Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

Soll Conservation Service

Cape May Court House, New Jersey 5

1982 Annual Technical Report of the Cape May Plant Materials Center

A Summary of the North Atlantic Coastal Area Activities

TABLE OF CONTENTS

INTRODUCTI	<u>ON</u>	1
PERSONNEL.	•••••••••••••••••••••••••••••••••••••••	3
ADVISORY C	OMMITTEE	4
SOILS MAP.	•••••••	5
SOIL DESCR	IPTIONS	6
CLIMATIC D	<u>ATA</u>	7
PROJECT PL	ANS	
34I003F	Fresh Water Plants (FINAL REPORT)	8
34I004K	Juniperus virginiana for Screens & Windbreaks.	17
34I006C	Woody Plants for Sand Dune Stabilization	22
34I018F	Spartina alterniflora on a Tidal Bank Wye Plantation (FINAL REPORT)	38
34I023C	Initial Evaluation of Solidago sempervirens	48
34I025F	Spartina alterniflora for Tidal Bank Stab	57
34I026F	Spartina alterniflora for Tidal Bank Stab	57
34I033F	Spartina alterniflora for Tidal Bank Stab	57
34I0 29 C	Assembly and Evaluation of <u>Uniola</u> <u>paniculata</u> sea oats	69
34I031F	<u>Spartina alterniflora</u> on a Tidal Bank - Reed Property	75
34I035W	Pine Crosses USDA-NJ-SCS	94
34A007C	Ammophila arenaria for Sand Dunes (FINAL REPORT)	109
34A009J	Elaeagnus umbellata for Wildlife Food and Cover (FINAL REPORT)	110

TABLE OF CONTENTS (continued)

~

34A012C Pest Resistant Plants for Secondary Dune I Stabilization	114
34A014J Herbaceous Plants for Wildlife Food and Cover	122
34F015F Advanced Evaluation of Spartina patens	136
3400050 <u>Myrica</u> species Planting Technique	152
34C022F Cordgrass Planting Technique	170
34C024C Revegetation of Sand Dunes (BARD)	176
MISCELLANEOUS	
Germination Test Results for 'Atlantic' Coastal Panicgrass	216
Nutritional Analyses for Samples of Herbaceous Plant Species	218
SEED AND PLANT PRODUCTION	
1982 SEED PRODUCTION	219
1982 PLANT PRODUCTION	220
ENGLISH-METRIC CONVERSION	
CONVERSION TABLE	221

INTRODUCTION

This report covers the plant materials activities of the Cape May Plant Materials Center for the calendar year 1982. Established in 1965, the Cape May PMC is located approximately 24 miles south of Atlantic City, New Jersey on US Route 9. The property consists of 88 acres having soil types of Sassafras sandy loam and Downer loamy sand. Slopes are less than 1 percent. Elevation varies from 12 to 22 feet above sea level. Average precipitation is 41 inches. The mean annual temperatures are 62°F maximum and 44°F minimum. The climate is semi-humid and semi-maritime. The average growing season is 190 days and the plant hardiness zone is 7b.

The PMC serves the northeast coastal plain region extending from Cape Cod, Massachusetts to Cape Hatteras, North Carolina. Most of the land served by the Center lies within Major Land Resource Areas: the Northern Coastal Plain (149), the Atlantic Coastal Flatwoods (153) and the Southern Coastal Plains (133), north of the 35th parallel. Two plant materials specialists normally provide assistance for the coastal area served by the center. One is located in North Carolina and one in New Jersey. In the absence of the plant materials specialist in North Carolina, plant science specialists act in that capacity. The states of North Carolina and Virginia are serviced out of Raleigh, North Carolina. The specialist located in Somerset, New Jersey provides plant materials guidance to the states of Delaware, Maryland, New Jersey, Connecticut, Massachusetts and Rhode Island. Operations of the center are conducted according to the Long Range Plan developed from the needs of the various states which the center serves.

Several items were purchased during the year. The Center had one underground tank and pump which was used to store and issue regular grade gasoline. This pumping system was determined to be unsafe because of its close proximity to a building used for automotive and other equipment repairs. Considering this, three new 1,000 gallon tanks and fuel pumps were installed a safe distance from all buildings. A 40' x 60' metal building with a concrete floor was constructed to house the combine and other equipment which need to be sheltered from the weather. An inoperable slide projector was also replaced with a new unit.

A major problem in the area served by the Cape May PMC is the erosion of tidal streambanks. <u>Spartina patens</u> (saltmeadow cordgrass) and <u>S. alterniflora</u> (smooth cordgrass) are the two grass species which occur immediately above and within the tidal zone. They are logical choices to stabilize these areas. <u>S. patens</u> grows above the high tide elevation along the mid-Atlantic coast. During 1976, an assembly of 78 accessions was collected and planted at the PMC to evaluate their performance. Three superior accessions have been selected for final evaluation and are growing on saline tidal stream sites in several states. <u>S. alterniflora</u> grows in the intertidal zone of the saline streams and like <u>S. patens</u> is well adapted to the Atlantic Coast. In the spring of 1977, lll accessions were collected and planted on the PMC. This number was reduced to 25 accessions which are currently being tested to determine their performance on tidal stream bank areas.

Recently, cropland erosion was identified as a major problem. Late maturing crops that produce little residue such as soybeans are harvested in the late fall. This allows insufficient time to establish an adequate cover crop before cold weather stops growth. The stubble and residue from the soybean crop provide inadequate soil cover during winter. The Cape May PMC will be evaluating various plant species and establishment methods for solving cropland erosion problems.

Purpose and Objectives of the Cape May PMC

To develop and put into use new or improved plants for the conservation of soil, water and related resources. Develop sound culture methods and management techniques for the more effective use of plants and land.

Functions

- -- Collects and initially evaluates new plant materials to include native collections, foreign plant introductions and strains from plant breeders.
- -- Increases promising materials.
- -- Makes advanced evaluations of selected accessions under simulated field conditions in comparison with a standard variety.
- -- Determines cultural requirements of needed plant materials.
- -- Makes a field evaluation planting on selected problem sites off the center, in order to obtain information on plants at sites typical of eventual use.
- -- Provides seeds and plants for field plantings in soil and water conservation districts where final evaluation of a new plant is made.
- -- Jointly, names and releases new varieties or species with the New Jersey Agricultural Experiment Station.
- -- After release, maintains and produces breeder or foundation seed or stock at the center in accordance with standards of the cooperating agency.
- Note: Trade names used herein are for convenience only. No endorsement of products is intended, nor is criticism of unnamed products implied.

PERSONNEL

Manager

Cluster R. Belcher

Assistant Manager

Soil Conservationist

Foreman

Biological Technician

Secretary

Donald W. Hamer

Philip L. Koch

Wilson J. Merrick

Vacant

Barbara A. Turnier

In addition, several people worked at the PMC under the Young Adult Conservation Corps (YACC) and the Comprehensive Employment and Training Act (CETA) programs. These employees received special training in PMC field operations as well as plant material processing and seed cleaning techniques. CAPE MAY PMC STATE CONSERVATIONISTS' ADVISORY COMMITTEE

Plater T. Campbell, NJ State Conservationist

Coy A. Garrett, NC STC Manly S. Wilder, VA STC

Obie D. Ashford, NJ State Resource Conservationist

W. Curtis Sharp, NETSC Plant Materials Specialist

Frank H. Webb, NJ Plant Materials Specialist

(Vacant), NC Plant Materials Specialist

PLANT MATERIANS CENTRE CAPE MAY COUNTY, N.J. SOILS AND TOPOGRAPHIC N. J.- 696 1 MAP OF 1-4-1 Sassafras - fine sandy loam 0100 - loamy sand SASTATEAS Downer Soils: ▲ 15 = Elevation above sea level in feet. Soils and Elevation Map DASSAFICA. DOMULE LANNY SAL ----- = Soil boundary. SASSAFERS Legend:

Galestown - loamy sand

CAPE MAY PLANT MATERIALS CENTER PROPERTY

.

5

ų

Soil Descriptions

DOWNER LOAMY SAND, 0 to 5 percent slopes

Nearly level to gently sloping well-drained soils that have a loamy sand surface and sandy loam subsoil. Natural fertility and available water holding capacity is moderate. Permeability is moderately rapid. This soil is subject to severe wind erosion when exposed in fields. Irrigation is generally needed when growing vegetable crops.

GALESTOWN LOAMY SAND, 0 to 5 percent slopes

This nearly level to gently sloping well-drained soil has a thick sand surface soil exceeding 20 inches. It has a sandy loam subsoil. Natural fertility is low and available water capacity is moderate. Sandy surface is droughty. Permeability is rapid in the upper 2 ft. and moderate in the sandy loam subsoil.

SASSAFRAS SANDY LOAM, 0 to 2 percent slopes

Nearly level well-drained soils that have sandy loam surface soils and sandy clay loam subsoils. It has medium natural fertility. This soil has moderate permeability. This soil is subject to minor wind and water erosion. Irrigation is generally needed during extended dry periods.

		~	Veathe	r Ke	cords	a a C C	ape Ma	N PLS	ant Ma [.]	teria	als C	enter i	Or TARS			
1982	We	Air J aximun	lemper n	atur	e o _F Minin	unu	4" Ma	Soil Ximun	Tempe:	ratu]	re ^o F	um	Total	Precipi Devi-	tation Grtst.	No.
Month	Ext	AV.	Devia	tion	AV.	EXt.	EXt.	AV.	Devia	tion	AV.	EXt.	Inches	ation	Dally	Days
Jan. Feb. March	011 021 020	2000	ოიი ∙ +	1005	10 10 10 10 10 10 10 10 10 10 10 10 10 1	011 111	517 517	46 90 14 6 90	mo H	N00 I	45 47 73 73 73 73 73 73 73 73 73 73 73 73 73	000 000 000 000	4.01 2.10 89	+0.57 -1.11 -0.25	1.05 .55 .80	-1 13 13
April May June	758 70 70	519 781 8	Ч М Ч I + +	0 + 0	00 12 10 10 10 10 10 10 10 10 10 10 10 10 10	50 50	61 72 79	54 67 74	0 + +	-1 01 O I +	49 62 70	60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.15 2.80 3.41	+1.10 -0.86 -0.10	1.33 1.35 1.36	100 100 100 100 100 100 100 100 100 100
July Aug. Sept.	0,000 10,0100	85 83 77	୯୦୦ +	N 0 0 +	67 58 58	471 801	782 782	80 80 74	0 1 1 1		77 75 71	71 70 66	1.20 .74 1.22	-1.55 -3.17 -1.34	.41 .22 .46	1000
Oct. Nov. D Dec.	003 003 003	67 51	000 + + + +	2 m n + + +	342 345	0 N 0 0 N 0	262 292	60 10 10 10 10 10 10 10 10 10 10 10 10 10	-1 0 1 + + +	4+00	403 403 403	1014 100	2.20 4.68 2.91	-1.36 +1.59 -1.14	1.26 1.86 .86	000
1982	95	63			45	n I	85	60			57	33	32.31	-7.62		119
Normal-	*	62			44			60			56		7†0			
*Norma.	L bas	ed on														
17 1	Vr. A.	ir Ter	nperat	ure	Avers	age; l	3 yr.	Soil	Tempe	ratuı	re Av	erage;	17 yr. P	recipita	ation Av	e

20.40 inches of snow were measured; this fell in January, February and December. Frost free days 178 - April 23 to October 18, 1982 - Normal 190 days.

7

Fresh Water Planting Maryland and Duck, North Carolina

341003F

FINAL REPORT

The banks of fresh water river estuaries and bays are exposed to storms and fluctuating water levels. The resulting erosion removes valuable land and creates the clogging of narrowing channels as well as the formation of new points of land. The loss of valuable land, generally, cannot be replaced and severe clogging of channels is a hazard to water traffic and expensive to remove. The erosion of tidal banks is less severe in fresh water mainly because there are fewer miles of shoreline, reduced exposure and less water fluctuation during the tidal cycle.

Vegetation is an effective and inexpensive method which can be used to help control the erosion of soil caused by wave action. However, at present, no known plant variety exists which can be recommended to successfully help stabilize fresh water tidal banks.

A preliminary assembly consisting of several genera was collected in the fall of 1978 and the spring of 1979. The purpose of this assembly was to screen various species in order to select one or more that have potential for stabilization of fresh water tidal banks.

In early 1980, a slightly brackish site was selected in North Carolina and 2 replications of 17 accessions were planted on it. The tidal cycle on this site is influenced by wind rather than lunar action. The normal daily tidal cycles do not exist and the wind creates long periods of dry or flooding conditions. Consequently, this site failed to yield much useable data.

In the spring of 1981, an additional planting was made along the Sassafras River in Kent County, Maryland. Two replications were planted. Initial establishment was poor in both replications. The surviving accessions were: <u>Scirpus americanus</u> (American bulrush), 'Shoreline' <u>Phragmites australis</u> (common reed), <u>Spartina</u> <u>alterniflora</u> (smooth cordgrass), and <u>S. patens</u> (saltmeadow cordgrass). <u>S. americanus</u> exhibited the best stand, which is effective during the growing season but when this species goes dormant much of the above ground vegetation breaks off and rapidly decomposes leaving almost no soil cover. <u>P. australis</u> is thriving very vigorously with a good stand, however, for several reasons it is not well accepted by the public. While <u>S. patens</u> and <u>S. alterniflora</u> are normally well adapted to tidal areas, they are only rated as fair in stand and vigor at this location under the given circumstances. At the end of the second year, nine accessions were successful. As with the 1980 planting, <u>S. patens</u>, <u>P. australis</u> and <u>S. ameri-</u> <u>canus</u> were among those which survived and exhibited the best performance.

A third planting was installed in 1982 along the Chester River in Chestertown, Maryland. Due to excessive boat traffic, a narrow beach and other factors, this planting was almost a complete failure. Only a few of the 15 planted accessions survived, yet, <u>S. alterni-</u> flora remained in all 3 replications with good stand and vigor.

The objective of this project is to select one or more species for additional testing along fresh water tidal streams. To date, three plantings have been made with little to no success. These failures are mostly the result of improper site conditions which fail to meet the description for problem sites which plants will solve. Adequate available sites to install test plots upon are not easily located. Also, results from recent studies indicate that in most circumstances the plant species which are used to stabilize saline sites can be used successfully on fresh water sites.

Ta	bl	е	1
		-	

1

Evaluations for eighteen accessions of fresh water tidal plants, $1982^{1/2}$

Acc. No.	Species	2/ Percent I Survival	Foliag Prod.	e <u>Ht.</u>	Width	Vigor
				(cr	n)	3/
K-24	Tripsacum dactyloides	3	5	70	80	6
PI-434199	<u>Phalaris</u> <u>aquatica</u>	0				
PI-254903	<u>P. aquatica</u>	29	4	100	60	4
'Kents'	P. arundinacea	29	3	70	60	2
T - 2792	<u>Scirpus</u> <u>americanus</u>	-	7	35	6	5
T-2781	Phragmites australis	-	l	170	-	2
т-2692	Juncus balticus	0				
T - 2789	S. americanus	-	8	45	6	7
T - 2825	Typha angustifolia	4	5	100	35	5
	<u>Spartina</u> <u>alterniflora</u>	0				
'Rise'	P. arundinacea	25	2	90	60	2
T-2927	<u>Leersia</u> oryzoides	8	7	30	50	6
PI-421238	S. patens	23	4	50	50	3
'Garrison'	Alopecurus arundinaceus	0				
т-2824	T. angustifolia	0				
т-2739	L. oryzoides	0				
T - 2823	T. dactyloides	0				
'Shoreline'	P. australis	0				

1/Various numbers of plants were established/accession along the Sassafras River at Chestertown, Maryland on May 14, 1981; data recorded June 23. 2/Dash (-) indicates that the formation of plant growth made it difficult to evaluate. 3/Ratings are - 1=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor.

Table	2
-------	---

Evaluation for eighteen accessions of fresh water tidal plants, 1982

					2/	~ .	Erosion
Acc. No.	Species	Stand S	pread	Vigor	Ave. Height	Accr.	Potential
K-24	Tripsacum dactyloides	- <u>3/</u> - <u>5</u> /	_ <u>3</u> /	_ 3/	/(cm) -	- 4/	<u>_ 3/</u>
PI-434199	Phalaris aquatica	-	-	-	-	-	-
PI-254903	P. aquatica	5	6	5	80	М	5
'Kents'	P. arundinacea	3	6	3	70	М	4
T - 2792	Scirpus americanus	3	1	3	60	L-M	3
T-2781	Phragmites australis	2	l	l	190	A	
т-2692	Juncus balticus	-	-	-	-	-	-
T-2789	S. americanus	8	4	5	75	L	6
T-2825	Typha angustifolia	9	7	7	85	L	9
	Spartina alterniflora	-	-	-	-	-	
'Rise'	P. arundinacea	5	5	2	85	М	4
т-2927	Leersia oryzoides	9	9	9	25	N	9
PI-421238	S. patens	3	3	3	60	М	2
'Garrison'	Alopecurus arundinaceus	-	-	-	-	-	-
T-2824	T. angustifolia	-	-	-	-	-	-
T-2739	L. oryzoides	-	-	-	-	-	-
T-2823	T. dactyloides	-	-	-	-	-	-
'Shoreline'	P. australis	-	-	-	-	-	-

1/Various numbers of plants were established/accession along the Sassafras River at Chestertown, Maryland on May 14, 1981; data recorded Sept. 1. 2/Measurements taken in the undisturbed position. Seedheads were not included. 3/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor. 4/Ratings are - A=Abundant; M=Moderate; L=Little; N=None. 5/Dash (-) = all plants are dead or missing.

Relative rating for accessions of freshwater tidal plants, 1982

Best ^{2/}	Accession No. PI-421238	<u>Species</u> <u>Spartina</u> <u>patens</u>
2nd Best	T-2781	Phragmites australis
3rd Best	'Rise ¹	Phalaris arundinacea
4th Best	'Kents:	<u>P.</u> arundinacea
5th Best	Т-2792	<u>Scirpus</u> <u>americanus</u>

1/All accessions were established along the Sassafras River at Chestertown, Maryland on May 14, 1981; data recorded September 1.

2/Ratings are based on plant growth, vigor and ability to adapt.

Stand ratings for five fresh water plant accessions, 1982

Species	Accession	<u>R-I</u>	<u>R-II</u>
Phragmites australis	'Shoreline'	3 ² /	3
<u>Scirpus</u> <u>americanus</u>	Т-2792	2	l
<u>Spartina</u> <u>alterniflora</u>	PI-421175	4	4
<u>S. patens</u>	PI-421238	4	-

1/Planting established at the Corps of Engineers Duck, NC Field Research Facility in 1980; evaluated June 14.

2/Stand rated 1-10; 1=excellent, 10=poor.

Πa	h1	0	5
Τa	N T	. C)

 \sim

Survival and vigor for fresh water tidal plants, 198?

 \sim

в.

Plot No.	Acc. No.	Species	Number Planted	Survival	Vigor
Border	т-2824	<u>R-I</u>		(No.)	
1	T-2823	Tripsacum dactyloides	<u> </u>	0	-
2	K-24	T. dactyloides	40	0	-
3	'Rise'	<u>Phalaris</u> arundinacea	40	4	7
4	T-2789	<u>Scirpus</u> americanus	40	16	7
5	T - 2927	<u>Leersia</u> oryzoides	32	2	7
6	'Kents'	<u>P.</u> arundinacea	40	4	8
7	T-2739	L. oryzoides	40	2	8
8	т-2826	Juncus roemerianus	40	0	-
9	т-2824	Typha angustifolia	40	0	-
10	'Halifax'	Panicum hemitomen	40	0	-
11	T-2792	S. americanus	40	31	7
12	т-2825	T. angustifolia	40	. 7	8
13	PI-421238	Spartina patens	40	9	8
14	PI-421169	S. alterniflora	40	35	4
15	т-2692	J. balticus	40	8	8
Border	т-2824				

Table 5 (cont.)

Survival and vigor for fresh water tidal plants, 1982

Plot No.	Acc. No.	Species	Number Planted	Survival	Vigor
Border	т-2824	<u>R-II</u>		(110.)	
1	T-2792	S. americanus	32	12	8
2	т-2692	J. balticus	32	6	8
3	T-2927	L. oryzoides	36	0	-
4	K-24	T. <u>dactyloides</u>	32	0	-
5	т-2789	S. americanus	32	27	6
6	PI-421169	<u>S.</u> alterniflora	32	24	5
7	т-2825	T. angustifilia	36	5	9
8	т-2824	<u>T.</u> angustifolia	32	0	-
9	т-2739	L. oryzoides	32	0	-
10	"Kents:	<u>P. arundinacea</u>	40	1	9
11	'Rise'	P. arundinacea	36	0	-
12	PI-421238	S. patens	40	4	9
13	т-2826	J. roemerianus	36	11	9
14	PI-254903	P. aquatica	36	0	-
15	т-2823	T. dactyloides	44	0	-
16	'Halifax'	P. hemitomen	32	0	-

Table 5 (cont.)

~

Survival and vigor for fresh water tidal plants, 1982

Plot No.	Acc. No.	Species	Number Planted	Survival	Vigor
		<u>R-III</u>		(NO.)	
l	K-24	T. dactyloides	40	0	-
2	PI-254903	P. aquatica	40	0	-
3	'Kents'	P. arundinacea	24.24	0	-
4	T-2792	S. americanus	40	16	8
5	т-2692	J. <u>balticus</u>	40	0	-
6	T-2789	S. americanus	44	6	9
7	т-2825	<u>T.</u> angustifolia	44	9	7
8	PI-421169	<u>S.</u> alterniflora	40	33	6
9	'Rise'	P. arundinacea	38	2	9
10	'Halifax'	P. hemitomen	32	0	-
11	T-2927	L. oryzoides	32	2	9
12	PI-421238	S. patens	36	12	8
13	т-2824	<u>T. angustifolia</u>	32	0	-
14	T-2739	L. oryzoides	32	l	9
15	T-2823	T. dactyloides	32	0	-
16	т-2826	J. roemerianus	32	3	9
	0.1				

Border T-2824

1/Sixteen accessions/replication with various number of plants per accession were planted along the Chester River in Chestertown, Maryland. R-I was planted on May 20 - R-II and III on May 19, 1982; data recorded June 23.

2/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10=None; - = Not recorded.

Juniperus virginiana for Screens and Windbreaks

34I004K

Extensive damage to numerous crops occurs annually in New Jersey and other coastal states when high velocity winds blow across the land. People, animals and buildings are also affected. Soil texture, field width and condition of the soil surface are the primary factors associated with this erosion problem. Fine soil particles begin to blow when a wind of 12 to 15 miles per hour is attained 1 foot above the ground surface. Therefore, to prevent or control wind erosion, it is necessary to reduce the wind velocity to a non-erodible rate for the given soil, and/or attain a protective condition on the soil surface. Properly established windbreaks have proven to be successful in helping to overcome this problem.

Several woody species have been used and a few are recommended for windbreaks on inland sites. Many of these are deciduous and some are evergreen such as <u>Juniperus virginiana</u> (Eastern red cedar). This native species is also used by homeowners for screening purposes.

<u>J. virginiana</u> is partially salt tolerant and has been planted and successfully grown on secondary sand dunes. Since this species is adapted to a variety of soil and climatic conditions, it has a large range of adaptation.

This project was started by collecting seed from approximately 50 locations in several coastal states. The first planting was made in the fall of 1975. The seed of <u>J. virginiana</u> are slow to germinate and the first planting emerged poorly. In 1978, these (2-0) seedlings were lined out and evaluated for growth rate and the desired form. The following year, 122 plants were selected from this planting and replanted in a windbreak design for initial evaluation.

This species is variable in growth rate and form. Some plants in the windbreak have exhibited good growth while others increased very little in height. The growth form varies from columnar to almost oval. The objective of this project is to evaluate the species for a fast growing strain that has dense foliage and columnar form.

<u> </u>	٦	п.	
12	n		ρ
1,00	\sim	-	\sim

PI No.	Plant No.	1980	Height (c <u>1981</u>	m) <u>1982</u>	1980	Width (cm 1981) <u>1982</u>
т-02738	1 2 3 4	162 137 198 220	210 190 240 260	250 225 255 285	82 65 122 70	95 95 145 90	125 110 180 110
т-02703	1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 112 3 4 5 6 7 8 9 1011 2 3 4 5 6 7 8 9 1011 2 3 4 5 6 7 8 9 1011 2 3 4 5 6 7 8 9 1011 2 12 10 10 10 10 10 10 10 10 10 10 10 10 10	247 210 160 197 214 200 233 234 180 186 210 167 213 175 133 221	275 270 215 250 250 250 290 295 235 250 295 235 250 275 240 5270 270	340 295 235 300 290 300 280 350 340 265 285 300 255 320 280 280 280 210	$ \begin{array}{r} 109\\ 91\\ 90\\ 91\\ 97\\ 77\\ 110\\ 84\\ 98\\ 107\\ 69\\ 107\\ 69\\ 104\\ 96\\ 100\\ 107\\ 74\\ 114 \end{array} $	$155 \\ 130 \\ 110 \\ 135 \\ 155 \\ 180 \\ 1355 \\ 180 \\ 1355 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 18$	$\begin{array}{c} 200\\ 140\\ 130\\ 150\\ 190\\ 150\\ 200\\ 145\\ 175\\ 180\\ 110\\ 165\\ 170\\ 165\\ 170\\ 125\\ 200\end{array}$
т-02708	12345678901123456	213 193 162 222 196 177 192 173 194 216 200 219 218 204 167 207	255 230 215 260 255 205 255 2150 240 230 280 280 280 280 280 255	290 270 240 305 235 2850 2450 2450 2450 2705 200 30650	108 103 70 110 86 90 83 81 82 97 100 120 106 94 90	160 155 110 180 115 130 130 130 130 125 130 165 130 125 130	$170 \\ 170 \\ 110 \\ 170 \\ 130 \\ 160 \\ 145 \\ 150 \\ 150 \\ 150 \\ 150 \\ 150 \\ 165 \\ 170 \\ 140 \\ 145 \\ 160 $

Height and width for <u>Juniperus</u> virginiana, 1982

Height and width for Juniperus virginiana, 1982

PI No.	Plant No.	1980	Height (<u>1981</u>	cm) <u>1982</u>	1 <u>980</u>	Vidth (cm) 1981	1982
T-02710	1 2 34 56 7 8 90 11 2 34 15 16	195 193 196 184 229 214 204 176 169 206 173 182 184 198 210 200	235 2450 2355 2355 2460 22550 22500 22550 22500000000	270 275 265 2655 2965 2950 25550 2550 2150 290 280	96 110 87 73 95 93 96 113 122 103 108 96 110 72 103 105	130 165 110 105 130 130 140 160 180 150 155 130 165 110 170	145 180 125 150 155 195 200 170 170 160 200 120 180 190
T-02711	1 2 34 56 7 8 9 10	181 224 227 200 212 217 162 230 200 175	120 250 255 265 275 270 225 255 205	235 305 295 290 310 265 290 275 235	105 115 114 94 115 93 90 103 117 129	170 170 145 125 180 155 135 140 180 180	175 200 160 150 215 175 155 160 200 200
т-02704	1 2 3 4 5 6 7 8 9 10 11	197 183 208 182 211 207 209 194 200 179 176	235 245 270 270 270 260 250 245 215	290 260 285 300 285 280 285 290 260 250	89 90 93 98 120 82 92 85 86 96 82	120 115 145 140 190 115 120 125 125 130 110	145 140 170 160 205 120 140 135 140 150 120
т-02705	1 2 3 4 5 6 7	192 168 200 220 192 227 206	235 195 245 285 270 280 280	270 235 285 290 275 320 340	92 74 79 106 95 99 121	140 125 125 135 130 160 185	155 140 140 145 145 170 195

Height and width for Juniperus virginiana, 1982

а

.

PI No.	Plant No.	1980	Height (<u>1981</u>	cm) <u>1982</u>	1 <u>980</u>	Vidth (cm) 1981) <u>1982</u>
Т-02707	1 2 3 4 5 6 7 8 9 10 11	195 171 218 193 200 192 145 213 179 190 152	270 230 265 245 235 245 260 250 250 195	275 250 265 260 270 215 295 275 270 220	61 103 110 94 105 90 81 106 102 63 97	105 150 125 150 130 135 165 150 105 150	120 180 150 140 165 140 155 180 155 120 170
Т-02709	1 2 3 42 5 6 7 8 9 10 11 12 13	210 216 213 215 191 217 220 210 216 200 189 210 220	255 275 275 275 275 270 270 270 245 270 240 270 240 270	240 310 330 310 270 310 305 300 310 300 295 300 310	103 125 130 88 110 103 89 68 93 112 112 112 120 117	140 190 180 140 155 140 140 140 125 145 135 180 180	165 210 190 150 180 170 150 135 140 170 160 215 210
т-02738	1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 112 12 12 12 12 12 12 12 12 12 12 12 12	200 207 179 192 156 199 200 191 171 167 170 185 182 172 171 179 189	255 260 230 250 240 245 235 230 230 235 230 235 230 235 230 245 245	290 305 285 2270 275 275 275 275 275 280 275 280 270 280 290 280	100 124 82 70 100 854 76 76 76 76 76 76 78 88 78 71 982	$ \begin{array}{r} 130 \\ 170 \\ 120 \\ 105 \\ 100 \\ 105 \\ 105 \\ 105 \\ 105 \\ 120 \\ 95 \\ 90 \\ 100 \\ 105 \\ 145 \\ 100 \\ \end{array} $	140 185 140 125 145 140 125 120 130 150 130 150 135 115 170 120

PI No.	Plant No.	1 <u>980</u>	leight (cm) <u>1981</u>	1982	1980	Width (cm) <u>1981</u>	1982
T-02721	1 2 3			225 180 160			95 95 95
T-02696	1			190			110
T-02714 ²	1			240			95
2/ T-02715	1			215			130
т-02716 ²	1			225			140
T-02728	/ 1 2			220 235			90 110
т-02727 ²	1			215			110
т-0273 ⁴	1			170			95

	Height	and	width	for	Juniperus	virginiana,	198	2
--	--------	-----	-------	-----	-----------	-------------	-----	---

1/(2-1) stock was planted in a windbreak design in March 1979. 2/Plants were transplanted to present location in March of 1981.

Woody Plants for Sand Dune Stabilization

34I006C

There are many miles of unstabilized back dunes along the mid-Atlantic coast from North Carolina to Massachusetts. At one time, many of these dunes were vegetated with herbaceous and woody plants which have since disappeared because of changes in the environment, introduced pests and more intense use. Other dunes, which have not been vegetated before with herbaceous or woody plants, could be stabilized with adapted woody species. As a result of natural plant succession, some of these dunes will in time become vegetated with woody species, but this is a slow process. The areas that are partially stabilized with woody plants allow sand movement to occur. While this isn't bad in itself, drifting sand from large unstable areas on the back dunes can develop into a serious problem. Woody plants adapted to this environment are not readily available from commercial nurseries for the restoration and protection of coastal dunes.

The objective of this project is to select one or more superior woody cultivar which will be readily adapted to the back dune area in MLRA 149 and 153 of the mid-Atlantic coast.

In 1979, seed collections of four woody species were made from Georgia to Cape Cod, Massachusetts. The four collected species are <u>Myrica cerifera</u> (wax myrtle), <u>M. pensylvanica</u> (bayberry), <u>Rosa</u> spp. and Prunus spp.

A total of 191 accessions were planted in the fall of 1979 and emerged in the spring of 1980. Nearly all accessions exhibited fair to good vigor during the first year of growth.

In the spring of 1981, the <u>Rosa</u> species and <u>Prunus</u> species were transplanted to an initial observation site at the PMC. The <u>Myrica</u> species, which require two years to develop an adequate root system for satisfactory transplanting, were transplanted to the initial observation site in the spring of 1982, along with four late arriving <u>Rosa</u> accessions. Many of the <u>M. cerifera</u> accessions were collected south of Maryland and did not tolerate the cold winter temperatures at Cape May.

Shortly after planting, many of the <u>Myrica</u> accessions and the four new <u>Rosa</u> accessions were severely damaged by gypsy moth caterpillars. During the summer, many <u>Myrica</u> accessions again suffered leaf damage from an undetermined (possibly herbicidal) cause. However, in most accessions, an adequate number of plants survived and recovered. An aphid infestation caused slight to moderate damage to the established <u>Prunus</u> and <u>Rosa</u> accessions before the problem was controlled.

Table 1

.

Dimensions of woody plants for sand dune stabilization, $1982^{1/2}$

Species/						2/	'Plan	<u>3</u> /		Ave	rage
PI No.	Heig	ht	Wid	th	Diame	eter	Nos	<u>s.</u>	Height	Width	Diameter
Prunus	(Cm)		··)	(min	•)			(Cm)	(Cm)	(11111)
T-13172 T-07614 T-07632 T-07634 T-09192	115 135 85 80 125	115 125 75 85 100	90 165 75 85 90	145 125 95 65 110	32 34 24 29	27 26 28 28 18			115 130 80 82 112	118 145 85 75 100	30 30 26 26 24
T-09193 T-09200 T-09204 T-11246 T-11248	120 115 145 110 80	110 135 120 110 55	95 95 135 95 110	80 110 135 120 145	33 23 29 25 30	21 27 30 26 34	2 2 1	7 7 3	115 125 132 110 68	88 102 135 108 128	27 25 30 26 32
T-11249 T-11250 T-11251 T-11252 T-11252 T-11275	75 95 120 140 145	135 125 165 105 155	115 105 100 145 95	180 165 110 85 140	27 19 31 32 24	31 28 24 24 28	1	3	105 110 142 122 150	148 135 105 115 118	29 24 28 28 26
T-12013	115	135	170	145	36	28			125	158	32
P. serotir T-13173 T-13174 T-15504 T-15504 T-13310 T-15505	na 120 130 50 140 120	105 115 70 135 130	75 110 30 145 145	75 95 60 105 115	18 32 12 30 38	22 33 18 36 29	2 3 4	7 11 . 10	112 122 60 138 125	75 102 45 125 130	20 32 15 33 34
<u>P. virgini</u> T-15506 T-15507	iana 95 125	70 140	65 75	45 65	24 24	17 27			82 132	55 70	20 26
Rosa sp. T-02786 T-02787 T-02788 T-07078 T-07640	60 35 45 35	40 25 50 45 45	140 105 90 125 115	100 95 95 90 115			4	7	50 30 48 40 45	120 100 92 108 115	
T-08303 T-08304 T-08305 T-08306 T-08307	35 50 40 45 35	40 45 30 40 45	70 125 100 115 90	100 110 90 110 120			23	7 4	38 48 30 42 40	85 118 95 112 105	

Table 1 (cont.)

