Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

SWYLD2: Yield Tables for EvenAged and Two-Storied Stands of Southwestern Ponderosa Pine, Including Effects of Dwarf Mistletoe

by
Clifford A. Myers, Carleton B. Edminster, and
Frank G. Hawksworth

March 1976

 12345: 1

[^0]
Abstract

Myers, Clifford A., Carleton B. Edminster, and Frank G. Hawksworth. 1976. SWYLD2: Yield tables for even-aged and two-storied stands of southwestern ponderosa pine, including effects of dwarf mistletoe. USDA For. Serv. Res. Pap. RM-163, 25 p. Rocky Mt. For. and Range Exp. Stn., Fort Collins, Colo. 80521.

Presents a procedure for computation of yield tables for ponderosa pines in Arizona and New Mexico. Possible alternatives include: even-aged or two-storied stands, healthy or diseased stands, and managed or unmanaged stand densities. Stand conditions and severity of dwarf mistletoe infestation change with time and in response to intermediate cuttings. Supersedes SWYLD, published in 1972 as USDA For. Serv. Res. Pap. RM-87. A concise user's guide for program SWYLD2 is available as USDA For. Serv. Gen. Tech. Rep. RM-23, 1976.

Keywords: Stand yield tables, timber management, forest management, simulation, Arceuthobium vaginatum, Pinus ponderosa.

SWYLD2: Yield Tables for Even-Aged and Two-Storied Stands of Southwestern Ponderosa Pine, Including Effects of Dwarf Mistletoe

Clifford A. Myers, Chief Mensurationist Carleton B. Edminster, Associate Mensurationist and
Frank G. Hawksworth, Chief Plant Pathologist Rocky Mountain Forest and Range Experiment Station ${ }^{1}$

Contents

Page
Introduction 1
Uses of Yield Tables 1
Importance of Dwarf Mistletoe 2
Description of Program SWYLD2 3
Program Relationships 6
User-Supplied Information 9
Local Modifications 14
A Sample Problem 14
Literature Cited 16
Appendices:

1. Listing of Program SWYLD2 17
2. Output of Sample Problem 23

SWYLD2: Yield Tables for Even-Aged and Two-Storied Stands of Southwestern Ponderosa Pine, Including Effects of Dwarf Mistletoe (1.23.

Clifford A. Myers, Carleton B. Edminster, and Frank G. Hawksworth

Introduction

Computer program SWYLD (Myers andothers 1972) was developed to compute yield tables for managed, even-aged stands of southwestern ponderosa pine (Pinus ponderosa Laws.). Users of SWYLD recognized a need for a capability of handling a wider range of situations. A few of the original relationships and analytic procedures have been modified and new ones have been added. Program SWYLD2, described in this paper, has been written to supersede SWYLD, published as a USDA Forest Service Research Paper RM-87.

Modifications and additions now provide the following features: (1) yield tables are computed for even-aged stands or for each story of twostoried stands; (2) equations predict the contribution of the overstory to dwarf mistletoe infection in the understory, if any; (3) height and diameter growth equations apply to a wide range of stand densities, and (4) an intermediate or regeneration cut is no longer required at the initial age printed in the yield table.

The material presented includes: (1) descriptions of the field measurements, (2) descriptions of the relationships obtained from the measurements, (3) a computer program that contains the relationships, and (4) an example of what the program can produce. Instructions for adapting the procedures and program to other species or forest regions are also given.

A published summary of instructions on preparation of yield tables for diseased stands, directed to personnel of pest detection and control programs, is mostly applicable to SWYLD2 (Hawksworth and Myers 1973). One important exception is that the new program is useful for two-storied stands as well as those that are evenaged. A second exception is that SWYLD2 accepts more than one way of expressing degree of dwarf mistletoe infestation.

SWYLD2 is written in standard FORTRAN IV and can be run on almost any computer that provides 50,000 octal memory locations. Yield tables can be produced at a cost of about 8 cents each, excluding cost of program compilation.

Uses of Yield Tables

Yield tables are essential guides for forest managers. They report probable wood yields that result from specified combinations of such factors as site quality, utilization standards, and frequency and intensity of thinning. They are, therefore, the basis for timber management planning. They also provide an important part of the information needed for determining the influence of timber treatments on other forest resources.

Two types of yield tables can be computed by program SWYLD2: (1) tables for managed stands, and (2) tables that describe the remainder of the rotation or life of existing stands. The term "managed," as used in this paper, means stand density is controlled throughout the life of the stand. The term "stand," following the usual definition, refers to an area of trees consistent in site quality, species, structure, density, and incidence of disease. Uniformity of site quality and stand characteristics must be such that site index and other area averages really describe the unit of forest simulated. Stand area, therefore, may range from a very few acres in rough terrain to a hundred or more acres where meaningful averages may be computed.

Managed Stands

Yield tables for managed stands are useful regardless of the current level of management. Well-managed forests can benefit from refine-
ments in operations that are guided by comparisons of actual conditions with a good standard. Where conversion to managed stands is underway, yield tables provide goals toward which conversion can be directed.

Several factors influence the ways that yield tables should be produced and the types of data used to compute them. These factors include:

1. Yield tables for managed stands are needed even for regions and species where managed stands do not yet exist. Temporary plots must be used to obtain needed relationships.
2. No single yield table can be adopted as standard for a species or region. Applied forest management requires the use of various practices that can and will differ from one forest to another, and must appear as variables in yield table computations.
3. A manager should not be restricted to only one yield table per working group, or series of stands managed under the same silvicultural system. He must have the opportunity to examine the probable future results of current operations, to propose changes in the management of resources in his care, and to estimate the effects of these changes before money is spent on them.

The second and third items above relate to a disadvantage of normal and empirical yield tables. One table can report probable yields for only one combination of stand characteristics and management objectives. This is not an effective basis for comparing alternatives and making decisions. Since a group of yield tables can show various combinations of characteristics and objectives, a means of producing many yield tables at low cost can be useful to a forest manager. A computer program that will do this is described below and listed in appendix 1. Once the relationships between stand variables have been established, a manager can examine the probable outcomes of many possible variations in management. There is no need to delay decisions or to speculate on what may happen if a condition or procedure changes.

Existing Stands

Existing stands are mentioned separately from managed stands to emphasize that yield tables have uses besides those for setting management goals. In this case, the question is not the proper management for a specific combination of tree species, region, and objective. Rather, the problem is to select the proper procedure for changing a stand condition that actually exists
to some desired condition. Change may be called for because stand density is too high, tree ages are greater than planned felling age, or disease problems prevent application of usual management practices.

As an example of the problems created by existing unsatisfactory stand conditions, consider a parasite or other disease on ponderosa pines. Management decisions must be made for each diseased stand. Possible alternative treatments are: (1) sanitation thinning, (2) removal of a diseased overstory to release a well-stocked understory, (3) no treatment, with the hope that the stand may eventually become merchantable, or (4) destruction and regeneration. Knowledge of stand structure and density will remove some alternatives from further consideration. For further selection, an estimate of potential yield with each alternative is necessary. This information can be provided by yield tables that describe not managed or goal conditions, but possible results from treating a situation that actually exists. The final alternative chosen must then also consider other forest resources, including scenic values.

Importance of Dwarf Mistletoe

Yield tables for healthy stands do not provide all the information needed for decisionmaking in the Southwest. For practical application, important and predictable causes of reduced growth and yield must be included in the computations. Dwarf mistletoe (Arceuthobium vaginatum subsp. cryptopodum (Engelm.) Hawksw. \& Wiens) is so widespread and so reduces growth and yield that it is an important factor in management planning. Andrews and Daniels (1960) found this parasite on 36 percent of some 2,700 ponderosa pine plots located throughout Arizona and New Mexico. On the Lincoln National Forest and adjacent Mescalero Apache Reservation in southern New Mexico, more than 50 percent of the plots were infested (Hawksworth and Lusher 1956, Andrews and Daniels 1960).

Dwarf mistletoe is one of the four major causes of mortality in southwestern ponderosa pine (Pearson 1939, Myers and Martin 1963). Pearson (1938) found mortality in heavily infested, cutover stands to be about five times that in comparable lightly infested or healthy stands. On the Mescalero Apache Reservation, mortality in stands with dwarf mistletoe was nearly twice as high as in healthy stands (Hawksworth and Lusher 1956). The differences were most pronounced in cutover areas, where the mortality rate in infested stands was 3.3 times that in mistletoe-free stands.

Several studies have documented the adverse effects of dwarf mistletoe on the height and diameter growth of individual ponderosa pines(Korstian and Long 1922, Sperry 1934, Hawksworth 1961). Such studies do not, however, reveal the total stand loss due to dwarf mistletoe. They do not report mortality, but give information on surviving trees only.

A recent study compared growth rates and mortality in treated and untreated mistletoeinfested stands in Arizona (Lightle and Hawksworth 1973). Some of the information in SWYLD2 on the effects of dwarf mistletoe was obtained from the plots used for that study.

The publications cited above dealt primarily with the cumulative effects of dwarf mistletoe in unmanaged stands. They do not provide data that can be used directly for yield prediction in managed stands or for comparisons of alternatives. Many of the pine-mistletoe relationships needed for these purposes were reported in the publication describing program SWYLD (Myers and others 1972). Modifications of some of these and additional relationships are reported here for the first time.

The measure of dwarf mistletoe infestation used in SWYLD2 is the 6 -class rating system developed by Hawksworth (1961). A rating is obtained for each tree (fig. 1). The individual ratings are then averaged to obtain the value for the entire stand that is used in the relationships of program SWYLD2.

Description of Program SWYLD2

Program SWYLD2 consists of a main program and eight subroutines. Operations performed by each routine are described below and identified by comment statements in the listing of the source program (appendix 1). Subsequent sections of this paper describe the relationships used to compute values of the dependent variables. Input variables and data deck structure are described in the section headed User-Supplied Information.

Main Program

The main program performs the following seven operations:

1. Reads two data cards containing the number of stands to be processed, the length of the projection period in years (10.0 for SWYLD2), and minimum commercial cuts in board and cubic feet.
2. Checks that the number of stands to be processed is not zero or blank. An error message is printed and the entire job terminates if this error is found.
3. Calls subroutine BEGIN at the beginning of processing of each stand to set values of many variables to zero and to read all data applicable to the stand being processed.

INSTRUCTIONS

STEP 1. Divide live crown into thirds.
STEP 2. Rate each third separately.
Each third should be given a rating of 0,1 or 2 as described below.
(0) No visible infections.
(1) Light infection (1/2 or
less of total number of
branches in the third infected)
(2) Heavy infection (more
than $1 / 2$ of total
number of branches in
the third infected).
STEP 3. Finally, add

ratings of thirds to
obtain rating for
total tree.
Figure 1.-Instructions for and example of the use of the 6-class mistletoe rating system (Hawksworth 1961).
4. Checks many variables of the data deck for unwanted zero or blank values. An error message is printed and processing terminates for any stand with such errors in the data cards. Understory variables are not checked because they must have zero or blank values for single-storied stands.
5. Calls subroutine FIRST to compute initial values of several stand characteristics and program controls.
6. Calls 2 subroutines (CUTS, PROJ) in sequence as many times as necessary to simulate the number of projection periods required to reach the final age desired for each yield table.
7. Calls subroutine TABLE after each stand is processed to print yield tables for the stand. One table is produced for single-storied stands. Separate tables are printed for the overstory and understory of two-storied stands.

Subroutine BEGIN

Subroutine BEGIN is called by the main program to initiate the processing of each set of stand data. Many variables are assigned initial values of zero to clear computer memory of data from previous computations, and to prevent processing of an understory in single-storied stands. Four cards (types 3, 4, 5, and 6) are read by BEGIN to describe stand conditions and the management controls to be used in computations. These stand and control variables are described in a subsequent section and in the listing of the Order and Contents of the Data Deck.

Values of 21 input variables are stored in an array named VAR. Some items in VAR are examined by the main program to locate errors,' as already described. Others are used by other subroutines as a record of initial values.

The data deck for one job must contain one set of four cards (types 3, 4,5, and 6) for each stand to be processed. The number of sets or stands is specified by a value read by the main program.

Subroutine FIRST

FIRST computes values of several variables that, with the input variables, describe the stand and the management decisions applicable to it. Where appropriate, separate values are computed for each story of two-storied stands. The final age to appear in the yield table and the initial basal area are computed. Initial dwarf mistletoe rating and average heights of dominant and codominant trees are also computed if these values have not been entered for the stand.

Subroutine SWVOL is called by FIRST to compute initial stand volume per acre in each of the units provided for in SWVOL. These volumes plus other computed values are then stored for later recall when the yield tables are printed.

Subroutine CUTS

CUTS executes the thinnings and regeneration cuts called for by the variables specifying management controls. CUTS also makes any necessary changes in the interval between cuts and in residual density of shelterwoods.

A scheduled thinning will be bypassed if any one of the three following conditions exists at the time the thinning should occur:

1. Comparison of current growing stock level with the growing stock goal indicates that the stand or story is already understocked in relation to the goal.
2. Current dwarf mistletoe rating exceeds the maximum value specified by the program user. This value will usually be 3.0 for the host-parasite combination of SWYLD2.
3. Noncommercial volumes would be cut and the appropriate control variable is given a value to deny this option.

Each partial cut executed is followed by computation of new values for each average stand d.b.h., average stand height, and dwarf mistletoe rating. Each new diameter and height is larger or smaller than the corresponding old value, depending on the type of cutting executed. Post-cutting basal areas, residual volumes, and volumes removed are also computed and stored for later printing in the yield tables.

In two-storied stands, CUTS executes thinnings and regeneration cuts separately for each story. The user may specify simultaneous cuttings in both the overstory and understory or a cutting in only one story. Growing stock level specified for a cut applies only to the basal area and average diameter of the story involved and not to the combined basal area of both stories.

The first thinning in diseased stands will be from above, as simulated by subroutine SWCUT2, unless the option of preventing thinning from above is exercised. Average diameters and heights will therefore be reduced. Subsequent thinnings in diseased stands will increase average d.b.h. and height, but by lesser amounts than in healthy stands, where the smaller trees make up a larger percentage of those removed. This effect, an alter-
native computation in SWCUT1, has been observed in subsequent thinnings of actual diseased stands.

Subroutine PROJ

Subroutine PROJ contains the relationships of SWYLD2 that describe growth and other changes over time. The routine consists of one long loop to process the values of each story of two-storied stands separately.

Values computed by PROJ during each projection period, if needed, are as follows: (1) nonzero dwarf mistletoe rating (DMR) that accounts for latent infestation after apparent elimination of the parasite by partial cutting, (2) initial DMR if infestation occurs after the simulation period begins, (3) value of DMR at the end of the period if an infestation exists and if neither of the previous situations apply, (4) actual growing stock level, (5) average d.b.h. and height at end of the period, and (6) mortality during the period. Computations of d.b.h., height, and mortality include the effects of dwarf mistletoe, if present. PROJ uses the combined basal area of both stories (SBAS) in calculations of growing stock level for each story, growth projections, and mortality calculations.

PROJ completes the operations of each projection period by calling SWVOL to compute volumes. These and other values are then stored for printing at the end of the simulation.

