALL NUMBER: SH365.A1J6

DESCRIPTORS: salinity, temperature, tolerance, ontogeny, byssogenesis, scallops, commercial scallop, iceland scallop, Pecten fumatus, growth, settlement, pectinidae, bay.

Serrano, F.S.; Alonso, P.S.; Lopez, S.L.; Martin, L.O. (1998) Regulation of Mytilus galloprovincialis glycogen phosphorylase by glucose and glucose-6-phosphate. *Journal of Shellfish Research*, V. 17, N1 (JUN), P. 159-163, ISSN: 0730-8000.

NAL CALL NUMBER: SH365.A1J6

DESCRIPTORS: Mytilus galloprovincialis, glycogen phosphorylase, regulation glucose, glucose-6-phosphate, inorganic phosphate, liver, site, dephosphorylation, gametogenesis, purification, metabolism, binding, edulis, mantle.

Trotta, P.; Cordisco, C.A. (1998) Gonadal maturation, conditioning, and spawning in the laboratory and maturation cycle in the wild of Cerastoderma glaucum Bruguiere. *Journal of Shellfish Research* 17 (4) 919-923, ISSN: 0730-8000.

NAL CALL NUMBER: SH365.A1J6

DESCRIPTORS: aquaculture, marine ecology, environmental sciences, reproduction, Pelecypoda, Cerastoderma glaucum, egg, fisheries species, gamete, reproductive system, Europe, Palearctic region, Lesina Lagoon, Italy, Europe, Palearctic region, mariculture industry, adaptability, aquatic conditions, chemical, biomass, coastal embayments, habitat, eutrophic lagoons, gametogenesis, gonadal maturation, latitudinal variation, mariculture, maturation cycle, muddy soft bottom, organic load, population density, reproductive behavior, salinity, temperature, Isochrysis aff. galbana.

Walker, R.L.; Hurley, D.H.; Kupfer, R. (1998) Growth and survival of Atlantic surfclam, Spisula solidissima, larvae and juveniles fed various microalga diets. *Journal of Shellfish Research*, V. 17, N1 (JUN), P. 211-214, ISSN: 0730-8000.

NAL CALL NUMBER: SH365.A1J6

DESCRIPTORS: Spisula, diets, growth, larvae, survival, upweller, Crassostrea virginica gmelin, Mercenaria mercenaria.

1997

Afanasjev, S.A.; Szatochina, A.V.; Zdanowski, B. (1997) Some aspects of thermal tolerance of Anodonta from heated koninskie lakes. *Archives of Polish Fisheries* (1997). v. 5(1) p. 5-11, ISSN 1230-6428.

NAL CALL NUMBER: SH293.P7A73

ABSTRACT: Thermal tolerance of Anodonta and Unio was studied under experimental conditions. Most tolerant to a gradual and stepwise temperature increase to 35 deg C were Chinese Anodonta, very numerous in Koninskie lakes, and among them - individuals up to 5 cm. Critical water temperature, at a gradual daily increase, was 39 deg C.

DESCRIPTORS: freshwater Molluscs, invertebrates, temperature resistance, heating, laboratory experimentation, electrical energy, water power, environmental impact, Poland, lakes, aquatic animals, aquatic organisms, eastern Europe, energy, energy sources, environmental control, Europe, experimentation, inland waters, natural resources, nonrenewable resources, physiographic features, renewable energy, renewable resources, resistance to injurious factors, surface water, water resources.

DePaola, A.; McLeroy, S.; McManus, G. (1997) **Distribution of Vibrio vulnificus phage in oyster tissues and other estuarine habitats.** *Appl Environ Microbiol* 63(6): 2464-7, ISSN: 0099-2240.

NAL CALL NUMBER: 448.3 AP5

ABSTRACT: Phages lytic to Vibrio vulnificus were found in estuarine waters, sediments, plankton, crustacea, molluscan shellfish, and the intestines of finfish of the U.S. Gulf Coast, but no apparent relationship between densities of V. vulnificus and its phages was observed. Phage diversity and abundance in molluscan shellfish were much greater than in other habitats. V. vulnificus phages isolated from oysters did not lyse other mesophilic bacteria also isolated from oysters. Both V. vulnificus and its phages were found in a variety of oyster tissues and fluids with lowest densities in the hemolymph and mantle fluid. These findings suggest a close ecological relationship between V. vulnificus phages and molluscan shellfish. DESCRIPTORS: bacteriophages isolation and purification, oysters microbiology, oysters virology, shellfish microbiology, fresh water virology, seawater microbiology, seawater virology, United States, Vibrio isolation and purification.

Elston, R. (1997) **Special topic review: Bivalve mollusc viruses.** *World Journal of Microbiology and Biotechnology* 13 (4) 393-403, ISSN: 0959-3993. NAL CALL NUMBER: QR1.M562

DESCRIPTORS: cell biology, infection, marine ecology (ecology, environmental sciences), methods and techniques, microbiology, Pathology, Physiology, wildlife management (conservation), Birnaviridae, viruses, Herpesviridae, Invertebrata unspecified, Reoviridae animal host only, bivalves, herpesviruses, microorganism, oyster, Pelecypoda, Birnaviridae, Reoviridae, Reoviridae Animal Host Only.

Fayer, R.; Farley, C.A.; Lewis, E.J.; Trout, J.M.; Graczyk, T.K. (1997) **Potential role of the Eastern oyster, Crassostrea virginica, in the epidemiology of Cryptosporidium parvum.** *Applied and environmental microbiology* v. 63(5) p. 2086-2088, ISSN: 0099-2240. NAL CALL NUMBER: 448.3 AP5

ABSTRACT: Oysters were placed in an aquarium containing artificial seawater, and Cryptosporidium parvum oocysts were added. Oocysts were later found in the gill washings, hemocytes, and gut contents of the oysters. Hemocytes containing oocysts were intubated into four mice. C. parvum stages developed in the ileal epithelia of all of the mice, indicating that the oocysts in the hemocytes remained infective.

DESCRIPTORS: Crassostrea virginica, epidemiology, Cryptosporidium parvum, Bivalvia, Coccidia, Crassostrea, Cryptosporidium, Protozoa, Sporozoa.

Gjetvaj, B.; Ball, R.M.; Burbridge, S.; Bird, C.J.; Kenchington, E.; Zouros, E. (1997) Amounts of polymorphism at microsatellite loci in the sea scallop Placopecten magellanicus. *Journal Of Shellfish Research*, V. 16, N2 (DEC), P. 547-553, ISSN: 0730-8000. NAL CALL NUMBER: SH365.A1J6

DESCRIPTORS: microsatellites, scallops, Placopecten magellanicus, stepwise mutation model, mitochondrial DNA, distributions, populations.

Shamseldin, A.A.; Clegg, J.S.; Friedman, C.S.; Cherr, G.N.; Pillai, M.C. (1997) **Induced thermotolerance in the Pacific oyster, Crassostrea gigas.** *Journal Of Shellfish Research* V 16, N2 (DEC), P. 487-491, ISSN: 0730-8000.

NAL CALL NUMBER: SH365.A1J6

DESCRIPTORS: oyster, thermotolerance, heat shock protein, summer mortality, heat-shock proteins, molecular chaperones, Perkinsus marinus, stress proteins.

1996

Mersch, J.; Beauvais, M.N.; Nagel, P. (1996) Induction of micronuclei in haemocytes and gill cells of zebra mussels, Dreissena polymorpha, exposed to clastogens. *Mutat Res* 371(1-2): 47-55, ISSN: 0027-5107.

NAL CALL NUMBER: QH431.M8

ABSTRACT: Zebra mussels, Dreissena polymorpha, were exposed to four directly acting reference clastogens (mitomycin C, bleomycin, dimethylarsinic acid and potassium chromate) under laboratory conditions. The aim was to examine the inducibility of micronuclei (MN) in haemocytes and gill cells. Positive responses were observed in both tissues for all four substances used under the given test conditions. The mean MN frequencies in treated mussels ranged between 3.2 and 6.9/1000 in haemocytes and between 5.4 and 6.7/1000 in gill cells. The spontaneous MN levels averaged 1.2 and 2.8/1000 in haemocytes and gill cells, respectively. The MN induction capacity of the different chemicals was equivalent in both tissues, except for the treatment with dimethylarsinic acid which generated a significantly higher MN rate in gill cells than in haemocytes. Several characteristics suggest that haemolymph is the more appropriate test tissue for environmental genotoxicity assessment: (1) a shorter preparation time of slides, (2) a more accurate identification of unambiguous MN, (3) a lower baseline MN frequency and a higher induction factor.

DESCRIPTORS: gills drug effects, hemocytes drug effects, micronucleus tests, mutagens toxicity, bleomycin toxicity, cacodylic acid pharmacology, chromates pharmacology, gills cytology, mitomycin toxicity, mussels, potassium compounds pharmacology.

Mortensen, S.H.; Glette, J. (1996) **Phagocytic activity of scallop (Pecten maximus) haemocytes maintained in vitro.** *Fish and Shellfish Immunology* 6 (2) 111-121, ISSN: 1050-4648.

NAL CALL NUMBER: QL638.97 F55

DESCRIPTORS: blood and lymphatics, transport and circulation, immune system, chemical coordination and homeostasis, marine ecology, environmental sciences, physiology, Pelecypoda, Pecten maximus, Hemocyte, Morphology.

Vanderploeg, H.A.; Liebig, J.R.; Gluck, A.A. (1996) Evaluation of different phytoplankton for supporting development of Zebra mussel larvae (Dreissena polymorpha): The importance of size and polyunsaturated fatty acid content. *Journal of Great Lakes Research* 22 (1) 36-45, ISSN: 0380-1330.

NAL CALL NUMBER: GB1627.G8J6

DESCRIPTORS: biochemistry and molecular biophysics, development, ecology, environmental sciences, freshwater ecology, metabolism, physiology, algae unspecified, plantae, Pelecypoda, Mollusca, algae, Dreissena polymorpha, microorganisms, Mollusks, nonvascular plants.

Wright, D.A.; Setzler, H.E.M.; Magee, J.A.; Harvey, H.R. (1996) Laboratory culture of Zebra (Dreissena polymorpha) and Quagga (D. bugensis) Mussel larvae using estuarine algae. *Journal of Great Lakes Research* 22 (1) 46-54, ISSN: 0380-1330.

NAL CALL NUMBER: GB1627.G8J6

DESCRIPTORS: biochemistry and molecular biophysics, estuarine ecology, environmental sciences, nutrition, physiology, systematics and taxonomy, wildlife management, conservation, Algae unspecified, Plantae, Pelecypoda, Dreissena bugensis, Dreissena polymorpha, microorganisms, Mollusks, nonvascular plants.

1995

Greger, E.A.; Drum, A.S.; Elston, R.A. (1995) Measurement of oxidative activity in hemocytes of the Pacific razor clam, Siliqua patula, and the oyster, Crassostrea gigas, using lucigenin- and luminol-dependent chemiluminescence. *Journal of invertebrate pathology* 65(1): 48-60, ISSN: 0022-2011.

NAL CALL NUMBER: 421 J826

ABSTRACT: In a manner resembling the respiratory burst of activated mammalian polymorphonuclear leukocytes, hemocytes of the Pacific razor clam, Siliqua patula, produced reactive oxygen intermediates during in vitro phagocytosis of zymosan particles. The acridinium salt lucigenin is oxidized by superoxide anion, creating photon emissions at levels measurable on a liquid scintillation counter calibrated to detect blood cell chemiluminescence (CL). Production of the superoxide anion by activated razor clam hemocytes was indicated by superoxide dismutase-mediated inhibition of both lucigenin-dependent CL and the histochemical reduction of nitroblue tetrazolium. Reduced zymosan-stimulated myeloperoxidase activity was suggested by minimal luminol-dependent CL compared to hemocytes of the oyster, Crassostrea gigas, and enhancement of lucigenin-dependent CL with exogenous sodium azide and potassium cyanide. CL analysis of individual hemolymph samples revealed a high degree of variability in lucigenin-enhanced CL, suggesting large variation in hemocyte oxidative activity. Comparison of the lucigenin-and luminol-dependent CL of razor clam versus that of oyster hemocytes revealed significant interspecific dissimilarities and indicated that lucigenin offers an alternative to luminol for measurement of the bivalve hemocyte oxidative metabolism. DESCRIPTORS: Siliqua genus, Crassostrea gigas, blood cells, phagocytes, polysaccharides,

oxygen, oxidation, anions, optical properties, organic nitrogen compounds, Bivalvia, blood, carbohydrates, cells, chemical reactions, chemicophysical properties, Crassostrea, elements, ions, Mollusca, nonmetals.

Lewis, E.J.; Farley, C.A.; Small, E.B.; Baya, A.M. (1995) A synopsis of juvenile oyster disease (JOD) experimental studies in Crassostrea virginica. *Aquatic Living Resources* v. 9(2) p. 169-178, ISSN 0990-7440.

NAL CALL NUMBER: SH1.A8

DESCRIPTORS: Crassostrea virginica, young animals, pathology, mortality, aetiology, New England, America, Bivalvia, Mollusca, North America, North Eastern States USA.

Makela, T.P.; Oikari, A.O. (1995) Pentachlorophenol accumulation in the freshwater mussels Anodonta anatina and Pseudanodonta complanata, and some physiological consequences of laboratory maintenance. *Chemosphere* 31(7): 3651-62, ISSN: 0045-6535. NAL CALL NUMBER: TD172.C54

ABSTRACT: Freshwater mussels Anodanta anatina and Pseudanodonta complanata were exposed to (14C)-pentachlorophenol. The wet weight based bioconcentration factor (BCF =

activity in animal per activity in water) at steady state varied from 80 to 120 for A. anatina and from 61 to 85 for P. complanata. The species did not differ significantly in their wet weight or lipid based BCFs but dry weight based values were significantly higher (40-50%) for A. anatina. The soft tissue dry weight and dry weight based condition index of A. anatina (Cl4 = soft tissue dry weight per shell length) differed significantly between natural mussel populations. In animals kept from 4 to 8 months in laboratory conditions, the soft tissue dry weight and glycogen content decreased more rapidly when mussels were maintained at 15 than at 5 degrees C. However, glycogen content in the digestive gland or adductor muscle did not differ in mussels maintained in the laboratory (5 degrees C) when compared to the natural population. The adductor muscle protein content differed between laboratory maintained animals and the natural population in Lake Hoytianen but there was no difference in the soft tissue lipid content. Trace metal concentrations and calcium in the soft tissue were in general higher in laboratory maintained mussels. In addition, laboratory maintenance affected the reproductive cycle of A. anatina.

DESCRIPTORS: animals, laboratory physiology, environmental pollutants metabolism, mussels physiology, pentachlorophenol metabolism, body weight drug effects, calcium analysis, environmental pollutants pharmacology, mussels chemistry, mussels drug effects, pentachlorophenol pharmacology, reproduction drug effects, seasons, trace elements analysis, xenobiotics metabolism, xenobiotics pharmacology.

1994

Alcutt, F.; Pinto, J.T. (1994) **Glutathione concentrations in the hard clam, Mercenaria mercenaria, following laboratory exposure to lead (a potential model system for evaluating exposure to carcinogens and toxins).** *Comp Biochem Physiol Pharmacol Toxicol Endocrinol* 1994 Mar; 107(3): 347-52.

NAL CALL NUMBER: QP901.C6

ABSTRACT: This study determined whether M. mercenaria retain Pb from sea water and whether endogenous GSH acts as an important primary response modulator of heavy metal detoxification. Lead accumulation in M. mercenaria may be related to the rate of endogenous formation of GSH. Glutathione concentrations decrease with increasing early exposure to Pb and increase after continued acute exposure. M. mercenaria do not accumulate Pb but appear to reach an equilibrium with their environment. GSH formation may protect the hard clam from accumulating excess Pb by forming insoluble sulfide adducts with Pb and excreting these complexes.

DESCRIPTORS: carcinogens toxicity, clams metabolism, glutathione metabolism, lead toxicity, toxins toxicity, water pollutants, chemical toxicity, environmental monitoring, metabolic detoxication, drug, models biological.

Anderson, R.S. (1994) **Hemocyte-derived reactive oxygen intermediate production in four bivalve mollusks**. *Dev Comp Immunol* 18(2): 89-96, ISSN: 0145-305X. NAL CALL NUMBER: QR180.D4

ABSTRACT: Luminol-dependent chemiluminescence (LDCL) and nitroblue tetrazolium (NBT) reduction assays have been used to measure reactive oxygen intermediate (ROI) production by oyster (Crassostrea virginica) hemocytes, as well as ROI modulation caused by disease or exposure to environmental toxicants. However, ROI responses measured by these tests apparently vary considerably among other bivalve species. In all species tested, unstimulated hemocytes produced small quantities of ROIs. In C. virginica and Geukensia demissa phagocytosis or treatment with phorbol myristate acetate triggered significantly augmented, but

kinetically dissimilar, ROI responses; however, no induction was recorded in two clam species (Mya arenaria and Mercenaria mercenaria). This was supported by both LDCL and NBT assays, measuring activity of the myeloperoxidase/hydrogen peroxide system and production of intracellular superoxide anion, respectively. The failure of the clams to respond to standard ROI-eliciting procedures is possibly indicative of interspecies differences in hemocyte-mediated antimicrobial defense mechanisms.

DESCRIPTORS: hemocytes metabolism, Mollusca metabolism, reactive oxygen species metabolism, chemiluminescence, nitroblue tetrazolium metabolism.

Duncan, J.; Ram, J.L.; Fong, P.P.; Snow, V. (1994) Zebra mussel gills: Long term culture and contractile responses. *American Zoologist* 34 (5) 35A, ISSN: 0003-1569. NAL CALL NUMBER: 410 AM3

DESCRIPTORS: biochemistry and molecular biophysics, cell biology, freshwater ecology, environmental sciences, membranes, cell biology, metabolism, physiology, Carunculina texasensis, Corbicula fluminea, Pelecypoda.

Juneja, R.; Ito, E.; Koide, S.S. (1994) Effect of Serotonin and Tricyclic Antidepressants on Intracellular Calcium Concentrations in Spisula Oocytes. Cell Calcium V 15, N1 (JAN), P. 1-6, ISSN: 0143-4160.

NAL CALL NUMBER: QP772.V53C4

DESCRIPTORS: affinity binding sites, human platelets, H-3 Imipramine, rat brain, maturation, effects of Imipramine, antidepressants inhibit spontaneous oscillations, cardiac assist devices.

MacMillan, R.J.; Cawthorn, R.J.; Whyte, S.K.; Lyon, P.R. (1994) **Design and maintenance of a** closed artificial seawater system for long-term holding of bivalve shellfish. *Aquacultural Engineering* 13 (4) 241-250, ISSN: 0144-8609.

NAL CALL NUMBER: SH1.A66

DESCRIPTORS: biochemistry and molecular biophysics, development, marine ecology, environmental sciences, metabolism, nutrition, physiology, wildlife management, conservation, Pelecypoda, Sporozoa, Protozoa, Argopecten irradians, Crassostrea virginica, Mercenaria mercenaria, Mya arenaria, Mytilus edulis, Ostrea edulis, Perkinsus karlssoni, Placopecten magellanicus.

Shi, A.J.; Wang, X.Z.; Zhang, H.Y. (1994) On the nature of nacre secreted by the cultured mantle cells of freshwater mussel. *Acta Zoologica Sinica* 40 (2) 191-197, ISSN: 0001-7302. Note: In Chinese.

NAL CALL NUMBER: 410 AC87

DESCRIPTORS: biochemistry and molecular biophysics, cell biology, marine ecology, environmental sciences, metabolism, methods and techniques, morphology, pharmacognosy, pharmacology, physiology, wildlife management, conservation, Malvaceae, Dicotyledones, Angiospermae, Spermatophyta, Plantae, Pelecypoda.

Tessier, L.; G. Vaillancourt; L. Pazdernik. (1994) **Temperature effects on cadmium and mercury kinetics in freshwater molluscs under laboratory conditions.** Arch Environ Contam Toxicol. New York, Springer-Verlag. Feb 1994. v. 26 (2) p. 179-184. ISSN: 0090-4341. NAL CALL NUMBER: TD172.A7

DESCRIPTORS: freshwater Molluscs, exposure, temperature, effects, cadmium, mercury, kinetics, laboratory tests.

1993

Marsh, J.W.; Chipman, J.K.; Livingstone, D.R. (1993) Formation of DNA adducts following laboratory exposure of the mussel, Mytilus edulis, to xenobiotics. *Science of the Total*

Environment Suppl. 1993(part 1) p. 567-572, ISSN 0048-9697.

NAL CALL NUMBER: RA565.S365

DESCRIPTORS: Mytilus edulis, xenobiotics, DNA, toxicity, tracer techniques, acids, Bivalvia, Mytilus, nucleic acids, nucleic compounds, organic acids, miscellaneous animal disorders.

Tamai, K. (1993) **Tolerance of Theora fragilis (Bivalvia: Semelidae) to low concentrations of dissolved oxygen.** *Bulletin of the Japanese Society of Scientific Fisheries* 59(4): 615-620, ISSN 0021-5392. Note: In Japanese.

NAL CALL NUMBER: 414.9 J274

DESCRIPTORS: Bivalvia, anoxia, resistance to injurious factors, laboratory experimentation, dissolving, oxygen, environmental temperature, survival, duration, elements, environmental factors, nonmetals, physical phenomena, temperature, time, miscellaneous animal disorders.

1992

Borsa, P.; Jousselin, Y.; Delay, B. (1992) Relationships between Allozymic Heterozygosity, Body Size, and Survival to Natural Anoxic Stress in the Palourde ruditapes decussatus (Bivalvia, Veneridae). Journal of Experimental Marine Biology and Ecology V 155, N2, P. 169-181.

NAL CALL NUMBER: QH91.A1J6

DESCRIPTORS: anoxic stress, bivalve, heterozygosity, malaigue, Ruditapes decussates, survival, oyster Crassostrea virginica, mussel Mytilus edulis, growth rate, marine bivalves, Mulinia lateralis, blue mussel, coot clam, populations, energetics, lagoon.

Gosling, E (1992) Developments in Aquaculture and Fisheries Science; The mussel Mytilus: Ecology, physiology, genetics and culture.25: xiii+589p, ISSN: 0167-9309. NAL CALL NUMBER: SH1 D43 v.25

DESCRIPTORS: infection, marine ecology, environmental sciences, parasitology, physiology, wildlife management, conservation, animal viruses general, viruses, Pelecypoda, microorganisms, viruses, epizootic diseases, mortality, parasite.

Jones, H.D.; Richards, O.G.; Southern, T.A. (1992) Gill Dimensions, Water Pumping Rate and Body Size in the Mussel Mytilus edulis *Journal of Experimental Marine Biology and Ecology* V 155, N2, P. 213-237.

NAL CALL NUMBER: QH91.A1J6

DESCRIPTORS: filter feeding, filtration rate, gill area, Mytilus, ostial area, size, suspension feeding bivalves, filtration rate, growth, temperature, oyster crassostrea gigas, mussel culture, growth of juvenile bay scallops Argopecten irradians concentricus.

Novelli, A.; Kispert, J.; Fernandezsanchez, M.T.; Torreblanca, A.; Zitko, V. (1992) **Domoic Acid-Containing Toxic Mussels Produce Neurotoxicity in Neuronal Cultures through a Synergism between Excitatory Amino Acids.** *Brain Research* V 577, N1 (APR 10), P. 41-48. DESCRIPTORS: domoic acid, toxic mussel, synergism between excitatory amino acids, biotoxin, environmental neurotoxin, cerebellar granule cells, nervous system, receptors, glutamate, metabolism, model.

1991

Beaumont, A.R. (1991) Genetic Studies of Laboratory Reared Mussels, Mytilus-edulis-Heterozygote Deficiencies, Heterozygosity and Growth. *Biological Journal of the Linnean Society* V 44, N3, P. 273-285.

NAL CALL NUMBER: QH301.B56

DESCRIPTORS: Mytilus edulis, culture, genetics, electrophoresis, heterozygosity, growth, enzyme heterozygosity, Mulinia lateralis, marine bivalves, coot clam, Mercenaria mercenaria, Crassostrea virginica, possible explanations, environmental stress, population genetics, blue mussel.

Fujii, T.; Sugiyama, M. (1991) **The effect of water pressure change on the scallop appeared in periodic expansion-contraction movement of its adductor muscle.** *Bulletin of National Research Institute of Aquaculture* (no.19) p. 27-30, ISSN 0389-5858. Note: In Japanese. NAL CALL NUMBER: SH109.Y67

ABSTRACT: Effects of periodical changes of water pressure and light-dark conditions on the movement of adductor muscle of a scallop, Patinopecten yessoensis (Jay), were investigated in the laboratory. The expansion-contraction movement of adductor muscle was measured (recorded) by straingauge method under the conditions of 12h water-level cycle with continuous dark and of 16h water-level cycle with 12h-12h light-dark alternation respectively. FFT spectral analysis showed that periodic elements corresponding to each periodic factor of the environmental conditions given to the shell were present in the adductor muscle movement, which suggested that the movement might be affected by tidal change as well as day-night change in natural environment.

DESCRIPTORS: Scallops, muscles, biological rhythms, pressure, sea water, movement, periodicity, light regimes, body parts, chemicophysical properties, environmental factors, lighting, musculoskeletal system, physiological functions, saline water, shellfish, time, water.

Jenner, H.A.; Hemelraad, J.; Marquenie, J.M.; Noppert, F. (1991) Cadmium kinetics in freshwater clams (Unionidae) under field and laboratory conditions. *Science of the Total Environment* 108(3): 205-214, ISSN: 0048-9697.

NAL CALL NUMBER: RA565.S365

DESCRIPTORS: clams, cadmium, kidneys, animal morphology, elements, heavy metals, metallic elements, shellfish, urinary tract, urogenital system.

1984

Tanaka, Y. (1984) **Morphological and physiological characteristics of the post larval stages in Corbicula japonica Prime, reared in the laboratory.** *Bulletin of National Research Institute of Aquaculture* (Japan) (no.6) p. 23-27, ISSN: 0389-5858.

NAL CALL NUMBER: SH109.Y67

DESCRIPTORS: clams, animal anatomy, physiology, larvae, life cycle, salinity, brackishwater environment, anatomy, animal developmental stages, aquatic environment, biological rhythms, chemicophysical properties, composition, developmental stages, environment, foods, seafoods, shellfish, time, timing.

1982

Fujii, T.; Mizuno, K.; Ishikawa, K. (1982) The study for periodic behaviour of bivalves, 4: A characteristic of shell movement of mussels [Mytilus edulis]. Bulletin of Tohoku Regional Fisheries Research Laboratory (no.45) p. 69-75. Note: In Japanese.

NAL CALL NUMBER: SH301.S852

DESCRIPTORS: Mytilus, shell, movement, periodicity, environmental conditions, anatomy, animal anatomy, animals, aquatic animals, aquatic organisms, bivalves, body parts, environment, integument, physiological functions, time, timing, tissues.

1980

Mackie, G.L.; Zdeba, T.W. (1980) *A guide to freshwater mollusks of the Laurentian Great Lakes, with special emphasis on the genus Pisidium* Environmental Research Laboratory, Office of Research and Development, U. S. Environmental Protection Agency. 1980. 144 p. NAL CALL NUMBER: TD1.E2 no. 80-068

DESCRIPTORS: auxiliary disciplines, Molluscs other, north central states USA, Ontario, lakes and ponds.

Palmer, R.E. (1980) Behavioural and rhythmic aspects of filtration in the Bay scallop, Argopecten irradians concentricus (Say), and the oyster, Crassostrea virginica (Gmelin). Journal of Experimental Marine Biology and Ecology 45(2): 273-295.

NAL CALL NUMBER: QH91.A1J6

ABSTRACT: Hourly measurements, for periods of 24 to 33 h, were made in the laboratory of filtration rate and cell clearance rate of 39 individual Argopecten irradians concentricus (Say) and Crassostrea virginica (Gmelin). Bivalves fed on suspensions of algea (Dunaliella tertiolecta Butcher, Ispchrysis galabna Parke, or Thalassiosira pseudonana (Hustedt)) whose concentration was maintained at a nearly constant level throughout each experiment. Neither local tidal sequence nor laboratory day: night cycles exerted a significant influence on scallop or oyster filtration behaviour. In Argopecten irradians filtration activity either remained relatively constant throughout the experimental period or stabilized at a constant level after an initial period of steady decline. There was an inverse relationship between suspended algal concentration (0.94 9.66mg l('1)) and filtration rate of A. irradians, so that the average amount of algae cleared hourly was similar throughout this range of concentrations. Mean filtration rate for all experiments with scallops was 4.7l.h('1)g dry wt ('1), but averaged 5.7l.h ('1) g dry wt ('1) when ambient concentration was <1.5mg.l('1). Filtration behaviour of Crassostrea virginica was generally characterized by alternating periods of high and low activity. Peaks of oyster filtration activity occurred two or three times per day, and the period between peaks did not vary with experimental algal concentration (1.7 6.7 mg.l('1)). Ovsters filtered actively for 80 per cent of all hourly periods in suspensions of Thalassiosira pseudonana and 91 per cent in suspensions of Isochrysis galbana: mean filtration rate for Crassostrea virginica was 1.5l.h('1)g dry wt ('1) for all measurements and 1.91.h('1)g dry wt ('1) during hourly periods of active filtration. These results indicate that scallops can collect food continuously, and, in the range of concentrations of suspended matter typical of coastal environments, can respond to environmental variations quickly enough to collect a relatively constant supply of food over time. In similar concentrations filtration of oysters is much more variable. Fluctuations in filtration of oysters in the laboratory could not be related to tidal or diurnal cycles or to food availability. Although their frequency does suggest a tidal component in filtration, the most probable explanation for variations in cell clearance rate is that they serve to regulate food levels in the stomach to permit a relatively constant level of intracellular digestion. DESCRIPTORS: Aquatic ecology; Oysters.

1977

Nakanishi, T. (1977) **Studies of the effect of the environment on the heart rate of shellfishes, 1: Effect of temperature, salinity and hypoxia on the heart rate of scallop.** *Bulletin of the Hokkaido Regional Fisheries Research Laboratory.* (no.42) p. 65-73, ISSN: 0513-2541. Note: In Japanese. NAL CALL NUMBER: 414.9 H683

DESCRIPTORS: aquatic ecology, clam.

Cephalopods

2002

Ikeda, Y.; Okazaki, J.; Sakurai, Y.; Sakamoto, W. (2002) Periodic variation in Sr/Ca ratios in statoliths of the Japanese Common Squid Todarodes pacificus Steenstrup, 1880 (Cephalopoda: Ommastrephidae) maintained under constant water temperature. Journal of Experimental Marine Biology and Ecology 273 (2): 161-170, ISSN: 0022-0981. NAL CALL NUMBER: QH91.A1J6

DESCRIPTORS: marine ecology (ecology, environmental sciences), Todarodes pacificus, Japanese common squid, animals, Invertebrates, Mollusks, strontium/calcium ratio, periodic feeding activity, periodic variation, vertical movements, water temperature.

2001

Domingues, P. M.; A. Sykes; J. P. Andrade. Pilot-scale culture of the cuttlefish S. Officinalis at the University of the Algarve (South Portugal). *World Aquac*. Baton Rouge, La. : World Aquaculture Society, June 2001. v. 32 (2) p. 3-5. ISSN: 1041-5602.

NAL CALL NUMBER: SH1.W62

DESCRIPTORS: Sepia, Mollusc culture, evaluation, growth rate, life cycle, liveweight, ova, prey, feeding, rearing techniques, larvae, survival, stocking density, handling, Portugal.

Jaffe, H.; Sharma, P.; Grant, P.; Pant, H. (2001) Characterization of the phosphorylation sites of the squid (Loligo pealei) high-molecular-weight neurofilament protein from giant axon axoplasm. *J Neurochem* 76(4): 1022-31, ISSN: 0022-3042.

NAL CALL NUMBER: QP351.J6

ABSTRACT: Axonal caliber in vertebrates is attributed, in part, to the extensive phosphorylation of NFM and NFH C-terminal tail domain KSP repeats by proline-directed kinases. The squid giant axon, primarily involved in rapid impulse conduction during jet propulsion motility, is enriched in squid-specific neurofilaments, particularly the highly phosphorylated NF-220. Of the 228 serine-threonine candidate phosphate acceptor sites in the NF-220 tail domain (residues 401-1220), 82 are found in numerous repeats of three different motifs SAR/K, SEK/R, K/RSP, with 62 of these tightly clustered in the C-terminal repeat segment (residues 840-1160). Characterization of the in vivo NF-220 phosphorylated sites should provide clues as to the relevant kinases. To characterize these sites, proteolytic digests of NF-220 were analyzed by a combination of HPLC, electrospray tandem mass spectrometry and database searching. A total of 53 phosphorylation sites were characterized, with 47 clustered in the C-terminal repeat segment (residues 840-1160), representing 76% (47/62) of the total acceptor sites in the region. As in mammalian NFH, approximately 64% of the K/RSP sites (14/22) in this region were found

to be phosphorylated implicating proline-directed kinases. Significantly, 78% of serines (31/40) in the KAES*EK and EKS*ARSP motifs were also phosphorylated suggesting that non proline-directed kinases such as CKI may also be involved. This is consistent with previous studies showing that CKI is the principal kinase associated with axoplasmic NF preparations. It also suggests that phosphorylation of large macromolecules with multiple phospho-sites requires sequential phosphorylation by several kinases.

DESCRIPTORS: axons chemistry, cytoplasm chemistry, neurofilament proteins chemistry, amino acid sequence, binding sites physiology, chromatography, liquid, molecular sequence data, neurofilament proteins isolation and purification, peptide fragments analysis, peptide hydrolases metabolism, phosphorylation, protein structure, tertiary, sequence analysis, protein, spectrum analysis, squid, peptide fragments, neurofilament protein NF 220.

Mather, J.A. Animal suffering: an invertebrate perspective. *J Appl Anim Welf Sci.* Mahwah, N.J. : Lawrence Erlbaum Associates, Inc. 2001. v.4 (2) p. 151-156. ISSN: 1088-8705. NAL CALL NUMBER: HV4701.J68

DESCRIPTORS: laboratory animals, invertebrates, Cephalopoda, pain, animal welfare, octopus, animal behavior, conditioned reflexes, nervous system, ethics.

Zheng, X.D.; Wang, R.C.; Wang, X.F.; Xiao, S.; Chen, B. (2001) Genetic variation in populations of the common Chinese cuttlefish Sepiella maindroni (Mollusca : Cephalopoda) using allozymes and mitochondrial DNA sequence analysis. *Journal of Shellfish Research* V 20, N3 (DEC), P. 1159-1165, ISSN: 0730-8000. NAL CALL NUMBER: SH365.A1J6

DESCRIPTORS: genetic variation, Sepiella maindroni, allozyme, cytochrome oxidase I gene, DNA sequencing.

2000

Boutilier, R.G.; West, T.G.; Webber, D.M.; Pogson, G.H.; Mesa, K.A.; Wells, J.; Wells, M.J. (2000) **The protective effects of hypoxia-induced hypometabolism in the Nautilus.** *J Comp Physiol* [*B*] 170(4): 261-8, ISSN: 0174-1578.

NAL CALL NUMBER: QP33.J681

ABSTRACT: Specimens of Nautilus pompilius were trapped at depths of 225-300 m off the sunken barrier reef southeast of Port Moresby, Papua New Guinea. Animals transported to the Motupore Island laboratory were acclimated to normal habitat temperatures of 18 degrees C and then cannulated for arterial and venous blood sampling. When animals were forced to undergo a period of progressive hypoxia eventually to encounter ambient partial pressure of oxygen (PO2) levels of approximately 10 mmHg (and corresponding arterial PO2's of approximately 5 mmHg), they responded by lowering their aerobic metabolic rates to 5-10% of those seen in resting normoxic animals. Coincident with this profound metabolic suppression was an overall decrease in activity, with brief periods of jet propulsion punctuating long periods of rest. Below ambient PO2 levels of 30-40 mmHg, ventilatory movements became highly periodic and at the lowest PO2 levels encountered, ventilation occasionally ceased altogether. Cardiac output estimated by the Fick equation decreased during progressive hypoxia by as much as 75 80%, and in the deepest hypometabolic states heart rates slowed to one to two cycles of very low amplitude per minute. By the end of 500 min exposure to ambient PO2 levels of 10 mmHg or less, the anaerobic end products octopine and succinate had increased significantly in adductor muscle and heart, respectively. Increased concentrations of octopine in adductor muscle apparently contributed to a small intracellular acidosis and to the development of a combined respiratory

and metabolic acidosis in the extracellular compartment. On the other hand, increases in succinate in heart muscle occurred in the absence of any change in cardiac pHi. Taken together, we estimate that these anaerobic end products would make up less than 2% of the energy deficit arising from the decrease in aerobic metabolism. Thus, metabolic suppression is combined with a massive downregulation of systemic O2 delivery to match metabolic supply to demand. DESCRIPTORS: adaptation, physiological physiology, anoxia metabolism, arginine analogs and derivatives, basal metabolism physiology, Mollusca metabolism, acid base equilibrium physiology, arginine metabolism, carbon dioxide metabolism, heart rate, hydrogen ion concentration, muscles metabolism, myocardium metabolism, oxygen metabolism, respiration, succinic acid metabolism.

Dickel, L.; Boal, J.G.; Budelmann, B.U. (2000) **The effect of early experience on learning and memory in cuttlefish.** *Developmental Psychobiology* 36 (2): 101-110, ISSN: 0012-1630. NAL CALL NUMBER: QP351.D4

DESCRIPTORS: behavior, development, Cephalopoda, Mollusca, Invertebrata, Animalia, Sepia officinalis ,cuttlefish, juvenile, animals, Invertebrates, learning, acquisition, early experience effect, retention, memory, early experience effect, growth, maturation rate, ontogeny, rearing environment, enriched, impoverished.

Nyholm, S.V.; Stabb, E.V.; Ruby, E.G.; McFall-Ngai, M.J. (2000) **Establishment of an** animal-bacterial association: recruiting symbiotic vibrios from the environment. *Proc Natl Acad Sci USA* 97(18): 10231-5, ISSN: 0027-8424.

NAL CALL NUMBER: 500 N21P

ABSTRACT: While most animal-bacterial symbioses are reestablished each successive generation, the mechanisms by which the host and its potential microbial partners ensure tissue colonization remain largely undescribed. We used the model association between the squid Euprymna scolopes and Vibrio fischeri to examine this process. This light organ symbiosis is initiated when V. fischeri cells present in the surrounding seawater enter pores on the surface of the nascent organ and colonize deep epithelia-lined crypts. We discovered that when newly hatched squid were experimentally exposed to natural seawater, the animals responded by secreting a viscous material from the pores of the organ. Animals maintained in filtered seawater produced no secretions unless Gram-negative bacteria, either living or dead, were reintroduced. The viscous material bound only lectins that are specific for either N-acetylneuraminic acid or N-acetylgalactosamine, suggesting that it was composed of a mucus-containing matrix. Complex ciliated fields on the surface of the organ produced water currents that focused the matrix into a mass that was tethered to, and suspended above, the light organ pores. When V. fischeri cells were introduced into the seawater surrounding the squid, the bacteria were drawn into its fluid-filled body cavity during ventilation and were captured in the matrix. After residing as an aggregate for several hours, the symbionts migrated into the pores and colonized the crypt epithelia. This mode of infection may be an example of a widespread strategy by which aquatic hosts increase the likelihood of successful colonization by rarely encountered symbionts. DESCRIPTORS: gram negative bacteria physiology, gram positive bacteria physiology, squid microbiology, squid physiology, symbiosis, Vibrio physiology, cloning, molecular, epithelium microbiology, epithelium physiology, lectins, luminescent proteins analysis, luminescent proteins genetics, recombinant proteins analysis, seawater microbiology.

Grant, P; Diggins, M; Pant, H.C. (1999) **Topographic regulation of cytoskeletal protein phosphorylation by multimeric complexes in the squid giant fiber system.** *J Neurobiol* 40(1): 89-102, ISSN: 0022-3034.

NAL CALL NUMBER: QP351.J55

ABSTRACT: In mammalian and squid nervous systems, the phosphorylation of neurofilament proteins (NFs) seems to be topographically regulated. Although NFs and relevant kinases are synthesized in cell bodies, phosphorylation of NFs, particularly in the lys-ser-pro (KSP) repeats in NF-M and NF-H tail domains, seem to be restricted to axons. To explore the factors regulating the cellular compartmentalization of NF phosphorylation, we separated cell bodies (GFL) from axons in the squid stellate ganglion and compared the kinase activity in the respective lysates. Although total kinase activity was similar in each lysate, the profile of endogenous phosphorylated substrates was strikingly different. Neurofilament protein 220 (NF220), high-molecular-weight NF protein (HMW), and tubulin were the principal phosphorylated substrates in axoplasm, while tubulin was the principal GFL phosphorylated substrate, in addition to highly phosphorylated low-molecular-weight proteins. Western blot analysis showed that whereas both lysates contained similar kinases and cytoskeletal proteins, phosphorylated NF220 and HMW were completely absent from the GFL lysate. These differences were highlighted by P13(suc1) affinity chromatography, which revealed in axoplasm an active multimeric phosphorylation complex(es), enriched in cytoskeletal proteins and kinases; the equivalent P13 GFL complex exhibited six to 20 times less endogenous and exogenous phosphorylation activity, respectively, contained fewer cytoskeletal proteins and kinases, and expressed a qualitatively different cdc2-like kinase epitope, 34 kDa rather than 49 kDa. Cell bodies and axons share a similar repertoire of molecular consitutents; however, the data suggest that the cytoskeletal/kinase phosphorylation complexes extracted from each cellular compartment by P13 are fundamentally different.

DESCRIPTORS: cytoskeletal proteins metabolism, nerve fibers metabolism, nerve fibers ultrastructure, protein kinases metabolism, chromatography, affinity, cytoskeletal proteins chemistry, electrophoresis, polyacrylamide gel, neurofilament proteins chemistry, neurofilament proteins isolation and purification, neurofilament proteins metabolism, phosphorylation, repetitive sequences, amino acid, squid.

1998

Boal, J. G.; S. A. Gonzalez. Social behavior of individual oval squids (Cephalopoda, Teuthoidea, Loliginidae, Sepioteuthis lessoniana) within a captive school. *Ethology*. Berlin : Paul Parey, 1986. Feb 1998. v. 104 (2) p. 161-178. ISSN: 0179-1613. NAL CALL NUMBER: QL750.E74 DESCRIPTORS: Loliginidae, social behavior, behavior patterns.

Houlihan, D.F.; Kelly, K.; Boyle, P.R. (1998) Correlates of growth and feeding in laboratory-maintained Eledone cirrhosa (Cephalopoda: Octopoda). Journal of the Marine Biological Association of the United Kingdom 78 (3) 919-932, ISSN: 0025-3154. NAL CALL NUMBER: 442.9 M331

DESCRIPTORS: marine ecology (ecology, environmental sciences), Cephalopoda, Eledone cirrhosa, body mass, digestive gland index, feeding, growth.

Nishiguchi, M.K.; Ruby, E.G.; McFall-Ngai, M.J. (1998) **Competitive dominance among** strains of luminous bacteria provides an unusual form of evidence for parallel evolution in Sepiolid squid-vibrio symbioses. *Appl Environ Microbiol* 64(9): 3209-13, ISSN: 0099-2240.

NAL CALL NUMBER: 448.3 AP5

ABSTRACT: One of the principal assumptions in symbiosis research is that associated partners have evolved in parallel. We report here experimental evidence for parallel speciation patterns among several partners of the sepiolid squid-luminous bacterial symbioses. Molecular phylogenies for 14 species of host squids were derived from sequences of both the nuclear internal transcribed spacer region and the mitochondrial cytochrome oxidase subunit I; the glyceraldehyde phosphate dehydrogenase locus was sequenced for phylogenetic determinations of 7 strains of bacterial symbionts. Comparisons of trees constructed for each of the three loci revealed a parallel phylogeny between the sepiolids and their respective symbionts. Because both the squids and their bacterial partners can be easily cultured independently in the laboratory, we were able to couple these phylogenetic analyses with experiments to examine the ability of the different symbiont strains to compete with each other during the colonization of one of the host species. Our results not only indicate a pronounced dominance of native symbiont strains over nonnative strains, but also reveal a hierarchy of symbiont competency that reflects the phylogenetic relationships of the partners. For the first time, molecular systematics has been coupled with experimental colonization assays to provide evidence for the existence of parallel speciation among a set of animal-bacterial associations.

DESCRIPTORS: phylogeny, squid microbiology, symbiosis, Vibrio genetics, Vibrio growth and development, cytochrome c oxidase genetics, DNA, bacterial, evolution, glyceraldehydes 3 phosphate dehydrogenases genetics, luminescence bacterial, molecular sequence data, sequence analysis, DNA, species specificity, squid genetics.

1997

Hanlon, R.T.; Claes, M.F.; Ashcraft, S.E.; Dunlap, P.V. (1997) Laboratory culture of the sepiolid squid Euprymna scolopes: A model system for bacteria-animal symbiosis. *Biological Bulletin Woods Hole* 192 (3) 364-374, ISSN: 0006-3185. NAL CALL NUMBER: 442.8 B52

DESCRIPTORS: development, ecology (environmental sciences), physiology, reproductive system (reproduction), systematics and taxonomy, Cephalopoda, Vibrionaceae, Eubacteria, bacteria, Euprymna scolopes, Vibrio fischeri (Vibrionaceae), microorganisms, bacterial animal symbiosis, growth, laboratory culture, model, oviposition, sepiolid squid, settlement, sexual maturity, survival, symbiont.

Oestmann, D. J.; J. M. Scimeca; J. Forsythe; R. Hanlon; P. Lee. **Special considerations for keeping cephalopods in laboratory facilities.** *Contem Top Lab Anim Sci.* Cordova, TN : The Association, 1992. Mar 1997. v. 36 (2) p. 89-93. ISSN: 1060-0558. NAL CALL NUMBER: SE405.5 A 23

NAL CALL NUMBER: SF405.5.A23

DESCRIPTORS: Cephalopoda, culture techniques, laboratory rearing, aquaria, animal models, laboratory animals.

1996

Boutilier, R.G.; West, T.G.; Pogson, G.H.; Mesa, K.A.; Wells, J.; Wells, M.J. (1996) Nautilus and the art of metabolic maintenance. *Nature* London 382 (6591) 534-536, ISSN: 0028-0836. NAL CALL NUMBER: 472 N21

DESCRIPTORS: biochemistry and molecular biophysics, blood and lymphatics, transport and circulation, marine ecology, environmental sciences, metabolism, physiology, Nautilus pompilius, Cephalopoda.

Clay, J.R. (1996) Effects of permeant cations on K+ channel gating in nerve axons revisited. *J Membr Biol* 153(3): 195-201, ISSN: 0022-2631.

NAL CALL NUMBER: QH573.J6

ABSTRACT: An increase in extracellular potassium ion concentration, Ko, significantly slows the potassium channel deactivation rate in squid giant axons, as previously shown. Surprisingly, the effect does not occur in all preparations which, coupled with the voltage independence of this result in preparations in which it does occur, suggests that it is mediated at a site outside of the electric field of the channel, and that this site is accessible to potassium ions in some preparations, but not in others. In other words, the effect does not appear to be related to occupancy of the channel by potassium ions. This conclusion is supported by a four-barrier, three-binding site model of single file diffusion through the channel in which one site, at most, is unoccupied by a potassium ion (single-vacancy model). The model is consistent with current-voltage relations with various levels of Ko, and, by definition, with multiple occupancy by K+. The model predicts that occupancy of any given site is essentially independent of Ko (or Ki). The effects of extracellular Rb+ and Cs+ on gating are strongly voltage dependent, and they were observed in all preparations investigated. Consequently, the mechanism underlying these results would appear to be different from that which underlies the effect of K+ on gating. In particular, the effect of Rb+ on gating is reduced by strong hyperpolarization, which in the context of the occupancy hypothesis, is consistent with the voltage dependence of the current-voltage relation in the presence of Rb+. The primary, novel, finding in this study is that the effects of Cs+ are counterintuitive in this regard. Specifically, the slowing of channel deactivation rate by Cs+ is also reduced by hyperpolarization, similar to the Rb+ results, whereas blockade is enhanced, which is seemingly inconsistent with the concept that occupancy of the channel by Cs+ underlies the effect of this ion on gating. This result is further elucidated by barrier modeling of the current-voltage relation in the presence of Cs+. DESCRIPTORS: axons physiology, ion channel gating, potassium channels metabolism,

calcium metabolism, electrophysiology.

Robertson, J.D.; Bonaventura, J.; Kohm, A.; Hiscat, M. (1996) Nitric oxide is necessary for visual learning in Octopus vulgaris. *Proc R Soc Lond B Biol Sci* 263(1377): 1739-43, ISSN: 0962-8452.

NAL CALL NUMBER: 501 L84B

ABSTRACT: We recently reported that inhibition of nitric oxide synthase (NOS) in Octopus vulgaris by intramuscular injections of an analog of L-arginine, N-omega-nitro-L-arginine methyl ester (L-NAME), blocked touch learning in Octopus vulgaris. The inactive enantiomorph (D-NAME), which had no effect on learning, was used for control. We now report that essentially the same procedures block visual learning in this animal. We used a visual paradigm in which the octopus was trained to respond positively to a smooth black plastic ball 2.5 cm diameter and negatively to a similar white ball, or vice versa. One set of eight animals was trained to the black ball positive, and another set of six to the white ball positive. Each set was trained at different times by two different trainers. We found that a 1 h pretreatment with the nitric oxide synthase inhibitor L-NAME blocks visual learning in Octopus vulgaris in both sets of animals.

DESCRIPTORS: learning physiology, nitric oxide physiology, Octopus physiology, enzyme inhibitors pharmacology, learning drug effects, nitroarginine methyl ester pharmacology, nitric oxide synthase antagonists and inhibitors, photic stimulation.

Siriraksophon, S.; Morinaga, T. (1996) Effect of background brightness on the visual contrast threshold of the Japanese common squid [Todarodes pacificus]. *Fisheries Science* 62(4): 534-537, ISSN 0919-9268.

NAL CALL NUMBER: SH1.F8195

DESCRIPTORS: Todarodes pacificus, vision, performance testing, behaviour, lighting, light regimes, darkness, laboratory experimentation, laboratory equipment, Cephalopoda, environmental control, environmental factors, equipment, experimentation, lighting, Mollusca, physiological functions, senses, testing, animal physiology and biochemistry.

1995

Clay, J.R. (1995) A simple model of K+ channel activation in nerve membrane. *J Theor Biol* 175(2): 257-62, ISSN: 0022-5193.

NAL CALL NUMBER: 442.8 J8223

ABSTRACT: A model is proposed for activation of potassium ion channel current, IK, in squid giant axons, which consists of two closed states and one open state. The rate parameter in the forward direction between the two closed states depends upon previous history. That is, it relaxes exponentially to its steady-state value appropriate to the membrane potential of a voltage clamp step rather than change instantaneously as in traditional models of channel gating. The model successfully describes both the enhancement of the delay in activation of IK with relatively negative prepulse potentials, i.e. the Cole-Moore effect, and the time-dependent rising phase of "on" gating current, which has been reported recently for several types of potassium channels.

DESCRIPTORS: axons metabolism, ion channel gating physiology, potassium channels physiology, models biological, squid.

Rivera, D.T.; Langford, G.M.; Weiss, D.G.; Nelson, D.J. (1995) Calmodulin regulates fast axonal transport of squid axoplasm organelles. *Brain Res Bull* 37(1): 47-52, ISSN: 0361-9230.

ABSTRACT: The role of calmodulin (CaM) in organelle motility (fast axonal transport) in the axoplasm of the squid giant axon was evaluated directly using video-enhanced microscopy. Addition of 6 microM CaM to extruded squid axoplasm produced a 2.6-fold increase in the number of organelles moving per minute per unit area of axoplasm. When lower concentrations of CaM, including physiological concentration (2 micrograms/ml), were added to extruded axoplasm, the number of organelles moving was equally increased. CaM had no significant effect on the mean velocity of organelle translocations. The stimulatory effect of CaM was reduced significantly by the CaM inhibitors melittin (36 microM) and trifluoperazine (50 microM). Parvalbumin, a high-affinity calcium binding protein, did not stimulate motile activity. These results suggest that CaM is a positive regulator of fast axonal transport. At the molecular level, this regulation may involve microtubule-and/or actin-based motor proteins. Several possible molecular mechanisms are proposed.

DESCRIPTORS: axonal transport physiology, axons metabolism, calmodulin physiology, organelles physiology, axonal transport drug effects, axons drug effects, biological transport drug effects, biological transport physiology, calmodulin antagonists and inhibitors, melitten pharmacology, microscopy, video, organelles drug effects, squid, time factors, trifluoperazine pharmacology.

Segawa, S. (1995) Effect of temperature on oxygen consumption of juvenile oval squid Sepioteuthis lessoniana. *Fisheries Science* 61(5): 743-746, ISSN 0919-9268. NAL CALL NUMBER: SH1.F8195

DESCRIPTORS: Sepioteuthis, growth period, oxygen consumption, environmental temperature, weight, laboratory experimentation, Cephalopoda, developmental stages, environmental factors,

experimentation, gas exchange, physiological functions, temperature, animal physiology and biochemistry, aquatic ecology.

Siriraksophon, S.; Nakamura, Y.; Matsuike, K. (1995) Visual contrast threshold of Japanese common squid Todarodes pacificus Steenstrup. *Fisheries Science* 61(4): 574-577, ISSN 0919-9268.

NAL CALL NUMBER: SH1.F8195

DESCRIPTORS: Todarodes pacificus, vision, identification, senses, laboratory experimentation, behaviour, testing, darkness, light, Cephalopoda, environmental factors, experimentation, physiological functions, radiation, senses, aquatic ecology, animal physiology and biochemistry.

Villanueva, R. (1995) Experimental rearing and growth of planktonic Octopus vulgaris from hatching to settlement. *Canadian Journal of Fisheries and Aquatic Sciences* 52 (12) 2639-2650, ISSN: 0706-652X.

NAL CALL NUMBER: 442.9 C16J

DESCRIPTORS: behavior, development, ecology, environmental sciences, marine ecology, physiology, Cephalopoda, Octopus vulgaris, Mediterranean Sea, North Atlantic, Atlantic Ocean, behavior, dispersal, negative phototaxis, survival, temperature, weight gain.

Wada, Y.; Kobayashi, T. (1995) **On an iteroparity of the oval squid Sepioteuthis lessoniana.** *Bulletin of the Japanese Society of Scientific Fisheries* v. 61(2) p. 151-158, ISSN 0021-5392. NAL CALL NUMBER: 414.9 J274

DESCRIPTORS: Sepioteuthis, oviposition, reproductive performance, environmental temperature, laboratory experimentation, aquaculture equipment, copulation, egg hatchability, fertility, animal performance, biological properties, Cephalopoda, environmental factors, equipment, experimentation, fertilization, physiological functions, reproduction, sexual reproduction, temperature, animal physiology, reproduction, aquatic ecology.

1994

Boletzky, S.V. (1994) Embryonic Development of Cephalopods at Low-Temperatures. Antarctic Science V. 6, N2 (JUN), P. 139-142, ISSN: 0954-1020.

DESCRIPTORS: environmental sciences, multidisciplinary sciences, Cephalopoda, spawning, development, embryos, hatching, coldwater.

Brierley, A.S.; Thorpe, J.P. (1994) **Biochemical-Genetic Evidence Supporting the Taxonomic Separation of Loligo gahi from the genus Loligo.** *Antarctic Science* V. 6, N2 (JUN), P. 143-148, ISSN: 0954-1020.

DESCRIPTORS: environmental sciences, multidisciplinary sciences, Loligo gahi, electrophoresis, genetics, systematics.

Ivanovic, M.L.; Brunetti, N.E. (1994) Food and Feeding of Illex argentinus. *Antarctic Science* V. 6, N2 (JUN), p. 185-193, ISSN: 0954-1020. DESCRIPTORS: Illex argentinus, food, feeding, crustaceans, fish, cannibalism.

Lee, P.G.; Turk, P.E.; Yang, W.T.; Hanlon, R.T. (1994) **Biological characteristics and biomedical applications of the squid Sepioteuthis lessoniana cultured through multiple generations.** *Biol Bull* 186(3): 328-41, ISSN: 0006-3185. NAL CALL NUMBER: 442.8 B52

ABSTRACT: Providing squids--especially their giant axons--for biomedical research has now been achieved in 10 mariculture trials extending through multiple generations. The noteworthy biological characteristics of Sepioteuthis lessoniana are (1) this species is behaviorally and morphologically well suited to the laboratory environment; (2) the life cycle is completed in 4-6 months; (3) growth is rapid (12% and 5% wet body weight d-1 for 100 d and for the life span, respectively), with adult size ranging from 0.4-2.2 kg; (4) feeding rates are high (30% wet body weight d-1), and a variety of live crustaceans and fishes are eaten; (5) crowding is tolerated (about 4 squids m-3); (6) the incidence of disease and cannibalism is low; and (7) reproduction in captivity allows culture through three successive generations. Engineering factors contributed to culture success: (1) physical design (i.e., size, shape, and painted pattern) of the culture tanks; (2) patterns of water flow in the culture tanks; (3) water filtration systems; and (4) spawning substrates. Initial production (a few hundred squids per year) suggests that large-scale culture will be able to supply the needs of the biomedical research community. The size (> 400 microns in diameter) and characteristics of the giant axons of Sepioteuthis are appropriate for experimentation, and other studies indicate that the eye, oculomotor/equilibrium system, olfactory system, blood, and ink are equally suitable for research.

DESCRIPTORS: squid growth and development, axons, behavior animal, eating, feeding behavior, light, ovum physiology, reproduction, research, seawater, squid embryology, tissue culture.

Yokawa, K. (1994) Allozyme Differentiation of 16 Species of Ommastrephid Squid (Mollusca, Cephalopoda). *Antarctic Science* V 6, N2 (JUN), p. 201-204, ISSN: 0954-1020. DESCRIPTORS: Squid, Ommastrephidae, allozyme, electrophoresis.

1993

Dimarco, F.P.; Turk, P.E.; Scimeca, J.M. Jr.; Browning, W.J.; Lee, P.G. (1993) Laboratory survival, growth, and digestive gland histologic features of squids reared on living and non-living fish diets. *Laboratory Animal Science* 43 (3) 226-231, ISSN: 0023-6764. NAL CALL NUMBER: 410.9 P94

DESCRIPTORS: animal care, cell biology, development, digestive system, ingestion and assimilation, estuarine ecology, environmental sciences, methods and techniques, nutrition, pathology, physiology, Cephalopoda.

1991

Boyle, P. R. *The UFAW handbook on the care and management of cephalopods in the laboratory*. Potters Bar, Herts. [England] : Universities Federation for Animal Welfare, c1991.
63 p. : ill. ISBN: 0900767723.
NAL CALL NUMBER: SF407.M37B68
DESCRIPTORS: Marine invertebrates as laboratory animals, Cephalopoda.

1990

Gilbert, D. L.; W. J. Adelman; J. M. Arnold. *Squid as experimental animals*. New York : Plenum Press, c1990. xxxi, 516 p. : ill. ISBN: 0306435136. NAL CALL NUMBER: QL430.2.S66

DESCRIPTORS: Squids as laboratory animals, Nervous system Mollusks, Squids Cytology, Animal welfare.

1989

Arnaya, I.N.; Sano, N.; Iida, K. (1989) Studies on acoustic target strength of squid, 2: Effect of behaviour on averaged dorsal aspect target strength [of Todarodes pacificus and Ommastrephes bartrami]. Bulletin of the Faculty of Fisheries Hokkaido University 40(2): 83-99, ISSN 0018-3458.

NAL CALL NUMBER: 414.9 H682

DESCRIPTORS: squids, acoustic properties, echosounding, strength, todarodes, ommastrephes, behaviour, orientation, laboratory experiments, measurement, Cephalopoda, chemicophysical properties, environmental factors, experiments, foods, measurement, mechanical properties.

DeRusha, R.H.; Forsythe, J.W.; DiMarco, F.P.; Hanlon, R.T. (1989) Alternative diets for maintaining and rearing cephalopods in captivity. *Lab Anim Sci* v. 39 (4) p. 306-312. NAL CALL NUMBER: 410.9 P94

ABSTRACT: The requirement of live marine prey for cephalopod mariculture has restricted its practicality for inland research laboratories, commerical enterprises and home aquarists. We evaluated acceptability and resultant growth on: (a) frozen marine shrimps, (b) live and frozen marine polychaete worms, (c) live and frozen marine crabs, (d) frozen marine fishes, (e) live adult brine shrimp, (f) live freshwater fish and (g) live freshwater crayfish. The diets were presented for periods of 2 to 11 weeks to octopuses. cuttlefishes or squids and in most trials the results were compared to animals fed control diets of live marine shrimps, crabs or fish. Overall, frozen marine shrimp proved to be the best alternative diet tested. Adult Octopus maya on frozen marine shrimp diets grew as well as those on control diets at 2.8% body weight per day (%/d) compared to 2.0 %/d on live freshwater crayfish, 1.4%/d on live marine polychaete worms and 0.8 %/d on live freshwater fish (Tilapia sp.). Juvenile Octopus maya and Octopus bimaculoides also grew comparably to controls when fed frozen marine shrimps; growth rates ranged from near 3.0 %/d at 3 months of age to nearly 2.5 %/d at 6 months of age. Thus, these alternatives are acceptable as the octopuses end their exponential growth phase at an age of 3-5 months. Attempts to rear O. maya hatchlings and juveniles (up to 1 month of age) on dead foods resulted in high mortality and slow or negative growth. No live or dead alternative diet has been found yet that will promote good growth and survival in hatchling octopuses. Hatchling F3 generation Sepia officinalis (the European cuttlefish) were reared for 6 weeks exclusively on adult brine shrimp (Artemia salina). Survival, feeding rate and growth were excellent. This experiment marks the first time that brine shrimp have been readily accepted frozen marine shrimp at 3 months of age, and growth over 2 months was 3.3 %/d versus 3.9 %/d on live shrimp. Gross Growth Efficiency (GGE) was 39% and 43%, respectively. Twenty-five slightly older cuttlefish, group-reared for 69 days on a diet of frozen marine fishes, grew at 2.5 %/d with a mean GGE of 38%. These data compare well to published data from live diets. The bay squid Lolligucula brevis was trained over an 8-day period to accept frozen marine shrimps. Over 41 days, growth was 1.3%/d versus 1.8%/d on live shrimp. These results provide researchers and others some viable alternative foods for maintaining or rearing cephalopods through a substantial portion of their life cycle.

DESCRIPTORS: Cephalopoda, laboratory rearing, diet, animal feeding, experimental design.

1985

Balch, N.; O'Dor, R.K.; Helm, P. (1985) Laboratory rearing of rhynchoteuthions of the ommastrephid squid Illex illecebrosus (Mollusca: Cephalopoda). *Vie et Milieu* 35 (3-4): 243-246, ISSN 0240-8759.

NAL CALL NUMBER: QH91.A1V5

DESCRIPTORS: Cephalopods, animal husbandry methods, viability, diet, environmental control, animals, aquatic animals, aquatic organisms, dietetics, health, invertebrates, isscaap group b 57, isscaap groups of species, methods, nutrition, zootechny.

1980

Matsumoto, G.; J. Shimada. Further improvement upon maintenance of adult squid (Doryteuthis bleekeri) in a small circular and closed-system aquarium tank. *Bio Bull.* Woods Hole, Mass., Marine Biological Laboratory. Oct 1980. v. 159 (2) p. 319-324. ill. ISSN: 0006-3185.

NAL CALL NUMBER: 442.8 B52

DESCRIPTORS: Doryteuthis bleekeri, adult squid, maintenance, aquarium tanks- small circular and closed-system, susceptibility hazards, filtering, zeolite, feeding, short and long-term culture, housing, food sources.

1977

Van Heukelem, W. F. Laboratory maintenance, breeding, rearing, and biomedical research potential of the Yucatan octopus (Octopus maya). *Lab Anim Sci*, Oct 1977, 27 (5, pt. 2): 852-859. Ref.

NAL CALL NUMBER: 410.9 P94

DESCRIPTORS: Yucatan octopus, Octopus maya, laboratory maintenance, breeding, rearing, animal model, neurobiology, behavior, endocrinology, immunology, aging, reproduction, animal husbandry.

1973

LaRoe, E.T. (1973) Laboratory culture of squid. *Fed Proc* 32(12): 2212-4, ISSN: 0014-9446. NAL CALL NUMBER: 442.9 F31P

DESCRIPTORS: animals laboratory growth and development, squid growth and development, behavior animal, environment controlled, feeding behavior, lighting, ultraviolet rays.

Gastropods

2002

Montgomery, M.; Messner, M.C.; Kirk, M.D. (2002) Arterial cells and CNS sheath cells from Aplysia californica produce factors that enhance neurite outgrowth in co-cultured neurons. *Invertebrate Neuroscience* 4 (3): 141-155, ISSN: 1354-2516.

DESCRIPTORS: nervous system, neural coordination, Aplysia californica (Gastropoda), amoebocyte, nervous system, aorta, circulatory system, central nervous system sheath cells, nervous system, fibrocyte, nervous system, hemolymph, blood and lymphatics, myocyte,

nervous system, neuron, nervous system, growth, neural plasticity, neurite outgrowth, synapse formation.

2001

Hickman, C.S. (2001) Evolution and development of gastropod larval shell morphology: experimental evidence for mechanical defense and repair. *Evol Dev* 3(1): 18-23, ISSN: 1520-541X.

ABSTRACT: The structural diversity of gastropod veliger larvae offers an instructive counterpoint to the view of larval forms as conservative archetypes. Larval structure, function, and development are fine-tuned for survival in the plankton. Accordingly, the study of larval adaptation provides an important perspective for evolutionary-developmental biology as an integrated science. Patterns of breakage and repair in the field, as well as patterns of breakage in arranged encounters with zooplankton under laboratory conditions, are two powerful sources of data on the adaptive significance of morphological and microsculptural features of the gastropod larval shell. Shells of the planktonic veliger larvae of the caenogastropod Nassarius paupertus [GOULD] preserve multiple repaired breaks, attributed to unsuccessful zooplankton predators. In culture, larvae isolated from concentrated zooplankton samples rapidly repaired broken apertural margins and restored the "ideal" apertural form, in which an elaborate projection or "beak" covers the head of the swimming veliger. When individuals with repaired apertures were reintroduced to a concentrated mixture of potential zooplankton predators, the repaired margins were rapidly chipped and broken back. The projecting beak of the larval shell is the first line of mechanical defense, covering the larval head and mouth and potentially the most vulnerable part of the shell to breakage. Patterns of mechanical failure show that spiral ridges do reinforce the beak and retard breakage. The capacity for rapid shell repair and regeneration, and the evolution of features that resist or retard mechanical damage, may play a more prominent role than previously thought in enhancing the ability of larvae to survive in the plankton. DESCRIPTORS: evolution, larva growth and development, snails' growth and development, wound healing/repair, biomechanics, food chain, marine biology, predatory behavior, snails anatomy and histology, growth and development, anatomy and histology, developmental

biology.

Inoue, T.; Watanabe, S.; Kirino, Y. (2001) Serotonin and NO complementarily regulate generation of oscillatory activity in the olfactory CNS of a terrestrial mollusk. *J* Neurophysiol 85(6): 2634-8, ISSN: 0022-3077.

ABSTRACT: Synchronous oscillation of membrane potentials, generated by assemblies of neurons, is a prominent feature in the olfactory systems of many vertebrate and invertebrate species. However, its generation mechanism is still controversial. Biogenic amines play important roles for mammalian olfactory learning and are also implicated in molluscan olfactory learning. Here, we investigated the role of serotonin, a biogenic amine, in the oscillatory dynamics in the procerebrum (PC), the molluscan olfactory center. Serotonin receptor blockers inhibited the spontaneous synchronous oscillatory activity of low frequency (approximately 0.5 Hz) in the PC. This was due to diminishing the periodic slow oscillation of membrane potential in bursting (B) neurons, which are essential neuronal elements for the synchronous oscillation in the PC. On the other hand, serotonin enhanced the amplitude of the slow oscillation in B neurons and subsequently increased the number of spikes in each oscillatory cycle. These results show that the extracellular serotonin level regulates the oscillation amplitude in B neurons and thus serotonin may be called an oscillation generator in the PC. Although nitric oxide (NO) is known to also be a crucial factor for generating the PC oscillatory activity and setting the PC oscillation

frequency, the present study showed that NO only regulates the oscillation frequency in B neurons but could not increase the spikes in each oscillatory cycle. These results suggest complementary regulation of the PC oscillatory activity: NO determines the probability of occurrence of slow potentials in B neurons, whereas serotonin regulates the amplitude in each cycle of the oscillatory activity in B neurons.

DESCRIPTORS: nitric oxide metabolism, olfactory receptor neurons metabolism, periodicity, serotonin metabolism, action potentials drug effects, action potentials physiology, cinanserin pharmacology, electrophysiology, invertebrate cytology, ganglia, invertebrate physiology, Mollusca, serotonin antagonists pharmacology, tropanes pharmacology, serotonin antagonists, tropanes, nitric oxide, cinanserin, bemesetron, serotonin, physiology, neurosciences.

Murphy, A.D. (2001) The neuronal basis of feeding in the snail, Helisoma, with comparisons to selected gastropods. *Prog Neurobiol* 63(4): 383-408.

ABSTRACT: Research on identified neurons during the last quarter century was forecast at a conference in 1973 that discussed "neuronal mechanisms of coordination in simple systems." The focus of the conference was on the neuronal control of simple stereotyped behavioral acts. Participants discussing the future of such research called for a comparative approach; emphasis on structure-function interactions; attention to environmental and behavioral context; and the development of new techniques. Significantly, in some cases amazing progress has been made in these areas. Major conclusions of the last quarter century are that so-called simple behaviors and the neural circuitry underlying them tend to be less simple, more flexible, and more highly modulated than originally imagined. However, the comparative approach has, as yet, failed to reach its potential. Molluscan preparations, along with arthropods and annelids, have always been at the forefront of neuroethological studies. Circuitry underlying feeding has been studied in a handful of species of gastropod molluscs. These studies have contributed substantially to our understanding of sensorimotor organization, the hierarchical control of behavior and coordination of multiple behaviors, and the organization and modulation of central pattern generators. However, direct interspecific comparisons of feeding circuitry and potentially homologous neurons have been lacking. This is unfortunate because much of the vast radiation of the class Gastropoda is associated with variations in feeding behaviors and feeding apparatuses, providing ample substrates for comparative studies including the evolution of defined circuitry. Here, the neural organization of feeding in the snail, Helisoma, is examined critically. Possible direct interspecific comparisons of neural circuitry and potentially homologous neurons are made. A universal model for central pattern generators underlying rasping feeding is proposed. Future comparative studies can be expected to combine behavioral, morphological, electrophysiological, molecular and genetic techniques to identify neurons and define neural circuitry. Digital resources will undoubtedly be exploited to organize and interface databases allowing illumination of the evolution of homologous identified neurons and defined neural circuitry in the context of behavioral change.

DESCRIPTORS: central nervous system cytology, feeding behavior physiology, interneurons cytology, motor neurons cytology, snails cytology, action potentials physiology, central nervous system physiology, ganglia, invertebrate cytology, ganglia, invertebrate physiology, interneurons physiology, motor neurons physiology, nerve net cytology, nerve net physiology, snails physiology.

Schofield, J.C.; Grindley, R.M.; Keogh, J.A. (2001) **The use of diagnostic radiology to detect shell irregularities in the New Zealand paua (abalone) Haliotis iris.** *Laboratory Animals* 35 (2): 167-171, ISSN: 0023-6772. NAL CALL NUMBER: QL55.A1L3

DESCRIPTORS: animal care, aquaculture, marine ecology (ecology, environmental sciences), radiology (medical sciences), Gastropoda, Mollusca, Invertebrata, Animalia, Haliotis iris, [abalone, paua], animals, Invertebrates, Mollusks, New Zealand (Australasian region), shell lesions, integumentary system disease, diagnostic radiology, detection method, diagnostic method, imaging method, non-destructive, non-invasive, radiologic method, video display unit equipment, aquaculture, fisheries, laboratory animal science, laboratory animal welfare.

2000

Aquilina, B.; R. Roberts. A method for inducing muscle relaxation in the abalone, Haliotis iris. *Aquaculture*. Amsterdam : Elsevier Pub. Co., c1972. Nov 1, 2000. v. 190 (3/4) p. 403-408. ISSN: 0044-8486.

NAL CALL NUMBER: SH1 .A6

DESCRIPTORS: muscles, Haliotis, techniques, Mollusc culture, stress, mortality, dosage, benzocaine, muscle contraction, water temperature, air, survival.

Chang, D.J.; Li, X.C.; Lee, Y.S.; Kim, H.K.; Kim, U.S.; Cho, N.J.; Lo, X.; Weiss, K.R.; Kandel, E.R.; Kaang, B.K. (2000) Activation of a heterologously expressed octopamine receptor coupled only to adenylyl cyclase produces all the features of presynaptic facilitation in aplysia sensory neurons. *Proc Natl Acad Sci USA* 97(4): 1829-34, ISSN: 0027-8424. NAL CALL NUMBER: 500 N21P

ABSTRACT: Short-term behavioral sensitization of the gill-withdrawal reflex after tail stimuli in Aplysia leads to an enhancement of the connections between sensory and motor neurons of this reflex. Both behavioral sensitization and enhancement of the connection between sensory and motor neurons are importantly mediated by serotonin. Serotonin activates two types of receptors in the sensory neurons, one of which is coupled to the cAMP/protein kinase A (PKA) pathway and the other to the inositol triphosphate/protein kinase C (PKC) pathway. Here we describe a genetic approach to assessing the isolated contribution of the PKA pathway to short-term facilitation. We have cloned from Aplysia an octopamine receptor gene, Ap oa(1), that couples selectively to the cAMP/PKA pathway. We have ectopically expressed this receptor in Aplysia sensory neurons of the pleural ganglia, where it is not normally expressed. Activation of this receptor by octopamine stimulates all four presynaptic events involved in short-term synaptic facilitation that are normally produced by serotonin: (i) membrane depolarization; (ii) increased membrane excitability; (iii) increased spike duration; and (iv) presynaptic facilitation. These results indicate that the cAMP/PKA pathway alone is sufficient to produce all the features of presynaptic facilitation.

DESCRIPTORS: adenylate cyclase metabolism, Aplysia metabolism, neurons, afferent metabolism, receptors, biogenic amine genetics, synaptic transmission drug effects, action potentials drug effects, amino acid sequence, cell line, cell membrane metabolism, cloning, molecular, cyclic AMP metabolism, gene expression, molecular sequence data, octopamine pharmacology, oocytes, patch clamp techniques, psychomotor performance, receptors, biogenic amine chemistry, sequence homology, amino acid, serotonin pharmacology, transfection, Xenopus, drug effects, metabolism, pharmacology, chemistry, genetics, receptors, biogenic amine, norsynephrine receptor, octopamine, serotonin, cyclic-AMP, adenylate cyclase.

Chitwood, R.A.; Li, Q.; Glanzman, D.L. (2000) Serotonin enhances the glutamate response in isolated Aplysia motor neurons in culture. Society for Neuroscience Abstracts 26 (1-2): Abstract No.-568.19, ISSN: 0190-5295. NAL CALL NUMBER: QP351.S56716 DESCRIPTORS: nervous system (neural coordination), Gastropoda, motor neuron, cultured, nervous system, sensory neuron, nervous system, BAPTA, calcium, glutamate, serotonin, 5-HT, 5-hydroxytryptamine, hht, bathing medium, equipment, glutamate stimulated potential, learning, postsynaptic AMPA type response.

Gandhi, C.C.; Matzel, L.D. (2000) Modulation of presynaptic action potential kinetics underlies synaptic facilitation of type B photoreceptors after associative conditioning in Hermissenda. J Neurosci 20(5): 2022-35, ISSN: 1529-2401.

ABSTRACT: Descriptions of conditioned response generation in Hermissenda stipulate that the synaptic interaction between type B and A photoreceptors should be enhanced after associative pairings of light and rotation. Although evidence from several laboratories has confirmed this assumption, the mechanism underlying this synaptic facilitation has not been elucidated. Here we report that in vitro conditioning (i.e., light paired with stimulation of vestibular hair cells) modifies the kinetics of presynaptic action potentials in the B photoreceptor in a manner sufficient to account for this synaptic facilitation. After paired training, we observed an increase in the duration of evoked action potentials and a decrease in the amplitude of the spike afterhyperpolarization in the B-cell. As previously reported, paired training also enhanced the excitability (i.e., input resistance and evoked spike rate) of the B photoreceptor. In a second experiment, simultaneous recordings were made in type B and A photoreceptors, and paired training was found to produce an increase in the amplitude of the IPSP in the A photoreceptor in response to an evoked spike in the B-cell. Importantly, there was no change in the initial slope of the postsynaptic IPSP in the A photoreceptor, suggesting that spike duration-independent mechanisms of neurotransmitter exocytosis or postsynaptic receptor sensitivity did not contribute to the observed synaptic facilitation. Perfusion of 4-aminopyridine (4-AP) mimicked a known effect of behavioral conditioning in that it specifically reduced the amplitude of the transient voltage-dependent K(+) current (I(A)) in the B-cell, but in addition, produced action potential broadening and synaptic facilitation that was analogous to that observed after in vitro conditioning. Finally, the effect of 4-AP on B-cell action potentials and on the postsynaptic IPSP in the A-cell was occluded by previous paired (but not unpaired) training, suggesting that the prolongation of the B-cell action potential by a reduction of I(A) was sufficient to account for the observed synaptic facilitation. The occlusion of the effects of 4-AP by paired training was not attributable to a saturation of the capacity of the B-cell for transmitter exocytosis, because it was observed that tetraethylammonium (TEA)-induced inhibition of the delayed voltage-dependent K(+) current induced both spike broadening and synaptic facilitation regardless of training history. Collectively, these results demonstrate that training-induced facilitation at B-cell synapses is attributable to the effects of a reduction of a presynaptic K(+)conductance on action potential kinetics and suggest another critical similarity between the cellular basis for learning in Hermissenda and other invertebrate systems. DESCRIPTORS: action potentials physiology, association learning physiology, photoreceptors, invertebrate physiology, presynaptic terminals physiology, 4-aminopyridine pharmacology, action potentials drug effects, conditioning psychology physiology, dose response relationship, drug, exocytosis physiology, kinetics, Mollusca, neural inhibition physiology, patch clamp techniques, photic stimulation, photoreceptors, invertebrate chemistry, potassium channels physiology, presynaptic terminals chemistry, synaptic transmission drug effects, synaptic transmission physiology, pharmacology, drug effects, physiology, chemistry, potassium channels, 4-Aminopyridine.

Green, B.J.; Li, W.Y.; Manhart, J.R.; Fox, T.C.; Summer, E.J.; Kennedy, R.A.; Pierce, S.K.; Rumpho, M.E. (2000) Mollusc-algal chloroplast endosymbiosis. Photosynthesis, thylakoid

protein maintenance, and chloroplast gene expression continue for many months in the absence of the algal nucleus. *Plant Physiology* 124 (1): 331-342, ISSN: 0032-0889. NAL CALL NUMBER: 450 P692

DESCRIPTORS: bioenergetics (biochemistry and molecular biophysics), molecular genetics (biochemistry and molecular biophysics), marine ecology, infection, Chrysophyta, Algae, Plantae, Gastropoda, Elysia chlorotica, marine species, Vaucheria litorea, microorganisms, nonvascular plants, algal nucleus, absence effect, chloroplast, Vaucheria chloroplast gene, expression, animal nuclear genome, animal algal symbiosis, Mollusc algal chloroplast endosymbiosis, photosynthesis.