Dimensions of woody plants for sand dune stabilization, 1982

Species/ PI No.	Heig (cn	$\frac{ht}{1}$	Wid (cn	th n)	<u>Diameter</u> (mm)	Pla No	nt s.	Height (cm)	Width (cm)	<u>Diameter</u> (mm)
T-08308 T-08309 T-08310 T-08311 T-09191	35 40 50 40 50	40 50 45 40 70	100 85 115 110 120	90 90 100 105 165				38 45 48 40 60	95 88 108 108 142	
T-11254 T-11255 T-11256 T-11257 T-11258	70 45 55 55	30 45 75 50	110 110 120 115 135	80 115 150 95 130		3	11	50 45 80 52 58	95 112 135 105 132	
T-11259 T-11260 T-11261 T-11276 T-11277	40 65 70 40 50	50 40 45 75 35	115 130 95 110 100	100 90 115 115 90				45 52 58 58 42	108 110 105 112 95	
T-11278 T-11279 T-11280 T-11281 T-12014	55 50 35 50 35	35 40 45 30 40	130 105 90 110 110	120 100 75 90 100				45 45 40 38	125 102 82 100 105	
T-12015 T-12016 T-12017 T-12018 T-15508	40 50 55 50 55	55 50 75 55 40	95 115 95 115 120	100 105 100 120 95				48 50 65 52 48	98 110 98 118 108	
T-15509 T-15510 T-15511 CN00322 CN00321	85 40 60 -	55 70 50 -	95 100 95 -	95 110 80 -				70 55 55 -	95 105 88 - -	
CN00323 CN00324 T-11282 T-15512	- 90 125	- 55 95	- 125 125	_ 100 100				- - 72 110	- 112 112	

1/Fifteen plants or less per accession were planted from April 16 to April 27, 1981. Height and width recorded May 4, diameter recorded May 27.

2/ Stem diameter measured 2 cm above sand line.

 $\underline{3}$ / Position of plants measured if other than number 4 and 11.

Vigor, bloom and leaf expansion of 1/ woody plants for sand dune stabilization, 1982

Species/ PI No.	Vigor	Bloom	Leaf Expansion	Species/ PI No.	Vigor	Bloom	Leaf Expansior
Prunus maritima T-13172 T-07614 T-07632 T-07634 T-09191 T-09193 T-09200 T-09200 T-09204 T-11246 T-11248 T-11248 T-11248 T-11250 T-11251 T-11252 T-11275	27744756776457444	3/ B N B N B N B N B N N B N N B N N B	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Rosa sp. T-08305 T-08306 T-08307 T-08308 T-08309 T-08310 T-08311 T-09191 T-11254 T-11255 T-11255 T-11256 T-11257 T-11258 T-11259 T-11260	ന4 4 നനനനനനെ ഒ നനനന	N N N N N N N N N N N N	
T-12013 P. serotina T-13173 T-13174 T-15504 T-15505 P. virginiana T-15506 T-15507	3 4 4 5 3 3 3 3	N N N N N N N		T-11261 T-11276 T-11277 T-11278 T-11279 T-11280 T-11281 T-12014 T-12014 T-12015 T-12016 T-12017 T-12018	<u> </u>	N N N N N N N N N N	
Rosa sp. T-02786 T-02787 T-02788 T-02788 T-07078 T-07640 T-08303 T-08304	ろろうよう ろろう	N N N N N N		T-15508 T-15509 T-15510 T-15511 T-11282 T-15512	ら う う う う う う	N N N N N	
1/Fifteen pla	nts or	less pe	er accession	planted fro	om April	L 16-Api	ril 27,

1981; data recorded May 7. 2/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10= Dead. 3/Ratings are - B=Most in bloom; A=After bloom; N=Prebloom. 4/Ratings are - 0=Out leaves expanded; I=In leaves not expanded.

Table	3
-------	---

~

~

Survival, vigor and insect damage $\frac{1}{2}$ on woody plants for sand dune stabilization, 1982

Species/ PI No.	No. <u>Planted</u>	No. Survived	Percent Survival	Vigor	Insect Damage
Rosa rugosa CN00322 CN00321 CN00323 CN00324	15 15 15 15	15 15 14 13	100 100 93 87	2/ 8 8 7	3/ 9 9 7 8 7
<u>Myrica cerifer</u> T-02741 T-02740 T-02742 T-02743 T-02745 T-02745 T-02746 T-11271 T-02747	a 15 76 4 54 4 15	10 1 0 0 0 2 3	67 14 0 0 0 50 20	5 7 10 10 10 10 7 8	3 3 1 1 1 3
<u>M. pensylvanic</u> T=02749 T=02750 T=02751 T=02752 T=02753 T=02754 T=02755 T=02756 T=02757 T=02759 T=02760 T=02761 T=02762 T=02763 T=02763 T=02765 T=02765 T=02767 T=02768 T=02769 T=02769 T=02770 T=02770 T=07613 T=07638	a 15 15 15 15 15 15 15 15 15 15 15 15 15	14 15 15 14 15 15 15 15 15 10 11 14 10 14 15 15 14 15 14 15 14 15 14 15 15 14 15 15 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	$\begin{array}{c} 93\\ 100\\ 100\\ 93\\ 73\\ 100\\ 100\\ 100\\ 100\\ 100\\ 71\\ 73\\ 93\\ 93\\ 93\\ 67\\ 93\\ 93\\ 67\\ 93\\ 100\\ 100\\ 93\\ 100\\ 93\\ 100\\ 93\\ 73\end{array}$	6 556 56666 5568 56 76 56 57 55	56 55556 564 5586 576 566 766

Table 3 (cont.)

Survival, vigor and insect damage on woody plants for sand dune stabilization, 1982

Species/	No.	No.	Percent	Vigor	Insect
PI No.	<u>Planted</u>	Survived	Survival		Damage
$\begin{array}{c} \underline{M. \ pensylvani}\\ \overline{T-09194}\\ \overline{T-09195}\\ \overline{T-09196}\\ \overline{T-09197}\\ \overline{T-09198}\\ \overline{T-07639}\\ \overline{T-09201}\\ \overline{T-09202}\\ \overline{T-09203}\\ \overline{T-08298}\\ \overline{T-08298}\\ \overline{T-08299}\\ \overline{T-08300}\\ \overline{T-08301}\\ \overline{T-08302}\\ \overline{T-11232}\\ \overline{T-11232}\\ \overline{T-11233}\\ \overline{T-11234}\\ \overline{T-11235}\\ \overline{T-11235}\\ \overline{T-11236}\\ \overline{T-11237}\\ \overline{T-11236}\\ \overline{T-11237}\\ \overline{T-11237}\\ \overline{T-11238}\\ \overline{T-11237}\\ \overline{T-11237}\\ \overline{T-11237}\\ \overline{T-11241}\\ \overline{T-11242}\\ T$	<u>ca</u> 1555555555555555555555555555555555555	$\begin{array}{c} 11\\ 13\\ 10\\ 11\\ 13\\ 13\\ 14\\ 14\\ 15\\ 12\\ 12\\ 13\\ 14\\ 14\\ 14\\ 15\\ 10\\ 30\\ 55\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15$	$\begin{array}{c} 73\\ 87\\ 67\\ 73\\ 87\\ 100\\ 87\\ 93\\ 93\\ 93\\ 100\\ 80\\ 80\\ 100\\ 80\\ 80\\ 93\\ 93\\ 93\\ 93\\ 93\\ 93\\ 93\\ 93\\ 93\\ 93$	7776656677767767765656556576284484488888444	554 556 568 756 756 5777766 514 53344 5534 3564 515

Table 3 (cont.)

.

Survival, vigor and insect damage on woody plants for sand dune stabilization, 1982

Species/	No.	No.	Percent	Vigor	Insect
PI No.	Planted	Survived	<u>Survival</u>		Damage
M. pensylvanic T-12410 T-12411 T-12012 PI-434153 PI-434155 PI-434155 PI-434155 PI-434157 T-13170 T-13171 PI-434150 PI-434150 PI-434152 PI-434154 PI-434157 PI-434157 PI-434159	$ \begin{array}{c} 15 \\ 15 \\ 15 \\ 12 \\ 10 \\ 15 \\ $	15 14 9 7 12 4 3 6 8 15 13 9 1 0 3 11	100 100 93 75 70 80 57 23 46 53 100 87 60 33 0 60 73	6667767774446065	666 m6 52 2 55 m4 mm 1 55

1/Fifteen or less plants per accession planted from March 26-April 16, 1981; data recorded June 8.

2/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; l0=Dead.

<u>3</u>/Insect Damage (mostly by caterpillars) - l=None; 3=Slight; 5=Moderate; 7=Severe; 9=Very severe; 10=Complete defoliation.
Table	4
-------	---

Dimensions of newly planted woody 1/ plants for sand dune stabilization, 1982

Species/	Plan	.t 2/								Averag	çe
PI No.	Posi	tions -/	Hei 7	ght cm)	Wid	th m)	Diam (mm	eter	$\frac{Ht}{(cm)}$	Width (cm)	Diameter
Rosa rugos CN00322 CN00321 CN00323 CN00324	<u>a</u> 4	11 10	40 30 40 30	30 35 25 30	35 50 40 40	20 30 10 30	- - - -	- - - -	35 32 32 30	28 40 25 35	
<u>Myrica</u> <u>cerifera</u> T-02741 T-02740 T-02742 T-02743 T-02745 T-02746 T-11271 T-02747	5211122	- - - - 4	45 15 - - 10 20	40 - - - 20 10	40 15 - 20 25	30 - - 15 5	54 50	5 55	42 15 - 15 15	35 15 - 18 15	54 500
$\frac{M}{Pensylvan} \\ T-02749 \\ T-02750 \\ T-02751 \\ T-02752 \\ T-02752 \\ T-02753 \\ T-02755 \\ T-02755 \\ T-02756 \\ T-02757 \\ T-02757 \\ T-02760 \\ T-02761 \\ T-02761 \\ T-02763 \\ T-02763 \\ T-02764 \\ T-02765 \\ T-02767 \\ T-02767 \\ T-02768 \\ T-02769 \\ T-02769 \\ T-02769 \\ T-02770 \\ T-027613 \\ T-02761 \\ T-02761 \\ T-02761 \\ T-02761 $	<u>ica</u> 5	8	500555555050505005005500 34333312322323250505005005500	4322122133422523543422 432212213342252354505000	333332123223200055500050	32123212243123230000055	675696%%%	68 544 MM24 56 528 76 56 5 5MM	4 % & % % % % % % % % % % % % % % % % %	3028555282950888880052 32122322212212322	68 5564 72 5544 72666 54 574

29

 $\eta^{\rm d}$

Table 4 (cont.)

Dimensions of newly planted woody plants for sand dune stabilization, 1982

Species/ PI No.	Plan Posi	nt tions	He: ((ight cm)	Wi(<u>dth</u> cm)	<u>Diam</u> (mr	neter	Ht. (c	Avera Widtl m)	age <u>n Diameter</u> (mm)
<u>pensylvar</u> T-07638 T-09194 T-09195	nica 5	10	30 15 10	20 15 10	30 15 20	25 15 10	7 2 2	5 2 3	25 15 10	28 15 15	6 2 2
T-09196 T-09197 T-09198 T-07639 T-09201	5	12	25 15 20 20	10 20 20 45	40 20 5 20 15	10 30 20 35 5	∩ ∩	1 4 3 9 2	18 18 20 32 15	25 25 12 28	2 4 36 2
T-09202 T-09203 T-08398 T-08299		10	35 20 20 5	20 25 10 5	35 15 15 5	15 15 15 15 5	200000	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	28 22 15 5	25 15 15 5	4 3 2 2
T-08300 T-08301 T-08302 T-11232 T-11233			15 20 10 15 30	10 15 20 20	15 25 20 15 20	20 10 10 5 30	348 N M	34 4 4 3	12 18 15 18 22	18 18 15 10 25	946 n n
T-11234 T-11235 T-11236 T-11237			25 40 20 25	20 30 30 15	15 15 15 20	30 25 25 20) 3 3 3 3 4	77664	22 25 25 20	22 20 20 20	3 4 4 4
T-11238 T-11239 T-11240 T-11275	5 2 -	10 3 -	15 20 45	25 20 30	15 25 45	15 10 35	3 6 11 -	3 3 7 -	20 20 38 -	15 18 40	3 14 9 -
T-11231 T-11241 T-11242 T-11243	3	9	15 45 50 45	20 30 35 50	20 30 25 35	20 20 30 30	3 7 7 7	36 8 8	18 38 48 48	20 25 32 28	л6 8 8
T-11244 T-11245 T-11266	5		-00 550 50	35555 5555	20 20 30	35 30 35	-7987	8 6 10	48 50 52	28 25 32	8 8 96
T-11272			40 65 50	25 35 40	35	30	12	5 6 7	50 45	32 30	96

Table 4 (cont.)

Dimensions of newly planted woody plants for sand dune stabilization, 1982

Species/ PI No. M.	Plan Posi	tions	Hei (C	ight cm)	Wi (c)	dth m)	Dia: (mi	meter m)	Ht. W (cm)	Avera _f lidth D	ge lameter (mm)
$\begin{array}{r} \hline pensylvanio \\ \hline T-12007 \\ \hline T-12008 \\ \hline T-12010 \\ \hline T-12010 \\ \hline T-12011 \\ \hline T-12011 \\ \hline T-12012 \\ \hline 43415 \\ \hline 434155 \\ \hline 434155 \\ \hline 434155 \\ \hline 434155 \\ \hline 434157 \\ \hline T-13171 \\ \hline 434150 \\ \hline 434151 \\ \hline 434152 \\ \hline 434154 \\ \hline 434156 \\ \hline 434157 \\ \hline 4$	ca 22 23 33 5 21 3	- - - - - - - - - - - - - - - - - - -	405000505005000000505050505050505050505	43423 211121210000550 - 435	43212 221212212222544233	455055 - 05000550505500 - 05000 - 0500000000	177833222434632531805171	70765 - 52353333222987 - 185	422 3522 50 52 11 12 22 21 14 22 52 52 52 52 52 52 52 52 52 52 52 52	42 52 52 52 55 55 55 55 55 55 5	98774942244446542088 540088 8

1/Fifteen or less plants per accession planted from March 26-April 16; data recorded from June 9 to June 28. 2/Except as noted, plant positions are numbers 4 and 11. 3/Stem diameter measured 2 cm above sand line. 4/Average of both rows of this accession. 5/See footnote 4/for average of these accessions. Table 5

Evaluations of <u>Prunus</u> species for sand dune stabilization, $1982^{1/2}$

PI No./ Species	Height (cm)	Width (cm)	Stem Diameter (mm)	Vigor	Survival (%)	Insect Damage
Prunus maritima T13172 T07614 T07632 T07634 T09192	2/ 135 135 120 125 140	<u>2</u> / 232 150 158 190	48 46 36 38 36	4 3 4 4 4	100 100 100 100 100	4/ 3222222222222222222222222222222222222
T09193 T09200 T09204 T11246 T11248	148 140 138 140 82	150 168 192 180 152	40 39 42 42 40	4 3 3 4	100 100 100 100 100	2 3 2 2 2
T11249 T11250 T11251 T11252 T11275	115 125 155 130 178	225 202 220 195 202	38 31 42 38 40	4 5 3 3 3	100 100 100 100 100	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
T12013	142	225	36	4	100	2
P. serotina T13173 T13174 T15504 T13310 T15505	180 228 140 225 192	158 215 115 208 205	32 50 27 51 48	4 3 5 3 3	100 87 67 87 100	2 2 2 2
<u>P. virginiana</u> T15506 T15507	175 192	105 110	28 36	24 24	100 92	4 5

1/Planted April 1, 1981 Field 5 & 6 Cape May PMC; Height, width, diameter survival and insect damage recorded October 27; Vigor recorded August 3.

2/Average of 2 plants.

3/Ratings are: 1=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10=Dead.

4/Ratings are: 1=None; 3=Slight; 5=Moderate; 7=Severe; 9=Very severe; 10=Complete defoliation.

Table 6

Evaluations of Rosa species for sand dune stabilization, $1982^{1/2}$

PI No.	Height (cm)	$\frac{\text{Width}}{(\text{cm})}$	Vigor	Fruit Production	Survival (%)	Insect Damage
T02786 T02787 T20788 T07078 T07640	98 78 75 82 80	140 158 138 145 145	21 52 54 4	4 6 3 4 5	100 90 100 100 100	4/ 2 2 2 2 2 2 2 2
T08303 T08304 T08305 T08306 T08307	68 90 68 70 80	120 158 148 152 138	4 3 7 5	5 4 5 7 5	100 100 100 100 100	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
T08308 T08309 T08310 T08311 T09191	75 75 118 95 112	132 120 160 148 152	4 3 3 5	3 2 3 4	100 100 100 100 100	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
T11254 T11255 T11256 T11257 T11258	75 98 122 88 100	132 142 152 108 132	4 4 566	4 56 4 4	1.00 100 100 100 100	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
T11259 T11260 T11261 T11276 T11277	85 95 90 102 78	135 138 125 130 148	4 36 36	35555	100 100 100 100 100	2 2 2 2 2
T11278 T11279 T11280 T11281 T12014	12 2 80 78 70 85	165 148 132 132 140	3 5 5 4 3	5 4 3 3 3	100 100 93 100 93	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
T12015 T12016 T12017 T12018 T15508	70 62 105 92 92	130 142 160 145 140	4 5 3 4	4 4 5 4 4	100 100 100 100 100	2 2 2 2 2

Table 6 (cont.)

PI	Height	Width	<u>Vigor</u>	Fruit	Survival	Insect
No.	(cm)	(cm)		Production	(%)	Damage
T15509	125	160	32554	4	93	2
T15510	100	155		5	100	2
T15511	92	110		2	100	2
T30187	45	55		10	1 3	2
T30188	28	62		10	13	2
T30189	25	5	9588	10	7	3
T30190	20	38		10	40	3
T11282	105	120		3	100	2
T15512	105	132		3	100	2

Evaluations of Rosa species for sand dune stabilization, 1982

- 1/Planted April 16-27, 1981; fields 5&6 Cape May PMC except T30187 to T30190 which were planted March 26, 1982; vigor recorded August 26; other data recorded October 27.
- 2/Ratings are: l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10=Dead.
- <u>3</u>/Ratings are: 1=Very abundant; 3=Abundant; 5=Moderate; 7=Sparse; 9=Very sparse; 10=None.
- 4/Ratings are: 1=None; 3=Slight; 5=Moderate; 7=Severe; 9=Very severe; 10=Complete defoliation.

1º

Table 7

Evaluations of Myrica species for sand dune stabilization, $1982^{1/2}$

Species/ PI No.	Height (cm)	Width (cm)	Diameter (mm)	Vigor	Survival (%)	Amount of Foliage	Insect Damage
<u>Myrica</u> <u>cerifera</u> T02741 T02740 T02742 T02743 T02745	48 15 - -	<u>2</u> / 45 20 -	2/ 9 4 - -	<u>3</u> / 5 10 10 10	67 14 0 0	4 4 10 10 10	5/ 2 2 - -
T02746 T1 1271 T02747	- 30	- - 32	- - 11	10 10 6	0 0 53	10 10 5	- - 2
<u>M.</u> pensylvan T02749 T02750 T02751 T02752 T02753	<u>ica</u> 42 40 30 30 30	45 35 22 35 32	9 10 7 6 10	56555	67 33 67 80 60	56565	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
T02754 T02755 T02756 T02757 T02759	30 28 22 32 28	30 32 25 38 42	6 6 4 7	7 4 6 6	73 67 33 33 100	6 5 7 6 5	3 2 2 2 3
T02760 T02761 T02762 T02763 T02764	30 20 8 48 32	22 28 10 38 32	5 5 2 10 9	6 8 8 6 6	80 21 7 80 40	58955	2 2 1 2 2
T02765 T02766 T02767 T02768 T02769	18 25 40 38 38	12 12 45 35 35	4 4 10 8 10	8 8 5 7	20 20 73 80 60	984 66	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
T02770 T07613 T07638 T09194 T09195	25 25 30 12 8	25 38 32 10 12	6 9 8 N N	64 56 5	40 100 47 27 13	6 4 7 7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Table 7 (cont.)

Evaluations of Myrica species for sand dune stabilization, 1982

Species/ PI No	Height (cm)	$\frac{\text{Width}}{(\text{cm})}$	Diameter (mm)	Vigor	Survival (%)	Amount of Foliage	Insect Damage
T09196 T09197 T09198 T07639 T09201	22 15 12 42	32 20 22 32 -	5 4 4 10	65659	27 33 27 67 13	7 7 5 9	2 2 2 2 2 2 2 2 2 2 2 2 -
T09202 T09203 T08298 T08299 T08300	25 20 15 12 15	25 22 22 15 25	6 4 4 4 4	65766	40 13 40 53 47	6 7666	2 2 2 2 2 2 2 2
T08301 T08302 T11232 T11233 T11234	8 20 - 22 25	8 20 - 20 25	2 4 - 3 4	76 78 4	20 27 20 13 80	7 7 8 5	2 2 - 3 3
T11235 T11236 T11237 T11238 T11239	28 25 28 20	28 32 22 22 18	68 566	5 5 4 4	87 53 60 80 7	4 56 4 7	2 3 2 2 2
T11240 T11275 T11231 T11241 T11242	38 - 22 48 45	45 - 22 45 35	10 10 10 8	5 10 6 6	57 0 13 67 80	6 10 7 6 6	2 2 2 2 2
T11243 T11244 T11245 T11266 T11267	52 42 50 42	40 28 32 38 32	10 9 8 10 8	55554	80 80 87 73 93	4 4 5 4	3 3 3 3 3
T11272 T11273 T12007 T12008 T12009	58 62 45 35 40	42 35 40 40 25	13 12 13 9 10	55555	93 93 87 100 73	4 5 4 5	3 3 3 3 3 3

Table 7 (cont.)

Species/ PI No.	Height (cm)	Width (cm)	Diameter (mm)	Vigor	Survival (%)	Amount of Foliage	Insect Damage
T12010 T12011 T14667 T06412 T12410	28 30 18 15	28 28 - 30 20	6 6 4 4	6 6 10 7 5	73 40 0 60 33	6 6 10 7 6	2 3 - 2 2
T12411 T12012 4 34153 434154 434155	18 22 15 18 25	25 28 20 27 38	76 76 8	56655	53 47 33 38 33	56 65 5	2 2 2 2 2 2
434156 434157 T13170 T13171 434 15 0	- 8 20 15 62	- 10 25 22 62	- 2 6 4 18	10 7 6 7 2	0 22 15 7 93	10 7 7 7 2	- 2 2 2 2 2
434151 434152 434159	38 50 32	28 50 30	8 12 6	5 4 7	53 53 47	556	2 2 2

Evaluations of Myrica species for sand dune stabilization, 1982

1/Planted April 5-16 Field 5&6 Cape May PMC. Vigor, survival and amount of foliage recorded August 3; Height, width, diameter and insect damage recorded November 1.

2/Average of two plants; dash (-) indicates no living plants to measure.

- 3/Ratings are: l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10=Dead.
- 4/Ratings are: 1=Very abundant; 3=Abundant; 5=Moderate; 7=Sparse; 9=Very sparse; 10=None.

5/Ratings are: 1=None; 3=Slight; 5=Moderate; 7=Severe; 9=Very severe.

TIDAL BANK STABILIZATION

Spartina alterniflora on a Tidal Bank

341018F

FINAL REPORT

During June of 1980, 40 selected accessions of <u>Spartina alterni-flora</u> (smooth cordgrass) were established on a sandy beach on the Wye Plantation in Queen Annes County, Maryland. The two upper hills in each row were planted above the normal high tide elevation. Approximately, three meters of beach were left between the planting and the normal low water line. The salt concentration of the water was 8.8 PPT at planting time. A controlled release fertilizer was placed in the planting hole at establishment and a soluble fertilizer was broadcast in late summer.

Very little growth was observed during the first month. PI-421208 appeared to be the outstanding accession. Erosion in Rep I and II was almost nil while Rep III was subjected to severe damage from wave action. Excessive wave action undercut the bank, however, the plant damage seems to be entirely due to abrasion of sand and water.

Between August and mid-November of 1980, a storm occurred which caused moderate damage to Rep I and severe damage to Rep II and Rep III. In Rep I, the debris was deposited nearly 0.5 meter higher than normal. Severe destruction of Rep II was due to the poor stand of existing plants. About 0.5 meter of the semi-vertical bank was lost in Rep III and except for a few subplots, only scattered plants remained.

During June of 1981, 11 kilograms of 10-10-10 fertilizer were applied to each replication. The plots did not fully recover from the winter and regrowth was rated as poor. PI-421208 which was considered outstanding in performance for 1980 was extensively grazed by animals during 1981. T-02816 appeared to be the best accession for 1981.

In 1982, only Reps I and II were evaluated. There was some grazing damage, apparently by cattle, to the northern end of Rep II. The stand density appeared to improve in 1982. Although overall the planting was still sparse, several accessions were quite dense. Rhizomic spread from surviving plants is occurring and in many instances adjacent plots are spreading into each other making evaluation of individual accessions difficult.

Considering the condition of the planting, the difficulty in obtaining accurate data and the amount of data already collected, no more formal evaluations will be made on this planting.

	_
Lable	<u></u>

PI No./ Rep	Regrowth	Stand	Beach Protection
T-2804 I II	<u>2</u> / 9	9 ² /	10 2/
T-2808 I II	9 8	9 7	9 7
T-2816 I II	7 7	2 5	2 5
421140 I II	-		-
421144 I II	7 7	8 7	8 8
421146 I II	9 8	9 8	9 9
421153 I II	9 9	9 8	9 8
421159 I II	8 -	7 -	8 -
421162 I II	9	8 -	8 -
421163 I II	7 7	6 5	7 7

Regrowth, stand and protection for 1/30 Spartina alterniflora accessions, 1982

Table 1 (cont.)

· · · ·

Regrowth, stand and protection for 30 <u>Spartina alterniflora</u> accessions, 1982

PI No./ Rep	Regrowth	Stand	Beach Protection
421166 I II	7 7	56	6 8
421167 I II	- 9	- 9	10
421175 I II	8 8	9 8	10 9
421184 I II	7	7	- 6
421185 I II	-	- -	- -
421187 I II	8 -	8 -	8 -
421188 I II	- 9	- 7	- 9
421198 I II			
421199 I II	-	-	-
421200 I TT	-7	96	9 8

Table	1	
(cont	.)	

Regrowth, stand and protection for 30 <u>Spartina alterniflora</u> accessions, 1982

PI No./ Rep	Regrowth	Stand	Beach Protection
421202 I II	6 7	4 6	4 8
421203 I II	- 8	- 7	- 9
421208 I II	7 9	2 7	2 7
421210 I II	- 7	- 7	- 9
421219 I II	8 6	8 5	9 7
421221 I II	8 6	7 5	9 8
421224 I II	7 8	8 7	9 8
421228 I II	- 6	- 6	7
421230 I II	5 8	4 8	6 9
421231 I II	7	9 -	8 -

1/60 hills established/accession/replication in June 1980; data recorded April 22. 2/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10=Dead or none.

Ta	b]	Le	2
----	----	----	---

E N

Stand and vigor for 30 Spartina alterniflora accessions, 1982

PI No./ Rep	Stand	Vigor	PI No./ Rep	Stand	Vigor
T-2804 I II	8 ² / 8	5 <u>2</u> / 54	421166 I II	4 2	2 4
T-2808 I II	9 3	4 2	421167 I II	8 4	5 4
T-2816 I II	36	3 4	421175 I II	8 5	5 5
421140 I II	6 10	5 10	421184 I II	9 4	4 3
421144 I II	58	5 5	421185 I II	10 9	10 5
421146 I II	9 9	4 4	421187 I II	4 7	4 4
421153 I II	56	4 4	421188 I II	9 7	4 4
421159 I II	8 9	5 5	421198 I II	10 9	10 5
421162 I II	5 7	4 5	421199 I II	9 10	5 10
421163 I II	52	4 4	421200 I II	6	54

٠

Table 2 (cont.)

Stand and vigor for 30 Spartina alterniflora accessions, 1982

PI No./ Rep	Stand	Vigor	PI No./ Rep	Stand	Vigor	
421202 I II	2 3	2 4	421221 I II	4 3	5 3	
421203 I II	6 5	4 5	421224 I II	7 6	5 5	
421208 I II	2 5	2 3	421228 I II	10 5	10 5	
421210 I II	9 8	5 4	421230 I II	3 4	3 4	
421219 I II	7 3	3 3	421231 I II	4 6	2 6	

1/60 hills established/accession/replication in June 1980; data
recorded June 17.

2/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; l0=Dead or none.

Table 3

Best 5 Spartina alterniflora accessions 1/ out of 30 growing on a tidal river bank, 1982

	<u>Rep I</u>	Rep II
$Best = \frac{2}{2}$	4 2 1208	421166
2nd Best	т-2816	421163
3rd Best	421202	421203
4th Best	421231	421221
5th Best	421230	421202

1/60 hills established/accession/replication in June 1980 at the Wye Plantation in Maryland; data recorded August 11.

2/Rating based on stand, vigor and erosion control.

44

PI No./ Rep	Vigor	Erosion Control	Da Insect	mage Disease	Seedhead Stage
T-2804 I II	2/ 3 5	2/ 56	1 <u>3</u> / 1	1 1 1	<u>4</u> м м
T-2808 I II	5 3	8 4	1 1	1 1	M D
T-2816 I II	3 4	3 6	1 1	1 1	D D
421140 I II	4 10	6 10	1 -	2 -	D -
421144 I II	3 3	4 7	l l	2 1	D D
421146 I II	3 4	8 8	l l	1	D D
421153 I II	24 24	4 5	l l	1	D D
421159 I II	54	5 5	l l	1	D D
421 16 2 I II	4 5	24 24	1 1	1	M D
421163 I II	4 2	4 2	1 1	1	M D
421166 I II	5 3	6 2	1 1	1 2	D D

Vigor, erosion control, damage and seedhead stage 1/ for 30 Spartina alterniflora accessions on a tidal river bank, 1982

Table 4

Table 4 (cont.)

		Vigor.	erosion cont	rol, dama	age and	seedhea	id s tag	je	
for	30	Spartina	alterniflora	accessi	ons on	a tidal	river	bank,	1982

PI No./ Rep	Vigor	Erosion Control	Da In s ect	amage Disea s e	Seedhead Stage	
421167 I II	14 14	7 4	1 1	1 2	D D	
421175 I II	4 4	56	1 1	1 1	M M	
421184 I II	4 4	8 6	l l	l l	M D	
421185 I II	10 5	10 9	ī	ī	– M	
421187 I II	5 3	6 7	1 1	1 1	M D	
421188 I II	5 4	7 6	1 1	1 1	M M	
421198 I II	3 3	7 8	1 1	1 1	D D	
421199 I II	3 10	7 10	1	1 -	D _	
421200 I II	4 5	5 4	1 1	1 2	M D	
421202 I II	5 5	4 4	1 1	1 2	M M	
421203 I II	4 5	5 5	1 1	2 2	D M	

Table 4 (cont.)

Vigor, erosion control, damage and seedhead stage for 30 <u>Spartina alterniflora</u> accessions on a tidal river bank, 1982

PI No./ Rep	Vigor	Erosion Control	D. Insect	amage Disease	Seedhead Stage	
421208 I II	4 3	2 5	1 1	1 1	D D	
421210 I II	3 3	9 5	1 1	1 1	D D	
421219 I II	4 4	7 4	1 1	1 1	M D	
421221 I II	24 24	5 3	1 1	1 1	M D	
421224 I II	4 5	6 6	1 1	2 1	D M	
421228 I II	10 4	10 6	- 1	- 1	– M	
421230 I II	4 6	4 5	5 1	1 2	M D	
421231 I II	5 5	3 7	1 1	1 1	D M	

1/60 hills established/accession/replication in June 1980 at the Wye Plantation, Maryland; data recorded September 23.

2/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10=None or Dead.

3/Ratings are - 1=None; 3=Slight; 5=Moderate; 7=Severe; 9=Very Severe. 4/M=Mature seed; D=Dough Stage.

Initial Evaluation of Solidago sempervirens

3410230

The vegetation behind the frontal dune along the mid-Atlantic coast is subject to pest damage. Once a dune becomes stable, <u>Ammophila breviligulata</u> (American beachgrass), either planted or volunteer, is the main species on these sites. After a period of time, disease and/or insects tend to inhibit plant vigor and eventually kill entire stands. The lack of adequate cover may cause large "blow outs" and undesirable changes in the dune pattern. While deterioration of <u>A. breviligulata</u> is a natural phenomenon, the invasion of long-lived native perennials into the weakened stand of beachgrass is a slow process. Present management techniques do not insure adequate dune cover.

<u>Solidago sempervirens</u> (Seaside goldenrod) is a salt tolerant perennial forb that is often found growing in association with <u>A. breviligulata</u>. It is well adapted to the entire dune area along the Atlantic coast growing from the crest of the foredune back through the woody climax vegetation in the back dune area. Plants produce several unbranched stems up to one meter high from short rhizomes and sometimes form open stands in the interdunal area. <u>S. sempervirens</u> can be used as a complimentary plant to <u>A.</u> breviligulata and other dune species for sand dune stabilization.

An assembly of <u>S. sempervirens</u> was made in 1981. Sixty-six accessions were collected as seed and thirty-three as vegetative material from North Carolina to Massachusetts. These were propagated at the National PMC. Failure of some accessions to germinate (due in part to immature seed) reduced this number to seventynine accessions which were planted in an observation plot at the Cape May PMC in late spring 1982. Attrition further reduced this number to fifty-six accessions.

Ta	b	1	е	1
		_	-	

 \smile

Survival and vigor for Solidago sempervirens, $1982^{1/2}$

-4

PI No. (T-No.)	Number Planted	Number Survive	Vigor d	PI No. <u>(T-No.</u>)	Number Planted	Number Surv.	Vigor
30157 27713 27698 30163 27701	20 12 6 20 10	17 10 3 18 3	75656	27021 27688 27687 27709 2796	4 15 7 4 8	4 10 0 8	4 7 10 10 5
30150 27715 27048 27028 2802	11 11 20 20 12	11 3 17 18 12	56454	27692 27029 27049 27689 27702	11 20 20 2 3	3 20 16 1 0	8 5 7 8 10
30146 27703 27022 27700 27686	7 5 15 6 15	2 1 15 1 5	9 8 4 98	27020 30147 27695 30158 27710	6 20 8 20 3	3 19 1 20 1	54 94 9
27030 27032 30148 27684 27008	20 20 7 11 3	20 19 6 7 3	4 4 6 8 4	30149 27683 27712 27706 27046	20 19 6 4	19 1 3 0 4	4 9 8 10 4
30163 27052 30159 30156 27039	5 20 20 20 20	4 20 20 20 20	4 4 4 4 4 4	30160 27025 27026 27050 27027	20 20 20 8 7	19 20 20 8 7	56676
27696 27693 27707 27685 27045	9 8 5 10 20	0 0 10 20 1	10 10 10 3 5	27694 27699 30162 27042 27053	5 3 20 20 20	1 0 20 20 20	9 10 5 4 4
27714 27705 27038 27711 27051	11 8 20 3 8	1 0 19 0 8	6 10 6 10 4	2798 30161 27704 30155 27697	4 20 12 16 10	4 20 0 14 1	6 6 10 7 9
2800 27017 27708 2799 27044	3 13 9 4 20	0 13 1 4 20	10 4 9 6 6	27690 27047 27024 27019 30154	11 20 20 2 20	6 20 20 12 20	66666

Table 1 (cont.)

£

Survival and vigor for Solidago sempervirens, 1982

- 1/20 plants or less/accession planted May 28-June 10 in Field 3, Cape May PMC; data recorded July 14.
- 2/Ratings are l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10=Dead.

