Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices

UNITED STATES DEPARTMENT OF AGRICULTURE BUREAU OF AGRICULTURAL ECONOMICS
\qquad

ATLAS

OF

AMERIGAN AGRICULTURE

Prepared under the Supervision of O. E. Baker, Senior Agricultural Economist

PART II
CLIMATE

SECTION B

TEMPERATURE, SUNSHINE, AND WIND
Contribution from the U. S. Weather Bureau, Charles F. Marvin, Chief

BY

JOSEPH B. KINCER
Senior Meteorologist, U. S. Weather Bureau
U. S. DEPT. OF AGRICUL FIDE NATIONAL AGRICULTURALL LWRAM RECEMED JAN 171977

UNTTED STATEG government printing officie

UNITED STATES DEPARTMENT OF AGRICULTURE
bureau of agricultural economics
NILS A. OLSEN, Chief
\qquad

ATLAS

OF

AMERIGAN AGRICULTURE

Prepared under the Supervision of O. E. BAKER, Senior Agricultural Economist

PART II

CLIMATE

SECTION B

TEMPERATURE, SUNSHINE, AND WIND
Contribution from the U. S. Weather Bureau, Charles F. Marvin, Chief

BY

JOSEPH B. KINCER
Senior Meteorologist, U. S. Weather Bureau

SELECTED REFERENCES

temperature

abbot, C. G., and Fowle, F. e.: Volcanoes and CliMate, Smithsonian
Washington, 1913.
Baker, O. E., and Stine, 0. C.: Climate of the Cotton Baker, O. E., and Stine, O. C.: Climate of the Cotton
Belt. Mo. Weather Rev., vol. 47, pp. 487-9. 1919. Batchelor, I. D., and West, F. L.: Variation in Minimum Temperatures Due to the Topography of Utah Agr. Exp. Sta. Bull. 141. 1915.
Bigelow, Frank Hagar: The Daily Normal Temperature and the daly No Weather Bur Bull R 186 pp., tables. 1908
pp., tables. 1908 . Tensions of the United States Reduced to a Homogenous System of 24 Hourly Observations FOR THE 33 -YEar INTERVAL, 1873-1905. U. S.
Weather Bur., Bull. S, 302 pp., incl. tables and charts. Washington, 1909.
Blair, W. R.: Slope and Valley Atr Temperatures. Mo. Weather Rev., vol. 44, p. 677 . 1916 .
Blair, T. A.: Some Temperature Correlations in the United States. Mo. Weather Rev., vol. 45, p. 444. 1917.

Bliss, George S.: Forecasting Minimum Temperatures for the Cranberry Bogs of New Jersey Mo. Weather Rev., vol. 50, pp. 529-33. 1922.
Bouyoucos, George: Soll Temperature. Mich. Agr. Exp. Sta. Bull. no. 26. 1916.
May be Cooled Without Freezivg Which Solls May be Cooled Without Freezing. Jour. of Agr. Res., vol. 20, no. 4, pp. 267-9. 1920.
Bradford, f. C.: The Relation of Temperature to Blossoming in the Aplle and the Peach. Mo. Mg. Pies B: Tuit
Brooks, Charles F.: The "Old-Fashioned" Winter Bumber Gin Wis. Burnham, g. H.: The Weather Element in RailROADI
1922.
Coville, f. V.: The Influence of Cold in Stimulating the Growth of Plants. Jour. of Agr. Res., ING THE Growth of Plants.
vol. 20, no. 2, pp. 151-60. 1920.
Cox, H. J.: Thermal Belts and Fruit-Growing in North Carobina. Mo. Weather Rev. Suppl. 19, North Carolina.
charts, illustrations.
Mo.
Ben

- Differences Between the Readings of Sheltered and Unsheltered Thermometers in Firid Work. Mo. Weather Rev., vol. 48, pp. 711-12. 1920.
Day, Preston C.: The Cold Spring of 1917. Mo. Weather Rev., vol. 45, pp. 285-9. 1917.
The Cold Winter or 1917-18. Weather Rev., vol. 46, pp. 57-80. 1918.
Fawcett, H. S.: Relation of Temperature to Growth and Infection in the Citrus Scab Fungus (Cladosporium Citri). Jour. of Agr. Res., vol. 21, no. 4, p. 243. 1921.

Fowle, F. E.: (See Abbot and Fowle.)
Gladwin, F. E.: Winter Injury to Grapes. N. Y. Agr. Exp. Sta. Bull. 433. 1917.
Gordon, James H.: Temperature Survey of the Salt River Valley, Arizona. Mo. Weather Rev., vol. 49, pp. 271-4. 1921.
Haines, E. H.: Influence of Varying Soil Conditions on Night Air Temperatures. Mo. Weather Rev., vol. 50, pp. 363-6. 1922.
Hallenbeck, Cleve.: Night Temperature Studies in the Roswell Fruit Distr
vol. 46, pp. $364-73$. 1918.
Henry, A. J.: Climatology of the United States. U. S. Weather Bur., Bulletin Q, 1012 p. 1906 Sunspots and Terrestrial Temperature in THE UNTTED STA
pp. 243-9. 1923.
Hopkins, A. D.: Periodical Events and Natural Law as Guidms to Agriculurural Research a
tice. Mo. Weather Rev. Suppl. 9. 1918
logical Data. Mo. Weather Rev., vol. 49, pp. 299LOGICAL
300.1921.
Humphreys, W. J.: Physics of the Air. The Franklin Inst., Phila. 1920.
in Inst., Phila, Dec. 1919 Control. Jour. FrankWeather Rev., vol. 48, pp. 535-7, 1920, for review by Ellsworth Huntington.)
Hutt, W. N.: Thermal Belts from the Horticultural Viewpoint. Mo. Weather Rev. Suppl. 19. 1922.
Keen, B. A., and Russel, e. J.: Factors. Determining
Soil Temperature. Jour. of Agr. Sci., vol. 11, part Soil Temperature. Jour. of A
3, 1921. Rothamsted, England.
Kincer, Joseph B.: Relation Between Vegetative and Frostless Periods. Mo, Weather Rev., vol. 47 , pp. 106-10. 1919.
Harvest Dates. Mo. Weather Rev., vol. 47, pp. Harvest Date
$312-23$.
1919.
Livingston, Burton E., and Shreve, Forrest: The Distribution of Vegetation in the United States as Related to Climatic Conditions. Carnegie Inst, Washington, 1921.
Marvin, Charles F.: Solar Radiation Intensitites and Terrestrial Weather. Mo. Weather Rev., vol. 51 pp. 186-8. 1923.
Mcadie, Alexander: Mean Temperatures and Their Corrections in the United States. At head of x, 45 pp., tables. 1891.
xeGinty, R. A.: Horticulture at High Altitudes. Colo. Agr. Exp. Sta. Bull. no. 256. 1920.

Miller, Edwin C., and Saunders, A. R.: Some Observations on the Temperature of the Leaves of
Crop Plants. Jour. of Agt. Res., vol. 26, no. 1 . Crop
1923.
Palmer, A. H. : Death Valley, California, the Hotest Known Region. Mo. Weather Rev., vol. 50 pp. 10-13 1922
Reeder, George: Ground Temperatures Compared

Russel, E. J. (See Keen and Russel.)
Solmon, S. C.: The Relation of Winter Temperature to mie Distribution of Winter and sprin Grains in the United States. Jour. of Amer. Soc of Agron.,
Saunders, A. R. (See Miller and Saunders.)
Schott, Charles A.: Tables, Distribution, and VaRiations of the Atmospheric Temperature in THE UNTIED STATLS AN SOME ADACs Smithsonian contributions to knowledge, 277. Washington, 1876. Seeley, D. A.: Relation between Temperature and Crops. Mo. Weather Rev vol 45, pp. 354-9 1917.

Shreve, Forrest. (See Livingston and Shreve.)
Sinclair, John G.: Temperatures of the Soll and Air in a Desert. Mo. Weather Rev., vol. 50, pp.
Smith, J. Warren: Phenological Dates and Mèteorological Data recorded by Thomas Mikesell at
Wauseon, Ohio. Mo. Weather Rev. Suppl. 2. 1915.

Smith J. Warren, and others: Predicting Minimum Temperatures from HyGrometric Data. Mo. Temperatures from Her Rupl. 16. 1920.
Stockman, William B.: Temperature and Relative ${ }_{29}$ pp., 2 charts. 1905.
Summers, John N.: Effect of Low Temperature on the Hatching of Gypsy Moth EgGs. U. S. Dept. of Agr. Bull. 1080. 1922.
Taylor, George F. (See Wright and Taylor.)
Thiessen, Alfred H.: Story of the Thermometer and Agri., pp. 157-66. ${ }^{1914}$
Tottingham, w. R.: Temperature Effects in Plant Metabolism. Jour. of Agr. Res., vol. 25, no. 1. 1923.
U. S. Patent Office: Results of Meteorological Observations Made under the Direction of the United States Patent Office and the Smithsonian Institution from the year 1854 to 1859, inclusive, being a Report of the Commissioner of Patents Made at the First Session of the Thirty-sixth Congress. 2 vol. (36th Cong., 1 st sess., House Ex. doc. 55.) 1861-64
U. S. Signal Office: Charts Showing Maximum and Minimum Temperatures by Decades, for All Years. Cover, title, 37 charts. Washington, 1891. - Normal Temperature Charts by Decades for the United States and the Dominion of Canada. Cover, title, 72 charts. At head of title: United States of America, War Department. Wash-
U. S. Surgeon General's Office: Meteorological Register for the Years 1822, 1823, 1824, and 1825, from Observations Made by the Surgeons of
the Army, at the Military Posts of the United States. 63 pp. fold. map. Washington, 1826.

- Meteorological Register for the years $1826,1827,1828,1829$, AND 1830.161 pp . fold. map. Philadelphia, New Orleans, 1840.
- Meteorological Register for Twelve Years, from 1831 - Army Meteorological Register, for Twelve Years, from 1843 to 1854, Inclus
3 pp., 10 charts. Washington, 1855.
- Statistical Report on the Sickness and Mortality in the Army of the United States, Compiled from Records of the Surgeon General's Office; Embracing a Period of Sixteen Years, from January, 1839, to January, 1855, by Richard H. Coolidge. 703 pp . tables. fold. map. (34th Cong., 1st sess., Senate Ex. doc. no. 96.) 1856.
U. S. Weather Bureau: Report of the Chief of the Weather Bureau, $1896-97.431 \mathrm{pp}$. plates. illus. tables. (Normal Variability
Table 5. pp. 284-5. 1897. Table 5. pp. 284-5. 1897
tions. Prepared by the Climatological Division tions. Prepared by the Climatological Division. Bur., Bull. W.) 1912.
Anemperature Departures, Monthly and annual, in the United States, January, 1873,
to June, 1909, Inclusive. Bull. U, 584 charts. 1911.
tude Temperature Gradients in Latitude, LongiWDe, and Altitude. Report of the Chief of the Weather Bureau, 1900-1901, vol. 2, chap. 4, pp. 361-419. charts. tables. 1902.

Temperature statistics in extenso for the various parts of the United States are available in the following

State Weather Services. Reports. (See Fassig. Statistics of State We

- Monthly Reports of the Climate and Crop Service. (Climatological Service.) 1896 to June, 1909, and 1914 to date.
- Monthly Weather Review, July, 1909-1913. Climatological Data for the United Sta
Y Sections. (Monthly with annual summary.)

