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PREFACE. 

When the second volume of my collected papers was 

published, it was my intention to have entered on some 

rather elaborate and in part laborious calculations bearing on 

two of the papers which appear in the present volume. These 

were however put off from time to time in favour of other 

matters which claimed my attention; but meanwhile time went 

on, and I deeply regret to find how long it now is since the 

second volume appeared. There are other papers which still 

remain, and I hope, should life and health last, to put these 

together without delay. 

G. G. STOKES. 

Malahide, Co. Dublin, September, 1901. 

carnegie msnrurc 
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MATHEMATICAL AND PHYSICAL PAPERS. 

[From the Transactions of the Cambridge Philosophical Society, 
Yol. ix. p. [8]]. 

On the Effect of the Inteenal Fbiction of Fluids on 

the Motion of Pendulums. 

[Read December 9, 1850.] 

The great importance of the results obtained by means of the 
pendulum has induced philosophers to devote so much attention 
to the subject, and to perform the experiments with such a scrupu¬ 
lous regard to accuracy in every particular, that pendulum observa¬ 
tions may justly he ranked among those most distinguished by 
modern exactness. It is unnecessary here to enumerate the 
different methods which have been employed, and the several 
corrections which must be made, in order to deduce from the 
actual observations the result which would correspond to the ideal 
case of a simple pendulum performing indefinitely small oscillations 
in vacuum. There is only one of these corrections which bears on 
the subject of the present paper, namely, the correction usually 
termed the reduction to a vacuum. On account of the inconvenience 
and expense attending experiments in a vacuum apparatus, the 
observations are usually made in air, and it then becomes necessary 
to apply a small correction, in order to reduce the observed result 
to what would have been observed had the pendulum been swung 
in a vacuum. The most obvious effect of the air consists in a 
diminution of the moving force, and consequent increase in the 
time of vibration, arising from the buoyancy of the fluid. The 

1 S. III. 



2 ON THE EFFECT OF THE INTERNAL FRICTION OF FLUIDS 

correction for buoyancy is easily calculated from tbe first principles 
of hydrostatics, and formed for a considerable time tlie^ only 

correction which it was thought necessary to make for reduction to 
a vacuum. But in the year 1828 Bessel, in a very important 
memoir in which he determined by a new method the length 
of the seconds’ pendulum, pointed out from theoretical considera¬ 
tions the necessity of taking account of the inertia of the air as 
well as of its buoyancy. The numerical calculation of the effect of 
the inertia forms a problem of hydrodynamics which Bessel did not 
attack; but he concluded from general principles that a fluid, or 
at any rate a fluid of small density, has no other effect on the time 
of very small vibrations of a pendulum than that it diminishes its 
gravity and increases its moment of inertia. In the case of a body 
of which the dimensions are small compared with the length of the 
suspending wire, Bessel represented the increase of inertia by that 
of a mass equal to k times the mass of the fluid displaced, which 
must be supposed'to be added to the inertia of the body itself. 
This factor k he determined experimentally for a sphere a little 
more than two inches in diameter, swung in air and in water. 
The result for air, obtained in a rather indirect way, was k = 0*9459, 

which value Bessel in a subsequent paper increased to 0*956. A 
brass sphere of the above size having been swung in water with 
two different lengths of wire in succession gave two values of k, 
differing a little from each other, and equal to only about two- 
thirds of the value obtained for air. 

The attention of the scientific world having been called to the 
subject by the publication of Bessel’s memoir, fresh researches 
both theoretical and experimental soon appeared. In order to 
examine the effect of the air by a more direct method than that 
employed by Bessel, a large vacuum apparatus was erected at the 
expense of the Board of Longitude, and by means of this apparatus 
Captain (now Colonel) Sabine, determined the effect of the air on 
the time of vibration of a particular invariable pendulum. The 
results of the experiments are contained in a memoir read before 

the Royal Society in March 1829, and printed in the Philosophical 
Transactions for that year. The mean of eight very consistent 
experiments gave 1*655 as the factor by which for that pendulum 
the old correction for buoyancy must be multiplied in order to 
give the whole correction on account of the air. A very remark¬ 

able fact was discovered in the course of these experiments. While 
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the effects of air at the atmospheric pressure and under a pressure 
of about half an atmosphere were found to be as nearly as possible 

proportional to the densities, it was found that the effect of hydro¬ 
gen at the atmospheric pressure was much greater, compared with 
the effect of air, than corresponded with its density. In fact, it 
appeared that the ratio of the effects of hydrogen and air on the 
times of vibration was about 1 to 5|, while the ratio of the. densities 
is only about 1 to 13. In speaking of this result Colonel Sabine 

remarks, “ The difference of this ratio from that shewn by experi¬ 
ment is greater than can well be ascribed to accidental error in 

the experiment, particularly as repetition produced results almost 
identical. May it not indicate an inherent property in the elastic 
fluids, analogous to that of viscidity in liquids, of resistance to the 
motion of bodies passing through them, independently of their 
density ? a property, in such case, possessed by air and hydrogen 
gas in very different degrees; since it would appear from the 
experiments that the ratio of the resistance of hydrogen gas to 
that of air is more than double the ratio following from their 
densities. Should the existence of such a distinct property of 
resistance, varying in the different elastic fluids, be confirmed by 
experiments now in progress with other gases, an apparatus more 

suitable than the present to investigate the ratio in which it is 
possessed by them, could scarcely be devised : and the pendulum, 
in addition to its many important and useful purposes in general 
physics, may find an application for its very delicate, but, with due 
precaution, not more delicate than certain, determinations, in the 
domain of chemistry.” Colonel Sabine has informed me that the 
experiments here alluded to were interrupted by a cause which 
need not now be mentioned, but that as far as they went they 
confirmed the result of the experiments with hydrogen, and pointed 
out the existence of a specific action in different gases, quite 
distinct from mere variations of density. 

Our knowledge on the subject of the effect of air on the time 
of vibration of pendulums has received a most valuable addition 

from the labours of the late Mr Baily, who erected a vacuum 
apparatus at his own house, with which he performed many 
hundreds of careful experiments on a great variety of pendulums. 
The experiments are described in a paper read before the Royal 

Society on the 31st of May 1832. The result for each pendulum 
is expressed by the value of n, the factor by which the old correc- 

1—2 
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tion for buoyancy must be 'multiplied in order to give the whole 
effect of the air as deduced from observation. Four spheres, 
not quite 1J inch in diameter, gave as a mean n — 1*864, while 
three spheres, a little more than 2 inches in diameter, gave only 
1*748. The latter were nearly of the same size as those with 
which Bessel, by a different method, had obtained & =0-946 or 
0*956, which corresponds to ?i = 1*946 or 1*956. Among the 
“ Additional Experiments ” in the latter part of Baily’s paper, is a 
set in which the pendulums consisted of plain cylindrical rods. 
With these pendulums it was found that n regularly increased, 
though according to an unknown law, as the diameter of the rod 
decreased. While a brass tube 1| inch in diameter gave n equal 
to about 2*3, a thin rod or thick wire only 0*072 inch in diameter 
gave for n a value as great as 7*530. 

Mathematicians in the meanwhile were not idle, and several 
memoirs appeared about this time, of which the object was to 
determine from hydrodynamics the effect of a fluid on the motion 
of a pendulum. The first of these came from the pen of the cele¬ 
brated Poisson. It was read before the French Academy on the 
22nd of August 1831, and is printed in the 11th Volume of the 
Memoirs. In this paper, Poisson considers the case of a sphere 
suspended by a fine wire, and oscillating in the air, or in any gas. 
He employs the ordinary equations of motion of an elastic fluid, 
simplified by neglecting the terms which involve the square of the 
velocity; but in the end, in adapting his solution to practice, he 
neglects, as insensible, the terms by which alone the action of an 
elastic differs from that of an incompressible fluid, so that the 
result thus simplified is equally applicable to fluids of both classes. 
He finds that when insensible quantities are neglected n = 1*5, so 
that the mass which we must suppose added to that of the pendu¬ 
lum is equal to half the mass of the fluid displaced. This result 

does not greatly differ from the results obtained experimentally by 
Bessel in the case of spheres oscillating in water, but differs ma¬ 
terially from the result he had obtained for air. It agrees pretty 

closely with some experiments which had been performed about 
fifty years before by Dubuat, who had in fact anticipated Bessel 
in shewing that the time of vibration of a pendulum vibrating in a 
fluid would be affected by the inertia of the fluid as well as by its 
density. Dubuat’s labours on this subject had been altogether 
overlooked by those who were engaged in pendulum experiments; 
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probably because sucb persons were not likely to seek in a trea¬ 

tise on hydraulics for information connected with the subject of 
their researches. Dubuat had, in fact, rather applied the pen¬ 
dulum to hydrodynamics than hydrodynamics to the pendulum. 

In the Philosophical Magazine for September 1833, p. 185, is a 
short paper by Professor Challis, on the subject of the resistance to 
a ball pendulum. After referring to a former paper, in which he 

had shewn that no sensible error would be committed in a problem 
of this nature by neglecting the compressibility of the fluid even if 
it be elastic, Professor Challis, adopting a particular hypothesis 
respecting the motion, obtains 2 for the value of the factor n for 
such a pendulum. This mode of solution, which is adopted in 
several subsequent papers, has given rise to a controversy between 
Professor Challis and the Astronomer Royal, who maintains the 

justice of Poisson's result. 
In a paper read before the Royal Society of Edinburgh on the 

16th of December 1833, and printed in the 13th Volume of the 

Society’s Transactions, Green has determined from the common 
equations of fluid motion the resistance to an ellipsoid performing 
small oscillations without rotation. The result is expressed by a 

definite integral; but when two of the principal axes of the ellip¬ 
soid become equal, the integral admits of expression in finite 
terms, by means of circular or logarithmic functions. When the 

ellipsoid becomes a sphere, Green’s result reduces itself to 
Poisson’s. 

In a memoir read before the Royal Academy of Turin on the 
18th of January 1835, and printed in the 37th Volume of the 

memoirs of the Academy, M. Plana has entered at great length 

into the theory of the resistance of fluids to pendulums. This 
memoir contains, however, rather a detailed examination of various 

points connected with the theory, than the determination of the 
resistance for any new form of pendulum. The author first treats 
the case of an incompressible fluid, and then shews that the result 
would be sensibly the same in the case of an elastic fluid. In the 
case of a ball pendulum, the only one in which a complete solution 
of the problem is effected, M. Plana’s result agrees with Poisson’s. 

In a paper read before the Cambridge Philosophical Society on 
the 29th of May 1843, and printed in the 8th Volume of the 
Transactions, p. 105*, I have determined the resistance to a ball 

* [Ante, Yol. i. p. 179.] 
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pendulum oscillating within a concentric spherical envelope, and 
have pointed out the source of an error into which Poisson had 
fallen, in concluding that such an envelope would have no effect. 
When the radius of the envelope becomes infinite, the solution 
agrees with that which Poisson had obtained for the case of an 
unlimited mass of fluid. I have also investigated the increase of 
resistance due to the confinement of the fluid by a distant rigid 
plane. The same paper contains likewise the calculation of the 
resistance to a long cylinder oscillating in a mass of fluid either 
unlimited, or confined by a cylindrical envelope, having the same 
axis as the cylinder in its position of equilibrium. In the case of 

an unconfined mass of fluid, it appeared that the effect of inertia 

was the same as if a mass equal to that of the fluid displaced were 

distributed along the axis of the cylinder, so that n = 2 in the case 
of a pendulum consisting of a long cylindrical rod. This nearly 
agrees with Baily’s result for the long 1J inch tube ; but, on com¬ 
paring it with the results obtained with the cylindrical rods, we 
observe the same sort of discrepancy between theory and observa¬ 
tion as was noticed in the case of spheres. The discrepancy is, 
however, far more striking in the present case, as might naturally 
have been expected, after what had been observed with spheres, on 
account of the far smaller diameter of the solids employed. 

A few years ago Professor Thomson communicated to me a 
very beautiful and powerful method which he had applied to the 
theory of electricity, which depended on the consideration of what 
he called electrical images. The same method, I found, applied, 
with a certain modification, to some interesting problems relating 
to ball pendulums. It enabled me to calculate the resistance to a 
sphere oscillating in presence of a fixed sphere, or within a spheri¬ 

cal envelope, or the resistance to a pair of spheres either in contact, 
or connected by a narrow rod, the direction of oscillation being, in 
all these cases, that of the line joining the centres of the spheres. 
The effect of a rigid plane perpendicular to the direction of motion 

is of course included as a particular case. The method even 
applies, as Professor Thomson pointed out to me, to the uncouth 
solid bounded by the exterior segments of two intersecting spheres, 
provided the exterior angle of intersection be a submultiple of two 
rig;ht angles. A set of corresponding problems, in which the spheres 
are replaced by long cylinders, may be solved in a similar manner. 
These results were mentioned at the meeting of the British Asso- 
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ciation at Oxford in 1847, and are noticed in the volume of reports 
for that year, hut they have not yet been published in detail. 

The preceding are all the investigations that have fallen under 
my notice, of which the object was to calculate from hydrodynamics 
the resistance to a body of given form oscillating as a pendulum. 

They all proceed on the ordinary equations of the motion of fluids. 

They all fail to account for one leading feature of the experimental 
results, namely, the increase of the factor w with a decrease in the 
dimensions of the body. They recognize no distinction between 
the action of different fluids, except what arises from their differ¬ 

ence of density. 
In a conversation with Dr Robinson about seven or eight years 

ago on the subject of the application of theory to pendulums, he 
noticed the discrepancy which existed between the results of 
theory and experiment relating to a ball pendulum, and expressed 
to me his conviction that the discrepancy in question arose from 
the adoption of the ordinary theory of fluid motion, in which the 
pressure is supposed to be equal in all directions. He also de¬ 
scribed to me a remarkable experiment of Sir James South’s which 
he had witnessed. This experiment has not been published, but 
Sir James South has kindly allowed me to mention it. "When a 
pendulum is in motion, one would naturally have supposed that 
the air near the moving body glided past the surface, or the surface 
past it, which comes to the same thing if the relative motion only 
be considered, with a velocity comparable with the absolute velo¬ 
city of the surface itself. But on attaching a piece of gold leaf 
to the bottom of a pendulum, so as to stick out in a direction per¬ 

pendicular to the surface, and then setting the pendulum • in 
motion, Sir James South found that the gold leaf retained its 
perpendicular position just as if the pendulum had been at rest; 
and it was not till the gold leaf carried by the pendulum had been 
removed to some distance from the surface, that it began to lag 
behind. This experiment shews clearly the existence of a tan¬ 
gential action between the pendulum and the air, and between one 
layer of air and another. The existence of a similar action in 
water is clearly exhibited in some experiments of Coulomb’s which 
will be mentioned in the second part of this paper, and indeed 
might be concluded from several very ordinary phenomena. More¬ 
over Dubuat, in discussing the results of his experiments on the 
oscillations of spheres in water, notices a slight increase in the 
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effect of the water corresponding to an increase in the time of 
vibration, and expressly attributes it to the viscosity of the fluid. 

Having afterwards occupied myself with the theory of the fric¬ 
tion of fluids, and arrived at general equations of motion, the same 
in essential points as those which had been previously obtained in 
a totally different manner by others, of which, however, I was not 
at the time aware, I was desirous of applying, if possible, these 
equations to the calculation of the motion of some kind of pen¬ 
dulum. The difficulty of the problem is of course materially 
increased by the introduction of internal friction, but as I felt 
great confidence in the essential parts of the theory, I thought that 
labour would not be ill-bestowed on the subject. I first tried a 
long cylinder, because the solution of the problem appeared likely 
to be simpler than in the case of a sphere. But after having pro¬ 

ceeded a good way towards the result, I was stopped by a difficulty 
relating to the determination of the arbitrary constants, which 
appeared as the coefficients of certain infinite series by which the 
integral of a. certain differential equation was expressed. Having 
failed in the case of a cylinder, I tried a sphere, and presently 
found that the corresponding differential equation admitted of 
integration in finite terms, so that the solution of the problem 

could be completely effected. The result, I found, agreed very 
well with Baily’s experiments, when the numerical value of a 
certain constant was properly assumed; but the subject was laid 
aside for some time. Having afterwards attacked a definite 
integral to which Mr Airy had been led in considering the theory 

of the illumination in the neighbourhood of a caustic, I found that 
the method which I had employed in the case of this ‘integral* 
would apply to the problem of the resistance to a cylinder, and it 
enabled me to get over the difficulty with which I had before been 

baffled. I immediately completed the numerical calculation, so 
far as was requisite to compare the formulae with Baily’s experi¬ 

ments on cylindrical rods, and found a remarkably close agreement 
between theory and observation. These results were mentioned at 
the meeting of the British Association at Swansea in 1848, and 
are briefly described in the volume of reports for that year. 

The present paper is chiefly devoted to the solution of the 
problem in the two cases of a sphere and of a long cylinder, and to 

[Ante, Vol. xi. p. 328.] 
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a comparison of the results with the experiments of Baily and 

others. Expressions are deduced for the effect of a fluid both on 
the time and on the arc of vibration of a pendulum consisting 
either of a sphere, or of a cylindrical rod, or of a combination of a 
sphere and a rod. These expressions contain only one disposable 
constant, which has a very simple physical meaning, and which I 
propose to call the index of friction of the fluid. This constant we 
may conceive determined by one observation, giving the effect of 
the fluid either on the time or on the arc of vibration of any one 
pendulum of one of the above forms, and then the theory ought to 
predict the effect both on the time and on the arc of vibration of 
all such pendulums. The agreement of theory with the experi¬ 

ments of Baily on the time of vibration is remarkably close. Even 
the rate of decrease of the arc of vibration, which it formed no part 

of Baily’s object to observe, except so far as was necessary for 
making the small correction for reduction to indefinitely small 
vibrations, agrees with the result calculated from theory as nearly 
as could reasonably be expected under the circumstances. 

It follows, from theory that with a given sphere or cylindrical 

rod the factor n increases with the time of vibration. This accounts 
in a good measure for the circumstance that Bessel obtained so 
large a value of k for air, as is shewn at length in the present 
paper; though it unquestionably arose in a great degree from the 

increase of resistance due to the close proximity of a rigid plane to 
the swinging ball. 

I have deduced the value of the index of friction of water from 
some experiments of Coulomb’s on the decrement of the arc of 
oscillation of disks, oscillating in water in their own plane by the 
torsion of a wire. When the numerical value thus obtained is 
substituted in the expression for the time of vibration of a sphere, 

the result agrees almost exactly with Bessel’s experiments with a 
sphere swung in water. 

The present paper contains one or two applications of the 
theory of internal friction to problems which are of some interest, 
but which do not relate to pendulums. The resistance to a sphere 
moving uniformly in a fluid may be obtained as a limiting case of 
the resistance to a ball pendulum, provided the circumstances be 
such that the square of the velocity may be neglected. The resist¬ 
ance thus determined proves to be proportional, for a given fluid 

and a given velocity, not to the surface, but to the radius of the 



10 ON THE EFFECT OF THE INTERNAL FRICTION OF FLUIDS 

sphere; and therefore the accelerating force of the resistance in¬ 

creases much more rapidly, as the radius of the sphere decreases, 
than if the resistance varied as the surface, as would follow from 
the common theory. Accordingly, the resistance to a minute 
globule of water falling through the air with its terminal velocity 
depends almost wholly on the internal friction of air. Since the 
index of friction of air is known from pendulum experiments, 
we may easily calculate the terminal velocity of a globule of given 
size, neglecting the part of the resistance which depends upon the 
square of the velocity. The terminal velocity thus obtained is so 
small in the case of small globules such as those of which we may 

conceive a cloud to be composed, that the apparent suspension of 
the clouds does not seem to present any difficulty. Had the re¬ 
sistance been determined from the common theory, it would have 

been necessary to suppose the globules much more minute, in 
order to account in this way for the phenomenon. Since in the 
case of minute globules falling with their terminal velocity the 
part of the resistance depending upon the square of the velocity, as 
determined by the common theory, is quite insignificant compared 
with the part which depends on the internal friction of the air, it 
follows that were the pressure equal in all directions in air in the 
state of motion, the quantity of water which would remain sus¬ 

pended in the state of cloud would be enormously diminished. The 
pendulum thus, in addition to its other uses, affords us some inter¬ 
esting information relating to the department of meteorology. 

The fifth section of the first part of the present paper contains 

an investigation of the effect of the internal friction of water in 
causing a series of oscillatory waves to subside. It appears from 
the result that in the case of the long swells of the ocean the effect 

of friction is insignificant, while in the case of the ripples raised by 
the wind on a small pool, the motion subsides very r’apidly when 
the disturbing force ceases to act. 
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PART I. 

ANALYTICAL INVESTIGATION. 

Section I. 

Adaptation of the general equations to the case of the fluid sur¬ 
rounding a body which oscillates as a pendulum. General 

laws which follow from the form of the equations. Solution 

of the equations in the case of an oscillating plane. 

1. In a paper “ On the Theories of the Internal Friction of 
Fluids in Motion, &cwhich the society did me the honour to 
publish in the 8th Volume of their Transactions, I have arrived 
at the following equations for calculating the motion of a fluid 

when the internal friction of the fluid itself is taken into account, 
and consequently the pressure not supposed equal in all directions : 

dp 
dx 

du 
dt 

du 
' dx 

du du 
'vdy~wdz. 

+ f* 
/d2u d2u 
\dx2 dy2 

+ 
d2u\ 

df) 

, n A 
3 dx 

/du dv 
yfec + dy 

dw' 
dz, (1), 

with two more equations which may be written down from 
symmetry. In these equations u, v, w are the components of the 
velocity along the rectangular axes of x, y} z\ X, YZ are the 
components of the accelerating force; p is the pressure, t the time, 
p the density, and p a certain constant depending on the nature 

of the fluid. 

The three equations of which (1) is the type are not the 
general equations of motion which apply to a heterogeneous fluid 
when internal friction is taken into account, which are those 
numbered 10 in my former paper, but are applicable to a homo¬ 
geneous incompressible fluid, or to a homogeneous elastic fluid 
subject to small variations of density, such as those which accom¬ 
pany sonorous vibrations. It must be understood to be included in 
the term homogeneous that the temperature is uniform throughout 

[Ante, Yol. i. p. 75.] 
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the mass, except so far as it may be raised or lowered by sudden 
condensation or rarefaction in the case of an elastic fluid. The 
general equations contain the differential coefficients of the quan¬ 

tity fjb with respect to x, y, and but the equations of the form (1) 
are in their present shape even more general than is required for 
the purposes of the present paper. 

These equations agree in the main with those which had been 
previously obtained, on different principles, by Navier, by Poisson, 
and by M. de Saint-Yenant, as I have elsewhere observed*. The 
differences depend only on the coefficient of the last term, and 
this term vanishes in the case of an incompressible fluid, to which 
Navier had confined his investigations. 

eqnat,ions such as (1) in their present shape are rather„. 

complicated, but in applying them to the case of a pendulum they 
may be a good deal simplified without the neglect of any quan¬ 

tities which it would be important to retain. In the first place 
the motion is supposed very small, on which account it will be 
allowable to neglect the terms which involve the square of the 
velocity. In the second place, the nature of the motion that we 
have got to deal with is such that the compressibility of the fluid 
has very little influence on the result, so that we may treat the 
fluid as incompressible, and consequently omit the last terms in 
the equations. Lastly, the forces X, Y, Z are in the present case 
the components of the force of gravity, and if we write 

p + TL + pf(Xdx+ Ydy + Zdz) 

for p> we may omit the terms X, Y, Z. 

If / be measured vertically downwards from a horizontal 

plane drawn in the neighbourhood of the pendulum, and if g be 
the force of gravity, f(Xdx + Ydy -f Zdz) = gz\ the arbitrary 
constant, or arbitrary function of the time if it should be found 

necessary to suppose it to be such, being included in IT. The 

part of the wThole force acting on the pendulum which depends on 
the terms H-\-gpz is simply a force equal to the weight of the 

fluid displaced, and acting vertically upwards through the centre 
of gravity of the volume. 

* Report on recent researches in Hydrodynamics. Report of the British Asso¬ 

ciation for 1846, p. 16. [Ante, Yol. i. p. 182.] 
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When simplified in the manner just explained, the equations 
such as (1) become 

dp __ / d2u d2u d2u \ du ~ 
dx ^ \ dxl dy2 dz2 ) ^ dt 

dp __ fd2v d2v d2v\ __ dv 
dy ^ \dx2 dy2 dz2 J ^ dt 

dp __ /d2w d2w d2w\ __ dw 
dz ^ \dx2 dy2 + dz2 J ^ dt ^ 

which, with the equation of continuity, ‘ 

(2), 

•(3), 
du ^dv ^dw 

dx + dy^ dz~ 

are the only equations which have to be satisfied at all points of 

the fluid, and at all instants of time. 

In applying equations (2) to a particular pendulum experiment, 
we may suppose y constant; but in order to compare experiments 
made in summer with experiments made in winter, or experiments 
made under a high barometer with experiments made under a 
low, it will be requisite to regard p as a quantity which may vary 
with the temperature and pressure of the fluid. As far as the 
result of a single experiment*, which has been already mentioned, 
performed with a single elastic fluid, namely air, justifies us in 
drawing such a general conclusion, we may assert that for a given 

fluid at a given temperature y, varies as pf. 

2. For the formation of the equations such as (1), I must 
refer to my former paper; but it will be possible, in a few words, 
to enable the reader to form a clear idea of the meaning of the 

constant y. 

Conceive the fluid to move in planes parallel to the plane of 
xy, the motion taking place in a direction parallel to the axis of y. 
The motion will evidently consist of a sort of continuous sliding, 
and the differential coefficient dvjdz may be taken as a measure of 

* The first of the experiments described in Col. Sabine’s paper, in which the 
gauge stood as high as 7 inches, leads to the same conclusion; but as the vacuum 
apparatus had not yet been made stanch it is perhaps hardly safe to trust this 

experiment in a question of such delicacy. 
+ [We now know that ix is independent of p, until excessive exhaustions are 

reached, far beyond any that we have here to deal with.] 
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the rate of sliding. In the theory it is supposed that in general 
the pressure about a given point is compounded of a normal 
pressure, corresponding to the density, which being normal is 
necessarily equal in all directions, and of an oblique pressure or 
tension, altering from one direction to another, which is expressed 

by means of linear functions of the nine differential coefficients of 

the first order of u> v, w with respect to x, y, z, which define the 
state of relative motion at any point of the fluid. Now in the 
special case considered above, if we confine our attention to one 

direction, that of the plane of xy, the total pressure referred to a 
unit of surface is compounded of a normal pressure corresponding 
to the. density, and a tangential pressure expressed by pdv/dz, 

which tends to reduce the relative motion. 

In the solution of equations (2), p always appears divided 
by p. Let p~p!(>. The constant p may conveniently be called 
the indeoc of friction of the fluid, whether liquid or gas, to which 

it relates. As regards its dimensions, it expresses a moving force 

divided by the product of a surface, a density, and the differential 
coefficient of a velocity with respect to a line. Hence p is the 
square of a line divided by a time, whence it will be easy to adapt 

the numerical value of p' to a new unit of length or of time. 

3. Besides the general equations (2) and (3), it will be 
requisite to consider the equations of condition at the boundaries 
of the fluid. For the purposes of the present paper there will be 
no occasion to consider the case of a free surface, but only that of 
the common surface of the fluid and a solid. Now, if the fluid 
immediately in contact with a solid could flow past it with a 
finite, velocity, it would follow that the solid was infinitely smoother 
with respect to its action on the fluid than the fluid with 
respect to its action on itself. For, conceive the elementary 
layer of fluid comprised between the surface of the solid and a 

parallel surface at a distance h, and then regard only so much of 
this layer as corresponds to an elementary portion dS of the 
surface of the solid. The impressed forces acting on the fluid 
element must be in equilibrium with the effective forces reversed. 
Now conceive h to vanish compared with the linear dimensions 
of dS, and lastly let dS vanish*. It is evident that the conditions 

. * To be quite precise it would be necessary to say, Conceive h and dS to vanish 

together, h vanishing compared with the linear dimensions of dS; for so long as dS 
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of equilibrium will ultimately reduce themselves to this, that 
the oblique pressure which the fluid element experiences on 
the side of the solid must be equal and opposite to the pressure 
which it experiences on the side of the fluid. Now if the fluid 
could flow past the solid with a finite velocity, it would follow 
that the tangential pressure called into play by the continuous 
sliding of the fluid over itself was no more than counteracted 
by the abrupt sliding of the fluid over the solid. As this appears 
exceedingly improbable a priori, it seems reasonable in the 
first instance to examine the consequences of supposing that 
no such abrupt sliding takes place, more especially as the ma¬ 

thematical difficulties of the problem will thus be materially 
diminished. I shall assume, therefore, as the conditions to be 

satisfied at the boundaries of the fluid, that the velocity of a fluid 
particle shall be the same, both in magnitude and direction, as 
that of the solid particle with which it is in contact. The agree¬ 
ment of the results thus obtained with observation will presently 
appear to be highly satisfactory. When the fluid, instead of being 
confined within a rigid envelope, extends indefinitely around the 
oscillating body, we must introduce into the solution the condition 

that the motion shall vanish at an infinite distance, which takes 
the place of the condition to be satisfied at the surface of the 
envelope. 

To complete the determination of the arbitrary functions which 

would be contained in the integrals of (2) and (3), it would be 
requisite to put t = 0 in the general expressions for u, v, w, obtained 
by integrating those equations, and equate the results to the initial 
velocities supposed to be given. But it would be introducing a 
most needless degree of complexity into the solution to take 
account of the initial circumstances, nor is it at all necessary to do 
so for the sake of comparison of theory with experiment. For in 
a pendulum experiment the pendulum is set swinging and then 
left to itself, and the first observation is not taken till several 
oscillations have been completed, during which any irregularities 
attending the initial motion would haye had time to subside. It 

remains finite we cannot suppose h to vanish altogether, on account of the curva¬ 
ture of the elementary surface. Such extreme precision in unimportant matters 

tends, I think, only to perplex the reader, and prevent him from entering so readily 

into the spirit of .an investigation. 
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will be quite sufficient to regard the motion as already going on, 
and limit the calculation to the determination of the simultaneous 
periodic movements of the pendulum and the surrounding fluid. 
The arc of oscillation will go on slowly decreasing, but it will be 
so nearly constant for several successive oscillations that it may be 
regarded as strictly such in calculating the motion of the fluid; 
and having thus determined the resultant action of the fluid on 
the solid we may employ the result in calculating the decrement 
of the arc of oscillation, as well as in calculating the time of oscil¬ 
lation. Thus the assumption of periodic functions of the time in 
the expressions for u} v, w will take the place of the determination 
of certain arbitrary functions by means of the initial circumstances. 

4. Imagine a plane drawn perpendicular to the axis of x 

through the point in the fluid whose co-ordinates are x, y, z. Let 
the oblique pressure in the direction of this plane be decomposed 

into three pressures, a normal pressure, which will be in the 
direction of x, and two tangential pressures in the directions of y, z, 
respectively. Let Pt be the normal pressure, and Tz the tangential 
pressure in the direction of y, which will be equal to the component 

in the direction of x of the oblique pressure on a plane drawn per¬ 
pendicular to the axis of y. Then by the formulae (7), (8) of my 
former paper, and (3) of the present, 

-p.=f-24.“>• 
rp __ (&u , &V' 

8 ^ \dy dx, 
(5). 

These formulae will be required in finding the resultant force of 
the fluid on the pendulum, after the motion of the fluid has been 

determined in terms of the quantities by which the motion of the 
pendulum is expressed. 

5. Before proceeding to the solution of the equations (2) and 
(3) in particular cases, it will be well to examine the general laws 
which follow merely from the dimensions of the several terms 
which appear in the equations. 

Consider any number of similar systems, composed of similar 
solids oscillating in a similar manner in different fluids or in the 

same fluid. Let a, a\ a"... be homologous lines in the different 
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systems ; T: T',!7"... corresponding times, such for example as the 
times of oscillation from rest to rest. Let x, y, z be measured from 
similarly situated origins, and in corresponding directions, and t 
from corresponding epochs, such for example as the commencements 
of oscillations when the systems are beginning to move from a 
given side of the mean position. 

The form of equations (2), (3) shews that the equations being 
satisfied for one system will be satisfied for all the systems provided 

i LbU DUX 
u oc v oc w3 x oc y oc z, and j)oc — oc . 

X v 

The variations x oc y oc z merely signify that we must compare 
similarly situated points in inferring from the circumstance that 

(2), (3) are satisfied for one system that they will be satisfied for 
all the systems. If c, c', c"... be the maximum excursions of simi¬ 
larly situated points of the fluids 

c 
WOCy, x cc a, tcc T> 

and the sole condition to be satisfied, in addition to that of geo¬ 

metrical similarity, in order that the systems should be dynamically 
similar, becomes 

d2 a , 
m OC - Or OC /£,.(6). 

r 

This condition being satisfied, similar motions will take place in 

the different systems, and we shall have 

pac 
(7). 

It follows from the equations (4), (5), and the other equations 
which might be written down from symmetry, that the pressures 
such as Pv T3 vary in the same manner as p, whence it appears 
from (7) that the resultant or resultants of the pressures of the 
fluids on the solids, acting along similarly situated lines, which 
vary asjpa2, vary as pa3 and cT~2 conjointly. In other words, these 
resultants in two similar systems are to one another in a ratio com¬ 
pounded of the ratio of the masses of fluid displaced, and of the 

ratio of the maximum accelerating effective forces belonging to 

similarly situated points in the solids. 

6. In order that two systems should be similar in which the 
fluids are confined by envelopes that are sufficiently narrow to 

s. m. 
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mfluence the motion of the fluids, it is necessary that the envelopes 
should be similar and similarly situated with respect to the solids 
oscillating within them, and that their linear dimensions should 
be in the same ratio as those of the oscillating bodies. In strict¬ 
ness, it is likewise necessary that the solids should be similarly 
situated with respect to the axis of rotation. If however two 
similar solids, such as two spheres, are attached to two fine 

wires, and made to perform small oscillations in two unlimited 

masses of fluid, and if we agree to neglect the effect of the sus¬ 

pending wires, and likewise the effect of the rotation of the 

spheres on the motion of the fluid, which last will in truth be 
exceedingly small, we may regard the two systems as geometri¬ 
cally similar, and they will be dynamically similar provided the 
condition (6) be satisfied. When the two fluids are of the same 
nature, as for example when both spheres oscillate in air, the 
condition of dynamical similarity reduces itself to this, that the 

times of oscillation shall be as the squares of the diameters of the 

spheres. 

If, with Bessel, we represent the effect of the inertia of the 
fluid on the time of oscillation of the sphere by supposing a mass 

equal to 1c times that of the fluid displaced added to the mass of 

the sphere, which increases its inertia without increasing its weight, 
we must expect to find Tc dependent on the nature of the fluid, 
and likewise on the diameter of the sphere. Bessel, in fact, ob¬ 

tained very different values of k for water and for air. Baily’s 

experiments on spheres of different diameters, oscillating once in 

a second nearly, shew that the value of k increases when the 

diameter of the sphere decreases. Taking this for the present as 
the result of experiment, we are led from theory to assert that 
the value of k increases with the time of oscillation; in fact, Jc 

ought to be as much increased as if we had left the time of oscil¬ 
lation unchanged, and diminished the diameter in the ratio in 
which the square root of the time is increased. It may readily 

be shewn that the value of k obtained by Bessel’s method, kby 
means of a long and short pendulum, is greater than what belongs 
to the long pendulum, much more, greater than what belongs to 
the shorter pendulum, which oscillated once in a second nearly. 
The value of k given by Bessel is in fact considerably larger than 
that obtained by Baily, by a direct method, from a sphere of nearly 
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the same size as those employed by Bessel, oscillating once in a 

second nearly. 

The discussion of the experiments of Baily and Bessel belongs 
to Part II. of this paper. They are merely briefly noticed here to 
shew that some results of considerable importance follow readily 
from the general equations, even without obtaining any solution 
of them. 

7. Before proceeding to the problems which mainly occupy 
this paper, it may be well to exhibit the solution of equations (2) 
and (3) in the extremely simple case of an oscillating plane. 

Conceive a physical plane, which is regarded as infinite, to be 
situated in an unlimited mass of fluid, and to be performing small 
oscillations in the direction of a fixed line in the plane. Let a 
fixed plane coinciding with the moving plane be taken for the 
plane of yzi the axis of y being parallel to the direction of motion, 
and consider only the portion of fluid which lies on the positive 

side of the plane of yz. In the present case, we must evidently 
have u = 0, w = 0; and p, v will be functions of x and t, which 
have to be determined. The equation (3) is satisfied identically, 

and we get from (2), putting /*=/*'/}, 

dp 
dx 

= 0, dv _ , d2v 
dt ^ dxz 

(8). 

The first of these equations gives p = a constant, for it evidently 
cannot be a function of £, since the effect of the motion vanishes 
at an infinite distance from the plane; and if we include this 
constant in II, we shall havejp = 0. Let Fbe the velocity of the 

plane itself, and suppose 
F=csinw£.(9). 

Putting in the second of equations (8) 

v = Xx sin nt + X2 cos nt 

, d2Xa v ,<PXl 
we get nXt = n dx4 

(10), 

(11). 

The last of these equations gives 

= e-J£t x(Asm + £ cos J^x) 

+ (C sin J2^ + -° cos J^j'x) ■ 

2—2 
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Since X2 must not become infinite when x = oo, we must have 

0=0, D = 0. Obtaining XL from the first of equations (11), and 

substituting in (10), we get 

® = e-^'* j— A sin (nt — \Jcos ' V 
Now by the equations of conditions assumed in Art. 3, we must 

have v=V when x- 0, whence 

n 
2fjb' 

To find the normal and tangential components of the pressure 

of the fluid on the plane, we must substitute the above value of v 

in the formulae (4), (5), and after differentiation put x — 0. Pi; 

T% will then be the components of the pressure of the solid on the 

fluid, and therefore -Pv - Tz, those of the pressure of the fluid 

on the solid. We get 

Px=0, T = cP/^/^- (sinnt+cosnt)=py/^ (V+i^Q...(13). 

-,se „ D = ce v 2ixf sm ■(nt“V 

The force expressed by the first of these terms tends to diminish 

the amplitude of the oscillations of the plane. The force expressed 

by the second has the same effect as increasing the inertia of the 

plane. 

8. The equation (12) shews that a given phase of vibration is 

propagated from the plane into the fluid with a velocity 

while the amplitude of oscillation decreases in geometric progres¬ 

sion as the distance from the plane increases in arithmetic. If 

we suppose the time of oscillation from rest to rest to be one 

second, n — ir\ and if we suppose yV“’ 116 inch, which, as will 

presently be seen, is about its value in the case of air, we get for 

the velocity of propagation *2908 inch per second nearly. If we 

enquire the distance from the plane at which the amplitude of 

oscillation is reduced to one'half, we have only to put 

V(w/2/Z) a? = log,2, 

which gives, on the same suppositions as before respecting nu¬ 

merical values, x— ‘06415 inch nearly. For water the value of \j! 

is a good deal smaller than for air, and the corresponding value of a; 

smaller likewise, since it varies cceteris paribus as y^- Hence if 
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a solid of revolution of large, or even moderately large, dimensions 

be suspended by a fine wire coinciding with the axis of revolution, 

and made to oscillate by the torsion of the wire, the effect of the 

fluid may be calculated with a very close degree of approximation 

by regarding each element of the surface of the solid as an element 

of an infinite plane oscillating with the same linear velocity*. 

For example, let a circular disk of radius a be suspended 

horizontally by a fine wire attached to the centre, and made to 

oscillate. Let r be the radius vector of any element of the disk, 

measured from its centre, 0 the angle through which the disk has 

turned from its mean position. Then in equation (13), we must 

put V = r ddjdt, whence 

dO ldM\ 
dt n dt2) 

The area of the annulus of the disk comprised between the radii r 

and r + dr is 4tfrrdr} both faces being taken, and if Q be the whole 

moment of the force of the fluid on the disk, G = — 4nr L r2Tsdr, 
j 0 

whence 

G~ — irpcf 
d6 1 d2d\ 

dt^~ n df) 

Let My1 be the moment of inertia of the disk, and let nx be what n 

would become if the fluid were removed, so that — n2Mrf6 is the 

moment of the force of torsion. Then when the fluid is present 

the equation of motion of the disk becomes 

+ + g + <Jf^ = 0...(14), 

or, putting for shortness 

f+<«=o. 

which gives, neglecting /32, 

6= 0o€~n^sia (nt+ a).(15), 

where n = oi1 (1 — /3). 

* [That is, of course, on the supposition that the oscillations arc not excessively 

slow.] 
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The observation of n and nlf or else the observation of n and 

of the decrement of the arc of oscillation, would enable us to de¬ 

termine ft, and tbence p. The values of ft determined in these 

two different ways ought to agree. 

There would be no difficulty in obtaining a more exact solution, 

in which the decrement of the arc of oscillation should be taken 

into account in calculating the motion of the fluid, but I pass on 

to the problems, the solution of which forms the main object of 

this paper. 

Section II 

Solution of the equations in the case of a sphere oscillating in a 

mass of fluid either unlimited} or confined by a spherical 

envelope concentric with the sphere in its position of equi¬ 

librium. 

9. Suppose the sphere suspended by a fine wire, the length 

of which is much greater than the radius of the sphere. Neglect 

for the present the action of the wire on the fluid, and consider 

only that of the sphere. The motion of the sphere and wire being 

supposed to take place parallel to a fixed vertical plane, there are 

two different modes of oscillation possible. We have here nothing 

to do with the rapid oscillations which depend mainly on the 

rotatory inertia of the sphere, but only with the principal oscil¬ 

lations, which are those which are observed in pendulum ex¬ 

periments. In these principal oscillations the centre of the sphere 

describes a small arc of a curve which is very nearly a circle, and 

which would be rigorously such, if the line joining the centre of 

gravity of the sphere and the point of attachment of the wire 

were rigorously in the direction of the wire. In calculating the 

motion of the fluid, wre may regard this arc as a right line. In 

fact, the error thus introduced would only be a small quantity of 

the second order, and such quantities are supposed to be neglected 

in the investigation. Besides its motion of translation, the sphere 

will have a motion of rotation about a horizontal axis, the angular 

motion of the sphere being very nearly the same as that of the 

suspending wire. This motion, which would produce absolutely 

no effect on the fluid according to the common theory of hydro- 
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dynamics, will not be without its influence when friction is taken 

into account; but the effect is so very small in practical cases that 

it is not worth while to take it into account. For if a be the 

radius of the sphere, and l the length of the suspending wire, the 

velocity of a point in the surface of the sphere due to the motion 

of rotation will be a small quantity of the order a/l compared with 

the velocity due to the motion of translation. In finding the 

moment of the pressures of the fluid on the pendulum, forces 

arising from these velocities, and comparable with them, have 

to be multiplied by lines which are comparable with a, l, respec¬ 

tively. Hence the moment of the pressures due to the motion of 

rotation of the sphere will be a small quantity of the order a2/P, 

compared with the moment due to the motion of translation. 

Now in practice l is usually at least twenty or thirty times greater 

than a, and the whole effect to be investigated is very small, 

so that it would be quite useless to take account of the motion 

of rotation of the sphere. 

The problem, then, reduces itself to this. The centre of a 

sphere performs small periodic oscillations along a right line, the, 

sphere itself having a motion of translation simply: it is required 

to determine the motion of the surrounding fluid. 

10. Let the mean position of the centre of the sphere be taken 

for origin, and the direction of its motion for the axis of x, so that 

the motion of the fluid is symmetrical with respect to this axis. 

Let vr be the perpendicular let fall from any point on the axis 

of x} q the velocity in the direction of <nr, co the angle between the 

line ‘sr and the plane of xij. Then p} u, and q will be functions 

of 'zzr, and t, and we shall have 

v = q cos co, w = q sm co, y = m cos co, z = w sin co, 

whence «r2 = y* 4- z2, co = tan 1 - . 

We have now to substitute in equations (2) and (3), and we 

are at liberty to put co = 0 after differentiation. We get 

d d sm co d d 
~Y~2=5 cos co —j-r_ = when co = 0. 
(iy dur w dco dur 

d2 d2 , 

d? = d?yrheno = 0’ 
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d . d cos w d Id, A 
-r = sinw-r -)-r-, = —j- when ® = U, 
dz dtss 13 aw 13 aw 

d2 1 d 1 d2 , 

whence we obtain 

dp (d2u d2u 1 du\ du 
dx ^ \dx2 dm2 m dvr) ^ dt 

_ „ (^1 . .1 II _ JL\_ n f 17^ 
dm ^ \dx2 dm2 m dm -sr2; ? dt. 

^ + ^£ + £ = 0.(18). 
dx dzr m 

Eliminating p from (16) and (17), and putting for jjl its equi¬ 

valent fip} we get 

M di3 W +di3* +13 dm) U P dx W + dtj2 

1 d 1 \ __ d (du __ dq\ _ ~ 

ZT dzT 'ST / ^ dt \Cfcr dx) 

( d^_ cV^ , 1 d __ 1 1 d \ (d/w _ dq\ _ 0 ^ 
01 \dx2 dm2 m dm 'st2 p dt) \dm dx) 

By virtue of (18), m (udzr — qdx) is an exact differential. Let 
then 

m {udm — qdx) = d^r.(20). 

Expressing u and q in terms of we get 

__ <2^ _ 1 / c?2 d* I, 'dr 
dm dx m \doc2 dm2 m dm) 

Substituting in (19), and operating separately on the factor m~\ 
we obtain 

l^L i j^L __ 1 A __ _L ^_L ^ A A\ f -n f9rn 
V&2 cfe2 i3T 6?sr p! dt) \da? dm2 -stcZst/^ 

Since the operations represented by the two expressions within 

parentheses are evidently convertible, the integral of this equation is 

t = + .(21), 

* If we denote for shortness the operation 

dP_ JP_ _1JL 
dx2 ^ dm2 m dm 
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•where fa, fa are the integrals of the equations 

fd* , 1 n 
V<fe2 <fe2 w cfov '1 

1 1 (?\ i A (&_ d*_ 
\dx2 + dzr2' 

(22), 

(23). 

11. By means of the last three equations, the expression for 
dp obtained from (16) and (17) is greatly simplified. We get, in 

the first place, 

1 - f / (#_ . , 1 _ ^.1 r24V 
p cfo \c?#2 cfc2 13J dus) dt J 'us d'us .^ 

but by adding together equations (22) and (23), and taking 
account of (21), -we get 

d2^\r __ cZ2^ _1 (hjf 1^ dfa 

dx2 dus2 us dus /jl dt 

On substituting in (24), it will be found that all the terms in the 
right-hand member of the equation destroy one another, except 
those which contain dtyjdt and dfa/dt, and the equation is re¬ 
duced to 

dp __ p d2fa 

dx 'us dtd'us * 

by D, our equation becomes 

which gives by the separation of symbols 

- JD-1| 0 H 

so that dx/z/dt is composed of two parts, which are separately the integrals of (22), 

(23). Hence we have for the integral of (20') ^=^ + ^0 + ^, SP" being a function of 
x and 'us without t which satisfies the equation D2\I> = 0. For the equations (22), 

(23) will not be altered if we put ffadt, ffadt for \p.2, the arbitrary functions 

which would arise from the integration with respect to t being supposed to be in¬ 
cluded in Sk. The function Sk, which taken by itself can only correspond to steady 

motion, is excluded from the problem under consideration by the condition of 
periodicity. But we may even, independently of this condition, regard (21) as the 
complete integral of (20'), provided we suppose included in (21) terms which would 

be obtained by supposing \Jz at first to vary slowly with the time, employing the 
integrals of (22) and (23), and then making the rate of variation diminish inde¬ 
finitely. By treating the symbolical expression in the right-hand member of equa¬ 
tion (a) as a vanishing fraction, djdt being supposed to vanish, we obtain in fact 
D~2 0; so that under the convention just mentioned the function SI> may be sup¬ 

posed to be included in The same remarks will apply to the equation in 

Section III. which answers to (20'). 
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The equation (17) may be reduced in a similar manner, and 

we get finally 

£*).(25)> 

which is an exact differential by virtue of (22). 

12. Passing to polar co-ordinates, let r be the radius vector 

drawn from the origin, 0 the angle which r makes with the axis of 

x, and let R be the velocity along the radius vector, © the velocity 

perpendicular to the radius vector : then 

x = r cos 6, nr — r sin 0} u = B cos 0 — ® sin 0} q = B sin 0 H- © cos 0. 

Making these substitutions in (20), (22), (23), and (25), we obtain 

r sin 0 (Brd0 — ®dr) = dty.(26), 

sin 0 d / 1 ___ 0 

dr2 r2 dd Isin 6 d0 ) 
(27), 

+ sin<? §l ( 1 1 ^! = Q 
dr* r* dd \sin 6 d0 ) fi dt 

dv - R - (rd0 — - ^ ^ dr 
dP~~r sin 0 \dtdr r dtd0 d 

(28), 

(29). 

We must now determine ^ and by means of (27) and (28), 

combined with the equations of condition. When these functions 

are known, p will be obtained by integrating the exact differential 

which forms the right-hand member of (29), and the velocities 

R, ©, if required, will be got by differentiation, as indicated by 

equation (26). Pormulse deduced from (4) and (5) will then make 

known the pressure of the fluid on the sphere. 

13. Let £ be the abscissa of the centre of the sphere at any 

instant. The conditions to be satisfied at the surface of the sphere 

are that when r = rv the radius vector of the surface, we have 

-8 = cosd^|, ©=-sin 8^.. 
dt dt 

Now r1 differs from a by a small quantity of the first order, and 

since this value of r has to be substituted in functions which are 

already small quantities of that order, it will be sufficient to put 

r = a. Hence, expressing R and © in terms of -fr, we get 

= a sin2 8 ^^ = a2sin 8 cosd whenr=a.(30). 
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When the fluid is unlimited, it will he found that certain 

arbitrary constants will vanish by the condition that the motion 

shall not become infinite at an infinite distance in the fluid. When 

the fluid is confined by an envelope having a radius b, we have the 

equations of condition 

= 0, = 0, when r=b .(31). 
dr ad 

14. We must now, in accordance with the plan proposed in 

Section I., introduce the condition that the function ^ shall be 

composed, so far as the time is concerned, of the circular functions 

sin nt and cos nt, that is, that it shall be of the form 

P sin nt 4* Q cos nt, 

where P and Q are functions of r and 9 only. An artifice, how¬ 

ever, which has been extensively employed by M. Cauchy will 

here be found of great use. Instead of introducing the circular 

functions sin nt and cos nt, we may employ the exponentials 

and g-V-ini Since our equations are linear, and since each of 

these exponential functions, reproduces itself at each differentia¬ 

tion, it follows that if all the terms in any one of our equations be 

arranged in two groups, containing as a factor e^“ln* in one case, 

and e~^~lnt in the other, the two groups will be quite independent, 

and the equations will be satisfied by either group separately. 

Hence it will be sufficient to introduce one of the exponential 

functions. We shall thus have only half the number of terms to 

write down, and half the number of arbitrary constants to deter¬ 

mine that would have been necessary had we employed circular 

functions. When we have arrived at our result, it will be sufficient 

to put each equation under the form JJ + J — 1 F= 0, and throw 

away the imaginary part, or else throw away the real part and 

omits/—1, since the system of quantities U, and the system of 

quantities Vmust separately satisfy the equations of the problem. 

Assuming then 

nt ^ = e'J~lntP, 

we have to determine P as a function of r and 9. 
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15. The form of the equations of condition (30) points out 

sin2# as a factor of P, and since the operation sin # ^ ^ 

performed on the function sin2# reproduces the same function with 

a coefficient — 2, it will be possible to satisfy equations (27) and 

(28) on the supposition that sin2# is a factor of fa and fa*- 

Assume then 

fa = e^~lnt sin29f1(r), fa = sin20f2(r). 

Putting for convenience 

n J — 1 = fim?.(32), 

and substituting in (27) and (28), we get 

/1»-2,/1(0 = 0 .(33), 

/.»--*»*/,(»•) = 0 .(34). 

The equations of condition (30), (31) become, on putting/(r) 

for/,(?*) +/t(r), 

/' (a) = ac, f{a) = \a?c.(35), 

/'(&) = 0, /(&) = 0 .(36). 

We may obtain p from (29) by putting for fa its value 

ey.’m?tsreplacing after differentiation 2!/j(r) by its equiva- 

* When this operation is performed on the function sin0 dYJdd, the function is 
reproduced with a coefficient — i (i + 1). F* here denotes a Laplace’s function of the 
Ith- order, which contains only one variable angle, namely 0. Now p may be ex¬ 

panded in a series of quantities of the general form sinddYJdd. For, since we are 
only concerned with the differential coefficients of p with respect to r and 0, we have 

a right to suppose ip to vanish at whatever point of space we please. Let then 
ip—0 when r—a and 0 = 0. To find the value of \p at a distance r from the origin, 
along the axis of x positive, it will be sufficient to put 0 = 0, <20 = 0 in (20), and 
integrate from r = a to r, whence \p=.0. To find the value of ip at the same dis¬ 

tance r along the axis of x negative, it will he sufficient to leave r constant, and 
integrate dip from 0 = 0 to 0 = 7r. Referring to (26), we see that the integral vanishes, 

since the total flux across the surface of the sphere whose radius is r must be equal 
to zero. Hence ip vanishes when 0 = 0 or =tt, and it appears from (26) that when 

8 is very small or very nearly equal to x, ip varies ultimately as sin20 for given 

values of r and f. Hence ip cosec 0, and therefore fp cosec 0 dd, is finite even when 

sin0 vanishes, and therefore/^ cosec0 dd may be expanded in a series of Laplace’s 
functions, and therefore p itself in a series of quantities of the form sin0 dYi/dd. 
It was somewhat in this way that I first obtained the form of the function p. 
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lent 'r*f”(r)> ai3d ^en integrating. It is unnecessary to add an 

arbitrary function of the time, since any sucb function may be 

supposed to be included in II. We get 

p = — cos 0// (r) .(37). 

16. The integration of the differential equation (33) does not 

present the least difficulty, and (34) comes under a well-known 

integrable form. The integrals of these equations are 

• /n n \ 

Ur) = Ce™ (1 + — J + Demr (1 - — J j 
and we have to determine A} B} G' D by the equations of con¬ 

dition. 

The solution of the problem, in the case in which the fluid is 

confined by a spherical envelope, will of course contain as a par¬ 

ticular case that in which the fluid is unlimited, to obtain the 

results belonging to which it will be sufficient to put b = oo . As, 

however, the case of an unlimited fluid is at the same time simpler 

and more interesting than the general case, it will be proper to 

consider it separately. 

Let + m denote that square root of pu~x n J — 1 which has its 

real part positive; then in equations (38) we must have D = 0, 

since otherwise the velocity would be infinite at an infinite dis¬ 

tance. We must also have 5 = 0, since otherwise the velocity 

would be finite when r = oo, as appears from (26). We get then 

from the equations of condition (35) 

A 1 3 3a?c A , 1 \ n Sac ma 
2 2m \ ma) 2m 

whence 

^ sin2 9 j(i+— + 
(V ma ma t 

p = \pacf/m2 fl + — H—j-$) eJcos 6% .(41). 
F r \ ma ra2a2/ r* x 
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17. The symbolical equations (40), (41) contain the solution 

of the problem, the motion of the sphere being defined by the 

symbolical equation (39). If we wish to exhibit the actual results 

by means of real quantities alone, we have only to put the right- 

hand members of equations (39), (40), (41) under the form 

U+J — 1V, and reject the imaginary part. Putting for short¬ 

ness 

/ n 

V V 
we have m = v (1 + J — l), and we obtain 

P = - sin nt 
n 

.(43), 

yfr=^a2c sin2 9 
3 \ 

1 4* 5—- cos nt + * , 
2vaj 2va \ va, 

— (l + ” ) sin nt 

2va 
c-v(r-d) cos (nt — vr + va) 

+ (l + Aj sia (ni — vr + va) • (44), 

p = — \ pacn j(l + ^5_) sin nt 

.±(l 
2va V 

1 + ^) cos ?i<j cos 0. .(45). 

The reader -will remark that the £, y]r, p of the present article 

are not the same as the ^[r, p of the preceding. The latter are 

the imaginary expressions, of which the real parts constitute the 

former. It did not appear necessary to change the notation. 

When fx = 0, v = co , and ifr reduces itself to 

a3c . 2 a ^ a3 . „ _ dP 
sin 0 cos nt, or ^ sm 0 . 

2 r 2 r dt 

In this case we get from (26) 

B = a> 
d% cos 0 

di~V~’ 
0-K§!^, 

and Bdr -f %rdd is an exact differential d<f> where 

, d|fcos 0 

dt r1 ’ 
= — % a3 
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which agrees with the result deduced directly from the ordinary 

equations of hydrodynamics*. 

18. Let us now form the expression for the resultant of the 

pressures of the fluid on the several elements of the surface of the 

sphere. Let Pr be the normal, and Te the tangential, component 

of the pressure at any point in the direction of a plane drawn 

perpendicular to the radius vector. The formulae (4), (5) are 

general, and therefore we may replace x} y in these formulae by 

x, y\ where x, y' are measured in any two rectangular directions 

we please. Let the plane of x yf pass through the axis of x and 

the radius vector, and let the axis of x be inclined to that of x at 

an angle which after differentiation is made equal to 6. Then 

Pv Tz will become Pr, Te> respectively. We have 

u = R cos (6 — S-) — © sin {9 — ^), 

v=R sin (6 - S-) + ® cos (0 - $•), 

and when 6 = & 

d _ cl d __ d 

dx dr9 dy rdd> 

whence 

dvl dE du dR © dv __ 
dx dr * 

II 
^
 i i 

r ’ dx 

dR 
Te = -i*> 

(dR d®_ 
\rdd dr 

d!0. 
dr; 

(46). 

In these formulae, suppose r put equal to a after differentiation. 

Then Pr, Te will be the components in the direction of r, 6 of the 

pressure of the sphere on the fluid. The resolved part of these in 

the direction of x is 

Pr cos 6 — Te sin 6, 

which is equal and opposite to the component, in the direction of 

x, of the pressure of the fluid on the sphere. Let F be the whole 

force of the fluid on the sphere, which will evidently act along the 

axis of x. Then, observing that 2nrad sin Odd is the area of an 

elementary annulus of the surface of the sphere, we get 

F = 27m* f (- Pr cos 6 + Te sin 8)a sin Odd .(47), 

See Camb. Phil. Trans. Vol. vm. p. 119. [Ante, Vol. i. p. 41.] 



32 ON THE EFFECT OF THE INTERNAL FRICTION OF FLUIDS 

the suffix a denoting that r is supposed to have the value a in the 

general expressions for Pr and Te. 

The expression for F may be greatly simplified, without em¬ 

ploying the solution of equations (27), (28), by combining these 

equations in their original state with the equations of condition 

(30). We have, in the first place, from (26) 

_ 1 djr @ = __ 1 dty 
r* sin 0 dO 9 r sin 0 dr 

(48). 

Now the equations (30) make known the values of ^ and d^/dr, 

and of their differential coefficients of all orders with respect to g, 

when r = a. When the expressions for R and © are substituted 

in (46), the result will contain only one term in which the differen¬ 

tiation with respect to r rises to the second order. But we get 

from (21), (27), (28) • 

d2ty ___ sin 0 d / 1 1_ d\fr2 
dr2 r2 dd Vsin 6 d0) fi dt ’ 

and the second of equations (30) gives the value for r = a of the 

first term in the right-hand member of the equation just written. 

We obtain from (48) and (30) 

= 0, 

dR\_sing d% __ /0\ 

.rddJtT a dt~\r)a* 

(§®\ = _ __i_(<th\ 
\ dr) a fi a sin 6 V dt )a ' 

Substituting in (47), and writing p!p for pu, we get 

F = 27ra J | - apa cos 0 + p | sin 0d0. 

With respect to the first term in this expression, we get by 

integration by parts 

fp cos 0 sin 0 d0 = ^ sin2 g. p — J / sin2 0 ^ d0. 
du 

The first term vanishes at the limits. Substituting in the second 
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term for dp/dd the expression got from (29), and putting r = a, we 

get 

/>•cos d^ed6=-y jtll ($). sin 9 de- 

Substituting in the expression for F\ we get 

*-^4CKiFl+2Msi,ie‘w.w 

19. The above expression for F, being derived from the 

general equations (27), (28), combined with the equations of con¬ 

dition (30), holds good, not merely when the fluid is confined by a 

spherical envelope, but whenever the motion is symmetrical about 

an axis, and that, whether the motion of the sphere be or be not 

expressed by a single circular function of the time. It might be 

employed, for instance, in the case of a sphere oscillating in a 

direction perpendicular to a fixed rigid plane. 

When the fluid is either unconfined, or confined by a spherical 

envelope concentric with the sphere in its position of equilibrium, 

the functions fa, fa consist, as we have seen, of sin20 multiplied 

by two factors independent of 6. If we continue to employ the 

symbolical expressions, which will be more convenient to work 

with than the real expressions which might be derived from them, 

we shall have 

-1»t£ (r)( eV -1«</2 (r), 

for these factors respectively. Substituting in (49), and perform¬ 

ing the integration with respect to 6, we get 

j = t J~1 {«/; (a) + 2/2 (a)} .(50). 

20. Consider for the present only the case in which the fluid 

is unlimited. The arbitrary constants which appear in equations 

(38) were determined for this case in Art. 16. Substituting in 

(50) we get 

F = - * Won (1 + — + -JO e^"*. 
3 r \ ma ma J 

Putting for m its value 1/(1+^ —1), and denoting by Mr the 

S. m. 3 
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mass of the fluid displaced by the sphere, which is equal to f 7rpa3, 

we get 

F= - *'<» {(i + V-l + £ (l + i,)} i 

whence 

A 
4<m 

(51). 

Since J—l has been eliminated, this equation will remain un¬ 

changed when we pass from the symbolical to the real values of 

F and 

Let r be the time of oscillation from rest to rest, so that wt=7t, 

and put for shortness h, Tc' for the coefficients of Mf in (51); then 

h = l+i^’ ^ = i(1 + m).(52)' 
The first term in the expression for the force F has the same 

effect as increasing the inertia of the sphere. To take account of 

this term, it will be sufficient to conceive a mass MF collected at 

the centre of the sphere, adding to its inertia without adding to 

its weight. The main effect of the second term is to produce a 

diminution in the arc of oscillation: its effect on the time of 

oscillation would usually be quite insensible, and must in fact be 

neglected for consistency’s sake, because the motion of the fluid 

was determined by supposing the motion of the sphere permanent, 

which is only allowable when we neglect the square of the rate of 

decrease of the arc of oscillation. 

If we form the equation of motion of the sphere, introducing 

the force F, and then proceed to integrate the equation, we shall 

obtain in the integral an exponential e~st multiplying the circular 

function, 8 being half the coefficient of d%/dt divided by that of 

d2%/dtf. Let M be the mass of the sphere. My2 its moment of 

inertia about the axis of suspension, then 

nVM' (l + a)2 = 28 {My2 + kM' (l + a)2}. 

In considering the diminution of the arc of oscillation, we may 

put l + a for 7. During i oscillations, let the arc of oscillation 

be diminished in the ratio of A0 to A., then 
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For a given fluid and a given time of oscillation, both, h and ¥ 

increase as a decreases. Hence it follows from theory, that the 

smaller be the sphere, its density being supposed given, the more 

the time of oscillation is affected, and the more rapidly the arc of 

oscillation diminishes, the alteration in the rate of diminution of 

the arc due to an alteration in the radius of the sphere being more 

conspicuous than the alteration in the time of oscillation. 

21. Let us now suppose the fluid confined in a spherical 

envelope. In this case, we have to determine the four arbitrary 

constants which appear in (38) by the four equations (35) and (36). 

We get, in the first place, 

- + Be? + Oe~na (l + —) + Dema (l-—) = Wc.(54), 

-- + IBo?- Of™(ma+1+—) + Dem (ma-1 + —) = o*c (55), 
a \ ma] \ ma) 

i++ i1+a)+ (i - a) -0.« 

-~ + 2 BP-Ge*' (mb +1 + i) + Demb (mS-l + ^)=0 (57). 

Putting a2cK for aft'(a) + 2f2(a), which is the quantity that we 

want to find, we get from (38) and (54) 

■ ?.w 
Eliminating in succession B from (54) and (55), from (56) and (57), 

and from (54) and (56), we shall obtain for the determination of 

A, C, D three equations which remain unchanged when a and b 

are interchanged, and the signs of A, Cy and D changed. Hence 

— A, — C} — D are the same functions of b and a that A, G, D are 

of a and b. It will also assist in the further elimination to observe 

that G and D are interchanged when the sign of m is changed. 

The result of the elimination is 

K= 1- 
3 b 7) (a, b) — r) (6, a) 

2mV ’ 12mal + £ (a, b) + f (6, a) 

the functions £, 7) being defined by the equations 

•(59), 

7) (<a, b) = (mV 4* 3ma 4- 3) (mV — 3mb 4- 3) em(?J“a) 

f(a, b) ={b(m2b2-3mb+S)~-a(m2a2+3ma+S)}em{h~a\ 
....(60). 

3—2 
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It turns out that K is a complicated function of m and 

and the algebraical expressions for the quantities which answer 

to h and Je in Art. 20 would be more complicated still, because 

v (1 + V— 1) would have to be substituted for m in (60) and (59), 

and then K reduced to the form — & 4- V — 11c'. To obtain nu¬ 

merical results from these formulae, it would be best to substitute 

the numerical values of a, b, and v in (60) and (59), and perform 

the reduction of K in figures. 

22. If the distance of the envelope from the surface of the 

sphere be at all considerable, the exponential ev(-i~a\ which arises 

from em(-b~a\ will have so large a numerical value that we may 

neglect the terms in the numerator and denominator of the fraction 

in the expression for K which contain as well as the term 

in the denominator which is free from exponentials, in comparison 

with the terms which contain 6v(b~a\ Thus, if b- a be two inches, 

Tone second, and \/fj! = m116, we have €*'@-<0=2424000000, nearly; 

and if b - a be only an inch or half an inch, we have still the 

square or fourth root of the above quantity, that is, about 49234 

or 222, for the value of that exponential. Hence, in practical 

cases, the above simplification may be made, which will cause the 

exponentials to disappear from the expression for K We thus 

get 

V— i _ (mV + 3ma + 3) (m2b* ~ 3mb + 3) . 

2mV b (■m2b2 - 3mb + 3) - a (mV + 3ma + 3)' ’‘^ '* 

If we assume 

Zva + 3 + (2z/V 4- Sva) V— 1 = A (cos a + V- 1 sin a), 

- Zvb 4- 3 + (2vV — 3z>b) V — 1 — B' (cos ft 4- V—1 sin ft), 

bBf cos ft — a A cos a — O cos 7, 

bBf sin ft — a A sin a = C' sin 7, 

we get from (61) 

jr 1 Zb^J-1 AB\ 
^=1+ - • —qt {cos (a 4-/3 - 7) 4- V~1 sm (a + /3- 7)}, 

whence 
7 BbA'B' . , . . , 
A: = WC'sm(a + ^-'y)-1 

,, 3 bA'B' . a . 
* = wa,cos^+/3_^; 

.(62); 
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and, as before, hM' is the imaginary mass which we must conceive 

to be collected at the centre of the sphere, in order to allow for 

the inertia of the fluid, and — k'M'n dfydt the term in F on which 

depends the diminution in the arc of oscillation. 

If we suppose p! = 0, and therefore m = oo , we get from 

b5 + 2a3 

2(b3-a3) 
(63), 

and, in this case, k is the same as with AT sign changed, and &' = 0, 

which agrees with the result obtained directly from the ordinary 

equations of hydrodynamics* If, on the other hand, we make 

b = oo , we arrive at the results already obtained in Art. 20. In 

both these cases it becomes rigorously exact to neglect in the 

expression for K —l given by (59) all the terms which are not 

multiplied by 6v(fi~a,\ 

If the effect of the envelope be but small, which will generally 

be the case, it will be convenient to calculate k and kf from the 

formula (52), which apply to the case in which b = oo, and then 

add corrections Ak, Ak' due to the envelope. We get from (61) 

AJc — V — 1A k' = 
3 (mV + 3ma + 3)2 , v 

2m2a 5(mV-3m5+3)-a(mV+3ma+3)**^bJ )y 

which may be treated, if required, as the equation (61) was treated 

in the preceding article. If, however, we suppose m large, and are 

content to retain only the most important term in (64), we get 

simply 

»-W=Vi> M'-°.(65)’ 

so that the correction for the envelope may be calculated as if the 

fluid were destitute of friction. 

See Camb. Phil. Trans. Vol. vm. p. 120. [Ante, Vol. i. p. 41.] 
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Section III. 

JUon of the equations in the case of an infinite cylinder oscillating 
in an unlimited mass of fluid, in a direction perpendicular to 

‘ls axis. 

oppose a long cylindrical rod suspended at a point in its 

ade to oscillate as a pendulum in an unlimited mass of 

resistance experienced by any element of the cylinder 

etween two parallel planes drawn perpendicular to the 

anifestly be very nearly the same as if the element 

3 an infinite cylinder oscillating with the same linear 

For an element situated very near either extremity of 

uhe resistance thus determined would, no doubt, be sensibly 

ux^ueous; but as the diameter of the rod is supposed to be but 

small in comparison with its length, it will be easily seen that the 

error thus introduced must be extremely small. 

Imagine then an infinite cylinder to oscillate in a fluid, in a 

direction perpendicular to its axis, so that the motion takes place 

in two dimensions, and let it be required to determine the motion 

of the fluid. The mode of solution of this problem will require 

no explanation, being identical in principle with that which has 

been already adopted in the case of a sphere. In the present 

instance the problem will be found somewhat easier, up to the 

formation of the equations analogous to (33) and (34), after which 

it will become much more difficult. 

25. Let a plane drawn perpendicular to the axis of the 

cylinder be taken for the plane of xy, the origin being situated in 

the mean position of the axis of the cylinder, and the axis of x 
being measured in the direction of the cylinder’s motion. The 

general equations (2), (3) become in this case 

dp _ fdhi d2u\ du 1 

dx ^ \dx2 dy2) ^ dt I 

dp _ (d2v d2v\ dv 
dy ^ \dx2 "** dy2) ^ dt . 

(66), 

du dv 
dx "r dy (67). 
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By virtue of (67), udy — vda> is an exact differential. Let tlien 

vdy — vdx = dx.(68). 

Eliminating p by differentiation from the two equations (66), 

and expressing u and v in terms of % in the resulting equation, we 

get 

f d2 d2 1 d\ f d2 d2\ A 

W + ~ p' It) W + 3j?) X ~ °.(69^’ 

and, as before 

X = Xi + %2.(70), 
where 

/ d2 d2\ A /rri x 

w+^)%i_0 .W’ 

/ cP d2 1 d\ A 

(M +  ('72'1' 

We get from (66) and (68) 

, , j d f d2 d2 1 d\ 
dp-fipdx. 

, , d (cP d2 1 d\ 
y * dx \dx2 dy2 y! dt) ^ 

which becomes by means of (70), (71), and (72) 

.(73>- 

26. Passing to polar co-ordinates r, 8, where 9 is supposed to 

be measured from the axis of x, we get from (68), (71), (72), and 

(73) 

Brd& — ®dr = dx .(74), 

/d* 1 d 1 d?\ 
Ur'2 + r dr + rid0‘JXl~°.^’ 

(d2 Id Id2 1 d\ __ . 

V^r2 r dr~^~ r2 dd2 \j! dt) .^ ’ 

dp=Plt&rrd6-%dr). 

R, © in (74) being the velocities along and perpendicular to the 

radius vector. 
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27. Let a be the radius of the cylinder; and as before let the 

cylinder’s motion be defined by the equation 

dl 
dt 

= ce^zrin't = ce1^'7 (78); 

then we have for the equations of condition which relate to the 

surface of the cylinder 

B = ntd-C0*d S = 
© = ■ 

dr dt 

o cos 6 

c sin 8 
\ whenr=a...(79). 

The general equations (75), (76), as well as the equations of 

condition (79), may be satisfied by taking 

Xi = &'mH sin 0 Ft (r), = €»mH sin 0 F2 (r).(80). 

Substituting in (75), (76), and (79), we get 

+ 0.(81), 

K (r) +1 F; (r) - I F, (r) - m*F, (r) = 0.(82), 

Fx (a) + Ft (a) = ac, F; (a) + F; (a) = c.(83), 

besides which we have the condition that the velocity shall vanish 

at an infinite distance. 

28. The integral of (81) is 

Fx(r) = ~ + Fr .(84). 

The integral of (82) cannot be obtained in finite terms. 

To simplify the latter equation, assume F2 (r) = F' (r). Sub¬ 

stituting in (82), and integrating once, we get 

K (r) + b,'(f)- m?Fs (r) = 0.(85). 

It is unnecessary to add an arbitrary constant, because such 

constant, if introduced, might be got rid of by writing F M + 
for Fs(r). 

o
 &

 



ON THE MOTION OF PENDULUMS. 41 

To integrate (85) by series according to ascending powers of r, 

let us first, instead of (85), take the equation formed from it by 
multiplying the second term by 1 — S. Assuming in this new 
equation F3(r) = AlaP + BJaP+..., and determining the arbitrary 
indices a, /3... and the arbitrary constants A/} Br.. so as to satisfy 

the equation, we get 

F3(r) = A, 
mV mV 

2(2-8) + 2.4(2 — S)_(4 — S) 
+ .. 

+ A + 
mV mV 

2(2 + 8) + 2.4 (2 + 8) (4 + 8) + 

= (A, + A„ + AJiogr) 1 + 
mV mV 

+ 2rT45 + 

+ i A- A) « S, + ££ 8, + ^A + • 

4- terms involving 82, S3— 

In this expression 

5fi = r1 + 2“1-l-3~1...+r1.(86). 

Putting now 

substituting in the above equation, and then making S vanish, we 

get 

K (r) = (G+D log r) (l + ^ + ...) 

~D 
2 ~ mV ~ mV q 
^1 ^ g2 ^2 02 ^3 "b • • • •(87). 

The series in this equation are evidently convergent for all values 
of r, however great; but, nevertheless, they give us no information 

as to what becomes of F3 (r) when r becomes infinite, and yet one 
relation between G and D has to be determined by the condition 

that Fb (r) shall not become infinite with r. 

The equation (85) may be integrated by means of descending 
series combined with exponentials, by assuming 

F3 (r) = e±mr (A/ra + BpP...). 

I have already given the integral in this form in a paper, On the 
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numerical calculation of a class of definite integrals and infinite 

series*. The result is 

Ft(?)=Gi 
r.32 

+jyemrT-i\ 1 + 

l2.32.52 

2.4mr + 2.4 (4mr)2 2.4.6 (4 mrf 

l2 l2.32 l2.32.52 

+ 

J_ 

2.4mr 2.4 (4mr)2 1 2.4,6 (4mr)8 

-I 
...(88). 

These series, although ultimately divergent in all cases, are 
very convenient for numerical calculation when the modulus of mr 

is large. Moreover they give at once B' — 0 for the condition that 
Fjf) shall not become infinite with r, and therefore we shall be 

able to obtain the required relation between C and D, provided we 

can express D' as a function of G and D. 

29. This may be effected by means of the integral of (85) 
expressed by different integrals. This form of the integral is 

already known. It becomes, by a slight transformation, 

P3 (r) = P [G" + D" log (r sin2 go)} (emr cosw + e-mrcos<a) dco.. .(89), 
Jo 

C", D" being the two arbitrary constants. If we expand the 
exponentials in (89), and integrate the terms separately, we obtain, 
in fact, an expression of the same form as (87). This transforma¬ 
tion requires the reduction of the definite integral 

7T 

Pi = f cos2* co log sin co dco. 
Jo 

If we integrate by parts, integrating cos co log sin co dco, and differ¬ 
entiating cos2i-1 w, we shall make P. depend on P.^. Assuming 

P„ = Qo, Pi = iQv • •» and generally 

1.3...(2^-1) 
2.4...2i Qt, 

we get 

Qi=Q- + 4-1...+ (2»n ~ = l log (1) -18tf. 

* See Gamb. Phil. Trans. Vol. ix. p. 182. [Ante, Vol. n. p. 849.] 

t A demonstration by Mr Ellis of the theorem 

/, 
2 log sin 0 d0 = - log (£), 
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The equivalence of the expressions (87) and (89) having been 
ascertained, in order to find the relations between C3 D and C", D’\ 
it will be sufficient to write down the two leading terms in (87) 
and (89), and equate the results. We thus get 

0 + D log r = 7t C" + ttD' log r + 2ttD" log (J), 

whence 
G = ttC" + 2,jt log (J). D", D = ttZ)".(90). 

There remains the more difficult step of finding the relation 
between D' and G", D". For this purpose let us seek the ultimate 
value of the second member of equation (89) when r increases 
indefinitely. In the first place we may observe that if XI, Cl' be 
two imaginary quantities having their real parts positive, if the 
real part of Cl be greater than that of Cl', and if r be supposed to 

increase indefinitely, enr will ultimately be incomparably greater 
than €a'r, or even than logr.eov, or, to speak more precisely, the 
modulus of the former expression will ultimately be incomparably 
greater than the modulus of either of the latter. Hence, in finding 
the ultimate value of the expression for Fs(r) in (89), we may 
replace the limits 0 and \ir of co by 0 and a>lt where co1 is a positive 
quantity as small as we please, which we may suppose to vanish 
after r has become infinite. We may also, for the same reason, 

omit the second of the exponentials. Let cos co = 1 — A, so that 

. o - /- A\ 7 d\ /_ \ \ d\ 
<h“jw=t--{1 + i + -)jip:y 

then the limits of A, will be 0 and Ax, where \ = 1 — cos cor Since 

log ^ ultimately vanishes, and 1 -f ^ + ... becomes ultimately 

1, we get from (89) 

limit of F&(r) = emr x limit of p(0" + D" log 2\r) e~nXr * 

due to Euler, will be found in the second volume of the Cambridge Mathematical 

Journal, p. 282, or in Gregory’s Examples, p. 484. 
* The word limit is here used in the sense in which /(r) may be called the limit 

of 0 (r) when the ratio of 0 (r) to f(r) is ultimately a ratio of equality, though / (r) 

and 0 (r) may vanish or become infinite together, in which case the limit of 0(r), 

according to the usual sense of the word limit, would be said to be zero or 

infinity. 
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If now we put X = XV *, we shall have 0 and Xxr for the limits of 

X', and the second of these becomes infinite with r. Hence 

limit of FJr) = (2r)~* emr [ (G" + D" log 2V) e-"*' V-* d\'.(91). 
J 0 

Now e~x x~* dx = 7r^, and if we differentiate both sides of the 
J o 

equation 

f e- Xs"1 dx = T(s) 
J o 

with respect to s, and after differentiation put s = we get 

[ 6~~x x“"^log x dx = F (|). 
J o 

Putting x = mX' in these equations we get 

f e~'mX' X'“* dA/ = 7rhn~%, 
Jo 

f 6~my X'~* log X' dX' = {F (|) — 7r£ log m}, 
Jo 

where that value of is to be taken which has its real part 
positive. Substituting in (91) we get 

limit of FJr) = e"" { 0" + FJ - log f) £"}. 

Comparing with (88) we get 

M£nc"+(*'*r'i-loei)i)"}.(92)' 

30. We are now enabled to find the relation between G and 

D arising from the condition that the motion of the fluid shall not 
become infinitely great at an infinite distance from the cylinder. 
The determination of the arbitrary constants A, B, G, D will 
present no further difficulty. We must have B = 0, since other¬ 

wise the velocity would be finite at an infinite distance, and then 
the two equations (83), combined with the relation above men¬ 
tioned, will serve to determine A, (7, D. The motion of the fluid 
will thus be completely determined, the functions Fx(r\ Fz(r) 
being given by (84) and (87). When the modulus of mr is large, 
the series in (87), though ultimately hypergeometrically conver- 
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gent, are at first rapidly divergent, and in calculating the numerical 
value of FQ(r) in such a case it would be far more convenient to 

employ equation (88). The employment of this equation for the 

purpose would require the previous determination of the constant 
(7. It will be found however that in calculating the resultant 

pressure of the fluid on the cylinder, which it is the main object 

of the present investigation to determine, a knowledge of the value 
of O' will not be required, and that, even though the equation (88) 

be employed*. 

Putting D' = 0 in (92), and eliminating G" and D” between the 
resulting equation and the two equations (90), we get 

C=(log|-7r-ir'l)i>.(93); 

and we get from (88) and (84), observing that F2 (r) = F3 (r), and 
that B = 0, 

f + Fs(a) =ac’ - f + aFs" (a) — ac.(94), 
(If (Ju 

whence 
a2c + A aF3(a) 
a?c-A~ F'{a) .^s>)m 

This equation will determine A, because if F3(a) be expressed by 
(87) the second member of (95) will only contain the ratio of G to 
D, which is given by (93), and if F3 (a) be expressed by (88) G' 
will disappear, inasmuch as D' = 0. 

31. Let us now form the expression for the resultant of the 
forces which the fluid exerts on the cylinder. Let F be the 
resultant of the pressures acting on a length dl of the cylinder, 
which will evidently be a force acting in the direction of the axis 
of x; then we get in the same way as the expression (47) was 
obtained 

F= adl (— Pr cos 6 + Te sin 9)ad6.(96), 
J o 

and Pr, Te are given in terms of R and © by the same formulae 

(46) as before. When the right-hand members of these equations 
are expressed in terms of there will be only one term in which 

* [C as subsequently determined will be given at the end of the paper.] 
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the differentiation with respect to r rises to the second order, and 
we get from (70), (75), and (76) 

,2 r dr r2 d62 /i dt dr 

We get from this equation and the equations of condition (79) 

(dft\ = 1 (ix\ _ l ( d\\ = n 
\drja a \dd)a a2 \drd61 a ’ 

(2®. \ — 2. _sin6 dg_ ® 
\rdd) a ~ a2 \d62)a ~ a dt~ a ’ 

(fx\ =1 
dr/a \dF)a a Wr)a + a2($2)0 fi'i,dt)a fi'[dt)„ 

Hence 

F = adlJ j— pa cos 0 + p (^|0 sin#jd#.(97). 

We get by integration by parts 

Jpa cos 0 dd = pa sin 6 - j [ sin 6 dd. 

The first term vanishes at both limits; and putting for dp/dd its 
value given by (77), and substituting in (97), we get 

F=padiitl0 Hii+(Wsin^ 
or 

F= irpadl. n J - 1 {aF/ (a) + F8' (a)} 

Observing that F8'(a) or F2(a) =ac - Fx(a) from (83), and that 
F^a) = Aa \ where A is given by (95), and putting M for nrpcfdl, 
the mass of the fluid displaced, we get 

F = Men J~1 (l - 2 ~ e^ru 
v 1 aF^(a) + Fs'(d)) u 

which becomes by means of the differential equation (85) which F 
satisfies 3 

Let 

F-McnJ^.(98> 

= k-J^lk'.(99), 1- WJ («) . 
m2aF3 (a)" 
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where k and k' are real, then, as before, kM' cfg/df will be the part 
of F which alters the time of oscillation, and k'M'nd^jdt the part 
which produces a diminution in the arc of oscillation. 

When fx! vanishes, m becomes infinite, and we get from (88) 
and (99), remembering that Zf = 0; & = 1, &' = (), a result which 
follows directly and very simply from the ordinary equations of 

hydrodynamics * 

32. Every thing is now reduced to the numerical calculation 
of the quantities k, k', of which the analytical expressions are 

given. The series (87) being always convergent might he employed 
in all cases, but when the modulus of ma is large, it will be far 
more convenient to employ a series according to descending powers 
of a. Let us consider the ascending series first. 

Let 2tll be the modulus of ma; then 

_ jV“i, a /n a / nr ^ 
*“2vr»VA.<ioo>> 

r being as before the time of oscillation from rest to rest. Sub¬ 
stituting in (99) the above expression for ma, we get 

Jr J i ]»' ~ i i ^ ~~ ^ .flOl). k 7 lk-l+ mtF^ 1 ' 

Putting for shortness 

loge4 + ^-Jr'ft) = -A .(102), 

we get from (87) and (93) 

1j (a) = (log m+A + ^-v/-! 
DJ 

i + p 7 - i - lS ^ Sis/ ~ + "7 

- ^ S. - lTD? S. V-i +...), 

1 m2 ,_ m4 
ctF; (a) = 1 + -p \/ — 1 — p—2^ — • - • 

+ 2 m + A + J /-I) l - - 

- 2 - «L 8, - pJ^-5 S.J=i + ...). 

-) 

* See Camb. Phil. Trans. Vol. vm. p. 116. [Ante, Yol. i. p. 37.] 
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Let 

m'2 in6 nr m8 

l2.22.3 
+ ... = #0, jPg - ~Me 

m6 nr 
l2 l2.22.3! 

tn 

m nr 71/T / 111 
,4-... = Jmq } 22 22 32 45 

,+...=iiL: 

yA - st+... =A, ^ 
m2 m6 r, ,r, m4 „ tn8 „ , -w 

^ “2 yg3+...=N0, b“+''' ~ A f j 

loge m + A =L.0()4): 

then substituting in (101), changing the sign of J - l, and 

arranging the terms, we get 

Jc + J^lk' 

(103), 

= 1 + 
m2 

ZM'-\m;+n.+[lM0+LM-l (1 -.)//) - .V„p- 

-\m;+l (1 -MD+N.'+i-LM,'-? (1 -il/,0+AVJ J-1 

2 -I>K+ 

33. Before going on with the calculation, it will Ik* ivquisitr 

to know the numerical value of the transcendental quantify A. 
Now 

*~l r (i) = (r*r r (i) = ^ log r («) 

^.,«r0f„r., 

and the value of d/ds.\ogV(l +5) may be got at once fmni 

Legendre's table of the common logarithms of F (I q s), in u hich 

the interval of s is ’001. Putting ls for the tabular number corn* 
sponding to s, we have 

Js log r (1 + s) = 1000 loge 10 {AZ, - \ AH, + < AH, - } A 7 ( ... |. 

For 3 = | - 

Al, = +16050324, A2ils = + 405020, A% = -35!>, AH, t (1*, 

* These numbers are copied from De Morgan’s Diffarndul „,„i r„ln,. 
his, p. 588. 
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the last figure being in each case in the 12th place of decimals. 

We thus get 

tr-*T (-1) = -1*9635102, A = + *5772158*.(106). 

34. When in is large, it will be more convenient to employ 
series according to descending powers of a. Observing that the 

general term of Fz (a) as given by (88), in which D' = 0, is 

,_ivr[i.3...(2t-i)r 
^ ' 2.4...2i (imcCfafr5 

we get for the general term of Fz (a) 

file's" L(^-l)* 2*'- 1 
^ ^ 2.4...(2i — 2) (4maf"1 \ 2%. 4ma 2a 

and the expression within brackets is equivalent to 

(2i-l)(2i+l) 

whence 

aF^a) = CV""1 ma* 

Sia 

L*JL A:.3 A 
2.4ma+ 2.4 (4wict)2 

and we find by actual division 

A/(A ; — ma — ^ 4- J, (ma) 1_ 

85. When many terms are required, the calculation of the 

cooilieienls may be facilitated in the following manner. 

Assuming aF,' (a) = v (a) Fz (a), we have 

F' (a) =■ a1 v (a) l<\ (a.), 

/'Ta" (a) - [u7l v (a) — aF2 v {a) + a2 (va)2} F{) (a). 

Substituting in the differential equation (85) which A3 has to 

satisfy, we get- 
av (a) [v (a,)}2 — m\c = 0.(107). 

Assuming 

v (a) — — ma 4- A 0 4~ A x (ma) 1 ~f A 2 (ma) *4-. (108), 

* [A is in fact the well-known transcendent nailed Iiitler'a Constant, Urn value, of 

which is *r»77‘21TUU; UJ A-e. This, which 1 oii"lit to lutvci known, was pointed out to 

me just after the publication of the paper by my Iriend Urol. 1(. Newman. | 

S. III. 4 
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and substituting in the above equation, we get 

- mo - 1A W1 ~2A (“)■“ - 3 A (maYa ■ • • 

- +{-2ma + A+A(ma)"1+"-HA + A(ma) 1 + ---}==0> 

which gives on equating coefficients, A0 = — £, and foi i > 0 

2 Am = — iA, + A0A. + AjA^... + A{A0, 

or, assuming to avoid fractions, 

A=2^Bt.OOi)), 

B,., = - 2iB( + Bfi, + BtB„ ...+BiBa.(110), 

a formula by means of which the coefficients Bt, B,> Ba... may be* 

readily calculated one after another. We get 

B,=-1, A = + !. A = J?3== + 25,' 

B=- 208, Bs = + 2146, Be = - 20:168, 

i?7 = + 375733, £8 = - 6092032. 

(111). 

We get now from (100), (101), (108), and (109) 

h _ V - l ]d 

= l + 2e ^nT-lV^ XXf (112), 

whence if we calculate 

m,= 2m'1, w2 = - £B0var\ us = //.m'1..., 

ut = (- l)i+11 B{_2 8~m m-', 

we shall have, changing the sign of V—L in (112), and writ in” 

8 for 1, 

&+«/—1 &' = 1 + «,8+MjB8—m,83+w484—w.8Ss +... 1 

i+«2 - V f«8+VI m6—+\/ i 'q—V! wu • • • 1 

• If 4*** I*e the common logarithms of Urn ooHliciunt.; o| 

nr1, HI"2... in the last two of the formula* (113), 

l,= 1505150; 

4 = 1-6989700; 

4=2-6453650; 

4=2-4948500; 

4 = 2-2371251; 

4=2-4046734; 

4 = 2-3646348 ; 

4 = 2-7019316 ; 

4= 2-601701:. ; 
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and if the logarithms of the coefficients of Wf1, in uv u2... 
be required, it will be sufficient to add ‘1505150 to the 1st, 3rd, 

5th, &c. of the logarithms above given. 

36. It will be found that when ttt is at all large, the series 

(113) are at first convergent, and afterwards divergent, and in 

passing from convergent to divergent the quantities become 

nearly equal for several successive terms. If after having calcu¬ 

lated i terms of the first of the series (113) we wish to complete 

the series by a formula involving the differences of uv we have 

^<-^18m + ^8H2-...=tf{l-«(l + A)+8a (1+A)2-...}^ 

= 8* {1 + 8 (1 + A)} 1 

and 
7T .—- 

rrr --— . 7T ^ IT fl V “1 
1 4- 8 = 1 + cos T + a/ — 1 sm j = 2 cos e8 , 

4 4 a 

SCl + sr^secI 

so that the quantities to be added to 7c} 7c, arc 

•j . i \ -i i 7r f 2i — 1 , 7r 2i A 
to at, (— 1) }, see t) - cos 0 tt . u. — J sec ». cos - 7r. Am. 

8 1 ~ 8 8 £ 

/- tt\2 2i+l a2 | 
+ (isecgj cos 8 tt.A7/v..V 

;V(U4). 
, ,, , -w , 7T f . 2'£ —1 7T . 2i . 
to /»:, (- IV A sec , ism t) 7r . m. - J sec ., sm - ir. A/c 

v ' - 8 ( 8 £ ~ 8 8 

/ 7rV2 . 2?/ 4- 1 . ) 
+ f i sec -J sm - 8- 7r. A ?/^... r 

37. Tlio following table contains the values of the functions 

and 1c calculated for 40 different valiums of 1U. From 1U = * I to 

lU = 1*5 flu; calculation was performed by means of flu; formula, 

(105) ; tint rest of the fable; was calculated by means of the series 

(113). In the former part of the calculation, six places of deci¬ 

mals were employed in calculating the functions i/(), &o. given 

by (103). The last figure was then struck out, and five-figure 

logarithms were employed in multiplying the four fund,ions df0, 

4—2 
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Me, and 1 - M'e by ir/% and by L, as well as in reducing tbe 

right-band member of (105) to the form k + J — Ik’. The terms 

of the series (113) were calculated to five places of decimals. That 

these series are sufficiently convergent to be employed when 

ttt —1*5, might be presumed from the numerical values of the 

terms, and is confirmed by finding that they give k = 1*952, and 

&' = ri53. For ttt = 1*5 and a few of the succeeding values, the 

second and third of the series (113) were summed directly as far 

as in’"5 inclusively, and the remainders were calculated from the 

formulae (114). Two columns are annexed, which give the values 

of ttt% and ttl2&', and exhibit the law of the variation of the two 

parts of the force F} when the radius of the cylinder varies, the 

nature of the fluid and time of oscillation remaining unchanged. 

Four significant figures are retained in all the results. 

m h V m27c m2k' tit h h' m2/c' 

0 00 00 0 0 2-1 1-677 •7822 7-395 3-450 
•i 19*70 48-63 •1970 •4863 2-2 1-646 •7421 7-966 3-592 
•2 9-166 16-73 *3666 •6691 2-3 1-618 •7059 8-557 3-734 
*3 6-166 9*258 *5549 •8332 2*4 1-592 •6780 9168 3-877 
•4 4-771 6-185 •7633 •9896 2-5 1-568 ■6430 9-799 4-019 
•5 3-968 4-567 *9920 1-142 2-6 1-546 •6154 10-45 4-160 
*6 3-445 3-589 1-240 1-292 2-7 1-526 •5902 11-12 4-303 
*7 3-082 2-936 1*510 1-439 2-8 1-507 •5669 11-81 4*444 
*8 2-812 2-477 1-800 1-585 2-9 1-489 •5453 12-52 4-586 
*9 2-604 2-137 2-110 1-731 3-0 1-473 •5253 13-25 4-728 

1-0 2-439 1-876 2-439 1-876 3-1 1-457 •5068 14-01 4-870 
1*1 2-306 1-678 2*790 2*021 3-2 1-443 •4895 14-78 5-012 
1-2 2-194 1-503 3-160 2-164 3-3 1-430 •4732 15-57 5-154 
1-3 2-102 1-365 3-552 2-307 3-4 1-417 •4581 16-38 5-296 
1*4 2-021 1-250 3-961 2-450 3-5 1-405 •4439 17-21 5-437 
1*5 1-951 1-153 4-389 2-595 3-6 1-394 •4305 18-06 5-580 
1-6 1-891 1-069 4-841 2-739 3-7 1-383 •4179 18-93 5-721 
1*7 1-838 •9965 5-312 2-880 3-8 1-373 •4060 19-82 5-863 
1-8 1-791 •9332 5*804 3-024 3-9 1-363 •3948 20-73 6-005 
1*9 1-749 •8767 6*314 3*165 4-0 1-354 •3841 21-67 6-145 
2*0 1-711 •8268 6-845 3-307 00 1 0 00 00 

The numerical calculation by means of the formulae (103), 

(104), (105) becomes very laborious when many values of the 

functions are required. The difficulty of the calculation increases 

with the value of III for two reasons, first, the calculation of the 

functions Moi &c. becomes longer, and secondly, the moduli of the 

numerator and denominator of the fraction in the right-hand 
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member of (105) go on decreasing, so that greater and greater 

accuracy is required in the calculation of the functions M0, &c., 

and of the products LM0, &c., in order to ensure a given degree of 

accuracy in the result. The calculation by the descending series 

(113) is on the contrary very easy. 

It will be found that the first differences of ttt2&' and of 

m2(&-l) are nearly constant, except near the very beginning of 

the table. Hence in the earlier part of the table the value of h or 

Jc for a value of ttt not found in the table will be best got by 

finding m2h — ttt2 or ttt2kf by interpolation, and thence passing to 

the value of Jc or Jc'. Very near the beginning of the table, inter¬ 

polation would not succeed, but in such a case recourse may be 

had to the formulae (103), (104), (105), the calculation of which is 

comparatively easy when ttt is small. It did not seem worth while 

to extend the table beyond ttt = 4, because where ttt is greater 

than 4, the series (113) are so rapidly convergent that Jc and Tc 
may be calculated to a sufficient degree of accuracy with extreme 

facility. 