10

Table 2 (cont.)

.

Evaluations for Solidago sempervirens, 1982

PI No.	<u>8/17</u>	/igor 10/2	Foliage <u>Abundance</u> 1	Leaf Characteristics	<u>Uniformity</u>	Disease Damage	Survival <u>No.</u>
T27021 T27688 T27687 T27709 T02796	58 - 4	6 5 - 4	4 - - 3	W N - M	U - - Nu	3 - - 3	4 2 0 0 7
T27692 T27029 T27049 T27689 T27702	- 34 6	- 24 5 -	- 2 4 -	- M W W	- Nu U -	- 3 4 -	0 20 10 1 0
T27020 T30147 T27695 T30158 T27710	54 - 3 -	7 4 5	4 2 - 3 -	W W - W	Nu U U U	2 2 4	2 16 0 20 0
T30149 T27683 T27712 T27706 T27046	4 5 4	3 3 4	4 - - 4	W - N - W	Nu - - U	2 - - . 3	5 0 1 0 4
T30160 T27025 T27026 T27050 T27057	4 7 5 5 4	4 8 6 4 3	3 6 4 4 4	W N N W W	U H Nu Nu U	3 1 2 2 2	13 13 18 5 6
T27694 T27699 T30162 T27042 T27053	- 534	- 755	- - 5 3 3	– N W W	- Nu U U	- 2 4 3	0 0 11 15 19
T02798 T30161 T27704 T30155 T27697	54-6-	3 4 4 -	- 3 - 5 -	W W - W	U Nu	4 1 -	1 16 0 5 0

Ta	b]	Le	2
----	----	----	---

Evaluations for Solidago sempervirens, $1982^{1/2}$

			and the second				
PI No.	Vi	gor	Foliage Abundance	Leaf Characteristics	<u>Uniformity</u>	Disease Damage	Survival No.
T30157 T27713 T27698 T30163 T27701	8/17 6 5 5 4 4	10/21 6 3 5 6	<u>3</u> / 5 7 54	4/ W N W W W	5/ Nu Nu Nu U	6/ - - - - - - - - - - - 	1 10 2 17 2
T30150 T27715 T27048 T27028 T02802	4 6 4 3	56466	5 - 35 3	W N W M W	Nu H U Nu U	3 4 3 4	11 1 16 12 11
T30146 T27703 T27022 T27700 T27686	52 -	- 6 5 -		- N W -	- U -	- 5	0 1 14 0 0
T27030 T27032 T30148 T27684 T27008	33565	6 4 7 7	3 3 4 3	M W W W	U U U - U	2 4 2 3	19 18 4 1 3
T30163 T27052 T30159 T30156 T27039	4 3 5 3	35555 555	3 2 4 2	W W W W	U U U U U	3 3 4 3 2	2 20 20 19 18
T27696 T27693 T27707 T27865 T27045	- 2 4		- - 2 3	- - W W	- - U U	- - 1 2	0 0 10 19
T27714 T27705 T27038 T27711 T27051	5 - 4 - 3	4 - 5	- 3 - 3	N W M	- - Nu - U	- 2 - 2	1 0 18 0 8

Table 2 (cont.)

Evaluations for Solidago sempervirens, 1982

<u>PI No.</u>	<u>8/17</u>	<u>ligor</u> 10/21	Foliage Abundance	Leaf Characteristics	<u>Uniformity</u>	Disease Damage	Survival No.
T02800 T27017 T27708 T02799 T27044	- 4 7 5	- 5 - 34	14 14 14 14 14	- W - W W	Nu U Nu	- 3 1 1	0 11 0 2 15
T27690 T27047 T27024 T27019 T30154	4 56 4 4	5556 M	4 3 4 4 3	N W W W W	Nu U U Nu U	1 3 1 4 2	4 15 12 7 19

1/Planted May 28-June 10 in Field 3, Cape May PMC. Leaf characteristics recorded Aug. 17; Foliage abundance, uniformity and disease damage recorded Aug. 31; Survival recorded Oct. 21.

- 2/Ratings are: l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; Dash (-) = Dead.
- 3/Ratings are: l=Very abundant; 3=Abundant; 5=Moderate; 7=Sparse; 9=Very sparse; - = Too few plants to evaluate.
- 4/Ratings are: W=Wide leaves; N=Narrow leaves; M=Mixture.

5/Ratings are: U=Uniform; Nu=Non-uniform; H=Hybrid.

6/Ratings are: 1=None; 3=Slight; 5=Moderate; 7=Severe; 9=Very Severe; - = Too few plants to evaluate.

7/Number of surviving plants, see Table 1 for number planted.

Table	3	

.

Dimensions and development dates for <u>Solidago</u> <u>sempervirens</u>, $1982^{1/2}$

<u>PI No.</u>	Height (cm)	$\frac{\text{Width}}{(\text{cm})}$	Bloom Date	Maturity Date	Dormancy Date	
T30157 T27713 T27698 T30163 T27701	55 55 35 50 60	2/ 30 70 45 65 40	3/ 10/4 10/13 10/13 9/22 10/4	<u>3</u> / 11/2 12/1 12/1 11/2 11/16	4/ 11/23 1/11 1/11 12/17 12/7	
T30150 T27715 T27048 T27028 T02802	45 60 75 75 105	50 50 60 40 40	10/13 10/4 10/4 9/22 9/22	11/23 11/9 11/16 10/27 10/27	12/17 12/17 12/17 12/17 12/17 12/7	1
T30146 T27703 T27022 T27700 T27686	- 65 - -	- 35 80 -	- 10/4 9/22 -	11/2 11/2 -	11/23 12/7	
T27030 T27032 T30148 T27684 T27008	65 80 60 35 55	75 60 40 25 60	10/4 10/4 10/4 10/4 9/15	11/9 11/9 11/9 11/9 11/9 10/21	12/7 12/17 12/21 11/9 11/23	
T30163 T27052 T30159 T30156 T27039	70 70 70 60 60	65 50 50 50 50	10/4 10/4 10/13 10/13 9/22	11/23 11/9 11/16 11/16 10/27	12/17 12/7 12/17 12/17 12/17 12/7	
T27696 T27693 T27707 T27685 T27045	- 80 60	- - 50 55	- 9/22 10/4	- 11/2 11/16	- 12/17 12/17	
T27714 T27705 T27038 T27711 T27051	55 - 55 80	70 45 60	10/4 10/4 10/4	11/9 11/16 11/16	12/17 12/17 12/17	

Table 3 (cont.)

•

Dimensions and development dates for Solidago sempervirens, 1982

			and the second		the second
PI No.	Height (cm)	Width (cm)	Bloom Date	Maturity Date	Dormancy Date
T27021 T27688 T27687	20 40	50 30 -	10/17 10/4 -	11/23 11/16 -	12/21 12/07 -
T27709 T02796	- 55	4 ₅	10/4	11/9	1/11
T27692 T27029 T27049 T27689 T27689 T27702	- 55 25 -	- 55 50 40	10/13 10/4 10/4	- 12/1 11/9 11/16 -	1/11 12/17 12/17
T27020 T30147 T27695 T30158 T27710	45 65 65	65 55 - 80	9/22 10/4 10/4	10/21 11/16 11/16	11/23 12/17 12/7
T30149 T27683 T27712 T27706 T27046	50 45 55	45 - 65 - 55	10/13 10/4 10/4	12/1 11/9 11/9	12/21 1/11 12/17
T30160 T27025 T27026 T27050 T27057	65 50 25 45	50 25 40 40 45	10/4 10/4 9/22 10/13 10/13	11/9 11/2 10/27 12/1 12/1	12/17 12/7 12/7 12/21 1/11
T27694 T27699 T30162 T27042 T270 5 3	- 60 65 40	- 60 55 50	- 10/4 10/4 10/4	- 11/9 11/9 11/16	- 12/17 12/17 12/7
T02798 T30161 T27704 T30155 T27697	45 55 - 30	40 45 45	10/4 10/4 10/21	12/1 11/9 12/7	12/21 12/17 - 1/11

Table 3 (cont.)

Height (cm)	Width (cm)	Bloom Date	Maturity Date	Dormancy Date	
- 55 25 40	- 60 - 40 55	10/4 11/2 10/4	11/16 12/21 11/16	1/11 1/11 12/17	
60 55 55 45 65	50 50 35 75 40	10/13 10/4 10/4 9/22 10/4	12/1 11/16 11/16 11/9 11/23	12/17 12/7 12/17 12/17 1/11	
	Height (cm) - 55 - 25 40 60 55 55 45 65	Height (cm) Width (cm) 55 60 25 40 40 55 60 50 55 50 55 35 45 75 65 40	$\begin{array}{c c} \underline{\text{Height}} & \underline{\text{Width}} & \underline{\text{Date}} \\ \hline \\ \hline \\ 55 & 60 & 10/4 \\ \hline \\ 55 & 40 & 11/2 \\ 40 & 55 & 10/4 \\ \hline \\ 60 & 50 & 10/13 \\ 55 & 50 & 10/4 \\ \hline \\ 55 & 35 & 10/4 \\ \hline \\ 45 & 75 & 9/22 \\ \hline \\ 65 & 40 & 10/4 \\ \hline \end{array}$	$\begin{array}{c c c} \underline{\text{Height}} & \underline{\text{Width}}\\ \hline \underline{\text{Height}} & \underline{\text{Width}}\\ \hline \underline{\text{Date}} & \underline{\text{Date}} & \underline{\text{Date}} & \underline{\text{Date}} \\ \hline \\ \hline \\ 55 & 60 & 10/4 & 11/16 \\ \hline \\ 55 & 40 & 11/2 & 12/21 \\ 40 & 55 & 10/4 & 11/16 \\ \hline \\ 60 & 50 & 10/13 & 12/1 \\ 55 & 50 & 10/4 & 11/16 \\ \hline \\ 55 & 35 & 10/4 & 11/16 \\ \hline \\ 55 & 35 & 10/4 & 11/16 \\ \hline \\ 45 & 75 & 9/22 & 11/9 \\ 65 & 40 & 10/4 & 11/23 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Dimensions and development dates for Solidago sempervirens, 1982

l/Planted May 28-June 10 in Field 3, Cape May PMC; Height and width data recorded September 10.

2/Average height and width for the row.

3/Date 50% or more plants are in bloom or have matured fruit.

4/Date 95% dormant, not including winter rosette.

5.6

INITIAL EVALUATIONS

Spartina alterniflora for Tidal Bank Stabilization

341025F, 341026F, 341033F

Coastal sound banks and river estuaries which are exposed to storms and tidal action are a severe erosion problem along the mid-Atlantic coast. The problem is acute in the states of Virginia, North Carolina and Maryland and to a lesser extent in Delaware and New Jersey. The Soil Conservation Service has recognized shore erosion as a critical problem for many years. Previous efforts were mainly directed towards engineering structures and transplanting native cordgrasses from nearby marshes along eroding tidal areas.

In 1975, the shore erosion problem was designated as a high priority item for the Cape May PMC service area. The planned action was to be limited to saline waters and was divided into two phases; these being the stabilization of the intertidal zone and vegetation of the beach area above the tidal zone.

S. alterniflora (smooth cordgrass) is the only grass that has potential for stabilizing the intertidal zone of saline waters along the mid-Atlantic coast. In 1977, an assembly of 111 accessions was planted on the PMC. This was planted in a simulated tidal basin excavated in a permeable soil. The plants were flooded twice each week during the summer. The plant growth was rated fair to good in the shallow basin despite the lack of normal tidal cycles of saline water.

Normally, <u>S. alterniflora</u> grows in the intertidal zone of saline waters where the grass is subjected to two tidal cycles each day. The conditions are difficult to simulate on an inland site. The available natural sites were either covered with native plants or lacked the security offered at a PMC site.

In the spring of 1982, the 1980 Planting was plowed and disked frequently to kill the rhizomes. The pit was then replanted to the 30 selected accessions. One additional accession, from a site nearby the 1982 Off-center Planting, was added bringing the total to 31. For identification, these yearly plantings in the on-center pits were given project numbers. The 1980 Planting is 34I025F, the 1981 Planting is 34I026F and the 1982 Planting is 34I033F.

Twenty-six (26) accessions were selected for evaluation in 1983. It is planned to add one accession from the 1983 Off-center Planting bringing the total to 27. The 1981 pit will be plowed and replanted to these 27 accessions in 1983.

The objective of this project is to select a vigorous, hardy strain of S. alterniflora to plant on the tidal banks of saline streams.

Table 1

1 1

PI Number	Туре	Amo	unt	PI Number	Туре	Amou	unt
421162 421184 421166 421163 421195	U/P U/P U/P U/P U/P U/P	3 3 4 2 2 4	4 4 4 4 4 -	421185 421187 421224 421172 421230	P U/P U U/P U/P	7 7664	574 - 2
421144 421120 421221 421190 T-2804	U U/P U U U	6 7354	4 - 2 - 3	421169 421232 421208 421175 421145	U U U/P U	4 5 7 7	- I 58 I
421146 421228 421210 421153 T-2808	- U/P U/P U/P U/P	10 3 4 4 3	10 4 3 2 2	421198 421203 421154 421192 421188	U U/P - P P	56 10 98	2 5 - 7
421167 421159 421140 421199 421200	U/P P U/P U U/P	<u>58765</u>	49665	421231 421202 T-2809 421219 T-2816	U - U U U	9 10 9 8 3	10

Plant residue for <u>Spartina alterniflora</u> after the second winter, 1982<u>1</u>/

1/Planted June 3, 1980; data recorded March 12.

<u>2</u>/Ratings are - U=Mostly upright; P=Mostly prone; U/P=About half and half.

<u>3</u>/Ratings are - l=Excellent; 3=Good; 5=Moderate; 7=Poor; 9=Very Poor; 10=None.

4/Data recorded April 29.

Table 2

 \smile

	Relative ar	nount of	regrow	th for		$ = \pm /$
Spartina	alterniflora	a followi	ing the	second	winter,	1982

~

PI Number			Date Eval	uated		
	3/26	4/2	4/9	4/20	4/29	5/6
421162 421184 421166 421163 421195	7 5 5 6 6	54 356	4 3 3 4 5	54 34 7	· 3 2 2 1 -	4 3 4 6
421144 421220 421221 421190 T-2804	7 7 8 8 4	7 8 6 7 8	66566	7 7 4 7 6	3 - 3 - 3	57566
421146 421228 421210 421153 T-2808	10 3 2 5 6	10 5 1 6 5	10 2 3 5 6	10 3 2 7 7	10 1 1 2 2	10 3 6 5
421167 421159 421140 421199 421200	4 8 9 7 5	6 9 10 7 7	7 9 10 7 8	4 9 7 6	2 5 7 3 4	4 7 9 7 5
421185 421187 421224 421172 421230	95654	9 9 8 9 7	5 7 8 76	7 8 7 8 6	4 6 3 4	65686
421169 421232 421208 421175 421145	1 4 6 3	26959	26 94 9	3 7 8 6 8	- 6 4	35867

PI Number	3/26	4/2	Date Eva <u>4/9</u>	luated <u>4/20</u>	4/29	576
421198 421203 421154 421192 421188	2 3 10 10 9	4 5 10 10 9	3 6 10 10 9	3 7 10 10 9	3 3 - 7	4 5 10 10
421231 421202 T-2809 421219 T-2816	7 10 9 7 7	8 10 10 8 9	9 10 10 9 9	9 10 10 9 8	5 10 4 9	9 10 8 7

Table 2 (cont.) Relative amount of regrowth for Spartina alterniflora following the second winter, 1982

1/Planted June 3, 1980.

2/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10=None.

Table 3

Evaluations for <u>Spartina</u> <u>alterniflora</u> following the second winter, 1982

PI No.	Relative Density	Rhizome Spread (cm)	$\frac{\frac{3}{\text{Row}}}{\frac{\text{Width}}{(\text{cm})}}$	Residue	Amount of Foliage	Vigor	Stand
421162 421184 421166 421163 421144	24/ 2 3 2 3 2 3 2 3 2 3 6	265 220 310 315 170	165 145 170 200 110	15/ 1 3 1 1	6/ 3-4 5-4 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4/ 1 2 2 2 4
421221 T-2804 421146 421228 421228 421210	3 5 10 2 2	320 130 0 290 340	210 85 0 190 190	1 1 4 1 1	2 3 10 3 3	2 2 10 2 2	3 2 10 1 2
421153 T-2808 421167 421159 421159 421140	4 3 2 6 9	220 340 230 160 120	130 160 120 40 50	3 1 2 2	3 2 2 6 9	3224 6	3 2 2 5 G
421199 421200 421185 421187 421224	7 4 5 4 5	140 270 290 210 190	90 140 140 120 90	3 3 2 1	5 3 4 3	3 3 3 2 2	4 2 3 4
421230 421208 421175 421198 421203	38 6 6	210 80 190 210 160	95 15 90 130 110	1 1 2 1 2	3 7 5 2 2	354 2 2	264 23
421188 421231 421202 421219 T-2816	7 9 10 9 5	140 80 0 100 180	60 10 0 60 90	2 2 4 3 1	5 6 10 4 3	4 5 10 4 6	7 9 10 7 5

1/Planted June 3, 1980; density, spread and width recorded May 18, other data recorded May 13.

2/Maximum rhizome spread from edge to edge in centimeters. 3/Average row width in centimeters. 4/Ratings are: l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10=None. 5/Ratings are: l=Upright; 2=Prostrate and partially decayed; 3=Combination

4=None.

6/Ratings are: 1=Very large amount; 3=Large; 5=Moderate; 7=Little; 9=Very Little; 10=None.

Гa	bl	е	4
		_	

PI Number	Туре	Amou	<u>int</u>	<u>PI Number</u>	Type	Amou	int
421219 421162 421163 421220 421220 421202	2/ U U/P U/P U/P P	4 6 5 3 3	4 6 7 5 6	421190 421192 421166 421167 421159	U/P P U/P U U/P	48556	- 768
421145 421154 421195 T-2809 421184	U/P U U U/P U/P	99673		421175 421185 421228 T-2804 421231	P P U U U/P	55566	7-6 M 5-6
421200 421187 T-2816 421230 421232	U/P U/P U U U/P	56476	46 M6 -	421208 421199 421172 421144 421169	U U U/P U U	34 5 35	1 6 - 2 -
421188 421140 421153 421146 421203	P U/P U/P U P	544 76	6 34 52	421210 T-2808 421 224 421198 421221	P U/P U/P U U	4 4 4 3	7 3 4 4 2

Plant residue for <u>Spartina</u> <u>alterniflora</u> after the first winter, <u>1982</u>/

1/Planted May 27-June 12, 1981; data recorded March 12.

2/Ratings are - U=Mostly upright; P=Mostly prone; U/P=About half and half.

<u>3</u>/Ratings are - l=Excellent; 3=Good; 5=Moderate; 7=Poor; 9=Very Poor; 10=None.

4/Data recorded April 29.

Πа	h	٦	ρ	5
TC		-	\sim)

Relative amount of regrowth $\frac{1}{1}$ for <u>Spartina</u> alterniflora following the first winter, 1982

PI Number			Date Evalu	ated		5.16
	3/26	4/2	<u>4/9</u>	4/20	4/29	5/0
421219 421162 421163 421220 421222	3 5 3 3 4	4 6 6 7	4 5 4 5	4 5 5 5 6	2 4 3 - 2	4 5 5 4 4
421145 421154 421195 T-2809 421184	10 10 3 8 4	10 10 5 10 5	10 10 4 9 4	10 10 6 9 5		10 10 5 9 4
421200 421187 T-2816 421230 421232	5 58 76	5 8 10 7 7	4 5 10 6 5	6 7 9 8 7	3 56 5	4 596 5
421188 421140 421153 421146 421203	54695	57795	56676	6 56 76	3 2 2 3 7	4 4 6 5
421190 421192 421166 421167 421159	10 10 7 9 5	9 10 9 8 5	7 9 7 5	9 10 7 8 5	- 3 4 3	594 54
421175 421185 421228 T-2804 421231	2 10 7 7 7	26466	25356	3 5 5 8 8	2 3 3 4 5	3 4 4 5

Table 5 (cont.)

Relative amount of regrowth for <u>Spartina alterniflora</u> following the first winter, 1982

<u>PI Number</u>	3/26	4/2	Date Eval	Luated <u>4/20</u>	4/29	5/6
421208 421199 421172 421144 421169	10 4 9 5 6	10 3 8 5 4	8 36 4 3	94 8 6 3	4 2 - 2 -	8 3 5 4 3
421210 T-2808 421224 421198 421221	4 9 9 3 5	4 9 3 3	3 9 8 3 3	4 10 9 3 5	2 9 5 2 3	4 9 7 3 5

1/Planted May 27-June 12, 1981.

2/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; l0=None
Table 6

Measurements of Spartina alterniflora, 1982

PI No.	Leaf <u>2</u> / <u>Height</u> (cm)	Row 2/ <u>Width</u> (cm)	Head 2/ Height (cm)	Rhizome <u>3</u> / Spread (cm)	Stem <u>4</u> / Density (No.)
421219	100	65	160	120	37
421162	65	110	100	185	22
421163	75	160	140	275	30
421202	95	70	130	135	56
421184	120	150	150	355	48
421200	100	120	150	210	47
421187	100	85	145	250	66
T-2816	95	100	175	215	28
421230	90	80	130	160	36
421188	8 5	95	125	185	34
421140	95	110	130	195	32
421153 <u>5</u> /	9 5	120	145	220	31
421146 <u>5</u> /	95	30	120	90	8
421203	95	100	135	135	37
421166	70	130	115	190	52
421167	80	85	135	115	94
421159	80	90	135	180	66
421175	60	120	80	200	114
421185	75	100	125	160	48
421228	100	135	130	230	72
T-2804	110	125	140	130	70
4212316/	70	90	130	180	54
421208	50	15	100	100	16
421199	65	10 5	145	170	66
421144	105	12 5	160	205	46
421210	60	130	80	265	45
T-2808	95	50	150	95	13
421224	110	80	155	145	60
421198	90	130	155	200	56
421221	90	150	150	30 5	26

1/Planted May 27-June 12, 1981; Leaf height and row width recorded July 20; Head height-Sept. 9-24; Stem density-Sept. 9; Rhizomes spread Nov. 3. 2/Measurement of average area as determined by occular estimate. 3/Maximum spread from edge to edge. 4/Average count of two 30 cm x 30 cm squares. 5/Replanted Spring 1982. 6/Majority of plants removed for other plantings spring 1982.

Table 7

Bloom, dormancy, vigor, amount of foliage and injury for Spartina alterniflora, 1982 $\underline{1}/$

PI No.	2/ Bloom Date	Dormancy Date	Vi May 14	gor July 20	Amount of Foliage	Insect Injury	Disease Injury
421219 421162 421163 421202 421184	8/3 8/31 8/24 8/3 7/20	12/14 11/23 11/23 11/30 11/23	4 2 4 3 2 2	3 5 3 2	4 4 3 4 3		1 2 3 3 4
421200 421187 T-2816 421230 421188	7/20 7/20 9/7 8/3 7/20	11/23 11/23 11/30 11/23 11/30	3 2 2 5 2	2 2 4 4 3	4 5 3 4 3	1 1 1 1 1	4 5 3 5 5
421140 421153 421146 421203 421166	9/22 9/7 8/31 8/30 8/10	11/30 11/23 12/21 11/30 11/23	2 2 2 2 2 3 3	5 5 5 5 5 3 4	3 3 4 4 4	1 1 1 1	2 3 5 4 3
421167 421159 421175 421185 421228	8/10 8/10 7/9 8/3 7/20	12/14 12/7 11/23 11/3 11/30	2 3 3 2 3 3	4 3 5 5 3	3 3 5 4 3	1 1 1 1	2 3 5 4 2
T-2804 421231 421208 421199 421144	8/3 8/10 9/14 8/10 8/31	11/30 11/23 11/30 12/21 12/14	2 4 3 3	3 54 2 3	3 4 3 2	1 1 1 1	2 3 3 2 4
421210 T-2808 421224 421198 421221	9/14 8/18 8/3 8/3 8/31	12/7 11/30 11/30 12/14 11/30	35522 2	3 3 4 2 3	4 3 3 2 3	2 1 1 1	26 4 32

1/Planted May 27-June 12, 1981; Foliage and injury data recorded Aug. 31. 2/Date that two or more plants were actively flowering. 3/Date 95% dormant. 4/Ratings are: l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10=Dead. 5/Ratings are: l=Very abundant; 3=Abundant; 5=Moderate; 7=Sparse; 9=Very Sparse.

6/Ratings are: 1=None; 3=Slight; 5=Moderate; 7=Severe; 9=Very Severe.

T	a	b	1	е	- 8	3
			_	-		21

100

First year measurements of <u>Spartina</u> alterniflora, 1982

<u>PI No.</u>	Heig 7/22 (cm	ht 9/9	Wid 7/22 (ci	th n) 9/9	Head <u>Height</u> (cm)	Stem <u>Density</u> (No.)	Rhizome Spread (cm)
421208 421144 421175 421221 421228	45 ² / 55 45 50 60	110 85 55 90 80	30 ^{2/} 15 15 30 25	75 35 60 40	115 ^{2/} 95 60 105 100	10 <u>3</u> / 6 14 12 19	120 <u>4</u> / 65 70 125 70
T30166 421224 421140 421184 421231	65 60 45 60	90 85 90 90 70	30 15 25 20 20	55 35 50 30 40	110 110 90 100 90	13 8 10 12 14	55 65 75 80 50
421188 421203 421166 T2804 421200	40 65 45 50 45	75 90 85 75 90	20 25 20 20 25	50 50 55 45 50	85 100 85 90 105	4 15 11 12 10	30 90 95 35 70
421185 421167 421210 T2808 421163	55 55 40 45	80 80 60 80 75	20 25 20 15 20	50 40 40 40	105 95 65 95 80	14 17 12 8 8	90 65 90 80 65
421198 421219 421153 421202 421159	45 65 50 50 40	80 35 85 70 75	25 25 25 25 20	50 30 45 50	90 0 95 90 100	12 6 14 14 12	105 35 65 45 80
421162 421146 421199 T2816 421187	50 50 40 45 70	95 80 75 90 90	20 20 20 30 30	60 40 40 50 40	115 100 90 105 115	20 6 13 9 10	70 90 65 45 40
421230	40	75	20	40	85	18	60

1/Planted Cape May PMC June, 1982; Head height recorded September 9-24; stem density recorded September 9; rhizome spread recorded November 4. 2/Measurement of average size as determined by occular estimate. 3/Average count of 2 30 cm x 30 cm squares. 4/Maximum spread from edge to edge.

Ta	b1	.e	9
		_	

First year evaluations of <u>Spartina</u> <u>alterniflora</u>, 1982

PI No.	Bloom Date	Dormancy Date	Vigor 7/22	Vigor 1174	Amount of Foliage	In s ect Injury	Disea s e Injury
421208 421144 421175 421221 421228	2/ 9-14 9-14 7-22 9-7 8-18	/ <u>3</u> / 12-7 12-21 12-1 12-14 12-14 12-14	4 4 5 3 4	4 3 5 3 4	4 3 5 3 5 5		6/ 2 2 2 2 2 2 2 2 2
T30166 421224 421140 421184 421231	8-18 8-10 9-22 8-18 7 -2 2	12-14 12-1 12-14 12-1 12-7	53545	55555	4 4 3 5	1 2 1 2	2 2 2 2 3
421188 421203 421166 T02804 421200	8-10 8-10 8-24 8-10 8-10	12-14 12-1 11-17 11-23 12-1	6 4 5 4 4	55555	54 36 3	1 1 1 1	2 2 2 3 2
421185 421167 421210 T02808 421163	8-18 8-18 9-14 8-24 9-7	11-23 12-14 12-1 12-14 12-14 12-1	4 5 4 3	55555	4 3 3 4 3	1 1 1 1	2 2 2 2 2 2 3
421198 <u>7</u> / 421219 421153 421202 421159	8-18 None 9-7 8-3 8-10	12-21 12-21 12-7 12-7 12-14	4 4 3 4	34 554	364 32	1 1 1 1 1	2 1 2 3 2
421162 421146 421199 T02816 421187	9-7 9-14 8-18 8-31 7-22	12-7 12-14 12-21 12-21 12-21 12-1	4 5 4 4 4	4 4 3 4 5	354 55	1 1 1 1	2 3 2 2 3
421230	8-24	11-23	4	5	5	1	2
1/Planted diseas 2/Date 2 3/Date 9	d Cape M e injury or more 5% dorma	ay PMC June and amount plants act nt.	e 1982. t of foli tively f	Insect Lage rec Lowering	injury rec orded Sept	orded Jul ember 14.	y 22;

l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10=Dead. l=Very abundant; 3=Abundant; 5=Moderate; 7=Sparse; 4/Ratings are: 5/Ratings are:

9=Very sparse.

6/Ratings are: 1=None; 3=Slight; 5=Moderate; 7=Severe; 9=Very severe; 10=Complete defoliation.

7/Suffered severe grazing damage and did not produce a seedhead.

SOIL CONSERVATION SERVICE PLANT MATERIALS CENTER CAPE MAY COURT HOUSE, NJ

PMC PROJECT PLAN

I. <u>Project Title</u>: Assembly and evaluation of sea oats <u>Uniola</u> paniculata L.

Project No: 34I029C

Sea oats is a perennial, long-lived sand stabilizing grass that is found along the Atlantic and Gulf coasts south of Virginia Beach, Virginia. This grass is slow to establish but is persistent following establishment. It has a dense fibrous root system which makes it an excellent sand binding plant. The abundant foliage on the individual plants make it an important part of the foredune flora within its area of adaptation.

II. Problem:

American beachgrass is the primary grass that is planted for stabilization of sand dunes along the mid-Atlantic coast. Diseases and insects have threatened the effectiveness of this species. Within its area of adaptation, sea oats is a valuable component of the plant community along the foredunes. Poor seedling vigor, slow rate of establishment, slow spreading, poor survival of native transplants and low germination rates have discouraged scientific work with the species. The need exists for an adapted variety of sea oats for use in MLRA 153.

III. Objective:

The objective of this project is to develop and cooperatively release a variety of sea oats for use in Maryland, Virginia and North Carolina within MLRA 153.

This project will be conducted in phases. The first two will involve screening for winter hardy plants in the northern range of the area of adaptation. This is the area where the species is needed most. The final phase will encompass a full assembly and comprehensive evaluation.

IV. Literature Review: Attachment 1.

V. Procedure:

- A. Phase I Use existing plants of 3 accessions collected in Virginia now in F-1. 1982-85.
 - 1. Start 35 plants of each accession in 1 quart pots.
 - a. Date December (after killing frost but prior to 28°F soil temperature).

- b. Maintain potted plants in greenhouse during winter.
- c. Keep temperatures depressed to 40-45°F for 2 months.
- 2. Leave remaining plants in F-1 to overwinter.
 - a. Check for spring regrowth.
 - b. Evaluate winter survival May.
 - c. Maintain any surviving plants.
- 3. Establish new plantings with greenhouse material:
 - a. Sites (1) PMC - F-1 (2) Wildwood, NJ (3) Ft. Miles, DE

. .

• •

- b. Date May, 1983
- c. Spacing Single row 3.5 feet between rows; 2 feet within row.
- d. No. 10 plants/accession/site.
- e. Accessions 3
- 4. Evaluations All living plants from Nos. 2 and 3 above:
 - a. 1983 (1) Survival - No. (a) June (b) Aug.
 - (2) Vigor (1-10) (a) June (b) Aug.
 - (3) Plant dimensions
 (a) H x W (cm)
 (b) Sept.
 - (4) Culm production (No.)
 - (5) Amount of foliage (1-10)

b. 1984

(1) Survival - No. (a) May (b) July (c) Sept.

- (2) Regrowth
 (a) Amount (l-10)
 (b) May
- (4) Flowering date
- (5) Plant dimensions
 (a) H x W (cm)
 (b) Sept.
- (6) Culm production (No.)
- (7) Amount of foliage (1-10)
- 5. Initial Selection

Use winter hardy plants for phase II.

B. Phase II - 1982-86

.

• •

- 1. Collect seed from Virginia Beach and Delmarva peninsula.
 - a. Split seed lots into two equal parts.
 - b. Germinate seed in greenhouse.
 (1) Jan. 1983 Lot 1
 (2) Jan. 1984 Lot 2
 - c. Grow plants in $2\frac{1}{2}$ inch peat pots filled with sand.
- 2. Recollect seed during second year.
- 3. Planting Plan
 - a. Sites Adjacent to phase I.
 (1) PMC
 (2) Wildwood, NJ
 (3) Ft. Miles, DE
 - b. Accessions As many as possible.
 - c. No. of plants
 (1) Wildwood, Ft. Miles 25
 (2) PMC Remainder of plants.
 - d. How: Potted $(2\frac{1}{4}X)$
 - e. Spacing

 (1) Single row/accession
 (2) 2 feet between plants
 (3) 3.5 feet between rows

- Planting Dates f. May 83 (1)May 84 (2)
- 4. Evaluations
 - As in A-4 above. a.
 - 1983 b.
 - 1984 с.
 - Use PM Form 60. d.
- Management 5.
 - Fertilizer a.
 - On Center 500 lb. 10-10-10/A plus 30# N/A. (1)Off-center - 30 grams of slow release (2)fertilizer/hill at planting time.
 - Irrigation on center; Use supplemental water b. as needed for sustained growth.
 - Pest Control Use chemical and mechanical means с. to control weeds, disease and insects.
 - Move plants from PMC field to greenhouse. d.
 - Accessions all (from PMC only) (1)
 - No. 85 plants/accession
 - $\binom{2}{3}$ Method - Randomly select plants from plots; may subdivide hills.
 - How Pot into 1 quart containers.
 - $\binom{4}{5}$ When:
 - (a) Dec. 1983
 - Dec. 1984 (b)
 - Maintain as in Phase I.
 - $\binom{6}{7}$ Replant greenhouse overwintered plants.
 - (a) Sites
 - i. Ft. Miles, DE
 - Assateague Island, MD ii.
 - iii. Accomack Co, VA
 - (b) No. of plants: 25/accession/site
 - (c) When:
 - i. May 84
 - ii. May 85

C. Phase III - Full scale evaluation 1983-88

2 - ¹ - 1

Assembly - 1983 & 1984 1. Number - 90 а. Maryland - 5 (1) Virginia - 25 (2) $(\overline{3})$ North Carolina - 30 4) South Carolina - 20 (5) Georgia - 10 Sites - Sand dunes. Ъ. С. Туре (1)Seed (a) Preferred Several seedheads/site (b) Vegetative - Collect 25 culms per site (2)if seed not ripe. Planting Plan 2. Locations a. (1) Virginia Beach, VA (2) Accomack Co., VA Plot layout - Single row, non-replicated design. b. Row size - 50 feet с. Row spacing - 3.5 feet d. Plant spacing - 1 foot е. Planting stock - Potted plants (3 months old) f. started in greenhouse. Planting date - May 15, 1984 g. Management 3. Site - Select stable sandy area with minimum a. amount of vegetation. Fertilizer b. (1) Initial i. 30 grams slow release/hill at planting time. 500 lbs/A of 10-10-10 broadcast in July. ii. (2) Maintenance i. 750 lbs/A 10-10-10 - May 1. ii. 500 lbs/A 10-10-10 - July 1. Pest Control с. Weeds - Hand weed as necessary. (1)Insects - Use chemical control to prevent (2)seedhead damage.