Kirby, R.R. (2000) An ancient transpecific polymorphism shows extreme divergence in a multitrait cline in an intertidal snail (Nucella lapillus (L.)). *Mol Biol Evol* 17(12): 1816-25, ISSN: 0737-4038.

NAL CALL NUMBER: QH506.M642

ABSTRACT: Clines in intraspecific genetic variation are frequently associated with an environmental transition. Here, divergence among nucleotide sequences of two nuclear loci, cytosolic and mitochondrial malate dehydrogenase (cMDH and mMDH, respectively), is described, in a multitrait cline over a distance of ca. 3 km where shell phenotype, allozyme, mitochondrial DNA haplotype, and centric fusion (Robertsonian translocations) frequencies covary with temperature and humidity and change abruptly in a continuous population of the dog-whelk (Nucella lapillus), a common intertidal snail of the north temperate Atlantic. Protein electrophoresis has already shown two alleles of mMDH varying from fixation of one allele to near fixation of the other, whereas cMDH appears to be monomorphic. The results of this study show a striking disparity in nucleotide sequence divergence among alleles at the two loci, with extreme molecular differentiation in one of them. Four alleles of cMDH were found to have nucleotide and amino acid sequence divergences of 0.4% and 0.3%, respectively. In contrast, the two mMDH cDNA alleles differed by 23% and 20% at the nucleotide and amino acid levels, respectively. Analysis of a 91-bp partial nucleotide sequence of mMDH from Nucella freycineti, the closest relative of N. lapillus, revealed two similar alleles and indicated that the divergence in mMDH in N. lapillus represents an ancient transpecific polymorphism in these Nucella. Together with earlier studies on variation in N. lapillus, it is argued that the polymorphism in mMDH and the clines in N. lapillus represent the presence of two persistent coadapted gene complexes, multitrait coevolving genetic solutions to environmental variation, which may presently enable this snail to exploit a diverse environment successfully. DESCRIPTORS: environment, evolution molecular, malate dehydrogenase genetics,

polymorphism genetics, snails genetics, alleles, amino acid sequence, cell nucleus genetics, DNA, mitochondrial genetics, molecular sequence data, phylogeny, seawater, sequence homology, snails enzymology, variation genetics.

Lee, Y.S.; Lee, J.A.; Jung, J.; Oh, U.; Kaang, B.K. (2000) **The cAMP-dependent kinase pathway does not sensitize the cloned vanilloid receptor type 1 expressed in xenopus oocytes or Aplysia neurons.** *Neurosci Lett* 288(1): 57-60, ISSN: 0304-3940. NAL CALL NUMBER: QP351.N3

ABSTRACT: Capsaicin-activated channels present in sensory neurons are ligand-gated cation channels that largely account for mediating some types of pain. The cAMP-dependent protein kinase (PKA) signal pathway was suggested to mediate the prostaglandin-induced enhancement of capsaicin-evoked inward current (I(CAP)) in rat sensory neurons. It is not clear, however, whether PKA acts directly on the capsaicin-sensitive channel that is responsible for I(CAP). To address this issue, we overexpressed the cloned capsaicin receptor, VR1, in heterologous expression systems such as Xenopus oocytes or Aplysia R2 neuron and stimulated PKA

pathways. As a result, activation of PKA by applying either 8-bromo-cAMP or forskolin with 3-isobutyl-1-methylxanthine or through activation of beta(2) adrenergic receptors failed to enhance I(CAP) in oocytes or R2 neurons expressing VR1. Our results raise two possibilities. (1) Direct phosphorylation of VR1 by PKA may not be responsible for the sensitization; instead, phosphorylation of regulatory proteins associated with VR1 would account for the sensitization of I(CAP) evoked by prostaglandin E(2) in dorsal root ganglion (DRG) neurons. (2) DRG neurons may have a different PKA signaling mechanism that is not replicable in Xenopus oocytes or Aplysia R2 neurons.

DESCRIPTORS: cyclic AMP dependent protein kinases metabolism, neurons enzymology, receptors, drug genetics, signal transduction physiology, 1-methyl-3-isobutylxanthine pharmacology, 8-bromo cyclic adenosine monophosphate pharmacology, Aplysia, capsaicin pharmacology, cloning, molecular, forskolin pharmacology, gene expression physiology, membrane potentials drug effects, membrane potentials physiology, neurons chemistry, oocytes cytology, patch clamp techniques, phosphodiesterase inhibitors pharmacology, receptors, adrenergic, beta 2 physiology, signal transduction drug effects, transfection, Xenopus.

Oehlmann, J.; Schulte-Oehlmann, U.; Tillmann, M.; Markert, B. (2000) Effects of endocrine disruptors on prosobranch snails (Mollusca: Gastropoda) in the laboratory. Part I: Bisphenol A and octylphenol as xeno-estrogens. *Ecotoxicology* 9(6): 383-97, ISSN: 0963-9292.

NAL CALL NUMBER: RA565.A1E27

ABSTRACT: The effects of suspected endocrine disrupting chemicals on freshwater and marine prosobranch species were analysed in laboratory experiments. In this first publication, the responses of the freshwater snail Marisa cornuarietis and of the marine prosobranch Nucella lapillus to the xeno-estrogenic model compounds bisphenol A (BPA) and octylphenol (OP) are presented at nominal concentration ranges between 1 and 100 micrograms/L. Marisa was exposed during 5 months using adult specimens and in a complete life-cycle test for 12 months. In both experiments, the xeno-estrogens induced a complex syndrome of alterations in female Marisa referred to as "superfemales" at the lowest concentrations. Affected specimens were characterised by the formation of additional female organs, an enlargement of the accessory pallial sex glands, gross malformations of the pallial oviduct section resulting in an increased female mortality, and a massive stimulation of oocyte and spawning mass production. The effects of BPA and OP were comparable at the same nominal concentrations. An exposure to OP resulted in inverted U-type concentration response relationships for egg and spawning mass production. Adult Nucella from the field were tested for three months in the laboratory. As in Marisa, superfemales with enlarged accessory pallial sex glands and an enhancement of oocyte production were observed. No oviduct malformations were found probably due to species differences in the gross anatomical structure of the pallial oviduct. A lower percentage of exposed specimens had ripe sperm stored in their vesicula seminalis and additionally male Nucella exhibited a reduced length of penis and prostate gland when compared to the control. Because statistically significant effects were observed at the lowest nominal test concentrations (1 microgram BPA or OP/L), it can be assumed that even lower concentrations may have a negative impact on the snails. The results show that prosobranchs are sensitive to endocrine disruption at environmentally relevant concentrations and that especially M. cornuarietis is a promising candidate for a future organismic invertebrate model to identify endocrine-mimetic test compounds.

DESCRIPTORS: estrogens, non steroidal pharmacology, phenols pharmacology, snails drug effects, water pollutants, chemical pharmacology, fresh water, seawater.

Rogers, C. N.; R. De Nys; T. S. Charlton; P. D. Steinberg. Dynamics of algal secondary metabolites in two species of sea hare, J Chem Ecol. New York, N.Y.: Plenum Publishing Corporation. Mar 2000. v. 26 (3) p. 721-744. ISSN: 0098-0331.

NAL CALL NUMBER: QD415.A1J6

ABSTRACT: The function of acquired algal secondary metabolites in sea hares is the subject of debate, in part because the dynamics/processing of metabolites by sea hares is poorly understood. This study investigates the dynamics of red algal secondary metabolites in two sea hares, Aplysia parvula and Aplysia dactylomela. Secondary metabolite levels were quantified for the dietary red algae Laurencia obtusa and Delisea pulchra and for sea hares collected from these seaweeds in the field. The patterns and dynamics of algal secondary metabolites were further investigated in the laboratory by quantitative analysis of secondary metabolites in sea hares grown on diets of L. obtusa, D. pulchra, or the green alga Ulva sp. Sea hares accumulated the most abundant metabolites from each red alga, the terpene palisadin A from L. obtusa, and the halogenated furanone 3 from D. pulchra, and stored a greater proportion of these metabolites than other algal metabolites. A. parvula accumulated D. pulchra metabolites at much higher levels than L. obtusa metabolites. A. dactylomela accumulated similar concentrations of L. obtusa metabolites to A. parvula. The loss of L. obtusa metabolites by A. dactylomela matched that expected for dilution of metabolites via growth of the sea hares. However, the loss of L. obtusa metabolites by A. parvula was faster than predicted for growth alone, suggesting that metabolites were actively metabolized or excreted. Data for the loss of D. pulchra metabolites by A. parvula was equivocal. The secretions of A. parvula fed D. pulchra or L. obtusa were analyzed for the presence of algal secondary metabolites to investigate one possible path of excretion. L. obtusa secondary metabolites were detected in the mucous and opaline secretions of A. parvula, but D. pulchra metabolites were not detected in any secretions. The deployment of L. obtusa secondary metabolites in secretions by A. parvula may explain the more rapid rate of loss of these compounds and is consistent with a possible defensive role for acquired metabolites.

DESCRIPTORS: algae, secondary metabolites, defense mechanisms, excretion.

Schulte-Oehlmann, U.; Tillmann, M.; Markert, B.; Oehlmann, J.; Watermann, B.; Scherf, S. (2000) Effects of endocrine disruptors on prosobranch snails (Mollusca: Gastropoda) in the **laboratory.** Part II: Triphenyltin as a xeno-androgen. *Ecotoxicology* 9(6): 399-412, ISSN: 0963-9292.

NAL CALL NUMBER: RA565.A1E27

ABSTRACT: In laboratory experiments the effects of suspected endocrine disrupting chemicals on freshwater and marine prosobranch species were analysed. In this second of three publications the responses of the freshwater ramshorn snail Marisa cornuarietis and of two marine prosobranchs (the dogwhelk Nucella lapillus and the netted whelk Hinia reticulata) to the xeno-androgenic model compound triphenyltin (TPT) are presented. Marisa and Nucella were exposed via water (nominal concentrations 5-500 ng TPT-Sn/L) and Hinia via sediments (nominal concentrations 50-500 micrograms TPT-Sn/kg dry wt.) for up to 4 months. Female ramshorn snails but not the two marine species developed imposex in a time and concentration dependent manner (EC10 4 months: 12.3 ng TPT-Sn/L) with a comparable intensity as described for tributyltin. TPT reduced furthermore the fecundity of Marisa at lower concentrations (EC10 4 months: 5.59 ng TPT-Sn/L) with a complete inhibition of spawning at nominal concentrations > or = 250 ng TPT-Sn/L (mean measured +/- SD: > or = 163 +/- 97.0 ng TPT-Sn/L). The extension of the pallial sex organs (penis with accessory structures and prostate gland) of male ramshorn snails and dogwhelks were reduced by up to 25% compared to the control but not in netted whelks. Histopathological analyses for M. cornuarietis and H. reticulata provide evidence for a marked impairment of spermatogenesis (both species) and oogenesis (only netted whelks).

The test compound induced a highly significant and concentration independent increase in the incidence of hyperplasia on gills, osphradia and other organs in the mantle cavity of N. lapillus indicating a carcinogenic potential of TPT. The results show that prosobranchs are sensitive to endocrine disruption at environmentally relevant concentrations of TPT. Also, M. cornuarietis is a promising candidate for a future organismic invertebrate system to identify endocrine-mimetic test compounds.

DESCRIPTORS: androgens pharmacology, organotin compounds pharmacology, pesticides pharmacology, snails drug effects, water pollutants, chemical pharmacology, fresh water, seawater.

Tomsic, D.; Alkon, D.L. (2000) **Background illumination effects upon in vitro conditioning in Hermissenda.** *Neurobiol Learn Mem* 74(1): 56-64, ISSN: 1074-7427. NAL CALL NUMBER: OH301.C63

ABSTRACT: In the marine snail Hermissenda, associative learning can be accomplished by paired presentations of light and vestibular stimulation. It is generally assumed that associative learning depends upon the intensity or salience of the conditioned or unconditioned stimulus (CS and US, respectively). Accordingly, during Hermissenda conditioning a stronger dark adaptation is expected to render the CS (the light) more salient and hence facilitate association. We studied the influence of background illumination level using an in vitro pairing procedure in Hermissenda. This procedure allows one to assess the effect of conditioning upon a single cell, the B photoreceptor, which is implicated in this learning process. After 15 min of adaptation to a dim background light, B photoreceptors maintained a basal rate of firing, while after adaptation to complete darkness, they stopped firing. Paired and unpaired groups received 10 training trials in either a completely dark or a dim light environment. Although a trial to trial cumulative increase in excitability was found in the paired group trained in darkness, only the paired group trained under dim background light showed a higher input resistance and cell excitability 10 min after training. These results suggest that the background dim illumination was not needed for the induction but played a role in the maintenance of the pairing effect. Possible mechanisms for such a modulatory effect are discussed.

DESCRIPTORS: association learning, conditioning, classical physiology, light, adaptation, physiological physiology, photoreceptors physiology, snails, vestibule physiology.

1999

Adriaens, E.; Remon, J.P. (1999) Gastropods as an evaluation tool for screening the irritating potency of absorption enhancers and drugs. *Pharm Res* 16(8): 1240-4, ISSN: 0724-8741.

ABSTRACT: PURPOSE: The objective of this study was to develop a simple alternative test using naked snails (slugs) for screening the irritating potency of chemicals on mucosal surfaces. METHODS: The effect of various absorption enhancers and two beta-blocking agents on the mucosal tissue was determined from the total protein and lactate dehydrogenase released from the foot mucosa after treatment. Additionally, mucus production and reduction in body weight of the slugs caused by the treatment were measured. RESULTS: According to the effects on the mucosal epithelium of the slugs the following rank order of increasing toxicity was established: PBS, HP-beta-CD (5%), beta-CD (1.8%) and oxprenolol hydrochloride (1%) < DDPC (1%) < STDHF (1%) < BAC (1%), SDC (1%) and propranolol hydrochloride (1%). The results of the present study are in agreement with other studies using the same compounds on other models. CONCLUSIONS: The results of this study indicated the mucosa of slugs can serve as a primary screening tool for the evaluation of chemicals on mucosal surfaces. By simply measuring mucus

production and weight loss reliable toxicity information can be obtained. This demonstrates rapid screening tests can be carried out using simple toxicity endpoints.

DESCRIPTORS: adrenergic beta antagonists toxicity, drug evaluation, preclinical methods, irritants toxicity, mucous membrane drug effects, absorption drug effects, adrenergic beta antagonists pharmacology, lactate dehydrogenase metabolism, mucous membrane metabolism, mucus metabolism, oxprenolol pharmacology, oxprenolol toxicity, propranolol pharmacology, propranolol toxicity, proteins metabolism, snails.

Albrecht, E.A.; Carreno, N.B.; Castro-Vazquez, A. (1999) A quantitative study of environmental factors influencing the seasonal onset of reproductive behaviour in the South American apple-snail Pomacea canaliculata (Gastropoda: Ampullariidae). Journal of Molluscan Studies v. 65(2) p. 241-250.

DESCRIPTORS: Pomacea canaliculata, water temperature, temperature, photoperiodicity, copulation, oviposition, reproduction, biology, environmental factors, feeding, fertilization, Gastropoda, periodicity, physiological functions, reproduction, sexual reproduction, temperature.

Leung, K.M.; Furness, R.W. (1999) **Induction of metallothionein in dogwhelk Nucella lapillus during and after exposure to cadmium.** *Ecotoxicol Environ Saf* 43(2): 156-64, ISSN: 0147-6513.

NAL CALL NUMBER: QH545.A1E29

ABSTRACT: Induction of metallothionein (MT) was investigated in a common biomonitor, the dogwhelk Nucella lapillus (shell length: 27.7+/-1.4 mm; wet tissue weight: 667+/-196 mg), during and after exposure to cadmium (Cd) under controlled laboratory conditions (10+/-1 degrees C and 34+/-1 per thousand salinity). The dogwhelks were exposed to 500 microg Cd l-1 (2.2% of 96 h LC50) for 60 days and then placed into clean seawater for 110 days. MT concentration in whole animal increased during the exposure period, peaked at Day 70, and then declined gradually. Half-life of MT was ca. 40 days. MT concentration increased very significantly with increasing Cd concentration (r=0.74, n=24, P<0.001). Nevertheless, Cd concentration increased throughout the period of exposure and while in clean seawater, leveling off only after Day 120, indicating that Cd concentration could not be regulated by N. lapillus. Throughout the study, MT and Cd concentrations in gills, Leiblein gland, kidney, digestive gland, and gonad tissues increased gradually. Highest concentrations of MT and Cd were found in the Leiblein gland. Measurement of MT induction in the Leiblein gland of N. lapillus may therefore prove useful as a sublethal biological response to Cd contamination. DESCRIPTORS: cadmium toxicity, metallothionein biosynthesis, snails drug effects, copper metabolism, iron metabolism, lethal dose 50, snails metabolism, tissue distribution, zinc metabolism.

Lin, M. C.; C. M. Liao. **65Zn(II) accumulation in the soft tissue and shell of abalone Haliotis diversicolor supertexta via the alga Gracilaria tenuistipitata var. liui and the ambient water.** *Aquaculture.* Amsterdam, Elsevier. July 15, 1999. v. 178 (1/2) p. 89-101. ISSN: 0044-8486.

NAL CALL NUMBER: SH1.A6

ABSTRACT: This investigation analyzed the Zn-bioaccumulation kinetics in the abalone Haliotis diversicolor supertexta and in the red alga Gracilaria tenuistipitata var. liui for assessing bioconcentration and biomagnification in an aquacultural system. Laboratory exposure experiments estimated uptake and depuration rate constants (i.e., k(1) and k(2), respectively) of H. diversicolor supertexta via nondietary and dietary processes. Bioconcentration factor (BCF) and biomagnification factor (BMF) of H. diversicolor supertexta as well as BCF of G. tenuistipitata var. liui were determined. A simple first-order one-compartment model fitted the

uptake and depuration characteristics of Zn-bioaccumulation and successfully determined k(1) and k(2). The resulting values of k(1) and k(2) of H. diversicolor supertexta were 101.4 ml g(-1) d(-1) and 0.611 d(-1), respectively, when the abalone were exposed to 1 microgram ml(-1) Zn seawater without the presence of G. tenuistipitata var. liui. When the abalone were fed with the algae, k(1) and k(2) values were estimated to be 114.5 g g(-1) d(-1) and 0.636 d(-1), respectively. BCF values for the alga and abalone were determined to be 170 and 180, respectively; and the BMF value was 1.06 for the abalone. Both field and laboratory data show that BMF values for Zn were about 1. Further more, the abalone in the tank without algae absorbed the same quantity of Zn as the abalone in the tank with alga. From these two findings we conclude that Zn in the abalone comes from the ambient water and not from the algae. DESCRIPTORS: Haliotis, Rhodophyta, zinc, cations, water pollution, water quality, Mollusc culture, tanks.

Minchin, A.; Davies, I.M. (1999) Effect of freezing on the length of the penis in Nucella lapillus (L.). *J Environ Monit* 1(2): 203-5, ISSN: 1464-0325.

ABSTRACT: When quantifying imposex in Nucella lapillus, two indices are used: the Vas Deferens Sequence Index (VDSI) and the Relative Penis Size Index (RPSI). Freezing and thawing increase the length of the penis in both male and female Nucella lapillus. In the population studied, this had no significant effect on the RPSI, but was potentially an important source of additional variance in the estimation of the mean penis length.

DESCRIPTORS: hermaphroditism veterinary, penis anatomy and histology, snails anatomy and histology, biometry, cryopreservation, hermaphroditism etiology, reproducibility of results, specimen handling, animal, male.

Santini, G.; De-Pirro, M.; Chelazzi, G. (1999) In situ and laboratory assessment of heart rate in a Mediterranean limpet using a noninvasive technique. *Physiol Biochem Zool* 72(2): 198-204, ISSN: 1522-2152.

NAL CALL NUMBER: QL1.P52

ABSTRACT: Heart rate of the Mediterranean limpet Patella caerulea L. was investigated on the natural shore and in the laboratory by using a technique based on infrared phototransducers. Field recording occurred in the Gulf of Trieste (northern Adriatic) during March and June 1997. A consistent dependence of heart rate on temperature was observed in limpets both when submerged and when exposed to air in the two periods, but thermal acclimation was evident. During spontaneous activity at high tide, heart rate increased 1.5-1.7 times the values observed during resting in water at corresponding temperatures. The dependence of heart rate on temperature (10 degrees, 16 degrees, and 22 degrees C) and size (wet weight <1.25 and >1.30 g) in submerged limpets from different populations (northern Adriatic and Tyrrhenian) was tested in the laboratory by adopting a factorial design. The results showed a marked effect of temperature, body weight, and their interaction, independent from the site of origin. Smaller limpets showed a linear increase of heart rate in the whole range of temperature tests, while in the larger ones the increase between 10 degrees and 16 degrees C was greater than between 16 degrees and 22 degrees C. Heart rate decreased with increasing body size at control (16 degrees C) and high (22 degrees C) temperature, while at lower temperature (10 degrees C) no effect of body size was evident. When removed from their home scar, limpets increased heart rate to about 1.5 times the reference value. Finally, correlation of oxygen consumption with heart rate of submerged limpets maintained at a different temperature (10 degrees -22 degrees C) was statistically significant.

DESCRIPTORS: heart rate, Mollusca physiology, spectrophotometry, infrared veterinary, body weight, energy metabolism, environment, temperature.

Shpigel, M.; Ragg, N.L.; Lupatsch, I.; Neori, A. (1999) **Protein content determines the nutritional value of the seaweed Ulva lactuca L for the abalone Haliotis tuberculata L. and H. discus hannai Ino.** *Journal of Shellfish Research* vol. 18 (1): p.227-233, ISSN: 0730-8000. NAL CALL NUMBER: SH365.A1J6

DESCRIPTORS: aquaculture, nutritive value, seaweeds, ammonia, crude protein, cultures, diet, diets, dry matter, enrichment, feed intake, feed, conversion efficiency, feeding, growth, intake, protein content, ratios, Ulva, abalones, Haliotis, algae, Haliotidae, Gastropoda, animals, plants, aquatic plants, aquatic organisms, feed composition and quality, animal nutrition, production responses.

Toledo, R.; Munoz-Antoli, C.; Perez, M.; Esteban, J.G. (1999) Miracidial infectivity of Hypoderaeum conoideum (Trematoda: Echinostomatidae): differential susceptibility of two lymnaeid species. *Parasitol Res* 85(3): 212-5, ISSN: 0932-0113. NAL CALL NUMBER: OL757.P377

ABSTRACT: A study was made of the infectivity of Hypoderaeum conoideum miracidia to a range of laboratory-reared specimens of freshwater snail species (Lymnaea peregra, L. corvus, Physella acuta, and Gyraulus chinensis) that coexist with the parasite in the same natural habitat. L. peregra and L. corvus were found to be equally susceptible to the parasite when specimens of each snail species were singly exposed to miracidia. However, when miracidia could choose either lymnaeid species, they showed a high degree of specificity toward L. peregra. The results obtained suggest that H. conoideum miracidia are capable of distinguishing among these lymnaeids in their orientation to the host. This indicates that miracidia might achieve specificity before actually contacting the snail host and suggests that during the host-snail orientation process they respond to signals different from those generated upon snail contact and invasion. The specificity toward L. peregra observed in H. conoideum miracidia seems to indicate adaptation to the snail community in their natural habitat, resulting in enhancement of their transmission.

DESCRIPTORS: Echinostomatidae physiology, Lymnaea parasitology, snails parasitology, fresh water, host parasite relations, signal transduction, species specificity.

1998

Ategbo, J.M.; Zongo, D.; Aidara, D. (1998) **Behavioral states and mobility of the giant snail** Achatina achatina. *Cahiers d'Etudes et de Recherches Francophones Agricultures* 7(1): 72-74, ISSN 1166-7699.

NAL CALL NUMBER: S5.C34

ABSTRACT: Mobility and bebavioral states of the African giant snail Achatina achatina L. were studied both in the laboratory and the open field. Behavioral state scores (BSS), derived from animal stereotypic postures, provided a suitable scale of increasing activity. To test whether BSS was correlated with activity, 30 randomly chosen sexually mature snails were removed from a colony and placed on a large bare surface. BSS scores were obtained 5 min later, and the distance each snail moved over the next 5 min was recorded by measuring the length of a thread laid along the mucous trail. BSS can be used to measure Achatina achatina mobility. In the open field, without any stimulus, humidity was the most important factor affecting snail mobility. DESCRIPTORS: Achatina, snails, behaviour, locomotion, field experimentation, laboratory experimentation, environmental factors, humidity, cote d' ivoire, Africa, Africa south of sahara, experimentation, Gastropoda, movement, physiological functions, West Africa.

Chambers, R.J.; McQuaid, C.D.; Kirby, R. (1998) The use of randomly amplified polymorphic DNA to analyze the genetic diversity, the systematic relationships and the evolution of intertidal limpets, Siphonaria spp. (Pulmonata: Gastropoda), with different reproductive modes. Journal of Experimental Marine Biology and Ecology V. 227, N1 (SEP 1), P. 49-66, ISSN: 0022-0981.

NAL CALL NUMBER: QH91.A1J6

DESCRIPTORS: marine and freshwater biology, ecology, polyacrylamide gel electrophoresis, total cellular proteins, Littorina saxatilis, larval development, arbitrary primers, family Littorinidae, markers, PCR, identification.

DeWitt, T.J. (1998) **Costs and limits of phenotypic plasticity: Tests with predator-induced morphology and life history in a freshwater snail.** *Journal of Evolutionary Biology* V 11, N4 (JUL), P. 465-480, ISSN: 1010-061X.

NAL CALL NUMBER: QH359.J68

DESCRIPTORS: costs of plasticity, evolution of plasticity, reaction norm, predator induced defense, genetics of plasticity, adaptive plasticity, water snail, body size, evolution, maintenance, environment, generalists, specialists, defenses, genetics.

Foster, G. G.; A. N. Hodgson. Consumption and apparent dry matter digestibility of six intertidal macroalgae by Turbo sarmaticus (Mollusca: Vetigastropoda: Turbinidae). *Aquaculture*. Amsterdam, Elsevier. Sept 1, 1998. v. 167 (3/4) p. 211-227. ISSN: 0044-8486. NAL CALL NUMBER: SH1.A6

ABSTRACT: Laboratory experiments on feeding of Turbo sarmaticus have shown that this gastropod mollusc is capable of consuming and digesting algae from the Rhodophyta (Gelidium pristoides and Corallina spp.), Chlorophyta (Ulva rigida and Codium extricatum) and Phaeophyta (Ecklonia radiata and Ivengaria stellata). The consumption rates of animals feeding on these different algae at 20 degree C ranged from 1.45 to 9.5% body weight per day (juveniles) and 1.06 to 6.08% body weight per day (adults). Juvenile T. sarmaticus had significantly (P < P0.05) higher consumption rates (1.6-2.8 times higher) for each algal species (except E. radiata) than adults. In both juveniles and adults, consumption rates of three species of algae (G. pristoides, U. rigida and Corallina spp.) were 1.5 to 5.8 times higher at 20 degree C and 25 degree C than at 15 degree C. The apparent dry matter digestibility for the different algae at 20 degree C ranged from 9.1 to 74.8% (juveniles) and 7.3 to 77.1% (adults). Juvenile T. sarmaticus had significantly (P < 0.01) higher apparent dry matter digestibility values (12-24% higher) for each algal species, except G. pristoides where there was no significant difference (P=0.444). In both juvenile and adult T. sarmaticus, algal digestibility was not affected by temperature. Monthly comparisons of the energetic value and nutritional content (protein, soluble carbohydrate and lipid) of the algae indicated that, with the exception of U. rigida and C. extricatum, there was little seasonal variation.

DESCRIPTORS: Gastropoda, Rhodophyta, Chlorophyta, Phaeophyta, feeding, feed intake, dry matter, digestibility, liveweight, age, water temperature, species differences, energy content, nutrient content, protein content, dietary carbohydrate, lipids, seasonal variation.

Gilroy, A.; S. J. Edwards. Optimum temperature for growth of Australian abalone: preferred temperature and critical thermal maximum for blacklip abalone, Haliotis rubra (Leach), and greenlip abalone, Haliotis laevigata (Leach). Aquac Res. Oxford : Blackwell Science, c1995. July 1998. v. 29 (7) p. 481-485. ISSN: 1355-557X. NAL CALL NUMBER: SH1.F8

ABSTRACT: The preferred temperature and critical thermal maximum of Australian blacklip abalone, Haliotis rubra (Leach), and greenlip abalone, Haliotis laevigata (Leach), were found to

differ only slightly; the blacklip abalone exhibited lower temperature tolerance and preference, as expected from its habitat distribution. Preferred temperatures were 16.9 and 18.9 degrees C, and 50% critical thermal maxima were 26.9 and 27.5 degrees C for blacklip and greenlip abalone, respectively. The optimum temperatures for growth calculated from each of these indices and averaged were 17.0 and 18.3 degrees C, respectively.

DESCRIPTORS: Haliotis, water temperature, growth, Mollusc culture, habitats, cold tolerance, Gastropoda.

Thomas, J.D.; Eaton, P. (1998) **The origins, fate, and ecological significance of free amino compounds released by freshwater pulmonate snails.** *Comp Biochem Physiol A Mol Integr Physiol* 119(1): 341-9, ISSN: 1095-6433.

NAL CALL NUMBER: QP1.C6

ABSTRACT: The mass-specific accumulation rates (MSAR) of both total (TFAC) and individual free amino compounds (FAC) in conditioned media were measured by HPLC, using the orthophthaldialdehyde (OPA) methods, in the following cases: (a) laboratory-reared freshwater snails (B. glabrata) with chemosterilized shells; (b) Biomphalaria glabrata with non-chemosterilized shells; (c) B. glabrata faeces; (d) isolated shells of B. glabrata; and (e) 10 other species of freshwater gastropods from the Lewes Brooks, East Sussex, U.K. The MSAR values for B. glabrata show that 95% of the TFAC's (predominantly ethanolamine, phosphoserine, and the amino acids leucine, isoleucine, valine, aspartic acid, and glycine/threonine) originated from the snails themselves as the faeces and shells contributed only 5.0 and 0%, respectively. In contrast, epizootic organisms on the shells of all 10 snail species from the Lewes Brooks released significant amounts of FAC with the two smallest species (Planorbis vortex and Planorbis contortus) having the highest MSAR values. The MSAR for isolated B. glabrata mucus was 42.45 micromol x g(-1)h(-1). As 500 mg snails can release 16.67 mg of mucus daily, this could potentially result in the daily loss of 707.5 micromol of FAC. The cost/benefits of mucus secretion and the various anatomical, physiological, biochemical, and ecological mechanisms which allow freshwater snails to recover FAC's lost as a result of a high rate of urine production in their hypotonic environment, are discussed.

DESCRIPTORS: amines metabolism, Biomphalaria metabolism, fresh water, chromatography high pressure liquid, culture media, conditioned metabolism, ecology, mucus metabolism, tissue culture.

1997

Gomot, A. (1997) Effets des metaux lourds sur le developpement des escargots. Utilisation des escargots comme bio-indicateurs de pollution par les metaux lourds pour la preservation de la sante de l'homme [Effects of heavy metals on snail development. Use of snails as bio-indicators of heavy metal pollution for the preservation of human health.] *Bull Acad Natl Med* 181(1): 59-74; discussion 74-5, ISSN: 0001-4079. Note: In French. *ABSTRACT*: The use of snails as biological indicators is particularly appropriate for metals, which they accumulate in their organs. The aim of the present experiment was to carry out a rigorous experimentation in the laboratory and in the wild in order to develop a methodology for the use of snails at a known stage of growth that would give precise information on the toxicity of heavy metals for different concentrations and durations of exposure. We have developed a test of toxicity based on the effects of a noxious and carcinogenic element, cadmium, on the land-snail Helix aspersa aspersa (H.a.a) of one month of age. Five concentrations (50 to 800 micrograms/g), were selected to estimate the concentrations causing 50% inhibition of growth (EC 50) at 14 days: 190 micrograms/g and at 28 days: 180 micrograms/g. A soil matrix

contaminated with metals (soil including 800 micrograms/g Cr, 20 micrograms/g Cd, 800 micrograms/g Pb and 2000 micrograms/g Zn) was incorporated into the food at 50 and 75%, it too inhibited the growth of juvenile snails compared to incorporation of control soil. An accurate and rapid (2 to 4 weeks) method is therefore available for the evaluation of the toxicity of pollutants by ingestion. The first trials of this method in the wild consisted of placing batches of 2-month-old snails, identical to those used in the first lab tests, in locations that were either polluted or not. Differences in growth were observed depending on the locations; analysis of the levels of metal in the organs of the snails should enable us to check if there is a correlation between these levels and the growth rates. The results obtained with cadmium compared to those of other authors working with earthworms and soil arthropods show that snails give responses to concentrations comparable to those of earthworms and much more rapidly and with more sensitivity than those of collembolla for example. The ease of handling snails and the perfect control of their breeding are essential factors in carrying out reliable bioassays in toxicology and in ecotoxicology.

DESCRIPTORS: environmental health, environmental monitoring, helix snails drug effects, metals, heavy toxicity, soil pollutants toxicity.

Lim, C.S.; Chung, D.Y.; Kaang, B.K. (1997) **Partial anatomical and physiological** characterization and dissociated cell culture of the nervous system of the marine mollusc Aplysia kurodai. *Mol Cells* 7(3): 399-407, ISSN: 1016-8478.

ABSTRACT: Snail nervous systems are powerful tools for neurobiological studies as the biophysical properties of the giant neurons and their neural circuits can be examined in relation to specific behaviors of animals. The marine mollusc Aplysia californica is particularly useful for analyzing the components of learning and memory at the molecular and cellular levels. Here we partially examined the nervous systems of two species (A. kurodai and A. juliana) commonly found along the Korean coast in comparison with that of A. californica, one of the American marine snails. A. kurodai appeared to be identical to A. californica in both anatomical and physiological properties of the nervous system. A. juliana could be distinguished from A. californica in certain morphological aspects of the nervous system. The hemolymph either from A. kurodai or from A. juliana was required for effectively elongating neurite outgrowth of A. kurodai neurons in dissociated cell culture. The cultured cells retained neuronal properties such as neurite outgrowth, synapse formation, and generation of action potentials. The sensory cells of A. kurodai in dissociated cultures showed a response to serotonin (5-HT) of spike broadening and enhanced membrane excitability as in intact ganglia. Therefore, the nervous system and dissociated neuronal culture of A. kurodai may be useful for studying learning and memory in the context-of well-defined neural circuits of A. californica.

DESCRIPTORS: Aplysia anatomy and histology, Aplysia physiology, nervous system anatomy and histology, nervous system physiology, action potentials, Aplysia cytology, cells cultured, culture media, electrophysiology, ganglia, invertebrate anatomy and histology, ganglia, invertebrate cytology, ganglia, invertebrate physiology, hemolymph, nervous system cytology, neurites ultrastructure, neurons, afferent drug effects, neurons, afferent physiology, serotonin pharmacology, species specificity, synapses ultrastructure.

Nakamura, K.; Soh, T. (1997) Mechanical memory hypothesized in the homing abalone Haliotis diversicolor supertexta under experimental conditions. *Fisheries Science* 63(6): 854-861, ISSN 0919-9268.

NAL CALL NUMBER: SH1.F8195

DESCRIPTORS: Haliotis, behaviour, habitats, locomotion, mental ability, laboratory experimentation, darkness, taxis, physiological functions, orientation, ecosystems, environmental

factors, experimentation, Gastropoda, movement, physiological functions, animal physiology and biochemistry.

1995

Fleming, A.E. (1995) **Digestive efficiency of the australian abalone haliotis-rubra in relation to growth and feed preference.** *Aquaculture* v 134, n3-4 (jul 15), p. 279-293, ISSN: 0044-8486.

NAL CALL NUMBER: SH1.A6

DESCRIPTORS: Haliotis rubra, feeding and nutrition, Mollusks, algae, marine, herbivore, nitrogen, ecology, food, behavior, defenses, plants.

Nakano, D. (1995) Availability of the embryo of Semisulcospira libertina (Prosobranchia: Pleuroceridae) as a laboratory animal. *Japanese Journal of Malacology* 54(1): 77-82, ISSN 0042-3580. Note: In Japanese.

DESCRIPTORS: Gastropoda, animal embryos, laboratory animals, feasibility studies, summer, autumn, animal developmental stages, animal developmental stages, developmental stages, Mollusca, seasons, useful animals.

Plaut, I.; Borut, A.; Spira, M.E. (1995) **Growth and metamorphosis of Aplysia oculifera larvae in laboratory culture.** *Marine Biology Berlin* 122 (3) 425-430, ISSN: 0025-3162. NAL CALL NUMBER: QH91.A1M35

DESCRIPTORS: development, ecology, environmental sciences, marine ecology, morphology, nutrition, physiology, reproductive system, Chlorophyta, Algae, Plantae, Gastropoda, Aplysia oculifera, Codium dichotomum, Colpomenia sinuosa (Phaeophyta), Cystoseira sp., Dasia sp., Enteromorpha intestinalis, Hydroclathrus clathratus, Hypnea sp., Jania sp., Liagora sp., Padina pavonia, microorganisms.

Takami, A. (1995) **Growth and number of newborns in Semisulcospira kurodai** (**Prosobranchia: Pleuroceridae) reared in the laboratory.** *Japanese Journal of Malacology* 54(2): 123-132, ISSN: 0042-3580.

DESCRIPTORS: Gastropoda, snail culture, growth rate, environmental temperature, shell, diameter, parturition, birth rate, laboratory experimentation, animal production, biological development, body parts, dimensions, environmental factors, experimentation, growth, integument, physiological functions, production, reproduction, sexual reproduction, temperature, vital statistics, aquatic ecology.

Wildering, W.C.; Lodder, J.C.; Kits, K.S.; Bulloch, A.G. (1995) Nerve growth factor acutely enhances high-voltage activated Ca-2+ currents in adult molluscan neurons. Society for Neuroscience Abstracts 21 (1-3) 1048, ISSN: 0190-5295.

NAL CALL NUMBER: QP351.S56716

DESCRIPTORS: biochemistry and molecular biophysics, cell biology, development, endocrine system, chemical coordination and homeostasis, membranes, cell biology, metabolism, nervous system, neural coordination, physiology, Gastropoda, Lymnaea.

1994

Abe, N. (1994) **Growth and prey preference of the two forms in Thais clavigera (Kuster) under rearing.** *Venus the Japanese Journal of Malacology* 53 (2) 113-118. DESCRIPTORS: behavior, ecology, environmental sciences, genetics, nutrition, physiology, population genetics, population studies, Gastropoda, Thais clavigera.

Baur, B. (1994) **Parental care in terrestrial gastropods.** *Experientia Basel* 50 (1) 5-14, ISSN: 0014-4754. NAL CALL NUMBER: 475 EX7 DESCRIPTORS: behavior, ecology, environmental sciences, physiology, reproductive system, reproduction, Gastropoda.

Fejtl, M.; Gyori, J.; Carpenter, D.O. (1994) Mercuric(II) chloride modulates single-channel properties of carbachol-activated Cl- channels in cultured neurons of Aplysia californica. *Cellular and Molecular Neurobiology* 14 (6) 665-674, ISSN: 0272-4340.

NAL CALL NUMBER: QP351.C4

DESCRIPTORS: biochemistry and molecular biophysics, cell biology, ecology, environmental sciences, endocrine system, chemical coordination and homeostasis, membranes, cell biology, metabolism, nervous system, neural coordination, pharmacology, physiology, pollution assessment control and management, toxicology, Gastropoda, Aplysia californica.

Mcshane, P.E.; Gorfine, H.K.; Knuckey, I.A. (1994) Factors influencing food selection in the abalone haliotis-rubra (Mollusca, Gastropoda). Journal of Experimental Marine Biology and Ecology, v 176, n1 (mar 15), p. 27-37, ISSN: 0022-0981.

NAL CALL NUMBER: QH91.A1J6

DESCRIPTORS: Abalone, Haliotis rubra, macroalgal diet, marine invertebrate herbivores, phenolic compounds, temperate Australasia, brown algae, defenses, growth, precipitation, surfactants, resistance, evolution.

Wang R.; Pang, P.K.T.; Wu, L.; Karpinski, E.; Harvey, S.; Berdan, R.C. (1994) Enhanced Calcium Influx by Parathyroid-Hormone in Identified Helisoma-Trivolvis Snail Neurons. *Cell Calcium*, V 15, N1 (JAN), p. 89-98, ISSN: 0143-4160.

NAL CALL NUMBER: QP772.V53C4

DESCRIPTORS: central nervous system, smooth muscle cells, neurotransmitter release, peptidergic neurons, brain synaptosomes, Lymnaea stagnalis, Molluscan neuron, organ culture, growth cones, fluorescence.

1993

Bianchi, F.; Bolognani, A.M.; Fratello, B.; Sabatini, M.A.; Sonetti, D. (1993) Cell-specific effects of lead on cultured neurons of the freshwater snail Planorbarius corneus. *Acta Biologica Hungarica* 44 (1) 15-19, ISSN: 0236-5383.

NAL CALL NUMBER: 475 AC85

DESCRIPTORS: cell biology, development, estuarine ecology, environmental sciences, metabolism, nervous system, neural coordination, physiology, skeletal system, movement and support, toxicology, Gastropoda, Planorbarius corneus.

Eliot, L.S.; Kandel, E.R.; Siegelbaum, S.A.; Blumenfeld, H. (1993) **Imaging terminals of Aplysia sensory neurons demonstrates role of enhanced calcium influx in presynaptic facilitation.** *Nature* 361 (6413) 634-637, ISSN: 0028-0836. NAL CALL NUMBER: 472 N21 DESCRIPTORS: cell biology, endocrine system, chemical coordination and homeostasis, membranes, cell biology, metabolism, nervous system, neural coordination, physiology, Aplysia, Gastropoda, calcium, potassium ion, serotonin.

Harada, A.; Yoshida, M.; Minakata, H.; Nomoto, K.; Muneoka, Y.; Kobayashi, M. (1993) **Structure and function of the molluscan myoactive tetradecapeptides.** *Zoolog Sci* 10(2): 257-65, ISSN: 0289-0003.

ABSTRACT: Effects of myoactive tetradecapeptides, Achatina excitatory peptide 2 and 3 (AEP2 and AEP3) and Fusinus excitatory peptide 4 (FEP4), on several molluscan muscles and neurons were investigated. In the penis retractor and radula retractor muscles of Achatina fulica (pulmonate), the three peptides enhanced the tetanic contraction elicited by nerve stimulations. The order of potency was AEP2 > AEP3 > FEP4, although the effects of AEP3 and FEP4 on the radula retractor were somewhat irregular. AEP2 also induced rhythmic bursts of activity in the buccal ganglionic neuron B4 known as a cholinergic motoneuron of the radula retractor. In the radula protractor and retractor muscles of Fusinus ferrugineus (prosobranch), FEP4 was most potent in enhancing the contraction. The enhancement was greater in the protractor than in the retractor. It was suggested that myoactive tetradecapeptides modulate mainly the cholinergic transmission in molluscan muscles.

DESCRIPTORS: Mollusca physiology, muscle contraction physiology, proteins chemistry, snails physiology, amino acid sequence, dose response relationship drug, molecular sequence data, muscle contraction drug effects, neurons drug effects, proteins physiology, sequence homology, amino acid.

Pagulayan, I.F.; Salunga, T.L. (1993) *Reproductive biology of Achatina fulica Ferussac*. Diliman, Quezon City (Philippines). 1993. 1 leaf. Philippines Univ., Diliman, Quezon City (Philippines). Inst. of Biology. National Malacological Convention. Diliman, Quezon City (Philippines). 3-4 Dec 1993. AVAILABILITY: UPLB-National Crop Protection Center Library, College, Laguna.

ABSTRACT: Achatina fulica Ferussac or the African giant snail collected from the field were reared and maintained in the laboratory. They were fed with (Lactuca sativa L.), yeast and chalk particles and frequently supplied with water to moisten the soil. The gross morphology of the reproductive system was studied. A. fulica is hermaphroditic. The male and female gametes differentiate within a single gonad called hermaphroditic gland. They have an ambisexual hermaphroditic gland in which oocytes and spermatozoa are produced simultaneously in close proximity within each acinus. However, it takes two snails to produce eggs. It was observed that courtship and copulation are reciprocal, both animals acting as males and females at the same time. There are four stages of mating behaviour: the spiral phase, the upright phase, the down turning phase and the immobility phase. Sex pheromones released from the head wart and some environmental factors like temperature, moisture, photoperiod and food influences the activity of the snail in the breeding season. It takes 24 to 48 hours for the snail to lay eggs which hatch in 7 to 15 days. A mass of 27 to 155 eggs laid per snail were obtained from the cultures. DESCRIPTORS: Achatina fulica, pests of plants, reproductive performance, copulation, pheromones, Philippines, Asia, biological properties, fertilization, Gastropoda, performance, pests, physiological functions, reproduction, semiochemicals, sexual reproduction, south east Asia.

Santarelli, L.; Ghirardi, M.; Casadio, A.; Montarolo, P.G. (1993) Aplysia hemolymph enhances neurite outgrowth from identified Helix neurons in cell culture. *Society for Neuroscience Abstracts* 19 (1-3) 1085, ISSN: 0190-5295. NAL CALL NUMBER: QP351.S56716

DESCRIPTORS: cell biology, nervous system, neural coordination, physiology, toxicology, Gastropoda.

1992

Bedford, J.A.; Lutz, P.L. (1992) **Respiratory Physiology Of Aplysia-Californica (Morton, J.E. and Yonge, C.M., 1964) and Aplysia-Brasiliana Upon Aerial Exposure.** Journal of Experimental Marine Biology and Ecology v. 155, n2, p.239-248. NAL CALL NUMBER: QH91.A1J6

DESCRIPTORS: aerial exposure, anaerobic, Aplysia, desiccation, metabolic depression, oxygen consumption, intertidal animals, energy metabolism, air, anaerobiosis, responses, behavior, hypoxia.

Buonomano, D.V.; Cleary, L.J.; Byrne, J.H. (1992) Inhibitory Neuron Produces Heterosynaptic Inhibition of the Sensory-to-Motor Neuron Synapse in Aplysia. Brain Research V. 577, N1 (APR 10), P. 147-150.

DESCRIPTORS: Aplysia, heterosynaptic inhibition, inhibitory neuron, synaptic plasticity, tail withdrawal reflex, siphon-withdrawal reflex, presynaptic inhibition, gill, camp, sensitization, modulation, serotonin, fmrfamide, tail.

Foster, M.C.; Castiglia, C.M.; Saubermann, A.J. (1992) Effects of Serotonin and Carbachol on Glial and Neuronal Rubidium Uptake in Leech CNS. Brain Research V 597, N2 (DEC 4), P. 181-188, ISSN: 0006-8993.

DESCRIPTORS: neurotransmitter, electron microprobe, potassium, serotonin, carbachol, leech, X-ray analysis, central nervous system, scanning electron microscopy, frozen hydrated sections, elemental composition, water content, cells, astrocytes, mechanism, K+.

Hughes, R.N.; Burrows, M.T.; Rogers, S.E. (1992) **Ontogenic Changes in Foraging Behavior** of the Dogwhelk Nucella lapillus. *Journal of Experimental Marine Biology and Ecology* V 155, N2, P. 199-212.

NAL CALL NUMBER: QH91.A1J6

DESCRIPTORS: foraging behavior, Nucella, ontogeny, prey selection, predator, history, mussels, rates.

Saubermann, A.J.; Castiglia, C.M.; Foster, M.C. (1992) **Preferential Uptake of Rubidium** from Extracellular-Space by Glial-Cells Compared to Neurons in Leech Ganglia. *Brain Research* V 577, N1 (APR 10), P. 64-72.

DESCRIPTORS: neuron, glial cell, elemental composition, potassium, electron probe x-ray microanalysis, X-ray analysis, scanning electron microscopy, frozen hydrated sections, central nervous system, potassium uptake, elemental composition, ion activities, water content, astrocytes, accumulation.

1991

Byrne, J.H.; Baxter, D.A.; Buonomano, D.V.; Cleary, L.J.; Eskin, A.; Goldsmith, J.R.; Mcclendon, E.; Nazif, F.A.; Noel, F.; Scholz, K.P. (1991) Neural and Molecular-Bases of Nonassociative and Associative Learning in Aplysia. Annals of the New York Academy of Sciences V 627, AUG, P. 124-149. NAL CALL NUMBER: 500 N484 DESCRIPTORS: tail sensory neurons, long term facilitation, pre-synaptic facilitation, siphonwithdrawal reflex, presynaptic facilitation, protein synthesis, gill-withdrawal, transmitter release, cellular mechanism, adenosine 3'-5'-monophosphate, learning in aplysia, identified sensory neuron synapses during long-term sensitization, central nervous system, gill withdrawal reflex, c-fos messenger RNA induction, rat spinal cord, long term potentiation, Aplysia sensory neurons.

1990

Buonomano, D.V.; Byrne, J.H. (1990) Long-Term Synaptic Changes Produced by a Cellular Analog of Classical-Conditioning in Aplysia. *Science* V 249, N4967, P. 420-423. NAL CALL NUMBER: 470 SC12

DESCRIPTORS: Aplysia model system, identified gill motor neurons, long term sensitization, neural networks, multiconnected memory models, associative theories.

Lacanilao, F. (1990) **Reproduction of the golden apple snail (Ampullaridae): egg mass, hatching, and incubation**. *Philippine Journal of Science* 119(2): 95-105. NAL CALL NUMBER: 475 P53

ABSTRACT: Reproduction in the golden apple snail (Apullarius sp.) was studied to provide breeding information for laboratory and field culture. The influence of food quality and some environmental conditions on egg properties were studied in the laboratory at normal temperatures. Wandering jew produced the most numerous egg masses; combination of camote and papaya leaves and pechay, the largest egg masses; combination of wandering jew and kangkong, the shortest incubation period; and duckweed, the highest hatching rate and the best overall effects on egg properties. Water change affected number of egg masses at higher stocking density, but affected egg mass size at all stocking densities and sex ratios. Seasonal or natural temperature effects were only seen on incubation period-shortest in the warm months of April and May but longest in the cool months of December-February. Increasing age decreased the number and size of egg masses and hatching rate, but did not affect incubation period. DESCRIPTORS: snails, snail culture, reproduction, hatching, egg incubation, animal developmental stages, animal husbandry methods, animal production, biological development, developmental stages, Mollusca, physiological functions, production, reproduction, sexual reproduction, animal husbandry.

1989

Madec, L. (1989) Geographic variations in Helix aspersa Mueller shell size and form. Evolution of these characters in laboratory conditions. *Bulletin de la Societe Zoologique de France* 114(1): 85-100, ISSN: 0037-962X.

NAL CALL NUMBER: 410.9 P214B

DESCRIPTORS: snails, shell, dimensions, environment, animals, aquatic animals, aquatic organisms, chemicophysical properties, integument, invertebrates, tissues.

1984

Spiridonov, N. A.; M. A. Kostenko; S. P. Volkova; A. G. Pogorelov; M. N. Kondrashova. Influence of biologically active substances isolated from Galleria mellonella on neurons of Lymnaea stagnalis in culture. *Comp Biochem Physiol C Comp Pharmacol Toxic*. Oxford : Pergamon Press. 1984. v. 78 (1) p. 207-210. ill. ISSN: 0306-4492. NAL CALL NUMBER: QP901.C6

DESCRIPTORS: Galleria mellonella, Lymnaea stagnalis, neurons, biologics, isolated giant neurons culture, test system, aggregation inhibition, freshwater snail, neurite activation, neuronal cells, chemical compositions.

1983

Nevo, E.; Lavie, E.; Ben-Shlomo, R. (1983) Selection of allelic isozyme polymorphisms in marine organisms: pattern, theory, and application. *Isozymes Curr Top Biol Med Res* 10: 69-92, ISSN: 0160-3787.

NAL CALL NUMBER: QP601.I74

ABSTRACT: The evolutionary significance of allelic isozyme polymorphisms in several Mediterranean marine organisms was tested initially by post-hoc gene frequency analyses at 11-15 gene loci in natural populations of barnacles, Balanus amphitrite, under thermal [Nevo et al, 1977] and chemical [Nevo et al, 1978] pollutions. We next carried out pre-hoc controlled laboratory experiments to test the effects of heavy metal pollution (Hg, Zn, Cd) on genotypic frequencies of 15 phosphoglucomutase (PGM) genotypes in thousands of individuals of the shrimp Palaemon elegans [Nevo et al, 1980, 1981a, and the present study]. Similarly, we tested the effects of Hg, Zn, Cd, Pb, Cu pollutions on the genotypic and allelic frequencies of five phosphoglucose isomerase (PGI) genotypes in the two close species of marine gastropods, Monodonta turbinata and M turbiformis [Lavie and Nevo, 1982, and the present study]. In both the thermal and chemical pollution studies, we established in repeated experiments statistically significant differences of allele frequencies at 8 out of 11 (73%) and 10 out of 15 (67%) gene loci, respectively, between the contrasting environments in each. While no specific function could be singled out in the post-hoc chemical study due to the complex nature of polluted marine water, temperature could be specified as the primary selective agent in the thermal study. The strongest direct and specific evidence for significant differential survivorship among allelic isozyme genotypes was obtained in the pre-hoc studies in Palaemon and Monodonta. Their differential viability was probably associated with the different degree of heavy metal inhibition uniquely related to each specific pollutant. Furthermore, we demonstrated in the two closely related Monodonta species parallel genotypic differentiation as a response to pollution. Our results are inconsistent with the neutral theory of allelic isozyme polymorphisms and appear to reflect the adaptive nature of the allelic isozyme polymorphisms studied. Allelic isozyme genotypes are sensitive to and vary with the quality and quantity of specific pollutants. Therefore, they can provide precise genetic indicators of the effects of pollution on the shortand long-term genetic changes of populations. Ideally, in different marine species specific genetic loci, either singly or in combination, may prove sensitive markers to different pollutants and could easily be assayed by quick electrophoretic tests and be used as genetic monitors. An extensive search for the appropriate enzymatic systems in various relatively sedentary marine species exposed to pollutants is therefore urgent.

DESCRIPTORS: isoenzymes genetics, polymorphism genetics, water pollution adverse effects, adaptation physiological, alleles, environment, evolution, glucose-6-Phosphate isomerase genetics, metals toxicity, Mollusca genetics, phosphoglucomutase genetics, shrimp genetics, Gastropoda.

Zelia, O. P.; S. A. Beer. A technique of individual maintenance of molluscs infected with larvae of Schistosoma mansoni. *Parazitologiia*. Leningrad : "Nauka". Sept-Oct 1983, v. 17 (5) p. 412-415. ISSN: 0031-1847. Note: In Russian with English summary.

NAL CALL NUMBER: QL757.A1P32

ABSTRACT: technique for individual maintenance of snail intermediate hosts in constant temperature water bath, effect on host growth, reproductive ability, and production of cercaria; technique used for study of compatibility between Malaysian strain of S. mansoni and Biomphalaria sudanica on basis of total cercaria production, Gastropoda.

DESCRIPTORS: Biomphalaria sudanica, freshwater snail, Schistosoma mansoni, maintenance, host- parasite relationship, snail intermediate host, water bath, reproduction, cercaria production, compatibility, model system, water bath, host growth, technique.

1982

Uki, N.; Kikuchi, S. (1982) Influence of food levels on maturation and spawning of the abalone, Haliotis discus hannai related to effective accumulative temperature. *Bulletin of Tohoku Regional Fisheries Research Laboratory* (no.45) p. 45-53, ISSN 0049-402X. NAL CALL NUMBER: SH301.S852

DESCRIPTORS: abalones, maturation, oviposition, food intake, environmental temperature, biological development, consumption, environment, environmental conditions, food consumption, foods, isscaap group b 52, isscaap groups of species, physiological functions, reproduction, seafoods, shellfish, temperature, aquatic ecology, fisheries production, Gastropods, snail like molluscs.

1981

Bayne, C. J. Gastropod cells in vitro. Adv Cell Cult. New York : Academic Press. 1981, v. 1 p. 297-334. ISSN: 0275-6358.

NAL CALL NUMBER: QH585.A3

ABSTRACT: gastropod cells in vitro, establishment and maintenance of cultures, uses of cultures, includes adaptation for study of parasites and host/parasite systems and for synxenic cultivation of Schistosoma mansoni, review.

DESCRIPTORS: Biomphalaria glabrata, freshwater snail, neurobiology, Aplysia, sea hare, maintenance, culture uses, synxenic cultivation, karotyping, antigenicity, behavior, immunology, phagocytosis, Schistosoma mansoni, attachment, aggregation, degranulation, chemotaxis, primary cultures, snail cell culture, short-term culture, in vitro, review article, embryonic and adult tissues.

Levitan, I.B.; Adams, W.B. (1981) Cyclic AMP modulation of a specific ion channel in an identified nerve cell: possible role for protein phosphorylation. *Adv Cyclic Nucleotide Res* 14: 647-53, ISSN: 0084-5930.

NAL CALL NUMBER: QP801.N82A3

ABSTRACT: Multidisciplinary studies of the role of cAMP in synaptic transmission have been made possible by the favorable properties of the molluscan nervous system, and there is now evidence from several laboratories implicating cAMP in physiological responses in various Aplysia nerve and muscle cells (9,10,15,18,21). The results we have obtained satisfy all the criteria (8) necessary to establish that cAMP mediates the response to a neurotransmitter: a) the response is mimicked by intra- or extracellular application of cAMP derivatives, and by activation of adenylate cyclase within R15; b) a phosphodiesterase inhibitor enhances the

response to low concentrations of serotonin; c) serotonin causes cAMP to accumulate within R15, and stimulates adenylate cyclase activity in membranes prepared from R15 cell bodies; and d) the serotonin receptors mediating adenylate cyclase stimulation and R15 hyperpolarization are pharmacologically very similar. This is the first time all these criteria have been satisfied in a neuronal system, and thus we conclude that the serotonin-induced increase in potassium conductance in neuron R15 is mediated by cAMP.

DESCRIPTORS: cyclic AMP metabolism, ion channels metabolism, neurons metabolism, protein kinases metabolism, serotonin pharmacology, Aplysia, cyclic AMP analogs and derivatives, cyclic AMP pharmacology, ion channels drug effects, membrane potentials drug effects, neurons drug effects, phosphorylation.

Mulvey, M.; R. C. Vrijenhoek. Genetic variation among laboratory strains of the planorbid snail Biomphalaria glabrata. *Biochem Genet.* New York : Plenum Press. Dec 1981 v. 19 (11-12) p. 1169-1182. ISSN: 0006-2928.

NAL CALL NUMBER: QR73.B5

ABSTRACT: Biomphalaria glabrata (intermediate host of Schistosoma mansoni), genetic variation among laboratory strains.

DESCRIPTORS: Biomphalaria glabrata, freshwater snail, Schistosoma mansoni, intermediate host, polymorphism, genetics, genetic variation, laboratory strains.

Paris, C. G.; V. F. Castellucci; E. R. Kandel; J. H. Schwartz. *Protein phosphorylation* Protein phosphorylation, presynaptic facilitation, and behavioral sensitization in Aplysia Marine mollusc. Edited by Ora M. Rosen, Edwin G. Krebs. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory, 1981. p. 1361-1375. ill. ISBN: 0879691409.

NAL CALL NUMBER: QP606.P76P76

DESCRIPTORS: Aplysia, sea slug, protein phosphorylation, animal model, molecular pathway, learning, sensitization, gill-withdrawl reflex, biochemistry, neurons, serotonin receptor, adenylate cyclase, cyclic AMP regulatory subunit, presynaptic facilitation, behavioral sensitization, nervous system.

Uki, N.; Kikuchi, S.; Grant, J.F. (1981) Juvenile growth of the abalone, Haliotis discus hannai, fed certain benthic micro algae related to temperature. Bulletin of Tohoku Regional Fisheries Research Laboratory (no.43) p. 59-64, ISSN 0049-402X.

NAL CALL NUMBER: SH301.S852

DESCRIPTORS: abalones, Haliotis, young animals, benthic environment, feeds, algae, periphyton, growth, environmental temperature, animals, aquatic animals, aquatic communities, aquatic environment, aquatic organisms, biocoenosis, biological development, environment, environmental conditions, foods, gastropods, invertebrates, isscaap group b 52, isscaap groups of species, physiological functions, physiology, plants, seafoods, shellfish, temperature.

Uki, N. (1981) **Feeding behavior of experimental populations of the abalone, Haliotis discus hannai.** *Bulletin of Tohoku Regional Fisheries Research Laboratory* (no.43) p. 53-58, ISSN: 0049-402X.

NAL CALL NUMBER: SH301.S852

DESCRIPTORS: abalones, haliotis, feeding habits, phaeophyceae, biological rhythms, environmental temperature, algae, animals, aquatic animals, aquatic organisms, behaviour, environment, environmental conditions, foods, gastropods, invertebrates, isscaap group b 52, isscaap group b 91, isscaap groups of species, plants, seafoods, shellfish, temperature, time, timing, aquatic ecology, Gastropods, snail like Molluscs.

1980

Saitoh, Y.; H. Itagaki. A new breeding system of Oncomelania hupensis nosophora in the laboratory. *Jap J Parasitol*. Tokyo : Japanese Society of Parasitology. Oct 1980, v. 29 (5) p. 341-350 (p. 17-26). ISSN: 0021-5171.

ABSTRACT: new system for maintenance and mass breeding of Oncomelania hupensisnosophora (vector of Schistosoma japonicum) in the laboratory.

NAL CALL NUMBER: 436.8-J27

DESCRIPTORS: Oncomelania hupensisnosophora, freshwater snail, maintenance, breeding, Schistosoma japonicum, rearing, feeding, long-term culture, space requirements, aquaterrarium, aquarium, reproduction, artificial and natural lighting, moisture control.

1978

Nakanishi, T. (1978) Studies on the effects of the environment on the heart rate of shellfishes, 2: Effects of temperature, low salinity and hypoxia on the heart rate of an abalone Haliotis (Nordotis) discus hannai Ino. Bulletin of the Hokkaido Regional Fisheries Research Laboratory. (no.43) p. 59-68, ISSN: 0513-2541. Note: In Japanese. NAL CALL NUMBER: 414.9 H683 DESCRIPTORS: aquatic ecology.

1975

Stephenson, J.W.; Dibley, G.C. (1975) Electric fence for retaining slugs in outdoor enclosures. Lab Pract 24(12): 815, ISSN: 0023-6853. NAL CALL NUMBER: Q183.L3 DESCRIPTORS: Mollusca, electricity, environment design, laboratories.

Miscellaneous

2001

Galloway, T.S.; Depledge, M.H. (2001) **Immunotoxicity in invertebrates: measurement and ecotoxicological relevance.** *Ecotoxicology* 10(1):5-23, ISSN: 0963-9292. NAL CALL NUMBER: RA565.A1E27

ABSTRACT: Concern is growing regarding the impact of chemicals suspected of altering the function of the immune system in humans and wildlife. There are numerous examples of links between pollution and increased susceptibility to disease in wildlife species, including immunosuppression in harbour seals feeding on fish from contaminated sites, altered immune function in riverine fish and decreased host resistance in birds exposed to pollutants. Laboratory tests have identified potential immunological hazards posed by a range of anthropogenic chemicals in mammals and higher vertebrates. However, few reports have considered the ecological relevance of pollution-induced immunosuppression in invertebrate phyla, which constitute around 95% of all animal species and occupy key structural and functional roles in ecosystems. In this paper effects of chemicals on immune function in invertebrates are briefly reviewed and biomarkers of immunotoxicity are identified. Examples of new approaches for the measurement of immunological inflammatory reactions and stress in molluscan haemocytes are

detailed. The relevance of defining the immune system as a target organ of toxicity in invertebrates is discussed and an integrated approach for the use of immunological biomarkers in environment management is proposed, combining measures of immune function and organismal viability at the biochemical, cellular and population level.

DESCRIPTORS: ecology, environmental pollutants toxicity, immunotoxins toxicity, Mollusca immunology, biological markers, environmental pollutants immunology, hemocytes immunology, hydrocarbons, halogenated immunology, hydrocarbons, halogenated toxicity, immunotoxins immunology, metals, heavy immunology, metals, heavy toxicity, organotin compounds immunology, organotin compounds toxicity, oxidants immunology, oxidants toxicity, pesticides immunology, pesticides toxicity, polycyclic hydrocarbons immunology, polycyclic hydrocarbons toxicity, biological markers, environmental pollutants, hydrocarbons halogenated, immunotoxins, metals heavy, organotin compounds, oxidants, pesticides, polycyclic hydrocarbons.

Snyder, M.J.; Girvetz, E.; Mulder, E.P. (2001) **Induction of marine mollusc stress proteins by chemical or physical stress.** *Arch Environ Contam Toxicol* 41(1): 22-9, ISSN: 0090-4341. NAL CALL NUMBER: TD172 A7

ABSTRACT: The cellular stress responses of most organisms in part involve the induction of a class of proteins called heat shock or stress proteins (HSPs) as a result of damage to existing proteins. Cellular proteins can be damaged by chemical exposures known to induce various HSPs. In these experiments, we examine the HSP responses of mussel (Mytilus galloprovincialis) and abalone (Haliotis rufescens) tissues to both thermal and chemical exposures. HSP70 isoforms, HSP60, and HSP90 all show varying induction capabilities. The results demonstrate that the extent of stress exposure as both a time- and dose-dependent phenomena can be ascertained by examining changes in mollusc HSP protein levels. We also examined the relationship between HSP induction and levels of a mussel cytochrome P450 (CYP4Y1) mRNA in dose-response experiments with the products of biologically degraded weathered crude oil. The increases in HSP70 isoforms and HSP90 were correlated with decreases in CYP4Y1 expression levels in a dose-dependent manner. HSP responses may therefore be a valuable part of a suite of biomarkers in biomonitoring for hydrocarbon exposures in nearshore environments.

DESCRIPTORS: heat shock proteins biosynthesis, hydrocarbons adverse effects, Mollusca physiology, mussels physiology, water pollutants, chemical adverse effects, biological markers analysis, cytochrome P 450 metabolism, dose response relationship, drug, analysis, metabolism, biosynthesis, adverse effects, physiology, biological markers, heat shock proteins, hydrocarbons; messenger RNA, water pollutants chemical, cytochrome P450 CYP41, cytochrome P-450, environmental health, toxicology.

2000

Gomez, M.P.; Nasi, E. (2000) Light transduction in invertebrate hyperpolarizing photoreceptors: possible involvement of a Go-regulated guanylate cyclase. *J Neurosci* 20(14): 5254-63, ISSN: 0270-6474.

ABSTRACT: The hyperpolarizing receptor potential of scallop ciliary photoreceptors is attributable to light-induced opening of K(+)-selective channels. Having previously demonstrated the activation of this K(+) current by cGMP, we examined upstream events in the transduction cascade. GTP-gamma-S produced persistent excitation after a flash, accompanied by decreased sensitivity and acceleration of the photocurrent, whereas GDP-beta-S only inhibited responsiveness, consistent with the involvement of a G-protein. Because G(o) (but not

G(t) nor G(q)) recently has been detected in the ciliary retinal layer of a related species, we tested the effects of activators of G(o); mastoparan peptides induced an outward current suppressible by blockers of the light-sensitive conductance such as 1-cis-diltiazem. In addition, intracellular dialysis with the A-protomer of pertussis toxin (PTX) depressed the photocurrent. The mechanisms that couple G-protein stimulation to changes in cGMP were investigated. Intracellular IBMX enhanced the photoresponse with little effect on the baseline current, a result that argues against regulation by light of phosphodiesterase activity. LY83583, an inhibitor of guanylate cyclase (GC), exerted a reversible, dose-dependent suppression of the photocurrent. By contrast, ODQ, an antagonist of NO-sensitive GC, and YC-1, an activator of NO-sensitive GC, failed to alter the light response or the holding current; furthermore, the NO synthase inhibitor N-methyl- 1-arginine was inert, indicating that the NO signaling pathway is not implicated. Taken together, these results suggest a novel type of phototransduction cascade in which stimulation of a PTX-sensitive G(o) may activate a membrane GC to induce an increase in cGMP and the consequent opening of light-dependent channels.

DESCRIPTORS: GTP binding proteins metabolism, guanosine diphosphate analogs and derivatives, guanylate cyclase metabolism, photoreceptors, invertebrate metabolism, photoreceptors, invertebrate radiation effects, signal transduction drug effects, calcium channel blockers pharmacology, dose response relationship, drug, enzyme inhibitors pharmacology, guanosine-5'-O-3-thiotriphosphate pharmacology, guanosine diphosphate pharmacology, guanylate cyclase antagonists and inhibitors, Mollusca, nitric oxide synthase antagonists and inhibitors, patch clamp techniques, pertussis toxins pharmacology, retina cytology, signal transduction, radiation effects, thionucleotides pharmacology, wasp venoms pharmacology, metabolism, analogs and derivatives, antagonists and inhibitors, cytology, radiation effects, drug effects.

1997

Gonzalez-Lanza, C.; Manga-Gonzalez, M.Y.; Campo, R.; Del-Pozo, M.P. (1997) Larval development of Dicrocoelium dendriticum in Cernuella (Xeromagna) cespitum arigonis under controlled laboratory conditions. *J Helminthol* 71(4): 311-7, ISSN: 0022-149X. NAL CALL NUMBER: 436.8 J82

ABSTRACT: The larval development of Dicrocoelium dendriticum (Digenea: Dicrocoeliidae) in experimentally infected Cernuella (Xeromagna) cespitum arigonis (Schmidt, 1853), a species of mollusc important in the epidemiology of dicrocoeliosis in Spain, has been studied. A total of 948 specimens of this mollusc, distributed in five batches, were tested with individual doses of 50 to 150 parasite eggs, obtained from sheep, after 4 days without food. After infection these molluscs and control specimens were kept in an environmental simulation chamber at 20 degrees C, 50% relative humidity and 7 h of light per day. To detect the parasite, a minimum of six molluscs were examined every 20 days from day 1 post-infection (p.i.). The eggs of D. dendriticum were eliminated in the molluscan faeces 48 h post infection. The percentages of molluscs harbouring the parasite ranged between 17.53% and 75%. Daughter sporocysts with undifferentiated germinal masses and occupying very reduced areas of the hepatopancreas were observed 50 days p.i. and in the period immediately following. After 110 days p.i. sporocysts with cercariae at different stages of development were found although slimeball emission was never observed.

DESCRIPTORS: Dicrocoeliasis parasitology, Dicrocoelium physiology, Mollusca parasitology, feces parasitology, larva, time factors.

1995

Anderson, I.G. (1995) *Queensland Department of Primary Industries Information Series*, *QI95011. The preparation and submission of cultured aquatic animals for veterinary laboratory examination.* Queensland Department of Primary Industries Information Series; The preparation and submission of cultured aquatic animals for veterinary laboratory examination. ii+34p. ISBN: 0727-6273.

DESCRIPTORS: ecology, environmental sciences, nutrition, pathology, physiology, systematics and taxonomy, veterinary medicine, medical sciences, wildlife management, conservation, Algae unspecified, Plantae, Arthropoda unspecified, Crustacea unspecified, Arthropoda, Mollusca unspecified, Osteichthyes, Pisces, Vertebrata, Chordata.

Kinne, S.E.; Kinne, R.K.H. (1995) **The contribution of marine biology to biomedical research: Past, present, future.** *Helgolaender Meeresuntersuchungen* 49 (1-4) 45-56, ISSN: 0174-3597.

NAL CALL NUMBER: QH91.A1H4

DESCRIPTORS: animal care, marine ecology, environmental sciences, nervous system, neural coordination, physiology, reproductive system, Cephalopoda, Chondrichthyes, Pisces, Vertebrata, Chordata, Hominidae, Primates, Mammalia, Vertebrata, Chordata, Animalia, dogfish (Chondrichthyes), human (Hominidae), squid, animals, chordates, fish, humans, Mammals, Mollusks, nonhuman vertebrates, Primates, Vertebrates.

1993

Pritchard, J.B. (1993) Aquatic toxicology: past, present, and prospects. *Environ Health Perspect* 100: 249-57, ISSN: 0091-6765.

NAL CALL NUMBER: RA565.A1E54

ABSTRACT: Aquatic organisms have played important roles as early warning and monitoring systems for pollutant burdens in our environment. However, they have significant potential to do even more, just as they have in basic biology where preparations like the squid axon have been essential tools in establishing physiological and biochemical mechanisms. This review provides a brief summary of the history of aquatic toxicology, focusing on the nature of aquatic contaminants, the levels of contamination in our waters, and the origins of these agents. It considers the features of the aquatic environment that determine the availability of xenobiotics to aquatic life and the fate of foreign chemicals within the organism. Finally, toxic effects are considered with primary emphasis on the potential of aquatic models to facilitate identification of the underlying mechanisms of toxicity.

DESCRIPTORS: forecasting, toxicology trends, water pollutants, chemical adverse effects, carcinogens environmental adverse effects, water pollutants chemical metabolism.

1992

Frye, F.L. (1992) *Captive invertebrates : a guide to their biology and husbandry / Fredric L. Frye.* Malabar, Fla. : Krieger Pub. Co., 135 p. : ill. (some col.) ; 29 cm. NAL CALL NUMBER: SF407 I58F79 1991 DESCRIPTORS: Invertebrates as laboratory animals, Invertebrates as pets, captive wild animals. Graham, M.; Wong, K. (1992) Captive care of and research on Arctic fish and invertebrates. *International Zoo Yearbook* 31 (0) 111-115, ISSN: 0074-9664. NAL CALL NUMBER: QL76.I5

DESCRIPTORS: conservation, ecology, environmental sciences, general life studies, wildlife management, conservation, Echinodermata unspecified, Pisces unspecified.

1981

Hinegardner, R.T.; Atz, J.W.; Fay, R.C.; Fingerman, M.; Josephson, R.K.; Meinkoth, N.A.; Miller, J.W.; Rice, M.E.; Muckenhirn, N.A.; Pye, V.I. (1981) *Laboratory Animal Management Marine Invertebrates (Marine invertebrates as laboratory animals)* Institute of Laboratory Animal Resources, Assembly of Life Sciences, National Research Council (U.S.) Committee on Marine Invertebrates, National Academy Press, Washington, D.C., 382 pgs., ISBN: 0-309-03134-6.

NAL CALL NUMBER: SF407.M37M37

DESCRIPTORS: aquarium, transport, anesthesia, collection, housing, husbandry, rearing, bioassays, tissue culture, Molluscs.

Ray, S.; McLeese, D.W.; Peterson, M.R. (1981) Accumulation of copper, zinc, cadmium and lead from two contaminated sediments by three marine invertebrates--a laboratory study. *Bull Environ Contam Toxicol* 26(3): 315-22, ISSN: 0007-4861.

NAL CALL NUMBER: RA1270.P35A1

DESCRIPTORS: invertebrates metabolism, metals metabolism, cadmium metabolism, copper metabolism, lead metabolism, Mollusca metabolism, particle size, Polychaeta metabolism, shrimp metabolism, water pollutants, chemical metabolism, zinc metabolism.

1979

Ernst, W. (1979) **Factors affecting the evaluation of chemicals in laboratory experiments using marine organisms.** *Ecotoxicol Environ Saf* 3(1): 90-8, ISSN: 0147-6513. NAL CALL NUMBER: QH545.A1E29

DESCRIPTORS: environmental pollutants toxicity, mussels drug effects, Polychaeta drug effects, half life, kinetics, lipids metabolism, methods, species specificity, temperature.

1976

Wright, C. A. Land and freshwater molluscs . In UFAW (Univ Fed Anim Welfare) Handb Care Manage Lab Anim, 1976, p. 610-615. Ref. NAL CALL NUMBER: QL55.U5 1976 DESCRIPTORS: Laboratory animals.

Aquaculture-Related Resources

Bivalves

2001

Avault, J.W. Jr. Seed production: prerequisite for farming a "new" species. Aquac Mag. [Little Rock, Ark., Briggs Associates, inc.]. July/Aug 2001. v. 27 (4) p. 55-59. ISSN: 0199-1388. NAL CALL NUMBER: SH1.C65

DESCRIPTORS: fishes, fry, larvae, embryos, biological development, embryonic development, spawning, shellfish culture, fish culture.

Hamada, T.; N. Yamashita; T. Watanabe; S. Natsume. **Drilling position of the ear affects growth and mortality of scallop (Patinopecten yessoensis, Jay) in ear-hanging culture.** *Aquaculture.* Amsterdam : Elsevier Pub. Co., c1972. Feb 15, 2001. v. 193 (3/4) p. 249-256. ISSN: 0044-8486.

NAL CALL NUMBER: SH1 .A6

ABSTRACT: We evaluated the effect of where the hole is drilled in the shell when using the ear-hanging or Nimai-ake method in scallop aquaculture. We examined its influence on growth and mortality during 8-month growth trials on the scallop Patinopecten yessoensis at Shikabe, Japan. Our observations showed: (1) no differences in growth and mortality between drilling the hole in the posterior compared to the anterior ear; (2) that drilling at positions next to the ligament causes increased mortality; (3) that the lowest increase in shell height and total weight is obtained when the hole is drilled next to the ligament on the anterior ear; and (4) that growth is greatest when the hole is drilled near the corners of the ears (either on the anterior or posterior ears).

DESCRIPTORS: scallops, mortality, Mollusc culture, growth, techniques, spatial variation, shells, liveweight gain, height, growth rate, survival.

Lee, C. S.; S. Ellis; K. L. Awaya. Giant clam farming in the U.S. affiliated pacific islands. *World Aquac.* Baton Rouge, La. : World Aquaculture Society, Sept 2001. v. 32 (3) p. 21-22, 25-27, 62-63. ISSN: 1041-5602.

NAL CALL NUMBER: SH1.W62

DESCRIPTORS: Bivalvia, Mollusc culture, cages, rearing techniques, evaluation, trends, biology, larvae, spawning, sexual reproduction, fecundity, metamorphosis, intensive production, extensive production, stocking density, survival, food marketing, food products, American oceania.

Maguire, J. A.; G. M. Burnell. The effect of stocking density in suspended culture on growth and carbohydrate content of the adductor muscle in two populations of the scallop (Pecten maximus L.) in Bantry Bay, Ireland. *Aquaculture*. Amsterdam : Elsevier Pub. Co., c1972. June 15, 2001. v. 198 (1/2) p. 95-108. ISSN: 0044-8486.

NAL CALL NUMBER: SH1 .A6

ABSTRACT: The effect of stocking density of the scallop (Pecten maximus L.) in suspended culture using pearl and lantern nets on growth and carbohydrate content of the adductor muscle was assessed in two populations from Mulroy Bay and Bantry in Bantry Bay for 1 year. The results showed that in all treatments, the growth rate increased significantly from June to September. In general, the carbohydrate content in the striated muscle decreased from maximum

levels in September to a minimum in March. The carbohydrate content of the smooth muscle was lower than the striated and gradually increased throughout the experiment. The scallops from Bantry Bay had a significantly higher growth and carbohydrate content than the spat from Mulroy Bay. Spat cultured in lantern nets had a significantly higher growth rate than those cultured in pearl nets. In addition, spat cultured at low densities had a higher growth rate and carbohydrate content during the summer than those cultured at high densities. DESCRIPTORS: Pecten maximus, stocking density, growth, Mollusc culture, carbohydrates, chemical composition, populations, nets, seasonal variation, Irish Republic.