38. Let us now examine the progress of the functions Tc 
and k'. 

When ttt is very small, we may neglect the powers of ttt in the 

numerator and denominator of the fraction in the right-hand 

member of equation (105), retaining only the logarithms and the 

constant terms. We thus get 

* + \/-lA' = l- 

whence 

tnrW-i 
L — \tt V — 1 

m2 (Jfe- • d = —iz:_ 
} L*+ (&)•’ 

m2k’ = 
-L 

..(115), 
X2 + (£7r)2 

L being given by (102) and (104), or (104) and (10G). When ttt 

vanishes, L, which involves the logarithm of ttt"1, becomes infinite, 

but ultimately increases more slowly than if it varied as ttt affected 

with any negative index however small. Hence it appears from 

(115), that Jc — 1 and Jc are expressed by m"2 multiplied by two 

functions of ttt which, though they ultimately vanish with ttt, 

decrease very slowly, so that a considerable change in ttt makes but 

a small change in these functions. Now when the radius a of the 

cylinder varies, everything else remaining the same, ttt varies as a, 
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and in general the parts of the force F on which depend the altera¬ 

tion in the time of vibration, and the diminution in the arc of 

oscillation, vary as «2&, cfk’, respectively. Hence in the case of a 

cylinder of small radius, such as the wire used to support a sphere 

in a pendulum experiment, a considerable change in the radius of 

the cylinder produces a comparatively small change in the part of 

the alteration in the time and arc of vibration which is due to the 

resistance experienced by the wire. The simple formulae (115) 

are accurate enough for the fine wires usually employed in such 

experiments if the theory itself be applicable; but reasons will 

presently be given for regarding the application of the theory to 

such fine wires as extremely questionable. 

From m = *3 or *4 to the end of the table, the first differences 

of each of the functions m2 (Jc — 1) and nr&' remain nearly constant. 

Hence for a considerable range of values of m, each of the func¬ 

tions may be expressed pretty accurately by A + J?m. When m is 

at all large, the first two terms in the 2nd and 3rd of the formulae 
(113) will give 1c and 1c with considerable accuracy, because, inde¬ 

pendently of the decrease of the successive quantities tlT1, m~2, 

nr3..., the coefficients of m"1 and m“2 are considerably larger than 

those of several of the succeeding powers. If we neglect in these 

formula! the terms after we get 

k = i + </2. nr1, 1c = vs. m"1 +1 m~2. 

It maybe remarked that these approximate expressions, regarded 

as functions of the radius a, have precisely the same form as the 

exact expressions obtained for a sphere, the coefficients only being 

different. 
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Section IV. 

Determination of the motion of a fluid about a sphere which moves 

uniformly with a small velocity. Justification of the applica¬ 

tion of the solutions obtained in Sections II. and III. to cases 

in which the eoctent of oscillation is not small in comparison 

with the radius of the. sphere or cylinder. Discussion of a 

difficulty which presents itself with reference to the uniform 

motion of a cylinder in a fluid. 

39. Let a sphere move in a fluid with a uniform velocity V, 

its centre moving in a right line ; and let the rest of the notation 

be the same as in Section II. Conceive a velocity equal and 
opposite to that of the sphere impressed both on the sphere and 
on the fluid, which will not affect the relative motion of the sphere 

and fluid, and will reduce the determination of the motion of the 

fluid to a problem of steady motion. Then we have for the equa¬ 

tions of condition 

B = 0, © = 0, when r = a.(116); 

R — — Vcos 6, © = Fsin 9, when r = oc .(117). 

The equations of condition, as well as the equations of motion, 
may be satisfied by supposing yjr to have the form sin2 9f(r). We 
get from (20'), by the same process as that by which (33), (34) were 
obtained, 

.ms), 
the only difference being that in the present case the equation 
(20') cannot be replaced by the two (22), (23), which become 
identical, inasmuch as the velocity of the fluid is independent of 

the time. 

The integral of (118) is 

f(r) = Ar"1 + Br + Or2 + DrA . 
which gives 

B = As = 2 cos 6 (Ar“8 + Br* + C + Br2), 
r sm 0 dd v 

© =-J—r = sin 6 (.Ar"3 4Br2). 
r sind dr 

(U9), 
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The first of the equations of condition (117) requires that 

D=0, C = -\V .(120). 

It is particularly to be remarked that inasmuch as the two arbitrary 

constants C, D are determined by the first of the conditions (117), 

none remain whereby to satisfy the second. Nevertheless it 

happens that the second of these conditions leads to precisely 

the same equations (120) as the first. The equations of condition 

(116) give 
A=-iVa3, I? = f Va; 

whence 
, , 2t1 3r 

■'Jr = i Va (-j H-- 
r 4 ' a a 

R 
3a a' 

'Yr+¥rs 
cos 8 ~rC 

sin2 6* .(121), 

.(122), 

.(123). 

If now we wish to obtain the solution of the problem in its 

original shape, in which the sphere is in motion and the fluid at 

rest, except so far as it is disturbed by the sphere, we have merely 

to add V cos 8, — V sin 8, \ Vr2 sin2 8 to the expressions for 

R} ©, We get from (121) 

t = i Va2 
3 r 

(124). 

40. Let us now return to the problem of Section II.; let us 

suppose the time of oscillation to increase indefinitely, and examine 

what equation (40) becomes in the limit. 

When r becomes infinite, n, and therefore m, vanishes; the 

expression within brackets in (40) takes the form oo — oo, and its 

limiting value is easily found by the ordinary methods. We must 

retain the m2 in the coefficient of t, because t is susceptible of 

unlimited increase. We get in the limit 

= £ a2 ce^'mH sin2 9.(125). 

* I have already had occasion, in treating of another subject, to publish the 
solution expressed by this equation, which I had obtained as a limiting case of the 

problem of a ball pendulum. See Philosophical Magazine for May, 1848, p. 343. 
[Ante, Yol. n. p. 10.] 
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If now we put V for dg/dt, the velocity of the sphere, we get 

from (39), c6*'mH=V. After substituting in (125), the equation 

will remain unchanged when we pass from the symbolical to the 

real values of ^ and V} and thus (125) will be reduced to (124). 

41. It appears then that by supposing the rate of alteration 

of the velocity of the sphere to decrease indefinitely, we obtain 

from the solution of the problem of Section II. the same result as 

was obtained in Art. 39, by treating the motion as steady. As yet, 

however, the method of Art. 40 is subject to a limitation from 

which that of Art. 39 is free. In obtaining equation (40), it was 

supposed that the maximum excursion of the sphere was small in 

comparison with its radius. Retaining this restriction while we 

suppose t to become very large, we are obliged to suppose c to 

become very small, so that the velocity of the sphere is not merely 

so small that we may neglect terms depending upon its square, a 

restriction to which Art. 39 is also subject, but so extremely small 

that the space passed over by the sphere in even a long time is 

small in comparison with its radius. 

We have seen, however, that on supposing r very large in (40) 

we obtain a result identical with (124), not merely a result with 

which (124) becomes identical when the restriction above men¬ 

tioned is introduced. This leads to the supposition that the 

solution expressed by (40) is in fact more general than would 

appear from the way in which it was obtained. That such is 

really the case may 'be shewn by a slight modification of the 

analysis. Instead of referring the fluid to axes fixed in space, refer 

it to axes originating at the centre of the sphere, and moveable 

with it. In the general equations of motion, the terms which 

contain differential coefficients taken with respect to the co¬ 

ordinates will remain unchanged, inasmuch as they represent the 

very same limiting ratios as before: it is only those in which 

differentiation with respect to t occurs that will be altered. If 

d'/dt be the symbol of differentiation with respect to t when the 

fluid is referred to the moveable axes, we shall have 

d __ d' d% d 

dt dt dt dx9 

but the terms arising from d%/dt. d/dx are of the order of the square 

of the velocity, and are therefore to be neglected. Hence the 
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general equations have the same form whether the fluid be referred 

to the fixed or moveable axes. But on the latter supposition 

the equations of condition (30) become rigorously exact. Hence 

equation (40) gives correctly the solution of the problem, inde¬ 

pendently of the restriction that the maximum excursion of the 

sphere be small compared with its radius, provided we suppose 

the polar co-ordinates r, 8 measured from the centre of the sphere 

in its actual, not its mean position. Similar remarks apply to the 

problem of the cylinder. Moreover, in the case of a sphere oscil¬ 

lating within a concentric spherical envelope, it is not necessary, 

in order to employ the solution obtained in Section II., that the 

maximum excursion of the sphere be small compared with its 

radius; it is sufficient that it be small compared with the radius 

of the envelope. 

These are points of great importance, because the excursions of 

an oscillating sphere in a pendulum experiment are not by any 

means extremely small compared with the radius of the sphere ; 

and in the case of a narrow cylinder, such as the suspending wire, 

so far from the maximum excursion being small compared with 

the radius of the cylinder, it is, on the contrary, the radius which 

is small compared with the maximum excursion. 

42. Let us now return to the case of the uniform motion of a 

sphere. In order to obtain directly the expression for the resist¬ 

ance of the fluid, it would be requisite first to find p, then to get 

Pr and Tq from (46), or at least to get the values of these functions 

for r~ a, and lastly to substitute in (47) and perform the integra¬ 

tion. We should obtain p by integrating the expression for dp got 

from (16) and (17). It would be requisite first to express u and q 

in terms of then to transform the expression for dp so as to 

involve polar co-ordinates, and then substitute for ^ its value given 

by (121); or else to express the right-hand member of (121) by the 

co-ordinates so, us, and substitute in the expression for dp*. We 

* The equations (16), (17) give, after a troublesome transformation to polar co¬ 

ordinates, 
dp __ p d f d2 sind d l d p d\ 
dr “~r2 sin# dQ \dr2 * r2 dd sin# dd p dt) ^. 

dp_ p d f d2 sin# d 1 d p d\ , . 

dd~~ sin# dr \dr2 + r2 dd sin# dd p dt) ^. 

The expression for dp got from these equations is an exact differential by virtue 

of the equation which determines \j/; and in the problems considered in Section II. 
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have seen, however, that the results applicable to uniform motion 

may be deduced as limiting cases of those which relate to oscil¬ 

latory motion, and consequently, we may make use of the ex¬ 

pression for F already worked out. Writing V for ce^~lnt in the 

first equation of Art. 20, expressing m in terms of n, and then 

making n vanish, we get 

— .F= 67rfi pa V..(126), 

and - F is the resistance required. 

This equation may be employed to determine the terminal 

velocity of a sphere ascending or descending in a fluid, provided 

the motion he so slow that the square of the velocity may he 

neglected. It has been shewn experimentally by Coulomb *, that 

in the case of very slow motions, the resistance of a fluid depends 

partly on the square and partly on the first power of the velocity. 

The formula (126) determines, in the particular case of a sphere, 

that part of the whole resistance which depends on the first power 

of the velocity, even though the part which depends on the square 

of the velocity be not wholly insensible. 

It is particularly to be remarked, that according to the formula 

(126), the resistance varies not as the surface but as the radius of 

the sphere, and consequently the quotient of the resistance divided 

by the mass increases in a higher ratio, as the radius diminishes, 

than if the resistance varied as the surface. Accordingly, fine 

powders remain nearly suspended in a fluid of widely different 

specific gravity. 

and in the present Section \£> has the form Sk sin2 0, where Sk is independent of 0. 

Hence we get from (&), by integrating partially with respect to 0, 

p — p cos0 £ 
dr Ur2 

2 

f5 
p*\ 
/jl dt) 

* (c). 

It is unnecessary to add an arbitrary function of r, because if X (?•) be such 
a function which we suppose added to the right-hand member of (c), we must 

determine X by substituting in (a). The resulting expression for X' (?•) cannot con¬ 

tain 0, inasmuch as the expression for dp is an exact differential, but it is composed 

of terms which all involve cos0 as a factor, and therefore we know, without working 

out, that these terms must destroy one another. Hence X (r) must be constant, or 

at most be a function of t, which we may suppose included in n. X (r) will in fact 

be equal to zero if n be the equilibrium pressure at the depth at which fgdz' 
vanishes. 

* M6moires de VInstitute Torn* in. p. 246. 
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43. When the motion is so slow that the part of the re¬ 

sistance which depends on the square of the velocity may be 

neglected, we have, supposing V to be the terminal velocity, 

— _F= irg (a — p) a\ where g is the force of gravity, and <r, which 

is supposed greater than p, the density of the sphere. Substituting 

in (126) we get 

.(m)' 

Let us apply this equation to determine the terminal velocity 

of a globule of water forming part of a cloud. Putting g= 386, 

/z/ = (*116)2, an inch being the unit of length, and supposing 

op"1 — 1 = 1000, in order to allow a little for the rarity of the air 

at the height of the cloud, we get V = 6372 x 1000a2. Thus, for a 

globule the one thousandth of an inch in diameter, we have 

V = 1*593 inch per second. For a globule the one ten thousandth 

of an inch in diameter, the terminal velocity would be a hundred 

times smaller, so as not to amount to the one sixtieth part of an 

inch per second. 

We may form a very good judgment of the magnitude of that 

part of the resistance which varies as the square of the velocity, 

and which is the only kind of resistance that could exist if the 

pressure were equal in all directions, by calculating the numerical 

value of the resistance according to the common theory, imperfect 

though it be. It follows from this theory that if h be the height 

due to the velocity V, the resistance is to the weight as 3ph to 8era. 

For V= 1*593 inch per second, the resistance is not quite the one 

four hundredth part of the weight; and for a sphere only the one 

ten thousandth of an inch in diameter, moving with the velocity 

calculated from the formula (127), the ratio of the resistance to the 

weight would be ten times as small. The terminal velocities of 

the globules calculated from the common theory would be 32*07 

and 10*14 inches per second, instead of only 1*593 and *01593 inch. 

It appears then that the apparent suspension of the clouds is 

mainly due to the internal friction of air. 

44. The resistance to the globule has here been determined 

as if the globule were a solid sphere. In strictness, account ought 

to be taken of the relative motion of the fluid particles forming the 

globule itself. Although it may readily be imagined that no 
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material change would thus be made in the numerical result, * 

may be worth while to point out the mode of solution of the 

problem. Suppose the globule preserved in a strictly spherical 

shape by capillary attraction, which will very nearly indeed be the 

case. Conceive a velocity equal and opposite to that of the 

globule impressed both on the globule and on the surrounding 

fluid, which will reduce the problem to one of steady motion. 

Let fa, &c. refer to the fluid forming the globule, and assume 

^ - ft (r) sin2 0. Then we get on changing the constants in (119) 

ft (r) = A^1 + Bxr + Gxr2 + DXP. 

The arbitrary constants, Ax) Bx vanish by the condition that the 

velocity shall not become infinite at the centre. There remain 

the two arbitrary constants Gv Dx to be determined, in addition to 

those which appeared in the former problem. But we have now 

four instead of two equations of condition which have to be satis¬ 

fied at the surface of the sphere, which are that 

R=0, Rx = 0} © = ©x, Td = T10) when r = a .(128). 

We shall thus have the same number of arbitrary constants as condi¬ 

tions to be satisfied. Now Tl0 will involve /q as a coefficient, just as 

Te involves pip or g,; and /q, which refers to water, is much larger 

than /-&, which refers to air, although p! is larger than p,x. Hence 

the results will be nearly the same as if we had taken pux = oo , or 

regarded the sphere as solid. 

If, however, instead of a globule of liquid descending in a gas 

we have a very small bubble ascending in a liquid, we must not 

treat the bubble as a solid sphere. We may in this case also 

neglect the motion of the fluid forming the sphere, but we have 

now arrived at the other extreme case of the general problem, and 

the two equations of condition which have to be satisfied at the 

surface of the sphere are that R = 0 and Te= 0 when r = a, instead 

of R = 0 and © = 0, when r = a. 

The equation of condition Te = 0 which applies to a bubble, as 

well as the fourth of equations (128), will not be the true equa¬ 

tions, if forces arising from internal friction exist in the superficial 

film of a fluid which are of a different order of magnitude from 

those which exist throughout the mass. At the end of the memoir 

already referred to, Coulomb states that in very slow motions the 

resistance of bodies not completely immersed in a liquid is much 

greater than that of bodies wholly immersed, and promises to 
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communicate a second memoir in continuation of the first. This 

memoir, so far as I can find out, has never appeared. Should the 

existence of such forces in the superficial film of a liquid be made 

out, the results deduced from the theory of internal friction will 

be modified in a manner analogous to that in which the results 

deduced from the common principles of hydrostatics are modified 

by capillary attraction. It may be remarked that we have nothing 

to do with forces of this kind in considering the motion of pendu¬ 

lums in air, or even in considering the oscillations of a sphere in 

water, except as regards the very minute fraction of the whole 

effect which relates to the resistance experienced by the suspending 

wire in the immediate neighbourhood of the free surface. 

It may readily be seen that the effect of a set of forces in the 

superficial film of a liquid offering a peculiar resistance to the 

relative motion of the particles would be, to make the resistance of 

a gas to a descending globule agree still more closely with the 

result obtained by regarding the globule as solid, while the re¬ 

sistance experienced by an ascending bubble would be materially 

increased, and made to approach to that which would belong to a 

solid sphere of the same size without mass, or more strictly, with a 

mass only equal to that of the gas forming the bubble. Possibly 

the determination of the velocity of ascent of very small bubbles 

may turn out to be a good mode of measuring the amount of fric¬ 

tion in the superficial film of a liquid, if it be true that forces of 

this kind have any existence. But any investigation relating to 

such a subject would at present be premature. 

45. Let us now attempt to determine the uniform motion of a 

fluid about an infinite cylinder. Employing the notation of Section 

III., and reducing the problem to one of steady motion as in Art. 

39, we obtain the same equations of condition (116), (117), as in 

the case of the sphere. Assuming % = sin 6 F (r), and substituting 

in the equation obtained from (69) by transforming to polar co¬ 

ordinates and leaving out the terms which involve d/dt, we get 

. 

The integral of this equation may readily be obtained by mul¬ 

tiplying the last term of the operating factor by (1 -b S)2, integrating 

the transformed equation, and then making 8 vanish. It is 

F (r) = Ar~l Br+ Or log r + Dr* .(130) 
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which gives 

R = = (Ar~2 + B + <71og r + Dr*) cos Q 
rao 

© = - & = (Ar* - B - C - G log r - 32V) sin 6. 
CLF 

The first of the equations of condition (117) requires that 

0=0, D=0, B = -V, 

which also satisfies the second. We have thus only one arbitrary 

constant left whereby to satisfy the two equations of condition 

(116), and the same value of A will not satisfy these two 

equations. 

46. It appears then that the supposition of steady motion is 

inadmissible. It will be remembered that, in the case of the 

sphere, the solution of the problem was only possible because it so 

happened that the values of two arbitrary constants determined by 

satisfying the first of the equations of condition (117) satisfied also 

the second, which indicates that the solution was to a certain extent 

tentative. We have evidently a right to conceive a sphere or infinite 

cylinder to exist at rest in an infinite mass of fluid also at rest, to 

suppose the sphere or cylinder to be then moved with a uniform 

velocity V\ and to propose for determination the motion of the fluid 

at the end of the time t. But we have no right to assume that the 

motion approaches a permanent state as t increases indefinitely. 

We may follow either of two courses. We may proceed to solve 

the general problem in which the sphere or cylinder is supposed 

to move from rest, and then examine what results we obtain by 

supposing t to increase indefinitely, or else we may assume for 

trial that the motion is steady, and proceed to inquire whether wc 

can satisfy all the conditions of the problem on this supposition. 

The former course would have the disadvantage of requiring a 

complicated analysis for the sake of obtaining a comparatively 

simple result, and it is even possible that the solution of the 

problem might baffle us altogether; but if we adopt the latter 

course, we must not forget that the equations with which we work 

are only provisional. 

It might be objected that the impossibility of satisfying the 

conditions of the problem on the hypothesis of steady motion 
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arose from our assumption that sin 0 was a factor of the other 

factor being independent of 6. This however is not the case. 
For, for given values of r and t, % is a finite function of 6 from 
0=Oto0 = 7r. We have a right to suppose ^ to vanish at any 
point of the axis of x positive that we please; and if we suppose 
X to vanish at one such point, it may be shewn as in the note 

to Art. 15, that % will vanish at all points of the axis of x positive 
or x negative. Hence % may be expanded in a convergent series 

of sines of 0 and its multiples; and since % and its derivatives with 
respect to 0 alter continuously with 0, the expansions of the 
derivatives will be got by direct differentiation*. This being 
true for all other pairs of values of r and t, % can in general 
be expanded in a convergent series of sines of 0 and its multiples; 
but the coefficients, instead of being constant, will be functions of 

r and t, or in the particular case of steady motion, functions of r 
alone. Now a very slight examination of the general equations 
will suffice to shew that the coefficients of the sines of the different 
multiples of 0 remain perfectly independent throughout the whole 

process, and consequently had we employed the general expansion, 

we should have been led to the very same conclusions which have 
been deduced from the assumed form of % 

47. If we take the impossibility of the existence of a limiting 
state of motion, which has just been established, in connexion with 
the results obtained in Section III., we shall be able to understand 
the general nature of the motion of the fluid around an infinite 
cylinder which is at first at rest, and is then moved on indefinitely 

with a uniform velocity. 

The fluid being treated as incompressible, the first motion 
which takes place is impulsive. Since the terms depending on 
the internal friction will not appear in the calculation of this 
motion, we may employ the ordinary equations of hydrodynamics. 

The result, which is easily obtained, is 
Yd2 

Rdr + ®rd0 = d</>, where </> =-— cos .(131). 

* See a paper “On the Critical Values of the Sums of Periodic Series,” Camb. 

Phil. Trans. Vol. viii. p. 533. [Ante, Vol. i. p. 236.] 
+ According to these equations, the fluid flows past the surface of the cylinder 

with a finite velocity. At the end of the small time t' after the impact, the friction 
has reduced the velocity of the fluid in contact with the cylinder to that of the 
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As the cylinder moves on, it carries more and more of the fluid 
with it, in consequence of friction. For the sake of precision, let 
the quantity carried by the element dl of the cylinder be defined 

to be that which, moving with the velocity V, would have the 
same momentum in the direction of the motion that is actually 
possessed by the elementary portion of fluid which is contained 
between two parallel infinite planes drawn perpendicular to the 
axis of the cylinder, at an interval dl, the particles composing 
which are moving with velocities that vary from V to zero in 
passing from the surface outwards. The pressure of the cylinder 
on the fluid continually tends to increase the quantity of fluid 
which it carries with it, while the friction of the fluid at a distance 
from the cylinder continually tends to diminish it. In the case of 
a sphere, these two causes eventually counteract each other, and 

the motion becomes uniform. But in the case of a cylinder, the 
increase in the quantity of fluid carried continually gains on the 
decrease due to the friction of the surrounding fluid, and the 
quantity carried increases indefinitely as the cylinder moves on. 
The rate at which the quantity carried is increased decreases con¬ 
tinually, because the motion of the fluid in the neighbourhood of 
the cylinder becomes more and more nearly a simple motion of 
translation equal to that of the cylinder itself, and therefore the 
rate at which the quantity of fluid carried is increased would 
become smaller and smaller, e\ren were no resistance offered by 
the surrounding fluid. 

The correctness of this explanation is confirmed by the follow¬ 
ing considerations. Suppose that F(r) had been given by the 
equation 

F(r) = Ar'1 4- Br -f CV1-5 -f Dr* 

instead of (130), S being a small positive quantity. On this sup¬ 
position it would have been possible to satisfy all the equations of 

cylinder itself, and the tangential velocity alters very rapidly in passing from the 

surface outwards. At a small distance s from the surface of the cylindor, the rela¬ 
tive velocity of the fluid and the cylinder, in a direction tangential to the surface, 

is a function of the independent variables £', k, which vanishes with a for any given 

value of however small, but which for any given value of **, however small, 

approaches indefinitely to the quantity determined by (131) as t vanishes. The 

communication of lateral motion is similar to the communication of temperature 
when the surface of a body has its temperature instantaneously raised or lowered 
by a finite quantity. 

S. III. 5 
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condition, and therefore steady motion would have been possible. 
By determining the arbitrary constants, and substituting in % we 
should have obtained , Tr, Bar 2 fr 

f = ^ "5- --- + 

1“< 

B=V\ - 

r a 2 — S 

fa\ 
2 — S \r/ 2 — 8 \a 

sin #, 

cos #, 

©=F 
2 — S \rj 

2 . 2(l-$)/r\-s) • /, 
+l—krrU) 

Since B is supposed to be extremely small, it follows from these 
expressions that when r is not greater than a moderate multiple 
of a, the velocities JR, © are extremely small; but, however small 
be S, we have only to go far enough from the cylinder in order to 

find velocities as nearly equal to — Vcos#, 4* Fsin# as we please. 
But the distance from the cylinder to which we must proceed in 
order to find velocities JR, © which do not differ from their limiting 
values — Fcos#, +V sin# by more than certain given quantities, 
increases indefinitely as S decreases. Hence, restoring to the fluid 
and the cylinder the velocity F, we see that in the neighbourhood 
of the cylinder the motion of the fluid does not sensibly differ from 
a motion of translation, the same as that of the cylinder itself, 
while the distance to which the cylinder exerts a sensible influence 
in disturbing the motion of the fluid increases indefinitely as 

8 decreases. 

48. When we have formed the equations of motion of a fluid 
on any particular dynamical hypothesis, it becomes a perfectly 
definite mathematical problem to determine the motion of the 
fluid when a given solid, initially at rest as well as the fluid, is 
moved in a given manner, or to discuss the character of the ana¬ 
lytical solution in any extreme case proposed. It is quite another 
thing to enquire how far the principles which furnished the mathe¬ 

matical data of the problem may be modified in extreme cases, 
or what will be the nature of the actual motion in such cases. 
Let us regard in this point of view the case considered in the 
preceding article as a mathematical problem. When the quantity 
of fluid carried with the cylinder becomes considerable compared 
with the quantity displaced, it would seem that the motion must 
become unstable, in the sense in which the motion of a sphere 



ON THE MOTION OF PENDULUMS. 67 

rolling down the highest generating line of an inclined cylinder 
may be said to be unstable. But besides the instability, it may 
not be safe in such an extreme case to neglect the terms depending 
on the square of the velocity, not that they become unusually 
large in themselves, but only unusually large compared with the 
terms retained, because when the relative motions of neighbouring 
portions of the fluid become very small, the tangential pressures 
which arise from friction become very small likewise. 

Now the general character of the motion must be nearly the 
same whether the velocity of the cylinder be constant, or vary 
slowly with the time, so that it does not vary materially when the 
cylinder passes through a space equal to a small multiple of its 
radius. To return to the problem considered in Section III., it 
would seem that when the radius of the cylinder is very small, the 
motion which would be expressed by the formulas of that Section 
would be unstable. This might very well be the case with the 
fine wires used in supporting the spheres employed in pendulum 
experiments. If so, the quantity of fluid carried by the wire 
would be diminished, portions being continually left behind and 
forming eddies. The resistance to the wire would on the whole be 
increased, and would moreover approximate to a resistance which 
would be a function of the velocity. Hence, so far as depends on 
the wire, the arc of oscillation would be more affected by the 
resistance of the air than would follow from the formulas of 
Section III. Whether the effect on the time of oscillation would 
be greater or less than that expressed by the formulcc is difficult 
to say, because the increase of resistance would tend to increase 
the effect on the time of vibration, while on the other hand the 
approximation of the law of resistance to that of a function of the 
velocity would tend to diminish it. 

Section V. 

On the effect of internal friction in causing the motion, of a fluid 

to subside. Application to the case of os dilatorg waves. 

49. We have already had instances of the effect of friction in 
causing a gradual subsidence in the motion of a solid oscillating in 
a fluid; but a result may easily be obtained from the equations of 

5—2 
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motion in their most general shape, which shews very clearly the 

effect of friction in continually consuming a portion of the work 

of the forces acting on the fluid. 

Let Pt, P2, P3 be the three normal, and T19 P2, T3 the three 
tangential pressures in the direction of three rectangular planes 
parallel to the co-ordinate planes, and let D be the symbol of 
differentiation with respect to t when the particle and not the 
point of space remains the same. Then the general equations 
applicable to a heterogeneous fluid (the equations (10) of my 

former paper) are 

(DU y 
P{m-X 

dT^ dT2 

dx dy dz 
,.(132), 

with the two other equations which may be written down from 
symmetry. The pressures P1? &c. are given by the equations 

P = • 
(dv dw\ 

and four other similar equations. In these equations 

38 = 
du dv dw 

dx dy dz 
.(134). 

At the end of the time t let V be the vis viva of a limited 
portion of the fluid, occupying the space which lies inside the 

closed surface S, and let V+DV be the vis viva of the same mass 
at the end of the time t + Dt. Then 

V=JJJp ('u2 + v2 4- w2) dx dy dz, 

BV= Wt flfpiuik+vm+w m)(lx dy dz.(135)> 

the triple integrals extending throughout the space bounded by S. 

])u 
Substituting now for , &c. their values given by the equations 

of the system (132), we get 

DV = 2Dt fffp (uX + vY + wZ) dx dy dz 

dl\+d^+^\ 
dy dz djX) 

( ~f‘8 + ~r~2 + ) \ dxdy dz 
\dz dx dy J) J 

- 2DtJJJ|w (£■ + !|> + + rr+ 

+ W -4- 4- —1^ (136). 
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The first part of this expression is evidently twice the work, 
during the time Dt, of the external forces which act all over the 
mass. The second part becomes after integration by parts 

- 2Dt Jf (uP1 + vT3 + wT^) dy dz — 2DtJf(vP2 + wTx + uTs) dz dx 

— 2Dt fj (wP3 + uT2 + vTx) dx dy 

+ 2Dt Iff 
du -p. dv „ dw 7-v , (dv dw\ m fdw 
TxP^dyP^d^P^{Tz+ dy) T*+ f dx 

+(f+sW ***• 

<fo\ _ 
dz) 2 

The double integrals in this expression are to be extended over 
the whole surface S. If dS be an element of this surface, l\ m\ n' 
the direction-cosines of the normal drawn outwards at dS, we may- 
write I'dS, m'dS, n'dS for dydz, dzdx, dxdy. The second part of 

DV thus becomes 

- 2DtJJ (l'P1 + m'Tz + n%) + v (m'P2 + riTx + VTZ) 
+ w(n'P3+l'T2 + m'T1)}dS. 

The coefficients of u} v, w in this expression are the resolved parts, 
in the direction of x, y, z, of the pressure on a plane in the direc¬ 
tion of the elementary surface dS, whence it appears that the 
expression itself denotes twice the work of the pressures applied 
to the surface of the portion of fluid that we are considering. 

On substituting for Pv &c. their values given by the equations 

(133), (134), we get for the last part of DV 

fff fdu dv dw\ 7 , 1 

♦“‘jJJnE+s+s) * 
\ \dx, dz) 

2 /du dv dw 
^ \dx dy "dz 

dv did 
dz dy. 

In this expression p denotes, in the case of an elastic fluid, the 
pressure statically corresponding to the density which actually 
exists about the point whose co-ordinates are x, y} z, and the part 
of the expression which contains p denotes twice the work con¬ 
verted into vis viva in consequence of internal expansions, and 
arising from the forces on which the elasticity depends. The last 
part of the expression is essentially negative, or at least cannot be 
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positive, and can only vanish in one very particular case. It 

denotes the vis viva consumed, or twice the work lost in the 

system during the time dt, in consequence of internal friction. 

According to the very important theory of Mr Joule, which is 

founded on a set of most striking and satisfactory experiments, 

the work thus apparently lost is in fact converted into heat, at 

such a rate, that the work expressed by the descent of 772 lbs 

through one foot, supplies the quantity of heat required to raise 

1 lb. of water through 1° of Fahrenheit’s thermometer. 

50. The triple integral containing fx can only vanish when 

the differential coefficients of u, vy w satisfy the five following 

equations, 

du _dv __ dw 

dx dy~~ dz 3 

dv dw __ . dw du 

dz dy 3 dx dz 3 

\ 

du dv 

dy^ dx 

...(137). 

These equations give immediately the following expressions 

for the differentials of u, v, w, in which the co-ordinates alone are 

supposed to vary, the time being constant: 

du = Mx — (o"'dy + a/'dz \ 

dv = My — co'dz + oar"dx l.(138). 

dw — Mz — co"dx + co'dy j 

In these equations S, co', co", co'" are certain functions of which the 

forms are defined by the equations (138), but need not at present 

be considered. It follows from equations (138) that the motion of 

each element of the fluid within the surface S is compounded of 

a motion of translation, a motion of rotation, and a motion of 

dilatation alike in all directions. So far as regards the first two 

kinds of motion, the fluid element moves like a solid, and of 

course there is nothing to call internal friction into play. For 

the reasons stated in my former paper, I was led to assume that a 

motion of dilatation alike in all directions (which of course can 

only exist in the case of an elastic fluid) has no effect in causing 

the pressure to differ from the statical pressure corresponding to 

the actual density, that is, in occasioning a violation of the 

functional relation commonly supposed to exist between the 

pressure, density, and temperature. The reader will observe that 
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this is a totally different thing from assuming that a motion of 

dilatation has no effect on the pressure at all. 

"When the fluid is incompressible 8 = 0, and it may be proved 

without difficulty that a/, a>", a/" are constant, that is to say, 

constant so far as the co-ordinates are concerned. In this case we 

get by integrating equations (137) 

u — a — a)'"y + u!fz ) 

v ~ b — cd z + a'"ail.(139). 

w~c —o/'x + co'y j 

Hence, in the case of an incompressible fluid, unless the whole 

mass comprised within the surface S move together like a solid, 

there cannot fail to be a certain portion of vis viva lost by internal 

friction. In the case of an elastic fluid, the motion which may 

take place without causing a loss of vis viva in consequence of 

friction is somewhat more general, and corresponds to velocities 

u + Au, v + Av, w -f Aw, where u, v, w are the same as in (139), 

and 

Au = 8^ + 2 (<xx + f3y + 7 z) x — ol(x2 + y2 -f /), 

with similar expressions for Aw and Aw. In these expressions 

a, /3, 7 are three constants symmetrically related to x, y, z, and 

8 is a constant which has the same relation to each of the 

co-ordinates*. 

51. By means of the expression given in Art. 49, for the loss 

of vis viva due to internal friction, we may readily obtain a very 

approximate solution of the problem : To determine the rate at 

which the motion subsides, in consequence of internal friction, in 

the case of a series of oscillatory waves propagated along the 

surface of a liquid. 

Let the vertical plane of xy be parallel to the plane of motion, 

and let y be measured vertically downwards from the mean 

surface; and for simplicity’s sake suppose the depth of the fluid 

very great compared with the length of a wave, and the motion so 

small that the square of the velocity may be neglected. In the 

case of motion which we are considering, udx + vdy is an exact 

differential dcfr when friction is neglected, and 

<£ = ce~my sin(m^“- nt).(140), 

* See note C. at the end. 
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where c, m, n are three constants, of which the last two are con¬ 

nected by a relation which it is not necessary to write down. 

We may continue to employ this equation as a near approximation 

when friction is taken into account, provided we suppose c, instead 

of being constant, to be a parameter which varies slowly with the 

time. Let V be the vis viva of a given portion of the fluid at the 

end of the time t, then 

F= pcWS!fe~2my dxdydz.(141). 

But by means of the expression given in Art. 49, we get for the 

ioss of vis viva* during the time dt, observing that in the present 

case p is constant, w = 0, § = 0, and udx + vdy = d<fi, where <j£> is 

independent of z, 

which becomes, on substituting for its value, 

8^tc2m4 dtfjje~2mu dx dy dz. 

But we get from (141) for the decrement of vis viva of the same 

mass arising from the variation of the parameter c 

— 2pm2c — dtfjj€’2my dx dy dz. 

Equating the two expressions for the decrement of vis viva, 

putting for m its value 27tX~1, where X is the length of a wave, 

replacing p by pup, integrating, and supposing c0 to be the initial 

value of c, we get 
IGrr^fx't 

c = C0€ . 
It will presently appear that the value of p for water is 

about 0*0564, an inch and a second being the units of space and 

* [There is an oversight here, which M. Boussinescq has pointed out (Metnoires 
des Savans Strangers, Tome xxiv. No. 2, p. 34). I should have said “the loss of 

energy.” Now in a series of waves of small disturbance the total energy is half 

kinetic and half potential. Hence the reduction of energy consequent upon a reduc¬ 
tion in the amplitude falls half on the kinetic and half on the potential energy. 

Hence the reduction of the kmetic energy or vis viva is only half of that given by 
the formula in the text, and therefore the expression for dcjdt is twice what it ought 
to be. Hence the numerical coefficient in the index of the exponential should be 
8 instead of 16; and retaining the same numerical data as in the examples, we 
should have for the ripples c : c0 :: 1 : 0-5337, and the height of the long waves 

would be reduced in a day by little more than the one four-hundredth part.] 
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time. Suppose first that \ is two inches, and t ten seconds. 

Then = 1*256, and c:c0::l : 0*2848, so that the height 

of the waves, which varies as c, is only about a quarter of what it 

was. Accordingly, the ripples excited on a small pool by a puff 

of wind rapidly subside when the exciting cause ceases to act. 

Now suppose that X is 40 fathoms or 2880 inches, and that 

t is 86400 seconds or a whole day. In this case 167t2//£V2 is equal 

to only 0*005232, so that by the end of an entire day, in which 

time waves of this length would travel 574 English miles, the height 

would be diminished by little more than the one two-hundredth 

part in consequence of friction. Accordingly, the long swells of 

the ocean are but little allayed by friction, and at last break on 

some shore situated at the distance of perhaps hundreds of miles 

from the region where they were first excited. 

52. It is worthy of remark, that in the case of a homogeneous 

incompressible fluid, whenever udx -f vdy + wdz is an exact dif¬ 

ferential, not only are the ordinary equations of fluid motion 

satisfied*, but the equations obtained when friction is taken into 

account are satisfied likewise. It is only the equations of con¬ 

dition which belong to the boundaries of the fluid that are violated. 

Hence any kind of motion which is possible according to the 

ordinary equations, and which is such that udx + vdy + wdz is an 

exact differential, is possible likewise when friction is taken into 

account, provided we suppose a certain system of normal and 

tangential pressures to act at the boundaries of the fluid, so as 

to satisfy the equations of condition. The requisite system of 

pressures is given by the system of equations (133). Since fju 
disappears from the general equations (1), it follows that p is the 

same function as before. Bat in the first case the system of 

pressures at the surface was P1~P2 = P3—p) 2\ = ]\ = T? — 0. 

Hence if AP1 &c. be the additional pressures arising from friction, 

we get from (133), observing that 3=0, and that udx + vdy + wdz 
is an exact differential d<f>, 

AP1 = - 2/j, -A 
d‘4, 
daf 

A P„ 

AP2 = — 2/i 

2 /a, 
d‘<f> 
dz* 

<P<£ 

(142), 

* It is here supposed that the forces X, Y, Z are such that Xdx+ Ydy + Zdz is 
an exact differential. 
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Let dS be an element of the bounding surface, V, m, ri the 

direction-cosines of the normal drawn outwards, AP, AQ, AR the 

components in the direction of x, y, z of the additional pressure on 

a plane in the direction of dS. Then by the formulae (9) of my 

former paper applied to the equations (142), (143) we get 

da? dx dy dx dz 
...(144), 

with similar expressions for AQ and AJS, and AP, AQ, Ai2 

are the components of the pressure which must be applied at the 

surface, in order to preserve the original motion unaltered by 

friction. 

53. Let us apply this method to the case of oscillatory waves, 

considered in Art. 51. In this case the bounding surface is nearly 

horizontal, and its vertical ordinates are very small, and since the 

squares of small quantities are neglected, we may suppose the 

surface to coincide with the plane of xz in calculating the system 

of pressures which must be supplied, in order to keep up the 

motion. Moreover, since the motion is symmetrical with respect 

to the plane of xy, there will be no tangential pressure in the 

direction of z, so that the only pressures we have to calculate are 

AP2 and ATs. We get from (140), (142), and (143), putting 

y = 0 after differentiation, 

AP2 = — 2fjbw?c sin (mx — nt), AT8 = 2y,m?c cos (mx — nt).. .(145). 

If u1} Vj be the velocities of the surface, we get from (140), 

putting y = 0 after differentiation, 

ux = me cos (mx — nt), vx = — mo sin (mx — nt).. .(146). 

It appears from (145) and (146) that the oblique pressure 

which must be supplied at the surface in order to keep up the 

motion is constant in magnitude, and always acts in the direction 

in which the particles are moving. 
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The work of this pressure during the time dt corresponding to 

the element of surface dx dz, is equal to 

dx dz(AT3 ,uxdt + AP2. v2dt). 

Hence the work exerted over a given portion of the surface is 

equal to 

2/j,m*c2dt Jfdx dz. 

In the absence of pressures AP2, ATs at the surface, this work 

must be supplied at the expense of vis viva. Hence 4yamVcfe ffdx dz 
is the vis viva lost by friction, which agrees with the expression 

obtained in Art. 51, as will be seen on performing in the latter the 

integration with respect to y, the limits being y = 0 to y = 00 . 
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PART II. 

COMPARISON OF THEORY AND EXPERIMENT. 

Section I. 

Discussion of the Experiments of Daily, Bessel, Coulomb, and 
Dubuat*. 

54 The experiments discussed in this Section will be taken 

in the order which is most convenient for discussion, which 

happens to be almost exactly the reverse of the chronological 

order. I commence with the experiments of the late Mr Baily, 

which are described in the Philosophical Transactions for 1832, in 

a memoir entitled “On the Correction of a Pendulum for the 

Reduction to a Yacuum: together with Remarks on some anomalies 

observed in Pendulum experiments.” 

* [At the time when this paper was read, the relation between /ul and p cannot be 

said to have been known. It is true that it may be inferred (at least for air, and 

thence presumably for other gases) from certain of Graham’s experiments on the 
transpiration of gases. These however had been but recently published, having 

appeared in the Philosophical Transactions for 1846; and it was not till many years 
afterwards, about 1859, that Maxwell first inferred from the kinetic theory of gases 

the law that bears his name, namely that the coefficient of viscosity ju. is inde¬ 

pendent of the density. 
In the comparison of theory and experiment as regards the effect of the presence 

of air on the motion of pendulums, I relied mainly on the experiments of Baily, 

which were made by a direct method, while at the same time they were conducted 
with all the accuracy of modern physical research, and embraced a great variety of 
forms of pendulum, many of them such as to admit of comparison with theory. 

These experiments were strictly differential, giving the difference between the 

time of vibration at atmospheric pressure and in rarefied air. Had the vacuum 
been absolutely perfect, the difference would have given at once the effect of air at 

the atmospheric pressure. Had it merely been very high, the effect of the residual 

air on the time of vibration would have been insensible, and the result as regards 

the time would still have been the same. It is true that the ichole effect of the 
rarefied air would not thus disappear; as a result of Maxwell’s law it would tend, as 

the exhaustion proceeded, to fall wholly on the arc of vibration, and to approach a 
finite limit; and this limit would not begin to break down till an exhaustion was 

reached comparable with the highest we have to deal with in radiometer vacua. 
But in Baily’s experiments no high exhaustions were aimed at; the air was 

merely pumped out till the pressure was reduced to about one inch of mercury, and 
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The object of these experiments was, to determine by actual 

observation the correction to the time of vibration due to the 

presence of the air in the case of a great number of pendulums of 

various forms. This was effected by placing each pendulum in 

succession in a vacuum apparatus, by which means the pendulum, 

without being dismounted, could be swung alternately under the 

full atmospheric pressure, and in air so highly rarefied as nearly to 

approach to a vacuum. The paper, as originally presented to the 

Royal Society, contained the results obtained with 41 pendulums, 

the same body being counted as a different pendulum when swung 

in a different manner. Out of these, 14 are of such forms as 

to admit of comparison with theory. An addition to the paper 

contains the results obtained with 45 pendulums more, of which 

24 admit of comparison with theory. The details of these 

additional experiments are omitted, the results only being 

given. 

Baily has exhibited the results obtained with the several 

pendulums in each of two ways, first, by the value of the factor n 

by which the correction for buoyancy must be multiplied in order 

to amount to the whole effect of the air as given by observation, 

and, secondly, by the weight of air which must be conceived to be 

the effect of the air was supposed to be arrived at by increasing the observed 

difference in the times of vibration in the ratio of the difference of densities to the 
atmospheric density. As the effect of the air at the lower density was too large to 

he neglected, it was necessary, in order to compare with sufficient accuracy the 
results of experiment with the formulae of this paper, to know the relation between 

fx and p. As already mentioned, I assumed in accordance with what appeared to be 

indicated by a single experiment of Sabine’s that p. varies as p, or in other words 

that p! is independent of the density. The results of the experiments when thus 
reduced seemed to indicate a most remarkable accord with theory. 

When it became known that the law of nature is that p and not p/ is independent 
of p, it seemed very strange that the experiments when reduced on the assump¬ 

tion of a wrong law as to the relation of p, to p should have led to such a 
remarkable agreement with theory. I contemplated at one time undertaking the 

re-computation of the whole series of Baily’s experiments here discussed in ac¬ 
cordance with Maxwell’s law, and it was this that delayed the reprinting of the 

present paper. The value of the result at the present time would however hardly 

repay the labour of the calculation, more especially as the remarkable agreement 

between theory and observation notwithstanding the employment of a wrong law 
as to the relation between p, and p admits of being readily explained, and the value 

of p obtained as in the text of being very approximately corrected, in a very simple 
manner. As however this would be too long for a footnote, I must reserve it for an 
addition to be made at the end of the paper.] 
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attached to the centre of gyration of the pendulum, adding to its 

inertia without adding to its weight, in order that the increased 

inertia, combined with the buoyancy of the air, may account for 

the whole effect observed. I shall uniformly write n for Baily’s 

in order to distinguish it from the n of Part I. of the present 

paper, which has a totally different meaning. In the case of a 

pendulum oscillating in air, it will be sufficient, unless the 

pendulum be composed of extremely light materials, to add 

together the effects of buoyancy and inertia. Hence if the 

pendulum consist of a sphere attached to a fine wire of which the 

effect is neglected, or else of a uniform cylindrical rod, we may 

suppose n = 1 + Jc, where k is the factor so denoted in Part I.; so 

that if M be the mass of air displaced, kM will be the mass which 

we must suppose collected at the centre of the sphere, or dis¬ 

tributed uniformly along the axis of the cylinder, in order to 

express the effect of the inertia of the air. The second mode 

of exhibiting the effect of the air was suggested by Mr Airy, 

and is better adapted than the former for investigating the 

effect of the several pieces of which a pendulum of complicated 

form is composed. Since the value of the factor n and that of the 

weight of air are merely two different expressions for the result of 

the same experiment, it would be sufficient to compare either 

with the result calculated from theory. In some cases, however, I 

have computed both. In almost all the calculations 1 have em¬ 

ployed 4-figure logarithms. The experimental result is sometimes 

exhibited to four figures, but no reliance can be placed on the 

last. In fact, in the best observations, the mean error in different 

determinations of n for the same pendulum appears to have been 

about the one-hundredth part of the whole, and that it should be 

so small, is a proof of the extreme care with which the experi¬ 

ments must have been performed. 

55. I commence with the 13th set of experiments—Results 
with plain cylindrical rods—page 441. This set contains three 

pendulums, each consisting of a long rod attached to a knife-edge 

apparatus. The result obtained with each pendulum furnishes an 

equation for the determination of //, and the theory is to be tested 

by the accordance or discordance of the values so obtained. The 

principal steps of the calculation are contained in the following 

table. 
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Determination of \/ja by means of Baily’s experiments with 

plain cylindrical rods. 

Pendulum rod No. 
Diameter 

2 a 

Time of 
vibration. 

T 

tt 

by experi¬ 
ment 

Copper, 58*8 inches long 21 0*410 1*0136 2*932 

Brass, 56*4 . 43 0*185 0*9933 4*083 

Steel, 56*4 . 44 0*072 0*9933 7*530 

No. 

Correction 
for confined 
space (by 

theory) 

Deduced 
value of 

k 
by experi¬ 

ment 

Corre¬ 
sponding 
value of 

m 

Resulting 
value of 

Vm-' 

21 -0*009 1*923 1*5445 0*1166 
43 -0*002 3*081 *0*7000 0*1175 
44 6*530 0*2822 0*1134 

In this table the first column explains itself. The next 

contains the reference number. In the case of the copper rod 

I have replaced 42 by 21, under which number the details of 

the experiment will be found. The diameters of the rods are 

expressed in decimals of an inch. The time of vibration of the 

pendulum No. 21 may be got from the tables at the end of 

Baily’s memoir, which contain the details of the experiments. 

Nos. 43 and 44 belong to the “ additional experiments,” of which 

all the details are suppressed. Baily has not even given the 

times of vibration, not having been aware of the circumstance, 

indicated by the theory of this paper, that the factor n and 

the weight of air which must be conceived as dragged by the 

pendulum are functions of the time of vibration. Accordingly, 

in the cases of the pendulums Nos. 43 and 44, and in all similar 

cases, I have calculated the time of vibration by the ordinary 

formulae of dynamics. In calculating t, I have added 1*55 inch, 

the length of the shank of the knife-edge apparatus, to the length 

of the rods. The result so obtained is abundantly accurate enough 

for my purpose. Had the rod, retaining its actual length, been 

supposed to begin directly at the knife-edge, the error thence 
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resulting in the value of t, or rather the corresponding error 

in the calculated value of n or k, might just have been sensible. 

The fifth column in the above table is copied from Baily’s table. 

The next contains a small correction necessary to reduce the value 

of it got from observation to what would have been got from 

observations made in an unlimited mass of fluid. It is calculated 

from the formula 2a2 (b2 — a2)"1 or 2&2£f2 nearly, which is obtained 

from the ordinary equations of hydrodynamics, and therefore it 

cannot be regarded as more than a rude approximation. It will 

be useful, however, as affording an estimate of the magnitude of 

the effect produced by confining the air. The diameter of the 

vacuum tube (whether external or internal is not specified) is 

stated to have been six inches and a half, whence 2b — 6'5. The 

values of k given in the next column are obtained by applying the 

correction for confined space to Baily’s values of n, and subtracting 

unity. The value of ill corresponding to each value of k was got 

by interpolation from the table near the end of Section III. of the 

former part of this paper. For k= 1*923 the interpolation is easy. 

The value 3*081 happens to be almost exactly found in the table. 

For k = 6*530, a remark already made will be found to be of 

importance, namely, that the first differences of m2(&—1) are 

nearly constant. The last column contains the value of \jfji 
obtained from the equation 

which contains the definition of m. 

It will be observed that the three values of \J/ju are nearly 

identical. Of course any theory professing to account for a set of 

experiments by means of a particular value of a disposable con¬ 

stant, when applied to the experiments would lead to nearly the 

same numerical value of the constant if the experiments were 

made under nearly the same circumstances. But in the present 

case the circumstances of the experiments are widely different. 

The diameter of the steel rod is little more than the sixth part of 

that of the copper rod, and the value of Jc obtained by experiment 

for the steel rod is more than three times as great as that obtained 

for the copper rod. It is a simple consequence of the ordinary 

theory of hydrodynamics that in the case of a long rod oscillating 
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in an unlimited fluid k = 1, and we see that this value of k must 

be multiplied, in round numbers, by 2, by 3, and by 6£, in order 

to account for the observed effect. The value 1*5445 of HI is so 

large that the descending series comes into play in the calculation 

of the function k, while 0*2822 is so small that the ascending 

series are rapidly convergent. Hence the near agreement of the 

values of \jyi! deduced from the three experiments is a striking 

confirmation of the theory. The mean of the three is 0*1158, but 

of course the last figure cannot be trusted. I shall accordingly 

assume as the value of the square root of the index of friction of 

air in its average state of pressure, temperature, and moisture 

VV = 0*116. 

It is to be remembered that yV expresses a length divided by 

the square root of a time, and that the numerical value above 

given is adapted to an English inch as the unit of length, and a 

second of mean solar time as the unit of time. 

56. I now proceed to compare the observed values of tt with 

those calculated from theory with the assumed value of I 

begin with the same cylindrical rods as before, together with the 

long brass tubes Nos. 35 to 38. The diameter of this tube was 

1*5 inch, and its length 56 inches. The ends were open, but as 

the included air was treated by Mr Baily in the reduction of his 

experiments as if it formed part of the pendulum, we may regard 

the pendulum as a solid rod. The tube was furnished with six 

agate planes, represented in the wood-cut at page 417, which 

rested on fixed knife-edges. The pendulums Nos. 35, 36, 37, and 

38 consisted of the same tube swung on the planes marked A,C,a, c. 
In air the pendulum swung at the rate of about 90080 vibrations 

in a day, so that t = 0*9596 nearly. The values of n obtained 

with the end planes A, c were slightly though sensibly greater 

than the values obtained with the mean planes (7, a. I shall 

suppose the mean of the four values of n, namely 2*290, to be the 

result of the experiments. In the following table the difference 

between the theoretical and experimental values of n is exhibited 

both by decimals and as a fractional part of the former of these 

values. 

s. III. 6 
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Bailys results with a long brass tube and with long cylindrical 

rods. 

No. 2 a. 
t 

m 

! 
k 

Add for 
confined 

space. 
i 

Total n 
by 

theory. 
! 

n 
by expe¬ 
riment. 

l 

Difference. 

35 to 38 1*5 5*849 1-242 0-122 2-364 2-290 i -0-074, or 
21 or 42 0*410 1-555 1-917 , 0-009 2-926 2-932 + 0"006, or +-jJt) 

43 0*185 0-7089 3-055 0-002 I 4-057 4-083 +0'026, or + j4y 
44 0-072 0-2759 

l 

6-670 7-670 7-530 -0-140, or -Ji 

It will be seen at once how closely the experiments are 

represented by theory. The largest proportionate difference 

occurs in the case of the brass tube, and even that is less 

than one-thirtieth. A glance at Baily’s wood-cut at page 417 

will shew that the six planes with which the tube was furnished 

caused the whole figure to deviate sensibly from the cylindrical 

form. Moreover the resistance experienced by each element of 

the cylinder has been calculated by supposing the element in 

question to belong to an infinite cylinder oscillating with the 

same linear velocity, and the resistance thus determined must 

be a little too great in the immediate neighbourhood of the ends 

of the cylinder, where the free motion of the air is less impeded 

than it would be if the cylinder were prolonged. Lastly, the 

correction for confined space is calculated according to the 

ordinary equations of hydrodynamics, and on that account, as 

well as on account of the abrupt termination of the cylinder, 

will be only approximate. The small discrepancy between theory 

and observation, as well as the small difference (amounting to 

about the l-83rd of the whole) detected by experiment between the 

results obtained with the extreme planes and those obtained with 

the mean planes, may reasonably be attributed to some such 

causes as those just mentioned. In the case of the steel rod 

or wire, the difference between theory and observation may be 

altogether removed by supposing a very small error to have 

existed in the measurement of the diameter of the rod. Since, 

as we have seen, the observation is satisfied by m =-02822, and 

(147) gives aostlX when yl and t are constant, it is sufficient, 

in order to satisfy the experiment, to increase the diameter of 

the rod in the ratio of 0*2759 to 0*2822, or to suppose an error of 
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only 0*0017 inch in defect to have existed in the measurement of 

the diameter. 

57. I proceed next to the experiments on spheres attached 

to fine wires. The pendulums of this construction comprise four 

1^-inch spheres, Nos. 1, 2, 3, and 4; three 2-inch spheres, Nos. 5, 

6, and 7; and one 3-inch sphere, No. 66. Nos. 8 and 9 are the 

same spheres as Nos. 5 and 7 respectively, swung by suspending 

the wire over a cylinder instead of attaching it to a knife-edge 

apparatus. As this mode of suspension was not found very satis¬ 

factory, and the results are marked by Baily as doubtful cases, I 

shall omit the pendulums Nos. 8 and 9, more especially as with 

reference to the present inquiry they are merely repetitions of 

Nos 5 and 7. 

In the case of a sphere attached to a fine wire of which the 

effect is neglected, and swung in an unconfined mass of fluid, we 

have by the formulae (52) 

(148), 

2a being in this case the diameter of the sphere. Before employ¬ 

ing this formula in the comparison of theory and experiment, it 

will be requisite to consider two corrections, one for the effect of 

the wire, the other for the effect of the confinement of the air by 

the sides of the vacuum tube. 

I have already remarked at the end of Section IV., Part I., 

that the application of the formulas of Section III. to the case of 

such fine wires as those used in pendulum experiments is not 

quite safe. Be that as it may, these formulae will at any rate 

afford us a good estimate of the probable magnitude of the 

correction. 

Let l be the length, ax the radius, V1 the volume of the wire, 

V the volume of the sphere, I the moment of inertia of the 

pendulum, T that of the air which we may conceive dragged 

by it, ff the sum of the elements of the mass of the pendulum 

multiplied by their respective vertical distances below the axis 

of suspension, H' the same for the air displaced, a the density 

of the air. Then the length of the isochronous simple pendulum 

is Iff'1 in vacuum, and (I +F) (ff — ff ')_1 in air, and the time 

of vibration is increased by the air in the ratio of F2H~^ to 

6—2 
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(I+iy(H—H')-*, or, on account of the smallness of er, in the 

ratio of 1 to l + \ {IT1 + nearly. Now §H'H'1 is the 

correction for buoyancy, and therefore 

.(149). 

We have also, if kt be the value of the function k of Section 

III., Part I., 

r=kcrV(Z-f a)2 + H' = o-V(l + a) + ... (150), 

and j0T“1 = (l -f a)-1 very nearly. Substituting in (149), expanding 

the denominator, and neglecting Ft2, we get 

U- 1 = k + k 
l 

l + CJb 

Now Vt is very small compared with F, and it is only by being 

multiplied by the large factor \ that it becomes important. We 

may then, without any material error, replace the last term in the 

above equation by J VxV~ll2 (l 4- a)~\ and if X be the length of the 

isochronous simple pendulum, we may suppose l + a = X, and 

replace l2 (Z 4- a)’2 by 1 — 2aX~\ since a is small compared with X. 
We thus get, putting Att for the correction due to the wire, 

All —S^(!-??)(*,-i). 

Substituting for — 1 from (115), and for m from (147), in 

which equations, however, kv ax must be supposed to be written 

for k} a, expressing Vv Fin terms of the diameters of the wire 

and sphere, and neglecting as before a2 in comparison with X2, 
we get 

where 

An = 
(2X — 3 x 2a) (jlt 

(151), 

-i“l0«-4;v/$-0'5772. 

It is by these formulae that I have computed the correction 

for the wire in the following table. In the experiments, the time 

of oscillation was so nearly one second that it is sufficient in the 

formulae (148), (151), aud (152) to put r= 1, and take X for the 

length of the seconds’ pendulum, or 39*14 inches. 
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With respect to the correction for confined space, it seems 

evident that the vacuum tube must have impeded the free motion 

of the air, and consequently increased the resistance experienced 

by the pendulum when it was swung in air, and that the increase' 

of resistance caused by the cylindrical tube must have been some¬ 

what less than that which would have been produced by a spheri¬ 

cal envelope of the same radius surrounding the sphere. The 

effect of a spherical envelope has been investigated in Section II., 

Part I.; but as we are obliged at last to have recourse to estima¬ 

tion, it is needless to be very precise in calculating the increase of 

resistance due to such an envelope, and we may accordingly 

employ the expression obtained from the ordinary theory of hydro¬ 

dynamics. According to this theory, the increase of the factor k, 

which is due to the envelope, is equal to f a3 (6s — a3)-1, or f a?b~s 

nearly, when b is large compared with a. The increase due to a 

cylindrical envelope whose axis is vertical, and consequently per¬ 

pendicular to the direction of oscillation of the sphere, may be 

estimated at about two-thirds of the increase due to a spherical 

envelope of the same diameter. I have accordingly taken + a3b~3 

for the correction for confined space, and have supposed 2b = 6'5 

inches. 

The diameter of the wire employed in the pendulums Nos. 1, 

2, 3, 5, 6, and 7, is stated to have been about the 7tyth of an inch, 

and that of the wire employed with the heavy brass sphere No. 66, 

about 0023 inch. The ivory sphere No. 4 was swung with a fine 

wire weighing rather more than half a grain. Taking the weight 

at half a grain, and the specific gravity of silver at 10*5, we have 

for this wire 2ax = 0*00251 nearly. The diameters of the three 

brass spheres in the following table are taken from page 447 of 

Baily’s memoir. The several parts of which, according to theory, 

n is composed, are exhibited separately. 

The mean error in different determinations of tt for the same 

sphere was about 0*01 or 0*02, and this does not include errors 

arising from small errors in specific gravities, &c. Hence, if we 

except the spheres Nos. 1, 2, and 4, the discrepancies between 

theory and experiment are altogether insignificant. In considering 

the confirmation thence arising to the theory, it must be borne in 

mind that the theory did not furnish a single disposable constant, 

inasmuch as \j$j! was already determined from the experiments 
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Baily’s results with spheres suspended by fine wires. 

No. and kind 

Diameter 
of 

sphere 
2 a 

Diameter 
of 

wire. 
2 CL i 

tt By theory 

Por 
buoy¬ 
ancy 

Por 
inertia 

on 
common 
theory 

Additional 
for inertia 
on account 
of internal 

friction 

li-INCH SPHERES 
"No. 1, Platina 1*44 0-01429 1 0*5 0*289 
No. 2, Lead 1*46 0*01429 1 0*5 0*285 
No. 3, Brass 1*465 0*01429 1 0*5 0*284 
No. 4, Ivory 1*46 0*00251 1 0*5 0*285 

2-inch spheres 

No. 5, Lead 2*06 0*01429 1 0*5 0*202 
No. 6, Brass 2*065 0*01429 1 0*5 0*202 
No. 7, Ivory 2*06 0*01429 1 0*5 0*202 

3-inch sphere 

No. 66, Brass 3*030 0*023 1 0*5 0*137 

n By theory (continued) 

No. 

1 
2 
3 
4 

5 
6 
7 

66 

Correction 
for wire 

Correction 
for confin¬ 
ed space 

Total 

n 
By expe¬ 
riment 

0*035 0*011 1*835 1*881 

0*035 0*011 1-831 1*871 

0*035 0*011 1*830 1*834 

0*016 0*011 1*812 1*872 

0*012 0*032 1*746 1*738 

0*012 0*032 1*746 1*751 

0*012 0*032 1*746 1*755 

0*005 0*101 1*743 1*748 

Difference 

-1-0*046, or 
+ 0*040, or +~4V 
+ 0*004, or +TJf 
+0*060, or +^ 

— 0*008, or — 
+ 0*005, or + ^ 
+0*009, or +i-cjrg; 

+0*005, or +3^ 

with cylindrical rods. The result obtained with the brass sphere 

No. 3 happens to agree almost exactly with theory. However, as 

the results obtained with this sphere exhibited some anomalies, it 

seems best to exclude it from consideration. The value of tt, then, 

which belongs to a 1\ inch sphere, appears to exceed by a minute 

quantity the value deduced from theory. The difference is indeed 

so small that it might well be attributed to errors of observation, 

were it not that all the spheres tell the same tale. Thus the 

error + 0 046 in the case of the platina sphere corresponds to an 
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error of less than the fortieth part of a second in the observation 

of an interval of time amounting to 4J hours. If the apparent 

defect, amounting to about 0*04 or 0 05, in the theoretical result 

be real, it may be attributed with probability to an error in the 

correction for the wire. This would be no objection to the theory, 

for it will be remembered that the theory itself indicated the 

probable failure of the formulae generally applicable to a long 

cylinder when the cylinder comes to be of such extreme fineness 

as the wires employed in pendulum experiments. 

58. The preceding experiments of Baily’s are the most im¬ 

portant for the purposes of the present paper, inasmuch as they 

were performed on pendulums of simple and very different forms; 

but there still remain three sets of experiments, the fourteenth, 

fifteenth, and sixteenth, in which the pendulum consisted of a 

combination of a sphere and a rod, so that the results can be 

compared with theory. The details of these experiments being 

suppressed, I have been obliged to calculate the time of oscillation 

from the ordinary formulae of dynamics, but the results will no 

doubt be accurate enough for the purpose required. In all the 

calculations I have supposed the rod to reach up to the axis of 

suspension, and have consequently added 1*55 inch (the length of 

the shank of the knife-edge apparatus) to the length of the rod, 

and have added to the weight of the rod a quantity bearing to 

the whole weight the ratio of 1*55 inch to the whole length. 

In the case of the spheres attached to the ends of the rods 

(sets 14 and 16) the process of calculation is as follows. Let l be 

the length of the rod increased by 1*55 inch, Wt its weight, 

increased as above explained, a the radius and W the weight of 

the sphere, X the length of the isochronous simple pendulum. 

Then supposing the masses of the rod and sphere to be respec¬ 

tively distributed along the axis, and collected at the centre, which 

will be quite accurate enough for the present purpose, and putting 

a for the ratio of a to ly we have by the ordinary formula 

. iTri + (l+a)-TF. 
2 W~+ (1 + a) F 

(153), 

whence r, the time of vibration, is known. The formula (148) 

then gives k, which applies to the sphere, and (147) gives ut, the a 
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in this formula being the radius of the rod, from whence which 

applies to the rod, may be got by interpolation from the table in 

Part I. Let Ak, A/c, be the corrections which must be applied to 

k, k on account of the confined space of the vacuum apparatus, 

and let Su S be the specific gravities of the rod and sphere respec¬ 

tively; then we get by means of the formulae (149), (150) 

n-1 = 

W W 
} (k, + A&,) -1 + (1 + a)2 (Jo + Ak) 

i + (1 + af W 

jy,+(i+«)y 
x —w W ' 

i^ + a + a)-^ 
S 

.(154). 

The first of the two factors connected by the sign x in this equa¬ 

tion is equal to <r~l T 7"1, and if we want to calculate the weight of 

air which we must conceive attached to the centre of gyration of 

the pendulum in order to allow for the inertia of the air, we have 

only to multiply the factor just mentioned by <r and by the weight 

of the whole pendulum. The following table contains the com¬ 

parison of theory and experiment in the case of the 14th set. The 

rods here mentioned are the same as those which composed the 

pendulums Nos. 21, 43, and 44, and the spheres are the three 

brass spheres of Nos. 3, 5, and 66. It appears from p. 432 of 

Baily’s paper that his results are all reduced to a standard pressure 

and temperature, on the supposition that the effect of the air on 

the time of vibration is proportional to its density. The theory of 

the present paper shews that this will only be the case if jj! be 

constant, which however there is reason for supposing it to be 

when the pressure alone varies. Be that as it may, no material 

error can be produced by reducing the observations in this way, 

because the difference of density in any pair of experiments did 

not much differ from the density of air at the standard pressure 

and temperature. The standard pressure and temperature taken 

were 29*9218 inches of mercury and 32° F., and the assumed 

specific gravity of air at this pressure and temperature was the 

l-770th of that of water, so that in the calculations from theory it 

is to be supposed that cr~l = 770. 

If w be the weight of the whole pendulum, wf that of the air 

which we must suppose attached to the pendulum at its centre of 
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gyration in order to express the effect of the inertia of the air, 8 
the vibrating specific gravity of the pendulum, the effects of buoy¬ 

ancy and inertia are as crS~l to ww~x\ hut they are also as 1 to 

n — 1, according to the definition of the factor tt, and therefore 

w’ = (n — 1) .(155), 

a formula which may be employed to calculate w' when n is 

known. 

Baily’s results with spheres at the end of long rods. 

NTo. 45 - l|-inch sphere with copper rod. 
No. 46 —2-inch sphere with ditto. 
No. 47 - 3-inch sphere with ditto. 
No. 48 — 1 J-inch sphere with brass rod. 
No. 49 -2-inch sphere with ditto. 
No. 50 -3-inch sphere with ditto. 
No. 51 -1^-inch sphere with steel rod. 
No. 52 —2-inch sphere with ditto. 
No. 53 -3-inch sphere with ditto. 

No. 

i 
Value of n Weight of adhesive air, in grains 

By 
theory 

By expe¬ 
riment Difference By 

theory 
By expe¬ 
riment 

i 

Difference 

45 2*525 2-458 - 0-067, or - Jg- 4-863 4-564 — 0*299, or -T\f 
46 2-202 2-234 + 0*032, or +g*<7 5-005 5-076 + 0*071, or +ts!q 
47 1-957 1-873 — 0*084, or — ;>q 7-071 6-425 — 0*646, or — 
48 2-375 2-356 -0-019, or -r+f 1-447 1-417 -0*030, or -jV 
49 2-060 1-982 -0*078, or -+3- 2-135 1-973 -0-162, or -Tb 
50 1-631 1’933 ? + 0*302 ? 4-411 4-868? + 0-457 ? 
51 2-099 2-344 ? + 0-245? 0-682 0-834 ? + 0-152? 
52 1-920 1-793 -0-127, or 1-457 1-259 -0198, or -J 
53 1-781 1-759 -0-022, or --L 3-742 3-670 — 0*072, or — Jit 

With respect to the two experiments marked ? Baily remarks, 

“These two experiments (with the pendulums Nos. 50 and 51) 

are very unsatisfactory; and are marked as such in my journal. 

It was consequently my intention to have repeated them; but the 

subject was overlooked till it was too late. I should propose their 

being rejected altogether.” If these two experiments be struck 

out, it will be seen that the differences between theory and experi¬ 

ment are very small, especially when the difficulty of this set of 

experiments is considered, arising from the frequency of the 

coincidences with the mean solar clock. 
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59. On account of the difficulty which Baily experienced in 

obtaining accurate results with the long rods and spheres attached, 

he divided the brass and steel rods near the centre of oscillation, 

and after having cut off an inch from each portion inserted the 

spheres where the rods had been divided. The results thus 

obtained constitute the 15th set of experiments. He afterwards 

removed the lower segments of the rods, and obtained the results 

contained in the 16th set. I shall give the computation of the 

latter set first, inasmuch as the formulae to be employed are 

exactly the same as those required for the 14th set. The experi¬ 

ments belonging to this set in which the spheres were swung with 

iron wires have already been computed under the head of spheres 

attached to fine wires. 

Baily's results with the spheres at the end of the short rods. 

No. 60 — 1 J-inch sphere with brass rod. 
No. 61 -2-inch sphere with ditto. 
No. 62 -3-inch sphere with ditto. 
No. 63 - 1+inch sphere with steel rod. 
No. 64 - 2-inch sphere with ditto. 
No. 65 —3-inch sphere with ditto. 

Value of n Weight of adhesive air 

No. 

theory 
By expe¬ 
riment Difference By 

theory 
_J 

By expe¬ 
riment Difference 

60 2-149 2*198 +0-049, or + j5. 1*011 1*047 +0*036, or + ^ 
61 1-879 1*901 +0-022, or + 1*619 1*513 — 0*106, or -- 
62 1-787 1*830 +0-043, or + 3*970 4*202 + 0*232, or +^ 
63 1-960 1*904 -0-056, or - ;jC 0*570 0*537 -0*033, or -- 
64 1-796 1*785 -0-011, or -ij3 1*239 1*227 -0*012, or -- 
65 1-758 1*779 + 0-021, or +aV 3*609 3*720 +0*111, or +, 

Here again the differences between theory and experiment are 

extremely small. In the case of the pendulum No. 61, Baily’s 

two results 1*901 and 1*513 appear to be inconsistent, as not 

agreeing with the formula (155). 

60. The following table contains the values of r, /c, and kx 
deduced from the given data, and employed in the calculations of 

which the results are contained in the two preceding tables. It is 

added, partly to facilitate a comparison of the circumstances of 

the different experiments, partly to assist in the re-computation 
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of any of the experiments, or the detection of any numerical error 

which I may have committed. I may here observe that I have 

not, generally speaking, re-examined the calculations, except 

where an error was apparent, but that each step requiring ad¬ 

dition, subtraction, multiplication, or division, was checked im¬ 

mediately after it was performed. I have not thought it requisite 

to check in this manner the taking of logarithms or antilogarithms 

out of a table. 

Values of r, k, and kx employed in the calculation of the 
theoretical results employed in the two preceding tables. 

(For the description of the pendulums Nos. 45 to 53, see p. 89.) 

Long rods Short rods 

1 
No. j T k No. T k h 

45 1*090 
t 

0-7968 1-951 
46 1T58 0-7170 1-981 
47 1-227 0*6523 2-010 
48 1-155 0-8055 ; 3*222 60 0-9517 0-7772 3-012 
49 1-198 0-7207 ! 3*264 61 0-9806 0-7005 3-042 
50 1-222 0-6520 3-288 62 0-9982 0-6373 3-062 
51 1-190 0-8099 7-272 63 0-9868 0-7824 6-649 
52 1-199 0-7208 7-299 64 0-9954 0-7021 6-679 
53 1-231 0-6525 7-396 65 1-0030 0-6377 6*714 

The corrections for confined space employed are, for the 

spheres, (A/c), 0*0115, 0*0321, 0*1013; and for the rods, (Alct), 
0*009, 0*002, 0*000. These corrections are to be added to the 

values of k, kx given in the preceding table before going on with 

the calculation. 

61. In the 14th set of experiments, the weight of adhesive 

air due to the spheres alone has been computed by Baily by 

subtracting from the whole weight, as given by observation, the 

weight due to the rods as given by the 13th set of experiments, 

taking account of the change of weight corresponding to the 

change in the position of the centre of gyration, the point at 

which the air is supposed to be attached. According to theory, 

this process is not legitimate, inasmuch as the weight dragged by 

a rod is a function of the time of vibration, which is altered when 

a sphere is attached to the end of the rod. But in the 15th set 
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of experiments the spheres did not materially affect the time of 

vibration, inasmuch as they were inserted nearly at the centre of 

oscillation of the rods, and therefore in this case the process is 

legitimate. Accordingly, I think it is a sufficient comparison 

between theory and experiment in the case of the 15th set, to 

compare the weights of air due to the spheres alone, as calculated 

by Baily, with the weights calculated according to the theory of 

this paper with the assumed value of Vg!. I have, exhibited 

separately the weight corresponding to the correction for confined 

space, in order to enable the reader to form an estimate of the 

extent to which the results may be affected by the uncertainty 

relating to the amount of this correction. 

Weights of air dragged by the spheres alone, as deduced from 

Baily's results with the spheres at the centre of oscillation of the 
long rods. 

By Theory 

ipinch 
sphere 

2-inch 
sphere 

3-inch 
sphere 

In free air 
Additional for confined space 

0-431 

0-006 

1-060 

0-048 

3-002 

0-476 

Total 0-437 1-108 3-478 

Difference, theory and experiment, as decimal -0-012 + 0-001 -0101 

By Experiment 

lj-inch 
sphere 

2-inch 
sphere 

3-incli 
sphere 

From experiments with brass rod 
From experiments with steel rod 

0-446 

0-405 

1-180 

1-039 

3-382 

3-371 

Mean 0*425 1-109 3-377 

Difference, as fraction of the whole _ i + 1 Am ~:h 

62. I pass now to Bessel’s experiments described in his 

memoir entitled Untersuchungen uber die Lange des einfachen 
SeJcundenpendels, which is printed among the memoirs of the 

Academy of Sciences of Berlin for the 3 ear 1826. The object of 
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this memoir was to determine the length of the seconds' pendulum 

by a new method, which consisted in swinging the same sphere 

with wires of two different lengths, the difference of lengths being 

measured with extreme precision. In the calculation, the absolute 

length of the simple pendulum isochronous with either the long 

or the short compound pendulum was regarded as unknown, but 

the difference of the two as known, and this difference, combined 

with the observed times of oscillation, is sufficient for the de¬ 

termination of the quantity sought. Nothing more would have 

been required if the pendulums had been swung in a vacuum; 

but inasmuch as they were swung in air, a further correction was 

necessary to reduce the observations to a vacuum. Since it is 

necessary to take into account the inertia of the air, as well as its 

buoyancy, in reducing the observations to a vacuum, Bessel sought 

to determine by experiment the value of the factor k, of which the 

meaning has been already explained. The value of this factor, as 

Bessel remarked, will depend upon the form of the body; but he 

does not seem, at least in his first memoir, to have contemplated 

the possibility of its depending on the time of oscillation, and 

consequently he supposed it to have the same value for the long 

as for the short pendulum. When the factor k is introduced, the 

equation obtained from the known difference of length of the two 

simple pendulums contains two unknown quantities, namely k, 
and the length of the seconds’ pendulum. To obtain a second 

equation, Bessel made another set of experiments, in which the 

brass sphere was replaced by an ivory sphere, having as nearly as 

possible the same diameter. The results obtained with the ivory 

sphere furnished a second equation, in which k appeared with a 

much larger coefficient, on account of the lightness of ivory 

compared with brass. The two equations determined the two 

unknown quantities. 

Let \ be the length of the seconds’ pendulum, t1} t2 the times 

of oscillation of the brass sphere when swung with the short wire 

and long wire respectively, lu l2 the lengths of the corresponding 

simple pendulums, corrected for everything except the inertia of 

the air, m the mass of the sphere, the mass of the fluid dis¬ 

placed; then 
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or, since mt is so small that we may neglect mx2, 

The long pendulum furnishes a similar equation, and the result 

obtained from the brass sphere is 

i-S*)“W, .(156), 

since l2 — lt is the quantity which is regarded as accurately known. 
The ivory sphere in like manner furnishes the equation 

MC-C)(i-^H'*-z,‘.(157)> 

where the accented letters refer to that sphere. The equation 
for the determination of k results from the elimination of A 

between the equations (156) and (157). 

Now, according to the theory of this paper, the factor Jc has 
really different values for the long and short pendulums. Let kx 
refer to the short, and k2 to the long pendulum with the brass 
sphere, k-l to the short, and k2 to the long pendulum with the 

ivory sphere. Then 

m, 
Xt.f 1 

m k)=k. 
and therefore 

m v V m 
M, 

....(158). 

In the equation resulting from the elimination of A between 
(156) and (157), let the values of l2 — lx and got from (158) 
and the similar equation relating to the ivory sphere be sub¬ 
stituted. The result is 

This equation is of the form 

P + + Rm* = P' + Q'm1 + R'm^ 

and P = P', and Rm*, R'm* may be neglected, so that the 
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equation is reduced to Q = Q'. It is now no longer necessary to 

distinguish between t2 and t2, and between tt and t', which may 

be supposed equal. Also m : m':: S: S', where S, S' are the 

specific gravities of the brass and ivory spheres respectively. 

Substituting in the equation Q = Q', and solving with respect to 

k, we get 

/ _ C (SK - s%) - *i2 - S'K) 
(V-WS-S') 

(159). 

This equation contains the algebraical definition of that 

function k of which the numerical value is determined by com¬ 

bining, in Bessel’s manner, the results obtained with the four 

pendulums. Since the equation is linear so far as regards k, k1, 
&c., we may consider separately the different parts of which these 

quantities are composed, and add the results. For the part which 

relates to the spheres, regarded as suspended by infinitely fine 

wires, we have k'2 = k2 and k\=k1, since the radii of the two 

spheres were equal, or at least so nearly equal that the difference 

is insensible in the present enquiry. We get then from (159) 

.(160), 

which gives 
k-k. k /i*2_k^ k^ 

.(161). 

Since t.2>t1 and k2>k1} the equations (161) shew that the 

value of k determined by Bessel’s method is greater than the factor 

which relates to the short pendulum, which was a seconds’ pen¬ 

dulum nearly, and even greater than that which relates to the 

long pendulum, as has been already remarked in Art. 6. 

If ks be the factor relating to either sphere oscillating once in 

a second, and if the effect of the confinement of the air be 

neglected, we have from the formula (148) 

kt ~~ i : i :: tx : t2 : 1, 

and in Bessel’s experiments 4 = 1*001, 4 = 1*721, 2a = 2*143 in 

English inches. We thus get from either of the equations (160) 

or (161), on substituting 0*116 for hjyt, k = 0*786. The value of 

the factor ks, which relates to the sphere of the same size, swung 

as a seconds’ pendulum, is only 0*694, and kx may be regarded as 

equal to ks. The formula (148) gives k2 — 0*755. 
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63. We have next to investigate the correction for the wire. 

The effect of the inertia of the air set in motion by the wire was 

altogether neglected by Bessel, and indeed it would have been 

quite insensible had the parts of the correction for inertia due to 

the wire and to the sphere, respectively, been to each other in 

nearly the same ratio as the parts of the correction for buoyancy. 

Baily, however, was led to conclude'from his experiments that the 

effect of the wire was probably not altogether insignificant, and 

the theory of this paper leads, as we have seen, to the result that 

the factor n is very large in the case of a very fine wire. 

The ivory sphere in Bessel’s experiments was swung with a finer 

wire than the brass sphere. It was for this reason that I did not 

from the first suppose &/ = &, and k2~k2. Let Ak, Akx &c. be 

the corrections due to the wire. The values of A Jc19 A k2, A A/, Ak2\ 
may be got from the formula (151), in which it is to be re¬ 

membered that \ denotes the length of the isochronous simple 

pendulum, not, as in Bessel’s notation, the length of the seconds’ 

pendulum. It is stated by Bessel (p. 131), that the wire used 

with the brass sphere weighed 10*95 Prussian grains in the case 

of the long pendulum, and 3*58 grains in the case of the short. 

This gives 7*37 grains for the weight of one toise or 72 French 

inches. The weight of one toise of the wire employed with the 

ivory sphere was 6*28 — 2*04 or 4*24 grains (p. 141). The specific 

gravity of the wire was 7*6 (p. 40), and the weight of a cubic line 

(French) of water is about 0*1885 grain. From these data it 

results that the radii of the wires were 0*003867 and 0 002933 

inch English. The formula (147) gives m, whence L is known 

from (152). The lengths of the isochronous simple pendulums 

were about 39*20 inches for the short pendulum, and 116*94 for 

the long. On substituting the numerical values we get from 

(151), since ^ = nx — 1 and k2~U2 — 1, 

A*x = 0*0107, A k2 = 0*0286, A k' = 0*0090, A k2 = 0*0244. 

The specific gravities of the two spheres were about 8*190 and 

1*794, whence we get from (159) A/c = 0*0308, or 0*031 nearly. 

The value of k deduced by Bessel from his experiments was 

0*9459 or 0*946 nearly, which in a subsequent paper he increased 

to 0*956. In this paper he contemplates the possibility of its 

being different in the cases of the long and of the short pendulum, 
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and remarks with justice that no sensible error would thence 

result in the length of the seconds’ pendulum, as determined by 

his method, but that the factor k would belong to the system of 

the two pendulums. 

The following is the result of the comparison of theory and 

experiment in the case of Bessel’s experiments on the oscillations 

of spheres in air. 

Value of k belonging to the system of a long and 

a short pendulum, as determined experimen¬ 

tally by Bessel . 0*956 

Value deduced from theory, including the correc¬ 

tion for the wire, but not the correction for 

confined space . 0*817 

difference 4- 0*139 

I cannot find that Bessel has stated exactly the distance of the 

centre of the sphere from the back of the frame within which it 

was swung, but if we may judge by the sketch of the whole 

apparatus which is given in Plate I, and by a comparison of 

figs. 2 and 3, Plate II., it must have been very small, that is to 

say, a small fraction of the radius of the sphere*. If so, although 

the exact calculation of the correction for confined space would 

form a problem of extreme difficulty, it may be shewn from 

theoretical considerations that the correction would be by no 

means insensible, so that it might wholly or in part account 

for the difference +0*139 between the results of theory and 

observation. It is, however, not improbable, for a reason which 

has been already mentioned, that the theoretical correction for the 

wire is not quite exact. 

64 The experiments performed by Bessel on a sphere vi¬ 

brating in water will be more conveniently considered after the 

discussion of some experiment of Coulomb’s, to which I now 

proceed. These experiments are contained in a memoir entitled 

* The measurement of either of Bessel’s figures, figs. 5 or G, Plate II. gives 
1*58 inch for the distance of the centre of the sphere from the surface of the 
broad iron bar which formed the back of the frame, the surface of the bar being 

supposed truly vertical; and the measurement of fig. 2 giving 2*06 inches for the 

diameter of the sphere, it appears that the distance of the surface of the sphere 
from the surface of the bar was barely equal to half the radius of the s})hero. 

S. ITT. 7 
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Experiences destinies a determiner la coherence des fluides et les 

lois de leur resistance dans les niouvements tres-lents, which will 

be found in the 3rd Volume of the Mimoires de VInstitute p. 246. 

The experiments which I shall first consider are those which 

relate to the oscillations of disks suspended in water with their 

planes horizontal. In these experiments the disk operated upon 

was attached to the lower extremity of a vertical cylinder of 

copper, not quite half an inch in diameter, the axis of which 

passed through the centre of the disk. The cylinder was sus¬ 

pended by a fine wire attached to its upper extremity. The 

under portion of the cylinder, together with the attached disk, 

were immersed in water, the disk at the bottom of the cylinder 

being immersed to the depth of 4 or 5 centimetres below the 

surface. The upper portion carried a horizontal metallic graduated 

disk, by means of which the arc of oscillation could be read off, 

and which, on account of its size and weight, mainly determined 

the inertia of the system, so that the time of oscillation in the 

different experiments was nearly the same. The observations 

were taken as follows. The whole system was turned very slowly 

round by applying the hands of the graduated disk, taking care 

not to derange the vertical position of the suspending wire. The 

arc through which the system had been turned was read by 

means of the graduation, or rather the system was turned through 

an arc previously fixed on ; the system was then left to itself, and 

the arc again read off to a certain number of oscillations. Thus it 

was the decrement of the arc of oscillation that was observed; the 

time of oscillation was indeed also observed, but only approxi¬ 

mately, for the sake of determining a subsidiary quantity required 

in the calculation. Indeed, it will be easily seen that the experi¬ 

ments were not adapted to determine the effect of the fluid on 

the time of oscillation. The decrement of arc so determined had 

to be corrected for the effect of the imperfect elasticity of the 

wire, and of the resistance of the air against the graduated disk, 

and of the water against the portion of the copper cylinder 

immersed. The amount of the correction was determined by 

repeating the observation when the lower disk had been removed. 

It appeared from the experiments, first, that with the same 

disk immersed, the successive amplitudes of oscillation decreased 

in geometric progression; secondly, that with different disks the 
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moment of the resisting force was proportional to the fourth 

power of the radius. From these laws Coulomb concluded that 

each small element of any one of the disks experienced a 

resistance varying as the area of the element multiplied by 

its linear velocity. It should be observed that Coulomb was 

only authorized by his experiments to assert this law to be 

true in the case of oscillations of given period, inasmuch as 

the time of oscillation was nearly the same in all the experi¬ 

ments. 

Let a be the radius of the disk in the fluid, r the time of 

oscillation, 9 the angular displacement of the disk, measured from 

its mean position, I the moment of inertia of the whole system; 

and let 1 : 1 — m be the ratio in which the arc of oscillation 

is diminished in one oscillation. According to the formula (15) 

we have 
€-nPt 

for the factor which expresses the ratio of the arc of oscillation at 

the end of the time t to the initial arc. At the end of one oscilla¬ 

tion t — r, and the value of the above factor is 1 — m, which is 

given by observation. Putting for j3 its value, in which Mrf = J, 

and nr = nr, we get 

log. (1 - m) = - *y- aJ—(p.(!62). 

Let T be the time of oscillation, and I0 the moment of inertia, 

when the under disk is removed: then I = J0t2T~2. Also if M be 

the mass and R the radius of the large graduated disk, we have 

I0 = ^MR'\ neglecting, as Coulomb did, the rotatory inertia of the 

copper cylinder. Substituting in (162), we get 

loge (1 - m)"1 = 2“*tt^p^t^TWRT^M-1.(163). 

Let W be the weight of the disk in grammes. Then the mass of 

the disk is equal to that of W cubic centimetres or 1000 W cubic 

millimetres of water. Hence M = lOOOphF, a millimetre being the 

unit of length. Substituting in (163), and solving with respect to 

tjyj, we get 

V// = 1000 x 2* Ioge 10.7T~- log10 (1 - m)'1.. .(164), 

and the same value of vV ought to result from different experi¬ 

ments. 

7—2 
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The weight of the disk is stated to have been 1003 grammes, 

and its diameter 271 millimetres, and it made 4 oscillations in 

91 seconds. Hence W — 1003, It= 1355, T = 22*75. The last 

three factors in (164) vary from one experiment to another. 

After making experiments with three disks of different radii 

attached to the copper cylinder, Coulomb made another set with 

nothing attached, for the purpose of eliminating the effect of the 

imperfect elasticity of the wire. The following table contains the 

data furnished by experiment, together with the value of s/y! 
deduced from the several experiments. The latter is reduced 

to the decimal of an English inch, by including 2*5952 (the 

logarithm of the ratio of a millimetre to an inch) in the logarithm 

of the constant part of the 2nd member of equation (164). 

Determination of the value of fyf for water from Coulomb's 
experiments on the decrement of the arc of oscillation of disks, 
oscillating in their own plane by the force of torsion. 

No. 

Diameter 
of disk 

2 a 
in millimetres 

Time of 
four 

oscillations 
4 r 

log,o (1- m)-1 

Resulting 
value of 
. w; 
m inches 

1 195 97 0-0568 005519 
2 140 92 0*021 0-05716 
3 119 91 0*0135 0-05436 
4 0 91 0*0058 

In correcting the results of the first three experiments for the 

imperfect elasticity of the wire, Coulomb calculated the values of 

m given by the four experiments, and subtracted the value given 

by the fourth from each of the others. But it is at the same time 

easier and more exact to subtract the value of log(l —mf1 given 

by the fourth experiment from that given by each of the others. 

For if 

be the moments of two forces, each varying as the velocity, 

divided by the moment of inertia, the factors by which the 

initial arc of oscillation must be multiplied to get the arc at 

the end of the time t, first, when the two forces act together, 

secondly, when the second force acts alone, are 
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£*“ (C+C ) t p—C £ c , c , 

respectively, and that, whether the time t be great or small. 

Hence if we subtract the logarithm of the second factor from 

that of the first we shall get the logarithm of the factor due 

to the action of the first force alone. But if we put each factor 

under the form 1 — m, and subtract the m of the second factor 

from the m of the first, we shall not get the m due to the 

first force alone, unless t be small enough to allow of our neglect¬ 

ing the squares of ct and ct, or at least the product ct. c't In 

truth, when t = r, the quantities m are sufficiently small to be 

treated in Coulomb’s manner without any material error, since the 

corrected values of log (1 — m), obtained in the two ways, would 

only differ in the 4th place of decimals. 

The numbers given in the last column of the above table were 

calculated from the formula (164), on substituting for log(l —m)"1 

the numbers found in the first three lines of the 4th column, 

corrected by subtracting 0*0058. The mean of the three results is 

0*05557, but the three experiments are not equally valuable for 

the determination of vV* For the three numbers from which *J/jl 

was deduced are 0*0510, 0*0152, 0*0077, and a given error in the 

first of these numbers would produce a smaller error in vV than 

that which would be produced by the same error in the second, 

still more, than that which would be produced by the same error 

in the third. If we multiply the three values of yV by 510, 152, 

and 77, respectively, and divide the sum of the products by 

510 + 152 + 77 or 739, we get 0*05551. We may then take 0*555 

as the result of the experiments. Assuming fi = 0*0555 we have 

log (1-7?*)-1 from experiment 0-0568 in No. 1, 0*021 in No. 2, 0-0135 in No. 3, 

. from theory 0*0571 0*0206 0*0137 

difference -0*0003 +0*0004 -0*0002 

65. So far the accordance of the theoretical and observed 

results is no very searching test of the truth of the theory. For, 

in fact, the theory is involved in the result only so far as this, 

that it shews that the resistance experienced by a given small 

element of a disk oscillating in a given period varies as the linear 

velocity; since the difference of periods in Coulomb’s experiments 

was so small that the effects thence arising would be mixed up 

with errors of observation. This law is so simple that it might 
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very well result from theories differing in some essential particu¬ 

lars from the theory of this paper. But should the numerical 

value of V/ determined by Coulomb’s experiments on disks be 

found to give results in accordance with theory in totally different 

cases, then the theory will receive a striking confirmation. Before 

proceeding to the discussion of other experiments, there are one 

or two minute corrections to be applied to the value of *J(i given 

above, which it will be convenient to consider. 

In the first place, the result obtained in Art. 8 is only approxi¬ 

mate, the approximation depending upon the circumstance that 

the diameter of the revolving body is large compared with a 

certain line determined by the values of. p and r. In the 

particular case in which the revolving solid is a circular disk, it 

happens that the approximate solution satisfies the general equa¬ 

tions exactly, except so far as relates to the abrupt termination of 

the disk at its edge*. In consequence of this abrupt termination, 

the fluid annuli in the immediate neighbourhood of the edge are 

more retarded by the action of the surrounding fluid than they 

would have been were the disk continued, and consequently the 

resistance experienced by the disk in the immediate neighbour¬ 

hood of its edge is actually a little greater than that given by the 

formula. I have not investigated the correction due to this 

cause, but it would doubtless be very small. 

In the second place, the formula (15) is adapted to an in¬ 

definite succession of oscillations, whereas Coulomb did not turn 

the disk through an angle greater than the largest intended to 

be observed, and suffer one or two oscillations to pass before the 

observation commenced, but took for the initial arc that at which 

the disk had been set by the hand. Probably the disk was held 

in this position for a short time, so that the fluid came nearly to 

rest. If so, the resulting value of vV, as may readily be shewn, 

would be a little too small. For in the course of an indefinite 

series of oscillations, the disk, in its forward motion, carries a 

certain quantity of fluid with it, and this fluid, in consequence of 

its inertia, tends to preserve its motion. Hence, when the disk, 

having attained its maximum displacement in the positive direc¬ 

tion, begins to return, it finds the fluid moving in such a manner 

as to oppose its return, and therefore it experiences a greater 

See note A. at the end. 
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resistance than if it had started from the same position with the 

fluid at rest. In fact, it appears from the expression for G in 

Art. 8, that the moment of the resistance vanishes, in passing 

from negative to positive, not when the disk has reached the end 

of its excursion in the positive direction, hut the eighth part of a 

period earlier. Hence, had the observation commenced during a 

series of oscillations, a larger initial arc would have been necessary, 

to overcome the greater resistance, in order to produce, after a 

given number of oscillations, the same final arc as that actually 

observed. I have investigated the correction to be applied on 

account of this cause, and find it to be about + 0*009, but I must 

refer to a note for the demonstration, in order not to interrupt 

the present discussion*. I shall assume then, in the following 

comparisons, that for water 

^f/jf = 0*0564, 

the units being the sam® as before, namely, an English inch and a 

second. That fi is independent of the pressure of the fluid, or at 

least very nearly so, appears from an experiment of Coulomb’s, in 

which it was found that the decrement of the arc of oscillation of 

a disk oscillating in water was the same in an exhausted receiver 

as under the full atmospheric pressure. 

I will here mention another experiment of Coulomb’s which 

bears directly on one part of the theory. On covering the disk 

with a thin coating of tallow, the resistance was found to be the 

same as before; and even when the tallow was sprinkled with 

powdered sandstone, by means of a sieve, the increase of resistance 

was barely sensible. This strikingly confirms the correctness of 

the equations of condition assumed to hold good at the surface 

of a solid. 

66. I will now compare the formula (148) with the results 

obtained by Bessel for the oscillations of the brass sphere in water, 

which will be found at page 65 of his memoir. This sphere was 

suspended so as to be immersed in the water contained in a large 

vessel, and was swung with two different lengths of wire, the 

same as those employed for the experiments in air. The times of 

oscillation were 1*9085 second for the long pendulum, and 1*1078 

for the short. The results are 

* See note B. at the end. 
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Long pendulum. 

ky by experiment.0*648 

k, by theory.0*631 

Short pendulum, 

0*602 

0*600 

difference -F 0*017 -1- 0*002 

The depth to which the spheres were immersed is not stated, but 

it was probably sufficient to render the effect of the free surface 

small, if not insensible. The vessel was three feet in diameter, 

and the water 10 inches deep, so that unless the spheres were 

suspended near the bottom, which is not likely to have been the 

case, the effect of the limitation of the fluid by the sides of the 

vessel must have been but trifling. The agreement of theory and 

observation, as will be seen, is very close. 

67. In the same memoir which contains the experiments on 

disks, Coulomb has given the results of some experiments in 

which the disk immersed in the fluid was replaced by a long 

narrow cylinder, placed with its axis horizontal and its middle 

point in the prolongation of the axis of the vertical copper cylinder. 

In these experiments, the arcs did not decrease in geometric 

progression, as would have been the case if the resistance had 

varied as the velocity; but it was found that the results of 

observation could be satisfied by supposing the resistance to vary 

partly as the first power, and partly as the square of the velocity. 

