Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

(O) uprarus forest Stricg enntax

(ㅇ)

路

Estimatina foluo and :(bethentat Phothay Equatana

Research Paper PNW-283

May 1981

Estimating Value and ${ }^{1233,7}$ Volume of Ponderosa Pine Trees by Equations

Author

MARLIN E. PLANK is research forest products technologist, Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

Abstract

Summary

Plank, Marlin E. Estimating value and volume of ponderosa pine trees by equations. USDA For. Serv. Res. Pap. PNW-283, 13 p. Portland, OR: Pac. Northwest For. and Range Exp. Stn.; 1981.

Equations for estimating the selling value and tally volume for ponderosa pine lumber from the standing trees are described. Only five characteristics are required for the equations. Development and application of the system are described.

Keywords: Lumber value, volume estimation, grading systems, ponderosa pine, Pinus ponderosa.

This paper describes a system for estimating the selling value and lumber volume of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) trees. Similar systems have proved easier and more practical than the conventional method of listing logs by discrete classes.

From a sample of 189 trees selected in western Montana, 154 were used to develop two prediction model equations, one for estimating selling value and one for estimating tally volume of lumber. A subsample of 34 trees was withheld from the analysis to test the equation.

Measurement of five characteristics will enable the user to apply the prediction equations to other samples. The tree characteristics are:

1. Diameter
2. Height
3. Height to the first live limb
4. The number of limb-free and defect-free faces on a butt 32-foot log
5. Total defect

The prediction equations account for 91 percent of the variation in value and 97 percent of the variation in lumber volume as measured by the R^{2} values.

When the system was applied to the 34 trees withheld from the original data, the prediction of total dollar value was 7.3 percent more than the actual value and the prediction of volume 7.0 percent higher than the actual volume of lumber recovered.

Contents

1 Introduction
1 Study Procedures
1 Sample and Field Procedures
2 Developing the Prediction Model
3 How the System Performs
5 How To Use the System
6 Conclusions
7 Literature Cited

8 Appendix 1. Independent Variables
9 Appendix 2. Tree Quality Characteristics and Lumber Yield Data

10 Data Cards

Introduction

Study Procedures Sample and Field Procedures

The State of Montana contains an estimated 11 billion board feet (International $1 / 4$ inch rule) of ponderosa pine (Pinus ponderosa Doug1. ex Laws.) sawtimber (USDA Forest Service 1973). Much of this resource is growing on lands administered by the USDA Forest Service. When offered for sale, stumpage value is determined by a system of five log grades. Although this grading system is reliable, an easier and less costly method has been developed that will work equally well.

The Northern Region (Region 1) of the USDA Forest Service is using equations that estimate the lumber tally volume and value of standing trees for several species. Cruisers have found the method fast and simple to use, and the estimates obtained from the equations are being accepted by timber purchasers. The equations in this paper were developed for ponderosa pine because it is the only major species log-graded in Region 1, and the goal is to get all major species in the Region on the same system.

This paper presents, for timber managers, sellers, and buyers, equations for estimating total value and lumber volume of ponderosa pine trees. It documents the steps in developing the equations, demonstrates their use, and shows how well these equations estimate value and lumber volume for a group of trees.

A sample of 189 trees was selected to represent the range in size and quality of old-growth commercial ponderosa pine sawtimber being used by sawmills in western Montana. The trees were from four areas on the west side of the Lolo National Forest. Diameters ranged from 7 to 37 inches and heights from 42 to 165 feet. $1 /$ The mean diameter was 22 inches and mean height 100 feet.

The surface characteristics of the butt 32 -foot portion were recorded for each standing tree. All logs were identified with a tag showing tree and log numbers before they were removed from the woods. In the millyard, they were scaled for boardfoot content in the woods length and after they were bucked on the mill deck, they were again scaled. Scaling was done according to procedures in the National Forest Log Scaling Handbook (2409.11, Sept. 1973).

[^0]
Developing the Prediction Model

The logs were then processed at a mill considered representative of mills processing ponderosa pine in the northern Rocky Mountain area. The logs were sawn under normal conditions, with the intent of obtaining the highest value from each log. Lumber produced was either 4/4-inch or $5 / 4$-inch shop or 1 -inch boards. The values and volumes were based on kiln-dried, surfaced lumber tally according to general industry practice. All lumber was identified throughout the milling phase so that each piece could be related to the \log and tree from which it originated.