Mazzola, A.; G. Sara. The effect of fish farming organic waste on food availability for bivalve molluscs (Gaeta Gulf, Central Tyrrhenian, MED): stable carbon isotopic analysis. *Aquaculture*. Amsterdam : Elsevier Pub. Co., c1972. Jan 15, 2001. v. 192 (2/4) p. 361-379. ISSN: 0044-8486.

NAL CALL NUMBER: SH1 .A6

ABSTRACT: Stable carbon isotope (delta13C) analysis was used in a fish-farming impacted Mediterranean area (the Gulf of Gaeta, Central Tyrrhenian) to determine the predominant carbon sources available to bivalve molluscs cultivated around fish cages. Whether the organic matter generated by fish farming was taken up by the bivalve molluscs was also investigated. Stable carbon isotope values were measured in the particulate organic carbon (POC) of samples from potential organic matter sources such as fish-pelleted feed, mollusc faecal waste and bivalve flesh. The sources of organic matter affecting the study area water column and benthic communities appeared to be terrigenous-continental, autochthonous (phytoplankton) and anthropogenic inputs due mainly to fish-farming and bivalve mollusc activities. The POC was dominated by organic waste isotopic signatures, while the bivalve mixed diet was composed of organic matter with different isotopic signatures (phytoplankton, waste material from the bivalves themselves and surplus uneaten pelletted feed). Organic waste appears to be the dominant trophic resource in the deeper-cultivated clam diet, while phytoplankton organic carbon plays a more important role in the diet of the mussel. We propose that bivalve organic matter uptake may play an effective role in reducing the environmental impact of fish organic waste. The organic matter produced by bivalves (faecal material) under these hydrodynamic conditions (low current velocities) can be recycled through the filtration activities of the bivalves themselves, together with most of the organic matter produced by fish-farming activities (uneaten feed and faecal material). Bivalve cultivation around cages may reduce the environmental impact of organic waste from fish-farming activities and increase the profitability of fish culture activities.

DESCRIPTORS: fish farming, organic wastes, nutrient availability, Bivalvia, foods, organic matter, cages, Mollusc culture, waste treatment, carbon, turbidity, feeds, feces, benthos, phytoplankton, environmental impact, filtration, water flow, latium, Mediterranean sea.

Power, A. J.; R. L. Walker. Growth and survival of the blood ark Anadara ovalis (Bruguiere, 1789) cultured in mesh bags on soft-bottom sediments in the coastal waters of Georgia. *J World Aquac Soc.* Baton Rouge, La. : World Aquaculture Society, c1987. 2001. v. 32 (3) p. 269-277. ISSN: 0893-8849.

NAL CALL NUMBER: SH138.W62

DESCRIPTORS: Arcidae, Mollusc culture, growth, survival, rearing techniques, evaluation, stocking density, fouling, size, growth rate, Georgia.

Selegean, J.P.; Kusserow, R.; Patel, R.; Heidtke, T.M.; Ram, J.L. (2001) Using zebra mussels to monitor Escherichia coli in environmental waters. *J Environ Qual* 30(1):171-9, ISSN: 0047-2425.

NAL CALL NUMBER: QH540 J6

ABSTRACT: Use of the zebra mussel (Dreissena polymorpha) as an indicator of previously elevated bacteria concentrations in a watershed was examined. The ability of the zebra mussel to accumulate and purge Escherichia coli over several days was investigated in both laboratory and field experiments. In laboratory experiments, periodic enumeration of E. coli in mussels that had been exposed to a dilute solution of raw sewage demonstrated that (i) maximum concentrations of E. coli are reached within a few hours of exposure to sewage, (ii) the tissue concentration attained is higher than the concentration in the ambient water, and (iii) the E. coli concentrations take several days to return to preexposure concentrations when mussels are subsequently placed in sterile water. In field experiments conducted in southeast Michigan in the Clinton River watershed, brief increases in E. coli concentrations in the water were accompanied by increases in mussel concentrations of E. coli that lasted 2 or 3 d. The ability of mussels to retain and to concentrate E. coli made it possible to detect E. coli in the environment under conditions that conventional monitoring may often miss. Sampling caged mussels in a river and its tributaries may enable watershed managers to reduce the sampling frequency normally required to identify critical E. coli sources, thereby providing a more cost-effective river monitoring strategy for bacterial contamination.

DESCRIPTORS: environmental monitoring methods, Escherichia coli, mussels microbiology, water pollutants analysis, specimen handling, tissue distribution, water microbiology, methods, microbiology, analysis.

2000

Arnold, W. S.; M. W. White; H. A. Norris; M. E. Berrigan. Hard clam (Mercenaria spp.) aquaculture in Florida, USA: geographic information system applications to lease site selection. Aquac Eng. Amsterdam, The Netherlands : Elsevier Science. Sept. 2000. v. 23 (1/3) p. 203-231. ISSN: 0144-8609.

NAL CALL NUMBER: SH1.A66

DESCRIPTORS: Mercenaria, Mollusc culture, geographical information systems, site selection, computer techniques, decision making, marketing, information, lagoons, estuaries, development, geographical variation, surveys, management, Florida.

Beaumont, A. Genetic considerations in transfers and introductions of scallops. *Aquac Int.* Dordrecht, The Netherlands : Kluwer Academic Publishers. 2000. v. 8 (6) p. 493-512. ISSN: 0967-6120.

NAL CALL NUMBER: SH1.A627

DESCRIPTORS: scallops, Argopecten irradians, Mollusc culture, introduced species, geographical variation, geographical distribution, gene flow, genetic variation, morphology, alloenzymes, DNA, populations, mitochondrial DNA, risk assessment, literature reviews.

Bourne, N. F. The potential for scallop culture--the next millenium. *Aquac Int.* Dordrecht, The Netherlands : Kluwer Academic Publishers. 2000. v. 8 (2/3) p. 113-122. ISSN: 0967-6120. NAL CALL NUMBER: SH1.A627

DESCRIPTORS: scallops, Mollusc culture, yields, government policy, food industry, economic development, literature reviews, China, Japan, Chile, British Columbia.

Cano, J.; M. J. Campos; G. Roman. **Growth and mortality of the king scallop grown in suspended culture in Malaga, Southern Spain.** *Aquac Int.* Dordrecht, The Netherlands : Kluwer Academic Publishers. 2000. v. 8 (2/3) p. 207-225. ISSN: 0967-6120.

NAL CALL NUMBER: SH1.A627

DESCRIPTORS: Pecten maximus, growth, mortality, Mollusc culture, rearing techniques, cages, size, developmental stages, seasonal variation, balanus, Spain.

Christophersen, G. Effects of air emersion on survival and growth of hatchery reared great scallop spat. *Aquac Int*. Dordrecht, The Netherlands : Kluwer Academic Publishers. 2000. v. 8 (2/3) p. 159-168. ISSN: 0967-6120.

NAL CALL NUMBER: SH1.A627

DESCRIPTORS: Pecten maximus, scallops, rearing techniques, survival, growth, developmental stages, air exposure, seasonal variation, duration, height, dry matter, growth rate, Mollusc culture, hatcheries.

Cigarria, J.; J. M. Fernandez. Management of Manila clam beds. I. Influence of seed size, type of substratum and protection on initial mortality. *Aquaculture*. Amsterdam : Elsevier Pub. Co., c1972. Feb 1, 2000. v. 182 (1/2) p. 173-182. ISSN: 0044-8486. NAL CALL NUMBER: SH1 .A6

DESCRIPTORS: clams, management, Mollusc culture, sediment, mortality, predation, larvae, size, nets, survival, length.

Fisher, G. R.; R. V. Dimock Jr.; R. E. Kuhn. **The symbiotic water mite Unionicola formosa** (Acari: Unionicolidae) ingests mucus and tissue of its molluscan host. *J Parasitol*. Lawrence, Kan. : American Society of Parasitologists, 1914. Dec 2000. v. 86 (6) p. 1254-1258. ISSN: 0022-3395.

NAL CALL NUMBER: 448.8 J824

DESCRIPTORS: Unionicola, water mites, feeding behavior, Bivalvia, freshwater Molluscs, mussels, mucus, gills, hemolymph, ingestion, host parasite relationships, symbionts.

Frechette, M.; M. Gaudet; S. Vigneau. Estimating optimal population density for intermediate culture of scallops in spat collector bags. *Aquaculture*. Amsterdam : Elsevier Pub. Co., c1972. Mar 1, 2000. v. 183 (1/2) p. 105-124. ISSN: 0044-8486. NAL CALL NUMBER: SH1 .A6

DESCRIPTORS: scallops, Pectinidae, stocking density, Mollusc culture, larvae, growth, nets, depth, biomass, yields, feeds, availability, biological competition, water temperature, Quebec.

Goldberg, R.; J. Pereira; P. Clark. Strategies for enhancement of natural bay scallop, Argopecten irradians irradians, populations; a case study in the Niantic River estuary, Connecticut, USA. Aquac Int. Dordrecht, The Netherlands : Kluwer Academic Publishers. 2000. v. 8 (2/3) p. 139-158. ISSN: 0967-6120.

NAL CALL NUMBER: SH1.A627

DESCRIPTORS: Argopecten irradians, populations, scallops, Mollusc culture, fisheries, habitats, estuaries, spawning, spawning season, techniques, density, predation, survival, predators, gametogenesis, Connecticut.

Grecian, L. A.; G. J. Parsons; P. Dabinett; C. Couturier. Influence of season, initial size, depth, gear type and stocking density on the growth rates and recovery of sea scallop, Placopecten magellanicus, on a farm-based nursery. *Aquac Int.* Dordrecht, The Netherlands : Kluwer Academic Publishers. 2000. v. 8 (2/3) p. 183-206. ISSN: 0967-6120. NAL CALL NUMBER: SH1.A627

DESCRIPTORS: scallops, seasonal variation, size, stocking density, growth rate, depth, equipment, monitoring, growth, mortality, fouling, Mollusc culture, Newfoundland.

Heasman, M.; J. Diemar; W. O'Connor; T. Sushames; L. Foulkes. **Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs--a summary.** *Aquac Res.* Oxford : Blackwell Science, c1995. Aug/Sept 2000. v. 31 (8/9) p. 637-659. ISSN: 1355-557X.

NAL CALL NUMBER: SH1.F8

ABSTRACT: On the basis of initial harvesting efficiency trials and screening trials to evaluate apparent cell damage and viability, high-speed centrifugation was selected as the most appropriate microalgae harvesting method for developing extended shelf-life concentrates that would collectively meet the requirements of marine hatcheries and nurseries. Bioassay evaluation of stored microalgae concentrates revealed major discrepancies between closely related species of microalgae with regard to the impact of harvesting method on both short-term nutritional quality and shelf-life of stored concentrates. At one extreme, very good retention of nutritional quality was exhibited by high-speed-centrifuged concentrates of Tetraselmis spp. and Chaetoceros calcitrans beyond 8 weeks storage. In contrast, the naked flagellates Pavlova lutheri and Tahitian Isochrysis and the diatom Chaetoceros muelleri exhibited rapid and profound losses in nutritional quality as a consequence of supercentrifugation. Likewise, the impact of storage conditions and the effects of preservatives and other common food additives on the quality and extended shelf-life of stored concentrates was found to be unpredictable and highly species specific. Accordingly, optimum combinations of harvesting and storage, including optimum cell densities, presence or absence of food additives, temperature and, in some cases, gaseous atmosphere and light, had to be specifically tailored to individual species of microalgae in order to maximize the effective shelf-life of their concentrates. Data are presented demonstrating that the best binary concentrate diets developed during the course of this study could sustain growth and survival of larval and juvenile bivalves at rates similar to fresh microalgae culture even after storage periods of 6-8 weeks.

DESCRIPTORS: Bivalvia, feeds, storage life, efficiency, harvesting, mechanical damage, concentrates, species differences, nutritive value, water temperature, density, additives.

Lodeiros, C. J. M.; J. H. Himmelman. Identification of factors affecting growth and survival of the tropical scallop Euvola (Pecten) ziczac in the Golfo de Cariaco, Venezuela. *Aquaculture*. Amsterdam : Elsevier Pub. Co., c1972. Feb 1, 2000. v. 182 (1/2) p. 91-114. ISSN: 0044-8486.

NAL CALL NUMBER: SH1 .A6

DESCRIPTORS: Pecten, growth, survival, Mollusc culture, sexual development, depth, biological development, nets, fouling, colonization, developmental stages, gonads, phytoplankton, water temperature, stress, chlorophyll, prediction, seasonal variation, temporal variation, Venezuela.

Lopez, D. A.; V. A. Riquelme; M. L. Gonzalez. The effects of epibionts and predators on the growth and mortality rates of Argopecten purpuratus cultures in southern Chile. *Aquac Int.* Dordrecht, The Netherlands : Kluwer Academic Publishers. 2000. v. 8 (5) p. 431-442. ISSN: 0967-6120.

NAL CALL NUMBER: SH1.A627

DESCRIPTORS: Argopecten, Mollusc culture, mortality, growth, predation, algae, Hydrozoa, size, predators, Decapoda, nets, water temperature, parasites, marine animals, Chile.

Maeda Martinez, A. N.; P. Ormart; L. Mendez; B. Acosta; M. T. Sicard. Scallop growout using a new bottom-culture system. *Aquaculture*. Amsterdam : Elsevier Pub. Co., c1972. Sept 25, 2000. v. 189 (1/2) p. 73-84. ISSN: 0044-8486. NAL CALL NUMBER: SH1 .A6

ABSTRACT: A new bottom-culture system was tested at a commercial level to grow catarina scallops (Argopecten ventricosus) in the Rancho Bueno tidal channel in Bahia Magdalena, Mexico. The system consisted of a 50 X 1-m sleeve of 19-mm mesh polyethylene netting placed on the sea floor of selected growout areas. A total of 448 sleeves were deployed at various times from October 1994 to April 1995 in four zones from the mouth to the head of the tidal channel. Each sleeve contained 10,000 scallops (initially 32 mm shell height) at a density of 200 scallops/m2. Fifty-four percent of the spat were produced in a hatchery and the rest were collected using onion-bag collectors. Hatchery and wild spat were deployed separately. Water parameters were measured monthly in each zone: temperature, salinity, dissolved oxygen and total suspended solids. There were better water conditions towards the mouth of the channel. The scallops were harvested from 27 July to 18 August 1995: a total of 2.87 million scallops from the original 4.48 million. Their mean shell height was 56.2 mm and the mean weight of their adductor muscles was 6.8 g. The production was 19.3 t of adductor muscles. Statistically significant differences in mean shell height and mean adductor weight were found between scallops grown in different zones, but no statistically significant differences were found comparing yields from hatchery vs. wild scallops. To find the best culture conditions, a scallop relative value (SRV) was calculated by multiplying survival by adductor muscle weight and relative market price, and dividing by the growout duration. There were higher SRVs for scallops cultured in zones closer to the channel mouth. The highest SRV was found in a group from this zone, with 86% survival, 6.25 g mean adductor weight, and a growout duration of only 3.6 months. A new successful method for growing scallops in shallow areas is, thus presented here. It gave better results than suspension methods tested in the same area. DESCRIPTORS: Mollusc culture, evaluation, polyethylene, netting, stocking density, water quality, water temperature, salinity, dissolved oxygen, turbidity, height, benthos, weight, Mexico.

Mortensen, S.; T. Van der Meeren; A. Fosshagen; I. Hernar; L. Harkestad; L. Torkildsen; O. Bergh. Mortality of scallop spat in cultivation, infested with tube dwelling bristle worms, **Polydora sp.** Aquac Int. Dordrecht, The Netherlands : Kluwer Academic Publishers. 2000. v. 8 (2/3) p. 267-271. ISSN: 0967-6120.

NAL CALL NUMBER: SH1.A627

DESCRIPTORS: Pecten maximus, Polychaeta, infestation, mortality, Mollusc culture, outbreaks, seasonal variation, fouling, sediment, sexual reproduction, feeds, economic analysis, Norway.

O' Sullivan, G.; Mulcahy, M.F. (2000) **Reproductive biology of pacific oysters: Some** enigmas. *Journal of Shellfish Research* 19 (1): 640, ISSN: 0730-8000. NAL CALL NUMBER: SH365.A1J6

DESCRIPTORS: aquaculture, pollution assessment control and management, toxicology, Pelecypoda, Crassostrea gigas, pacific oyster, aquaculture species, female, hermaphrodite, male, spat, shell, integumentary system, tributyltin, pollutant, toxin, chlorophyll A, Dungarvan Bay (Ireland, Europe, Palearctic region).

Pfeiffer, T. J.; K. A. Rusch. An integrated system for microalgal and nursery seed clam culture. *Aquac Eng.* Amsterdam, The Netherlands : Elsevier Science. Dec 2000. v. 24 (1) p. 15-31. ISSN: 0144-8609.

NAL CALL NUMBER: SH1.A66

DESCRIPTORS: Mollusc culture, clams, phytoplankton, algae culture, Bacillariophyta, foods, volume, water reuse, water flow, velocity, design, wastes, evaluation, stocking density.

Riquelme, C.; R. Araya; R. Escribano. Selective incorporation of bacteria by Argopecten purpuratus larvae: implications for the use of probiotics in culturing systems of the Chilean scallop. *Aquaculture*. Amsterdam : Elsevier Pub. Co., c1972. Jan 1, 2000. v. 181 (1/2) p. 25-36. ISSN: 0044-8486.

NAL CALL NUMBER: SH1 .A6

ABSTRACT: Experiments on ingestion rates, colonization and impact of inhibitory producer substances bacteria (IPB) on larvae of Argopecten purpuratus, were carried out to evaluate potential use of bacteria as probiotics in cultures of this Chilean scallop. Three selected strains, named as 11, C33 and 77, obtained from larval cultures of A. purpuratus were tested at different concentrations and incubation times. After 6 h of incubation at a concentration of 10(6) cells ml-1, A. purpuratus larvae ingested cells of strains 11 and 77, but not those of C33. When comparing bacterial incorporation among these strains, the 77 became the dominant bacteria of the larval microflora, causing no differences in larval survival at different bacterial concentrations. Our results suggest that strain 77 appears as a potential probiotic for scallop larvae and hence, as a promising method to control and prevent infections in hatcheries systems. DESCRIPTORS: Argopecten, larvae, probiotics, bacteria, Mollusc culture, ingestion, colonization, inhibition, strains, strain differences, inoculation, microbial flora, survival, disease control.

Robledo, J. A. F.; C. A. Coss; G. R. Vasta. Characterization of the ribosomal rna locus of Perkinsus atlanticus and development of a polymerase chain reaction-based diagnostic assay. *J Parasitol*. Lawrence, Kan. : American Society of Parasitologists, 1914. Oct 2000. v. 86 (5) p. 972-978. ISSN: 0022-3395

NAL CALL NUMBER: 448.8 J824

DESCRIPTORS: Bivalvia, Venerupis, Perkinsus, protozoal infections, ribosomal RNA, cloning, nucleotide sequences, polymerase chain reaction, assays, diagnostic techniques, Mollusc culture, Spain, Atlantic ocean.

Sakurai, I.; M. Seto. Movement and orientation of the Japanese scallop Patinopecten yessoensis (Jay) in response to water flow. *Aquaculture*. Amsterdam : Elsevier Pub. Co., c1972. Jan 15, 2000. v. 181 (3/4) p. 269-279. ISSN: 0044-8486.

NAL CALL NUMBER: SH1 .A6

DESCRIPTORS: Bivalvia, water flow, orientation, movement, animal behavior, Mollusc culture.

Stotz, W. When aquaculture restores and replaces an overfished stock: is the conservation of the Species assured? The case of the scallop Argopecten purpuratus in Northern Chile. *Aquac Int.* Dordrecht, The Netherlands : Kluwer Academic Publishers. 2000. v. 8 (2/3) p. 237-247. ISSN: 0967-6120.

NAL CALL NUMBER: SH1.A627

DESCRIPTORS: Argopecten, endangered species, nature conservation, Mollusc culture, wild animals,

domestication, biodiversity, genetic diversity, artificial selection, Chile.

1999

Barbeau, M. A.; H. Caswell. A matrix model for short-term dynamics of seeded populations of sea scallops. *Ecol Appl.* Washington, D.C. : Ecological Society of America. Feb 1999. v. 9 (1) p. 266-287. ISSN: 1051-0761.

NAL CALL NUMBER: QH540.E23

DESCRIPTORS: Pectinidae, Mollusc culture, population dynamics, mathematical models.

Ford, S.; Powell, E.; Klinck, J.; Hofmann, E. (1999) **Modeling the MSX parasite in eastern** oyster (Crassostrea virginica) populations. I. Model development, implementation, and verification. *Journal of Shellfish Research* 18 (2): 475-500, ISSN: 0730-8000. NAL CALL NUMBER: SH365.A1J6

DESCRIPTORS: models and simulations, computational biology, parasitology, Pelecypoda, Sporozoa, Protozoa, Crassostrea virginica, eastern oyster, fisheries species, parasite host, Haplosporidium nelsoni, Sporozoa, parasite, pathogen, microorganisms, Protozoans, hemocyte, blood and lymphatics, immune system, MSX disease, parasitic disease, host parasite environment interactions, mathematical model, proliferation, salinity, survival, temperature, transmission rate.

Gonzalez, M. L.; D. A. Lopez; M. C. Perez; V. A. Riquelme; J. M. Uribe; M. Le Pennec. **Growth and the scallop, Argopecten purpuratus (Lamarck, 1819), in southern Chile.** *Aquaculture*. Amsterdam, Elsevier. May 15, 1999. v. 175 (3/4) p. 307-316. ISSN: 0044-8486. NAL CALL NUMBER: SH1.A6

ABSTRACT: The northern scallop, Argopecten purpuratus, has a high economic value. Its natural geographical distribution occurs only in the north of Chile. However, this species has been introduced to the south of Chile for mass culture. This area has advantages for suspended cultures, such as the existence of many sheltered, wave-protected bays and lower levels of fouling and boring species. Low temperatures in this area, however, may hinder growth rates. The growth of A. purpuratus was studied in cultures carried out in southern Chile. The cultures were undertaken in two locations: Metri Bay (41 degrees 36'S, 72 degrees 43'W) and Quihua Channel (41 degrees 50'S, 73 degrees 05'W). Seasonal variations, density effects and culture location were evaluated. In addition, in Chidhuapi Channel (41 degrees 48'S, 73 degrees 7'W), growth was evaluated in two different culture systems: lantern nets and pockets. Growth varied according to area, season and culture system. The growth was higher and density-dependent in Metri Bay and lower and density-independent in Quihua Channel. The growth rate was higher in spring than in winter in both areas. Individual growth in the pocket system was higher than that of the lantern system at densities of 25 individuals/tray. Results show that the northern scallop introduced to the south of Chile, reaches a commercial size in slightly longer periods than those in natural distribution areas. However, the successful culture in the south of Chile depends on the season, culture area and the culture system. Factors such as temperature, water flow and maximum food levels may also influence cultures. The existence of sheltered bays protected from waves low levels of fouling and boring species and suitable growth levels indicate that the introduction of scallops to the south of Chile, make mass culture of this species feasible. DESCRIPTORS: Argopecten, growth, Mollusc culture, geographical distribution, water temperature, seasonal variation, geographical variation, stocking density, nets, water flow, feeds, growth rate, Chile.

Grice, A. M.; J. D. Bell. Application of ammonium to enhance the growth of giant clams (Tridacna maxima) in the land-based nursery: effects of size class, stocking density and nutrient concentration. *Aquaculture*. Amsterdam, Elsevier. Jan 1, 1999. v. 170 (1) p. 17-28. ISSN: 0044-8486.

NAL CALL NUMBER: SH1.A6

ABSTRACT: This study investigated the effects of ammonium (NH4+) enrichment and stocking density on the growth of juvenile Tridacna maxima throughout the land-based nursery stage. In four sequential experiments, clams of 5, 11, 16 and 18 mm shell length (SL) were maintained at

low and high stocking densities in 60-1 tanks with unfiltered seawater (81h-1) for 25 days. Throughout this period, clams received daily spikes of dissolved ammonium sulfate at concentrations of < 1 (control), 20, 35 and 50 micromolar NH4+ for the three smallest size classes of clams, and < 1, 35, 50 and 80 micromolar NH4+ for the largest size class. Our experiments simulated the conditions used to mass-produce clams of this species during the nursery phase. All individuals used in the four experiments were from the same cohort. The growth responses of T. maxima to ammonium enrichment were dependent on the size of the clams. For clams of 5 mm SL, both increase in mean wet weight and SL were significantly lower at 35 and 50 micromolar NH4+ competed to control and 20 micromolar NH4+ spikes. In contrast, increases in mean wet weight and SL of giant clams of 11, 16 and 18 mm SL were all significantly greater when ammonium was added, with the greatest increases in mean weight and SL occurring at the highest ammonium levels for the two largest size classes. The abundance of zooxanthellae per clam increased in response to addition of ammonium for clams of 11, 16 and 18 mm SL, but not for individuals of 5 mm SL. Stocking density had a variable effect on changes in mean weight, shell length and abundance of zoaxanthellae. Values of all variables were significantly greater at low stocking densities for clams of 11 mm SL, but only marginally significant for most variables for clams of 16 and 18 mm SL. This study shows that addition of ammonium does not enhance growth of T. maxima during the early stages of rearing clams in the land-based nursery, but that relatively high levels of ammonium should be applied in the latter part of the nursery phase. This highlights the importance of identifying changes in nutrient requirements as juvenile giant clams grow.

DESCRIPTORS: clams, Bivalvia, ammonium sulfate, growth, size, stocking density, nutrient availability, concentration, enrichment, length, application rates, liveweight, Mollusc culture.

Hart, A. M.; J. D. Bell; T. P. Foyle. Improving culture techniques for village-based farming of giant clams (Tridacnidae). *Aquac Res.* Oxford : Blackwell Science, c1995. Mar 1999. v. 30 (3) p. 175-190. ISSN: 1355-557X.

NAL CALL NUMBER: SH1.F8

ABSTRACT: Eight experiments aimed at improving methods for the village-based farming of giant clams were conducted in the Solomon Islands. The experiments focused on either improving the fitness of seed clams delivered to village farmers, assessing whether differential growth rates of seed clams in nursery tanks persisted during grow-out at farms, or testing the effects of alterations to the design of grow-out cages on the growth and survival of clams. We found that Tridacna squamosa (Lamarck) 'seed' transferred from land-based nursery tanks to a floating ocean nursery (FON) for approximately equal to 3 months at the end of the nursery phase were significantly larger than seed reared only in land-based nursery tanks. Similarly, T. maxima (Roding) placed in a FON for 2 to 5 months generally grew at a significantly greater rate than tank-reared 'seed'. However, the use of FONs did not improve survival. There were no consistent differences in the growth and survival of fast- and slow-growing seed of T. derasa (Roding) at village sites when slow-growing seed were retained in the nursery until reaching a larger size. The survival of T. maxima was enhanced significantly by placing an insert of smaller mesh (a 'settlement ring') in grow-out cages for the first 2 months after delivery of seed to farmers. The settlement ring retained clams in cages until they found a suitable place to attach their byssal threads. Attempts to remove the sediment which impedes the attachment of T. maxima to the base of grow-out cages by perforating the substrate did not improve survival: the perforated substrate resulted in poor attachment of clams and harbored predators (Cymatium spp.). The survival of T. crocea (Lamarck) was not improved by 'softening' the concrete base of grow-out cages to simulate dead coral rock and to encourage the clams to burrow in the substrate. The survival of T. crocea in grow-out cages was enhanced significantly by enclosing the cages in fine mesh after the delivery of the seed clams to prevent predation and disturbance

by juvenile wrasse, Thalassoma spp. The experiments indicate that the critical stage for village farming of giant clams is during the initial weeks following distribution of seed. Further research is needed to improve the survival of T. crocea and T. maxima during this phase. DESCRIPTORS: clams, Mollusc culture, techniques, growth rate, growth, survival, equipment, sea water, tanks, marine areas, sediment, substrates, predation, Cardiidae, Solomon Islands.

Karaan, A.S.M. (1999) Bridging the small-big divide: A transaction cost approach to enterprise modelling for mussel mariculture in Saldanha Bay [South Africa]. Agrekon 38(4) p. 680-692, ISSN: 0303-1853.

NAL CALL NUMBER: 281.8 AG835

DESCRIPTORS: South Africa, small farms, commercial farming, mussels, aquaculture, costs, marketing, models, Africa, southern Sahara, enterprises, farming systems, farms, shellfish.

Mazzola, A.; E. Favaloro; G. Sara. Experiences of integrated mariculture in a southern Tyrrhenian area (Mediterranean Sea). Aquac Res. Oxford : Blackwell Science, c1995. Oct 1999. v. 30 (10) p. 773-780. ISSN: 1355-557X.

NAL CALL NUMBER: SH1.F8

ABSTRACT: To ascertain the potential for exploiting marine areas for mariculture, data on the cultivation of molluscs and fish in the open sea of the southern Tyrrhenian were collected from May 1994 to June 1995. The aims of this integrated study were to test simple breeding methods for molluscs and fish, to apply these to the practices employed by local fishermen and to experiment with the use of a cage system requiring a low level of investment. Crassostrea gigas (Thunberg) and Mytilus gallo-provincialis (Lamarck) were cultivated on submerged long lines around cages used for cultivating Seriola dumerili (Risso) and Diplodus puntazzo (Cetti). S. dumerili specimens were placed in two cages and fed with either fish scraps or pellets, while in a third cage, D. puntazzo were fed with pellets only. After a period of 12 months, the following results were obtained: the oysters measured 47.50 +/- 12.30 mm and weighed 0.13 +/- 0.09 g; the mussels placed in culture as juveniles reached a length of approximately equal to 40 mm, while the mussels placed in culture as subadults reached the commercial size of about 60 mm. The mean length and weight measurements of the two fish species were as follows: Diplodus 228 +/- 14.4 mm and 228 +/- 40.48 g; Seriola (lot A) 438.1 +/- 25.28 mm and 1149 +/- 172.2 g; Seriola (lot B) 347 +/- 25.6 mm and 576 +/- 139 g.

DESCRIPTORS: fish culture, Mollusc culture, breeding methods, sexual reproduction, cages, fish feeding, pelleted feeds, liveweight, length, integrated systems, sicily, Mediterranean Sea.

Muroga, K.; Inui, Y.; Matsusato, T. (1999) **Workshop "Emerging diseases of cultured marine molluscs in Japan".** *Gyobyo-Kenkyu-=-Fish-Pathology* 34: 4, 219-231; 6 ref., ISSN: 0388-788X. Note: In Japanese.

NAL CALL NUMBER: SH171.G86

DESCRIPTORS: mortality, diagnosis, risk factors, environmental temperature, aetiology, pathology, oysters, Japan, amyotrophia, Bivalvia, aquatic animals, aquatic organisms, East Asia, Asia, developed countries, OECD countries, prion viral bacterial and fungal pathogens of animals, diagnosis of animal diseases, aquaculture animals.

O'Connor, S. J.; M. P. Heasman; W. A. O'Connor. **Evaluation of alternative suspended culture methods for the commercial scallop, Pecten fumatus Reeve.** *Aquaculture.* Amsterdam, Elsevier. Feb 15, 1999. v. 171 (3/4) p. 237-250. ISSN: 0044-8486. NAL CALL NUMBER: SH1.A6

ABSTRACT: Commercial scallops, Pecten fumatus, glued to plastic mesh disks showed growth and survival equal to or greater than similar sized scallops in conventional earhung and cage

culture. In two experiments of 13 and 25 weeks duration, some aspects of disk culture, such as spacing between disks, scallop orientation and the choice of valve by which the scallops were glued, were examined to determine their effects on shell growth, somatic tissue weight increase, predation and survival. As disk spacing was increased through 40, 60, 80 to 100 mm, predation increased at disk spacing greater than 60 mm and total soft tissue mass peaked at 60 mm and above. There were no significant differences in soft body weight or shell height between scallops glued by either valve in either normal (flat left valve uppermost) or inverted (cupped right valve uppermost) orientation. However, scallops glued by the left valve had higher percentage survival and larger muscle weights regardless of orientation. By contrast, those glued by the right valve had heavier gonads. Orientation and the scallop culture technique employed significantly affected spionid polychaete infestation of the shell. Scallops glued by the left valve, with left or right valve uppermost, and glued by the right valve with this valve uppermost had significantly lower polychaete prevalence than scallops contained in cages, earhung or glued by the right valve with left valve uppermost.

DESCRIPTORS: Pecten, Mollusc culture, evaluation, techniques, growth, survival, orientation, stocking density, liveweight gain, predation, adhesion, infestation, height, gonads.

Pfeiffer, T. J.; T. B. Lawson; K. A. Rusch. Northern quahog, Mercenaria mercenaria, seed clam waste characterization study: precursor to a recirculating culture system design. *Aquac Eng.* Amsterdam, The Netherlands : Elsevier Science. Aug 1999. v. 20 (3) p. 149-161. ISSN: 0144-8609.

NAL CALL NUMBER: SH1.A66

ABSTRACT: The high demand and price of the northern quahog, Mercenaria mercenaria, enable this species to be an excellent commercial aquaculture candidate for coastal Georgia. The most economical method to grow clams is in the natural environment at controlled densities. Commercial nurseries grow small seed from the hatchery (1-2 mm) to a size suitable for planting in the field (8-10 mm). The pivotal role of the nursery phase to the success of bivalve mariculture has prompted research into improving nursery culture systems. Utilizing recirculation technology can contribute to the development and success of land-based nursery systems that offer higher survival and faster growth than field-based systems. This paper presents baseline excretion data that can be useful in the design of a recirculating system for culturing bivalve Mercenaria seed clams in a land-based system. The total ammonia nitrogen excretion rate based on a 24-h isolation period ranged from 20.0 to 89.4 microgram NH(4)-N g clam(-1) day(-1) for Mercenaria seed clams with a shell length ranging from 3.0 to 12.6 mm. The low ammonia production rate combined with the high ammonia tolerance limits of bivalves minimizes the need for a biofilter unit. The BOD(5) loading rate was highly variable and ranged from 0.05 to 0.32 mg l(-1)-O(2) g clam(-1) day(-1). For the seed clams that were less than 8 mm in shell length, the effluent total suspended solids concentration was three times greater than the larger size clams (10-12 mm shell length). Results indicated the importance of a solids removal mechanism to decrease the BOD(5) loading rate and reduce potential psuedofaeces production. DESCRIPTORS: Mercenaria mercenaria, Mollusc culture, water reuse, animal wastes, population density, rearing techniques, survival, growth, excretion, ammonium nitrogen, ammonia, biological filtration, biochemical oxygen demand, turbidity, size, filtration, water purification, Georgia.

Racuyal, J.T.; Albina, M.B.; Masbad, M.; Severo, R.T.; Mabonga, D.A.; Doncillo, L.D.; Delima, E.A.; Maiso, B.P. (1999) *Establishment of red tide monitoring center in Region 8 [Eastern Visayas, Philippines]*. Philipine Council for Aquatic and Marine Research and Development - Department of Science and Technology, Los Banos, Laguna (Philippines). Research and development highlights of the NARRDS (National Aquatic Resources Research and

Development System) 1993-1997. Los Banos, Laguna (Philippines). 1999. 416 p. Received Feb 2000, ISBN 971-8624-33-3.

ABSTRACT: The recurrence of red tide and paralytic shellfish poisoning (PSP) is a major concern among the government institutions in the country. Inrecent years, however, Maqueda Bay and Villareal Bay face the problem of the periodic occurrence of the harmful algal bloom where the mariculture of green mussels (Perna viridis) are located. Cognizant of the need of information by the government to draw-up contingencies and minimize the effects of the harmful algal bloom on fisheries and public health, a red tide monitoring center was established in Region 8. The red tide monitoring center has mainly focused its activities on upgrading of existing laboratory facilities, environmental monitoring of hydrographic parameters and cell density of Pyrodinium bahamense var. compressum and other marine microalgae. The results of the monitoring cruises indicated that there was an isolated presence of toxic dinoflagellates in April (5,000 cells/l) and Nov (24 cells/l). The presence of the species was considered insignificant. Among the dinoflagellates identified, it was observed that Noctiluca sp. was the most abundant. However, 32 diatom species were also identified and comprised 85 percent, the largest concentrations of the total plankton samples. It was observed that Thalassiosira sp. (2,032,400 cells.)) was the most dominant. Rhizosolenia sp. (1,792,000 cells/l) was recorded next in rank, followed by Thalassionema sp. and Chaeloceros sp. with a total concentration of 633,634 cells/l. The distribution and abundance of diatoms showed that the Thalassiosira sp. was found abundant in station 1 in Nov. The Rhizosolenia sp. dominated the samples in station 2 in Dec while the Chaetoceros sp. was found abundant in April. Hydrographic parameters were also monitored and results (temperature: 26.6 deg C - 31.5 deg C and salinity: 24.5-34 ppt) showed within the ranged of the observed values for Pyrodicium bloom, (i.e. 24.4-31.9 deg C and 24.7-36.8 ppt) in Papua New Guinea.

DESCRIPTORS: Perna, plankton blooms, geographical distribution, foodborne diseases, shellfish, Philippines, Papua New Guinea, Asia, biogeography, Bivalvia, Oceania, Southeast Asia, aquatic ecology.

Ramirez, J. L.; S. Avila; A. M. Ibarra. **Optimization of forage in two food-filtering organisms with the use of a continuous, low-food concentration, agricultural drip system.** *Aquac Eng.* Amsterdam, The Netherlands : Elsevier Science. Aug 1999. v. 20 (3) p. 175-189. ISSN: 0144-8609.

NAL CALL NUMBER: SH1.A66

ABSTRACT: An alternative feeding system for food-filtering organisms in hatcheries is presented. The system consists of a modified agricultural irrigation drip system. The use of this system allows for a continuous water flow and a permanent supply of food in multiple rearing tanks. The system was evaluated using two experimental subjects; white shrimp larvae (Penaeus vannamei) and catarina scallop (Argopecten ventricosus) broodstock. Shrimp larvae under this system grew larger and had a higher survival than those grown under a no-flow, batch-feeding system. Also, this rearing system resulted in a reduction of differences between shrimp larvae derived from spawns of different quality, evidenced by a reduction in the between-family variance component when using it versus a batch, no-flow system. For scallop broodstock, the use of this system optimized forage, inasmuch as it provided a constant supply of food that resulted in a steady removal rate of microalgae by the scallops. That result contrasted with the batch, no-flow system for conditioning scallop broodstock, for which the large amounts of food required during maturation conditioning, added in intervals, resulted in pseudofeces produced and in a large variation in food

availability and therefore also of the microalgae removal rate.

DESCRIPTORS: Argopecten, Penaeus vannamei, forage, feeding, trickle irrigation, equipment, water flow, rearing techniques, tanks, larvae, developmental stages, survival, growth, feces, nutrient availability, phytoplankton, feeds, shrimp culture, Mollusc culture.

Roman, G.; M. J. Campos; C. P. Acosta; J. Cano. **Growth of the queen scallop (Aequipecten opercularis) in suspended culture: influence of density and depth.** *Aquaculture.* Amsterdam, Elsevier. July 15, 1999. v. 178 (1/2) p. 43-62. ISSN: 0044-8486.

NAL CALL NUMBER: SH1.A6

ABSTRACT: The effects of density and depth on the growth of juveniles of Aequipecten opercularis held in suspended culture for 11 months in the Ria de Arosa (Galicia, NW Spain) were studied. The densities were 25, 50 and 100 spat per tray (200 to 800 spat m(-2)), and depths were 2, 7 and 12 m. Density and depth were found to affect growth. Although maximum growth occurred at 25 scallops tray(-1), the growth recorded at densities of 50 and 100 scallops tray(-1) was only slightly lower. Therefore, on a commercial scale, culture using the higher densities is recommended. There was less growth at 2 m than at 7 and 12 m, due to the surface layers having lower salinities during winter, higher temperatures during summer and lower concentrations of chlorophyll a throughout most of the year. Most growth took place between late autumn and early winter. After 11 months of culture, scallops of initial size 22 mm (shell height) and mean weight of 1.14 g reached a mean size of approximately equal to 58 mm and a mean weight of approximately equal to 26 g with mortality of less than 5%. The performance of A. opercularis in suspended culture makes it possible to consider this species as a good candidate for aquaculture in the Galician rias, NW Spain.

DESCRIPTORS: scallops, growth, Mollusc culture, stocking density, depth, developmental stages, salinity, water temperature, chlorophyll, nutrient availability, algae, seasonal variation, liveweight, size, mortality, biological competition, Pectinidae, Spain.

Zhu, S. M.; B. Saucier; J. Durfey; S. L. Chen; B. Dewey. Waste excretion characteristics of Manila clams (Tapes philippinarum) under different temperature conditions. *Aquac Eng.* Amsterdam, The Netherlands : Elsevier Science. Sept 1999. v. 20 (4) p. 231-244. ISSN: 0144-8609.

NAL CALL NUMBER: SH1.A66

DESCRIPTORS: tapes, animal wastes, excretion, water temperature, water reuse, ammonium nitrogen, nitrogen, biochemical oxygen demand, Mollusc culture, water quality, feces.

1998

Adams, C. M.; P. J. Van Blokland. Economic and financial considerations regarding the small-scale commercial culture of hard clams in Florida. *J Appl Aquac*. Binghamton, NY : Food Products Press, 1991. 1998. v. 8 (1) p. 19-37. ISSN: 1045-4438.

NAL CALL NUMBER: SH135.J69

DESCRIPTORS: Mercenaria mercenaria, Mollusc culture, economic analysis, income, stocking density, prices, survival, Florida.

Buchal, M. A.; C. J. Langdon. Evaluation of lipid spray beads for the delivery of water-soluble materials to a marine suspension-feeder, the Manila clam Tapes philippinarum (Deshaes 1853). Aquac Nutr. Oxford, [England] : Blackwell Science, 1995. Dec 1998. v. 4 (4) p. 263-274. ISSN: 1353-5773. NAL CALL NUMBER: SH156.A658

ABSTRACT: We describe the development and evaluation of a new microparticle for delivering low-molecular weight, water-soluble materials to suspension feeders. Spray beads successfully incorporated materials dissolved in an aqueous phase or as dry particulate, within a triacylglyceride bead composed of tripalmitin, 600 mg g-1 tripalmitin/400 mg g-1 triolein, or 600 mg g-1 tripalmitin/400 mg g-1 fish oil. Riboflavin was successfully incorporated (up to 44 mg g-1 lipid) and retained (up to 98% over 24 h in seawater) as dry particles in all three mixtures of lipid. Aqueous oxytetracycline hydrochloride or polymeric dye were incorporated (45.6 mg g-1 lipid and 18.1 mg g-1 lipid, respectively) and retained best (99% and 94%, respectively) in spray beads composed of tripalmitin. The addition of triolein or fish oil to the lipid bead reduced incorporation and retention efficiencies for aqueous core materials by up to 75%. Manila clam seed readily ingested and digested lipid micro-particles, spray beads and lipid-walled microcapsules. Microparticles composed of tripalmitin were excreted with their payloads intact. Intact microparticles composed of 600 mg g-1 tripalmitin/400 mg g-1 fish oil were largely absent in faecal strands suggesting successful release and delivery of microparticle contents to clams. Spray beads composed of tripalmitin softened with 400 mg g-1 fish oil represent an effective microparticle type for delivering low-molecular weight, water-soluble materials to aquatic suspension feeders.

DESCRIPTORS: tapes, Mollusc culture, feeding, feeds, lipids, evaluation, molecular weight, solubility, fish oils, riboflavin, dyes, feed intake, digestion, feces, encapsulation.

Child, A.R.; Laing, I. (1998) **Comparative low temperature tolerance of small juvenile European, Ostrea edulis L., and Pacific oysters, Crassostrea gigas Thunberg.** *Aquaculture Research* v. 29(2) p. 103-113.

NAL CALL NUMBER: SH1.F8

DESCRIPTORS: feed intake, aquaculture, oysters, Ostrea edulis, Ostrea, Crassostrea gigas, water temperature, temperature, body weight, winter, survival, mortality, behaviour, Bivalvia, feeding habits, seasons, shellfish, temperature.

Dore, W.J.; Henshilwood, K.; Lees, D.N. (1998) **The development of management strategies for control of virological quality in oysters.** *Water Science and Technology* v. 38(12) p. 29-35. NAL CALL NUMBER: TD420.A1P7

DESCRIPTORS: oysters, Bivalvia, viruses, food hygiene, shellfish, hygiene, infectious diseases, shellfish.

Green, J.; Henshilwood, K.; Gallimore, C.I.; Brown, D.W.G.; Lees, D.N. (1998) A nested reverse transcriptase PCR assay for detection of small round-structured viruses in environmentally contaminated molluscan shellfish. *Applied and environmental microbiology* v. 64(3) p. 858-863, ISSN: 0099-2240.

NAL CALL NUMBER: 448.3 AP5

ABSTRACT: We describe the evaluation of a nested reverse transcriptase PCR (RT-PCR) procedure for the detection of small round-structured viruses (SRSVs) in molluscan shellfish and the application of this assay for the detection of SRSVs in commercially produced shellfish and in shellfish implicated in outbreaks of gastroenteritis. The range of virus strains detected and the sensitivity of detection were evaluated by using a representative panel of 21 well-characterized SRSV strains. The nested RT-PCR detected 15 or 21 SRSVs, demonstrating that the assay detects a broad range of SRSVs including strains from both genogroup I and genogroup II. Seeding experiments showed the nested RT-PCR assay to be 10 to 1,000 times more sensitive than the single-round RT-PCR assay for the detection of SRSV in shellfish. SRSV-contaminated samples were identified by nested RT-PCR for shellfish grown in polluted harvesting areas and for shellfish associated with outbreaks of gastroenteritis which were negative by a previously

described single-round RT-PCR. The assay was shown to be effective for investigation of virus elimination during commercial shellfish processing procedures such as depuration and relaying and has potential applications for monitoring at-risk shellfish harvesting areas, for investigation of SRSV contamination in shellfish from producers linked to gastroenteritis outbreaks, and for the direct detection of virus in shellfish implicated in outbreaks.

DESCRIPTORS: Crassostrea gigas, oysters, biological contamination, polymerase chain reaction, microbial contamination.

Hart, A. M.; J. D. Bell; T. P. Foyle. Growth and survival of the giant clams, Tridacna derasa, **T. maxima and T. crocea, at village farms in the Solomon Islands.** *Aquaculture*. Amsterdam, Elsevier. June 15, 1998. v. 165 (3/4) p. 203-220. ISSN: 0044-8486.

NAL CALL NUMBER: SH1.A6

ABSTRACT: A series of large-scale grow-out trials for giant clams (Tridacna derasa, T. maxima, T. crocea) were undertaken at 11 village farms in Solomon Islands. Eight hundred juveniles of each species, measuring 20-30 mm shell length (SL), were distributed equally between four replicate cages at each site. Growth and survival of the clams were then monitored for up to 24 months. Environmental and husbandry variables were measured throughout these experiments. T. derasa had the best growth and survival, attaining a mean SL of 150 mm + -19.8 s.d., and mean weight of 710 g +/- 26 s.d., after 24 months grow-out. Mean survival of T. maxima was 38.9% +/- 16.6 s.d., and survival of T. crocea after 17 months was 39% +/- 22.6 s.d. Factors influencing growth of all species included water temperature, exposure to wave action, water clarity and water flow. Together, these factors explained between 66% and 79% of variation in growth, depending on the species. Regressions of environmental factors against survival were a poorer fit, they explained 15% (T. derasa), 53% (T. maxima), and 52% (T. crocea) of variability among sites. Estimated net revenue for village farmers growing giant clams for the aquarium market was greatest for T. derasa, due to high survival. Although T. crocea is in great demand by the aquarium trade, it was the least suitable species for village farming because it has slow growth and low survival. Unless survival rates at village farms can be enhanced considerably, T. crocea can probably be reared more successfully in a land-based system.

DESCRIPTORS: clams, growth, survival, Mollusc culture, length, animal husbandry, water flow, species, water quality, species differences, economic analysis, income, growth rate, Solomon Islands.

Laing, I.; Earl, N.H. (1998) **The lipid content, spatfall and subsequent growth of early and late settling hatchery-reared Pacific oyster, Crassostrea gigas Thunberg, larvae.** *Aquaculture Research* v. 29(1) p. 19-25.

NAL CALL NUMBER: SH1.F8

DESCRIPTORS: aquaculture, shellfish, Crassostrea gigas, lipids, growth, larvae, animal developmental stages, biological development, Bivalvia.

Laing, I.; A. Psimopoulous. Hatchery cultivation of king scallop (Pecten maximus) spat with cultured and bloomed algal diets. *Aquaculture*. Amsterdam, Elsevier. Nov 1, 1998. v. 169 (1/2) p. 55-68. ISSN: 0044-8486.

NAL CALL NUMBER: SH1.A6

ABSTRACT: Growth rates of small (2-15 mm shell length) hatchery-reared king scallop (Pecten maximus L.) spat were estimated by computer analysis of video images taken of the scallops held in petri dishes containing seawater. This technique reduced the amount of handling and minimised any effect stress due to handling might have had on growth. Experimental diets consisting of algae from both intensive hatchery cultures and from outdoor bloom tanks were fed to the scallop spat. For all diets, growth rate (as increase in shell length) increased linearly with a

logarithmic increase in initial shell length. Scallops thus characteristically showed a growth pattern whereby dry weight-specific growth rate increased rapidly with increasing shell size to a maximum at 4-5 mm shell length (2.6-5.0 mg dry weight). This weight-specific growth rate then showed a gradual decrease with a further increase in shell size. For the algal diets consisting of single species that had been cultured intensively, nutritional value was in the order Pavlova lutheri (Droop) Green > Chaetoceros calcitrans (Paulsen) Takano > Rhinomonas reticulata var. reticulata Novarino > T-ISO (Isochrysis sp.) > Tetraselmis suecica (Kylin) Butcher. A mixture of the first two of these species gave significantly faster growth rates than any other combination of species tested. Growth rates of scallop spat fed bloomed seawater at rations of 0.33-1.0 g (organic weight of algae) g-1 (live weight of spat) week-1 were similar to those fed an intensively cultured algal diet of high nutritional value. There was some evidence that the spat were less efficient at filtering smaller (2-5 micrometers) algae cells.

DESCRIPTORS: Pecten maximus, Mollusc culture, feeds, growth rate, size, image processing, sea water, stress, algae, dry matter, nutritive value, mixtures, filtration.

Lodeiros, C. J.; J. J. Rengel; L. Freites; F. Morales; J. H. Himmelman. Growth and survival of the tropical scallop Lyropecten (Nodipecten) nodosus maintained in suspended culture at three depths. *Aquaculture*. Amsterdam, Elsevier. June 1, 1998. v. 165 (1/2) p. 41-50. ISSN: 0044-8486.

NAL CALL NUMBER: SH1.A6

ABSTRACT: We examined growth and survival of juvenile Lyropecten (Nodipecten) nodosus, measuring 9.4 mm in shell height, which were placed in mid-December 1993 in pearl nets at 8, 21 and 34 m in depth at Turpialito in the Golfo de Cariaco, Venezuela. The mean growth rate in shell height during the first 5 months varied inversely with depth (10.0, 8.5 and 5.0 mm mon-1 at 8, 21 and 34 m in depth, respectively). Somatic tissues also showed a progressively slower growth rate with increasing depth. The decreased growth rate with depth was not associated with the mass of total seston or its organic content but were proportional to the decrease in phytoplankton biomass with depth (chlorophyll a decreased from 4.8 to 0.7 micrograms 1-1 between 8 and 34 m). Temperature also decreased with depth but the differences were likely too slight to account for differences in growth. Mortality varied markedly with depth. There was a sharp increase in mortality in July at 34 m and a total mortality in August at 8 m. In contrast, at 21 m survival was high throughout the study. After 5 months (in May), wet muscle mass of the scallops at 8 m attained the commercial size (5-6 g). A possible culture strategy for L. nodosus is to initially grow the scallops at 8 m in depth, where growth is greatest, and then transfer them to 21 m, where survival is greatest and where growth will continue at a moderate rate to a larger size.

DESCRIPTORS: scallops, growth, survival, mortality, Mollusc culture, shells, depth, growth rate, mass, phytoplankton, biomass, chlorophyll, water temperature, seasonal variation, Pectinidae, Venezuela, Caribbean Sea.

Marques, H. L. de A.; R. T. L. Pereira; B. C. Correa. Seasonal variation in growth and yield of the brown mussel Perna perna (L.) cultured in Ubatuba, Brazil. *Aquaculture*. Amsterdam, Elsevier. Dec 1, 1998. v. 169 (3/4) p. 263-273. ISSN: 0044-8486. NAL CALL NUMBER: SH1.A6

ABSTRACT: Seasonal variation in growth and yield of cultured brown mussels Perna perna was studied in Ubatuba, south-east Brazilian coastline. Young mussels were transplanted (seeded) into four groups of 16 polyethylene net tubes 2 m long, suspended from a wooden raft (18 m2). The first group was set out in April (autumn), the next in July (winter), the next in October (spring) 1984 and the final group in January (summer) 1985. One net tube of each group was sampled monthly and biometric data were collected. Growth was initially faster for the spring

group, but at the end of the culture period length and weight were not statistically different between groups. L(oo) and W(oo) were 73.9. 71.3, 72.7 and 73.8 mm and 26.3, 23.9, 25.7 and 25.7 g for the autumn, winter, spring and summer groups, respectively. Maximum yield was attained 9 months after seeding for groups of autumn, winter and spring (7.2, 5.2 and 6.3 kg X m-1, respectively) and after 10 months for the summer group (6.9 kg X m-1). The conclusion of this study is that, growth and yield were unaffected by the season of seeding at the study site and that it is not commercially worthwhile to farm mussels more than 9 months, due to yield decrease.

DESCRIPTORS: mussels, Mytilidae, seasonal variation, growth, yields, Mollusc culture, growth rate, length, weight, Sao Paulo.

Mitchelmore, C.L.; Chipman, J.K. (1998) **DNA strand breakage in aquatic organisms and the potential value of the comet assay in environmental monitoring.** *Mutat Res* 399(2): 135-47, ISSN: 0027-5107.

NAL CALL NUMBER: QH431.M8

ABSTRACT: This review considers the potential for DNA strand breaks, particularly as measured by the comet assay, to act as a biomarker of genetic toxicity in fish and other aquatic species. The background need for such biomarkers is introduced in relation to carcinogenicity, reproductive effects and other adverse effects of pollution. Sensitive measurements of DNA strand breakage can be achieved, e.g., by alkaline elution, alkaline unwinding or by single cell gel electrophoresis (comet) techniques. The DNA damage can be a reflection, not only of direct strand breakage, but also of alkali-labile sites and of repair enzyme-mediated breakage (i.e., is non-specific). A range of genotoxic chemicals (both with and without the requirement for metabolic activation) give positive effects in various cell types of vertebrate and invertebrate aquatic species, following in vitro and in vivo exposures under laboratory conditions. A limited number of analyses of organisms exposed to polluted waters or sediments in the field have implicated DNA strand breakage as a relatively sensitive, rapid and broad specificity indicator of genotoxic pollutant exposure. The comet assay deserves further exploitation to assess inter-individual and inter-cell variability in response to pollutants and naturally occurring genotoxic stimuli, and to assess the persistence of these effects.

DESCRIPTORS: DNA damage, fishes genetics, cells cultured, chromosome breakage, environmental exposure, liver ultrastructure, mussels genetics, mutagens toxicity, water pollution.

Navarro, J. M.; C. M. Gonzalez. **Physiological responses of the Chilean scallop Argopecten purpuratus to decreasing salinities.** *Aquaculture.* Amsterdam, Elsevier. Sept 1, 1998. v. 167 (3/4) p. 315-327. ISSN: 0044-8486.

NAL CALL NUMBER: SH1.A6

ABSTRACT: Argopecten purpuratus (Chilean scallop) is a filter-feeding bivalve which inhabits sheltered areas of the north and central Chile. Considering that culture of this species has started in the south of Chile, it is of great interest to know the tolerance of this bivalve to conditions of decreasing salinity, which can occur in these locations. For this purpose, different physiological processes related to the acquisition and utilisation of energy (clearance rate, absorption, oxygen uptake and excretion) were measured at different salinities (30, 27, 24, 21 and 18 per thousand) on a wide range of body size after the scallops had been acclimatised to the experimental salinities for a week at 12 degree C. Clearance rate showed higher and similar values at 30 and 27 per thousand, decreasing significantly at the lower salinities. Oxygen uptake increased with decreasing salinity from 30 to 24 per thousand, showing the lowest value at the extreme condition of 18 per thousand. A similar pattern was presented by the excretion rate, which also increased within the range 30-24 per thousand, to show a reduction with decreasing salinities.

The O/N ratio also decreased with reduction in salinity in the 5 and 10 g size classes. A negative relationship was observed between the size of A. purpuratus and the O/N ratio. Scope for growth was highly affected by low salinities, with positive values only between 27 and 30 per thousand. Negative scope for growth was observed at all the other experimental salinities. The data obtained suggest that the selection of sites to cultivate this species must take into consideration the tolerance of this species to the salinity, and positive growth rates can be expected at salinities over 27 per thousand.

DESCRIPTORS: Pectinidae, salinity, saline water, physiology, Mollusc culture, energy intake, oxygen, uptake, excretion, acclimatization, nitrogen, ratios, nitrogen content, growth rate, site factors.

Rajagopal, S.; V. P. Venugopalan; K. V. K. Nair; G. van der Velde; H. A. Jenner; C. den Hartog. **Reproduction, growth rate and culture potential of the green mussel, Perna viridis (L.) in Edaiyur backwaters, east coast of India.** *Aquaculture.* Amsterdam, Elsevier. Mar 15, 1998. v. 162 (3/4) p. 187-202. ISSN: 0044-8486.

NAL CALL NUMBER: SH1.A6

ABSTRACT: The green mussel Perna viridis is an edible mollusc with enormous culture potential. This paper presents data on the reproduction, spat settlement and growth rate of P. viridis in Edaiyur backwaters on the east coast of India. The mussels exhibit two spawning periods and temperature appears to regulate the onset of reproductive events. Spat settlement densities are greater in the adjacent coastal waters as compared to the backwaters. Growth rate data show that the mussels reach an average shell length of 83 mm in 1 year. The results also show that shell and meat weight exhibit different seasonal patterns of growth in Edaiyur backwaters. In rope culture, marketable size (50-60 mm shell length) was achieved in about 6 months with an annual production of 47 kg m(-1) and biomass (wet meat weight) of 22 kg m(-1). The annual production values in Edaiyur backwaters are relatively higher than those reported from other parts of India. The present study suggests that Edaiyur backwaters represent a potential site for successful cultivation of P. viridis considering the availability of sustainable wild stocks of P. viridis and abundance of seed along with favourable environmental conditions. DESCRIPTORS: mussels, sexual reproduction, growth rate, spawning, water temperature, population density, length, seasonal variation, biomass, economic analysis, Mytilidae, mussel culture, India, Indian Ocean.

Sabaliunas, D.; Lazutka, J.; Sabaliuniene, I.; Sodergren, A. (1998) Use of semipermeable membrane devices for studying effects of organic pollutants: comparison of pesticide uptake by semipermeable membrane devices and mussels. *Environmental toxicology and chemistry* 17(9): 1815-1824, ISSN: 0730-7268.

NAL CALL NUMBER: QH545 A1E58

ABSTRACT: Uptake of four pesticides-the organochlorines chlordane and endosulfan and the synthetic pyrethroids fenvalerate and allethrin-by triolein-containing semipermeable membrane devices (SPMDs) and by the lake mussel Anodonta piscinalis was studied in a laboratory continuous-flow system. Uptake of the analytes by the SPMDs and mussels was linear during the exposure period of 20 d. These kinetic data were used to calculate the first-order uptake rate constants. On a SPMD-whole body basis, the uptake rates were 3.5 to 5.5 times higher in the membrane devices than in the organisms. The synthetic pyrethroids were sampled at lower rates than the organochlorines, and this difference may be attributed to the larger molecular dimensions of the pyrethroids rather than analyte molecular weight and lipophilicity, which were similar for all test compounds. Because of the disparate sampling rates, concentration factors of analytes in SPMDs and in mussels was similar, which indicates that SPMDs may serve as good

surrogates for aquatic organisms with respect to the discriminatory uptake of hydrophobic chemicals. Semipermeable membrane device dialysate, mussel extract, as well as two artificial mixtures of the four pesticides were tested with standard toxicity and genotoxicity tests, including Microtox (inhibition of bacterial luminescence), Daphtoxkit, and Rotoxkit (toxicity tests with freshwater invertebrates Daphnia pulex and Brachionus calyciflorus, respectively), and sister chromatid exchange in human lymphocytes in in vitro assay. Results of these tests suggest that integration of the SPMD technique and bioassays may be a valuable approach for the assessment of levels and effects of bioavailable hydrophobic pollutants.

DESCRIPTORS: sampling, chlordane, endosulfan, fenvalerate, allethrin, aquatic animals, bioassays, agricultural chemicals, aquatic organisms, biological analysis, methods, synthetic pyrethrins, pollution, fisheries and aquaculture general aspects.

Shafee, M. S.; A. Berraho; M. Rafik. Culture of carpet-shell clam, Ruditapes decussatus (L.) on the Atlantic coast of Morocco. *J Aquac Trop.* Calcutta : Oxford IBH, 1986. Feb 1998. v. 13 (1) p. 17-36. ISSN: 0970-0846.

NAL CALL NUMBER: SH135.J68

DESCRIPTORS: clams, Mollusc culture, growth, survival, growth rate, seasonal variation, body condition, mortality, geographical variation, veneridae, morocco, eastern central Atlantic.

Smith, B. C.; G. H. Wikfors. An automated rearing chamber system for studies of shellfish feeding. *Aquac Eng.* Amsterdam, The Netherlands : Elsevier Science. Feb 1998. v. 17 (1) p. 69-77. ISSN: 0144-8609.

NAL CALL NUMBER: SH1.A66

ABSTRACT: Producing large volumes of high quality microalgae to feed shellfish and other organisms is a limiting factor in the development of the aquaculture industry. Feeding regimes yielding the highest conversion efficiencies of algal feed to molluscan growth are required to maximize the return on algal-culture investments. In the past we have used 12 specialized, manually-controlled molluscan rearing chambers to study nutritional requirements and growth of oysters, clams, and scallops. A computer-controlled, solenoid-valve system was added to automate seawater flow, volume of microalgal food delivered, and feeding duration independently for each chamber. Labor was reduced from 7 h per week to 3 h, while adding flexibility. Each chamber represents a model for a programmed nursery system. Evidence that superior growth of bivalves can be achieved by feeding regimes made possible by this apparatus are provided by an experiment with juvenile bay scallops (Argopecten irradians). DESCRIPTORS: clams, scallops, oysters, feeding, phytoplankton, Mollusc culture, algae culture, feed conversion, feed conversion efficiency, nutrient requirements, growth, duration, volume, sea water, labor, feed dispensers, automation.

Soudant, P.; J. R. Le Coz; Y. Marty; J. Moal; R. Robert; J. F. Samain. **Incorporation of microalgae sterols by scallop Pecten maximus (l.) larvae.** *Comp Biochem Physiol*, Part A Mol integr physiol. New York : Elsevier Science, c1998. Feb 1998. v. 119A (2) p. 451-457. ISSN: 1095-6433.

NAL CALL NUMBER: QP1.C6

ABSTRACT: Changes in sterol composition of Pecten maximus larvae during the larval development stage with standard algal mixtures and unialgal diets were analysed. The sterol composition of four microalgae currently used in mollusc hatchery were also examined. Under standard algal conditions, the larvae quickly use the steryl ester from larvae reserves during the endotrophic and the mixotrophe phases. The preferential incorporation of Pavlova lutheri and T-Isochrysis sterols, rather than Skeletonema costatum sterols, during the larval development stage would indicate that S. costatum cells were poorly ingested and digested by larvae. Among

the ingested sterols, cholesterol and stigmasterol were preferentially incorporated by the larvae. Conversely, the larvae appeared able to limit the incorporation of methylpavlovol, ethylpavlovol, and 4 alpha-methylporiferasterol. In the unialgal experiment, the best growths were obtained with the diet richest in cholesterol (Chaetoceros calcitrans) and the best compromise of good growth and settlement rate was observed with the diet richest in C24 ethyl sterol. The selective incorporation of the cholesterol was confirmed by the larval rearing with C. calcitrans. The strong sterol dietary imprint in larvae corroborated the absence of an important capacity in P. maximus larvae to convert or biosynthesise sterol.

DESCRIPTORS: Pecten maximus, scallop, microalgae sterols, algal mixtures, unialgal diets, larval rearing/ development, Chaetoceros calcitrans, sterol biosynthesis/ uptake/ conversion, nutrition, lipids, incorporation, metabolism.

Southgate, P. C.; P. S. Lee. Hatchery rearing of the tropical blacklip oyster Saccostrea echinata (Quoy and Gaimard). *Aquaculture*. Amsterdam, Elsevier. Dec 1, 1998. v. 169 (3/4) p. 275-281. ISSN: 0044-8486.

NAL CALL NUMBER: SH1.A6

ABSTRACT: This paper reports on two growth trials in which larvae of the tropical black-lip oyster, Saccostrea echinata (Quoy and Gaimard), were reared to settlement, and on early spat growth to 2 weeks post-settlement. Broodstock oysters were induced to spawn by increasing water temperature to 33 degrees C followed by rapid reduction in salinity and water temperature. Female oysters spawned a mean of 8.0 X 10(6) and 9.4 X 10(6) eggs in the first and second spawning, respectively. The maximum number of eggs spawned per individual was 18 X 10(6). Mean egg diameter was $52.9 \pm - 3.2$ micrometer ($\pm - s.d. n = 30$) and $55.2 \pm - 2.8$ micrometer (n = 50) in the first and second spawning, respectively. Larvae reared at 28-31.2 degrees C and fed an algal diet consisting of Isochrysis sp. (clone T-ISO), Paulova salina and Chaetoceros muelleri reached settlement 20 days after-fertilisation. However, larvae reared at 27-30 degrees C and fed only T-ISO and P. salina developed more slowly and did not reach settlement until 25 days after fertilisation. Survival from D-stage to competent pediveliger stage was low and ranged from 4.2-5.2%. At 2 weeks post-settlement, spat had a mean shell length of 2.3 +/- 0.4 mm and a mean dry weight of 1.7 +/- 0.2 mg. Although S. echinata seed can successfully be reared in the hatchery, poor larval survival may limit the potential of this species to support a hatchery-based aquaculture industry.

DESCRIPTORS: oysters, Ostreidae, larvae, growth rate, developmental stages, spawning, water temperature, salinity, ova, diameter, fecundity, Mollusc culture, algae, length, dry matter, survival.

Spencer, B. E.; M. J. Kaiser; D. B. Edwards. Intertidal clam harvesting: benthic community change and recovery. *Aquac Res.* Oxford : Blackwell Science, c1995. June 1998. v. 29 (6) p. 429-437. ISSN: 1355-557X.

NAL CALL NUMBER: SH1.F8

ABSTRACT: Mechanical harvesting of intertidal bivalve molluscs inevitably leads to the physical disturbance of the substratum and its associated fauna. Hence, it is necessary to consider the consequences of such activities for the requirements of other species (e.g. fish and birds) which utilize these areas. The present study reports a long-term experiment that studied the effects of Manila clam, Tapes philippinarum Adams and Reeve, cultivation on an estuarine benthic habitat and its fauna. The study began with the initial seeding of the clams, and continued through ongrowing, and finally, harvesting 30 months later. Earlier observations revealed that plots covered with netting elevated sedimentation rate, and hence, encouraged the proliferation of certain deposit-feeding worm species which persisted throughout the cultivation cycle until harvesting took place. The immediate effects of harvesting by suction dredging caused a

reduction of infaunal species and their abundance by approximately 80%. Recovery of the sediment structure and the invertebrate infaunal communities, judged by similarity to the control plots on both the harvested and unharvested but originally netted plots, had occurred 12 months after harvesting. Comparisons with other similar studies demonstrate that, in general, suction harvesting causes large short-term changes to the intertidal habitat. The rate at which recolonization occurs and sediment structure is restored varies according to local hydrography, exposure to natural physical disturbance and sediment stability. The management of clam farming procedures and other forms of mechanical harvesting should incorporate a consideration of site selection rotational seeding, cultivation and harvesting to create fallow areas, and seasonal harvesting to ameliorate the recovery of sites.

DESCRIPTORS: tapes, coastal areas, collection, communities, ecosystems, long term experiments, estuaries, Mollusc culture, benthos, habitats, species diversity, colonization, community ecology, sediment.

Utting, S. D.; P. F. Millican. The role of diet in hatchery conditioning of Pecten maximus L.: a review. *Aquaculture*. Amsterdam, Elsevier. June 15, 1998. v. 165 (3/4) p. 167-178. ISSN: 0044-8486.

NAL CALL NUMBER: SH1.A6

ABSTRACT: Techniques to bring adult scallops Pecten maximus L. into spawning condition in a hatchery environment, known as broodstock conditioning, are reviewed. Previously unpublished data from experiments carried out at the Centre for Environment, Fisheries and Aquaculture Science (CEFAS) Conwy Laboratory on food quantity and quality are also included. Factors shown to be important for the production and viability of scallop eggs and embryos (in terms of numbers developing into D-larvae) are identified. In particular, eicosapentaenoic acid (20:5n-3), docosahexaenoic acid (22:6n-3) and arachadonic acid (20:4n-6) are named as essential fatty acids that must be supplied in microalgae diets during broodstock conditioning. Other factors that are considered include the uptake and assimilation of microalgae species as well as the optimisation of seawater temperature and photoperiod. Techniques for the hatchery conditioning of P. maximus are discussed in relation to those for other pectinid species.

DESCRIPTORS: eicosapentaenoic acid, Pecten maximus, Mollusc culture, feeding, feeds, spawning, feed rations, quality, ova, embryos, larvae, biological development, docosahexaenoic acid, algae, water temperature, photoperiod, literature reviews.

Walker, R. L. Comparative gametogenesis of Spisula solidissima solidissima and Spisula solidissima similis cultured in coastal Georgia. *J World Aquac Soc.* Baton Rouge, La. : World Aquaculture Society, c1987. 1998. v. 29 (3) p. 304-312. ISSN: 0893-8849. NAL CALL NUMBER: SH138.W62

DESCRIPTORS: Spisula solidissima, genetic variation, gametogenesis, reproductive physiology, seasonal variation, Mollusc culture, gonads, spawning, sex ratio, developmental stages, Georgia.

1997

Barber, B. J.; C. V. Davis. Growth and mortality of cultured bay scallops in the
Damariscotta River, Maine (USA). Aquac Int. London : Chapman & Hall, 1993. Sept 1997. v.
5 (5) p. 451-460. ISSN: 0967-6120.
NAL CALL NUMBER: SH1.A627

DESCRIPTORS: Argopecten irradians, Mollusc culture, growth, seasonal variation, water temperature, shells, height, nets, survival, mortality, evaluation, life cycle, growth rate, rivers, Maine.

Cliche, G.; S. Vigneau; M. Giguere. Status of a commercial sea scallop enhancement project in Iles-de-la-Madeleine (Quebec, Canada). *Aquac Int.* London : Chapman & Hall, 1993. May 1997. v. 5 (3) p. 259-266. ISSN: 0967-6120.

NAL CALL NUMBER: SH1.A627

DESCRIPTORS: research, Pectinidae, population density, Mollusc culture, fisheries, animal breeding, nets, growth, height, growth rate, Quebec.

Felix Pico, E. F.; A. Tripp Quezada; J. L. Castro Ortiz; G. Serrano Casillas; P. G. Gonzalez Ramirez; M. Villalejo Fuerte; R. Palomares Garcia; F. A. Garcia Dominguez; M. Mazon Suastegui; G. Bojorquez Verastica. **Repopulation and culture of the Pacific Calico scallops in Bahia Concepcion, Baja California Sur, Mexico.** Aquac Int. London : Chapman & Hall, 1993. Nov 1997. v. 5 (6) p. 551-563. ISSN: 0967-6120.

NAL CALL NUMBER: SH1.A627

DESCRIPTORS: Argopecten, Mollusc culture, biomass production, growth, mortality, water temperature, sexual reproduction, collection, weight, seasonal variation, geographical variation, population density, survival, Mexico.

Harvey, J.S.; Lyons, B.P.; Waldock, M.; Parry, J.M. (1997) **The application of the 32P-postlabelling assay to aquatic biomonitoring.** *Mutat Res* 378(1-2): 77-88, ISSN: 0027-5107.

NAL CALL NUMBER: QH431.M8

ABSTRACT: The aquatic environment is known to contain a variety of natural and anthropogenic compounds that are capable of interacting with the genetic material of aquatic organisms. The increases in the levels of these anthropogenic contaminants, associated with widespread industrialisation, has led to the requirement for reliable methodologies to monitor their potential impact upon exposed aquatic organisms. Of the molecular techniques currently available, the 32P-postlabelling assay for the detection of DNA adducts offers considerable potential for the qualitative and quantitative assessment of genotoxin exposure. Here we describe several studies in which the technique was adapted for evaluation in two marine bioindicator species the common mussel Mytilus edulis and the flatfish Limanda limanda. Laboratory studies in which M. edulis specimens were exposed to 2-aminofluorene and 4-nitroquinoline 1-oxide confirmed the species' capacity to form genotoxin-related adducts. However, in further studies, no exposure-related adducts could be detected in M. edulis specimens placed in mesocosms containing environmentally realistic levels of anthropogenic contaminants. Biologically significant levels of adducts were detected in L. limanda specimens exposed to sediment bound contaminants under controlled conditions, although the levels did not appear to be statistically significant. An in situ study in which adduct levels were determined in L. limanda specimens from two sites of contrasting contamination levels proved to be more conclusive. The results were both biologically and statistically significant, suggesting that adduct levels could well be related to the levels of sediment-bound contaminants. Together the studies confirmed that the determination of the levels of DNA adducts could be used as indicators of the exposure of aquatic organisms to environmental genotoxins.

DESCRIPTORS: DNA adducts analysis, environmental monitoring, flatfishes metabolism, mussels chemistry, mutagens analysis, water pollutants, chemical analysis, Aspergillus nuclease S1 metabolism, autoradiography, chromatography thin layer, DNA metabolism, DNA adducts metabolism, England, gills chemistry, liver chemistry, marine biology, mutagens metabolism, mutagens toxicity, pancreas chemistry, phosphorus radioisotopes metabolism, polychlorinated biphenyls analysis, polychlorinated biphenyls metabolism, polychlorinated biphenyls toxicity, polycyclic hydrocarbons, aromatic analysis, polycyclic hydrocarbons, aromatic metabolism, polycyclic hydrocarbons, aromatic toxicity, seawater, water pollutants, chemical metabolism, water pollutants, chemical toxicity.

Hawkins, A.J.S.; Smith, R.F.M.; Bougrier, S.; Bayne, B.L.; Heral, M. (1997) Manipulation of dietary conditions for maximal growth in mussels, Mytilus edulis, from the Marennes-Oleron Bay, France [maximum growth rate]. Aquatic Living Resources v. 10(1) p.

13-22, ISSN 0990-7440.

NAL CALL NUMBER: SH1.A8

DESCRIPTORS: mussels, Mytilus edulis, feeding habits, growth, fish feeding, diet, rations, experimentation, France, animal feeding, aquaculture, behaviour, biological development, Bivalvia, Europe, fish culture, Mediterranean countries, Mytilus, shellfish, Western Europe.

Lu, Y.; N. J. Blake. The culture of the southern bay scallop in Tampa Bay, an urban Florida estuary. *Aquac Int.* London : Chapman & Hall, 1993. Sept 1997. v. 5 (5) p. 439-450. ISSN: 0967-6120.

NAL CALL NUMBER: SH1.A627

DESCRIPTORS: Argopecten irradians, Mollusc culture, sea water, feeding, feeds, algae, spawning, ova, fecundity, larvae, metamorphosis, shells, height, nets, survival, mortality, evaluation, growth, life cycle, estuaries, Florida.

Pozdnyakova, L. A.; A. V. Silina; G. A. Evseev. Age, size distribution and growth of native and cultured Japanese scallops in Possjet Bay, Sea of Japan, Russia. Aquac Int. London : Chapman & Hall, 1993. Jan 1997. v. 5 (1) p. 79-88. ISSN: 0967-6120.

NAL CALL NUMBER: SH1.A627

DESCRIPTORS: Bivalvia, age differences, size, growth, Mollusc culture, population dynamics, geographical distribution, height, geographical variation, shells, liveweight, Pectinidae, Russia, Sea of Japan.

1996

Atmar, R.L.; Neill, F.H.; Woodley, C.M.; Manger, R.; Fout, G.S.; Burkhardt, W.; Leja, L.; McGovern, E.R.; Le-Guyader, F.; Metcalf, T.G.; Estes, M.K. (1996) Collaborative evaluation of a method for the detection of Norwalk virus in shellfish tissues by PCR. *Appl Environ Microbiol* 62(1): 254-8, ISSN: 0099-2240.

NAL CALL NUMBER: 448.3 AP5

ABSTRACT: A multicenter, collaborative trial was performed to evaluate the reliability and reproducibility of a previously described method for the detection of Norwalk virus in shellfish tissues with the PCR (R.L. Atmar, F. H. Neill, J. L. Romalde, F. Le Guyader, C. M. Woodley, T. G. Metcalf, and M. K. Estes, Appl. Environ. Microbiol. 61:3014-3018, 1995). Virus was added to the stomachs and hepatopancreatic tissues of oysters or hard-shell clams in the control laboratory, the samples were shipped to the participating laboratories, and viral nucleic acids were extracted and then detected by reverse transcription-PCR. The sensitivity and specificity of the assay were 85 and 91%, respectively, when results were determined by visual inspection of ethidium bromide-stained agarose gels; the test sensitivity and specificity improved to 87 and 100%, respectively, after confirmation by hybridization with a digoxigenin-labeled,

virus-specific probe. We have demonstrated that this method can be implemented successfully by several laboratories to detect Norwalk virus in shellfish tissues.

DESCRIPTORS: Norwalk virus isolation and purification, polymerase chain reaction methods, shellfish virology, base sequence, clams virology, evaluation studies, molecular sequence data, oysters virology, RNA, viral analysis, reproducibility of results, sensitivity and specificity.

Brooke, S.; Mann, R. (1996) Use of mesocosms for 'in situ' culture of marine invertebrate larvae. Journal of Shellfish Research 15 (2) 491-492, ISSN: 0730-8000. NAL CALL NUMBER: SH365.A1J6

DESCRIPTORS: development, ecology, environmental sciences, general life studies, physiology, wildlife management, conservation, Pelecypoda, Crassostrea virginica.

Gatenby, C.M.; Neves, R.J.; Parker, B.C. (1996) **Influence of sediment and algal food on cultured juvenile freshwater mussels.** *Journal of the North American Benthological Society* 15 (4) 597-609, ISSN: 0887-3593.

NAL CALL NUMBER: QL141.F7

DESCRIPTORS: freshwater ecology, environmental sciences, nutrition, physiology, soil science, wildlife management, conservation, Chlorophyta, Algae, Plantae, Flagellata, Protozoa, Lepidoptera, Insecta, Arthropoda, Pelecypoda.

1995

Araya, N.O.; Ganning, B.; Bucke, R.F. (1995) Embryonic development, larval culture, and settling of American pearl-oyster (Pteria sterna, Gould) spat. *California Fish and Game* 81 (1) 10-21, ISSN: 0008-1078.