Subroutine TABLE

TABLE is called by the main program after each set of stand data is processed. In two-storied stands, yield tables for the overstory and understory are printed separately and labeled to identify the stand component described. Only one table, without a story designation, is printed for singlestoried stands. Examples of the tables are given in appendix 2.

Footnotes to each table report: (1) merchantability limits for cubic- and board-foot volumes, (2) type of initial thinning allowed, (3) minimum DMR that prevents intermediate cuts, (4) minimum volumes included in total yields, (5) controls on noncommercial thinnings, (6) initial status of dwarf mistletoe infestation if DMR is not read from data card type 5 , and (7) skipping of scheduled intermediate cuts.

Subroutine SWVOL

Subroutine SWVOL is called by other subroutines after each growth projection and after each intermediate or regeneration cut. Total cubic volume per acre (TCF) of all trees, from groundline to tip, is computed with stand volume equations. Factors are then computed and used to convert total cubic volumes to merchantable cubic feet (FCTR) and to board feet (PROD). Utilization standards for these units are given in the comment statements of SWVOL and in footnotes to the yield tables.

Two or three equations each are used to compute TCF, FCTR, and PROD to avoid the need for complex forms. These relationships are not linear over the necessary ranges of the independent variables.

Conversions to other units or utilization standards may supplement or replace those already in SWVOL (appendix 1). Additional units might be square feet of veneer or wood weight in pounds (Myers 1960).

Subroutine SWCUT1

Subroutine SWCUT1 computes average stand d.b.h. after partial cuttings that emphasize, but are not restricted to, removal of the smaller trees. Average diameter and height after cutting, therefore, are larger than corresponding values before cutting. The percentage of trees retained is needed as an independent variable, but is itself an unknown. Successive percentages of trees are therefore tested until d.b.h. after cutting, number of trees retained, and residual basal area agree with the growing stock level selected by the program user.

Two major loops in the subroutine provide for the increasing and constant segments of each growing stock level curve (fig. 2). Limiting d.b.h. for selection of loops is 10.0 inches minus the average change expected with light partial cuttings in stands just under 10.0 inches d.b.h.

Computed increases in average d.b.h. of diseased stands are half the increases of similar, healthy stands, as occurs in actual dwarfmistletoeinfested stands, because more of the larger trees are removed than would otherwise be the case.

Subroutine SWCUT2

SWCUT2 computes the reduced average d.b.h. that results when thinning from above in dwarf mistletoe-infested stands. The computations,

Figure 2.-Basal area after thinning in relation to average stand diameter for standard levels of growing stock.
which resemble SWCUT1, determine an estimated post-thinning d.b.h. and compare the equivalent basal area with the thinning level desired. Program SWYLD2 duplicates actual practice in diseased stands by restricting thinning from above to the initial entry. The program user also has the option of requiring that all thinnings be from below.

Program Relationships

Field and office procedures used to obtain the relationships described below were similar to those outlined previously for healthy (Myers 1971) and dwarf mistletoe-infested stands (Myers and others 1971, Myers and others 1972). Most relationships in SWYLD2 are the same as already reported (Myers and others 1972, Myers 1974). Additional information on spread of dwarf mistletoe from overstory to understory was obtained from temporary plots in Arizona and New Mexico.

Basal area and other per-acre values, average stand diameter, average height, and site index are used as dependent and independent variables to obtain the prediction equations used. The relationships shown in the program listing (appendix 1) contain only significant independent variables.

Variable and subroutine names are given in capital letters in this and the following sections. Names of subscripted variables included in text material usually are not accompanied by symbols for subscripts. Variables are defined in the listing of the Order and Contents of the Data Deck and in the program listing (appendix 1).

Program statements of species-specific relationships must be replaced to adapt SWYLD2 to other species or conditions. Suggested program modifications are given in the section headed Local Modification.

1. Stocking After Cutting

Stand density to be left after each partial cut in healthy stands, or in diseased stands thinned from below, is expressed as a relationship between d.b.h. and basal area (table 1). Tabular values, computed as SQFT in subroutine SWCUT1, represent one possible series of densities that could be used to guide successive thinnings.

In table 1, basal area increases with diameter until 10.0 inches diameter is reached, and remains constant thereafter. The designation "growing stock level 80 " indicates that basal area is $80.0 \mathrm{ft}^{2}$ when diameter is 10.0 inches or larger, regardless of what basal area may be at lower average diameters.

Desired stand density will vary with the objectives of management, and a family of basal area-diameter relationships is needed (see fig. 2). Other growing stock levels are named the same way as level 80. For example, level 100 means that reserve basal area will be $100 \mathrm{ft}^{2}$ when d.b.h. is 10.0 inches or larger. Basal areas for any growing stock level are computed by multiplying the values for level 80 in table 1 by the ratio level/80. For example, basal areas for level 100 and diameters smaller than 10.0 inches are each 100/80 times the corresponding basal areas of table 1.

Desired levels are designated by assigning values to variables DSTY and THIN on data card type 4, as shown in the listing of Order and Contents of the Data Deck. Each assigned value is a growing stock level, the basal area to be left when d.b.h. after thinning is 10.0 inches or larger.

Equations for DBHP in subroutine SWCUT1 also describe the tabulated values. In this case, average diameters less than 10.0 inches are estimated when basal areas and the desired stocking level are known. Variables BREAK and BUST indicate points where the relationship of diameter to basal area has been broken into segments for convenience in regression analysis.

Three equations for GSLEVL in CUTS, SWCUT2, and PROJ are obtained from the values of table 1, adjusted for various growing stock levels. They compute the equivalent growing stock level when basal area and average diameter are known. The first equation of each set is a linear extrapolation to zero of the data in table 1.

Table 1.--Basal areas after partial cutting in relation to average stand diameter, growing stock level 80

Average stand d.b.h. after cutting (Inches)	Basal area per acre	Average stand d.b.h. after cutting (Inches)	Basal area per acre	Average stand d.b.h. after cutting (Inches)	Basal area per acre	Average stand d.b.h. after cutting (Inches)	Basal area per acre
	$f t^{2}$		$f t^{2}$		$f t^{2}$		$f t^{2}$
2.0	12.1	4.0	35.2	6.0	56.6	8.0	72.5
2.1	13.2	4.1	36.4	6.1	57.6	8.1	73.1
2.2	14.4	4.2	37.6	6.2	58.5	8.2	73.7
2.3	15.5	4.3	38.7	6.3	59.4	8.3	74.3
2.4	16.7	4.4	39.9	6.4	60.3	8.4	74.8
2.5	17.9	4.5	41.0	6.5	61.2	8.5	75.3
2.6	19.0	4.6	42.2	6.6	62.1	8.6	75.8
2.7	20.2	4.7	43.4	6.7	62.9	8.7	76.3
2.8	21.3	4.8	44.5	6.8	63.8	8.8	76.7
2.9	22.5	4.9	45.7	6.9	64.6	8.9	77.1
3.0	23.7	5.0	46.8	7.0	65.4	9.0	77.5
3.1	24.8	5.1	47.8	7.1	66.2	9.1	77.9
3.2	26.0	5.2	48.8	7.2	67.0	9.2	78.2
3.3	27.1	5.3	49.8	7.3	67.7	9.3	78.5
3.4	28.3	5.4	50.8	7.4	68.5	9.4	78.8
3.5	29.5	5.5	51.8	7.5	69.2	9.5	79.1
3.6	30.6	5.6	52.8	7.6	69.9	9.6	79.3
3.7	31.8	5.7	53.8	7.7	70.6	9.7	79.5
3.8	32.9	5.8	54.7	7.8	71.2	9.8	79.7
3.9	34.1	5.9	55.7	7.9	71.9	9.9	79.8
						10.0+	80.0

2. Diameter Increase from Growth

Equations that predict future average d.b.h. of healthy stands (DBHO) are obtained from plot data that include past and present average diameters and other stand measures. Separate equations estimate growth at stand densities: (1) somewhat less than or within the possible range of managed stands, and (2) greater than any goals of management.

Data from diseased plots provide the equation for the reduced diameter growth caused by dwarf mistletoe (DINC). Plot values at the beginning of the projection period and the DBHO equation for healthy stands give potential periodic growth. Actual growth and dwarf mistletoe ratings of the plots are then used to express actual growth as a percentage of the potential for various degrees of infestation.

Data for diameter growth equations may be obtained from either permanent or temporary plots. On permanent plots, measurements must be made at intervals equal to the projection period desired. Past diameters are obtainable from tem-
porary plot data when present diameters, radial wood growth, and adjustment for bark growth are known.

Average stand diameter in SWYLD2 is the diameter of the tree of average basal area.

3. Diameter Change from Thinning

Two sets of equations are used to determine average diameters after partial cutting. Equations for DBHE in subroutine SWCUT1 estimate the increased averages after cuts that emphasize removal of the smaller trees. The computed increase in infested stands is half that in healthy stands, to account for the larger trees removed in dwarf mistletoe control. Equations for DBHE in subroutine SWCUT2 compute the smaller average diameters produced by thinning from above. The latter situation, with emphasis on removal of the larger trees, is the usual initial thinning in infested stands if the objective is reduction of dwarf mistletoe.

Equations for post-thinning diameters are derived from data obtained in a variety of stands marked for thinning. Thinnings simulated on a computer also provide data for the equations (Myers 1971).

4. Height Increase from Growth

Equations in subroutines FIRST and PROJ compute average heights of dominant and codominant trees in healthy stands. Equations for HTSO and TEMH apply to stands of basal area less than or within the range of possible management goals. The equation for HTNEW applies to stands of greater density. The equations for HTSO in FIRST are bypassed if actual initial heights are read in.

Two equations for reduction in height growth due to dwarf mistletoe are based on data from infested stands. The equation for HTPCT in FIRST computes any reduction during the period from stand origin to AGEO and is not used if initial heights are read in. The equation for PCT in PROJ provides the reduction for a single projection period. Procedures for measurement and regression analysis of field data parallel those for the diameter growth equations described above.

Stand ages used in the equations are averages of dominant and codominant trees. For a twostoried stand, age of the understory is obtained from trees judged to be potential dominants and codominants.

5. Height Change from Thinning

Two equations for ADDHT in subroutine CUTS compute the change in average height due to partial cutting. One equation determines the increase resulting from thinning primarily from below. The other estimates the decrease in average height that occurs when cutting from above with emphasis on removal of the larger trees. At each cutting, the current value of ADDHT is added algebraically to height before thinning to obtain average height after thinning. Computed values of ADDHT are small when thinning from below because average heights and their changes refer to dominant and codominant trees only.

6. Noncatastrophic Mortality

Equations to estimate mortality in healthy (OUT) and diseased (DIE) stands require values for several easily measured stand variables. Data
for regression analyses came from permanent and temporary plots, with and without dwarf mistletoe. As used here, the term "noncatastrophic" refers to gradual losses from competition, endemic insect populations, and dwarf mistletoe. Effects of forest fires, insect epidemics, and other abrupt changes are not computed by these equations.

Reduction in numbers of trees is important in unthinned stands of ponderosa pine, but is minor and erratic in healthy, thinned stands. A prediction equation for mortality could not be computed for healthy thinned stands with an average d.b.h. of 10.0 inches or larger. Subroutine PROJ therefore computes mortality reductions only for mistletoe-free stands that average less than 10.0 inches d.b.h. Losses are computed for all infested stands with a DMR large enough to influence rate of mortality. In all computations, mortality is a percentage expressed as a decimal.

7. Dwarf Mistletoe Infestation

Several prediction equations compute initial dwarf mistletoe ratings (DMR) and subsequent annual or periodic increases. Data used to obtain these equations come from permanent and temporary plots. Three ways of reporting initial degree of infestation are provided. One alternative is to enter DMR as part of the input. Otherwise, stand age at time of initial infestation or the percentage of trees infected may be used.

Initial ratings are computed by subroutines FIRST or PROJ, if an initial DMR is not reported. The first equation for an initial rating computes DMR from the percentage of infected trees (PINF) in the story or even-aged stand. This requires that PINF be read in as a second alternative way of reporting the degree of infestation. Methods for determining PINF in southwestern ponderosa pine stands were described by Walters (1975). The other three computations of initial DMR are based on another alternative, use of the variable START. This is the average tree age when the story or even-aged stand is first infected. It is the mean age when infection began at various points throughout the story or stand. It is not the age when earliest infection occurred. Three equations involving TIME (derived from START) areneeded, one for an overstory or single-storied stand, one for understories with less than 3,000 trees per acre, and another for understories of greater density.

A value of PINF is computed in CUTS, even when other alternative measures of degree of infestation have been provided. This value for PINF is then used to compute the buildup of
infestation over a 20 -year period after DMR has apparently been reduced to zero by partial cutting.

Values of DMR computed from START and TIME apply to infested stands that have never been partially cut. To simulate future growth in actual stands that have been partially cut, either DMR or PINF should be used to describe the infestation.

Four equations for YDM in subroutine PROJ provide the annual increase in dwarf mistletoe rating that is then used to obtain the new rating at the end of the projection period. The first equation for YDM applies to the increase in even-aged stands or to overstories. The third and fourth equations apply to understories and include the additional contribution of dwarf mistletoe seeds from the overstory. The second equation, YDM $=$ 0.08 , provides the constant increase in stands of 15 or less trees per acre. Spread of infection in such open stands is within-tree and not between trees.

The two equations for DMR in PROJ that use computed values of YDM contain no speciesspecific regression coefficients. The weights of 0.5 and 1.0 assigned the periodic increases may, however, be different for other combinations of host and parasite.

8. Decrease in DMR from Thinning

Two equations in CUTS compute the reduction in dwarf mistletoe rating produced by partial cutting. An initial cut in an infested stand will emphasize removal of the larger trees unless the option is overridden by a non-zero value of IOPT on data card type 4. The equation for DELDMR computes the reduction if the initial thinning is from above. The next statement in the subroutine applies to thinnings from below, and indicates that the reduction in DMR is $2 / 3$ of that possible when thinning from above.

The equations were computed from data obtained by simulation of thinnings in actual stands.

Thinnings are not performed if the current DMR exceeds the value of DMLEV read in by data card type 4 . A DMLEV value of 3.0 is usually appropriate for the host-parasite combination described here.

9. Stand Volume Equation

Volumes per acre in total cubic feet inside bark from groundline to tip (TCF) are computed from stand volume equations. Tree volume equations for southwestern ponderosa pine (Myers
1963) were used to obtain plot volumes for the regression analysis. Two statements for TCF appear in subroutine SWVOL because the relationship is not linear over the range of $D^{2} \mathrm{H}$ that can appear in yield tables.

Total cubic feet is the only volume computed directly by SWYLD2. Volumes in other units are obtained from total cubic volume and appropriate conversion factors, as explained below.

10. Volume Conversion Factors

Volumes in total cubic feet can be converted to merchantable cubic feet, board feet, square feet of veneer, weight per acre, or other units. Appropriate factors are used to make conversions. Subroutine SWVOL converts total cubic volumes to merchantable cubic feet (with FCTR) and to board feet Scribner Rule (with PROD). Footnotes to the yield tables give minimum limits for tree d.b.h. and top diameter.