Before data analysis, 34 of the 189 sample trees were randomly selected as a subsample for testing the prediction equations that would be developed. Of the remaining trees, one was inadequately measured, leaving 154 trees as a base for developing the equations.

Twenty-nine variables were screened with a multiple regression program (Dixon 1964) to determine tree characteristics that would be most highly correlated with value and volume of lumber. The independent variables that were examined are listed in appendix 1. Previous studies (Lane et al. 1970, Plank and Snellyrove 1978, Snellyrove et al. 1973) of other species have indicated that many characteristics are poorly correlated with value or volume, so they were not measured. The forward stepwise regression procedure was used to select the subset of independent variables to be included in the regression model for predicting value or lumber tally volume of the trees.

The screening process indicated that six tree characteristics should be observed and recorded.

These characteristics, described in the next paragraph, together with several transformations of the same characteristics, were selected as the best independent variables to be used in the two models.2/ These variables were used with lumber yield information to develop the regression equations for predicting total value (dollars) and lumber volume (board feet) per tree. The same set of independent variables did not survive as the best estimator of both value and volume; consequently, separate equations were chosen to estimate the dependent variables. The final variables selected for the models were the ones that were most practical for application in timber appraisals and that statistically accounted for the most variation in volume and value.

2/Transformations are used not only for constructing interaction variables but also for changing the form of the individual variables so that more of the variation can be explained.

The following model equations are used for predicting total dollar value and total lumber volume of a tree:

Total value $=b_{0}+b_{1}($ LDFF32 $)+b_{2}($ PADEFT $)\left(D^{2} H\right)$
$+b_{3}($ DEFPER $)\left(D^{2} H\right)+b_{4}\left(D^{2}\right)$
$+b_{5}(D H)+b_{6}\left(D^{2} H\right)$.

Total lumber volume $=b_{0}+b_{1}(H)+b_{2}($ HTFLL $)$
$+\mathrm{b}_{3}$ (DEFPER) ($\mathrm{D}^{2} \mathrm{H}$)
$+\mathrm{b}_{4}(\mathrm{DEFSQR})\left(\mathrm{D}^{2} \mathrm{H}\right)+\mathrm{b}_{5}\left(\mathrm{D}^{2} \mathrm{H}\right)$;
where:
b_{0} is Y intercept constant,
$b_{1}, b_{2} \ldots b_{6}$ are regression coefficients,
LDFF32 is the number of $1 i m b-f r e e$ and defect-free faces on the butt 32-foot log,
PADEFT is the presence or absence of any defect (1 if present, 0 if absent),
DEFPER is estimated defect expressed as a percentage of gross cruise volume,
D is diameter at breast height (inches),
DEFSQK is estimated defect percent squared,
H is total tree height (feet),
HTFLL is the height to the first live limb.
Coefficients for the volume equation are as follows:

b_{0}	$=-3.00685$
$\mathrm{~b}_{1}$	$=-0.826482$
$\mathrm{~b}_{2}$	$=0.422030$
$\mathrm{~b}_{3}$	$=-0.0000843925$
$\mathrm{~b}_{4}$	$=0.000000829797$
$\mathrm{~b}_{5}$	$=0.0155223$

Coefficients for the value equation vary as lumber prices vary and can be determined by the steps in the section, "How To Use the System."

The equations account for 91 percent of the variation in dollar value and 97 percent of the variation in lumber volume. The standard error of estimates are $\$ 51.89$ and 139 board feet.

How the System Performs

From the sample of 189 trees, a subsample of 34 trees was randomly selected to test the performance of the estimating equations. The general characteristics (d.b.h., total height, criteria for the faces, height to first live limb, and defect) were recorded for each of the 34 trees in the subsample. Predictions of selling value and volume of lumber were then calculated using the equations.

Table 1 shows comparisons of estimated and actual values for the 34 subsample trees. Figures 1 and 2 show that the estimates of value and volume are about equally split by the 45 -degree line.