Ward, Robert DeC.: Some Characteristics of United STATES TEMPERATURE. Ho. Weather Rev.,
pp. $595-608,20$ charts following p. 610.1921

- Bibliographic Notes on the Temperature Charts of the United Stat
Rev., vol. 49 , pp. 277-280. 1921. ev., vol. 49, pp. 277-280. 1921.

Hot Waves, Hot Winds, and Chinook Winds in the United States. Sci. Monthly, vol. 17, no. 2, pp. 146-67. 1923.

Cold Waves, Northers, and Blizzards in the United States. Sci. Monthly, vol. 16, no. 5, pp. 440-70. 1923.
West, F. L. (See Batchelor and West.)
Woolard, E. W.: Historical Note on Charts of the Distribution of Temperature, Pressure, and Weather Rev., vol. 48, pp. 408-11. 1920.
Wright, R. C., and Taylor, George F.: The Freezing Temperatures of Some Fruits, Vegetables, and
Cut Flowers. U.S. Dept. of Agr. Bul. 1133. 1923 Young, Floyd D.: Effect of Topography on TemThe Calif. Citrograph, vol. 5, no. 7. 1920.

Influence of Exposure on Temperature Observations. Mo. Weather Rev., vol. 48, pp. 09-11. 1920.
Ore Nocturnal Temperature Inversions in Oregon and California. Mo. Weather Rev.
vol. 49 , pp. $138-48$. 14 figs. tables. rol. 49, pp. 138-48. 14 figs. tables. 1921.

Notes on the January, 1922, Freeze in
hern California. Mo. Weather Rev., vol. 51 , Southern Califor
pp. $581-85 . \quad 1923$.

Substituting Fruit Temperatures for Air Temperatures in Regulating Orchard Heating for Oranges. Mo. Weather Rev., vol. 52, pp. 381-87. 1924.

SUNSHINE

Allard, H. A. (See Garner and Allard.)
Garner, W. W., and Allard, H. A.: Effect of the Relative Length of Day and Night and Other Factors of the Environment on Growth and Reprodu
in Plants. Jour. of Agr. Res. March, 1920.
Hand, Irving F. (See Kimball and Hand.)
Hearn, George D.: Relation of Sunlight to Plant 1922.

Kimball, H. H.: Duration and Intensity of Twilight. Mo. Weather Rev., vol. 44, pp. 614-26. 1916.
Kimball, H. H., and Hand, Irving F.: Daylight Illumination on Horizontal, Vertical, and Sloping SURFAC
1922.
Kincer, Joseph B.: Sunshine in the United States. Mo. Weather Rev., vol. 48, pp. 12-17. 1920
Palmer, Andrew H.: The Agricultural Significance of Sunshine as Illustrated in California. Mo Weather Rev., vol. 48, pp. 151-54. 1920.
Seeley, Dewey A.: The Heating of Plants in Sunlight as a Factor in Growth. Mo. Weather Rev vol. 47, pp. 327-28. 1919.
Stewart, J. B. : Effect of Sading on Soil Conditions. U. S. Bur. of Soils Bul. no. 39. 1907.

Ward, Robert DeC.: Bibliographic Note on Sunvol. 47, pp. 794-5. 1919.

WIND

Beck, Anne Louise: The Earth's Atmosphere as a Circular Vortex. Mo. Weather Rev., vol. 50, pp. 393-401. 1922.
Bowie, Edward H., and Weightman, R. Hanson: Types of Storms in the United States and Their Aver-
age Movement. Mo. Weather Rev. Suppl. 1. 1914. in the and Their Average Movement. Mo. Weather Rev. Suppl. 4. 1917.
Day, Preston C.: The Winds of the United States and Their Economic Uses. U. S. Dept. Agr. Yearbook, 1911, pp. 337-50.
Fuller, P. E.: The Use of Windmills in Irrigation in the Semi-arid West. Farmers' Bul. 866, U. S.
Gregg, Willis R.: An Aerological Survey of the United States. (Results of Observations by Means of Kites.) Mo. Weather Rev., vol. 50, pp. 229-42. 1920.
Gregg, Willis R., and Van Zant, J. Parker: The Wind Factor in Flight. (Analysis of One Year's Record of the Air Mail.) Mo. Weather Rev., vol. 51, pp. 111-25. 1920.
Marvin, Charles F.: Air Drainage Explained. (With Reference to Temperature Influence.) Mo. Weather Rev., vol. 42, pp. 583-85. 1914.
The Law of the Geoidal Slope and Fallacies in Dynamic Meteorology. Mo. Weather Rev., vol.
48, pp. 565-82. 1920 .
Mitchell, Charles L.: West Indian Hurricanes and Other Tropical Cyclones of the North Atlantic
Samuels, L. T.: Correlations Between Wind VeAir. Mo. Weather Rev., vol. 50, pp. 83-89. 1922 an Zant, J. Parker. (See Gregg and Van Zant.)
Wieghtman, R. Hanson. (See Bowie and Weightman.)

TEMPERATURE

TEmPERATURE is one of the most important factors that make up the climate of a region. Plant and temperature of the air near the under the influence of the is with this temperature that we are mostly concerned as regards agricultural enterprises and our bodily comfort. For climatological purposes the measure of temperature is obtained from thermometers freely exposed to the air near the surface of the earth and shielded from the direct rays of the sun, but in such a manner as not materially to obstruct the atmospheric circulation.

Source of data.-The records made by cooperative observers of the Weather Bureau have been largely used in preparing the charts and graphs here presented. These stations are in most cases located in the open country and small towns, where the instruments are more or less free from the artificial influences that frequently affect the temperature records made at the first order Weather Bureau stations in the larger cities. The records are made by standard maximum and minimum thermometers, exposed in approved shelters, usually at an elevation of 5 feet above the ground surface. The stations are inspected from time to time by trained officials of the Weather Bureau, with a view to having the instrumental exposure and observational work in general as uniform as possible throughout the of at least 20 years, although some for shorter periods were used, particularly in the far Western States, where fewer long records are available. ${ }^{1}$

solar and physical climate

The climate that would prevail if the earth had a homogeneous land surface and if there were no atmosphere is termed "solar climate." Under such conditions the amount of insolation received at any place would depend wholly on the declination of the sun, and all places of the same latitude would have similar temperature conditions. "Physical climate," or that actually prevailing, is a modification of "solar climate," produced by the presence of the atmosphere, the unequal distribution of land and water surfaces, differences in altitude, air movement, direction of ocean currents, and other causes. There are three major types of physical cli-mate-marine, continental, and mountain. There are also several minor types, principal among which are those designated as "coast or littoral climate" and "desert climate."
Marine climate.-The marine type of climate is characterized by comparatively uniform temperatures throughout the year, and by small diurnal range in temperatures. Water surfaces under the influence of the sun's rays warm more slowly than land surfaces and cool more slowly in the absence of direct insolation. The temperature of the overlying air likewise changes slowly, and this results in a more uniform temperature condition than is found in other types of climate. The progress of the seasons is also retarded, winter lingering later into spring and summer into fall. Marine climates have, therefore, comparatively pleasant summers, mild winters, cool springs, and warm autumns. Continental climate.-The continental type of climate is characterized by greater temperature extremes and more rapid changes in temperature. The coldest month in northern latitudes is usually January and the warmest is July, the time of maximum and minimum temperatures occurring earlier than in $t^{2} 3$ marine type. The diurnal and annual ranges, as well as the irregular changes in temperature from day to day are large, and increase, as a rule, with increasing distance from the oceans. In the United States practically all districts east of the Rocky Mountains have this type of climate, even near the Atlantic coast, as the general atmospheric drift is offshore; which prevents the marine influence from being effective to any considerable distance inland. The annual march in temperature is shown for selected stations in Figures 1 and 72, and the diurnal in Figures 85 and 86 . The characteristic increase both in the annual and diurnal temperature range with increasing distance inland may be noted in these figures.
Extreme types of continental climate are found in deserts. Here in the absence of vegetal covering, and ${ }^{1}$ The maps and graphs contained in this section of the Atlas were originally completed and ready for publication in 1917, but owing to the exigencies brought about by the
World War publication could not beaccomplished at that time. The original data embrace the 20-year period from 1895 to 1914, inclusive, corresponding to that covered by Section 1, "Frost and the Growing Season," and by Section B, "Precipitation and
Humidity," of this A Allas, both of which have elaready been pubbished. Humidity," of this Atlas, both of which have already been pubilished. These have been
Since en914 eight yearso of additional records have become evanabe.,
carefully examined and compared with the original data to determine what changes, if any, would be necessary, in order that the several maps and graphs should portray general conditions up to and including the year 1922.
The following maps have been fully revised to satis The following maps have been fully revised to satisty this requirement: Figures 3
$6,15,16,20,25,20,30,31,36,40,41,45,46,50,51,55,56,60,61,65,68,70$, and 71 . The graphs which were intended only to show certain characteristic variations in tempera-
ture in different portions of the country, such as Figure 4 , were not revised. It was ture in different portions of the country, such ase Figure 4 , were not revised. 1t was
found that all other maps and graphs required practically no changes to represent lound that all other maps and graphs required pr
conditions virtually up to the time of publication.
with clear, dry air, the earth's surface heats very rapidly under direct insolation, and high day temperatures result. At night radiation of heat is rapid from the barren ground, as the dry atmosphere offers little obstruction to the passage of heat into space, and a rapid decrease in temperature results. Although the diurnal range in temperature in deserts is much greater than in other types of climate, the high day temperatures are not so oppressive as the readings of the thermometer would appear to indicate, owing to the extreme dryness of the atmosphere. During the heated hours of the day the difference in the indications of two thermometers, one having the bulb covered with freely evaporating water and the other uncovered, is very great. This difference is known in meteorology as the "depression of the wet-bulb temperature." Its magnitude gives some indication of the degree of physical discomfort experienced during the prevalence of high temperatures which, in general, varies inversely with the depression of the wet-bulb temperature. At Yuma, Ariz., the average daily maximum dry-bulb temperature for the month of July is about $106^{\circ} \mathrm{F}$. and the wet-bulb temperature is $75^{\circ} \mathrm{F}$., the average depression of the wet-bulb thermometer at the time of maximum temperature being
 changes in temperature for different sections of the country and also the latitudinal
gradient forth temperature from south to nons. East of the Rocky Mountains the decrease in winter in summer the decrease is moderate. The small seasonal changes in temperature characteristic of marine climates and the great seasonal differences in temperature typi"Mississippi Valley region" sissippi Valley region
about $31^{\circ} \mathrm{F}$., whereas at Chicago the averages for the same period are about 80° and 69°, respectively, the average depression of the wet-bulb temperature being only 11°. So far as bodily comfort is concerned the high temperature at Yuma is greatly mitigated by the increased opportunity for evaporation. Over large areas in the Southwest this desert climate prevails, though not in such degree as at Yuma. The large diurnal temperature range in desert regions is shown in the section marked "Arid Plateau" in Figure 85 and also by the thermograph trace sheet for Yuma, Ariz., in Figure 87
In some cases coasts of large bodies of water have climates closely allied to the continental type and in others the marine characteristics dominate, depending on the surface drift of the atmosphere, whether from the land or the water. When this drift is on-shore the coast has a marine climate, as along the immediate Pacific coast of the United States. When the drift is off shore, a more or less modified form of continental type of climate obtains, which is exemplified along the Atlantic coast of the United States. On the Pacific coast the summers are cool, owing to the prevailing westerly winds, and the winters are mild for the same reason, while extremes in temperature are rare. How-
ever, this condition is confined to a narrow belt along the immediate coast, especially as regards cool summers, since mountain barriers prevent the extension of the marine influence to any considerable distance inland. The marine character of climate obtaining on the Pacific coast is shown by the graphs for San Francisco and North Head in Figures 1 and 85. In these graphs the small annual and diurnal temperature ranges may be noted. They show also the temperature ranges along the Atlantic coast, where the characteristics of the continental type predominate, although the marine influence is appreciable as compared with the central section of the country. Figure 1 also visualizes the temperature gradient from north to south in the United States for the several seasons of the year, separately for the Atlantic coast, the Mississippi Valley, the Rocky Mountain region, and the Pacific Coast States.
Mountain climate.-Mountain climate, as compared with that of the adjacent lowland, is characterized by ower temperatures throughout the year, but the diurnal and other variations are generally somewhat less than those experienced at lower elevations. The average decrease in temperature with increase in altitude in the free air is about $1^{\circ} \mathrm{F}$. for each 330 feet, but the rate varies with the season of the year and is also much affected by local conditions. It is more rapid in summer than in winter and is greatest during the warmer hours of the day. Temperature inversions, which frequently occur during the colder months and especially at night, sometimes give to mountain slopes a higher temperature than is experienced in the near-by lower valleys. This condition is brought about by the air in contact with the mountain sides through the influence of surface radiation in the absence of direct insolation becoming colder than the free air over the valley and the increased weight, resulting from cooling and contraction, sets up a convectional circulation, or interchange of air between that near the surface of the colder mountain side and the warmer free air above the valley below. This circulation is continuous as long as the difference in air density is maintained. In such cases there is a much larger diurnal temperature range in the valley than on the mountain sides. Under direct insolation surface soil temperatures in high altitudes become relatively higher than the adjacent air temperatures because the rarefied condition of the atmosphere and the comparatively small amount of aqueous vapor contained in it offer little obstruction to the passage of the sun's rays These conditions, however, have a reverse effect at night by affording less resistance to radiation, and consequently there is a greater diurnal range in soil temperature on mountains than on lowlands.

