RECORDS

OF THE

SOUTH AUSTRALIAN MUSEUM

VOLUME 17

Published by the Museum Board, and edited by the

Museum Director

CONTENTS

No. 1. A revision of the described Australian and New Zealand species of the family Clambidae (Coleoptera) with description of a new species. S. EndrödyYounga. pp. 1-10.
(Issued 13 August 1974)
No. 2. A revision of the Australian genus Stenospidius Westwood (Coleoptera, Scarabaeidae, Geotrupinae). H. F. Howden. pp. 11-21.
(Issued 15 November 1974)
No. 3. Notes on Bronze Age antiquities in the South Australian Museum. J. V. S. Megaw. pp. 23-29.
(Issued 10 January 1975)
No. 4. Lunghia Oudemans (Acari: Dermanyssidae); a genus parasitic on mygalomorph spiders. Robert Domrow. pp. 31-39.
(Issued 24 January 1975)
No. 5. Taxonomy and biology of frogs of the Litoria citropa complex (Anura: Hylidae). Michael J. Tyler and Marion Anstis. pp. 41-50.
(Issued 7 March 1975)
No. 6. A revision of the Pentatomidae (Hemiptera-Heteroptera) of the Rhynchocoris group from Australia and adjacent areas. Part 1. The genera from Ocirrhoe through Cuspicona to Petalaspis with descriptions of new species and selection of lectotypes. Gordon F. Gross. pp. 51-167.
(Issued 22 December 1975)
Nos. 7-12. Vertebrate type-specimens in the South Australian Museum.
I. Fishes. C. J. M. Glover. pp. 169-175.
II. Amphibians. Michael J. Tyler. pp. 177-180.
III. Reptiles. Terry F. Houston. pp. 181-187.
IV. Birds. Herbert T. Condon. pp. 189-195.
V. Mammals. Peter F. Aitken. pp. 197-203.
VI. Fossils. Neville S. Pledge. pp. 205-219.
(Issued 1 September 1976)
No. 13. The Dermaptera of the New Hebrides. A. Brindle. pp. 221-238.
(Issued 1 December 1976)
No. 14. The genus Microtetrameres Travassos (Nematode, Spirurida) in Australian birds. Patricia M. Mawson. pp. 239-259.
(Issued 1 February 1977)
No. 15. Taxonomic studies of some Australian leptodactylid frogs of the genus Cyclorana Steindacher. Michael J. Tyler and Angus A. Martin. pp. 261-276.
(Issued 1 March 1977)
No. 16. A new species of Thylacoleo (Marsupialia: Thylacoleonidae) with notes on the occurrences and distribution of Thylacoleonidae in South Australia. Neville S. Pledge. pp. 277-283.
(Issued 1 June 1977)
No. 17. Metasqualodon harwoodi (Sanger, 1881). A redescription. Neville S. Pledge and Karlheinz Rothausen. pp. 285-297.
(Issued 8 August 1977)

No. 18. Protura (Insecta) of the New Hebrides, S. L. Tuxen, pp. 299-307.
(Issued 10 September 1977)
No. 19. Brachina meteorite-A chassignite from South Australia. J. E. Johnson, June M. Scrymgour, Eugene Jarosewich and Brian Mason, pp. 309-319.
(Issued 2 Nowember 1977)
No. 20. Australites of mass greater than 100 grams from South Australia and adjoining states. W. H. Cleverly and June M. Scrymgour. pp. 321-330.
(Issued 20 February 1978)
No. 21. Three large australites from South and Western Australia. June M. Scrymgour. pp. 331-335.
(Issued 23 February 1978)
No. 22. Variation in the cranial osteology of the Australo-Papuan hylid frog Litoria infrafrenata. Margaret M. Davies. pp. 337-345.
(Issued 28 February 1978)
No. 23. A review of the frond-like fossils of the Ediacara assemblage. Richard J. F. Jenkins and James G. Gehling. pp. 347-359.
(Issued 18 May 1978)
No. 24. Some observations on the Eyrean grasswren Amytornis goyderi (Gould, 1875). S.A. Parker, I. A. May and W. Head. pp. 361-371.
(Issued 30 May 1978)
No. 25. Echinoderm type-specimens in the South Australian Museum. W. Zeidler. pp. 373-380.
(Issued 7 June 1978)
No. 26. Molluse type-specimens in the South Australian Museum. 1. Cephalopoda and Scaphopoda. W. Zeidler and M. K. Macphail. pp. 381-385.
(Issued 12 June 1978)
No. 27. Treponematoses (yaws and treponarid) in exhumed Australian aboriginal bones. C. J. Hackett. pp. 387-405.
(Issued 25 July 1978)
No. 28. A new species of viviparous asterinid asteroid from Eyre Peninsula, South Australia. Michael J. Keough and Alan J. Dartnall. pp. 407-416.
(Issued 31 July 1978)
No. 29. The genus Bathycoelia A. \& S. in New Guinea and Prytanicoris gen.nov. from the New Guinea area and the New Hebrides (Heteroptera-PentatomidaePentatominae). Gordon F. Gross. pp. 417-428.
(Issued 2 August 1978)
No. 30. The tribe Hyalopeplini of the world (Hemiptera: Miridae). Jose C. M. Carvalho. The Australian fauna in collaboration with Gordon F. Gross. pp. 429-531.
(Issued 10 September 1979)

RECORDS OF THE SOUTH AUSTRALIAN MUSEUM

A REVISION OF THE DESCRIBED AUSTRALIAN AND NEW ZEALAND SPECIES OF THE FAMILY CLAMBIDAE (Coleoptera) WITH DESCRIPTION OF A NEW SPECIES

By S. ENDRÖDY-YOUNGA

[^0]
A REVISION OF THE DESCRIBED AUSTRALIAN AND NEW ZEALAND SPECIES OF THE FAMILY CLAMBIDAE (COLEOPTERA) WITH DESCRIPTION OF A NEW SPECIES

BYS. ENDRODY-YOUNGA

Summary

The type specimens of all species described under the family Clambidae were studied. In the present paper holotypes are confirmed and lectotypes designated where necessary. The systematic position of the species is clarified and a new species described.

The taxonomic status of the family has changed remarkably since it was established by Thomason in 1859. Later authors of the last century placed the group under the family Silphidae or Anisotomidae (Leiodidae) until it was restored again as an independent family in the suborder Staphylinoidea. More recent work by Crowson (1960) resulted in the transfer of the family to the superfamily Eucinetoidea, sub-order Polyphaga.

A REVISION OF THE DESCRIBED AUSTRALIAN AND NEW ZEALAND SPECIES OF THE FAMILY CLAMBIDAE (Coleoptera) WITH DESCRIPTION OF A NEW SPECIES

By S. ENDRODY-YOUNGA

F.A.O. Entomologist ${ }^{1}$

ABSTRACT

ENDRODY-YOUNGA, S 1973, A revision of the described Australian and New Zealand species of the Family Clambidae (Coleopteral with description of a new species. Rec. S. Alust. Mus., 17 (1): 1-10.

The type specimens of all species described under the family Clambidae were studied. In the present paper holotypes are confirmed and lectotypes designated where necessary. The systematic position of the species is clarified and a new species described.

INTRODUCTION

The taxonomic status of the family has changed remarkably since it was established by Thomson in 1859. Later authors of the last century placed the group onder the family Silphidae or Anisotomidae (Leiodidae) until it was restored again as an independent fanuly in the suborder Staphylinoidea. More recent work by Crowson (1960) resulted in the transfer of the family to the superfamily Eucinetoidea, suborder Polyphaga.

The members of this family can easily be recognized by the small size $(0 \cdot 7-2 \cdot 0 \mathrm{~mm})$ and eonvex shape, by the rolled up resting position when the clypeus is curled under the pronotum (most of the specimens are mounted in this position) and by the extremely enlarged hind coxal plate. Other characters are: bead very broad, nearly as broad as pronotum, broadly rounded in frons, pronotum large, convex, not deeply excised in front to accommodate a narrow head as with many Anisotomidac; scutellum triangular with sides about equal (in the similar shaped Cybocephatidae the scutellum is very broadly obtuse-angled): anternae consisting of two enlarged basal and two club segments with usually six funicular segments four only in the Palacarctic genus Loricaster Muls, \& Rey); tarsal formula 4-4-4; tibiae simple, not serrate in contrast to Anisotomidae.

I wish to express iny gratitude to the colleagues who supplied material and enabled me to study the lype specimens, notably the late Mr. H. M. Halc, Dr. E. D. Giles, Mr. G. F. Gross and

Mr. N. McFarland of the South Austratian Musetm, Adelaide; Dr. J. W. Evans of the Australian Museum, Sydney; Mr. R. D. Pope and Miss C. M. F. yon Hayek of the British Museum (Natural History), London.

SYSTEMATIC TREATMENT

Key 70 Genera

1. Front and basal margins of pronotum meet in a sharp angle, not forming laterally a straight of arcuate margin (Fig. 1 A). Eyes free at the side of the head (Fig. I A). Metasternum evenly convex for its whole length (Fig, 1 D). Abdomen of 6 segments

Colyptomerns Redtenbacher
Pronotum with distinet, straight or arcuate lateral margin (Fig. \& B). Eyes completely enclosed in the disc of the head or only free behind (Fig. 1 B, C). Surface of metasternum sharply angled along the arcuate transversal crest (Fig. I E) Abdomen of 5 visible segments 2
2. Eyes framed in front by an extension of clypeus (temporal margin) but free behind (Fig. 1 C). Penis between bilobed or deeply emarginated parameres.... Sphterohorax Endrödy-Younga
Eyes completely framed by the temporal margin of clypens and divided into a dorsal and a ventral half, Parameres finsed into it single plate with pointed, arenate or emarginate apex

Clantus Fischer yon Waldheim
Genus CALYPTOMERUS Redtenbacher. 1849
Calyptomerus Redtenbacher, 1849, Fauna Austriaca, Käfer, p. 18, 159: Endrödy-Younga, 1959. Opusc.Ent. 24: 84-85; 1961. Acta Zool.Acad.Sci,Hung. 7; 401-412.
Comaさus Fairmaire \& Laboulbene, 1854-56, Faune Ent. Fr, Col, 1: 312, 328.

Small, convex, reddish brown with dense cover of long yellowish hairs. Body both in dorsal and in lateral view pear-shaped e.i. broadest and highest close to the shoulders. Head broad, clypeus broadly arcuate, in the middle fincly emarginated. Eyes on the hind angle of head, free (Fig. 1 A) or shortly framed in front (the European C. alpestris Redtb.). Pronotum very broad and short, convex with sharp lateral angles (Fig. 1 A) instead of lateral margins. Merasternum gently convex between mesosternum and hind coxal plates (Fig. 1 D), not sharply

[^1]angled to form a transversal crest in the middle of metasternum. Antennae 10 segmented with two enlarged basal and two club segments. Male genitalia consisting of two basally fused parameres, a pointed tongue-shaped penis, and an open, ring-shaped basal plate.

The genus comprises four species, described from the Palaearctic and Nearctic regions (Alaska). One of the species however is also known from South Africa (Cape Province), and the same species was recorded more recently from Tasmania, where it was described as Clambus corylophoides Lea.

1. Calyptomerus dubius (Marsham, 1802)
(Fig. 1 A, 1 D, 2 G)
Scaphidium dubium Marsham, 1802, Ent.Brit. 1: 234.
Comazus enshamensis Stephens, 1829, Ill.Brit. Ent.Mandib., 2: 184; Johnson 1966. Entomologist's mon. Mag., 101: 186.

Calyptomerus troglodytes Fauvel, 1861, Ann. Soc.Ent.Fr., (4) 1: 576.
Clambus corylophoides Lea, 1912, Proc.Lin.Soc. N.S.Wales, 36: 458 (syn.nov.).

Calyptomerus dubius Endrödy-Younga, 1959, Opusc.Ent. 24: 84-85; 1961, Acta Zool. Acad.Sci.Hung., 7: 411-412.

Location of types:
Scaphidium dubium Marsham, British Museum?
Comazus enshamensis Stephens: without locality, British Museum, London. Lectotype designed by C. Johnson (1966).

Calyptomerus troglodytes Fauvel: location of type unknown.

Clambus corylophoides Lea: Lectotype of and two paratypes: Hobart, Tasmania, A. M. Lea, in South Australian Museum, Adelaide.
C. dubius is the smallest species of the genus. Sculpture of dorsal surface fine, pubescence comparatively long and less dense than in other species. Apex of elytra truncate. Head broad, antennal fossa as long as the temporal margin of clypeus between eyes and side angle of antennal fossa. Eyes situated on the hind angle of head and completely free (Fig. 1 A). Surface of head shiny, with fine punctures at basis of hairs. Hairs longer and less dense than in other species, slightly elevated and forwardly directed. Pronotum broad and short, as long as head; front and basal margins joining laterally in a sharp angle (Fig. 1 A). Pubescence similar to that of the head but directed from the centre of disc towards the margins. Elytra hardly longer than combined breadth, at apex commonly truncate; laterally and at the suture finely margined. Microsculpture around scutellum very fine, laterally and towards apex more distinct. Pubescence similar to that of the pronotum, directed from base to apex. Ventral side with stronger microsculpture, pubescence shorter and denser than on dorsal surface. Male genitalia 0.3 mm and 0.12 mm broad, stout in comparison to other species of the genus. Parameres narrow, hardly longer than penis (Fig. 2 G).

Length: $\quad 1 \cdot 1-1 \cdot 6 \mathrm{~mm}$-breadth: $\quad 0 \cdot 6-0 \cdot 8$ mm .

FIG. 1
A Calyptomerus dubius Marsh., head and pronotum in lateral view.
B Clambus sp. head and pronotum in lateral view.
C Sphaerothorax suffusus Broun: head, dorsal view.
D Calyptomerus dubius Marsh., body in lateral view (position of metasternum).
E Clambus sp., body in lateral view (position of metasternum).

Distribution: Europe (except northern areas), Morocco, South Africa (Cape Province), Tasmania. The origin of the South African and Tasmanian populations is not known; importatation is likely but there is oo evidence.

Three type specimens of Clambus corylophoides Lea in the South Australian Museum were examined. The male specimen, without head and pronotum, was dissected. The external characters as well as those of the male genitalia are identical with specimens of Calyptomerus dubius Marsh. from the Palaearetic and from South Africa; therefore Clambus corylophoides Lea has to be considered as a junior syonnym of Calyptomerus dubius Marsh.

Genus SPHAEROTHORAX Endrödy-Younga,

 1959Sphaerothorax Endrödy-Younga, 1959, Opusc. Ent, 24; 88-84; 1960, Ann.Hist.Nat.Mus. Hung. 52: 241-244; 1965, Ann.Hist.Nat. Mus.Hung., 57: 259.

T'ype: Clambus tasmani Broun.

Morphologically this genus is intermediate between Calyptomerus and Clambus. It seems to be endemic to the Australian region.

Convex, especially in front; shiny reddish brown to almost black; some species with sparse and long setae on head, pronotum and elytra, Head narrower than pronotum, short, clypeus flatly arcuate in front. Antennal fossa far in front of eyes (like Calyptomeris but in contrast to Clambus). Eyes framed by temporal margin of elypeus but free at back, behind the temporal angle (Fig. 1 C) . Pronotum longer and broader than head, as broad as elytra at shoulders. Lateral margin between front and bind angles distinat, more or less arcuate. Elytra convex, margined at the sides and from behind scutellum at suture. Metasternum Jarge, with a sharp transverse crest about in the middle; hind part of metasternum horizontal, slightly convex transversally, front part almost vertically dropping to metasternum (Fig. 1 E). Mesosternum very small. Hind coxal plates large, much longer than hind part of metasternum. Abdomen five segmented. Antennac 10 segmented with two enlarged busal and two large club segments. Parameres bilobed, fused at base, penis varying in shape according to species.

The external characters of the species ane not very marked and without comparative material it is difficult to distinguish the three species. The male genitalia however are very distinctive for each species.

Ker ro Species

1. Horizontal, hind part of metasternum with cleatent, large punctures for whole width. Minute pabescence of head and pronotum more visible. Subsutural margins of elytra visible close behind scutellum. Penis between the large and rounded parameres appearing thin and strongly curved (Fig, 2 C, D). 1.4-1.6 mm. Tasmania
2. Sphaerothorax tierenvis (Blackburm)

Horizontal, hind part of metasternum without clear and distinet punctation in the midde. Minute pubescence and punctation of head and pronotum not or hardly visible. Subsutural margins of elytra appear further behind scutellum. Paramere lobes pointed, penis not curved back towards the base
2. Larger, more elongate. Elytra behind shoulders semiparallet, in lateral view sutural line not evenly curved. Penis dilated before pointed apex (Fig, 2 E, F). 1•3-1-6 mm. Tasmania
2. Sphaerothorax rasmani (Blackburn)

Smaller, dytra both in dorsal und in lateral view evenly arcoate, Penis broad at base with a long and narrow apical process (Fig. 2 A, B). 1.2 mm , New Zealand
3. Sphaervitioras suffusus (Broun)

1. Sphaerothorax tierensis (Blackburn, 1902)
(Fig. 2 C-D)
Clambus tierensis Blackburn, 1902, Trans.Roy, Soc.S.Austr., 26: 289; Lea, 1912, Proc.Lin: Soc.N.S.Wales, 36: 459.

Clambus latens Lea, 1912, Proc.Lin.Soc.N.S, Wales, 36: 457 (syn nov),

Clambus pubiventris Lea, 1912, Proc.Lin,Soc. N.S.Wales, 36: 456 (syn. nov.).

Sphaerothorax tierensis Endrödy-Younga, 1960, Ann.Nat.Hist.Mus.Hung, 52: 242.

Location of types:

Clambus tierensis Blackbum: Lectotype 8, Tasmania, British Muscum (Natural History), London.

Clambus latens Lea: Lectotype of and three furlher paratypes, Stonor, Tasmania (probably from tussocks). A. M. Lea, in South Australian Museum, Adelaide.

Clambus pubiventris Lea: Holotype 3 and two further paratypes from the same locality, Mount Wellington, Tasmania, A. M. Lea, in South Australian Museum, Adelaide.
Elongate ovate, shiny dark brown with lighter transparent lateral lobes of pronotum and front margin of clypeus. Lighter coloured specimens not rare.

Head broad and short, narrower and shorter than pronotum, Front margin of clypeus between the antennal fossa slightly trilobate, median lobe almost four times broader than one of the lateral ones; median lobe very flatly arcuate, finely emarginate in the middle. Pubescence of dise very short and fine with a few short additional setae. Elytra much longer than their combined breadth ($46: 38$), evenly arcuate, both in dorsal and in lateral view. Subsutural striae of elytra appear close behind scutellum, there fine, slightly diverging from one another, behind the last two-fifths very distinct, parallel. Surface shiny with nearly evenly distributed and similar setae. Hind, horizontal part of metasternum with distinct, Targe punctutes. Punctures in the middle set in two to three rows bot more contused laterally. Inclined setae of transverse crest do not reach the hind margin of metastervum. Short and dense pubescence of abdomen collected into a tuft on anal sternite. Male genitalia 0.45 mm long and 0.2 mm broad (Fig. 2 C, D).

Length: $1.4-1.6 \mathrm{~mm}$-breadth: $0.8-0.9 \mathrm{~mm}$.
Distribution: Tasmania: Hobart, Stonor, Mount Wellington, New Norfolk.

The type specimens of Clambus tatens Lea are paler than average S. tierensis but are obviously immature, the genitalia of the dissected specimen (lectotype) are feebly sclerotised. No
specific difference could be found between the compared lectotypes, therefore Clambus latens Lea has to be considered as a junior synonym of Sphacrothorax tierensis (Blackburn).

The type specimens of Clambus pubiventris Lea are similar to S. tierensis (Blackb.), The aedeagus of the first specimen on the label (holotype) is visible without dissection and is identical with that of S. tierensis. The colour and setae of the elytra mentioned as specific characters by Lea in the original diagnosis are also characters of S. tierensis. The size of the type specimens is within the size range of S. tierensis and in the shape no distinct difference could be found. Clambus pubiventris Lea has to be considered as a junior synonym of Sphaerothorax tierensis (Blackb.). The three type specimens are mounted on the same label, the first from the left, marked as "typ" by Lea should be accepted as holotype. The specimen in the middle had no head and pronotum at the time of the present examination.
2. Sphaerothorax dasmani (Blackburn, 1902)
(Fig. 2 E-F)
Clambus tasmani Blackburn, 1902, Trans Roy, Soc.S.Austr., 26: 288. Lea, 1912, Proc. Lin.Soc.N.S.Wales, 36: 458.
Clambus rufocastaneus Lea, 1912, Proc,Lin,Soc. N.S.Wales, 36: 457 (syn. nov.).

Sphaerothorux tusmani Endrödy-Younga, 1959. Opusc.Ent., 24: 89; 1960, Ann.Hist.Nat. Mus.Hung., 52: 243-244.

Location of types:
Clambus tasmani Blackburn: Lectotype is, Tasmania. in British Museum (Natural History), London.

Clambus rufocastancus Lea: Lectotype \&, Huon River, Tasmania (in tussocks), A. M. Lea, and one further paratype from the same locality, in South Australian Museum, Adelaide.

Elongate ovate, shiny reddish or chestnut brown, lateral lobes of pronotum and lateral margins of elytra (where body does not give a shade) lighter transparent. Setae of elytra numerous, very strong and long.

Head shorier and narrower than pronotan. Front margin of clypeus slightly trilobate, median Jobe less than double widit of a lateral lobe. Front margin of median lobe only very slighty arcuate, not emarginate in middle. Setae of elypeus longer than in S. fierensis but the fine pubescence even less visible. Pronotum convex, margin of lateral lobes finely arcuate, front and hind angles rounded but distinct. Surface very shiny with a pair of sctac (on rubbed specimens only the basal punctures visible). Elytra longer than combined breadth $(45: 36)$. Sides in dorsal view nearly parallel behind shoulders. Subsutural striae distinct but shorter in front, first visible at the first two-fifths behind scutellum, Setae on disc and lateral margin similar, very long and strong. Horizontal, hind part of metasternum shiny, only punctate laterally close to the transverse crest. Recumbent setae of crest reach or surpass the hind margin of metasternum. Abdomen densely pubescent with a tuft of short hats on the anal sternite. Male genitalia 0.5 mm long and 0.15 mm broad (Fig. $2 \mathrm{E}, \mathrm{F}$).

Length: 1.4-1-6 mm-breadth: 0.8-0.9 mm,
Distribulion: Tasmania: Launceston, Mount Wellington, Frankford,

The type specimens of Clambus rufocastaneus Lea are identieal with specimens of S. tasmami. the male genitalia are also similar. The smaller size and lighter colour mentioned by Lea in the original diagnosis are within the variability of S. tasmani, and the subsutural striae are also characters of it. Clambus rufocastaneus Lea has to be considered as a junior synonym of S. tasmani (Blackb.).
3. Sphaerothorax suffusus (Broun, 1886)
(Fig, 1 C, 2 A-B)
Clambus suffusus Broun. 1886, Man.N.Zeal. Col. 2: 762.

Sphaerothorax maori Endrödy-Younga, 1959, Opusc.Ent., 24: 90; 1960, Ann.Hist.Nat. Mus.Hung. 52: 243,

Sphaerothorax suffusus Endrödy-Younga. 1965, Ann.Hist.Nat.Mus.Hung., 57: 259.

Location of types?

Clambus suffusus Broun: Leetotype d, New Zealand, Broun Coll. in British Museum (Natural History), London.

Sphaerothorix maori Endrödy-Younga: Holotype δ, Wellington Prov., New Zealand, and a paratype, Auckland, New Zealand, in British Museuni (Natural History), London. A further paratype with the latter locality in Natural History Museum, Budapest.
Smaller, elongate ovate, shiny reddish brown with lighter sides of pronotum and elytra. Setae of elytra somewhat shorter and less numerous than in S. tasmani, but much longer than in S. lierensis.

Head much shorter and, also narrower than pronotum. Front margin of clypeus slightly trilobed, median lobe less than double the breadth of a lateral lobe; front margin of lobes more arcuate (Fig. 1 C). Setae of elypeus short, fine pubescence of dise hardly visible. Pronotum convex, margin of lateral lobes evenly arcuate between lateral angles, Surface shiny with a pair of long setac. Elytra only slightly longer than combined breadth $(39: 36)$. Sides in dorsal view, and sutural line in lateral view evenly arcuate. Subsutural striae of elytra first appear just before the second third of length. Setac oumerous along lateral margins with some additional ones at shoulder and near apex. Ventral side similar to that of S. tasmani, but without the accumulation of hairs on apal sternite. Male genitalia 0.48 mm long and 0.1 mm broad (Fig. 2 A, B).

Length: 1.15-1.35 mm—breadth: 0.85-0.90 mm .

Distribution: New Zealand: Wellington. Auckland, Rotorua

Genus Clambus Fischer von Waldheiru, 1820
Clambu: Fischer von Waldheim. 1820. Ent, Russ ${ }_{4}$ 1: 20. Endrödy-Younga, 1960, Acta Zool.Acad.Sci.Hung., 6: 257-303.

Johnson, 1966. Handb.Ident.Brit.Ins., Clambidac, vol. 6, part 6 (a): 1-13 (Roy。 Ent. Soc.,London).
Siernuchus Leconte, 1850, in Agassiz (ed.). "Lake Superior", p. 222.

In general appearance the genus is very bomogeneous and nost of the species can only be charatcterized by minute but usually very constant chatacters. The male genitalia (penis and the fused parameres) appear to be the best specific characters.

Small, between 0.9 and 1.8 mm , almost spherical to elongate ovate, semiglobular to pearshaped, i.e. flattened or narrower towards apex of elytra. Surface polished, shiny or sometimes with reticulate microsculpture, if latter, more distinct alt apical part of elytra or on ventral surlace. Pubescence very characteristic, varying from hardly visible fine hairs to a fairly dense vestiture of long setate. Normally unicoloured brown or black, usually with lighter transparent lateral margin of pronotum and elytra.

Head large and broad, clypeus broadly arcuate between temporal angles. Eyes entirely framed by temporal margin of clypeus (Fig, I B), divided into a dorsal and al ventral part. Hind ingle of clypeus (temporal angle) situated beside or behind eyes. The pubescence of clypeus is characteristic and can be used for the grouping of species. Pronotum large and convex with distinct lateral margins. Lateral margin broadly and almost evenly arcuate, or straight between front and hind latetal angles: hind angle if distinct more Jlatly arcuate than front angle. Elytra longer, only exceptionally slightly shorter than combined breadth, sniformly convex or tlattened or contacted towards apex. Metasternum, along a deeply bent transverse crest divided into an almost vertical front and a horizontal hind part (Fig, I E). Metasternum very short, only accommodating median coxae. Abdomen 5seganented. Antennale 10 -segmented with two enlarged basal and two club segments. Penis dilated or tubular, parameres fused at base, there with an additional, usually less sclerotised, genital segment.

The genus is widely distributed in all temperate and tropical regions. Only four species are known from the Australian region.

SYSTEMATLC "TRFATMENT

Key to Sbecies of the Australian Region

1. Head, pronotum and clytra apparently hairless in mascoscopic vien but minuic hairs visible under strong magnification. Punctation on whole dise
of elytra very fine. Hotizomat, hind part of metasternum reducad to the deeply curved transverse crest al the middle (Fig, 3 S) 2
Dorsal and ventrut suriace distinctly pubescent. Punctation of elylra tine att hase but very distinct hehind the middle. Horizontal, hind part of metasternum also quite long medistly, transverse crest less entived (Fig. 1 E)

3
2. Temporal margin of clypeus almost straight in front of temporal angle (Fig. 3 B). Somewhat more elongate ovate, shoulders almost rectangular (Fig. 3 C). Apex of anal sternite simply exeised with only one horizontal sel of hairs (Fig. 3 D). Club of antenaae broader ovate. last funicular segments broader than long, Penis simply curved (Fig. 3 F). aphex triangular and shortel (Fig. 3 E). 1.3 mm . Sonlhern Australin

1. Chmbus myrmecophilus Lea
rempotal margin of cypels slightly more arcuate in front of temporal sugle. More broadly ovate. shoulder broadly sounded (Fig. \& A). Excision of anal sternite double curved. larger atca pubescent (Fig. 4 B). Club of antennae with semiparallel sides, last funicular segments not broader than long. Apex of penis distinctly hooked (Fig. 4 D) and more elongately pointed (Figg 4 C), 1.3 mm . New Realanal
2. Chumbis hulla spec nov.
3. Pubescence more distincl. longer. hairs on elytra closer to each other than dength of a single haic. Temporal margin of clypeus straight to the temporal angle. Penis truncate or tlattened dt apex (Fig. 5 A), 1/(1-1:2 mm. Tasmania, South Australia
4. Clumbus simsoni Blackhurn

Pubescence not so distinct, shorter hairs of elytra more spaced than length of a single hair, Temporal margin of clypens slightly arcuate in fromt of temporal angle. Margins of penis evenly curved lowards the sounded apex (Fig, s C). 0.9-1).95 mm. New Zenland. Southern Australia
t. Ctumbus dmmesticus Broun

1. Clambus myrmecophitus Lea, 1910
(Fig. 3 A-F)
Clambus myrmecophilni Lea, 1910, Proc.Roy. Soc. Victoria, 23: 190.

Location of types:

Clambus myrmecophilus Lea* Holotype of Portland, V., Inquiline, in South Australian Museum, Adclaide; Neoullotype \& South Australia. in author"s collection.

Very convex, reddish brown, shiny, apparently glabrous, pubescence extremely fine.

Head large, convex, as large as pronotum between fron angles of laveral lobes, Margin of clypeus evenly curved between temporal angles. Labrum very small. Eyes large on dorsal side, somewhat closer to temporal margin
than to antennal fossa; on ventral side only few (probably three) ocelli free (Fig. 3 B), a similar reduction of eyes is known also from other regions (c,f. $C_{\text {, }}$ kuszubi E.-Y. from North Africa), Temporal margin only slightly curved; temporal angles behind eyes (Fig. 3 B). Pronotum convex, lateral lobes with short straight lateral margins, front angles narrower than hind angles. Elytra very convex, only slightly longer than combined breadth ($38: 35$): sides in dorsal view and sularal line in lateral view evenly arcuate. Humeral angle of clytra sharp, almost rectangular (Fig. 3 C). Subsutural striac very faint, only visible near apex. Apical angles sharply rectangular. Ventral surface shiny; pubescence as fine as on the dorsal surface but basal punctures of hairs more distinct. Transverse crest of metasternum very deeply bent in the middle, there touching the hind margin of the plate (Fig. 3 A). Hind coxal plate large: longer than horizontal part of metasternum laterally (Fig. 3 A). Apex of anal sternite simply and angularly excised with only a single line of fine and short yellowish hairs at base (Fig. 3 D). Antennae short, kist two segments of funiculus (seventh and eighth segments) broader than long; club ovate. Penis 0.32 mm long and 0.04 mm broad, parallel to apex; apex triangular with tip rounded; in lateral view simply curved. Parameres 0.2 mm long and 0.06 mm broad. deeply and symmetrically excised, excision acuteangular, apices with very fine setae (Fig. 3 E, F). The description of male characters is based on a specimen from South Australia in the author's collection (Ncoallotype),

Length: 1.3 mm with head bent-breadif: 0.88 nาा1.

Distribution: Victoria, South Australia.

2. Clambus bulla Endrödy-Younga, no sp. (Fig. $4 \mathrm{~A}-\mathrm{D}$)
Holotype t^{2} : New Zcaland, Broken Riv., 15.1.1908, Broun coll., 1922-482, in British Muscum (Natural History) London.
Very similar to C. my'mecophiltus. The diagnosis is restricted to characters which are different: others mentioned only under the former species are identical.

A Clumburs bulla speconove humeral angle in semilateral view:
B same. excision of anal sternite:
C same, dedergus in ventral view:
(D) same, acdeatum in lateral vjew.

More broadly ovate, temporal margin of clypeus somewhat more strongly bent (compare Fig. 3 B). Humeral angle of elytra mounded (Fig. 4 A). Elytra shorter, as long as combined breadth. Excision of anal sternite double-curved at base, here more densely pubescent (Fig. 4 B). Last two segments of funiculus (seventh and eighth segments of antemnae) not broader than long: club of antennue more parallel at sides. Penis 0.4 mmi long and 0.05 mm broad, apex more acute with tip rounded. Apex of penis hooked in lateral view, Fused parameres 0.28 mm fong and 0.08 mm broad slighty dilated towards apex, apex symmetrically but less deeply excised, excision rectangular (Fig, 4 C, D).

Length: 1.3 mm , with head bent-bradif:], (0 inim.

Distribution: New Zealand.
3. Clambus simsoni Blackburn, 1902
(Fig. 5 A-13)
Clambus simsoni Blackburn, 1902, Trans,Roy. Soc.S.Austr., 26: 288. Endröly-Younga, 1959, Opusc.Ent., 24: 95; 1965, Ann. Hist. Nat.Mus.Hung. 57: 260-261.
Clambus thevipes Lea, 1912, ProciLin.Soc.N.S. Wales, 36: 456 ($\mathrm{syn}_{\mathrm{n}}$ novi, .
Location of types:
Clambus simsomi Blackb;; Lectotype \&. Tasmania, Simson, Broun Coll. B.M. 1910236, in British Museum (Natural History). London.
Clambus flavipes Lea: Holotype is, Gordon River, Tasmania, J, E. Philip, in South Australian Museum, Adelaide.

Light to dark brown with long shiny pubescence. Moderately convex. Front part of dorsal surface shiny, with only indistinct microsculpture and minute basal punctures of hairs. latter becoming very distinct in the hind third of elytra.

Head large, margin of clypeus broadly and evenly arcuate between temporal angles. Temporal margin almost staight between antennal fossa and temporal angle. Temporal angle situated beside eye, i.e., an imaginary line between temporal angles cuts through eyes. Eyes large both on dorsal and ventral side of head. equally close to antennal fossa and to temporal margin in front. Pubescence uniform, shorter than on elytra, Pronotum convex. Hind angle of lateral lobes broadly, front angle more narrowly. arcuate; lateral margin slightly curved. Pubescence as on head. Elytra longer than combined breadth $(35: 30)$. sides more strongly arcuate towards apex than behind shoulders. Humeral angle nearly rectangular or slightly obluseangulate. Sutural line in lateral view more strongly arcuate behind scutellum than towards upex. Sutural striae fine, appearing only before middle of elytra. Pubescence long, more closely set than the Jength of hairs. Transverse crest of metasternum moderately bent in the middle, here also leaving a comparatively long piece of the horizontal part. Hind, horizontal past of the metasternum, hind coxal plates and abdominal segments evenly pubescent, as on elytra; basal punctures of hairs strongest on hind coxal plates. Legs and antennae reddish yellow, Penis 0.27 mom long and 0.04 mm broad, parallel, with apex contracted. Apex broadly truncate; in lateral view slightly curved to parameres, apical two-thirds straight. Fused paraneres
0.15 mm long and 0.05 mm broad, contracted towards apex, apex excised with tine setae at points (Fig. 5 A, B). A specimen from S.E. Qucenstand has broader penis with less contracted apex.

Length: $1 \cdot 0-1 \cdot 2 \mathrm{~mm}$ with head bentbreadth: 0.75-0.85 mm.

Distribution: Tammania and Eustern Australia.
The lype specimen of C. flavipes is light brown and therefore its pubescence less apparent. though identical with that of darker specimens, Subsutural striae present, very fine as is general with this species. Male genitalia identical with that of the lectotype of C. simsoni. Clumbus flavipes. Lea has to be considered as a junior synonym of Chambus simsoni Blackb.

4. Clambus domesticus Broun, 1886

(Fig. 5 C-D)
Clambus domestichs Broun, 1886, Man.N.Zeal. Col. 3: 762. Endrödy-Younga, 1959. Opusc.Ent, 24: 96; 1965, Ann.Mus.Nat. Hist.Hung., 57: 259-260.
Clambus tropicus Blackburn, 1903, Trans Roy. Soc.S.Austr. 27:97.
Location of types:
Clumbus domesticus Broun: Lectotype d., New Zealand, Broun coll., B.M. 1922482. (1350). in British Museum (Natural His. tory), Londen.

FIC. 5
A Clanhan simsomi Blackb, aedeagus in rentral view:
B same, wedeagus in lateral view.
© C'amburs domesticus Broun, acdeagus in Ventral ziew:
D same, bedengus in dateral view.

Clambus: Iropicus Blackb: Lectotype of Australia, Blackburn collo, B:M. 1910-236, in British Muscum (Natural Fistory), London.
This species is very similar and is apparently closely related to C. simsoni. Therefore the diagnosis bercunder is only extended to those characters which are difierent: others, mentioned only under C. simsom are identical.

Smaller, pubescence much shorter, dark, less apparent. C'olour, punctation and microsculpture simailar. Temporal matgin of clypeus distinctly aretate in front of temporal angle, batter less nbtuse. Pubescence denser in fromt of, than between the eyes. Pubescence of elytra similar to that between cyes, hairs wider apart than their length. Pubescence of ventral surface longer than that of dorsal surface, here very similar to C'. simsoni. Penis 0.22 mm long and 0.04 mm broad, simply curved to the apex, in lateral view more smoothly arcuate. Fused parameres 0.14 mar long and 0.05 mm broad, truncate or slightly enarginate at apex, rounded apical angles with fine setat (Fig. C, D).

Longth: 0.9-0.95 mm with head bentbrealuth: (0.7 mim.

Distribmion: New Zealand and Southern Australia.

Thxammic slatus uf wher species described under the family Clambidac

Clumbus seminariss Lea, 1926, Proe.Roy.Soc.S. Austr. 50:51.

Lectotype i: Northern Oueensland, Blackburn coll. in South Australian Muscum, Adelaide.
The species belongs to the genus Cybocepholus Erichson in the family Cybocephalidae. In that genus this species name is already prococcupied by Cybocephulus semillaws Chanpion. 1925, Ent.Mo.Mag.i 263, from Kumaon, India, Lea's species has therefore to be transferred to the family Cyboceplsalidace under a nomen wovma. tor which 1 propose Cybocephalus leai nom.nov.
Chmmes anstraliue L.ea, 1926. Trans.Ent.Soc. London. 74: 280.

Lectotype is: West Australia, King George's Sound. C. Darwin coll., in South Australian Muscum. Adelaide.

This species also belongs io Cybocephaliss Erichson. Cybocephalidae, and hecomes Cybocentuatus anstralice (Lea) nov. comb.

Ctambus vestitus Broun, 1886, Man.N.Zcal.Col., 2: 762 .

Leciotypus 3 : New Zealand, in British Museum (Natural History), London.

The species apparently belongs to the family Anisotomidae. The generic characters of the species required the establishment of a new genus and it was transferred to the family Anisotomidae (Leiodidae) under the name Australiodes vestitus (Broun) in Endrödy-Younga, 1960, Ann.Mus.Nat.Hist.Hung., 52: 239-240,

SUMMARY

Since 1886, when the second part of Broun's Manual of the New Zealand Coleoptera was published with the description of the first species of Clambidae in this region, 16 species have been described, all, with one exception, under the genus Clumbus. The revision of these species was begun by the present author in 1959 when a genus, Sphaerothorax, was establistred for a distinctly different group of the bamily. Later, after a study of the type specimens of the British and South Australian Museunss, a further genus, Calyptomerts: Redth. is identified and the taxonomic status of all described species clarified. Clambus buller is described as a new species.

REFERENCES

Blackburn. Th: 1902. Further Notes on Australian Coleop-

Blachburn. T. 1903. Furiher Notes on Australian Colotoptera, with Descriptions of New Genera find Species (32). Trons. R. Soc. S. Ansi, 27: 91-1\$2.

Broun, T.., 1886. Manual of the Now Zoaland Colentiera. 7 pitts (1880-93), Colonial Museurn \& Genlogical Survey Department, Wellington.
Champion, Ci. Ci, 1925. Some Indiant (and Tjbetani) Culeaplera (18). Emomelegest's mon. Mag., 61: 250-273
Crowson, R. A. 1960 (1954). The Natural Classifitalion of the Families of Coleoptera Classey, Lonton.
Crowson. R. A., 1967. The Nalural Classification of the Families of Coleoptera, Addenda et Corrigendat. fimmmologisn's mon. Mago, 103: 209-214.
Endrixily-Younga, S.- 1959. Systemalischer Ueberblick neber die Fumilic Clambidae, Opusc. rell., 24: \$1-116,
Lindrödy-Yuones. $S_{\text {tr }}$ 1961, Monographic Ner paliarh listhen Atten der Gatlung Clambus (Col.). Acta

Enduödy-Younga. Sus 1460. Neuc Augaben zur Klarrug des Systems der Familie Clambidao und Beschreibung ener nowen Lindiden-Gathang (Coleoplera). Amish hisho-mi. Mus. netho hungo, 52: 23y-245.
Eneltüly-Younga, S., 19K1. Revision der Gattuag Calyphomerus Redtb, (Colenptera: (lambidae). Acta 2nal.7hagg, 7: d01-412.
Endtửly-Younga, S., 1965. Clambiden Studien. Amis hist-nat. Mus, nain. humg, 57: 259-265.
Fnirmaire, Lu Laboulhene, A, $1854-56$. Faunc entomologique Fransaise, Colenptera : pp. 66s. Deyrolic. Patic.

Fischer von Waldheim, G., 1820. Entomographie de la Russie et Genres des Insectes avec un Catalogue raisonné des espèces de la Russie. 5 Vols. Soc. Caesar. Mosc.natur. Moscow.
Johnson, C., 1966. Handbooks for the Identification of British Insects, Clambidac, Coleoptcra, Royal Entomological Socicty, London, 4, 6a: 1-13.
Johnson, C., 1966. The Stephensian Species of the Family Clambidae (Col.), together with a Revised British List of the Family. Entomologist's morr. Mag., 101: 185-188.

Lea, A. M., 1912. Descriptions of New Species of Australian Coleoptera (9). Proc. Limm. Soc. N.S.W., 36: 426-478.
Lca, A. M., 1910. Australian and Tasmanian Coleoptera inhabiting or resorting to the nests of ants, bees and termites. Proc. R. Soc. Vict. 23: 116-230.
Lea, A. M., 1926. Notes on some miscellaneous Coleoptera with descriptions of new species (6). Proc. R. Soc. S. Abst., 50: 45-84.
Lea, A. M., 1926. On some Australian Coleoplera Collected by Charles Darwin during the Voyage of the "Beagle". Trans. R. cht. Soc. Lould., 74: 279-288.
Leconte, J. L., 1850. General Remarks upon the Coleoptera of Lake Superior. In "Lake Superior", Vol. 4 (L. Agassiz ed.). Agassiz, New York.

Marsham, T., 1802. Entomologia Britannica, sistens Insecta Britanniac indigena secundum Linneum disposita pp. 548. White, London.
Redienbacher, Dr. L., 1849. Fauna Austriaca, Käfer, pp. 883. Gerold, Vienna.

Stephens, J. F., 1829-1846. Illustrations of British Entomology, Mandibulata, 7 Vols. (2 and 5). Baldwin \& Cradock, London.
Thomson, C. G., 1859. Skandinaviens Coleoptera, 5 Vols. (1859-63) Lund.

LIST OF SPECIES
Family Clambidae
Calyptomerus Redtenbacher
C. dubius Marsham $=$ Clanbus corylophoides Lea
Sphacrothorax Endrödy-Younga
S. dierensis (Blackburn)
$=$ Clambus tierensis Blackburn
$=$ Clambus latens Lea
= Clambus pubiventris Lea
s. fasmani (Blackburn)
= Clambus tasmani Blackburn
$=$ Clambus rufocastancus Lea
S. suffusus (Broun)
$=$ Clambus suffusus Broun
$=$ Sphaerohorax maori Endrödy-Younga
Clambus Fischer von Waldheim
C. myrmecophilus Lea
C. bulla spec. nov.
C. simsoni Blackburn
= Clambus flavipes Lea
C. domesticus Broun
= Clambus tropicus Blackburn
Family Cybocephalidae
Cybocephalus Erichson
C. leai nom. nov.
= Clambus semifavus Lea
C. australiae (Lea)
= Clambus ausiraliae Lea
Family Leiodidae
Australiodes Endrödy-Younga
A. lestitus (Broun)
$=$ Clambis vestitus Broun

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

A REVISION OF THE AUSTRALIAN GENUS STENASPIDIUS WESTWOOD (Coleoptera,

 Scarabaeidae, Geotrupinae)By H. F. HOWDEN

[^2]
A REVISION OF THE AUSTRALIAN GENUS STENASPIDIUS WESTWOOD (COLEOPTERA, SCARABAEIDAE, GEOTRUPINAE)

by H. F. Howden

Abstract

Summary

The Australian genus Stenaspidius Westwood is revised, and the species are keyed and illustrated. Five species are recognized: S. nigricornis Westwood from southern Western Australia, S. brittoni n. sp. from southern Western Australia, S. matthewsi n. sp. from west central Western Australia, S. ruficornis Boucomont from South Australia, Victoria and New South Wales and S. albosetosus n. sp. from the northern portions of Queenlsand, Northern Territory and Western Australia.

A REVISION OF THE AUSTRALIAN GENUS STENASPIDIUS WESTWOOD (COLEOPTERA, SCARABAEIDAE, GEOTRUPINAE)

By H. F. HOWDEN
Biology Department, Carlcton University, Ottawa, Canada

Abstract

HOWLIEN, H. E, 1974, A revision of the Austatian genus Stenospidins Westwood (Coloupters, Scarabacidac. Geotmoninae). Rec s. Aust. Mus. 17 (2): 11-21.

The Australian genus Stemaspiditus Westwood is revised, and the species are keyed and illustrated. Five species are recognized: S. nigricornis Westwood from southern Western Australia, S. brittoni $\mathrm{n}_{\mathrm{i}} \mathrm{sp}$. from southern Western Austrulia, S. mathewsi n. sp. from west central Western Australia, Si ruficornis Boucomont from South Australia, Victoria and New South Wales and S. alhosetosus n. sp. from the northern portions of Queensland, Northern Territory and Western Australia.

INTRODUCTION

On 21st March, 1848, J. O. Westwood read a paper entitled "On the Australian species of the coleopterous genus Bolboceras. Kirby" in which he described as new the species Bolboceras (Stenaspidius [now subgenus]) nigricornis. A short version of this paper which validated the names was published in 1848 in The Annals and Magazine of Natural History, Volume 2. An expanded version of the same paper, including figures, was subsequently published in 1852 in The Transactions of the Linnean Society of London, Volume 21. In 1856 Lacordaire gave Stenaspidius Westwood generic rank, and subsequent authors have concurred with this. In 1906 a second Australian species, S. ruficomis, was described by Boucomont. Paulian (1939) described a third species, S. wagneri, from South America which was later correctly synonymized by Mattincz (1952) under Athyreus Pificollis Bruch (1925). At the same time Martínez transferred ruficollis jnto the genus Stenaspidius. Recent studies have shown that ruficollis is not congeneric with the Australian species and it has been transferred to a separate genus Bolbothyreus (Howden, 1974). Stenaspidius, as presently constituted, is an endemic Australian genus containing five species.

A number of people have assisted me with the present study and their generous help is gratefully acknowledged. In the following list of persons and institutions lending material, the abbreviations in parentheses are those used in the text:
E. 33. Britton, Australian National Insect Collection, Division of Entomology, CSIRO, Canberra (ANIC).
A. Descarpentrics, Muséum National d'Histoirc Naturelle, Paris (MNHN).
G. Holloway, The Australian Museum, Sydney (AM).
L. E. Koch, The Western Australian Museum, Perth (WAM).
E. G. Matthews. South Australian Museum, Adelaide (SAM).
A. Neboiss, National Museum of Victoria, Melbourne (NMV).
R. Pope, British Museum (Natural History), London (BM).
K. T. Richards, Entomology Branch Department of Agriculture, W.A., South Perth (DAWA).
T. Weir and N. Forrester, Entomolagy Section, Agriculture Branch, Northern Territory Administration, Darwin (NTA).
I am particularly indebted to E. G. Matthews and G. F. Gross of the South Australian Museun for support for field work in July and August, 1972, and for the use of their facilities, and to E. B. Britton, CSIRO, Division of Entomology. for tho use of facilities at Canberra.

The scanning electron microscope pictures used hercin were taken by L. E. C. Ling, Carleton University. This work has been supported, in part, by an operating grant from the National Research Council of Canada.

SYSTEMATIC TREATMENT

Stenaspidius Westwood
Westwood, J. O., 1848, p. 144, 1852, p. 17.
Lacordaire, T., 1856, p. 141.
Martiner, A., 1952, p. 326 (Catalogue of references to genus).
Howden, H. F. 1974, p. 1567.
Type-species. Bolbnceras (Stehaspidix:s) nigricomis Westwood, 1848, by monotypy.

Major characters that separate Stenaspidius from other gencra in the tribe Bolboceratini are as follows: Each mandible moderately to distinctly lobed on outer margin; labrum with irregular transverse carina, at least in median hatf; clypeus slanting slightly to abruptly upwards to posterior carina, the carina often with median and lateral horns or tubercles; gena rounded or angulate; vertex with at least an indication of median horn; pronotum with complete marginal line, pronotal midline poorly to decply indented; scutellum spproximately twice as long as wide; each elytron with five striae between suture and humeral umbone, intervals broadly convex; fore tibia with five teeth on outer margin: middle and hind tibiae each with one complete subapical transverse carina on outer surlace; middle coxae distinetly separated by metasternuns. Externat sexual differences slight: in many males apex of the genital capsule visibte between pygidium and last sternite,

The clongate scutellum will separate Stenas: pidius from all other genera of Austatian Geotrupinae except for the genus Gilletimus Boucomont. The broadly convex elyitral intervals and five narrow striae between the suture and humerat umbone separate Stemaspidins from Gilletimus which has seven deep. broad, heavily punctate striae (instead of five) and abruptly convex elytral intervals.

The various species of Stenaspidius are poorly represented in collections. Adults come occasionally to light. Specimens are best collected by excavating their burrows and in somo cases at least, a number of adults have been found in a single burrow. The meagre data avatiable indicates that the genus occurs (see map) most trequently in sandy soils in areas in which the rainfall exceeds 250 mm per year.

Key to the species of Stenaspidins

1. Frons, verice and pronotum with scattereal clamps of coarse punctures: mach of vertex and central portion of pronotum impunctate or finely munctate
Frons, vertex, and pronolum relatively evenly, coarsely, heavily punctate (Fig. 5), Jess so near posterior margin of pronotum; Kalbarri area, W.A.

Stenaspidius mallhewsi no sp.
2. (1) Metaslernum anteriorly elevated into a sharp. atruptly angulate point (c.g. Fig. 22): cecurting in solthern hall of Western Australla 3
Metasternum rounded or carinate enteriorly but with apex (viewed laterally) tounded. not sharply angutate to vertical face (Figk. 23, 24); accurring in northern or castern Australia
3. (2) Hoth on vertex ($\mathrm{Hig}, 2$) distinctly transverse. usually slighty bifud at ispex; male genitala as in Figo 20

Spemaypidius nigricurnis Westwood Horn on vertex (Fig. 3) longitudinal with base extending ameriorly, apex evenly rounded: male genitalia is in Fig. 18

Stemaspldink brittoni n. sp.
4. (2) Postefior clypeit carina well developed. distinctly narrowed, the three horns obsolete and clase together; metasternum distinctly carinafe anteriurly: azenrring in sauthLeastern Anstralia

Stenaypidius rufirernis Bouconsont
Posterior clypeal carinas pourly developed except for distinctly. widely separated horns; metastornum rounded anteriorly: occurring across northern Australia

Sichaspuidins themerovers n, sp. Stenaspidius nigricornis Westwood
(Figs. 1, 2, 19, 20. 22)
Bolhoceras (Stenaspidius) nigricomis Westwood, 184S, p. 144; 1852, p. 17.
Stemuspidines nigricurnis Westwood, Boucomont. 1932, p. 264.
Males: Length $7 \cdot 6$ to 9.1 mm ; greatest width $4 \cdot 5$ to $6 \cdot 1 \mathrm{~mm}$. Colour usually black, occasionally very dark brown: antennue and tarsi usually very dark brown. Clypeus (Fig, 2) rising at 45° to 55° angle to posterior carina; catina, in large specimens, with three low horns, mediun horn anterior in position. Face of clypeus on each side with U-shaped carina extending from median to lateral horn, the area encompassed usually as wide as deep or wider. Frons and vertex behind elypeal horns emeave anterior to horn on vertex. Gena, frons, and vertex with scattered minutely or moderately sized punctures. Horn on vertex transverse, often pronounced (particularly in large specinsens) and slightly bifid at apex (Fig. 2). Pronotum with midline distinctly indented. punctate; on each side on anterior third behind eycs a distinct, puncsate indentation delimits an impunctate convexity (Fig. 1); pronotum in anterior lateral two-thirds moderately to heavily, irregulariy punctate. Scutellum longitudinally shallowly concave; concave surface dull, often with vague. small punctures. Elytral sitriae moderately indented, finely punctate; intervals moderately convex. impunctate, smooth to vaguely transversely wrinkled. Metasternum (Fig. 22) oarrowed anteriorly to sharply pointed apex. anterior face nearly yertical, slightly indented near apex. Genital capsule (Fig. 19) evenly narrowed to abruptly rounded apex, Genitalia (Fig. 20) with upper lobe of each paramere natrowed, then dorso-ventralty expanding thear pointed apex.

Figs. 1-G. Stmaspilius spp: 1, Head and pronotum of S. nigricomis: 2, Head of S. nigricomis; 3, Head of S. brifoni; 4, Head of S. ruficornis; 5, Heat and pronotum of S mathewsi; 6, Lateral view of S. albosetosus.

Females: Lengih 7.8 io 10.5 mm , greatest width 4.8 to 6.9 mm . Variation in females similar to that described for males, horns of small femmes being poorly developed, thase of large females well developed. External sexual differences negligible.

Stentaspidius migricorni; can be distinguished by the following combination of characters: metasternum (Fig 22) anteriorly narrowed to acutely pointed apes, anterior face nearly vertical, slightly indented by apex; posterior clypeal carina well developed, the three clypeal horms of the carina obtuse, not greatly elevated above the carina, the two lateral horns directly above the nandibular insertions; horn on vertex transverse, usually well developed (Fig. 2) and slightly bifid at apex: male genitaliu (Fig. 20) very distinctive.

Type: Holotype, female, Swan River, No. 507 (Hope Museum, Oxford) specimen examined February, 1973.

Material examined; Thirty-dne specimens bearing only the following data: 1-Australia; 3-S.W. Australia: 1—Australia Orient. February, 1896. Muller: 1-Nov, Holl. Occid.; 2Albany, W.A.; 1-Bedfordale, W.A., March, 1951, W. M. O'Donnell; 1-Calgardup, 401580: 1-Deepdene, Karridade, W. A., 141 h October, 1962, L. M. O'Halloran: 4-King George Sound (nr- Albany), W. A.; 2-Mundaring, W.A., J. Clark; 1-Nedlands, W.A., 27th November. 1939, P. N. Forte; 1-Pearce, Bullsbrook, W.A., 13 th January, 1966, O. W. Richards: 1-Salmon Gums, 43-1226; 1South Perth, W. A., 20th Deeember, 1902, H. M. Giles, 2-Swan River. W.A., J. Clarki 1Vasse; 2-Warren R. (nu. Pemberton?), W.A., W, D. Dodd: 4-William Bay, W.A., 31st October, 1967 , E. Matthews; 1-Yallingup. S.W. Australia. 1st-12th December, 1913, R. F. Turner.

Specimens are in the following collections: ANIC, BM, DAWA, MNHN, NMV, SAM, WAM and Howden.

Stenaspidius brittoni n. sp.

(Figs. 3, 17, 18)
Holotype: Male, length 8.7 mm , greatest width 5.0 mm . Colour dark to very dark brown except dorsum of head and pronotum black. Clypeus (Fig. 3) rising abruptly to three horns at posterior margin; median horn anterior in position, with U-shaped carina on each side extending nearly to anterior margin of clypeus
and thence to lateral horns; the U-shaped area approximately as deep as wide. Frons and vertex behind clypeal horns concave except lor low, rounded. longitudinal median ridge extending posteriorly to slender hom at base of vertex (Fig. 3). Gena and vertex laterally with scattered coarse punctures, central concave portion of yertex with widely scatiered, tine punctures. Pronotum with midline distinctly indented, punctate; on each side on anterior third behind eyes a shallow, punctate indentation delimits an impunctate convexity; pronotum in anterior lateral two-thirds with irregular coarse punctures. Scatelum longitudiaally shallowly concave; surface of concavity dull, slightly irregular and with scattered fine punctures. Ejytral striae moderately indented, finely punctate; intervals moderately convex, smooth, impunctato. Mctasternum narrowing anteriorly to sharply pointed apex, unterior face vertical (motasternum very similar to migricomis, Fig. 22). Genital capsule (Fig, 17) evenly narrowed to acutely rounded apex. Genitalia (Fig. 18) with upper lobe of each paramere evenly arcuate to acutely pointed apex.

Allotype: Female, length $7 \cdot 1 \mathrm{~mm}$, greatest width 4.4 mm . Similat to male except in following respects: colour brown (specimen teneral), clypeus tising less abruptly, clypeal horns poorly developed; frons and vertex less concave, harn of vertex low. rounded; rounded longitudinal ridge extending anteriorly from base of hom less well defined than in male.

Variation not mentioned in the description is slight. The single female paratype measures 6.6 mm in length and 4.2 mm in greatest width. The clypeal carina and the horn on the vertex are both poorly developed, and distinctly abraded. If the sexual differences in the horns of the head car be shown to be consistent, then S. briftoni must be considered to be the most obviously dimorphic species in the genus.

Stenaspidius brittoni is most closely related to S. nigrlcornis, differing from nigricomis in the following major characters: horn of vertex not transverse, rounded at apex: a low, rounded, longitudinal carina extending anteriorly from base of horn; genital capsule (Fig. 17) more acutely rounded at apex; genitalia (Fig, 18) with parameres evenly arcuate to acutcly pointed apices.

The species is named in honour of Dr. E. B. Britton, who has greatly facilitated my studies on the Australian Geotrupintac.

Figs. 7-12. Stenaspidius albosctosur: 7, Hend of male from Queensland; 8 , Head of male from Western Australia; 9, Male genital capsule, Queensland specimen; 10, Frontal view of male genitalia, Queensland specimen; 11, Lateral view of mate genitalia, Qucensland specimen; 12, Lateral view of male genitalia, Western Australian specimen.

Type material: Holotype, male, no data (SAM) Allolype, lemalc, Melville, Western Australia, No, 73/798 (WAM). Paratype, 1 fentale, Bunbury, Western Australia, Whitlock (AM).

Stentippidins mathewsis n. sp.

(Figs. 5, 15, 16, 21)
Holotype: Male, lenyth 7.2 mm , greatest width 4.5 mm . Colour dorsally very dark brown to black. ventral surfaces dark brown. Clypeus (Fie. 5) gradually sloped upward, at 10 to 15 , to low posterior carinas catina with three poorly developed horns, mediun one most prominent: U-shaped carina on either side anterior to median horn, irregular in shape. Vertex centrally with slightly bifid, transverse swelling. Entire dorsal surface of head coarsely, irregularly punctate. Pronotum (Fig. 5) with midline shatlowly indented, on efther side on anterior third of pronotum two or three vague, low convexitics present entire surface of pronotum except for posterior median sixith, coarsely punctate, with fine secondary punctures interspersed. Scutellum longitudinally concave; concave surface dull, granular, with two or three coarse punctures vaguely indicated near base. Elytral striae moderately deep for genus, finely punctate; intervals smooth, evenly convex longitulinally, Metasternum (Fig, 21) diseinctly narrowed and carimate anteriorly, apex in lateral view broadly sounded, lobe-shaped. Genital capsule (Fig. 15) broad, tapering abruptly in apical third to rounded tip. Genitalia (Fig, 1fi) with parameres relatively broad, dorsally angulate before rounded apices.

Allotype: Female, Iength 7.7 mm , greatest width 4.8 mm . Similar to male in all major external characters except median bifid tumosity of vertex slightly larger, probably a function of the larger size.

Variation in the sunall serics is negligible. Size ranges from 7.0 to 9.1 mm with females averaging larger than males. Width vaties from 4.3 to 5.8 mm . The number of coarse punctures in the median, posterior third of the pronolum shows some minor variation. In other respects the characters seem quite stable.

Stenaspidlus muthewsi can be seadily separated from the other species in the genus by the following combination of characters: posterior clypeal carina low, horns poorly doveloped; pronotum and head dorsally heavily, closely punctate: pronotal midline shallowly indented; male genitalia as in Fig. 16.

It gives me considerable pleasure to name this species in honour of Dr. E. G. Marthews who has assisted me in many ways. We found the present species in open sandy areas along with several other species of Geotrupinas. One five foot sguare area when excavated to at depth of about 18 inches yielded cight Stemaspidius mathewsi and tive Eucamhus felwaci Boucomont. There was little surface evidence of burrows and no indication of any food. except possibly some ricls, black deposits of humus in tho soil (humus is used as laryal food by some North Amorican Rolboceratini: see Howden. 1955).

Type material: Holotype make, 50 km E . Kalbarri, W. Australia, 6 ih August, 1972, E. G. Mathews (SAM). Allotype, female, same data as holotype (SAM). Paratypes, 3 males, 5 females: 3 , samic data as holotype; $4,51 \mathrm{~km} \mathrm{E}$. Kalbarri, near Murchison River, W.A., 30th July, 1972, fith August, 1972, H. F. Howden; 1; Highway 1.59 km north of Murchison River. W. A. 4th August, 1972, H. F. Howden.
paratypes are in the following collections: ANIC. SAM, Howden.

Stenaspidins ruficornis Boncomont

(Figes 4, 13, 14, 24)
Bolbocerds (Stenarpidims) ruficomis. Boucomont, 1906, p. 452.
Males: Length 6.5 to 8.4 mm , greatest width 4.3 to 5.5 mm . Colour dorsally dark reddish brown, frequently hoad and pronotum black. antemal club usually reddish. Clypeus (Fig. 4) rising abruptly $\left(90^{\circ}\right)$ in trituberculate posterior carinu. the elevated $\begin{aligned} \text { rituberculate }\end{aligned}$ portion of carina distinctly marrower than width of clypeus' interior face with indistinch irregularly U-shaped carina, the area encompassed deeper than wide. Clypeus, frontal area and gena with irregular, shallow, large puncture; frontal area behind clypeal carina concave, horn of vertex further forward than in nigricomis, transverse and slightly bifid at apex. Height of clypeal carina and of horn on vertex proportional to overall size, increasing in development as size increases. Pronotum with midline distinctly indented. on either side of anterior third of pronotum a second indented line, these indentations delimiting four broad, how, circular convexities; a pronounced transverse concavity present on pronotum behind head between anterior margin and circular convexities. Pronoral surface coarsely punctate on luteral thirds and to a lessel degree in indentations; convex areas largely impunctate. Scutellum longitudinally concave. concave surface irregularly, vaguely ridged and granular. Elytral striac moderately deep, finely
punctate; intervals moderately convex. either smooth or with vague transverse wrinkles. Metasternum (Fig. 24) carinate, the carina when viewed laterally with apex rounded to nearly vertical anterior face. Genital capsule (Fig. 13) apically moderately broadly rounded in outline Genitalia (Fig. 14) with dorsal portion of eath paramere produced into at slender cylindrical areh.

Females: Length 7.2 to 9.1 mm , greatest width $4 \cdot 7$ to $5 \cdot 8$ nm. Externally not differing noticeably from males. the degree of development of the elypeal caring and of the horn of the vertex being associated with size rather than showing thy sexual dimorphism.

The high, nurrowed, trituberculate clypeal carina, the lorward position of the horn of the vertex in line with the anterior edges of the eyes, and the reddish antennal club are characters that distinguish ruficornis from the other Stenaspidins. The male genitalin (Fig, 14) are allso very distinctive and the range is apparently allopatric from others in the gerius.

Types: Boucomont (1906)]ists three specimens (cotypes): two from New South Wales, Australia, in the "Dcutsches Entomologisches National Museun" ($=$ Deut. Ent. Institute. Berlin?) and one female labelled "Australia, ex Musaco Van Lanaberge*. now in the Paris Museum (MNHN). Since the species is easily recognizable and since I have seen only the Paris specioten, a lectotype designation does not seem to be necessary or advisable at present.

Material eximined: Twenty-live specimens with the following datu: 2—Australia: 2-S. Australia: 1-Adelaide. S. Australia: 1-Lucindale. South Australia: 2-Caullield, Victorin. 3rd October, 1908, June, 1906; 3-North Melbourne. Vict.: I-Nova Holland. 50404. ex Mus. Murray; 1 -Portland, Vict., January, 1938, C. Oke; 1-Raymond Isl. near Bairnsdale, Vict. 2lst October. 1907. W. W.: 1.-Seaford. Vict. A-Wannon, Hamilton. Vict. 10 th October, 1947. B. B. Given; 6-Victoria.

Specimens are in the following collections: ANIC, BM, MNHN, NMY. SAM, Howden.

Stenaspidius albosetosus n. sp.
(Figs. 6, 7, 8, 9, 10, 11, 12, 23)
Holotype: Male, leggth 9.1 mm , greatest widh 5.5 mum. Calour very dark brown with head, pronotum and scutcllum black: base of the antenna, sides of prothordx (on ventral surface), and base of scutellum densely fringed with conspicuous, white setae; (in other species setace ane
less numerous and yellow, buft or tan in colour). Clypeus (Fig. 7) rising abruptly in median anterior horn, gradually sloped upward to low, lateral portions of posterior carima: surface of clypeas divided into nearly equal shirds by U-shaped carina on cither side of median tubercle or horm. Vertex posteriorly (Fig. 7) with low, slighty bifid transverse median tubercle; surface of frons and vertex between tuberele and clypeal carina flat or slightly concave and with scattered line punctures. Pronotum (Fig. 7) with midline slightly to coarsely punctate and shallowly indented, at transverse line of punctures present at anterior third: marginal line behind head thickened, rounded; behind this pronotal surface transyersely concave; coarsely punctate; pronotal surface behind eyes shallowly, broadly concave; pronotal surface coarsely punctate laterally (Fig. 6) and in a band near posterior third, elsewhere surface largely smooth and shining. Scutellum slightly concave medially; strface closely, irregularly, coarscly punctate, less so along lateral mateins. Elytral striae moderately indented, finely to obsoletely punctate: intervals moderately convex. smooth and shining. Mctasternum (Fig, 23) with midline distinetly indented, except anteriorly, not carinate anteriorly: metasternum anteriorly broadly rounded: surface with numerous coarse punctures. Genital capsule (Fig. 9) broad sear abruptly rounded apex. dorsal surface near apex flat to shallowly concave. Gentitalia (Figs. 10. 11) with each paramere bent, then thickened before acute apex: lower lobe of each paramere slender and sharply hooked near midlinte.

Allotype: Female, length 9.3 mm, grealest width 5.4 mom. Externally differing only slightly from holotype in the followisg respects: anterior pronotal concavities smallet and shallower; punclate arcas similar but punclures smaller and more numerous: punctures of clytral striac slightly larger and better developed.

Stenaspidius athakerostes ranges widely across northern Australia from Queensland to Western Anstralia. Variation in the series at hand is of two types. local and geographic. The small series from Caims. Oucensland, varies from 6 to 8 mm in length and from $3+5$ to 5.5 mm in greatest width. The smallest specimen of this series has the head and much of the pronotum heavily punctate, the pronotal concavities obsolete, and the elytal striae distinetly deeper and more heavily punctate than in the other specimens. The degree of this "lacal" type of variation is considerable being equal to or exceeding the variation noted for the other species in the genus.

Figs. 13-18. Srenarpidius spp.: 13, Male genital capsule of S, mficornis; 14, Male genitalia of S. ruficornis: 15 Male genital capsule of S. mathewsi; 16, Male genitalia of S. mathewsi; 17, Male genital capsule of S. briftoni; 18 , Male genitalia of S. brithoni.

Figs. 19-24. Stenospidius spp: 19 , Male genital capsule of S. nigricornts; 20, Male geniralia of S. migricomis; 21. Metasternum of S. mathewsi; 22, Metasternum of S. nigricomis; 23, Metasterntm of S, albosetosus; 24, Metasternum of S. ruficormis.

Geographic variation is also evident and specimens from Queensland are consistently different from those occurring in the Northern Territory or in Western Australia, It could be argued that populations from these different areas should be recognized as taxonomically distinct. However, since the few specimens on hand seem to show concordant clinal variation, I consider the different forms as variants of one species. The major variation occurs in the development of the horns of the head, in the size and depth of the anterior pronotal concavities, in the shape of the apex of the genital capsule, and in the shape of the parameres of the male genitaliat.

In specimens from Queensland the clypeal carina is only slightly lower than the three tubercles (or horns). The tubercles are small and generally equally developed. The tubercle (or horn) on the vertex is low and vaguely to moderately bitid. The anterior pronotal concavitics vary from obsolcte to shallow (Fig. 7) but distinct; distinct convex ridges surrounding the concavities are lacking. The male genital capsule is moderately broad and rounded at the apex. The male genitalia (Figs. 10, 11) have the parameres moderately thickened near the tips and the lower lobes slender and hooked.

In specimens from the Northern Teritory and Western Australia the clypeal carina is distinctly lower than the well developed tubercles or horns. The horn on the vertex is usually distinctly bifid (Fig. 8). The anterior pronotal concavities (Fig. 8) are deep, being surrounded laterally and posteriorly by convex ridges. The male genital capsule is flattened near the apex and very broadly rounded. The male genitalia (Fig. 12) have the parameres more distinctly
thickened near the tips and the lower lobes wider. These differences seem to be consistent geographically, but with the differences discussed being based upon six specimens, my conclusions are tentative.

Stenaspidius albosetosus is at present the only member of the genus known to occur in the northern third of Australia. The numerous, long, white setae on the basal segments of the antennac and on the underside of the prothoracic margin will identify the species. Also the male genitalia are very distinctive.

Type material: Holotype, male, Yeppoon, Queensland, 20th December, 1969, H. Evans and R. W. Matthews (ANIC). Allotype, female, same data as holotype (ANIC). Paratypes, 18 specimens: 5, Cairns. (N.) Queensland, (1) E. W. Ferguson; 1, Little Mulgrave R., Qld, Hacker; 1, RavenshocMt. Garnet Road., Archers C'reek, N. Qld,, Australia, 11th January, 1962, E. B. Britton; 1, Rockhampton, Qld., 23 rd March. 1950, I. F. B. Common: 2, Townsville, Qld., (1) N. B. Tindale. (1) 24th December, 1902, F. P. Dodd; 1; N. Queensland; 1, Q. (Victoria) (=maseum?) Coll. French; 2, Berrimah Farm, N.T., 27th Junuary, 1956, L. D. Crawford; 1, Daly R., N.T., H. Wesselwan; 2, 80 km E. of Daly Waters on Borroloola Road, N.T., 20th March, 1972, A. Allwood and T. Angeles; 1, Wyndham, W.A., 15th December, 1953, G. Luking, K. R. S., Light Trap.

Paratypes are in the following collections: ANIC, BM, MNHN, NTA, SAM, Howden.

REFERENCES

Boucomont, A., 1906. Description d'un Bolboceras nouveau. Dt. ent. Z. 2: 452 .
Boucomont, A., 1932. Genre nouveau et espèces nouvelles ou peu connues de Bolbocerinia (Col. Scarabaeidae) Bull. Soc. ent. Fr. 37: 262-268.
Bruch, C., 1925. Coleópteros nuevos y poco conocidos Plyysis 8: 199-200.
Howden, H. F., 1955. Biology and taxonomy of North American beetles of the subfamily Geotrupinae with revisions of the genera Bolbocerosoma, Eucanthus, Geotrupes and Peltorupes (Scarabacidae). Proc. U.S. natn. Mus. 104: 151-319.
Howden, H. F., 1974 (1973). Bolbothyreus, a new genus for Stenaspidius ruficollis (Bruch) (Coleoptera,

Scarabaeidae, Geotrupinae), Can. Ent. 105: 1567. 1571.

Lacordaire, T., 1856. "Histoire naturelle des insectes. Vol. 3". Librairie Encyclopédique de Roret, Paris.
Martínez, A., 1952. Insectos nuevos o poco conocidos-IX. Revta. Soc, ent. argent. 15: 314-327.
Paulian, R., 1939. Un nouveau coléoptère lamellicorne coprophage d'Amérique du Sud. Bull. Soc. ent. Fr. 44: 20-21.
Westwood, J. O., 1848. On the Australian species of the coleopterous genus Bolboceras, Kirby. Ann. Mag. nat. Hist. Ser. II 2: 143-144.
Westwood, J. O., 1852. On the Australian species of the colcopterous genus Bolboceras, Kirby. Trans. Linn. Soc. Lond. 21: 11-18.

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

NOTES ON BRONZE AGE ANTIQUITIES IN THE SOUTH AUSTRALIAN MUSEUM

By J. V. S. MEGAW

NOTES ON BRONZE AGE ANTIQUITIES IN THE SOUTH AUSTRALIAN MUSEUM

BYJ. V. S. MEGAW

Summary

A single penannular bronze ring with a gold sheet is described from the holdings of the South Australian Museum. This piece of 'ring money' has been assigned to the Late Bronze Age. Three Irish bronzes, an axe and two halberds, are also described and figured. Metallurgical analyses of these are compared with similar objects from the British Isles. They have been tentatively assigned to the Irish Early Bronze Age, ca. 1600-1500 B.C.

NOTES ON BRONZE AGE ANTLQUTTIES IN THE SOUTH AUSTRALIAN MUSEUM

By J. V, S. MEGAW
Department of Archaeology, University of Leicester, England

ABSTRACT

MECGAW, J. V. S. 1974. Notes on Branze Age antiquities in the Soull Amstalian wikellm. Ree. S. Aust. Mus. 17 (3): 23-2y.

A single penannular bronze ring with a gold sheet is described from the holdings of the South Australian Museum. This piece of 'ring money has been assigned to the Late Bronze Age.

Threc Irish bronzes, an axe and two halberds. are also described and figured. Metallurgical analyses of these are compared with similar objects from the British Isles. They have been tentatively assigned to the Irish Early Bronze Age, ca, 1600-1500 B.C.*

1. AN EXAMPLE OI BRITISH BRONZE AGE "RING MONEY"

As part of a survey of European prehistoric antiquities in Australian collections (Burke and Megaw, 1966; Megaw, 1964, 1965. 1969. 1973), in February, 1970 I was able to study briefly the holdings of the South Australian Museum. Amongst a small group of nonAustralian antiquities in the Muscum is a penannular ring made of gold sheet over what seems without analysin to be a bronze core (Figs. 1-2).

Kigs, 1.2 ; Bishopstonc, Wiltstire. "Huir Jing" of shed guld over bronze core. Scale 2:1 Drasing Brendet ki. Hcedel: flwo. Sumb Awrralien Masemm.
Measuring 1.4 cm in maximum diameter, the ring (Rcg. No. A50523) was presented to the Museum in 1957 by Mr. Francis. P. Dibben whose father, H. J. Dibben, had found it at Bishopstone, Wiltshire sone time prior to 1907. An unpublished letter dated December. 1907 from the Rev, E. Goddard notes this "ring money as the first found in the country and
promises a published description which was forthcoming with if drawing of the Dibben ring as part of a long article on objects of the Bronize Age found in Wiltshire (Goddard, 1911: 112. 156 and PI. 7:14). Finds of miniature gold rings of this type (ser-called 'ring money', once alleged on the grounds of its more or less uniform size and weight to be a primitive form of currency). though commonest in Ireland. occur both in Scotland and Southorn Britain. At least one other example-apparently unasso-ciated-is recorded as having been found belween Bishopstone and Broad Chalk. This. with a cover of gold and silver bands is proserved as an electrotype in the collections of the Devizes Museum (Goddard. 1911: nos. 293-4. 1923: 251).

The origin and indeed use of such goldcovered penannular rings is still very much a matter of dispute. In a general study of Bronze Age gold ear-rings Hawkes has considered the British "ring money" us hair rings (Hawkes, 1961: 453-6, 468-9 and P1.1, 2) on the basis of the custom amongst Egyptian nobility of the New Kingdom for threading similar gold rings through theit wigs. Hawkes postulates an original western dissemination of the type as Mycenaean loot passed on by trade. The "hair ring' suggestion is certainly supported by Childe's citing of the report of the discovery of traces of hair adhering to the rings from the Sculptor's Cavc, Covesea mentioned further below (Childe, 1935: 163). As to possible Mediterranean prototypes there are certainly similar forms to 'ring money' amongst Egyptian and Palestinian materials but this is all prior to ca, 1200 B.C. and the earliest possible British find-a penannular ring with tapering ends from an Efirly Bronze Age Wessex I chieftain's grave. the primary cremation under a ball barrow. Filsford G.8. Normanton Down (Annable and Simpson. 1964: no. 192)-is much more probably a miniature copy of contemporary continental Reinecke Bronze Age A2 "ingot lorcs".

Eogan (1964: 272ft.) follows Hawkes in suggesting later Mycenaean trade as at sourco for "ring money" and ascribes the carliest extant Irish examples to his Midule Bronze Age

[^3]"Bishopsland phase"; but there are no associations of 'ring money' in indisputable Middle, let alone Early, Bronze Age contexts in the British Isles. Recent reassessments of the absolute chronology as well as the alleged material for east-west trade in the second millennium B.C. also argue against a possible Mycenaean source (Renfrew, 1969, 1973: 98103).

In fact in Britain there is no association of 'ring money' of certain date earlier than the eighth century B.C. The material from the Sculptor's Cave, Covesea, Morayshire, Scotland, includes some ten examples of 'ring money'two without their sheet gold covering-of similar diameter to our Bishopstone example (Benton, 1930-31: 181-2 and Fig. 5). The Covesea find is dated on the basis of imports from the Middle Rhine to ca. 700 b.c. and the "Covesea" phase
of Coles' recent review of the later Scottish Bronze Age seems to be one of settlement on the north-eastern coast of the British Isles by groups from the northern German plain. A hoard of similar date to Covesea is that from Balmashanner, Angus which includes a single 'hair ring' (see Coles, 1959-60: 39ff. and 91 for a complete list of Scottish 'ring money"), From Ireland probably the best dated 'ring money' is that from Tooradoo, Co. Limmerick, a hoard of Eogan's "Dowris" phase contemporary with Covesea in Scotland, a phase to which it would seem best to assign Irish hair rings as a whole (Gogan, 1932; Eogan, 1964: 304 and Fig, 15,5). Tending to support this dating is the recent publication of a now lost Irish find which indicates the association of a hair ring with a so-called 'dress fastener' (Herity, 1969: 9 and P1.V11b), a penannular gold ring with cone-shaped terminals. 'Dress

Fig. 3: (a) "Italy", Decorated bronze nxe; (b) River Suck, Co, Galway, Copper halberd: (c) unprovenanced. Copper halberd. Scale is marked.

Photos. South Australian Muserum.
fasteners' of this type have a widespread and even continental distribution (Hawkes and Clarke, 1963, 220ff). The association of an Irish Middle Bronze Age (ca. 1000 B.c.) "Ballintober" sword with a piece of 'ring money' and other fragments of gold alleged to have been found at Strabane, Co. Tyrone cannot now be proved (Eogan, 1965: 8 and 25 no. 12).

In the absence of any closely dated associations of "ring money' or 'hair rings' in the south of England, it seems best to date such pieces as our Bishopstone ring to the Late Bronze Age when contacts between Ireland and the rest of Britain not to mention the continent were frequent and strong (Eogan, 1964: 310ff., 1965: esp. 107ff.; Burgess, 1969: esp. 17ff)

2. THREE IRISH BRONZES OF THE EARLY BRONZE AGE

Apart from the Bishopstone 'ring money' there are three other prehistoric British pieces in the Museum's collections which, if not unique, are worthy of comment. The first of these, presented by a Captain Davidson to the

Muscum in 1918 (Reg. No. All331), is a bronze axe measuring 18 cm in length and with a maximum breadth across the blade of 10.5 cm (Fig. 3a, 4a). The axe, which may have been cast in a one-piece rather than two-piece mould, has a slight or "incipient" stop-ridge just visible hatfway down the haft. The flanges on either side of the haft have a cable design produced probably by forging or grinding. On the face of the axe a rough "rain" pattern has been produced by irregular stabs of a scriber or graver (Megaw and Hardy, 1938: 6ff.; Harbison, 1969c: 67-69).

Although the original labelling of the axe as it was received by the Museum seems to have recorded its source as "(Roman) Italy" there can be no doubt that this axe is a product of the Irish Early Bronze Age of about the midsecond millennium b.C. Its decoration and nearly straight sides with hammered rather than cast flanges class it as one of a serics of decorated bronze axes first studied by Megaw and Hardy in 1938; the present example is close in size and decoration to their Type III (cf. op. cit., 5ff.). This type corresponds in part to

Fig. 4: (a) "Italy", Decorated bronze axe (b) River Suck, Cor Galway. Copper halberd; (c) moprovenanced. Copper halberd. Scale 1:3 Dramings Brenda K. Ifead.

Harbison's Type Derryniggin as defined in his recent corpus of axes of the Early Bronze Age in Itcland (Harbison, 1969c: 55-64, 79, pls. $68-78$) and in the Scotish Early Bronze Age i. Coles' (1968-69: 15-16 and Fig. 12) Type Bc. Although axes (and other material of Irish origin) were exported to the continent in the Bronee Age, most of these are of the presumed entlier Megaw and Hardy Type I and no bronzes of Jrish origin have to the best of my knowledge been found in Italy (Butler, 1963: Chap. II. 241 ff. and Map I), It seems almost certain therefore that the proyenance "Italy" for the Adelaide axe is erroneous.

As part of a continuing programme of metallurgical analyses of British and Irish Bronze Age artefacts in Australiap collections (Burke and Megaw. 1966; Megaw. 1964, 1969, 1973). arrangements were made to subject the axc and the two other bronzes discussed in this note tu non-destructive spectrographic analysis. The analysis was carried out at the Commonwealth Defence Standards Laboratories in Adelaide. The analysis of the Adelaide axe ure compared with those of two other Derrynigein axes of similar form in Table 1.

It is cleat that there axes have been cast from lin-bronze, the intentional alloying of local copper with bronze being as strikingly early feature of metal technology in Irelind (Butler. 1963: 39-40 and Table 1) although the original impetus for tin alloying as well as the basic form of the axes themselves is probably due to continental influence. This influence sems particularly to have been due to contact with the orexich area of Saxo-Thuringia in central Germany and in Britain was the result of settentent rather than trade by the so-called "Beaker folk" of the early second millennium (Case, 1965. 1967). The Adelaide Derrymggin axe seems however to lack the arsenic content which was a feature of local Munster copper ores (see also p. 4 below).

Unfortunately there are few finds of axes of the Derrynigein type which are of much use for chronological purposes. Two hoards fom the 1sie of Wight with axes of Megaw and Hardy Type 111 indicute that these uxes continued comparatively late in the British Early Bronze Age or contemporary with the latter part of the Wessex culture of Southen England (Harbison, 1969a: 68ff., 1969c; 79-80) which on conventionat dating should not be before ca. 1500 b.C. Recent recalibration of radiocarbon estimations wilh absolute dates suggests,
however, that this date may be of the order of two to four centuries too young (Renfrew. 1969, 1973).

The two remaining bronzes to be discussed here are deain castings and, despite the description of one in the Museam's inventory as a dagger, are both examples of the prehistoric halberd, a metal knife-like blade set at rightangles to its fiaft. More than 300 halberds of various types are known from Early Bronze Age Europe though of these almost half come from Ireland with a significan number also from Scotand: all but a very small proportion of these lrish and Scottish eximples are jsolated finds. There have been several typological studies of the Halberd in prehistoric Europe prior to Harbisonss recent reassessment (Harbison, 1969b) of which the most important is, that by the late Professor Scan ORiordainn (1937). ORiordarin considered the metal halberd as being in the first instance an Irish development spreading thence to the continent and in particular to Central Germany. Subsequently, Coghtan and Case (1957: 103). Butter (1963: 20ff.) and Allen et al. (1970: 106-7) have suggested a reversal of this theory. Case (1967: 152ff.) has looked unce more to Saxo-Thuringia as an immediate source of the type this is a region from whence he would also derive the thin-butt axe ancestral to the decorated form we have discussed above. Harbison (19691): 48ff.), while agreeing to a latgely eontinental source, is less certain as to the precise locality.

Of the two Adelaide halberds, that dessribed as a dagger (Reg. No. A42739; Figs. 3b, 4b) was found eight feet below the surface in an old stream bed of the River Suck in Co. Galway and presented to the Museum in 1951 by Mr. Watter Hawker who had previously lived at Ochrane Castle in Galway. As noted bulow. this is one of three halberds found in or near the River Suck: The hilt shows considerable evidence of cold working and with it blade 32.5 cm Jong, this halberd is of Harbison"s Type Cotton. This correspunds more or less to ORiordâin's Type 5 (with its curved or scythe-like blade) and some of his Type 3. This form of halberd has an asymmetrical blade with three large roand-headed rivels set in a triangle and with "blood grooves" running parallel to the cutting edge and an mid-rib whose sides are curved. The "Coton" class accounts for over half of the known Irish halberds. With sttaight sides to the mid-rib this becomes

Harbison's Type Carn which corresponds more Di' less to ORíordảin's Type 4 as well as some of his Type 5. It should in fact be noted that it is not always possible to reconcile Harbison's classification with that of ORTordâin or vice versa. Thus the examples from the type site of Cotton Moss, Co. Down (see analyses in Table 2) were both classed by ORfordâin as being of his 'lype 4, though by Harbison's criteria at least one of the Cotton halberds (Harbison, 1969b: no. 207) which he compares on the whole with ORiordáin's Type 5 would seem certainly to fiall rather within his Type Carn. The marked shoulder of the Adelaide halberd is shared by two of Type Carn found with five others of Type Cotton in a peat bog at Hillswood, Co. Galway not far from the River Suck (Harbison, 1969b: Fig, 4a).

As with thiu-butt ixes, halberds of 1rish manufacture seem to have been exported to the Continent. particularly those of ORiordain's Type 4 (Butler, 1963: 20ff.), although it is elear that such exports must have followed the introduction of the halberd form itself-from whatever suurce.

The second Adelaide halberd Reg. No. A4995y, has no find spot recorded (ex Sheflield City Museums: Figs, 3C, 4C). With a squat blade 18.5 cm long, it now lacks part of its hilt and all four of its original rivets. It corresponds to Harbison's Type Clonard or ORiordain's Types 1 and 2. The squared and shouldered hatting-plate is charicteristic, Originally considered by ORiordain to be the archetypal form of all lrish hulberds, since halberds are now generally considered to have developed from normal elongated metal dageer types, this squat prosile is mure likely to represent a local development, albcit one which occured not long after the original introduction of the halkerd inte Ireland.

Spectrographic analyses were again carried out on these bronzes and Table 2 gives the results and compares them with previously published analyses of haiberds of certain and probable lrish provenance whose form is closest to that of the Adelaide examples. Also listed are the two bther halberds from the Rives Suck (histed by ORiordáin as Type 5 and Harbison as of his Type Cotton) and two of the three halberds from the type side of Cotton Moss itself.

The analyses indicate that, irrespecive of type, these halberds are all made of copper with very litfle or no tin present and certainly no indication of intentional tin alloying

The metals consistently show a siguificantly high content of arsenic, antimony and silver and minor traces of other elements. Similar metals were used for Irish thick-butted axes and for Irish and British Beaker Culture knives ($=$ Group I of Coghlan and Case, 1957: 98-99; Case, 1967: $163-4$) , and were used in the Early Bronze Age in Scolland (Coles, 1969: 338). Their advantageous content of arsenic is likely to have been deliberately contrived, and Case has advanced the possibility that the Irish metals were alloys, in which the contents of arsenic, antimony and silver reflected the use of a regulus smelted from the Munster Fahlerze. This typically Irish Group I metal corresponds more or Jess with the Early Bronze Age Copper or EII group metal of the Arbeitsemenschaft fiir Metallurgie des Altertums which over the past fifteen years has performed more than 12000 analyses of prchistoric European metal artefacts. On the basis of some 96 analyses of British halberds mote than 70 per cent appear to be of the British Ell metal (Junghans et al., 1968; 132-3). In parenthesis it may be noted that analyses of halberds from Britain and particularly Scotland as opposed to Ireland, owing to their very similar spectra, strongly suggest that such halberds are all imports from Ireland or at least cast from imported ore (Britton. 1963: 284 and Table 8: Coles. 1968-69: 35ff, and 97-see here esp. Junghans ct al., 1968: n0. . 7458, $9287=$ Coles' "cluster (") metal).

Regarding chronology, th has ulready been mentioned finds of halberds in the British Isles in association with other objects are extremely' rare: there are in fact only two lrish finds with objects other than halberds, the more important for our purpose being that from a Food-Vessel burial at Frankford, Co. Offaly (also known as the Birr find (Case, 1967: 152ff, and Fig. 8. 5-9; Harbisons 1969b: 23. 52ff, and Fig. 1, c). The Frankford find includes a thinbutted axe and two thick-butted forms and a dagger of a type common in the earlier rather than the later phase of the Wessex culture in the south of England (Harbison, 1969a, 65-66), The halberd, of Harbison's Type Cotton, has been analysed-both the blade and one of the rivets (Coghtan and Case; 1957, nos. 59 and 71) -and is once more of the typical Hrish
arsenic-untimony-silver copper. Of six associations with halberds from Scotland that from the Moor of Sluie, Moraystire, consisted of two thin-butted axes of Coles cluster C metal with a halberd of Harbison's rare Type Breaghwy of continental originating cluster D metal (Coles, 1968-69: 40, 73 and 107).

It may be concluded that both our Adelaide halberds belong to what Case has termed the later part of his "impact phase" of the Jrish Early Bronze Age, a period when tin-bronze was in fact already in wide use and Ireland's contacts with the Continent no less wide-spread than other parts of the British Isles (as indicated by the export of the carlier decorated thin-butt axes as well as halberds themselves). This stage may be conventionally dated between 1600-1500 в.с..

ACKNOWLEDGMENTS

The writer's best thanks are due to Mr. G. L. Pretty, Curator of Archacology, for his full co-operation and to Mrs. Brenda K. Head for her drawings reproduced here, Mr. J. M. Nobbs, Senior Research Officer, Defence Standards Laboratory, Woodville North, kindly undertook the metallurgical analyses. 1 am also indebted to Mr. H. J. Case, Senior Assistant Keeper, Ashmolean Museum, Oxford, Dr. Gcorge Eogan, Department of Archaeology, University College, Dublin and Mr. F. K. Annable, Curator, and Mr. Alan Burchard, formerly Assistant Curator, Devizes Museum, for their comments.

REFERENCES

Nllett, I, M., Britton, D. and Coghlan, H... H., 1970, Metallurgical reports on British and Trish Bronze Age Implements, Pift Rivers Mus. Occ. Papers on T'cehmology 10.
Annable, F. K. and Simpson, D. D. A. 1964, Gwide Camboge sif the Neolithe and Bronee Age Collectioms in. Devizer Mbseram, Devizes.
Benton, Sylvia 1930-31. Excavation of the Sculptor's Cave, Coveste, Morayshire Proc. Sor Antiq. Scohland 15: 177-216.
Eriton, D., 1963, 'Traditions of metal-working in the Later Neolithic and Harly Hronze Age of Britain: Pt. 1. P'roc. P'rehist. Soc. 29: 258-325.
Burke, J, and Megaw, J. V. S. - 1966, Hrilish decoraled axes: a fontnote on lakes, Proce Prehist. She. 32: 343-6.
Burgess, C. B... 1969, The later Bronze Age in the British Isles and noth-western France. Ahchaed. J. 135: 1-45.
Bullei, J. Jo, 1963 . Bronze Age conneclions across the North Sen. I'alacohisturia 0.
Casc, 11. J. 1965. A in-bronze in Bell-beaker nstociation, Antiquity 39: 219.22.

- 1967. Were Beaker-people the first metaio lurgists in Ircland? Italueqhistmian 11: 141-177.
Chide, V. G.o 1935. The Prehistopy of Scodkend Londorn Coghan, H, H, und Case, H. J. 1457. Eally metallurgy of conner in Ircland and Britain. Proc, Prehist, Sere: 23: 9]-123.
Coles. J. M. 1954-6il. Scullish Late Jromze Age metalwork: typology, distribulions and chronology. Proce. Sirc. Ansia. Scob. 93: 16-134.