Plot data used to compute total cubic feet also provide volumes in other units of interest (Myers 1963). The quantity of each unit per total cubic foot is determined separately for each plot. These ratios are then used to obtain equations for FCTR and PROD. Three equations for FCTR and two for PROD are included in SWVOL to simplify regression analysis.

Ratios are not computed for the smallest average stand diameters because the factors vary greatly in such stands. This variation has no important effect on yield table construction. Merchantable material will not be a part of thinnings until stand diameter is large enough for conversion factors to be reliable.

User-Supplied Information

Values of 38 variables that describe stand conditions or control program execution are read from data cards supplied by the program user. Twelve of these values must be zero or blank, if the data apply to an even-aged stand. Names, input formats, sequence for punching, and definitions of these variables are given in the tabulation headed Order and Contents of the Data Deck. Twenty variables that require management decisions or the collection of field data are described in detail in this section.

1. Initial Stand Measurements

Values for AGEO, DBHO, HTSO, and DENO on data card type 5 are obtained in one of two

| $\begin{array}{c}\text { Card } \\ \text { type }\end{array}$ | $\begin{array}{c}\text { Number of } \\ \text { cards }\end{array}$ | $\begin{array}{l}\text { Variable } \\ \text { name }\end{array}$ | Columns | Format | Description of variable |
| :---: | :---: | :---: | :---: | :---: | :---: |$]$| NSTND |
| :--- |
| 1 |

\(\left.$$
\begin{array}{llll} & \text { PINF(1) } & \text { F6-40 } & \text { F5.1 }\end{array}
$$ \begin{array}{l}Percentage of overstory trees infected by

dwarf mistletoe at age AGEO(1).\end{array}\right]\) FTART(1)	Age of overstory when dwarf mistletoe infec-
tion begins. Enter number larger than largest	
REGN if infection will not occur during the	
rotation.	
Age of understory at first entry in the yield	
table.	
Average d.b.h. of the understory at age	
AGEO(2).	

ways, depending on the purpose of the computer run. These stand descriptors are printed on the first line of the yield table; thus they report initial conditions. Ways of obtaining the data are:
a. When the purpose is to estimate performance of a future or hypothetical managed stand: examine numerous young stands to determine the average d.b.h. and height attained at various ages for each site class and for each of several stand densities. The objective is to describe stand conditions at some selected age (AGEO) if regeneration and subsequent growth and mortality progress according to some goal set for the site class and density.
b. When the purpose is to estimate future performance of an actual stand: obtain age, average d.b.h., average dominant and codominant height, and number of trees per acre by usual stand inventory procedures.

AGEO is the average age of living dominant and codominant trees. For an understory, age of potential dominants and codominants is determined separately from age of the overstory. AGEO is the first age that will appear in the yield table for each stand and, unless a delay is called for, will be stand age at time of the first cutting computed by SWYLD2. AGEO for actual stands is age at time of inventory. In the case of hypothet-
ical stands examined to establish management principles, AGEO should usually be age at time of first thinning.

DBHO is average d.b.h. of all live trees at age AGEO, regardless of crown class. For two-storied stands, DBHO is determined separately for each story. DBHO should be determined to the nearest 0.1 inch. Average d.b.h. is the diameter of the tree of average basal area.

HTSO is the average height of live dominant and codominant trees of an even-aged stand, or of a single story of a two-storied stand. As with AGEO, an understory value is obtained from trees judged to be potential dominants and codominants. HTSO may be omitted from data card type 5 if a hypothetical stand with a density below growing stock level 160 is being examined. Values for HTSO are computed if zero or blank fields appear on the data cards. For actual stands, measured heights should be used to account for the past effects on height growth of stand density and disease.

DENO is the number of live trees per acre in an even-aged stand or in each story of two-storied stands. All trees over 4.5 feet tall are counted, regardless of crown class. These are the same trees used to obtain DBHO.

2. Initial Dwarf Mistletoe Conditions

Three situations involving time of initial infestation can be examined for actual or hypothetical stories or stands. For each, a non-zero value of one variable is punched in data card 5 and the values of the other two disease variables are zero or blank. The situations are:

1. The story or stand is already infested at age AGEO, the first age in the yield table. Either the DMR or the percentage of trees infected is known.
2. Infestation begins at any time before or during the period simulated, and story or stand age at this time is known.
3. The story or stand remains healthy throughout the period simulated.

An infestation already present at age AGEO is described in either of two ways:

1. DMR-average dwarf mistletoe rating (see fig. 1) at age AGEO of all trees of an actual story or stand or a selected value assigned to a hypothetical stand. A nonzero value of DMR on the data card causes statements that compute initial DMR to be bypassed.
2. PINF-percentage of the live trees infected with dwarf mistletoe in an actual or hypothetical story or stand at age AGEO. DMR is later computed from PINF.

An infestation that begins at a known stand or story age, before or after AGEO, is described by the variable START. This is the average age of the dominant and codominant trees when the story or stand is first infected. Refer to item 7 of "Program Relationships" for a detailed definition of START. Preferably, START should be used only when simulating growth in hypothetical stands. DMR is computed from START only if both the DMR and PINF fields of data card type 5 are zero or blank.

All computations of DMR must be bypassed if the story or stand remains mistletoe-free throughout the period simulated. This is done by entering zero values for both DMR and PINF and a value for START greater than the largest value of the three REGN variables. For example, if with 2 -cut shelterwood REGN(1) equals 110, REGN(2) equals 130, and REGN(3) equals 0 , then START must have some value greater than 130 .

3. Site Index

The site index value read in for each stand is based on mean height of dominant and codominant trees at a base age of 100 years. Tables and graphs published by Meyer (1938) provide the relationships used to determine each index.

Site index values used in growth computations for actual stands must be reliable indicators of relative productivity. Trees in dense stands or with any disease or deformity severe enough to reduce height growth do not furnish reliable information. In such cases, site index can be obtained from suitable nearby stands or from soil variables.

4. Intermediate Cuts

Seven variables on data card type 4 control the execution of intermediate cuts. Eleven fields are provided for them, since four variables require separate entries for each story of two-storied stands. The purpose of each variable is as follows:

1. ICUT-control of the number of noncommercial thinnings that will be simulated. An input value of zero causes all noncommercial thinnings to be bypassed. Assign ICUT a value of one if only the initial thinning can be noncommercial. An input value of two results in all scheduled
thinnings being performed, regardless of how many may be noncommercial. Minimum volumes for commercial cuts are entered as COMBF and COMCU on data card type 2. Variables COMBF and COMCU must be assigned values of at least 1.0, regardless of the value of ICUT.
2. THIN-growing stock level for initial thinning in healthy stands. Levels are designated in the manner shown in figure 2. They will frequently be 80,90 , or 100 for southwestern ponderosa pine, but may range from 40 to 160.
3. DMLEV-maximum dwarf mistletoe rating above which intermediate cuttings will not be performed. A value of 3.0 will often be used for ponderosa pine. Experience indicates that thinnings cannot materially reduce effects of the infestation or improve stand growth when DMR exceeds 3.0.
4. JCYCL-interval between intermediate cuts, as punched on card type 4. JCYCL is later redefined in subroutine CUTS when an interval between regeneration cuts is needed. Values assigned to JCYCL must be a multiple of the projection period of the growth and mortality equations (RINT). For example, the equations of SWYLD2 project d.b.h. and other measures for 10 -year periods, and RINT has a value of 10.0 . The value of JCYCL on card type 4 can therefore be $10,20,30$, etc. years.
5. DSTY-growing stock level for intermediate cuts after the first cut. Discussion of choice of level for THIN, above, also applies to DSTY. Levels assigned to THIN and DSTY may be equal.
6. DELAY-number of years between the first age reported in the yield table (AGEO) and age of the story or stand at time of the first simulated cutting. The value of DELAY must be a multiple of the value of RINT. The variable DELAY schedules the first cut but does not assure that it actually will be performed. Restriction on noncommercial thinning, basal area less than the growing stock goal, or a value of DMR larger than DMLEV will prevent or postpone thinning regardless of the value of DELAY. Initial cutting will take place at age AGEO if DELAY is assigned a value of zero and if other restrictions on cutting do not apply.
7. IOPT-control on whether or not the initial thinning in an infested stand will be from above. Thinning from above emphasizes, but is not restricted to, removal of the larger trees. Such cutting is usual practice in infested stands because the larger trees usually support the greater amounts of dwarf mistletoe. IOPT is assigned a value of zero if initial thinning is to be from above and a value greater than zero if the initial thinning is to be from below. Regardless of the value of IOPT, thinning will not be performed unless all restrictions on thinning are met.

5. Regeneration Cuts

Entries on data card type 6 determine the method of regeneration to be simulated, stand age when each cut will be performed, and the basal area to be left for seed trees or shelterwood. Stand ages at regeneration cuts must equal the sum of AGEO plus appropriate multiples of the value of RINT. Regardless of regeneration method, REGN(1) will never be assigned a value of zero on data card type 6.

For clearcutting, stand age at time of final cutting, or REGN(1), is the only entry needed on the card.

Seed tree cutting requires that values for REGN(1), VLLV(1), and REGN(2) be punched in card type 6. REGN(1) is the stand age at first regeneration cutting, and REGN(2) is stand age when the seed trees are removed. The interval between AGEO and REGN(1) and the interval between REGN(1) and REGN(2) must each be a multiple of RINT. VLLV(1) is the percentage of the growing stock goal, DSTY, to be left for seed trees. VLLV(1) is entered as a decimal.

Shelterwood cuttings are controlled in the same manner as seed tree cuts except that up to three regeneration cuts are possible. The restrictions on formats and intervals described above also apply here. Two-cut shelterwood requires that values be assigned to the same three variables used with the seed tree method, described above. For three-cut shelterwood, REGN(1) and REGN(2) are stand ages at the two removal cuts and REGN(3) is stand age at the final cut. VLLV(2) is the percentage of the shelterwood basal area left at age REGN(1) that will be retained at age REGN(2). For example, assume that DSTY is 100 square feet and that $\operatorname{VLLV}(1)$ and $\operatorname{VLLV}(2)$ are 0.5 and 0.4 , respectively. Basal area of the shelterwood at age REGN(1) will be 50 square feet. Residual basal area at age REGN(2) will be 20 square feet.

Local Modifications

This section may be skipped by readers who are not modifying SWYLD2 for local use. If the adaptation is to apply to healthy, single-storied stands only, it will be more efficient to modify program PONYLD (Myers 1971) rather than SWYLD2.

Complete modification of SWYLD2 for other host-dwarf mistletoe combinations, regions, thinning specifications, and utilization standards requires replacement of 65 statements that compute values of 24 variables. The statements are described in the section headed "Program Relationships." The 65 replacements require that coefficients for 46 different relationships be computed. The difference of 19 is due to duplication among the 65 replaceable statements. The 46 different relationships include several cases where, for simplicity of regression analysis, a single variable is computed by two or three separate relationships.

The 65 replaceable statements described below do not include the IF statements needed to select one appropriate statement from among the two or three provided for some variables. The number of IF statements to be modified or removed will depend on the results of each regression analysis.

Statements to be replaced for complete modification are in six subroutines, as follows:

FIRST has seven replaceable statements: four for DMR, two for HTSO, and one for HTPCT.

CUTS has eight replaceable statements: three for GSLEVL, two for DELDMR, two for ADDHT, and one for PINF.

PROJ has 23 replaceable statements:

Variable	Statements	Variable	Statements
DMR	6	DIE	1
DENT	1	OUT	1
YDM	4	TEMH	2
GSLEVL	3	HTNEW	1
DBHO	2	PCT	1
DINC	1		

The first four statements for DMR contain the same coefficients as the four in subroutine FIRST. The last two statements for DMR have weighting factors of 0.5 and 1.0 that could vary by species. The IF statement using DENT, immediately following the statement labeled 20 , contains a constant that may be species-specific. Three statements for YDM resemble three of the statements for DMR, but do not include the variable TIME. The other statement for YDM sets a constant value of 0.08 that may be speciesspecific. Statements for GSLEVL are the same
in PROJ and CUTS. Two statements for TEMH have the same coefficients as the statements for HTSO in subroutine FIRST. The remaining seven replaceable statements in PROJ are not duplicated in PROJ or in other subroutines.

SWVOL has seven replaceable statements: two for TCF, three for FCTR, and two for PROD. None of them are duplicated elsewhere in the program.

SWCUT1 has 14 replaceable statements, none of which are duplicated elsewhere. Long statements for DBHE and PDBHE (log-log relationship for DBHE) each appear twice. Two short identical statements for DBHE just before the statements labeled 20 and 70, contain a constant 0.5 that may be species-specific. With other host-parasite combinations, thinning from below in diseased stands may not produce half the change in d.b.h. that thinning from below produces in healthy stands. The remaining eight replaceable statements are not duplicated in SWCUT1 or elsewhere. They include one statement each for BREAK and BUST, three statements for SQFT, and three statements for DBHP.

SWCUT2 has six replaceable statements, four of which are duplicated elsewhere. The three equations for GSLEVL have the same coefficients as those in CUTS and PROJ. The equation for DBHE just before the statement labeled 30 also appears in SWCUT1. The two long statements for DBHE (one as PDBHE for a \log-log relationship) compute the reduced d.b.h. after thinning from above, and do not appear elsewhere.

Seventeen statements relating to stocking need not be replaced if the method of expressing stocking levels shown in table 1 and figure 2 is retained. These 17 include nine statements for GSLEVL in CUTS, SWCUT2, and PROJ. Other retainable statements are in SWCUT1: three for DBHP, one each for BREAK and BUST, and three for SQFT.

Several statements in subroutine TABLE that write table headings and footnotes must be modified to conform to changes in species, units of measure, or utilization standards.

A Sample Problem

The problem described below demonstrates most of the computations made by SWYLD2 and the printed results obtained. It illustrates some of the questions that may be asked and the information that will be provided. For brevity, only three of the many possible stand conditions are examined. The example also serves as a test problem for use in adapting the source program to locally available computing facilities.

Assume a forest composed of even-aged and two-storied stands of ponderosa pine with differing degrees of infestation by dwarf mistletoe. Some of the many questions the manager of such a forest would have and their relation to management include:

1. What growth can be expected in a hypothetical even-aged stand, without dwarf mistletoe, that is to be managed according to a selected set of management controls? Initially, many yield tables would be produced to examine the effect of variations in length of cutting cycle and other controls on yields and on the number of precommercial thinnings required.
2. How would this performance be affected by a dwarf mistletoe infestation that started when the stand was 10 years old? Tables of this type provide information on impacts of the disease, free of the accidents of past history of actual stands.
3. What yields can be expected from an existing two-storied stand infested with dwarf mistletoe if the overstory is removed now? This and the next question relate to determination of the best way of converting an undesirable stand condition to something better.
4. What would be the effect on yield if question 3 were modified to delay overstory removal for 20 years?

For purposes of this example, assume that the values of several management controls have been standardized for the working circle. Cutting cycle length is 20 years. Initial thinnings in young stands reduce density to growing stock level 120. Other intermediate cuts are to growing stock level 90 . Only the first thinning may be noncommercial. Minimum commercial volumes per acre are 320 cubic feet to a 4 -inch top and 1,500 board feet. Regeneration is by two-cut shelterwood with a removal cut at stand age 110 and the final cut at age 130. The manager expects that his procedure for regeneration cuts will result in a new stand with 950 trees per acre at age 30. This new crop will average 4.8 inches in diameter on areas of site index 70 .