4. Evaluations:

- a. Use PM-60 (Attachment 2).
- b. Additional factors as appropriate.
- 5. Selections:

Select superior strains based on winter hardiness, seed production, sand cover, insect and disease resistance and spreading ability.

6. Initial Increase:

Those accessions selected for advanced evaluations will be increased from material on initial evaluation site.

- 7. Advanced Evaluation:
 - a. This plan will be amended to reflect updated knowledge and use of the species before making advanced plantings.
 - b. Sites l north and l south of initial evaluation site.
 - c. Replications 2
 - d. Evaluations More detailed.
- 8. Release:

The superior hardy strain adapted to mid-Atlantic coastal dunes will be cooperatively released by SCS and other interested agency(ies).

Spartina alterniflora - Reed Property

341031F

On June 2 and 3, 1982, this <u>Spartina alterniflora</u> (smooth cordgrass) planting was installed at Wilmers Point, Maryland, Queen Anne County on the Adrian Reed Property. This planting consists of two replications; Rep I is on a western exposure and Rep II on a northern exposure. Rep II has less beach than Rep I and is the harsher site. Thirty selected accessions, plus one native accession (T-30166) selected near the site, were planted on the sandy and gravelly beach. A controlled release fertilizer was placed in the planting holes at establishment. At high tide, all of the plants are in the water.

Early evaluations were hampered by very high tides but it was evident that the plants in Rep I were doing better than those in Rep II. In September, the planting suffered grazing damage, probably by geese. This varied from slight to severe depending on the plot location, but Rep II was the more severely damaged. There was a significant amount of sand and gravel accumulation on most plots. By mid-November, at least one-half of Rep II was washed out. Rep I, however, was in very good shape. The best accessions vary with evaluation date, but PI-421228 and PI-421203 have exhibited excellent performance.

75

ביוי	n	
TC	U -	

~

		Plant heig	ght, width,	survival, vigor	10001/
and	erosion	control for 3	31 Spartina	alterniflora accessions,	, 1902

PI No./ Rep	Lea	f Hei	ght	Plan	t Wid	lth	Sun Number	rvival Percent	Vigor	Erosion Control
T-2804 I II Ave.	4 0 50	48	60 40	35 45	41	50 35	29 24	72 60	4 5	4 ² / 5
T-2808 I II Ave.	60 60	59	45 70	30 30	35	45 35	23 23	58 58	3 5	7 4
T-2816 I II Ave.	30 80	60	60 70	25 50	40	35 50	25 24	62 60	53	7 3
T-30166 I II Ave.	60 50	50	40 50	50 35	39	30 40	35 25	88 62	4 3	5 3
421140 I II Ave.	60 70	52	40 40	70 40	51	45 50	26 23	65 58	4. 4	54
421144 I II Ave.	50 55	49	40 50	40 30	30	25 25	19 17	48 42	4	7 7
421146 I II Ave.	40 50	45	55 35	25 35	34	40 35	25 17	62 68	3 4	7 5
421153 I II Ave.	55 30	44	50 40	35 35	36	50 25	13 9	32 22	4 5	7 8
421159 I II Ave.	45 40	35	35 20	50 35	38	40 25	28 14	70 35	36	55

Table 1 (cont.)

 \sim

V

Plant height, width, survival, vigor and erosion control for 31 Spartina alterniflora accessions, 1982

PI No./ Rep	Lea	f Hei (cm)	ght	Plan (t Wic cm)	lth	Sur Number	vival Percent	Vigor	Erosion Control
421162 I II Ave.	60 40	56	55 70	50 35	45	50 45	38 16	95 40	3 5	55
421163 I II Ave.	50 60	60	60 70	40 40	42	45 45	15 33	38 82	3 4	4 3
421166 I II Ave.	50 55	56	60 60	40 55	49	40 60	29 35	72 88	3 3	4 2
421167 I II Ave.	40 35	42	60 35	30 30	32	45 25	33 12	82 30	4 4	4 6
421175 I II Ave.	60 20	34	30 25	40 20	28	25 25	22 19	55 48	3 5	6 6
421184 I II Ave.	60 40	65	70 90	40 35	41	50 40	25 14	62 35	4 5	5 7
421185 I II Ave.	55 80	64	60 60	30 60	44	40 45	27 22	68 55	3 5	5 5
421187 I II Ave.	70 80	66	40 75	40 30	35	20 50	29 22	72 55	3 4	6 5
421188 I II Ave.	60 30	48	60 40	45 30	36	50 20	23 7	58 18	26	3 7

Table 1 (cont.)

-

Plant height, width, survival, vigor and erosion control for 31 Spartina alterniflora accessions, 1982

PI No./ Rep	Leaf	f Hei	<u>ght</u>	Plan (t Wid cm)	lth	Surv Number	vival Percent	Vigor	Erosion Control	
421198 I II Ave.	35 30	34	30 40	40 30	35	40 30	6 10	15 25	4 6	8 8	
421199 I II Ave.	50 40	41	35 40	35 25	34	30 35	27 25	68 62	3 5	54	
421200 I II Ave.	65 90	75	6 5 80	40 40	45	60 40	31 29	78 72	3 4	4 3	
421202 I II Ave.	80 50	65	90 40	50 30	41	55 30	28 15	70 38	3 5	4 6	
421203 I II Ave.	45 55	52	60 50	45 55	52	65 45	37 37	92 92	3 3	4 2	
421208 I II Ave.	50 45	51	60 50	40 35	40	45 40	37 14	92 35	3 4	56	
421210 I II Ave.	35 10	25	25 30	35 15	25	20 30	25 12	62 30	5 7	6 8	
421219 I II Ave.	60 45	49	60 30	30 35	34	40 30	29 17	72 42	4 5	56	
421221 I II Ave.	35 40	41	40 50	40 40	40	50 30	25 15	62 30	4 5	4 5	

Table 1 (cont.)

		Plant	t height	, width,	survival, via	gor	
and	erosion	control	for 31	Spartina	alterniflora	accessions,	1982

PI No./ Rep	Leat	f Heig cm)	<u>ght</u>	Plant	t Wid (cm)	<u>lth</u> I	Survi Number I	val Percent	Vigor	Erosion Control
421224 I II Ave.	100 50	62	60 40	30 40	40	50 40	35 32	88 80	3 4	5 4
421228 I II Ave.	65 60	68	95 50	60 40	41	45 20	30 13	75 32	2 5	2 7
421230 I II Ave.	80 65	61	40 60	40 30	32	30 30	21 20	52 50	3 4	6 5
421231 I II Ave.	45 25	32	35 25	50 30	34	30 25	26 14	65 35	4 6	58

1/40 hills/accession/replication (except 421146 in Rep-II has 25)
planted June 3 at Wilmers Point, Maryland; data recorded
August 12.

2/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10=None. Table 2

17

Best five out of thirty-one Spartina alterniflora accessions planted on a tidal river bank, 1982-

	<u>R-I</u>	R-II
Best	421228	421166
2nd Best	421188	421203
3rd Best	421200	т-2816
4th Best	421162	т-30166
5th Best	421199	421163

1/40 hills/accession/replication (except 421146 in Rep II has 25)
planted June 3 at Wilmers Point, Maryland; data recorded August 12.

2/Ratings based on number of plants, amount of foliage, vigor and erosion control.

Table .

V

Culms per hill for 31 Spartina alterniflora accessions, $1982^{1/2}$

V

PI No./ Rep	Culr (1	ns/H: No.)	<u>ill</u>	Average/ Rep.	Average/ Accession
T-2804 I II	2, 30 36	/ 13 25	45 22	29 28	28
T-2808 I II	9 20	21 21	13 31	1.4 24	19
T-2816 I II	7 19	6 14	11 7	8 13	11
T-30166 I II	17 30	16 31	22 3	18 21	20
421140 I II	13 18	9 13	16 38	13 23	18
421144 I II	12 4	13 14	28 8	18 9	13
421146 I II	11 29	9 10	15 35	12 25	18
421153 I II	14 8	31 7	5 11	17 9	13
421159 I II	2 10	11 16	9 3	7 1.0	8
421162 I II	18 19	23	72	16 10	13
421163 I II	66 18	37 15	43 14	49 16	32

'l'a	p	Le		3
(c	or	ht.	_)

Culms	per	hill	for	31	Spartina	alterniflora	accessions,	-198	52
-------	-----	------	-----	----	----------	--------------	-------------	------	----

PI No./ Rep	Cul	_ms/H (No.	<u>ill</u>)	Average/ 	Average/ Accession	
421166 I II	27 24	26 16	23 21	25 20	23	
421167 I II	13 5	10 2	17 6	13 5	9	
421175 I II	22 8	21 6	11 4	18 6	12	
421184 I II	16 18	28 6	25 29	23 18	20	
421185 I II	16 23	19 8	12 9	16 13	14	
421187 I II	24 28	42 15	26 18	31 20	26	
421188 I II	32 4	24 7	20 4	25 5	15	
421198 I II	15 9	20 7	117 1	51 6	28	
421199 I II	13 7	17 14	29 15	20 12	16	
421200 I II	31 24	23 17	30 34	28 25	26	
421202 I II	32 15	26 12	19 14	26 14	20	

Table 3 (cont.)

Culms per hill for 31 Spartina alterniflora accessions, 1982

PI No./ Rep	Culm	s/Hi]	1	Average/ 	Average/ Accession
421203 I II	16 16	32 14	16 9	21 13	17
421208 I II	16 24	7 16	7 12	10 17	1 4
421210 I II	19 3	7 4	15 1	14 3	8
421219 I II	15 5	5 3	12 5	11 4	8
421221 I II	13 14	10 14	17 31	13 20	16
421224 I II	24 15	20 11	20 15	21 14	18
421228 I II	59 3	29 7	67 7	52 6	29
421230 I II	31 12	17 22	43 7	30 14	22
421231 I II	20 2	21 5	17 3	19 3	11

1/Planted June 3 at Wilmers Point, Maryland; data recorded September 23.

2/The 3rd hill from the top in rows 1, 3 and 5 were counted, or if missing, the nearest hill to this location.

1	1		
,			

Table 4

Vigor, foliage, injury and erosion control for 1/ thirty-one Spartina alterniflora accessions, 1982

PI NO./ Rep	Vigor	Amount of Foliage	Animal <u>Injury</u>	Erosion Control
T-2804 I II	<u>2</u> / 54	3 3 6	2 2 7	2/ 3 5
T-2808 I II	24 24	5 4	3 3	5 3
T-2816 I II	3 4	6 6	3 7	6 5
T-30166 I II	3 3	4 6	2 8	4 6
421140 I II	3 4	5 4	2 4	4 3
421144 I II	3 4	6 7	36	6 7
421146 I II	24 24	56	3 7	5 5
421153 I II	3 4	5 7	2 6	4 6
421159 I II	4 4	4 7	2 6	4 6
421162 I II	24 24	4 6	2 7	3 5
421163 I II	24 24	3 3	4 5	3

84

Table 4 (cont.)

 \checkmark

Vigor, foliage, injury and erosion control for 1/ thirty-one <u>Spartina alterniflora</u> accessions, 1982

PI No./ Rep	Vigor	Amount of Foliage	Animal <u>Injury</u>	Erosion Control
421166 I II	4 5	36	4 8	2 4
421167 I II	3 4	4 7	4 6	3 7
421175 I II	3 7	5 9	2 3	5 9
421184 I II	4 4	4 7	2 7	4 7
421185 I II	4 4	5 5	3 3	24 24
421187 I II	4 4	4 4	2 3	14 14
421188 I II	4 4	3 9	4 5	2 9
421198 I II	3 4	6 8	58	6 9
421199 I II	3 4	4 6	2 7	4 6
421200 I II	3 4	3 4	2 6	3 3
421202 I II	4 4	4 7	3 8	4 6

Table 4 (cont.)

- 1 -

1 6

Vigor, foliage, injury and erosion control for thirty-one <u>Spartina alterniflora</u> accessions, 1982

PI No./ Rep	Vigor	Amount of Foliage	Animal Injury	Erosion Control
421203 I II	4 4	3 4	2 6	3 3
421208 I II	3 4	4 7	2 8	4 7
421210 I II	3 4	6 8	3 5	6 7
421219 I II	3 4	5 7	56	4 7
421221 I II	3 4	24 24	5 5	24 24
42122 4 I II	3 4	4 5	3 7	24 24
421228 I II	3 5	1 7	36	2 7
421230 I II	24 24	56	4 7	4 5
421231 I II	4 7	5 9	6 3	4 9

1/Planted June 3 at Wilmers Point, Maryland; data recorded September 23. 2/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor. 3/Ratings are - l=Very Large; 3=Large; 5=Moderate; 7=Little; 9=Very Little. 4/Ratings are - l=None; 3=Slight; 5=Moderate; 7=Severe; 9=Very severe.

Ta	bl	e	5
			~

~

C

Characteristics of 31 <u>Spartina</u> <u>alterniflora</u> accessions growing on a tidal bank, 1982<u>1</u>/

PI No./ Rep	<u>Survival</u>	Vigor	Percent Dormancy	Seed Production	Erosion Control
T-2804 I II	28 13	<u>3</u> / 5 7	45 95	24/ 9	3 3 7
T-2808 I II	18 16	56	15 40	9	56
T-2816 I II	10 13	5 7	15 100	7 10	6 7
T-30166 I II	24 17	56	15 60	5 10	5 8
421140 I II	17 16	5 5	20 55	7 8	5 5
421144 I II	11 12	3 7	5 95	10 10	8 8
421146 I II	18 0	4 10	10 -	9 -	6 -
421 15 3 I II	14 0	5 10	15	8 -	7
421159 I II	20 0	4 10	10	5	5
421162 I II	27 0	5 10	30 -	5	4 -
421163 I II	17 24	6 5	50 50	6 8	3 4

Table 5 (cont.)

Characteristics of 31 <u>Spartina</u> <u>alterniflora</u> accessions growing on a tidal bank, 1982

PI No./ Rep	Survival	Vigor	Percent Dormancy	Seed Production	Erosion Control
421166 I II	26 28	5 7	30 90	4 8	5 6
421167 I II	24 0	4 10	10	6 -	5
421175 I II	21 0	5 10	15 -	6 -	6 -
421184 I II	22 0	5 10	<u>30</u> -	4 -	4
421185 I II	19 8	5 7	35 75	8 9	6 9
421187 I II	21 12	4 7	20 85	4 10	5 7
421188 I II	23 0	5 10	30 -	5	4 -
421198 I II	8 0	7 10	30 -	10	9
421199 I II	24 0	4 10	15 -	5	4 -
421200 I II	29 19	4 5	30 65	5 7	36
421202 I II	26 0	5 10	30	6 -	4 -

Characteristics of 31 <u>Spartina</u> <u>alterniflora</u> accessions growing on a tidal bank, 1982

PI No./ Rep	Survival	Vigor	Percent Dormancy	Seed Production	Erosion Control
421203 I II	37 28	56	40 75	3 9	2 5
421208 I II	30 9	58	25 80	8 10	5 9
421210 I II	9 0	4 10	10 -	9 -	7
421219 I II	20 0	6 10	10 -	10 -	6 -
421221 I II	19 11	4 7	10 50	10 10	58
421224 I II	27 19	4 8	15 95	9 10	6 9
421228 I II	28 0	5 10	40 -	3	2 -
421230 I II	16 0	6 10	25 -	9	8 -
421231 I II	16 0	5 10	30 -	5	5

1/Planted June 3 at Wilmers Point, Maryland; data recorded November 18. 2/Number of surviving hills out of 40 planted. 3/Ratings are - 1=Excellent; 3=Good; 5=Fair; 7=Poor; 10=Dead or None. 4/Ratings are - 1=Very abundant; 3=Abundant; 5=Moderate; 7=Sparse;

10=None.

2

Rhizome spread for 31 Spartina alterniflora accessions, $1982^{1/2}$

PI No./		Rhizome	Spread	
Rep	$(\overline{c}m)$	$\left(\frac{2}{cm}\right)$	$(\frac{3}{cm})$	$\frac{AVe}{(cm)}$
T-2804 I II	2/ 30 10	15 10	20 15	22 12
T-2808 I II	10 20	15 10	15 20	13 17
T-2816 I II	15 10	10 15	10 30	12 18
T-30166 I II	15 15	20 10	15 20	17 15
421140 I II	15 25	10 15	15 25	13 22
421144 I II	10 20	15 25	25 20	17 22
421146 I II	20 0	15 0	25 0	20 0
421153 I II	20 0	25 0	10 0	18 0
421159 I II	20 0	35 0	5 0	20 0
421162 I II	15 0	20 0	15 0	17 0
421163 I II	35 10	30 10	20 30	28 17

V

Y

Rhizome spread for 31 Spartina alterniflora accessions, 1982

PI No./		Rhizome S	Spread	
Кер	$\left(\frac{1}{c}m\right)$	$(\frac{2}{cm})$	(<u>3</u> (<u>c</u> m)	Ave. (cm)
421166 · I II	20 25	25 20	30 10	25 18
421167 I II	20 0	15 0	15 0	17 0
421175 I II	35 0	25 0	20 0	27 0
421184 I II	45 0	30 0	20 0	32 0
421185 I II	15 10	25 15	10 15	17 13
421187 I II	35 20	20 5	20 20	25 15
421188 I II	30 0	25 0	20 0	25 0
421198 I II	10 0	15 0	20 0	15 0
421199 I II	30 0	20 0	35 0	28 0
421200 I II	25 30	30 25	35 30	30 28
421202 I II	20 0	25 0	15 0	20 0

Table 6 (cont.)

Rhizome spread for 31 Spartina alterniflora accessions, 1982

PI No./		Rhizome Sr	oread	
Rep	$\left(\frac{1}{\text{cm}}\right)$	(<u>2</u> (<u>c</u> m)	(<u>3</u> (<u>c</u> m)	$\frac{Ave.}{(cm)}$
421203 I II	20 20	25 25	20 10	22 18
421208 I II	15 10	10 10	10 20	12 13
421210 I II	10 0	10 0	15 0	12 0
421219 I II	15 0	10 0	15 0	13 0
421221 I II	15 5	15 15	20 20	17 13
421224 I II	25 25	25 5	35 10	28 13
421228 I II	35 0	30 0	25 0	30 0
421230 I II	15 0	10 0	45 0	20 0
421231 I II	20 0	25 0	20 0	22 0

1/Planted June 3 at Wilmers Point, Maryland; data recorded November
18.
2/The 3rd hill from the top in rows 1, 3 and 5 was measured or if
missing, the nearest hill to this location.

Table 7

Best five out of thirty-one <u>Spartina alterniflora</u> accessions growing on a tidal bank, 1982-/

Rep I	Rep II
421203	421163
421228	421203
421200	421200
421166	421166
т-02804	421140
	<u>Rep I</u> 421203 421228 421200 421166 T-02804

1/Planted June 3 at Wilmers Point, Maryland; rated November 18.

34I035W

<u>Pinus rigida</u> (pitch pine) is a hardy yellow pine that grows as far north as Maine. However, its rate of growth and form are poorer than <u>P. taeda</u> L. (loblolly pine). Foresters have been interested in the possibility of combining <u>P. taeda's</u> rate of growth and form with <u>P. rigida's</u> winter hardiness. The study started in 1963 by the Northeastern Forest Experiment Station and WESTVACO assisted by other interested agencies.

Test plantings of hybrids between selected clones of <u>P. rigida</u> and <u>P. taeda</u> have been made. Not only do certain hybrids combine <u>P. taeda's</u> rate of growth and form with <u>P. rigida's</u> winter hardiness, but their fibrous root system apparently permits rapid growth on droughty sites or strip-mined areas.

The Cape May PMC became involved in 1982 with the establishment of a test plot of the <u>P. rigida P. taeda</u> hybrid as a demonstration project at the center. The greenhouse grown crosses were planted on the center during April. Within two weeks, many of the needles had turned brown, particularly near the bottom of each plant. It is suspected that the plants were not properly hardened off after removal from the greenhouse. Survival, vigor, growth rate and winter hardiness are the factors being evaluated.

. 94

Table 1.--Survival, average and maximum heights of surviving trees 4

growing seasons after 1972 planting in Greenbrier County,

West Virginia 1/.

Ł

Stock	Geographic source	Survival	Average height	Maximum height
		Percent	Feat (Meters)	Feet (Heters)
Maryland loblolly	Maryland	38	2.5 (0.76)	4.7 (1.43)
New Lisbon pitch	Mixed orchard clones	95	3,1 (0.94)	6.6 (2.01)
63 X 23	N. J. X Md.	88	3.1 (0.94)	5.7 (1.74)
65 X 11-20	N. J. X S. C.	62	3.2 (0.98)	5.6 (1.71)
65 X 11-10	N. J. X S. C.	87	3.4 (1.04)	6.0 (1.83)
64 X 11-10	N. J. X S. C.	77	3.5 (1.07)	7.0 (2.13)
54 X 11-20	Va. X S. C.	78 .	3.6 (1.10)	5.7 (1.74)
58 X 11-20	W. Va. X S. C.	9 0	3.6 (1.10)	5.4 (1.65)
	(etc. through	24 clonal o	crosses)	
75 X 23	N. H. X Md.	97	4.8 (1.46)	6.5 (1.98)
60 X 7-56	Pa. X S. C.	83	4.9 (1.49)	7.0 (2.13)
71 X 15A	Mass. X Md.	98	5.0 (1.52)	7.5 (2.29)
70 X 23	Pa. X Md.	100	5.0 (1:52)	6.8 (2.07)
62 X 11-9	N. Y. X S. C.	98	5.0 (1.52)	6.6 (2.01)
77 X 22	N. H. X Md.	9 8	5.2 (1.58)	7.7 (2.35)
62 X·7-56	N. Y. X S. C.	97	5.4 (1.65)	7.6 (2.32)
77 X 4-32	N. H. X Md.	97	5.8 (1.77)	9.4 (2.86)

1/Information compiled and published by S. Little and I.F. Trew

Stock	Geographic source	Survival	Average height	Maximum height
		Percent	Feet (Meters)	Feet (Mecens)
54 X 7-56	Va. X S. C.	52	2.68 (0.82)	5.0 (1.5?)
New Lisbon pitch	Mixed orchard clones	100	2.87 (0. 87)	4.7 (1.43)
56 + 57 OP	W. Va. X ?	100	2.90 (0.88)	4.1 (1.25)
Korean pitch X loblolly	Unknown	95	3.07 (0.94)	5.9 (1.80)
76 X 23	N. H. X Md.	100	3.25 (0.99)	5.4 (1.65)
54 X 11-9	Va. X S. C.	98	3.26 (0.99)	5.1 (1.55)
(etc. throug	h 14 more clonal	crosses and	loblolly 24 OP)	•
78 X 15A	Maine X Md.	100	4.35 (1.33)	6.5 (1.98)
65 X 23	N. J. X Md.	92	4.43 (1.35)	6.2 (1.89)
62 X 11-10	N. Y. X S. C.	96	4.50 (1.37)	6.1 (1.86)
VDF loblolly	Virginia	95	4.53 (1.38)	7.0 (2.13)
62 X 7-56	N.Y. X S. C.	97	4.66 (1.42)	7.3 (2.22)
Loblolly	Maryland	100	4.72 (1.44)	6.9 (2.10)

Table 2. -- Survival, average and maximum heights of surviving trees

3 growing seasons after 1973 planting in Ocean County, New Jersey $\frac{1}{}$

1/Information compiled and published by S. little and I.F. Trew 2/Open-or wind-pollinated pitch clones in orchard.

L

Stock	Geographic source	Survival	Average height	Maximum height
		Percent	Feet (Meters)	Feet (Neters)
68 X 23	Pa. X Md.	100	1.94 (0.59)	5.8 (1.77)
58 X 4-32	W. Va. X Md.	100	2.17 (0.66)	4.5 (1.37)
.54 X 11-10	Va. X S. C.	70	2.53 (0.77)	5.1 (1.55)
VDF ² pitch	Virginia	98	2.59 (0.79)	4.5 (1.37)
58 X 11-20	W. Va. X S. C	100	2.85 (0.87)	6.5 (2.01)
New Lisbon pitch	Mixed orchard clones	97	2.86 (0.87)	5.3 (1.62)
56 + 57 OP	W. Va. X ?	95	3.34 (1.02)	4.8 (1.46)
78 X 22	Maine X Md.	93	3.37 (1.0 3)	5.7 (1.74)
Korean pitch X loblolly	Unknown	100	3.43 (1.05)	5.9 (1.80)
	(etc. through 2	8 more clona	al crosses?/	
62 X 7-56	N. Y. X S. C.	100	4.81 (1.47)	8.0 (2.44)
76 X 4-32	N. H. X Md.	100	4.82 (1.47)	8.0 (2.44)
78 X 19	Maine X Md.	100	4.86 (1.48)	6.9 (2.10)
VDF ^{2/} loblolly	Virginia	100	4.88 (1.49)	7.1 (2.16)
65 X 22	N. J. X Md.	100	5.05 (1.54)	7.6 (2.32)
76 X ?2	N. H. X Md.	100	5.07 (1.55)	7.2 (2.19)
54 X 7-56	Va. X S. C.	97	5.14 (1.57)	8.6 (2.6?)
Loblally 24 OP	Md. X ?	100	5.30 (1.62)	7.3 (2.22)

Table 3 -- Survival, average and maximum heights of surviving trees

3 growing seasons after 1973 planting in Cecil County,

Mary land 1/

1/Information compiled and published by S. Little and I.F. Trew
2/Seed supplied by Virginia Division of Forestry.
3/And Maryland loblolly, last had average height of 4.28 ft.--25th
from the tallest stock.

Table 4 -- Survival, average and maximum heights of surviving trees 3

growing seasons after 1973 planting in Ritchie County,

West Virginia 1/

.e

Stock	Geographic source	Survival	Average height	Maximum height
		Percent	Feet (Meters)	Feet (Meters)
New Lisbon . pitch	Mixed orchard clones	72	2.2 (0.67)	3.7 (1.13)
VDF Pitch	Virginia	78	2.5 (0.76)	4.4 (1.34)
67 X 23	N. J. X Md.	70	2.5 (0.76)	3.9 (1.19)
76 X 23	N. H. X Md.	77	2.6 (0.79)	3.9 (1.19)
65 X 23	N. J. X Md.	78	2.6 (0.79)	4.4 (1.34)
Korean pitch X loblolly	Unknown	80	2.6 (0.79)	4.3 (1.31)
(etc. t	hrough 30 more cl	Ional cross	es and 4 checks $\frac{2}{}$)
62 X 15A	N.Y. X Md.	83	3.2 (0.98)	5.0 (1.52)
78 X 15A	Maine X Md.	78	3.2 (0.98)	5.1 (1.55)
62 X 19	N. Y. X Md.	90	3.3 (1.01)	4.7 (1.43)
77 X 4-32	N. H. X Md.	73	3.4 (1.04)	5.8 (1.77)
54 X 7-56	Va. X S. C.	77	3.4 (1.04)	6.3 (1.92)
62 X 22	N. Y. X Md.	77	3.4 (1:04)	5.7 (1.74)
77 X 15A	N. H. X Md.	82	3.4 (1.04)	5.1 (1.55)
62 X.11-20	N. Y. X S. C.	67	3.5 (1.07)	6.0 (1.83)
76 X 22	N. H. X Md.	77	3.5 (1.07)	6.0 (1.83)
65 X 15A	N. J. X Md.	75	3.6 (1.10)	6.3 (1 .92)

1/Information compiled and published by S. Little and I.F. Trew. 2/Best pitch check (56+57 OP) had an average height of 2.9 ft; best loblolly check (VDF) had an average of 3.0 ft. Table 5

Survival of Pinus spp. planted on a sassafras soil, $1982^{-1/2}$

Stock	Rep	Row	Position	Date May 18 Sept. 8		
62x4-32 47x62 AxD AxD 4756 Pitch plains Loblolly 75x22 AxD 62x23	I	l	1 2 3 4 56 7 8 90 10	2064546666676	46 24 MG 1 5 M4 5	
AxD 62x22 67x22 77x23 77x4-32 65x15A 65x23 65x4-32 80x6-22 AxD		2	1 2 3 4 56 7 8 9 10	500550050505	2445666552	
80x11-9 77x4-32	II	2	11 12	6 6	3 5	
77x23 4759 71x4-32 76x15A(2) SOP(4) AxD Loblolly AxD AxD AxD AxD 65x15A 62x23 AxD		3	1 2 3 4 4 5 6 7 8 9 10 11 12	46624250212066	0 4 4 2 0 4 4 1 0 0 2 5	

Table 5 (cont.)

Survival	of	Pinus	spp.	planted	on	a	sassafras	soil,	1982
----------	----	-------	------	---------	----	---	-----------	-------	------

Stock	Rep	Row	Position	Date May 18	Sept. 8
4769 78x6-42 65x4-32 65x23 62x4-32 78x 23 AxD	II	4	1 2 M 4 56 7	66 6600	5355246
AxD AxD 71x11-20 65x11-20 Pitch plains 65x23 65x15A 62x4-32	III		8 9 10 11 12 13 14 15	୶୶୶୶୶୶୶୶	54 5574 24
78x4-32 65x4-32 Loblolly AxD 4769 62x11-10 AxD AxD AxD AxD 78x23 4756 77x4-32 79x7-56		5	1 2 3 4 56 7 8 9 10 11 12 13	ഗഗഗാന്ന് സ്നാന്ന് നാന്ന ന്നാന്ന് നാന്ന്ന് നാന്ന	4464645554556

1/6 plants/accession/position except as noted planted April 20-May 13 at the Cape May PMC. All plants containerized.

2/No. of plants with green needles; others assumed dead.
			- <u>-</u>	T					
tock	Plant No.	Height (c	Width m)	<u>Vigor</u> R-I	Stock No.	Plant No.	<u>Height</u> (c	Width m)	Vigor
2x4-32	1234 56	13 11 19 17 14 16	16 10 13 12 5 10	2/ 32 2 2 1	Pitch Plains	123456	21 10 9 11 14 16	19 6 6 7 10	2 - 999
762	1 2 3 4 56	7 9 10 8 7	656766	N 2 N N N N	Loblolly	1234 56	29 22 24 21 25 20	17 19 16 14 13	1 91 2 5 3
хD	1 2	18 17	17 20	2	7 5 x22	1 2	11 8	96	53

AxD

62x23

12

10

14

16

Vigor ratings and dimensions of <u>1</u>/ Pinus species planted at the Cape May PMC, 1982

Table 6

AxD

1.20

S N

AxD

AxD

AxD

15

11

5

77 10

<u>3</u>/ -7

12

-

17

8

9

_

10

5326 22

27-75-

-

-991 9

Vigor ratings and dimensions of Pinus species planted at the Cape May PMC, 1982

Stock No.	Plant <u>No.</u>	Height (c	<u>Width</u> m)	Vigor	Stock No.	Plant <u>No.</u>	<u>Height</u> (c	Midth m)	Vigor
62x22	1234 56	7 12 7 15 14 9	10 7 10 8 7	1 3 1 9 9	- 65x23	123456	9 10 11 14 18 15	5 4 7 10 7 11	4 52 1 4 1
67x22	1234 56	14 15 8 10 8 14	764856	54 M N N N N N	65x4-32	1 2 3 4 5 6	18 18 17 8 10 14	8 76 7 7 3	2 4 1 - 3
77x23	1234 56	12 9 19 15 15	6 7 10 9 - 6	2 1 3 1 - 3	80x6-22	1234 56	15 19 14 17 19 15	14 15 10 14 15 11	2 2 3 1 1
77x4-32	1234 56	10 11 9 8 15 14	7 5 6 5 11 12	3 2 3 2 1 1	AxD	1 2 34 56	6 6 7 7 10	72632 32	294
65x15A	123456	9 11 7 13 13 15	7 6 11 9 11	2 1 2 2 1					
					<u>R-II</u>				
80x11-9	123456	15 24 21 20 17 9	15 4 9 6 7	1 94 4 8	77x4 - 32	123456	14 14 13 10 11 9	3 11 7 11 11 9	938142

Vigor ratings and dimensions for <u>Pinus</u> species planted at the Cape May PMC, 1982

Stock <u>No.</u>	Plant <u>No.</u>	<u>Height</u> (c	<u>Width</u> m)	<u>Vigor</u> <u>R-1</u>	Stock <u>No.</u>	Plant <u>No.</u>	<u>Height</u> (c	Midth m)	Vigor
77x23	1 2 3 4 56	14 14 13 20	5 10 3 12	9 - 9 - 3	AxD	1234 56	10 - - - -	2 - 2	9 - 9 -
4759	1 2 3 4 5 6	8665 75	764 66 7	57 - 34 5	AxD	1 2 3 4 5 6	75211	4 5 1 -	9
71x4-32	1234 56	12 12 10 13 11 11	96 57 11 4	1 9 3 - 2 3	AxD	123456	4 66 -	2 - 3 1 -	9
76x15A-2 S.O.P4	123456	18 17 7 8 8	15 12 4 13 6	22 29	65x15A	1 2 3 4 56	17 2 3 5 13	15 2 3 2 7	9
AxD	123456	7 5 5 11 2 6	10 3 2 12 2 1	2 9 9 1 - 8	62x23	1 2 3 4 56	19 19 14 13 13 13	6 4 11 15 15 14	- 9 2 1
Loblolly	123456	19 22 - 17 25 22	7 11 - 13 17 11	- 2 1 1	AxD	1 2 MH 56	13 10 8 7 6 8	11 10 8 6 3 9	2 2 2 2 3 9 9

Vigor ratings and dimensions for <u>Pinus</u> species planted at the Cape May PMC, 1982

Stock No.	Plant No.	<u>Height</u> (c	<u>Width</u> m)	<u>Vigor</u> <u>F</u>	Stock <u>No.</u>	Plant No.	<u>Height</u> (c	Midth m)	Vigor
4769	123456	7 10 8 14 13 12	685988	4 2 1 1 9	62x4-32	123456	9 7 9 9 8 12	525767	1 3 - 2 3 1
78x6-42	123456	21 15 16 20 21 16	15 14 13 14 18 13	3 2 8 9 9 2	78x23	1234 56	11 8 8 12 7 8	764 757	1 2 3 4 2 2
65x4-32	1 2 3 4 5 6	21 15 13 14 15 11	13 7 6 15 13 6	2 2 9 4 1 1	AxD	1 2 3 4 5 6	13 9 11 11	18 6 7 10 8 15	1 2 2 2 2 2 2
65x23	1 2 3 4 5 6	5 13 12 13 14 9	4 8 11 4 96	4 3 2 2 - 2					
				<u>R</u> -	-III				
AxD	1 2 3 4 5 6	13 11 7 14 12 18	11 10 6 11 8 13	1 2 - 2 2 1	71x11-20) 1 2 3 4 5 6	13 15 18 17 18 18	13 13 11 7 13 9	74 34 32
AxD	123456	7 15 9 11 11	15 19 11 - 7 6	1 2 2 3	65x11-20) 1 2 3 4 56	11 13 13 14 19 18	8 5 6 13 13	- 1 1 2 2

Vigor ratings and dimensions of Pinus species planted at the Cape May PMC, 1982

Stock No.	Plant No.	Height (c	Width m)	<u>Vigor</u> <u>R-</u> I	Stock <u>No.</u>	Plant No.	<u>Height</u> (c	Width m)	Vigor
Pitch Plains	1 2 34 56	12 13 10 11 13 14	7 5 7 5 7 8	4 1 - 1 7	Loblolly	r 1 2 3 4 56	29 27 16 30 26 31	8 15 12 11 14 13	2 2 1 1 1
65x23	123456	19 11 13 13 15 14	6 5 3 5 13 8	9 2 4 2 9 1	AxD	123456	15 14 7 4 7	16 - 15 8 8 6	1 - 1 - 2 4
65x15A	123456	14 6 5 18 13	12 6 4 6 19 4	2 - 5 3 7	4769	123456	6 5 9 9 6 10	555857	N N N N N M
62x4-32	1 2 3 4 56	14 9 9 10 16 9	11 7 3 7 7 7	2 1 9 1 1 4	62x11-10	0 1 2 34 56	9 14 16 20 19	6 13 14 15 16	1 3 - 7 3 2
78x4-32	2 1 2 3 4 56	- 17 16 10 12 11	- 10 7 5 5 4	- 2 1 1 2	AxD	12 M4 56	5 10 10 14 8 11	3 14 8 12 8 14	2 1 1 2
65x4-32	2 2 34 56	15 4 15 13 9 11	16 4 5 4 4 4	3 - 2 2 - 1	AxD	123456	10 8 8 7 7	16 16 12 6 7 5	2 1 1 2 -

Vigor ratings and dimensions of Pinus species planted at the Cape May PMC, 1982

Stock <u>No.</u>	Plant No.	<u>Height</u> (cm	<u>Width</u>)	<u>Vigor</u> F	Stock <u>No.</u>	Plant No.	Height (c	Width m)	Vigor
AxD	1 2 3 4 56	8 8 6 6 5 7	7 75 57 6	- 12323	77 x 4-3	2 1 2 34 56	12 8 10 10 8 12	864 582	1 2 1 3 1 3
78x23	12 34 56	13 12 8 13 12 6	<u>563584</u>	1 1 8 3 2	79x7 - 50	5 1 2 3 4 56	17 20 13 20 16 15	13 13 14 14 15 13	1 2 1 2 1 1
4756	1 2 3 4 56	11 6 7 7 98	9 8 14 11 15 11	2 7 2 2 1					

1/Plants established April 20-May 13 at the Cape May PMC; Data recorded
June 21.

