Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Forest Service

Forest Pest Management Denver. Colorado

BIOLOGICAL EVALUATION

R2-86-3

Douglas-fir Tussock Moth, Orgyia pseudotsugata (McDunnough) Pike National Forest

1986

PREPARED BY:

GENE LESSARD

Supervisory Entomologist

BERNIE RAIMO Entomologist

APPROVED BY:

ROBERT D. AVERILL

Group Leader, Entomology

t udn

CHARLES W. FUDGE, Director Timber, Forest Pest, and Cooperative Forestry Management

Timber, Forest Pest, and Cooperative Forestry Management Rocky Mountain Region USDA Forest Service 11177 W. 8th Avenue Lakewood, Colorado 80225

TECHNICAL INFORMATION

- Insect: Douglas-fir tussock moth, Orgyia pseudotsugata (McDunnough)
- Hosts: Douglas-fir true firs other conifers
- Life History: The Douglas-fir tussock moth completes one generation each year.

Stage	Time	Location on Host
Eggs	Overwinter	Laid on the female pupal cocoon in a mass consisting of up to 300 eggs. Found on small branches of host tree.
Small lar	wa May-June	Hatch just after new foliage has appeared. Feed on new needles.
Large lar	va June-July	Feeding on older needles.
Pupa	July-August	Found in a coooon which is usually attached to the follage and small branches of the host tree. May also be found on objects such as rocks and buildings adjacent to host trees.
Adult mot	hs August-Sept.	Found on host trees. Female moth has only rudimentary wings and cannot fly. She usually is found in the vicinity of her pupal cocoon.

Evidence of Infestation:

- 1. Conifers with thin, redish crowns.
- 2. Damage first appears in the tops of the trees and progresses downward.
- 3. Seriously damaged trees turn brown as bare twigs are exposed.
- 4. Continued severe defoilation causes top mortality then total tree mortality.

INTRODUCTION

Historically, the Douglas-fir tussock moth has not been a significant pest in the forests of the Rocky Mountain Region.
Virtually all reports of damage by this insect have come from suburban landowners in the Denver, Colorado Springs and Cheyenne areas. Only two outbreaks of tussock moth have been reported in the forested areas in Region Two.

The first outbreak was detected in 1937 on Cheyenne Mountain near Colorado Springs (Higgins, 1938). As a result of this outbreak, all of the Douglas-fir and white fir were killed on 150 to 200 acres. The second outbreak was reported in 1947 in Evergreen, Colorado (Beal, 1948). The extent of the outbreak is not known. However, the area was treated experimentally with DDT.

Detection surveys using pheromone-baited sticky traps were conducted in 1975 and 1976 in the forested areas of the Colorado Front Range (Cahill, 1976). In 1977, the survey was expanded into Wyoming (Eggelston, 1977). Although tussock moths were captured at many of the trapping sites, no areas of tussock moth damage were discovered.

In 1982, several individual ornamental spruce at Evergreen, Conifer and Shaffer's Crossing were defoliated by the tussock moth. These isolated occurrences were adjacent to hundreds of acres of natural stands of Douglas-fir that were not affected by this insect.

During the last three years, however, several small stands of natural Douglas-fir have been severely defoliated by the tussock moth along the Platte River drainage on the Pike National Forest.

The objectives of this evaluation are:

- 1) To establish permanent monitoring plots for Douglas-fir tussock moth 50 in 1986 and 150 in 1987 and beyond.
- 2) To assess population dynamics over a range of elevations and plant associations.
- 3) To assess the competitive interactions between Douglas-fir tussock moth and western spruce budworm.
- 4) To monitor changes in predator-parasite populations for both insects in relation to elevation and plant association.

METHODS

Fifty plots were established on the Pike National Forest (Figure 1). On each plot, slope, aspect, elevation, plant association, slope position (Table 1) and basal area (10 baf) by species (Table 2) were measured. Radiation index - the ratio of the total annual potential insolation to the maximum potential insolation at the site - was interpolated from tables (Frank and Lee 1966). Radiation index is a composite of slope, aspect and latitude and, provides a relative measure of solar climate between sites based solely on topography.

Douglas-fir tussock moth pheromone-baited sticky traps were placed on each plot. Five traps were placed at each plot using procedures described by Daterman et al. (1979). Traps were deployed the second week in August and retrieved the last week in October.

RESULTS

Though not significantly different $\frac{1}{2}$ (P \leq .05), more Douglas-fir tussock moth were trapped in 1986 (0.95 ± 0.51) than in 1985 (0.52 ± 0.37). Average catch per plot in 1985 ranged from 0 to 5.6; and, in 1986 ranged from 0 to 8.8. An average of 25 adults per plot is needed to produce visible defoliation in the following year.