1969. Metal analyses and the Scoltish Eirly Bromze Age, Proc. Prehist. Ser, 35: 330-344,

196x-64. Scotisth Early Bronze Age metalwork, Preve. Sirce, Anfiq. Scon, 101; 1-110.
Eogan, G., 1964. The Late Bronze Age in Ireland in the light of recent research. Proc. Prehim. Sos: 30: 26x-351. Dublin.
Goddard. E. H., $19 t 1$. Noles on implements of the Bronre Age found in Wiltshise. Wilts Archacol. Mas. 37: Y2. 15 x .

- - 1923. Ciold rine moncy from Rinhopstone. Wilfs, Arhacil. Mag, 42: 251.
Gogan, L, S., 1932 A groduated amber nechlace, gold. plated tiong and olher wbjects from Cnoe na bl'oll. J. Cork. Jist. and Archuenh. Soc: 37: 58-71.

Grinsell. L. Vo, 1957. Archaeulogical Cuzellecr. Vieforia Coumby History: Whltshire I:1, I.ondon.
Harbisen, for 1969 s. The relative ehronulogy of 1 rish Liarly Bronze Age pultery. Is kow. Sow Amia. Treturd 99: 63.82. Eurly ireanze Eurly Branze Age in lieland. Priahise Bronecfunde 6: 1. in Jreland. Pruhim. Bronacfunde 9: 1.
Hawkes, C, 1. C. 196/. Golal eatrings of the Bronze Age, Easi and West Pollalori 72: 438-74.

- and Clarke, R. R. 1963. Giahlatort and Caicler-on-Sea: lwa finds of l-ate Bronze Age lrich gold. In Cillare and Einvironment: Eisays in Honowr of Sir Cyril Fox. (Fonter, l.D. stal Aleock. L. eds.), pp. 193-250, London.

Herity, Mr_{r}. 1969. Farly finds of Irish antiguites from the minlip-books of the Suciety of Anliquarien. Antig. J. 49: 1-21.
Junghans. Sa. Sangmeistera 1之, and Schröder. M1. 1968, Kıpfer Bud bionze in der Jruhen Metallacit Europus $=$ S.A.M. 2, Berlin.
Megaw, B. R. S. and Hardy. R. M. 1938. British decosated axes and their diffusion during the carly part of the Bronze Age. Proc. Prehint. Soce 4: 272-307.
Megaw. J, V. S., 1964, An Irish guld neck-ring in the Nicholson Museum, Sydney. d. Corh flist, and Afroberol. sion 64: 94-100.
Heunery 1965. A hronze spear-head frem the 112-114.
Bronze Ate Axes in the Wicholson Museum Early Bronze Ate Axes in the Nicholson Museum. Syuncy. Proc. Prichist. stoe, 35: 358-364,
hend in the Qucensland Midde Bronye Age spenhend in the Qucensland Museum, Brisbinc. Mfem. Qd. Mus 16: $485=487$.
oriordáin, S. Pa 1937. The halherd in Brorze Age Europe, Arefucologita x6: 195-231.
Renfrew. C. A. 1969. Wessex without Mypenac. Amm, British Schoul as .t the 1 63: (196ik) 277.285.
——1973. Before civilizution: the ratioctrbon revolution 2 mod prehistoric liwrope, limdon.
TABLE 1
Metallurgical analysis of Bronze Age axe (A11331) held in the South Australian Museum compared with analyses of two other axes

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

LJUNGHIA OUDEMANS (ACARI: DERMANYSSIDAE); A GENUS PARASITIC ON MYGALOMORPH SPIDERS

By ROBERT DOMROW

SOUTH AUSTRALIAN MUSEUM

LJUNGHIA OUDEMANS (ACARI: DERMANYS-SIDAE); A GENUS PARASITIC ON MYGALOMORPH SPIDERS

by ROBERT DOMROW

Summary

A key, illustrations and descriptive notes are given for the four laelapine species now known in Ljunghia Oudemans (Dermanyssidae). At least three are parasites of mygalomorph spiders, as follows: L. selenocosmiae Oudemans from Selenocosmia (Theraphosidae) in Sumatra; L. hoggi sp. n. from Aganippe (Ctenizidae) in South Australia; L. pulleini Womersley from Selenocosmia and Adame (Dipluridae) in South Australia, and an unidentified diplurid in Queensland; and L. rainbowi sp. n. from an unidentified spider in South Australia.

L.IUNGHIA OUDEMANS (ACARI: DERMANYSSIDAE), A GENUS PARASITIC ON MYGALOMORPH SPIDERS

By ROBERT DOMROW
Queensland Institute of Medical Research, Brisbane 4006

Abstract

DOMROW, R. 1974. Jimenghu Oudemans (Acari: Dermanyssidae), a genus parasilic on mygalumorph spiders. Rec. S. Ausc. Mus, 17 (14): 31-39.

A key, illustrations, and descriptive notes are given for the four laclapine species now known in Ljunghia Oudemans (Dermanyssidae), At least three are parasites of mygalomorph spiders, as follows: L. selenocosmiae Oudemans from Selenocosmia (Theraphosidae) in Sumatra; L. hoggi sp. n. from Aganippe (Ctenizidae) in South Australia; L. mulleini Woncrsley from Selenocosmia and Aname (Dipluridae) in South Australia, and an unidentified diplurid in Queensland; and L. rainbowi sp. n. from an unidemtified spider in South Australia

INTRODUCTION

This paper revises the two known species of the genus Ljumghia (family Dermanyssidae sensu Evans and Till. 1966) to the extent that the original descriptions need expansion, and details two new species. The following key will quickly show that the setational patterns vary considetably from species to species, but an otherwise uniform facies and the ecological data indicate only a single genus is involved (sec Hunter and Husband. 1973).

The setine on the dorsal shield are equated with the standard pattern given for Haemolaelaps Berlese by Costa (1961, as amended by Lindquist and Evans, 1965). The patterns on the capitulum and legs are compared with those of free-living dernanyssids (Evans and Till, 1965, as amended by Evans, 1969), except for the larvae. whose legs are detailed after Evans (1963). The less reduced species of Ljunghia show relatively constant formulae, but the regulat presence or absence of one or even iwo setae in the more reduced species is to be expected.

Gentus LJUNGIIA Oudemans

Ljunghia Oudemans, 1932. p. 204. Typespecies: Ljunghia selenocosmiac Oudemans, 1932, by monotypy.

DIAGNOSIS. From Evans and 'Till's keys (1966) to dermanyssid taxa, Ljemghia is clearly a laelapine genus related to the Hypoaspis Canestrisi complex. The latter also includes many
associates of arthropods, but the generally holo. trichous condition of the dorsal shield (at least 37 pairs of setae) will distinguish Hypoaspis, however unclear its internal relationships may be from the markedly holotrichous Ljunghiu (at most 32 pairs of setae).

Frankly, it is dificult to delimit a genus in such a little known subfamily, yet a diagnosis so extended to include the widely varying setal formulae on the dorsal shield and legs may well exclude species as yet undescribed (Costu. 1971.). Accordingly, 1 assign to Ljunghia those species with the following characteristics:

Chelicerae chelate-dentate in female: fixed digit reduced (except in L. selenocosmiae), but always with at least trace of pilus dentilis. Chelicerae normally formed in male, with spermato-phore-carrice slightly exceeding tip of movable digit. Dorsal shield entire, markedly hypotrichous. Metasternal setae absent (except in L. selenocosmiae). Only genital setac set on genital shield (except in L. rainbowi). Anal shield elongate, with characteristic anteromedial extension. Ley setation folotrichous to markedly hypotrichous, Parasites of spiders, especially mygalomorphs, in the Oriental-Australian Region.

KEY TO SPECIES OF LJUNGIllA

(Adults only; male of L_{1} rainhowi unknown)

1. (0) Dorsal shield with 32 (21 podonotat and 11 opisthonotal) pairs of sctac. Metasternal setac present. Ventral sctac sumerous.. No leg seg. ment hats less setae than typical freetiving dermanyssids. Cheliceral digits of remale subequal selenocusmias
Dorsal shield with 25 pairs of setae at mosi. Meta. sternal setac absent. Only eight pairs of ventral setac. At least one lege segment has less setac than bypicat frec-living dermanyssids. Fixed cheliceral digit of temale only half as long as movathe digit 2
2. (1) Dorsal shield with $25(17+8)$ pairs of setae. Palpal rochanter-tibia with normal setation (2.5.6.14), Only one leg segment (femur 1) with deficient setation hoggi
Dorsal shield with less than 25 paiss of setac. falpal trochanter-tihin with reduced setation. At least three leg segments (excluding gent iV) with deficient setation 3
3. (2) Dorsal shield with $18(15+3)$ pairs of setac. Genital setae on genital shield, Deutosternal denticles single, Palpal trochanter-tibia with 2,5,6.11 setae. Seven leg segments with deficient setation (see text) ,. pulleinl

Dorsal shield with 15 ($11+4$) pairs of setac. Genital setae off genital shield. Deutosternal denticles multiple. Palpal trochanter-tibia with 2.5.5.14 setae. Three leg segments with deficient setation (see text) rainbowi

FIGS. 1-2. LJUNGHIA OUDEMANS

1. L. huggi sp. n., lemale, dorsum of idiosoma. 2. L. pulleint Womersley, female, venter of capitulum (with inset of epistome and true left palp shown dorsally $)$. (Each division on the scales $=100 \mu$.

Liunghia selenocosmiac Oudemans

Ljunghia selenocosmiae Oudemans, 1932, p. 204.
FEMALE. Capitulum inconveniently, but variously, disposed in available specimens, and many details visible. Setae rather longer than in other species, c reaching well beyond sides of basis. Deutosternal groove broad; with multiple denticles (number of rows uncertain). On hypostome, $h 3>h 2>h 1$, with $h 3$ subequal to c. Hypostomatal processes not clear. Epistome triangular, intermediate in length between those of L. pulleini and L. rainbowir denticulate. Palpal trochanter-genu with normal setation (2.5.6) ; tibia and tarsus not clear, but former probably 14 ; claw bifid. Chelicera as figured by Oudemans; pore undetected.

Dorsal shield 735-755 $\mu \mathrm{m}$ Jong, 495-525 $\mu \mathrm{m}$ at maximum width; with 32 pairs of setae comprising 21 pairs of podonotals (only $z 3$ missing) and 11 pairs of opisthonotals. (The observant will note that Oudemans, well aware
of minor individual variation, tacitly shows only 31 setae on the right-hand side of his drawing.)

Tritostemum as in L, rainbowi. Deeply eroded, but rectilinear posterior margin of sternal shield confirmed. One ventral seta occasionally usurped by tip of genital shield. Small metapodal shields present. Peritremes reaching forward almost to vertex, but peristigmatic details not clear.

Legs also difficult to examine, but many setae considerably longer than shown by Oudemans. Formulae normal except for tibia I, which shows one additional ψ (2-6/4-2). Tarsus \mathbf{I}, including distal sensory plaque, not dissimilar to that of other species. Claws rather larger than in L. pulleini.

MALE and DEUTONYMPH. See Oudemans. Dorsal shield $660 \mu \mathrm{~m}$ long, $440 \mu \mathrm{~m}$ at maximum width. Chelicera of male in normal (dorsoventral) aspect in both specimens, but not dissimilar to Oudemans' Fig, 26.

PROTONYMPH and LARVA. Not seen.
LOCALITY. Twelve females, two males, and six deutonymphs from the type series, Selenocosmia javanensis (Walckenaer) (Theraphosidac), Deli, Sumatra, 3.1931, col. J. C. van der Meer Mohr, dep. RMNH. I designate one female as lectotype.

Ljunghia hoggi sp. n.
FEMALE. Capitulum with c setae only slightly exceeding sides of basis. Deutosternal groove as in L. rainbowi, with seven or eight rows of multiple denticles. Hypostome with $h 3>h 1>h 2$; only lattermost shorter than c.

Hypostomatal processes as in L. pulleini, Cornicles as in L. rainbowi. Epistome as long as that of L. selenocosmiae, but more strongly denticulate. Palpi with normal setation on trochan-ter-tibia; tarsus not clear; claw bifid. Chelicera as in L. rainbowi.

Dorsal shield with outline intermediate between those of L. selenocosmiae and L. pulleini; $635-690 \mu \mathrm{~m}$ long, $415-440 \mu \mathrm{~m}$ at maximum width. Podonotal half with seventeen pairs of setae: $j 1-4,6, z 1,2,4-6, s l-5$, and $2 r$. Opisthonotal half with eight pairs of setae (seven long, one short). Cuticle with about eight pairs of setae, the most anterior pair of which may represent extrascutal $s 6$.

FIGS. 3-9. LJUNGHIA OUDEMANS
3-6. L. hoggi sp. n., female: 3. venter of idiosoma; 4. epistome: 5. spermathecae: male: 6. sternogenital shield. 7-9. L. pulleini Womersley, female: 7. venter of idiosoma: larva: 8-9, venter and dorsum of idiosoma.

Sternal shield more conventionally shaped than in other species, but still weak and eroded. With threc pairs of subequal setae rather longer than interval between them. Venter otherwise as in L. rainbowi, cxcept that genital setae are on genital shield and poststigmatic portion of peritrematal shields is fuller.

Legs with normal setation except for femur I, which is unideficient ventrally (2-5/3-2). Femora lacking outstandingly long setae dorsally. Tarsus I essentially as in L. pulleini, but claws rather stronger than in that species.

MALE. Capitulum as in femalc, except for chelicera, which is similar to that of L. pulleini.

Dorsum as in female. Dorsal shield $555 \mu \mathrm{~m}$ long, $325 \mu \mathrm{~m}$ at maximum width.

Venter as in female, except for sternogenital shield, which is similar to that of L. pulleini.

Legs as in female.
IMMATURES. Unknown.

FIGS. 10-20. LJUNGIIIA OUDEMANS
10-12. L. selenocosmiae Oudemans, female: $10-11$. venter and dorsum of leg IV; 12. epistome. 13-20. L. pulleini Womersley, female: 13-16. dorsum and venter of legs $I-I V$; 17. exterior of chelicera; 18. spermathecae; mate: 19. ventrointerior of chelicera; larva: 20. venter and dorsum of chelicerac.

LOCALITY. Holotype female, three paratype females. and two morphotype deutonymphs from Aganippe subträstis Pickard-Cambridge (Cteniidlae). Seacliff, Adelaide. South Australia. 11.1973, col. R. Coulter, dep. SAM.

Two females anit une male from $A_{\text {- }}$. subtristis. Paterborough, South Australia, 4.3.1967, col. L. Wright. dep. SAM. Not types.

Ljunghia pulleini Womersley

Ljunghid pulleini Womersley, 1956, p. 591.
FEMALE. Capitulum with c setae barely reaching sides of basis. Deutosternal groove narrow and difficult to examine posteriorly, but denticles single and at least live in number. Hypostome with three pairs of h setae (h3 strongest), and moderately sclerotized cornicles in addition in distal processes. Epistome rounded. denticulate, not excceding distal margin of trochanter. Palpal trochanter-genu with normal setation, but femur occasionally lacking one d, or with one (more rarely two, as figured) additional v seta: genu occasionally lacking one d seta. Tibial sctation considerably reduced, comprising cight (seven to nine) d, and three (occasionally two) v, setae including dorsodistal rods. Tarsus shown diagrammatically; claw bifid. Chelicera unreduced except for fixed digit, which shows merest indication of pilus dentilis.

Dorsal shicld $505-605 \mathrm{~mm}$ long 285-340 $\mu \mathrm{m}$ at greatest width. Podonotal half with lifteen pairs of setac: $31-6, z 1-2,4-6$, and $51-4$ (83 always absent, one $z 1$ occusionally absent, and s1-2 often represented only by single pair). First six pairs of setac on cuticle constant in number and position. and possibly representing extrascutal s5-6 (two long pairs) and r2-5 (four short pairs). thereby accounting for full complement of 22 podonotal pairs. Opisthonotal half of shield typically with three pairs of setae (two long and one short), but minor variation common. Thus although terminal pair is always present. one or both of other long pair. or one of short pair may be lacking, Because of extreme reduction from nomal seventeen pais on opisthonotal half of shield, these setae are not assigned. Of seven or cight additional pairs of setae on cuticle, at least the long pair may be extrascutal.

Metasternal complex absent except for pores (normally ftee in cuticle, but rarcly on extension of sternal shieldi Wonersley writes "slields" in error for "setac" on p. 593). Genital setac on
shicld, but attendant pores free in cuticle. Ventral setue in eight pairs, but not casily teconciled with pattern in other two Australian species (2.2,4.6.2) . Peritrematal shields extended narrowly behind stigmata, and more broadly on dorsal margin near end of perifreme.

Coxa II with minute process on anterodorsal margin. Setation norntal for following leg segments: all coxae and trochanters, femora II and IV, genua II-III, and tarsi II-IV, One seta lacking on femur 1 (2-5/3-2), femur 111 ($1-3 / 1-0$) , genu I ($2-6 / 2-2$), tibial I (2-6/2-2), and tibia III (1-3/2-1). Two setae lacking on tibia II (2-3/2-1). Three setac lacking on tibia IV (1-3/2-1). Genu IV with full complement only because additional 1 makes up for absent d. Femora with 2,2,1.1 d setae distinctly longer than remainder. Tarsus 1 with sensory plaque distal.

MALE. Sctal patterns as in female. Setule and pore on chelicerae not detected.

DEUTONYMPH. Capitulum as in female.
Dorsum as in fentale. but shield smallet ($360-440 \mu \mathrm{~mm}$ long, $210-255 \mu \mathrm{ml}$ at maximum width).

Venter as in female except for sternopregenital shield. This bears usual three pairs cach of setae and pores along eroded margin: pregenital setace free in cuticle. Development of peritrematal shields minimal.

Legs, including larsus I, with same setal formulae as female.

PROTONYMPH, Unknown.

LARVA. Hypostome lacking setal hair h3. Palpal setal formula for trochanter-genu normal, but tibia as in adult (i, c_{n}, with eleven sctae). Chelicera presaging that of adult female,

Idiosoma $425-450 \mu \mathrm{~m}$ long, $310-340 \mu \mathrm{~m}$ at greatest width. Dorsum without shicld, but with nomal nine pairs of setaes /1, 3-6, 22, 4-5, and s4. These are readily equated with adult pairs of similar position and strength.

Venter without shields, but with three pairs of sternal, one pair of ventral, and three anal setae (postanal shortest as in adult). Stigmatic apparatus absent.

Legs with normal setal patterns, femur II being as in Evans (1963, Fig. 2b). Setae ad1 and pd1 on tarsi II-III not detected.

FIGS. 21-25. LJUNGHIA PULLEINI WOMERSLEY
21-23. Female: 21. dorsum of idiosoma; 22-23. dorsum and venter of tarsus 1 ; 24. male: venter of idiosoma; 25. deutonymph: venter of idiosoma.

LOCALITY. Six females from the type series, Sclenocosmia stirlingi Hogg (Theraphosidae), Orroroo, near Peterborough, South Australia, 5.1933, col. H. Gray, dep. SAM. Despite Womersley's statement, the present curator, Mr. D. C. Lee, tells me (in litt., 9.8.1973) that no specimen bears a holotype label, and I therefore designate one female as lectotype.

Four females and two males from Aname sp. (Dipluridae), Strathalbyn, east of Mount Lofty Range, South Australia, 8.12.1971, col. I. Buring, dep, SAM.

Sixteen females, eighteen males, fourteen deutonymphs, two larvae (plus several specimens
still in spirit) from an unidentified spider OM W3856 (Dipluridae), Rifle Range, Chinchilla, Queensland, 10.9.1972, col. R. J. McKay, dep. QM.

REMARKS. The description and figures now given apply to the series from Qucensland. The type specimens all show three pairs of setae on the opisthonotal half of the dorsal shield. Generally speaking, their body setae are relatively longer, e.g., $j 5$ and especially $z 5$ exceed the bases of $j 6$ and $z 6$. Their leg setal formulae differ only on tibia Il (commonly 2-4/2-1, occasionally standard $2-4 / 2-2$) and genu 1 II (commonly $2-4 / 2-2$, occasionally standard $2-4 / 2-1$).

The specimens from Aname all lack the subterminal pair of long setae on the dorsal shield. Generally speaking, their body setae are relatively shorter, e.g., $j 6$ is hardly longer than $j 5$ and z5. Their legs are not suitably arranged for detailed examination.

All three series, however, key out together and are clearly conspecific.

Ljunghia rainbowi sp. n.
FEMALE. Capitulum with c setae reaching beyond sides of basis. Deutosternal groove more distinct than in L. pulleini, with nine rows of multiple denticles. Hypostome with setae $h 1$ and 3 subequal to c, and longer than $h 2$; hypostomatal processes as in L. pulleini. Cornicles with incipient cleft distally. Epistome an elongate triangle, weakly denticulate, reaching to mid-
femur. Palpi with normal setation on trochantertibia, except for unideficient genu (al1, pl, $3 d$). Tarsus shown diagrammatically; claw bifid. Chelicera similar to those of L. pulleini, but small pilus dentilis present and movable digit almost edentate.

Idiosoma capable of considerable distension because of weakness of shields. Dorsal shield shaped as in L. pulleini, $585-615 \mu \mathrm{~m}$ long, $340-$ $365 \mu \mathrm{~m}$ at maximum width. Podonotal half with eleven pairs of setae: $j 1,3-4,6, z 1-2,4-6$, and $s 2,4$. Opisthonotal half with four pairs of setae (two short discals and two long subterminals). Because of strong reduction of setal formulae on dorsal shield, it is idle to assign ten or eleven pairs of setae free on cuticle. Nevertheless, constant position and relative lengths of at least first five pairs suggest they are extrascutal members of s and r series. More posterior

FIGS. 26-30. LJU/NGHIA RAINBOWI sp, п.
26-30. Female: 26. dorsum of idiosoma; 27-28, ventrointerior and dorsoexterior of chelicera; 29-30. dorsum and venter of tarsus I.
pairs less regular in position, but always long except for terminal pair. Pattern of pores and muscle insertions on shield difficult to discern because of granular inclusions; accordingly, while those shown are correct, more may exist.

Tritosternum with well developed base, but laciniae rather short, slenderly tapering, and weakly ciliated. Sternal shield less conventionally shaped than in other Australian species; pale and unreticulated, with anterolateral margins extremely weak and posterior margin eroded. Sternal setae short and subequal, at most only slightly longer than interval between them; sternal pores present but weak, particularly posterior pair. Metasternal complex represented only by pore. Genital shield reduced and without striae, but with normal muscle insertions and operculum supported by apodemes between coxae IV. Genital setae and pores free in cuticle. Margin of anal shield only slightly extended anteriorly; adanal setae set near centre of anus, rather longer than postanal; cribrum present. Small metapodal shields present. Crescentic exopodal shields IV present but weak. Ventral
setae in cight pairs arranged as in L. hoggi; of increasing length posteriorly, one posterolateral pair being quite strong. Stigmatic apparatus as in L. pulleini, but poststigmatic development minimal.

Legs largely as in L. pulleini, with same segments showing normal dermanyssid setation, except for trochanter I (1-0/3-1). Of eight segments modified in L. pulleini (Queensland specimens), four retain normal dermanyssid setation (femur III and tibiae II-IV); of remaining four, femur-tibia I are as in L. pulleini, while genu IV is normal dorsally, but bears an additional v (2-5/2-1). All femora with one d distinctly longer than remainder. Tarsus I as in L. pulleini except for minute details. Ambulacra as in L. pulleini.

MALE AND IMMATURES, Unknown.
LOCALITY. Holotype female and three paratype females from an unidentified spider, Long Gully, South Australia, 11.6.1938, col. H. Womersley, dep. SAM.

FIGS. 31-33. LJUNGHIA RA1NBOWI sp, п.
31-33. Female: 31. venter of idiosoma; 32. spermathecae; 33. venter of capituJum (with inset of epistome and true left palp shown dorsally).

NOMENCLATURE

Although Womersley (1956) coined his specific name explicitly in honour of R. H. Pulleine, his consistent pulleini is in literal accord with Rec. 31 A , and is retained as the correct original spelling (Art. 32). Following Womersley's lead, the two new species above are also named after early students of Australian spiders: H. R. Hogg and W. J. Rainbow.

ACKNOWLEDGMENTS

I am grateful to Mr. D. C. Lee, South Australian Museum, Adelaide, for material from Womersley's series and the two new species; to Dr. L. van der Hammen, Rijksmuseum van natuurlijke Historie, Leiden, for slides from the Oudemans collection; to Dr. D. H. Kemp, C.S.I.R.O., Indooroopilly, for specimens from the diplurid with Queensland Museum, Brisbane, labels; and to Miss Leanne Jackson for technical assistance.

REFERENCES

Costa, M., 1961: Mites associated with rodents in Israel. Bull. Br. Mus, nat, Hist., 8: 1-70.
Costa, M., 1971: Mites of the genus Hypoaspis Canestrini, 1884 s. sit. and related forms (Acari: Mesostigmata) associated with beetles. Bull. Brr. Mus. nar. Hist., 21: 67-98.
Evans, G. O., 1963: Observations on the chaetotaxy of the legs in the free-living Gamasina (Acari: Mesostigmata). Bull. Br. Mits. nat. Hist., 10: 275-303.
Evans, G. O., 1969: Observations on the ontogenelic development of the chactotaxy of the tarsi of legs II-IV in the Mesostigmata (Acari). Proc, Il int. Congr. Acar., 195-200.
Evans, G. O. and Till, W. M., 1965: Studies on the British Dermanyssidae (Acari: Mesostigmata). Part I. External morphology. Bull. Br, Mus. nat, Hist., 13: 247-294.
Evans, G. O. and Till, W. M., 1966: Studies on the British Dermanyssidae (Acari: Mesostigmata). Part II. Classification. Bull. Br, Mus, nat. Hist., 14: 107-370.
Hunter, P. E. and Husband, R. W., 1973: Pheumolaelaps (Acarina: Laelapidae) mites from North America and Greenland. Fla, Ent. 56: 77-91.
Lindquist, E. E. and Evans, G. O., 1965: Taxonomic concepts in the Ascidae, with a modified setal nomenclature for the idiosoma of the Gamasina (Acarina: Mesostigmata). Mem. ent. Soc. Can., 47: 1-64.
Oudemans, A. C., 1932: Opus 550. Tijdschr. Eut., 13 (Suppl.) : 202-210.
Womersley, H., 1956: On some Acarina-Mesostigmata from Australia, New Zealand and New Guinea. J. Linn. Soc., 42: 505-599.

RECORDS OF THE SOUTH AUSTRALIAN MUSEUM

TAXONOMY AND BIOLOGY OF FROGS OF THE LITORIA CITROPA COMPLEX (ANURA: HYLIDAE)

By MICHAEL J. TYLER

and
MARION ANSTIS

SOUTH AUSTRALIAN MUSEUM North Terrace, Adelaide South Australia 5000

TAXONOMY AND BIOLOGY OF FROGS OF THE LITORIA CITROPA COMPLEX (ANURA: HYLIDAE)

by Michael J. Tyler and Marion Anstis

Abstract

Summary

A new species of hylid frog related to Litoria citropa is described. The new species inhabits mountainous areas of north-eastern New South Wales and south-eastern Queensland. The tadpoles of both species are described and details of life history are reported. Whereas the adults of citropa and the new species are similar, the tadpole mouthparts differ conspicuously.

TAXONOMY AND BIOLOGY OF PROGS OF THE LITORLA CITROPA COMPLEX (ANURA: HYLIDAE)

by
MICHAEL J. TYLER
South Australian Museum, Adelaide, 5001)
and
MARION ANSTIS
630 King Genrge's Road, Penshurst, N.S.W. 2222

ABSTRACT

TYLER. M. J., and ANSTIS, M. 1975. Taxonomy and biology of frogs of the litorius cieropa complex (Anerat Hylidae) Rece S. Aust. Afis... 17 (5): 41-50.

A new species of hylid frog related to Litoria cilropa is described. The new species inhabits mountanous areas of north-eastern New South Wales and south-eastern Queensland, The tadpoles of both species are described and details of life history are reported, Whereas the adults of citropa and the new species are similar the tadpole mouthparts differ conspicuously.

INTRODUCTION

Litoria cirropa is a hylid frog of rather striking appearance and known to occur from northeastern New South Wales to south-eastern Victoria. The species was known in Victoria from only three specimens (Copland, 1957), until Littlejohn, Lotttus-Hills, Martin and Watson (1972) reported on a series collected in East Gippsland. Littlejohn el al, provided an analysis of the call, representing the only information on the biology af the spectes.

Because Lu. citropa is such a distinctive animal and so readily distinguishable from all other Australian species of Litoria, we did not envisage that it constituted other than a single species until one of us (M.A.) obtained a series of specimens from Point Lookout in north-eastern New Soulh Wales. These specimens were consistendy smaller than those obtained from the central and southern portron of the geographic range, and ulso differed in the absence of vocal sacs und in having indistinct as opposed to prominent tympana. The subsequent collection of tadpoles introduced an unexpected degree of divergence in what, from adult morphology, we regarded at two closely allied species, Here we define the L. citropa complex, describe the new species and report additional biological data.

MATERIAL AND METHODS

The specimens reported here are lodged in the Collowing collections: Austratian Museum (A.M.): Department of Zoology, University of Melbourne (M.U.Z.D.): South Australian Museum (S.A.M.).

Methods of measurements of adults follow Tyler (1968). The following abbreviations are employed in the text and in tables: S-V (snout to vent length): TL (tibia length); HL (head length): HW (head width): E-N (eye for naris distance): IN (internarial span): E (eye): T (tympanum).

Descriptions of larval morphology follow the format of Duellman (1970) and use the staging tables of Gosner (1960). Measurements were made to the nearest 0.01 mm with cither vernier calipers or an eyepiece micrometer. Abbreviations of larval measurements and their definitions. follow: ST (total length, being the distance between the tips of the snout and lail); BL (body length, measured from the tip of the snout to the edge of the intestinal mass).

OBSERVATIONS

Definition of the Litoria cirropa complex

Members of the L. citropa complex oceur only in eastern and south-eastern Australia. They are the only Australian frogs possessing a submandibular demal gland. This gland is locuted along the lingual margin of the mandible and is clearly demarcated from the surrounding areat in having a protuberant form and smooth surface. The supratympanic fold is also a prominent grandular feature.

The snout to vent length of males ranges from 35 mm to 57 mm , and females from 46 mm to 62 mm . The colour of the dorsum varies from brown to green or gold, and there is always a pronounced dark stripe extending along the
canthus rostralis and broadening on the sides of the body. The inguinal region and adjacent portions of the abdomen and lower limbs are usually immaculate yellow or reddish-orange.

Litoria citropa (Tschudi)

Type locally: Port lackson (Sydney), New South Wales.

Material examined: New South WalesM.U.Z.D. $47 / 67.18 \mathrm{~km}$ E. of Braidwood; S.A.M. R13304 A-D. 13339 A-F, 13764 : Darke's Forest: M.U.Z.D. 176/63: Flat Roch Ck. Royal National Park; M.U.Z,D. 1593/69: 11 km S . of Kiah; M.U.Z.D. $1518-19 / 69: 8 \mathrm{~km}$ S. of Robertson, M,U.Z.D. 1.1 19.20: 10 km W. of Tomerong: M.U.Z.D. 1792-93/64: Upper Allyn: M.U.Z,D, 582/63: Waterfall, Sydney: M.U.Z.D. 1690-91/64: Wombat Ck., Barrington Tops. Victoria-M.U.Z.D. 1594-97/69: Maramingo: M.U.Z.D, 1590-92/69: Tonghi Ck., 8 kni W . of Cann River.

Description: Because detailed descriptions of external morphology have been provided by Copland (1957) and Moore (1961). we have
only summarised the variation observed in the specimens examined by us, and devoted the greatest attention to those features unreported or inadequately described previously.

The adult males range in size from 44.4 to $56.6 \mathrm{~mm} \mathrm{~S}-\mathrm{V}$, and gravid females froni 56.9 to 61.8 mm S-V. The head is bulbous, rounded and broader than long (HL/HW range $0.87-$ 0.96 ; mean 0.92). The eye to naris distance is consistently greater than the internatial span (E-N/IN range $1 \cdot 05-1 \cdot 44$; mean $1+3$). The superior border of the tympanum passes beneath the glandular supratympanic lold, but the visible portion is very distinct and has a pronounced annulus.

The lingers are long and slender, with moderately large terminal discs, and either in trace of webbing between the third and fourth fingers or no webbing at all (Fig. la). Webbing between the toes is incomplete, reaching the subarticular tubercle at the base of the penultimate phalanx of the fifth toe (Fig, 1b). The hind limbs are of short to moderate length (TL/S-V range $0 \cdot 50$)-().57: mean 0.53).

FIG. 1
(i) hand, and (b) foot of Lifroride rymmp.

The vocal sac is a unilobular, submandibular structure conlined to the area above the musculus interhyoideus. The size and position of the vocal sac apertures are unique amongst Australian hylid frogs, being very small slits located adjacent to the articulations of the juws.

The colour in life was described by Kinghorn (1932), and reproduced by Moore (1961). A
photograph of a living adult is shown in Figure 2a. Variation of dorsal colours of a live adull includes slate grey with green suffusions, to brown and green or almost pure green. The anterior and posterior surfaces of the hind limbs, the axillary and the inguinal regions ate usually deap reddish orange, and the ventral surfaces of the hind limbs are light red,

FIG. 2

Some of the speciniens examined by us have violet pigmented bones comparable to the condition reported by Tyler (1970) which characterises five other species of frogs occurring in castern and south-eastern Australia. The pigmentation is most intense in specimens from the extreme south east of the geographic range: Maramingo, Kiah and Tonghi Creek. Bone pigmentation is very faint or absent in specimens from Tomerong and has not been found in individuals from localities north of Robertson. Absence of violet pigment is in no way associated with the period of time spent in preservative, but is clearly correlated with geography.

Habitat: Specimens were collected over a wide geographic range. The principal field studies, however, took place at Darke's Forest, where adult and/or tadpoles were collected in the following situations: (1) Maddern Creeka scries of broad, deep pools separated by shallow sections of varying flow rates crossing a sandstone base, and sometimes falling into large canyons; (2) The Waratah Creek: and (3) an unnamed creek flowing into the Lodden River.

Plants found along these creeks included species of Eucalyplus, Banksia, Acacia, Leptospermum, Callistemon, Hakea, Pultenea, Perwooma, Peqrophile, I'ypha, Cyperus and Ghania.

Adult Behaviour: Adult males most frequently were collected adjacent to the creeks in Darke's Forest during April, 1971, and September to November. 1972. Dry bulb temperatures recorded on four occasions when frogs were heard calling ranged from $14^{\circ} \mathrm{C}$ to $19.5^{\circ} \mathrm{C}$. During the day frogs were found on sandstone plateaus or outcrops, either beneath or amongst the rocks. and usually fairly close to water. The mating call has been described and analysed by Littlejohn et at. (1972), The impression gained was that calling increased on warmer nights following rain when the skies were still overcast.

Breeding is known to occur in September and November and possibly extends until January. Amplexus is axillary.

Life history; Amplexus was observed in a captive pair on the night of 6th-7th November, 1972. The individuals were placed in a plastic container with some water and amplexus was observed at about 20-30 hours. The female uttered a soft release call for some minutes following the onset of amplexus and then remained silent. The specimens were then transferred to a dish containing water, a large, flat sandstone rock and some reeds, and 890 eggs were laid during the night, either singly or in small groups and attached to the surface of the rock or to the floor of the vessel.

The sites of ova deposition in the field were the smooth rocky floors of small pools connected to or separated from the creeks. In all cases the water depth ranged from approximately 10 to 70 mm . The outer capsules of the eggs became covered with fine brown silt within two or three days of deposition.

The eggs have dark brown animal hemispheres, appearing black macroscopically and have creamy white vegetal hemispheres, There are three vitelline membranes.

Measurements of the early stage embryos, capsules and larvae derived from the above mating are listed in Table 1. Initial development was rapid, nerulation was reached early on 9th November, and the tail bud (Stage 17) later on the same day. At this stage a U-shaped groove united two well-formed ventral suckers, above which occurred the stomodeal depression. The body was dark brown and the yolk sac yellowishbrown.

TAULLI
MEASLREMFNTS OF EMHRYOS ANI LARVAE OF L. CITHCYB AT VARIOLIS STACIES
(Means ill batentlesis) fambeyos

Stage	Siample	Eantryo Dianmeter (min)	Cupsule Diameter (mm)
2	4	1-68+1.76 ${ }^{(18.73)}$	
4.5	5	$1 \cdot 601.76 \quad 18.701$	\| 5.44 .7 .20 (6.18)
5	J	1.70-1.80 (1.75)	5.44-6.48 (6.19)
5-6	3	\|-68-1-76 (1-72)	\|6.188-7-20 (6.45)
S-4	15	1.76-1.84 (1.78)	
17	15	256-3.48 (3.12)	Torsil tengit (mm)
14	1		5.68 5
20	11		5.84-6.96 (6.26)
21-22	4		6-24.7.12 ($\mathrm{B} 7 \mathrm{7a}$)
23	3		B. $24+8 \cdot 6.4$ ($\mathrm{K}-45)$
24	3		8.48-9.28 (8.96)
$25 \text { (kirly) }$	8		$8.46-10 \cdot 10 \quad$ (1).65)
25 (late)	9		$12.4 R-13-44$ (12.42)
LARVAF			
Stage	Sumple	Hody Lengh	Tolul Length (mm)
	R		
\%	11	6.7 .9 .0 (8-11	$\begin{array}{ll}16.2-23.0 & (20.3)\end{array}$
28	. 4	$44.1112(10.3)$	23. K -25.6 (24.5)
24		$10.3 .11 .2(10.8)$	24.1 -28.7 (26.3)
31	6	(6.9.11+7 (10.9)	25-8-30.1 (28-3)
32	2	11.11, 11/m	$28.7,24.4$
34	1	11.4 .12	
3.35	1	12.0.12-5 112-21	329-33.4) (33.21
16	1	113.12 .11 (11.7)	30-4-31.6 $130 \cdot 9$ \%
1\%	1	12.4	33.4
411	1	17.11	34.1

Hatching commenced alter four days at Stage 20, but the peak was reached on the fifth day, and a few larvae hatched on the sixth day at Stages 20 to 21. By Stage 20 there were two pairs of external gills (each with only one or two branches). indistinct optic bulges, and prominent olfactory pits: the stomodeal depression had deepened and the ventral suckers had increased in size.

Maximum gill development oceurred at Stage 22 with the anterior pair possessing one or two branches, and the posteriol pair two or threc. The optic bulges were still not distinctly demarGated and the corneas rematined opaquc. Stage 23 (material collected in the field on Ist October, 1972) exhibited greatly reduced external gills, clear corncas, well-differentiated alfactory pits (nares), latcral-line sense organs extending along the body to the caudal region, well-developed labia, and an open or partly open anal lube.

Oral ridges on which the labial reeth had developed were characteristic of Stage 25. The horny beak became pigmented and the extreme reduction of the ventral suckers diminished at this stage, Subsequent development mainly involved increase in size and proportions as recorded in Table 1.

In out description of the new species of the L. cimopa complex we provide a detailed composite description of tadpoles at Stages 29 and 36. Here we report only those features apparent at Stage 35 of L. cirropa that difter from those of the new species. Thus the anal opening is diagonal from the edge of the ventral fin, and tail depth is greatest just anterior to its mid-region.

(a and c) lateral and dormal viows of larva of Zituria rifrope at stage 35: (b and d) laterab and dorsal victis of la. glandilosa ut Stage iob.

FIG. 4
Mouthparts of (a) Litoria cintopu; (b) L. glandutesist

The mouth is ventral in position (Fig. 3a). and the labia are bordered by a single row of small papillae (Fig. 4a); only a few small papillae occur inside the labial border. There are two rows of upper labial teeth and three rows of lower labial teeth, of which the second upper is the longest, and the third lower the shortest. There is a medial gap in the second upper row and in the first lower row. Odd teeth were missing in the majority of the specimens examined. The beaks are pigmented, relatively shallow, and of almost equal depth with moderately-sized serrations.

In preserved specimens the dorsal surface of the body and the upper labium are dark brown with small areas of darker pigment. The orbital and narial regions are paler. The caudal musculature is creant and densely blotched with brown dorsally. The fins are transparent, but marked with scattered clusters of melanophores. The lateral line organs are unpigmented. In life the dorsal and lateral body surfaces have a uniform golden sheen, noticeably incomplete in its distribution at earlier stages (e.g., Stages 25-26).

Metamorphosis of tadpoles reared from the spawn laid on 6th November, 1972, was completed in January, February and March, 1973, indicating it larval life of from two to four months. Snout to vent lengths of eight newly metamorphosed specimens ranged from 11.9 mm to 14.3 mm (mean 13.1 mm).

Distribution: Litoria citropa extends from Aberfeldy in south-castern Victoria to the Barrington Tops in New South Wales (Fig. 5).

FIG. 5

[^4]
Liloria glandulosa n. sp.

Holotype: S.A.M. R13504, A gravid female collected at Barwick Creck. Point Lookout. near Ebor, New South Wales, by M. Anstis on 24th January, 1973.
Definition: A moderately-sized species (adult females $45 \cdot 8-50 \cdot 4 \mathrm{~mm} \mathrm{~S}$-V: adult males $34 \cdot 5$ $40.3 \mathrm{~mm} \mathrm{~S}-\mathrm{V}$). Adults are characterised by an indistinct tympanum, and by the presence of a submandibular gland. The tadpole is unique amongst previously described Australian species in lacking tooth rows, and in possessing elongate tubercles and filaments within the buccal cavity (Fig. 4b),

Description of Holotype: The head is deep, bulbous and broader than long ($\mathrm{HL} / \mathrm{HW} 0.91$), its length is equivant to approximately one third of the total length (IIL/S-V 0-34). The snout is not prominent; bluntly rounded when viewed from above and evenly rounded (but not projecting) in profile. The nostrils are orientated dorsolaterally; their distance from the end of the snout is slightly more than one-half the dianmeter of the eye. The distance between the eye and the naris is greater than the internarial span ($\mathrm{E}-\mathrm{N} / \mathrm{IN}$ 1.16). The canthus rostralis is clearly demar-
cated and straight, and the loreal region sloping but not concave, The cye is rather small and not prominent; its diameter equals the E-N distance. The tympanum is small and very poorly defined, there being no distinct tympanic annulus; the tympanum is separated from the eyc by a distance about one-third of the eye diameter. The vomerine teeth are on two confluent elevations whose anterior borders are level with the posterior margins of the choanae. The tongue is broadly oval with a very weakly indented posterior border.

The lingers are long ind slender with slight lateral fringes and prominent subarticular tubercles (Fig. 6a). There is only a trace of basal webbing between the fingers. The terminal dises are rounded and prominent.

The hind limbs are short and muscular (TL/S-V 0.52). Toes in decreasing order of length $4>5>3>2>1$. Webbing between the toes reaches mid-way up the penultimate phalanx of the fifth digit, to a position slightly below the penultimate phalanx of the fourth digit. The terminal discs are prominent, There is a small oval inner and a very slightly developed rounded outer metatarsal tubercle (see Fig, 6b).

flG.
(id) Mand, and (b) foot of T.iserfa midamhluser.

The skin of the dorsal surface of the head and body is rather coarsely granulate. There is a very prominent supratympanic fold which obscures the upper portion of the tympanic region extending from the posterior comer of the eye to a position above the insertion of the forelimb. There is a slender supratabial gland and a narrow tatsal ridge.

There is a broad and prominent submandibular gland covered by stooth skin; the remainder of the ventral surface of the throat, pectoral tegion. abdomen and limbs is coarsely granulate.

The dorsal surface of the head, body and limbs is dark blue in life. The supratympanic fold is. darker, and superior to it is an extremely irregular pale brown line merging juto isolated creanish patches on the flanks. The supralabial gland is white and is preceded by a similarly coloured line extending to benealh the eye. A disrupted white line extends thong the anterior partion of the labial margin,

The ventral surfaces are dull creamish in colour and densely stippled with black, particularly on the submandibular gland and brenst. The posterior surfaces of the thighs are predominantly dull brown, sparsely spotted with creanz, These cream spots are densest in the subctoacal area.

Dimensions: Snout to vent length 45.8 mm : tibia length 23.7 mm : head length 15.5 mm ; head width $17: 1 \mathrm{~mm}$ eyc io naris distance 4.3 mun; internarial span 3.7 mmat eye diameter 4.6 mm tympanum diameter approximately 2.3 mim : diameter of terminal disc of third linger 2.3 mm

Variation: There are 38 paratypes: S.A.M. R13505-t0, collected at Barwick and Bullock Crecks. Ebor on 24th January, 1973: S.A.M R13060 (11 juveniles): S.A.M- R13303, colleeted at Barwick Creek in January, 1973: S.A.M. R13626-39. A,M, R39498. collected at Point Lookout in May, 1973. all above specimens taken by M.A.: M.U.Z.D. 1991/68. 1992/68. 1997/68, 1999/68. callected at Point Lookout by M, J. Littlejohn, J. J. Loftus-Hills and G. F. Watsoni: MiU,Z.D. 1885/68 collected at 65 km E. of Glen Innes by Littlejohn, Loftus-Hills and Watson.

The adult male paratypes have snout 10 vent lengths ranging from 34.5 mm to $40 \cdot 3 \mathrm{nmm}$. All lack vocal sacs. The short limbs, relatively high $\mathrm{E}-\mathrm{N} / \mathrm{IN}$ ratio and broad head of the holotype are consistently demonstrated by the following ranges and means of proportions of these
specintens: $T L / S-V=0 \cdot 48-(0 \cdot 53$, mean $0 \cdot 50$; E-N/IN 1-00.1.23, njean 1.14; HL/HW 0.87-1-00, песал (0.91.

Coloration varies only in the intensity of the blue dorsuin and in the extent of the irregnlar lateral stripes and light markings on them. The pasterior surfaces of the thighs are consistently darkly pattenned. Snout to vent lengths of recently metamorphosed specimens ranged from 11.5 to 34.5 mun (mean 13.0 mm).

Coloration in life: Observations on an adult (S.A.M. R13678) indicated differences alssociated with activity. When active the dorsal surface of the head, body and limbs was brilliant green: The lateral stripe was dark brown on the side of the head, becoming paler in the supratympanic region and merging with a series of golden patches in the inguinal region. This lateral stripe was bounded superiorly by a gold line broadening on the body. The superior labial margin bore a cream stripe extending posterionly to above the insertion of the forearm. The section of the head anterior and posterior to the eye and between these labial and lateral stripes was palce green. The iris was uniformly golden. There were rows of gold and brown flecks oft the borders of the limbs. The hands and feet were mottled with gold and green. The ventral surfaces were a creamish white: the submandibutar gland had a laint yellow hue. The axilla; and inguinal areas and the anterior ans posterior surfaces of the hind limbs were a translucent deep yellow.

When the frog was at rest the dorsum was usually very dark brownish-green, the lateral stripe and associated patches a rusty brown and the labial stripe grey. The inis was golden above the pupil, brown below it. The ventral surfaces were generally dusky brown.

In other specimens dorsal coloration sanged from olive with uniform dark green mottling (or mottling confined to the limbs), green with large, discrete gold patches (J de Bavay, pers, comm.) 10 gold or brown so that the literal stripe was searcely discernible. Those found in green vegetation were inevitably bright green, whether extlected by day or night. The colour of individuals tound beneath rocks or logs varied from dark brown to almost any shade of green. In captivity most frags were dark whilst at rest during the day and bright green whilst active at night.

Habitar: The specimens collected or observed by M, A. were taken adjacent to creeks and rivers in cool. montane forest within 10 km of Poinl Lookout, and att altitudes of $135(1)-1.45()$ metres. These water courses are:-
(a) Barwick River, consisting of moderately deep pools (containing submerged plants), separated by shallow flowing sections and waterfalls. The lloor of the river is predominantly basalt.
(b) Litte Styx River, which is similar to Barwick River, but appreciably broader.
(i) Bultock Creek, which differs from Barwick River only in its generally smaller dimensions and predominantly granite base.
(d) Spring Creek, the smallest of all four watercourses, with a sandy floor over a bisalt base,

Amongst the vegetation on the banks were species of Junters, Epacris, Leptospermum, Ranumeulus, Prepostylis and various forns. Areas of sphagnum were present. The doninant species of tree was Eucalyptus panciflora, which was replaced by Nohhafagus moorei at higher altitudes.

Adnlt hehavionr: During the periods of observation the species was found amongst vegetation adjacent to the watercourses, bencath rotten logs, under bark on trees or amongst rocks and low vegetation (particularly Juncus).

In May, 1973, 14 adult males, one female and one juvenile were found together under a rotting log approximately three metres long and one metre across. We conclude from their sluggish behaviour that they had aggregated to hibernate communally, To our knowledge this represents the first report of a possible communal hibernaculum for frogs in Australia.

Data on breeding behaviour are lacking. However, we have evidence to indicate an exceptionally Jong breeding season. For example, the sighting of amplexal pairs on the Barwick River in mid-December, 1971 (J, Burker, pers. comm,), indicates larval development during the summer months when water temperatures reach their annual maxima. The dates of collection of the stages of larvac reported below are consistent with ova being deposited in November-December.

In apparent contifet is the finding of a gravid adult female in May in the hibernaculum, The entire body cavity was filled with large pigmented eggs up to 2.1 mm in diameter and, perhaps more significantly, the oviducts were greatly enlarged and extensively convoluted. The specimen was found in breeding condition at a time when ground temperatures were so cold as to make it Jethargic. We therefore believe that at
least this female would have been in breeding condition at the conclusion of hibernation in the following spring.

Newly metamorphosed specimens of L. glandulosa were collected in December. supparting our belief that somo individuals do breed in the spring.

The mating call has not been recorded on tape, It consists of a series of several, moderately lowpitched notes initially increasing in volume and rate, and finatly slowing. M.A likens it 10 : "orak-orak-orak . . .".

Life History: The spawn and early stages of development are unknown. Tadpoles in Stages 25 to 43 were observed in the Barwick River on 20th December, 1972, in a shillow, slowly moving section just beneath a deep pool. Most larvae appeared to be feeding over the red silt covering stones on the stream bed. When disturbed they swam under rocks. Stages 29 to 36 were collected on 25th Januatry, 1973, from a physically similar section of Spring Creek but in an area where the lloor was covered with pale sand, against which tadpoles were well camoullaged. Some were amongst the roots of water plants, but others lay in exposed areas, oceasionally moving to the shallower sections of the pook,

Measurements and ratios of proportions on the above series are summarised in Table 2 . The following description of larval morphology is a composite one based on specimens at Stages 25-43.

TAHLI: \geq
MLASURE MPNBS OF RARYAE UPI GLANDULOSA AI VARIOUS STAGFS AT HAKWHCK RIVER COMPARFD WITH SPRINGCHEE WHICH ARE SHOWN IN PARENTHESIS

Stirse	\|Berds (emngul (กาเาา)	Fotal lengeth (m)	Sanple Sife
25	4.8	$14 \cdot 3$	1
16	5	13.5	1
29	10.3 18.39	2n-2 (206)	111
36	99, 10.1	23.0, 21.8	7
31	1 16.4	24.8	$!$
33	4×1 (4.6)	23.2 (25.01	1 (1)
34	(10.2-11.0)	125.307401	(3)
35	11.0) (9.9.10.9)	260. ${ }^{2}$ (36.1-30.0)	17
819	$1(12.9 .11 .2$ (110, 11.6$)$		131
is	110.4	$\frac{29.0}{29.1} 31.4$	$\frac{1}{2}$
19	\| $11-0.113 \cdot 7$ \|1121	23.7-i2.4 130.51	4111
111	11.0	24.5	1

The snout is evenly rounded in lateral and dorsal profiles (Fig, 3b, d). The nares are closer to the tip of the snout than to the eyes, dorsal in position and directed anterolaterally. The eyes are in a dorsolateral position. The body is broadest at a position corresponding to the level of the eyes and is broader thon deep. The spiracle is sinistral, ventrolateral in possition and is slightly further from the tip of the shout than fram the antus. The anus is dextral. upening adjacent to the edge of the ventral tin.

The tail is a moderately thick structure deepest at about the anterior one-third, narrowing posteriorly and is ferminally rounded. The lateral lines are pigntented and the lateral line argans are numerous and narrowly spaced,

The oral dise is ventral in position and is in the form of a fumnel marginally surrounded by a row of small papillae (Fig. 4b). The area within this funnel is occupied by numerous finclypointed papillae projecting ventrally and oceupying the greater part of the lumen. From the most superficial to the deepest, the lengths of the papillae increase so that all terminate in the form of spikes near the level of the disc margin.

On the inner edge of the lower labium, adjacent to the mid-line, is a variable number (2-6) uf large, black papiltae. There are no tooth rows and the horny beak is small, unpigmented and located far posteriorly. There is a flat white structure projecting from the centre of the upper beak forward and then inclined ventrally. and terminally divided into from four to seven toothlike structures. each of which bears from one to four tine, hair-like black filaments. Some of the filaments are brancbed, In many specimens all fibments have broken off leaving a white basal core. On each side of this projecting structure is a row of three large, pointed papillae.

In life the dorsal surface of the tadpole is brown with an irridescent golden sheen: Small, scattered, datk brown spots are most conspicuous in later stage tadpoles. The arcas atound the eyes and nares are least pigmented. The fins are transparent, but for durk brown flecks, densest on the superior margin. The caudal musculature appears crean in trausparency. In preservative the golden irridescence of the body is lost and the specimens appeat darker.

At metamorphic climat body lengths range from 12.0 mm to 12.8 mm . In life frogs at this stage are brown with a gold sheen. The lateral stripe, so conspicuous in adults, extends posteriorly only to the insertion of the arm. The dorsum bears numerous flattened tubercles which become progtessively less conspictuous in older specimens.

Distribution: Liforius s'lundulosa probably replaces L. cilropa on the Great Dividing Range of northern New South Wales (Fig. 5). G. Ingran (pers. comm.) reports collecting specimens in eastern Queensland just north of the New South Wales border which were probably L. shandutove, Three specinens were taken adjacent to the Girraween National Park, south of Stanthorpe. The description of the habitat (a
small creek descending from extensive rock fosmation) is similar to those at which L. slandulesa has been collected by M.A.

COMPARISON WITH OTHER SPECIES

Distinguishing characters for adult L. glandelosa and L. citropa are compared in Table 3.

TABLE 3
SUMMARY OF MAJOR DISTINGUISHING FEATURE: OF L. GLANDULOSA AND L. CITROPA

Character	L. glandulosa	Lecitropa
S-V (males) mm	34-5-40-3	46.9-56.0
$\mathrm{S}-\mathrm{V}$ (fermales) mm	45-3.50.4	56.5-5(6.1)
Tympanum	hidden	distinet
Vocal sict	absent	present
Bones	unpigmented	unpigmented orviole
Latryal Jabial lexta	absend	present
Larval oral dise papillae	clongate	shom
Larval horny heak	small, white	large, black

Adults of Likorin glanduloso can be casily distinguished froms all other species of Lithoria except L. citropa by its possession of a very large submandibular dermal gland and prominent supratympanic fold. Only L. cacrulca has comparable (and in tioct more extensive) supratympanic fold, but it is a much larger and far more robust animal and lacks the dark lateral band and gold lateral line of \&. glandulose, and has broadly webbed ingers.

DISCUSSION

Absence of labial teeth in bylid tadnoles has previously been reported only for the Neorropical Region (Martin and Watson, 1971), where, in the genera Amphignathodon, Cryptobatrachus. Gastrotheca and Hemiphractus larvie are carried on the backs of parent fomales for at least part of their development, Species of Hyla lacking labial teeth usually have enlarged horny beaks. The absence of both labial teetls and of a pigmented horny beak in L. slandulosu appears unique.

Until now the nervly descrited species 1. shandulusa has been included within L. citropsa and, although morphological comparison of the aduls of the populations indicates two distinct species it appears that they are closely related to one another. Our finding that the larval mouthparts of $L_{\text {e }}$ cipropa (sensu stricto) are of a pattern common to many Australian Litoria. whereas those of L, glandflow are so different therefore poses problems of interpretation.

There ure for from adequate data for assessing the ancestry and phylogenctic relationships of Australian lyylids. In view of the extent of morphological divergence currently encompassed within Litoria, it can be predicted with some confidence that Litoria will be ultimately shown to constitute several distinct generu,

If L. cirropa liad not been known and we were here describing L. glandulosa, there would be adequate data from our knowledge of adult and larval morphology to place it in a new genus. The purpose of such it step being to demonstrate that L. glandulosa is so different from all species recognised previously, the erection of a separate genus would be a useful and logical step demonstrating the extent of divergence from Litoria as currently constituted.

In the absence of any information on larvae, subsequent discovery of citropa adults would not have posed a problem. The general morphology and particularly the possession of the submandibular dermal gland would have justified its association with glamelelosa in the new genus. Subsequent discovery and identification of the tadpole of citropa with its generalised mouth-parts would raise the sort of questions that we now actually face.

There seems no reason to doubt that the ditection of larval evolutionary change is from the generalised hylid pattern of cirropa to the bizarre lotic adaptation of glandulosa. Nevertheless, the extent of the adaptation involves major morphological changes: loss of all labial tecth rows, and pigmentation of the horny beak, and the development of oral dise tubercles with keratinised tips. Whether or not the central black filaments suspended anterior to the pharynx involve particle filtration, or have a sensory function, is immaterial to the assumption that their evolution constituted an extremely major evolutionary shitt.

We do not dispute Watson and Martin's (1971) contention that hylid larval features are of value in assisting studies of phylogenetic relationships. However, our observations demonstrate that divergence in adult and larval morplology is not necessarily complementary.

ACKNOWLEDGMENTS

For the loan of specimens reported here we are indebled to Dr. A. A. Martin and Mr. G. F. Watson (University of Melbourne), Dr. H. Gi, Cogger (Australian Museum), and Mr. J, de Bavay (University of New England). Mr. de Bavay, Mr. G. Ingram, Mr. J. Barker, Mr. and Mrs. R. Scott and Mr. and Mrs. D. Anstis assisted us in various ways. Our thanks are due to all of these colleagues. Grateful acknowledgment is also made to the Science and Industry Endowment Fund for a grant to M.A. to assist these studies.

REFERENCES

Copland. S.J. 1957. Australian tree frogs of the genus Hylf, Proc. Linn Sirc. Nos.W. 82: 9-108.
Duellman, W_{1} Fi.e 1970. The hylid frogs of Middle Americat Monugr. Mous, Nat. Hist. Uniq. Kensus No. 1. 1-7.53.
Gosner, K., 1960 , A simplified table for staging antran embryos and larvae, with notes on identificition. Merpetologica 16: 183-190.
Kinghorm, 1. R., 1932. Herpetological notes. No. 4. Reca AHM, M14., 18: 355-363.
1.itllejohn, M. J., Lofus-Hills. J. J.。 Martin, A. A.。 and Watson, G_{2} F. (1972). Amphibian fauna of Victorsa. Confirmation of the records of Litoria (-1fy/a) citrom (T'schendi) in Gippsland. Vic. Nat. 89: 51-54.
Martin. A. A. and Watwon. G. Fi. 1971. Life history as an aid to generic delimination in the family Hylidae. Copeid 1971 (1): 78-89.
Monte, 1. A., 1961. The frogs of eastern New Soulh Wiles. Hull. Amer. Nitrs. Nat. Hist. 121: 151.385.
Tyler, M. I_{4} 1968. Papuan hylid frogs of the genus Hy/d. \%ropl, Vert., No.96, 1-203.
Tyler, M. J., 1970. The occurrence of bone pignentation in Ausiralian frogs. Seurch 1: 75.

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

A REVISION OF THE PENTATOMIDAE (HEMIPTERA-HETEROPTERA) OF THE RHYNCHOCORIS GROUP FROM AUSTRALIA AND ADJACENT AREAS

By GORDON F. GROSS

SOUTH AUSTRALIAN MUSEUM
South Australia 5000

VOLUME 17
NUMBER 6

A REVISION OF THE PENTATOMIDAE (HEMIPTERA-HETEROPTERA) OF THE RHYNCHOCORIS GROUP FROM AUSTRALIA AND ADJACENT AREAS

BY GORDON F. GROSS

Summary

The history of the recognition and a definition is given of the Rhynchocoris group of pentatomid genera. A first section of five genera, two of them new, are described, or revised and redescribed. Thirty-eight species of these genera from the Australian, New Guinea and neighbouring Pacific islands, 22 of them new, are described, or redescribed, and figured. Two other species formerly thought to occur in this area are shown to occur only outside of it, each is briefly redescribed but not figured.

A REVISION OF THE PENTATOMIDAE (HEMIPTERA-HETEROHTERA) OF THE RHYNCHOCORIS GROUL FROM AUSTRALIA AND ADJACENT AREAS

PART I. THE GENERA FROM OCIRRHOE THROUGH CUSPICONA TO PETALASPIS WITH DESCRIPTIONS OF NEW SPECIES AND SELECTION OF LEC'TOTYPES

BY GORDON F, GROSS

South Australian Museum, Adelaide, Soull Australia 5000

Abstract

ciross, C. Fe 1975, A revision or the pentatumidac (1lemiptera-Heteroptera) of the Rhynchocoris group tom Australia and adjacent arcas. Part 1. The genera from Ocirhoe through Cuspicona to Peealaspis with descriptions of new species and selection of lectotypes. Rec. S. Ausp. Mins. 17 (6): 51-167.

The history of the recognition and at definition is given of the Rhynchocoris group of pentatomid genera. A first section of five genera, two of them new, are described, or revised and redescribed. Thirty-eight species of these genera from the Australian. New Guines and neighbouring Pacific islands, 22 of them new, are described, or redescribed, and figured. Two other species formerly thought to occur in this atea are shown to oceur only outside of it, ench is briefly redescribed but not figured.

INTRODUCTION

The group relationships of the Pentatomidae are in such an unsatisfactory condition that recognition of formal super-generic categories seems undersirable.

In Gross (1975, and in press) where this problem is considered in greater detail it is proposed that the term "groun" be applied to clusters of allied genera, each such group being named after the oldest or most typical genus included therein.

The Rhynchocoris group of genera of Pentidtomidae was first recognised by Stil in 1870 (p. 636) under the mame "division Rbynchocorint" in these words: "Genera Rhynchocoris, Hoffmanseggiella, Morna, Pugione, Pegala, Vitellus, Cuspicona, Ocirrhoe et Periboea divisionem (Rhynchocorina) formant, quae mesosterno alte carinato, carina anterius inter yel ante pedes anticos in laminam producta, metasterno elevato, postice emarginato, basi ventris spina, in emarginatura metasterni quicscente, armata, marginibus scutelli apice vel apicem versus nec elevatis, sxpissime ctiam tibiis teretibus, sulen destitutis, marginique postico thoracis levie cst insignis ${ }^{1}$).

[^5]The group as such was referred to again by Atkinson in 1888 ($p .147$) and then by Distant in 1902 (p .221) as the Rhynchocoraria. Distant's concept of the group was somewhat wider than Stall's or Atkinson's as some of the genera he included (Sabmeus, Amblycara) lacked strongly raised, laminate kecls on the meso- and metasternat.

My concept of the Rhynchocoris group of genera is substantially the same as Stal's and Atkinson's but includes some additional genera (e.g. Petulasphs, Biprorulus ete.) deseribed aftex both ceased to be active in the field and some new genera described in this first part or to be described in the second part.

The group in the Australian region make up one of the biggest and easily characterised subgroupings of Pentatomidae along with the Halys group which, in certain features such as the development in some genera of spinously produced juga and the development in a number of genera of spinously produced (or acute)]ateral angles to the pronotum, they resemble. However these similarities appear to have arisen convergently for the two groups do not appear to be closely related on other features of the external morphology or of the rigid or sclerotised portions of the male and female genitalia.
Members of the Rhynchocoris group as understood here have the following attributes:medium to large size; juga reaching to apex of anteclypeus, slightly beyond, or produced spinotsly anteriorad; anterolateral angles or pronotum entire, not sersate; lateral angles of pronotum obtuse or convex, or with posterior part of anterolateral margins forming an acule angle or produced into a spinous process; on mesosternum a raised faminate keel which projects forward over prosternum; on metasternum a similar keel with apex adpressed to the base of the mesosternal keel, or the area of contact difficult to see, its base expanded and excavated or notched; on abdomen arising from second and part of third ventrite an elevated area
directed as a spinous process anteriorly whose apex fits into the notch on the metasternal keel; orifices of metathoracic scent glands followed dorsally by a long, usually curved, vertically directed streak or keel; colour in life usually some shade of green fading to yellowish, ycllowish-brown, or brownish when preserved as pinned specimens, other colours frequently present are black, brown, luteous and a bright carmine red, these latter colours not usuntly fading after capture; outline of posterior margin of pygophore not usually complicated by marked projections or processes; claspers strongly F-shaped, the upper ramus longer than medjan bulge, frequently inclined upwards at little to appear oblique, median bulge usually blunt or convex and dorsally forming a tlattened or convex pilose platform (Figs, $6 \mathrm{C}, 8 \mathrm{E}, 15 \mathrm{E}, 25 \mathrm{~A}$, $25 \mathrm{C}-\mathrm{D}, 25 \mathrm{~F}$ etc.) ; aedeagus with phallosoma honey-coloured and semi-transparent (in most of the species of other groups of Pentatomidae the phallosoma is more heavily sclerotised and blackish, dark brown or brown in colour, in several sets of dissections one specimen, presumably teneral, had a honey-coloured phallosoma whereas others of that same species had the darker phallosoma, in species of the Rhynchocoris group the phallosoma was always honcy-coloured), conjunctiva membranous and either single lobed and projecting somewhat anteriorly, or bifid, sometimes right from base, in other cases only towards apex, laterally on conjunctiva on each side a flattish ear- or tonguelike process, here called the "lappet" processes, which are usually a little darker than the rest of the conjunctiva, medial penial plates parallel and directed ventrally, frequently in the form of an inverted Y with very blunt arms as viewed
laterally, in other cases hatchet-shaped, vesicat and gonopore located in front of the medial penjal lobes and directed downwards at about $45^{\prime \prime}$ (Figs, 15 C, 25 B, 25 E, 40 A, 46 A. 50 A-C etc.); female external genitalia generally unremarkable; spermathecae only of Ocirrhoe lutescens Distant (Fig. 1 A) and of Cuspicona simplex Walker (Fig. 1 B) examined, these of usual pentatomid form with a median hollow sclerotised rod through which the sperm-carrying duct runs, processes (diverticula) of the apical spermathecal bulb much longer than those seen in most other pentatomid genera investigated, a single sclerite at entrance of spermathecal duct into genital chamber.

The relationships of this group of genera to other groups within the Pentatomidae are not clear, On external features the group would appear to be related to genera which have a forwardly directed spine arising from the basul abdominal ventrites e.g. Piezodorus, Catacunthus, Aspidetrus, Menida etc. or those with in conical tubercle or a convex swelling on the basal abdominal segments e.g. Gloucias, Amblybelus, Plamia, Alciphron cic. Some of the latter group are also green though this green does not fade in collcetions. The structure of the aedeagus and claspers in these various genera does not indjcate any particularly close relationship between any of them and genera of the Rhynchocoris group though there is general relationship amongst many of them.

A relationship between the Rhynchocoris group and the Tessaratomidae equally cannot be discounted us some of the latter group have forwardly directed processes developed from the basal visible segments of the abdomen or

Fis. 1. Spermathexate A. Geirphoe lutexens Distanh. Cuspucoma simplex Walker.
mesosternal and metasternal keels but again the strueture of the aedeagi and claspers do not support any close relationship.

In the deseriptions which follow the cited measurements in the tabled dimensions are in eyepice divisions where I division $=0.052 \mathrm{~mm}$. If these measurements are converted to millimetres using the above relationship more significant figures appear in the millimetre figure than are justhied and the subsequent biometric antlysis is frequently inaccurate. Therefore to convert approximately to millimetres divide the number of' eycpices divisions by 20 . The head length is measured front the apex of the anteclypeus (or if the juga surpasses the anteclypeus from :nt imaginary lise joining the apices of the juga) to the visible base of the head on the middle of the anterior matgin of the pronotum. This measurement is more variable than for some of the uher measurements because of differences caused by varying degrees of exscrtion of the head. The head width is measured from the outer margin of one eye to the outer margin of the other, For both head measurements the animal was placed so that the head was horizontal. The measurements of the antennal segments need no explanation save that the lirst segment is in the vicinity of $8-10$ eyepiece divisions and hence is being meatsured with 100 coarse a scale and shows a high variability because of this. For the remaining measurements. the dorsal surfaces of the abdomen, scutellum and hind portion of the pronotum were placed horizontally, hence the rwo longitudinal measucementh are foreshortencd in comparison to those which would occur if measurements were made following the longitudinal curve of the body. The pronotal width is faken from one humeral suter margin to the other, if the lateral angles are spinously produced then the measurenent is from the tip of one spiae across to the tip of the other. The pronotal length is measured from the anterior margin to the posterior margin along the midline, The total fengeth is measured from the apex of the anteclypeus or if the juga surpass it then from their apices to the apex of the nembrane along the midline. The total length is also cited converted to millimetres bul without assuming buy more significant figures than prudent.

The nomenclature of the male and female genitalia follows Gross 1972, p. 131 et seq. and mineh of it is indicated on at least one illustration of each sex on those figures which show their structure.

The abbreviations of the institutions in which type material and material examined is Jodged are as follows:

AM	The Australian Museunt. Sy
AMNH	The Americun Museurn of Natural History, New York.
ANIC	The Australian Nutional Inseet Collection, C.S.ı.R.O. Canherra.
ASHI.OCK	Peter Ashlock Collection, presently in the Universily of Kansas, Lawrence.
BISHOP	The Bernice ${ }^{2}$, Bishop Museum, Honclula,
BM	The British Musemm (Natural History). London.
BRUSSELS	Inslitul Royal de Sciences Naturelles. Brussels.
CAS	the California Academy of Sciences. San Francisco.
HELSINKI	Liniversitetets Zoologiske Museum, Helsingfors.
HOPE	The Hope Collection, University Museum, Oxford.
KU	University of Kansas, Lawrence.
I.ETDEN	The Rijksmuseum yan Naturlijke Fistoric, Leëden.
NM	The National Museum of Victorta, Mclsourne.
QM	The Queensland Museum, Brisbanc.
SAA	The Soulh Australian Museum. Adelaide.
SLATER	1. A. Slater Collection, presently in the University of Connecticut, Storrs.
STOCKHOLM	The Naturhistoriska Riksmuscum. Suckholm.
UQ	Department of Entomology, Univensity of Queensland, Brishanc.
USNM	The Smithsonian Enstitution, The United States National Museum. Washington.
WAM	The Western Ausiralian Muscum. Perth.

In the second part of this paper several new generg will be established for some species now placed in Cuspicona, such specics as do not appear in this first part have not been missed through an oversight but arc to be treated as members of new or different genera in the second part.

In drawing up a key for inclusion in this first patt it was necessary to ayoid all mention of the new gencra to be erected in the second part Jest their primary descriptions became based on a key or be mentioned without a lype. Hence it was necessary to construct an abbreviated key which will serve to distinguish the general considered in this part from each other, and in a general way from genera to be considered in the later paper. I apologise for this, but I see no
other satisfactory solution. A full key to all the genera of the Rhynchocoris group from this region will appear in the second part.

Key to part of Rhynchocoris group of genera found in the Australim, New Guinea and Pacific Regions

1. (1) Juga produced in front on the anteclypeus or at least level with it
genera not covered in this yirst purt
Juga noi produced in front of anteclypeus but obliquely or roundedly sloping back from it

$$
2
$$

2. (1) Apex of scutellum acute with apically a rather quadrate membranous plate around and beneath apex and into which apex is produced, this plate reaching behind true apex of scutellum
Apex of seutellum acute or more sounded but without an allixed membranous plate like process .
3. (2) l.ateral angles pronotum produced into a prominent outwardly directed reddish or hlackish sipped spine

Vitclless Stal (not covered in this part)
Luteral ungles of pronotum acute, not produced into laterally directed spines

Petalaspis Bergroth
4. (2) Anlerior margin of pronotum not mostly levigate but punctate regularly in two or more serjes and rest of pronotum mostly finely punctate 5
I'ronoturn with anterior margin smooth or never more than two rows of large panctations (except Pegala virens) and scattered large punctations on dise semerw wor covered in this firss mars
5. (4) Tibiae flatened or sulcate almost their whole length. Scutellum with is very distinet black impression in each basal angle; sume black punctations on dorsal surface, including head :. . Ocirrhoe Sint (part)
Tibiae not sulcate, Hattened only apically or not at all. Impressions in the basal angles of the scutilum concolorous, black or absent

$$
6
$$

6. (5) Proportionately long and stender, head relatively long. thoracic angles unarmed

Diaphyta Bergroth (=Parahora Jensen-Huarup) (not covered in this first part)
Body ovate or obovate, head medium sized, lateral angles of pronolum sometimes produced into spines, sometimes not . . . 7
7. (6) Apical angles of seventh abdominal segment strongly produced or conspicuously angulinte.
Apical angles of seventh abdominal segment not strongly produced
8. (7) Lateral angles of pronotum rourded

Parosirftoe gen. nov.
Lateral angles of pronotun acute or produced into al long spine
senera not covered in his first part
9. (7) Anterolateral margins of pronotum angulately concavely incised at about half their lengith Everardia gen. nov.
Anterolateral margins of pronotum straight or genily convex in froni of lateral angles

10
10. (9) Mesosternal keel close to prosternum and reaching about base of heat 11
Mesosternal keel not so adpressed to prosternum and reaching lorward under base of head

A vicennu Distant (part)
(hot covered in this first part)
11. (10) Tihial Mattened towards apices: foveac in basal angles of scutellam present and black or concolorous: lateral margins of pronotum narrowly reflexed or rarely broadly explanate, this reflexion or explanation continued onio trunciate lateral angles for a short distance, antennae relatively robust

Ocirrhese Stal (part)
Not ar athove; lateral angles frequently acute or produced into a spinous process. If (privata Walker) tibiae flattencd towards apices. fovera in hasal angles of scutellum present and concolorous and lateral margins of pronotum narrowly rellexed then this reflexion continued around the lateral angles and the antename slender

Corspicona Dallan

Ocirrhoe Stảßl, 1867
Ocirrhoe Stäl, 1867, p. 521, 1870, p. 637: 1876, pp. 62 \& 102. Lethierry \& Severin. 1893. p. 180

Rhynchocoris Westwood 1837 (in part) p. 29.
Cuspicona Dallas, 1851 (in part) p. 296; Stall, 1867 (in part) p. 521; Lethierry \& Severin, 1893 (in part) p. 180. Kirkaldy. 1909 (in part) p. Xxxi.
Type species: Cuspicona inconsplcua Stal, 1867, non Dullus, $1851=$ Rhynchocoris atestralis Westwood. 1837 OD.

Descriplion:

General appearance: Species greenish or brownish-green in life, in museum collections brown or yellowish brown. Strongly punctate above. Sinall to moderate sized, rather oval. Anterolateral margins of pronotum reflexed or explanate, nearly straight and diverging posteriorly with lateral angles obtusely rounded or fruncate, the reflexion of the anterolateral margin
continued parily onto the Jateral angle. Head and anterior portion of pronotum inclined at an angle of 30 to rest of body. Tibiae only gently llattened near apices or strongly llattened, even slightly sulcate, on their outer surfaces.

Head: Appearing elongut or not, in mosi species rather quadrate, wider across cyes than long. Disc flattened anteriorly and rather raised posteriorly; lateral margins usualty straigh and diverging posteriorly but sometimes concave and in anstralis (Westwood) also reflexed. Apex rounded, rarely sather acuminate, apices of juga and anteclypeus at about same level. Eyes rather triangular and touching anterior margin of pronotum, ocelli not very conspicuous and placed nearer to inner margin of eyes than to centre line of head, on level of, or behind level of, hind margins of cyes. Antennifers shori, antennate five-segmented, first segment thicker than second and third, fourth and fifth generally thicker than second and third, antennae not very long.

Promolum: At least twice as wide across lateral angles as longo anterior margin truncate or concave behind eycs, then excavate behind collum. anterior angles in the form of a smatl vertical keet or a spine, frequently reflexed, Anterslateral margins straight. slightly convex or slightly concave, diverging posteriorly, marginate, these margins rather reflexed or explanate and continuing onto region of latetal angles. Lateral angles obtusely rounded or truncate. Posteralateral margins concave. sometines angulately so. Posterior angles obtuge or formed into a small spine (australis), posterior margin only slightly concave. Dise behind lateral angles in same plane as hind body, before level of lateral angles inctined downwards at ahout 30°.

Scurllum: Triangular, anteriorly gently raised or not lateral margins somewhat concave medially, apex broadly rounded. Frena extending about half to two-thirds of length from base to apex.

Hemelyra: Coriuceous purts normally thickened. Corium with exterior margin concave basally or sot. then broadly concave to acuie or shortly rounded upex. Posterior margin straight, inner angle broadly tounded. Clavus narrow and strongly triangular. Membrane infuscated and hyaline with veins substantially paratlel apically.

Abdomen: Genty convex dbove. excavate apically in males and faintly so in females.

Laterotergites: Three to seven armed with a short acute spine on lateral posterior angle (except in (lallasi).

Underside: Head oblusely triangular in lateral view. Bucculae lobulately produced anteriorly then sinuate or straight, retching to about middle of eyes, deeply sulcate between bucculae. Rontrum robust and four segmented, first segment robust and generally reaching to at lease base of bucculac, second segment frequently arehed. Meso- and metasternum with a robust keel projecting over part of whole of prosternum. latter broadly sulcate under this keel, Legs normal but tarsi always flattened near apices and sometimes stoongly flatteried and even sulcate their whole length. Abdominal venter faintly V - or U shaped in cross section as viewed from behind, third segment medially raised into a short triangular tubercle directed atateriorly. its apex fitting into a notch in the metasternal keed. Seventh ventrite in males slallowly excavated posteriorly and deeply excised in females. Pyger phore with lateral portions of posterior ventral margin roundedly or angulately produced or not with margin medially truncate or with a U - or V shaped excavation. Acdeagus with phallosoma lightly sclerotized. conjunctival produced forward as a more or less single procesi with or withou sclerntized rods, ventrally a pair of ventrally ditected parallel, usually bilobed, medial penial plates. Clasper strongly F-shaped. Female genitalia flat, in some species gonocoxac saised along their interior margins.

General remarks: Species placed in this genus have rather a uniform uppearance, they can be confused with Paracirrluec but in that genus the posterior angles of the seventh laterotergites are strongly and angulately produced.

The shape of the posterior vental margin of the male pygophote differs from species to species but is constant in cach species and is a good chatacter to help distinguish species. The \bar{F} shaped claspers are probably also distinctive for each species but as only those of several species hatve been dissected out so far this has not been confirmed. The aedeagus of the male also difters quite considerably from species to species of the lew investigated. In those species investigated the "lappet" processes of the Rhynchocarls group were present and two of the three species investigated had bilobed medial penial plates.

The female genitalia are not very distinctive but the shape of the hind margin of the gonocoxae and whether the gonocoxac are raised along the midline where they meet are good charactets. to distinguish closely related species.

The genus breaks up into three distinctive groups of species as does Cuspicona. The first group of species are suboval with tibiae strongly flattened their whole length: the anterior or posterior tibiae may even be rather sulate, The second group has the tibiae only flattened distally but are still suboval. One species of this second group, prasinata Stul, is very similar to Cuspicono privatd Walker in appearance and may bridge the gap between the two genera. Under the description of C. privalta it will be noted that there the tibiae are more tlattened than in the other species of Cuspicona. Prastrata and its allies seem best placed in Ocirrhoe on the feature of the reffexed lateral margin of the pronotum continuing onto the region of the lateral angle and the strongly transverse posterior margins of the hind gonocoxae; these are characteristics of some other species of the second group of Ocirhoe species but not of the thoracica group of Cuspicona where privata is best located. The thitd group contains only the single species wivescens Westwood which is rather more elongate in sppearance than other Ocirrhoe species, has alonger head in relation to its width actoss the eyes than other species of Ocirrtue and has the posterior margins of the first gonocoxace of the female arcuately convex across their whole width, a feature not seen in any other Ocirrhoe species, In this group too the tibiae are only dlattened distally. Despite the elongate head there does not seem to be close relationship between Ocirrhoe virescens and the longe headed Cuspiconas of the intacta group. The dorsal punctation is relatively sparse in virescens whereas it is very strongly developed in the intoctra group of Crispicona.

The thrce groups of Ocirrhoe may later prove to be of subgeneric or even generic rank but such action should await a thorough examination of the aedeagns and olaspers of the males of most, if not all, species.

Stail's genus Ocirrhoe is supposed to be based on Cuspicona inconspicha Dallas, 1851 as it is the only species mentioned under the key couplet No. 156 (157) (1867, p. 521) which forms the description of Ocirhhe. However in the couplet he mentions "Angulis posticis thoracis dente acuto armatis; . . . t thbiis superne sulcatis;
which are character states only of Ocirrhoe australks (Westwood, 1837) in the genus as I understand it. In 1870 (p. 51) Stal gives a second description, again only in the form of a key couplet-No. 2 (3) which repeats most of the features of the 1867 couplet, including the two character states mentioned above, but does not list any iuchuded species.

Finally in 1876 in the key couplet 188 (189) (p, 67) which forms his third and lant diagnesis of the genus he mentions again the sulcate tibiae. adds that the foveae in the basal angles of the scutellum are black and that the dorsal surface of the body has some black punctations, and notes that the posterior angles of the pronotum may be obtuse or produced into a footh. This defimtion could now only reter to australis (Westwood) and to two new species, wilsoni mihi and westroudi mihi, of those 1 include in this genus. Clearly at this stage Still recognises at least two of these three species, both in my first anstralis group. as belonging to the genus. On $p, 102$ of the same publication he lists two species under the genus heading, O. imimaculata (Westwnod) and O. antitralis (Westwood) ; he does not give either a generic desctiption of Ocirhoe in this citation or specific descriptions of the two included species; he does not mention incorspicua as an included species and he does not mention any specimens exantined of the two species he does include, Or unimacutara was also nbviously misidentified for true unimaculata hass to be excloded as it does not have sulcate tibiae. black punctations on the body or black foveac in the basal angles of the scutellum. There are six specimens in Stockholm which could have been concerned with Stal's conception of the genus. Five of them stood above the label unimucrlata (Westwood), one of them is labelled on the pin "Ocirrhoe inconspicua Dall 1 ex unimaculatae Hope Westw. aff", all five are actually duspratis (Westwood). The sixth specimen stood above the label anstralis (Westwood) but it is ant example of my new species westwodi. Therefore it is clear that Stall used one of the serics of australity, probably the one with the label on the pin (though Dr. Per Inge Perssun informs the handwriting is not that of Stal), which he had first misidentified as inconspletion and then as unimactuata, in the construction of the first diagnosis of Ocirrhoe. He expanded the diagnosis upon recounising the second specters which he took to be austratis but which is again mot that specics but westroodi mith.

Therefore I have altered the previously cired fixation of Cuspicomer inconspicuer Dallas as the type of this genus to Cuspicana inconspicua Stil, 1867 non Dullas. $1851(=$ Rhynchocoris anstealls Westwood, 1837). Original designation. Application will be mado to the International Commission to have this type lixation validated.

Key to Ocirrlas smecies

1. (1) Head cuarsely punctuale with hlack: a black point in cach basal ingle of seutellum:
tibiac strongly flattencel or even vaguely sulente almost their whole length 2
Head not punctate with black; wilt or without a black point in each basal angle of scutellum; first two pairs of Jegs with tihiac only thatlened apicatly, hind tibiac flattened their whole length or not
2. (1) Dark browas head densely punctate with hack and appearing much darker than pronotum; third segment of antennad apically infuscated; posterofateral angles of pronotum acutcly iriangular produced
australls (Westwood)
Yellowish or greenish brown: head more sparsely and more regularly punctate, usually not appearing durker than pronotum; first three segments of antennae completely pale or it third appically infuscuted punctation even on head, pronotum and scutellum; posternlateral angles of pronotum obtuse or rotunded. is .1...
3. (2) Anterotaterat margins of pronotum rather laminately expanded and vaguely rellexed: a blick spot at bascs of pro- meso and metepisterns: fourth and fitth anternal segments frequently strongly infuseated except it their bases; pronotum coarsely punctate with black (male) or narrowly black punctate just interiorly of anterolateral margins; hind margin of mate bygophore gently coneave medially and genlly convex lateratly . . . wilsoni sp, nov.
Anterolateral margins of pronotum obtusely marginate, the actlal margin raised, no black spots at hases of episterna; all antennal scgments pale or at most only lightly infuscated: pronotal punctations usually sparse and brown but if hack punctations present then only anteriorly behind collum: hind margin of male pygophore strongly pransersely trunctic with if small medial cóncavity nestwoodi sp. nov.
4. (1) Last iwo segments of antennate strongly infuscated (except al their bases and apices)
hast iwo segments of amtennae not infuscated. or only fifth intuscated (except at base and apex)
5.(4) Scutellum with a conspicuons black or brown spot in each basal angle; hind margin of male pygophore medially strongly concavely excavate and laterally broadly convexly rounded, this hind margin Irequently reddish; hind margins of female gonocoxac faintly sinuated, iransverse, gonocoxae not raised along their inner (longitudinal conliguous) margins . . dallesi sp. nov. (parl)
Scutellum whthout at conspicuous black or brown spot in each hasal angle; hind margin of male pygophore medially strongly V-shaped excavated and taterally produced posteriorly into a strong somewhat angulate lobe on each side: hind margins of lemale gonocoxae strongly transversely truncate except
medially where they ium anteriorly. gonocoxue strongly raised medially along their inner (longitudiaal contiguous) margins
/mescens Distant
5. (4) Filth segment of antennae broadly inluscated with black or dark brown, only extrente base and apex of this segment pale; hind margin of male pygophore laterally lobulately produced and medially with a smill tooth on the margin of cither side of the midlime curomata sp. nox.
Fifth segment of antennae not infuseated: hind margin of pygophore without a small touth on either side of midline
6. (6) Scutcllum with a conspicuous black or hrown spot in each basal angle

8
Scutclum without a conspicuous black spot in each basal angle

10
8. (7) Under 7.5 mm long: hind third of pronotum transverscly reddish or pinkish: with a triangular patch of hrown punctations on either side of scutellom just in front of pale apical area cavenda sp . nov.
Over 7.5 mm long: hind third of pronotum concolorons: scurellum uniformly punctate with brown except at pale apex y
9. (8) Antennae robust, four ferminal segments reddish. third segment as long as or longer than second; base of head not black

inconspicua (Dallas)

Antennae robust or not, four terminal segments reddish ar pale; third segment shorter than second; extreme base of head hlack
dullasi sp. nov. (part)
10. (7) Pronotum without a pale transverse band posteriorly; pygophore of male with hind margin laterally produced posteriorly ats a rather hooked lobulate process on each side: hind margin of female gonocoxae strongly transverso pravimura (Stiil)
Pronotum with a pinkish or yellowish transverse band or bar posteriorly, in faded specimens still visible as a paler areat male pygophore not as above: hind margins of gonocoxae transverse or not

11
11. (10) Scutellum laterally yellowish or pale, this yellowish or pale running into apical pale area: if lateral areas of scutellum concolorous then apex of sculellum also not conspicuously lightened. Hind margin of male pygophore rather triangularly produced on either side, medially rather V. shaped incised; hind margins of temale gonocoxae strongly roundedly or angulately convex Virescens (Westwood)
Scutellum laterally concolorous, apical area generally pale. Hind margin of male pygophore almost truncate, so also hind margins of gonocoxac ... (mimachlate (Westwood)

Australis Group

This group contains three species collectively occurring in the moister regions of South Australia east of Saint Vincent Gulf, Victoria, Tasmania, New South Wales and southern Queensland. The group characteristics are:rather obovate (pronotum width: total length about $9: 16$); rostrum not reaching much past hind coxae; all tibiae clearly flattened for most of their length on their exterior surfaces, usually also one or more pairs distinctly sulcate for most of their length on the flattened area; hind margins of female gonocoxae transverse or produced into a rounded lobe interiorly; head and usually also pronotum marked with black punctations; apical segments of antennae usually infuscated; foveae in basal angles of scutellum black.

Ocirrhoe australis (Westwood, 1837)
Figs. 2, 4 A-B
Rhynchocoris austral's Westwood, 1837, p. 30.

Ocirrhoe australis Stail, 1876, p. 102. Lethierry \& Severin, 1893, p. 180.
Cuspicona australis Walker, 1867, p. 387.
Rhaphigaster viridipes Walker, 1867, p. 370. New synonymy.

Cuspicona inconspicua Stảl, 1867 (non Dallas, 1851), p. 521. Misidentification.

Cuspicona uninotata Walker 1868, p. 571, New synonymy.

Description:

General appearance: Museum specimens yellowish-brown or reddish-brown with coarse black and brown punctations and brown and black infuscated areas. Apex of scutellum and most of underside bright yellow. Eyes and ocelli purplish. Foveae in basal angles of scutellum black. Three apical antennal segments infuscated in part.

Fig. 2. Dorsal aspect of Ocirrhoe australis (Westwood).

Head: Appearing rather broad and apically tather broadly rounded. Concolorous with dense coarse black punctations and base of collum also black. Eyes and ocelli purplish, Anteriorly flattened with lateral margins of juga shallowly reflexed, posteriorly only a very little raised. Anteclypeus hardly surpassing apices of juga, lateral margins distinctly concave.

Pronotum: Concolorous with coarse brown punctations, latter exteriorly sometimes black, not reaching lateral margins. A black or brown spot just interiorly of each lateral angle. Calli glabrous, sometimes with a transverse black bar. Anterior margin oblique behind eyes and trapeziformly excavate behind collum, anterolateral angles reptesented by at small recurved tooth. Anterolateral margins slightly convex, thickened Jaterally and narrowly reflexed. Lateral angles behind reflexed margin truncate, posterolateral margins at first convex then concave, posterolateral angles produced as a small, acute, triangular lobe. Posterior margin slightly concave.

Scutellum: Concolorous only Jaterally, basitly medjally and preapically suffused witt chocolate brown: apex broadly bright yellow and impunctate. Rest of dise with coarse brown or black punctations. A black fovea in each basal angle inward of which on each side is a callous pate point. Raised somewhat in anterior half and flattened in posterior half. Sometimes a trace of a broad longitudinal callous line present in posterior half. Lateral margins gently convex in basal half then straight, short and gently converging to broadly rounded apex. Frena reaching about $7 / 13$ of length.

Hemelyra; Coriaceous parts concolorous or somewhat browner than ground colour; basal half of exterior margin of corsum and a callous patch near apex of medial fracture yellowish, behind the latter a black patch; elscwhere coarsely punctate with brown. Exterior margin of corium elongately concave basally then almost straight to subacute apical angle, reaching about middle of abdominal segment VI, laterotergites broadly exposed. Posterior margin of corium straight, inner angle very broadly rounded.

Clavus comparatively short and clongately triangular. Membrane and veins brownish hyaline.

Abdomen: Together with dorsum of pygophore black.

Laterotergites: Exteriorly yellowish or reddish interiorly black or reddish, densely punctate, posterior extecior angles produced into moder. ately strong minutely black tipped spines.

Underside: Bright yellow, punctate on propleuron, except atong lateral margin, on mesopleuron in front of evaporative areas, on metapleuron behind evaporative areas and laterally on abdomen, punctations sometimes concolorous, sometimes brown and occasionally black. Antennal segments I and II, the basal 2/3 of 111; the base of IV and the base and apex of V yellow, the apical $1 / 3$ of II the apical $3 / 4$ of $I V$ and a medial band on V dark brown or blackish. Rostrum ventrally and its apex black. A black spot at base of pro-, meso- and metepipleura. sometimes abdominal segments IV-VII with a nedial black spot basally. Legs completely yellowish.

Bucculae low and strongly sinuated, reaching about middle of an eye, anteriorly produced into a rounded lobe. Rostral segment I robust, reaching to base of bucculac; II compressed and arched, surpassing fore coxae, 1 ll to base of mid coxae and IV just onto abdomen. Ratio of antennal segments (() $10: 19: 15: 23: 27$. Metasternal-mesosternal keels about the same height their whole length, not reaching apex of prosternum, anteriorly rounded, hardly deflected to left in pentral view. Legs normal without long pilosity, only the normal short pilosity an tibiae and tarsi; fore tibjace strongly flattened their whole length or even sulcate, middle and hind tibiae sulcate, Abdomen broadly U-shaped in posterior view. Apex of male abdomen Fig. 4 A, hind margin of pygophore transverse and vaguely sinuated, broadly reflexed. Apex of female abdomen Fig. 4 B , hind margin of first gonocoxae exteriorly transverse and interiorly produced posteriorly as a lobulate process, inner margins very shortly raised; posterior margins of VIIIth laterotergites angulately produced.