2/Ratings are: l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor.

3/Dash (-) indicates no data taken.

												1/
Fall	vigor	ratings	for	Pinus	species	planted	at	the	Cape	May	PMC,	1982

Stock H	Row/ Position	Vigor	Stock No.	Row/ Spacing	Vigor
		$\frac{R}{r}$	<u>-I</u>		
62x4-32 4762 AxD AxD AxD AxD	1-1 1-2 1-3 1-4 1-5	6 5 4 5 5	62x23 AxD 62x22 67x22 77x23	1-11 2-1 2-2 2-3 2-4	4 5 5 6 4
4756 Pitch Plains Loblolly 75x22 AxD	1-6 1-7 1-8 1-9 1-10	6 5 3 6 7	77x4-32 65x15A 65x23 65x4-32 80x6-22	2-5 2-6 2-7 2-8 2-9	4 5 4 6 4
			AxD	2-10	6
		Ī	R-II		
80x11-9 77x4-32 77x23 4759 71x4-32	2-11 2-12 3-1 3-2 3-3	5 8 10 6	AxD AxD 65x15A 62x23 AxD	3-8 3-9 3-10 3-11 3-12	10 10 10 4 7
76x15A S.O.P. AxD Loblolly AxD	3-4A 3-4B 3-5 3-6 3-7	5 10 5 3 9	4769 78x6-42 65x4-32 65x23 62x4-32	4-1 4-2 4-3 4-4 4-5	566 75
¢.			78x23 AxD	4-6 4-7	7 5
]	R-III		
AxD AxD 71x11-20 65x11-20 Pitch Plains	4-8 4-9 4-10 4-11 4-11 5 4-12	- 56766	Loblolly AxD 4769 62x11-10 AxD	5-3 5-4 5-5 5-7 5-7	2 4 56 4
65x23 65x15A 62x4-32 78x4-32 65x4-32	4-13 4-14 4-15 5-1 5-2	7 56 4 7	AxD AxD 78x23 4756 77x4-32	5-8 5-9 5-10 5-11 5-12	5 5 5 5 7

107

-

Table 7. (cont.)

Fall vigor ratings for Pinus species planted at the Cape May PMC, 1982

Stock No.	Row/ Position	Vigor				
			<u>R-III</u>			
79x7 - 56	5-13	5				

 $\underline{1}/\text{Plants}$ established April 20-May 13 at the Cape May PMC; Data recorded September 8.

2/Ratings are: 1-Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10=Dead.

SAND DUNE STABILIZATION

Ammophila arenaria for Sand Dunes

34A007C

FINAL REPORT

Ammophila arenaria (European beachgrass) has been evaluated by the Cape May PMC for several years. While this species is not well adapted to the mid-Atlantic coast foredunes, its potential to become adapted behind the foredunes where A. breviligulata (American beachgrass) deteriorates was considered good. Approximately, 11 accessions have been evaluated. In 1972, T-02675 was selected for further evaluation. Between 1972 and 1978, seven more accessions were evaluated. Three of these and T-02675 were selected for further testing. During this time, T-02675 was used as the standard. In 1979, PI-319816 became the standard. Because of the variation in the seedling plants of PI-319816, the superior ones were selected and assigned a new number, T-14666. In 1980, two new accessions, T-06650 and T-06651, were moved to advanced evaluation along with T-14666 and T-13176. The results show that T-14666 is superior to the remaining three accessions in vigor, stand, spreading ability and tolerance to winter injury. T-06650 was second best followed by T-06651. T-01176 was discarded due to poor longevity and severe winter injury. Vegetative material of T-14666 will be maintained at the Cape May PMC.

109

Elaeagnus umbellata PI-421132 for Wildlife Food and Cover

34A009J

FINAL REPORT

The results of previous evaluations for <u>Elaeagnus umbellata</u> (autumn olive) PI-421132 have confirmed its desirability for wildlife food and cover. Like other <u>Elaeagnus</u> strains, it is an excellent conservation plant. Its prolific fruit production is only transmitted by vegetative propagation. It differs from 'Cardinal' (PI-421800) by having a later fruit maturity date and better leaf retention during the early winter.

Cardinal and PI-421132 were established in the spring of 1976 at fourteen planting sites. Several other plantings of these two accessions were established at various locations in later years. The locations are in Plant Hardiness Zones 5b to 9b. The plantings extend westward from New Hampshire to Oregon and from Michigan to Florida.

Survival of PI-421132 has been good with only a few locations losing plants. Winter injury to PI-421132 has been severe in Michigan and New York (zone 5b). In Michigan, the topgrowth was killed back to the soil each year and all new growth has been from basal sprouts. A record cold temperature (-32°C) observed at Big Flats, New York killed the plants back to the soil line during the 1978-79 winter.

A 1979 planting in New Hampshire suffered light winter damage to both PI-421132 and Cardinal. However, the fruit produced by PI-421132 never ripened. It remained green and later shriveled up on the branches. Therefore, PI-421132 is only adapted through Plant Hardiness Zone 5a.

In general, very little insect or disease damage has been observed on either accession. The amount of damage was equally distributed between PI-421132 and Cardinal. In 1981, disease damage was reported only by Florida and this was reported as light.

Fruit production on PI-421132 was recorded at 9 locations. In general, PI-421132 matures later and produces a greater quantity of larger fruit than Cardinal. Birds have been observed eating the fruit at several locations. They seem to prefer Cardinal to PI-421132.

Summary

The original objective of this project was to determine the range of adaptation for PI-421132 and compare the performance between Cardinal and PI-421132. It has been determined that PI-421132 is not adapted in Plant Hardiness Zone 5b, but it appears to be adapted in 5a and southward. Therefore, this late maturing \underline{E} . umbellata would have wider use in the south than in the northeast.

In locations where PI-421132 is considered adapted, it has been consistently reported as producing larger size and a greater abundance of fruit than the Cardinal variety of the same age. The results also support the fact that the fruit of PI-421132 matures 6-10 weeks later, depending upon location, than Cardinal and possesses significantly better leaf retention during the winter.

These unique characteristics allow available food and cover to be present for certain wildlife during critical periods when lack of protective cover and starvation is a threat.

Numerous field plantings have been established in several Major Land Resource Areas. The results of these plantings will be used in conjunction with the results from this project to document the performance of PI-421132.

Three characteristics for two strains of Elaeagnus umbellata, 1982

11	HxW	4.0 x 3.9 3.1 x 4.0	3.0 x 2.0 3.1 x 4.0	3.3 x 3.3 3.0 x 3.0		2.7 x -	- x t.
*Cardina	Vigor	5 5 H	Fr. 1	1 1	1 1	1 1	I
	- Sur. (%)	40 100	100	100 60	100 100	100	100
21132 // /	HXW	4.5 x 4.8 3.4 x 5.2	4.0 x 3.0 3.8 x 5.7	4.3 x 5.1 5.5 x 5.0	3.7 x -	2.4 x - -	2.7 x -
PI-4(Vigor	н Н С С С	G <u>5</u> /	1.1	1-1	1-1	ı
10	Sur.	100 100	100 100	100 80	100 100	100 71	100
	Zone	6a 6b	7a 7b	7b 8a	8. 6.b	8b 5b	6a
VooV	Estab.	1976 1976	1976 1976	1976 1976	1976 1977	1977 1979	1979
	Location	Missouri New Jersey	Virginia Cape May PMC	Tennessee Mississippi	Georgia West Virginia	Oregon New Hampshire	Pennsylvania

1/2one = Plant Hardiness Zone. $\overline{2}/Survival$ - Percent of living plants fall 1982; 5 plants established/accession/location. $\overline{3}/Vigor$ - E=Excellent; G=Good; F=Fair; P=Poor. $\overline{4}/Dimensions$ - Height x width; expressed in meters. $\overline{5}/Information$ not available.

112

2
Φ
Ч
Ω
പ്പ

Four characteristics for PI-421132 and 'Cardinal' Elaeagnus umbellata, 1982

			PI-4211	32		•	Cardinal		4
	1/	Fruiting I 2/	<u>Jates</u>	Fr Leaf	uit Fruit	H'rulting	Dates	Leaf	<u> </u>
Location	Zone	Maturity 2/	Prod.	Ret.	Ret. 4/	Maturity	Prod.	Ret.	Ret.
Missouri New Jersey	6a 6b	1 12-1	ло ^ї]	1	- 9-1	- 17	1 1	1.1
Virginia Cape May PMC	7a 7b	1 1	- 17	m. t	- 4	1.1	IN	IN	I (V
Tennessee Mississippi	7b 8a	- 10-6	50-27	50-24	ഗഗ	- 7-15	ыло	N N	- I
Georgia West Virginia	8b 6b	1.1	ЮO	വവ	ГСI	1 1	mO	<i>m</i> 0	ч і
Oregon New Ham ps hire	9b 5b	1.1	ΓC Ι	സന	ы	н	мı	I	ri I
Pennsylvania	6a	I	л	ſ	I	I	N	m	ı

1/2one = Plant Hardiness Zone. $\overline{2}/Maturity$ - Date that a majority of the fruit was ripe. $\overline{3}/Information$ not available. $\overline{4}/Ratings$ are: 1=5; 5=Best, 0=No fruit observed.

Pest-resistant Plants for Secondary Dune Stabilization

34A012C

<u>Ammophila breviligulata</u> (American beachgrass) is well adapted to the foredunes and beach areas in front of the foredunes. A superior cultivar of <u>A. breviligulata</u> 'Cape' was introduced in 1972 and since that time has been used extensively for dune stabilization from Massachusetts to Virginia. However, plantings of Cape and native strains of <u>A. breviligulata</u> behind the foredune and sometimes on the foredune tend to deteriorate after accumulation of sand ceases or in the absence of fertilizer applications.

Large vegetated areas behind the foredune along the Atlantic Coast are subjected to disease and/or insect damage. Prior to infestation, these sites are usually planted to or volunteer into <u>A. breviligulata</u>. After a period of time, the plants exhibit poor vigor and the stand is reduced considerably resulting in little or no cover. While the deterioration of the beachgrass is a natural phenomenon, the invasion of long-lived perennial grasses into the weakened stands of beachgrass is a slow process. Proper management does not necessarily prevent stand deterioration. No recommended adapted disease resistant grass is commercially available for planting on these sites.

The objective is to test several long-lived salt tolerant species for persistence behind the foredune where <u>A. breviligulata</u> stands have deteriorated due to disease or other problems. Since longlived species generally develop slowly, as compared to <u>A. breviligulata</u>, considerable time will be required to evaluate the benefit of the long-lived species.

The first planting was installed at Island Beach State Park, New Jersey in 1978. None of the species produced the amount of foliage that is usually observed for that species when planted on a recently formed sand dune. Even Cape failed to respond with vigorous growth on this apparently diseased site. While Elymus arenarius (European wildrye) was the best test species on this diseased site in 1978, the amount of foliage and vigor was not outstanding. During the year of establishment, Cape performed better than all of the other species. Since Cape is not well adapted to these back dune areas, this really is not significant.

In 1980 and 1981, expanded plantings were established in Delaware and North Carolina at which time <u>Spartina patens</u> (saltmeadow cordgrass) and <u>Carex arenaria</u> (European sedge) were added to the plan. In the North Carolina planting established in 1980, Cape was definitely superior during the first year. However, Cape began to lose its superiority by the fall of 1981 and is now rated less vigorous than S. patens PI-421239 and equal to <u>C. kobomugi</u>.

Vigor, stand, cover and stem density for 1/ nine pest resistant plants growing on a sand dune, 1982

PI No./ Species/Rep T-02675	Vigor	Stand	Cover	<u></u>	em De 2	Ave.	
Ammophila arenaria I II III	2/ 10 10 10	2/ 10 10 10	2/ 10 10 10	<u>3</u> / 0 0 0	0 0 0	0 0 0	
'Cape' <u>A. breviligulata</u> I II III	3 4 4	5 4 3	6 2 4	7 4 14	29 7 28	18 6 21	
T-02688 <u>Carex</u> arenaria I II III	3 4 10	7 7 10	8 7 10	15 32 0	7 26 0	11 29 0	
PI-433953 <u>C. kobomugi</u> I II III	3 4 4	4 4 6	4 4 6	7 12 9	8 76	8 10 8	
PI-348865 Elymus arenarius I II III	10 10 10	10 10 10	10 10 10	0 0 0	0 0 0	0 0 0	
PI-421134 E. vancouverensis I II	4 5	8 8	9 9	4 1	1 2	2 2	
PI-421238 Spartina patens I II III III-9	5 5 5 5 5	4 4 4 6	54 4 6	38 42 37 29	23 68 38 62	30 55 38 46	

115

Vigor, stand, cover and stem density for nine pest resistant plants growing on a sand dune, 1982

PI No./ Species/Rep	Vigor	Stand	Cover	<u>Ste</u>	m Dens 2	<u>ity</u> Ave.
PI-421239 <u>S. patens</u> I II III	555	5 4 2	5 3 2	41 33 53	25 21 70	33 27 62
PI-421250 <u>S. patens</u> I II III	5 5 5	6 5 3	6 4 3	11 22 20	29 26 14	20 24 17

2/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10=None or Dead.

3/Number of stems in a randomly determined 30 x 30 cm area.

Best three of nine pest resistant plants growing on a sand dune, 1982

 \checkmark

	<u>R-I</u>	<u>R-II</u>	<u>R-III</u>
$\frac{2}{2}$	<u>Carex</u> kobomugi	<u>Spartina patens</u> (PI-421239)	<u>Spartina patens</u> (PI-421239)
2nd Best	'Cape'	<u>Carex</u> kobomugi	<u>Spartina patens</u> (PI-421250)
3rd Best	<u>Spartina patens</u> (PI-421238)	<u>Spartina patens</u> (PI-421238)	'Cape'

1/114 hills/accession/replication planted near Duck, North Carolina on April 2, 1980; data recorded September 29.

2/Ratings based on stand, vigor and ability to trap blowing sand.

Third Year Evaluations for Pest-Resistant Plants Growing on a Sand Dune, $1982^{-1/2}$

Species/ Rep	Stem <u>2</u> / Count	Foliage Spread (cm)	Height (cm)	Vigor	Insect Damage	Disease Damage
Ammophila arenaria I II III III	0 0 4	0 0 12	0 0 28	9 9 9	_ <u>4</u> / _ 9	_ <u>4</u> / _ 9
Elymus arenarius I II III	0 0 0	0 0 0	0 0 0	9 9 9	- -	- - -
E. <u>vancouverensis</u> I II III	3 3 3	5 4 4	18 18 16	7 7 7	6 6 6	6 6 6
Panicum amarum I II III III	2 13 2	10 25 12	25 28 22	6 4 5	4 3 4	4 3 4
Carex kobomugi I II III	10 6 18	27 16 45	18 10 20	4 5 4	3 4 3	3 4 3
<u>A.</u> <u>breviligulata</u> I II III	45 35 32	25 25 24	60 60 50	4 4 5	3 3 4	3 3 4
Spartina (421250) patens I II III) 10 20 23	12 18 22	35 40 42	6 5 4	4 3 3	4 3 3
<u>S.</u> (421239) <u>patens</u> I II III) 18 15 15	16 12 13	45 28 28	4 6 6	3 4 4	3 4 4

Third Year	Evaluations for
Pest-Resistant Plants	Growing on a Sand Dune, 1982

	(/01000)						 	
S.	(421238)							
T		20	18	45	5	4	4	
ÎI		25	16	42	5	4	4	
III		25	16	44	5	4	4	

1/ 108 vegetative plants established/accession/replication at Fenwick Island State Park, Delaware on March 25, 1980; some accessions in R-III had less than 108 plants; data recorded November 16.

- 2/ Number of stems growing in a 0.25 M² area.
- 3/ Ratings: 1=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor.

4/ Ratings: 1=None; 3=Slight; 5=Moderate; 7=Severe; 9=Very Severe.

Second Year Evaluations for Pest-Resistant Plants Growing on a Sand Dune, $1982^{1/2}$

Species/ Rep	Stem ^{2/} Count	Foliage Spread (cm)	Height (cm)	Vigor	Insect Damage	Disease Damage
Ammophila arenaria I II III	50 55 62	26 30 28	46 50 50	5 <u>3</u> / 4 4	3 <u>4</u> / 2 2	2 <u>4</u> / 2 2
Elymus arenarius I II III	0 3 3	0 7 6	0 30 28	9 8 8	- 5 \ 5	 5 5
E. vancouverensis I II III III	6 9 12	8 10 18	23 25 30	8 8 6	5 5 3	5 5 3
Panicum amarum I II III	3 8 20	20 32 33	25 30 34	6 4 4	4 3 3	4 3 3
Carex kobomugi I II III	10 12 10	22 25 25	18 17 18	4 4 5	3 3 4	3 3 3
<u>A.</u> breviligulata I II III	33 38 42	28 30 35	48 50 62	4 4 3	2 2 2	2 2 2
Spartina (421250) patens I II III III	16 20 22	12 13 15	26 30 34	6 5 5	2 2 2	2 2 2
<u>S.</u> (421239) <u>patens</u> I II	10 16	7 10	15 22	8 7	3 2	3 2
III	10	10	18	7	3	3

Table 4 (cont.)

Pest-Resistant Plants Growing on a Sand Dune, 1982								
21238)								
	14	9	22	7	3	3		
	18	10	25	6	2	2		
	20	14	25	6	2	2		
	21238)	21238) 14 18 20	21238) 14 9 18 10 20 14	21238) 14 9 22 18 10 25 20 14 25	21238) 14 9 22 7 18 10 25 6 20 14 25 6	21238) 14 9 22 7 3 18 10 25 6 2 20 14 25 6 2		

1/ 108 vegetative plants established/accession/replication at Fenwick Island State Park, Delaware on March 31, 1981; some accessions in R-III had less than 108 plants; data recorded November 16.

2/ Number of stems growing in a 0.25 M² area.

3/ Ratings: l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor.

4/ Ratings: 1=None; 3=Slight; 5=Moderate; 7=Severe; 9=Very Severe.

Herbaceous Plants for Wildlife Food and Cover

34A014J

Several herbaceous species are available for the establishment of vegetative cover on critical areas. While these species provide good erosion control, their wildlife value is limited.

Solid stands of erosion control species often tend to discourage rather than encourage the use of these areas by small game and birds. Wildlife need plants for food, escape and nesting cover and travel lanes. A solid stand of one species will not provide all four elements for most wildlife.

Eight species of herbaceous conservation plants, with some potential for wildlife food and cover, were used to establish a wildlife planting in 1979. Each plot was 7 x 16.5 meters and replicated three times in a randomized plot design. Single species of legumes or grasses were used in each plot. No maintenance of any type was performed by yond the establishment period.

Lespedeza thunbergii 'VA-70' (shrub lespedeza), <u>Eragrostis curvula</u> (weeping lovegrass) and <u>Festuca arundinacea</u> (tall fescue) exhibited good stands 90 days after seeding while stand ratings for all other involved species were considered as fair.

In 1980, second year evaluations showed <u>F. arundinacea</u>, <u>E. curvula</u> and <u>L. sylvestris</u> as the best three for stand performance. Spring regrowth was also better for <u>F. arundinacea</u> and <u>L. sylvestris</u>.

Winter food for birds was rated best for <u>P. virgatum</u> and <u>L. cuneata</u> 'Interstate' due to the abundance of available seed both on the plants and ground. <u>L. thunbergii</u> provided the best fall cover for small mammals while <u>E. curvula</u> provided the best winter cover.

During the spring of 1981 and 1982, one-half of each plot was mowed to a height of 4 inches. Regrowth was good for all species, however, <u>L. cuneata</u> and <u>P. virgatum</u> exhibited considerably better vigor during the summer and fall in the mowed area than in the nonmowed area. Seed production was also greater for these two species in the non-mowed area. <u>E. curvula</u>, <u>L. thunbergii</u> and <u>P. virgatum</u> continue to provide the best wildlife cover for all seasons. Winter food for wildlife is rated best for <u>P. virgatum</u> and <u>L. cuneata</u> Interstate.

An additional wildlife planting was established at the PMC in the spring of 1981. Plots were seeded to mixtures of various grasses and legumes to determine the compatibility of seeded wildlife species with erosion control plants. Despite the strong competition from annual weeds, the planting was successful in becoming established, however, vigor was reduced considerably. The plots which were seeded to a mixture of P. virgatum, E. curvula, and L. thunbergii exhibited the best stand and vigor during the establishment period and was also rated best in two out of three replications for the 1982 evaluations. L. sylvestris, Lolium perenne (perennial ryegrass), <u>L. thunbergii</u> and <u>L. cuneata</u> 'Appalow' were rated consistently poor for stand and vigor in all three replications.

The objective of this project is to select conservation plants to improve the wildlife food and cover on critical areas which are seeded primarily for stabilization.

Fourth Year Wildlife Food & Cover Plots for Birds & Small Mammals (Strip Planting)

Notes

August 18, 1982:

Lespedeza cuneata (Appalow) - Excessive competition from annual lespedeza and other weed species. Not providing much wildlife food or cover at this time. Fair stand and vigor.

Panicum clandestinum - Moderate amount of mature seed on plants. Leaves are browning on edges. Good source of wildlife food and cover. Excellent stand with good vigor.

Festuca arundinacea - Providing poor cover and very little seed for wildlife use. Suffering extensively from drought. Plot is almost entirely brown. Good stand with poor vigor.

Eragrostis curvula - Exhibiting good cover and moderate amount of mature seedheads. Plants are being affected by drought but not nearly as much as the fescue. Good stand with fair vigor.

Lespedeza thunbergii (VA-70) - Plants are providing excellent cover with little food value at this time. Lower leaves are beginning to brown and curl due to drought. Excellent stand with good vigor.

Lespedeza cuneanta (Interstate) - Plants are exhibiting good cover potential with very little wildlife food value. Plants appear to be fairly drought tolerant. Excellent stand with good vigor.

Panicum virgatum - Plants are providing excellent wildlife cover. Some immature seed available. Drought has little effect on plants. Excellent stand and vigor.

Lathyrus sylvestris (Lathco) - Good seed supply for wildlife food. Plants are providing good cover. Some discoloration of leaves (yellowing). Excellent stand with good vigor.

Note: Plots are extremely dry. No irrigation is being applied and precipitation has averaged approximately 1 inch per month for July and August.

1

1

Availability of winter food and cover $\frac{1}{1}$ for eight herbaceous wildlife species, 1982

	Fc	bod	Cover		
Species	Birds 27	Mammals 2/	Birds 27	Mammals 2/	
Lespedeza cuneata('Appalow')	9	9	8-	9	
Panicum clandestinum	9	9	9	9	
Festuca arundinacea	9	7	9	9	
Eragrostis curvula	9	8	3	3	
L. thunbergii ('VA-70')	9	9	7	8	
L. cuneata ('Interstate')	7	9	5	5	
<u>P. virgatum</u>	8	9	l	2	
Lathyrus sylvestris('Lathco')	9	8	9	9	

1/Plots were established on May 8, 1979; data recorded Feb. 27. 2/Ratings: 1=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor.

124

Ta	b]	_e	2
----	----	----	---

Evaluation for eight herbaceous wildlife plant species, $1982^{1/2}$.

Species		TT •	For	od	Spring	Cover R	legro	2/ wth
	Stand	Vigor	Birds I	Mammals	Biras M	ammals	<u>1vi</u>	INIM
Lespedeza	- <u>3</u> /	6 ³ /	<u>R-I</u> 9 ^{3/}	8 ^{3/}	9 ^{3/}	93/	<u>3</u> / 5	' <u>6</u> 3/
Panicum clandestinum	4	3	8	4	8	8	3	3
Festuca arundinacea	3	4	8	8	7	7	4	3
Eragrostis curvula	4	5	8	8	4	4	3	6
L. (VA-70) thunbergii	3	3	7	7	1	1	5	3
<u>L. cuneata</u> (Interstate)	3	3	3	7	2	2	5	3
P. virgatum	4	3	7	7	2	2	2	5
<u>Lathyrus</u> (Lathco) <u>sylvestris</u>	3	2	7	5	6	6	3	2
			<u>R-II</u>					
L. thunbergii(VA-70) 3	3	7	7	l	1	4	3
L. <u>cuneata</u> (Interstate)	3	3	3	7	2	2	5	3
P. virgatum	4	4	7	7	2	2	5	3
P. clandestinum	4	3	8	4	8	8	4	3
E. curvula	5	7	8	8	4	4	4	6
L. <u>sylvestris</u> (Lathco)	4	2	7	5	6	6	2	2
L. <u>cuneata(Appalow</u>)	7	5	9	8	9	9	5	6
F. arundinacea	2	3	8	8	4	4	3	3

1 2

Evaluation for eight herbaceous wildlife plant species, 1982

1

Species	Stand	Vigor	Fo <u>Birds</u>	od Mammals	Spring Birds	Cover Mammals	<u>Reg</u>	rowth <u>NM</u>
			<u>R-III</u>					
L. sylvestris (Lathco)	5	2	7	5	6	6	2	2
<u>P. virgatum</u>	5	4	7	7	2	2	5	3
F. arundinacea	3	3	8	8	7	7	3	3
L. cuneata (Appalow)	7	5	9	8	9	9	5	5
L. cuneata (Interstate)	4	3	3	7	2	2	5	3
L. thunbergii (VA-70)	3	3	7	7	1	l	4	3
P. clandestinum	4	24	8	4	8	8	3	3
E. curvula	5	6	8	8	4	24	5	7

1/Plots were seeded on May 8, 1979; data recorded May 17.

2/M=Mowed; NM=Non-mowed; the west half of plots were mowed to a height of 4 inches on March 30.

3/Ratings are - 1=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor.

Note - Songbirds were flushed from VA-70 lespedeza plots.

Relative rating for eight herbaceous wildlife plants, 1982

01	
Best	Lespedeza thunbergii (VA-70)
2nd Best	Panicum virgatum
3rd Best	<u>L.</u> <u>cuneata</u> (Interstate)
4th Best	Lathyrus sylvestris (Lathco)
5th Best	P. clandestinum
6th Best	Eragrostis curvula
7th Best	Festuca arundinacea
8th Best	L. cuneata (Appalow)

1/Plants seeded on May 8, 1979; data recorded August 18.

2/Ratings based on plant's vigor and its ability to provide effective wildlife food and cover at the time of this evaluation.

Table 4

Evaluations for nine herbaceous wildlife species, 1982 Compatibility Planting

Species	Wildlife Birds M	e Food ammal	<u>Wildlife</u> <u>Birds</u> <u>Ma</u>	<u>Cover</u> ammal	Stand	<u>Vigor</u>
<u>Festuca arundinacea</u> <u>Lathyrus sylvestris</u> (Lathco)	$\frac{R-I}{4^2}$	6 ² /	6 ² /	7 ² /	5 ² /	5 ² /
Eragrostis <u>curvula</u> <u>Panicum</u> <u>clandestinum</u> <u>Lespedeza cuneata</u> (Appalow)	7	6	6	7	6	6
<u>F.</u> <u>arundinacea</u> <u>L. cuneata</u> (Appalow)	4	6	6	7	7	7
L. <u>cuneata</u> (Interstate) <u>E. curvula</u> <u>L. thunbergii</u> (VA-70)	7	6	5	5	5	5
Lolium perenne L. sylvestris (Lathco) P. virgatum	6	6	3	3	5	3
F. arundinacea L. <u>cuneata</u> (Interstate) P. <u>virgatum</u>	5	6	3	3	5	3
F. arundinacea L. thunbergii (VA-70)	3	5	5	6	6	5
P. virgatum E. <u>curvula</u> L. thunbergii (VA-70)	5	5	l	l	l	l
L. <u>perenne</u> <u>P. clandestinum</u> L. <u>thunbergii</u> (VA-70)	3	3	6	6	7	5
F. arundinacea	3	6	4	4	5	5
L. perenne L. thunbergii (VA-70)	6	7	8	9	8	7
Eragrostis <u>curvula</u> <u>P. clandestinum</u> <u>L. cuneata</u> (Interstate)	5	5	3	3	4	3

128

~

 \sim

V

Evaluations for nine herbaceous wildlife species, 1982 Compatibility Planting

Species	<u>Wildlif</u> Birds R-II	e Food Mammal	Wildlife Birds	e Cover Mammal	<u>Stand</u>	Vigor
L. <u>perenne</u> L. <u>sylvestris</u> (Lathco) P. <u>virgatum</u>	5	7	2	2	3	2
$\frac{F.}{P.} \frac{\text{arundinacea}}{\text{virgatum}}$	5	7	2	2	2	ĺ
F. arundinacea	3	6	6	6	5	5
$\frac{F.}{L.} \frac{\text{arundinacea}}{\text{thunbergii}} (VA-70)$	4	6	6	6	6	5
F. arundinacea L. sylvestris (Lathco)	5	7	5	5	6	6
F. arundinacea L. cuneata (Appalow)	5	7	5	5	6	6
L. <u>cuneata</u> (Interstate) <u>E. curvula</u> L. <u>thunbergii</u> (VA-70)	6	6	6	6	7	5
E. <u>curvula</u> <u>P. clandestinum</u> <u>L. cuneata</u> (Appalow)	6	5	4	4	4	4
P. virgatum E. curvula L. thunbergii (VA-70)	6	5	3	3	3	4
L. <u>perenne</u> <u>P. clandestinum</u> L. <u>thunbergli</u> (VA-70)	3	3	6	6	6	5
E. <u>curvula</u> <u>P. clandestinum</u> L. <u>cuneata</u> (Interstate)	6	5	5	5	4	4
L. perenne L. thunbergii (VA-70)	3	4	6	6	4	5

129

Evaluations for nine herbaceous wildlife species, 1982 Compatibility Planting

Spe	ecies	Wildlif Birds R-III	e Food Mammal	Wildlif Birds	<u>e Cover</u> Mammal	Stand	Vigor
P. <u>E.</u> L.	virgatum curvula thunbergii (VA-70)	4	5	l	l	2	3
<u>F.</u> <u>L.</u>	<u>arundinacea</u> <u>thunbergii</u> (VA-70)	3	6	5	5	3	б
L. E. L.	cuneata (Interstate) curvula thunbergii (VA-70)	7	6	4	5	4	5
<u>F.</u> <u>L.</u>	arundinacea cuneata (Appalow)	3	5	5	5	3	4
L. <u>L.</u> <u>P.</u>	<u>perenne</u> <u>sylvestris</u> (Lathco) <u>virgatum</u>	5	5	4	4	2	3
E. P. L.	curvula clandestinum cuneata (Appalow)	5	4	3	3	4	3
F. L. P.	arundinacea cuneata (Interstate) virgatum	5	5	5	5	5	4
<u>F.</u> <u>L.</u>	<u>arundinacea</u> <u>sylvestris</u> (Lathco)	5	6	7	7	5	6
<u>F.</u>	arundinacea	5	7	7	7	6	6
<u>L.</u> <u>L.</u>	perenne thunbergii (VA-70)	6	7	8	8	7	7
E. P. L.	<u>curvula</u> <u>clandestinum</u> <u>cuneata</u> (Interstate)	5	4	3	3	3	3
L. P. L.	perenne clandestinum thunbergii (VA-70)	4	3	6	6	6	5

1/Rep I and II were seeded on June 5, 1981; Rep III was seeded on June
8, 1981; data recorded July 2.
2/Ratings are - 1=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor.

Evaluations for nine herbaceous wildlife species, 1982

1981 Compatibility Planting

Species	Percer Stand	12/ <u>Vigor</u>	Competitive Performance	<u>3</u> Relative <u>Rating</u>
		R-I		
<u>Festuca</u> arundinacea <u>Lathyrus</u> sylvestris(Lathco	75 5) 25	4 5	4/ 3 7	
<u>Eragrostis</u> <u>curvula</u> <u>Panicum clandestinum</u> <u>Lespedeza cuneata</u> (Appalow)	50 40 10	34 6	3 4 8	
<u>F. arundinacea</u> <u>L. cuneata</u> (Appalow)	60 40	3 4	3 5	
L. <u>cuneata</u> (Interstate) E. <u>curvula</u> L. <u>thunbergii</u> (VA-70)	30 50 20	5 3 5	6 36	
Lolium perenne L. sylvestris(Lathco) P. virgatum	5 10 85	8 5 2	8 8 2	3rd Best
<u>F. arundinacea</u> <u>L. cuneata(Interstate)</u> <u>P. virgatum</u>	10 15 75	6 4 2	8 8 2	2nd Best
F. <u>arundinacea</u> L. <u>thunbergii</u> (VA-70)	70 30	3 3	3 5	
P. virgatum E. curvula L. thunbergii(VA-70)	70 25 5	2 36	2 4 8	Best
L. perenne <u>P. clandestinum</u> <u>L. thunbergii(VA-70)</u>	15 60 25	5 3 3	7 3 4	
F. arundinacea	100	2	1	
L. <u>perenne</u> L. <u>thunbergii</u> (VA-70)	50 50	5 3	4 3	
<u>E. curvula</u> <u>P. clandestinum</u> <u>L. cuneata(Interstate)</u>	75 15 10	2 3 3	266	

Table 5 (.cont.)

