For Reference

NOT TO BE TAKEN FROM THIS ROOM

For Reference

NOT TO BE TAKEN FROM THIS ROOM

.

.

THE UNIVERSITY OF ALBERTA

A LINKAGE STUDY INVOLVING TRANSLOCATIONS

OF CHROMOSOME 6 IN BARLEY

by

OREST MARTIN MYLYK

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF GENETICS

EDMONTON, ALBERTA

OCTOBER, 1966

the second second

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies for acceptance, a thesis entitled "A linkage study involving translocations of chromosome 6 in barley," submitted by Orest Martin Mylyk in partial fulfilment of the requirements for the degree of Master of Science.

ABSTRACT

The translocations T1 - 6e, T2 - 6a, T3 - 6d, T4 - 6a, T5 - 6a, T5 - 6b, T5 - 6c, and T6 - 7b were crossed with two lines having markers previously associated with chromosome 6, one line recessive for gp_2 and and gl_4 and segregating for gs_4 , and the other recessive for gp_2 , cu, and o.

The genes <u>gs4</u> and <u>o</u>, which are located near the centromere, invariably showed strong linkage with the translocations, this being expected if little or no detectable recombination occurs in interstitial segments or if the translocation breakpoints are near the genes. The gene <u>gl4</u> showed linkage only with the translocations T4 - 6a (5.1 ± 1.1% recombination) and T5 - 6b (26.8 ± 5.0% recombination), and <u>gp2</u> and <u>cu</u> did not convincingly show linkage with any translocations.

The genes \underline{gp}_2 , \underline{gl}_4 , and \underline{cu} , if on chromosome 6, appeared to be distant from one another and from the centromere, but evidence from this study indicated that \underline{gp}_2 and \underline{cu} may not be located on this chromosome. The possible sequence of the genes and translocations studied was suggested.

C = And C =

And and a second second and date of a weak of the second secon

ACKNOWLEDGEMENTS

I am very very grateful to Dr. G.W.R. Walker for his sincere guidance and encouragement during this investigation and in the preparation of this manuscript. I am also grateful to other members of the Department of Genetics for their assistance, especially Mr. Jack Dietrich for his suggestions on experimental methods and Miss Margaret Maclean for her skillful typing.

This study was supported by grants to Dr. G.W.R. Walker from the National Research Council of Canada.

And the problem of the second descent of the second descent to the second descent to the second descent to the second descent to the second descent de

Name and any other than the part of the second of the seco

TABLE OF CONTENTS

	Page
INTRODUCTION	1
General	1
Chromosomes in Barley	2
Translocation Studies	4
Behavior of Translocations	4
Translocations in Linkage Studies	8
Designation of Genes and Translocations	10
MATERIALS AND METHODS	11
Description of Characters	11
Experimental Procedure	14
Treatment of Data	17
RESULTS AND DISCUSSION	20
Plant Vigor and Viability	20
Classification of Mutants	20
Tests for Linkage	21
T1 - 6e	23
T2 - 6a	27
T3 - 6d	32
T4 - 6a	36
Т5 - ба	40
T5 - 6b	44
Т5 - 6с	48
T6 - 7b	52
Distorted Character Segregation	57
Orientation of Genes and Translocations	57
BIBLIOGRAPHY	63

10.000 AV 1.000

a.

AND ADDRESS OF A CONTRACTOR OF A DATA AND ADDRESS OF ADDRESS OF A DATA AND ADDRESS OF AD
And and a state of the state of
CONTRACTOR - CONTRACTOR INCOME TO A DESCRIPTION OF THE PARTY OF THE PA
THE REPORT OF A DESCRIPTION OF A DESCRIP
AND THE REPORT OF A DESCRIPTION OF A DES
and the second s
tory - set to the set of the set

LIST OF TABLES

Page

Table	1	Current and previous designations of chromosomes and linkage groups in relation	
		to key marker genes	3
Table	2	Genetic stocks and their origin	12
Table	3	List of crosses	13
Table	4.	Tests for segregation of characters in F ₂ 's of crosses involving T1 - 6e	24
Table	5	Tests for linkage between semisterility and genes in F_2 's of crosses involving T1 - 6e	25
Table	6	Tests for linkage between genes in crosses involving T1 - 6e	26
Table	7	Tests for segregation of characters in F_2 's of crosses involving T2 - 6a	29
Table	8	Tests for linkage between semisterility and genes in F ₂ 's of crosses involving T2 - 6a	30
Table	9	Tests for linkage between genes in F ₂ 's of crosses involving T2 - 6a	31
Table	10	Tests for segregation of characters in F ₂ 's of crosses involving T3 - 6d	33
Table	11	Tests for linkage between semisterility and genes in F_2 's of crosses involving T3 - 6d	34
Table	12	Tests for linkage between genes in F ₂ 's of crosses involving T3 - 6d	35
Table	13	Tests for segregation of characters in F ₂ 's of crosses involving T4 - 6a	37
Table	14	Tests for linkage between semisterility and genes in F_2 's of crosses involving T4 - 6a	38
Table	15	Tests for linkage between genes in F2's of crosses involving T4 - 6a	39
Table	16.	Tests for segregation of characters in F2's of crosses involving T5 - 6a	41
Table	17	Tests for linkage between semisterility and genes in F ₂ 's of crosses involving T5 - 6a	42
Table	18	Tests for linkage between genes in F ₂ 's involving T5 - 6a	43

period and the second of the second s	
And a subsection of the second data and the second se	
And a second sec	
A REAL PROPERTY OF A DESCRIPTION OF A DE	
 And and and and and and and and and and a	
Colorado Co	
And I AND ADDRESS	
and and stand in the second stand of the second stand stands and the second stand st	
AND DESCRIPTION OF THE OWNER AND DESCRIPTION	U Dire
A A A A A A A A A A A A A A A A A A A	
NAME OF TAXABLE PARTY AND ADDRESS OF TAXABLE PARTY.	
The second secon	
CONTRACTOR	
catigan of an and an and a second sec	

and the second s

P	a	g	e

Table	19	Tests for segregation of characters in F_2 's of crosses involving T5 - 6b	45
Table	20	Tests for linkage between semisterility and genes in F ₂ 's of crosses involving T5 - 6b	46
Table	21	Tests for linkage between genes in F ₂ 's of crosses involving T5 - 6b	47
Table	22	Tests for segregation of characters in F2's of crosses involving T5 - 6c	49
Table	23	Tests for linkage between semisterility and genes in F ₂ 's of crosses involving T5 - 6c	50
Table	24	Tests for linkage between genes in F ₂ 's of crosses involving T5 - 6c	51
Table	25	Tests for segregation of characters in F2's of crosses involving T6 - 7b	54
Table	26	Tests for linkage between semisterility and genes in F ₂ 's of crosses involving T6 - 7b	55
Table	27 .	Tests for linkage between genes in F ₂ 's of crosses involving T6 - 7b	56

man in a second second

and all all and a literation of a second be	
second here additionances constrained and aller	
and an and a second sec	
Logic in contraction in the second second	
Annual international distance in the second se) L =1(0#3
align of a second secon	
AT A REAL PROPERTY OF A REAL PROPERTY AND A REAL PROPERTY.	
	di showi
	ve adae

LIST OF FIGURES

Page

INTRODUCTION

General

Barley has been the subject of genetic research since Tschermak's rediscovery of Mendel's laws (Smith, 1951). Early genetic studies dealt with the inheritance of naturally occurring variants. Cytological work was concerned largely with the determination of chromosome numbers and karyotypes of various species (Smith, 1941).

In recent years, genetic and cytological study has focussed largely on experimentally induced mutations and chromosome aberrations (Nilan, 1964). It has concerned (1) the induction process and modes of action of physical and chemical agents used, (2) the inheritance and cytological behavior of these variants, and (3) the agronomic application of these variants (see Smith, 1951, and Nilan, 1964, for extensive reviews on the genetics and cytology of barley). It is the second aspect with which the study reported here is concerned.

Genetic studies have led, in part, to the elucidation of linkage maps for barley (Robertson <u>et al.</u>, 1941, 1947, 1955, 1965). Translocations have facilitated these studies extensively, having permitted the association of linkage groups with chromosomes (Ramage <u>et al.</u>, 1961). Moreover, they have aided in the localization of centromere regions (Hanson, 1952; Ramage, 1964) and in the orientation of genes on chromosomes (Kramer and Blander, 1961). In addition they have aided in the cytological localization of some genes (Hagberg and Tjio, 1950; Nilan, 1964), although the inseparability of some phenotypes so localized from translocations suggests that they may be attributable to position effects rather than mutations.

JACKS.

And and a second state of the second of the second state (second state state at the second state state at the second state (second state state at the second state s

Although seven linkage groups were established in early linkage studies (Robertson <u>et al.</u>, 1941), two of these were subsequently associated with one chromosome (Kramer <u>et al.</u>, 1954). It was found that the chromosome currently designated as chromosome 6 possessed no known markers. Since this discovery, a number of mutants and translocations have been associated with chromosome 6, but these are not abundant, and the sequence is not particularly well established. The work reported here is a linkage study involving eight translocations and five mutants associated with chromosome 6. It was carried out with the anticipation that localization of the translocation breakpoints in relation to genes would facilitate linkage studies in the future.

Chromosomes in Barley

Barley has seven pairs of chromosomes. Descriptions and designations are based largely on the karyotype studies, descriptions, and measurements of Tjio and Levan (1950) and Tjio and Hagberg (1951). Currently, chromosomes and linkage groups are designated by the Arabic numerals 1 - 7 (Ramage <u>et al.</u>, 1961). Chromosomes 1 - 5 are the non-satellited chromosomes in order of length, chromosome 1 being the longest and chromosome 5 the shortest of this group. Chromosomes 6 and 7 are satellited, chromosome 6 being the shorter but having the larger satellite. Chromosome 6 is a strong, and chromosome 7 a weak nucleolus organizer. Other chromosomes occasionally exhibit nucleolarorganizing capacities (Nilan, 1964). Reports about tertiary constrictions observed in chromosomes vary, and some differences probably occur between varieties (Nilan, 1964).

Table 1 relates the present designations of chromosomes and linkage groups with key marker genes and previous designations commonly used in karyotype, linkage, and translocation studies.

-2-

VALUE OF REPORTED AND ADDRESS OF THE OWNER.

a second and a second second

summer of the second se

and the second se

Table 1. Current and previous designations of chromosomes and linkage groups in relation to key marker genes.¹.

		(Desig	natio	ns			References
Current linkage group and chromosome numbers	1	2	3	4	5	6	7	Burnham and Hagberg 1956 Ramage <u>et al</u> , 1961
Previous designations								
Chromosomes								
from karyotype analyses	I	II	III	IV	V	VI	VII	Tjio and Levan 1950 Tjio and Hagberg 1951
from translocation studies	Ъ	f	с	е	а	g	d	Burnham <u>et al</u> . 1954
Linkage groups	III and VII	I	VI	IV	II	-	V	Robertson <u>et al</u> . 1941
Key marker genes	N,n	V,v	Uz,uz	K,k	B,b	0,0	R,r	Robertson <u>et al</u> . 1965

This table is largely adapted from Nilan (1964); see ibid. for additional designations.

An other and the second descent framework of the second se

A la series				

And the set of the set

Translocation Studies

Both naturally occurring (Smith, 1941; Joachim, 1947; Ramage <u>et al</u>., 1961) and artificially induced translocations (Burnham <u>et al</u>., 1954; Burnham and Hagberg, 1956; Ramage <u>et al</u>., 1961; Ramage, 1964) have been used in genetic and cytological studies in barley. Most of these have been induced by a variety of physical and chemical means, including ionizing radiation, oxygen pressure, calcium deficiency, aging, and chemicals (Nilan, 1964).

Of particular interest have been the translocations resulting from exchanges of terminal segments of non-homologous chromosomes, referred to in the literature synonymously as segmental chromosomal interchanges, chromosomal interchanges, interchanges, reciprocal translocations, or translocations (Burnham, 1956; Ramage, 1964). The term "translocation" in this study refers to a rearrangement of this type.

Behavior of Translocations

Plants homozygous for a translocation usually have an appearance and chromosome behavior indistinguishable from normal plants (Burnham, 1956). Those heterozygous for a translocation, however, are usually characterized by the association at meiosis I of the chromosome pairs involved in the translocation and by semisterility.

Since pachytene chromosomes are usually clumped and knotted and have indistinguishable centromeres (Nilan, 1964), chromosome configurations and the degree of pairing have been largely inferred from the study of later stages of meiosis, and from the observation

-4-

and the second second

Local Distance on Contraction

of pachytene in other organisms. MacDonald (1961), however, was able to observe pachytene pairing and thus to locate one translocation breakpoint in a plant heterozygous for two translocations. Variable pairing in the region of the breakpoints has been observed in some instances in maize (Burnham, 1948) and may be of importance in linkage studies; but whether this occurs in barley is now known.