Parameter	Number of Mcasurements	Mcan	Standard Deviation	Coullicient of Variation	Observed Range
Head length	8	40	10	2.5	39－42
Head width	8	44	1.3	3.0	42.46
Antennal segment ！	13	10	0.8	7.4	9.12
Anternal stgment II	10	21	1.4	6.9	$19-23$
Antennal segment III	9	15	0.9	5.9	$14-16$
Antenal segment iv	5	23	0.7	$3 \cdot 1$	22－24
Anternal segment V	3	27	，	－1	$26-28$
Pronotum width ．	7	97	$5 \cdot 4$	5．6	90－107
Pronotum length	8	40	2.6	$6 \cdot 5$	$36-42$
Total length ．．．．	8	180	12.4	6.9	$16+200$
FEMALES					
Parameter	Number of Mcasurements	Mean	Standard Deviation	Coefficient ol Variation	Observed Range
Head length	17	39	$3 \cdot 5$	9.0	32.42
Head width	17	46	2.6	5.8	$40-48$
Antennal segment I	30	10	0.9	8.9	9－11
Antennal segment II	28	19	1.3	7.0	17－22
Aitenmal segment 111	27	15	1.2	7.4	12－16
Antemal segmerat IV	23	21	2.2	$10 \cdot 3$	16－25
Antennal segment V	18	26	2.3	8.9	20.29
Pronolum width．	17	105	9.4	8.9	87.116
Pronotum length	17	43	$3 \cdot 1$	7－2	37－47
Total length ：	16	191	25.9	136	155－215

Total length： $8 \cdot 1-11-2 \mathrm{mns}$

Remarks：Ocirrhoe australis is the darkest coloured of all the species in this genus and is easily tecognised in mixed series on this feature alone．It is one of only three species that have black punctations on the head and has the unique feature of the postcrolateral angles of the prono－ tum being produced into acute triangular pro－ cesses．Ocirrhoc custralis has a quite restricted distribation，occurring only in Queensland from just north of Brisbane，in castern New South Wales，and northern Victoria to Trawool．One specimen in Stockholm is supposed to have come from Fiji，if so it is the tirst record of an Ocirrhoe species occurring outside of Australiz if we accept that Cuspicona privata Walker is not an Occirhoe．

The description of Rhaphigaster viridipes Walker and Cuspicona uninotata Walker are such that they can only apply to Ocirrhoe australis．

Location of types：

Type δ of Rhynchocoris australis Westwood， ＂New Holland，＂in HOPE，types of Rhaphigaster biridipes Walker，＂Qucensland＂，and Cuspicona uninotata Walker，＂Australia＂，cited as originally in NM but not now to be found there（A． Neboiss in litt．）．

Specimens examined：The type of australis Westwood and Qucensland 15，Mt．Beerwah via Glasshouse Mountains． 550 m （ 1800 ft ，），

5．XII．I965，T．Weir UQ；1\％，Brisbane， 12．IX．1911，H．Hacker：1p，Caloundra， 28．X．1913，H．Hacker； 1 i．Tambourine Moun－ tain，H．Hacker QM： 1 \＆Gumdale near Bris－ bane，30．V1：1968，at fluorescent light，J．K． Guyomar ANIC； 1 \＆Brisbane，12．IX．1911，H． Hacker SAM：19，Brisbane，12．1X．1911．H． Hacker；18．Tambourine Mountains，11－18．1V． 1935，R．E．Tumer BM；1d ${ }^{\text {d }} 1$ 早，Brisbanc， 12．IX．1911，H．Hacker KU，New South Wales 15， 3 우，Mt．Tomah，28－29．11．1932，in rotting grass－tree，J．Armstrong； 1 f．Comboyne，10．XI． 1932，K．M．McKeown AM； 3 km （2 miles） S．S．W．of Nambucca Heads，18．X．1956，P．B． Carne ANIC； 1 ․，French＇s Forest near，Sydney， 21．X．1948，E．B．Britton；29．National Park． 31．X．1948，E．B．Britton BM； 1 o，Gostord， 1904，W，W．Froggatt KU；29，Sydney，Nov． 1902，ex Helms collection；1 \％，National Park， Dec，1905，ex Helms collection BISHOP．Aus－ tralian Capital Territory， 1 ㅇ，Jervis Bay， 18．IX．1951，T．G．Cumpbel！ANIC，Victoria 2\％，Trawool．17．XII．1919，ex J．E．Dixon collection NM，Unlocalised Australian 2 古． 1 旱， Australia，Winnerz（the female is the specimen bearing the additional label mentioned on p． 56 and is believed to be the specimen，or one of the specimens，on which the genus Ocirrhoe was diagnosed）； 1 ㅇ．Austral．bor．，Thorey STOCKHOLM．Fiji 1 \＆，Ins．Fidschi，Ditmel STOCKHOLM．

Ocirrhoe wilsoni sp. nov.
Figs. 3, 4 C-D

Description:

Gencral appearance: Muscuni specimens ycllowish with coarse black and brown punctations, some brownish markings on scutellum. Apex of scutellum and most of underside bright yellow. Eyes and ocelli purplish. Foveac in basal angles of scutellum black. Two apical antennal segments black except at base.

Head: Appearing rather broad and apically rounded. Concolorous with dense coarse black punctations and base of collum also black. Eyes and ocelli purplish, Anteriorly flattened with lateral margins of juga broadly reflexed, posteriorly only a very little raised. Anteclypeus just surpassing apices of juga, lateral margins distinctly concave.

Pronolum: Concolorous; punctations on males and females differently coloured; in males blackish brown on all parts of pronotum and conspicuous, in females brown or concolorous on dise but laterally just inside anterolateral margins punctations intense black. Hind portion
of pronotum behind level of lateral angles frequently faintly darker than rest of disc. Calli glabrous. Anterior margin oblique behind eyes and semicircularly excavate behind collum, anterolateral angles represented by a small recurved tooth. Anterolateral margins nearly straight and laminate, broadly reflexed. Lateral angles behind reflexed margin very short, posterolateral margins sinuate turning smoothly into faintly concave posterior margin, posterolateral angles therefore not produced.

Scutellum: Concolorous with blackish-brown punctations, on basal margin a brown spot on cither side of middle and preapically a brown triangular patch on either side, not meeting in middle. Apex yellow and impunctate, this yellow produced a little forward medially between the subapical brown patches, in front of this a trace of a raised longitudinal line extending forward to base. A conspicuous black fovea in each basal angle. Raised somewhat in anterior half and flattened in upical half. Lateral margins gently convex in basal half then straight and converging to broadly rounded apex. Frena reaching about $7 / 12$ of length.

Fig. 3. Dorsal aspect of Octerhom wilkomis
sp. nov.

Hemelytra: Coriaceous parts concolorous with fine blackish-brown punctations, a callous patch near apex of medial fracture and a small brown patch on interior angle of corium. Exterior margin of corium faintly concave and depressed basally then broadly curved to subacute apical angle, reaching just beyond base of abdominal segment VI, laterotergites broadly exposed. Posterior margin of corium straight, inner angle very broadly rounded. Clavus elongately trianguler. Membrane and veins faintly brownish hyaline.

Abdomen: Probably concolorous

Laterotergites: Concolorous with black patches of punctations exteriorly in front of and behind each incisure Posterior exterior angles almost rectangular.

Underside: Bright yellowish with brown and black punctations on propleuron, anteriorly on mesopleuron, posteriorly on metapleuron, on femora and tibiae and laterally on abdomen in males, in females these punctations except on femora usually concolorous. Antennal segments I-III concolorous, IV and V black except basally and in V sometimes apically also. Rostrum ventrally and its apex black. A black spot at
bases of all episterna, and in males medially at the bases of abdominal ventrites IV-VII, spiracles also black.

Bucculae low and sinuated, reaching to about middle of eye, anteriorly produced into a subtriangular lobe. Rostral segment I robust and reaching to about base of bucculae, II compressed and arched, surpassing fore coxae, III reaching to about middle of mid coxae and IV just onto base of abdomen. Ratio of antennal segments (ぇ) 8 : 18 : 11 : 19 : 22. Metasternalmesosternal keels about same height their whole length, not reaching apex of prosternum, anteriorly rounded, hardly deflected to left in ventral view. Legs normal without long pilosity, only the normal short pilosity on tibiae and tarsi and a few short hairs on femora. Tibiae strongly flattened almost their whole length hind tibiae rather sulcate. Abdomen broadly U-shaped in posterior view. Apex of male abdomen Fig. 4 C , hind margin of pygophore shallowly excavate. Apex of female abdomen Fig. 4 D , hind margin of first gonocoxae slightly convex and interiorly produced as a short lobulate process, inner margins shortly raised; posterior margins of VIIIth laterotergites subangulately produced.

Dimensions-

MALES (2 only)		
Parameter	Mean	Observed Range
Head length	31	31-2
Head width	37	36-38
Antennal segment I	8	8-9
Antennal segment II	18	17-19
Antennal segment III	11	11-12
Antennal segment IV	19	19
Antennal segment V	22	22-23
Pronotum width	78	77-79
Pronotum length	34	34
Total length	137	135-140

FEMALES

Parameter	Number of Measurements	Mean	Standard Deviation	Coefficient of Variation	Observed Range
Head length	5	35	0.8	$2 \cdot 4$	34-36
Head width	5	39	0.9	$2 \cdot 3$	38-40
Antennal segment I	10	8	0.5	$5 \cdot 9$	$7-9$
Antennal segment II	10	17	0.8	$4 \cdot 8$	16-18
Antennal segment III	10	11	0.4	3.9	10-11
Antennal segment IV	9	17	$1 \cdot 1$	6.2	16-19
Antennal segment V	9	21	1.3	$6 \cdot 3$	19-23
Pronotum width ...	5	87	1.7	1.9	86-90
Pronotum length .	5	37	1.3	$3 \cdot 5$	36-39
Total length	5	155	6.1	3.9	149-161

Remarks: Ocirrhoe wilsoni is apparently closely related to australis as they have in common a black punctate head, dark prepical markings on the scutellum and a lobulate
projection inwardly on the hind margins of the first gonocoxae. It lacks the triangular projection of the posterolateral angles of the pronotum of australis and is generally paler.

The species is found only in the wetter parts of south eastern Australia, occurring in the four states New South Wales, Victoria, Tasmania and South Australia.

Location of types:

Holotype fo, allotype fo, 1 paratype है, Grampians, Victoria, Oct. 1928, F. E. Wilson; 1 paratype 9. Cockatoo, Victoria, G. F. Hill in NM; 1 paratype ${ }^{9}$, Jervis Bay, Australian Capital Territory, 18.IX.1951, T. G. Campbell; 1 paratype \mp, Rupert Point, 5 km (7 miles) north of Pieman River, Tasmania, 30.XII.1953, T. G. Campbell in ANIC; I paratype of (Reg. No. 120,726), Tapanappa near Cape Jervis, South Australia, 5-9.XII.1949, G. F. Gross \& N. B. Tindale in SAM.

Specimens examined: The types only.

Ocirrhoe westwoodi sp. nov.
Figs. 4 E-F, 5, 6 A-C.
Ocirrhoe inimaculata Stål, 1876 (non Westwood, 1837), p. 102, misidentification

Description:

General appearance: Grass green in life with brown and black punctations and brown infuscated areas. Underside paler, apex of scutellum luteous or yellow. Eyes and ocelli purplish. Foveae in basal angles of scutellum black. Antennae yellowish brown, two apical segments infuscated in part. Museum specimens with green colour changed to yellowish, other colours as noted.

Head: Appearing not very broad and narrowing apically, actual apex rounded. Concolorous

Fig. 4. Ocirhoc ausiralis (Westwood). Ocimhe wilsomi sp. novan Ocirrhoe Westwoodi sp. nov. A-B. Ocirrhose australis. A. ventrul aspect of male abdomen. B. ventral aspect of female abdomen. C-D. Ocirrhoe wilsoni. C. ventral aspect of male abdomen. D. ventral aspect of female abdomen. E-F. Qeirrhoe wosmoond. E. ventral aspect of male abdonen. $F_{\text {o }}$ ventral aspect of female abdomen.
with discrete black and some brown punctations, base of collum black. Anteriorly flattened with lateral margins of juga shallowly reflexed, posteriorly only a very little raised. Anteclypeus hardly surpassing apices of juga, lateral margins distinctly concave.

Pronotum: Concolorous with coarse and scattered black, brown and concolorous punctations, posterior $3 / 7$ infuscated with brown and punctations in this region darker. Calli glabrous. Anterior margin oblique behind eyes and concavely excavate behind collum, anterolateral

Fig. 5. Dorsal aspect of Ocirrhoe westwoodi sp. nov.
angles represented by a very small tooth. Anterolateral margins nearly straight, laterally thickened and very slightly raised. Lateral angles behind reflexed margin very short, posterolateral margins slightly concave and rounding onto slightly concave posterior margin.

Scutellum: Concolorous with a few coarse brown punctations except apically and preapically, pre-apically on either side a small triangular brown patch, apex luteous or yellow and nearly impunctate, this yellow or luteous extending forward between the brown patches and then faintly visible as a median paler line extending to base. A black fovea in each basal angle. Raised somewhat in anterior half and flattened in basal half and then straight and gently converging to broadly rounded apex. Frena reaching about $2 / 3$ of length.

Hemelytra: Coriaceous parts concolorous with coarse punctations, latter brown or blackish brown interiorly and concolorous exteriorly; apex of medial fracture of corium with a brown spot, around this glabrous. Exterior margin of corium concave and depressed basally then almost straight to nearly rectangular apical angle, reaching to just past base of abdominal segment VI, laterotergites narrowly exposed. Posterior margin of corium faintly convex, inner angle very broadly rounded. Clavus comparatively long and elongately triangular. Membrane and veins hyaline.

Abdomen: Exteriorly concolorous, behind scutellum with large quadrate black patches, parts of dorsal surface of pygophore black.

Laterotergites: Concolorous with concolorous punctations, posterior exterior angles produced into strong black tipped spines.

Underside: Paler than above, in museum specimens bright yellow, punctate on bucculae, near base of head below, on propleuron except along lateral margin; on mesopleuron in front of evaporative areas, on metapleuron behind evaporative areas and laterally on abdomen, punctations concolorous. Antennal segments ycllowish brown, apical pair somewhat darker, the former except at base, the latter except at base and apex. Rostrum ventrally and its apex black. A minute black spot on mesopleuron anteriorly midway between mesepisternum and exterior margin; spiracles and posterior angles of the ventrites black. Legs mostly yellowish.

Bucculae low and strongly sinuated, reaching about middle of an eye, anteriorly produced into a triangular lobe, Rostral segment [robust, reaching base of bucculae, II compressed and reaching about middle of fore coxac, 111 to about middle of mid coxae and IV to just past middle of hind coxae. Ratio of antennal segments (b) $9: 16: 12: 20: 23$. Metasternal-mesosternal keels about the same height for most of their length, apically obliquely descending and then shortly rounded, not reaching apex of prosternum, not deflected to left apically in ventral view. Legs normal without long pilosity, only the normal short pilosity on tibiae and tarsi, fore

Fig. 6. Ocirrhoe westhoodi sp. nov-aedeagus and clasper. A. left hand side aspect of acdeagus. B. ventral aspect of aedeagus. C. clasper.
tibiac lattened and rather sulcate apically, mid and hind tibiae faintly sulcate almost their whole length. Abdomen broadly U-shaped in posterior view. Apex of male abdomen Fig. 4 E , hind margin of pygophore sinuated, shortly semicircularly excavate medially. Clasper Fig. 6 C. strongly F-shaped, the upper ramus sclerotized towards its tip. Aedeagus Figs. 6 A-B, with phallosoma short and honey-coloured, "lappet" processes rather clongate and directed upwards
and slightly backwards, conjunctiva curved downwards, apically produced into two tubular processes, medial penial plates apparently different in shape to most other members of the Rhynchocoris group, vesica prominent and emerging from between the medial penial plates. Apex of female abdomen Fig. 4 F , hind margins of first gonocoxae virtually transverse, interior margins not raised, apical angles of VIIIth paratergites angulately produced.

Remarks: Ocirrhoe westwoadi is apparently closely related to wilsoni, sharing the black spotted head and similar markings on the pronotum and scutellum. It differs from wilsomi in the paler terminal segments of the antennae, in the angulately produced lateral posterior angles of the laterotergites, the hind margin of the pygophore being excavate only medially and the transverse hind margins of the female gonocoxae, The latter feature shows resemblance to the species of the unimaculata group. O. Westwoodi occurs only in the wetter parts of Victoria, New South Wales and Tasmania.

Location of types:

Holotype 8, Wamberai, Gosford District. N.S.W., 1-3.X.1932, A. Musgrave; 4 paralype \&, 3 paratype \& (Reg. Nos. K63379-80), Marysville, Victoria, 30-31.XII.1930, A. Musgrave; 1 paratype s. Fern Tree Gully, Victoria, 27.1X.1919, donated F. P. Spry: 1 paratype 오. Miligrove, Victoria, Jun. 1927, F. E. Wilson; 1 paratype © (Reg. No. K57813), Eagle Hawk Neck, Tasinan Peninsula, Tasmania, 22.I.1928, A. Musgrave; 1 paratype s, Kurrajong, New South Wules, Oct. 1933, Dr. K. K. Spence AM; allotype ${ }^{\circ}, 1$ paratype 9 , Gunyah, Victoria, 12.I.1962. on Senecio jacobaea L. (Rugwort), G. Bornemissaa; 2 paratype ㅇ.. Fern Tree Gully, Victoria, Oct, 1930. J, Evans: 1 paralype $\%$.

Kangaron Valley, New South Wales. 17.IX. 1951, T. G. Campbell ANIC; 1 paratype ô., Koongalala Point, Lamington National Park, South Qucensland, 29.X.1955, T, E. Woodward; 1 paratype d́. Lamington National Park, 28 Jan.3 Feb. 1963, G. Montieth: 2 paratype $\%$, Mt. William, Grampians Range, 1150 m (1800ft), Victoría, 2.I.1966, I.. B. Cantrell, I. T. Weir UQ: 1 paratype o, 1 paratype o, Healesville, Victoria, 15.XLI.1958, F. E. Wilson NM; I paratype of, Ringwood (Reg. No. 120,729), 9.X1. 1952, F, E. Wilson; 1 paratype (${ }^{3}$. (Rg. No. 120,727), 1 paratype 9 . (Reg. No. 120,733), Pt. Campbell, Victoria, Nov. 1959, G. F. Gross: I paratype \& (Reg, No. 120,728), between Peterborough and Port Campbell, Victoria, 17. XI.1959, G. F. Gross; 1 paratype of (Reg。 No, 120,730), Selby, Dandenong Ranges, Victoria, 20. XI. 1959, by sweeping vegetation, G. F. Gross; 1 paratype s, 1 paratype o (Reg. Nos. 120,731-2), Belgrave National Park, Victoria, 20.XI.1959, by sweeping vegetation, G. F. Gross SAM: 1 paratype a , National Park, New South Wales, 31.X. 1948. E. B. Britton BM: 1 paratype \%, I paratype \%, Gosford, New South Wales, 16.X.1903. W. W. Froggatt $\mathrm{KU} ; 1$ \&. Mt. Wellington, Tasmania, $2-300 \mathrm{~m} .23 . X I I .1960$, in Nothofagus forest, J. L. Gressitt BISHOP. 1 paratype s. New South Wales, Diimel STOCKHOLM.

Specimens eramined: the types only.

Unimaculata Group

This group contains a series of seven species collectively occuring over most of Australia with the exception of the northern part of the Northern Territory and the northern half of Western Australiu. The yroup characteristics ase:rather obovate (pronotum width: total length ubout 5:9): rostrum not reaching much past hind coxae: tibiae flattened only apically though hind tibiae may be more extensively flattened than those of the two anterior pairs of legs; hind margins of female gonocoxae transverse, transversely sinuate or slightly arched; head not marked with black punctations; four apical antennal segments infuscated or not; and lovae in basal angles of scutellum infuscated or concolorous.

This group appears to be intermediate between members of the australis and virescens groups ats some members have some or all of the four apical segment infuscated and/or have black foveae in the basal angles of the scutellum like the members of the anstralis group whereas others have pale antemnae and/or concolorous foveue in the basal angles of the scutellum like the virsens group. One member (unimaculata (Westwood)) has a pale rransverse bar on the pronotum and large red maculae laterally on ventrites HISIV of the abdomen like virescens. (Westwood). Members of this group differ from those of the australis group in laving the tibiae llattened only apically and not having black punctations on the head. From the virescens group they differ in their more oval shape. Ocirphe prasintat (Stăl), a member of this animaculuta group closely resembles Cuspicona privata Walker and is presumably closely related (6) it and hence to the simples group of Cispicoma.

Ocirrhoe lutescens Distant, 1900
Figs, 1 A +7.8 A-E, 9.
Ocirnhoe lutescens Distant, 1900a, p. 422.
Rhaphigaster hirescens Dallas (non Westwood) 1851, p. 284.

Description:

General appearance: Green in life; apex of scutelfum ycllow, sometimes apical margin Marrowly red. Extreme base of head black. Eyes and ocelli purplish. Foveac in basal angles of scutellum concolorous. Apical pair of antennal segments infuscated except at bases and apices. In museum specimens green fading to bright yellow, other colours as noted.

Head: Appearing strongly triangular and apically narrowly rounded: concolorous but narrowly black at extreme base; anteriorly Mattened and posteriorly only a very little raised. Anteclypeus not surpassing apices of juga. lateral margins distinctly concave. Dise rugulosely punctate.

Pronotim: Concolorous with rather coarse punctations, calli glabrous. Anterior margin oblique and slightly raised behind eyes and trapeziformly excavate behind collum, anterolateral angles represented by a small recurved tooth. Anterolateral margins nearly straight, thickened Jaterally and broadly reflexed. Lateral angles behind refiexed margin truncate, posterolateral margins somewhat concave, posterior margin almost straight.

Scurellum: Concolorous with rather coarse punctations; on anterior half transversly rugulose; apex bright yellow and impunctate, sometimes margined with red apically. A concolorous fovea in each basal angle. Anteriorly a little raised and in posterior half flat. A trace of a longitudinal glabrous line present. Lateral margins gently convex in basal half then straight or gently rounded and converging to rather acute apex. Frema reaching about $4 / 7$ of length.

Hemelytru: Coriaceous parts concolorous with regular moderately dense punctations, a large elongate callous area inward of the apical third of the medial fracture. Exterior margins of coria elongately concave basally then almost straight to shortly rounded apical angle, reaching base of abdominal segment VII, lateratergites broadly exposed. Posterior margin of corium nearly straight, inner angle very broadly rounded. Clavus comparatively short and elongate triangular. Membrane and veins pale brownish hyaline.

Abdemen: Medially piceous, laterally concolorous.

Luterotergites: Concolorous, deasely punctate, posterior exterior angles produced into an acute black-tipped spine.

Underside; Concolorous, coarsely punctate, except on exterior margins of head and pronotum, evaporative areas and the appendages. Antennal segment 1 concolorous, segments if111 reddish brown, IV-Y piceous except at extreme bases and apices. Rostrum ventrally and its apex black. Tibiat apically and tarsi brown or reddish brown, sest of tibiae and rostrum more yellowish than rest of underside.

Fig. 7. Dorsal aspect of Ocirhoe lutescens Distant.

Ventral spine and a large area surrounding it on ventrites III and IV brownish yellow, behind this a broad yellow longitudinal line extending back medially to the apex of ventrite VII. Pygophore of male with hind margin frequently reddish.

Bucculae low and sinuated, reaching about middle of an eye, anteriorly produced into a prominent lobe. Rostral segment I robust, reaching nearly to base of bucculae; II compressed and arched, reaching to about middle of fore coxae; III to about middle of hind coxae and IV to about middle of hind coxae. Ratio of antennal segments (\ddagger) $9: 18: 14: 21: 26$. Meta-sternal-mesosternal keels about the same height their whole length, anteriorly rounded, not dellected to left anteriorly in ventral view. Legs
normal without long pilosity, only the normal short pilosity on tibiae and tarsi. Abdomen broadly U-shaped in posterior view. Apex of male abdomen Fig. 8 A , hind margin of pygophore medially strongly triangulately excavate, the margins of this incision rather sinuate, exterior margin somewhat convex giving the pygophore the appearance of a lateral subtriangular lobe on either side. Clasper Fig. 8 E , shaped as an inclined F, the central lobe not strongly produced. Phallosoma Figs. 8 C-D, of medium length and honey-coloured, "lappet" processes well developed, the conjunctiva apparently was not completely inflated but made up of a dorsal lobe on either side of which along its base is a strongly sclerotized rod, these rods converging basally. Medial penial plates not heavily sclerotized and perhaps not fully everted

Fig. 8. Ocirrhoe lutescens Distant-external genitalia, aedeagus and claspers. A. ventral aspect of male abdomen. B. ventral aspect of female abdomen. C. Iefthand side aspect of aedeagus. D. ventral aspect of aedeagus. E. clasper.
in the dissections but sinuated. Apex of female abdomen Fig. 8 B , hind margins of first gonocoxae transverse laterally and directed obliquely forward interiorly, inner half of each gonocoxa
strongly reflexed so that the inner margins of the two gonocoxale are strongly elevated. Posterior margins of VIIth laterotergites strongly and angulately produced. Spermatheca Fig. 1A.

Dimensions-
MALES

Parameter

Number of Measurements	Mean	Standard Deviation
25	38	1.3
25	41	11.4
49	9	0.8
49	18	1.7
50	14	1.6
41	21	1.0
37	26	1.2
25	105	5.5
25	43	2.8
25	192	11.6

Coefficient of Variation	Observed Range
$3 \cdot 3$	$35-40$
$3 \cdot 5$	$38-44$
$8 \cdot 6$	$7-11$
$9 \cdot 3$	$13-21$
$11 \cdot 1$	$11-18$
$4 \cdot 7$	$20-24$
$4 \cdot 8$	$24-29$
$5 \cdot 3$	$96-112$
$6 \cdot 5$	$38-47$
$6 \cdot 1$	$168-212$

FEMALES

Parameter

Number of
Measurements

25	38
25	41
47	10
48	18
48	14
47	21
41	25
25	106
25	44
25	192
length:	$8 \cdot 7-11 \cdot 3 \mathrm{~mm}$

Standard Deviation
1.2
1.4
0.8
1.1
1.4
1.2
1.4
5.0
3.0
11.5
Coefficient
of

$3 \cdot 1$	$36-41$
$3 \cdot 4$	$38-44$
$8 \cdot 6$	$8-11$
$5 \cdot 9$	$16-20$
$10 \cdot 0$	$11-17$
$6 \cdot 1$	$18-24$
$5 \cdot 5$	$22-28$
$4 \cdot 8$	$91-112$
$6 \cdot 8$	$38-50$
$6 \cdot 0$	$174-216$

Remarks: Ocirrhoe lutescens is easy to recognise in collections as it has most of segments IV and V of the antennal blackish but the foveae in the basal angles pale. It has no black spots on the head. Two other species in this group without black spots on the head, dallasi (sometimes)
and coronata, may have one or both terminal antennal segments darkened. Ocirrhoe dallasi has the foveae in the basal angles of the scutellum infuscated. Ocirrhoe coronata has the basal foveae in the scutellum concolorous but has only the terminal antennal segment darkened.

Fig. 9. Distribution of Ocirrhoe lutescens Distant.

From both of these species lutescens may be distinguished from the strong angulate emargination in the hind margin of the pygoplore and the strongly raised inner portion, especially the inner margins, of the female first gonocoxue.

Ocirrhoe lutescens: is distributed in the wetter regions of Australia south of the 25 "S line of latitude. The only host plant record is Leparospermum mysimoides Schlecht from Blackwood. South Australiu.

Location of sype:
Type of lutestens Distant, "King Goorge's Sound, Austrulia", ill BM.

Specimens examined. The type and 68 of and 79 of specimens from 45 localities. Detailed locations for these specimens are not given but are plotted on Fig. 9. The specimens examined came from the following collections (numbers in each collection in parentheses) UQ(24), QM (1), AM(9), ANIC(24), AM(9), NM(21), SAM(28), WAM(1), BM(4), AMNH(8), CAS (12), BISHOP(6).

Ocirrhoe dallasi sp. noy.

Figs. $10,12 \mathrm{~A}-\mathrm{H}$
Cuspicona roci Dallus (non Westwond) 1851. p. 297, Distani, 1900 b, p. 815.

Description:

General appearance: Olive green in life with concolorous punctations; first antennal segment yellowish, remaining segments fercuginous. terminal pair frequently infuscated. Eyes and ocelli purplish, very base of head black. Apex of seutellum yellowish or reddish. Muscum specimens with green fading to yellow, other colours as noted. Second antennal segment clearly longer than third.

Head: Appearing rather broad and apically broadly rounded: concolorous, black at very base. eyes and acelli purplish; anterionly, flattened, posteriorly slightly taised. Anteclypeus hardly surpassing apices of juga, fateral margins of latter gently concave, Dise coarsely and rugulosely punctate.

Pronoham: Concolorous with diserete dense punctations, in green specimens the latcral margins yellowish, calli narrow and slightly rugulose. Anterior margin shortly oblique behind eyes and trapeziformly excavate behind collum, anterolateral angles represented by a small vertical carina. Anterolateral margins
nearly straight, thickened and reflexed. Lateral angles behind explanate margin truncute, posterolateral margins slightly concave, posterior margin ilmost straight.

Scutellum: Concolorous with discrete Fairly hine punctations, apex yellow, reddish-yellow or reddish and impunctate, Foyea in each basal angle infuscated. Raised slightly in anterior half and fat posteriorly. No trace of median longitudinal line, Lateral margins nearly straight but converging in basal half then fairly convex to broady rounded apex. Frena renching a Jittlo past half length.

Hemelytra: Coriaceous parts concolorous with regular moderately coarse punctations, in green specimens basal portion of exterior margin of corium yellowistr. Medial fracture glabrous towards apex. Exterior margin of corium concave and reflexed basally then nearly straight to shortly rounded apical angle, reaching middle of abdominal segment VI, laterotergites broadly exposed. Posterior margin of coriun straight. inner angle very broadly rounded. Clavus elongate triangular. Membrane and veins pale brownish hyaline.

Abdomen: At about the level of the middle of scutellum a broad transverse black bar, under apex of scutellum and behind it large quadrate black spots, sometimes divided. Dorsum of pygophore reddish, Rest concolorous.

Laterotergites; Concolorous, tinely though densely punctate, posterior exterior angles almost rectangular, marked with black.

Underside: Paler than above, coarsely punctate except on sides of head, exterior margin of prothorax, evaporative areas, ventrally along abdomen and appendages. First antennal segment yellowish, remainder reddish, fourth and fifth frequently infuscated, the former not at base and the latter neither at base or apex. Rostrum ventrally and its apex black. Tibiae apically and tarsi reddish-brown. Lateral margins of prothorax, epipleuron and abdomen paler. pygophore edged with reddish. Thoracie keels and a broad median stripe on abdomen paler, Spiracles and posterior angles of abdominal ventrites black.

Bucculae fow and strongly simuated, reaching to about middle of eyes, medially depressed, anteriorly forming a rounded lobe. Rostral segment I robust, not reaching base of bucculac. II compressed and reaching base of fore coxate, III to base of middle coxae and IV to base of abdonien. Antennac not unduly robusi, tatio

Fig. 10. Dorsal aspect of Ocirrhoe dallasi sp. nov.
of segments (ô) 9:17:12:21:24. Metasternalmesostemal keels of even height to fore coxae, then slightly inclined downwards to apex which is obliquely directed posteriorly dorsally, surpassing apex of prosternum, keels not deflected to left in ventral view. Legs normal without long pilosity, only the usual short pilosity on tibiae and tarsi. Tibiae flattened, at least apically.

Abdomen broadly U-shaped in posterior view. Apex of male abdomen Fig. 12 A , hind margin of pygophore concave medially and convex laterally. Apex of female abdomen Fig. 12 B, hind margins of first gonocoxae transverse, inner margins only faintly elevated; posterior margins of VIIIth laterotergites produced only into a blunt angle.

MALES

Parameter

Number of
Measurements Mean

21	36
21	39
38	9
38	17
38	12
32	21
20	24
21	93
21	38
21	174

Standard Deviation	Coefficient of Variation	Observed Range
	4.3	$33-39$
1.6	4.4	$37-44$
1.8	5.5	$8-10$
0.5	7.3	$15-19$
1.2	11.4	$10-17$
1.4	4.4	19.23
0.9	4.8	$22-26$
1.1	8.5	$83-116$
7.9	8.7	$33-47$
3.4	8.4	$155-213$

Remarks: Ocirrhoe dallasi resembles O. hotescens in the black base of the head and the teadency of the two termimal segments of the antennae to become infuscated. It differs in having black or fuscous foveae in the basal angles of the scutellum, in the broader apes of the litter, in the upieal margin of the male pygophore being convexly excavatc not angulately excavate and the inner margins of the first gonocoxae of the female not being strongly elevated.

Ocirmos dallasi occurs in southern Queensland. New South Wales, Victoria, South Australia (including Kungaroo Island) and there is one specinten from the Northern Territory, the only example of an Ocirrhoe from that state. This species may occur in Western Australia alsa, a fumale specimen from Ravensthorpe fits the description in most details whereas another female from Muchea in eertain respects is closer to inconspricuea though it has the short third antennal segment of dallasi. The species has been recorded from several species of native plants belonging to the genera Hakea and Grevillea (Proteaceac). Erocarpos (Santalaceac) and Leptospermim (Myrtaccae).

Location of types:

Holotype a. 1 paratype 3, Canberra, AusIralian Capital Territory Oct. 1929.J. W. Evans* allotype 8. Black Mountain. Canberta, Australian Capital Territory. 1.XI.1960, on Exocarpos cupressiformis Labill, T. G. Campbell; 2 paratype s. Black Mountain, Australian Cupitall Territory, 30.X1.1929. A. Tonnoir 1 \&, Black Mountain, Australian Cupital Territory, 12.I. 1961, I.F.B. Cominon: 1 paratype है, 1 paratype 8. Black Mountain. Canberra. Australian Capital 'Territory; 11.X. \& 22.XI.1965. ex Hakea sericed Schrad. J. M, Walker; AcHa 103; 2 paratype ${ }^{6} .1$ paratype $ㅇ$, , Black Mountain, Canberra, Australian Capital Territory, 23,II.1966, ex Hakea sericen Schrad, S. Neser, Acha 103; 4 paratype s. Black Mountain, Canberra, Aus-
tralian Capital Territory, I.III.1967. (m Greville'a tanigera A. Cunn. ex R,Br. T, G. Camplent; I paratype 9.16 km (10 miles) cast of Bathurst. New South Wales, $850 \mathrm{~m}(2800 \mathrm{ft}$.$) , 20.X. 1964$, I.F.B. Conmon and M, F, Upton; 1 paratype of. Telegrapls Station, National Park, Alice Springs, Northern Territory, 8,V.1967, A. M. Hayes ANIC; 1 paratype i, Mt. Norman arca via Wulangara, Queensland, 7.8.X.1972, G. B. \& S. R, Monteith UQ; 2 paratype i, Blackrock District, Victoría. J. E. Dixon; 1 paratype o, Kiata, Victoria, Oct 1928, F. E. Wilson NM: 2 paratype 9 (Reg, Nos, 120,734-5), Sauford, Victoria. W. F. Hill; 2 paratype of (Reg. Nos. 120,736-7), Mt. Rosea (Grampians). Victoria, Nov. 1950. N. B. Tindale: 1 paratype δ (Reg. No, 120.738). Kiala, Victoria, 22.XI.1952, F. E. Wilson; 1 paratype of (Reg. No. 120,739), Mouth Glenelg River, Victoria, 28.VIIL1965, F. J. Mitchell; I paratype \& (Reg. No. 120.740), Black Mountair, Canberra, Australian Capital Territory, 26.XI,1959, by sweeping vegetation, G. F. Gross; 1 paratype $\%$ (Reg. No. 120,741), Adelaide, South Australia, H. M. Halo; I paratype of (Reg. No. 120,742), Adelaide, South Australia, taken with sweepnet. N. B. Tindale; 1 paratype of (Reg. No. 120,743), Pt. Lincoln, South Australia, A. M. Lea; 1 paratype of (Reg. No. 120,744), near Coonalpyn, South Australia, Sept. 1967, beating leprospermmm coriacenm (FvM) Checl, A. N. McFarland; I paratype of (120,746), Kangatoo Island, South Australia, Oct. J924: 2 paratype ? ($120,747-8$) , 4 km (2.5 miles) sauth of Mt. Taylor Kangaroo Island, South Australia, 31. X11.1965, beating heath shrubs, D. Seton and A. N. MeFarland; 1 paratype of (Reg. No. 120.749). South Australia, Rev. A. P. Burgess SAM.

Specimens examined: The types and two questionable specimens from Western Australia 1 o. 24 km (15 miles) east of Ravensthorpe, $110 \mathrm{~m}, 23 .[\mathrm{X} .1962, \mathrm{E} . \mathrm{S}$. Ross and D. O. Cavagnaro CAS; 1 . Muchea, 4.IV.1967. F. H. Uther Baker SAM.

Ocirrhoe inconspicua (Dallas, 1851)
Figs. 11, 12 C-D
Cuspicona inconspicua Dallas, 1851 p. 297.
Lethierry and Severin, 1893 p. 180.
Ocirrhoe inconspicua Stå1, 1967 p. 521. Distant, 1900a p. 422.

Description:

General appearance: Green in life; apex of scutellum yellow; anterolateral margins of pronotum and basal exterior margin of corium and exterior margins of abdomen yellow or reddish yellow; first segment of antennae concolorous, rest ferruginous, apices of tibiae and tarsi reddish. Eyes and ocelli purplish. Foveac in basal angles of scutellum black. In museum specimens the green colour fading to dull yellow or pale red,
other colours as noted. Third antennal segment nearly as long as, about the same length as, or longer than second.

Head: Appearing strongly triangular and apically narrowly rounded; concolorous; anteriorly slightly convex, posteriorly more convex and slightly raised. Anteclypeus slightly surpassing apices of juga, lateral margins distinctly concave. Dise transversely rugulose and punctate.

Pronotum: Concolorous with coarse dense punctations, calli glabrous. Anterior margin oblique and slightly raised behind eyes and trapeziformly excavate behind collum, anterolateral angles represented by a small vertical carina. Anterolateral margins nearly straight, very narrowly explanate, this explanate portion

Fig. 11. Dorsal aspect of Ocirrhoe inconspicua (Dallas),
yellow or reddish yellow. Lateral angles behind explanate margin truncate, posterolateral and posterior margin slighty concave.

Scutellum: Concolorous with coarse dense punctations, apex yellow and almost impunctate. Fovea in each basal angle black. Raised in anterior half and flat posteriorly, A trace of a faint median longitudinal impunctate line present. Lateral margins gently convex in basal half then straight or gently rounded to broadly rounded apex. Frena reaching about half length.

Hemelytra: Coriaccous parts concolorous with regular coarse dense punctations, medial fracture glabrous towards apex. Exterior margins of coriu slightly concave and thickened basally then faintly convex to shortly rounded apical angle, reaching middle of abdominal segment VI. laterotergites broadly exposed. Posterior margin of corium straight, inner angle very broadly tounded. Clavus clongate triangular, Membrane and veins pale brownish hyaline.

Abdomen: Medially a broad black longitudinal bar or series of black maculac behind apex of scutellum, laterally concolorous. Dorsal surface of pygophore reddish.

Lateroterghtes: Concolorous, densely punctate, posterior exterior angles produced into an acute black-lipped spine.

Underside: Concolorous, coarsely punctate except on sides of head exterior to bucculae, exterior margin of prothorax, evaporative areas,
ventrally along abdomen and appendages. Antental segment 1 concolorous or yellowish, remaining segments pale red or reddish brown. Rostrum ventrally and its apex black. Tibiae apically and tarsi reddish brown. Lateral margins of prothorax, epipleuron, abdomen and apical margin of pygophore reddish or yellowish. Thoracic keels and a broad longitudinal medial stripe on abdomen yellowish.

Bucculae reaching to about middle of the eyes and rather elevated, medially lower, anteriorly forming a rounded lobe. Rostral segment I robust, reaching nearly to base of bucculae, II compressed and arched, just surpassing fore coxae, llf reaching onto hind coxae and IV onto the base of ventrite IV. Antennae comparatively robust, ratio of segements (s $^{\prime}$) $9: 13: 14: 18$: 23. Mctasternal-mesosternal keels of even height to just behind fore coxae, then gently and obliquely inclined downwards to rounded apex. almost reaching apex of prosternum. not deflected to left in ventral view. Legs normal without long pilosity, only the usual short pilosity on tibiae and tarsi, tibiae flattened, at least apically, Abdomen broadly U-shaped in posterior view. Apex of male abdomen Fig. 12 C , hind margin of pygophore gently concave and laterally not convex. Apex of female abdomen Fig. 12 D, hind margins of first gonocoxae rather convex, inner margins a little elevated; posterior margins of VIIIth luterotergites produced into only a blunt not very obvious angle.

Dimensions-
MALES

Parameter	Number es" Mcasurements	Mean	Standard Deviation	Cocficient aif Variation	Obscrved Ringe	
Head length-...	21	36	1.9	$5 \cdot 4$	32-39	
l fead width ,	21	37	1-2	$3 \cdot 1$	$33-38$	
Antennal segment I .	38	9	06	$7 \cdot 5$	$7 \cdot 10$	
Antenoal segment \|	. .- .-- .- .-	37	13	0.9	6.9	11.15
Antennal segment [1].	37	14	10	7.5	12-19	
Antennal segment iv	27	18.	1.1	5.9	16-20	
Antennal segment V	20	23	1.4	6.3	19.24	
Pronotum width ..	21	90	51	5.7	79.98	
Pronotum length	21	37	14	5.0	35-42	
Total length	21	164	10.3	6.3	155-195	
FEMALES						
Parancter	Number of Mensurements	Man	Standard Deviation	Coeflicient of Variation	Observed Range	
Head fengtle	15	38	20	$5 \cdot 3$	35.41	
Head widtit ...	15	38	1.4	3.6	36.40	
Antennal scgmene !	28	9	0.5	5.4	8-10	
Antenial segment II	29	14	0.9	6.5	12-15	
Antennal segneent 111	29	14	1.1	7.8	12-16	
Antennal segment IV	24	19	10	5.0	17-21	
Antennal segment V	21	23	1-3	5.7	21-26	
Pronntum width ...	15	94	34	$3 \cdot 7$	89-9y	
Pronolum length	15	46	$1 \cdot 3$	$3 \cdot 3$	38-41	
Total length,..............................	15	174	7.2	4.1	160-185	

Remarks：This species is easily distinguished from all other species of Ocirrhoe by the second antennal segment being about the same length as，or longer than，the second．In the non－infus－ cated antennal segments and the shape of the pygophore it is close to unimaculata Westwood， however the black spot in the basal angles of the scutellum and the shape of the pygophore indi－ cates it is also related to dallasi．It is distin－ guished from dallasi by its more acuminate head which is not black at base，by the third antennal segment being about the same length as the sec－ ond or even longer，and by the shallowly concave hind margin of the pygophore．

Ocirrhoe inconspicua has only been recorded from Western Australia with the exception of one male specimen from the mountains of north－ eastern Victoria．Host records include a Melaleuca species and Chamelaucium unici－ natum，both members of the Myrtaceae．

Location of type：
Type ㅇ of inconspicua Dallas，＂New Holland＂， in BM．

Specimens examined：Western Australia：the type and； 1 ̂̉，Bushmead，17．XII．1966，on Melaleuca，E．M．Exley UQ； 3 子ै， 3 \＆，1？， Bunbury，3．I．1957，A．Snell； 1 क，Capel Dis－ trict（ 29 km south of Bunbury），7．I．1957， A．Snell AM；13，Yardie Creek，April 1958， Snell； 1 ti． 1 우，Capel，7．I．1957，Snell； 1 古， Collie，13．I．1957，Snell NM； 1 f ，Northhampton， 16．1X．1958，F．H．Uther－Baker； 1 早， 1 f，Kelm－ scott， 16 Oct．\＆ 7 Nov．1958，the first in Banksia and scrub，J．Baldwin； 1 8．，Yanchep，16．X．1964， F．H．Uther－Baker； 1 子，Kings Park，2．X．1965， H．Mincham； 1 i，Jandakot，24．X．1965，F．H． Uther－Baker SAM； 1 九九． 1 오，Mundaring Weir， 20．II．1963， 1 \％，same locality，10．XII．1964，J． Deli； 1 oै，Wembley Downs，1．XI．1969，on wax （Chamelaucium uncinatum Schau）only，E．A．

Fig．12．Ocirrhoe dallasi sp．nov．，Ocirrhoe inconspicua（Dallas） Ocirrhoe cavenda sp，nov．A－B．Ocirphoe dallasi．A．ventral view of male abdomen．B．ventral view of female abdomen．C－D．Ocirrhere inconspicsa．C．ventral view of male abdomen．D．ventral view of female abdomen．E－F，Ocirrhoe cavenda．E．apex of male abdomen．F ．apex of female abdomen．

Jefferys \& M. Archer WAM; 1 \&, Swan River, L. J. Newman; 1 ㅇ, Merredin, L. J. Newman; 1 \% , 3 ㅇ. Yanchep, 51 km (32 miles) north of Perth, 13-23.XI.1935, 2 ㅇ, 1 ㅇ, same locality, 20-31.XII.1935, R.E. Turner BM; 2各, 19, Tortoise Reserve, 39 km (24 miles) north of Perth, $16 . X 11.1971$, J. A. Slater; $1 \delta, 1$ ㅇ, Wildlife Reserve, 34 km (21 miles) north of Perth, 16-18.XII.1971, J. A. Slater SLATER; 1\%, Margaret River, 2 Nov.; Harvard Australian Expedition, P. J. Darlington AMNH; 1 ㅇ, Darlington, 150 m (450ft.), 5.IX.1962, E. S. Ross and D. Q. Cavagnaro CAS. Victoria: 1̂̀, Hotham Heights, Victoria, 1800 m (5900ft.), on snow, I.II.1957, A Neboiss NM.

Ocirrhoe cavenda sp. nov.
Figs, 12 E-F, 13, 16

Description:

General appearance: Green in life with pronotum between and behind level of lateral angles pinkish, latter reaching lateral angles and posterolateral and posterior margins. Scutellum apically very broadly pinkish or luteous, in front of this luteous with a diffuse band of black punctations denser laterally, foveae in basal angles black. Antennae and tarsi yellowish brown. Museum specimens with the green faded to yellow.

Fig. 13. Dorsal aspect of Ocirrhoe cavemia sp. nov.

Head: Appearing fairly broad and apically rather truncate, concolorous, anteriorly flattened and posteriorly only very little raised; anteclypeus, hardly surpassing apices of juga, lateral margins clearly concave. Disc rugulosely punctate. Eyes and ocelli purplish red.

Pronotum: Anteriorly concolorous, from is line drawn between the lateral angles posteriorly pinkish and coarsely punctate, some punctations in the pinkish area infuscated, calli glabrous and frequently a submarginal callous line paralleling the anterolateral margins. Anterior margin oblique behind eyes and trapeziformly excavate behind collum, anterolateral angles represented by a small fine tooth or ridge. Anterolateral margins nearly straight. Lateral angles behind the reflexed margin truncate, posterolateral and posterior angles only slightly concave.

Scutellum: Concolorous with apex very broadly luteous or pinkish, before the pale apex a broad band of black punctations, constricted and less dense medially. A black fovea in each basal angle. Raised a little anteriorly and flat in posterior half. A trace of a faint median longitudinal line present. Lateral margins gently concave in basel half and then almost parallel to rather broadly rounded apex. Frena reaching to about half length.

Hemelytra: Coriaceous parts concolorous with coarse, but not dense, punctations; a glabrous streak just interior of posterior half of medial fracture. Exterior margins of coria distinctly concave basally then almost straight to shortly rounded apical angle, reaching about middle of abdominal segment VI ; laterotergites broadly exposed. Posterior margin of corium straight, inner angle broadly rounded. Clavus elongate, triangular. Membrane and veins faintly brownish hyaline.

Abdomen: Concolorous, behind apex of scutellum infuscated.

Laterotergites: Concolorous, densely punctate, posterior exterior angles produced into a short black spine.

Underside: Concolorous; bucculae, propleuron, mesopleuron except exteriorly, metapleuron posteriorly and abdomen coarsely punctate. Antennal segments II-V pale reddish or yellowish-brown. Rostrum ventrally and the apical half of its terminal segment black. Tibiae towards apices and tarsi brown. On abdomen three pale longitudinal stripes, one medial and the other two midlateral. Spiracular eminences dark brown or black below the orifices.

Bucculae low and sinuated, reaching about middle of an eye, anteriorly produced into a blunt triangular process. Rostral segment I robust, reaching nearly to base of bucculae, II compressed and arched and reaching to about middle of fore coxae, III to middle of mid coxae and IV to base of hind coxae. Ratio of antennal segments (of) $8: 13: 11: 17: 21$. Metasternalmesosternal keels highest between fore coxae, then obliquely truncate, then broadly rounded at apex, reaching nearly to apex of prosternum, directed to left apically in ventral view. Legs normal without pilosity, only the usual spines present, tibiae only flattened apically. Abdomen broadly U-shaped in posterior view. Apex of male abdomen Fig. 12 E, hind margin of pygophore subangulately excavated, lateral lobes not strongly prominent. Apex of female abdomen Fig. 12 F , hind margins of first gonocoxae transverse, turning anteriorly towards the midline, interior margins not raised, apical angles of VIIIth paratergites angulately produced.

Dimensions- MALES					
Parameter	Number of Measurements	Mean	Standard Deviation	Coefficient of Variation	Observed Range
Head length	5	34	$1 \cdot 6$	$4 \cdot 9$	31-35
Head width	5	36	1.4	3.9	34-38
Antennal segment I	9	8	0.7	$9 \cdot 2$	7-9
Antennal segment II	9	13	$1 \cdot 1$	8.4	11-15
Antennal segment 111	9	11	0.9	$8 \cdot 3$	9-12
Antennal segment IV	9	17	1.2	$7 \cdot 2$	15-19
Antennal segment V	9	21	1.8	$8 \cdot 6$	17-22
Pronotum width ...	5	82	6.5	7.9	73-87
Pronotum length .	5	36	$2 \cdot 5$	6.9	32-38
Total length	5	149	9.9	$6 \cdot 7$	133-160

P'arumeter	FEMAI.ES				
	Number of Measurements	Mean	Stundard Deviation	Cuefficient of Variation	Observal Range
Head length	4	35	-	-	33-361
Head widlh	4	37	-		35-39
Antennal segment 1	6	8	-		8-9)
Antennal scgment 11	5	14	-	-	13.14
Antennal segment 111.	5	11	-	-	10.13
Antennal segment iv	5	18	-	-	17.19
Antennal segment V	4	27	-	-	21.23
Pronotum width...	4	84	-	-	76-91
Pronotum length.	4	. 36	-	-	33-40
Total length	4	154	.		147.158

Total length: $x^{2}-x .3 \mathrm{~mm}$

Remarks: This species occurs in a narrow belt in New South Wales and Victoria from near the Queensland border to about Bendigo in Victoria. It is very similar to unimaculuta and casily confused with the latter but differs in the black foveae in the basal angles of the scutellum, the transverse band of black punctations before the pale apex of the latter, the more angulately incised posterior margin of the hind margin of the pygophore, the comparatively longer third antennal segment and its raticr smaller size. Only ten specimens are known.

Location of lypes:

Holotype f (Reg. No. [20,725), Mullaley, New South Wales. Jan. 1959. F. E. Wilson SAM: allotype \&. Bendigo District, Victoria, 6.X.1928, ex J. E. Dixon collection donated Jan. 1940 NM: 3 paratypes δ. Nollo Mountain 32 km (20 miles) north east of Rylston, New South Wales, 12.X1.1950, T. G. Campbell; I paratype $\%, 14 \mathrm{~km}$ (9 miles) north east of Putty, Now South Wales, 28,X.1956, P. B, Carne ANIC; I paratype d, "Calumet", 42 km (26 miles) north east of Binnaway, New South Wales, Nov. 1931, A. Musgrave AM; 1 paratype if, 2 paratypes i, Lennox Bridge, New South Wales, 28.1X.1958. M. I. Nikitin BM 1959-57.

Specimens cexamined: The types only. The distribution of the known specimens has been added to the map on Fig, 16 so that its distribution may be compared with that of unimaculata.

Ocirrhoe unimaculata (Westward, 1837)
Figs. 14. 15 A-E. 16
Rhynchocoris animaculata Westwood, 1837, p. 29 .

Ocirrhoe unimaculata Lethierry \& Severin, 1893, p. 180, Distant, 1900a, p. 422.

Riynchocoris roei Westwood, 1837, p. 30. Lethierry \& Severin, 1893, p. 181,
Ocirrhoe roei Distant 1900 b, p. 815. pl. 52. fig. 12. new synonym.
Cuspicona fasciala Dallas, 1851, p. 297, pl. 10. fig. 3.

Description:

General appearance; Green in life with an elongate oval pinkish or yellow transverse bar between, but not reaching, lateral angles and posterolateral margins of pronotum. Scutellum apically yellow. Foveae in basal angles concolorous; antennae and tarsi yellowish brown. Museum specimens with the green faded to yellowish, pink or light red. Other colours as noted. Eyes and ocelli purplish.

Head: Appearing fairly broad and apically rather truncate, concolorous, unteriorly flatiened and posteriorly very little raised; anteclypeus hardly surpassing apices of juga, Jateral margins clearly concave. Disc rugulosely punctate. Eyes and ocelli greyish to purplish red.

Pronotum: Concolorous with rather coarse sparse punctations, Jatter rather infuscated in the area of the pale patch, calli glabrous. Between lateral angles a very elongate transverse pale pink or yellow bar not reaching lateral angles or posterior margin. In some examples an irregular yellow callous line just inside anterolateral margins. Anterior margin oblique behind eyes and trapeziformly excavate behind collum, anterolateral angles represented by a very small tooth. Anterolateral margins nearly straight. Lateral angles behind the reflexed margin concave, posterolateral and posterior margins only slightly concave.

Fig. 14. Dorsal aspect of Ocirrhoe zmimaculuta (Westwood).

Scutcllum: Concolorous with evenly distributed fairly dense vaguely fuscous punctations, apex broadly yellow and impunctate. A concolorous foveae in each basal angle. Raised a little anteriorly and flat in posterior half. A faint raised medial longitudinal line present. Lateral margins gently convex in basal half and then converging gently to rounded apex. Frena reaching about $\frac{4}{5}$ of length.

Hemelytra: Coriaceous parts concolorous with regular, moderately dense punctations. Exterior margins of coria faintly concave basally then broadly convex to shortly rounded apical angle, reaching about middle of abdominal segment VI, laterotergites broadly exposed. Posterior margin of corium straight, inner angle broadly rounded. Clavus very elongate triangu-
lar. Membrane and veins hyaline, frequently rather brownish.

Abdomen: Concolorous, infuscated on either side of apical portion of scutellum.

Laterotergites Concolorous, densely punctate, posterior exterior angles produced into a short, minutely black tipped spine.

Underside: Concolorous, punctate on propleuron, base of mesopleura, hind portion of metapleuron and abdomen, coarser laterally on the latter. Antennal segments II-V pale or yellowish brown. Rostrum ventrally and its apex black. Tarsi brown. In green examples the sternites and three longitudinal lines on the abdomen, one medial and the others midlaterally on each side, yellow. Spiracles with their
orifices black. Apical margin of pygophore or in females apical margins of VIIIth paratergites frequently narrowly black. Many examples with two large subquadrate pink markings on either side of the midline, a pair each on segments 111 and IV.

Bucculae low and sinuated, reaching about middle of an eye, anteriorly produced into a blunt lobulate process. Rostral segment I robust, reaching nearly to base of bucculae; II compressed and arched, reaching about middle of fore coxae, III to middle of hind coxae and IV just onto base of abdomen. Ratio of antennal segments (f) $8: 16: 12: 20: 23$. Metasternal-mesosternal keels highest between fore coxae then obliquely truncate, reaching nearly apex of prosternum, directed to left in
ventral view. Legs normal without long pilosity, only a few spines present, tibiae only flattened apically, Abdomen broadly U-shaped in posterior view. Apex of male abdomen Fig. 15 A , hind margin of pygophore only slightly concave and laterally not produced into prominent lobes. Clasper Fig. 15 E, strongly F-shaped, the upper ramus compressed and darkly sclerotized towards its tip. Phallosoma Figs. 15 C-D, short and honey-coloured, "lappet" processes rather elongate, conjunctiva reflexed downward, medial penial plates elongate in the axis of the aedeagus, notched ventrally in lateral view, in ventral view broad and diverging. Apex of female abdomen Fig. 15 B, hind margins of first gonocoxae transverse and nearly truncate, interior margins not raised; apical angles of VIIIth paratergites angulately produced.

Fig. 15. Ocirrioe znimaculata (Westwood). A. ventral aspect of male abdomen. B. ventral aspect of female abdomen. C. lefthand side aspect of acdeagus. D. ventral aspect of aedeagus. E. clasper.

Dinmensions-

MALES FROM SOUTHERN AUSTRALIA

Parameter	Number of Mcasurements	Mean	Standard Deviation	Cocfficient of Variation	Observed Range
Head length	20	35	1-9	$5 \cdot 4$	31-38
Head width	20	38	1.5	$4 \cdot 1$	35-40
Antennal segment I	37	8	0.8	92	$7-9$
Antennal segment II	38	16	1.0	6.5	14-18
Antennal segment III	38	12	$1 \cdot 3$	11.2	10-15
Antennal segment IV	33	20	1-1	5.5	17-22
Antennal segment V	25	23	1.3	5.6	21-25
Pronotum width .	20	92	$4 \cdot 5$	4.9	85-98
Pronotum length	20	38	$2 \cdot 6$	6.7	33-43
Total length ...	20	160	8.0	50	148-172

FFMALES FROM SOUTHERN AUSTRALIA

Parameter	Number of Measurements	Mean	Standard Deviation	Coefficient of Variation	Observed Range
Head length	20	37	1.8	$4 \cdot 8$	34.40
Head width	20	39	1.5	3.8	36-42
Antennal segment I	36	4	0.8	8.7	7-11
Antennal segment II	38	17	1.3	8.0	14-19
Antennal segment III	37	12	1.3	11.2	10-14
Antennal segment IV	32	19	1.0	$5 \cdot 3$	17-22
Antennal segment V	28	23	$1 \cdot 4$	6.0	20-25
Pronotum width ...	20	96	$5 \cdot 1$	$5 \cdot 4$	85-109
Pronotum length	20	40	$4 \cdot 4$	11.1	26-47
Total length ...	20	174	9.4	$5 \cdot 4$	155-200

MALES FROM QUEENSLAND AND NEW SOUTH WALES

Parameter	Number of Measurements	Mear	Standard Deviation	Coefficient of Variation	Observed Range
Head length	19	34	1.4	4.2	31-37
Head width	19	36	$1 \cdot 0$	$2 \cdot 8$	35-38
Antennal segment I	32	7	0.9	12.3	6.9
Antennal segment II	34	16	$1 \cdot 2$	7.7	13-18
Antennal segment III	34	11	$1 \cdot 1$	10.2	9.14
Antennal segment IV	30	20	$1 \cdot 4$	$7 \cdot 3$	17-23
Antennal segment V	24	23	$1 \cdot 4$	6.2	20-25
Pronotum width .	19	84	$4 \cdot 5$	$5 \cdot 3$	77-91
Pronotum length	19	35	$2 \cdot 0$	$5 \cdot 7$	32-38
Total length	19	154	10.6	6.9	137-175

FEMALES FROM QUEENSLAND AND NEW SOUTH WALES

Parameter	Number of Measurements	Mear	Standard Deviation	Coefficient of Variation	Observed Range
Head length	19	36	1.2	3.4	35-39
Head width	19	38	1.5	40	36-42
Antennal segment I	35	8	0.8	9.9	7.9
Antennal segment II	36	17	1.2	$7 \cdot 4$	15-20
Attennal segment III	39	11	0.9	$7 \cdot 8$	10-14
Artennal segment IV	36	19	$1 \cdot 3$	6.9	16-22
Antenual segment V	28	23	$1 \cdot 3$	$5 \cdot 8$	21-25
Pronotum width ..	19	92	$3 \cdot 9$	$4 \cdot 2$	88-99
pronotum length	19	39	$2 \cdot 2$	$5 \cdot 8$	$367-42$
Total length ...	19	172	$10 \cdot 4$	6.1	148-190

Total length (both populations): $7 \cdot 1 \cdot 10.4 \mathrm{~mm}$

Remarks: The type of unimaculata Westwood is in poor condition but as it is a male and the pygophore is intact the identity of the species is not in doubt. The types of both roei Westwood and fasciata Dallas are females in better condition and belong also to this same species. The type of roei is the largest example yet seen in the genus.

The species is fairly easily recognised by the pale, usually pinkish elongate-oval, transverse patch near the hind margin of the pronotum. Two other species have a similar pale patch on the pronotum, notably cavenda and virescens. From cavenda unimaculata differs in having pale foveae in the basal angles of the scutellum, in lacking a preapical transverse band of black
punctations before the apex of the scutellum and in the hind margin of the pygophore being only faintly concave. From virescens unimaculata differs by lacking pale lateral margins to the scutellum, by having the hind margin of the pygophore only faintly excavate (triangularly excavate in virescens) and in having the hind margins of the female first gonocoxae transverse (convex in virescens).

Ocirrhoe unimaculata is widely distributed near and on the coast of Australia south of about 26° S latitude. It has been taken on the following species of plants-Correa sp. (Muston, Kangaroo Island), Myoporum insulare R. Br. (Coorong, South Australia), Geijeria linearifolia (D.C.) J. M. Black (Mannum, South Australia), Platylobium sp. (Mt. Lofty, South Australia), Beycria leschenarlti (D.C.) Baill and Mclaleuca pubscens Schau (Hallett Cove, South Australia) and in a formation dominated by Leucopogon parviflora (Andr.) Lindl. and Acacia sophorae (Labill) R.Br. (near Robe, South Australia). Specimens have been captured in all months of the year.

Populations from the southern states of Australia and from New South Wales south of the latitude of about Sydney are somewhat larger than populations from northern New South Wales and southern Qucensland. The measurements of the two populations have been analysed separately in the descriptive section.

Location of types:

Type \& of unimaculata Westwood, "New Holland", and type of roei westwood, "SR" ($=$ Swan River) in HOPE; type of of fasciata Dallas, "New Holland", in BM.

Specimens examined: The types and 144 specimens from 58 localities from the following collections (numbers examined in parentheses):-QU(24), $\mathrm{QM}(4), \mathrm{AM}(11)$, ANIC(19), NM(10), SAM(34), WAM(2), STOCKHOLM(4), BRUSSELS(1), BM(11), J. A. SLATER(1), AMNH(10), CAS(1), BISHOP (12). As this is a common species individual Australian and Tasmanian records have not been listed in detail but are plotted on Fig. 16.

Fig. 16. Distribution of Ocirrhoe cavenda sp. nov, and Ocirrhoe nmimachlata (Westwood).

Ocirrhoe prasinata (Stil, 1859) nov. comb
Figs. 17, 19 A-B.
Cuspicona prasinata Stảl, 1859, p. 231; 1876, p. 103. Lethierry and Severin, 1893, p. 180.

Description:

General appearance; Museum specimens greenish-yellow or yellow, in fresher specimens apex of third and fourth and most of difth antennal segments reddish. Eyes and ocelli greyish. Foveae in basal angles of scutellum concolorous or greyish.

Head: Appearing moderately elongate, concolorous, triangular, anteriorly flattened and posteriorly a little raised; anteclypeus slightly surpassing apices of juga, lateral margins clearly concave. Disc rugulosely punctate. Eyes and ocelli greyish or reddish-grey.

Pronotum: Concolorous with fine dense concolorous or slightly infuscated punctations, calli glabrous. A faint trace of a medial longitudinal line. Anterior margin oblique behind eyes and
trapeziformly excavate behind collum, anterolateral angles prominent as a small tooth. Anterolateral margins straight or slightly convex. Lateral angles behind the reflexed margin shortly truncate, posterolateral and posterior margins only slightly concave, posterior margin slightly concave.

Scutcllum: Concolorous with fine dense concolorous or slightly infuscated punctations, an almost concolorous fovea in each basal angle, Raised very little anteriorly and flat posteriorly. Lateral margins gently convex in basal 4/7 and then converging gently to broadly rounded apex. Frena reaching about $4 / 7$ of length.

Hemelytra: Coriaceous parts concolorous with fine dense concolorous or slightly infuscated punctations. Exterior margins of coria faintly concave basally and then faintly convex to nearly rectangular apical angle, reaching about middle of abdominal segment VI, laterotergites broadly exposed. Posterior margin of corium straight, inner angle broadly rounded. Clavus very elongate triangular. Membrane and veins hyaline.

Fig. 17. Dorsal aspect of Ocirrhoc prasimata (Stül).

Abdomen: Concolorous, some dorsal portions of pygophore pinkish.

Laterotergites: Concolorous, coarsely punctate exteriorly, posterior exterior angles produced into a short, minutely black tipped spine.

Underside: Concolorous, coarsely punctate except on head, margin of propleuron, evaporalive areas and legs. Apex of third and fourth and most of fifth antennal scgments reddish or orange. Rostrum ventrally and its extreme apex black. Spiracles concolorous or faintly infuscated.

Bucculae high and moderately sinuated, reaching about middle of an eye, anteriorly produced into a rather triangular lobulate process. Rostrol segment I robust, reaching nearly to base of
bucculae, Il compressed and arched and reaching middle of fore coxae, Ill to middle of hind coxate and IV to about middle of ventrite III. Ratio of antennal segments (o) $9: 15 ; 12: 21: 25$. Metasternal-mesosternal keels depressed a little anteriorly, nearly reaching apex of prosternum. anteriorly rounded and directed to left in ventral view. Legs normal with sparse pilosity, tibiac only flattened apically. Abdomen broadly U shaped in posterior view. Apex of male abdomen Fig. 19 A, hind margin of pygophore laterally produced into a reflexed lobe on either side, between these deeply excavate this excavation with a smaller excavation on midline. Apex of female abdomen Fig. 19 B, hind margins of first gonocoxae transverse and nearly truncate, interior margins not raised,

Dimensions-

MALES					
Parameter	Number of Mcasurements	Mean	Standard Deviation	```Cocfficient of Variation```	Observed Range
Head length .	8	35	$2 \cdot 1$	60	30-37
Head width .	9	37	0.9	$2 \cdot 1$	36-39
Antennal scgment I	15	9	0.5	5.1	$9+10$
Anternal segment if	17	15	$1.1)$	6.7	1, 1-16
Antenmal segment III.	17	12	$1 \cdot 3$	10.7	\|1-15
Antenral segment IV.	14	21	1-4	7.0	19-24
Antennal scgment V	9	25	$2 \cdot 3$	9.0	23-29
Pronotum width ...	9	92	1.9	2.0	90-95
Pronatum length	9	38	$1 \cdot 3$	$3 \cdot 3$	37-40
Total length	9	171	49	2.9	165.180
FEMALES					
Parambier	Number ol Measurements	Mean	Standird Deviation	Coefficient nf Variatinn	Observed Range
Head length	13	35	0.9	2-5	33-36
Head width	13	38	1.1	30	37.40
Antennal segment 1	16	9	0.9	$10 \cdot 1$	8-10
Anternal segment II.	19	15	1-3	9.0	11-17
Antennal scgment III.	19	12	1.3	10.7	j1-15
Antennal segment IV.	13	20	18	$9 \cdot 2$	17.24
Antennal segment V	13	23	24	$10 \cdot 3$	$21-29$
Pronotum width ...	13	93	50	$5 \cdot 4$	$85-103$
Pronotum length	13	39	$2 \cdot 3$	6.0	35-43
Total length	1.3	169	$8 \cdot 8$	$5 \cdot 2$	155-181

Total kength: $8 \cdot 1.9 .4 \mathrm{~mm}$

Remarks: This species is very easily confused with Cuspicona privata Walker on a macroscopic examination. It appears to be a true Ocirrhoe on the following features:- the antennae are more robust than in Cuspicona species, the anterolateral margins of the pronotum are reflexed and this reflexed area continues for a short distance onto the lateral angle and the hind margins of the first gonocoxae of the female are transverse and also truncated, a feature which occurs commonly in Ocirrhoe but only in Cuspicona in the long-headed intacta group which O. prasinata does not resemble, O.
prusimata has much less flatened tibiae than some of its congeners whereas C, privata has more flattened tibiac than other species of Cuspicona. It is in the area of these two species (O. prasinata and C. privata) that the two genera become rather close to each other and it is likely the point where the two genera diverged. whether one arose out of the other or both diverged from a common ancestor must remain unanswered.

Within Ocirrhoe itself prasinata appears to be related most closely to coronata by virtue of the rather similar posterior margin of the pygophore
of the male, the two strong lobes, one cither side of the midline, in coronata are reduced to anly slightly prominent lobes in prasimada.
C. Prasinata occurs near the eastern and southern coasts of the Australian mainland from soulisern Qucensland to about the Mt, Lofty Ranges and Kangaroo Island in South Australia,

The high coeflicients of variation noted for the lengilis of the antemal segments seem to be due to a progressive shortening of their length as one progresses from Quecnsland to South Australian examples and does not appear to indicate is specilic difference.

Locution of types:
Typus an allotypus o, paratype e, patatype "Sidney, Kinh." (for "Sydncy, Kinberg"), STOCKHOL_M.

Spectmens eramined: The types and Queensland 1d. 19. Tibrogargan Crcek, 4, IX, 1953, on Leptospermmen. 'T. E. Woodward UQ; Ip, Springbrook, 12.X.1959. A. N. Burns: 1 面. Burleigh, 16.1X.1960, A. N. Burns NM. A.C.T. 3́. 3 o. (29 Lake Windemere), Jeryis Bay. 18-19.1X.1951. T. G. Camphell ANIC. Victoria 1 9. Matlacoota. 23. X1.1965. A. Neboiss. 1 of, locality and date illegithe, donated by F.P. Spry 5.X. 1922 NM. South Australial 18. Teatree Gully, 16, XI, 1954, R, V. Southcott: 2 ? . E.S.I. 833. Belair, 10.X.1952, G. F, Cross: 1 . E.S.1. 594, Belair, 11.I.1953, G. F. Gross; \& \& Belair National Park, 20.X.1965. by sweeping. B. K. Hubbard and A. N. McFarland: 19. Kangaroo listand. A. M. Lea: 1 §, Kangaroo Island, Oct. 1924: 19. 16 km (10 mijes) west of Vivonne Bay. 12.X.1966, by beating. A_{0} N. McFardand and M. Pate SAM: 2 \% without further locality $\mathbf{A M N H}$. Untocalised 1 \& $\mathbf{A M}$.

Ocirrhoe coronala sp. nov.
Figs. 18, 19 C-D.

Deswription:

General appeatance: Muscum specimens yellow; second, third and fourth antennal segments reddish, fifth black medially and narrowly reddish tut base and apex. Eyes and ocelli reddish-grey. Fovea in basal angles of scutellam concolorous.

Howd: Appearing moderately elongate, concolorous, triangular, anteriorly llattened and posteriorly a little raised, apex of anteclypeus in bame curve as apices of juga; lateral margins clearly concave. Disc coarsely and rugulosely
punctate. Eyes and ocelli reddish or reddishgrey.

Pronosum: Concolorous with rather coarse vaguely infuscated punctations, calli glabrous. Lateral margins tending orange. No trace of a median longitudinal line. Anterior margin oblique behind cyes und semicircularly excavate behind collum. anterolateral angles prominent as at fine tooth. Anterolateral margins straght. Lateral angles behind the termination of the reflexed anterolateral margins shortly truncate, posterolateral and posterior margins only slightly concave.

Sctlellhm: Concolorous with coarse dense slighely infuscated punctations and concolorous fovea in each basal angle. Ratised very little anteriorly ind flat posteriorly, Lateral margins gently convex in basal half and then broadly rounded and converging to sublanceolate apex. Frens reachise about half length.

Hemehirn: Coriaceous parts concolorous with line not very dense slightly infuscated punctations. Exterior margins of coria faintly concave basatly then obtuse angled and then straight and converging to shortly rounded apical ungle, reaching ubout middle of segment VI, daterotergites very broadly exposed. Posterior margin of corium rather rounded, inner angle broadly rounded. Clavus very elongate triangular. Membrane and veins fumose hyaline (holotype) or hyaline (allotype and paratype).

Abdomen: Reddish interiorly and on dorstum of pygophure.

Laterofergites: Concolorous. coarsely punctate exteriorly, hind and inner margins of seventh reddish. Posterior exterior angles produced into a short spine which is minutely black tipped.

Underside: Concolorous, coarsely punctate only on propleura, towards base of nesopletura. hind portion of metapleurd, laterally on abdomen and very sparsely on ventral surface of pygophore. First antennal segment concolorous. second, third, fourth and base and apex of fifth reddish, rest of fifth black. Rostrum ventrally and its extreme apex black. Spiracles concolorous.

Buceulat high and moderately simunted, reaching to about anterior margin of an eye, anterionly produced into a subtriangular lobulate process. Rostral scgment I robust, reaching nearly to base of buceulac, II compressed and slightly arched and reaching about middle of fore coxac, 111 to anterior part of mid coxac, and IV lo posterior part of hind cosac. Metustomatmesosternal keel rather raised anterionly and

Fig. 18. Dorsal aspect of Ocirrhoc coronuta sp. nov.
forward of this obliquely truncate, reaching apex of prosternum, directed to left in ventral view. Legs normal with sparse pilosity, tibiae not very flattened. Abdomen broadly U-shaped in posterior view. Apex of male abdomen Fig. 19 C. hind margin of pygophore laterally produced into a reflexed lobe on either side, between these excavate, this excavation with a broad tooth on either side of the midline, between the latter notched. Female Fig. 19 C , posterior margins of first gonocoxac transverse, medially slightly concave: posterior angles of eighth laterotergites sharply angulated. Dimensions (holotype): Head length 40; head width 42: antennal segment I 10,10 ; antennal segment II 20,19 ; antennal segment III 15,15 ; antennal segment IV 26 , 25; antennal segment V 29, 28; pronotum width 102; pronotum length 44; total length 185; (allotype) head length 42 ; head width 42 : antennal segment I9, 9; antennal segment 1121 .

22; antemnal segment III 17, 17; antenual seement IV 25,25 ; antennal segment V 28 , -; pronotum width 102; pronotum length 44; total length 192.

Total length: $9 \cdot 0-9 \cdot 6 \mathrm{~mm}$.
Remarks: This species appears to have only one close relative in the genus, namely prasinata (Stål) which it resembles in the shape of the posterior margin of the pygophore. The three known specimens come from two fairly widely separated localities.
Locution of types:
Holotype so (Reg. No. T7215), Iron Range, Cape York Peninsula, Queensland, 26.V.-2.VI. 1971, B,K. Cantrell OM; allotype 9 , Mt. Tozer, Iron Range, North Queensland, 20.IV.-1.V.1973, G. Monteith UQ; paratype fo, Finke River. Central Australia, Dr. H. Basedow SAM,

Specimens examined: The types only.

Fig. 19. Ocirrme prasinata (Still), Ocirhoe cormata sp. nov, Ocirfhoe virescens (Westwood). A-B. Ocirmoc prasinata. A. veniral view of male abdomen. B. ventral view of female abdomen. C-D. Ocirrhoe coromata. C. ventral view of male abdomen. D. ventral view of female abdomen. E-F. Ocirfhoe virescens, E, ventral view of male abdomen. F. ventral view of female abdomen.

Virescens Group

This group contains only the one species, Ocirrhoe virescens (Westwood), which is restricted to Queensland. The group characteristics are:-more elongate than other species of Ocirrhoe (pronotum width: total length almost. $1: 2$); rostrum long reaching onto, or almost onto ventrite V; tibiae flattened only apically; and in virescens the hind margins of the first gonocoxae of the female arcuately convex; head not marked with black punctations; antennae not apically infuscated and foveao in basal angles of scutsllum concolorous.

There is a close resemblance to O. unimaculata in the pale transverse bar on the hind portion of the pronotum and the large red maculae on either side on ventrites III and IV. Like wnimaculata and other species in the unimaculata group the tibiae are only slightly flattened.

Ocirrhoe virescens (Westwood, 1837)
Figs, 19 E-F, 20
Rhaphigaster virescens Westwood, 1837, p. 31.
Ocirrhoe? virescens Distant, 1900b, p. 815, pl. 53 fig. 7.

Description:

General appearance: In life green with a broad transverse bar on the hind portion of scutellum, lateral margin and apex of scutellum bright yellow or orange-yellow. In older museum specimens yellow or yellowish-brown with the transverse bar on the scutellum and the scutellar margins and apex paler or more orange. First segment of antennac concolorous, rest brown or reddish-brown. Eyes and ocelli reddish-grey or black. Foveae in basal angles of scutellum concolorous.

Head: Appearing strongly clongate triangular but actually about as wide across eyes as long. Concolorous, anteriorly flattened and posteriorly raised, apex of anteclypeus in same curve as apices of juga; lateral margins only slightly concave. Disc coarsely but not unduly densely punctate, some transverse rugulosities. Eyes and ocelli reddish-grey to black.

Pronolum: Concolorous with rather coarse evenly spaced punctations, latter tending fuscous posteriorly, Calii concolorous but glabrous. Between lateral angles and reaching almost to hind margins an elongate trapeziform transverse yellow or orange-yellow bar not reaching lateral angles or posterolateral margins. Anterior margin oblique behind eyes and trapeziformly excavate behind collum, anterolateral angles represented by a small toothed spine. Anterolateral margins straight. Lateral angles behind termination of reflexed anterolateral margins shortly truncate, posterolateral and posterior margins only slightly concave.

Scutellum: Concolorous medianly in basal half but along lateral margins and tip broadly yellow
or orange-ycllow; with coarse fairly evenly spaced concolorous or fuscous punctations. Foveae in basal angles concolorous. Raised anteriorly and flat posteriorly. Rather elongate, lateral margins only slightly convex in basal fo and then changing direction and faintly convex to sublanceolate apex which is slightly reflexed either side of midline. Frena reaching about $\frac{1}{5}$ length

Hemelytra: Coriaceous parts concolorous but inner angle of corium infuscated with black. Punctations evenly distributed except just inside of apical portion of medial fracture where there is a narrow glabrous area. Exterior margins of coria faintly concave basally and then broadly convex to very shortly rounded apical angle, reaching about middle of segment VI, laterotergites narrowly exposed. Posterior margin of corium nearly straight, inner angle broadly rounded. Clavus very elongate triangular. Membrane and veins hyaline.

Abdomen: Concolorous exteriorly and broadly reddish behind scutellum, dorsum of pygophore also reddish.

Fig. 20. Dorsal aspect of Ocirrhoe virestents (Westwoud).

Laterotergites: Concolorous and coarsely and densely punctate. Posterior exterior angles produced into a short black-tipped spine.

Underside: Concolorous, coarsely punctate only on propleura, ventrally on mesopleura and posteriorly on metapleura. First antennal segment concolorous, remaining segments brownish tending reddish-brown towards apex. Rostrum ventrally and tip black. Abdomen medially with pyogophore broadly pale, a quadrate reddish patch just laterally of midline on either side on segments III and IV, not in contact with either fore or hind margins of these segments. Tarsi brown. Spiracles concolorous.

Bucculae low and moderately sinuated, reaching to about middle of eye, anteriorly produced into a subtriangularly lobulate process. Rostral segment I robust, reaching to base of bucculae, II compressed, arched and reaching onto meso-
sternum, III to past hind coxac and IV onto Ventrite V, Ratio of antennal segments (δ) 9: $19 ; 14 ; 23: 25$. Metasternal-mesosternal keels highest just behind fore coxae, forward of this obliquely and truncately directed downwards then anteriorly shortly rounded, not reaching apex of prosternum, directed to left in ventral yiew. Legs normal without pilosity, only the normal bristles, tibiae only slightly flattened apically. Abdomen broadly U- or V-shaped in posterior view. Apex of male abdomen Fig. 19 E , hind margin of pygophore laterally produced into a prominent lobe on each side whose external margin is convex, between the lobes a strong V -shaped incision, on the ventral surface slightly in front of this a V -shaped ridge. Apex of female abdomen Fig, 19 F , h'nd margins of first gonocoxae strongly arcuately convex, inner margins slightly raised, angles of Y1lith paratergites distinctly acute.

Dimensions-

MALES					
Parameter	Number of Mcasurements	Mcan	Standard Deviation	Coefficient of Variation	Observed Range
Head length	10	35	$1 \cdot 1$	30	34-37
Head width	10	37	0.7	1.8	36.38
Antennal segment I	19	9	0.8	100	7-10
Antennal segment II	18	19	1.2	6.1	16-21
Antennal segment III	18	14	0.9	6.7	12-15
Antennal segment IV	14	23	$1 \cdot 3$	$5 \cdot 9$	20.25
Antennal segment V	13	25	$1 \cdot 3$	$5 \cdot 2$	23-27
Pronotum width	10	86	3.2	3.7	81-90
Pronoturn length	10	36	1.2	3.3	33-37
Total length \ldots	10	164	4.9	3.0	155-170
FEMALES					
Parameter	Number of Measurements	Mean	Standard Deviation	Coefficient of Variation	Obscrved Range
Head lengih	16	38	$2 \cdot 4$	6.5	35-43
Head width	16	39	$2 \cdot 3$	5.9	33-43
Antennal segment I	27	9	0.7	$7 \cdot 2$	8-10
Antennal segment It	26	21	J.7	8.2	18-25
Antennal segment III.	26	15	$2 \cdot 5$	16.5	12-21
Antennal segment IV	23	25	$2 \cdot 0$	8.2	23-29
Antennal segment V	19	26	1.7	$6 \cdot 3$	23-29
Pronotum width ...	16	96	50	$5 \cdot 2$	88.106
Pronotum length	16	40	$2 \cdot 7$	$6 \cdot 7$	$36-46$
Total length	16	187	$12 \cdot 6$	6.7	169.220
Total length: $8.1-11.5 \mathrm{~mm}$					

Rentarks: This species appears not to have any close relatives in Ocirrhoe. It is more elongate than the other species in the genus and the convex arcuate outline of the female gonocoxae and the long rostrum are unique in the genus, In other features such as the relatively sparse punctation and the reflexed anterolateral margin of the pronotum which continues partly onto the lateral angle it is similar to most other species of Ocirrhoe. The tibiae are only flattened
apically but this is a characteristic also of the inimaculata group.

Ocirrhoe virescens is only known from eastern Queensland, specimens from Cape York Peninsula are larger and have proportionately longer antennae than those from southern Queensland.

Location of type:

Type (sex unknown as abdomen missing) of virescens Westwood, "New Holland", HOPE.

Specimens examined：The type and Queens－ land 1q，Brisbane，28，X，1913，H．Hacker： 1 ㅇ． Brisbane，15．11．1916．H．Hacker： 18. Brisbane， 1．X11．1929，A．A．Girault QM：19．Brisbane， 16．IV．1956，H．J．Lavery：3f．Iq，Caloundra， 21．III．1972．C．B．Monteith；2古，Currumundi Lakes，Caloundra，30．IX．1972，G．B，\＆S．R． Monteith：18，Dunwich，12．IV．1952，1．Davis： 18．Dunwich，11．IV．1965，K．L．Lehmann：18． 3早，Dunwich，Stradbroke Istand．21－22．11I． 1970，G．B．Monteith： 1 o．Stradbroke Island， 4．11L1971．G．B．Monteith；18，Cleveland， 25．YIII，1965．P．Safligna；18．Tibrogargan Creek，10．1X．1957．F．A．Perkins： 1 ㅇ，Iron Range，Cape York Peninsula，11－17．V． 1968 ，G． Munteith；19．F．W．Lake， 16 km （ 10 miles） north of Rocky River viat Coen， 17 XII．1964， G．Monteith：4．8．Telegraph Line Crossing， Jardine River，Cape York，15－17．VI．1969，G． Montcith UQ： 3 里早．Stradbroke Island，27．1X． 1906 \＆3．X． 1908 ．ex W．W．Froggatt collection ANIC； 1 9，Cairns，23．I－1．II．1964，J．Sedlacek BISHOP．

Cuspicona Dallas， 1851
Cuspicoma Dillas，1851，p．296．Stäl，1867，p． 521：1876，p．102．Lethierry \＆Severin． 1893，p．180．Kirkaldy，1909，p．xxx1．
Type species：Rhynehocoris thoracica Westwood， selected by Kirkaldy， 1909.

Description：

General appearance：Species usuatly greenish in life，tarely yellow brown or orange in maseum collections usually brown，orange or yellow． Strongly punctate above．Small to moderate sized，rather oval；anferolateral margins of pro－ notum nearly straight and diverging posteriorly with lateral angles acute，obsuse，or rounded；or anterolateral margins of pronotum nearly straight and diverging posteriorly with lateral angles produced into a blunt tooths or anterolateral mar－ gins of pronotunt straight anteriorly but pos－ teriorly angling out to form in combination with the lateral angles at prominent laterally directed spine．Head and anterior part of pronotum inclined at an angle of about 30－45＂to test of body．

Head：Appearing elongate or not，in some species rather quadrate，in others strongly tri－ angular but on measurement wider across cyes than long．Disc flattened or rather convex； lateral margins nearly straight though diverging posteriorly，or rather sinuate；apex rounded or rather acuminate，apices of juga and anteclypeus it about same level．Eyes rather triangular and
touching anterior margin of pronotum，ocelli conspichous and placed nearer to inner margin of eyes than to centre line of head but on level of，or behind level of，hind margins of eyes， Antemifers short，antemace five segmented，first segment thicker tban second and third，fourth and fifth same thickness as second and third or thicker，antennae not very long．

Pronotum：At least twice as wide across lateral angles as long，anterior margin truncate or concave behind eyes，then excavate behind collum，anterolateral angles not prominent or produced only into a minute spine or ridge． Anterolateral margins straight or very slightly concave in most species and diverging posteriorly but in some species about two thirds of the way back directed directly outwards to form with the fused lateral angles a prominent outwardly（and sometimes upwardly directed）spine；in species with straight or nearly straight anterolateral mar－ gins lateral angles spinous，acute．obtuse or trun－ cate．Posterolateral margins usually concave， sometimes almost straight．Posterior angles obtuse，ucute，or lobulately produced，posterior margin concave or nearly staight．Disc behind lateral angles in same plane us hind body．before level of lateral angles inclined downwards ar about 30－45

Scrtelltum：＇Triangular，anteriorly not or only slightly raised，lateral margins somewhat con－ cave medially，apex broadly rounded or acutely rounded．Frena extending about half to two thirds of length from base to apex．

Hemetytra：Coriaceous parts normally thick－ ened，Coriun with lateral murgin concave bas－ ally or not，thent broadiy concave to acute or truncate apex，posterior margin straight or con－ vex．Clavus narrow and strongly triangular． Membrane usually hyaline with veins substanti－ ally parallel apically．

Abdomen：Gently convex above，excayute apically in males and faintly so in females．

Laterotergites：Three to seven armed with a short acute spine on posterior exterior angle or this angle unarmed．

Underside：Head obensely triangular in lateral view，Bucculae mostly Jobulately produced anteriorly and then sinuate or straight，reaching 10 about middle of eyes；decply sulcate between bucculae．Rostrum four segmented，first segment robust and generally reaching to at least base of bucculae，second segment frequently archad；rast－ rum reaching base of abdomen，sometimes as far as apex of fouch ventrite．Meso－and metasterna
with a robust keel projecting over whole prosternum or only over posterior portion of prosternum, latter broadly sulcate under or behind this keel. Legs normal, tibiae only fattened apically. Abdominal venter faintly V - of U shaped in cross section as viewed from behind, third segment medially raised into a short triangular tubercle directed anteriorly, its apex fitting into a notch in the metasternal keel. Seventh ventrite in males shalluwly excavated posteriorly and deeply excised in females. Pygophore with lateral portion of posterior margin produced or not, with posterior ventral margin deeply excised or not, with or without a small process. Aedeagus with phallosoma liyhtly sclerotized, conjunctiva produced forward usually into a pair of anterior processes, ventrally a pair of ventrally directed parallel bi-fobed median peniat plates. Clasper strongly F-shaped, in one case Y -shaped. Female external genitalia flat or slightly convex.

General Remurks: Species placed in this genus have quite a varied appearance, some are strongly spined laterally on the pronotum, others have the pronotal lateral angles acute, obtuse or even truncate. Members of the genus can be confused with Parocirrhoe and Avicenna species but in these latter genera the posterior angles of the seventh laterotergites are strongly and angulately produced.

The shape of the posterior margin of the male pygophore varies considerably but is constant in each species and is a good character state to help? distingulsh species. The claspers are mostly rather F-shaped and in general related species have a similar shape. The aedeagus of the male also varies quite considerably but the "lappet" processes and the rather ioverted Y-shaped ventrally directed medial penial plates of the "Rhynchocoris" group arc present and typical in all species examined except C. ooldeae sp, noy. where the "lappet" processes are tubular and the medial penial plates lack the ventral concavity along their margin.

The female genitalia are not very dislinctive except at the level of species group where the members of each group tend to show similar features in regards to the hind margin of the first gonncoxat.

I have divided the genus into three recornisable groups of species with one transitional group to hundle two species apparently not very closely related to each other and which do not fit into any of the other three more characterisable groups - It is not unlikely that each of the
groups ought each to represent a separate subgenus of Crspicona or even separate genera. It is premature. I consider, at this stage to do this until more adedeagi have been oxamined which requires a lot more material to be collected so that sufficient males can be spared for dissection. If the groups are later recognised as generis then the thoracica group will be Cuspicona sensu stricto and the other groupings new genera.

A short outtine of the features of each group is given in the text before the treatment of the series of species which I have placed in each.

Some species formerly in Cuspicuma have been, or will be, shifted to other generat and these changes in generic placement will be listed at the end of the second (and lust) paper proposed on this revision of members of the "Rhynchocoris" Group from Australia athid neatby island areas.