.

.

Evaluations for nine herbaceous wildlife species, 1982

1981 Compatibility Planting

-	<u>Species</u>	Percen <u>Stand</u>	t Vigor	Competitive Performance	Relative Rating
			<u>R-II</u>		
Lo L. P.	<u>sylvestris(</u> Lathco) <u>virgatum</u>	- 5 5 90	7 5 2	8 8 1	2nd Best
F.	arundinacea	10	6	7	Best
L.	cuneata(Interstate)	10	4	6	
P.	virgatum	80	1	2	
F.	arundinacea	100	2	` l	
F.	<u>arundinacea</u>	70	2	2	
L.	<u>thunbergii(</u> VA-70)	30	3	5	
F.	<u>arundinacea</u>	95	2	l	
L.	<u>sylvestris(</u> Lathco)	5	5	6	
F.	arundinacea	70	3	3	
L.	cuneata(Appalow)	30	4	5	
L.	cuneata(Interstate)	20	3	4	
E.	curvula	60	2	2	
L.	thunbergii(VA-70)	20	3	4	
E.	<u>curvula</u>	60	2	2	
P.	<u>clandestinum</u>	25	3	4	
L.	<u>cuneata(Appalow)</u>	15	4	5	
P.	virgatum	50	3	3	
E.	curvula	40	3	4	
L.	thunbergii(VA-70)	10	3	6	
L.	perenne	30	6	5	
P.	clandestinum	30	4	4	
L.	thunbergii(VA-70)	40	4	3	
E. P.	<u>curvula</u> <u>clandestinum</u> <u>cuneata(</u> Interstate)	50 10 40	2 4 3	2 6 3	3rd Be s t
L.	<u>perenne</u> <u>thunbergii(</u> VA-70)	55 45	4 3	3 3	

Evaluations for nine herbaceous wildlife species, 1982

1981 Compatibility Planting

<u>Species</u>	Percent Stand	Vigor	Competitive <u>Performance</u>	Relative Rating
		<u>R-III</u>		
P. virgatum	50	3	2	Best
E. curvula	45	3	2	
L. thunbergii(VA-70)	5	5	7	
F. arundinacea	95	2	l	
L. thunbergii(VA-70)	5	6	8	
L. <u>cuneata(Interstate)</u>	15	3	6	
<u>E. <u>curvula</u></u>	80	3	1	
<u>L. thunbergii</u> (VA-70)	5	5	7	
F. arundinacea	90	2	1	
L. cuneata(Appalow)	10	3	6	
Lolium perenne	40	4	5	
L. sylvestris(Lathco)	5	6	8	
P. virgatum	55	3	3	
E. <u>curvula</u>	40	4	3	2nd Best
P. <u>clandestinum</u>	55	3	3	
L. <u>cuneata(Appalow)</u>	5	7	7	
F. arundinacea	30	3	4	3rd Best
L. cuneata(Interstate)	15	3	5	
P. virgatum	55	3	1	
<u>F. arundinacea</u>	90	2	1	
<u>L. sylvestris</u> (Lathco)	10	4	8	
<u>F. arundinacea</u>	100	3	l	
L. perenne	65	3	3	
L. thunbergii(VA-70)	35	3	4	
E. <u>curvula</u>	45	2	3	
P. <u>clandestinum</u>	30	3	4	
L. <u>cuneata</u> (Interstate)	25	3	4	
L. perenne	10	3	8	
P. clandestinum	40	3	3	
L. thunbergii(VA-70)	50	2	3	
1/Plots were seeded in June 2/Percent of stand represe	e of 1981 ented by	; datar individ	ecorded Sept. ual species wi	14. thin the seeded Sating based on

3/Rating is for all seeded species within the plot. Rating based the plants vigor and their wildlife food and cover value. 4/Ratings are - 1=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor. plot.

Stand, vigor and wildlife food and cover for eight conservation plants, 1982

e

Maryland Planting

Species Replication	Stand	$\frac{\frac{2}{\text{Cover}}}{\binom{8}{2}}$	Wildlife Food 3/ C	<u>aver</u> <u>4</u> /
Eragrostis curvula PI-13311 I II III Avg.	$\frac{5}{1}$ 1 6 2.6	98 95 40 78	5/ 7 7 8 7.3	5/ 1 1 3 1.7
Festuca arundinacea 'KY-31' 1 II III Avg.	4 4 4 4.0	55 60 50 55	7 7 7 7.0	9 9 9 9.0
Panicum clandestinum 'Tioga' I II III Avg.	1 1 2 1.3	100 92 90 94	2 2 2 2.0	1 1 1 1.0
P. virgatum PI-421138 I II III Avg.	3 2 4 3.0	75 85 70 77	3 2 3 2.7	3 2 4 3.0
Lathyrus sylvestris 'Lathco' I II III Avg.	6 9 5 6.6	10 1 35 15	5 8 3 5.3	7 9 6 7.3
Lespedeza cuneata 'Appalow' 1 II III Avg.	2 2 5 3.0	80 85 25 6 3	3 3 5 3.7	4 4 5 4.3

Table 6 (cont.) Maryland Planting (continued)

Stand	Cover (%)	Wildlife Food Cover
2	70	3 5
1	85	2 2
3	70	3 4
2.0	75	2.7 3.7
3	60	3 4
2	85	2 2
5	40	4 6
3.3	62	3.0 4.0
	<u>Stand</u> 2 1 3 2.0 3 2 5 3.3	$\begin{array}{c} \underline{\text{Stand}} & \underline{\text{Cover}} \\ \hline \\ 2 & 70 \\ 1 & 85 \\ 3 & 70 \\ 2.0 & 75 \\ \hline \\ 3 & 60 \\ 2 & 85 \\ 5 & 40 \\ 3.3 & 62 \\ \hline \end{array}$

1/Plants established near Massey, MD in May 1980; Data recorded August 24.

2/Cover - Effective soil cover provided by planted species, expressed as percentage.

3/Capability of planted species to provide wildlife food.

4/Capability of planted species to provide wildlife cover.

5/Ratings are - 1=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10=None.

34F015F

In 1976, the Cape May PM Team collected 78 accessions of <u>Spartina</u> <u>patens</u> (saltmeadow cordgrass) along the coastal areas from Massachusetts to Georgia. The 15 best accessions were selected for detailed evaluation. These were established on the center and on an exposed tidal bank along the Choptank River near Trappe, Maryland. Based on the 1978 data taken from the Trappe, Maryland planting and the on-center plots, ten of the best accessions were selected for additional testing. The ten selections were used to establish two new plantings in 1979. During 1980, five of the ten accessions were selected for advanced testing. A fine-stemmed prostrate strain from the Americus PMC (source NC) was added to the project. Three new tidal sites were planted near Wareham, Massachusetts; Nags Head, North Carolina; and Virginia Beach, Virginia.

The planting located near Wareham, Massachusetts exhibited very poor survival and growth. This poor performance is partially attributed to the extremely high salt content noted for this planting site. The Virginia Beach Planting was very successful. It is the best of all the plantings and continues to provide high quality data. One replication of the Nags Head, North Carolina Planting was destroyed by severe wave action.

During mid-summer or early fall of 1982, the entire North Carolina Planting was destroyed by construction equipment, apparently to be used as a building site.

Three additional plantings of <u>S. patens</u> were made in 1981. One is located near Warsaw, Virginia; another at Suffolk County Park in Long Island, New York. The third planting was established on the Chesapeake Bay in Kent County, Maryland. Potted plants were used.

The Long Island Planting suffered severe pedestrian damage early in the season and, consequently, never became established. During the establishment year, the Warsaw, Virginia Planting was severely damaged by a storm. The entire lower portion was washed away by high energy waves. The storm also deposited volumes of sand, gravel and organic matter on the upper portion of the planting. Another storm occurred during the spring of 1982 which was more intense than the first. While most of the planting was destroyed, a number of plants were still intact by late fall.

As with the Virginia Beach Planting, the planting in Kent County, Maryland was also successful. Some debris is occasionally washed onto the planting but appears to have little detrimental effect. Accession numbers PI-421237 and PI-421262 are consistently the best at this location for all three replications. The performance of these two accessions is nearly equal.
In the spring of 1982, another planting was made using three selections. The planting was established in Northumberland County, Virginia. Three replications were made using 128 potted plants per accessions for each replication. Some of the plants which were at the extreme forward and rear position of this planting were lost during the summer. These losses were primarily due to position and not accession performance. PI-421237 which is usually rated extremely high in most plantings was not considered the best accession for any factor at any time during the establishment year for this planting. PI-421262 was rated superior to the other accessions for stand, cover, foliage, uniformity of stand and potential ability to provide beach protection.

.982	Rank		1.3	tt 00 tt	3.7	07 45	0°.	m cu Ll	2.0
n a tidal area, l	Value for Intended Use		с. с	6 m6	5.0	-7 1000	5.0	500 m	с. С
artina patens o	Dormancy (%)	95 95	95	9 <u>5</u> 97	85	95 95	93	90 90 90 90	87
essions of Sp	Cover (%)	80 80 25	0†7	20 10 11	28	0 0 0 5 7 7 7	33	<u>35</u> 35 0	0†1
uations for four acc	Replication	I T I T I T I	Average	I T TI TI	Average	TTT TTT	Average	III II	Average
Eval	Accession	PI-421237		PI-421238	138	PI-421262		PI-434390	

1/Planting established June 1981 at Echo Hill Camp, Chestertown, Maryland; Evaluated March
15.
2/Ratings: 1-10; 1=Excellent, 10=Poor.

PI No. (Acc.)	<u>Stand</u>	Vigor	Regrowth	Percent Cover (%)	Value For Intended Purpose	
421237	<u>2</u> / 3	<u>2</u> / 3	$\frac{R-I}{2}$	<u>3</u> / 70	2/ 3	
421238	5	7	6	35	6	
421262	3	2	2	80	2	
434390	4	5	5	45	5	
<u>R-II</u>						
421237	2	l	2	90	2	
421238	5	5	24	55	24	
421262	3	3	3	70	3	
434390	24	24	24	75	3	
<u>R-III</u>						
421237	3	3	2	70	3	
421238	6	6	5	35	5	
421262	4	4	3	60	4	
434390	4	4	4	60	4	

Evaluations for four accessions of <u>Spartina patens</u> on a tidal area, 19821/

Table 2

1/96 hills/accession/replication were established at Echo Hill Camp, Chestertown, Maryland on June 3, 1981; data recorded May 18.

2/Ratings are - 1=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor.

<u>3</u>/Percent cover represents the percent of total ground cover afforded by plant vegetation.

Relative rating for four accessions 1/ of <u>Spartina patens</u> on a tidal bank, 1982

	<u>R-I</u>	<u>R-II</u>	<u>R-III</u>
<u>2</u> / Best	421237	421237	421262
2nd Best	421262	421262	421237
3rd Best	421238	421238	434390
Last	434390	434390	421238

1/Planting was established on May 18, 1981 at Echo Hill Camp, Chestertown, Maryland; data recorded August 19.

2/Ratings based on the amount of growth, vigor and ground cover.

PI No.	Vigor	<u>Cover</u> (%)	Disease	Seedheads
	3/	<u>R-I</u>	J1 /	
421237	1	100	2	Few
421238	5	45	4	Few
421262	1	100	2	Few
434390	6	25	3	Few
		<u>K-11</u>		
421237	1	100	2	Few
421238	6	40	2	Few-Mod.
421262	2	100	2	Few
434390	7	45	4	Few
		R-III		
101027	0		2	Hew
421231	ζ.	32	2	100
421238	7	35	3	Few-Mod.
421262	3	95	3	Few
434390	5	45	3	Few

Evaluations for four accessions 1/ of <u>Spartina patens</u> on a tidal area, 1982

Table 4

1/96 hills/accession/replication were established at Echo Hill Camp, Chestertown, Maryland on June 3, 1981; data recorded Aug. 19. 2/Percent cover represents the percent of total ground cover afforded by plant vegetation. 3/Ratings are - 1=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor. 4/Ratings are - 1=None; 2=Slight; 4=Moderate; 6=Severe.

Evaluations for four $\frac{1}{2}$

Accession	Replication	Stand	Dormancy	Cover Above MHW	(%) Below MHW
PI-421237	I	$\frac{2}{3}$	95	100	90
	II	4	95	85	65
	III	4	<u>95</u>	<u>95</u>	60
	Average	3.7	95	93	72
PI-421238	I	2	75	95	75
	II	1	60	100	80
	III	<u>3</u>	<u>85</u>	<u>85</u>	85
	Average	2.0	73	93	80
PI-421262	I	4	100	95	75
	II	5	90	80	50
	III	<u>3</u>	<u>100</u>	95	70
	Average	4.0	97	87	65
PI-434390	I	3	80	90	70
	II	3	95	95	70
	III	4	<u>90</u>	<u>100</u>	65
	Average	3.3	88	95	68

l/Planting established in Spring 1980 at Seashore State Park, Virginia Beach, Virginia; evaluated March 1.

2/Ratings are - 1=Excellent; 10=Poor.

3/Percent of foliage which is dormant (i.e. amount of foliage that is not green).

<u>PI No.</u>	<u>I</u>	Rep <u>II</u>	<u> </u>
421237	1 <u>2</u> /	3	3
421238	3	l	5
421262	5	5	5
434390	5	5	5

Cover and storm protection of <u>Spartina</u> patens, 1982

l/Planting established in the spring of 1980 at Seashore State Park, Virginia Beach, Virginia; Data recorded July 20.

2/Ratings are for cover and protection from a storm - l=Excellent; 3=Good; 5=Fair.

Evaluations for four accessions of $\frac{1}{2}$ Sparting patens growing on a tidal bank, 1982

<u>PI No.</u>	Vigor	Percent Cover	Ster 1	<u>m Dens:</u>	<u>ity</u> <u>3</u>	Relative Rating
421237	<u>2</u> / 4	<u>3</u> / 70	R-1 4 82	I <u>4</u> / 133	246 ⁴	5/ 2nd Best
421262	5	65	61	112	82	4th Best
434390	3	80	182	161	167	3rd Best
421238	3	80	148	101	146	Best
			<u>R-</u>	<u>II</u>		
421238	2	85	148	114	167	Best
421262	6	50	87	59	72	4th Best
434390	4	70	116	152	90	3rd Best
421237	5	70	143	192	161	2nd Best
			<u>R-</u>]	III		
421237	4	65	163	92	162	3rd Best
434390	4	60	90	43	58	2nd Best
421262	5	55	48	58	20	4th Best
421238	4	65	66	112	238	Best

1/108 hills/accession/replication established May 22, 1980 at Virginia Beach, Virginia; data recorded October 19.

2/Ratings are - 1=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor. 3/Number represents the percent of the ground within the total plot which is covered by live vegetative growth.

4/Number of live stems counted in 3 individual 30 cm square areas. Stems that were 3 cm or longer were counted. 5/Ratings based on vigor, growth, and ability to provide bank

5/Ratings based on vigor, growth, and ability to provide bank protection.

Accession	Replication	Stand	Cover (%)	Dormancy (%)	
PI-421237	I II III	<u>2</u> / 5 7 4	50 <u>5</u> / 10 <u>5</u> / 75	95 95 95	
	Average	5.3	45	95	
PI-421238	I II III	7 9 10	15 5 5	95 95 <u>95</u>	
	Average	8.7	8	. 95	
PI-421262	I II III	9 8 <u>5</u> /	20 <u>5</u> / 85	100 95 90	
	Average	7.3	37	95	
PI-434390	I II III	6 6 9	40 45 5	80 90 95	
	Average	7.0	30	89	

Evaluations for four accessions of 1/ Spartina patens on a tidal area, 1982

Table 8

1/Planting established in May 1981 at Carter Wellford Property on Rappahannock River in Warsaw, Virginia; Data recorded March 9.

2/Ratings are - l=Excellent, 10=Poor.

3/Percent cover represents the percent of total ground cover afforded by plant vegetation.

4/Percent of foliage which is dormant (i.e. amount of foliage that is not green).

5/Treatment buried under sand, gravel and organic matter; poor performance due to burial.

PI No/Rep	Depth (Feet)	Cover (%)	Vigor
PI-421237 I II Ave.	20 23 22	90 80 85	4 <u>3</u> / 8 6
PI-421238 I II Ave.	27 22 24	90 80 85	2 <u>3</u> 3
PI-421262 I II Ave.	24 <u>25</u> 24	70 <u>90</u> 80	5 1 3
PI-434390 I II Ave.	25 25 25	85 90 88	3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Plot depth, amount of cover and vigor for four <u>Spartina</u> <u>patens</u> accessions growing on a tidal bank, 1982

1/108 hills/replication/accession established near Nags Head, NC May 1980; Data recorded May 4.

2/Depth of planting plot from front to rear; planted plot depth was 27 feet.

3/Ratings are - 1=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor.

146

Relative rating for four Spartina patens accessions, $1982^{1/2}$

	<u>R-I</u>	<u>R-II</u>
2/ Best	PI-421262	PI-421238
2nd Be s t	PI-434390	PI-434390
3rd Best	PI-421238	PI-421262

1/108 hills/accession/replication established May 14 at Nags Head, NC; Data recorded May 4.

2/Best accession selected on general appearance for cover, amount of growth and intended use.

TOOTO TT	Tal	ble	11
----------	-----	-----	----

Characteristics for four accessions $\frac{1}{}$ of <u>Spartina patens</u> growing on a tidal bank, 1982

Accession/ Replication	Hills (No.)	<u>2/</u> <u>Culms</u> (No.)	<u>Spread</u> (cm)	Vigor	Cover
PI-421237 I II III Ave.	45 32 82 53	195-60 164 - 104 <u>86-43</u> 109	30-18 26-30 22-18 24	4/ 2 32 2.3	4/ 3 4 <u>3</u> .3
PI-421238 I II III Ave.	49 56 84 63	96-53 87-51 9 <u>0-</u> 35 69	26-25 15-18 1 <u>8-</u> 22 21		4 4 <u>4</u> 4
PI-421262 I II III Ave.	72 101 86(58)	116-89 0-0 74-50 110(55)	24-28 0-0 2 <u>6-</u> 23 25	2 - 2 2	2 - 3 2.5
PI-434390 I II III Ave.	65 30 <u>74</u> 56	73-78 91-44 1 <u>19</u> -71 79	23 -2 8 28 -24 26-24 26	2 3 3 2.3	3 4 <u>4</u> 3.7

1/128 hills of potted plants/accession/replication established on May 26 in Northumberland County, Virginia; data recorded Aug. 17.

2/Number of culms in two hills; selection basis - random hill representing best plants and random hill representing average.

3/Maximum spread of culms emerging from sand in hills where culm counts were made.

4/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor.

Accession/ Replication	Disease Injury	2/ Value	Hills/row
PI-421237 I II III	2 2 5	4 5 3	7 7 9 14
PI-421238 I II III	2 1 6	4 5 4	9 11 13
PI-421262 I III III	3 - 6	2 4	10 0 16
PI-434390 I II III	3 1 3	36 4	11 9 16

Characteristics for four Spartina patens accessions, 1982

1/8 rows of 16 hills/accession/replication established on May 26 in Northumberland County, Virginia; data recorded August 17.

2/Conservation value of plants to protect and build up beach.

3/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor.

4/Number of living hills in longest row.

Table	13
-------	----

Characteristics for four Spartina patens accessions, 1982

Accession/ Replication	Stand	2/ Dormancy	Sand Cover	<u>3</u> / <u>Value</u>
PI-421237 I II III	4/ 5 5 3	4 4 3	<u>4</u> 5 5 4	<u>4</u> 5 4 3
PI-421238 I II III	4 4 2	3 3 2	5 4 4	4 4 3
PI-421262 I II III	3 10 ,3	4 - 3	24 74	2 - 2
PI-434390 I II III	3 6 4	2 3 3	3 6 5	2 4 4

1/8 rows of 16 hills/accession/replication established on May 26 in Northumberland County, Virginia; Data recorded November 16.

2/Dormancy - Capability of foliage to remain green into the dormant season.

3/Conservation value of plants to protect and build up beach.

4/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10=None; - = No rating.

Relative rating for <u>Spartina patens</u> for tidal bank stabilization, 19821/

		Replication							
<u>Order</u>	Ţ	II	III						
Best ^{2/}	PI-421262	PI-421238	PI-421262						
2nd Best	PI-434390	PI-434390	PI-421237						
3rd Best	PI-421238	PI-421237	PI-421238						
Last	PI-421237	-	PI-434390						

1/128 hills of potted plants/accession/replication established on May 26 in Northumberland County, Virginia; data recorded August 17.

2/Ratings based on visual observation of stand, cover, foliage, uniformity of stand and potential to protect beach.

Myrica Species Planting Technique

3400050

<u>Myrica</u> spp. are native shrubs that are well adapted to sand dunes along the mid-Atlantic coast. These species are among the dominant woody plants immediately behind the foredune on many natural sites. <u>M. pensylvanica</u> (bayberry) occurs chiefly along the U.S. coast from Maine to Maryland. <u>M. cerifera</u> (wax myrtle) is adapted to sandy conditions but will grow in heavier soils. They are excellent sand stabilizers and are vital to the environment of natural dunes.

While <u>Myrica</u> spp. are well adapted to sand dunes along the east coast, the survival rate of bare-root planting stock has been relatively poor. Two-year-old <u>M. pensylvanica</u> seedlings are difficult to plant due to their huge top and root growth. Yet, one-year-old seedlings are generally small and have an inadequate root system. Two-year-old seedlings of <u>M. cerifera</u> are somewhat smaller than the same age <u>M. pensylvanica</u> plants. When 2-0 stock of <u>M. cerifera</u> have been planted on the dune area, the survival rates have varied from very poor to excellent. A technique which would result in consistently high survival rates for bare-root <u>M. pensylvanica</u> and <u>M. cerifera</u> seedlings on sand dunes is needed.

This project began in the spring of 1980 by planting 1-0 and 2-0 seedlings of the two Myrica species on a sand dune. In 1981, another planting was made on a man-made, inland sand dune in Ocean County, New Jersey and repeated at a nearby site in 1982. Only 1-0 and 2-0 seedlings of <u>M. pensylvanica</u> and 2-0 <u>M. cerifera</u> were used in the 1982 Planting. The root treatments were: (1) clay slurry applied to roots, (2) organic matter (peatmoss) incorporated with soil in the planting hole, (3) super slurper incorporated with soil in the planting hole, (4) peatmoss plus super slurper incorporated in the planting hole, and (5) control (no treatment).

Other than the unsuitability of 1-0 <u>M. cerifera</u>, the results have been too variable to draw any conclusions. Evaluations of the 1981 and 1982 Plantings will continue in 1983.

Treatment Species/age	Rep I	Vigor licati II	on III	No. Rep I	Livin Dicati II	g on III
Super slurper Bayberry (1-0)	2/ 6	4	5		9	7
Bayberry (2-0)	3	3	3	10	7	6
Wax myrtle (1-0)	-	4	-	0	l	l
Wax myrtle (2-0)	4	5	6	5	5	4
Super slurper + Peatmoss Bayberry (1-0)	4	3	4	8	9	6
Bayberry (2-0)	3	2	3	6	10	8
Wax myrtle (1-0)	-	-	-	0	0	1
Wax myrtle (2-0)	4	4	6	8	5	4
Peatmoss Bayberry (1-0')	5	3	4	8	10	8
Bayberry (2-0)	3	2	2	10	10	7
Wax myrtle (1-0)	9	-	-	l	0	0
Wax myrtle (2-0)	2	6	4	10	5	3
<u>Clay</u> Bayberry (1-0)	5	3	5	8	9	4
Bayberry (2-0)	3	3	2	10	8	10
Wax myrtle (1-0)	-	-	-	0	l	0
Wax myrtle (2-0)	3	5	7	9	4	2

Table 1

F

Vigor and survival for two woody species, $1982^{1/2}$

Table 1 (cont.)

~

1

Vigor and survival for two woody species, 1982

Treatment Species/age	Rej I	Vigor olicati <u>II</u>	on III	<u>No</u> Rep	Livin Dicati II	g on III	
Control Bayberry (1-0)	5	5	5	8	8	6	
Bayberry (2-0)	3	3	2	9	10	8	
Wax myrtle (1-0)	9	-	-	l	1	l	
Wax myrtle (2-0)	4	6	-	10	3	l	

1/10 seedlings planted March 18, 1981; data recorded May 17. Treatments are: Super slurper - 20 gms SGP-200 mixed in planting hole; Peatmoss - 1 liter of peatmoss mixed in planting hole; Super slurper + Peatmoss - both at 20 + 1 mixed in planting hole; Clay - Roots dipped in thick clay slurry; Control - Roots dipped in water. Planting at the ASARCO mine near Lakehurst, New Jersey.

2/Ratings are: l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; - = No Rating.

3/Ten planted - number surviving.

LADIE (2
---------	---

Treatment/ Species/Age/Rep	Height (cm)	$\frac{\text{Width}}{(\text{cm})}$	Diameter (mm)	Vigor	Seed Production
Control Wax Myrtle (1-0) I		-	<u>2/</u> - -	10 ^{3/}	<u>4</u> / 10
Ave. II	- 25 -	- 20 -	6	4	10
Ave. III Ave.	8.3 35 - 11.7	6.7 45 - 15	2 12 - - 4	5	10
Wax Myrtle (2-0) I	60 50 65 58 3	20 65 40	11 15 1 <u>5</u> 13.7	6	10
Ave.	15 30 - 15	10 25 - 11.7	6 8 - - 4.7	7	10
III Ave.		- - - -	- - - -	10	10
Bayberry (1-0) I Ave.	30 20 <u>30</u> 26.6	25 45 <u>35</u> 35	7 8 10 8.3	6	10
II Ave.	30 20 40 30	50 45 70 55	13 10 <u>23</u> 15.3	5	10

Table 2 (cont.) Dimensions, vigor and seed production for two woody species, 1982

5

Treatment/ Species/Age/Rep	Height (cm)	Width (cm)	Diameter (mm)	Vigor	Seed Production	
Bayberry (1-0)	50 40 45	55 65 70	11 12 19	5	10	
Ave.	40	05.5	τ0.(
Bayberry (2-0) I Ave.	50 40 50 46.7	45 40 <u>35</u> 40	16 14 15 15	5	10	
II	55 55 70	45 40 65	11 15 <u>19</u>	4	7	
Ave.	60	50	15			
III Ave.	105 75 70 83.3	75 75 <u>75</u> 75	23 22 21 22 22	4	4	
Super slurper Wax Myrtle						
I	-		-	10	10	
Ave.	-	_				
II	30 -	35 -	16 -	7	10	
Ave.		-	- 5.3			
III	30 -	20 -	7	6	10	
Ave.	10	- 6.7	- 2.3			

Table 2 (cont.)

Treatment/ Species/Age/Rep	Height	<u>Width</u>	Diameter	Vigor	Seed Production
Super slurper Wax myrtle (2-0) I	45 45 45	20 60 <u>30</u>	6 24 11	5	10
Ave. II Ave.	45 30 45 <u>55</u> 43.3	25 25 35 28.3	13.7 9 12 <u>13</u> 11.3	7	10
III Ave.	35 55 <u>35</u> 41.7	35 50 <u>35</u> 40	11 15 <u>9</u> 11.7	4	10
Bayberry (1-0) I Ave.	25 30 20 25	20 50 15 28.3	6 8 5 6.3	7	9
II Ave.	20 40 <u>35</u> 31.7	25 45 <u>35</u> 35	5 11 8 8	6	10
III Ave.	40 35 <u>35</u> 36•7	60 35 40 45	16 8 <u>9</u> 11	4	10
Bayberry (2-0) I Ave.	45 40 50 45	50 40 50 46.7	14 8 <u>15</u> 12.3	5	7
II Ave.	50 55 60 55	30 35 60 41.7	7 12 <u>22</u> 13.7	5	6

1

1

Table 2 (cont.)

Treatment/ Species/Age/Rep	Height (cm)	Width (cm)	Diameter (mm)	Vigor	Seed Production
Bayberry (2-0) III	50 60 70	40 60 60	11 19 18	5	6
Ave.	60	53.3	16		
Super slurper + Peatmoss					
I	-	-	-	10	10
Ave.	-	-	-		
II	-	-	-	10	10
Ave.	-	-	-		
III	40 -	40	11 - -	5	10
Ave.	13.3	13.3	3.7		
Wax Myrtle (2-0)				_	
I	50 40 <u>35</u>	35 60 25	12 13 10	5	TO
Ave.	41.7	40	11.7		
II	40 50 65	25 40 70	9 15 18	5	10
Ave.	51.7	45	14		
III	35 30 55	35 25 25	7 7 13	5	10
Ave.	40	28.3	9		

Table 2 (cont.)

Treatment/ Species/Age/Rep	Height	Width (cm)	Diameter (mm)	Vigor	Seed Production
Super slurper + Peatmoss	(0)	()	~ /		
Bayberry (1-0) I	45 40 30	60 50 45	12 14 11	5	10
Ave.	38.3	51.7	12.3		
II	45 50 50	40 65 70	13 26 14	5	8
Ave.	48.3	58.3	17.7		
III	45 40 <u>35</u>	80 35 40	10 10 10	4	10
Ave.	40	51.7	10		
Bayberry (2-0) I	55 55	45 45	11 12	6	10
Ave.	<u>50</u> 53.3	<u>50</u> 46.7	$\frac{19}{14}$		
II	50 65 50	25 60 40	10 18 <u>9</u> 12 3	4	7
Ave.	55	41.(}1	1
III	80 95 65	85 90 <u>95</u>	25 23 19	4	4
Ave.	80	90	22.3		
Peatmoss					
Wax Myrtle (1-0) I	25 -	15 -	5	7	10
Ave.	- 8.3	5	1.7		

Table 2 (cont.)

-

Dimensions, vigor and seed production for two woody species, 1982

1 7

Treatment/ Species/Age/Rep	Height (cm)	Width (cm)	Diameter (mm)	Vigor	Seed Production
Peatmoss Wax Myrtle (1-0) II	-			10	10
Ave.	-	-	-		
III	40 -	15 -	-7	6	10
Ave.	-	5	- 2.3		
Wax Myrtle (2-0) I	50 40 60	55 45 40	20 12	4	10
Ave.	50	46.7	14.3		
II	30 40	15 30	7 8	6	10
Ave.	23.3	15	5		
III	50 25	30 25	8	6	10
Ave.	<u>45</u> 40	<u>30</u>	9.3		
Bayberry (1-0)	0.0				
1	30 50 <u>35</u>	30 80 <u>50</u>	7 15 11	5	10
Ave.	38.3	53.3	11		
II	25 25 25	45 45 3 5	11 14 8	5	10
Ave.	25	41.7	11		

Table 2 (cont.)

Treatment/ Species/Age/Rep	Height (cm)	$\frac{Width}{(cm)}$	Diameter (mm)	Vigor	Seed Production
Peatmoss Bayberry (1-0) I	60 40 40	80 45 50	20 12 18	4	lO
Ave.	46.7	50.3	ΤΟ•(
Bayberry (2-0) I Ave.	50 60 <u>50</u> 53•3	50 35 70 51.7	14 13 <u>15</u> 14	6	7
II	70 70 55 65	30 60 65 51 7	14 18 17 16,3	4	7
III	70 60 65	65 50 60	20 19 20	5	5
Ave.	05	20+3	19•1		
Clay Wax Myrtle (1-0) I	- -	- - -	- - . <u>-</u>	10	10
Ave. II	- 20 -	- 10 -	- - -	7	10
Ave. III	6.7 - -	- - -	- - -	10	10
Ave.		_			

Table 2 (cont.)

Dimensions,	vigor	and	seed	production	for	two	woody	species,	1982
-------------	-------	-----	------	------------	-----	-----	-------	----------	------

Treatment/ Species/Age/Rep	Height	Width (cm)	Diameter	Vigor	Seed Production
Clay	(Cm)	(Cm)	()		
Wax Myrtle (2-0) I	45 60	35 45 65	9 14 20	6	10
Ave.	55	48.3	14.3		
II	35 25 35	15 20 35	6 6 13	5	10
Ave.	31.7	23.3	8.3		
III	35	35 -	11	6	10
Ave.	- 11.7	- 11.7			
Bayberry $(1-0)$					
I	35 45 35	55 60 55	12 12 11	5	10
Ave.	38.3	56.7	11.7		
II	55 50 50	55 50 35	18 10 18	5	9
Ave.	51.7	46.7	15.3		
III	50 65 40	60 65 45	17 18 12	5	8
Ave.	51.7	56.7	15.7		
Bayberry (2-0) I	35 55	35 60 35	9 14	6	10
Ave.	46.7	43.3	10.7		
II	60 55 40	60 60 35	18 16 11	5	7
Ave.	51.7	51.7	15		

Table 2 (cont.)

Treatment/ Species/Age/Rep	Height	Width	Diameter	Vigor	Seed Production
Clay Bayberry (2-0) III	90 55	70 70	19 16	4	5
Ave.	80 75	<u>90</u> 76.7	$\frac{20}{18.3}$		

Dimensions, vigor and seed production for two woody species, 1982

<u>1</u>/Ten seedlings per treatment planted March 18, 1981 at the ASARCO Mine near Lakehurst, New Jersey; data recorded November 15.

2/Thickness of main stem or largest stem on multi-stemmed plants at soil line. Dash indicates no living plants at that location.

<u>3</u>/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10=Dead or none.

4/Ratings are - 1=Very abundant; 3=Abundant; 5=Moderate; 7=Sparse; 9=Very Sparse; 10=None.

()

Survival, vigor and insect damage $\frac{1}{}$ for woody plants growing on an inland sand dune, 1982

. .

Treatment/ Species/Rep	Survival (No.)	Vigor	Insect Damage	Treatment/ Species/Rep	<u>Surv.</u> (No.)	Vigor	Insect Damage
Super slurper Bayberry(1-0) I II III	6 6 8	2/ 6 7	6 7 8	Peat Bayberry(1-0) I II III	10 4 9	7 8 5	8 56
Bayberry(2-0) I II III	6 6 10	76 5	8 7 6	Bayberry(2-0) I II III	8 96	666	4 8 6
Wax Myrtle(2-0) I II III	1 7 2	9 7 8	1 3 1	Wax Myrtle(2-C I II III) 4 5 4	568	3 3 1
Super slurper + Peat Bayberry(1-0) I II III	6 4 8	5 76	5 3 5	<u>Clay</u> Bayberry(1-0) I II III	8 7 8	7 7 7	8 9 8
Bayberry(2-0) I II III	6 58	6 6 5	4 7 5	Bayberry(2-0) I II III	ତ ୭୦	6 56	6 6
Wax myrtle(2-0) I II III	2 3 5	7 9 8	2 3 1	Wax Myrtle(2-0 I II III) 5 2 4	8 7 9	4 1 1

Table 3 (cont.)

Survival, vigor and insect damage for woody plants growing on an inland sand dune, 1982

Treatment/ Species/Rep	Survival (No.)	<u>Vigor</u>	Insect Damage	
Control Bayberry(1-0) I II III	7 9 10	566	6 7 5	
Bayberry(2-0) I II III	6 9 9	7 7 5	7 8 6	
Wax Myrtle(2-0) I III III	2 4 4	7 9 7	1 1 2	

1/10 plants/species/treatment/age/replication planted in Ocean County, New Jersey March 25,; data recorded June 30.(Clayton Site)

2/Ratings are - 1=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor.