The metaphase I configuration resulting from the association of two pairs of chromosomes depends on the location of the breakpoints and on chiasma formation. A ring, a figure-8, a chain, or, if the exchanged segments are small, two bivalents are formed from the chromosomes involved in the translocation. Two alternate or two adjacent chromosomes usually become oriented towards the same pole, with the result that two chromosomes segregate to each pole. Occasionally one pair becomes oriented and the other pair remains uncooriented. Under these conditions two chromosomes move to each pole or three chromosomes move to one pole and one to the other (Hagberg, 1954; Burnham, 1956).

In the absence of crossing-over in the interstitial segments, only alternate segregation results in balanced meiotic products. A single crossover in one interstitial segment, followed by alternate segregation, results in balanced products containing the non-crossover chromatids. A single crossover followed by adjacent-1 segregation^{1.} results in balanced products from crossover chromatids. Some multiple crossovers between centromeres (i.e. in the two interstitial segments combined) result in balanced crossover chromatids being recovered from

-5-

Adjacent-1 segregation - chromosomes with homologous centromeres move to opposite poles.

An annual property and the second the first of the second state of the second state

 alternate or adjacent segregation, depending on the position and numbers of the crossovers. Adjacent-2 segregation^{1.} always results in unbalanced products.(Hanson and Kramer, 1949; Burnham, 1956; Kramer and Blander, 1961; Ramage, 1964).

Only balanced meiotic products result in functional pollen and ovules, excepting where the resulting deletions and duplications are minute (in which cases, ovules probably function more frequently than pollen; Burnham, 1956). As a result translocation heterozygotes are characterized by pollen and ovule abortion. Hanson and Kramer (1949) found 1 - 12% ovule sterility in normal and translocation homozygotes of parental lines, with a modal class of 1 - 2%, whereas F_2 's from crosses showed a bimodal distribution, with maximum-class intervals of 1 - 2% and 23 - 24%, suggesting approximately 25% sterility for translocation heterozygotes. Burnham et al. (1954) reported pollen sterility varying from 14.4 - 58.0%, with a mean of 28.8% in heterozygotes from 27 different lines of single translocations, and ovule abortion varying from 20.6 - 92.2% with a mean of 41.8% in heterozygotes from 26 of these lines (estimates for ovule sterility may not have been as reliable as those for pollen sterility). No translocations were cytologically detectable among fertile plants, but the number examined was small. Shih and Shebeski (1960) found ovule abortion ranging from 26.4 - 61.5% in heterozygotes of crosses from 19 lines of single translocations. The parental plants were fully fertile except for one plant believed to be heterozygous. Most studies have not shown a strong correlation between pollen and ovule fertility (Nilan, 1964).

Adjacent-2 segregation - chromosomes with homologous centromeres move to the same pole.

All and the second s a second se second se

toronte address the terrare providence have specific and providence at the second AND DESCRIPTION AND ADDRESS AND ADDRESS AND ADDRESS ADDRES the second secon the second the local of the property of the second which is a second of the second COMPANY AND ADDRESS

and a second sec

Since ovule abortion of approximately 25% was found in translocation heterozygotes, Hanson and Kramer (1949) suggested that barley must have a high proportion of alternate segregation. Hence, since alternate segregation following crossing-over in the interstitial regions favors the production of balanced non-crossover spores, the actual frequency of crossing-over is masked (Hanson and Kramer, 1949; Hanson, 1952).

The following considerations concerning the relationship of segregation type and recombination have been derived by Kramer and Blander (1961). The 25% frequency of abortion restricts the frequency of alternate segregation in the absence of crossing-over in the interstitial segments to the range (0.75 - 1.0) and the frequency of crossing-over to (0.0 - 0.5). If alternate segregations with and without crossing-over occur with equal frequency, the maximum detectable recombination between genes at opposite ends of an interstitial segment is less than 3%. As adjacent-1 segregation becomes appreciable (the previous condition no longer holding), the maximum value increases. For example, for alternate segregation always occurring in the absence of crossing-over and alternate and adjacent-1 segregation occurring with equal frequency in the presence of crossing-over, the maximum value is 16.7%. (This, however, requires all crossing-over to occur in one interstitial segment.) Only a high frequency of alternate segregation without crossing-over accompanied by an excess of adjacent-1 segregation following crossing-over raises the maximum above this value. Even when types of segregation favor the recovery of crossover chromatids, the calculated detectable recombination is not particularly high. Furthermore, these values

-7-

Distance of Contract of Contra

NAMES AND ADDRESS OF TAXABLE ADD
assume no interference, which would have the effect of further decreasing the detectable recombination fraction.

For translocations involving chromosome 6 with breakpoints in the long arm, the short arm, and the satellite, Ramage found recombination of 1 - 2% in all but one case (this showed 8% recombination; Kramer and Blander, 1961; Ramage, 1964). This suggested that masking of crossing-over in interstitial regions is substantial, and that the lower values calculated by Kramer and Blander (1961) may be the more realistic. From crosses with 11 translocations involving chromosome 2, Ramage (1964) calculated recombination between the genes \underline{ms}_2 and \underline{V} . In nine cases the values were not significantly different from that found in normal stocks (26%). In two cases recombinations were 3% and 8%, suggesting that the region between \underline{ms}_2 and \underline{V} is included, at least in part, in the interstitial segments of these translocations, and that little if any recoverable recombination occurs in these segments.

Translocations in Linkage Studies

The chromosomes involved in a translocation can be identified genetically on the basis of linkage studies. Genes carried on chromosomes involved in a translocation exhibit linkage with semisterility (Burnham, 1956, 1957), and, if they are on different chromosomes, show linkage with each other (pseudolinkage; <u>ibid</u>., 1956, 1957). The detection of such linkages depends, to some extent, on the positions of genes and breakpoints. Masking of recombination in the interstitial segments (Kramer and Blander, 1961) facilitates these tests.

***8-**

seatter in Distributions (sector terms they for write 1 of factor)

(c) the bing area was due to be and the condition, backy providing the structure of the transmitter, backy providing the structure of the transmitter, backy providing the structure of the transmitter of the transmitter

and the local sectors and

The assignment of genes to chromosomes is aided by translocations. Linkage of a gene with semisterility indicates that the gene is probably on a linkage group carried by one of the chromosomes involved in the translocation (Joachim, 1947; Hanson and Kramer, 1950; Burnham, 1956, 1957; Ramage, 1964). Genes that show linkage with a group of translocations having one chromosome in common may be inferred to lie on the common chromosome (Burnham, 1957; Ramage, 1964). In addition, if a translocation shows linkage with at least two genes in a linkage group, and other genes linked with the translocation in the same test are in the same linkage group, the recombination values may be fitted to a linear map. If the genes are in different linkage groups, the recombination values can only be fitted to a T- or a +-shaped map (Burnham, 1957; Ramage, 1964). Because of a masking of recombination in the interstitial regions, linkage values from crosses with translocations are not necessarily indicative of the distance between loci.

Translocations are useful in the orientation of genes on chromosomes (Kramer and Blander, 1961; Ramage, 1964). Homozygotes indicate which genes in two linkage groups are still linked and which are not (Ramage, 1964). Masking of recombination in heterozygotes may be used as an indication of the relative proximity of genes to centromeres. Genes invariably showing strong linkage with translocations having breakpoints in different arms of a chromosome may be considered to be near the centromere. Genes away from the centromere show close linkage only if they are in the interstitial segment or close to it, and any appreciable amount of recombination between genes and breakpoints probably provides the indication that

-9-

the genes lie outside of the interstitial segment (Kramer and Blander, 1961; Ramage, 1964).

Designation of Genes and Translocations

Genes and translocations involved in this study are designated by currently accepted symbols (see Ramage <u>et al</u>., 1961; Robertson <u>et al</u>., 1965). To minimize the awkward use of mutant names, gene designations are used to refer to genes, alleles, characters, and phenotypes. Translocation designations refer to chromosome rearrangements or breakpoints. It is believed that the context in each case permits the correct distinction in interpretation.

MATERIALS AND METHODS

Crosses were attempted between eight translocation stocks and two mutant stocks carrying recessive genes associated with chromosome 6. F_2 's were grown for linkage analyses. The mutant and translocation stocks are listed in Table 2, and successful crosses are listed in Table 3.

Description of Characters

<u>Curly</u> (<u>cu</u>). "Lemmas and awns are extremely curly; the rachis is usually bent, and the tillers curved or wavy" (Walker <u>et al.</u>, 1963).

<u>Glossy leaf-4</u> (gl_4). "Leaf blades are of a distinctive bright-green color, and lack the blue component of normal green foliage. The green color of the stem and sheath is normal" (Walker <u>et al.</u>, 1963).

<u>Glossy sheath-4</u> (gs_4). "Sheaths and stems at heading show the same color as the leaf blades of <u>glossy leaf-4</u>. The green color of the leaf blades of these mutants is normal" (Walker <u>et</u> <u>al</u>., 1963).

<u>Grandpa-2</u> (\underline{gp}_2). "Seedlings are slightly variegated but the plants become predominantly green before heading. At this time the terminal leaves show a high proportion of white tissue towards the tips, and the spike is entirely white" (Walker <u>et al</u>., 1963).

<u>Orange lemma</u> (\underline{o}). The rachis and tips of lemmas and paleas proximal to the rachis are orange. At maturity stems are

DO TO THE TRUE TO THE

MARKET IN A LOCATE AND A COMPANY OF A DESCRIPTION OF A

And a price of the other of the second second

origins. ^L .
their
and
s toc ks
Genetic
2.
Table

e References	Walker <u>et al</u> . 1963	Walker <u>et al</u> . 1963	References	Barley Genetics I 1964 Ramage <u>et al</u> . 1961 Barley Genetics I 1964 Ramage <u>et al</u> . 1961 Barley Genetics I 1964 Ramage <u>et al</u> . 1961 Barley Genetics I 1964 Ramage <u>et al</u> . 1961 Ramage <u>et al</u> . 1961 Ramage <u>et al</u> . 1961 Ramage <u>et al</u> . 1961 Barley Genetics I 1964 Barley Genetics I 1964
Treatment of sourc material of genes	radberyll. aureomycin aldrin	radberyll.	reatment of source material of translocations	X-ray X-ray X-ray Chron. T-ray X-ray neutrons acute T-ray X-ray
Designations of genes	8P2 814 8s4	8p2 cu o	Break T positions in chrom. 6	52. L ² . L ² . L ² . L ² . L ² . L ² . L ² .
r genes present	ndpa-2 ssy leaf-4 ssy sheath-4	ndpa-2 ly nge lemma	esignations of ranslocations at Previous	e xT3 (b-g) a cl433 (f-g) d xT13 (c-g) a XT9 (e-g) nT8 (a-g) nT8 (a-g) xT14 (g-d) xT14 (g-d)
A. Markei D.	grai g100 g100	grai cur.	A. ^b De	T1 - 6 T2 - 6 T5 - 6 T5 - 6 T5 - 6 T5 - 6
U. of <i>I</i> Acc. Nc	845	846	U. of <i>k</i> Acc. No	1002 1003 1004 1005 1005 1007 1008 1009
Mutant stocks			Translocation stocks	

Mutant stocks were produced from crosses at the University of Alberta reported by Walker et al. (1963). Translocation stocks were kindly provided by Dr. Ramage.

S = short arm; L = long arm; ? = probably in that position. 2.

all the providence of the second of the seco

AND A COLUMN TARA TARA TARA TARA TARA TARA TARA TAR		The state of the		
Sand Land			In-illes	
matter & ch				the second
				Contraction of the second
IIIII I EI	1			Story of

Table 3. List of cro	osses
----------------------	-------

Female parent Male T1 - 6e
T3 - 6d
T4 - 6a "
Т5 – ба ''
T5 - 6b "
T5 - 6c "
T6 - 7b 11

 For significance of this column refer to "Treatment of Data," page 17.

2. This line used as a male parent segregated for $\underline{gs_4}$. The symbol for $\underline{gs_4}$ is enclosed in brackets to denote uncertainty of the genotype and does not necessarily denote segregation in the F₂.

this of the local statements

		Labort 1	and and
Alana ale and	M TT	adaut. anna i anna i	
	34 - 17	114	
			75.00
		Att A	Abri

TARE MANY AND AND ADDRESS OF TAXABLE PARTY AND ADDRESS ADDRESS

distinguishable from the normal by a characteristic brown discoloration of the base grading to an orange in the upper part of the stem.