Kicy to C'uspicoma sprecies

1. (0) Lateral tagles of pronotum produced, cither as a longish spine like process or acutely producad into an incipient spine like process: if the latter and doubtful then the seutellum unicolorous
Lateral angles of the pronotum obtuse or very shorlly rounded, not produced into an obvious spine or conspicuously feute 19
2. (1) Lateral :ungles of the pronntum producel into a suhstantial and outwardly directed spine

Lateral angles of the pronotum acute or produced anly into an incipient spine .. 17
3. (2) Yellowish or greenish (in life) above: the only other markings may be pink or red tips to the spinous laterad angles of the pronosum, this pink may be produced anteriorly a little along the anterolateral margin of the pronntum and the auterior part of the exterior margin of the carium, some specimens also have a few black plinclations near the lateral angles of the pronatum
Varionsly coloured above but nearly always with the seutellum variously marked or the tips at the spinous Jateral angles of the pronotum blackish; frequently black punctations on hind portion of pronolum
4. (3) A short line made un of severnt rows of black proctatious on the anterolateral margins of the pronolunt in from of the produced lateral angles (visible in part ventrally alsol and forere black punctalions on the epipleura esmistospersa sp. nov. Back punctations ahsent from dorsal surface
5. (4) Produced lateral angles of pronotum apically distinetly seddish
Produced laleral angics of the pronotum concolorous. if rexdish or pinkish then very palc and only at extreme apices.
6. (5) Produced lateral angles of pronotum produced nore than their width at base (as determined at the point where the outer margin of the corium lerminates interiorly)
refispina Stal (Phillipines) and allies
Produced lateral angles of the pronotum not produced moore than their width (as neasured above) but shorter
forticomis Breddin
7. (5) Smaller, lateral spines a litte more acule; pygophore of male with hind margin reflexed as at vertical septum: hind margin of tirst gonocoxad of female strongly and rather irapezoidally produced posteriorly in its inner half neocaledoniae sp. nov.
A little larger, spines not quite so actite; pygephore of male with posterior ventral margin rot produced as is vertical septum but obliquely produced only medially and near outer edges with two black lobes: hind margin of first gonocoxac produced posteriorly but lobulately so
prexima Walker ${ }^{1}$
8. (3) Pronotum anteriorly with two short langitudinal lines of comse punctations, one on either side of the midline and beginning at the anterior margin equivignata sp. nov.
fronotum anteriorly without two short longitudinal lines of conrse punctations. . . 9
9. (8) On pronotum between the strongly black punctate and produced lateral angless a conspicuous or dense transverse band of black punctations, seven or eight ptractations wide
Dise of pronotum not traversed posteriorly by ia conspicuous wide band of dense black punctations though there may be some scattered black punctations, or a paich of black punctations, or a faint band, in this region
10. (9) Males with the head coarsely black punctate, sometimes almost wholly or with only a conspicuous patch of black punctations at the hase of the head above; black punctalions on the scutellum restricted to the apicall third and arrainged as a triangular paich on cither side of the midlino 11
Head with only fine black punctations or no black punctations; black punctations on apical half of scutellam concentrated laterally or more evenly spreat over apical region

12
11. (10) Black punctations on head restricted to about hasal third in both sexes and absent from lateral margins; black punctations on scutellum reaching very near to apex: pygophore of matc with posierior margin
smoothly convex exteriorly grading into smoothly concave medially
apothoructad sp, nov,
Black punctations covering most of dorsal surface of head in males, restricted usually to basal thitd in fomales hat lateral margins black punctate; black punctations on scutellum ceasing well before apex; pygnohote of male with posterior margin laterally rather trunctute ar even slightly concalve, medially broadly eoncave but separated from lateral portions by a sharp angle
thoracica (Westwood)
12. (10) Black transverse punctate band on pronotum rather hroad and difluse; lateral spines on pronotum short in relationship to their basal width (15;151: undersidec of abdomen not laterally broadly green and medially luteous in lite phi sp. nov. (in part)
Black transverse punctate band on pronotum narrower and intense; lateral spines on pronotum longer than their basal width or not; underside of abdomen broadly green lateraily and ventrally futeous in life 13
13. (12) Latcral spines on pronotum short in relation to their basal width (20:15) and about sance length as posterolateral margins of pronotum: black transverse bance on pronotum rather thin and medially sending a longiladinal branch several punctations wide towards apex: black punctations in apical third of seutellum dairly eveniy distributed \qquad
\qquad ateral spines on pronotum longer in relation to their hasal width (25-30:15) and longer than posterolaterat marginsi posterior Iransversu band of bhack punctations not sending forward a medial branch; black punctations its apical third of scutclum tending to be concentrated in a V
fongispinas. nov.
14. (9) Posterior angles of laterotergites 111 -VII black; lateral spines of pronolum not long in relation to their basal width: a medial broad longitudinal pale callus in anterior portion of pronotum: underside of pronotal spines punctate only apically: apical sixth of scutellum impunctare; abdomen apparently unicolorous below
procullosa sp, nov.
Posterior angles of laterntergites Ill-VI not black, VII black tipped; if a medial longitudinal callus present anterinaly on pronotum then lateral spines strongly punctate beneath their whole lengits and punctations extending on to propletron; apical sixth of scutelfum punctate or mot 15
15. (14) Abdomen laterally broadly green in life: ventrally broadly luteons 16
Abdomen apparently unichlourous below. or with small red maculations
phisp. nov (in part)
16. (15) bateral spincs of probotum long in relation to their basal width (32:17), and equat 10 length of postcrolateral margins (17:17): scutellum with dark puactations ill apical sixth cegniterrole sp, hov.
Litteryl spines of pronotum shorter in relation to their basal length (20-25:15-17) and Jonger than posterohateral margins (20-25:20): scutclum mathly glahrous in apical sixth Strentella Walker
17. (2) Suture on cithor side of antcclypens blackish in posterior hall and buse of hend somewhat clouded with dark punetations, somelimes basal region of pronotum also; lateral angles and some tot anterolaleral margin ol pronotum pinkish of obesmla sp. nov.
Not marked as ubove 18
18. (17) Hind margia of pronotum strongly concave; anterolateral margins of pronolum hack just before latcral angles: disc of head rather raised and head appearing comparatively long coomeri sp. nov.
Hind margin of pronotum truncate or anly feebly concave: naterolateral margins of pronotum not hiack; heal flat dorsally and not appearing unduly long
simmlex Walker
19. (1) Jargish. hind portion of pronothm with al prominent transverse fatirly brotd pink or red stripse between the baleral angles; owler margins of corium pink or red curnemba Van Duzee
Smaller, pronotum not marked as ubove, if a reddish or pinkish transverse stripe present then thin alad very sintous, or very pale and dilluse

20
20. (19) Head strongly triangular and unices of juga acute, slopping back obliqucly. though shightly concavely, to eycs 23
Head not so strongly triangular and apices of juga oblique or rounded but distinet from lateral margins

21
21. (20) Lateral angles of pronotum rectangularly of obliquely scure not broadly rounded: thbine nost sulcate of strongly liallened .. .1 22
Laterial angles of pronotum rounded: fore and middle thise liantened towards apices
privala Wilker
22. (21) Apex of sbodomen beneath infuscated, at least in mates: second and third antomas segments suhequal, lifth about of por cent longer than fourth. morfolcensis sp, nov,
Apex of abdomen beneath not infuscated, at least in females; second antennal segment about 25 per cent longer than third and fift sbout 20 per cent longer than fowth checesmanas ap. nuv.
23. (20) Dorsal surface maculated with black; ground colour in muscum specimens yeylowish or orange; hind margin of male pygophore medially smootily concavely excavate, laterally broadly convex .. innacia Walker

Dorsal shrfate nul riaculated with black: hind matgin of male genilalia trapeziformly excavale medially or with a prominent tooth on cither sitie of the middle.. 24
24. (23) Pygophore with apical margin deeply exciavate medially, this excavation hordered on each side by a conspicunus tooth; exterior in this convexly rounded: first gonocoxate of lemale with hind margins sinuated; third antennal segment very short in relation to second (11:20)
ere'llophilme sp. 1tov
bygophore with apical margin medially Irupezt tormly excavale; depressed in front of excavate margin: laterally to this concatve: hind margins of female gonocoxae iransversely \quad runcate; third antennal segment longer in relation to second (16:21)
oolilewe sp. nov.

Intacta Group

The intacta grous of species comprises four species oecurring mainly in the semiarid and arid regions of Australia. They do not penetrate in the wetter south western, south eastern or norih castern portions of the continent or into Tasmania. The four species have a similar facies. the head appears very long in relation to its widila but is uetually a little shorter than its width across the cyes. The lateral margins of the head and the juga laterally are indistinguishable and pun lorward from the eyes distinctly converging, although the actual profile of this margin may be a little convex. Only one species (intacta Walker) has black spots (although frequently absent) but these are widely dispersed and scattered fairly evenly over the whole coriaceous parts of the dorsal surface. The laterial angle of the pronotum is truncate or feebly rounded except on cooperi sp, nov. where it is acuic.

The first gonocoxale of the femate have the posterior margill rather sinuate or transversely truncate (ooldede sp. nov.).

Host plant records for the group include species of Eremophila and Melalenca.

Cuspicona intacta Watker, 1868

Figs. 21, 23 A-B, 25 A.
Cuspicona intacta Watker, 1868, p. 571; Kirkaldy 1909, p. 239 (as incertae sedis).

Dexcription:

General appearance: Museum specimens brownish yellow or orange, often with widely separated small black maculac on the dorsal surface: First two antennal segments and base
of third yellow, apical portion of third, and fouth and fifth reddish brown. Eyes and ocelli blackish.

Head: Appearing strongly clongate, but actually as wide or a little wider across cyes than long; triangular, medially rather raised, particularly towards base, lateral margins almost straight. Coarsely and rugulosely punctate.

Pronotum: Concolorous, frequently with small scattered black spots, densely punctate and appearing rather rugulose, calli glabrous. No trace of a medial longitudinal line. Anterior margin obliquely truncate behind cyes and rather trapeziformly excavate behind collum, anterolateral angles not prominent. Anterolateral margins narrowly obtuse, nearly straight and diverging posteriorly. Lateral angles shortly and obliquely truncate, posterolateral margins angulately concave, posterior margin broadly concave.

Scutellum: Concolorous, frequently with small scattered black points, strongly punctate, rather convex basally and flat apically. Lateral margins gently convex in basal $4 / 7$ then straight and converging gently to narrowly rounded apex. Frena reaching to $4 / 7$ of length.

Hemelytra: Coriaceous parts concolorous, often with scattered small black spots, densely punctate. Exterior margins of coria faintly concave basally and then faintly convex to shortly rounded apical angle, reaching about middle of abdominal segment VI, this and most anterior segments narrowly exposed. Posterior margin of corium straight, inner angle very broadly rounded. Clavus elongate triangular. Membrane and veins hyaline.

Abdomen: Concolorous, sometimes coarsely punctate with brown.

Fig. 21. Dorsal aspect of Cospiconar intacte Walker.

Laterotergites: Concolotous, sometimes coarsely punctate with brown; posterior exterior angles produced into a spine which may be minutely black tipped.

Underside: Concolorons but pater along midline, coarsely punctate nearly all over, including the evaporative areas, these punctations and also spots on the legs sometimes brown. Rostrum ventrally and extreme apex black.

Bucculac low and sinuated, reaching about middle of an cye, anteriorly produced into an elongate lobular process. Rostral segment I robust, reaching to base of bucculae, II compressed and arched and reaching onto mesosternum, III to about hind coxae and IV onto abdominal ventrite IV, Ratio of antennal seg-
ments (d) $11: 21: 15: 25: 27$. All pleura coarsely punctate, punctations sparser on evaporative areas. Metasternal-mesosternal keels a little higher medially than anteriorly, reaching over prosternum but not to its apex, anteriorly rounded and directed to the left in ventral view, Legs normal with sparse pilosity, femorn and tibiae sometimes maculated with brown. Abdomen broadly U-shaped in posterior view. Apex of male abdomen Fig. 23 A, hind margin of pygophore medially semicircularly excavate with a slight impression laterally where margin is mainly convex. Clasper Fig 25 A , strongly F -shaped the upper ramus ascending rather steeply. Apex of female abdomen Fig. 23 B , hind margins of first gonocoxae rather angulately sinuated.

Dimensions-
MALES

Parameter	Number of Measurcments	Mean	Standard Deviation	Coutficiont of Variation	Observed Range
Head longth	8	43	$2 \cdot 4$	$5 \cdot 6$	34-45
Heard width	8	43	1.8	4.2	40-45
Antennal segment 1	16	11	0.7	6.8	9-12
Antennal scgment 11	16	21	0.7	$3 \cdot 1$	20-22
Anternal segment 111.	16	15	1.2	80	13-17
Antennal segment IV..	15	25	$0 \cdot 7$	$2 \cdot 8$	24-26
Antennal segment V -	13	27	1.6	6.0	25-30
Pronotum width ...	8	101	$3 \cdot 0$	$3 \cdot 0$	96-105
Pronotum length	8	34	44	11.4	$31-42$
Total Jength	8	187	9.2	$4 \cdot 9$	175-200
FEMAI.ES					
Parameter	Number of Measurements	Mean	Standard Deviation	Collicient of Variation	Observed Range
Head length.	13	46	211	4.6	43-50
Head width	13	47	1.9	40	4.4.50
Antennal segment 1	24	11	10.7	6.2	10.12
Antennal segment II	22	23	1.8	7.8	21-26
Antennal segment 111	22	15	1.2	7.9	14.18
Antennal segment IV .	19	26	1.6	6.4	23-28
Antennal segment V.	10	27	$1 \cdot 5$	5.5	25-29
Pronotum width .	13	114	8.6	7.5	99-129
Pronotum length	13	43	5.1	11.9	34-50
Total length	13	210	$11 \cdot 9$	5.7	195-230

Remarks: There is little doubt that this is the species described as Cispicona intacta by Walker. The sternal keels are mentioned by Walker so intacta is a member of the Rhynchocoris group. It is also from his description clearly not a member of a genus with longly produced lateral angles which eliminates Biprorulus, Vitellus, Avicemna and a number of others nor of a genus with the posterior angles of the seventh laterotergites strongly produced which eliminates still more or of those genera which are shiny with only sparse and coarse punctations above. This leaves only Ocirrhoe, part of Cuspicona and

Everardia to which it could belong. The pronotal shape is wrong for Everardia and no species of Ocirrhoe has a "long" head. Four species of Cuspicona do have the head appearing conspicuously long in relation to its width and all four have acute or subacute fateral angles on the pronotum and the third antennal segment shorter than the second, three addition character states mentioned by Walker. Of these four this is the only species which may have black spots on the dursum. Walker mentions them as only occurring along the hind margin of the pronotum whereas these examples which are spotted which

I have seen tend to have thent seattered over the whole pronotum, scutellum and corium, though frequently more concentrated in the posterior regions of the pronoturn.

Chspicona intacta has a wide distribution in the drier regions extending from Arnhem Land in the north to near Adelaide in the south and from Cunnamulla in Queensland and Nyngan in New South Wales in to the cast to the area of Carnarvon in the west of Western Australia. The only recorded food plant is Eremophilid freelingii FuM.

Location of type:

Supposed to be in the NM but apparently lost. The sex was not stated and the locality simply given as "Australia."

Specimens exdmined: Qucensland 1\%, Curvamulla, 12.X11.1938. N. Geary AM. New South Wales 1 右, Nyngan District, 1-9.II.1960, '1'. E. Woodward UQ. South Australia 1 ㅇ․ Tea Tree Gully, 27.XII.1967, C. van Dijk: 1 . Derna Puss, 19 km, south of Copley, 25.X.1969, on Eremophila freelingii FvM. A. N. McFarland; 48, 2\%. Arkaroolat Jomestcad, 28.X. 1969 , on Eremophila fredingii FvM A. N. McFarland: 2.t. 4 早, same data but 1.I.1969: 19, Mt. Davies, Oct,-Nov. 1956, at light. S, B. Waroe SAM. Western Australia 1 z, Reid, 17.X.1968, Brition, Upton and Balderson; 1\%, 107 miles (170 km) SSE of Carnarvon, 21.1V.1968, 1.F.B. Common and M. S. Upton ANIC. Northern Territory 18, Amherm Land (interior), Dr. H. Basedow SAM; 1 . .17 km . (11 miles) north of Alice Springs, $825 \mathrm{~m} .28 . \mathrm{X}, 1962$, collected at ultraviolet (black) light 15 watt, E. S. Ross and D. Q. Cavagnaro CAS.

Cuspicona ooldeae sp. nov.

Figs. 22, 23 C-D, 25 B-C

Descriplion:

General appearance: Museum specimens pale yellow, frequently with a reddish tinge; strongly punctate above; butennae yellow or sometints pale reddish: cyes greyish purple or concolorous, ocelli red.

Head: Appearing strongly elongate but actually a litte wider across eyes than long; triangular. medially rather raised, particularly towards basc. Lateral margins somewhat concave in front of eyes. Coarsely and ruguloscly punctate except at very base. Eyes greyish to concolorous, ocelli red.

Pronotum. Concolorous, densely punctate and appearing rather rugulose, punctations sometimes faintly reddish; calli paler and glabrous. Medially a faint trace of a longitudinally raised line. Anterior margin obliquely concave behind eyes and rather trapeziformly concave behind collum. anterolateral angles prominent as a small tooth, Anterolateral margins marginate, nearly straight and diverging posteriorly. Lateral angles narrowly marked with pink or orange, obliquely truncatc, posterolateral margins angulately concave, posterior margin broadly concave.

Scutellum: Concolorous, strongly punctate, rather convex basally and Hat apically. Lateral margins gently convex in basal $5 / 8$ then straight and converging to narrowly rounded apex. Frena reaching about $5 / 8$ length.

Hemelytra: Coriaceous parts concolorous and densely purnctate. Exterior margins of coria faintly concave basally and then faintly convex

Fig. 22, Dorsal aspect of Ciuspiconte colthette sp. nop.
to broadly rounded apical angle, renching about middle of abdominal segment V , this and most anterior segments narrowly exposed. Posterior margin of corium straight, inner angle very broadly rounded. Clavus elongate triangular. Membrane and veins hyaline.

Abdomen: Concolorous.

Latcrotergites: Concolorous, sparsely punctate, posterior exterior angles produced into a spine which on the medial segments may be minutely black tipped,

Underside: Concolorous; antennal segments II-Y usually reddish yellow, underside of lateral angle of pronotum narrowly orange or reddish; punctations on underside frequently faintly reddish, sides of abdomen sometimes spattered with reddish points or fine punctations. Underside and extreme apex of rostrum black.

Bucculae low and strongly sinuated, reaching about middle of eye, anteriorly produced into a low triangular process. Rostral segment 1 robust. reaching to base of bucculae, II compressed and arched and reaching beyond fore coxae, III to just behind mid coxae und IV to about middle
of 3rd abdominal segment. Ratio of antennal segments \% $10: 21: 16: 21: 21$. Propleura coarsely punctate all over, mesopleura mostly glabrous with only a few scattered punctations, metapleura mainly glabrous anteriorly with but a few punctations, more strongly punctate along hind margin. Metasternal-mesosternal keels a little higher medially than anteriorly, reaching over prosternum but not to its upex, anteriorly shortly truncate and directed a little to left in ventral view. Legs normal but conspicuously finely spinose, tibiae flattened apically. Abdomen broadly U-shaped in posterior view. Apex of male abdomen Fig. 23 C , hind margin of pygophore rather trapeziformly excavate, laterally to this broadly rounded. Clasper Fig.. 25 C, strongly F-shuped, the upper ramus not ascending so steeply as in intacta or eremophllae. Aedeagus Fig. 25 B, phallosoma short and honeycoloured, lappet processes in form of two tubules, medial penial plates rather hatchet shaped. Apex of female abdomen Fig. 23 D, hind margins of lirst gonocoxac transversely straight in contrast to the more sinuated hind margin of allied species.

Dimensions- MAI					
Parameter	Number of Measurements	Mean	Standard Deviation	$\begin{gathered} \text { Cocticient } \\ \text { of } \\ \text { Variation } \end{gathered}$	Observed Rsnge
Head Jength	7	38	1.7	4.5	36-40
Head width .	7	40	1.6	$4 \cdot 1$	38-43
Antennal segment I	10	10	0.7	7.3	8-10
Antennal segment It	9	21	1.4	6.8	19.23
Antennal segment 111	9	16	0.5	3.4	15-16
Antenual scginent IV	8	21	1.0	4.9	20-23
Antennal segment V	3	21	-	-	20-21
Pronotum width	7	94	$4 \cdot 2$	$4 \cdot 4$	90-102
Pronotum length .	7	32	2.9	9-1	30-36
Total length	7	181	4.8	$2 \cdot 6$	175-190
FEMALES					
Parameter	Number of Mcasurements	Mean	Standard Deviation	$\begin{aligned} & \text { Coeflicient } \\ & \text { of } \\ & \text { Variation } \end{aligned}$	Observed Range
Head length	14	40	$2 \cdot 0$	4.9	37-43
Head width	14	41	1.2	3.0	39.43
Antennal segment 1	20	9	$0 \cdot 4$	$4 \cdot 5$	$9-10$
Antennal segment 11	18	22	1.3	5.8	20.25
Antennal segment 111	18	15	$1 \cdot 1$	7.2	13.18
Antennal segment IV	16	20	0.6	$3 \cdot 0$	20-22
Antennal segment V	13	20	0.6	$3 \cdot 0$	20.22
Pronotum width ...	14	100	3.5	3.5	95.106
Pronotum length. ..	14	34	4.7	13.7	27-43
Total length	13	189	8.4	4.5	178-200

Total length: $9 \cdot 3 \cdot 10.4 \mathrm{~mm}$.

Remarks: Cuspicona voldeae differs from C. infacta by not having black spots on the dorsum, by the faintly trapeziform incision of the hind margin of the pygophore, by the

Irunsverse depression on the disc of the pygophore below and by the transverse straight hind margin of the female first gonocoxac. The species is found in the arid centre of the continent
ranging from the Flinders Ranges westwards to well into Western Australia and northward to near Alice Springs.

Location of types:
Holotypes \& (Reg. No. 120,719), Farina, South Australia, at light in creek bed, 27.X. 1970, G. F. Gross \& E. Matthews; allotype $\frac{1}{}$ (Reg. No. 120, 720), Mambray Creek (crossing on) Port Augusta Road, South Australia, under (bark of) Eucalyptus camaldulensis Dehnh, 13.XI.1970, G. F. Gross and E. Matthews SAM; PARATYPES: South Australia 1 ㅇ (Reg. No. I20,721, hill near Victory Well, Everard Park Station, 8.XI.1970, T. F. Houston; 1 मै, Madigan Gulf, Lake Eyre, South Australia, at light, 5.XI.1955, E. T. Giles; 6 रै, $9 \circ$ (Reg. Nos. 20,723-38), Ooldea, South Australia, A. M. Lea SAM; 1 q, Emily Gap, 9 km (6 miles) E. of Alice Springs,

Northern Territory, 17.II.1966, Britton, Upton \& McInnes ANIC; 1 paratype ô, 18 km (11 miles) north of Alice Springs, Northern Territory, $625 \mathrm{~m}, 28 . \mathrm{X} .1962$, collected by 15 w ultraviolet (black) light, E. S. Ross \& D. Q. Cavagnaro CAS; 1 ㅇ, Meekatharra, Western Australia 3.IX.1971, F. H. Uther Baker WAM.

Specimens examined: The types only.

Cuspicona eremophilae sp. nov.
Fig. 23 E-F, 24, 25 D

Description:

General appearance: In life bluish-green mottled with white or luteous, in museum specimens yellow or brownish yellow; terminal half of antennae light brown, eyes purplish red or brown. Densely and finely punctate.

Fig. 23. Cuspicona intacta Walker, Cuspicona ooldea sp. nov. Cuspicona eremophilae sp. nov. A-B. Cuspicona intacta. A ventral aspect of male abdomen. B. ventral view of female abdomen. C-D. Cuspicona ooldea sp. nov. C. ventral aspect of male abdomen. D. ventral aspect of female abdomen. E-F. Cuspicona eremophilac. E. ventral aspect of male abdomen. F. ventral aspect of fernale abdomen.

Head: Appearing elongate but actually wider than long; strongly triangular, medially rather raised, particularly towards base. Densely punctate, appearing rather rugulose, concolorous. Eyes and ocelli purplish-red or brown.

Pronotum: Concolorous, densely punctate and appearing rather rugulose, calli paler and glabrous. Medially a trace of a longitudinal raised line. Anterior margin concavely oblique behind eyes and broadly concave behind collum, anterolateral angles prominent as a small ridge. Anterolateral margins marginate, nearly straight and diverging posteriorly, Lateral angles rather truncate, posterolateral margins conspicuously concave, posterior margin broadly concave.

Scutellum: Concolorous, strongly punctate and rather flat. Lateral margins faintly convex in basal $4 / 7$ then straight and converging slightly to narrowly rounded apex. Frena reaching to about 4/7 length.

Hemelytra: Coriaceous parts concolorous and densely punctate. Exterior margins of coria faintly concave basally then rather sinuately convex and converging to expose abdominal segments III-VII. Apical angle of corium narrowly rounded, posterior margin straight exteriorly, inner angle very broadly rounded. Clavus elongate triangular. Membrane and veins hyaline.

Abdomen: Concolorous.
Laterotergites: Concolorous, coarsely punctate. Posterior exterior angles nearly rectangular.

Underside: Concolorous; apex of third antennal segment, fourth antennal segment (except at basc) and fifth light brown. Stylets and extreme apex of rostrum black.

Bucculae low and strongly sinuated, reaching base of head, anteriorly not produced into a

Fig. 24. Dorsal aspect of Cuspicom cremophilae sp. nov.
lobulate process. Head laterally coarsely punctate. Rostral segment I robust, reaching almost to base of head, segment II more compressed and arched, surpassing fore coxae, III surpassing mid coxace and IV reaches onto visible base of abdomen. Rutio of antennal segments $\%$, 9:21:11:20:22. All pleura coarsely punctate except on evaporative area. Metasternal-mesosternal keels higher medially then rarrowly rounded, deffected to left in ventral view. Legs normal but conspicuously pilose, tibiae slightly
flattened apically. Abdomen broadly V-shaped in posterior view. Apex of male abdomen Fig, 23 E, hind margin of pygophore semicircularly concavely excised medially, laterally on cither side of incision a strong triangular "tooth" and exteriorly to this arcuately rounded. Clasper Fig. 25 D, vaguely F-shaped, with the upper ramus ascending at an oblique angle. Apex of female abdomen Fig. 23 F, hind margins of first gonocoxae gently angulately convex.

Dinwensions-

Parameter	MALES		Standard Deviation	Cocfficient of Variation	Observed Range
	Number of Measurements	Mean			
Head lengeth	8	36	$1 \cdot 4$	3.9	34-38
Head width	8	41	1.6	3.9	39-43
Antennal segment I	16	9	0.6	7.2	8 8-10
Antensal segment if	16	21	1.0	$4 \cdot 7$	19.23
Antennal segment III.	16	11	0.8	7.5	10-13
Antennal segment IV .	12	20	1.4	$7 \cdot 4$	17-21
Atatennal seyment V	9	21	1.3	6.2	20-2.
Pronotum width ...	8	93	$4 \cdot 6$	5.0	$87-100$
Pronolunz length	8	30	3.5	11.6	24.35
Total length....	8	160	6.6	$4 \cdot 1$	155-175
FEMALES					
Parameldr	Number of Measurements	Mean	Standard Deviation	Coefficient of Variation	Observed Range
Head lengll	11	39	$1 \cdot 5$	$3 \cdot 9$	$36-41$
Head width ...--	11	44	1.0	$2 \cdot 4$	42-45
Antennal scginent!	21	9	0.6	6.5	8-10
Antennit segment It.	21	22	1-3	5.9	19-24
Antennal segment III.	21	11	0.9	8.4	10-13
Antennal scgnent iV.	20	19	1.0	$5 \cdot 1$	17-20
Antennal segment V	17	20	0.6	30	19.21
Pronotum width	11	101	$2 \cdot 5$	2.5	96-104
Pronalum length	11	34	1.8	$5 \cdot 3$	$31-37$
Total leogth.	11	180	6.3	3.5	17.3-190
	Total length: 8.1 .9 .9 mm				

Renarks: C. eremophilae is rather similar to C. ooldene but differs in the much shorter third antemal segment and in lacking the pink marking on or just before the lateral angles.
C. eremophilae is a true eremian species oceurring in the north of South Australia, southern half of the Northern Territory and western Queensland, but with a single specimen collected on the outskirts of Adelaide.

A single female specimen in the British Museum (Nat. Hist.) from Alexandra in the Northern Territory, and well outside the range of distribution for cremophilae as indicated by other specimens, has the same rather angulate hind margin of the first gonocoxae as has eremophilae but has the third antennal segment longer than the second. It likely represents a fifth species of the imfactar group but is being passed over in this present revision due to its poor condition.

Location of types:

South Australia Holotype \& (Reg. No. 120,700), allotype $\&$ (Reg. No. 120,701), 4 paratype \& (Reg. No. I20,702-5), 5 paratype If (Reg. No, I20,706-10), Arkaroola homestead, 1.XI.1969, on Eremophila jreelingii $\mathrm{FvM}, \mathrm{A}, \mathrm{N}$. McFarland; I paratype is (Reg. No. 120,711), 2 paratype of o (Reg. Nos. 120,712-3), same data and collector but on 28.X.1969; 1 paratype ? (Reg. No, 120,717), Aroona Dam south of Copley, 3.XI.1969, at ultraviolet light, A. N. McFarland; 1 paratype ((Reg. No. 120,714), near Victory Well, Everard Park Station, 30. X. 1970, by beating trees and shrubs, G. F. Gross \& E. G. Matthews; I paratype \& (Reg. No. 120.715), Mt. Eyre west of Hookina, 10.V. 1956. at light, G. F. Gross; I paratype of (Reg. No. 120,716), Coopers Creek, 1916 Muscum Expedition to Central Australia; 1 paratype of (Reg,

No. I20,790), Athelstone, 15.XI.1973, at light, Mi L. Szent-Ivany SAM; Queensland 1 paratype of, Cunnamulla, Queensland, 8-19.X.194?, A. J. Turner QM; 1 paratype 8 , Thargomindah, Apr, 1941, N. Geary AM; Northern Territory 1 paratype ㅇ, 150 km south of Alice Springs, Sept. 1972, Dimits NM; 1 paratype \circ, Standley Chasm, 40 km (26 miles) west of Alice Springs, 9.1I.1966, Britton, Upton \& McInnes ANIC. 1 paratype δ. Ooratipra, $275 \mathrm{~m} ., 31 . \mathrm{X} .1962$,
E. S. Ross \& D. Q. Cavagnaro; 1 paratype if, 18 km (11 miles) northeast of Yamba near Alice Springs, $625 \mathrm{~m}, 29 . \mathrm{X} .1962$, E. S. Ross \& D. Q. Cavagnaro; 1 paratype $\circ, 18 \mathrm{~km}$ (11 miles) northeast of Alice Springs, 28.X.1962, collected by 15w (ultravoilet) light, E. S. Ross \& D. Q. Cavagnaro CAS.

Specimens examined: The types and South Australia 1? (abdomen missing), Lake Callabonna, A. Zietz; 1 ․ Ooldea, A. M. Lea SAM.

Fig. 25. Cuspicona intacta Walker, Cuspicona ooldeae sp. nov., Cuspicona cremophilere sp. nov. Cuspiconet carneola Van Duzee, A. Cuspicona intacta-clasper. B-C.Cuspicona ouldeae, H. Jefthand side aspect of aedeagus. C. Clasper. D. Caspicona cremophilae-clasper. E-F. Cuspicona carneola. E. lefthand side aspect of aedeagus. F. clasper.

Cuspicona cooperi sp. nov,
Figs. 26, $28 \mathrm{~A}-\mathrm{B}$
Description:
General appearance: Ground colour yellow or brownish yellow in museum specimens with terminal half of antennae brown and anterolateral margins of pronotum just in front of lateral angles narrowly black. Eyes purplish. Sparsely and finely punctate.

Head: Appearing elongate but actually a little wider than long: strongly triangular,
medially rather raised particularly towards base. Finely punctulate, concolorous. Eyes and ocelli purplish or purplish red.

Pronotum: Concolorous and densely and rather finely punctate, punctations discrete, calli paler and glabrous. Medially a faint raised longitudinal line. Anterior margin concavely oblique behind eyes and broadly concave behind collum, anterolateral angles slightly prominent. Anterolateral margin thin but obtuse, shallowly concave and diverging to region of anterolateral
angles, black just before latter, Lateral angles rectangularly acute. Posterolateral margins conspicuously concave, posterior margin broadly concave.

Scutclum: Concolourous and rather flat with fine discrete punctations. Lateral margins faintly convex in basal $1 / 2$ then straight and converging to natrowly rounded apex. Frena reaching to about $1 / 7$ length.

Hemelytra: Coriaceous parts concolorous and densely punctate. Exterior margins of coria faintly concave basally then slightly convex and gradually converging so that 4-7th segments of abdomen are only narrowly visible. Apical angle of corium nearly rectangular, posterior margin straight, inner angle very broadly rounded. Clavus elongate triangular. Membrane and veins hyaline.

Abdomen: Concolorous.

Latcrotergites: Concolorous except apices of posterior exterior angles which are black; sparsely punctulate,

Underside: Concolorous; apical half of third and fourth and fifth antennal segments brownish, stylets of, and apex of, rostrum black.

Bucculac low and strongly sinuated, reaching to about middle of eye, anteriorly formed into a rounded lobe which is not particularly obstrusive, Rostral segment I robust, reaching to just behind base of antennifer and not quite to base of bucculae, segment II more compressed and arched, reaching just behind fore coxae, III to base of mid coxac and IV to base of hind coxac. Ratio of antennal segments of 9:18:15: 23:27. All pleura rather sparsely punctate but evaporative areas impunctate. Metasternalmesosternal keels higher anteriorly than posteriorly, reaching over prosternum almost to its apex, anteriorly broadly rounded, deflected to left in ventral view. Femora normal, tibiae slightly flattened apically. Abdomen strongly V-shaped in posterior view. Apex of male

Fig. 26. Dorsal aspect of Cuspicona cooperi sp. nov.
abdomen Fig. 28 A, hind margin of pygophore rather angulately incised medially with a small convex margin at base of "notch", laterally on either side of medial incision a small tooth and exteriorly to this strongly rounded, Apex of female abdomen Fig. 28 B, hind margins of first gonocoxae transverse and slightly concave along their central portions, turning anteriorad both interiorly and exteriorly.

Dimensions
MALES
Parameter Holotype Stockholon RM Paratyne

Parameler	FEMALES		Standard Deviation	Coeflicient of Variation	Observed Range
	Number of Measurements	Mean			
Head length	8	41	2.5	60	
Head width	8	45	24	5.4	40.47
Antennal segment !	14	10	0.3	3.0	9.10
Antennal segment il ,	14	19.	$1 \cdot 3$	6.7	17-11
Antennal segment III ..	14	15	0.8	5.5	14.16
Amtenal segment IV	9	22	1.2	5-5	21-24
Antennal segment V,	3	25	\cdots	5	24-26
Pronotum width ...	8	119	$8 \cdot 1$	6.9	103-127
Pronoturn length ,	8	4	$4 \cdot 1$	$9 \cdot 3$	$38-50$
Total length	8	207	14.6	$7 \cdot 1$	$180-225$

Remarks: C. cooperi is closely related to C. cremophilae in the shape of the male pygophore, it is however distinguished from that species by its longer third antennal segment, much sparser punctation and in not developing the mottled rugulose appearance of eremophilae. From cremophilae and other species in the intucta group it is distinguished by the rather rectangular lateral angles of the pronotum and the short black marginal line on the anterolateral margins just before the lateral angles.

The present known distribution of the species is over an elongate elliptical area stretching from Rockhampton in Queensland to the southern Flinders Ranges in South Australia. The species is named after the late H. M, Cooper who gave so much of his time in a voluntary capacity to the South Australian Museum and who collected the holotype specimen.

Location of types:

Holotype है (Reg. No. 120,698), Mt. Remarkable, South Australia, $600-700 \mathrm{~m}$ (18002200 ft .) , 12, V.1968. H. M. Cooper SAM; allotype i, I paratype å, 3 paratype 8 , Rockhampton, Queensland STOCKHOLM; 1 paratype ; (Reg. No, 120.699), 18 km north of Broken Hill, New South Wales, by sweeping, 8.111.1963, K. Dansie SAM; 2 paralype of, unlocalised, Distant collection 1911-383 BM; 1 paratype 8, ! paratype 9, Pcak-Downs, Queensland; 1 paratype of Rockhampton, Queensland RM.
Specimens examined: The types only,

UNGROUPED

The next two species of Cuspicona appear not to have any close relatives in the genus nor are they apparently closely related to each other. They lack the strongly triangular heads of the intacta group but have not developed the strongly produced spinose lateral angles of the pronotum of the thoracica and simplex groups.

Their position in the sequence of groups appears to be somewhere in between the imbucta and thoracica groups.

Cuspicona carneola Van Duzec, 1905
Figs. 25 E-F: 27, 28 C-D
Cuspicona carneola Vian Duzee, 1905: 207; pl. 8 fig. 9.

Description:

General appearance; Ground colour yellow or brownisi-yellow in museum specimenst hateral angles of pronotum and a broad band across scutellum, apex of scutellum, lateral margins of corium (broadly) and laterotergites (at least exteriorly) bright carmine red, occasionally only pinkish. Lateral angles of pronotum angulately truncate.

Head: Appearing large, broad and flat, transversely rugulose, concolorous. Frequently a pinkish suffusion along lateral margins in front of eyes. Eyes and ocelli reddish-brown. Lateral margins very gently angulately concave.

Pronohum: In anterior half and along posterior margin concolorous; across dise from. and including, lateral angle to lateral angle a broad carmine red (or in some specimens pink) stripe. Punctations on disc feddish or blackish, calli glabrous. Anterior margin obliquo behind eyes and broadly concave behind collum, anterolateral angles somewhat prominent. Anterolateral margins thickened, straight and obliquely diverging to region of lateral angles, Latter oblicuely truncate. Posterolateral margins strongly and angulately incised, a convex lobe formed between each and shallowly concave posterior margin.

Scurellum: Concolorous with apex broadly carmine red, dise covered with coarse reddisth or brown punctations and flattish. At base of each lateral margin a deep concolorous fovea visible
if pronotum has moved a little forward. Lateral margins broadly convex in basal $5 / 9$, then straight and slightly converging to very broadly rounded apex. Frena reaching to about 5/9 length.

Hemelytra: Coriaceous parts concolorous interiorly but outer margin of corium broadly carmine red or pink, coarsely and concolorously punctate. Exterior margins of coria straight basally then gradually converging so that laterotergites are exposed in the more distal region. Apical angle of corium fairly acute, posterior margin straight, inner angle very broadly rounded. Clavus elongate triangular. Membrane fumose hyaline with veins browner, near inner base of membrane a large piceous spot.

Abdomen: Mostly concolorous but black areas around margins of scutellum and along posterior margin of genitalia, sometimes also along posterior margin of segment VII. Behind apex of scutellum frequently carmine red, the extent of this red variable.

Laterotergites: Concolorous interiorly and carmine red or pink exteriorly. Posterior exterior angles produced into a small black tipped spine, sometimes whole exterior margin narrowly black.

Underside: Yellowish. Apical half of third antennal segment and antennal segments III-IV, tibiae and tarsomeres sometimes darker, brown or reddish. Underside of rostrum and very apex, and sometimes lateral margin of abdomen and posterior margin of female genitalia, very narrowly black. Margins of head basally, lateral margins of pronotum, exterior margin of epipleuron, lateral margin of abdomen (latter sometimes only submarginally, extreme margin then black) most of pygophore and female genitalia behind first gonocoxae usually carmine red or pinkish, sometimes however concolorous.

Bucculae low and sinuate, reaching to about middle of eye, produced into a blunt triangular lobe anteriorly. Rostral segment I robust, reaching to base of bucculae, II fairly thick and arched, reaching to just behind fore coxae, III to mid coxae, IV to about middle of abdominal ventrite III. Ratio of antennal segments (\hat{b}) I-V 11:19:21:27:29. Propleura red or brown punctate except on proepisternum and proepimeron, exteriorly to these two latter a raised though sparsely punctate area. Mesopleuron punctate anteroventrally and posteriorly, metapleuron posteriorly and sometimes anteriorly also. Metasternal-mesosternal keels higher anteriorly then posteriorly, reaching over prosternum to its

Fig. 27. Dorsal aspect of Cuspicona carneola Van Duzee.
apex, anteriorly very broadly rounded, deflected to left in ventral view. Femora normal, tibiae fairly flattened apically. Abdomen rounded in posterior view and only becoming broadly V-shaped anteriad. Apex of male abdomen Fig. 28 C , hind margin of pygophore strongly excavated medially and lateral lobes on either side of this excavation with the inner margins sinuate, apically a little produced. Clasper Fig. $25 \mathrm{~F}_{\mathrm{t}}$ slightly F -shaped. Aedeagus of male Fig.

25 E, with phallosoma rather short, conjunctiva basally shortly tubular with rather large dorsally directed "lappet" processes, more distally two conjunctival processes which are dorsally sclerotized. Medial penial plates shaped rather as an inverted T, directed downwards, gonophore opening between the conjunctival processes. Apex of female abdomen Fig. 28 D, hind margins of first gonocoxae faintly oblique and nearly straight.

Dimensions-

Parameter	MALES		Standard Deviation	$\begin{aligned} & \text { Coeflicient } \\ & \text { of } \\ & \text { Variation } \end{aligned}$	Observed Kange
	Number of Measurements	Mean			
Head length	10	45	$2 \cdot 4$	$5 \cdot 3$	40-49
Head width	10	52	2-4	4.7	48-55
Antennal segment I	15	11	0.9	8.4	10-13
Antennal segment II	14	19	1.4	7.6	17.22
Antennal segment 111	13	21	0.9	4.0	20-23
Antennal segment IV	11	27	$1 \cdot 3$	$4 \cdot 8$	25-29
Antennal segment V	8	29	1.1	3.7	28.31
Pronotum width	10	119	5.8	48	110.125
Pronotum length	10	39	3.8	9.7	33-45
Total length	10	186	14.6	7.8	160-205
FEMALES					
Parameter	Number of Measurements	Mean	Standard Deviation	Coefficient of Variation	Observed Range
Head length	21	48	4.2	8.8	39-52
Head widtls	21	54	$3 \cdot 3$	$6 \cdot 2$	46-58
Antennal segment I	29	11	0.7	$6 \cdot 1$	9-12
Antennal segment 11	33	18	1.9	10.6	15-23
Antennal segment 111	28	20	$2 \cdot 3$	11.7	15-26
Antennal segment IV	23	23	$2 \cdot 6$	10.9	17-26
Antennal segment V	19	26	$2 \cdot 6$	9.9	20-29
Pronotum width ...	21	128	10.8	8.4	106-147
Pronotum length	21	40	5.8	$14 \cdot 5$	30-54
Total length .	21	191	15.8	8.2	161-220
Total length: 8.3 .11 .5 mm					

Remarks: This species is one of the largest in the genus and easily recognised by the broad carmine bar across the hind portion of the pronotum and the strongly truncated lateral angles of the pronotum. It appears to have no other close relatives in the genus.

A feature of note is the rather high coefficient of variation in the series of females which could indicate that there may be two closely related species mixed in together in this sample. I was unable to make any real distinctions on the examples of this series but the point should be borne in mind and when a much larger series of males becomes available when the augmented male scries should be examined for differences in the shape of the pygophore.

Location of type:

Holotype of of carneold Van Duzee, "New South Wales," AMNH.

Specimens examined: The holotype and Northern Territory 1 . 9 , Oooratippra, 275 m , 31.X.1962, E, S. Ross \& D. Q. Cayag. naro CA ; Queensland $1 \circ, 32 \mathrm{~km}$ north of Emerald, 10.1.1972, B. Cantrell UQ; New South Wales I 9 , South Ite Sand Hills (100 km south of Broken Hill), 10.XII.1966, J. B. Williams UQ; 1 f, Bogan River, Jan. 1932, J. Armstrong $\mathrm{AM}: 1$, no precise locality. presented by Perth Museum BM 1953-629: Victoria 19, Lake Hattah, J.G.O. donated F. P. Spry 16.V.1922; 1 오 4 모 ㅁ, Lake Hattah, J. E. Dixon, donated Jan. 1940; 18 , Hattah, Mar. 1914, Dixon, donated F. P. Spry 5.X.1922; 1 d, Ouyen, donated F. P. Spry 5.X.1922; 18, Mallee, ex J. E. Dixon coll donated Jan. 1940; 2 f. 1 ㅇ, Mallee, Oct. 1904, donated F. P. Spry 8.X.1922; 1 1 , Quantong, June 1929, A. D. Selby NM: South Australia 1 ㅇ, no further data AM; 1 है, Minnipa, H. A. Johnson:

Fig. 28. Cuspicona cooperi sp. nov... Cuspicona carneala Van Duzce, Cuspicona phi sp. noy. A-13. Cuspicona cooperi. A. ventral aspect of male abdomen. B. ventral aspect of female abdomen. C-D. Cuspicona camcola. C. ventral aspect of male abdomen. D. ventral aspect of female abdomen. E. Chapicona phi-ventral aspect of male abdomen,

1 ㄱ, St. Francis Island; 1 \& , Ardrossan, 25.VII. 1879, Tepper; 1 ㅇ, Adelaide, 12.VII.1947. F. J. Mitchell; 1 र, 1 ㅇ, Karoonda; 1 甲, Mallee, 22.X.1879, SAM; 1 t, 1 ? , no precise locality, H. Edwards AMNH; Western Australia 1 if, Katanning, 12.X.I941, K, R, Norris ANIC; 1 d, 1 ?, Swan River, L. J. Newman, presented by Comm. Inst. Ent. BM 1948-548.

Cuspicona obesula sp. nov.
Figs. 29, 30 A-B, 32 E-F

Description:

General appearance: Ground colour bright green in life fading to brownish-yellow in museum specimens. Anterolateral margins of pronotum (including produced lateral angles) carmine-red, apex of scutellum reddish-orange. Head brown-ish-yellow, just interior of anterolateral margins of pronotum in anterior $2 / 3$ a yellowish stripe, a median longitudinal yellowish stripe on scutellum in apical half but terminating before apex. Lateral angles of pronotum produced rectangularly.

Head: Yellowish-brown and rather convex above, groove between anteclypeus and rest of head infuscated in posterior half, a patch of fine black punctations medially at base, just inward of eyes glabrous. Lateral margins with fine black punctations or very narrowly infuscated. Ocelli and eyes purplish-grey. Lateral margins gently angulately concave.

Pronotum: Concolorous, lateral margins narrowly at apex and more broadly at produced lateral angles margined with carmine-red in anterior $2 / 3$, this red bordered interiorly by a yellow bar. In faded examples sometimes a transverse band of fine black punctations between lateral angles. Anterior margin obliquely truncate behind eyes and rather trapeziformly excavate behind collum, anterolateral angles produced as a small ridge. Anterolateral margins thickened and irregular, nearly straight but diverging in anterior halves, posterior halves with lateral angles produced as rectangular subspinous angles directed outwards only, about 40 per cent length of posterolateral margin, basal diameter also about 40 per cent of latter,

Posterolateral margin gently concave, posterior margin gently concave medially, produced into posteriorly directed lobes at junction with posterolateral margins.

Scutellum: Concolorous with apex broadiy reddish-orange, latter preceded by a medial longitudinal yellow streak which becomes obsolete near middie. Black punctations absent or only faintly indicated laterally to latter. No fovea at bases of lateral margins, latter faintly concave in basal half then changing direction and nearly straight but conyerging to broadly rounded apex. Frena reaching to about half length.

Hemelytra: Coriaceous parts concolorous with coarse punctations. Outer margin of corium concave in basal quarter then broadly convex to shortly rounded apical angle. Posterior margin straight, inner angle broadly rounded. Clavus elongate triangular. Membrane and veins hyaline.

Abdomen: Concolorous above.
Laterotergites: Concolorous, posterior exterior angles almost rectangular.

Underside: Concolorous; head yellowishbrown except at base; first three segments of antennae mainly yellowish-brown, apex of third and whole of fourth and fifth segments reddishbrown; rostrum yellowish-brown, ventrally and apex blackish; all thoracic sterna and keels and a broad median longitudinal bar on abdomen reaching to apex of VIIth segment whitish lutcous; lateral margins of prothorax carmine-red; apices of the tibiae and tarsomeres reddish-brown.

Bucculae low and sinuate, reaching to middle of eye, produced into a thickened convex lobe anteriorly. Rostral segment I robust, just surpassing base of bucculae, II slightly arched and compressed and surpassing fore coxae, III surpassing mid coxae and IV to about apex of abdominal ventrite III. Ratio of antennal seg-

Fig. 29. Dorsal aspect of Cuspicora ohesula spr nov.
ments I-V 9:19:20:21:23. Propleuron with a strong raised ridge behind anterior margin mostly coarscly punctate but more finely and sparsely punctate exteriorly in anterior half, mesopleuron punctate in a triangular patch lying anteroventrally, metapleuron punctate below and behind evaporative area. Metasternal-mesosternal keels a little higher anteriorly than posteriorly, reaching over prosternum almost to its apex, anteriorly very broadly rounded, deflected to left in ventral view, Femora normal, tibiae a little flattened apically. Ahdomen rounded in posterior view
but segments VII-III progressively more V-shaped. Apex of male abdomen Eig. 32 E. hind margin of pygophore reddish, medially rectangularly excavate, laterally sinuated. Clasper Fig. 30 B , strongly F-shaped. Aedeagus of male Fig. 30 A , conjunctiva produced into two tubular apical processes which cross over each other, "lappet" processes elongate, medial penial plates elongate with a posterior concavity. lower lobe with a small spine on its dorsal surface. Apex of female abdomen Fig. 32 F, hind margins of first gonocoxae distinctly oblique and straight.

Dimenxions-

Parameter	MALES		Standard Deviation	Cocfficient of Variation	Observal Range
	Number of Measurements	Mean			
Ifend langit	14	33	12	$3 \cdot 5$	31.35
Head width	14	38	1.1	2.8	$36-40$
Artenral segment I ...s	19	9	0.6	6.5	9.11
Antennal segment I!	19	19	11.9	4.7	16-20
Anlennal segment 111.	19	20	$1 \cdot 3$	6.4	18-21
Antennal segment IV	16	21	1.0	$4 \cdot 8$	20.21
Antennal seyment V	13	23	12	5.2	21.24
Pronotum swidh :	14	101	3.0	$2 \cdot 9$	96.106
Pronotum length	14	35	2.9	8.1	$31-41$
Total lengtr	14.	150	7.3	4.9	138-165
FHMALES					
Parameter	Number of Measurements	Mean	Standard Deviation	Cocfficient of Variation	Observed Rance
Ilead lengtly	25	36	$1 \cdot 3$	3.7	33-38
Head width	2.5	41	$1 \cdot 2$	2.9	37-42
Antennal segment !	45	10	0.6	6.6	8-11
Anternal segment II	46	19	1.0	5.1	16-20
Antennal segment [1]	44	19	1.0	$5 \cdot 3$	17-21
Antennal sexment IV	36	20	0.9	4.4	18-21
Amternal segment V	27	22	1.1	$5-3$	20-23
Pronothan widta	25	110	$4 \cdot 5$	4.0	98-118
Probotun dength	25	38	3.5	$9 \cdot 2$	31-43
Tistal length ...	25	165	10.3	6.2	146-183
Toral length; 7.2 .9 .5 mm					

Remarks: C. obesula shows some affinity with the thorucica group of species in that in some cxamples a transverse band of dark punctations crosies the pronotum between the lateral angles. However the lack of black areas on the lateral angles, the only modest production of these angles and the strong medial excavatiom of the hind margin of the pygophore indicate that the relationship is not close. The strong red lateral coloration is similar to that of carneole but the more narrow head and more produced lateral angles of the pronotum indicates that obestla is not very closely related to carneola.
C. obesula occurs in the southern wetter part of South Australia from the Mount Lofty Ranges cast to the Victorian border and in the adjacent western districts of Victoria. The only host plants recorded both belong to the genus Leprospermum (Myrtaceac).

Location of types:
Holotype of (Reg. No, I20,683), I paratype म, (Reg. No, 120,684), 3 paratype 와 (Reg. No. 120,685-7), 6 km east of Lucindale, South Australia, on Leptospermum myrsinoides Schlecht 26.XII,1968, A, N. McFarland; Paratypes: 1 ㅇ. (Reg, No, 120.688), Naracoorte Cave Reserve, South Australia, by sweeping Leptospermum myrsinoides Schlecht in Eucalyptus obligua L'Herit dominated dry sclerophyll forest, 25, X. 1958, G. F. Gross; 1 . (Reg. No. 120,689), nr. Coonalpyn, South Australia, by beating Leptospermum coriaceum (FvM) Checl, Sept. 1967, A. N. McFarland; 12. (Rcg. No, 120,690), Meningie, South Australia, in mallee serub, 1.XI.70, V. H. Mincham; 1 i, (Reg. No. 120,691), Blewitts Springs, South Australia, 20.X.1972, C. van Dijk; 2 里 (Reg, No. I20,6923). Mt. Lolty Ranges, South Australia, N. B.

Tindale; 1 \& (Reg. No. I.20,699), Williamstown. South Australia, on Leptospermum, 20.X.1888, J. O. Tepper; 1 \& (Reg. No, 120,695), Largs North, South Australia, Nov. 1969, R. Cook; 1\% \%, 1 ㅇ, (Reg. Nos. $120,718,120,696$), Pt. Lincoln, South Australia, A. M. Lea; 1 \& (Reg. No. I20,697), Marble Range in Pt, Lincoln District, South Australia, 15.X.1957, N. B. Tindale SAM; allotype f, 1 paratype f, Little Desert, Victoria, 23.X.1952, A. Burns; Paratypes (continued): 1 ㅇ, Little Desert, Victoria, 1725.X.1952, E. Matheson; 28, 2 9, Lake Hattah, Victoria, J. E. Dixon; 1 t, Kiata, Victoria, Oct. 1929, F. E. Wilson; 1 甲, Kiata, Victoria, Oct. 1928, F. E. Wilson; 1 \&, Grampians, Victoria, Nov. 1922; 1 ?, Grampians, Victoria, 29.X. 1946, A. Burns NM; 1 i, 8 km south of Lah Arum, Grampians, Victoria, 5.11,1956, I. F. B. Common; 1 f, Little Desert 8 km south of Kiata, Victoria, 12.II.1956, I, F. B. Common ANIC: 1 f. 1 ? , Murray Bridge, South Australia, A. M. Lea, AM; 1古, 1 ㅇ, Lake Hattah, Victoria, J. E. Dixon; 1 zै, Mt. Lofty Ranges, South Australia, N. B. Tindale BM; 1 if, 2 여, Aldgate, Mt. Lofty Ranges, South Australia, 29.XI.1931. Darlington on Harvard Expedition AMNH; 3 3, Bordertown, South Australia, 22.X.1963. J. Sedlacek BISHOP.

Specimens examined: The type series only.

Thoracica Group

The thoracica group of species includes species which appear to be restricted to the wetter parts along the east and south coasts of the Australian continent, including the south-west corner of Western Australia. Members of the group are absent from the wetter forests of north Western Australia and the Northern Territory. The species in this group are probably all grass green in life with the tips of pronotal spines black or black punctate. Black punctations are always present laterally near the apex of the scutellum and frequently on the hind lobe of the pronotum as well. Luteous markings are common and sometimes some areas are pinkish. The lateral angles of the pronotum are always produced into a conical spine. The hind margin of the corium is almost straight.

The first gonocoxae of the female have the posterior margin transversely or obliquely truncate or sinuate, if part of this margin is produced more posteriorly than any other part then it is the exterior half.

Host plant records for the group include species of Aster (introduced), Hakea, Melaleuca, Leptospermum and Cullitris representing the families Compositae, Proteaceae, Myrtaceae and Cupressaceac.

Fig. 30. Cuspicona abesuht sp. nov. Cinspiconathorucica (Westwood). A B. Cuspricona obesulf. A. lefthand side aspect of aedengus. B. clasper. C-D. Cuspicoma thoracior. C. lefthand side aspect of visible portion of a medial penial plate of aedengus. D. clasper.

Cuspicona procallosa sp. nov.
Figs. 31, 32 C-D

Description:

General appearance: Ground colour in museum specimens yellow or brownish-yellow with a few black punctations along lateral margins of head, dorsally on pronotal spines in apical
half, and on scutellum on either side of midline (but not reaching base or apex). Lateral angles of pronotum produced into conical spines.

Head: Concolorous and rather convex above, some black punctations along lateral margins. Eyes and ocelli purplish or grey. Lateral margins gently angulately concave.

Fig. 31. Dorsal anpect of Cuspicema procallosa sp, nov.

Pronotum: Concolorous, but dorsal surface of exterior portion of spinous angles of pronotum with black punctations in apical half and black along apical half of anterior margins of these spines and at extreme apex; sometimes a few scattered dark punctations medially just in front of hind margin of pronotal disc. In anterior half of pronotum in the middle a broad longitudinal pale yellow or luteous glabrous fascia or bar, sometimes al glabrous patch of the same colour on each side just in front of posterior
angles (as in example figured). Anterior margin obliquely truncate behind eyes and only shallowly concave behind collum, anterolateral angles hardly produced. Anterolateral margins obtuse and nearly straight in anterior halves, posterior halves, with lateral angles, each produced into a conical spinous process directed outwards and only a little upwards, about as long as posterolateral margin, its basal diameter about 75 per cent length of latter. Posterlateral margin concave, posterior margin broadly concave.

Scutellum: Concolorous with apex (broadly) and midline luteous and nearly glabrous, midline area widening anteriad. Laterally to midline and heginning about a third of the way back and reaching to about three quarters of the way back an area of black punctation on each side, basally this patch narrow and paralleling the pale streak, apically broadened and reaching lateral margins, one or two black punctations medially on glabrous urea where the lateral patches finish. No fovea at bases of lateral margins, latter broadly concave in basal half then changing direction und nearly straight but faintly converging to broadly rounded apex. Frena reaching to about half length.

Hemelytra: Coriaceous parts concolorous with coarse concolorous punctation, Outer margin of corium concave in basal quarter then broadly convex to shortly rounded apical angle. Posterior margin straight, inner angle broadly rounded. Clavus elongate triangular. Membrane and veins hyaline.

Abdomen: Concolorous above but with upper surface of pygophore somewhat darkened. Sometimes some black patches, one under tip of scutellum and the other before pygophore.

Lateratergites; Concolorous but posterior exterior angles of 111-VII black, latter almost rectangular,

Underside: Concolorous except extreme apex of prothoracic spine, posterior angles of abdominal ventrites III-VII, rostrum ventrally and apical third of its last segment, black. Apical third of antennal segment III, antemal segments IV and V, and sometimes tarsi and extreme apices of tibiae, light brown.

Bucculae punctate, not reaching base of head but to middle of eye, sinuate, produced into a convex lobe anteriorly. Rostral segment. 1 robust, surpassing base of bucculae and reaching onto apex of prosternum, II arched ind compressed and reaching mid coxac. III to about middle of hind coxac. IV to about base of abdominal ventrite $1 V$. Ratio of antennal segments I-V 11:20:19:23:21. Most of propleuron (except two glabrous patches medially), mesepisternum, metepisternum and hind portion of metapleuron punctate. Metasternalmesosternal keel higher anteriorly than posteriorly, reaching over prosternum almost to its apex, anteriorly broadly rounded, deflected to left in ventral view. Femora normal, tibiae us little flattened apically, Midline of abdomen narrowly luteous, rounded in posterior view but segments VII-III progressively more V-shaped, Spiracles a little raised. Apex of male abdomen Fig. $32 \mathrm{C}_{\mathrm{y}}$ apical margin of pygophore shallowly concave, rather reflexed. Apex of female abdomen Fig. 32 D , hind margin of first gonocoxae oblique and slightly concave.

Dimenxions-

Parameter	Number of Measurements	Mean	Standard Deviation	Cocflicient of Variation	Observed Range
Head Jength	9	36	$2 \cdot 6$	$7 \cdot 2$	32-41
Head Width	11	36	3.5	9.7	26-39
Antennal segment I	17	11	0.8	7.2	-9.12
Antennal segment II	17	20	1.2	$6 \cdot 3$	17-22
Antennal segment III -	16	19	1.3	6.8	16.20
Antennal segment IV.	8	24	1.7	7.0	22.26
Antennal segment V	6	22	1.0	4.9	20-23
Pronotum width .	11	120	6.2	5.2	110-133
Pronotum length	11	32	4.0	$12 \cdot 3$	26-40
Total length	11	158	9.7	6.1	$150-180$
FEMALES					
Parameter	Number of		Standard	Cocfticient	Obscrved Runge
		Mean		Variation	
Head length	6	39	13	3.4	37.41
Head width'	7	38	1.5	3.9	$36-40$
Antennal seyment !	10	11	1.0	$9 \cdot 2$	9.12
Antennal segment II	10	19	11	5.8	17-20
Antennal segment III	10	18	1.7	$9 \cdot 3$	16-21
Antennal segment IV	8	22	1.9	8.9	14.25
Anternal scgment V	6	20	0.8	$4 \cdot 2$	19.21
Pronotum widih ...	7	133	29.5	22.1	113-199
Pronotum leagth	7	34	5.5	15.7	-25-42
Tokil length	7	166	9.8	5.9	148-181)
Total length: $7 \cdot 7.9 .4 \mathrm{~mm}$.					

Remarks: C. procallosa is fairly easy to recognise by the longitudinal pale callous bar in the anterior half of the pronotum and by the black posterior exterior angles of the laterotergites and abdominal ventrites. The species is restricted to the southwestern portion of Western Australia.

Location of types:

(All cited localities are in Western Australia.) Holotype $\begin{gathered}\text { a }\end{gathered}$ Fremantle, 3.II.1934, K, R. Norris; allotype of same locality and collector but 2.II.1934; 1 paratype $9,1 \mathrm{~km}$. WNW Foul Bay, Augusta ($34^{\circ} 19 \mathrm{~S} 115^{\prime} 10 \mathrm{E}$), 3.XI.1969, E. B. Britton; 1 paratype fo, Deep Dene, Karridale,
16.XII.1962, L. M. O'Halloran ANIC; 1 paratype q, Geraldton, W. D. Dodd SAM; 1 paratype of, Geraldton and Mullewa, Lea; 1 paratype of, Geraldton; 2 paratype $\%$, Swan River, L.J. Newman; 1 paratype है, Swan River; 1 paratype ㅇ, Flinders Bay, 11.IV.1936, A. L. Raymond (BM 1936-429); 3 paratype $\%, 2$ paratype 우: Yanchep, 50 km north of Perth, 29 Jan-8th Feb. 1936, R. E. Turner (BM 1936-28) BM; 1 paratype है, Cape Naturaliste, $5 \mathrm{~m}, 27 . \mathrm{IX} .1962$, E. S. Ross and D. Q. Cavagnaro CA, 1 paratype a, Mt, William, $250 \mathrm{~m}, 6$. XI. 1963, J. Sedlacek BISHOP.

Specimens examined: The types only.

Fig. 32. Cuspicona cquisignata sp. nov., procallose sp. nov., obesula sp, nov. A-B. Cuspicona equisignata. A. ventral aspect of apex of male abdomen. B. ventral aspect of apex of female abdomen. C-D. Cuspicona procallosa. C. ventral aspect of apex of male abdomen. D. ventral aspect of apex of female abdomen. E-F. Cuspicona obesula. E. veniral aspect of apex of male abdomen. F. ventral aspect of apex of female abdomen.

Cuspicona equisignata sp , nov.

Figs. 32 A-B, 33

Description:

General appearance: Ground colour in museum specimens yellow with black punctations on head (sparse), pronotum and scutellum. Lateral angles of pronotum produced into conical spines.

Head: Concolorous and rather convex above. some punctations concolorous but on disc of juga towards apex and near base a few black punctations. Eyes and ocelli purplish or grey. Lateral margins concave.

Pronotum: Mostly concolorous but anteriorly in either side of midline adjoined to anterior margin and reaching about a third of the distance
back a pair of longitudinal lines of black punctations, between these lines and extending back almost to hind margin on Cape York examples a pink longitudinal median linear marking. Dorsal surface of spines black punctate, especially towards apices, across posterior portion of pronotum between spines a diffuse line of sparse black punctations. Anterior margin oblique behind eyes and rather rectangularly excavate behind collum, anterolateral angles produced as a small ridge. Anterolateral margins obtuse and nearly straight in anterior halves, posterior halves with lateral angles each produced into a conical slightly recurved spinous process directed outwards and only a little upwards, not as long as posterolateral margin, its basal diameter about 75 per cent length of posterolateral margin. Posterolateral margin slightly sinuate, posterior margin broadly concave.

Scutellum: Concolorous with apex (broadly) and midline luteous and nearly glabrous, midline area wider anteriorly than posteriorly where it runs into glabrous apical area. Laterally to these glabrous areas punctations all black, or some black and some concolorous, just behind where luteous midline joins apical area a few scattered punctations near the midline in the luteous area. No fovea at base of lateral margins, latter broadly convex in basal half then changing direction and broadly convex to broadly rounded apex. Frena reaching reaching to about halt length.

Hemelytra: Coriaceous parts concolorous with coarse punctation, some or many of these punctations fuscous, inner angle of corium narrowly black. Exterior margin of corium concave in basal quarter then broadly convex

Fig. 33. Dorsal aspect of Cuspicona equisignuta sp. nov.
to nearly acute apical angle, posterior margin nearly straight, inner angle broadly rounded. Clavus elongate triangular. Membrane and veins hyaline.

Abdomen: Concolorous or with a fuscous area around apex of scutellum or (holotype) with a broad longitudinal black band behind scutellum reaching apex. Dorsum of pygophore with a lateral black patch on either side, dorsum of female genitalia with a fuscous patch on either side of midline.

Laterotergites: Concolorous, posterior exterior angles of MI-VII black, almost rectangular, hind margin of VII strongly black in holotype.

Underside: Concolorous except extreme tip of prothoracic spine and posterior angles of abdominal ventrites III-VII, rostrum ventrally and apical third of its last segment, black. Apical half of antennal segment III, antennal segments IV and V, tarsi and extreme apices of tibiac brown. Bucculae not reaching base of head but
to middle of eyc, elevated, sinuate, produced into a convex lobe anteriorly. Rostral segment I robust, surpassing base of bucculae and reaching nearly to fore coxac, II arched and reaching mid coxae. 111 to about middle of hind cosae or beyond, IV onto IVth abdominal ventrite. Ratio of antennal segments $10: 21: 21: 25: 24$, Episterna, procpimera, propleuron, and hind portion of metapleuron, and abdomen (except along midline) punctate. Mctasternal-mesosternal keel higher anteriorly than posteriorly, reaching over prosternumi but not to apex, anteriorly broadly rounded, deflected to left in ventral view. Femora normal, tibiae a little flatened apically. Abdomen with midline luteous, rounded in posterior view but segments VII-III progressively more V-shaped. Spiracles raised. Apex of male abdomen Fig. 32 A , apical margin of pygophore somewhat triangularly excavate, reflexed, Apex of female abdomen Fig. 32 B , hind margins of first gonocoxae half truncate and only faintly oblique.

Remarks: Only the four specimens listed above are known, the distribution appears to be unusually wide for such an uncommon species and it may be noted here that some other localities on Captain S. A, White labels have proved to be in error, these Cape York Peninsula records may also be. The species is similar to procallosa having the sime black posterior angles to the laterotergites and abdominal ventrites and a callous median patch anteriorly on the pronotum. It ditfers from that species in having a small black line on either side of the anterior callosity of the pronotum and the V -shaped posterior margin of the pygophore and the more black punctate hind portion of the pronotum, It is also somewhat similar to phi but differs in not having the underside of the pronotal spines strongly punctate right to their bases.

Location of fypes:

Holotype \& (Reg. No, 120,672), allotype i (Reg. No. 120,673), 1 paratype $\%$ (Reg. No.

120,674), Cape York Peninsula, Queensland, Captain S. A. White; 1 paratype of (Reg. No. 20,675). Mt. Wedge, South Australia, 16.X. 1954, N. B. Tindale SAM.
Specimens examined; The types only.

Cuspicona phi sp, nov,

Figs. 28 E, 34, 36 F
Description: Ground colour in museum specimens brownish-yellow with black punctations on hind portion of pronotum and scutellum, on underside of frontal spines and hind or ventral portions of thoracic pleura, black markings on dorsum of abdomen above. Lateral angles of pronotum produced into conical spines.

Head: Concolorous and rather convex above; punctation rather sparse and concolorous or light brown. arranged in rows. Eyes and ocelli purplistr red. Lateral margins strongly concave.

Pronotum: In anterior portion mostly concolorous with brown punctations but calli a darker brown, between calli and extending to anterior margin a rather callous luteous marking. On dorsal surface of produced lateral spines and in dise between them a broad rather diffuse band of black punctations, apices of lateral spines black. Anterior margin oblique behind eyes and broadly excavate behind collum, anterolateral angles produced into a small ridge. Lateral margins obtuse and slightly convex in their anterior halves, posterior halves with lateral angles produced into a conical slightly recurved spinous process directed outwards and only a little upwards, not as long as posteroIateral margins, its basal diameter about 75 per cent length of posterolateral margin. Posterolateral margin obtusangulately excavate, posterior margin broadly concave.

Scutellum: Concolorous and finely punctate with apical third luteous and glabrous, this luteous produced forward along midline. In apical fifth some black punctations medially, just anterior to these on either side (leaving midline there broadly impunctate) a triangular to quadrate patch of black punctations. A concolorous fovea visible at base of lateral margins in one of the paratypes, lateral margins broadly convex in basal half, then changing direction and broadly convex to broadly rounded apex. Frena reaching to about half length.

Hemelytra: Coriaceous parts concolorous but inner angle or corium margined with fuscous. Exterior margin of corium concave in basal quarter then broadly rounded to almost rectangular apical angle, posterior margin nearly straight, inner angle broadly rounded. Clavus elongate

Fig. 34. Dorsal aspect of Cuspicona phi sp. nov.
triangular. Membrane and veins largely hyaline but at inner anterior angle a small longitudinal fuscous bar joining the fuscous on inner angle of corium.

Abdomen: Concolorous: large single or paired black patches on segments VI and VII medially, dorsum of female genitalia with large, black patches, one on each side.

Laterotergites: Concolorous but fuscous along posterior margin of VII, lateral angles almost rectangular.

Unelerside: Concolorous but in holotype with a reddish tinge and reddish punctations, reddish especially more intense on evaporative area, on femora and broadly along lateral margins of abdominal ventrite VII. Bucculac, whole underside of spinous angles of pronotum and extending somewhat onto propleuron, and fenale genitalia with reddish fuscous punctations. Rostrum ventrally and most of apical segment black. Prominent luteous areas ventrally and along hind margin of proplcuron turning anteriorly under punctate area on lateral spines, ventrally on mesopleuron and ventrally and
posteriorly on metapleuron, Mesosternalmetasternal keel semihyaline.

Bucculae not reaching base of head and not to past middle of eye, sinuate, produced into a convex lobe anteriorly, Rostral segment I robust, surpassing base of bucculae and reaching about base of head, I arched and reaching mid coxae. III to about middle of hind coxae and IV past middle of third abdominal ventrite. Ratio of antennal segments $9: 16: 12: 18: 16$. Episterna, proepimeron and hind portions of proand metapleura punctate. Metasternal-mesosternal keel higher anteriorly than posteriorly, reaching over prosternum to about its apex, anteriorly broadly rounded, deflected to the left in ventral view. Femora normal, tibiae a little 1lattened exteriorly in apical quatter. Abdomen fairly densely punctate, rounded in posterior view but segments VI-LII progressively more Vshaped, Apex of male abdomen Fig. 28 E, apical margin of pygophore gently concave medially and broadly convexly rounded laterally. Apex of female abdomen Fig. 36 FF, hind margins of first gonocoxac somewhat oblique and narrowly sinuated.

Dimensions- Parameter	Holotyne ${ }^{\text {a }}$	Allotype:	Paratype F^{\prime} (Pak-Downs)	Paratypo 'i (Peak-Downs)	Paratype $=$? (Sydncer)
Head length	34	36	33	33	32
Head width	38	36	33	33	33
Antennal segment !	9.9	9.4	8,9	8. 9	9. 8
Antennal segment 11.	19. 19	16, 17	15, -	16.15	15.16
Antenmal segment \|l	13.13	12.13	12, -	12.14	11,12
Autenmal segment IV	20, 21	18, 19	-	17. -	17.
Antennal segment V	19,19	17.17	-	15:-	,
Pronotum width ...	136	115	103	115	103
Pronotum Jenth	40	33	33	30	33
Tatal length ...10...	155	150	140	145	150

Remark:: This species is apparently closely related to procallosa and equisignata but differs from them in not having prominently black posterior angles to laterotergites anterior to the VIllth pair and by having dense black punctations on the underside of the pronotal spines. Only the nine specimens listed below are known.

Location of types:

Holotype is (Reg. No, T7216), Mt. Tozer area, Iron Range, North Queensland, 29.IV-1.V.1973. G. B. Monteith OM: allotype i. West Normanby River, 64 km (40 miles) west of Cooktown, north Queensland, 12.X1.1965, G. Monteith UQ; 2 paratype of. Peak-Downs, Qucensland: 1 \& paratype, Sydney (spelt "Sidney"). New South Wades STOCKHOLM: 2 paratype 9. New South Wales, Dis-
tant coll. 1911-383 BM; 1 paratype f. Australia: 1 paratype 9. New Holland, Deyrolte; 1 paratype 9. Peak-Downs RM.
Specimens examined: The types only.

Cuspicona angustizona sp, nov.
Figs. 35, 36 E

Description:

General appearance: Ground colour in museum specimens greenish ycllow with black punctations on head (sparse), on upper surface of pronotal spines and in a narrow but dense band across disc of pronotum between lateral spines and beneath on underside of pronotal spines. Lateral angles of pronotum produced into conical spines.

Head: Concolorous, not very convex above; punctation moderately dense but fine, black and brown, basally arranged in rows. Eyes and ocelli dull purple. Lateral margins concave.

Pronotum: Concolorous with punctation mostly concolorous or reddish but on dorsal surface of lateral spine, in a narrow but dense band across dise between lateral spines and in a thin longitudinal, medial line only one or two punctations wide given off from transverse band to anterior margin (interrupted a little before anterior margin) with punctations black. Anterior margin oblique behind eyes and broadly excavate behind collum, anterolateral angles hardly produced. Lateral margins obtuse and only slightly convex in anterior two thirds, posterior thirds with lateral angles each produced into a conical slightly recurved spinous process directed outwards and a little upwards, not as long as posterolateral margins, basal diameter about 60 per cent length of posterolateral margin. Posterolateral
margin obtusangulately excavate, posterior margin broadly concave.

Scutellum: Concolorous and finely punctate anteriorly, in posterior third paler with scattered coarse black punctations, no less dense medially than laterally; this punctate area produced anteriorly from the main mass of punctations for a short distance along midline. A small concolorous fovea at base of each lateral margin, lateral margins almost straight in anterior half, then changing direction and almost straight to broadly rounded apex. Frena reaching about half length.

Hemelytra: Coriaceous parts fuscous but inner angle of corium and apical angle of claws margined with fuscous. Exterior margin of corium concave in basal quarter then broadly rounded to almost rectangular apical angle, posterior margin nearly straight, inner angle broadly rounded. Clavus elongate triangular. Membrane and veins largely hyaline but at inner

Fig. 35. Dursal aspect of Cuspicona angustizona sp. nov.
anterior angle a small fuscous area adjoins the fuscous on corium and clavus.

Abdomen: Apparently concolorous or perhaps rather reddish medially, dorsum of female genitalia with some black patches.

Laterotergites: Concolorous but apical angle of VII darkened, lateral angles produced into a small spine.

Underside: Concolorous but bucculae, underside of pronotal spine and first gonocoxae of female with black punctations. Abdomen ventrally broadly luteous, a medial spot on propleura and posterior margins of paratergites VIII black. Metasternal-mesosternal keel hyaline.

Bucculae not reaching base of head and not to past middle of eye, sinuate, produced into a blunt triangular lobe anteriorly. Rostral segment I robust, just surpassing base of bucculae, II arched and probably reaching about mid coxae, IV and III missing on both specimens. Ratio of first four antennal segments (jifth missing in both specimens) 10:20:18:22. Episterna,
proepimeron, hind portion of propleuron and metapleuron punctate. Legs apparently normal, tibiae flattened towards apices, most tarsi missing on the two specimens examined. Metasternalmesosternal keel higher and thinner anteriorly than posteriorly, reaching over prosternum nearly to its apex, anteriorly broadly rounded, deflected a little to the left in ventral view. Abdomen finely punctate, rounded in posterior view but segments VI-III progressively more V-shaped. Apex of female abdomen Fig. 36 E , hind margins of first gonocoxae oblique and narrowly sinuated. Males unknown.

Dimensions-		
Parameter	Holotype \%	Paratype
Head length	38	36
Head width	41	34
Anternal segment I	10, 10	10, -
Antennal segment II	20, 20	-
Antennal segment III	18, 18	-
Antennal segment IV	22.	-
Antennal segment V	Absent on both examples	
Pronotum width	130	125
Pronotum length	31	35
Total lenglh .	180	175
	9.1-9.4 mm	

Fig. 36. Cuspicona aporhorwcica sp. nov., Cuspicona thoracica (Westwood), Cuspicuha angustizona sp. nova Cuspicoma phis. sp , nov. A-1B. Cuspicona apothoracica. A. ventral aspect of male abdomen. B. ventral aspect of female abdomen. C-D. Cusicont theracica. C. ventral aspect of male abdomen. D. ventral aspect of female abdomen. E. Cuspicoma angersbizund -ventral aspect of apex of female ubdomen. F. Cuspicoma phi-ventral aspect of apex of female abdomen.

Remarks: This species is closely related to μ in, having the apical area of the scutellum fairly evenly covered with black punctations and having a median prolongation forward of the transverse dark band on the pronotum. It differs by its larger size, prolongation forward of the black punctitions medially on the scutellum and the strongly bicoloured abdomen beneath. Both examples are unfortunately incomplete.

Lacation of types:

Holotype \& (Reg. No. T7217), Brisbane, Queensland, R, Kumar QM; paratype ㅇ. Eidsvold, Queensland, ANIC.

Specimens examined: The types only.

Cuspicona thoracica (Westwood, 1837)
Figs, $30 \mathrm{C}-\mathrm{D}, 36 \mathrm{C}=\mathrm{D}, 37,38 \mathrm{~A}$
Rhynchocoris thoracica Westwood, 1837, p. 30.
Cuspicoma thoracica Dallas, 1851. p. 386. Mayr, 1866, fr. 67. Stẩ, 1876, p. 103, Van Duzee, 1905, p. 208.
Cuspicona samthochlora Walker, 1867, p. 389,

Description:

General appearance: Ground colour green in life with dorsum of head, a broad transverse band on pronotum between, and extending onto. produced lateral angles, antennac, underside of head, rostrum, apices of femora and tarsi brown. Basally or wholly on head, across pronotum as a transverse band, and laterally near apex of scutellum black punctate.

Head: Brown and flattened above; in males strongly punctate with black above on almost entire disc: females usually less extensively black punctate than males but basally a median quadrate area made up of three short parallel longitudinal bands of black punctations always present and lateral margins with black punctations. Eyes and ocelli purplish red.

Pronotum: Green in life, yellowish or pale yellowistr brown in museum specimens; dorsal surface of lateral angles and a broad transverse band between then brown with numerous black punctations, this band of punctations about seven punctations wide medially, anteriorly and posteroofly to this band finely and concolorously punclate except on glabrous calli, Anterior margin
oblique behind eyes and concave behind collum. anterolateral angles produced into a very small tooth. Anterolateral margins obtuse, straight and diverging in anterior half; posteriorly half. with lateral angles, produced into a conical slightly recturved spinous process directed outwards and only a litte upwards, about as long as posterolateral margin, its basal diameter about 75 per cent or less length of posterolateral margins. Posterolateral margins obtusangulately excavate posterior margin broadly concave.

Scutellum: Green in life with anterior median portion rather yellowish-green, pale yellowishbrown in muscum specimens, Apical half with at broad median luteous or reddish longitudinal stripe reaching apex, laterally to this a triangulas or semi-circular patch of black punctations not heginning as far forward as base of luteous stripe nor reaching near to apex. Latter broadly impuctate. No fovea at base of lateral margins. latter broadly convex in basal halt, then very broadly and shightly convex to rounded apex. Frena reaching nearly to half length.

Hemelytra: Green in life, pale ycllowish brown in museum specimens, coarsely and concolorously punctate. Exterior margin of corium concave in basal quarter then broadly rounded to very shortly rounded apical angle, posterior margin nearly straight, inner angle broadly rounded, Clavus elongate triangular. Membrane and veins hyaline.

Abdomen: Green in life; yellow in museum specimens; without black markings, except at posterior margins of pygophore,

Laterotergites: Green in life, narrowly black just laterally of midline on dorsum of female genitalia.

Underside: In life, pale green, in museum specimens yellowish brown. Underside of head yellowish; antennae, most of rostrum, apical hall of pronotal spines, apices of tibiac, tarsi and pygophore ventrally brown, Rostrum ventrally and most of apical segment black. Mesosternalmetasternal keel, a broad median band on abdomen and all fentale external genitalia except. patatergites VII luteous, Underside of pronotal spines frequently reddish.

Bucculae not reaching base of head and not to past midale of eye, strongly sinuate. produced into u triangular lobe anterioriy. Rostral segment 1 robust, surpassing batse of bucculae

Fig. 37. Dorsal aspect of Cuspicona thoracica (Westwood).
but not reaching base of head, II slightly arched and reaching mid coxae, III to hind coxac and IV to middle of abdominal ventrite III. Ratio of antennal segments 9:16:19:20:21. Episterna, proepimeron, hind portion of propleuron and metapleuron lightly and concolorously punctate. Metasternal-mesosternal keel reaching over apex of prosternum, higher anteriorly than posteriorly, its anterior margin only slightly convex, deflected to the left in ventral view. Femora normal, tibiae rather flattened exteriorly in apical quarter. Abdomen sparsely, finely and concolorously
punctate laterally and on external genitalia, medially impunctate, rounded in posterior view but ventrites V-III progressively more V-shaped. Apex of male abdomen Fig. 36 C , apical margin of pygophore rather truncate laterally, concavely excavate medially. Clasper Fig. 30 D, rather curved F-shaped. Medial penial plates of aedeagus Fig. 30 C , strongly Y-shaped, their ventral surfaces sinuate, gonopore opening between them. Apex of female abdomen Fig. 36 D , hind margins of first gonocoxae sinuated and vaguely oblique.

Dimensions-
MALES

Dimensions- FEMALES					
Parameter	Number of Measurements	Mean	Standard Devjation	Coefficient of Variation	Observed Range
Head length	36	32	$2 \cdot 3$	$7 \cdot 0$	28-39
Head width	36	37	1.7	$4 \cdot 7$	31-40
Antennal segment	63	9	0.6	68	8-11
Antennal segment II	63	16	1.6	9.5	10-19
Antennal segment III	63	19	1.2	$6 \cdot 2$	17.22
Antennal segment IV	56	20	1.5	$7 \cdot 3$	18-25
Antennal segment V	50	21	1.2	$5 \cdot 7$	19-25
Pronotum width ...	36	114	$8 \cdot 3$	$7 \cdot 3$	104-155
Pronotum length	36	33	$2 \cdot 6$	7.9	29-39
Total length ...	36	145	$9 \cdot 2$	$6 \cdot 3$	130-165

Total length: $6 \cdot 9-7 \cdot 6 \mathrm{~mm}$

Remarks: When work was part way on specimens labelled thoracica in most collections it was noticed that the series were made up of two very similar species which can be distinguished by the outline of the male pygophore, by the degree of black in the head in males, by whether the margins of the head are black spotted or not in females and the degree of posterior extension of the black punctations on the scutellum. As I was unaware of this when I examined the types of thoracica and
xanthochlora in England in 1969 it was necessary to call upon the good offices of Mr. I. Lansbury in the Hope Department at Oxford and Dr W. R. Dolling at the British Museum to recheck these types for me. They prove to be conspecific and to apply to this taxon. The second species is described hereunder and the differences between the two treated in the Remarks section there. Cuspicona thoracica occurs only near the coast in central and south-eastern Victoria, New South Wales and south-eastern Queensland.

A

B

Fig. 38. Cuspicona thoracica (Westwood), Cuspicona apothoracica sp, nov. A. distribution of Cuspicona thoracica. B. distribution of Cuspicona apothoracica.

Location of types:

Holotype q of thoracica Westwood, "New Holland", in Hope, holotype 早 of xanthochlora Walker, "Australia", in BM.

Specimens Examined: About 140 examples were examined, their detailed distributions are not given but the distribution plotted on Fig. 38 A .

Cuspicona apothoracica sp. nov.
Figs. 36 A-B, 38 B, 39, 40 A-C

Description:

General appearance: Very similar to thoracica. Grass green in life with dorsum of head, a broad transverse band on pronotum between and extending onto, produced lateral angles,

Fig. 39. Dorsal aspect of Cuspicoma apothoracica sp, nov.
antennae, underside of head, rostrum, apices of tibiae, and tarsi brown. Basally on head, across transverse band on pronotum and laterally near apex of scutellum black punctate.

Head: Brown and slightly convex above; in both sexes black punctations restricted to three basal black longitudinal bars, if punctations present in front of anterior margins of eyes then
sparse and not reaching apex. Lateral margins and most of apical portion with concolorous punctations. Eyes and ocelli purplish red.

Pronotum: Green in life, yellowish or pale yellow brown in museum specimens; dorsal surface of lateral angles and a broad transverse band between them brown with numerous black punctations, this band of punctations about seven
punctations wide medially, anteriorly and posteriorly to this band finely and concolorously punctate except on glabrous calli, Anterior margin oblique behind eyes and deeply concave behind collum, anterolateral angles produced into a small tooth, Anterolateral margins obtuse. straight and diverging in anterior half; posterior half, with lateral angles, produced into a conical slightly recurved process directed outwards and only at little upwards, about 75 per cent length of posterolateral margin, its basal diameter about 50 per cent length of posterolateral margins. Posterolateral margins obtusangulately angulate and sinuate, posterior margin broadly convex.

Scutellum: Green in life with a broad orangelutcous median fascia in apical $2 / 5$, in museum specimens the green areas change to yellow or yellowish browr. Laterally to apical pale streak an elongate triangular patch of black punctations on each side beginning at about base of pale streak and continued almost to apex, there tending to continue on to the apically rounded portion as a narrow band one or two punctations wide. No fovea at base of lateral margins, latter broadly convex in basal half, then broadly and slightly convex to rounded apex. Frena reaching past half length,

Hemelyra: Green in life, yellow in museum specimens, coarsety and concolorousiy punctate, Exterior margin of corium concave in basal quarter then broadly rounded to very shortly rounded apical angle, posterior margin nearly straight, inner angle broadly rounded. Clavus clongate triangular. Membrane and veins hyaline.

Abdomen: Green in life, yellow in museum specimens, upper margins of male pygophore with some black markings.

Laterotergites: Concolorous, posterior exterior angles with a small reflexed spine.

Underside: Concolorous but in life head rather yellowish, abdomen medially towards base, thoracic sterna and their keels lightened in colour. Antennae, most of rostrum, apical half of pronotal spines, apices of tibiae, tarsi and pygophore brown. Rostrum ventrally and most of apical segment and pronotal spines apically black.

Bucculae not reaching base and not even to middle of cye, strongly sinuate, produced into an acute triangular lobe anteriorly. Rostral segment I robust, just surpassing apex of buccutae, II slightly arched and reaching mid coxae. III to hind coxae, IV to base of abdominal segment III. Ratio of antennal segments 1-V 9: $16: 19: 23: 24$. Episterna and cpimera nearly glabrous, propleuron sparscly punctate anteriorly and posteriorly and with some black punctuations on underside of pronotal spine, metapleuron punctate posterioriy. Metasternalmesosternal keel teaching over apex of prosternum to apex of latter, higher anteriorly than posteriorly, its interior margin only slightly convex. deflected to the left in ventral view. Femora normal, tibiae rather Hattened exteriorly in apical quarter. Abdomen fairly densely punctate laterally and more sparsely on female external genitalin, medially impunctate, rounded in posterior view but ventrites V-III progressively more V-shaped. Apex of male abdomen Fig. 36 A , apical margin of pygophore convexly rounded laterally and broadly concave medially. Clasper Fig. 40 C , rather F-shaped. Aedeagus Figs, 40 A-B, phallosoma only lightly sclerotized, conjunctiva produced apically into two tubular lobes which cross over each other in dorsal view. "lappet" processes clongate and directed downwards in their basal portion. Medial penial plates strongly inverted Y -shaped, their ventral surfaces sinuate, gonopore opening between them. Apex of female abdomen Fig, 36 B, hind margins of first gonocoxae faintly concave and rather oblique.

Dimenyions-					
Parameter	MALES		Standard Deviation	Conflicient of Variation	Observed Kange
	Numiter of Petsuremenk	Mean			
Head lengti	35	34	14	3.9	32-38
f lcud widh .	25	36	1.3	3-5	34-39
Antonnal tegment !	34	9	0.4	4.3	8-10
Antennal segntent II	32	16	1.0	6.3	14-17
Antemal segment III	32	19	1.1	5.6	15-21
Antennal segment iV	26	23	1.3	5.7	21-26
Athennal segment V	21	24	1.4	6.0	512-26
Pronotum width	25	104	$5 \cdot 4$	$5 \cdot 2$	99-115
Pronotum length .	25	28	$3 \cdot 4$	11.9	23-36
Total length	25	130	8.9	6.9	116-140

Dimersions:-

Remarks: Cuspicona apothoracica is very similar in appearance to C. thorucica and very easily confused with the latter. The salient differences are:-

thoracica

Head in males extensively marked with black punctations over mosi of dorsal surface and to lateral margins.

Head in lemales with dorsal black punctations basally and also submatginally. Scutcllum in both sexes with a short triangular patch of black punctations on either side which do not reach near to apex.

Ratio of antennal segments I-V 9:16:19: 20:21.

Posterior outline of male pygophore from below with a truncate or slightly concave lobe on either side separated by a concave atea medially, the lateral and medial regions separated by an angle (Fig, 36 C),

aporhoracica

Head in males usually only black punctate in region between eyes. If black punctations present in anterior portion of dise then sparse and marginal areas concolorously punctate.

Head in fermales with dorsal black punctations restricted to basal area, marginal areas concolorously panctate. Scutellum in both sexes with an elongate triangular patch of black punctations on either side which extend almost to apex of scutellum.

Ratio of antennal segments I-V 9:16:19: 23:24.

Posterior outline of male pygophore from below with a convex lobe on either side rumning smoothly into a concave area medially ($\mathrm{Fig}, 36 \mathrm{~A}$).
Apothoracica (Fig, 38 B) has almost the same distribution as thoracica, occurring only
near the coast in central and eastern Victoria, eastern New South Wales and south castern Queensland.

Location of types:

Holotype לे, Acacia Ridge, Brisbanc, Queensland, 17.IX.1964, A. Neboiss: paratypes:-8, Burjeigh, Qucensland, 28.1X, 1960, A. N. Burns: 9. stame locality and collector, 18.1X.1960: 9 , North Queensland, From C. French Jun., 19.X1. 1911; \&, Buchan, Victoria, Oct, 1907, N. V. Lench; 2\%. Thurra River, Cape Everard, Victoria, 29.X.1970, A. Neboiss; 9.17 km S.E. of Merrijig on 8 Mile Creek off Howqua River, Victoria, I.XII,1971, A. Neboiss; \&. Montrose, Victoria, 25.X1.1945, P.B.; \%, Beaconsfield, Victoria, 8.XIL,1933, G. F. Hill; 2 ㅇ. Ringwood, Victoria NM; allotype of (Reg. No. I20,678), Glenmaggie Weir, Victoria, 14. IV.1957, F. E. Wilson; paratypes:- of (Reg. No. 120,679), by swceping, 1.6 km west of Apollo Bay, Victoria, 19.I.1962, G. F. Gross; Q (Reg, No. I20,680), Seaford, Victoria, W, F, Hill: 29 . (Reg. Nos. 120,681-2), Bribie Island in Moreton Bay. Queensland, Lea and Hacker SAM; 1, Brisbane, Queensland, 6.X.1914.H. Hacker; 3 á, 19, Birkdale, Brisbane, Queensland, 7.1X.1926, H. Hacker; ?, Stanthorpe, Queensland, 26.X.1930, E. Sution QM; ô . Gilen Aplin, Queensland, 4.VIL.1964, P. Kerridge; of, Nth. Stradbroke Island, Queensland, 20.TV.1968, T. Weir; \&, Caloundra, Queensland, 21.IIl.1972, G. B. Monteith; \&, on Leptospermum, Tibrogargan Creek, Queensland, 4.1X.1953. T. E. Woodward UQ; \% Pt. Macquarie, New South Wales, 25 Aug.- 14 Sept. 1941, H. W. Simmonds; 8, La Perouse, Sydney. New South Wales, G. H. Hardy: bf. Sylvinia, New South Wales, Oct, 1934. Dr, K. K. Spence AM; 1 i, 3 paratype 9 . Mannus near Tumbarumba, New South Wales, I.XII-1930, T. G. Campbell; $\circ, 18 \mathrm{~km}$ south of Forster, New South Wales, 17.X.1956, P. B. Carne, 2, Blundells,

Australian Capital Territory, T. G. Campbell; it, 6 km north of Briagolong, Victoria, 13.XII.1949, T. G. Campbell, i, shaken from Hakea sericea Schrad, Mount Oberon, Wilson's Promontory, Victoria, 5.IX.1967, S. Neser; i. shaken from Hakea sericea Schrad in flower. Story Creek, Cann River, Victoria, 9.1X. 1967. S. Neser ANIC; \&, Brisbane, Queensland, 4.IX.1914. H. Hacker, Brit. Mus. 1923-313; 9. North Narrabeen, New South Wales, 27.X.1957, M. I. Nikitin; + , cliff over Pacific Ocean, North Narrabcen, New South Wales, 13.II.1960, B.M. 1960-619; 우, Bulli Pass, New

South Wales, 20.XI.1948, E. B. Britton; q, by net sweeping on river banks, Loddun River near Bulli, New South Wales, 1.X.1959, N. Nikitin BM 1960-203; \%, Dorrigo, New South Wales, W. Heron, BM 1935-46; ㅇ, Sydney, New South Wales, Distant Coll. 1911-383; ㅇ. New South Wales, presented by Perth Museum B.M. 1953-629; ㅇ, unlocalised BM; ㅇ․ New South Wales AMNH; 7 zै, 5 ㅇ, Brisbane, 1910, Sept. 1915 and 15.IX.1915, ex Bridwell Coll.; 2 §, Stradbroke Island, Morcton Bay, Queensland, 20,IX.1915, J. C. Bridwell; 1 \&, 1 , Botany Bay, New South Wales, H. Petersen, ex C. F.