The data deck consists of the 18 cards shown in figure 3. The first two cards shown are the type 1 and type 2 cards, respectively, read by the main program. The next four cards are the type 3, 4,5 , and 6 cards used to answer the first of the questions listed above. The remaining 12 cards are the type $3,4,5$, and 6 cards for the other three questions.

Yield tables produced by SWYLD2 to answer the four questions given, and with the data deck described above, are reproduced in appendix 2.

Yield tables can be used in many ways to assist in decisionmaking. For many purposes, yields of healthy stands will be desired so that

COLUMN NUMBERS

12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 3.-Data deck for sample problem.
long-range goals can be determined. Yields, number of noncommercial cuts, number of scheduled cuts that cannot be made, and size of the average tree are some of the values produced. Money yields and rates earned can be computed if necessary data on costs and stumpage values are available. Stand ages at culmination of mean annual increment, and rates earned can help the manager determine suitable rotations for his working groups.

With a disease as important as dwarf mistletoe, it is also necessary to project the growth of diseased stands. Two important types of information can be obtained from yield tables that include disease effects. A comparison of projected yields of healthy and diseased stands indicates the impact of the disease on the timber resource. Yield tables for actual diseased stands indicate the types of treatment that may be practical, and give an estimate of the expected benefits.

Literature Cited

Andrews, Stuart R., and John P. Daniels. 1960. A survey of dwarfmistletoes in Arizona and New Mexico. U.S. Dep. Agric. For. Serv., Rocky Mt. For. and Range Exp. Stn., Stn. Pap. 49, 17 p. Fort Collins, Colo.
Hawksworth, Frank G.
1961. Dwarfmistletoe of ponderosa pine in the Southwest. U.S. Dep. Agric., Tech. Bull. 1246, 112 p.
Hawksworth, Frank G., and Arthur A. Lusher.
1956. Dwarfmistletoe survey and control on the Mescalero-Apache Reservation, New Mexico. J. For. 54(6):384-390.

Hawksworth, Frank G., and Clifford A. Myers.
1973. Procedures for using yield simulation programs for dwarf mistletoe-infested lodgepole and ponderosa pine stands. USDA For. Serv. Res. Note RM-237, 4 p. Rocky Mt. For. and Range Exp. Stn., Fort Collins, Colo.
Korstian, Clarence F., and W. H. Long.
1922. The western yellow pine mistletoe: effects on growth and suggestions for control. U.S. Dep. Agric. Bull. 1112, 35 p.
Lightle, Paul C., and Frank G. Hawksworth.
1973. Control of dwarf mistletoe in a heavily used ponderosa pine recreation forest: Grand Canyon, Arizona. USDA For. Serv. Res. Pap. RM-106, 22 p. Rocky Mt. For. and Range Exp. Stn., Fort Collins, Colo.

Meyer, Walter H.
1938. Yield of even-aged stands of ponderosa pine. U.S. Dep. Agric., Tech. Bull. 630, 59 p.
Myers, Clifford A.
1960. Estimating oven-dry weight of pulpwood in standing ponderosa pines. J. For. 58(11): 889-891.
Myers, Clifford A.
1963. Volume, taper, and related tables for southwestern ponderosa pine. U.S. For. Serv. Res. Pap. RM-2, 24 p. Rocky Mt. For. and Range Exp. Stn., Fort Collins, Colo.
Myers, Clifford A.
1971. Field and computer procedures for man-aged-stand yield tables. USDA For. Serv. Res. Pap. RM-79, 24 p. Rocky Mt. For. and Range Exp. Stn., Fort Collins, Colo.
Myers, Clifford A.
1974. Computerized preparation of timber management plans: TEVAP2. USDA For. Serv. Res. Pap. RM-115, 72 p. Rocky Mt. For. and Range Exp. Stn., Fort Collins, Colo.
Myers, Clifford A., Frank G. Hawksworth, and Paul C. Lightle.
1972. Simulating yields of southwestern ponderosa pine stands, including effects of dwarf mistletoe. USDA For. Serv. Res. Pap. RM-87, 16 p. Rocky Mt. For. and Range Exp. Stn., Fort Collins, Colo.
Myers, Clifford A., Frank G. Hawksworth, and James L. Stewart.
1971. Simulating yields in managed, dwarf mistletoe-infested lodgepole pine stands. USDA For. Serv. Res. Pap. RM-72, 15 p. Rocky Mt. For. and Range Exp. Stn., Fort Collins, Colo.
Myers, Clifford A., and Edward C. Martin.
1963. Mortality of southwestern ponderosa pine sawtimber after second partial harvest. J. For. 61(2):128-130.

Pearson, G. A.
1938. Lighter cuts and larger yields in ponderosa pine. J. For. 36(8):779-789.
Pearson, G. A.
1939. Mortality in cutover stands of ponderosa pine. J. For. 37(5):383-387.
Sperry, O. E.
1934. The rate of growth of the ponderosa pine in Estes Park, Colorado. Torrey Bot. Club Bull. 61:19-34.
Walters, James W.
1975. Evaluation of a dwarf mistletoe survey procedure. USDA For. Serv., For. Insect and Dis. Manage. Rep. R-3, 75-23, 7 p. Southwest. Reg., Albuquerque, N.M.

APPENDIX 1
 Listing of Program SWYLD2

PROGRAH SHYLOZ
（INPUT，OUTPUT，TAPE5＝INPUT，TAPE G＝OUTPUT）
oEfINITIONS of VARIABLES.
SUBSCRIPTS -
$I=1$ FOR OVERSTORY, $I=2$ FOR UNOERSTORY.
$1=1,2$, OR 3 TO NUNBER REGENERATION GUT.
$K=A G E$ CLASS AT TIME OF OPERATION.
K = age class at tiae of operation.
AOOMTIII = INCREASE OR OECREASE IN AVERAGE STANJ HEIGHT FROM
PARTIAL GUTTING.
AGEOII) = INITIAL ANO SUBSEQUENT AGES IN YIELO TABLE。
aASO(I) = BASAL AREA PER ACRE BEFORE PARTIAL CUTTING
BASTII) = BASAL AREA PER ACRE AFTER PARITAL CUTIING.
GREAK = POINT HHERE GROHING STOGK RELATIONSMIP JF OIAMETER ON
BASAL AREA IS BROKEN INTO SEGYENTS.
BUST = POINT HMERE GROWING STOGK RELATIONSHIP OF OIAMETER ON
CUST BASAL AREA IS BROKEN INTO SEGMENTS.
CBAS $I I, K$) $=$ BASAL AREA REMOVEJ.
CBF (I,K) = M BO. FT. REMOVEO.
COEN (I,K) = NUMBER OF TREES REMOVEO
CHNG = PERIOOIC INCREASE IN AVERAGE OOM ANO COJJ HEIGMT,
CMCF $(I, K)=$ MERCH. CU. FT. REMOVEO.
GOMEF $=$ MINIMUM COMMERCIAL CJT, BOARO FEET.
COMCU = MINIMUM COMMERCIAL CUT, CU. FT.
CTOT (I,K) = TOTAL GU. FT. REMOVEO.
OBHE = TEMPORARY VARIABLE FOZ AVERAGE STANO O.B.H. AFTER PARTIAL
CUTTING.
OBMO (I) = AVERAGE STANO O.B.H. BEFORE PARTIAL CJTTING.
OBMP = AVERAGE O.B. H. FROM GROHING STOCK LEVEL JURVES.
OELAY(I) = NUBER OF YEARS AETHEEN TNIRTIAL GUITING*
YII = NUMBER OF YEARS JETHEEN INITIAL AGE ANO FIRST PARTI
CUTTING, IF FIRST PARTIAL CUTIING IS NOT OONE AT ONCE.
OELOMR = CHANGE IN O.M.R. JUE TO PARTIAL CUTTIVG
OENO(I) = TREES PER ACRE BEFORE PARTIAL GUTTING.
oie = trees lost in oiseaseo stanos in rint years, in percent.
OINC = PERIOOIC INCREASE IN AVERAGE O.B. M. IN STANOS WITM O.M.२.
GREA TER THAN S.5.
FIRST ANO FOR REGENERATI ON CUTS GY SEEO TREE OR SHELTERHOOO.
OMRE $=$ O.A.R. ABOVE WHICH NO INTERMEOIATE CUTIING WILL OE ONE.
OHRT (I) = MAXIMUH INFECTION EXPECTEO IN STANOS AFTER PARTIAL
CUTTING.
OSTY(I) = GROWING STOCK LEVEL FOR INTERMEOIATE JUTS AFTER TME
FCTR = FACTOR TO CONVERT TOTAL CU. FT. TO MERCH. CU. FI.
GSLEVL = CURRENT ACTUAL GROHING STOCK LEVE
mtnen = estimateg average tree meight in stanos with growing stock
HTPCT LEVEL GREATER TMAN 160.
HTPCT = PERCENTAGE OF POTENTIAL HEIGMT GROHTH AGTUALLY ATTAINED
MY INFESTEO STANOS.
MTSO(I) = AVRAGE TREE HEIGMT BEFORE PARTIAL CUTTING
icut = flag hith input value oefineo belon to control tminnings.
O- NO NONCOMMERC IAL THINNINGS ALLOHEO.
1 - PRECOMMERCIAL INITIAL THINNING ALLOWEJ. NONCOMYERCIAL
SUQSEQUENT THINNINGS NOT ALLOHEO,
2 - ALL TMINHINGS HAY BE NONCOMHERCIAL
IKII) = NUMGER OF GROHTM PROJECTION PERIOOS IN JCYCLIII.
IOPTII) = FLAG TO ALLOH (0) OR PREVENT (1) INITIAL TMINNING FROM
above in Stanas mith oharf mistletae.
IREGNIII = FLAG hith a value of one if a regeneration cut is being
PERF ORMEO.
ISANS(I) = FLAG HITM A VALUE EQUAL TO THE NUMBER OF GROWTM
(I) $=$ FLAG WITH A VALUE EQUAL TO THE NUMAER OF GROWTM
PROJEGIONS SINCE A CJT WHICH REOUCES O.H. R. TO ZERO IN
YCL (I) = INTERVAL BETNEẼY INTERHEOIATE OR REGENERATION CUTS.
KOELII) = NUMEER OF PROJECTION PERIOOS BEFORE IVITIAL PARTIAL
CUTTING IS PERFORHEO.
KOL = COUNTER TO CONTROL STORAGE IN ARRAYS PRINIEO IN YIELO TABLES
KOUNTII) = NUMBER OF GROWTH PROJECIIONS SINCE LAST CUT.
KPER $=$ NUMBER OF PROJECTION PERIOOS FROH INITIAL AGE TO CURRENT
KSTEPIGE.
TEPIII = INOICATOR WITM VALJE OF ONE IF CURRENT PARTIAL CUTTING
IS FROM BELOW ANO THO IF CURRENT PARTIAL GJTTING IS FRON
ABOVE.
KTRII) = INOICATOR WITH VALUE GREATER THAN ZERO IF A SCHEDULED
OMLEV, STANO IS ALREAOY AT OR OELOH SPECIFIEO STECKING, OR
HINNING OIO NOT MEET Y APOSEO HERCHANTABILITY STOCKING, OR
NOPE(L) = OESCRIPTION OF TEST CONOITIONS FOR STANO OUTPUT.
NSINO = NUABER OF STANOS BEINS PROCESSEO BY RUN.
OUT = PERCENTAGE MORTALITY IN MEALTMY STANOS.
PCT = PERCENTAGE OF POTENTIAL PERIOOIC HEIGMT GROHTM ACTUALLY
PINF (I) = PERCENTAGE OF TREES INFEGTEO WITM OWARF MISTLETOE.
PRET = PERCENTAGE OF TREES RETAINEO AFTER PARTIAL CUTIING.
PROD = FACTOR TO CONVERT TOTAL CU. FT. TO BO. FT.
REGN(J) = STANO AGE WHEN REGENERATION CUT J OCCJRS
RESTI (I) = GROWING STOCK LEVEL FOR CURRENT INTERMEOIATE CUT.
RINT = NUHBER OF YEARS FOR WHICH A SINGLE PROJEJTION IS MAOE
ROTAOS = AGE OF OVERSTORY AT TIHE OF FINAL REMOVAL IF OVERSTORY IS
TO BE RETAINEO PAST LARGEST REGNIJ.