<u>Semisterility</u>. Normal and translocation homozygotes are fully fertile (<u>ff</u>). Translocation heterozygotes are semisterile (<u>ss</u>).

Experimental Procedure

Parental lines were grown in the field at the University of Alberta Parkland Farm during the summer of 1963. Mutant stocks were seeded three times at intervals of approximately ten days. Translocation stocks were seeded twice at similar intervals. Planting parental stocks at intervals increased the chances of heads from mutant and translocation lines simultaneously reaching a stage of flower development appropriate for crossing.

The hand emasculation - pollination technique favored by Bonnett (1930) was employed for making crosses. Heads from translocation stocks were emasculated at a time judged to precede anther dehiscence by one to three days. Lateral florets from one side were removed to make central florets accessible. Lemmas were slit laterally with sharp forceps and the anthers removed. Following emasculation, heads were covered with glassine bags fastened with paper clips in order to prevent florets from drying out and to prevent fertilization by stray pollen.

One to three days following emasculation, when pollination would normally have occurred, glassine bags were removed from the heads, and the heads were pollinated using anthers from mutant stocks. Remaining lateral florets of six-rowed heads were usually removed as

a precaution against self-fertilization. Glassine bags were replaced over the heads until harvest, except for the occasional check for success of seed set.

 F_1 's were grown in the greenhouse during the winter of 1963-64. Wherever possible, crosses were confirmed cytologically by the observation of rings, figure-8's, or chains, formed from the chromosomes involved in the translocations, at metaphase I in acetocarmine squashes of pollen mother-cells, or morphologically on the basis of semisterility. F_1 plants were threshed by hand and seeds were cleaned with the aid of an aspirator.

 F_2 's were grown in the field during the summer of 1964. Individual plants were spaced one foot apart in rows fifteen inches apart. This minimized competition between plants of different phenotypes and made the plants easily accessible for classification. Since crowding of F_1 plants and semisterility resulted in the production of a small number of seeds per plant, seeds from three or four plants were grown, to obtain approximately 350 - 400 plants per F_2 . Seeds from different F_1 plants were grown in different plots so that any parental self-pollinations that escaped detection in the F_1 could be eliminated from the data.

 F_2 plants were classified for <u>gl</u>₄ and <u>gs</u>₄ during or shortly prior to heading and for <u>gp</u>₂ after heading. Plants exhibiting the recessive form of a character were marked with a tag of a given color to permit identification at a later time. The characters <u>cu</u>, <u>o</u>, and semisterility were classified when some plants were already ripe. At this time the complete phenotype for these characters and those classified previously was recorded for each plant.

-15-

And the second s

(a) A second second second second model is a second sec

Stream as an and a first of the stream of

Whenever F_2 plants that could not be confidently classified for semisterility produced seed, this was collected in the fall of 1964 and grown in the field in 1965. Wherever possible ten seeds per F_2 were planted with the anticipation that seven or more plants would be produced, permitting classification for full fertility versus semisterility with a confidence of 99%.

 F_3 progeny were checked for translocation heterozygotes, either on the basis of semisterility or, less frequently, on the basis of metaphase I configurations of chromosomes in aceto-carmine squashes of pollen mother-cells.

Whenever all of seven or more F_3 plants showed full fertility or metaphase I configurations characteristic of normal or translocation homozygotes, the F_2 plant being tested was recorded as fully fertile. When one or more showed either semisterility or metaphase I configurations characteristic of a translocation heterozygote, the F_2 plant was recorded as semisterile.

Segregation ratios for individual characters and linkages involving genes and translocations were calculated from the F_2 results. The genes <u>gp2</u>, <u>gl4</u>, and <u>cu</u> usually showed very little or no linkage with translocation breakpoints. Since a large number of plants is essential for confirming the presence of linkage and estimating the recombination fraction if linkage is weak, additional F_2 's from seeds not used previously were grown.

The additional F_2 's were space-planted and classified in the field during 1966 in the manner described for 1964 F_2 's. The results were incorporated into this report.

-16-

Alternative and the second line considered and the construction of the second s

Viscourse will be available and an experimentation of months and the second second

Notes and the second on the balance of the balan

Treatment of Data

Since the F_2 's from different F_1 plants were grown and classified separately, consolidation from each cross was desirable. A careful preliminary examination of the data for each translocation, involving either a comparison of the raw data or the segregation ratios among single-plant progenies, suggested that it might be best consolidated as follows:

(1) Translocation X Acc. 845 - F_2 's grown in 1964

(2) Translocation X Acc. 846 - F_2 's grown in 1964

(3) Translocation X Acc. 845 - F_2 's grown in 1966

Since the 1966 F_2 's were found to be more easily classifiable for semisterility than 1964 F_2 's, these were treated separately. F_2 data from some single-plant progenies were eliminated because of conspicuous heterogeneity with data from other progenies. The data sets listed in Table 3 and used in subsequent tables refer to F_2 's consolidated according to the above scheme.

Segregation ratios for individual characters, linkages for genes with translocations, and linkages for pairs of genes were tested for each data set. Only plants classified for all genecontrolled characters segregating were included in the data sets (very few plants were excluded due to lack of classifiability for some mutants).

Calculations for segregation ratios of gene-controlled characters and linkages for pairs of genes were performed separately for each of two subsets of each data set. Subset (a) consisted of interface and a second of the second of the second se

A DESCRIPTION OF A DESC

those plants clearly classifiable for full fertility versus semisterility; subset (b) consisted of the above plants plus those that could not be classified for full fertility versus semisterility with a reasonable degree of confidence. Significant differences between values calculated for subsets (a) and (b) were attributable to classification. Values for (b) were dependent largely on gene segregation.

Agreement of linkage tests for pairs of genes calculated for (a) and (b) increased the confidence of linkage tests for genes with translocations that could only be calculated on the basis of (a). Since the genes $\underline{gs_4}$ and \underline{o} invariable showed close linkage with translocations, tests involving these genes were particularly helpful. In cases of disagreement between linkage tests on the basis of (a) and (b), the indication for linkage of any gene with $\underline{gs_4}$ and \underline{o} based on (b) was likely a more accurate indication of linkage between the gene and the translocation than the test for linkage between the gene and the translocation itself.

Segregation for full fertility versus semisterility was tested against a 1:1 ratio. Segregation for other characters was tested against a 3:1 ratio of dominant versus recessive phenotypes. Fisher's X^2 described by Mather (1951) and Bailey (1961), with the table provided by Mather, was used. Linkage for genes and breakpoints and also for pairs of genes was tested using the partition of X^2 for linkage (Hanson and Kramer, 1950; Mather, 1951; Bailey, 1961) and the table provided by Mather. Wherever the indication for linkage was sufficiently strong, the recombination fraction was calculated by the product method (Immer, 1930; Joachim, 1947; Mather, 1951;

-18-

Bailey, 1961) facilitated by tables provided by Joachim (1947) for linkage of genes with translocations and by Immer (1930) for linkage of pairs of genes. Wherever results were available from several data sets, a X² was calculated for pooled data, and a X² heterogeneity test was performed.

Long Line Line - - -

RESULTS AND DISCUSSION

<u>Plant Vigor and Viability</u>

Some differences were observed in the vigor of plants carrying different traits or combinations of traits. Plants exhibiting only the <u>o</u> mutant were usually as vigorous as normals, and those expressing one of <u>gl4</u> and <u>gs4</u> were almost as vigorous, showing only a slightly slower rate of maturity. Those manifesting the <u>gp2</u> phenotype showed some reduction in vigor, especially in cases of extensive variegation during the seedling stage. (Some <u>gp2</u> plants died at this stage.) Those of the <u>cu</u> type were the least vigorous of the single gene mutants.

Combinations of mutant traits usually showed a cumulative effect on vigor, especially when the genes \underline{gp}_2 and \underline{cu} were involved. This was true of the non-translocation parents, as well as of F_2 plants. It was noted that the line carrying \underline{gp}_2 , \underline{cu} , and \underline{o} , in addition, exhibited very poor germination. This was probably due, in part, to the poor endosperm development that is a general feature of \underline{cu} plants.

Classification of Mutants

The classification of mutant traits caused little difficulty, but the classification for semisterility was strongly affected by the reduced vigor of mutant types. Plants expressing mutant traits had to be left insufficiently classified for semisterility because their seed sets were so low that a distinction between chromosomal and physiological semisterility could not be made. This was despite the

-20-

- Little of the second second

and have been been been been been been and the second second in the second se

fact that mutant plants were found with low vigor and yet with high enough seed-sets to be classified as fully fertile. Such a procedure would be expected to reduce the apparent frequency of semisterile recessives, and thus contribute materially to the significance of linkage X²'s; in some cases it may have led to a spurious diagnosis of linkage.

The trait <u>cu</u> was found to exhibit reduced fertility in the parental line. This is in agreement with findings of Walker (personal communication) that plants expressing the <u>cu</u> trait occasionally show partial sterility. Since this may be attributable to low vigor, <u>cu</u> plants having reduced seed set and particularly low vigor were classified for semisterility only where its presence could be confirmed by progeny tests.

Tests for Linkage

In this section data for different translocations are considered separately. In order to aid evaluation of data, all X^2 's are retained, even though some heterogeneity tests indicates discrepancies. Recombination frequencies are presented (a) only where linkage is still strongly indicated after a consideration of various other factors contributing to significant X^2 's, and (b) where appreciable distortion of a 1:1 ratio of full fertility versus semisterility, favoring linkage, was found in both dominant and recessive classes.

The data are presented in groups of three tables each, one group for each translocation studied. The first table of each group contains tests for the segregation ratios of individual

-21-

-17 - LLUI

characters, the second for linkage of genes with translocations, and the third for linkage between genes. Although the segregation data from the first table are used in the evaluation of the linkage tests in the other tables, a discussion of their significance is reserved for the final collective discussion of the segregation data except where they have a particular significance in the interpretation of certain linkage tests. T1 - 6e

Tables 4, 5, and 6 contain the data from crosses involving the translocation Tl - 6e. Table 5 provides evidence of strong linkage of the genes <u>gs4</u> and <u>o</u> with the translocation; the genes <u>gp2</u>, <u>gl4</u>, and <u>cu</u> segregate independently of the breakpoint. Table 6 provides no evidence of linkage between pairs of genes. The significant X^2 for linkage between <u>gp2</u> and <u>o</u> is associated with a shortage of parental in comparison with recombinant types, and is likely a result of lethality in double recessive types.

-23-

a standard and the standard st

and the second s

This is a second of the sec

Data set No.	Char. tested	Segregation in F classified for se ff ss n	2 plants misterility X ² for 1:1	Segregation in total F ₂
1 2 3	S S S S S S	169 173 342 171 171 342 217 168 385	0.047 0.000 6.236*	
		tot. <u>557</u> 512 1069 X ² for total X ² het. (2.d.f.)	6.283 1.894 = 4.389	
		Aan	X ² for 3:1	A a n X ² for 3:1
1 2 3	gp ₂ gp2 gp2	261 81 342 266 76 342 307 78 385	0.316 1.407 <u>4.614*</u>	2691023711.230284903740.175311823933.584
		tot. <u>834 235 1069</u>	6.337	tot. 864 274 1138 4.988
		X ² for total X ² het. (2 d.f.)	5.189* = 1.148	X^2 for total 0.517 X^2 het. (2 d.f.) = 4.472
1 3	g1 ₄ g1,	257 85 342 299 86 385	0.004 1.455	2691023711.230305883931.426
	- 4	tot. <u>556 171 727</u>	1.459	tot. 574 190 764 2.657
		X ² for total X ² het. (1 d.f.)	0.848 = 0.611	X^2 for total 0.007 X^2 het. (1 d.f.) = 2.649
1	gs ₄	82 22 104	0.821	86 25 111 0.363
2	cu	285 57 342	12.667**	303 71 374 7.219**
2	0	269 73 342	2.437	298 76 374 4.367*

Table 4. Tests for segregation of characters in F_2 's of crosses involving T1 - 6e.

* Significant at the 0.05 level.