ᄂ. -0.5 mm

0.5 mm

Fig. 40. Cuspiconu apothoracica sp. nov. Cuspiconu stremselle Walker A-C. Cuspicoma apothonacica. A. lefthand aspect of aedeagus. B. dorsal aspect of aedeagus. C. clasper. D-F. Cuspicona strenhelfa. D. lefthand aspect of aedeagus. E. clasper of usual individual. F. clasper of rather unusual Quecnsland example.

Baker Coll. 1927; है , National Park, New South Wales, 15.II.1957. W. W. Wirth; b, Bacchus Marsh, Victoria, ex G. W. Kirkaldy Coll, 1919 USNM; of, Stradbroke Island, Queensland, 2.X.1911, H. Hacker; ㅇ, Brisbane, Queensland, 10.VIII.1913, H. Hacker KU; 2 甲, Sydney, New South Wales, Oct. 1903, ex Helms Coll. 1 of 2 웅, National Park, New South Wales, Dec. 1905, ex Helms Coll. BISHOP.

Specimens examined: The type series only.

Cuspicona strenuella Walker, 1867
Figs. 40 D-F, 41, 43 E-F
Cuspicona strenuella Walker, 1868, p. 572.
Cuspicona beutenmilleri Van Duzee, 1905, p. 208, pl. 8, Fig. 10. New synonym.

Description:

General appearance: Ground colour rather greenish brown in life with anterior half of scutellum, corium, clavus, a patch on propleuron,

Fig. 41. Dorsal aspect of Cuspicona stremuella Walker.
tibiae medially, embolium and abdomen (laterally) green. Lateral angles of pronotum produced into conical spines, latter black punctate and infuscated towards apices; black punctations in two patches laterally near middle of scutellum; femora maculated with brown.

Head: Greenish brown, evenly punctate; eyes and ocelli reddish or purplish. Lateral margins frequently with black punctations.

Pronotum: Greenish brown, anterolateral margins frequently with black punctations. Spinous lateral angles infuscated towards apices, dark punctate in their basal posterior portions, occasionally these punctations extending transversely across pronotal disc as a narrow band two or three punctations wide, more frequently a quadrate patch of black punctations medially near posterior margin. On each side from base of
each lateral spine an oblique luteous fascia reaching posterior margin near middle. Anterior margin oblique behind eycs and sinuously excavate behind collum. Lateral margins straight or slightly convex and diverging posteriorly in anterior half; posterior hall, with lateral angles, produced jnto a conical, slightly recurved spinous process directed outwards and upwards, about as long as posterolateral margin, its basal diameter rather less than length of posterolateral margin. Posterolateral margins slightly angulately concave, posterior margin broadly concave,

Soutclum: In life anterior hall green and posterior half luteous, medianly luteous produced forward a little into the green. On cither side of scutellum a quadrate patch of dark punctations, their centre just behind midlength of lateral margins, some sparse dark punctations in apical portion. No foved at buse of lateral margins. latter broadly convex in basal third, ther very broadly and slightly convex to broadly rounded apex. Frena reaching about half length.

Hemelyra: Coriaceous parts green in life, rather sparsely and coursely punctate. Exterior murgin of coriun concave in basal quarter then broadly rounded to shorlly rounded apical angle, posterior margin nearly straight, inner angle broadly rounded. Clavus elongate triangular. Membrane and veins hyaline.

Abdomen: Reddish green above with a medial broad black stripe extending back from well before apex of scutellum, genital segment black and reddish green above.

Laterotergites: Green in life posterior margin of VIlth narrowly black. Posterior exterior angles of all segments nearly rectangular with only a tine short spine.

Underside: Luteous; a callous green patch on propleuron just behind eye and natrower than latter, extending back only a little more than halt length of segment, most of basal $2 / 3$ of tibiae (except extreme bases), at triangular patch in posterior portion of metapleuron and a broad lateral band on abdomen with its inner edge irregulat also green, in males also a dark patch, perhaps green in life, more ventrally on either side and extending over ventrites HII-V. separated from the lateral patch by a narrow

Iutcons bar, Antennal segments II-V darker, H-11I strongly maculated with brown as are femora and tibia of last two pairs of legs. Fore fenora and libiae less densely maculated. A bar on the dorsal surface of antennifer and another along buse of bucculae frequently black as are ventral surface and most of last segment of rostrum and a series of lateral spots, one eacts at outer ends of sutures between episterna and epimera and one each on abdoninal segments IV-V1I, just behind each suture. Sometimes more ventral spots on the fourth and bifth ventrites. Mesosternal keel hyaline, metasternal keel sometimes darker.

Bucculae not quite reaching base of head. strongly sinuate produced into an obtuse lobe anteriorly, Rostral segment 1 robust, surpassing bucculae and reaching to unterior portion of prosternum: segment II compressed and curved, reaching to mid coxae: segment III reaching hind coxae and IV onto III rd abdominal ventrite. Ratio of antennal segments 10:17:17:24:25. Procpisterna and procpineret and posterior outer portion or propleuron lightly punctate with reddish black, mesepisterna and metepisterna lightly punctate with fuscous as is oxtreme hind margin of metapleuron. Mesusternal keel projecting aver prosternum to a little past its apex higher and thinner anteriorly, deffected to left anterjorly in ventral view. Femora nommal, tibiae rather Mattened exteriorly in their apical third. Abdomen impunctate except on external genitalia but rather finely rugulose, rounded in posterior view but ventrites VI-III progressively more carinate. Apex of male abdomen Fig. 43 E, apical margin of pygophore sinuate and medianly rather rectangularly excavate, slightly reftexed. Clasper Fig. 40 E.F. strongly $\mathrm{F}^{-s h a p e d . ~ A e d e a g u s ~ F i g . ~} 40 \mathrm{D}$, phallosoma only lightly sclerotized; conjunctiva produced apically into two paralleled tubular lobes directed ruther upwards and apically constricted, their posterior margins in the consuriced region sclerotized: "lappet" processes smail, medial penial plates shaped like an inverted γ, a small tooth on posterior margins of interior branches, Gonopore located between them. Apex of female abdomen Fig, 43 F . hind maruins of first gonocoxue transverse but "stepped", the inner halves lying more anteriorly than the outcr sections.

Dunensions	MALES				
Patrameter	Number of Measurements	Mean	Standard Deviation	Coefficient of Variation	Observed Range
Head length	14	38	2.0	$5 \cdot 4$	35-42
llead width	14	39	0.8	2-1	$38-40$
Artennal segment 1	20	10	0.7	6.8	K-10
Anternal segment if	21	17	1.5	8.8	15-20
Antennal segment llt .t.	21	17	11	6.2	15-19
Antennal scgment IV ...	12	25	$1 \cdot 1$	4.2	23-27
Attennal segment V ,	9	26	1.5	5.7	2428
Pronotum width...	14	129	7.6	5.9	120-140
Pronotum Ingth	14	32	$2 \cdot 6$	$8 \cdot 1$	26-35
Tatal lengtio....	13	159	9.5	6.0	140-177
	FEMA				
Parameter	Number of Measurements	Mcan	Standard Deviation	Coellicient of Variation	Observed Range
Head length	25	41	2.8	0.8	33-44
Head width	25	41	1.6	$3 \cdot 4$	37.44
Antennal segment I	38	10	0.7	$7 \cdot 3$	8 -11
Antennal segment II	38	18	1,5	8.2	15-20
Antennal segment III .	38	16	1.6	10.2	13.20
Alutennal segment IV	26	24	1:7	7.2	20-28
Antennal scgment V	22	24	1.6	6.7	$21-28$
Pronotum width ...	25	138	8.8	6.4	121-152
Pronotum length	25	37	3.9	10.7	31-43
Total length . . .	25	175	12.5	7.2	155-210

Remarks: One male Queensland specimen to hand of this species is rather smaller than the other material, the pronotum anteriorly has a longitudinal pale callus and the shape of the clasper appears to be rather different to that seen in the other specimens dissected. This Queensland form may represent a distinct subspecies but one specimen is not adequate to determine that this is so. Consequently it is not so considered here, the dimensions of this male is: head length 36 ; head width 36 ; antennal segment 1 8; antennal segment II 18; antennal segment III 13; antennal segment IV 25; antennal segment V 27; pronotum width 115; pronotum length 30 ; total length $139(7 \cdot 2 \mathrm{~mm}$.).

The types of both strenuella Walker and beutenmillteri Van Duzee have been examined, and, although females, clearly represent this one specics.

Locution of types:

Type ρ of strenuella, Walker, without locality BM ; type of beurenmilleri Van Duzce, "Victoria", AMNH.

Specimens Examined: Queensland A, Mt. Norman area via Wallangarra, 7-8.X.1972, G. B. \& S. R. Monteith UQ: 3 3, unlocalised. from C. French Jun, I5.XI. 1911 NM; New South Wales 18. Ebor. 3.X11.1915 OM; 1 .

Jindabyne, 1000 m, Mar. 1889, Helms; J q, Mannus near Tumbarumba, I.XII.I950, T. G. Campbell; I s. Dorrigo. Feb. 1929, W. Heron. K 59373, AM: 28 , Abercrombic River, 80 km north of Goulburn, 27.XI.1967. Britton and Misko ANIC; 32, Dorrigo SAM; 2\%, The Dorrigo, $1000 \mathrm{~m}, \mathrm{~W}$. Heron; 1 \&, near Sydney, Wheeler AMNH: 19, 3 km west of Kioloa, $90 \mathrm{~m}, \quad 17$. XII.1962, E. S. Ross \& D. O. Cavagnaro CA; 1 f National Park, 29.IX.1902, Helms Collection, Bishop; Australian Capital Territory 4s, 1 吕, Blundells, 30.III. 1930, T. G. Campbell; 1 \&, Blundells, 30.VIII.1933, T. G. Campbell ANIC: Victoria 1δ. Emerald, Sept. 1930, J. Evans ANIC; 3 9, Ringwood; 1\%. Trafalgar, 9.VI.1930, F. E. Wilson; 1ㅇ. Murrindini, 24.11.1971. A. Neboiss: 1 of Wallan, 25.XII.1956, F. Hallgarten, NM; 1 है, Croydon, 24.XII.1948, N. B. Tindale: 19, Port Campbell, Nov. 1959. G. F. Gross SAM; 19, Launching Place, 17,1,1905. Bueno via Van Duzee Collection CA; Tasmania 18 , Dulverton, Mar. 1972 ANIC; South Australia 1 ㅇ, Mylor, J. Formby, K56187 AM;] 9 , Glen Stuart, 9.XII,1893, Tepper; 1 oै, Magill, 13.X 1883, on Aster sp, Tepper; 12. no locality or date, Rev. A. P. Burgess SAM; 1t. 1 , no other
 Jun. 15.XI. 1911 NM; 1 \& Austral bor, Thorey: 1ㅇ, Australia, Boutard; 19, Nov, Holl., Ekeberg, Stockholm.

Cuspicona longispina sp. nov.
Figs. 42, 43 C-D.

Description:

General appearance: Ground colour green in life with head and antennae, most of pronotum, apical half of scutellum, dorsum of abdomen, brownish, yellowish or cream coloured as also on underside of head, rostrum, most of prothorax, half of mesothorax, ventral regions of metathorax and abdomen, bases of femora and apices of tibiae. Head and anterior part of pronotum strongly deflexed. Lateral angles of pronotum produced into long spines, on dorsal surface of spines and across dise of pronotum between spines a band of black punctates tive or more punctations wide.

Head: Brownish yellow, extreme lateral margins with some blackish punctations, eyes and
ocelli purplish red. Dise evenly and finely punctate, rather raised medially, more so towards base than apex.

Pronotum: Brownish with apices of lateral spines black and a broad row of punctations on spines basal to black tips and then running transversely across pronotum black, this row more than five punctations wide in centre of disc. In fresh specimens a green trapezium shaped patch anteriorly not reaching anterior or lateral margins, calli glabrous, located in the green area, Anterior margin oblique behind eyes and rather rectangularly excavate behind collum. Anterolateral margins straight, obtuse, and diverging posteriorly in anterior half; posterior half, with Jateral angles, produced into a long, conical acute tipped spinous process which is directed outwards and somewhat upwards, these spines about 50 per cent longer than posterolateral

Fig. 42. Dursal aspect of Cuspicuna longispina sp. nov.
margins, their basal diameters about 25 per cent less than length of posterolateral margins. Posterolateral margins obtusangulately concave, posterior margins broadly concave.

Scutellum: In fresh specimens a basal green triangular patch more or less in the shape of scutellum itself but not reaching lateral margins nor further than three quarters of the length, laterally to this bright yellow, in posterior thired to one quarter of seutellum eream coloured with coarse black punctations tending to be concentrated near midline. No fovea at base of lateral margins, latter broadly convex in basal half then almost straight to broadly lanceolate apex. Dise only slightly raised basally. Frena reaching about half Jength.

Hemelytra: Coriaceous parts green in life. fading to brown in museam specimens, coarscly punctate, Slightly narrower than abdomen in apical two thirds: exterior margin of corithm concave in basal quarter then broadly convex to nearly acute apical angle, posterior margin of corium nearly siraight, inner angle broadly rounded. Clavus elongate triangular, Mentbrane and veins hyaline.

Abtomen: Not clearly seen in any of the specimens but apparently brownish yellow with some paired black marks behind apex of scutellum.

Laterotergites: Gireen in life, posterior exterior angles of segments nearly rectangular.

Undersile: Head, first, second and most of third antennal segments and most of rostrum brownish yellow: apex of third antennal and fourth and fifth antennal segments brown: rostrum ventrally and most of its apical segment black, a reddish patch ventrally near base of second segment. Prothorax rather cream coloured with black spots course on underside of lateral spines and less dense on propleuron. Above proepisternum and proepimeron a glabrous concoloroos patch and exterior to this a rhomboidal callous green patch reacting to anterior margin, almost to exterior margin but widely separated from posterior margin. Mesothorax mostly crean coloured with posteriorly a narrow nearly quadrate green patch reaching exterior margin. Metathorax broadly cream coloured ventrally, laterally green, the imer margin of this green in line with inner margin of green mesothoracic patch. Metasternalmesosternal keel semihyaline, Coxue and bases of femora cream coloured, sest oll lemora and bases of tibiac green, apicat $2 / 5$ of tibiae yellow.
tarsi and elaws brown. Abdomen with whole external genitalia broadly pale cream coloured medially, laterally green.

Bucculae reaching base of head, convexly curved, produced into a rather triangular lobe antesjorly, Rostral segnent I robust, reaching base of head, segment II arched and reaching mid coxite, segment III to base of abdomen and IV to base of abdominal ventrite V. Ratio of antennal segments 9:17:16:22:22. Propleuron sparsely punclate except on green asea. mesopleuron sparsely punctate on mescpisternum, metapleuron sparsely punctate on metepisternum. Metasternal-mesosternal keel projecting over prosternum to a little past its apex, higher and thinner anteriorly, deflected a little to left anteriorly in ventral view. Femora norsnal, tibiac slightly flattened apically on exterior surface. Abdomen impunctate, rather rounded in posterior view but ventrites VI-III progressively nore catinate ventrally. Apcx of male abdomen Pig. 43 C . pygophore with posterior margin shallowly concave in middle, laterally slightly sinuate, rather broadly and slightly reflexed. Apex of female abdomen Fig. 43 D, posterior margins of lirst gonocoxuc simuate, paratergites XI almost triangular.
Dimensions
Holotype
Baratyne
Males
Average

of 6) \quad| Paratype |
| :---: |
| Females |
| (Average |
| of 6) |

Remarks: This specics is rather similar to thoracica but differs in the much longer Jateral spines on the pronotum, in the lateratly green and ventrally luteous abdomen, the different slape of the male pygophore and the lack of black punctations on the dise of the head. It apprats to replace hhoracica and apothorncion in South Australia and Western Victoria.

Location of types:

Holotype s , 1 paratype if, North Beach. Wallaroo. South Australia, by beating flowering ti-tree (Mclalcuca sp.), 12.II.1964, G. F, Gross SAM 120,633-4: allotype 8. 1 paratype $9,6 \mathrm{kll}$ east of Two Wells, South Australia, beaten from

Melalenca lanceolata Otto, 7.VII.1971, A. N. McFarland SAM 120,665-6; 1 paratype z, I paratype $9,6 \mathrm{~km}$ east of Two Wells, South Australia on Callitris preissii Miq., 6.IV.1968, A. N. McFarland SAM 120,667-8; I paratype $\frac{1}{6}$. approx. 5 km east of Two Wells, South Australia, on Melaleuca, 27.VIII.1966, A. N. McFarland SAM 120,669; 1 paratype δ, Yarcowic, 26.1V. 1894, H. Mayer SAM 120,670; 1 paratype of.

Summit of Hummocks Mount, in dense underscrub and trees, 30. V. 1968, H. M. Cooper SAM 120,671; 1 paratype of, 1 paratype o o, Murray River South Australia, H. S. Cope AM; 1 paratype 9, Purnong on Murray River South Australia; 1 paratype ㅇ. Mallee, Northwest Victoria, donated 5.X. 1922 F. P. Spry NM.

Specimens examined: The types only.

Fig. 43. Caspicona cygniterae sp. nov., Cuspicona lonsispina sp. nov.. Cuspicona stremuetha Walker. A-B. Cuspicoma eygniterrae A. venirail aspect of male abdomen. B, ventral aspect of female abdomen. C-D. Cuspicona longispina. C. ventral aspect of male abdomen. D, ventral aspect of female abdomen. E-F. Cuspicona stremella. E. ventral aspect of male abdomen. F. ventral aispect of female abdomen.

Cuspicona cygniterrac sp. nov.

Figs. 43 A-B, 44.

Description:

General appearance: Ground colour brown in life with anterior half of scutellum, corium, clavus, laterotergites, legs (except apices of tibiae and tarsi), a patch on propleuron, and outer margin of abdomen (broadly) bright green. Rest of underside creamy coloured. Lateral angles of pronotum produced into long spines.

Head: Yellowish or greenish brown, evenly punctate; eyes and ocelli reddish or purplish. Relatively long in relation to its width.

Pronotum: Brown, apices of lateral angles black or reddish black, punctations reddish black. a broad longitudinal raised area in anterior half and calli glabrous, yellowish. Anterior margin oblique behind eyes and rather rectangularly excavate behind collum. Lateral margins straight and diverging posteriorly in anterior half, posterior half with lateral angles produced into a
long, conical, acute-tipped spinous process up to about 75 per cent longer than posterolateral margin, its basal diameter about the same as length of posterolateral margin. Posterolateral margin only faintly concave, posterior margin broadly concave.

Scutellum: In life anteriorly greenish and posteriorly brown, normal length, raised basally and nearly flat in apical two thirds. No, or only a minute fovea at base of lateral margins, latter broadly convex in basal third, then very broadly and slightly convex to broadly rounded apex. Punctations rather sparse and concolorous in anterior portion and in midline in medial third, laterally a dense patch of reddish black punctations near middle, in apical quarter punctations sparse but reddish black. Frena reaching about half length.

Hemelytra: Coriaceous parts green in life, yellowish brown in museum specimens, rather
sparsely and coarsely punctate, depressed and silvery glabrous just exterior to medial fracture. Narrower than abdomen in apical three quarters; exterior margin of corium concave in basal quarter then broadly rounded to shortly rounded apical angle, posterior margin of corium nearly straight, inner angle broadly rounded. Clavus elongate triangular. Membrane and veins hyaline.

Abdomen: In museum specimens anteriorly and laterally yellowish; medially (behind apex of scutellum) a black spot, then reddish to apex with some black patches margining the reddish.

Laterotergites: Yellowish or green, posterior margin of VIIth narrowly reddish black. Posterior lateral angles of all segments rather blunt.

Underside: Head, antennae and rostrum yellowish brown, latter darker ventrally and with terminal segment black in apical half. Thorax

Fig. 44. Dorsal aspect of Cuspicona cygniterrae sp. nov.
and abdomen yellow but green areas as follows: femora and hasal $2 / 3$ of tibiae, a rather quadrate glabrous patch on propleuron behind eye but not reaching posterior margin of propleurotr, a triangular region along outer portion of hind margin of metapleuron which extends forward on this segment as lateral margin is approacled, a broad lateral hand on abdomen with its interion edge sinuated. Tarsal claws black, apical bath of lateral spine red, infuscated towards apex. metasternal-mesosternal keel hyaline. Pale portion of abdominal venter with faint pink maculations. In males medially on ventrite VIl near its apex some black spots and apical margin and red markings. Female with reddish black spots on first gonocoxae and pale reddish marks on rest of external genitala, hind margins of paratergite VIII lateral to median incision narrowly black.

Bacculae not reaching base of head, sinuate, produced into an obtuse lobe anteriorly. Rostral segment I robust, surpassing bucculae and reaching base of head, scgment II reaching about middle of mid coxae, segment III to base of abdomen and IV to base of 1 V th abdominal ventrite, Ratio of antennal segments $9: 15: 13$: 21:21. Propleuron sparsely punctate on mesepisternum and mesepimeron along posterior margin, no underside of leteral spine strongly punctate, mesopleuron punctate only on nesepisternum, metapleuron punctate on episternum, epimeron and along posterior margin. Meta-sternal-mesosternal keel projecting over prosternum to a little past its apex, higher und thimer anteriorly, deflected to the left anteriorly in ventral view. Femora normal, libiae rather flattened exteriorly in their apical third. Abdomen impunctate save where previously indicated, rather rounded in posterior view but ventrites V-III progressively more carinate medianly. Apex of male abdomen Fig. 43 A. pygophore with posterior margin medianly rather rectangularly excavate, posterior margin rather broadly and slightly reflexed. Apex of female abdomen Fig. 43 B , posterior margins of first gonocosae rather concave.

Dinmensions-		
Parameter	Males (average of 2)	Eemalea (aversge ol 5)
Head length	32	37
Head width	34	14
Anternal segment 1	4	9
Antennal segment 11	1ti	15
Antennal segment JII .	11	14
Antennal segmert 1V.	21	21
Antennal segment V	21	21
Pronotum widh	128	137
Pronotum lengils	25	27
Tatal Jengith.....	12.6	147
Tolal length: 6.4 .7 .6 mm		

Remarks: C. cygniterrac resembles rather closely C. longispina in general appearance and in the possession of very long produced lateral ingles of the pronolum. It is however distinguished from that species by not laving a conspicuous transverse dark band of punctations running across the pronotum between the latetal angles, by having a conspicous patch of dark punctations on either side of the scutellum near its middle and by the more rectangularly excised hind margin of the pygophore.
C. cygniterrae, like C. Iongispina, also resembles C. strenuella but has longer lateral spines on the pronotum and differently shaped external genitatia. C. cygniterrae appears to occur only in Western Australia whereas C. longispina is found in South Australia and Western Victoria and C. strenuella ranges from South Australia to Queensland. The Thomas River specimen of evgniferrae has shorter lateral spines on the pronotum than the other examples.

Locruion of Typens:

Holotype of. Kalamunda, Western Australim, 3.JV.1963. J. Dell WAM; I paratype 9. Thomas River 100 km east of Esperance at 3351 S $121^{=} 53^{\prime}$ E. Western Australia. 20.X1.1969, E. B. Britton ANJC: allotype $\ddagger, 1$ paratype $\%$ Mt. William, Western Australia, $250 \mathrm{~m}, 6 . \mathrm{XJ}$. 1963, J. Sedacek Bishop; 1 paratype on, 1 paratype 9. Swan River, Ja J. Newman BM; 1 paratype à, 1 paratype of, Serpentine Dam near Jarrahdule, Western Australiat 9.XII.1971, on Agomis lineorifolior (DC) Schau, J. A. Slater in J, A. Stater Collection, Storrs. Connecticut. U.S.A.

Specimens Etamined: The Iypes only.

Simplex Croup

The simplet Group of species includes a group of species ranging from the Philippines. through Indonesia and New Guinea to Australia, New Zealand, Norfolk Island, New Caledonia und the New Hebrides. The species in this group are nearly completely grass-green in lite with perhaps pinkish or reddish lateral angles of the pronoturn and sometimes several of the other lateral margins as well. In museum collections most specimens fade to a characteristic light yellow colour with the pink areas persistent in colour. The lateral angles of the pronotum may be rounded (privaha), obliquely truncate (norfolcensis), acute (simplex) or produced as a rather conical spine (forficornis). The bind margin of the corium is convex.

In all of the species the first gonocoxae of the female do not have a transverse or slightly concave posterior margin but instead this margin is produced posteriorly in its inner half, sometimes gently, sometimes almost rhomboidally.

There is a small but varied list of host plants from which members of this group have been captured but only plants of the family Solanaceae have been recorded more than once and in their case for four of the eight species of this group which occur in the area covered by this paper.

Further work on the male aedeagus pattern in Cuspicona may reveal that this group of species should perhaps be placed into a new genus of their own. However the dissections which could be done on members of the group do not reveal any apparent major differences from carlier mentioned species of Cuspicona and so far as

I have been able to see nothing of the order of differences which distinguish Ocirrhoe species from species of Cuspicona.

Cuspicona privata Walker, 1867
Figs. 45, 46 A-D, 48 A-B.
Pentatoma viride Montrouzier, 1855, p. 98 (preoccupied by Pentatoma viridis Palisot de Beauville, 1811).
Cuspicona viridis Montrouzier and Signoret, 1861, p. 65. Stål, 1866, p. 156; 1876, p. 102. Lethierry and Severin. 1893, p. 181. Distant, 1920, p. 146.
Cuspicona privata Walker, 1867, p. 382. New synonym but oldest available name.
Cuspicona laminata Stă1, 1876, p. 102. Lethierry and Severin, 1893 , p. 180. Kirkaldy, 1905. p.357. New synonym.

Fig. 45. Dorsal aspect of Cuspicona privata Walker.

Ocirrhoe privata Distant, 1900a, p. 422. Cuspicona zeloma Kirkaldy, 1909, p. 143 (new name for viride Montrouzier).

Description:

General appearance: Ground colour bright green in life but museum specimens frequently yellowish. Punctation fairly fine and even over dorsal surface, on dorsum of head denser and appearing rugulose. Lateral angles of pronotum broadly rounded.

Head: Concolorous, densely punctate. Eyes and ocelli concolorous or blackish.

Pronotum: Concolorous though lateral angles sometimes slightly infuscated; latter broadly rounded. Anterior margin concavely excavate behind collum changing rather gradually to obliquely excavate behind eyes, Anterolateral margins nearly straight. Posterolateral margin concavely elongate, posterior margin only slightly concave. Punctations fine though not very dense, calli impunctate.

Scutellum: Concolorous; rather long; faintly raised basally and nearly flat in apical two thirds. Lateral margins with at base a concolorous fovea. slightly convex in basal half, then straight and gently converging then converging more strongly to apex. A trace of a medial impunctate line on disc.

Hemelytra: Coriaceous parts concolorous, linely but not so densely punctate, narrowly glabrous just interior to medial fracture. Narrower than abdomen in apical three quarters; exterior margin of corium faintly concave basally then broadly convex to apex; apical angle strongly convex, posterior margin convex. Clavus reaching to about middle of scutellum, elongate triangular. Membrane hyaline with veins same colour.

Abdomen: Concolorous; impunctate.

Laterotergites: Concolorous; sometimes impunctate sometimes with sparse punctations; apical angles with a small black tipped spine, those on seventh segment hardly longer than rest.

Underside: Mainly concolorous or tending somewhat lighter than upperside with antennue and apical segment of rostrum (except black apex) brown. Tarsal claws black in apical halves. Bucculae low and sinuate, reaching about base of head, anteriorly produced into a small angulate lobe. Rostral segment I robust, reaching to base of bucculae, II nearly straight and just surpassing fore coxae, III reaching nearly to second coxale, IV to about middle of hind coxae. Ratio of antennal segments I-V 8:17:14: 23:26. Propleuron coarsely punctate except

Fig. 46. Cuspicona privatu Walker. A. right hand side view of acdeagus. B. dorsal aspect of apex (conjunctiva) of nedeagus. C. clasper (New Hebrides examples). D. clisper (Austratian examples).
broadly along lateral margin and on procpisteentum and proepimeron. Mesopleuron punctate only laterally in an anterior triangular area reaching from. and including, mesepistermum and with apex not reaching to exterior margin. Metasternum coarsely punctate only posteriorly. Metasternal-mesosternal keel reaching over prosternum but not to apex of latter, prosternum deeply sulcate under the keel, keel more elevated anteriorly than posteriorly. Fentora normal, all tibiae rather flattened exteriorly in their apical quarter, first two pairs more obviously so than posterior pair; tarsi normal.

Abdomen only gently V-shaped in posterior view, coarsely punctate laterally, glabrous along midline and lateral margins. Apex of male abdomen Fig. 48 A , apical margin of pygophore
rather angulately concave, above postcrior margin a low forwardly inclined septum. Clasper Fig. 46 C-D, rather F-shaped, the upper ramus much longer in New Hebrides specimens (Fig. 46 C) than in Australian specimens (Fig, 46 D), Aedeagus Fig. 46 A-B, with basal plates rather slender though large, phallosoma only slightly sclerotized. Conjunctiva produced anteriorly into an asymmetrical lobe (shown clearly in dorsal view Fig. 46 B), produced dextrally into two short lobes and sinistrally into a larger reflexed lobe; "lappel" processes rather long and slender: a robust vesica with a terminal filament opens in front of the medial penial plates which lie laterally on a ventral mernbranous swelling. Apex of temale abdomen Fig, 48 B , hind margin of first gonocoxae oblique and slightly concave, so that there is only a short obtuse interior lobe.

Dimensions-

MALES

Remarkis: This is one of the most widely distributed species of the genus in this area, ranging from the New Hebrides through the Loyalty Islands and New Caledonia to Australia and in Australia from Queensland to Victoria. The only records on plants are from ferns and blackberries.

The uedeagus is singular in the genus in that the conjunctiva apically is produced laterally but asymmetrically with two lobes, one the right hand side (as seen from the reat und looking forward) bifid and one larger entire reflexed lobe on the left hund side.

As the claspers of New Hebrides exumples have the upper tamus much longet than in Australian cxamples a case could be made for a subspecific difference here. However, as we do not yet know the shape of the claspers in Loyalty Island or New Caledonian examples it would bo premature to create subspecies at this time.

Location of types:

Type of Pentatoma viride Montrouzior, "Woodlark $\Gamma_{0}{ }^{*}$. not located; holotype o of Cuspicona privala Walker. "Ancityum, New Hebrides", in BM: holotype of Cisppicomes laminara Stâl, "New Caledonia", in Stockholmi.

Specimens examined：New Hebrides the type of privata Walker and I 9 ，Aneityum，Nov． 1930 ， L．E．Cheesman，BM 1931－127；18，Red Crest， $365 \mathrm{~m} ., 4.8 \mathrm{~km}$ N．E，of Ancleauhat，Ancityum． May－June 1955，L．E．Chcesman．BM 1955－217： 19．Tanna，Oct．1930，L．E．Cheesman BM 1931－30；2\％，Erromanga．Aug．1930，L．E． Cheestan．BM 1930－496；1 \％；，north east Malekula，July 1929，L．E．Cheerman，BM 1929－514；1 ？，by beating ferns in vicinity of Anelcauhat，Aneityum，22．VII．1971，G．F．Gross on Royal Society Percy Sladen Expedition SAM． Loyalty Islands 1 is．La Roche，Maré，30．Xt． 1911，Distant coll，1911－383 BM．Queensland I ，Pimpama，17．111．1962，1．J．McKenzie， 1 f Mt．Glorious，25．IV．1930，D．D．A．： 1 है Laming－ ton National Park．28．V．1959．Fi A．Perkins； 1 ơ，Bald Mountain area，via Emu Vale，900－ 1200 m （3000－4 000f．），26－30．t．1973．G． Monteith；UQ：］万．2\％，Mt．Tambourine， 19 \＆ 22．XIL．1925，A．Musgrave \＆G．P．Whitley AM K 54695；15．Fairy Bower，Rockhampton． 15．I．1962，I．F．B．Common：I \＆Eidsvold ANIC： 18．Cuirns，A．M．Leni 1 A，Kuranda，F．P． Dodd：1\％，Lake Barrine，Atherron Tableland． $700 \mathrm{~m} .$, 12．IV．1932，P．Darlington on Harvard Expedition； 1 ：Lankelly Creek，Mcllwraith Range，Cape York Peninsula，7，V1．1932，P． Darlington on Harvard Expedition；19，Bunda－ berg，A．M．Lear 18．National Park，McPlerson Range，（ $910-1220 \mathrm{~m}$ ），12．111．1932，P－Darling－ ton on Harvard Expedition；13， 398. Mt． Tambourine，A．M．Lea SAM： 1 8，Bundaberg BM 1942－95； 1 a，28，Tambourine Mountains． 1－9 \＆18－25．V．1935，R．E．Turner BM 1935－ 240；19．National Park．McPherson Range． （910－1 220 m ），10．115．1932，P．Darlington om Harvard Expedition； 1 星，Lankelly Creek，Mcll－ wraith Range，Cape York Peninsula，7．VI． 1932. P．Darlington on Harvard Expedition AMNH： 18．Tambourine Mountain，28．X．1912，H． Hacker．KU： 1 2 ，Mt．Glorious，in rain forest， 13－16．11，1961，L．\＆M．Gressitt；1 \＆19，Lam－ ington National Park， $900-1000 \mathrm{~m} .016$－ 18.11 ． 1964，J．Sedlacek；1 f，19，Bathinda，from scrub． 1920 ，J．F．Illingworth BISHOP．New South Wales 1 d，Dorrigo National Park via Dorrigo， 21．I．1966，T．Weir UQ； $1 q$ ．Toolown．Jan． 1926．H．Hacker OM： 1 है，Dorrigo，W．Heron； 2 st，Ulong East，Dorrigo，W．Heron．K 43657 1 to 19. Comboyne， 10×1.1932 ，K，C． McKeown，K 66123－4； 13 ，Wollongong，Dob－ bins Bush，on blackberry，12．IT． 1949 and 1% Wollongong．on blackberry inflorescence，13．11I． 1949．both C．E．Chadwick； 1 ？，Sydney，Oct． 1931．Dr．K．K．Spence AM；1 2 ，Bawley Points of Ulladulla，2．11．1961，D．F．Watcrhouse； 1 i．

8 km （ 5 miles ）south of Bega，28．X11，1964． K．R．Norris ANIC； 12 ，Upper Williams Road， Ocl．1926，Lea \＆Wilson；10，Baw Baw near Armitage，Mar， 1914 NM；1 औ，1 1 ，Dorrigo： 15. Sydney，Lea SAM： 1 \＆Fairfiedd，27，14，1960， F．L．Edwards BM 1960－370；10．The Dorrigo，
 1945，N．E．Kent BM 1950－317；1\％，unlocalised， RM；Australian Capital Territory 18. Black Mountain，4．III．1964，H．Davies：28．O＇Connor． 13．XII．1967．I．F．B．Common ANIC；Victoria 2 号，Langwarrin，8．XIL．1923： 13 ，Jarrah Valley，Jun．1961．K．Healey： 18 ，Walhalla， Apr 1930，F．E．Wilson：18，Burwood，16．IX． 1959．K．Matchett：1 है，I\％．Ferntree Gully． Jan．1916，donsted．F．P．Spry： 18, Melbourne， May 1929，F．D．Selby； $2 z^{2}, 12 \mathrm{~km}$ ．south east of Merrijig，Howqua River．30．XI．1971，A． Nebaiss； 1 f，Millgrove，9．1．1929，F，E．Wilson NM；is，Launching Place，10．1．1905，ox E，P． Van Duzee Collection CA．

Cuspicona norfolecnsis sp，nov．

Figs．47． 48 C

Description：

General appearance：Yellowish，but probably bright green in life．Punctation not even over dorsal surface，on head denser and appearing rugulose．Lateral angles of pronotum obliquely rruncate．

Head：Concolorous，densely punctate．Eyes purple，ocelli red．
Pronotum：Concolorous．Anterior margin rather angulately excavate behind collum and obliquc behind eyes．Anterolateral margins nearly straight，lateral angles obliquely truncate： posterolateral margin concavely excavate：poste－ rior margin slightly concave．Punctations line and fairly dense，callii impunctate．

Scutellum：Concolorous，rather long，faintly raised basally and nearly that in apical two thirds． Lateral margin with at buse a concolorous fovea， slightly convex in busal half，then straight then converging to relatively narrow sounded in lanceolate apex，Punctate as for pronotum．

Hemelyira：Coriaceous pats concolorous． punctations coarser and less dense than on pronotum and scutellum，narrowly glabrous just interior to medial fracture．Only slightly narrower than abdomen in apical half；exterior margin of coriun fairly concave basally then broadly convex to apex：apical angle convex and posterior margin convex．Clavus reaching about midde of scutellum，elongate triangular，Men－ brane and its veins hyaline．

Fig. 47. Dorsal aspect of Cuspicanez norfolcensis sp. nov.

Abdomen: Not visible on single example.
Laterotergites: Interiorly concolorous but exteriorly narrowly infuscated on laterotergites VI and VII; apical angles with a small blacktipped spine, the spines on VI and VII larger than rest.

Underside: Concolorous but apices of rostrum, tarsal claws, abdomen and pygophore (wholly) infuscated. Bucculae low and sinuate, reaching base of head, anteriorly produced into an angulate lobe. Rostral segment I robust, reaching to base of bucculae, II nearly straight and just surpassing fore coxae, III reaching between mid and hind coxae, IV to about middle of third abdominal segment. Ratio of antennal segments I-V 11:20:20:28:30. Propleuron coarsely punctate except broadly laterally and on proepisternum and procpimeron. Mesopleuron
apparently impunctate, metapleuron also impunctate. Metasternal-mesosternal keel reaching over prosternum to apex of latter, rather strongly elevated anteriorly and lower posteriorly. Legs normal, tibiae not flattened.

Abdomen strongly V -shaped in posterior view, a few scattered punctations laterally. Apex of male abdomen Fig. 48 C , seventh segment apically in the middle and its posterior spines and pygophore infuscated. Apical margin of pygophore sinuate.

Dimensions: Head length 30, head width 42, antennal segment I 11, antennal segment II 20, antennal segment III 20, antennal segment IV 28, antennal segment V 30, pronotum length 41, pronotum width 119 , total length 200.

Total lengin: 10.4 mm .

Fig. 48. Cuspicona privata Walker, Cuspicona norfolecnsis sp. nov. Caspicona simplex Walker, Parocirrhore woodwardi gen, sp. nov. A-B. Cuspicoma privuta. A. ventral aspect of apex of male abdomen. B. ventral aspect of female abdomen. C. Cuspicona norfolcensisventral aspect of male abdomen. D-E Cuspicona simplex. D. ventral aspect of male abdomen. E. ventral aspect of female abdomen.
F. I'arocirrhoc wootwardi-ventral aspect of female abdomen.

Remarks: This species is fairly similar to privata, simplex and proxima in general appearance but may be distinguished, at least in males. by the darkened abdominal apex beneath.

Location of type:

Holotype fo , Norfolk lsland, A. M. Lea, SAM I 20, 662.

Specimens exumined: The holotype only.

Cuspicona simplex Walker, 1867

Figs. 1 B, 48 D-E, 49, 50 A-D, 51
Cuspicona simplex Walker, 1867, p. 388. Froggatt, 1901, p. 5, fig. 8; 1907, p. 329, pl. 31. Sloan, 1941, p. 277-294. Anon,, 1942 p. 498. Spiller \& Turbott, 1944, p. 79. Woodward, 1953, p. 314, 320; 1954, p. 215, 217. Eyles, 1960, p. 1004. Ramsay 1963, p. 5.

Cuspicona virescens Tryon, (non Westwood \& Dallas), 1889, p. 189.

Description:

Gencral appearance: Ground colour bright green in life but museum specimens frequently yellowish. Punctation fairly fine and even over dorsal surface, on dorsum of head denser and appearing rugulose. Lateral angles of pronotum acute.

Head: Concolorous, densely punctate. Eyes and ocelli concolorous or blackish purple.

Pronotum: Concolorous though lateral angles partly blackish or pinkish at extreme apex. Apical angles produced as a short rectangular spine about one-third length of posterolateral margins. Anterior margin trapeziformly excavate behind collum and obliquely truncate behind eyes.

Anterolateral margin straight or only very faintly concave, obtuse. Posterolateral margin strongly and rather rectangularly concave, posterior margin only faintly concave. Punctation fine and dense, calli impunctate.

Scrtellum: Concolorous; flat in apical two thirds, faintly raised in basal third. Lateral margins with at base a concolorous fovea, slightly convex in basal half, then straight but converging to near apex, latter broadly rounded. A trace of a medial impunctate line on disc.

Hemelytra: Coriaceous parts concolorous; finely and fairly densely punctate except just inward of medial fracture in its apical half, then glabrous. Exterior margin of corium slightly concave basally then broadly convex to apex; apical angle strongly convex; posterior margin convex. Clayus short but elongate triangular. Membrane hyaline with veins same colour.

Abdomen: Concolorous; impunctate.

Latcrotergites: Concolorous; some coarse punctations exteriorly; apical angles with a small black tipped spinc, those on seventh segment not longer than rest.

Underside: Concolorous except: antennae brown; underside of rostrum and apex of terminal segment, apical halves of tarsal claws, and apical spines on sides of abdominal ventrites black. Bucculae low and sinuate, reaching almost to base of head, anteriorly lobulately produced. Rostral segment I robust, reaching almost to base of bucculae, II arched and reaching nearly to middle of mesosternum, III reaching to between mid and hind coxae, IV reaching about apex of abdominal ventrite II. Ratio of antennal segments l-V approximately $8: 19: 18: 26: 29$. Propleuron coarsely punctate except broadly along lateral margin and on procpisternum and proepimeron. Mesosternum coarsely punctate but with several callous patches, an especially large one ventrally. Metasternum coarsely

Fig. 49. Dorsal aspect of Chspicona simpler Walker.

Fig. 50. Cuspicom simplex Walker. A. dorsal aspect of aedeagus. B, righthand side view of aedeagus. C. ventral aspect of aedeagus. D. clasper.
punctate except on evaporative area. Mesosternal keel teaching over prosternum but not to apex of latter, prosternum deeply sulcate under the keel, the keel more elevated in anterior half than posterior half. Legs normal, tibiae cylindrical.

Abdomen strongly V-shaped in posterior view, medially rather broadly raised along midline and glabrous, glabrous also along lateral margins between, these and midline coarsely punctate. Apex of male abdomen Fig. 48 D, apical margin of pygophore rather sinuate, medially the posterior margin ventrally more depressed than the remainder, above posterior margin a low septum.

Clasper Fig. 50 D, strongly F-shaped. Aedeagus Fig. 50 A-C with basal plates rather large, phallosoma only very lightly sclerotized. Conjunctiva rather rounded in dorsal and ventral view, triangular in lateral view, not divided into appendages except for a pair of more strongly sclerotized "lappet processes" dorso-laterally; medial penial plates ventrally directed and in the shape of an inverted Y when viewed from the side, their dorsal arms apparently connected (Fig. 50 C); there is a short vesica opening just in front of the medial penial plates. Apex of female abdomen Fig. 48 E , hind margin of first gonocoxae produced only into a short lobe which is not rectangular.

MALES

Number of
Measurements Mear

49	34
50	40
76	9
85	19
86	18
78	26
60	30
49	117
50	38
50	182

Standard Deviation	Coefficient of Variation	Observed Range
	5.4	$29-38$
1.8	3.8	$36-43$
1.5	10.8	$6-11$
1.0	6.0	$17-22$
1.2	8.9	14.21
1.6	6.3	$21-29$
1.6	4.9	$35-31$
1.4	5.5	$105-135$
6.5	9.1	$32-47$
3.5	5.1	$160-203$
9.3		

FEMALES

Number of Measurements	Mcan	Standard Deviation	Coeflicient of Variation	Observed Range
	34	2.1	6.1	$30-40$
49	41	1.6	4.0	$37-45$
50	9	0.7	8.3	$7-10$
79	20	1.2	6.0	$16-25$
86	18	1.7	9.1	$15-22$
83	26	1.7	6.4	$22-30$
69	29	1.6	5.3	$23-32$
59	125	8.7	6.9	$105-139$
50	41	3.6	8.7	$34-48$
50	196	12.2	6.3	$170-225$

Remarks: This species is particularly common near the coast in eastern Australia though there are scattered records from Victoria, Tasmania, South Australia and Western Australia (Fig. 51). It occurs in New Zealand (Spiller and Turbott, 1944; Woodward 1953 and 1954; Eyles, 1960; Ramsay, 1963) and the Three Kings Islands (Woodward, 1954) where it is believed to be introduced from Australia, and occurs also on Lord Howe Island (material in ANIC).

In common with several other species in this section of the genus it is associated frequently with solanaceous plants, particularly the genus Solanum. In Australia it has been reported from Solanum nigrum L. and potatoes (Tryon 1889. Froggatt 1901) and from tomatoes (Sloan, 1941). Other records noted from the specimens examined are potatoes (Gordon N.S.W.), Solanum hispidum Pers. (Mitcham S.A.), wild tobacco (Mt. Tambourine, Queensland), flower

Fig. 51. Distribution in Australia of Cuspicona simplex Walker.
garden near rain forest (Eagle Mts., Queensland) and in a sweepnet (Menai, N.S.W.). On Lord Howe Island it was taken from Solanum mauritianum Scop, and in New Zealand has been recorded from tomatoes, Solanum auritulatum Ait, and Solanum sodomaeum L. (Spiller and Turbott, 1944), and also on Mangels (Eylcs. 1960). On the Three Kings Islands it was captured on Solanum nigrum L. and Solanum aviculare Forst.

Location of types:
Holotype \& of simplex Walker, "South Australia, presented R. Bakewell", in BM.

Specimens examined: New Zealand $2 \circ$, Auckland, 30.1X.1939, O. Spiller ANIC. Lord Howe Island 1 t́, 29.XI،1955, S. J. Paramanov and Z. Liepa; 3 i, 2\%, 5.X.1959, T. G. Campbell; 19. 1?, 15.X.1964, on Solanum maurifianum Scop., R. G. Lukins ANIC. Australia

Fig. 52. Dorsal aspect of Cuspicona proxima Walker.
and Tasmania, the type and the numbers in parentheses from the following collections: QM (15), UQ (31), AM (32), ANIC (41), NM (10), SAM (42), BM (25), Stockholm (2), AMNH (6), KU (3), Ashock (1), CA (1) and Bishop (16). As this is a quite common species individual Australian and Tasmanian records have not been listed in detail but are plotted on Fig. 51.

Cuspicona proxima Walker, 1867
Figs. 52, 53 A-C.
Cuspicona proxima Walker, 1867, p. 382. Black, 1968, p. 563.
Description:
General appearance: Ground colour green in life but yellowish in museum specimens with produced lateral angles of pronotum occasionally
fairly pinkish at extreme apices, Punctation relatively coarse and even over dorsal surface, on dorsum of head denser and appearing rugulose.

Head: Concolorous, densely punctate; about as wide as long. Eyes and ocelli purplish or concolorous.

Pronotum: Concolorous though tip of lateral angles faintly pink, reddish or yellowish. Latter produced as a very short, conical, reflexed, thick, blunt spine about $3 / 5$ length of posterolateral margins; its apical portion, calli and anterolateral margins impunctate. Anterior margin trapeziformly excavate behind collum and obliquely truncate behind eyes. Anterolateral margin before produced lateral angle faintly concave, obtuse. Posterolateral margin concave, posterior margin shallowly concave,

Scutellum: Concolorous, flat in apical half but faintly raised in basal half, in apical half a faint trace of a medial longitudinal line; lateral margins basally feebly convex, at apices of frena broadly angulate then straight but gradually converging to near apex, latter broadly angulate. Frena reaching about half length of lateral margins.

Hemelytra: Coriaceous parts concolorous. Exterior margin of corium broadly concave in basal quarter and broadly convex in apical three-
quarters; apical angle strongly convex, posterior margin convex. Clavus short but elongate triangular. Membrane hyaline with veins same colour.

Abdomen: Concolorous; finely punctate.

Laterotergites: Concolorous; some coarse punctations exteriorly; apical lateral angles with a small black tipped spine, those on seventh segment not longer than rest.

Underside: Concolorous except for reddish, sometimes blackish, apex of lateral spine on thorax and some small black spots on embolium. Bucculae low and sinuate, retching almost to base of head, anteriorly lobulately produced. Rostral segment I robust, reaching base of bucculae; IL arched and reaching about middle of mesosternum; III reaching between mid and hind coxae; IV reaching almost to apex of third abdominal ventrite, apically black. Antennae rather browner than rest of body, first segment not reaching apex of head, ratio of segments 10:21:22:34:38.

Propleuron coursely punctate behind level of coxae except on obtuse margin and underside of lateral angle, metapleuron sparsely punctate in extreme posterior region. Mesosternal keel reaching over prosternum to apex of latter, more elevated in anterior half. Legs normal, tibiae cylindrical.

Fig. 53. Cuspicona proxima Walker, Paracirrhoe noudwardi gen. et 5p. nov. A-C. Cuspicoma prowima. A. ventral aspeet of male abdomen. 13 , ventral aspect of female abdomen. C. clasper.
D. P'arucirfue woodwdrdi-ventral aspect of male abdomen.

Abdomen strongly V -shaped in posterior view, medially rather raised along ventral midline, impunctate. Apex of male abdomen Fig 53 A, apical margin of pygophore conspicuously notched medially with two very shallow black lobes Jaterally about midway between notch and lateral margin, medially behind notch above a
narrow obliquely directed septum, on the inner lateral wall on each side a small black tipped tooth Clasper of male, Fig. 53 C , rather Yshaped with one lobe strongly pilose. Apex of female abdomen, Fig. 53 B , hind margin of lirst gonocoxae sinuately oblique and not produced mediatly into a rather angular lobe.

Dimensions MALE.S					
Parameter	Number of Mcasurements	Mcan	Standard Deviation	Cocticient ol' Variation	Observed Range
Head length	15	19	2.1	$5 \cdot 3$	35-43
Head widh	15	15	1.5	$3 \cdot 4$	42-47
Antennal segment il	26	10	0.4	3.9	$9-11$
Antennal segment II	27	21	$1 \cdot 3$	$6 \cdot 3$	$18-24$
Antennal segment 111	27	23	20	8.9	19-25
Antennal segment IV	24	34	2.1	6.2	30-38
Anteninal segment V	17	37	2.7	7.4	31-40
Pronotum width	15	$14)$	$6 \cdot 3$	4.4	130-15.3
Pronotum length	15	40	$5 \cdot 1$	12.7	34.52
Total length ...	15	201	13.1	6.5	170-210
FEMALES					
Parameter	Numher of Measurements	Mcan	Standard Deviation	Coeflicient of Variation	Observed Kange
Heed Jength	14	31)	2.4	6.2	35-43
Head width	19	45	1.7	3.8	42.50
Antennal segmen! 1	26	10	$0 \cdot 3$	28	9-11
Antennal segment II	31	21	0.9	4.5	20.23
Antennal segment 11!.	31	21	$1 \cdot 6$	7.6	19-25
Antennal segment IV	25	33	2.0	6.1	28-36
Antennal segment V	14	34	1.1	2.8	37.40
Pronotum width . .	19	146	$12 \cdot 3$	8.4	129-173
Pronotum length	19	39	$5 \cdot 2$	13.5	32-50
Total length	19	200	$13 \cdot 7$	6.1	170-230

Remarks: On exterior appearance this species would appear to be closest to simplex, though the lateral angles of the pronotum are more acutely produced. However, the clasper is significantly differently shaped in having a rather Y-shaped appearance with the lower lobe being strongly developed.

Examples of this species from New Guinea may have been misidentified as ampla Walker (originally described from Waigiu) and at other times as laminata Stâl us, for example, in the Annual Report of the Papual and New Guinea Department of Agriculture, Stock and Fisheries for the financial year 1965-66 where the following reference occurs on page 118. "Heavy populations of the pentatomid Chspiconusp? laminata occurred on tobacco at Popondetta." This record, and the records below, of the species being found frequently on members of the genus Solanum are significant as specimens of three other specics in the group, simplex, neocaledoniae and forsicornis, have also been recorded from Solanmen species (see pp. 143-4, 150 and 153).

Cuspicona proxima was described from the Ké Islands. A specimen of each sex, the female bearing a green "Type" disc, are in the British Museum from this locality. The marking of the type seems to be an arbitrary curatorial decision according to Dr. W. R. Dolling (pers, com.). As this species is most likely to be confused with C. ampla (which is represented in the British Muscum by the original female type and one specimen added subsequently to Walker's description) I have chosen the female from the Ké Islands as the lectotype of C. proxima, and the male as a paralcctotype. This species has now been recorded from the Aru Islands and from New Britain and the Duke of York Islands in the Bismark Archipelago (Black, 1968). The species can now be recorded from PapuaNew Guinea (from several species and genera of plants) and possibly also from Celebes.

Location of types:

 presented W. W. Saunders", in BM.

Specimens: examined: Papua-New Guinea z. Port Moresby, Papua, 28.II.1962, K. R. Norris (ANIC): 2 of 3.3 와 웅 Komba, New Guinea, Reverend L. Wagner (SAM); 8 芯 d. 69 P Pati, Popondetta, Northern District of Papua, 10-17.1. 1966, feeding on tobscco, S. Ido \& B. Kearo (these specimens were taken during infestation mentioned in 1965-66 Department of Agriculture. Stock and Fisheries report cited above); \therefore O, Wau, New Guinea, 30.X.1956, on Solantm verbascifolium L. = erianthum D. Don. d. H . Ardiey: sex?, no precise locality or date, New Guinea, J. L. Froggatt; \%, Upper Sirimumu in Central District, Papua, 8.V.1966. 'T', Fenner: 1:.47 ㅇ. Papuan Highland on Soloutum mammontw L., Stock and Rubber Experimental Station, Bisianumu. Central District, Papua, 1 (1600 feet), on Hevea brasiliensis Muell. Arg. seedlings, $15 . \mathrm{V} 1.1962, \mathrm{~T} . \mathrm{V}$, van Harrenl; 古 우. Redshield Farm (32 miles) from $\mathrm{P}^{2} \mathrm{t}$, Moresby. Central District, Papua, on Crotalaria anagyroides H.B.C.e 15.X.1965. E. Kanjiri (Department of Agriculture, Stock and Fisheries, Pt. Moresby). New Britain, 28 , Rabaul, Lrom scedheads of Solamm $\mathrm{sp}_{\mathrm{p}}, 22 . \mathrm{V} .1941$, J. L. Froggatt; os 9 . Mosa Plantation, West New Britain, 25.IY.1968. D. F, O'Sullivan, (Depurtment of Agriculture, Stock and Fisherics, Pit. Moresby).

Two specimens collected by Eorsten at Tondano in the Celebes in the RM enllections over the label ampla Walker appear to be very close to, it not, proxima Walker. A note to this cffect has been added by the atuthor to the lahels under each example.

Cuspicona ampla Walker, 1867

Cuspicona ampla Walker, 1867. 1. 381. Dis1ant. 1888. p. 480.

Remurks: The type of this species has been exumined for me by Dr. W. R, Dolling of the British Museum ind the species appears to be distinct from proximu. The species is detinitely a Cuspicona and differs from the type of prosima in that the pronotal dorsal punctation is much sparser than that of prowima and that the rostrum reaches to the base of abdominal ventrite VIl. A second specimen from New Guinea bearing the label "New Guinea Coll. Sayet" is cleatly the specimen recorded by Distant and has the rosfrum reaching the apex of the seventh abdominal ventrite.

As I have not seen this species in any of the material und have examined from the eastern hall of. New Guinea a detailed description is omitted. The species appears to be very close to proxima and also to some of the sprecies in the lndonesian area.

Lucution of type:

Holotype q, \quad "Wagiou, presented W. W, Siunders" in BM.

Cuspicona mencaledoniae sp. nov.
Figs. 54. 55 A-D

Description:

Gieneral appearance: Ground colour probably green in life but yellowish-brown in museum specimens with produced lateral angles of pronotum occasionally fiantly pinkish at apices. Punctation relatively coarse and even over dorsal surface save on dorsum of head. there denser and appeariag rugulose.

Head: Concolorous, densely punctate: wider than long. Eyes and ncelli purplish or concenlorous.

Pronotum: Concolorous though racely tip of lateral angles faintly pink. Latter produced as a short, conical. slightly reflexed, blunt spine, about three-quarters length of posterolateral margins, its apical portion and calli impunctate, Anterior margin strongly and rather obluse angledly excavate behind collum, obliquely truncate behind eyes. Anterolateral margin before produced lateral angle faistly concave, obluse. Posterolateral margin concave, posterior margin shallowly concave.

Scutelum: Concolorous; rather that but with a distinct low. narrow, longitudinal median rased line running from base to apex: laterally margins busally feebly concave, frena renching about four-sevenths their length, at apices of frena broadly angulate, then straight and cosverging gradually to subacuminate apex.

Hemelytra: Coriaceous parts concolorous, Exterior margin of corium slightly concave in basal quarter, rather angulately convex in distal three-quarters; apical angle strangly convex; posterior margin convex. Clawus short and ri. angular. Membrane hyaline with veins same colour.

Fig. 54. Dursal aspeet of Cuspiconar neocalcolonitur sp. nov.

Abdomen: Concolorous laterally, darker medially.

Laterotergites: Concolorous; apical lateral angles with a small acute spine, those of seventh segment larger.

Underside: Concolorous. Bucculae low and sinuate, reaching almost to base of head, anteriorly more raised and rectangularly lobulate. First rostral segment robust, reaching to base of bucculae, second faintly arched and reaching about middle of mesoternum, third reaching between mid and hind coxae, fourth reaching almost to apex of third abdominal ventrite. apically tipped with black. Antennae concolorous, first segment not reaching apex of head, shortest, second a little longer than third, fourth about 25% longer than second, fifth a little longer than fourth.

Propleuron coarsely punctate except for obtuse lateral margins and underside of produced lateral angle, metapleuron punctate only in
extreme posterior portion. Mesosternal keel reaching over prosternum to apex of latter, somewhat more elevated in anterior half, Legs normal, tibiae cylindrical.

Abdomen strongly V-shaped in posterior view, medially rather raised along ventral midline, finely punctate or rugulose laterally. Apex of male abdomen Fig. 55 A, apical margin of pygophore turned vertically upwards as a sort of septum but along ventral surface of the septum medially notched, ventral surface of pygophore swollen laterally and also basally in the middle. Clasper F-shaped, Fig. 55 D. Aedeagus of male Fig. 55 C , with phallosoma lightly sclerotized. conjunctiva dorsally near base with a pair of small "lappet" processes, towards apex dorsally produced upwards as a large medial lobe, apicoventrally produced into a pair of tubular processes. Medial penial plates faintly in the form of a thick inverted Y , vesica placed a little in front of them. Apex of female abdomen Fig. 55 B .

MALES

Parameter
Number of
Measurements Mean

Head length	11	35
Head width	12	39
Antennal segment I	19	9
Antennal segment II	20	19
Antennal segment III	20	18
Antenal segment IV	17	25
Antennal segment V	8	28
Pronotum width	12	126
Pronotum length	12	34
Total length	12	172

FEMALES

Parameter

$\underset{\text { Measurements of }}{\text { Num }}$

Head length
Head width

Standard

Deviation
Cocficient
of
Variation

Observed Range

$1 \cdot 0$	$3 \cdot 0$	$33-37$
$1 \cdot 1$	$2 \cdot 8$	$37-40$
$0 \cdot 7$	$7 \cdot 2$	$8-10$
$0 \cdot 9$	$4 \cdot 7$	$18-21$
$1 \cdot 7$	$9 \cdot 0$	$15-20$
$0 \cdot 9$	$3 \cdot 4$	$25-28$
$1 \cdot 4$	$5 \cdot 0$	$26-30$
$6 \cdot 8$	$5 \cdot 4$	$120-140$
$2 \cdot 0$	$6 \cdot 0$	$30-37$
$7 \cdot 3$	4.3	$161-180$

Antennal segment I

Standard
 Deviation

Coefficient
of
Variation

Observed
Range

2.0	5.4	$33-38$
1.4	3.4	$38-42$
0.5	5.3	9.10
0.8	4.2	$19-21$
1.7	9.8	$15-20$
1.2	4.5	24.28
1.6	5.8	$27-30$
8.7	6.5	$122-150$
2.8	8.2	$32-41$
9.4	5.1	$170-200$

Total length: $8.4-10.4 \mathrm{~mm}$

Fig. 55. Cuspicuna neocaledoniae sp, nove Cuspicona cheesmanae sp. nov. A-D. Cuspicona neocaledoniae. A. ventral aspect of apex of male abdomen. B. ventral aspect of apex of female abdomen. C. aedeagus from lefthand side. D. clasper. E. Cuspicona checmanae-ventral aspect of apex of female abdomen.

Remarks：Within the simplex group of species and commencing with neocaledoniae I have placed together a series of species in which the posterior margins of the first gonocoxac of the female are rather rectangularly produced in their inner half and the hind margin of the male pygophore has a small notch．Species in this final section of Cuspicona occur in the Philippines and Indonesia，possibly in South East Asia， Australia．New Caledonia and the New Hebrides．

Location of types：

Holotype \＆，allotype q．Forêt de Thi，New Caledonia，8．1I． 1957 （Paris）； 6 of 4 \＆\＆1？ paratypes，same data as type；古 paratype， Noumea，New Caledonia，Sept，1955，J．Rageau （Orstom－Noumea）；2才 \＆paratypes，Mt． Chapeau Gendarme，New Caledonia，in rain－ forest 7 \＆8．VI．1944，J．C．Harrud（Bishop）；\＆ 2 if if paratypes（Reg。No．62－7601），mountains
west of Houailou，New Caledonia，on Solanum torvum Sw．5．II．1962，N．H．L．Krauss（USNM）； ô paratype，Grotte de Ninrin－Reu near Poya， New Caledonia，at light 25．XII．1965，G．F． Gross an Biospelacological Expedition to New Caledonia；ㅇ paratype，Noumea，New Caledonia， A．M．Lea（SAM）．

Specimens Examined：The types only．

Cuspicona cheesmanae sp．nov．
Figs． 55 E， 56
Description：
General appearance：Ground colour green in life，yellow in museum specimens．Lateral angles of pronotum rectangular，hardly or not produced；whole upperside except membrane moderately coarsely punctate．Rather elongate and kite－shaped．

Fir．56．Dorsal aspect of Cuspicomu cheesmanae sp．nov．

Heat: Concolorous, eyes and ocelli purplish. Wider than long. Denscly punctate so as to appear rather rugulose.

Pronorum: Concolorous, Anterior margins strongly excavate behind collum, obliquely truncato behind cyes. Anterolateral matgins almosi straight, margins obtuse, dateral angles not produced beyond line of lateral margins and rectangular. Posterolateral margins shatlowly bisinuate, posterior margin shallowly concave.

Seufellum: Concolorous; rather that but with a distinct low, narrow, percurrent, median lisse: lateral margins in bisat half faintly convex thence straight and converging only gradually to subacuminate apex.

Hemelytra: Coriaccous parts concolorous. Exterior margin of corium slightly concave in basal quarter. fantly convex in distal threequarters; apical angle of coriun strongly convex. posterior margin gently convex. Clavus short and narrow. Membranc with veins hyaline,

Abdomen: Concolorous.

Laterotergites: Concolorous; posterior exterior angles with a small but acute spine. minutely black tipped of not.

Underside: Concolorous. Bucculac low and sinuate, reaching almost to base, anteriorly more raised and rectangularly Jobulate. First rostal segment robust, reaching to base of bucculae. second nearly straight and surpassing fore coxae. third just surpassing mid coxite and fourth comparatively short and reaching visible base af abdomen. Antemac concolorous but two distal segments fainily infuscated, fourth terminally and fifth medially: first segment not surpassing apex of head, second longer than third, fourth longer than second and fifth longest of all. Propleuron punctate all over except obtuse dateral margins. metapleuron punctate in only extrence posterion portion. Mesosternal keel reaching over prosternum to apex of latter. semicircularly raised in its anterior half Legs normal tibite cylindrical. Abdomen strongly V-shuped. Male terminalia unknown, apex of fentule abdomen Fig. 55 E.

13 intensabit-		
Paramelce	I Holotype	Paratypo
Head length	34	$12-37$
Head width	40	1894?
Anternial segment !	10	$x-10$
Artennal kegment if	19	14-21
Antennal segment III	10	15.19
Antenmal segment IV	$2 \sqrt{1}$	22
Antenbal segment V	31	26
Pronolum width	113	107-117
Pranotum lengith	41	$42-45$
Total Jengit ...	193	180.201

Remarks: This species is very similar in appearance to prisara Walker which also occurs in the New Hebrides, but is more elongate and the lateral angles of the pronotum are more prominenf and rectangulate whereas in privata they are broadly rounded. In cheesmanaie the inner halves of the posterion margins of the female gonocosace are rectangularly produced, in privarer this projection has its outer margin more inclined and the whole structure is more roundly produced. In privata the fore and middle tibiae are rather flattened apically above but not in cheesmanae. Cheesmanue is probably most closely relared to meocaledonide.

Location of Types:

Holotype (Reg. No. 20-660), Nokovula, Espiritu Santo, New Hebrides, 1100 m , by swerping low herbage, 14.1 X. 1971; G. F. Gruss on Royal Society-Percy Sladen Trust Expedition to the New Hebrides (SAM) 2 i $\%$ paratypes. Malckula, New Hebrides, Dec. 1929 and Jan. 1939. L. E, Cheesmatn. BM 1930-38 and BM 1930-178 (BM).

Specimens examined: The types only.

Cuspicona forticornis Breddin, 1900

Figs. 57, 58 A-C
Cuspicona forsicornis Breddin, 1900, p. 28 Fig. 2. Frogeatt, 1902, p. 320 pl. 2, Fig, 17: 1907. pl. 32 Fig. 2.

Cuspicona rifispima Van Duzes 1905 (nem Stăl, 1870), Jr. 209.

Description:

Gencral appeurance: Ground colour probably green in life but yellow in museum specimens with produced lateral angles of pronotumt red or pink. Punctation reatively coarse and even over dorsal surface save on dorsum of head. there denser and appearing rugulose.

Head: Concolotous, densely punctate as described above, Wider than long, Eyes purplish, ocelli pink or concolorous.

Pronormm: Concolorous except for produced lateral angles which are usually sed or pinh. Latter strongly produced into at short, blunt. slightly upwardly and outward directed spinc or horn, latter about two-fhirds length of posterolateral margins, its apical portion impunctate. Calli impunctate. Anterior margin strongly und rather lraperiformly excavate behind collum, obliquely truncate behind eyes. Anterolateral margins obtuse and straight but diverging posteriorly in anterior hall, then obtusely angled

Fig. 57. Dorsal aspect of Cuspicona forticornis Breddia.
to form anterior margin of lateral spines. Posterolateral and posterior margins shallowly concave.

Scutellum: Concolorous; rather flat; lateral margins in basal half feebly convex, frena reaching about ${ }^{\text {W/ }}$ their length, at apices of frena concavely angulate, then straight and converging gradually to convex but narrowish apex.

Hemelytra: Coriaceous parts concolorous. Exterior margin of corium slightly concave in basal quarter, faintly convex in distal threequarters; posterior margin of corium strongly convex. Clavus relatively short and narrow. Membrane hyaline with veins same colour.

Abdomen: Apparently concolorous, at least laterally.

Laterotergites: Concolorous; apical lateral angles minutely black spined; finely punctate in exterior half.

Underside: Head concolorous, occasionally lateral margins pink. Bucculae low and sinuate, reaching almost to base, anteriorly more raised and lobulate. First rostral segment robust, reaching to base of bucculae, second arched and surpassing fore coxae, third surpassing second coxae, fourth reaching nearly to base of fourth abdominal ventrite. Antennae concolorous or pale brown, second and third segments subequal, fourth and fifth much longer and subequal. Thorax concolorous except underside of produced lateral angles of prothorax red. Propleuron conspicuously punctate in posterior half and metapleuron in extreme posterior portion. Metasternal-mesosternal keel reaching over prosternum to apex, higher anteriorly than posteriorly. Legs normal, tibiae cylindrical; concolorous. Epipleuron faintly marked with brown spots.

Abdomen V-shaped in posterior view; concolorous but occasionally lateral margins pink.

Apex of male abdomen Fig. 58 A. Clasper, Fig. 58 C, F-shaped, medially rather robust with an obliquely directed upper ramus. Apex of female abdomen Fig. 58 B .
Dimensions-

Parameter
Mean of Males
Mean of Females (7)

Head length
Head width
Antennal segment i
Antennal segment II
Antennal segment III
Antennal segment IV
Antennal segment V
Pronotum width
Pronatum length
Total length
(7) (7)
37
45
45
10
0

Total length: $9.9 \cdot 12.5 \mathrm{~mm}$
Remarks: This species occurs in a fairly narrow belt in far eastern Australia ranging from New South Wales to Northern Queensland.

Location of Type:
Holotype δ of forticornis Breddin. "New South Wales" (not located).

Specimens examined:

Queensland it ㅇ. Upper Mulgrave River, 20.1V.1970, G. B. Monteith; ㅇ, Gap Creek, 8 km (5 miles) north of Bloomfield River, 30 m (100 ft.) 8-9.V.1970, G. B. Monteith UQ: 2 \& \ddagger, North Tambourine, on low bushes in grassland, 7.III. 1955 M. B. Wilson QM; 子, Caboolture River, Caboolture, on Solanum, 6.II.1959, T. G. Campbell ANIC; \&, Rockhampton SAM; $\%$, Mt. Glorious, Mar. 1963, J. E. Dunwoody BISHOP. New South Wales if, 3 km (2 miles) south of Port Macquarie, on Solanum maritianum Scop., 7.XI.1958, T. G. Campbell; i, Coffs Harbour, 20.X.1958, T. G. Campbell ANIC; ค, Tweed River SAM; \% ㅇ, no precise locality but bearing labels (1) "347 N.S.Wales" (2) "Pres. by Perth Museum. BM 1953-629"; 趿, no precise locality but bearing label " 347 N.S. Wales" AMNH (this is the specimen misidentified by Van Duzee as rufispina Stål).

Fig. 58. Cuspicona forticornis Breddin. Cuspicona exnigrospersa sp. nov. A-C. Cuspicond forticornis. A, ventral aspect of apex of male abdomen. B. ventral aspect of apex of female abdomen. C. clasper. D-F. Cuspicona exmigrospera. D, ventral aspect of apex of male abdomen. E. ventral aspect of apex of female abdomen. F. clasper.

Cuspicona exnigrospersa sp, nov.

Figs. 58 D-F, 59

Description:

General appearance: Ground colour probably green in life but yellow in museum specimens with produced lateral angles of pronotum and extreme lateral margins of head and abdomen red, and with black spots and black marks laterally on sides of pronotum and abdomen.

Punctation relatively coarse and even over dorsal surface save on dorsum of head, there denser and appearing rugulose.

Head: Concolorous with extreme lateral margin frequently red or pink; wider than long. Eyes purplish, ocelli pink or concolorous. Densely punctate so as to appear rather rugulose. Much wider than long; first anternal segment not surpassing apex.

Fig. 59. Dorsal aspect of Cuspicome extigrosperses sp. חuv.

Pronotum: Concolorous except along anterolateral margins (maculated with black) and produced Jateral angles (red or pink). Latter strongly produced into a blunt upwardly and outward directed, strong, apically slightly recurved spinous processes, these as long or longer than posterolateral margins. Apical portions of these
spines impunctate. Calli impunctate. Anterior margin strongly and rather obtuse angledly excavate behind collum, obliquely truncate behind eyes. Anterolateral margins in front of spinous lateral angles rather concave and obtuse. Posterolateral margins nearly straight, posterior margins shallowly concave.

Scutellunt: Concolorous; rather Hat, lateral margins basally fecbly convex, frena reaching about the length, at apices of frena rather angulate, thence straight and converging only gradually to convex but narrowish apex.

Hemelyra: Coriaccous parts concolorous, in some specimens basal half of exterior margin of corium pinkish or pinkish with black spots. Exterior margin of corium slightly concave in basal quarter, faintly convex in distal threequarters: posterior margin of corium strongly convex. Clavus relatively short and narrow. Membrane hyuline with veins same colour.

Abdomen: Apparently concolorous, at least laterally.

Luferotergies: Apical lateral angles acute or minutely spined; lateral margins boadly pink. in some specimens this pink bordered exteriorly and very narrowly with black; inoer halves concolorous.

Underside: Head concolorous, occasionally lateral margins pink or red. Bucculae low and sinuate, reaching almost to basc, anteriorly more ruised and rectangulately Iobulate. First rostral segment robust, reaching to base of bucculae,
second curved and surpassing first coxac, third just surpassing second coxae and fourth reaching about middle of third abdominal segment, latter aplically black. Antennae concolorous or pale brown, second and third segments subequal in length, fourth longec and fifth longest. Thorax concolorous except for exterior margins of prothorax which are black spotted and hind margin of produced lateral angles may have a thin black line, produced lateral angles themselves red or pink benesth. Proplcuron conspicuously punctate in posterior half and metapleuron in extreme posterior portion. Metasternalmesosternal keel reaching over prosternum almost to apex, higher anteriorly than posteriorly. Legs normal, tibiae cylindrical; concolorous except apices of tibiae and tarsi tending reddish brown, Epipleuron maculated with black.

Abdomen V-shaped in posterior view: con. colorous but laterial margins frequently reddish or pinkish, sometimes exteriorly to this narrowly black. Apex of male abdomen Fig. 58 D, posterior margin of pygophore black. Clasper Fig. 58 F , strongly F -shaped and upper ramus more vertically directed than in forficornis and with an opaque bar visible in its ventral area. Apex of female abdomen Fig. 58 E .

Dimensions- Parameter	Hololype	Allotype	Mean of all Malcs (8)	Mean of all Females (3)
Head lengih twatal	34	35	33	34
Head width .	42	44	41	43
Anternal segment I	10	11	10	11
Antennal segment II	19	22	20	23
Antennal segment 111	22	25	21	23
Antennat segment IV.	33	38	32	38
Antemal segment V	36	-	35	
Pronotum width . .	180	185	163	177
Pronotum length	42	45	39	40
Total lengets......	205	225	1196	207

Remarks: This species is clearly closely related to forticornis but differs from it in the longer spine formed by the production of the anterolateral margins of the pronotum and the lateral black spots on the pronotum and epipleuron. The male and female external genitalia lonk very similar but in the male of exnigrospersa the medial "notch" on the postetior margin does not have the two little produced lobes, one on either side of it, which oceur in forticomis. The posterior margin is also usually black in exnigrospersa but not in forlicornis. In the female exnisrospersa the posterion margins of the first gonocoxac are more deeply excised than in forticornis. The claspet of exnigrospersa is narrower than that of forticornis and the upper ramus is more vertically directed.

This species seems to occur only in a limited area near the eastern portion of the QueenslandNew South Wales border.

Location of types:

Holotype (Reg. No. K51604), 2 of है paratypes (Reg. Nos. both K51267), Mt. Tantbourine, Queensland, Oct. 1924, A. Musgrave \& C. Geissman AM; allotype \&. National Park. Queensland, Dec. 1910, H. Hacker (with additional label Brit. Mus. 1926-241) BM; of paratypes (Reg. Nos. 120,658-9), Mt. Tambourines, Queensland, A. M, Lea SAMi \& \& paratypes, Tambourine Mountain, H. Hucker; 3 paratype, Tambourine, 21.11.1927, H. Hacker OM: a paratype Limington National Park, Queensland, 17-21.11.1964, G. Monteith \&
H. A. Rose UQ; \& paratype. New South Wales STOCKHOLM: \& paratype, Tambourine, Queensland, $500-550 \mathrm{~m}$, 15.II.1964. 1. Sedlacek BISHOP.
Specimens examined: The types only,

Cuspicona rufispina Stãl, 1870
Cuspicona rufispina Stâl, 1870 p. 636; 1876, p. 103.

Remarks:

This Philippine species was erroneously reported from Australia by Van Duzee (1905, p. 209) but a re-examination of the specimen Van Duzee saw reveals that it is in fact an example of C. fortincornis Breddin.

Cuspicona rufispina is very simitar in appearance to C. exnigrospersa but differs from it in lacking the black speckling along the anterolateral margin of the pronotum and on the epipleuron, and the black marks along the margins of the abdomen (ats seen from below or in side view). In addition in rufispina the hend is only about 5-10\% shorter than its width across the eyes and the third antennal segment is about 15% shorter than the second, In exnigrospersa

	$\begin{aligned} & \text { Holotype ©̈ } \\ & \text { of ofina } \\ & \text { rufispina } \end{aligned}$
Head Jength	40
Head widh	42
Anternal segment I	10
Antennal segment il	24
Anternal segment ill	20
Antennal segment IV	
Antennal segment V	
Pronplam width	165
Pronotum length	-40
Total length ...t....	205

Very likely Cuspicona curlispina Stăl 1861 from Java belongs to this same complex and requires further investigation. It is probable that the major differences between these species, as in the case of simplex, proxima, neocaledoniae, cheesmanae, forticornis and exnigrospersa, would lie in the length and colour of the lateral spines of the pronotum and in the structure of the claspers of the males.

Location of Types:

Holotype of and allotype o, Jns. Philipp. Stockholm.

Everardia gen, nov.
Type species: Everardia picta sp. nov. Description:

General appearance: Type species bright green and red in life, smallish, rather oval,
the head is 15% or more shorter than its width across the eyes and the scoond and third antennal segments are about the same length.
The male pygophore from beneath and the female external genitalia from below resemble more closely those of C. forticornis but rufispina differs from this species in the much longer lateral spines of the pronotum, in ats relatively longer head, and in the third antennal segment being shorter than the second; in forticornis as in exmigrospersa the head in shorter than wide and the second and third antennal segments are about the same length.

Cuspicona rufispina is clearly closely allied to forticornis, exnigrospersa, neocaledonice and to a lesser extent to proxima Walker. In the consignment of Cuspicona species lent to me by the British Museum (Natural History) were three further specimens belonging to two species. probably both undescribed, one from Mindanao in the Philippines and the other from Tondano in the Celebes, which, though the lateral spines of the pronotum are concolorous, are clearly also members of this same group of species.

Comparative measurenents (in eyepiecto divisions) on all of these specimens are:

Allotype of rufispines	No. 1,3 Mindanao	No. 2.6 Mindanao	Tondano
40	32	43	
44	44	46	39
10	11	10	43
24	24	25	9
21	40	27	21
33	41	-	24
36	170	182	31
180	40	40	165
40	230	240	38
208			200

anterolateral margins of pronotum at first straight and diverging posteriorad, ther at about midway angled more strongly exteriorly though still straight, lateral angles subacute or rounded. Head and anterior part of pronotum inclined at an angle of about 45° to rest of body.

Head: Not appearing elongate, wider across eyes than long, lateral margins strongly concave in front of cyes, juga then rounding broadly to apex, apex of head wide, juga not surpassing apex of anteclypeus, latter rather broad. Eyes rather triangular and touching anterior margin of pronotum, ocelli conspicuous and placed about midway between inner margin of eyes and centre of head, but somewhat behind level of kind margin of eyes. Antennifers short, antennae five segmented, segments I, IV and V, thicker than II and III; antennae not very long.

Pronotum: About twice as wide as long, anterior margin strongly but obliquely truncate behind eyes, then deeply excavate behind collum, anterolateral angles only very minutely prominent. Anterolateral margins straight or slightly concave in anterior half and diverging gradually posteriorad, at about mid length abruptly angling exteriorly to diverge much more strongly to obtuse or subacute lateral angles. Posterolateral margins rather rectangularly excavate, angulately turning to become the truncate posterior margin. Disc behind lateral angles in same plane as hind body, before level of lateral angles inclined downwards at about 45 .

Scutellum: Elongately triangular, anteriorly rather raised, lateral margins anteriorly rather convex, medially rather concave, apex broadly rounded. Frena extending half length from base to apex.

Hemelytra: Coriaccous parts normally thickened. Corium with lateral margins basally thickened then concave, behind this straight to almost subacute apex, posterior margin strongly convex. Clavus strongly triangular. Membrane with veins substantially parallel except at base.

Abdomen: Rather flat above and slightly excavate in males and truncate apically in females.

Laterotergites: Three to seven armed with a short acute spine on posterior exterior angles.

Underside: Head obtusely triangular in lateral view. Bucculac faintly lobulately produced anteriorly and then vaguely sinuate, reaching to above middle of eyes, between bucculate deeply sulcate. Rostrum four segmented, first segment reaching base of bucculae, second just past fore coxae, third just to second coxae and fourth to

Fig. 60. Dorsal aspect of Everardia picta gen. et sp. nov.
about hind coxae. Meso- and metasterna with a robust keel projecting over posterior portion of prosternum, latter broadly sulcate under the keel. Abdominal venter more or less semicircular in cross section in posterior view, third segment medially raised into a short triangular tubercle directed anteriorly, its apex fitting into a notch in the metasternal keel. Seventh ventrite in males excised posteriorly and in females much more deeply incised. Pygophore with lateral angles produced and rounded and medially on posterior ventral margin a small process. Acdeagus with phallosoma lightly sclerotized, a prominent pair of anterior conjunctival processes and with ventrally placed and directed, parallel. rather bilobed medial penial plates. Clasper rather F -shaped. Female external genitalia llatened medially.

General Remarks: Only the type species known of this genus. At first appearance the species looks rather like a Cuspicona but the strongly uncised lateral angles of the pronotum
indicates that it is a separate genus. The structure of the aedeagus indicates a close relationship to Cuspicona and Petalaspis.

Everardia picta sp. nov.

Figs. $60,61 \mathrm{~A}-\mathrm{E}$

Description:

General appearance: Ground colour green in life, yellow in museum specimens, with red, yellow, luteous and black markings; hind part of scutellum coarsely punctate, scutellum and coriaceous parts of hemelytra more finely punctate.

Head: Concolorous; juga transversely wrinkled; base rugose punctate or impunctate and slightly swollen; eyes and ocelli reddish purple.

Pronotum: Concolorous in anterior half except along midline (luteous); about halfway back a transverse fine sinuate red line projecting

Fig. 61. Everardia picta gen, et sp. nov. A. ventral aspect of apex of male abdomen. B. ventral aspect of apex of female abdomen. C lefthand side view of aedeagus. D. Ventrall view of aedengus. E. clasper.
forward medially, behind this line luteous with red punctations, anteriorly punctations concolorous. Midline almost glabrous, anterior margin reflexed, immediately behind it a single transverse line of coarse punctations, calli impunctate, behind calli coarsely punctate.

Scutellum: Medially in basal half concolorous lateral margins (broadly) and apical third Juteous, a red fascia on each side just outward a luteous callous point in each basal angle, another at medial concavity of pronotum on each side and obscuring the luteous margin in this region. and a smaller one on each side just before apex. In apical third of scutellum and along lateral margins some red punctations, punctations on basal two-thirds medially concolorous; frenat black.

Hemelyra: Coriaceous parts concolorous with concolorous punctations, inner margin of clavus (at very base quite broadly, rest narrowly) black. inner sixth of hind margin of corium also black. Membrane hyaline.

Abdomen: Concolorous with black quadrate spots or paired more rounded spots medially on some of the distal segments, genital segment concolorous.

Laterotergites: Concolorous with a red spot or bar along anterior and posterior margins and posterior portion of exterior margins, spines tipped with black.

Underside: Head concolorous; bucculae low and sinuate, apically a little rectangularly produced, reaching only to about anterior margin of eyes, head rather swollen behind bucculate. Fourth rostral segment black.

Thorax concolorous but with a red spot at common base of episterna and cpimera. Legs normal, tibiae cylindrical or vagucly flattened.

Abdomen concolorous but with a small red spot laterally in the anterior angle, and lateral margin in posterior quarter red, of each segment. Apex of male abdomen Fig. 61 A. Clasper Fig, 61 E. F-shaped.

Aedeagus Fig, 61 C-D. with phallosoma very lightly sclerotized und honcy coloured, probably the conjunctiva was not completely inflated in the dissections but the "lappet" processes are strongly developed, there are two rather tubular conjunctival lobes and the medial penial plates are large, parallel and ventrally placed and directed, their ventral surfaces strongly concave. Apex of female abdomen Fig. 61 B.

MALES (from II specimens)
Dimensions-
Parameter

FEMALES (trom 17 specimens)

Remurks; All but Iwo specimens have been collected in arid regions. The "tea-tree" mentioned by Brumby on the Jabels of the specimens he collected may be a species of Melalenca for
this genus occurs in the Everard Ranges area, but equally he could have applied it to a species of Thryptomene as the latter, apart from its small size, resembles Melalenca.

Location of Types:
Holotype δ, allotype o . $8 \mathrm{~d} t 109$ 우, paratypes (Reg. Nos, $120,634-53$), Everard Ranges, South Australia to Warburton Ranges, Western Australia, A. Brumby (patratypes on flowering tea-tree): $1 \dot{\delta}, 1$ 品 paratypes (Reg. Nos, 120,654-5), Victoria Desert 6 km ($=4$ miles) south west of Maynard's Bore. Everard Park Station. South Australlia, 6.1X. 1970, G. F. Gross (by beating Thryptomene maisomeuvi FivM.-a small myrtaceous plant): b paratype (Reg. No. 120.656), Adelaide Hills, South Australia, Jan. 1968 and o paratype (Reg. No. 120,657), same general localily, 20.1.69, C. van Dyk SAM: 3 of o paratypes, Murchison River, Western Australia، 21. XI,1963, 1. Sedlacek (BISHOP); \& paratype, 48 km ($=30$ miles) cast of Suuthern Cross. 350 m , Western Australia, 16.1X,1962. E. S. Ross \& D. Q. Cavagnaro CA.

Specimens examined; The types only.

Parocirrhoe gen. nov.
Type species: Parocirrhec woodurarli sp. nov.

Description:

General appearance: Very similar to Ocirhome but posterior angles of seventh laterotergites strongly produced and pygophore difterent. Species probably bright green in life; small, elongate oval, lateral angles of pronotum rounded: head and anterior portion inclined at an angle of about 30°

Head: Appearing rather broad, wider across eyes than long, basally rather raised, apically flattened. Arteclypeus only a very little produced past apices of juga and convex apically, juga apically broadly rounded and laterally broadly concave above antennifers. Eyes titangular and touching anterior margin of pronotum, ocelli conspicuous and placed just inward of inner posterior angles of cyes. Antenniters short, antennae five segmented, first segment shorter and thicker than others.

Pronotum: More than twice as wide as long, anterior margin only shallowly concave behind collum, anterolateral angles only very slightly prominent. Anterolateral margins nearly straight almost to base and strongly diverging pasterionly. anterolateral angles rounded. Posterolateral margins rather anguately concave, posterior margin shallowly conscave. Dise behind level of
fateral angles in the same plane has body, in front of level of lateral angles inclined downwards at about 30^{2}.

Scutelhm: Triangular, flattish: Frena extending for nearly half length from base to apex; in basal third only slightly raised.

Renelytra; Coriaceous parts ratber transparent. Coriunt with outer apical angles rounded und lateral margins very slighty convex, posteriot margill also faintly convex. Clavus narrow but triangular. Membrane with veins substantially parallel apically.

Abdomen: Apparently flatlish above, deeply excised apically in males.

Lateroteraites; III to VI armed with a small acute spine on cach posterior exterior angle, VII with apicat angle rather strongly produced posteriorly, triangalar with acute apex.

Underside: Head rather triangular in lateral view. Bucculae rathet lobulately produced anteriorly then convex, reaching to about midway along eyes, between bucculae deeply suleate. Rostrum four segmented, segment I not reaching hase of bucculae, 11 a litt)e past fore coxae, 111 about midiway between second and third coxac. IV 10 bisse of third abdominal ventrite. Mesoand metasterna with a robust raised keel projecting forward over prosternum, low to about midway betwee mid and hind coxae then becoming elevated to reach its highest elevation just before fore coxac, prothorax shallowly and ubliquly keeled on either side of this keel. Abdominal venter beneath with sides flattened and obliques, medially rounded, third segment medially raised into u short irjangular tubercle ditected anteriorly, its apex fitting into a notch in the mesusternal keel. Seventh abdominal segment deeply iscised. Pygophore ventrally with lateral angles slightly produced medianly into a posteriorly directed triangular process. Hind margine of lirst gonocoxate of temales transverse.

General Remarks: At first sight this genus resembles Octrrhoe very closely and could casily he comfused with it. However it differs in that the apical angles of the seventh laterotergites are much more strongly produced and the hind tibiae are not diattened (although the first and second are llattened just before their apices). The median triangular spine on the hind margin of the pygophore indicates that the genus has a claser relationship with such genera as Petalapis, Vitellus and Avicenna rather than to Ocirrhoe. Only the type species is known.

Parocirrhoe woodwardi sp. nov.
Figs. 48 F, 53 D, 62
Description:
General appearance: Probably green in life but the type yellowish, smallish.

Head: Concolorous, eyes and ocelli purplish. Juga dorsally punctate, anteclypeus with only several sparse punctations. Head behind base of anteclypeus transversly rugulose, immediately adjacent to eyes glabrous.

Pronotum: Concolorous, densely punctate but ocelli and anterolateral margins impunctate.

Scutellum: Concolorous, densely punctate. In apical half medially a broad flattened (but punctate) mark becoming a short raised impunctate keel apically.

Hemelytra: Coriaceous parts concolorous, densely punctate; membrane hyaline.

Abdomen: Concolorous.

Laterotergites: Concolorous, posterior lateral spines black tipped.

Underside: Concolorous except eyes purplish and a lateral black irregular macula near exterior margin of metapleuron and about equidistant from base and apex. Apical halves of tarsal claws black. Head slightly rugulose and depressed in front of antennifers. Propleuron conspicuously punctate only posteriorly, mesopleuron with only mesepisternum punctate, metapleuron punctate posteriorly and on metepisternum. Abdomen rather rugulose. Apex of male abdomen Fig. 53 D, the ventral margin

Fig. 62. Dorsal aspect of Parocirrhoe woodwardi gen. Et. sp. nov.
of pygophore sinuate on either side of median process, ventral surface with a depressed pit on each side near spine margin and about midway between median process and lateral margin. Apex of female abdomen Fig. 48 F. posterion margins of first gonocoxac nearly transverse, apical spines of paratergite VIII strongly produced.

Location of types:

Holotype is (Reg. No, T7218), South Queensland, Koongalala Point, Lamington National Park. 29.X.1955. T. E. Woodward QM, allotype i, Dorrigo, New South Wales, W. Heron SAM 120,661; Paratype 9. Sydney, Sept. 1902, ex Helms Collection I3ISHOP.

Specimens examined: The types and unlocalised 1 t. BM,

Petalaspis Bergroth, 1916
Pela'aspis Bergroth, 1916. p. 29.
Type species: Perrlaspis tescorum Bergroth. 1916 (monotypy).

Description:

General appearance: Pale yellowish (muscum specimens): medium sized, elongate oval lateral angles of pronotum acute. Head and anterior portion of pronotum inclined at an angle of ahout 45°.

Head: Rather clongate but still wider across eycs than long, tapering anteriorad, basally slightly convex, apically flattened. Anteclypeus a little produced beyond apices of juga and rounded apicully; juga apically rounded, laterally slightly concave above antennifers. Eyes rather friangular and touching. anterior margin of pronotum, ocelli conspicuous and placed just inward of inner posterior angles of eyes. Antennifers short, antennac five segmented, first segment shortest and thicker than others.

Pronotum: About twice as wide as long. Anterior margin rather concave, anterolateral angles only very slightly prominent. Anterolateral margins straight almost to base and strongly diverging posteriorly, then turning inward shortly at 90^{c} forming rectangular lateral angles. Posterolateral margins strongly concave and rounding broadly to becone the strongly concave posterior margin. Disc behind Icvel of lateral angles in same plane as hind body, before level of lateral angles inclined downwards at aboul 45 '.

Scuteltum: Strongly triangular, flattish. frena extending for four fiftuis of length from base to true apex. Apex beneath with a square pale sclerotized plate, latter in plane of body and beginning al apices of Prena and extending about an equal distance past true apex of scutellum.

Hemelyra: Coriaceous parts pale and rather transparent. Corium with outer apical angles almost truncate and lateral margins very slightly convex, posterior margin straight exteriorly bul broadly rounded interiorly. Clavus strongly triangular. Mambrane hyaline, veins substantially parallel apically.

Abdumen: Flattish above, rather deeply excised apically in males.