NAL CALL NUMBER: 410 C12

DESCRIPTORS: development, estuarine ecology, environmental sciences, physiology, wildlife management, conservation, Pelecypoda, Pteria sterna.

Belda, C.A.; Yellowlees, D. (1995) **Phosphate acquisition in the giant clam-zooxanthellae symbiosis.** *Marine Biology Berlin* 124 (2) 261-266, ISSN: 0025-3162. NAL CALL NUMBER: QH91.A1M35

DESCRIPTORS: biochemistry and molecular biophysics, cell biology, ecology, environmental sciences, marine ecology, nutrition, physiology, Flagellata, Protozoa, Pelecypoda, Pyrrophyta, Algae, Plantae, Flagellata, Symbiodinium sp., Tridacna gigas, algae, microorganisms, nonvascular plants, protozoans.

Dore, W. J.; D. N. Lees. Behavior of Escherichia coli and male-specific bacteriophage in environmentally contaminated bivalve molluscs before and after depuration. *Appl Environ Microbiol.* Washington : American Society for Microbiology. Aug 1995. v. 61 (8) p. 2830-2834. ISSN: 0099-2240.

NAL CALL NUMBER: 448.3 Ap5

ABSTRACT: We monitored the differential reduction rates and elimination patterns of Escherichia coli and male-specific (F+) bacteriophage during UV depuration for 48 h in oysters (Crassostrea gigas) and mussels (Mytilus edulis) contaminated by short-term (1 to 3 weeks) and long-term (more than 6 months) exposure to sewage in the marine environment. The time taken to reduce levels of E. coli by 90% was 6.5 h or less in all cases. In contrast, the amounts of time needed to reduce levels of F+ bacteriophage by 90% were considerably longer: 47.3 and 41.3 h (after short- and long-term exposures, respectively) in mussels and 54.6 and 60.8 h (after short-

and long-term exposures, respectively) in oysters. No differences in the rates of reduction of indicators of viral pollution following exposure of the shellfish to either short- or long-term sewage contamination were observed. Further experiments were conducted with mussels to determine the relative distributions of E. coli and F+ bacteriophage in tissue before and during depuration. Prior to depuration the majority of E. coli organisms (90.1%) and F+ bacteriophage (87.3%) were detected in the digestive tract (i.e., the digestive gland and intestine). E. coli and F+ bacteriophage were reduced in all tissues except the digestive gland to undetectable levels following depuration for 48 h. Within the digestive gland, levels of F+ bacteriophage were reduced to 30% of initial levels, whereas E. coli was reduced to undetectable levels. These results confirm previous laboratory studies showing the differential reductions of levels of E. coli and F+ bacteriophage during depuration. They also demonstrate that these differential elimination patterns are not affected by the duration of sewage contamination and that F+ bacteriophage are retained only in the digestive gland and are not sequestered into other internal tissues.

DESCRIPTORS: Escherichia coli, bacteriophages, microbial contamination, Crassostrea gigas, Mytilus edulis, sewage, decontamination, ultraviolet radiation, indicator species, digestive tract, intestines.

Le Bris, H.; Pouliquen, H.; Debernardi, J.M.; Buchet, V.; Pinault, L. (1995) **Preliminary study** on the kinetics of oxytetracycline in shellfish exposed to an effluent of a land-based fish farm: Experimental approach. *Marine Environmental Research* 40 (2) 171-180, ISSN: 0141-1136.

DESCRIPTORS: biochemistry and molecular biophysics, marine ecology, environmental sciences, physiology, pollution assessment control and management, toxicology, wildlife management, conservation, Pelecypoda.

Numaguchi, K. (1995) Effects of water temperature on catabolic losses of meat and condition index of unfed pearl oyster Pinctada fucata martensii. *Fisheries Science* v. 61(5) p. 735-738, ISSN 0919-9268.

NAL CALL NUMBER: SH1.F8195

DESCRIPTORS: Pinctada fucata, starvation, environmental temperature, body condition, evaluation, catabolism, meat, dry matter content, weight losses, laboratory experimentation, animal products, Bivalvia, environmental factors, experimentation, feeding, losses, metabolism, Pinctada, proximate composition, temperature.

Pipe, R.K.; Coles, J.A. (1995) Environmental contaminants influencing immune function in marine bivalve molluscs. *Fish and Shellfish Immunology* v. 5(8) p. 581-595. NAL CALL NUMBER: QL638.97 F55

DESCRIPTORS: pollutants, water pollution, contamination, immunity, phagocytes, immune response, heavy metals, blood, pollution, Bivalvia, cadmium, copper, phenolic compounds, aromatic compounds, cells, elements, heavy metals, immunity, metallic elements, pollution, transition elements.

Ruiz, A.P.; Rodriguez, S.R.; Martin, J.B. (1995) Culture of coquina clam, Donax trunculus, larvae. Aquaculture 139: 1-2, 151-155; 13 ref., ISSN: 0044-8486. NAL CALL NUMBER: SH1.A6

DESCRIPTORS: aquaculture, larvae, culture, chloramphenicol, growth, survival, sources, environmental temperature, antibiotics, Donax, algae, clams, Isochrysis, Chaetoceros, Tetraselmis, Rhodomonas, Donacidae, Bivalvia, plants, aquaculture animals, microbiology of feed processing, feed additives, animal nutrition production responses, animal toxicology, poisoning and pharmacology.

Shi, A.J.; Chen, S.N. (1995) Polarization microscopic observation on the secretion of the in vitro cultured mantle of Critaria plicata. Acta Zoologica Sinica 41 (1) 35-40, ISSN: 0001-7302. Note: In Chinese.

NAL CALL NUMBER: 410 AC87

DESCRIPTORS: freshwater ecology, environmental sciences, methods and techniques, morphology, physiology, Pelecypoda, Critaria plicata.

Ver, L.M.; Wang, J.K. (1995) **Design criteria of a fluidized bed oyster nursery.** *Aquacultural Engineering* 14 (3) 229-249, ISSN: 0144-8609.

NAL CALL NUMBER: SH1.A66

DESCRIPTORS: development, digestive system, ingestion and assimilation, marine ecology, environmental sciences, nutrition, physiology, wildlife management, conservation, Pelecypoda.

Zaroogian, G.; Anderson, S. (1995) **Comparison of cadmium, nickel and benzo(alpha)pyrene uptake into cultured brown cells of the hard shell clam, Mercenaria mercenaria.** *Comparative Biochemistry and Physiology C Pharmacology Toxicology and Endocrinology* 111(1): 109-116.

NAL CALL NUMBER: QP901.C6

DESCRIPTORS: Bivalvia, cell culture, Mercenaria, cadmium, nickel, benzopyrene, hydrocarbons, pollutants, heavy metals, clams, aromatic compounds, aromatic hydrocarbons, culture techniques, elements, heavy metals, hydrocarbons, in vitro culture, metallic elements, shellfish, transition elements, miscellaneous animal disorders, aquaculture production, animal physiology nutrition.

1994

Dimock, R.V. Jr.; Wright, A.H. (1994) Sensitivity of juvenile freshwater mussels to hypoxic, thermal and acid stress. *Journal of the Elisha Mitchell Scientific Society* 109 (4) 183-192, ISSN: 0013-6220.

NAL CALL NUMBER: 500 EL4

DESCRIPTORS: biochemistry and molecular biophysics, development, freshwater ecology, environmental sciences, pathology, physiology, wildlife management, conservation, Pelecypoda.

Harewood, P.; Rippey, S.; Montesalvo, M. (1994) Effect of gamma irradiation on shelf life and bacterial and viral loads in hard-shelled clams (Mercenaria mercenaria). *Appl Environ Microbiol* 60(7): 2666-70, ISSN: 0099-2240.

NAL CALL NUMBER: 448.3 AP5

ABSTRACT: The feasibility of using 60Co gamma irradiation to inactivate total coliforms, fecal coliforms, Escherichia coli, Clostridium perfringens, and F-coliphage in hard-shelled clams, Mercenaria mercenaria, was investigated. The results of three trials indicated average D10 values of 1.32 kGy for total coliforms, 1.39 kGy for fecal coliforms, 1.54 kGy for E. coli, 2.71 kGy for C. perfringens, and 13.50 kGy for F-coliphage. Irradiation doses of > 0.5 kGy were significantly lethal to the shellfish.

DESCRIPTORS: bacteria isolation and purification, bacteria radiation effects, clams microbiology, clams radiation effects, coliphages isolation and purification, coliphages radiation effects, food irradiation, Clostridium perfringens isolation and purification, Clostridium perfringens radiation effects, dose response relationship radiation, Enterobacteriaceae isolation and purification, Enterobacteriaceae radiation effects, Escherichia coli isolation and purification, Escherichia coli radiation effects, feces microbiology, food microbiology, gamma rays.

Lees, D.N.; Henshilwood, K.; Dore, W.J. (1994) **Development of a method for detection of enteroviruses in shellfish by PCR with poliovirus as a model.** *Appl Environ Microbiol* 60(8): 2999-3005, ISSN: 0099-2240.

NAL CALL NUMBER: 448.3 AP5

ABSTRACT: The application of the PCR to complex samples is hindered by amplification inhibitors. We describe a reverse transcription-PCR-based method capable of inhibitor removal for the detection of enteroviruses in shellfish. Initial virus extraction stages based on a modified polyethylene glycol precipitation technique (G.D. Lewis and T.G. Metcalf, Appl. Environ. Microbiol. 54:1983-1988, 1988) were followed by virus purification with

1,1,2-trichloro,2,2,1-trifluoroethane and concentration by ultrafiltration. A guanidine isothiocyanate-glass powder extraction system was utilized for sample lysis, RNase protection, and nucleic acid purification. Removal of PCR inhibitors and method sensitivity were quantified in shellfish (oysters and mussels) seeded with poliovirus. PCR sample tolerance exceeded 4 g for depurated shellfish; however, polluted field samples were more inhibitory. Virus recoveries of 31% for oyster extracts and 17% for mussel extracts and nucleic acid extraction reverse transcription-PCR detection limits down to 1 PFU yielded an overall sensitivity limit of < 10 PFU of poliovirus in up to 5 g of shellfish. PCR-positive results were obtained from a variety of polluted field samples naturally contaminated with human enteroviruses. The methods developed for virus recovery and PCR inhibitor removal should be equally applicable to detection of other RNA viruses such as hepatitis A virus, Norwalk virus, and other small round-structured viruses in shellfish.

DESCRIPTORS: Enterovirus isolation and purification, Polioviruses isolation and purification, polymerase chain reaction methods, shellfish microbiology, base sequence, Enterovirus genetics, food microbiology, molecular sequence data, Polioviruses genetics, RNA, viral isolation and purification, RNA directed DNA polymerase, sensitivity and specificity, sewage.

Norton, J. H.; A. D. Thomas; J. R. Barker. **Fungal infection in the cultured juvenile boring clam Tridacna crocea.** *J Invertebr Pathol.* Orlando, Fla. : Academic Press. Nov 1994. v. 64 (3) p. 273-275. ISSN: 0022-2011.

NAL CALL NUMBER: 421-J826

DESCRIPTORS: Bivalvia, mycoses, body parts, histopathology, Mollusc culture.

Peterson, C.H.; Skilleter, G.A. (1994) Control of foraging behavior of individuals within an ecosystem context: the clam Macoma balthica, flow environment, and siphon-cropping fishes. *Oecologia* 100(3): 256-267, ISSN: 0029-8549.

NAL CALL NUMBER: QL750 O3

ABSTRACT: Macoma balthica (L.), an abundant clam, ubiquitous in temperate estuaries across the North Atlantic, is known to practice both alternative basic modes of feeding available to seafloor invertebrates. It either holds its feeding organ, the siphon, at a fixed position just above the sediment surface to filter out food particles suspended in the overlying water or else extends and moves its siphon around to vacuum up deposited food particles on the sediment surface. Previous laboratory experiments have established an understanding of the role of current flow in dictating the choice of whether suspension or deposit feeding will be used by marine invertebrates with the facultative flexibility to choose. Faster flows imply greater fluxes of suspended particles so that the energetic rewards of suspension feeding are enhanced. Slower flows imply reduced renewal rates of suspended foods in the bottom boundary layers and enhanced deposition of food particles on the seafloor so that a switch to deposit feeding is favored. Like early optimal foraging theory, this understanding is based on energetic considerations alone without incorporation of broader implications of how population interactions such as predation and competition influence individual foraging behavior. Feeding behavior of Macoma balthica is influenced in the Neuse River estuary by both hydrodynamics and siphon-cropping by juvenile demersal fishes. Under conditions of identical concentrations of suspended particulates in the water column and organic contents of surface sediments, Macoma exhibited much higher levels of deposit feeding where currents were slower.

DESCRIPTORS: clams, foraging, hydrodynamics, behaviour, saltwater fishes, fishes, physics, shellfish, aquatic ecology.

Van Beneden, R.J. (1994) Molecular analysis of bivalve tumors: models for environmental/genetic interactions. *Environ Health Perspect* 102 Suppl 12: 81-3, ISSN: 0091-6765.

NAL CALL NUMBER: RA565.A1E54

ABSTRACT: An increase in both the numbers and types of tumors found in finfish and shellfish has been noted in the past several decades. In many cases, while the increase in tumor incidence can be correlated with increases in aquatic toxicant levels, causality cannot be definitively proven. One recent epidemiologic investigation identified the prevalence of gonadal cancers as high as 40% in softshell clams (Mya arenaria) in Maine and 60% in hardshell clams (Mercenaria spp.) from Florida. A second study of these same geographic areas identified human mortality rates due to ovarian cancer as significantly greater than the national average. The rise in mortality rates in humans correlated with the increased use of herbicides in these areas as well as with the appearance of significant numbers of gonadal tumors in the clams. Studies were initiated in our laboratory to examine the molecular basis of these neoplasms in bivalves. NIH3T3 transfection assays were used to examine DNA isolated from these molluscan tumors for the presence of activated oncogenes. DNAs isolated from advanced tumors in both species were able to transform NIH3T3 cells and induce tumors in athymic mice. Studies are now underway to identify the gene(s) detected by these assays and also to examine the molecular mechanisms of toxic response of herbicide-exposed clams.

DESCRIPTORS: cell transformation, neoplastic genetics, clams genetics, cell transformation, neoplastic drug effects, DNA neoplasm, DNA viral, gonads pathology, gonads virology, herbicides adverse effects, mice, mice mude, neoplasms, experimental pathology, neoplasms experimental virology, receptors aryl hydrocarbon drug effects, water pollutants, chemical adverse effects.

Victor, A.C.C.; Chellam, A.; Dharmaraj, S.; Velayudhan, T.S. (1994) **Recent developments in pearl oyster research in India**. *Journal of Shellfish Research* 13 (1) 353, ISSN: 0730-8000. NAL CALL NUMBER: SH365.A1J6

DESCRIPTORS: climatology, environmental sciences, development, nutrition, physiology, reproductive system, wildlife management, conservation, Pelecypoda, gonadal development, juvenile, larva, oyster breeding, pearl seeding, rearing, seasonality, spat setting.

1993

Denton, G.R.W.; Heitz, L.F. (1993) *Heavy metal uptake and loss in the burrowing clam, Tridacna crocea: implications from a public health and mariculture viewpoint.* [Conference paper]. Fitt,-W.K. (Georgia Univ., Athens (USA)) (ed.). Biology and mariculture of giant clams. Canberra, A.C.T. (Australia). Australian Centre for International Agricultural Research. p. 119-132, ISBN 1-86320-095-9.

NAL CALL NUMBER: S542.A8M34 no. 47

ABSTRACT: Field transplant and laboratory exposure studies demonstrate that Tridacna crocea clams possess a marked capacity to confine zinc, copper and lead levels to a remarkably narrow range that is unlikely to exceed health standards even in substantially enriched waters. Prolonged exposure to cadmium, however, may require clams to be purged in clean water before marketing. In contrast, the clam has a high affinity for mercury, and even relatively short and minor episodes of Hg enrichment could have commercially disastrous effects.

DESCRIPTORS: clams, heavy metals, pollutants, water pollution, contamination, foods, elements, metallic elements, pollution, shellfish.

Douillet, P.; Langdon, C.J. (1993) Effects of marine bacteria on the culture of axenic oyster Crassostrea gigas (Thunberg) larvae. *Biological Bulletin Woods Hole* 184 (1) 36-51, ISSN: 0006-3185.

NAL CALL NUMBER: 442.8 B52

DESCRIPTORS: development, marine ecology, environmental sciences, morphology, nutrition, physiology, systematics and taxonomy, wildlife management, conservation, bacteria general unspecified, Eubacteria, bacteria, Chrysophyta, algae, Plantae, Flagellata, Protozoa, Pelecypoda.

Kraak, M.H.; Schoon, H.; Peeters, W.H.; Van Straalen, N.M. (1993) Chronic ecotoxicity of mixtures of Cu, Zn, and Cd to the zebra mussel Dreissena polymorpha. *Ecotoxicol Environ* Saf 25(3): 315-27, ISSN: 0147-6513.

NAL CALL NUMBER: QH545.A1E29

ABSTRACT: Organisms in contaminated freshwater ecosystems are often exposed to a variety of toxicants for their entire lifetime. To evaluate the ecological consequences of these long-term contaminations, the effects of mixtures of heavy metals on the filtration rate and survival of the freshwater mussel Dreissena polymorpha were studied during chronic exposure. In laboratory experiments, mussels were exposed to equitoxic mixtures of Cu + Zn, Cu + Cd, Zn + Cd, and Cu+ Zn + Cd in concentrations causing a 50% decrease in filtration rate in short-term (48 hr) experiments. The filtration rate was measured once a week, during a 9- to 10-week exposure period. For all metal combinations effects on mortality increased when exposure time was prolonged from 48 hr to 9-10 weeks. In contrast, the effects on filtration rate did not increase, indicating that the filtration rate was related to the metal mixture concentration in the water, but not related to the metal concentrations in the mussels. Consequently, the effects on mortality and filtration rate were not related. In short-term experiments Cu + Cd were more than concentrations additive, whereas in chronic experiments Cu + Cd were strongly less than additive, indicating a loss of potential for additivity during prolonged exposure. In general, Cu, Zn, and Cd did not affect each others uptake. It was concluded that the chronic effects of mixtures could not be predicted from their short-term effects nor from the chronic effects of the metals tested individually.

DESCRIPTORS: cadmium toxicity, copper toxicity, mussels drug effects, water pollutants, chemical toxicity, zinc toxicity, cadmium analysis, copper analysis, zinc analysis.

1**992**

Wildish, D.J.; Kristmanson, D.D.; Saulnier, A.M. (1992) **Interactive Effect of Velocity And Seston Concentration On Giant Scallop Feeding Inhibition.** *Journal of Experimental Marine Biology and Ecology*, V 155, N2, P. 161-168.

NAL CALL NUMBER: QH91.A1J6

DESCRIPTORS: bivalve Mollusk, filtration feeding, velocity seston, filtration rate, growth, flow, fluxes, flow velocity; marine bivalve, particle capture, mussel pump, ciliated larvae, microbial filter feeding.

1991

Martinez Manzanares, E.; F. Egea; D. Castro; M. A. Morinigo; P. Romero; J. J. Borrego. Accumulation and depuration of pathogenic and indicator microorganisms by the bivalve mollusc, Chamelea gallina L, under laboratory conditions. *J Food Prot.* Ames, Iowa : International Association of Milk, Food, and Environmental Sanitarians. Aug 1991. v. 54 (8) p. 612-618. ISSN: 0362-028X.

NAL CALL NUMBER: 44.8-J824

ABSTRACT: The comparative accumulation and depuration processes for several microorganisms (Escherichia coli, Salmonella typhimurium, Vibrio parahaemolyticus, Aeromonas hydrophila, Streptococcus faecalis, Staphylococcus aureus, and MS-2 coliphage) by the striped venus, Chamelea gallina, under controlled laboratory conditions were studied. Microorganisms accumulated rapidly in bivalves during the first 6 h, with accumulation rates between 3.2 to 360.5 organisms/h depending on the type of microorganism. The relative patterns and rates of elimination of the microorganisms suggest that they are eliminated from shellfish in two different ways. One is of a mechanical nature that results in microbial elimination during the first 12 h. The other elimination mechanism depends upon the microbial species and their accumulated number. All microorganisms tested were eliminated completely by the molluscs after 3 d of depuration, except MS-2 bacteriophages. Results indicate that MS-2 coliphages may be a more reliable indicator of the microbial depuration efficiency by the shellfish under laboratory conditions than E. coli.

DESCRIPTORS: Bivalvia, microbial flora, purification, growth, bacteriophages, bacterial count, indicators.

1990

Adams C.; B. Pomeroy. **Preliminary financial feasibility analysis for hard clam mariculture** systems. *Staff Pap Univ Fla Food Resour Econ Dep Inst Food Agric Sci*. Gainesville, Fla. : The Department. Feb 1990. (381) 69 p. ISSN: 0886-7615

NAL CALL NUMBER: HD1751.A1S73

DESCRIPTORS: Mercenaria, Mollusc culture, marine fisheries, financial planning, feasibility studies, south eastern states of USA.

1989

Della-Seta, G. (1989) Aspects of the Italian production of aquaculture and of problems related with trout and mussel culture. Organisation de Cooperation et de Developpement Economique, Paris (France). Aquaculture. A review of recent experience. Aquaculture. Examen des donnees d' experiences recentes. Paris (France). OCDE. p. 279-290. ISBN 92-64-23218-4. Note: In French. NAL CALL NUMBER: SH135.A49

DESCRIPTORS: Italy, aquaculture, trout, mussels, production data, fish ponds, brackishwater environment, production location, aquatic environment, diadromous fishes, environments,

Europe, fishes, freshwater fishes, Mediterranean countries, shellfish, western Europe, production economics, aquaculture production.

Fabregas, J.; Otero, A.; Romaris, M.; Cancelo, M.; Munoz, A. (1989) **Computer prediction of the evolution of mollusc cultures: application to Ostrea edulis culture.** *Aquacultural Engineering* 8: 3, 165-176; 7 ref., ISSN: 0144-8609.

NAL CALL NUMBER: SH1.A66

DESCRIPTORS: environmental factors, aquaculture, prediction, automatic control, temperature, oxygen, salinity, pH, Mollusc culture, control, algae, Ostrea edulis.

1988

Fisher, W. S. *Disease processes in marine bivalve molluscs*. Special publication (American Fisheries Society) ; 18. Bethesda, Md. : 1988. viii, 315 p. : ill., maps. ISBN: 0913235520. NAL CALL NUMBER: QL430.6.D48

DESCRIPTORS: Bivalvia Diseases, Bivalvia Parasites.

McCoy, E. W.; T. Chongpeepien. *Bivalve mollusc culture research in Thailand*. ICLARM technical reports, 0115-5547 ; 19. ICLARM contribution ; no. 455. Bangkok, Thailand : Dept. of Fisheries ; Manila, Philippines : International Center for Living Aquatic Resources Management ; Eschborn, Federal Republic of Germany : Deutsche Gesellschaft fur Technische Ausammenarbeit (GTZ), 1988. xiii, 170 p. : ill., maps. ISBN: 9711022435. NAL CALL NUMBER: SH367.T5B58

DESCRIPTORS: Shellfish fisheries Research Thailand, Shellfish culture Thailand.

1986

Siri Tookwinas (1986) *Coastal aquaculture ground survey method and survey report at Ban Tanyong Pao, Pattani province [Thailand]*. Kasetsart Univ. Kamphaengsaen Campus, Nakhon Pathom (Thailand). Kasetsart Univ. Research and Development Inst. Central Laboratory and Greenhouse Complex Center. Fourth annual conference on methodological techniques in biological sciences. Kan prachum thang wichakan khrang thi 4 technique khong withikan thang witthayasat chiwaphap. Nakhon Pathom (Thailand). 1986. 78 p. p. 33-34.

ABSTRACT: Thailand has a total coast line, both on the Gulf of Thailand and Andaman sea, of approximately 2,600 kms. The mangrove area has been estimated to be 1,099,150 rai and the mud flats to be over one million rai. From the report in 1982, the coastal aquaculture has expanded up to 208,245 rai and production of 89,906 tons/yr. The types of culture are shrimp farm, cage culture of fish, shellfish culture, eg. blood cockle, green mussel and oyster. Coastal ecosystem, or estuarine ecosystem, represents a meeting place between freshwater, as run-off from the land, and sea water. Consequently, the estuarine environment is more extreme, and undergoes more violent fluctuations than the open sea or freshwater habitats. Therefore, coastal aquatic organisms have to tolerate variations in the physico-chemical properties of the habitat. The main purpose of this report is to state some ecological aspects of coastal aquatic organisms which have been cultured in Thailand. Certain bio-physicochemical parameters of the estuarine ecosystem which have influence on cultured species are summarized. Suitable habitats are shown. The coastal aquaculture ground survey method at Ban Tanyong Pao, Pattani province, are also reported in detail.

DESCRIPTORS: aquaculture, coastal fisheries, surveying, yields, water quality, environment, Thailand, Asia, fisheries, quality, Southeast Asia.

1985

Broom, M. J. *The biology and culture of marine bivalve molluscs of the genus Anadara*. International Center for Living Aquatic Resources Management. ICLARM studies and reviews ; 12. Manila, Philippines : ICLARM, 1985. vi, 37 p. : ill. ISBN: 9711022214. NAL CALL NUMBER: QL408.B7 DESCRIPTORS: Bivalvia, Marine fauna, Aquaculture.

1984

Buroker, N. E. Gene flow in mainland and insular populations of Crassotrea (mollusca). Biol Bull. Woods Hole, Mass. : Marine Biological Laboratory. June 1984. v. 166 (3) p. 550-557. ill. ISSN: 0006-3185. NAL CALL NUMBER: 442.8 B52

Fitt, W. K.; C. R. Fisher; R. K. Trench. Larval biology of tridacnid clams. Aquaculture. Amsterdam : Elsevier Scientific Publishing. June 15, 1984. v. 39 (1/4) p. 181-195. ill. ISSN: 0044-8486. NAL CALL NUMBER: SH1.A6 DESCRIPTORS: Tridacna gigas, Hippopus hippous.

Hershberger, W. K.; J. A. Perdue; J. H. Beattie. **Genetic selection and systematic breeding in Pacific oyster culture.** *Aquaculture*. Amsterdam : Elsevier Scientific Publishing. June 15, 1984. v. 39 (1/4) p. 237-245. ISSN: 0044-8486. NAL CALL NUMBER: SH1.A6 DESCRIPTORS: USA, Crassostrea gigas.

Heslinga, G. A.; F. E. Perron; O. Orak. Mass culture of giant clams (F. Tridacnidae) in Palau. *Aquaculture*. Amsterdam : Elsevier Scientific Publishing. June 15, 1984. v. 39 (1/4) p. 197-215. ill. ISSN: 0044-8486. NAL CALL NUMBER: SH1.A6 DESCRIPTORS: Caroline Islands.

Umezawa, S.; Nogami, K.; Fukuhara, O. (1984) **Relation between high mortality and some** environmental conditions for ark shell, Scapharca broughtonii (Schrenck) in cage culture. *Bulletin of the Nansei Regional Fisheries Research Laboratory* (no.16) p. 231-244. Note: In Japanese.

NAL CALL NUMBER: SH19.N35

DESCRIPTORS: bivalves, arkshells, Mollusc culture, mortality, environmental conditions, cages, animal housing, aquaculture, aquatic animals, aquatic organisms, buildings, environment, foods, health, housing, isscaap group b 56, isscaap groups of species, seafoods, shellfish, shellfish culture, vital statistics, zootechny.

Zhang, F. **Mussel culture in China.** *Aquaculture.* Amsterdam : Elsevier Scientific Publishing. June 15, 1984. v. 39 (1/4) p. 1-10. ill., maps. ISSN: 0044-8486. NAL CALL NUMBER: SH1.A6 DESCRIPTORS: China, Mytilus edulis.

1983

Claus, C.; H. Maeckelberghe; N. de Pauw. **Onshore nursery rearing of bivalve molluscs in Belgium Ostrea edulis, Crassostrea gigas and Venerupis semidecussata.** Aquacultural Eng. London : Applied Science Publishers. Mar 1983. v. 2 (1) p 13-26. ill. ISSN: 0144-8609. NAL CALL NUMBER: SH1.A66 DESCRIPTORS: Belgium.

Shaw, W. N. **The culture of molluscs in Japan. 4. Pearl culture in Japan Pinctada.** *Aquaculture Mag.* Little Rock : Briggs Associates, Inc. Mar/Apr 1983. v. 9 (3) p. 41-42. ill. ISSN: 0199-1388. NAL CALL NUMBER: SH1.C65 DESCRIPTORS: Japan.

Watling, H. R.; R. J. Watling. Sandy beach molluscs as possible bioindicators of metal pollution. 2. Laboratory studies Donax serra, Bullia rhodostoma. *Bull Environ Contam Toxicol*. New York : Springer-Verlag. Sept 1983. v. 31 (3) p. 339-343. ISSN: 0007-4861. NAL CALL NUMBER: RA1270.P35A1

DESCRIPTORS: metals metabolism, Mollusca metabolism, water pollutants metabolism, water pollutants, chemical metabolism, cadmium metabolism, copper metabolism, zinc metabolism.

1982

Engel, D.W.; Brouwer, M. (1982) **Detoxification of accumulated trace metals by the American oyster, Crassostrea virginica: laboratory vs. environment [Pollutants].** *Physiological mechanisms of marine pollutant toxicity.* New York, Academic Press. p. 89-107. DESCRIPTORS: pollution, animal physiology and biochemistry, oysters. NAL CALL NUMBER: QL121 S9 1981

Garland, C.D.; Nash, G.V.; McMeekin, T.A. (1982) Absence of surface-associated microorganisms in adult oysters (Crassostrea gigas). *Appl Environ Microbiol.* 44(5): 1205-11, ISSN: 0099-2240.

NAL CALL NUMBER: 448.3 AP5

ABSTRACT: Healthy, actively feeding intertidal oysters were removed from an estuarine environment (Pipeclay Lagoon, Tasmania). The epithelial surfaces of various organs of the mantle cavity and alimentary tract were explored by scanning and transmission electron microscopy. All epithelial tissues examined were ciliated, and nearly all were partly covered with secreted mucus. However, microorganisms were seen rarely in the adhesive mucus and never attached to the epithelium. Electron microscopy also failed to demonstrate a surface microflora in emersed oysters which had been incubated at 5 to 25 degrees C for 6 or 24 h. The absence of an internal surface microflora did not vary on a seasonal basis. In laboratory experiments, oysters were allowed to filter feed from seawater containing diverse types of marine bacteria at concentrations of 10(3) to 10(7)/mL. However, no surface microflora could be found within actively feeding oysters or in emersed animals incubated at 20 degrees C for 6 or 24 h. In contrast, surface-associated microorganisms were detected readily by scanning electron microscopy on the external shell of healthy oysters and on various internal tissues in spoiled oysters. It is suggested that the major mechanisms restricting microbial growth within oysters are ciliary movement and mucus secretion. DESCRIPTORS: bacteria isolation and purification, oysters microbiology, epithelium microbiology, microscopy, electron, mucus microbiology.

Kikuchi, S.; Fujii, T.; Watanabe, S.; Kikuchi, Y. (1982) **Evaluation of environmental conditions for the surf-clam by the growth of mark-recaptured individuals.** *Bulletin of Tohoku Regional Fisheries Research Laboratory* (no.44) p. 79-82. Note: In Japanese. NAL CALL NUMBER: SH301.S852

DESCRIPTORS: surf clams, spisula growth, fishing grounds, benthic environment, evaluation, coasts, animals, aquatic animals, aquatic environment, aquatic organisms, biological development, bivalves, clams, environment, fishing areas, foods, isscaap group b 56, isscaap groups of species, methods, physiographic features, physiological functions, physiology, seafoods, shellfish.

1981

Claus, C.; N. De Pauw; E. Jaspers. *Nursery culturing of bivalve molluscs : proceedings of the International Workshop on Culturing of Bivalve Molluscs, Ghent, Belgium, 24-26 February, 1981.* Special publication / European Mariculture Society ; no. 7, 1981. Bredene, Belgium : 1981. xiii, 394 p. : ill.

NAL CALL NUMBER: SH138.S64 no.7 1981

DESCRIPTORS: Shellfish culture Congresses, Oyster culture Congresses, Mollusks Congresses.

MacKenzie, C.L. (1981) **Biotic potential and environmental resistance in the American** oyster (Crassostrea virginica) in Long Island Sound. *Aquaculture* v. 22(3) p. 229-268. NAL CALL NUMBER: SH1.A6

ABSTRACT: The American oyster (Crassostrea virginica) in Long Island Sound was studied throughout its life span on commercial beds by conducting SCUBA surveys and supporting laboratory tests from 1966-1972. The oyster had a biotic potential of a magnitude large enough to cover the entire bottom of the Sound within a few years, given optimum environmental conditions. The limiting factors were mainly: low temperatures, a lack of clean shell substratum on which oyster larvae could set, and about 20 causes of mortality in sedentary oysters, the most substantial of which were: (1) predation by starfish (Asterias forbesi), oyster drills (Eupleura caudata and Urosalpinx cinerea) and crabs (Cancer irroratus and Neopanope sayi); (2) competition by slipper-shells (Crepidula fornicata and Crepidula plana) and other animals on shells; (3) suffocation by silt and (4) shell fracture during transplating by oyster growers. Oyster mortalities occurred mostly from spring to fall and were negligible during winter. The mortalities were area-specific within beds, bed-Specific and much higher in spat than in 1, 2 and 3-year-old oysters. The survival of oysters from setting of spat throughout their life span on cultured beds was estimated to be 2-5%. Few ovsters could survive in the Sound without bed culture. During 1966 and continuing afterwards, the growers applied improved cultural methods and new technologies to remove a number of limiting factors from the beds and this resulted in an oyster "abundance and production takeoff". DESCRIPTORS: aquatic ecology, oysters, USA.

Mowdy, D.E. (1981) Elimination of laboratory-acquired cadmium by the oyster Crassostrea virginica in the natural environment. Bulletin of Environmental Contamination and Toxicology v. 26(3) p. 345-351. ISSN: 0007-4861. NAL CALL NUMBER: RA1270.P35A1 DESCRIPTORS: Pollution; Oysters. Shaw, W. N. Nursery culture of bivalve molluscs. *Aquaculture Mag.* Little Rock, Ark., Briggs Associates, Inc. Nov/Dec 1981. v. 8 (1) p. 36-37. ill. ISSN: 0199-1388. NAL CALL NUMBER: SH1.C65

DESCRIPTORS: Bivalves, culture, workshop preceedings/ conclusions, housing, grow-out systems, nursery phase/ stage, growth, land-based and natural facilities.

1979

Bayne, B.L.; Moore, M.N.; Widdows, J.; Livingstone, D.R.; Salkeld, P. (1979) Measurement of the responses of individuals to environmental stress and pollution: studies with bivalve molluscs. *Philos Trans R Soc Lond B Biol Sci* 286(1015): 563-81, ISSN: 0962-8436. NAL CALL NUMBER: 501 L84Pb

ABSTRACT: Certain physiological differences between individuals in different populations of the mussel, Mytilus edulis, are described. In particular, the scope for growth differs in space and time and may be used to assess the animals' physiological condition. When the required measurements are made in the field, the rates of growth predicted from the physiological data agree well with observed rates of growth. An alternative approach utilizes mussels transplanted to various waters, with indices of condition then measured in then measured in the laboratory under standard conditions; an example of this approach is illustrated. Laboratory experiments are used to equate various levels of physiological condition with fecundity, in an attempt to equate physiological effects on the individual with likely population damage. A cytochemical index of stress is described, based on the latency of lysosomal enzymes; spatial variability in this index, and its relation with the scope for growth, are discussed. Finally, the results of some experiments on the effects of petroleum hydrocarbons on mussels are described and the presence of inducible activity of NADPH-dependent tetrazolium reductase in the blood cells is demonstrated. Certain considerations that apply in adopting similar measurements of biological effects of pollution in environmental monitoring programmes are discussed.

DESCRIPTORS: hydrocarbons adverse effects, mussels growth and development, seawater, water pollution, England, hemocytes enzymology, hydrolases metabolism, mussels enzymology, NADH-NADPH oxidoreductases metabolism, Rhode Island, Wales.

Frazier, J.M. (1979) **Bioaccumulation of cadmium in marine organisms**. *Environ Health Perspect* 28: 75-9, ISSN: 0091-6765.

NAL CALL NUMBER: RA565.A1E54

ABSTRACT: A general review of cadmium concentrations in marine organisms and studies of cadmium bioaccumulation is presented. Factors which influence cadmium concentrations, such as regional differences, seasonal fluctuations and salinity, are discussed and species which are likely to accumulate cadmium identified. Experimental studies designed to investigate the influence of some of these factors on cadmium bioaccumulation in a filter feeding bivalve mollusk, the American oyster (Crassostrea virginica), are presented. Field studies of seasonal dynamics of cadmium in oysters indicate patterns which may be correlated with seasonal physiological activity. The bioaccumulation of cadmium following input to estuarine systems by natural phenomena is observed. Cadmium concentrations in oysters collected from regions of different salinity suggest an inverse relationship between cadmium concentration and salinity. Laboratory experiments designed to investigate mechanisms of cadmium accumulation demonstrate that an inducible cadmium binding protein, similar to metallothiomein, is present in the American oyster.

DESCRIPTORS: cadmium metabolism, Mollusca metabolism, cadmium analysis, calcium analysis, environmental exposure, magnesium analysis, metalloproteins biosynthesis, oysters

analysis, oysters metabolism, seasons, seawater, sodium chloride, temperature, zinc analysis, animal, comparative study.

Fujii, T. (1979). The study for periodic behaviour of bivalves, 1: Periodicity observed in short-necked clam Tapes japonica Deshyes put in natural environment. Bulletin of Tohoku Regional Fisheries Research Laboratory (Japan). (Jan 1979). (no.40) p. 37-46, ISSN 0049-402X. Note: In Japanese.
NAL CALL NUMBER: SH301.S852
DESCRIPTORS: aquatic ecology, clam.

Walne, P. R. *Culture of bivalve molluscs : 50 years' experience at Conwy. 2d ed.* Farnham : Fishing News for the Buckland Foundation, 1979. 189 p. : ill. ISBN: 0852380631. NAL CALL NUMBER: SH367.W3W3 1979 DESCRIPTORS: Oyster culture Wales, Fisheries Wales.

1978

Ito, K. (1978) Nutritional environment for pearl oyster Pinctada fucata (Gould) in pearl cultured ground, Ago Bay [Japan]. Bulletin of the National Pearl Research Laboratory (no.22) p. 2363-2381, Note: In Japanese.

DESCRIPTORS: fisheries production, aquatic ecology, oysters, Japan, littoral zone.

Sobsey, M.D.; Carrick, R.J.; Jensen, H.R. (1978) **Improved methods for detecting enteric** viruses in oysters. *Appl Environ Microbiol* 36(1): 121-8, ISSN: 0099-2240. NAL CALL NUMBER: 448.3 AP5

ABSTRACT: New and improved methods for concentrating enteroviruses, reoviruses, and adenoviruses from oysters have been developed and evaluated. Viruses are efficiently adsorbed to homogenized oyster meat by adjusting the homogenate to pH 5.0 and a conductivity of less than or equal to 2,000 mg of NaCl per liter. After low-speed centrifugation, the virus-free supernatant is discarded and the viruses are eluted from the sedimented oyster solids with pH 7.5 glycine-NaCl having a conductivity of 8,000 mg of NaCl per liter. The oyster solids are removed by low-speed centrifugation and filtration, and the viruses in the filtered supernatant are concentrated to a small volume by either ultrafiltration or acid precipitation at pH 4.5. The concentrate is treated with antibiotics and inoculated into cell cultures for virus isolation and quantitation. When these methods were tested with oysters experimentally contaminated with polioviruses, reoviruses, and adenoviruses, recovery efficiencies averaged about 46%. With the exception of virus assay and quantitation, these methods are simple and inexpensive enough to be done in typical shellfish microbiology laboratories.

DESCRIPTORS: Adenoviridae isolation and purification, Adenoviruses Simian isolation and purification, food microbiology, microbiological techniques, oysters, Polioviruses isolation and purification, Reoviridae isolation and purification, Reovirus 3 isolation and purification, hydrogen ion concentration, micropore filters, precipitation.

1977

Yamaguchi, K.; Hasuo, M. (1977) **Relation between activity of pearl oyster and seasonal changes of environmental factors in culture ground.** *Bulletin of the National Pearl Research Laboratory* (no.21) p. 2315-2324. Note: In Japanese. DESCRIPTORS: aquatic ecology, oysters.

1974

Walne, P. R. *Culture of bivalve molluscs : 50 years experience at Conwy / P. r. walne.* Buckland Foundation book. Surrey, Eng. : Fishing News (Books), 1974. 173 p. : ill. NAL CALL NUMBER: SH367.W3W3

DESCRIPTORS: Bivalves, oyster structure/ physiology/ reproduction, Ostrea edulis, larval observations, oyster larvae hatchery rearing techniques, oyster spats, Tal-y-foel oysterage.

Cephalopods

2000

Claes, M.F.; Dunlap, P.V. (2000) Aposymbiotic culture of the sepiolid squid Euprymna scolopes: Role of the symbiotic bacterium Vibrio fischeri in host animal growth, development, and light organ morphogenesis. *Journal of Experimental Zoology* 286 (3): 280-296, ISSN: 0022-104X.

NAL CALL NUMBER: 410 J825

DESCRIPTORS: development, ecology, environmental sciences, Cephalopoda, Vibrionaceae, facultatively anaerobic gram negative rods, Eubacteria, bacteria, microorganisms, Euprymna scolopes, symbiotic host, Vibrio fischeri, symbiotic bacterium, bacteria, Eubacteria, microorganisms, light organ, morphogenesis, light organ accessory tissues, mariculture system, bioluminescent mutualism, predator avoidance.

1997

Lee, J. Y.; J. B. Eun; S. H. Choi. Improving detection of Vibrio vulnificus in Octopus variabilis by PCR. *J Food Sci.* Chicago, Ill. : Institute of Food Technologists. Jan/Feb 1997. v. 62 (1) p. 179-182. ISSN: 0022-1147.

NAL CALL NUMBER: 389.8 F7322

ABSTRACT: PCR methods can detect foodborne pathogenic bacteria with simplicity, specificity and speed. In order to improve sensitivity and speed of PCR methods for detection of Vibrio vulnificus in small octopus homogenate, several media and culture conditions were compared. Modified brain heart infusion media containing 2% NaCl and adjusted to pH 8.0 and 30degrees C was most effective for enrichment of the bacteria. Procedures affecting the efficiency of template DNA extraction and target DNA amplification were also optimized. By these combined efforts, a PCR procedure capable of detecting V. vulnificus as low as 10 cells/mL within 10h was developed.

DESCRIPTORS: octopus, pathogens, foodborne diseases, Vibrio vulnificus, detection.

1995

Cortez, T.; Castro, B.G.; Guerra, A. (1995) **Reproduction and condition of female Octopus mimus (Mollusca: Cephalopoda).** *Marine Biology Berlin* 123 (3) 505-510, ISSN: 0025-3162. NAL CALL NUMBER: QH91.A1M35

DESCRIPTORS: behavior, development, environmental sciences, marine ecology, physiology, reproductive system, Cephalopoda, Octopus mimus, animals, maturation, parental care, spawning.

Sakurai, Y.; Young, R.E.; Hirota, J.; Mangold, K.; Vecchione, M.; Clarke, M.R.; Bower, J. (1995) Artificial fertilization and development through hatching in the oceanic squids Ommastrephes bartramii and Sthenoteuthis oualaniensis (Cephalopoda: Ommastrephidae). Veliger 38 (3) 185-191, ISSN: 0042-3211.

DESCRIPTORS: biochemistry and molecular biophysics, conservation, development, marine ecology, environmental sciences, morphology, physiology, reproductive system, wildlife management, conservation, Cephalopoda, Ommastrephes bartramii, Sthenoteuthis oualaniensis.

Sanchez, P. (1995) Age and growth of Illex coindetii. *ICES Marine Science Symposia* 199 (0) 441-444, ISSN: 0906-060X.

DESCRIPTORS: biosynchronization, climatology, environmental sciences, development, ecology, morphology, physiology, sense organs, sensory reception, Cephalopoda, Illex coindetii, Spain, Europe, Palearctic region.

1989

Sugiyama, M. *Utilization of squid*. Rotterdam : A.A. Balkema, 1989. xv, 251 p., [4] p. of plates : ill. (some col.) ISBN: 9061914795.

NAL CALL NUMBER: SH335.I3313 1989

DESCRIPTORS: Fishery processing, Squids, Squids Composition, Squids Preservation.

1984

Hartwick, E. B.; R. F. Ambrose; S. M. C. Robinson. **Dynamics of shallow-water populations of Octopus dofleini.** *Mar Biol.* Berlin, W. Ger. : Springer International. 1984. v. 82 (1) p. 65-72. maps. ISSN: 0025-3162. NAL CALL NUMBER: QH91.A1M35 DESCRIPTORS: actopus marine coolege. Schemenson

DESCRIPTORS: octopus, marine ecology, fishery resources.

1983

Cook, D. Squid Marketable item by commercial fishermen in the United States, culture. Mar Resour Bull Va Inst Mar Sci. Glouster Point : The Institute. Winter 1983. v. 15 (1) p. 2-6, 10. ill. NAL CALL NUMBER: GC1000.M352 DESCRIPTORS: USA.

Dewees, C. M.; R. J. Price. **The California squid fishery Biology, history, processing, marketing.** *Leafl Univ Calif Coop Ext Serv.* Berkeley : The Service. Apr 1983. (21330) 14 p. ill. NAL CALL NUMBER: S544.3.C2C3 DESCRIPTORS: California.

Ehrhardt, N. M.; P. S. Jacquemin; B. F. Garcia; D. G. Gonzalez; J. M. Lopez. **On the fishery and biology of the giant squid Dosidicus gigas in the Gulf of California, Mexico.** *J Kans Entomol Soc.* Lawrence, Kan. : The Society. 1983. (231) p. 306-340. ill., maps. ISSN: 0022-8567. NAL CALL NUMBER: 420 K13 DESCRIPTORS: Mexico. Rayudu, G. V.; P. Chandra Mohan. **Cephalopod fishery and its marketing in India**. *Seafood Export J.* Cochin, India : Seafood Exporters Association of India. July 1983. v. 15 (7) p. 21-22. ISSN: 0037-010X. NAL CALL NUMBER: SH299.S4 DESCRIPTORS: India.

1982

Macy III., W. K. Feeding patterns of the long-finned squid, Loligo pealei, in New England waters. *Biol Bull.* Woods Hole, Mass., Marine Biological Laboratory. Feb 1982. v. 162 (1) p. 28-38. ISSN: 0006-3185. NAL CALL NUMBER: 442.8 B52 DESCRIPTORS: Loligo pealei, long-finned squid, prey-type selection, feeding strategy, predation, diet, spatial and temporal variations.

Rayudu, G. V.; P. Chandra Mohan. A note on the fishery of squid and cuttlefish of Visakhapatnam. Seafood Export J. Cochin, India : Seafood Exporters Association of India. Apr 1982. v. 14 (4) p. 23, 25-27. ISSN: 0037-010X. NAL CALL NUMBER: SH299.S4 DESCRIPTORS: India.

1981

Amaratunga, T. The short-finned squid (Illex illecebrosus) fishery in eastern Canada Management of the resource. J Shellfish Res. Duxbury, Mass., Battelle. Dec 1981. v. 1 (2) p. 143-152. ill., map. NAL CALL NUMBER: SH365.A1J6 DESCRIPTORS: Canada.

Dawe, E. G. Development of the Newfoundland squid (Illex illecebrosus) fishery and management of the resource. *J Shellfish Res.* Duxbury, Mass., Battelle. Dec 1981. v. 1 (2) p. 137-142. ill. NAL CALL NUMBER: SH365.A1J6 DESCRIPTORS: Canada.

Grant, W. E.; W. L. Griffin; J. P. Warren. A management model of the northwest African cephalopod fishery. *Marine Fish Rev.* Seattle, Wash., Scientific Publications Office, National Marine Fisheries Service, NOAA. Nov 1981. v. 43 (11) p. 1-10. ISSN: 0090-1830. NAL CALL NUMBER: 157.5 F532

ABSTRACT: Extract: Two versions of a bioeconomic model of the northwest African cephalopod fishery, one assuming an instantaneous natural mortality rate of M = 1.25 on an annual basis and the other a rate of M = 2.0, predict the harvest of octopus, Octopus vulgaris; cuttlefish, Sepia spp.; and squid, Loligo spp. These predictions are compared with actual harvest data, the sensitivity of model behavior to change in important biological parameters is examined, and two management schemes for the fishery are evaluated. DESCRIPTORS: Africa.

Hirtle, R. W. M.; M. E. DeMont; R. K. O'Dor. Feeding, growth, and metabolic rates in captive short-finned squid, Illex illecebrosus, in relation to the natural population. J Shellfish Res. Duxbury, Mass., Battelle. Dec 1981. v. 1 (2) p. 187-192. ill.

NAL CALL NUMBER: SH365.A1J6

DESCRIPTORS: Illex illecebrosus, short-finned squid, feeding, growth, metabolic rates, correlations, maintenance, behavioral interactions, respirometry, statistical evaluation, physiology, cannibalism.

1975

Mottet, M. G. *The fishery biology of Octopus dofleini (Wulker) / Madelon Green Mottet.* [Olympia] Management and Research Div., Washington Dept. of Fisheries, /, 1975. iii, 39 p. : ill., map. technical report; no. 16.

NAL CALL NUMBER: SH222.A1W2 No.16

DESCRIPTORS: Octopus dofleini (Wulker), resource management, biology, larval stage, immaturity, maturity, catch methods, traps, drifting lines.

1973

Voss, G. L. **Cephalopod resources of the world.** Food and Agriculture Organization of the United Nations. Fishery Resources Division. FAO fisheries circular; no. 149. Rome : Food and Agriculture Organization of the United Nations, 1973. iv, 75 p. : ill., maps. NAL CALL NUMBER: SH1.F59 No.149 DESCRIPTORS: Cephalopoda.

Gastropods

2001

Gallardo, C. S.; K. A. Sanchez. Induction of metamorphosis and its effect on the growth and survival of postmetamorphic juveniles of Chorus giganteus (Gastropoda: Muricidae). *Aquaculture*. Amsterdam : Elsevier Pub. Co., c1972. Oct 1, 2001. v. 201 (3/4) p. 241-250. ISSN: 0044-8486.

NAL CALL NUMBER: SH1 .A6

ABSTRACT: One of the most critical steps in the life cycle of a mollusc is marked by its abandonment of planktonic life and passage through metamorphosis to assume a benthonic existence. The present study evaluated the usefulness of potassium ion (as KCl) to determine competence for settlement and effectiveness in induction of metamorphosis in free-swimming larvae of the commercially valuable snail Chorus giganteus. Two groups of larvae were compared, the first of natural origin, and the second from egg

capsules produced under culture conditions. In both cases, concentrations of 20 and 30 mM K(+) ion effectively induced metamorphosis of recently hatched larvae of this species, indicating that they were competent at the moment of release from their egg capsules. Concentrations of 40 and 50 mM of this ion proved toxic to the larvae. Observations were made on the relative effects of artificial induction of metamorphosis on survival and growth in both groups of juvenile snails during their first 5 months in out-culture. The results showed comparatively higher survival of individuals from egg capsules produced in

the culture system. Among the artificially induced subgroups of juvenile snails, those obtained from culture and induced with 30 mM KCl had the highest growth rate. Among the non-induced subgroups, juveniles from culture had higher growth rates than those from the field. The results suggested differences between cohorts of this species with respect to the origin of the egg capsules, which are interacting with the response of the juveniles to the different treatments, a factor of some significance to future research and development of this culture.

DESCRIPTORS: Gastropoda, metamorphosis, developmental stages, biological development, growth, survival, life cycle, potassium, cations, larvae, ova, rearing techniques, toxicity, growth rate.

2000

Evans, F.; C. J. Langdon. **Co-culture of dulse Palmaria mollis and red abalone Haliotis rufescens under limited flow conditions.** *Aquaculture.* Amsterdam : Elsevier Pub. Co., c1972. May 2, 2000. v. 185 (1/2) p. 137-158. ISSN: 0044-8486.

NAL CALL NUMBER: SH1 .A6

DESCRIPTORS: Haliotis rufescens. Rhodophyta, seaweeds, algae culture, Mollusc culture, mixtures, stocking density, growth rate, photoperiod, illumination, light intensity, water quality, ammonia, uptake, excretion, feed intake, liveweight.

Green, B. J.; W. Y. Li; J. R. Manhart; T. C. Fox; E. J. Summer; R. A. Kennedy; S. K. Pierce; M. E. Rumpho. Mollusc-algal chloroplast endosymbiosis. Photosynthesis, thylakoid protein maintenance, and chloroplast gene expression continue for may months in the absence of the algal nucleus. *Plant Physiol.* Rockville, MD : American Society of Plant Physiologists, 1926. Sept 2000. v. 124 (1) p. 331-342. IISSN: 0032-0889.

NAL CALL NUMBER: 450 P692

ABSTRACT: Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO2 fixation for at least 9 months if provided with only light and a source of CO2. Here we demonstrate that the sea slug symbiont chloroplasts maintain photosynthetic oxygen evolution and electron transport activity

through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes.

DESCRIPTORS: Vaucheria, chloroplasts, symbiosis, photosynthesis, thylakoids, protein metabolism, chloroplast DNA, gene expression, nuclei, life cycle, carbon dioxide, light, duration, oxygen, gas production, electron transfer, photosystem i, photosystem ii, light harvesting complexes, Gastropoda. Neori, A.; M. Shpigel; D. Ben Ezra. A sustainable integrated system for culture of fish, seaweed and abalone. *Aquaculture*. Amsterdam : Elsevier Pub. Co., c1972. June 15, 2000. v. 186 (3/4) p. 279-291. ISSN: 0044-8486.

NAL CALL NUMBER: SH1 .A6

ABSTRACT: A 3.3 m(2) experimental system for the intensive land-based culture of abalone, seaweed and fish was established using an integrated design. The goals were to achieve nutrient recycling, reduced water use, reduced nutrient discharge and high yields. Effluents from Japanese abalone (Haliotis discus hannai) culture tanks trained into a pellet-fed fish (Sparus aurata) culture tank. The fish effluent drained into macroalgal (Ulva lactuca or Gracilaria conferta) culture, and biofilter tanks. Algal production fed the abalone. The system was monitored to assess productivity and nitrogen partitioning over a year. The fish grew at 0.67% day(-1), yielding 28-kg m(-2) year(-1). The nutrients excreted by the fish supported high yields of U. lactuca (78-kg m(-2) year(-1)) and efficient (80%) ammonia filtration. Gracilaria functioned poorly. Ulva supported an abalone growth rate of 0.9% day(-1) and a length increase of 40-66 micrometers day(-1) in juveniles, and 0.34% day(-1) and 59 micrometers day(-1) in young adults. Total abalone yield was 9.4 kg year(-1). A surplus of seaweed was created in the system. Ammonia-N, as a fraction of total feed-N was reduced from 45% in the fish effluents to 10% in the post-seaweed discharge. Based on the results, a doubling of the abalone: fish yield ratio from 0.3 to 0.6 is feasible.

DESCRIPTORS: Haliotis discus, Pagrus aurata, algae, algae culture, effluents, waste treatment, water reuse, sustainability, integrated systems, Mollusc culture, fish culture, intensive production, nutrient balance, biological filtration, biomass production, growth rate, excretion, ammonia, yields.

Sales, J.; P. J. Britz. **South African abalone culture succeeds through collaboration**. *World Aquac.* Baton Rouge, La. : World Aquaculture Society, Sept 2000. v. 31 (3) p. 44-45, 49-50, 61. ISSN: 1041-5602. NAL CALL NUMBER: SH1.W62

DESCRIPTORS: Abalones, Mollusc culture, economic development, feeds, history, technology transfer, research institutes, cages, water temperature, feeding, larvae, transport of animals, handling, developmental stages, health, seafoods, food processing, Haliotis, South Africa.

Siqueiros Beltrones, D. A.; D. Voltolina. Grazing selectivity of red abalone Haliotis rufescens postlarvae on benthic diatom films under culture conditions. *J World Aquac Soc.* Baton Rouge, La. : World Aquaculture Society, c1987. June 2000. v. 31 (2) p. 239-246. ISSN: 0893-8849.

NAL CALL NUMBER: SH138.W62

DESCRIPTORS: Haliotis rufescens, feeding preferences, benthos, Bacillariophyta, developmental stages, Mollusc culture, digesta, species diversity, frequency, microbial flora.

Viana, M. T.; P. Jarayabhand; P. Menasveta. **Evaluation of an artificial diet for use in the culture of the tropical abalone Haliotis ovina.** *J Aquac Trop.* Calcutta : Oxford IBH, 1986. Feb 2000. v. 15 (1) p. 71-79. ISSN: 0970-0846.

NAL CALL NUMBER: SH135.J68

DESCRIPTORS: Haliotis, feeds, Mollusc culture, evaluation, agar, rearing techniques, feed intake, food restriction, growth rate, analysis of variance, length, growth.

Capinpin, E.C. Jr.; J. D. Toledo; V. C. Encena II.; M. Doi. **Density dependent growth of the tropical abalone Haliotis asinina in cage culture.** Aquaculture. Amsterdam, Elsevier. Feb 15, 1999. v. 171 (3/4) p. 227-235. ISSN: 0044-8486.

NAL CALL NUMBER: SH1.A6

ABSTRACT: The effects of different stocking densities on the growth, feed conversion ratio and survival of two size groups of the tropical abalone Haliotis asinina were determined. Three culture trials were conducted in net cages installed in a sheltered cove, Guimaras Province, Philippines. Trials 1 and 2 were conducted using 15-20 mm abalone juveniles for 150 days, while trial 3 was conducted using 35-40 mm abalone for 180 days. The animals were fed sufficient amounts of the red alga, Gracilariopsis bailinae (= G. heteroclada), throughout the experiment. There was an inverse relationship between growth (length and weight) and stocking density. Feed conversion ratio was not influenced by density, but was observed to be higher for larger animals. Survival was not significantly affected by density. Net cages are appropriate for culture of H. asinina. This study showed that H. asinina can reach commercial size of about 60 mm in one year. It also showed that growth of H. asinina can be sustained on a single-species diet. An economic analysis will be important in choosing the best stocking density for commercial production.

DESCRIPTORS: Haliotis, growth, population density, Mollusc culture, stocking density, feed conversion, feed conversion efficiency, survival, size, length, weight, Rhodophyta, feeding, Philippines.

Chaitanawisuti, N.; A. Kritsanapuntu. Effects of different feeding regimes on growth, survival and feed conversion of hatchery-reared juveniles of the gastropod mollusc spotted babylon Babylonia areolata (Link 1807) in flowthrough culture systems. Aquac-res. Oxford : Blackwell Science, c1995. Aug 1999. v. 30 (8) p. 589-593. ISSN: 1355-557X. NAL CALL NUMBER: SH1.F8

ABSTRACT: The effects of feeding regimes on the growth, survival and feed conversion of hatchery-reared juvenile spotted babylon Babylonia areolata (Link) were assessed. Six continuous and discontinuous feeding regimes were fed at satiation to triplicate groups of snails in 200-L flowthrough (3.0 L h(-1)) indoor rectangular tanks for 180 days. Shell length growth rates of juvenile B. areolata did not differ significantly (P > 0.05) between the various feeding treatments. Body weight gain and feed conversion of snails were not significantly different between various feeding treatments, nor were there significant differences in mean survival between any of the feeding treatments.

DESCRIPTORS: Gastropoda, marine animals, feeding, growth, rearing techniques, survival, feed conversion efficiency, Mollusc culture, growth rate, shells, length, feed rations, feed intake, frequency.

Preece, M. A.; P. V. Mladenov. Growth and mortality of the New Zealand abalone Haliotis iris Martyn 1784 cultured in offshore structures and fed artificial diets. *Aquac Res.* Oxford : Blackwell Science, c1995. Nov/Dec 1999. v. 30 (11/12) p. 865-877. ISSN: 1355-557X. NAL CALL NUMBER: SH1.F8

DESCRIPTORS: Haliotis, growth, mortality, Mollusc culture, feeds, feeding, equipment, growth rate, feed intake, infestation, water quality, silt, feed conversion efficiency.

Viana, M. T.; J. M. Guzman; R. Escobar. Effect of heated and unheated fish silage as a protein source in diets for abalone Haliotis fulgens. *J World Aquac Soc.* Baton Rouge, La. : World Aquaculture Society, c1987. Dec 1999. v.30 (4) p. 481-489. ISSN: 0893-8849. NAL CALL NUMBER: SH138.W62

DESCRIPTORS: Haliotis, fish silage, heat treatment, protein sources, feeds, evaluation, Mollusc culture, nutrient availability, growth rate, leaching, fish meal, stability, dry matter.

1998

Aldana Aranda, D.; V. Patino Suarez. **Overview of diets used in larviculture of three Caribbean conchs: Queen conch Strombus gigas, Milk conch Strombus costatus and Fighting conch Strombus pugilis.** *Aquaculture.* Amsterdam, Elsevier. Sept 1, 1998. v. 167 (3/4) p. 163-178. ISSN: 0044-8486.

NAL CALL NUMBER: SH1.A6

ABSTRACT: The genus Strombus is widely distributed in the Caribbean. Six species are of commercial importance: S. gigas, S. raninus, S. costatus, S. alatus, S. gallus and S. pugilis. Economically, the Queen conch, S. gigas is the most important and consequently the most widely studied. However, since 1970 a decline of S. gigas populations due to over-fishing has been observed. Many authors have studied S. gigas hatchery rearing techniques in order to address this problem; however, for these hatchery techniques to be successful, an adequate diet must be provided for the larvae. Some information of the nutritional requirements of S. gigas larvae have been reported since nutritionally complete diet is still not available. In this work we summarize the different algae have been used for S. gigas, S. costatus and S. pugilis larvae rearing. Twenty one different algae species have been used: Amphidinium carteri, Chaetoceros gracilis, Dunaliella tertiolecta, Emillania huxleyi, Heterocapsa pygmacea, Isochrysis (Caicos), Isochrysis (Tahiti), Isochryus sp., Monochrysis sp., Nannochloris, Nitzchia, Platymonas sp., P. tetraselmis, Prorocentrum minimun, Rhodomonas sp., Skeletonema costatus, Tetraselmis chuii, Tetraselmis sp., T. suecica, Thalassiosira fluviatilis and T. weissflogii. There are other diets that have seldom been studied with Strombus veliger larvae, that could be a potential food source for these gastropods. The type concentration of algae, larval rearing conditions are summarized along with the results attained in larval growth, metamorphosis, survival, ingestion and digestion rates.

DESCRIPTORS: Gastropoda, Mollusc culture, feeds, larvae, species differences, feeding, nutrient requirements, algae, feed rations, digestion, survival, feed intake, literature reviews.

Encena II, V.C.; E. C. Capinpin Jr.; N. C. Bayona. **Optimal sperm concentration and time for fertilization of the tropical abalone, Haliotis asinina Linne 1758.** *Aquaculture*. Amsterdam, Elsevier. June 15, 1998. v. 165 (3/4) p. 347-352. ISSN: 0044-8486. NAL CALL NUMBER: SH1.A6

ABSTRACT: Current interest in the tropical abalone Haliotis asinina has generated research into seed production and culture techniques. However, there has been no report regarding the optimal sperm concentration for fertilization and development and gamete viability for this species. Spawned eggs of H. asinina were artificially fertilized using eleven final sperm concentrations ranging from 1 X 10(2) to 1 X 10(7) sperm ml-1. In another experiment eggs were fertilized using sperm spawned at the same time at a final sperm concentration of 1 X 10(5) sperm ml-1 at 1, 2, 3, 4, and 5 h after spawning. Sperm concentrations of 5 X 10(3) to 1 X 10(5) sperm ml-1 gave both maximal fertilization rate and normal trochophore development. The sperm to oocyte ratio of this range is 1 x 10(3) to 2 x 10(4). Gametes were still viable 2 h after spawning; both fertilization and normal development rates decreased when fertilized later. It is recommended to use 1 X 10(5) sperm ml-1 for artificial fertilization, viability, Mollusc culture, oocytes, spawning, concentration, biological development, time.

Fukami, K.; Kawai, A.; Asada, M.; Okabe, M.; Hotta, T.; Moriyama, T.; Doi, S.; Nishijima, T. Yamaguchi, M.; Taniguchi, M. (1998) Continuous and simultaneous cultivation of benthic food diatom Nitzschia sp. and abalone Haliotis sieboldii by using deep seawater. *Journal of Marine Biotechnology* 6 (4) 237-240, ISSN: 0941-2905.

NAL CALL NUMBER: TP248.27 M37J68

DESCRIPTORS: cell biology, marine ecology, ecology, environmental sciences, methods and techniques, Chrysophyta, Algae, Plantae, Gastropoda, Haliotis sieboldii, abalone, Nitzschia, benthic food diatom, Microorganisms, Nonvascular Plants, benthic food diatom cultivation, cell culture method, deep seawater.

Jess, S.; R. J. Marks. Effect of temperature and photoperiod on growth and reproduction of Helix aspersa var. maxima. *J Agric Sci.* Cambridge : Cambridge University Press. May 1998. v. 130 (pt.3) p. 367-372. ISSN: 0021-8596.

NAL CALL NUMBER: 10 J822

DESCRIPTORS: Helix aspersa, snail, growth, sexual reproduction, regulation, temperature, photoperiod, light intensity, dark, Mollusc culture, methodology, Gastropoda.

Matthiessen, P.; P. E. Gibbs. Critical appraisal of the evidence for tributyltin-mediated endocrine disruption in mollusks. *Environ Toxicol Chem.* Pensacola, Fla. : SETAC Press. Jan 1998. v. 17 (1) p. 37-43. ISSN: 0730-7268.

NAL CALL NUMBER: QH545.A1E58

ABSTRACT: This article reviews the field and laboratory evidence for endocrine disruption in gastropod mollusks caused by tributyltin (TBT). Abundant and undisputed field data link TBT with an irreversible sexual abnormality of female neogastropod snails known as "imposex." This phenomenon is a masculinization process involving the development of male sex organs, notably a penis and a vas deferens; in certain species the imposition of a vas deferens disrupts oviducal structure and function, preventing normal breeding activity and causing population disappearance. In some species, oogenesis is supplanted by spermatogenesis. A related condition referred to as "intersex" has been reported in littorinid mesogastropods, and these too become unable to lay eggs. Field evidence clearly associates these syndromes with the use of TBT as an antifoulant, chiefly on boat hulls, and dose-related effects can be replicated in laboratory exposures to environmentally relevant concentrations of TBT compounds. It has now been established that imposex and intersex are forms of endocrine disruption caused by elevated testosterone titers that masculinize TBT-exposed females. The precise mechanism by which increased levels of testosterone are produced has not been fully described, but the weight of evidence suggests that TBT acts as a competitive inhibitor of cytochrome P450-mediated aromatase. Some recent data suggest that TBT may also inhibit the formation of sulfur conjugates of testosterone and its active metabolites, thus interfering with its excretion. In summary, TBT-induced masculinization in gastropods, imposex and intersex, is the clearest example of endocrine disruption described in invertebrates to date that is unequivocally linked to a specific environmental pollutant.

DESCRIPTORS: organotin compounds, pollutants, toxicity, adverse effects, nontarget organisms.

Searcy Bernal, R.; C. Anguiano Beltran. Optimizing the concentration of gamma-aminobutyric acid (GABA) for inducing larval metamorphosis in the red abalone Haliotis rufescens (Mollusca: Gastropoda). *J World Aquac Soc.* Baton Rouge, La. : World Aquaculture Society, c1987. 1998. v. 29 (4) p. 463-470. ISSN: 0893-8849. NAL CALL NUMBER: SH138.W62

DESCRIPTORS: Haliotis rufescens, gamma aminobutyric acid, larvae, metamorphosis, application rates, Mollusc culture, efficiency, bacteria, degradation, toxicity, evaluation, survival, growth.

Shields, J.D.; Buchal, M.A.; Friedman, C.S. (1998) **Microencapsulation as a potential control** technique against sabellid worms in abalone culture. *Journal of Shellfish Research* V. 17, N1 (JUN), P. 79-83, ISSN: 0730-8000.

NAL CALL NUMBER: SH365.A1J6

DESCRIPTORS: microcapsules, Abalone, parasite, pest, Sabellid, liposomes, microcapsules, Polychaete, diets, delivery, protein, larvae, growth.

Wiedemeyer, W. L. Contributions to the larval biology of the red-lipped conch, Strombus luhuanus L. 1758, with respect to seed production for mariculture. *Aquac Res.* Oxford : Blackwell Science, c1995. Jan 1998. v. 29 (1) p. 1-7. ISSN: 1355-557X. NAL CALL NUMBER: SH1.F8

ABSTRACT: Spawning behavior and embryology of the red-lipped conch, Strombus luhuanus L. 1758 (Strombidae, Gastropoda), was investigated from 4 April to 19 May 1991, at Okinawa, southern Japan. At the laboratory and at a water temperature of 22.5-23.5 degree C, veliger larvae developed 92 h after spawning. In all, 2140 larvae were examined for morphometric data. Growth and development was monitored at different water temperatures (23, 28 and 33 degree C), in natural sea water filtered through 150-micrometer, 60-micrometer and 1-micrometer screens and when fed various combinations of food organisms, namely Chaetoceros sp., Dunaliella sp. and Pavlova sp. The minimum duration of the pelagic period of the larvae was 14.5 days. Infestation by parasites was the main cause of high larval mortality before the age of 10-12 days if the water was not filtered at a minimum of 60 micrometer. Inappropriate food diversity was the most significant source of mortality beyond this age. The maximum age reached during all rearing experiments was 16 days. Under optimized feeding conditions and in natural sea water filtered at 1-60 micrometer, the pelagic period of S. luhuanus larvae lasted 16.5 to 17.4 days (95% confidence limits). Optimum water temperature was 23-28 degree C. A stepwise increment of filter sizes and a contemporary provision of a combination of specific supplementary food organisms is advised through grow-out of the larvae. DESCRIPTORS: morphology, Gastropoda, larvae, Mollusc culture, sexual reproduction,

spawning, embryonic development, growth, water temperature, filtration, feeding, foods, algae, mortality, infestation, nutrient requirements, feed supplements, ova, Ryukyu Archipelago.

1997

Gimin, R.; C. L. Lee. Effects of different substrata on the growth rate of early juvenile Trochus niloticus (Mollusca: Gastropoda). *ACIAR Proceedings ; No. 79.* Trochus status, hatchery practice and nutrition proceedings of a workshop held at Northern Territory University, 6-7 June 1996. Canberra : Australian Centre for International Agricultural Research, 1997. p. 76-80. ISBN: 186320203X.

NAL CALL NUMBER: S542.A8A34-no.79

DESCRIPTORS: shellfish culture, substrates, nitzschia, food, unrestricted feeding, survival, growth rate.

Gomot, A.; Pihan, F. (1997) **Comparison of the bioaccumulation capacities of copper and zinc in two snail subspecies (Helix).** *Ecotoxicol Environ Saf* 38(2): 85-94, ISSN: 0147-6513. NAL CALL NUMBER: QH545.A1E29 *ABSTRACT*: Bioaccumulation analyses of copper and zinc were carried out in two snail subspecies (Helix aspersa aspersa and Helix aspersa maxima) after 3 months of controlled farming (out of ground) with foods of different formulations. The results reveal some clear interspecific differences in affinity toward copper and zinc. For the two metals considered, H. aspersa aspersa has a bioaccumulation capacity much greater than that of H. aspersa maxima, mainly in the foot for copper and in the viscera for zinc. After 3 months, the concentrations of copper in feet and viscera are much higher than those presented in the literature on field animals. The farming and the analysis methodologies permitted obtaining snails under standard condition and open the way to the development of rational protocols for ecotoxicological studies in a laboratory as well as in the field.

DESCRIPTORS: copper pharmacokinetics, helix snails chemistry, zinc pharmacokinetics, copper metabolism, helix snails drug effects, tissue distribution, toxicity tests, zinc metabolism.

Rebhung, F.; S. M. Renaud; D. L. Parry; C. L. Lee. Fatty acid composition characteristic of **Trochus niloticus (Mollusca: Gastropoda) fed on naturally growing microalgae in an aquaculture system.** *ACIAR Proceedings ; No. 79.* Trochus status, hatchery practice and nutrition proceedings of a workshop held at Northern Territory University, 6-7 June 1996. Canberra : Australian Centre for International Agricultural Research, 1997. p. 114-117. ISBN: 186320203X.

NAL CALL NUMBER: S542.A8A34-no.79

DESCRIPTORS: shellfish culture, diet, shellfish, chemical composition, fatty acids, age, size, Gastropoda.

Renaud, S. M.; M. Djafar; D. L. Parry. **Preliminary investigation of an artificial diet for the marine topshell, Trochus niloticus (Mollusca: Gastropoda).** *ACIAR Proceedings ; No. 79.* Trochus status, hatchery practice and nutrition proceedings of a workshop held at Northern Territory University, 6-7 June 1996. Canberra : Australian Centre for International Agricultural Research, 1997. p. 109-113. ISBN: 186320203X.

NAL CALL NUMBER: S542.A8A34-no.79

DESCRIPTORS: feeding preferences, feeds, attractants, formulations, water, stability, shellfish culture, Gastropoda.

1996

Baturo, W.; L. Lagadic. Benzo[a]pyrene hydroxylase and glutathione S-transferase activities as biomarkers in Lymnaea palustris (Mollusca, Gastropoda) exposed to atrazine and hexachlorobenzene in freshwater mesocosms. *Environ Toxicol Chem.* Pensacola, Fla. : SETAC Press. May 1996. v. 15 (5) p. 771-781. ISSN: 0730-7268.

NAL CALL NUMBER: QH545.A1E58

ABSTRACT: Freshwater pond mesocosms were used to validate xenobiotic-metabolizing enzymes as biomarkers of contamination by atrazine and hexachlorobenzene (HCB) in a basommatophoran gastropod, Lymnaea palustris (Muller). Over long-term (21-d) exposure to 5, 25, and 125 microgram/L atrazine and to 0.5, 1.25, and 5 microgram/L HCB, the uptake and internal concentration of both pesticides were followed, and the activities of benzo[a]pyrene hydroxylase (BaPH) and glutathione S-transferases (GSTs) of pesticide-exposed snails were compared with those of control animals maintained in untreated mesocosms. Internally recovered HCB concentrations were much higher than internal atrazine concentrations, but the uptake of atrazine was faster than that of HCB. Although it affected the integrity of microsomal membranes, HCB had no relevant effects on BaPH and GST activities at concentrations which affected growth and fecundity, thus confirming the low inducibility of mollusc xenobiotic-metabolizing enzymes by chlorinated compounds. In contrast, atrazine markedly inhibited BaPH and both postmitochondrial and cytosolic GSTs at the same concentrations, which had no effects on growth or reproduction. Enzyme inhibition was negatively correlated with the maximal internal amount of atrazine and positively correlated with the bioconcentration factor, suggesting that effects on xenobiotic-metabolizing enzymes may affect pharmacokinetics of atrazine within the snail body. Correlation between the bioconcentration factor and enzyme inhibition may serve as a descriptor of the physiological status of animals and can also be used to indirectly estimate the pesticide concentration in the environment. Laboratory data were considered for the interpretation of results obtained in the mesocosms. In the biomarker context, BaPH and GST activities are proposed, along with other biochemical markers already identified in atrazine- and HCB-exposed L.

palustris, as elements of a multiparametric approach of the ecotoxicological effects of pesticides on freshwater ecosystems.

DESCRIPTORS: atrazine, hexachlorobenzene, concentration, exposure, uptake, lymnaea, oxygenases, glutathione transferase, enzyme activity, inhibition, biological indicators, water pollution.

1993

McQuaid, C.D.; Froneman, P.W. (1993) Mutualism between the territorial intertidal limpet Patella longicosta and the crustose alga Ralfsia verrucosa. *Oecologia* v. 96(1) p. 128-133, ISSN 0029-8549.

NAL CALL NUMBER: QL750.O3

ABSTRACT: Mutualistic relations between plants and animals are well documented on land but have received less attention in marine systems. This study examined the relationship between the territorial intertidal limpet Patella longicosta and the crustose brown alga Ralfsia verrucosa. Adult Patella are found exclusively in association with Ralfsia, on which they feed, while Ralfsia occurs primarily, but not exclusively, in Patella territories. Ralfsia benefits directly from both the presence and the territorial behaviour of Patella. Algal productivity was assessed by measuring oxygen evolution and utilization in situ and deriving photosynthesis/irradiance curves. Productivity was increased by about 30% by the presence of Patella in both summer (P(max) of grazed algae 0.0098; ungrazed algae 0.0063 mg C pro square cm pro h) and winter (P(max) grazed algae 0.0081; ungrazed algae 0.0053 mg**-2 pro C pro h). Algal growth rates were not significantly increased by the application of limpet mucus in the laboratory. Nutrient regeneration by the limpet was not examined, but the increase in photosynthetic rate may depend on the limpet's grazing pattern which creates secondary sites for growth. Ralfsia also benefited from the territorial behaviour of Patella. The effects of different grazing regimes were investigated in different seasons by removing territorial limpets and either excluding all limpets using copper-based antifouling paint, or allowing access to non-territorial limpets (mostly P. oculus) using partial paint barriers.

DESCRIPTORS: snails, algae, symbiosis, plant animal relations, biomass, intertidal environment, aquatic environment, environments, marine environment.

Okino, T.; Hatsushika, R. (1993) An experimental study of the embryonation and hatching of **Parafossarulus manchouricus eggs: Influence of chlorinity on the culture solution.** Japanese Journal of Parasitology 42 (1) 18-23, ISSN: 0021-5171. Note: In Japanese. NAL CALL NUMBER: 436.8 J27

DESCRIPTORS: development, ecology, environmental sciences, physiology, Gastropoda, Biomphalaria glabrata.

Viana, M.T.; Lopez, L.M.; Salas, A. (1993) **Diet Development for Juvenile Abalone Haliotis fulgens Evaluation of 2 Artificial Diets and Macroalgae.** *Aquaculture* V 117, N1-2 (NOV 1), P. 149-156, ISSN: 0044-8486.

NAL CALL NUMBER: SH1.A6

DESCRIPTORS: agriculture, biology & environmental sciences, fisheries, marine & freshwater biology.

1991

Castellanos, Z. J. A. de. *Gastropoda mollusks*. Fundacion para la Educacion, la Ciencia y la Cultura. Buenos Aires : FECIC, 1991, v. : ill. Fauna de agua dulce de la Republica Argentina; v. 15, no. 1, etc. Note: In Spanish.

NAL CALL NUMBER: QL141.F3 v.15, NO.1,ETC

DESCRIPTORS: Argentina, pulmonates, freshwater snails, native animals, biology, ecology, distribution, morphology, Biomphalaria species, Schistosoma mansoni.

1984

Winger, P.V.; Imlay, M.J.; McMillan, W.E.; Martin, T.W.; Takekawa, J.; Johnson, W.W. (1984) **Field and laboratory evaluation of the influence of copper-diquat on apple snails in southern Florida.** *Environmental toxicology and chemistry (USA)* 3(3) p. 409-424, ISSN: 0730-7268.

NAL CALL NUMBER: QH545.A1E58

DESCRIPTORS: Florida, herbicides, toxicity, aquatic organisms, Helobiae, America, Monocotyledons, North America, pesticides, south eastern states USA.