** Significant at the 0.01 level.

second in the local second second in the second sec

	calling of the later	

A REAL PROPERTY AND ADDRESS OF TAXABLE PARTY.

strend which many the house of the local strends of

Data	Gene			F ₂ seg	regatior	1		$x_{L}^{2^{1}}$
No.	lested		A ss	A ff	a ss	a ff		
			(a)	(b)	(c)	(d)	n	
1 2 3	8P2 8P2 8P2		134 136 137	127 130 170	39 35 31	42 41 47	342 342 385	0.250 0.561 0.195
	3 -1	tot.	407	427	105	1 <u>3</u> 0	1069.	1.006
	3.13		$\begin{array}{c} X_{L}^{2} & { m fo} \\ X^{2} & { m he} \end{array}$	r total t. (2 d	.f.) = (0.062		0,943
1 3	g1 <u>4</u> g1 ₄		133 130	124 169	40 - <u>38</u>	45 48	342 <u>385</u>	0.561 0.070
		tot.	<u>263</u>	293	<u>7</u> 8	93	727	0.632
			$\begin{array}{c} x_{L}^{2} & f \\ x^{2} & he \end{array}$	or tota t. (1 d	1 .f.) = (0.528		0,103
1	gs4		54	28	0	22	104	27.128**
			p =	0.0 <u>+</u> 0	• 0 ² •			
2	cu		140	145	31	26	342	0.390
2	0		170	99	1	72	342	78.612**
			p =	0.8 <u>+</u> 0	• 6			

Table 5.	Tests for linkage between semisterility and gene
	in F_2 's of crosses involving T1 - 6e.

** Significant at the 0.01 level.

1.
$$X_L^2 = (\underline{-a + b + 3c - 3d})^2$$
 (repulsion phase)
3n

²• p = % recombination.

the state of a state of the sta

- in the second	- interest	
Le car an and		

Address of the state of the sta

- grant - a - a
| 6e. |
|-----------|
| I |
| ΓI |
| involving |
| crosses |
| in |
| genes |
| between |
| linkage |
| for |
| Tests |
| .9 |
| Table |

x_{L}^{21} .	0.779 2.552 3.331	16C°C		0.001	0.001	1.142	3.861*	0.030	
c.	371 393 767.	104	. 535	111	111	374	374	374	
al F ₂ xy (d)	31 12 7.3	+ 1) = 2	œ	7	13	11	14	
f tot XY (c)	71 70	al al	d.f.	27	24	77	79	57	
pes o Xy (b)	71 76	r tot	t. (1	17	18	58	65	62	
enoty XY (a)	198 235	XL fo	X ² he	59	62	226	219	241	
Ph					-		and a		
				1.0		4,13			
x ² ¹ .	0.812 1.801	2.543		0.427	0.154	1.249	2.871	0.064	to the second se
n ty	342 385 335	171	070	104	104	342	342	342	
lants erili xy d)	17	77	= 0	ъ	ъ	œ	10	12	(se)
F ₂ P emist xY c) (664 666	1	d.f.)	24	22	68	66	45	ig pha
es of for s Xy b) (68 74	tota	. (1	17	17	49	63	61	uplir
fied XY	333	2 for	2 het	58	60	17	03	24	1. (cc
Phen lassi		X X	X			2	2	7	5 leve
tested Y, y	Gl4, gl4 Gl4, gl4 Gl4, gl4			Gs4, gs4	Gs4, 8s4	Cu, cu	0, 0	0, 0	t at the 0.0. 3b - 3c + 9d) 9n
Genes X, x	GP2, 8P2 GP2, 8P2			Gp2, 8P2	G14, 814	GP2, 8P2	Gp2, BP2	Cu, cu	Significant K ² = (<u>a - 3</u>
ata set No.	10			1	1	2	2	2	

				h	
	ĥ				

Anna Managaran P

Tables 7, 8, and 9 contain the data from crosses involving the translocation T2 - 6a. Table 8 indicates strong linkage of the translocation with g_{54} and an apparent linkage with g_{22} and g_{14} . Table 9 shows no evidence of linkage between the pairs of genes concerned.

Although linkage of gp, with the translocation is indicated, a reappraisal of data sets casts some doubt on the strength of the indication. The classes exhibiting the dominant trait show approximately equal numbers of fully fertile and semisterile individuals, and it is the deficiency of semisterile (and the relative excess of fully fertile) recessives that contributes predominantly to the X^2 value for linkage. The type of distortion described earlier (under "Classification of Mutants") was found to apply to the gp2 segregation with semisterility, where weak plants were included in the data when fully fertile but often not when semisterile. Table 7 indicates that most of those plants remaining unclassified for semisterility in Data Set 4 were recessive for gp2. This data set yielded a significant X^2 for linkage of the translocation with gp_2 . In contrast, few plants remained unclassified for semisterility in Data Set 5, in which the X^2 for linkage of the translocation with gp_2 is not significant. These observations support the suggestion that classifiability contributes strongly to the indication of linkage.

Since <u>gs4</u> is closely linked with the translocation, it should show linkage with any other gene linked with the translocation. In Table 9 <u>gs4</u> does not show a strong indication of linkage with <u>gp2</u>,

-27-

And a second state of a second

AND BY DESIGNATION AND AND ADDRESS OF A DESIGN AND A DESIGN AND ADDRESS OF A DESIGN AD water he assess antierray and had adventured to be antipped and an strends matters described successful to and an added to be ----- And with the American sums a start of these strends of the start have VALLET AND ADDRESS AND ADDRESS AND ADDRESS ADDRESS

although it must be admitted that the number of plants in F_2 's segregating for <u>gs</u>₄ may be too small to indicate linkage between them.

The validity of the indication for linkage between the translocation and <u>gl</u>₄ is open to question for similar reasons. Table 8 shows that only Data Set 4, where classification for semisterility was less successful, indicates linkage. Table 9 shows that <u>gs</u>₄ may not be linked with <u>gl</u>₄, and, consequently, linkage of the translocation with <u>gl</u>₄ is not supported. After an and the second second

Data set	Char. tested	Segregation in F ₂ plants classified for semisterility
No.		ff ss n X ² for 1:1
4 5	SS SS	189 170 359 1.006 191 184 375 0.131
		tot. 380 354 734 1.136
		X^2 for total 0.921 X^2 het. (1 d.f.) = 0.215
		A a n X^2 for 3:1 A a n X^2 for 3:1
4 5	gp ₂ gp ₂	298 61 359 12.279** 304 78 382 4.276* 287 88 375 0.470 292 90 382 0.422
		tot. 585 149 734 12.750 tot. 596 168 764 4.698
		X^2 for total8.649** X^2 for total3.693 X^2 het. (1 d.f.) = 4.101* X^2 het. (1 d.f.) = 1.005
4 5	g1 ₄ g1 ₄	276 83 359 0.677 289 93 382 0.087 285 90 375 0.200 289 93 382 0.087
		tot. 561 173 734 0.877 tot. 598 186 764 0.175
		X^2 for total0.801 X^2 for total0.175 X^2 het. (1 d.f.) = 0.076 X^2 het. (1 d.f.) = 0.000
5	gs4	226 56 282 3.976* 230 58 288 3.630

Table	7.	Tests	for	segregat	ion of	characters	in	F2's	of	crosses
		invo1v	ing	T2 - 6a.				2		

* Significant at the 0.05 level.

** Significant at the 0.01 level.

	- Louis a series	
	All and a second	
THE ALL ALL MALE		
312 1 35 - 1 - mil		
HEAV - CARABAR AND IN		
HOLA ALL HE WE		

A Desired and the second states of the second state

Data	Gene]		$x_{L}^{2^{1}}$			
set No.	tested		A ss	A ff	a ss	a ff		
			<u>(a)</u>	(b)	(c)	(d)	n	
4 5	SP2 SP2		150 147	148 140	20 37	41 51	359 375	3.923* 2.134
		tot.	297	288	57	92	734	6.057
			x_{L}^{2} for x^{2} het	total . (1 d.	f.) =	0.155		5.902* ² ·
4 5	g1 ₄ g1 ₄		141 141	135 144	29 43	54 47	359 375	6.092* 0.072
	Ξ_	tot.	282	279	72	101	734	6.164
			X_{L}^{2} for	total	c)	0. / 05		3.678
	13		X- het	• (I a.	t.) =	2.485		
5	gs ₄		143	83	_2	54	282	55.149**
	The a		p = 2.0	0 <u>+</u> 1.2	3.			

Table 8. Tests for linkage between semisterility and genes in F_2 's of crosses involving T2 - 6a.

- * Significant at the 0.05 level.
- ** Significant at the 0.01 level.
- ¹• $X_{L}^{2} = (-a + b + 3c 3d)^{2}$ (repulsion phase) 3n
- This value may not be valid because segregation for <u>gp</u>₂ was heterogeneous.
- 3. p = % recombination.

AND AN PERSONAL REAL PROPERTY AND ADDRESS OF THE PARTY AND ADDRESS OF THE PARTY AND ADDRESS OF THE PARTY ADDRESS O

				-			
	Line-				_00		
		14.	11				
- T/ 1	121				All and		
	1						
-un -				14	(4)	12	11
MIN							
							8
	100		5		1941		12
-							

Construction of the second line of the

ATTRACTOR AND ADDRESS OF ADDRESS OF ADDRESS AD

and an alternative and an alternative and an alternative and a

The part of the second design of the second design

Tests for linkage between genes in F_2 's of crosses involving T2 - 6a. Table 9.

x_L^{21} .			0.615 0.727	1.343	0.002		0.154	2.000	
		п	382 382	764		. 340	288	288	
tal F2	xy	(P)	16 25	41) = 1	13	20	
of tot	хҮ	(c)	62 65	127	tal	l d.f.	58	56	
ypes o	Xy	(q)	77 68	145	or tot	et. (]	45	38	
nenot	ХХ	(a)	227 224	451	x_L^2 fo	$x^2 he$	172	174	
LI II			1	tot.					
x_L^{21} .			1.649 0.655	2.304	0.102 ² .		0.266	1.931	
s ity		Ľ	359 375	734		.201	282	282	
plant teril	xy	(P)	9 24	33) = 2	12	19	
f F ₂ semis	xy	(c)	52 64	116	al.	d.f.	57	54	
pes o for	Xy	(p)	74 66	140	or tot	et. (]	44	37	
Phenoty assified	XX	(a)	224 221	t. 445	x_L^2 fo	x ² he	169	172	
с]			$1_{4}^{1_{4}}$	t			s4	s4	
tested	Y, y		G14 , 8 G14 , 8				Gs4, 8	Gs4, g	
Genes t	Х, х		GP2, 8P2 GP2, 8P2				Gp2, gp2	G14, g14	
Data	. No		4 0				2	5	

1. $x_{\rm L}^2 = (\underline{a - 3b - 3c + 9d})^2$ (coupling phase) 9n

This value may not be valid because segregation for <u>BD</u>2 was heterogeneous. 2.

· · · ·	

<u>T3 - 6d</u>

Tables 10, 11, and 12 contain the data from crosses involving the translocation T3 - 6d. Table 11 shows strong linkage of the translocation with g_{54} and o, no linkage with g_{14} or cu, and a possibility of linkage with gp_2 . Table 12 shows linkage of gp_2 and cu. The significant X^2 for linkage of cu and o is a result of incomplete classifiability since total data favor the independent assortment of the two genes.

Table 11 shows that linkage of the translocation with \underline{gp}_2 is indicated most strongly by Data Sets 6 and 7 which Table 10 shows did not approach full classification for semisterility. Plants having the dominant phenotype expressed full fertility and semisterility in essentially equal proportions. In addition, Data Set 8, approaching full classification for semisterility, showed independent assortment of the translocation and \underline{gp}_2 . Hence the suggestion of linkage with the translocation is subject to doubt.

It is not clear whether the linkage between <u>gp</u> and <u>cu</u> is a true linkage, a pseudolinkage, or a chance deviation.

-32 -

mail de la constitue de l

And the septement of a new point of a loss fact which the second of a secon

A TWO IS AND A REAL PROPERTY AND A DESCRIPTION OF A REAL PROPERTY AND A REAL PROPERTY.

Data set No.	Char. tested	Segregation in F ₂ plan classified for semister: ff ss n X ² for	ts Segre	Segregation in total F ₂			
6 7 8	SS SS SS	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90 38 57 35 35 78 97				
		A a p x^2 for	3•1 A	a n	x^2 for 3.1		
6 7 8	SP2 SP2 SP2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1** 302 1* 309 5 274	90 392 98 407 103 377	0.871 0.184 1.083		
		tot. <u>869 249 1118 12.43</u>	57tot885	291 1176	2.138		
		X^2 for total 4.43 X^2 het. (2 d.f.) = 8.02	$\begin{array}{ccc} 38* & X^2 & \text{for} \\ 0 & X^2 & \text{het} \end{array}$	total . (2 d.f.)	0.041 = 2.097		
6 8	g1 ₄ g1 ₄	282 85 367 0.66 293 80 373 2.51	2 293 .0 294	99 392 83 377	0.014 1.790		
		tot. <u>575 165 740 3.17</u>	2tot587	<u>182 7.69</u>	1.804		
		X^{2} for total 2.88 X^{2} het. (1.d.f.) = 0.29	$\begin{array}{c c} x^2 & x^2 \\ x^2 & x^2 \\ x^2 & x^2 \end{array}$	total . (1 d.f.)	0.729 = 1.075		
8	gs ₄	220 61 281 1.62	223	62 285	1.601		
7	cu	301 77 378 4.32	.1* 317	90 407	1.809		
7	0	294 84 378 1.55	6 319	88 407	2.477		

Table 10. Tests for segregation of characters in F_2 's of crosses involving T3 - 6d.