Luterotergites: Three to six armed on posterior exterior angles with a short acute spine seven with apical angle rather strongly triangularly produced posteriorly with apex acute.

Underside: Head rather triangular in lateral view. Bucculae rather lobulately produced anteriorly then rather sinuate, reaching base of cycs, between bucculac rather deeply sulcate. Rostrum four segmented, first segment reaching base of bucculae, second to about midway between fore and hind coxae, third to about midway between second and third coxae, fourth to base of fourth abdominal ventrite. Mesoand metasterna with a robust raised keel projecting furward uver prothorax, there directed somewhat to left (as viewed from below) so that rostrum passes to right of its apex. Prosternum rather sulcate under this keel. Abdominal venter beneath with sides flatened and oblique, medially broadly raised, third segment medially raised into a short triangular tubercle directed anteriorly, its apex fitting into a notch on base of metasternal keel. Seventh ventrite deeply excised posteriorly in males and females. Pygophore ventrally with lateral angles produced a little and truncate, medially with a posteriorly directed process. Clusper rather

F-shaped and similar to that of Cuspicona spp. Aedeagus with phallosoma lightly sclerotized, three pairs of conjunctival processes the ventral pair apparently medial penial plates. Female external genitalia rather flattened medially,

General remarks: Only the type species is known in this genus, in general appearance species is very similar to some species of Cuspicona which do not have produced lateral angles to the pronotum. However the square plate like structure under the apex of the scutellum distinguishes this genus from Cuspicona and indicates a relationship closer to Vitellus.

Petalaspis tescorum Bergroth, 1916

Figs. 63, 64 A-D
Petalaspis tescorum Bergroth, 1916, p. 29-30.

Description:

General appearance: Moderate sized, elongate obovate. General colour straw coloured
but with lateral angles of the pronotum sometimes narrowly reddish, also the posterior apices of the seventh laterotergites and the genital segments. Dorsally finely and concolorously punctate.
Head: Juga rather finely transversely wrinkled; base finely punctate; eyes and ocelli reddish purple. First antennal segment not surpassing apex.

Pronotum: Finely punctate, punctations generally concolorous but sometimes a little darker than ground colour. Calli impunctate. Sometimes a faint reddish suffusion posteriorly.
Scutellum: Finely punctate, punctations generally (but not always) concolorous. Medially in basal half a raised nearly glabrous line.

Hemelytra: Corium and clavus finely concolorously punctate. A small black spot at apex of clavus; membrane including its veins hyaline.

13ig. 63. Dorsal aspect Petalaspis tescormon Bergroth.

Laterotergites: Posterior angles of III to VI with small backwardly directed black tipped spines, posterior angle of VII produced into a much larger flattened posteriorly directed spine; this spine, posterior margin of laterotergite VII and posterior margin of last abdominal segment reddish.

Underside: Bucculae low and sinuate, not reaching base of head, rounded anteriorly. Head laterally rather swollen below antennifers. First segment of rostrum reaching to about level of base of antennifers, second segment curved and reaching just behind fore coxae, third segment to just behind middle coxae, fourth segment to base of fourth abdominal ventrite. Rostrum yellow with pale reddish infusion, tip of apical segment black.

Raised keel of mesosternum thickish, protruding over prosternum and close to it (latter narrowly and shallowly sulcate anteriorly), almost reaching base of head, apically shortly
truncate. Raised keel of metasternum darker. thicker, much shorter, posteriorly excavate to receive apex of ventral spine. Legs normal, tibiae cylindrical.

Third ventrite of abdomen medially raised in a thick forwardly directed spine, all visible ventrites rather V-shaped as viewed from rear of animal. Spinous projections of seventh laterotergites and apical portions of visible genitalia, frequently reddish, sometimes also ventral midline and base of abdomen, Apex of male abdomen Fig. 64 A. Clasper Fig. 64 D, rather F-shaped. Aedeagus Fig. 64 C , with phallosoma very lightly sclerotized and honey-coloured, as the inflations were not completely successful the whole conjunctiva was not seen but the "lappet" processes are strongly developed, there are two rather tubular conjunctival lobes and the medial penial plates are large and ventrally placed, each has a lateral laminate process. Apex of female Fig. 64 B.

MALES (from 12 specimens)				
Dimensions- Parameter	Mean	Standard Deviation	$\begin{gathered} \text { Coefficient } \\ \text { of } \\ \text { Variation } \end{gathered}$	Observed Range
Head length	39	42	10.7	34-47
Head width	44	1.7	3.8	42-48
Antennal segment I	11	1:5	13.6	9-15
Antennal segment it	22	2.0	11.0	20.26
Antennal segment 11 I	20	1.5	7.5	18.23
Antennal segrnent IV	24	1.7	70	22-29
Antennal segment V	27	1.1	4.0	25-28
Pronotum width	107	$5 \cdot 1$	4.7	95.112
Pronotum length	47	2.7	$5 \cdot 7$	43-50
Total length .,..	206	8.9	$4 \cdot 3$	195-225

FEMALES (from 7 specimens)

Parameter	Mean	Standard Deviation	Coelficient of Variation	Observed Range
Head length	41	$3 \cdot 8$	9.2	35-46
Head width	47	$2 \cdot 1$	$4 \cdot 4$	44-50
Antennal segment I	11	$2 \cdot 6$	$23 \cdot 6$	9-17
Antennal segment il	23	1.7	7-3	$21-25$
Antennal segment 111	19	$1 \cdot 2$	6.3	17-21
Antennal segment IV	24	(five measurements only)		23-25
Antennal segment V	26	(three measurements anly)		25-27
Pronotum width	121	8.7	71	107-131
Pronotum length	53	$3 \cdot 7$	6.9	48-59
Total length , ...	233	21.2	9.0	$210-275$

Remarks: A not very common species but widely distributed, ranging from near Geraldton in Western Australia to Yeppoon in Qucensland. Most specimens examined were from arid regions.

In Helsinki an unmarked male specimen was located which agrees in locality and all essential
details of Bergroth's original deseription of this species. The specimen has been marked as the lectotype,
Location of Type:
Lectotype i, "Stevenson River, N.T." in Helsinki,

Fig．64．Peraluspis tescorm，Bergroth．A ventral aspect of apex of male abdomen，B．ventral aspect of apex of female abdomer．C．lefthand side view of nedeagus．D．clasper．

Specimens examined：The lectotype and one other unlocalised specimen of，Australia． Blackburn SAM．Western Australia 3 of 8 ， 1 ㅇ， Dongarra，26．XI－3．XII．1935，R．E．Turner； do，Dongarra，4－10．X．1935，R．E．Turner BM； 2 9qq， 24 km （ $=15$ miles）west of Louisa Downs， $250 \mathrm{~m}, ~ 18 . \mathrm{X} .1962$ ，at Ultraviolet （black）light，E．S．Ross \＆D．Q．Cavagnaro CAS．South Australia；4i， 2 ㅇ，Parachilna Gorge 11 km east of Parachilna，20．V．1975，by beating foliage of Eucalyptus camaldulensis Dehn．，G．F．Gross；子̂，Lake Eyre，May 1951， G．F．Gross；ㅇ，Cooper Crossing，21．II．1956， G．F．Gross SAM．Victoria 1 ，Lake Hattah， J．E．Dixon NM．New South Wales 子 ，Bourke， 25．V．1905，ex Kirkaldy Coll．USNM．Queens－ land q ，Bowen，A．Simpson BM； 2 古 古，Mt．Isa， 3．XI．1967．on Eucalyptus sp．，E．M．Exley； 2 훙, 2 우 우，Lake Moondarra $19 \mathrm{~km}(=12 \mathrm{mi})$ from Mt．Isa，3．XI．1967，on Eucalyptus sp． E．M．Exley UQ； 1 \＆，Rockhampton，Sept．1943， Helfer，ex J．R．De la Torre Bueno Collection KU； 2 ； 子， 1 of，Yeppoon，25．XI．1967．J．M． Sedlacek Bishop．

SUMMARY

The history of the recognition that the genera of Pentatomidae related to Rhynchocoris West－ wood form a distinctive grouping within the family is discussed and the distinctive features of the grouping given．The external morphology and the structure of the male and female external genitalia and the spermatheca of the female are considered in this context．A partial key to the genera in Australia and adjacent regions of the group is given which distinguishes the genera treated in this first part but avoids mentioning new genera to be erected in a subsequent paper on the second half of the group．

This paper considers five genera，three of them known viz．Ocirrhoe Stail，Cuspicona Dallas and Petalaspis Bergroth and two new genera， Everardia and Parocirrhoc．A description of each genus is given，and where there is more than one included species，a key to the species．

Ocirrloe is considered to contain 11 species of which five (milsoni, westroodi, dellasi, cavende and coronara) are new. Cuspicoma prasinana Stả) is transferred to the genus and the three names which follow are shown to be previously unrecognised junior synonyms of earlier nanes: Rhophigaster viridipes Wulker (of australis (Westwood)), Cuspicona uninotata Walker (of anstralis (Wesiwood)), and Khynchucorin mer Westwood (of unimaculata (Westwood)). The citations which follow are shown not to apply to the species to which they allegedly pertained: Cuspiconar roei Dallas non Westword (now to dallasi sp. nov.). and Ocirrhoe mmimaculala Stal nom Westwood (now to mestmonodi sp, nov.)

Crspicona is considered to contain 24 species is this region, of which 15 cooldene, cremophilac, cooperi, obesuld, procallosa, ecquisignatu. phi, angustizona, apothoracica, longispina, cygniserrae. norfolcensis, neocaledonise. chesmmani and exnigrospersa) are new. Cuspicona privata Walker is returned to the genus and is the limst valid name for the faxon previously known as Pentatomat viride Montrouzjer, then Cuspicomb viridis aucti. then Cuspiconke zeloma Kirkaldy. The two names which follow ate shows to be previously unrecognised junior synonyms of carlice names: Cuspicona bewenmulleri Van Duzes (of stremuella Walker) and Cuspicemu laminate Stal (of privala Walker). The citations which follow are shown not to apply to the species to wheh they allegedly pertained: Cespicona virescens Tryon mon Westwood (now to simpley Walker) and Cuspicona rufispina Van Duzee non Stal (now in forlicornis Breedin).

Everardia is based on a single new specios (picra) and Paroccirhoe is alsu based on a single new species (woodivardi). A lectotype has been selected for tescorm Bergroth, the type and only included species in the genus Petalasphes.

Descriptions and figures of all new species and redescriptions and figures of previously recongnised species from the areal are given. Shorl comparative descriptions are given of Cuspicona ampla Walker and Cuspicona rufispmen Stäl which are shown to occur only outside of the urea under consideration.

ACKNOWLEDGEMENTS

Funds which assisted a visil oversean in 1969 to study type material and identified and unidenlified series of Australian Heteroptera were made available from the Mark Mitchell Research Foundation, the C.S.I.R.O. Scienco and Industry Endowment Fund and the Board of the South Australian Museunn.

I am indebted to the Directors and entomological stall of the institutions Jisted on p. 53 for permitting nte to examine their collections and to make notes on type material and for the kan subsequently of both critisal and unsorted material.

Special thanks are due to the following: Dr, E. Tortonese. Cienoa: Dr: Z. Kaszah and Dr. A. Soós, Hungrary; Dr. U, Gollner-Scheiding and her family, Berlits: Dr. W. Hisckman. Mr, M. Meinander, and their colleagues. Helsinki; Professor and Mrs, I. Brundin and Dr, P. I. Persson, Stockholm: Dre Borge Petersen and Mri N. Mфiller Andersen, Copenliugen; Dr. P.. van Doesburg and Dr. H. C. Blote, Leiden; the stuff of the Institut Royal des Sciences Naturelles de Belgique, Brussels; Dr. Gi. Schmito, and the late Dr. 11. Schouteden, Terveuren: Dr. A. Villiers. Paris: Dr. W. J. Kright. Mrs. J. M. Black and Mi, L. Mound. Britisly Muscunt (Natural History): Mr. J. A. Grant London: Professor Varley and Mr. I. Lansbury, Hope Colfection; Dr. and Mrs. P. J. Darlington. Harvatd: Professor J. A. Slater, his family, and colleagues, Storrs, Connecticut: Dr. J. A. Rozen, American Musean of Natural History: Dr. R. Froeschner and Dr. J. Herring. United States National Muscuar; Dr. H. Dybus, Field Muscum; Dr. P. Ashlock and his family, Lawrence. Kunsas: Prolessor G. Ci. E. Scudder and his family, Van. couver; Dr. E. Ross and Dr. P. Arnaud, Californial Academy of Sciences the late Miss S. Nakata. Bishop Musebm.

The bionnetric analyses were done on a "Programmat $101^{"}$ minicomputer very kindly made available by the Department of Human Physiology and Phamacology at the University of Adelaide.

REFBKKFNCFS

Anon. 1249 Rev. uph. ©H. (A) 30 . +48
Atknson. E'J: 188 . Notes on Insian Rhy nchumi Heterop.

Bergreth. Fi. 191h. Heterbpteruns Hemiptena eollected by Professen. W. Batdem Smencer duning the Horn Expedision into Central Ausirulis. I'rese. R. Soce. V'ict. (N,S.) 29(1), 19.39.
 terat) Eollected by the Noona Dan Expedilunn in the Bhilimpine, Hismarek and Solomon Eslands, Sinf. Medot. 36(6). $56(0.576,5$ ligs.
 Traticate Ent. Nucfor, 2612-31, 17-45, 10 figs.
Dullas. W. S.. 1851 . - ist uf the Specimenk of Heminlemus insects in sine Collection of the British Museum". fart 1, Br. Mus mag. Hist.: Tonntan,
Distant. W. L. 1888 . An Linumeration of the Rhynchata received from Buron von Müller. and ciallected by Mer Sayer in New Guinca during Mr. Cuthbertson's Expedition, Trums. R. e"sf. Sime, Lemen 475.489, pl. 13.

Distant, W. L. 1900a. Rhynchutal Notes-[V. Heteroplera: Pentatominac (part). Amm. Mors. math, Jist. $5(7), 386-397 \& 420-435$.
Distant, W. L., 1900b. Revision of the Rhynchota belonging to the Family Pentutomidae in the Hope Collection at Oxford. Proc. Zoud. Suce Lomb, 1900. $807-824$, pls. 52 \& 53
Distant, W. In, 1902, "The Fauna of British India, including Ceylon and Burna" Rhynchota part 1. Taylor \& Francis: London.
Eyles, A. C. 1960. Insects Associated with the Major Fodder Crops in the North Island. Il Hemiptera. N.Z. J. agric., Res 3(6), 994-1008, 7 figs.

Froggatt, W, W., 1901, Notes on Australian Hemptera (Plant Bugs). Agric. Gaz N.S.W'. 12, or Misc, Publ. 538. 1-10, figs. 1-15.

Froggatt, W. W., 1902. Notes on Australian Hemintera (Plant Bugs). Agric. Gat. N.S.W.. 13, or Mise. Publ. 538. 1-8, figs. 16-31.

Froggatt, W. W., 1907. "Australian Insects." Sydney.
Gross, G. F., 1972. A revision of the species of Australian and New Guinea Shield Bugs formerly placed in the genera Poecilometis Dallas and Eumecopus Dallis (Heteropiera: Pentatomidae) with descriptions of new species and selection of lectotypes. Alust. J. Zool. Suppt Ser 15, 1-192, 65 fies.
Gross, G. F., 1975. "Plant-feeding and other bugs (Hemiptera) of South Australia" Part 1. Government Printer: Adelaide.
Kirkaldy, G. W., 1905. Memoir on the Rhynchota collected by Dr. Arthur Willey, F.R.S., chichy in Biratil (New Britain) and Lifu. Trans. R, ent. Soc. Lond.,: 327-362. PL. 17.
Kirkaldy, G. W., 1909, "Catalogue of the Hemiptera (Heteroptera) with Biological and Anatomical References, Lists of Food-plants and Parasites, ete." Vol, 1. Cimicidae Felix Dames: Berlin.
Lethierry, L. \& Severin, G.p 1893. "Catalogue général des Hémiptères." Vol, 1. F. Hayez: Bruxelles.
Mayr, G. 1., 1866. Reise der Novara. Zool, 2(1). Hem. 3-204, 5 pls. Kais. K. H. Staatsdruckerei: Wien.
Montrouzier, X. 1855. Essai sur la fatne de l'jle de Woadlark ou Moiou. Amn. Soc. Akr. Lyom (2)7(1). 1-114.
Montrouzier, X. Signoret, Vo 1861. Essali sur la Faunc entomologique de la Nouvelle-Calédonie (Baltade) et des lles des Pins. Art. Jifil ctc. Amm, Sime, mit. Fr., 1(4).59.74.

Ramsay, G. W., 1963. Predaceus Shicld-Bugs (Heteroptera: Pentatomidae) in New Zealand, N.Z. Ent. 3(2). 3-6. 2 figs.
Sloan, W. J. S., 1941. The Conirol of Tomato Pests. Qd. agric. J. $56(4), 277-294,4$ pls.
Spiller, D., \& Turbott, E. G., 1944. The accurtence of some Ausralian insects and a spider in New Zealand, Rece. Alucklund (N,Z.) Inst. 3(1), 79-83.
Stall, C.. 1859. "Kongliga svenska Fregatten Eugenies Resa omkring Jorden, under Befal af C. A. Virgin Aren 1851-1853." Zoologi 1, Insecta. Norstedt: Stackholm.
Stai, C., 1866. Analecta hemipterologica. Berl. ent. Z. 10. 151-172, 381-394.

Stâ1, C., 1867, Bidrag till Hemipternas Systematik. Ofvers. K', Vetensk Akat. Forh. 1867, 491-560.
Still, C., 1870. Hemiptera insularum PhilippinarumBidrag till Philippinska oarnes Hemipter-fauna. Ofv. Si ${ }^{+}$K. Vef. Akad. Forh. 27(7), 607-776, pls. 7-9.
Stå, C. 1876. Enumeratio Hemipterorum 5. K. svonska Vetensk Akod. Handl. 14(4), 1-162.
Tryon, H., 1889. "Repurt on Insects and Fungus Pests," 1. Government Printer: Brisbane.

Van Duzee, E. P., 1905. Notes on Australian Pentatomidae with deser of a few new species. Bull. Am. Mus. nat. Hist., 21, 187-214. pl. 8.
Walker F., 1867. "Catalogue of the Specimens of Heteropterous Hemiplera in the Collection of the British Mluseum." Pı. II. Br. Mus. mat. Hist.: London.
Walker, Fe4 1868. "Catalogue of the Specinens of Hemiptera Heteroptera in the Collection of the British Museum." Pt. III. Br. Mus. nat. Hist." London.
Westwood, J. O., 1837, "A Catalogue of Hemiptera in the Collection of the Rev. W. F. Hope F.R.S. F.L.S. F.Z.S. M.E.S. Etc. Fic. Elc. Etc. with Short Latin Description of New Species", part 1. J. C. Bridgewater London.
Woodward, T. E. 1954. New Records and Descriptions of Hemiptera-Heteropterat from the Three Kings Islands. Ree. Auckional (N.Z.) Insr. 4(4), 215-233, 2 figs.
Woodward, T. E., 1953. 'The Heteropterd of New Zealand, Part I. Introduction. Cynidae; Pentatomidae. Trons, roy. Soc. N.Z., $80(3 \& 4), 299-321$, pis. 62-71.

RECORDS OF THE SOUTH AUSTRALIAN MUSEUM

VERTEBRATE TYPE-SPECIMENS IN THE

 SOUTH AUSTRALIAN MUSEUM

 SOUTH AUSTRALIAN MUSEUM}
I. FISHES by C. J. M. Glover
II. AMPHIBIANS by Michael J. Tyler
III. REPTILES by Terry F. Houston
IV. BIRDS by Herbert T. Condon
V. MAMMALS by Peter F. Aitken
VI. FOSSILS by Neville S. Pledge

VERTEBRATE TYPE-SPECIMENS
 IN THE SOUTH AUSTRALIAN MUSEUM

I. Fishes by C. J. M. Glover

Summary

The type-specimens of six genera and 71 species or subspecies of recent fishes in the South Australian Museum are catalogued. Most are from Australia, a number from Antarctica.

VERTEBRATE TYPE-SPECIMENS IN THE SOUTH AUSTRALIAN MUSEUM

I. FISHES
by
C. J. M. GLOVER
South Australian Museum, Adelaide 5000

ABSTRACT

GLOVER, C. J. M., 1976. Vertebrate type-specimens in the South Australian Museum. I. Fishes. Rec. S. Alust. Alus. 17 (7): 169-175.

The type-specimens of six genera and 71 species or subspecies of recent fishes in the South Australian Muscum are catalogued. Most are from Australia, a number from Antarctica.

INTRODUCTION

The following is a list of all recent fish types, representing six genera and 71 species or subspecies, registered in the South Australian Museum to date, together with descriptive references, collecting data and currently accepted names.

Most of these specimens have recently been relocated and data from their labels, type descriptions and the collection register cross checked. Some specimens, as indicated, have still to be located, but efforts to tind them are continuing.

CLASS CYCLOSTOMATA

ORDER PETROMYZONIFORMES
Family Eptatretidae
Eptatretus longipinnis Strahan, 1975.
Aust. Zool. 18 (3): 137-148, fig. 1.
Holotype: F4042, in spirit, from south-eastern Indian Ocean off Robe, South Australia, collected by R. B. Hawes, 2.ix. 1971.

CLASS ELASMOBRANCHII

 ORDER HETERODONTIFORMES
Family Triakidae

Fur ventralis Whitley, 1943.
Rec S. Aust. Mus. 7: 397
$=$ Furgaleus ventralis (Whitley, 1943)
Paratypes: F2069, cast of specimen taken from St. Vincent Gulf, South Australia, collector unknown, 30.x.1943. F2070, mounted skin of above specimen; neither the cast or the skin can be located.

ORDER RHINOBATIFORMES

Family Rhinobatidae

Trygonorhina melaleuca Scott, 1954.
Rec. S. Aust. Mus. 11 (2): 106, tig. 1.
Holotype: F2769, male in formalin, taken off Kingscote, Kangaroo Island, South Australia, collected by E. Sundberg, 26.iii.1953; a cast of this specimen (numbered F2769) is also in the South Australian Museum.

ORDER MYLIOBATIFORMES

Family Urolophidae

Urolophus gigas Scott, 1954.
Rec. S. Aust. Alus. 11 (2): 105, pl. XXII.
Holotype: F2744, female in formalin, taken at Port Noarlunga, South Australia, collected by T. D. Scott and E. J. Mitchell, 31.i.1952; a cast (F4127) of this specimen is also in the South Australian Museum.

CLASS TELEOSTOMI

ORDER CLUPIEFORMES

Family Dorosomidae

Chatoessus horni Zietz, 1896.
Rept, Horn Sci, Exped. C. Ausli., 2 (Zool): 180, pl. XVI, fig. 6.
$=$ Fluvialosa hormi (Zietz, 1896)
Holotype: F1063, in spiryt, from "Central Australia", collected by Horn Expedition party, 1894.

ORDER SALMONIFORMES

Family Idiacanthidae

Idiacanthus aurora Waitc; 1916.
Austr. Ant. Exped., (C) 3 (1) (Fish): 53-55, pl. V, fig. 1, text fig. I!.
Holotype: F380, in spirit, from 25 miles (40 km) northward of Macquarie Island, collected by the Australasian Antarctic Expedition party, 1912.

Family Paralepididae

Notosudis hamiltoni Waite, 1916.
Austr. Ant. Exped., (C) 3 (1) (Fish): 56-58, pl. V, fig. 2, text fig. 12.
Holotype: F382, in spirit, from Macquarie Island, Antarctica, collected by H . Hamilton, sometime during the period 1911-1913.

ORDER SILURIFORMES

Family Plotosidae

Plotosus argenteus Zietz, 1896.
Rept. Horn Sci, Exped. C. Austr. 2 (Zool): 410, pI, XVI, fig. 7.
$=$ Tandanus (Neosilurus) argenteus (Zietz, 1896).
Holotype: F1090, in spirit, from the Barcoo River ($=$ Cooper Creek), near Innamincka، South Australia, collected by the Horn Expedition party, 1894.

Ostophycephalus duriceps Ogilby, 1899.
Proc. Limn. Soc. N.S. Wales 24: 156.
$=$ Cnidoglanis macrocephalus (Cuvier \& Valenciennes, 1840),
Holotype: F1093, in spirit from Semaphore, St. Vincent Gulf, South Australia, presented by A. Zietz, 1898.

ORDER GOBIESOCIFORMES

Family Gobiesocidae

Aspasnlogaster patella Scott, 1954.
Rec. S. Aust. Mus. 11 (2): 111, lig. 3.
=Aspasmogaster tasmamiensis (Guenther, 1861).
Holotype: F2788, in spirit, from Kingston Park (near Adelaide), South Australia, collected by University of Adclaide biology students, 26.ix. 1953.

Paratypes: F2789, three specimens, in spirit. locality and collection data as for the holotype.

ORDER LOPHIIFORMES

Family Antennariidae
Echinophryne crassispina McCulloch \& Waite, 1918.

Rec. S. Aust. Mus. 1 (1): 67, pl. VI, fig. 2.
Holotype: F609, in spirit, from Spencer Gulf South Australia, collector and date of collection unknown.

Histiophryne scortea McCulloch \& Waite, 1918.
Rec. S. Aust. Mus. 1 (I): 74, pl. VII, fig. 2.
Holotype: F618, in spirit, from Stansbury, St. Viricent Gulf, South Australia, collector and date of collection unknown.

Paratypes: F617 and F619, two specimens in spirit, locality and collecting data as for the holotype.

ORDER ATHERINIFORMES

Family Melanotnenidac

Nematocentris winneckii Zietz, 1896.
Rept. Horn. Sci. Exped. C. Austr. 2 (Zool): 179, $\mathrm{pl}, \mathrm{XVI}_{4}$ fig. 3.
$=$ Melanotaenia nigrans (Richardson, 1843).
Syntype: Fi075, in spirit, from Finke River. "Central Australia", collected by Horn Expedition party, 1894.

Nematocentris tatei Zietz, 1896.
Rept. Horn. Sci. Esped. C. Austr. 2 (Zool): 178. pl. XVI, fig. 2.
Syntypes: Fl166, three specimens in spirit, from Idracowra, "Central Australia", collected by Horn Expedition party, 1894.

Family Atherinidae

Tropidostethus rhothophilus Ogilby, 1895.
Proc. Linn. Soc. N.S. Wales 2 (10): 323.
Paratype: Fll64, from Maroubra Bay, New South Wales, collected by T. Whitelegge, March, 1893.

Craterocephalus dalhousiensis Ivantsoff \& Glover, 1974.

Alust. Zool. 18 (2): 88-98, fig. 1.
Holotype: F3453, male in spirit, from Main Spring at Dalhousie Springs, collected by C. J. M. Glover, 3.viii. 1968.

Allotype: F3453, female in spirit, locality and collection data as for the holotype.
Paratypes: F3453, 11 males and nine females, stored apart from the primary types, locality and collection data as for the primaries.
Norr-Some other paratype specimens were deposited with the following Institutions: Australian Muscum (Sydney), American Museum of Natural History (New York), British Museum of Natural History (London), Museum National d'Histoire Naturelle (Paris), Zeologisch Museum (Amsterdam).

ORDER BERYCIFORMES

Family Berycidac

Hoplostethus mediterraneus Cuvier \& Valenciennes, var. lans McCulloch, 1914.
Biol. Res. Endeavour 2: 47, lig. 5 .
Syntype: F213, in spirit, from Great Australian Bight, collected by F.IS. Endeavour. March. 1912 or 4 iv. 1913 (?).

ORDER GASTEROSTEIFORMES

Fumily Syngnathidae

Syngnathus vercoi Waite \& Hale, 1921.
Rec. S. Aust. Mus, 1 (4): 298, fig, 41.
Holotype: F690, male in spirit, from Spencer Gulf, South Australia, collected by Sir Joseph Verco, 7.xii.1920.
Paratypes: F691, 18 specimens in spirit, locality and collection data as for the holotype.

Leptonotus costatus Waite \& Hale, 1921.
Rec. S. Aust. Mins, 1 (4): 301, fig, 43.
Holotype: F693, female in spirit, from Spencer Gulf, South Australia, collected by Sir Joseph Verco, 7.xii, 1920.
Paratype: F694, in spirit, locality and collection data as for the holotype.

Histiogamphelus maculatus maculatus Hale, 1939.
S.A. Naturalist 19 (4): 2-3, fig.

Holotype: F2039, female in spirit, from Aldinga, St. Vincent Gulf, South Australia, collected by J. D. McDonald, 9.xii. 1936.

Histiogamphelus maculatus robensis Whitley, 1948. Rec. Aust. Mus. 22: 76.
Holotype: F2611, in spirit, from coastal waters near Robe, South Australia, collected by B. Hendon. 13.iii. 1946.

Histiogamphelus gallinaceus Hale, 1941.
S.A. Nuturalist, 21 (2): 10, fig.

Holotype: F2227, male in spirit, from silt grounds at Outer Harbor, South Australia, collected by A. E. McWaters, 20.viii. 1941.

Ilistiogamphelus rostratus Waite \& Hale, 1921.
Rec. S. Aust. Mus. 1 (4): 303, fig. 44.
= fypselognathus rostrums (Waite \& Hale, 1921).

Holotype: F696, in spirit, from Spencer Gulf, collected by Sil Joseph Verco, 7.xii, 1920.

Paratype: A juvenile specimen which, having very badly deteriorated, was subsequently destroyed; locality and collection data as for the holotype.

Ichthyocampus eristatus McCulloch \& Waite, 1918. Rec. S, Aust, Mus. 1 (1): 40, fig. 26.
Holotype: F569, a dried specimen, in good condition, from Spencer Gulf, collector and date of collection unknown.

Lissocampas caudalis Waite \& Hale, 1921.
Rec, S. Aust. Mus. 1 (4): 306, fig. 46.
Holotype: F701, in spirit, from near Kangaroo Island. South Australiu, collected by a Mr. Rumball, 2.x.1901,
Paratype: F702, Iocality and collection data as for the holotype.

Corythoichthys flindersi Scott, 1957.
Trans. R. Soc, S, Aust, 80: 182, fig, 2. -Sjngnathus Jlindersi (Scott, 1957),
Holotype: F2922, two specimens in spirit, from Pelictn Lagoon, Kangaroo Island. South Australia, collected by H. M. Cooper, 20.ix. 1956.

Acentronura australe Waite \& Hule, 1921.
Rec. S, Aust. Mus, 1 (4): 317, Jig. 53.
Holotype: F719, female in spirit, from St. Vincent Gull, South Australiat. collector and date of collection unknown.
Paratype: F720, male in spirit, loculity and collection data as for the holotype.

Siokunichthys herrei Herald, 1953.
Bull. U.S. Nat. Musewin 202 (1): 254-256 fig. 38.
Paratype: F3841, in spirit, from Fiji, Suva, collected by the Crockel Expedition purty. 20.iv.1933.

Note-Formerly in the collection of the Culifornian Academy of Natural Sciences (C.A.S. Catalog No. S910) until presented to the South Australian Museum; one of seven specimens, all paratypes, of the same collection.

ORDER SCORPAENIFORMES

Hamily Scorpaenidae

Neosebastes pantica McCulloch \& Waito, 1918.
Rec. S. Aust. Mus. 1 (1): 64, pl. IV, lig. 1.
Holotype: F601, in spisit, from Spencer Gulf. South Australia, collector and date of collection unknown.

ORDER PERCIFORMES

Family Cyclopteridae

Paraliparis wildi Waite, 1916.
Austr. Ant, Exped. (C) 3 (1) (Fish): 43-44, pl, IV, fig. I, text fig. 9.
Holotype; F378, in spirit, from off the Shackleton Ice-shelf, Antarclica, collected by the Australasian Antarctic Expedition party, 29.i.1914.

Family Brotulidae

Dermatopsis multiradiatus McCulloch \& Waite, 1918.

Rec. S. Aust. Mus. I (1): 63, pl. V, fig. 4.
Holotype: F480, in spirit, from Kangaroo Island, South Australia, collected by E. R. Waite, 1917.

Paralype: F480, in spirit, with the holotype, locality and collection data as above.

Family Centropomidae

Ambassis telkara Whitley, 1955.
Rec. S. Altst. Mus. 5 (3); 349, fig. 2.
Holotype: F1793, in spirit, from Bathurst Head Queensland, collected by H. M. Hale and N, B, Tindale, January, 1927.

Note-Although the type description specilics no holotype, the South Austra)lian Museum fish register indicates specimen F1793 as being the holotype.
Twenty-seven specimens registered F1794, with locality and collection data as for the above specimen, probably constitute paratypes. The type description merely states that six specimens (presumably of this collection) were retained for the Australian Museum, Sydney (Reg. No. IA (0046).

Family Pseutochromidae

Dampieria ignita Scott, 1959.
Tirans. R. Soc. S. Aust. 82: 75-76, fig. 1.
Holotype: F2997, in spirit, from Shatks Bay, Western Australia, collected by a member of the Underwater Spearfishermen's Association of Western Australia, May, 1954: this specimen cannot be located.

Family Plesiopidae

Trachinops norlungae Glover, 1974.
The Marine and Freshmater Fishes of Soulh Australia (Second Edition) Govt. Printer. South Aust.: 225; fig.
Holotype: F3721 in spirit, from Port Noarlunga rect, St, Vincent Gulf, South Australia, collected by S. Doyle, January, 1973,
Paratypes: F 3676 , eight specimens, in spirit, locality and collection data as for the holotype.

Family Theraponidac

Therapon welchi McCulloch \& Waite, 1917.
Tioans. Roy, Soc. So Aust. 41: 472, fig. 1.
$=$ Hephaestus welchi (McCulloch \& Waite, 1917).

Holotype: F606, in spirit, from Cooper Creek, near Innamincka, South Australia, collected by E. R. Waite, 3.x. 1916.

Therapon barcoo McCulloch \& Waite, 1917.
Trons. R. Soc. S: Aust. 41: 474, fig. 2.
$=$ Scortum barcuo (McCulloch \& Waite, 1917).
Holotype: F607, in spirit, from Cooper Creck, "Central Australia", collected by E. R. Waite, date of collection unknown.

Family Apogonidae
Archamia leai Waite, 1916.
Trans. R. Soc. S. Aust. 40: 455-456, pl. XLV.
Syotypes: F308, four specimens in spirit, from Norfolk Island, off New South Wales coast, collected by A. M. Lea, 18،ii. 1916.

Family Carangidae

Caranx humerosus McCulloch. 1915.
Biol. Res. Endeavour 3: 137, pl. XXV. - Carangoides humerosus (McCulloch, 1915),

Paratypes: F191, two specimens in spirit, from 1]-14 miles N. $59^{\circ} \mathrm{W}$, olf Pine Peak, Qucensland, collected by F.I.S. Endearour, I viii, 1910.

Note- The holotype and ather paratypes of this species ure housed in the Ausiralian Museunt. Sydisey (Reg. No. El 436 \& c.).

Family Lutjanidac

Nemipterus samsonensis Scott, 1959.
Trans, R, Soc, S. Aust. 82: 77-78, fig. 2.
Holotypc: F2966, in spirit, from Point Samson, Western Australia, collected by a member of the Underwater Spearfishermen's Association of Western Australia, November, 1954.

Family Pomadasyidac

Plectorhymehus ordinalis Scott, 1959.
Trans. R. Soc. S. Anst. 82; 79-80, fig. 3.
Holotype: 173006, in spirit, from Sharks Bay, Western Australia, collected by a member of the Underwater Spearlishermen"s Association of Western Ausiralia, May, 1954.

Family Chironemidae

Threpterius chalceus Scott. 1954.
Rec. S. Aust, Mus. 11 (2): 108-109, fig. 2.
Holotype: F2739, a female in spirit, from the west coast of Kangaroo Island, South Australia, collected by P. M. Thomas, 10.ix. 1951 .

Family Labridae

Cheilinus aurantiacus Costeloau, 1875.
Proc. Zool. Acclim. Soc. Vic. 1: 245.
= Pseudolohrus auraitiacus (Castelnau, 1875).
Paratypes: F 1349 , an indeterminate number of specimens from St, Vincent Gulf, South Australia, collected by F. G. Waterhouse, date of collection unknowir; the three specimens found registered F1349 are labolled being cither "types or co-types".
Note-McCulloch (1929-30) states that the Type is in the Paris Muscum.
Eupetrichthys gloveri Scolt, 1974.
The Marine and Freshwater Fishes of South Australia (Sccond Edition) Govt. Printer. South Australia: : 303-304.
Holotype: F3164, in spirit, from Thistle Island, South Australia, collected from F.R.V. Weerutta, September or October, 1960.
Paratypes: F3164, three specimens in spirit, locality and collecting data as for the holotype.

Stethojulis rubromacula Scott, 1959.
Trans. R. Soc. S. Aust. 82: 87-88, fig. 7.
Holotype: F2993, ith spirit, from Sharks Bay, Western Australia, collected by a member of the Underwater Spearfishermen"s Association of Western Australia, May, 1954.

Thalassoma septemtasciata Scott, 1959.
Trans. R. Soc. S. Aust. 82: 84-85, Gig. 4.
Holotype: l 2984 , the larger (total length 214 mm) of two specimens in spirit, from Sharks Bay, Western Australia, collected by a member of the Underwater Spearishermen's Association of Western Austratia, May, 1954.

Anampses lennardi Scott, 1959,
Ticurs. R, Snc, S, Aust. 82: 86-87, fig. 6.
Holotype: F3024, the larger (a male, wal length 203 mm) of lwo specimens in spinit, from Point Samson, Western Austratia, collected by a member of the Underwater Spearfishermen's Association of Western Australia, December, 1957; this specimen cannot be located.

Choerodon rubidis Scott, 1959.
Traus. R. Soc. S. Aust. 82: 89-90, fig. 7.
Holotype: F2985, in spirit, from Sharks Bay, Western Australia, collected by a member ot the Underwater Spearfishermen's Association of Western Australia, May, 1954.

Tamily Uranoscopidae

Kathetostoma nigrofasciatum Waite \& McCulloch, 1915.

Tirms. R. Soc. S. Aust. 39: 469. pl. XIII, figs. 1-2.
Holotype: F170, the largest (total length 195 mm) of three specimens in spirit, from the Great Australian Bight, collected during the S, T. Simplon experimental trawling cruise, 1914.
Paratypes: F170, two specimens in spirit, locality and collecting data as for the holotype.

Family Notothcuiidae

Notothenia coriiceps Richardson var. mucquariensis Waitc, 1916.

Austr. Ant. Exped. (C) 3 (1) (Fish): 64-66, pl. V, lig. 3, text fig. 15.
Syntype: F385, in spirit, from Macquarie lsland, Antarclica, collected by H . Hamilton of the Australasian Antarctic Expedition party, sometime during the period 1911-1913.

Family Bathydraconidae
Bathydraco nudiceps Waite, 1916.
Austr. Ant. Exped. (C) 3 (1) (Fish): 27-29. pl.I. fig. 3, text Jig. 4.
Holotype: F369, in spirit, from off the Shackleton lee-shell, collected by the Australasian Antarctic. Expedition party, 28.i.1914.

Aconichthys harrissoni Waite, 1916.
Austr. Ant. Exped. (C) 3 (1) (Eish): 30-32, pl, 11, lig. 1, text fig. 5 .
Genotype and Holotype: F371, one specimen in spirit, from off the Shackleton lee-shelf. collected by the Australasian Antarctic Expedition party, 29,i,1914.

Cygnodraco mawsoni Waite, 1916.
Austr. Am. Exped. (C) 3 (1) (Fish): 32-34, pl. 111, Gig. 1 , text fig, 6.
Genotype and Holotype: F 372 , one specimen in spirit, from off Drygalski Island, Antarctica, collected by the Australasian Antaretic Expedition party, sometime during the period 1911-1914.

Family Channicthyidae

Dacodraco hunteri Waite, 1916.
Austr. Ant. Exped. (C) 3 (1) (Fish): 35-37, pl, 11, fig. 2, text fig. 7 .
Genotype and Holotype: F374, one specimen in spirit, from off the Shackleton Ice-shelf, Antaretica, collected by the Australasian Antarctic Expedition party, 31.i.1914.

Family Peronedysidac

Eucentronotus zietzi Ogilby, 1898.
Proc. Limn. Soc. N.S. Wales 23 (3): 294. = Peronedys anguillaris Steindachner, 1884.
Syntype: F1491, in spirit, from St. Vineent Gulf, South Australia, collector and date of collection unknown.

Family Ophiclinidae

Ophiclinus aethiops McCulloch \& Waite, 1918.
Rec. S. Aust. Mus. 1 (1): 57, fig, 29.
Holotype: F481, in spirit, from Kangaroo Island, South Australia, collected by E. R. Waite, 1917.

Ophiclinus varius McCulloch \& Waite, 1918.
Rec. S. Aust. Mus. 1 (1); 57, fig. 30.
-Ophiclinus gracilis Waite, 1906.
Holotype: F503, in spirit, from Kangaroo Island, South Australia, collected by E. R. Waite, 1917.

Paratypes: F503, three specimens in spirit, with the holotype, locality and collection data as above; only one of these specimens has been located to date.

Ophiclinus pardalis McCulloch \& Waite, 1918,
Rec. S. Aust. Mus. 1 (1): 58, pl, 4, fig. 2.
$=$ Ophiclinops purdalis (McCulloch \& Waite, 1918).

Holotype: F600, in spirit, from Streaky Bay, South Australia, collector and date of collection uirknown.

Family Tripterygiddae

Helcogramma decurrens McCulloch \& Waite. 1918.

Rec. S. Aust, Mus. 1 (1): 52, pl, 3, fig. 2.
Holotype: F598, from St. Vincent Gulf, South Australia, collector and date of collection unknowr.

Brachynectes fasciatus Scott, 1957.
Trans. R. Soc. S. Aust. 80: 180, fig. 1.
=Veronectes fasciatus (Scott, 1957).
Genotype and Hololype: F2921, in spirit, from Pelican Lagoon, Kangaroo Island, South Australia, collected by H. M. Cooper, 20.ix. 1956.

Family Clinidae

Heteroclinus adelaide Castelnat, 1872.
Proc Zool. Acclim. Soc. Vict. 1: 247.
Holotype: F1492, from St. Vincent Gull;, South Australia, collceted by F. G. Waterhouse, date of collection unknown.

Trianectes bucephalus McCulloch \& Waite, 1918.
Rec. S. Aust. Mus. 1 (1): 53, pl. 3, fig. 3.
Holotype: F599, in spirit, from Spencer Gulf, South Australia, collected by Sir Joseph Verco, date of collection unknown.

Family Nomeidae

Cridorsa moonta Whitley, 1938.
Rec, S. Aust. Mus. 6 (2): 159-161, pl. XVI.
Genotype and Holotype: F2023, from Moonta Bay, Spencer Gulf, South Australia, collected by H. Kemp, 4.viii.1938: having later very badly deteriorated it was subsequently destroyed.

Family Gobiidac

Eleotris larapintae Zietz, 1896.
Rept. Horn. Sci. Exped. C. Austr, 2 (Zool.): 179, pl. XVI, fig. 4.
Mogurnder mogurnula (Richardson, 1844).
Syntypes: F513, three specimens, from Red Bank Creek. "Central Australia"; F514. two specimens, from the Finke Rivei, "Central Australia"; all collected by the Horn Expedition party, 1894.

Gobius eremius Zietz, 1896.
Répt. Ilom, Sci. Exped. C. Austr. 2 (Zool.): 180. pl, XVI. fig. 5.
$=$ Chlamy dogobius evemius (Zietz, 1896).
Syntypes: F525, six specimens in spirit, from Coward Springs railway bore, Far North South Australiu, collected by the Horn Expedition party, 4.v. 1894.

Mugilogobius galwayi McCulloch \& Waite, 1918.
Rec. S. Aust. Mus. 1 (1): 50, pl. III, fig. 1.
=Lizagobius galwayi (McCulloch \& Waite, 1918).

Holotype: F583, in spirit, from Patawalonga Creek (near Adelaide), South Australia, collector and date of collection unknown.

Oxyurichthys cornutus McCulloch \& Waite, 1918.
Rec. S. Aust. Mus. 1 (1): 80, pl, VIII, lig. 2.
Holotype: F592, in spirit, from Cairns, Queensland, collected by J. A. Anderson, date of collection unknown.

Drombus halei Whitley, 1935.
Ret. S. Aust. Mus. 5 (3): 353-354, fig. 5.
Holotype: F1801, in spirit, from Flinders Island, North Queensland, collector and date of collection unknown.

Boleophthalmus caeruleomaculatus McCulloch \& Waite, 1918.
Rec. S. Aust. Mus. 1 (1): 79, pl, VIII, fig. 1.
Holotype: F590, in spirit, from the Adelaide River, Australian Northern Territory, collector and date of collection unknown; this specimen cannot be located.
Paratypes: F591, three specimens in spirit. locality and collection data as for the holotype; these specimens cannot be located.

ORDER TETROADONTIFORMES

Family Balistidae

Wecrutta ovalis Scott, 1962.
The Marine and Freshwater Fishes of South Australia, Govt. Printer, Adelaide: 310 , fig.
Genotype and Holotype: F3057, a single specimen in spirit, from off Dangerous Recf, South Australia, collected by F.R.V. Weeruta, February, 1961.

Family Ostraciontidac

Anoplocapros gibbosus McCulloch \& Waite, 1915.
Troms. R. Soc. S. Aust. 39: 480, pl. 18.
=Anoplocapros lenficularis (Richardson, 1841).
Paratypes: F248, two specimens in spirit, from South Australian coastal waters, collector and date of collection unknown.

Aracana spilogaster Richardson var. angusta McCulloch \& Waite, 1915.
Trans. R. Soc. S. Aust. 39: 488, pl. XXIII.
Holotype: Fl66, in spirit, from Bass Strait, east of Flinders Island, collector and date of collection unknown.

REFERENCES

Berg, L. S ${ }^{\text {ry }}$ 1940. Classification of Fishes, both recent and fossil. Trav. Inst. Zoml, Aead, Sci, U.S.S., R, 5 (2): 86-517. figs, 1-190.
Greenwood, P. H. ct al. 1966. Phyletic Studies of Teleosteon Fishes, with a Provisional Classification of Living Forms. Bull. Am. Mlus, Nat. Fist, 131 (4): 339-456, fig. 1-9, plates 21-23. charts 1-32.
Lake, J. S., 1971. Freshnaler Fistics and Rivers of Australia, Thomas Nelson (Australia), Melbourne.
McCulloch. A. R.. 1929-30. A Check-list of the Fishes Recorded from Australia. Aust. Mus. Afem. 5 (1-4): i-x and I-534.
Munro, I. S. R., 1960-1961. Handhook of" Australian Fishes. Series published in Australian Iisheries Newsletter between July, 1960 and December, 1961. Fisheries Division, Department of Primary Industry, Canberra.
Neave, S. A.; 1939-50. Nomenthtor Zoologious (London. Zool. Soc.). 5 vols.
Scolt, T. D., 1962. The Marime and Freshnater Fisheri vf Santh Alsholia. Government Printer. Adelaide.
Scott, T, Dis Glover, C. J. M. \& Southcott, R. V., 1974. The "Marine and Freshwater Fishes of South dustraliu (Second Edition). Govt. Printer, Snuth Alestralia.
Waite, E. R., 1921. Illustrated Caltalogue of the Fishes of South Australia, Rec. S. Aust. Alus. 2 (1): $1-208, \mathrm{Pl}$ i and 293 text-figs.
Western Australian Museum (The). 1964. Type Specimens in the Western Australian Museum (part 5) . . . The Western Aurralian Mhsewn 1963-64 Anmual Report: 34-45.
Whitley, G. P. 1948. A List of the Fishes of Western Australia. W.A. Fïsheries Deph. Bull. 2: 1-35 and map.

Whitley, G. P. 1957, List of Type-Specimens of Recent Fishes in The Australian Museum, Sydney. joiii and $1-40$ (Mimeographed).
Whitley, G. P. 1964, A Survey of Australian ichtioyology, proce. Linn. Sot: N.S. Wales LXXXIX (1): 11-127.
Zoological Record (The), 1864-1970. Pisces section in various volumes, 1=107. The Zoological Society of London.

YERTEBRATE TYPE-SPECIMENS IN THE SOUTH AUSTRALIAN MUSEUM

II. AMPHIBIANS

by
MICHAEL J. TYLER
South Australian Museum, Adelaide 5000

Abstract

TYLER, M, J. 1976. Vettelate type-specimens in the South Australian Muscum. 1I. Amphibians. Rec. S. Aust. Mfas. 17 (8):177-180.

Type-specimens of amphibians in the South Australian Museum represent 34 species and subspecies, and include holotypes and syntypes of 21 species. With the sole exception of a ranid from the Philippines, they are all from Australia, New Guinea and adjacent islands.

INTRODUCTION

Dowling, Gilboa and Zweifel (1970) included 53 titles in a world-wide survey of published lists of type-specimens of reptiles and amphibians. Of the lists of types held in particular institutions, the only Australian museums represented at that time were the Macleay Museum (Goldman, Hill and Stanbury, 1969) and the Western Australian Museum (Anonymous, 1962, et seq.: six titles vide Dowling et al., 1970). Subsequently Coventry (1970) and Covacevich (1971) published lists of the types in the National Museum of Victoria and the Queensland Museum respectively.

In Australia the largest number of amphibian types is lodged at the Australian Museum; a list of these is being prepared $(\mathrm{H} . \mathrm{G}$. Cogger. pers. comm.). However the South Australian Museum type collection is relatively substantial. containing types of 34 species and subspecies representing the following families: Hylidae (20 speciess), Ranidae (five), Leptodactylidae (five) and Microhylidae (three). Holotypes or syntypes of 21 species and subspecies are included.

Twenty-four of these species involved are from New Guinea, eight from Australia and one from the Philippines.

AMPHIBIA, ANURA

Hyla albolabris Wandolleck, 1911, Ahh. K. zool. Anthron.-ethur. Mus. Dresden 13 (6): 12.
=Litoria albolabris (Wandolleck), vide Tyler, 1971: 352
Syntype: S.A.M, R4947, Aitape, New Guinea (coll. O. Schlaginhaufen)

Hyla bulmeri Tyler, 1968a, Zool. Verh. (96): 56. $=$ Litoria bumerf (Tyler), vide Tyler, 1971: 352
Holotype: S.A.M. R5625, Glkm, Upper Aunjung Valley, Schrader Mountains, New Guinea (coll. R, N. H. Bulmer).
Paratypes: S,A,M, R5624, R8107 (same as holotype).

Hyla contrastens Tyler, 1968a, Zool, Verh. (96): 72. $=$ Litoria contrastens (Tyler), vide Tyler, 1971: 352
Holotype: S.A.M. R5845, Barabuna, near Kundiawa, New Guinea (coll. F. Parker).
Paratype: S, A, M, R6450 (same data as holotype).
Hyla coplandi Tyler, 1968b, Rec. S. Aust. Alus. 15 (4): 716
=Litoria coplandi (Tyler), vide Tyler, 1971: 352
Paratype: S.A.M. R9103, Wave Hill, Northem Territory, Australia, (coll. K. G. Buller).

Hyla dorsivena Tyler, 1968a, Zool. Verh. (96): 83 - Litoria dorsivena (Tyler), vide Tyler, 1971: 352

Holotype: S.A.M, R7901. Telefomin, New Guinea (coll. B. Craig).
Paratypes: S.A.M, R7902-7910 (same data as holotype). R7911 (ransferred to Museum of Natural History, University of Kansas. Now K.U. 153143.

Hyla leucova Tyler, 1968a, Zool. Verh. (96): 119 =Litoria lencova (Tyler), vide Tyler, 1971: 353
Holotype: S.A.M. R6461, Busilmin, New Guinca (coll, B, Craig).

Hyla meiriana Tyler, 1969, Rec. S. Aust. Mus, 16 (1): 2
$=$ Litoria meiriana (Tyler), vide Tyler, 1971: 353
Holotype: S.A.M, R9082, 157 km north of Mainoru, Northern Territory, Australia (coll. A. Fleming, R, Edwards and H. Bowslaill).

Paratypes: S.A.M, R9014-32, 9034, 9074-81, 9083-85 (same data as holotype). (R. 9033 transferred to Museum of Natural History, University of Kansas. Now K.U. 153144).

Hyla micromembrana Tyler, 1963, Trans. R. Suc. S: Aust. 86: 121
$=$ Liroria micromembrana (Tyler), vide Tyler, 1971: 353

Holotype: S.A.M. R4150, Mt. Podamp, near Nondugl, New Guinea (coll. M. J. Tyler).

Hyla mintima 'Tyler, 1963, Trans, R. Soc' S. Aust. 86: 123
-Litoria angiana (Boulenger), vide Tyler, 1971: 354

Holotype: S.A.M. R4151, Mintima, near Kerowaghi, New Guinea (coll. M. II, Tyler).

Hyla madica Tyler, 1968a, Zool. Verh. (96): 135
$=$ Litoria modica (Tyler), vide Tyler, 1971: 354
Paratype: S.A.M, R8108, Oruge, New Guinea (coll. F. Parker).

Hyla multiplica Tyler, 1964, Amer. Mus, Novit. (2187): 2
=Litoria multiplica (Tyler), vide Tyler. 1971 354
Paratype: S.A,M. R4946, Kassam, Kratke Mountains, New Guinea (coll. H. M. Van Deusen),

Hyla prora Menzies, 1969, Truns. R. Soc. S. Aust. 93: 165
-Litoriou prora (Menzies), vide Tyler, 1971: 354
Paratypes: S.A.M. R10410-11, Efogi, Owen Stanley Mountains, New Guinea (coll. J. I. Menzies).

Hyla spinifera Tyler, 1968a, Zool. Verh. (96): 167
-Litoria spinifera (Tyler), vide Tyler, 1971: 354
Paratypes: S.A.M. R6928-31, Oruge, New Guinca (coll. F. Parker).

Hyla wisselensis Tyler, 1968a, Zool. Vcr/h. (96): 180
$=$ Litoria misselensis (Tyler), vide Tyler, 1971: 355

Paratypes: S.A.M. R5539-43, Enarotali, Lake Paniai, Wissel Lakes, New Guinea (coll. M. Bueseman and L. D. Holthius).

Litoria brevipalmata Tyler, Martio and Watson. 1972, Proc, Lim. Soc, N.S.W, 97 (1): 82

Holotype: S.A.M.. R11236, Ourimbah Creek, 8 km north-west of Gosford, New South Wales, Australia (coll. F. Parker).

Litoria glandulosa Tyler and Anstis, 1975, Rec. S. Aust. Mus. 17 (5): 41
Holotype: S.A.M. R13504, Barwick Creck. Point Lookout, near Ebor, New South Wales, Australia (coll. M. Anstis).
Paratypes: S.A.M. R13505-10, Barwick and Bullock Creeks, Ebor: RI3060 (11 juveniles), R13303. Burwick Creek; R13626-39. Point Lookout. (coll. M. Anstis).

Litoria quadrilineata Tyler and Parker, 1974, Trans, R, Soc, S, Aust. 98 (2): 71
Holotype: S.A.M. R13489, Jalan Trikora Road), Merauke, Irian Jaya (coll. F. Parker).
Paratypes: S.A.M. R13490-93, collected with holotype by F. Parker.

Litoria timida Tyler and Parker, 1972, Trans. R. Soc. S. Aust. 96 (3): 157.
Holotype: S.A.M. R11658, Menemsorae, Western District, New Gunea (coll. F, Parker).
Paratypes: S.A.M. RII659-6I (same data as holotype.

Nyctimystes montana Parker, 1936, Ann. Mag. Nat. Hist. 17: 80
= Nyctimystes cheesmani (nomen muduni) Tyler. 1965: 268
Paratype: S.A.M. R9424, Mondo, New Guinea (coll. L. E. Cheesman).

Nyctimystes zweifeli Tyler, 1967, Trans. R. Soc. S. Aust. 91: 191.
Holotype: S.A.M. R5426, Telefomin, New Guinea (coll. B. Craig).
Paratypes: S.A.M, R8812-8813, 8815-8819 (same data as holotype). (R8814 transferred to Museum of Natural History, University of Kansas. Now K, U. 15345).

Leptodactylidae

Crinia affinis halmaturina Condon, 1941, Rec. S. Aus\%. Mus. 7: 114

- Ranidella signifera Girard, vide More, 1961: 234 \& Blake, 1973.
Holotype: S.A.M. R2165, Flinders Chase, Kangaroo Island, South Australia. (coll. Tate Society). Specimen missing. Notes: This specimen could not be found when a specific search for it was undertaken in 1960.

Crinia riparia Littlejohn and Martin, 1965, Copeia, 1965 (3): 319

- Ranidella riparia (Littlejohn and Martin). vide Blake 1973.
Paratypes: S.A.M. R9101-02, Alligator Gorge, Flinders Ranges, South Australia (coll. M. J. Littlejohn, A. A. Martin and P. Rawlinson).

Glauertia russelli Loveridge, 1933, Occ. Pap. Boston Soc. Nat. Hist. 8: 89.
Paratype: S.A.M. R9723, Creek Howing into Gascoync River, near Landor Station, Western Australia (coll. L. Glauert).

Kyarranus kundagungan Ingram and Corben, 1975. Mem. Qld, Mus. 17 (2): 335.
Paratypes: S.A.M. R13921-22, Mistake Mountains, Queensland (Coll، C. J. Corben and A. K. Smyth).

Limnodynastes dumerili variegatus Martin, 1972, Ausf. J. Zool. 20: 181.
Paratypes: S.A.M. R13174-75, 6 km north of Cape Otway, Victoria, Australia. (coll. A. A. Marliil).

Ranidella remota Tyler and Parker, 1974, Trans. R. Soc: S. Aust. 98 (2): 74

Holotype: S.A.M. R13524, Morchead, Papua New Guinea (coll. F. Parker).
Paratypes: S.A.M. R13527-28, Gubam: R1352526, R13681-82, Morehead (coll. F. Parker).

Microhylidae

Barygenys cheesmanac Parker, 1936, Amm. Mug. nat. Hist. 17: 74.
Paratype: S.A.M. R9423, Mount Tafa, New Guinca (coll. L. E. Cheesman).

Cophixalus exiguus Zweifel and Parker, 1969, Amer. Mus. Nowit. (2390): 2.
Holotype: S.A.M. R10311, Mount Hartley. Queensland, Australia (coll. F̈. Parker).
Paratypes: S.A.M. R9796, 10035-40 (same data as holotype). (R9723 transferred to Museum of Natural History, University of Kansas. Now K.U. 153146).

Sphenophryne dentata Tyler and Mcnzies. 1971. Trouns. R. Soc, S. Aust. 95 (2): 79.
Holotype: S.A.M. RI2063, Nlotau, Milne Bay, New Guinea (coll. J. I. Menzies).
Paratypes: S.A.M. RII819-28 (same datal is holotype).

Ranidac

Cornufer ingeri Brown and Alcala. 1963, Cupeid 1963 (4): 672.
=Platymantis ingeri (Brown and Alcala), vide Zweifel, 1967: 120.
Paratypes: S.A.M. R8808, Cantaub area, Bohol Island, Philippines; S.A.M, RI3606, Dusita area, Bohol Id., Philippines (both coll. A. Alcala).

Platymantis akarithymus Brown and 'Tyler, 1968, Proc. biol. Soc. Wash. 81: 76.
Holotype: S.A.M. R7073, Pomogu, I/ km northwest of Kandrian, New Britain (coll. M. J. Tyler).

Paratypes: S.A.M. R6982 (same data as holotype) S.A.M. R7066, R7082, near Malassait. approx. 85 km west of Rabaul, New Britain (coll, M. J. Tyler).

Platymantis mimicus Brown and 'Tyler, 1968, Proc. biol. Soc. Wash. 81: 74.
Holotype: S.A.M. R6868, Numundo Plantation, Willaumez Peninsula. New Britain (coll. M. J. Tyler).

Paratypes: S.A.M. R7064, R7069, Pomugu 11 km north-west of Kandrian; S.A.M. R6864. Gazelle Peninsula, New Britain. (All coll. M. J. Tyler).

Platymantis rhipiphalcus Brown and Tyler, 1968. Proc. Biol. Soc. Wash. 81: 77.
Holotype: S.A.M, R7071, near Pomogun approx 1) km north-west of Kandrian, New Britain (coll, M. J. Tyler),
Paratype: S.A.M. R7078. San Remo Plantation, Willaumez Peniosula, New Britain (coll. M. J. Tyler).

Platymantis papuensis schmidti Brown and Tyler. 1968. Proc. biol. Soc. Wash. 81: 85.

Holotype: S.A.M, R7618, Talasea, Willaumez Peninsula, New Britain (coll. M, J, Tyler).
Paratypes: S.A.M. R6762-68, 6772-93, 6795. 6801. 6803-07. 6809-13, 6815-16, 6858-60, $6862,6869,6912-13,6915,6922-28,7061$. 7070, 7080, 7085, 7088-89, 7093, 7095. 7097. 7101-04, 7106, 7109, 7115, Willatuez Peninsula: 7615, 7617-23, 7625-37, 7639-47, 7649-74. 7677-78, Baining Ranges, Gazelle Peninsuld: 7043. 7045, 7099, 7132, 7134-37. 7139, 7147-48, 7151, Kerevat, Gazelle Peninsula (all coll. M. J. Tyler) (R7616. 7638, 7648 transferred to Muscumi of Natural History, University of Kansas. Now K.U. 153147-49).

REFERENCES

Aroonymous, 1962. Type specimens it the Western Australian Museum (part 2). Ahm. Rep, WV. Alws, Mhs. 1960-61: 35-39.
Blake, A. J. D. 1973. Tixxonomy and relationships of myobatrachine frogs (Leptodactylidae): a numerical approach. Aust. J. Zool. 21: 119-149.
Brown, W. C. and Alcala, A. A., 1963. A new lrog of the genus Cornufer (Ranidae) with notes on other amphibians from Bohol Island, Philippines. Copein 1963 (4): 672-675.
Brown, W. C and Tyler, M. Ja 1968. Frogs of the genus Platymantis (Ranidae) from New Brituin with descrigtions of new species. Pruc. Biol. Soc. Wash. 81: 69-86.
Condon. H. T., 1941. Further records of lizards and frogs. from Kangaroo Island. Rec. S. Ausi, Mins. 7: 111-116.
Covacevich, J., 1971. Amphibians and reptile type-specimens in the Qucensland Muscum. Menh. Qld. Nits. 16 (1): 49-67.
Coventry, J., 1970. Reptile and amphibian type specimens housed in the National Muscum of Victoria, Alem. Nur. M/us. Fic. 31: 115-124.
Dowling, 11. G., Gilboa, I. and Zweifel, R. G. 1970. A list of hernetological type lists. Herpefol. Rev, 2 (3): 53-54,
Goldman, J., Hill, L. and Stanbury, P. J., 1969. Typespecimens in the Macleay Museum, University of Sydney, II, Amphibians and reptiles. Proc. Limn. Soc. N.S.ll. 93 (418): 427-438.

Tingram, G. J. and Corben, G. J. 1975. A new species of Kyarramus (Anura: Leptodactylidae) from Queensland, Australia. Mem. Qld. Mus. 17 (2): 335-339.
Littlejohn, M. J. and Martin, A. A., 1965.. A new species of Crinia (Anura: Leptodactylidae) from South Australia. Coperia 1965 (3): 319-324.
Loveridge. A., 1933. A new genus and three new species ol ${ }^{\circ}$ crinine frogs from Australia. Oce, Pap, Braston Soc. Nat. Hist. 8: 89-94.
Martin, A. A., 1972. Studies in Australian Amphibia I11. The Limuodynastes dorsalis complex (Anura:Leptodactylidae). Aust.J. Zool. 20: 165.211.
Menzies, J. 1. 1969. A new species of tree-frog ($\mathrm{H} / \mathrm{l} / \mathrm{k}$) from Papua. Trans. R. Soc. S. Aust. 93* 165-168.
Moore, J. A., 1961: The frogs of eastern New South Wales. Bull. Amer. Mhes, Nat. Hist. 121 (3): 153-385.
Parker, H. W., 1936. A collection of reptiles and amphibjans from the mountains of British New Guinea. Amb. Mag. Ned. FHish. scr. 10, 17; 66-93.

Tyler, M, Jt, 1963, A taxnnomic study of amphibians and reptiles of the Central Highlands of New Guinea, with notes on their ecology and biology. 11. Anura: Ranidae and Hylidae. Trans. R. Sne. S. Airst. 86: 105-130.
Tyler. M. J., 1964, Results of the Archbold Expeditions. No. 85. A new hylid frog from the Eastern Highlands of New Guinea. Amer, Mus. Novil. (2187): 1-6.
Tyler, M. J. 1965. An investigation of the systematic prosition and synonymy of Hy/a montana Peters and Doria (Anura: Hylidaè. Ahth. Zonl. Mus. Dresden 27 (10): 265-270.
Tyler, M.J.. 1967. A new snecies of the hylid genus Nectimpsies from the highlands of New Guinea. Trans. R. Suc. S. Ahss. 91: 191.195.
"Tyler, M. L., 1968a. Papuan hylid frogs of the genus Hyft. Zool. Verh. (96): 1-203.
Tyler, M, J. 19686. A taxonomic study of bylid frogs of the fyla leseueri complex occurring in north-western Australia. Rec. S. Aust. Mivs. 15 (4): 711-727.
Tyler. M. J. 1964. A synopsis of the frogs of the genus ffylet of north-western Mustralia, with the description of a new species, Rec. S. flust. Afus, 16 (1): 1-11.
Tyler. M. J., 1971. The phylogenetic significance of vocal sac structure in hylid frogs. Univ. Kansas Publ. Mus. Nuh. Hisp. 19 (4): 319-360.
Tyler, M. J., and Anstis, M. 1975. Tixuonomy and biology of frogs of the Litoria cifrope conmplex (Anura:Hylidae). Rec. S. fust. Mfur. 17 (5) 41-50.
Tyler, M. J., Martin, A. A. and Watson, G. F. 1972. A new species of hylid frog from New South Wales. Proc. Linm. Soc. N.S.W. 97 (1): 82-86.
Tyler, M. J. and Menzies, J, I., 1971. A new species of microhylid frog of the genus Sphenophryne from Milne Bay, 1'apua. Trans. R. Soc. S. Alusf. 95 (2): 79-83.
Tyler, M. J. and Parker, F., 1972 Additions to the hylid frog fauna of New Guinea, with description of a new species, Litoria timider. Trames. R. Suc. S. Anss. 96 (3): 157-163.
Tyler, M. J, and Parker, F., 1974. New species of hylid and leptodactylid frogs from southern New Guined. Trans. R. Sic. S. Aust. 98 (2): 71-78.

Wandolleck, B., 1911. Die amphibien und reptilien der Papuanischen Ausbeute Dr. Sclalaginhautens... Nbh. K. zool, anhwop-ethy. Mus. Dresden 13 (6): 1-15.
Zweifel. R. G.. 1967. Identity of the frog Cormufer uniculor and application of the generic name Cormufer. Cupeia 1967 (1): 117-121.
Zweifel. R, G. and Parker, F., 1969. A new species of microhylid frog (genus Cophivalus) from Australia. Amer. Mur. Novir. (2390): 1.10.

VERTEBRATE TYPE-SPECIMENS IN THE SOUTH AUSTRALIAN MUSEUM

HI. REPTILES
by
TERRY F. HOUSTON
South Australian Museum, Adelaide 5000

ASTRACT

HOUSTON, T. F. 1976. Vertebrate type-specimens in the South Ausiralian Museum. Ill. Repiics. Rec. S, Alust. Mus. 17 (9):181.187.

The South Australian Museum holds primary type-specimens of 58 species of living reptiles (all but one species are Australian). Thirty-one species are represented by holotypes, syntypes or lectotypes. Full collection data are provided for all specimens.

INTRODUCTION

The following list is based primarily on the taxonomic literature so that it should include all reptile type-specimens (i,e, holo-, syn-, lecto-, allon, para- and paralceto-types) purported to be in the South Australian Museum. An examination of the type-specimen collection, however, has brought to light other types received by donation or exchange whose presence has not previously been published.

The specimens are listed under their original names which are arranged alphabetically within each family. The currently accepted names of the taxa are noted where these differ from the original ones. Collection data are taken from the Museum registers.

The names of several institutions are abbreviated as follows:-

MCZ-Muscum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, U.S.A.
SAM-Soutli Australian Museum, Adelaide. S.A.

USNM-United States National Museum, Smithsonian Institution, Washington, U.S.A.

WAM-Western Australian Museum, Perth, W.A.

SQUAMATA: LACERTILIA

Agamidae

Amphibolurus caudicinctus macropus Storr, 1967a. J. R. Soc. West. Aust. 50 (2) 53.

Holotype: R3229 (=USNM 128750), 5.4 .5 mi . (7.2 km) SSE of Oenpelli Mission, Northern

Terrilory, 30ix, 1948, R, R. Miller, Australian-American Arnhem Land Expedition.

Amphibolurus barbatus minimus Loveridge, 1933.
Proc. New Engl. zool. Club 13: 69.
Paratypes: R3170 (2 specimens, -MCZ 32978). West Wallaby Island, Western Australia. 10,x.1921, G. M. Allen \& W. E. Schevill.

Amphibolurus gibba Houston, 1974b.
Trans. R. Soc: S. Aust. 98 (4): 209-212, figs. 1-4.
Holotype: R13954A, of. 5.5 km NNW of Alberrie Creek Railway Siding, South Australia, $29.35 \mathrm{~S} \times 137.31 \mathrm{E}, 14.1,1974$, ex burrow under cracked mud crust of gibber plain, R. Forsyth and T. Houston.
Paratypes: (All from South Australia) R2525, Finniss Springs, 17.i.1947, A. J. Pearce; R3542, 12 mi . (19 km) SE of Mt. Hamilton Station on Margaret River. 19.v.1953. R. Tedford: R3805, Lake Lettie Waterhole, 23.iii.1956. G. F, Gross; R7605-6, R8310. $2 \mathrm{mi} .(3.2 \mathrm{~km}) \mathrm{S}$ of Marree, February, 1966, F. J. Mitchell; R9499, Marree, June, 1966, F.J. Mitchell: RIII65, $23 \mathrm{mi} .(37 \mathrm{~km}) \mathrm{S}$ of Coward Springs on road to Stuart Creek HS, 26.x. 1969, Zool. Dept., Univ. of Adelaide, "gibber, crumbly clay soil, tan into burrow": R12494A-B, 20 mi . (32 km) N of Oodnadatta, 1971, J. Bredl: $\mathbb{R} 13891$, Finniss Springs, 6.ii.1964, F. J. Mitchell; R13894A-B, data as for R2525: R13953. 34 km N of Coober Pedy, 6.x.1973, E. Story.: R13954B-K, data as for holotype.

Amphibolurus rufescens Stirling and Zietz, 1893.
Trans. R. Soc. S. Aust. 16: 164, pl. 6, figs. 2 and 2a
Lectotype: R1423, むै, Mt. Sir Thomas, Birksgate Range, South Austratia, Elder Expedition (1891-92). Selected by F. R. Zietz. 1915. p. 768 ,

Paralectotypes: R1424-5, data as for lectolype.
Notis-In deseribing this snecies. Stirling \& Zielz did not designate types but simply noted lley had three specimens and gave the dimensions of two of them. However. F R. Zietz, 1915, troted that the largest specimen was the "type" and gave its dimensions: these adeord with those of "specimen A " in the original description.

Amphibolurus scufulatus Stirling and Zietz, 1893.
Trans. R. Soc. S. Aust. 16: 165-167, pl. 7, ligs. 1 and 2.

Syntypes: R1459 (9 specimens), R3024 (2 specimens), R4814 (12 specimens), between Fraser Range and Queen Victoria Springs, Western Australia, Elder Exploring Expedition (1891-2).

Notts-Stirling \& Zietz noted they hud several specimens of each sex without giving any regisiration numbers. Therefore, all specimens collected by ehe Elder Expedition at the type locality are regarded as symespes.

Amphibolurus vadnappa Houston, 1974a.
Truns. R. Soc. S. Aust. 98 (2): 55-57. figs. 1, 2. 12-16.

Holotype: R3416B, 今, Aroona Waters (138.21Ex $30 \cdot 35 \mathrm{~S}$), Flinders Ranges, South Australia, 3.v.1953. P. F. Lawson.

Allotype: R3314C. Mt. Aroona, South Australia, 29.xi.1951, F. J. Mitchell.

Paratypes: (All from South Australia), R2819, 6 mi . (9.7 km) NE of Commodore, $4 . x .1947$. Adelaide Bush Walkers; R3001. Beltana, 14.ix.1949, H. Mincham: R3314A, B \& D. see allolype: R3416A \& C. same data as holotype: $R 3423,20 \mathrm{mi} .(32 \mathrm{~km}) \mathrm{E}$ of Angepena, 8.v. 1953, P. F. Lawson: R3492. Yudnamutana Gorge, Flinders Ranges, 2.ix.1952, K. Peake-Jones: R3950, Illawartina (error for lllinawortina) Pound, Gtmmon Range, 25.ix.1956, F. J. Mitchell: R4321, Parachilna Gorge, $6 . x i .1961$, J. Findley: R4821, Aroona Waters, H. Mincham: R8ll4, Mt. Fitton, Moolawatana Station. 12.v.1966. H. Ehmann: R10402-4, Narrina Station, Flinders Ranges, April 1969, H. Mincham; R10638, Wilpena Pound, 25.viii. 1969. H. Mincham; R10918-23, Arkaroola HS. 24.x.1969. SAM expedition: R10934-5, near Boulder Bore, 27.x.1969, SAM expedition; R10946. Echo Camp (Arkaroola Station), 27.x.1969, SAM expedition; R10965-7, East Painter Gorge, I.xi.1969, SAM expedition: R11361, Copper Creck, Arkaroola Station, May 1969, C. P. Brown; R11373, Arkaroola Station, January 1970: R12432, Terrapinna Spring (139.40E $\times 29.55 S$, 17.ix.1970, Ehmann and Houston; R12749, Oraparinna National Park, Scptember 1971, Nature Conservation Society; R12837. Walkawonda (error for Waukawoodina) Gap. 60 mi. (97 km) N of Blinman, 1971, R. Madderm: R13053, sec R12749: R13135, see R3492.

Diporiphora lalliae Storr, 1974a,
Rec. West, Aust. Mus. 3 (2): 138-139, fig. 4.
Paratypes: R3536, Moola Bulla Station, northern Western Australia, 7-30.ix.1953. N. B. Tindale; R4824A-C, Tennant Creek, Northern Territory, 20.iv, 1906, J. F. Field; R5047, Palm Valley, Northern Territory, September 1959, P. F. Lawson: R5352. Giles, Rawlinson Ranges, Western Australia, November 1963, P. F. Aitken and N. B. Tindale; R13539A-B, 16 km NW of Tennant Creek, Northern Territory, 26,i,1969, in light scrub and spinifex.

Diporiphora magna Storr, 1974a.
Rec. West. Aust. Mus. 3 (2): 137-138, fig, 4.
Paratypc: R8167. Delamere Station, Northern Territory, August 1966. P. Aitken.

Diporiphora bilineata margaretae Storr, 1974a,
Rec. West. Alust. Mus. 3 (2): 143-144, fig. 5.
Paratypes: R2848, R13483A-Z. Umbat Kumba, South side of Little Lagoon, Groote Eylandt. Northern Territory, J-16.vi.1948, R. R. Milter, Australian-American Arnhem Land Expedition.

T'ympanocryptis cephalus gigas Mitchell, 1948.
Rec. S. Auss. Mus. 9 (1): 65-67, figs. I and 4.
Holatype: R2434, 3 , between Ashburton and Gascoyne Rivers, Western Australia, 1893. P. St. Barbe, Ayliffe. This specimen cannot be found.

Paratypes: R2434 (two specimens), data as for holotype.

Tympanocryptis intima Mitchell, 1948.
Rec, S. Aust. Mus. 9 (1): 60-62, figs. 1 and 2.
Holotype: R233J. क. Oodnadatta, South Austrulia, Prol, J. B. Cleland, on gibber plain.

Tympanocryptis maculosa Mitchell, 1948.
Rec. So Aust. Mus. 9 (1): 78-80. figs. 1 and 9.
Amphibolurus muculosus (Mitchell), vide Mitchell, 1965ı, P. 190.
Holotype: R2220a, is, Lake Eyre North, South Australia, August 1929. C. T. Madigan.
Allotype and Paratypes: K 2220 (19 specimens), data as for hololyps. Only 13 of these specimens huve been located.

Tympanocryptis lineata pinguicolla Mitchell, 1948.
Rec, S. Aust. Mus. 9 (1): 70-72, figs. 1 and 6.
Holotype: R2468a, is. Victoria,
Paratypes: R2468 (two specimens), data as for holotype.
Tympanocryptis uniformis Mitchcll, 1948.
Rec. S. Aust, Mus, 9 (1): 76-78, figs. 1 and 8.
Hololype: R705, Darwin, Northern Territory, June 19[1, O. Wesselmann.

Gekhonidac

Diplodactylus elderi Stirling and Zietz, 1893.
Trans. R. Suc. S. Aust. 16; 161, pl, 6, figs. 1 and la.
Holotype: R2027, Barrow Range, Westcrn Australia. 23,viif.1891, Elder Exploring Expedition.

Diplodactylus galeatus Kluge, 1963.
Rec. S. Aust. Mus. 14 (3): 545-548, pl. 34a.
Holotype: R973, $\hat{\mathbf{s}}$, Stuart Range, South Australia, 15.x.1919. Henry Greenfield.
Paratype': RJ563, Hermannshurg, Northern Territory, 24, i, 1930, H. Heinrich.
Nome-Kluge regarded specimen R1563 a5 conspecilic with the holotype and noted its differences. Paralypes werk nol desighated in this paper.
Diplodactylus mitclelli Kluge, 1963
Rec. S. Aust. Mus. 14 (3): 548-550, pl. 34b.
Paralypes?: R4280 (formerly R4142), Coolawanyah HS, Western Australia, 17.vii.1958. F. J. Mitchell, under stones: R4281 (formerly R4143), Tambrey Creck near Tambrey HS, Western Australia, 28.vir,1958, F.J. Mitchell, under stones near waterhole.
Nors-Kluge regarded these spocintens as Lunspoctic with the holotype and noted pheir differences. Paratypes wem hot designated is his paper.

Diplodactylus savagei Kluge, 1963.
Rec. S. Aust. Mus. 14 (3): 550-553, pl. 35 , a and b.
Paratypes?: R3464 (two specimens), Pilgangoorat Well. Western Australia, 16-25.v.1953, N. B. Tindale (one missing): R4282 (formerly R4144). Coolawanyah HIS, Westerr Ausiralia, 17.vii.1958, F. J. Mitchell, under iron.

Notes-Kiluge regardad these specintens as conspecific with the holotype ant noted their differences. Paratypes were not designated in his paper.
Gehyra fenestra Mitchell, 1965b.
Senckenberg, biol. 46 (4): 307-310, lig. 9.
Paratypes: R4596, summit of Mt. Herbert-Big Pool, Western Australia, 25.vii.1958. F. J. Mitchell: R4597. Tambrey Stalion, Western

Australia, 30.vii.1958, A. Douglas, in crack in roof of cave: R4601-2, Tambrey Station. Western Australia, 3-4.viii.1958, F. J. Mitchell: R4600, top of Mt. Herbert, Western Australia, 4.viii. 1958, F. J. Mitchell.
Notcs-Specimens R4546, 4600 and 4602 ure alizarin-stamed skelctons.

Gehyra pilbara Mitchell, 1965b.
Senckenberg. biol. 46 (4): 303-306, figs. 7 and 8.
Paratypes: R4433-69 (R4437 and R4454 sent by exchange to USNM), Tambrey HS and Nuntana waterhole, Tambrey Creek. Western Australia, 28.vii.-3.viii.1958, F. J. Mitchell, ex termite mounds.
Norrs-The following specimens are alizarin-stained skeletons: R4435, 4441. 4446a-b, 4462 and 454i).

Nephrurus stellatus Storr, 1968a,
West. Aust. Nat. 10 (8): 180-182, fig. I.
Paratype: R8392. Hambidge Reserve, Eyre Peninsula, South Australia, 9.x.1966. M. Smyth.

Pygopodidae

Aprasia inaurita Kluge, 1974.
Misc. Publs: Mus. Zowl. Umin. Mich. 147: 51-53, figs. $2!$ and 32 .
Paratypes: (All from South Australia) R379, Mitchell via Yeelanna, 31.vii,1914, W, A. Dorwood, R1673, Lock 3. Murray River, 28.viii. 1931, J. Allen; R2752, near Renmark. 9.v.1948, T. L. Wadrop; R2808, Salisbury. 16.ix, 1948 , H. Harris: R3089A, Strcaky Bay, S.viii.1950, E. J. Greenfield: R3885, Port Lincoln. W. C. Johnston: R4302, Tumby Bay, 28.ix.1962, J. E*. Darling; R8410, Lameroo, November, 1966, J. Troubridge: R8994, " $\mathrm{A}^{\prime \prime}$ Island, Venus (Bay), 20.ix. 1967. Macrow and Sorrell $\$$ R9210, Blesiny Reserve, 3.x.1967, R. Henzell, under limestone: R9215, data as for R9210 but collected 7.x.l967: Rll655, Cultana Army Base, Whyalla, lix. 1970, L. Payne: RI2617, 5 mi, $(8 \mathrm{~km})$ NW of Wharminda, Eyre Peninsula. E. Jericho.

Aprasia pseudoputchella Kluge. 1967.
Misc. Jubls, Mus. Zool. Univ. Mich. 147: 56.57. figs. 24 and 27.
Holotype: R6360, a few miles N of Burra, South Australia, 19.viii.1965. J. Bishop,
Paratypes: (All from South Australia) R406A-D. Clare, December 1914, L. G. Thotpe: R2110A-D, Mylor, 10.viii. 1936, F. C. Carson; R6357-9. R6361, data as lor holotype; RI0778-9, Mambray Creek Reserve,
17.ix,1969. T. Grearson, under stones on top of range; R12510, Yudnamutana, Norih Flinders Ranges, 10.ix.1970, Rostrevor College.

Delma australis Kluge, 1974,
Misc, Prubls. Mus. Zool. Univ. Mich. 147: 77.80, figs. 4, 6, 41-43 and 120.
Paratypes: (All from South Australia) R380, Mitchell via Yeelana, 31.viii.1914, W. A. Dorwood: R3852, 15 mi . (24 km) N of Poochera, 15.vi.1956, F. J. Mitchell; R4301. Port Germein Gorge, August 196i, J. A. Fisher, R5375, Gawler Ranges. March. 1963, F. J. Mitchell: R9189, R9213, Blesing Reserve, Eyre Peninsula, $10 / 3 / . x .1967$. R. Henzell: R9224. $4 \mathrm{mi} .(6.4 \mathrm{~km}) \mathrm{S}$ of Baird Bay, 12.x.1967, R. Henzell; R10374, data as for R3852: R10376, data as for R5375; R12454-5, Corunna Hills near Iron Knob. 18.iv.1971, ex Triodia bushes, H. Mincham and T. Houston: R12481, R12669, Miccollo Hill (136.36E x 32.32S), Siam Station, 19-20.iv. 1971. ex Triodia bush. H. Mincham and T. Houstors: R12751, data as for RI2454.

Delma borea Kluge, 1974.
Mise, Publs, Mhus. Zool, Unin, Mich. 147: 81-82, figs. 44-47 and 124.
Paratype: R8409. Katherine, Northern Territory, 25.xi.1966, J. Turner.

Delma clegans Kluge, 1974.
Misc. Publs. Mus. Zool. Univ. Mich, 147: 82-86, figs, 43, 48-50 and 124.
Paratype: R4475, Tambrey HS , Western Australis, 28.vii.1958, F. J. Mitchell.

Delma inornata Kluge, 1974.
Misc, Publs. Mus, Zool. Univ. Mich. 147: 101-105, figs. 58, 62-64.
Paratypes: RI $095,20 \mathrm{mi} .(32 \mathrm{~km}) \mathrm{N}$ of Walla Walla, New South Wales, $25, \mathrm{xj}, 1969$ D. J. Rees: R12745. Tooperang, South Australia, 26.vii.1971, G. S. Wynniatt, found under stonc.

Delma nasuta Kluge, 1974.
Misc, Publs, Mus. Zool. Uhis. Mich. 147: 109-113. figs. 70-73 and 124.
Paratype: R4513. Millstream HS, Western Australia, 18.vii.1958, F.J. Mitchell.

Delma pax Kluge, 1974.
Misc. Publs. Mus: Zool. Univ. Mich. 147: 113-117, figs. 69, 74-77.

Paratypes: (All from Western Australia) R3445A, Pilgangoora Well, 16-25.४.1953, N. B. Tindale; R3452. Yandeyarra Station, $20-$ 24.vi,1953. N. B. Tindale; R4514, Tambrey HS, 28.vii, 1958, F. J. Mitchell.

Scincidate

Carlia amax Storr, 1974b.
Rec. West. Aust. Mus. 3 (2): 160-162.
Paratypes: R13531A-B, R13536, Kangaroo Springs, Bing Bong Station near Borroloola, Northern Territory, 8.iii. 1969.

Carlia gracilis Storr. 1974b.
Rec. West. Aust. Mus. 3 (2): 158-159.
Paratype: R5367D (now R14723), Northern Territory,

Carlia rufilatus Storr, 1974b.
Rec. West. Aust. Mus. 3 (2): 157.
Paratypes: R5367A-C and E, Northern Territory,
Ctenotus alacer Storr, 1969.
J. R. Soc. West. Aust. 52 (4): 104-105.

Paratype: R5588, MacDonnell Ranges, Northern Territory, November, 1963, M. Warburg.

Ctenotus uber orientalis Storr, 1971a,
Rec. S. Aust, Mus, 16 (6): 8-9.
Paratypes: R23-4, Turners Well, River Murray, South Australia, 24.i.1911, G. Wright: R1507, Pinnaroo, South Australia, don. Mr, Broadbent: R2789. R9466-9, between South Gap and Pernatty HS. South Australia, 18.viii.-6.ix.1948, F.J. Mitchell and G. F. Gross; R3618, Lake Palankarinna, South Australia, June 1954, P. F. Lawson: R5738. Panaramitee Station, South Australia, R. Edwards: R9735, Dalhousic HS, South Australia, 3.viii.1968, F. J. Mitchell; R10017, Rl0027, Rlo030, Mern Merna, South Australia, November 1947 and January 1948, D. R. Hall; R10044, Milparinka, New South Wales, 10.x.1968. A. Kowanko: R10055, MacDonncll Ranges, Northern Terrilory, 17.iii.1913, Capt, S. A. White; R10122, Blue Range Crcek. South Australia, October 1968, M. Smyth.

Clenotus regius Storr:
Rec. S. Aust. Mus. 16 (6): 7-8.
Paratypes: (All from South Australia) R759. Killalpaninna, Septembet-October 1916, SAM Expedition: R2657, R10028-9, R10031-3. Mern Merna, January 1948.
D. R. Hall: R2788. R10024-6, between South Gap and Pernatty HS, 18.viii.-6.ix. 1948, F. J. Mitchell and G. F. Gross; R3177, R10013-4. Yudna Swamp. Moralana Station, 12.ii.1951, D. R. Hall; R10342, Goyders Lagoon, I2.ix. 1968, J. Hilditch, in rat burrow.

Dasia smaragdina perviridis Barbour, 1921.
Proc. New Engl. zool. Club 7: 106.
Paratypes: R3166 (two specimens, ---MCZ 15050-1), Graciosa Bay, Santa Cruz, Solomon Is., S.xi.1916, N. M. Mann.

Egernia kintorei Stirling and Ziétz, 1893.
Trans, R. Soc. S. Aust. 16: 171.
Lectotype: R 2925 , Victoria Desert S of Barrow Range, Western Australia, R. Helms, Elder Exploring Expedition (1891-2). Selected by Mitchell (1950, p. 284).
Paralectotypes: R2915-6 (- E. inornala Rosen), Fraser Range and between Fraser Range and Victoria Springs, Western Australia, 28.x,1891, R. Helms, Elder Exploring Expedition.

Egernia whitii multiscutata Mitchell and Behrndt, 1949.

Rec. S. Aust. Mus. 9 (2): 176.
$=$ E゙, m. mmliscurata (M. \& B.). vide Storr, 1968b, p. 57.
Holotype: R2636, \&, Greenly Island, South Australia, 6-17.xii.1947. F. J. Mitchell.
Allotype and Paratypes: R2636 (7 specimens) and R8579-8] (3 specimens formerly under R2636), data as for holotype.
Notes-Two of the paratypes under R2636 have not been found.

Egernia margaretae personata Storx, 1968b.
J. R. Soc. West. Aust. 51 (2): 53.

Holotype: R3748, Wilpena Gorge, South Australia, 26,ix, 1955, F. J. Mitchell.
Paratypes: (All from South Australia) R2573, 8 mi . (13 km) SE of Warcowie School, 22.iv.1947. D. R. Hall: R2645, Mern Merna. 11.ix. 1947. D. R. Hall: R3934, S branch of Balcanoonat Creek. Gammon Ranges, Seplember 1956, I. J. Mitchell: R8503. Wilpena Gorge, 26.x.1955, F. J. Mitchell: R8717-8 (formerly R3301). Wilpena Gorge, 27-28.xi.1951, F.J. Mitchell; R8724-6, North Tusk, Gammon Ranges.

Egernia whitei tenebrosa Condon, 1941.
Rec. S. Aust. Mus. 7 (1): 111.
Holotype: R2161, Flinders Chase, Kangaroo Istand, South Australia, presented by the Tate Society, University of Adelaide.

Egernia slateri virgata Storr, 1968b.
J, R. Soe, West, Aust, 51 (2): 60,
Holotype: R602, Oodnadatta to Everard Ranges, South Australia, Capt. S. A. White.

Leiolopisma greeni Rawlinson, 1975.
Mem, nam. Mirs. Vict. 36: 8-10, lig, 2; pl. 1, fig. 2; pl. 2, fig. 3b.
Paratype: R1J136, Barn Blufi, western Tasmania, 16,i.1963. F. J. Mitchell.

Leiolopisma triacantha Mitchell, 1953.
Rec. S. Aust. Mus. 11 (1): 88-89, fig. 4.
= Carlia triacanthu(Mitchell), vide Siorr, 1974b. p. 159.

Holotype: R2697. S. Adelaide River, 61 mi . (98 km) S of Darwin, Northern Territory, 2.vi.1943, R. V. Southcott.

Paratypes: R2700, R2702 (the latter destroyed), data as for holotype.

Lerista picturata baynesi Storr 1971b.
J. R. Soc. West. Aust. 54 (3): 66-67.

Pacatype: R9498 (- WAM R24617). Eucla, Western Australia. 7.ix.1968. G. M. Storr \& A. M. Douglas.

Lygosoma melanops Stirling \& Zietz, 1893.
Trans. R. Soc. S, Aust. 16: 173-174, pl. 7, figs, 3 and 3a.
-Tiliqua b. branchiale (Günther), vide Mitchell, 1950, p. 303.
Syntypes: Two specimens, between the Everard and Barrow Ranges, South AustraliaWestern Australia, Elder Exploring Expedition (1891-2).
Notes-No registration mumbers were quoted in the orignal description. Mitchelt, 1950, p. 304, lists R2732 (two spewinens) as the types but the SAM register indicates only one specimen under that number and this could not be lowited. Another specimen, R8139, is listed in the register as a paratype and may be the juvenile described by Stirling and Zietz.

Lygosoma (Sphenomorphus) taeniata Mitcleell. 1949.

Rec. S. Ause. Mus. 9 (2): 180.
$=$ Ctenolus brooksi tueniatus (Mitchell), vide Storr: 1971a, p. 14.

Hololype: R2803. Tobys Swamp. Andamooka Ranges, South Australia, 18.viii.-6.ix. 1948. F. J. Mitchell \& G. F. Gross, in burrow in sandhill with two geckos-Diplodacty/hs clamaeus.

Rhodona stylis Mitchell, 1955.
Rec. S. Aust. Mus: 11 (4): 400-402, figs. 6 and 7. -Lerista stylis (Mitchell), vide Greer. 1967, p. 19.

Holotype: R3094, Yirrkala Mission, Northern Territory, 22-27.vii.1948, R. R. Miller, Australian-American Arnhem Land Expedition.
Paratypes: R2855 (2 specimens), Umba Kumba, Groote Eylandi, Northern Territory, 1-16.vi,1948, Australian-American Arnhem Land Expedition: R2856 (5 specimens), same data as for hololype.