important temperature data

For the presentation of the climatic factors of any place the most important temperature data required are as follows: Average daily temperature, average daily range and average daily variability; average monthly temperature; average monthly range and absolute monthly extremes; seasonal temperature, especially the average summer (June, July, and August) and average winter (December, January, and February) temperature; average annual temperature and average annual range; and the frequency of occurrence and duration of certain significant temperatures.

Average daily temperature.-The true average daily temperature corresponds closely to the average of 24 hourly observations, but as several other differ combinations of hourly values give averages that differ but little from the true daily average some one of
these is generally used to reduce observational work. The combination

```
( 7 a. m. +2 p. m. +9 p. m. +9 p. m.)
```

gives a value which differs only slightly from the true daily average, and
(sunrise +2 p. m. +9 p. m.)

also gives fairly accurate results. The formula (maximum + minimum)

is easy of application and very satisfactory when dependable maximum and minimum thermometers are used and properly exposed. The mean of the daily extremes is, as a rule, slightly too high, but it usually does not vary more than one-half of a degree from the true daily average. This combination is employed by the Weather Bureau to obtain the average daily temperature, and the data for the accompanying charts and diagrams were compiled by its use.

Daily range and daily variability of temperature.-The normal diurnal march of temperatire may be described

ATLAS OF AMERICAN AGRICULTURE

Figure 5.- This map shows the average winter temperature, December to February, inclusive. East of the Rocky Mountains the average winter temperature increases from near zero in northwestern Minnesota and northeastern North Dakota to about 32°. in central New Jersey, southern Ohio, and the central portions of Missouri and Kansas, and to about 55° along the Gulf coast. To the westward it ranges from somewhat less
than 15° at the higher altitudes of the Rocky Mountain region to about 55° in the lower Colorado River Valley and along the coast of southern California. The Subtropical Crops Belt has an averen ranging from about 50° in the rice district of Louisiana to 70° in extreme southern Florida. In the Cotton Belt tit ranges from 40° to 50°, and even 55° in southern Texas : in Creps Bert has an average winter temperature 30° along the northern border of the belt to about 40° in the southern; in the Corn Belt from 15° in southwestern Minnesota to about 30° along the southern margin, and in the Spring Wheat Belt it varies from near zero to about 15°. In the Hay and Pasture province the average winter temperature varies widely. It is about zero in northeastern Minnesota and reaches 35° locally in the central Appalachian valleys
briefly as follows: In continental climates the daily minimum usually occurs about the time of sunrise, and in marine climates somewhat earlier. Beginning at this time there is a gradual increase until the maximum is reached, usually from two to four hours after noon in the continental type of climate and about noon, or shortly after, in the marine type. From the time of the maximum there is a gradual decrease until the next morning when the minimum is again reached. Figure 85 shows for selected stations, representing the Atlantic and Gulf coasts, the Mississippi Valley, the Rocky Mountain region, the Arid Plateau, and the Pacific coast, the diurnal march of temperature for the months of January, April, July, and October. This graph shows the characteristic features of the normal daily temperature curve for the principal climatic divisions of the United States. The significance of the average daily temperature for a locality depends on the amplitude of the periodic daily range and also on the nature of the nonperiodic or accidental changes that occur from day to day, or the daily variability. For example, the average daily temperature for August at San Diego, Calif., and at Bismarck, N. Dak., is about $68^{\circ} \mathrm{F}$., but at Bismarck the average daily maximum is 81° as compared with 73° for San Diego, whereas the average daily minimum is 55° at Bismaick and 62° at San Diego. Thus while the average temperature at the two places for this month is the same, Bismarck has an average daily range of 26° and San Diego only 11°, which makes a marked difference in the actual makes a marked difference in the actual
temperature experienced. Again, the average temperature for a given month may be the same two different places, and one may be subject to large daily variability, as shown by the difference between the mean temperatures for successive days, and the other may have comparatively uniform temperatures from day to day. Under such conditions, although the average monthly temperatures would be similar, the temperature conditions actually experienced would be wholly different. The daily variability of temperature is least in the marine

Figure 6. - This map shows the lowest temperatures ever observed up to and including the year 1922, based on the records of the regular reporting and of selected cooperative stations. These absolute minimum temperatures range from $-65^{\circ} \mathrm{F}$. in eastern Montana to 41° at Key West, Fla. Temperatures of -40° have been recorded in northern New England and northern New York, and as low as -20° as far south as Tennessee, Arkansas, and Oklahoma, and zero temperatures have occurred in the central Gulf coast dis-
tricts. Along the central and southern California coast the lowest temperatures of record are from 24° to 28°.
and average daily minimum temperatures each month. Figures $81-84$ show the average daily range in temperature throughout the United States for the months of January, April, July, and October; and Figure 86 shows for selected stations, representing the principal types of climate found in this country, the maximum and minimum temperatures each day for the years 1913 and 1914. In this graph the tops of the vertical bars show the daily maxima and the bottoms of the bars the daily
minima. The length of the bars indicates the amplitude of the daily range, and their centers show the daily mean values. The relative position of the bars for successive days indicates the daily variability. This graph shows the characteristics of important temperature shows the characteristics of important temperature
data for different sections of the country and for the data for different sections of the country and for the
several seasons of the year in such manner as to faciliseveral seasons of the year in such manner as to facili-
tate comparison of conditions in different localities. ate comparison of conditions in different localities.
Average monthly temperature and monthly extremes.-The is known as the average monthly tempera ture, and ifs significance depends on the extent of the periodic variations in the daily values, from which it is derived, and on the frequency and amount of the nonperiodic or accidental fluctuations that are liable to occur from time to time during the month. Figures 12, 17, 22, 27, 32, $37,42,47,52,57,62$, and 67 show the average temperatures for each month of the year, based on the records of about 1,200 stations, which in most cases cover a period of at least 20 years. Accompanying these are auxiliary charts showing for each month the average daily maximum and the average daily minimum temperatures, and others showing the highest and the lowest mean monthly temperature observed during the 28 -year period 1895 to 1922 , inclusive.
In addition to the average of the daily maxima and the average of the daily minima it is important to know the average of the monthly extremes, that is, the average of the highest temperatures and the average of the lowest temperatures recorded each month, for a long series of years, and the absolute maximum and absolute minimum for each month. These data are shown for a considerable number of representative stations by the large graph-chart (fig. 72). These graphs show for the stations named, and for each month of the year, (1) the average monthly temperatures, (2) the average of the daily maxima and of the daily minima, (3) the average of the monthly maxima and of the monthly minima, and (4) the absolute maximum and absolute minimum,

Figure 7.-This map shows the average of the lowest temperatures recorded each winter. As a rule, the lowest temperatures in the United States occur in the northern portions of North Dakota and Minnesota, usually about $-40^{\circ} \mathrm{F}$. or slightly lower. The other extreme is found at Key West, Fla., where the lowest temperature for the year ordinarily does not go below 50°. Along the immediate Gulf coast the average annual
minimum is 22° to 25°, whereas along the immediate Pacific coast it ranges from about 25° at the north to 36° at the south. The marine influence is markedly shown by the north and south trend of the isotherms along the Pacific coast, and is noticeable along the Atlantic coast, where the isothermal lines trend in a northeasterly direction as they approach the ocean and terminate at the coast several hundred miles farther north than the latitude at which they cross the Mississippi Valley. The tempering effect of the Great Lakes is shown by the trend of the isotherms along their leeward shores in Michigan, Ohio, and New York

Figures 8 and 9 show the number of years in the 20 -year period, 1895-1914, that the minimum temperature was 6° or more, and $9^{\circ} \mathrm{F}$. or more, respectively, below the average annual minimum. These maps show Figure 10 shows the average annual number of days with temperature continuously below freezing
Figure 10 shows the average annual number of days with temperature continuously below freezing during the day. In the northern portions of Minnesota and North Dakota there are, on the average, more than 100 days each year when the temperature does not rise above $32^{\circ} \mathrm{F}$., but southward there is a rapid decrease to less than 1 day along the Gulf coast. Along the Pacific coast, except at the extreme north, the average is also less than figure 11 s
usually occur on 180 to 200 days of the year, and in northern New York and northern New England on 165 days or more. To the southward there is a rapid ecrease in number to about 5 days alozing temperatures whereas along the southern Pacific coast the average is less than 1 day annually

ATLAS OF AMERICAN AGRICULTURE

Figure 12.-January is, as a rule, the coldest month of the year. The lowest temperatures usually occur in the northern portion of Minnesota and North Dakota, where the average temperature for the month is near zero. The temperature gradient from north to south is much more rapid in winter than in summer, the average January temperature increasing to about $55^{\circ} \mathrm{F}$. at the coast of the Gulf of Mexico, an increase on the average of 1° for each 25 miles. In July the average increase in temperature from North Dakota to the Gulf coast is 1° for each 90 miles. (See fig. 42.) Throughout the interior of the continent temperature in northern Minnesota, North Dakota, and eastern Montana, and records of -25° to -35° have been made in northern New York and New England. Along the Gulf coast the lowest recorded temperatures for this month range from 11° to 15°. Freezing temperatures are of infrequent occurrence in southern Florida and also along the coast of southern California