In Coulomb’s notation, 1 : 1 — m denotes the ratio in which the 

arc of oscillation would be altered after one oscillation, if the 

part of the resistance varying as the square of the velocity were 

destroyed. The several experiments performed with the same 

cylinder were found to be sufficiently satisfied by the formula 

deduced from the above-mentioned hypothesis respecting the re¬ 

sistance, when suitable numerical values were assigned to two 

disposable constants m and p, of which p related to the part of the 

resistance varying as the square of the velocity. 

Conceive the cylinder divided into elementary slices by planes 

perpendicular to its axis. Let r be the distance of any slice from 

the middle point, 6 the angle between the actual and the mean 

positions of the axis, dF that part of the resistance experienced by 

the slice which varies as the first power of the velocity. Then 

calculating the resistance as if the element in question belonged 
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to an infinite cylinder moving with the same linear velocity, we 

have by the formulae of Art. 31 

dF = k'M'n ^ , where M = 7rpcfdr, = r ^. 

If G be the moment of the resistance, l the whole length of the 

cylinder, we have, putting n = 7rrwl, 

r 7rVcpa2l5 dd 

(r_ 12r di1 
whence 

loge (1 - m)-1 = —^T .(165), 

I being the moment of inertia. 

Expressing I in terms of the same quantities as in the case of the 

disk, we get from (147) and (165) 

logic (! ~ mT = log10 e. ^ ^ • m2// •(166), 

and gp is the weight of a cubic millimetre of water, or the 1000th 

part of a gramme. The numerical values of pf, T} R, W have 

been already given, but p! must be reduced from square inches to 

square millimetres. The cylinders, of which three were tried in 

succession, had all the same length, namely, 249 millimetres. 

Their circumferences, calculated from their weights and expressed 

in millimetres, were 21T, 11*2, and 0’87, and the time of four 

oscillations was 92s, 91s, 91s. The values of m calculated from 

these data by means of the formula (147) are 0*4332, 0*2312, and 

0*01796. For the first and second of these values, \\\2hr may be 

obtained by interpolation from the table given in Part I.; for the 

third it will be sufficient to employ the second of the formulae 

(115). 

The following are the results: 

Cylinder, No. 1. No. 2. No. 8. 

m, by experiment . 0*0400 0*0260 0*0136 

m, by theory . 0*0413 0'0291 0*0113 

Difference — 0*0013 — 0*0031 + 0*0023 

The differences between the results of theory and experiment 

are perhaps as small as could reasonably be expected, when it is 
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considered that, notwithstanding the delicate nature of the experi¬ 

ments, the numerical values of two constants, m and p, had to be 

deduced from their results. 

68. This memoir of Coulomb’s contains also a notice of a set 

of experiments with disks and cylinders in which the water was 

replaced by oil. The experiments with disks shewed that with a 

given disk the arc of oscillation decreased in geometric progres¬ 

sion, and that with different disks the moments of the resistances 

were as the fourth powers of the diameters. The absolute resist¬ 

ances were greater than in the case of water in the ratio of about 

17*5 to 1. The details of Coulomb’s experiments on cylinders 

oscillating in oil are entirely omitted. It is merely stated that on 

making the same cylinders as before, or shorter cylinders when 

the resistance was too great, oscillate in oil, it was found, con¬ 

formably with the results obtained with planes, that the coherence 

of oil was to that of water as 17 to 1. The coherence is here 

supposed to be measured by that part of the resistance which is 

proportional to the first power of the velocity. On making a 

rough calculation of the ratio of the resistances to cylinders oscil¬ 

lating in oil and in water, on the supposition that *Jp! for oil is to 

\JfjL for water as 17*5 to 1, as would follow from the experiments 

on disks if the difference of the specific gravities of the two fluids 

be neglected, I found that the ratio in question ought to have 

been somewhere about 100 to 1, instead of only 17 to 1. It 

would seem from this that the theory of the present paper is not 

applicable to oil; but fresh experiments would be required before 

this point can be considered as established, on account of the 

theoretical doubt respecting the application of the formulae of 

Section III. Part I., to extremely fine cylinders, especially in cases 

in which p! is large, so that m is very small. It would be interest¬ 

ing to make out whether what I have called internal friction is or 

is not of the same nature as viscosity. Coulomb and Dubuat 

apply the term viscosity to that property of water by virtue of 

which certain effects are produced which have been shewn in this 

paper to be perfectly explicable on the theory of internal friction; 

whereas Poisson, in one of his memoirs, expressly asserts that the 

terms in the equations of motion which result from what has been 

called in this paper internal friction belong to perfect fluids, and 
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have nothing to do with viscosity*. Poisson does not give the 

slightest hint as to the grounds on which he rested his opinion. 

69. I come now* to the experiments of Dubuat, which are 

contained in an excellent work of his entitled Principes d’Hydrau- 
lique, of which the second edition was published in 1786. The 

first edition does not contain the experiments in question. Dubuat 

justly remarked that the time of oscillation of a pendulum oscil¬ 

lating in a fluid is greater than it would be in vacuum, not only 

on account of the buoyancy of the fluid, which diminishes the 

moving force, but also on account of the mass of fluid which must 

be regarded as accompanying the pendulum in its motion; and 

even determined experimentally the mass of fluid which must be 

regarded as carried by the oscillating body in the case of spheres 

and of several other solids. Thus Dubuat anticipated by about 

forty years the discovery of Bessel; but it was not until after the 

appearance of Bessel's memoir that Dubuat’s labours relating to 

the same subject attracted attention. 

Dubuat’s method was as follows. Imagine a body suspended 

by a fine thread or wire and swung in vacuum, and let a be the 

length of the pendulum, reckoned from the centre of suspension 

to the centre of oscillation. Now imagine the same body swung 

in a fluid, in which its apparent weight is p, so that if P denote 

the weight of fluid displaced, the true weight of the body will be 

p + P- Since the moving force is diminished in the ratio of p + P 
to p, if the inertia of the body were all that had to be overcome, it 

would be necessary to diminish the length of the pendulum in the 

same ratio, in order to preserve the same time of oscillation. But 

since the mass in motion consists not only of the mass of the body 

itself, but also of that of the fluid which it carries with it, the 

pendulum must be shortened still more, in order that the time of 

oscillation may be unaltered. Let l be the length of the pendulum 

so shortened, and tt (which for the same reason as before I write 

instead of Dubuat's n,) a factor greater than unity, such that 

p + VlP is the weight of the mass in motion; then 

l=p~?nP’ whencen = |(f-l) .(167). 

* •Journal de VEcole Poly technique, Tom. xm. p. 95. 
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Dubuat’s experiments on this subject consist of 44 experiments 

on spheres oscillating in water (Tom. II. p. 236); 31 experiments 

on other solids oscillating in water (p. 246); and 3 experiments 

on spheres oscillating in air (p. 283). The following table con¬ 

tains a comparison of the formula (148) with Dubuat’s results for 

spheres oscillating in water. The value of vV employed in the 

calculation is 0*0564 inch English, or 0*05291 inch French. 

Dubuatfs experiments on spheres oscillating in water. 

it 

r calc. obs. diff. 

Sphere of lead 
Diameter 1*0113 inches 
Weight in water 2102 grains (! 

v 3 

1*633 
1*687 
1*766 
1-825 

1-502 
1-502 
1-522 
1*620 

— 131 
*185 
•244 
•205 

Sphere of glass (2 
1-602 1-518 _ •084 

Diameter 2*645 inches 4 1*644 1-569 - •075 
Weight in water 574 grains U 1-676 1-598 — •078 

f 1 1-572 1-515 _ •057 
Same sphere weighing in water 2 1-602 1-516 - *086 

2102 grains 3 1*624 1-523 — •101 
l 4 1-644 1-546 - •098 

f 1 1-572 1-537 _ *035 
Same sphere weighing in water 2 1-602 1-523 - •079 

4204 grains 3 1-624 1-524 — •100 
l 4 1-644 1-538 - T06 

( i 1-551 1*449 _ T02 
Same sphere weighing in water 1 1-572 1-372 - •200 

9216 grains 2 
1*602 1-494 _ •108 

1 3 1*624 1*494 - •130 

Sphere of wood 
Diameter 4*076 inches 
Weight in water 2102 grains |i 

1-566 
1-581 
1-593 
1-614 

1-507 
1*547 
1*547 
1-567 

- 

*059 
*034 
*046 
*057 

( 1 1-547 1-375 _ •172 

Same sphere weighing in water 
3 

1-566 
1-581 

1-456 
1*525 

- •no 
•056 4204 grains 

j 4 1-593 1-557 _ •036 
1-614 1*549 - •065 

(1 1*547 1-57 + •023 
Same sphere weighing- in water J 2 1*566 1-553 ~ •013 

9216 grains 1 3 
1*581 1-59 , + •009 

\ 4 1-593 1-583 | •010 
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r 
r 
calc. 

n 

obs. diff. 

( 3 1*549 1-27 -*279 

Another sphere of wood 
Diameter 6f inches 1 
Weight in water 2102 grains | 

4 
6 
9 

12 

1*557 
1*570 
1*585 
1*599 

1-394 
1-487 
1-566 
1-569 

-*163 
-*083 
-*019 
-*030 

U8 1*621 1-565 -*056 

Same sphere weighing in ) 
water 3204 grains j 

•85 1*594 1-634 + *040 

( 3 1*549 1-651 + *102 

Same sphere weighing in water __ 4 
6 

1*557 
1*570 

1-627 
1-654 

+ *070 
+ *084 4204 grains 

i 9 1*585 1-664 + *079 
'12 1*599 1-674 + *075 

70. If we strike out the experiments with the large sphere, 

which cannot well be compared with theory for a reason which 

will be explained further on, it will be observed that in seven out 

of the eight groups of experiments left, the signs in the last 

column are regularly minus. The preponderance of negative 

errors could be destroyed by using a much smaller value of aJ/jl' 
in the reduction. We have seen, however, that the value of aJ/jl 

deduced from Coulomb’s experiments on the decrement of the arc 

of oscillation of disks satisfied almost exactly Bessel’s observations 

of the time of oscillation of a sphere about two inches in diameter 

oscillating in water. The very small errors which remained in 

this case had both the sign +, whereas in Dubuat’s experiments 

on the 1-inch and 2-J- inch spheres, the errors, which are far 

larger, have all the sign-. Since the experiments of Dubuat 

and Bessel, though made under similar circumstances, do not lead 

to the same result, it is of course impossible for any theory to 

satisfy them both. The numbers in the last column of the pre¬ 

ceding table are, however, far too regular to be attributable to mere 

fortuitous errors of observation. If we suppose Bessel’s results to 

have been nearly exact, there must have been something in the 

mode either of making or of reducing Dubuat’s experiments which 

caused a tendency to error in one direction. 

With respect to the reduction of the experiments it may be 

observed that the length l was measured from the centre of 
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oscillation, whereas in the formula (148) it is supposed that the 

mass of which the weight is hP or (n — 1)P is collected at the 

centre of the sphere. If h be the distance of the centre of the 

sphere from the axis of suspension, the observed value of tt — 1 

ought in strictness to be increased in the ratio of h2 to or the 

calculated value diminished in the ratio of l2 to K2, before com¬ 

paring the results of theory and experiment. In the case of the 

loaded spheres especially, the theoretical value of n would thus 

be a little diminished; but except in a very few cases, in which 

either l or a — l is small, the diminution is hardly worth con¬ 

sidering. After having been for a good while at a loss to account 

for the regular occurrence of rather large negative errors, the 

following occurred to me as the probable solution of the difficulty. 

When a pendulum oscillates in water, the arc of oscillation 

rapidly decreases; this rapid diminution forms in fact the grand 

difficulty in experiments of this kind. In Dubuat’s experiments, 

it will be remembered, the suspending thread was lengthened or 

shortened till the time of oscillation was an exact number of 

seconds, or occasionally half a second. Now, it is probable that 

the observer occasionally gave the suspending thread a slight 

push as the pendulum was commencing its return, in order to 

keep the oscillations going for a sufficient time to allow of 

tolerable precision in rendering the time of oscillation equal to 

what it ought to be. If so, these pushes would slightly accelerate 

the oscillations, and therefore cause the length of thread fixed 

on by observation to be a little too great, which would make the 

effect of the water in retarding the oscillations appear a little too 

small. On inspecting the table of differences, it may be observed 

that sometimes when the same sphere differently loaded is 

swung in the same time as before, the numbers in the table of 

differences are altered more than appears to be attributable to 

merely fortuitous errors of observation. This accords very well 

with the conjecture just mentioned, and seems difficult to account 

for in any other way, inasmuch as everything relating to the fluid 

must have been almost exactly the same in the two cases. 

The occurrences of positive differences in the case of the large 

wooden sphere may be accounted for by the limitation of the fluid 

mass by the sides and bottom of the vessel, and by the free 

surface, which, except in the case of very short oscillations, would 
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have much the same effect as a rigid plane, inasmuch as it would 

be preserved almost exactly horizontal by the action of gravity. 

The vessel which contained the water was 51 inches long and 

17 broad, the water was 14 inches deep, and the spheres were 

plunged to about 8 inches below the surface, so that the effect 

of the confinement of the fluid mass would have been quite 

sensible in the case of such large spheres. If it be objected that 

the same sphere gave negative differences in the case of the first 

group of experiments, it must be observed, that when the apparent 

weight of so large a sphere was only 2102 French grains, the 

resistance would quickly have caused the oscillations to subside if 

an extraneous force had not frequently been applied. 

71. In Dubuat’s experiments on spheres oscillating in air, the 

lightness of the fluid was compensated by the extreme lightness of 

the spheres, which were composed, the first two of paper, and the 

third of goldbeater's skin. In the following table the diameter 

2a of the sphere is expressed in French inches. The value of \]g! 
employed in the reduction is the same as was before used in the 

reduction of observations made in air, namely 0*116 inch English, 

or 0*1088 inch French. 

Lubuat’s experiments on light spheres oscillating in air. 

No. 2 a, T 
ii 

calc. 
it 

obs. Dill’. 

337 4-0416 1-51 1-61 1-51 — o-10 
338 6-625 1*84 1-57 1-63 +0-06 
339 17-25 3*625 1-53 1-54 + 0-01 

The differences certainly appear very small when the delicacy 

of the experiments and the simplicity of the apparatus employed 

are considered. 

72. The only comparison yet made in this section between 

theory and observation in the case of pendulum experiments, 

consists in comparing the observed times of vibration with the 

results calculated with an assumed value of *Jg!. But according 

to theory we ought to be able, without assigning a particular value 

to any new disposable constant, to calculate the rate of decrease 

of the arc of vibration, I have not met with any experiments 
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made with a view of investigating the decrease in the arc of 

vibration in the case of extremely small vibrations, such as those 

employed in pendulum experiments. The experiments of Newton 

and others, in which the arc of vibration was so large that the 

resistance depended mainly on the square of the velocity, would 

be quite useless for my purpose. The pendulum experiments of 

Bessel and Baily contain however the requisite information, or 

at least some portion of it, for the arcs are registered for the sake 

of giving the data for calculating the small reduction to in¬ 

definitely small vibrations. 

In Bessel’s experiments the arc is registered for the end of 

equal intervals of time during the motion. The number of such 

registrations in one experiment amounts in some cases to eleven, 

and is never less than three. So far the observations are just 

what are wanted; but there are other causes which prevent an 

exact comparison between theory and experiment. In the first 

place the spheres were swung so close to the back of the frame 

that the increase of resistance due to the confinement of the air 

must have been very sensible. In the second place the effect 

of the wire must have been very sensible, especially in the case of 

the long pendulum. For the table of Section III. Part I., shews 

that for the wire (for which m is very small) the value of lc is 

much larger than that of lc, whereas for spheres of the size of 

those employed, when the time of oscillation is only one or two 

seconds, lc' is a good deal smaller than lc. Hence, if the formulae 

of that section applied to such fine wires, the effect of the wire 

on the arc of vibration would be much greater than its effect on 

the time of vibration, and therefore would be quite sensible. But 

it has been shewn in Section IV., that the effect of the wire in 

diminishing the arc of vibration is probably greater than would be 

given by the formula, and therefore the uncertainty depending on 

the wire is likely to amount to a very sensible fraction of the 

whole amount. Again, since Bessel’s experiments were all made 

in air, no data are afforded whereby to eliminate the portion of 

the observed result which was due to friction at the point of 

support, imperfect elasticity of the wire, or gradual dissipation of 

ms vim by communication of motion to the supporting frame. 

Moreover in the case of the long pendulum the observations were 

made with rather too large arcs, for the law of the decrease of the 
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arc of vibration deviated sensibly from that of a geometric pro¬ 

gression. In Baily’s experiments, only the initial and final arcs 

are registered, and not even those in the case of the additional 

experiments” Hence these experiments do not enable ns to 

make out whether it would be sufficiently exact to suppose the 

decrease to take place in geometric progression. Moreover, the 

final arc was generally so small, that a small error committed in 

the measurement of it would cause a very sensible error in the 

rate of decrease concluded from the experiment. For these 

reasons it would be unreasonable to expect a near accordance 

between the formulae and the results of the experiments of Bessel 

and Baily. Still, the formulae might be expected to give a result 

in defect, and yet not so much in defect as not to form a large 

portion of the result given by observation. On this account it 

will not be altogether useless to compare theory and observation 

with reference to the decrement of the arc of vibration. 

73. Let us first consider the case of a sphere suspended by a 

fine wire. Let the notation be the same as was used in in¬ 

vestigating the expression for the effect of the air on the time of 

vibration, except that the factors k\ 1c' come in place of k, kx. 
Considering only that part of the resistance which affects the arc 

of vibration, we have for the portions due respectively to the 

sphere and to the element of the wire whose length is ds, and 

distance from the axis of suspension s, 

k'M'n(l + a)jt> k'^'-ds.ns 

and if we take the moment of the resistance, and divide by twice 

d6 
the moment of inertia, the coefficient of in the result, taken 

negatively, and multiplied by t, will be the index of e in the 

expression for the arc. Hence if a0 be the initial arc of vibration, 

and at the arc at the end of the time t 

l°oe a0 — loge at = 
k’M' (l + af +1 ki'M'l* 

A1(1 + af + \Mj 
7rt 
2 T 

...(108), 

M (l + of being as before taken for the moment of inertia of the 

sphere, which will be abundantly accurate enough. If then we 

put l for the Napierian logarithm of the ratio of the are at the 

L 
s. hi. 
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beginning to the arc at the end of an oscillation, we must put t = r 
in (168), whence, neglecting the effect of the wire, we obtain 

Y 7rk' cr ^ 
= T~'S. 

If now Ay be the correction to be applied to kf in this 

formula on account of the wire, since k\ k/ are combined together 

in the expression for the arc just as k, kx in the expression for the 

time, we get 

Afc' = ^AA .(170), 

and the approximate formulae (115) give 

Afc' = — — A&.(171), 
7T 

whence the numerical value of A Id is easily deduced from that of 

Ak, which has been already calculated. We get also from (52) 

# =  (172), 

whence k' may be readily deduced from k, which has been already 

calculated. 

74. Before comparing these formulae with Bessel's ex¬ 

periments, it will be proper to enquire how far the latter are 

satisfied by supposing the arcs of oscillation to decrease in 

geometric progression. In Bessel’s tables the arc is registered in 

the column headed fi. This letter denotes the number of French 

lines read off on a scale placed behind the wire, and a little above 

the sphere, and is reckoned from the position of instantaneous 

rest of the wire on one side of the vertical to the corresponding 

position on the other side. The distance of the scale from the 

axis of suspension being given, as well as the correction to be 

applied to /i on account of parallax, the arc of oscillation may be 

readily deduced. However, for our present purpose, any quantity 

to which the arc is proportional will do as well as the arc itself, 

and fjb, though strictly proportional to the tangent of the arc, may 

be regarded as proportional to the arc itself, inasmuch as the 

initial arc usually amounted to only about 50' on each side of the 

vertical. 

Now we may form a very good judgment as to the degree of 

accuracy of the geometric formula by comparing the arc observed 
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in the middle of an experiment with the geometric mean of the 

initial and final arcs. I have treated in this way Bessels ex¬ 

periments, Nos. 1, 2, 3, 4, and 5. Each of these is in fact a group 

of six experiments, four with the long pendulum and two with the 

short, so that the whole consists of 20 experiments with the 

long pendulum, and 10 with the short. In the case of the long 

pendulum, the observed value of p regularly fell short of the 

calculated value, and that by a tolerably constant quantity. The 

mean difference amounted to 0*688 line, and the mean error in 

this quantity to 0T09. This mean error was not due entirely to 

errors of observation, or variations in the state of the air, &c., but 

partly also to slight variations in the initial arc, larger differences 

usually accompanying larger initial arcs. The initial arc usually 

corresponded to = 39 or 40 lines, and the final to /jl = 15 or 16 

lines. In the case of the short pendulum, the differences in 8 

cases out of 10 had the same sign as before. The mean difference 

was 0*025, and the mean error 0*043. The arcs of oscillation 

were nearly the same as before; but inasmuch as the axis of 

suspension was nearer to the scale than before, the initial value of 

fju was only about 12 or 13 lines, and the final value about 7 

lines. When the results of some of the experiments were laid 

down on paper, by abscissae taken proportional to the times and 

ordinates to the logarithms of fju, it was found that in the case 

of the long pendulum the line so drawn was decidedly curved, the 

concavity being turned toward the side of the positive ordinates. 

The curvature of the line belonging to the short pendulum could 

hardly be made out, or at least separated from the effects of errors 

of observation. The experiments 9, 10, 11, having been treated 

numerically in the same way as the experiments 1—5, led to 

much the same result. In the 16 experiments with the ivory 

sphere and short pendulum contained in the experiments Nos. 12, 

13, 14, and 15, the excess of the calculated over the observed 

value of fi was more apparent, the mean excess amounting to 

0 129. The reason of this probably was, that the observations 

with the ivory sphere were made through a somewhat wider 

range of arc than those with the brass sphere. 

It appears then that at least in the case of the long pendulum 

a correction is necessary, in order to clear the observed decrease 

in the arc of oscillation from the effect of that part of the 

8—2 
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resistance which increases with the arc more rapidly than if it 

varied as the first power of the velocity, and so to reduce the 

observed rate of decrease to what would have been observed in 

the case of indefinitely small oscillations. 

75. In Coulomb’s experiments it appeared that the resistance 

was composed of two terms, one involving the first power, and the 

other the square of the velocity. If we suppose the same law to 

hold good in the present case, and denote the amplitude of oscilla¬ 

tion at the end of the time t, measured as an angle, by a, we shall 

obtain 

~ = -Aa-Ba*.(173), 

where A and B are certain constants. We must now endeavour 

to obtain A from the results of observation. Since the substitu¬ 

tion for a of a quantity proportional to a will only change the 

constant B in (173), and the numerical value of this constant is 

not required for comparison with theory, we may substitute for a 
the number of lines read off on the scale as entered in Bessel’s 

tables in the columns headed /jl. 

I have employed four different methods to obtain A from the 

observed results. The one I am about to give is the shortest of 

the four, and is sufficiently accurate for the purpose. 

The equation (173) gives after dividing by a 

d log a . -r, sttoAs 
.,< ,/i.<i74)- 

Now, as has been already observed, the arcs of vibration decrease 

nearly in geometric progression. If this law were strictly true, we 

should have 
t 

where a0 denotes the initial and a2 the final arc, and T denotes the 

whole time of observation. We may, without committing any 

material error, substitute this value of a in the last term of (174). 

The magnitude of the error we thus commit is not to be judged 

of merely by the smallness of B. The approximate expression 

(17 5) is rather to be regarded as a well-chosen formula of interpo- 
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lation, and in fact T 1 loge (a0a2 *) differs very sensibly from A. 
Making now this substitution in (174), integrating, and after 

integration restoring a in the last term by means of (175), 

we get 

log a = — At — 
BTa 

log a2 - log a0 
+ C (176), 

G being an arbitrary constant. To determine the three constants 

A, B, C, let cq be the arc observed at the middle of the experiment, 

apply the last equation to the arcs a0, a,, a2, and take the first and 

second differences of each member of the equation. Let A, denote 

the sum of the two first differences, so that Ais the same thing 

as T. Then we may take for the two equations to determine A 

and B 

\ log^-AAf- 
BAJ. Vq, 

At log «0 ’ 
A2 log a0 = — 

BA,t. A2«„ 

A2 log a0 

Eliminating jB, and passing from Napierian to common logarithms, 

which will be denoted by Log., we get 

- A, Log a„ L _ A2 Log «n. A, oq 

Log e. Att \ Aj Log a0. A2 aa 
(177). 

If we suppose the part of ~ which does not vary as the first 
Cut 

power of a to be a2<£' (a) instead of Bol\ we shall get 

way 

- A, Log«0 f _ A2 Log a0. A1^>(a0)| 

Log e. Axt \ A, Log a0. A2^> (a0)J 

in the same 

.(178). 

76. I have not attempted to deduce evidence for or against 

the truth of equation (173) from Bessel's experiments. The ap¬ 

proximate formula (175) so nearly satisfied the observations, that 

almost any reasonable formula of interpolation which introduced 

one new disposable constant would represent the experiments 

within the limits of errors of observation. It may be observed, 

that the factor outside the brackets in equations (177) and (178) 

is the first approximate value of A got by using only the initial 

and final arcs, and supposing the arcs to decrease in geometric 

progression. In the case of the long pendulum, the value of A, 
corrected in accordance with the formula (178), would be very 

sensibly different according as we supposed <j> (a) to be equal to 

Ba, in which case (178) would reduce itself to (177), or equal to 
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Bo?. In the case of the long pendulum with the brass sphere, the 

corrected value of A, deduced from the formula (177), was equal 

to about 0*77 of the first approximate value. 

I have not considered it necessary to go through all Bessels 

experiments, as it was not to be expected that the formula should 

account for the whole observed decrement. I have only taken 

four experiments for each kind of pendulum, namely, I. a, b, e, and 

/ for the long pendulum with the brass sphere; I. c and d and II. 

c and d for the short pendulum with the brass sphere; XII. a, 6, 

c, and d for the long pendulum with the ivory sphere, and XII. a\ 
b\ d', and d' for the short pendulum with the ivory sphere. The 

formula (177) gave the following results. 

First case, 

Log e. tA = *0000759 ; mean error = ’0000020. 

Second case, 

Log e. rA = *0000504; mean error = *0000075. 

Third case, 

Log e. A = *000631; mean error = *000046. 

Fourth case, 

Log e. A = *000167 ; mean error = *000074. 

Now l — tA, and therefore, to get the values of I deduced from 

experiment, it will be sufficient to divide the numbers above 

given by the modulus of the common system of logarithms. The 

theoretical value of I will be got from (169), if we add to kf the 

correction Ak' depending upon the wire. The following are the 

results: 
long p. short p. long p. short p. 

1000000 l for sphere alone in 

an unlimited mass of fluid, 

brass s. brass s. ivory s. ivory s. 

by theory .. 67 50 298 222 

additional for wire . 27 9 114 39 

94 59 412 261 

1000000 l by experiment... 175 116 1453 384 

It appears then that the calculated rate of decrease of the arc 

amounts on the average to about half the rate deduced from 

observation. This is about what we might have expected, con¬ 

sidering the various circumstances, all tending materially to 
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augment the rate of decrease, which were not taken into account © 
in the calculation. 

77. Of Baily’s pendulums I have compared the following with 

theory in regard to the decrement of the arc of vibration. No. 1 
(the 1^-inch platina sphere), experiments 1 to 8 ; No. 3 (the brass 
lj-inch sphere), experiments 9 to 16; No. 6 (the 2-inch brass 

sphere), experiments 33 to 40; No. 21 (the 0'410 inch long copper 
cylindrical rod), experiments 109 to 112; and Nos. 35—38 (the 
1-^-inch long brass tube), experiments 167 to 174. I have not 
thought it worth while to compute the results obtained with 
the other lj-inch and 2-inch spheres, inasmuch as they were 
of the same size as the brass spheres, and moreover the obser¬ 

vation of the decrement of the arc was not the object Baily had 
in view in making the experiments. The 3-inch sphere, and all 
the other cylindrical rods and combinations of cylindrical rods and 
spheres, belong to the “ additional experiments ” for which the 
arcs are not given. 

The mode of performing the calculation will best be explained 
by an example. Take, for instance, the pair of experiments Nos. 
1 and 2. In No. 1 the total interval was 4*22 hours, the initial 
arc was 0°*77, the iinal arc 0°*29, the mean height of the barometer 
30*24 inches, and the temperature about 38£° F. The difference 

of the common logarithms of the initial and final arcs is 0*424, and 
this divided by the total interval gives 0*1005 for the difference of 

logarithms for one hour. The second experiment, treated in a 
similar way, gives 0*0352, which expresses the effect of friction at 
the point of support, communication of motion to the support 
itself, &c., together with the resistance of highly rarefied air at 
a pressure of only 0*97 inch of mercury. Since we have reason to 

believe that /j! is independent of the density, we may get the 
effect of air at a pressure of 30*24-0*97 or 29*27 inches of 

mercury by subtracting 0*0352 from 0*1005, which gives 0 0653. 

Reducing to 29 inches of mercury for convenience of comparison, 

we get 0*0649. Each pair of experiments is to be treated in the 
same way. Since the temperature was nearly the same in the 
experiments made with the same pendulum, we may suppose 
it constant, and equal to the mean of the temperatures in the 

experiments made under the full atmospheric pressure. The 

experiments reduced consist of four pair for each pendulum, 
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except No. 21, for which only two pair were performed. The 

following are the results. For the 1^-inch platina sphere 0*0644, 

mean error 0*0044. For the lj-inch brass sphere 0*180, mean 

error 0*024. For the 2-inch brass sphere 0*094, mean error 0*013. 

For the copper rod 0*486, mean error 0*113. For the brass tube 

the results were 0*145, 0*363, 0*338, 0*305. Rejecting the first 

result as anomalous, and taking the mean of the others, we get 

0*335, mean error 0*030. To obtain I from the mean results above 

given we have only to divide by 3600 times the modulus, and 

multiply by t, and for the experiments with spheres we may 

suppose t = 1. 

The mode of calculating I from theory in the case of a sphere 

suspended by a fine wire has already been explained. For the 

sake of exhibiting separately the effect of the wire, I will give one 

intermediate step in the calculation. 

h\ for sphere alone . 

1*44 inch 
sphere. 

0*326 

1*46 inch 
sphere. 

0-320 

2-06 inch 
sphere. 

0-220 

A 1c', the correction for the wire 0130 0130 0045 

Total, to be substituted in (169) 0456 0-450 0-265 

The formula (168), which applies to a sphere suspended by a 

wire, will be applicable to a long cylindrical rod if we suppose 

M = 0. Hence the same formula (169) that has been used for a 

sphere may be applied to a cylindrical rod if we suppose !c to 

refer to the rod. For the copper rod Jc = 1*107, and for the tube 

= 0*2561. The following are the results for the three spheres 

and two cylinders. 

1000000 1, from experiment 
No. 1. 

41 
No. 3. 
115 

No. 6. 
60 

No. 21. 
315 

Nos. 
35—38. 
206 

39 106 60 237 156 

Difference. + 2 + 9 0 + 78 + 50 

It appears that the experiments with spheres are satisfied 

almost exactly. The differences between the results of theory 

and observation are much larger in the case of the long cylinders. 

Large as these differences appear, they are hardly beyond the 

limits of errors of observation, though they would probably be far 

beyond the limits of errors of observation in a set of experiments 
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performed on purpose to investigate the decrement of the arc of 

vibration. It was to be expected beforehand that the results 

of calculation would fall short of those of observation, inasmuch as 

only two arcs were registered in each experiment, so that no data 

were afforded for eliminating the effect of that part of the resist¬ 

ance which did not vary as the first power of the velocity. 

78. I have now finished the comparison between theory and 

experiment, but before concluding this Section I will make a few 

general remarks. 

When a new theory is started, it is proper to enquire how far 

the theory does violence to the notions previously entertained on 

the subject. The present theory can hardly be called new, because 

the partial differential equations of motion were given nearly 

thirty years ago by Navier, and have since been obtained, on 

different principles, by other mathematicians ; but the application 

of the theory to actual experiment, except in some doubtful cases 

relating to the discharge of liquids through capillary tubes, and 

the determination of the numerical value of the constant p!, are, 1 

believe, altogether new. Let us then, in the first instance, examine 

the magnitude of the tangential pressure which we are obliged by 

theory to suppose capable of existing in air or water. 

For the sake of clear ideas, conceive a mass of air or water to 

be moving in horizontal layers, in such a manner that each layer 

moves uniformly in a given horizontal direction, while, the velocity 

increases, in going upwards, at the rate of one inch per second for 

each inch of ascent. Then the sliding in the direction of a hori¬ 

zontal plane is equal to unity, and therefore the tangential pressure 

referred to a unit of surface is equal to a or p!p. The absolute 

magnitude of this unit sliding evidently depends only on the 

arbitrary unit of time, which is here supposed to he a second. 

In the case supposed, it will be easily seen that the particles 

situated at one instant in a vertical line are situated at the expi¬ 

ration of one second in a straight line inclined at an angle of 4f> 

to the horizon. Equating the tangential pressure pp lo (he 

normal pressure due to a height h of the fluid, we get k ^ ,j y, ,, 

being the force of gravity. Putting now <j = :{«(}, p! (()•! |i;p for 

air, p = (0-0564)2 for water, we gut h = 0T>00(m,s<> inch for air, 

and h = 0-000008241 inch for water, or about the one thirty-thou- 
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sandth part of an inch for air, and less than the one hundred- 

thousandth part of an inch for water. If we enquire what must 

be the side of a square in order that the total tangential pressure 

on a horizontal surface equal to that square may amount to one 

grain, supposing the density of air to be to that of water as 1 to 

836, and the weight of a cubic inch of water to be 252*6 grains, 

we get 25 feet 8 inches for air, and 1 foot 10 inches for water. It 

is plain that the effect of such small forces may well be insignifi¬ 

cant in most cases. 

79. In a former paper I investigated the effect of internal 

friction on the propagation of sound, taking the simple case of an 

indefinite succession of plane waves *. It appeared that the effect 

consisted partly in a gradual subsidence of the motion, and partly 

in a diminution of the velocity of propagation, both effects being 

greater for short waves than for long. The second effect, as I 

there remarked, would be contrary to the result of an experiment 

of M. Biot’s, unless we supposed the term expressing this effect to 

be so small that it might be disregarded. I am now prepared to 

calculate the numerical value of the term in question, and so 

decide whether the theory is or is not at variance with the result 

of M. Biot’s experiment. 

According to the expression given in the paper just mentioned, 

we have for the proportionate diminution in the velocity of propa¬ 

gation 

8ttV2 

9 A2 V'z ’ 

A being the length of a wave, and V the velocity of sound. To 

take a case as disadvantageous as possible, suppose A only equal 

to one inch, which would correspond to a note too shrill to be 

audible to human ears. Taking the velocity of sound in air at 

1000 feet per second, there results for the common logarithm of 

the expression above written 11*0428, so that a wave would have 

to travel near 100000000000 inches, or about 1578000 miles, before 

the retardation due to friction amounted to one foot. It is plain 

that the introduction of internal friction leaves the theory of sound 

just as it was, so far as the velocity of propagation is concerned, at 

least if the sound be propagated in free air. 

* Camb. Phil Trans. Vol. VIII. p. 302. [Ante, Vol. I. p. 101.] 
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The effect of friction on the intensity of sound depends on the 

first power of In the case of an indefinite succession of plane 

waves, it appears that during the time t the amplitude of vibration 

is diminished in the ratio of 1 to e~ct, and therefore the intensity 

in the ratio of 1 to e~2ct, where 

8ttY 

C"“ '3\2 ’ 

Putting X = 1 and t = 1 we get 1 to 0*4923, or 2 to 1 nearly, for 

the ratio in which the intensity is altered during one second in 

the case of a series of waves an inch long. The rate of diminution 

decreases very rapidly as the length of wave increases, so that in 

the case of a series of waves one foot long the intensity is altered 

in one second in the ratio of 1 to 0*995095, or 201 to 200 nearly. 

It appears then that in all ordinary cases the diminution of inten¬ 

sity due to friction may be neglected in comparison with the 

diminution due to divergence. If we had any accurate mode of 

measuring the intensity of sound it might perhaps be just possible, 

in the case of shrill sounds, to detect the effect of internal friction 

in causing a more rapid diminution of intensity than would corre¬ 

spond to the increase of distance from the centre of divergence. 

Section II. 

Suggestions with reference to future experiments. 

80. I am well aware that the mere proposal of experiments 

does not generally form a subject fit to be brought before the 

notice of a scientific society. Nevertheless, as it frequently 

happens in the division of labour that one person attends more to 

the theoretical, another to the experimental investigation of some 

blanch of science, it is not always useless for the theorist to point 

out the nature of the information which it would be most impor¬ 

tant to obtain from experiment. I hope, therefore, that I may be 

permitted to offer a few hints with reference to experiments in 

which the theory of the internal friction of fluids is concerned. I 

shall omit all details, since they would properly come in connexion 
with the experiments. 
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Experiments with which the theory of internal friction in 

fluids has more or less to do may be performed for either of the 

following objects: first, to test still further the truth of the theory ; 

secondly, to determine the index of friction of various gases, 

liquids, or solutions; to investigate the dependance of the index 

of friction of a gas on its state of pressure, temperature, and mois¬ 

ture ; or to endeavour to make out the law according to which the 

index of friction of a mixture of gases depends upon the indices of 

friction of the separate gases; thirdly, to measure the length of 

the seconds’ pendulum, or its variation from one part of the 

earth’s surface to another. 

81. First object. The theory has been already put to a 

pretty severe test by means of the experiments of Baily and 

others. Nevertheless there are some uncertainties in the com¬ 

parison of theory and experiment arising from the influence of 

modifying causes of which the effect could only be estimated from 

theory, and yet was not so small as to be merged in errors of 

observation. Moreover, experiments on the decrement of the arc 

of vibration are almost wholly wanting. The following system of 

pendulums, meant to be swung in air and in vacuum, would afford 

a very good test of the theory. 

No. 1. A 2-inch or IJ-inch sphere swung with a fine wire.' 

No. 2. A very small sphere swung with the same kind of 

wire. 

No. 3. A long cylindrical rod, a few tenths of an inch in 

diameter. 

No. 4. A cylinder only three or four inches long, of the same 

diameter as No- 3, swung with the same kind of wire as No. 1. 

The vacuum tube ought to be of sufficient size to render the 

estimated correction for confined space less than, or at most com¬ 

parable with, errors of observation. The vacuum apparatus used 

by Col. Sabine would do very well. If the vacuum tube be not 

of sufficient size, it ought to admit of removal, and to be removed 

when the pendulums are swung in air. 

In all the experiments the arc of oscillation ought to be care¬ 

fully observed several times during the motion, the observation of 

the arc being quite as important for the purposes of theory as the 

observation of the time. Indeed, if it should be inconvenient to 
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observe the time, the observation merely of the arc would be very 

valuable as a test of theory. In that case an approximate value 

of the time of oscillation in air would be required. 

In the system proposed, Nos. 1 and 3 are the principal pendu¬ 

lums, Nos. 2 and 4 are introduced for the sake of making certain 

small corrections to the results of Nos. 1 and 3. No. 2 is meant 

for the elimination from No. 1 of the effect of the wire, and 

No. 4 for the elimination from No. 3 of the effect of the resistance 

experienced by a small portion of the rod near its end. The times 

of vibration of the four pendulums ought to be nearly the same, 

although for that purpose slightly different lengths of wire would 

be required in Nos. 1, 2, and 4. 

It follows from theory that for a given pendulum the factor xi 
is a function of the time of vibration. This is a result which 

seems to have been hardly so much as suspected by those who 

were engaged in pendulum experiments, or at most to have been 

mentioned as a mere possibility*, and therefore it might be 

thought advisable to verify it by direct experiment. For my own 

part I regard it as so intimately connected with the fundamental 

principles of the theory, that if the theory be confirmed in other 

respects I think this result may be accepted on the strength of 

theory alone. The direct comparison with experiment would be 

inconvenient, because it would require a clock which kept excellent 

time, and yet admitted of being adjusted so as to make widely 

different numbers of vibrations in a day. The result could, how¬ 

ever, be confirmed indirectly by observing the arc of vibration, an 

observation which is as easy with one time of vibration as with 

another. 

82. Second object According to theory, the index of friction 

may be deduced from experiments either on the arc or on the 

time of vibration. It must be left to observation to decide which 

give the more consistent results. Should the results obtained from 

the arc appear as trustworthy as those obtained from the time, it 

would apparently be much the easiest way of determining // for 

an elastic fluid to observe the arc, because no particular accuracy 

would then be required in the observation of time. As to the 

* It should be observed however that in a subsequent memoir (Astronomische 
Nachrichtev, No. 223, p. 106) Bessel deduced from other experiments that the 
value of k was larger for the long than for the short pendulum. 
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form of the pendulum, a cylindrical rod would apparently be the 

best if only a single pendulum were employed. The observation 

of the arc seems the only practicable way of determining the in¬ 

fluence of temperature on the index of friction, unless the pendu¬ 

lum be extremely light, or unless the observer be content with the 

limited range of temperature which may be procured by making 

observations at different times of year. For in an apparatus 

artificially heated or cooled, it would be difficult to prevent small 

unknown variations of temperature, which would cause variations 

in the rate of vibration, in consequence of the expansion and con¬ 

traction of the pendulum; and these variations would vitiate the 

result of the experiment, so far as the time of vibration is con¬ 

cerned, because the effect of the gas on the time of vibration is 

deduced from the small difference between two large quantities 

which are directly observed. But the effect of the gas on the arc 

of vibration produces by far the greater part of the whole diminu¬ 

tion observed, and therefore small fluctuations of temperature 

would not be of much consequence, except so far as they might 

occasion gentle currents; and even then would not be very im¬ 

portant, because the forces thence arising would not be periodic, 

and dependent upon the phase of vibration of the pendulum. 

The grand difficulty which besets the observation of the time 

of vibration of a pendulum oscillating in a liquid consists in the 

rapidity with which the oscillations subside. The best form of a 

pendulum to oscillate in a liquid would be a sphere suspended by 

a fine wire. The vessel containing the liquid and the sphere 

immersed in it ought to be so large as to render the correction for 

confined space insensible. But the index of friction of a liquid 

would probably be better determined by experiments more of the 

nature of those of Coulomb, or perhaps by the slow discharge of 

liquids through narrow tubes. 

Among the gases for which // ought to be determined experi¬ 

mentally should be mentioned coal-gas, on account of the practical 

application which it appears possible to make of the result to the 

laying down of gas-pipes. The calculation of the resistance in a 

circular pipe is very simple, and is given in Art. 9 of my former 

paper. According to the equations of condition assumed in the 

present paper we must pub U-0} U denoting in that article the 

velocity close to the surface. It appears that the pressure spent 
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in overcoming friction varies as the mean velocity divided by the 

square of the diameter of the pipe, or as the rate of supply divided 

by the fourth power of the diameter. This goes on the supposition 

that the motion is sufficiently slow to allow of our neglecting the 

pressure which may be spent in producing eddies, in comparison 

with that spent in overcoming what really constitutes internal 

friction. 

83. Third object With respect to experiments for determin¬ 

ing the length of the seconds’ pendulum, the theory of internal 

friction rather enables us to calculate for certain forms of pendulum 

the correction due to the inertia of the air than points out any 

particular mode of performing the experiments. Even the ordinary 

theory of hydrodynamics points out the importance of removing 

all obstacles to the free motion of the air in the neighbourhood of 

the pendulum if we would calculate from theory the whole correc¬ 

tion for reduction to a vacuum. 

Since the theoretical solution has been obtained in the case of 

a long cylindrical rod, or of such a rod combined with a sphere, 

we may regard a pendulum formed in this manner, and which is 

convertible in air, as also convertible in vacuum, for it is of small 

consequence whether the pendulum be or be not really convert¬ 

ible in vacuum, provided that if it be not we know the correction 

to be applied in consequence. 

Note A, Article 65. 

Let us apply the general equations (2), (3) to the fluid 

surrounding a solid of revolution which turns about its axis, 

with either a uniform or a variable motion, supposing the fluid 

to have been initially either at rest, or moving in annuli about the 

axis of symmetry. 

In the first place we may observe, that the fluid will always 

move in annuli about the axis of symmetry. For let P be any 

point of space, and L any line passing through P, and lying in a 

plane drawn through P and through the axis of symmetry; and at 

the end of the time t let u' be the velocity at P resolved along L. 
Now consider a second case of motion, differing from the first in 

\ 
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having the angular velocity of the solid and the initial velocity of 

the fluid reversed, everything else being the same as before. It 

follows from symmetry, that at the end of the time t the velocity 

at P resolved along L will be equal to u', since the motion of the 

solid and the initial motion of the fluid, which form the data of 

the one problem, differ from the corresponding quantities in the 

other problem only as regards the distinction between one way 

round and the other way round, which has no relation to the 

distinction between to and fro in the direction of a line lying 

in a plane passing through the axis of rotation. But since all 

our equations are linear as regards the velocity, it follows that 

in the second problem the velocity will be the same as in the 

first, with a contrary sign, and therefore the velocity at P in 

the direction of the line L will be equal to —u'. Hence v! ■= — u\ 
and therefore u= 0, and therefore the whole motion takes place in 

annuli about the axis of rotation. 

Let the axis of rotation be taken for the axis of 0; let co be 

the angle which a plane passing through this axis and through 

the point P makes with the plane of xy, and let v' be the velocity 

at P. Then 

u~ —v' sin co, v = v cos co, w = 0, 

and all the unknown quantities of the problem are functions of t, 

5, and '3T, where -sr = + 2/2). Substituting in equations (2) the 

above values of u, v, and w, and after differentiation putting co = 0, 
as we are at liberty to do, we get 

^=0 ^=0 
dvr ’ dz ’ 

fdW dV 1 dv' v' \ _ dvf 
^ \dz2 dzr2 ^ vt dw tv2) P dt 

(179). 

The first two of these equations give p = a constant, or rather p = a 

function of t, which for the same reason as in Art. 7 we have a 

right to suppose to be equal to zero. The third equation combined 

with the equations of condition serves to determine v. 

Now in the particular case of an oscillating disk, the equation 

(179) becomes according to the mode of approximation adopted in 

Art. 8 

c?V _ dv 
^ dzz ^ dt 

(ISO), 
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which in fact is the same as the second of the equations (8). The 

solution thus obtained is as we have seen 

if = t).(181), 

f denoting a function the form of which there is no need to write 

down, which satisfies (180) when written for v'. Now it will be 

seen at once that the expression (181) satisfies the exact equation 

(179), and therefore the approximate solution obtained by the 

method of Art. 8 is in fact exact, except so far as regards the 

termination of the disk at its edge, which is what it was required 

to prove. 

Passing from semi-polar to polar co-ordinates, by putting 

z = r cos 0, vr = r sin#, we get from (179), after writing pip for 

dW 2 dv' 1 d ( . a dv'\ v _ 1 dv' 
dr* + r dr+r* sm9 d9\m dOJ r*&m*9 pi dt '' 

Suppose now the solid to be a sphere, having its centre at the 

origin. Let a be its radius, y its angular velocity, and suppose 

the fluid initially at rest. Then vf is to be determined from the 

general equation (182) and the equations of condition 

v' = 0 when t = 0, v = a y sin 9 when r = a, v' = 0 when r = oo . 

All these equations are satisfied by supposing 

v' — v" sin 9} 

v" being a function of r and t only. 

dV 2 dvf ^ 2F 
dr2 r dr r2 

We get from (182) 

pf dt 
(183). 

If we suppose y constant, v" will tend indefinitely to become 

constant as t increases indefinitely, and in the limit = 0, whence 
dt 

we get from (183) and the equations of condition i= when 

r = a, v' —0 when r = oo , 

, W 
r* 

t * n 
v = ~ sm 9. 

r 

This is the solution alluded to in Art. 8 of my paper On the 
Theories of the Internal Friction of Fluids in motion, <&c. 

s. III. 9 
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Note B, Article 65. 

Let ns resume the problem of Art. 7, but instead of the motion 

of the plane being periodic, let us suppose that the plane and fluid 

are initially at rest, and that the plane is then moved with a con¬ 

stant velocity V, and let the notation be the same as in Art. 7. 

The general equations (8) remain the same as before, but the 

equations of condition become in this case 

v = 0 when t = 0 from x = 0 to x~cc} 
v = V when x = 0 from t = 0 to t = oo . 

By Fourier’s theorem and another theorem of the same kind, v 
may be expanded between the limits 0 and oo of x in the following 

form: 
2 r°o /* oo 

v = - cos ax cos ax' <£ (x'} t) doc da 
7T J o JO 

2 r<x> Too 

-f - sin ax sin ax'ylr (xf, t) doc da.(184). 
7T Jo Jo 

In fact, v could be expanded by means of either of these expres¬ 

sions separately, and of course can be expanded in an infinite 

number of ways by the sum of the two. If however v had been 

expanded by means of the first expression alone, its derivatives 

with respect to x could not have been obtained by differentiating 

under the integral signs, inasmuch as the derivatives of an odd 

order do not vanish when x = 0, but would have been given by 

certain formulae which I have investigated in a former paper*. A 

similar remark applies to the second expansion, in consequence of 

the circumstance that v itself and its derivatives of an even order 

do not vanish with x. But by combining the two expansions we 

may obtain the derivatives of v, up to any order i that we please 

to fix on, by merely differentiating under the integral signs. For 

we may evidently express the finite function v, and that in an 

infinite number of ways, as the sum of two finite functions <fi (x, t)} 
y}r(x, t) which like v vanish when x — qo , and which are such that 

the odd derivatives of the first, and the even derivatives of the 

* On the critical values of the sums of periodic series. Camb. Phil. Trans., Vol. 
vm. p. 533. [Ante, Vol. i. p. 287.] 
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second, up to the order i, as well as 'yjr (x, t) itself, vanish when 

x = 0. Substituting now in the second equation (8) the expression 

for v given by (184), we see that the equation is satisfied provided 

f+^=°, 0. 

These equations give 

(p (%, £) = y ix') ^ (%', t) = <r (xf) e_/x'a2!f, 

where y, a denote two new arbitrary functions. Substituting in 

(184), and then passing to the first of the equations of condition, 

we get 

0=%(tf)+o-O), 

whence a (x) = — y (x) an(i 

2 r&o roo 

v = — I cos a (x + x) e y (as) das doc 
7T J 0 Jo 

1 foo (x'-hx)2 

= V^t Io 6" 'X'(®)dx'.(185)- 

The second of the equations of condition requires that 

1 f00 X>1 2 f00 — 
V = -r== e 4fi'ty(x) dx = ~r~ I €~s2X (%s ^A6t) ds. 

V 7TjJL tJ 0 V W J 0 

Since the second member of this equation must be independent of 

t, we get x (x) = a constant, and this constant must be equal to 

V, since 

v7r J o 

Substituting in (185) we get 

y r00 (x+xT 
v= —— e Vt cte'.(18G). 

For the object of the present investigation nothing is required but 

the value of for x = 0, which we may denote by (^~) • We 

get from (186) 

Wo”"^ .('187')‘ 

Now suppose the plane to be moved in any manner, so that its 

velocity at the end of the time t is equal to /(£). We may 

evidently obtain the result for this case by writing/' (tr) dt' for V, 
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and t — l! for t in (187), and integrating with respect to t\ We 

thus get 

jdx) 

To apply this result to the case of an oscillating disk, let 

dd 
r ~~~rF(t) he the velocity of any annulus, and G the moment of 

CLu 

the whole force of the fluid on the disk Then 

o-Wi’[/(£)*■■ 
and will be got from (188) by substituting rF(t) for /(£). 

We find thus 

= F'it-t,)-.}.(189). 
J 0 

If we suppose the angular velocity of the disk to be expressed 

by A si Tint, where A is constant, we must put F(t) = A sin nt in 

(189), and we should then get after integration the same ex¬ 

pression for G as was obtained in Art. 8 by a much simpler 

process. Suppose, however, that previously to the epoch from 

which t is measured the disk was at rest, and that the subsequent 

angular velocity is expressed by At sin nt, where At is a slowly 

varying function of t Then 

F(t) = 0 when t < 0, F(t) = At sin nt when t > 0. 

On substituting in (189) we get 

G = - sjirfj!. pa4n f At-tx cos n(t — O .(190). 
Jo V*i 

Now treating At as a slowly varying parameter, we get from a 

formula given by Mr Airy, and obtained by the method of the 

variation of parameters, 

dAt G. /-mi\ 
-^-=ysm nt .(191), 

where I denotes the moment of inertia. In the expression for G 
we may replace At_ti under the integral sign by At outside it, 

because At is supposed to vary so slowly that does not much 

differ from At while tx is small enough to render the integral of 



ON THE MOTION OF PENDULUMS. 133 

importance. Making this simplification and substituting in (191) 

we get 

^L=-csinntf cos n(t — t^) —y~ .(192), 
Atdt Jo V tx 

where c= . pa^nl~\ If then A0 be the initial and A the 

final value of At} we get from (192) 

log ~A = ^ f js*n^J cos ^{t — t^ dt ...(193). 

Let now A0 + AA0 be what AQ would become if, while the 

final arc A and the whole time t remained the same, the motion 

had been going on for an indefinite time before the epoch from 

which t is measured, in which case the superior limit in the 

integral involved in the expression for Q would have been oo in 

place of t. Then 

log = cj jsinntj cosn (t — t±) efe...(194), 

whence by subtracting, member from member, equation (193) 

from equation (194), we get 

log 
A0 + AAq 

Aq 
= o j jsin nt J cos n (t — 

which becomes after integration by parts 

log 
A0 + A^.o 

A 
= ™ |\J• cos cos ^ J cos 

r°° # dt 
+ (2nt — sin 2nt) / sin nt -j- 

J t v&. 

dt 
Tft 

..(195). 

Now t is supposed to be very large: in Coulomb’s experiments in 

fact 10 oscillations were observed, so that nt = 107T. But when t 
is at all large the two integrals 

r dt r • * dt cos nt-77, I sm nt — 
Jt v* Jt yt 

can be expressed under the forms 

— P sin nt -f Q cos nt, P cos nt + Q sin nt, 

P = vT1t~^’-l. 3.2~2n~zt~% + 

Q= 1.2'1 n~21~% — 1.3.5.2-3 rT41~ « + ..., 

where 
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series which are at first rapidly convergent, and which enable us 

to calculate the numerical values of the integrals with extreme 

facility. These expressions were first given by M. Cauchy, in the 

case of Fresnel’s integrals, to which the integrals just written arc 

equivalent. They may readily be obtaihed by integration by 

parts, though it is not thus that they were demonstrated by 

M. Cauchy. If now the above expressions be substituted for the 

integrals in (195) the terms containing t'- destroy each other, and 

for general values of t the most important term after the first 

contains Since however t is supposed to correspond to the 

end of an oscillation, so that nt is a multiple of v, the coefficient 

of this term vanishes, and the most important term that actually 

remains contains only t~§. Hence neglecting insensible quantities 

we get from (195) 

log 
Aa + A.40 

A 

C /tt 

4n V 2>i 
.(19C). 

We get from (194) by performing the integrations 

log ^o. sin nt (cos nt -f sin nt) (It 

=ii \/£ f2nt+1 ~cos 2,it ~siu 2riV> > 

which becomes since nt is a multiple of ir 

, A^A-AA^ 
log . - 

° A 

We get from (196) and (197) 

) = C / W 

in V 2n' 
:tut (197). 

2nt log 

whence 

Aq 4- Azl 

ZT 
°=l0£f 

A{) + LA, 

A 

„ Z0 -f- AA „ 

: A0 

log^^^CS^-D-lo,^’ .(IthS), 

and the same relation exists between the common logarithms of 

the arcs, which are proportional to the Napierian logarithms. 

Now Log J.0 - Log.4 is the quantity immediately deduced from 

experiment, and Log(4# + Ail,)- Logyl,, is the correction to be 

applied, in consequence of the circumstance that the motion began 

from rest. Instead of applying the proportionate correction 
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+ (2nt — l)-1 to the difference of the logarithms, we may apply it 

to the deduced value of which is proportional to the difference 

of the logarithms. In Coulomb’s experiments 10 oscillations were 

observed, and therefore 2nt = 207r, and (2nt-~ 1)_1 = 0’01617, and 

the uncorrected value of Va6’ being 0*0555, we get 0*0009 for the 

correction, giving \ffjS = 0*0564. 

Note C. Article 50. 

The results mentioned in this article were originally given 

without demonstration; but as the mode in which they were 

obtained is short, and by no means obvious, I have thought it 

advisable to add the demonstrations. 

In order that the right-hand members of equations (138) may 

be perfect differentials, we must have 

dB da>'" _ 
= 0, 

dB dco' 
0, 

d8 + dco" 
= 0. ..(a), 

dii + dx dz dy ~ dx dz 

dB_ doo" 
= 0, 

dB da>'"_ 
0, dB dco' 

..(b), 
dz dx dx dy ~ dy dz 

= 0. 

d(o" dco'" _ 
= 0, 

dcor dco' 
0, 

dco' dco" 
= 0. ..(c). 

dy + dz dz dx dx dy 

The equations (c) give 

dco __ d(o" ___ ^ dco" 
dx~~°’ dy~ 3 IT (d). 

In the particular case in which 3 = 0, the equations (a), (6), and 

(d) give 
day' = 0, day' = 0, dco'" = 0, 

and therefore go', go", and co" are constant as stated in Art. 50. 

In the general case the equations (a), (6), and (d) give for the 

differentials of go', go", and go'" the following expressions : 

dS , . dS , \ 
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In order that the right-hand members of these equations may be 

perfect differentials, we must have 

_*L.o 
dzdx ’ 

d?S cfS_ 

dy1 ^ dz* 

d?h = 

dz* + da? 

d?S 
dcc2+ dif ’ 

integrating, and then substituting in (138) the resulting expressions 

for ©', co", a/", and integrating again, we shall obtain the results 

given in Art. 50. 

[The possibility of a more general kind of motion than that of 

a solid taking place in an elastic fluid without consumption of 

energy by internal friction, that is, without its. being converted 

into the kinetic energy of heat, depends on the coefficient in the 

last term of (1) being /x/3, or rather not greater than /x/3; and 

that again on the assumption made in a former paper (VoL I. 

p. 87) that in any elementary portion of the fluid a velocity of 

dilatation alike in all directions does not affect the hydrostatical 

relation between the pressure and density. Although I have 

shown (Yol. I, p. 119) that on the admission of a supposition 

which Poisson would probably have allowed the two constants in 

his equations of motion are reduced to one, and the equations 

take the form (1), and although Maxwell obtained the same 

equations from his kinetic theory of gases (Philosojrfdcal Trans¬ 
actions for 1867, p. 81) I have always felt that the correctness of 

the value fij3 for the coefficient of the last term in (1) does not 

rest on as firm a basis as the correctness of the equations of 

motion of an incompressible fluid, for which the last term docs not 

come in at all. If the supposition made above be not admitted, 

we must replace the coefficient /x/3 by a different coefficient, which 
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may be written fij3 + and m must be positive, as otherwise the 

mere alternate expansion and contraction, alike in all directions, 

of a fluid, instead of demanding the exertion of work upon it, 

would cause it to give out work. But if the positive constant 

exists, the coefficient of the squared velocity of dilatation in the 

transformed expression for LV in p. 69, instead of being — J/t, 

will be —1/4 + ot, and in order that the quantity under the sign of 

triple integration may vanish, we must have in addition to the 

equations (137) on p. 70 the further equation 8 = 0, and the 

conclusion is the same as in the case of an incompressible fluid.] 

Additional Note. (See foot-note at p. 77.) 

[The fact that notwithstanding the great variety in the forms 

of Baily’s pendulums, even when restricted to those to which the 

theory of the present paper is applicable, the results of his experi¬ 

ments manifest such a remarkable agreement with theory, in spite 

of the adoption in the calculation of a law as to the relation of (m 
to p which we now know to be wrong, paradoxical as that fact 

appears at first sight, admits of being easily explained by com¬ 

bining two considerations, relating the one to the way in which 

the experiments were conducted, the other to the character of the 

formulae. 

In the case of the 41 pendulums mentioned in Baily’s paper as 

originally presented to the Royal Society, the high pressure under 

which each pendulum was swung was always the atmospheric 

pressure, and the low pressure did not much differ from that of 

1 inch of mercury. There can be little doubt that the same prac¬ 

tice was followed as regards the 45 additional pendulums for 

which the reduced results only, not the details, are given in the 

appendix. Hence the two pressures used would be nearly the 

same throughout, and nearly those measured by 30 inches and 

1 inch of mercury. The ratio of the densities would be very 

nearly the same. 

The expression (52) shows that for a sphere k is of the form 

k = A + B\J p! .(a), 

where A is an abstract number, and B depends on the diameter 

and time of vibration of the sphere, but is constant when only the 
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nature and the density of the gas are changed. In the case of a 

long cylinder, the expression for k is complicated, and involves 
infinite series. Nevertheless the numerical table on p. 52 shows 

that if we except the very early part of the table, which corre¬ 
sponds to very slender rods, or (according to Maxwell’s law) to 
very low pressures, the value of k nearly fits an expression of the 
form (a), A being in this case 1, instead of which was its value 
for a sphere, and B depending, as it did before, on the diameter 
and time of vibration. And if the pendulum be made up of a 

sphere and a cylindrical rod, as was the case with many of Baily’s, 
we shall still not go far wrong if we take lc to be expressed in the 

same form (a), in which the constants A and B admit of being 
obtained by calculation. Now by the definition of k the effect of 

the air on the time of vibration of a given pendulum varies as 

(1 + k) p. Baily’s n, or 1 + k, was got by dividing the observed 
difference in the time of vibration at the high and low pressure, 

corrected for everything but the effect of the air, by the calculated 

difference for buoyancy alone. 

Hence n = 1 + AkpjAp, where A denotes the difference at the 

high and low pressures. If we assume k to be given nearly 
enough by the formula (a), we have 

n = 1 + A + B . 
Ap 

If we put BG for u— 1 — A, we have according to the assumed 

law *J/jl =C} and therefore if we denote the higher and lower 

densities by pv p0, we have at the atmospheric density 

= CWpl, 

which gives what p is supposed to be. But we ought to have 

taken 

(J=Jp. A \!p 
Ap ’ 

so that if we denote the apparent coefficient by 'p, reserving p for 

the true coefficient, we have 

bp 
Vp,A\/p 

P, - P» = t + 
'/PiWPi- Vpo) 

£o 

Pi ’ 

Now in the same experiment the swings tit high and low 

pressure were taken at temperatures that did not much differ; 
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and indeed Baily arranged the order of the swings in such a 

manner as to eliminate the effect of a small progressive change. 

We may therefore take the ratio of the densities as being that of 

the pressures, which, as already stated, was nearly that of 30 to 1. 

Hence the values of p, which would be deduced independently 

from the different experiments on the supposition that pi and not 

p was independent of the density would all be wrong in nearly the 

same ratio, which would be nearly that of (\/30 + l)2 to 30. This 

accounts for the remarkable agreement between theory and expe¬ 

riment as regards the time of vibration, notwithstanding the 

employment of an erroneous law as to the relation between p, 
and p in making the correction for the residual air at the low 

pressure. Moreover, in order to arrive at the value of p which 

would have been deduced from the experiments on the time of 

vibration had they been reduced according to Maxwell's law, we 

have merely to increase the value as obtained in this paper in a 

ratio which is nearly that given above, or 1 to 1*398. The mean 

high and low pressures for the four 1^-inch spheres were 30*062 

and 1*177, numbers which would give for the factor 1*558. Of the 

three pendulums in the table on p. 79, from which the adopted 

value of \fp! was deduced, the first is the only one for which the 

pressures are recorded in Baily’s paper, and the calculated factor 

for it is 1*437. 

The results of the most recent and trustworthy experiments for 

the determination of p for air are brought together by Mr H. Tom¬ 

linson in a paper published in the Philosophical Transactions for 

1886, p. 767. From the numbers given by him on p. 768 (first line 

in the table), and on pp. 784, 785, it appears that the true factor 

should be about 1*700. It is *Jp that enters into the expression 

for the time of vibration, and the difference between the square 

roots of 1*7 and 1*4 is only *0925 of the former; and it is only a 

portion of the correction for inertia in which the viscosity is 

involved at all. Thus in the case of the lj-inch spheres (see 

p. 86), that part of the correction for the air in which alone the 

viscosity is involved is little more than the one-seventh of the 

whole; and a fraction of this again which is barely one-tenth 

would amount to little more than one per cent, of the whole effect 

of the air. Considering the uncertainties as to some small cor¬ 

rections, such as that for the effect of the confinement of the 
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space in which the pendulums were swung, the resistance to the 

wire in the case of the spheres, the deviation of the motion of the 

air near the bottom of long cylindrical rods from a motion in two 

dimensions, in a horizontal plane, such small discrepancies as that 

just noticed can hardly he affirmed to be real, that is, such as 

would emerge from mere casual errors of observation if the above 

corrections were made perfectly. It is however possible that with 

amplitudes of vibration as large as those actually used, amounting 

to about 1° to start with, there may have been a very slight pro¬ 

duction of eddies, the effect of which on the time of vibration may 

not have been wholly insensible. 

But it is not only with regard to the time of vibration that the 

results of Baily’s experiments manifest such a remarkable agree¬ 

ment with theory notwithstanding the adoption of an erroneous 

assumption as to the relation of p to p; the observed reduction of 

the arc of vibration was also found not greatly to differ from that 

given by calculation. 

As regards the spheres, the equation (172), p. 114, gives 

Now even in the case of the l-?,-inch spheres the right-hand 

member of this equation exceeds unity by only 0*127, so that the 

supposition that, in order to rectify the law connecting p with p, 

h' requires to be altered in the same ratio as k —does not much 

differ from the truth. Accordingly the calculated numbers for the 

spheres (p. 120) differ but little from the numbers given by obser¬ 

vation. Calculation by aid of the table on p. 52 shows as regards 

the rod No. 21 that if the calculated number 287 represented the 

number given by observation, the assumed value ((HIOf of p 

for atmospheric density would have to be increased in the ratio of 

1 to 1*400, bringing it considerably nearer to the true value as 

given by modern determinations. As observation gave for the 

logarithmic decrement 315, p would have to be still further 

increased, making it somewhat too high. Similar remarks apply 

to the tube Nos. 35—38, which however according to Baily’s figure 

differs much from a plain cylinder, and which moreover requires a 

comparatively large correction for confined space. On the whole 

then the pretty close agreement between theory and observation as 

to the decrement of arc, notwithstanding the assumption of a 
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wrong law in the reduction, may be considered to have been 

accounted for. 

The very accurate experiments of Bessel are unfortunately not 

available for more than a very rude comparison, for the reason 

mentioned in the foot-note at p. 97. 

As regards the correction on account of the air to the time of 

vibration of a pendulum, we have seen that in the case of a sphere, 

and very approximately in the case of a long cylindrical rod which 

is not extremely narrow, it is of the form 

Gp + 

where G and H depend on the form of the pendulum, but not 

upon the pressure, nor indeed on the nature, of the. surrounding 

gas, which might be other than air. There can be little doubt 

that the same would apply as a very near approximation to 

any of the ordinary forms of pendulum, though in that case the 

constants G, H cannot in general be obtained by calculation. The 

first term depends partly on buoyancy, partly on the inertia of the 

gas regarded as a perfect fluid. As the latter part cannot be 

calculated, there is no need to calculate the former, since the two 

have to be determined as a whole by observation. As the value 

of p for air is now well known, the constants G and H may be 

determined from the differences in the times of vibration at three 

suitably distributed pressures. These constants are determined 

once for all for the same pendulum. They may even be applied 

without a fresh experimental determination to any other pendulum 

of which the external form is geometrically similar, even though 

the internal distribution of mass be different, of course with due 

regard to the dimensions of the terms with respect to the units of 

length and time. Moreover unless we want to combine observa¬ 

tions with different gases, or else to take account of the variation 

of p with temperature, we may write the above formula 

Gp + H'Vp, 

and as we must appeal to experiment for the determination of H', 

we do not even need to know the value of p.] 



[From the Philosophical Magazine, Yol. I., p. 305 (April, 1851).] 

An Examination of the possible Effect of the Eadiation 

of Heat on the Propagation of Sound* 

Inasmuch as Laplace’s formula is a rigorous deduction from 

the physical hypotheses adopted, there is no way of escaping from 

his result but by calling in question the hypotheses themselves. 

Now the development of heat and cold by sudden condensation 

and rarefaction is not merely a hypothetical cause, the only 

evidence of whose existence is that it explains the phenomena, 

but is a well-known physical fact, proved by direct experiment. 

That in the case of small sudden condensations (positive or nega¬ 

tive) the increase of temperature is ultimately proportional, ctuteris 
paribus, to the condensation, will not, it is presumed, be called in 

question. The only way, then, of escaping from the conclusion 

that the velocity of sound is really increased by the cause assigned 

is, to suppose that the heat produced by condensation passes away 

so rapidly by radiation that the result is the same as though con¬ 

densation and rarefaction were incapable of changing the tempe¬ 

rature of air. The main object of the present communication is 

to examine the consequences of such a supposition, in order to 

make out whether it be tenable or not. 

Let us take the case of an infinite mass of homogeneous elastic 

fluid, acted on by no external forces, and having throughout a 

uniform temperature, and consequently a uniform pressure, except 

* [This examination was made in consequence of the publication in the Philo¬ 

sophical Magazine of some papers in which the correctness of Laplace’h explanation 
of the excess of the observed velocity of sound over that calculated by Newton was 

called in question. In the reprint, a few passages which are merely controversial, 
and of ephemeral interest, are omitted.] 
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in so far as the pressure, and consequently the temperature, are 

affected by small vibratory movements. Let the fluid be referred 

to the rectangular axes of x, y, z; let % v, w be the components of 

the velocity, t the time, p the pressure, p the density in equi¬ 

librium, p (1 -b s) the actual density, so that s is the condensation. 

The three ordinary equations of motion and the equation of con¬ 

tinuity become in this case, on neglecting as usual the squares of 

small quantities, 

dp __ __ du dp _ dv dp _ dw 
dx ^ dV dy ^ dt 3 dz ^ dt 

ds du dv dw __ n 
dt dx dy dz 

(1). 

(2). 

Let 0O be the temperature in equilibrium, 0Q + 6 the actual 

temperature. Then p = k0p (1 + s)(l + ol06q + dp Putting k for 

&o(l + ao0o), a ^0r ao(l + ao^o)-1j an(l neglecting the product of s 
and 6, which are both small quantities of the first order, we get 

p = kp (1 + s + ad) .(3). 

It remains to form the equation relating to the changes of 

temperature. Let {is be the elevation of temperature produced 

by a sudden small condensation s. The condensation which a 

given element of the fluid receives in the time dt is equal to s dt, 

where 

, ds ds ds ds 
S — ~j7 4* U 7—b V -j—b W -j 

at dx dy dz 
ds . 

dt>nearly; 

and the elevation of temperature due to this condensation is equal 

to /3s'dt. We know that heat radiates freely to great distances in 

air, and therefore, of the heat which radiates from the element 

considered, we may neglect the small portion which may be 

absorbed by the air in its neighbourhood, and consider only what 

goes to great distances. Hence the result will be sensibly the 

same as if the element radiated into a medium having the con¬ 

stant temperature 0Q) which is the mean temperature of the whole. 

The quantity, then, which escapes from the element during the 

time dt, will be proportional to the small excess 6 of the tempera¬ 

ture of the element over the mean temperature of the medium; 

and the consequent depression of temperature may be expressed 

by qddt, where q is a constant which may be called the velocity of 
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cooling referred to a 

therefore, 

difference of temperature unity. 

dd nds a 
dt-P s-3"- 

We have, 

.(4)- 

The six general equations (1), (2), (3), (4) serve, along with 
the equations of condition relating to any particular problem, to 
make known the six unknown quantities u, % w, p, s, 8. 

To simplify the question as much as possible, I shall take the 

case of plane waves. Taking the axis of x perpendicular to the 
planes of the waves, we have v = 0, w = 0, and u, p, s, 8 will be 
functions of only x and t The equations (1) and (2) become 

dp __ du ds du 
dx — P dt ’ dt^dx .(«); 

and eliminating p and u from these equations and (3), we get 

dM\ 
df \dx2 a dx2) (6). 

Eliminating 6 between (4) and (6), we get 

dh __ 
df~ 

(l+*$)jt + q 
d?s 
dx2 

(7). 

This equation is satisfied by 

s = A./emx+n't, (8). 
where Af is an arbitrary constant, real or imaginary, and n 
are two real or imaginary constants connected by the equation 

{n' 4- q)n 
h {(1 + a/3) nf -l- q} 

(9). 

If we suppose mr wholly imaginary, the formulae will refer to an 
infinite series of waves, the expressions for s, &c., involving x 
under the circular functions sine and cosine. In this case our 
formulae would make known the manner in which the motion 
alters with the time. If we suppose n' wholly imaginary, the 
motion will be periodic as regards the time. In this case we 
must not suppose the fluid unlimited, but bounded in one direc¬ 
tion by a vibrating plane which keeps up the motion. I shall 
select the second case for consideration, inasmuch as it is analo¬ 
gous to that of the vibrations propagated along a long tube from 
a sonorous body at one end of it, and accordingly will bear on the 
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experiments by which M. Biot proved that the velocity of propa¬ 

gation of sound in air is independent of the pitch. 

Let the origin be situated at the vibrating plane, and let us 

consider the motion of the fluid situated at the side of x positive. 

Let m be what m' becomes when n is replaced by J — In. The 

equation (9) furnishes two values of m, corresponding to two 

series of waves, which travel, one in the positive, and the other 

in the negative direction. Of course we are only concerned with 

the former. We get from (9) 

7Y12 = — fJ? (cos 2y/r — J— 1 sin 2^).(10), 

where 

n f n2 + q2 

^ ~ VH(1 + *$fn% + qV .K } 

-j (l+ap)n 
■ tan”1 - = tan”1 

a/3nq .(12). 2llr = tan — — U«/J_L VIALJ. -; /Ci\ 2 i-2 
r q q (1 + a!3)n1 + qi 

Choosing that root of m2 which corresponds to waves travelling 

in the positive direction, we get from (10) 

m = — J—lfjL (cos y/r — J— 1 sin ^r). 

Substituting in (8), introducing another function got by changing 

the sign of J— 1 and taking a now arbitrary constant, changing 

the arbitrary constants so as to get rid of the imaginary quanti¬ 

ties, and altering the origin of the time so as to get rid of one of 

the circular functions, we get 

s = * cos (nt — fju cos yjr . x).(13). 

It will be easily seen that the expressions for 0, u, and p are 

of the same form, that is to say, that they involve the same expo¬ 

nential multiplied by a sine or cosine of the same angle. Had 

the actual expressions been required, it would have been shorter 

to defer the substitution of real for imaginary quantities until 

after the imaginary expressions for 9, u, and p had been obtained. 

Now the formula (13) shows, that unless sin ^ be insensible, 

sound cannot be propagated to a distance, but must be stifled in 

the neighbourhood of the vibrating body by which it is excited. 

Since we know very well that this is not the case, we arc taught 

that sin yjr is insensible, and therefore ^ itself, since yjr denotes an 

angle lying between 0 and 7t/4. The formula (13) shows, that 

if V be the velocity of propagation, V = n/jT1 sec yjr, which, when 

10 s. in. 
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f is insensible, reduces itself to n/uT1. Referring to (12), we see 

that, in order that ^ may be insensible, it is necessary to suppose, 

either that 2 is incomparably greater than n, or that n is incom¬ 

parably greater than q. On the former supposition the formula 

(11) gives V=z\/Ic, which is equivalent to Newton’s result. On 

the latter supposition we get V = Jh (1 + a/3), which is equivalent 

to Laplace’s result. 

The reason why sound would be so rapidly stifled were q and 

n comparable with each other, may be easily seen on taking a 

common-sense view of the subject. Conceive a mass of air con¬ 

tained in a cylinder in which an air-tight piston fits, which is 

capable of moving without friction, and which has its outer face 

exposed to a constant atmospheric pressure; and suppose the air 

alternately compressed and rarefied by the motion of the piston. 

If the motion take place with extreme slowness, there will be no 

sensible change of temperature, and therefore the work done on 

the air during compression will be given out again by the air 

during expansion, inasmuch as the pressure on the piston will be 

the same when the piston is at the same point of the cylinder, 

whether it be moving forwards or backwards. Similarly, the work 

done in rarefying the air will be given out again by the atmosphere 

as the piston returns towards its position of equilibrium, so that 

the motion would go on without any permanent consumption of 

labouring force. Next, suppose the motion of the piston some¬ 

what quicker, so that there is a sensible change of temperature 

produced by condensation and rarefaction. As the piston moves 

forward in condensing the air, the temperature rises, and therefore 

the piston has to work against a pressure greater than if there 

had been no variation of temperature. By the time the piston 

returns, a good portion of the heat developed by compression has 

passed off, and therefore the piston is not helped as much in its 

backward motion by the pressure of the air in the cylinder as 

it had been opposed in its forward motion. Similarly, as the 

piston continues its backward motion, rarefying the air, the tem¬ 

perature falls, the pressure of the air in the cylinder is diminished 

more than corresponds merely to the change of density, and there¬ 

fore the piston is less helped in opposing the atmospheric pressure 

than it would have been had the temperature remained constant. 

But by the time the piston is returning towards its position of 
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equilibrium, the cold has diminished in consequence of the supply 

of heat from the sides of the cylinder, and therefore the force 

urging the piston forward, arising, as it does, from the excess of 

the external over the internal pressure, is less than that which 

opposed the piston in moving from its position of equilibrium. 

Hence in this case the motion of the piston could not be kept up 

without a continual supply of labouring force. Lastly, suppose 

the piston to oscillate with great rapidity, so that there is not 

time for any sensible quantity of heat to pass and repass between 

the air and the sides of the cylinder. In this case the pressures 

would be equal when the piston was at a given point of the 

cylinder, whether it were going or returning, and consequently 

there would be no permanent consumption of labouring force. I 

do not speak of the disturbance of the external air, because I am 

not now taking into account the inertia of the air either within or 

without the cylinder. The third case, then, is similar to the first, 

so far as regards the permanence of the motion; but there is this 

difference; that, in consequence of the heat produced by compres¬ 

sion and the cold produced by rarefaction, the force urging the 

piston towards its position of equilibrium, on whichever side of 

that position the piston may happen to be, is greater than it 

would have been had the temperature remained unaltered. 

Now the first case is analogous to that of the sonorous vibra¬ 

tions of air when the heat and cold produced by sudden condensa¬ 

tion and rarefaction are supposed to pass away with great rapidity. 

For we are evidently concerned only with the relative rates at 

which the phase of vibration changes, and the heat causing the 

excess of temperature 9 passes away, so that it is perfectly imma¬ 

terial whether we suppose the change of motion to be very slow, 

or the cooling of heated air to be very rapid. The second case is 

analogous to that of sound, when we suppose the constants q and 

n comparable with each other; and we thus sec how it is, that, on 

such a supposition, labouring force would be so rapidly consumed, 

and the sound so rapidly stifled. The third case is analogous to 

that of sound when we make the usual supposition, that the alter¬ 

nations of condensation and rarefaction take place with too great 

rapidity to allow a given portion of air to acquire or lose any 

sensible portion of heat by radiation. The increase in the force of 

restitution of the piston, arising from the alternate elevation and 

10—2 
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depression of temperature, is analogous to the increase in the 

forces of restitution of the particles of air arising from the same 

cause, to which corresponds an increase in the velocity of propaga¬ 

tion of sound. 

Another consequence follows from the formula (13), which 

deserves to be noticed. We have already seen that this formula 

gives n/jT1 sec ^ for the value of V, the velocity of propagation. 

Putting for shortness 

1 + a/3 = K.(14), 

we get from (11) and (12), 

2k(KSi* + f) 

V _ Aw2 + 22 + VK^V + 22)(w2 + 22)} .K 
Hence if q be comparable with n, V, which is a function of the 

ratio of q to n, will change with % and therefore the velocity of 

propagation will depend upon the pitch, which is contrary to 

observation. But if q be either incomparably greater or incom¬ 

parably smaller than n, V will assume one or other of its limiting 

values VMT; and the velocity of propagation will be inde¬ 

pendent of the pitch, as observation shows it to be. We are thus 

led, by considering the velocity of propagation, to the same 

conclusion as was deduced from the circumstance that sound is 

capable of travelling to a distance. 

Since, then, we are driven to one or other of the alternatives 

above mentioned, it only remains to decide which wc must choose. 

But before entering on this subject, it will be proper to consider 

whether the formula (13) is of sufficient generality. 

In the first place we may observe, that the formula (13) is 

only a particular integral of (7). It is adapted to the case in 

which the motion is kept up by a vibrating plane, which agrees 

most nearly with the circumstances of ordinary experiments; but 

a particular law of disturbance as regards the time is assumed, 

namely, that expressed by a single circular function. Now we 

know that any periodic function of the time, having r for its 

period, may be expressed by the sum of a finite or infinite 

number of circular functions having for their periods r and 

its submultiples; and even a non-periodic function may be 

expressed by a definite integral, of which each element denotes 

a circular function. So far, therefore, the formula (13) is of 

sufficient generality. 
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In the next place, the formula (13) applies to motion in one 

dimension only. Eat had we employed the general equations 

(1), (2), which relate to motion in three dimensions, we should 

have obtained the same partial differential equation as (7), with 

the exception that the last term outside the brackets would have 

been replaced by 

is_ dh 

df + df + dz*' 

If now we take the case next in order of simplicity, in which the 

motion is symmetrical adbout a centre, and put r for the distance 

of any point from the centre, we shall get for the determination 

of rs the same partial differential equation as (7), with the ex¬ 

ception that x will he replaced by r. To obtain, therefore, the 

integral corresponding to (13), it will be sufficient to replace x by 

r and divide the second member by r. This integral would apply 

to the case of the disturbance produced by a vibrating spherical 

body, in which the motion is supposed to be symmetrical with 

respect to the centre. And in the more general case of a vibrating 

body of irregular form, or a musical instrument, or any other 

source of sound, the conclusions would doubtless be the same as to 

their leading features. 

There remains a morn important point to be considered before 

we apply the formula (13) to the vibrations of air within a long 

tube. At first sight it might seem that the radiation of heat 

within a tube must take place in a manner altogether different 

from that in which it would take place in free air. But a little 

consideration will show, I think, that such is not the case. Of 

the heat radiating from any particle of air which has been slightly 

heated by condensation, any particular ray is incident on the 

side of the tube, where it is partly absorbed, partly reflected, 

and, it may bo, partly scattered. The reflected ray, or any one 

of the scattered rays, is again incident on the side of the tube, 

where a good portion is absorbed, and so on. The small quantity 

of radiant heat which remains after three or four reflexions may 

be regarded as insensible. Now since radiant heat travels with a 

velocity equal to, or at any rate comparable with, that of light, wc 

may neglect as altogether insensible the time which any portion 

of heat, once become radiant, takes to be absorbed. Moreover, 

wc may neglect the small portion of heat reabsorbed by the air 
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itself, because a ray of beat has only to traverse a length of air 
comparable with three or four diameters of the tube before it is 

absorbed by the tube. Hence we may conceive a small periodic 
flux of heat as taking place across the inner surface of the tube. 
Now it follows from the mathematical theory of heat, that when 
a periodic flux of heat takes place at the surface of a solid, the 
corresponding variation in the temperature of the solid near the 
surface is very small if the period be very small. If we suppose 
the flux expressed by the sine or cosine of an angle proportional 

to the time, the expression for the fluctuation of temperature will 

involve in its coefficient the square root of the period. In the 
present case, the period with which we have to deal is that of a 
sonorous vibration, a time which must be regarded as extremely 
small in questions relating to the conduction of heat. Hence, if 
t be the period of vibration, the fluctuation of temperature of the 
tube will be a small quantity of the order VT compared with the 
flux of heat. Now if U, h be the interior and exterior conduc¬ 
tivities, v a normal to the inner surface of the tube, drawn from 
the tube inwards, 9' the excess of temperature of the tube above 
the mean temperature 0O; and if we suppose the surface to be 
plane, and to radiate into an infinitely extended medium at a 
temperature 90 + 6, where 9 is supposed to be constant as regards 
space, but to be a periodic function of the time, we must have at 
the inner surface of the tube 

rlR' 
Hcj^+h(9'-9) = 0. 

Now, according to what has been already remarked, 9' is a small 

quantity of the order VT compared with dffjdv; and it follows 
from the above equation, that d9'jdv is comparable with 9, and 
therefore & is a small quantity of the order VT compared with 6. 
Hence, even in the case above supposed, the fluctuation of tem¬ 

perature of the tube at the surface would be very small. But in 
the actual case, the tube radiates, not into an infinite medium, 
but merely across the air contained within it, beyond which is 
situated the opposite face of the tube, at a temperature equal to 

the first face; and therefore the fluctuation of temperature of 
the inner surface of the tube will be far smaller than in the 
case supposed above, so as to be altogether insensible. Hence 
the air radiates within an envelope at a temperature #0, so 
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that the radiation takes place as if the air heated by compression 

radiated into an infinite medium at a temperature 0O. Of course 

the same reasoning will apply to the apparent radiation of cold. 

Hence the formula (13) may be applied without change to the 

vibration of the air within a long tube, and accordingly may be 

employed in considering the experiments of M. Biot above 

alluded to. 

The preceding view of the effect of radiation within a tube 

is very different from that taken by M. Poisson in his Traite de 
Mecanique (vol. ii. art. 665). The latter, however, is contained 

in a mere passing remark offered by way of conjecture, and 

probably written without much consideration, and therefore ought 

hardly to be regarded as supported by Poisson’s authority. 

Let us now pass to numerical values, in order to make out, 

independently of any assumption respecting the true explanation 

of the velocity of sound, whether q must be regarded as very great 

or very small compared with n. It follows from (13) that the 

decrease of intensity in going one wave’s length in the direction 

of propagation is a maximum when tanf, and therefore ^ is a 

maximum. Now (12) shows that ^ is a maximum when 

% = .(16), 

K being the quantity defined by (14). For the above value of q 
we get from (11) and (12), 

fju = 2yfr — .(17). 

The velocity of propagation, which is equal to n/jTl see yfr, does 

not much differ from n/f1, since as will immediately appear, 

is not very large. It may be observed, that the expression for 

npr1 given by the first of equations (17), is a geometric mean 

between the velocities of propagation resulting from the theories 

of Newton and Laplace. 

The value of K, deduced from experiments in which the theory 

of sound is not assumed, is about 1*30*, whence 2y[r = 8n 47'. If 

* Poisson, Traite de Mecanique, vol. ii. art. G37. The value deduced from the 

observed velocity of sound is somewhat larger, and is more likely to bo correct. I 

have employed the value 1*30 in order to avoid arguing in a circle, because I am 

reasoning as if the received theory of sound were not established. 
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- I be the index of e in (13) when x is equal to one wave’s length, 

we have 

fisin^.x^l, /acos.a? = 2tt, whence Z = 27r tan i/r, e~l= (16172; 

so that the intensity, supposed to vary as the square of the 

amplitude of vibration, would be diminished in the ratio of 

2*625 to 1. Supposing the period of vibration to be the ^dth 

part of a second, which would correspond to a note of moderate 

pitch, and taking the velocity of propagation at 1100 feet per 

second, we should have 44 inches for the length of one wave. 

Hence in travelling 20 yards, or 16*36 wave-lengths, the intensity 

would be diminished in the ratio of (2*625)16'36 to 1, or about 

7 millions to 1. A decrease of intensity like this is utterly 

contrary to observation, and therefore we are really compelled 

to suppose that the ratio of q to n is either very much greater or 

very much less than what has just been determined. Since in 

the case supposed n = 27tt~1= 6007t, we get from (16) 

2 = 2198.(18), 

which, it is to be remembered, is referred to a second as the unit 

of time. 

Let us now, adopting this value of q, examine a little at what 

rate a small portion of heated air, situated in other air which has 

not been heated, would cool by radiation. If 9 be the excess of 

the temperature of the heated air over that of the surrounding 

air, we should have, supposing 6 to be suiliciently small to allow 

us to adopt Newton’s law of cooling, 

from which it follows that the excess of temperature would be 

diminished during the time t in the ratio of e(It to I. It would 

follow from the numerical value of q above given, that, even in so 

short a time as the hundredth part of a second, the temperature 

would be reduced in the ratio of about 3514 millions to 1. Such 

rapidity of cooling as this is utterly contrary to observation. Put 

a poker into the fire, and when it is hot look along it, and an 

ascending stream of heated air will be rendered visible by the 

distortion which it produces in objects seen through it, in con¬ 

sequence of the diminution of refractive power accompanying 

the rarefaction produced by heat. But were the rate of cooling 
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anything like what has just been determined, no such stream 

could exist. Yet we have seen that the observed fact, that sound 
is propagated to a distance, obliges us to suppose that the rate 
of cooling is either immensely greater or immensely less than 

corresponds to q = 2198. It is needless now to say which alter¬ 

native we must choose. Accordingly, no doubt whatever exists 
as to the correctness of Laplace’s explanation of the excess of the 
observed velocity of sound over that calculated by Newton. 

Now that it has been decided which of the two ratios n : q and 

q:n we must regard as extremely small, we may simplify the 
formula (13) by retaining only the first power of the ratio in 

question, and we shall thus be the more readily enabled to see 
in what direction we must look for the first faint indications of 

the effect of radiation. Retaining only the first power of q, and 

putting n=Vfju, jj, = where V = *J(kK), the velocity of 
propagation, wc get from (11), (12) and (13), 

s = Ae~ d-^^cos — (Vt- x).(19). 

Hence it is to a diminution of intensity, rather than to an alter¬ 

ation of velocity corresponding to an alteration of pitch, that we 

are to look for the effect of radiation. Now that the objection 

raised against Laplace’s explanation of the velocity of sound has 

been answered, we may Lake 1*414 for the value of Ic, this being 

the mean of the values (pioted by Poisson in art. 604, which were 

deduced from the velocity of sound, and arc probably nearer the 

truth than the somewhat smaller values determined by a different 

process. Putting K = 1*414, V = 1100, taking the square of the 

coefficient as a measure of the intensity, and putting N: 1 for 

the ratio in which the intensity is diminished while the sound 

travels, without divergence, over a length x, wc get 

log1()iV"= 0*000115 tiqx.(20), 

the units of time and space to which q and x are respectively 

referred being a second and a foot. 

From the account of M. Biot’s experiments given by Sir John 

Herschel in art. "24 of his Treatise on Sound*, it would seem that 

the diminution of intensity which we can by any possibility refer 

to radiation must be very small, especially when we remember 

K Kitcijrloptcdia M^lropolitana, art. Sound. 
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that, in the case of these experiments, the intensity would he 
diminished by a sort of reflexion at the bendings* of the tube, 
as well as by the friction of the air against the sides of the tube, 
and the internal friction of the air itself. That the cause last 
mentioned would produce a small but not utterly insensible effect 
in causing a diminution of intensity, I have shown in the course 

of a paper “ On the Effect of the Internal Friction of Fluids on 
the Motion of Pendulums/' recently read before the Cambridge 

Philosophical Society*. If we suppose, at a venture, that a dimi¬ 
nution of intensity in the ratio of 2 to 1 is the utmost which we 

can attribute to radiation in the case of M. Biot's experiments, 
putting N=% and a; =3120, the length of the tube in feet, we 

get from (20) q = 0*834 for a superior limit of q. If we suppose 
q — 0*834, we get for the ratio in which the temperature of a 
small portion of slightly heated air would be diminished in the 
course of one second, 1 to e~q, or 1 to 0*4343, or 7 to 3 nearly. 
It is curious that it should, theoretically speaking, be possible to 
assign a superior limit to the velocity ol cooling of heated air by 

observations on sound; but I imagine that the. real value of q is a 

good deal smaller than any limit which it would bo practically 

possible to assign in this way. 

I have supposed, as was already observed, that radiant heat 

is capable of traversing great lengths of air before any considerable 

portion of if is absorbed. This is especially tin; case with heat 

of such high refrangibility as to place it within tin* limits of the 

visible spectrum ; whereas heat- of low refrangibility, such as that 

which would emanate from slightly heated air, is absorbed more 

rapidly. Should the distance to which radiant heat* can proceed 

in air before a given fraction of it, such as one-half, is absorbed, 

not. be extremely great com pared with tin* length of* a wave of 

sound, it may be sim alter a little reflection that tin* general 

conclusions arrived at will hr unchanged, though the numerical 

details would he somewhat altered. 1 have not. met with any 

experiments relating to tIn* absorption of non-luminous heat by 

air which could be made a foundation for numerical calculation. 

[ i«/., v. 



[From the Transactions of the Cambridge Philosophical Society, Yol. ix. p. (147)]. 

On the Colours of Thick Plx\tes. 

[Read May 19, 1851.] 

The expression “colours of thick plates/' has been appropriated 
to a class of phenomena discovered by Newton, and described by 
him in the fourth part of the second book of his Optics. In 
New ton’s experiment, the sun’s light was admitted into a darkened 
room through a hole in the window-shutter, and allowed to fall 

perpendicularly upon a concave mirror, formed of glass quick¬ 
silvered at the back. A white opaque card pierced with a small 
hole being then interposed, at the distance of the centre of curva¬ 
ture of the mirror, so that the regularly reflected light returned 

by the same small hole by which it entered, a set of coloured 
rings was seen depicted on the card encompassing the hole. The 
existence of these rings was attributed by Newton to the light 
scattered on entering the glass, and then regularly reflected and 

refracted; and he succeeded in deducing from his theory of fits 
the laws of the rings, both as regards the relation between the 

diameters of successive rings, the order of the colours, the varia¬ 
tion of the diameter of a given ring corresponding to a variation 
cither in the radius of curvature of the surfaces or in the thickness 
of the glass, and even the absolute magnitude of the system 
formed under given circumstances. The phenomena which present 
themselves when the mirror is inclined a little, so as to throw the 

image of the hole to one side, arc very curious, and have been 
accurately described by Newton in his tenth and eleventh Obser¬ 

vations. 

In the course of a series of experimental researches on these 
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rings, the Duke de Chaulnes* discovered accidentally that their 

brilliancy was greatly increased by breathing on the glass. Since 

the moisture soon evaporated, in order to procure a permanent 

tarnish, he spread over the surface a small quantity of a mixture 

of milk and water, which on drying left a degree of dimness very 

suitable to the experiments. By substituting for the glass mirror 

a metallic speculum, in front of which there was placed a plate 

of tarnished mica, it was easy to observe the variation in the 

diameter of the rings corresponding to a variation in the 

distance of the mica from the speculum. In this form of the 

experiment the glass plate was replaced by the plate of air com¬ 

prised between the mica and the speculum. Rings were also 

produced when the tarnished mica was replaced by a screen of 

fine muslin. In this case, however, according to the Duke’s state¬ 

ment, the rings were nearly square, though rounded off a little at 

the angles. A set of parallel wires gave merely a bright band 

intersected by short bands which were vividly coloured. Even 

the blade of a knife produced a similar appearance, weak indeed, 

but sufficient to establish the identity of the effect. It is un¬ 

necessary here to discuss the theoretical views of the Duke de 

Chaulnes, since the progress of optical science has since led to a 

complete explanation of the formation of the rings. 

The colours of thick plates were first explained on the un- 

dulatory theory by Dr Youngf, by whom they were attributed to 

the interference of two streams of light, of which one is scattered 

on entering the glass, and then regularly reflected and refracted, 

and the other regularly refracted and reflected, and then scattered 

on its return through the first surface. I)r Youngs explanation is 

however excessively brief; and he has rather pointed out the 

aPP^ca,^on tdm grand and newly-discovered principle of inter¬ 

ference to the explanation of the phenomenon, than followed the 

subject into any of its details. At the same lime, it appears 

evident, from an attentive perusal of what he has written, that at 

least the broad outlines of the complete explanation were clearly 

present to his mind. 

In the course of a paper entitled u Experiments for investigating 

the cause of the coloured concentric rings, discoveied by Sir Isaac. 

* Memo ires de V Academia, 1755, p. I'M). 

t On the Theory oj Light and Colours. Philosophical Transactions for is02, p. H. 
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Newton, between two object-glasses laid upon one another,” Sir 

William Herschel mentions an experiment in which rings of the 
nature of those of thick plates were produced by merely strewing 
hair-powder in the air in front of a metallic speculum placed as 

the mirror in Newton’s experiment*. The result of this experi¬ 

ment was justly regarded by Herschel as inexplicable on the 
theory of fits. It may here be remarked that it is in perfect 
accordance with the theory of undulations. 