Tiliqua scincoides intermedia Mitchell, 1955,
Rec. S. Aust. Mus, 11 (4): 393-394.
Holotype: R3095, ©, Yirrkala Mission, Northern Territory, 22-27.vii.1948, R. R. Miller. Australian-American Arnhem Land Expedition.
Paratype: R3225 ($=$ USNM 128388), near Umba Kumba, Groote Eylandt, Northern Teritory, Australian-American Arnhem Land Expedition (April-November 1948),

Varanidae

Varanus (Odatria) glebopalma Mitchell, 1955.
Rec. S. Aust. Mus. 11 (4): 389-390, fig. 3, pl. 37.
Holotype: R3222 (=USNM 128385), 3. S end of Lake Hubert, Northern Jerritory. Aust-ralian-American Arnhem Land Expedition (April-November 1948).

Varanus (Varanus) mitchelli Mertens, 1958.
Senckenberg, biol. 39: 256-259, pls. 27 and 31.
Holotype: R3230 ($=$ USNM 128755), 5 mi , (8 km) W of Oenpelli Mission, Northern Territory, Australian-American Arnhem Land Expedition (April-November 1948).

SQUAMATA: OPHIDIA
 Elapidae

Denamsia acutirostris Mitchell. 1951.
Rec. S. Aust. Mut. 9 (4): 547-549, fig. 1.
= bsewdonaja acutirostris (Mitchelt), vide Worrell, 1963, p. 143.
Holotype: R3133, Island in Lake Eyte North, South Australia, 28.26S x 137.24E, 27.x.1950, E. D. \& M, Brooks and E. Price,

Denisonia nigrostriata brevicauda Mitchell, 1951. Recc. S. Aust. Mus. 9 (4): 550-551.
= Paruswa brevicanda (Mitchell), vide Worrell, 1963, p. 135.
Holotype: R3137, Fowlers Bay, South Australia. Paratypes: (All from South Australia) Ri230, Waikerie, L. G. Thorpe: R2273, Parrakic: R3136 (21 specimens), Sedan, Murray Scrub, October, 1885\%, Mr. Rothe; R3138, Murray Bridge, J. G. Neumana; R3139, Beetaloo Waterworks, Dr. Stirling; R3140, Murray Bridge; R314J. Mt. Wedge via Elliston, 29.vii. 1907. J. L. Harwood.

Denisonia brunnea Mitchell, 1951.
Rec. S. Aust. Mus. 9 (4); 551-552, ligs. 2a and 2b.
Holotype: R3151, Mt. Wedge via Elliston, South Australia. 29, vii. 1907, J. L. Harwood.

Notes-This specinen appears to be a juvenile of Psendechis unsirnlig. Only the last tive subcaudats tre paired, the remainder being single.

Vermicella lasciata Stirling \& Zictz, 1893.
Trans, R, Soc, Si, Aust. 16: 175-176, pl. 7, figs. 4 and 4a.
$=$ Rhynchoelaps fasciolata fusciuta (S. \& Z. $)$. vide McDowell, 1969, p. 489.
Holotype: R2935, netr the Barrow Ranges, Western Australiz, 1891, R. Helms, Elder Exploring Expedition.

Nouss-No registration number was quoted in the originat account but the specimen labelfed as the lolotybe in the SAM agrees with tie descriplian and figures.

Vermicella bertholdi littoralis Storr. 1967b.
J. R. Soc. West. Aust. 50 (3): 84.

- Rhynchoelaps bertholdi litroralis (Storr), vide McDowell, 1969, p. 489.
Paratype: R2271 (published in error as R2771), Murchison Goldfield, Ammean, Western Australia, H.Y.L. Brown.

Typhlopidac

Typhlops endoterus Waite, 1918.
Rec. S. Aust. Mus. 1 (1): 32-33, chart 5. tig. 24.
Typhlina endatera (Waite). vide McDowell. 1974. p. 6.

Holotype: R88, Hermannsburg, Northeris Territory, 22.i. 1912 , don. F. Scarfe.
Paratypes?: R87, R89, data as for holotype,

[^6]Typhlops pinguis Waite， 1897.
Trans．R．Soc．S．Aust．21：25，pl． 3.
$=$ Typhlina pinguis (Waite), vide McDowell,
1974, p. 6.

Holotype：R803，South Australia，
Note－Registered in 1918 us＂Type＂．

REFERH：NCES

Barbour，T，1021．Reptiles and amphibians from the British Solomon Islands．Proc．New Engl．Zuel．Chb 7：91－112． ple．1－0．
Condon， $\mathrm{H} . \mathrm{T}_{2}, 1441$ ．Further records of lizards and frogs from Kangaroo Island．Rec．S．Aust．Mus． 7 （1）：111－112．
Greer，A．E．，1967．A new generic arrangement lor some Australian scincid lizards．Rrevora 267：1－19．
Houstan，＇T．Fe，1974a．Revision of the Amphibalurus decresii complex（Lacerriliat Agamidae）of South Australia Trans：R．Soe：S．Aust． 98 （2）：49－60．
Houston，$)_{1}^{\prime} F_{1,}$ 1974b．Amphibohurus glbha，a new dragon fizard（Lucervilat Aganidac）from northern South Australia．Tians．R．Soc．S．Aust． 98 （4）209－212．
Kluge， $\mathbf{A}_{1} \mathbf{G}_{.,}$1963．Three new species of the gekkonid lizard genus Diploducfutus Gray Jrom Australia．Rec．S．Aust． Whas 14 （3）：545－553，pls．34， 35.
Kluge，A，G，1974．A taxonnmic revision of the lizard lamily Pygopodidac．Misc．J＇ubls．Mtus．Zool．Univ．Wich． 147.
loveridge，A．．1933．New agamid lizards wit the genera Amphibohwrs and Physighaths［rom Australia．Proc． New Engl．Zoul．Clab 13：69－72．
McDowell，S．B．，1969．Tuxiooculamus，a New Guinea genus of snakes of the family Llispidse．J．Zoul．，Loned．159： 443－511．
MeDowell．S．B．．1974．A calalogue of the snakes of New Guinea and the Solomons，with special reference to those in the Bernice P_{r} Bishop Museum，Part I．Scolecophidia． J．Herp， $8(1) \div 1-57$ ，
Mertens，R．，1958．Remerkungen über die Warane Austra－ liens．Senckenhereg brol．39：229－64．
Mitchell．F．J．1948，A revision of the lacertilian genus Tympanocryptis．Kec．S．Aust．Mus． 9 （1）： $57-86$ ，pls． 46.

Mitchell．F．J．1944．A new species of Lygrasama．Rev．S． Aust．Mfus 9 （2）： 180.
Mitchell．F．J．．1950．The scincid genera Feernid and Tilimua （Lacertilia）．Rec．．S．Aust．Afus． 9 （3）：275－308，pl． 23.
Michell，E_{1} J．，1451．The South Australian reptile faunat． Part I．Ophidia．Rec．S．Aust．Mus， 9 （4）： 545.557.
Mithell．F゙，d．1953．A brief revision of＂the four－fingered members of the genus Leiolopisha（Lacertilia）．Rec．So Aust．Mis， 11 （1）：75－90．

Mitchell，F，J．，1955，Preliminary account of ithe Reptilia and Amphibia collected by the National Geographical Socicty－ Commonwealth Government－Smithsonian Institution expedition to Arnhem Land（April to November，1948）． Rec．S．Aust，Mus． 9 （4）：373－408，11． 37.
Michell，F．J．，1965a．The affinitics of Tympanucryphis maculosa Mitchell（Lacertilia－Agamidac）．Rec．S．Aust， Alus， 15 （1）：179－191．
Mitchell，F ．J．，1965b．Australian geckos assigned to the genus Gefura Gray（Reptilia，Gekkonidae），Senckenbery， biol． 46 （4）：287－319．
Mitchell，F．J．\＆Rehrndt，A．C．，1949．Fauna and flora of the Greenly Islands，Part I．Introductory natrative and vericbrate fauna，Rec．S．Aust，Mus． 9 （2）：167－179．
Rawlinson，P．A．．1975．Two new lizard species from the genus Leiolopisma（Scincidae：Lygosominae）in soulh－ eastern Ausiralia and Tasmania．Mem．nom．Mus． l＇6\％，36：1－15．
Stirling，$E, C_{1}, \&$ Zictz A_{-1} 1843．Scientific results of the Elder Exploring Expedition．Vertebrata．Trans．R．Sue．S ． Aust．16：154－176，pls．6． 7.
Storr，G．M．，1964，Cienohts，a new generic name for a group of Ausiralian skinks．West．Aust．Nat． 9 （4）：84－5．
Storr，G．M1．1967a．Geographic rates of the agamid lizard Amphibolurus caudicinctus．J，R．Sec．West，Ausi， 50 （2）： 49－56．
Storr．G．M．，1967b．The genus Vermicella（Serpentes， Elapidac）in Western Australia and the Northern Territory． J．R．Sac．W＇est．Aust， 50 （3）：8（0－92．
Storr：G．M．19689．A new knob－tailed gecko from southern Australia．West．Auss．Nat． 10 （8）：180－182．
Storr，G．M．．19685．Revision of the Fyemia white species－ group（Lacertilia，Scincidae）．J，R．Soc．West Ahst． 51 （2）： $51-62$.
 in the Northern Territory．J．R．Suc．Wesh．Aust． 52 （4）：97－108．
Storr，G．M．．1971a．The genus Crentums（Iacertilia，Scincidac） in South Alstralia，．Rec．S．Aust．Miss．16（6）：1－15．
Storr，G．M．，1971h．The genus Levisfa（Lacertilia，Scincidae） in Western Australia，t．R．Suc．West．Aus， 54 （3）： 59.75.

Storr，G．M．1974a．Agamid lizards of the genera Camanops． Physirnuthes and Diporiphord in Western Australia and Northern Tersitory．Rec．Hent．Aluss．Mus． 3 （2）：121－146．
Stort，G．M．，1974b．The genus Carlia（Lacerilia，Scincidae） in Western Australia and Nurthern Territory．Rer，Hesh． AルS．Afus 3 （2）：151－165．
Waite，E．R．． 1897. Notes on Australian Typhlopidae．Frans． R．Sirc．S．Alust． $21: 25-27$ ，pl． 3.
Whtte，E． $\mathbb{R}_{\mathbf{n}}$ ，I！18，Review of the Australian blind snakes （family Typhlopidac）．Rec．．S．Aust．Milf，1（1）：1－34． 17． 1.
Worrcll．E．。 1963．．＂Reptiles of Australia＂．Angus \＆ Robertson，Sydney．
Zictz．F．R．1915．Scientific notes on an expedition inta the north－western reyions of South Australia．Trums．R．Suc． S．Alust．39：766－769．

VERTEBRATE TYPE-SPECIMENS IN THE SOUTH AUSTRALIAN MUSEUM

IV. BIRDS
by
H. T. CONDON
South Australian Museum, Adelaide 5000

ABSTRACT

CONDON, H. T., 1976. Vertebrate type-specimens in the South Australian Museum. IV. Birds. Rec. S. Aust. Mus. 17 (10) : 189-195.
Holotypes, paratypes and syntypes in the South Australian Museum of 27 forms involving six non-passerine and 21 passerine subspecies of living Australian birds are listed with explanatory notes.

Some of the names applied to the specimens listed have been placed in synonymy; their correct (or valid) names and geographical ranges are given.

INTRODUCTION

In the following account the type specimens are listed in systematic sequence under Orders, Families, Subfamilies, Species and Subspecies; vernacular names are given also. The nomenclature is that of the Official Checklists of the Royal Australasian Ornithologists Union.

Following the original published reference to each name, the type-category, registration (B) number, sex, type-locality, date of collection and collector's name are given together with any other data, such as measurements, colours of soft parts, and remarks on the original label.

Reference is also made to known paratypes, syntypes and lectotypes.

The last paragraph under each heading provides the currently accepted (or valid) scientific name with author, date of publication, vernacular name and Checklist numbers in brackets: the first number in brackets refers to the Second Edition of the R.A.O.U. Official Checklist (1926) and the second to Part I of the Third Official Checklist (1974).

ORDER ACCIPITRIFORMES

Family Accipitridae, Subfamily Accipitrinae:

Goshawks, Sparrowhawks

Astur clarus robustus F. R. Zietz, 1914.
S. Aust. Orn. 1 (1): 13.

Holotype: B1334, \&, Melville Island, Northern Territory, 2.viii.1913, W. D. Dodd. Grey phase, subadult. Original label marked "ZT" in red.
$=$ Accipiter novaehollandiae novaehollandiae (Gmelin, 1788), Grey (White) Goshawk (220) (137). Australia and Tasmania.

ORDER COLUMBIFORMES

Family Columbidae, Subfamily Turturinae: Bronzewing and Emerald Pigeons
Chalcophaps chrysochlora melvillensis F. R. Zietz, 1914.
S. Aust. Orn. 1 (1): 12.

Holotype: B1365, ơ, Melville Island, Northern Territory, 15.viii.1913, W. D. Dodd. Original label marked " ZT " in red.
$=$ Chalcophaps indica melvillensis F. R. Zietz, 1914. Green-winged Pigeon (33) (280). Melville Island, Northern Territory.

ORDER PSITTACIFORMES

Family Polytelidae: Longtailed Parrots
Aprosmictus erythropterus melvillensis F. R. Zietz, 1914.
S. Aust. Orn. 1 (1): 14.

Holotype: B1336, ô, Melville Island, Northern Territory 4.viii.1913, W. D. Dodd. Original label marked "ZT" in red.
$=$ Aprosmictus erythropterus coccineopterus (see note) (Gould, 1865) Redwinged Parrot (280) (318b). Coastal Northern Territory and Melville Island.
Note-For details of Gould's type of coccineopterus see de Schauensee 1957, page 167.
Family Platycercidae, Subfamily Platycercinae: Rosellas and allies
Platycercus elegans fleurieuensis Ashby, 1917.
Ети 17: 43.
Holotype: B2323, đ̂, Second Valley, Fleurieu Peninsula, South Australia, 7.iv.1917, Edwin Ashby.
Paratype: B5333, ㅇ, Second Valley, Fleurieu Peninsula, South Australia, 7.iv.1917, E. Ashby.
For coloured plate of Holotype and Paratype see Епи 17 (3), plate 17.
$=$ Platycercus elegans fleurieuensis Ashby, Crimson ("Adelaide") Rosella (283) (329), Fleurieu Peninsula, South Australia.

Psephotus hammatonotus cacruleus Condon, 1941. Rec. S. Ausi. Mus. 7: 141; coloured platc.
Holotypo: B2237, \&, Innamincki Station, South Australia, 30.ix.1916, South Australian Museum Expedition.
$=$ Psephotus haematonotus cueruleus Condon, Redrumped Parrot (295), (336b). Northeastern Interior. South Australia and adjacent parts of south-western Queensland and north-westersi New South Wales.

ORDER CUCULIFORMES

Family Cuculidae, Subfamily Cuculinae: Parasitic Cuckoos
Chrysococcys minutillus melvillensis F. R. Zietz, 1914.
S. Ausi. Om, 1 (1): 14.

Holotype: B1288, d, Melville Island, Northern Territory, 26.viii.1913, W. D. Dodd. Original label marked "ZT" in red.
$=$ Chrysococcyx malayanus minutillus Gould, 1859, Little Bronzecuckoo (345), (357). Northern Australia.

ORDER PASSERIFORMES

Family Timaliidae, Subfamily Cinclosomatinae: Quailthrushes and allies
Cinclosoma castanotum clarum Morgan, 1926.
S. Aust. Oin. 8: 138-9: Enu 16, 1926; coloured plate I.
Holotype: B7705, δ, Wipipippec, $c a, 5 \mathrm{mi} .(=c a$. 8 km) E of southern end of Lake Gairdners, South Australia, 17.viii.1902, A. M. Morgan.
$=$ Cinclosoma costanotum clarum Morgan 1926, Chestnut Quailthrush (437). Northwestern South Australia (and adjacent purts of Northern Territory and Western Australia) south to Ooldea and vicinity of Lake Gairdner.

Cinclosoma castanotum morgani Condon, 1951.
S. Alust. Om. 20: 42.

Holotype: B5673, ふ. $18 \mathrm{mi} .(-\mathrm{c} .29 \mathrm{~km})$ NW of Kimba, Eyre Peninsula, Soutly Austrilia, 19.ix.1925, A. M. Morgati.
=Cinclosoma castanorum morgani Condon 1951, Chestnut Quailthrush (437). Eyrc Peninsula and Flinders Ranges, South Australia.
Family Acanthizidac, Subfamily Acauthizinac: 'Ihornbills
Acanthiza pusilla cambrensis A. Go Campbell, 1922.

E"M 22: 64.

Holotype: B19415, on, Cape Jervis, South Australia, 6,iv.1917, E, Ashby, Original label marked (in red) "TYPE A.p. cambrlan (sic) A.G.C. 2/6/22". Ashby collection No. 13.

Paratype: B19413, ? sex, Lucindale; South Australia, -vii.1916, ? collector. Ashby collection No. 9. Note-This specimen is referred to by Campbell (Emu 22: 64),

- Acanthiza pusilla macularia Quoy \& Gaimard 1830, Brown Thornbill (475), Coastal districts of Victoria and eastern South Australia.

Geobasileus chrysorthoa westernensis A. G, Campbell. 1922.
Emu 22: 65.
Holotype: B19353, \&, "Watheroo Obs.", near Moorá, Western Australia, 5,xi,1920, E. Ashby. Original label marked (in red) "TYPE G.c. westernensis A, G. Campbell 2/6/22". Ashby collection No. 82.
Paratype: B19355, oे, breeding, "Watheroo Obs." near Moora, Western Australia, S.xi.1920, E. Ashby. Ashby collection No. 81, Notespecimen referred to by Campbell (Emu 22: 65).
=Acanthiza chrysormoa alexanderi Mathews, 1921, Yellowtailed Thornbill (486), Mid Western Australia.

Acanthiza tenuirostris A, H. Zietz, 1900.
Trans. R. Soc. S. Aust. 24: 112.
Syntypes (2): B7267, B7268, ? sex, Leigh's Creek scrub, South Austalia,-viii.1895, R. M. Hawker. On original labels of both specimens, in handwriting of A . Zietz, is noted "Aconthiza temmirostris A. Zietz (Type specimen) Aug. 1895. Leigh Creek, Hawker Esq".
=Acunthiza iredelel morgani Mathews, 1911. Samphire Thornbill (482-3). Interior of South Australia.

Family Acanthizidae, Subfamily Sericornithinae: Scrub-, Grounde, and Fieldwrens.
Sericornis maculatus condoni Mathews, 1942.
J. R. Suc. West. Aust. 27: 78.

Holotype: B9431, \&, Hopetoun, Western Australia, 12.vii, 1906, J. T. Tunney (collection No. 8565). Pencil notes on label by G. M. Mathews "int Esperance Bay, Wing 55 cul. 10 tal. 21 tail 45. Type of Sericomis m. condoni Mathews". Notes by J. T. Tunney "Shot in dense scrub. Mostly seen in pairs".
$=$ Sericomis frontalis condoni Maihews， 1942. Whitebrowed Scrubwren（488－492）， South－west Australia，

Sericomis maculatus houmanensis F．R．Zietz， 1921.

S．Aust．Orn， 6 （2）：44－5．
Syntypes（3）：B547，B548，B549，放早走，Abrolhos Islands，Western Australít，14．x．1912，W．D． Dodd．Nort－Same data for each skin； but only B547 and B548（f）are marked ＂Type＂in handwriting of F．R，Zietz．
＝Sericurnis fromtulls balstoni Grant，1909， Whitebrowed Scrubwren（491）

Calamanthus fuliginosus parsonsi Condon， 1951. S．Aust．Orn，20： 50.

Hololype：B11850，\％． 23 mi （ $=$ c． 37 km ） E of Meningie，South Australia，3．x．1929，Dr． A．M．Morgan．Other details are＂pharynx light flesh colour；palate dark flesh colour； iris creamy white；legs dark flesh colour， feet darker：bill：maxilla dark horn， mandible light horn at base，brownish tip． Total length 13.5 cm ；wing span 15.7 cm ＇．

Paratypes（2）：B11849，3－other details as above；＂Lotal length 12 cm ；wing span 16.6 cm ；stomach contents－insect remains＂． B23068，3． 17 mi （（ -c .27 km ）E of Meningie， South Australia，2．x．1929，F．E，Parsons． ＂Iris buff，darker on inner margin；bill： upper horn colour，lower whitish：legs and Feet light horn．Total length 475 in ．［－ $12.07 \mathrm{~cm}]$ ；wing span $7.75 \mathrm{in} .[=19.7 \mathrm{~cm}]^{3}$ ．＂ B11839．S．Coombe，South Ausiralia， 10，ix．1929，W．J．Harvey．Other details ＂iris dark grey；feet dirty pink；bill dark brown：pharynx yellow＂．
＝Collamanhus fuliginosus parsonsi Condon． 1951，Striated Fieldwren（500－503）．Dreier areas，South－east of South Australia．

Calamanthus fuliginosus suttoni Condon，1951．
S．Just．Orn 20： 51.
Holotype：BS669，\＆，Wertigo，SW of Whyalla， Eyre Peninsula，South Australia，8．ix．1925， Dr．A．M．Morgan．Details from original label＂iris sream；feet light brown；bill： upper dark brown，lower light brown； inside mouth dark horn，Total length 12 cm ； wing span 17.25 cm ；weight 16 mg ，Stomach contents－insect remains＂．
－Calumanthus fuligimosus suttoni Cordon．1951， Striated Fieldwren（500－503）．Northern Biyle Peninsula．

Family Maluridae，Subfamily Stipiturinac： Emu－wrens
Stipiturus malachurus halmaturinus Parsons， 1920 （1．
S．Aust．Orn 5： 15.
Holotype：B22762，3̉，Stokes Bay，Kangaroo Istand，South Australia，14．x．1919，F．E， Parsons．Other details from original labed ＂iris brown；Jegs and feet brown；bill brown－almost black；length from tip of bill to base of tail $2.75 \mathrm{in}[=7 \mathrm{~cm}] \ldots$ to tip to tail $7.5 \mathrm{in} .[-19 \mathrm{~cm}]^{\prime \prime}$ ．
Paratypes（4）：B2984－2986，B4350－4352－a series of six specimens，all collected by F．E． Parsons at Stokes Bay，Kangaroo Island in October，1919．For details，see Parsons （1920）pages 16 and 17.
\approx Stipiturus malachurus halmaturinus Parsons， 1920，Southern Emu－wren（526），Confined to Kangaroo Island．

Family Rhipiduridae：Fantails

Rhipidura mayi Ashby， 1911.
Eпй 11：41．
Syntype：B176，？sex（desiccated specimen，from formalin）．Anson Bay，Northern Territory， 1911．C．E．May．Received in exchange from Ashby on 15ih February，1912，Ashby（loc． cit．）stated that he had received two formalin specimens from May；the second syntype was presented by Astiby to the Academy of Natural Sciences，Philadelphia，in 1917 （de Schauensee，1957：213）．
－Rhipidurarefifions dyas Gould，\｛843，Rufous Fantail（362）Northern Australia．

Eamily Muscicapidae：Old World Flycatchers
Petroica cucullata melvillensis F，R．Zietz， 1914.
S．Aust．Oin． 1 （1）： 15.
Holotype；B1285，\＄．Melville Island，Northern Territory，21，viii．1913，W．D．Dodd． Specimen label shows＂ ZT^{T}＂in red．

Robin（385）Northern Australia．
Family Pachycephalidae：Whistlers， Songshrikes and allies
Pachycephala gutturalis longirostris F．R．Zietz． 1914.

S．Aust．Orm，I（1）： 15.
Holotype：B1283，B．Melville 1sland，Northern Territory，29．vỉ．1913，W．D．Dodd．
$=$ Pachycephala pectoralis violetac Mathews． 1912，Golden Whistler（298－399）．From Daty River．Northem Territory east in Normanton，Queensland：Melville Island．

Pachycephala rutiventris minor F. R. Zictz, 1914,
S. Aust. Orm 1 (1): 15.

Holotype; Bloon, à, Melville Island, Northern Tertitory, 10.vii. 1913 , W. D. Dodd. Marked "ZT" in red on label.
Paratypes (2): B1002 (labelled "CTZ" in red) same details as above, B1003 (labelled "ZT" in red) as above except date (23.vit.1913).
-Pachycephala rujiventris falcatu Gould, 1842, Rufous Whister (401), Melville Island, Groote Eylandt and adjacent Northern Territory mainland.
Colluricincla paryula melvillensis F. R. Zietz, 1914. S. Aust. Orn. 1 (1): 16.

Syntypes (7): B1008-1011: B1271-1273. A series of seven specimens from Melville Island, Northern Territory, collected between 10.vii. 1913 and 6 .viii. 1913 by W, D. Dodd are labelled " Z " in red and probably formed the basis for Zietz's description in The South Australian Ornilhologist. There are five males and two females; all are indistinguishable from specimens from the adjacent mainland.
$=$ Colluricinclu parvila parvula (see note) Gould, 1845, Little Shrikc-thrush (412), Northern Australia.
Note-For detaits of type see de Schaiuensée 1957, 17, 216,
Colluricincla brunnea melvilleasis F. R. Zietz, 1914.
S. Aust. Orn. 1 (1): 16.

Syntypes (3): B1007 (す), B1269 (す), B1270 (f) all from Melville Island, Northern Territory, collected on 10 vii. 1913 and 27.viif. 1913 (B1269) by W. D. Dodd. None of the specimens is marked "ZT" (in red) which was used by F. R. Zietz to indicate type specimens, but they are marked " Z " in red. There is no indication in the original description as to the number of specimens. Zietz had, or whether he selected a holotype.
=Colluricincla brumea Could, 1841, Brown Shrike-thrush (409). Northern Australia.

Colluricincla harmonica anda Condon. 1951.
S. Aust. Orn 20: 41.

Holotype: B12897, कै breeding, Cliffon Hills, South Australia, 31,vii, 1930, Dr. A. M. Morgan.
=Colluricincla harmonica anda Condon, 1951, Grey Shrike-thrush (408-410): North-east South Australia from Imnamincka noth to Clifton Hills and adjacent parts ol New South Wales and south-western Qucensland east to Charleville.

Family Falcunculidac: Shrike-tits, Bellibiras, Whipbirds and allies.
Psophodes nigrogularis pondalowiensis Condon, 1966.
S. Aust, Orn. 24 (5): 89.

Holotype: B27133, a adult, coastal sand dunes, near Pondalowie Bay, Yorke Peninsula, South Australiu, 30.x.1965, H. T, Condon.
$=$ Psophodes nigrogularis pondalowiensis Condon, 1966, Western Whipbird (421). Southern Yorke Peninsula, South Australia.

Eamily Climacteridae: Australian Treecreepers
Climacteris waitei S. A. White, 1917.
Emu 16: 168-9.
Holotype: 132303, ${ }^{3}$, Innamincka, South Australia, 2.x.1916, S. A. White, "Iris brown".
Paratype: B2304, 7. Innamincka, South Australia, 2,x.1916, S. A. White. "Iris reddish brown; fect and bill blackish brown".
$=$ Climacteris picummus Temminck, 1824, Brown Treecrecper (555). South-eastern Australia, coastal and imland, from central Queensland to Yorke Peninsula, South Australia.

Fanily Zosteropidae: Silyercyes.

Zosterops westernensis flindersensis Ashby, 1925.
Emu 25: 117.
Hólotype: B4506, d. Flinders Island, near Ellistor, South Australia, 6.i.1924, Prof. F. Wood-Jones. "Iris dark brown; feet greenish grey; bill grey with black lip ${ }^{1 "}$. NOTE-Correction of page reference needed in R.A.O.U. Checklist (1926) from " 177 " to "117" as given above.
$=$ Zosterops lateralis hatmaturina A. G. Campbell, 1906, Eastern Silvereye (576). Southern districts of South Australia.

Family Meliphagidae: Honeyeaters.

Melithreptus magnirostris North, 1905.
Rec. Aust. Mus. 6 (1): 20, plate 5.
Holotype: B8610, 0 , Eastern Cove, Kangaroo Island, South Australia, 3.x.1901, F. R. Zietz. Other details from original label "Melilhreptus magnirostris (Type). A.J.N." (in red ink); note in handwriting of F, R. Zietz "these birds were shot out of a flock. Coll. by F, R. Zietz".

Paratype: B8616, ㅇ, Kangaroo Island, South Australia, -.xii.1905, F. R. Zietz. A note on label apparently copied from original label (now lost) says "cotype of zietzi" which suggests North seems to have had difficulty in choosing a name. It is recalled that in a letter to Robert Zietz, North stated that he wished to make "magnirostris" a subspecies of M. brevirostris, but the absurdity of the combination (brevirostris and magnirostris) was pointed out by the Director of the Australian Museum, Robert Etheridge, who prevailed upon him to treat the Kangaroo Island bird as a full species, Melithreptus magnirostris.
$=$ Melithreptus brevirostris magnirostris North, 1905, Brownheaded Honeyeater (583). Kangaroo Island.

REFERENCES

Campbell, A. G., 1922. New Subspecies of Tit-Warblers (Acanthizae). Emu 22: 63-66
de Schauensee, R. M., 1957. On some avian types, principally Gould's, in the collection of the Academy. Proc. Acad. nat. Sci. Phila., 109: 123-246.
Hartert, E., 1918-1931. Types of birds in the Tring Museum. Nov. zool., 25-37.
Hindwood, K. A., 1946. A list of the types and paratypes of birds from Australian localities in the Australian Museum, Sydney, New South Wales. Rec. Aust, Mus., 21 (7): 386-393.
Stone, W. and Mathews, G. M., 1913. A list of the species of Australian birds described by John Gould, with the location of the type specimens. Austral. avian Rec., 1 (6-7): 129-180.

VERTEBRATE TYPE-SPECIMENS IN 'IHE SOUTH AUSTRALIAN MUSEUM

V. MAMMALS
by
PETER F. AITKEN

South Australian Muscum, Adelaide 5000

Abstract

AITKIEN, P. F.o 1976. Vertebrate Iype-specimens in the South Ausiralian Museum, V. Minmals. Kece S. Aus. Mhes. 17(11):-197-203.

Type-specimens of 19 species or subspecies are housed in the mammal collection at the South Australian Museum. They comprise either holotypes, lectotypes, syniypes or paratypes of 11 marsupials, seven rodents and one chiropteran. All are from Australia except the chiropteran which is Papuan.

INTRODUCTION

Although the acquisition of mammals for display began some years earlier, registration of mammal specimens at the South Australian Museum did not commence until July, 1890, when such specimens were first entered in the Taxidermist's Register. This register was superseded by the current Mammal Register in January, 1911. Since 1890 five species and 10 subspecies of Australian mammals, plus one species of Papuan mammal, have been described from specimens in the Museum's mammal collection, and typespecimens of three more Australian mammals have been acquired from other institutions.

Some type-specimens in the mammal collection were described by authors who identified them individually in original descriptions, documented their dispositions and labelled them as types. These have been easy to catalogue. Others, on the other hand, wete described by authors who did not identify them individually in original deseriptions, gave few elues to their dispositions and did not label them as types. Cataloguing such specimens has been extremely difficult and has devolved on deduction and assumption rather than factual knowledge. Most types in the collection described by Wood Jones and many paratypes described by Finlayson are in the latter category. In many cases Wood Jones' types are quite impossible to identify from his original descriptions, and in the absence of personally attached Jabels, if indeed these were ever present, can never be selected with certainty. The South Australian Museum may well have unsuspected Wood Jones types, in addition to those catalogued. of the following species: Myrmecobius rufis Wood Jones 1923, Dromicia tritta Wood Jones 1925 and Alctocephalus duriferus Wood Jones 1925.

MARSUPIALIA

Dasyuridae

Planigale gilesi Aitken, 1972. (Fig. 1)
Rec. S. Aust. Mus. 16 (10): 1, pls. 1, 2, 3a-d.
Holotype: M8406. male skin and skull plus torso in spirit, No. 3 Bore, pastoral property of Anna Creek, South Australia, collected. P. Aitken, A. Kowanko, J. Forrest and J. Howard, 29,vi، 1969.
Paratypes: M8407, male skin and skull, collected P. Aitken, A, Robinson and M, Stanlcy. 25.vii.1969: M8408 and M8409, male skins and skulls, collected P. Aitken, J. Forrest and J. Glover, 26.xi. 1969: M8410, male in spirit, collected P. Aitken, A. Robinson and M, Stanley, 27.vii.1969; M8411, female in spirit with skull extracted, collected A. Kowanko and J. Glover, 25.vii.1970, locality data of all as for Holotype.
Notis-Five additional paratypes are at the Australian Museum7: M7033, female in spirit with skull exlracted, collected 1. Kirkby, 27.ii, 1945 and M7393, collected v.1948, boll frony Bellata, New Soupl Wales, Australia: M7819, male in spirit wilh skull extracted and M7820. Female in spiril with skull extracted, both lrom Brewarrina. New South Wales, Austialia, soljected K, [urnbull, $1454:$ M9100. male in spirit, Lake Cawndilla, Kinchega National park. New South Wales, Australia, collected M, Gray, $20, v, 1964$,

Phascogale (Antechinus) swainsoni maritima Finlayson, 1958.
Trans. R. Soc. S. Aus, 81 : 148. pls. 1a-h, 2a-b. - Antechinus minimus murilimus (Finlayson) vide Wakefield and Warneke, 1963.
Holotype; M4985, male in spirit with skull extracted, Port MacDonnell, South Australia, collceted G. H. Tilley, YI. 1938.
Norrs-Tan paratypes were indicated, but not isentifed individuatly, by Finlaysuth. All atre it his private collection.
Myrmecohius fasciatus rufus Finlayson, 1933.
Trams. R. Soc. S. Aust. 57: 203.

- Myrmecobius fasciatus rufus (Wood Jones) vide Tate, 1951.
Syntypes: M3061, female 5kin and skull, south of the Musgrave and north of the Everard Ranges. South Australia, collected A. Brumby, date of collection unknown: M3759. femate in spirit Oolarinna, north of the Everard Ranges, South Australia, collected R. T. Maurice, date of collection unknown.

[^7]
Peramelidae

Thalacomys nigripes Wood Jones, 1923. (Fig. 2)
Rec. S. Aust, Mus. 2 (3): 347, figs, 358-60.
$=$ Macrotis lagotis nigripes (Wood Jones) vide Troughton, 1932 (1).
Paratype: M3922, male in spirit, Ooldea Soak, South Australia (by inference), donated Daisy M. Bates, date of collection unknown.

Fig. I. Planisule gilesi Aitken. 1972. Paratype mule-M 8410. (Photo-Roman Ruchle.)

Fig. 2. Thalucomys nigripes Wood Jones. 1923. General characters of adult male. (Drawing-F. Wood Jones.)

Nores-Wood Joncs based his description on a hololype and four maritypes, none of which was identifidd individually. He stated that one of bitis series was a nale spirit-preserved specimen in the South Australian Musoum, from Ooldea Soak, captured by Aboriginals and donated by Mrs. Daisey M. Bilfes. It is teasonable to assume that the paratype listed above was that specimen, beatuse it fils the sub-specific deseription of Wood Jones and, allhough its locality is hot entered in the mammal register, it is lle only spirib specinen of M, lagulis in the South Ausiralian Museum, known to have been donaled by Daisy Bates. The skiin of the holotype male is al the British Muscurs (Natural llistury), registend number 1925.10 .8 .1 and its skull is al the odontological museun of the Royal Collese of Surgeoris, London, registered number A.378.31. The whereabouts of the remainine three paratypes is tink nown.

Thalacomys minor miselius Finlayson, 1932.
Trans. R. Soc. S. Aust. 56: 168.

- Macromis minor miselius (Finlayson) vide Iredale and Troughton, 1934.
Holotype: M346S, male skin and skull, Cooncherie, South Australlia, collected L, Reese and H. H. Finlayson, xii. 1931.
Nistes-A scries of 11 panatypes was indicated by Finlayson, but sone was identilied individually. They are all presumably in his private collection.

Macrotis lagotis grandis Troughton, 1932.
Aust. Rool. 7 (3): 229.
Holotype: M5225, male stuffed skin without skull, Nalpa, South Australia, collector and collection date unknown.
Paratype: M1625, skull (sex unknown), Nalpa, South Australia, collected Dr. E Stifling, vi. 1891.

Nonk-Troughton designated three paratype skuls from Nalpai... "as lisled by Wood-Jones (1923-5: 156)". The South Ausiralian Muscum has four skulls of M. lagotls from Nalpa, but only one of these has dimensions which correspond to those of a skull lisied by Wood Jones: The whercabouts of the other two paratype skulls is unknown.

Phalangeridac

Trichosurus vulpecula raui Finlayson, 1963.
Truns. R. Soce S. Aust. 87: 18.
Holotype: M2518, male skin and skull, scrubs of Rocky River, Flinders Chase, Kangaroo Island, South Australia, collected H. H. Finlayson and F_J. Rau, viii.192s.
Paratypes: M2509, M2524, M2530, M2541 to M2543, M2545 and M2546, female skins and skulls: M2516, M2517, M2519, M2531, M2532, M2540, M2544 and M2548, male skins and skulls; M2526, M2547 and M2561, female skulls: M2559 and M2560. mate skulls, locality and collection data of all as for Holotype.
Nestes-According to the manmal segister of the South Australian Museum, wo additional paralypes with the same locality and colicetion data as the holotype were sent to the Anstalian Musenti-M2sis, male skin end skull and M2525.
femate shin and shull foriginal Soulh Ausiralian Museuns regisuration bumbers). Sis other paratypes. were indizzted. but not identified individually by Finlayson: they are prestmably in his private collection

Macropodidae

Bettongia penicillata anhydra Finlayson, 1957.
Alm. Mug. mat. Hist. Ser. 1210 (115): 552.

- Bertongia lesueur (Quoy and Gamard) vide Wakeficld. 1967.
Holotype: M3582, skull (sex unknown). McEwin Hills, Northern Territory, Australia, collected M. Terry, 20.i.1933.

Note-The hololype svas the unly original specimen.
Bettongia penicillata francisca Finlayson. 1957.
Anm。Mag. nar. Hist. Ser. 1210 (115): 552.
Holotype: M5484, part skull (sex unknown), Saint Francis Istand, Nuyt's Archipelago, Australia, collector and collection date unknown.
Notes-According to the mammal Tegister of the South Australlah Museum, MS484 has no locality or collection data, but was found untagged in an old colfection and registered in 1945. How Ifinlayson knew that it had been tiscovered on Saint Francis Island has never been explained. The holotype was the only original specimen.

Lagorchestes asomatus Finlayson, 1943.
Trans. R. Sóc. S. Aust. 67: 319, pls. 33 A-D and 34 E-H.
Holotype: M3710, skull (sex unknown), between Mount Farewell and Lake Mackay, Northern Territory, Australia, collected M. Tersy, i. 1933.

Nots-The holotype twas the only orrgmal spectmen.
Thylogale flindersi Wood Jones, 1924.
Trans. R. Soc. S. Aust- 48: 12.
= Macropus eugenii flindersi (Wood Jones).
Paralypes: M1749 and M1751, skulls (sex unknown), Flinders Island, South Sustrilia, collectors and collection dates unknown: M1750, skull (sex unknown), Flinders Island, South Australia, ex Adelaide Zoological Gardens, 30.ix.1892* M2025, female skin and skull, Flinders lisland. South Australia. collected F. Wood Jones, i. 1924 .

[^8]
RODENTIA

Muridae

Conilarus pedunculatus Waite, 1896.
Rent. Hom Sch Eivned. Centm Alnat. 2 (Zooh.): 395, figs lia-f.
$=Z y=0$ mis pedunculatus (Waite) vide Ride, 1970.

Syntypes: M2412 and M2437, male skulls, labelled "Horn Expedition, spec. F " and "spec. $B^{* *}$ respectively.

Nors- The whereabouts of the sking for the alsove skulls is unkoown, as is the exact location of the remainine five syntypes designated by Waite $(\Lambda, C, D, E$ and C (i). 'The erection of a lectolype is 1 bus considered inapprophatce al present. Accorting to Dixon (1970) the Australian Muscurn, Sydncy, probably lias specimens A and G, numbered M1004 and M1065, and the Natumal Museum, Vietoria, has another sumposed syntype numbered C7806 and labelled "EF". As pointed oul by Dixan, the latter specimen could not be specimen F because it is a mate in spiral and F was a mate whll the shull removed. Other specimens of 2. pedunculatus: some of which were passibly in Wailes syntypie series, atre in the Ausirasian Muselim: Allls8, skin wish skull in whe Central Australia ex, Horn 1896 and M1298, Skin with skull in silt, Alice Springs Australi:, ex. Spencer, 1898: and in the South Australian Muscum: M4384, lenseimspint and M4.355 wo M4387, hates in spirit, Alice Springs, collected Horn Expedition, also M4379. d'enale in spirit. labelled "Conilurus loirsuilus, Alice Sprimas. don. ProE B. Spencer. Dir. Mus. Melbourne. I . 10.1 リथ1"

Ascopharyax fuscus Wood Jones, 1925.
Rec. S. Aust, Mus. 3: 3.

$=$ Notomes Juscus (Wood Jones) vide Aitken, 1968.

Lectotype: M6258, male in spirit with skull exiracted, Ooldea, South Australia, collected A. G. Bolam, date of collection unknown.

Noms-Wond dones based his deschiption on four, of possibly live, syntypes selected from "numerous specimens" us No. Jusrues that he stated the had received frome A. G. Bolann coliccted "aboul Ooldea" None of these syntypes was identified individually and all were apparently in Wood Joness private collection. 1n 1959, Finlayson discovered what he considered was one af the syntypes in the muselint of the Department of Zoology, Uaiversity of Adefaido registered number -524 . He transferred this specimen to the South Australian Musedin and ereated it as lectotype (Fintayson 1960). Hovever although lindaysonis lectolype is almost certainly one of the "rumerous specimens" Wood Jones received trom A. G. Bolam. and ahbough its body dimensions ate reasonably blose to thase of bue of the two arale syntypes for which Wood Iones supplied body dimensions, there appears to the no real prode thet Finlayson's lectotype was. In fact. a syntype. It bears no label signifying it as such, not is jo lisied as a lype in the museum register of lie Depariment of Zoolosy. Which for No. 524 reads--"Ascopharynk liuscus. Ooldea, F. Wood Jones (A. Gi.Bolam) ${ }^{-3}$, Acenrding lo Mr. J. A. Mahoney of the Depariment of Geolugy and Cacophysics, Sydney University (pers, cumm.). There are mure specinens
 nearly all of Wood Jones" private type material is housed. Fitritier evalisation of the validity of b'indayson"s Lectotype might be possible alter acritical examination of these specimens.

Another specimen of N. firsome which may have beer a Woot Janes syniype is M5906 in the South Australian Museum, This is a male ith spirit with a danaged lail, whise bady dimensions correspond very closely fo thase ol the second male svayme for which Wood Jones, supplied body dimensions. and which the descrithed as having an imperfect lail. This specimen wat also donated by the Deparment of Zodogy, Universily of Adelaide, fo the Sonth Ausiralian Muscurn, where if is atil stored in a Depatoment of Zoology spirit jat pressumathly atio
ore it which it was transferred. With the spocimen in the jar is its original Department of Zuplugy habel, on which is wrillen-- *Rodentia, Muridae, Ascopharynx fuscus, muxeum No. 524°, the same number as that of F"inaysun"s lecturype. According to the natmmal iegister of the South Australian Muscun1. M5966 was transtered from the Department of Zublogy im 1453, whereas Finlayson"s lecholype was lol transfersed until 195y, it is brotable that number 524 of the Depariment of Zoology museusn originally relerred to both specimens, because no other conries for Ascuphurvix (
 ancon of Zoology

Nolomys fuscus eyreius Finlayson. 1960.

Trans. R. Suc: S. Aust. 83: 81.

- Notomps fuscus (Wood Jones) vide Aitken. 1968.

Holotype: M4595, female skin and skull, Mulka (New Well) east side of Lake Eyre. South Australia, collected G. Aiston, iv. 1934.
Paratypes: M3354, male in spirit and M3355. male skin and skull, Mulka, South Australia, collected G. Aiston, vi.1932. M4579 and M4581. male skins and skulls: M4580, skin and skull (sex unknown): M4601, skull (sex unknown): M4582 to M4594, males in spirit: M4602 to M4604, immature males in spirit; M14597 to M4599 and M4600, Females in spirif, Mulka (New Well), South Australia. collected G. Aistons. iv.1934. M6098 and M6099, male skins and part skulls: M6148. male in spirit and M6100 female skin and part skull, lagoon ruins, Goyders Lagoon. South Austrialia, collected R. Tedford and P. Lawson 28.vii. 1957. M6113 and M6125. female skins and part skulls, Cordillo Downs homestead, South Australia, collected R. Tedford and P، Lawson 7.vii.1957. M6l14. female part skull: M6115 and M6117 female skins and part skulls and M6129, male skin and part skull, Etadunna, South Australia. collected R. Tedford and P. Lawson 28.vi.1957. M6116 and M6126, male skins and part skulls M6124, female skin and part skull and M6145, male in spirit, Mudderacootera Hills. Innamincka, South Australia, collected R. Tedford and P. Latyson 18.yiii.1957. M6119 and M6120. male skins and part skulls and MG127, female skim and part skull, Motor Car Dam, Innamincka. Soutl Australis, collected R, Tedford and P. Lawson 18.viii.1957. M6122. male stin and part skull and M6123, fentale skin and part skull. Howica Dam. Innamincks, South Australia, collected R. Tedford and P. Lawson, 18.viii. 1957. M6152 and M6153, males in spirit: M6151 male skin in spirit and part skull; M6153 female skin in spirit and part skull, Tilparee Waterhole. Sizzelecks Creek, South Australia. collected $R_{\text {n }}$ Tedford and P. Lawson 22.viii. 1957.

Nums-According to the nitamal register of the South Alistrillian Museum, two additional paratypes werte donated to the Muscum of the Northern Territory Administralion, Anmal Industries. Branch at Alicc Springs: M6121, male skin and skull and Maiks, fenale irl spirit, Innamincka, South Ausiralia, collected R. Tedford and IT. Lawhon, 18, viii. 1057
In his descriphion Findayson indicated a serics of 52 specimens. 27 of which he stated were from Mulks and 25 from other Iocalities in the Lake Eyre Busin. "mest of the Jatter having teen colleced and carclilly grepared in the field by Mr. Psul Lawson.... and Mr. R. Tedford". Only the lolotype was identified individualty by number.
It is reascrabic to assume that the 26 paratypes from Mulkis were those listed above, bctause, apsat from the holotype, they are the anly specimens of N. Fuscus from Mulkat in the South Australian Muscum. It is probable that the remaining 25 paratypes were those sudditionally listed bbove, becuuse they ate the only ather specimens of N. fuxeus trom the Lake Eyre Busin in Hice South Ausfratian Muscum thap would have been available to Finlayson at the time. It is just jossible, however, that the latter specimens might nob all be paratypes. thecause all were collected by Lawson and Tedford, not "most" ats stated by linlayson.

Notomys alexis everardensis Finlayson, 1940,
Trans. R. Suc. S. Anst. 64: 133.
Lectotype: M3673, remale skin and skull, Chundrinna, north of the Everard Range, South Australia. collected 11. H. Finlayson, ii. 1933.

Allolectotype: M3685, male skin and part skull, Walthalkama, noith of the Everard Range, South Australia, collected H. H. Finlayson, ii. 1933.

Paralectotypes: M3669 and M3671, male skins and skulls. Clundriana; M3672, female skin and skull, Chundrinna: M3684. Cemale skin and skull, Walthajalkamna; M3686 male skin and skull, Walthajalkanna: M3670, male in spirit. Chundrinna: M3674, M3675 and M3688, females in spirit, Chundrimna: M3676 io M3679. M3681, M3682 and M3687, remales in spirit, Walthajalkanna, M3680 and M3683, males in spirit, Wallhajalkanna, all collected H. H. Findayson, ii. 1933.

Notes-Finkiasort indicated a series of 40 specimens in his description. Two of these he selected as opposite-sexed cotypes, I have designated the remale as lectotype because she has a complete skulf. Nonc of the other specimens in the series was identified individually, but it is probable that 18 of Itient are those namalerotypes listed above becaluse they are entered logether with the lectotype and allolectotype in Finlayson's handwriting in the mammal register of the south Australian Muscuns. The type locality described by Finlayson encompassed hath Chundrinma and Walthajulkantia, but be did nat state form which Jocality enth of his zype-specimens was collected. His entries in the mammal regisier clarify thas matter. The twenty additional paralectorypes are fresumatly in Finlayson's privale collection.

Pseudonys (Gyomys) apodemoides Finlaysou, 1932
Tioms. R. Soc. S. Aust. 56: 170.
-- Pseudonis albocinerens (Gould) vide Ride. 1970.

Holotype: M3466, lemale in spirit, Coombe, South Australia, collected W. J. Harvey. viii. 1932.

Paratypes: M3467, male skull and skeleton. M3468 to M3471, skulls and skeletons (sex unknown), locality and collection data of all is for Holotype.
Nobs- In his ateschmion Finlayson indicated a series of 14 specimens, one of which he designated as the hakyype. None of the others was idenlified individually, but it is probable that Give of the remaining is specimens in the serics were those paratypes fisted above, because they are registered in Finluyson's handwriting, consecutively with the holotype, in the manmal register of the South Australian Muscum. Originally these 5 specimens. were preseryed in spirit, but in 1964 their bodicu were folnd to be decomposcd so they were reprepared as skulls and skeletons. The other tight paratypes are fresumably in Finlaysons private collection.

Mus hermannsburgensis Waite, 1896.
Rept. Forn Sch Exped. Cenrr. Ausp. 2 (zool): 405, figs. 5a-f.

- Pseudomms (Leggadina) hermannsburgensis (Waite) vide Troughton, 1932 (2).
[Paralectotypes: M2417 and M2417B, female skulls, labelled "Horn Expedition, spece $\mathbf{H "}^{\circ}$ and "spec. C" respectively.
Nors:-Waite based his description on five syntypes (A, I及, C. D, and Ey, one of which was erected lectotype by Jroughon (1932) and is at the Australian Museum. Sydrosy, registosd number M1070A. This is a mounted specimen of inderterminable sex, but atcotriing to Troughton was probably specimen D. Dison (1970) claimed that tlie National Muscum of Victotia held three of the four pratalectotypes: C7807, male in spirit, which must be specimen A because this was the only male syniype: C7808, female in spirit, which is probably specimente hecanse this was the only specimen, ottier than D. in which tho shull was nol removed! and c4874, female skin without skull. The latler is almost certainly the skin from one of the two South Australian Museum parakectolype skulls. The whereatouts of the nher nissing female skin is unknown. ii may be the mounded skin of L. hemmansburgensis at the Australian Muscum mentioned by Troughton as being registered with the lectotyne.

Ratius greyi pelori Finlayson, 1960,

Tramy. R. Soc. S. Ausi. 83: 140.
Rathes fuscipes greyfi (Gray) vide Taylor and Horner. 1973:
Holotype: M6268. male skin and skull, north slope, main mass of Greenly Island, Australia, collected H. H. Finlayson, xi, 1947.
Natts-Finlayson indicated a series of 13 specinens in his descriprion, but, except for the hololype, none was identified individually. In addifion to the hotolype, the South Austratian Museum has 12 R. fo sregni Ironn the main muss of Greenly Island, colicerid by a South Australian Muscum expedition in December 1947. It is possible that these are the paratypes. Their numbers are M5738 to M5749 inclusive. all are skins and skulls.

CHIROPTERA

Vespertilionidae

Lamingtona lophorhina McKean and Cababy, 1965.
Mommalic, 32 (3) = 373, ligs. 1-2.
Holotype: M6404, female skin and skull, Mount Lamington, Papua, purchased from C. T: McNamira. xii. 1929.

Paratypes: M6402 and M6403, male skins and skulls, and M6401, male in spirit, locality and purchase data of all as for Holotype.
Notes-Two additional paratypes, CM2090 and CM2091, female skins and skullis with the same locality and purchase data as the holotype, are at the Division of Wildife Research, C.S.I.R.O., Canberra.

ACKNOWLEDGEMENT

I am deeply indebted to Mr. J. A. Mahoney of the Department of Geology and Geophysics, Sydney University, for information on the whereabouts of the holotype specimens of Thalacomys nigripes Wood Jones, Thylogale findersi Wood Jones and the syntype specimens of Myrmecobius rufus Wood Jones.

REFERENCES

Aitken, P. F., 1968. Observations on Notonys fuscus (Wood Jones) (Muridae-Pseudomyinae) with notes on a new synonym. S. Aust. Nat. 43 (2): 37-45.
Dixon, J. M., 1970. Catalogue of Mammal Types (Class Manmalia) in the National Museum of Victoria. Mem. Nat. Mus. Vic. 31: 105-114.

Finlayson, H. H., 1960. Nomenclature of Notomys (Muridae) in the Lake Eyre Basin. Trans. R. Soc. S. Aust. 83 (1): 79-82.
Iredale, T, and Troughton, E. LeG., 1934. A check-list of the Mammals Recorded from Australia. Mem. Aust. Mus. 6: 1-122.
Ride, W. D. L., 1970. "A Guide to the Native Mammals of Australia". Oxford University Press, Melbourne.
Tate, G. H. H., 1951. The Banded Anteater, Mywmecobius Waterhouse (Marsupialia). Am, Mus, Novit. No. 1521: 1-8.
Taylor, J. M. and Horner, B. E., 1973. Systematics of Native Australian Raths (Rodentia, Muridae). Bull. Amer. Mus. Nat. Hist. 150 (1): 1-130.

Troughton, E. LeG., 1932 (1). A revision of the Rabbit Bandicoots, Aust. Zool. 7 (3): 219-236. Genus Pseudomys 1932 (2). On five new rats of the Genus Pseudomys. Rec. Aust. Mus. 18 (6): 287-294.
Wakefield, N. A. and Warneke, R. M., 1963. Some Revision of Antechinus (Marsupialia) 1. Vict. Nat. 80 (7): 194-219.
Wakeficld, N. A., 1967. Some Taxonomic Revision in the Australian Marsupial Genus Bettongia (Macropodidac) with description of a New Species. Vict, Nat. 84 (1): 8-22.
Wood Jones, F., 1923-25. "Mammals of South Australia" Parts 1-3. Government Printer, Adelaide.

VERTEBRATE TXPE-SPECIMENS IN THE SOUTH AUSTRALIAN MUSEUM

VI. FOSSILS
by
NEVILLE S. PLEDGE
South Australian Museum, Adelaide 5000

PLEDGE N. S. 1976. Vertebrate type-specinzens in the South Auspalian Museum. VI. Fossils. Rec. Si Alnst. Mus, 17 (12): 205-219.
The South Australian Museum holds primary type-specimens of 34 species of fossil vertcbrates, all from Australia, and mostly marsupials. Of these types, thrce are in the collection of the University of Adelaide, Geology Department (AUGD), now held in the South Australian Museum.

Besides primary types, there are plastotypes (casts) of type-specimens of 28 species, held mainly in the British Museum (Natural History), and two plesiotypes.

INTRODUCTION

The South Australian Muscurm owns (or holds) primary type-specimens (mainly holotypic material) of 34 species of fossil vertebrates, which form the first part. of the following list. Much paratypic matcrial of more recently described species is held by the Muscum of Palaeontology, University of California at Berkcley, and is also listed briefly.

One of the problems that faces the vertebrate palaeontologist, as distinct from most invertebrate palacontologists and taxonomic zoologists, is that in many cases only a small portion of an animal is preserved and used as the basis of a new species. This is particularly so for mammals and birds, where even a single tooth or broken bone is sufficient to indicate and diagnose a new form. Subsequently, if more complete material is found, the unknown parts of the animal may be described and occasionally, two species based on different clements may even be shown to be synonyms or, more rarely, a "species" based on several isolated elements may tum out to be a composite of two or more distinct taxa.

Consequently, in compiling this list, I have included such specimens which have expanded our knowledge of their species, defining them as "plesiotypes", i.e, specimens used in later, more complete descriptions of the species. Only two species are so treated here, in the second section of the list.

All advantage of a fossil bone is that to all intents and purposes its form may be reproduced faithfully in plaster, plastic or other meedia. These replicas of type-specimens-plastotypes-may enjoy a wider circulation than their originals, both for research and display purposes. Accordingly, they also are listed here. Twenty-seven species, mainly marsupials, are so designated.

Within each of these eategories of type-specimens-primary types, plesiotypes and plasto-types-tho species are listed alphabetically in their taxonomically arranged families, under the author's original name. Otiginal and currentlyused narnes are cross-indexed wherever necessary.

Besides the original reference. the data include type locality, geological formation and age, and collector in so far as these facts are known.

The names of several institutions are abbreviated as follows:-

AM-Australian Museum, Sydney.
AMNH-American Muscum of Natural History, New York.
AUGD-Adelaidc University Geology Department.
BM(NH)-British Museum (Natural History), London.
CPC -Commonwealth Palaeontological Collection, Burcau of Mineral Resources, Canberra.
SAM-South Australian Muscum, Adelaide.
UCMP-University of California, Museum of Palaeontology, Berkeley.
UCR-University of California, Riverside (Department of Geological Sciences).
WAM-Western Australian Museum, Perth.
PART 1, PRIMARY TYPES
CLASS CHONDRICHTHYES
ORDER SELACHII
Family Carchariidae
Carcharias maslinensis Pledge, 1967.
Trans, R. Soc. S. Aust., 91: 146-147, pl. 2.
Holotype: AUGD. F17260, an anterior tooth.

Locality: E. \& W.S. Bore No. 5, Naracoorte, South Australia, 426 ft . (129.8 m).
Formation: Knight Group.
Age: Middle to Upper Eocene,
Remarks-It seems probable that this species can be relerred to Scapanorhynchus (Pers. observ.).

Fanily Odontaspididae

Odontaspis maslinensis Pledge, 1967 see Carcharias maslinensis Pledge.
Remarks-Opinion 723 (Bull. Zool. Nomernel. 22 (1): 32, April, 1965) repealed upinion 47, ruling that Curcharias should be repressed and the generic name Othntaspis Agassiz be restored.

CLASS OSTEICHTHYES ORDER PALAEONISCIFORMES

Family Indet.

Leighiscus hillsi Wade, 1953.
Trans, R. Soc. S. Ausl., 76: 80-81.
Holotype: AUGD, FI5094, ("Tate Collection, P2070* in litt.) part and counterpart, compression of caudal region,
Locality: Leigh Creek, South Australia.
Formation: Sand lens in Leigh Creek Coal Measures.
Age: Late Triassic.
Remarks-This is the only Triassic vertebrate so far found in South Australia. Unfortunately, too little of the lossil was found to enable it to be placed taxonomically.

CLASS REPTILIA

ORDER SQUAMATA
I'amily Varanidae
Varanus warhurtonensis Zietz, 1899.
Trans, R. Suc. S. Aust., 23: 209-210.
Holotype: SAM. P, 11529, an unguinal phalanx. Locality: Float on gravel bars, Warburton River near Lake Eyre, South Austalia.
Formation: Unknown, probably Katipiri Sands. Age: Pleistocene.
Collector: H. Y, I. Brown.
Remarks-As this specimen was ansociated with Dipmorahon. Which is nor known from the early Pleistocene Kanumba Fauna, it probably belones to the later Malkuni Jound. The species has long been overlooked, Hecht (1975 ; 245) suggests it is a junior synonyin of Mestalanio prisca Owen.

CLASS AVES
 ORDER CASUARIIFORMES

Family Dromornithidae

Genyornis newtoni Stirling \& Zictz. 1896.
Trans, R. Soc: S. Aust. 20: 182-209, pls. III, IV. V. Mem, R. Soc. S. Alust., 1900, 1 (2): 50-80, also 1905 idem 1 (3): 81-110; and 1913 iden 1 (4): 111-126.

Lectoholotype: SAM. P.17001, a left femur (selected by P. Vickers Rich).

Syntypes- Plate (hg), Element		
SAM P.10)88	XXXVII	mandibles and associated it.
10835	XXII	maxilla
10838	XXXV	stcrnum
13866	XX (4)	libiot
13867	$\times \times 1(4,5)$	ri. (ibula
13871	KXIV (4-6)	rt. humerus
13872	XXIV (1-3)	coracoscarpula
13873	XXIV (8)	1. Ulna
13874	XXIV (7)	1. radius
13875	XXX (9)	carpometacarpus
13876	$\mathbf{X X X}$ (11)	rib
13877	$\times \times \times(10)$	rib
13927	XX ($1-31), \mathrm{XXI}(1-3)$	rt. ribiotarsus
17024	XXII (1-4)	rt. tarsometatarsus
17041	$\times \times \times 1 \times(1)$	symsactum
17044	XX11 (1-6)	rt. pes.
17048	XXXIX (3)	synsacrum
17049	XXXVIII (1).	
	$\times \times \times 1 \times(2)$	synsacrum
17073	$\times \times \times(13)$	rib
17074	$\times \times \times$ (14)	rib
17075	XXX (15)	九tb

Locality: Lake Callabonna, South Australia. Zone 6. Sheet SH 54-6 Callabonna 1: 250000 . Grid reference for exact site unknown.
Formation: "Unctuous blue Clays".
Age: Pleistocenc,
Collector: A. H. C. Zietz, 1893.
Remarks-This species is associated with rich denosits or bones of Bippotouton opfatum, macropodids, Phascrolohus gigas, and Dromraits. The only reliable C-14 age determinations, on wood and plant material, indicate an age greater than 40000 . The species was established on the bones of at least three individuats, but their original associations have been lost.

Family Dromaiidae

Dromiceius ocypus Miller, 1963.
Rec. S. Aust. Mus., 14 (3): 414-418.
Holotype: SAM. P.13444, right tarsometatarsus.
Locality: Lake Palankarinna. UCMP Loc. No. V5769 (Lawson Quarry).
Formation: Mampuwordu Sands.
Age: Late Plocene-Palankurinna Fauna.
Collector: SAM-UCMP Expedition 1957.
Reanarks-Dromiccins is now considered to be a misprint. and the I.C.Z.N recommendation is that Dromesios be used instead. (See Serventy, Condon and Mayr. 1965.)

ORDER SPHENISCIFORMES

Family Spheniscidae
Pachydyptes simpsoni Jenkins, 1974.
Pulacontology, 17 (2): 294-304, pls. 37-39, Lext fig. 2a,
Hololype: SAM. P. 14157 a-g; (a) most of left coracoid. (b) head of right humerus, (c) broken head of left humerus, (d) damaged
right radius, (e) incomplete left carpometacarpus, $\left(f^{\prime}\right)$ left proximal phalanx of 2nd digit, (g) damaged vertebra.
Locality: Blanche Point, extreme tip, oppositc Gull Rock. Maslin Bay, South Australia.
Formation: Blanche Point Marl, 36 m below top of Banded Marl Member.
Age: Early Upper Eocenc. (Aldingan.)
Collected: B. Robinson \& H. Eames, May, 1968.
Rrmarks-This is one of the earliest, well-dated penguins known. Other material known includes two paratypes (lumerus and radius fragments) and a referred specimen believed to be a fragnent of rib.

Pachydyptes simpsoni Jenkins, 1974.
Palacontology, 17 (2): 294-304, pls. 37-39, text fig. 2 a .
Paratype: SAM. P. 14158 (a) proximal two thirds of right humerus, (b) proximal end of right radius.
Locality: Blanche Point, Maslin Bay, South Australia.
Formation: Blanche Point Marl, lower part of Transitional Marl Member.
Age: Early Upper Eocene (Aldingan).
Collected: L. W. Parkin, October, 1932.
Remarks-A referred specimen, believed to be a segment of the proximal mart of a rib, P.17913, was collected as "float" in 1971, and appears to have been derived from the Transitional Man.

ORDER CICONIIFORMES

Family Phoenicopteridae

Phoenicopterus novaehollandiae Miller, 1963.
The Conder, 65 (4): 289-292.
Holotype: SAM. P.13648, right tarsometatarsus with proximal end missing.
Locality: Lake Pitikanta, west side, about 550 m from south end. UCMP loc. V6150.
Formation: Etudunna Formation.
Age: Early to Middle Miocene-Ngapakaldi Fauna.
Collector: SAM-UCMP Expedilion, 1961.
Phoeniconaias gracilis Miller, 1963.
The Condor, 65 (4): 294-296.
Holotype: SAM. P.13650, left tarsometatarsus. distal end.
Locality: Lake Kanunka, northwest corner. UCMP Loc. V5772.
Formation: Katipiri Sands.
Age: Early Plcistocene-Kanunka Fauna.
Collector: SAM-UCMP Expedition, 1957.

Phoeniconotius eyrensis Miller, 1963.
The Condor, 65 (4): 292-294.
Holotype: SAM, P.I3649, left tarsometatarsus, distal end, and two basal phalanges.
Locality: West side of Lake Palankarinna, float from Etadunna Formation. UCMP Loc. 5763 (between UCMP Locs, V5762 and 5375),
Formation: Etaduma Formation.
Age: Early to Middle Miocene-Ngapakaldi Fauna.
Collector: SAM-UCMP Expedition, 1957.

ORDER PELECANIFORMES

Fanily Pelecanidae

Pelecanus tirarensis Miller, 1966.
Mem: Qld. Mus., 14 (5): 182-185.
Holotype: SAM. P.13857, right tarsometatarsus. distal half.
Locality: Lake Palankarinna, north-west shore. UCMP Loc, V5762 (Turtle Quarry).
Formation: Etadunna Formation.
Age: Early to Middle Miocene-Ngapakaldi Fauna.
Collector: SAM-UCMP Expedition, 1957.
Pelecanus validipes de Vis, 1894.
(in Etheridge) South Aust. Amm. Rept. of Gov'r. Geologist, 1894: 21, pl, $11(5,6)$.
Holotype: SAM, P.18412, a right tarsometatarsus, distal end.
Locality: Warburton River near Lake Eyre, South Australia; float.
Formation: Unknown, probably Katipiri Sands or equivalent.
Age: Pleistocene.
Collector: H. Y. L. Brown.
Reatarks-This specimen was given to the South Australian Museum in 1899, but in common with other material at the time, was not registered, During subsequent shifis of the collections it was mislaid and its whereabouts wis unknown until Scptember, 1974, when it was relocated.

Family Phatacrocoracidae

Ihalacrocoras gregorii de Vis, 1905.
Amm. Qld. Mus., No. 6: 18-22, pls. V (6A, B).
Syntype: SAM, P.18413, a premaxilla, entire from tip to nasofrontal suture.
Locality: "Cutupirra", (equivalent to Katipiri Waterhole), lower Cooper Crcek, South Australia.
Formation: Unknown, probably Katipiri Sands.
Age; Pleistocene.
Collector: H. Y. L. Brown.

Remarky-This specimen was rediscovered in September, 1974, slong with Pelucames yalifines de Vis. Included with the premaxilla, and listed also on the printed label (for they were apparently once on exhibition), ate two tarsometatarsi. P.18414, an almost complete left, lacking the innes trochea. and badly corroded, is otherwise almost identicat to the right tarso-nctatarsus piguted in Plate VII (2), The other. P. 18415 , also at left, lacks only the proximal end. These specimens apparently were nat seen by de Vis as they du not fit the description of his unliguted material.

ORDER GALLIFORMES

Family Megapodidac
Progura naracoortensis van Tets, 1974.
Trans. R. Soc. S. Aust., 98 (4): 214-215.
Holotype: SAM. P.17856, an almost complete right tarsometatarsus.
Paratypes: SAM. P, 17152, a right tibiotarsus; P.17153, as left humorus: P.17154, distal end of a left humerus: P.17157, proximal end of right femut: P.17876. distal part of right tibiotarsus; P. 17877 right ulna: P. 17878 , left humerus: P.17879, distal part of left ulna; P.18181, a cervical vertebra, P.18182, distal part of left ulna; P.18183, proximal and distal parts of a right humerus; $P .18184$, left radius; P .18185 , proximal part of a right tarsometatarsus; P.18186, distal part of a right femur; P.1SI87, anterior fragment of syosacrum: $P_{1} 16700$, a right coracoid
Locality: A small cave disclosed in Henschke's Quarry, Naracoorte, South Australia.
Formation: Cave earth.
Age: Late Pleistocene, around $30000-35000 \mathrm{yrs}$. B.P.

Collectors: F.W. Aslin, N. S. Pledge, er alo, 1970-1974.
Remakks-The baratype $P^{3} 1$ (670) was collected from the Fossil Chamber of Victoria Cave, by R. T. Wells ef al.o and is one of only two specimens so fire recorded outside the type locality. Tho other. a referred specimen (fragment of tarsometattarsus QM F2769), was coliccted from the Durling Downs.

CLASS Mammalia ORDER MONOTREMATA

Family Ornithorhynchidae

Obdurodon insignis Woodburne \& Tedford, 1975. Anter. Mus. Novitates, No. 2588: 3-10.
Holotype: SAM. P. 18087, a right upper last molar.
Locality: Lake Palankarinna, north-west side. UCR Loc. RV/7247. (SAM. North Quarry). Zone 5, sheet SH 54-1: Kopperamanna 1: 250000 , grid relerence 656431.
Formation: Etaduna F゙omation in white to pale grey quartz sandstone at local base of Number 6 of Stiton, Tedford \& Miller (1961), about 10 ft . stratigraphically below the calcareous mudstone of Number 8.

Age: Early to Middle Miocene-Ngapakaldi Fauna.
Collectors: M. O. Woodburne, UCR-SAM Expedition, 1972.
Rlmarrs-A cant of the paratype AMNH 97228, which was collected by Tedford at Like Nambat in the Frome Embiyment, is. also held under the SAM registration P. 18942.

ORDER ?MONOTREMATA

Family Ektopodontidae

Ektopodon serratus Stirton, Tedford \& Woodburne, 1967. (Fig 1)
Rec. S. Aust. Mus., 15 (3): 438-445.
Holotype: SAM. P.I3847, a left upper molar.
Paratypes: UCMP. 67173, 67174, 67176, at Berkeley.
Locality: Lake Ngapakaldi, east shore. UCMP Loc. V6213.
Formation: Wipayiri Formation.
Age: Late Miocene-Kutjamarpu Fauna. Collector: SAM-UCMP Expedition, 1962.
Remairs-The awhors presented arguments for including this taxon in the Monofremata, but material collected more recently by Woodburne and Clemens (in prep.) slows this is not the calse (Woodburme and 'Tedford, 1975:1).

ORDER MARSUPIALIA
 Family Peramelidae

Iscmodon australis Stirton, 1955. (Fig. 2)
Rec. S, Alust. MUS, 11 (3): 249-252.
Holotype: SAM. P. 13645 (originally U.C. No. 44380), anterior half of right mandible.
Locality: Lake Palankarinna. UCMP Loc. $V 5367$ (Woodward Locality).
Formation: Mampuwordu Sands.
Age: Late Plocene-Palankarimna Eauna.
Collector: R. H. Tedford, 30th July, 1953.
REMARKS-Found in weathered surface rons and consequently badly shattered.

Family Thylacoleonidae

Wakaleo oldfieldi Clemens \& Plane, 1974.
Jour. Paleomol., 48 (4): 654-656.
Holotype: SAM. P.17925, a left mandible with incisor P_{3} and $M_{1 s}$ and alveoli for M_{2}, M_{3} and a singie-rooted tooth between incisor and P_{3}
Locality: Lake Ngapakaldi, UCMP loc. V6213 (Leaf locality).
Formation: Wipajiri Formation.
Age: Late Miocenc-Kutjamarpu Fauna.
Collector: W. A. Clemens, UCMP-SAM Expedition, 1971.
Remarks-Two teferred specimens are held in the collections of tho Muscurn of Palcontology, University of California. Herkeley. They are UCMP 102678: an anterior fragment of at right \sum_{s}; and UCME 102677: a right M z.

Family Phascolarctidae

Litokoala kutjamarpensis Stirton, Tedford \& Woodburne, 1967. (Fig. 3)
Rec. S. Aust. Mus., 15 (3): 446-451.
Holotype: SAM. P. 13845 , right upper first molar in early stages of wear.
Locality: Lake Ngapakaldi, east shore. UCMP Loc. V6213.
Formation: Wipajiri Formation.
Age: Late Miocene-Kutjamarpu Fauna.
Collector: SAM-UCMP Expedition, 1962.
Perikoala palankarinnica Stirton, 1957.
Rec. S. Aust, Mus., 13 (1): 71-81.
Holotype: SAM. P. 10893, part of left mandible with talonid of P_{3}, M_{1} and M_{2} nearly complete.
Paralype: UCMP 45343.
Locality: Lake Palankarinna, west side. UCMP Loc. V5375.
Formation: Etadunna Formation.
Age: Early to Middle Miocene-Ngapakaldi Fauna.
Collector: SAM-UCMP Expedition, 1954.
Remarks-This was originally believed derived from the Pliocene Mampuwordu Sands Palankarinna Fauna, but the correction was noted in Stirton ef al. (190́l) following clarification of the siratigraphy,

Family Vomabatidae

Rhizophascolonus crowerofti, Stirton, Tedford \& Woodburne, 1967. (Fig. 4)
Rec. S. Aust, Mus., 15 (3): 454-456.
Holotype: SAM. P.13846, left upper third premolar, moderately worn.
Locality: Lake Ngapakaldi, east shore, UCMP Loc. V6213. (Fig. 4)
Formation: Wipajiri Formation.
Age: Late Miocenc-Kutjamarpu Fauna.
Collector: SAM-UCMP Expedition, 1962.
Remarks-This is the earlicst known wombat, retaingy a labial and swo lingual roots on the ${ }^{3}$. The teeth of modern wombats arc. open-rooted, and grow continuously throughout life.

Family Diprotodontidae

Menisculophus mawsoni Stirton, 1955. (Fig. 5)
Rec. S. Aust. Mus., 11 (3): 258-264.
Hololype: SAM. P.13647, (originally UC No, 44397) mandibles with complete, little-worn dentition, found in close proximity to UCMP 44397: left maxillary fragment with M^{2} and M^{3} in same stage of wear.

Locality: Lake Palankarinna. UCMP Loc. V5367 (Woodard Locality),
Formation: Mampuwordu Sands.
Age: Late Plocene-Palankarinna Fauna.
Collector: SAM-UCMP Expedition, 1953.
Neohelos tirarensis Stirtor, 1967.
Bur. AFin. Resour., Bull. 85: 48.51.
Holotype: SAM. P.13848, posterior part of left upper third premolar.
Paratypes: (at UCMP. Berkeley). UCMP 69976, 69977, 69978, 69979.
Locality: Lake Ngapakaldi, east shore, UCMP Loc. V6213. (Leaf Locality.)
Formation: Wipajiri Formation.
Age^ Late Miocene-Kutjamurpu Fauna.
Collector: SAM-UCMP Expedition, 1962.
Rumalks-This species is known only from isolated teelh.
Ngapakaldia bonythoni Stirton, 1967.
Bur. Min. Resour. Bull., 85: 26-30.
Holotype: SAM. P.13863, a badly weathered specimen: most of cranium and left mandible, incomplete appendicular skeleton, some caudal vertebrae.
Locality: Lake Ngapakaldi, eastern shore. UCMP Loc. V5879.
Formation: Etadunna Formation, weathered surface zone-same stratigraphic unit as Ngápakaldi Quarry.
Age: Early to Middle Miocenc-Ngapakaldi Fauna.
Collector: SAM-UCMP Expedition, 1958.
Remarrs-One questionably referred specinen UCMP 57263 from Lake Pitikanta.

Ngapakaldia tedlordi Stirton, 1967.
Bur. Min. Resour. Bull., 85: 4-26.
Hololype: SAM. P.13851, near-complete cranium: left radius, ulna, manus, pes, caudal vertebrac and haemal arches, all more or less complete; various right appendicular elements.
Paratypes: (at UCMP, Berkeley). UCMP 57256, $69817,69814,60985,69815,60977,60979$, 69812, 57286, 57257.
Locality: Lake Ngapakaldi, east shore. UCMP Loc. V6213. Ngapakaldi Quarry.
Formation: Etadunna Formation.
Age: Early to Middle Miocenc-Ngapakaldi Fauna.
Collector: SAM-UCMP Expedition, 1958, 1961, 1962.

Remarks-In two localitics (V5774 and V5858), this taxon occurs abundantly from 1 m to 5 m apart, but none is a complete skeleton.

Fig. 3

ONE INCH

Fig. 2

Fig. 1. Ektopodon sersatus Stirton, Tedford \& Woudburne, 1967. Holotype (P.13847), a left upper molar, in four views, X4. Fig. 2. Ischfodon allstralis Stirton, 1955. Holotype (P.13645), a right mandible, in occlusal and labial views. X4. Fig, 3, Litokoala kuramarpensis Stirton, Tedford \& Woodburne, 1967. Fig. 4. Rhizophascolonus crowcrofti Stirton, Tedford \& Woodburne, 1967. Holotype (P13846), a left upper premolar in three views. XI.

Fig. 5. Meniscolophut mentsoni Stirton, 1955. Holotype (P.13647), mandibles, in occlusal (A) and labial (B) views. Xt. Fig. 6. Prionotemntes palankarmicns Stirton, 1955. Holotype (P.13646), a right mandible, in occlusal (A) and labial (B) views. X1.

Fig. 7. Trupusudon heni Campleell. 1473. Holotype (P.14507), a left mandible, in occlasal views. X? (scale in cm).

Nototherium victoriae Owen, 1872.
Phil. Trans, 162: 61, pl, VII.
Holotype: SAM. P.4986, lelt mandible with incisor and premolar missing and M_{1} damaged.
Locality: Near Lake Victoria, New South Wales.
Formation: "freshwater deposits" (Owen). "4560 feet below ground surface in al well" (Mahoncy \& Rido).
Age: Pleistocene (?).
Collector: Mr. Felgate (non Tilgate), 1869.
Remarrs-Marshall (1973) belicves that the state of preservation indicates derivation from the Pliocene Moorna Formation of the Lake Victoria area. A small sample was removed from the symphyseal stub of the right mandible for fluorine analysis to check this hypothesis, but the results are inconclusive (see Gill, 1973: 60, and Sinnott, 1973: 175). Stirton has noted that the species should probably be included in Z.gommemis, 'Two contemporary reports of the discovery are in newspaners: Fastoral Times, December 18, 1869, p. 2; The South Australian Advertiser, January I, 1870. D. 3. A cast M3637, is held in the BM (NH).

Pitikantia dailyi Stirton, 1967.
Bur. Min, Resour. Bull. 85: 30-34.
Holotype: SAM. P.I3862, right upper incisors $1^{1}-1^{3}$, left $1^{1} \& 1^{3}$, left p^{s}; part of right mandible with incisor, $\mathrm{P}_{3}, \mathrm{M}_{1}, \mathrm{M}_{27}$ left P_{3} tarsals, metatarsals and phalanges,
Locality: Lake Pitikanta, west side. UCMP Loc. V5774 (Discovery Basin).
Formation: Etadunna Formation.
Age: Early to Middle Miocene-Ngapakaldi Fauna.
Collector: B. Daily, S \wedge M-UCMP Expedition, 1957.

Zygomaturus keanei Stirion, 1967.
Bur. Min. Resour. Bull. 85: 136-144.
Holotype: SAM. P.13844, \{used mandibles with all cheek teeth and base of left incisor; upper incisors; left maxilla with P^{3} to M^{4} : $\mathrm{T}^{\mathbf{3}}, \mathrm{rM}^{2}, \mathrm{rM}^{4}$ 。
Paratypes: (at UCMP) UCMP 66326, 70120, $70121,44622,45409$.

Locality: Lake Palankarinna, north-west shore. UCMP Loc. VG265. (Keane Quarry.)
Formation: Mampuwordu Sands.
Age: Late Pliocene-Palankarinna Fauna.
Collector: SAM-UCMP Expedition, 1962.
Zygomaturus victoriae (Owen, 1872), see Nototherium victoriac Owen.

Family Macropodidae

Macropus birdselli Tedford, 1967.
UMw. Calif: Publ. Geol. Sci.. 64: 114-127.
Holotype: SAM. P.13857, associated left and right mandibles, with right lower incisor and M_{d}, and left $\mathrm{M}_{1{ }^{\prime \prime}{ }^{4} \text {. }}$
Paratypes: SAM, A27920, A27936-fragmentary left and right mandibles (and other material at UCMP, Berkeley).
Locality: Lake Menindee, north side, UCMP Loc. V5371. approx. 19 km north-west of Menindee, N.S.W. (Site I).
Formation: Un-named luncte sand, Unit. B of Tindale.
Age: Late Pleistocene.
Collector: R. H. Tedford, 1953.
REMARK-C- 14 age determinations have been made on charcoal samples taken from Unit B but are cquivocal in interpretation: LJJ. 204 giving 26300 ± 1500 years B.P.; Gak 335 giving 18800 ± 800 ycars B.P. and NZfif (on shell) giving 6570 = 100 years B.P.

Potorous morgani Finlayson, 1928.
Trans. Roy. Suc. S. Ausl., 62 (1): 132-140, pls. V-V1I.
Syntypes: SAM, P, 168, skull and partial skeleton. SAM. P.3413, skull.
Locality: Kelly Hill Caves, Kangaroo Island.
Formation: Cave carth.
Age: Recent.
Collector: Miss Edith May (P168). February 1926. Dr. A. M. Morgan (P3413), 1927 (?).

Remarks-Kide (1970: 224) has synonynuised this species with P. playope, an extant species in Vestern Australia. Sec also Butler and Merrilees (1971) for further discussion. The species may still live on Kangaroo Island.

Prionotemnus palankarinnicus Stirton, 1955. (Fig. 6)
Rec. S. Aust. Mus., 11 (3): 252-258.
Holotype: SAM. P.1364G (originally UC No. 44381), right mandible with $\mathrm{P}_{3}-\mathrm{M}_{4}$ in place.

Paratypes: (at UCMP, Berkeley). UC Nos. 44382 to 44396 :-maxillac, mandibles, and right metatarsal IV and phalanges.
Locality: Lake Palankarinna. UCMP Loc. V5367. (Woodard Locality).
Formation: Mampuwordu Sands.
Age: Late Pliocene-Palankarinna Fauna.
Collector: SAM-UCMP Expedition, 1953.
Remarks-This is one of the more conmon mammalian taxa in the fauna. Bariholomai (1975) considers Prionotemmus to be a subgenus of Macrophs.

Sthenurus (Sthenurus) tindalei Tedford, 1966.
Univ. Calif. Publ. Geol. Suie. 57: 26-33.
Holotypc: SAM. P. 13820 (non P.138201), a fragnentary skull with complete cheek dentition and damaged incisors.
Locality: Lake Menindee, New South. Wales, northern side, about 19 km from Menindee township. UCMP Loc. V5371.
Formation: Unnamed lunette sand, Unit B of Tindale.
Age: Late Plcistocene, approximately $26000 \pm$ 1500 years B.P. (LJ-204).
Collector: R. H. Tedford, 1953.
REMARKS-Other age deterninations from this deposit give conflicting results: see Mácroples birdselli Tedford.

Troposodon kenti Campbell, 1973. (Fig, 7)
Rec. S. Aust. Mus, 16 (3): 3-11.
Holotype: SAM. P. 14507, a left mandible.
Locality: Lake Pitikanta,
Formation: Katipiri Sands.
Age: Early Pleistocene-Kanunka Fauna.
Collector: UCMP-SAM Expedition, 1961.

Family Squalodontidac

Metasqualodon hardwoodi (Sanger, 1881). see Zeuglodon hardwoodii Sanger.
Squalodon gamhierense Gluessner, 1955.
Rec. S. Aust. Mus., 11 (4): 362-367, text fig. 5a-c.
Holotype: AUGD. F15107, a perfect molariform tooth, probably from the riglst mandible.
Locality: Pritchard Brothers' Quarry, 12 km west-north-west of Mount Gambier. South Australia.
Formation: Gambier Limestone,

Age: Probably Late Oligocene,
Collector: P. Pritchard, 1952.
Remaris- When this species was described, the whereabuuls of Mefesigherlocton heurdwondi (Sanger), although relocated, had not been disclosed. Both preservation and form of the two species are quite different.

Zeuglodon harwoodit Sanger, 1881.
Proc. Limman Soc. N.S.Wales, 5 (3): 298-300.
Holotype: SAM. P. 8446 , a molariform tooth. Undescribed material of same specimen comprises a near complete anterior molar, half of another molar, and two premolars.
Locality: "near Wellington, South Australia".
Formation: "a bed of yellow calcarcous clay" containing invertebrate fossils. Probably Ettrick Formation.
Age: Tertiary, probably Oligocene.
Collector: James C. Harwood, 1881.
Remarks-The specimens were mislaid soon after descrip. tion, but itall (19||) working from the original description, established a new genus, Ascrasyualodom, for them, The material was relncated in 1948 and is cutrently being redescribed. Regrettably, aceurate data on the lncality are wanting, as the enclored label stated unly: "Wellington, 100f", suggesting a depth of 100 feet $(30.4 \mathrm{~m})$ in a bore. An allegedly sssoviaied shark tooth (Nosidamus) bears a label indicaling derivation Irom the cliffs at Wellington. However. the dark grey preservation of both nrgues against the reported Jithology, and for the barcly exposed Oligocene Eltrick Formation.

PART 2, PLESIOTYPES CLASS MAMMALIA
 order marsupialia

Family Diprotodontidac
Diprotodon optatum Owen, 1838.
In Mitchell: Three Expeditions to the interior of eastern Australia. 11: 362.
Stirling \& Zietz, 1899: Mem. R. Soc, S. Aust., 1 (1): 1-40, pl. 1-18.
Plesiotypes: SAM, P. 5120 (right manus), P. 5121 (right pes).
Locality: Lake Callabonna, north-eastern South Australia.
Formation: "unctuous blue clay".
Age: Pleistocenc.
Remarks-Previous to the discoveries at Lake Callabonna, only ai fiw isolated elements of the pes were known, and reconstructions of the animal (c,g. Owen, 1877: pl. 35) always hid the feet,

Family Vombatidae

Phascolomys gigas Owen, 1859.
Encyclopaedia Brilammica, 8th ed. vol. XVII: 175. Owen, 1872: Phil. Trans., 162: 257.
Stirling, 1913: Mcm. R. Soc. S. Aust., I (4): 127-178, pl. 40-58.

Plesiotypes-	Plate (fig.)	Etement
SAM P. 5000	XLIV, XLV (1-3)	palate
5001	XL.I!	mandibles
5002	XLIJI	mandibles
5003 (N)	XL, XLI	mandibles
5004	-	natural matrix mould joining P. 5000105001
5005	XLVII (4,5)	1. clavicle
5006		It. clavicle
5007	LVII (6)	epipubic
5008 (N)	XLV1 $(4,5)$	atlas frag.
5009 (N)	XLVI (6)	atlas fritg.
5010	XLV1 (11)	vert. centrum
5011	XLVI (1-3)	atå
5012	XLVI $(3,9)$	axis
5013	XLVII (2)	rib
5014	XLVI! (3)	rib
501.5	XLVII (1)	rib
5016	-	rib
5017	XLV (4-5)	incisor
5018 (N)	XLY (6,7)	incisor
5019 (N)	XIV ${ }^{(8)}$	molar
5020	XLVII (7+8)	presternum
5021	LII!	1. Semut
5022	LVI	1. tibia
5023	XIVIII	scapula
5024		libia
5025	L.IV (4): L.V	rt. femur Jrag.
\$026	unfig.	rt. humerus
5027	XLIX (1-4), L (1,2)	rt. hemmercis
5028 (N)	LIV (1-3)	1. femur
5029	LVII (1-4)	rt. fibula
5030	LI (1-4)	rt. ulna
5031	L (3-5)	r1. radius
5032	LJV(5)	rt , femur frag.
5033	$111(12,13)$	rt. phaland V
5037	LVIII (7)	rt. MT V
5038	LII (10)	r. MC. V
5039	LII (1-2)	1. pisiform
50.40	L11 (11)	rt. prox. phalan V
5041	1.11 (5, 6)	rt. cuneiform
5042 (N)	LVIII (3, 4)	5t. astragalus
5043	LII (3,4)	1. unciform
50.44	LVIII (1, 2)	rt.astragalus

Locality: Lake Callabonna, north-eastern South Australia. (Those indicated (N) are from Normanville, south of Adclaide.)
Formation: "unctuous blue clay".
Age: Pleistocene,
Remaris-The discovery at Lake Callabonna of articulated remains of this species proved that the upper incisors known as Sceparmaton ramsayi Owen belonged to Phasculanus gigas as Lydekker (1887: 157) had suggested. The specimen also provided the first definite P. gigar skeletal remains for dewcription. See also Ride (1967; 414-425).

Phascolonus gigas (Owen, 1859). See Phascolomys gigas Owen.

PART 3, PLASTOTYPES CLASS REPTILIA ORDER CHELONIA

Family Meiolaniidae

Meiolania oweni Smith Woodward. 1888.
Arm. Mag. Nat. Hist., ser, 6, 1: 89.
Plastotypes: SAM. P.18002: P. 18003 (Skull and jaws; caudal armour).
Originals: $\mathrm{BM}(\mathrm{NH}$) $\mathrm{R} 391, \mathrm{R} 392$ respectively.
Locality: King's Creek, Condamine River, Darling Downs, Queensland.

Formation: Alluvium.
Age: Pleistocene.
Remakks-These specimens had previously been regarded by Owen (1881a, b) as Megalanta prisca. See Lydekker (1889; 167). P. 18002 is actually a cast of the restored, modelled skull, the imperfect sriginal ol which is figured by Owen (1881: Pl. 37 (1), $3 \times(1-3))$ and Lydekker.

ORDER SAURISCHIA (?)

Family Megalosauridae (?)
Megalosauropus broomensis Colbert \& Merrilees, 1967.

Journ. R. Soc. W. Aust., 50 (1): 22-25.
Plastotype of footprint G5-6. SAM. P. 14532.
Original: WAM No, 66.2.51.
Locality: Wavecut platform below high tide level; Broone, Western Australia.
Formation: Broome Sandstone
Age: Early Cretnceous,
Collector: (casting) Messrs. J. \& E. Tapper.

CLASS AVES

ORDER CASUARJIFORMES

Family Dromornithidae

Dromornis australis Owen, 1874c.
Trans, Zool. Soc., 8: 383, pl. 62, 63.
Plastotype: SAM. P.I7107.
Original: AM F,10950, a femur,
Locality: 55 m depth in a well, Peak Downs, Queensland
Formation: "drift pebbles and boulders".
Age: Pleistocene.
Remarks-See discussion of this species in Stirling and Zeitz (1900: 43 ff,) and Rich (unplbl, Ph.D. dissertation, 1973: 127).

Dromornis australis Owen, 1874 c .
Owen, 1879: Trans, Zuol, Soc., 10: 186, pl. 33.
Plastotype: SAM, P. 17108.
Original: BM(NH) 48160, a fragmentary syn-sacrum-a plesiotype,
Locality: 61 m depth in the Canadian Gold Lead, near Mudgee, Gulgong mining district, New South Wales.
Formation: Deep Icad alluvium,
Age: ? Pliocene.
Rlmarks-Rich (ibid, D. I28) helieves this specimen is too iragmentary to identify beyond the family level.

Dromornis australis Owen, 1874c.
Owen, 1879: Trans. Zool. Soc., 10: 186.
Stirling \& Zietz, 1900: ibid: 43.
Plastotype: SAM. P. 17106.
Original: $\operatorname{BM}(\mathrm{NH}) 44011$, distal end of a tibio. tarsus, at plesiotype.

Locality: A cave, "Mount Gambicr range",
Mount Gambier, South Australia.
Formation: ? Cave earth.
Age: Pleistocene.
Remarks-Stirling and Zielz believed this specimen to be of their new species Genyomis newtomi.

ORDER DINORNITHIFORMES
 Family Emeidae

Dinormis queenslandiae de Vis, 1884.
Proc. R. Soc. Qld. 1: 32.
Plastotype: SAM. P. 17105.
Original: Queensland Museum; proximal end of a femur.
Locality: Allcgedly "King's Creck, Darling Downs, Queensland".
Age: Pleistocene.
Rrmahks-Sirling and Zictz (1900: 44) note arguments against this tuxon, and Rich (1973, unnubl, dissertation) notes Scarlctis (1969) objection regarding the preservation of the specimen which is quite distinct from other King's Ereek possils. Scarlett cquated it with the New Zealand moa Pachoornis clephamopher.