[^0]

 Mountains. In fact, the coldest weather of the year frequently occurs during the early part of this month. Temperatures as
 coast after the 20th of the month

Figure 22.-With the advent of spring there is a rather rapid increase in temperature in most sections of the country. In the northern interior region March is about $15^{\circ} \mathrm{F}$. warmer than February, but the increase in temperature from February to March becomes less marked with progress southward, being only about half as great along the Gulf coast as along the northern border of the country. The lowest average temperature for March, about 20°, is found along the northern border in North Dakota and Minnesota, and there is an increase southward to about 60° or 5° along the Gulf coast. . weather occurs occasionally in this month, from -30° to -40° having been recorded in North Dakota and Montana. But the March cold waves usually lose intensity rapidly in their southward and eastward progress. Temperatures below zero have never been recorded in this mon soth of the fortieth parall experienced in the Gulf States, except in the extreme northern portions, after March 15

Figures 23 and 24 show for March the average daily maximum and the average daily minimum temperatures. In the northern border States east of the Rocky Mountains the average daily maximum is about 35° F., but this increases southward to about 70° along the Gulf coast and to 80° in portions of the Florida Peninsula and in the lower Rio Grande Valley. In the West the average March maximum varies from somewhat less than 40° in the central and northern Rocky Mountain districts to 80° in the lower Colorado River Valley. The average daily minimum east of the Rockies increases from 10° along the northern border in North Dakota and Minnesota to somewhat
lower Colorado River Valley

Figures 25 and 26 show the highest and the lowest mean March temperatures occurring in the 28 -year period 1895-1922. The range of variation in the mean temperature for March is much larger than for February specially in the northern interior States, where the month in one year may be $30^{\circ} \mathrm{F}$. warmer than in another yea

Figure 27.-As spring advances the increase in temperature becomes more pronounced, the average for April in North Dakota and northern Minnesota being nearly 20° F. higher than for March. Southward the increase in temperature becomes progressively less rapid, amounting to about 6° along the Gulf coast. The average temperature for April ranges from about 40° along the Canadian boundary to nearly 70° at the Gulf of Mexico. Along the Pacific coast April is only slightly warmer than March, but in the interior Plateau and Rocky Mountain districts the increase in temperature during April is rapid. Cold periods occur occasionally south as Mobile, Ala, but as a ruph ap far south as Mobile, Ala., but as a rule such temperatures do not occur after the 15th of this month south of a line extending through central Virginia, western North Carolina, and southern Kentucky westward to central
Missouri and Kansas

Figures 28 and 29 show for April the average daily maximum and the average daily minimum temperatures. In the principal agricultural districts east of the Rocky Mountains the usual daily temperature range in from about 45° in northern Maine and the extreme upper Lake region to nearly 80° along the Gulf coast, and the average daily minimum from somewhat less than 30° in the extreme north to about 60° at the Gulf. From the Rocky Mountains westward the average daily maximum varies from somewhat less than 50° at the higher altitudes in the Rocky Mountain region to nearly 90° in southwestern Arizona, and the minimum from about 20° in portions of Colorado and Wyoming to 50° along the coast of southern California and in the lower Colorado River Valley

Figures 30 and 31 show the highest and the

ATLAS OF AMERICA AGRICULTURE

Figure 32.-May throughout most of the United States is usually characterized by the prevalence of mild temperatures. East of the Rocky Mountains the average May temperature ranges from about 50° F. along the northern border of the country to 75° at the Gulf of Mexico, being 5° to 15° higher than for April. Along the immediate Pacific coast it ranges from 50° at the north to 60° at the south. In the lower Rio Grande and Colorado River Valleys the average May temperature is slightly over 80°. The lowest temperature of record in May at a regular reporting station is 6° in northern North Dakota. Freezing temperature has occurred in this month as far south as northern Texas, but east of the Mississippi River freezing weather has never been known south of the Ohio River and southern Pennsylvania, except in elevated districts. As a rule freezing
temperatures do not occur after May 10 south of South Dakota, the central portions of lowa and Wisconsin, and the lower Lakes. High temperatures sometimes occur in May, especially in the Great Valley of California and in the lower Colorado River Valley, 110° having been recorded at Red Bluff and Fresno, Calif., and 120° at Yuma, Ariz.

[^1] region and along the eastern Maine coast to 85° in the southern section of the Cotton Belt, but along the immediate Gulf coast it is only about 80° In daily maximum increases fram about $60^{\circ} \mathrm{F}$. in the upper Lake about 60° at the higher altitudes in the Rocky Mountain States and also along the north Pacific coast to 95° in the lower Colorado River Valley. The average daily minimum for May east of the Rocky Mountains ranges Figures 35 and 36 show the highest and the lowest mean May along the immediate Gulf coast, and in the West from less than 30° in the central Rocky Mountain districts to 60° in the lower Colorado River Valley in the upper Lake region and in some of the Rocky Mountain districts to 73° along the Gulf coast $185-1922$. The lowest mean temperature for May experienced during this 28 -year period ranges from about $40^{\circ} \mathrm{F}$,

Figure 42.-July is usually the warmest month of the year, except along the Pacific coast, where the marine type of climate prevails. East of the Rocky Mountains the average July temperature ranges from between 35° and $70^{\circ} \mathrm{F}$. in the northern border States to about 82° on the Gulf coast. Along the Pacific coast it increases from about 55° at the north to 67° at the south. The highest July temperature usually occurs in southwestern Arizona and southeastern California, where the average for the month varies from 90° to 98°. In July periods of hot weather are comparatively frequent in the interior sections of the country. In some of the
important agricultural districts, particularly in the Middle West, the heated periods are occasionally accompanied by hot winds which are injurious to vegetation. July temperatures of from 105° to 110° have been experienced in nearly all localities between the Rocky Mountains and the Mississippi River and at many points to the eastward. However, along the central and north Pacific coast in the higher altitudes of the Rocky and Appalachian Mountains and likewise at points along the north Atlantic coast and in the Florida Peninsula the highest temperatures ever recorded are less than 100°

Figures 43 and 44 show for July the average daily maximum and the average daily minimum temperatures. The average daily maximum east of the Rocky Mountains ranges from between 70° and 80° F. along the Canadian Border to about 100° in the lower Rio Grande Valley, and in the far West from about 60° along the north Pacific coast to nearly 110° in the lower Colorado River Valley. The average daily minimum ranges from less than 40° in the higher Rocky Mountain districts and about 50° in northern North Dakota to 75° along the Gulf coast and in the lower Colorado River Valley. The average daily range in temperature in July in the Eastern States is mostly from

Figures 45 and 46 show the highest and the lowest mean July temperatures in the 28 -year period 1895-1922. Variations in the mean July temperature from year to year are, as a rule, not pronounced, the extreme range being in most districts from 5° to $7^{\circ} \mathrm{F}$, as compared with 10° to 20° for January

Figure 47.-During August temperature zonditions do not, as a rule, differ materially from those in July, but August is usually slightly cooler, except along the Pacific coast. At some points on the Pacific coast September is even warmer than August. East of the Rocky Mountains the coolest August weather usually occurs in northern Michigan and in the highlands of New. York and New England, where the average temperature for the month ranges from 60° to $6{ }^{\circ}$. The 15°, butature gradient from north to south much smaller in summer than in winter. In July and August the difference between the average temperature along the Canadian California and in southwestern Arizona hot weather often prevails, the average ${ }^{\circ}$. Along the immedrate Pacific coast he characteristic ${ }^{\circ}$ Colorado River Valley, 113° at points in the Great Valley of California and eastern Washington, 112° in northeastern Texas, and 110° locally in the northern Great Plains region

Figures 48 and 49 show for August the average daily maximum and average daily minimum temperatures. Along the immediate Pacific coast the daily maximum temperature during this month is low, ranging from $60^{\circ} \mathrm{F}$. at the north to 74° at the south. In the southern portion of the Great Valley of California the average daily maximum temperature is near 100°, and in the lower Colorado River Valley it reaches 108°. East of the Rocky Mountains the average daily maximum temperature ranges from about 72° in northern Michigan and 70° on the eastern Maine coast to 100° in the lower Rio Grande Valley. The average daily minimum for August
ranges from about 35° in the higher altitudes of the middle and northern Rocky Mountain districts to about 75° along the Gulf coast and in the lower Colorado River Valley. In practically all the important agricultural ections of the United States it is over 50°
Figures 50 and 51 show the highest and the lowest mean August temperatures in the 28 -year period 1895-1922. The range in variation in this mean August temperature does not differ materially from that for July, being mostly about 5° and less than $10^{\circ} \mathrm{F}$. throughout practically the entire United States

Figure 52. - The average September temperature east of the Rocky Mountains ranges from about $55^{\circ} \mathrm{F}$. along the Canadian boundary, where it is about 8° lower than in August, to about 78° along the Gulf coast,
where it is 2° or 3° lower. At the lower elevations of the Rocky Mountain and Interior Plateau regions the average Setember and in the lower Colorado River Valley 80° to 85°. In some localities along the immediate Pacific coast September is usually the warmest month in the year. High temperatures are experienced of Casionally in September especially between the Rocky Mountains and the Mississippi River, where records of 100° or higher are quite general. Likewise, in the interior valleys of California, high temperatures sometimes occur in this month, the highest being lo Missouri; but east of the Rocky Mountains frost daes ey. Cool weather may also occur in September, freezing temperatures having been recorded as far south as the Ohio River and the southern portions of Kansas and Missouri; but east of the Rocky Mountains frost does not usually occur in September south of the northern border States

[^2]

FIgure 57.-During October there is a pronounced decrease in temperature, except in southern Florida and along the Pacific coast. The decrease below the average September temperature is in general from 10° to the lower elevations mostly, it varies from 40° to 50°, but is 10° to 20° higher in the valleys of New Mexico. Arizona, and California. Along the immediate Pacific coast the average temperature increases from about 50° at the north to 60° at the south. Temperatures below zero have been experienced at a few points in the North Central States in October, the lowest of record a coast the average temperature increases from about 50° northern Montana. Freezing temperatures have occurred in this month nearly to the Gulf coast. In a normal year freezing weather occurs before the last of October as far south as the northern portions of South Carolina, Georgia, Alabama, and Mississippi and the central portions of Arkansas and Oklahoma. Along the Canadian border freezing temperatures occur, on the average, on about 15 days in October, but to the south ward the number decreases rapidly

[^3]ATLAS OF AMERICAN AGRICULTURE

Figure 62.-During November the decrease in temperature, as a rule, is rapid, the average temperature for the month being usually from 10° to $20^{\circ} \mathrm{F}$. lower than that for October, except along the Gulf and Pacific coasts. The greatest decrease in temperature is in Minnesota and the Dakotas. East of the Rocky Mountains the average November temperature ranges from about 25° in northern Minnesota and North Dakota to about 60° along the Gulf coast, and 70° in southern Florida. Along the Pacific coast it increases from 45° at the north to about 60° at the south. In November cold waves of considerable severity sometimes advance from the Weather Bureau station in this month south of the Ohio River, but freezing weather has occurred southward to Tampa. Fla. Freezing semperatures are not ordinarily reached in November, however, along the Texas coast Weather Bureau station in this month south of the Oines of Gainesville. Fla. The lowest temperature of record for this month at a regular reporting station is -33° in northern Montana