Table 1--Comparison of estimated and actual selling value and volume of lumber from 34 ponderosa pine trees

Item	Total value	Difference	Total lumber volume	Difference
	Dollars	Percent	Board feet	Percent
Estimated Actual	$\left.\begin{array}{c} 6,221.58 \\ 5,796 \cdot 14 \end{array}\right\}$	+7.3	$\left.\begin{array}{c} 29,865 \\ 27,904 \end{array}\right\}$	+7.0
Mean deviation	+12.51		+58	
Mean absolute deviation	37.13		93	

Figure 1.--Actual value versus estimated value of ponderosa pine trees.

Figure 2.--Actual volume versus estimated volume of ponderosa pine trees.

How To Use the System

Computer facilities for making regression analyses are essential for efficient use of this system. Regression coefficients for tree values are derived from the tree characteristic data, the lumber grade yield data for each tree in the base study, and appropriate lumber prices. These data and the card format for the 154 trees are shown in appendix 2 .

The total lumber tally volume of a tree or group of trees may be estimated by solving the following equation using the coefficients shown: $\underline{\text { / }}$

Total lumber tally
volume $($ board feet $)=3.00685-0.826482(H)+0.422030($ HTFLL $)$

$$
\begin{aligned}
& -0.0000843925(\text { DEFPER })\left(\mathrm{D}^{2} \mathrm{H}\right) \\
& +0.000000829797(\text { DEFSQR })\left(\mathrm{D}^{2} \mathrm{H}\right) \\
& +0.0155223\left(\mathrm{D}^{2} \mathrm{H}\right)
\end{aligned}
$$

A procedure for developing a value equation for the 154 tree data set and current prices is as follows:

1. Assign current or desired lumber prices to each lumber grade recorded in the base study.

3/ Note that this system was developed to predict values and volumes of $4 / 4-$ and $5 / 4$-inch lumber. Using this system to predict values and volumes in areas where relatively large amounts of dimension lumber are obtained may not give accurate results.
2. Multiply these prices by the appropriate lumber yield information shown in appendix 2 to obtain a dollar value for each of the 154 trees in the base study.
3. Use an appropriate multiple regression program to develop the value equation coefficients for the 154 trees. Use the computed total dollar value (step 2) and five of the six tree characteristics in the following transformations:

Dependent variable:
Total dollars $/ D^{2} H$

Independent variables:
LDFF $32 / D^{2} H$
PADEFT
DEFPER
$D^{2} / D^{2} H$
$\mathrm{DH} / \mathrm{D}^{2} \mathrm{H}$
$1 / D^{2} \mathrm{H}$
4. Select sample trees.
5. Measure and record for each sample tree the five characteristics: (1) diameter, (2) height, (3) defect, (4) presence or absence of defect, and (5) number of limb- and defectfree faces in the butt 32-foot 10 g .
6. Now apply this equation to a new group of trees using the following steps: Use coefficients developed in step 3 to solve the value equations for the sample trees selected in step 4.

Conclusions

Field tests of this system and similar systems have demonstrated that they have a number of advantages over the conventional 10 g grading method. It is faster to apply in the field and thus more economical. Fewer judyment factors are required than with the 10 g grading system presently used for ponderosa pine. Selling price is calculated easily and more directly than by methods that involve adjusting yield by log overrun estimates. In addition, training and checking of cruisers are easier.

This system is similar to others that have been used successfully by the USDA Forest Service in the northern Rocky Mountains. The performance of these systems and their acceptance by both timber buyers and sellers indicate that they are simple, workable methods of estimating the quality of standing sawtimber.

This system was developed where the major portion of lumber was manufactured into 4/4-inch and 5/4-inch items. Inferences as to the applicability of the system in areas where dimension lumber is a sizable portion of the cut may give misleading results.

Literature Cited

Dixon, W. J., Ed. BMD biomedical computer programs. Health Sci. Comput. Facil. Dep. Prev. Med. and Public Health, Sch. Med., Los Angeles, CA: Univ. Calif.; 1964.

Lane, P. H.; Plank, M. E.; Henley, J. W. A new and easier way to estimate the quality of inland Douglas-fir sawtimber. USDA For. Serv. Kes. Pap. PNW-101. Portland, OR: Pac. Northwest For. and Range Exp. Stn.; 1970.

Plank, M. E.; Snellgrove, T. A. An equation for estimating the value and volume of western larch trees. USDA For. Serv. Res. Pap. PNW-231. Portland, OR: Pac. Northwest For. and Range Exp. Stn.; 1978.