* Significant at the 0.05 level.

** Significant at the 0.01 level.

AND THE PARTY OF A PRESS OF A DESCRIPTION OF A DESCRIPTIO

	ALLER ALL ALLER ALLER	
	and the second second	
		111
Long Martin and Street and Street	here -	
The line of the	- wind will acree	
	THE REAL	
1000 - 100 - 100		-

A REAL PROPERTY AND ADDRESS OF ADDRESS OF ADDRESS ADDR

Data	Gene			F ₂ seg	regation	1		x _L ²¹ .
set No.	tested		A ss	A ff	a ss	a ff	3	
		ļ	(a)	(b)	(c)	(d)	n	
6 7 8	8P2 8P2 8P2		151 148 135	147 152 <u>136</u>	27 28 49	42 50 53	367 378 373	2.181 3.390 0.108
		tot.	434	435	104	145	1118	5.679
	1 3	1-	X_{L}^{2} fo	r total				4.438* ² ·
			X^2 he	t. (2 d	.f.) = 1	241		
6 8	g1 ₄ g1 ₄		136 144	146 149	42 40	43 <u>40</u>	367 <u>373</u>	0.044 0.022
		tot.	280	295	82	83	740	0.067
	-		x_{L}^{2} for	r total				0.065
	3 1		X^2 he	t. (1 d	.f.) = (.001		
8	gs4		147	73	2	59	281	71.204**
	113		p = 1	.5 <u>+</u> 1.	0 ³ .			
7	cu		148	143	28	49	378	2.966
7	0		174	120	2	82	378	76.222**
			p = 1	.6 <u>+</u> 0.	9			

Table 11. Tests for linkage between semisterility and genes in F_2 's of crosses involving T3 - 6d.

* Significant at the 0.05 level.

** Significant at the 0.01 level.

1.
$$X_{L}^{2} = (-a + b + 3c - 3d)^{2}$$
 (repulsion phase)
3n

². This value may not be valid because segregation for <u>gp</u>₂ was heterogeneous.

3. p = % recombination.

- AL				=	
			i.		
	UL STL CLC	NS.			
144					
				1	
			111		
		-			
A REAL PROPERTY.				1.18	

the second of the second secon

And the second s

Land Last and in headings in the

and the property of the proper

THE REPORT OF THE PARTY OF THE

Tests for linkage between genes in F_2 's of crosses involving T3 - 6d. Table 12.

ł														ſ	
ata set	Genes 1	tested	Phenot classifie	ypes o d for	f F ₂ semis	plant teril	s itv	x_L^{21} .	Р.	henoty	vpes o	f tot	al F ₂		x_L^{21} .
No.	Х, х	Υ, γ	XX	Xy	хҮ	xy				XX	Xy	хХ	xy		
			(a)	(p)	(c)	(P)	ц			(a)	(q)	(c)	(P)	Ę	
۵ ک	GP2, 8P2 GP2, 8P2	Gl4, 814 Gl4, 814	230 210	68 61	52 83	17 19	367 373	0.160 0.775		233 210	69 64	60 84	30 19	392 377	3.814 1.170
			tot. 440	129	135	36	740	0.935	tot.	443	133	144	49	769	4.984
			${\rm X}_{ m L}^2$ f	or tot	al			0.118		${\rm X}^2_{\rm L}$ fo	or tot	al			0.406
			X ² I	let. (1	d.f.) = (.817			X ² he	t. (1	d.f.) = 4	.578*	
∞	Gp2, gp2	Gs4, gs4	158	47	62	14	281	0.731		160	48	63	14	285	0.861
∞	G14, 814	Gs4, gs4	169	49	51	12	281	0.209		170	49	53	13	285	0.141
7	Gp2, gp2	Cu, cu	247	53	54	24	378	5.927*		250	59	68	30	407	5.275*
			n H	40.0 -	. 2.3	•				p = 4	+1.4 <u>+</u>	2.3			
7	Gp2, gp2	0, 0	238	62	56	22	378	1.976		244	65	75	23	407	0.262
7	Cu, cu	0, 0	241	60	53	24	378	4.093*		254	63	65	25	407	2.464

* Significant at the 0.05 level.

1. $X_{L}^{2} = (\underline{a - 3b - 3c + 9d})^{2}$ (coupling phase) 9n

2. p = % recombination

-35-

	al street						

Tables 13, 14, and 15 contain the data from crosses involving the translocation T4 - 6a. Table 14 shows strong linkage between the translocation and genes \underline{gl}_4 , \underline{gs}_4 , and \underline{o} . Genes \underline{gp}_2 and \underline{cu} segregate independently of the translocation. Table 15 indicates strong linkage of \underline{gl}_4 and \underline{gs}_4 , which is expected since the translocation is strongly linked with each gene. The significant X^2 for linkage of \underline{gp}_2 and \underline{gl}_4 , in Table 15 indicates a shortage of parental in comparison with recombinant types. However, this is partly due to incomplete classification for semisterility. And the state of t

Data set No.	Char. tested	Segregation of F ₂ classified for semis ff ss n X ²	plants terility for 1:1	Segregation in total F ₂ .
9 10 11	SS SS SS	198 165 363 208 176 384 180 207 387	3.000 2.667 <u>1.884</u>	
		tot. 586 548 1134 X^2 for total X^2 het. (2 d.f.) =	7.550 1.273 6.277*	
		<u> </u>	for 3:1	<u>A a n X² for 3:1</u>
9 10 11	SP2 SP2 SP2	292713633087638429295387	5.731* 5.556* 0.042	296853811.471316894051.976294983920.000
		tot. 892 242 1134 1 X^2 for total X^2 het. (2.d.f.) =	1.329 8.100** 3.229	tot. 906 272 1178 3.447 X^2 for total 2.292 X^2 het. (2.d.f.) = 1.155
9 11	g1 ₄ g14	259 104 363 284 103 387	2.579 0.538	272 109 381 2.647 287 105 392 0.667
		tot. <u>543 207 750</u>	3,118	tot. <u>559 214 773 3.313</u>
		X^2 for total X^2 het. (1 d.f.) =	2.704 0.414	X^2 for total 2.971 X^2 het. (1 d.f.) = 0.343
9	gs ₄	81 26 107	0.028	85 28 113 0.003
10	cu	326 58 384 2	0.056**	336 69 405 13.696**
11	0	286 98 384	0.056	305 100 405 0.021

Table 13. Tests for segregation of characters in F_2 's of crosses involving T4 - 6a.

* Significant at the 0.05 level.

** Significant at the 0.01 level.

International Distance of summarian in Cale of Protocol

	IN	
ATTEN YAA AA AAG ATTEN JAA AA AAG JAA TA AAT YAA AA		
The State States		
	man in and and	201
	and the past the state	

A REAL PROPERTY AND ADDRESS OF A DESCRIPTION OF A DESCRIP

Data	Gene			F ₂ segi	regation	ı		x _L ²¹ .
set No.	tested		A ss	A ff	a ss	a ff		
		ļ	(a)	(b)	(c)	(d)	n	
9 10 11	8P2 8P2 8P2		127 144 161	165 164 131	38 32 46	33 44 49	363 384 387	2.579 0.222 1.310
		tot.	432	460	116	126	1134	4.112
			X_{L}^{2} for	r total				0.0012.
			X ² he	t. (2 d.	.f.) = 4	4.111		
9 11	g1 ₄ g1 ₄		157 <u>194</u>	102 90	8 13	96 90	363 387	93.444** 96.662**
	-	tot.	351	192	21	186	<u>750</u>	190.107
			X_{L}^{2} fo	r total				190.096**
			X ² he	t. (1 d	.f.) = (0.0108		
			p = 5	.1 <u>+</u> 1.3	1 ³ .			
9	gs ₄		52	29	0	26	107	31.779**
10	cu		145	181	31	27	384	2.000
10	0		175	111	1	97	384	102.556**
			p = 0	.6 <u>+</u> 0.	5			

Table 14. Tests for linkage between semisterility and genes in F_2 's of crosses involving T4 - 6a.

** Significant at the 0.01 level.

1.
$$X_L^2 \left(\frac{-a+b+3c-3d}{3n}\right)^2$$
 (repulsion phase)

- 2. This value may not be valid because segregation for semisterility was heterogeneous.
- ³• p = % recombination.

the part of the second se

count which party one country of the

- I had been a set of the set of

and a second sec

6a.
T
T4
involving
crosses
οf
s
رم
н с
ŗ.
genes
be tween
linkage
for
Tests
15.
able

E

[
x_L^{21} .			0.539 2.834	3.374	2.939		0.221	86.735**		0.046	1.159	1.089	
5		n	381 392	773		0.434	113	113		405	405	405	
tal F	xy	(P)	22 20	42		=	9	25		15	26	13	
of to	хҮ	(c)	63 78	141	ta1	L d.f.	22	Т	1.1	74	63	56	
ypes	Xy	(q)	87 85	172	or to	et. (]	22	ო	3•2 <u>+</u>	54	74	87	
henot	ХХ	(a)	2 09 2 09	418	${\rm X}^2_{\rm L}$ f(X ² he	63	84	= = d	262	242	249	
				tot.									
			.93 29	22	82*		75	34**		18	30	96	
x_L^2			1.2	4.2	4.0		0.1	85.5		0•0	3.1	0.2	
ts 1ity		ц	363 387	750		0.140	107	107		384	384	384	
plan steri	ху	(P)	17 19	36		п П	S.	24		6	26	13	
of F ₂ semi	хҮ	(c)	5 4 76	130	tal	l d.f	16	1	1.1 ²	67	50	45	
ypes d for	Xy	(p)	87 84	171	or to	et. (21	2	2.7 ±	49	72	85	
henot sifie	XX	(a)	205 208	413	x_L^2 f	X ² h	62	80	ll Ll	259	236	241	
P clas				tot.									
p	У		814 814				8s4	8s4		no			
teste	Υ,		G14 , G14 ,				Gs4 ,	Gs4,		cu,	0,0	0, 0	
Jenes	×		8P2 8P2				8P2	8 ¹ 4		8P2	8P2	cu	
	X,		GP2 : GP2 :				Gp ₂ ;	G14,		Gp2,	Gp2,	Cu,	
Data set	No.		9 11				6	6		10	10	10	

* Significant at the 0.05 level.

** Significant at the 0.01 level.

1. $X_{L}^{2} = (\underline{a - 3b - 3c + 9d})^{2}$ (coupling phase) 9n

 $2 \cdot p = \%$ recombination

The P number of Lot of

I with the state of the

manual Art has not a party

THE R. P. LEWIS CO., LANSING MICH.

	Pal.	
	Land In the	
A III III A III III A III III A III III A III III		

<u>T5 - 6a</u>

Tables 16, 17, and 18 contain the data from crosses involving the translocation T5 - 6a. Table 17 shows strong linkage of the translocation with <u>o</u> but no linkage with <u>gp_2</u>, <u>gl_4</u>, or <u>cu</u>. Table 18 shows no linkage between pairs of genes considered since any significant X^2 's in this table result from shortages of parental in comparison with recombinant types. Lethality of double mutants probably constitutes the strongest contribution towards these shortages. the second state and stratements for the first of the state

Data set No.	Char. tested	Segregation of F ₂ plants <u>classified for semisterility</u> Segregation in total F ₂
		ff ss n X ² for 1:1
12 13 14	SS SS SS	189 185 374 0.043 180 158 338 1.432 150 166 316 0.810
		tot. <u>519 509 1028 2.285</u>
		X^2 for total 0.097 X^2 het. (2 d.f.) = 2.188
		$A = n X^2 \text{ for 3:1} \qquad A = n X^2 \text{ for 3:1}$
12 13 14	SP2 SP2 SP2	290843741.2872941094030.901251873380.099261983591.011233833160.270236863220.501
		tot. 774 254 1028 1.656 tot. 791 293 1084 2.413
		X^2 for total0.047 X^2 for total2.381 X^2 het. (2 d.f.) = 1.609 X^2 het. (2 d.f.) = 0.032
12 14	^{g1} 4 g1 ₄	283913740.0893011024030.021227893161.688231913221.826
		tot. 510 180 690 1.777 tot. 532 193 725 1.847
		X^2 for total0.435 X^2 for total1.016 X^2 het. (1 d.f.) = 1.342 X^2 het. (1 d.f.) = 0.831
13	cu	270 68 338 4.296* 280 79 359 1.717
13	0	256 82 338 0.099 275 84 359 0.491

Table 16. Tests for segregation of characters in F_2 's of crosses involving T5 - 6a.