In the Annates de Ghimie et de Physique j-, will be found a 
report by Ampere and Poisson on a memoir by M. Pouillet, con¬ 
taining some experiments on the rings. The experiments were 

mostly the same as those of the Duke de Chaulnes, but accom¬ 

panied by measures. M. Pouillet found that the rings were 
produced by placing in front of a metallic speculum an opaque 
screen containing an aperture of any form. In this case the rings 

were round, whatever might be the form of the aperture. The 
experiments are mentioned by M. Pouillet in his Elemens de 

Physique\. 

A complete explanation of the rings, according to the theory of 

undulations, has been given by Sir John Herschel in his treatise 
on Light§. The rings are supposed to be formed in Newton’s 

manner with a glass mirror, the luminous point being situated in 

the axis. Having investigated the elementary system of rings 
which would be produced by the two streams scattered in passing 

and repassing at the point of the first surface where it is cut by 

the axis, Sir John Herschel shews that if the surfaces be supposed 
to be a pair of concentric spheres, having the luminous point in 
their centre, the elementary systems corresponding to the several 
elements of the first surface will be superposed, in such a manner 

that a distinct system would be thrown on a screen held at the 
distance of the luminous point. The laws of the rings resulting 
from theory are precisely those which had been discovered by 
Newton, and the calculated magnitudes were found to agree 

almost exactly with Newtons measures. 

A set of coloured bands have since been observed by Dr 
Whcwell, which are formed when the image of a candle held near 

* Philosophical Transactions for 1807, p. 281. 

f Tom. i. (181G) p. 87. X Tom. n. p. 47G. 
4$ Encyclopedia Mctropolitana, Arts. 070, &c. 
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the eye is viewed by reflexion in a plane mirror of quicksilvered 

glass, placed at the distance of some feet. This observation was 

communicated to M. Quetelet, by whom it has been published*. 

In repeating the experiment together, Dr Whewell and M. 

Quetelet found that it was an essential condition of success that 

the surface should not be perfectly bright, and that to ensure the 

production of the bands it was sufficient to breathe gently on the 

surface of a cool mirror. Instead of vapour, which soon evaporates, 

M. Quetelet recommends a tarnish of grease f. 

In closing this sketch of the history of the subject, I may be 

allowed to express my obligations to Dr Lloyd for his valuable 

Report on Physical Optics, which contains a brief account of all 

that was known about the subject, accompanied by references to 

the original papers. 

My attention was called to the subject by the Master of Trinity 

College, who shewed me the bands above-mentioned, which lie 

shortly afterwards brought before the notice of this Society:];. It 

seemed to me from the first that these bands were of the nature 

of the coloured rings of thick plates, so that the theory of the 

former only required to be worked out, that of the latter being 

known. Had I felt any doubt on the subject., if would soon have 

been dissipated when I came to make experiments; for by properly 

varying the experiments the two systems were seen to be incon¬ 

testably of the same nature. 

The mirrors, whether plane or curved, were prepared in the 

following manner, which I can recommend to any one; who wishes 

to repeat the experiments, as being both easy and efficacious. The 

mirror being held horizontally, a mixture consisting (,f three or 

four parts of water to one of milk was poured on if, and allowed to 

spread over the surface. The mirror was then held in a vertical 

position in front of a fire, when the greater part, of the mixture 

ran off, and the remainder dried in two or three minutes, when 

the mirror was ready for use. To prevent disappointment on the 

part of any one who may be looking for Dr Whewells bands, I 

will here mention that in order to sec them properly the image of 

* Coireapondance Mathv.matiquc vt Physique, Tom. v. p. .T.M. 
+ Tom. vi. p. G9. 

+ S°e the Philosophical Magazine for April, 1851, p. 3,'hJ. 
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the flame must be seen distinctly, so that a short-sighted person 

requires an eye-glass or spectacles. 

A concave mirror prepared with milk and water is well adapted 

for performing Newton’s experiment in his manner, or rather by 

substituting, as in the Duke de Chaulnes’s experiments, the image 

of the sun in the focus of a convex lens for the small hole em¬ 

ployed by Newton. The experiment may however be varied in 

the following manner. Whatever appearance is presented on a 

screen may be seen without a screen by receiving the rays directly 

into the eye, and adapting it for distinct vision of an object at the 

distance of the screen. Accordingly, in order to see the rings 

which in Newton’s experiment were thrown on a screen, it is 

sufficient to place a small flame in front of the mirror, in such a 

position as to coincide with its inverted image, when a remarkably 

beautiful system of rings is seen in air, surrounding the flame. 

Not the least striking circumstance connected with these rings is 

their apparent corporeity, since they seem to have a definite 

position in space like an actual object. The striking and beautiful 

phenomena so accurately described by Newton in his tenth and 

eleventh Observations may be seen in this manner by moving the 

flame sideways. By altering in various ways the positions of the 

flame and of the eye, both in this experiment and in that with a 

plane mirror, the rings or bands seen in the two cases may be 

perceived, independently of any theory, to be evidently of the 

same nature. It is unnecessary here to describe at length the 

various appearances presented, since they are noticed in the body 

of the paper, in connexion with the theory. 

The first section contains the theory of the rings formed in 

Newton’s manner. The investigation, though differing a little in 

the mode in which it is conducted, is the same in principle as 

that given by Sir John Herschel, but is somewhat more general, 

inasmuch as the curvatures of the two surfaces are supposed to be 

any whatsoever, and the luminous point is not supposed to be 

situated in the axis. The distance, too, of this point from the 

axis is at first supposed to be arbitrary, in order to investigate 

under what circumstances the rings can be formed most distinctly 

on a screen. The second section contains the theory of the bands 

and rings formed by a plane mirror. The expression for the 

retardation is deduced as a particular case from the formula 
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investigated in the first section; but on account of the interest 

which attaches itself to these bands, and the simplicity of their 

theory, a separate investigation is likewise given. The next two 

sections are devoted to cases of more generality, and on the whole 

less interest: still, a few results of some interest are obtained. 

The last two sections contain a closer examination of the precise 

mode in which the phenomena are produced. 

Although the present paper is a little long, the reader must 

not suppose that the theory of the rings and bands is anything but 

simple. The length arises partly from the detail in which the 

subject has been considered, partly from the generality of some of 

the investigations, partly from the description of experiments 

which accompanies the theoretical investigations. 

Section I. 

Rings thrown on a screen by a concave mirror consisting of a; 

lens dimmed at the first surface, and quicksilvered at the hack 
Condition of distinctness when the rings are thrown on a screen, 

or of fixity when they are viewed in air. I nvcstigutlon of the 

phenomena observed when the luminous point is moved in a, direction 
perpendicular to the axis of the mirror. 

1. Let a luminous point L be situated either in or not far out 

of the axis of a mirror such as that just described ; and let it be 

required to investigate the illumination, at the point M of a 

screen, due to two streams of light, of which one is scattered at 

the first surface, and then regularly reflected and refracted, and 

the other is regularly refracted and reflected, and then scattered 

in coming out, the point M being supposed fo be situated not far 

out of the axis. Let the mirror be referred fo the rectangular 

axes of x, y, z, the axis of z being the axis of the mirror, and the 

origin being situated in the first or dimmed surface. Let r be the 

radius of the first surface, 5 that of the second, t the thickness of 

the glass, g its index of refraction; and suppose r ami .v positive 

when the concavities of both surfaces arc turned in the direction of 

z positive. Lot a, b, c be the co-ordinates of L; (f }f (/ those of 

My and suppose a, b, a, and b small compared with r, c, v, and s. 
Let x, y, z be the co-ordinates of any point P on the dimmed 
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surface, R the retardation of the stream which was scattered at P 

on emergence, relatively to that which was scattered at the same 

point on entrance. Let Llt L2, L3 be the images of L after 

refraction, reflexion, and second refraction, respectively; M1} M2, MQj 
the images of M; and let a, b, c, or a\ b\ c\ with the suffixes 

1, 2, 3, denote the co-ordinates of Lv Z2, Z3, or Mv M2, Ms. In 

approximating to the value of R, let the squares of the small 

quantities, a, b, x, y, &c. be retained, so that the terms neglected 

are of the fourth order, since all the terms are of even orders, as 

will be immediately seen when the approximation is commenced. 

2. The rays diverging from L may after refraction be supposed 

to diverge from L1} notwithstanding the spherical aberration of 

direct pencils, and the astigmatism of oblique pencils. For, first, 

let L be in the axis. The supposition that the rays diverge from 

L1 is equivalent to supposing that the front of a wave is a sphere 

having L1 for centre, whereas it is really a surface of revolution 

such that Lx is the centre of curvature of a section made by a 

plane through the axis. This plane cuts the sphere above men¬ 

tioned in a circle, which, being a circle of curvature, cannot have 

with the curve a contact lower than one of the second order. But 

the contact is actually of the third order, since the curve and circle 

touch without cutting. Hence the error produced in the calcula¬ 

tion of R by supposing the front of a wave to be a sphere, instead 

of that surface which it actually is, is only a small quantity of the 

fourth order, and quantities of this order arc supposed to be 

neglected. 

Next, consider an oblique pencil. Let L' and L" be two 

points in the axis of the pencil which arc the centres of curvature 

of its principal sections. If the distance of L' and L" from each 

other, and from L19 were not small, the front of the wave would 

have a contact of the first order with a sphere described round Llt 
with such a radius as to pass through the point where the front is 

cut by the axis of the pencil; and in that case the error committed 

by taking the sphere for the actual front would be of the second 

order. But L and L" are situated at distances from Lt which are 

small quantities of the second order, whence it will readily be 

seen that the actual error is only of the fourth order. 

3. Let the expression (L to Z3) denote the retardation of a 

wave proceeding from L to or rather, in case be a virtual 

11 s. III. 
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f'ucus, the dith-ivnee of retardations of two waves starting from L 
and 4 and reaching (he same given point. Then 

li ~ (/, to 4) + PM - PLS - {(M to IQ + PL - PMa} = K + V, 

wilt‘Ft* 

K^iLtn Ln) - (.1/ to Ma), 

I — PM /V,a — ( PL — PM<t) =V'~ V", suppose. 

According to the* explanation given in the preceding article, 

wIhii tin* position of P changes K remains constant, to the degree 

of approximation which it is proposed to employ, but the value of 

V depends upon the position of P. We have 

PM = \ {(i — ./•)" + (7/ - yf + (c — z)'\, 

ri‘* \ i3 —(r:3 —rr)*;, 

, ! 
and h>/( t-c I //’ K nearly. Expanding, we get 

l r - 2/7*'N // ) ! ^ (r/'-.r)# + (&' - yf\ - ca 

! — (./■" 4- if) - ^ !(":i - 4- (A,.y)2J. 

| > r r * * 1 *7’ where [rx/ is tin* sum of the terms 

enitfanuii o olid j * and I v tin* sum ni tdit * terms containin<r b and 

//. Th.-n 

r , (a 

2/ ^ • 

Tie-m : no ...v.i i,,n f«> write down since it, maybe deduced 

h*«»!n I 14 v.ii’iici A. // lor r/, ./*. 'Faking D to denote for V wdiat 

^ : I * wo got h\ interchanging a and a\ a and a' 

and ui.Ma. MC4 ’ 1 :{ 

(1). 

fia* rin-j." may he formed on a screen with perfect 
* !l'oc any that the difference of phase of fho 

' *• : r*-ams which ennie from the several points of {lie 
* 51 ■' n-nild he the same; in of her words, t had. the 

L n>aiId he independent; of ./• an<l y. Deterring for 
*ho m >*Migati(»t 1 ot the eonditions of distinctness, we 

’La v. hen these conditions are satisfied the expression 
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for R must be the same as if % and y were each equal to zero. 

We have therefore 

R = [L, M]-[M, L], 

where 

[A M]-(l to + 

and [M, L] is formed from [L, M] by interchanging the co¬ 

ordinates of L and if. In the above expression e2 has been 

written for shortness, in place of cf+b*. Now supposing c, c,, c2, c3, 

to be all positive, and denoting by A, B the points in which the 

first and second surfaces respectively are cut by the axis of the 

mirror, we have 

(L to Zs) = AL — y,ALx + yBL1 + fiBL2 — y.ALs + ALZ) ...(2) 

which gives, on expanding, 

(L to L,,) — c + ^ — fict (ci + *) + 2 (c~+ + ^ 
ne‘ 

+ C; K* _M_f<+c + el 
v f10* 2c + Cs + 

2 (C!i + 0 2c3 

_Ke.2 
c+q, + 2 Mt + ^+2a- 2ct (c1 + t) 2c,(c, + «)- 

Wc have therefore 

7? = ~ J -- i ^2 ___ _ _?1__^2_{ ZO\ 
2 (c/ (c/ + t) c' {o' + t) cx (cx + t) c2 (c2 + Oj’ ^ 

Although this formula was obtained on the supposition that 

the points L, Lx, Z2, X3, M, Mx, ilf2, Jf3, lay on the positive side 

of the plane of xy, it is true independently of that restriction. 

For when one of the foci L, Lx, Z2, Z3, from having been real 

becomes virtual, or from having been virtual becomes real, the 

corresponding ordinate c, cx, c2 -f1, or c3 changes sign. At the same 

time, in the expression for the retardation distance passed over is 

converted into distance saved, and vice versa. Hence in any such 

expression as (2) the sign of one or more of the lines is changed. 

But in the expansion of the radical by which the length of such 

line is expressed, the sign of c, cx> c2 + t, or c3 must be changed at 

the same time, and therefore no change is required in the expanded 

expressions. 

11—2 
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To eliminate et and e2 from (3), we may observe that we have 

very nearly 

e fju c ’ et ct +1’ 

and similar expressions hold good for e'} &c. Hence 

e'H c' A. . c/ c0' + A 
JB = 

2/^c'2 cx +1 
1 + 

< +$ c; 

+ ,, 
2/^c2 Cj +1 \ ot + t c2 J 
et c2"h A .(4). 

We might, if required, express cx and c2 in terms of c by the 

formulae of common optics, without making any supposition as to 

the magnitude of t. In practice, however, t is usually small 

compared with c, cjy &c., so that we may simplify the above 

expression by retaining only the first power of t. We thus get 

2? = 
t_(e__i 

fM [C* ( 
l f&/2_^+A2, 
fi V o'2 cz 4 

(5). 

4. Before proceeding to apply this expression, let us in¬ 

vestigate the conditions of distinctness. Denoting by AJi, i\vR 

the additions to R on account of the terms involving xy y, we get 

from (1) 

and AyR may be obtained by interchanging a and 6, x and y. 

We have by the formulae of common optics 

/* 1 ■ 1 1 =2 1 m 
ct r cJ c2 + t s c1 + ii c2 r ^ 

whence, supposing t small, expanding as far as the first power of ty 
and putting for shortness 

P M-l 
s r (»x 

so that p is the radius of a speculum having the same focal length 

as the mirror, we obtain 

cs P P* l P pi 
Qt-i )2 

‘Z 
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and therefore 

1/1 _</l __lWl 1 
2 \c' c.' c cj n Vc' c) U'+ c 

Again 

a c, c2 + t 
• - - , a= — a, 2—-, 
flC 2 1 c, +1 

whence 

C C„ 

Neglecting t altogether in the formulae (7), we get 

l l 2/1 h 

and therefore 

P> \o p 

o 
a a, 

(9). 

.<10)- 

Let AXR 4- AVR = AR. The formulae (G), (9), (10), and the 

corresponding formulae relating to AyR, give 

The condition of distinctness, as has been already observed, is 

that All shall vanish independently of x and y, in which case the 

elementary systems of rings corresponding to the several elements 

of the dimmed surface will be superimposed on the screen. The 

coefficient of x1 + y2 will vanish when either of the following 

equations is satisfied : 

, 112 /lox 
o = c, or - .(12). 

c c p 

In order that the coefficients of x and y may vanish independently 

of particular values of a and b' we must have 

c' = c = p.(13), 

which equations satisfy at the same time both of the equations 

(12), of which it would have been enough that one should have 

been satisfied. Hence the rings arc formed most distinctly when 

the luminous point and the screen arc both at a distance from the 
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mirror equal to that of coincident conjugate foci. This agrees 

with observation*. 

Whatever be the position of the luminous point, if a', b\ c' be 

the co-ordinates of its image, we have 

a _ a b' _ b 4 

c ~ c 3 c'~ c’ 

and the second line in the expression for AR becomes 

2tfl 1_2' 

flC \c' C p, 
(ax + by), 

which vanishes since d satisfies the second of equations (12). If a 

screen be held in a direction perpendicular to the axis of the 

mirror, at such a distance as to receive a distinct image of the 

luminous point, and if aV, c' be now taken to denote the co¬ 

ordinates, not of the image itself, but of a point of the screen very 

near the image, the part of AR which involves the squares of x 
and y will continue to vanish, inasmuch as c remains the same as 

before, and the part which contains first powers, though not 

absolutely evanescent, will be very small; and therefore a portion 

of the system of rings in the neighbourhood of the image will be 

formed distinctly. 

5. This agrees with observation. In repeating Newton's ex¬ 

periment in his way, except that a lens of short focus was employed 

instead of a small hole, and that the surface of the glass was 

purposely dimmed with milk and water, I found that when the 

mirror was placed at a distance from the luminous point widely 

different from its radius of curvature, and inclined a little, so as to 

allow of receiving the image on a sheet of paper without stopping 

the incident light, and when the paper was held at such a distance 

from the mirror as to receive a distinct image of the luminous 

point, the image was accompanied by very distinct arcs of rings. 

* See Newton’s Optics, Book II., Part iv., Obs. 1, for the case in which the 

curvatures of the two surfaces are alike, and an experiment by the Duke de 

Chaulnes (Mem. de VAcademic, 1755, p. 141) for the case in which they are unlike. 
In this experiment a plano-convex lens was employed. Each face in succession, 

after having been tarnished, was turned towards the incident light. It appears 
from a passage at the end of Newton’s twelfth Observation that he had himself 

made experiments of a similar nature, the results of which however are not 
described. 
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Whatever appearance is presented on a screen may be seen 

without a? screen, by placing the eye in such a position as to 

receive the rays, and adapting it to distinct vision of an object at 

the distance of the screen in its former position. It is found 

universally that when the image of the luminous point is seen 

distinctly it is accompanied by a portion, more or less extensive, 

of a system of coloured rings or bands. In this way the rings may 

be seen when the image is virtual, in which case they cannot, of 

course, be thrown on a screen. 

In the experiment described in the introduction, in which a 

small flame is placed in such a position as to coincide with its 

inverted image, and viewed directly, the rings seen are remarkable 

for their fixity, appearing like a bodily object surrounding the 

flame, and having a definite parallax, whether judged of by the 

motion of the head, or by the convergence of the axes of the two 

eyes. The same is true of the system of rings formed when the 

flame is moved sideways out of the position above mentioned. 

The reason of this fixity is, that inasmuch as the retardation is 

independent of x and y, a given point of an imaginary plane drawn 

through the flame perpendicular to the axis of the mirror belongs 

to a ring of the same order, whatever be the point of the mirror 

against which it is seen projected. 

6. Having investigated the conditions of distinctness, let us 

now proceed to consider the magnitude and character of the rings, 

supposing the luminous point to be situated at a distance p from 

the mirror, and the rings to be thrown on a screen at the same 

distance, or else viewed in air. In this case c = c' = p; and if the 

luminous point be in the axis e = 0, which reduces (5) to 

te'l 
/jbd 

(14). 

It readily follows from this expression that a system of rings is 

formed similar to the transmitted rings of the system to which 

Newtons name is especially attached. The rings in the present 

case, however, especially when viewed in air, arc far more brilliant, 

and in this respect more resemble the reflected system. If et be 

the radius of the first bright ring, for which Ii = X, the length of a 

wave of light, 

c; e, 
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and for the bright ring of the order n, ef — The formula 

(14) has already been discussed by Sir John Herschel,*and com¬ 

pared with Newton’s measures, with which it manifests a very 

close agreement. 

With white light, only a moderate number of rings can be 

seen, on account of the variation of the scale of the system 

depending on a variation in the refrangibility of the component 

parts of which white light is made up. When the rings were 

formed in air, and the source of light was the flame of an oil-lamp 

with a small wick, I have counted seven or eight surrounding the 

central bright spot. But when the system is viewed through a 

prism, or when the flame of a spirit-lamp is used, an immense 

number of rings may be seen. 

7. Next, suppose the luminous point out of the axis. Re¬ 

ferring to the formula (5), we see that the retardation is not now 

equal to zero at the axis, but throughout a circle whose radius e' 

is equal to e. Hence the achromatic line* of the system, which 

was formerly reduced to a point, is now a circle having its centre 

in the axis, and passing through the luminous point and its image, 

which are situated at the opposite extremities of a diameter. The 

fringes of the first order will bo a pair of circles having their 

centre in the axis, and lying, one outside, and the other inside the 

central fringe: the fringes of the second order will be another 

pair of circles lying, one outside the larger, and the other inside 

the smaller fringe of the first order, and so on. It is to be 

remarked, however, that only a finite number of fringes are formed 

inside the central white fringe. If the value of R when e' = 0 be 

denoted by - n0\, nQ will be a numerical quantity, a function of \ 

which determines the number of fringes and the fraction of a 

fringe, belonging to the light of which the wave-length is A, 

which are formed inside the central white fringe. The value of 7i0 
may be got from equation (5) on putting e' = 0, which gives 

te2 

/jXc 

If white light be used, and if n0 exceed 8 or thereabouts for rays of 

* *use tb.is term to denote the locus of the points for which the retardation is 
equal to zero, which forms a curve on either side of which the colours are arranged 
in descending order. 
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mean refrangibiiity, all the fringes which the overlapping of the 

different colours allows to be visible are formed inside as well 
as outside the central white fringe; and if the luminous point be 

moved still further from the axis, a portion of the field of view 

around the axis will appear free from rings. If the radius of 

the central white fringe, or, which is the same, the distance of 
the luminous point from the axis, be denoted by *Jn09 the radii 
of the bright fringes of the first, second, ... orders will be denoted, 

on the same scale, by ^(n0±l), *J(n0±2) ... and those of the 
dark rings by *J(n0 ± ■£), \/(n0 ± f) ... 

The manner in which the rings open out from the centre as 
the luminous point is moved sideways out of the axis is very 

striking, and has been accurately described by Newton. The 

explanation of it is obvious. It may be remarked that the system 
of rings, regarded as indefinite, is formed on the same scale what¬ 
ever be the distance of the luminous point from the axis, but the 

portion of the indefinite system which alone is visible, in con¬ 
sequence of the coincidence or approximate coincidence of the 
maxima and minima of intensity corresponding to the several 
colours, depends altogether upon that distance. Since in passing 
from the interior to the exterior boundary of a given fringe the 

square of the radius receives a given increase, it follows that the 
area of the fringe is constant, that is, independent of the per¬ 
pendicular distance of the luminous point from the axis. Hence 

the breadth of the fringe continually decreases as the diameter of 
the circle which forms cither boundary increases. When a small 

flame is used for the source of light, and is moved sideways from 

the axis, the fringes soon become confused, because a flame which 
does very well for forming the broad fringes of comparatively 

small radius seen near the axis, will not answer for the fine fringes 
of large radius which are formed at a distance from the axis. But 
on using for the source of light the image of the sun in the focus 
of a small concave mirror belonging to a microscope apparatus, I 
found that the fringes were formed quite distinctly even when 
their diameters became very large and consequently their breadths 
very small. 
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Section II. 

Bands formed by a plane mirror, and viewed directly by the eye. 

8. In the case of a plane mirror p = oo; and if R be the 

retardation of the stream scattered at emergence relatively to 

the stream scattered at entrance, R will be obtained by adding 

together the second members of equations (5) and (11). Hence 

we have 

1 {(a! _ aj + (y _ 67} -1 {(* - ay +(y- by} (15). 

It is to be remembered that in this formula a, b, c denote the 

co-ordinates of the luminous point; x, y those of any point in the 

dimmed surface; a, b'y c' those of any point M of space towards 

which the eye is directed, and for distinct vision of which it is 

adapted; and that the formula is only approximate, the ap¬ 

proximation depending both upon the smallness of the obliquity, 

and upon the smallness of the thickness t of the glass in com¬ 

parison with the distances of the luminous point and the point M 

from the mirror. 

As regards the illumination at a given point M, we are evidently 

concerned with so much only of the dimmed surface as lies within 

a cone having M for vertex and the pupil of the eye for base; and 

the bands will be seen distinctly if R do not alter by more than a 

small fraction of X, when xy y alter from one point to another of 

the portion of the dimmed surface which lies within this cone. 

Now we have seen already that the bands are in all cases seen 

distinctly in the neighbourhood of the image when the image 

itself is seen distinctly, so that when the image is real the bands 

may even be thrown on a screen, in which case a comparatively 

large portion of the dimmed surface is concerned in their forma¬ 

tion. We may conclude that in the present case the bands will 

be seen with sufficient distinctness throughout, provided the image 

of the luminous point be seen distinctly. 

9. In considering the distinctness or indistinctness of the 

bands, we are concerned with the finite size of the pupil of the 

eye; but in investigating only their form and magnitude we may 
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supp°se the pupil a point, and reduce each pencil entering it to 

a single ray, which forms the axis of the pencil. Let E be the eye, 

or rather the centre of the pupil, h its perpendicular distance from 

the mirror, and suppose the axis of £ to pass through E. The ray 

by which a portion of a band is seen as if at M cuts the mirror in 

a point whose co-ordinates x, y are equal to a', V altered in the 

ratio of h to h — c, so that 

Substituting in (15), we get 

t 
P = - ■ay+ (3/-by} •(ic), 

from which it may be observed that d has disappeared, as evidently 

ought to be the case. The expression (16) might have been at 

once deduced from (15) by putting the co-ordinates of the eye in 

place of a, b\ d. The reason of this is evident, because the 

retardation is constant for the same ray, and a ray may be defined 

by the positions of any two points through which it passes. We 

may therefore employ the points E and P, instead of M and P, to 

define the ray, and may therefore at once substitute the co¬ 

ordinates of E for those of M in the expression for the retardation. 

10. To determine the forms, &c. of the bands, nothing more 

will be requisite than to discuss the formula (16). As however 

this formula was obtained as a particular case from a very general, 

and consequently rather complicated investigation, in which the 

curvatures of the surfaces were supposed to have any values, and 

as the bands to which it relates arc of great interest, the reader 

may be pleased to sec a special investigation of the formula for 

the case of a plane mirror. 

Retaining the same notation as before, except where the con¬ 

trary is specified, let Z0, Elt be the feet of the perpendiculars let 

fall from Z, E on the plane of the dimmed surface, and let 

L0P = s, E0P — u. Let Jit be the retardation of a ray regularly 

refracted and reflected, scattered at emergence at P, and so 

reaching E\ li2 the retardation of a ray reaching E after having 

been scattered at P on entering into the glass, and let Rx — P2 = R. 

Let LSTPE be the course of the first ray, which emanates from 
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L, is regularly refracted at 8, regularly reflected at T, and 

scattered on emergence at P. The lines LS, ST, TP will evidently 

lie in the plane LL0P. Let <£, <f>' be the angles of incidence and 

refraction at S. We have 

Rt=LS + ^ST+PEy 

= c sec <jf> + 2/it sec <£' -f *J(h2 4- u2).(17), 

and 

c tan <f) + 2t tan <£' = s, sin <£ = /j, sin <f> .(18). 

The obliquity being supposed small, we may expand, and 

retain only the squares of small quantities, the terms thus neglected 

involving only fourth and higher powers. We get in the first 

place from (17) 

jR, = c + 2/*« + h + } + 2» + £).(19). 

But equations (18) give 

and substituting in (19) we get 

Ttx = c -f* Qfjut 4" A 4" 
flS2 

2 ()C6C 4~ 2£) 

/f2 
2A‘ 

To obtain P2, it will be sufficient to interchange c and A, 6* and 

u, since if we supposed the course of the ray reversed it would 

emanate from E, be regularly refracted and reflected, then 

scattered on emergence at P, and so would reach L. Inter¬ 

changing, subtracting, and reducing, we obtain 

R = t{h (fih +2t)~c(fxc+ 27)} .(20)' 
This formula is more general than (16), since no approximation 

has yet been made depending on the magnitude of t. In practice, 

however, t is actually small compared with c and h, so that we may 

simplify the formula by retaining only the first power of t, which 

reduces (20) to (16), inasmuch as 

u2 = x2 4- y2, and s2 = (x — a)2 4- (y - bf. 

11. Let us now proceed to apply the formula (16) to the 

explanation of the phenomena. In discussing this formula, it is 

to be remembered that x, y are the co-ordinates of the point of 

the mirror on which a fringe is seen projected. Since the direction 
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of the axis of y is disposable, we may make the plane of y, z pass 

through the luminous point, in which case b = 0, and 

/?-?')(a;i+yV) + 
2ax a? 

c~ c\ 
...(21). 

For a given fringe li is constant. Hence the fringes form a 

system of concentric circles, the centre of the system lying in the 

axis of x. If a be the abscissa of the centre 

ah? __ x / ah ah 

?~?“5i?U + c + A-< 
(22). 

Now ah (h — c)”1 and ah (h + c)™1 are the abscissie of the points in 

which the plane of the mirror is cut by two lines drawn through 

the eye, one to the luminous point, and the other to its image. 

Hence we have the following construction : join the eye with the 

luminous point and with its image, and produce the former line 

to meet the mirror; the middle point of the line joining tint two 

points in which the mirror is cut by the two lines drawn from the 

eye will be the centre of the system. 

Hence if the luminous point be placed to the right of the 

perpendicular let fall from the eye on the plane of the mirror, and 

between the mirror and the eye, the concavity of the fringes will 

be turned to the right. If the luminous point, lying still on the 

right, be now drawn backwards, so as to come beside the eye, and 

ultimately fall behind it, the curvature will decrease till the 

fringes become straight, after which it will increase in the con¬ 

trary direction, the convexity being now turned towards the right. 

This agrees with observation. 

12. The expression for li shews that the circle which forms 

the achromatic line of the system passes through the two points 

mentioned in the last paragraph but one. This is always observed 

to be true in experiment as far as regards the image, and is (bund 

to be true of the luminous point also when it is in front of the eye, 

so as to be seen along with the fringes, provided the fringes reach 

so far. 

Denoting by n{)X the value of li at the centre of the system of 

circles, taken positively, we get from (21) and (22) 

__ 
°~M^2~cr) 

n. (2»). 
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The numerical quantity n0 may conveniently be called the central 
order, since when it lies between i — ^ and % + where % is any 

integer, the colour at the centre belongs to the bright 'ring of the 

ith order. If v be the radius of the central fringe, v will be equal 

to the semi-difference of the quantities ah (h + c)"1 and ah (h — c)"1, 

whence 

v = 
ach 

Wr?- (24). 

Having found the centre of the system of circles and the pro¬ 

jection of the image, or the point where the line joining the eye 

and the image cuts the mirror, describe a circle passing through 

this projection. This will be the central line of the bright fringe 

of the order 0, and its radius will be equal to v. Now describe a 

pair of circles whose radii are to v as V(^o ± 1) to *Jn0. These will 

be the central lines of the two bright fringes of the first order, for 

the particular colour to which the assumed value of X relates. 

The central lines of the two bright fringes of the second order will 

be a pair of circles with radii proportional to \J(nQ + 2), and so on. 

The fringes will be broader on the concave than on the convex 

side of the central white fringe. When the fringes become 

straight, n0 becomes infinite, and the system becomes symmetrical 

with respect to the central fringe. This agrees with observation. 

13. When the luminous point is situated in a line drawn 

through the eye perpendicular to the mirror a — 0, and we have 

simply 

7l> _ (°2 ~ y) * 
- ficV + */)• 

In this case the achromatic line of the system is reduced to a point, 

and the rings are analogous in every respect to the transmitted 

system of Newton's rings. For the bright ring of the first order 

R=±X, and therefore the radius of the ring is equal to 

V/uX. ch 

which becomes infinite when c = h. Hence if the luminous point 

be at first situated in front of the eye, and be then conceived to 

move backwards through the eye till it passes behind it, the rings 

will expand indefinitely, and so disappear, and will reappear again 

when the luminous point has passed the eye. 
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14. All the preceding conclusions agree perfectly with ex¬ 

periment, so far as qualitative results are concerned; for I have 

not taken any measures. The change in the direction of cur¬ 

vature, which I had not noticed till it was pointed out by the 

formula, may be readily seen, when the flame of a candle is the 

source of light, by holding the candle at arm’s length nearly in 

front of the eye, but a little to the right, then drawing it back 

beside the eye, and finally holding it at arm’s length behind the 

head, and as nearly in a line drawn through the eye perpendicular 

to the mirror as the shadow of the head will allow. 

When the candle is held near the eye, a portion only of the 

circles can be seen; the circles are in fact reduced to circular arcs, 

and these arcs may even become perfectly straight. But when 

the candle is placed at a good distance from the eye, suppose 

half-way between the eye and the mirror, and a small piece of card 

is placed as a screen in front of the flame to keep off the glare of 

the direct light, the circles, or at least several of them, may be 

seen complete, except that it must be left to the imagination to 

fill them up where they are hid by the screen. In this way the 

manner in which the rings open out from the centre of the circles 

may be observed, though not for the first ring or two, which open 

out while the centre is hid by the screen. Instead of a candle 

with a screen, it is better to use the image of the sun in the focus 

of a small convex or concave mirror. 

15. The conclusion deduced from theory which was mentioned 

in Art. 13 cannot, of course, be compared with experiment directly. 

But the experiment may be successfully performed by substituting 

for either the luminous point or the eye a virtual image. Using 

for the luminous point the image of the sun in the focus of a small 

concave mirror, at the distance of some feet in front of a plane 

mirror of which the surface had been prepared with milk and 

water, I placed a-piece of plate glass between the mirrors, inclined 

at an angle of about 45°. The greater part of the light coming 

from the image of the sun was transmitted through the plate of 

glass; and on returning from the large mirror a portion of this 

light was reflected sideways, so that the rings could be seen by 

reflexion in the plate of glass without obstructing the incident 

light. The system of rings thus seen was very beautiful, and there 

was no direct light glaring in the eye, and yet no screen to hide 
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any part of the system. It was easy to know when the image of 

the eye in the inclined plate lay in a line drawn through the 

luminous point perpendicular to the plane mirror, by observing 

when the image of the luminous point seen by reflexion, first at 

the plane mirror, and then at the plate of glass, lay in the centre 

of the system of rings. Supposing the image to have this position, 

on moving the head sideways the opening out of the rings could 

be traced from its very commencement. By moving back the 

head so as to keep the image of the luminous point in the centre 

of the system of rings, it was easy to try the experiment to which 

Art. 13 relates, the virtual image of the eye being thus kept in a 

line drawn through the luminous point perpendicular to the 

mirror, and the eye moving relatively to the luminous point, 

which is as good as if the luminous point had moved while the 

eye remained fixed. I found, in fact, that on moving back the 

head the rings expanded till the bright central patch surrounding 

the image filled the whole field of view, and on continuing to move 

back the head the rings appeared again. In the position in which 

the central patch filled the whole field of view, the least motion of 

the eye sideways was sufficient to bring into the field portions of 

excessively broad coloured bands. 

Between the system of rings seen when the eye was respectively 

nearer to and further from the mirror than when in the position 

in which the rings became infinite, there was one difference which 

may here be mentioned. So long as the image occupied the 

centre of the systems, they were similar to each other; but when 

the head was moved sideways, the centre of the circles passed in 

the first case to the side of the image towards which the head was 

moved, and in the second case to the contrary side. This affords 

another way of comparing with experiment the result of theory 

already mentioned relating to the direction of curvature, and it 

will be readily seen that the result of experiment agrees with the 

prediction of theory. For, suppose the distance of the eye from 

the oblique plate less than that of the luminous point, so that the 

virtual image of the eye lies between the luminous point and the 

mirror, and let the eye move to the right. Then its virtual image 

moves to the left, and therefore, according to theory, the centre 

of curvature ought to fall to the left of the image of the luminous 

point, right and left being estimated with reference to an eye 
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supposed to occupy the position, of the virtual image of the actual 

eye. But on account of reflexion at the glass plate, there is 

reversion from right to left, and therefore to the eye in its actual 

position the centre of curvature falls to the right of the image of 

the luminous point, which agrees with observation. The ex¬ 

periments described in this article may be tried very well with the 

flame of a taper, but in examining what becomes of the rings when 

they expand it is more satisfactory to use sun-light. 

16. In describing the disappearance of the rings, I said that 

the central spot expanded till it filled the whole field. In truth, 

when the rings had expanded a faint luminous central spot of 

finite size remained visible, which was surrounded by a dark ring, 

and then a faint luminous ring. It would have been more correct 

to speak of the dark ring as faint, since these rings consisted 

merely in slight alternations of intensity in a generally bright 

field. These rings, however, had evidently nothing to do with the 

former rings, which had disappeared; for they continued to have 

the image of the luminous point for their centre when the head 

was moved to one side. They were doubtless of the same nature 

as those which are seen when a luminous point, or the flame of a 

candle, is viewed through a piece of glass powdered with lyco¬ 

podium seed, and arose from the interference of pairs of streams of 

light which passed on opposite sides of the globules of dried milk. 

I merely mention these rings lest any one in repeating the ex¬ 

periment should observe them, and mistake them for something 

relating to the colours of thick plates. 

17. The formula (21) determines the breadths of the several 

fringes, which are unequal, except in the case in which the eye 

and the luminous point are at the same distance from the mirror. 

It will be convenient, however, to investigate a simple formula to 

express what may be regarded as a sort of mean breadth. Let the 

mean breadth be defined to be that which would be the breadth 

of one fringe if the rate of variation of the order of a fringe, for 

variation of position in a direction perpendicular to the length of 

a fringe, were constant, and equal to the rate in the neighbour¬ 

hood of the projection of the image, and let /3 be this mean 

breadth. 

Putting y = 0 in (21), differentiating on the supposition that 

12 s. III. 
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B and x vary together, and after differentiation putting ah (h + c)'1 

for x, we find 

dR = ~dx; 
fieri 

and since, according to the definition of ft, X ldR = ft 1dx, we have 

/3 = 
fichX 
2 ta 

(25). 

When c = h the bands are straight, and of uniform breadth, 

that breadth being equal to ft; and when the bands are not very 

much curved ft may still be taken as a convenient measure of the 

scale of the system; but the formula (25) is not meant to be 

applied to cases in which the projection of the image of the 

luminous point falls at all near the centre of the circles. 

Section III. 

Rings formed by a curved mirror, and viewed directly by the 
eye, when the luminous point and its image are not in the same 
plane perpendicular to the axis. 

18. The rings and bands of which the theory has been con¬ 

sidered in the two preceding sections may be regarded as forming 

the two extreme cases of the general system. In the first case, 

the rings appear to have a definite position in space; in the second 

case, everything depends upon the position of the eye. These are 

the cases of most interest, but there are some properties of the 

general system which deserve notice. 

In order that rings may be thrown on a screen, it is necessary 

that the retardation of one of the interfering streams relatively 

to the other should be sensibly constant over the whole of the 

dimmed surface, or at least over a large portion of it. But when 

the rings are viewed directly by the eye, we are concerned with so 

small a portion of the dimmed surface, in viewing a given point of 

a ring, that the rings may be seen very well in cases in which 

they could not be thrown on a screen. Moreover, we have seen 

that even independently of the small size of the pupil, a portion 

at least of the system is seen distinctly when the image of the 
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luminous point is seen distinctly. Omitting further consideration 

of the conditions of distinctness, let us regard the eye as a point, 

and investigate the form and character of the rings. 

19. Let /, g, h be the co-ordinates of the eye. To find the 

retardation, it will be sufficient, as in Art. 9, to write f g, h for 

a\ b\ c, and take %, y to denote the co-ordinates of that point of 

the mirror on which a given point of a ring is seen projected. The 

whole retardation is the sum of the expressions in (5) and (11); 

and making the above substitution we find 

((m + by)\ ...(26). - “ {is (s - is) +mr- ~) <«+«} ■ -m- 
Hence the bands still form a system of concentric circles. If 

Yf Y be the co-ordinates of the centre of the system, 

V h \h pj c\o p) 7 

'" G-l)(i-?-D. 
and F may be written down from symmetry. 

The equations of a line joining the eye and the luminous point 

£ — 1“"^— £~~ c 
f—ct g — b h — c‘ 

At the point in which this line cuts the mirror £* = 0, or at least 

is a very small quantity, which may be neglected. Hence we 

have 

5_/ 

? = f-T .(28), 

from whence rj may be written down if required. If £1? rjx denote 

the co-ordinates of the point in which the line joining the eye and 

the image meets the mirror, £1? 971 may be obtained from rj by 

writing ax> bx, cx for a, 6, c, where av bx, cx denote the co-ordinates 

of the image. Observing that 

12—2 
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we find 

-A 
5-rn.« 

T H- hep 

The formulae (27), (28), and (29) shew that X is equal to the 

semi-sum of £ and and for the same reason Y is equal to the 

semi-sum of rj and Hence the geometrical construction given 

in Art. 11 for finding the centre of the system in the case of a 

plane mirror applies equally to a curved mirror, even when the 

curvatures of the two surfaces are different. Since the retarda¬ 

tion vanishes for the image itself, it follows that the achromatic 

line is a circle having the two points of intersection above men¬ 

tioned for opposite extremities of a diameter. 

20. It follows from the expressions for X and F, or from the 

geometrical construction to which they lead, that if the eye be not 

in the line joining the luminous point and its image, whenever it 

crosses either of two planes drawn perpendicular to the axis, and 

passing, one through the luminous point, and the other through its 

image, the centre of curvature of the bands moves off to an infinite 

distance, and the bands become straight, and then bend round the 

other way. 

When the eye coincides with the luminous point, ff g, h 

become equal to a, b, c, respectively, and 11 vanishes independently 

of x and y. The same takes place when the eye coincides with 

the image, since in this case 

f_ ci g __ b 1 1_2 

h c’ h e’ h c ~~ p ’ 

Hence, when the eye crosses either of the planes above mentioned, 

remaining in the line joining the luminous point and its image, 

instead of bands which become straight and then change curvature, 

we have rings which disappear by moving off' to infinity, and then 

appear again. 

I have verified these conclusions by experiment, substituting 

when necessary a virtual image of the eye for the eye itself, in the 

manner explained in Art. 15. The experiments embraced the 

following cases, in the description of which 0 will be used to 
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denote the centre of curvature of the mirror, F its principal focus, 

L the luminous point, and L3 its image. 

Concave mirror: L beyond 0. Eye (1) beyond L; (2) passing 

L\ (3) between L and L3; (4) passing Z3; (5) between L3 and 

the mirror.—Concave mirror: L between 0 and F. Eye (1) 

beyond L3; (2) passing L3; (3) between L3 and L; (4) passing L; 

(5) between L and the mirror.—Concave mirror: L between F and 

the mirror. Eye (1) beyond L; (2) passing L; (3) between L and 

the mirror.—-Convex mirror. Eye (1) beyond L; (2) passing L; 

(3) between L and the mirror. 

The mirrors employed wore formed, as usual, with surfaces of 

equal curvature. When the observation was made directly, there 

was no difficulty in determining at which side of the line joining 

the luminous point and its image the eye lay, and consequently in 

deciding whether the direction of curvature agreed with theory or 

not. When the observation was made by reflexion in a plate of 

glass, the eye was placed so that its virtual image fell in the line 

LL3 by moving the head till the image of the luminous point was 

seen in the centre of the system of rings. The radii of the two 

surfaces of the mirror being the same, or only differing by a small 

quantity comparable with the thickness of the glass, the surfaces 

may be regarded as forming a pair of concentric spheres; and 

therefore, everything being symmetrical with respect to the line 

joining L and Za, when the image of the eye is in this line the 

bands necessarily become rings, having the image for their centre. 

Hence the theory of the rings or bands, which it is the object of 

the experiment to compare with observation, is not involved in 

the assumption that the image of the eye was in the line LL3 
when the system of rings appeared arranged symmetrically around 

the image of the luminous point. By moving the head a little to 

one side, and observing whether the centre of the system of rings 

then lay to the right or left of the image, it was easy to compare 

theory with observation as to the direction of curvature. 

There was no difficulty in telling when the virtual image of 

the eye coincided with the image of the luminous point, since in 

that case the latter image expanded indefinitely. The phenomena 

observed offered no direct test of the coincidence of the virtual 

image of the eye with the luminous point, except what arose from 

the appearance of the bands themselves. I did not think it worth 
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while to take any measures, hut contented myself with observing 

that when the eye was in the expected position, or thereabouts, 

the rings expanded indefinitely when the image was kept in the 

centre of the system, and the bands formed when the image was 

allowed to pass to one side changed curvature as the head moved 

backwards and forwards. 

21. The bands may be considered as completely characterized 

by the position and magnitude of the achromatic line, and by the 

value of the numerical quantity which has been already defined 

as the central order. A simple geometrical construction has 

already been given for determining the achromatic circle. Sub¬ 

stituting X, 7 for os, y in (26), and denoting the resulting value of 

B by — we find 

t \h \c p 

\h cJ \h c p 

b( 1_1 
c \h p ,...(30). 

In the application of this formula n0 is to be taken positively. 

Denoting as before the radius of the achromatic circle by v, we 

find from (28), (29), and the formulae thence derived which give 

V> Vv 

When the bands are nearly straight, instead of the central 

order it is more convenient to consider the mean breadth of a 

fringe. According to the definition of ft, 

v+ ftdiiQ : v :: V(^o+ dn^) : \/n0, 

since the radii of the several rings arc as the square roots of their 

orders. We have therefore 

v 

2 n0 
(32). 

22. In the case of a concave mirror, if a small flame be so 

placed as to coincide with its image, and be then moved a little 

towards the mirror, or from it, it is possible to see a single 
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system of rings with both eyes at once, if the eyes be situated 

symmetrically with respect to the flame and its image. The rings 

so seen appear to be situated between the flame and its image. 

Let E be the right and E' the left eye, and suppose the head 

so placed that the line LL3 bisects EE' at right angles. On 

account of the similarity of position of the two eyes, the system of 

rings seen with one eye must be exactly like the system seen with 

the other, and therefore, in order that a single system may be seen 

with both eyes at once, it is necessary and sufficient that the axes 

of the eyes be directed to the centres of the respective systems. 

It has been shewn already that the projected place on the mirror 

of the centre of the system seen with either eye, suppose the right 

eye, bisects the line joining the projected places of the flame and 

its image. On account of the supposed smallness of the obliquities, 

this is the same thing as saying that the centre of the system seen 

by the right eye appears in the direction of a line bisecting the 

angle LELr Similarly, the centre of the system seen by the left 

eye appears in the direction of a line bisecting the angle LE'LZ. 

In order therefore that a single system only may be seen, the 

axes of the eyes must be made to converge to the point in which 

the bisecting lines intersect LL<]} and therefore the system of rings 

will appear to be situated between the flame and its image. 

Since the angles LELZ, LE' 1are bisected by- the axes of the 

eyes when the system of rings is seen single, it follows that the 

flame and its inverted image are each seen double, in such a 

maimer that the erect flame seen by either eye is superposed on 

the inverted flame seen by the other. This agrees with observa¬ 

tion : in fact, I was led by experiment to the above rule for 

determining the apparent position of the rings before I had deduced 

it from theory. The observation was made when the flame was in 

front of its image, in which case the position of the rings in space 

appears more definite than when the image is in front of the flame. 
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Section IV. 

Straight bands formed by a plane mirror at a considerable 
angle of incidence, and vieived by the eye, either directly, or through 

a telescope. 

23. As the angle of incidence increases the bands become 

finer and finer, and after they have become too fine to be dis¬ 

tinguished by the naked eye they may still be seen through a 

telescope, provided the source of light be sufficiently small. When 

the source of light was the image of the sun in a lens of short 

focus, I saw traces of the bands when the angle of incidence was 

about 24° 50', but they were not at all well formed beyond an angle 

of about 10° 40', after which they began to bo confounded with rays 

which shot in all directions from the image of the luminous point. 

With a mirror made of thinner glass they would probably have 

been visible at a still larger angle of incidence. The theory of 

Section II. sufficiently explains their origin and general character; 

but inasmuch as the obliquity was supposed small in investigating 

the formulae of that section, it may be desirable to obtain an 

expression for their breadth, in which no approximation shall be 

made depending on the smallness of the obliquity, in order to 

meet the case of any future measures which may be taken at a 

large angle of incidence. 

24. The notation being the same as in Art. 10, we have 

merely to employ the equations (17) and (L8), without making 

any approximation depending on the smallness of <fi and <£'. The 

thickness t may still be supposed small compared with c and h. 

Neglecting t for a first approximation, and then substituting in the 

small terms the values of tan </>' and sec <£' got from the first 

approximation, we find 

-ft, = VFT7+ V3F+7* + 21 t^• 
V o H~ a 

Interchanging c and h} s and u, and subtracting, we get finally 

.(33>- 
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25. For the achromatic line jB = (), and therefore s : c :: it : h. 

Hence s is to u in the constant ratio of c to and therefore, by a 

well-known geometrical theorem, the achromatic curve is a circle, 

having its centre in the line L0E0 produced, and cutting this line 

in the two points in which it is divided internally and externally 

in the given ratio. The latter of these points may be formed by 

producing LE to meet L0E0 produced, and the former by prod ucing 

LLq till the produced part is equal to the line itself, and then 

joining the extremity of the produced part with E. Hence the 

construction given in Art. 11 for determining the bright band of 

the order zero continues to hold good whatever be the angle of 

incidence. 

26. In the neighbourhood of the image the bands are sensibly 

straight, being arcs of circles of very large radius. To find the 

mean breadth of a band, it will be sufficient to suppose the point 

P to lie in the line L0EiU to differentiate equation (88) making 

R, s, and u vary together, while s + n remains constant, replace 

^ by ”, and after differentiation take a and s to refer to the 
du J /3 

small pencil, regarded as a ray, by which the image is seen. If 

i be the angle of incidence, we may put after differentiation 

s = c tan i, u = h tan i. We thus find 

2t (c -I- h) sin i cos;j i 

On account of the largeness of the angle of incidence, the 

breadth of the bands is sensibly uniform, and therefore /3 may be 

regarded as the breadth of any one band. It is to be remembered 

that /3 denotes the linear breadth of a band as seen projected on 

the mirror. If we denote the angular breadth by w, we have on 

account of the smallness of vr. 

/3 cos i _ Xc Vfju2, — sina i 

h sec i t (c -f h) sin 2i 
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Section Y. 

On the nature of the defection of the two interfering streams 

from the course of the regularly refracted light. 

27. It was suggested to me by a friend, to whom I was 

shewing some of the experiments described in this paper, that 

in order to see bands or rings of the same nature it would probably 

be sufficient to dim the two faces of a plate of glass, and view a 

luminous point through it. But having prepared the two faces 

of a piece of plate glass with milk and water in the same manner 

as for mirrors, taking care to treat the two faces as nearly as 

possible alike, on viewing a luminous point through the plate I 

found not the slightest trace of the rings or bands, whatever were 

the distance of the eye from the plate. There were indeed one or 

two indistinct rings surrounding the luminous point; but these 

were of a totally different nature, being analogous to the rings 

seen with lycopodium seed, and arising from the interference of 

pairs of streams which passed on opposite sides of the milk 

globules. There was no difficulty in distinguishing them from the 

system sought for, since they continued to have the luminous 

point for their centre when the plate was inclined to the line 

joining that point with the eye. The absence of rings or bands 

indicates therefore that the streams scattered at the opposite sides 

of a plate are incapable of interfering. 

The rays scattered so as to make infinitely small angles with 

the regularly refracted rays belong to a point in the bright band 

of the order zero, and are therefore brought to a focus on the 

retina when the luminous point is seen distinctly. The same 

must be at least very approximately true for neighbouring points 

of the system of rings, did any such exist, and therefore a portion 

at least of the system would be seen distinctly when the luminous 

point was seen distinctly. The distances of the luminous point 

from the glass plate, and of the glass plate from the eye, were 

comparable with the corresponding distances in the experiment 

with a plane mirror, and the thickness of glass was comparable 

likewise; and with a mirror the bands are seen with the utmost 

facility within wide limits of the thickness of the glass, and of the 

distances of the luminous point and of the eye from the mirror. 
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But to prevent any doubt as to whether the bands might not 

have been too small to be seen when formed by transmission, I 

have calculated the retardation in the same manner as in Art. 10. 

The result is 

x—nhafv+a 
where R is the retardation of the stream scattered at emergence 

relatively to that scattered at entrance, c is the distance of the 

luminous point from the plate, h that of the plate from the eye, t 

the thickness, and p, the refractive index of the plate, and cc, y are 

the co-ordinates of the point in which the plate is cut by any small 

pencil (regarded as a ray) which enters the eye, and are measured 

from the point in which the plate is cut by a line joining the 

luminous point and the eye, a line to which the plane of the plate 

is supposed to be perpendicular. On substituting numerical values 

in the above formulae, it appeared that the dimensions of the rings 

were such that they could not possibly have escaped notice had 

they really been formed. The non-appearance of the rings leads to 

the following law. 

In order that two streams of scattered light may he capable of 

interfering, it is necessary that they should be scattered, in passing 

and repassing, by the same set of particles. Two streams which 

have been scattered by two different sets of particles, although they 

may have come originally from, the sanie source, behave with respect 

to each other like two streams coming from different sources. 

According to this law, in all calculations relating to the colours 

of thick plates, we must consider the elementary system of rings 

or bands corresponding to each element of the dimmed surface of 

the mirror, and then conceive these elementary systems superposed. 

We must not compound the vibrations corresponding to streams 

which have been scattered by different elements, and then find the 

resulting illumination. 

28. The reason of this law will bo apparent if it be considered 

that particles of dust, &c. small as they may be, are usually large 

in comparison with waves of light, so that the light scattered at 

entrance, taken as a whole, is most irregular; and the only reason 

why regular interference is possible at all is, that each particle of 

dust acts twice in a similar manner, once when the general wave is 

going, and again when it is returning. 
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To examine more particularly the mode of action, let P be any 

particle of dust, and consider a wave of light which emanates from 

any particular element of the flame or source of light whatever it 

be. When this wave reaches P and proceeds along it, a portion is 

reflected externally in all directions, and with this we have nothing 

more to do. When the wave has just passed P, we may conceive 

it as having in a certain sense a hole in its front, corresponding in 

size to P, that is to say, there will be a certain portion of the 

surface forming the general front of the wave where the ether is 

quiescent. As the wave proceeds, the disturbance diverges from 

the neighbourhood of this hole by regular diffraction, and when 

the disturbance reaches the quicksilvered surface the general wave 

suffers reflection, as well as the secondary waves, which, having 

diverged from the neighbourhood of P, do not constitute a wave 

with an unruffled front, in consequence of the absence of secondary 

waves diverging from the hole, which would be necessary to com¬ 

plete a wave with a front similar to that of the original wave. If 

we consider any particular diffracted ray, the chances are that 

on its return it will get out by regular refraction, since the dust is 

supposed to cover a moderate portion only of the first surface of 

the mirror. A portion of the original wave which entered the 

glass by regular refraction at a certain distance from P, after 

regular reflexion is incident on P from within. The chances are 

that the portion thus incident on P does not correspond to a spot 

where the front of the wave is materially ruffled by diffraction at 

entrance, so that in considering the wave incident on P we may 

neglect the previous diffraction. The wave, then, just after 

refraction, is incident on P, by which a portion is reflected back 

again in various directions, with which we have nothing to do, 

a portion, it may be, is refracted or absorbed by P, and the 

remainder passes on. The wave so passing on diverges from 

the neighbourhood of P by ordinary diffraction, and the two 

diffracted streams, having been diffracted in a similar manner by 

the same particle, are in a condition to interfere. The similarity 

of the two diffractions will be considered in more detail in the 

next section. 

Now while the light is still in the glass conceive the particles 

of dust removed, and then replaced at random. The chances are 

that no particle will now occupy the position formerly occupied by 
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P. Let P' be the particle nearest to the former position of P; 

and, to make a supposition as favourable as possible to interference, 

let P' be the very particle P moved a little along the surface 

without rotation. Although the interval of retardation R of the 

two streams diffracted by P in its first position, and reaching a 

given point of space, is sensibly the same as the interval of 

retardation of the two streams diffracted by P in its second 

position, and reaching the same point, yet this interval would be 

changed altogether were the transference of position to take place 

during the interval of time which elapses between the departure 

of the wave from P and its return after reflexion, as may very 

readily be seen. The amount, too, by which the interval of 

retardation would be changed would vary in an irregular manner 

from one particle to another, and therefore no regular interference 

would take place. Now the purely ideal case just considered is 

precisely analogous to the case of actual experiment when a 

luminous point is viewed through a plate of glass with both faces 

dimmed, since the particles on one face have no relation to those 

on the other. We ought not therefore in such a case as this to 

expect to see rings or bands. 

29. According to the formula (35), the angular breadth of one 

of the bands formed by a plane mirror becomes considerable when 

i becomes nearly equal to 90°, so that, apparently, bands ought to 

be visible at a large angle of incidence. But if the courses of the 

two streams scattered by the same set of particles be traced, it will 

be found that they are so widely separated that, for various 

reasons, no regular interference can be expected to take place. 

Accordingly, the bands are not seen at a large angle of incidence. 

30. In the preceding sections I have spoken of the light by 

which the rings are formed as having been Mattered at the dimmed 

surface. And so if really is, if by that term we merely under¬ 

stand deflected from the*, course if would have followed according 

to the regular law of refraction. But according to the explanation 

given in the preceding article the light is not scattered, in the 

strict sense of the term, but regularly diffracted. Scattered light 

is, strictly speaking, such as that by which objects arc commonly 

seen, or again, such as that which is transmitted through white 

paper and similar substances. The preceding view of the nature 
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of the light by which the rings are formed is confirmed by the 

results of several experiments. 

In the experiments of Sir William Herschel and M. Pouillet 

mentioned in the introduction, as well as in some of those of the 

Duke de Chaulnes, rings of the same nature as those formed by a 

tarnished mirror of quicksilvered glass were produced in cases in 

which the deflection of the light from its regular course was in¬ 

contestably of the nature of diffraction. From the similarity of 

effect we have a right to infer a probable similarity of cause, unless 

such a supposition should entail some peculiar difficulty, which 

does not seem to be the case in the present instance, but quite 

the contrary. 

31. Having cleaned the surface of a concave mirror which had 

been employed in forming the bands, I rubbed a little tallow on it, 

and then wiped the mirror in one direction with a handkerchief, 

so as to have a finely striated tarnish on it. The tarnish was not 

sufficient to cause much obscurity; but the image of a candle seen 

in the mirror was accompanied, as is usual in such cases, by two 

tails of light, which ran out in a direction perpendicular to the 

striae. Having placed a small flame in the centre of curvature 

of the mirror, I found that the rings were formed with great 

brilliancy where they were intersected by the tails of light, but 

elsewhere they were almost wholly invisible. 

Now the tails of light are known to be a phenomenon of 

diffraction: the striated tarnish may in fact be regarded as a sort 

of irregular grating, and the tails of light are of the nature of 

Fraunhofer’s spectra. If a tarnish in general were capable of 

producing rings independently of diffraction, there appears no 

reason why a tarnish of tallow should not be capable; for the 

particles of tallow are as fine as those of most other kinds of 

tarnish. But if in the case of a tarnish of tallow the deflection of 

the light from its regular course be not a phenomenon of diffrac¬ 

tion, there appears no reason why the rings should be confined to 

the tails of light in the experiment described above. 

32. The phenomena of polarization seem however to lead to a 

crucial experiment for deciding whether the deflection of the light 

from its regular course, which enables the rings to be formed, be 

a phenomenon of diffraction, or of scattering in the strict sense of 
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the term. When polarized light is scattered, as for example when 

it is reflected from or transmitted through white paper, it loses its 

polarization, but when polarized light suffers regular diffraction it 

retains its polarization. 

Having placed a small flame near the centre of curvature of a 

concave mirror, of which the surface had been prepared with milk 

and water, I placed a NicoPs prism close to the flame, so as to 

polarize the light incident on the mirror. On examining the rings 

with another Nicol’s prism, they proved to be perfectly polarized. 

33. It may not be considered out of place here to point out 

what appears to be the cause of a phenomenon observed by M. 

Pouillet. In an experiment in which rings were occasioned simply 

by the straight edge of an opaque body held in front of a metallic 

speculum, it was found that they were formed distinctly in only 

one half of their circumference. The reason of this appears to be 

simply as follows. As the waves of light pass the diffracting edge 

in their progress towards the mirror, those rays which are diffracted 

inwards, so as to enter the geometrical shadow, after being 

regularly reflected at the mirror fall upon the opaque body, by 

which they are stopped. As these rays are required for the 

formation of that half of the system which lies on the same side 

as the opaque body, the other half only is well formed. The first 

half may be formed obscurely by a few rays which are diffracted 

in the required direction at such a distance from the edge that on 

their return they pass clear of the edge, and so proceed to interfere 

with other rays diffracted by the edge on the return of the general 

wave. 

Section VI. 

Investigation of the angles of diffraction. 

34. Something yet remains to be done in order to complete 

the theory of these rings and bands, namely, to compare the 

two diffractions which a wave of light experiences at its entrance 

into the glass and on its return, respectively. For the phase and 

intensity of a ray diffracted in a given direction depend altogether 

on the circumstances under which the diffraction takes place; and 
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were these circumstances materially different in the case of the 

two diffractions above mentioned, the rings might be modified, or 

might even disappear altogether. 

Let us consider first the case of a concave mirror when the 

luminous point and its image are in the same plane perpendicular 

to the axis. In this case, if we consider any point P on the 

dimmed surface, and any point M in the plane of the rings, the 

angle of diffraction for the ray diffracted at emergence will be 

i3PIf*. For the ray diffracted at entrance, the angle of diffraction 

measured in air will be LPMS, that is to say, MZP is the course of 

a ray in air which by regular refraction into glass would be 

brought into the direction of the ray diffracted at P. If G be the 

intersection of the axis and the plane of the rings, G will be the 

centre of the system, and the middle point of both the lines LLZ 

and MMZ, and therefore LMZ will be equal and parallel to MLZ. 

Hence, on account of the smallness of the obliquities, the angles of 

diffraction LPMZ, LSPM are sensibly equal, and their planes 

sensibly coincident, but the deviations take place in opposite 

directions. But between the two diffractions the light undergoes 

reflexion; and since the mutual inclination of two rays is reversed 

by reflexion, we must conceive the direction of deviation reversed 

in the first diffraction, in order to compare the circumstances of 

the two diffractions. Allowing for this reversion, we see that not 

only are the angles of diffraction sensibly coincident, but the 

directions of deviation are the same. 

Accordingly, the interference connected with diffraction, and 

the interference which gives rise to the colours of thick plates, 

take place independently of each other. For, let /, P denote- 

the vibrations at M due to two streams of light diffracted by any 

particle of dust P on entering the glass, and passing on opposite 

sides of P; let J, J' denote the vibrations due to two streams 

diffracted at emergence, and passing on the same sides of P as 

I, I\ respectively ; and let / -t- P denote the resultant of I and P, 

and similarly in other cases. Let % be the difference of phase 

corresponding to the retardation P, and w the difference of phase 

of J, P, and therefore also of P, P, on account of the similarity of 

* In speaking of angles of diffraction, such as LSPM, I shall distinguish between 
LJPM and MPL8, using the former notation to denote that the deviation takes 
place from PL.A to PM, and the latter to denote that it takes place from PM to PL. 
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the two diffractions. We may represent the phases of the four 

vibrations by # + % + «, 0 + %, 0 + 0, respectively. Writing 

down for greater clearness the phases along with the symbols of 

the vibrations, we may express the resultant of the whole four 

vibrations by 

(Id+x+oi 4* I'd+x) + ^*)• 

Moreover, on account of the similarity of the two diffractions, the 

coefficients of the two vibrations 7, J may be supposed equal to 

each other, and likewise those of the vibrations 7', J\ It is true 

that the diffractions take place at different distances from the 

source of light, on account of the finite thickness of the glass, but 

the difference of distance compared with either of the absolute 

distances is a small quantity of the order t, which may be 

neglected. Hence the two resultants 7 + 7', J+J' belong to a 

diffraction ring of the same kind, and in fact differ in nothing but 

in phase; the phase of the former exceeding that of the latter by 

Hence the two kinds of interference go on independently of 

each other. It is true that in the preceding reasoning we have 

considered only two interfering streams 7, 7', and that in calcula¬ 

tions of diffraction we have to consider the resultant of an infinite 

number of streams. But the same reasoning would evidently 

hold good whatever were the number of streams 7, 7', 7"... with 

their correspondents J, J\ J" ... 

35. When an irregular powder, or anything of the kind, is 

used to scatter the light, no diffraction rings are visible, because a 

given point M in the plane of the rings would belong to a diffrac¬ 

tion ring of one kind so far as one particle of dust was concerned, 

and to a diffraction ring of another kind so far as another such 

particle was concerned; and therefore nothing is seen but the 

interference rings belonging to thick plates. But when lycopodium 

seed is used the lycopodium rings and the interference rings are 

seen together. The former are always arranged symmetrically 

around the image, as ought to be the case, since they depend only 

on the angle of diffraction, which is the same for all points of a 

circle described round 7S as a centre. By this circumstance they 

are at once distinguished from the latter, the centre of which falls 

half way between the luminous point and its image. On scattering 

some lycopodium seed on a concave mirror, and placing a small 

flame near the centre of curvature, at such a distance laterally 

13 s. III. 
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that the two systems of rings intersected each other, I found in 

fact that whatever colour appeared in that part of a lycopodium 
ring which lay outside the interference system was predominant 
in the latter system throughout the remaining part of a circle 
described round the image. When the flame was placed in the 

axis, an abnormal inequality in the brilliancy of the rings of the 
interference system became very apparent. This inequality was 

easily seen to correspond to the alternations of intensity in the 

lycopodium system. 

36. Let us now turn to the general case, in which the luminous 

point and the eye are supposed to have any positions, either in the 
axis or not far out of it. 

The equations of the lines PL:)> PE are 

g-ff'a = v-K ^ 
b.A-y c3 ’ 

VjZLff = Z-h 
f-x g-y h 

Let the small angle LZPE be projected on the planes of zx and 
zy, and let a, ft be the projections, measured positively towards 
x, y, and from PL. towards PE. The preceding equations give 

x — tu x — f 
« =--y , 

c;! h 

which becomes, when a. and c:> arc expressed in terms of a and c, 

1 
c 

1\ a f 
d‘e+o+i (3C> 

If a, ft' be the projections of the angle of diffraction LPE3, 
(where Es denotes the image of the eye,) we may find a', ft' from 
a, ft by interchanging a, b, c, and /, g, h, and changing the sign. 
If now we change the signs of the resulting expressions, in order 
to allow for reflexion at the back, and so compare the circum¬ 
stances of the two diffractions, we shall obtain the very same 
expressions as at first, since (36) and the corresponding expression 
which gives ft remain unchanged when a, b, c and f, g} h are 
interchanged. Hence in the general case, as well as in the par¬ 
ticular case first considered, the two diffractions take place under 
the same circumstances, and therefore the interference rings are 
not affected by any irregularities which may attend the mode 
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of diffraction. Furthermore, should the diffraction take place with 

a certain degree of regularity, as in the case of lycopodium seed, 

so as to exhibit rings or fringes in the aggregate effect of all the 

particles which send light into the eye in such a direction as to be 

brought to a given point on the retina, the diffraction rings and 

the interference rings are seen independent of each other* 

37. If 8 be the small angle of diffraction, S2 = a2 + /32, whence 

from (36) and the other equation which may be written down 

from symmetry, 

l _J_s)a:+;+{} +{^_r s>+;+!F <87>- 

Hence the loci of the points for which the angle of diffraction 

has given values form a system of concentric circles. Referring to 

(29), ^e see that the co-ordinates of the centre of the system are 

%v t)1, so that the centre is situated in the point in which the 

mirror is cut by the line joining the eye and the image of the 

luminous point. This result might have been foreseen, since 8 

vanishes only for the regularly refracted light, and this enters the 

eye only in the direction of the line joining the eye and the image. 

By introducing the co-ordinates the equation (37) may be 

put under the form 

S2 = g+J-2)2{(.*-^)2 + (2/-^)2}.(38). 

Since the diffraction becomes very sparing when the angle of 

diffraction becomes at all considerable, it follows that the inter¬ 

ference rings are but weak at a considerable angular distance from 

the imago of the luminous point. This agrees with observation. 

In the experiment in which a flame is placed in the centre of 

curvature of a concave mirror, and is then moved to one side, 

although the rings are symmetrical with respect to the flame and 

* From some rough experiments which I have myself made with gauze stretched 
in front of a concave glass mirror, of which the surface was clean, I am inclined to 

think that the squarish rings observed by the Duke de Chaulnes in the experiment 
with muslin, already mentioned, were due to a combination of the coloured rings 
of thick plates, and of the appearance produced by a cross-bar grating. If so, the 
independence of the two systems would have been rendered evident by slightly 
inclining the mirror, when the latter system would have had the image for its 

centre, whereas the former would have had for its centre a point situated midway 

between the luminous point and the image. 

13—2 
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its image, so far as regards their forms and colours, they are not 
symmetrical so far as regards their intensities, but are decidedly 

more brilliant on the side of the image than on the side of the 
flame itself. That this is not due merely to the glare of the direct 
light, may be proved by holding a small object in front of the 
flame, so as to screen the eye from the direct light, when the 
rings, though better seen than before in the neighbourhood of the 
flame, are still much weaker than on the opposite side, if the 
distance of the flame from the axis is at all considerable. For the 

same reason, in the case of a plane mirror, when the luminous 

point is placed a good distance in front of the eye, so that the 
rings do not run out of the field of view, they cannot be traced 

throughout the whole extent if the angular distance between the 

luminous point and its image be too great, but only throughout 

a portion, more or less considerable, on the side of the image. 

38. In the case of a concave mirror when the luminous point 
is not far from the centre of curvature, and the rings are viewed 
by an eye placed at no great distance off, the first factor in the ex¬ 

pression for 82 (equation 38) is not large, and the angle of diffraction 
does not increase rapidly in passing away from the image. In the 
case of a plane mirror p = oo, and if we suppose c and h equal to 
what they were in the former case, or thereabouts, in order to 

make the two cases comparable in every respect except the 
curvature of the mirror, the factor in question, though larger than 
before, is still sufficiently small to prevent S from increasing very 

rapidly on receding from the image. Accordingly, in both these 
cases, the rings and bands are seen with brilliancy at a considerable 
angular distance from the image. But in the case of a convex 

mirror of considerable curvature p is negative, and not large, so 
that the factor in the expression for S2 becomes considerable, and 
accordingly the angle of diffraction increases rapidly on receding 

from the image. I found, in fact, that such a mirror was 

peculiarly ill suited for producing rings or bands, inasmuch as 
only a comparatively small portion of the system usually seen was 
visible, namely, the portion which lay in the immediate neighbour¬ 
hood of the image. 



[From the Report of the British Association for 1851, Part n. p. 14.] 

On a new Elliptic Analyser. 

After alluding to various methods which had been employed 

in investigating experimentally the nature of elliptically-polarized 

light, that is to say, the elements of the ellipse described, the 

author exhibited and described a new instrument which he had 

invented for the purpose. In its construction he had aimed at 

being in all important points independent of the instrument- 

maker, assuming nothing but the accuracy of the graduation. 

The construction is as follows:—A brass rim, or thick annulus, 

is fixed on a stand, so as to have its plane vertical. A brass circle, 

graduated to degrees, turns round within the annulus, and the 

angle through which it is turned is read by verniers engraved on 

the face of the annulus. The brass circle is pierced at its centre, 

and carries on the side turned towards the incident light a plate 

of selenite, of such a thickness as to produce a difference of retard¬ 

ation in the oppositely polarized pencils amounting to about a 

quarter of an undulation for rays of mean refrangibility. On the 

side next the eye the brass circle carries a projecting collar, 

and round this collar there turns a moveable collar carrying ver¬ 

niers, and destined to receive a NicoPs prism. 

The observation consists in extinguishing the light by a com¬ 

bination of the two movements. The retarding plate converts the 

elliptically-polarized light which has to be examined into plane- 

polarized, and this plane-polarized light is extinguished by the 

NicoPs prism. There are two distinct positions of the retarding 

plate and the NicoPs prism in which this takes place. In each of 

these principal positions the retarding plate and the NicoPs prism 
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may be reversed (i. e. turned through 180°), and the means of the 

readings in these four subsidiary positions may be taken for greater 

accuracy. The readings of the fixed and moveable verniers in each 

of the two principal positions are four quantities given by obser¬ 

vation, which determine four unknown quantities, namely, (1) the 

index error of the fixed verniers, or, which comes to the same, the 

azimuth of the major axis of the ellipse described by the particles 

of ether, measured from a plane fixed in the graduated circle; (2) 

the ratio of the axes of the ellipse; (3) the index error of the 

moveable verniers; (4) the retardation due to the retarding plate. 

The unknown are determined by the known quantities by certain 

simple formulae given by the author. 

Let these unknown quantities be denoted by I, tan sr, i, and p, 

respectively, the latter being reckoned as an angle, at the rate 

of 300° to an undulation. Let li, r be the readings of the fixed 

and moveable verniers respectively in one of the principal posi¬ 

tions, B!, r the corresponding readings in the other; then 

r R' + R . r' + r. 
1 9 ? ^ 9 > 

sin (?•' — r) 

sin" (jK' — R); 

tan (?■' — r) 
tan {li' — R) ’ 

The author stated that he had made a good many observations 

with this instrument for the sake of testing its performance, and 

that he had found it very satisfactory. Inasmuch as light is not 

homogeneous, the illumination never vanishes, but only passes 

through a minimum, and in passing through the minimum the 

tint changes rapidly. This change of tint is at first somewhat per¬ 

plexing ; but after a little practice, the observer is able to point 

mainly by intensity, taking notice of the tint as an additional 

check against errors of observation. The accuracy of the observa¬ 

tions is a little increased by the use of certain rather pale coloured 
glasses. 

To give an idea of the degree of accuracy of which the instru¬ 

ment is susceptible, suppose the ratio of the axes of the ellipse 

described to be about 3 to 1. In this case the author found that 

the mean error of single observations amounted to about a quarter 

or the fifth part of a degree in the determination of the azimuth, 

three or four thousandths in the determination of the ratio of the 
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minor to the major axis, and about the thousandth part of an 

undulation in the determination of the retardation. 

On account of the accuracy with which the retardation is de¬ 

termined, and the largeness of the chromatic variations to which it 

is subject, the instrument may be considered as determining, not 

only the elements of the ellipse described, but also the refrangibi- 

lity of the light employed, or its length of wave, which corresponds 

to the refrangibility. The author stated that the error of the thou¬ 

sandth part of an undulation, to which the determination of the 

retardation was subject, corresponded to an error of only the twen¬ 

tieth or thirtieth part of the interval between the fixed lines 

D and E of Fraunhofer. 

[Apart from the details of construction of the instrument, the 

distinctive feature of the method of observation here described 

consists in regarding the retardation due to the plate as an un¬ 

known quantity, which is eliminated by the method of observation. 

The author was not aware when the paper was communicated to 

the British Association that he had been anticipated in this by 

Mac Cullagh. (See Proceedings of the Roycd Irish Academy, Vol. 

II. p. 384, or Collected works of Mac Callagh, p. 239.) Mac Cul- 

lagh’s actual observations were made with a Fresnel’s Rhomb, not 

a retarding plate, but of course the principle is the same in the 

two cases. 

In the use of the instrument here described, the observer has 

got to extinguish the transmitted light, or in case the incident 

light used be not homogeneous, to reduce it to a minimum, by the 

alternate employment of the two angular motions of which such an 

instrument must be susceptible. 

In designing the instrument, the choice of the two angular 

motions which shall be independent of each other is not altogether 

a matter of indifference. It might have been constructed either 

(a) so that the Nicol’s prism and the retarding plate should rotate 

independently, or (6) so that the prism and plate should rotate to¬ 

gether and the prism independently, or (c) so that the prism and 

plate should rotate together and the plate independently. It is 

evidently desirable that in adjusting one of the rotations so as to 

reduce the intensity of the transmitted light to a minimum the 

adjustment of the other should not be much put out. 
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Let 0 be the azimuth of the plane of polarization of the light 

transmitted by the Nicol, measured from a fixed direction, (j> that 

of one of the neutral axes of the plate when the incident light, sup¬ 

posed to be homogeneous and perfectly elliptically polarized, is 

wholly extinguished, 0 + 80, <j> + 8(j) the actual azimuths in the 

course of an observation. In the true positions of the plate and 

Nicol, the elliptically polarized light presented for observation 

is converted by the plate into plane-polarized, the plane of polari¬ 

zation having the azimuth 0. In consequence of the errors of 

azimuth 80, 8<j>, the light falling on the Nicol has a component 

polarized perpendicularly to the azimuth 0 + 80. Let us deter¬ 

mine the intensity (Q) of this light as a function of the errors of 

pointing. 

Let 0, E denote the neutral axes of the retarding plate, N the 

plane of polarization of the light transmitted by the Nicol, all 

in the true positions, O', E', N' the same in the actual positions, F 
a plane perpendicular to N'. Let us take the intensity of the 

elliptically polarized light presented for observation as unity, which 

may also be taken as the intensity of the light falling on the 

Nicol, whatever be its azimuth, since the small loss by reflection at 

the surfaces of the plate is almost rigorously the same for the two 

components, and we are only concerned with the relative intensi¬ 

ties. In the true positions, light of intensity 1 polarized in the 

plane N falls on the Nicol; and if we suppose the direction of this 

light reversed until it has passed through the plate, substituting 

in the plate acceleration for retardation, and then reverse the 

direction again, we shall obtain the light presented. This incident 

light is now to be supposed to fall on the plate and Nicol in their 

actual, not their true positions. 

The light, whether reversed or direct, falling on the plate must 

be resolved into its components polarized along the neutral axes, 

and these again must be resolved so as to retain the components 

polarized in the plane F. The four components with which we 

are concerned may conveniently be designated as NOO'F, NOEF, 
NEOF', NEE'F, from their successive planes of polarization. 

The magnitude of each component will be got by taking the pro¬ 

duct of the cosines of the successive differences of azimuth; thus 

for NOO'F it is 

cos (0 - </>) cos 8$ cos (0 + 80 + 8$). 
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The relative retardations of phase for the four are 0, — p, p, 0. 

The intensity is found by the usual formula. For the object in 

view, 86 and 8cf> may be supposed very small. The result is 

Q = ($6 — 8<fi + cos p8(f>y + (sin p cos 

where is put for 6 — <fi, the azimuth of the Nicol relatively to 

the plate. 

When the retardation given by the plate does not differ consi¬ 

derably from 90°, the first term in Q does not differ greatly from 

<ty2. The expression for Q shews therefore that it is best that i/r 

and (j>} not 6 and <jE>, should be the angles that are altered inde¬ 

pendently; that is, that of the three constructions mentioned at 

the bottom of p. 199, that marked (b) should be the one chosen. 

This is the one described at the beginning, and is that with which 

the trials of the working of the instrument were made, the 

general result of which is mentioned above. 

The employment of a plate giving a retardation of about a 

quarter of an undulation introduces considerable chromatic varia¬ 

tions, which we might sometimes desire to avoid. Suppose for 

example that we were working with light only slightly differing 

from plane-polarized, and did not wish to reduce the intensity by 

the use of absorbing media or by selecting a portion of a spectrum ; 

it might seem unreasonable to introduce such large chromatic 

variations merely to determine a small ellipticity. But in such a 

case we are not bound to use a retarding plate such as hitherto 

supposed ; we may use a thin plate of mica giving a comparatively 

small retardation; all that is requisite being that the retardation 

should be large enough to command the ellipticity of the light 

that we have to observe, that is, as may readily be shewn, that 

it should not be less than 2^, where tan w denotes the ratio of 

the minor to the major axis of the ellipse. With the diminished 

retardation, the chromatic changes which the retarding plate 

introduces into the light observed are of course diminished. The 

expression for Q shews that in this case it would be best that the 

motions of the plate and prism should be mechanically inde¬ 

pendent ; but as the instrument does not lend itself to that, we 

must take our choice of the two other arrangements, and it may 

be shewn from theory that the instrument ought to work well 
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provided we give to the Xicol, not to the plate, the independent 

motion which we have at our disposal. 

With a view to its possible employment in such case, the 

instrument as originally construrted was furnished with adapting 

pieees enabling the Nieol and the plate to exchange places, the 

whole instrument being of course in that case turned round, so 

that tin* graduation faces the incident light instead of facing the 

observer. 

If on p. 1!»N / was called the azimuth of the major axis of the 

ellipse described, it was merely to facilitate the conception of the 

four unknown quant it irs t hat we had to determine. It is hardly 

nen>sary to observe that all we are concerned with in the 

fonuube is that it is the azimuth off/, principal axis.] 



[From the Cambridge and Dublin Mathematical Journal, Yol. vi., p. 215 

(.November, 1851).] 

On the Conduction of Heat in Crystals. 

The 21st, 22nd, and 23rd volumes of the Annales de Ghimie 
et de Physique contain three very interesting papers by M. de 

Senarmont, describing a series of experimental researches on the 

conduction of heat in crystals, as well as in bodies subject to 

mechanical pressure in one direction. The mode of experi¬ 

mental examination employed consisted in cutting a plate from 

the crystal to be examined, drilling a small hole through it near 

the middle, covering the faces with a thin coating of wax, and 

then heating the crystal by a wire or fine tube inserted into the 

hole. The heat caused the wax to melt in the neighbourhood 

of the hole, and thus a certain isothermal line was rendered 

visible to the eye, namely, the line corresponding to the tem¬ 

perature of melting wax. The variation of conductivity in dif¬ 

ferent directions was indicated by the elliptical, or at least oval 

form of the line bounding the melted wax. This line remained 

sufficiently visible after the plate had cooled, and thus the eccen¬ 

tricity of the ellipse and the azimuth of its major axis could be 

examined at leisure. On allowing for errors of observation, it 

was found that, for a plate cut in a given direction from a given 

crystal, the axes of the ellipse had a determinate ratio, and the 

major axis a determinate azimuth. Universally it was found that 

the thermic corresponded with the crystallographic symmetry, so 

that for example in crystals belonging to the cubical system, 

the propagation of heat took place as it would have done in 

a homogeneous uncrystallized medium; in crystals belonging to 

the rhombohedral system the axis was a direction of thermic 
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symmetry, and similarly in other cases. When the plate was 

not perpendicular to an axis of thermic symmetry, the circum¬ 

stance was indicated by the non-correspondence of the ovals 

formed on the opposite faces, the line joining the centres of the 

ovals being in that case oblique to the faces. 

The subject of crystalline conduction had previously been in¬ 
vestigated theoretically by M. Duhamel, in a memoir presented 

to the Academy of Sciences in 1828, and printed in the 21st 

Galiier of the Journal de CJtJcole Polyteclunque, p. 356. In this 
memoir the author deduces the general expressions for the flux 

of heat, and the equation of motion of heat, from the hypothesis 

of molecular radiation, and applies the general equations to the 
solution of a few simple problems, or at least problems which 

may very simply ho reduced to the corresponding problems re¬ 

lating to uncrystallized media. After the publication of the 
researches of M. do Senarmont, M. Duhamel was induced to 
resume tlus subject, and in a memoir printed in the 32nd 
(hthivr of the above-mentioned Journal, he has deduced from 
theory a number of general consequences which are directly ap¬ 

plicable to the experiments of M. do. Senarmont. 

In tin* following paper, I propose to present the theory of 
crystalline conduction in a, form independent of the hypothesis 
of molecular radiation- a hypothesis which for my own part I 
regal'd as very quest ionable. The subject will thus be consider¬ 

ably simplified, for in fact the results flow readily irom certain 

very general assumed laws, which no doubt follow as consequences 

of the hypothesis of molecular radiation, hut which are of such 

simplicity that, the) would seem to follow from almost any rea¬ 
sonable hypothesis relating to the manner in which the passage 

of heat, takes place in thi' interior of a solid body. As regards 
the, mat.hemat ieal deduction oi consequences from the general 

formula', f have introduced the consideration of what may be 
vailed an auxilatnj solid, by which means problems relating to 

crystallized bodies are reduced to corresponding problems relating 

to ordinary media. All the principal results of M. Duhamel, of 
which one at least, was obtained by him in a very artificial 
manner, arc1, thus rendered almost self-evident, or else directly 

reduced to known results relating to ordinary media; and some 

results of still greater generality follow with equal facility. 
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1. Let P be any point of a solid body, homogeneous or hetero¬ 

geneous, crystallized or uncrystallized; suppose the temperature of 

the body to vary from point to point, and let dS be an elementary 

plane area drawn through P in a given direction. The quantity of 

heat which passes across the element dS in the elementary time 

dt will be ultimately proportional to dSdt, and may be expressed 

by fdSdt. This quantity / is the flux of heat referred to a 

unit of surface. Its value will depend upon the time, upon the 

position of the point P, and upon the direction of the elementary 

plane drawn through P. For the present, suppose the time and 

the position of the point P given, and consider only the variation 

of / in different directions about P. 

If we suppose the values of f given in the direction of each 

of .three planes, rectangular or not, passing through P, its value 

in the direction of any fourth plane follows. For make P the 

vertex of a triangular pyramid, of which the sides are in the 

direction of the first three planes, and the base is parallel to the 

fourth, and then conceive the base, remaining parallel to itself, 

to approach indefinitely to P. The quantity of heat gained by 

the pyramid during the time dt is equal to the quantity which 

enters by the faces, diminished by the quantity which escapes by 

the base. Now when the pyramid is indefinitely diminished, the 

gain of heat in a given indefinitely short time will vary ulti¬ 

mately as the volume, or as the cubes of homologous lines, 

whereas the quantity which passes across any one of the four 

faces of the pyramid will vary ultimately as the area of the 

face, and therefore as the squares of homologous lines. Hence 

in the limit the quantity of heat which escapes by the base will 

be equal to the sum of the quantities which enter by the sides, 

and consequently if the flux across each be given, the flux across 

the base is determinate. 

In particular, if we suppose the medium referred to the rect¬ 

angular axes of x} y, z, and if fx, fyj fz be the fluxes across three 

planes drawn through P in directions perpendicular to the axes 

of x} y>z \ f the flux across a plane drawn in any other direction 

through P; l, m, n the cosines of the angles which the normal to 

this plane makes with the axes, we have 

f=lfx + mfy + nfz.(1). 



206 ON THE CONDUCTION OF HEAT IN CRYSTALS. 

This equation shews that if we represent the fluxes across 
planes perpendicular to the axes of x, y, z, by three forces or 

three velocities, the flux across any other plane will be repre¬ 

sented by the resolved part of the forces or velocities along the 

normal to this plane. Hence the flux across one particular plane 
passing through P is a maximum, and the flux across any other 
plane is equal to this maximum flux multiplied by the cosine of 

the angle between the two planes. 

2. Let u be the temperature at P at the end of the time t, 
and consider the portion of the solid which is contained in the 

elementary volume dxdydz adjacent to P. The quantity of 
heat which enters this element during the time dt by the first 

of the faces dy dz is ultimately equal to fx dy dz dt, and the 
quantity which escapes by the opposite face is ultimately equal 
to (f%+ dfx/dx.dx)dydz dt. Subtracting the former from the 
latter, and treating in the same way each of the other two pairs 
of opposite faces, we find that the loss of heat in the element is 

ultimately equal to 

'dfx + <fyj!+ ¥z 
Jdx dy dz 4 

dx dy dz dt 

But if p be the density, p dxdydz will be the mass; and if c be 
the specific heat, the loss of heat will also be equal to 

— p dxdy dz.ci^dt 

ultimately, 
we get 

Equating the two results, and passing to the limit, 

rn = _ (dfx ,(Ve,¥z 
” dt \dx ^ dy + dz (2). 

3. The formulse (1) and (2) are general, but for the future 
I shall suppose the medium to be homogeneous, and the tem¬ 

perature to differ by only a small quantity from a certain fixed 
standard which we may suppose to be the origin from which u 
is measured. Since the medium is homogeneous p is constant*, 
and o moreover will be constant, except so far as relates to a 
change of specific heat produced by a change of temperature. 
But since u is supposed to be small, the terms arising from the 

* The expansion of the solid produced by heat is not here taken into account. 
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variation of c would be small quantities of the second order, since 
c only appears multiplied by du/dt, and therefore c may be re¬ 
garded as constant. 

It remains to form the expressions for fx> fy, fz. By the 

conduction of heat we mean that sort of communication which 
takes place between the contiguous portions of bodies. In the 
case of bodies which are partially diathermous, that is to say, 
which behave with respect to heat, or at least heat of certain 
degrees of refrangibility, in the same way in which semi-opaque 
bodies behave with respect to light, or rather in which a green 
glass behaves with respect to red rays, heat may be communi¬ 

cated from one portion of the body to another situated at a 
sensible distance. But this is, properly speaking, internal radia¬ 
tion, and not conduction. Again, if the solid be perfectly diather¬ 
mous to heat of certain degrees of refrangibility, a portion in the 

interior of the mass may by radiation send heat out of the solid 
altogether. For my own part I believe conduction to be quite 
distinct from internal radiation, although the theory which makes 
conduction to be nothing more than molecular radiation and 
absorption seems to be received by many philosophers with the 
most implicit reliance. No doubt internal radiation may, and I 
believe generally if not always does, accompany conduction: and 
when the distance which a ray of heat can travel before it is 
absorbed is insensible, we may include internal radiation in the 
mathematical theory of conduction, and even, if we please, in 
our definition of the word conduction. Of course the distance 
which we may regard as insensible will depend partly on the 
dimensions of the body, partly upon certain lengths relating to 
the state of temperature in the interior, and depending upon 

the problem with which we have to deal. As an example of a 
length of this sort, we may take the distance between consecu¬ 
tive maxima, if we are considering the internal temperature of a 
solid of which the surface has a temperature that is subject to 
periodic variations. 

A Let us now confine ourselves to conduction, using that 
term with the extensions and restrictions above explained. The 
temperature u is supposed to be sufficiently small to allow us to 
superpose different systems of temperature without mutual dis¬ 
turbance. If the temperature were the same at all points, there 
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would be equilibrium of temperature, and the flux at any point 
in any direction would be equal to zero. Let then a uniform, 
temperature, equal and opposite to that of P, be superposed on 

the actual system. Then the temperature at P will be reduced 
to zero without any change being made in the fluxes fyy fz. 

Hence these quantities will depend, not upon the absolute tem¬ 

perature at P, but only on its variation in the neighbourhood 

of P. Since, by hypothesis, these fluxes have nothing to do with 
the temperatures at points situated at sensible distances from P, 

they may be assumed to depend only on the differential coef¬ 
ficients du/dx, dujdy, du/dz, which define the variation of tempera¬ 

ture in the neighbourhood of P. Since moreover different systems 
of temperature may be superposed, it follows that fx, fy, fz are 
linear functions of the three differential coefficients above written. 
Hence equation (2) may be put under the form 

du 
c‘j s dx1 dy <&2 

where x\ y\ z'} have been written for x, y, z. 

5. Let us now refer the solid to the rectangular axes Ox, Oy, 
Oz, instead of Ox\ Oy\ Oz'. Let l, m, n, be the cosines of the 
angles x'Ox, x'Oy, x'Oz; let l', m', ??', be the same for y\ and 
V\ m" n", the same for z'. Then 

d -j d d d 
dx dx dy dz 

But we have also 

x = lx -f my -f nz, 

and similar formulae hold good with respect to y' and z\ Since 
symbols of differentiation combine with one another according to 
the same laws as factors, it follows that the right-hand member 
of equation (3) will be transformed exactly as if the symbols of 
differentiation were replaced by the corresponding coordinates. 
Hence there exists a system of rectangular axes, namely, the 
principal axes of the surface, 

A'x'2 + BY + CV2 + 2D'y'z' 4 2E'z'x' 4 2F'x'y' = 1 .. .(4), 
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for which the equation of motion of heat takes the form 

du . dhi p d2u n d2u 
'Bdf + °d? 

The system of axes of which the existence has just been 

established may conveniently be called the thermic axes of the 
crystal. Since the left-hand member of equation (4) is identical 

with Ax2 + By2 + Cz\ it follows that not only do the principal 
axes of the surface (4) determine the directions of the thermic 
axes, but the constants A, B, C, are the squared reciprocals of the 
principal semi-axes of that surface. 

6. Let us now take the thermic axes for axes of coordinates, 
and investigate the general expression for the flux of heat. The 

general expressions for fxt fy, fz, being linear functions of the 
three differential coefficients of u with respect to y> z, will con¬ 
tain altogether nine arbitrary constants. Substituting the general 
expressions in (2), and comparing with (5), we find three relations 
between the constants, depending upon the choice of coordinate 

axes. These relations being introduced, the expressions may be 
put under the following form : 

, ^ du du r, du 
-fy = B--DiJz + FlTx 

, ~du ^ du , -r, du 

I shall defer till towards the end of the paper a consideration 
of the reasons which make it probable that 1)13 El} Fx are neces¬ 
sarily equal to zero. For the present it may be observed that 
if the medium be symmetrical with respect to two rectangular 
planes, these constants must vanish. For the planes of symmetr}' 
must evidently contain the thermic axes; and on account of the 
symmetry supposed, if the planes of symmetry be taken for those 

of xz and yz, fx must change sign with x, while fy and fz remain 
unchanged; and similarly when the sign of y is changed, fy must 
change sign, while fx and fz remain unchanged. Referring to (6), 
we see that this requires the constants D13 Ev Fl to vanish, so that 

.00, 

s. III. 14 
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from whence the flux in any direction may be obtained by means 

of the formula (1). The formulae (7) contain the expressions for 

the flux which result from the theory of M. Duhamel. The con¬ 

stants A, B, C, denote what may be called the principal con¬ 

ductivities of the crystal. The reader may suppose for the present 

that the following investigations are restricted to media which are 

symmetrical with respect to two rectangular planes. 

7. It may be worth while to return to the coordinates af9 y\ z, 

which have a general direction, and examine the general expres¬ 

sions for the flux which correspond to the formulae (7). Putting 

f%> fy> fz> for the fluxes across planes perpendicular to the axes 

of x\ yf, z\ we get from (1) and (7) 

/■ / du du 7V du x 

-S‘-AS + Fdf + pB' 
du du j-y, du 

r f f'V i 1jV i TV -fz=0 + L + y 
dx 

dxf 

du 

dy' 

(8), 

where 
A' = PA+ m*B + n2C\ 

U = IT A + m'm"B + n'n''C ] 

from whence the expressions for B\ E\ and C\ F\ may be written 

down by symmetry. 

8. So long as we are only concerned with the succession of 

temperatures in an infinite solid, we have no occasion to con¬ 

sider the flux of heat, and the general equation (5) will enable 

us to perform all the requisite calculations. In this equation the 

indestructibility* of heat is recognized, but not its identity. If 

we discard the latter idea, it is nonsense to talk of the heat 

gained, we will suppose, by a given element of the solid, as having 

come from this quarter rather than from that. If we denote by 

A/*, Afy, Afz the quantities by which the values of fXify,fz given 

by (6) exceed those given by (7), we have 

d&fx , d^fy , dbfz _ n 
dx dy dz ’ 

* According to the very important researches of Mr Joule, work is convertible 
into heat, from which there can be little doubt that conversely heat is convertible 
into work. As regards the present investigation, however, it is perfectly imma¬ 

terial whether heat be indestructible, or only not destroyed, or rather whether it be 
not convertible into anything else, or only not converted. 
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which is analogous to the equation of continuity of an. incom¬ 

pressible fluid. 