Snellgrove, T. A.; Plank, M. E.; Lane, P. H. An improved system for estimating the value of western white pine. USDA For. Serv. Res. Pap. PNW-166. Portland, OR: Pac. Northwest For. and Range Exp. Stn.; 1973.
U.S. Department of Agriculture, Forest Service. The outlook for timber in the United States. For. Resour. Rep. 20. Washington, DC; 1973.

Appendix 1. Independent Variables

Defect related variables:

1. Defect percent.
2. Defect percent squared.
3. Presence or absence of defect.

Quality related variables:
4. Number of limb- and defect-free 8-foot panels on the butt 16-foot log.
5. Number of 1 imb-free 8 -foot panels on the butt 16 -foot $10 g$.
6. Number of limb- and defect-free 8-foot panels on the butt 32-foot log.
7. Number of limb-free 8 -foot panels on the butt 32 -foot $10 g$.
8. Number of limb- and defect-free 16 -foot faces on the butt 32-foot log.
9. Number of 1 imb-free 16 -foot faces on the butt 32 -foot $10 g$.
10. Number of limb-free faces with no defect on the butt 16-foot log.
11. Number of limb-free faces on the butt 16-foot log.
12. Number of limb-free faces with no defect on the butt 32-foot log.
13. Number of limb-free faces on the butt 32-foot log.
14. Length of scar.
15. Presence or absence of scar on butt loy.
16. Presence or absence of conks.
17. Size of the largest limb on the butt l6-foot log.
18. Size of the largest limb on the butt 32-foot log.
19. Height to the first live limb.

Volume related variables:
20. d.b.h. $=D$
21. Total height $=H$
22. D^{2}
23. DH
24. H^{2}
25. D/H
26. H/D
27. $\left(H / D^{2}\right)$
28. $\mathrm{D}^{2} \mathrm{H}$
29. $1 / D^{2} H$

Appendix 2. Tree Quality Characteristics and Lumber Yield Data

The tree quality characteristics and lumber yield data for each of the 154 trees in the base study are listed according to the card format shown below.

Columns
Data
Tree number d.b.h.

Total height
Number of limb- and defect-free (clear) faces
on the butt 32-foot log
Height to the first live limb
Presence or absence of defect
Defect percent
Volume of B Select lumber
Volume of C Select lumber
Volume of D Select lumber
Volume of Moulding lumber
Volume of 3 Clear lumber
Volume of 1 Shop lumber
Volume of 2 Shop lumber
Volume of 3 Shop lumber
Volume of Shop-out lumber
Volume of 2 Common \& Btr lumber
Volume of 3 Common lumber
Volume of 4 Common lumber
Volume of 5 Common lumber
Volume of Pitch Select lumber

