Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

NORTHERN ROCKY MOUNTAIN FOb REST AND RANGE EXPERIMENT STATION

No. 60
March 1948
Missoula, Montana

+ EFFECT OF BARK GROWTH IN MEASUREMENT OF PERIODIC GROWTH OF INDIVIDUAL TREES
 Thomas L. Finch
 Division of Forest Economics

In estimating the periodic growth of individual forest trees, some allowance should be made for the growth in cark thickness during the period involved in the estimate. It might seem that this is an unimportant factor in growth calculations. Actually a small error results if no allowance is made for change in bark thickness.

Tables giving the volume of wood in a tree are usually related to diameter measurements made outside the bark (d.o.b.). However, the present outside-bark diameter cannot be converted accurately to outside-bark diameter a number of years ago merely by subtracting the diameter growth of the sclid wood, since the thickness of the bark may have changed in the intervening period. Underestimates of growth, when increase in bark thickness is not considered, range from 0 to 6 percent. The error is greatest for fast growing trees, and least for slow growing ones.

The following example illustrates the effect of bark growth on estimates of volume growth. A ponderosa pine tree 16.0 inches outside bark at breast height which added 6 inches of solid wood to its diameter in the past 30 years would have had a diameter of 9.5 inches at the beginning of the 30-year period, because the bark grew 0.25 inch (or 0.5 inch double bark thickness) at the same time. If bark growth is not considered, the diameter at the beginning of the 30-year period would be calculated as 10.0 inches. The effect on volume is shown as follows:

No allowance
for bark growth
:---
for bark growth

- - Cubic feet - inside bark- - -

Volume at present	26.0	26.0
Volume 30 years ago	9.5	8.6
Increase in volume	16.5	17.4
Underestimate of growth	5%	--

The periodic change in bark thickness differs greatly between species. Data for 646 trees of 12 species in the Northern Rocky Mountain region were analyzed for the purpose of determining average factors for converting present diameter, outside bark, to past diameter, outside bark. These factors presented in the following tabulation are believed to be applicable throughout the region, and to be satisfactorily accurate for trees 4 inches and larger:

Species
Douglas-fir
Western white pine
Western larch
Icdgepole pine
Ponderosa pine
Engelmann spruce
Western redcedar
Western hemlock
Grand fir
Alpine fir
Black cottonwcod
Aspen

Formulae for
d.b.h.(o.b.)
n vears ago

$a=A-2.309 g \quad 156$
$a=A-2.075 g \quad 126$
$a=A-2.350 g \quad 71$
$a=A-2.064 \mathrm{~g} \quad 63$
$a=A-2.178 g \quad 43$
$a=A-2.028 g \quad 40$
$a=A-2.105 g \quad 26$
$a=A-2.141 g \quad 25$
$a=A-2.186 g \quad 24$
$a=A-2.062 g \quad 8$
$a=A-2.267 g \quad 44$
$a=A-2.193 g \quad 20$

$$
\begin{aligned}
\text { When }-\mathrm{a}= & \text { d.b.h. }(\mathrm{o} \cdot \mathrm{~b} \cdot) \mathrm{n} \text { years ago } \\
\mathrm{A}= & \text { current d.b.h.(o.b.) } \\
\mathrm{g}= & \text { n years radial growth, } \\
& \text { not including bark }
\end{aligned}
$$

Method of Deriving Factors

The factors in the above tabulation were developed in two steps as follows:

Step 1 - A regression equation of d.b.h.(i.b.) on d.b.h.(u.b.) was determined for each species. I/

1/ Bruce and Schumacher, 1935, Forest Mensuration, page 183, McGraw Hill Book Company, New York. These authorities conclude from long experience that a straight line relation of d.b.h.(o.b.) and bark thickness is suitable for practical usage. Substitution of d.b.h.(i.b.) for bark thickness is a restatement of the same relation. This straight line was fitted by the method of least squares.

Step 2 - Then using the formula $\mathrm{x}=\mathrm{X}-2 \mathrm{~g}$ when

$$
\begin{aligned}
& x=\text { d.b.h.(i.b.) } n \text { years ago } \\
& X=\text { current d.b.h. (i.b.) } \\
& g=n \text { years radial growth cf wood }
\end{aligned}
$$

Equality values of x and X from the regression equations were substituted in this formula, and the resulting equations simplified to that given for each species in the tabulation on page 2.
'Ihe development of the prnderosa pine equation is given below to illustrate the method. The regression equation for ponderosa pine was determined to be: d.b.h.(i.b.) $=.918$ d.b.h.(o.b.) - 392; then

I	$\mathrm{x}=\mathrm{X}-2 \mathrm{~g}$
II	$x=.918 a-.392$
III	$\begin{aligned} & 0=X-2 g-.918 a+.392 \text { simultaneous scluticn of } \\ & \text { or } \begin{array}{l} \text { equations } I \text { and II. } \\ .918 a=X-2 g+.392 \end{array} \quad . \end{aligned}$
	Substituting .918A - . 392 for K, equation III becrmes:
IV	.918a $=.918 \mathrm{~A}-.392-2 g+.392$
	or
	$a=A-\frac{2 g}{.918}$
V	$a=A-2.178 g$

An example illustrates how the formula may be applied to find d.b.h. (o.b.) IC years ago for a ponderosa pine tree. If the current d.b.h. (o.b.) is 22.4 inches and 10 years radial growth (not including bark) is $C .7$ inches, then
d.b.h. 10 years ago $=22.4^{11}-2.178 \times 0.7^{11}$ or 20.9^{11}

In the ln-year period double bark thickness increased 0.1 inch and the solid wood increased 1.4 inches in diameter.

The procedure described herein is being used in the Forest Survey for growth calculations in the Northern Rocky Mountain region.