Figures 63 and 64 show for November the average daily maximum and the average daily minimum temperatures. East of the Rocky Mountains the average daily maximum ranges from about 35° F. along the northcentral border of the United States to about 70° along the Gulf coast. Except along the Gulf and south Atlantic coasts it is 10° to 20° lower than for October. In the West the average daily maximum varies from less than 40° in the higher altitudes of the Rocky Mountain region to 80° in the lower Colorado River Valley. The average daily minimum for November ranges from abot and in the higher altitudes of Colorado and Wyoming to about 50° along the central Gulf and southern California coasts, and nearly 70° in southern Florida
Figures 65 and 66 show the highest and the lowest mean November temperatures in the 28-year period 1895-1922. East of the Rocky Mountains the variation from year to year in mean November temperatures is large, , when the mean temperature for the month was about 7°

Figure 67. -During December the temperature, as a rule, continues to decrease rapıdly. East of the Rocky Mountains the decrease in the average temperature from November to December ranges from about 15° F in the northern border States to 7° or 8° along the Gulf coast. The average December temperature ranges from about 10° in northwestern Minnesota and northeastern North Dakota 555° in the Gulf coast region, and 70°
in extreme southern Florida. In the valleys of the Rocky Mountain and Interior Plateau regions the average temperature for the month varies from 20° to 35°, except in the Mexican-border States, where it is locally as high as 55°. Along the Pacific coast the average temperature increases from about 44° at the north to 56° at the south. During December cold waves become more frequent and severe, and in the interior portions of the country very low temperatures occasionally occur. The lowest of record for this month at a regular Weather Bureau station is -50° in northern Montana. Temperatures of -10° to -15° have been experienced in December as far south as southern Kansas and Missouri and -5° in portions of Tennessee and North Carolina. Along the central Gulf coast the lowest temperature recorded in December is 14°

[^4] Minnesota and North Dakota to about 65° along the Gulf coast, and 70° in southern Florida and extreme southern Texas. In the West it varies from less than 30° in the central Rocky Mountain region to nearly 70° in the zero at the higher altitudes in the Rocky Mountain region to 48° on the coast of southern California, decreasing slowly along the coast northward to 46°. Dakota to 66° at Key West, Fla. In the West it varies from below Figures 70 and 71 show for December the highest and the lowest mean temperatures in the 28 -year period 1895-1922. The variation from year to year is comparatively large in most districts. $20^{\circ} \mathrm{F}$. in the central and northern Rocky Mountain districts and in the North Central States, about 10° in the Gulf coast region, but only about 5° along the north Pacific coast

ATLAS OF AMERICAN AGRICULTURE

Figures $73,74,75$, and 76 show the dates on which the average daily temperature in spring rises above $35^{\circ}, 45^{\circ}, 55^{\circ}$, and 65° F., respectively. These charts show the progress of the season as indicated by the
movement northward of significant isotherms. The hardier cereals germinate and begin growth when the average daily temperature reaches about 35°; consequently the seeding of spring wheat begins in the Spring Wheat movement northward of significant isotherms. The hardier cereals germinate and begin growth when the average daily temperature reaches about 35°; consequently the seeding of spring wheat begins in the Spring Wheat
Belt about this time, followed by spring oats one or two weeks later. When the average temperature reaches about 45° potato planting begins throughout the Central and Northern States, and when 55° is reached the Belt about this time, followed by spring oats one or two weeks later. When the average temperature reaches about 45° potato planting begins throughout the Central and Northern States, and when 55° is reached the
planting of corn has begun in the eastern United States. By the time 65° is reached corn planting is practically over in the Corn Belt and alfalfa is almost ready for the first cutting. This line of 65° reaches the eastern last
coast of Maine, the extreme upper Lake region, and the central and northern Rocky Mountain districts about July 20 and then immediately begins its retreat southward. In the regions to the north of or above this extreme coast of Maine, the extreme upper Lake region, and the central and northern Rocky Mountain districts about July 20 and then immediately begins its retreat southward. In the regions to the north of or above this extreme
limit of 65°, and along the immediate Pacific coast as far south as Point Conception, where also an average temperature of 65° is not attained during the summer, the crops are practically confined to hay, pasture, small limit of 65°, and along the immediate Pacific coast as far south as Point Conception, where also an average temperature of 65° is not attained during the summer, the crops are practically confined to hay, pasture,
grain, potatoes, and the hardier fruits and vegetables. In extreme southern Florida the average daily temperature never falls below 65°, and here limes, pineapples, and subtropical fruits are the important crops

[^5]

Figures $81,82,83$, and 84 show the average daily range in temperature for the months of January, April, July, and October, respectively. They represent the difference between the average of the maxima and the average of the minima temperatures of each day of the month. In January the least daily range is in the Puget Sound region, where it is less than Massachusetts coasts, and the greatest daily range, over 39°, is again Arizona, where it is over 33°; in April the least daily range, 9° to 12°, is along the western Gulf, southern Florida, northern in infornia, and oregon and northern Nevada; and in October the least daily range is in southern in southern New Mexico and Arizona; in July the least daily range is along the north Pacific coast, and the greatest, over ing influence of large bodies of water is everywhere evident, especially in July, and conversely the
 being smallest in winter and largest in late summer and fall, when the weather is driest
or the highest and the lowest temperatures ever recorded in the respective months.

Seasonal temperatures.-Of these the most important are the average summer and average winter temperatures. The average summer temperature is especially significant because in the more northern portions of the United States and at higher altitudes in the West the three summer months coincide more or less with the growing season of potatoes and of corn, whereas the average winter temperature shows many interesting correlations with the northern limits of winter wheat and several tree fruits. Figure 2 shows the average summer and Figure 5 the average winter temperature.

Average annual temperature.-The true average annual temperature is the average of the 365 successive average daily temperatures (24-hourly observations), but it is customary to compute it from the 12 monthly averages, based on the mean of the daily maximum and minimum. The difference between the results obtained by these two methods, due principally to the inequalities in the lengths of the months, is negligible, amounting generally to a very small fraction of a degree only
The average annual temperature has relatively little value as an index to the actual temperature conditions in any locality, because of the great difference in seasonal variations in different sections of the country. For example, the mean annual temperatures at San Francisco, Calif., and at Wichita, Kans., having practically the same latitude, are nearly the same-about $55^{\circ} \mathrm{F}$. The average daily minimum temperature at Wichita, however, for the three winter months is 24° as compared with 46° at San Francisco, and the average daily maximum for the three summer months at the former is 88° and only 65° at the latter. The average January temperature at San Francisco is 50° and at Wichita 30°, whereas the average July temperature is 57° at San Francisco and 79° at Wichita. There is obviously little similarity in the general temperature conditions at these two points, yet their annuai averages are the same. For these rcasons no chart showing the average annual temperature is included in the Atlas.
Average annual range. - The average annual range in temperature is defincd as the difference between the average temperature of the coldest month and that of the warmest month. It affords an excellent expression of
the rise in temperature that takes place from midwinter to midsummer. At Bismarck, N. Dak., the average

DAILY MARCH OF TEMPERATURE, SELECTED STATIONS			
ma			
atlantic coast gil gul coast			
- Cimcinnario ohio			
		Howt	
MISSISSIPP VALLEY			
W			
orex	Sut Lake	NORIH HEAD, WMSH.	
ARID PL	Lateau	PACIFIC	Coast

Figure 85.- This graph shows for selected stations, representing marine, cont inental, arid, and mountain types of climaty, the average
daily march of temperature. The amplitude of the daily march of temperature thus represented is considerably less than the average daily range in temperature, shown in Figures 81 to 84, particularly during the winter months, since the daily march represents the average temperature for each hour of the day, whereas the daily range is based
on the daily extremes in temperature regardless of the hour of occuron the daily extremes
rence. The small daily variations in temperature in marine climates are shown by the graphs for San Francisco, North Head, Galveston, and to a less extent by that for New Orleans, the larger daily march in contınental climates by the graphs for Cincinnati and Bismarck, and in mountain climates by the graphs for Helena and Santa Fe , and the still greater difference between day and night temperatures in arid climates by the graph for El Paso. The graph for Salt Lake City
shows the marked influence of so small a body of water as Salt Lake in moderating the daily march of temperature
temperature of the coldest month, January, is $7^{\circ} \mathrm{F}$. and that of the warmest month, July, is 70°, making an average annual range of 63°, whereas at San Francisco the average annual range is only 10°.

The greatest average annual range in temperature ccurs in the northern interior districts of the United States and the least near the coasts, especially along the Pacific coast. In the Gulf and South Atlantic States it is about $30^{\circ} \mathrm{F}$.; in the Middle Atlantic States, central Mississippi Valley, and the Rocky Mountain region it is from 40° to 50°, and from Montana eastward to the Lake region it is between 55° and 65°. The average annual range in temperature is shown graphically for different sections of the country in Figure 72.

anNUAL MARCH OF TEMPERATURE

This is represented by the successive average daily temperatures. The change in the angle of inclination of the sun's rays and consequently in the length of the day is very slight for successive days and the resulting normal change in temperature from one day to another in the progress of the season is correspondingly small. In individual years the temperature fluctuations occasioned by the passage of cyclonic storms so disguise this gradual change that its occurrencc can be realized only after the lapse of a number of days. (See fig. 86.)
As in the daily temperature march, there exists in the annual march of temperature, outside the equatorial region, a single maximum and a single minimum. In the United States the warmest month is July, except along the immediate Pacific coast where, because of the marine influence, it is often August or September, and the coldest month is January. The occurrence of these maximum and minimum temperatures is in general about a month later than the time when the sun reaches it highest and lowest altitude, respectively.
The progress of the seasons may be briefly summarized by months as follows:
January.-The average January temperature is slown for the different sections of the country in Figure 12. It varies greatly in different localities and the gradient from north to south is much stecper than in the warmer seasons of the year. The coldest weather oceurs, as a rule, in the northern portions of Minnesota and North Dakota, where the average January temperature is nea $0^{\circ} \mathrm{F}$. Southward the temperature inercases rapidly, the monthly average rising to the freezing point at approximately the latitude of the lower Olio River, central Missouri, and southern Kansas, and to about 55° along