1983

Charrier, M.; Daguzan, J. (1983) *Study of food consumption and production of the edible brown snail.* The snail and heliciculture. Paris (France). Ministere de l' Agriculture. Informations Techniques des Services Veterinaires, p. 37-51.

NAL CALL NUMBER: 41.9 F843I

DESCRIPTORS: snails, feed consumption, food preferences, kales, compound feeds, laboratory experiments, snail culture, environmental conditions, growth period, agriculture, animal production, animals, aquatic animals, aquatic organisms, behaviour, consumption, crops, developmental stages, economic plants, environment, experiments, feed crops, feed crucifers, feeding habits, feeds, green vegetables, plants, production, research, vegetable crops.

1982

Burch, J. B. *Freshwater snails (Mollusca: Gastropoda) of North America*. Environmental Monitoring and Support Laboratory, Cincinnati, Ohio: Office of Research and Development, U.S. Environmental Protection Agency, 1982. vi., 294 p. : ill. EPA 600/3-82-026. NAL CALL NUMBER: QL430.4.B8

DESCRIPTORS: Gastropoda North America Identification, Mollusks North America Identification.

1976

Nagai, T.; Suda, A. (1976) **Gastropodous and bivalvate (Mollusca) faunas in the trawl fishing ground of the eastern Bering Sea in summer with reference to their environment.** *Bulletin Far Seas Fisheries Research Laboratory* (no.14) p. 163-179. Note: In Japanese. DESCRIPTORS: aquatic ecology, Bering Sea.

Miscellaneous

2001

Lutz, C.G. **Comparing apples to apples: genotype environment interactions.** *Aquac Mag.* [Little Rock, Ark., Briggs Associates, inc.]. Sept/Oct 2001. v. 27 (5) p. 67-70. ISSN: 0199-1388. NAL CALL NUMBER: SH1.C65

DESCRIPTORS: freshwater fishes, shellfish, shellfish culture, Mollusc culture, genotype environment interaction, fish culture, shrimp culture, ponds, cages, fish ponds.

Nickum, M. J. A summary of aquaculture in Canada: Atlantic and Pacific regions. Aquac Mag. [Little Rock, Ark., Briggs Associates, inc.]. Sept/Oct 2001. v. 27 (5) p. 42-50. ISSN: 0199-1388.

NAL CALL NUMBER: SH1.C65

DESCRIPTORS: fish culture, salmon culture, shellfish culture, Mollusc culture, water pollution, environmental impact, Canada, northwest atlantic, northeast pacific.

2000

Castell, J. **Farming the waters: bringing aquatic plant and animal species to agriculture.** *Can J Anim Sci.* Ottawa : Agricultural Institute of Canada, 1957. June 2000. v. 80 (2) p. 235-243. ISSN: 0008-3984.

NAL CALL NUMBER: 41.8 C163

ABSTRACT: Aquaculture has a long history, with carp culture in Asia starting before 2000 BC and oyster culture in the Roman Empire before the time of Julius Caesar. However, it is clearly the past 40 yr that have seen the most dramatic expansion of aquaculture. The world's population now exceeds 6 billion people and is still growing at an alarming rate. The world's wild fish harvest has clearly peaked at or above the maximum sustainable yield of about 90 million t. Many fish stocks are suffering from over-fishing and there is little hope of any increase in the capture fisheries production. Though modern agricultural practices have been very efficient at increasing the per acre yields, the world is experiencing an alarmingly steady decrease in the amount of agricultural land devoted to food production. In the past 20-30 yr production of fish, molluscs, crustaceans and aquatic plants (aquaculture) has become an increasingly important means of producing food, and in some countries aquaculture production accounts for more than half of the total fishery harvest and is even as high as 90% in a few countries. I have reviewed the historical growth of aquaculture, compared the product value in various countries and reviewed aquaculture practices for a number of plant, molluscan, crustacean and fish species around the world. These culture technologies were compared and contrasted with agricultural

practices. Finally, some predictions for the future of aquaculture development in Canada and the world have been made.

DESCRIPTORS: aquaculture, aquatic plants, aquatic animals, fish farming, history, food production, fish diseases, world, prediction, Canada.

Nash, C. E.; A. Nagasawa. **Sumiyoshi fishermen remember their angel.** *World Aquac.* [Baton Rouge, La.: World Aquaculture Society,. June 2000. v. 31 (2) p. 39, 41-42. ISSN: 1041-5602. NAL CALL NUMBER: SH1.W62

DESCRIPTORS: seaweeds, fishermen, history, life cycle, algae culture, spores, seasonal variation, dormancy, reproduction, Mollusca, shells.

Saito, H.; Imabayashi, H.; Kawai, K. (2000) Interaction between handling cost and growth of the bivalve-feeder Halla okudai under rearing conditions, in relation to prey species. *Fisheries Science Tokyo* 66 (5): 863-870, ISSN: 0919-9268.

DESCRIPTORS: development, ecology, environmental sciences, Pelecypoda, Polychaeta, Annelida, Crassostrea gigas, Pacific oyster, Halla okudai, Mytilus galloprovincialis, blue mussel, Ruditapes philippinarum, short neck clam, Annelids, energy budget, foraging behavior, growth increment, intertidal communities, oxygen consumption, prey conditions, prey handling cost, rearing conditions, respiration rate.

Saito, H.; Imabayashi, H.; Kawai, K. (2000) Interaction between searching cost and growth of the bivalve-feeder Halla okudai under rearing conditions, in relation to prey size. *Fisheries Science Tokyo* 66 (5): 908-914, ISSN: 0919-9268.

DESCRIPTORS: behavior, ecology, environmental sciences, Pelecypoda, Polychaeta, Annelida, Halla okudai, predator, Ruditapes philippinarum, prey, Annelids, feces, digestive system, energy budget, feeding experiment, foraging behavior, growth rate, predator prey interactions, prey searching cost, prey size, rearing conditions, respiration rate.

Verschuere, L.; Rombaut, G.; Sorgeloos, P.; Verstraete, W. (2000) **Probiotic bacteria as biological control agents in aquaculture.** *Microbiol Mol Biol Rev* 64(4): 655-71, ISSN: 1092-2172.

NAL CALL NUMBER: QR1.B25

ABSTRACT: There is an urgent need in aquaculture to develop microbial control strategies, since disease outbreaks are recognized as important constraints to aquaculture production and trade and since the development of antibiotic resistance has become a matter of growing concern. One of the alternatives to antimicrobials in disease control could be the use of probiotic bacteria as microbial control agents. This review describes the state of the art of probiotic research in the culture of fish, crustaceans, mollusks, and live food, with an evaluation of the results obtained so far. A new definition of probiotics, also applicable to aquatic environments, is proposed, and a detailed description is given of their possible modes of action, i.e., production of compounds that are inhibitory toward pathogens, competition with harmful microorganisms for nutrients and energy, competition with deleterious species for adhesion sites, enhancement of the immune response of the animal, improvement of water quality, and interaction with phytoplankton. A rationale is proposed for the multistep and multidisciplinary process required for the development of effective and safe probiotics for commercial application in aquaculture. Finally, directions for further research are discussed.

DESCRIPTORS: aquaculture methods, bacteria, pest control biological methods, probiotics, Crustacea, fishes.

1997

Skakelja, N. (1997) An overview of genetic research in the Laboratory of Aquaculture at the Institute of Oceanography and Fisheries, Split, Croatia. Bartley, D.M. (FAO, Rome (Italy). Fisheries Resources and Environment Division); Basurco, B. Centre International de Hautes Etudes Agronomiques Mediterraneennes, Zaragoza (Spain). Institut Agronomique Mediterraneen de Zaragoza; FAO, Rome (Italy). Genetics and breeding of Mediterranean aquaculture species. Zaragoza (Spain). CIHEAM-IAMZ 1998, ISSN 1022-1379. ABSTRACT: This paper is an overview of marine aquaculture in Croatia and an in-depth coverage of works and achievements of scientists in the Laboratory of Marine Aquaculture. At the end of the 80's the first steps into the field of fish genetics were made by working on hybrids of Sparus aurata x Diplodus puntazzo, Sparus aurata x Diplodus vulgaris and finally Dentex dentex x Diplodus sargus; the last cross was found to be potentially interesting for marine aquaculture. Further research on chromosome manipulation was conducted to induce triploidy of Sparus aurata by temperature shocking freshly fertilized eggs. At the beginning of the 90's research on population genetics of mussel (Mytilus galloprovincialis) was conducted in the Laboratory in co-operation with French colleagues from IFREMER. The present work includes research on chromosome structure of Sparid species from the Eastern Adriatic as well as population genetics. In the future, will be implemented a database on Adriatic fish, mainly with the goal to support a program of protection of wild populations of finfish. DESCRIPTORS: Sparus, Diplodus, Mytilus, Croatia, aquaculture, karyotypes, population genetics, Balkans, Bivalvia, bony fishes, cell structure, Europe, fishes, genetics, Mollusca, Percoidei.

1996

Jalabert, B.; Michel, A. (1996) Which researches and which developments for aquaculture? *Comptes Rendus de l'Academie d'Agriculture de France* 82 (9) 171-182, ISSN: 0989-6988. Note: In French.

NAL CALL NUMBER: S5 C65

DESCRIPTORS: conservation, physiology, systematics and taxonomy, wildlife management, conservation, Europe, Palearctic region, France, aquaculture, aquatic environment, development policies, outlets stability, rearing systems, research, resource management, socioeconomic context.

1995

Lees, D.N.; Henshilwood, K.; Green, J.; Gallimore, C.I.; Brown, D.W. (1995) **Detection of** small round structured viruses in shellfish by reverse transcription-PCR. *Appl Environ Microbiol* 61(12): 4418-24, ISSN: 0099-2240.

NAL CALL NUMBER: 448.3 AP5

ABSTRACT: We describe the application of a previously developed sample extraction procedure to the detection of small round structured viruses (SRSVs) in shellfish. Initial seeding experiments showed that PCR inhibitor removal and virus recoveries were comparable to those in previous studies with poliovirus. Shellfish from a range of sewage-contaminated sites were then tested for the presence of SRSVs by using broadly reactive PCR primers followed by Southern blotting with internal probe sites. Positive results were obtained from 5 of 31 field samples tested. Four of these positive samples were from highly polluted sites. PCR product sequence analysis confirmed their identity as SRSV and showed sequence diversity compared with virus controls, suggesting that the results were not a consequence of PCR cross-contamination. Finally, shellfish associated with four separate outbreaks of viral gastroenteritis were tested by PCR and Southern blot for the presence of SRSVs. All outbreak samples tested gave positive results. As far as we are aware, this is the first demonstration of the detection in environmentally contaminated shellfish of the SRSVs responsible for human gastroenteritis. This development may help contribute to the further development of public health controls for molluscan shellfish.

DESCRIPTORS: food microbiology, Norwalk virus isolation and purification, shellfish virology, amino acid sequence, base sequence, molecular sequence data, polymerase chain reaction methods, sequence alignment.

1993

McVey, E. M. Mollusc culture: January 1989 - February 1993. Quick Bibliogr Ser U S Dep Agric Natl Agric Libr U S. Beltsville, Md. : The Library. Mar 1993. (93-19) 27 p. ISSN: 1052-5378. NAL CALL NUMBER: aZ5071.N3 DESCRIPTORS: Mollusc culture, shellfish, bibliographies.

1991

Day, J. D.; A. P. Edwards; G. A. Rodgers. **Development of an industrial-scale process for the heterotrophic production of a micro-algal mollusc feed.** *Bioresource Technol. Essex* : Elsevier Applied Science Publishers. 1991. v. 38 (2/3) p. 245-249. ISSN: 0960-8524. NAL CALL NUMBER: TD930.A32 DESCRIPTORS: algae culture, industrial methods, dry feeds, powders, feeding, trials, UK.

Nash, C. E. *Production of aquatic animals : crustaceans, molluscs, amphibians, and reptiles.* Amsterdam ; New York : Elsevier Science, 1991. xii, 244 p. : ill. World animal science. C, Production-system approach ; 4. ISBN: 0444883126.

NAL CALL NUMBER: SH370.P76 1990

DESCRIPTORS: Shellfish culture, Amphibian culture, Reptile culture, Aquaculture.

1989

Kautsky, N.; Folke, C. (1989) A sustainable development of aquaculture. *Food Laboratory News* (no. 18) p. 43-48, ISSN: 1100-3227.

NAL CALL NUMBER: TX541.F663

DESCRIPTORS: Mollusc culture, fish culture, aquatic communities, environmental effects, aquaculture, biocoenosis, injurious factors, shellfish culture.

Quayle, D. B.; G. F. Newkirk. *Farming bivalve molluscs : methods for study and development*. Advances in world aquaculture ; v. 1. Baton Rouge, LA : World Aquaculture Society in association with the International Development Research Centre, c1989. ix, 294 p. : ill. ISBN: 0962452904.

NAL CALL NUMBER: SH370.Q82

DESCRIPTORS: Shellfish culture, Bivalvia.

1988

Amidei, R. E. West Coast mollusc culture : a present and future perspective : proceedings of a California Sea Grant Workshop, in cooperation with the Pacific Sea Grant College Program, July 9-10, 1987, University of California, Berkeley. Sea grant report; no. T-CSGCP-017. California Sea Grant Workshop (1987 : University of California, Berkeley). University of California (System). Sea Grant College Program. Pacific Sea Grant College Program. La Jolla : Institute of Marine Resources, 1988. 87 p. : ill.

NAL CALL NUMBER: SH365.A18C3 1987

DESCRIPTORS: Mollusks Pacific Coast U.S. Congresses, Shellfish culture Pacific Coast U.S. Congresses.

1984

Glude, J. B. **The applicability of recent innovations to mollusc culture in the western Pacific Islands.** *Aquaculture.* Amsterdam : Elsevier Scientific Publishing. June 15, 1984. v. 39 (1/4) p. 29-43. ill., maps. ISSN: 0044-8486. NAL CALL NUMBER: SH1.A6 DESCRIPTORS: Pacific Islands.

Morse, D. E.; K. K. Chew; R. R. Mann. *Recent innovations in cultivation of Pacific molluscs : proceedings of an international symposium sponsored by the California Sea Grant College Program and the Pacific Sea Grant College Programs in Alaska, Hawaii, Oregon, and Washington : held at La Jolla, California, U.S.A., 1 December to 3 December 1982*. University of California (System). Sea Grant College Program. International Symposium on Recent Innovations in the Cultivation of Pacific Molluscs (1982 : La Jolla, Calif.). Developments in aquaculture and fisheries science ; 14. Amsterdam ; New York : Elsevier : Distributors for the United States and Canada, Elsevier Science Pub. Co., 1984. xi, 404 p. : ill., maps. ISBN: 0444423508.

NAL CALL NUMBER: SH1.D43 v.14

DESCRIPTORS: Shellfish culture Pacific area Technological innovations Congresses, Shellfish culture Technological innovations Congresses.

1982

Lynch, T. Award-winning research team continues advances in mollusc culture techniques. *Aquaculture Mag.* Little Rock : Briggs Associates, Inc. Sept/Oct 1982. v. 8 (6) p. 14-17. ill. ISSN: 0199-1388.

NAL CALL NUMBER: SH1.C65

DESCRIPTORS: Abalone culture, rearing techniques, reproduction, larval development, metamorphosis, growth, molecular mechanisms, biological/ cellular/ physiological processes.

1981

Boyle, P. R. *Molluscs and man.* The Institute of Biology's studies in biology, 0537-9024 ; no. 134. London : Edward Arnold, c1981. 59 p. : ill. ISBN: 0713128240 (pbk.). NAL CALL NUMBER: QH301.I52 no.134 DESCRIPTORS: Shellfish culture.

Colt, J. E.; D. A. Armstrong. Nitrogen toxicity to crustaceans, fish, and molluscs. *Proceedings of the Bio-Engineering Symposium for Fish Culture* / edited by Lochie Jo Allen and Edward C. Kinney. Bethesda, Md. : Fish Culture Section of the American Fisheries Society, c1981. p. 34-46.

NAL CALL NUMBER: SH151.B54 1979

DESCRIPTORS: nitrogen toxicity, bioengineering, mechanisms, toxic effects, culture growth, maintenance, aeration, culture system hyraulics, animal welfare.

Tagatz, M.E.; Ivey, J.M.; Gregory, N.R.; Oglesby, J.L. (1981) Effects of pentachlorophenol on field- and laboratory-developed estuarine benthic communities. *Bull Environ Contam Toxicol* 26(1): 137-43, ISSN: 0007-4861.

NAL CALL NUMBER: RA1270.P35A1

DESCRIPTORS: chlorophenols toxicity, pentachlorophenol toxicity, water pollutants toxicity, water pollutants chemical toxicity, Annelida drug effects, Arthropods drug effects, Florida, Mollusca drug effects, pentachlorophenol analysis, seawater analysis.

1980

Gottardi, G. "Active" water in fish culture Sanitation, contamination of water, molluscs. Acque "attive" in piscicoltura. *Inf Zootec.* Bologna, Edagricole. Jan 31, 1980. v. 27 (2) p. 40-41. ill. ISSN: 0020-0778. Note: In Italian.

NAL CALL NUMBER: 49 IN3

DESCRIPTORS: contaminant sources, culture, aquaculture, water contamination, chemical pollutants, micro-organisms, potential pathogens, active water.

Persoone, G.; C. Claus. Mass culture of algae: a bottleneck in the nursery culturing of molluscs. *Algae biomass : production and use /* sponsored by the National Council for Research and Development, Israel and the Gesellschaft fur Strahlen- und Umweltforschung (GSF), Munich, Germany; editors, Gedaliah Shelef, Carl J. Soeder. Amsterdam,

Elsevier/North-Holland Biomedical Press, 1980. p. 265-285. ill.

NAL CALL NUMBER: SH389.A44

DESCRIPTORS: mass algae culture, nursery culturing, production/ use of algae biomasses, nutrition, feeding, housing, water sources, environment, ecology, continuous culture, induced blooming, marine algae, postlarval bivalves.

World Wide Web Resources

Bivalves

Bivalves- Research, Training, Electronic Dissemination of Data

http://peet.fmnh.org/default.html

•From the site, "A joint program based at the Field Museum of Natural History and the American Museum of Natural History. Drs. Rüdiger Bieler (FMNH) and Paula M. Mikkelsen (AMNH), principal investigators". Included in this site are resources, research, and also databases.

Bivalvia

http://paleo.cortland.edu/tutorial/Bivalves/bivalvia.htm

•A bivalve topical research information section from the State University of New York College at Cortland. As listed on the index page at: <u>http://paleo.cortland.edu/tutorial/index.html#phylumlist</u> "This web site was created to be a companion to the laboratory for GLY 363 - Invertebrate Paleontology. It is designed to provide the student enrolled in GLY 363 with an additional resource for reviewing laboratory materials. It is set up in a format which parallels the laboratory handouts. Most of the images contained within the web site are taken directly from specimens that are found on display for study in the paleontology laboratory". Other sections are listed as well including a comprehensive section on Cephalopoda, Gastropoda, and other Molluscs.

The Centro de Estudios de Almejas Muertas (C.E.A.M.)

http://www.geo.arizona.edu/ceam/index.html

•As listed on this web site, "English translation: Center for the Study of Dead Clams] is an informal organization dedicated to the study of taphonomy. Taphonomy is the study of dead things and how they get incorporated into the fossil record".

Another page on this site at: <u>http://www.geo.arizona.edu/ceam/tapho.htm</u> has some good links under **Mollusk Links** at: <u>http://www.geo.arizona.edu/ceam/tapho.htm#link5</u>

The parent home page is from the University of AZ, Dept. of Geosciences at: <u>http://www.geo.arizona.edu/</u> More also available at: <u>http://www.geo.arizona.edu/geo3xx/308/mollusc.html#biva</u>

Intergalactic Marigenetics Center

http://www-bml.ucdavis.edu/imc/Oyster.html

•As listed on the home page, "Target species is the Pacific oyster, *Crassostrea gigas*. Some project topics include broodstock development using classical genetic techniques, and mapping of QTL's associated with heterosis". An interesting, informative web site including protocols, software, pictures, and more- definitely a site to check out.

Junglewalk.com

http://www.junglewalk.com/frames.asp

•As listed on the about us page, "Our large compilation of video and audio clips, which is currently the primary focus of this site, should complement other available animal directories in the web. We have avoided using precise scientific classification and references to academic work to keep this site accessible to the younger crowd. However, we hope the site will still be useful to educators, parents, and anyone interested in animals". There is a section focused on clams and Bivalves. Also included are sections on Cephalopods and Gastropods.

Living Reef Images

http://www.livingreefimages.com/index.htm •A special section with photographs available at: <u>http://www.livingreefimages.com/Page66.html</u> As stated on the home page, "A library of aquarium and natural reef photographs available to publishers world wide". Also contains some additional pages on Gastropods and Cephalopods at:

http://www.livingreefimages.com/Page65.html

http://www.livingreefimages.com/Page67.html

The Living World of Molluscs

http://members.lycos.co.uk/Mollusks/

•By Robert Nordsieck- general and comparative information on the phyllum of molluscs. Here's the Bivalve section: http://members.lycos.co.uk/Mollusks/muscheln.html

National Shellfisheries Association

http://www.shellfish.org/

•From the homepage, "Founded in 1908, The National Shellfisheries Association is an international organization of scientists, management officials and members of industry, all deeply concerned with the biology, ecology, production, economics and management of shellfish resources - clams, oysters, mussels, scallops, snails, shrimp, lobsters, crabs, among many other species of commercial importance". A good site to visit to explore the positive influence of aquaculture on research with respect to other readily available web resources as listed.

The Neogene Marine Biota of Tropical America (NMITA)

http://porites.geology.uiowa.edu/index.htm

Bivalve page:

http://porites.geology.uiowa.edu/database/bivalves/bivalmnu.htm

Also has a bibliography available at:

http://nmita.geology.uiowa.edu/database/mollusc/bivlifebib.htm

•As listed on the About Us page, "The Neogene Marine Biota of Tropical America (NMITA) WWW Site contains images and information on taxa collected as part of two large multi-taxa fossil sampling programs: (1) the Panama Paleontology Project coordinated by the Smithsonian Tropical Research Institute in Panama; (2) the Neogene Paleontology of the northern Dominican Republic (<u>DR</u>) project coordinated by the Natural History Museum in Basel, Switzerland. NMITA is designed for use in research and education in systematics and evolutionary paleontology. Partial information is currently available for bryozoans, corals (zooxanthellate and azooxanthellate), molluscs (gastropods and bivalves), ostracodes, and fish".

Russian Academy of Sciences, Far East Branch

http://www.fegi.ru/prim/index.htm

•This page has some specific information on Bivalves (complete with descriptions and images):

http://www.fegi.ru/prim/sea/mol_dvu.htm

Cephalopods

Cephalopoda, Gastropoda, and other Molluscs

http://paleo.cortland.edu/tutorial/Ceph%26Gast/ceph%26gast.htm

•As listed above, this web site is made available from the State University of New York College at Cortland. Classifications and geologic ranges are included as well. Also see above for additional information.

Cephalopod International Advisory Council

Addresses of current officers are posted on the website.

http://www.nbs.ac.uk/public/mlsd/ciac/index.html

Email: P.rodhouse@bas.ac.uk

•Founded in 1983, the aims of CIAC are to stimulate, accelerate and influence the direction of cephalopod research, to provide help and advice on aspects of cephalopod biology, including those relevant to the management of the increasingly important cephalopod fisheries, and to spread information on past and current research.

•CIAC holds workshops and symposia, endorses meetings organized by cephalopod workers, and produces workshop proceedings and a newsletter. Publications produced by CIAC include: *List of Cephalopod Workers of the World* (http://www.cephbase.dal.ca/cephdir.cfm), a *Computerised Bibliography of Cephalopod Research, Keys for the Identification of Cephalopods*, and *State of the Art* papers in selected areas of research.

The Cephalopod Page

http://is.dal.ca/~ceph/TCP/

Email: ceph@is.dal.ca

•This site is maintained by graduate student James B. Wood, a graduate student at Dalhousie University. The comprehensive site contains in-house articles ranging from procurement, housing, and breeding cephalopods to cephalopods in cinema. There are species factsheets with photos, a list of suppliers by species with links to the supplier's sites, conference information, news, and links to related sites including CephBase. In addition to the information, your mouse will turn into a squid and squirt black ink all over the screen in its trail.

The Cephalopod Page Listserver

•The Cephalopod Page listserver is devoted to promoting discussion of cephalopod biology, husbandry, and behavior. This list is moderated and open to everyone. The site is maintained by James B. Wood, a graduate student at Dalhousie University. To post a message to everyone on the ceph-list, mail it to: ceph-list@ac.dal.ca

To subscribe to ceph-list, send mail to: <u>mailserv@ac.dal.ca</u> with the single line message: subscribe ceph-list

To remove yourself from ceph-list, send mail to: mailserv@ac.dal.ca with the single line message: unsubscribe ceph-list

To retrieve a file from the list archive, send mail to: mailserv@ac.dal.ca with the single line message: send ceph-list.yyyymm where "yyyymm" is the year and month (e.g., 199410) for which you would like the archived messages. The Cephalopod Page FAQ at

http://www.cephbase.utmb.edu/TCP/faq/tcpfaq.cfm and for information about keeping octopuses in aquaria, see http://www.dal.ca/~ceph/TCP/octokeep.html

CephBase

http://www.cephbase.dal.ca/ Email: ceph@ia.dal.ca

•CephBase is a dynamic html relational database-driven interactive web page. The purpose of CephBase is to provide life history, distribution, catch and taxonomic data on all living species of cephalopods (octopus, squid, cuttlefish and nautilus). It also provides predator-prey information. A search engine allows searching records by species. CephBase is created and maintained by James B. Wood and Catriona L. Day under the supervision of Dr. Ron K. O'Dor, Dalhousie University, Halifax, Nova Scotia, Canada.

Directory of Cephalopod Workers

http://www.cephbase.dal.ca/cephdir.cfm

•A list of researchers working with cephalopods. Includes contact information, projects, and links to related reports and publications. The database is searchable and allows users to enter or delete their own information.

The EuroSquid World Wide Web Page

http://www.abdn.ac.uk/eurosquid/

Email: g.j.pierce@abdn.ac.uk

•This site contains information about research on cephalopods at the Department of Zoology, University of Aberdeen and collaborating institutions, along with some general information about cephalopods and people working on them. There are also links to the "marine mammal" and "fisheries" pages and more general pages about Marine and Fisheries Science at the University of Aberdeen. "Eurosquid" was the nickname given to the EC-funded project on "Fishery Potential of North East Atlantic Squid Stocks" (1990-92).

•The website contains bibliographic citations, abstracts, and posters from researchers in the program; abstracts from ICES (International Council for the Exploration of the Sea) annual meetings; job information; squid-related links; news items; and a page hosting the ICES Working Group on Cephalopod Fisheries and Life History.

The Living World of Molluscs

http://members.lycos.co.uk/Mollusks/

•By Robert Nordsieck- general and comparative information on the phyllum of Molluscs. Here's the Cephalopod section: http://members.lycos.co.uk/Mollusks/kopffuesser.html

Mote Marine Laboratory Octopus Pages

Email: debi@marinelab.sarasota.fl.us •Here's where you'll find the cover image of this publication and more: <u>http://www.marinelab.sarasota.fl.us/OCTOPI.HTM</u> Describes the natural history of the octopus and includes a short reference list. <u>http://www.mote.org/~lauren/motenews/winter96/octopus.phtml</u> Describes the octopus circulatory system.

National Resource Center for Cephalopods

http://www.nrcc.utmb.edu Marine Biomedical Institute The University of Texas Medical Branch 301 University, Ewing Hall-ground floor Galveston, TX 77555-1163

Tel: (409) 747-0768, Fax: (409) 772-1822, Email: lswalsh@utmb.edu •The National Resource Center for Cephalopods (NRCC) offers cephalopods, including squid and nautalus for use in education and research projects. The website includes the species available, prices per animal, transport costs, and fees to use NRCC facilities. The site also includes a recommended reading list and a searchable citation database. Current research emphasizes sub-cellular ion channel formation and function, equilibrium receptor function and pharmacology, skin pigment synthesis, aspects of aging, cataract formation, regulation of reproduction and development, respiratory and cardiac physiology, and biochemistry of gene repair, and behavior.

The Ocean Lab Giant Squid Page

http://www.oceanlab.abdn.ac.uk/archi/

•The Aberdeen University Ocean Research Laboratory is based in the Zoology Department. The research group includes biologists and engineers investigating the ecology and behavior of marine animals. This site contains information and photos of the giant squid (*Architeuthis sp.*). Topics include strandings, factsheets, and links.

Smithsonian Institution Cephalopod Bibliography

http://www.siris.si.edu/ Cephalopod Bibliography Department of Invertebrate Zoology-Mollusks NMNH MRC-118 Smithsonian Institution Washington, DC 20560 USA Fax: (202) 357-2343, Email:CEPHBOX@SIVM.SI.EDU

•The *Cephalopod Bibliography* describes publications (books, journal articles, etc.) about recent cephalopods and cephalopod related subjects (predators, prey, etc.). It is searchable by keyword, title, author, and subject. This bibliography comprises publications located at the Division of Mollusks, NMNH. At present, the entries concentrate primarily on works in English or those with an English summary. Future additions to this catalog will include foreign language publications. No attempt has been made for comprehensive coverage of cephalopod publications on fossils or neurophysiology.

Tree of Life - Cephalopoda

http://tolweb.org/tree?group=Cephalopoda&contgroup=Mollusca Dept of Oceanography University of Hawaii Honolulu, Hawaii, USA 96822 Email: <u>ryoung@hawaii.edu</u> •An international site containing general characteristics, a reference

•An international site containing general characteristics, a reference list, and related links. Also includes a classification table which contains detailed information on every order, family, genus, and species.

Zoological Record Internet Resource Guide for Zoology: Cephalopoda

<u>http://www.york.biosis.org/zrdocs/zoolinfo/moll_cep.htm</u> •List of web sites relating to cephalopods.

Gastropods

Aplysia Hometank

http://ganglion.med.cornell.edu/Aplysia/Hometank.html

•Information resource for the molluscan neuroscience community produced at Cornell University Medical College. Includes the searchable Aplysia Database.

Australian Museum Online

http://www.amonline.net.au/

•See this page:

http://www.amonline.net.au/invertebrates/mal/ponder_microsnails.htm

for information on research, projects, collections, and more from as listed, "The Australian Museum has an international reputation in the fields of natural history and indigenous studies research, community programs and exhibitions. The Museum was established in 1827 and is Australia's first museum, with unique and extensive collections of natural science and cultural artefacts". Lots of additional information is included as well.

Bibliographia Nudibranchia

http://scilib.ucsd.edu/sio/indexes/mcdonald.html

•Gary McDonald's bibliography of the nudibranch literature. This bibliography attempts to list all publications which mention nudibranchs, with the exception of textbooks and field guides to local marine animals. Citations were compiled from Biological Abstracts, its RRM counterpart and antecedent, BIOSIS, Current Contents, Zoological Record, Russells's Index Nudibranchia and supplement, and *Opisthobranch Newsletter*. Additional citations were gleaned from the "references cited" sections of numerous major nudibranch articles. A search engine allows keyword and Boollean literature searches.

The Living World of Molluscs

http://members.lycos.co.uk/Mollusks/ •By Robert Nordsieck- general and comparative information on the phyllum of molluscs. Here's the Gastropod section: http://members.lycos.co.uk/Mollusks/schnecken.html

NIH/University of Miami National Resource for Aplysia

http://www.rsmas.miami.edu/groups/sea-hares/ RSMAS - University of Miami 4600 Rickenbacker Causeway Miami, FL 33149 Tel: (305) 361-4946, Fax: (305) 361-4934, Email: tcapo@rsmas.miami.edu •Provides laboratory cultured *Aplysia*. The site contains the newsletter *Slime Lines*, the NIH qualification form, a 3-D tour of the laboratory, and information about rearing and ordering *Aplysia* and red seaweed *Gracilaria* needed to feed them.

The Neogene Marine Biota of Tropical America (NMITA)

http://porites.geology.uiowa.edu/index.htm •See as listed above under Bivalves. Here's the Gastropods page: http://porites.geology.uiowa.edu/database/mollusc/mollsmnu.htm

The Neogene Marine Biota of Tropical America (NMITA)

http://porites.geology.uiowa.edu/index.htm

•See description above under Bivalves. Also as stated above, contains information on Gastropods

at: <u>http://porites.geology.uiowa.edu/database/mollusc/mollsmnu.htm</u> and <u>http://nmita.geology.uiowa.edu/database/mollusc/gastdietbib.htm</u>

Sea Slug Forum

http://www.seaslugforum.net/welcome.htm

•An Australian Museum website that allows you to ask questions and post information on nudibranchs and related sea slugs such as bubble-shells, sea hares and side-gilled slugs. Past questions are categorized for easy searching. Topics range from medical use to captive care. A species list, book reviews, participant list, and links are also provided.

Miscellaneous

Junglewalk.com

http://www.junglewalk.com/frames.asp •See above as listed under Bivalves.

Living Reef Images

http://www.livingreefimages.com/index.htm •See above under Bivalves for a description.

Marine World

http://www.mcsuk.org/index.htm

•Has some interesting information on Molluscs and other species as well. Made available by the Marine Conservation Society. You will have to navigate through the index to get to the Molluscs page.

Molluscan Pictures. Com

http://www.molluscan.com/shellimages/

•An image collection of molluses found mainly in Singapore and Malaysia. A large set of images and classification listings to match. As listed on this web site, "Molluscan Pictures or Molluscan.com is about Singapore or Southeast Asian seashells, snails or molluses and general nature, maintain by <u>CHAN Sow-Yan</u> since late 1996".

Nature Portfolio Image Library

http://www.natureportfolio.com/index.htm

•Large collection of natural history photographs with a special section on Molluscs at: <u>http://www.natureportfolio.com/inverts/molluscs.php</u> A fee-based system; however, classifications/listings of common bivalves, cephalopods, and gastropods are made available free.

www.aquaculture.ie

http://www.aquaculture.ie/index.html

•As stated on their about us page, "www. aquaculture. ie arose from a need to have a comprehensive list of links and resources covering all aspects of aquaculture in Ireland in one place. No frills and snazzy graphics, just informative, comprehensive, and useful. From this basic premise, the idea grew into the concept of The Gateway to Aquaculture in Ireland a web-based resource aimed at both the Irish and International community.

Being based at the Aquaculture Development Centre, University College Cork, Ireland, with over

14 years participation in Irish aquaculture R&D, we are well-placed to carry out this task. As we are part of an academic institution, all services and resources are completely free and open to everyone". Have an interesting poster section with varying Mollusc research at: <u>http://www.ucc.ie/ucc/research/adc/docs/pubs.html#posters</u>

Additional contact info:

Gerry Mouzakitis, PhD Aquaculture Development Centre University College Cork Lee Maltings, Prospect Row, Cork, Ireland.

University of AZ, Dept. of Geosciences- also see above under Bivalves

Mollusc information at: <u>http://www.geo.arizona.edu/geo3xx/308/mollusc.html</u> The parent home page is from the University of AZ, Dept. of Geosciences at: <u>http://www.geo.arizona.edu/</u> Additional information on Gastropods and Cephalopods at: <u>http://www.geo.arizona.edu/geo3xx/308/mollusc.html#gast</u> and <u>http://www.geo.arizona.edu/geo3xx/308/mollusc.html#ceph</u>

Services Available to USDA Employees

Copies or loans of NAL materials are provided free-of-charge in response to job-related requests. Requests for materials may be submitted onsite in person, electronically (via ARIEL[™], email or facsimile) or by U.S. Postal Service. Employees eligible for service from a local library such as ARS field libraries or Forest Service libraries should make use of these resources before contacting the National Agricultural Library (NAL).

Copy Service

A single copy may be provided, in lieu of loan, from materials in the NAL collection. <u>All</u> requests must indicate compliance with copyright restrictions. Providing complete, accurate citations and the NAL call number for a document (if available) will speed the processing of requests.

Loan Service

The loan period for NAL materials is one month. Loans may be renewed for an additional month if no one else is waiting to use the material. Make renewal requests in writing or by calling (301) 504-5755 prior to the due date.

Booking Audiovisuals

Submit request at least 3-4 weeks before the intended show date when requesting specific audiovisual titles. Specify the particular format preferred if more than one format is given in the citation. To renew audiovisuals or inquire about booking audiovisual materials call (301) 504-5994.

Copies from Non-Circulating Materials

The following materials are non-circulating: Serials (except for USDA serials); rare, reference, and reserve books; microforms; and proceedings of conferences or symposia. Although these materials may not be borrowed if NAL only owns one copy, requests may be filled in the form of a microform or paper copy if your request indicates copyright compliance. Please indicate on your original request form if a copy of the material is acceptable in place of a loan.

Delivery Options

Electronic delivery is the preferred method of document delivery at NAL. Copies of journal articles and duplicated microform materials are delivered by facsimilie, $ARIEL^{IM}$, or U.S. Postal Service. Copies of material will be delivered electronically whenever a fax number or $ARIEL^{IM}$ IP address appears on the request. Books borrowed from other sources will be delivered by FedEx to ensure their safety and receipt.

Interlibrary Borrowing or Purchase

If materials are not available at the NAL, we will try to obtained from another source. Turnaround time on interlibrary loans varies depending on location and availability of materials. If an item cannot be obtained through borrowing, NAL will attempt to purchase it, which also adds to the turnaround time.

How to Format Requests

All requests, regardless of format, **must** include the data elements listed below. A separate request form must be submitted for each document. When requesting via e-mail, however, more than one request form may be included in the same e-mail message.

Required Data Elements

- Borrower's name, full mailing address, and USDA or other eligible agency name. On e-mail requests this information must be in block format with at least two blank lines above and below so form may be used in a window envelope.
- Complete citation including verification (source of citation) and NAL call number if available.
- Date after which item is no longer needed.
- Copyright Compliance

Pre-printed forms must contain your signature to indicate copyright compliance. On e-mail requests include the complete Statement of Copyright Compliance ("I have read the warning on copyright restrictions and accept full responsibility for compliance"), your full name, date, and telephone number in each request. Libraries may indicate compliance by including the initials of one statement, either "CCL" for compliance with the copyright law or "CCG" for compliance with Copyright Guidelines. Requests will be rejected if this information is not included.

• Fax number or ARIEL[™] IP address (if delivery by either of these methods is desired).

E-Mail Request Procedures

E-mail: lending@nal.usda.gov

Electronic mail requests may be sent via the Internet to the address above. Multiple requests may be included in a single message if they are complete unto themselves, contain all of the required data elements and closely resemble the samples below. Each request within a message must be formatted as an individual request complete with name, address, copyright compliance, and request ID number. Use the following standardized number format to identify the requests included in the e-mail message:

1st request sent to NAL on July 25 will be jul25NAL1 2nd request sent to NAL on July 25 will be jul25NAL2

Each request should cite this identification number on the request form. The number or range of numbers if more than one request is included in the same e-mail message (ex: jul25NAL1-4) should also appear in the subject line of the e-mail message.

ARIEL™ Request Procedures

NAL IP Address: ariel.nal.usda.gov

ARIEL[™] is a document delivery software package (available from Research Libraries Group) which allows documents to be scanned and sent over the Internet. Requests can be submitted via email, mail, etc., or created on one of the standard forms listed under "Mail" below, scanned and sent to NAL's IP address. If an ARIEL[™] 'receive only' package is loaded on to your computer you can receive and print articles at your desktop. If an ARIEL[™] address is included in a request, NAL will deliver up to 30 pages per article via ARIEL[™]. If the article length exceeds 30 pages or cannot be scanned reliably, NAL will deliver the material via Postal Service. For more information about this software (including equipment requirements) visit RLG's ARIEL[™] WWW site (http://www.rlg.org/cgi-bin/print_hit_bold.pl/ariel.html).

Mail & Fax Requests

Requests may be sent to NAL via the U.S. Postal Service or facsimilie. Requests should be submitted using one of the standard forms listed below.

- AD-245 (available from USDA procurement)
- CALS Printout copy & complete the address & copyright information from the AD245 on to the back of the CALS printout.
- Individual Request Form (IRF)
- ALA or FILLS Interlibrary Loan Form

Mailing Address:

Fax Number: (301) 504-5675

National Agricultural Library Document Delivery Services Branch, 6th Floor 10301 Baltimore Avenue Beltsville, MD 20705-2351

Sample Electronic Mail Request

JUL25NAL1 Date Not Needed After: 8/25/2000

Richard Smith ARS, USDA Research Station Heartland, IA 56789

Canadian Journal of Soil Science 1988 v 68(1): 17-27 De Jong, R. Comparison of two soil-water models under semi-arid growing conditions.

NAL Call Number: 56.8 C162 Ver: AGRICOLA

I have read the warning on copyright restrictions and accept full responsibility for compliance

Richard Smith	7/25/00	Phone# (301)555-1234
(your) Fax#: (301)555-5678		(your) ARIEL IP Address: 111.222.333.444.555

Index

1-methyl-3-isobutylxanthine	aeration
16S genetics	aerial exposure
2-chloro-4-nitroaniline 2	aetiology
32P-postlabelling assay	afferent drug effects 54
4-aminopyridine	afferent metabolism 43
5-HT	afferent physiology
5-hydroxytryptamine	affinity
65Zn(II) accumulation	affinity binding sites
8-bromo cyclic adenosine monophosphate	Africa
abalone 42, 43, 49-56, 61-64, 109-114, 117, 122	Africa south of sahara
abalone culture	African cephalopod fishery 107
abalone Haliotis diversicolor supertexta	agar
abalone Haliotis fulgens 111, 117	age 39, 52, 53, 59, 91, 106, 114, 115
abalone Haliotis sieboldii	age differences
abalone Haliotis tuberculata L	aggregation
absence effect	aggregation inhibition
absorption drug effects	aging
absorption enhancers	Ago Bay [Japan]
acclimatization	agricultural chemicals
accumulated trace metals	agricultural drip system
accumulation 11, 16, 24, 25, 49, 53, 58, 67, 98, 103	Agropecten purpuratus
accumulative temperature	air
Achatina achatina	air emersion
Achatina fulica	alga Gracilaria tenuistipitata var. liui
acid base equilibrium	algae
acid stress	5, 16, 17, 23, 24, 29, 45, 47, 50-52, 55, 56, 62, 66, 73,
acids	74, 81, 83, 84, 87-89, 91-93, 97, 99, 109, 110, 112-114,
acoustic target strength of squid	116, 119, 121, 123
acquisition	algae culture
acridines pharmacokinetics	algae green
	algae metabolism
action potentials	algae unspecified
action potentials drug effects	algal food
active water	algal metabolism
	0
acute myelocytic leukemia	algal mixtures
acute toxicity	algal nucleus
adaptability	algal secondary metabolites
adaptation 10, 32, 41, 48, 51, 60, 61	alleles
adaptive plasticity	allelic isozyme polymorphisms
additives	allethrin
adductor muscle	alloenzymes
adenosine 3'-5'-monophosphate	allozyme
Adenoviridae	allozyme differentiation
Adenoviridae isolation and purification 104	allozymic heterozygosity
adenylate cyclase	alpha proteobacteria
adenylyl cyclase	altered response
adhesion	alternative diets
adrenergic	alternative suspended culture methods
adrenergic beta antagonists	ambient water
adsorption	America
adult molluscan neurons	American oceania
adult oysters 101	American oyster 101-103
adult squid 40	American pearl-oyster
adverse effects 12, 14, 60, 64, 66, 85, 96, 103, 113	amines metabolism
Aequipecten opercularis	amino acid 9-11, 31, 33, 43, 45, 57, 121

amino acid sequence 9, 11, 31, 43, 45, 57, 121	l
amino acids analysis 11	l
ammonia)
ammonium	1
ammonium nitrogen	l
ammonium sulfate	7
amoebocyte)
Amphibian culture	l
Ampullaridae)
amyotrophia	3
Anadara ovalis (Bruguiere, 1789))
anaerobic	
anaerobiosis	3
analogs and derivatives	5
analysis of variance1, 110	
anatomical	1
anatomy	1
anatomy and histology 41, 50, 54	1
androgens pharmacology	
anesthesia	
Angiospermae	
aniline compounds	
animal algal symbiosis	
animal anatomy	
animal behavior	
animal breeding	
animal care	
animal developmental stages	
animal diseases	
animal embryos	
animal feeding	
animal housing	
animal husbandry	
animal husbandry methods	
animal models	
animal morphology	
animal nuclear genome	
animal nutrition	
animal nutrition production responses	
animal performance	
animal physiology	
animal physiology and biochemistry 36, 37, 55, 101	
animal physiology and bioenemistry	
animal production	
animal products	
animal suffering	
animal suffering	
animal toxicology	
animal viruses general	
animal wastes	
animal-bacterial association	י ר
animal-bacterial association	2 1
aninnais faboratory growth	י 1
Ankistrodesmus	
Annelida drug effects	
Annelids	
Anodonta	
Anodonta anatina	
Anodonta anatina	

anoxia metabolism
anoxic stress
antagonists and inhibitors
anthropogenic stressors
antibacterial properties
antibiotic properties
antibiotic treatment
antibiotics 5, 6, 93, 104
antibodies
antidepressants
antigenicity
antimicrobial properties
aorta
Aplysia
Aplysia anatomy and histology
Aplysia californica
Aplysia cytology
Aplysia hemolymph
Aplysia kurodai
Aplysia metabolism
Aplysia model system
Aplysia motor neurons in culture
Aplysia neurons
Aplysia oculifera
Aplysia physiology
aplysia sensory neurons
apoptosis
aposymbiotic culture
apple snails
application rates
application rates
2700
aquaculture animals
aquaculture equipment
aquaculture equipment 37 aquaculture in Canada 118 aquaculture methods 119 aquaculture production 15, 94, 99, 118, 119 aquaculture species 74, 120 aquaculture system 5, 115 aquaria 34 aquarium tanks 40 aquatic animals 63 22, 29, 40, 59, 62, 66, 78, 87, 100, 102, 117, 119, 121
aquaculture equipment 37 aquaculture in Canada 118 aquaculture methods 119 aquaculture production 15, 94, 99, 118, 119 aquaculture species 74, 120 aquaculture system 5, 115 aquaria 34 aquarium 22, 40, 63, 67, 83 aquatic animals 40 aquatic animals 63 22, 29, 40, 59, 62, 66, 78, 87, 100, 102, 117, 119, 121 aquatic biomonitoring 90
aquaculture equipment 37 aquaculture in Canada 118 aquaculture methods 119 aquaculture production 15, 94, 99, 118, 119 aquaculture species 74, 120 aquaculture system 5, 115 aquaria 34 aquarium 22, 40, 63, 67, 83 aquatic animals 40 aquatic animals 63 aquatic biomonitoring 90 aquatic communities 62, 121
aquaculture equipment 37 aquaculture in Canada 118 aquaculture methods 119 aquaculture production 15, 94, 99, 118, 119 aquaculture species 74, 120 aquaculture system 5, 115 aquaria 34 aquarium 22, 40, 63, 67, 83 aquatic animals 40 aquatic biomonitoring 90 aquatic conditions 90 aquatic conditions 21
aquaculture equipment 37 aquaculture in Canada 118 aquaculture methods 119 aquaculture production 15, 94, 99, 118, 119 aquaculture species 74, 120 aquaculture system 5, 115 aquaria 34 aquarium 22, 40, 63, 67, 83 aquatic animals 40 aquatic biomonitoring 90 aquatic conditions 21 aquatic ecology 21
aquaculture equipment 37 aquaculture in Canada 118 aquaculture methods 119 aquaculture production 15, 94, 99, 118, 119 aquaculture species 74, 120 aquaculture system 5, 115 aquaria 34 aquarium tanks 40 aquaterrarium 63 aquatic animals 90 aquatic communities 90 aquatic conditions 21 aquatic ecology 21 aquatic ecology 121
aquaculture equipment 37 aquaculture in Canada 118 aquaculture methods 119 aquaculture production 15, 94, 99, 118, 119 aquaculture species 74, 120 aquaculture system 5, 115 aquaria 34 aquarium 22, 40, 63, 67, 83 aquatirum tanks 40 aquatic animals 63 22, 29, 40, 59, 62, 66, 78, 87, 100, 102, 117, 119, 121 aquatic communities 90 aquatic conditions 21 aquatic ecology 21 aquatic ecology, oysters 29
aquaculture equipment 37 aquaculture in Canada 118 aquaculture methods 119 aquaculture production 15, 94, 99, 118, 119 aquaculture species 74, 120 aquaculture system 5, 115 aquaria 34 aquarium 22, 40, 63, 67, 83 aquatirum tanks 40 aquatic animals 40 22, 29, 40, 59, 62, 66, 78, 87, 100, 102, 117, 119, 121 aquatic communities 90 aquatic conditions 21 aquatic ecology 21 aquatic ecology; oysters 29 aquatic environment 29
aquaculture equipment 37 aquaculture in Canada 118 aquaculture methods 119 aquaculture production 15, 94, 99, 118, 119 aquaculture species 74, 120 aquaculture system 5, 115 aquaria 34 aquarium 22, 40, 63, 67, 83 aquatirum tanks 40 aquatic animals 40 aquatic biomonitoring 90 aquatic conditions 90 aquatic ecology 21 aquatic ecology 21 aquatic ecology 21 aquatic ecology 29 aquatic environment 29 aquatic environment 29 aquatic environment 29
aquaculture equipment 37 aquaculture in Canada 118 aquaculture methods 119 aquaculture production 15, 94, 99, 118, 119 aquaculture species 74, 120 aquaculture system 5, 115 aquaria 34 aquarium 22, 40, 63, 67, 83 aquatirum 22, 40, 63, 67, 83 aquatirum tanks 40 aquatic animals 40 aquatic communities 90 aquatic conditions 90 aquatic conditions 21 aquatic ecology 21 aquatic ecology 21 aquatic ecology 29 aquatic environment 29 aquatic organisms 29
aquaculture equipment 37 aquaculture in Canada 118 aquaculture methods 119 aquaculture production 15, 94, 99, 118, 119 aquaculture species 74, 120 aquaculture system 5, 115 aquaria 34 aquarium 22, 40, 63, 67, 83 aquatirum 22, 40, 63, 67, 83 aquatirum tanks 40 aquaterrarium 63 aquatic animals 90 aquatic communities 62, 121 aquatic conditions 21 aquatic ecology 21 aquatic ecology 21 aquatic ecology, oysters 29 aquatic environment 29 aquatic organisms 29 aquatic organisms 16, 22, 29, 40, 51, 59, 62, 66, 78, 85, 87, 90, 99, 100,
aquaculture equipment 37 aquaculture in Canada 118 aquaculture methods 119 aquaculture production 15, 94, 99, 118, 119 aquaculture species 74, 120 aquaculture system 5, 115 aquaria 34 aquarium 22, 40, 63, 67, 83 aquatirum 22, 40, 63, 67, 83 aquatirum 63 aquatic animals 40 aquatic communities 90 aquatic conditions 21 aquatic conditions 21 aquatic ecology 21 aquatic ecology, oysters 29 aquatic environment 29 aquatic organisms 29 aquatic organisms 102, 116, 120 aquatic organisms 16, 22, 29, 40, 51, 59, 62, 66, 78, 85, 87, 90, 99, 100, 102, 117
aquaculture equipment 37 aquaculture in Canada 118 aquaculture methods 119 aquaculture production 15, 94, 99, 118, 119 aquaculture species 74, 120 aquaculture system 5, 115 aquaria 34 aquarium 22, 40, 63, 67, 83 aquarium tanks 40 aquaterrarium 63 aquatic animals 90 aquatic communities 90 aquatic conditions 21 aquatic ecology 91 17, 29, 30, 37, 55, 61-63, 80, 96, 102, 104, 118 aquatic organisms 29 aquatic organisms 29 aquatic organisms 29 aquatic organisms 51, 118, 119
aquaculture equipment 37 aquaculture in Canada 118 aquaculture methods 119 aquaculture production 15, 94, 99, 118, 119 aquaculture species 74, 120 aquaculture system 5, 115 aquaria 34 aquarium 22, 40, 63, 67, 83 aquatirum tanks 40 aquaterrarium 63 aquatic animals 90 aquatic conditions 21 aquatic conditions 21 aquatic ecology 94, 118 aquatic ecology 21 aquatic ecology, oysters 29 aquatic organisms 29 aquatic organisms 29 aquatic organisms 29 aquatic plants 51, 118, 119 aquatic plants 51, 118, 119
aquaculture equipment 37 aquaculture in Canada 118 aquaculture methods 119 aquaculture production 15, 94, 99, 118, 119 aquaculture species 74, 120 aquaculture system 5, 115 aquaria 34 aquarium 22, 40, 63, 67, 83 aquarium tanks 40 aquaterrarium 63 aquatic animals 90 aquatic communities 90 aquatic conditions 21 aquatic ecology 91 17, 29, 30, 37, 55, 61-63, 80, 96, 102, 104, 118 aquatic organisms 29 aquatic organisms 29 aquatic organisms 29 aquatic organisms 51, 118, 119

arbitrary primers 52
Arcidae
Arctic fish
Argentina
arginine analogs, derivatives, and metabolism 32
Argopecten
5, 11, 17, 20, 21, 26, 27, 29, 71-76, 80, 81, 85, 87, 90,
91
Argopecten irradians 26, 27, 29, 71, 72, 87, 90, 91
Argopecten irradians concentricus
Argopecten irradians irradians
Argopecten nuturalis nuturalis
Argopecten purpuratus
Argopecten purpuratus (Lamarck, 1819)
Argopecten purpuratus cuntures
Argopecten purpuratus larvae
aroclors toxicity
aromatic analysis, metabolism, & toxicity
aromatic compounds
aromatic hydrocarbons
arterial cells
Arthropoda
Arthropods drug effects
artificial and natural lighting
artificial diets 110, 115, 111, 117
artificial diets and macroalgae
artificial fertilization 106, 112
artificial media.
artificial selection
ash
Asia
Asian clams
Aspergillus nuclease S1 metabolism
assays
association learning
association learning physiology & conditioning 44
associative learning
associative theories
Asteroidea
astrocytes
Astrovirus
Atlantic and Pacific regions
Atlantic ocean
Atlantic surfclam
atrazine 115, 116
atrazine and hexachlorobenzene
attachment
attractants
Australian abalone
automated rearing chamber system
automatic control
autoradiography
autumn
auxiliary disciplines
axenic oyster
axonal transport drug effects & physiology
axons

axons drug effects & metabolism
axons physiology
azaarene transformation products
Bacillariophyta 5, 74, 110
background brightness
background illumination
bacteria
7, 8, 16, 18, 19, 22, 32-34, 71, 75, 94, 97, 101, 102,
105, 114, 119
bacteria exposure
bacteria isolation and purification
bacteria radiation effects
bacteria-animal symbiosis
bacterial and viral loads
bacterial animal symbiosis
bacterial count
bactericidal activity
· · · · · · · · · · · · · · · · · · ·
bactericidal substances
bacteriological techniques 19
bacteriophages 22, 93, 98
bacteriophages isolation and purification
Bahia Concepcion
Baja California Sur, Mexico
balanus
Balkans 120
Bantry Bay, Ireland 69
BAPTA
basal metabolism physiology
base sequence
bass immunology
bathing medium
bay scallops 21, 27, 29, 72, 87, 89, 91
behavior
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72,
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72,
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72,75, 92, 95, 96, 105, 107, 114, 119behavior animalbehavior patterns33behavioral interactions108behavioral sensitization
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72,75, 92, 95, 96, 105, 107, 114, 119behavior animalbehavior patterns33behavioral interactions108behavioral sensitization43, 62behavioral states51
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72,75, 92, 95, 96, 105, 107, 114, 119behavior animalbehavior patterns
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal 38, 40 behavior patterns 33 behavioral interactions 108 behavioral sensitization 43, 62 behavioral states 51 Belgium 101, 102 bemesetron 42
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal 38, 40 behavior patterns 33 behavioral interactions 108 behavioral sensitization 43, 62 belavioral states 51 Belgium 101, 102 bemesetron 42 benthic community 88
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal behavior patterns
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal behavior patterns
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal behavior patterns
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal behavior patterns
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal behavior patterns
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal behavior patterns
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal 38, 40 behavior patterns 33 behavioral interactions 108 behavioral sensitization 43, 62 behavioral states 51 Belgium 101, 102 bemesetron 42 benthic community 88 benthic food diatom 113 benthic micro algae 62 benthos 70, 74, 89, 110 benzo(alpha)pyrene 94
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal 38, 40 behavior patterns 33 behavioral interactions 108 behavioral sensitization 43, 62 behavioral states 51 Belgium 101, 102 bemesetron 42 benthic community 88 benthic diatom films 110 benthic food diatom 113 benthic micro algae 62 benthos 70, 74, 89, 110 benzocaine 94
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal behavior patterns 33 behavioral interactions 108 behavioral sensitization 43, 62 behavioral states 51 Belgium 101, 102 bemesetron 42 benthic community 88 benthic diatom films 110 benthic nicro algae 62 benthos 70, 74, 89, 110 benzocaine 94
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal behavior patterns
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal 38, 40 behavior patterns 33 behavioral interactions 108 behavioral sensitization 43, 62 behavioral states 51 Belgium 101, 102 bemesetron 42 benthic community 88 benthic diatom films 110 benthic food diatom 113 benthic micro algae 62 benthos 70, 74, 89, 110 benzocaine 43 benzo(alpha)pyrene 94 Benzo[a]pyrene hydroxylase 115 Bering Sea 118
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal 38, 40 behavior patterns 33 behavioral interactions 108 behavioral sensitization 43, 62 behavioral states 51 Belgium 101, 102 bemesetron 42 benthic community 88 benthic diatom films 110 benthic food diatom 113 benthic micro algae 62 benthos 70, 74, 89, 110 benzocaine 43 benzocaine 94 Benzo[a]pyrene hydroxylase 118 beta 2 physiology 46
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal 38, 40 behavior patterns 33 behavioral interactions 108 behavioral sensitization 43, 62 behavioral states 51 Belgium 101, 102 bemesetron 42 benthic community 88 benthic diatom films 110 benthic food diatom 113 benthic micro algae 62 benthos 70, 74, 89, 110 benzocaine 43 benzocaine 94 Benzo[a]pyrene hydroxylase 118 beta 2 physiology 46
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal 38, 40 behavior patterns 33 behavioral interactions 108 behavioral sensitization 43, 62 behavioral states 51 Belgium 101, 102 bemesetron 42 benthic community 88 benthic diatom films 110 benthic food diatom 113 benthic micro algae 62 benthos 70, 74, 89, 110 benzocaine 94 Benzo[a]pyrene hydroxylase 115 Bering Sea 118 beta 2 physiology 46
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal behavior patterns 33 behavioral interactions 108 behavioral sensitization 43, 62 behavioral states 51 Belgium 101, 102 bemesetron 42 benthic community 88 benthic diatom films 110 benthic food diatom 113 benthic micro algae 62 benthos 70, 74, 89, 110 benzo(alpha)pyrene 94 benzopyrene 94 benzo [a]pyrene hydroxylase 115 Bering Sea 118 beta 2 physiology 46 bibliographies 121 binding
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal behavior patterns 33 behavioral interactions 108 behavioral sensitization 43, 62 behavioral states 51 Belgium 101, 102 bemesetron 42 benthic community 88 benthic diatom films 110 benthic food diatom 113 bentoc algae 62 benthos 70, 74, 89, 110 benzo(alpha)pyrene 94 benzogaine 94 benzo [a]pyrene hydroxylase 115 Bering Sea 118 beta 2 physiology 46 bibliographies 121 binding sites physiology
2, 9, 17, 21, 31-33, 37, 38, 40-42, 55, 56, 58, 61, 62, 72, 75, 92, 95, 96, 105, 107, 114, 119 behavior animal behavior patterns 33 behavioral interactions 108 behavioral sensitization 43, 62 behavioral states 51 Belgium 101, 102 bemesetron 42 benthic community 88 benthic diatom films 110 benthic food diatom 113 benthic micro algae 62 benthos 70, 74, 89, 110 benzo(alpha)pyrene 94 benzopyrene 94 benzo [a]pyrene hydroxylase 115 Bering Sea 118 beta 2 physiology 46 bibliographies 121 binding

1. 1
bioaccumulation capacities of copper and zinc 114
bioassays 17, 54, 67, 87
biochemical composition
biochemical oxygen demand
biochemistry
1, 3, 8, 18, 23, 24, 26, 34, 36, 37, 45, 55, 56, 62, 92-94,
101, 106
biochemistry and molecular biophysics
3, 8, 18, 23, 24, 26, 34, 45, 55, 56, 92-94, 106
biocoenosis
biodiversity
bioenergetics
bioengineering
biogenic amine
biogenic amine genetics
biogeography
bioindicators 101
biological analysis
biological assay methods 11
biological availability
biological characteristics
biological competition
biological contamination7, 83
biological control agents
biological development
5, 55, 59, 61, 62, 69, 73, 83, 89, 91, 102, 109, 112
biological filtration
-
biological indicators
biological markers 1, 2, 64
biological markers analysis 64
biological properties
biological rhythms
biological transport drug effects & physiology 36
biological/ cellular/ physiological processes 122
biologically active substances
biologics
biology & environmental sciences
bioluminescent mutualism 105
biomarker and bioaccumulation responses
biomarkers in Lymnaea palustris (Mollusca,
Gastropoda)
1: 01 72 84 86 00 110 116 103
biomass 21, 72, 84, 86, 90, 110, 116, 123
biomass
biomass production
biomass production
biomass production90, 110biomechanics41biomedical applications37biomedical research38, 40, 66
biomass production90, 110biomechanics41biomedical applications37biomedical research38, 40, 66biomedical research potential40
biomass production90, 110biomechanics41biomedical applications37biomedical research38, 40, 66biomedical research potential40biometry50
biomass production90, 110biomechanics41biomedical applications37biomedical research38, 40, 66biomedical research potential40biometry50Biomphalaria glabrata53, 61, 62, 117
biomass production90, 110biomechanics41biomedical applications37biomedical research38, 40, 66biomedical research potential40biometry50Biomphalaria glabrata53, 61, 62, 117Biomphalaria metabolism53
biomass production90, 110biomechanics41biomedical applications37biomedical research38, 40, 66biomedical research potential40biometry50Biomphalaria glabrata53, 61, 62, 117
biomass production90, 110biomechanics41biomedical applications37biomedical research38, 40, 66biomedical research potential40biometry50Biomphalaria glabrata53, 61, 62, 117Biomphalaria metabolism53Biomphalaria species117
biomass production90, 110biomechanics41biomedical applications37biomedical research38, 40, 66biomedical research potential40biometry50Biomphalaria glabrata53, 61, 62, 117Biomphalaria metabolism53Biomphalaria species117Biomphalaria sudanica61
biomass production90, 110biomechanics41biomedical applications37biomedical research38, 40, 66biomedical research potential40biometry50Biomphalaria glabrata53, 61, 62, 117Biomphalaria metabolism53Biomphalaria species117Biomphalaria sudanica61biopsy9
biomass production90, 110biomechanics41biomedical applications37biomedical research38, 40, 66biomedical research potential40biometry50Biomphalaria glabrata53, 61, 62, 117Biomphalaria metabolism53Biomphalaria species117Biomphalaria sudanica61biopsy9biosynchronization106
biomass production90, 110biomechanics41biomedical applications37biomedical research38, 40, 66biomedical research potential40biometry50Biomphalaria glabrata53, 61, 62, 117Biomphalaria metabolism53Biomphalaria species117Biomphalaria sudanica61biopsy9biosynchronization106biosynthesis13, 49, 64, 88, 103
biomass production90, 110biomechanics41biomedical applications37biomedical research38, 40, 66biomedical research potential40biometry50Biomphalaria glabrata53, 61, 62, 117Biomphalaria metabolism53Biomphalaria species117Biomphalaria sudanica61biopsy9biosynchronization106biosynthesis13, 49, 64, 88, 103biotic potential102
biomass production90, 110biomechanics41biomedical applications37biomedical research38, 40, 66biomedical research potential40biometry50Biomphalaria glabrata53, 61, 62, 117Biomphalaria metabolism53Biomphalaria species117Biomphalaria sudanica61biopsy9biosynchronization106biosynthesis13, 49, 64, 88, 103biotic potential102biotoxin27
biomass production90, 110biomechanics41biomedical applications37biomedical research38, 40, 66biomedical research potential40biometry50Biomphalaria glabrata53, 61, 62, 117Biomphalaria metabolism53Biomphalaria species117Biomphalaria sudanica61biopsy9biosynchronization106biosynthesis13, 49, 64, 88, 103biotic potential102biotoxin27biotransformation16
biomass production90, 110biomechanics41biomedical applications37biomedical research38, 40, 66biomedical research potential40biometry50Biomphalaria glabrata53, 61, 62, 117Biomphalaria metabolism53Biomphalaria species117Biomphalaria sudanica61biopsy9biosynchronization106biosynthesis13, 49, 64, 88, 103biotic potential102biotoxin27

pirth rate
pisphenol A
pivalvate (Mollusca) faunas 118
pivalve mollusc viruses
pivalve tumors
pivalve-feeder Halla okudai119
Bivalvia diseases & parasites
Bivalvia, pteriomorphia10
Bivalvia, Veneridae
Bivalvia: Corbiculidae
Bivalvia: Semelidae
placklip abalone
pleomycin toxicity
blood
3, 6, 8, 15, 18, 23, 24, 31, 34, 38, 40, 70, 76, 93, 99, 103
plood and lymphatic disease
plood and lymphatics
blood and lymphatics (transport and circulation) 18
blood ark
blood cells
olood plasma & serum6
blotting
blue mussel
body burden
body condition
body fluids
body mass
body parts
body size
body weight 25, 38, 39, 48, 50, 52, 79, 82, 111
body weight drug effects
pony fishes
ooring clam
pottom-culture system
prackishwater environment
prain drug effects & metabolism
brain synaptosomes
preeding
2, 3, 9, 40, 54, 57, 59, 63, 78, 90, 96, 100, 113, 120
preeding methods
preeding programs
breeding system
British Columbia
brown algae
brown mussel
buildings
Bullia rhodostoma
byssogenesis
byssogenesis 21 cacodylic acid pharmacology 23 cadmium 1-4, 11-14, 26, 28, 49, 53, 54, 67, 93, 94, 97, 101-103 cadmium analysis 14, 97, 103 cadmium and mercury kinetics 26
byssogenesis 21 cacodylic acid pharmacology 23 cadmium 23 1-4, 11-14, 26, 28, 49, 53, 54, 67, 93, 94, 97, 101-103 cadmium analysis 14, 97, 103 cadmium and mercury kinetics 26 cadmium chloride toxicity 11
byssogenesis 21 cacodylic acid pharmacology 23 cadmium 23 1-4, 11-14, 26, 28, 49, 53, 54, 67, 93, 94, 97, 101-103 cadmium analysis 14, 97, 103 cadmium and mercury kinetics 26 cadmium chloride toxicity 11 cadmium kinetics 28
byssogenesis 21 cacodylic acid pharmacology 23 cadmium 23 1-4, 11-14, 26, 28, 49, 53, 54, 67, 93, 94, 97, 101-103 cadmium analysis 14, 97, 103 cadmium and mercury kinetics 26 cadmium chloride toxicity 11 cadmium kinetics 28 cadmium metabolism 67, 101, 103
byssogenesis 21 cacodylic acid pharmacology 23 cadmium 23 1-4, 11-14, 26, 28, 49, 53, 54, 67, 93, 94, 97, 101-103 cadmium analysis 14, 97, 103 cadmium and mercury kinetics 26 cadmium chloride toxicity 11 cadmium kinetics 28 cadmium metabolism 67, 101, 103 cadmium pharmacokinetics 1, 2, 4
byssogenesis 21 cacodylic acid pharmacology 23 cadmium 23 1-4, 11-14, 26, 28, 49, 53, 54, 67, 93, 94, 97, 101-103 cadmium analysis 14, 97, 103 cadmium and mercury kinetics 26 cadmium chloride toxicity 11 cadmium kinetics 28 cadmium metabolism 67, 101, 103

cage culture	cells
cages 69, 70, 72, 77-79, 83, 100, 110, 111, 118	4, 11, 14-16, 18, 20, 23, 24, 26, 27, 32, 40, 44, 54, 56,
calcification 0, 70, 72, 77-79, 85, 100, 110, 111, 118	
calcification	58, 60, 61, 75, 80, 84, 85, 87, 93, 94, 96, 103, 105
calcium 11, 16, 25, 26, 30, 35, 36, 44, 56, 57, 65, 103	cells cultured
calcium analysis	cellular mechanism
calcium binding proteins chemistry 11	cellulose metabolism 1
calcium carbonate metabolism 11	central nervous system 40, 42, 56, 58, 59
calcium channel blockers pharmacology	central nervous system cytology & physiology 42
calcium influx	central nervous system sheath cells
calcium metabolism 11, 35	centrifugation
Caliciviridae	Cephalopod fishery 107
California	Cephalopod resources 108
calmodulin antagonists, inhibitors, and physiology 36	Cephalopoda 30-34, 36-40, 66, 105, 106, 108
CAMP	Cephalopoda: Octopoda
cAMP-dependent kinase pathway	Cephalopoda: Ommastrephidae
Canada	Cerastoderma glaucum Bruguiere
cannibalism	cercaria production
capsaicin pharmacology	cerebellar granule cells
captive care of and research	Cernuella (Xeromagna) cespitum arigonis
captive school	Chaetoceros
captive short-finned squid	Chaetoceros calcitrans
captive wild animals	Chamelea gallina L
captivity	characterization
carbachol 56, 58	chemical administration and dosage 14
carbachol-activated Cl- channels	chemical adverse effects 64, 66, 96
carbohydrate content	chemical analysis
carbohydrates 1, 24, 52, 69, 70	chemical composition
carbon	chemical coordination and homeostasis 16, 23, 55-57
carbon dioxide	chemical metabolism
carbon dioxide metabolism	chemical or physical stress
carbon isotopic analysis	chemical pharmacokinetics
carbonic anhydrases 10	chemical pharmacology 46, 48
carcinogens 14, 25, 66	chemical pollutants 123
carcinogens environmental adverse effects	chemical reactions
carcinogens toxicity	chemical toxicity 2, 6, 9, 11, 14, 25, 91, 97, 123
cardiac assist devices	chemicophysical properties 15, 24, 28, 39, 59
Cardiidae	chemiluminescence
Caribbean conchs 112	chemiluminescent response
Caribbean Sea	chemistry
Caroline Islands 100	10, 11, 14, 25, 31, 33, 43, 44, 46, 57, 86, 90, 91, 115,
carpet-shell clam	117
Carunculina texasensis	chemotaxis
catabolic losses/ catabolism	Chile
catch methods	Chilean scallop 5, 75, 85
catch state	China 10, 71, 100
cations	Chinese cuttlefish Sepiella maindroni
Cd 2, 3, 11, 12, 48, 49, 54, 60, 97	chloramphenicol
Cd elimination	chlordane
cell biology 15, 22, 26, 38, 55-58, 92, 113	chlorinity
cell culture	chlorophenols toxicity 123
cell culture method 113	chlorophyll
cell line	chlorophyll A 74, 81, 84
cell membrane metabolism	Chlorophyta 52, 55, 92
cell nucleus genetics	chloroplast 44, 45, 109
cell structure	chloroplast DNA 109
cell transformation	chloroplast gene expression
cell-specific effects 56	chloroplasts 109

chloroquine toxicity11
Chondrichthyes
Chorus giganteus 108
chromates pharmacology
chromatography 16, 31, 33, 53, 90
chromatography high pressure liquid53
chromatography thin layer
chromium administration, dosage, and toxicity 14
chromium pharmacology12
chromium-VI
chromosomal mapping 6
chromosome
chromosome breakage
Chrysophyta
ciliated larvae
cinanserin pharmacology
circulatory system
clam harvesting
clams
1, 2, 9, 13, 14, 20, 25, 26, 28, 72, 74, 76-79, 81-83, 87,
88, 91-94, 96, 97, 100, 102
clams drug effects
clams enzymology
clams genetics
clams metabolism
clams microbiology & radiation effects
clams virology
classical physiology
classification
clastogens
climatology
clinical and environmental isolates
clinical isolate 2030, 2062, and 2107 8
cloned vanilloid receptor type 1
cloning 10, 11, 32, 43, 46, 75
closed artificial seawater system
closed-system
Clostridium perfringens isolation and purification 94
Clostridium perfringens radiation effects
Clyde sea area
Cnidaria
CNS sheath cells
Co-culture
co-cultured neurons
coastal areas
coastal embayments
coastal fisheries
coastal Georgia
coastal waters
coasts
Coccidia
Codium dichotomum
colchicine toxicity
cold tolerance
coldwater
coliphages isolation/ purification/ radiation effects 94
collection
colonization
colony count

Colpomenia sinuosa (Phaeophyta) 55
comet assay
commercial farming
commercial importance
commercial scallop
communicable diseases
communities
community ecology
comparative gametogenesis
1 0 0
comparative study
compatibility
competitive ability
Competitive dominance
complementary DNA
complementary genetics10
components
compound feeds 117
computational biology76
computer assisted9
Computer prediction
computer techniques
concentrates
concentration of gamma-aminobutyric acid (GABA) 113
condition index
conditioned metabolism
conditioned reflexes
conditioning
conditioning psychology physiology
Connecticut, USA
conservation
22 24 26 27 66 67 75 02 04 06 07 106 120
22, 24, 26, 27, 66, 67, 75, 92-94, 96, 97, 106, 120
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123
consumption
consumption
consumption4, 9, 20, 36, 50, 52, 58, 61, 117, 119contaminant sources123contaminated oysters17, 18contaminated sediments67contamination67
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 5, 7, 8, 13, 14, 17, 49, 66, 71, 83, 90, 93, 97, 102, 115,
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 67 5, 7, 8, 13, 14, 17, 49, 66, 71, 83, 90, 93, 97, 102, 115, 121, 123
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 67 5, 7, 8, 13, 14, 17, 49, 66, 71, 83, 90, 93, 97, 102, 115, 121, 123 123 contamination of water 123
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 67 contamination 123 contamination 17, 18 contamination 67 contamination 123 contamination 123 contamination 123 contamination of water 123 contamination of mussels 16
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 67 contamination 123 contamination 17, 18 contamination 17, 18 contamination 17, 18 contamination 17, 18 contamination 123 contamination of water 123 contamination of water 123 contaminations of mussels 16 continuous and simultaneous cultivation 113
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 67 contamination 123 contamination 17, 18 contamination 67 contamination 123 contamination 123 contamination of water 123 contamination of water 123 contaminations of mussels 16 continuous and simultaneous cultivation 113 continuous flow chambers 1
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 67 contamination 123 contamination 17, 18 contamination 67 contamination 123 contamination 17, 18 contamination 123 contamination of water 123 contamination of water 123 contamination of water 123 contamination of mussels 16 continuous and simultaneous cultivation 113 continuous flow chambers 1 contractile responses 26
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 67 contamination 123 contamination 17, 18 contamination 67 contamination 123 contamination 123 contamination of water 123 contamination of water 123 contaminations of mussels 16 continuous and simultaneous cultivation 113 continuous flow chambers 1
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 66, 71, 83, 90, 93, 97, 102, 115, 121, 123 contamination of water 123 contaminations of mussels 16 continuous and simultaneous cultivation 113 contractile responses 26 conversion efficiency 51, 87, 111 coot clam 27, 28
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 67 contamination 71, 83, 90, 93, 97, 102, 115, 121, 123 contamination of water 123 contamination of mussels 16 contamination sof mussels 113 contamination sof mussels 123 contamination of water 26 contractile responses 26 conversion efficiency 51, 87, 111
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 67 contamination 123 contamination 67 contamination 67 contamination 115, 121, 123 contamination of water 123 contamination of mussels 16 continuous and simultaneous cultivation 113 contractile responses 26 conversion efficiency 51, 87, 111 coot clam 27, 28 copper 12, 13, 49, 67, 93, 97, 101, 114-117 copper analysis 97
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 67 contamination 123 contamination 67 contamination 67 contamination 115, 121, 123 contamination of water 123 contamination of mussels 16 continuous and simultaneous cultivation 113 contractile responses 26 conversion efficiency 51, 87, 111 coot clam 27, 28 copper 12, 13, 49, 67, 93, 97, 101, 114-117 copper analysis 97
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 67 contamination 123 contamination 67 contamination 17, 18 contamination 67 contamination 67 contamination of water 123 contamination of mussels 16 continuous and simultaneous cultivation 113 contractile responses 26 conversion efficiency 51, 87, 111 coot clam 27, 28 copper 27, 28 copper analysis 97 copper metabolism 49, 67, 101, 115
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 123 contamination 67 contamination of water 123 contamination of mussels 16 continuous and simultaneous cultivation 113 contractile responses 26 conversion efficiency 51, 87, 111 coot clam 27, 28 copper 12, 13, 49, 67, 93, 97, 101, 114-117 copper metabolism 97 copper metabolism 49, 67, 101, 115 copper pharmacokinetics 115
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 67 contamination 71, 83, 90, 93, 97, 102, 115, 121, 123 contamination of water 123 contamination of mussels 16 continuous and simultaneous cultivation 113 contractile responses 26 conversion efficiency 51, 87, 111 coot clam 27, 28 copper 12, 13, 49, 67, 93, 97, 101, 114-117 copper analysis 97 copper metabolism 49, 67, 101, 115 copper pharmacokinetics 115 copper pharmacology 12
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 67 contamination 123 contamination 67 contamination 67 contamination 115 121, 123 123 contamination of water 123 contamination of mussels 16 continuous and simultaneous cultivation 113 contractile responses 26 conversion efficiency 51, 87, 111
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 67 contamination 71, 83, 90, 93, 97, 102, 115, 121, 123 contamination of water 123 contamination of mussels 16 continuous and simultaneous cultivation 113 contractile responses 26 conversion efficiency 51, 87, 111
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 67 contamination 67 contamination 67 contamination 67 contamination 67 contamination 123 contamination of water 123 contamination of mussels 16 continuous and simultaneous cultivation 113 contractile responses 26 conversion efficiency 51, 87, 111 coot clam 27, 28 copper 12, 13, 49, 67, 93, 97, 101, 114-117 copper metabolism 49, 67, 101, 1
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 67 contamination 67 contamination 67 contamination 67 contamination 67 contamination of water 123 contamination of mussels 16 continuous and simultaneous cultivation 113 contractile responses 26 conversion efficiency 51, 87, 111 coot clam 27, 28 copper 12, 13, 49, 67, 93, 97, 101, 114-117 copper metabolism 49, 67, 101, 115 copper pharmacokinetics
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 67 contamination 67 contamination 67 contamination 67 contamination 123 contamination of water 123 contamination of mussels 16 continuous and simultaneous cultivation 113 contractile responses 26 conversion efficiency 51, 87, 111 coot clam 27, 28 copper 12, 13, 49, 67, 93, 97, 101, 114-117 copper analysis 97 copper metabolism 49, 67, 101, 115 copper pharmacokinetics 115 copper diquat 117 copulation 37, 49, 57
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 67 contamination 67 contamination 67 contamination 67 contamination 67 contamination of water 123 contamination of mussels 16 continuous and simultaneous cultivation 113 continuous flow chambers 1 contractile responses 26 conversion efficiency 51, 87, 111 coot clam 27, 28 copper entabolism 49, 67, 101, 114-117 copper pharmacokinetics 115<
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 67 contamination 67 contamination 67 contamination 67 contamination 67 contamination of water 123 contamination of mussels 16 continuous and simultaneous cultivation 113 continuous flow chambers 1 contractile responses 26 conversion efficiency 51, 87, 111 coot clam 27, 28 copper lense 97 copper metabolism 49, 67, 101, 115
consumption 4, 9, 20, 36, 50, 52, 58, 61, 117, 119 contaminant sources 123 contaminated oysters 17, 18 contaminated sediments 67 contamination 67 contamination 67 contamination 67 contamination 67 contamination 67 contamination of water 123 contamination of mussels 16 continuous and simultaneous cultivation 113 continuous flow chambers 1 contractile responses 26 conversion efficiency 51, 87, 111 coot clam 27, 28 copper entabolism 49, 67, 101, 114-117 copper pharmacokinetics 115<

costs
costs of plasticity
cote d' ivoire
Cr
Crassostrea gigas
8, 23, 24, 27, 74, 78, 82, 83, 92, 93, 97, 100, 101, 119
Crassostrea gigas (Thunberg) larvae
Crassostrea gigas Thunberg
Crassostrea virginica
3, 7, 12, 15, 18, 19, 21, 22, 24-29, 76, 92, 101-103
Crassostrea virginica gmelin
Crassostrea virginica gmenii
Critaria plicata
critical thermal maximum
Croatia
crops
crude protein
Crustacea 22, 37, 38, 66, 118, 119, 121, 123
crustose alga Ralfsia verrucosa 116
cryopreservation
Cryptosporidium parvum
crystallization
Cu
cultivation 61, 70, 74, 78, 83, 86, 88, 89, 113, 122
culture
3-7, 16, 17, 24, 26-28, 30, 34, 38, 40, 41, 43, 50, 53-57,
59-61, 63, 67, 69-79, 81-95, 97-106, 108-119, 121-123
culture conditions
culture ground
culture growth
culture media
culture methods
culture of fish, seaweed and abalone 110
Culture of Glochidia
culture potential
culture solution 116
culture system hyraulics 123
culture techniques
culture uses
cultured and bloomed algal diets 83
cultured brown cells
cultured juvenile freshwater mussels
cultured mantle cells
cultured marine molluscs 78
cultured neurons
culturing systems
cuttle fish 30-32, 39, 107
cyanobacteria
cyclic AMP 21, 43, 46, 61, 62
cyclic AMP analogs and derivatives
cyclic AMP dependent protein kinases metabolism 46
cyclic AMP metabolism
cyclic AMP pharmacology/ regulatory subunit
Cystoseira sp
cytaster assembly requirement
cytochalasin B administration and dosage
cytochrome c oxidase genetics
cytochrome oxidase I gene
cytochrome P450 metabolism

cytochrome P450 CYP41 64
cytogenetics 12
cytology 23, 39, 42, 46, 54, 65
cytoplasm chemistry 31
cytoskeletal protein phosphorylation
cytoskeletal proteins chemistry & metabolism 33
c-fos messenger RNA induction
Damariscotta River, Maine (USA)
darkness
Dasia sp
Decapoda
decontamination
deep seawater
defense mechanisms
defenses
degradation
degranulation
delivery
density
4, 5, 21, 30, 59, 69, 70, 72-74, 76, 77, 79-81, 86, 90,
109, 111
density dependent growth 111
dephosphorylation
depth
depuration
desiccation
design 26, 38, 39, 50, 63, 74, 77, 79, 94, 110
design criteria
detection method
detection of enteroviruses
detoxification
developed countries
development of Zebra mussel larvae
development policies
developmental stages
6, 28, 36, 55, 59, 72, 73, 81, 83, 88, 89, 109, 110, 117
diadromous fishes
diagnosis
diagnosis of animal diseases
diagnostic method
diagnostic radiology 42, 43
diagnostic techniques
diameter
Dicotyledones
Dicrocoelium dendriticum parasitology/ physiology . 65
diet
39, 40, 51, 56, 70, 84, 88, 89, 91, 107, 110-112, 115,
117
diet development 117
dietary carbohydrate
dietary conditions
dietetics
differential susceptibility
digestibility
digestion
digestive efficiency

digestive gland 14-17, 25, 33, 38, 49, 93
digestive gland cells
digestive gland index
digestive system
digestive system (ingestion and assimilation) 16
digestive system drug effects & metabolism16
digestive tract
dimensions 27, 55, 59, 86
dinoflagellate16
dioxins toxicity
Diplodus
Diptera drug effects16
disease
3, 7, 8, 10, 13, 18-20, 24, 25, 38, 43, 63, 75, 76, 99, 119
disease control
disease outbreaks 10, 13, 119
dispersal
disseminated neoplasia20
dissolved oxygen
dissolving
distribution
2, 19, 22, 23, 49, 53, 71, 76, 78, 80, 91, 93, 115, 117
DNA
1, 2, 4, 7, 9, 10, 18, 20, 23, 27, 31, 34, 45, 52, 71, 85,
90, 95, 96, 105, 109
DNA adducts
DNA adducts analysis & metabolism
DNA damage
DNA metabolism
DNA neoplasm
DNA probes
DNA sequencing
DNA strand breakage
DNA viral
docosahexaenoic acid
dogfish (Chondrichthyes)
dogwhelk Nucella lapillus
domestication
domoic acid
Donacidae
Donax serra 101
Donax trunculus
dormancy
dorsal aspect target strength
Doryteuthis bleekeri
dosage
dose response relationship 2, 8, 14, 44, 57, 64, 65, 95
dose response relationship drug
dose response relationship radiation
Dosidicus gigas
doughboy scallop
Dreissena bugensis
Dreissena polymorpha . 2, 11, 12, 16, 20, 23, 24, 71, 97
drifting lines
drilling position