		TOT	Cl	HT	$P-A$	PCT						V	0 L	$U \quad M$	E					
TREE	DHH	HT	+ ${ }^{\text {a }}$	LMB	DEF	DEF	$\mathrm{B}=\mathrm{SEL}$	C-SEL	1)=SEL	MLDG	$3-C L$	1-SHP	2-SHP	3-SHP	SHP-0	$2-\mathrm{COM}$	$3-\mathrm{COM}$	4-C0M	5-COM	P-StL
1	357	132	3	40		1	28	82	198	419		138	645	208	15	230	252	76	5	144
2	263	123	1	66		2	34	46	64	91		69	214	78		159	348	83		
3	2.09	90	3	34			13	31	122	32		26	52	17	10	185	210	19	4	
4	266	109	3	41	1	2	20	96	63	231		47	198	79	13	189	241	24		14
6	200	96	3	4 H		5		53	* 1	41		\%	18			97.	111	15	26	7
7	254	133	3	47		3	7	113	120	112		41	212	30		173	174	53	2	
9	195	108	4	44		7	17	73	41	16		16	13			259	69	17		
11	221	98		37				42	69	4		16		27		185	250	$1{ }^{1}$	3	
12	290	118	1	24		2	74	76	114	171		165	390	40		165	243	14	5	
14	243	119	3	35		2		70	75	173		89	254	42		235	86			
15	243	11%	1	22				37	98	111		138	275	110	13	163	78	48	17	
16	327	124		47		4		30	66	170		107	562	248	23	105	408	4 H	10	
22	296	124		28		1	27	44	63	46		67	357	180	77	143	340	30	3	47
23	316	118		30	1	9	19	56	105	124		123	343	168		201	143	29	17	5
25	267	110	1	31	1	1		47	84	103		55	168	93	12	165	119	17	5	24
26	264	118	3	41		1		49	50	178		188	235	185		140	182	30		
27	318	125		36		6		14	131	214		34	405	390	93	176	345	21	3	25
28	307	130	1	36	1	3		29	49	198		91	461	165	14	283	194	20	6	10
29	286	113	3	47	1	12	74	105	96	160		26	157	181	20	139	148	44	27	
31	202	107	4	40		6		109	58	142		9				200	106	23	4	
32	367	151	3	50		27	202	249	116	338		65	bub	495	47	25	345	387	145	48
33	330	125	3	40	1	28	163	193	138	354	38	250	1×2	157	19	20	63	112	45	
34	282	106	1	36	1	7	3	27	193	224		H)	1 H 3	141		161	107	34	13	
31	349	126	2	22		11	26	80	152	315	38	205	691	262		41	292	138	41	
38	317	131	2	65		34		61	91	365	40	241	672	150	38	14	247	200	H	
40	258	105		25					7	13		13	106	142	7 H	77	144	206	2 H	
41	296	125		24		1		18	9	5 H	17	211	436	16 H	32	102	$1{ }^{1} 3$	1 H	119	
42	180	HC		30		H0			6	3		1 n				176	169	15		
43	160	86		30		-				3		6				119	171	1		
44	201	96		34					2	5			40	122		131	241	41	13	
45	126	65		28												75	58	7		
46	111	54		2 A						3			H			2.4	41	3		
47	135	8 H		30					3							60	92	15		
4H	99	65		34	1											29	27	1		
51	262	95		39		1		6	4	25		74	307	221	23	47	239	22	17	
52	268	104		27		2		18	10	H6		44	538	95	15	53	270	50	11	
33	124	11		19						n						46	47	16		
34	92	69		20												10	13	6		
勺s	248	110		24		1		13		5	15	193	4H1	193		6n	332	71	9	
57	222	121	1	57	1	4	12	48	64	115		77	116	60	H	79	265	10	9	

		Tot	CL	H T	P=A	PCT						V	0 L	U M	E	-0-*-0.	-0.0-0	-0-0-		--m
TREE	DBH	HT	FA	LMB	DEF	DEF	B-SEL	C-SEL	D-SEL	MLDG	$3-\mathrm{CL}$	1-SHP	2-SHP	3-SHP	$S H P=0$	$2-\mathrm{COM}$	$3-C O M$	$4-\mathrm{COM}$	5-COM	P=SEL
115	172	111	2	33					15	4		27				154	281	23	8	
116	148	101		44					4				8			87	177	79	5	
118	208	105		43		2			13	5		19				137	349	66		
119	169	110		57					5	5		39	36	10		155	153	45	5	
120	130	101		44					7							75	59	29		
121	103	65		44		14										44	31	17		
123	157	106		37		8			13	2		8				146	115	12		
124	330	152	2	32		8	3	60	33	221		273	680	260	22	153	226	52	16	
125	162	91		38	1					2			6			106	132	53		
127	199	106	1	33	1	2			3	34		27	56	69		216	248	43	3	8
128	180	120		74	1	7		3		8		13				222	143	61		
130	130	103	2	45												159	53	21		
132	92	80		48		14										31	29	6		
133	149	106		40	1	4			7			8				142	147	27		
134	111	101		66						5						64	66	32		
136	145	117	1	53		5			6	3						117	149	15		
137	145	97		46					8							125	100	21	3	
139	119	105	3	65	1	8		3		3						66	55	20	15	
140	299	163		52		3	7	30	87	218	37	466	808	214		167	286	153	69	
142	109	80		20					5							55	12	26		
143	75	77		50												7	6		2	
144	103	84		47	1											34	44	19		
145	79	76		45												5	8	5		
146	136	78		44	1											80	70	27		
147	372	162	3	72	1	7		44	69	389		222	784	444	55		161	385	78	55
148	248	120		64	1	7		18	3	46		41	206	206		81	111	160	49	
149	312	140	3	83	1	40		85	9	156		158	314	310	13	38	200	24		
152	102	42		20												20	23			
153	134	30		10					5							5	39	9		
154	193	66		22		27		3				8				38	178	30	15	
155	199	89		29	1							39	24			167	184	43		
156	280	94		29		4	21	78	71	73		53	220	58		107	260	52	9	
157	270	85	1	28	1	12		79	62	50		34	95	87	17	96	143	120		
158	165	61		22	1	33			19	27						20	132	18	4	
159	245	104	1	56	1	9	31	46	50	227		40	117	54	10	35	110	77	5	
160	275	114		42	1	12		34	53	126		123	437	93	9	46	157	136	28	
162	338	96	2	42		20	113	196	63	206		237	413	95	4	26	201	109	53	
164	226	66		20	1	4			7	6		19	11			23	253	79		
165	289	99		19	1	14	5	70	60	54		94	227	33		78	441	175	8	
166	159	86		34	1	21		3	27	19		14				77	64	24		
167	260	91	2	45	1	13		11	46	28		50	100	22		57	124	195	5	