SBAS $=$ TOTAL BASAL AREA OF STANO，INCLUOING BOIT STORIES． SBOIII＝SUM OF BOARO FEET FROM ALL GUTS WITM YLELO OF COMBF OR LARGER． SITE＝SITE INOEX． SHCIII＝SUM OF MERCM．CU．FT．FROM ALL CUTS WITH YIELO OF COMGU OR LARGER． SQFT＝GASAL AREA AS A FUNCTION OF AVERAGE O．B．H．FOR GROHING STOCK LEVEL 80. STARTIII＝AGE OF STORY AT TIME OF INITIAL INFESTION． STFII）＝SUM OF TOTAL CU．FT．FROH ALL GUTS． STNO＝STANO IOENTIFICATION NUMBER． TAGE（I，K）＝STANO AGE AFTER GUTTING． TBAS（I，K）＝BASAL AREA AFTER CUTTING． TCF＝TEMPORARY VARIABLE FOR TOTAL CU．FT． TOEN（I，K）＝NUHBER OF TREES AFTER CUTTING． TOM II，K）＝AVERAGE O．B．H．AFTER CUTIING． TOMRII；K）＝OWARF MISTLETOE INFEGTION RATING AFTER CUTTING． TEMH（L）＝TEMPRORAY VARIABLES USEO IN COMPUTATION OF PERIOOIC MEIGHT GROWTH． THINII）＝GROHING STOCK LEVEL FOR INITIAL THINYING，HEALTHY STANOS． THT（I，K）＝AVERAGE HEIGHT AFTER GUTTING． TIME＝NUMBER OF YEARS STANO INFESTEO BY OHARF MISTLEIOE． THCF（I，K）$=$ MERGH．CU．FT．AFTER CUTTING． TTOT（I，K）$=$ TOTAL CU．FT．AFTER CUITING． UAGE（I，K）＝STANO AGE BEFORE GUTTING． UBF（I，K）＝M BO．FT．BEFORE CUTIING． UOEN（I，K）＝NUMBER OF TREES BEFORE CUTIING． UOM（I，K）＝AVERAGE O．B．H．BEFORE CJTTING． UOHR（I，K）＝OHARF HISTLETOE INFECTION RATING BE＝ORE CUTTING． UHT（I，K）＝AVERAGE MEIGMT BEFORE CUTTING． UMGF（I，K）$=$ MERGH．GU．FT．BEFORE GUTTING． UTOT（I；K）＝TOTAL CU．FT．AEFORE GJTTING． VLLV（J）＝PERGENT OF PREVIOUS OLEV（I）TO BE LEFT AT REGNIJ）， ENTEREO AS A OEGIMAL． YOM＝ANNUAL INCREASE IN OMR IN INFESTEO STANOS．
СОМноN／BLKA／BA，ОВM，ОЕN，HT，BOF，CFM，TCF COMMON／BLKB／日AST（2），ОBHO（2），ОBHT（2），OENO（2），OEVTI（2），OHR（2），PRET， 1REST（2），ITH，MOL，OMLEV，IREGN（2），PINF（2），ISANS（2）
COMMON／BLKC／OSTY（2），KTR（2），STNO，SBO（2），SITE，SHこ（2），STF（2）， 1THIN（2），VARIZZ），COMBF，COMCU，START（2），NOTE（16），I：UT
COMMON／BLKO／CBAS（2，201，TBAS（2，20），UBAS 2,20$)$ ，CBF（2，20），TBF（2，20），
COMMON／BLKE／AOOHT（2），AGEO（2），BASO（2），OELAY（2），JLEV（2），OHRT（2）， IMTSO（2），MTST（2），IOPT（2），JCYCL（2），JOEN（2），KOL．KSTEP（2），REGN（3）， ZRINT，ROTA，TEMH（2），TIHE，VLLV（2），ROTAOS
COMMON／8LKF／IK（2），KOUNT（2），53AS，KPER，KOEL（2）
$\begin{aligned} & \text { NSTNO }=0 \\ & \text { OO } 100,16,18 \\ & \text { VAR } J=16,18 \\ & 10 \text { CORN INUE } 0.0 \end{aligned}$
reao number of stanos to be processeo ano projectioy length froh caro type one．
REAO（5，zo）nstmo，RINT 20 format（15，F5．0） IFINSTNO－LE．OI GO TO 120 VAR（16）＝RINT
reao minimum cohhercial cuts from caro type two． reao（5，30）concu，COHef 30 format（2F5．0） var（17）$=$ COMBF Var（18）$=$ camcu
execute program once for each itano． $00110 \mathrm{KaN}=1$ ，NS TNO Call begin
CHECK FOR UNWANTEO ZEROS OR BLANKS IN OATA． ```\(0040 \quad \mathrm{I}=1,7,2\) IFIVARII LE. O.0) GO TO 90 40 CONTINUE \(0050 \quad \mathrm{I}=13,19\) IFIVAR(I) LE. O.0) GO to 90 so continue```
compute values for first entries in rielo tables． CALL FIRST SBAS＝BASO（1）＋BASO（2）
Rr

```
G
    LIM= (ROTA - AGEO(I)) / RINT * 1.5
    0070 K=1,LIM
    KPER = K
        SAAS = BAST(1) + BAST(2)
        CALL PROJ
    %o ContInue
% wRITE YIELD TABLES FOR A STANO.
        OO BOI=1;2
        MOL = I IABLE
    3O CONTINUE
C
program control goes here if any unhanteo zeros or blanks are founo
in oata.
90 WRITE {6.100) STNO
    T [1H1,///.10X,73HEXECUTION STOPPEO BEGAUSE OF NEGATIVE OR LE
        IRO ITEN ON OATA CAROS OF STANO,F4.OI
    10 CONIINUE
    HRITE 16,130
    130 FORMAT (1H1,///%,30X,52HEXECUTION STOPPEO BECAUSE OF ILLEGAL VALUE
    160 STOP OFTNO.1
    ENO
        Subroutine begin
c
InItIalize stano variables ano reao in stand oata.
    COHMON/BLKB/BAST(2),OBHO(2),OBHT(2),OENO(2),DENT(2),UHR(2),PRET,
    IREST(2),ITM,HOL, OHLEV,IREGN(2),PINF(2),ISANS(2)
    COMHON /BLKC/OSTY(2),KTR(2).STNO.SBO(2).SITE,SM`(2),STF(2).
    ITHIN(2),VAR(22),COMBF, CONCU.START(2),NOTE(16),ISUT
    COMHON /BLKO/CBAS(2,20),TBAS(2,20),UBAS (2,20),CBF(2,20),TEF(2,20),
    1UBF(2,20),COEN(2,20),TOEN(2,20), VOEN(2,20),CHCF(2,20),THCF(2,20),U
    304(2,201, UOY(2,20),THT(2,20),UHT(2,20),UOMR(2,201,TOMR(2,20)
    COMMON /BLKE/AODHT(2),AGEO(2), BASO(2),OELAY(2),JLEV(2),OMRT(2),
    IHTSO(2),HTST(2),IOPT(2),JCYCL(2),JOEN(2),KOL,KSTEP(2).REGN(3),
    2RINT,ROTA, TEMH(2),TIME,VLLV(2),ROTAOS
    COHMON /BLKF/IK(2),KOUNT(2),SBAS,KPER.KOEL (2)
    0010 J=1,15
1 0
    O CONTINUE
    00 20 I=1,2
    \triangleOOHT(I)=0.0
    BASO(I) = 0.0
    BAST(I) = 0.0
    lol
    OELAY(I) = 0.0.0
    OENO(I) =0.0
    0ENT(I) = 0.0
    OLEV(I) =0.0
    aHRT(I) =0.0
    OMRT(I) = 0.0
    HTSO(I) = 0.0
    HTST(I) = 0.0
    IOPT (I) =
    IREGN(I)}=
    JCYCL(I) = 0
    KOUNT(I)= = 1000
    KSTEP(I) = 
    KTR(I) = 0
    MINF(I)}=0.
    S80(I) = 0.0
    SMC(I) = 0.0
    STARTIII =0.0
    STF(I) = 0.00
    MIN(I) = 0.0
    20 continue
    00 30 I=1,3
    REGN(I)= 0.0
    3o CONTINUE
    00 40 I= 1,2
    CAAS(I,J)= = = 0,0
    CBF(I,J)=0.0
    COEN(I.J)=0.0
    CMCF(I,J)=0.0
    CTOT(I;J)=0.0
    TAGE(I,J)=0.0
    BAS(I,J)=0.0
    TOEN(I,J) = 0.0
    TOH(I;J)=0.0
    TOMR(I,J)=0.0
    THTII,J)=0.0
    THCF(I,J) = 0.0
    TOT(I,J) = 0.0
    UAGE (I,J) = 0.0
    JBF(I,J)=0.0
    UOEN(I,J) =0.0
    UOH(I,J) = 0.0
    UOMR(I,J)=0.0
```

OMR（1）$=0.120055$－TIME -0.961031 －TIME／OEVO（1）－ 0.003420 ． 1 TIHE＊S
COTO TO
60 IFIDENO（2）．GT．3000．01 GO TO 65
OHRI2）＝0．087923．TIME－ 0.000018 ．TIME OEVOIZ）＋0．000051 TIME－OMR（1）OMR（1）OENO（1）
Go roro
65 OMR（2）$=0.0441757$ ．TIME $=0.0000034$ • TIME－JENO（2）＊

IFIOMRII）．GT：6．0）OMRII）$=6.0$
IFIOMR（I）GI． 0.0 ）STARTII）$=10000.0$
compute initial average height if not reporteo．
100 1FMISO（I）．GI． 0.01 GO TO 130
TF（AGEO（I）．GT．55：0）GO TO 110
10 MrSO（I）$=0.59947-61.5019$ ，AGEOI
1 20.52528 ．ALOGIOLSITEI／AGEOIII
MTSO（I）$=10.0$ ．4 HTSOC（I）
MTPCT $=1.073-0.0367$ OMRCI
IFISTPCT
．GT． 1.01 MTPCT $=1.0$
IF（ATPCT－GT： 1.0 ）MTPCI
Cohpute initial basal area ano volumes．

$8 A=$ BASO（II
$0 B 4=0 B 40(I)$
DBM $=0840(1)$
$0 E M$
HT $=$ MTSO（II）
CALL SHVOL
StORE VALUES FOR PRINTIMG．
UAGEII，KOLI $=$ AGEOII）＋ 0.5
MAX＝OMR（I）$=10.0 * 0.5$
UOMR（I，KOL）$=$ VOMR（I，KOL） 0.1
UOEN（I．KOL）$=$ OENOIT）
max $=$ BASO（I）＊ 0.5
UBAS（I，KOL）$=$ MAX
UOM（I，KOL）$=$ OBMOLI
MAX＝HISUIII＋O． 0 （I）
UHIII，KOL）＝MAX
MAX $=1$ TCF $: 0.11: 0.5$
UTOT $(1, K O L)=$ MAX： 10

UMCF $11, K O L$ ）$=$ HAX 10^{5}

Compute values of meeoeo control variables．
IKII）$=$ JCrCLIII ，IRINT
ITEM $=$ TREGN（I）－AGEOIII），₹INT • 0.5

REST（I）$=$ TMIM（I）
OLEV（II $=$
40 OLEVIII
RETURN
ENO
subrouitine cuts
To comtrol execuition of intermeoiate ano regeneration cuts．
COMAON／BLKA／BA，OBM，OEN，HT，HOF，CFM，TCF
COMAON／日LK日／日AST（2），О日MO（2），J日HT（2），OENO（2），OEVT（2），OMR（2），PRET． LREST（Z），ITM，MOL，OHLEV，IREGM（2），PINF（2），ISANS（2）
COMAON／日LKC／OSTY（2），KTR（2），STNO，S9O（2），SITE，S4C（2），STF（2）， 1THIN（2），VAR（22），COM AF，COMCU，START（2），NOTE（16），İUT

 2HCF（2，20），СTOT（2，20），TIOI（2，20），UTOT（2，20），TAGE（2，20），UAGE12，20），

COMMON／BLKE／AOOMT（Z），AGEO（2），BASO（2），JELAY（Z）．JLEV（2），OYRT（2） 1MTSO（2），MIST（2），IOPT（2），JCYCL（2），JOENIて），KOL，KSTEP（2），REGN（3）， ZRINT，ROTA，TEMH（2），TIME，VLLV（2），ROTAOS
СОНнON／OLKF／IK（2），KOUMT（2），SBAS，KPER，KOEL（2） IRINT $=$ RINT＊ 0.5
－compute values of stano characteristics，one story at a time．

00230 I＝1，2

IFIJOEMII），EQ．O）GO TO 230
IFII EQ．1．ANO．AGEOIS，GE．ROTAOSI GO TO 210
BASI（I）＝BASOII）
OBMI（I）＝O9MOII
OENT（I）＝OEMO（I）
OHRTII）$=$ OMR（I）
MTSI（I）
IFIKPER．LE．KOEL（I））GO TO 230
IFIKOUNTII＇．LT．IKIIII GO IO 230
REOEFINE INTERVAL TO FIRST REGENERATION ZUT IF LESS TMAN CURRENT CuTIING CYCLE．

IREGN（I）$=0$
ITM＝I
KOUMI（I）
TAGE（I，KOL $)=$ AGEO（I）$\cdot 0.5$
：ghahge cutting stanoaros if a regeneration cut is due．
IF(AGEOII). LI. REGN(1)) GO TO 20

OLEV(I) = OLEVII) • VLLV(L)
REST (I) $=\operatorname{OLEV(I)}$ JCYG(I) - REGN(L) 0.5
IK(I) = JCYCLII) IRINT
IREGM(I) $=1$
GO TO 20
\dot{B} compute current grohimg stock level to oetermine if story is alzeagy
at or belon oesireo stockimg level.
20 If 0 OBMOII, .GT. 2.0) GO 102
GSLEVL $=80.0$ - BASO(1) $16.03633 \cdot 0040(1) 1$
22 IF(OBMO(I).GE. 5.01 GO TO 25
GSLEVL $=40.0$ * BASOII) (11.58495 - Озно (I) - 11.09724
601040
25 IF(0 BHO(I) .GT: 10.01 GO TO 30

GOLO 40
30 GSLEVL $=$ gasoll)
CHANGE O. 日. H. ANO O.N.R. BY PARTIAL CUTTING.
40 IF (OMRII).LE, O.0) GO TO 70
IFIIREGNIII.EQ. 1) 60 TO 70
IF 0 MRII).GI, OMLEV) GO TO 18
IFIIOPTII, GT. O) GO TO TJ
IFIKPER.GT. (KOELIII + 11) GO TO 70
compute initial thinning level if thimning from above．execute THINNING FROM ABOVE．

50 IFITMINII LE．60．01 GO TO 60
REST（I）＝TMIMCI）－（OMRII）（TMMINII）－60．01， 3.01
60 IF（GSLEVL LLE．RESTII）I GO TO 180
CALL SHCUT？
KSTEPII）$=2$
GOTO 90
$\stackrel{\rightharpoonup}{c}$ execute partial cutting from below．
70 IFIGSLEVL ．LE．RESTITI）GO TO 180 IFPRREI．GE， 100.01 GO ro 180 KSTEP（I）$=1$
90 If（bastili ．GE．BASOIII）GO TO 180
COHPUTE O．M．R．AFTER PARTIAL CUTTING．
OMRTII）＝OMRIII
IFIOMRII）LE．O．0）GO TO 110
OELOMR $=2.92759$＊ 0.06144 ．OMRTI）OMRIII－ 2.25984
1 SQRTIPREI）O．OOBA2 OHRII OMRII SARITPREI
IFKKSTEPIII，EG．i）OELOMR＝OELOMR－ 0.66667
OMRTI）＝OMR（I）－OELOHR
IFIOHRTII）LT． 0.0 OMRTII）$=0.0$
IFIGMRTII）．GT． 6.0$)$ OMRT（I）$=6.0$
$\stackrel{\rightharpoonup}{c}$
$110 \mathrm{KS}=\mathrm{KS}$
GO TO（120．130）．K
120 AOOHTII＝
AOOHTIII＝
$1-8.47360$
MISTIII
（I）$=$ HTSO（I）+ A0OHT（II
JOENT＝BASTII）／ 10.0054542 －OBHTIII • O3MT（II）• 0.5
BASTII）$=0.0054542 \cdot$ OBHTII \cdot OBHTIII －OENTII）
BA＝BASTIII
OBH＝OOHT（I）
OEN $=$ OENT（II
HT $=$ MTSI（I）
${ }_{6}^{6}$ CH
CHECK TO SEE IF INTERMEOIATE CUT SATISFIES COMMERCIAL CRITERIA，IF ANY．OO NOT CUT IF COHHERCIAL CRITERIA NOT SATISFIEO．
STORE VALUES FOR PRINTING．

MAX $=$ CFM
TMCF $(I, K O L)=0.1 * ~ M A X: ~$
IFFTMCFII，KOL）．GT．UMCF（I，KOLI）UMCF（I，KOL）$=$ TMCFII，KOL
CHCF（I，KOL）＝UMCF（I，KOL）－TMCFII，KOL）
MAX＝日OF $0.01 * 0.5$
TBF（I，KOL）$=$ MAX 100
IF（TBF（I，KOL）．GT．VEF（I，KOLI）UBF（I，KOL）＝TBFII，KOL）
CBF（I，KOLI＝UEF（I，KOL）－T $\mathrm{AF}(\mathrm{I}, \mathrm{KOL})$
IFIIREGN（I）EA．1）GO TO 190
GO $10(170,160,1901$ ．ICuT
160 IF IKPER．EO．IKOEL（I）A11） 60 TO 190
IFICMCFII，KOL）．GE．COHCUI GO TO 190
180 GASTII）$=$ BASO（I）
OQHT（I）＝ОӨНО（I）
OENT（I）＝OENO（I）
OMRT（II＝OMRIII
TRIII＝MTSOI
TBAS（I，KOL）＝UBAS（I，KOL
TGF（I，KOL）＝UBF（I，KOL）
TOEM（I，KOL）$=$ VOENII，KOL
TOM（I，KOL）$=$ VOH（I，KOL）
THT（I，KOL）＝UHT（I．KOL）
HCF 1 I，KOL $=$ UMCF（I，KOL
TTOT（I，KOL）$=$ UTOT（I，KOL）
CAAS（I．KOL）$=0.0$
$\operatorname{CAF}(1, K O L)=0.0$
COEN（I，KOL）$=0.0$
CTOT（I，KOL）$=0.0$
60 TO 230
190 TOEMII，KOL）$=$ OENTII）
MAX $=$ OMRT（I）： $10.0 \cdot 0.5$
TOMR（I．KOL）＝MAK
Max＝MIST（I）＋ 0 （I，KOL）＊ 0.1