2, 6, 8, 9, 11-14, 16, 23, 25, 35, 36, 42-44, 46, 48, 49,
54, 57, 62, 65, 67, 96, 97, 115, 123
drug evaluation
drug genetics
drug resistance & synergism
dry feeds
dry matter
dry matter content
dulse Palmaria mollis
Dungarvan Bay (Ireland)
duration 5, 6, 27, 43, 44, 72, 74, 79, 87, 93, 109, 114
duration, 5, 6, 27, 43, 44, 72, 74, 79, 87, 95, 109, 114 dyes
E3 ubiquitin-protein ligase
ear-hanging culture
early experience effect
early juvenile Trochus niloticus
East Asia
eastern Bering Sea
eastern Canada
eastern central Atlantic
eastern Europe
eastern oyster
Echinodermata
Echinostomatidae physiology
echosounding
ecological significance
ecology
1, 7, 17, 21-24, 26, 27, 29, 30, 33, 34, 37, 38, 43, 45,
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97,
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis economic development
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis economic development reconomic plants economic plants ecosystem context 95 ecosystems 22, 54, 63, 89, 95, 97, 99, 116
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis economic development 74, 81, 83, 86, 111 economic plants 117 ecosystem context 95 ecosystems 22, 54, 63, 89, 95, 97, 99, 116 ecotoxicological relevance
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis economic development 74, 81, 83, 86, 111 economic plants 117 ecosystem context 95 ecotoxicological relevance 63 Edaiyur backwaters
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis economic development 74, 81, 83, 86, 111 economic plants 117 ecosystem context 95 ecotoxicological relevance 63 Edaiyur backwaters 26
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis economic development 74, 81, 83, 86, 111 economic plants 117 ecosystem context 95 ecotoxicological relevance 63 Edaiyur backwaters 86 effect of Serotonin 113
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis economic development 74, 81, 83, 86, 111 economic plants 117 ecosystem context 95 ecotoxicological relevance 63 Edaiyur backwaters 86 effect of Serotonin 22 54, 63, 89, 95, 97, 99, 116 ecotoxicological relevance 63 Edaiyur backwaters 26 effect of temperature and photoperiod 113 effects of imipramine 26
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis economic development 74, 81, 83, 86, 111 economic plants 117 ecosystem context 95 ecotoxicological relevance 63 Edaiyur backwaters 86 effect of Serotonin 26 effects of imipramine 26 effects of salinity
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis economic development 74, 81, 83, 86, 111 economic plants 117 ecosystem context 95 ecotoxicological relevance 63 Edaiyur backwaters 86 effect of Serotonin 22 54, 63, 89, 95, 97, 99, 116 ecotoxicological relevance 63 Edaiyur backwaters 26 effect of temperature and photoperiod 113 effects of imipramine 26
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis economic development 74, 81, 83, 86, 111 economic plants 95 ecosystem context 95 ecotoxicological relevance 63 Edaiyur backwaters 86 effect of Serotonin 113 effects of salinity 86 effects of salinity 86 efficiency 80 91 92 93 94 95 95 95 95 95 95 95 96 911 92 94 95 95 96 97 99 91 91 91 92 93 94 93 <
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis economic development 74, 81, 83, 86, 111 economic plants 95 ecosystem context 95 ecotoxicological relevance 63 Edaiyur backwaters 86 effect of Serotonin 26 effects of salinity 88 efficiency 89, 93, 51, 55, 73, 87, 98, 105, 111, 114
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis economic development 74, 81, 83, 86, 111 economic plants 117 ecosystem context 95 ecotoxicological relevance 63 Edaiyur backwaters 86 effect of Serotonin 113 effects of salinity 88 efficiency 89, 93, 51, 55, 73, 87, 98, 105, 111, 114 effluents 21, 37, 46, 59, 88, 108, 109
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis economic development 74, 81, 83, 86, 111 economic plants 117 ecosystem context 95 ecosystems 22, 54, 63, 89, 95, 97, 99, 116 ecotoxicological relevance 63 Edaiyur backwaters 86 effect of Serotonin 113 effects of salinity 88 efficiency 89, 39, 51, 55, 73, 87, 98, 105, 111, 114 effluents 21, 37, 46, 59, 88, 108, 109 egg hatchability
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis economic development
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis economic development
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis economic development
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis 74, 81, 83, 86, 111 economic development 71, 110 economic plants 117 ecosystem context 95 ecotoxicological relevance 63 Edaiyur backwaters 86 effect of Serotonin 26 effects of salinity 8 efficiency 8, 9, 39, 51, 55, 73, 87, 98, 105, 111, 114 effluents 79, 93, 110 egg incubation & mass 59 Eicosapentaenoic acid 89 electric fence 63
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis 74, 81, 83, 86, 111 economic development 71, 110 economic plants 117 ecosystem context 95 ecotoxicological relevance 63 Edaiyur backwaters 86 effect of Serotonin 26 effects of salinity 8 efficiency 8, 9, 39, 51, 55, 73, 87, 98, 105, 111, 114 effluents 79, 93, 110 egg hatchability 37 egg incubation & mass 59 Eicosapentaenoic acid 89 electric fence 63 electric fence 63
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis economic development 74, 81, 83, 86, 111 economic plants 117 ecosystem context 95 ecosystem context 95 ecosystems 22, 54, 63, 89, 95, 97, 99, 116 ecotoxicological relevance 63 Edaiyur backwaters 86 effect of Serotonin 113 effects of salinity 88 efficiency 89 efficiency 89 91 91 92 93 94 95 95 95 95 95 95 95 96 97 99 91 92 93 94 95 96 97
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis 74, 81, 83, 86, 111 economic development 71, 110 economic plants 117 ecosystem context 95 ecosystems 22, 54, 63, 89, 95, 97, 99, 116 ecotoxicological relevance 63 Edaiyur backwaters 86 effect of Serotonin 26 effects of salinity 8 efficiency 8, 9, 39, 51, 55, 73, 87, 98, 105, 111, 114 effluents 79, 93, 110 egg 21, 37, 46, 59, 88, 108, 109 egg incubation & mass 59 Eicosapentaenoic acid 89 electric fence 63 electric fence 63 electric fence 63 electron 4, 20, 58, 101, 102, 109 electron microprobe/ probe x-ray microanalysis 58
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis 74, 81, 83, 86, 111 economic development 71, 110 economic plants 117 ecosystem context 95 ecotoxicological relevance 63 Edaiyur backwaters 63 effect of Serotonin 26 effects of salinity 8 efficiency 8, 9, 39, 51, 55, 73, 87, 98, 105, 111, 114 effluents 79, 93, 110 egg 21, 37, 46, 59, 88, 108, 109 egg incubation & mass 59 Eicosapentaenoic acid 89 electric fence 63 electric fence 63 electron 4, 20, 58, 101, 102, 109 electron microprobe/ probe x-ray microanalysis 58 electron transfer 109
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis 74, 81, 83, 86, 111 economic development 71, 110 economic plants 117 ecosystem context 95 ecotoxicological relevance 63 Edaiyur backwaters 63 Edaiyur backwaters 86 effect of Serotonin 26 effects of salinity 8 efficiency 8, 9, 39, 51, 55, 73, 87, 98, 105, 111, 114 effluents 79, 93, 110 egg 21, 37, 46, 59, 88, 108, 109 egg incubation & mass 59 Eicosapentaenoic acid 89 electric fence 63 electric fence 63 electric fence 63 electron 4, 20, 58, 101, 102, 109 electron microprobe/ probe x-ray microanalysis 58 electron transfer 109 electron transport system (ETS) assay 20
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis 74, 81, 83, 86, 111 economic development 71, 110 economic plants 117 ecosystem context 95 ecosystems 22, 54, 63, 89, 95, 97, 99, 116 ecotoxicological relevance 63 Edaiyur backwaters 86 effect of Serotonin 26 effects of salinity 8 efficiency 8, 9, 39, 51, 55, 73, 87, 98, 105, 111, 114 effluents 79, 93, 110 egg 21, 37, 46, 59, 88, 108, 109 egg incubation & mass 59 Eicosapentaenoic acid 89 electric fence 63 electric fence 63 electron 4, 20, 58, 101, 102, 109 electron microprobe/ probe x-ray microanalysis 58 electron transport system (ETS) assay 20 electrophoresis 13, 28, 33, 37, 38, 45, 52, 85
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis 74, 81, 83, 86, 111 economic development 71, 110 economic plants 117 ecosystem context 95 ecosystems 22, 54, 63, 89, 95, 97, 99, 116 ecotoxicological relevance 63 Edaiyur backwaters 86 effect of Serotonin 26 effects of impramine 26 effects of salinity 8 efficiency 8, 9, 39, 51, 55, 73, 87, 98, 105, 111, 114 effluents 79, 93, 110 egg 21, 37, 46, 59, 88, 108, 109 egg incubation & mass 59 Eicosapentaenoic acid 89 electric fence 63 electron 4, 20, 58, 101, 102, 109 electron microprobe/ probe x-ray microanalysis 58 electron transfer 109 electron transfer 109 electrophoresis 13, 28, 33, 37, 38, 45, 52, 85
52, 53, 55, 56, 58, 61-64, 66, 67, 80, 89, 92-94, 96, 97, 102, 104-106, 113, 117-119, 123 economic analysis 74, 81, 83, 86, 111 economic development 71, 110 economic plants 117 ecosystem context 95 ecosystems 22, 54, 63, 89, 95, 97, 99, 116 ecotoxicological relevance 63 Edaiyur backwaters 86 effect of Serotonin 26 effects of salinity 8 efficiency 8, 9, 39, 51, 55, 73, 87, 98, 105, 111, 114 effluents 79, 93, 110 egg 21, 37, 46, 59, 88, 108, 109 egg incubation & mass 59 Eicosapentaenoic acid 89 electric fence 63 electric fence 63 electron 4, 20, 58, 101, 102, 109 electron microprobe/ probe x-ray microanalysis 58 electron transport system (ETS) assay 20 electrophoresis 13, 28, 33, 37, 38, 45, 52, 85

elemental composition
elements 15, 24, 25, 27, 28, 41, 93, 94, 97, 116
elimination
Elliptio complanata 1, 18
Elysia chlorotica
embryonation 116
embryonic and adult tissues
embryonic development 12, 37, 69, 92, 114
embryos 8, 11, 12, 37, 55, 69, 89
encapsulation
•
enclosures
endangered species
endocrine disruptors
endocrine system 16, 55-57
endocrine system (chemical coordination and
homeostasis) 16
endocrinology
endosulfan
,
energetics
energy 8, 9, 20, 22, 32, 50, 52, 58, 85, 86, 119
energy budget 119
energy content
energy intake
energy metabolism
energy metabolism genetics
energy sources
England
enhanced calcium influx
enrichment 51, 76, 77, 97, 105
enteric viruses 10, 17, 104
Enterobacteriaceae
Enterobacteriaceae isolation and purification95
Enterobacteriaceae radiation effects
Enteromorpha intestinalis
Enterovirus
Enterovirus genetics
Enterovirus isolation and purification
enterprises
environment
8, 16, 17, 25, 27-30, 32, 38, 40, 45, 48, 50, 52, 53,
59-64, 66, 71, 76, 79, 89, 90, 92, 95, 98-102, 104,
116-118, 120, 123
environment controlled
environment design
environmental administration and dosage
•
environmental conditions
1, 28, 29, 59, 61, 62, 86, 100, 102, 117
environmental contaminants
environmental control
environmental effects 121
environmental exposure
environmental factors
7, 27, 28, 36, 37, 39, 49, 51, 55, 57, 83, 93, 99, 104
environmental health
environmental impact 22, 70, 118
environmental monitoring
2-4, 25, 54, 71, 80, 85, 90, 103, 117
environmental monitoring methods
environmental neurotoxin
environmental neurotoxin

environmental pollutants 2, 4, 25, 64, 67
environmental pollutants immunology
environmental pollutants metabolism
environmental pollutants pharmacokinetics
environmental pollutants pharmacology
environmental pollutants toxicity
environmental resistance
environmental sciences
1, 21-24, 26, 27, 30, 33, 34, 37, 38, 43, 55, 56, 66, 67,
92-94, 96, 97, 105, 106, 113, 117, 119
environmental stress
environmental temperature 27, 36, 37, 55, 61, 62, 78, 93
environmental waters
environmentally contaminated bivalve molluscs 92
environmentally contaminated molluscan shellfish 82
environments
enzyme activity
enzyme heterozygosity 8, 28
enzyme inhibitors
enzyme inhibitors pharmacology
enzymes
epibionts
epidemiology 10, 13, 22, 65
epithelium microbiology
epithelium physiology
epizootic diseases
equipment 1, 36, 37, 43, 44, 72, 78, 81, 111
escargots
Escherichia coli
Escherichia coli isolation and purification 19, 95
Escherichia coli radiation effects
estrogens
estuaries
estuarine algae
estuarine benthic communities 123
estuarine ecology
estuarine habitats
ethers
ethics
etiology
etoposide
ETS assay
Eubacteria
eukaryotic cells classification & ultrastructure4Euprymna scolopes32, 34, 105
Europe
European \dots 1, 4, 7, 21, 22, 74, 91, 99, 100, 120 European \dots 8, 39, 82, 102
eutrophic lagoons
Euvola (Pecten) ziczac
evaluation of chemicals
evaluation studies
evidence for tributyltin-mediated endocrine disruption .
113
evolution
6, 11, 33, 34, 41, 42, 45, 52, 56, 59, 60, 99, 109, 116
$evolution molecular \dots 45$
evolution of plasticity
excitatory amino acids
excretion

exocytosis physiology
experimental approach
experimental conditions 21, 54
experimental design
experimental pathology
experimental populations
experimental rearing and growth
experimental studies
experiments
1, 2, 5, 6, 9, 20, 29, 34, 39, 46, 47, 49, 52, 60, 64, 67,
71, 75-79, 82, 83, 89, 93, 95, 97, 101, 103, 114, 117,
120
exposure
71, 72, 83, 85, 86, 89, 90, 92, 93, 97, 103, 115, 116
exposure to carcinogens and toxins
expression 1, 3, 10, 13, 15, 18, 43, 45, 46, 64, 109
extensive production
factors affecting growth and survival
facultatively anaerobic gram negative rods 8, 105
fan mussel
farm-based nursery
farming 69, 70, 77, 78, 83, 89, 115, 118, 119, 121
farming systems
fast axonal transport
fatty acid composition characteristic
fatty acids
feasibility studies
feces
feces microbiology
feces parasitology
fecundity
feed
5, 51, 52, 55, 70, 82, 87, 89, 94, 101, 109-112, 114,
116, 117, 121
feed additives
feed composition and quality
feed consumption/ crops/ crucifers 117
feed conversion
feed conversion efficiency
feed dispensers
feed intake 51, 52, 82, 109-112
feed preference
feed rations
feed supplements
feed supplements
feed supplements
feed supplements 114 feeding and nutrition 55 feeding behavior 9, 17, 38, 40, 42, 62, 72, 96 feeding behavior physiology 42
feed supplements 114 feeding and nutrition 55 feeding behavior 9, 17, 38, 40, 42, 62, 72, 96 feeding behavior physiology 42 feeding experiment 119
feed supplements 114 feeding and nutrition 55 feeding behavior 9, 17, 38, 40, 42, 62, 72, 96 feeding behavior physiology 42 feeding experiment 119 feeding habits 17, 62, 82, 91, 117
feed supplements 114 feeding and nutrition 55 feeding behavior 9, 17, 38, 40, 42, 62, 72, 96 feeding behavior physiology 42 feeding experiment 119 feeding habits 17, 62, 82, 91, 117 feeding Inhibition 97
feed supplements 114 feeding and nutrition 55 feeding behavior 9, 17, 38, 40, 42, 62, 72, 96 feeding behavior physiology 42 feeding experiment 119 feeding habits 17, 62, 82, 91, 117 feeding Inhibition 97 feeding patterns 107
feed supplements 114 feeding and nutrition 55 feeding behavior 9, 17, 38, 40, 42, 62, 72, 96 feeding behavior physiology 42 feeding experiment 119 feeding habits 17, 62, 82, 91, 117 feeding Inhibition 97 feeding patterns 107 feeding preferences 110, 115
feed supplements 114 feeding and nutrition 55 feeding behavior 9, 17, 38, 40, 42, 62, 72, 96 feeding behavior physiology 42 feeding experiment 119 feeding habits 17, 62, 82, 91, 117 feeding patterns 107 feeding preferences 110, 115 feeding regimes 87, 111
feed supplements 114 feeding and nutrition 55 feeding behavior 9, 17, 38, 40, 42, 62, 72, 96 feeding behavior physiology 42 feeding experiment 119 feeding habits 17, 62, 82, 91, 117 feeding patterns 107 feeding preferences 110, 115 feeding strategy 107
feed supplements 114 feeding and nutrition 55 feeding behavior 9, 17, 38, 40, 42, 62, 72, 96 feeding behavior physiology 42 feeding experiment 119 feeding habits 17, 62, 82, 91, 117 feeding patterns 107 feeding preferences 110, 115 feeding strategy 107 feeding strategy 107
feed supplements 114 feeding and nutrition 55 feeding behavior 9, 17, 38, 40, 42, 62, 72, 96 feeding behavior physiology 42 feeding experiment 119 feeding habits 17, 62, 82, 91, 117 feeding nabits 97 feeding patterns 107 feeding regimes 87, 111 feeding strategy 107 feeds 107 feeds 107
feed supplements 114 feeding and nutrition 55 feeding behavior 9, 17, 38, 40, 42, 62, 72, 96 feeding behavior physiology 42 feeding experiment 119 feeding habits 17, 62, 82, 91, 117 feeding patterns 107 feeding preferences 110, 115 feeding strategy 107 feeding strategy 107

fertility
fertilization 12, 37, 49, 57, 106, 112
fibrocyte
field and laboratory evaluation
field conditions
field experimentation51
field- and laboratory-developed
Fighting conch Strombus pugilis 112
filter feeding 10, 27, 98, 103
filtering
filtration
5, 17, 27, 29, 38, 70, 79, 84, 97, 98, 104, 110, 114
filtration feeding
filtration rate
financial
fish
5, 6, 15, 23, 37-39, 63, 66, 67, 69, 70, 78, 82, 85, 88,
91-93, 98, 99, 107, 110-112, 118-121, 123
fish culture
fish diseases
fish farming
fish feeding
fish meal
fish oils
fish ponds
fish silage
fisheries
8,17, 21, 27, 29, 30, 35-37, 39, 43, 54, 61-63, 72, 76,
80, 87, 89, 90, 93, 98-100, 102, 104, 106-108, 117-120,
122, 123
122, 123 fisheries and aquaculture general aspects 87
fisheries and aquaculture general aspects
fisheries and aquaculture general aspects
fisheries and aquaculture general aspects
fisheries and aquaculture general aspects87fisheries production61, 104, 118fisheries species8, 21, 76fisheries-Wales104
fisheries and aquaculture general aspects87fisheries production61, 104, 118fisheries species8, 21, 76fisheries- Wales104fishermen78, 106, 119
fisheries and aquaculture general aspects 87 fisheries production 61, 104, 118 fisheries species 8, 21, 76 fisheries- Wales 104 fishermen 78, 106, 119 fishery 17, 106-108, 118
fisheries and aquaculture general aspects87fisheries production61, 104, 118fisheries species8, 21, 76fisheries- Wales104fishermen78, 106, 119fishery17, 106-108, 118fishery of squid and cuttlefish107
fisheries and aquaculture general aspects 87 fisheries production 61, 104, 118 fisheries species 8, 21, 76 fisheries-Wales 104 fishermen 78, 106, 119 fishery 17, 106-108, 118 fishery of squid and cuttlefish 107 fishery processing 106
fisheries and aquaculture general aspects 87 fisheries production 61, 104, 118 fisheries species 8, 21, 76 fisheries-Wales 104 fishermen 78, 106, 119 fishery 17, 106-108, 118 fishery of squid and cuttlefish 107 fishery processing 106 fishery resources 106, 108
fisheries and aquaculture general aspects 87 fisheries production 61, 104, 118 fisheries species 8, 21, 76 fisheries-Wales 104 fishermen 78, 106, 119 fishery 17, 106-108, 118 fishery of squid and cuttlefish 107 fishery processing 106 fishery resources 106, 108 fishes genetics 85
fisheries and aquaculture general aspects87fisheries production61, 104, 118fisheries species8, 21, 76fisheries- Wales104fishermen78, 106, 119fishery17, 106-108, 118fishery of squid and cuttlefish107fishery processing106fishes genetics85fishing areas102
fisheries and aquaculture general aspects87fisheries production61, 104, 118fisheries species8, 21, 76fisheries- Wales104fishermen78, 106, 119fishery17, 106-108, 118fishery of squid and cuttlefish107fishery processing106fishes genetics85fishing areas102flagella20
fisheries and aquaculture general aspects87fisheries production61, 104, 118fisheries species8, 21, 76fisheries- Wales104fishermen78, 106, 119fishery17, 106-108, 118fishery of squid and cuttlefish107fishery processing106fishes genetics85fishing areas102flagella20Flagellata92, 97
fisheries and aquaculture general aspects87fisheries production61, 104, 118fisheries species8, 21, 76fisheries- Wales104fishermen78, 106, 119fishery17, 106-108, 118fishery of squid and cuttlefish107fishery processing106fishes genetics85fishing areas102flagella20Flagellata92, 97flatfishes metabolism90
fisheries and aquaculture general aspects87fisheries production61, 104, 118fisheries species8, 21, 76fisheries-Wales104fishermen78, 106, 119fishery17, 106-108, 118fishery of squid and cuttlefish107fishery processing106fishes genetics85fishing areas102flagella20Flagellata92, 97flatfishes metabolism90Florida, USA71, 81, 91, 96, 117, 123
fisheries and aquaculture general aspects87fisheries production61, 104, 118fisheries species8, 21, 76fisheries-Wales104fishermen78, 106, 119fishery17, 106-108, 118fishery of squid and cuttlefish107fishery processing106fishes genetics85fishing areas102flagella20Flagellata92, 97flatfishes metabolism90Florida, USA71, 81, 91, 96, 117, 123Florida estuary91
fisheries and aquaculture general aspects87fisheries production61, 104, 118fisheries species8, 21, 76fisheries-Wales104fishermen78, 106, 119fishery17, 106-108, 118fishery of squid and cuttlefish107fishery processing106fishes genetics85fishing areas102flagella20Flagellata90Florida, USA71, 81, 91, 96, 117, 123Florida estuary91flow91
fisheries and aquaculture general aspects 87 fisheries production 61, 104, 118 fisheries species 8, 21, 76 fisheries-Wales 104 fishermen 78, 106, 119 fishery 17, 106-108, 118 fishery of squid and cuttlefish 107 fishery processing 106 fishes genetics 85 fishing areas 102 flagella 20 Flagellata 92, 97 flatfishes metabolism 90 Florida, USA 71, 81, 91, 96, 117, 123 Florida estuary 91 flow 91 1, 5, 38, 70, 71, 74-76, 80, 81, 83, 86, 87, 95, 98, 100,
fisheries and aquaculture general aspects 87 fisheries production 61, 104, 118 fisheries species 8, 21, 76 fisheries-Wales 104 fisheries-Wales 104 fisheries-Wales 104 fishermen 78, 106, 119 fishery 17, 106-108, 118 fishery of squid and cuttlefish 107 fishery processing 106 fishes genetics 85 fishing areas 102 flagella 20 Flagellata 92, 97 flatfishes metabolism 90 Florida, USA 71, 81, 91, 96, 117, 123 Florida estuary 91 flow 91 109 109
fisheries and aquaculture general aspects 87 fisheries production 61, 104, 118 fisheries species 8, 21, 76 fisheries-Wales 104 fishermen 78, 106, 119 fishery 17, 106-108, 118 fishery of squid and cuttlefish 107 fishery processing 106 fishery resources 106, 108 fishes genetics 85 fishing areas 102 flagella 20 Flagellata 92, 97 flatfishes metabolism 90 Florida, USA 71, 81, 91, 96, 117, 123 Florida estuary 91 flow 91 flow 91 flow environment 95
fisheries and aquaculture general aspects 87 fisheries production 61, 104, 118 fisheries species 8, 21, 76 fisheries-Wales 104 fisheries-Wales 104 fisheries-Wales 104 fishermen 78, 106, 119 fishery 17, 106-108, 118 fishery of squid and cuttlefish 107 fishery processing 106 fishery resources 106, 108 fishes genetics 85 fishing areas 102 flagella 20 Flagellata 92, 97 flatfishes metabolism 90 Florida, USA 71, 81, 91, 96, 117, 123 Florida estuary 91 flow 91 flow 91 flow environment 95 flow velocity; marine bivalve 98
fisheries and aquaculture general aspects 87 fisheries production 61, 104, 118 fisheries species 8, 21, 76 fisheries-Wales 104 fisheries-Wales 104 fisheries-Wales 104 fisheries-Wales 104 fisheries-Wales 104 fisheries-Wales 104 fishermen 78, 106, 119 fishery 17, 106-108, 118 fishery of squid and cuttlefish 107 fishery processing 106 fishery resources 106, 108 fishes genetics 85 fishing areas 102 flagella 20 Flagellata 92, 97 flatfishes metabolism 90 Florida, USA 71, 81, 91, 96, 117, 123 Florida estuary 91 flow 11 109 100 flow environment 95 flow velocity; marine bivalve 98 flowthrough culture systems 111
fisheries and aquaculture general aspects 87 fisheries production 61, 104, 118 fisheries species 8, 21, 76 fisheries-Wales 104 fishermen 78, 106, 119 fishery 17, 106-108, 118 fishery of squid and cuttlefish 107 fishery processing 106 fishery resources 106, 108 fishes genetics 85 fishing areas 102 flagella 20 Flagellata 92, 97 flatfishes metabolism 90 Florida, USA 71, 81, 91, 96, 117, 123 Florida estuary 91 flow 109 flow environment 95 flow velocity; marine bivalve 98 flowthrough culture systems 111 fluid composition 11
fisheries and aquaculture general aspects 87 fisheries production 61, 104, 118 fisheries species 8, 21, 76 fisheries-Wales 104 fishermen 78, 106, 119 fishery 17, 106-108, 118 fishery of squid and cuttlefish 107 fishery processing 106 fishes genetics 85 fishing areas 102 flagella 20 Flagellata 92, 97 flatfishes metabolism 90 Florida, USA 71, 81, 91, 96, 117, 123 Florida estuary 91 flow 95 flow environment 95 flow velocity; marine bivalve 98 flowthrough culture systems 111 fluid composition 11 fluidized bed oyster nursery 94
fisheries and aquaculture general aspects 87 fisheries production 61, 104, 118 fisheries species 8, 21, 76 fisheries-Wales 104 fishermen 78, 106, 119 fishery 17, 106-108, 118 fishery of squid and cuttlefish 107 fishery processing 106 fishes genetics 85 fishing areas 102 flagella 20 Flagellata 92, 97 flatfishes metabolism 90 Florida, USA 71, 81, 91, 96, 117, 123 Florida estuary 91 flow 95 flow environment 95 flow velocity; marine bivalve 98 flowthrough culture systems 111 fluid composition 11 fluid composition 11 fluorenes pharmacokinetics & toxicity 6
fisheries and aquaculture general aspects 87 fisheries production 61, 104, 118 fisheries species 8, 21, 76 fisheries-Wales 104 fisheries-Wales 104 fisheries-Wales 104 fisheries-Wales 104 fisheries-Wales 104 fishermen 78, 106, 119 fishery 17, 106-108, 118 fishery of squid and cuttlefish 107 fishery processing 106 fishery resources 106, 108 fishes genetics 85 fishing areas 102 flagella 20 Flagellata 92, 97 flatfishes metabolism 90 Florida, USA 71, 81, 91, 96, 117, 123 Florida estuary 91 flow 91 flow 95 flow environment 95 flow velocity; marine bivalve 98 flowthrough culture systems 111 fluid composition 11 fluorenes pharmacokinetics & toxicity 6 fluorenes pharmacokinetics & toxicity
fisheries and aquaculture general aspects 87 fisheries production 61, 104, 118 fisheries species 8, 21, 76 fisheries-Wales 104 fisheries-Wales 104 fishermen 78, 106, 119 fishery 17, 106-108, 118 fishery of squid and cuttlefish 107 fishery processing 106 fishery resources 106, 108 fishes genetics 85 fishing areas 102 flagella 20 Flagellata 92, 97 flatfishes metabolism 90 Florida, USA 71, 81, 91, 96, 117, 123 Florida estuary 91 flow 91 flow 95 flow velocity; marine bivalve 98 flowthrough culture systems 111 fluid composition 11 fluidized bed oyster nursery 94 fluorenes pharmacokinetics & toxicity 6 fluorescence 6, 56
fisheries and aquaculture general aspects 87 fisheries production 61, 104, 118 fisheries species 8, 21, 76 fisheries-Wales 104 fisheries-Wales 104 fisheries-Wales 104 fisheries-Wales 104 fisheries-Wales 104 fishermen 78, 106, 119 fishery 17, 106-108, 118 fishery of squid and cuttlefish 107 fishery processing 106 fishery resources 106, 108 fishes genetics 85 fishing areas 102 flagella 20 Flagellata 92, 97 flatfishes metabolism 90 Florida, USA 71, 81, 91, 96, 117, 123 Florida estuary 91 flow 91 flow 95 flow environment 95 flow velocity; marine bivalve 98 flowthrough culture systems 111 fluid composition 11 fluorenes pharmacokinetics & toxicity 6 fluorenes pharmacokinetics & toxicity

food and feeding
food availability
food chain
food consumption 61, 117
food contamination analysis 17
food hygiene
food industry
food intake
food irradiation
food levels
food marketing
food microbiology 10, 95, 104, 121
food microbiology standards 10
food preferences
food processing
food production
food products
food quality
food restriction
food selection
food sources
food-filtering organisms
foodborne diseases
foods 28, 39, 61, 62, 70, 74, 95, 97, 100, 102, 114, 115
forage
foraging
foraging behavior
forecasting
formation
formulations
forskolin pharmacology
fouling
France
free amino compounds
free radical scavengers metabolism
free radicals
freezing
French strains
frequency 12, 23, 29, 41, 42, 60, 71, 110, 111
fresh water
fresh water microbiology & virology 22
fresh water mussel
fresh water mussel synthesis
freshwater clams
freshwater ecology 1, 23, 26, 92, 94
freshwater fishes
freshwater mesocosms
freshwater molluscs
freshwater mussels 1, 5, 6, 11, 24, 26, 92, 94, 97
freshwater pearl mussel
freshwater pulmonate snails
freshwater snail 46, 51, 52, 53, 56, 60-63, 117
frozen hydrated sections
fry
function 10, 41, 42, 47, 57, 60, 63, 64, 95, 115 fungal infection
Gaeta Gulf, Central Tyrrhenian, MED
Galeria mellonella
gamete
gamete

gametogenesis
gamma aminobutyric acid 114
gamma irradiation
gamma Proteobacteria pathogenicity
gamma rays
ganglia
gas exchange
gas production
gastroenteritis epidemiology 10, 13
gastroenteritis epidemiology and virology 10
gastroenteritis etiology/ prevention and control 13
gastropod cells
gastropod larval shell morphology
gastropod mollusc
Gastropoda North America Identification 118
Gastropoda: Ampullariidae
Gastropoda: Muricidae 108
Gastropodous 118
gear type
gel 13, 17, 33, 52, 85
gene expression
gene expression physiology
gene flow
general life studies
generalists
genes
genetic analysis 2, 3
genetic considerations
genetic diversity 13, 52, 75
genetic interactions
genetic research 120
genetic research 120
genetic research120genetic selection100genetic studies28
genetic research120genetic selection100genetic studies28genetic variance3
genetic research120genetic selection100genetic studies28genetic variance3genetic variation3, 31, 45, 62, 71, 89
genetic research120genetic selection100genetic studies28genetic variance3genetic variation3, 31, 45, 62, 71, 89genetics9
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 3 genetic variation 3, 31, 45, 62, 71, 89 genetics 3, 4, 7-11, 18, 27, 28, 32, 34, 37, 43, 45, 46, 52, 56, 60,
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 3 genetic variation 3, 31, 45, 62, 71, 89 genetics 3, 4, 7-11, 18, 27, 28, 32, 34, 37, 43, 45, 46, 52, 56, 60, 62, 85, 95, 96, 120
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 3 genetic variation 3, 31, 45, 62, 71, 89 genetics 3, 4, 7-11, 18, 27, 28, 32, 34, 37, 43, 45, 46, 52, 56, 60, 62, 85, 95, 96, 120 genetics of plasticity 52
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 3 genetic variation 3, 31, 45, 62, 71, 89 genetics 3, 4, 7-11, 18, 27, 28, 32, 34, 37, 43, 45, 46, 52, 56, 60, 62, 85, 95, 96, 120 genetics of plasticity 52 genomic diversity 8
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 3 genetic variation 3, 31, 45, 62, 71, 89 genetics 3, 4, 7-11, 18, 27, 28, 32, 34, 37, 43, 45, 46, 52, 56, 60, 62, 85, 95, 96, 120 genetics of plasticity 52
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 3 genetic variation 3, 31, 45, 62, 71, 89 genetics 3 3, 4, 7-11, 18, 27, 28, 32, 34, 37, 43, 45, 46, 52, 56, 60, 62, 85, 95, 96, 120 genetics of plasticity 52 genomic diversity 8 genotype environment interactions 118
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 28 genetic variation 3, 31, 45, 62, 71, 89 genetics 3, 31, 45, 62, 71, 89 genetics 3, 4, 7-11, 18, 27, 28, 32, 34, 37, 43, 45, 46, 52, 56, 60, 62, 85, 95, 96, 120 genetics of plasticity 52 genomic diversity 8 genotype environment interactions 118 genotypes 2, 3, 8, 9, 60, 118
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 3 genetic variation 3, 31, 45, 62, 71, 89 genetics 3 3, 4, 7-11, 18, 27, 28, 32, 34, 37, 43, 45, 46, 52, 56, 60, 62, 85, 95, 96, 120 genetics of plasticity 52 genomic diversity 8 genotype environment interactions 118 genotypes 2, 3, 8, 9, 60, 118 genus Loligo 37
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 3 genetic variation 3, 31, 45, 62, 71, 89 genetics 3, 31, 45, 62, 71, 89 genetics 3, 4, 7-11, 18, 27, 28, 32, 34, 37, 43, 45, 46, 52, 56, 60, 62, 85, 95, 96, 120 genetics of plasticity 52 genomic diversity 8 genotype environment interactions 118 genotypes 2, 3, 8, 9, 60, 118 genus Loligo 37 geographic information system 71
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 3 genetic variation 3, 31, 45, 62, 71, 89 genetics 3, 31, 45, 62, 71, 89 genetics 3, 31, 45, 62, 71, 89 genetics 52 genetics of plasticity 52 genomic diversity 8 genotype environment interactions 118 genotypes 2, 3, 8, 9, 60, 118 genus Loligo 37 geographic information system 71 Geographic variations 59
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 28 genetic variation 3, 31, 45, 62, 71, 89 genetics 3, 31, 45, 62, 71, 89 genetics 3, 31, 45, 62, 71, 89 genetics 52 genomic diversity 52 genotype environment interactions 118 genotypes 2, 3, 8, 9, 60, 118 genus Loligo 37 geographic information system 71 Geographic variations 59 geographical distribution 71, 76, 80, 91
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 28 genetic variation 3, 31, 45, 62, 71, 89 genetics 3, 31, 45, 62, 71, 89 genetics 3, 31, 45, 62, 71, 89 genetics 52 genomic diversity 52 genotype environment interactions 118 genotypes 2, 3, 8, 9, 60, 118 genotypes 71 Geographic information system 71 Geographical distribution 71, 76, 80, 91 geographical information systems 71
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 28 genetic variation 3, 31, 45, 62, 71, 89 genetics 3, 31, 45, 62, 71, 89 genetics 3, 31, 45, 62, 71, 89 genetics 52 genotic diversity 52 genotype environment interactions 118 genotypes 2, 3, 8, 9, 60, 118 genus Loligo 37 geographic information system 71 Geographical distribution 71, 76, 80, 91 geographical information systems 71 geographical variation 71 geographical variation 71, 76, 87, 90, 91
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 28 genetic variation 3, 31, 45, 62, 71, 89 genetics 3, 31, 45, 62, 71, 89 genetics 3, 31, 45, 62, 71, 89 genetics 52 genomic diversity 52 genotype environment interactions 118 genotypes 2, 3, 8, 9, 60, 118 genus Loligo 37 geographic information system 71 Geographical distribution 71, 76, 80, 91 geographical variation 71, 76, 87, 90, 91 geology 14
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 28 genetic variation 3, 31, 45, 62, 71, 89 genetics 3, 31, 45, 62, 71, 89 genetics 3, 31, 45, 62, 71, 89 genetics 52 genomic diversity 52 genotype environment interactions 118 genotypes 2, 3, 8, 9, 60, 118 genus Loligo 37 geographic information system 71 Geographical distribution 71, 76, 80, 91 geographical variation 71, 76, 87, 90, 91 geology 14
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 3 genetic variation 3, 31, 45, 62, 71, 89 genetics 3 3, 4, 7-11, 18, 27, 28, 32, 34, 37, 43, 45, 46, 52, 56, 60, 62, 85, 95, 96, 120 genetics of plasticity 52 genomic diversity 8 genotype environment interactions 118 genotypes 2, 3, 8, 9, 60, 118 genus Loligo 37 geographic information system 71 Geographical distribution 71, 76, 80, 91 geology 14 Georgia 70, 79, 89, 96
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 3 genetic variation 3, 31, 45, 62, 71, 89 genetics 3 3, 4, 7-11, 18, 27, 28, 32, 34, 37, 43, 45, 46, 52, 56, 60, 62, 85, 95, 96, 120 genetics of plasticity 52 genomic diversity 8 genotype environment interactions 118 genotypes 2, 3, 8, 9, 60, 118 genus Loligo 37 geographic information system 71 Geographical distribution 71, 76, 80, 91 geology 14 Georgia 70, 79, 89, 96 giant axon axoplasm 30
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 3 genetic variation 3, 31, 45, 62, 71, 89 genetics 3 3, 4, 7-11, 18, 27, 28, 32, 34, 37, 43, 45, 46, 52, 56, 60, 62, 85, 95, 96, 120 genetics of plasticity 52 genomic diversity 8 genotype environment interactions 118 genotypes 2, 3, 8, 9, 60, 118 genus Loligo 37 geographic information system 71 Geographic variations 59 geology 14 Georgia 70, 79, 89, 96 giant axon axoplasm 30 giant clam farming 69
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 3 genetic variation 3, 31, 45, 62, 71, 89 genetics 52 genetics of plasticity 52 genomic diversity 8 genotype environment interactions 118 genotype s 2, 3, 8, 9, 60, 118 genus Loligo 37 geographic information system 71 Geographic variations 59 geology 14 Georgia 70, 79, 89, 96 giant axon axoplasm 30 giant clam farming 69 giant clam-zooxanthellae symbiosis 92
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 3 genetic variation 3, 31, 45, 62, 71, 89 genetics 52 genetics of plasticity 52 genomic diversity 8 genotype environment interactions 118 genotypes 2, 3, 8, 9, 60, 118 genus Loligo 37 geographic information system 71 Geographic variations 59 geographical distribution 71, 76, 80, 91 geology 14 Georgia 70, 79, 89, 96 giant axon axoplasm 30 giant clam farming 69 giant clams 76-78, 83, 96, 100
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 3 genetic variation 3, 31, 45, 62, 71, 89 genetics 3 3, 4, 7-11, 18, 27, 28, 32, 34, 37, 43, 45, 46, 52, 56, 60, 62, 85, 95, 96, 120 genetics of plasticity 52 genomic diversity 8 genotype environment interactions 118 genotypes 2, 3, 8, 9, 60, 118 genus Loligo 37 geographic information system 71 Geographic variations 59 geographical distribution 71, 76, 80, 91 geology 14 Georgia 70, 79, 89, 96 giant axon axoplasm 30 giant clam farming 69 giant clams 76-78, 83, 96, 100 giant clams 76-78, 83, 96, 100
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 3 genetic variation 3, 31, 45, 62, 71, 89 genetics 3 3, 4, 7-11, 18, 27, 28, 32, 34, 37, 43, 45, 46, 52, 56, 60, 62, 85, 95, 96, 120 genetics of plasticity 52 genomic diversity 8 genotype environment interactions 118 genotypes 2, 3, 8, 9, 60, 118 genus Loligo 37 geographic information system 71 Geographic variations 59 geographical distribution 71, 76, 80, 91 geology 14 Georgia 70, 79, 89, 96 giant clam farming 69 giant clam farming 69 giant clams 76-78, 83, 96, 100 giant clams (Tridacnidae) 77 giant scallop 77
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 3 genetic variation 3, 31, 45, 62, 71, 89 genetics 3 3, 4, 7-11, 18, 27, 28, 32, 34, 37, 43, 45, 46, 52, 56, 60, 62, 85, 95, 96, 120 genetics of plasticity 52 genomic diversity 8 genotype environment interactions 118 genotypes 2, 3, 8, 9, 60, 118 genus Loligo 37 geographic information system 71 Geographic variations 59 geographical distribution 71, 76, 80, 91 geology 14 Georgia 70, 79, 89, 96 giant axon axoplasm 30 giant clam farming 69 giant clams 76-78, 83, 96, 100 giant clams 76-78, 83, 96, 100
genetic research 120 genetic selection 100 genetic studies 28 genetic variance 3 genetic variation 3, 31, 45, 62, 71, 89 genetics 3 3, 4, 7-11, 18, 27, 28, 32, 34, 37, 43, 45, 46, 52, 56, 60, 62, 85, 95, 96, 120 genetics of plasticity 52 genomic diversity 8 genotype environment interactions 118 genotypes 2, 3, 8, 9, 60, 118 genus Loligo 37 geographic information system 71 Geographic variations 59 geographical distribution 71, 76, 80, 91 geology 14 Georgia 70, 79, 89, 96 giant clam farming 69 giant clam farming 69 giant clams 76-78, 83, 96, 100 giant clams (Tridacnidae) 77 giant scallop 77

gill area
gill cells
gill dimensions
gill withdrawal reflex
gills
gills chemistry
gills cytology/ drug effects
glial and neuronal rubidium uptake
glial cell
Glochidia
glucosamine metabolism 12
glucose
glucose-6-phosphate isomerase genetics
glucose-6-phosphate
glutamate
glutamate response
glutamate stimulated potential
glutathione concentrations & metabolism25
glutathione depletion12
glutathione physiology13
glutathione S-transferase115
glutathione transferase116
glyceraldehydes 3 phosphate dehydrogenases genetics .
34
34 glycogen phosphorylase
34 glycogen phosphorylase
34 glycogen phosphorylase glycolytic enzymes 15, 16 glycosaminoglycans metabolism
34glycogen phosphorylaseglycolytic enzymes15, 16glycosaminoglycans metabolism12glycosylation11
34 glycogen phosphorylase 21 glycolytic enzymes 15, 16 glycosaminoglycans metabolism 12 glycosylation 11 Go-regulated guanylate cyclase 64
34 glycogen phosphorylase 21 glycolytic enzymes 15, 16 glycosaminoglycans metabolism 12 glycosylation 11 Go-regulated guanylate cyclase 64 golden apple snail 59
34glycogen phosphorylaseglycolytic enzymes15, 16glycosaminoglycans metabolism12glycosylation11Go-regulated guanylate cyclasegolden apple snail59Golfo de Cariaco73, 84
34 glycogen phosphorylase 21 glycolytic enzymes 15, 16 glycosaminoglycans metabolism 12 glycosylation 11 Go-regulated guanylate cyclase 64 golden apple snail 59
34glycogen phosphorylaseglycolytic enzymes15, 16glycosaminoglycans metabolism12glycosylation11Go-regulated guanylate cyclasegolden apple snail59Golfo de Cariaco73, 84
34glycogen phosphorylaseglycolytic enzymes15, 16glycosylation12glycosylation11Go-regulated guanylate cyclasegolden apple snail59Golfo de Cariaco73, 84gonadal development96gonadal maturation21gonads73, 79, 89, 96
34glycogen phosphorylaseglycolytic enzymes15, 16glycosaminoglycans metabolism12glycosylation11Go-regulated guanylate cyclase64golden apple snail59Golfo de Cariaco73, 84gonadal development96gonadal maturation21gonads73, 79, 89, 96gonads pathology & virology96
34glycogen phosphorylaseglycolytic enzymes15, 16glycosaminoglycans metabolism12glycosylation11Go-regulated guanylate cyclase64golden apple snail59Golfo de Cariaco73, 84gonadal development96gonadal maturation21gonads73, 79, 89, 96gonads pathology & virology96government policy71
34glycogen phosphorylaseglycolytic enzymeslog glycolytic enzymesglycosaminoglycans metabolismlog glycosylationlog glycosylationlog glycosylationlog glycosylationlog glycosylationlog glycosylationlog glycosylationglycosylationlog glycosylationlog oregulated guanylate cyclasegolden apple snaillog off de Cariacogonadal developmentgonadal maturationlog onadsgonadslog onads pathology & virologygovernment policylog onady succeria physiologylog onadylog onady <td< td=""></td<>
34glycogen phosphorylaseglycolytic enzymeslog glycolytic enzymesglycosaminoglycans metabolismlog glycosylationlog glycosylationlog glycosylationlog glycosylationlog glycosylationlog glycosylationlog glycosylationglycosylationlog glycosylationlog oregulated guanylate cyclasegolden apple snaillog off de Cariacogonadal developmentgonadal maturationlog onadsgonadslog onads pathology & virologygovernment policylog onady succeria physiologylog onadylog onady <td< td=""></td<>
34glycogen phosphorylaseglycolytic enzymes15, 16glycosaminoglycans metabolism12glycosylation11Go-regulated guanylate cyclase64golden apple snail59Golfo de Cariaco73, 84gonadal development96gonadal maturation21gonads73, 79, 89, 96gonads pathology & virology96government policy71
34glycogen phosphorylaseglycolytic enzymes15, 16glycosylation12glycosylation11Go-regulated guanylate cyclasegolden apple snail59Golfo de Cariaco73, 84gonadal development96gonadal maturation21gonads73, 79, 89, 96government policy71gram negative bacteria physiology32gram positive bacteria physiology32
34glycogen phosphorylaseglycolytic enzymeslogglycosylationlogglycosylationlogglycosylationlogGolfo de Cariacogonadal developmentgonadal maturationgonadsgonadsgonads pathology & virologygogovernment policygram negative bacteria physiologygrazing selectivitylogloggrazing selectivitylog
34glycogen phosphorylaseglycolytic enzymesls, 16glycosaminoglycans metabolisml2glycosylationl1Go-regulated guanylate cyclasegolden apple snailSolden apple snailgonadal developmentgonadal maturationgonadsgonadsrmment policygram negative bacteria physiologygrazing selectivityl10Great Britainl10Great Britainl11Golfo de Cariacol12gonadal maturationl21gonadsl21gonadsl21gonadsl21gonadsl21gonadsl21gonadsl21gonadsl21gonadsl21gonadsl21gonadsl21gonadsl21gonadsl21gonadsl21gonadsl21gonadsl21gonadsl21gonadsl21gonadsl21gonadsl21l21l21l21l21l21l21l21l21l21l21l21l21l21l21l21l21l21<
34glycogen phosphorylaseglycolytic enzymes15, 16glycosaminoglycans metabolism12glycosylation11Go-regulated guanylate cyclasegolden apple snail59Golfo de Cariaco73, 84gonadal development96gonadal maturation21gonads73, 79, 89, 96gonads pathology & virology96government policy71gram negative bacteria physiology32grazing selectivity110Great Britain10, 19great lakes20, 23, 24, 29
34glycogen phosphorylaseglycolytic enzymes15, 16glycosaminoglycans metabolism12glycosylation11Go-regulated guanylate cyclasegolden apple snail59Golfo de Cariacogonadal development96gonadal maturation21gonads73, 79, 89, 96gonads pathology & virology96government policy71gram negative bacteria physiology32grazing selectivity110Great Britain10, 19great lakes20, 23, 24, 29great ramshorn snail12
34glycogen phosphorylaseglycolytic enzymesglycosaminoglycans metabolism12glycosylation11Go-regulated guanylate cyclasegolden apple snail59Golfo de Cariacogonadal development96gonadal maturation21gonads
34glycogen phosphorylaseglycolytic enzymesglycosaminoglycans metabolism12glycosylation11Go-regulated guanylate cyclasegolden apple snail59Golfo de Cariacogonadal developmentgonadal maturation21gonadsgonads73, 79, 89, 96gonads pathology & virologygorgram negative bacteria physiologygrazing selectivity110Great Britain10, 19great lakes20, 23, 24, 29great ramshorn snail12green algae5
34glycogen phosphorylaseglycolytic enzymesglycosaminoglycans metabolism12glycosylation11Go-regulated guanylate cyclasegolden apple snail59Golfo de Cariacogonadal developmentgonadal maturationgonadsgonads pathology & virologygogorernment policygrazing selectivitygrazing selectivitygreat lakes20, 23, 24, 29great ramshorn snail12green algae5green mussel86, 99
34glycogen phosphorylaseglycolytic enzymeslstglycosylationltGo-regulated guanylate cyclasegolden apple snailGolfo de Cariacogonadal developmentgonadal maturationgonadsgonadsgram negative bacteria physiologygram positive bacteria physiologygrat scallop spatgreat scallop spatgreen algaefor spategreen nusselgreen nusselgreen vegetables117
34glycogen phosphorylase21glycolytic enzymes15, 16glycosylation12glycosylation11Go-regulated guanylate cyclase64golden apple snail59Golfo de Cariaco73, 84gonadal development96gonadal maturation21gonads73, 79, 89, 96gonads pathology & virology96government policy71gram negative bacteria physiology32grazing selectivity110Great Britain10, 19great lakes20, 23, 24, 29green algae5green mussel86, 99greenlip abalone52, 53growth52, 53
34glycogen phosphorylase21glycolytic enzymes15, 16glycosaminoglycans metabolism12glycosylation11Go-regulated guanylate cyclase64golden apple snail59Golfo de Cariaco73, 84gonadal development96gonadal maturation21gonads73, 79, 89, 96gonads pathology & virology96government policy71gram negative bacteria physiology32grazing selectivity110Great Britain10, 19great lakes20, 23, 24, 29green algae5green mussel86, 99green vegetables117greenlip abalone52, 53growth52, 53growth27, 27, 28, 30, 32-34, 36-41, 47,
34 glycogen phosphorylase 21 glycolytic enzymes 15, 16 glycosaminoglycans metabolism 12 glycosylation 11 Go-regulated guanylate cyclase 64 golden apple snail 59 Golfo de Cariaco 73, 84 gonadal development 96 gonadal maturation 21 gonads 73, 79, 89, 96 gonads pathology & virology 96 government policy 71 gram negative bacteria physiology 32 grazing selectivity 110 Great Britain 10, 19 great lakes 20, 23, 24, 29 great ramshorn snail 12 green algae 5 green mussel 86, 99 green vegetables 117 greenlip abalone 52, 53 growth 53, 5-9, 11, 15-17, 21, 27, 28, 30, 32-34, 36-41, 47, 51-56, 61, 62, 69-73, 76-79, 81, 83-91, 93, 98, 101-103, 51
34glycogen phosphorylase21glycolytic enzymes15, 16glycosaminoglycans metabolism12glycosylation11Go-regulated guanylate cyclase64golden apple snail59Golfo de Cariaco73, 84gonadal development96gonadal maturation21gonads73, 79, 89, 96gonads pathology & virology96government policy71gram negative bacteria physiology32grazing selectivity110Great Britain10, 19great lakes20, 23, 24, 29green algae5green mussel86, 99green vegetables117greenlip abalone52, 53growth52, 53growth27, 27, 28, 30, 32-34, 36-41, 47,
34 glycogen phosphorylase 21 glycolytic enzymes 15, 16 glycosaminoglycans metabolism 12 glycosylation 11 Go-regulated guanylate cyclase 64 golden apple snail 59 Golfo de Cariaco 73, 84 gonadal development 96 gonadal maturation 21 gonads 73, 79, 89, 96 gonads pathology & virology 96 government policy 71 gram negative bacteria physiology 32 grazing selectivity 110 Great Britain 10, 19 great lakes 20, 23, 24, 29 green algae 52, 53 growth 51, 56, 61, 62, 69-73, 76-79, 81, 83-91, 93, 98, 101-103, 105, 106, 108-114, 116-119, 122, 123 growth and development 7, 11, 34, 38, 40, 41, 103, 114
34 glycogen phosphorylase 21 glycolytic enzymes 15, 16 glycosaminoglycans metabolism 12 glycosylation 11 Go-regulated guanylate cyclase 64 golden apple snail 59 Golfo de Cariaco 73, 84 gonadal development 96 gonadal maturation 21 gonads 73, 79, 89, 96 gonads pathology & virology 96 government policy 71 gram negative bacteria physiology 32 grazing selectivity 110 Great Britain 10, 19 great lakes 20, 23, 24, 29 green algae 5 green mussel 86, 99 green vegetables 117 greenlip abalone 52, 53 growth 52
34 glycogen phosphorylase 21 glycolytic enzymes 15, 16 glycosylation 12 glycosylation 11 Go-regulated guanylate cyclase 64 golden apple snail 59 Golfo de Cariaco 73, 84 gonadal development 96 gonadal maturation 21 gonads 73, 79, 89, 96 gonads pathology & virology 96 government policy 71 gram negative bacteria physiology 32 grazing selectivity 110 Great Britain 10, 19 great lakes 20, 23, 24, 29 green algae 5 green mussel 86, 99 green vegetables 117 greenlip abalone 52, 53 growth 52, 53 growth 50, 106, 108-114, 116-119, 122, 123 growth and development 71, 13, 4, 38, 40, 41, 103, 114 growth and feeding 33 growth and mortality 69, 71, 73, 89, 111
34 glycogen phosphorylase 21 glycolytic enzymes 15, 16 glycosylation 12 glycosylation 11 Go-regulated guanylate cyclase 64 golden apple snail 59 Golfo de Cariaco 73, 84 gonadal development 96 gonadal maturation 21 gonads 73, 79, 89, 96 gonads pathology & virology 96 government policy 71 gram negative bacteria physiology 32 grazing selectivity 110 Great Britain 10, 19 great lakes 20, 23, 24, 29 green algae 5 green mussel 86, 99 green vegetables 117 greenlip abalone 52, 53 growth 52, 53 growth 33 105, 106, 108-114, 116-119, 122, 123 growth and development 71, 13, 4, 38, 40, 41, 103, 114 growth and feeding 33 growth and mortality 69, 71, 73, 89, 111
34 glycogen phosphorylase 21 glycolytic enzymes 15, 16 glycosylation 12 glycosylation 11 Go-regulated guanylate cyclase 64 golden apple snail 59 Golfo de Cariaco 73, 84 gonadal development 96 gonads 73, 79, 89, 96 gonads 71, 79, 89, 96 gonads 71, 79, 89, 96 gonads 71 gram negative bacteria physiology 32 gram positive bacteria physiology 32 grazing selectivity 110 Great Britain 10, 19 great lakes 20, 23, 24, 29 great ramshorn snail 12 green algae 5 green mussel 86, 99 green vegetables 117 greenlip abalone 52, 53 growth 23, 5-9, 11, 15-17, 21, 27, 28, 30, 32-34, 36-41, 47, 51-56, 61, 62, 69-73, 76-79, 81, 83-91, 93, 9
34 glycogen phosphorylase 21 glycolytic enzymes 15, 16 glycosylation 12 glycosylation 11 Go-regulated guanylate cyclase 64 golden apple snail 59 Golfo de Cariaco 73, 84 gonadal development 96 gonadal maturation 21 gonads 73, 79, 89, 96 gonads pathology & virology 96 government policy 71 gram negative bacteria physiology 32 grazing selectivity 110 Great Britain 10, 19 great lakes 20, 23, 24, 29 green algae 5 green mussel 86, 99 green vegetables 117 greenlip abalone 52, 53 growth 52, 53 growth 33 105, 106, 108-114, 116-119, 122, 123 growth and development 71, 13, 4, 38, 40, 41, 103, 114 growth and feeding 33 growth and mortality 69, 71, 73, 89, 111

arouth increment 110
growth increment
growth of early and late settling
growth of giant clams
growth of juvenile bay scallops
growth period
growth rates
5, 27, 30, 39, 54, 55, 69, 70, 72, 76, 78, 83-88, 90,
109-112, 114, 116, 119
growth, survival and feed conversion
grow-out systems
GTP binding proteins metabolism
guanosine diphosphate pharmacology
guanosine-5'-O-3-thiotriphosphate pharmacology 65
guanylate cyclase antagonists and inhibitors65
guanylate cyclase metabolism
Gulf of California 106
H. discus hannai Ino
habitats 21, 22, 31, 51, 53, 54, 72, 88, 89, 99
haemocytes 12, 15, 23, 63
haemolymph
half life
Haliotidae
Haliotis 42, 43, 49-56, 61-64, 109-114, 117
Haliotis (Nordotis) discus hannai Ino
Haliotis discus hannai 61, 62, 110
Haliotis diversicolor supertexta
Haliotis iris
Haliotis laevigata (Leach)
Haliotis rubra
Haliotis rufescens
Haliotis sieboldii
Halla okudai
halogenated immunology & toxicity64
handling 30, 50, 54, 71, 83, 110, 119
handling cost
Haplosporidium nelsoni 19, 76
Haplosporidium nelsoni (MSX) plasmodia 19
hard clams
hard shell clam
harvesting 10, 73, 82, 83, 88, 89, 109
hatcheries
hatchery conditioning
hatchery cultivation
hatchery reared
hatchery rearing
hatchery-reared juveniles
hatchery-reared Pacific oyster
hatching
heart drug effects
heart rate
heat induced thermally stressed oyster1
heat shock proteins
heat treatment
heated and unheated fish silage
heated koninskie lakes
heating
neuting
heat-shock proteins

heavy metals 11, 28, 53, 93, 94, 97	host parasite relations
heavy toxicity	host-parasite relationships 61, 72
height 69, 72, 74, 79, 81, 84, 90, 91	housing 40, 67, 100, 103, 123
Helisoma	Hsp70 expression
Helix aspersa	Hsp70 proteins
Helix aspersa var. maxima	human health 16, 53
Helix neurons	human neuronal mu 1/ receptor 15
Helix snails chemistry	human platelets
Helix snails drug effects	humans
Helobiae	humidity
hemocyte defense responses	husbandry 5, 40, 59, 66, 67, 83
hemocyte-derived	hydrocarbons
hemocytes 3, 7, 8, 12, 15, 18-20, 22-26, 64, 76, 103	hydrocarbons adverse effects
hemocytes drug effects 12, 23	hydrocarbons halogenated & messenger RNA 64
hemocytes enzymology	Hydroclathrus clathratus
hemocytes immunology 19, 20, 64	hydrodynamics
hemocytes metabolism	hydrogen ion concentration
hemocytes parasitology	hydrogen peroxide metabolism
hemocytes physiology	hydrolases
hemocytes ultrastructure	hydrolases metabolism
hemolymph	hydrolysis 12
hemolymph drug effects	Hydrozoa
hemolymph enzymology	hygiene
hemolymph metabolism	Hypnea sp
Hepatitis A epidemiology & virology	Hypoderaeum conoideum
hepatovirus genetics/ isolation and purification 4	hypoxia
herbicides	hypoxia-induced hypometabolism
	hypoxic
herbivore	H-3 Imipramine
	iceland scallop
hermaphrodite	identification 9, 13, 16, 17, 23, 37, 52, 66, 73, 118
Hermissenda	identified gill motor neurons
Herpesviridae	identified sensory neuron synapses
heterosynaptic inhibition	Iles-de-la-Madeleine (Quebec, Canada)
heterotrophic production	Illex argentinus
heterozygosity	Illex coindetii
heterozygosity and growth	Illex illecebrosus 40, 107, 108
heterozygote	illness
hexachlorobenzene	illumination
htt	image processing
high mortality	imaging method
high pressure liquid	imaging terminals
high sequence identity	immaturity
high-molecular-weight neurofilament protein 30	immune function
high-voltage activated Ca-2+ currents	immune response
Hippopus hippous	immune system
histologic features	immune system drug effects
histopathology	immunity
history 10, 36, 44, 52, 58, 66, 106, 110, 118, 119	immunohistochemistry 11
homing abalone	immunology
Hominidae	immunostimulation & immunotherapy
homologues for p53 and p73	immunosuppression
horses	Immunotoxicity
host 4, 7, 8, 19, 22, 32, 34, 51, 61-63, 72, 76, 105	immunotoxins immunology & toxicity 64
host (Ostrea edulis)	impact
host animal	implementation
host growth	impoverished
host parasite environment interactions	in situ
nost permote entriconnected actions in the second	

in situ estimation
in vitro 3, 7, 9-11, 14, 18, 23, 24, 44, 48, 61, 85, 87, 94
in vitro activation7
in vitro catch state reconstruction
in vitro conditioning
in vitro cultured mantle
in vitro effects
in vitro reconstruction
incorporation
incubation 59, 75
India
Indian Ocean
indicator microorganisms
indicator species
indicators
induced thermotolerance
inducing larval metamorphosis 113
induction 11, 23, 26, 48, 49, 59, 64, 108
Induction of micronuclei
industrial-scale process
infection
infectious diseases
infestation
information
infrared veterinary
ingestion
ingestion and assimilation
inhibition
11, 17, 24, 35, 44, 47, 53, 58, 60, 75, 87, 97, 116
inhibitory neuron
initial mortality
initial mortality
initial mortality
initial mortality72initial size72, 81injurious factors22, 27, 121inland waters22
initial mortality
initial mortality72initial size72, 81injurious factors22, 27, 121inland waters22innovations to mollusc culture122inoculation8, 75
initial mortality
initial mortality
initial mortality 72 initial size 72, 81 injurious factors 22, 27, 121 inland waters 22 innovations to mollusc culture 122 inoculation 8, 75 inorganic phosphate 21 Insecta 92 intake 51, 52, 61, 82, 86, 109-112
initial mortality 72 initial size 72, 81 injurious factors 22, 27, 121 inland waters 22 innovations to mollusc culture 122 inoculation 8, 75 inorganic phosphate 21 Insecta 92 intake 51, 52, 61, 82, 86, 109-112 integrated mariculture 78
initial mortality 72 initial size 72, 81 injurious factors 22, 27, 121 inland waters 22 innovations to mollusc culture 122 inoculation 8, 75 inorganic phosphate 21 Insecta 92 intake 51, 52, 61, 82, 86, 109-112 integrated mariculture 78 integrated system 74, 110
initial mortality 72 initial size 72, 81 injurious factors 22, 27, 121 inland waters 22 innovations to mollusc culture 122 inoculation 8, 75 inorganic phosphate 21 Insecta 92 intake 51, 52, 61, 82, 86, 109-112 integrated mariculture 78 integrated system 74, 110 integrated systems 78, 110
initial mortality 72 initial size 72, 81 injurious factors 22, 27, 121 inland waters 22 innovations to mollusc culture 122 inoculation 8, 75 inorganic phosphate 21 Insecta 92 intake 51, 52, 61, 82, 86, 109-112 integrated mariculture 78 integrated system 74, 110 integument 29, 55, 59
initial mortality 72 initial size 72, 81 injurious factors 22, 27, 121 inland waters 22 innovations to mollusc culture 122 inoculation 8, 75 inorganic phosphate 21 Insecta 92 intake 51, 52, 61, 82, 86, 109-112 integrated mariculture 78 integrated system 74, 110 integument 29, 55, 59 integument 43, 74
initial mortality 72 initial size 72, 81 injurious factors 22, 27, 121 inland waters 22 innovations to mollusc culture 122 inoculation 8, 75 inorganic phosphate 21 Insecta 92 intake 51, 52, 61, 82, 86, 109-112 integrated mariculture 78 integrated system 74, 110 integument 29, 55, 59 integumentary system 43, 74 integumentary system disease 43
initial mortality 72 initial size 72, 81 injurious factors 22, 27, 121 inland waters 22 innovations to mollusc culture 122 inoculation 8, 75 inorganic phosphate 21 Insecta 92 intake 51, 52, 61, 82, 86, 109-112 integrated mariculture 78 integrated system 74, 110 integrated systems 78, 110 integument 29, 55, 59 integumentary system disease 43, 74 intensive culture 43
initial mortality 72 initial size 72, 81 injurious factors 22, 27, 121 inland waters 22 innovations to mollusc culture 122 inoculation 8, 75 inorganic phosphate 21 Insecta 92 intake 51, 52, 61, 82, 86, 109-112 integrated mariculture 78 integrated system 74, 110 integument 29, 55, 59 integumentary system 43, 74 integumentary system disease 43 intensive culture 4 intensive production 5, 69, 110
initial mortality 72 initial size 72, 81 injurious factors 22, 27, 121 inland waters 22 innovations to mollusc culture 122 inoculation 8, 75 inorganic phosphate 21 Insecta 92 intake 51, 52, 61, 82, 86, 109-112 integrated mariculture 78 integrated system 74, 110 integument 29, 55, 59 integumentary system 43, 74 intensive culture 43 intensive production 5, 69, 110 interaction 8, 15, 44, 50, 118, 119
initial mortality 72 initial size 72, 81 injurious factors 22, 27, 121 inland waters 22 innovations to mollusc culture 122 inoculation 8, 75 inorganic phosphate 21 Insecta 92 intake 51, 52, 61, 82, 86, 109-112 integrated mariculture 78 integrated system 74, 110 integument 29, 55, 59 integumentary system 43, 74 intensive culture 4 intensive production 5, 69, 110 interaction 8, 15, 44, 50, 118, 119 intermediate culture 72
initial mortality 72 initial size 72, 81 injurious factors 22, 27, 121 inland waters 22 innovations to mollusc culture 122 inoculation 8, 75 inorganic phosphate 21 Insecta 92 intake 51, 52, 61, 82, 86, 109-112 integrated mariculture 78 integrated system 74, 110 integrated systems 78, 110 integument 29, 55, 59 integumentary system disease 43, 74 intensive culture 4 intensive production 5, 69, 110 interaction 8, 15, 44, 50, 118, 119 intermediate culture 72 intermediate host 61, 62
initial mortality 72 initial size 72, 81 injurious factors 22, 27, 121 inland waters 22 innovations to mollusc culture 122 inoculation 8, 75 inorganic phosphate 21 Insecta 92 intake 51, 52, 61, 82, 86, 109-112 integrated mariculture 78 integrated system 74, 110 integument 29, 55, 59 integumentary system 43, 74 integumentary system disease 43 intensive production 5, 69, 110 interaction 8, 15, 44, 50, 118, 119 intermediate culture 72 intermediate host 61, 62 interneurons cytology & physiology 42 intertidal animals 58
initial mortality 72 initial size 72, 81 injurious factors 22, 27, 121 inland waters 22 innovations to mollusc culture 122 inoculation 8, 75 inorganic phosphate 21 Insecta 92 intake 51, 52, 61, 82, 86, 109-112 integrated mariculture 78 integrated system 74, 110 integrated systems 78, 110 integument 29, 55, 59 integumentary system disease 43, 74 intensive culture 4 intensive production 5, 69, 110 intersection 8, 15, 44, 50, 118, 119 intermediate culture 72 interneurons cytology & physiology 42 intertidal animals 58 intertidal communities 119
initial mortality 72 initial size 72, 81 injurious factors 22, 27, 121 inland waters 22 innovations to mollusc culture 122 inoculation 8, 75 inorganic phosphate 21 Insecta 92 intake 51, 52, 61, 82, 86, 109-112 integrated mariculture 78 integrated system 74, 110 integrated systems 78, 110 integument 29, 55, 59 integumentary system disease 43, 74 intensive culture 4 intensive production 5, 69, 110 interaction 8, 15, 44, 50, 118, 119 intermediate culture 72 intermediate host 61, 62 interneurons cytology & physiology 42 intertidal animals 58 intertidal communities 119 intertidal environment 116
initial mortality72initial size72, 81injurious factors22, 27, 121inland waters22innovations to mollusc culture122inoculation8, 75inorganic phosphate21Insecta92intake51, 52, 61, 82, 86, 109-112integrated mariculture78integrated system74, 110integrated system78, 110integument29, 55, 59integumentary system disease43intensive culture43, 74intensive production5, 69, 110intermediate culture72intermediate host61, 62interneurons cytology & physiology42intertidal animals58intertidal environment116intertidal limpets/ macroalgae52
initial mortality 72 initial size 72, 81 injurious factors 22, 27, 121 inland waters 22 innovations to mollusc culture 122 inoculation 8, 75 inorganic phosphate 21 Insecta 92 intake 51, 52, 61, 82, 86, 109-112 integrated mariculture 78 integrated system 74, 110 integrated systems 78, 110 integument 29, 55, 59 integumentary system disease 43, 74 intensive culture 4 intensive production 5, 69, 110 interaction 8, 15, 44, 50, 118, 119 intermediate culture 72 intermediate host 61, 62 interrulal animals 58 intertidal animals 58 intertidal communities 119 intertidal limpets/ macroalgae 52 intertidal snail 45
initial mortality72initial size72, 81injurious factors22, 27, 121inland waters22innovations to mollusc culture122inoculation8, 75inorganic phosphate21Insecta92intake51, 52, 61, 82, 86, 109-112integrated mariculture78integrated system74, 110integument29, 55, 59integument29, 55, 59integumentary system disease43intensive culture43, 74intensive production5, 69, 110interrediate culture72intermediate culture72internediate host61, 62interruidal animals58intertidal communities119intertidal limpets/ macroalgae52intertidal snail45intestines22, 93
initial mortality 72 initial size 72, 81 injurious factors 22, 27, 121 inland waters 22 innovations to mollusc culture 122 inoculation 8, 75 inorganic phosphate 21 Insecta 92 intake 51, 52, 61, 82, 86, 109-112 integrated mariculture 78 integrated system 74, 110 integrated systems 78, 110 integument 29, 55, 59 integumentary system disease 43, 74 intensive culture 4 intensive production 5, 69, 110 interaction 8, 15, 44, 50, 118, 119 intermediate culture 72 intermediate host 61, 62 interrulal animals 58 intertidal animals 58 intertidal communities 119 intertidal limpets/ macroalgae 52 intertidal snail 45

introduced species
in-situ metabolic rates
in-vitro study
iodoacetates
ion activities
ion channel
ion channel gating
ion channel gating physiology
ion channels drug effects
ion channels metabolism
ions
Irish Republic
iron metabolism
Irradians concentricus
irritants toxicity
irritating potency
Isochrysis
isoenzymes genetics
isolate 1094/ 1163/ ATCC 178028
isolated digestive gland cells15
isolated giant neurons culture
isscaap group b 5261, 62
isscaap group b 56 100, 102
isscaap group b 57 40
isscaap group b 91
Italy
Jania sp
Japan
Japanese common squid 30, 35, 37
Japanese common squid
Japanese common squid30, 35, 37Japanese Common Squid Todarodes pacificusSteenstrup, 1880Japanese scallops75, 91juvenile Abalone Haliotis fulgens117juvenile freshwater mussels92, 94Juvenile growth62juvenile oval squid36juvenile scallops7, 24juvenile scallops5, 6, 21, 39, 52, 78, 81, 83, 108-111K+35, 36, 58K+ channel activation36
Japanese common squid $30, 35, 37$ Japanese Common Squid Todarodes pacificusSteenstrup, 1880Japanese scallopsjuvenile Abalone Haliotis fulgens 117 juvenile freshwater mussels $92, 94$ Juvenile growth 62 juvenile oval squid 36 juveniles $5, 6, 21, 39, 52, 78, 81, 83, 108-111$ K+ $K+$ channel activation 36 K+ channel gating 35
Japanese common squid $30, 35, 37$ Japanese Common Squid Todarodes pacificusSteenstrup, 1880Japanese scallops $75, 91$ juvenile Abalone Haliotis fulgens 117 juvenile freshwater mussels $92, 94$ Juvenile growth 62 juvenile oval squid 36 juveniles $5, 6, 21, 39, 52, 78, 81, 83, 108-111$ K+ $35, 36, 58$ K+ channel activation 36 K+ channel gating 35 kales 117
Japanese common squid $30, 35, 37$ Japanese Common Squid Todarodes pacificus 30 Steenstrup, 1880 30 Japanese scallops $75, 91$ juvenile Abalone Haliotis fulgens 117 juvenile freshwater mussels $92, 94$ Juvenile growth 62 juvenile oval squid 36 juvenile ovster disease (JOD) $7, 24$ juveniles $5, 6, 21, 39, 52, 78, 81, 83, 108-111$ K+ $35, 36, 58$ K+ channel activation 36 K+ channel gating 35 kales 117 karotyping 61
Japanese common squid $30, 35, 37$ Japanese Common Squid Todarodes pacificusSteenstrup, 1880Japanese scallops $75, 91$ juvenile Abalone Haliotis fulgens 117 juvenile freshwater mussels $92, 94$ Juvenile growth 62 juvenile oval squid $36, 27, 24$ juveniles $5, 6, 21, 39, 52, 78, 81, 83, 108-111$ K+K+ channel activation 36 K+ channel gating 35 kales 117 karotyping 61 karyotypes 120
Japanese common squid $30, 35, 37$ Japanese Common Squid Todarodes pacificusSteenstrup, 1880Japanese scallops $75, 91$ juvenile Abalone Haliotis fulgens 117 juvenile freshwater mussels $92, 94$ Juvenile growth 62 juvenile oval squid 36 juvenile oyster disease (JOD) $7, 24$ juveniles $5, 6, 21, 39, 52, 78, 81, 83, 108-111$ K+ $35, 36, 58$ K+ channel activation 36 K+ channel gating 35 kales 117 karotyping 61 karyotypes 120 key glycolytic enzymes $15, 16$
Japanese common squid $30, 35, 37$ Japanese Common Squid Todarodes pacificusSteenstrup, 1880Japanese scallops $75, 91$ juvenile Abalone Haliotis fulgens 117 juvenile freshwater mussels $92, 94$ Juvenile growth 62 juvenile oval squid 36 juvenile oyster disease (JOD) $7, 24$ juveniles $5, 6, 21, 39, 52, 78, 81, 83, 108-111$ K+ $35, 36, 58$ K+ channel activation 36 K+ channel gating 35 kales 117 karotyping 61 karyotypes 120 key glycolytic enzymes $15, 16$ kidneys 28
Japanese common squid
Japanese common squid $30, 35, 37$ Japanese Common Squid Todarodes pacificus 30 Steenstrup, 1880 30 Japanese scallops $75, 91$ juvenile Abalone Haliotis fulgens 117 juvenile freshwater mussels $92, 94$ Juvenile growth 62 juvenile oval squid 36 juvenile ovster disease (JOD) $7, 24$ juveniles $5, 6, 21, 39, 52, 78, 81, 83, 108-111$ K+ $35, 36, 58$ K+ channel activation 36 K+ channel gating 35 kales 117 karyotypes 120 key glycolytic enzymes $15, 16$ kidneys 28 kinetics $26, 28, 44, 49, 67, 93$ king scallop $71, 83$ lab cultured 11 labor 87
Japanese common squid