the Gulf coast. From the Rocky Mountains westward to the Sierra Nevada and Cascade Ranges temperature conditions are determined largely by altitude, rather than by latitude as in the East. At the lower altitudes the average January temperature ranges generally from 20° to 35°, but is higher in portions of Arizona and New Mexico. High temperatures for the latitudes obtain along the Pacific coast, the January average ranging from about 40° on the extreme north coast to about 55° in southern California.
Throughout the interior of the continent January is characterized by frequent and abrupt temperature changes, resulting from the passage of cyclonic storms and accompanying anticyclones. The difference in temperature at the front and at the rear of a pronounced cyclone may be as great as $60^{\circ} \mathrm{F}$. or more, and with rapid forward movement of the storm the temperature at a forward movement of the storm the temperature at a
given place may fall 40° or 50° within a few hours. given place may fall 40° or 50° within a few hours.
During this month very low temperatures are sometimes experienced in the northern interior portions of the country. In Minnesota, the Dakotas, and Montana temperatures of -40° to -50°, or lower, have been recorded in January and from -25° to -35° have occurred in the interior portions of New York and New England. The lowest temperature ever recorded at a Weather Bureau station in the United States was -65° in the eastern Montana in January, 1888. Along the in the eastern Montana in January, 1888 . Along the
central and southern California coast the lowest temperatures on record range from 27° to 29° and peratures on record range from the Gulf of Mexico coast from 11° to 15° Freezing temperatures are of infrequent occurrence along the coast of southern California and likewise in extreme southern Florida.
February. - Figure 17 shows the average February temperature. This differs only slightly, as a rule, from that of January, February usually being slightly warmer. The lowest average temperature for this month, about 5° F.,
is found in the northern portions of Minnesota and North Dakota, whereas to the eastward over the upper Lake region and the northern portions of New York and New England the average February temperature is about 15°. To the southward there is a progressive increase to about 32° in central New Jersey, southern Ohio, . central Missouri, and Kansas and to
about 55° along the Gulf coast. As in January, cold waves frequently sweep
down from the Canadian Northwest during down from the Canadian Northwest during February and overspread all districts east of the Rocky Mountains, sometimes bringing ex-
tremely cold weather. In fact, the coldest weather of the year east of the Rocky Mountains occurs frequently during the early part of this month. A memorable cold wave occurred in February, 1899, which carried the line of
zero temperature to the east-central Gulf coast zero temperature to the east-central Gulf coast
and a temperature of $10^{\circ} \mathrm{F}$. was recorded at Jacksonville, Fla. The coldest February temperature of record at a first-order Weather Bureau station in the United States is -55°, occurring in Montana in 1887. Temperatures as low as -25° have occurred in this month as far south as Kansas and Missouri. Toward the latter part of the month, however, the increase
in temperature usually becomes noticeable, and along the immediate Gulf coast freezing weather does not occur, as a rule, after February 20.

March.-Figure 22 shows the average March temperature. With the advent of spring there is usually a rapid warming up in nearly all portions of the United States, although in the Pacific Coast States the increase in temperature is not pronounced, especially along the immediate coast. In the northern interior districts the increase in average temperature from February to March is about $15^{\circ} \mathrm{F}$., but it diminishes to the southward, being only about half as great near the Gulf of Mexico. The average temperature for March on the northern border between Montana and Lake Superior is about 20°; along the Gulf coast it ranges from 60° to 65°
In the northern States extremely cold weather occasionally occurs during March, temperatures of -35° to $-40^{\circ} \mathrm{F}$. having been recorded in this month in portions of North Dakota and eastern Montana. The March cold waves, however, usually lose intensity rapidly, and the Central and Southern States seldom experience severely cold weather in this month. Temperatures below zero have never been recorded in March south of below zero have never been recorded in March south of
the fortieth parallel, except in the Texas panhandle, the fortieth paralle, except in the Texas panhandle,
Kansas, and a few localities to the eastward. In the Gulf States after March 15 freezing temperatures do not occur, as a rule, except in the extreme northern portions. April.-Figure 27 shows the average temperature for April. As spring advances the increase in temperature becomes more rapid and consequently the warming up during April is greater than during March. Along the northern interior border of the United States the the northern interior border of the United States the
average temperature for April is about $20^{\circ} \mathrm{F}$. higher
than for March, but with progress southward the increase becomes less pronounced, amounting to about 10° along the Gulf coast. The average April temperature ranges from about 40° in the extreme North to about 70° at the Gulf. Along the immediate Pacific coast there is little change in temperature from the preceding month.
Cold periods prevail occasionally during April, especially in the more northern districts. The lowest temperatures on record for this month are slightly less than $-10^{\circ} \mathrm{F}$. near the Canadian border in North Dakota, and freezing temperatures have occurred early in the month as far south as Mobile, Ala., and northern Florida. Cold waves, however, are not of frequent occurrence during April and are of comparatively short duration. As a rule, freezing temperature is not experienced after April 15 south of a line extending from central Virginia, through western North Carolina, and the southern portions of Kentucky, westward to Missouri and Kansas.

May.-This month is characterized by the prevalence of mild temperatures, as shown in Figure 32. The average temperature in May ranges from about $50^{\circ} \mathrm{F}$. along the northern border of the country to 75° at the Gulf, being from 7° to 10° higher than for April. Along the immediate Pacific coast the average temperature ranges from 50° at the extreme north to 60° in southern California. The highest average temper-

 the West.
70°, but in the extreme southern portion it is much higher. In the lower Colorado River Valley, in the extreme Southwest, the average June temperature is over 90°, whereas along the Pacific coast it ranges from 55° at the extreme north to 65° at the south.
High temperatures occur occasionally during June. The highest of record at a first-order Weather Bureau station is 117° F. at Yuma, Ariz., and records of 106° to 110°, have been made in the Plains States and in Montana. Temperatures of 100°, or higher, have occurred in June rather generally throughout the country, except in the Northeastern States, the vicinity of the Great Lakes, in the higher altitudes of the Rocky Mountain and interior Plateau regions, and along the north Pacific coast. The average date of the last freezing temperature in spring in the extreme northern portions of Minnesota and North Dakota is about June 1, but it is later than this in some of the elevated districts of

July.-Figure 42 shows the average July temperature. This is, as a rule, the warmest month of the year, except in localities having the marine type of climate. East of the Rocky Mountains the average July temperature ranges from a little less than $70^{\circ} \mathrm{F}$. in the northern border States to about 82° along the Gulf coast. The temperature gradient from north to south in the summer season is much smaller than in the winter. The difference between the average July temperature along the northern border of the United States east of the Rockies and that on the Gulf coast is about 15°, but for January it is about 50°. The highest July temperature in the United States is found usually in southwestern Arizona and the interior valleys of southern California, where the average for the month ranges from 90° to 98°. Along the Pacific coast the summers are cool, the average July temperature ranging from about 55° in western Washington to 67° in southwestern California.
In July periods of hot weather are comparatively frequent in most sections of the country, and very high temperatures are somctimes experienced. Occasionally the hot waves are of unusually long duration, particularly in the sections east of the Rocky Mountains, and at such times suffering, especially in the congested districts of the large cities, is intense. In some of the important agricultural districts, particu-
larly in the Middle West, the heated periods larly in the Middle West, the heated pcriods
are occasionally accompanied by "hot winds," which prove disastrous to growing crops. The highest temperature of record for July at a first-order Weather Bureau station is $118^{\circ} \mathrm{F}$. at Yuma, Ariz., and in the Great Valley of California temperatures of 110° to 115° have occurred. A maximum temperature of 134°
has been recorded at a cooperative station in Death Valley, Calif., which is the highest official temperature ever recorded in the United States and probably in the world. In the Plains States and Mississippi Valley temperatures of 105° to 110° have been experienced, and records of 100° or higher have been made generally throughout the country, except in
some restricted areas. Although the average summer temperature in the Southern States is considerably higher than in the Northern, extremely hot weather occurs occasionally in practically all northern sections of the country. In fact, higher temperatures are on record in the Dakotas and Montana than have ever occurred in Mississippi, Alabama, or Florida.
August.-Figure 47 shows the a verage August
ature, slightly over 80°, is found in extreme southern Texas and in portions of the far Southwest.
The lowest temperature of record for May at a firstorder Weather Bureau station is $6^{\circ} \mathrm{F}$. in the northern portion of North Dakota. Freezing weather has been known to occur in this month as far south as northern Texas, and a temperature as low as 26° is on record in the panhandle of that State. East of the Mississippi River freezing temperature has never been experienced in May south of the Ohio River and southern Pennsylvania, except in some of the more elevated sections. As a rule, freezing temperature does not occur after May 10 south of South Dakota, the central portions of Iowa and Wisconsin, and the lower Lake region. June.-Figure 37 shows the average June temperature. Along the northern border of the United States the average temperature for this month is about $60^{\circ} \mathrm{F}$., or approximately 10° higher than for May. East of the Rocky Mountains there is a rather rapid increase in temperature from the northern border to about 70° at the latitude of central Iowa, and thence a less rapid rise to about 80° in the Gulf coast section. The average June temperature at the lower altitudes in most of the central and northern portion of the Rocky Mountain and interior Plateau regions ranges from about 60° to
temperature. This differs little from that for
July, but as a rule August is slightly cooler, except on the Pacific coast. At some points on the Pacific coast September is the warmest month of the year. East of the Rocky Mountains the coolest August weather occurs in northern Michigan and in the interior of New York and New England, where the average temperature for the month ranges from about 62° to $65^{\circ} \mathrm{F}$. At points in the far Southwest it is as high as 95° or more. The remarks as to July temperature conditions in general apply also to those of August.
September.-Figure 52 shows the average temperature for September. The average September temperature ranges from about $55^{\circ} \mathrm{F}$. in the northern border States, where it is about 8° lower than for August, to about 78° along the Gulf coast, where it is 2° or 3° lower. At the lower elevations of the Rocky Mountain and interior Plateau regions it is mostly from 50° to 65°. In the Great Valley of California the average September temperature is 70° to 75°, and in southwestern Arizona it is 80° to 85°
High temperatures sometimes occur in September, especially between the Rocky Mountains and Mississippi River. The highest of record for this month at a first-order Weather Bureau station in this region is 106° F., in eastern South Dakota, and temperatures of
100° or higher have been quite generally experienced. East of the Mississippi River only a few stations have temperature records for September as high as 100°. In portions of California high temperatures are reported occasionally in this month, the highest of record at a first-order station of the Weather Bureau being 111° at Fresno, Calif. Cool weather also occasionally obtains in September, freezing temperatures having occurred as far south as the southern portions of Kansas and Missouri and the Ohio River Valley. The average date of the first freezing temperature in fall in most of the Dakotas and Minnesota, in northern Wisconsin, and at the higher elevations of New York and New England ranges from September 15 to 30 .
October.-Figure 57 shows the average temperature for October. During October there is a considerable decrease in temperature, except in extreme southern Florida and along the Pacific coast, the decrease being generally as much as 10° to $15^{\circ} \mathrm{F}$. Along the extreme northern border of the country the average October temperature is about 45°, increasing with progress southward to about 70° along the Gulf coast. West of the Rocky Mountains at the lower altitudes the average for the month ranges from somewhat less than 40° to about 50°, except that it is higher in the far southwestern region. On the Pacific coast the average temperature ranges from 50° at the north to 60° at the south.
Temperatures below zero have been experienced at a few points in the north Central States in October, the lowest of record at a first-order station of the Weather Bureau being $-16^{\circ} \mathrm{F}$. in northern Montana, and freezing temperatures have occurred nearly to the Gulf coast. On the average freezing weather occurs by the last of October as far south as the northern portions of South Carolina, Georgia, Alabama, and Mississippi and the central portions of Arkansas, and Oklahoma.
November.-Figure 62 shows the average temperature for November. During Noveniber the decrease in tem-
perature as a rule is rather pronounced, the average for the month being mostly from 10° to $15^{\circ} \mathrm{F}$., or more, lower than for October, except along the Gulf and Pacific coasts. East of the Rocky Mountains the average November temperature ranges from about 25° in the north-central border States to somewhat more than 60° along the Gulf, but in southern Florida it is 70° or higher along the Paific const the avere temperature is 45° Along the Pacific coast the average tem
During November cold waves of considerable severity sometimes advance from Canadian Northwest and overspread the north Central States (see Kansas City thermograph record in Figure 87), but they usually lose energy rapidly in their eastward and southward progress and seldom are of long duration. Zero temperatures have never been recorded at a first-order Weather Bureau station in November south of the Ohio River, but freezing has occurred as far south as Tampa, Fla. The lowest temperature of record for this month is -33° in northern Montana.