THTII，KOLI＝MAX
$\begin{aligned} & \text { MAX }=\text { BAST（I）}+0.5 \\ & \text { TBAS } \\ & \text {（I，KOL }\end{aligned}=$ HAX
MAX $=$ TCF $=0.1+0.5$
TOM（I．KOL）$=$ MAMT（I）${ }^{10}$
GOEN（I．KOL）＝UDEN（I，KOL）－TOENII，KOL
GOAS（I，KOL）＝UBASII，KOL）－TGASII，KOL
CrOT（I，KOL）$=$ UTOTMI，KOL
IFIOMP（I）TTUTII，KOL
IFIOMP（I）LE．O．01 6O TO 195

```
gompute percentage of trees infegted before the partial cut.
```



```
    IF(PINFII) -LT: 0.0) PINFII) = 0.0
    IF(PINFII) .GT. 100.0) PINF(I) = 10J.0
```



```
A0O PERIODIC CUTS TO TOTAL YIELOS.
195 STF(I) = STF(I) + GTOTII,KJL)
    IF(CMCF (I,KOL).LT. COMCU) GO TO 200
    SMC1LI = SMG(I) & CMCFII,KOL)
    IF(C9F(I,KOL).LT. COMAF)GO ro 230
    $80111 = 5804I1 + C8FII,KOL
    GO TO 230
remove story I if story has reacheo rotation age.
210 BAST(I) = 0.0
    09HT(I) = 0.0
    DENT(I) = 0.0
    OMRT(I) = 0.0
    gasO(I) = 0.0
    0оно(I) = 0.0
    OENO(I) = 0.0
    OMRIII = 0.0
    HTSO(I) = 0.0
a0o final cuts to total yielos.
    STFII) = STF(I) + UTOT(I,KOLI
    IFlUMCF(I,KOL),LT. COMCUY GO TO 220
    IF(UAF(T,KOL), TT COMAF) (O) TO 230
    IFTOAF(I,KOL).LT. COMBF) GO TO 230
    230 continue
    RETUR
```

subroutine proj
To make periodic gronth projegtions.
GOMMON /BLKA/BA,OBH,OEN, HT, BOF, CFM. TCF
COMAON /日LKB/日AST(2), OBHO(2), OBHT(2), OENO(2), DEVT(2), OMR(2), PRET,
1REST (2), ITM,HOL, OMLEV, IREGN(2), PINF (2), ISANSIC

ITHIN(2), VAR(22), COHAF, COMCU,START(2), NOTE゙151, IJUT

1UBF (2,23), GOEN(2,20), TOEN(2,20), UOEN(2,20), CMCF (2,20), TMCF (2, 20), U

2MCF (2,20), GTOT12,20), TTOT(2, 20), UTOT12,2J1,TAGE(2,20), UAGE (2,
COMMON BLKEAAOUHT(2), AGEO(2), OASO(2), NELAY(2), JLEV(2), UMRT(2),
HTSO(2), HIST(2), LOPTIZ1, JCYLL(2), JOEN(21,KOL, KSTEP\{2), REGN(3),
ZRINT, ROTA, TEMH(2), TIHE, VLLVI21, ROTAUS
GOMMON ABLKF/IK(2), KOUNT (z), SBAS,KPER, KUEL(2)
KOL $=$ KOL +1
cohpute values of stano cmaracteristics, one story at a time.
00220 I=1,2

AGEO(I) $=$ AGEO(I)
$\operatorname{KOUNT}(I)$
$\operatorname{KOUNT}(I)$
+1
Compute current onarf histletoz rating.

IFIISANS(II CTE 21 GO
$\mathrm{FP}=0.025$.
OMR(I) $=10.0 \cdots 1-0.94652+0.01651$. (PINF(I) . FPI)
CO TO 60
5 IF(OMRT(I), CT. 0.0) CO TO 20
TIME = AGEOIT)-START(I)

TIME SITE
C0 1063
10 IF (OENTIZ).GT. 3000.0) GO TO 15
OMR(2) = 0.087923 .TIME - 0.000019 . TIME DEVT(2) * U.000051 .
TIME * OMRT(1) * OMRT(1) QENT(11

0.000051 . TIME • OHRT(1) - OMRTII . OENT(1)
20 GO TF 1 . EO. 2 . ANO. JOEN(1). GT, a) GO TO 36
20 IF(I.EO. ${ }^{2}$. ANO. JOEN(1). GT, O) GO TO 36
IF(OENT(I).LE. 15,0$)$ GO TO 25
IF (OENT (I) LLE. 15,0 GOTO 25
GOH TO
TO
0
$25 \mathrm{YOH}=0.08$
60 1040

YOH = O.087923-0.000018*OENT(2) + 0.000051 - DHRT(1) - OMRT(1)
1,KOL,KSTEP(2),REGN(3),
FP = ISANSIII
GO TO 60 ORTV

- Dentir

35 ROH $=0.0441757-0.0000034 \cdot$ OENTIZI +0.000051 －OMPT（1）
1 OHRT（1）OENT（1）
40 IF（OHRT（I），GT．1．0．ANO．OMRTII）－LT．4．5）SO TO 50 IF II ．EO． 2 －ANO．DENTIZI ．GT． 3000.01 GO TO 53 OMRIII＝OMRTII＊ 0.5 ＝YJM ：RINT
GO $10 \quad 60$
50 OMR（I）OMRTII＊YOM＊RINT
60 IF（OMR（I）－LT．OMRT（I）OMR（II＝OYRTII）
IF（OMRII）LT：0．0）BMRTI）$=0.0$
IF（OMR（I）．GT． 0.01 START（I）$=10000.0$
GOHPUTE GURRENT AGTUAL GROHING STOCK LEVEL．
70 IFCOAMT（I）．GT：2．01 GO TO 72 GSLEVL $=80.0$ ：SBAS／ 16.03533 －JBHT（II）
12 IF TOBHT（I）
72 IF（OBHT（I）．GE：5．0）CO TO 75
75 IF（OOHT（I）．GT． 10.01 CO TS 80
TEM＝OBHTM：OBHTII
 12．TEM．DBHT（I）－ 3.456241
80 GSLEVL $=$
＝SBAS
compute new o．b．h．at enj of granta projection perijo．

1＊OBHI（I）＊SIEE＋ 62.37174 ＇S3AS－ 1.56975
110 IF（DHRT（I）．LE：3．5） 60 TTO 120 （197－0．056＊JHRTIII）

0甘нの（I）$=100 \mathrm{HO}$
ОВно（I）＝ОЧнOII $\cdot 0.1$
C COMPUTE CURPENT NUMACR OF TREES PER ACRE ANU BASAL AREA．
OIE $=0.0$
IFSHRTMI ．LT．1．J）CO TO 133

1．ALOGIOTOENTII），
UIE＝OIE＊O．O1
30 OuT $=0.00$ LT 0.03 OIE $=3.0$
30 OUT $=0.0$

10.00000522 ＊SBAS＊SBAS－ 0.0020905 －OBMTIII SBAS
$4 \begin{aligned} & \text { IFIOUT AT．O．O1 OUT }=0.3 \\ & \text { IFIOIE ．LT．OUT OIE }=0 U T\end{aligned}$

JOENO $=$ OENTII）
OENOII $=$ JOENO
BASOII $=$ OENOII $\cdot 0.0354542$－OBHO（I）OB4OII）
cohpute gurzent average height．
IFGGSLEVL ．GT．160．01 GO TJ 200
$00190 \mathrm{~J}=1,2$
LUB $=\mathrm{J}$
GO TO（150，260），LUE
150 YARS $=A C E O 111$
G0 TO 170
160 YARS＝AGEOIII－OINT
170 IFIYARS．GT． 55,01 GO TO 180
TEMHIN $=0.01441$ YARS＊SITE－ 0.12162 ＊YARS－ 1.50953
TEMHIJY $=0.01441$ ．YARS＊SITE－ 0.12162 YRSS－ 1.50953
COTO 190
TEMH

TEMH（J）$=10.0$＊TEMH（J）
190 CONIINUE
CHNG＝TEYH（1）－TEMAC（2）
200 HTNEH $=15.43021^{*}{ }^{2}$ 2．107＊HTSTII
CHNC＝HTNEN－HTST（I）
$210 \begin{aligned} & \text { CHNG }=1.0-0.0002 \text {＊OMRTII）＊OMRT（I）－OMRT（I）} \\ & \text { HTSO（I）}=\text { HTSTII）＋CHNG PCT }\end{aligned}$
compute total cu．fit．and convert to ormer uvits．
$B A=9 A S O(I)$
$O B H=O B H O(I)$
$O E N=O E N O(I)$
$H T=H T S O(I)$
CALL SWVOL
stare values for printing．

```
UAGE(I,KOL) = AGEJ(I) * 0.5
MAX = MOHR(I,KOL)=MAX (I,KOL) = UOMR(I,KOL).0. 
JOMRII,KOLI = UOMR(I,KOL) . 0.1
OENII,KOLI = DENO(I)
MAX = BA5O(I) + 0.5
UBAS(I,KDL)= MAX
UHH(I,KOL) = O&HO(I)
MAX = MTSO(I) + 0.5
UHTII, 人OLI = MAX
MAx = TCF; 0.1* 0.5
UOT(I,KOL) = MAX * 10
MAX = CFH, 0.1+0.5
UMCF(I,KOL)= MAX & 10
HOF(I,KOL) = MAX: 100
IF(KPER.GT. KOELIII) RESTII)= OLEVGII
IFIKPER
    RETUR
```

SUBROUTINE TABLE
TO PRINT TIELO TABLES ANO table footnotes．
CONNON／BLKB／BAST（2），ОBHO（2），OBHT（2），OENO（2），OEYT（2），OHR（2），PRET， 1REST（2），IT H，HOL．ONLEV，IREGN（2），PINF（2），ISANSi2）
$=$
CONHON／ALKC／OSTY（2），KTR（2），STNO，SBO（2），SITE，SYこ（2），STF（2），
LTHIN（2），VAR（22），COMBF，CONCU，START（2），NOTE（16），İUT
：COMNON／日LKO／CBAS（2，201，18AS（2，20），UBAS（2，20），C9F（2，201，TBF（2，20）， IUBF（2．23），GOEN（2，20），TOEN（2，20），UDEN（2，20），CNCF 2,20 ），TMCF（2，20），U
 ЗON（2，201，UOM $(2,20)$ ，THT 12,201, ，JHT（2，20），UOMR（2，20），TOMR12， 201
：COHNON／日LKC／AODHT（2），AGEO（2），GASO（2），OELAY（2），JLEV（Z），OMRT（2） IHTSO（2），NTST（2），IOPT（2），JCYCL（2），JDEN（2），KOL，KSTEP（2），REGN（3）， ZRINT，ROTA，TEMHIZ），TIME，VLLVI（2），ROTAOS
$\mathrm{JSITE}=$ SITE
$I=M O L$
OPRIVT MEAOINGS FOR YIELO TABLE．
IFII EJ． 21 GO TO 30
IFRUOEN（Z，11 GTT．O．O）GO TO 10
5 HRITE（ 6,5 ）STNO INE，STANO NUNEER，F7．DI
HRITE（6．15）STMD
15 FORHAT $11 H 1, / 1,26 x$ ； 60 HYIELOS PER ACRE OF SOUTHNESTERN PONOEROSA PI INE，STANO NUHEER，F7．O． 12 H ，OVERSTORT．
 INITIAL－，F6．O．12H SUASEQUENT－，FF．O）
RNITIAL－，F
GO 1050
30 WRITE $(6,40)$ SIND
 INE，STANO NUNEER，FT．D，13N．UNOERSTORY．）
O WRITE $(6,60)$（NDTE（J），$J=1,16)$
50 WRITE（ 6,00 ）（NDTESK）
60 FDRHAT（ $1 \mathrm{HO} 0.25 \mathrm{x}, 1645$ ）
WRITE（6，70）
70 FORHAT IINO． $21 X, 41$ HCHARACTERISTICS BEFORE ANO AF TER THINNIVG， $30 \times .2$ GHPERIODIC INTERHEOIATE CUTSI
WRITE（6，80）
30 FORMAT IINO， 4 X ， 5 HSTANO， 15 x ， 5 hbasal， 3 X ， 7 HAVERAGE， 2 X ， 7 HAVERAGE， $3 \mathrm{X}, 5 \mathrm{H}$ TOTAL， 3 X ， 9 HNERCHANT,- 3 X ， 9 HSAHTINBE $, 9 \mathrm{~F}, 5$ HBASAL， 4 X ， 5 HTOTAL， 3 X ， 9 GMMER CHANT－．3X，gHSAWTIMBERI
9O FDRMAT IIN， $5 \mathrm{X}, 3 \mathrm{HAGE}, 9 \mathrm{X}, 5 \mathrm{H}$ TREES， $3 \mathrm{X}, 4 \mathrm{NAREA}, 4 \mathrm{X}, 610$, B．H．， $3 \mathrm{X}, 6 \mathrm{HHEIGHT}$ 1． $2 x, 6$ HVOLUHE， $2 X, 11$ HABLE VOLUME， $4 X, 6$ HVOLUME， $3 X, 5$ TTREES， $3 X, 4$ HAREA， $3 X$ WRITE 16,100 ；
 2．6HCU．FT．， $5 x, 6 \mathrm{HCU}$ ．FT．， $6 \mathrm{x}, 6 \mathrm{H} 30$ ．FT．1
C PRINT TABLE Entries of stano chazacteristigs．
$00150 \mathrm{~N}=1,20$
JAGED＝UAGE（I，N）
IFIJAGEO．EO．O）GO TO 120
JOENO $=$ VOEN（I，N）
JBASO $=$ UBAS (I, N)
JBASO $=$ UBASII，N
OIAN $=$ VON（I，N）
JHTSO＝UHT（I；N）
JTOTO＝UTOT（I．N）
JCFMO $=$ UNCFII，N）
JBOFO $=U S F(I, N)$
HRITE $(G, 110)$ JAGEO，WOMR，JOENQ，JAASO，OIAM，JHTSJ，JTOTO．JCFNO，JMOFO
110 FORHAT $12 H 0,4 x, 14,2 x, F 5.1,2 x, 15,2 x, 14,5 x, F 5.1,5 x, 13,4 x, 15,6 x, 15,6 x$ 1，161
120 JAGEO＝TAGE（I，N）
IFIJAGEO．EO．O）GO TO 150
JOENT $=$ TOENII，N
JBAST $=$ TBASII，NI
JBAST $=$ TBASII；N
OHTR $=$ TOM（I．N）
JNTST $=$ TNT（I，N）
JTOTT $=$ TTOT（I，N）
JCFMT＝TNCF（I，N）
JBOFT $=$ TBF（I；N）
JOENC $=\operatorname{COEN}(I, N)$
JBASC $=\operatorname{CBAS}(I, N)$
JTOTC $=\mathrm{CTOT}(\mathrm{I}, \mathrm{N})$
JCFNC $=\operatorname{CNCF}(I, N)$
$\begin{aligned} & \text { JSOFC } \\ & \text { WONRT }\end{aligned}=\mathrm{CBF}(I ; N)$
WONRT＝TONR（I，N）
WRITE（ $6,13 J$ ）JAGEO，WONRT，JOENT，JBAST，OYTR，JNTST，JTOTT，JCFMT，JBOFT
1 ，JOENC，JAASC，JTOTC，JCFMC，JBOFC
FORNAT $11 \mathrm{H}, 4 \mathrm{x}, \mathrm{I} 4,2 \mathrm{~F}, \mathrm{F5}, 1,2 \mathrm{~F}, \mathrm{I}$
$1,16,4 x, 15,3 x, 13,5 x, 14,6 x, 14,8 x, 15$
CONT INUE
JSTF $=$ STF（I）
JSNC $=$ SMC（II）
JSBO $=$ SBO（I）
WRITE $(6,160)$ JSTF，JSNC，JSBJ
I60 FORNAT（1H0，1，67X，12NTOTAL YIELOS，19X，I5，5X，I5，7x，I6
© PRINT APPRJPRIATE FOOTNOTES FJR TABLE．
 1 LARGER TO 4．0－1NCH TOP．）
180 FORNAT 11 H． $10 \times, 68$ HEO．FT．－TREES 10.0 INCHES J．B．H．ANO LARGER T 10 VARIABLE TOP LINIT．
If（IOPTII ．GT．O）GO 10203
190 FITIE 16,190 ）
ith owarf ilste 6 thinitial thinning from above alloweo in stanjs w GO TO 220
200 WRITE 16,210$)$
210 FORNAT $11 \mathrm{H}, 10 \mathrm{X}, 36 \mathrm{HINITIAL}$ THINNING HUST BE FROM BELOW．I
220 WRITE 16,2301 ONLEV
INNINGS 11H，10X，76HOWARF MISTLETOE RATING AGOVE HHICH PERIOOIC THI WRITE HILL NOT OE EXECUTEO－，F4．1，1N．1
40 FORNAT $114,10 X$ ， 44 HNININUN CUIS FOR INCLUSION IN TOTAL YIELOS－－，F 1．O．15N CUBIC FEET ANO，F7．O．12H ZOARO FEET．1
50 WRITE $(650,260)$
260 FORMAT $11 \mathrm{H}, 10 \mathrm{X}, 35$ HNO NONGOHNERCIAL THINNINGS ALLOWEO．）
270 WRITE（6，280）