1.1
laboratory conditions
1, 12, 17, 23, 25, 26, 28, 41, 49, 59, 65, 85, 98
laboratory culture
laboratory diagnosis
laboratory equipment
laboratory experiments
2, 9, 17, 22, 27, 36, 37, 39, 46, 47, 51, 52, 54, 55, 60,
67, 71, 93, 95, 97, 101, 103, 117
laboratory exposure
laboratory facilities
laboratory maintenance
laboratory physiology
laboratory reared mussels
laboratory rearing
laboratory strains
laboratory studies
laboratory study
laboratory survival
laboratory tests
laboratory-acquired cadmium
laboratory-maintained Eledone cirrhosa
lactate dehydrogenase metabolism
lagoon
lakes
lakes and ponds
land and freshwater molluscs
land-based fish farm
land-based nursery
land-based and natural facilities 103
Languedoc roussillon
larva
larva drug effects
larva growth and development
larvae
5, 6, 11, 16, 17, 21, 23, 24, 28, 30, 41, 55, 61, 69, 72,
75, 80, 81, 83, 87-89, 91-93, 97, 98, 102, 105, 108-110,
112, 114
larval biology 100, 114
larval culture
larval development 5, 52, 65, 87, 122
larval observations 105
larval rearing/ development
larval stage
larviculture & leaching 112
latitudinal variation
latium
lead 12, 25, 56, 67, 97
lead metabolism
lead pharmacology 12
lead toxicity
learning
learning drug effects
learning in aplysia
learning physiology
lectins
leech CNS & ganglia
Lepidoptera
Lesina Lagoon
lethal dose 50 49

2.10
leukemia
leukemia cells
Liagora sp
life cycle 28, 30, 38, 39, 90, 91, 108, 109, 119
life history
ligases metabolism
light harvesting complexes 109
light intensity
light organ
light organ accessory tissues & morphogenesis 105
light regimes
light transduction
lighting
limited flow conditions 109
limits
lipid 1, 25, 52, 81-83
lipid content 25, 83
lipid spray beads
lipids 52, 67, 82, 83, 88
lipids metabolism
liposomes
liquid 16, 17, 24, 31, 53
Listonella anguillarum
literature reviews
littoral zone
Littorina saxatilis
liver
liver chemistry
liver drug effects
liver metabolism
liver ultrastructure
liveweight gain
living and non-living fish diets
locomotion
Loliginidae
Loligo gahi
Loligo pealei
Long Island Sound
long term culture
long term experiments
long term facilitation, potentiation, and sensitization . 59
long-finned squid 107
long-term holding
long-finned squid 107
long-term culture
long-term sensitization 59
long-term sensitization
long-term sensitization59losses73, 93low temperature tolerance82
long-term sensitization59losses73, 93low temperature tolerance82lucigenin- and luminol-dependent24
long-term sensitization59losses73, 93low temperature tolerance82lucigenin- and luminol-dependent24luminescence bacterial34
long-term sensitization59losses73, 93low temperature tolerance82lucigenin- and luminol-dependent24luminescence bacterial34luminescent proteins analysis & genetics32
long-term sensitization59losses73, 93low temperature tolerance82lucigenin- and luminol-dependent24luminescence bacterial34luminescent proteins analysis & genetics32luminous bacteria33
long-term sensitization59losses73, 93low temperature tolerance82lucigenin- and luminol-dependent24luminescence bacterial34luminous bacteria32luminous bacteria33Lymnaea51, 55, 56, 60, 115, 116
long-term sensitization59losses73, 93low temperature tolerance82lucigenin- and luminol-dependent24luminescence bacterial34luminous bacteria32luminous bacteria33Lymnaea51, 55, 56, 60, 115, 116Lymnaea parasitology51
long-term sensitization59losses73, 93low temperature tolerance82lucigenin- and luminol-dependent24luminescence bacterial34luminous bacteria32luminous bacteria33Lymnaea51, 55, 56, 60, 115, 116Lymnaea stagnalis56, 60
long-term sensitization59losses73, 93low temperature tolerance82lucigenin- and luminol-dependent24luminescence bacterial34luminous bacteria32luminous bacteria33Lymnaea51, 55, 56, 60, 115, 116Lymnaea stagnalis56, 60lymnaeid species51
long-term sensitization59losses73, 93low temperature tolerance82lucigenin- and luminol-dependent24luminescence bacterial34luminous bacteria32luminous bacteria33Lymnaea51, 55, 56, 60, 115, 116Lymnaea stagnalis56, 60

Macoma balthica
macroalgal diet
macrophages
macrophages immunology 19
magnesium analysis 103
Maine
mainland and insular populations 100
maintenance
24-26, 34, 40, 45, 48, 52, 61, 63, 108, 109, 123
maintenance of adult squid 40
Malaga, Southern Spain
malaigue
malate dehydrogenase genetics
male-specific bacteriophage
Malvaceae
management model 107
management strategies
Manila clam
Manila clam beds
mantle
mapping
Marennes-Oleron Bay
mariculture 21, 38, 39, 78-80, 96, 98, 102, 105, 114
mariculture industry
mariculture system
mariculture systems
marine and freshwater biology
marine animals
marine areas
marine bacteria
marine bacteria97, 101marine biology27, 29, 30, 41, 52, 55, 56, 58, 66, 90, 92, 97, 105marine bivalves27, 28, 93, 99, 100marine ecology21-23, 26, 27, 30, 33, 34, 37, 43, 45, 55, 66, 92-94, 97, 105, 106, 113marine environment17, 92, 116marine fauna100marine fisheries98, 107marine invertebrate herbivores56
marine bacteria
marine bacteria
marine bacteria 97, 101 marine biology 27, 29, 30, 41, 52, 55, 56, 58, 66, 90, 92, 97, 105 marine bivalves 27, 28, 93, 99, 100 marine ecology 27, 28, 93, 99, 100 marine ecology 21-23, 26, 27, 30, 33, 34, 37, 43, 45, 55, 66, 92-94, 97, 105, 106, 113 marine environment 17, 92, 116 marine fisheries 98, 107 marine invertebrate herbivores 56 marine invertebrate larvae 92 marine invertebrates 38, 67, 95 marine invertebrates as laboratory animals 38, 67
marine bacteria 97, 101 marine biology 27, 29, 30, 41, 52, 55, 56, 58, 66, 90, 92, 97, 105 marine bivalves 27, 28, 93, 99, 100 marine ecology 27, 28, 93, 99, 100 marine ecology 21-23, 26, 27, 30, 33, 34, 37, 43, 45, 55, 66, 92-94, 97, 105, 106, 113 marine environment 17, 92, 116 marine fauna 100 marine fisheries 98, 107 marine invertebrate herbivores 56 marine invertebrate s 38, 67, 95 marine invertebrates as laboratory animals 38, 67 marine mollusc 54, 62, 64, 109
marine bacteria 97, 101 marine biology 27, 29, 30, 41, 52, 55, 56, 58, 66, 90, 92, 97, 105 marine bivalves 27, 28, 93, 99, 100 marine cology 27, 28, 93, 99, 100 marine ecology 21-23, 26, 27, 30, 33, 34, 37, 43, 45, 55, 66, 92-94, 97, 105, 106, 113 marine environment 17, 92, 116 marine fauna 100 marine fisheries 98, 107 marine invertebrate herbivores 56 marine invertebrate s 38, 67, 95 marine invertebrates 38, 67, 95 marine mollusc 54, 62, 64, 109 marine mollusc stress proteins 64
marine bacteria 97, 101 marine biology 27, 29, 30, 41, 52, 55, 56, 58, 66, 90, 92, 97, 105 marine bivalves 27, 28, 93, 99, 100 marine cology 27, 28, 93, 99, 100 marine ecology 21-23, 26, 27, 30, 33, 34, 37, 43, 45, 55, 66, 92-94, 97, 105, 106, 113 marine environment 17, 92, 116 marine fauna 100 marine fisheries 98, 107 marine invertebrate herbivores 56 marine invertebrate as laboratory animals 38, 67, 95 marine mollusc 54, 62, 64, 109 marine organisms 9, 60, 67, 103
marine bacteria 97, 101 marine biology 27, 29, 30, 41, 52, 55, 56, 58, 66, 90, 92, 97, 105 marine bivalves 27, 28, 93, 99, 100 marine cology 27, 28, 93, 99, 100 marine ecology 21-23, 26, 27, 30, 33, 34, 37, 43, 45, 55, 66, 92-94, 97, 105, 106, 113 marine environment 17, 92, 116 marine fauna 100 marine fisheries 98, 107 marine invertebrate herbivores 56 marine invertebrate larvae 92 marine invertebrates as laboratory animals 38, 67, 95 marine mollusc 54, 62, 64, 109 marine organisms 9, 60, 67, 103 marine species 45, 47, 60
marine bacteria 97, 101 marine biology 27, 29, 30, 41, 52, 55, 56, 58, 66, 90, 92, 97, 105 marine bivalves 27, 28, 93, 99, 100 marine cology 27, 28, 93, 99, 100 marine ecology 21-23, 26, 27, 30, 33, 34, 37, 43, 45, 55, 66, 92-94, 97, 105, 106, 113 marine environment 17, 92, 116 marine fauna 100 marine fisheries 98, 107 marine invertebrate herbivores 56 marine invertebrate larvae 92 marine invertebrates as laboratory animals 38, 67, 95 marine mollusc 54, 62, 64, 109 marine organisms 9, 60, 67, 103 marine species 45, 47, 60 marine suspension-feeder 81
marine bacteria 97, 101 marine biology 27, 29, 30, 41, 52, 55, 56, 58, 66, 90, 92, 97, 105 marine bivalves 27, 28, 93, 99, 100 marine cology 27, 28, 93, 99, 100 marine ecology 21-23, 26, 27, 30, 33, 34, 37, 43, 45, 55, 66, 92-94, 97, 105, 106, 113 marine environment 17, 92, 116 marine fauna 100 marine fisheries 98, 107 marine invertebrate herbivores 56 marine invertebrate larvae 92 marine invertebrates as laboratory animals 38, 67, 95 marine mollusc 54, 62, 64, 109 marine organisms 9, 60, 67, 103 marine species 45, 47, 60 marine topshell 115
marine bacteria 97, 101 marine biology 27, 29, 30, 41, 52, 55, 56, 58, 66, 90, 92, 97, 105 marine bivalves 27, 28, 93, 99, 100 marine cology 21-23, 26, 27, 30, 33, 34, 37, 43, 45, 55, 66, 92-94, 97, 105, 106, 113 marine environment 17, 92, 116 marine fauna 100 marine fisheries 98, 107 marine invertebrate herbivores 56 marine invertebrate alarvae 92 marine invertebrates 38, 67, 95 marine mollusc 54, 62, 64, 109 marine organisms 9, 60, 67, 103 marine species 45, 47, 60 marine topshell 115 marine toxins isolation and purification 16
marine bacteria 97, 101 marine biology 27, 29, 30, 41, 52, 55, 56, 58, 66, 90, 92, 97, 105 marine bivalves 27, 28, 93, 99, 100 marine cology 27, 28, 93, 99, 100 marine ecology 21-23, 26, 27, 30, 33, 34, 37, 43, 45, 55, 66, 92-94, 97, 105, 106, 113 marine environment 17, 92, 116 marine fisheries 98, 107 marine invertebrate herbivores 56 marine invertebrate larvae 92 marine invertebrates 38, 67, 95 marine mollusc 54, 62, 64, 109 marine mollusc stress proteins 64 marine species 45, 47, 60 marine topshell 115 marine toxins isolation and purification 16
marine bacteria 97, 101 marine biology 27, 29, 30, 41, 52, 55, 56, 58, 66, 90, 92, 97, 105 marine bivalves 27, 28, 93, 99, 100 marine cology 27, 28, 93, 99, 100 marine ecology 27, 28, 93, 99, 100 marine ecology 21-23, 26, 27, 30, 33, 34, 37, 43, 45, 55, 66, 92-94, 97, 105, 106, 113 marine environment 17, 92, 116 marine fauna 100 marine fisheries 98, 107 marine invertebrate herbivores 56 marine invertebrate herbivores 56 marine invertebrate larvae 92 marine invertebrates as laboratory animals 38, 67, 95 marine mollusc 54, 62, 64, 109 marine mollusc stress proteins 64 marine suspension-feeder 81 marine topshell 115 marine toxins isolation and purification 16 marine toxins metabolism 17 marine toxins pharmacokinetics/ toxicity 16
marine bacteria 97, 101 marine biology 27, 29, 30, 41, 52, 55, 56, 58, 66, 90, 92, 97, 105 marine bivalves 27, 28, 93, 99, 100 marine cology 21-23, 26, 27, 30, 33, 34, 37, 43, 45, 55, 66, 92-94, 97, 105, 106, 113 marine environment 17, 92, 116 marine fauna 100 marine fisheries 98, 107 marine invertebrate herbivores 56 marine invertebrate larvae 92 marine invertebrates 38, 67, 95 marine mollusc 54, 62, 64, 109 marine organisms 9, 60, 67, 103 marine suspension-feeder 81 marine toxins isolation and purification 16 marine toxins pharmacokinetics/ toxicity 16 marine toxins pharmacokinetics/ toxicity 17
marine bacteria 97, 101 marine biology 27, 29, 30, 41, 52, 55, 56, 58, 66, 90, 92, 97, 105 marine bivalves 27, 28, 93, 99, 100 marine cology 21-23, 26, 27, 30, 33, 34, 37, 43, 45, 55, 66, 92-94, 97, 105, 106, 113 marine environment 17, 92, 116 marine fauna 100 marine fisheries 98, 107 marine invertebrate herbivores 56 marine invertebrate larvae 92 marine invertebrates 38, 67, 95 marine mollusc 54, 62, 64, 109 marine organisms 9, 60, 67, 103 marine suspension-feeder 81 marine toxins isolation and purification 16 marine toxins metabolism 17 marine toxins pharmacokinetics/ toxicity 16 marine vibrio 17 marine zooplankton 20
marine bacteria 97, 101 marine biology 27, 29, 30, 41, 52, 55, 56, 58, 66, 90, 92, 97, 105 marine bivalves 27, 28, 93, 99, 100 marine cology 21-23, 26, 27, 30, 33, 34, 37, 43, 45, 55, 66, 92-94, 97, 105, 106, 113 marine environment 17, 92, 116 marine fauna 100 marine fisheries 98, 107 marine invertebrate herbivores 56 marine invertebrate larvae 92 marine invertebrates 38, 67, 95 marine mollusc 54, 62, 64, 109 marine mollusc stress proteins 64 marine suspension-feeder 81 marine toxins isolation and purification 16 marine toxins metabolism 17 marine toxins pharmacokinetics/ toxicity 16 marine vibrio 17 marine zooplankton 20 mark-recaptured individuals 102
marine bacteria 97, 101 marine biology 27, 29, 30, 41, 52, 55, 56, 58, 66, 90, 92, 97, 105 marine bivalves 27, 28, 93, 99, 100 marine cology 21-23, 26, 27, 30, 33, 34, 37, 43, 45, 55, 66, 92-94, 97, 105, 106, 113 marine environment 17, 92, 116 marine fauna 100 marine fisheries 98, 107 marine invertebrate herbivores 56 marine invertebrate larvae 92 marine invertebrates as laboratory animals 38, 67, 95 marine mollusc 54, 62, 64, 109 marine species 45, 47, 60 marine toxins isolation and purification 16 marine toxins metabolism 17 marine toxins pharmacokinetics/ toxicity 16 marine vibrio 17 marine zooplankton 20 mark-recaptured individuals 102 markers 1, 2, 52, 60, 64, 116
marine bacteria 97, 101 marine biology 27, 29, 30, 41, 52, 55, 56, 58, 66, 90, 92, 97, 105 marine bivalves 27, 28, 93, 99, 100 marine cology 21-23, 26, 27, 30, 33, 34, 37, 43, 45, 55, 66, 92-94, 97, 105, 106, 113 marine environment 17, 92, 116 marine fisheries 98, 107 marine invertebrate herbivores 56 marine invertebrate herbivores 56 marine invertebrate larvae 92 marine invertebrate larvae 92 marine invertebrates as laboratory animals 38, 67, 95 marine mollusc 54, 62, 64, 109 marine corganisms 9, 60, 67, 103 marine species 45, 47, 60 marine toxins isolation and purification 16 marine toxins metabolism 17 marine toxins pharmacokinetics/ toxicity 16 marine vibrio 17 marine zooplankton 20 mark-recaptured individuals 102 markers 1, 2, 52, 60, 64, 116
marine bacteria 97, 101 marine biology 27, 29, 30, 41, 52, 55, 56, 58, 66, 90, 92, 97, 105 marine bivalves 27, 28, 93, 99, 100 marine cology 21-23, 26, 27, 30, 33, 34, 37, 43, 45, 55, 66, 92-94, 97, 105, 106, 113 marine environment 17, 92, 116 marine fauna 100 marine fisheries 98, 107 marine invertebrate herbivores 56 marine invertebrate larvae 92 marine invertebrates as laboratory animals 38, 67, 95 marine mollusc 54, 62, 64, 109 marine species 45, 47, 60 marine toxins isolation and purification 16 marine toxins metabolism 17 marine toxins pharmacokinetics/ toxicity 16 marine vibrio 17 marine zooplankton 20 mark-recaptured individuals 102 markers 1, 2, 52, 60, 64, 116

mass fragmentography
mathematical models
matrix model
maturation
maturation cycle
maturation rate
maturity
maximal growth
measurement
meat
mechanical damage
mechanical defense
mechanical memory
mechanical properties
medical sciences
Mediterranean countries
Mediterranean limpet
Mediterranean sea
Mediterranean sea (Gulf of Lion)
meiosis
meiosis drug effects & genetics
meiosis reinitiation11
melitten pharmacology 36
membrane potentials drug effects
membrane potentials physiology
membranes
memory
mental ability
Mercenaria 4, 5, 21, 25, 26, 28, 71, 79, 81, 94, 96, 98
Mercuric(II) chloride
Mercury
mesh bags
mesocosms
messenger RNA 3, 59, 64
metabolic depression 58
metabolic detoxication25
metabolic efficiency 8
metabolic inhibitors 19
metabolic maintenance
metabolic rates
metabolism
1, 3, 7-12, 14-17, 19-21, 23-27, 31-36, 42, 43, 46, 49,
50, 53, 55-58, 62, 64-67, 88, 90, 91, 93, 101, 103, 104,
109, 115
metabolites
metal pollution
metallic elements
metalloproteins biosynthesis
metallothionein
metallothionein 3, 14, 15, 49 metallothionein biosynthesis 49 metallothionein genetics 3 metallothionein physiology 15 metalls 11, 12, 28, 53, 54, 60, 64, 67, 93, 94, 97, 101, 115
metallothionein 3, 14, 15, 49 metallothionein biosynthesis 49 metallothionein genetics 3 metallothionein physiology 15 metalls 11, 12, 28, 53, 54, 60, 64, 67, 93, 94, 97, 101, 115 metalls heavy 64
metallothionein 3, 14, 15, 49 metallothionein biosynthesis 49 metallothionein genetics 3 metallothionein physiology 15 metals 11, 12, 28, 53, 54, 60, 64, 67, 93, 94, 97, 101, 115 metals heavy 64 metals metabolism 67, 101
metallothionein 3, 14, 15, 49 metallothionein biosynthesis 49 metallothionein genetics 3 metallothionein physiology 15 metals 11, 12, 28, 53, 54, 60, 64, 67, 93, 94, 97, 101, 115 metals heavy 64 metals metabolism 67, 101 metals toxicity 60
metallothionein 3, 14, 15, 49 metallothionein biosynthesis 49 metallothionein genetics 3 metallothionein physiology 15 metals 11, 12, 28, 53, 54, 60, 64, 67, 93, 94, 97, 101, 115 metals heavy 64 metals metabolism 67, 101

methods
4, 10-13, 16-19, 22, 26, 28, 38, 40, 43, 48, 49, 53, 54,
59, 67, 69, 71, 73-75, 77, 78, 79, 87, 91, 92, 94, 95, 99,
102, 104, 105, 108, 113, 119, 121
methods and techniques 22, 26, 38, 94, 113
methyl methanesulfonate toxicity 11
Mexico
mice
mice nude
micro-algal mollusc feed
microalga diets
microalgae
microalgae concentrate diets
microalgae sterols
microalgal
microbial contamination
microbial filter feeding
microbial flora
microbial methods
microbiological techniques
microbiology
4, 7, 8, 10, 19, 22, 32, 34, 71, 82, 92-95, 102, 104, 121
microbiology of feed processing
microcapsules
Microcystis
microencapsulation
micronuclei
micronuclei drug effects
micronucleus tests
micronucleus tests methods
microorganism
microorganisms
8, 23, 24, 27, 34, 45, 55, 76, 92, 98, 101, 105, 113, 119
micropore filters
microsatellite loci
microsatellite repeats genetics
microsatellites
microscopic observation
microscopy
micro-organisms
Milk conch Strombus costatus
Mimachlamys asperrima
Miracidial infectivity
miscellaneous animal disorders
mitochondrial DNA
mitochondrial genetics
mitorionaria generics
mobility
mobilization of energy
model
1, 3, 0, 9, 14-10, 18, 20, 23, 23, 27, 32, 34-30, 40, 42,
46, 47, 48, 49, 59, 61, 62, 66, 75, 76, 78, 87, 95, 96, 107
model development
model for human cancer
model system
modelling
models and simulations
models biological 25, 36 modulation 25, 42, 44, 58, 61
/ 1 4/ 44 30 0

moisture control
molecular analysis
molecular chaperones
molecular characterization
molecular genetics
molecular genetics (biochemistry and molecular
biophysics)
molecular mechanisms
molecular pathway
molecular sequence data
7, 9-11, 31, 34, 43, 45, 57, 92, 95, 121
molecular weight
mollusc culture techniques 122
mollusc cultures
mollusc-algal chloroplast endosymbiosis 44, 109
Mollusca drug effects
Mollusca genetics
Mollusca immunology
Mollusca immunology and microbiology
Mollusca metabolism 11, 26, 32, 67, 101, 103
Mollusca parasitology
Mollusca physiology
Mollusca: Vetigastropoda: Turbinidae
molluscan calcification
molluscan host
molluscan metallothionein mRNA
molluscan myoactive tetradecapeptides
molluscan neuron
molluscan smooth muscle
molluscan smooth muscle
molluscan smooth muscle14Mollusks Congresses102Mollusks North America Identification118
molluscan smooth muscle14Mollusks Congresses102Mollusks North America Identification118monitoring
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring 2-4, 10, 25, 54, 66, 71, 72, 79, 80, 83, 85, 90, 103, 117
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring 2-4, 10, 25, 54, 66, 71, 72, 79, 80, 83, 85, 90, 103, 117 monoamines 11
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring 2-4, 10, 25, 54, 66, 71, 72, 79, 80, 83, 85, 90, 103, 117 monoamines 11 monoclonal 14 Monocotyledons 117
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring 2-4, 10, 25, 54, 66, 71, 72, 79, 80, 83, 85, 90, 103, 117 monoamines 11 monoclonal 14 Monocotyledons 117 Morocco 87
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring 2-4, 10, 25, 54, 66, 71, 72, 79, 80, 83, 85, 90, 103, 117 monoamines 11 monoclonal 14 Monocotyledons 117 Morocco 87 Morone 15, 18, 19
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring 2-4, 10, 25, 54, 66, 71, 72, 79, 80, 83, 85, 90, 103, 117 monoamines 11 monoclonal 14 Monocotyledons 117 Morone 87 Morone 15, 18, 19 Morone saxatilis phagocytes 15, 18
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring 118 2-4, 10, 25, 54, 66, 71, 72, 79, 80, 83, 85, 90, 103, 117 monoamines 11 monoclonal 14 Monocotyledons 117 Morone 15, 18, 19 Morone saxatilis phagocytes 15, 18 morphogenesis 105
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring 112 2-4, 10, 25, 54, 66, 71, 72, 79, 80, 83, 85, 90, 103, 117 monoamines 11 monoclonal 14 Monocotyledons 117 Morone 15, 18, 19 Morone saxatilis phagocytes 15, 18 morphogenesis 105 morphology 115
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring 118 monitoring 117 monoamines 11 monoclonal 14 Morone construction 17 Morone 15, 18, 19 Morone saxatilis phagocytes 15, 18 morphogenesis 105 morphology 105 4, 23, 26, 28, 41, 52, 55, 57, 71, 94, 97, 106, 114, 117 mortality 1, 6, 7, 14, 23, 24, 27, 39, 43, 46, 69, 71-74, 78, 81, 82, 84, 87, 89-91, 96, 97, 100, 102, 107, 111, 114
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring 118 monitoring 117 monoamines 11 monoclonal 14 Morone construction 15 Morone 15 Morone saxatilis phagocytes 15 morphogenesis 105 morphology 105 4, 23, 26, 28, 41, 52, 55, 57, 71, 94, 97, 106, 114, 117 mortality 1 1, 6, 7, 14, 23, 24, 27, 39, 43, 46, 69, 71-74, 78, 81, 82, 84, 87, 89-91, 96, 97, 100, 102, 107, 111, 114 mortality rates 73, 96
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring 118 monitoring 117 monoamines 11 monoclonal 14 Monocotyledons 117 Morone 15, 18, 19 Morone saxatilis phagocytes 15, 18 morphogenesis 105 morphology 105 4, 23, 26, 28, 41, 52, 55, 57, 71, 94, 97, 106, 114, 117 mortality 1, 6, 7, 14, 23, 24, 27, 39, 43, 46, 69, 71-74, 78, 81, 82, 84, 87, 89-91, 96, 97, 100, 102, 107, 111, 114 mortality rates 73, 96 motor neuron 44, 58
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring 118 monitoring 117 monoamines 11 monoclonal 14 Monocotyledons 117 Morone 15, 18, 19 Morone saxatilis phagocytes 15, 18 morphogenesis 105 morphology 105 4, 23, 26, 28, 41, 52, 55, 57, 71, 94, 97, 106, 114, 117 mortality 1 1, 6, 7, 14, 23, 24, 27, 39, 43, 46, 69, 71-74, 78, 81, 82, 84, 87, 89-91, 96, 97, 100, 102, 107, 111, 114 mortality rates 73, 96 motor neuron 44, 58 motor neurons cytology & physiology 42
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring 2-4, 10, 25, 54, 66, 71, 72, 79, 80, 83, 85, 90, 103, 117 monoamines 11 monoclonal 14 Monocotyledons 117 Morone 87 Morone 15, 18, 19 Morone saxatilis phagocytes 15, 18 morphogenesis 105 morphology 105 4, 23, 26, 28, 41, 52, 55, 57, 71, 94, 97, 106, 114, 117 mortality 73, 96 motor neuron 44, 58 motor neuron 44, 58 motor neurons cytology & physiology 42 movement 2, 14, 28, 29, 51, 55, 56, 75, 101
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring 118 monitoring 117 monoamines 11 monoclonal 14 Monocotyledons 117 Morone 15, 18, 19 Morone saxatilis phagocytes 15, 18 morphogenesis 105 morphology 105 4, 23, 26, 28, 41, 52, 55, 57, 71, 94, 97, 106, 114, 117 mortality 1 1, 6, 7, 14, 23, 24, 27, 39, 43, 46, 69, 71-74, 78, 81, 82, 84, 87, 89-91, 96, 97, 100, 102, 107, 111, 114 mortality rates 73, 96 motor neuron 44, 58 motor neurons cytology & physiology 42
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring 2-4, 10, 25, 54, 66, 71, 72, 79, 80, 83, 85, 90, 103, 117 monoamines 11 monoclonal 14 Monocotyledons 117 Morone 15, 18, 19 Morone saxatilis phagocytes 15, 18 morphogenesis 105 morphology 105 4, 23, 26, 28, 41, 52, 55, 57, 71, 94, 97, 106, 114, 117 mortality 11 mortality 73, 96 motor neuron 44, 58
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring 2-4, 10, 25, 54, 66, 71, 72, 79, 80, 83, 85, 90, 103, 117 monoamines 11 monoclonal 14 Monocotyledons 117 Morone 15, 18, 19 Morone saxatilis phagocytes 15, 18 morphogenesis 105 morphology 105 morphology 105 mortality 73, 96 motor neuron 44, 58 motor neurons cytology & physiology 42 movement 2, 14, 28, 29, 51, 55, 56, 75, 101 movement and support 14, 56 MSX disease 19, 76
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring 2-4, 10, 25, 54, 66, 71, 72, 79, 80, 83, 85, 90, 103, 117 monoamines 11 monoclonal 14 Monocotyledons 117 Morone 15, 18, 19 Morone saxatilis phagocytes 15, 18 morphogenesis 105 morphology 105 4, 23, 26, 28, 41, 52, 55, 57, 71, 94, 97, 106, 114, 117 mortality 11 mortality 73, 96 motor neuron 44, 58 motor neuron 44, 58 motor neuron 44, 58 Motor neuron 14, 56 MSX disease 19, 76
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring 118 monitoring 118 monitoring 117 monoamines 11 monoclonal 14 Monocotyledons 117 Morone commons 15, 18, 19 Morone saxatilis phagocytes 15, 18 morphogenesis 105 morphology 14 4, 23, 26, 28, 41, 52, 55, 57, 71, 94, 97, 106, 114, 117 mortality 1 1, 6, 7, 14, 23, 24, 27, 39, 43, 46, 69, 71-74, 78, 81, 82, 84, 87, 89-91, 96, 97, 100, 102, 107, 111, 114 motor neuron 44, 58 motor neuron 44, 58 motor neuron 2, 14, 28, 29, 51, 55, 56, 75, 101 movement and support 14, 56 MSX disease 19, 76 MSX parasite 76 mu opiate receptor transcripts 15 mucin-like protein 10 mucins 10, 11
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring 118 monitoring 117 monoamines 11 monoclonal 14 Monocotyledons 117 Morone comments 117 Morone saxatilis phagocytes 15, 18, 19 Morone saxatilis phagocytes 15, 18 morphogenesis 105 morphology 14 4, 23, 26, 28, 41, 52, 55, 57, 71, 94, 97, 106, 114, 117 mortality 1 1, 6, 7, 14, 23, 24, 27, 39, 43, 46, 69, 71-74, 78, 81, 82, 84, 87, 89-91, 96, 97, 100, 102, 107, 111, 114 motor neuron 44, 58 motor neuron 44, 58 motor neuron 2, 14, 28, 29, 51, 55, 56, 75, 101 movement and support 14, 56 MSX disease 19, 76 MSX parasite 76 mu opiate receptor transcripts 15 mu opiate receptor transcripts 15
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring 118 monitoring 118 2-4, 10, 25, 54, 66, 71, 72, 79, 80, 83, 85, 90, 103, 117 monoamines 11 monoclonal 14 Monocotyledons 117 Moronecoco 87 Morone 15, 18, 19 Morone saxatilis phagocytes 15, 18 morphogenesis 105 morphology 105 morphology 105 morphology 105 morphology 105 morphology 105 morphology 105 motor neuron 44, 58 motor neuron 44, 58 motor neuron 44, 58 motor neurons cytology & physiology 42 movement and support 14, 56 MSX parasite 76 mu opiate receptor transcripts 15 mucins chemistry & genetics 11 mucoperlin 10
molluscan smooth muscle 14 Mollusks Congresses 102 Mollusks North America Identification 118 monitoring 118 monitoring 118 monitoring 117 monoamines 11 monoclonal 14 Monocotyledons 117 Morone 87 Morone 15, 18, 19 Morone saxatilis phagocytes 15, 18 morphogenesis 105 morphology 105 morphology 105 morphology 107 Morone saxatilis phagocytes 105 morphogenesis 105 morphology 105 morphology 104 4, 23, 26, 28, 41, 52, 55, 57, 71, 94, 97, 106, 114, 117 mortality 11 mortality 11 mortality 11 mortality 100 10, 6, 7, 14, 23, 24, 27, 39, 43, 46, 69, 71-74, 78, 81, 82, 84, 87, 89-91, 96, 97, 100, 102, 107, 111, 114 motor neuron 44, 58 motor neurons cytology & physiology 42 movem

mucus metabolism
mucus microbiology 102
muddy soft bottom
Mueller shell size and form
Mulinia lateralis
multiconnected memory models
multidisciplinary sciences
multidrug resistance
multimeric complexes
multiple generations
multitrait cline
muramidase metabolism
muscle contraction
muscle contraction drug effects & physiology 57
muscle relaxation
muscles
muscles metabolism
muscular system (movement and support)
musculoskeletal system
mussel
1-3, 4-7, 10-13, 16-18, 20, 23-29, 58, 64, 67, 70-72, 78,
80, 84-86, 87, 90-95, 97-100, 103, 119, 120
mussel culture
mussel larvae
mussel Mytilus edulis
mussel pump
mussels chemistry
mussels drug effects
mussels embryology
mussels enzymology
mussels genetics
mussels metabolism
mussels microbiology
mussels parasitology
mussels physiology
mutagens
mutagens analysis & metabolism
mutagens toxicity
mutualism
Mya arenaria
Mya arenaria p53 gene
mycoses
mycotoxins metabolism
myocardium metabolism
myocyte
Mytilidae
Mytilus
3, 4, 7, 8, 11, 13-16, 21, 26-29, 64, 78, 90-93, 100, 103,
119, 120
Mytilus byssus
Mytilus californianus
Mytilus edulis 4, 11, 13, 15, 26-28, 90-93, 100, 103
Mytilus galloprovincialis 3, 4, 7, 16, 21, 64, 119, 120
Mytilus galloprovincialis (Lmk - 1819)7
Mytilus galloprovincialis glycogen phosphorylase 21
Mytilus galloprovincialis Lam
Mytilus trossulus
nacre secreted

nacrein
nacreous layer formation
nacreous shell layer 10
NADH-NADPH oxidoreductases metabolism 103
native
native animals 117
natural anoxic stress
natural bay scallop
natural environment
natural population
natural resources
natural seston
naturally growing microalgae
nature conservation
Nautilus pompilius
negative centrosome dependent aster formation
requirement
negative phototaxis
neoplasms
neoplasms experimental virology
neoplasms virology
neoplastic disease
neoplastic drug effects
neoplastic genetics
nerve axons revisited
nerve cell
nerve fibers metabolism
nerve fibers ultrastructure
nerve growth factor
nerve membrane
nerve net cytology
nerve net physiology
nervous system 15, 27, 31, 39-42, 44, 54-59, 61, 62, 66
nervous system (neural coordination) 15, 44
nervous system (neural coordination)
nervous system cytology
nervous system cyclogy
nested reverse transcriptase PCR assay
net energy balance
netting
neural inhibition physiology
neural networks
neural plasticity
neurite activation
neurite outgrowth
neurites ultrastructure
neurobiology
neurofilament protein NF 220
neurofilament proteins chemistry
neurofilament proteins isolation and purification . 31, 33
neurofilament proteins metabolism
neuron
neuronal basis
neuronal cells
Neuronal Cultures
neurons 40-43, 45, 46, 54-60, 62
neurons chemistry

1 00
neurons drug effects 57, 62
neurons enzymology
neurons metabolism
neurosciences
neurotoxicity
neurotoxins toxicity
neurotransmitter
neurotransmitter release
New England
New Zealand (Australasian region)
New Zealand abalone Haliotis iris Martyn 1784 111
New Zealand paua
newborns
Newfoundland
Newfoundland squid 107
Niantic River estuary
nickel
nitric oxide
nitric oxide metabolism
nitric oxide inclusionism
nitric oxide synthase antagonists and inhibitors 35, 65
nitroarginine methyl ester pharmacology
nitroblue tetrazolium metabolism
nitrogen
nitrogen content
nitrogen toxicity
nitzschia 113, 114
NO
3, 5, 7, 8, 14, 16, 17, 19, 22, 25, 26, 28-30, 32, 35, 36,
J, J, I, 0, 17, 10, 17, 17, 22, 25, 20, 20, 50, 52, 55, 50,
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80,
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80,90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122non steroidal pharmacology
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80,90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122non steroidal pharmacologynon-invasive43
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology anon-invasive 43 nonhuman vertebrates 66
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80,90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122non steroidal pharmacologynon-invasive43
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology anon-invasive 43 nonhuman vertebrates 66
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 50 nonmetals 15, 24, 27 nonrenewable resources
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 50 nonmetals 15, 24, 27 nonrenewable resources
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology anon-invasive 43 nonhuman vertebrates 66 noninvasive technique 50 nonrenewable resources 22 nonspecific immunostimulation
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 66 noninvasive technique 50 nonrenewable resources 22 nonspecific immunostimulation 15 13
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 43 nonhuman vertebrates 66 noninvasive technique 50 nonrenewable resources 22 nonspecific immunostimulation 15 nontarget organisms 113 nonvascular plants
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 66 noninvasive technique 50 nonrenewable resources 22 nonspecific immunostimulation 15 nontarget organisms 113 non-destructive 43
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 43 nonhuman vertebrates 66 noninvasive technique 50 nonrenewable resources 22 nonspecific immunostimulation 15 13 nonvascular plants 1, 23, 24, 45, 92, 113 non-destructive 43
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 66 noninvasive technique 50 nonrenewable resources 22 nonspecific immunostimulation 15 nonvascular plants 1, 23, 24, 45, 92, 113 non-destructive 43 norsynephrine receptor 43
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 66 noninvasive technique 50 nonrenewable resources 22 nonspecific immunostimulation 15 nonvascular plants 1, 23, 24, 45, 92, 113 non-destructive 43 North America 24, 117, 118 North Atlantic 37, 95
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 66 noninvasive technique 50 nonrenewable resources 22 nonspecific immunostimulation 15, 24, 27 nontarget organisms 113 nonvascular plants 1, 23, 24, 45, 92, 113 non-destructive 43 North America 24, 117, 118 North Atlantic 37, 95 North central states USA 29
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 66 noninvasive technique 50 nonrenewable resources 22 nonspecific immunostimulation 15, 24, 27 nontarget organisms 113 nonvascular plants 1, 23, 24, 45, 92, 113 non-destructive 43 North America 24, 117, 118 North Atlantic 37, 95 North Eastern States USA 24
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 66 noninvasive technique 50 nonrenewable resources 22 nonspecific immunostimulation 15, 24, 27 nontarget organisms 113 nonvascular plants 1, 23, 24, 45, 92, 113 norsynephrine receptor 43 North America 24, 117, 118 North Atlantic 37, 95 North Eastern States USA 29 Northeast Pacific 118
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 66 noninvasive technique 50 nonrenewable resources 22 nonspecific immunostimulation 15, 24, 27 nontarget organisms 113 nonvascular plants 1, 23, 24, 45, 92, 113 non-destructive 43 North America 24, 117, 118 North Atlantic 37, 95 North Eastern States USA 24
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 66 noninvasive technique 50 nonrenewable resources 22 nonspecific immunostimulation 15 nonduscular plants 1, 23, 24, 45, 92, 113 nordestructive 43 North America 24, 117, 118 North Atlantic 37, 95 North Eastern States USA 29 Northeast Pacific 118 Northern Chile 75
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 66 noninvasive technique 50 nonrenewable resources 22 nonspecific immunostimulation 15 nondestructive 43 nonvascular plants 1, 23, 24, 45, 92, 113 norsynephrine receptor 43 North America 24, 117, 118 North Atlantic 37, 95 North Eastern States USA 29 Northeast Pacific 118 Northern Chile 75 northern quahog 79
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 66 noninvasive technique 50 nonrenewable resources 22 nonspecific immunostimulation 15 nondestructive 43 nonvascular plants 1, 23, 24, 45, 92, 113 nordestructive 43 North America 24, 117, 118 North Atlantic 37, 95 North Eastern States USA 24 Northeast Pacific 118 Northern Chile 75 northern quahog 479
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 66 noninvasive technique 50 nonrenewable resources 22 nonspecific immunostimulation 15 nondestructive 43 norvascular plants 1, 23, 24, 45, 92, 113 non-destructive 43 North America 24, 117, 118 North Atlantic 37, 95 North Eastern States USA 24 Northeast Pacific 118 Northern Chile 75 northern quahog 479 northwest atlantic 118
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 66 noninvasive technique 50 nonrenewable resources 22 nonspecific immunostimulation 15 nondestructive 43 norsynephrine receptor 43 North America 24, 117, 118 North Atlantic 37, 95 North Eastern States USA 24 Northeast Pacific 118 Northern Chile 75 northern quahog 4, 79 northwest atlantic 118 Norwalk virus 13, 91, 92, 95, 121
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 66 noninvasive technique 50 nonmetals 15, 24, 27 nonspecific immunostimulation 15 nontarget organisms 113 nonvascular plants 1, 23, 24, 45, 92, 113 norsynephrine receptor 43 North America 24, 117, 118 North Atlantic 37, 95 North central states USA 29 Northeast Pacific 118 Northern Chile 75 northern quahog 4, 79 northwest atlantic 13, 91, 92, 95, 121 Norwalk virus 13, 91, 92, 95, 121
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 66 noninvasive technique 50 nonrenewable resources 22 nonspecific immunostimulation 15, 24, 27 nontarget organisms 113 nonvascular plants 1, 23, 24, 45, 92, 113 norsynephrine receptor 43 North America 24, 117, 118 North Atlantic 37, 95 North central states USA 29 Northeast Pacific 118 Northern Chile 75 northern quahog 4, 79 northwest atlantic 13, 91, 92, 95, 121 Norwalk virus isolation and purification 13, 92, 121 Norwalk-like virus 13, 18
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 66 noninvasive technique 50 nonrenewable resources 22 nonspecific immunostimulation 15, 24, 27 nontarget organisms 113 nonvascular plants 1, 23, 24, 45, 92, 113 norsynephrine receptor 43 North America 24, 117, 118 North Atlantic 37, 95 North central states USA 29 Northeast Pacific 118 Northern Chile 75 northern quahog 4, 79 northwest atlantic 13, 91, 92, 95, 121 Norwalk virus 13, 91, 92, 95, 121 Norwalk virus 13, 18 Norwalk-like virus 13, 18 Norwalk-like virus 13, 18
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 66 noninvasive technique 50 nonrenewable resources 22 nonspecific immunostimulation 15, 24, 27 nontarget organisms 113 nonvascular plants 1, 23, 24, 45, 92, 113 norsynephrine receptor 43 North America 24, 117, 118 North Atlantic 37, 95 North central states USA 29 Northeast Pacific 118 Northern Chile 75 northern quahog 4, 79 northern duahog seed 4 northwest atlantic 13, 91, 92, 95, 121 Norwalk virus 13, 91, 92, 95, 121 Norwalk virus 13, 18 Norwalk-like virus 13, 18 Norwalk-like virus 58
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 66 noninvasive technique 50 nonmetals 15, 24, 27 nonrenewable resources 22 nonspecific immunostimulation 15 nontarget organisms 113 non-destructive 43 norsynephrine receptor 43 North America 24, 117, 118 North Atlantic 37, 95 North central states USA 29 Northeast Pacific 118 Northern Chile 75 northern quahog 4, 79 northwest atlantic 13, 91, 92, 95, 121 Norwalk virus 13, 91, 92, 95, 121 Norwalk virus 13, 18 Norway 74 Nucella 45-47, 49, 50, 58 Nucella lapillus (L.) 45, 50
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 66 noninvasive technique 50 nonmetals 15, 24, 27 nonrenewable resources 22 nonspecific immunostimulation 15 nontarget organisms 113 nordestructive 43 norsynephrine receptor 43 North America 24, 117, 118 North Atlantic 37, 95 North central states USA 29 North Eastern States USA 24 Northeast Pacific 118 Northern Chile 75 northern quahog 4, 79 northwest atlantic 13, 91, 92, 95, 121 Norwalk virus 13, 91, 92, 95, 121 Norwalk virus isolation and purification 13, 92, 121 Norwalk virus 13, 18 Northern Quahog seed 4 Northered talantic 13, 18 Norwalk virus 13, 18 Norwalk virus 58 </td
39, 41-44, 46, 50, 52, 60-63, 65, 69, 74, 75, 77, 79, 80, 90, 93, 97, 99-102, 104, 108, 112, 114-118, 121, 122 non steroidal pharmacology 46 non-invasive 43 nonhuman vertebrates 66 noninvasive technique 50 nonmetals 15, 24, 27 nonrenewable resources 22 nonspecific immunostimulation 15 nontarget organisms 113 non-destructive 43 norsynephrine receptor 43 North America 24, 117, 118 North Atlantic 37, 95 North central states USA 29 Northeast Pacific 118 Northern Chile 75 northern quahog 4, 79 northwest atlantic 13, 91, 92, 95, 121 Norwalk virus 13, 91, 92, 95, 121 Norwalk virus 13, 18 Norway 74 Nucella 45-47, 49, 50, 58 Nucella lapillus (L.) 45, 50

nucleic compounds	
nucleotide sequences	
nursery culture	
nursery culturing of molluscs 123	
nursery phase/ stage 103	
nursery seed clam	
nutrient availability	
nutrient balance	
nutrient concentration	
nutrient content	
nutrient requirements	
nutrition	
1, 7, 24, 26, 38, 40, 51, 55, 56, 66, 88, 92, 94, 96, 97,	
114, 115, 123	
nutritional environment	
nutritional value	
nutritive value	
Oceania	
oceanic squids 106	
octopamine pharmacology & receptor	
octopus 31, 35, 37, 39, 40, 105-108	
Octopus dofleini 106, 108	
Octopus dofleini (Wulker) 108	5
Octopus maya)
Octopus mimus	
octopus physiology	
Octopus variabilis	
Octopus vulgaris	
octylphenol	
	۷.
OECD countries	
offshore structures 111	
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42	 2
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42	 2
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides44	1 2 1
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides4Ommastrephes bartramii106	2
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides40Ommastrephes bartramii106ommastrephid squid38, 40	1245)
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides4Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106	124505
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides42Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63	1 2 4 5 5 3
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides42Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101	1 2 4 5 0 5 3 1
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides42Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101Ontario29	
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides42Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101Ontario29ontogenetic changes21	
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides42Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101Ontario29ontogenetic changes58	
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides42Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101Ontario29ontogenetic changes21	
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides42Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101Ontario29ontogenetic changes58	
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides4Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101Ontario29ontogenetic changes58ontogeny21, 32, 58oocyte expression18	
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides4Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101Ontario29ontogenetic changes58ontogeny21, 32, 58oocyte expression18oocyte release11	
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides42ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101Ontario29ontogenetic changes21ontogeny21, 32, 58oocyte expression10oocyte release11oocytes26, 43, 45, 46, 57, 112	1 2 4 5 5 5 5 7 1 3 8 3 8 3 1 2
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides42Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101Ontario29ontogenetic changes58ontogeny21, 32, 58oocyte expression18oocyte release11oocytes cytology46	1 2 4 4 5 5 3 1 9 1 3 3 3 1 2 5 5
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides4Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101Ontario29ontogenetic changes58oncyte expression18oocyte release11oocytes cytology46optical properties15, 24	1 2 4 5 5 3 1 9 1 3 3 3 1 2 5 4
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides4Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101Ontario29ontogenetic changes58ontogeny21, 32, 58oocyte release11oocytes cytology46optical properties15, 24optimal population density72	1 2 4 5 3 1 9 1 3 3 3 1 2 5 4 2
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides4Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101Ontario29ontogenetic changes21ontogeny21, 32, 58oocyte expression18oocytes101oocytes15, 24optical properties15, 24optimal population density72optimal sperm concentration112	
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides4Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101Ontario29ontogenetic changes21ontogeny21, 32, 58oocyte expression18oocytes cytology46optical properties15, 24optimal population density72optimal sperm concentration112optimum temperature52	
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides4Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101Ontario29ontogenetic changes58ontogeny21, 32, 58oocyte expression18oocytes cytology46optical properties15, 24optimal population density72optimal sperm concentration112optimum temperature52organ culture56	1 2 4 5 5 3 1 9 1 3 3 3 1 2 5 4 2 2 2 5
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides4Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101Ontario29ontogenetic changes21ontogeny21, 32, 58oocyte expression18oocytes cytology46optical properties15, 24optimal population density72optimal sperm concentration112optimum temperature52	1 2 4 5 5 3 1 9 1 3 3 3 1 2 5 4 2 2 2 5
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides4Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101Ontario29ontogenetic changes58ontogeny21, 32, 58oocyte expression18oocytes cytology46optical properties15, 24optimal population density72optimal sperm concentration112optimum temperature52organ culture56	
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides4Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101Ontario29ontogenetic changes21ontogenetic changes58ontogeny21, 32, 58oocyte expression16oocytes cytology46optical properties15, 24optimal sperm concentration112optimal sperm concentration112organ culture56organelles drug effects & physiology36organic acids27	
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides4Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101Ontario29ontogenetic changes21ontogenic changes21oocyte expression18oocyte release11oocytes cytology46optical properties15, 24optimal sperm concentration112organ culture52organic acids27organic components11	1 2 4 5 0 5 3 1 9 1 8 8 8 1 2 5 4 2 2 5 5 7 1
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides4Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101Ontario29ontogenetic changes21ontogeny21, 32, 58oocyte release11oocytes cytology46optical properties15, 24optimal sperm concentration112organ culture56organic acids27organic load27organic load27organic load27organic load27organic load27organic load27organic load27organic load27organic load21	
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides4Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101Ontario29ontogenetic changes21ontogenic changes58oncyte expression18oocyte release11oocytes cytology46optical properties15, 24optimal sperm concentration112organic acids27organic acids27organic load27organic load27organic matter56organic matter57organic matter57organic matter57organic matter57organic matter57organic matter57	
offshore structures111olfactory CNS41olfactory receptor neurons metabolism42oligodeoxyribonucleotides4Ommastrephes bartramii106ommastrephid squid38, 40Ommastrephidae30, 38, 39, 106Oncomelania hupensis nosophora63onshore nursery101Ontario29ontogenetic changes21ontogeny21, 32, 58oocyte release11oocytes cytology46optical properties15, 24optimal sperm concentration112organ culture56organic acids27organic load27organic load27organic load27organic load27organic load27organic load27organic load27organic load27organic load21	

organic wastes
organotin compounds 48, 64, 113
organotin compounds immunology & toxicity 64
organotin compounds pharmacology
orientation
origins
oscillatory activity
Osteichthyes
ostial area
Ostrea edulis
Ostrea edulis culture
Ostrea edulis L
Ostreidae
outbreaks 10, 13, 17, 18, 74, 82, 83, 119, 121
outlets stability
ova
oval squids
ovarian yolk proteins
overfished stock
overview of diets
oviposition
ovum physiology
oxidants
oxidants immunology & toxicity
oxidation
oxidative activity
oxprenolol pharmacology
oxprenotor toxicity
0.110.00
oxygen
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85,
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption9, 20, 36, 50, 58, 119
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption oxygen consumption physiology oxygen metabolism 32 oxygenases 116
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption 9, 20, 36, 50, 58, 119 oxygen consumption physiology 9 oxygen metabolism 32 oxygenases 116 oxyradical scavenger 15 oxytetracycline 82, 93 oyster breeding 96
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption 9, 20, 36, 50, 58, 119 oxygen consumption physiology 9 oxygen metabolism 32 oxygenases 116 oxyradical scavenger 15 oxytetracycline 82, 93 oyster breeding 96 oyster crassostrea gigas 8, 27, 97
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption oxygen consumption physiology oxygen metabolism 32 oxygenases 116 oxyradical scavenger 15 oyster breeding 9 0 9 <
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption oxygen consumption physiology oxygen metabolism 32 oxygenases 116 oxygenases 116 oxyradical scavenger 15 oxytetracycline 96 oyster breeding 97 oyster Crassostrea gigas 8, 27, 97 oyster culture Congresses
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption 9, 20, 36, 50, 58, 119 oxygen metabolism 32 oxygenases 116 oxyradical scavenger 15 oxytetracycline 82, 93 oyster crassostrea gigas 8, 27, 97 oyster culture Congresses 102 oyster culture Wales 104
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption 9, 20, 36, 50, 58, 119 oxygen metabolism 32 oxygenases 116 oxyradical scavenger 15 oxytetracycline 82, 93 oyster breeding 96 oyster crassostrea gigas 8, 27, 97 oyster culture Congresses 102 oyster culture Wales 104 oyster hemocytes 15, 19, 24
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption 9, 20, 36, 50, 58, 119 oxygen consumption physiology 9 oxygen metabolism 32 oxygenases 116 oxyradical scavenger 15 oxytetracycline 82, 93 oyster breeding 96 oyster crassostrea gigas 8, 27, 97 oyster culture Congresses 102 oyster culture Wales 104 oyster larvae hatchery rearing techniques 105
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption 9, 20, 36, 50, 58, 119 oxygen metabolism 32 oxygenases 116 oxyradical scavenger 15 oxytetracycline 82, 93 oyster breeding 96 oyster crassostrea gigas 8, 27, 97 oyster culture Congresses 102 oyster culture Wales 104 oyster hemocytes 15, 19, 24
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption 9, 20, 36, 50, 58, 119 oxygen consumption physiology 9 oxygen metabolism 32 oxygenases 116 oxyradical scavenger 15 oxytetracycline 82, 93 oyster breeding 96 oyster crassostrea gigas 8, 27, 97 oyster culture Congresses 102 oyster culture Wales 104 oyster larvae hatchery rearing techniques 105 oyster spats 105
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption 9, 20, 36, 50, 58, 119 oxygen consumption physiology 9 oxygen metabolism 32 oxygenases 116 oxyradical scavenger 15 oxytetracycline 82, 93 oyster breeding 96 oyster crassostrea gigas 19, 27, 102 oyster culture Congresses 102 oyster hemocytes 15, 19, 24 oyster larvae hatchery rearing techniques 105 oyster structure/ physiology/ reproduction 105
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption oxygen consumption physiology oxygen metabolism 32 oxygenases 116 oxyradical scavenger 15 oxytetracycline 82, 93 oyster breeding 90 oyster crassostrea gigas 90 0yster culture Congresses 102 oyster culture Wales 104 oyster larvae hatchery rearing techniques 105 oyster spats 105 oyster tissues 22 oyster spats 22 oysters 103 044 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption 9, 20, 36, 50, 58, 119 oxygen consumption physiology 9 oxygen metabolism 32 oxygenases 116 oxyradical scavenger 15 oxytetracycline 82, 93 oyster breeding 96 oyster crassostrea gigas 8, 27, 97 oyster cluture Congresses 102 oyster culture Congresses 104 oyster hemocytes 15, 19, 24 oyster spats 105 oyster structure/ physiology/ reproduction 105 oyster tissues 22 oysters 22 oysters 22 oyster spats 22 oyster spats 22 oysters 22 oysters 22 oysters 22 oysters 22 oyster spats 22 oyster spats 22 oysters 22 oysters 22 oyster spats 24
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption 9, 20, 36, 50, 58, 119 oxygen consumption physiology 9 oxygen metabolism 32 oxygenases 116 oxyradical scavenger 15 oxytetracycline 82, 93 oyster breeding 96 oyster crassostrea gigas 8, 27, 97 oyster crassostrea virginica 19, 27, 102 oyster culture Congresses 102 oyster larvae hatchery rearing techniques 104 oyster spats 105 oyster tissues 22 oyster structure/ physiology/ reproduction 105 oyster sisues 22 oyster sisues 22 oyster sisues 22 oysters 105 oyster sisues 22 oysters 105 oyster sisues 22 oyster sisues 22 oyster spats 105 oyster sisues 22 oysters 105 oyster sanalysis 104
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption 9, 20, 36, 50, 58, 119 oxygen consumption physiology 9 oxygen metabolism 32 oxygenases 116 oxyradical scavenger 15 oxytetracycline 82, 93 oyster breeding 96 oyster crassostrea gigas 8, 27, 97 oyster crassostrea virginica 19, 27, 102 oyster culture Congresses 102 oyster culture Wales 104 oyster spats 105 oyster tissues 22 oyster tissues 22 oyster spats 105 oyster sisues 22 oyster sisues 22 oyster sisues 22 oyster sisues 22 oysters 105 oyster sanalysis 104 oysters analysis 104 oysters embryology 13
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption 9, 20, 36, 50, 58, 119 oxygen consumption physiology 9 oxygen metabolism 32 oxygenases 116 oxyradical scavenger 15 oxytetracycline 82, 93 oyster breeding 96 oyster crassostrea gigas 96 oyster crassostrea virginica 19, 27, 102 oyster culture Congresses 102 oyster hemocytes 104 oyster spats 105 oyster structure/ physiology/ reproduction 105 oyster structure/ physiology/ reproduction 105 oyster spats 22 oysters 22 oysters 22 oysters 105 oyster spats 105 oyster spats 105 oysters 12 1, 3, 4, 7-10, 12, 13, 15, 17-20, 22-25, 27, 29, 74, 76, 78, 82, 83, 87, 88, 91-97, 99-105, 118, 119 oysters embryology 13 oysters embryology 13 oysters genetics 9, 10
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption oxygen metabolism
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption oxygen metabolism
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption 9, 20, 36, 50, 58, 119 oxygen consumption physiology 9 oxygen metabolism 32 oxygenases 116 oxyradical scavenger 15 oxytetracycline 82, 93 oyster breeding 96 oyster crassostrea gigas 8, 27, 97 oyster Crassostrea virginica 19, 27, 102 oyster culture Congresses 102 oyster hemocytes 15, 19, 24 oyster larvae hatchery rearing techniques 105 oyster spats 105 oyster structure/ physiology/ reproduction 105 oyster structure/ physiology/ reproduction 105 oysters 12 oysters 12 oyster spats 105 oyster structure/ physiology/ reproduction 105 oysters 12 oysters 12 oyster sembryology 13 oyster sembryology 13 oysters embryology 13 oysters immunology 19, 20 oysters mi
9, 15, 18-20, 24-27, 31, 32, 36, 50, 58, 74, 79, 81, 85, 86, 99, 109, 116, 119 oxygen consumption oxygen metabolism

oysters virology
p53 3, 9, 18, 59
Pacific Calico scallops
Pacific Islands
Pacific oyster
Pacific oyster culture
pacific oysters
Pacific razor clam
Padina pavonia
Pagrus aurata
pain
Palau
Palearctic region
Palourde ruditapes decussatus
•
pancreas chemistry
Papua New Guinea
Parafossarulus manchouricus eggs
parallel evolution
Paramyxea
parasite host
parasites 4, 19, 20, 27, 51, 61, 65, 72, 73, 76, 99, 114
parasites classification & ultrastructure
parasitic disease
parasitology
parentage
parental care
particle capture
particle size
partitioned aquaculture system
parturition
patch clamp techniques
pathogenic
pathogens
pathology
Define set and
Patinopecten yessoensis
Patinopecten yessoensis (Jay)
pattern
Pb 11, 12, 25, 54, 60
PCBs
PCR
3, 4, 9, 10, 13, 17, 18, 20, 52, 82, 83, 91, 95, 105, 120, 121
pearl culture
pearl cultured ground
pearl oyster
pearl oyster research & seeding
Pecten 21, 23, 69, 70, 72-74, 78, 79, 83, 84, 87-89
Pecten fumatus
Pecten fumatus Reeve
Pecten maximus 21, 23, 69, 70, 72, 74, 83, 84, 87-89
Pecten maximus (l.) larvae
Pecten maximus L
Pectinidae
pedal ganglia15
Pelecypoda
8, 14-16, 18, 21-24, 26, 27, 74, 76, 92-94, 96, 97, 119
pelleted feeds
Penaeus vannamei
penis

penis anatomy and histology 50
pentachlorophenol 2, 12, 24, 25, 123
pentachlorophenol accumulation
pentachlorophenol analysis 123
pentachlorophenol metabolism 25
pentachlorophenol pharmacokinetics
pentachlorophenol pharmacology 25
pentachlorophenol toxicity 2, 12, 123
peptide fragments analysis 31
peptide hydrolases metabolism 31
peptidergic neurons
Percoidei
performance
performance testing
periodic behaviour of bivalves 29, 104
periodic expansion-contraction movement
periodic feeding activity/ variation
periodicity
periphyton 16, 62
Perkinsus 15, 23, 26, 75
Perkinsus atlanticus
Perkinsus karlssoni
Perkinsus marinus
permeant cations
Perna
Perna perna (L.)
Perna viridis (L.)
pertussis toxins pharmacology
pest
pest control biological methods
pesticide uptake
pesticides
pesticides immunology
pesticides pharmacology
pesticides toxicity
pH
Phaeophyceae
Phaeophyta
phagocytes
phagocytes immunology 19, 10, 19, 24, 95
phagocytic activity
phagocytosis
phagocytosis immunology
pharmacognosy
pharmacokinetics
pharmacology
3, 12, 23, 25, 26, 35, 36, 42-44, 46, 48, 49, 54, 56, 62,
65, 94
phenanthridines pharmacokinetics
phenolic compounds
phenols pharmacology
phenotype
phenotypic plasticity
pheromones
Philippines
phosphate acquisition
phosphodiesterase inhibitors pharmacology 46, 65
phosphoglucomutase genetics

phosphorus radioisotopes metabolism
phosphorylation 30, 31, 33, 46, 61, 62
phosphorylation sites
photic stimulation
photoactivated fluoranthene
photoperiod
photoperiodicity
photoperiodicity
photoreceptors physiology
photosynthesis
photosystem i
photosystem ii
phylogeny
physical phenomena
physics
physiographic features
physiological characteristics
physiological condition index
physiological consequences
physiological functions
7, 28, 29, 36, 37, 49, 51, 54, 55, 57, 59, 61, 62, 102
Physiological responses
physiology
2, 4, 7, 9, 13, 15, 22-28, 31, 32, 34-38, 42, 44-46, 48,
50, 51, 54-58, 62, 64-66, 86, 89, 92-94, 96, 97, 101,
102, 105, 106, 108, 117, 120
phytoplankton 5, 6, 23, 70, 73, 74, 81, 84, 87, 119
Pilot-scale culture
Pinctada 9, 93, 101, 104
Pinctada fucata
Pinctada fucata (Gould) 104
Pinctada fucata martensii
Pinctada maxima
Pinna nobilis
Pisces
Placopecten magellanicus 21-23, 26, 72
plankton blooms 80
plankton blooms 80
plankton blooms80planktonic Octopus vulgaris37Planorbarius corneus12, 56
plankton blooms80planktonic Octopus vulgaris37Planorbarius corneus12, 56planorbid snail62
plankton blooms80planktonic Octopus vulgaris37Planorbarius corneus12, 56planorbid snail62plant animal relations116
plankton blooms80planktonic Octopus vulgaris37Planorbarius corneus12, 56planorbid snail62plant animal relations116plantae23, 24, 26, 45, 55, 66, 92, 97, 113
plankton blooms80planktonic Octopus vulgaris37Planorbarius corneus12, 56planorbid snail62plant animal relations116plantae23, 24, 26, 45, 55, 66, 92, 97, 113plants
plankton blooms 80 planktonic Octopus vulgaris 37 Planorbarius corneus 12, 56 planorbid snail 62 plant animal relations 116 plantae 23, 24, 26, 45, 55, 66, 92, 97, 113 plants 1, 2, 23, 24, 45, 51, 55, 57, 62, 92, 93, 113, 116-119
plankton blooms 80 planktonic Octopus vulgaris 37 Planorbarius corneus 12, 56 planorbid snail 62 plant animal relations 116 plantae 23, 24, 26, 45, 55, 66, 92, 97, 113 plants 1, 2, 23, 24, 45, 51, 55, 57, 62, 92, 93, 113, 116-119 ploidies 9
plankton blooms 80 planktonic Octopus vulgaris 37 Planorbarius corneus 12, 56 planorbid snail 62 plant animal relations 116 plantae 23, 24, 26, 45, 55, 66, 92, 97, 113 plants 1, 2, 23, 24, 45, 51, 55, 57, 62, 92, 93, 113, 116-119
plankton blooms 80 planktonic Octopus vulgaris 37 Planorbarius corneus 12, 56 planorbid snail 62 plant animal relations 116 plantae 23, 24, 26, 45, 55, 66, 92, 97, 113 plants 1, 2, 23, 24, 45, 51, 55, 57, 62, 92, 93, 113, 116-119 ploidies 9
plankton blooms 80 planktonic Octopus vulgaris 37 Planorbarius corneus 12, 56 planorbid snail 62 plant animal relations 116 plantae 23, 24, 26, 45, 55, 66, 92, 97, 113 plants 1, 2, 23, 24, 45, 51, 55, 57, 62, 92, 93, 113, 116-119 ploidies 9 poisoning and pharmacology 94 Poland 22
plankton blooms 80 planktonic Octopus vulgaris 37 Planorbarius corneus 12, 56 planorbid snail 62 plant animal relations 116 plantae 23, 24, 26, 45, 55, 66, 92, 97, 113 plants 9 ploidies 9 poisoning and pharmacology 94 Poland 22 polarization 94
plankton blooms 80 planktonic Octopus vulgaris 37 Planorbarius corneus 12, 56 planorbid snail 62 plant animal relations 116 plantae 23, 24, 26, 45, 55, 66, 92, 97, 113 plants 1, 2, 23, 24, 45, 51, 55, 57, 62, 92, 93, 113, 116-119 ploidies 9 poisoning and pharmacology 94 Poland 22 polarization 94 Poliovirus 17, 95, 120
plankton blooms 80 planktonic Octopus vulgaris 37 Planorbarius corneus 12, 56 planorbid snail 62 plant animal relations 116 plantae 23, 24, 26, 45, 55, 66, 92, 97, 113 plants 1, 2, 23, 24, 45, 51, 55, 57, 62, 92, 93, 113, 116-119 ploidies 9 poisoning and pharmacology 94 Poland 22 polarization 94 Poliovirus 17, 95, 120 Polioviruses genetics 95
plankton blooms 80 planktonic Octopus vulgaris 37 Planorbarius corneus 12, 56 planorbid snail 62 plant animal relations 116 plantae 23, 24, 26, 45, 55, 66, 92, 97, 113 plants 1, 2, 23, 24, 45, 51, 55, 57, 62, 92, 93, 113, 116-119 ploidies 9 poisoning and pharmacology 94 Poland 22 polarization 94 Poliovirus 17, 95, 120 Polioviruses genetics 95 Polioviruses isolation and purification 95, 104
plankton blooms 80 planktonic Octopus vulgaris 37 Planorbarius corneus 12, 56 planorbid snail 62 plant animal relations 116 plantae 23, 24, 26, 45, 55, 66, 92, 97, 113 plants 1, 2, 23, 24, 45, 51, 55, 57, 62, 92, 93, 113, 116-119 ploidies 9 poisoning and pharmacology 94 Poland 22 polarization 94 Poliovirus 17, 95, 120 Polioviruses genetics 95 Polioviruses isolation and purification 95, 104 pollutants
plankton blooms 80 planktonic Octopus vulgaris 37 Planorbarius corneus 12, 56 planorbid snail 62 plant animal relations 116 plantae 23, 24, 26, 45, 55, 66, 92, 97, 113 plants 9 ploidies 9 poisoning and pharmacology 94 Poland 22 polarization 94 Poliovirus 17, 95, 120 Polioviruses genetics 95 Polioviruses isolation and purification 95, 104 pollutants 1, 2, 4, 6, 9, 11, 12, 25, 46, 48, 54, 60, 63, 64, 66, 67,
plankton blooms 80 planktonic Octopus vulgaris 37 Planorbarius corneus 12, 56 planorbid snail 62 plant animal relations 116 plantae 23, 24, 26, 45, 55, 66, 92, 97, 113 plants 9 poisoning and pharmacology 94 Poland 22 polarization 94 Poliovirus 17, 95, 120 Polioviruses genetics 95 Polioviruses isolation and purification 95, 104 pollutants 1 1, 2, 4, 6, 9, 11, 12, 25, 46, 48, 54, 60, 63, 64, 66, 67, 71, 85-87, 90, 91, 93, 94, 96, 97, 101, 113, 123
plankton blooms 80 planktonic Octopus vulgaris 37 Planorbarius corneus 12, 56 planorbid snail 62 plant animal relations 116 plantae 23, 24, 26, 45, 55, 66, 92, 97, 113 plants 9 poisoning and pharmacology 94 Poland 22 polarization 94 Poliovirus 17, 95, 120 Polioviruses genetics 95 Polioviruses isolation and purification 95, 104 pollutants 1 1, 2, 4, 6, 9, 11, 12, 25, 46, 48, 54, 60, 63, 64, 66, 67, 71, 85-87, 90, 91, 93, 94, 96, 97, 101, 113, 123 pollution 91
plankton blooms 80 planktonic Octopus vulgaris 37 Planorbarius corneus 12, 56 planorbid snail 62 plant animal relations 116 plantae 23, 24, 26, 45, 55, 66, 92, 97, 113 plants 9 poisoning and pharmacology 94 Poland 22 polarization 94 Poliovirus 17, 95, 120 Polioviruses genetics 95 Polioviruses isolation and purification 95, 104 pollutants 1 1, 2, 4, 6, 9, 11, 12, 25, 46, 48, 54, 60, 63, 64, 66, 67, 71, 85-87, 90, 91, 93, 94, 96, 97, 101, 113, 123
plankton blooms 80 planktonic Octopus vulgaris 37 Planorbarius corneus 12, 56 planorbid snail 62 plant animal relations 116 plantae 23, 24, 26, 45, 55, 66, 92, 97, 113 plants 9 poisoning and pharmacology 94 Poland 22 polarization 94 Poliovirus 17, 95, 120 Polioviruses genetics 95 Polioviruses isolation and purification 95, 104 pollutants 1 1, 2, 4, 6, 9, 11, 12, 25, 46, 48, 54, 60, 63, 64, 66, 67, 71, 85-87, 90, 91, 93, 94, 96, 97, 101, 113, 123 pollution 91
plankton blooms 80 planktonic Octopus vulgaris 37 Planorbarius corneus 12, 56 planorbid snail 62 plant animal relations 116 plantae 23, 24, 26, 45, 55, 66, 92, 97, 113 plants 116 plants 9 poisoning and pharmacology 94 Poland 22 polarization 94 Poliovirus 17, 95, 120 Polioviruses genetics 95 Polioviruses isolation and purification 95, 104 pollutants 1, 2, 4, 6, 9, 11, 12, 25, 46, 48, 54, 60, 63, 64, 66, 67, 71, 85-87, 90, 91, 93, 94, 96, 97, 101, 113, 123 pollution 3, 10, 13, 50, 53, 56, 60, 63, 74, 85, 87, 93, 97, 101-103, 116, 118
plankton blooms 80 planktonic Octopus vulgaris 37 Planorbarius corneus 12, 56 planorbid snail 62 plant animal relations 116 plantae 23, 24, 26, 45, 55, 66, 92, 97, 113 plants 116 ploidies 9 poisoning and pharmacology 94 Poland 22 polarization 94 Poliovirus 17, 95, 120 Polioviruses genetics 95 Polioviruses isolation and purification 95, 104 pollutants 1, 2, 4, 6, 9, 11, 12, 25, 46, 48, 54, 60, 63, 64, 66, 67, 71, 85-87, 90, 91, 93, 94, 96, 97, 101, 113, 123 pollution 3, 10, 13, 50, 53, 56, 60, 63, 74, 85, 87, 93, 97,

pollution; oysters 102
polyacrylamide gel 33, 52
polyacrylamide gel electrophoresis
Polychaeta drug effects & metabolism
Polychaete
polychlorinated biphenyls analysis91
polychlorinated biphenyls metabolism91
polychlorinated biphenyls toxicity
polycyclic hydrocarbons
polycyclic hydrocarbons immunology & toxicity 64
Polydora sp
polyethylene
polymerase chain reaction
3, 4, 9, 13, 18, 20, 75, 83, 92, 95, 109, 121
polymerase chain reaction methods 18, 92, 95, 121
polymerase chain reaction-based diagnostic assay 75
polymorphism
polymorphism genetics
polysaccharides
polyunsaturated fatty acid content
Pomacea canaliculata
ponds
population density
population dynamics
population genetics
population studies
5, 14, 20, 23, 25, 27, 31, 50, 60, 62, 69-72, 75, 76, 100,
103, 106, 112, 120
Portugal
Possjet Bay
post larval stages
postmetamorphic juveniles
postsynaptic AMPA type response
postsynaptic AMPA type response
Potamocorbula amurensis
Potamocorbula amurensis
Potamocorbula amurensis
Potamocorbula amurensis 13, 14 potassium 23, 24, 35, 36, 44, 57, 58, 62, 108, 109 potassium channels 35, 36, 44 potassium channels 35 potassium channels metabolism 35 potassium channels physiology 36, 44 potassium channels physiology 23
Potamocorbula amurensis 13, 14 potassium 23, 24, 35, 36, 44, 57, 58, 62, 108, 109 potassium channels 35, 36, 44 potassium channels 35 potassium channels metabolism 35 potassium channels physiology 36, 44 potassium channels physiology 23 potassium compounds pharmacology 23 potassium ion 35, 36, 57, 108
Potamocorbula amurensis 13, 14 potassium 23, 24, 35, 36, 44, 57, 58, 62, 108, 109 potassium channels 35, 36, 44 potassium channels metabolism 35 potassium channels physiology 36, 44 potassium channels physiology 36, 44 potassium compounds pharmacology 23 potassium ion 35, 36, 57, 108 potassium uptake 58
Potamocorbula amurensis 13, 14 potassium 23, 24, 35, 36, 44, 57, 58, 62, 108, 109 potassium channels 35, 36, 44 potassium channels metabolism 35 potassium channels metabolism 35 potassium channels physiology 36, 44 potassium channels physiology 36, 44 potassium compounds pharmacology 23 potassium ion 35, 36, 57, 108 potassium uptake 58 potential control technique 114
Potamocorbula amurensis13, 14potassium23, 24, 35, 36, 44, 57, 58, 62, 108, 109potassium channels35, 36, 44potassium channels metabolism35potassium channels physiology36, 44potassium compounds pharmacology23potassium ion35, 36, 57, 108potassium uptake58potential control technique114potential pathogens123
Potamocorbula amurensis 13, 14 potassium 23, 24, 35, 36, 44, 57, 58, 62, 108, 109 potassium channels 35, 36, 44 potassium channels metabolism 35 potassium channels physiology 36, 44 potassium compounds pharmacology 23 potassium ion 35, 36, 57, 108 potassium uptake 58 potential control technique 114 potential pathogens 123 powders 121
Potamocorbula amurensis 13, 14 potassium 23, 24, 35, 36, 44, 57, 58, 62, 108, 109 potassium channels 35, 36, 44 potassium channels metabolism 35 potassium channels metabolism 36, 44 potassium channels physiology 36, 44 potassium compounds pharmacology 23 potassium ion 35, 36, 57, 108 potassium uptake 58 potential control technique 114 potential pathogens 123 powders 121 precipitation 17, 56, 95, 104
Potamocorbula amurensis 13, 14 potassium 23, 24, 35, 36, 44, 57, 58, 62, 108, 109 potassium channels 35, 36, 44 potassium channels 35 potassium channels metabolism 35 potassium channels physiology 36, 44 potassium compounds pharmacology 23 potassium ion 35, 36, 57, 108 potential control technique 114 potential pathogens 123 powders 121 precipitation 17, 56, 95, 104 preclinical methods 49
Potamocorbula amurensis 13, 14 potassium 23, 24, 35, 36, 44, 57, 58, 62, 108, 109 potassium channels 35, 36, 44 potassium channels 35 potassium channels metabolism 35 potassium channels physiology 36, 44 potassium compounds pharmacology 23 potassium ion 35, 36, 57, 108 potassium uptake 58 potential control technique 114 potential pathogens 123 powders 121 precipitation 17, 56, 95, 104 preclinical methods 49 predation 17, 72, 73, 77-79, 96, 102, 107
Potamocorbula amurensis 13, 14 potassium 23, 24, 35, 36, 44, 57, 58, 62, 108, 109 potassium channels 35, 36, 44 potassium channels 35 potassium channels metabolism 35 potassium channels metabolism 36, 44 potassium channels physiology 36, 44 potassium compounds pharmacology 23 potassium ion 35, 36, 57, 108 potassium uptake 58 potential control technique 114 potential pathogens 123 powders 121 precipitation 17, 56, 95, 104 predation 17, 72, 73, 77-79, 96, 102, 107 predator avoidance 105
Potamocorbula amurensis 13, 14 potassium 23, 24, 35, 36, 44, 57, 58, 62, 108, 109 potassium channels 35, 36, 44 potassium channels 35 potassium channels metabolism 35 potassium channels physiology 36, 44 potassium channels physiology 36, 44 potassium compounds pharmacology 23 potassium ion 35, 36, 57, 108 potassium uptake 58 potential control technique 114 potential pathogens 123 powders 121 precipitation 17, 56, 95, 104 predation 17, 72, 73, 77-79, 96, 102, 107 predator avoidance 105 predator induced defense 52
Potamocorbula amurensis 13, 14 potassium 23, 24, 35, 36, 44, 57, 58, 62, 108, 109 potassium channels 35, 36, 44 potassium channels metabolism 35 potassium channels physiology 36, 44 potassium compounds pharmacology 23 potassium ion 35, 36, 57, 108 potassium uptake 58 potential control technique 114 potential pathogens 121 precipitation 17, 56, 95, 104 preclinical methods 49 predator avoidance 105 predator prey interactions 119
Potamocorbula amurensis 13, 14 potassium 23, 24, 35, 36, 44, 57, 58, 62, 108, 109 potassium channels 35, 36, 44 potassium channels metabolism 35 potassium channels physiology 36, 44 potassium compounds pharmacology 23 potassium ion 35, 36, 57, 108 potassium uptake 58 potential control technique 114 potential pathogens 121 precipitation 17, 56, 95, 104 preclinical methods 49 predator avoidance 105 predator prey interactions 119 predator prey relations 17
Potamocorbula amurensis 13, 14 potassium 23, 24, 35, 36, 44, 57, 58, 62, 108, 109 potassium channels 35, 36, 44 potassium channels metabolism 35 potassium channels physiology 36, 44 potassium compounds pharmacology 23 potassium ion 35, 36, 57, 108 potassium uptake 58 potential control technique 114 potential pathogens 123 powders 121 precipitation 17, 56, 95, 104 preclinical methods 49 predator avoidance 52 predator induced defense 52 predator prey interactions 119 predators 17, 41, 52, 58, 72, 73, 77, 105, 119
Potamocorbula amurensis 13, 14 potassium 23, 24, 35, 36, 44, 57, 58, 62, 108, 109 potassium channels 35, 36, 44 potassium channels metabolism 35 potassium channels physiology 36, 44 potassium compounds pharmacology 23 potassium ion 35, 36, 57, 108 potassium uptake 58 potential control technique 114 potential pathogens 121 precipitation 17, 56, 95, 104 preclinical methods 49 predator avoidance 105 predator prey interactions 119 predator prey relations 17
Potamocorbula amurensis 13, 14 potassium 23, 24, 35, 36, 44, 57, 58, 62, 108, 109 potassium channels 35, 36, 44 potassium channels metabolism 35 potassium channels metabolism 35 potassium channels physiology 36, 44 potassium compounds pharmacology 23 potassium ion 35, 36, 57, 108 potassium uptake 58 potential control technique 114 potential pathogens 123 powders 121 precipitation 17, 56, 95, 104 preclinical methods 49 predator avoidance 105 predator prey interactions 119 predator prey relations 17 17 72, 73, 77, 70, 96, 102, 107 predator prey interactions 119 predator prey interactions 119 predator prey relations 17 predators 17, 41, 52, 58, 72, 73, 77, 105, 119 predatory behavior 41
Potamocorbula amurensis 13, 14 potassium 23, 24, 35, 36, 44, 57, 58, 62, 108, 109 potassium channels 35, 36, 44 potassium channels metabolism 35 potassium channels metabolism 35 potassium channels physiology 36, 44 potassium compounds pharmacology 23 potassium ion 35, 36, 57, 108 potassium uptake 58 potential control technique 114 potential pathogens 123 powders 121 precipitation 17, 56, 95, 104 preclinical methods 49 predator avoidance 105 predator prey interactions 119 predator prey relations 17 predator prey relations 17 predator behavior 17 predatory behavior 41 prediction 73, 99, 119
Potamocorbula amurensis 13, 14 potassium 23, 24, 35, 36, 44, 57, 58, 62, 108, 109 potassium channels 35, 36, 44 potassium channels metabolism 35 potassium channels metabolism 35 potassium channels physiology 36, 44 potassium compounds pharmacology 23 potassium ion 35, 36, 57, 108 potassium uptake 58 potential control technique 114 potential pathogens 123 powders 121 precipitation 17, 56, 95, 104 preclinical methods 49 predator avoidance 105 predator prey interactions 119 predator prey relations 17 predator prey relations 17 predator behavior 41 prediction 73, 99, 119 prediction 73, 99, 119 preferential uptake 58

presynaptic facilitation
presynaptic inhibition
presynaptic terminals chemistry
presynaptic terminals physiology
prevention and control
prey 17, 30, 39, 55, 58, 107, 119
prey conditions & handling cost 119
prey preference
prey searching cost/ size/ species
prey selection
prey-type selection
pre-synaptic facilitation
primary cultures
Primates
prion viral bacterial and fungal pathogens of animals 78
Probiotic bacteria
probiotics
production
5, 15, 17, 19, 20, 24-26, 38, 46, 48, 49, 51, 53, 55, 59,
61, 69, 74, 79, 86, 89, 90, 94, 98, 99, 102, 104,
109-112, 114, 117-119, 121, 123
production data & location
production economics
production responses
proliferation
prophenoloxidase system7
propranolol pharmacology & toxicity
Prorocentrum
prosobranch snails
Prosobranchia: Pleuroceridae
prostaglandins
protection
protective effects
protein
48, 51, 52, 59, 61, 62, 64, 65, 103, 109, 111, 112, 114
protein content
protein expression signatures
protein kinases metabolism
protein metabolism
protein phosphorylation
protein phosphorylation
protein sources
protein structure
protein synthesis
proteins
9-14, 18, 23, 31-33, 36, 46, 49, 52, 57, 64, 65, 109
proteins biosynthesis
proteins chemistry 10, 11, 31, 33, 57
proteins drug effects
proteins genetics
proteins metabolism 10, 33, 49, 65
proteins physiology
Protozoa
Protozoa immunology
protozoal infections
protozoans
proximate composition