In 1986, the average number of tussock moths trapped per plot decreased with increased elevation. This relationship is expressed in the following regression equation:

y = $127.51 - 14.11 \ln x$; $r^2 = .61$ where: x = plot elevation y = average number of tussock moth trapped

When the plots are stratified by cover-type and aspect the relationship between elevation and number of tussock moths caught improves, particulary for the south facing Ponderosa pine cover type (Table 3). Twice as many tussock moth were trapped in the ponderosa pine (PIPO) cover-type than the Douglas-fir (PSME) cover-type.

The lodgepole pine (Pico) and blue spruce (Pipu) cover-types were poorly represented.

An additional 100 plots will be established in 1987. These plots will be used to evaluate the hypothesis that Douglas-fir tussock moth population levels are a function of slope, aspect and latitude (radiation index), elevation, position on the slope, plant association and stand density. In addition pheromone trapping will be considered for western spruce budworm. The same hypothesis will be evaluated for budworm and tussock moth. The hypothesis will be evaluated over time as both insects increase from current endemic levels.

Larval populations, as well as predator and prey populations, will be sampled when pheromone trapping indicates a significant change in population levels has occurred.

From this work we expect to provide a stand hazard rating system for both the Douglas-fir tussock moth and the western spruce budworm. In addition we expect to determine, statistically, the relationship between number of adults trapped, larval densities and consequent host tree defoliation.

1/t - Statistic for two means - Statistical Theory and Methodology in Science and Engineering, K. A. Brownlee, John Wiley and Sons, 1965

Table	1		Site	Data	by	Plot,	Pike	National	Forest
-------	---	--	------	------	----	-------	------	----------	--------

Plot	Slope	Aspect	Radia-	Elevation	Plant Association
#	%	degree	tion	ft	AT REALESS
			Index		Douglementan
1	28	40	.4088	7360	Pipu/Alte
2	33	358	.3553	7960	Pipo/Aruv
3	42	20	•3347	8160	Psme/Juco
4	10	240	.4950	8580	Pico/Aruv
5	30	275	.4783	8200	Pipo/Aruv
6	0	0	.4826	7920	Psme/Aruv-Juco
7	0	0	.4826	8300	Psme/Cemo
8	33	326	.3520	6600	Pipo/Caro
9	40	275	.4751	8000	Psme/Jaam
10	18	40	.4357	7640	Psme/Aruy-Juco
11	10	30	.4491	7660	Pipo/Aruy
12	28	308	.4088	7680	Psme/Aruy-Juco
13	45	340	.3247	6220	Psme/Cemo
14	35	350	.3475	7680	Psme/Aruy-Juco
15	65	230	.5654	6580	Pipo/Ansc-Agem
16	48	310	.3583	6320	Pipo/Aruy
17	50	300	.4123	6520	Pipo/Aruy
18	35	330	.3591	6920	Pemo / Apulta Turco
19	33	10	.3553	7200	Pemo / Juco
20	15	225	.5153	8520	Pipe/Amu
21	15	300	.4612	7880	Pamo / Anure Turos
22	Ó	0	.4826	8060	Pama / Amure Tures
23	23	332	3878	7640	Pame / Aruv-Juco
24	50	50	3535	8240	Pame / Arruv-Juco
25	15	15	4312	8/1/10	Psme/Aruv-Juco
26	23	230	5207	8800	Psile/Aruv-Juco
27	16	180	5311	88/10	Psme/Aruv-Juco
28	36	230	5474	8720	Pico/Aruv
29	25	340	3051	70/10	Psme/Aruv-Juco
30	30	70	1207	7940	Psme/Aruv-Juco
31	34	215	・TJフ/ 5/151	9100	Pico/Vase
32	17	40	4282	70/10	Psme/Cemo
33	15	360	1267	9760	Psme/Aruv-Juco
34	28	260	1788	6600	Psme/Aruv-Juco
35	10	205	.4/00	8/190	Pipo/Cemo
36	17	8	.4000	0400	Pipo/Aruv
37	10	02	1821	9120	Psme/Aruv-Juco
38	15	120	.4021	0100	Pipo/Aruv
30		120	.5002	8580	Pipo/Aruv
40	15	60	.4020	9180	Psme/Aruv-Juco
41	0	00	.4012	7600	Psme/Caro
42	17	1/15	.4020	8200	Pipo/Aruv
43	28	286	.5192	7080	Pipo/Aruv
44	30	200	.4420	7640	Psme/Caro
45	30	40	.3/15	8240	Psme/Aruv-Juco
	20 1	05	.4397	8580	Pipo/Aruv

-5-

Plot	Slope	Aspect	Radia-	Elevation	Plant Association
#	%	degree	tion	ft	
46	20	20	.4133	8480	Psme/Aruv-Juco
47	18	6	.4150	9100	Pipo/Aruv
48	20	20	.4133	8960	Pipo/Aruv
49	18	345	.4150	6920	Psme/Aruv-Juco
50	7	360	.4563	7960	Psme/Aruv-Juco