3/Ratings are - l=None; 3=Slight; 5=Moderate; 7=Severe; 9=Very Severe; 10=Completely defoliated.

Ta	bl	е	4

6 1

.

Dimensions of woody species growing on a sandy site, $1982^{1/2}$

5

Treatment/ Species/Rep	Plant Posit	zions	Hei	ght n)	Widt (cm	th	Diame	eter
Super slurper Wax myrtle (2-0) I II III Ave.	2/ 4 32	7 6 9	15 30 10 15	15 10 15	5 15 10 10	10 10 10	3/ 5 2 5	9 2 8 ·3
Bayberry (l-O) I II III Ave.	1 5 4	10 8 7	15 15 20	5 20 20 5.8	5 15 15 10	10 10 5	2 3 5 3	3 5 3 5
Bayberry (2-0) I II III Ave.	4 5 3	8 - 9	5 20 20 13	20 15 3	5 20 <u>30</u>	5 <u>30</u>	3 7 5 3.	4
Super slurper + <u>peatmoss</u> Wax myrtle (2-0) I II III Ave.	6 4 6	9 6 7	30 5 15 17	25 10 20	15 5 20 13.	20 10 10 3	4 5 8 5	6 4 5 3
Bayberry (l-O) I II III Ave.	352	9 - 7	20 25 5 16	20 - - 7	20 15 10 14.	20 20 2	3 5 3 3.	5 5 5
Bayberry (2-0) I II III Ave.	4 3	7 8 7	20 <u>20</u> 14	10 15 20	20 <u>-</u> 20 15	10 25 15	5 - 3 - 4	556

Table	4
(cont	.)

Dimensions of woody species growing on a sandy site, 1982

Treatment/ Species/Rep	Plan <u>Posi</u>	t tions	Height (cm)	<u>Width</u> (cm)	Diameter (mm)
Peatmoss Wax myrtle (2-0) I II III Ave.	54 7	8 7 8	20 30 25 5 20 20 20	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{r} 10 & 7 \\ 10 & 3 \\ 4 & 4 \\ \hline 6.3 \end{array} $
Bayberry (1-0) I II III Ave.	3 2 4	7 7	$ \begin{array}{cccc} 10 & 20 \\ 30 & - \\ 15 & 15 \\ 15 & 15 \end{array} $	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{ccc} 3 & 5 \\ 5 & - \\ 4 & 4 \\ \hline 3.5 \end{array}$
Bayberry (2-0) I II III Ave.	- 1 4	10 8 6	$ \begin{array}{r} - 25 \\ 15 25 \\ 20 20 \\ 17.5 \end{array} $	-10 2525 3015 17.5	- 5 5 5 4 6 4.2
Clay Wax myrtle (2-0) I II III Ave.	6 3 	7 4 8	20 15 25 20 - 10 15 15 10	$ \begin{array}{r} 5 & 10 \\ 10 & 5 \\ - & 15 \\ \hline 7.5 \end{array} $	3 5 7 7 - 8 5
Bayberry (1-0) I III III Ave.	- 1 4	10 3 9	$ \begin{array}{r} - 10 \\ 15 15 \\ 20 15 \\ 12.5 \end{array} $	$ \begin{array}{r} - 5 \\ 5 5 \\ $	$ \begin{array}{c} - & 2 \\ 3 & 4 \\ 4 & 3 \\ \hline 2.6 \end{array} $
Bayberry (2-0) I II III Ave.	4 5 4	7 7 8	20 40 20 25 10 15 21.7	5 25 15 20 15 35 19.2	3

Table 4 (cont.)

Dimensions of woody species growing on a sandy site, 1982

Treatment/ Species/Rep	Plant Posit:	ions	Height (cm)	Width (cm)	Diameter (mm)
Control Wax myrtle (2-0) I II III Ave.	7 3 3	10 9	10 15 20 15 <u>15 -</u> 14.2	15 5 5 5 <u>15 -</u> 7.5	$ \begin{array}{r} 4 & 2 \\ 7 & 5 \\ 4 & - \\ \overline{3.7} \end{array} $
Bayberry (1-0) I II III Ave.	4 4 4	7 5 7	20 20 35 25 <u>5 10</u> 19.2	$ \begin{array}{r} 10 \ 10 \\ 10 \ 15 \\ \underline{10 \ 5} \\ 10 \\ 10 \end{array} $	$ \begin{array}{ccc} 4 & 4 \\ 4 & 3 \\ 4 & 3 \\ \overline{3.7} \end{array} $
Bayberry (2-0) I II III Ave.	2 4 6	8 8 8	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	15 20 15 20 15 10 15.8	$ \begin{array}{ccc} 4 & 9 \\ 4 & 6 \\ 5 & 3 \\ \overline{5.2} \end{array} $

1/10 plants/species/treatment/age/replication planted in Ocean County, New Jersey March 25; data recorded November 17. (Clayton Site)

2/Position of plant measured within the row.

٦.

3/Thickness at the base of the stem or thickest stem on multistemmed plants.

[ab]	e	5

Vigor a	nd s	urvi	val f	or woo	ody	spe	cies _{1/}	
growing	on	an i	nland	sand	dun	e,	1982-1/	

Treatment/ Species	<u>R-I</u>	Vigor <u>R-II</u>	R-III	<u>R-I</u>	Surviva <u>R-II</u>	1 <u>R-III</u>	Total
Super slurper Wax myrtle (2-0) Bayberry (1-0) Bayberry (2-0)	2/ 4 8 7	5 7 5	4 7 5	<u>3</u> / 5 3 3	4 3 1	6 6 4	15 12 8
Super slurper + <u>Peatmoss</u> Wax myrtle (2-0) Bayberry (1-0) Bayberry (2-0)	4 5 5	5 6 5	4 5 5	3 5 3	2 1 1	24 24 24	9 10 8
Peatmoss Wax myrtle (2-0) Bayberry (1-0) Bayberry (2-0)	4 5 8	4 5 4	5 5 4	3 4 1	3 1 2	3 76	9 12 9
<u>Clay</u> Wax myrtle (2-0) Bayberry (1-0) Bayberry (2-0)	5 9 5	594	4 6 4	3 1 6	2 2 7	1 3 4	6 .6 17
Control Wax myrtle (2-0) Bayberry (1-0) Bayberry (2-0)	666	5 5 4	66 5	3 7 3	4 4 4	1 5 3	8 16 10

1/10 plants/species/treatment/age/replication planted in Ocean County, New Jersey March 25; data recorded November 17. (Clayton Site)

2/Ratings are - 1=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10=Dead.

3/Number of surviving plants within row.

Cordgrass Planting Technique

34C022F

Several methods have been used to establish cordgrass on tidal streambanks. Fertilizer is essential when planting in a sterile sand and is desirable even on clay sites. Controlled release and soluble fertilizers applied at the time of establishment have produced conflicting results. Despite the cost, the controlled release material (3-4 months) is the preferred fertilizer especially when planting below the high water elevation. The cordgrasses will not tolerate constant shade. It is important to have full sun for at least one half of the day. <u>Spartina alterniflora</u> (smooth cordgrass) plants that are not grown in a saline medium, must be acclimated to salt well in advance to planting into the tidal zone.

Several plantings have been made by the Cape May PMC using both <u>S. patens</u> (saltmeadow cordgrass) and <u>S. alterniflora</u>. These results are published in the previous annual reports.

The most current planting was established in Northumberland County, Virginia in 1982. Two replications were installed using both 3-month-old potted plants and 1-year-old bare-root plants of <u>S. alterniflora</u> and <u>S. patens</u>. There were two fertilizer treatments: 30 grams of 10-10-10 soluble fertilizer per hill or 30 grams of 19-6-12 slow release osmocote fertilizer per hill.

First year results for <u>S. patens</u> indicated that survival was best for the osmocote fertilizer treatment but the type of plant (bareroot vs. potted) did not make a difference. Percent cover was, also, better for the osmocote and again was not affected by the plant type.

The results for <u>S. alterniflora</u> was also inconclusive. The best stand of plants was obstained from potted/10-10-10 fertilizer treatment while the best vigor was exhibited by the potted/osmocote treatment.

170

Table L	Le l	bl	Ta
---------	------	----	----

 \mathbf{N}

Effect of fertilizer and planting stock 1/ on two cordgrasses on a tidal bank, 1982

<u>2/</u> Species/ treatment/ replication	Hills (No.)	<u>3/</u> <u>Culms</u> (No.)	Spread (cm)	Vigor	Cover
Saltmeadow Potted/10-10-10 I II Ave.	53 51 5 2	87-24 27-13 38	21-14 13-11 15	4 5 4.5	5 5 5 5.5
Potted/osmocote I II Ave.	60 45 52	110-53 83-68 78	24-13 27-16 20	3 3 3	3 4 3.5
Bare-root/10-10-10 I II Ave.	42 32 37	68-36 44-14 40	20-27 32-18 24	4 6 5	7 8 7.5
Bare-root/osmocote I II Ave.	47 48 48	73-23 47-41 46	40-14 24-26 26	3 4 3.5	5 5 5
Smooth Potted/10-10-10 I II Ave.	84 70 77	9-8 20-10 12	28-10 28-11 19	3 5 4	5 6 5•5
Potted/osmocote I II Ave.	73 89 81	25-6 18-18 17	35 - 18 19-20 23	2 2 2	4 3 3.5
Bare-root/10-10-10 I II Ave.	30 48 39	16-7 5-5	32-15 13-8 17	4 6 5	6 7 6.5

Table 1 (cont.)

1

Effect of fertilizer and planting stock on two cordgrasses on a tidal bank, 1982

Species/ treatment/ replication	Hills (No.)	Culms (No.)	Spread (cm)	Vigor	Cover
Smooth(cont.) Bare-root/osmocote I II Ave.	31 58 44	11-4 20-8 11	20-17 25-9 18	5 3 4	7 4 5.5

1/60 hills of saltmeadow and 100 hills of smooth cordgrass were planted on May 26 in Northumberland Co., Virginia; data recorded Aug. 17.

2/Treatments = Potted: 3 month old plants; Bare-root: Saltmeadow-5 culms/hill, smooth-2 culms/hill; 10-10-10: 30 grams soluble fertilizer/hill; osmocote-30 grams 4 months release/hill.

<u>3</u>/Typical large and small hill size selected at random - 2 per treatment; No. of culms per hill.

4/Spread - Distance of plant spread at base of hills used for culm count.

5/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor.

Effect of fertilizer and planting stock 1/ on two cordgrasses on a tidal bank, 1982

Species /			
Treatment/ Replication	Hills (No.)	Cover	Protection
Saltmeadow Potted/10-10-10 I II Ave.	39 38 38	4 <u>3</u> / 8 6	<u>3</u> / 5 7 6
Potted/osmocote I II Ave.	42 40 41	5 4 4.5	6 4 5
Bare-root/10-10-10 I II Ave.	32 31 32	5 8 6.5	6 7 6.5
Bare-root/osmocote I II Ave.	43 46 44	6 3 4.5	7 3 5
Smooth Potted/10-10-10 I II Ave.	39 75 57	4 5 4.5	5 5 5
Potted/osmocote I II Ave.	53 40 46	5 4 4.5	24. 24. 24
Bare-root/10-10-10 I II Ave.	57 38 48	7 8 7.5	7 7 7
Bare-root/osmocote I II Ave.	43 46 44	6 3 4.5	7 3 5

Table 2 (cont.)

- N

1

Effect of fertilizer and planting stock on two cordgrasses on a tidal bank, 1982

1/60 hills of saltmeadow and 100 hills of smooth cordgrass per treatment per replication on May 26 in Northumberland County, Virginia; Data recorded November 16.

2/Treatments = Potted: 3-month-old plants; Bare-root: Saltmeadow-5 culms per hill, smooth=2 culms per hill; 10-10-10: 30 grams soluble fertilizer/hill; osmocote-30 grams 4 month release/hill.

3/Ratings are - 1=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor.

Table	3
-------	---

Relative rating for two cordgrasses by treatments, $1982^{1/2}$

Species	Replicatio	n II
Saltmeadow Best	Potted/10-10-10	Bare-root/osmocote
2nd Best	Potted/osmocote	Potted/osmocote
3rd Best	Bare-root/10-10-10	Potted/10-10-10
Worst	Bare-root/osmocote	Bare-root/10-10-10
Smooth Best	Potted/osmocote	Potted/osmocote
2nd Best	Bare-root/10-10-10	Bare-root/osmocote
3rd Best	Potted/10-10-10	Potted/10-10-10
Worst	Bare-root/osmocote	Bare-root/10-10-10

1/Rating based on general appearance of stand, cover, vigor, foliage and ability to protect the tidal bank; ratings made November 16.

Revegetation of Sand Dunes

Binational Agriculture Research and Development (BARD)

3400240

Ammophila breviligulata (American beachgrass) has been successful for the initial stabilization of sand dunes. However, the long term cover it provides is not adequate to prevent strong winds from blowing and depositing sand onto agriculture or other type lands. While <u>A. breviligulata</u> is considered effective as a sand stabilizing plant, stands are often short-lived due to natural deterioration.

Salt tolerant plants which are persistent on sandy soils and can be interplanted with <u>A. breviligulata</u> are needed to provide quality vegetation to prevent the blowing of sand onto prime lands. Proven fertilization methods are also necessary to increase the vigor of existing woody plants on sand dune areas.

The BARD project is a cooperative effort between Israel and the United States. The project encompasses studies in Israel, Delaware, Virginia and California. The New Jersey portion of the project began in March 1981 near Fenwick, Delaware and Virginia Beach, Virginia. Two types of plantings were evaluated at each location during the establishment year. One study involved "Interplanting of long-lived herbaceous species with <u>A. breviligulata</u> 'Cape'." These plantings were established on unstable sand dunes that had previously been vegetated with <u>A. breviligulata</u> but were barren at planting time. The second situation was located on stable dunes that were partially covered with native perennial vegetation in a poor state of vigor. This study involved "An evaluation of the effect of fertilizer treatments on the invasion of long-lived perennial ground cover species and improved vigor of plant growth on mid-Atlantic sand dunes". Both of these studies were duplicated in 1982 under similar conditions.

The five herbaceous species which were interplanted with <u>A</u>. <u>breviligulata</u> during 1981 were Carex kobomugi (Japanese sedge); <u>C. arenaria</u> (European sedge), <u>Elymus arenarius</u> (European wildrye), <u>E. vancouverensis</u> (Vancouver wildrye) and <u>Panicum amarum</u> (bitter panicgrass). However, due to the poor performance of <u>C.</u> arenaria, this species was not used in the 1982 herbaceous study.

In the spring of 1982, the 1981 herbaceous plantings at both the Virginia and Delaware locations were split into sub-plots. Onehalf of these plantings were fertilized with 750 kg/ha of 10-10-10 and the other half served as a control. By July, plants at both locations exhibited increased vigor on the fertilized portion of the plots. However, this trend was more apparent at the Virginia location than the Delaware location. Plant growth at both locations was hampered by sand accumulation blown onto the plots. This was more apparent in Delaware than in Virginia. The best species based upon cover, density, stand, spread and vigor for both the fertilized

and control area were <u>C. kobomugi</u> and <u>P. amarum</u>.

The 1982 herbaceous planting was rated successful at both locations. As with the 1981 planting, <u>E. arenarius</u> was outstanding in initial survival and vigor. While vigor ratings in most cases were lower for <u>C. kobomugi</u> and <u>P. amarum</u> during this initial establishment period, both species were competitive with the <u>Elymus</u> spp.

Effect of Fertilizer on the Invasion of Long-Lived Perennials

<u>Prunus serotina</u> (black cherry) and <u>Myrica</u> spp. are the dominant woody species for the 1981 study at the Virginia location while <u>Myrica</u> spp. are clearly dominant at the Delaware location. There was not any significant change or even a trend in the dominant species during the first year. Total canopy and canopy afforded by each species did not significantly change. The amount of variation for canopy from spring to fall evaluation was greater within a fertilizer treatment than among treatments. While vigor was not clearly improved by fertilizer, the trend at the Virginia location was toward increased vigor with increases in fertility.

The second study for this project began in April of 1982. The two locations were the same as for the 1981 study, however, the named species involved at the Delaware location were somewhat different while those for the Virginia location were similar.

This is a long term project and will require additional evaluations to confirm the trends. Funds were approved under an International Agreement for the period June 6, 1981 to June 5, 1983. The existing plantings will be evaluated for several years but no additional plantings will be established.

- Th - Th	- 7 -	-
Tar	эте	1

Second year survival and vigor for five herbaceous species growing on a sand dune, 1982 (1981 Study-Virginia Location)

Species	(No. of Hills)	Vigor
<u>Elymus arenarius</u> <u>E. vancouverensis</u> <u>Carex kobomugi</u> <u>C. arenaria</u> <u>Panicum amarum</u>	<u>R-I</u> 0 26 41 0 25	<u>2</u> / 6 4 4
P. amarum E. arenarius C. arenaria E. vancouverensis C. kobomugi	<u>R-II</u> 2 11 10 31 34	5 7 5 3
E. vancouverensis C. arenaria P. amarum C. kobomugi E. arenarius	<u>R-III</u> 3 31 32 15	6 7 54 6

1/80 hills planted/accession/replication on March 10, 1981 at Virginia Beach, Virginia; data recorded April 28.

<u>2</u>/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor.
<u>3</u>/Sand accumulation prevented survival count.

Table	2	

five herbaceous species growing on a sand dune, 1982 (1981 Study-Virginia Location)

	<u>R-I</u>	<u>R-II</u>	R-III
Best	<u>Carex</u> kobomugi	<u>C.</u> kobomugi	C. kobomugi
2nd Best	P. amarum	<u>Elymus</u> vancouverensis	P. amarum
3rd Best	E. vancouverensis	E. arenarius	<u>E.</u> arenarius

1/80 hills planted/accession/replication on March 10, 1981 at Virginia Beach, Virginia; data recorded April 28.

2/Best accession selected based upon survival, vigor and regrowth.

Evaluations for five herbaceous plant species interplanted in 1/ <u>Ammophila breviligulata</u> during the second growing season, 1982 (1981 Study-Virginia Location) <u>Fertilized</u> <u>Control</u> <u>2/2/3/4/2/2/3/4</u> Species <u>Vigor Stand Cover Cover</u> Vigor Stand Cover Cover

			(%)	(%)			(%)	(%)	
			R	<u>-I</u>					
Elymus arenarius E. vancouverensis Carex kobomugi C. arenaria Panicum amarum	75383	98597	< 5 10 5 5 5 5	35 30 20 25 40	9650 105	8 6 10 7	<5550 <5505 <5	30 25 35 55 35	
			R	<u>-II</u>					
P. amarum E. arenarius C. arenaria E. vancouverensis C. kobomugi	36775	98985	<55555 <55555	30 25 30 20 25	7 7 66	88976	\$ 55555	25 20 25 20 15	
			<u>R</u>	<u>-III</u>					
E. vancouverensis C. arenaria P. amarum C. kobomugi E. arenarius	10 10 4 5 5	10 10 7 9	4 5 5 5 5 5 5	20 10 25 55	10 10 5 6 10	10 10 7 7 10	0 0 5 5 0	15 5 10 10 15	

1/Planting was established at Virginia Beach, Virginia on March 10, 1981. Replications were divided into equal subplots and fertilized with a split application of 10-10-10 at the rate of 750 lbs/A; Data recorded June 16.

2/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10=Dead.

3/Percent of soil cover provided by the interplanted species only.

4/Percent of soil cover provided by the interplanted species within the plot plus the Ammophila breviligulata.

Table 3

		Fert % C		Control % Cover				
Species	Vigor	Speci	es Total	<u>Vigor</u>	Species	d <u>Total</u>		
	0/		Rep I					
<u>Elymus</u> arenarius	10	0	40 ^{-5/}	10	0	25		
E. vancouverensis	6	5	3 5	7	5	20		
<u>Carex</u> kobomugi	4	5	20	6	5	20		
<u>C.</u> arenaria	10	0	45	10	0	50		
Panicum amarum	3	35	70	3	30	35		
			<u>Rep II</u>					
P. amarum	5	5	45	6	5	35		
E. arenarius	8	5	35	8	5	20		
<u>C.</u> arenaria	8	5	55	9	5	40		
E. vancouverensis	10	0	30	7	5	40		
<u>C.</u> kobomugi	5	10	45	6	5	25		
			Rep III					
E. vancouverensis	10	0	20	10	0	25		
<u>C.</u> arenaria	9	5	10	10	0	5		
P. amarum	5	10	20	5	10	20		
<u>C.</u> kobomugi	3	20	55	6	5	20		
E. arenarius	10	0	80	10	0	25		

Early fall vigor and cover for five herbaceous plant species 1/ interplanted in <u>Ammophila breviligulata</u> during the second growing season, 1982 (1981 Study-Virginia Location)

Table 4

1/Planting was established at Virginia Beach, Virginia on March 10, 1981. Replications were divided into equal subplots and fertilized with a split application of 750 kg/ha of 10-10-10 in the spring of 1982. Data recorded September 20.

2/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10=Dead. 3/Number indicates the percent cover for both the four rows of interplanted species plus the two rows of 'Cape' American beachgrass positioned between each row of them.

species i	nterplante the seco <u>(1981</u>	ed ond St	in Ammo growin udy-Vin	oph: ng s rgin	ila seas nia	brevi son, Loca	iligulata d [.] 1982 <u>1</u> / tion)	uring			
Species	Seed Productio	F	ertiliz Seed Quality	<u>zed</u> Z <u>1</u>	Ste Dens 2	em sity <u>3</u>	Cor Seed Production	ntrol Seed Qualit	y <u>I</u>	Ste Densi 2	em _ty _ <u>3</u>
<u>Elymus arenarius</u>	<u>2</u> /		_ <u>3</u> /	0	<u>R-</u> 0	<u> </u>	0	_	0	0	0
E. vancouverensis	19		Р	7	12	27	0	-	5	3	7
<u>Carex kobomugi</u>	0		-	3	3	4	0	-	2	3	4
<u>Carex</u> <u>arenaria</u>	0		-	0	0	0	0	-	0	0	0
Panicum amarum	1		Ρ	5	7	6	1	Р	7	4	9
					<u>R-I</u>	I					
P. amarum	0		-	3	2	2	1	Р	3	3	2
E. arenarius	0		-	5	7	8	0	-	8	6	7
<u>C.</u> <u>arenaria</u>	0		-	72	13	17	0	-	28	12	19
E. vancouverensis	0		-	0	0	0	0	-	3	1	3
C. kobomugi	0		-	5	3	4	0	-	2	3	2
					<u>R-I</u>	II					
E. vancouverensis	0		-	0	0	0	0	-	0	0	0
C. arenaria	0		-	0	0	0	0	-	0	0	0
P. amarum	0		-	7	2	7	6	G	4	4	5
C. kobomugi	0		-	5	8	6	0	-	2	3	4
E. arenarius	0		-	0	0	0	0	-	0	0	0

Evaluations for five herbaceous plant

1/Planting was established at Virginia Beach, Virginia on March 10, 1981. Replications were divided into equal subplots and fertilized with a split application of 750 kg/ha of 10-10-10 in the spring of 1982; data recorded September 20.

2/Number indicates the number of seedheads within the second interplanted row beginning on the north side of plot.

3/Ratings are - G=Good; P=Poor or immature; - = Not rated.

4/Stem density represents the number of stems counted for three individual randomly selected plants.

First year relative rating for four herbaceous accessions growing on a sand dune, 19821/ (1982 Study-Virginia Location)

2/	<u>R-I</u>	<u>R-II</u>		<u>R-III</u>
Best	<u>Elymus</u> arenarius	E. arenarius	<u>E.</u>	<u>arenarius</u>
2nd Best	Panicum amarum	P. amarum	<u>E.</u>	vancouverensis
3rd Best	<u>Carex</u> kobomugi	E. vancouverensis	<u>P.</u>	amarum
4th Best	E. vancouverensis	<u>C.</u> <u>kobomugi</u>	<u>C.</u>	kobomugi

1/Planting installed on March 23 at Virginia Beach, Virginia; data recorded June 16.

2/Ratings based on plant vigor.

First year evaluations for four herbaceous plant species interplanted in <u>Ammophila breviligulata</u>, 1982 (1982 Study-Virginia Location)

Species	Survival (%)	Vigor	<u>не</u> <u>З</u>	eigh <u>10</u>	2/ t_4 <u>17</u>	/ 3	<u>Widt</u> <u>10</u>	2/ h 4/ <u>17</u>	Stem <u>3</u>	Den 10	<u>3/</u> sity4 <u>17</u>	1
		F /	R·	<u>-I</u>								
Panicum amarum	70	62/	35	20	25	95	5	6	8	l	3	
Elymus vancouverens	<u>sis</u> 66	6	30	35	20	35	45	10	1	2	l	
<u>Carex</u> kobomugi	70	5	20	20	25	35	35	45	2	2	5	
E. arenarius	93	5	35	40	45	40	35	50	7	5	8	
			R·	<u>-II</u>								
P. amarum	70	5	25	30	40	75	15	40	1	l	4	
E. arenarius	94	4	35	50	45	40	45	30	9	10	2	
E. vancouverensis	79	.6	30	35	20	55	35	30	5	4	l	
<u>C.</u> kobomugi	81	5	15	15	20	55	30	60	5	5	2	
			R·	-III								
<u>C.</u> kobomugi	79	5	25	25	25	50	45	40	9	2	2	
E. arenarius	96	4	45	50	50	50	35	5	6	6	l	
P. amarum	65	6	45	50	35	55	70	85	6	6	4.	
E. vancouverensis	53	6	35	30	30	40	35	25	2	4	2	

1/80 hills/accession/replication were planted on March 23 at Virginia Beach, Virginia; data recorded September 20.

2/Measurements were taken at the tallest and widest points-seedheads were not included.

3/Represents the number of stems produced by the parent plant.

4/Plants number 3, 10 and 17 within the second interplanted row from the north were designated for measurement. Plants immediately east were measured in lieu of missing hills.

5/ Ratings are - 1=Excellent; 3=Good; 5=Fair; 7=Poor.

First year evaluations for four herbaceous plant species interplanted in <u>Ammophila breviligulata</u>, 19821/ (1982 Study-Virginia Location)

Species	Percent Interplante Species	Cover ed 2/ Total R-I	Seed Prod.	Seed Quality	<u>3</u> Comparative <u>Rating</u>
Panicum amarum	15	55	<u>4</u> /	_G 5/	5
Elymus vancouverensi	<u>s</u> 10	55	0	-	6
Carex kobomugi	20	65	0	-	4
E. arenarius	25	65	11	G	4
		<u>R-II</u>			
P. amarum	30	70	16	G	3
E. arenarius	30	65	4	G	4
E. vancouverensis	15	65	0	-	6
C. kobomugi	25	65	0		4
		<u>R-III</u>			
C. kobomugi	25	55	0	-	4
E. arenarius	30	65	30	G	3
P. amarum	20	60	7	G	5
E. vancouverensis	15	55	0		6

1/80 hills/accession/replication were planted on March 23 at Virginia Beach, Virginia; data recorded September 20. 2/Number indicates the percent cover for both the four rows of interplanted species plus the two rows of 'Cape' <u>Ammophila</u> <u>breviligulata</u> positioned between each row. 3/Rating based on vigor, stand and soil cover. 4/Indicates the number of seedheads within the second interplanted row beginning on the north side of plot. 5/Ratings are - G=Good; P=Poor or immature.

Regrowth of interplanted species 1/ during late winter on a sand dune, 1982 (1981 Study-Delaware Location)

Species	Replication					
	<u>I</u> 2/	ĪĪ	III			
<u>Carex</u> <u>arenaria</u>	10	9	7			
<u>C. kobomugi</u>	9	8	9			
Elymus arenarius	9	8	6			
E. vancouverensis	8	7	9			
Panicum amarum	10	10	10			

1/Planting established April 1981 at Fenwick, Delaware; data recorded March 30.

2/Rating based on regrowth from individual plants; stand was not a factor: Ratings are 5=Fair; 7=Poor; 9=Very Poor; 10=None.

Species/ Replication	Cov F2/	<u>er 2</u> /	<u>Sta</u>	nd <u>NF</u>	Vie F	gor <u>NF</u>	
'Cape' I II III	30 30 35	15 20 30	3 3 3 3	4 3 3	4 4 3	6 54	
Carex arenaria I II III	0 0 0	0 0 0	10 10 10	10 10 10	- -	- - -	
<u>C. kobomugi</u> I II III	<10 <10 <10	0 4 10 4 10	568	9 6 8	3 4 6	- 6 7	
<u>Elymus</u> arenarius I II III	0 4 10 4 10	0 <10 <10	10 8 7	10 9 8	- 76	- 8 8	
E. <u>vancouverensis</u> I II III	0 <10 <10	0 (10 (10)	10 9 9	10 9 9	- 7 8	- 7 7	
Panicum amarum I II III III	0 <10 <10		10 7 6	10 7 6	- 6 5	- 7 7	

Second year growth characteristics for six dune species, 1982 (1981 Study-Delaware Location)

Table 10

1/Planting established on Fenwick Island sand dune April 1981; data recorded June 10.

2/Replications were fertilized in 1981; plots were split in 1982; F=Fertilized plots 375 kg/ha 10-10-10. NF=Control no fertilizer in 1982.

3/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor; 10=Dead; - = No rating.

Relative rating for five interplanted <u>1</u>/ salt tolerant species growing on a sand dune, 1982 (1981 Study-Delaware Location)

			Rep	lication		
2/		Ī		II		III
Best -/	<u>Carex</u>	<u>kobomugi</u>	<u>C.</u>	<u>kobomugi</u>	<u>P.</u>	amarum
2nd Best		-	<u>P.</u>	amarum	<u>E.</u>	arenarius
3rd Best		-	Elymus	arenarius	<u>C.</u>	<u>kobomugi</u>

1/Species established at Fenwick Island, Delaware April 1981; data recorded June 10.

2/Ratings based on cover, density, stand, spread and vigor.

Ta	аb	1	е	12
----	----	---	---	----

Ron	Air Tem	2/ perature Outside	Wind H	<u>3</u> Speed Outside
пер				
I	95	99	13	20
II	97	102	10	21
III	98	96	5	21
Ave.	97	99	9	21

Wind speed, soil and air temperatures <u>1</u>/ for salt tolerant species growing on a sand dune, 1982 (1981 Study-Delaware Location)

				Soil	Temperatu	4/ are	
Pop	Spo gieg	In Plo	ot 15cm			Outside P	lot 15cm
nep	ppecres	<u>) (</u>					
Ι	Cape-fert. Cape-unfert	97 98	92 93			98	96
II	PAAR CAKO	98 97	95 93			100	92
III	PAAR CAKO	99 97	93 92			94 <u>5</u> /	89 ^{5/}
Ave.		<u>98</u>	<u>93</u>			97	92

1/Planting established Fenwick Island, Delaware April 1981; data recorded July 28. 2/Degrees fahrenheit - within plot measured at 10cm above soil

surface; outside plot on bare ground. 3/Miles per hour at 10cm above surface.

4/Degrees fahrenheit - measurements inside plot were within the row of the species indicated, those outside the plot were in bare ground.

5/Wet ground.

- 12

			Replication	
3/	<u>2</u> /	Ţ	II	III
Best	TF NF	<u>Panicum</u> <u>amarum</u> <u>P. amarum</u>	P. amarum P. amarum	P. amarum P. amarum
2nd Best	F NF	<u>Carex</u> kobomugi -	<u>C.</u> kobomugi C. kobomugi	<u>C.</u> kobomugi C. kobomugi
3rd Best	F	<u>Elymus</u> vancou-	-	<u>E.</u> arenarius
	NF	<u>verensis</u>	-	E. arenarius

l/Species established at Fenwick Island, Delaware April 1981; data recorded October 4.

2/Treatments are - F = 375 kg/ha of 10-10-10 applied on April 22 and repeated June 10; NF = No fertilizer in 1982.

3/Ratings based on cover, density, stand, spread and vigor.

Survival and vigor of four interplanted salt tolerant 1/ species three months after planting on a sand dune, 1982 (1982 Study-Delaware Location)

Species	No.	R-I Vigor	Rating	No. V	R-II igor 1	Rating	No.	R-II Vigor	[Rating
¹ Cape ¹	631	2/2	13/	628	2	l	640	2	l
<u>4/</u> <u>Carex kobomugi</u>	37	6	6	40	6	6	43	6	6
Elymus arenarius	80	3	2	78	3	4	79	4	2
E. vancouverensis	41	4	3	44	5	5	57	3	4
Panicum amarum 4/	65	4	4	56	4	3	35	5	3

1/80 hills per accession per replication except for Cape-680 hills planted March 30; data recorded June 10.

2/Ratings are - 1=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor.

3/Comparative rating - 1-9 same as 2/

4/Some hills that exhibit no green growth may be alive but dormant.

Survival and vigor for four interplanted salt $\frac{1}{1}$ tolerant species six months after planting on a sand dune, 1982 (1982 Study-Delaware Location)

			Replica	tion			
Species	I No.	Vigor	II <u>No.</u>	Vigor	III No.	Vigor	
[†] Cape [†]	634	3	628	3	640	3	
<u>Carex</u> kobomugi	36	4	29	5	28	4	
<u>Elymus</u> arenarius	32	7	35	5	24	6	
E. vancouverensis	41	4	38	5	52	4	
Panicum amarum	64	3	60	4	48	3	

1/80 hills per accession per replication except for Cape-640 hills planted March 30; data recorded Ocotber 4.

2/Vigor ratings - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor.

Ta	b]	_e	16	

	Air Tem	perature 2/	Wind	<u>3</u> Speed	
Rep	<u>In Plot</u>	Outside 47	In Plot	Outside	
I	100	92	10	20	
II	99	98	7	20	
III	99	99	5	22	
Ave.	99	96	7	21	

Wind speed, soil and air temperatures <u>1</u>/ for four salt tolerant species growing on a sanddune, 1982 (1982 Study-Delaware Location)

		Soil Temperature				
Rep	<u>Species</u>	<u>5cm</u>	15cm	<u>5cm</u>	15cm	
I	ELVA CAKO	95 95	88 89	93	89	
II	ELVA PAAR	94 91	90 88	90	88	
III	PAAR CAKO	92 90	90 87	91	89	
Ave.		93	89	<u>91</u>	89	

1/Planting established Fenwick Island, Delaware March 30; data recorded July 28.

2/Degrees Fahrenheit-within plot measured at 10cm above soil surface; outside plot on bare ground.

3/Miles per hour at 10cm above surface.

 $\frac{4}{4}$ /There was a noticeable drop in temperature while the measurements were being made.

5/Degrees Fahrenheit - measurements inside plot were within the row of the species indicated, those outside the plot were in bare ground.