December.-Figure 67 shows the average temperature for December. Temperatures, as a rule, continue to decrease rapidly during December. East of the Rocky Mountains the decrease in the monthly averages from November to December range from about $15^{\circ} \mathrm{F}$., in the extreme northern portion of the country to 7° or 8° along the Gulf coast, but along the Pacific coast December is only 3° or 4° cooler than November. The average December temperature is about 10° in the north Central States, about 55° along the Gulf coast, and 70° in extreme southern Florida. In the lower altitudes of the Rocky Mountains and interior Plateau regions the Rocky Mountains and interior Pateau regions
the average December temperature is mostly between 20° the average December temperature is mostly between 20°
and 30°, except in New Mexico and Arizona, where it and 30°, except in New Mexico and Arizona, where it
is locally as high as 55°. Along the Pacific coast it ranges from 44° to 56°.

During December cold waves usually become more frequent and severe, and very low temperatures are
occasionally experienced in much of the interior portion of the country. The lowest temperature of record at a first-order Weather Bureau station for this month is -50° in northern Montana, while temperatures of -10° to -15° have been experienced as far south as the southern portions of Kansas and Missouri, and -5° in portions of Tennessee and North Carolina. The lowest recorded temperature along the Gulf coast in this month is 14°, occuring at Mobile, Ala., and also at Pensacola, Fla. Along the central and eastern Gulf coasts the average date of the first freezing temperature in fall is about date of the
December 1

SIGNIFICANT TEMPERATURES

Figures 73 to 80 show the progress of the season with reference to certain significant temperatures. The averages dates in spring on which the daily mean temperatures rises above $35^{\circ}, 45^{\circ}, 55^{\circ}$, and $65^{\circ}, \mathrm{F}$. in different portions of the country are shown by Figures 73 to 76 , respectively, whereas Figures 77 to 80 show the average dates in fall when the daily means fall below these values.
Figures 3 and 6 show for the different sections of the United States the highest and lowest temperatures ever recorded, and Figure 4 shows for selected stations the highest temperatures recorded each year for the 20 -year period-1895-1914
Figure 7 shows the average of the lowest temperatures recorded each year, and Figures 8 and 9 show the number of times in the 20-year period-1895-1914-that the minimum temperature each year was 6° and $9^{\circ} \mathrm{F}$., respectively, below this average minimum.
Figure 10 shows the average annual number of days on which the minimum temperature falls to freezing and Figure 11 the average annual number of days with temperature continuously below freezing for the entire day.

AVERAGE MONTHLY TEMPERATURES AT SELEGTED STATIONS

AVERAGE MONTHLY TEMPERATURES AT SELECTED STATIONS-Continued.

SUNSHINE AND WIND

Source of data.-The sunshine data collected by the Weather Bureau are not entirely satisfactory, because the automatic instruments in use up to the present time do not indicate with sufficient accuracy the different degrees of sunshine intensity. The electrical thermometric recorder is used by the Weather Bureau. This instrument consists essentially of a straight glass tube with a cylindrical bulb at each end, the lower bulb, as exposed for service, being coated on the outside with ampblack. The whole is inclosed in a protecting glass sheath, the space between the inner tube and the protecting sheath being exhausted of air and hermetically sealed. Mercury is used to separate the air in the bulbs, and two platinum wires are inserted into the inner tube about midway between the bulbs, but above the point the top of the mercury column assumes in the absence of sunshine. The ends of the wires within the inner tube are slightly separated, but are so arranged that the electric circuit will be closed by the mercury coming in contact with them. The instrument operates by the expansion of the ir in the lower blackened bulb and of the mercury in the tube, when exposed to the heat of sunshine, causing the top of the mer cury column to move upward in the tube until it comes in contact with the end of the wire and thus closes the circuit. By this method the record is automatically maintained until in the absence of sunshine the mercury in the tube recedes below the inserted wires, when the circuit is broken.
The instrument is not delicate enough to ecord sunshine in the early morning imme diately after the sun appcars above the hor zon, and likewise the sun's rays usually become too weak to maintain a record a shor time before sunset. In such cases the actual unrecorded sunshine is noted by personal observation, and the records are corrected by adding thereto, when the sun is shining, the interval between the time of actual sunris and the beginning of the automatic record and between the ending of the record and the time of actual sunset.
These instruments are located at the first order stations of the Weather Bureau only, and their records constitute the sole source of data used in the preparation of the several charts.
Length of day and possible sunshine.-Sunshine data are usually expressed as the actual number of hours of daily sunshine or in percentage of the possible amount. Figures 88 and 89 show for the United States the pos sible amount of sunshine or length of the day from sunrise to sunset, for each two and one-half degrees of latitude, on December 22 and June 21, the winter and summer solstices, respectively, and the shortest and longest days of the year. At the time of the equinoxes, about March 21 and September 22, the length of the day, or total possible sunshine, is substantially 12 hours in all portions of the world. The variation in the length of the day from winter to summer increases with lati tude. In the extreme southern portion of the United States the days during the latter part of June, or the longest of the year, ar only about three and one-half hours longe than during the latter part of December, th hortest days; but in the extreme northern portion of the country the difference is nearly eight hours. On clear days in early summer the extreme Northern States receive about two hours more sunshine than that received in the Florida Peninsula and extreme southern Texas, but in early winter the reverse is true.
Geographic variations in annual sunshine percentage.-For the year as a whole the least relative amount of sunshine in the United States is received along the north Pacific oast, where the averages are only about 40 per cent of the total hours from sunrise to sunset, and in portions of the Great Lakes region and the central and northern Appalachian Mountain districts, where somewhat less than 50 per cent of the possible amount is received. In the remaining districts east of the Mississippi River and in the northern
order States from the Great Lakes westward to the Rockies the average annual sunshine ranges between 50 and 60 per cent of the possible amount, except in portions of the Southeastern States, where it is somewhat higher, especially in the Florida Peninsula. Between the Mississippi River and the Rocky Mountains the annual percentage is mostly between 60 and 70, which is true also of the central portion of the Rocky Mountain and interior Plateau regions. The maximum amount of unshine in the United States occurs in the far Southwest, including extreme western Texas, and portions of New Mexico, Arizona, and California. In southwestern

Figure 88 shows tor each two and one-half degres of latitude the average time of sunrise and
set, mean solar time, and also the average length of the day, sunrise to sunset, on December 22 , the winter solstice, and the shortest day of the year. The length of the day from sunrise to sunset corresponding to the possible amount of daily sunshine, varies on December 22 from 10 hours and 35 minutes at latitude $25^{\circ} \mathrm{N}$., the latitude of the southern end of Florida, to 8 hours and 10 minutes at
latitude $49^{\circ} \mathrm{N}$., the northern boundary of the United States from Minnesota westward. It decreases
with increasing latitude until north of the Arctic Circle the sun does not rise above the horizon
average daily sunshine is only about two hours, in April it is more than seven hours. The regions of least sunshine during the spring months are along the north Pacific coast, where only about 40 per cent of the possible amount is received, and in the upper Ohio Valley and the northern Appalachian Mountain districts, where somewhat less than half the possible amount occurs. The maximum amount of sunshine during this season is received in the lower Colorado River Valley, where the average for the three spring months is 12 hours a day, or about 90 per cent of the possible amount. Over most of the Great Plains region the average sunshine in spring ranges between 60 and 70 per cent of the possible amount but in most districts to the eastward it is from 5 to 10 per cent less than this

The increase in the amount of sunshine from winter to summer in the northern portion of the United States is very pronounced. In most of the northern border States there are, on the average, in July, about six and one-half hours more of sunshine daily than in January. In the South the increases are not so large, the daily July excess over January in the central and east Gulf States being only about two and one-half hours. East of the Rocky Mountains the distribution of sunshine in summer is the reverse of winter, as the northern districts receive more than the southern. In much of the central and northern Great Plains there is usually received in July from 40 to 50 per cent more sunshine than occurs along the central and eastern Gulf coast. The minimum amount of sunshine in summer occurs along the central and northern Pacific coast, where at some places only about 40 per cent of the possible amount is received, and along the Gulf, the central and northern Atlantic coasts, and in the Appalachian Mountain districts, where the average amounts are omewhat less than 60 per cent of the possible. The maximum amount of sunshine in summer occurs in the Great Valley of California and over the western portion of the interior Plateau region. The interior of California experiences practically cloudless skies during the summer months, the average daily
in summer. This is due to the fact that in winter cyclonic action is more pronounced, and several successive days of cloudy weather may be experienced in the passing of a cyclonic storm, whereas in summer cloudy weather and rainfall are usually of a more local character and fewer entirely overcast days are experienced. During the winter months more than half of the United States, including nearly all districts from the Mississippi Valley eastward and the central and northern districts west of the Rocky Mountains, receive less than half the amount of sunshine that would be received with continuously clear sky. The Great Lakes region, west-
amount of amorly 14 sunshine in most of the Great Valley being In fill hours, or about 95 per cent of the possible. In fall, especially during October and November, much In western Worhing Valley, and in the far Northwest sunshine largest amount in all is less than two hours. The Valley, where the daily average is over nine hours. In most of the important agricultural districts of the country the fall sunshine averages between 55 and 65 per cent of the possible amount

Figure 89 shows for each two and one-half degrees of latitude the average time of sunrise and sunset, mean solar time, and also the average length of the day, sunrise to sunset, on June 21, the time of the summer solstice, and the longest day of the year. The length of the day from sunrise to sunset, corresponding to the possible amount of daily sunshine, varies on June 21 from 13 hours and 1 minutes at latitude $25^{\circ} \mathrm{N}$. to 16 hours and 19 minutes at latitude $49^{\circ} \mathrm{N}$., increasing with the lati-
ern Montans, northern Idaho, and western Washington receive the least sunshine in winter, the average amount in some of these localities being less than two hours daily, or about one-fourth of that possible. In extreme western Texas, most of New Mexico and Arizona, and in southeastern California the winters are sunny, these distriets receiving on the average nearly eight hours of sunshine daily.
With the advent of spring the amount of sunshine increases rapidly, especially in the more northern districts. In portions of the upper Lakes region and of the far Northwest, where in December and January the
effects of high temperatures are very much effects of high temperatures are very much But a low temperature which may be even stimulating in a calm becomes unpleasant in windy weather.
Source of data.-There are two important aspects of air movement which should be considered in studying the relation of wind to climate, namely, velocity and direction. The average hourly velocities of the wind for the year as a whole in the different portions of the United Sta tes are shown in Figure 106, and the average velocities at 3 p.m. local standard time, the approximate hour of greatest wind movement, in Figure 107. These charts are based on anemometer records for the 20 -year period 1891 to which is a cooling process. The physical