If we suppose all possible systems of values assigned in suc¬ 

cession to the constants Dv Et, Fly the formulas (6) will express 

all possible modes of transfer, consistent with our original assump¬ 

tion respecting the forms of fXy fy, fz, by which the state of tem¬ 

perature of the solid at the end of the time t can pass into its 

state at the end of the time t 4- dt. Of course, if we suppose heat 

to be materia], we cannot help attaching to it the idea of indi¬ 
viduality. But if we suppose heat to consist in motion of some 

sort, which for my own part I regard as by far the more probable 

hypothesis, we require a definition of sameness of heat, supposing 

we find it convenient to treat the subject in this way. I am not 

now going to follow any further the subject which has just been 

broached; but I thought it might be worth while to point out 

in what manner the additional arbitrary constants found in the 

general expressions for the flux beyond what appeared in the 

equation of motion, or more properly the equation of successive 
distribution, corresponded to an attribute of heat which is neces¬ 

sarily involved in the idea of a flux, but which is not necessarily 

involved in the idea of the successive distributions of a given 

quantity of heat. 

9. Besides the general equation (5), it is requisite to form 

the equation of condition which has to be satisfied at the surface 

when the solid radiates into a space at a different temperature. 

Let P' be a point in the surface, dS an element of the surface 

surrounding P', P'N a normal drawn outwards at P', P a point in 

NPf produced, situated at the distance 8 from P'. Consider the 

element of the solid bounded by dS, by a plane through P 

parallel to the tangent plane at P, and by a cylindrical surface 

circumscribing dS, and having its generating lines parallel to 

P'N; and suppose this element to be indefinitely diminished 

in such a manner that 8 vanishes compared with the linear di¬ 

mensions of dS} which is allowable if the curvature at P' be 

finite (that is, not infinitely great), as it must necessarily be in 

general. The quantity of heat which enters the clement across 

the plane through P, as well as the quantity which escapes 

across dS, varies ultimately as d&. The area of the cylindrical 

surface varies as 8 multiplied by the perimeter of dS, and there- 

14—2 
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fore will vanish compared with dS, since 8 vanishes compared 

with the linear dimensions of dS. Hence, even if the quantity 

of heat which entered by the cylindrical surface varied as the 

surface, it would vanish in the limit compared with the quantity 

which escapes by dS. In fact, however, even if we suppose 8 

comparable with the linear dimensions of dS, it may be shewn 

that the total quantity of heat which enters by the cylindrical 

surface is of the order 8dS, because ultimately the quantity of 

heat which enters across that portion of the cylindrical surface 

for which the flux is positive is equal to the quantity which 

escapes across the remainder. Lastly, the gain or loss of heat 

by the element during a given time varies ultimately as the 

volume of the element. Hence, ultimately, the quantity of heat 

which enters the element across the plane through P, during the 

time dt, is equal to the quantity which escapes across dS. The 

former will be ultimately equal to dSdt multiplied by the value 

of the flux obtained from the general formulae (1) and (7) by 

taking x, y, z to denote the coordinates of P', and l, m, n, the 

direction-cosines of PN. We may assume the latter to be pro¬ 

portional to the difference u—v between the temperature u of 

the solid at the point P and the temperature v of the surrounding 

space, and may accordingly express it by h (u — v) dSdt Hence 

we have for the required condition, 

7 , du r,du ~ du 7 . , , _ 
IA ^ + mB + nC + h (u — v) = 0.(10). 

The quantity h denotes the exterior conductivity of the solid. 

It is a certain function of Z, m, n, the form of which M. Duhamel 

did not attempt to investigate, nor am I going to attempt the 

investigation myself. If however the crystal be covered with a 

thin coating of some other substance, sufficient to stop all direct 

radiation from the crystal into the surrounding space, h will de¬ 

pend upon the nature of the coating. In either case h will be 

constant throughout any plane face by which the crystal may be 

bounded. 

10. Let us return to the consideration of the propagation 

of heat in the interior of the mass. Imagine the coordinates 

x, y, z} of any point altered in the ratios of to VK, to */K, 



ON THE CONDUCTION OF HEAT IN CRYSTALS. 213 

sJG to fK, where K is constant, and let £, rj, f, be the results. 
The equation (5) becomes 

This will be true whatever be the value of K, but it will be con¬ 
venient to suppose that 

K* = ABC .(12). 

Now imagine a second solid formed from the first by altering 
all lines parallel to x in the ratio of V-4 to fK, all lines parallel 
to y in the ratio of */B to sJK, and all lines parallel to z in 
the ratio of fC to fK, nothing being as yet specified regarding 
the nature of the second solid, except that it is homogeneous. 
Imagine any number of points, lines, surfaces, or spaces, conceived 
as belonging to the first solid, and let the points, lines, &c. de¬ 
duced from them by altering the coordinates in the ratios above- 
mentioned, and conceived as belonging to the second solid, be 
said to correspond to the others. On account of the particular 
magnitude of K chosen, it is evident that the volumes of cor¬ 
responding spaces will be equal. Let the second solid be called 
the auxiliary solid, and the operation of deducing either solid 
from the other, derivation; and suppose the temperatures equal 

at corresponding points of the two solids. 

The equation (11) shews that the successive distributions of 
temperature in the interior of the auxiliary solid will take place 

as if this solid were an ordinary medium in which the interior 
conductivity bears to K tiie same ratio that the product of the 

specific heat and density bears to cp. 

The first of equations (7) gives 

If now we refer fx, not to a unit of surface, but to that area of a 
plane perpendicular to the axis of x which is changed by deri¬ 

vation into a unit of surfa.ee, we must multiply the above expres¬ 
sion by \J(BO) and divide it by K. Denoting the result by /$, 
using fyj, ft to denote for y, z, what f) denotes for x, and taking 

account of (12), we get 

, dn du „ du 

f‘--KTr)' = -K<Wh=~KTK (13). 
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It follows from these equations, that if we suppose not only 

the temperatures at corresponding points of the two solids to 

be always the same, but also equal quantities of heat to flow in 

equal times and in corresponding directions across corresponding 
surfaces, the flow of heat in the auxiliary solid is what would 

naturally belong to an ordinary medium having an interior con¬ 

ductivity K. 

The density of the auxiliary solid being disposable, we may 

take it to be the same as that of the given solid, in which case 
corresponding spaces will contain equal quantities of matter. It 

is only necessary further to suppose the auxiliary solid to be an 

ordinary medium having a specific heat c, and an interior con¬ 

ductivity jST, in order that the motion of heat in the interior of 

the two solids should precisely correspond. 

11. It remains only to investigate the condition which must 

be satisfied relatively to the surface of the auxiliary solid, in 

order that the two solids should perfectly correspond in every 
respect. Retaining the notation of Art. 9, let dcr be the element 
of surface which corresponds to dS; X, /x, v} the direction-cosines 
corresponding to Z, m, n. The quantity of heat which escapes 
across dS during the time dt is ultimately equal to h (u — v) dS dt, 

and this must be equal to the quantity which escapes across dcr. 

Hence it is sufficient to attribute to the auxiliary solid an exterior 
conductivity k, such that 

But we have 

X___/x __ v __ 
\JA. I aJB .m \/(J. n \J{A l2 + Jim* + Cnz) 

~ \/(A~l X2 -f B~l[A -f C~l vz) ... (15). 

Also IdS, XcZcr, are the projections of dS, dcr, on the plane of yz7 

and these projections are proportional to a/(.BO), K, or to *JK, a/A, 
whence we get from (15) 

da = j(W+Brrt + W)= x*+ B~l^ ^ ■ • -(1(i)- 

The first or second of these expressions will be employed according 
as we suppose Z, m> n, or X, v, given. 

7 dA. 
Ic = t . 

acr 
.(14). 
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If the crystal be covered by a thin coating of a given sub¬ 

stance, h will be constant, and h will be a function of i, m, n, or 

of A, fi, v, which is determined by (14) and (16). These formulae 

shew that in the case supposed k will have the same value for the 

opposite faces of a plate bounded by parallel surfaces. 

By means of the auxiliary solid, we may reduce problems 

relating to the conduction of heat in crystals to corresponding 

problems relating to ordinary media; or, conversely, from a set 

of self-evident or known results relating to ordinary media, we 

may deduce a set of corresponding results relating to crystals. 

12. Let us first regard the crystal as infinite, in which case 

the auxiliary solid will be infinite likewise. 

In an ordinary medium, if heat be introduced at one point 

according to any law, the isothermal surfaces will be a system of 

spheres, having the source of heat for their common centre, and 

the flow of heat at any point will take place in the direction of 

the radius vector drawn from the source. If the temperature be 

permanent, and the temperature at an infinite distance vanish, 

the temperature at any point will vary inversely as the distance 

from the source. 

Hence, in a crystal, if heat be introduced at one point ac¬ 

cording to any law, the isothermal surfaces will be a system of 

similar and concentric ellipsoids, having their principal axes in 

the direction of the thermic axes drawn through the source, and 

proportional to the square roots of the principal conductivities. 

The flow of heat at any point will take place in the direction 

of the radius vector drawn from the source. If the temperature 

be permanent, and vanish at an infinite distance, the temperature 

along a given radius vector will vary inversely as the distance 

from the source. 

It will frequently be convenient to refer to an ellipsoid con¬ 

structed with its principal axes in the direction of the thermic 

axes, and equal to 2y'A, 2 \JB, 2v^s respectively. I shall call 

this ellipsoid the thermic ellipsoid. 

13. In an ordinary medium, whether finite or infinite, in 

which the temperature varies from point to point, and may be 

either constant or variable as regards the time, the flow of heat 

at any point takes place in the direction of the normal to the 
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isothermal surface passing through that point, that is, in a direc¬ 

tion parallel to the radius vector drawn from the centre of the 
thermic sphere to the point of contact of a tangent plane drawn 
parallel to the isothermal surface at the point considered. 

Now the tangency of two surfaces is evidently unchanged 
by derivation. Hence, in a crystal, if we have given the direc¬ 
tion of the isothermal surface at any point, we may find that of 

the flow of heat by the following construction. In a direction 

parallel to the isothermal surface at the given point draw a 
tangent plane to the thermic ellipsoid, and join the centre with 
the point of contact: the flow of heat will take place in a direc¬ 
tion parallel to this joining line. In other words, the flow of 
heat will take place in a direction parallel to the diameter 
which is conjugate to a plane parallel to the isothermal surface 
at the given point. 

14. Conceive a plate bounded by parallel surfaces to be cut 
from a crystal, and heat to be applied towards its centre; and 
suppose the lateral boundaries sufficiently distant to produce no 
sensible influence on the result, so that we may regard the plate 
as infinite. In this case the auxiliary solid will likewise be an 
infinite plate bounded by parallel surfaces. Now if heat be 
supplied according to any law at one point of such a plate, 
or at any number of points situated in the same normal, the 
isothermal surfaces will be surfaces of revolution, having the 
normal drawn through the source or sources of heat for their 
axis, and the isothermal curves in which the parallel faces are 
cut by the isothermal surfaces will be circles, having their centres 
in the points in which the faces are cut by the normal above- 
mentioned. 

Hence, in a crystalline plate, if heat be supplied according to 
any law at one point, or at any number of points situated in a line 
parallel to the diameter of the thermic ellipsoid which is conju¬ 
gate to the planes of the faces, (a line which for brevity I will call 
the line of sources,) any particular isothermal surface will be a 
surface generated by an ellipse which has its plane parallel to 
the faces, its centre in the line of sources, and its principal axes 
parallel and proportional to those of the ellipse in which the 
thermic ellipsoid is cut by a plane parallel to the faces. In par- 
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ticular, the isothermal curves on the two faces are ellipses of the 
kind just mentioned*. Hence 

(1) If the plate be cut in a direction perpendicular to one of 
the thermic axes, the line joining the centres of a pair of ellipses 
which correspond on the two faces to a given temperature (such 
as that of melting wax) will be normal to the plate. The prin¬ 

cipal axes of the ellipses will be in the direction of the two re¬ 

maining thermic axes, and will be proportional to the square roots 
of the corresponding conductivities. 

(2) If the normal to the plate be not a thermic axis, the line 
joining the centres of the ellipses will be inclined to the normal, 
its direction being determined as above explained. 

(3) If the plate be cut in a direction parallel to either of the 
circular sections of the thermic ellipsoid (the three principal con¬ 
ductivities being supposed unequal,) the isothermal curves on both 
faces will be circles, but the line joining the centres of the two 

systems of circles will be inclined to the normal. 

If the heat be communicated uniformly along the line of 
sources, or if there be only a single source situated midway be¬ 
tween the faces, or more generally if the sources be alike two 

* The problem solved in this article forms a good example of the advantage 
of considering the auxiliary solid. In M. Duiiamel’s memoir the plate is regarded 
as extremely thin, so that the variation of temperature in passing from one point 

to another of the same normal may be considered insensible—and it is remarked 
that the second case (in which a normal to the plate is not a thermic axis) is 

much more difficult than the first; whereas here the plate is not necessarily thin, 
and both cases follow immediately from what with regard to an uncrystallized 
body is self-evident. M. Duhamel lias shewn that the isothermal curves on the 
two faces are ellipses, having their principal axes parallel and proportional to 
those of the ellipses in which the thermic ellipsoid is cut by planes parallel to 
the faces of the plate: but his demonstration that the line joining the centres 

of the two systems of ellipses has the direction assigned in the text does not 
seem altogether satisfactory, because the analysis only applies to the case in 

which the thickness of the plate is regarded as indefinitely small; whereas the 
space by which the ellipse corresponding on one face to a given temperature over¬ 
laps the ellipse corresponding on the other face to the same temperature is a small 

quantity of the order of the thickness of the plate, and ought for consistency’s sake 

to be neglected. 
The results contained in the remaining part of this paper are not found in the 

memoirs of M. Duhamel. It may here be remarked, that the results arrived at by 

the consideration of the auxiliary solid, such for example as that of Art. 17, might 

have been obtained by referring the crystal to oblique axes parallel to a system of 

conjugate diameters of the thermic ellipsoid. 
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and two, those which belong to the same pair being situated at 

equal distances from the two faces respectively, the isothermal 
curves belonging to the same temperature in the two systems 
will be of equal magnitude, provided that the exterior con¬ 
ductivity h have the same value for the two faces. The last 
condition is satisfied, according to what has been already re¬ 

marked, when the two faces are covered by a thin coating of 

the same substance, which regulates the exterior conductivity; 
but it is probable that it may be satisfied generally even if the 

faces be left bare, provided that they have the same degree of 

polish*. 

The experiments of M. de Senarmont bear directly on the 
first two cases mentioned above. In the case of crystals which 
exhibited three different conductivities, it was found that when 

three plates were cut in the directions of the three principal 
planes, the ratio of the principal axes of the ellipses formed on 
one plate, as determined by observation, agreed very closely with 
the result calculated from the ratios which had previously been 
determined by observation from the other two plates. An in¬ 
teresting experiment bearing on the second case is described by 
M. de Senarmont in his second paper (p. 187). A rather thick 

plate of quartz, inclined to the axis at an angle of 45°, was 
drilled in a direction perpendicular to its plane, and heated by 

means of a wire inserted into the hole, after its two faces had 
been covered with wax. The curves marked out on the two 
faces approximated to the two bases of an elliptic cylinder, 

symmetrical with respect to the principal plane, and having its 
axis inclined towards the axis of the crystal, (which in quartz 
is the direction of greatest conductivity,) so as to cross the 

wire, which was perpendicular to the plate. The curves how¬ 

ever were not elliptical but egg-shaped, having their axes of 
symmetry situated in the principal plane, the end at which the 
curvature was least being that which was nearest to the wire, so 

that the blunt ends on the two faces were turned in opposite 
directions, the curves being in other respects alike. It will be 
seen at once that the symmetry of the curves with respect to 
the principal plane, the obliquity of the line joining their centres, 

* This result follows readily from the theory of molecular radiation, according 
to the suppositions usually made. 
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and their equality combined with dissymmetry, follow immediately 
from theory. We learn too from theory, that in order to procure 

ellipses it would be necessary to drill the hole in the direction of 
that diameter of the thermic spheroid which is conjugate to the 

plane of the plate. 

15. Conceive a bar having a section with an arbitrary con¬ 

tour to be formed from an uncrystallized substance; let heat be 
applied in any manner at one or more places, and suppose the 
heat to escape again from the surface by radiation. Consider 
only those portions of the bar which are situated at a sufficient 

distance from the source or sources of heat to render insensible 
any irregularity arising from the mode in which the heat is com¬ 
municated. If the bar be sufficiently slender, we may regard the 

temperature throughout a section drawn in a direction perpen¬ 

dicular to its length as approximately constant, without assuming 
thereby that the isothermal surfaces are perpendicular to the 
length. Let x be measured in the direction of the length, and 

consider the slice of the bar contained between the planes whose 

abscissm are x and x 4- dx. Let u be the temperature of the bar 
at the distance of the first plane, p the perimeter, and Q the area 
of the section, h the exterior conductivity, or rather the mean of 

the exterior conductivities in case they should vary from one game- 

rating line to another; ltd c, p, K, he the same as before, and put 

Q = ap, so that 4a is the side of a square whose area divided by its 
perimeter is equal to Qp~l. 

The excess of the quantity of heat which enters during the 

time dt by the first of the plane ends of the slice over that which 

escapes by the second, is ultimately equal to KQddu/dx*. dxdt. 
The quantity which the slice loses by radiation is ultimately equal 

to hp u dx dt, if we take the temperature of the surrounding space, 
which is supposed to be constant, for the origin of temperatures. 

But the gain of heat by the slice is also equal to cpQ dn/dt. dx dt. 
Hence we have 

cp 
da 

dt 
,rd: ir h 
l\ , • a 

dx" a 
(17). 

If we suppose the heat to be continually supplied, and the 

temperature to have become stationary, we get from this equation 

/ h , 
u=MtT K<r + Ne 

-j 
h 
K(d 

0«), 
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where M and JST are arbitrary constants. If now a be small, it 

follows from (18) that the lateral flux at the surface, which is 

equal to hu, as compared with the longitudinal flux, which is equal 

to — K du/dx, is a small quantity of the order f(ha/K). 

We may deduce the same consequence for the case of variable 

temperatures from the equation (17), without troubling ourselves 

with its solution. Conceive any number of bars of different sizes 

to be heated in a similar manner, and for greater generality, sup¬ 

pose the values of c, p, K, and h, as well as a, to be different for 

the different bars. Let x} x\ x"... be corresponding lengths, and 

t, t\ t" corresponding times, relating to the several bars. The 

equation (17) shews that the temperatures at corresponding 

points and at the end of corresponding times may be the same 

in all the bars, provided 

ioc£f.(19)- 
These variations contain the definition of corresponding points 

and corresponding times. In order that the temperatures in the 

different bars should actually be the same at corresponding points 

and at the end of corresponding times, it is sufficient that the 

initial circumstances, or more generally the mode of communi¬ 

cating the heat, should be such as to give equal temperatures 

at the points and times defined by the variations (19), which in 

this point of view may be regarded as containing the definition 

of similarity of heating. Now, in comparing the longitudinal 

flux at corresponding points, if we take du the same, dx must 

vary as determined by (19), and therefore the flux will vary as 

K a~lh), or f^Ka^h), and the ratio of the lateral flux at 

the surface to the longitudinal flux will vary as f(haK~1); so 

that if we suppose a to decrease indefinitely, h and K being 

given, the ratio in question will be a small quantity of the order 

filialK) as before, and will ultimately vanish. 

The second of the variations (19) shews that if we suppose the 

heat to be supplied to one bar in an irregular manner as regards 

the time, the fluctuations in the mode of communicating the heat 

must become more and more rapid as a decreases, in order that 

the similarity of temperatures may be kept up. If the fluctua¬ 

tions retain their original period, the motion of heat will tend 

indefinitely to become what we may regard at any instant as 
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steady, and thus we fall back on the case first considered. We 

may conclude therefore generally, that if the bar be sufficiently 

slender, the direction of the maximum flux, even close to the sur¬ 

face, will sensibly coincide with that of the length of the bar; so 

that the isothermal surfaces, which are necessarily perpendicular 

to the direction of the flow of heat, will be planes perpendicular 

to the axis of the bar. 

By supposing the bar to be the auxiliary solid belonging to 

a crystalline bar, we arrive at the following theorem. If a slender 

crystalline bar be heated at one end, and if we confine our atten¬ 

tion to points of the bar situated at a sufficient distance from the 

source of heat to render insensible any irregularities attending the 

mode of communicating the heat, the isothermal surfaces will be 

sensibly planes parallel to the diametral plane of the thermic ellip¬ 

soid which is conjugate to the system of chords drawn parallel to 

the length of the bar. These planes will necessarily have an 

oblique position unless the direction of the length of the bar be 

a thermic axis of the crystal. 

The same result might have been obtained without employing 

the auxiliary solid, by first shewing that when the bar is suffi¬ 

ciently slender the direction of the flow of heat sensibly coincides 

with that of the length of the bar. We should thus be led to a 

problem exactly the converse of that treated in Art. 13, namely, 

Given the direction of the flow of heat, to find that of the iso¬ 

thermal surface. 

16. It may be shewn in a similar way, that if a thin plate 

be formed of an uncrystallized substance, and be heated at one 

or more places, or over a finite portion, if we consider only 

those parts of the plate which are situated at a sufficient dis¬ 

tance from the sources of heat to render insensible any irregu¬ 

larities attending the mode in which the heat is communicated, 

the flow of heat will take place in a direction sensibly parallel 

to the plate, and therefore the isothermal surfaces will be cylin¬ 

drical surfaces whose generating lines are perpendicular to the 

plate. It is here supposed that the lateral boundaries of the 

plate are situated at a sufficient distance to render their effect 

insensible. 

Hence, in a thin crystalline plate heated in a similar manner, 

the isothermal surfaces, under similar restrictions, will be cylin- 
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drical surfaces whose generating lines are parallel to the diameter 

of the thermic ellipsoid which is conjugate to the plane of the 

plate. 

17. The state of temperature, under given circumstances, of 

a rectangular parallelepiped formed of an uncrystallizcd substance, 

may be determined by certain known formulae which it is not 

necessary here to describe. 

Hence, the state of temperature of a parallelepiped cut from 

a crystal in such a manner that its edges are parallel to a system 

of conjugate diameters of the thermic ellipsoid may be deter¬ 

mined by the same formuhe. This parallelepiped will of course 

be oblique-angled, except in the particular case in which its edges 

are parallel to the thermic axes. It may be remarked that a 

parallelepiped for which the state of temperature shall he deter¬ 

minable by the formula} in question may be cut from a crystal in 

a manner quite as general as from an uncrystallized substance. 

In both cases the direction of the first edge is arbitrary, and, 

when it is fixed on, the plane of the other two edges is deter¬ 

mined in direction. The direction of the second edge having 

been chosen arbitrarily in the plane above mentioned, that of the 

third edge is determined. 

It does not seem worth while to notice the crystalline figures 

derived from spheres, &c., on account of the mechanical difficulty 

attending their execution. Besides, the derivation presents no 

theoretical difficulty. 

Further consideration of the general expressions for the flux. 

18. It has been already remarked, that if the crystal possess 

two planes of symmetry, the nine arbitrary constants which ap¬ 

pear in the expressions for the flux in three rectangular direc¬ 

tions, from which the flux in any other direction may be derived, 

reduce themselves to six, and the expressions for the flux take the 

form (8). I proceed now to consider what grounds we have for 

believing that these expressions, with only six arbitrary constants, 

are the most general possible. 

In the first place, it may be observed that this result follows 
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readily from the theory of molecular radiation. In this theory 

the extent of molecular radiation is supposed to be very great 

compared with the mean interval between the molecules of a 

body, so that the body may be treated as continuous. If E, E' 

be any two elements of the body, situated sufficiently near one 

another to render their mutual influence sensible, it is supposed 

that, during the time dt, a quantity of heat proportional to Edt 

radiates in all directions from E, whereof E' absorbs a portion 

proportional to E'. On the other hand, E' emits and E absorbs 

a quantity also proportional, so far as regards only the magni¬ 

tudes of jE, E, and dty to EE'dt. The exchange of heat between 

E and E' may therefore be expressed by qEE'dt. The quantity 

q is supposed to be proportional, so far as regards its dependence 

on the temperatures, to the small difference between the tem¬ 

peratures of E and E'. It will also depend upon the nature of 

the body, upon the distance EE, and in the case of a crystal¬ 

line body upon the direction of the line EE'; but we need not 

now consider its dependence upon these quantities. If the length 

EE' = s, and if we suppose the extent of internal radiation to be 

very small, we may express the difference between the tempera¬ 

tures of E and E by dajds. s. It follows then from the theory 

we are considering, that the total flux of heat arises from the 

exchange of heat between all possible pairs of elements, such as 

E, E'; the exchange between any pair E, E being proportional 

to the rate of variation of temperature in the direction EE', and 

accordingly independent of the variation of temperature in other 

directions. 

Now suppose the body referred to rectangular axes, and let P 

be the mathematical point whose coordinates are x, y, z. Con¬ 

ceive the body divided into an infinite number of infinitely small 

equal elements. Let E be the element which contains P, E any 

element in the neighbourhood of P, and consider the partial flux 

in the neighbourhood of P which arises from the exchange of 

heat between all pairs of elements which have the same relative 

position as E and E. Through P draw an elementary plane 8, 

which it will be convenient to consider as infinitely large com¬ 

pared with the dimensions of the elements such as E, and con¬ 

ceive 8 to assume in succession all possible directions by turning 

round P. The partial flux across 8 will vary as the number of 
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points in which the lines, all equal and parallel to EE, which 

connect the pairs of elements, cut the plane or as the cosine of 

the angle between the normal to 8 and the direction EE\ Let 

EE' = s; let l', m, n, be the cosines of the angles which this line 

makes with the axes of x, y, z, and suppose S to be perpendicular 

to each of these axes in succession. We shall thus have for the 

partial fluxes fx,fy>fz> quantities proportional to V dujds, m'dujds, 

n' dujds, or to 

indu , 7, ,du , v ,du 
l -7-+ hn t + In t > 

dx dy dz 

7, ,du du , .du 
l vi -bni —\- win 

dx dy dz 

7, ,du , tdu t ,2 
l'n' -y- + inn! -r- + nn 

dx dy 

du 

dz* 

Hence, the coefficient of dit/dy in the expression for the partial 

flux fx is equal to the coefficient of dujdx in the expression for 

the partial flux fy, and the same applies to y, and to x. This 

being true for each partial flux, will be true likewise for the total 

flux, and therefore the general expressions for the flux in three 

rectangular directions, with nine arbitrary constants, will be re¬ 

duced to the form (8), or the general expressions (6), referred to 

the thermic axes, to the form (7). 

19. Let us further examine some of the consequences which 

would follow from the supposition that the expressions for the 

flux referred to the thermic axes have the general form (G). 

Conceive a crystalline mass, regarded as infinite, to be heated 

at one point according to any law, and let the source of heat 

be taken for origin. We have seen already that the succession 

of temperatures takes place in an infinite solid in exactly the 

same manner whether the expressions for the flux have the 

general form (6), or the more restricted form (7), and conse¬ 

quently, in the case supposed above, the temperature at a given 

time is some function of 

A’W + B-y + C-'z2. 

If x, y, z, be the coordinates of any point in a line of motion, or 

line traced at a given instant from point to point in the direction 

of the flow of heat, dx, dy, dz, will be proportional to fx, fy, fz, 

which are given by (6), and in the present case dujdx, dujdy, dujdz, 
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are proportional to A~'x, B~\j, Q~'z. Hence the differential equa¬ 
tions of a line of motion are 

dx _ dy 

x - FJBT'y + Efi-'z ~y- Dfi-'z + F^A~'x 

_ &z /nn\ 

~z-EtA~lx + Dfi-'y •' 

Taking £, y, f, to denote the same quantities as in Art. 10, and 
putting for shortness 

=®', EJCAy^a", Ft(AB)-* = 21), . 

we get 

d% - dV /22s 

f - «'"»> + ®"£ t? - a'f + ®"'f ~ + a>'y •'‘ 
Conceive an elastic solid to be fixed at the origin, and to 

expand alike in all directions and at all points with a velocity 

of expansion unity, so that a particle which at the end of the 

time t is situated at a distance r from the origin, at the end 

of the time t + dt is situated at a distance rfc+dt). Conceive 

this solid at the same time to turn, with an angular velocity © 

equal to aJ(a>'2 + a>"2 + a'"2), about an axis whose direction-cosines 

are a/coT1, ©"gT1, ©'"©“h The direction of motion of any particle 

will represent the direction of the flow of heat in what we may 

still call the auxiliary solid, from whence the direction of the 

flow of heat in the given solid will be obtained by merely con¬ 

ceiving the whole figure differently magnified or diminished in 

three rectangular directions. 

This rotatory sort of motion of heat, produced by the mere 

diffusion from the source outwards, certainly seems very strange, 

and leads us to think, independently of the theory of molecular 

radiation, that the expressions for the flux with six arbitrary con¬ 

stants only, namely the expressions (8), or the equivalent expres¬ 

sions (7), are the most general possible. 

20. Let the auxiliary solid be referred to the rectangular 

axes of ?/, £", of which the last coincides with the axis to which 

co refers. It may be seen immediately, without analytical trans¬ 

formation, that the differential equations to the lines of motion 

will be 
_ dr)' _d£ 

?-coV'-V' + co? f. ^ 

S. TIT. 15 
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Taking polar coordinates r, 8 in the plane of t{, we have 

(sin 8 + © cos 8) (cos 8 dr- sin 6 rdd) 

— (cos 8 — cd sin 8) (sin 6 dr + cos 6 rdd); 

whence a>dr = rdd . (24), 

the differential equation of a system of equiangular spirals in 
which the angle between the tangent and radius vector is equal 

to tan"1®. We have also from (23) 

d? (£' — cot]') dg + (vf + <*>%) dy' 
T~ (r-^')2+(v+®r)2 

f m'+y'dy' tty-v'd? 
= (! + «) 

whence (1 4- co2) log f' 4- const = log r 4- cod 

= log r + co2 log r from (24). We have therefore 

f' ==mr.(25), 

where m is an arbitrary constant. 

Hence, in the plane of rf, conceive an equiangular spiral 
described about the origin as pole, such that the angle between 

the tangent and the radius vector is equal to tan_1ct). Let it 
assume all possible positions by turning once round the pole, 
and in each position let it be made the base of a cylinder whose 
generating lines are parallel to the axis of Conceive also an 

infinite number of cones of revolution described with the origin 
for vertex and the axis of £' for axis. The system of curves of 
double curvature formed by the intersection of the cones with 
the cylinders will be the lines of motion in the auxiliary solid, 
on the supposition that the constant co does not vanish. To 

obtain the lines of motion in the original solid, it will be suf¬ 

ficient to conceive the whole figure differently magnified or di¬ 
minished in three rectangular directions, and we shall thus obtain 
a clearer idea of the form of the curves, which is the whole object 
of the investigation, than would have been derived from the rather 
complicated equations got from the integration of equations (20) 
in their original shape. 

21. It may be observed, in conclusion, that even if there 

were reason to suppose that the constants Dv Ex, Fv were not 
necessarily equal to zero, it is only among crystals which possess 
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a peculiar sort of asymmetry, that we should expect to find 

traces of their existence. We have seen already that if the 

crystal possess two planes of symmetry, these constants can 

have no existence. But the crystalline form (taken as an index 

of the degree of symmetry of the internal structure) may indi¬ 

cate the non-existence of these constants even in cases in which 

the crystal does not possess a single plane of symmetry. Take 

for example quartz, which was one of the crystals employed by 

M. de Senarmont in his experiments. In this crystal, not only 

is there no plane of symmetry, but a peculiar kind of asymmetry 

is indicated by the occurrence of hemihedral faces, as well as by 

the optical properties of the crystal. Let three adjacent edges 

of the primitive rhombohedron meeting in one of the solid 

angles which is formed by three equal plane angles be denoted 

by <2, H, I, and let the opposite edges be denoted by Q\ E!, T. 

If we suppose the interior structure to correspond to the crys¬ 

talline form, whatever we can say of the structure with reference 

to the edges (?, H, I, we can say with reference to the edges 

JET, /, 0, or /, 6r, jET. This shews that the thermic ellipsoid must 

be an ellipsoid of revolution about the axis of the crystal, and 

that the line to which co refers must coincide with the axis. But 

furthermore, whatever we can say of the structure with reference 

to Gr, H, J, we can say with reference to G\ T, H\ or T, H\ Gr'} or 

H\ G\ l7. This requires that co = — co, and therefore co = 0, and 

therefore Dt = 0, Ex = 0, Fx = 0. 



[From the Transactions of the Royal Society of Edinburgh, Yol. xx. p. 317.] 

On the Total Intensity of Interfering Light. 

(Extracted from a letter addressed to Professor Kelland.) 

[Communicated January 5, 1852. (Proceedings R. S. E., 

Yol. m. p. 98.)] 

Pembroke College, Cambridge. 

My dear Sir, 

* * * * 

In reading your paper in the Transactions of the Royal 

Society of Edinburgh, vol. xv., p. 315, some years ago, it occurred 

to me to try whether it would not be possible to give a general 

demonstration of the theorem, applying to apertures of all forms. 

I arrived at a proof, which I wrote out, but have never published. 

As I think it will interest you I will communicate it. You may 

make any use you please of it. 

Case I. Aperture in front of a lens; light thrown on a screen 

at the focus, or received through an eye-piece, through which the 

luminous point is seen in focus. 

The expression for the intensity is given in Airy’s Tract, 

Prop. 20. If the intensity of the incident light at the distance of 

the aperture be taken for unity, and D be the quantity by which 

any element of the area of the aperture must be divided in 

forming the expression for the vibration, that expression becomes 

I)//Sin X + dxdy, 
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the integration being extended over the whole aperture. If it 
should be necessary to suppose a change of phase to take place in 
the act of diffraction, such change may be included in the constant 
B. If, then, I be the intensity, 

and if I be the total illumination, 
i* 00 /»00 

/= Idpdq. 
J — 00 J —00 

Now, 

j///(>> y)dxdyl =JJJJ/O, y)v') dx dy dx' dy', 

the limits of x\ y' being the same as those of x, y. Hence, 

D2/ = ////cos ® + ty' — y) dx dy dx dy'. 

In the present shape of the integral, we must reserve the 
integration with respect to p and q till the end; but if we 

introduce the factor where the sign — or -f is supposed to 
be taken according as p or q is positive or negative, we shall 
evidently arrive at the same result as before, provided we suppose 

in the end a and /3 to vanish. When this factor is introduced, we 
may, if we please, integrate with respect to p and q first. We 

thus get 

D2J-limit of 

- 
eTap*Pq cog • x + qy' — y) dx dy dx' dy' dp dq. 

Now, 

| e*av cos (kp — Q) dp = cos Q I cos kp dp 
J -00 j —00 

1*00 

-f sin Q e*aP sin kp dp 
J —00 

= 2 cos €-ap cos kp dp = 
2a cos Q 

a2-f/r2 
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A similar formula holds good for q, whence 

D-I = limit of 

ffff_4«/3_ 
dx dy dx' dy'. 

Let now 

whence 

2tt (x! — oo) 

bx 
= au,, 

7 , bXa 7 
dx = dUy 

Ztt 

and the limits of u are ultimately — go and 4- oo , since a ultimately 

vanishes. Hence 

limit of 
2a daf_ 

'27r (x — x)\2 
bX 

bX r du _ 

7T J ~oo 1 + U2 

A similar formula holds good for y, and we have, therefore, 

L2I = b2X2jjdxdy = b\2A, 

if A be the whole area of the aperture or apertures. 

Now / ought to be equal to A, and, therefore, 

D = bX. 

Case II. Aperture in front of a screen. 

The formula for the illumination is given in Airy’s Tract, 
Art. 73. We have as before, 

D2/ = limit of 

ap 

Xab \ a ■+• b 

aq 
X~aU) +[y'~f+b) \^dddx'd1/dpd<1 

= limit of //////*“”" °“ ^ -*+!/•- rt 

■ (a! - x) - ^ <y - y)j dx dy dx dy’ dp dq 
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= limit of 
2a 

2ir (x' — x)\r 
X& ) 

C0S ^ \a~T~ ^ ~ *2 + ^ ~ dx dy doc' 

Now, when a vanishes, the whole of the integral 

f 2adx' 

<r+( —X6“—) 

is ultimately comprised between limits for which xr is infinitely 

close to x, and similarly with respect to y ; so that ultimately 

cos ~ h~ ^ y"' ~y^=1 

within the limits for which the quantity under the integral sign 

does not vanish. Hence, passing to the limit, we get 

D2! = X2b2 M dxdy = \2b2A, 

as before. 

Case III. Everything the same as in Case II., except that 

the phase of vibration is retarded by p, where p is some function 

of x and y. 

This case is very general. It includes, as particular cases, 

those numbered I. and II. The experiment with Fresnel’s mirrors 

or a flat prism is also included as a particular case *. 

From what precedes, it is plain that we should have in this 

D2I = limit of 

(a + b) _ , 

20 
2?r (y'-y)V' 

“ \b J 

[.x2— x2+ y2 -y2]~-p' + p> dx dy dx dy', 

* Thus, in the case of the flat prism, if P, Q be the virtual images corresponding 
to the halves AB, BG, if we produce AB 

to I), we may suppose the light which ^ 

falls on BG, instead of coming from Q, to - 

come from P, and to have been accelerated ' __ ' [q 

by the passage through the wedge DBG 

of air instead of the same wedge of glass. 
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where p is the same function of of and yf that p is of x and y. 

The same reasoning as before leads to the same result. 

I do not regard the preceding demonstration of a result which 

you were the first to announce, as of any physical interest after 

what you have yourself done. Still it may not seem wholly 

uninteresting, in an analytical point of view, to demonstrate the 

proposition for any form of aperture. 

Of course, by comparing the result X2b'2A with that obtained, in 

particular cases, by integrating in the straightforward way, we 

may arrive at the values of various definite integrals. 

I am, dear Sir, 

Yours very truly, 

G. G. Stokes. 



[From the Transactions of the Cambridge Philosophical Society, Vol. ix., p. 399 
(read Feb. 16 and March 15, 1852).] 

Oh the Composition and Resolution of Streams of 

Polarized Light from different Sources. 

When a stream of polarized light is decomposed into two 

streams which, after having been modified in a slightly different 

manner, are reunited, the mixture is found to have acquired 

properties which are quite distinct from those of the original 
stream, and give rise to a number of curious and apparently 
complicated phenomena. These phenomena have now, however, 

through the labours of Young and Fresnel, been completely 
reduced to law, and embraced in a theory, the wonderful sim¬ 

plicity of which is such as to bear with it the stamp of truth. 

But when two polarized streams from different sources mix to¬ 

gether, the mixture possesses properties intermediate between 
those of the original streams, and none of the curious pheno¬ 
mena depending upon the interference of polarized light are 
manifested. The properties of such mixtures form but an un¬ 
inviting subject of investigation; and accordingly, though to a 

certain extent they are obvious, and must have forced themselves 
upon the attention of all who have paid any special attention to 
the physical theory of light, they do not seem hitherto to have 

been studied in detail. 

Were the only object of such a study to enable us to calcu¬ 

late with greater facility the results obtained by means of cer¬ 

tain complicated combinations, the subject might deservedly be 

deemed of small importance. For the object of the philosopher 
is not to complicate, but to simplify and analyze, so as to 

reduce phenomena to laws, which in their turn may be made 
the stepping-stones for ascending to a general theory which shall 
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embrace them all; and when such a theory has been arrived at, 

and thoroughly verified, the task of deducing from it the results 

which ought to be observed under a combination of circumstances 
which has nothing to recommend it for consideration but its com¬ 

plexity, may well be abandoned for new and more fertile fields 

of research. But in the present case certain difficulties seem 

to have arisen respecting the connexion between common and 

elliptically polarized light which it needed only a more detailed 

study of the laws of combination of polarized light to overcome; 

and accordingly the subject may be deemed not wholly devoid of 

importance. 

The early part of the following paper is devoted to a demon¬ 
stration of various properties of elliptically polarized light, and 

of oppositely polarized streams. When two streams of light are 

called oppositely polarized, it is meant that, so far as relates to 

its state of polarization, one stream is what the other becomes 
when it is turned in azimuth through 90°, and has its nature 

reversed as regards right-handed and left-handed. Most, if not 

all, of these properties have doubtless already occurred to per¬ 
sons studying the subject, but I am not aware of any formal 
demonstrations of them which have been published; and indeed 
some artifices were required in order to avoid being encumbered 

in the demonstrations with long analytical expressions. The com¬ 
bination of several independent polarized streams is next con¬ 

sidered, and with respect to this subject a proposition is proved 

which may be regarded as the capital theorem of the paper. It 

is as follows. 

When any number of independent polarized streams, of given 
refrangibility, are mixed together, the nature of the mixture is 

completely determined by the values of four constants, which are 

certain functions of the intensities of the streams, and of the 

azimuths and eccentricities of the ellipses by which they are 
respectively characterized; so that any two groups of polarized 
streams which furnish the same values for each of these four 
constants are optically equivalent. 

It is a simple consequence of this theorem, that any group 
of polarized streams is equivalent to a stream of common light 

combined with a stream of elliptically polarized light from a 

different source. The intensities of these two streams, as well as 
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the azimuth and eccentricity of the ellipse which characterizes 

the latter, are determined by certain formulas, which will he found 
in their place. 

The general principles established in this paper bear on two 

questions of physical interest. Strong reasons are adduced in 
favour of the universality of the law, that the two polarized 

pencils which a doubly refracting medium of any nature is 
capable of propagating independently in a given direction are 

polarized oppositely. In strictness, we ought to speak of two 
series of waves rather than two pencils; for it is the fronts of 

the waves, not the rays, which are supposed to have a common 

direction. The other point alluded to relates to the distinction 
between common, and elliptically polarized light. It is shewn 

that the changes which are continually taking place in the mode of 
vibration may be of any nature, and that there is no occasion, in 
the case of common light, to suppose the transition from a series 

of vibrations of one kind to a series of another kind to be abrupt. 

At the end of the paper the general formulae are applied to 

the case of some actual experiments, but these applications are 
not of sufficient importance to deserve separate mention. 

1. Consider a stream of light polarized in the most general 
way, that is, elliptically polarized, and propagated through the 
free ether. Let the medium be referred to the rectangular axes 
of x, y, z, the axis of £ being measured in the direction of pro¬ 
pagation. Let a and a + 90° be the azimuths of the principal 

planes, that is, the planes of maximum and minimum polariza¬ 
tion, azimuths being measured about the axis of £ from x to¬ 
wards y. Let the rectangular components of the displacements 
of the ether be represented by lines drawn in the planes of 

polarization of the plane-polarized streams which these compo¬ 
nents, taken separately, would constitute. I make this assump¬ 
tion to avoid entering into the question whether the vibrations 

of plane-polarized light are parallel or perpendicular to the plane 
of polarization. If we adopt the former theory, the actual lines 

in the figures which we are to suppose drawn will represent in 

magnitude and direction the ethereal displacements; if we adopt 

the latter, the same will still be the case if we first suppose all 

our figures turned round the axis of z, in a given direction, 

through 90°. 
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Let the co-ordinates x\ yf be measured in the principal planes 

whose azimuths are a, a4- 90°; let j3 be the angle whose tangent 
is equal to the ratio of the axes of the ellipse described, the 

numerical value of /3 being supposed not to lie beyond the limits 

0 and 90°; let v be the velocity of propagation, t the time, X the 
length of a wave, and put for shortness, 

9 

= <p.(1). 

Then about the time t, and at no very great distance from a 

given point, suppose the origin, we may represent the displace¬ 

ments belonging to the given stream of elliptically polarized 

light by 

x' = c cos /3 sin (cf> + e), y' = c sin /3 cos (cj> + e).(2). 

If the light be convergent or divergent, c will depend upon 
<£, but for our present object any variation of c arising from this 

cause will not enter into account. The value of a, which deter¬ 

mines the direction in which x is measured, as well as that of 

y3, is given by the nature of the polarization. The polarization 
is right-handed or left-handed according to the sign of /3. As 

to c and e, the phenomena of optics oblige us to suppose that 
they are constant, or sensibly constant, for a great number of 

consecutive undulations, but that they change in an irregular 
manner a great number of times in the course of one second. 
The known rapidity of the luminous vibrations allows abundant 

scope for such a supposition, since c and e may be constant for 
millions of consecutive undulations, and yet change millions of 

times in a second. This series of changes, rapid with respect to 
the duration of impressions on the retina, but slow compared 

with the periodic changes in the motion of the ethereal particles, 

is exactly what we might have expected beforehand from a con¬ 
sideration of the circumstances under which light is produced, so 
far at least as its sources are accessible to us; and thus in this 
point, as in so many others, the theory of undulations commends 
itself for its simplicity. 

If c were constant c2 would be a measure of the intensity, 
so long as we were only comparing different streams having 

the same refrangibility. But since c is liable to the changes 
just mentioned, if we wish to express ourselves exactly, avoiding 



POLARIZED LIGHT FROM DIFFERENT SOURCES. 237 

conventional abbreviations, we must say that the intensity is 
measured, not by c2, but by the mean value of c2, which may 
conveniently be represented by ttt(c2). 

2. Let us examine now whether it be always possible to 

resolve the given disturbance into two which, taken separately, 
would correspond to two elliptically polarized streams of given 
nature. For the sake of clear ideas, it may be supposed that 

the azimuths and eccentricities of the ellipses belonging to these 
two streams are given and invariable, while the azimuth and 

eccentricity of the ellipse belonging to the first stream are given 
for that stream, but vary from one to another of a set of streams 
which we wish to consider in succession. 

Let x1} cl3 &c. be for the first, and x2> c2, &c. be for the 
second stream of the pair, what x\ c, &c. were for the original 

stream; and resolve all the displacements along the principal 
axes of the latter stream. Then, in order that the original 
disturbance may be equivalent to the pair, we must have, inde¬ 

pendently of 4>, 

xx cos (oq — oi) — yl sin (oq — a) + x2 cos (a2 — a) \ 

- y2 sin (a2-«) = «';.^ 

x1 sin (oq — a) + yl cos (oq — ot) + x2 sin (oq — a) f 
+ y2cos(a2-a) = y'. , 

Conceive aq, jq, x2, y2, x\ and y' expressed in terms of 4> by the 
formulae (2) and the similar formulae whereby x13 jq, &c. are 

expressed, and then let the sines and cosines of <£ + e, 4> + €i> 
and <^> + e2 be developed. In order that equations (3) may be 
satisfied independently of 0, the coefficients of sin </> and cos </> 
must separately be equal to zero, so that each of these equations 

will split into two. We shall thus have four equations to deter¬ 
mine the four unknown quantities c19 c2, e,, and e2. For the sake 

of shortness, let 

c cos e = g, c sin e — h3 

whether the letters be or be not affected with suffixes; and 

further put 

a2-a==W 



>•••(4). 
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then our four equations become 

cos & cos 7l. y, + sin f31 sin 7l. ht + cos /32 cos %. gt 

+ sin/32 sin 7,.A2 = cos /3. y, 

cos ft cos 7l. A2 - sin ft sin 7l. + cos ft cos <y2. A2 

- sin /92 sin 7s. y2 = cos £. A, 

cos ft sm 7l. y, - sin ft cos 7l. A, + cos ft sin 7a. g2 

— sin ft cos 7a. A2 = — sin ft. A, 

cos ft sm 7l. Aj + sin /ft cos 7l. y, + cos ft2 sin <y2. As 

+ sin /ft cos %. y2 = sin ft. g. 

Multiplying the first and second of these equations by 1 
V(-l) and adding, then multiplying the third and fourth by 
~ V (— 1), 1, and adding, and putting generally 

g + J~^lh=G. (5) 
we have v h 

(cos /Sj cos 7i — J — 1 sin (3X sin %) Gl -f (cos j32 cos y2 

_ -y-isin^ sin 7s!) ft = COs ft. ft 

(sm /ft cos 7l - J - l cos /ft sin 7l) ft + (sin /ft cos % 

— y — 1 cos As sin %) ft = sin ft. (7; j 

which two equations are equivalent to the four (4). 

1 tXntt?g f°r *hort°ess Pi’ P*> ?i> % ^ the coefficients in the 
left-hand members of equations (6), we have 

_ ft_ft q 
(h c°s sin ft “ft, shift- ryftosft = ^ • ■ ■ O)- 

On substituting for A> q2, &c. their values, we find 

Pl2i “• Ml = C0S (?! ~ 72) S^n (i82 — f3x) 

+ y — 1 sin (7i — 7a) cos (ft, + /ft). 

Now the equations (6) cannot be incompatible or identical unless 
the above quantity vanish. But this can only take place when 

sin (/ft-/ft) = 0 and sin (7j — 7a) = 0, 

...(C), 

or else 

c°s(£, + ft2) = 0 and cos (7l - 7a) = o, 

s*n Oft ~ /ft) = 0 and cos (/ft + /ft) = (). 

or lastly 



POLARIZED LIGHT FROM DIFFERENT SOURCES. 239 

The first case gives /32 = /31? 71-y2 = a1-a2 = 0 or ±180°, so 

that the two streams into which it was proposed to resolve the 

first are of the same nature. The second case gives /32 = 90° — f3lt 

Yi'~72 = ai~”a*2:= ± 90°, which shews that the two streams are 
identical in their nature, only the first and second principal 

planes of the first of these streams are accounted respectively 
the second and first of the second stream. The third case gives 

/32 = /?! = ±45°, so that the two streams are circularly polarized 
and of the same kind, which is a particular instance of the first 

case. 

Hence, universally, a stream of elliptically polarized light may 
be resolved into two streams of elliptically polarized light in which 
the polarizations are of any kind that we please, but different from 
one another. 

Substituting for q2, &c. their values in (7), and replacing yv y2 
by ax — a, a2 — a, for which they had been temporarily written, we 
find 

{sin(/32~/3)cos(a2~0 \ 

-J-I cos (/32 + /3 ) sin (a2 — a )}"1 Gx 

= {sin (/3 — /3X) cos (a — ax) 

- J -1 cos (/3 + /3X) sin (a - aJ}"1 02 

= {sin(/32-/31)cos(a2-a1) 

- J - 1 cos (/32 -f /3X) sin (a2 - a^}"1 Q ) 

...(8). 

3. Among these various modes of resolution there is one 
which possesses several peculiar properties, any one of which 
might serve to define it. Let us in the first place examine 
under what circumstances the intensity of the stream made up 
of the two components is independent of any retardation which 

the phase of vibration of one component may have undergone 

relatively to the phase of vibration of the other previously to 
the recomposition. 

For this purpose there is evidently no occasion to consider the 
manner in which av bx) e1? a2, b2, e2 are made up of a, b, e, but we 
may start with the components. Let pv p2 be the retardations 
of phase which take place before recomposition, and resolve the 
disturbances along the axes of w, y. We shall have for the 
resolved parts 
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as = 8 {at cos ax sin (<j> 4- ^ - px) — ^ sin ^ cos (<j> + €1~ 
y = 8 {a4 sin ax sin (<jf> 4 eA - pt) 4 cos ^ cos ($ 4 ex - p^}, 

where $ denotes the sum of the expression written down and 

that formed from it by replacing the suffix 1 by 2. To form 

the expression for the intensity, or rather what would be the 

intensity if the quantities c and e were absolutely constant, not 
merely constant for a great number of successive undulations, 
we must develope the expressions for os and y so as to contain 
the sine and cosine of <£>-{-/c, and take the sum of the squares 
of the coefficients, k is here a constant quantity which may be 
chosen at pleasure, and which it will be convenient to take equal 

to — pv If I be the intensity, in the sense above explained, 
or as it may be called the temporary intensity, we find, putting 

B for e2-p2-€1 + p1, 

I = [ax cos olx 4 a2 cos a2 cos 8 4- b2 sin a2 sin 8}2 

4- {— bt sin ax 4 a2 cos a2 sin 8 — b2 sin a2 cos 8}2 

4 [ax sin olx -I- a2 sin a2 cos 8 — b2 cos a2 sin 8}2 

4* cos 4 a2 sin a2 sin 8 4 b2 cos a2 cos 8}2 

= a* 4 b* 4 a2 4 b2 4 2 (a^ 4 bj)2) cos (a2 - ax) cos 8 
4 2 (afi2 4 a2bt) sin (a2 - at) sin 8. 

On putting for a, b their values c cos /3, c sin ft, this expression 
becomes 

/ = c24 c24 2c,c9 {cos (afi- a.) cos (&- &) cos 8 

4 sin (a2 - oq) sin (/32 4 /3X) sin 8} ... (9). 

In order that I may be independent of the difference of phase 

p2 — /?i, and therefore of 8, we must have either 

cos (a2 - ax) = 0, sin (£2 4 ft) = 0,.(10), 

or sin (oc2 - oq) = 0, cos (/32 — /3J = 0,.(11). 

The equations (10) give a2 — <aq = + 90°, /S2 = — /31? so that the 
ellipses described in the case of the two streams are similar, their 
major axes perpendicular to each other, and the direction of revo¬ 

lution in the one stream contrary to that in the other. It will 
be easily seen that the equations (11) differ from (10) only in 
this, that what are regarded as the first and second principal 

planes of the second stream when equations (10) are satisfied, 

are accounted respectively the second and first when (11) are 
satisfied. 
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Two streams thus related may be said to be oppositely polar¬ 
ized. Two streams of plane-polarized light in which the planes 
of polarization are at right angles to each other, and two streams 
of circularly polarized light, one right-handed and the other left- 

handed, are particular cases of streams oppositely polarized. 

In the reasoning of this article, nothing depends upon the pre¬ 
cise relation between the two polarized streams and the original 
stream. All that it is necessary to suppose is, that the two polar¬ 
ized streams came originally from the same polarized source, so 
that the changes in epoch and intensity, that is, the changes in 
the quantities e, c, are the same for the two streams. Nothing 
depends upon the precise nature of these changes, which may be 
either abrupt or continuous, but must be sufficiently infrequent 
if abrupt, or sufficiently gradual if continuous, to allow of our 
regarding c and e as constant for a great number of successive 
undulations. Our results will apply just as well to the dis¬ 
turbance produced by the union of two neighbouring streams 

coming originally from the same polarized source, but having 
had their polarizations modified, as to that produced by the 
union, after recomposition, of the components of a single polar¬ 
ized stream. Since the resulting intensity is independent of S, 
it follows that two oppositely polarized streams coming originally 
from the same polarized source are incapable of interfering, but 
two streams polarized otherwise than oppositely necessarily inter¬ 
fere, to a greater or less degree, when the difference in their 
retardation of phase is sufficiently small. Of course the inter¬ 
ference here spoken of means only that which is exhibited without 
analyzation. 

4. Two interfering streams may be said to interfere perfectly 

when the fluctuations of intensity are the greatest that the differ¬ 
ence in the intensities of the interfering streams admits of, so 
that in case of equality the minima are absolutely equal to zero. 
Referring to (9), we see that in order that this may be the case 
the maximum value of the coefficient of 2cp2 must be equal to 1. 

Now the maximum value of A cos S + /3 sin S is V (A2jr R2), and 

therefore we must have 

cos2 (ol2 - Oj) cos2 (/32 - /3j) + sin2 (ot2 - ax) sin2 (#2+ /3t) = 1 

= cos2 (aa - at) -|- sin2 (a2 - at), 

16 s. III. 
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whence, 

cos2 (a2 - cq) sin2 (/32 - ft) + sin2 (a, - oq) cos2 (£2 + /3X) = 0, 

which leads to the very same conditions that have been already 

discussed in Art. 2. Hence two polarized streams coming from 
the same polarized source are capable of interfering perfectly 
if the polarizations are the same, not at all if the polarizations 

are opposite, and in intermediate cases of course in intermediate 

degrees. 

5. When a stream of polarized light is resolved into two 

oppositely polarized streams, which are again compounded after 
their phases have been differently altered, we have from (9), 

taking account of (10) or (11), 

+ . (12), 

so that the intensity of the resultant is equal to the sum of the 
intensities of the components, and is therefore constant, that is, 
independent of px — p2, and is accordingly equal to what it was at 
first, when px and p2 were each equal to zero, that is, equal to the 
intensity of the original stream. 

It may be readily proved from the formulae (8) that it is only 

in the case in which the polarizations of the two components of 
the original polarized stream are opposite that the intensity of 
the original stream, whatever be the nature of its polarization, is 

equal to the sum of the intensities of the component streams. 
For, changing the sign of V(~l) in these formulae, multiplying 
the resulting equations, member for member, by the equations 
(8), and observing that if G' be what G becomes, GG' = + h? = c\ 
we find 

{sin2 (/32 — )cos2(a2 — a ) + cos2 (/32 + /3 )sin2(aa— a )}"1c12>j 

= {sin2(/3 - £,) cos2(oq- a ) + cos2(/? + f}x) sin2(a1~ a )J"1c22i(18). 

= {sin2 (/3S - /3,) cos2 (a2 - a,) + cos2 (£2 + £,) sin2 (a2- a,)}-1 c 2j 

In order that ttt (c2) may be equal to m (cx2) -f m (c22), it is 
necessary that c2 be equal to cx -f c22, because, whatever fluctua¬ 
tions cx and c2 may undergo in a moderate time, such as the 

tenth part of a second, cx and c2 are always proportional to c. 
Hence the sum of the quantities whose reciprocals are the co¬ 
efficients of Cj2 and c22 must be equal to that whose reciprocal is 
the coefficient of c2. Since this has to be true independently of 
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/3, let the quantities sin2 (/32 — /3), &c. be replaced by sines and 

cosines of multiple arcs, and let our equation be put under the 

form 

A + B cos 2/3 -f C sin 2/3 = 0. 

Then A} B, 0 must be separately equal to zero, or 

sin2 (/32 — /3,) cos2 (a2 — oq) + cos2 (/32 + /3X) sin2 (a2 - a,) = 1; 

cos 2/32 cos 2 (a2 — a) + cos 2/31 cos 2 (cq — a) = 0; 

sin 2/32 + sin 2/31 = 0. 

(14). 

Replacing unity in the right-hand member of the first of these 

equations by 

cos2 (a2 - oq) + sin2 (a2 - oq), 

we find 

cos2 (/32 — ySJ cos2 (a2 - oq) + sin2 (/32 + /3J sin2 (oq — oq) = 0; 

whence /32= — /31? a2=a1+90°, or else /32 and ^ differ by 90°, 

and a2 = oq, except in the particular case in which /31= ± 45°, 

when /32= + 45° satisfies the equation independently of ct2. Hence 

the streams must be polarized oppositely, a condition which may 

always be expressed by 

/S2=~/31, a2=oq + 90°, 

which equations satisfy the second and third of equations (14) 

independently of a, as it might have been foreseen that they 

would, since it has been already shewn that the condition (12) 

is satisfied in the case of oppositely polarized streams. It now 

appears that it is only in the case of such streams that this is 

satisfied. 

6. The properties of oppositely polarized pencils which have 

been proved, render it in a high degree probable that it is a 

general law that in a doubly refracting medium the two polarized 

pencils transmitted in a given direction are oppositely polarized. 

Were this not the case, the two pencils, polarized otherwise than 

oppositely, into which a polarized pencil is resolved on entering 

into the medium, would at emergence compound a pencil of which 

the intensity would depend upon the retardations of phase of one 

pencil relatively to the other, so that such a medium, when ex¬ 

amined with polarized light, ought to exhibit rings or colours 

without the employment of an analyzer. It is here supposed 

16-2 
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that the light enters the medium at the first surface, and leaves 
it at the second, in a direction normal to the surface, or very 
nearly so, and likewise that the refracting power of the medium 

for the two pencils is not very different, so that the effect of re¬ 
flexion at the two surfaces may be disregarded, the only sensible 
effect being to diminish the intensity of each of the two pencils 
in the same proportion, without affecting its state of polariza¬ 
tion. These views would lead us to scrutinize very carefully any 

experimental evidence brought forward which would lead to the 

conclusion, that the two polarized pencils which a doubly re¬ 
fracting medium was capable of propagating in a given direction 
were polarized otherwise than oppositely. 

7. In ordinary doubly refracting crystals, whether uniaxal or 
biaxal, and in doubly refracting liquids, such as syrop of sugar, 

it is generally admitted that the two pencils transmitted in a 
given direction are oppositely polarized. In the former case the 
two pencils are polarized in rectangular planes, in the latter 

they are circularly polarized, one being right-handed and the 
other left-handed. The same is the case with quartz for pencils 
transmitted in the direction of the axis; but in following out 
the researches in which he so successfully connected the pheno¬ 
mena, identical with those of a doubly refracting liquid, which 

quartz exhibits in the direction of the axis, with the phenomena 
which it exhibits as a uniaxal crystal, Mr Airy met with an ex¬ 
perimental result which seemed to shew that while the ellipses 
which characterize the two streams transmitted in a given direc¬ 
tion, oblique to the axis, have their major axes situated, one in 
a principal plane, and the other perpendicular to the principal 
plane, and the directions of revolution are opposite, the eccen¬ 
tricities of the ellipses, though nearly, are not quite equal*. 
This conclusion depended upon the result of certain experiments 

made by means of a Fresnel's rhomb. The nature of the ex¬ 

periments seemed to eliminate the effect of an error in the 
rhomb, that is, a deviation from 90° in the retardation of phase 
which it produced in a pencil polarized in the plane of reflexion 
relatively to a pencil polarized in a plane perpendicular to the 
former. The effect of a possible index error in the plane of 
reflexion seemed also to be eliminated; and the quantities on 

* Cambridge Philosophical Transactions, VoL iv. p. 204. 
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which the results depended, though small, seemed to be beyond 

mere errors of pointing. Being impressed however with a strong 

conviction that the result depended in some way on the mode of 

observation, I was led to scrutinize the different steps of the 

process, and it occurred to me that the apparent inequality of 

eccentricities was probably due to defects of annealing in the 

rhomb. It is next to impossible to procure a piece of glass of 

such a size free from defects of that nature, for which reason I 

believe that even a good Fresnels rhomb is not to be trusted 

for minute quantities, except in the case of merely differential 

observations. 

The same views lead to the conclusion that the two pencils 

transmitted through magnetized glass in a direction oblique 

to the lines of magnetic force are oppositely polarized. Some 

theoretical investigations in which I was engaged some time ago 

led me to the result that these polarized streams are circularly 

polarized, as well as those transmitted along the line of magnetic 

force, and that the difference between the wave-velocities varies 

as the cosine of the inclination of the wave-normal to the line 

of magnetic force. I hope at some future time to bring these 

researches before the notice of this Society. 

8. After these preliminary investigations respecting the na¬ 

ture of opposite polarization, which indeed contain, it is probable, 

but little that has not already occurred to persons who have 

studied the subject, it is time to come to the more immediate 

object of this paper, which relates to the combination of inde¬ 

pendent streams. But first it will be convenient to state ex¬ 

plicitly a principle which is generally recognized. 

When any number of polarized streams from different sources 

mix together, after having been variously modified by reflexion, 

refraction, transmission through doubly refracting xnedia, tourma¬ 

lines, &e., the intensity of the mixture is equal to the sum of the 

intensities due to the separate streams. 

The reason of this law may be easily seen. The components 

whereby the disturbance due to any one stream is originally ex¬ 

pressed have to be resolved, their components resolved again, and 

so on • and of these partial disturbances the phases of vibration 

have to be altered by quantities independent of the time, and the 
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coefficients in some cases diminished in given ratios, and in some 

cases suppressed altogether. Each stream has to be treated in 

a similar way. The final disturbance being resolved in any two 

rectangular directions, each component must be put under the 

form U cos <£ + V sin <£, and the sum of the squares of U and V 
must be taken to form the expression for the temporary in¬ 

tensity. All the quantities such as U and V will evidently be 

linear functions of c cos e, c sin e, d cos e', d sin e', &c., where 

c, d... and e, e'... refer to the different streams, so that U for 

instance will be of the form 

Ac cos e 4* Be sin e + A V cos e + B'd sin d + ... 

where A, B} A', B'... are independent of the time. The tem¬ 

porary intensity will involve U2, but the actual intensity will 

involve m(!!72), or 

ttt2 (Ac cos e 4- Be sin e)2 + 2m2 {(Ac cos e + Be sin e) 

(A fd cos e' 4- B'c' sin e')}. 

Now the products such as cos e cos e} cos e sin e', &c. will 

have a mean value zero, since the changes in e and those in 

€ have no relation to each other, and therefore the expression 

for nt (U2) becomes 

m2 (Ac cos e +Be sin e)2, or 2ui (Ac cose + Be sine)2, 

that is, the sum of the quantities by which it would be expressed 

were the different streams taken separately. 

Two streams which come from different sources, or which, 

though in strictness they come from the same source, are such 

that the changes of epoch and intensity in the one have no 

relation to the changes of epoch and intensity in the other, may 

be called independent 

9. Suppose that there are any number of independent polar¬ 

ized streams mixing together; let the mixture be resolved in any 

manner into two oppositely polarized streams, and let us examine 

the intensity of each. 

Let us take one stream first. The intensities of its compo¬ 

nents are given by the formula (13), which become somewhat 

simpler in the case of opposite polarizations, since (32 = — (3V and 

^=90° + ^. Hence 

ci — [sin2 (/?,. +@) sin2 (at - a) + cos2 (/^ — f3) cos2 (o^ - a)} d; 
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whence we find 

m (cx) = i {1 + sin 2/31 sin 2/3 + cos 2at cos 2a cos 2/Sj cos 2 ft 
+ sin 2at sin 2a cos 2/3X cos 2/3} nt (c2) ... (15). 

There will be no occasion to write down the value of UT (ca2), 

since ct may be taken to refer to either component. 

Let us pass now to the consideration of a group consisting of 

any number of independent polarized streams. Let 

£m (c2) = A, 2 sin 2/3XXX (c2) = B, 2 cos 2a cos 2/3ttt (c2) = C 

2 sin 2a cos 2/3W (c2) = D, 

and let cx now refer to one of the components of the whole group; 

then 

2m (cx) = A + B sin 2/3t + C cos 2oq cos 2/3x + D sin 2at cos 2/3x.. .(17). 

It follows that if there are two groups of independent polar¬ 

ized streams which are such as to give the same values to each 

of the four quantities A, B, C} D defined by (16), if the groups 

be resolved in any manner whatsoever, which is the same for 

both, into two oppositely polarized streams, the intensities of the 

components of the one group will be respectively equal to the 

intensities of the components of the other group. Conversely, if 

two groups of oppositely polarized streams are such that when 

they are resolved in any manner, the same for both, into two 

oppositely polarized streams, the intensities of the components of 

the one group are respectively equal to the intensities of the 

components of the other group, the quantities A, B, C, D must 

be the same for the two groups. For, if we take accented letters 

to refer to the second group, the second member of equation (17), 

and the expression thence derived by accenting A, B, G} D, must 

be equal independently of ai and /3,, which requires that A\ B\ 
G'y D' be respectively equal to A, B, 0, D. 

Definition. Two such groups will be said to be equivalent. 

10. The theoretical definition of equivalence which has just 

been given agrees completely with the experimental tests of 

equivalence. One of the most ready as well as delicate modes 

of detecting minute traces of polarization, and at the same time 

determining qualitatively the nature of the polarization, consists 

in viewing the light to be examined through a plate of calcareous 
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spar or other crystal, cut for shewing rings, followed by a Nicol’s 

prism. The plane-polarized pencils respectively stopped by and 

transmitted through the Nicol’s prism consisted, on entering the 

crystal, of pencils elliptically polarized in opposite ways; and 

the nature of this elliptic polarization changes in every possible 

manner from one point to another of the field of view. If these, 

two streams of light be equivalent according to the definition 

given in the preceding article, they will present exactly the 

same appearance on being viewed through a crystal followed by 

a Nicofs prism or other analyzer. 

11. Theorem. Let a polarized stream be resolved into two 

oppositely polarized streams; let the phase of vibration of one 

of the streams be altered by a given quantity relatively to that 

of the other, and let the streams be then compounded. If the 

polarization of the original stream be now changed to its oppo¬ 

site, the polarization of the final stream will also be changed to 

its opposite. 

The straightforward mode of demonstrating this theorem, by 

making use of the general expressions, would lead to laborious 

analytical processes, which are wholly unnecessary. For the 

formulae which determine the components of a given stream are 

expressed by simple equations, so that the results are unique, and 

accordingly whenever we can foresee what the result will be, it is 

sufficient to shew that the formulae themselves, or the geometrical 

conditions of which the formulae are merely the expressions, are 

satisfied. 

For shortness3 sake call the original stream X, and its com¬ 

ponents 0, E. Let p be the given quantity, positive or nega¬ 

tive, by which the phase of vibration of 0 is retarded relatively 

to that of E. Let o, e denote the streams 0, E after the changes 

of phase, and Y the stream resulting from their reunion. Con¬ 

ceive now all the vibrations with which we arc concerned to be 

turned in azimuth through 90°. This will not affect the geo¬ 

metrical relations connecting components and resultants. Let 

X', O', E', o', e, Y' be the streams which X, 0, E, o, e, Y thus 

become. The streams O', E' are evidently polarized in the same 

manner respectively as E, 0, except that right-handed is changed 

into left-handed, and vice versa; and in passing from O' to d the 

phase is retarded by p. Now conceive the direction of motion of 
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a given particle reversed, the motions of all other particles being 

derived from that of the first according to the general law of wave 

propagation. The relations between components and resultants 

will evidently not be violated; and if X", 0", E", o", en, F" denote 

the streams into which X', 0\ E\ o', e’, Y' are thus changed, it 

is evident that the polarizations of X", 0", E", o", e", Y" are 

respectively opposite to those of X, 0, E, o, e, Y. But on ac¬ 

count of the reversion in direction of motion it is plain that there 

is reversion as regards acceleration and retardation of phase, so 

that in passing from the pair 0", E" to the pair o", e" the phase 

of 0" is accelerated by p relatively to the phase of E". 

Hence the stream X", polarized oppositely to X, is resolved 

into two E", 0", polarized in the same manner respectively as 

0, E, which are recompounded after the phase of the one polarized 

in the same manner as 0 has been retarded by p relatively to the 

phase of the other, and the result is Y", a stream polarized in a 

manner opposite to F, which proves the theorem. 

12. This theorem may bo applied to the case of light 

transmitted through a slice of a doubly refracting crystal, and 

shews that two streams going in oppositely polarized come out 

oppositely polarized. Also, since nothing in the demonstration 

depends upon the order in which the decompositions and recom¬ 

positions take place, it is immaterial whether X, X" denote a 

pair of oppositely polarized incident streams, which give rise to 

the emergent streams F, F", or X, X" denote a pair of oppo¬ 

sitely polarized emergent streams, which came from the incident 

streams F, Y'. A particular case of this theorem was assumed 

in the preceding article, when it was stated that the pencils, 

polarized in perpendicular planes, which on coming out of a 

crystal of calcareous spar are respectively stopped by and trans¬ 

mitted through a Nicol’s prism, went into the crystal oppositely 

polarized. 

The theorem will evidently be true of a train consisting of 

any number of crystalline plates, each possessing the property 

of resolving the incident light into two oppositely polarized 

streams, which arc propagated within the medium with different 

velocities. For two oppositely polarized streams incident on the 

first plate give rise to two emergent streams which fall oppo¬ 

sitely polarized on the second plate, and so on. Since the number 
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of plates may be supposed to increase and their thickness to de¬ 

crease indefinitely, while at the same time the steps by which 

the doubly refracting nature of the plates alters from one to 

another become separately insensible, the theorem will be true 

if the whole train, or part of it, consist of a substance of which 

the doubly refracting nature alters continuously, as for example 

a piece of strained or unannealed glass. If, however, the train 

contain a member which performs a partial analysis of the light, 

as for example a plate of smoky quartz, or a plate of glass in¬ 

clined to the incident light at a considerable angle, it will no 

longer be true that two pencils going in oppositely polarized will 

come out oppositely polarized. 

13. Theorem. If two equivalent groups of polarized streams 

be resolved in any manner, which is the same for both, into two 

oppositely polarized groups, and these be recombined after the 

phase of one of the components has been retarded by a given 

quantity relatively to that of the other, the two groups of resultant 

streams will be equivalent. 

Let the groups of resultants be each resolved in any manner 

into two oppositely polarized streams, and call these 0, E. By 

Art. 11, if O', E' be the streams which furnish 0, E respectively, 

O', E' are oppositely polarized. Now by Art. 3, the intensities 

of 0, E are the same respectively as those of O', E'\ but these 

are the same for the one group as for the other, by the defini¬ 

tion of equivalence. Therefore the intensities of 0, E are the 

same for the one group as for the other; but 0, E are any two 

oppositely polarized components of the resultant groups; therefore 

these groups are equivalent. 

Hence, if two equivalent groups be transmitted through a 

crystalline plate, the emergent groups will be equivalent; and 

by the same reasoning as in Art. 12 the theorem may be ex¬ 

tended to an optical train consisting of any number of crystalline 

plates, pieces of unannealed glass, &c. 

14. Theorem. If two equivalent groups be resolved in any 

manner, the same for both, into two polarized streams, the in¬ 

tensities of the components of the one group will be respectively 

equal to the intensities of the components of the other group. 

The proof of this theorem is very easy. It is sufficient to 

treat the general expressions (13) exactly as in Art. 9, only that 
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no relations are to be introduced between a2, /32, and a1} 

Since the coefficient of c2 in (13) is constant, if we consider as 

variable such quantities only as may change in passing from the 

one group to the other, it will be easily seen that the intensity 

of either component depends on the same four constants A, B, 
' C} B as before; and since these have the same values for equi¬ 

valent groups, it follows that in the most general mode of reso¬ 

lution the components of any two such groups have the same 

intensities respectively. 

15. Theorem. If two equivalent groups be each resolved 

in the same manner into two oppositely polarized streams, and 

these be recombined after their vibrations have been diminished in 

two different given ratios, the resultant groups will be equivalent. 

Let each of the resultant groups be resolved into two oppo¬ 

sitely polarized streams 0, E, and let O', E' denote the streams 

which furnished 0, E respectively. It is easily seen that the 

streams O', E' are both polarized, though not in general oppo¬ 

sitely. Were there any occasion to determine the nature of the 

polarizations, it might easily be done by following a process the 

reverse of that by which the modified are deduced from the 

original groups. Thus, if it were required to determine the 

polarization of O', we should resolve 0 into streams oppositely 

polarized in the manner originally given, augment the vibra¬ 

tions in ratios the inverse of those in which they are actually 

diminished, and recombine the streams so obtained. For our 

present purpose, however, it is sufficient to observe that the 

polarizations of O', Ef depend only on the mode of resolution, 

and not on the nature of the original group, and that therefore 

they arc the same for the one group as for the other. The 

intensity of 0' is not the same as that of 0, as in the case con¬ 

sidered in Art. 13, but bears to it a ratio depending only on the 

mode of resolution, and therefore the same for each of the two 

original groups. The same is true of the intensity of E' com¬ 

pared with that of E. Now by Art. 14 the intensities of O', E 
arc the same for the two original groups, and the intensities of 

0, E bear to those of O', E* respectively, ratios the same for the 

two groups: therefore the intensities of 0, E arc the same for the 

two final groups; but 0, E are any two oppositely polarized com- 

■ ponents of these groups ; therefore these groups are equivalent. 
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16. It follows from this theorem that no partial analysis of 

light, such, for example, as would he produced by reflexion from 

the surface of glass or metal, or by transmission through a doubly 

absorbing medium, can from equivalent groups produce groups 

which are not equivalent to each other; and we have seen 

already that this cannot be done by means of the alteration of 

phase accompanying double refraction. It follows, therefore, that 

equivalent groups are optically undistinguishable. 

In proving this property of equivalent groups, it has been 

supposed that the polarizations of the two streams into which 

any group was resolved were opposite, such being the case in 

nature. But did a medium exist such that the two streams of 

light which it transmitted independently were polarized other¬ 

wise than oppositely, it would still not enable us to distinguish 

between equivalent groups. 

17. The experimental definition of common light is, light 

which is incapable of exhibiting rings of any kind when ex¬ 

amined by a crystal of Iceland spar and an analyzer, or by some 

equivalent combination. Consequently, a group of independent 

polarized streams will together be equivalent to common light 

when, on being resolved in any manner into two oppositely 

polarized pencils, the intensities of the two are the same, and 

of course equal to half that of the original group. Accordingly, 

in order that the group should be equivalent to common light, 

it is necessary and sufficient that the constants B, C} D should 

vanish. 

18. Let us now sec under what circumstances two inde¬ 

pendent streams of polarized light can together be equivalent 

to common light. 

Let a, ft refer to the first, and a, ft' to the second stream, and 

let the intensities of the two streams be as 1 to n\ then wc get 

from the formulas (16) 

sin 2ft 4- n sin 2ft' = 0 ; 

cos 2a cos 2ft 4- n cos 2a! cos 2 ft! = 0 ; 

sin 2a cos 2ft 4- n sin 2a cos 2ft' = 0. 

Transposing, squaring, and adding, we find u2 = 1, and there¬ 

fore ?i=l, since n is essentially positive. Since ft and ft' are 



POLARIZED LIGHT FROM DIFFERENT SOURCES. 253 

supposed not to lie beyond the limits —90° and 4-90°, we get 

from the first equation ft' = — ft} or ft' = + 90° — ft, + or — ac¬ 

cording as ft is positive or negative. Now it is plain that any 

one solution must be expressed analytically in two ways, in which 

the values of ft' are complementary, and the values of a differ 

by 90°, since either principal axis of the ellipse belonging to the 

second stream may be that whose azimuth is a'. Accordingly, 

we may reject the second solution as being nothing more 

than the first expressed in a different way, and may therefore 

suppose ft' — — ft. The second and third equations then give 

cos 2a' = — cos 2a, sin 2a = — sin 2a, and therefore a and a' differ 

by 90°. The equations are indeed satisfied by ft = — ft'=± 45°, 

but this solution is only a particular case of the former. 

It follows therefore that common light is equivalent to any 

two independent oppositely polarized streams of half the in¬ 

tensity; and no two independent polarized streams can together 

be equivalent to common light, unless they be polarized oppo¬ 

sitely, and have their intensities equal. 

19. We have seen that the nature of the mixture of a given 

group of independent polarized streams is determined by the 

values of the four constants A, B} C, D. Consider now the 

mixture of a stream of common light having an intensity and 

a stream, independent of the former, consisting of elliptically 

polarized light having an intensity J'} and having a for the 

azimuth of its plane of maximum polarization, and tan ft' for 

the ratio of the axes of the ellipse which characterizes it. 

By the preceding article, the stream of common light is equi¬ 

valent to two independent streams, plane-polarized in azimuths 0° 

and 90°, having each an intensity equal to \J. Hence, applying 

the formulae (16) and (17) to the mixture, we have 

2m (Cj)2 = J + /' -f J7sin 2ft'sin 2ftt + J'cos 2a' cos 2/3'cos 2axcos 2ftx 
+ J' sin 2a cos 2ft' sin 2ax cos 2^ ; 

and this mixture will be equivalent to the original group of polar¬ 

ized streams, provided 

J + J' = Ai 

J' cos 2a' cos 2ft' ~ C; 

J' sin 2ft' = B; j 

J' sin 2a' cos 2ft' = D. J 
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These equations give 

JWGB2+C2 + D2); 
JB 

sm2^=V(F+C! + F); 

J = A-^/(B‘2+Gi + D2); 

tan 2a' = 
D 
O' 

...(19). 

These formulae can always be satisfied, and therefore it is 

always possible to represent the given group by a stream of 

common light combined with a stream of elliptically polarized 

light independent of the former. Moreover, there is only one 

way in which the group can be so represented. For, though the 

third of equations (19) gives two values for /3' complementary to 

each other, these values, as before explained, lead only to two 

ways of expressing the same result. If we choose that value of 

ft which is numerically the smaller, then among the different 

values of a', differing by 90°, which satisfy the fourth equation, we 

must choose one which gives to cos 2a the same sign as G 

20. Let us now apply the principles and formulae which have 

just been established to a few examples. And first let us take 

one of the fundamental experiments by which MM. Arago and 

Fresnel established the laws of interference of polarized light, or 

rather an analogous experiment mentioned by Sir John Herschel. 

The experiment selected is the following. 

Two neighbouring pencils of common light from the same 

source are made to form fringes of interference. A tourmaline, 

carefully worked to a uniform thickness, is cut in two, and its 

halves interposed in the way of the two streams respectively. It 

is found that when the planes of polarization of the two tour¬ 

malines are parallel the fringes are formed perfectly; but as one 

of the tourmalines is turned round in azimuth the fringes become 

fainter, and at last, when the planes of polarization become per¬ 

pendicular to each other, the fringes disappear. 

Let the planes of polarization of the tourmalines be inclined 

at an angle a, and let it be required to investigate an expression 

for the intensity of the fringes. Since common light is equi¬ 

valent to two independent streams, of equal intensity, polarized 

in opposite ways, let the original light be represented by two 

independent streams, having each an intensity equal to unity, 

polarized in planes respectively parallel and perpendicular to the 

plane of polarization of the first tourmaline. If c, c be the co- 
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efficients of vibration in the two streams respectively, c cos a, 

c' sin a will be the coefficients of the resolved parts in the direc¬ 

tion of the vibrations transmitted by the second tourmaline. 

Hence we shall have, mixing together, two independent streams, 

in one of which the temporary intensity fluctuates between the 

limits (c±c cos2 a)2 +- (c cos a sin a)2 as the interval of retarda¬ 

tion changes in passing from one point to another in the field 

of view. The temporary intensity of the other stream being 

{o' sin a)2, the intensity at different points will fluctuate between 

the limits 

nt (c2 ± 2 c2 cos2 a + c2 cos2 a) + m (c' sin a)2. 

It is needless to take account of the absorption which takes 

place even on the pencils which the tourmalines do transmit, 

because it affects both pencils equally. Since m (c2) = Rl (c/2) = 1, 

we have for the limits of fluctuation of the intensity 2 + 2 cos2 a. 

When a = 0 these limits become 4 and 0, and the interference is 

perfect. When a = 90° the limits coalesce, becoming each equal 

to 2, and there are no fringes. As a increases from 0 to 90°, the 

superior limit continually decreases, and the inferior increases, and 

consequently the fringes become fainter and fainter. 

21. It is a well-known law of interference that if two rays 

of common light from the same source be polarized in rect¬ 

angular planes, and afterwards be brought to the same plane of 

polarization, or in other words, analyzed so as to retain only 

light polarized in a particular plane, they will not interfere, but 

if the light be primitively polarized in one plane they will inter¬ 

fere. This law seems to have presented a difficulty to some, 

because, it would be argued, the most general kind of vibra¬ 

tions are elliptic, so that wc must suppose the vibrations of the 

ether in the case of common light to be of this kind; and yet 

the phenomena of interference are exhibited perfectly well if the 

light be at first clliptically polarized instead of plane-polarized. 

For my own part, I never could see the difficulty, but on the 

other hand it seems to me that it would be an immense diffi¬ 

culty were the law anything else than what it is. For, if we 

consider the rectangular components of the vibrations which 

make up common light, these components being measured along 

any two rectangular axes perpendicular to the ray, we must 

suppose them to be independent of each other, or at least to 
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have no fixed relation to each other so far as regards the 

changes in the mode of vibration, which we must suppose to 

be taking place continually, though slowly, it may be, in com¬ 

parison with the time of a luminous vibration. To suppose 

otherwise would be contrary to the idea of common light, in 

which it is implied that on the average whatever we can say 

of one plane passing through the ray, we can say of another: 

whatever we can say of the direction one way round we can say 

of the other way round. 

At the end of his excellent Tract on the Undulatory Theory, 

Mr Airy has shewn how the simple supposition of the existence, 

in common light, of successive series of undulations, in which 

the vibrations of one series have no relation to those of another, 

would account at the same time for the interference of common 

light and the non-interference of the pencils, polarized in rect¬ 

angular planes, into which common light may be conceived to 

be decomposed. But he has, I think, introduced a gratuitous 

difficulty into the subject, by asserting that it is necessary to 

suppose the transition from one series into another to be abrupt, 

and that a gradual change in the nature of the vibrations is 

inadmissible. This assertion, which seems to have led others to 

conceive that there was here a difficulty with which the undu¬ 

latory theory had to contend, seems to have resulted from an 

investigation from which it appeared that common light could 

not be represented by an indefinite series of elliptic vibrations, 

in which the major axis of the ellipse was supposed to revolve 

uniformly, rapidly, with regard to the duration of impressions on 

the retina, though slowly with regard to the time of a luminous 

vibration. I have elsewhere pointed out on what grounds I con¬ 

ceive that the instance of the revolving ellipse is not a case in 

point, namely, that it is not a fair representation of common 

light, because it gives a preponderance on the average to one 

direction of revolution over the opposite, which is contrary to 

the idea of common light*. Let us now apply the general 

formulae (16) and (17) to this case. 

Let c cos /3, c sin /3 be the semi-axes of the ellipse, a the 

azimuth of the first axis at a given time. So far as relates to 

* Report of the meeting of the British Association at Swansea in 1848. Trans¬ 
actions of the Sections, p. 5. 
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the stream for which the azimuth of the first axis lies between 

a and a + da, we have m (c2) = (27r)'1 c2cZa; and in the application 

of the formulae (16) the summation, to which X refers, will of 

course pass into an integration. We have therefore 

A = 
c2 to

 

» ii = c2; 
2tt Jo 
C2 [2ir 

B = 
2tt 

sin 2/3 da~c2 sin 2/3; 
/0 

0 = 0; D = 0; 

whence we get from the formulae (19), supposing ft positive, 

</' = c2 sin 2/3; / = c2 (1 — sin 2$); /3'=45°; 

while d remains indeterminate. Hence the mixture is equiva¬ 

lent, not to common light alone, but to a stream of common 

light having an intensity equal to c2 (1 — sin 2/3), combined with 

a stream of circularly polarized light, independent of the former, 

having an intensity equal to c2 sin 2/3, and being of the same cha¬ 

racter as regards right-handed or left-handed as the original 

stream would be were the ellipse stationary. The result of 

supposing ft negative is here assumed as obvious. 

22. Suppose that a polarizing prism and a mica plate, which 

produce elliptic polarization, are made to revolve together with 

great rapidity. The stream of light thus produced will be equi¬ 

valent to the former. The only difference is that in the former 

case c was supposed constant, whereas in the case of actual ex¬ 

periment it will be subject to the fluctuations mentioned at the 

beginning of this paper; but the mean values represented by tit will 

not be affected when these fluctuations are taken into account, 

and therefore the same formulae will continue to apply. Hence, 

if the polarization be circular the rotation will make no differ¬ 

ence; if it be plane, the light will appear completely depolarized; 

in intermediate cases the result will be intermediate, and the 

light will be equivalent to a mixture of common light and cir¬ 

cularly polarized light. The reader may compare these conclu¬ 

sions of theory with some experiments by Professor Dove*. 

23. As a last example, let light polarized by transmission 

through a Nicol’s prism be transmitted through a second Nicol’s 

See Philosophical Magazine, Vol. xxx. (1847) p. 465. 

s. iir. 17 
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prism, which is made to revolve uniformly and rapidly while the 

first remains fixed. 

Let a be the azimuth of the plane of polarization of the second 

Nicol’s prism, measured from that of the first, c the coefficient of 

vibration in the stream transmitted through the first prism. The 

stream passing through the second prism is made up of an infinite 

number of independent streams such as that whose intensity is 

(27T)"1 cos2 adoc multiplied by the mean value of c2. Hence we have 

from the formulae (16) 

3 = 0; C = Jm(c2); 3 = 0; 

whence, taking the intensity of the original stream as unity, we 

have 

3 = / = h /3' = 0; a' = 0; 

or the light is equivalent to a mixture of common light having 

an intensity and light independent of the former, of the same 

intensity, polarized at an azimuth zero. This result may be com¬ 

pared with one of Professor Dove’s experiments. 

If a rotating crystalline plate, cut from a doubly refracting 

crystal in a direction not nearly coinciding with the optic axis 

or one of the optic axes, and not sufficiently thin to exhibit 

colours in polarized light, be substituted for the rotating Nicol’s 

prism, since the plate is too thick to allow of the exhibition of 

any phenomena depending on the interference of the oppositely 

polarized pencils, the effect will be just the same as in the case 

of the Nicol’s prism, only the intensity of each stream will be 

doubled. 

In applying the formulae of this paper to experiments in 

which one part of an optical train is made to revolve rapidly, it 

must be understood that the other parts of the train are at rest, 

or at least do not revolve with a velocity nearly equal to the 

former. Otherwise, particular phenomena will be exhibited de¬ 

pending on the simultaneous movements of two or more parts 

of the train, as appeared in Professor Dove’s experiments; and 

in the calculation of these phenomena it will not be allowable to 

substitute for the stream of light emerging from the polarizer, or 

first revolving piece whatever it be, the streams of common and 

elliptically polarized light to which, for general purposes, it is 

equivalent. 



[From the Proceedings of the Royal Society, Vol. vi., p. 195.] 

Abstract of a paper “On the Change of Refrangibility 

of Light*.” 

[Read May 27, 1852.] 

The author was led into the researches detailed in this paper 

by considering a very singular phenomenon which Sir John 

Herschel had discovered in the case of a weak solution of sulphate 

of quinine, and various other salts of the same alkaloid. This 

fluid appears colourless and transparent, like water, when viewed 

by transmitted light, but exhibits in certain aspects a peculiar 

blue colour. Sir John Herschel found that when the fluid was 

illuminated by a beam of ordinary daylight, the blue light was 

produced only throughout a very thin stratum of fluid adjacent to 

the surface by which the light entered. It was unpolarized. It 

passed freely through many inches of the fluid. The incident 

beam, after having passed through the stratum from which the 

blue light came, was not sensibly enfeebled nor coloured, but yet 

it had lost the power of producing the usual blue colour when 

admitted into a solution of sulphate of quinine. A beam of light 

modified in this mysterious manner was called by Sir John Herschel 

epipolized. 
Several years before Sir David Brewster had discovered in the 

case of an alcoholic solution of the green colouring matter of 

leaves a very remarkable phenomenon, which he has designated 

* [As the paper in question is of considerable length, and contains a good deal 
of detail, it seemed desirable in this case to reprint the abstract as well as the 
paper itself. In the abstract the reader will find in short compass the more 

important of the results contained in the paper.] 

17—2 
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as internal dispersion. On admitting into this fluid a beam of 

sunlight condensed by a lens, he was surprised by finding the path 

of the rays within the fluid marked by a bright light of a blood- 

red colour, strangely contrasting with the beautiful green of the 

fluid itself when seen in moderate thickness. Sir David afterwards 

observed the same phenomenon in various vegetable solutions and 

essential oils, and in some solids. He conceived it to be due to 

coloured particles held in suspension. But there was one circum¬ 

stance attending the phenomenon which seemed very difficult of 

explanation on such a supposition, namely, that the whole or a 

great part of the dispersed beam was unpolarized, whereas a beam 

reflected from suspended particles might be expected to be polar¬ 

ized by reflexion. And such was, in fact, the case with those 

beams which were plainly due to nothing but particles held in 

suspension. From the general identity of the circumstances 

attending the two phenomena, Sir David Brewster was led to 

conclude that epipolic was merely a particular case of internal 

dispersion, peculiar only in this respect, that the rays capable of 

dispersion were dispersed with unusual rapidity. But what rays 

they were which were capable of affecting a solution of sulphate 

of quinine, why the active rays were so quickly used up, while the 

dispersed rays which they produced passed freely through the 

fluid, why the transmitted light when subjected to prismatic 

analysis showed no deficiencies in those regions to which, with 

respect to refrangibility, the dispersed rays chiefly belonged, were 

questions to which the answers appeared to be involved in as 

much mystery as ever. 

After having repeated some of the experiments of Sir David 

Brewster and Sir John Herschel, the author could not fail to take 

a most lively interest in the phenomenon. The firm conviction 

which he felt that two portions of light were not distinguishable 

as to their nature otherwise than by refrangibility and state of 

polarization, left him but few hypotheses to choose between, 

respecting the explanation of the phenomenon. In fact, having 

regarded it at first as an axiom that dispersed light of any 

particular refrangibility could only have arisen from light of the 

same refrangibility contained in the incident beam, he was led by 

necessity to adopt hypotheses of so artificial a character as to 

render them wholly improbable. He was thus compelled to adopt 

the other alternative, namely, to suppose that in the process of 
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internal dispersion the refrangibility of light had been changed. 

Startling as such a supposition might appear at first sight, the 

ease with which it accounted for the whole phenomenon was 

such as already to produce a strong probability of its truth. 

Accordingly the author determined to put this hypothesis to the 

test of experiment. 

The experiments soon placed the fact of a change of refrangi¬ 

bility beyond all doubt. It would exceed the limits of an abstract 

like the present to describe the various experiments. It will be 

sufficient to mention some of the more remarkable results. 

A pure spectrum from sunlight having been formed in air in 

the usual manner, a glass vessel containing a weak solution of 

sulphate of quinine was placed in it. The rays belonging to the 

greater part of the visible spectrum passed freely through the 

fluid, just as if it had been water, being merely reflected here and 

there from motes. But from a point about half-way between the 

fixed lines Q and H to far beyond the extreme violet the incident 

rays gave rise to light of a sky-blue colour, which emanated in all 

directions from the portion of the fluid which was under the 

influence of the incident rays. The anterior surface of the blue 

space coincided of course with the inner surface of the vessel in 

which the fluid was contained. The posterior surface marked the 

distance to which the incident rays were able to penetrate before 

they were absorbed. This distance was at first considerable, 

greater than the diameter of the vessel, but it decreased with 

great rapidity as the refrangibility of the incident rays increased, 

so that from a little beyond the extreme violet to the end the 

blue space was reduced to an excessively thin stratum adjacent to 

the surface by which the incident rays entered. It appears 

therefore that this fluid, which is so transparent with respect to 

nearly the whole of the visible rays, is of an inky blackness with 

respect to the invisible rays more refrangible than the extreme 

violet. The fixed lines belonging to the violet and the invisible 

region beyond were beautifully represented by dark planes inter¬ 

rupting the blue space. When the eye was properly placed, these 

planes were of course projected into lines. The author has made 

a sketch of these fixed lines, which accompanies the paper. They 

may be readily identified with the fixed lines represented in 

M. Becquerel’s map of the fixed lines of the chemical spectrum. 

The last line seen in a solution of sulphate of quinine appears to 
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be the line next beyond the last represented in M. Becquerel’s 

map. Under very favourable circumstances two dusky bands 

were seen still further on. Several circumstances led the author 

to conclude that in all probability fixed lines might be readily 

seen corresponding to still more refrangible rays, were it not 

for the opacity of glass with respect to those rays of very high 

refrangibility. 

It is very easy to prove experimentally that the blue dispersed 

light corresponding to any particular part of the incident spectrum 

is not homogeneous light, having a refrangibility equal to that of 

the incident rays, and rendered visible in consequence of its 

complete isolation; but that it is in fact heterogeneous light, 

consisting of rays extending over a wide range of refrangibility, 

and not passing beyond the limits of refrangibility of the spectrum 

visible under ordinary circumstances. To show this it is sufficient 

to isolate a part of the incident spectrum, and view the narrow 

beam of dispersed light which it produces through a prism held 

to the eye. 

In Sir David Brewster’s mode of observation, the beam of 

light which was of the same nature as the blue light exhibited by 

a solution of sulphate of quinine was necessarily mixed with the 

beam due merely to reflexion from suspended particles; and in 

the case of vegetable solutions, a beam of the latter kind almost 

always exists, to a greater or less degree. But in the method of 

observation employed by the author, to which he was led by the 

discovery of the change of refrangibility, the two beams are 

exhibited quite distinct from one another. The author proposes 

to call the two kinds of internal dispersion just mentioned true 

internal dispersion and false internal dispersion, the latter being 

nothing more than the scattering of light which is produced by 

suspended particles, and having, as is now perfectly plain, nothing 

to do with the remarkable phenomenon of true internal dispersion. 

Now that the nature of the latter phenomenon is better known, 

it is of course possible to employ methods of observation by which 

it may be detected even when only feebly exhibited. It proves to 

be almost universal in vegetable solutions, that is, in solutions 

made directly from various parts of vegetables. When vegetable 

products are obtained in a state of isolation, their solutions some¬ 

times exhibit the phenomenon and sometimes do not, or at least 

exhibit it so feebly that it is impossible to say whether what they 
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do show may not be due to some impurity. Among fluids which 

exhibit the phenomenon in a high degree, or according to the 

author s expression are highly sensitive, may be mentioned a weak 

decoction of the bark of the horse-chestnut, an alcoholic extract 

from the seeds of the Datura stramonium, weak tincture of tur¬ 

meric, and a decoction of madder in a solution of alum. In these 

cases the general character of the dispersion resembles that ex¬ 

hibited by a solution of sulphate of quinine, but the tint of the 

dispersed light, and the part of the spectrum at which the dis¬ 

persion begins, are different in different cases. In the last fluid, 

for example, the dispersion commences somewhere about the fixed 

line D, and continues from thence onwards far beyond the extreme 

violet. The dispersed light is yellow, or yellowish orange. 