Ta	ble	17
		•

Species/ Rep	Density (No.)	Replication Cover (%)	Dimensions (cm)
Cape ¹ I II III	2/ 59 61 81	<u>3</u> / 40 45 50	<u>4</u> / 50x60; 55x60 70x80; 60x50 60x75; 75x85
<u>Carex</u> kobomugi I II III	2 2 5	\$ 10 1 0 10	10x25; 15x40 10x50; 10x35 15x30; 25x65
<u>Elymus</u> <u>arenarius</u> I II III	3 2 2	<10 <10 <10	25x10; 20x15 35x40; 35x25 30x30; 35x65
E. vancouverensis I II III III	6 3 7	<pre>10 10 10 10</pre>	30x25; 55x45 40x20; 25x20 2 5x15; 30x30
Panicum amarum I II III	22 8 17	15 10 15	45x55; 60x95 45x100;40x50 40x120;45x55

Plant density, sand cover and plant dimensions 1/ for four interplanted species on a sand dune, 1982 (1982 Study-Delaware Location)

1/Planting established on Fenwick Island, Delaware March 30; data recorded October 4.

2/80 planting units established per accession per replication; No. = living plants.

3/Percentage of sand cover afforded by interplanted species.

4/Dimensions of one large and one average plant expressed in centimeters.

Relative rating for four interplanted 1/ salt tolerant species growing on a sand dune, 1982 (1982 Study-Delaware Location)

	Re	plication	
	Ī	II	III
Best	Panicum amarum	P. amarum	P. amarum
2nd Best	<u>Carex</u> kobomugi	Elymus vancouverensis	E. vancouverensis
3rd Best	E. vancouverensis	<u>C. kobomugi</u>	<u>C.</u> kobomugi

1/Species established at Fenwick Island, Delaware March 31; data recorded October 4.

2/Ratings are based on cover, density, stand, spread and vigor.

Fall vigor and cover rating for woody species growing on a sand dune, 19821/

1981 Study - Virginia Location

Woody Species	Vigor		Percent lst Rater	2/ Cover 2nd Rater
		<u>R-I</u> Treatment	<u>3</u> /	
Myrica sp. Prunus serotina Rhus toxicodendron Ilex glabra Vaccinium corymbosum Acer rubrum 5/ Total Cover	52 4 2 4 4		20 55 5 10 5 (70)	20 50 5 15 -5 (70)
		Treatment	B	
<u>P. serotina</u> <u>Myrica</u> sp. <u>Quercus</u> virginiana Total Cover	3 4 4		70 20 10 (45)	65 25 10 (40)
		Treatment	<u>C</u>	
V. corymbosum Myrica sp. P. serotina R. toxicodendron Total Cover	4 3 4 5		10 30 55 5 (60)	10 35 50 5 (50)
		<u>R-II</u> Treatment A	<u> </u>	
V. <u>corymbosum</u> <u>Myrica</u> sp. <u>P. serotina</u> <u>I. glabra</u> <u>Q. virginiana</u> Total Cover	3 3 4 2 3		35 30 20 10 5 (70)	35 30 20 10 5 (65)

Table 19 (cont.)

Fall vigor and cover rating for woody species growing on a sand dune, 19821/

1981 Study - Virginia Location

.

Woody Species	Vigor		Percent	Cover
		R-II	<u>1st Rater</u>	2nd Rater
		Treatment B		
V. corymbosum P. serotina Myrica sp. Pinus sp. <u>I. glabra</u> <u>Rubus sp.</u> Total Cover	M4 M52 5		30 10 40 5 10 5 (45)	30 10 40 5 10 5 (45)
		Treatment C		
<u>V. corymbosum</u> <u>Myrica sp.</u> <u>Q. virginiana</u> <u>Pinus sp.</u> <u>P. serotina</u> Total Cover	4 5 3 4 4		20 10 5 60 (75)	20 15 5 55 (70)
		<u>R-III</u>		
		Treatment A		
Myrica sp. V. corymbosum P. serotina Q. virginiana I. glabra Total Cover	2 34 32		50 5 35 5 (65)	45 10 35 5 (65)
		Treatment B		
<u>V. corymbosum</u> <u>Myrica sp.</u> <u>I. glabra</u> <u>P. serotina</u> <u>A. rubrum</u> Total Cover	3 3 2 4 4		35 30 5 20 10 (55)	35 30 5 20 10 (50)

Table 19 (cont.)

Fall vigor and cover rating for woody species growing on a sand dune, 1982

1981 Study - Virginia Location

Woody Species	<u>Vigor</u> <u>R-III</u> <u>Treatment</u> C	Percent (lst Rater	2nd Rater
<u>V. corymbosum</u> <u>P. serotina</u> <u>R. toxicodendron</u> <u>Myrica</u> sp. <u>A. rubrum</u> <u>Rubus</u> sp. Total Cover	4 4 5 4 5 5 5	20 25 10 35 5 (60)	20 30 5 35 5 5 (65)

1/These are the dominant woody species which represent 5% or more of the total cover. Plots were initially fertilized in 1981 and again in 1982; Data recorded October 18.

2/Percentage represents the respective portion of the total area as determined by two raters.

3/Treatments are - A=High fertility - 1,000 kg/ha 10-5-5 B=Medium fertility - 500 kg/ha 10-5-5 C=Control - No fertilizer

4/Ratings are: l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor.

5/Total woody cover for all dominant species within a treatment.

Table 20

Fall vigor and
cover ratings for native woody species
growing on a sand dune, 1982 ± 7
(1981 Study-Delaware Location)

Fertilizer Rate/ Species2/	Vi 1stRt	gor r.2ndRtr.	Percer Cover lstRtr.	nt <u>2ndRtr.</u>
]	R-I		
High Total Cover <u>Myrica</u> sp. <u>Pinus</u> sp. <u>Rhus copallina</u> <u>Rubus</u> Sp. <u>R. toxicodendron</u>	4 4 5536	2 5 4 3 5	$ \begin{array}{r} \underline{3} \\ $	(55) 50 15 15 10 10
Medium Total Cover <u>Myrica</u> sp. <u>Pinus</u> sp. <u>Rubus</u> sp. <u>R. copallina</u> <u>R. toxicodendron</u> <u>Vaccinium</u> sp.	332465	24 4 56 4	(55) 40 20 10 10 5 5	(60) 55 20 10 5 5 5
Low Total Cover <u>Myrica</u> sp. <u>Pinus</u> sp. <u>Vaccinium</u> sp. <u>Rubus</u> sp.	34 53	3 5 4 3	(30) 70 15 10 5	(25) 65 15 10 10
High	:	R-II		
Total Cover <u>Myrica</u> sp. <u>Vaccinium</u> sp. <u>Rubus</u> sp. <u>R. toxicodendron</u> <u>Pinus</u> sp.	4 4 36 5	ろ の 4 の 5	(30) 40 30 20 5 5	(35) 55 20 10 10 5
Medium Total Cover <u>Myrica</u> sp. <u>Pinus</u> sp. <u>Rubus</u> sp. <u>Vaccinium</u> sp. <u>R. copallina</u> <u>R. toxicodendron</u>	3534 45	2 54 MG	(65) 55 10 15 10 5 5	(60) 60 15 10 10 5

Table 20 (cont.)

1 7

Fall vigor and cover ratings for native woody species growing on a sand dune, 1982 (1981 Study-Delaware Location)

Fertilizer Rate/ Spread	Vi lstRt	gor <u>r.2nd</u> Rtr.	Perce Cove <u>lst</u> Rtr		
Low		<u>R-II</u>			
Total Cover <u>Myrica</u> sp. <u>Vaccinium</u> sp. <u>Pinus</u> sp. <u>Acer</u> sp.	3 33 46	4 3 5 7	(20) 30 40 25 5	(25) 45 30 20 5	
Uich		R-III			
Total Cover <u>Myrica</u> sp. <u>Vaccinium</u> sp. <u>Pinus</u> sp. <u>Rubus</u> sp.	3 3 4 3	3 3 4 3	(10) 45 40 10 5	(15) 40 45 10 5	
Medium Total Cover <u>Myrica</u> sp. <u>Pinus</u> sp. <u>Vaccinium</u> sp. <u>R. copallina</u> <u>Rubus</u> sp.	4 4 5 5	3 3 3 4	(20) 50 35 10 5	(20) 35 40 20 5	
Low Total Cover <u>Myrica</u> sp. <u>Vaccinium</u> sp. <u>Pinus</u> sp. <u>R. copallina</u>	3 3 4 6	3 3 5 6	(15) 45 35 15 5	(10) 45 35 15 5	

1/1982 fertilization schedule: High-500 kg/ha of 10-5-5 equivalent May 12, repeated July 1; Medium-250 kg/ha of 10-5-5 equivalent May 12, repeated July 1: Low-None.

2/Dominant woody species that provide 5% or more of the cover; data recorded October 7.

3/Total woody cover within a treatment.

4/Ratings - 1=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor.

 $5/The percentages represent density or the respective portion of the total cover; i.e. <math>45 = .45 \times .50$ or 22.5% total area.

Fall vigor and cover ratings for 1/ woody species growing on a sand dune, 1982

1982 Study - Virginia Location

Woody Species	Vigor	,	Percent Control Percent Control Percent	over 2nd Rater
<u>Quercus virginiana</u> <u>Pinus sp.</u> <u>Vaccinium corymbosum</u> Total Cover <u>5</u> /	4/ 3 5 5	<u>R-I</u> <u>3</u> / <u>Treatment A</u>	55 15 30 (60)	60 10 30 (65)
Q. virginiana V. corymbosum Myrica sp. Total Cover	3 3 4	Treatment B	55 35 10 (40)	50 40 10 (45)
		<u>Treatment</u> C		
Q. virginiana V. corymbosum Pinus sp. Total Cover	2 4 5		50 35 15 (35)	55 25 20 (40)
		R-II Treatment A		
Myrica sp. Q. virginiana Rhus toxicodendron V. corymbosum I. glabra Total Cover	94 <u>5</u> 4 2		20 40 5 30 5 (30)	15 40 5 30 10 (35)
		Treatment B		
P. <u>serotina</u> Q. <u>virginiana</u> V. <u>corymbosum</u> Myrica sp. Diospyros virginiana Total Cover	<u>ろろろろろ</u>		10 30 30 20 10 (20)	10 25 30 25 10 (25)
		<u>Treatment</u> C		
Q. <u>virginiana</u> <u>V. corymbosum</u> <u>Pinus</u> sp. Total Cover	3 5 7	201	70 20 10 (30)	65 25 10 (30)

Table 21 (cont.)

Fall vigor and cover ratings for woody species growing on a sand dune, 1982

1982 Study - Virginia Location

Woody Species	Vigor	<u>R-III</u> Treatment	A	Percent lst Rater	Cover 2nd Rater
Q. <u>virginiana</u> <u>V. corymbosum</u> <u>R. toxicodendron</u> Total Cover	3 3 7			85 10 5 (40)	75 20 5 (35)
		Treatment	B		
<u>Pinus</u> sp. <u>Q. virginiana</u> <u>V. corymbosum</u> Total Cover	6 3 4			15 80 5 (30)	25 70 5 (35)
		Treatment	C		
<u>Pinus</u> sp. <u>P. serotina</u> <u>Q. virginiana</u> <u>Myrica</u> sp. <u>V. corymbosum</u> <u>A. rubrum</u> Total Cover	5			35 5 20 5 25 10 (40)	35 5 25 10 20 5 (45)

1/These are the dominant woody species which represent 5% or more of the total cover; Data recorded September 21. 2/Percentage represents the respective portion of the total area as determined by two raters. 3/Treatments are - A = High fertility-1500 kg/ha 10-5-5 B = Medium fertility-750 kg/ha 10-5-5 C = Control - No fertilizer 4/Ratings: 1=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor. 5/Total woody cover for all dominant species within a treatment.

Fertilizer Rate/	Vigor		Percer Cove	nt r
<u>D</u> DCCLCD	lstRater	2nd Rater	lstRater	2nd Rater
	R-I			
High Total Cover <u>Myrica</u> sp. <u>Pinus</u> sp. <u>Vaccinium</u> sp. <u>Prunus</u> sp. <u>Acer</u> sp. <u>Rhus</u> toxicodendron	4 4 3 4 5	454455	3/ (40) <u>5</u> / 45 25 15 10 5	(35) 35 40 10 5 5 5
Medium Total Cover <u>Myrica</u> sp. <u>Vaccinium</u> sp. <u>Pinus</u> sp. <u>Rubus</u> sp. <u>Liquidambar</u> sytraciflua	33554	4 4 5 4 5	(15) 60 15 10 10 5	(10) 70 10 10 5 5
Low Total Cover <u>Pinus</u> sp. <u>Prunus</u> sp. <u>Tlex</u> sp. <u>Myrica</u> sp. <u>Rubus</u> sp. <u>Acer</u> sp. <u>R. copallina</u> <u>Vaccinium</u> sp. <u>R. toxicodendron</u>	4 2 2 5 5 6 5	6444 76545	(55) 50 15 50 10 10 5 5	(45) 50 10 555555 5
	<u>R-II</u>			
Total Cover <u>Myrica</u> sp. <u>Prunus</u> sp. <u>Pinus</u> sp. <u>I. opaca</u> <u>Rubus</u> sp. <u>R. toxicodendron</u> <u>Vaccinium</u> sp.	54 52 36 4	325255	(10) 30 35 10 10 5 5 5	(15) 45 35 5 5 5 5

Fall vigor and cover ratings for native woody species growing on a sand dune, 1982 (1982 Study-Delaware Location)

Table 22

Vaccinium sp.

.

1

Fall vigor and cover ratings for native woody species growing on a sand dune, 1982 (1982 Study-Delaware Location)

Fertilizer Rate/ Species	Vigo: lstRater	r2nd_Rater	$\frac{Perce}{Cove}$	$\frac{nt}{r}$ 2nd R_{r}	ater
		TT			<u> </u>
Medium Total Cover <u>Pinus</u> sp. <u>Myrica</u> sp. <u>Pyrus</u> sp. <u>R. copallina</u> <u>Acer</u> sp. <u>P. arbutiflora</u> <u>Quercus</u> sp. <u>Vaccinium</u> sp. <u>Rubus</u> sp. <u>R. toxicodendron</u>	54 3 5 5 5 3 3 5	556654 3 4	(45) 20 10 20 10 10 10 5 10	(35) 20 10 10 10 5 5	
Low Total Cover <u>Myrica</u> sp. <u>Pinus</u> sp. <u>Rubus</u> sp. <u>Vaccinium</u> sp. <u>Prunus</u> sp. <u>R. copallina</u> <u>R. toxicodendron</u>	4 54 34 35	4 4 3 4 3 5 5	(75) 40 25 10 10 5 5 5	(60) 30 40 10 5 55 5	
	<u>R-I</u>	II			
High Total Cover <u>Myrica</u> sp. <u>Pinus</u> sp. <u>Rubus</u> sp. <u>Vaccinium</u> sp.	3 4 3 3	3 5 3 4	(40) 60 25 10 5	(40) 60 25 10 5	
Medium Total Cover <u>Myrica</u> sp. <u>Pinus</u> sp. <u>Quercus</u> sp. <u>Prunus</u> sp. <u>Rubus</u> sp. <u>Acer</u> sp. <u>R. toxicodendron</u> <u>P. arbutiflora</u> <u>Vaccinium</u> sp.	2 3 5 3 3 5 6 3	4 54 54 64 4	(60) 35 20 15 5 10 5 5 5	(50) 20 20 20 15 10 5 5	

204

Table 22 (cont.)

Fall	vigor	and c	over	rat	ings_	for	native	woody	species
	<u> </u>	grow	ing o	n a	sand	dun	ie, 1982	2	
		(1982	Stud	lv-D	elawa	ire I	Locatio	n)	

Fertilizer Rate/ Species	Vigor <u>lstRater</u>	2ndRater	Percen Cove: <u>lstRater</u>	nt r <u>2nd Rater</u>
	<u>R-II</u>	Ľ		
Low Total Cover <u>Myrica</u> sp. <u>Pinus</u> sp. <u>Rubus</u> sp.	3 4 4	3 4	(10) 60 35 5	(10) 60 40

1/1982 fertilization schedule: High-750 kg/ha 10-5-5 equivalent May 18, repeated July 12; Medium-375 kg/ha 10-5-5 equivalent May 13, repeated July 12; Low-none.

2/Dominant woody species that provide 5% or more of the cover; data recorded October 7.

3/Total woody cover within a treatment.

4/Ratings are - l=Excellent; 3=Good; 5=Fair; 7=Poor; 9=Very Poor.

5/The percentages represent density or the respective portion of the total cover; i.e. $45 = .45 \times 40$ or 18% total area.

Leaf analyses for dominant woody species on a fertilized sand dune, $1982^{1/2}$

ч % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	P K % 07 07 08 07 05 05 05 05 05 05 05 05 05 05	P K Ca %
ч % 000 000 000 000 000 000 000 000 000 0	P K %	P K Ca 7 07 68 49 07 07 58 49 07 71 54 50 08 72 63 53 07 71 54 50 05 47 71 54 05 66 47 43 06 66 47 43 06 66 443 05 66 443 06 66 443 07 71 54 08 66 43 08 66 443 09 66 443 08 67 443 08 67 443 08 66 443 08 58 443
	K 68 .71 .72 .72 .74 .74 .72 .72 .72 .74 .72 .72 .72 .72 .72 .72 .72 .72	K Ca 68 .49 .72 .63 .74 .50 .74 .50 .74 .50 .74 .50 .74 .50 .74 .50 .72 .63 .74 .50 .72 .63 .74 .50 .72 .63 .72 .74 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .74 .77 .74 .77 .74 .77 .74 .77 .74 .77 .75 .77 .74 .77 .75 .77 .74 .77 .74 .77 .75 .77 .74 .77 .77 .74 .77 .77 .77 .77 .77 .77 .77 .77 .77 .7
Ca Mg micrograms/gra 49 20 50 19 53 25 54 21 54 21 54 21 54 21 54 21 54 21 54 21 143 22 141 22 147 20 147 22 147 22 58 14 58 16 58 16	Mg ograms/gra .20 .25 .22 .22 .22 .22 .22 .22 .22 .22 .22	

dune, 1982 fertilized sand ಹ u0 species (cont) dominant woody for Leaf analyses

500

272 410 30 734 102 138 708 215 269 361 34 34 325 397 MN micrograms/gram -27 200 28 .26 20 8 H 8 - 26 29 25 Mg 2.20 1.00 .71 580 .49 49 500 100 100 .97 .42 1.01 80 59 1.21 Ca 00 CI 10 CU 99 .49 1.01 80 80 80 90 49 642 .55 .76 \mathbb{M} .06 90 .070.08 80 09 08 0040 040 .05 0010 90 PH 12 1.54 1-30 1-30 1.20 1.20 1.64 1.74 1.96 1.78 2.22 1.64 2.13 2.00 1.79 1.25 Z Ave. Ave. Ave Ave. Ave. Ave Ave Ave TTT TTT State/Rep H 1982 1981 1982 1981 ∇A ЭA ∇A DE VA " ∇A 표 []= a---Control High Tmt. E -8--- 8--- 8---8-- 8--- 8--sp. sp. Vaccinium Species Myrica -. . . -207

Table 23 (cont)

Leaf analyses for dominant woody species on a fertilized sand dune, 1982

Species	Tmt.	State	e/Rep	N	Ф. %	K	Ca mi	Mg crograms,	Mn/gram
Vaccinium sp.	Low	VA "	TTT TTT	1.16	06		-54 -59	. 28	34 32
		ΔA	Ave.	1.13	•06	-57	•50	•28	33
		19 82 1981	Ave. Ave.	1.22	06	.73	.56	- 28	83 83 85
Vaccinium sp.	Control	=DE	TTT	.98	.06	.68	.62	.37	44 46
		DE	Ave.	<u> </u>	•06	-65	.80	.36	45
20.8		1982 1981	Ave. Ave.	.95 .90	• 06 • 05	.70	.57	.36	45 44
Prunus spp.	High	VA 11	TTT	2.32 2.81	.221	.92	.70	.50	313 317
		ΛA	Ave.	2.57	•23	.90	.72	.46	315
		1982 1981	Ave. Ave.	2.57 2.68	.23	.90	.72	-	315 481
Table 23 (cont.)

Leaf analyses for dominant woody species on a fertilized sand dune, 1982

Species	Tmt.	State	e/Rep	N	С1 %	M	Ca mi	Mg crograms,	Mn gram
Prunus spp.	Low	VA 	ы	1.83	.19	.71	•52	• 39	161
	=	VA	Ave.	1.83	.19	.71	.52	•39	161
		1982 1981	Ave. Ave.	1.83 2.60	.19	1.16	.52 1.05	• 39	161 739
Prunus spp.	Control "	VA "	TTT TTT	1.82 2.19 1.82	.29 .34	1.06 .92		.73 .40	449 486 307
209		VA	Ave.	1.94	.28	•93	62.	.60	414
		1982 1981	Ave. Ave.	1.94 2.04	.28	93 1.14	.79 .87	. 60	414 722
Pinus taeda	High	DE	н	1.74	.14	£4.	.11	60.	66
		DE	Ave.	<u>1.74</u>	•14	.43	.11	60•	99
		1982 1981	Ave. Ave.	1.74	.14	-43	.11	60	

83 Table cont. Leaf analyses for dominant woody species on a fertilized sand dune, 1982

Tmt. State/Rep N P P K Ca Mg Mn	eda Low DE I 1.59 .13 .63 .10 .13 59 .14 56 .16 .52 .08 .14 56	DE Ave. <u>1.63 .14 .60 .10 .13 59</u>	1982 Ave. 1.63 .14 .60 .10 .13 59 1981 Ave. 1.56 .12 .87 .13 - 85	.eda Control DE I 1.76 .13 .62 .20 .15 240	DE Ave. <u>1.76 .13 .62 .20 .15 240</u>	1982 Ave. 1.76 .13 .62 .20 .15 240 1981 Ave	
-Species	Pinus taeda " " "			Pinus taeda			

1

11 2/Treatments are: High = 1500 kg/ha of 10-5-5 applied 1981 and 1000 kg/ha of 10-5-5 applied 1982; Low = 750 kg/ha of 10-5-5 applied 1981 and 500 kg/ha of 10-5-5 applied 1982; Control No fertilizer.

 $\underline{3}/1981$ leaf samples taken during September; 1982 leaf samples taken during October.

21/		Mn grams	181 60 144	128	128 209	77 372 341	263	26 3 249	323 94	209	209 276
ine, 198		Mg rograms/	21 18 22	.20	1.50	.21 .25 .21	•22	. 22	. 25	.22	- 22
ed sand dı		Ca. mic		.58	.23 20 20 20	.78 .69	69.	.69	.83 144	.64	.64 .71
fertilize		K	6.02 000 000	. 84	.84 .93		. 83			.84	84 80
es on a	(and a construction of the second	d b	08 06 06	.07	.07 .06	.08 .05	.06	.05	.00 .00	.06	.06 04
rabie oody speci	(1982 St	<u>N</u>	2.03 1.85 1.79	1.89	1.98	1.96 1.59	1.84	1.84 1.82	1.69 1.84	1.77	<u>1.77</u> 1.79
inant w		Rep	TTT TTT T	Ave.	Ave. Ave.	H HH HHH	Ave.	Ave. Ave.	LTT TTT	Ave.	Ave. Ave.
cor dom		State	" "DE	DE	1982 1981	n DE	DE	1982 1981	DE 11	DE	1982 1981
analyses f	2	<u>Tmt.</u>	High n "			Low 11 11			Control "		
T,ea,f		Species	Myrica spp. "			Myrica spp.			Myrica spp.	Ľ	

Leaf analyses for dominant woody species on a fertilized sand dune, 1982 (1982 Study)

1

Mn ram	900 8008	51	51 25	68 68	47 33 40	54 62	32 412	37	37 44
Mg rograms/g	.15	.22	.22	.24	.30 .36	.29	.27	.25	-25
Ca mic:	64. 0054.00	-55		.67	.69 .67	.68 .47	.60 .64	.62	.57
М	22 29 44 46 6	.48	.48 .82	.84 .84	.63 .56	.72 .73	.48 .48	.48	.70 .70
С1 69	000	.06	.06 .08	. 08 . 08	.06 .06	-07 -06	.06	.06	.05 .05
N	0.85 0.97 1.03	0.95	0.95 1.54	1.25	1.15 1.00 1.08	1.17	0.97 0.76	0.87	0.90
Rep	III TII	Ave.	Ave. Ave.	I Ave.	I II Ave.	Ave. Ave.	, II I	Ave.	Ave. Ave.
State	VA 11	VA	1982 1981	DE DE	VA "	1982 1981	ΥA	VA	1982 1981
Tmt.	High "			Low	Low		Control		
Species	Vaccinium sp.			Vaccinium sp.	Vaccinium sp.		Vaccinium sp.		

~

Leaf analyses for dominant woody species on a fertilized sand dune, 1982

8	
)	\frown
	5
	m'
1	Ä
)	<u> </u>
1	P
)	0
١.	
<	
	20
	\sim
2	∞
2	6 00
2	198
2	(198) (198
	(198
	(198
	(198
	(198
	(198 (198
	(198
	(198

uM m.	546 229 328	368	368 1	416 285 199	300	300	321 384 384	363	363
Mg ngrams/gra	.22 21 21	.24	.24	500 500 	.22	- 55		.26	. 26
Ca micro		.39	.39	.23	.28	8		.35	• 35
K	-72 -60 -54	.62	.62	.55 .55	.57	-57	49. 74.	•53	- 53
Ъ°	.15	.13	• 13	.14 .14 .13	.14	.14 -	.12	.12	.12
N	2.00 2.03 2.03	1.95	1.95	2.24 1.79 2.03	2.02	2.02	1.62 1.64 1.84	1.70	1.70
/Rep	TT TT T	Ave.	Ave. Ave.	TT TT T	Ave.	Ave. Ave.	II III III	Ave.	Ave.
State,	VA "	VA	1982 1981	МА 11	VA	1982 1981	VA ""	VA	1982 1981
Tmt.	High "			Low "			Control "		
Species	Quercus spp. "			Quercus spp.			Quercus spp.		
				213					

Leaf analyses for dominant woody species on a fertilized sand dune, 1982 (1982 Study)

1

1

214

1982 fertilized sand dune, ಸ Leaf analyses for dominant woody species on (1982 Study)

Species	Tmt.	State	e/Rep	N	сц <i>%</i>	K	Ca mi	Mg crograms/g	Mn ram	
<u>Pinus taeda</u>	Control	VΑ	TTT	1.31	.13	.42	.12	.12	122	
		VA	Ave.	1.31	.13	.42	.12	.12	122	
		1982 1981	Ave.	<u>1.40</u>	-12	-58	.14	.12	133	
Prunus sp.	High	DE	ΤŢ	2.28	.14	. 83	.27	• 33	78	
		DE	Ave.	2.28	.14	. 83	.27	• 33	78	
		1982 1981	Ave. Ave.	2.28 2.68	.14 .19	.83	.75	• 33	78 481	
Prunus spp.	Control	DE	н	1.64	.13	-95	1.42	.84	372	
		DE	Ave.	1.64	.13	-95	1.42	. 84	372	
		1982 1981	Ave. Ave.	1.64 2.04	.13	1.14	1.42 .87	- 84	372 722	
1/Plots establ	ished at Vi	rginia	Beach,	VA and F	'enwick	, DE in ,	April.			

2/Treatments are: High = 750 kg/ha of 10-5-5 applied when regrowth began and repeated 60
days later; Low = 375 kg/ha of 10-5-5 applied when regrowth began and repeated 60 days
later; Control = No fertilizer.

 $\underline{3}$ /Leaf samples taken in October.

Germination Test Results on 'Atlantic' Coastal Panicgrass

Seed of 'Atlantic' Coastal panicgrass, <u>Panicum amarulum</u> (PI-421137), from the Cape May Plant Materials Center was germinated under various conditions to determine criteria for testing germination. Four replications of one hundred seeds each were tested on wet double blotters under the following conditions:

Distilled water Potassium nitrate solution (2%) Distilled water with prechill Potassium nitrate solution (2%) with prechill

The seed was germinated at a daytime (eight hours with lights on) temperature of 35° C and a nighttime (sixteen hours with lights off) temperature of 15° C. Prechilled seed was subjected to two weeks of 5° C temperature without lights before exposure to alternate day-night conditions. Seed of three crop years (1978, 1979, 1980) was tested. The prechill started on March 23, 1981; alternate day-night conditions started on April 6, 1981; the final (28-day) count was taken on May 3, 1981.

Average germination percentages are presented in Table 1 by year, treatment, and length of test. Figures followed by the same letter are not significantly different at the 95% confidence level. Significant differences occur on or before the fifteenth day in all treatments.

Germination percentages at 15 days are presented in Table 2. Figures followed by the same letter are not significantly different at the 95% confidence level. The absence of difference among 1978 KNO₃, 1978 H_2O , and 1979 H_2O does not seem as important as the difference between 1978-1979 and 1980, or the difference between 1980 prechilled and non-prechilled.

A gross analysis of the fifteen day germination indicates simply that any 1978-1979 (two to three year old) seed germinated better than 1980 (one year old) seed, and non-prechilled seed germinated better than prechilled. There was a mold problem with the prechilled seed that might account for that difference. Even the amount of hard seed in the non-prechilled(1.125%) was greater than the prechilled (0.37%), suggesting that a good bit of the prechilled seed rotted.

Overall there seems to be no advantage to the use of KNO_3 solution or to prechilling the seed, and no need for a 28-day test period. A 15-day test in water with 35° C daytime (eight hours with light) and 15° C nighttime (sixteen hours without light) temperatures seems adequate. Table 1. Average Germination Percentages of Four Replications of Panicum amarulum by Crop Year. Duration of Test, and Treatment.

Duration (Days)	1120	, KNO 3	Prechill In H ₂ O	Prechill In KNO3	Year
7	80.75 A	81.25 A	75.25 A	77.00 A	1978
10	85.00 AB	88.25 AB	76.75 A	77.25 X	1978
15	88.25 B	90.25 B	79.25 A	78.50 A	1978
21	88.25 B	90.75 B	80.50 A	78.50 A	1978
28 **	88.25 B	90.75 B	80,50 A	78.50 A	1978
7	79.50 A	• 75.50 A	75.75 A	78.50 A	1979
10	83.25 AB	80.50 B	78.00 A	81.00 A	1979
15	85,00 B	82.25 B	79.50 A	S1.25 A	197 9
21	86.50 B	83.25 A	80.25 A	81.25 A	1979
28 **	86.50 B	83.50 B	80.50 A	81.25 4	1979
7	65.25 A	64.00 A	68.50 A	66.75 A	1980
10	72.25 A	75.00 B	71.50 B	69.75 a	1980
15	77.75 BC	77.25 B	72.75 B	70 75 A	1980
21	78.50 C	79.50 B	72.75 B	71.25 A	1980
28	79.25 C	79.75 B	72.75 B	71.25 4	1980

.

£.,

Table 2. Average Germination Percentages of Four Replications of Panicum amarulum at 15 Days by Crop Year and Treatment.

	1978	KNO3	90.25 A					1
	1978	H ₂ 0	83.25 A					
	1979	H ₂ 0	85.50 A	B				
	1979	KNO3	82.25	B	с			
	1979	PC KNO3	81.25	ь В	€.	D		
	1979	PC KNO3	79.50		С	D		
	1978	PC H ₂ 0	79.25		С	D	£	
,	1978	PC KNO3	78.50		С	ø	E	
	1980	!!20	77.75			Ð	E	
	1980	KNO 3	77.25			ŋ	E	
	1980	PC 1120	72.75				E	
	1980	PC KNO3	70.75				f.	
				•				

Percentages followed by the same letter are not different at the F.05 level of significance. 1/All tests and information were conducted and written by the National Plant Materials Center Staff, Beltsville, Maryland.

Nutritional analyses for samples of herbaceous plant species, 19821/

Species			Per	cent		
	Magnesium	<u>Sodium</u>	<u>Cellulose</u>	<u>Calcium</u>	Phosphorus	Potassium
Andropogon caucasicus	.36	.025	41.4	.38	.21	2.15
<u>Coronilla</u> varia	<u>_2</u> /	-	23.2	-	.34	-
Lathyrus sylvestris	.43	.041	19.7	.49	•51	-
Panicum amarulum	.28	.042	39.5	.51	• 35	2.79
<u>P. virgatum</u>	-	-	38.5	-	.30	-
Spartina patens	.19	.149	46.5	.48	.16	1.40

l/Samples were taken from production fields at the Cape May PMC and analyzed by the Department of Animal Science, Utah State University.

 $\frac{2}{(-)}$ indicates the species was not analyzed for that particular element.

SEED AND PLANT PRODUCTION

1982 SEED PRODUCTION

<u>No.</u>	Name	<u>Qrigin</u>	Hectares	Production (kg)(bulk)
PI-78758	Andropogon caucasicus	-	3.2	25
'Lathco'	Lathyrus sylvestris	WA	3.2	1,140
'VA-70'	Lespedeza thunbergii	Manchuria	1.6	186
'Rem-Red'	Lonicera maackii	MD	.04	17
PI-421136	Panicum amarum var. amarulum	VA	1.6	252
PI-421138	<u>P. virgatum</u>	NC	0.8	21
'Balboa'	Secale cereale	-	1.2	1,009

1982 PLANT PRODUCTION

No.	Name	<u>Origin</u>	Hectares	Production (number)
'Cape'	Ammophila breviligulata	MA	.09	82,000
PI-433953	<u>Carex</u> kobomugi	Japan	N1l	4,925
PI-421132	<u>Elaeagnus</u> <u>umbellata</u>	PA	Nil	50
PI-348865	<u>Elymus</u> arenarius	Belgium	Nil	2,850
PI-421134	E. vancouverensis	MA	Nil	3,075
Emerald Sea'	<u>Juniperus</u> <u>conferta</u>	Japan	Nil	120
'VA-70'	<u>Lespedeza</u> thunbergii	Manchuria	.06	5,000
'Rem-Red'	Lonicera maackii	MD	Nil	65
т-02747	<u>Myrica</u> <u>cerifera</u>	NJ	Nil	225
PI-434159	M. pensylvanica	NJ	Nil	400
Com posite	<u>M. pensylvanica</u>	NJ	Nil	938
T-02773	Panicum amarum	NC	Nil	3,800
Composite	Rosa rugosa	-	Nil	125
Various Accessions	<u>Spartina</u> <u>alterniflora</u> (bare-root)	-	.02	9,450
T-27033	$\frac{\text{S. alterniflora}}{(\text{potted})}$	-	Nil	416
Various Accessions	<u>S. patens</u> (potted)	-	Nil	11,100
Various Accessions	<u>S. patens</u> (bare-root)	-	.04	27,450

/Production areas less than 0.02 hectare are recorded as Nil.

ENGLISH-METRIC CONVERSION

Conversion Table

1	inch	=	2.54	centimeters (cm)
1	foot	=	30.48	centimeters
1	yard	=	91.44	centimeters
1	pound	=	0.454	kilogram (kg)
1	acre	=	0.405	hectare (ha)
]	pound/acre		1.121	kilogram/hectare
1	bushel	=	0.352	hectoliter
100	centimeters	=	1	meter (m)
٦	centimeter	_	0 30L	inch
T	Centrineter		0.394	
10	centimeters	=	3.94	inches
1	meter	=	39.37	inches
l	kilogram	=	2.205	pounds
٦	hectare	=	2.471	acres
٦	kilogram/hectare	=	0.892	pound/acre

.

.