Importance of wind as a climatic factor.transportation of moisture from the oceans and other large bodies of water to the land, where it is condensed and precipitated in some form of water, for the sustenance of plant and animal life. The surface drift of the wind has also a marked influence on the temperature of many places, especially in localities to the leeward of large bodies of water. The on-shore drift of the wind gives to the Pacific coast region of the United States comparatively warm and equable winters and cool summers. This influence is also felt, but to a much less extent, on the leeward side of the Great Lakes and likewise is in evidence to some extent along the shores of smaller bodies of water
In addition to these climatic functions, air movements have an important physiological aspect. They produce a cooling tendency in all conditions of temperature, by accelerating the conduction of heat from the body and by increasing the opportunity for evaporation, increasing the opportunity for evaporation,

Figures 90 to 93 show for each month, from January to April, inclusive, the average daily amount of sunshine. In winter cloudy weather prevails in the Pacific Northwest and likewise in the region of the Great Lakes. Over most of the State of Washington the average amount of sunshine received in January is only about 2 hours daily and in much of the Lake region it is only slightly more, but in the far Southwest the average daily amount in this month in nearly 8 hours. Whe 12 hours daily, which is in excess of 90 per cent of the possible amount. In the central and eastern United States the amount of sunshine in April averages $61 / 2$ to $81 / 2$ hours per day, except in the northern Appalachian region, where less than $61 / 2$ hours are received

Figures 94 to 97 show for each month from May to August, inclusive, the average amount of daily sunshine. The excess of sunshine in summer over that of winter is much more pronounced in the North than in the South. East of the Rockies the geographic distribution of sunshine in summer is the reverse of winter, the Northern States receiving more than the Southern. In much of the central and northern Great Plains the average amount of sunshine in July is 40 to 50 per cent greater than along the central and east Gulf coast. The fewest hours of sunshine in the sum cors in ths ane recorded along the north Pacific coast, and in the
 an important industry

Figures 98 to 101 show for each month from September to December, inclusive, the average amount of daily sunshine. With the advance of fall there is a pronounced diminution in the amount of sunshine in all

 the Southwest

ATLAS OF AMERICAN AGRICULTURE

Figure 106 shows the average velocity of the wind during the year in miles per hour, estimated for a uniform elevation of 100 feet above the surface of the earth. As a rule the highest average wind velocities occur in the Great Plains region from northern Texas northward and along the coasts of large bodies of water, where the average
protected valleys of the West and Southwest, where at some places the average annual velocity is less than 6 miles per h
Figure 107 shows the average velocity at 3 .
Figure 107 shows the average velocity at 3 p. m.,. which is usually the time of the greatest wind movement during the 24 -hour period. The average velocity at this hour is from 2 to 4 miles greater than that for the

1910, inclusive, taken at about 175 first-order Weather Bureau stations scattered throughout the United States. For the first few hundred feet above the surface of the earth wind velocity increases rapidly with increase in elevation, and consequently for observed velocities to be comparable over a large area, such as the United States, the recording instruments should be exposed at a uniform elevation above ground, and as far as pos sible free from natural or artificial influences that would tend to vitiate the records or render them of purely local significance. Owing to the commercial demands for prompt meteorological information it is often nec essary to locate Weather Bureau offices in the centers of large cities, where good exposure for the wind in struments can not be had except by placing them at considerable distances above the ground, and even then the erection of new and taller buildings in the immediate vicinity often interferes with the proper exposure of instruments and renders frequent changes in necessary. In view of these facts an effort has been made to corect the record velocities at each station the velocity it is estimated the wind would have ttained a roun a mifrom elevation of 100 feet above the ground, and applying, in each case where the station is cated in a large city, an approximated correction for the city effect on wind movement. These approximated values form the basis for Figures 106 and 107. In the mountainous districts of the west the data refer only to the lower valleys, where practically all the first-order Weather Bureau stations are located. No attempt has been made to show conditions at the higher elevations. Geographic variation in wind velocity.-Over other than water surfaces the highest wind velocities, as a rule, occur in regions with large expanses of comparatively level land, such as the Great Plains, and along the coasts of large bodies of water. At points along both ocean coasts and in the immediate vicinity of the Great Lakes the average annual wind velocity is 12 to 14 miles, or more, per hour, which is also the case in the Great Plains region, whereas over other districts east of the Rocky Mountains it ranges generally from 8 to 10 miles per hour.
Daily march of wind velocity.-The daily march of wind velocity as a rule, except at high elevations, follows closely that of temperature the minimum occurring soon after sunrise and the maximum in the afternoon, near the hour of maximum temperature. The average velocity at 3 p. m. local standard time, shown in Figure 107, is from 2 to 4 miles per hour greater than the average for the day, as shown in Figure 106. Figure 110 shows for Dodge City, Kans., representing the interior
of the country, the average diurnal march of wind velocity for each month in the year. The action of the sun's heat in accelerating wind movement is clearly shown by this graph, there being a regular increase in velocity with the increase in power of the sun's rays and a corresponding diminution in the wind movement with

Figure 110 shows for Dodge City, Kans., representing the Great
Plains region, the diurnal march of surface wind velocity. This Plains region, the diurnal march of surface wind velocity. This follows closely the changes in temperature from hour to hour, the mini-
mum velocity of the day occurring soon after sunrise and the maximum num velocity of the day occurring soon after sunrise and the maximum
from two to six hours after noon, varying with the season. In high from two to six hours after noon, varying with the season. In high
altitudes the daily march of wind velocity is the reverse of that at the lower levels, the midday winds on Pikes Peak and Mount Washington, for example, averaging only 75 to 85 per cent of the velocity at midnight
decreasing temperature. Near the earth's surface the average increase in wind movement during the daylight hours over that at night ranges generally from 20 to 40 per cent and is more pronounced in arid regions The daily march of wind velocity in elevated mountain districts is the reverse of that at low altitudes.

Prevailing wind direction.-The normal direction of the surface winds in the United States in January and in July is shown in Figures 108 and 109, respectively. In winter, winds from a westerly or northerly direction are most frequent, but in summer the prevailing direction in most districts is southerly, especially from the Rocky Mountains eastward. The prevailing direction for the year as a whole is from some westerly point in most sections of the United States.
Although practically the whole of the United States lies within the region of the "westerlies," common to all middle latitudes, the weather is largely controlled by the movements of areas of low and high barometric pressure and the attendant characteristic winds peculiar to each. These cause, particularly in winter, the frequent alternation of warm, moist southerly winds, with cold, dry northerly winds, which when severe are commonly called "cold waves."
In addition to these interruptions to the prevailing wind direction there are other special winds of uncertain and irregular occurrence, but with such marked features and of such general climatic importance as to require brief mention. The most important of these are the "blizzard," the " hot winds," and the "foehn" or "chinook." The blizzard is an occasional winter visitor in the northern interior portion of the country, and in exceptional cases extends far to the southward and eastward. It is an intensely cold wind, usually blowing from a northerly direction and accompained by snow and ice crystals, continuing sometimes for several days. Of directly opposite character are the hot winds, which sometimes visit the interior of the country during hot, dry weather, blowing generally from the southwest with considerable force. In extreme cases they have been described as similar to a blast from a furnace, absorbing the small quantity of moisture in the soil and literally drying up vegetation in the fields. Immense damage may be done in a few hours by these winds during critical periods of crop growth, but fortunately their occurrence is comparatively rare. The foehn, locally known in the western United States as the chinook, is usually a warm, dry wind, and is peculiar to mountain regions. It occurs on the leeward side of mountains and usually begins as a light breeze, but frequently increases to high velocities. The warmth and dryness of these winds rapidly melts and evaporates the snow which makes it possible for animals, exposed without shelter, to obtain food. Their influence at times extends to a considerable distance onto the plains bordering the Rocky Mountains on the east.

Joseph Burton Kincer.

[^0]: the average daily maximum for January the average daily maximum and the average daily minimum temperatures. in northern North Dakota the average daily temperature range in January is about $25^{\circ} \mathrm{F}$. (see fig. 81). to 70° and the minimum 40° to 50° along the Gulf coast. From the Rocky Mountains westward the average daily maximum for this month varies from 25° and 30° in the central and northern Rocky Mountain districts to about 65° along the southern California coast, and the minimum varies from nearly- 10° in the central Rocky Mountain districts to about 45° along the coast of central and southern California
 Figures 15 and 16 show the highest and the lowest mean January temperatures that occurred in the 28 -year period 1895-1922. The variation in these temperatures is large in most districts, particulaty central border States, where the mean January temperature one year may be as much as 20° or $25^{\circ} \mathrm{F}$. warmer than in another year. Along the Pacific coast this variation is less than 10°.

[^1]: Figures 33 and 34 show for May the average dally maximum and the average daily minimum temperatures. East of the Rocky Mountains the averre daily maximes

[^2]: he extreme northern show for September the average daily maximum and the average daily minimum temperatures. East of the Rocky Mountains the average daily maximum for September ranges from about 65° F. in coast to somewhat more than 100° ig then and on the eastern Maine coast to about 88° along the Gulf coast and 95° in the lower Rio Grande Valley. West of the Rockies it varies from about 60° along the north Pacific 70° along the Gulf coast, and in the West it varies from less than 30° in the higher altitudes of the central and nocthern Rocky Mountain region in the extreme northern portions of North Dakota and Montana to about Figures 55 and 56 show the highest and the lowest mean September temperatures in the 28 -year period 1895-1922. The range of variation in mean September temperatures is somewhat lar

[^3]: Figures 58 and 59 show for October the average daily maximum and the average daily minimum temperatures. East of the Rocky Mountains the average daily maximum ranges from about $55^{\circ} \mathrm{F}$. in the northern portions of New England, Michigan, Wisconsin, and Minnesota to nearly 90° in the lower Rio Grande Valley, and in most districts is about 10° Iower than for September. In the West it varies from about 55° in the central and northern Rocky Mountain districts to 90° in the lower Colorado River Valley. The average daily minimum ranges from about 20° in the higher altitudes of the Rocky Mountain region to about 60° along the entral Gulf coast. In the Corn Belt the average of the daily minima for October ranges from about 40° in the northern portion to 50° in the southern
 Figures 60 and 61 show the highest and the lowest mean October temperatures in the 28 -year period 1895-1922. In the interior districts the range of variation in mean October temperatures during the 28 -year
 period is mostly from 10° to 15°, but near the Atlantic, Gulf, and Pacific coasts it is smaller

[^4]: Figures 68 and 69 show for December the average daily maximum and the average daily minimum temperatures. East of the Rocky Mountains the average daily maximum ranges from about 20° F. in northern

[^5]: Figures 77, 78, 79, and 80 show the dates on which the average daily temperature in autumn falls below $65^{\circ}, 55^{\circ}, 45^{\circ}$, and $35^{\circ} \mathrm{F}$., respectively. When the average daily temperature in the fall declines to 65°, the from the standing wheat becomes general throughout practically the entire Winter Wheat Belt; when it falls to 55°, the cutting and shocking of corn is in picking is nearly over. When the average daily temperature falls o 35°, corn harvest is practically over, and the first snow usually has fallen. In most of the Florida Peninsula and in extreme southern Texas the average daily temperature remains throughout the year above 55°, in southern South Carolina and in the Gulf States south of latitude 33°, in southwestern Arizona, and along the California coast as far north as Eureka it remains about 45°, and throughout nearly all the Cotton Belt, southern New Mexico and Arizona, in the valleys of California, and along the Pacific coast it remains above 35°