280 FORNAT $11 \mathrm{H}, 10 \mathrm{X}$, A7HPRECONMERCIAL INITIAL THINNING ALLOWEO．NONCON ercial subseduent thinnings not alloweo．	GO TO
WRITE	
I	
F．	

300 FORNAT $11 \mathrm{H}, 10 \mathrm{X}, 35 \mathrm{HALL}$ TNINNINGS NAY BE NONCONAERCIAL．
310 IT＝I 8
IFIVARIII $\mathrm{II}=\mathrm{I}$ ．GT． 0.0 ．ANO．VARIII）．LT．VARIZOH GO TO 330 $I I=\mathrm{I}$ ． 20

30 FORNAT $11 \mathrm{H}, 10 \mathrm{X}, 14 \mathrm{HAT}$ INITIAL AGE，F5．0，1N，．F5． .5 ，57H PERCENT OF THE 1 TREES WERE INFECTEO WITH OWARF NISTLETDE．） GO 10376
330 WRITE（ 6.340 ）VARIII
340 FORMAT IIH， $10 X, 40$ HONARF MISTLETOE INFECTION STARTEO AT AGE，F5． 01 D）GO TO 390

3 Bo format（Ih ， 10×52 hnote that not all scheouleo thinnings weze poss $390^{1 \text { IIALE．}}$ RETURN RETU
ENO

SUBROUTINE SWVOL
to Conpute total cu．Ft．ano convert to nercn．Cu．ft．ano bo．ft．
COHNON／BLKA／BA，OBt，OEN，HT，OOF ，CFM，TたF
FCTR $=0.0$
PROD $=0.0$
© compute total cu．fto
$\mathrm{OLH}=\mathrm{DBH}$＊ OBH ＊ HT
TCF＝10．53313．0．00033 10＋0．00179＊O2H1＊OEN

OBTAIN CONVERSION FACTOR FOR NERCH．CU．FT．－VOLUYES TO G．O－INGH TOP in trees 6．0 Inghes o．b．h．and lazger．

20 IFIOBH ．LT． 5.01 GO 1070 FCTR $=0.25222$－OBH－ 1.01119
GOTO 50
30 IF（OBH．GT．10．0）GO TO 43
FCTR $=3.02485-0.09957$ ．081 $=11.35814 / 081$
40 FCTR $=1.03936-1.41034 /$ Јан
OBTAIN CONVERSION FACTOR FOR BO．FT．－VOLUMES TO VARIABLE TOP in
TREES 10.0 INCHES O．B．H．ANO LARGER．

PROO $=0.0028$＊BA＋0．04355＊OBH＊OBN－ 2.73326
60 TO 70
CONVERT TOTAL CU．FT．TO MERCH．CU．FT．ANO BO．FT．
$\begin{aligned} 70 \text { BOF } & =\text { TCF ：PROO } \\ \text { CFM } & =\text { TCF FCTR }\end{aligned}$
RETURN
ENO

SUBROUTINE SWCUTI
ć to estinaté change in average j．b．h．oue to partial cutting SOUTNWESTERN PONOEROSA PINE FRON GELON．

COMNON 1 OLKB／BAST（2），OBHO（2），OBNT（2），OENO（2），OEVT（2），ONR（2），PRET， IREST（2），ITN，MOL，OMLEV，IREGN（2），PINF（2），ISANS（2）
$\mathrm{I}=$ ITN
IFLOBHO
compute o．b．h．If obno is large evough for basal area to remain CONSTANT．

PRET $=100.0$

10.00014^{*}（PRET -50.03 （PRRET -50.01
60 TO 15
QOBNE
$=1$
10 POBNE $=0.49401$－ 0.71890 ＊ALOG10108HOTIII $=0.22530$ ．

15 IFIIREGNII）．EG． 11 GO IO 20
IFIONRII）．LE．D．O）GO TO 20
TEH $=$ DGHE－DBHOII）
OBHE $=$ OBHOII＋TEN
OBHE $=$ OBHOII + TEN $* 0.5$
TOBHE $=08 N E+10.0+0.5$
20 10BHE $=$ OBNE
OBHE $=10 B H E$

NOENE $=$ OENE +0.5
OENE $=$ NOENE
BASE $=0.0054542$＊O8HE＊JBHE＊OENE
RBASE＝NBASE
BASE $=$ BASE＊ 0.1
TNPY $=0.0054542^{2} *$ OBHE 3 BHE

```
    IEN = BASE - RESTIII 
    IF(TEN LLE. TNPYM GO 1O 140
    IF(TEN .LT: 4.0)GO TO 30
    PRET = PR
    GO TO 40
    30 PRET = PRET - 0.3
    CONTINUE
C
    50 PRET = 40.0
        IFCOBHOTI;.GT. 7.0I PRET = 70.0
        OO 130 J=1,100
        IFTPREI GE. 50.0 AND. OBHOII),GT. 2.91 GO TO 60
        POBHE = 0.49401 +0.71890* ALOG10(OBHO(II)-0.22530*
        ALOG10(PRET) 0.12616 * ALJF10(O9HO(II) ALQGIG(PRET)
        DBHE =10.0 * POBHE
        G0 10 65
    60 DBNE = 0.73365 * 1.02008 * OBHO(I) = 0.01107 * (PRET - 50.0) -
    10.00014*(PRET - 50.0)*(PRET - 50.0)
    65 IFIIREGN(I) EEQ. II GO TO 
        FNMRII, &E. O.OJGD TO 7
        EN = OBNE-DBHO(I)
    7O DOBHE = OBHE * TEM* O.5
    OBHE = IOBHE 
    OBHE = OBHE * 0.1 PRET * 0.01
    NOENE = OENE * 0.S
    OENE = NOENE
    NBASE = BASE * 10.0*0.5
    BASE = NBASE
    BASE = BASE* 0.1
    BREAK=49.9. RESTII), 80.0
    IF&BASE GGT. BREAK) GO TO 80
    GBHP = {80.0 / RESTII) * 0.0
    80 BUST = 66.2 * REST(I) % 80.0
    OBNP = (80.0/RESTII);* 0.10938 * BASE - 0.17%:8
    GO TO 100
    90 TNPY = BASE * 80.0 / RESTII
    TEH = TNPY TMPY TMPY - 0.26673 * TEM * 0.001253y * IEN * TNPY
    -448.76833
    IFITNPY .GT. 80.01 DBHP = OЗHOII) * 0.8
    00
    IOBHP = OBHP * 10.0 +0.5
    ОВHP = IOBHP
    DBHP = OBHP*O.1
    PRET = PRET * 1.02,140,120
    IFIPRET.GT. 100.01 GO TO }19
    IF (PRET %
    20 PRET = PRET * 0.9
    130 CONTINUE
    4O OBNTCII = OBHE
C conpute post-cutting basal area.
    IFIOBHTIIJ.GT. R.OIGOTO 145
    GO TO 160
145 IF
    SQFT = 11.58495 5.01 GOTO 150
    SQFT = 11.58495 ( OBHT(I) - 11.0
    |O IF(OBHT(I)
    TEH= OBHT(I): OBHT(I)
    SQFT = 7.76226 OBHT(I) + 0.85289 * TEM - 0.07352 * TEM + UaHT(I)
    60 BASTII) = 'REST(I) / 80.0) * SQFT
    GOTO 180
    170 BASTII)
```

```
190 PRET = 100.0
    MRTURN
```

subroutine sheutz
to estimate change in average o.b.h. oue to thinning southhestern
PONOEROSA PINE FROM ABOVE.
COMMON /BLKB/BAST(2), OBHO(2), OBH (2), OENO(2), OZ̄ (2), OMR(2), PRET,
IREST (2),ITN, NOL, OHLEV.IREGN(2), PINFI(2).ISANS(2)
I = ITN
deternine pret ano o.b.h. after cjtting or an iterative process.
ITER $=0$
$\begin{aligned} & \text { ITER }=0 \\ & \text { PRETP }\end{aligned}=100.0$
PRET $=50.0$
PRRET $=50.0$
5 TER $=$ ITER.
IF PRRET, LT. SO: OOR. OBHOII -LT. 4.0) GO TO 10
OBHE $=0.98543$:0BHO(I) + 0.00807 * (PRET - 50.0$)+0.00025$ *
(PRET - 50.0) + (PRET - 50.0) - 0.51172
10 PDBHE $=0.51618$ * ALOGIOIPRETI + 1.69219 * ALDGLOIOBHOCI)
1-0.34768*ALOG1O(PRET) ALOG1O(D3HD(I)) - 1.03421
OBNE $=10.0 \cdots$ POBHE
20 IFIONRII) LE. 0,0$)$ GO TO 30
TEM $=$ OGHE - OBHOCI)
DBHE $=$ OBHDIII + TEM +0.5
30 OENE $=$ OEND(I) PRET OREBA 0.31
BASE $=$ TREBA * OENE
IF (OBHE.GT. 2.0) GO TO 35

GSLEVL $=80$
GOTO 60

${ }_{6 S L E V L}^{\text {GSL }}=$
40 GO TOBHE. GT, 10.076361 GO TO 50
TEN = OSHE OOHE
GSLEVL = 80.0 . BASE , 17.76226 - OBHE +0.85299 . TEN - 0.07952

1 GO TEM
GO
TO
50 GSLEVL = BASE
50
60
GSLE VL
TEF GSLEVL - RESTIII
TENA = ABSITENI
IF(TENA .LT. TREBA OR. TEYA .LT. 0.01) GO TO 83

PRETP $=$ PRET
IFITEH -GTE O.01 G
PRET
$70 \begin{aligned} & \text { GO TO } \\ & \text { PRET } \\ & \text { GO TO } \\ & \text { GRET }\end{aligned}$
C
S SET POST-Cutting Values.
81 IOBHE $=$ ODHE * $10.0 * 0.5$
IOBHE $=$ OOHE 10.0
OBHE $=$ IOBHE
OBHT(I) $=$ D3HE
IOENE $=0.1$
IOENE = OENE * O.
BASTII) $=0.0054542 \cdot$ OBHT(I) \cdot OBHTIII \cdot DENT(I)
RETURN
END

APPENDIX 2 Output of Sample Problem

yielos per agre of southmestern ponderosa pine, stano number 1.

THINNING INTENSITY-- INITIAL- 120. SUBSEQUENT- 90.
HYPOTHETICAL HEALTHY EVEN-AGEO STANO. BEGIN TABLE AT AGE 30.

$\begin{gathered} \text { STANO } \\ \text { AGE } \\ \text { (YEARS) } \end{gathered}$	OMR	$\begin{aligned} & \text { TREES } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { BASAL } \\ & \text { AREA } \\ & \text { SQ.FT. } \end{aligned}$	$\begin{gathered} \text { AVERAGE } \\ \text { D.B.H. } \\ \text { IN. } \end{gathered}$	AVERAGE HEIGHT FT.	TOTAL volume CU.FT.	HERCHANT ABLE VOLUME CU.FT.	SAWTIMBER vOLUME BO.FT.	TREES NO.	$\begin{aligned} & \text { BASAL } \\ & \text { AREA } \\ & \text { SO.FT. } \end{aligned}$	TOTAL VOLUME CU.FT.	MERCHANTABLE VOLUME CU.FT.	SAHTIMBER VOLUME 80.FT.
30	0.0	950	119	4.8	25	1530	380	0					
30	0.0	463	79	5.6	26	940	380	0	487	40	590	0	0
40	0.0	458	109	6.6	35	1520	980	0					
50	0.0	449	134	7.4	44	2200	1660	500					
50	0.0	226	83	8.2	45	1350	1110	500	223	51	850	530	0
60	0.0	225	104	9.2	51	1870	1640	2200					
70	0.0	223	124	10.1	58	2600	2340	5200					
70	0.0	139	90	10.9	59	1930	1750	5100	84	34	670	590	100
80	0.0	139	107	11.9	64	2560	2360	8400					
90	0.0	139	124	12. 8	69	3220	2990	11200					
90	0.0	89	90	13.6	70	2350	2200	8500	50	34	870	790	2700
100	0.0	89	103	14.6	74	2890	2730	11100					
110	0.0	89	117	15.5	78	3440	3260	13800					
110	0.0	28	45	17.2	80	1360	1310	6000	61	72	2080	1950	7800
120	0.0	28	53	18.7	83	1680	1620	7900					
130	0.0	28	62	20.1	86	2010	1950	10000					
							TOTA	YIELOS			7070	5830	20500

MERCH. CU. FT. - TREES 6.O INCHES O.B.H. AND LARGER TO 4.O-INYH TOP. 80. FT. - TREES 10.0 INCHES O.B.H. ANO LARGER TO VARIABLE TOP LIMIT INITIAL THINNING FROM ABOVE ALLOWEO IN STANOS WITH OWARF MISTLETOE.
OWARF MISTLETOE RATING ABOVE WHICH PERIOOIC THINNINGS WILL NOT BE EXECUTEO - 3.0 . MINIMUM CUTS FOR INCLUSION IN TOTAL YIELOS-- 320. CUBIC FEET ANO 1500. BOARD FEET PRECOMMERGIAL INITIAL THINNING ALLOWEO. NONCOMHERGIAL SUBSERUENT JHINNINGS NOT ALLONEO.