In the case of other fluids, however, some of them sensitive in 

a very high degree, the mode in which light is dispersed internally 

presents some very remarkable peculiarities. One of the most 

singular examples occurs in the case of an alcoholic solution of the 

green colouring matter of leaves. This fluid disperses a rich red 

light. The dispersion commences abruptly about the fixed line B, 

and continues from thence onwards throughout the visible spectrum 

and a little beyond. The dispersion is subject to fluctuations 

intimately connected with the singular absorption bands exhibited 

by this medium. 

In order that a medium should be capable of changing the 

refrangibility of light incident upon it, it is not necessary that the 

medium should be a fluid, or a clear solid. Washed papers and 

other opaque substances produce the same effect, but of course the 

mode of observation must be changed. The author has observed 

the change of refrangibility in various ways. It will be sufficient 

to mention here that which was found most generally useful, which 

he calls the method of observing by a linear spectrum. The method 

is as follows. 

A series of prisms and a lens are arranged in the usual manner 

for forming a pure spectrum, but the slit by which the light enters, 

instead of being parallel, is placed in a direction perpendicular to 

the edges of the prisms. A linear spectrum is thus formed at the 

focus of the lens, consisting of an infinite succession of images of 

the slit arranged one after the other in the order of refrangibility, 

and of course overlapping each other to a certain extent. The 

substance to be examined is placed in the linear spectrum, and 
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the line of light seen upon it is viewed through a prism held to 

the eye. In this way it is found that almost all common organic 

substances, such as wood, cork, paper, calico, bone, ivory, horn, 

wool, quills, feathers, leather, the skin of the hand, the nails, are 

sensitive in a greater or less degree. Organic substances which 

are dark-coloured are frequently found to be insensible, but, on 

the other hand, scarlet cloth and various other dyed articles are 

highly sensitive. By means of a linear spectrum the peculiar 

dispersion of a red light produced by chlorophyll, or some of its 

modifications, may be observed not only in a solution, but in a 

green leaf, or on a washed paper, or in a sea-weed. 

The highly sensitive papers obtained by washing paper with 

tincture of turmeric, or a solution of sulphate of quinine, or some 

other highly sensitive medium, display their sensibility in a re¬ 

markable manner when they are examined in a linear spectrum. 

In these cases, however, the paper produces a very striking effect 

when merely held so as to receive a pure spectrum formed in the 

usual manner, that is, with a slit parallel to the edges of the 

prisms. Such a paper may be used as a screen for showing the 

fixed lines belonging to the invisible rays, though they are not 

thus shown quite so well as by using a solution. The extraordinary 

prolongation of the spectrum seen when it is received on turmeric 

paper has been already observed by Sir John Herschel, by whom 

it wTas attributed to a peculiarity in the reflecting power of that 

substance. Of course it now appears that the true explanation is 

very different. 

A high degree of sensibility appears to be rather rare among 

inorganic compounds. Certain specimens of finer spar, as is 

already known, give a copious internal dispersion of a deep blue 

light; but this is plainly due to some foreign ingredient, the 

nature of which is at present unknown. But there is one class of 

inorganic compounds which are very remarkable for their sensibility, 

namely, certain compounds of peroxide of uranium, including the 

ornamental glass called canary glass, and the natural mineral 

yellow uranite. In these compounds the dispersed light is found 

on analysis to consist of bright bands arranged at regular intervals. 

A very remarkable system of absorption bands is also found among 

these compounds, which is plainly connected with the system of 

bright bands seen in the spectrum of the dispersed light. The 

connection between the absorption and internal dispersion ex^ 
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hibited by these compounds is very singular, and is of a totally 

different nature from the connection which has been already 

mentioned as occurring in solutions of the green colouring matter 

of leaves. 

There is one law relating to the change of refrangibility which 

appears to be quite universal, namely, that the refrangibility of 

light is always lowered by internal dispersion. The incident rays 

being homogeneous, the dispersed light is found to be more or less 

composite. Its colour depends simply on its refrangibility, having 

no relation to the colour of the incident light, or to the circumstance 

that the incident rays were visible or invisible. The dispersed 

light appears to emanate in all directions, as if the solid or fluid 

were self-luminous while under the influence of the incident rays. 

The phenomenon of the change of refrangibility of light admits 

of several important applications. In the first place it enables us 

to determine instantaneously the transparency or opacity of a solid 

or fluid with respect to the invisible rays more refrangible than 

the violet, and that, not only for these rays as a whole, but for the 

rays of each refrangibility in particular. For this purpose it is 

sufficient to form a pure spectrum with sun-light as usual, em¬ 

ploying instead of a screen a vessel containing a decoction of the 

bark of the horse-chestnut, or a slab of canary glass, or some other 

highly sensitive medium, and then to interpose the medium to be 

examined, which, if fluid, would have to be contained in a vessel 

with parallel sides of glass. Glass itself ceases to be transparent 

about the region corresponding to the end of the author's map, and 

to carry on these experiments with respect to invisible rays of still 

higher refrangibility would require the substitution of quartz for 

glass. The reflecting power of a surface with respect to the 

invisible rays may be examined in a similar manner. 

The effect produced on sensitive media leads to interesting 

information respecting the nature of various flames. Thus, for 

example, it appears that the feeble flame of alcohol is extremely 

brilliant with regard to invisible rays of very high refrangibility. 

The flame of hydrogen appears to abound in invisible rays of still 

higher refrangibility. 

By means of the phenomena relating to the change of refrangi¬ 

bility, the independent existence of one or more sensitive substances 

may frequently be observed in a mixture of various compounds. 

In this way the phenomenon seems likely to prove of value in the 
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separation of organic compounds. The phenomena sometimes also 

afford curious evidence of chemical combinations; but this subject 

cannot here be further dwelt upon. 

The appearance which the rays from an electric spark produce 

in a solution of sulphate of quinine, shows that the spark is very 

rich in invisible rays of excessively high refrangibility, such as 

would plainly put them far beyond the limits of the maps which 

have hitherto been made of the fixed lines in the chemical part of 

the solar spectrum. These rays are stopped by glass, but trans¬ 

mitted through quartz. These circumstances render it probable 

that the phosphorogenic rays of an electric spark are nothing more 

than rays of the same nature as those of light, but which are 

invisible, and not only so, but of excessively high refrangibility. 

If so, they ought to be stopped by a very small quantity of a 

substance known to absorb those rays with great energy. Accord¬ 

ingly the author found that while the rays from an electric spark 

which excite the phosphorescence of Canton’s phosphorus pass 

freely through water and quartz, they arc stopped on adding to 

the water an excessively small quantity of sulphate of quinine. 

At the end of the paper the author explains what he conceives 

to be the cause of the change of refrangibility, and enters into 

some speculations to account for the law according to which the 

refrangibility of light is always lowered in the process of internal 

dispersion. 



[From the Philosophical Transactions for 1852, p. 463.] 

On the Change of Refrangibility of Light * 

[Read May 27, 1852.] 

1. The following researches originated in a consideration of 

the very remarkable phenomenon discovered by Sir John Herschel 

in a solution of sulphate of quinine, and described by him in 

two papers printed in the Philosophical Transactions for 1845, 

entitled “ On a Case of Superficial Colour presented by a Homo¬ 

geneous Liquid internally colourless/' and “ On the Epipolic Dis¬ 

persion of Light." The solution of quinine, though it appears 

to be perfectly transparent and colourless, like water, when 

viewed by transmitted light, exhibits nevertheless in certain 

aspects, and under certain incidences of the light, a beautiful 

celestial blue colour. It appears from the experiments of Sir 

John Herschel that the blue colour comes only from a stratum 

of fluid of small but finite thickness adjacent to the surface by 

* [In choosing the title of this paper, all that was intended was, to express the 
previously unsuspected origin of peculiar coloured lights which were exhibited hy 

certain bodies, and which were in some cases matters of common observation, and 

had been subjected to examination by physicists. The capital fact now brought 

to light was that the colours in question were due to rays incident upon the body 

which were of a different refrangibility from those which constituted the colour 

observed. The title was meant to express a fact of observation, not any theory. 

It must have been from misapprehension on this point that a view as to the nature 

of the phenomenon has been attributed to me by more than one writer, a view 

which I have even been said to persist in, according to which the change of re¬ 

frangibility takes place in the act of reflexion from the molecules of the body. 

Such a view is not mine, and never was, and is directly opposed to the views 

stated in the paper. The abstract, which was published some months before the 

paper, contains nothing about theoretical views, but for these refers to the paper. 

I can only conjecture that the view erroneously, though without hesitation, attri¬ 

buted to me was assumed to be mine in consequence of the title of the paper.] 
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which the light enters. After passing through this stratum, the 

incident light, though not sensibly enfeebled nor coloured, has 

lost the power of producing the same effect, and therefore may 

be considered as in some way or other qualitatively different from 

the original light. The dispersion which takes place near the 

surface of this liquid is called by Sir John Herschel epipolic, and 

he applies the term epipolized to a beam of light which, having 

been transmitted through a quiniferous solution, has been thereby 

rendered incapable of further undergoing epipolic dispersion. In 

one experiment, in which'sun-light was used, a feeble blue gleam 

was observed to extend to nearly half an inch from the surface. 

As regards the dispersed light itself, when analysed by a prism 

it was found to consist of rays extending over a great range of 

refrangibility: the less refrangible extremity of the spectrum was 

however wanting. On being analysed by a tourmaline, it showed 

no signs of polarization. A special experiment showed that the 

dispersed light was perhaps incapable, at any rate not peculiarly 

susceptible, of being again dispersed. 

2, In a paper “ On the Decomposition and Dispersion of Light 

within Solid and Fluid Bodies/' read before the Royal Society 

of Edinburgh in 1846, and printed in the 16th volume of their 

Transactions, as well as in the Philosophical Magazine for June 

1848, Sir David Brewster notices these results of Sir John 

Herschel’s, and states the conclusions, in some respects different, 

at which he had arrived by operating in a different way. The 

phenomenon of internal dispersion had been discovered by him 

some years before, and is briefly noticed in a paper read before 

the Royal Society of Edinburgh in 1833*. It is described at 

length, as exhibited in the particular case of fluor-spar, in a paper 

communicated to the British Association at Newcastle in 1838 f. 
In Sir David Brewster’s experiments the sun’s light was con¬ 

densed by a lens, and so admitted into the solid or fluid to be 

examined; which afforded peculiar facilities for the study of the 

phenomena. On examining in this way a solution of sulphate 

of quinine, it was found that light was dispersed, not merely close 

to the surface, but at a long distance within the fluid : and Sir 

David Brewster was led to conclude that the dispersion produced 

* Edinburgh Transactions, Yol. xn. p. 542. 

t Eighth Report.—Transactions of the Sections, p. 10. 
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by sulphate of quinine was only a particular case of the general 
phenomenon of internal dispersion. On analysing the blue beam 

by a rhomb of calcareous spar, it was found that a considerable 
portion of it, consisting chiefly of the less refrangible rays, was 
polarized in the plane of reflexion, while the more refrangible of 

its rays, constituting an intensely blue beam, had a different 
polarization. 

3. On repeating some of Sir John HerschePs experiments, I 
was immediately satisfied of the reality of the phenomenon, not¬ 
withstanding its mysterious nature, that is to say, that an epi- 

polized beam of light is in some way or other qualitatively 
different from the light originally incident on the fluid. On 

making the observation in the manner of Sir David Brewster, it 

seemed no less evident that the phenomenon belonged to the class 
of internal dispersion * Nevertheless, the singular phenomenon 
discovered by Sir John Herschel manifested itself even in this 
mode of observation. If indeed the vessel containing the solution 

were so placed that the image of the sun in the focus of the lens 
lay a little way inside the fluid, the phenomenon was masked, 

because the increase of intensity due to an increase of concen¬ 
tration in approaching the focus made up for the decrease of 
intensity due to passing out of the blue band. But when the 
vessel was moved so that the focus of the lens fell either further 
inside the fluid or else outside the vessel, the narrow blue band 
adjacent to the surface was seen as well as the blue beam which 

shot far into the fluid. Light which has been “ epipolized ” by 
transmission through a moderate thickness of the solution is 
indeed capable of undergoing further dispersion, but not epipolic 

dispersion, if that term, be restricted to the dispersion by which 
the narrow blue band is produced. It was no doubt of great 

importance to assign to the phenomenon its true place as a 
member of the class of phenomena of internal dispersion. Never- 

* By this, I merely mean that, to take a particular example, the exhibition of 

a blue light by a solution of sulphate of quinine appeared to be a phenomenon of 

the same nature as the exhibition of a red light by a solution of the green colouring 

matter of leaves, although the latter does not manifest the same singular concentra¬ 

tion as the former in the neighbourhood of the surface by which the light enters; 

and the latter had already been observed by Sir David Brewster, and the phe¬ 

nomenon designated as internal dispersion. I make this remark because Sir David 

Brewster has applied this same term to another class of phenomena which are 

totally different. 
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theless the mystery was by no means cleared up; rather, we were 

prepared to expect something of the same sort in other instances 

of internal dispersion. In fact, the mystery consisted, not in 

the narrowness of the stratum from which most of the blue light 

came, but in the circumstance that it was possible for light, by 

passing across such a stratum, to be deprived of the power of 

producing the same effect again, without, apparently, being altered 

in any other respect. 

4. To one who regards light as a subtle and mysterious 

agent, of which the laws indeed are in a good measure known to 

us, but respecting the nature of which we are utterly ignorant, 

the phenomenon might seem merely to make another striking 

addition to the modes of decomposition with which we were 

already acquainted. But in the mind of one who regards the 

theory of undulations as being for light what the theory of 

universal gravitation is for the motions of the heavenly bodies, 

it was calculated to excite a much more lively interest. Whatever 

difficulty there might be in explaining how the effect was produced, 

we ought at least to be able to say what the effect was that had 

been produced; wherein, for example, epipolized light differed 

from light which had not undergone that modification. 

In speculating on the nature of the phenomenon, there is one 

point which deserves especial attention. Although the passage 

through a thickness of fluid amounting to a small fraction of an 

inch is sufficient to purge the incident light from those rays which 

are capable of producing epipolic dispersion, the dispersed rays 

themselves traverse many inches of the fluid with perfect freedom. 

It appears therefore that the rays producing dispersion are in some 

way or other of a different nature from the dispersed rays produced. 

Now, according to the undulatory theory, the nature of light is 

defined by two things, its period of vibration, and its state of 

polarization. To the former corresponds its refrangibility, and, so 

far as the eye is a judge of colour, its colour*. To a change, 

* It lias been maintained by some philosophers of the first eminence that light 

of definite refrangibility may still be compound, and though no longer decom¬ 

posable by prismatic refraction might still be so by other means. I am not now 
speaking of compositions and resolutions depending upon polarization. It has 

even been suggested by the advocates of the undulatory theory, that possibly a 
difference of properties in lights of the same refrangibility might correspond to a 

difference in the law of vibration, and that lights of given refrangibility may differ 
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then, either in the refrangibility or in the state of polarization we 
are to look for an explanation of the phenomenon. 

5. Regarding it at first as an axiom that the dispersed light 
of any given refrangibility could only have arisen from light of 

the same refrangibility contained in the incident beam, I was led 

to look in the direction of polarization for the required change 

in the nature of the light. Since a fluid has no axes, circular 
polarization is the only kind which can here come into play. As 

some fluids are doubly refracting, transmitting right-handed and 

left-handed circularly polarized light with different velocities, 
so, it might be, this fluid was doubly absorbing, absorbing say 

right-handed circularly polarized light of certain refrangibilities 
with great energy, and freely transmitting left-handed. The 

right-handed light, absorbed, in the sense of withdrawn from the 

incident beam, might have been more strictly speaking scattered, 
and thereby depolarized. The common light so produced would 
be equivalent to two streams, of equal intensity, one of right- 

handed, and the other of left-handed circularly polarized light. 

Of these the latter would be freely transmitted, while the former 
would be scattered anew, and so on. Yet this hypothesis, 
sufficiently improbable already, was not enough. New suppositions 
were still required, to account for the circumstance that an epi- 
polized beam, when subjected to prismatic analysis with a low 
magnifying power, exhibited no bands of absorption in the region 
to which, as regards their refrangibility, the dispersed rays prin¬ 

cipally belong; so that altogether this theory bore not the slightest 
semblance of truth. 

6. I found myself thus fairly driven to suppose that the 
change of nature consisted in a change of refrangibility. From 

the time of Newton it had been believed that light retains its 
refrangibility through all the modifications which it may undergo. 

in tint, just as musical notes of given pitch differ in quality. Were it not for the 

strong conviction I felt that light of definite refrangibility is in the strict sense 

of the word homogeneous, I should probably have been led to look in this direction 

for an explanation of the remarkable phenomena presented by a solution of 

sulphate of quinine. It would lead me too far from the subject of the present 
paper to explain the grounds of this conviction. I will only observe that I have 

not overlooked the remarkable effect of absorbing media in causing apparent 

changes of colour in a pure spectrum; hut this I believe to be a subjective 

phenomenon, depending upon contrast. 
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Nevertheless it seemed to me less improbable that the refrangi- 

bility should have changed, than that the undulatory theory 

should have been found at fault. And when I reflected on the 
extreme simplicity of the whole explanation if only this one 
supposition be admitted, I could not help feeling a strong expect¬ 
ation that it would turn out to be true. In fact, we have only 

to suppose that the invisible rays beyond the extreme violet give 

rise by internal dispersion to others which fall within the limits 

of refrangibility between which the retina of the human eye 

is affected, and the explanation is obvious. The narrowness of 

the blue band observed by Sir John Herschel would merely 

indicate that the fluid, though highly transparent with regard 
to the visible rays, was nearly opaque with regard to the invisible. 

According to the law of continuity, the passage from almost 

perfect transparency to a high degree of opacity would not take 

place abruptly; and thus rays of intermediate refrangibilities 
might produce the blue gleam noticed by Sir John Herschel, or 

the blue cylinder, or rather cone, observed by Sir David Brewster. 
We should thus, too, have an immediate explanation of a remark¬ 

able circumstance connected with the blue band, namely that 
it can hardly be seen by strong candle-light, though readily seen 
by even weak daylight. For candle-light, as is well known, is 

deficient in the chemical rays situated beyond the extreme violet. 

7. My first experiments were made with coloured glasses. 

A test tube was about half filled with a solution consisting of 

disulphate of quinine dissolved in 200 times its weight of water 
acidulated with sulphuric acid. The tube, having been first 

covered with black paper, with the exception of a hole by which 

the light might enter, wtis placed in a vertical position in front of 
a window, the hole being turned towards the light. On looking 

down from above, in a direction nearly parallel to the surface 
of the glass, a blue arc was well seen, extending only a very 
short distance into the fluid, and situated immediately behind 
the hole. As this arc, though extremely distinct, was not of 
course what could be called brilliant, I did not at first venture, 

for the experiment I had in view, to use any but pale glasses. 
Having no direct means of determining which were opaque with 

regard to the invisible rays situated beyond the extreme violet, 
I sought among a collection of orange, yellow, and brown glasses, 
which, from transmitting mainly the less refrangible rays, seemed 
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the most likely to absorb the chemical rays. I presently found a 
pale smoke-coloured glass, which, when placed immediately in 
front of the hole, prevented the formation of the blue arc, although 

when placed immediately in front of the eye it transmitted a 
large proportion of the light of which the arc consisted. The 
colour of the arc was of course modified, and rendered more 
nearly white. 

On trying other pale glasses, I found one of a puce colour, 
which, when placed in front of the hole, allowed the arc to be 

formed, though it absorbed it when placed in front of the eye. 
A yellow, and likewise a yellowish green glass allowed the arc 

to be seen in both positions ; but its colour was decidedly different 
according as the glass was placed in front of the hole or in front of 
the eye. The breadth, too, of the arc was differently affected by 
different coloured glasses placed in front of the hole, some causing 
the light to be more, and others less concentrated towards the 

surface of the test tube than when the incident light was un¬ 
impeded. 

8. The sun’s light was next reflected horizontally into a 
darkened room, and allowed to pass through a hole in a vertical 
board which was placed in the window. The hole contained a 

lens of rather short focus. On placing a test tube containing the 
solution, in a vertical position, in front of the lens, at such a 

distance that the focus lay some way inside the fluid, the narrow 
blue band described by Sir John Herschel and the blue beam 
mentioned by Sir David Brewster were seen independently of each 
other. On trying different coloured glasses, which were placed, 
first in front of the fluid, and then in front of the eye, it was found 
that the blue beam, as had previously proved to be the case with 
the narrow band, was for the most part differently affected according 
as the glass was placed so as to intercept the incident or the dis¬ 
persed light. Moreover, the long blue beam and the narrow band 

did not behave in the same manner under the action of the same 

coloured glass. 

9. To my own mind these experiments were conclusive as to 

the fact of a change of refrangibility. Admitting that the effect 
of a coloured glass is simply to stop a certain fraction of the 
incident light, that fraction being a function of the refrangibility, 
it is plain that the results can be explained in no other way. It 

18 s. in. 
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must be confessed however that these results are merely an exten¬ 

sion of that which precisely constitutes the peculiarity of the 

phenomenon. For, take the case of the narrow blue band formed 

by ordinary daylight. Imagine a glass vessel with parallel sides 

to be filled with a portion of the solution, and placed so as to 

intercept, first the incident, and then the dispersed light. In the 

first position the light incident on the fluid under examination 

would be “ epipolized” by transmission through the fluid con¬ 

tained in the vessel, and therefore the blue band would be cut off, 

whereas when the vessel was held in front of the eye the blue band 

would be freely transmitted. Hence the effects of the coloured 

glasses are analogous to, but less striking than, the effect of a 

stratum of the solution of sulphate of quinine in the imaginary 

experiment above described. There is to be sure one important 

difference in the two cases, namely, that in the case of the stratum 

of fluid the epipolic dispersion which is prevented in the fluid 

under examination is produced near the first surface of the stratum, 

whereas no such dispersion is produced, or at any rate necessarily 

produced, in the coloured glasses. Whatever the reader may 

think of the results obtained with coloured glasses, the next ex¬ 

periment it is presumed will be deemed conclusive. 

10. The board in the window containing the lens having been 

replaced by a pair of boards adapted to form a vertical slit, the 

sun’s light was reflected horizontally through the slit, and trans¬ 

mitted through three Munich prisms placed one after the other 

close to it. A tolerably pure spectrum was thus formed at the dis¬ 

tance of some feet from the slit. A test tube containing the 

solution was then placed vertically a little beyond the extreme red 

of the spectrum, and afterwards gradually moved horizontally 

through the colours. Throughout nearly the whole of the visible 

spectrum the light passed through the fluid as it would have done 

through so much water; but on arriving nearly at the violet ex¬ 

tremity a ghost-like gleam of pale blue light shot right across the 

tube. On continuing to move the tube, the blue light at first 

increased in intensity and afterwards gradually died away. It did 

not however cease to appear until the tube had been moved far 

beyond the violet extremity of the spectrum visible on a screen. 

Before disappearing, the blue light was observed to be confined to 

an excessively thin stratum of fluid adjacent to the surface by 

which the light entered, whereas when it first appeared, namely 
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when the tube was placed a little short of the extreme violet, the 
blue light had extended completely across it. It was certainly 
a curious sight to see the tube instantaneously lighted up when 

plunged into the invisible rays: it was literally darkness visible. 
Altogether the phenomenon had something of an unearthly 
appearance. 

11. Since the fluid is so intensely opaque with regard to rays 
of extreme refrangibility, it might be expected, that, though it 
appears transparent and colourless when examined merely by view¬ 
ing a white object through it, it would yet exhibit a very sensible 
absorbing action with regard to the extreme violet rays when 
subjected to prismatic analysis. To try whether such were really 
the case, I reflected the sun’s light horizontally through a slit, 
at which was placed a test tube filled with the liquid, and analysed 
the line of light by a prism, the eye being defended by a deep 

blue glass. I was barely able to make out the fixed line H, 
that is, the less refrangible band of the pair, although in similar 
circumstances I can generally see about as far beyond the more 
refrangible band as it is beyond H. However, to make the 
result more decisive by using a greater thickness, as well as to 
render the observation strictly differential, I placed a tumbler filled 

with water behind the slit, the blue glass before it, and then 
viewed the slit through the prism. I saw as far as usual into the 
violet. The water was then poured out and replaced by the 
solution of sulphate of quinine, which, when viewed by transmitted 
light, appeared as transparent as the water which it had replaced. 
When the tumbler was now placed behind the slit, the blue beam 
of dispersed light was observed to extend quite across it, a dis¬ 
tance of about three inches, and would evidently have gone much 
further. On viewing the slit through the prism, the spectrum 
was found to be cut off about half-way between the fixed lines G 
and II. The termination was pretty definite, which indicates that, 
at least for that part of the spectrum, the absorbing energy of the 

fluid rapidly increased with the refrangibility of the light; there 
was, however, an evident diminution of intensity produced by the 
fluid, extending from the termination of the spectrum to near G. 

12. There could no longer be any doubt, either as to the 
fact of a change of refrangibility, or as to the explanation thereby 
of the remarkable phenomenon exhibited by sulphate of quinine. 

18—2 
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Epipolized light is merely light which has been purged of the 

invisible, or at most feebly illuminating rays more refrangible 

than the violet; and the term itself, which in fact was only 

adopted provisionally by Sir John Herschel, and which has now 

served its purpose, may henceforth be discarded, especially as it 

is calculated to convey a false impression respecting the cause of 

the phenomenon. It remained to examine other instances of 

internal dispersion, of which, according to Sir David Brewster’s 

observations, the dispersion produced by sulphate of quinine is 

only a particular case; to endeavour to make out the laws accord¬ 

ing to which a change of refrangibility takes place; and, if 

possible, to account for these laws on mechanical principles. 

13. In giving an account of my further experiments, I think 

it best to describe in detail the phenomena observed in some of 

the more remarkable instances of internal dispersion before at¬ 

tempting to draw any general conclusions. It will save repetition 

to explain in the first instance the methods of observation em¬ 

ployed, which on the whole may very fairly be divided into four, 

though occasionally it was convenient to employ intermediate 

methods, or a combination of two of them. Of course I fre¬ 

quently availed myself of Sir David Brewster’s method of obser¬ 

vation, in which the effect of the incident light is studied as a 

whole; but the methods here referred to relate to an investigation 

of the separate offices of the portions of light of different degrees 

of refrangibility which are found in the incident beam. As my 

researches proceeded, new methods of observation suggested them¬ 

selves, but these will be described in their place. 

Methods of Observation employed. 

First Method.—The sun’s light was reflected horizontally 

through a small lens, which was fixed in a hole in a vertical 

board. The cone of emergent rays was allowed to enter the solid 

or fluid examined. A coloured glass or other absorbing medium 

was then placed, first so as to intercept the incident rays, and 

then between the substance examined and the eye. For short¬ 

ness’ sake these positions will be designated as the first and the 
second. Sometimes a coloured glass was allowed to remain in 

front of the hole, and a second glass was added, first in front of 

the hole and then in front of the eye. 
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Second Method.—The sun’s light, reflected as before, was 

transmitted through a series of three or four Munich prisms 

placed one immediately after the other, and each nearly in the 

position of minimum deviation. It was then transmitted through 

a small lens in a board close to the last prism, and so allowed to 

enter the body to be examined, which was generally placed so 

that the first surface coincided, or nearly so, with the focus of the 

lens. The diameter of the lens was much smaller than the 

breadth or height of the prisms, so that the lens was completely 

filled with white light, the component parts of which however 

entered in different directions. Regarding the image of the sun 

in the focus of the small lens as a point, we may conceive the 

light incident on the body under examination as consisting of a 

series of cones, corresponding to different refrangibilities, the axes 

of which lay in a horizontal plane and intersected in the centre 

of the lens, the vertices being arranged in a horizontal line near 

the surface of the body examined. 

Third Method.—The sun’s light was reflected horizontally 

through a vertical slit, and received on the prisms, which were 

arranged as before, but placed at the distance of several feet from 

the slit. A large lens of rather long focus was placed immediately 

after the last prism, with its plane perpendicular, or nearly so, 

to the beam of light which had passed through the prisms, and 

with its centre about the middle of this beam. The body 

examined was placed at the distance of the image of the slit, or 

nearly so. 

Fourth Method.—Everything being arranged as in the third 

method, a board with a small lens of short focus was placed at 

the distance of the image of the slit, or between that and the 

image of the sun, which was a little nearer to the prisms, in¬ 

asmuch as the focal length of the large lens commonly employed, 

though much smaller, was not incomparably smaller than the 

distance of the lens from the slit. A second slit was generally 

added immediately in front of the small lens. The body examined 

was placed at the focus of the small lens. The dispersed light 

was viewed from above, and analysed by a prism, being refracted 

sideways. 

The object of these several arrangements will appear in the 

course of the paper. The prisms employed consisted, three of 
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them of flint glass and one of crown. The refracting angles of 

the former were about 43°, 33°, and 24°, and that of the latter 

about 45°. The refracting faces of the smallest of the prisms 

(the flint of 43°) were T35 inch high and 1*60 long. The small 

lens used was one or other of a pair of which the apertures were 

0*34 inch and 0*22 inch, and the focal lengths 0*75 inch and 

0*50 inch. The focal length of the large lens generally used was 

about twelve inches. Once or twice a lens was tried which had 

a focal length about three times as great, but the light proved 

too faint for most purposes. In the third method it was some¬ 

times convenient to employ a lens of only 6|~ inches focal length, 

but the 12-inch lens was employed in the fourth method, except 

on a few occasions, when the lens of 36 inches focal length was 

used. With the 12-inch lens the length of the spectrum from the 

fixed line B to H was usually about an inch and a quarter. 

It will be convenient for the purposes of this paper to employ 

certain terms in a particular sense, but as some of these terms 

relate to phenomena which have not yet been described, it will 

be well previously to relate in detail what was observed in one 

remarkable instance of internal dispersion. 

Solution of Sulphate of Quinine. 

14. The effects of some pale coloured glasses in the case 

of this fluid have already been mentioned. But there is one glass 

of which the effect is still more striking. It is well known that 

a deep cobalt blue glass is highly transparent with regard to the 

chemical rays. Accordingly I found that a blue glass, so deep 

that only the brighter objects in a room could be seen through 

it, produced but very little effect when placed so as to intercept 

the light incident on the fluid. When placed immediately in 

front of the eye, at first everything disappeared except the light 

reflected from the convexities of the glass tube; but when the 

eye became a little accustomed to the darkness it was possible 

to make out the existence of the band. The contrast between 

the effects of this glass and of the pale brown glass already 

mentioned was most striking. 

15. When the fluid was examined by the second method, 

the dispersed light was found to consist of two beams, separated 
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from each other at their entrance into the fluid, that is, at the 

vertical surface of separation of the fluid and the containing 

vessel, and afterwards still further separated by divergence. Of 

course each beam must have been made up of a series of cones 

having their axes diverging from the centre of the lens, and their 

vertices situated at its focus. The first beam, or that which was 

produced by light of less refrangibility, consisted of the brighter 

colours of the spectrum in their natural order. It had a dis¬ 

continuous, sparkling appearance, and was plainly due merely to 

motes which were suspended in the fluid. On being viewed from 

above through a Nicol’s prism, it was found to consist chiefly 

of light polarized in the plane of reflexion. Taken as a whole, 

it served as a fiducial line to which to refer the position of the 

second beam, and thereby judge of the refrangibility of the rays 

by which it was produced. 

This second beam was a good deal the brighter of the two. 

Its colour was a beautiful sky-blue, which was nearly the same 

throughout, but just about its first border, that is, where it arose 

from the least refrangible of those rays which were capable of 

producing it, the colour was less pure. It had a perfectly con¬ 

tinuous appearance. When viewed from above through a doubly 

refracting achromatic prism of quartz, which allowed a direct 

comparison of the two images, it offered no traces of polarization. 

It was produced by light polarized in a vertical or horizontal 

plane as well as by common light, and in that case, as well as 

in the former, manifested no traces of polarization *. 

The short distance that the more refrangible rays were able 

to penetrate into the fluid might readily be perceived in this 

experiment, but the second method of observation was not adapted 

to bring out this part of the phenomenon. 

1G. On examining the fluid by the third method, the result 

was very striking, although of course only what might have been 

:: These two results, namely, that the blue beam which constitutes the greater 

part of the light dispersed by a solution of sulphate of quinine is unpolarized, 
or according to his expression possesses a quaquaversns polarization, and that 

that still remains the case when the incident light is polarized, have been already 
announced by Sir David Brewster, who appears to have been led to attend to the 

polarization of the light from Sir John Herschel’s observation, that the blue light 
arising from epipolic dispersion in a solution of sulphate of quinine was un- 

polarized. It seemed important however to repeat the observation on the blue 

beam obtained in a state of isolation. 
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anticipated. The principal fixed lines of the violet, and of the 

chemical parts of the spectrum beyond, were seen with beautiful 

distinctness as dark planes interrupting an otherwise perfectly 

continuous mass of blue light. To see any particular fixed line 

with most distinctness, it was of course necessary to hold the 

eye in the corresponding plane, when the dark plane was fore¬ 

shortened into a dark line. From the red end of the spectrum, 

as far as the line (r, or thereabouts, the light, passed freely 

through the fluid, or at least was only reflected here and there 

from motes held in mechanical suspension. About G the dis¬ 

persion just commenced to be sensible, and there were traces of 

that line seen as a dark plane interrupting a mass of continuous 

but excessively faint light. For some distance further on the 

dispersed light remained so faint that it might haves been passed 

over if not specially looked for. If was about half-way between 

G and II, or a little before, that it. first became so strong as to 

arrest attention, and a little further on it became very con¬ 

spicuous, the tint meanwhile changing to a pale sky-blue. The 

light was very copious about tin* two broad bands of the group II 

and for some distance from II towards (}. Some of the fixed 

lines less refrangible than II wen; very plain, and beyond II 

a good number were visible, which will presently lx; further 

described. The whole system of fixed lines thus visible as 

interruptions in the dispersed light had a, resolvable appearance; 

but with a very narrow slit, and a lens of long focus at the; prisms 

the light would have been too faint for convenient, observation. 

The dispersed light about (7, and for some distance further 

on, was so very faint that I might have; overlooked it had it 

not arrested my attention when observing by the fourth method; 

indeed, I have sometimes spc‘ciallv looked for it in the third 

arrangement without having been able to see it. Practically 

speaking, the dispersion might be said to commence, about half¬ 

way between G and II. 

17. On refracting the whole system sideways through a prism 

of moderate angle held in front of the eye, the fixed lines became 

confused, and the finer ones disappeared. The edges of the broad 

bands H were tinged with prismatic colours, like the edges of 

two slips of black velvet placed on a sheet of pale blue paper, 

and viewed through a prism. This experiment exhibits the 
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compound character of the dispersed light, notwithstanding the 

perfect homogeneity of the incident light. 

18. The third method of observation is well adapted to bring 

into view the variation in the absorbing energy of the medium 

corresponding to a variation in the refrangibility of the incident 

rays. When the eye is placed vertically over the vessel con¬ 

taining the solution, so that the dark planes corresponding to the 

fixed lines of the spectrum are projected into dark lines, of which 

the length is not exaggerated by obliquity, the boundary of the 

dispersed light is projected into a curve, which serves to represent 

to the eye the relation between the absorbing power of the 

medium and the refrangibility of the incident light. This curve 

is not exactly that which Sir John Herschel has treated of in 

the theory of absorption, and considered as the type of the 

absorbing medium to which it is applied, but nevertheless it 

serves much the same purpose. It is true, that, independently 

of any change in the absorbing energy of the medium, an in¬ 

creasing faintness in the dispersed light would produce to a 

certain extent an approximation of the curve to its axis; but 

practically, in the case of sulphate of quinine, as well as in a 

great many others, the appearance is such as to leave no doubt 

as to the existence of a most intense absorbing energy on the 

part of the medium with respect to rays of very high re- 

frangibilities*. 

In the case of a solution of sulphate of quinine of the 

strength of one part of the disulphate to 200 parts of acidulated 

water, it has been already stated that a portion of the rays 

which are capable of producing dispersed light passed across a 

thickness of 3 inches. On forming a pure spectrum, the fixed 

line H was traced about an inch into the fluid. On passing 

from H towards 6r, the distance that the incident rays penetrated 

into the fluid increased with great rapidity, while on passing 

in the contrary direction it diminished no less rapidly, so that 

from a point situated at no great distance beyond H to where 

the light ceased, the dispersion was confined to the immediate 

* I should here remark, that, after the researches described in this paper had 

far advanced, I met accidentally with a passage in the Competes Rendus, tom. xvii. 

p. 883, in which M. Ed. Becquerel mentions a solution of acid sulphate of quinine 
as a medium eminently remarkable for its absorbing power with respect to the 

rays more refrangible than H. 
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neighbourhood of the surface. When the solution was diluted 

so as to be only one-tenth of the former strength, a conspicuous 

fixed line, or rather band of sensible breadth, situated in the 

first group of fixed lines beyond H, was observed to penetrate 

about an inch into the fluid. On passing onwards from the band 

above-mentioned in the direction of the more refrangible rays, 

the distance that the incident rays penetrated into the fluid 

rapidly decreased, and thus the rapid increase in the absorbing 

energy of the fluid was brought into view in a part of the 

spectrum in which, with the stronger solution, it could not be 

so conveniently made out, inasmuch as the posterior surface of 

the space from which the dispersed light came almost confounded 

itself with the anterior surface of the fluid. 

The high degree of opacity with regard to rays of great 

refrangibility which the addition of so small a proportion of 

sulphate of quinine is sufficient to produce in water is certainly 

very remarkable; nevertheless it is only what 1 have constantly 

observed while following out these researches. 

19. In observing by the fourth method, the part of the 

spectrum to which the incident light belonged was determined 

sometimes by the colour, sometimes by moans of the fixed lines 

of the spectrum. It almost always happened that there were 

motes enough suspended in the fluid to cause a portion of the 

dispersed beam to consist merely of light which had undergone 

ordinary reflexion. When the whole dispersed beam was analysed 

by a prism, the beam which consisted of light reflected from 

motes was separated from the rest; it was in general easily 

recognised by its sparkling appearance, but at any rate was 

known by its consisting almost wholly of light polarized in the 

plane of incidence, whereas the truly dispersed light was un¬ 

polarized. It consisted of course of light of definite refrangibility, 

the same as that of the incident light, and thus served as a 

fiducial line to which to refer by estimation the refrangibilities 

of the component parts of the dispersed light. Of course this 

part of the observation was possible only when the incident rays 

belonged to the visible part of the spectrum. 

On moving the lens horizontally through the colours of the 

spectrum, in a direction from the red to the violet, it was found 

that the dispersion was first perceptible in the blue. When the 
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dispersed light was separated by a prism from the light reflected 

from motes, it was found to consist of an exceedingly small 

quantity of red; further on some yellow began to enter into its 

composition ; further still, perhaps about the junction of the 

blue and indigo, the dispersed beam began to grow brighter, and 

was found on analysis to contain some green in addition to the 

former colours. In the indigo it got still brighter, and when 

viewed as a whole was somewhat greenish. Further still it 

became something of a pale slaty blue, and was found on analysis 

to contain some indigo, or at least highly refrangible blue. On 

proceeding further the dispersed light became first of a deeper 

blue and then, a little short of the fixed line H, whiter. At a 

considerable distance beyond H the dispersed light was if any¬ 

thing a shade more nearly white. 

By this method of observation the dispersion can be detected 

earlier in the spectrum than by the third method, and moreover 

the change in the colour of the dispersed light is much more 

easily perceived; indeed the most striking part of this change 

takes place while the dispersed light is so very faint that it can 

hardly be seen in observing by the third method; moreover, even 

in the bright part of the dispersed beam, it is not at all easy by 

the latter method to make out the change of tint corresponding 

to a change in the refrangibility of the incident rays, because the 

tint changes so gradually and so slightly that the eye glides from 

one part of the dispersed beam to another without noticing any 

change. 

20. It has been already mentioned that the blue beam of 

dispersed light seen in a solution of sulphate of quinine was pro¬ 

duced whether the incident light was polarized in or perpendicu¬ 

larly to the plane of reflexion, or more properly plane of dispersion, 

that is, the plane containing the incident ray and that dispersed 

ray which enters the eye. A question naturally presents itself, 

whether the intensity of the dispersed light is strictly the same 

in the two cases. By combining a lens of rather short focus and 

a doubly refracting prism with the four prisms, I satisfied myself 

that the difference of intensity, if there were any, was not great, 

but the experiment presented some practical difficulties. How¬ 

ever, the result of the following experiment appeared to be as 

decisive as a negative result could well be. 
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The arrangement being the same as in the third method, but 

the lens in front of the prisms having a focal length of only 

6*5 inches, the incident light was polarized in a vertical plane 

previously to passing through the slit, by transmission through a 

pile of plates. The two beams of light were seen as usual in the 

fluid, namely, the blue beam due to internal dispersion, and the 

fainter coloured beam due to motes. The former of these, which 

was quite separate from the latter, exhibited the principal fixed 

lines belonging to the highly refrangible part of the spectrum. A 

plate of selenite was then interposed immediately in front of the 

vessel, so as to modify the polarization of the light entering the 

fluid. This plate was obtained by an irregular natural cleavage, 

and was cemented with Canada balsam between two discs of 

glass. When examined by polarized light it exhibited a succession 

of beautiful and varied tints, according to the various thicknesses 

of the different parts. Now when the plate was moved about in 

front of the vessel, without altering its perpendicularity to the 

incident light, different portions of the beam due to motes were 

observed to disappear and reappear, or at least to become faint 

and then bright again, so that a person ignorant of the cause, and 

not looking at the disc, might have supposed that the observer 

had been holding in front of the vessel a piece of dirty glass, 

having the dirt laid on in patches; but in whatever manner the 

disc was moved in its own plane without rotation, or turned round 

an axis perpendicular to its plane, not the slightest perceptible 

change was produced in any part of the blue beam. 

Explanation of Terms. 

21. In all the experiments described in this paper in which a 

spectrum was formed for the sake of examining the separate action 

of portions of light of different refrangibililies, the length of the 

spectrum was horizontal, so that the fixed lines were vertical. 

Nevertheless it will be convenient, for the sake of shortness, to 

use the prepositions above and below to signify respectively on th,e 

more refrangible side of and on the less refrangible side of. 

The principal fixed lines of the visible spectrum will be denoted 

by letters in accordance with Fraunhofer’s admirable map. These 

lines are now too well known to need description. 
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The only map of the fixed lines of the chemical spectrum 

which I had for a good while after these researches were com¬ 

menced is Professor Draper s, which will he found in the twenty- 

second volume of the Philosophical Magazine (1843). Of course 

this map cannot he compared for accuracy of detail with Fraun¬ 

hofer’s map of the visible spectrum, nor does it profess to give 

more than some of the most conspicuous lines selected from among 

a great multitude. The suppression of so many lines, without 

any representation by shading of their general effect, renders it 

difficult to identify those which are laid down, at least if I may 

judge from my own observations; besides, Professor Draper’s 

spectrum was so much purer than the one with which I found it 

most convenient to work, that the two are not comparable with 

each other. 

22. I have made a sketch of the fixed lines from H to the end, 

which accompanies this paper (see Plate). The fixed lines of the 

visible spectrum are so well known that I thought it unnecessary 

to begin before H. A solution of sulphate of quinine is a very good 

medium for showing the lines, but a yellow glass, which will be 

mentioned presently, is quite as good, or rather better. The map 

represents the spectrum as seen with the lens of 12 inches focal 

length in front of the prisms. The breadth of the slit was not 

always quite the same: it maybe estimated at about the J^th of an 

inch. The map contains 32 fixed lines or bands more refrangible 

than II, which is the utmost that I have been able on different 

occasions to see with this lens, though with a lens of longer focus 

and a narrower slit the number of fixed lines which might be 

counted was, as might be expected, a good deal larger. As I have 

not yet identified these lines, except in certain cases, with those 

which had previously been represented by means of photographic 

impressions, I have thought it advisable not to attempt an identi¬ 

fication, but to attach letters to the more conspicuous lines in my 

map without reference to former maps. As the capitals Z, M, N, 

(), P have already been appropriated to designate certain fixed 

lines, I have made use of the small letters ?, m, n, o, p, to prevent 

confusion. 

In drawing the map, I have endeavoured to preserve the 

character of the lines with respect to blackness or faintness, sharp¬ 

ness or diffuseness. The distances were not laid down by measure- 
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ment, except here and there, and they are not, I fear, quite so 

accurate as might be desired; still, I feel assured that no one 

viewing the actual object would feel any difficulty in identifying 

the lines with those in my map, provided the circumstances under 

which his spectrum was formed at all approached to those under 

which mine was seen when the arrangement as to focal length of 

the lens, &c. was that most convenient for general purposes. 

The more conspicuous lines in the part of the spectrum repre¬ 

sented in the map may conveniently be arranged in five groups, 

which I will call the groups H, l, m, nt p. The group H consists 

chiefly of the well-known pair of bands of which the first contains 

Fraunhofer’s line H; the second band I have marked k, in accord¬ 

ance with Professor Draper’s map. The most conspicuous object 

in the next group consists of a broad dark band, l. This band is 

between once and twice as broad as H, and is darker in the less 

refrangible half than in the other. With a lens of 3 feet focal 

length and a narrow slit it was resolved into lines, which is 

probably the reason why it is altogether omitted in Professor 

Draper’s map, while the first three lines of the group (if I do not 

mistake as to the identification) are represented, forming his 

group L. Under the circumstances to which the accompanying 

map corresponds, the band l appears as a very striking object, 

perhaps, with the exception of the bands H, k, the most con¬ 

spicuous in the whole spectrum. With a still lower power it 

appears as a very black and conspicuous line. A double line 

beyond l completes the group l, after which comes another remark¬ 

able group m, consisting of five lines or bands. Of these the first 

is rather shady, though sharply cut off on its more refrangible 

side, but the others, and especially I think the second and third, 

are particularly dark and well-defined. I have marked the middle 

line m, not because it is more conspicuous than its neighbours, 

but on account of its central situation. After a very faint group, 

consisting apparently of four lines, comes another very conspicuous 

group n9 consisting of two pairs of dark bands followed by another 

pair of bands which are broad and very dark. The first of these 

is a good deal broader than the second, but is not so broad as the 

band H; the second is followed by a fine line. This is as far as it 

is easy to see; but when the sunshine is clear, and the arrange¬ 

ments are made with a little care, a group of six lines is seen 

much further on. Of these, the first two are only moderately 
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dark, and the first is rather diffuse; they stand off a little from 

the others, and are a little closer together than the other four. 

Of the latter, the first, marked o, is very strong, considering the 

faintness of the light which it interrupts; the second and third 

are faint, and difficult to see; the fourth, marked p, is black like 

the first, and a good deal broader. The line p was situated, by 

measurement, as far beyond H as H beyond b. Once or twice in 

the height of summer, and under the most favourable circum¬ 

stances, I have observed two broad dusky bands still further on. 

The first of these had the appearance of being resolvable into two. 

The excessively faint light seen beyond the second seemed to end 

rather abruptly at the distance represented by the border of the 

accompanying plate, as if there were there the edge of another 

dark band beyond which nothing could.be seen. In order to see 

the dusky bands last mentioned, and even to see the group p to 

most advantage, it was necessary to allow the central part of the 

beam incident on the prisms to pass through them close to their 

edges, so that evidently a great deal of light was lost by passing 

by the prisms altogether. This circumstance, combined with 

others which I have observed, convinces me that the great obstacle 

to seeing the fixed lines in this part of the spectrum consists 

in the opacity of glass. Were glass as transparent with respect to 

the invisible rays of very high refrangibility as it is with respect 

to the rays belonging to the visible spectrum, I know not how 

much further I might have been able to see. 

I have endeavoured to identify the fixed lines in my map with 

the fixed lines represented in M. Silbermann’s map of the chemical 

spectrum, with a copy of which my friend Professor Thomson has 

kindly furnished me. I am still uncertain respecting the identifi¬ 

cation. M. Silbermann’s map is so very much more detailed than 

my own, and must have been made with so much purer a spec¬ 

trum, that the two systems of lines are not directly comparable. 

23. From the difficulty of identification some persons might 

be disposed to imagine that the chemical rays, and those which 

produced the blue light in a solution of quinine, were of a different 

nature, and had each a system of fixed lines of its own. For my 

own part, 1 was too well acquainted with the Protean character of 

fixed lines to regard the difficulty of identification as any valid 

argument in support of such a view. And that this difficulty 
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arose from nothing more than the different degrees of purity of 

the spectra is now put past dispute, for my friend Mr Kingsley of 

Sidney Sussex College, to whom I recently showed some of the 

experiments mentioned in this paper, has kindly taken for me 

some photographs of spectra having nearly the same degree of 

extent and purity as those with which I worked, and these show 

the fixed lines just as they appeared in a solution of sulphate of 

quinine and in other media*. 

24. The position of a point in the spectrum which does not 

coincide with one of the principal fixed lines, will be denoted by 

referring it to two of those lines, in a manner which will be most 

easily explained by an example. Thus \GH> G^H, GH^ will be 

used to denote respectively a point situated at a distance below G 

equal to half the interval from G to II, a point midway between 

G and H) and a point situated at the same distance above H. 

In using this notation, the letters denoting fixed lines will be 

written in the order of refrangibility, and the fraction expressing 

the part of the interval between these lines, which must be con¬ 

ceived to be measured off in order to reach the point whose 

position it is required to express, will be written before, between, 

or after the letters, according as the measurement is to be taken 

from the first line in the negative direction, from the first line in 

the positive direction, or from the second line in the positive 

direction, the positive direction being that of increasing refrangi¬ 

bility. 

25. From the experiments already described, it appears that 

the beam of dispersed light which was observed in the experi¬ 

ments of Sir David Brewster consisted of two very distinct por¬ 

tions, one arising merely from light reflected from motes, and the 

other having a far more remarkable origin. It will be convenient 

to have names for these two kinds of dispersion, and I shall 

accordingly call them respectively false internal dispersion and 

true internal dispersion, or simply false dispersion and true disper¬ 

sion when the context sufficiently shows that internal dispersion 

is spoken of. When dispersion is mentioned without qualification, 

it is to be understood of true dispersion. Now that it appears 

that the mere reflexion of light from solid particles held in 

mechanical suspension has nothing to do with that remarkable 

* See note A at the end. 
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kind of internal dispersion which is characterized by the “quaqua- 

versus polarization/’ the phenomenon of false dispersion ceases to 

he of much interest in an optical point of view; while on the 

other hand the phenomenon of true dispersion, which had always 

been very remarkable, is now calculated to excite a great addi¬ 

tional interest. It will be convenient to mention here the princi¬ 

pal characters by which true and false dispersion may be distin¬ 

guished, although it will he anticipating in some measure the 

results of observations yet to he described. 

2(j. In true dispersion the dispersed light has a perfectly con¬ 

tinuous appearance. In false dispersion, on the other hand, it has 

generally more or less of a sparkling appearance, and on close 

inspection is either wholly resolved into bright specks, or so far 

resolved as to leave on the mind the impression that if the resolu¬ 

tion be not complete it is only for want of a sufficient magnifying 

power. 

In true dispersion the dispersed light is perfectly unpolarized. 

In false dispersion, on the contrary, at a proper inclination the 

light is almost perfectly polarized in the plane of reflexion. 

In false dispersion, which is merely a phenomenon of reflexion, 

the dispersed light has of course the same refrangibility as the in¬ 

cident light. In true dispersion heterogeneous dispersed light 

arises from a homogeneous beam incident on the body by which 

the dispersion is produced. 

27. In those bodies, whether solid or liquid, which possess in 

a high degree the power of internal dispersion, the colour thence 

arising may be seen by exposing the body to ordinary daylight, 

looking at it in such a direction that the regularly reflected light 

does not enter the eye, and excluding transmitted light by placing 

a piece of black cloth or velvet behind, or by some similar con¬ 

trivance. It has been usual to speak of the colour so exhibited as 

displayed by reflexion. As however the cause now appears to be 

so very different from ordinary reflexion, it seems objectionable to 

continue to use that term without qualification, and I shall accord¬ 

ingly speak of the phenomenon as dispersive reflexion* Thus 

* I confess I do not like this term. I am almost inclined to coin a word, and 

call the appearance fluorescence, from fluor-spar, as the analogous term opalescence 

is derived from the name of a mineral. 

S. III. 19 
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dispersive reflexion is nothing more than internal dispersion con¬ 

sidered as viewed in a particular way. 

28. The tint exhibited by dispersive reflexion is modified in 

a peculiar manner by the absorbing power of the medium. In 

the first place, the light which enters the eye in a given direction 

is made up of portions which have been dispersed by particles 

situated at different distances from the surface at which the light 

emerges. The word particle is here used as synonymous, not with 

molecule, but with differential element If we consider any parti¬ 

cular particle, the light which it sends into the eye has had to 

traverse the medium, first in reaching the particle, and then in 

proceeding towards the eye. On account of the change of re- 

frangibility which takes place in dispersion, the effect of the 

absorption of the medium is different for the two portions of the 

whole path within the medium, so that this effect may be regarded 

as a function of two independent variables, namely, the lengths of 

the path before and after dispersion; whereas, had the light been 

merely reflected from coloured particles held in suspension, the 

effect of absorption would have been a function of only one in¬ 

dependent variable, namely, the length of the entire path within 

the medium. 

29. When false dispersion abounds in a fluid, it may be 

detected at once by the eye, without having recourse to any of 

the characters already mentioned whereby it may be distinguished 

from true dispersion. When a fluid is free from false dispersion 

it appears perfectly clear, when viewed by transmitted light, 

although it may be highly coloured, and may even possess to 

such an extent the property of exhibiting true internal dispersion 

as to display, when properly viewed, a copious dispersive reflexion. 

On the contrary, when false dispersion abounds, the fluid, if not 

plainly muddy, has at least a sort of opalescent appearance when 

viewed by transmitted light, which, after a little experience, the 

eye in most cases readily recognizes. In viewing the phenomenon 

of dispersive reflexion, as exhibited in a fluid, it might be supposed 

that the fluid was water, or else some clear though coloured liquid, 

holding in suspension a water colour in a state of extreme sub¬ 

division. But on holding the fluid before the eye, so as to view it 

by transmitted light, or rather view a bright well-defined object 

through it, the illusion is instantly dispelled. The reason of this 
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difference appears to admit of easy explanation, and will be noticed 

further on. 

30. Light will be spoken of in this paper as active when it is 

considered in its capacity of producing other light by internal 

dispersion. A medium will be said to be sensitive when it is 

capable of exhibiting dispersed light under the influence of light 

(visible or invisible) incident upon it. In the contrary case it 

will be called insensible. 

I shall now return to the description of the appearances ex¬ 

hibited by some of the media most remarkable for their sensibility. 

Decoction of the Bark of the Horse-Chestnut (JEsculus hippo- 

castanum). 

31. In Sir John Herschel’s second paper it is stated that 

esculine possesses in perfection the peculiar properties which had 

been found to belong to quinine. Having tried without success to 

procure the former alkaloid* I was content to let this substance 

pass, till I found how admirably a mere decoction or infusion of 

the bark of the tree answered for all purposes of observation. 

This medium is even more sensitive than a solution of sulphate 

of quinine, and disperses like it a blue light. The description of 

the mode of dispersion in the latter medium will apply in almost 

all points to the former: the principal difference consists in the 

circumstance that in the horse-chestnut solution the dispersion 

begins earlier in the spectrum than in the solution of quinine. In 

a solution of sulphate of quinine of convenient strength, we have 

seen that the dispersion came on at about G^H, the excessively 

faint dispersion which was exhibited earlier being left out of con¬ 

sideration, whereas in a decoction of the bark of the horse-chestnut, 

diluted so as to be of a convenient strength, it came on a little 

before G. This explains the reason of an observation of Sir David 

Brewster’s, who has remarked that “a beam of light that has 

passed through the esculine solution disperses blue light, but not 

copiously, when transmitted through the quinine solution ; but the 

beam that has passed through quinine is copiously dispersed when 

transmitted through esculine f.” 

* [It is a glucoside.] 

t Philosophical Magazine, Vol. xxxii. (June 1848), p. 406. 

19—2 
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Green Fluor-Spar from Alston Moor. 

32. It is well known that some specimens of fluor-spar exhibit 
a sort of double colour. In particular, a variety found at Alston 

Moor, which is green when seen by transmitted light, appears 
when viewed in a certain manner of a beautiful deep blue. This 

blue colour seems to have been considered by Sir John Herschel 
as merely superficial. It has been shown however by Sir David 

Brewster to arise from light dispersed in the interior of the crystal, 

and to have no particular relation to the surface. 

The crystal with which the following observations were made 

was of a fine but not intense green when viewed by transmitted 

light. On viewing a pure spectrum through it, there was found 
to be a dark band of absorption in the red. This band was narrow, 

and by no means intense. The crystal exhibited a copious deep 

blue by dispersive reflexion. 

33. On admitting into the crystal a cone of sunlight formed 
by a lens of short focus, and then analysing the dispersed beam, 

it was found to consist of a very little red followed by a dark 

interval, then green, faintly fringed below with less refrangible 

colours down perhaps to the orange, then blue, or bluish-green, 
followed by a great deal of indigo or violet. Independently of the 
gap in the red, the spectrum was not quite continuous, for a band 
of bluish-green, not very broad, was separated by dusky bands 

from the green below and the indigo above. The separate red 
band and the two dusky bands were all so faint as to be difficult 
to see. 

The dispersed beam was readily proved to be truly dispersed, 
for it was unpolarized, and a pale brown glass cut it off when 
placed in the first position, although it transmitted it in a great 
measure when placed in the second. 

34. When the crystal was examined by the third method, 
the general result closely resembled that produced by sulphate of 
quinine. The dispersion commenced about half-way between G 

and H, and continued from thence onwards far beyond H. It was 
strongest about H. The fixed lines were seen with beautiful 
distinctness as dark planes in the crystal. The groups H, Z, m 
were quite evident, and n might be seen without difficulty. I have 
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even, seen some of the fixed lines of the groups The tint of the 

dispersed light appeared as nearly as possible uniform throughout. 

The distance to which this light could be traced from the surface 

did not at all diminish so rapidly in this crystal, with an increase 

in the refrangibility of the incident light, as it had done in the 

case of a solution of sulphate of quinine. Indeed, it was difficult 

to say how far the decrease in the depth to which the incident rays 

could be traced, by means of the dispersed light which they pro¬ 

duced, was due merely to the increasing faintness of the light, and 

how far it indicated a real increase in the absorbing energy of the 

crystal; whereas in the case of sulphate of quinine the appearance 

presented unequivocally indicated a very rapid increase of absorb¬ 

ing power. 

35. On examining the crystal by the second method, the 

general appearance was the same as in the case of sulphate of 

quinine, but the beam of falsely dispersed light was absent. In 

addition to the copious beam of deep blue light dispersed by the 

most refrangible rays, there was however a faint beam of red or 

reddish light dispersed by rays of low refrangibility. This beam 

was too faint to be seen by the third method of examination. It 

will be remembered that the prismatic analysis of the transmitted 

light gave a band of absorption in the red. Another crystal of a 

pale colour, which did not give a similar band of absorption in the 

red, exhibited nothing but the blue beam of dispersed light when 

examined by the second method. 

3G. On examining the crystal by the fourth method, the 

extreme red proved inactive. The activity commenced about the 

most refrangible limit of the red transmitted by a deep blue glass, 

when the dispersed light was red, but extremely faint. On moving 

the lens onwards through the spectrum, the dispersed light rapidly 

became brighter, and then died away. When at its brightest, 

although even then it was almost too faint for prismatic examina¬ 

tion, it appeared to consist of not quite homogeneous light a little 

lower in refrangibility than the active light. For a considerable 

distance further on there was no sensible dispersion produced. 

The dispersed light became again perceptible when the active 

light belonged to the greenish yellow, or not till the blue, accord¬ 

ing to the intensity of the incident light. As the lens moved on 
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the dispersed light remained faint for a considerable time. It was 

first reddish and then brownish, with a refrangibility answering to 

its colour. When the active light was at G^H, or thereabouts, 

the dispersed light rapidly grew much brighter, and became of a 

fine blue. On analysis it was found to consist of rays the refran- 

gibility of which ranged within wide limits. The red rays were, 

however, almost wholly wanting, while the rays belonging to the 

more refrangible part of the spectrum resulting from the analysis 

of the dispersed beam were particularly copious. The most re¬ 

frangible limit of the dispersed light did not quite reach in 

refrangibility the active light. The dispersed light was most 

copious when the active light belonged to the neighbourhood of 

H. As the lens moved on the dispersed light grew less bright, 

and gradually died away. 

Solution of Guaiacum in Alcohol. 

37. This is one of the media mentioned by Sir David Brewster, 

who remarks that it “ disperses, by the stratum chiefly near its 

surface, a beautiful violet light/’ 

When this fluid is examined by the third or fourth method, it 

is found to exhibit a copious internal dispersion, which begins to 

be conspicuous much lower down in the spectrum than in the 

cases already described. In observing by the third method, the 

true dispersion appeared to commence about the end of the green, 

the dispersed light being reddish-brown. By the fourth method 

the dispersion could be traced as low down as DJ-&, the dispersed 

light being reddish. As the lens moved onwards, in a direction 

from the red to the violet, the more refrangible colours entered in 

succession into the dispersed beam, and it became successively 

brownish, yellowish, greenish, and bluish. In whatever part of 

the spectrum the lens might be, it was found that the most 

refrangible part of the dispersed beam was of lower refrangibility 

than the active light. This could be easily determined by means 

of the beam of falsely dispersed light, which was always visible 

so long as the active light belonged to the visible part of the 

spectrum. 

38. With the third arrangement the fixed lines were seen as 

before by means of the dispersed light, but in this fluid they 
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could be seen much lower down in the spectrum than in the 

solution of sulphate of quinine. The group H was seen on a 

greenish ground. About the group l the ground was still greenish, 

but the dispersed light was not very copious. The beautiful violet 

light mentioned by Sir David Brewster is produced only by rays 

of extremely high refrangibility, and is found to extend from the 

beginning of the group m to the end of the group n, and even 

further. This part of the dispersion is best seen with a rather 

dilute solution. 

39. In a solution of guaiacum, just as in the solution of 

sulphate of quinine, the absorbing power of the medium increases 

very rapidly with the refrangibility of the light. This is shown 

by the rapid decrease in the distance from the surface to which 

the dispersed light can be traced. The reason why the violet 

dispersed light is confined to a very thin stratum adjacent to the 

surface by which the light enters, is simply that the medium is 

so nearly opaque with regard to the invisible rays beyond the 

extreme violet that all such rays are absorbed by the time the 

light has passed through a very thin stratum of the fluid. 

40. If the solution be strong the colour is of considerable 

depth. In all such cases it is necessary to take the precaution, 

mentioned by Sir David Brewster, of transmitting the incident 

beam as near as possible to the upper surface, so as just to graze 

it. The absorption of the medium would otherwise modify the 

tint of the dispersed beam. 

41. The solutions of quinine and guaiacum present a striking 

contrast with respect to the change of tint of the dispersed beam. 

In the former solution the change is but slight, if we except that 

part of the dispersion which is very faint; whereas in the latter, 

the prismatic colour which makes the nearest match to the com¬ 

posite tint of the dispersed beam runs through nearly the entire 

spectrum, as the refrangibility of the active light changes from 

that of the green rays to that of invisible rays situated far beyond 

the extreme violet. 

Tincture of Turmeric. 

42. This fluid is very sensitive, and exhibits a pretty copious 

dispersive reflexion of a greenish light. In its mode of internal 
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dispersion it strongly resembles a solution of guaiacum, but the 

final tint of the dispersed light does not correspond to so high a 

mean refrangibility. When the fluid was examined by the third 

method, the true dispersion appeared to commence about b. The 

absorbing power was so great for the rays of high refrangibility, 

that from a little above F (in the case of tincture not diluted with 

alcohol) to the end the dispersed light seemed to be confined to 

the mere surface. By the fourth method the dispersion was as 

usual traced a little lower down in the spectrum. When the 

dispersed beam was first perceived it was nearly homogeneous, 

and its refrangibility was only a very little less than that of the 

active light. As the refrangibility of the active light increased, 

new colours, in the order of their refrangibility, entered into the 

dispersed beam, which became more and more composite, while at 

the same time its upper limit became distinctly separated from 

the beam of falsely dispersed light, which, when the whole dis¬ 

persed beam was analysed by a prism, was always found in 

advance of the other. The tint of the dispersed beam passed 

from orange through yellow to yellowish green, which was its 

final tint. Tincture of turmeric is well adapted for exhibiting 

the fixed lines in the invisible part of the spectrum, though per¬ 

haps not quite so well as a solution of sulphate of quinine. 

Alcoholic Extract from the Seeds of the Datura Stramonium. 

43. This fluid, which I was led to try in consequence of Sir 

David Brewster’s paper, proved to be remarkably sensitive, and 

exhibited a copious dispersive reflexion of a pale but lively green. 

The general phenomena are so nearly the same as in a solution of 

sulphate of quinine that there is no need of a separate descrip¬ 

tion. The principal difference consists in the tint, which is green 

instead of blue. In the present case, however, the fluid, in addi¬ 

tion to its dispersion of green, dispersed a red beam under the 

influence of certain red rays. As the lens employed in the fourth 

method of examination was moved from the extreme red onwards, 

the light was at first inactive, but when the lens reached a certain 

point of the spectrum, a red beam of truly dispersed light sud¬ 

denly appeared, which disappeared with almost equal suddenness 

as the lens moved on. In this mode of observation the refrangi¬ 

bility of the dispersed could hardly be distinguished from that of 
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the active light; but on combining the first and third methods, 

by removing the lens, placing the vessel truly in focus, and hold¬ 

ing a blue glass alternately in front of the vessel and in front of 

the eye, I satisfied myself that the truly dispersed beam, taken as 

a whole, was of lower refrangibility than the light by which it was 

produced. The utility of the blue glass depended upon the cir¬ 

cumstance that the upper extremity of the extreme red which it 

transmitted nearly coincided with the point of the spectrum at 

which the red beam occurred. This red beam was doubtless due 

to the presence of a small quantity of chlorophyll, or one of its 

modifications. The light transmitted by the fluid exhibited on 

prismatic analysis the absorption band in the red which is so 

characteristic of that substance. 

The colour of the solution was a pale brownish yellow; it 

would no doubt have been still paler, and perhaps nearly colour¬ 

less, had the sensitive principle to which the green dispersion was 

due been present in equal quantity but in a state of purity. As 

it was, the fluid was pale enough to exhibit well, when poured 

into a test tube and held in front of a window, a narrow arc on 

the side of the incident light, like sulphate of quinine, only in this 

case the arc was green instead of blue. 

Frequency of the occurrence of true internal dispersion having the 

same general character as that which takes place in the cases 

above described. 

44. If we except the red dispersed beam produced by red 

rays in the crystal of fluor-spar and in the stramonium extract, a 

strong similarity may be observed in the mode of internal dis¬ 

persion which takes place in the cases hitherto described. As the 

refrangibility of the incident light continually increases, the rays 

are at first inactive. At a certain point of the spectrum, varying 

according to circumstances, the true dispersion begins to be 

sensible, but is faint at first. After remaining faint for some 

distance it presently becomes more copious. It remains very 

conspicuous through the whole of the violet and beyond, and then 

gradually dies away. It consists at first of light of comparatively 

low refrangibility, and then new colours in the order of their 

refrangibility enter into it. Frequently the greater part of the 
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change of prismatic composition takes place while the dispersed 

light is very faint, so that practically speaking we may almost 

say that the tint is uniform. Sometimes, when the dispersion 

just commences, the dispersed light is nearly homogeneous, and 

has a refrangibility so nearly equal to that of the active light 

that the beams due to true and false dispersion can hardly be 

separated. 

45. Now this, so far as I have observed, is much the com¬ 

monest kind of true internal dispersion, although sometimes the 

phenomenon presents very striking singularities. In the paper 

in which Sir David Brewster first announced the discovery of 

internal dispersion, he remarks “ that it is a phenomenon which 

occurs almost always in vegetable solutions, and almost never in 

chemical ones or in coloured glasses*.” For my own part, I have 

rarely met with a vegetable solution which did not exhibit more 

or less the phenomenon of true internal dispersion. Its existence 

may in general be easily detected in the following manner. The 

sun’s light being reflected horizontally through a lens, a deep blue 

glass is left in such a position as to intercept the light incident on 

the vessel containing the fluid, which is placed at the focus of the 

lens. A pale brown glass of the proper kind is then placed so as 

to intercept, first the incident, and then the dispersed light. A 

vessel with flat sides filled with a solution of sulphate of quinine 

would be better, and then the placing of the medium in the 

second position might be dispensed with, the medium being 

sensibly transparent. Sometimes it is useful to have recourse to 

analysis through a doubly refracting prism, or a rhomb of cal¬ 

careous spar. In this way true internal dispersion may often be 

detected in a fluid which is actually muddy, in which case, were 

the effect of the incident light observed as a whole, the true 

would be masked by the enormous quantity of false dispersion 

which such a medium would offer. 

46. The fluids obtained by treating the leaves and other 

parts of plants with alcohol or hot water are almost always sensi¬ 

tive, so far as I have observed. The solutions in water presently 

ferment, and are frequently highly sensitive in the early stages of 

fermentation; they are usually more or less sensitive in all stages. 

Edinburgh Transactions, Yol. xn. p. 542. 
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Different kinds of fungus furnish very sensitive solutions. When 

aqueous solutions become muddy by decomposition, other clear 

and often highly sensitive liquids may be obtained from them by 

various chemical processes. Port and sherry are decidedly sensi¬ 

tive. In such cases the fluid is a mixture of several substances, 

of which some may be sensitive and others insensible. When 

vegetable substances are isolated they are frequently insensible, 

or else so very slightly sensitive when examined under great 

concentration of the highly refrangible rays, that it is quite im¬ 

possible to say whether the sensibility thus exhibited may not be 

due to some impurity: thus, several solutions containing sugar, 

salicine, morphine, or strychnine were found to be insensible. A 

solution of veratrine in alcohol proved to be sensitive in a pretty 

high degree, dispersing internally a bluish light. Sir David 

Brewster has remarked that a solution of sulphate of strychnine 

in alcohol dispersed light after it had stood for some days. This 

observation I have verified with reference to true dispersion, 

which the solution exhibits, though not very copiously, after it 

has been made some time. There can be little doubt that the 

sensitive principle in this case is not strychnine, but some product 

of its decomposition. I now come to some instances of internal 

dispersion which are far more striking. 

Solution of Leaf-Green in Alcohol. 

47. It was in this very remarkable fluid that the phenomenon 

of internal dispersion was first discovered by Sir David Brewster, 

wrhile engaged in researches relating to absorption. The character 

of the internal dispersion of a solution of leaf-green is no less 

remarkable than the character of its absorption. On account of 

the close connexion which seems to exist between the two phe¬ 

nomena, it will be requisite first to say a few words about the 

latter. 

When green leaves are treated with alcohol, a fluid is obtained 

which is of a beautiful emerald-green in moderate thicknesses, but 

red in great thicknesses, and which has a very remarkable effect 

on the spectrum. A good number of the following observations 

on the internal dispersion of leaf-green were made with a solution 

obtained from the leaves of the common nettle, by first boiling 

them in water and then treating them with cold alcohol, the 
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leaves having previously been partially dried by pressing them 

between sheets of blotting paper. Nettle was chosen partly 

because it stands boiling without losing its green colour, and 

partly for other reasons. My object in boiling the leaves was to 

obtain the green colouring matter more nearly in a state of isola¬ 

tion, but it seems to have the additional advantage of giving a 

solution less liable to decomposition. Indeed, this fluid seemed 

disposed to remain permanently unchanged when kept in the 

dark; but a small portion of it which was exposed to strong light 

had its colour rapidly discharged. 

48. When fresh leaves are left in contact with alcohol in the 

dark, or in only weak light, the colour of the fluid changes by 

degrees, and it seems to approximate (making allowance for 

impurities) to a type which is nearly represented by the fluid 

obtained in this manner from laurel leaves, or that obtained by 

treating with alcohol tea leaves from which a good deal of brown 

colouring matter has first been extracted by water. This type 

was rather ideal than actual, being derived from a comparison of 

different cases, until it seemed to be realized in the case of a fluid 

obtained by re-dissolving in alcohol a crust* which had formed 

itself at the bottom of a test tube containing leaf-green. The 

principle to which the peculiar absorption and internal dispersion 

of such a fluid seems due may be called modified leaf-green. The 

fluid itself is not green but olive-coloured, becoming red at great 

thicknesses. 

49. When solutions of leaf-green, and of its various modifica¬ 

tions, are examined in different thicknesses by the light of a 

candle, there are five bands of absorption which may be observed 

[* From the spectrum of its solution, this crust must have been the product of 

decomposition by acids of the principal red-absorbing and red-fluorescing constituent 

of the chlorophyll mixture. This mixture consists (in land plants) mainly of two 

red-fluorescing and red-absorbing substances and a yellow non-fluorescent substance, 

all showing characteristic bands of absorption. They are all three, especially the 

first two, easily altered by acids. The “ modified leaf-green ” is the mixture with 

the first two substances decomposed as if by the minute quantity of acid obtained 
from the extract of the leaves. As the relative proportion of the three substances 

in the extract is liable to vary with the circumstances of the manipulation, and as 

the first two are very easily altered by the least trace of acid, there is some 

uncertainty in endeavouring (as in § 49) to identify the bands of absorption 

described by different observers who worked with the natural mixture.] 
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in the spectrum. These will be called, in the order of their 

refrangibility, Nos. 1, 2, 3, 4 and 5, the bright bands below the 

respective dark bands being also numbered in the same manner. 

Of the dark bands, Nos. 1, 2, 3 and 5, are the first four in Sir 

David Brewster s plate*. No. 4 is mentioned in the memoir, but 

not represented in the plate, which corresponds to a thickness not 

sufficient to bring out this band. The last band in the plate 

could not be seen without strong light. The dark bands Nos. 1 

and 2 are situated in the red, No. 3 about the yellow* or greenish 

yellow, No. 4 in the green, and No. 5 early in the blue. Of these, 

No. 1 is in small thicknesses by far the most intense, and it may 

be readily seen even in a very dilute solution; it might apparently 

be used as a chemical test of chlorophyll, or one of its modifications. 

The test would be of very easy application, since it would be 

sufficient to hold a test tube with the liquid at arm’s length before 

a candle at a little distance, and view the linear image of the 

flame through a prism applied to the eye. 

50. Fresh and modified leaf-green differ much in the order in 

which the bright bands are absorbed, and in the degree to which 

the dark bands are developed before they cease to be visible by the 

absorption of the part of the spectrum in which they are situated. 

In the green fluid, the dark band No. 5 is not usually seen, 

because the spectrum is there cut off, unless a very small thickness 

be used. With a moderate thickness, Nos. 2 and 3, especially the 

former, are well seen, and No. 1 is very intense. As the absorption 

goes on, the bright bands Nos. 2 and 3 are absorbed, and there is 

left the red band No. 1, and a double green band, consisting of the 

bright bands Nos. 4 and 5, separated by the dark band No. 4, 

which by this time has come out. In modified leaf-green, the dark 

bands Nos. 4 and 5 are much more conspicuous than in the green 

fluid, but No. 3 is wanting, or all but wanting. With a thickness 

by which the absorption is well developed, the conspicuous bright 

bands are in this case Nos. 1 and 3, and next to them No. 2, 

whereas in the green fluid Nos. 2 and 3 were quickly absorbed, or 

at least the whole of No. 2, and the greater part of No. 3. 

51. It seems worthy of remark, that, especially in the case of 

the green fluid, the absorbing power alters with the refrangibility 

Edinburgh Transactions, Yol. xii. 
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of the light at a very different rate on the two sides of the intense 

dark band No. 1. This might be inferred from the order in which 

the bright bands disappear; but it was rendered visible to the eye 

by the following easy experiment. A narrow test tube was partly 

filled with a solution of leaf-green, and then a few drops of alcohol 

were added, which remained at the top, and there diluted the 

solution. The tube was then held before a candle, and the linear 

image of the flame was viewed through a prism. In the under 

part the dark band No. 1 was broad, the bright band No. 2 being 

narrow, and almost obliterated, but in the upper part the dark 

band No. 1 was very narrow. Now on tracing upwards the sides 

of this dark band, it was found that the less refrangible side was 

almost straight, and the diminution in the breadth of the band 

was produced by the encroachment of the bright band No. 2. 

Speaking approximately, we may say that in proceeding from the 

extreme red onwards, at a certain point of the spectrum the fluid 

passes abruptly from transparent to opaque, and then gradually 

becomes almost transparent again. 

52. It may here be remarked, that although the absorption 

produced by leaf-green is best studied in a solution, its leading 

characters may be observed very well by merely placing a green 

leaf behind a slit, as near as possible to the flame of a candle, and 

then viewing the slit through a prism. 

53. After this digression relating to the absorption of leaf- 

green, it is time to come to its internal dispersion. And first, 

when a cone of white light coming from the sun is admitted 

horizontally into the fluid, as close as possible to its upper surface, 

and the beautiful red beam of dispersed light is analysed by a 

prism, the spectrum is found to consist of a bright red band of a 

certain breadth, followed by a dark interval, and then a much 

broader green band not near so brilliant. There is usually but 

little false dispersion, and what there is may be almost entirely 

got rid of by analysing the beam by a Nicol’s prism, so as to view 

it by light polarized in a plane perpendicular to the plane of 

dispersion. Now on raising the vessel without removing the prism 

from the eye, it was found that a dark band, which was in fact the 

absorption band No. 1, appeared almost exactly in the middle of 

the bright red band. On continuing to raise the vessel, so as to 
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make the dispersed rays pass through a still greater thickness of 

the medium before reaching the eye, the dark band increased in 

width, and when the red beam was almost absorbed, the part that 

was left consisted of two cones of red, one at each side of the dark 

band, which by this time had become broad. The whole appear¬ 

ance seemed to indicate that the bright red beam of dispersed 

light had a very intimate connexion with the intense absorption 

band No. 1. 

54. Among coloured glasses, there is one combination which 

produces a very striking effect. When a deep blue glass is placed 

in the first position, the dispersed light, if the solution be at all 

strong, is confined to a very thin stratum adjacent to the surface, 

and is best seen by placing the vessel so that the surface of the 

fluid at which the light enters is situated at a little distance on 

either side of the focus of the lens, when there is seen a bright 

circle of a most beautiful crimson colour. It might be supposed 

that the red of which this circle mainly consists was nothing but 

the extreme red transmitted by the blue glass. But it is readily 

shown that such is not the case. For in the first place, the fluid 

transmits pretty freely the red transmitted by the blue glass, 

whereas the red light found in this circle is almost confined to the 

surface of the fluid. Again, it was found that a pale brown glass, 

which transmitted freely the extreme red, almost entirely cut off 

the bright circle, when placed in the first position without removing 

the blue glass, although it freely transmitted it when placed in 

the second position. It appears, therefore, that the bright circle 

is due, not to the red, but to the highly refrangible rays trans¬ 

mitted by the blue glass. 

55. When a solution of leaf-green was examined by the third 

method, the appearance as seen from the outside was very * 

singular. The fixed lines in all the more refrangible part of the 

spectrum were seen as interruptions in a bright red ground 

verging to crimson. The beauty and purity of the tint, and the 

strange contrast which it presented to the colours belonging to 

that part of the spectrum, were very striking. About H the tint 

began to verge towards brown, and the fixed lines beyond H were 

seen on a brownish red ground. That the ground on which the 

fixed lines of somewhat less refrangibility were seen was rather 
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crimson than red, arose, no doubt, from the mixture of a little 

blue or violet light due to false dispersion, and to the scattering 

which took place at the surface of the glass. 

56. On looking down from above, the places of the more 

conspicuous bands of absorption were indicated by dark teeth, 

with their points turned towards the incident light, interrupting 

the dispersed light. It is to be understood that the light was 

transmitted as close as possible to the upper surface, so that the 

absorption by which these teeth were formed took place before 
dispersion. In this way the places of the absorption bands Nos. 

1, 2 and 4, were perfectly evident. No. 3, it will be remembered, 

was by no means conspicuous. When the solution is of convenient 

strength, the absorption is so rapid beyond the bright band No. 5, 

that the dispersion is confined to a thin stratum close to the 

surface by which the light enters, and therefore no dark tooth 

would be seen corresponding to the dark band No. 5. 

57. On following the active light through the spectrum, in 

the direction of increasing refrangibility, the dispersion was found 

to commence with a bright but narrow tail of pure red light, 

which shot right across the vessel. The light by which this tail 

was produced belonged to the more refrangible part of the extreme 

red band which is transmitted by a moderate thickness of the 

fluid. The activity of the incident light commenced almost 

abruptly: the same, it will be remembered, was the case with the 

absorbing power of the medium. After the tail of red light came 

the intense absorption band No. 1, where the dispersed light was 

confined to the immediate neighbourhood of the surface by which 

the active light entered. At this place a very bright band of 

dispersed light was visible on looking at the vessel from the 

outside. In this part of the spectrum the active and the dispersed 

light were both red; but that dispersion was accompanied by a 

change of refrangibility was shown by the effect of absorbing 

media. Thus the long red tail and the bright band adjacent to 

the surface were differently affected by a blue glass, according as 

it was held in the first or the second position ; and the bright 

band, though much enfeebled, was still plainly visible through a 

considerable thickness of the fluid, although a stratum having a 

thickness of only a very small fraction of an inch was sufficient to 
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absorb the rays by which the band was produced. Although the 

dispersion continued throughout the whole of the visible spectrum 

and beyond, it was comparatively feeble in the brightest part of 

the spectrum. It became pretty copious again in the neighbour¬ 

hood of the dark band No. 4, and remained copious throughout 

the blue and violet. In the green, the dispersed light was red, 

slightly verging towards orange, and in the blue and violet it was 

red verging a little towards brown. 

58. It may seem superfluous, after what precedes, to bring 

forward any further proof of the reality of a change of refrangi- 

bility. Nevertheless the following experiment, which was in fact 

performed at an early stage of these researches, may not be deemed 

wholly unworthy of notice, as not involving the use either of 

absorbing media or of false dispersion. 

A small narrow triangle of white paper was stuck on to the 

outside of the vessel containing the leaf-green, in such a manner 

that its axis was vertical, and its vertex, which was uppermost, 

was situated at the height of the middle of the spectrum. A 

narrow vertical slit was then placed at the distance of the image 

of the first slit, where the fixed lines were formed, and moved 

sideways till the light immediately beside the fixed line 0 passed 

through it. The vessel was then placed a few inches behind the 

slit, and moved sideways till the riband-shaped beam of homo¬ 

geneous light, which passed through the second slit, was incident 

on the vertex of the triangle. On looking at the vessel from the 

front, as nearly as was convenient in the direction of the incident 

light, there appeared a bright vertical bar corresponding to a 

section of the incident beam. This bar was of two colours, namely, 

red in the upper half, where the light fell on the fluid, and indigo 

in the under half, where it fell on the paper. On refracting the 

whole system sideways, through a prism of moderate angle 

applied to the eye, the objects appeared in the following order as 

regards refrangibility. First came the upper half of the bright 

bar, which was only a very little widened by refraction, so that it 

consisted of red light which was approximately homogeneous. 

Next came the triangle, with its vertex a little rounded, and its 

edges tinged with prismatic colours. The vertex, which had 

formerly coincided with the bright bar, now lay a little to one 

20 s. III. 
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side of its upper half. The triangle- was of course seen by means 

of the diffused light of the room, which was not perfectly dark, 

and therefore its refrangibility must have corresponded to the 

brightest part of the spectrum, or nearly so. Lastly came the 

under half of the bright bar, which was much more refracted than 

the triangle, so as to be shifted almost completely off it. The 

paper triangle was far too close to the first surface of the fluid to 

allow of attributing the dislocation of the bright bar to any error 

depending upon parallax; but to prevent all possible doubts on 

this score, I took care to refract the system both right and left, 

and the result was the same in the two cases. The conclusion is 

therefore inevitable, that the indigo light which had changed its 

colour by dispersion from leaf-green had changed its refrangibility 

at the same time. 

59. In viewing a solution of leaf-green in a pure spectrum, I 

•noticed a phenomenon which further indicates the close connexion 

which seems to exist between the absorption and internal disper¬ 

sion of this fluid. On holding the eye vertically over the fluid, 

and looking down at the dispersed light through a red glass, I 

observed five minima of illumination, having for the most part the 

shape of teeth with their bases situated at the surface by which 

the light entered, and their points turned inwards. These minima 

occupied positions intermediate between the bands of absorption, 

so far at least as the positions of the latter were indicated by dark 

teeth pointing in the contrary direction. The first minimum was 

situated a little beyond the intense absorption band No. 1, and 

corresponded in position to the bright band No. 2. The second 

was situated a little further on. The maximum intervening 

between this and the third was but slight, so that the second and 

third together formed pretty nearly one broad minimum. The 

third and fourth were situated one at each side of the dark band 

No. 4, so as to correspond in position to the bright bands Nos. 4 

and 5. The fifth was situated a little way beyond the bright 

band No. 5. This last minimum was not tooth-shaped, inasmuch 

as it occurred at a part of the spectrum where the dispersed light 

was almost confined to the surface of the fluid. These minima 

are best seen when the solution is rather weak. They may be 

perceived without using a red glass, though not so easily as with 

its assistance. With a stronger solution it was observed that the 
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first minimum ran obliquely into the dark tooth corresponding to 

the absorption band No. 1. 

60. The reason of the occurrence of these minima appears 

to be simply this, that the more copiously dispersed light is 

produced, the more rapidly the incident light is used up in pro¬ 

ducing it, so that minima of activity correspond to points of the 

spectrum at which the incident light penetrates to comparatively 

great distances into the fluid before it is absorbed. The oblique 

position observed in the first minimum is readily explained by 

considering that the illumination at any point of the field of 

view depends conjointly upon the activity of the incident light, 

which is a function of its refrangibility, and upon the fraction of 

the incident light left unabsorbed, which last is a function both of 

the refrangibility and of the distance from the first surface. 

61. It seems worthy of remark, that while the quantity of 

dispersed light is liable to fluctuations having an evident relation 

to the bands of absorption which occur throughout the spectrum, 

the quality of the light dispersed, as regards its refrangibility, 

appears rather to have reference to the intense absorption band 

No. 1. 

Extract from blue leaves of the Mercurialis perennis. 

62. The juice of this plant has the property of turning blue 

by exposure to the air. Some leaves and stalks which had 

turned blue were treated with alcohol, and a green fluid was thus 

obtained much resembling in colour the ordinary solutions of leaf- 

green, but I think of a rather bluer green than usual. In its 

mode of absorption, too, it much resembled ordinary solutions of 

leaf-green, to which substance no doubt the greater part of its 

colour was due. Its internal dispersion however was very 

peculiar, for it dispersed a copious orange in place of a blood red 

like the extracts from fresh green leaves in general, those of the 

Mercurialis perennis included. On analysis the dispersed beam 

was found to consist chiefly of a red band, similar to that which 

occurs in solutions of leaf-green, and of a yellow or orange and 

yellow band, a good deal brighter than the former, from which it 

was separated by an intervening dark band. When the fluid was 

20—2 



308 ON THE CHANGE OF REFR ANGIBILITY OF LIGHT. 

examined by the second method, it was found that the yellow 

dispersion was produced principally by the brightest part of the 

spectrum. After a considerable time the fluid lost its fine green 

colour, as is very often the case with solutions of leaf-green, and 

became yellowish brown, but the red and yellow dispersions still 

continued. 

When the fluid was examined by the fourth method, it was 

found that the red rays dispersed a red, just as in a solution 

of leaf-green. The additional dispersion which was so con¬ 

spicuous in this fluid began almost abruptly about the fixed line 

JD. When it was first observed, the refrangibility of the orange 

dispersed light could hardly, if at all, be separated from that of 

the active light. As the lens moved on, the orange beam rapidly 

grew brighter, and yellow entered into it; and now it was easy to 

see that the beam of falsely dispersed light lay at its more re¬ 

frangible limit. The orange and yellow dispersed beam was 

brightest at about D§ E; but though it decreased in intensity 

it could be traced far beyond that point, in fact, throughout the 

spectrum. 

63. I have generally found that when a copious dispersion 

commences almost abruptly at a certain point of the spectrum, it 

is followed by a band of absorption in the transmitted light. 

This law did not seem applicable to the orange dispersion ex¬ 

hibited by the solution just mentioned; but then it is to be 

remembered that the solution contained a quantity of chlorophyll, 

which produces absorption bands with such energy that it would 

naturally mask the bands which might be due to another 

colouring principle with which it was mixed. To try whether 

the law would be obeyed if the chlorophyll were got rid of, I 

boiled in water some portions of the root and young shoots 

which had turned blue, chlorophyll being insoluble in water. 

The solution thus obtained was red, in small thicknesses pink, 

and dispersed copiously a yellow or rather orange light. On 

subjecting the fluid to prismatic analysis, a band of absorption 

was seen at the place expected. Since aqueous solutions of this 

nature are liable to decomposition, frequently decomposing before 

sunlight can be obtained by which to examine them, the red 

solution was concentrated by evaporation and purified by alcohol, 

in which the orange-dispersing principle is soluble, as had already 
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appeared from the properties of the alcoholic solution. The 

alcoholic solution thus obtained remained unchanged, at least for 

a long time, and had the further advantage over the aqueous 

solution of presenting the sensitive principle more nearly in a 

state of isolation, though it was still contaminated by some 

principle which dispersed a whitish light under the influence of 

rays of high refrangibility. 

64. The blue colouring matter may be readily extracted by 

cold water, but is decomposed by boiling. The blue solution dis¬ 

persed an orange light like the other, but the dispersed light 

could not be nearly so well seen, just as would be the case were 

the red orange-dispersing fluid mixed with an insensible blue 

fluid of a much deeper colour, so that the mixture of the two 

would be blue. And in fact when the blue fluid was changed to 

red by boiling the colour became far less intense. 

Archil and Litmus. 

65. It is stated by Sir David Brewster that a very remark¬ 

able example of internal dispersion, which had been pointed out 

to him by Mr Schunck, is exhibited in an alkaline or in an alco¬ 

holic solution of a resinous powder produced from orcine by con¬ 

tact with the oxygen of the air. Not being able readily to 

procure a specimen of orcine, I tried archil, and obtained from 

it and litmus some very remarkable solutions. 

In the fluid state in which archil is sold, the colour is much 

too deep for convenient optical examination. When a small 

quantity of archil is diluted with a great deal of water, the 

diluted fluid is very sensitive. It is red by transmission, or in 

small thicknesses purple, but exhibits by dispersive reflexion a 

pretty copious but rather sombre green. 

66. When the fluid was examined by different methods, it 

was found to disperse a little red, some orange, and a great deal 

of green. The red dispersion was so slight, that in observing by 

the third method it appeared doubtful whether there was any 

except false dispersion. It commenced in the red, when the 

active and dispersed lights had the same refrangibility, or nearly 

so. The orange dispersion commenced about the fixed line D, 
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the dispersed light being at first nearly homogeneous, and of the 

same refrangibility as the active light. On proceeding onwards 

in the spectrum, in observing by the fourth method, the orange 

beam became brighter, and yellow entered into it, but no colour 

beyond that, so that the orange and yellow beam was left behind 

by the beam of falsely dispersed light, from which it was separated 

by a perfectly dark interval. The green dispersion began about b, 

or a little beyond, coming on almost abruptly. The manner of its 

commencement was best observed by the fourth method, by 

holding a prism to the eye while the lens was moved through the 

spectrum. In this way it was found that on arriving at the point 

of the spectrum above mentioned, a gleam of green light shot 

across the dark space which before separated the beam of falsely 

dispersed light from the orange beam of truly dispersed light. 

As the lens moved on, the green dispersed light grew brighter, 

but its more refrangible limit did not seem to pass, or at least 

much to pass, the refrangibility it had at first; so that the green 

beam of truly dispersed light was almost immediately left behind 

by the beam of falsely dispersed light. The former, on being left 

behind, soon died away. 

67. We might suppose either that the red, orange and 

green dispersions are due to the same sensitive principle, or that 

they are produced by three distinct sensitive principles mixed 

together in the solution. The latter would appear the more 

probable supposition, to judge by the apparent want of connexion 

between the three dispersions. This view is strongly confirmed 

by the following results. Some ether was poured on archil in the 

fluid state, and after being gently moved about and allowed to 

stand, a little was withdrawn without agitation. A purplish rose- 

coloured fluid was thus obtained, which was highly sensitive, 

exhibiting the orange and green dispersions but not the red. 

The orange dispersion was far more copious, in proportion to the 

whole quantity of dispersed light, than had been the case with 

archil diluted with water. 

Some archil was violently agitated with ether, and after 

subsidence the ether was withdrawn. This ethereal solution 

was much deeper in colour than the former, and exhibited the 

red dispersion in addition to the orange and green. On adding a 

small quantity of water, and agitating, a separation, or at least 
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partial separation, of the sensitive principles took place; for the 

upper fluid exhibited the orange dispersion abundantly, but none 

of the red, and little or none of the green, while the under fluid 

exhibited the green and red dispersions with little, if any, of the 

orange. The upper fluid exhibited a pretty copious dispersive 

reflexion of reddish orange, and the under fluid a remarkably 

copious reflexion of a fine green. A similar separation, more or 

less perfect, took place in other cases, the dispersion of orange 

bearing to that of green a greater ratio in the ether than in the 

water. Some of the green-dispersing fluids thus obtained were 

most remarkable on account of the extraordinary copiousness of 

the reflected green, and the strange contrast which it presented 

to the transmitted tint, which was a purplish red. 

The red dispersion in the second ethereal solution, though 

decided, was by no means copious. In the case of archil merely 

diluted with water, it had been so slight that its existence might 

have been considered doubtful. It might be supposed that the 

first solution was not sufficiently concentrated to exhibit the red 

dispersion, in which case the red and green dispersions might have 

been due to the same sensitive principle. But an ethereal extract 

from dried archil, which was plainly concentrated enough, did not 

exhibit the red dispersion, although it did exhibit the orange and 

green dispersions. None of the sensitive principles appear to 

constitute the chief part of the colouring matter of this dye-stuff. 

68. When some of these ethereal solutions were examined by 

the third method, with a lens of shorter focus than usual, the 

appearance was very singular. At the less refrangible end of the 

spectrum the incident light was quite inactive; and then, on 

reaching a certain point, a copious dispersion of orange commenced 

abruptly. This continued with no particular change for some 

distance further on, when it passed abruptly into green. The 

fourth method showed however that the former dispersion con¬ 

tinued, and was only masked, in the third method of observation, 

by a new and more powerful dispersion of green which then 

commenced. And in fact when the green-dispersing principle 

was separated, or partially separated, by water, the orange dis¬ 

persion was seen to continue where before it appeared to have 

been exchanged for green. 
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69. I ought here to mention that a similar separation did not 

take place on the addition of water only to an ethereal extract 

from archil previously dried. The condition which determined 

the separation in the first case appeared to be the presence of a 

small quantity of ammonia, which would evaporate on drying the 

archil. And in fact when a small quantity of ammonia was added 

to the extract from dried archil, a partial separation was effected. 

I do not here enter into the question whether one of the sensitive 

principles may be obtained from the other, whether, for example, 

a chemical combination of the orange-dispersing principle with 

ammonia might disperse a green, or a green with a little orange. 

A solution containing a mixture of the same substance in two 

different states of chemical combination, both compounds being 

sensitive, is not the less justly regarded as containing two distinct 

sensitive principles. 

70. The preceding results are mentioned, not for their own 

sake, but merely for the sake of the method of examination em¬ 

ployed. The results indeed are so imperfect as to be worthless on 

their own account. A complete optico-chemical examination of 

archil and litmus would itself alone furnish a subject for research 

of no small extent; but it belongs rather to chemistry than to 

general physics. It is quite possible that internal dispersion may 

turn out of importance as a chemical test. The dispersing such a 

tint, and the having the dispersed light produced by light of such 

a refrangibility, form together a double character of so peculiar a 

nature that it enables us, so to speak, to see a sensitive principle 

in a solution containing many substances, some of them, perhaps, 

coloured, so that the colour of the solution may be very different 

from what it would be if the sensitive principle were present alone. 