		TOT	CL	HT	$\mathrm{P}=\mathrm{A}$	PCT						v	C L	$1{ }^{\text {U }} \quad M$	E					-0.0-0
TREE	D8H	HT	FA	LMB	DEF	DEF	B-SEL	C-SEL	D-SEL	MLDG	3-CL	1-SHP	2-SHP	3-SHP	SHP=0	$2-\mathrm{COM}$	$3=C O M$	$4-\mathrm{COM}$	$5-\mathrm{COM}$	P-SEL
168	311	93	2	40		20		7	81	78		8	53	45	105	4	101	223	235	57
169	180	83		13	1	17		3		3		21	8	15		72	132	53	10	
171	115	79		26	1	29	7		12							22	33	7		
173	90	68		20	1	33										5	11	5		
175	160	77		19		6			16			18				85	73	11		
179	304	83	4	36		18	101	112	133	268		56	120	72	31	79	228	95	14	
180	300	130	1	24	1	2		101	268	217		69	198	132	30	90	150	117	16	38
181	85	68		10		50											14	3	8	
182	124	86		49					5	3						123	11	8	2	
183	145	81		22					9							99	70	26	4	
184	250	76		35	1	4		35	33	26		40	84	111	17	9	271	21	28	
187	224	83		37	1	4			14	13		f	8			43	227	287	18	8
188	199	74		28	1	10			10	24			17	30	10	70	257	29	13	
189	256	85		24	1	5		12	5	66		93	208	122	35	43	266	45	8	
190	208	64		13					2			8	13			55	193	14		
191	80	64		37												7		3	4	
192	90	68		35												9	8	2	3	
195	110	67		15						3						52	12			
196	189	89		36				2	11			6	8			118	187	36		
197	119	83		51		14										24	25	34	8	
198	116	89		22		30										35	46			
250	170	64	1	29		5	4	30	49	39						3	29	38	7	
253	180	77		27	1				12	14			34	43	9	51	109	13	3	
254	310	153	3	85		7	103	156	152	274		86	471	125	15	338	199	29	5	14
255	130	82		18					3							82	62	3	9	
256	150	82		35		5			14	12		6				127	44	6		
257	110	69		31												35	27	5	5	
258	160	77		36		86		3								41	124	26		
259	194	109		35				3	12	22		17	75	26		242	59	9	10	
261	250	130		50		2	2	4	34	29		107	186	55		434	183	25		
262	210	99		31				18	78	12						215	139	12	7	
309	268	110	1	65	1	10		18	20			8	192	250	53	59	304	135	19	

Plank, Marlin E. Estimating value and volume of ponderosa pine trees by equations. USDA For. Serv. Res. Pap. PNW-283, 13 p. Portland, OR: Pac. Northwest For. and Range Exp. Stn.; 1981.

Equations for estimating the selling value and tally volume for ponderosa pine lumber from the standing trees are described. Only five characteristics are required for the equations. Development and application of the system are described.

Keywords: Lumber value, volume estimation, grading systems, ponderosa pine, Pinus ponderosa.

The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation's forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National Grasslands, it strives - as directed by Congress - to provide increasingly greater service to a growing Nation.
The U.S. Department of Agriculture is an Equal Opportunity Employer. Applicants for all Department programs will be given equal consideration without regard to age, race, color, sex, religion, or national origin.

[^0]: $\underline{1 /}$ To convert inches to centimeters, multiply by 2.54 ; to convert feet to meters, multiply by 0.3048 .