YIELOS PER ACRE OF SOUTHWESTERN PONOEROSA PINE, STANO NUHBER 2.

HYPOTHETICAL EVEN-AGEO STANO. INFESTATION STARTS AT AGE 10.
CHARACTERISTICS BEFORE ANO AFTER THINNING
ERIOOIC INTERHEOIATE CUTS

STANO			BASAL	AVERAGE	AVERAGE	TOTAL	MERCHANT -	SAWTIMBER		BASAL	TOTAL	MERCHANT -	SAHTIMBER
AGE		TREES	AREA	D.B.H.	HEIGHT	VOLUME	Able volume	VOLUME	T REES	AREA	VOLUHE	AbLE VOLUME	VOLUME
(YEARS)	OMR	NO.	SQ.FT .	IN.	FT.	cu.FT.	Gu.FT.	B0.FT.	NO.	SQ.FT.	CU.FT.	CU.FT.	BO.FT.
30	1.8	950	119	4.8	25	1530	0	0					
30	. 6	405	41	4.3	23	530	0	0	545	78	10.0	0	0
40	1.0	403	74	5.8	32	1000	450	0					
50	1.4	399	104	6.9	41	1620	1120	0					
50	1.4	399	104	6.9	41	1620	1120	0	0	0	0	0	0
60	2.3	353	117	7.8	47	2020	1600	0					
70	3.2	299	121	8.6	54	2310	1960	1800					
70	3.2	299	121	8.6	54	2310	1960	1800	0	0	0	0	0
80	4.1	242	117	9.4	60	2500	2200	3500					
90	4.9	188	107	10.2	64	2500	2260	5100					
90	4.9	188	107	10.2	64	2500	2260	5100	0	0	0	0	0
100	5.4	139	92	11.0	69	2310	2100	6300					
110	5.8	101	78	11.9	72	2080	1920	6800					
110	5.0	48	45	13.1	73	1220	1140	4300	53	33	860	780	2500
120	5.4	36	41	14.5	76	1180	1110	4500					
130	5.7	27	37	15.9	79	1110	1050	4600					
							TOT	YIELOS			2970	1830	7100

MERCH. CU. FT. - TREES 6.0 INCHES O.B.H. AND LARGER TO 4.0-INCY TOP.
BO. FT. - TREES 10.0 INCHES O. B. H. ANO LARGER TO VARIABLE TOP LIMIT
INITIAL THINNING FROM ABOVE ALLOWEO IN STANDS HITH OWARF HISTLETOE.
OWARF MISTLETOE RATING ABOVE WHICH PERIOOIC THINNINGS WILL NOT BE EXECUTEO - 3.0.
MINIMUM CUTS FOR INCLUSION IN TOTAL YIELOS-- 320. CUBIC FEET ANO 1500. BOARO FEET. PRECOMMERCIAL INITIAL THINNING ALLOHED. NONCOMMERCIAL SUBSEQUENT THINNINGS NOT ALLOWEO.
OWARF MISTLETOE INFECTION STARTEO AT AGE 10.
NOTE THAT NOT ALL SCHEOULEO THINNINGS WERE POSSIBLE

$\begin{gathered} \text { STANO } \\ \text { AGE } \end{gathered}$		TREES	BASAL	AVERAGE	AVERAGE HEIGHT	TOTAL volume	MERCHANT ABLE VOLUME	SAWTIMBER VOLUME	TREES	$\begin{gathered} \text { BASAL } \\ \text { AREA } \end{gathered}$	TOTAL vOLUME	MERCHANT ABLE VOLUME	SA WT IMBER VOLUME
(YEARS)	OMR	NO.	SQ.FT.	IN.	FT.	cJoFT.	CU.FT.	BO.FT.	NO.	SO.FT.	Cu.FT.	GU.FT.	BO.FT.
150	4.8	20	28	16.1	75	800	700	3300					
							TOTA	rIELOS			800	760	3300

MERCH. CU. FT. - TREES 6. O INCHES O.B.H. ANO LARCER TO 4.O-INCT TOP.
BO. FT. - TREES 10.0 INGHES O.B.H. ANO LARGER TO VARIABLE TOP LIMIT. INITIAL THINNINC FROM ABOVE ALLOWEO IN STANOS WITH OWARF MISTLETOE.
OWARF MISTLETOE RATINC ABOVE WHICH PERIOOIC THINNINGS WILL NOT BE EXECUTEO - 3.0 . MINIMUM CJTS FOR INCLUSION IN TOTAL YIELOS-- 320 . CUBIC FEET ANO 1500 . BOARO FEET. PRECOMMERCIAL INITIAL THINNING ALLOWEO. NONCOMMERCIAL SUBSEQUEVT THINNINGS NOT ALLOWEO.

YIELOS PER ACRE OF SOUTHWESTERN PONOEROSA PINE, STANO NUMBER 3., UNOERSTORY.
THINNING INTENSITY-- INITIAL- 12J. SUBSEQUENT- 90.
TWO-STORIEO INFESTEO STANO WITH IMMEOIATE OVERSTORY REMOVAL.

MERCH. CU. FT. - TREES 6.0 INCHES O.B.H. ANO LARCER TO 4.0-INCT TOP.
BO. FT. - TREES 10.0 INCHES O.B.H. ANO LARGER TO VARIABLE TOP LIMIT. INITIAL THINNING FROM ABOVE ALLOWEO IN STANOS WITH OWARF MISTLETOE.
OWARF MISTLETOE RATING ABOVE WHICH PERIOOIC THINNINGS WILL NOT BE EXECUTEO - 3.0.
MINIMUM GUTS FOR INCLUSION IN TOTAL YIELOS-- 320. CUBIG FEET ANO 150 J. SUARO FEET. PRECOMMERCIAL INITIAL THINNING ALLOWEO. NONCJMIERSIAL SUBSEOUEVT THINNINGS NOT ALLOWEO. NOTE THAT NOT ALL SCHEOULEO THINNINGS HERE POSSIBLE.

YIELOS PER ACRE OF SOUTMWESTERN PONOEROSA PINE, STANO NUMBER 4.. OVERSTORY.
THINNING INTENSITY-- INITIAL- 120. SUBSEQUENT- 90.
TWO-STORIEO INFESTEO STANO. OVERSTJRY REMOVAL JELAYEO 20 YEARS.
CMARACTERISTICS BEFORE ANO AFTER TMINNING
PERIOOIC INTERMEOIATE CUTS

STANO			BASAL	AVERAGE	AVERAGE	TOTAL	MERCMANT -	SAWTIMEER		BASAL	toral	MERCMANT-	SAWTIMBER
AGE		TREES	AREA	O.B.M.	MEIGMT	volume	ABLE VOLUME	VOLUME	TREES	AREA	VOLUME	ABLE VOLUME	VOLUME
(YEARS)	OMR	NO.	SQ.FT.	IN.	FT.	CJ.FT.	CU.FT.	BO.FT.	NO.	SQ.FT.	CU.FT.	CU.FT.	B0.FT.
150	4.8	20	28	16.1	75	800	760	3300					
160	5.0	16	26	17.1	77	740	710	3200					
170	5.2	12	21	18.0	79	630	610	2900					
							tota	YIELOS			630	610	2900

MERCM. CU. FT. - TREES 6.0 INCMES D.B.M. ANO LARGER TO 4.0-INCH TOP.
BO. FT. - TREES 10.0 INCMES 0.8.M. ANO LARGER TO VARIABLE TOP LIMIT.
INITIAL TMINNING FROM ABOVE ALLOWEO IN STANOS WITM OWARF MISTLETOE.
OWARF MISTLETOE RATING ABOVE WMICM PERIOOIC TMINNINGS WILL NOT BE EXECUTEO - 3.0 .
MINIMUM SUTS FOR INCLUSION IN TOTAL YIELOS-- 320. CUBIC FEET AND 1500. 3OARO FEET.
PRECOMMERCIAL INITIAL TMINNING ALLOWEO. NONCOMMERCIAL SUBSEQUEVT TMINNINGS NOT ALLOWED.

YIELOS PER ACRE OF SOUTMWESTERN PONDEROSA PINE, STANO NUMBER 4 .. UNOERSTORY.

TWO-STORIEO INFESTEO STANO. OVERSTORY REMOVAL JELAYEO 20 YEARS.
CMARACTERISTICS BEFORE ANO AFTER TMINNING

$$
\text { TMINNING INTENSITY-- INITIAL- 120. SUBSEQUENT- } 90 .
$$

PERIOOIC INTERYEOIATE CUTS

STANO		TREES	BASAL AREA	AVERAGE	AVERAGE	TOTAL volume	MERCMANTABLE VOLUME	SAWTIMAER VOLUME	TREES	BASAL AREA	TOTAL VOLUME	MERCMANT -	SAWTIMBER VOLUME
(YEARS)	OMR	NO.	SQ.FT.	IN.	FT.	CJ.FT.	CU.FT.	B0.FT.	NJ.	SQ.FT.	Cu.FT.	CU.FT.	BO.FT.
30	1.0	600	55	4.1	21	710	0	0					
40	1.5	538	70	4.9	29	980	0	0					
50	2.5	471	83	5.7	38	1300	550	0					
50	1.6	287	44	5.3	36	080	220	0	184	39	620	330	0
60	2.5	253	62	6.7	43	1010	670	0					
70	3.4	213	73	7.9	49	1293	1030	0					
70	3.4	213	73	7.9	49	1290	1030	0	0	0	0	0	0
80	4.2	172	76	9.0	55	1470	1270	1400					
90	5.1	133	74	10.1	60	1590	1430	3030					
90	5.1	133	74	10.1	60	1590	1430	3000	0	0	0	0	0
100	5.5	98	66	11.1	64	1530	1400	4200					
110	5.9	71	58	12.2	67	1430	1320	4800					
110	5.7	50	45	12.9	68	1140	1060	4000	21	13	290	260	800
120	6.0	36	40	14.2	72	1050	990	3900					
130	6.0	26	35	15.6	73	950	910	3900					
							total	YIELOS			1860	1240	3900

[^1]Myers, Clifford A.,Carleton B. Edminster, and Frank G. Hawksworth. 1976. SWYLD2: Yield tables for even-aged and two-storied stands of southwestern ponderosa pine, including effects of dwarf mistletoe. USDA For. Serv. Res. Pap. RM-163, 25 p. Rocky Mt. For. and Range Exp. Stn., Fort Collins, Colo. 80521.

Presents a procedure for computation of yield tables for ponderosa pines in Arizona and New Mexico. Possible alternatives
 and managed or unmanaged stand densities. Stand conditions and severity of dwarf mistletoe infestation change with time and in response to intermediate cuttings. Supersedes SWYLD, published in 1972 as USDA For. Serv. Res. Pap. RM-87. A concise user's guide for program SWYLD2 is available as USDA For. Serv. Gen. Tech. Rep. RM-23, 1976.

Keywords: Stand yield tables, timber management, forest management, simulation, Arceuthobium vaginatum, Pinus ponderosa.

Myers, Clifford A., Carleton B. Edminster, and Frank G. Hawksworth. 1976. SWYLD2: Yield tables for even-aged and two-storied stands of southwestern ponderosa pine, including effects of dwarf mistletoe. USDA For. Serv. Res. Pap. RM-163, 25 p. Rocky Mt. For. and Range Exp. Stn., Fort Collins, Colo. 80521.

Presents a procedure for computation of yield tables for ponderosa pines in Arizona and New Mexico. Possible alternatives include: even-aged or two-storied stands, healthy or diseased stands,

 Rep. RM-23, 1976.

Keywords: Stand yield tables, timber management, forest management, simulation, Arceuthobium vaginatum, Pinus ponderosa.

Myers, Clifford A.,Carleton B. Edminster, and Frank G. Hawksworth 1976. SWYLD2: Yield tables for even-aged and two-storied stands of southwestern ponderosa pine, including effects of dwarf mistletoe. USDA For. Serv. Kes. Pap. RM-163, 25 p. Rocky Mt. For. and Range Exp. Stn., Fort Collins, Colo. 80521.
 derosa pines in Arizona and New Mexico. Possible alternatives include: even-aged or two-storied stands, healthy or diseased stands, and managed or unmanaged stand densities. Stand conditions and

 for program SWYLD2 is available as USDA For. Serv. Gen. Tech. Rep. KM-23, 1976.

Keywords: Stand yield tables, timber management, forest management, simulation, Arceuthobium vaginatum, Pinus ponderosa.

Myers, Clifford A.,Carleton B. Edminster, and Frank G. Hawksworth. 1976. SWYLD2: Yield tables for even-aged and two-storied stands of southwestern ponderosa pine, including effects of dwarf mistletoe. USDA For. Serv. Res. Pap. RM-163, 25 p. Rocky Mt.
For. and Range Exp. Stn., Fort Collins, Colo. 80521 .

Presents a procedure for computation of yield tables for ponderosa pines in Arizona and New Mexico. Possible alternatives include: even-aged or two-storied stands, healthy or diseased stands, and managed or unmanaged stand densities. Stand conditions and

 Rep. RM-23, 1976.

Keywords: Stand yield tables, timber management, forest management, simulation, Arceuthobium vaginatum, Pinus ponderosa.

[^0]: GIOBF NO 1 STANDARD FOFM SOB

[^1]: MERCM. CU. FT. - TREES 6.0 INCMES O.B.M. ANO LARGER TO 4.O-INCT TOP.
 BO. FT. - TREES 10.0 INCMES O.B.M. ANO LARGER TO VARIABLE TOP LIMIT.
 INITIAL THINNING FROM ABOVE ALLOWEO IN STANOS WITM OWARF MISTLETOE.
 INITIAL THINNING FROM ABOVE ALLOWEO IN STANOS WITM OWARF MISTLETOE.
 OWARF MISTLETOE RATING ABOVE WHICM PERIODIC TMINNINGS WILL NOT BE EXECUTEO - 3.0.
 MINIMUM CJTS FOR INCLUSION IN TOTAL YIELOS-- 320. CUBIC FEET ANO 1500. BOARO FEET.
 PRECOMMERZIAL INITIAL TMINNING ALLOWED. NONCOMMERCIAL SUBSEQUEVT TMINNINGS NOT ALLOWEO.
 NOTE THAT NOT ALL SCMEOULEO THINNINGS WERE POSSIBLE.