71. The law mentioned at the beginning of Art. 63 did not 

seem very applicable to archil when the fluid was merely diluted 

with water. But when the orange-dispersing and green-dispersing 

principles were obtained, as it would appear, more nearly in a 

state of isolation, by means of ether and water, the law was found 

to be obeyed. Thus, when the ethereal solution which exhibited 

the orange dispersion and little else was examined by the third 

method, the dispersion was found to commence with a tail of light 

followed by a dark tooth, indicating the position of a band of 
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absorption. When the light transmitted by a certain thickness of 

this fluid was subjected to prismatic examination, it was found to 

consist of red followed by some orange, when the spectrum was 

cut off with unusual abruptness. After a broad dark interval 

came the most refrangible colours faintly appearing. Those 

solutions which exhibited a copious dispersion of green gave, in 

addition to a band obliterating the yellow, a very distinct hand 

separating the green from the blue. A similar band, but by no 

means distinct, might be seen in archil merely diluted; and it is 

particularly to be observed that this band, which occurred a little 

above the point of the spectrum where the green dispersion com¬ 

menced, became more conspicuous when the green-dispersing 

principle was present more nearly in a state of isolation. 

72. Two portions of litmus were treated, one with ether and 

the other with alcohol, which were allowed to remain in contact 

with the solid. Both extracts, but especially the latter, were 

highly sensitive, exhibiting dispersions of orange and green similar 

to archil, and due apparently to the same sensitive principles. 

The ethereal extract dispersed chiefly orange, while the alcoholic 

extract dispersed orange and green in nearly equal quantities. 

The latter extract exhibited a remarkably copious dispersive 

reflection of a colour nearly that of mud, and was altogether one 

of the strangest looking fluids that I have met with. On viewing 

it in such a manner that no transmitted light entered the eye, 

one might almost have supposed that it was muddy water taken 

from a pool on a road. But when the bottle containing it was 

held between the eye and a window the fluid was found to be 

perfectly clear, and of a beautiful purple colour. 

Canary Glass. 

73. Among media which possess the property of internal 

dispersion in a high degree, Sir David Brewster mentions a yellow 

Bohemian glass, which dispersed a brilliant green light. This led 

me to seek for such a glass, and it proved to be pretty common in 

ornamental bottles and other articles. The colour of the glass by 

transmitted light is a pale yellow. Its ornamental character 

depends in a great measure upon the internal dispersion, which 

occasions a beautiful and unusual appearance in the articles made 
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of it. The commercial name of the glass is canary glass. The 

following observations were made with a small bottle of English 

manufacture. 

74. When the sun’s light was admitted without decomposition 

the dispersed beam was yellowish green. The1 dispersion was so 

copious that when a large lens was used the dispersed beam 

approached to dazzling. The prismatic composition of this beam 

was extremely remarkable. The beam was found on analysis to 

consist of five bright bands, which were equal in breadth and 

equidistant, or at least very nearly so, and were separated by 

narrow dark bands. The first bright band was red, the second 

reddish orange, the third yellowish green, the fourth and fifth 

green. I have very frequently observed dark bands, or at least 

minima, in the spectrum resulting from the prismatic analysis of 

dispersed beams, but I have not met with any example so re¬ 

markable as this, except in a class of compounds which the 

properties of canary glass led me to examine. 

75. On analysing a beam of sunlight transmitted through a 

certain thickness of the glass, there was found to be a dusky 

absorption band a little below F, another less distinct at F\G, 

and the spectrum was cut off a little below G. 

76. When the glass was examined by the third method, the 

dispersion was found to commence abruptly about the fixed line b. 

It remained remarkably copious throughout the whole of the 

visible spectrum and far beyond, with the exception of a band 

beginning a little above F, and having its centre at about F^G, 

where there was a remarkable minimum of activity. This band, 

it will be observed, was situated between the bands of absorption 

already mentioned. The tint of the dispersed light appeared to 

be uniform throughout, except perhaps where the dispersion was 

just commencing. This was the best medium I have met with for 

showing the fixed lines of extreme refrangibility, though some 

others were nearly as good. 

77. On examining the glass by the fourth method, it was 

found that the dispersion commenced nearly where the dispersed 

light ended, that is, the lowest refrangibility of the rays capable of 

being dispersed was nearly the same as the highest refrangibility 
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of the rays constituting the dispersed beam exhibited by white 

light as a whole. The dispersion appeared indeed to commence a 

little earlier, at about the refrangibility of the fourth dark band 

in the spectrum of the entire dispersed beam. When the small 

prism was held to the eye with one hand, while the small lens in 

the board was gradually moved with the other, in a direction from 

the red to the violet, through the part of the spectrum where the 

dispersion commenced, it was found that the region of the first 

four bands was lighted up almost simultaneously, the whole field 

of view having been previously dark. When the lens was moved 

a very little further on the dispersed beam with its five bands 

was formed complete. Indeed the whole five appeared almost 

simultaneously. Speaking approximately, and in fact with almost 

perfect accuracy, we may say that if white light be conceived to 

be decomposed into two portions, the first containing rays of all 

refrangibilities up to that of the fixed line b, or thereabouts, and 

the second containing rays of all greater refrangibilities, the 

dispersed light produced by white light as a whole belongs ex¬ 

clusively to the first portion; and yet, were the bottle illuminated 

by the first portion alone, no dispersion whatsoever would be 

produced, whereas were it illuminated by the second portion alone, 

which contains not a ray having the same refrangibility as any 

one of the dispersed rays, the dispersion would be exhibited in full 

perfection. 

Common Colourless Glasses. 

78. Sir David Brewster states that he has met with many 

specimens, both of colourless plate and colourless flint glasses, which 

disperse a beautiful green light. All the colourless glasses which 

I have examined dispersed light internally to a greater or less 

extent, with the exception of some few specimens belonging to 

Dr Faraday’s experiments. A beautiful green seems to be the 

commonest tint of the dispersed beam, and this I have found in 

wine glasses, decanters, apothecaries’ bottles, pieces of unannealed 

glass, &c.; also in many specimens of plate and crown glass. The 

green was generally of a finer tint than that dispersed by the 

canary glass, but was not near so copious. On analysis it wTas 

found to consist usually of red and green separated by a dark 

band, or rather a minimum of brightness. Those specimens 
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which were examined by the third and fourth methods were 

found to exhibit a little false dispersion, produced chiefly in the 

brightest part of the spectrum, but the greater part was true 

dispersion. This dispersion was produced chiefly by a rather 

narrow band, comprising the fixed line 0, where there appeared 

to be a remarkable maximum of sensibility. The line G lay a 

little above the lower limit of the band. Below the band dis¬ 

persion also took place, though not near so copiously, and there 

appeared to be another maximum of sensibility some way further 

down in the spectrum; but above the band dispersion almost 

entirely ceased of a sudden; a very unusual circumstance when 

the active and the dispersed light are well separated in re- 

frangibility. The position of the band in the spectrum, and the 

distribution of the illumination in it, which are very peculiar, 

were the same in all the specimens which were sufficiently 

sensitive to admit of being examined by the third method, but the 

tint of the dispersed light was not quite the same. 

79. Orange-coloured glasses are frequently met with which 

reflect from one side, or rather scatter in all directions, a copious 

light of a bluish-green colour, quite different from the transmitted 

tint. In such cases the body of the glass is colourless, and the 

colouring matter is contained in a very thin layer on one face of 

the plate. The bluish-green tint is seen when the colourless face 

is next the eye. As this phenomenon was supposed by Sir John 

Herschel to offer some analogy with the reflected tints of fluor¬ 

spar and a solution of sulphate of quinine, I was the more desirous 

of determining the nature of the dispersion. It proved on exam¬ 

ination to be nothing but false dispersion, so that the appearance 

might be conceived to be produced by an excessively fine bluish- 

green powder contained in a clear orange stratum, or in the 

colourless part of the glass immediately contiguous to the coloured 

stratum. The phenomenon has therefore no relation to the tints 

of fluor-spar or sulphate of quinine. It is true that the very 

same glass which displayed a superficial reflexion of bluish green, 

when examined by condensed sunlight exhibited also, in its 

colourless part, a little true dispersion, just as another colourless 

glass would do. But this has plainly nothing to do with the 

peculiar reflexion which attracts notice in such a glass. 
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Observations on the preceding results. 

80. There is one law relating to internal dispersion which 
appears to be universal, namely, that when the refrangibilitv of 
light is changed by dispersion it is always lowered. I have 

examined a great many media besides those which have been 

mentioned, and I have not met with a single exception to this 

rule. Once or twice, in observing by the fourth method, there 
appeared at first sight to be some dispersed light produced when 

the small lens was placed beyond the extreme red. But on 
further examination I satisfied myself that this was due merely to 

the light scattered at the surfaces of the large prisms and lens, 

which thus acted the part of a self-luminous body, emitting a 

light of sufficient intensity to affect a very sensitive medium. 

81. Consider light of given refrangibility incident on a given 
medium. Let some numerical quantity be taken for a measure of 
the refrangibility, suppose the refractive index in some standard 
substance. Let the refrangibilities of the incident and dispersed 
light be laid down along a straight line AX (fig. 2) taken for the 
axis of abscissae; let AM represent the refrangibility of the inci¬ 

dent light, and draw a curve of which the ordinates shall represent 
the intensities of the component parts of the truly dispersed beam. 
According to the law above stated, no part of the curve is ever 
found to the right of the point M\ but in other respects its form 

admits of great latitude. Sometimes the curve progresses with 
tolerable uniformity, sometimes it presents several maxima and 
minima, or even appears to consist of distinct portions. Some¬ 
times it is well separated from M, as in fig. 2; sometimes it 
approaches so near to M that the most refrangible portion of the 

truly dispersed beam is confounded with the beam due to false 

dispersion. 

82. Let f(x) be the ordinate of the curve corresponding to 

the abscissa x, a the abscissa of the point M. Since f(x) is equal 
to zero when x exceeds a, the curve must reach the axis at the 

point M at latest, unless we suppose the function capable of alter¬ 
ing abruptly, as is represented in fig. 3. I do not think that such 
an abrupt alteration, properly understood, is necessarily in contra- 
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diction with the law of continuity. For the sake of illustration, 

let us consider the phenomenon of total internal reflexion. Let P 

be a point in air situated at the distance z from an infinite plane 

separating air from glass. Conceive light having an intensity 

equal to unity, and coming from an infinitely distant point, to be 

incident internally on this plane at an angle 7 + 0, where 7 is the 

angle of total internal reflexion. The intensity at P is commonly, 

and for most purposes correctly, considered as altering abruptly 

with 6, having, so long as <9 is negative, a finite value which does 

not vanish with 8, but being equal to zero when 8 is positive. 

The mode in which the law of continuity is in this case obeyed is 

worthy of notice. In the analytical expression for the vibration, 

when 8 passes from negative to positive, the coordinate z passes 

from under a circular function into an exponential with a negative 

index, containing in its denominator A, the length of a wave of 

light. As 6 increases through zero, the expression for the vibra¬ 

tion alters continuously; but if 0 be large compared with X it 

decreases with extreme rapidity when 8 becomes positive. On 

account of the excessive smallness of X, it is sufficient for most 

purposes to consider the intensity as a function of 8 which vanishes 

abruptly; and indeed it would be hardly correct to consider it 

otherwise. For the use of the term intensity implies that we are 

considering light as usual, whereas those phenomena which require 

us to take into account the disturbance in the second medium 

which exists when the angle of incidence exceeds that of total 

internal reflexion, lead us to consider the nature as well as the 

magnitude of that disturbance, which no longer consists of a series 

of plane waves constituting light as usual. It is in some similar 

sense that I mean to say that we may suppose the function f {x), 

which expresses the intensity of the truly dispersed light, to alter 

abruptly, without thereby implying any violation in the law of 

continuity. In observing by the fourth method, the portion of the 

spectrum operated on, though it may be small, is necessarily finite, 

and in some cases no separation could be made out between the 

beams of truly and falsely dispersed light. Hence I cannot under¬ 

take to say from observation, whether the variation of f (x) be 

always continuous, though sometimes very rapid, or be in some 

cases actually abrupt. I think, however, that observation rather 

favours the former supposition, a supposition which, independently 

of observation, seems by far the more likely. 
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83. Although the law mentioned in Art. 80 is the only one 

which I have been able to discover, relating to the connexion 

between the intensity and the refrangibility of the component 

parts of the dispersed beam, which appears to be always obeyed, 

and which admits of mathematical expression, there are some 

other circumstances usually attending the phenomenon which 

deserve notice. 

When dispersion commences almost abruptly on arriving at 

a certain point of the spectrum, the dispersed beam is very 

frequently almost homogeneous at first, and of the same refrangi¬ 

bility as the active light. If the dispersed beam, when first 

perceived, be decidedly heterogeneous, its refrangibility extends 

almost, if not quite, to that of the active light, so that it is diffi¬ 

cult, if not impossible, to separate the beams of truly and falsely 

dispersed light. On the other hand, when dispersion comes on 

gradually, it is generally found that the refrangibility of even the 

most refrangible part of the dispersed beam does not come up to 

that of the active light. 

Thus in the cases of the red dispersion exhibited by a solution 

of leaf-green, and of the orange dispersions exhibited by solutions 

obtained from archil and from the Mercurialis perennis, the dis¬ 

persed light was at first nearly homogeneous, and of the same 

refrangibility as the active light. In the case of the green disper¬ 

sions shown by a solution obtained from archil, and by canary 

glass, the dispersed light was heterogeneous from the first; but 

still, when it first commenced, a portion of it had nearly the same 

refrangibility as the active light. In a solution of sulphate of 

quinine the dispersion came on gradually, being perceptible when 

the active light belonged to the middle of the spectrum; and in 

this case the dispersed light consisted of colours of low refrangi¬ 

bility. The bright part of the dispersion however came on pretty 

rapidly, when the active light approached the extreme limit of the 

visible spectrum, and accordingly the dispersed beam consisted in 

that case chiefly of light of high refrangibility. 

84. The mode of absorption of any medium may very con¬ 

veniently be represented by a curve, as has been done by Sir John 

Herschel. To represent geometrically in a similar manner the 

mode of internal dispersion, would require a curved surface. Let 
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the refrangibility of light be measured as before, and suppose for 

simplicity’s sake the intensity of the incident light to be indepen¬ 

dent of the refrangibility, so that dy may be taken to represent the 

quantity of incident light of which the refrangibility lies between 

y and y + dy. Considering the effect of this portion of the incident 

light by itself, let x be the refrangibility of any portion of the dis¬ 

persed light, and zdxdy the quantity of dispersed light of which 

the refrangibility lies between x and x + dx. Then the curved 

surface, of which the coordinates are x, y, a, will represent the 

nature of the internal dispersion of the medium. We must sup¬ 

pose the intensity of the incident light referred to some standard 

independent of the eye, since the illuminating power of the rays 

beyond the violet, and even of the extreme violet, is utterly 

disproportionate to the effect which in these phenomena they 

produce. 

From the nature of the case, the ordinate z of the surface can 

never be negative. The law mentioned in Art. 80 may be ex¬ 

pressed by saying, that if we draw through the axis of z a plane 

bisecting the angle between the axes of x and ?/, at all points 

on the side of this plane towards x positive, the curved surface 

confounds itself with the plane of xy. 

85. Let us consider the form of this surface in two or three 

instances of internal dispersion. For facility of explanation, sup¬ 

pose the plane of xy horizontal, let ./• be measured to the right, y 

forwards, and 5 upwards. Let a line drawn in the plane of xy 

through the origin, and bisecting the angle between the axes of x 

and ?/, be called for shortness the line L, hi all cases the surface 

rises above the plane of xy only to the left of the line L. 

In the case of a solution of leaf-green, the surface consists as it 

were of two mountain ranges running in a direction parallel to the 

axis of y, or nearly so. The first range, if prolonged, would meet 

the axis of x at a point corresponding to the place of the dark 

hand No. 1 in the red, or nearly so. The second would meet it 

somewhere in the place corresponding to the green. The green 

range is much broader than tin*, red, but very much lower, and is 

comparatively insignificant. The ridge of the rod range is by no 

moans uniform, but presents a succession of maxima and minima. 

The range commences at the end nearest to the axis of x with a 

very high peak, by far the highest in the whole surface. In 



ON THE CHANGE OF REFRANGIBILITY OF LIGHT. 321 

following the ridge forwards, five minima or passes may be observed, 

with hills intervening. The ordinates y of the first four of these 

minima correspond to the refrangibilities of the bright bands Nos. 

2, 3, 4 and 5. The last minimum lies a little further on. Whether 

similar minima exist in the green range is not decided by observa¬ 

tion, on account of the faintness of the green dispersed light. 

In the case of canary glass, the surface consists of five portions 

like mountain ranges running parallel to the axis of y, and having 

abscissae belonging to the red, reddish orange, yellowish green, 

green, and more refrangible green, respectively. These ranges do 

not all start from the immediate neighbourhood of the line L, but 

on the side towards the axis of x end almost in cliffs, at points at 

which the ordinate y is nearly equal to the abscissa of the fifth 

range, perhaps a little less. Thus the first three ranges are well 

separated from the line L. The ranges are intersected by a sort of 

valley running parallel to the axis of x} and having for its ordinate 

y the refrangibility of F^G. With the exception of the minima 

which occur where the ranges are intersected by this valley, the 

ridges run on very uniformly, and it is only very gradually that 

the ranges die away. 

The form of the surface which expresses the internal dispersion 

of a solution of sulphate of quinine, may be gathered from the 

description of that medium. In this case the surface resembles a 

rising country, not intersected by any remarkable mountain ranges 

or valleys. 

Fig. 4 is a rude representation of the internal dispersion in a 

solution of leaf-green. The curves represented in the figure must 

be supposed to be turned through 90° about the lines on which 

they stand, and will then represent sections of the surface already 

described, made by vertical planes parallel to the axis of x. OL is 

the straight line bisecting the angle xOy. The figure is merely 

intended to assist the reader in forming a clear conception of the 

general nature of the phenomena, and must not be trusted for 

details. No attempt is made to represent the several maxima and 

minima in the intensity of the red beam of dispersed light. In 

any such figure, if we suppose homogeneous light to be incident 

on the medium, and wish to lay down the place of the falsely dis¬ 

persed beam, we have only to draw a straight line parallel to the 

axis of xy through the point in the axis of y which corresponds to 

21 s. III. 
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the refrangibility of the incident light, and find where this line 

cuts the straight line OL which bisects the angle xOy. 

On the cause of the clearness of fluids, notwithstanding a copious 
internal dispersion which they may exhibit. 

86. It has been already remarked, that though water holding 

a water colour in suspension makes an admirable imitation of a 

highly sensitive fluid, when the latter is viewed by dispersive 

reflexion alone, the two fluids have a totally different appearance 

when viewed by transmitted light. The cause of this difference 

appears to be plain enough. The light due to internal dispersion 

emanates from each portion of the fluid which is under the influ¬ 

ence of the active light, and emanates apparently in all directions 

alike. I have not attempted to determine experimentally whether 

the intensity is strictly the same in all directions. The experiment 

would be very difficult, especially for directions nearly coinciding 

with that of the active light, because in that case the light which 

was really due to internal dispersion would be mixed up with the 

glare which is always found in the neighbourhood of light of 

dazzling brightness. However, I have seen nothing which led me 

to suppose that the intensity was different in different directions. 

We may express the results of observation (extremely well, by 

saying that the fluid or solid medium is self-luminous so long as 

it is under the influence of the active light. 

Accordingly, when a bright object, such as the sky, or the 

flame of a candle, is viewed through a highly sensitive fluid, the 

regularly transmitted light is accompanied by some side light 

due to internal dispersion. The latter, however, emanating in 

all directions alike from the influenced particles, is too faint, 

when contrasted with the regularly transmitted light, to make 

any sensible impression on the eye. But when a fluid, itself 

insensible, holds in suspension a great number of solid particles 

of finite size, the light reflected from such particies is rein forced, 

in directions nearly coinciding with that of the incident light, by 

a great quantity of diffracted light, so that a bright object viewed 

through such a fluid is surrounded by a sort of nebulous haze, 

giving the fluid a milky appearance. 
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Washed Papers. 

87. In a paper “On the Action of the Eays of the Solar 

Spectrum on Vegetable Colours,” Sir John Herschel mentions 

a peculiarity which he had observed in paper washed with tinc¬ 

ture of turmeric, which consists in its being illuminated, when 

a pure spectrum is thrown on it, to a much greater distance at 

the violet end than is the case with mere white paper* This 

phenomenon was attributed by Sir John to a peculiarity in its 

reflecting power, and was considered as a proof of the visibility 

of the ultra-violet rays. The colour of the prolongation of the 

spectrum was yellowish green. Sir John appears to have been 

in doubt whether the greenish yellow colour was to be attributed 

to the mixture of the true colour of the ultra-violet rays with the 

yellow of the paper due to diffused light, or to the real colour of 

the ultra-violet rays themselves, which on that supposition would 

have been incorrectly termed “ lavender.” 

88. The fact of the change of refrangibility of light having 

been established, there could be little doubt that the true cause of 

the extraordinary prolongation of the spectrum on paper washed 

with tincture of turmeric was very different from what Sir John 

Herschel had supposed, and that it was due to a change of re¬ 

frangibility in the incident light, which was produced by the 

medium in a solid state. Tincture of turmeric has already been 

mentioned as a medium which possesses in a high degree the 

property of internal dispersion. It was the observation of Sir 

John Herschel’s already mentioned, which led me to try this 

medium. But it is by no means essential that a sensitive sub¬ 

stance should be in solution, or in the state of a transparent 

solid, in order that the change of refrangibility which it produces 

should admit of being established by direct experiment, although 

of course the mode of observation must be changed. 

89. A piece of paper was prepared by pouring some tincture 

of turmeric on it, and allowing it to dry. In this way the part 

which was deeply coloured by turmeric was in juxtaposition with 

the part which remained white, which was convenient in con¬ 

trasting the effects of the two portions. The sun’s light being 

reflected horizontally into a darkened room through a vertical 

* Philosophical Transactions for 1842, p. 194. 

21—2 
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slit, the paper was placed in a pure spectrum formed in the 

usual manner. On the coloured part the fixed lines were seen 

with the utmost facility far beyond the line H, on a yellowish 

ground. The colours too of all the more highly refrangible part 

of the spectrum were totally changed. From the red end, as far 

as the line F, or thereabouts, there was no material change of 

colour; but a little further on a very perceptible reddish tinge 

came on, which was quite decided at F\G, where it was mixed 

with the proper colour of that part of the spectrum. About 

6rfJjT the colour became yellowish. The reality of a change of 

refrangibility was easily proved by refracting the spectrum on 

the screen by a prism applied to the eye. When the refraction 

took place in a plane parallel to the fixed lines, they were seen 

distinctly throughout the spectrum ; but when it took place in 

a plane perpendicular to the former, the fixed lines in the less 

refrangible part of the spectrum, and as far as F, were distinctly 

seen; but in the rest of the spectrum they were more or less 

confused, or even wholly obliterated, according to their original 

strength, the refracting angle and dispersive power of the prism, 

and its distance from the paper. With a prism of small angle 

the edges of the broad bands H were seen tinged with prismatic 

colours. 

90. The change of refrangibility was further shown by the 

following observation. The paper was placed in the pure spec¬ 

trum in such a manner that the line of junction of the coloured 

and uncoloured parts ran lengthways through the spectrum, so 

that the same fixed line was seen partly on the coloured and 

partly on the uncoloured portion. On viewing the whole through 

a prism of moderate angle applied to the eye, and so held as to 

refract the system in a direction perpendicular to tin1 fixed lines, 

the line F was seen uninterrupted, but (r was dislocated, the 

portion formed on the yellow part of the paper being a good 

deal less refracted than that formed on the white. The latter 

was indeed faintly prolonged into the yellow part of the paper, 

so that on this part G was seen double; hut the image which 

was by far the more intense of the two was less refracted than 

that formed on the white paper. The whole appearance was 

such as to create a strong suspicion of some illusion, as if some 

other group of fixed lines formed on the yellow part of the paper 
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had been mistaken for G, though certainly no reason appears why 

such a group should not have had its counterpart on the white 

part. However, to remove all doubts, I refracted the system in 

the direction of the fixed lines, and then turned the prism round 

the axis of the eye through 90°, when the plane of refraction was 

situated as before. At first the two portions of the line G were 

of course seen in the same straight line; and the perfect con¬ 

tinuity with which, as the prism turned round, the appearance 

changed into what had been first seen, left not the shadow of a 

doubt as to the reality of the dislocation. 

91. The cause of the whole appearance is plain enough. 

The light coming from the illuminated part of the yellow paper 

consisted, in the neighbourhood of 6r, of two portions; the first, 

indigo light, which had been scattered in the ordinary way; the 

second and larger portion, heterogeneous light having a mean 

refrangibility a good deal less than that of 6r, which had arisen 

from homogeneous light of higher refrangibility. The absence of 

the first occasioned the faint prolongation of the more refracted 

part of the line G; the absence of the second gave rise to the less 

refracted part. 

92. The broad bands H were seen faintly but quite dis¬ 

tinctly on the white paper. On refracting them sideways by a 

prism of moderate angle held to the eye, they became confused, 

and tinged with prismatic colours. The confused images of these 

bands, seen in the white and coloured parts, were nearly con¬ 

tinuous. It thus appears that the visibility of the bands H on 

the white paper was due to a change of refrangibility which that 

substance had produced in violet light of extreme refrangibility. 

93. Effects similar to those produced by paper coloured by 

tincture of turmeric are also produced by turmeric powder, or 

even by the root merely broken across. Notwithstanding the 

roughness of the latter, the bands H and fixed lines far beyond 

are seen with the utmost facility. 

94. These phenomena are much better observed by covering 

the slit with a deep blue glass, which absorbs all the bright part 

of the spectrum, while it freely transmits the violet and invisible 

rays, which are mainly efficient in this class of phenomena. In 
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this way fixed lines may be seen on common white paper far 

beyond H. These lines may be seen without the use of the 

blue glass, by allowing the bright colours to pass by the edge 

of the paper, and receiving on it only the extreme violet and 

invisible rays. 

95. Paper coloured by turmeric having exhibited so well the 

sensibility of that substance, I was induced to try various other 

washed papers, in fact, papers washed with most of the fluids 

with which I had made experiments. I found almost always 

that sensitive solutions gave rise to sensitive papers, exhibiting 

a change of refrangibility of the same character as that shown 

by the solution. Besides the turmeric paper, the two most re¬ 

markable were paper washed with a pretty strong solution of 

sulphate of quinine, and paper washed with the extract from the 

seeds of the Batura stramonium. I should here observe, that it 

was not till long after the time when these experiments were 

made that I was acquainted with the high sensibility of a decoc¬ 

tion of the bark of the horse-chestnut. The former of the papers 

just mentioned exhibited the fixed lines of the invisible rays on 

a blue, and the latter on a green ground. The dispersion pro¬ 

duced by the quinine paper was not exhibited so early in the 

spectrum as in the case of turmeric, nor was it so copious in 

the extreme violet rays, and for some distance further on, but 

the quinine paper seemed superior to the other for showing the 

fixed lines of extreme refrangibility. With the turmeric paper 

the group n was plain enough, but with the quinine paper I 

have seen some fixed lines of the group p. The stramonium 

paper was, on the whole, I think, superior to the quinine paper 

in point of the copiousness of the dispersed light, but seemed 

hardly equal to it for showing the fixed lines of extreme re¬ 

frangibility. However, it is likely that paper washed with a 

solution of the sensitive principle in a state of purity would 

have been quite equal to the quinine paper in this respect. 

96. A washed paper is a little more convenient for use than 

a solution, but, as might be expected, it does not show the fixed 

lines with quite as much delicacy, nor is it quite so good for 

tracing the spectrum to the utmost limits to which it can be 

traced with the substance employed. 
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97. The sensibility of fresh leaf-green could not be made out 

on a washed paper by this mode of observation, but the sensibility 

of the substance extracted by alcohol from black tea, from which 

the brown colouring matter had been removed by hot water, was 

plainly exhibited by the redness which it produced in the highly 

refrangible part of the spectrum. 

98. Paper washed with a solution of guaiacum seemed an 

exception to the general rule ; but this is not to be wondered at, 

since a paper prepared in this manner is turned green when 

exposed to the light, and it is difficult to prevent some degree 

of discoloration. That the fluid state is not essential to the exhi¬ 

bition of the sensibility of this substance, was however plainly 

shown by the high degree of sensibility of the solid resin from 

which the solution was made. In this case the bands H were 

seen on a greenish ground. The dispersion of a fine blue light 

under the influence of rays of still higher refrangibility was 

hardly, or not at all, exhibited by the solid resin. 

99. Shell-lac, common resin, glue, are all highly sensitive. 

The ground on which the fixed lines in the neighbourhood of H 

are seen is brown in the case of shell-lac, and greenish in the case 

of resin and glue. The sensibility of glue is evidently not due to 

gelatine, for isinglass is almost, if not quite, insensible. These 

are merely a few instances of sensibility: I shall defer further 

mention of the subject till I have described a better mode of 

observation. I will merely observe for the present, that several 

washed papers proved not greatly inferior to turmeric paper for 

showing the fixed lines about and beyond H. 

Effect of refracting a Narrow Spectrum in a Vertical Plane. 

100. In the arrangement last described, when a short slit is 

used, the spectrum received on the washed paper or other sub¬ 

stance is of course narrow, so that the fixed lines formed on 

the paper are but short, and may roughly be regarded as mere 

points. If, now, the whole be viewed through a prism, so as to 

be refracted in a vertical plane, the effect is very striking. For 

facility of explanation suppose the red to be to the left, and the 

rays to be refracted upwards, so that to the observer the image 
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is thrown downwards. The original spectrum on the screen is 

decomposed by the prism held to the eye into two spectra, which 

diverge from each other. The first of these runs obliquely down¬ 

wards from left to right, and contains the natural colours of the 

spectrum from red to violet. It consists of light which has been 

scattered in the ordinary way by the substance on which the 

primary spectrum is received, and the cause of its obliquity is 

evident. The second spectrum is horizontal, that is to say, it 

approximates to the form of a long rectangle having its longer 

sides horizontal. Of course it would be theoretically possible to 

render the vertical sides the longer, but when the whole arrange¬ 

ment of the apparatus is such as to be convenient for observation, 

the horizontal sides are much longer than the others. In this 

second spectrum the colours run horizontally, that is to say, the 

lines of equal colour are horizontal. The interruptions of the 

primary spectrum corresponding to fixed lines, almost reduced 

to points, are now elongated, so that in this strangely formed 

spectrum the principal fixed lines of the solar spectrum are seen 

running across the colours. 

101. It will be convenient to have a name for the second of 

the two spectra above mentioned. As the term secondary spectrum 

is already appropriated to something altogether different, I shall 

call it the derived spectrum. The first of the diverging spectra 

may be called the primitive spectrum, while the original spectrum, 

considered as not yet decomposed by the prism held to the eye, 

may be called, for distinction, as in fact it has been already called, 

primary. 

102. In accordance with the law enunciated in Art. 80, it is 

found that the derived spectrum appears always on one and the 

same side of the primitive, being less refracted. 

103. The brilliancy of the derived spectrum, its extent, both 

vertically and horizontally, the colours of which it mainly consists, 

the distribution of its illumination in a horizontal direction, all 

depend upon the nature of the substance upon which the primary 

spectrum is received. As a general rule, it may be stated that it 

starts from the neighbourhood of the brightest part of the primitive 

spectrum, and extends from thence onwards to a good distance 

beyond the extreme violet; and that with a given substance its 



ON THE CHANGE OF REFRANGIBILITY OF LIGHT. 329 

colour is pretty uniform, that is, does not much change in passing 

from one vertical section to another. Sometimes the derived 

spectrum remains very bright np to its junction with the primitive, 

or at least till it gets so near that the superior brilliancy of the 

primitive spectrum prevents all observation on the derived; 

sometimes it remains dull to a considerable distance from the 

primitive spectrum, and then, opposite a highly refrangible part 

of the primitive spectrum, a strong illumination comes on in the 

derived, lasts for some distance, and afterwards gradually dies 

away. Many of the results mentioned in this paragraph are 

better observed by a somewhat different method, which will 

shortly be described. 

104. It has been already stated that the bands H were 

distinctly seen on common white paper, the substance usually 

employed as a screen in experiments on the spectrum, but that 

this was due to a change of refrangibility produced in the extreme 

violet rays. These same bands have been seen on paper in the 

experiments of others, though of course their visibility was not 

attributed to its true cause. By the method of observation 

described in Art. 100, or still better, by a method not yet explained, 

it may be seen that the change of refrangibility produced by 

white paper is by no means confined to the extreme violet rays, 

and those still more refrangible, but extends from about the 

middle of the spectrum to a good distance beyond the extreme 

violet. The distance to which the illumination can be traced by 

means of light merely scattered in the ordinary way, may be seen 

by examining the primitive spectrum. In the primitive spectrum 

formed on white paper and other white substances, I have not 

been able to trace the illumination beyond the edge of the broad 

band H, which accords very well with the illuminating power of 

the extreme violet when received directly into the eye. 

Illuminating Power of the Rays of High Refrangibility. 

105. The prolongation of the spectrum seen on turmeric 

paper was brought forward by Sir John Herschel as a proof of the 

visibility of the ultra-violet rays, or rather as a confirmation of 

other experiments which had led him to the same conclusion. 

Of course, the experiment with turmeric must now be regarded as 
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having no bearing on the question; but from the way in which 

Sir John speaks of it, it would appear that he thought the other 

experiments not so conclusive as to be independent of the con¬ 

firmation which they received from this. The experiment with 

the distorted spectrum, indeed, must now be put out of account, 

because in this experiment, as I have been informed by Sir John 

Herschel, the light was only thrown on a screen. Accordingly, 

the question of the visibility of these rays may be regarded as 

open to further investigation. 

While engaged in some of the experiments described in Art. 89, 

I had occasion to form a pure spectrum in air in a well-darkened 

room, the slit itself by which the suns rays entered being covered 

by a deep blue glass, so that no great quantity of light entered 

even at this quarter. Now, if ever, it would appear that the 

ultra-violet rays ought to be seen by receiving them directly into 

the eye; for the blue glass was so transparent with regard to these 

rays that the fixed lines far beyond H were seen with facility, 

even on substances, such as white paper, which stand low in the 

scale of sensibility; and the length of the spectrum from B to H 

was about an inch and a quarter, so that when the extreme violet 

rays entered the pupil, supposed to be held near the pure spectrum, 

not only the extreme red rays transmitted by the blue glass, but 

even the brighter part of the transmitted blue and violet rays, fell 

altogether outside it. However, on holding the eye a few inches 

in front of the pun; spectrum, so as to see the fixed lines distinctly, 

the bands 11 were indeed seen with great, facility; hut I was not 

able to make; out fixed lines beyond the end of t.lie group l} that 

is, about the end of Fraunhofer’s map. However, tin* (yes of 

different individuals may differ much in their power of being 

affected by tin1 highly refrangible, rays. It must be confessed 

that, on looking in tin* direction of the prisms, a, good deal of blue 

light was seen, consisting of light, which had been scattered at the 

surfaces of tin1 prisms and lens. This light, f hough far from 

dazzling, was sufficient, to prevent the eye from seeing excessively 

faint objects, even flmugh they might be well defined. For 

want of a heliosfat, I did not attempt, an experiment I was 

meditating for securing a more perfect isolation of the ultra-violet 

rays*. 

H See note B. 
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However, it seems to me to be a point of small importance, so 

far as regards its bearing on other physical questions, whether the 

illuminating power of these rays is absolutely null or only ex¬ 

cessively feeble. It is quite certain that, if not absolutely null, 

their illuminating power is at least utterly disproportionate to the 

effect which they produce in the phenomena to which the present 

paper relates, and indeed that is true even of the violet rays. By 

illuminating power, I mean of course power of producing the 

sensation of light when received directly into the eye; for by 

giving rise to light of lower refrangibility, they are able to 

illuminate strongly an object on which they fall. 

Mode of Observation specially applicable to Opaque Bodies. 

106. In some of the experiments already described, the 

change of refrangibility was exhibited, which was produced by 

washed papers and solid bodies. There exists, however, a mode 

of observation far preferable to those which have already been 

explained as applicable to such cases, and which may even in 

some instances be employed with advantage in the examination 

of transparent bodies. In the experiment described in Art. 100, 

the primitive spectrum is pure, but the derived spectrum impure, 

on account of the finite length of the slit. Were the slit reduced 

to a point, it is true that the derived spectrum would become pure 

like the primitive, but then the quantity of light would be so 

small that the primary spectrum would hardly bear prismatic 

analysis. It is well, once for all, to examine a few sensitive opaque 

substances in a very pure spectrum, because then the exhibition 

of fixed lines running across the colours in the derived spectrum 

removes even the shadow of a doubt as to the reality of the change 

of refrangibility of the incident light. Besides this, the only 

theoretical advantage in having the primitive spectrum very pure 

is, that it might be expected to enable us to detect any very rapid 

fluctuations in the colour or intensity of the dispersed light. Of 

course, I am now speaking only with reference to experiments in 

which the observer is employing the spectrum to examine some 

substance, not employing the substance to examine the spectrum. 

But practically, I have not found any advantage on this account; 

for abrupt, or almost abrupt, changes in the colour or intensity of 

the dispersed light hardly ever, if ever, occur, except when the 
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active and the dispersed light have very nearly the same refrangi- 

bility. But such changes could not be observed even with a pure 

primitive spectrum, because in the place where they occur the 

primitive and derived spectra overlap; and independently of this, 

the brilliancy of the primitive spectrum would prevent all exact 

observation of the derived. It is true that, in the case of chloro¬ 

phyll, or some of its modifications, changes of intensity having 

apparently somewhat the same nature were observed when the 

active and the dispersed light were widely separated in refrangi- 

bility. But the sensibility of this substance is difficult, if not 

impossible, to observe in the case of a washed paper or a green 

leaf, except by one of the methods not yet described, so that it is 

not to be expected that such fluctuations could be made out. 

Besides, it is to be remembered that the fluctuations observed in 

the case of solutions of chlorophyll were fluctuations in the rate 

at which dispersed light was produced, not fluctuations in the sum 

total of the dispersed light produced by the time the active light 

was exhausted. Fluctuations of the former kind by no means 

imply fluctuations of the latter ; and indeed the (‘ironinstance, that 

maxima of activity in the solution correspond to minima of trans¬ 

parency, would seem to show that the total quantity of light 

dispersed, considered as a function of the refrangibility of the 

active light, is not subject to these fluctuations, or at, least not to 

anything like the same extent. Now the total quantify of red 

light dispersed by a green half, or by a paper washed with a 

solution of chlorophyll, must depend upon tin*, sensibility of this 

substance and upon its transparency conjointly, and therefore it is 

likely enough that such maxima, and minima would not. lx* observed, 

even were the dispersed light much stronger than it. is. 

107. Suppose now the slit by which tin* light enters to be 

placed in a horizontal instead of a vertical position, so as t.o lie in 

the plane of refraction. Corresponding to light of any given 

refrangibility, the image of the slit formed after refraction through 

the prisms and lens will now bo a narrow parallelogram, which may 

be regarded as a horizontal lino. The series of these lines, suc¬ 

ceeding one another in a horizontal direction, and consequently 

overlapping, forms the spectrum incident on the body examined. 

This spectrum is now no longin' pure, hut only approximately so, 

a point, however, which, as we have seen, is not. of much con- 
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sequence. But by this trifling sacrifice two very great advantages 

are gained. The first is increase of illumination. When the slit 

is vertical, the spectrum received on the body occupies a rectangle 

having for breadth the length of the image of the slit; but when 

it is horizontal, the same, or very nearly the same, quantity of 

light is concentrated into a rectangle having the same length as 

before (the length of the image of the slit being disregarded com¬ 

pared with that of the spectrum), but having for its breadth only 

the length of the image of a line drawn across the slit. Hence 

the intensity of the incident light is increased in the ratio of the 

breadth to the length of the slit. The second advantage is purity 

in the derived spectrum, a point of much consequence, because 

sometimes the composition of this spectrum presents very remark¬ 

able peculiarities. If the slit be not too long, the spectrum 

formed in air is still sufficiently pure to allow us to make out 

in a general way what are the refrangibilities of those portions 

of the incident light which are most efficient in producing dis¬ 

persed light; and this is nearly all that can be done even when 

the spectrum is very pure. 

108. The method of observation which has just been de¬ 

scribed is that which latterly I have almost exclusively employed 

in examining opaque substances. As it will be convenient to have 

a name for it, I shall speak of examining a substance in a linear 

spectrum. In examining substances which are only slightly 

sensitive, it is often highly advantageous to cover the slit with 

a blue glass. 

109. Fig. 5 is intended to represent the usual appearance 

of the primary linear spectrum, and of the primitive and derived 

spectra. IT is the primary spectrum, as seen by the naked 

eye, RVt ST are the primitive and derived spectra into which it 

is separated by the prism held to the eye. The direction of the 

shading in RV is intended to represent the composition of this 

spectrum, which may be regarded as consisting of an infinite 

number of images of the slit arranged obliquely in the order of 

their refrangibility. The direction of the shading in ST is that 

of the lines of the same colour and same refrangibility. Of course 

the figure does not represent the amount of vertical displacement 

of the primary spectrum when viewed through the prism held to 

the eye. 
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110. There is another mode of observation which I have 

occasionally found convenient when the object was to determine 

whether a substance exhibited so much as a low degree of 

sensibility. In this method the sun's light was reflected hori¬ 

zontally through a large lens, and then transmitted through a 

small lens placed in the condensed beam. The small lens was 

covered by a small vessel with parallel sides of glass, containing 

a blue ammoniacal solution of copper, or else by a deep blue 

glass combined with a weak solution of nitrate or sulphate of 

copper. The object of the latter solution was to absorb the 

extreme red which is transmitted by a blue glass. The light 

coming through the lens was then analysed by a prism, being 

received directly into the eye, or else allowed to fall on a white 

object which had been previously ascertained not to change the 

refrangibility of the light incident upon it. I found clean white 

earthenware to serve very well for such an object, but each 

observer ought to test for himself the substance he employs. 

When a test object, such as white earthenware, is used, it is 

placed at the focus of the lens, and the spot of blue light formed 

upon it is analysed by a prism to see if the absorption is 

sufficient. When the visible rays are considered to have been 

sufficiently absorbed, the object to be observed is placed at the 

focus of the lens, and the spot of light formed upon it is viewed 

through a prism. The spectrum then seen is compared with that 

given by the test object. This method of observation is rather 

easier than that of a linear spectrum, and is at least as delicate 

if the object be merely to determine whether a substance is 

sensitive or not, but on the whole it is not near so useful. It 

may sometimes be used with advantage in the case of translucent 

bodies. 

111. An extremely pale solution of nitrate or sulphate of 

copper is sufficient to absorb the extreme red transmitted by a 

deep blue glass. This is not the case with the ammoniacal 

solution, which does not absorb the extreme red till it is of a 

pretty deep blue. Its absorbing power is greatest, not at the 

extreme red, but about the orange, as may be seen by using 

candle-light, which is richer in red rays than daylight. 

112. Another method of observation which is sometimes 

useful, consists in employing a large lens and absorbing medium, 
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as described in Art. 110, but leaving out the additional small 

lens. The substance to be examined is placed in the condensed 

beam, and viewed through an absorbing medium which is ap¬ 

proximately complementary to the former. This method is chiefly 

useful in examining a confused mass of various substances. The 

most minute fragments of sensitive substances show themselves in 

this manner. 

Results obtained with a Linear Spectrum. 

113. When this method is applied to the examination of 

common objects, it is found that the property of producing a 

change of refrangibility in the incident light is extremely common. 

Thus, wood of various kinds, cork, horn, bone, ivory, white shells, 

leather, quills, white feathers, white bristles, the skin of the hand, 

the nails, are all more or less sensitive. To make a list of 

sensitive substances would be endless work; for it is very rare 

to meet with a white or light-coloured organic substance which 

is not more or less sensitive. I am not now speaking of organic 

substances obtained in a state of chemical isolation, of which 

some are sensitive and others insensible. That substances of a 

dark colour should frequently prove insensible is only what 

might have been expected, because the dispersed light is not 

reflected from the surface, but emanates from all points of a 

stratum of finite thickness; and in order that dispersed light 

should be forthcoming, it is necessary that the active light 

entering, and the dispersed light of a different refrangibility 

returning, should both escape absorption on the part of the 

colouring matter. Such substances usually consist of a mixture 

of various chemical ingredients, of which one or more may very 

likely be sensitive, in which case the substance may be compared 

to a solution of sulphate of quinine mixed with ink. Frequently 

however the colouring matter is itself sensitive. 

114. Among sensitive substances I have mentioned the skin 

of the hand, which stands rather low in the scale. I have found 

the back of the hand a convenient test object. When the sun¬ 

light is not strong enough to show with ease the derived spectrum 

in the case of the hand, there is little use in attempting to 

observe. 
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115. It is needless to say that papers washed with tincture 

of turmeric, or with a solution of sulphate of quinine, display 

their sensibility in a remarkable manner when examined in a 

linear spectrum. The sensibility of turmeric paper is rather 

impaired by exposing the paper to the light, but on the other 

hand is materially increased by washing it with a solution of 

tartaric acid. 

116. Paper washed with an ethereal solution from dried 

archil exhibited very well ""the sensibility of that substance. The 

derived spectrum consisted chiefly of two distinct portions, one 

containing orange and a little red, the other consisting chiefly 

of green, just as in the beam of dispersed light, produced by 

white light taken as a whole, which the solution itself exhibited. 

Indeed, I have found that the prismatic composition of dispersed 

light could be determined even more conveniently by means of a 

linear spectrum than by means of the beam dispersed by a 

solution. 

117. The inside of the capsules of the Datura stramonium 

is nearly white, and apparently uniform. But when the capsules 

are examined in a linear spectrum, certain patches shine out 

like bright clouds in the invisible rays. The whole of the inside 

is sensitive, as such substances almost always are, but these 

patches, which are probably spots against which the seeds have 

pressed, are remarkably so. The capsules were examined after 

they had begun to burst. 

118. By means of a linear spectrum the sensibility of chloro¬ 

phyll may be detected in a green leaf. It is exhibited by the 

appearance in the derived spectrum of a narrow pure red band 

of remarkably low refrangibility. The refrangibility is so low 

that I have always found this band separated from the derived 

spectrum due to other sensitive substances with which chlorophyll 

or one of its modifications might have been mixed. 

119. The petals of flowers, so far as I have examined, are as 

a class rather remarkable for their insensibility, some appearing 

quite insensible, and others only slightly sensitive. The bright 

yellow chaffy involucre of a species of everlasting, proved, how¬ 

ever, highly sensitive, and its sensibility was also displayed in 
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an alcoholic solution. This medium was sensitive enough to 

exhibit a pretty copious dispersive reflexion of a pale greenish 

yellow light. Its sensibility was more confined than usual to the 

rays of very high refrangibility. 

120. Among petals, the most remarkable which I have 

observed are those of the purple groundsel (Senecio elegans). 

These petals disperse a red light, more copious than is usual 

among petals. If a petal be placed behind a slit, and the 

transmitted light be analysed, it is 'found to exhibit three re¬ 

markable bands of absorption, much resembling those of blue 

glass, but closer together, and beginning later in the spectrum, 

the first appearing about the place of the orange. These bands 

are still better seen in a solution of the colouring matter in weak 

alcohol. On examining this medium by the third method, with 

a lens of shorter focus than usual, and looking down from above, 

the places of the absorption bands were indicated by tooth-shaped 

interruptions in the beam of light reflected from motes. The 

points of these teeth were occupied by red dispersed light, which 

did not appear in the intervening beams of light reflected from 

motes, from whence it appears that there is the same sort of 

connexion between the absorption and dispersion of this medium 

as was noticed in Art. 59, in the case of solutions of chlorophyll 

and its modifications. 

121. A collection of sea-weeds appeared all more or less 

sensitive, most of them highly so. All, or almost all, except the 

white ones, exhibited in the derived spectrum the peculiar red 

band indicative of chlorophyll and its modifications. The trans¬ 

mitted light also exhibited more or less the absorption bands 

due to this substance, which was likewise, in the specimens tried, 

extracted by alcohol. But the most remarkable example of 

sensibility found in sea-weeds occurs in the case of the red 

colouring matter contained in orangy red, red, pink, and purple 

sea-weeds. To judge by its optical properties, this colouring 

matter appears to be the same in all cases, but to be mixed in 

different proportions with chlorophyll, or some modification of it, 

and probably other colouring matters, thus giving rise to the 

various tints seen in such sea-weeds. The derived spectrum 

exhibited by sea-weeds of this kind consists mainly of a band 

of unusual brightness, containing some red, followed by orange 

22 s. III. 
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and yellow. This band fades away gradually at its less re¬ 

frangible limit, where it is separated by a dark interval from the 

narrow well-defined red band of still lower refrangibility due to 

chlorophyll. At its more refrangible limit, however, it breaks 

off with unusual abruptness. 

122. When the light transmitted through such a sea-weed 

is subjected to prismatic analysis, in addition to one at least of 

the absorption bands due to chlorophyll, there is seen a band 

obliterating the yellow, another dividing the green from the blue, 

and a third, far less conspicuous, dividing the green into two. 

The whole of the green is absorbed more rapidly than the blue 

beyond, and not merely than the red, which last is the final tint. 

123. The red colouring matter is easily extracted by cold 

water from certain kinds of red sea-weed, if fresh gathered; but 

when once the plant has been.dried, the colouring matter cannot 

be extracted in any way that I know of. It is apparently 

insoluble in alcohol and ether, and is decomposed by boiling. 

Cold water extracts only a trace of it after a long time. 

124. A piece of recently gathered red sea-weed, on being 

mashed with cold water, readily gave out its red colouring 

matter. When the residue was treated with alcohol, the fluid 

was almost immediately coloured green by chlorophyll, whereas 

this substance is only very slowly and sparingly extracted by 

alcohol from dried sea-weeds. A dried sea-weed may apparently 

be assimilated to an intimate mixture of gum and resin, which 

it would be very difficult to dissolve, whether it were attacked by 

water or alcohol. 

125. The solution of the red colouring matter was highly 

sensitive, exhibiting a copious dispersive reflexion of a yellowish 

orange light. The transmitted light was pink or red, according 

to the thickness through which the light passed. When this 

light was analysed, the same three absorption bands which have 

been already mentioned were perceived. The analysis of the 

light transmitted by the fronds of various red sea-weeds had 

rendered it extremely probable that the faint division in the 

green did belong to the red colouring matter; but till I had 

obtained this matter in solution I did not feel certain that it 
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might not have been due to chlorophyll, the spectrum of which 

exhibits a division in the green. 

126. When this fluid was examined in Sir David Brewsters 

manner, and the dispersed beam was analysed, the spectrum was 

found to consist of a broad band like that which has been already 

described as seen in the derived spectrum given by a frond of red 

sea-weed. When the solution, which happened to be very weak, 

was examined by the third method, the dispersion was found to 

be produced chiefly by a portion of the incident spectrum, having 

a breadth about equal to that of the interval between the two 

principal bands of absorption. To each of these bands cor¬ 

responded a maximum of activity. The tint of the dispersed light 

was nearly uniform; but by the fourth method of observation 

some faint dispersed red could be made out, which appeared 

before the main part of the dispersion had come on. This 

medium affords a very good example of an intimate connexion 

between absorption and internal dispersion. 

127. The colouring matters of bird's feathers appeared to be 

insensible, white feathers being most sensitive, pale ones next, 

and dark ones not at all: however, I have not examined a large 

collection. 

128. Of coloured fruits, such as currants, &c., the colouring 

matter appeared, in the very few cases which I have examined, to 

be quite insensible. 

129. A set of water colours were by no means remarkable for 

sensibility, but rather the contrary. The inorganic colours 

appeared quite insensible, except white lead, the sensibility of 

which was perhaps due to size*, and offered nothing striking, 

either as to its character or as to its amount. Some lakes and 

other organic colours proved moderately sensitive. But I found 

one water colour, called Indian yellow, which stands pretty high 

among sensitive substances. In its mode of dispersion it much 

resembles turmeric, but it does not come up to that substance in 

the amount of sensibility. It is said to be composed of urate of 

[* Meaning, of course, not magnitude, but the substance used to make the 

powder stick together in a cake.] 

22—2 
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lime*, but I do not know how far it may be regarded as chemically 

pure. 

130. Many of the substances used in dyeing, and dyed articles 

in common use, furnish very remarkable examples of sensibility. 

Archil, litmus and turmeric have been already mentioned; and I 

have been recently informed by a friend that the Mercu/rialis 

perennis, in which a striking instance of sensibility was observed, 

was formerly employed in dyeing. A piece of scarlet cloth, 

examined in a linear .spectrum, gave a copious derived spectrum 

which was very narrow, consisting chiefly of the more refrangible 

red. With a vertical slit the bands H and fixed lines beyond 

were seen on a red ground. Paper washed with a solution of 

cochineal and afterwards with a solution of alum, when examined 

in a linear spectrum, displayed a pretty high degree of sensibility, 

the derived spectrum consisting in this case of a red band. If 

tartaric acid be used instead of alum, the dispersion is a good deal 

more copious. 

Common red tape is another example in which the derived 

spectrum is very copious, consisting mainly of a red band. Some 

red wool, dyed I suppose with madder, proved extremely sensitive. 

The derived spectrum in this case was pretty broad, but red was 

the predominant colour. Green wool, dyed I do not know with 

what, was also very sensitive, giving a pretty broad derived 

spectrum, in which green was the predominant colour. These 

examples may suffice, but the reader must not suppose that they 

form the only instances in which dispersion was observed among 

dyed substances. On the contrary, it is extremely common in this 

class. 

131. Brazil wood, safflower, red sandal wood, fustic and 

madder, all gave rise to solutions having a pretty high degree 

of sensibility. The solutions here referred to were such as were 

obtained directly by water, &c., in which the colours which these 

substances are capable of producing were not brought out. The 

beautiful red colouring matters of logwood and camwood appear 

to be insensible; for a fresh-made solution of logwood in water 

exhibited no perceptible sensibility, and the slight sensibility 

[* l^3 was 80 stated in a book on artists’ colours, but Dr Stenhouse told me it 
was a lake of some kind.] 
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exhibited by a similar solution of camwood seemed to have no 

relation to the red colouring matter. 

132. Paper washed with a solution of madder in alcohol 

was sensitive in a pretty high degree, but the sensibility was 

greatly increased by afterwards washing with a solution of alum. 

Accordingly I found that a decoction of madder in a solution of 

alum exhibited a very high degree of sensibility, displaying a 

copious dispersive reflexion of a yellow light. In this medium the 

dispersion commenced about the fixed line D, and continued from 

thence onwards far beyond the extreme violet, so that the group 

of fixed lines n was seen with great ease. 

133. Safflower red, examined in the shape in which it is sold 

on what is called a pink saucer, proved highly sensitive, giving a 

bright and narrow derived spectrum, which consisted chiefly of 

the more refrangible red. This substance possesses some other 

remarkable optical properties, which however do not belong to 

the immediate subject of this paper. 

134. Metals proved totally insensible. I have examined gold, 

platinum, silver, mercury, copper, iron, lead, zinc and tin. Brass 

is like simple metals in this respect; but if the surface be lackered 

the lacker displays its own sensibility. 

135. The non-metallic elements, carbon, sulphur, iodine and 

bromine, are insensible. 

136. Among common stones I have found dark flint, lime¬ 

stone, chalk and some others which were sensitive, though only in 

a low degree compared with organic substances. To guard against 

any impurity of the surface, the stones were broken across, and 

the fresh surface examined. In the cases mentioned the sensibility 

observed is not to be attributed to the chief ingredient of the 

stone, for quartz, chalcedony, Iceland spar and Carrara marble 

were insensible. 

Compounds of Uranium. 

137. Towards the end of last autumn, when the lateness of 

the season afforded but few opportunities for observation, I learned 

from different sources that the kind of yellow glass which has 

been already mentioned as possessing in so high a degree the 
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property of internal dispersion was coloured with oxide of 

uranium. This rendered it interesting to examine other com¬ 

pounds of uranium; and I accordingly procured some crystallized 

nitrate of the peroxide, which, with a few other compounds formed 

from it, and some of the natural minerals which contain uranium, 

were examined by methods which have been already explained. 

138. The crystals of the nitrate were not sufficiently large 

and perfect to admit of observation by the methods applicable to 

fluids and clear solids, but they could be readily observed by 

means of a linear spectrum. They proved to be sensitive in a 

very high degree, dispersing a green light which had the same 

very remarkable composition that has been already described in 

the case of the yellow glass. On placing a crystal in the continu¬ 

ation of the same linear spectrum with the glass, and viewing the 

whole through a prism, the five bright bands of which the derived 

spectrum given by each of the two media usually consisted, 

appeared to correspond to one another as regards their position in 

the spectrum. With great concentration of light J have seen an 

additional band of greater refrangibility in the spectrum of the 

crystals. 

139. Some crystals of nitrate of uranium were gently heated 

so as to expel a good part at least of the water of crystallization. 

The residue after some time became opaque and nearly white. In 

this state it was still more sensitive than the crystals. The 

dispersed light was not exactly of the same tint, but more nearly 

white; and the derived spectrum was found on being analysed to 

contain, in addition to the bright bands usually soon in the 

derived spectrum of the crystals, another blue hand still more 

refrangible. The fused mass gradually attracted moisture from 

the air, its colour changed to that of the crystals, and the most 
refrangible of the bright bands disappeared from the derived 

spectrum. Although when the incident light was very much 
concentrated I have seen this band even in the crystals, it was 

faint compared with the preceding bands, whereas in the ease 

of the whitish mass its intensity was not very different from 

that of the others. It appears therefore that the quality as well 
as the quantity of the dispersed light was altered by depriving the 
crystals of a part of their water. 
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140. A solution of nitrate of uranium in water is decidedly 

sensitive, though not sufficiently so to exhibit much dispersive 

reflexion. When the dispersed beam is analysed it is resolved 

into bright bands. When the solution is examined in a pure 

spectrum, the mode of dispersion is found to agree with that 

of canary glass. The dispersion commences abruptly at the same 

part of the spectrum as in the case of the glass, and after a rather 

narrow band in which light is copiously dispersed, there follows a 

remarkable minimum of sensibility, just as in the glass (see Art. 

76), where the dispersed light is almost imperceptible. After this 

the dispersion is resumed, and offers nothing remarkable. The 

minimum of sensibility occurs at the very same place in the 

spectrum, whether the sensitive medium be a solution of nitrate 

of uranium or glass coloured yellow by uranium. 

141. Yellow Uranite.—This mineral, when examined in a 

linear spectrum, proved to be sensitive in an extremely high 

degree. The derived spectrum consisted, as in the case of the 

glass, of bright bands arranged at regular intervals, but in this 

case six were seen, a band being visible in the faint red at the 

extremity of the spectrum which could not be made out in the 

case of the glass. 

142. Green Uranite, or Chalcolite.—According to M. Peligot 

the formula of the yellow uranite of Autun is PhO5, CaO, 2(U2020), 

8HO, and the green uranite differs from the yellow only in having 

the lime replaced by oxide of copper*. Yet a specimen of green 

uranite on being examined in a linear spectrum proved totally 

insensible. The primitive spectrum showed however a very 

remarkable system of dark bands depending on the absorption 

of light by the mineral. In examining these bands, the previous 

prismatic decomposition of the light, so far from being necessary, 

is decidedly inconvenient. It is better to dispense with the 

prisms altogether, using only the lens, and placing the mineral 

so that the image of the slit is formed upon it. The bright line 

thus formed is viewed from a convenient distance through a 

prism, the eye being held out of the direction of regular reflexion. 

The position of any bands which may appear in the spectrum can 

then be determined by means of the fixed lines, which are seen at 

* Annales da Chimie, Tom. v. (1842), p. 46. 
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the same time; or, if it be desired to see the latter more dis¬ 

tinctly, it will be sufficient to attach a fragment of paper to the 

mineral or other substance, placing it so that the image of the slit 

is formed partly on the paper and partly on the substance to be 

examined. I have frequently found this mode of observation 

convenient in examining the absorption of light by opaque 

substances. The manner in which the absorption of the medium 

comes into play in this case will be considered in greater detail 

further on (see Art. 176). 

143. When green uranite was examined in this manner, it 

showed a very remarkable system of dark bands of absorption. 

These bands were seven in number, or at any rate six, and were 

arranged with all the regularity of bands of interference. The first 

was situated at about bfFy the second at F; the middle of the 

sixth fell a very little short of G; the third, fourth and fifth were 

arranged at regular intervals between the1 second and sixth; the 

seventh was situated about as far beyond the sixth as the sixth 

beyond the fifth. The spectrum was so faint in the region of the 

seventh band as to leave some slight doubts respecting its exist¬ 

ence. There would not have been light enough to see bands 

further on. 

144. Uranite is highly lamellar in its structure, from whence 

it is otherwise called uran-mica. The reader may perhaps suppose 

that the dark bands described in the last paragraph were, bands of 

interference, which I had mistaken for bands of absorption, and 

that they were really of the nature, of Newtons rings, or more 

exactly of the bands .seen in an experiment due to the Baron von 

Wrede. There may, it will perhaps be said, have been a fissure 

parallel to the first surface, so as to separate a, thin plate ; and the 

interference of the two streams of light reflected respectively on 

the upper and under surface of this plate may have produced the 

bands observed. But various phenomena attending these bands 

are irreconcilable with such a supposition. Towards tin* edges of 

the crystal, where flaws did in fact exist, bands of the same nature 

as Von Wrede s were actually observed. But these had an 

appearance totally different from that of the others. The dark 

bands of the interference system were more intensely black and 

better defined than those of the other system, and were very 
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variable, depending as they did upon the thickness of the plate 

by which they were formed, whereas the bands belonging to the 

first system were always the same. Besides, were these bands due 

to interference, there is no reason why they should be confined to 

one region of the spectrum, and that by no means the brightest. 

However, to take away all possible doubts respecting the nature 

of the bands, I detached a small scale from the crystal, and having 

placed it behind a slit in a beam of sunlight condensed by a lens, 

I analysed the transmitted light by a prism. Were the bands 

really due to absorption, they ought to be more distinct in the 

transmitted light, whereas, were they of the nature of Yon Wrede’s 

bands, they ought to be faint, and almost imperceptible. The 

spectrum of the transmitted light contained however four dark 

bands, which were well defined and intensely black. The whole 

of the spectrum beyond the place of the next band was absorbed, 

which is the reason why four bands only were visible. 

145. The absorption bands of green uranite, though they 

showed great regularity with respect to their positions, did not 

appear very regular with regard to their intensities. The second, 

fifth and sixth seemed to me to be more conspicuous than the 

first, third and fourth. I cannot say for certain whether this 

ought to be attributed to fluctuations in the absorbing power of 

the medium, or fluctuations in the original intensity of the solar 

spectrum, but I am strongly inclined to prefer the former view. 

146. The intervals between the absorption bands of green 

uranite were nearly equal to the intervals between the bright 

bands of which the derived spectrum consisted in the case of 

yellow uranite. After having seen both systems, I could not fail 

to be impressed with the conviction of a most intimate connexion 

between the causes of the two phenomena, unconnected as at first 

sight they might appear. The more I examined the compounds 

of uranium, the more this conviction was strengthened in my 

mind. 

147. Yellow uranite exhibits a system of absorption bands 

similar to those of green uranite. Nitrate of uranium also shows a 

similar system. In a solution I have observed seven of these bands 

arranged at regular intervals. The first absorption band coincided 

with F, the fifth with G nearly. The absorption bands may also 
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be seen by analysing the light transmitted through the crystals. 

The following arrangement exhibited at one view the absorption 

bands and those due to the light which had changed its re- 

frangibility. 

148. The sun’s light was reflected horizontally by a mirror, 

and condensed by passing through a large lens. It was then 

transmitted through a vessel with parallel sides containing a 

moderately strong ammoniacal solution of a salt of copper. The 

strength of the solution, and the length of the path of the light 

within it, were such as to allow of the transmission of a little 

green besides the blue and violet. A crystal of nitrate of uranium 

was then attached to a narrow slit, and placed in the blue beam 

which had been transmitted through the solution, the crystal 

being turned towards the incident light. The light coming from 

the crystal through the slit was then viewed from behind, and 

analysed by a prism. A most remarkable spectrum was thus 

exhibited, consisting from end to end of nothing but bands 

arranged at regular intervals. The interval between consecutive 

bands appeared to increase gradually from the red to the violet, 

just as is the case with bands of interference. Although this 

interval appeared to alter continuously from one end of the 

spectrum to the other, the entire system of bands was made up 

of two distinct systems, different in appearance, and very different 

in nature. The less refrangible part of the spectrum, where only 

for the crystal there would have been nothing but darkness, was 

filled with narrow bright bands, due to the light which had 

changed its refrangibility. These bands were much narrower 

than the dark intervals between them, but they were not mere 

lines containing light of definite refrangibility. The more re¬ 

frangible part of the spectrum was occupied by the system of 

bands of absorption. The interval between the most refrangible 

bright band and the least refrangible dark band of absorption 

appeared to be a very little greater than one band-interval, so 

that had there been one band more of either kind the least 

refrangible absorption band would have been situated immediately 

above the most refrangible bright band. With strong light I 

think I have seen an additional band of this nature. 

149. Pitchblende.—This mineral proved to be quite insensible, 

and exhibited nothing remarkable. 
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150. Hydrate of Peroxide of Uranium.—Some crystallized 

nitrate of uranium was exposed to a heat a good deal short of 

redness, whereby most of the acid was expelled. The residue was 

of a deep brick-red colour, and consisted no doubt chiefly of 

anhydrous peroxide. It was quite insensible. In order to remove 

any undecomposed nitrate, it was boiled with water, whereby the 

undecomposed nitrate was dissolved, and the peroxide converted 

into a hydrate. This hydrate, after having been washed and 

dried at the temperature of the air, was of an extremely beautiful 

yellow colour, and was I suppose the hydrate IPO3 4- 2HO 

described in chemical treatises. It was tolerably sensitive, in fact 

for an inorganic substance extremely so, though the sensibility 

was much less than that of nitrate of uranium, yellow uranite, or 

canary glass. The derived spectrum consisted as before of separate 

bright bands. A small portion of the powder was attached by 

water to blotting-paper, and dried before a fire. The powder thus 

obtained on paper was duller than before, and inclined a little 

more to orange, though the colour was not much deeper than that 

of the former hydrate. From its colour and the circumstances of 

its formation, it was probably the other hydrate U203-fH0. It 

proved on examination to be totally insensible. 

151. Acetate of Peroxide of Uranium, prepared by dissolving 

the yellow hydrate of the peroxide in acetic acid, and evaporating 

to crystallize.—This salt is extremely sensitive, about as much so 

as the nitrate. The derived spectrum consisted of six bright 

bands arranged at regular intervals. It seemed to me that the 

last five of these were respectively a little more refrangible than 

the five bands given by the nitrate, and then a sixth band was 

visible in the faint red in the case of the acetate which was not 

ordinarily seen in the nitrate. However, this observation has 

need to be repeated under more favourable circumstances. 

152. Nitrate and acetate of peroxide of uranium, yellow 

uranite, and canary glass, are all so highly sensitive as to allow 

the primary spectrum to be examined with a prism at some 

distance. In the first three media the bright bands are narrow, 

much narrower than the dark intervals between; in the glass 

they appear much broader than in the other media. 

153. Oxalate of Peroxide of Uranium, prepared in the manner 

mentioned by M. Peligot, namely, by adding a saturated solution 
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of oxalic acid to a solution of nitrate of uranium, washing and 

drying the precipitate.—This salt was sensitive, but only in a low 

degree. However, the derived spectrum bore prismatic examina¬ 

tion sufficiently to show three or four bright bands. The ab¬ 

sorption of the medium was examined by spreading some of the 

powder on glass along with water and allowing it to dry. The 

layer was then examined by different methods. The salt exhibits 

three very intense absorption bands in the highly refrangible part 

of the spectrum. The positions of these bands, by measurement, 

were .FO'31 G, F 0*58 G, F 0*85 G. 

154 Phosphate of Peroxide of Uranium, prepared by pre¬ 

cipitation from a solution of nitrate of uranium by adding a 

solution of common phosphate of soda.—This salt was sensitive, 

though not in a high degree. It was a good deal more sensitive 

than the oxalate, but I think not so much so as the hydrate of 

the peroxide. The derived spectrum consisted of bright bands as 

usual *. 

155. Uranate of Potassa, prepared by dropping a solution of 

nitrate of uranium into a solution of caustic potash, stopping long 

before the alkali was neutralized.—This salt was found to be 

insensible, both in its original state as a gelatinous hydrate, and 

in various stages of drying. 

156. Uranate of Lime, prepared in a similar manner with 

lime-water.—This salt, which after drying is of a line orange 

colour, was like the preceding found to be insensible. It seemed 

interesting to examine these two salts, because tint former contains 

two elements (not counting oxygen) in common with canary glass, 

and the latter two elements in common with yellow u rani to. Yet 

the salts are insensible while the two other media, are so remark¬ 

ably sensitive. 

157. Solutions by means of Alkaline Carbonates.— It is known 

to chemists that alkaline carbonates, added in solution to a 

solution of nitrate of uranium, give yellow precipitates which are 

redissolved in an excess of the precipitant. The solutions thus 

obtained with the carbonates of potassa and soda, which were of 

a greenish yellow colour, were found to be totally insensible. 

* See note C. 
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They exhibited however four of those singular absorption bands 

so characteristic of salts of peroxide of uranium. Of these the 

third fell a little short of G, its more refrangible edge nearly 

coinciding with that fixed line; the first and second were situated 

between F and G, the distance of the first beyond F being some¬ 

what greater than the interval between two consecutive bands. 

The fourth, which was situated beyond G, was fainter than the 

others. The second and third were the most conspicuous of the 

set. 

158. The absorption bands due to peroxide of uranium afford 

an easy mode of detecting that substance in solution. For this 

purpose the solutions mentioned in the preceding paragraph are 

much preferable to the nitrate, for they produce much stronger 

bands when only a small quantity of uranium is present. The 

absorption bands of nitrate of uranium are visible, as might 

have been expected, in presence of a large quantity of nitrate of 

copper*. 

Optical Tests of Uranium in Blow-pipe Experiments. 

159. When a bead of microcosmic salt is fused with oxide of 

uranium, and brought to its highest state of oxidation, it is yellow 

by transmitted light. Such a bead is sensitive in a very high 

degree, quite as much so as canary glass. When the light falls 

sideways on it, and it is held against black cloth or a dark object, 

it exhibits plainly the green colour due to internal dispersion. 

When properly examined by means of sunlight its sensibility is 

evident at once, and when the dispersed light is viewed through a 

prism it is resolved into bright bands. One of the most convenient 

modes of examining such minute objects consists in reflecting the 

sun’s light horizontally through a large lens, intercepting by 

means of absorbing media all the rays except those of very high 

refrangibility, placing the object to be examined in the condensed 

beam, and viewing it through a prism. So delicate is this test 

when applied to uranium, that on one occasion, when engaged in 

examining a bead coloured green by chromium, which had been 

fused in the exterior flame, I observed the appearance given by 

uranium. This turned out to be actually due to uranium, of 

See note D. 
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which a mere trace was accidentally present without my know¬ 

ledge. 

160. The green communicated to microcosmic salt by uranium 

after exposure to the reducing flame has a very peculiar com¬ 

position, by means of which the presence of uranium may be 

instantly detected. For this purpose it is sufficient to view 

through a prism the inverted image of the flame of a candle 

formed by the bead, the latter being so held as to be seen 

projected on a dark object. The observation is perfectly simple, 

and occupies only a few seconds. The spectrum exhibits an 

isolated band at the red extremity, followed by a very intense 

dark band of absorption. A similar dark band, but not quite so 

intense, occurs in the green: beyond the green there is usually 

but little light seen. As the absorption progresses the first dark 

band invades all the space from the red to the green, and the 

spectrum consists of an isolated red band and a green band 

divided into two. In its mode of absorption, the medium has a 

strong general revsemblance to chlorophyll. The green due to 

copper or to chromium shows nothing remarkable when viewed 

through a prism, and could not possibly be confounded with the 

green due to protoxide of uranium. The absorption bands due 

to this oxide are not completely brought out till the bead is 

cold. 

161. Uranium produces the same effects with borax as with 

microcosmic salt, but they are less distinct, or at least less easily 

produced. 

162. When the uranium contained in a bead of microcosmic 

salt is thoroughly oxidized, and the bead is gently heated, so as 

just to be self-luminous, the light which it gives out is not red, 

like that of most substances at a low heat, but green, or rather 

greenish white. 

163. Solutions of protoxide of uranium have a very remark¬ 

able effect on the spectrum, resembling more or less that of a 

bead of microcosmic salt coloured green by uranium. Of course 

the absorption can be observed much better by means of a solu¬ 

tion than by a mere bead. I have observed several bands of 

absorption in such solutions, but the cases which I have hitherto 
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examined are too few to justify me in entering into detail. 

Besides, the absorption bands due to protoxide of uranium do not 

belong properly to my subject, the compounds of this oxide, so 

far as I have examined, being insensible. 

Appearance of highly Sensitive Media in a Beam from which the 

Visible Rays are nearly excluded. 

164. When a large beam of sunlight is reflected horizontally 

into a darkened room, and transmitted through an absorbing 

medium, placed in the window, of such a nature as to let pass 

only the feebly illuminating rays of high refrangibility and the 

invisible rays beyond, various sensitive media have a very strange 

and unnatural appearance when placed in the beam, on account 

of the peculiar softness of the dispersed light with which the 

media appear as it were self-luminous, and the almost entire 

absence of strong light reflected from convexities. Among sub¬ 

stances eminently proper for this experiment, may be mentioned 

a solution of the bark of the horse-chestnut*', or of sulphate of 

quinine, or of stramonium seeds, a decoction of madder in a solu¬ 

tion of alum, and above all, ornamental articles of canary glass. 

The appearance of a specimen of yellow uranite was curiously 

altered by this mode of examination. By daylight the mineral 

appeared much of the same colour as the stone in which it was 

imbedded, but when placed in a beam such as that above men¬ 

tioned the uranite was strongly luminous, while the stone re¬ 

mained dark. 

Natural Crystals. 

165. Of natural crystals I have hitherto examined only a 

small number. For a long time I was occupied almost exclusively 

with vegetable products, the mineral kingdom not appearing 

promising. However, I have found internal dispersion in certain 

specimens of apatite, aragonite, chrysoberyl, cyanite, and topaz. 

In ail these cases the dispersion appeared due, as in the case of 

[* A solution which answers admirably, and is very easily prepared, is obtained 

by adding to a decoction when cold a suitable quantity of alum or a ferric salt, 

precipitating by ammonia, and filtering. The powerful fluorescence of the 

solution is due to mixed aesculin and fraxin.] 
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fluor-spar, to some substance accidentally present in small quan¬ 

tity; so that yellow uranite is at present the only natural crystal 

to the essential constituents of which the property of internal 

dispersion has been found to belong. 

166. Among the minerals just mentioned apatite was the 

most sensitive, though it fell very far short of yellow uranite. 

That the sensibility was not due to phosphate of lime, was plain 

from the circumstances that a colourless specimen was insensible, 

and that the amount of sensibility was found to be different in 

different parts of the same sensitive specimen. With the excep¬ 

tion of the colourless crystal already mentioned, all the specimens 

of apatite examined were of a greenish colour, and all were sensi¬ 

tive. The dispersed light was something of an orange colour, 

but was not homogeneous orange. In one specimen it consisted 

of three distinct bright bands at regular intervals. The mode in 

which the sensibility of this crystal was connected with the 

refrangibility of the incident rays was very peculiar. In ara¬ 

gonite dispersion was found in the transparent specimens examined; 

the translucent specimens were found to be insensible. The dis¬ 

persed light was of a brownish white colour. In the same crystal 

some parts were insensible and others more or less sensitive. The 

portions of equal sensibility were arranged in plane strata, just 

as in the case of fluor-spar, as has been noticed by Sir David 

Brewster. In a specimen which had been cut for showing conical 

refraction, the strata were in some places perpendicular to the 

plane of the optic axes, and in other parts parallel to the line 

bisecting the axes, and inclined to their plane at such an angle 

that the two directions of the strata must have been parallel to 

two of the commonest lateral faces. Another specimen showed 

strata parallel to an oblique terminal face. The strata are plainly 

due, as Sir David Brewster has remarked with reference to fluor¬ 

spar, to some substance taken up during crystallization. Accord¬ 

ingly, they preserve a sort of history of the growth of the crystal. 

In a twin crystal of fluor-spar, the direction of the strata in that 

part of the mass which was common to the geometrical forms of 

both crystals, showed to which crystal it really belonged. In 

fluor-spar the strata are parallel to the faces of the cube, at least 

in the specimens which I have examined, and the same has been 

observed by Sir David Brewster. 
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In chrysoberyl, cyanite and topaz, the dispersed light was red 

or reddish, and was too variable to allow of its being attributed to 

the essential constituents of the crystals. In these cases the 

sensibility was but slight; indeed in cyanite there was only a 

trace of dispersion when the crystal was examined under great 

concentration of light. 

Coloured Glasses. 

167. Besides canary glass, I have examined the common 

coloured glasses, including that coloured by gold, but with one 

exception have not met with any example in which the sensibility 

observed appeared to have any connexion with the colouring 

matter. The paler glasses exhibited a little internal dispersion, 

because the colour was not sufficiently intense to mask the disper¬ 

sion which a common colourless glass would exhibit. 

168. The exception occurred in the case of the pale brown 

glass, which has been already mentioned in connexion with my 

first experiment. This glass dispersed a red light under the 

influence of the highly refrangible rays. The colour of the light 

was not pure prismatic red, but red was predominant. A similar 

dispersion, due apparently to the same cause, was observed in the 

case of one of the common reddish brown German wine bottles. 

The sensibility of these glasses appears to be due to an alkaline 

sulphurct. [?] A bead purposely coloured in this manner was in fact 

found to disperse a red light like the glasses. Moreover, in the 

confused masses obtained by fusing sulphate of soda and sulphate 

of potash on charcoal before the blowpipe, certain portions were 

found which dispersed a red light, and that pretty copiously for 

an inorganic substance. A similar dispersion was observed among 

the products obtained by fusing together sulphur and carbonate 

of potash, while other parts of the confused mass exhibited disper¬ 

sion of a different kind. It seems plain that among the combina¬ 

tions of sulphur with the alkalies sensitive compounds exist, but 

what they are I have not examined. 

s. ill. 23 
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Cautions with respect to the discrimination between true and 

false internal dispersion. 

169. In the early part of this paper certain tests were given 

for distinguishing between true and false internal dispersion in a 

fluid. But it requires some experience in observations of this 

kind to be able readily to decide, and a too rigid adherence to 

one of the tests to the exclusion of the others might lead to error. 

The first test relates to the continuous appearance of a truly 

dispersed beam. But sometimes solid particles exist in mechanical 

suspension, which are so fine and so numerous, that this test alone 

might lead the observer to mistake a falsely for a truly dispersed 

beam. On the other hand, if a fluid which itself alone exhibits 

no internal dispersion, true or false, hold solid particles in what is 

obviously mere mechanical suspension, we must not immediately 

conclude that the medium, taken as a whole, is incapable of 

changing the refrangibility of any portion of the light incident 

upon it. For we have seen that the fluid state is not in the least 

degree essential to the exhibition of sensibility, and of course a 

fluid will serve as well as anything else for the mere mechanical 

support of a sensitive substance. 

170. Thus lycopodium is very sensitive, as appears by examin¬ 

ing the powder in a linear spectrum. Accordingly, I found that 

when a little lycopodium was mixed with water, and the whole 

medium was examined by the fourth method, it displayed its 

sensibility, although the beam of light which had changed its 

refrangibility was plainly discontinuous. When Indian yellow 

was used instead of lycopodium, the whole medium exhibited its 

sensibility when it was examined by the fourth method. In this 

case the suspended particles were so fine that the beam of light 

which had changed its refrangibility appeared to be continuous, 

though of course it was not really so. In observing with muddy 

fluids like these, it is almost necessary to employ absorbing media, 

since otherwise the effect of the light scattered at the surfaces of 

the prisms and large lens might lead the observer to conclusions 

altogether erroneous. 

171. The next test relates to the polarization of a falsely 

dispersed beam. Being engaged on one occasion in examining 
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the effects of acids and alkalies on a weak solution of a sensitive 

substance, employing sunlight which had been merely reflected 

through a small lens, I met with a beam which had every appear¬ 

ance of having been only falsely dispersed, but on viewing it from 

above through a doubly refracting prism I was surprised at first 

by finding it unpolarized. It soon occurred to me that the beam 

must have been due, not to solid motes, but to excessively small 

bubbles of carbonic acid gas, the existence of which was thus 

revealed, though they were too small to be seen directly. The 

light being incident on these bubbles at an angle of about 45°, 

which is very little less than the angle of total reflexion, the 

reflected light would be almost perfectly unpolarized*. 

172. Water which had been merely boiled in a test tube gave 

a similar result. The unpolarized beam of falsely dispersed light 

was of course due in this case to the air which had been held in 

solution. This shows why long-continued boiling should be neces¬ 

sary, in order to free water from air. It is not that the affinity of 

water for air is so great as to be only gradually overcome, but 

that the air, immediately expelled from solution when the tempe¬ 

rature rises sufficiently, is still retained in a state of mechanical 

mixture, forming excessively minute bubbles, the terminal velocity 

of which is insensible. Accordingly it is not till larger bubbles 

are formed, by the casual meeting of a number of these small 

bubbles, that the air rises to the surface and escapes. 

173. With respect to the test of true dispersion depending on 

the change of refrangibility, it has been already remarked that in 

some cases the change is so slight, that if this test alone were 

applied, the observer might mistake true dispersion for false. 

However, it is only in rare cases that there is any danger of being 

deceived in this manner in the application of the test; but on the 

other hand, in observing a muddy fluid or a translucent solid by 

the fourth method, the observer, if not on his guard, might easily 

be deceived by the effect of scattered light, and be led to mistake 

false dispersion for true. Thus suppose the medium to be water 

holding in suspension particles of an insensible water colour, and 

the small lens to be placed a little beyond the commencement of 

the violet. Two beams of light would enter the lens, namely, a 

* See note E. 

23—2 
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regularly refracted beam of violet, and a scattered beam of white 

light. Of these the latter would be insignificant compared with 

the former, were it not that the illuminating power of the colours 

belonging to the middle of the spectrum is so very much greater 

than that of the violet. When the dispersed beam was analysed 

by a prism, it would be decomposed into a violet beam of definite 

refrangibility, followed by a dark interval, and then a broad band 

containing the colours of the brighter part of the spectrum in 

their natural order. This is what is constantly seen in cases of 

true dispersion; but the polarization of the beam, and its beha¬ 

viour under the action of absorbing media, would reveal the coun¬ 

terfeit character of the dispersion. 

On the Colours of Natural Bodies. 

174. By this expression I mean to include only fin* colours to 

which it is usually applied, namely, those of leaves, {lowers, paints, 

dyed articles, &c., which form the great mass of the colours that 

fall under our observation. I do not refer to colours duo to refrac¬ 

tion, such as those of the rainbow, or to diffract ion, such as those 

of the corona*, seen about the sun and moon, or to interference, such 

as those seen in the clear wings of small flies, or to the colours 

which accompany specular reflexion, which last arc usually but 

slight, though sometimes pretty intense. 

In some few instances, as for example in tin* case of fluor-spar, 

various salts of peroxide of uranium, acid solutions of disulphale of 

quinine, &c., colours are observed, sufficiently strong to arrest, at¬ 

tention, which have a remarkable and hitherto unsuspeete<I origin. 

But I am not now speaking of colours arising from a, change of 

refrangibility in the incident light. In the vast, majority of eases 

these colours are far too feeble, to form any sensible, portion of 

the whole colour observed. The colours which dyed articles give, 

out under the influence of the highly refrangible rays usually 

agree more or less nearly with those of which such substances 

commonly appear, and it is possible that the colour arising from a, 

change of refrangibility may contribute in some slight degree to 

the brilliancy of the tint observed. If, however, tin* effect ho 

sensible I am persuaded that it is but slight; and very brilliant 

colours may be produced without a change of refrangibility, as for 
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example in the case of biniodide of mercury. For the present I 

shall neglect the light which may have changed its refrangibility. 

175. Few, I suppose, now attach much importance to the bold 

speculations in which Newton attributed the colours of natural 

bodies to the reflexion of light from thin plates. Sir David 

Brewster has shown how extremely different the prismatic com¬ 

position of the green of the vegetable world is, from what it ought 

to be, according to Newton's theory, and what Newton supposed 

that it was. It is now admitted that the various colours of natural 

bodies are merely particular instances of one general phenomenon, 

namely, that of absorption. Absorption is most conveniently 

studied in a clear fluid or solid, but it does not the less exist in a 

body of irregular structure, such as a dyed cloth or a coloured 

powder. 

The green colouring matter of leaves affords an excellent 

example of the identity of the effect produced on light by natural 

bodies and of ordinary absorption; for the same very peculiar 

system of absorption bands which are displayed by a clear solution 

of the colouring matter may be observed directly in the leaf itself. 

However, it is needless to bring forward arguments to support a 

theory now I suppose universally admitted; my present object is 

merely to point out the mode in which the colours which bodies 

reflect, or more properly scatter externally, depends upon the 

absorbing power of the colouring matter, so as to justify the conclu¬ 

sions deduced in Art. 142, from observations made in the manner 

there described. 

176. Let white light be incident on a body having an irregular 

internal structure, such as a coloured powder. A portion will be 

reflected at the first irregular surface, but the larger portion will 

partly enter the particles, partly pass between them, and so 

proceed. In its progress the light is continually reflected in an 

irregular manner at the surfaces of the particles, and a portion of 

it is continually absorbed in its passage through them, 1 or 

simplicity's sake, suppose the light incident in a direction perpen¬ 

dicular to the general surface, and neglect all light which is more 

than once reflected. Let t be the thickness of a stratum which the 

light has penetrated, I the intensity of the light at that depth, or 

rather the intensity of a given kind of light, so that the whole 



358 ON THE CHANGE OF RKFRANGIBIUTY OF LIGHT. 

intensity may be represented by fld/i, p being the refractive index 

in some standard substance. In passing across the stratum whose 

thickness is dt9 suppose the fraction qdt of the light to be absorbed, 

and the fraction rdt to be reflected and scattered in all directions, 

then 

dl = — {q + r) Idt 

Integrating this equation, and supposing 7U to be the initial value 

of /, when t = 0, we have 

1 = 1#-®+*...(a). 

For the sake of simplicity, suppose the body viewed in a 

direction nearly perpendicular to the general surface; and of the 

light reflected and scattered in passing across the stratum whose 

thickness is dt, suppose that the fraction n would enter the eye if 

none were lost by absorption, &c. Then thi* intensity of the light 

coming from that stratum would be nrhlt. .But, in getting hack 

across the stratum whose thickness is /, the intensity is diminished 

in the ratio of I0 to I. Hence if I' be the intensity of the light 

actually entering the eye, 

dl1 = nrJ^lh/t = nrlue^',lkrit dt 

If we suppose the thickness of the body suflieient to develope 

all the colour which the body is capable of giving, the superior 

limit of t will be co , and we shall have 

177. The colour which accompanies ordinary reflexion being 

usually but slight, I shall neglect tint chroma,tic variations of r. 

It is q which is subject to extensive and apparently eaprieious 

variations, depending upon the. refrangibility of the light. Imagine 

two curves drawn whose abscissa* are proportional to /g and 

ordinates proportional to the ratio of / to /„ for the firsthand the 

ratio of I' to IQ for the second. These curves will serve to repre¬ 

sent to the mind the composition of the light transmitted through 

a stratum of the body having a thickness t, and of that reflected 

from the body when seen in mass. It is plain that t he maximum 

and minimum ordinates in the two curves will correspond to the 

same abscissae; but unless t be very small, so small as to be 

insufficient to bring out the colour of the medium seen by trails- 
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mission, the maxima and minima will be much more developed in 

the first curve, whose ordinates vary as e~^} than in the second, 

whose ordinates vary as (q + r)"1. If, then, the absorbing power 

be subject to fluctuations depending on the refrangibility of the 

light, the bands of absorption may be observed either in the 

reflected or in the transmitted light, but they admit of being 

better brought out in the latter. 

178. If the nature of the substance be given, q will be given. 

If now the body be of a loose nature, as for example blue glass 

reduced to a fine powder, r will be considerable. Hence, in 

accordance with the expression (b), the quantity of light scattered 

externally will be considerable, but the tint will be but slight. If 

the powder be now wetted, the reflexions at the surfaces of the 

particles will be diminished, r will be diminished, and, as appears 

from (b), the quantity of light scattered externally will be di¬ 

minished, but at the same time the tint will be deepened, since 

the chromatic variations of F are increased. If the body be 

compact and nearly homogeneous, r will be small, and therefore 

very little light will be returned, except what is regularly reflected 

at the first surface. The tint of the small quantity of light which 

is reflected otherwise than regularly, will be somewhat purer than 

before, inasmuch as the chromatic variations of I' tend to become 

the same as those of q~l. 

On the nature of False Dispersion, and on some 

applications of it. 

179. Tt has been already stated that a beam of falsely 

dispersed light seen in a fluid has generally more or less of a 

sparkling appearance, indicating that it owes its origin merely to 

motes held in mechanical suspension. Sometimes, however, no 

defect of continuity is apparent. This is especially the case when 

two fluids arc mixed together, of which one contains in solution a 

very small quantity of a substance which we might expect to be 

precipitated by the addition of the other, or when a slightly 

viscous fluid has remained quiet for a long time. If some part at 

least of a falsely dispersed beam be plainly due to motes, that 

does not of course prove for certain that there is no part which 

may have a different origin, and may be essentially connected with 
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true dispersion; nor do the theoretical views which I entertain of 

the cause of the latter lead me to regard it as at all impossible 

that a beam polarized in the1 plant1 of reflexion, and having the 

same refrangibility as the incident light, may bo a necessary 

accompaniment of true dispersion. However, observation, I think, 

points in a contrary direction; for although more or less of false 

dispersion is almost always exhibited along with true dispersion, 

the quantity of the former seems to have no relation to the 

quantity of the latter, but does seem to have relation to the 

greater or less degree of clearness which we should hi1 disposed to 

attribute to the fluid. 

180. The phenomenon of false internal dispersion seems to 

admit of being applied as a chemical test to determine whether or 

not precipitation takes place. Thus, if a little tincture of turmeric 

be greatly diluted with alcohol, and then water be added, a yellow 

fluid is obtained which appears to he perfectly clear, exhibiting no 

sensible opalescence; but the occurrence of’a copious false dispersion 

when the fluid is examined by sunlight, reveals at once, the 

existence of suspended particles, though they are too minute to he 

seen individually, or even to give a diseonfinuous appearance to 

the falsely dispersed beam. Although such a precipitation could 

not, I suppose, be used as a means of mechanical separation, it 

might still be useful as pointing out tin* possibility of an actual 

separation under different circumstances as to strength of solu¬ 

tion, &c. 

181. One of the best instances of falsi* dispersion that I have* 

met with, best, that is, in forming a most excellent imitation of 

true dispersion, occurred in tin* ease of a specimen of plate-glass 

which was made, as 1 was informed, with a quant it v of alkali barely 

sufficient. This glass, which was very slightly yellowish brown, 

when viewed edgeways by transmitted light, had a, bluish appear¬ 

ance when viewed properly, strongly resembling that of a decoction 

of the bark of the horse-chestnut, diluted with water till the 

dispersed light is no longer concentrated in tin* neighbourhood of 

the surface. But when the glass was examined by sunlight, the 

polarization of the dispersed beam, and the identity of its refrangi- 

bility with that of the incident light, showed that this w; is merely 

an instance of false dispersion. Another very good example of 
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false dispersion is afforded by chloride of tin dissolved in a very 

large quantity of common water. 

182. When a horizontal beam of falsely dispersed light is 

viewed from above, in a vertical direction, and analysed, it is found 

to consist chiefly of light polarized in the plane of reflexion. It 

has often struck me, while engaged in these observations, that 

when the beam had a continuous appearance, the polarization was 

more nearly perfect than when it was sparkling, so as to force on 

the mind the conviction that it arose merely from motes. Indeed, 

in the former case, the polarization has often appeared perfect, or 

all but perfect. It is possible that this may in some measure have 

been due to the circumstance, that when a given quantity of light 

is diminished in a given ratio, the illumination is perceived with 

more difficulty when the light is uniformly diffused than when it 

is spread over the same space, but collected into specks. Be this 

as it may, there was at least no tendency observed towards polariza¬ 

tion in a plane perpendicular to the plane of reflexion, when the 

suspended particles became finer, and therefore the beam more 

nearly continuous. 

183. Now this result appears to me to have no remote bearing 

on the question of the direction of the vibrations in polarized light. 

So long as the suspended particles are large compared with the 

waves of light, reflexion takes place as it would from a portion of 

the surface of a large solid immersed in the fluid, and no conclusion 

can be drawn either way. But if the diameters of the particles be 

small compared with the length of a wave of light, it seems plain 

that the vibrations in a reflected ray cannot be perpendicular to the 

vibrations in the incident ray*. Let us suppose for the present, 

[* xiio way in which X at the time regarded the problem was as follows. 

Suppose polarized light to he passing through a medium which holds in suspension 

a vast number of excessively fine particles of some substance different from the 

medium itself, the dimensions of the particles being for simplicity supposed 

extremely small compared with the length of a wave. The ether in the medium 

will ho vibrating to and fro in a direction perpendicular to the direction of 

propagation, and cither in or perpendicular to the plane of polarization. The 

inertia of the particles being presumably very great compared with that of a 

corresponding volume of the ether alone, the ponderable particles may be supposed 

to remain at rest, and they will therefore disturb the motion of the ether, and 

cause vibrations to spread out from them in the ether. Now the repose of the 

particles may be regarded as the resultant of two equal and opposite motions, one 
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that in the case of the beams actually observed, the suspended 

particles were small compared with the length of a wave of light. 

Observation showed that the reflected ray was polarized. Now all 

the appearances presented by a plane-polarized ray are symmetrical 

with respect to the plane of polarization. Hence wo have two 

directions to choose between for tin* direction of the vibrations in 

the reflected ray, namely, that of the incident ray, and a direction 

perpendicular to both the incident and the reflected rays. The 

former would be necessarily perpendicular to the directions of 

vibration in the incident ray, and therefore we are obliged to 

choose the latter, and consequently to suppose that tin* vibrations 

of plane-polarized light are perpendicular to tin* plane of polariza¬ 

tion, since experiment shows that the plane of polarization of the 

the same as that of the ether itself, the other a to and fro motion along the. same 

line as the former but in tin* opposite direction ; and we may superpose these 

motions as regards their effect on the ether. In the former the pariides would he 

moving with the ether, and therefore* would not disturb it; as r< gaids the latter we 

may think of the particles as moving to and fro in otloruhe * till ether, and 

producing therefore an ethereal disturbance emanating in all directions from the 

particle. This disturbance having to be transversal will evidently be ml in a 

polar direction and a maximum in an cquatoiml direction, \aiying in fart in 

amplitude as the sine of the polar distance, the polar line bring a line through flu* 

middle of the particle drawn in the direction of Hu* incident vibrations. 'I’lu* 

direction of propagation of the incident light and that of the line of l ight being an 

in the text, if the incident light be common light, we may irplaee it by two 

independent streams, of equal intensity, pohuized the one in a vertical and the 

other in a horizontal plane; and of these the one f.»r which the plane of vibration 

is vertical will not give rise to any diffracted light entering the eye, while the 

other will give rise to a stream for winch the direction of \ibrafion i» horizontal, 

and which is therefore polarized in such a manner that the plane of \ihration 

passes through the line of sight and is perpendicular to the din-choii of propaga¬ 

tion of the incident light, and which therefoic may he extingui.4u*d bv an annhser 

suitably turned; and in a similar way, as stated in the text, the light entering the 

eye may be quenched by polarizing the light before incidence on the pai tides 

instead of analysing it after diffraction. The <•(niche ions of theory, uhirh are 

enunciated with reference to tin* plane of vibration, exactly agree with the results 

of experiment, which are described with reference to the plane of polarization; 

and to make the two lit we must suppose, the direction of vihiation in polarized 

light to be perpendicular, not parallel, to tin* plane of polm i/,ation. 