Plot	Ju	sc	Pi	po	Pico		Psme		Potr		Pi	Pipu	
#	BA	T/A	BA	T/A	BA	T/A	BA	T/A	BA	T/A	BA	T/A	
1 2 3 4 5 6			40 100 70	40.3 508.4 91.3	30	31.3	30 40 110 10 40	469.4 112.9 443.4 8.1 46.6	10 30	50.9 432.9	50	292.8	
7 8 9 10			50 20	176.7 39.4			30 30 90 20	45.4 148.1 103.4 203.2 30.2					
11 12 13 14 15	10	37.4	70 30 10 10	141.9 63.9 10.8 3.5			40 100 70 60 30	226.1 236.9 94.0 167.3 94.7					
16 17 18 19 20			50 90 50 70 30	77.7 211.9 115.4 234.8 85.6			30 50 80	44.7 105.0 180.7					
21 22 23 24 25			30 10 20 20	89.9 73.3 50.1 66.0			60 30 130 40	123.2 20.2 594.6 73.9	10	28.6			
26 27 28			10 20 10 50	5.7 <u>31.0</u> 203.7 120.7	50	76.3	40 30 10 60	61.7 130.4 6.3 368.7	20	146.6			
29 30 31 32			30	30.4	110	292.4	80 10 50 80	194.5 10.8 41.9 188.6	10 10	37.4 73.3	20 10	48.2 12.7	
34 35 36 37	10	28.6	100 100 40	218.4 307.1			50 30 20 40	118.1 72.3 9.9 134.2					
38 39 40 41			100 20 50	119.7 51.2 270.1	10	15.1	60 80 120 10	203.7 83.0 187.2 307.7 7.2					
+2 +3 +4			60 10	72.0 12.7	30	149.5	20 30 30	187.9 29.2 52.4	30	269.7			

Table 2 - Basal Area and Trees Per Acre by Species for each Plot, Pike & San Isabel National Forest

Plot	Jı	isc	Pij	00	Pi	ico	Psr	ne	Po	otr	Pi	lpu
#	BA	T/A	BA	T/A	BA	T/A	BA	T/A	BA	T/A	BA	T/A
45 46 47 48 49 50			60 30 60 80 10	115.6 21.0 614.3 124.8 37.4			30 80 40 20 20 50	35.6 109.8 115.5 52.5 29.1 79.2	10	203.7	20 20	27.7 46.9
Jusc -	Junip	erus s	copulc	orum Sar	g	Rocky	Mounta	in Juni	Der			
Pipo - Pico - Psme - Potr - Pipu -	Pinus Pinus Pseud Popul Picea	ponde conto otsuga us tre punge	erosa L orta Do menzi muloid ns Eng	aws ougl essii F es Mich elm	Ponde Lodge ranco x Color	rosa p pole p - Dou Quakin ado Bl	ine ine glas-f g Aspe ue Spr	ir n uce	por			
1/												

Limb Pine Pif1

Cover Type	Aspect	Ave. No. of Tussock moth trapped	No. of Plots	r ²	Regression Equation
		ÿ <u>+</u> s y			
Pipo	South North	1.43 <u>+</u> .69 <u>1.56 + .87</u> 1.52 <u>+</u> .60	6 11	0.87 0.63	y = 113.96 - 12.601n x y = 159.17 - 17.581n x
Psme	South North	Ø 0.82 + .27 0.73 <u>+</u> .25	3 26	0.64	y = 126.93 - 14.061n x
Pico	South North	Ø Ø	2 1		
Pipu	South North	ø 0.6	Ø 1		

Table 3 - Relationship between elevation and number of Douglas-fir tussock moth trapped by cover-type and aspect

LITERATURE CITED

- Beal, J. A. 1948. Unpublished report. Supplement to justification statement for Arapaho and Pike National Forests and adjacent area insect control. The Douglas-fir tussock moth. 2 pp.
- Cahill, D. B. 1976. Unpublished report. 1976 Douglas-fir tussock moth detection survey in Colorado. 4 pp.
- Daterman, G. E., R. L. Livingston, J. M. Wenz, and L. L. Sower. 1979. How to use pheromone traps to determine outbreak potential. USDA, Agriculture Handbook, 546. 11 pp.
- Eggelston, K. L. 1977. Douglas-fir tussock moth detection survey - Colorado Front Range and Wyoming - 1977. USDA, Forest Service, Forest Insect and Disease Management Detect Report, Lakewood, CO. 10 pp.
- Higgins, J. 1938. Region 2 annual insect report Calendar 1937. USDA, Forest Service, Region 2. 39 pp.

Cabil), D. B. Levis Development many the beneficient of the beneficient of the second se

Survey - Deinstein Forth International and and and a second a second and a second a

101201 1. 1910. Baging S annual Asing Pagers - Blandar

Y

1

Y

1