* Significant at the 0.05 level.

ALL RANGE AND A REAL PROPERTY AND A REAL PROPE

And a second second	

And the second second had been

Data	Gene			F ₂ seg	regation	n		x ^{2¹•}
No.	Lesteu	-	A ss	A ff	a ss	a ff		
			<u>(a)</u>	(b)	(c)	(d)	n	
12 13 14	8P2 8P2 8P2		143 110 123	147 141 110	42 48 43	42 39 40	374 338 316	0.014 3.318 0.017
13	1 1	tot.	376	398	133	121	1028	3.349
	1 4	-	X_{L}^{2} for	total				1.091
100			X^2 het	:. (2 d	.f.) = 2	2.258		
12 14	g1 ₄ g14		137 115	146 112	48 <u>51</u>	43 <u>38</u>	374 <u>316</u>	0.513 1.367
-		tot.	252	258	99	81	690	1.880
			$X_{\rm L}^2$ for	total				1.739
	3	13	X^2 het	:. (1 d	.f.) = (0.141		
13	cu		131	139	27	41	338	1.140
13	0	- 3	157	99	1	81	338	87.578**
	1. 1		p = 0.	8 <u>+</u> 0.	6 ² •			
L								
** St	ignificant	at t	he 0.01	level	•			
1. x_{I}^{2}	= (<u>- a +</u>	b + 3n	<u> 3c - 3d</u>	$(1)^2$ (re	pulsion	phase)		

Table 17. Tests for linkage between semisterility and genes in F_2 's of crosses involving T5 - 6a.

². p = % recombination

						-

				10		
141.Q						
titu						
MELE	2960	C	115			
4.00.0						
			147-1			
				EL.	12	
and I			14	all a		
117.11						
		ic = X ₁ E	0.15			

passed bird and in how over 19

I see a section of the section of th

A CONTRACTOR OF THE OWNER

Ö
1
TΣ
involving
ູ
۲ ۲
in.
betweengenes
l inkage
for
Tests
18.
Table

x_L^{2-}			3.040 0.001	3.041	1.755		4.836*	5.150*	0.572	
2		u	403 322	72.5		1.286	359	359	359	
tal F	xy	(P)	21 24	45			14	15	21	
of to	хҮ	(c)	88 62	150	tal	l d.f.	84	83	58	
ypes .	Xy	(q)	81 67	148	or tot	et. (]	65	69	63	
nenot	XX	(a)	213 169	382	x_L^2 for	X ² h€	196	192	217	
Ŀ				tot.						
x_L^{21} .			4.137* 0.051	4.187	1.809		3.694	4.272*	1.106	
ts Lity		с	374 316	069		2.378	338	338	338	
plani steri	xy	(P)	13 24	37		=	11	14	20	
of F ₂ semi:	хY	(c)	71 59	130	tal	l d.f.	76	73	48	
ypes (1 for	Xy	(q)	78 65	143	or to	et. (57	68	62	
nenoty sifie(ХХ	(a)	212 168	380	x_{L}^2 fo	x ² he	194	183	208	
Pl class			•	tot.						
tested	Y, y		G14, g14 G14, g14				Cu, cu	0, 0	0, 0	
Genes 1	Х, х		GP2, BP2 GP2, BP2				Gp2, gp2	Gp2, gp2	Cu, cu	
)ata set	No.		12 14				13	13	13	

* Significant at the 0.05 level.

L•
$$X_{L}^{2} = (\underline{a - 3b - 3c + 9d})^{2}$$
 (coupling phase 9n

	and a state	
-		
Tables 19, 20, and 21 contain the data from crosses involving the translocation T5 - 6b. Table 20 shows strong linkage of the translocation with \underline{o} , no linkage with \underline{gp}_2 or \underline{cu} , and loose linkage with \underline{gl}_4 . Table 21 shows no linkage between the pairs of genes considered.

Linkage between the translocation and <u>gl₄</u> is not intense, but the ratio for full fertility versus semisterility in both dominant and recessive classes of plants favors linkage.

-44-

and the rate of the barriers and the second second

Data set	Char. tested	Segregation in F ₂ plants classified for semisterility	Segregation in total F ₂
No.		ff ss n X ² for 1:1	
15 16	S	167 166 333 0.003 72 70 142 0.028	
		tot. 239 236 475 0.031	
		X^2 for total 0.019 X^2 het. (1 d.f.) = 0.012	
		A a n X^2 for 3:1	A a n X^2 for 3:1
15 16	gp ₂ gp ₂	261 722 333 2.027 107 35 142 0.009	264 86 350 0.034 110 38 148 0.036
		tot. 368 107 475 2.036	tot. <u>374 124 498 0.070</u>
		X^2 for total 1.550 X^2 het. (1 d.f.) = 0.486	X^2 for total 0.003 X^2 het. (1 d.f.) = 0.067
15	g1 ₄	251 82 333 0.025	262 88 350 0.004
16	cu	120 22 142 6.485*	121 27 148 3.604
16	0	115 27 142 2.714	119 29 148 2.306

Table 19. Tests for segregation of characters in F_2 's of crosses involving T5 - 6b.

* Significant at the 0.05 level.

search in the local sector is a sector with the local sector is a sector with the local sector is a sector with the local sector wit

AND A DESCRIPTION	
Concert ANY MALE	
22-25 2 2	
North Contract	
ALL CALLER AND	
 2 Mar 11 - 1 - 1 - 1 - 1 - 1 - 1	
101 (

International Property in the second second

Data	Gene			F ₂ seg	regation	1		$x_{L}^{2^{1}}$
set No.	tested		A ss	A ff	a ss	a ff		
			(a)	(b)	(c)	(d)	n	
15 16	8P2 8P2		128 53	133 54	38 17	34 <u>1</u> 8	333 1 <u>42</u>	0.289 0.009
	- 2	tot.	181	<u>187</u>	55	<u>5</u> 2	47 <u>5</u>	0.298
			X^2_L for	total				0.158
			X^2 het	. (1 d	•f•) = (0.141		
15	gl ₄	-	134	117	32	50	333	5.046*
			p = 26	• • 8 <u>+</u> 5	• 0 ² •			
16	cu		59	61	11	11	142	0.009
16	0		69	46	1	26	142	22.545**
			p = 2.	5 <u>+</u> 1.	8			
	- 1 3							

Table 20. Tests for linkage between semisterility and genes in F_2 's of crosses involving T5 - 6b.

- * Significant at the 0.01 level.
- ** Significant at the 0.05 level.
- 1. $X_{L}^{2} = (-a + b + 3c 3d)^{2}$ (repulsion phase) 3n
- ²• p = % recombination.

12		area l		

the second secon

Anyon Dias and you associately as

count with any of the count of

6b.
1
$\mathbf{T5}$
nvolving
ŗ
crosses
of
t s
F ₂
in
genes
between
linkage
for
Tests
21.
Table

x ² ¹ .	-		0.032	0• 000	0.012	0.012	
0	¢	11	350	148	148	148	
tal F	xy		21	7	7	5	
of tot	XY ()	751	65	31	30	22	
vpes c	Xy (P)		67	20	22	24	
Phenoty	XX	/a /	197	06	89	97	
x_L^{21} .	.		0.617	0.379	0.529	0.028	
ts 1ity	٤	1	333	142	142	142	
plan steri	xy (P)		15	4	5	ო	
of F ₂ semi	xY		57	31	30	19	
pes (for	Xy (P)		67	18	22	24	
Phenoty classified	XX ,	47	194	89	85	96	
tested	Y, y		G14, 814	Cu, cu	0, 0	0, 0	
Genes	Х, х		Gp2, gp2	Gp2, 8p2	Gp_2 , Bp_2	Cu, cu	
Date set	No.		15	16	16	16	

1. $X_{L}^{2} = (\underline{a - 3b - 3c + 9d})^{2}$ (coupling phase) 9n

		-	-		
	114				
1					
					RE
				-	

Tables 22, 23, and 24 contain the data from crosses involving the translocation T5 - 6c. Table 23 shows strong linkage of the translocation with \underline{gs}_4 and \underline{o} , but no linkage with \underline{gp}_2 , \underline{gl}_4 , or \underline{cu} . Table 24 shows essentially no linkage between pairs of genes.

the state of the second s

Data set No.	Char. tested	Segregation in F ₂ pi classified for semister ff	ants erility	Segregat	ion in	total F ₂
17 18 19	SS S S S S	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	133 286 269			
		tot. 410 402 812 0. X^2 for total 0. X^2 het. $(2 \text{ d.f.}) = 0.$. <u>687</u> .079 .609		1	
		A a n X ²	For 3:1	<u> </u>	n	X ² for 3:1
17 18 19	SP2 SP2 SP2	299 70 369 7 264 86 350 0 76 17 93 2	155** 034 240	306 84 274 98 <u>76 17</u>	390 372 93	2.492 0.358 2.240
		tot. <u>639 173 812 9</u>	. <u>429</u> tot	• <u>656</u> 199	855	5.091
	1-	X^2 for total 5. X^2 het. (2 d.f.) = 3.	,911* ,518	X^2 for to X^2 het. (tal 2 d.f.)	1.357 = 3.734
17 19	g1 ₄ g1 ₄	284 85 369 0. 71 22 93 0.	,760 ,090	297 93 22	390 93	0.277 0.090
		tot. <u>355 107 462 0</u>	. <u>849</u> tot	• <u>368 115</u>	483	0.367
		$\begin{array}{ccc} X^2 & \text{for total} & 0, \\ X^2 & \text{het.} & (1 \text{ d.f.}) = 0, \end{array}$.834 .015	X^2 for to X^2 het. (tal 1 d.f.)	0.365 = 0.001
17 19	gs ₄ gs ₄	162 42 204 2 65 28 93 1	,118 , <u>294</u>	171 45 <u>65 28</u>	216 93	2.000 1.294
		tot. 227 70 297 3.	. <u>412</u> tot	• <u>236</u> 73	309	3,294
			,324 ,087	X^2 for to X^2 het. (tal 1.d.f.)	0.312 = 2.982
18 18	cu o	29 [·] 5 55 350 16. 264 86 350 0.	.095** 034	308 64 284 88	372 372	12.057** 0.358

Table 22. Tests for segregation of characters in F_2 's of crosses involving T5 - 6c.

* Significant at the 0.05 level.

** Significant at the 0.01 level.

period from the start of a start and a start of a start of the start o

title and the second	
	1 4

summer and the summer start

)ata	Gene			F ₂ seg	egation	n		$x_{L}^{2^{1}}$
No.	Lesteu	-	A ss	A ff	a ss	a ff		
			(a)	(b)	(c)	(d)	<u>n</u>	
17 18 19	gp ₂ gp ₂ gp ₂		156 130 <u>37</u>	143 134 <u>39</u>	32 40 7	38 46 10	369 350 93	0.868 0.187 0.176
		tot.	323	316	79	94	812	1.230
			X_{L}^{2} fo	r total				1.110
			X^2 he	t. (2 d.	f.) =	0.120		
1.7 19	g1 ₄ g1 ₄	-	146 33	138 <u>38</u>	42 11	43 <u>11</u>	369 <u>93</u>	0.109 0.090
		tot.	179	176	53	54	462	0.199
		-	X_{L}^{2} fo	r total				0.026
			X ² he	t. (1)	d.f.) =	0.173		
17 19	gs ₄ gs ₄		108 <u>43</u>	54 22	0	42 27	204 <u>93</u>	52.941** 35.129**
		tot.	151	76	1	69	297	88,070
			X_{L}^{2} fo	r total				87.364**
			X^2 he	t. (1 d.	.f.) =	0.707		
			p = 0	•7 <u>+</u> 0.0	5 ² .			
18	cu		141	154	29	26	350	0.461
18	0		170	94	0	86	350	106.244**
			p = 0	•0 <u>+</u> 0.0	D			
* Si	ignificant	: at tl	he 0.0	1 level				
• x ²	2 = (<u>-</u> a -	- b + :	<u>3c - 3</u>	<u>d</u>) ² (rej	pulsion	phase)		

Table 23. Tests for linkage between semisterility and genes in F_2 's of crosses involving T5 - 6c.