.there can be little doubt that in several cases which fell under my notice, 

especially in that of the glass mentioned in Art. IK1, the particles wore sulliciently 

fine to lender the above reasoning applicable. Still more must that have been 

the case in the beautiful experiments ot Tyndall on the decomposition of gases 

and vapours by rays of high retrangihility, who was led independently to the same 

conclusions as those stated in tin* text regarding the phenomena of polarization 

exhibited by fine particles in suspension.J 
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reflected ray is the plane of reflexion. According to this theory, if 

we resolve the vibrations in the incident ray horizontally and 

vertically, the resolved parts will correspond to the two rays, 

polarized respectively in and. perpendicularly to the plane of 

reflexion, into which the incident ray may be conceived to be 

divided, and of these the former alone is capable of furnishing a 

reflected ray, that is of course a ray reflected vertically upwards. 

And in fact observation shows that, in order to quench the 

dispersed beam, it is sufficient, instead of analysing the reflected 

light, to polarize the incident light in a plane perpendicular to the 

plane of reflexion. 

Now in the case of several of the beams actually observed, it is 

probable that many of the particles were really small compared 

with the length of a wave of light. At any rate they can hardly 

foil to have been small enough to produce a tendency in the 

polarization towards what it would become in the limit. But no 

tendency whatsoever was observed towards polarization in a plane 

perpendicular to the plane of reflexion. On the contrary, there did 

appear to be a tendency towards a more complete polarization in 

the plane of reflexion. 

M. Babinct has been led by the same reasoning to an opposite 

conclusion respecting the direction of the vibrations in polarized 

light, resting on an experiment of M. Arago’s, in which it appeared 

that 'when light was incident perpendicularly on the surface of 

white paper, and the reflected or rather scattered light was viewed 

in a direction almost grazing the surface, it was found to be 

partially polarized in the plane of the sheet of paper*. But the 

actions which take place when light is incident on a broad irregular 

surface, like that of paper, bounding too a body which is so trans¬ 

lucent that a great part of the light must enter it and come out 

again, appear to me to be too complex to allow us to deduce any 

conclusion from the result respecting the direction of vibration. 

Besides, the result itself admits of easy explanation, by attributing 

it to the light which has entered the substance of the paper and 

come out again, which might be expected to be polarized by 

refraction. 

* Comptes liendus, Tom. xxix. p. 514. 
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Effect of Heat on the Sensibility of Glass, <tc. 

184. The sensibility of glass is temporarily destroyed by heat. 

The glass may be heated by holding it in the flame of a spirit-lamp, 

as a heat much short of redness is sufficient. This takes place 

even with glass coloured by oxide of uranium, which is in general 

so highly sensitive. The sensibility returns again as the glass 

cools. A bead of rnicrocosmic salt, containing uranium in its 

highest state of oxidation, is very sensitive when cold, but 

insensible when hot. The sensibility gradually comes on as the 

bead cools. A solution of nitrate of uranium in water on being 

heated has its sensibility impaired, very much so by the time the 

temperature reaches the boiling-point. The sensitive compounds, 

whatever may have been their precise nature, obtained by fusing 

the sulphates of soda and potassa on charcoal before the blowpipe, 

were insensible while hot. The few vegetable solutions which I 

have examined with this object did not seem to have their 

sensibility affected by being heated. 

Effect of Concentration and Dilution. 

185. In investigating the change of refrangibility produced 

by a sensitive substance in solution, it is almost always convenient 

to have the solution weak. This however is by no means merely 

a matter of convenience, for the quantity of light which the 

medium is capable of giving back with a changed refrangibility 

is often materially diminished by increasing the concentration 

of the solution. Thus a solution which, when in a concentrated 

state, exhibits no sensible dispersive reflexion, will often exhibit 

when much diluted a very copious appearance of that nature. 

On the other hand, the dilution may of course lx* carried too 

far, so as to render imperceptible the peculiar properties of the 

substance dissolved. Yet it is wonderful what a degree of di¬ 

lution a highly sensitive solution will bear before its sensibility 

ceases to be perceptible. 

That the sensibility will be diminished, and will at last 

become imperceptible, if only the dilution he carried far enough, 

is nothing more than might have been predicted with the utmost 

confidence. In such a case the light passes completely through 
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the fluid long before it has produced all the effect which it is 

capable of producing. But that concentration should be an 

obstacle to the exhibition of the phenomenon is not perhaps what 

we should have expected, and deserves an attentive consideration. 

186. Imagine a given sensitive substance to be held in 

solution, in a vessel of which the face towards the eye is plane, 

and the breadth in the direction of vision as great as we please; 

and suppose the solvent, or at least the fluid used for diluting the 

solution, to be itself colourless and insensible. Suppose the fluid 

to be illuminated by light of given intensity and given refran- 

gibility entering at the face next the eye, and let the eye E 

from a given position look in the direction of a given point P 

in the nearer surface of the vessel. In short, let everything be 

given except the strength of the solution. For the sake of 

simplicity regard the eye as a point, and make E the vertex 

of an indefinitely thin conical surface surrounding the line EP. 

Call this conical surface C, and let c be the surface within the 

fluid generated by right lines coinciding with the refracted rays 

which would be produced by incident rays coinciding with the 

generating lines of the surface C. This latter surface we may 

if we please regard as cylindrical, since we shall only be concerned 

with so much of the fluid contained within it as lies at a distance 

from P less than that at which the light entering the eye in 

consequence of internal dispersion ceases to be sensible; and in 

the cases to which the present investigation is meant to apply 

this distance is but small compared with PE. Let the fluid 

within c be divided into elementary portions by planes parallel 

to the surface of the fluid at P, and at distances from P pro¬ 

portional to the strength of the solution. It is evident that an 

element of a given rank, reckoned from P, will contain a constant 

number of sensitive molecules, and the incident light in reaching 

this element has to pass through a thickness of the medium such 

that a plate of the same thickness, and having a given area, 

contains a given number of sensitive or absorbing molecules. 

The same is true of the dispersed light which proceeds from 

the element and enters the eye. Now it seems natural to suppose 

that if the strength of a solution be doubled, trebled, &c., or 

reduced to one-half, one-third, &c., the quantity of light absorbed 

will bo the same provided the length of the path of the light be 
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reduced to one-half, one-third, &c., or doubled, trebled, &c. This 

comes to the same thing as supposing that each absorbing mole¬ 

cule stops the same fractional part of the light passing it, whether 

the solution be more or less dilute. We should similarly be 

inclined to suppose that each sensitive molecule would give out 

the same quantity of light, when influenced by light of given 

intensity, whether it belonged to a stronger or a weaker solution. 

If we admit these suppositions, it is plain that the quantity of 

dispersed light which reaches the eye. from the element under 

consideration will be independent of the strength of the solution. 

This being true for each element in particular will be true for 

the aggregate effect of them all, and therefore the quantity of 

light exhibited by dispersive reflexion will be independent of the 

strength of the solution. It may he readily seem that the result 

will be the same if we take into account the finite* size* of the 

pupil 

187. Now this is by no means true* in (*xpi*rim<mt. On 

examining in a pure spectrum a highly concent rated solution of 

sulphate of quinine, a copious dispersion was observed to 

commence a little below the fixed line* (}. It remaine*d ve*ry 

strong as far as II, and beyond. In the* weak solutiem first 

mentioned in this paper, it will l)c* remembered that Urn dis¬ 

persion seemed to come on about Q\IL The mason of this, or 

at least one reason, is evident, and was vt*ry prettily shown by 

the form of the space to which the*. disperse*d light was confined. 

On looking down from above*, so that this spare* was srem in 

projection, it appeared in the* case of the* we*ak solution to have 

approximatedy the form of the spare* contained bet with one*, 

branch of a rectangular hyperbola, one* asymptote, and a line 

parallel to the other, thei first, as\mpt.otii l><*ing the* projection 

of the anterior surface, and thei line* paraded to the* other being 

the course of the least refrangiblii of thei aetivei rays whiedi we*re; 

capable of producing a sensibhi epiantify of dispensed light,. Tim 

breadth of the illuminated spae*.e, wliieh among the* most, highly 

refrangible rays was almost insemsible, continually incivased, until 

the space ended in a blue beam which wemt quite across the 

vessel. But in the case of the strong solution thei illuminated 

space had throughout an almost insensible breadth, except, just 

close to its lower limit, that is, the limit corresponding to the 
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least refrangible of the active rays, where it ended in a sort of 

tail or plano-concave wedge, which penetrated to a moderate 

distance into the fluid. Hence one reason, though perhaps not 

the only reason, why the strong solution showed a copious dis¬ 

persion from G to G^H, where the weak solution showed hardly 

any, is plain enough. But in the region of the invisible rays 
beyond the violet, the dispersion was plainly more copious with 

the weak than with the strong solution. It appears then that 

in such a case the sensitive molecules do not act independently 
of each other, but the quantity of light emitted by a given 

number of molecules is less, in proportion to -the light (visible or 
invisible) consumed, than when a solution is more dilute. We 

should expect a priori that when a solution is tolerably dilute 

further dilution would make no more difference in this respect. 

This seems to agree very well with experiment. For when a 

pretty dilute solution and one much more dilute are compared 
with respect to the quantity of dispersed light given out in a 

given portion of the incident spectrum, they appear to be alike. 

I suppose the comparison to be made with respect to such a 

portion of the incident spectrum, or in the case of solutions of 

such strength, that the dispersed light is confined to a space 
extending to no great distance into the fluid in either solution. 

Under these circumstances the comparison may be made easily 

enough. 

188. Tn the actual experiment, the elementary portions of 

light coming from the elementary strata of fluid situated at 

different distances from the anterior surface enter the eye to¬ 
gether. Let us however trace the consequences of the very 

natural supposition, that in passing across a given stratum of 

fluid the quantity of light absorbed, as well as the quantity 
given out by dispersion, is proportional, cceteris paribus, to the 

intensity of the incident light. The incident light is here sup¬ 
posed to be homogeneous, and to belong indifferently to the 
visible or invisible part of the spectrum. In crossing the 
elementary stratum having a thickness dt, let the fraction qdt of 

the incident light be absorbed, and the fraction rdt dispersed in 

such a direction as to reach the eye; and of the latter portion 
let the fraction sdt be absorbed in crossing a stratum having a 

thickness dt, s being different from q on account of the change 
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of refrangibility. Then by a very simple calculation similar to 

that of Art. 176, we find for the intensity /' of the dispersed light 

which enters the eye 

r = -— /0, 
q + s 

I0 being the intensity of the incident light. Since a sensitive 

fluid is in general coloured, and the dispersed light is in general 

heterogeneous, s will in general be different for the different 

portions into which the dispersed light would be decomposed by 

a prism. However, if the fluid be colourless, or all but colourless, 

as is the case with a solution of sulphate of quinine, ,v will be 

insensible, so that T will be proportional simply to r<f\ Hence 

from the observed variations in arising from variations in the 

strength of the solution, we may infer the corresponding varia¬ 

tions in ref1. 

If, then, we represent by the ordinate of a curve the ratio of 

the quantity of light given out to the quantity of light absorbed 

by a given number of active molecules, the abscissa being the ratio 

of the quautity of diluting fluid to the quantity of tin1 sensitive 

substance in solution, it appears that the curve will be concave 

towards the axis of the abscissa4, and will have an asymptote 

parallel to that axis. 

On the Choice of a Screen. 

189. We have seen that white paper, the substance com¬ 

monly employed as a screen on which to receive tin; spectrum, 

gives back with a changed refrangibility a portion of tint light 

incident upon it. This might in some cases lead an observer not 

aware of the circumstance to erroneous conclusions. Since the 

colour of dispersed light depends upon its refrangibility, which is 

different from that of the active light, the colours of a, spectrum 

received on white paper must be somewhat modified. In truth 

the intensity of the light dispersed is so small compared with the 

intensity of the light scattered, that the modification is quite 

insensible except in the extreme violet. But beyond the extreme 

violet the spectrum seems to be prolonged with a sort of greenish 

gray tint, which belongs neither to that nor to any other part of 

the true spectrum. In experiments on absorption, if instead of 
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receiving the light directly into the eye it be found convenient to 

form a pure spectrum ou a screen of white paper, then, if the 

absorbing medium be placed in the path of the incident light, the 

scattered light forming any part of the spectrum cannot be cut off 

or weakened without at the same time cutting off or weakening 

the dispersed light coming from the same part of the screen. 

But if the absorbing medium be held in front of the eye, its effect 

on the spectrum will sometimes be very sensibly different from 

what it would be were the screen to send back none but scattered 

light. 

It is true that the quantity of light dispersed by white paper 

is so small that this substance may very well continue to be used 

as a screen, without any danger of the observer’s being deceived, if 

only he be aware of the fact of dispersion, so as to be on his guard. 

Still, it is not unreasonable to seek for a substitute for paper, 

which may be free from the same objection. 

190. A porcelain tablet appeared to be unexceptionable in 

this respect, for it exhibited no perceptible sensibility, even when 

examined by a linear spectrum. However, the translucency of the 

substance gave the spectrum a blurred appearance, and the fixed 

lines were not shown so well as on paper. 

Chalk scraped smooth is well adapted, from its fineness, its 

whiteness and its opacity, for showing the most delicate objects. 

The finest fixed lines are beautifully seen on it, decidedly better 

than on paper. Its sensibility too, though not absolutely null, is 

much less than that of most kinds of white paper. Indeed, it 

would be an unnecessary refinement to seek for anything better, 

were it not that a piece of sufficient size might not always be at 

hand. From what I have seen, I believe that the best kind of 

screen will be obtained by the use of some white inorganic 

chemical precipitate, but my experiments in this department have 

not yet been sufficiently extended to authorize me in recommend¬ 

ing any particular process. 

191. The object of the observer may however be altogether 

different, and he may wish to extend the spectrum as far as possi- 

ble, for the purpose of viewing the fixed lines belonging to tbe 

invisible part beyond the extreme violet, or making experiments 

on the invisible rays. For this purpose it would be proper to 

24 
s. III. 
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employ a clear and highly sensitive solid or fluid. A weak solu¬ 

tion of sulphate or phosphate of quinine would do very well, or a 

weak decoction of the bark of the horse-chestnut (no doubt a 

solution of pure esculine would be better), or an alcoholic solution 

of the seeds of the Datura stramonium. But perhaps the most 

convenient thing of all would be a slab of glass coloured yellow by 

oxide of uranium. This would be always ready, and in point of 

sensibility the glass does not seem to yield to any of the solutions 

above mentioned, at least so far as relates to those rays which are 

capable of passing through glass* 

192. In making experiments on the invisible rays, it is well 

to get rid, as far as possible, of the glare arising from the bright 

part of the spectrum, and therefore a clear solid or solution is 

preferable to an opaque screen. If it be desired to show the fixed 

lines in the visible and invisible parts of the spectrum at the same 

time, a screen may be employed consisting of paper washed with a 

moderately strong solution of sulphate of quinine, or an alcoholic 

solution of stramonium seeds. Turmeric paper is not, I think, 

quite so good for showing the fixed lines of very high refrangi- 

bility, but is at least equally good for the extreme violet and for 

the rays a good distance further on, especially if if has been 

washed with a solution of tartaric acid. If is likely that many 

other acids would do as well. Very excellent screens might pro¬ 

bably be prepared by washing paper with a solution of esculine, 

or even of the bark of the horse-chestnut*f*, or by covering paste¬ 

board with yellow uranite reduced to fine powder, and made to 

adhere by a weak solution of pure gum Arabic; hut these I have 

not tried. 

Application of internal dispersion to demonstrating the course 

of rays. 

193. Solutions of quinine have already been employed for 

this purpose, and a weak decoction of the bark of flic horse-chest¬ 

nut appears to be decidedly better. But the effect is immensely 

improved by using absorbing media to cut off all the rays belong¬ 

ing to the bright part of the visible spectrum. A deep blue glass 

will answer very well for this purpose if its faces be even, so as 

See note F. t See note G. 
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not to disturb the regularity of the refraction. The appearance of 
the general pencil refracted through a rather large lens, with its 
caustic surface, its geometrical focus, &c., is singularly beautiful 

when exhibited in this way, on account of the perfect continuity 
of the light, and the delicacy with which the different degrees of 
illumination belonging to different parts of the pencil are repre¬ 

sented by the different degrees of brightness of the dispersed light. 
The solution should be contained in a vessel with plane sides of 

glass, and ought to be very weak, or else only the part of the 
pencil which lies near the surface by which the light enters will 
be properly represented. 

Application of internal dispersion to the determination of the 

absorbing power of media with respect to the invisible rays 

beyond the violet, and the reflecting power of surfaces with 

respect to those rays. 

194. Hitherto no method has been known by which the ab¬ 
sorbing power of a medium with respect to these rays could be 

determined for each degree of refrangibility in particular, except 

that which consists in taking a photographic impression of a pure 
spectrum, the light forming the spectrum having been transmitted 
through the substance to be examined. It is needless to remark 
how troublesome such a process is when contrasted with the mode 
of determining the absorption which media exercise on the visible 

rays. But the phenomenon of internal dispersion furnishes the 
philosopher, so to speak, with eyes to see the invisible rays, so that 
the absorbing power of the medium with respect to these rays 
may be instantly observed. For this purpose it is sufficient to 
form a pure spectrum, using instead of a screen a highly sensitive 
fluid or solid, such as one of those mentioned in Art. 191, and to 
hold before it the medium to be examined, or else to place the 
medium over the whole or a part of the slit. 

195. In this way the transparency of glass coloured yellow 

by oxide of silver with respect to the violet rays and some of 
those still more refrangible, which has been remarked by Sir John 
Herschel*, may be at once observed. A set of green glasses were 
found to be very variable in the mode in which they absorbed the 

* Philosophical Transactions for 1840, p. 39. 

24—2 
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invisible rays, some absorbing the more refrangible of the rays 

capable of affecting a dilute solution of sulphate of quinine and 

transmitting the less refrangible, others absorbing the less and 

transmitting the more refrangible, and others again absorbing 

them all. These rays were absorbed by solutions of chromate and 

bichromate of potash so weak as to be almost colourless. A thick¬ 

ness of about a quarter of an inch of sulphuret of carbon was suffi¬ 

cient to absorb all the rays beyond Hkl, so that a hollow prism 

filled with this fluid would be useless in experiments on these rays. 

It should be remarked that the sulphuret of carbon employed was 

not yellow from dissolved sulphur, but apparently as colourless as 

water. 

196. To determine qualitatively the reflecting power of a 

polished surface with respect to the invisible rays of each particu¬ 

lar degree of refrangibility, it would be sufficient to form a pure 

spectrum as usual, reflect the rays sideways before they come to 

the focus of the larger lens, place a sensitive medium to receive 

them, and compare the effect with that produced on the same 

medium when the rays are allowed to fall directly upon it. 

Effect of different Flames. 

197. Want of sunlight proved to be such an impediment to 

the pursuit of these researches that I was induced to try some 

bright flames, with the view of obtaining some convenient, substi¬ 

tute. Candle-light is very ill adapted to these experiments. The 

flame of a camphene-lamp proved no better, perhaps rather worse, 

for it abounds so much in rays belonging to the bright, part, of the 

spectrum that the glare of the light prevents all observation of 

faint objects; and the flame does not appear to he rich in invisible, 

rays in anything like the proportion in which it is rich in visible 

ones. The flame of nitre burning on wood or charcoal produced a 

very good effect, exhibiting, when the combustion was most, vivid, 

a copious dispersive reflexion in a weak solution of sulphate of 

quinine contained in a bottle held near it. The tint of the dis¬ 

persed light appeared to be not quite the same as that given by 

daylight, but to verge a little towards violet. However, I do not 

place very strong reliance on the judgment of the eye under such 

circumstances, A still stronger dispersive reflexion was produced 
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by a flash of gunpowder. The tint in this case appeared to be 

the same as that seen by daylight. 

198. While engaged in some of these experiments on bright 

flames, I was surprised by discovering the strong effect produced 

by the flame of a spirit-lamp, the illuminating power of which is 

so feeble. When this flame was held close to a bottle containing 

sulphate of quinine, a very distinct dispersive reflexion was 

exhibited. The same was the case with several other sensitive 

solutions. However, the full effect of the flame is not thus ex¬ 

hibited, because a considerable portion of the rays which it emits 

is stopped by glass. It is best observed by pouring the solution 

into an open vessel, such as a wine-glass or tumbler, holding the 

flame immediately over it, and placing the eye in or very little 

below the plane of the surface. In this way nothing is interposed 

between the flame and the fluid, except an inch or two of air, the 

absorption produced by which, it is presumed, is insensible; and 

the plane strata, parallel to the surface, into which the illuminated 

portion of the fluid may be conceived to be divided, are all pro¬ 

jected into lines, whereby the intensity of the blue light is materi¬ 

ally increased. I t is to be observed further, that if the eye be 

held a little below the plane of the surface, there enters it, not 

only the light coming directly from the blue stratum itself, but 

also that coining from its image formed by total internal reflexion. 

This mode of observation has already been employed by Sir John 

Herschel in the case of sunlight. As it is frequently useful in 

these researches it will be convenient to have a name for it, and I 

shall accordingly speak of it as the method of observing by super¬ 

ficial projection. 

199. The opacity of a solution of sulphate of quinine appears 

to increase regularly and rapidly with the refrangibility of the 

light. Hence we may form an estimate of the refrangibility of 

any light by which the solution may be affected, by observing 

the degree in which the illumination is concentrated in the 

neighbourhood of the surface. For this purpose it is essential 

to employ a weak solution, since otherwise streams of invisible 

light of various degrees of refrangibility produce each their full 

effect in strata so very narrow, that they cannot be distinguished 

by the breadth of the stratum. Now to judge by the great con¬ 

centration of the illumination produced by a spirit-lamp, even in 
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the case of an extremely weak solution, as well as by the con¬ 

siderable degree in which the active rays were intercepted by 

glass, these rays, taken as a whole, must have been of very high 

refrangibility, such as to place them among the most refrangible 

of the fixed lines represented in the map, or perhaps even alto¬ 

gether beyond them. In making observations on the solar spec¬ 

trum, it was plain that the prisms were by no means transparent 

with respect to the rays belonging to the group p of fixed lines. 

Yet these rays, before they produced their effect, had to pass 

twice through the plate-glass belonging to the mirror (except 

so far as regards the rays reflected at the first surface), then 

through three prisms, though to be sure as close as possible to 

the edges, then through a lens by no means very thin, and 

lastly, through the side of the vessel containing the fluid. Such 

a train of glass would be sufficient materially to weaken, if not 

even wholly to cut off the active rays coming from the flame of a 

spirit-lamp. 

200. The flame of naphtha* produces nearly 1 he same effect 

as that of alcohol. The flame of ether is not so good ; but 

whether this arises solely from its richness in visible rays, which 

only produce a glare, or likewise from a comparative poverty in 

highly refrangible invisible rays, it is not easy to say. The flame 

of hydrogen produces a very strong effect. The invisible rays in 

which it so much abounds, taken as a whole, appear to be even 

more refrangible than those which come from t he flame of a 

spirit-lamp. In making some observations with tin* flame of 

hydrogen, when the gas was nearly exhausted, so that the flame, 

was reduced to a roundish knob no larger than a, sweet pea, and 

giving hardly any light, it was found still to produce a very 

marked eflect when held over the surface of a solution of sul¬ 

phate of quinine. The flame of sulphuret of carbon produces on 

most objects a much stronger effect than that of alcohol. It. 

exhibits distinctly the blue light dispersed close, to the surface 

of a solution of guaiacum in alcohol, which tin* flame of alcohol 

does not. It appears then that the flame of sulphuret of carbon 

is rich in invisible rays of such a refrangibility as to place them 

among the groups of fixed lines m, n, or a little beyond, since 

[* By this was meant wood-spirit, commercially called naphtha, not the 
hydrocarbon to which the name more properly belongs.] 
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when a solution of guaiacum is examined in the solar spectrum, 

it is found that that is the region in which the blue dispersed 

light is produced. The blue light dispersed by a solution of 

guaiacum may also be seen by using the blue flame of sulphur 

burning feebly. The poverty of the flame of a spirit-lamp, not 

only with respect to visible rays, but also with respect to in¬ 

visible rays, except those of very high refrangibility, accounts for 

the circumstance that it does not exhibit, or at least hardly at all 

exhibits, the blue light dispersed by fluor-spar. 

Mode of determining, by means of the light of a spirit-lamp, the 

transparency of bodies with respect to the invisible rays of 

high refrangibility. 

201. If the body be a solid, and be bounded by parallel 

surfaces, its transparency with regard to these rays is easily 

tested. For this purpose it is sufficient to hold the flame of a 

spirit-lamp a little way above the surface of a weak solution 

of sulphate of quinine contained in an open vessel in a dark 

room, and then, placing the eye so as to see the dispersed light 

in projection, alternately to interpose and remove the plate to be 

examined. 

202. On examining in this way various specimens of glass, I 

found none which did not show evident defects of transparency. 

The purest specimens of plate-glass appeared, I think, to be the 

least defective. I cannot say whether the observed defects of 

transparency were due to the essential ingredients of the glass, 

or to accidental impurities. It is possible that glass made with 

chemically pure materials might be transparent*. I believe that 

a mere trace of peroxide of iron, or of sulphuret of soda or 

potassa, would be sufficient to impair materially the transparency 

of glass with respect to these rays, and such impurities are very 

likely to be present. Quartz, however, appeared to be perfectly 

transparent, the active rays passing through the thickness of one 

* Some specimens of glass belonging to Dr Faraday’s experiments, which from 

the absence of colour and of internal dispersion seemed hopeful, could not be 

examined for transparency, on account of their irregular figure; and as they were 

only lent to me by a friend, I did not feel myself at liberty to get them cut and 

polished. 
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or two inches, whether parallel or perpendicular to the axis, with¬ 

out any perceptible loss. The contrast between quartz and mica 

was very striking, for a plate of mica no thicker than paper pro¬ 

duced a very sensible diminution in the illumination. 

203. For the purpose of observing fluids, I procured two 

vessels consisting of sections of a wide glass tube, about an inch 

long, closed at one end with a disc of quartz. I shall call these 

for brevity quartz vessels, though of course the bottom is the only 

part in which there is any occasion to use quartz. When a fluid 

is to be examined it is poured into a quartz vessel, and then the 

vessel with its fluid contents is examined in the manner of a solid 

plate, as described in Art. 201. On account of the perfect trans¬ 

parency of quartz, the fluid is as good as suspended in air. When 

a quartz vessel was partly filled with water, the addition of a very 

small quantity of nitrate of iron was sufficient to cause the ab¬ 

sorption of the active rays. The solution was so weak as to be 

almost colourless when viewed through the thickness through 

which the rays would have to pass. A solution of perehloride of 

iron had a similar effect. These fluids I had specially examined 

by sunlight, and had not found in them the least trace of in¬ 

ternal dispersion. When a fluid exhibits internal dispersion, it 

is almost always very opaque with regard to rays of high ref’rangi- 

bility, as is shown, without any special experiment, in the course 

of the observations by which the internal dispersion is exhibited ; 

but it by no means follows conversely, that when a fluid is very 

opaque with regard to these rays, though nearly transparent with 

regard to the visible rays, it exhibits the phenomenon of internal 

dispersion. 

204. I have little doubt that the solar spectrum would be. 

prolonged, though to what extent I am unable to say, by using 

a complete optical train in every member of which glass was 

replaced by quartz. Such a train would he rat.Inn* (expensive, but. 

would not involve any particular difficulty of execution. If solid 

prisms of quartz were used, half of the incident light would be 

lost, on account of the double refraction of the substance, unless 

the prisms were cut in a particular manner, which however would 

seem likely to involve some difficulties, both in the exertit ion and 

in the observations. But hollow prisms holding fluids might be 

employed, having the two faces across which the light has to 
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pass made of quartz plates. For a reason already mentioned, 

sulphuret of carbon cannot be employed for filling the prisms', 

and the dispersive power of water is very low, but there appears 

to be no objection to the use of a solution of some colourless 

metallic salt. At least saturated solutions of sulphate of zinc 

and of acetate of lead, the only salts I have tried with this view, 

showed no defects of transparency when examined in quartz 

vessels by means of the flame of a spirit-lamp and a solution of 

sulphate of quinine*. 

Effect of Hydrochloric Acid, &c. on Solutions of Quinine. Optical 

evidences of combination in other instances. 

205. Sir John Herschel, in his interesting paper already so 

often referred to, observes that it is only acid solutions of quinine 

which exhibit the peculiar blue colour, and that among different 

acids the muriatic seems least efficacious (page 145). 

For my own part I have tried solutions of quinine (not di¬ 

sulphate) in dilute sulphuric, phosphoric, nitric, acetic, citric, 

tartaric, oxalic, and hydrocyanic acids, and also in a solution of 

alum. In all these cases the blue colour of the dispersed light 

was plainly seen by ordinary daylight, especially when the fluid 

was examined by superficial projection. It was not easy to say 

which solution answered best, but I am inclined to think that in 

which phosphoric acid was used. 

200. But when quinine was dissolved in dilute hydrochloric 

acid the blue colour was not exhibited, not even when the fluid 

was held in the sunlight, and examined by superficial projection. 

Certain theoretical views led me to regard this as an evidence 

of a more intimate union between quinine and hydrochloric acid 

than between quinine and the acids first mentioned, and to try 

whether the addition of hydrochloric acid to the solutions men¬ 

tioned in the preceding paragraph would not destroy the blue 

colour. On trial this proved to be actually the case, so that even 

sulphuric acid is incapable of developing the blue colour in a 

solution of quinine in hydrochloric acid. 

See note H. 
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207. That the quinine was not decomposed when the blue 

colour due to sulphate of quinine was destroyed by hydrochloric 

acid, but only differently combined, was shown by adding a 

solution of carbonate of soda, which produced a white precipi¬ 

tate; and when this was collected on a filter, washed, and re¬ 

dissolved in dilute sulphuric acid, it exhibited the blue colour 

as usual. 

208. The addition of a solution of common salt, instead of 

hydrochloric acid, to the solutions mentioned in Art. 205, like¬ 

wise destroyed the blue colour. In the case of sulphuric acid 

this is only what might have been confidently anticipated ; but 

we should not perhaps have expected that quinine in combina¬ 

tion with a weak acid, such as citric, would decompose hydro¬ 

chlorate of soda, giving rise to citrate of soda and hydrochlorate 

of quinine; yet this appears to be the nature of the reartion. 

209. It might perhaps be supposed that the sulphuric acid 

was only partially expelled from sulphate of quinine by hydro¬ 

chloric acid, and that the salt in solution was really a sort of 

double salt, in which the same base, quinine, was combined with 

sulphuric and hydrochloric acids in atomic proportion. But if so, 

it is probable, though not certain, that t he same salt would be 

formed on adding hydrochloric acid to a solution of disulphate 

of quinine, even though the quantity were not sutlieient to rum- 

bine with the whole of the disulphate. On this supposition, if 

hydrochloric acid were added by small quantities at a, time to a 

solution of disulphate of quinine, the blue colour ought not to be 

developed; and when acid enough had been added it ought to 

be incapable of being developed by the addition of sulphuric 

acid; whereas, if the whole of tin* sulphurie acid lx* expelled 

by hydrochloric acid, the blue colour ought to lx* first developed, 

by the conversion of a portion of the disulphate of quinine into 

a sulphate, and then destroyed, on the addition of more acid, by 

the conversion of the sulphate into a hydroehlorate. On trying 

the experiment with a solution of disulphate of quinine in warm 

water, it was found that the blue colour was actually first de¬ 

veloped and then destroyed. 

210. A practical conclusion which seems to follow from these 

results is, that in the employment of quinine in medicine it is of 
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little consequence whether the sulphate, phosphate, acetate, or 

hydrochlorate be used, since the first three salts would be im¬ 

mediately converted by the common salt in the body into the 

hydrochlorate, and the small quantity of a neutral salt of soda 

resulting from the double decomposition could hardly, one would 

suppose, be worth considering. However, the common quinine 

is associated with cinchonine, the reactions of which may be 

different. According to Sir John Herschel, the latter alkaloid 

does not exhibit the blue colour, and therefore the optical tests 

do not apply to it. If it be desired to obtain a soluble salt of 

quinine which shall not be converted by common salt, by double 

decomposition, into a hydrochlorate, it must apparently be sought 

for among the combinations of quinine with very weak acids, the 

affinity of which for soda does not much help that of hydrochloric 

acid for quinine. It seems likely enough that such salts may 

exist; for though acetate or citrate of quinine decomposes hydro- 

chlorate of soda, hydrochlorate of quinine is decomposed by car¬ 

bonate of soda; and it is probable that many vegetable acids 

behave like the carbonic in this respect. 

211. The blue dispersion of a solution of sulphate of quinine 

is destroyed by hydrobromic and hydriodic acids just as by hydro¬ 

chloric. In the experiment, solutions of bromide and iodide of 

potassium wore used; but as a considerable excess of sulphuric 

acid was purposely added to the solution of quinine, the potassa 

introduced would merely remain inert in the solution as a sulphate, 

without impeding the observation. The same experiment was 

tried with phosphate of quinine with the same result. 

212. It is stated in Turner’s Chemistry, that the play of 

colours observed in solutions of polychrome (i.e. esculine) is de¬ 

stroyed by acids, and heightened by alkalies. The destruction, or 

at least almost complete destruction, of the blue colour due to 

dispersed light m a decoction of the bark of the horse-chestnut, 

which is produced by acids, is readily observed; but I could not 

perceive that the addition of alkalies in the first instance to a 

fresh solution made any difference one way or other. If the blue 

colour had previously been destroyed by an acid, it was restored 

by the alkali. If the horse-chestnut had never been examined 

chemically, these observations alone would indicate that in all 
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probability the principle to which the blue colour was due was 

capable of entering into firm combination with acids, but did not 

combine with alkalies. It is, in fact, as we know, a vegetable 

base* 

213. A solution of nitrate of uranium in ether is insensible, 

as if some of the elements of the ether entered into firm combina¬ 

tion with the oxide of uranium. In connexion with this circum¬ 

stance, it is rather remarkable, that although the ether passes off 

by evaporation when the solution is left to itself in an open 

vessel, if heat be applied chemical action sets in, and the residue 

consists chiefly of a salt which has all the appearance of oxalate 

of uranium. This salt, when washed and examined in the moist 

state, without very great concentration of light, was found to be 

insensible f. 

214. It is rare to meet with solutions so highly sensitive as 

those of quinine and esculine, but similar observations may be 

made on a great number of solutions, by employing suitable 

methods. The most searching method consists in forming a 

bright and tolerably pure spectrum, by transmitting the sun’s 

light through a very broad slit, or even leaving out the slit 

altogether. It is desirable to use a lens of only moderate foral 

length in connexion with the prisms. The solution having been 

placed in the spectrum, the acid, or other agent whose reactions 

it is desired to study, is to be added, and tin* effect, if any, 

observed. It is usually advantageous to cover the slit with a, blue 

glass, or similar absorbing medium; but sometimes effects take 

place in the bright part of the spectrum, which is intercepted by 

such a medium. When false dispersion abounds, it, is well to look 

down on the fluid through a Nmols prism, so as to stop all light 

which is polarized in the plane of reflexion. 

Negative results with reference to a mutual action of the rays 

incident on sensitive solutions. 

215. The antagonistic effects of the more and less refrangible 

rays, which have been observed in certain phenomena, induced 

* [It is not a base but a glueoside.J 

+ See note I. 
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me to try whether anything of the kind could be perceived in the 

case of internal dispersion. The following arrangement was 

adopted for putting this question to the test of experiment. 

A tumbler was filled with a very dilute solution of sulphate of 
quinine, and placed in a pure spectrum. As usual, the illuminated 

portion of the fluid consisted of two distinct parts, one the blue 

beam of truly dispersed light, corresponding to the highly re¬ 
frangible rays, the other the beam reflected from motes, exhibiting 

the usual prismatic colours, and corresponding to the brighter of 

the visible rays. The fluid was nearly free from motes, so that 
the first beam was by far the brighter of the two; and the second 
beam, without being bright enough at all to interfere with the 

observation, was useful as serving to point out where the red, 

yellow, &c. rays lay. A flat prism, having an angle of about 130°, 

was then held in front of the vessel, with its edge vertical, and 

situated in the more refrangible part of the visible rays. The 

rays forming the two beams were thus bent in opposite directions, 

and the beams made to cross each other within the fluid; and by 

turning the prism a little in both directions in azimuth, that is, 
round an axis parallel to the incident rays, it was easy to make 
sure that, the beams did actually cross. But not the slightest 
perceptible difference in the blue beam was made by the passage 

of the r<id and other lowly refrangible rays across it. 

21(j. Certain theoretical views having led me to regard it as 

doubtful whether the intensity of light internally dispersed was 
proportional to the intensity of the incident rays, other circum¬ 

stances being the same, I was induced to try the following experi¬ 

ment. 

The sun’s light was reflected horizontally through a large lens, 

which was covered by a. screen containing two moderately large 

round holes, situated in the same horizontal plane, and a good 
distance apart. The beams coming through the two holes con¬ 
verged of course towards the focus of the lens, and at the same 

time contracted in width, and became brighter from the concen¬ 
tration of the light. For our present purpose, they may be 
regarded as cylindrical beams converging towards the focus of 
the Ions. When they had approached each other sufficiently, 
they were transmitted through a blue ammoniacal solution of 
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copper, contained in a vessel with parallel sides. The object of 

this was of course to absorb all the bright visible rays, which 

would not only be useless for exciting the solution which it was 
meant to try, but would materially hinder the observation by the 

glare which they would produce. The beams were then admitted 

into a vessel containing a decoction of the bark of the horse- 

chestnut, greatly diluted with water. In passing through the 
fluid they produced two blue beams of truly dispersed light, which 

converged towards a point a little way outside the vessel. A flat 

prism, with an angle of about 150\ was then held in front of the 

vessel, with its edge vertical, and situated between the incident 

beams. The blue beams of dispersed light were thus made to 

cross within the fluid; and by moving the prism in azimuth, it 

was easy to make one beam either fall above the other, cross it, 

or fall below it. Now on looking down from above with one eye 

only, and moving the prism backwards and forwards in azimuth, 

I could not perceive the slightest difference of illumination, 
according as the blue beams actually crossed each other, or were 

merely seen projected one on the other. In this experiment, 

then, it appeared that one beam of incident rays produced as 
much additional dispersed light in a portion of fluid already 
excited by the other beam, as it was capable of producing in a 

similar portion of fluid not otherwise, excited. 

Effect of an electric spark. Nature of its phosphorotjeuic rat/s. 

217. For the use of the apparatus with which tin* following 
experiments were made, I am indebted to the, kindness of Professor 
Cumming. 

An electric spark produces an internal dispersion of light in a 
very striking manner in the case of an extremely dilute solution 

of sulphate of quinine. Having prepared a solution so weak, 

that when it was examined by superfieial projection by the light* 
of a spirit-lamp, nothing was semi but a pale gleam of light 

.extending a good way into the fluid, and not only not confined to 

the surface, but not even showing any particular concentrat ion 

in the neighbourhood of the surface, 1 placed it so as to be 

illuminated by the sparks from the prime conductor of an elcctri- 

flying machine, which passed at no great distance over the surface. 
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A very marked internal dispersion was produced, but the nature 

of the effect depended in a good measure on the character of the 

spark. A feeble branched spark, giving but little light, and 
making little noise, produced an illumination extending to a 

considerable depth, and very much stronger than that occasioned 
in the same solution by the flame of a spirit-lamp. The rays by 

which this was produced passed in a great measure through a 

plate of glass interposed between the spark and the surface of the 
fluid. But a bright linear spark, making a sharp crack, produced 

an illumination almost confined to an excessively thin stratum 
adjacent to the surface of the fluid; and the rays by which this 

was produced were cut off by glass, though transmitted through 
quartz. The same was the case with the discharge from a Leyden 

jar, which produced a bright light almost confined to the surface*. 

218. The opacity of a solution of sulphate of quinine appears 

to increase regularly and rapidly with the refrangibility of the 

rays incident, upon it. Hence we are led to the conclusion that a 

strong electric spark is excessively rich in invisible rays of ex¬ 

tremely high refrangibility. Gliiss is opaque with respect to these 

rays, but. quartz transparent. 

2IS). It is known that the phosphorogenic rays of an electric 

spark, at least those which affect Canton’s phosphorus, pass very 
freely through quart,z, but are stopped by a very moderate thickness 
of glass. This alone, after what has been already mentioned, 

would lead us to suppose that the phosphorogenic rays coming 

from such a spark are merely rays of very high refrangibility. If 

so, they ought, to he intercepted by a very small quantity of a 

substance known to absorb such rays with energy. 

After having made some experiments on the production of 

phosphorescence in Canton’s phosphorus by means of an electric 

discharge, and observed how the influence of the discharge was 
transmitted through quartz and stopped, or almost entirely stopped, 

by glass, I felt, confident that my own observations were com¬ 

parable with those of others. A small portion of the phosphorus 
was then placed on card, covered by an empty quartz vessel, and 

had the discharge of a Leyden jar passed over it. The phos- 

See note J. 
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phorescence was powerfully excited, being visible in a room which 

was by no means quite dark; and when the card was carried into 

a dark place, the phosphorescent light remained plainly visible for 
a good while. The experiment was then repeated with a fresh 

portion of the same phosphorus, the vessel this time containing 

water. The phosphorescence was produced as before, though not 

I think so copiously. But on taking a fresh portion of the 

phosphorus, and substituting for water a very dilute solution of 

sulphate of quinine, the influence of the spark was arrested, and 
the phosphorus was not rendered luminous. It was found that a 
solution containing only about one part of quinine in 10,000, with 

a depth of half an inch, was sufficient to prevent the generation of 

phosphorescence. 

220. This result, it seems to me, would be sufficient, were 

proof wanting, to show that no part of the effect is attributable 
directly to the electrical disturbance. The effect produced when 

the phosphorus is at the distance of an inch or so from the points 
of the discharger seems exactly the same as when it is nearer, 

being merely somewhat weaker, as would naturally be expected, 

whatever view were taken of the nature of the influence. But at 

the distance of an inch, the influence of the spark, though it 

passes freely through quartz and water, is cut off by adding to the 

water an excessively small quantity of sulphate of quinine. It 

cannot be supposed that the electrical relations of the. medium, or 

its permeability to electrical attractions and repulsions, are utterly 

changed by such an addition; while, on the other hand, tho result 

is in perfect conformity with what we know respecting the stop¬ 
page of radiations by absorbing media. However, the principal 

object of the experiment was not to confirm the view which 

makes the influence of the spark to consist in tho rays which 

emanate from it, a view which I suppose is pretty generally 
adopted, but to investigate more fully the nature of these rays. 

Enough has, I think, been adduced to show that they are merely 

rays which there is no reason to suppose are physically different 

from those of light, but quite the contrary, and which are of very 

high refrangibility, and are therefore invisible, since they fall far 

beyond the limits of refrangibility within which the retina is 
affected. Indeed, it seems very likely that the highly refrangible 

rays never reach the retina, but are absorbed by the coats of the 
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eye*. Hence the phenomena relating to the phosphorescence 
produced by an electric discharge afford no countenance to the 
supposition that it is possible to divide rays of a given refrangi- 

bility into phosphorogenic, chemical, luminous, &c. Of course the 

most unexceptionable mode of determining the refrangibility of 
the phosphorogenic rays would be by actual prismatic decom¬ 
position, but this would require the employment of a quartz 
train. 

Points of resemblance and contrast between internal dispersion 

and phosphorescence. 

221. As the term phosphorescence has been applied to several 
different phenomena, I must here explain that I mean the sponta¬ 

neous exhibition of a soft light, independently of chemical changes, 

which some substances exhibit for a time after having been 
exposed to the sun's rays, or to an electric discharge, or to light 
from some other sources. 

In many respects the two phenomena have a strong resem¬ 
blance. Thus, the general features of internal dispersion cannot 

be better conceived than by regarding the sensitive medium as 

self-luminous while under the excitement of the active rays. 
Again, it is well known that the rays of the solar spectrum by 
which the phosphorescence of Canton’s phosphorus, sulphuret of 
barium, and other phosphori, is produced, are those of high 
refrangibility, as well as the invisible rays beyond; and these are 

precisely the rays which in the great majority of cases are most 
efficient in producing internal dispersion. I do not however know 

how far it may bo true that when phosphorescence is excited by 

homogeneous light the refrangibility of the incident light is a 

superior limit to the refrangibilities of the component parts of the 

light, omitted. Indeed, according to Professor Draper, when the 

phosphorescence of Cantons phosphorus is excited by the rays 
from incandescent lime, the active rays belong to the red extremity 

of the spectram*|\ If this result be confirmed^, it follows that the 

* Sec note K. 

t Philosophical Matjazine, Vol. xxvit. (Dec. 1845) p. 436. 
X [Early in 1853 1 wan engaged along with Faraday in preparing in the labora¬ 

tory of the Royal InHtitution some experiments to show at an evening lecture on 

the subject of this paper. I expressed to him a wish to repeat Draper’s experiment, 

25 
s. III. 
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most striking law relating to internal dispersion is not obeyed in 

the case of phosphorescence. 

In the same paper Professor Draper remarks, “Some time ago 

I determined the refrangibility of the rays of an electric spark 
which excite phosphorescence in sulphnret of lime ; they are found 
at the violet extremity of the spectrum ” In what way Professor 
Draper determined the refrangibility of rays with respect to which 

glass is so opaque, he does not give the least hint. Being perfectly 
in the dark as to the evidence on which the conclusion is based, I 

cannot accept it in contradiction to my own experiments. Perhaps, 

however, “at the violet extremity” may mean nothing more than 
somewhere in the highly refracted region beyond the visible rays. 

If so, Professor Drapers statement is in accordance with my own 

conclusions. 

222. When one part of a phosphorus has been excited, the 

phosphorescence is found gradually to extend itself to the neigh¬ 
bouring parts*. In this respect a substance which exhibits internal 
dispersion presents a striking contrast. The finest fixed lines of 
the spectrum are seen sharply defined, whether in a solution, or in 

a clear solid, or on a washed paper. 

223. Of course, theoretically, there ought, to a certain extent, 

to be a communication of illumination from one part of a sensitive 
fluid to another, on account of the light which is twice, three 

as it had such an important bearing on the subject, and he immediately tried it. 

We obtained, however, only a negative result, as the Canton’s phosphorus which 

had been acted on by bright light which had been passed through a solution of 

bichromate of potash did not give out in the dark any sensible light. Long 

afterwards, as I was engaged with some experiments on Balmain’s luminous paint, 

it occurred to me that possibly Draper’s result might have been due to a latent 

effect of a previous exposure to light; and I wrote to him to enquire whether this 

might have been possible. He replied that he generally heated his phosphori 

before proceeding to an experiment, in order to guard against the possible existence 

of a latent effect of previous exposure ; that at that distance of time he could not 

be certain whether that had been done in the particular experiment referred to; 

that if it had not, the result he had mentioned might have been brought about in 
that way.] 

* [M. Becquerel afterwards explained this apparent result by attributing it to 

the increased sensitiveness of the eye arising from continuance in the dark, which 

enabled the observer to see outlying portions of a phosphorescing patch which 

were not seen at first, thereby giving the impression that the phosphorescence was 
extending.] 
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times, &c., dispersed. This however must be excessively small; 

for the mean refrangibility of the dispersed light is usually much 

lower than the refrangibility of the active light, perhaps lower 
than that of any light capable of exciting the solution. However, 

generally some few of the dispersed rays would have a refrangi¬ 
bility sufficiently high to be dispersed again. But practically the 

intensity of the light twice dispersed in this manner would be so 

very small that it may safely be altogether disregarded. 

224. But by far the most striking point of contrast between 
the two phenomena, consists in the apparently instantaneous com¬ 

mencement and cessation of the illumination, in the case of internal 

dispersion, when the active light is admitted and cut off. There 

is nothing to create the least suspicion of any appreciable duration 

in the effect. When internal dispersion is exhibited by means of 
an electric spark, it appears no less momentary than the illumina¬ 

tion of a landscape by a flash of lightning. I have not attempted 
to determine whether any appreciable duration could be made out 
by means of a revolving mirror *. 

225. There appears to be no relation between the substances 
which exhibit a change of refrangibility and those which phos¬ 

phoresce, either spontaneously, or on the application of heat. 
Thus the sulphurots of calcium and barium, on being examined 

for internal dispersion, were found to be insensible, as was also 

Iceland spar. The last substance phosphoresced strongly on the 
application of heat. So far as was examined, the minerals which 

did exhibit, a change of refrangibility showed no special disposition 
to phosphoresce. Sir David Brewster has remarked, that a speci¬ 

men of fluor-spar which exhibited a blue light by internal disper- 

* [The experiment I had in my mind was to view in a revolving mirror the 

substance to be examined while illuminated in a dark room by a succession of 

sparks from the prime conductor of an electrifying machine, taking one’s chance 

for the casual appearance of images in the field of view. The experiment was 

afterwards tried with apparatus kindly lent me, but whether with sparks from a 
prime conductor or with an induction coil I am not now sure. Notwithstanding 

what M. JBecquerel had in the mean time done with his beautiful phosphoroscope, 

the results obtained are not perhaps wholly without interest. Thus yellow 

uranito instead of its usual appearance showed a well-defined image of a very 
ordinary looking yellow stone and a long drawn out gleam of green light due of 

course to the fading phosphorescence.] 

25—2 
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sion, exhibited when heated a blue phosphorescent light; but this 

appears to have been merely a casual coincidence *. 

On the Cause of True Internal Dispersion, and of Absorption. 

226. In considering the cause of internal dispersion, we may 

I think at once discard all supposition of reflexions and refractions 

of the vibrations of the luminiferous ether among the ultimate 

molecules of bodies. It seems to be quite contrary to dynamical 

principles to suppose that any such causes should be adequate to 
account for the production of vibrations of one period from vibra¬ 

tions of another. 

All believers, 1 suppose, in the undulatory theory of light are 

agreed in regarding the production of light in the first instance as 
due to vibratory movements among the ultimate* molecules of the 

self-luminous body. Now in the phenomenon of internal disper¬ 

sion, the sensitive body, so long as it is under tin* influence of the 

active light, behaves as if it were self-luminous. Nothing then 

seems more natural than to suppose that tin* incident vibrations 

of the luminiferous ether product* vibratory movements among 

the ultimate molecules of sensitive substances, and that, tin* mole¬ 
cules in turn, swinging on their own account, product* vibrations 

in the luminiferous ether, and thus cause the* sensation of light. 

The periodic times of these vibrations depend upon tin* periods in 

which the molecules are disposed to swing, not upon tin* periodic 
time of the incident vibrations. 

227. But in the very outset of this theory an objection will 

probably be urged, that it is quite as much contrary to dynamical 

principles to suppose the periodic time of tin* ethereal vibrations 

capable of being changed through tin* intervention of ponderable 
molecules as without any such machinery*!-. Tin* answer to this 
objection is, that such a notion depends altogether on tin* applica¬ 

bility of a certain dynamical principle relating to indefinitely small 

motions, and that we have no right to regard the molecular vibra- 

* Report of the Meeting of the British Association at Newcastle in IHT.I, p. 11. 

t [The attempt hero made to account for the lowering of refrangibility has long 

since been given up, and I have been led to adopt what seems to me a far more 

probable explanation. See Addition to this paper, p. 410.] 
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tions as indefinitely small. The excursions of the atoms may be, 

and doubtless are, excessively small compared with the length of a 

wave of light; but it by no means follows that they are excessively 
small compared with the linear dimensions of a complex molecule. 

It is vvell known that chemical changes take place under the 

influence of light, especially the more refrangible rays, which 

would not otherwise happen. In such cases it is plain that the 

molecular disturbances must not be regarded as indefinitely small. 

But vibrations may very well take place which do not go to the 
length of complete disruption, and yet which ought by no means 

to be regarded as indefinitely small. Furthermore, it is to be 

observed that if in the cases of indefinitely small molecular dis¬ 
placements the forces of restitution be not proportional to the 
displacements, the principle above alluded to will not be applicable 

however small the disturbance may be; and if in tbe expressions 
for the forces of restitution the terms depending on first powers of 

the displacements (supposed finite), though not absolutely null, 
be very small, the principle will not apply unless the molecular 

excursions be extremely small indeed. In consequence of the 
necessity of introducing forces not proportional to the displace¬ 

ments, it would be very difficult to calculate the motion, even 

were we acquainted with all the circumstances of the case, whereas 
we are quite in tin? dark respecting the actual data of the problem. 
But certainly wo cannot affirm that in the disturbance communi¬ 

cated back again to the luminiferous ether none but periodic 

vibrations would be produced, having the same period as the inci¬ 
dent vibrations. Rather, it seems evident that a sort of irregular 
motion must be produced in the molecules, periodic only in the 

sense, that the, molecules retain the same mean state; and that 
the disturbance which the molecules in turn communicate to the 
ether must be such as cannot be expressed by circular functions 

of a given period, namely, that of the incident vibrations. 

228. It is very remarkable with what pertinacity a particular 

mode: of infernal dispersion attaches itself to a particular chemical 
substance. Tims the, singular dispersion of a red light exhibited 

by the green colouring matter of leaves is found in a green leaf, or 
in a solution of the green colouring matter in alcohol, ether, sul- 

phuret of carbon, or muriatic acid. The dispersion exhibited by 

nitrate of uranium is found in a solution of the salt in water, as 
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well as in the crystals themselves, which care doubly refracting. 

In all probability therefore the molecular vibrations bv which the 

dispersed light is produced are not vibrations in which the mole¬ 

cules move among one another, but vibrations among the con¬ 
stituent parts of the molecules themselves, performed by virtue of 

the internal forces which hold the parts of the molecules together. 

It is worthy of remark that it is chiefly among organic compounds, 

the ultimate molecules of which we are taught by chemistry to 

regard as having a complicated structure, that internal dispersion 

is found. It is true that peroxide of uranium furnishes many 

examples of internal dispersion ; but then the anhydrous peroxide 
is itself insensible, it is only some of the compounds into which it 
enters that are so remarkably sensitive ; and the chemical formulas 

of these compounds, so far as they are known, are not by any 

means extremely simple, although it is true that they may not he 
more complicated than formuhe relating to other oxides. Why 

this particular oxide should be disposed to enter into tottering 

combinations I do not pretend even to conjecture; but it seems 

not a little remarkable that peroxide of uranium, which is so 
peculiar with respect to its optical properties, should also present 

some singularities in its mode of chemical combination, which led 
M. Peligot to regard it as the protoxide of a compound radical. 

229. We are, I conceive, at present, far from an explanation 
of the phenomena of internal dispersion in all their details. They 
appear to be associated with the inmost, structure of chemical 

molecules, to such a degree as to throw even tin* phenomena of 

polarization into the shade. In this respect, indeed, absorption 
seems superior to polarization, since most, of the phenomena of 

polarization refer rather to the state of crystalline aggregation of 

the molecules than to their constitution j but the phenomena of 
internal dispersion appear to be much more searching than those 
of absorption. There is one law however relating to internal 
dispersion so striking and so simple, that it .swims not unreasonable 

to look for an explanation ol it* I allude to that according to 

which the refrangibility of light is always lowered in the process 
of dispei'sion. I have not hitherto been able altogether to satisfy 

myself respecting a dynamical explanation of this law, but the 

following conjectures will not perhaps be deemed altogether 
unworthy of being mentioned. 
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230. Reasons have already been brought forward for regard- 

ing the molecular vibrations as performed under the influence of 

forces not proportional to the displacements. For simplicity’s 

sake, let us suppose for the present the parts of the forces of 

restitution depending upon first powers of the displacements to 

be absolutely null. Then, when a molecule is disturbed, its atoms 

will be acted on by forces depending upon the second and higher 

powers of the displacements. These forces must tend to restore 

the atoms to their mean positions; otherwise the equilibrium 

would be unstable, and the atoms would enter into new combina¬ 

tions, either with one another, or with the atoms of the surround¬ 

ing medium; so that, in fact, such compounds could never be 

formed. The condition of stability would require the parts of the 

forces depending upon squares of the displacements to vanish, but 

this is a point which need not be attended to, all that is essential 

to bear in mind being, that we have forces of restitution varying 

in a higher ratio than the displacements. If the parts of the 

forces of restitution which depend upon first powers of the dis¬ 

placements, though not absolutely null, be very small, the remain¬ 

ing parts must still be such as to tend to restore the atoms to 

their positions of equilibrium ; otherwise the stability of the mole¬ 

cule, though not. mathematically null, would be so very slight, that 

such compounds would probably never form themselves, but others 

of more stability would be formed instead. Or, even were such 

unstable compounds formed, they would probably be decomposed 

on attempting to excite them in the manner in which sensitive 

substances are excited in observing the phenomena of internal 

dispersion; so that whether they exist or not, they may be set 

aside in considering these phenomena. 

2:\ 1. Now wlum vibrations arc performed under the action of 

forces which vary in a higher ratio than the displacements, the 

periodic times are not constant, but depend upon the amplitudes 

of vibration, being greater or less according as. the amplitudes 

are less or greater. Suppose the molecular and ethereal vibrations 

already going on, and imagine the amplitudes of the former kept 

constant by the application of external forces. According to the 

value of the epoch of the vibrations of a particular molecule, 

the ethereal vibrations will tend, in the mean of several successive 

undulations, to augment or to check the vibrations of the molecule. 
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For some time there will be a tendency one way, them for Home 

time a tendency the other way, and so on, the opposite tendencies 
balancing each other in the long run. The lengths of the times 

during which the tendency lies in one direction, will depend upon 

the periodic times of the molecular and ethereal vibrations, being 

on the whole greater or less according as the two periodic times 

are more or less nearly equal But since no external forces 

actually act to keep the amplitudes constant, when the ethereal 

vibrations are favourable to disturbance the molecule is further 

disturbed, and therefore its periodic time is diminished; and 

when they are favourable to quiescence the disturbance of the 

molecule is checked, and therefore its periodic time is increased. 

If, then, the ether be vibrating more rapidly than the molecule, 

when the action is favourable to disturbance the periodic time of 

the molecular vibrations is rendered more nearly equal to that 

of the ethereal vibrations, and therefore the time during which 
the action is favourable to disturbance is prolonged ; but when 

the action is favourable to quiescence, tin* effect is just the 

reverse. Hence, on the whole, there is a balance outstanding in 

favour of disturbance. But if the ether he vibrating more slowly 

than the molecule, it appears from similar reasoning that there 

will be a balance the other way. Hence it is only when the 
periodic time of the ethereal vibrations is less than that of file 
molecular, that the latter vibrations can be kept going by the 
former. 

232. But it will probably be objected to this explanation, 

that when a periodic disturbing force affects the moan motion of 
a planet, the mean motion is a maximum, not when the force 

tending to augment it is a maximum, but at a time later by a 

quarter of the period of the force, namely, when the, force vanishes 
in changing sign; and that in a similar manner the change* in 

the periodic time of the vibrations of a disturbed molecule will 

affect equally the duration of the time during which tin* act ion 

is favourable to increased disturbance, and that, during which it. is 

favourable to quiescence, or more exactly will not alter either, 
since the effects in the first and second halves of those times will 

neutralize each other. The answer to this objection is, that we 

must not treat a molecule as if it were isolated, like a heavenly 

body, since it is continually losing its motion by communication, 
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perhaps to neighbouring molecules, but at any rate to the lumi¬ 

niferous other; for without, a communication of the latter kind 

there would be no dispersed light. Hence we must consider the 

immediate tendency of (he disturbing forces rather than their 

tendency in tin1 long run. 

233. When a molecule itself vibrates in an irregularly 

periodical manner, the vibrations which it imparts to the ether 

are of course of a similar character. The resolution of these 

into vibrations corresponding to different degrees of refrangibility 

involves some very delieate mathematical considerations, into 

which I do not propose to enter. But without this it is evident 

that when the other is agitated by the vibrations of an immense 

number of molecules, in all possible states as regards amplitude, 

ami consequently periodic time of vibration, the disturbance of 

the ether must consist of a mixture of periodic vibrations, having 

their periods comprised between the greatest and least of those 

belonging to tin* molecular vibrations; and corresponding to those 

different periods there will be, portions of light of different degrees 

of refrangibility found in the dispersed beam. These refrangi- 

bilities will range between two limits, an inferior limit equal to 

the refrangibility corresponding to the periodic time of indefinitely 

small vibrations, and a superior limit equal to the refrangibility of 

the active light*. 

234. This theory seems to accord very well with the general 

character of dispersed beams, as regards the prismatic composition 

of the light of which they consist. When analysed by a prism, 

these beams a,re, sometimes found to break off abruptly at their 

more refrangible border, but I do not recollect ever to have met 

with an instance in which a beam broke off abruptly at the 

opposite border, except when the whole beam was almost homo¬ 

geneous. This is just as it ought to be according to the above 

theory, because the amplitude of vibration decreases indefinitely 

in approaching the less refrangible limit. In the case of a 

solution of chlorophyll, we may suppose that the part of the 

molecular forces of restitution depending on first powers of the 

displacements is considerable, on which supposition, the effect 

ought to approach to what would take place were there no other 

part. But were the forces of restitution strictly proportional to 
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the displacements, the vibrations would be isochronous, and could 

only he excited by ethereal vibrations having almost, exactly the 

same period, but would be powerfully excited by such. Ac¬ 

cordingly, in a solution of chlorophyll the dispersion comes on 

very suddenly; a large part of it is produced by active light 

of nearly the same refrangibility as the dispersed light; and the 

latter, by whatever active light produced, has nearly the same 

refrangibility that it had at first. This supposition, combined with 

the preceding theory, accounts also for the transparency of the 

fluid with respect to rays of less refrangibility than the first 

absorption band, for the great intensity of that band, for the 

rapidity with which opacity comes on at its less refrangible 

border, and the comparatively slow resumption of transparency 

on the other side. A difference of the same nature on opposite 

sides of a maximum of opacity seems to be a very common 

phenomenon in absorption. On the other hand, in those numerous 

cases in which the dispersion comes on gradually, in the manner 

described in Art. 44, wc may suppose the part of the forces of 

restitution depending on first powers of the displaeoments to he 

hut small. 

235. It may appear at first sight to be. a formidable, objection 

to the theory here brought forward, that, in the experiment, 

mentioned in Art. 21fi, tin; intensity of the dispersed light, did 

not appear to be more than doubled when tin- intensity of the 

incident disturbance was doubled; and that, in the experiment, 

described in Art. 215, the rays of low refrangibility did not, 

appear to exercise any protecting influence. Hut the difficulty 

may, I think, be got over by a very reasonable supposition. It. 

seems very natural to suppose that a given molecule remains for 

the greater part of the time at rest,, or nearly so, and only now 

and then gets involved in vibrations. On this supposition, it. is 

only a very small per-contage of the molecules that, at a given 

instant are vibrating to an extent worth considering. < lone.eive 

now a'stream of light consisting of the highly refrangible rays to 

be incident on a sensitive medium, and to cause. I per rent, of the 

sensitive molecules to vibrate considerably, the rest vibrating so 

little that they may he regarded as at rest. Now imagine a 

second stream, similar in all respects to the first, to influence the 

medium which is already under the influence of the first stream. 
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Of the 1 per cent, of the molecules already vibrating, many are 

vibrating, we may suppose, nearly with their maximum amplitude, 

and consequently are not much affected. Besides, it is a great 

chance if the epoch of the ethereal vibrations belonging to the 

second stream is such as to produce any great tendency either 

towards quiescence or towards disturbance in a molecule just for 

the short time that it is vibrating strongly under the influence of 

the first stream. But of the 99 per cent, of quiescent molecules 

1 per cent, are made to vibrate. Hence the effect of the two 

streams together is very nearly the same in kind as that of one 

alone, but double in intensity. 

236. The apparent absence of a protecting influence in the 

less refrangible rays seems at first more difficult to account for, 

but perhaps the following reasoning may be thought satisfactory. 

We ought not to attribute more influence in the direction of 

protection to a second beam of rays of low refrangibility, than in 

the contrary direction to a second beam of rays of high refrangi¬ 

bility. Now if the effect of a beam of rays of high refrangibility 

be to throw 1 per cent, of the molecules into a state of vibration, 

it would be a commensurate effect in a beam of rays of low 

refrangibility to stop the vibrations of 1 per cent, of the molecules, 

if they were all vibrating’ But since only 1 per cent, are actually 

vibrating, the real protecting effect amounts to no more than 

stopping the vibrations of one molecule in every 10,000, an effect 

which may be regarded as insensible. 

237. The simple consideration that work cannot be done 

without the expenditure of power, shows that when light incident 

on a medium gives rise to dispersed light, a portion at least of 

the absorption which the medium is observed to exercise must be 

due to the production of the dispersed light. If the dispersed 

light really arises from molecular disturbances, and for my own 

part I think it almost beyond a question that it does, it follows 

that in these cases light is absorbed in consequence of its being 

used up in producing molecular disturbances. But since we must 

not needlessly multiply the causes of natural phenomena, we are 

led to attribute the absorption of light in all cases to the pro¬ 

duction or augmentation of molecular disturbances, unless reason 

be shown to the contrary. It might seem at first sight that the 
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production or non-production of dispersed light establishes at 

once a broad distinction between different kinds of absorption. 

I do not think that much stress can be laid on this distinction. 

In the first place it may be remarked, that we have no reason to 

suppose that vibrations which are of the same nature as those of 

light are confined to the range of refrangibility that the human 

eye can take in. If, therefore, no dispersed light be perceived, 

it does not follow that no invisible rays are dispersed. If the 

incident light belong to the visible part of the spectrum, the 

dispersed rays (if any), being of lower refrangibility than the 

incident light, can only be invisible by having a refrangibility 

less than that of red light, and would manifest themselves solely 

or mainly by their heating effect. However, though invisible rays 

of this nature are in all probability emitted by the body in 

consequence of the absorption of visible light, we are not bound 

to suppose that in their mode of emission they precisely resemble 

the visible rays observed in the phenomena of internal dispersion. 

In most cases, perhaps, they are more nearly analogous to the 

visible rays emitted by solar phosphori. It is possible to conceive, 

and it seems probable that there exist, various degrees of molecular 

connexion from mere casual juxtaposition to the closest chemical 

union. A compound molecule may vibrate as a whole, by virtue 

of its connexion with adjacent molecules, or it may vibrate by 

itself, in the manner of an isolated vibrating plate or rod, and 

between these extreme limits we may conceive various inter¬ 

mediate modes of vibration. Hence, without departing from the 

general supposition that the absorption of light is due to the 

production of molecular disturbances, we may conceive that the 

modes in which the ether communicates its vibrations to the 

molecules, and the molecules in turn communicate their dis¬ 

turbances to the ether, are very various. 

I do not bring forward the idea that the absorption of light is 

due to the production of molecular disturbances as new, though 

possibly the communication of the ethereal vibrations to the 

molecules may hitherto have been supposed necessarily to imply 

the existence of synchronous vibrations among the molecules. 

The change in the periodic time of vibrations which takes place 

in the process of internal dispersion would hardly have been 

suspected, had it not been for the singular phenomenon which 

pointed it out. 
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238. The only theory of absorption, so far as I am aware, in 

which an attempt is made to deduce its laws from a physical 

cause is that of the Baron Von Wrede, who attributes absorption 

to interference*. The Baron’s paper is in many respects very 

beautiful, but it has always appeared to me to be a fatal objection 

to his theory that it supposes vibrations to be annihilated. It is 

true that two streams of light may interfere and produce darkness 

but then to make up for it more light is produced in other 

quarters. Light is not lost by interference, but only the illumina¬ 

tion differently distributed. Were the disappearance of light in 

the direction of a pencil admitted into a medium merely a 

phenomenon of interference, the full quantity of light admitted 

ought to be forthcoming in side directions. WTere a series of 

vibrations incident on a medium, without producing any pro¬ 

gressive change in its state, or any disturbance issuing from it, it 

would follow that work was continually being annihilated. But 

we have reason to think that the annihilation of work is no less a 

physical impossibility than its creation, that is, than perpetual 

motion. 

List of highly sensitive substances. 

239. For the sake of any one who may wish to make experi¬ 

ments in this subject, I subjoin a list of the more remarkable of 

the substances which have fallen under my notice. It will be 

seen that most of these substances were suggested by the papers 

of Sir David Brewster and Sir John Herschel. 

Glass coloured by peroxide of uranium: yellow uranite: nitrate 

or acetate of the peroxide. Probably various other salts of the 

peroxide would do as well. The absorption bands of the salts, 

whether sensitive or not, of peroxide of uranium ought to be 

studied in connexion with the change of refrangibility. 

A solution of the green colouring matter of leaves in alcoh^1 

To obtain a solution which will keep, it is well previously to 

the leaves in boiling water. The alcohol should not \ 
permanently in contact with the leaves, unless it be wisi 

observe the changes which in that case take place, but por 

* Poggendorff h Aimed cii, 33. xxxm. S. 353 ; or Taylor s Scientific Ifoi 

Vol. i. p. 477. 
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when the strength of the solution is thought sufficient. Also, the 

solution when out of use must be kept in the dark. 

A weak solution of the bark of the horse-chestnut. 

A weak solution of sulphate of quinine, Le. a solution of the 

common disulphate in very weak sulphuric acid. Various other 

salts of quinine are nearly if not quite as good. 

Fluor-spar (a certain green variety). 

Red sea-weeds of various shades: a solution of the red colour¬ 

ing matter in cold water. If a solution be desired, a sea-weed 

must be used which has never been dried. Sometimes even a 

fresh sea-weed will not answer well. 

A solution of the seeds of the Datura stramonium in not too 

strong alcohol. 

Various solutions obtained from archil and litmus (see Arts. 

65 to 72). 

A decoction of madder in a solution of alum. 

Paper washed with a pretty strong solution of sulphate of 

quinine, or with a solution of stramonium seeds, or with tincture 

of turmeric. The sensibility of the last paper is increased by 

washing it with a solution of tartaric acid. This paper ought to 

be kept in the dark. 

A solution, not too strong, of guaiacum in alcohol. 

Safflower-red, scarlet cloth, substances dyed red with madder, 

and various other dyed articles in common use. 

Many of the solutions here mentioned are mixtures of various 

compounds. Of course if the sensitive substance can be obtained 

chemically pure it will be all the better. 

Conclusion. 

240. The following are the principal results arrived at, in the 

course of the researches detailed in this paper :— 

(1) In the phenomenon of true internal dispersion the 

refrangibility of light is changed, incident light of definite 

refrangibility giving rise to dispersed light of various refrangi- 

bilities. 

(2) The refrangibility of the incident light is a superior limit 
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to the refrangibility of the component parts of the dispensed 

light, 

(3) The colour of light in in general changed by internal 

dispersion, the* new colour always corresponding to the new 

refrangibility. It is a matter of perfect indifference whether the 

incident rays belong to the visible or invisible part of the 

spectrum. 

(4) The nature and intensity of the light dispersed by a 

solutionf appear to la* strictly independent of the state of polariza¬ 

tion of the incident rays. Moreover, whether the incident rays be 

polarized or unpolarized, the dispersed light offers no traces of 

polarization. It seems to emanate equally in all directions, as if 

the fluid were self-luminous. 

(5) The phenomenon of a change of refrangibility proves to 

be extremely common, especially in the case of organic substances 

such as those ordinarily met with, in which it is almost always 

manifested to a greater or less degree. 

((>) It a (fords peculiar facilities for the study of the invisible 

rays of the- spectrum more refrangible than the violet, and of tin* 

absorbing action of media with respert to them. 

(7) It- furnishes a new ehemienl test, of a, remarkably searching 

character, which seems likely to prove of great value in the sepa- 

rution of organic compounds. The test is specially remarkable for 

this, that, it leads to the independent recognition of one or more 

sensitive substances in a mixture of various compounds, and shows 

to a great extent, before such substances have been isolated, in 

what menstrua they are soluble, and with what agents tiny enter 

into combination. Unfortunately, these observations for the most 

part require sunlight. 

(8) The phenomena of internal dispersion oppose fresh difli- 

culties to the supposition of a difference of nature in luminous, 

ehemieal, and phospliorogenie rays, but. are perfectly conformable 

* [The statement was designedly limited to “a solution” (which I thought 

might include glass, as a solution made at a high temperature) because it seemed 

d priori very likely that there might ho a dependence in the case of a crystal; and 

I think that I had already seen reason from observation to at least suspect that 

such there was in the case of crystals of nitrate of uranium. Some time afterwards 

almost marked dependence was observed in the case of platinocyanidos. ] 
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to the supposition that the production of light, of chemical 

changes, and of phosphoric excitement, are merely different effects 

of the same cause. The phosphorogenic rays of an electric spark, 

which, as is already known, are intercepted by glass, appear to be 

nothing more than invisible rays of excessively high refrangibility, 

which there is no reason for supposing to be of a different nature 

from rays of light. 

NOTES ADDED DURING PRINTING. 

Note A. Art. 2ffi 

Shortly after the preceding paper was forwarded to the Royal 

Society, I found M. Edmond Becquerel’s map of the fixed lines of 

the chemical spectrum, which is published in the 40th volume of 

the Bibliothique Universelle de Geneve (July and August, 1842). 

I had seen in Moigno’s Repertoire d’Optique Moderne, that the 

map had been presented to the French Academy, and naturally 

felt anxious to obtain it; but not finding any further notice of it 

either in that work or in the Coniptes Rend us, I supposed that it 

had not yet been published. The principal lines in this map 1 

recognized at a glance. M. Becquerel’s broad band I is my l; his 

group of four lines M with the preceding band forms my group m ; 

his group of four lines Rf forms the first four of my group n; his 

line 0 is my n. It is only in the last group that there can be any 

doubt as to the identification; but I feel almost certain that 

M. Becquerel’s P is my o, and the next two lines, the last in his 

map, are the two between o and p. It is difficult at first to 

believe that the strong line p should have been left out, while the 

two faint lines between o and p are represented, but the difficulty 

is, I think, removed by considering the feeble photographic action 

in that part of the spectrum. M. Recquerel expressly states that 

lines were seen beyond the last he has represented, though they 

were hardly distinct; and on comparing together his map, Mr 

Kingsleys photographs, and my own map, I think hardly any 

doubt can remain as to the identification. 
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I take this opportunity of referring to another very interesting 

paper of M. Bccqucrel’s, entitled “Des effets produits sur les corps 

par les rayons solaires,” which is published in the Annates de 

Olrimie, tom. IX. (1843), p. 257, and with which I was not ac¬ 

quainted till lately, or I should have referred to it before. This 

paper contains, among other things, an investigation of the effects 

of transparent and coloured screens on the luminous, chemical, and 

phosphorogcnic rays, in which it is shown that, notwithstanding 

the great difference in the action of a given screen on the three 

classes of rays when we study the effect of the incident rays as a 

whole, its action is the very same when we confine our attention 

to rays of any one refrangibility. Among the media employed by 

M. Becqucrcl, arc some whose absorbing effect I have mentioned 

in the present paper, as having been determined by methods 

depending upon the change of refrangibility. In such cases my 

own results, as might have been anticipated, are in perfect harmony 

with those of M. Becqucrcl. With respect to the results at which 

I have arrived regarding the nature of the phosphorogenic rays of 

an electric spark, which are mentioned towards the end of the 

paper, I have been in a good measure anticipated by M. Becquerel. 

Yet T do not think that even he was aware that so much of the 

effect of the spark was due to rays of such high refrangibility. 

Note B. Art. 105. 

I have since succeeded, by a particular arrangement, in seeing 

so far into the “ lavender ” rays as to make out the groups of fixed 

lines m, n,p by means of light received directly into the eye, and 

even to perceive light beyond that *. 

As to the colour of these rays when they are well isolated, I 

think the corolla of the lavender gives as good an idea of it as 

could be expected from the circumstances. They seem to me to 

want the luminousness of the blue and the ruddiness of the violet. 

* [The arrangement actually adopted was to form a pure spectrum with a 

quartz train in the usual way, to isolate and at the same time condense a small 

portion of the spectrum by a small quartz lens of short focus placed in or near the 

pure spectrum, and to view the spot of light so formed from some distance behind 

through a quartz prism applied to the eye. This prism was cut to show practically 

single refraction, and its office was of course to remove to one side the scattered 

light belonging to the ordinarily visible spectrum.] 

S. III. 26 
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No doubt much error and uncertainty has hitherto existed both as 

to the colour and as to the illuminating power of these rays, 

because the gray prolongation of a spectrum formed on paper by 

projection has been mistaken for the lavender rays. 

Note 0. Art. 154. 

On adding common phosphoric acid to a solution of nitrate of 

uranium no effect seemed to be produced, but on examining the 

vessel some days afterwards, a precipitate was found to have 

fallen. This precipitate proved to be sensitive in a very high 

degree. 

Note D. Art. 158. 

I have since observed in a mineral solution a system of absorp¬ 

tion bands so remarkable, and so closely resembling in many 

respects those found in the salts of peroxide of uranium, though 

they occur in a totally different part of the spectrum, that I think 

no apology is needed for mentioning the circumstance. The 

medium referred to is a solution of permanganate of potassa, in 

fact, red solution of mineral chameleon. In order to see the 

bands, it is essential to employ a dilute solution, or else to view 

it in small thickness, since otherwise the whole of the region in 

which the bands occur is absorbed. The bands are five in number, 

and are equidistant, or at least very nearly so. The first is situated 

at about three-fifths of a band-interval above D ; the last coincides 

with F, or, if anything, falls a little short of it. The second and 

third are the most intense of the set. I have carefully examined 

the solution for change of refrangibility, and have not found the 

least trace. Ferrate of potassa shows nothing remarkable. 

By means of the bands just mentioned, the colour of perman¬ 

ganate of potassa may be instantly and infallibly distinguished 

from that of certain other red solutions of manganese, the colour 

of which some chemists have been disposed to attribute to per¬ 

manganic acid (see a paper by Mr Pearsall “On red Solutions 

of Manganese,” Journal of the Royal Institution, New Series, 

No. iv. p. 49). 
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Note E. Art. 171. 

If we suppose the angle of incidence exactly equal to 45°, 

assume $ for the refractive index of the fluid, and apply Fresnel’s 

formulae to calculate the ratio of the intensity of light reflected at 

the exterior surface of a bubble, and polarized in a plane perpen¬ 

dicular to the plane of incidence, to that of light similarly reflected 

and polarized in that plane, we find 0‘228 to 1, a ratio which 

certainly differs much from one of equality. But in order to 

render the two intensities equal, it is sufficient to increase the 

angle of incidence by only 3° 35'; and in fact, as a matter of 

convenience, the position of the observer was usually such that 

the deviation of the light was somewhat greater than 90°, and 

therefore the angle of incidence somewhat greater than 45°. 

Note F. Art. 191. 

I have since received a slab of glass of the kind here 

recommended, which has been executed for me by Mr Darker 

Df Lambeth, and which answers its purpose admirably, the 

medium being eminently sensitive. Besides its general use as 

x screen, this slab, from its size and form, has enabled me to 

brace further than I had hitherto done (Arts. 75, 76) the 

connexion between certain fluctuations of transparency which 

die medium exhibits and corresponding fluctuations of sensi¬ 

bility. 

Note G. Art. 192. 

Paper washed with a mere infusion of the bark of the horse- 

chestnut is quickly discoloured; but a piece washed with a 

solution which had been purified by chemical means remained 

white, and proved exceedingly sensitive. 

Note H. Art. 204. 

I have since ordered a complete train of quartz, of which a 

considerable portion, comprising among other things two very fine 

prisms, has been already executed for me by Mr Darker. With 

Lhese I have seen the fixed lines to a distance beyond H more 

26—2 
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than double that of p ; so that the length of the spectrum, reckoned 

from H, was more than double the length of the part previously 

known from photographic impressions. The light was reflected 

by the metallic speculum of a Silbermann’s heliostat, which I 

have received from M. Duboscq-Soleil. With the glass train the 

group p was faint, but with the quartz train there was abundance 

of light to see not only the group p, but the fixed lines as far as 

Hpl, or thereabouts. From the group n to about the middle of 

the new region, the lines are less bold and striking than in the 

region of the groups II, l, m, n, but the latter part of the new 

region contains many lines remarkable both for their strength and 

for their arrangement. I hope to make a careful drawing of these 

lines as shown by the complete train with a summer’s sun. 

I have some reasons for believing that the photographic action 

of these highly refrangible rays is feeble, perhaps almost absolutely 

null. In the second of the papers referred to in Note A (p. ;}(>()), 

M. Becquerel describes an experiment in which a prism of quartz 

was employed to form a spectrum ; and yet the impressed spectrum 

formed by rays which had traversed the quartz alone was hardly 

longer than that formed by rays which, in addition to the quartz, 

had traversed a screen of pure flint-glass a centimetre in thickness. 

It is possible, I am inclined to think probable, that glass made 

with perfectly pure materials would be transparent like quartz, 

but all the specimens I have examined were deeidedly defertive 

in transparency. Besides, M. Becquerel, who may bo allowed to 

be the best judge of his own experiments, considered the result- 

just mentioned as a proof that the impressed speetrum formed by 

rays which had traversed quartz only did not extend, except a 

very trifling distance, beyond that formed by his train of glass ; 

and yet his map, formed by means of the latter, does not take in 

the line p. 

However, among the multitude of preparations capable of 

being acted on by light, it is probable that there may lx* some* 

which are acted on mainly by rays of unusually high refrangibilif y, 

and which, on that very account, would not be suitable for the 

ordinary purposes of photography. With these it is possible 

that the new region of the solar spectrum might he taken 

photographically. 
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Note I. Art. 213. 

I have wince examined the salt, or product, whatever it may 

be, in the dry state, and under more favourable circumstances, and 

have found it sensitive, though not by any means in a high degree. 

It exhibits also the absorption bands which seem to run through 

the salts of peroxide of uranium. 

hi connexion with the insensibility of a solution of nitrate of 

uranium in ether, it seems interesting to mention a fact which I 

have since observed, namely, that the sensibility of a solution of 

nitrate of uranium in water is destroyed by the addition of a little 

alcohol. 

Note J. Art. 217. 

On repeating this experiment on a subsequent occasion, I 

could not satisfactorily make out the difference of character of a 

strong and of a weak spark from the prime conductor, perhaps 

because the machine was in less vigorous action; but the difference 

between the effects of a mere spark and of the discharge from a 

Leyden jar was plainly evident. I would here warn the reader, 

that in order to perform the experiment in such a manner as 

to obtain a striking and perfectly decisive result, it is essential 

to employ an excessively weak solution. The reason of this is 

(widen t. 

A severe thunder-storm which visited Cambridge on the 

evening of July 16, 1852, afforded me a good opportunity of 

observing the effect of lightning on a solution of quinine, and 

other sensitive media. From the copiousness of the dispersed 

light, it was evident that the proportion of the active, and 

therefore highly refrangible, rays to the visible rays was very 

far greater in the radiation from lightning than in daylight. 

A difference of character was observed between the effects of 

a weak distant flash, and of a bright flash nearly overhead, 

similar to that which has been described with reference to the effects 

of a spark from a machine, and of the discharge from a Leyden jar. 

In artificial discharges, the stronger the spark the more the rays of 

excessively high refrangibility seem to abound, in proportion to 

the whole radiation. Now a flash of lightning is a discharge 
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incomparably stronger than that of a Leyden jar. It might 

have been expected, therefore, that the radiation from lightning 

would be found to abound in invisible rays of excessively high 

refrangibility. Yet I could not make out in a satisfactory manner 

the absorption of the rays by glass, even by common window- 

glass. I do not wish to speak positively regarding the result 

of this observation, for of course observations with lightning 

are more difficult than those made with a machine which is 

under the control of the observer. Yet it did seem as if the 

spark from a Leyden jar was richer than lightning in rays of 

so high a refrangibility as to be stopped by glass. If this be 

really true, it must be attributed to one of two things, either 

the non-production of the rays in the first instance, in the 

case of lightning, or their absorption by the air or clouds in 

their passage from the place of the discharge. If they were 

not produced, that may be attributed to the rarity of the air 

at the height of the discharge, that is, at the height of the 

thundcr-cloud. No doubt the metallic points of the discharger 

belonging to the electrical apparatus may have had an influence 

on the nature of the spark; but I am inclined to think that this 

influence, so far as it went, would have acted in the wrong 

direction, that is, would have tended to produce rays of lower, at 

the expense of those of higher refrangibility. 

Note K. Art, 220. 

My attention has recently been called to a paper by M. llriirke 

(Poggcndorffs Annalen, R V. (LS45) S. add), in which hr describes 

some experiments which show that the different parts of tin* eye, 

and especially the crystalline lens, arc far from transparent with 

respect to the rays of high refrangibility. The eyes employed 

were those of oxen and some other animals; and the inquiry was 

carried on by means of the effect which light that had passed 

through the part of the eye to be examined produced on a film of 

tincture of guaiacum that had been dried in the dark. ()f course 

the phenomena described in the present paper afford peculiar 

facilities for such an inquiry, and I had frequently thought of 

entering upon it, but have not yet made any observations. 

Independently of the facility of the observations, and the ad- 
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vantage of being able to examine readily light of each degree 

of refrangibility in particular, the results obtained by means of 

sensitive media seem to be more trustworthy on this account, 

that it would be possible to employ fresh eyes. The experiments 

of M. Brticke necessarily occupied a considerable time, and it may 

be doubted whether the eye, especially after dissection, might not 

have changed in the interval, and whether the results so obtained 

are applicable to the eye as it exists in the living animal. 
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235, 236. 

Permanganate of potassa, ah. orption, I>. 

Phosphorescence compared with internal 

dispersion, 220 225. 

Phosphorogenic rays of an electric , pat k, 
nature of the, 219 221, A. 

Polarization, absence of, in di: perse*l 

light, 1, 15; of the incident, iays a 

matter of indifference, 20, 
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Polarized light, direction of the vibra¬ 
tions in, 183. 

Quartz, transparency of, 202, 217—219; 
train, 204, II. 

Quinine, absorption of the violet by a 

solution of sulphate of, 11; internal 

dispersion in a solution of, 14—20; 

strong affinity of, for hydrochloric, 

hydrobromie and hydriodic acids, 
205—211. 

Itays, course of, exhibited, 193. 

lleflecting power (see Absorbing power). 

Kefrangibility of dispersed light, lower 

than that of the incident, 80, 102, 

230 —230; nature of the, 81, 82; il¬ 

lustrated by a Hiirfaco, 84, 85. 

Results, principal, 240. 

Screen, on the choice of a, 189—192, F, 
G. 

Sea-weeds, red, 121—126. 

Strata of equal dispersion in crystals, 
167. 

Test objects, 110, 114, 200. 

Triangle, experiment with a paper, 58. 
Turmeric, tincture of, 42; paper, 87—91. 

Uranium, salts of the peroxide, &c., 

157—162, 213, C, I (see also Canary 
glass); delicate test of, 159; absorption 

of light by salts of protoxide of, 160, 
163. 

Washed papers, 87—98. 



ADDITION TO THE RRECKIM N(! RARER. 

[For a long time, in fact from before 1867, I have taken a 

different view of the nature of tin* phenomenon from that indieatcd 

in Arts. 63 and a few following. I was h*d to it by a phenomenon 

I casually noticed in making observations on the thioresrenee of 

various glasses. The sun’s light was rebooted horizontally into a 

darkened room, passed through a convex lens, and with or without 

previous filtration by passing through a blue glass plaeed at or 

near the focus, was admitted info tin* glass to he examined. In 

general the fluorescence when examined in this way showed no 

appreciable duration, hut in one class of glasses when tin* glass 

was merely moved sideways by hand somewhat rapidly a<To» the 

incident pencil, a luminous trail was seen extending bom the 

focus at the moment into tin* part of the glass on which the focus 

had previously fallen. Tint colour of the fluorescent rone as a 

whole wdien the glass wars at rest, and that of tin* root of the trail 

(or part nearest to the focus) when the glass w\*n in nnam, varied 

with the composition of fin* glass, but the dmt ribution of {he, 

fluorescence in tin? spectrum wdien the glass wars oxamined in an 

intense and fairly pun* spectrum was the same or \cry nearly so, 

and was that characteristic distribution alluded fn in ^ 78. 1 may 

mention that I have eireumstantial evidence that the » ubstanee 

in the glass to wdiich tliis eife«*t was due was maugauc e in a lower 

state of oxidation than that, wdiich gi\cs (In* purple c»»lnur. Now 

the colour of the trail changed from its root, to its end, 1 >eetaniug 

reddish at last, in such a manner as to indicate a den easing mean 

iehangrbility, excc.pt m one cast*, t hat of a pinephat ie ,j>la.->s 

prcpaied by the Rev. \V. V(*nn»n-1 huvourt, where the colour was 

led to start with, so that there was no opportunity to change. 

Ihc change of colour with the lapse of time since excitement 

of the glass led me to regard the alteration in the molecular 

distmbanco as brought about in the following manner. The 
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incident vibrations of the ether agitate the sensitive molecule or 

complex molecule, and this agitation gradually spreads outwards 
by the molecular forces into the complex system formed of the 

sunounding molecules and molecular groups, which may be mostly 

themselves insensible, very much in the manner in which if a 

vcry mi*nute portion ot a metallic mass be supposed strongly 
heated to start with, the heat is rapidly diffused into the neigh¬ 

bourhood by conduction ; and if the heated spot is at the surface, 

so as to permit of radiation outwards, the radiant heat is of a 

mean ref Eligibility which decreases as the time goes on. Indeed 

the phenomenon of fluorescence, which is a brief phosphorescence, 
seems to be closely akin to the very familiar one of the heating 

of a body by sunshine, and the consequent emission of heat-rays 
of low refrangibility. 

Being desirous of seeking an analogy in some simple dynamical 
problem which could be actually worked out, I took the case of 
an infinite weightless flexible and inextensible stretched string, 

loaded at equal intervals with equal masses, and supposed one of 

the masses permanently acted on by a small transverse disturbing 

force expressed by c shinty t being the time, and I demanded the 
permanent state of motion of the masses. It proved to be of a 

different character according as the frequency of the disturbing 

force was greater or less than that corresponding to the shortest 
of the periods, infinite in number, belonging to the natural oscilla¬ 

tions of the loaded string when no disturbing force is acting. 
Take the mean position of the mass on which the disturbing force 

acts for the origin of abscissae. The motion will of course be 
symmetrical on the two sides of the origin, and it will suffice to 
refer to that on the positive side. When the period of the force 

is greater than the critical period, the disturbance extends to 

infinity. It is of the nature of an undulation propagated outwards 

from the origin, and the various masses will at any moment lie on 
a curve of sines. But when the period of the force is less than 
the critical period, the disturbance instead of extending to infinity 

decreases on receding from the origin, and the masses at any 
moment lie in a curve derived from a fixed curve of sines by 
diminishing at a given moment the ordinates in geometric pro¬ 

gression as we recede from the origin, while as the time changes 

all the ordinates vary as sin nt 
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Suppose now that the system is at rest and that the disturbing 

force begins to act. A motion will be produced gradually tending 

to become that permanent kind of motion above referred to. Jf 

the period of the force be greater than the critical period, no 

significant local disturbance can result, because the disturbance 

near the origin which the force tends to produce is carried away 

in both directions. But when the period of the force is less than 

the critical period the local disturbance mounts up continually, 

tending towards its permanent state. 

Suppose now the disturbing force, after having acted long 

enough to bring the motion into its permanent state, were then 

to cease. In the first case there would indeed be a change of 

motion in the neighbourhood of the origin; but as the excursions 

of the masses would be but small, for the reason already mentioned, 

the effect of the change would be quite insignificant. But in the 

second case the disappearance of the force would leave the masses 
in the neighbourhood of the origin in a condition of displacement 
or motion which is not, as in the former case, insignificant, and 

which may be thought of as an initial disturbance in a system 

now left to itself. This disturbance would gradually widen out so 
as to involve a continually increasing group of masses, and the 
variation of the motion as at a given moment we proceed along 
the string would become less and less sharp as the time progresses, 

so that the disturbance if harmonically resolved would give a 

result in which the elements of the resolution corresponding to 

longer periods would acquire an increasing relative importance. 

The general analogy of these dynamical results to tho plmim- 

mena of fluorescence will I think be readily perceived. Tim 

periodic force acting on one of the masses of our loaded string is 
analogous to the action of the incident ethereal vibrations on a 

constituent part of a complex molecule or molecular group. Tim 

considerable but finite regularity of the disturbing foreu is 

analogous to what we must suppose to be going on as regards tint 

ethereal vibrations in a small portion of a nearly pure spectrum. 

The agitation of the masses when the disturbing force; erases and 

the loaded string is left to itself is analogous to the agitation of 

the excited molecules when one series of regular incident, ethereal 

vibrations comes to an end and is replaced by aimther such scrie*s, 
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or a secular change takes place in the incident vibrations which 

is equivalent to a succession of such independent series. 

We are far from being able to subject molecular disturbances 

to strict mathematical calculation; for in the first place we are 

ignorant of the molecular structure to which the calculations 

would have to be applied, and in the second place even if we did 

know the structure, the calculations would very probably prove 

to be too complicated to be satisfactorily carried out. Neverthe¬ 

less the calculation in some assumed system of a tolerably simple 
character which possesses some features in common with that 

which is supposed to lie at the base of some observed phenomenon 
may not be without use, as indicating in what direction we are to 

look, or are not to look, for an explanation of the phenomenon. 

In the present case if we vary the problem by merely supposing 

that the equidistant masses are of two magnitudes, coming 
alternately, a result is obtained having some features strikingly 

resembling those of absorption.] 
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aalyser, a new elliptic, 197. 

rc of vibration of pendulums, effect of 

viscosity on, 111. 

lily’s pendulum experiments, discus¬ 

sion of, 70. 

sssel’s pendulum experiments, discus¬ 

sion of, 92. 

aange of rcfrangibility of light (ab¬ 

stract), 259 ; (paper in full), 267. For 

index see p. 408. 

.ouds, explanation of apparent suspen¬ 

sion of the, 10, 59. 

floured rings, experiment showing 

fixed in air, 159, 167, 180. 

flours of natural bodies, 350. 
flours of thick plates, 155. 

imposition and resolution of streams 

of polarized light from different 

sources, 233. 
iulomb’s experiments on viscosity, 9, 

21, 97. 
rystals, conduction of heat in, 203; 

fluorescenco in, 242, 351, 399. 

finder in a viscous fluid, oscillating, 

38; moving uniformly, 02. 
issipation of energy due to viscosity, 

07; dissipation function, 09. 
ubuat’s experiments on resistance, 107. 

lliptically polarized light, experimental 

determination of elements of, 197. 

Lliptically polarized light, distinction 

between, and common light, 235. 

pipolic dispersion of light, 259, 207. 
iames, feebly illuminating, richness 

of, in rays of high rcfrangibility, 373. 

luorcscence, 289 ; cause of, 271, 388, 

410; comparison between, and phos¬ 

phorescence, 385. 

Heat, conduction of, in crystals, 203. 

Instability of motion of a viscous fluid 

past an infinite cylinder, 62. 

Intensity, total, of interfering light, 228. 

Interference, absence of, in two scattered 

streams of light from the same source, 

187. 
Internal friction of fluids (see Viscosity). 

Opposite polarization, definition of, 239. 

Pencil of rays, delicate mode of exhi¬ 

biting a, 370. 

Pendulums, effect of internal friction of 

fluids on motion of, 1. 

Polarized light, direction of vibrations 

in, 361. 
Radiation, effect of, in stifling sound, 

142; on the velocity of sound in a 

tube, 149. 
Sound, possible effect on, of radiation 

of heat, 142. 

Sphere in a viscous fluid, effect of vis¬ 

cosity on an oscillating, 22; on a 

uniformly moving, 55. 

Stifling, theoretical, of sound by radia¬ 

tion, 142. 
Tomlinson’s experiments on viscosity, 

139. 
Uranium compounds, relation between 

dark bands of absorption in, and 

bright bands of light emitted by, 345, 

346. 
Viscosity of fluids, effects of, on the 

motion of immersed bodies, 1. 
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