Pseudanodonta complanata
psychomotor performance
Pteria sterna, Gould
Pulmonata: Gastropoda 52
pulmonates
purification
4, 7, 10, 13, 16, 18-22, 31, 33, 79, 92, 94, 95, 98, 102,
104, 121
putative vitellogenins
Pyrrophyta
Quagga (D. bugensis)
Quantitative reverse transcription polymerase chain
reaction
quantitative trait
Quebec
queen conch Strombus gigas 112
queen scallop
rabbits
radiation
radiation effects
radiologic method
radiology (medical sciences)
Rana esculenta
random amplified polymorphic DNA technique9
randomly amplified polymorphic DNA 52
rat brain
rat spinal cord
rates
5, 12, 20, 31, 38, 39, 52-54, 58, 72, 73, 75-77, 83, 84,
86, 92, 93, 95, 96, 98, 103, 108, 109, 111, 112, 114, 116
rations
ratios
rats
reaction norm
reactive oxygen intermediate production
reactive oxygen species 15, 18, 19, 26
reactive oxygen species metabolism 15, 19, 26
rearing
5, 6, 30, 32, 34, 37, 39, 40, 55, 63, 67, 69, 70, 72, 77,
79-81, 87, 88, 96, 101, 105, 109-112, 114, 119, 120,
122
rearing conditions 112, 119
rearing environment
rearing systems 120
rearing techniques
5, 6, 30, 69, 70, 72, 79, 81, 105, 109-112, 122
receptor transcripts 15
receptors 27, 43, 46, 62, 96
receptors aryl hydrocarbon drug effects 96
recirculating culture system design 79
recombinant proteins analysis 32
recombinant proteins chemistry 11
recovery
recovery of hepatitis A virus 4
red abalone Haliotis rufescens 109, 110, 113
red abalone Haliotis rufescens postlarvae 110
red-lipped conch, Strombus luhuanus L. 1758 114
reference values 4
region 3, 20, 21, 30, 34, 43, 74, 79, 80, 106, 120

regulation	
regulation glucose	
renewable energy 22	
renewable resources	
Reoviridae	
Reoviridae animal host only	
Reoviridae isolation and purification	
repair	
repetitive sequences 10, 33	
repopulation	
reproducibility of results 19, 50, 92	
reproduction	
11, 13, 18, 21, 25, 34, 37, 38, 40, 49, 55-57, 59, 61, 63,	
69, 74, 78, 86, 90, 105, 113, 114, 116, 119, 122	
reproduction drug effects	
reproduction physiology	
reproductive behavior	
reproductive behaviour	
reproductive biology 57, 74	
reproductive cycling 1	
reproductive modes	
reproductive performance	
reproductive physiology	
reproductive process	
reproductive success	
reproductive system 18, 21, 34, 55-57, 66, 96, 105, 106	
reptile culture	
*	
research	
1, 6, 8, 15, 20-24, 27-31, 34, 38-40, 42, 51, 58, 61-63,	
66, 67, 74, 76, 78, 79, 82, 83, 90, 92, 93, 96, 97, 99,	
100, 102, 104, 108-110, 112, 114, 115, 117-123	
research institutes 110	
resistance 11, 22, 27, 44, 48, 56, 63, 102, 119	
10010tunee 11111, 22, 21, 10, 10, 00, 00, 00, 00, 00, 00, 00, 0	
resistance to injurious factors	
resistance to injurious factors 22, 27	
resistance to injurious factors	
resistance to injurious factors 22, 27 resource management 108, 120 respiration 7, 20, 32, 119	
resistance to injurious factors 22, 27 resource management 108, 120 respiration 7, 20, 32, 119 respiration rate 119	
resistance to injurious factors22, 27resource management108, 120respiration7, 20, 32, 119respiration rate119respiratory metabolism7	
resistance to injurious factors22, 27resource management108, 120respiration7, 20, 32, 119respiration rate119respiratory metabolism7respiratory physiology58	
resistance to injurious factors22, 27resource management108, 120respiration7, 20, 32, 119respiration rate119respiratory metabolism7respiratory physiology58respirometry108	
resistance to injurious factors22, 27resource management108, 120respiration7, 20, 32, 119respiration rate119respiratory metabolism7respiratory physiology58respirometry108responses108	
resistance to injurious factors 22, 27 resource management 108, 120 respiration 7, 20, 32, 119 respiration rate 119 respiratory metabolism 7 respiratory physiology 58 respirometry 108 1-3, 8, 12, 15, 23, 25, 26, 46, 47, 51, 54, 58, 61, 64, 77,	
resistance to injurious factors 22, 27 resource management 108, 120 respiration 7, 20, 32, 119 respiration rate 119 respiratory metabolism 7 respiratory physiology 58 respirometry 108 1-3, 8, 12, 15, 23, 25, 26, 46, 47, 51, 54, 58, 61, 64, 77, 85, 94, 103	
resistance to injurious factors 22, 27 resource management 108, 120 respiration 7, 20, 32, 119 respiration rate 119 respiratory metabolism 7 respiratory physiology 58 respirometry 108 1-3, 8, 12, 15, 23, 25, 26, 46, 47, 51, 54, 58, 61, 64, 77, 85, 94, 103 responses of oysters and their hemocytes 8	
resistance to injurious factors 22, 27 resource management 108, 120 respiration 7, 20, 32, 119 respiration rate 119 respiratory metabolism 7 respiratory physiology 58 respiratory physiology 108 responses 108 1-3, 8, 12, 15, 23, 25, 26, 46, 47, 51, 54, 58, 61, 64, 77, 85, 94, 103 responses of oysters and their hemocytes 8 retention 8, 32, 73, 82	
resistance to injurious factors 22, 27 resource management 108, 120 respiration 7, 20, 32, 119 respiration rate 119 respiratory metabolism 7 respiratory physiology 58 respirometry 108 1-3, 8, 12, 15, 23, 25, 26, 46, 47, 51, 54, 58, 61, 64, 77, 85, 94, 103 responses of oysters and their hemocytes 8	
resistance to injurious factors 22, 27 resource management 108, 120 respiration 7, 20, 32, 119 respiration rate 119 respiratory metabolism 7 respiratory physiology 58 respiratory physiology 108 responses 108 1-3, 8, 12, 15, 23, 25, 26, 46, 47, 51, 54, 58, 61, 64, 77, 85, 94, 103 responses of oysters and their hemocytes 8 retention 8, 32, 73, 82	
resistance to injurious factors 22, 27 resource management 108, 120 respiration 7, 20, 32, 119 respiration rate 119 respiratory metabolism 7 respiratory metabolism 7 respiratory physiology 58 respiratory physiology 108 responses 108 1-3, 8, 12, 15, 23, 25, 26, 46, 47, 51, 54, 58, 61, 64, 77, 85, 94, 103 responses of oysters and their hemocytes 8 retention 8, 32, 73, 82 retina cytology 65	
resistance to injurious factors 22, 27 resource management 108, 120 respiration 7, 20, 32, 119 respiration rate 119 respiratory metabolism 7 respiratory physiology 58 respiratory physiology 58 responses 108 1-3, 8, 12, 15, 23, 25, 26, 46, 47, 51, 54, 58, 61, 64, 77, 85, 94, 103 responses of oysters and their hemocytes 8 retention 8, 32, 73, 82 retina cytology 65 retractor muscle 14 Retroviridae enzymology 20	
resistance to injurious factors 22, 27 resource management 108, 120 respiration 7, 20, 32, 119 respiration rate 119 respiratory metabolism 7 respiratory physiology 58 respiratory physiology 58 responses 108 1-3, 8, 12, 15, 23, 25, 26, 46, 47, 51, 54, 58, 61, 64, 77, 85, 94, 103 responses of oysters and their hemocytes 8 retention 8, 32, 73, 82 retina cytology 65 retractor muscle 14 Retroviridae enzymology 20 Retroviridae isolation and purification 20	
resistance to injurious factors 22, 27 resource management 108, 120 respiration 7, 20, 32, 119 respiration rate 119 respiratory metabolism 7 respiratory metabolism 7 respiratory physiology 58 respiratory physiology 58 responses 108 1-3, 8, 12, 15, 23, 25, 26, 46, 47, 51, 54, 58, 61, 64, 77, 85, 94, 103 responses of oysters and their hemocytes 8 retention 8, 32, 73, 82 retina cytology 65 retractor muscle 14 Retroviridae enzymology 20 Retroviridae isolation and purification 20 reverse transcriptase activity 20	
resistance to injurious factors22, 27resource management108, 120respiration7, 20, 32, 119respiration rate119respiratory metabolism7respiratory metabolism7respiratory physiology58respirometry108responses1081-3, 8, 12, 15, 23, 25, 26, 46, 47, 51, 54, 58, 61, 64, 77, 85, 94, 103responses of oysters and their hemocytes8retention8, 32, 73, 82retina cytology65retractor muscle14Retroviridae enzymology20Retroviridae isolation and purification20reverse transcriptase activity20reverse transcriptase polymerase chain reaction3, 18	
resistance to injurious factors 22, 27 resource management 108, 120 respiration 7, 20, 32, 119 respiration rate 119 respiratory metabolism 7 respiratory metabolism 7 respiratory physiology 58 respiratory physiology 58 responses 108 1-3, 8, 12, 15, 23, 25, 26, 46, 47, 51, 54, 58, 61, 64, 77, 85, 94, 103 responses of oysters and their hemocytes 8 retention 8, 32, 73, 82 retina cytology 65 retractor muscle 14 Retroviridae enzymology 20 Retroviridae isolation and purification 20 reverse transcriptase activity 20 reverse transcriptase polymerase chain reaction 3, 18 reverse transcription-PCR 4, 18, 91, 95, 120	
resistance to injurious factors 22, 27 resource management 108, 120 respiration 7, 20, 32, 119 respiration rate 119 respiratory metabolism 7 respiratory metabolism 7 respiratory metabolism 7 respiratory physiology 58 respiratory physiology 58 responses 108 1-3, 8, 12, 15, 23, 25, 26, 46, 47, 51, 54, 58, 61, 64, 77, 85, 94, 103 responses of oysters and their hemocytes 8 retention 8, 32, 73, 82 retina cytology 65 retractor muscle 14 Retroviridae enzymology 20 Retroviridae isolation and purification 20 reverse transcriptase activity 20 reverse transcriptase polymerase chain reaction 3, 18 reverse transcription-PCR 4, 18, 91, 95, 120 review article 61	
resistance to injurious factors 22, 27 resource management 108, 120 respiration 7, 20, 32, 119 respiration rate 119 respiratory metabolism 7 respiratory physiology 58 respiratory physiology 58 responses 108 responses 108 responses of oysters and their hemocytes 8 retention 8, 32, 73, 82 retina cytology 65 retractor muscle 14 Retroviridae enzymology 20 reverse transcriptase activity 20 reverse transcriptase polymerase chain reaction 3, 18 review article 61 rhabdomyosarco	
resistance to injurious factors22, 27resource management108, 120respiration7, 20, 32, 119respiration rate119respiratory metabolism7respiratory physiology58respiratory physiology58responses108responses108responses of oysters and their hemocytes8retention8, 32, 73, 82retina cytology20Retroviridae enzymology20Retroviridae isolation and purification3, 18reverse transcriptase activity20reverse transcriptase polymerase chain reaction3, 18reverse transcriptase polymerase chain reaction	
resistance to injurious factors22, 27resource management108, 120respiration7, 20, 32, 119respiration rate119respiratory metabolism7respiratory metabolism7respiratory physiology58respiratory physiology58responses108responses108responses108responses of oysters and their hemocytes8retention8, 32, 73, 82retina cytology20Retroviridae enzymology20Retroviridae isolation and purification20reverse transcriptase polymerase chain reaction3, 18reverse transcriptase polymerase chain reaction3, 18reverse transcriptase polymerase chain reaction3, 18reverse transcriptase polymerase chain reaction103Rhode Island103Rhode Island103Rhode Island93, 112	
resistance to injurious factors22, 27resource management108, 120respiration7, 20, 32, 119respiration rate119respiratory metabolism7respiratory physiology58respirometry108responses1-3, 8, 12, 15, 23, 25, 26, 46, 47, 51, 54, 58, 61, 64, 77, 85, 94, 103responses of oysters and their hemocytes8retention8, 32, 73, 82retina cytology20Retroviridae enzymology20Retroviridae isolation and purification20reverse transcriptase polymerase chain reaction3, 18reverse transcription-PCR4, 18, 91, 95, 120review article61rhabdomyosarcoma18Rhode Island103Rhodomonas93, 112Rhodophyta50, 52, 109, 111	
resistance to injurious factors22, 27resource management108, 120respiration7, 20, 32, 119respiration rate119respiratory metabolism7respiratory metabolism7respiratory physiology58respiratory physiology58responses108responses108responses108responses of oysters and their hemocytes8retention8, 32, 73, 82retina cytology20Retroviridae enzymology20Retroviridae isolation and purification20reverse transcriptase polymerase chain reaction3, 18reverse transcriptase polymerase chain reaction3, 18reverse transcriptase polymerase chain reaction3, 18reverse transcriptase polymerase chain reaction103Rhode Island103Rhode Island103Rhode Island93, 112	

riboflavin
ribosomal
ribosomal RNA
risk assessment
risk factors
rivers
RNA 3, 4, 7, 17, 18, 20, 59, 64, 75, 92, 95
RNA directed DNA polymerase 20, 95
RNA messenger analysis
Roseobacter group7
Rotavirus10
rRNA7
Rubidium
ruditapes 17, 27, 87, 119
Ruditapes decussates
Ruditapes decussatus (L.)
Ruditapes philippinarum
Russia
Ryukyu Archipelago 114
S. Officinalis
sabellid worms
Saccostrea echinata (Quoy and Gaimard)
Saldanha Bay [South Africa]
saline water
salinities
salinity
8, 13, 14, 21, 28, 30, 49, 63, 74, 76, 80, 81, 85, 86, 88,
99, 103
salinity and temperature tolerance
salinity stress
salts metabolism
saltwater fishes
sampling
sand
sandy beach molluscs
sanitation
Sao Paulo
scallop (Pecten maximus) haemocytes
scallop Argopecten purpuratus
scallop culture
scallop growout
scallop spat
scallops
5, 11, 17, 18, 20-23, 28-30, 64, 69, 71-76, 78-81, 83-85, 87-91, 97
scanning electron microscopy 58, 101
Scapharca broughtonii (Schrenck)
Scenedesmus
Schistosoma japonicum
Schistosoma mansoni
sea hare
Sea of Japan
Sea of Japan, Russia
sea scallop
sea scallops
sea slug
sea water 17, 25, 28, 78, 84, 87, 91, 99, 114

seafoods 28, 61, 62, 100, 102, 110
searching cost and growth
season
seasonal changes 104
seasonal onset
seasonal variation
1, 21, 52, 70, 72-74, 76, 81, 84-87, 89, 90, 119
seasonality
seasons
seawater
7, 11, 17, 22, 26, 32, 38, 45, 46, 48-50, 77, 82-84, 87,
89, 91, 101, 103, 104, 113, 123
seawater analysis
seawater microbiology 22, 32
seawater virology
seaweed Ulva lactuca L
seaweeds 47, 51, 109, 119
secondary metabolites
secretion
secretory products
sediment 1, 72, 74, 77, 78, 89, 90, 92, 95
sediment conditions
seed clam
seed production
seed production for mariculture
•
seed size
seeded populations
selection pressure
semiochemicals
a amain amagaala la magaalanan a dayiyaaa 96
semipermeable membrane devices
Semisulcospira kurodai
Semisulcospira kurodai
Semisulcospira kurodai
Semisulcospira kurodai55Semisulcospira libertina55sense organs106senses36, 37
Semisulcospira kurodai
Semisulcospira kurodai
Semisulcospira kurodai
Semisulcospira kurodai
Semisulcospira kurodai 55 Semisulcospira libertina 55 sense organs 106 senses 36, 37 sensitivity
Semisulcospira kurodai 55 Semisulcospira libertina 55 sense organs 106 senses 36, 37 sensitivity
Semisulcospira kurodai 55 Semisulcospira libertina 55 sense organs 106 senses 36, 37 sensitivity
Semisulcospira kurodai 55 Semisulcospira libertina 55 sense organs 106 senses 36, 37 sensitivity
Semisulcospira kurodai 55 Semisulcospira libertina 55 sense organs 106 senses 36, 37 sensitivity 36, 37 sensitivity 105, 107 sensitivity and specificity 18, 91, 92, 95 sensitization 43, 46, 58, 59, 62 sensory neuron 44, 59 sensory reception 106 Sepia 30, 32, 39, 107 Sepia officinalis, cuttlefish 32 Sepiella maindroni 31
Semisulcospira kurodai 55 Semisulcospira libertina 55 sense organs 106 senses 36, 37 sensitivity 36, 37 sensitivity 18, 44, 54, 64, 82, 91, 92, 94, 95, 105, 107 sensitivity and specificity 18, 91, 92, 95 sensitization 43, 46, 58, 59, 62 sensory neuron 44, 59 sensory reception 106 Sepia 30, 32, 39, 107 Sepia officinalis, cuttlefish 32 Sepiella maindroni 31 sepiolid squid 33, 34, 105
Semisulcospira kurodai 55 Semisulcospira libertina 55 sense organs 106 senses 36, 37 sensitivity 36, 37 sensitivity 105, 107 sensitivity and specificity 18, 91, 92, 95 sensitization 43, 46, 58, 59, 62 sensory neuron 44, 59 sensory reception 106 Sepia 30, 32, 39, 107 Sepia officinalis, cuttlefish 32 Sepiella maindroni 31 sepiolid squid 33, 34, 105 Sepiolid squid-vibrio symbioses 33
Semisulcospira kurodai 55 Semisulcospira libertina 55 sense organs 106 senses 36, 37 sensitivity 36, 37 sensitivity 18, 44, 54, 64, 82, 91, 92, 94, 95, 105, 107 sensitivity and specificity 18, 91, 92, 95 sensitization 43, 46, 58, 59, 62 sensory neuron 44, 59 sensory reception 106 Sepia 30, 32, 39, 107 Sepia officinalis, cuttlefish 32 Sepiella maindroni 31 sepiolid squid 33, 34, 105
Semisulcospira kurodai 55 Semisulcospira libertina 55 sense organs 106 senses 36, 37 sensitivity 36, 37 sensitivity 105, 107 sensitivity and specificity 18, 91, 92, 95 sensitization 43, 46, 58, 59, 62 sensory neuron 44, 59 sensory reception 106 Sepia 30, 32, 39, 107 Sepia officinalis, cuttlefish 32 Sepiella maindroni 31 sepiolid squid 33, 34, 105 Sepiolid squid-vibrio symbioses 33
Semisulcospira kurodai 55 Semisulcospira libertina 55 sense organs 106 senses 36, 37 sensitivity
Semisulcospira kurodai 55 Semisulcospira libertina 55 sense organs 106 senses 36, 37 sensitivity
Semisulcospira kurodai 55 Semisulcospira libertina 55 sense organs 106 senses 36, 37 sensitivity
Semisulcospira kurodai 55 Semisulcospira libertina 55 sense organs 106 senses 36, 37 sensitivity
Semisulcospira kurodai 55 Semisulcospira libertina 55 sense organs 106 senses 36, 37 sensitivity 36, 37 sensitivity 36, 37 sensitivity 106 senses 36, 37 sensitivity 36, 37 sensitivity 107 sensitivity and specificity 18, 91, 92, 95 sensitization 43, 46, 58, 59, 62 sensory neuron 44, 59 sensory neuron 44, 59 sensory reception 106 Sepia 30, 32, 39, 107 Sepia officinalis, cuttlefish 32 Sepiella maindroni 31 sepiolid squid 33, 34, 105 Sepiolid squid-vibrio symbioses 33 Sepiolid squid-vibrio symbioses 33 sequence 33 3, 6, 7, 9-11, 15, 29, 31, 34, 43, 45, 50, 57, 92, 95, 121 sequence alignment 11, 121 sequence analysis 7, 31, 34, 121 sequence homology 10, 43, 45, 57
Semisulcospira kurodai 55 Semisulcospira libertina 55 sense organs 106 senses 36, 37 sensitivity 36, 37 sensitivity 106 6, 18, 44, 54, 64, 82, 91, 92, 94, 95, 105, 107 sensitivity and specificity 18, 91, 92, 95 sensitivity and specificity 18, 91, 92, 95 sensory reception 43, 46, 58, 59, 62 sensory neuron 44, 59 sensory reception 106 Sepia 30, 32, 39, 107 Sepia officinalis, cuttlefish 32 Sepial a maindroni 31 sepiolid squid 33, 34, 105 Sepiolid squid-vibrio symbioses 33 Sepioteuthis lessoniana 33, 36-38 sequence 33 3, 6, 7, 9-11, 15, 29, 31, 34, 43, 45, 50, 57, 92, 95, 121 sequence alignment 11, 121 sequence analysis 7, 31, 34, 121 sequence homology 10, 43, 45, 57 serotonin 11, 26, 41-44, 54, 57, 58, 62
Semisulcospira kurodai55Semisulcospira libertina55sense organs106senses36, 37sensitivity
Semisulcospira kurodai55Semisulcospira libertina55sense organs106senses36, 37sensitivity $6, 18, 44, 54, 64, 82, 91, 92, 94, 95, 105, 107$ sensitivity and specificity18, 91, 92, 95sensitization43, 46, 58, 59, 62sensory neuron44, 59sensory reception106Sepia30, 32, 39, 107Sepia officinalis, cuttlefish32Sepiella maindroni31sepiolid squid33, 34, 105Sepiolid squid33, 36-38sequence $3, 6, 7, 9-11, 15, 29, 31, 34, 43, 45, 50, 57, 92, 95, 121$ sequence analysis7, 31, 34, 121sequence homology10, 43, 45, 57serotonin antagonists & metabolism42serotonin pharmacology43, 54, 62
Semisulcospira kurodai55Semisulcospira libertina55sense organs106senses36, 37sensitivity $6, 18, 44, 54, 64, 82, 91, 92, 94, 95, 105, 107$ sensitivity and specificity18, 91, 92, 95sensitization43, 46, 58, 59, 62sensory neuron44, 59sensory reception106Sepia30, 32, 39, 107Sepia officinalis, cuttlefish32Sepiella maindroni31sepiolid squid33, 34, 105Sepiolid squid-vibrio symbioses33Sepioteuthis lessoniana33, 36-38sequence $3, 6, 7, 9-11, 15, 29, 31, 34, 43, 45, 50, 57, 92, 95, 121$ sequence analysis7, 31, 34, 121sequence homology10, 43, 45, 57serotonin11, 26, 41-44, 54, 57, 58, 62serotonin pharmacology43, 54, 62serotonin pharmacology43, 54, 62serotonin receptor41, 62
Semisulcospira kurodai55Semisulcospira libertina55sense organs106senses36, 37sensitivity $6, 18, 44, 54, 64, 82, 91, 92, 94, 95, 105, 107$ sensitivity and specificity18, 91, 92, 95sensitization43, 46, 58, 59, 62sensory neuron44, 59sensory reception106Sepia30, 32, 39, 107Sepia officinalis, cuttlefish32Sepiella maindroni31sepiolid squid33, 34, 105Sepiolid squid-vibrio symbioses33Sepioteuthis lessoniana33, 36-38sequence $3, 6, 7, 9-11, 15, 29, 31, 34, 43, 45, 50, 57, 92, 95, 121$ sequence analysis7, 31, 34, 121sequence analysis7, 31, 34, 121sequence homology10, 43, 45, 57serotonin antagonists & metabolism42serotonin pharmacology43, 54, 62serotonin receptor41, 62seston concentration
Semisulcospira kurodai55Semisulcospira libertina55sense organs106senses36, 37sensitivity
Semisulcospira kurodai55Semisulcospira libertina55sense organs106senses36, 37sensitivity $6, 18, 44, 54, 64, 82, 91, 92, 94, 95, 105, 107$ sensitivity and specificity18, 91, 92, 95sensitization43, 46, 58, 59, 62sensory neuron44, 59sensory reception106Sepia30, 32, 39, 107Sepia officinalis, cuttlefish32Sepiella maindroni31sepiolid squid33, 34, 105Sepiolid squid-vibrio symbioses33Sepioteuthis lessoniana33, 36-38sequence $3, 6, 7, 9-11, 15, 29, 31, 34, 43, 45, 50, 57, 92, 95, 121$ sequence analysis7, 31, 34, 121sequence analysis7, 31, 34, 121sequence homology10, 43, 45, 57serotonin antagonists & metabolism42serotonin pharmacology43, 54, 62serotonin receptor41, 62seston concentration

sex ratio
sexual development
sexual maturity
sexual reproduction
37, 49, 55, 57, 59, 69, 74, 78, 86, 90, 113, 114
shallow-water populations
shelf life
shell irregularities 42
shell lesions
shell movement of mussels 29
shellfish
1, 4, 6, 8, 10, 13, 15-23, 26, 28, 31, 51, 61, 62, 69, 74,
76, 78, 80, 82, 83, 87, 91-100, 102, 104, 107, 108, 114,
115, 118, 120-122
shellfish analysis 17
shellfish culture
69, 99, 100, 102, 114, 115, 118, 121, 122
shellfish culture Congresses 102
shellfish culture Pacific area
shellfish culture Technological innovations Congress#22
shellfish culture Thailand 99
shellfish feeding
shellfish fisheries research Thailand
shellfish microbiology 19, 22, 95, 104
shellfish tissues
shellfish virology 10, 13, 18, 22, 92, 121
shells
6, 9, 10, 18, 20, 25, 28, 29, 41-43, 45, 49, 55, 59, 69,
74, 76, 77, 79, 81, 83, 84, 86-88, 91, 94, 100-102, 111
short and long-term culture 40
short and long-term culture
short neck clam
short neck clam 119
short neck clam
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61shrimp culture81, 118
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61shrimp culture81, 118shrimp genetics60
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61shrimp culture81, 118shrimp genetics60shrimp metabolism67
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61shrimp culture81, 118shrimp genetics60shrimp metabolism67Sicily78
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61shrimp culture81, 118shrimp genetics60shrimp metabolism67Sicily78signal transduction16, 46, 51, 65
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61shrimp culture81, 118shrimp genetics60shrimp metabolism67Sicily78signal transduction16, 46, 51, 65signal transduction drug effects46, 65
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61shrimp culture81, 118shrimp genetics60shrimp metabolism67Sicily78signal transduction16, 46, 51, 65signal transduction drug effects46, 65signal transduction physiology46
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61shrimp culture81, 118shrimp genetics60shrimp metabolism67Sicily78signal transduction16, 46, 51, 65signal transduction drug effects46, 65siliqua genus24
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61shrimp culture81, 118shrimp genetics60shrimp metabolism67Sicily78signal transduction16, 46, 51, 65signal transduction drug effects46, 65siliqua genus24Siliqua patula24
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61shrimp culture81, 118shrimp genetics60shrimp metabolism67Sicily78signal transduction drug effects46, 51, 65signal transduction physiology46Siliqua genus24Siliqua patula24silt102, 111
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61shrimp culture81, 118shrimp genetics60shrimp metabolism67Sicily78signal transduction16, 46, 51, 65signal transduction physiology46Siliqua genus24Siliqua patula24silt102, 111single stranded drug effects2
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61shrimp culture81, 118shrimp genetics60shrimp metabolism67Sicily78signal transduction16, 46, 51, 65signal transduction drug effects46, 65siliqua genus24Siliqua patula24silt102, 111single stranded drug effects2single-channel properties56
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61shrimp culture81, 118shrimp genetics60shrimp metabolism67Sicily78signal transduction16, 46, 51, 65signal transduction drug effects46, 65signal transduction physiology46Siliqua patula24silt102, 111single stranded drug effects2signel-channel properties56siphon-cropping fishes95
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61shrimp culture81, 118shrimp genetics60shrimp metabolism67Sicily78signal transduction16, 46, 51, 65signal transduction drug effects46, 65siliqua genus24Siliqua patula24silt102, 111single stranded drug effects56siphon-cropping fishes95Siphonaria spp.52
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61shrimp culture81, 118shrimp genetics60shrimp metabolism67Sicily78signal transduction16, 46, 51, 65signal transduction drug effects46, 65signal transduction physiology46Siliqua genus24Siliqua patula24sigle-channel properties56siphon-cropping fishes95Siphonaria spp.52siphon-withdrawal reflex58, 59
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61shrimp culture81, 118shrimp genetics60shrimp metabolism67Sicily78signal transduction drug effects46, 51, 65signal transduction physiology46Siliqua genus24Siliqua patula24silt102, 111single stranded drug effects56siphon-cropping fishes95Siphonaria spp.52site7, 21, 35, 50, 71, 83, 85, 86, 89
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61shrimp culture81, 118shrimp genetics60shrimp metabolism67Sicily78signal transduction drug effects46, 51, 65signal transduction physiology46Siliqua genus24Siliqua patula24signel-channel properties56siphon-cropping fishes95Siphonaria spp.52site7, 21, 35, 50, 71, 83, 85, 86, 89site factors86
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61shrimp culture81, 118shrimp genetics60shrimp metabolism67Sicily78signal transduction16, 46, 51, 65signal transduction drug effects46, 65signal transduction physiology46Siliqua genus24Siliqua patula24sigle-channel properties56siphon-cropping fishes95Siphonaria spp.52site7, 21, 35, 50, 71, 83, 85, 86, 89site selection71, 89
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61shrimp culture81, 118shrimp genetics60shrimp metabolism67Sicily78signal transduction16, 46, 51, 65signal transduction drug effects46, 65signal transduction physiology46Siliqua genus24Siliqua patula24signel-channel properties56siphon-cropping fishes95Siphonaria spp.52site7, 21, 35, 50, 71, 83, 85, 86, 89site factors86site selection71, 89size71, 89
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61shrimp culture81, 118shrimp genetics60shrimp metabolism67Sicily78signal transduction16, 46, 51, 65signal transduction drug effects46, 65signal transduction physiology46Siliqua genus24Siliqua patula24signel-channel properties56siphon-cropping fishes95Siphonaria spp.52site7, 21, 35, 50, 71, 83, 85, 86, 89site selection71, 89size71, 89size71, 89size71, 89size71, 89size71, 89size71, 89size72, 73, 76-79, 81,
short neck clam119short-finned squid107, 108short-necked clam104short-term dynamics75short-finned squid108short-term culture61shrimp culture81, 118shrimp genetics60shrimp metabolism67Sicily78signal transduction16, 46, 51, 65signal transduction drug effects46, 65signal transduction physiology46Siliqua genus24Siliqua patula24signel-channel properties56siphon-cropping fishes95Siphonaria spp.52site7, 21, 35, 50, 71, 83, 85, 86, 89site factors86site selection71, 89size71, 89

skeletal system
slugs
small circular and closed-system
small farms
small juvenile
small round-structured viruses
small-scale commercial culture
smooth muscle cells
snail 12, 42, 45-49, 51-57, 59-63, 108, 113-117
snail cell culture
snail culture
snail development
snail intermediate host
snail like molluscs
snail subspecies (Helix) 114
snails
12, 41, 42, 45-51, 53, 54, 57, 59, 108, 109, 111, 113,
115-117
snails anatomy and histology 41, 50
snails cytology
snails drug effects
snails enzymology & genetics
snails metabolism
snails parasitology
snails physiology
snails growth and development
social behavior
social behavior
sodium chloride
sodium chloride administration and dosage
sodium chloride toxicity 13
soft shell clams 20
soft shell clams 20 soft tissue 25, 49, 79
soft shell clams 20 soft tissue 25, 49, 79 soft tissues 3
soft shell clams20soft tissue25, 49, 79soft tissues3soft-bottom sediments70
soft shell clams20soft tissue25, 49, 79soft tissues3soft-bottom sediments70softshell clam3, 9
soft shell clams20soft tissue25, 49, 79soft tissues3soft-bottom sediments70softshell clam3, 9soil pollutants toxicity54
soft shell clams20soft tissue25, 49, 79soft tissues3soft-bottom sediments70softshell clam3, 9soil pollutants toxicity54soil science92
soft shell clams20soft tissue25, 49, 79soft tissues3soft-bottom sediments70softshell clam3, 9
soft shell clams20soft tissue25, 49, 79soft tissues3soft-bottom sediments70softshell clam3, 9soil pollutants toxicity54soil science92
soft shell clams20soft tissue25, 49, 79soft tissues3soft-bottom sediments70softshell clam3, 9soil pollutants toxicity54soil science92Solomon Islands77, 78, 83solubility82solvents4
soft shell clams20soft tissue25, 49, 79soft tissues3soft-bottom sediments70softshell clam3, 9soil pollutants toxicity54soil science92Solomon Islands77, 78, 83solubility82solvents4
soft shell clams 20 soft tissue 25, 49, 79 soft tissues 3 soft-bottom sediments 70 softshell clam 3, 9 soil pollutants toxicity 54 soil science 92 Solomon Islands 77, 78, 83 solubility 82 solvents 4 sources 22, 40, 41, 70, 71, 93, 112, 123
soft shell clams 20 soft tissue 25, 49, 79 soft tissues 3 soft-bottom sediments 70 softshell clam 3, 9 soil pollutants toxicity 54 soil science 92 Solomon Islands 77, 78, 83 solubility 82 solvents 4 sources 22, 40, 41, 70, 71, 93, 112, 123 South Africa 78, 110
soft shell clams 20 soft tissue 25, 49, 79 soft tissues 3 soft-bottom sediments 70 softshell clam 3, 9 soil pollutants toxicity 54 soil science 92 Solomon Islands 77, 78, 83 solubility 82 solvents 4 sources 22, 40, 41, 70, 71, 93, 112, 123 South Africa 78, 110 South Africa abalone culture 110
soft shell clams20soft tissue25, 49, 79soft tissues3soft-bottom sediments70softshell clam3, 9soil pollutants toxicity54soil science92Solomon Islands77, 78, 83solubility82solvents4sources22, 40, 41, 70, 71, 93, 112, 123South Africa78, 110South American apple-snail49
soft shell clams20soft tissue25, 49, 79soft tissues3soft-bottom sediments70softshell clam3, 9soil pollutants toxicity54soil science92Solomon Islands77, 78, 83solubility82solvents4sources22, 40, 41, 70, 71, 93, 112, 123South Africa78, 110South Africa abalone culture110South American apple-snail49South East Asia57
soft shell clams20soft tissue25, 49, 79soft tissues3soft-bottom sediments70softshell clam3, 9soil pollutants toxicity54soil science92Solomon Islands77, 78, 83solubility82solvents4sources22, 40, 41, 70, 71, 93, 112, 123South Africa78, 110South African abalone culture110South American apple-snail49South East Asia57South Eastern states USA98, 117
soft shell clams20soft tissue25, 49, 79soft tissues3soft-bottom sediments70softshell clam3, 9soil pollutants toxicity54soil science92Solomon Islands77, 78, 83solubility82solvents4sources22, 40, 41, 70, 71, 93, 112, 123South Africa78, 110South African abalone culture110South American apple-snail49South East Asia57South Portugal30
soft shell clams20soft tissue25, 49, 79soft tissues3soft-bottom sediments70softshell clam3, 9soil pollutants toxicity54soil science92Solomon Islands77, 78, 83solubility82solvents4sources22, 40, 41, 70, 71, 93, 112, 123South Africa78, 110South Africa abalone culture110South East Asia57South East Asia57South Portugal30Southeast Asia80, 99
soft shell clams20soft tissue25, 49, 79soft tissues3soft-bottom sediments70softshell clam3, 9soil pollutants toxicity54soil science92Solomon Islands77, 78, 83solubility82solvents4sources22, 40, 41, 70, 71, 93, 112, 123South Africa78, 110South Africa abalone culture110South East Asia57South Eastern states USA98, 117South Portugal30Southeast Asia80, 99southern bay scallop91
soft shell clams20soft tissue25, 49, 79soft tissues3soft-bottom sediments70softshell clam3, 9soil pollutants toxicity54soil science92Solomon Islands77, 78, 83solubility82solvents4sources22, 40, 41, 70, 71, 93, 112, 123South Africa78, 110South Africa abalone culture110South East Asia57South East Asia57South Portugal30Southeast Asia80, 99southern bay scallop91Southern Chile73, 76
soft shell clams20soft tissue25, 49, 79soft tissues3soft-bottom sediments70softshell clam3, 9soil pollutants toxicity54soil science92Solomon Islands77, 78, 83solubility82solvents4sources22, 40, 41, 70, 71, 93, 112, 123South Africa78, 110South Africa abalone culture110South East Asia57South Eastern states USA98, 117South Portugal30Southeast Asia80, 99southern Chile73, 76Southern Florida117
soft shell clams20soft tissue25, 49, 79soft tissues3soft-bottom sediments70softshell clam3, 9soil pollutants toxicity54soil science92Solomon Islands77, 78, 83solubility82solvents4sources22, 40, 41, 70, 71, 93, 112, 123South Africa78, 110South Africa abalone culture110South East Asia57South Eastern states USA98, 117Southeast Asia80, 99southern bay scallop91Southern Florida117Southern Sahara78
soft shell clams20soft tissue25, 49, 79soft tissues3soft-bottom sediments70softshell clam3, 9soil pollutants toxicity54soil science92Solomon Islands77, 78, 83solubility82solvents4sources22, 40, 41, 70, 71, 93, 112, 123South Africa78, 110South Africa abalone culture110South East Asia57South Eastern states USA98, 117Southeast Asia80, 99southern States91Southern Chile73, 76Southern Florida117Southern Sahara78space requirements63
soft shell clams20soft tissue25, 49, 79soft tissues3soft-bottom sediments70softshell clam3, 9soil pollutants toxicity54soil science92Solomon Islands77, 78, 83solubility82solvents4sources22, 40, 41, 70, 71, 93, 112, 123South Africa78, 110South Africa abalone culture110South East Asia57South Eastern states USA98, 117Southeast Asia80, 99southern Chile73, 76Southern Florida117Southern Sahara78space requirements63Spain4, 65, 71, 72, 75, 81, 106, 120
soft shell clams20soft tissue25, 49, 79soft tissues3soft-bottom sediments70softshell clam3, 9soil pollutants toxicity54soil science92Solomon Islands77, 78, 83solubility82solvents4sources22, 40, 41, 70, 71, 93, 112, 123South Africa78, 110South Africa abalone culture110South East Asia57South Eastern states USA98, 117Southeast Asia80, 99southern Chile73, 76Southern Florida117Southern Sahara78space requirements63Spain4, 65, 71, 72, 75, 81, 106, 120Sparus110, 120
soft shell clams 20 soft tissue 25, 49, 79 soft tissues 3 soft-bottom sediments 70 softshell clam 3, 9 soil pollutants toxicity 54 soil science 92 Solomon Islands 77, 78, 83 solubility 82 solvents 4 sources 22, 40, 41, 70, 71, 93, 112, 123 South Africa 78, 110 South Africa abalone culture 110 South American apple-snail 49 South East Asia 57 South East Asia 57 South East Asia 98, 117 South Portugal 30 Southeast Asia 80, 99 southern Chile 73, 76 Southern Florida 117 Southern Sahara 78 space requirements 63 Spain 4, 65, 71, 72, 75, 81, 106, 120 Sparus 110, 120 spat 70, 72, 74, 81, 83, 84, 86, 88, 92, 96, 102
soft shell clams20soft tissue25, 49, 79soft tissues3soft-bottom sediments70softshell clam3, 9soil pollutants toxicity54soil science92Solomon Islands77, 78, 83solubility82solvents4sources22, 40, 41, 70, 71, 93, 112, 123South Africa78, 110South Africa abalone culture110South East Asia57South Eastern states USA98, 117Southeast Asia80, 99southern Chile73, 76Southern Florida117Southern Sahara78space requirements63Spain4, 65, 71, 72, 75, 81, 106, 120Sparus110, 120

spatial and temporal variations 107 spawning 11, 21, 37, 38, 46, 47, 61, 69, 72, 86, 88, 89, 91, 105, 112, 114 species 3, 4, 7, 8, 10-12, 15, 16, 18, 19, 21, 25, 26, 34, 38, 40-42, 45-47, 51-54, 60-63, 65, 67, 69, 71, 73-81, 83-86, 88-90, 93, 96, 98-100, 102, 103, 108-113, 117-120 species specificity 12, 16, 34, 51, 54, 67 spectrophotometry 16, 50 Spisula solidissima 21, 89 sporozoa 15, 22, 26, 76 spotted babylon Babylonia areolata (Link 1807) ... 111 squids composition 106 squids preservation 106 Stappia stellulata-like strains7

stimulate	6
stocking density	
30, 59, 69, 70, 72, 74, 76, 77, 79, 81, 109, 111	-
storage life	z
strain differences	5
strains	
strength	
stress	•
1, 12-15, 23, 27, 28, 43, 63, 64, 73, 83, 84, 94, 103	
stress proteins	
strontium/calcium ratio 3	
structure	
sublethal effects 1	
substrata	
substrates	4
substratum	2
succinic acid metabolism	2
Sumiyoshi	
summer 23, 44, 55, 70, 81, 84, 85, 109, 116, 11	
summer mortality	
superoxide anion production	
surf-clam	
surface water	
surface-associated	
surfactants	
surveying	
surveys	2
survival	
5, 6, 21, 27, 30, 34, 37-39, 41, 43, 69, 70, 72-84, 87, 88	3,
90, 91, 93, 97, 102, 108, 109, 111, 112, 114	
susceptibility hazards	0
susceptibility hazards	0 4
suspended culture	4
suspended culture	4 95
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2	4 95 27
suspended culture 69, 71, 78, 81, 8 suspended particles 2, 9 suspension feeding bivalves 2 sustainability 11	4 5 7 0
suspended culture 69, 71, 78, 81, 8 suspended particles 2, 9 suspension feeding bivalves 2 sustainability 11 sustainable development 12	4 5 7 0
suspended culture 69, 71, 78, 81, 8 suspended particles 2, 9 suspension feeding bivalves 2 sustainability 11 sustainable development 12 sustainable integrated system 11	4 5 7 0
suspended culture 69, 71, 78, 81, 8 suspended particles 2, 9 suspension feeding bivalves 2 sustainability 11 sustainable development 12 sustainable integrated system 11 Symbiodinium sp 9	4 95 97 91 92
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbionts32, 34, 72, 10	4 5 7 0 1 0 2 9
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbionts32, 34, 72, 10symbiosis32, 34, 45, 92, 109, 11	4 5 7 0 1 0 2 9 6
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbiosis32, 34, 72, 10symbiosis32, 34, 45, 92, 109, 11symbiotic bacterium/ host10	4 5 7 0 1 0 2 9 6 5
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbiosis32, 34, 72, 10symbiotic bacterium/ host10symbiotic vibrios3	4 5 7 0 1 0 2 9 6 5 2
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbiosis32, 34, 72, 10symbiotic bacterium/ host10symbiotic vibrios3synapse formation41, 5	4 5 7 0 1 0 2 9 6 5 2 4
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbiosis32, 34, 72, 10symbiotic bacterium/ host10symbiotic vibrios3synapse formation41, 5synapses ultrastructure5	4 5 7 0 1 0 2 9 6 5 2 4 4
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbiosis32, 34, 72, 10symbiotic bacterium/ host10symbiotic vibrios3synapse formation41, 5	4 5 7 0 1 0 2 9 6 5 2 4 4
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbiosis32, 34, 72, 10symbiotic bacterium/ host10symbiotic vibrios3synapse formation41, 5synapses ultrastructure5	4 5 7 0 1 0 2 9 6 5 2 4 4 9
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbiosis32, 34, 72, 10symbiotic bacterium/ host10symbiotic vibrios3synapse formation41, 5synapses ultrastructure5synaptic facilitation43, 44, 5	4 5 7 0 1 0 2 9 6 5 2 4 4 9 8
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbiotic32, 34, 72, 10symbiotic bacterium/ host30symbiotic vibrios33synapse formation41, 5synaptic facilitation43, 44, 5synaptic plasticity5	4 5 7 0 1 0 2 9 6 5 2 4 4 9 8 4
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbiosis32, 34, 72, 10symbiotic bacterium/ host10symbiotic vibrios3synapse formation41, 5synaptic facilitation43, 44, 5synaptic facilitation43, 44, 5synaptic transmission drug effects43, 4synaptic transmission physiology4	4 5 7 0 1 0 2 9 6 5 2 4 4 9 8 4 4
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbiosis32, 34, 72, 10symbiotic bacterium/ host10symbiotic vibrios33synapse formation41, 5synaptic facilitation43, 44, 5synaptic facilitation43, 44, 5synaptic transmission drug effects43, 4synaptic transmission physiology4synergism11, 2	457010296524498447
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbiotis32, 34, 72, 10symbiotic bacterium/ host10symbiotic vibrios33synapse formation41, 55synaptic facilitation43, 44, 55synaptic plasticity55synaptic transmission drug effects43, 44, 43, 44, 55synaptic transmission physiology43, 44, 43, 44, 43, 44, 43, 44, 55synaptic transmission physiology43, 44, 55synaptic transmis	4570102965244984477
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbiotis32, 34, 72, 10symbiotic bacterium/ host10symbiotic vibrios3synapse formation41, 5synaptic facilitation43, 44, 5synaptic plasticity5synaptic transmission drug effects43, 4synaptic transmission physiology4synergism11, 2synergism between excitatory amino acids2synthetic pyrethrins8	45701029652449844777
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbiotis32, 34, 72, 10symbiotic bacterium/ host10symbiotic vibrios3synapse formation41, 5synaptic facilitation43, 44, 5synaptic transmission drug effects43, 44, 5synaptic transmission physiology4synergism11, 2synergism between excitatory amino acids2synthetic pyrethrins8synxenic cultivation6	4 57 0 2 1 0 2 9 6 5 5 2 4 5 4 5 7 5 1
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbiotis32, 34, 72, 10symbiotic bacterium/ host10symbiotic vibrios3synapse formation41, 5synaptic facilitation43, 44, 5synaptic transmission drug effects43, 44, 5synaptic transmission physiology4synergism11, 2synergism between excitatory amino acids2synthetic pyrethrins8synxenic cultivation6systematic breeding10	4957021029965522444427737100
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbiosis32, 34, 72, 10symbiotic bacterium/ host10symbiotic vibrios3synapse formation41, 5synaptic facilitation43, 44, 5synaptic facilitation43, 44, 5synaptic transmission drug effects43, 4synaptic transmission physiology4synergism11, 2synthetic pyrethrins8synxenic cultivation6systematic breeding10systematic relationships5	495 27022 2002 2002 2002 2002 2002 2002 20
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbiotic32, 34, 72, 10symbiotic bacterium/ host32symbiotic vibrios33synapse formation41, 5synaptic facilitation43, 44, 5synaptic facilitation43, 44, 5synaptic transmission drug effects43, 4synaptic transmission physiology4synaptic transmission physiology4synaptic pyrethrins8synxenic cultivation6systematic breeding10systematic relationships5systematic relationships5systematic relationships5systematics24, 34, 37, 66, 97, 12	44 57 00 20 65 52 54 54 59 58 54 59 58 54 59 58 54 59 57 51 00 20 20 20 20
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbiotis32, 34, 72, 10symbiotic bacterium/ host10symbiotic vibrios33synapse formation41, 55synaptic facilitation43, 44, 55synaptic plasticity55synaptic transmission drug effects43, 44, 55synaptic transmission physiology44synergism11, 2synergism between excitatory amino acids22systematic breeding10systematic breeding10systematic breeding10systematic s and taxonomy24, 34, 37, 66, 97, 12systematics24, 34, 66, 97, 12	495 2700 2096 5225 445 2775 1002 2006 2006 2006 2006 2006 2006 2006
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbiotis32, 34, 72, 10symbiotic bacterium/ host10symbiotic vibrios33synapse formation41, 5synaptic facilitation43, 44, 5synaptic plasticity5synaptic transmission drug effects43, 4synaptic transmission physiology4synergism11, 2synthetic pyrethrins8synxenic cultivation6systematic breeding10systematic breeding10systematic relationships5systematics24, 34, 37, 66, 97, 12systematics and taxonomy24, 34, 66, 97, 12T. crocea77, 78, 8	44 57 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbiotic bacterium/ host32, 34, 72, 10symbiotic bacterium/ host10symbiotic vibrios33synapse formation41, 5synaptic facilitation43, 44, 5synaptic plasticity5synaptic transmission drug effects43, 4synaptic transmission physiology4synthetic pyrethrins8synthetic breeding10systematic breeding10systematic relationships5systematic sand taxonomy24, 34, 37, 66, 97, 12systematics and taxonomy24, 34, 66, 97, 12r. crocea77, 78, 8T. maxima77, 78, 8	44 57 021 02 09 65 52 54 54 55 52 54 54 54 54 55 52 54 54 55 52 54 55 52 54 55 52 54 55 52 54 55 52 55 52 55 52 55 52 55 55 52 55 55
suspended culture69, 71, 78, 81, 8suspended particles2, 9suspension feeding bivalves2sustainability11sustainable development12sustainable integrated system11Symbiodinium sp9symbiotis32, 34, 72, 10symbiotic bacterium/ host10symbiotic vibrios33synapse formation41, 5synaptic facilitation43, 44, 5synaptic plasticity5synaptic transmission drug effects43, 4synaptic transmission physiology4synergism11, 2synthetic pyrethrins8synxenic cultivation6systematic breeding10systematic breeding10systematic relationships5systematics24, 34, 37, 66, 97, 12systematics and taxonomy24, 34, 66, 97, 12T. crocea77, 78, 8	44 57 021 02 09 65 52 54 54 55 52 54 54 55 52 54 54 55 52 54 55 52 54 55 52 53 55 52 55 52 55 52 55 52 55 52 55 52 55 55

tail sensory neurons
tail withdrawal reflex 58
Tal-y-foel oysterage 105
Tampa Bay
tandem repeat sequences
tanks
tapes
Tapes japonica Deshyes 104
Tapes philippinarum
Tapes philippinarum (Deshaes 1853) 81
taxis
taxonomic separation
techniques
5, 6, 9, 19, 22, 26, 27, 30, 34, 38, 42-44, 46, 50, 61, 65,
69-72, 75, 77-79, 81, 83, 85, 87, 89, 90, 94, 95, 99, 104,
105, 109-113, 114, 117, 122
Technological Innovations Congresses 122
technology transfer
telomeric sequence
temperate Australasia
temperature
17, 21, 22, 26, 27, 30, 36, 37, 43, 45, 49, 50, 52, 53, 55,
57, 59-63, 67, 72-74, 76, 78, 80-84, 86, 88-90, 93, 99,
104, 110, 113, 114, 120
temperature conditions
temperature effects
temperature resistance
temporal variation
terrestrial gastropods
terrestrial mollusk
territorial intertidal limpet Patella longicosta 116
tertiary
test system
testing
Tetraselmis
Teuthoidea
Thailand
Thais clavigera 55, 56
Thais clavigera (Kuster) 55
Theora fragilis
theory
therapy
thermal 1, 21, 50, 52, 53, 60, 64, 94
thermal stress 1
thermal tolerance
thermally stressed
thermostable direct hemolysin 8
thermotolerance
thionucleotides pharmacology
thylakoid protein maintenance 45, 109
thylakoids 109
time
6, 12, 20, 23, 27-29, 34, 36, 39, 47, 57, 62, 64, 65, 92,
97, 103, 112, 118
time factors
time for fertilization 112
timing 28, 29, 62

tissue
1, 2, 6, 10, 12-14, 18, 23, 25, 32, 38, 48, 49, 53, 67, 71, 72, 79, 93, 115
tissue biochemistry 1
tissue culture
tissue distribution
tissues
3, 15, 20, 22, 23, 29, 49, 59, 61, 64, 84, 91-93, 101, 105
Todarodes pacificus
Todarodes pacificus Steenstrup
tolerance
topographic regulation
topoisomerase II inhibitor
total cellular proteins
toxic effects
toxic mussel
toxicity
1, 2, 6, 9, 11-14, 16, 17, 23, 25, 27, 48, 49, 53, 54, 60,
64, 66, 67, 85, 87, 91, 97, 101, 109, 113-115, 117, 123
toxicity tests
toxicology
2, 13, 54, 56, 58, 64, 66, 74, 86, 93, 94, 102, 117
toxicology methods
toxicology trends
toxin
toxins toxicity
trace elements analysis 25
tracer techniques
transfection
transfers
transition elements
transmission rate
transmitter release 59
transpecific polymorphism
transport 11, 18, 20, 23, 34, 36, 67, 109, 110
transport and circulation
transport of animals 110
traps
trawl fishing ground
treatment 5, 13, 14, 18-20, 23, 25, 48, 70, 110, 112
Trematoda: Echinostomatidae
trends
trials 4, 38, 39, 48, 54, 69, 73, 83, 88, 94, 111, 121
tributyltin
Trichoderma koningii
Trichoderma metabolism17trickle irrigation81
tricyclic antidepressants
Tridacna crocea
Tridacna derasa
Tridacna gigas
Tridacna maxima
tridacnid clams
trifluoperazine pharmacology
triphenyltin
triploidy
Trochus niloticus (Mollusca: Gastropoda) 114, 115

tropanes pharmacology
tropical abalone Haliotis asinina
tropical abalone Haliotis ovina
tropical abalone, Haliotis asinina Linne 1758 112
tropical blacklip oyster
tropical scallop
trout
tube dwelling bristle worms
tumor biology
tumor cells
tumor development
tumor virus infections transmission/ virology 20
turbidity
Turbo sarmaticus
two dimensional
type B photoreceptors
tyrosine kinase mediated
Tyrrhenian area (Mediterranean Sea)
U.S. affiliated pacific islands
Ubatuba, Brazil
UK
ultrastructure
ultraviolet
ultraviolet radiation
ultraviolet raulation
ulva
unva
unialgal diets
Unionicola formosa (Acari: Unionicolidae)
Unionidae
United Kingdom
United States
University of the Algarve
unrestricted feeding
uptake
3, 6, 19, 49, 50, 58, 70, 85-89, 94, 96, 97, 109, 115, 116
upweller
urinary tract
urogenital system
USA
24, 29, 32, 43, 71, 72, 89, 96, 98, 100, 102, 106, 117
useful animals
Utterbackia imbecillis
valve movement response
variability
variation genetics
Vaucheria
Vaucheria chloroplast gene
Vaucheria litorea
vegetable crops 117
velocity
velocity seston
Veneridae
venerupis
Venerupis
Venerupis semidecussata
Venerupis semidecussata
Venerupis semidecussata

Vertebrates
vertical movements
vestibule physiology
veterinary
veterinary medicine
viability
Vibrio
Vibrio fischeri
Vibrio genetics
Vibrio growth and development
Vibrio immunology19
Vibrio isolation and purification
Vibrio parahaemolyticus
Vibrio parahaemolyticus tdh gene
Vibrio physiology
Vibrio virology
Vibrio vulnificus
Vibrio vulnificus phage22
Vibrionaceae
video
video display unit equipment
village farms
vinblastine toxicity
viral analysis
viral isolation and purification
virological quality 10, 82
virology
virology DNA probes
viruses 10, 13, 17, 22, 27, 82, 95, 104, 120
viruses isolation and purification10
viruses isolation and purification
viruses isolation and purification
viruses isolation and purification
viruses isolation and purification10Visakhapatnam107vision36, 37visual contrast threshold35, 37visual learning35vital statistics55, 100
viruses isolation and purification10Visakhapatnam107vision36, 37visual contrast threshold35, 37visual learning35vital statistics55, 100volume18, 74, 87, 104
viruses isolation and purification 10 Visakhapatnam 107 vision 36, 37 visual contrast threshold 35, 37 visual learning 35 vital statistics 55, 100 volume 18, 74, 87, 104 Wales 103, 104
viruses isolation and purification 10 Visakhapatnam 107 vision 36, 37 visual contrast threshold 35, 37 visual learning 35 vital statistics 55, 100 volume 18, 74, 87, 104 Wales 103, 104 wasp venoms pharmacology 65
viruses isolation and purification10Visakhapatnam107vision36, 37visual contrast threshold35, 37visual learning35vital statistics55, 100volume18, 74, 87, 104Wales103, 104wasp venoms pharmacology65waste characterization79
viruses isolation and purification10Visakhapatnam107vision36, 37visual contrast threshold35, 37visual learning35vital statistics55, 100volume18, 74, 87, 104Wales103, 104wasp venoms pharmacology65waste characterization79waste excretion characteristics81
viruses isolation and purification10Visakhapatnam107vision36, 37visual contrast threshold35, 37visual learning35vital statistics55, 100volume18, 74, 87, 104Wales103, 104wasp venoms pharmacology65waste characterization79waste treatment70, 110
viruses isolation and purification10Visakhapatnam107vision36, 37visual contrast threshold35, 37visual learning35vital statistics55, 100volume18, 74, 87, 104Wales103, 104wasp venoms pharmacology65waste characterization79waste treatment70, 110wastes70, 74, 79, 81
viruses isolation and purification10Visakhapatnam107vision36, 37visual contrast threshold35, 37visual learning35vital statistics55, 100volume18, 74, 87, 104Wales103, 104wasp venoms pharmacology65waste characterization79waste treatment70, 110wastes70, 74, 79, 81water70, 74, 79, 81
viruses isolation and purification 10 Visakhapatnam 107 vision 36, 37 visual contrast threshold 35, 37 visual learning 35 vital statistics 55, 100 volume 18, 74, 87, 104 Wales 103, 104 wasp venoms pharmacology 65 waste characterization 79 waste treatment 70, 110 wastes 70, 74, 79, 81 water 1, 2, 4-6, 9-11, 13, 17, 18, 20-22, 25, 27, 28, 30, 32, 38,
viruses isolation and purification 10 Visakhapatnam 107 vision 36, 37 visual contrast threshold 35, 37 visual learning 35 vital statistics 55, 100 volume 18, 74, 87, 104 Wales 103, 104 wasp venoms pharmacology 65 waste characterization 79 waste treatment 70, 74, 79, 81 water 70, 74, 79, 81 water 11, 13, 17, 18, 20-22, 25, 27, 28, 30, 32, 38, 43, 46-53, 57-61, 64, 66, 67, 70-76, 78-91, 93, 95-97,
viruses isolation and purification 10 Visakhapatnam 107 vision 36, 37 visual contrast threshold 35, 37 visual learning 35 vital statistics 55, 100 volume 18, 74, 87, 104 Wales 103, 104 wasp venoms pharmacology 65 waste characterization 79 waste treatment 70, 110 wastes 70, 74, 79, 81 water 70, 74, 79, 79, 79, 79, 70, 76, 78-91, 93, 95-97, 99, 101, 103, 106, 109-111, 114-116, 118, 119, 123
viruses isolation and purification 10 Visakhapatnam 107 vision 36, 37 visual contrast threshold 35, 37 visual learning 35 vital statistics 55, 100 volume 18, 74, 87, 104 Wales 103, 104 wasp venoms pharmacology 65 waste characterization 79 waste excretion characteristics 81 wastes 70, 74, 79, 81 water 70, 74, 79, 81 water 70, 74, 79, 81 water 70, 70, 76, 78-91, 93, 95-97, 99, 101, 103, 106, 109-111, 114-116, 118, 119, 123 water bath 61
viruses isolation and purification 10 Visakhapatnam 107 vision 36, 37 visual contrast threshold 35, 37 visual learning 35 vital statistics 55, 100 volume 18, 74, 87, 104 Wales 103, 104 wasp venoms pharmacology 65 waste characterization 79 waste treatment 70, 110 wastes 70, 74, 79, 81 water 70, 74, 79, 81 water 70, 100, 109-111, 114-116, 118, 119, 123 water bath 61 water contamination 123
viruses isolation and purification 10 Visakhapatnam 107 vision 36, 37 visual contrast threshold 35, 37 visual learning 35 vital statistics 55, 100 volume 18, 74, 87, 104 Wales 103, 104 wasp venoms pharmacology 65 waste characterization 79 waste treatment 70, 110 wastes 70, 74, 79, 81 water 70, 74, 79, 81 water 70, 100, 106, 109-111, 114-116, 118, 119, 123 water bath 61 water contamination 123 water content 58
viruses isolation and purification 10 Visakhapatnam 107 vision 36, 37 visual contrast threshold 35, 37 visual learning 35 vital statistics 55, 100 volume 18, 74, 87, 104 Wales 103, 104 wasp venoms pharmacology 65 waste characterization 79 waste characterization 70, 110 wastes 70, 74, 79, 81 water 70, 74, 79, 81 water 103, 106, 109-111, 114-116, 118, 119, 123 water bath 61 water contamination 123 water content 58, 38, 70, 74-76, 80, 81, 83
viruses isolation and purification 10 Visakhapatnam 107 vision 36, 37 visual contrast threshold 35, 37 visual learning 35 vital statistics 55, 100 volume 18, 74, 87, 104 Wales 103, 104 wasp venoms pharmacology 65 waste characterization 79 waste scharacterization 70, 110 wastes 70, 74, 79, 81 water 70, 74, 79, 81 water 64, 66, 67, 70-76, 78-91, 93, 95-97, 99, 101, 103, 106, 109-111, 114-116, 118, 119, 123 water bath 61 water contamination 123 water flow 5, 38, 70, 74-76, 80, 81, 83 water flow 5, 38, 70, 74-76, 80, 81, 83
viruses isolation and purification 10 Visakhapatnam 107 vision 36, 37 visual contrast threshold 35, 37 visual learning 35 vital statistics 55, 100 volume 18, 74, 87, 104 Wales 103, 104 wasp venoms pharmacology 65 waste characterization 79 waste excretion characteristics 81 waste treatment 70, 710 wastes 70, 74, 79, 81 water 70, 74, 79, 81 water 66, 67, 70-76, 78-91, 93, 95-97, 99, 101, 103, 106, 109-111, 114-116, 118, 119, 123 water bath 61 water contamination 123 water content 5, 38, 70, 74-76, 80, 81, 83 water flow 5, 38, 70, 74-76, 80, 81, 83 water microbiology 22, 71 water mite 72
viruses isolation and purification 10 Visakhapatnam 107 vision 36, 37 visual contrast threshold 35, 37 visual learning 35 vital statistics 55, 100 volume 18, 74, 87, 104 Wales 103, 104 wasp venoms pharmacology 65 waste characterization 79 waste excretion characteristics 81 waste treatment 70, 110 wastes 70, 74, 79, 81 water 70 1, 2, 4-6, 9-11, 13, 17, 18, 20-22, 25, 27, 28, 30, 32, 38, 43, 46-53, 57-61, 64, 66, 67, 70-76, 78-91, 93, 95-97, 99, 101, 103, 106, 109-111, 114-116, 118, 119, 123 water bath 61 water contamination 123 water flow 5, 38, 70, 74-76, 80, 81, 83 water flow 5, 38, 70, 74-76, 80, 81, 83 water microbiology 22, 71 water mite 72 water mites 72
viruses isolation and purification 10 Visakhapatnam 107 vision 36, 37 visual contrast threshold 35, 37 visual learning 35 visual learning 35 vital statistics 55, 100 volume 18, 74, 87, 104 Wales 103, 104 wasp venoms pharmacology 65 waste characterization 79 waste excretion characteristics 81 waste treatment 70, 110 wastes 70, 74, 79, 81 water 70 1, 2, 4-6, 9-11, 13, 17, 18, 20-22, 25, 27, 28, 30, 32, 38, 43, 46-53, 57-61, 64, 66, 67, 70-76, 78-91, 93, 95-97, 99, 101, 103, 106, 109-111, 114-116, 118, 119, 123 water bath 61 water contamination 123 water flow 5, 38, 70, 74-76, 80, 81, 83 water flow 5, 38, 70, 74-76, 80, 81, 83 water microbiology 22, 71 water mite 72 water mites 72 water pollutants 72
viruses isolation and purification 10 Visakhapatnam 107 vision 36, 37 visual contrast threshold 35, 37 visual learning 35 vital statistics 55, 100 volume 18, 74, 87, 104 Wales 103, 104 wasp venoms pharmacology 65 waste characterization 79 waste excretion characteristics 81 waste treatment 70, 110 wastes 70, 74, 79, 81 water 70, 74, 79, 81 water 61 water contamination 123 water contamination 123 water flow 5, 38, 70, 74-76, 80, 81, 83 water microbiology 22, 71 water mite 72 water mites 72 water mites 72 water pollutants 72 water pollutants 72
viruses isolation and purification 10 Visakhapatnam 107 vision 36, 37 visual contrast threshold 35, 37 visual learning 35 vital statistics 55, 100 volume 18, 74, 87, 104 Wales 103, 104 wasp venoms pharmacology 65 waste characterization 79 waste excretion characteristics 81 waste treatment 70, 110 wastes 70, 74, 79, 81 water 70, 74, 79, 81 water 61 vater contamination 123 water contamination 123 water flow 5, 38, 70, 74-76, 80, 81, 83 water mite 72 water mite 72 water pollutants 72 vater pollutants 72 1, 2, 6, 9, 11, 25, 46, 48, 64, 66, 67, 71, 90, 91, 96, 97, 101, 123
viruses isolation and purification 10 Visakhapatnam 107 vision 36, 37 visual contrast threshold 35, 37 visual learning 35 vital statistics 55, 100 volume 18, 74, 87, 104 Wales 103, 104 wasp venoms pharmacology 65 waste characterization 79 waste scretion characteristics 81 waste treatment 70, 110 wastes 70, 74, 79, 81 water 70, 74, 79, 81 water 61 water contamination 123 water bath 61 water content 58 water flow 5, 38, 70, 74-76, 80, 81, 83 water mite 72 water mites 72 water mites 72 water pollutants 72 water pollutants 71 vater pollutants 71
viruses isolation and purification 10 Visakhapatnam 107 vision 36, 37 visual contrast threshold 35, 37 visual learning 35 vital statistics 55, 100 volume 18, 74, 87, 104 Wales 103, 104 wasp venoms pharmacology 65 waste characterization 79 waste excretion characteristics 81 waste treatment 70, 110 wastes 70, 74, 79, 81 water 70, 74, 79, 81 water 61 vater contamination 123 water contamination 123 water flow 5, 38, 70, 74-76, 80, 81, 83 water mite 72 water mite 72 water pollutants 72 vater pollutants 72 1, 2, 6, 9, 11, 25, 46, 48, 64, 66, 67, 71, 90, 91, 96, 97, 101, 123

water pollutants chemical toxicity
water pollutants metabolism 101
water pollutants toxicity
water pollution 13, 50, 60, 85, 93, 97, 103, 116, 118
water pollution adverse effects
water power
water pressure change
water Pumping Rate
water purification
water quality
1, 2, 5, 10, 50, 74, 81, 83, 99, 109, 111, 119
water resources
water reuse
water snail
water temperature
21, 30, 43, 49, 52, 53, 72-74, 76, 81-84, 86, 88-90, 93,
110, 114
water-soluble materials
weight
6, 10, 24, 25, 30, 33, 36-39, 48-50, 52, 69, 74, 77-79,
81-86, 88, 90, 93, 111, 113
weight gain
weight losses
West Africa
Western Europe
Western Pacific Islands 122
wild animals
wildlife management
22, 24, 26, 27, 66, 67, 92-94, 96, 97, 106, 120
22, 24, 20, 27, 00, 07, 52-54, 50, 57, 100, 120
winter
winter
winter
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46 xenobiotics 25, 27, 66
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46 xenobiotics 25, 27, 66 xenobiotics metabolism 25
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46 xenobiotics 25, 27, 66 xenobiotics pharmacology 25
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46 xenobiotics 25, 27, 66 xenobiotics pharmacology 25 Xenopus 43, 45, 46
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46 xenobiotics 25, 27, 66 xenobiotics pharmacology 25 Xenopus 43, 45, 46 Xenopus oocytes 45, 46
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46 xenobiotics 25, 27, 66 xenobiotics pharmacology 25 Xenopus 43, 45, 46 Xenopus oocytes 45, 46 X-ray analysis 58
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46 xenobiotics 25, 27, 66 xenobiotics pharmacology 25 Xenopus 43, 45, 46 Xenopus oocytes 45, 46 X-ray analysis 58 Yessoensis 11, 18, 21, 28, 69, 75
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46 xenobiotics 25, 27, 66 xenobiotics metabolism 25 Xenopus 43, 45, 46 Xenopus oocytes 45, 46 X-ray analysis 58 Yessoensis 11, 18, 21, 28, 69, 75 yields 3, 71, 72, 74, 85, 99, 110, 118
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46 xenobiotics 25, 27, 66 xenobiotics metabolism 25 xenopus 43, 45, 46 Xenopus oocytes 45, 46 X-ray analysis 58 Yessoensis 11, 18, 21, 28, 69, 75 yields 3, 71, 72, 74, 85, 99, 110, 118 young animals 24, 62
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46 xenobiotics 25, 27, 66 xenobiotics pharmacology 25 Xenopus 43, 45, 46 Xenopus oocytes 45, 46 X-ray analysis 58 Yessoensis 11, 18, 21, 28, 69, 75 yields 3, 71, 72, 74, 85, 99, 110, 118 young animals 24, 62 Yucatan octopus 40
winter76, 81, 82, 84, 85, 102, 106, 116workshop preceedings/ conclusions103wound healing/repair41xeno-androgen47xeno-estrogens46xenobiotics25, 27, 66xenobiotics metabolism25xenopus43, 45, 46Xenopus oocytes45, 46X-ray analysis58Yessoensis11, 18, 21, 28, 69, 75yields24, 62Yucatan octopus40zebra mussel2, 11, 12, 16, 20, 23, 24, 26, 70, 71, 97
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46 xenobiotics 25, 27, 66 xenobiotics metabolism 25 xenobiotics pharmacology 25 Xenopus 43, 45, 46 Xenopus oocytes 45, 46 X-ray analysis 58 Yessoensis 11, 18, 21, 28, 69, 75 yields 3, 71, 72, 74, 85, 99, 110, 118 young animals 24, 62 Yucatan octopus 40 zebra mussel 2, 11, 12, 16, 20, 23, 24, 26, 70, 71, 97 zebra mussel gills 26
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46 xenobiotics 25, 27, 66 xenobiotics metabolism 25 xenobiotics pharmacology 25 Xenopus 43, 45, 46 Xenopus oocytes 45, 46 X-ray analysis 58 Yessoensis 11, 18, 21, 28, 69, 75 yields 3, 71, 72, 74, 85, 99, 110, 118 young animals 24, 62 Yucatan octopus 40 zebra mussel 2, 11, 12, 16, 20, 23, 24, 26, 70, 71, 97 zebra mussel gills 26 zebra mussel metabolic rates 20
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46 xenobiotics 25, 27, 66 xenobiotics metabolism 25 xenobiotics pharmacology 25 Xenopus 43, 45, 46 Xenopus oocytes 45, 46 X-ray analysis 58 Yessoensis 11, 18, 21, 28, 69, 75 yields 3, 71, 72, 74, 85, 99, 110, 118 young animals 24, 62 Yucatan octopus 40 zebra mussel 20 zeolite 40
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46 xenobiotics 25, 27, 66 xenobiotics metabolism 25 xenopus 43, 45, 46 Xenopus 45, 46 Xenopus oocytes 45, 46 X-ray analysis 58 Yessoensis 11, 18, 21, 28, 69, 75 yields 3, 71, 72, 74, 85, 99, 110, 118 young animals 24, 62 Yucatan octopus 40 zebra mussel 2, 11, 12, 16, 20, 23, 24, 26, 70, 71, 97 zebra mussel metabolic rates 20 zeolite 40 zinc 12, 15, 49, 50, 67, 97, 101, 104, 114, 115
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46 xenobiotics 25, 27, 66 xenobiotics metabolism 25 xenopus 43, 45, 46 Xenopus 43, 45, 46 Xenopus oocytes 45, 46 X-ray analysis 58 Yessoensis 11, 18, 21, 28, 69, 75 yields 3, 71, 72, 74, 85, 99, 110, 118 young animals 24, 62 Yucatan octopus 40 zebra mussel gills 26 zebra mussel metabolic rates 20 zeolite 40 zinc 12, 15, 49, 50, 67, 97, 101, 104, 114, 115 zinc analysis 97, 104
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46 xenobiotics 25, 27, 66 xenobiotics metabolism 25 xenopus 43, 45, 46 Xenopus oocytes 43, 45, 46 X-ray analysis 58 Yessoensis 11, 18, 21, 28, 69, 75 yields 3, 71, 72, 74, 85, 99, 110, 118 young animals 24, 62 Yucatan octopus 40 zebra mussel gills 26 zeolite 40 zinc 12, 15, 49, 50, 67, 97, 101, 104, 114, 115 zinc metabolism 97, 104 zinc metabolism 49, 67, 101, 115
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46 xenobiotics 25, 27, 66 xenobiotics metabolism 25 xenopus 25, 27, 66 xenobiotics metabolism 25 Xenopus 43, 45, 46 Xenopus oocytes 45, 46 X-ray analysis 58 Yessoensis 11, 18, 21, 28, 69, 75 yields 3, 71, 72, 74, 85, 99, 110, 118 young animals 24, 62 Yucatan octopus 40 zebra mussel gills 26 zebra mussel gills 26 zeolite 40 zinc 12, 15, 49, 50, 67, 97, 101, 104, 114, 115 zinc analysis 97, 104 zinc metabolism 49, 67, 101, 115 zinc metabolism 49, 67, 101, 115 zinc pharmacokinetics 115
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46 xenobiotics 25, 27, 66 xenobiotics metabolism 25 xenopus 25, 27, 66 xenobiotics metabolism 25 Xenopus 43, 45, 46 Xenopus oocytes 45, 46 X-ray analysis 58 Yessoensis 11, 18, 21, 28, 69, 75 yields 3, 71, 72, 74, 85, 99, 110, 118 young animals 24, 62 Yucatan octopus 40 zebra mussel 20, 11, 12, 16, 20, 23, 24, 26, 70, 71, 97 zebra mussel gills 26 zeolite 40 zinc 12, 15, 49, 50, 67, 97, 101, 104, 114, 115 zinc metabolism 97, 104 zinc metabolism 49, 67, 101, 115 zinc pharmacokinetics 115 zinc pharmacokinetics 115 zinc pharmacokinetics 115
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46 xenobiotics 25, 27, 66 xenobiotics metabolism 25 xenobiotics pharmacology 25 Xenopus 43, 45, 46 Xenopus oocytes 45, 46 X-ray analysis 58 Yessoensis 11, 18, 21, 28, 69, 75 yields 3, 71, 72, 74, 85, 99, 110, 118 young animals 24, 62 Yucatan octopus 40 zebra mussel gills 26 zeolite 40 zinc 12, 15, 49, 50, 67, 97, 101, 104, 114, 115 zinc metabolism 97, 104 zinc metabolism 49, 67, 101, 115 zinc pharmacology 12 zinc toxicity 97
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46 xenobiotics 25, 27, 66 xenobiotics metabolism 25 xenobiotics pharmacology 25 Xenopus 43, 45, 46 Xenopus oocytes 45, 46 X-ray analysis 58 Yessoensis 11, 18, 21, 28, 69, 75 yields 3, 71, 72, 74, 85, 99, 110, 118 young animals 24, 62 Yucatan octopus 40 zebra mussel 20 zeolite 40 zinc 12, 15, 49, 50, 67, 97, 101, 104, 114, 115 zinc metabolism 49, 67, 101, 115 zinc pharmacokinetics 115 zinc pharmacokinetics 115 zinc toxicity 97 zootechny 97
winter 76, 81, 82, 84, 85, 102, 106, 116 workshop preceedings/ conclusions 103 wound healing/repair 41 xeno-androgen 47 xeno-estrogens 46 xenobiotics 25, 27, 66 xenobiotics metabolism 25 xenobiotics pharmacology 25 Xenopus 43, 45, 46 Xenopus oocytes 45, 46 X-ray analysis 58 Yessoensis 11, 18, 21, 28, 69, 75 yields 3, 71, 72, 74, 85, 99, 110, 118 young animals 24, 62 Yucatan octopus 40 zebra mussel gills 26 zeolite 40 zinc 12, 15, 49, 50, 67, 97, 101, 104, 114, 115 zinc metabolism 97, 104 zinc metabolism 49, 67, 101, 115 zinc pharmacology 12 zinc toxicity 97