². p = % recombination.

the second secon

			n l	
00.0				

- A REAL PROPERTY AND ADDRESS OF TAXABLE PARTY.

reason and the second s

Data	Genes	tested	Phen classif	otypes c ied for)f F2 semis	plant	i tv	x_L^{21}	Phenotypes of tot:	al F2	x_L^{21} .
No.	Х, х	Y, y	X	Y Xy	xY	xy	~ ~ ~		XY Xy xy	xy	
			(a	(q) ((c)	(p)	Ľ		(a) (b) (c) (u (þ)	
17 19	GP2, BP2 GP2, BP2	G14, 814 G14, 814	22 5 tot. 28	8 71 7 19 5 90	56 14 70	14 3 17	369 93 462	0.220 0.269 0.488	233 73 64 57 19 14 tot. 290 92 78	20 390 3 93 23 483	0.001 0.269 0.270
			x ²	for tot	al			0.424	x_{L}^{2} for total		0.039
			X ²	het. (1	d.f.) = (• 064		X ² het. (1 ^{-d} .f.)) = 0.231	
17 19	GP2, 8P2 GP2, 8P2	Gs4, 8s4 Gs4, 8s4	13 tot. 18	5 31 2 24 7 55	27 13 40	11 4 15	204 93 297	1.961 0.632 2.593	138 33 33 52 24 13 tot. 190 57 46	12 216 4 93 16 309	1.185 0.632 1.817
			X ²	for tot	al			0.512	X^2_L for total		0.225
			X ²	het. (1	d.f.) = 2	.081		X ² het. (1 d.f.)	= 1.592	
17 19	G14, g14 G14, g14	Gs4, 8s4 Gs4, 8s4	11 4 tot. 16	8 31 8 23 6 54	44 17 61	11 5 16	204 93 297	0.035 0.871 0.906	123 34 48 48 23 17 tot. 171 57 65	11 216 5 93 16 309	0.296 0.871 1.167
			x ²	for tot	al			0.458	x_L^2 for total		0.935
	-		X ²	het. (1	d.f.	0 = (.488		X ² het. (1 d.f.)	= 0.232	
18	Gp_2 , Bp_2	Cu, cu	21	9 45	76	10	350	0.926	225 49 83	15 372	0.387
18	GP2, BP2	. 0° o	20	0 64	64	22	350	0.062	209 65 75	23 372	0.005
18	Cu, cu	0, 0	22	2 73	42	13	350	0.011	233 75 51	13 372	0.234
1. X	${}_{\rm L}^2 = (a - 3)$	1b - 3c + 9c	<u>d</u>) ² (co	upling p	hase)						

9n

Tests for linkage between genes in F_2 's of crosses involving T5 - 6c. Table 24.

-51-

	1	

<u>T6 - 7b</u>

Tables 25, 26, and 27 contain the data from crosses involving the translocation T6 - 7b. Table 26 shows strong linkage of the translocation with gs_2 and o. The gene gl_4 segregates independently and gp_2 may do so as well although the data are heterogeneous. The gene <u>cu</u> shows linkage also, but the indication is not particularly strong. Table 27 indicates essentially no linkage between the pairs of genes considered.

The source of heterogeneity for linkage between the translocation and \underline{gp}_2 in Table 26 may be a result of classification for semisterility. In the three data sets the class of plants dominant for \underline{gp}_2 shows no shortage of fully fertile plants that would characterize linkage. Only the shortage of semisterile recessives in Data Set 22 suggests linkage. Hence independent assortment is favored.

Data Set 21, in Table 26, indicates linkage of \underline{cu} with the translocation. Table 27, however, shows no linkage of \underline{o} with \underline{cu} which would be expected if \underline{cu} were closely linked with the translocation. Table 25 indicates distorted segregation ratios for semisterility and for \underline{cu} , while the segregation for \underline{o} is good. The treatment of distorted segregations for semisterility and \underline{cu} as possible causes for the apparent contradiction is pursued below.

> Suppose that plants were added to the F₂ to restore good segregation ratios for individual characters. They would usually have to be semisterile

-52-

10-28

(a) the provide the providence for 27 contrains the providence of the providence of the providence of the 25 contrains and the providence of the providen

An emblement of any to take 10 km is a result of an example of a second of a s

A DESCRIPTION OF A DESC

AND AND AND AND ADDRESS OF ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADD

in order to approach a 1:1 ratio for full fertility versus semisterility, and would usually have to be <u>cu</u> in order to restore a 3:1 ratio of <u>Cu</u> versus <u>cu</u>. These plants could seldom be <u>o</u> because there is already a slight excess of that phenotype over the expectation. This would therefore mean an increase in the proportion of semisterile <u>cu</u> plants, and hence the weakening of the linkage indication between <u>cu</u> and the translocation. Similarly the indication for linkage between <u>cu</u> and <u>o</u>, which is not significant, would be further weakened.

Since the shortage of \underline{cu} plants was highly significant, it appears that the apparent contradiction discussed above is a result of this shortage. The indication of independent segregation between \underline{cu} and \underline{o} , although being hampered by distorted segregation of \underline{cu} , is not hampered by other factors. Consequently, independent assortment of \underline{cu} and the translocation is favored by the independent assortment of this pair of genes, on the basis of plants classified for semisterility, and on the basis of the total F_2 .

Data set	Char. tested	Segregation in F ₂ pl classified for semiste	ants Segregation in total F ₂ rility
NO.		ff ss n X ² f	or 1:1
20 21 22	S S S S S S	1961813770.1961583544.1481262741.	597 079* <u>766</u>
		tot. 540 465 1005 6. X^2 for total 5. X^2 het. (2 d.f.) = 0.	<u>442</u> 597* 845
		A a n X ² f	or 3:1 A a n X^2 for 3:1
20 21 22	8P2 8P2 8P2	296813772.2965835414.196782741.	484 299 87 386 1.247 015** 306 68 374 9.273** 757 202 84 286 2.914
		tot. 788 217 1005 18. X^2 for total 6. X^2 het. (2 d.f.)= 12.	255tot.807239104613.433225* X^2 for total2.581030** X^2 het.(2 d.f.)=: 10.852**
20 22	g1 ₄ g1 ₄	285 92 377 0. 193 81 274 3. tot. 478 173 651 3.	072 041 113 293 93 386 0.169 3.399 113 tot. 494 178 672 3.568
			861 X^2 for total 0.794 X ² het. (1 d.f.) = 2.774
20 22	gs4 gs4	302 75 377 5. 138 46 184 0.	242* 309 77 386 5.254* 000 144 47 191 0.016
		tot. 440 121 561 5. X^2 for total 3. X^2 het. (1 d.f.) = 1.	242tot.4531245775.270523 X^2 for total3.790719 X^2 het. (1 d.f.) = 1.480
21	cu	304 50 354 22.	331** 317 57 374 18.998**
21	0	263 9 1 °. 354 0.	094 281 93 374 0.004

Table	25.	Tests	for	segregation	of	characters	in	F. '	s	of	crosses
		involv	ving	T6 - 7b.				2			

* Significant at the 0.05 level.

** Significant at the 0.01 level.

- And A TANK AND A TAN

Juns		Marine Street	
1, 2, 2, 1 (7, 2, 1 (1, 2, 1) (1, 2, 1)	and the second	and an	No.
	Anna and Anna		
72.	Carrier and A		

Data	Gene			F ₂ segr	egation	n		x ² ¹ .
No.	τεςτεα		A ss	A ff	a ss	a ff		
			(a)	(b)	(c)	(d)	<u>n</u>	
20 21 22	gp ₂ gp ₂ gp2		136 131 99	160 165 97	45 27 27	36 31 51	377 354 274	2.300 0.456 6.662**
		tot.	366	422	99	118	1005	9.417
			X_{L}^{2} for	total			1	0.0002.
			X ² het	t. (2 d.	f.) = 9	9.417**	11	
20 22	g1 ₄ g1 ₄		138 89	147 104	43 <u>37</u>	49 44	377 274	0.072 0.044
		tot.	227	251	80	93	651	0.115
			$X_{\rm L}^2$ for	total				0.115
		_	X ² het	t. (1 d.	f.) =	0.000		
20 22	gs ₄ gs ₄		180 82	122 56	1	74 45	377 <u>184</u>	67.842** 45.225**
		tot.	262	178	2	119	561	113.066
			X_{L}^{2} for	r total				112.433**
			X^2 he	t. (1 d.	f.) =	0.633		
			p = 1.	.1 <u>+</u> 0.6	³ .			255
21	cu		146	158	12	38	354	4.102*
21	0		157	106	1	90	354	95.220**
			p = 0	•7 <u>+</u> 0.5	5			

Table 26. Tests for linkage between semisterility and genes in F_2 's of crosses involving T6 - 7b.

* Significant at the 0.05 level. ** Significant at the 0.01 level.

1.
$$X_L^2 = (-a + b + 3c - 3d)^2$$
 (repulsion phase)

². This value may not be valid because segregation for gp_2 was heterogeneous. ³. p = % recombination and a state of a second second

And in case of the second seco

server in succession of the second se

								T T								
,	x ² ^{1.}	-	1.751 1.280	3.031	3.031		0.056 0.885	0.941	0.120		0.139 0.364 0.503	0.425		0.343	1.142	0.629
	Phenotypes of total F_2	XY Xy xY xy	222 77 71 16 386 138 65 63 21 282	tot. 360 142 134 37 668	$x_{\rm L}^2$ for total	X^2 het. (1 d.f.) = 0.000	238 61 71 16 386 108 32 36 15 191	tot. 346 93 107 31 577	x_L^2 for total	X^2 het. (1 d.f.) = 0.821	233 60 76 17 386 101 35 43 12 191 tot. 334 95 119 29 577	X_{L}^{2} for total	X^2 het. (1 d.f.) = 0.078	259 47 58 10 374	226 80 55 13 374	241 76 40 17 374
	x ² ¹ .		1.026 1.364	2.390	2.336		0.014 0.783	0.797	0.167		0.106 0.155 0.261	0.243		1.367	0.363	0.664
	Phenotypes of F ₂ plants classified for semisterility	XY Xy xY xy (a) (b) (c) (d) n	220 76 65 16 377 134 62 59 19 274	tot. 354 138 124 35 651	X_{L}^{2} for total	X^2 het. (1 d.f.) = 0.054	236 60 66 15 377 105 32 33 14 184	tot. 341 92 99 29 561	$x_{\rm L}^2$ for total	X^2 het. (1 d.f.) = 0.630	227 58 75 17 377 98 34 40 12 184 tot. 325 92 115 29 561	$\mathbf{X}_{\mathbf{L}}^2$ for total	X^2 het. (1 d.f.) = 0.018	255 41 49 9 354	218 78 45 13 354	229 75 34 16 354
	ta Genes tested et	40. X, X Y, y	0 Gp ₂ , gp ₂ G1 ₄ , g1 ₄ 2 Gp ₂ , gp ₂ G1 ₄ , g1 ₄	F 1			0 GP2, 8P2 Gs4, 8s4 2 GP2, 8P2 Gs4, 8s4				0 G14, 814 Gs4, 8s4 2 G14, 814 Gs4, 8s4 14, 814 Gs4, 8s4			1 Gp2, gp2 Cu, cu	1 Gp2, gp2 0, 0	1 Cu, cu 0, o

 $X_{L}^{2} = (\underline{a - 3b - 3c + 9d})^{2}$ (coupling phase)

1•

9n

Tests for linkage between genes in F2's of crosses involving T6 - 7b. Table 27.

-56-

					Tento - I dan (I and I		
				神殿			

Distorted Character Segregation

Tentative explanations given earlier regarding the cause of distorted F_2 segregations have a bearing on the possibility of accommodating the data for these to provide more valid estimations of linkage. Some generalization of these explanations is possible. In many progenies concerned the distortions occurred only in the portion that could be reliably classified for semisterility, and hence are probably to be attributed to this deficiency in classification. Others, especially those for <u>gp</u>₂ and <u>cu</u>, are characteristic of total progenies; and since the viable plants showing these characters showed lower vigor than did normal plants, the most likely explanation for the distorted ratios is differential viability.

Mather (1951) and Bailey (1961) discuss modifications of X_L^2 where two characters show differential viability. However, these modifications assume that viability effects operate independently. Since multiple mutants often have very low vigor, the assumption is not necessarily justifiable in this study. Most distortions of two characters are, moreover, in F_2 's classified for semisterility, and hence in these cases the modification for differential viability would not be valid.

Orientation of Genes and Translocations

The gene <u>o</u> is close to the centromere of chromosome 6 (Kramer and Blander, 1961; Ramage, 1965). The gene <u>gs4</u> is close to <u>o</u> (Walker <u>et al.</u>, 1963). In this study <u>gs4</u> or <u>o</u> invariable show close linkage with each translocation. On the basis of these genes

-57-

- 0 P - 22 PSI AV- - 2

alone, it is not possible to make assertions regarding the proximity of each translocation to them or to the centromere. The genes \underline{gl}_4 , \underline{gp}_2 , and \underline{cu} , moreover, cannot unquestionably be assigned to chromosome 6 on the basis of the data from crosses reported here. Consequently various possibilities have to be considered in regard to orientation.

Walker <u>et al</u>. (1963) found 29.4 \pm 2.6% recombination between <u>gl</u>₄ and <u>gs</u>₄. In crosses reported here involving six translocations, five cases show no linkage between these genes. The remaining case shows strong linkage, probably attributable to masking of recombination in the interstitial segment (recombination was not tested between these genes in crosses with the remaining two translocations because <u>gs</u>₄ did not segregate). The data from these crosses suggest that if <u>gl</u>₄ and <u>gs</u>₄ are on the same chromosome, they are not close together.

The gene \underline{gl}_4 shows $5.1 \pm 1.1\%$ recombination with T4 - 6a and 26.8 \pm 5.0% recombination with T5 - 6b, and may possibly be linked with T2 - 6a, although the indication is not strong. The three translocations cited here likely have breakpoints located in the long arm of chromosome 6, although the evidence for this with regard to the first two is not conclusive (see Table 2). The data found here indicate, at least, that the two are both in the same arm.

If the above translocations are all in the long arm, \underline{gl}_4 must be in the same arm and distant from the centromere. The translocations T3 - 6d and T6 - 7b, believed to be in this arm as well (see Table 2), in order not to show linkage with \underline{gl}_4 , must then

have breakpoints near the centromere. This is consistent with locations suggested in Barley Genetics I (1964). T5 - 6a, believed to be in the long arm (see Table 2), must also have a breakpoint near the centromere since it shows no linkage with <u>gl</u>₄. The possibility has not definitely been excluded, however, that <u>gl</u>₄ is in the short arm¹. In this case T4 - 6a and T5 - 6b would also have to be in the short arm, and T1 - 6e and T5 - 6c, believed to be in the short arm, would have to be close to the centromere in order to show no linkage with <u>gl</u>₄.

In any of the data sets studied, the genes \underline{gp}_2 and \underline{cu} do not convincingly show linkage with the translocations involved. Only in one case (involving T3 - 6d) is linkage between \underline{gp}_2 and \underline{cu} found (in which case it cannot be clearly explained, see page 32), and in no cases is it found between \underline{gp}_2 and \underline{gl}_4 . In addition \underline{cu} and \underline{gl}_4 cannot be close together since \underline{cu} does not show linkage with the translocation with which \underline{gl}_4 shows linkage. Consequently the genes \underline{gp}_2 , \underline{gl}_4 , and \underline{cu} , if on chromosome 6, must lie at a considerable distance from one another and from the centromere region, and \underline{gp}_2 and \underline{cu} must be distant from the breakpoints of all of the translocations studied.

Assuming \underline{gl}_4 to be in the long arm of chromosome 6, then \underline{gp}_2 or \underline{cu} , if on this chromosome, must be in the short arm, distant from the centromere, or in the long arm, beyond \underline{gl}_4 . If \underline{gl}_4 is in the short arm, \underline{gp}_2 or \underline{cu} must be in the long arm, distant from the centromere, or in the short arm, beyond \underline{gl}_4 . Each of these

1. Short arm, in this discussion, includes the satellite.

-59-

The interfactor and the continues: Whe is measured with a second strength of the second

And the second of the same and the construction of the second of the

the state of the second second

AND COMPANY OF ANALYSIS OF A DESCRIPTION OF A DESCRIPTION

possibilities requires the location of breakpoints of most other translocations used in this study to be near the centromere.

A possibility, although not a very strong one, is that gl_4 is not on chromosome 6. Since T4 - 6a is strongly linked with gl_4 , gl_4 may be on chromosome 4. Such a possibility increases the possibility that gp_2 and <u>cu</u> are both on chromosome 6.

Since \underline{gp}_2 shows a possibility of linkage with several translocations involved in the crosses, and since it shows independent assortment with markers on all chromosomes except 4 and 6 (Walker <u>et al.</u>, 1963), it may best be suggested to be on chromosome 6. If this is the case it is probably in the short arm, and translocations T1 - 6e and T5 - 6c are near the centromere. The location of T1 - 6e, in this case, is consistent with the location suggested in Barley Genetics I (1964). Another possibility, although not a particularly strong one, is that \underline{gp}_2 is on chromosome 2, since T2 - 6a probably shows as strong a linkage with \underline{gp}_2 as does any other translocation tested.

The gene <u>cu</u> appears most likely to be on a chromosome other than chromosome 6. If the linkage of <u>cu</u> and <u>gp</u>₂ in the cross involving T3 - 6d is a pseudolinkage, and if <u>gp</u>₂ is located on chromosome 6, <u>cu</u> may be on chromosome 3.

The gene \underline{gl}_4 , probably on chromosome 6, should be checked for location in the long or short arm. The gene \underline{gp}_2 , if on chromosome 6, should be checked for location in the short arm. The gene \underline{x}_n and the translocation T1 - 6a in the long and short arm, respectively, may serve this purpose.

-60-

And a second sec

All is not as blocked in the set of the s

The gene <u>cu</u> should be tested for linkage with widelyseparated markers on chromosome 3, and, if no linkage is found, with widely separated markers on other chromosomes.

Figure 1 contains the possible sequence of genes and translocations used in this study. It contains information obtained from previous studies (Ramage <u>et al.</u>, 1961; Barley Genetics I, 1964) as well as this one, and assumes <u>gl</u>₄ and <u>gp</u>₂ to be in the long and short arms of chromosome 6 respectively. Loci known to be closely linked or believed to be in approximately the same region are grouped.

- 11 shows while many set over American and Alexandra and set of
Fig. 1. Sequence on chromosome 6 of genes and translocations involved in this study, based on the information obtained in this and previously reported studies.

gs₄ 0 cent. T2-6a $S \frac{gp_2(?)}{2}$ gs4 т6-7ь L T5-6a T3-6d T4-6a T1-6e T5-6c .

-62-

BIBLIOGRAPHY

- Aberg, E. and G.A. Wiebe. 1946. Classification of barley varieties grown in the United States and Canada in 1945. USDA Tech. Bull. No. 907. pp. 190.
- Bailey, N.T.J. 1961. Introduction to the mathematical theory of genetic linkage. Oxford University Press. pp. 298.
- Barley Genetics I: Proc. First Intern. Barley Genet. Symp., Wageningen. 1964. Centre for Agricultural Publications and Documentation, Wageningen. pp. 379.
- Burnham, C.R. 1948. Cytogenetic studies of a translocation between chromosomes 1 and 7 in maize. Genetics 33:5-21.
- Burnham, C.R. 1956. Chromosomal interchanges in plants. Botan. Rev. 22:419-552.
- Burnham, C.R. 1957. The use of chromosomal interchanges to test for the independence of linkage groups established genetically. Proc. Intern. Genet. Symp., Cytologia (Tokyo) (Suppl.). pp. 453-456.
- Burnham, C.R. and A. Hagberg. 1956. Cytogenetic notes on chromosomal interchanges in barley. Hereditas 42:467-482.
- Burnham, C.R., F.H. White, and R. Livers. 1954. Chromosomal interchanges in barley. Cytologia (Tokyo) 19:191-202.
- Hagberg, A. 1954. Cytogenetic analysis of erectoides mutations in barley. Acta Agr. Scand. 4:472-490.
- Hagberg, A. and J.H. Tjio. 1950. Cytological localization of the translocation point for the barley mutant <u>Erectoides</u> 7. Hereditas 36:487-491.
- Hanson, W.D. 1952. An interpretation of the observed amount of recombination in interchange heterozygotes in barley. Genetics 37:90-100.
- Hanson, W.D. and H.H. Kramer. 1949. The genetic analysis of two chromosome interchanges in barley from F₂ data. Genetics 34: 697-700.
- Hanson, W.D. and H.H. Kramer. 1950. The determination of linkage intensities from F₂ and F₃ genetic data involving chromosomal interchanges in barley. Genetics 35:559-569.

Immer, F.R. 1930. Formulae and tables for calculating linkage intensities. Genetics 15:81-98.

THE R. P. LEWIS CO., LANSING, MICH.

- Among I. and E.A. Market Hills of Amonthesistics of Amonthesis and an and the state of the second state of
 - the stream's biolitication and be really to see a state of the second
 - AND DESCRIPTION OF AND ADDRESS AND ADDRESS
- International and a subley strength while all a second and a second strength and a sec
 - the state of the second second
 - the design of the set of the set
- A second and a second of the forgeneral to the second of t
 - Language of the Alling and the shorten of the state of th
 - NUMBER OF STREET, STREET, STREET, ADDIES, STREET, STRE
 - Transations and date and the second second second and the second second
 - Description of the second seco
- Decision and the Party and Party and
 - Theory, Full, 212. Variante and angles the principality for an exception of the principality of the princi

- Joachim, G.S. 1947. The product method of calculating linkage from F₂ data involving semisterility; and its application to a barley translocation. Genetics 32:580-591.
- Kramer, H.H. and B.A.S. Blander. 1961. Orienting linkage maps on the chromosomes of barley. Crop Sci. 1:339-342.
- Kramer, H.H., R. Veyl, and W.D. Hanson. 1954. The association of two genetic linkage maps in barley with one chromosome. Genetics 39:159-168.
- MacDonald, M.D. 1961. Barley pachytene chromosomes and the localization of the <u>Erectoides 7</u> translocation point on chromosome 5. Can. J. Genet. Cytol. 3:13-17.
- Mather, K. 1951. The measurement of linkage in heredity (2nd ed.). London: Methuen & Co. Ltd.
- Nilan, R.A. 1964. The cytology and genetics of barley, 1951-1962. Washington State University Press. pp. 278.
- Ramage, R.T. 1964. Chromosome aberrations and their use in genetics and breeding translocations. Barley Genetics I: Proc. First Intern. Barley Genet. Symp., Wageningen.
- Ramage, R.T., C.R. Burnham, and A. Hagberg. 1961. A summary of translocation studies in barley. Crop Sci. 1:277-279.
- Robertson, D.W., G.A. Wiebe, and F.R. Immer. 1941. A summary of linkage studies in barley. J. Amer. Soc. Agron. 33:47-64.
- Robertson, D.W., G.A. Wiebe, and R.G. Shands. 1947. A summary of linkage studies in barley: Supplement I, 1940-1946. J. Amer. Soc. Agron. 39:464-473.
- Robertson, D.W., G.A. Wiebe, and R.G. Shands. 1955. A summary of linkage studies in barley: Supplement II, 1947-1953. Agron. J. 47:418-425.
- Robertson, D.W., G.A. Wiebe, R.G. Shands, and A. Hagberg. 1965. A summary of linkage studies in cultivated barley, <u>Hordeum</u> species: Supplement III, 1954-1963. Crop Sci. 5:33-42.
- Shih, C. and L.H. Shebeski. 1960. Sterility in interchange heterozygotes of barley. Can. J. Genet. Cytol. 2:429-434.
- Smith, L. 1941. An inversion, a reciprocal translocation, trisomics, and tetraploids in barley. J. Agr. Res. 63:741-750.
- Smith, L. 1951. Cytology and genetics of barley. Botan. Rev. 17: 1-51, 133-202, 285-355.
- Tjio, J.H. and A. Hagberg. 1951. Cytological studies on some X-ray mutants of barley. Anales estac. exptl. Aula. Dei 2:149-167.

- The plane have plate in the part of the ball of relaxing the second seco
- The process of the pr
 - An and Avoid on Aldi and the second of a solution of the second of the s
 - Description of the second seco
 - and a set in the set of a set of the set of
 - And and the second and products of harbors. Lincourses and the second se
- All and the second seco
 - In granter of the state of the
 - And a second state of the second state of the
 - A DESCRIPTION OF A DESC
 - Allowing and a set of the second seco
 - About any second to be a second of the secon
 - A second se
 - property of the second se
 - The property of the second sec
 - The second second reaction of the second s

- Tjio, J.H. and A. Levan. 1950. The use of oxyquinoline in chromosome analysis. Anales. estac. exptl. Aula. Dei 2:21-64.
- Walker, G.W.R., J. Dietrich, R. Miller, and K. Kasha. 1963. Recent barley mutants and their linkage. II. Genetic data for further mutants. Can. J. Genet. Cytol. 5:200-219.
- Wiebe, G.A. and D.A. Reid. 1961. Classification of barley varieties grown in the United States and Canada in 1958. USDA Tech. Bull. No. 1224. pp. 234.

and a second second

Tenned 1660 Longer I down and IX or provide a 200 martine of the second statements of the second

and and the second state of the second state o

B29856