CLASS MAMMALIA ORDER MONOTREMATA

Family Ornithorhynchidae

Obdurodon insignis Woodburne \& Tedford, 1975. Amer.. Mus. Noitates, No. 2588; 3-10.
Plastotype: SAM. P. 18942.
Original: $\mathrm{AM}(\mathrm{NH}) 97228$, paratype, a right upper molar.
Locality: West side of Lake Namba, Frome Embayment, South Australia, Grid zone 6, refce. 320135 . Curnamona 1:250000 sheet SH54-14.
Formation: Float specimen, from un-named unit of thin-bedded black claystone, sand lenses, green claystone and white dolomitic claystone.
Age: Miocenc, Ngapakaldi fauna equivalent.

ORDER MARSUPIALIA

Family Wynyardidae

Wynyardia bassiana Spencer, 1900.
Proc, Zool. Soc. Lond., 1900: 776-795.
Plastotype: SAM. P.4979, 4980.
Originalः Tasmanian Muscum, Z237, an imperfect skull and partial skeleton, no teeth.
Locality: Fossil Bluff, near Wynyard, northwestern T'asmania.
Formation: Fossil Blutr Sandstonc.
Age: Longfordian-basal Miocene.

Remarks-This fossil was found in marine sedimentr, and its age was for long in doubt, as some authors belicved it to be intrusive. Gill (1957) demonstrated its contemporancity with the associated fauna, but believed it to be oligocene. Ludbrook (1967) points out the uncertainty of its age.
P. 4979 is a cast of the specimen as originally found, P. 4980 comprises casts of the excavated skull, jaws and limb hones, and the cleared spine.

Family Macropodidae

Leptosiagon gracilis Owen, 1874.
Phil. Trans., 164: 785, pl. 76 (11-15).
Plastotype: SAM. P. 18124.
Original: $\mathrm{BM}(\mathrm{NH}) 40005$, fragment of a right mandible with $\mathrm{M}_{2}, \mathrm{M}_{3}$ 。
Locality: Queensland.
Formation: "alluvial drift".
Age:- Pleistocenc.
Remakks - Lydekker (1887: 231) included this specimen in Mecropus ferragur Owen, bul Simpson (1930: 72) leaves il separate as Mccropus gracilis (Owen). Bartholomai (1975) returns it to Mucrophes (Osphranter) ferragus.

Macropus altus (Owen, 1874). See Phascolagus altus Owen.

Macropus ferragus Owen, 1874.
Phil. Trans., 164: 784, pl. $81(4), 82(3,4)$.
Plastotype: SAM, P,18126.
Original: $\mathrm{BM}(\mathrm{NH}) 32903$, fragment of sight mandible.
Locality: Condamine River, Queensland,
Formation: "alluyjal drift".
Age: Pleistocene.
RFMARKS-Owen (1877: 449) used this specimen iss type for
Pachysiagon forragus hut Lydekker (8887.231) returned it to Macropus. Bartholonai (1975) places it in the subgenus Osphranter

Macropus goliah Owen, 1846.
In Waterhouse (1846) Natural History of Manmalia. I: 59.
Plastotype: SAM. P. 18125.
Original: $\mathrm{BM}(\mathrm{NH}) \mathrm{M} 1896$, right maxilla with M^{2-4}.
Locality: Darling Downs, Queensland,
Formation: "alluvial drift".
Age: Pleistocene.
Remarks-Species renamed Procoprodion goliah by Owen (1873: 387).

Macropus gracilis (Owcn. 1874). See Leptosiagon gracilis Owen.

Macropus titan Owen 1838.
In Mitchell (1838) Three Expeditions into the interior of castern Austrulia, $1=359$, pl. 29 (3).
Plastotype: SAM, P.18127.

Original: $\mathrm{BM}(\mathrm{NH}) \mathrm{M} 10777$, anterior fragments of right mandible.
Locality: Cave, Wellington Valley, New South Wales.
Formation: Cave earth.
Age: Pleistocenc.
Pachysiagon otuel Owen, 1874.
Phil. Trans., 164: 784, pl, 76 (1-10).
Plastotype: SAM. P. 18123.
Original: $\quad \mathrm{BM}(\mathrm{NH})$ 46310, fragment of right mandible with M_{2-4}.
Locality: King's Creek, Clifton, Queensland.
Formation: "alluvial drift".
Age: Pleistocene.
Remarks-Figured in Owen (1877; pl. LXXXIX (7-10)) as
Procoptodon pusio. Sec Lydekker (1887: 237). Species is now known as Procoptodon phel.

Phascolagus altus Owens 1874 .
Phil. Trans., 164: 261, pl. 22 (1, 2).
Plastotype: SAM. P, 13125.
Original: $\mathrm{BM}(\mathrm{NH}) \mathrm{M} 10779$, an imperfect palate lacking rP^{3}, and with both M^{47} s unerupted.
Locality: Wellington Caves, New South Wales.
Formation: Cave earth.
Age: Pleistocene.
Remarks-This specimen was originally a syntype of Macropus titon Owen (1838). The species was replaced in Macropus alfus by Lydekker (1887: 223), and Bartholamai (1975) puts it in the subgenus Osphranter.

Procoptodon goliah Owen, 1846. See Macropus goliah Owen.

Procoptodon otuel Owen, 1874. See Pachysiagon otuel Owen.

Procoptodon pusio Owen, 1874.
Phil. Trans., 164: 788, pl. 77 (2-6).
Plastotype: SAM. P. 18130.
Original: BM(NH) 39996, imperfect palate (left and right maxillae) with $\mathrm{P}_{3}-\mathrm{M}_{3}$.
Locality: Queensland.
Formation: "alluvial drift".
Age: Pleistocene.
Remarks-Lydekker (1887: 235) transferred this specimen to Procoprodon rapha.

Procoptodon rapha Owen, 1874.
Phil. Trans., 164: 788, pl. 77 (8-12).
Plastotype: SAM. P.18129.
Original: $\mathrm{BM}(\mathrm{NH}) 32885$.
Locality: "ulluvial drift".
Age: Pleistocene.

Protemnodon anak Owen 1874.
Phill. Trans., 164: 275, pl. 25 (1-2).
Plastotype: SAM. P. 13124.
Original: $\mathrm{BM}(\mathrm{NH}) \mathrm{M} 1895$, a left mandible with $\mathrm{P}_{3}-\mathrm{M}_{4}$
Locality: Darling Downs, Queensland,
Formation: "alluvial drift".
Age: Pleistocene.
Remarks-Sce Bartholomai (1973: 318).
Protemnodon antaeus Owen, 1877.
Extinct Mammals of Austrulia: 448, pl. 110 (1-3). Plastotype: SAM. P. 13123.
Original: $\mathrm{BM}(\mathrm{NH}) \mathrm{M} 2258$, a partial left mandible with $\mathrm{P}_{3}-\mathrm{M}_{4}$.
Locality: Queensland.
Formation: "alluvial drift".
Age: Pleistocene.
Remalks-This species was transferred to Macropus raechus by Lydekker ($1887: 212$), and is now included in Prolemmodon ruechus' Owen. (Bartholomai, 1973: 340).

Protemnodon brehus Owen, 1874. See Sthenurus brehus Owen.

Protemnodon mimas Owen, 1874.

Phil. Trans., 164: 278, pl. 26 (1-3).
Plastotype: SAM. P.13121,
Original: $\mathrm{BM}(\mathrm{NH}) 43351$, a left mandibje with all cheek teeth.
Locality: Gowric, Queensland.
Formation: "alluvial drift".
Age: Pleistocene.
Rrmarks-Included in Macropus brehus by Lydekker (1887: 207), then Pratemnodon bremus by Stirton (1963: 141). Sce Bartholomai (1973: 330).

Protemnodon og. Owen, 1874.
Phil. Trans., 164: 277, pl. 25 (5-6).
Plastotype: SAM, P. 13122.
Original: $\mathrm{BM}(\mathrm{NH}) 35963$, an imperfect lcft mandible with all cheek teeth.
Locality: Gowrie, Queenslarid.
Formation: "alluvial drift".
Agc: Pleistocene.
Remarks-Lydekker (1847: 217) included this species in M. anak, now Protemmodnn anak; sce Bartholomai (1973:3|8),

Protemnodon roechus Owen, 1874.
Phil. Trans., 164: 281, pl. 27 (10-13).
PJastotype: SAM, P. 18128.
Original: $\mathrm{BM}(\mathrm{NH}) 35968$, anterior part of left mandible with $\mathrm{P}_{3}-\mathrm{M}_{3}$.

Locality: Gowrie, Qucensland,
Formation: "alluvial drift".
Age: Pleistocene.
Remarks-Lydekker (18R7) and others, transferred this 10 Macropus, but this Jits since been reversed. See Stirton (1963), Bartholomai (1973).

Sthenurus brehus Owen, 1874.
Phil. Tiranso, 164: 272, pl. 27 (5-6).
Plastotype: SAM. P. 13126.
Original: $B M(N H) 43303 a$, an imperfect palate with $\mathrm{M}^{3}-\mathrm{M}^{4}$ of both sides.
Locality: Wellington Valloy, New South Wales. Formation: Cave earth.
Age: Pleistocene.
Remanke - The species was translerred to Macropus by Lydekker (1887: 209), and to Protemnoton brehns (Owen) by Stirton (1963: 141).

Sthenurus minor Owen. 1877.
Proc. Zool. Soc., 1877: 353, pl. 37, 38 (1-3).
Plastotype: SAM. P. 13120.
Original: $\mathrm{BM}(\mathrm{NH}) 48409$, an imperfect palate.
Locality: County Bhillip, New South Wales.
Formation: "alluvial drift".
Age: Pleistocene.
Remakks-This species was transicrred to Alacropis by Lydekker (1887: 218) although the name was already occupied by Macropes minor Shaw, 1800. Bartholomai (1967: 22) used this specimen as 1 y pe for 7 roposodon minor (Owen),

Sthenurus occidentalis Glauert, 1910.
Rec. W. Aust, Mus., 1: 31-36, pl. 5 (6-7).
Plastotype: SAM. P.13662.
Original: WAM 60.10.2, left and right mandjbles.
Locality: Mammoth Cave, near Margaret River, south-western Western Australia.
Formation: Cave carth,
Age: Pleistocene, 37000 yrs. B.P.
Remarks-See also Tedford (1966: 33-39).
Troposodon minor' (Owen, 1877). See Sthenurus minor Owen.

Family Diprotodontidae

Euryzygoma dunense (de Vis, 1888). Sce Nototherium mitchelli Ower.

Kolopsis torus Woodburne, 1967.
Bur. Miner. Resour. Bull., 87: 139-148.
Plastotype: SAM. P.18116, skull.
Original: CPC 6747.
Locality: UCMP V6345 (Paine Quarry). 6.5 km south-west of Alcoota Homestead, southern Northern Territory.
Formation: Waite Formation.
Age: Late Miocene-Alcoota Fauna.

Nototherium mitchelli Owen, 1845.
Rept. Brit. Ass. Adv. Sci., York, 1844: 232. Cat. Foss. Manm, \& Ales Mus. R. Coll. Surg.: 316.

Plastoplesiotype: SAM. P. 18122.
Original: $\mathrm{BM}(\mathrm{NH}) 43523$, a left mandible with $\mathrm{M}_{2}-\mathrm{M}_{4}-a$ plesiotype. Figured by Owen, 1872, phil. Trans., 164: pl. 11.
Locality: Queensland.
Formation: "alluvial drijt".
Age: Pleistocene?
REMARKS-Woods (1968: 115) refecred this specimen to Finyzyeromm dhnensc (de Vis).
Palorchestes painei Woodburne, 1967.
Bulf. Miners. Resour. Bull. 87: 107-124.
Plastotype; SAM, P.18178, skull.
Original: CPC 6752.
Locality: UCMP V6345 (Paine Quarry). 6.5 km south-west of Alcoota Homestead, southern Northern Territory.
Formation: Waite Formation.
Age: Late Miocene-Alcoota Fauna,
Plaisiodon centralis Woodburne, 1967.
Bur. Miner. Resour. Bull. 87: 149-159.
Plastotype: SAM. P. 181 19, skull.
Original: CPC 6748.
Locality: UCMP V6345 (Paine Quarry). 6.5 km south-west of Alcoota Homestead, southern Northern Territory.
Formation: Waite Formation.
Age: Late Miocene-Alcoota Fauna.
Pyramios alcootense Woodburne, 1967.
Bur. Miner, Resour. Bull. 87: 125-138.
Plastotype: SAM. P.18117, skull.
Original: CPC 6749.
Locality: UCMP V6345 (Paine Quarry). 6.5 km south-west of Alcoota Homestead, southern Northern Territory.
Formation: Waite Formation.
Age: Late Mocene-Alcoota Fauna.
Zygomaturus trilobus Owen, 1859 (non Macleay. 1857).

Quart. J. Geol. Soc. Lond., 15: 168.
Plastotype: SAM, P.18121,
Original: AM. F4635, an almost-perlect cranium.
Locality: King's Creek, a tributary to the Condamine River, eastern Darling Downs, Queensland.
Formation: "alluvial drift".
Age: Pleistocenc.
REMARkS-For a comprehensive resume of the vicissitudes of this Ioxon, see Stition (1967; 133-134).

REFERENCES

 Macropudame (Marsupialid). Mom, Qhd. Mus., 15 (I): 21-3.3.
Barthotomai, A.s 1973 . Jhe genus Proremmadon Owen (Marsupialia: Miscropodidae) in the Upper Cammoic deposits of Qucensland, Mell. Qli, Mfis., 16 (3): 309-363, pls. 9-23.
Batholomai, A. 1975. The genus Marmpurs Shatw (Marsuplanla. Macromodidaty in the Upncr Cainozoí Ucposits of Quecnisisd. A/tm, Qld. Alisso 17 (2):195-235, pls, 7.20.
(Iutler, W. IH. and Merrices, D. 1971 . Remains of Potorous plafyops (Marsupialia, Macropudidae) and other mammals from Bremer bay Western Australize. Jowr. R. Side H' Alisi.6 54 (2): 53:58.
Campbell, C. R.1 1973. A new species of 7ropomardou Bartholomal; from the Larly d'eistocenc Kanuka fauma. Soudh Austcalia (Marropodinte. Marsupialia). Refo. S. Alish. M1as. 16 (13): 1-18.
Clenens, W. A and Planes, M. 1974, Mid-Eertiary Thylacolconidac (Marsupialiat, Marmatia). Jour. Pakemmoh, 48 (4): 1522060.

Colbert, E, H. and Merrilees, D. 1967. Cretaceous dinosaur foolprints from Western Alsistralia. Jam. R. Sels H's Aus., s0 (1): 21-25.
de Vis, C. We, 1.884. The Moa (Dinornis) in Australia. Proc. R, Soc. Qlif. 1: 23-28, pls, 3, 4.
de Vis. C. W., 188\%. On is suppused new species oll Noloyherium. Prik' Lim. Sirt. N.S. Wrates, (2) 2, 106.5-1070.
de Vis, C. W. 1894. Part E. Bird rematns From the Wirburiun River. in-Etheridge, R, Jr. Official contributions to the palateontology ol South Australia, No. Fo. Yetebrate (sic) nemains from the Warhurton or Diamentina River. Alm. Reps. Gavt Geulogist for yeal ending June 1894 (Gouth Ausi.): 21, pl. $2(5,6)$.
de Vis, C W.. 1905. A Eontrithution to the knowledige of ithe
 pls, 1.1x.
Finhayson, H. H., 1938. A new species of Potorous (Marstupialia) from a cave deposit on Kangaroo island, Sinoth Australion, Trums. K, Ser' So Altivi- 62(1): 132-140.
Gilli Fi, D., 1957. The stratistaphical aceurence and paliatycology of some Ausirallan Tertiary marsupials. Alem. Nor. Mins 4 Aldh. 21: 1.35-203.
Gill, E.D., 1975. Gealogy and getsmorphology of the Munray River region hetween Mildura and Remmarki, Ausiralia. dem. Nif, Alus, Viclo. 34: 1-98, pls, 1-11.
Glacssner, M. F.. 1955. Metagic fossils (Aturita lPonguins. Whales) from the Tertiary of South Australia. Rew if. Aust. Mfus. 11 (4): 353-172, pls-34-36.
 Surv. 14: Aish. Arill. 36: 53-69.
Hall. "I'. S., 1911. On the systematic position of the sperees of Squaledon and Zeuglodon described front Australia and
 36
Hecht, M, K.. 1975, The morphology and relationships of the larges! known lerrestrial llzard. Alegalumier prisca Owen. from. the Pleistocene of Australia.. Proc. R. Sure Vice. 87 (2): 239-250, pls, 17, 18.

Jenkins, R. J. F., 1974. A new giant penguin from the Focene of Anstralia. Palacmmlogy 17 (2): 291-310. plas 37-39.
Ludbrook. N. H 4 , 1567, Cotrelations of Tertiary tockis of the Austratasian reyon. if K . Hatai (ed). "Inth Hacific Science Cangress Thkyo 1966. Symposium Na, 25, Tert. lary correfations and elimatic changes in the Iacific": 7-19. Stsaki Printing \& Publ. Co. Lto., Sondai. Japan,
1.ydekker. R., 1887. Catalogwe of the Fossil Mammalia in lise Bribish Museum (Natural Mistory). Part $V=$ xxsy. 345 pp.
Lydekite, R, 1884. Catalogue of the Foswil Replilita and Amphibia in the British Museum (Natural Ilistory). Pare 11] Chelonia. xviii - 239 p.
Marshall, L., 1973. Fossil vertebrate launas fron the Lise Vistoria rogion, southowst New South Watcs, Australia. Mem. New. Atus, Vict. 34: 15J-172, pis, 14-16.

Aller. A. 11. 1963. The lossit ilamingos of Australia, Cublur. 65. $319-294$

Miller. A. If.a 1963, Fossil Ranture Birds of the Late Tentiny of Australia, Rec. s. Anw. Alws. If (3): 413-420.
Miller. A. H., 1966., Jac Cosvil pelicans of Austratio Menr. (Oht. Arus: 14 (5): $181-19()$,
Ower, $R_{r v}$ 1838. in Michell. T. Fa, Three expeditions to the interior of castern Ausiratia, Etic. I: $x v_{3}$ xis. ff - $35 y-350$.
Owen. R., $18+5$. Report on the extinct mammals of Australid with desen lptions of cettan fisssits indicative of the former cristerce in that continent of lafge masthmat representatives
 York, 1844: 223-240.
Owen, Ra, 1845b. Descriprive and illustrated catalngue of the「ossil orgatuc remains of Matmmalia und Aves contained ir the Museum of the Royal College of Surgeons of England, London, (Marsuplals: 291-33(i).
Owem. R-1 1846. ill Waterhouse. G. R : A natural history of the Mumnalia. I, Marsuphata. London.
Owern, Re 1859a. On konve outline drawings and photngraphes of the stull of 2ygommaturs Pribobus (Macteay) from Australla. Quarl, Jour. Gem. Sivr. 15: 168-176.
 8ill edition, XVII: 175.
Owen. K., 1872a. On the fossil mammals of Australian. V. Genus. Nolutheriuni, Owen, Phil. Transe, 162: $\$ 1.62$.
Ower. Ro, 1872b. On the lossil mammals of Ausitalia. VII. Genus Phatcolonys: Specien exceeling the existing ones in sive: Ib/f. 162: 241-258.
Ower, R.. 1874a. On the lossil mammals of Ausiralia. VIIIFinmily Mderopodidie: General Macropus, Osploranter. Pitiecotagiss, sthemurtis, and Pomennordon. Jbid. 16s: 245-2k7.
Owen. Res 1874b. On the fossil mammals of Australia, IX. Family, Mucropodidate Cenera Matronus. Pachysiagon, Leptosiagon, Procoptadon, and Palorchestes. Vbid, 16t: 783.803.

Owen, Repl87ac, On Dinumis (Part X'1X): containing a deserintion of a fembe indicative of a new Genus of large Wingless Birds (Drommenis ennstralis. Onen) from a nosttertiary deposit in Quecratand. Ausiralia. Trous, Zouh, Sute $2,8: 381-384$.
Owen. R.e 1877a, Rescarches on the fossil remains of the lestinet Manmals of Australia. London. I vil, icep, I vol. Dates.
Owen, R., 1877h. Orna new species of Sithenurus, with remarks ois the relation of the gentis to Dorcopsis, Nolfer. Prev. Zant. Ser; Lomel, 1877: 352-361.
Owen, R_{1} 1879. On Dimormis (Parl XXI); containing a restorafion of the shelelon of Dimurnis nerimus, Owen. With an appendix on additional evidence of the Eenus Dramesm, in Ausiralia. Jrums. Znol. Suc., 10: 147.188, pl. 33.
Owen. R., 1881a. Deseriplion of some remains of the gegantic land-lizard (Megalamio prosech Owen), lrom Australia Pari II. Phil: Thums. 171: 1037-1050, 11s: 34-3x.
Owen, R, 1881 b. TJescriplion of some remains ot the gigantic
 [Parl I11. Phil. Truns- 172 (2): 547-556, pls. (64-66.
Pledge, N. S. 1067.. Eossil Elasmobranch teeth of South Auspaliar and their stratigrophic distribution. Tranhs, R Sac: So Ausio 91: $135-160.4$ plis.
Ride, W. D. L., 1964. A review af Australian lossil marsupials. Jour, R. Sine. If. Aust., $47(4): 97-131$.
Ride, W. D. L. 1967. On Sceparnonion romsay owen, 1884: the selection of a lectotype, the clarification of its lype locality, and on its idertity wish phasochamas kisus fowen. (1854). Rec.. S. Alkst-Mus., 15 (3): 41 -4 425.

Risle, W, D. L, 1970 . A guide to the Native Mammals al Ausiratia, Oxford Unim. Press (Meltourne efe.): xit । 249 r.
Sanger. F. B. 1881. On at molar tooth of Zcoglodon from the Terliary beds of the Murray River near Wellinglon. Pror. Limm, Sine N.s. Wales, 5: 248-300.
Scatelt. R, J. 1969. On the atloget Querenstund moa, Dimemis quecnsfondiae de Viз. Alcon. Old. Alus." 15 (3): $207-212$.

Serventy, D. L., Condon, H. T., \& Mayr, E., 1965: Dromaius Vieillot, 1816 (Aves): proposed addition to the ofticial list. Z.N.(S.) 1668. Bull. zool. Nomencl., 22 (1): 63-65.
Simpson, G. G., 1930. Post-Mesozoic Marsupialia. Fossilium Catalogus. 1. Animalia, 47: 1-87.
Sinnoit, P. J., 1973. Chemical methods used for determination of floorine, phosphorus and nitrogen in fossil bones from west of Mildura, Ausiralia. Mem. Nat. Mus, Vict., 34: 175-176.
Smith Woodward, A., 1888. Note on the extinct reptilian genera Megalunia, Owen, and Meiolania, Owen. Amn. Mag. Nat. Hist, ser, 6. 1: 85-89.
Spencer, B., 1900. A description of Wymyardia bassiana, a fossil marsupial from the Tertiary beds of Table Cape, Tasmania. Proc. Zool. Soc. London. 1900: 776-795.
Stirling, E. C. C_{9} 1913. Fossil remains of Lake Callabonna: IV ${ }_{4}$, pt. 2. On the identity of Phascolomy: (Phascolomus) gigas Owen, and Sceparnodon ramsayi Owen, with a description of some of its remains. Mem. R. Soc, S. Aust., I (4) $~ 127-$ 178.

Stirling, E. C. \& Ziciz, A. H. C., 1896. Preliminary notes on Genuornis newtoni; a new genus and species of Cossil struthious bird found at Lake Callabonna, South Australia. Trans. R. Soc. S. Aust., 20: 171-190.
Stirling, E. Co, \& Zictz, A. H. C., 1896. Description of the Bones of the Leg and Foot of Genyornis newtoni, a fossil Struthious Bird from Lake Callabonna. Trans. R. Soc. S. Ausf. 20: 191-211, pls. 3-5.
Stirling, E. C. \& Zictz, A. H. C., 1899. Fossil remains of Lake Callabonna. I. Description of the manus and pes of Diprotodon ausiralis. Mcm. R. Soc. S. Aust., I: $1-40$.
Stirling, E. C. \& Zietz, A. H. C., 1900, Fossil remains of Lake Callabonna. Part II. 1. Genyomis newtoni. A new genus and species of fossil Struthious bird. Mem. R. Soc. S. Aust., I (2): 41-80, pls. 19-24.
Stirling, E. C. \& Zictz, A. II. C, 1905. Fossil remains of Lake Callabonna. Part [II. Description of the vertebrae of Genyornis newroni, Bidi., 1 (3): 81-110, pls. 25-35.
Stirling, E. C. \& Zietz, A. H. C., 1913. Fossil remains of Lake Callabonna. Part IV. 1. Description of some further remains of Genyornis newfoni lbid., I (4): 111-126, pis. 36-39.

Stirton, R. A. 1955. Late Tertiary marsupials from South Australia, Rec. S. Aust. Mus. 9 (3): 247-268.
Stirton, R. A., 1957. A new koala from the Pliocene Palankarinna latuna of South Australia. Rec. S. Ahst, Mus., 13 (1): 71-81.

Stirton, R. A., 1963. A review of the macropodid genus Protemnodon. Univ, Calif, Publ. Geol. Sci., 44 (2): 97-162.
Stirton, R. A., 1967t. The Diprotodontidae from the Ngapakaldifauna, South Australia. Bur. Min. Resour., Bull. 85: 1-44.
Stitton, R. A.: 1967b. A diprotodontid from the Miocene Kuljamarpu fauna. Ibid: 45-51.
Stirton, R. A., 1967c. A new species of Zygomaturus and additional observations on Meniscolophus, Pliocene Palankarinna fauna, South Australia. Ibid.: 129-147.
Stirton, R. A., Tedford, R. H. \& Wondburne, M. O., 1967. A new Terliary formation and fauna from the Tirari Desert, South Australia, Rec. S. Aust. Mitus., 15 (3); 427-462.
Tedford, R. H., 1966. A review of the Macropodid genus Sthenurus. Univ. Calif, Puhl. Geol. Sci., 57: 72 pp.
Tedford, R. H., 1967. The fossil Macropodidae from Lake Menindee, New South Wales. Univ. Calif. Pubt. Geol. Sci., 64: 165 pp .
van Tets, G. F., 1974, A revision of the fossil Megapodidae (Aves), including a description of a new species of Progura de Vis. Trans. R. Sac. S. Aust., 98 (4): 213-224.
Wade, R. T. 1953. Note on a Triassic fish fossil from Leigh Creck, South Australia, Trans. R. Soc. S. Aust., 76: 80-81.
Woodburne, M. O., 1967. The Alcoota fauna, Central Australia. An integrated palacontological and gcological study, Bur. Min. Resour., Bull. 87: J-187.
Woodburne, M. O. \& Tedford, R. H., 1975, The first Tertiary Monotreme from Australia, Amer. Mus. Novitates, No. 2588, 11 pp.
Woods, J. T., 1968. The identity of the extinct marsupial genus Notatherium Owen. Mem. Qld. Mius., 15 (2): 111-116. pls. 13-14.
Zietz, A., 1899. Notes upon some fossil Reptilian remains from the Warburton River, near Lake Eyre. Trans, R. Soc. S. Aust., 23: 208-210.

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

THE DERMAPTERA OF THE NEW HEBRIDES

By A. BRINDLE

SOUTH AUSTRALIAN MUSEUM

VOLUME 17

THE DERMAPTERA OF THE NEW HEBRIDES

By A. BRINDLE

Summary

The present paper is mainly based on two collections of Dermaptera from the New Hebrides, the first lodged in the South Australian Percy Sladen Trust Expedition to these islands, and consisting of 118 specimens resulting from the 1971 Royal Society of London - Museum, in which the South Australian Museum participated.
The second belongs to the B. P. Bishop Museum, Honolulu, and consists of 189 specimens collected over a number of years. A few additional specimens of Dermaptera from these islands belonging to the British Museum (Natural History) have also been examined, some being those recorded in Hincks (1952). All previous records of Dermaptera from the New Hebrides known to the present author are included, and two previous records are rejected - that of Titanolabis colossea (Dohrn) in Dohrn (1864), and that of Labia canaca (Burr) in Burr (1908).
Keys are given to all families, subfamilies, genera and species and a total of 16 species are now recorded, of which three are new and are described. The composition of the Dermaptera fauna of the islands is discussed and comparisons made between this fauna and those of other groups of islands in the area of the Western Pacific and the Papuan Region.

THE DERMAPTERA OF THE NEW HEBRIDES

By A. BRINDLE
Manchester Museum

ABSTRACT

BRINDLE \wedge, 1976. The Dernaptera of the New Hebrides. R'C. S' Aldr. Mis., 17 (13): 221-238.

The present paper is mainly based on two collections of Dermaptera from the New Hebrides, the first lodged in the South Australian Percy Sladen Trust Expedition to these islands ing from the 1971 Royal Socicty of LondonMuseum, and consisting of 118 specimens resultin which the South Australian Muscum participated. The second belongs to the B.P. Bishop Musemm, Honolulu, and consists of 189 specimens collected over a number of years. A few idditional specimens of Dermaptera front these islands belonging to the British Museum (Natural History) have also been examined, some being those recorded in Hincks (1952). All previous records of Dermaptera from the New Hebrides known to the present author ate included, and Iwo provious records are rejected-that of Titunalabis colorsea (Dohm) in Dohm (1864). and that of Labia canaca Burr in Burs (1908). Keys are given to all families, subfamilies, genera and species and a total of 16 species are now recorded, of which three are new and are described. The composition of the Dermaptera fauna of the islands is discussed and comparisons made between this fauna and those of other groups of islands in the area of the Western Pacific and the Papuan Region.

INTRODUCTION

The first survey of known records of Dermaptera from the New Hebrides is that of Hincks (1938) in which threc species were listed, one of which. Tiranolabis colossea (Dohrn) was thought to be doubttul. Four additional species were recorded in Hincks (1947) and another species in Rehn (t948), Hincks (1952) examined a series of 77 specimens of Dermapterat collected in the New Hebrides by Miss L. E. Cheesman, and added six species to the fauna. Of the foutteen species thus recorded, however. the record of Titanolabis celossera is rejected: Dohrn (1864) listed the localities of colossen as Australia. New Caledonia, New Hebrides, and Fiji, but the location of any specimen is dnubiful. There are large species of Anisolabis in New Caledonia which could be mistaken for colossea,

[^9]but they are not conspecific, nor conyeneric with it. No large species of this family have since been tecorded from the New Hebrides for from Fiji, but the location of any specimen is doubtful. to Australia, where, if correctly recognised, it attains a considerable size, and is almost the largest of existing carwigs. The names Prolabia arachidis (Yersin) and Marava wallacei (Dohrn), listed in Hincks (1952) are now known to refer to forms of the same species (Hincks 1954). One species was only named to genus (Labia sp., Hincks. 1952), and the reference to Nesogaster aculcatus (Bormans) in Hincks (1947) is referable to N. apicalis Hincks (Hincks, 1952). The specimen recorded as Labia canuca Burr, by Burr (1908) and Hincks (1938) has been examined and is a female of one of the species described as new in the present paper.

Recently, an expedition organised jointly by the Royal Society of London and the Percy Sladen Trust, which included entomologists from the South Ausiralian Museum and the CSIRO Division of Souls in Adelaide, undertook a survey of the New Hebrides: the 118 specimens of Derinaptera resulting from the survey have been examined by the present author. In addition 189 speciment of Dermaptera from these islands belonging to the B.P. Bishop Muscum, Honolulu, have been studied. These speciniens are recorded in the present paper, which includes all previous records known to the author. The paper thus attempts to provide a complete survey of the known Dermaptera of the New Hebrides, and keys are given to all families, subtamilies, genera, and species represented. Notes on the composition of the fauna and comparison of this with those or other groups of islands in the Western Pacific and in the Papuan Region are included. A total of 16 species are now known from the New Hebrides, of which three are described as new.

My sincere thanks are due to Mr. G. F. Gross, of the South Australian Museum, Adelaidc, and to Dr. J. Linsley Gressitt, of the B.P. Bishop Museum, Honolulu, for the opportunity to examine the respective collections of Dermaptera under their care. I am also indebted to Dr. D, R, Ragge and Mrs, J. Marshatl for freely granted facilities in examining specimens of Dermaptera in the British Museum (Natural History), London.

The Dermaptera fauna of the New Hebrides (Table 1) is small, of 16 recorded species, but it is obviously related to the Fauna of other island groups in the Western Pacific and the Papuan area. The Solomon Islands are the nearest to the north-west, and the south-eastern islands of Micronesia to the north-east. The Fiji islands lie to the east of the New Hebrides and the actual nearest island group to the New Hebrides is that of New Caledonia, with its associated Loyalty Islands. The Dermaptera of all these jslands, except for Fiji, have recently been studied and the relationships of the Dermaptera fauna are now better understood.

The Solomion Islands, as a group, are much larger in area than those of the New Hebrides; they are relatively close to New Guinea, have a much richer fauna, and mark the eastern linsit of a number of Papuan genera. The islands of Micronesia are smaller, widely scattered and have 24 species, whilst New Caledonia and the Loyalty Islands have 18 species.

All the genera recorded from the New Hebrides. occur in the Solomon Islands and all, except for Sphingolabis, occur in Micronesia, but three genera are absent from New Caledonia. This indicates that the Dermaptera fauna of the New Hebrides has extended from New Guinca into the Solomon Islands and further south to the New Hebrides. The New Hebrides have five endemic species, (about 31 per cent of species) which account for 18 per cent of the number of specimens examined. The endemic species thus form less of the populstion of Dermaptera than the number of species would suggest, and this feature is true of the Solomon Islands, and more
particulatly of Micronesia. In contrast the endenic species of New Caledonia are dominant. The influence of cosmopolitan species, however (excluding Chelisoches morio (F.$)$), is much less in the New Hebrides (18 per cent of species but only 6 per cent of specimens) than in either the Solomon Islands or Micronesia, indicating that the New Hebrides are somewhat off the general distribution range of the cosmopolitan species. The term "cosmopolitin" species has been generally used in the Dermaptera for species will a very wide world distribution, which to songe extent may be due to accidental introduction, but recent work is clarifying these distributions and the status of some cosmopolitan species may have to be modified. Chelisoches morio (F.) although classed as a cosmopolitan species, is now known to be mainly a dominant Pacific and Papuan species; it extends westwards to India and Ccylon, where it is not common. and is probably adventive in Madagascar, and certainly adventive in Africa and elsewhere. It is well represented in the Now Hebrides, 15 in Micronesia, but Jess well represented in the Solomon Islands, and much less well represented in New Caledonia.

There are four Australasian species recorded from the New Hebrides, so the influence of the Australasian fauna is clear, and these species account for nearly one quarter of the total specimens examined. There are also three Pacific species (excluding C, morio), i.e, one OrientalPacific; one Australasian-Patific; and one entirely western Pacific species, and these account for about one fifth of the total number of specimens. The position of the New Hebrides in the western Pacific, but close to the Australasian Region,

TABLL I
DISTRIBUTION OF DERMAPTERA IN THE: NEW HEBRIDLS

could be expected to produce a balance between the Australasian and Pacitic fauna, and this is the type of Dermaptera fauna found in the New Hebrides.

Kery to fomilies and subfamhlies

1. Elytra and wings completely absent; male genitalia vith two distal lobes; one directed backwands and one directed forwards it sest (Fig 2) (Caremophoridie) 2 At least elydra present, wings aften visible; nale genitalia with a single mednar distal lobe (Fig. 26) .. .- 3
2. First antonnal segment shorter than the distance between tite untennal bascs; body depressed, not fusiform: branches of furceps of both sexes Irigonal at bases, with a short dorsal ridge on cach; male forceps asymmetrical (Fig, 1) Carcinophorinac
First antennal segment fonger than the distance between the antennal bases; body less depressed, fusiform: branches ol forceps of both sexes cylindrical, not trigonal at bases, and synmetricul (Fig. 5)

Brachylabinac
3. Second latkal segment prolonged beneath third (distal) segment ids a narrow lobe: male genitalia with two dark paired selcrites associated with the virga (Fig. 26)

Chelisochidae
Second tarsal scgment simple, malc genitalias withous two dart pairad selerites bul often with a complek arrangement of denliculations and selerites associated with the virga (Labiidac)
4. Head itat; body strongly depressed; first antennal segment as long as distance between the antennal bases or almost sis; pronolum narrowed anteriorly, forming a distinct neek (Fig. 28)

Sparcittinde
Head normally convex: body less depressed; lirst antennal segment shorter than the Jistance belween the antennal bascs: pronotum willouf such a distinct neck
5. Ench elytron with a distinct lateral longitudinal ridge (Fig 6)

Nesogastrinate
Elytra withoui such nulyes
6
6. Third antennal segment shorter than fifth: elyta usually punctured and pubescent Labiinae
Third antemal segment longer than fifth or almont so: clytra glahrous and impunctate Spongiphorinae

CARCINOPHORIDAE

A large family, poorly represented in the Pacific and in the Australasian Region, the species being typically dark coloured apterous earwigs with short forceps, those of the male often being asynimetrical. A minority of species have rudimentary elytra and sometimes both elytra and wings arc fully developed. Two subfamilies are now recorded from the New Hebrides.

CARCINOPHORINAE

The largest subfamily, the species having rather short basal antennal segments, a depressed body, sclatively short legs, and often a shining and more or less glabrous cuticle. The puncturation of the abdominal tergites may be stronger
in the males than in the females, and a frequent feature of the males is the presence of well defined lateral longitudinal ridges on the posierion abdominal tergites, one ridge occurring on each side of a tergite: a dorso-median Jongitudinal ridge may also be present on the last (tenth) tergite. The penultimate sternite may have the apex excised in mates bui not in the females. The determination of the species is based on the male genitalia, and there are few suitable external characters.

Key to genem und species

1. Parameres of male gentalia about as broad as lung; eilch distal lobe of genilalia without a visibic virga and with denticulated pads. Male pennlimate sternile not excised att apex. ... E. Euborellin amnullpes (Lucus) Parameres of male genitalia long and slender, muich longer than broad each distal lobe of genitalit with a visible virga, but without denticulated pads (Fig. 2). Male nenultimate stornite excised at apex (Eig. 4) Anisolahir wemmofli Zacher

Euborellia annulipes (Lucas)

Forficesila anmulipes Lucas, 1847, Ann. Soc. ent. France (2) 5: 84 (Paris, jntroduced).

> Anisolabis anrulipes (Lucas): Burr. 1911. Genera Insectorum 122: 29.

Euborcllia anmulipes (Lucas): Burr, 1915, J. R. Micr. Soc. 1915: 545.
Anisolabis annulipes (Lucas): Rehn, 1948, Trans. Am, ent. Soc. 74: 160 (Erromanga).
A rather small blackish, shining species, legs yellow with femora usually banded with blackish; antennae brown or dark brown, one or more distal segments white. Head transverse, eyes small, pronotum more or less as broad as long; wider posteriorly; elytra and wings completely absent. Pcnultimate sternite of male with apex rounded. Forceps short, trigonal at base, those of male rather asymmetrical, those of femate symmetrical,

Length of hody $8-11 \mathrm{~mm}$, forceps 1-1.5 mm.

World distribution: Cosmopolitan: occurs in all faunal Regions, often as an adventive.

Remarks; The above record of Rehn (1948) appears to be the only one from the New Hebrides, and may possibly be due to confusion with Anisolabis verhoeffi, which is superficially similar to E. annulipes.

Location of appe:

Holotype of in Paris museum.

Anisolabis vertoeffi Zacher

Figs. 1-4
Anisolabis verhoelfi Zacher, 1911, Zool. Jb. 30: 374 (Bismarck Archipelago).
Anisolabis verhoeffi Zacher: Hincks, 1947, Entomologist's Mon. Mag. 83: 65 (Espiritu Santo).
Amisolabis verhoefi Zacher: Hincks, 1952, Amm. Mag. nat. Hist. (12) 5: 200 (Espiritu Santo; Malekula),

Dark brown to blackish, antennate dark brown, sometimes with one or more distal segments pale yellow or whitish; legs yellowish, femora usually darkened for basal half. Head, and thoracic nota impunctate, glabrous; abdominal tergites sparsely and finely punctured and pubescent.

Male (Fig. 1): Head transverse, tumid, cyes small. Pronotum strongly transverse, more or less rectangular; elytra and wings completely absent; abdomen broad, depressed, tergites 6.9 with lateral ridges, those on sixth tergite extending for distal half only, those on ninth tergite also short, but those on seventh and eighth tergites almost complete; last tergite with a dorsomedian ridge towards each side, the ridge curved medially posteriorly, and posterior part of tergite depressed; penultimate sternite with upex concave, the lobes pointed (Fig, 4). Branches of forceps trigonal at base, cylindrical distally, those of male often asymmetrical (Fig. 1) or almost symmetricul, those of female symmetrical and straighter. Genitalia of male with two basal penes, parameres long with a median darker membranenus flap, virga narrow and long (Fig. 2); slight variations in the exact shape of the parameres occur in genital mounts due to slight distortion (Fig. 3).

Length of body $7-9 \mathrm{~mm}$, forceps $1 \cdot 25$ 1.75 mm .

World dissribution: Bismarck Archipelago and New Hebrides.

Remarks: Specimens of A. verhocffif from the original area (Bisnarck Archipelago) in the British Muscum (Natural History) have recently been examined, and appear to be conspecific with the present specimens from the New Hebrides. The species is variable in general appearance and colour, but all the males examined have the same type of excision in the penultimate sternite whilst the male genitalia are identical. A. verhocffis is closely similar to A. horvalhi Burr from New Guinea, A. biffilda Brindle from the Solomon Islands, and A,
minutissima Brindle from the Western Caroline islands. The latter two species have a less excised male penultimate sternite, wlthough in verhoeff the pointed lobes tend to curl dorsally and may seem blunt at first sight. The males of A. horvathi and A. bifida have lateral longitudinal ridges on abdominal tergites $7-9$, whilst both A, minutissimu and A. verhoeffi have similar ridges on abdominal tergites 6-9, the ridges on both tergites 6 and 9 being short. A. minutissima is smaller in body length (6 mm) than verhoeff ($7-9 \mathrm{~mm}$) and the puncturation and pubescence of the tergites of the latter species are much more sparse than in the former: The male genitalia of these four species are similar in structure and differ only in minor details.

Location of type:

a in Berlin museum.

Material examined:

ESPIRITU SANTO: From litter, flat terrace, E bank Apuna River Campsite No. 2, 10 km SSW of Malau village, Big Bay area, 27.VIII, 1971, 1 ह, 2 laryae, J, C. Buckerfield; terrace of Apuna River, $15^{\circ} 13^{\circ} \mathrm{S}, 166^{\circ} 50^{\circ}$ E, lowland rainforest, Coll. No, NH 49, 13.IX.1971, 1 q, 1 larya, K, E. Lee (SAM).

MAEWO: Above Nasaua, $180+$ m, 4.TX.1958, 1 s, B, Malkin (BISHOP).

AOBA: Dunduy, 6/8.IX.1958, 2.s, B, Malkin (BISHOP).

MALEKULA: SW Malekula, $16^{2} 28^{\prime} \mathrm{S}$, $167^{\circ} 27^{\circ} \mathrm{E}$, mesophyll rainforest, Coll. No. NH 68, 11.X.1971, 19,3 larvae; K. E. Lee; SW Bay, $16^{\circ} 29^{\prime} \mathrm{S}, 167^{\circ} 26^{\prime} \mathrm{E}$, disturbed foresi grazed by cattle, Coll. No. NH 63, 2 o, 1 larva, K. E. Lee: SW Malekula, $16^{\circ} 28^{\circ} \mathrm{S}, 167^{\circ} 27^{\prime} \mathrm{E}$, Meso-noto vine forest, NH 67, 11.X. 1971, 18. 2 Jarvae. K. E. Lee; SW Malekula, $16^{\circ} 29^{\prime} S_{1}$ $167^{\prime 2} 27^{\circ} \mathrm{E}$, cocoa plantations with some coconuts, Coll. No. NH 69, 13.X.1971, 1ヵ. 11 larva, K. E, l.ee, (SAM).

EFATE: From litter, terrace surface in ridge, 400 m , down ridge from Narabut Camp site. 2.VII.1971, 1 larva, J. C. Buckertield; SE Efate, $17^{\circ} 45^{\prime}$ S $168^{\prime \prime} 24^{\prime} \mathrm{E}$, coastal forest on recently raised beach, NH 19, 13.V11, 11971, 1 latva, K. E. Lee. (SAM).

ERROMANGA: From Pandanus epiphytes, 2 km NNE of Nuankau River bridge on secondary milling road, 10 km WSW of Ipotak, 4.VIII,1971, 19, K. E. Lee: S. Erromanga, $18^{\circ} 53^{\circ}$ S. $169^{\circ} 12^{\prime}$ E, Agathis-Calophyllums

Figs. 1-4, Anisolabis verhoeff Zacher-1, male-2, male genitalia-3, male parameres-4, male penultimate sternite. Fig. 5, Brachylabis cordata, sp.n., female. (DL=distal lobe; $\mathrm{P}=$ =paramere; $\mathrm{PE}=$ penis; $\mathrm{V}=\mathrm{virga)}$.
high canopy rainforest, Coll. No. NH 33 , Coll. No. NH 34, 48 , 29.4 larvie, K. E. Lee; S. Erromanga. $18^{\circ} 54^{\prime} \mathrm{S}, 169^{\circ} 11^{\prime} \mathrm{E}$, Agathis forest, Coll. No. NH 35, 7, VIII.1971. 2 larvac, K. E. Lee (SAM).

ANEITYUM: SW Aneityum, $20^{\circ} 15^{\circ} \mathrm{S}$, $169^{\prime \prime} 46^{\prime} \mathrm{E}$. fire-induced grassland, imperata dominant, Coll. No. NH 27, 23, VII.1971, 1 very smull larva, K. E. Lee (SAM).

The last recorded specimen has not been definitely named as this species but is thought to belong here, and the two larvae in the last record for Erromanga may not belong to this species although they appear to be Carcinophorine. One of these larvae has been removed and dried and appears to differ from the rest in the degree of puncturation and sculpture of the cuticle. These specimens ate provisionally assigned to this species.

BRACHYLABINAE

This subfamily is characterised by the long first antennal segment, the fusiform abdomen and by the relatively long legs; the cuticle may be shining often punctured, sometimes very strongly so, or may be rugose and dull, often strongly pubescent; the forceps of both sexes are often simitar, almost always cylindrical, and relatively slender.

No representative of this subtamily has previously been recorded from the New Hebrides, but a single female specimen is in the present material and is placed in the genus Brachylabis Dohrn.

Brachylabis cordata sp.rn.

Fig. 5
Black, posterior parts of tergites of abdomen with a reddish tine; lateral margins of pronotum yellow: antennae blackish, segment 10 (last in type) somewhat paler; legs yellowish-brown, femora vaguely darkened; forceps dark ted. Cuticle rugose, rather shining with rather sparse, relatively long but fine yellow hairs, more conspicuous laterally on abdomen.

Female (Fig. 5): Head transverse, almost cordiform in shape; eyes small. Antennae 10segmented in type, first segment long, second transverse, third segment four times is long as broad, evenly widened distally, fouth segment one and half times as long as broad, filth segment one and three-quacters as long as broad. sixth twice as long as broad; distal segments shorter and relativcly wider than basal segments. Pronotum strongly trinsverse, slightly widened posteriorly, margins nore or less straight; an impressed smooth line occurs medially on
anterior half, with short similar lines on each side. Mesonotum broad, with a broad tateral fold at base but without lateral Jongitudinal ridges. Only two first legs and right median leg present in type.

Abdomen fusiform, scarcely depressed, last tergite small; each branch of forceps very short, cylindrical, wider at base apex slender and curved.

Length of body 7 mm , forceps 1 mm .

Remarks: The description of a species on a single femate is usually not desirable in the Dermaptera, where the taxonomy is so largely based on the male genitalia. In the Brachylabinae, however, the sexes are almost always similar, although the male forceps may be more strongly curved than those of the female, so that the male can be recognised from the description of a female. The external taxonomic characters are usually good in this subfamily, unlike those in the Carcinophorinae, where isolated fomales cannot be identified with any certainty. The structure of the male genitalia is still necessary to place the species without doubt in a genus, but at present the present author has been placing all new species in the genus Brachylabis* pending a revision of the World species of the subfamily.

B, cordata, however, is 50 closely similar in external characters to Brachylabis greensladei Brindle from the Solomon Islands and Micronesia, and to Brachylabis yaloma Ramamurthi from New Britain, that it seems possible that all are congenerio. There are sufficient external differences to separate these three species, so it has been thought desirable to name the species and describe it as new. These thre species may be separated as follows:-

1. Pronoturt longer than broad; body length 8.5 mm , New Brixain .: suloma Ramamurthi Pronolum transverse
2. Promolitm less sirongly Iransverse, ratio of length Its wialh 19:9. Antennae dark brown with two or more distal segments white ralio of segments $4,5,6=$ 1:1 25:1.5. Smaller species, body length 5.6.5 sim greensfiudei Brindic
Pronulum more strongly iransyerse, ratio of length so wiolh 12.5:9. Antennate blackish, slmost unicolorous, ratio of segments $4,5,6=1.5: 1.75: 2$. Larger species, hody length 7 mın $* \ldots .$. corudatu sonn.

Location of type:

Holotype o, ESPIRITU SANTO: Nokovula. Mt. Tabwemasana track; $1325 \mathrm{~m}, 15^{\circ} 22^{\circ} \mathrm{S}$, $166^{3} 44^{\prime}$ E. Coll. No. NH 47, ex. Jitter. 4.1X.1971, K. E. Lce (SAM),

Material examined: The type only.

LABIIDAE

A large family, mainly of small species, and characterised by the simple second tarsal segment and by the male genitalia having a single distal lobe and virga. Represented in all faunal Regions. Four subfamilies are represented in the New Hebrides, with ten species, four being endemic, and of these three are described as new species.

NESOGASTRINAE

This subfamily includes the single IndoAustralian genus Nesogaster Verhoeff, which is distinctive since it is the only Indo-Australian genus in which the elytra have lateral longitudinal ridges and in which the cuticle is brightly shining and more or less glabrous. The only other Old World genera of the Labiidae in which lateral longitudinal ridges are present on the elytra are Physogaster Ramamurthi and Parapericomus Ramamurthi (Physogastrinae) but in these genera the body and forceps have long stiff hairs.

Key to Species

1. Larger, body length 6.8 mm ; more uniformly coloured species; male pygidium blunt at tip or with a short narrower tip (Fig. 6); branches of female forceps relatively shorter and broader, dorso-median ridge (DR) at base forming two tubercles (Fig. 7)
bakeri Hincks
Smaller, body length $4-6 \mathrm{~mm}$; usually more contrastingly coloured species; male pygidium with a short wide base, distal part slender, narrowed distally (Fig. 11); branches of female forceps relatively longer and narrower, dorso-median ridge (DR) at base entire (Fig, 12) apicalis Hincks

Nesogaster apicalis Hincks

Fig. 12
Nesogaster apicalis Hincks, 1951, Ann. Mag. nat. Hist. (12) 4: 568 (Malekula, Espiritu Santo, Banks Is., Papua).
Nesogaster apicalis Hincks: Hincks, 1952, Ann. Mag. nat. Hist. (12) 5: 201.
Nesogaster apicalis Hincks: Brindle, 1971, Entomologist's mon. mag. 107: 120.
Nesogaster aculeatus (Bormans): Hincks, 1947, Entomologist's mon. mag. 83: 66 (0 , o Espiritu Santo).
Brown to dark reddish-brown, head reddish, antennae and legs yellow; last abdominal segment often reddish-brown or reddish-yellow, forceps reddish-yellow, sometimes partially darkened medially. Cuticle brightly shining, impunctate or almost so.

Head transverse, eyes small, antennal segments strongly moniliform; pronotum transverse, more
or less rectangular; elytra short, wings absent or concealed. Each branch of male forceps long, rather broad, inner margin flattened at base and with small denticulations, and with a doubletoothed projection beyond midpoint, distal part of branch cylindrical and curved; pygidium wide at base, thence sharply narrowed and long (Fig. 11). Each branch of female forceps shorter and broader, inner margin with a dorso-median longitudinal ridge at base (Fig. 12, DR), distal part of branch with a ventral serrated flange, apex slender and curved (Fig. 12).

Length of body 4.6 mm , forceps 2.5 mm (males), $1 \cdot 75 \mathrm{~mm}$ (females).

World distribution: New Guinea; New Britain; Solomon Islands; and New Hebrides.

Remarks: The description and length given above refer to the present specimens which are rather small and more brightly coloured. Specimens from other areas may be less contrastingly coloured and larger.

Location of types:

Holotype it and paratypes in British Museum, paratypes in Manchester Museum.

Material examined: BANKS IS.: Vanua Lava, Sola, 5/11.VIII.1958, 1 के, 2 larvae, B. Malkin (BISHOP). ESPIRITU SANTO: Luganville, 23/28.VII.1958, 2 f , 5 ㅇ, 19 larvae, B. Malkin; Narango, 90 m , June, 1960, 1 \&, W. W. Brandt (BISHOP).

Nesogaster bakeri Hincks

Figs. 6, 7
Nesogaster bakeri Hincks, 1947, Entomologist's mon. mag. 83: 66 (Espiritu Santo).
Nesogaster bakeri Hincks; Hincks, 1951, Ann. Mag. Nat. Hist. (12) 4: 572.
Nesogaster bakeri Hincks; Hincks, 1952, Ann. Mag. nat. Hist. (12) 5: 200 (Malekula, Espiritu Santo, Aneityum).
Dark reddish-brown, head reddish to reddishbrown, legs yellowish-brown, femora vaguely darkened; forceps and pygidium yellowish-brown or with a reddish tint. Cuticle brightly shining, abdominal tergites 4-9 of male or 4-7 of female punctured, middle tergites more strongly punctured than others, last tergite irregularly punctured.
Similar in structure to apicalis, but larger, more robust, and more uniformly coloured. Each branch of male forceps long and broad, with an inner tooth, basal part of branch with a flattened inner surface on which are small
denticulations or cremulations; pygidium large, long, somewhat variable in shape but usually broad for most of length and narrower only near apex (Fig, 6). Each branch of fentale forceps short and broad, excavated at base and with a dorso-median inner ridge forming two tuberculate-like projections (DR), distal part of branch with a ventral inner scrrated flange, apex slender and incurved (Fig. 7).

Length of body 6.8 mm , forceps $3-5 \mathrm{~mm}$ (males), 2.2 .5 mm (females),

World dismibution: New Hebrides, endemic.

Location of type:

Holotype of in Hope Department of Entanology, Oxford, England.

Material examineds

ESPIRITU SANTO: From logs and epiphytes on crest of main ridge leading SE Prom Nokovula to summit of Mt. Tahwemasana, 25 km SSW Malau village, Big Bay arca, 4.IX. $1971,18$. K. E. Lee? Nokovula, 1132 m, 15.IX.1971, 29. G. F. Gross; Nokovula, village, camp 4, 23 km SSW Malau village, Big Bay, 5.IX. 1971, 18, 1. C. Buckerfield; Nokovula village, camp 4. $1128 \mathrm{~m}, 10 . \mathrm{IX} .1971$, 1" (abdomen missing), G. F. Gross (SAM), Namatasopa, $300 \mathrm{~m}_{1}$ 28.VIII.1957, 1 ค. 2 larvae, J. L. Gressitt: above Namatasopa, $400 \mathrm{~m}, 30$. VIII. 1957,3 ㅇ, 2 larvae, J. L. Gressitt; below Namatasopa, 250 m ; 1.1X.1957. 1 larva, J. L. Gressitt (BISHOP).

MAEVO: Above Nasua, 180 + m, 4.1X.1958, 4 4, 10 早. 1 larva, B- Malkin (BISHOP),

AOBA: Dundy, 6/9.IX.1958, 49, B. Malkin (BISHOP),

PENTECOST: $200-500 \mathrm{~m}, 27.11 .1964,1$. 2 R. Stratman (BISHOP).

MALEKULA: From rotten logs, gentle slope on broad ridge. 8 km NNW of summit of Mt. Yung'abale, 45 km E of Tisvel village, 1.X. 1971. 1各, K. E. Lee (SAM); Amok, 17.1X. 1958 , 18.1 , B3. Malkin (BISHOP),

EFATE: Terrace surface on ridge, camp site, Narabut, 1 VIII.1971.2\&, J. C. Buckerliekd; from rotten logs, 500 m . NE Narabut carnp sile. 7. Vil. 1971, 1 barya. K. E. Lee, from rotten logs, terrace surface on sidge, 400 m . down ridge from Narabut camp site, 2.VII.1971, 2 larvae. J. C. Buckerfied (SAM); limestone plateau. N of Maut, $100 \mathrm{~m}, 20$. VIII. 1957, 88. 18. 2 larvae, J. L. Gressitt (BISHOP).

SPARATTINAE

Mainly Neotropical in distribution, and only represented in the Old World by a single genus, Auchenomus Karsch, which is distinctive by the strongly flattened head and body. The single species represented in the present material is new.

Auchenomus insularis sp.a.

Figs. 27, 28
Reddish-yellow to pale reddish-brown, elytra and wings somewhat darker; antennae pale yellow; legs dark yellow. Cuticle slightly shining, punctured and pubescent, hairs mainly short and yellow, more conspicuous laterally; abdominal tergites with longer hairs and with longer marginal setac.

Male (Fig. 28): Head broad, flat posterior margin concave; eyes small. First anternal segment about as long as distance between the antennal bases, second segment transverse, third segment three times as long as broad, fourth two and half times as broad as long. fifth longer than third, basal segments more or less cylindrical; distal segments shorter, twelfth (last in holotype) shorter than fourth, and more moniliform than basal segments. Pronotum as broad as long, narrowed posteriorly, lateral margins straight, posterior margin convex. Elytra and wings fully developed; legs relatively short. femora broud.

Abdomen mainly parallel-sided, narrowed towards base, flat; last tergite transverse, produced and raised above the buse of each branch of the forceps, muedian part depressed. Each branch of forceps broad at base, with a dorsomedian rounded tubercle, and with a ventromedian tooth beyond, last quarter of branch sharply curved medially (Fig-28).

Femalc: Similar to male, branches of forceps shorter and broader, with a narrow ventral inner ffunge, evenly narrowed to distal third where each branch is more strongly narrowed forming a curved apex (Fig. 27),

Length of body 7.8 mm , forceps 2.5 mm (male), 2 mm (females).
Remarks: This species is distinctive by the shape of the forecps of both sexes. Those of the male are sharply curved distally, and in this rescmble those of some of the Neotropical specics of Sparatta, whilst those of the female are unusual in having the soner margin of each branch almost smooth, not dentated as in most species of the genus which occur in the Pacific and Australasian Region.

Lacation of types:

Holotype oे ESPIRITU SANTO: SW above Namatasopa, 400 ın. 30, VLI.1957, L. G. Gressitt. Paratypes, same data, 4\%. (including allotype) (B1SHOP, except 1 '早 parabype in British Museum (Natural History) and in Manchester).

Material examined: The types and two further specimens, without posterior abdominal seg. ments, same data.

LABIINAE

Three genera of this subfamily are now recorded from the New Hebrides, with a total of five species, one of which is new.

Key 10 gentera und species

1. Eranches of forceps of both sexes not strongly setulose. thuse of the males without a ventral inner flange, and those of the females narrowad from base to apex, with inuer margin at most weakly dentated or crenulated
Branches of forceps of both sexes strongly setulose. those of the nuales with or withoul a ventral inner flange, and those of the females not narrowed from base to apex, and inner margin with at least at ventral inner flange, the matging of which are strongly dentated or crenulated 3
2. Pronotum almost as wide as head and transverse; a broad, shorter, Jess depressed species with more slender branches of the foreeps

Labla birwhevedata Brindle
pronotum small, natrower than head, and quadrate or almost so; a more narrower, elongated, and strongly depressed species with broad short branches of the forceps..... Eabie curvisemela (Motschulsky)
3. Lalget species, body length 10 mm or more; antennal segnents more or less cylindricali elytra glatrous and impunctate : \& Sphlngoldbis hawaionsis (Bormans)
Smaller species, body length 8 mm or less; antennal seg. ments moniliform, elytra punctured and pabencent \&
4.Smaller species, body length 6 hm of less; anch branch of mate forecps with one very lurge tooth oll inner mirging, pygidium lavge (Fig. 15). each branch of female forceps Iess strongly dentated, ventral inner margin differing strongly in dentation from dorsal inner margin (Fig. 16) Clmelulatio ssomeri (Caudell)
Larger specics, hody lenglt 7.8 mum: xach branch of male forecps with two relatively latge and one very smatl teeth on inter margin, pygidium small (Fig. 13); each brancir of fensale forecps more strongly dentated. ventral inner margin mote similar in dentation to dorsal margin (Fig. 14) Chatiolabin itentafe sp,rt.
Chaetolabis stunerí (Caudell) comb. nov.

$$
\text { Figs. 8, 15, } 16
$$

Labia stoneri Caudell, 1927. Unhi Powa Studies 12 (3): 5 (Fiji),
Ycllowish to reddish-brown, elytra and wings somewhat dacker; antennae brown; logs yellowish-brown; forceps and pygidium reddishyellow, Cuticle of head impunctate and glabrous,
that of pronotum impunctate but with sparse short yellow hatirs of elytra and wings punctured and pubescent; abdonnoal tergites pubescent and with long marginal setae.

A small and slender species (Fig. 8); elytra and wings fully developed, or with elytra shorter and only tips of wings protruding, Each branch of male forceps curved, with a Jarge ventral inner tooth, pygidium almost pentagonal ventrally with a concave posterior margin, dorsal part of pyoidium rounded (Fig. 15); cach branch ol female forceps straight, ventral inner margin dentated basally, dorsal inner margin scarcely dentated basally but dentated prominently from neat midpoint, pygidium broad, ventral surface concave posteriorly, dorsal surface rounded; a small tubercle occurs medially near the posterior margin of the last tergite (Fig. 16).
Length of body $4 \cdot 5-6 \mathrm{~mm}$ forceps $1.25-$ 1.5 mm .

World distribution: Fiji and New Hebrides.
Remarks: The original description and figure of the male forceps are excellent and the structure of the forceps and pygidium is characteristic.

Location of types:

Holotype ơ, allotype $\circ, 1$ paratype, 1 paratype of in the United States National Museum.

Material exdmined: ERROMANGA: Ex light trap, Nuankau river, 5/7.VIII,1971, 1d. 18. (fully winged), G. Robinson; under bark of \log 500 m SW of Nuankau river bridge, 10 km WSW of Jpotak, 7.VIII.1971, 1 ㅇ, (short elytra and wings), J. C. Buckerfield (SAM).

Chaetolabia dentata sp.n.

Figs. 13, 14
Labia canaca Burt, 1908 (not Burr, 1903). Bull. Mus. narm. Hist, nat. Paris 1908: 32 (New Hebrides)
Reddish-brown; antennae yellowish to brown: legs yellow; forceps yellowish-brown. Cuticle of head and pronotum snooth, jmpunctate and glabrous, clytra and wings punctured and pubescent, hairs sparse and short, yellowish; abdominal tergites punctured and pubescent, more strongly on tergites 6-7; marginal sctae present on most tergites; forceps with shorter hairs and long setac. Cuticle rather shining.

Male: Head tumid, cordiform, transverse, eyes small. First antennal segment rather shorter than the distance between the antennal bases, second segment transverse, third two and hall limes as long as broad, fouth equal to third is

Figs. 6-7. Nesogaster bakevi Hincks-6, male-7, female forceps.
Fig. 8, Chactolabia stoneri (Caudell). Figs. 9-10, Marava feae (Bormans)-9, male, New Hebrides-10, male forceps, Australia. (DR=dorsal ridge).
length, tifth three times as long as broad; distal segments as long as fifth, each segment narrowed to base, all segments pubescent, Pronotum slightly longer than broud, strongly widened posteriorly, lateral margins straight, posterior margin convex. Elytra and wings fully developed or short.

Abdomen relatively long, somewhat depressed, lateral tubercles on third and fourth tergites very small. Each branch of forceps weakly curved with one tuberculate median tooth on inner margin near base and a sccond small median tooth towards apex: a very small ventral tooth occurs distal to basal tooth; pygidium small, narrowed posteriorly (Fig, 13),

Fenale: Similar to male, but last tergite with a median tubercle near posterior margin; each branch of forceps straight except at apex, broad, apex curyed, ventrat and dorsal inner margins with similar dentation, consisting of one larger tooth about one third from apex, followed by three smaller teeth beyond midpoint (ventral margin with only tivo), a distal tooth occurs only on the ventral margin; pygidium short and broad (Fig. 14).

Length of body 7.8 mm . forceps 2.75 mm (male), 1.5 mm (females).

Remarks: In addition the female specimen from the New Hebrides, without exact locality, recorded by Burr (1908) as Labia canaca Bure, is in the British Museum (Natural History) and proves to be a female of the present species, and is hereby designated as a paratype. The locality label reads "N. Hebrides francais" whilst at sccond label reads "Labia canaca Burr q". Labia canaca is restricted to New Caledonia.

The specimen from Aneityum is the only specimen in which the elytra and wings are fully developed: it has been named by the shape of the pronotum and other details of the anterior part of the insect which are adequate for the known New Hebrides fauna, but it is possible that there is another species in the New Hebrides, and without the forceps it is not possible to be entirely certain about its identily. The pronotum is rather more transverse in this specimen than in the others.

There are three known species of Chactolabia from other areas in the Western Pacific, but none are yet known from the Australasian Region, These three species, together with the two now recorded from the New Hebrides may be separated as follows:-

1. Euch branch of the mate lorcens with a very large inner tooth (Fig. 15): each brunch of the fomale
furceps with the imer dorsal edec scarcely dentated at base and merging with the veatral inner edge beyond midpoint (Fig. 16) strmert (Cathdell)
Branches of male forens with small inner leeth or a tooth; dorsal innter edge of remale forceps dentited from base
2. Pronotum parallel-sided: male pygitium marrowed to apex; temale pygidium broid, short, marrowed distally. apex concave. Micronesia (Palan). spicatu Brimdle Pronoturn widened posteriorly 3
3. Male pygulium shori, partly muden by basal inner teeth of forceps (Fig. 13); inner margin of each branch of femate foreeps irregularly dertated, with teeth of varying sizes (Fig. 14) dentwa an.n.
Male pygidium large, or fong, not hidden by innes teeth; inner margin of each branch of female forceps regularly dentated with smatl tecth of aimost cutal size

4
4. Male pygidium large, its long as homat, narroner at hase but widened distally with margin eurved, and atpes decply concare; last tergite of fomate with o small median dorso-posterior pfojection, Mistancsia (Punape: Kusaic)
carkili (ATemozzi)
Mate nypidium long, marrow, afmost parantel-sided, apen concayc: last tergite of female with it larger mation dorso-posterior projection. Micronesia (Punape: 'Tiuk) uppronditinaz (Menozzi)
Labia caniaca Bure from New Caledonia has a male pygidium similar to that of csokii, but the pygidiun of cantaca is not narrowed at base and is more decply excised posteriorly: the fenale of canaca has the inner margin of each branch of the forceps irregularly dentated as in deniata, but the pygidium is not short and broad but longer than broad and ending in two irregular posterior projections, the projections separated by a median concavity.

Location of types:

Holotype in, AOBA: Dunduy, 6/8.IX. 1958, B. Malkin; allotype 9 . same data; both in the Bishop Museum.

ERROMANGA: If paratype, Nuankau niver camp, 7.VIII.1971, G. F. Gross in the South Australian Museum.

Material examined:

The types and ANEITYUM; Red Crest, $1200 \mathrm{ft}, 3 \mathrm{~m}$ NE of Anelcathat, IT.1955, 1 ? (end of abdomen missing), L.E. Cheesmun (BRIT. MUS.).

Labia curvicauda (Motschulsky)

Figs, 22, 23
Forficesila curvicauda Motschulsky, 1863. Bull. Soc. nat. Moscou 36: 2 (Ceylon').
Labia curictauda (Motschulsky) Hincks. 1952. Amn. Mag. hat. Hist. (12) 5; 201 (Espiritu Santo: Malekula: Erromanga),
Blackish, abdomen reddish, legs yellow wilh femora partially darkened, antennae yellow or brown pronotum sometimes yellow.

11

12

17

13

14

18

15

16

19

Figs. 11-19, forceps-11, 12, Nesogaster apicalis Hincks, male and female-13-14, Chaetolabia dentata sp.n. male and female-15-16, Chaetolabia stoneri (Caudell), male and female-17, Labia bituberculata Brindle, male-18-19, Sphingolabis hawailensis (Bormans), male and female. (DR=dorsal ridge).

A small depressed species usually recognisable by the relatively small pronotum, which is parallel-sided, and the short broad branches of the forceps. Elytta and wings fully developed, legs short. Each branch of male forceps curved, with a basal wider part, pygidium broad (Fig. 22). Each branch of female forceps broad. more or less straight, and narrowed distally (Fig 23).

Length of body 4.5 mm , forceps 0.75 1.25 mm .

World distriburion: Cosmopolitan, in all faunal Regions, but mainly adventive in temperate countries.

Location of sypes:

Believed lost.

Multrial examined:

ESPIRITU SANTO: Luganville, 20.VII.1958, 1Ω, B. Malkin (BISHOP).

AOBA: Dunduy, 6/8.IX.1958, 1 \&, B. Malkin (BISHOP).

Labia bituberculata Brindle

Fig. 17
Labia bituberculata Brindle, 1970, Pacific Insects 12 (3): 675 (Solomon Islands).
Reddish-brown to blackish; cuticle punctured and pubescent. A short broad species, very similar to Labia pilicornis (Motschulsky) in the dark form, but distunguished by the structure of the male pygidium, which is smaller than that of pilicomis, the latter having a larger triangular pygidium. Elytra and wings normally developed. Each branch of male forceps simple, evenly and weakly curved (Fig 17); each branch of female forceps similar to those of curvicaula (Fig, 23), but much more slender.

Length of hody 4.5 mm , forceps 1-1.25 mm.
World distribution: Solomon Islands (San Cristobal) and New Hebrides.

Location of types:

Holotype d. allotypo q in the British Museum.
Material examined:
ESPIRITU SANTO: At light, Apuna river camp 2, $146 \mathrm{~m}, 30 . \mathrm{VIII}, 197 \mathrm{I}, 1$, G. F. Gross (SAM).

ERROMANGA: $18^{\prime \prime} 53^{\prime} \mathrm{S}, 169^{\circ} 12^{\prime} \mathrm{E}$, Agathis-Calophylltm bigh canopy rainforest, NH 33, 3.V111.1971, 1 of, K. E, Lee (SAM).

The above specimens are blackish and much darker than the original material.

Sphingolabis hawaiiensis (Bormans)
Figs. 18, 19
Forficula hawaiensis Bormans, 1882. Ann. Mus. civ. Stor, nat. Giacoma Doria 18: 341 (Hawaii).
Sphingolabis hawaiensis (Bormans); Hincks. 1947, Entomologist's mon. mag. 83: 67 (Banks Is.; Espiritu Santo; Elephant Is, ?),
Very dark reddish or purplish brown, base of wings yellow. Cuticle of head and pronotum more or less impunctate and glabrous, elytra and wings pubescent, hairs sparse and rather long, yellow; abdominal tergites punctured and pubescent, hairs short and yellow, but with long yellow setae in addition; forceps with long golden setae (Figs. 18, 19).

Length of body $10-13 \mathrm{~mm}$. forceps $5-6 \mathrm{~mm}$ (males) $3 \cdot 5-4 \mathrm{~mm}$ (females).

World distribution: Lesser Sunda Islands castwards to Hawaii, but somewhat sporadic. not in Micronesia; New Guinea and Solomon Islands.
Location of types:
b, ํ, in Genoa Museum.

Material examined:

BANKS ISLAND: Vanua Lava, Sola, 5/11.VIII.1958, 1 万. B. Malkin (BISHOP).

ESPIRITU SANTO: Apuna river, camp 2, $146 \mathrm{~m}, 30 . \mathrm{VIII} .1971-2.1 \mathrm{X} .1971,2$ \&, G. F. Gross (SAM); Namatasopa, $300 \mathrm{~m}, 29.1111 .1957$. 1f, 29, J. L. Gressitt; Namatasopa, 400 m . 31.VIII.1957, light trap, 1 f. J. L. Gressitt: Luganville, 23/28.VII.1958, 1 ㅇ, 1 larva, B. Malkin (BISHOP).
MAEWO: Above Nasua, $180+\mathrm{m}, 4.1 \mathrm{X} .1958$. 4ㅇ.3 larvae, B. Malkin (BISHOP).

AOBA: Dunduy, 6/8.1X.1958, 1 larva, B, Malkin (BISHOP).

MALEKULA: Erom rotten $\log _{\text {, gentle slope }}$ on broad ridge, 1 km NNW of summit of Mt. Yang'abale, 45 km E of Tisvel village, 1.X.1971, 1\% , 7 laryae, K. E. Lee; Notophyll vine forest. $16^{\circ} 17^{\prime}$ S, $167^{\circ} 26^{\circ}$ E, NH 58, 1.X.1971. 3 larvac, K. E. Lee (SAM); Amok, 17.IX. 1958.

EPI: Ringdove Bay, 21.VII.1900, 10 , 1 오. J. J. Walker (BRIT. MUS.).

ERROMANGA: Vicinity of Ipotak, 3.YIII.1971, 1 ㅇ, G. F. Gross; Nuankau river camp, 7.VIII.1971, 1\%, G. F. Gross (SAM).

TANNA: No locality, VIII.1900, 1 a, 18 : J. J. Walker (BRIT. MUS.).

SPONGIPHORINAE

Two species of this sublanily are now recorded from the New Hebrides, both in the genus Mardia Burr.

Kuy io species

1. Genced colouration reddish-brown, or with head, pronotum, and elytest hackish; wines, when gresent broudly yellow at bases: forceps of maic with btanches evenly arcoate, bisses not hroadened, cach branch with une or two inner teeth (Fig. 21): forceps of female with a small inner tooth neay hase of cach branch (Fig. 20)

Muralle arachidis (Yewsin)
General colouration blackish, wings usually present and whitisth blackish on external margins: pronotum broadly white latcrally and ponderiorly; abdomen often reddish medally or posteriorly and forceps usually pale at bases; forceps of male sirongly curved, usaally with it wider part at base of each hrancts (Fig. 10), sometimes without (Fig. 9): forceps of female withoul at small inner tooth at base Afuruse fere (Bormans)

Marava arachidis (Yersin)

Figs. 20, 21
Forficula arachidis Yersin, 1860, Amm. Soc, ent. France 8 (3): 509 (Marscilles, Erance, introduced).
Prolabia arachidis (Yersin): Hincks, 1952, Amm. Mag, nat. Hist. (12) 5: 201 (Erromanga).
Marava wallace (Dohrn): Hincks, 1952, Ann. Mag. sut. Hist. (12) 5: 202 (Malekula).
Marata arachidis (Yersin); Hincks. 1954, Proc. R. cht. Soc, Lond. (B) 23: 162.

Variable in colour and in development of elytra und wings, together with size of eyes. Two forms are concerned in the records from the New Hebrides.
(1) Elytra and wings normally developed; blackish to dark reddish-brown, clytra usually paler, wings partially yellow, legs mainly dark, tarsi yellow (Fig. 21), Eyes usually large.
(2) Elytra short, wings absent or concealed? reddish to yellowish-brown, legs yellow, ubdomen reddish often datkened laterally (Fig, 20). Eyes smatler.

Each branch of male forceps weakly curved, with two inner teeth (Fig. 21) or with one tooth absent: pygidium basically pentagonal (Fig. 21), but somewhat variable. Etch branch of female forceps shorter, branches more or less contiguous (Fig. 20).

Length of body $5-9 \mathrm{~mm}$, forceps 1.5-2.7.5 man (males), 0.75-1.25 mal (females).

World distribution: Cosnopolitan, in all faunal Regions, often as an adventive; form 1 is more typical of the Oriental and Australasian Regions,
whilst form 2 appears to dominate in the Neotropical and Ethiopian Regions and in the Pacific.

Location of types:

S., ㅁ, in the Paris Museuns,

Material examined:

ESPIRITU SANTO: Malatu village, Big Bay arca, 22.VIII.1971, 18 (form 2), G. F. Gross (SAM).

MALEKULA: Ounua, III/IV.1929, 1 d (form 1), L. E. Cheesman (BRIT. MUS.) (specimen recorded in Hincks, 1952).

Marava feate (Dubrony)

Figs, 9, 10
Labia feae Dubrony, 1879. Anmali Mus. civ. Stor. nat. Giucoma Doria 14: 368 (New Guinea and Key Islands),
Marave feae (Dubrony): Hincks, 1952, Amm. Mag. nat. Hist. (12) 5: 201 (Espiritu Santo).
Black, rather dull, pronotum broadly whitish laterally and posteriorly, elyira usually unicolorous but sometimes whitish laterally and along posterior margins: wiogs, when present, largely whitish; posterior abdominal tergites often more or less reddish, forceps black, base and sometimes apex reddish or yellowish (Fig. 9). Elytra and wings usually fully developed but the elytra are short and the wings absent or concealed in the present specimens. Each branch of male forceps strongly curved, usually with a wider base (Fig. 10) but present specimens have simple forceps (Fig. 9) ; pygidium broad, usually with two posterior tecth; forceps of femalo with simple, straight branches, inore or less contiguous.

Lengil of body 5-6 mm, forceps 1-1.25 mm.
World distribution: New Guinea castwards to Caroline Islands and south to Ausiralia, but present known distribution is sporadic.

Location of types:

8. \% in the Geno: Museum.

Material examined:

ESPIRITU SANTO: no exact locality, VIII-TX. 1929, 1 8: VIII. 1921, 1 ㅁ, L. E. Cheesman (BRIT. MUS.),

The above specimens are recorded in Hincks (1952) and are unusual in having no visible wings in having the elytra broadly whitish posterionly and laterally, and by the simple male forceps.

Figs, 20-21, Murava arachidis (Yersin) - 20 , wingless form, female- 21 , winged form, male. Figs. 22-24,
furceps- $22-23$, Labia chricarda, male and female- 24 , Hamaras nigrorafos (Burr), male.

CHELISOCHIDAE

Mainly Oriental and Australasian in distrí－ bution．Two species are recorded from the New Hebrides，both in the genus Chelisoches Scudder．

Kíy to species

1．Pronotum parallel－sided，longet than broad：black；head， pronotum，and clybra metallic bluish－green，shoulders． sutures，and wings violet

Chelisochess cheesmante Hincks
Promotunt as broad as long oc nearly so，more or less widened posteriotly；black generally，but sometimes clytra and wings metallic bluish or green or somelimes the whole insect is dimost uniformly reddish－hrown Chelisoches morion（Fabricius）

Chelisoches morio（Fabricius）

Forficule morio Fabricius，1775，Syst．Ent．： 270 （Tahiti）．
Chelisoches morio（Fabricius）：Hincks，1938， J．Fed．Malay Siates Mus．18： 313 （New Hebrides）．
Chelisoches morio（Fabricius）；Hincks，1947， Entomologist＇s mon．mag．83： 67 （Espiritu Santo）．
Chelisoches morio（Fabricius）；Rehn，1948， Trans．Am．ent．Soc．74： 162 （Efate； Erronanga；Tanna；Aneityum；Aniwa ？： Fortuna $=$ Futuna） ．
Chelisoches morio（Fabricius）；Hincks，1952， Ann．Mag，mat，Hist．（12）5； 202 （Male－ kula：Espiritu Santo；Efate；Mai）．
Black，rather shining，antennae black，one or more distal segments white tarsi yellowish－ brown．Sometimes with a bluish or greenish metallic sheen or sometimes almost uniformly reddish－brown．Similar in structure to chees－ manae（Fig．25），but with the pronotum relatively shorter and usually widened posteriorly．Male forceps variable in length and structure，one form similar to those of cheesmanae，or with the basal inner dentation extending down to and including the distal teeth or tooth．Forceps of female simple，but variable in length．

Length of body 14.18 mm ．forceps 4.7 mm ．
World distribution：Nearctic，Palacarctic，and Ethopian Regions as adventive；Oriental Region more commonly，and most common in Pacific and Papuan Regions．

Location of types：

fo 요 in the British and Kiel Museums．

Material examined：

BANKS ISLANDS：Vanua Lava，Sola， 5／11．V111．1958， 2 古， 1 ㅇ， 2 Jacvae，B．Malkin （BISHOP）．

ESPIRITU SANTO：Malau village，Big Bay area，23．V111．1971，1s5，G．F．Gross；Malau village，23．VIII．1971，at light， 1 larva， G．E．Gross；Apuna river，camp 2， 146 m ， 26／28．V111．1971， 2 larvae，G．Robinson； Apuna river，camp 2，in leaf bases of Pundams， 28／29．VII．1971，28，10．K．E．Lee and J．C． Buckerfield：Apuna river，camp 2， 10 km SSW of Malau vilfage，Big Bay area，from litter and leaf bases of Pandanies，llat terrace on E bank， 27／29، VIII．1971， 1 \＆， 1 ㅇ， 2 larvae，K．E．Lee and J，C．Buckerfield：Apuna siver，camp 2, 4．IX．1971，28．G．F．Gross：，Apuna river， camp 3，at light，8．IX．1971， 1 早， 1 larva，G．F． Gross（SAM），Luganville，23／28．VII．1958． 5\％． 1 larva，B．Malkin；Narango， $90 \mathrm{nt}, \mathrm{VI} .1960$ ． 38．，2q， 1 larva，W．W．Brandt；SW，above Namatasopa， $400 \mathrm{~m}, 30 . \mathrm{VIII} 1957,1$ ， 12. J．L．Gressitt：Segond Channel，IX．1942，1\％， R．L．Dautt；no exact loculity，VIII．1950， 1 ㅇ． N，L，H．Krauss；no exact locality，13．1．1921． 1 है，F．P．Drowne（BISHOP）．

MAEWO：Above Nasaua， $150-180+\mathrm{m}$, 4．TX，1958，1 b ，6ㅇ，2 larvae，B，Malkin （BISHOP）．

AOBA：Dunduy，6／8．IX．1958，1\％， 3% ， 1 larva，B．Malkin（BlSHOP）．

MALEKULA：Leaf bases of Pandamus in gully， 3 km ENE of Tisvel village，1．X．1971． $2 \%, 18,1$ larva，K．E．Lee and J．C．Bucker－ field；from logs，Hurrnamburr，low－lying swamp， 500 m ．E of head of Marine Lagoon， 4 km SSE of Wintua，SW Bay，9．X．197！， 1 8，K．E．Lee （SAM）；Amak， 1000 ft ．， $15 / 18$. IX，1958，sweep－ ing，1 千 ．B．Malkin；Tenmark，14．IX． 1958. 1 larva，B．Malkin（BISHOP）．

EFATE：La Cascade，W of Vila，13．VII． 1971 ， 19， 1 larva，G．F．Gross；in secondary forest， de Gaillande estate．Tagabe，15．V11．1971． 1 larva，G．F．Gross（SAM）；Efate，12．VI． 1900, 18．J．J．Walker（BRIT．MUS．）；NW，Maat （Mat Ambryn Vill．） $3 \mathrm{~m}, 5 . \mathrm{V} 11 \mathrm{I} .1957,1 \%$. 2o．， 3 larvae，J．L．Gressitt；NW，Limestone platcaus N of Maat， $100 \mathrm{~m}, 19 / 20$ VIL1．1957． 5 今， 10 of 3 Jarvae，J．L．Gressitt；Vila， $0-50 \mathrm{~m}$ ， II，1970， 1 s． 1 larva，N．L．H．Krauss（BISHOP）．

ERROMANGA：Nuankau river cump． 7／K．V111．1971，2s，1星，G．F．Gross：froms Pandanus beside secondary milling road， 500 m SW of Nuankau river bridge， 30 km WSW of Ipotak，8．VIIL1971， 1 larva，J，C．Buckerfield （SAM）： 11 km W of Ipotak， $100-200 \mathrm{~m}$, II．1970，1年，N．L．H．Krauss（BISHOP）．

25

26

Figs. 25-26, Chelisoches cheesmanae Hincks-25, male-26, male genitalia.
Figs. 27-28, Auchenomus insularis sp.n.-27, female forceps-28, male. ($\mathrm{DL}=$ distal lobe; $\mathrm{P}=$ paramere; $\mathrm{PE}=$ penis; $\mathrm{V}=$ virga).

TANNA:Isokoai (Enpinan), 28.V11.1971, at light, 1 of, 1 ¢, G. F. Gross and G. Robinson (SAM): Tunna Is., 1904, 1告, J. J. Walker (BRIT. MUS.).

ANEITYUM: Vicinity of Anelcauhat, 20/21. VII.197I. 1d, 1 larva, G. F. Gross (SAM) : Red Crest, $1200 \mathrm{ft}, 9 \mathrm{~m}$ NE of Anelcauhat, IHI.1955, 2 z, 3 呆, 2 (abdomen missing), L. E. Cheesman; rain forest, 500$1000 \mathrm{ft}_{\mathrm{t}}$, X1.1954, 1 है, L. E. Cheesman (BRIT. MUS.) ,

Chelisoches cheesmanae Hincks

Figs. 25, 26
Chelisoches cheesmanae Hincks, 1952, Ann, Mag. nat, Hist. (12) 5: 703 (Banks Is, Vanua Lava),
Similar in structure to morio, but rather more robust (Fig, 25) ; separable mainly by the colouration, and by the shape of the pronotum, of which the latter character is the more satisfactory. The forceps are robust but are similar to some forms of morio in shape. The genitalia of cheesmanue (Fig. 26) are similar to those of morio but the parameres are more slender and the two sclerites associated with the base of the virga are unequal in size whilst those of morio examined are usually subequal in size. The differences, however, are small.

Length of body 13 mm , forceps 5 mm .
World distribution: New Hebrides, endemic.
Remarks: No other specimen has been recorded and the type remains unique.
Localion of rye:
Holotype in the British Museum.

Hetmaxas nigrorufus (Burr)

Fig. 24
Sponiphora nigrorufa Burr, 1902, 'Jerm. Fuzet. 25: 480 (New Guinea).
Hamaxas papunnus Burr, 1909, Nova Ghinea 9. 23.

Spongovostox Migrorufus (Burr): Burr, 1911, Genera Insectorum 122: 52.
Hamaxas nigrorufus (Burr); Burr, 1916, J, R. Micr. Soc. 1916: 10.

Blackish in colour, Jegs dark red to blackish, sometimes yellow; abdomen and forceps dark red or with abdonen darkened. A. rather depressed species. Elytra and wings punctured and pubescent, always fully developed. Each branch of male forceps arcuate, with one inner tooth, pygidium short with posterior margin concave and postero-lateral angles produced (Fig. 24). Branches of female forceps shortes, wider near base, narrowed distally and more or less straight and contiguous, pygidium angular.

Length of body 7.9 mm , forceps $3-4.5 \mathrm{~mm}$ (males), $1 \cdot 5-2 \cdot 5 \mathrm{~mm}$ (females).

World distribution: From Celebes eastwards to New Guinen and Solomon Islands, and extending across the Pacific to Hawaii.

Location of type:

s, 9 in the Hungarian National Museum.

Material examined:

ESPIRITU SANTO: Apuna river camp, 1.IX.1971, 1\%, G. F. Gross (SAM); Narango, $90 \mathrm{~m}, \mathrm{VI} .1960,1$ ô W. W. Brandt (BISHOP).

EFATE: NW Limestone plateau, N of Maat, $100 \mathrm{~m}, 19 . \mathrm{VILL} .1957 .1$ ㅇ. J. L. Gressitt (BISHOP).

ERROMANGA: Kauri camp (on Nuankau River) 3.VIII.1971, 2 ㅇ, G. F. Gross (SAM).

RFFFRENCES

Brindle, A. 1971, A review of the genus Nesogaster Verhoeff (Dermaptera: Labiidae). Entomologist's Mon. mar. 107: 114-126.
Burr, M., 1908, Catalogue des Forficulides des collections dn Mnsenm de Paris. Bull. Mus. henth //isf, nat. Puris 1908: 29-33.
Dohrn, H., 1864, Versuch einer Monographie der Dermagteren (part) Stertin, ent, Ztg. 25: 885-296.
Hincks, W. D., 1938, 'The Dermaptera of Oceania, J, Fed. Malay States Mus. 18: 294-318.
Lord 1947, Dermaptera from the New Hebrides and Lord Howe 1. Enfanologist's mon. Mas. 83; 65.67. (Dermaplera: Labiidae). Ame Mpecies of Nesogaster 4: 562-576.
-1952, The Dermaptera of the New Hebrides. Ann, Mag. nat. Hise. (12) 5: 200.204.
, 1954, Notes on Dermaptera. Proc IR. tht Soc. Connd. (B) 23: 159-163.
Rchn. J, A. C., 1948, Dermapteta records from the Solomon, New Hebrides, and Loyally Islands. Trans, Am. cuf. Soc. 74: 159-163.

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

THE GENUS MICROTETRAMERES TRAVASSOS (NEMATODA, SPIRURIDA) IN AUSTRALIAN BIRDS

By PATRICIA M. MAWSON

Zoology Department University of Adelaide

THE GENUS MICROTETRAMERES TRAVASSOS (NEMATODA, SPIRURIDA) IN AUSTRALIAN BIRDS

by Patricia M. Mawson

Abstract

Summary

Australian Microtetrameres species were taken only from birds of the orders Accipitriformes, Cuculiformes, Strigiformes, Caprimulgiformes and Passeriformes. Considerable host specificity was noted. Fifteen new species are proposed, named after the host group or genus: M. meliphagidae, M. philemon, M. mirafrae, M. gymnorhinae, M. streperae, M. cractici, M. coracinae, M. sphecotheres, M. eopsaltriae, M. aegotheles, M. paraccipiter, M. cerci, M. raptoris, M. ninoctis and M. tytonis. M. helix Cram (syn. M. corax Schell) was identified from Australian corvids, and M. oriolus Petrov and Tschertkova from an Australian oriole. The shape and size of the hilt of the left spicule are regarded as of taxonomic value. A key is given based on male characters and a partial key based on female characters.

THE GENUS MICROTETRAMERES TRAVASSOS (NEMATODA, SPIRURIDA) IN AUSTRALJAN BIRDS

By PATRICIA M. MAWSON
Zoology Department, University of Adelaide

ABSTRACT

MAWSUN. PATRICIA M. The genus Microfermmeres 'Iruvasos (Ncmatodin, Spiruedal) in Ausiralian birds. Rec. D.A. Mins. 71 (14): 239-259.

Australian Microfetrameres species were taken only from birds of the orders Accipitriformes, Cuculiformes, Strigiformes, Caprimulgiformes and Passeriforntes. Considerable host specificity was noted. Fifteen new species are proposed, named after the host group or genus: M. meliphagidae, M. philemon, M. mirafrac, M. gymnorhinae, M. straperae, M. cractici, M. coracinac, M. sphecotheres, M. eopsaltriae, M. acgotheles, M. paraccipirep, M. cerci, M. raploris, M. minocis and M. ryronis. M helix Cram (syn, M, corar Schell) was identified from Australian corvids. and M. oriohs Petrov and Tschertkova from in Australian oriole. The shape and size of the hilt of the left spicule are regarded as of taxonomic value. A key is given based on male characters and a partial key based on female characters.

introduction

No species of the genus Microtetrameres has ever been recorded front Australian birds. This is surprising, since in dissections made in this Department the incidence of species of this genus has been relatively high in some bird groups (Table 1). In honeyeaters, Microtetrameres spp. are the most common nematode parasiles. In water birds (waders, gulls, grebes, cormorants, petrels) the same niche in the body is occupjed by species of Teirameres, Species of Microtetrameres have, however, been recorded from water birds in other countries-M. canadensis Mawson, 1956 (子 only), M. egretes Rasheed, 1960, M, pelecani Skrjabin, 1949 (क) only), and M. spiratis Seurat. 1915. In our dissections both Microtetrameres and Tetrameres have been taken from an owl and from faleonsin two cases both parasite gencra were represented in the same host animal. Microtedrameres is a relatively homogenous genus in which the species have many characters in common, Ellis (1970) considers the female specimens as the type of a species; because of the dissimilarity in the appearance of the sexes, he allows the allocation of a male to a species only when this hus been proved by breeding from the eggs of the
female, In the present work, it is considered that the form of mates belonging to the genus Microtetrameres is characteristic of the genus, and that in general the occurrence of male and female specimens in the sume host specimen is evidence of conspecificity. The characters considered to be of the greatest taxonomic use are discussed betow in the section "Characters of specilic importance",

The division of the genus into two subgenera, as proposed by Rasheed (1960), has not been followed, because of the sporadic occurrence of a poorly developed gubernaculum in some specimens of some species in the Australian material.

Most of the Microretrameres spp. recognised show a marked degree of host specificity among cuculiform and passeriform birds, and less among birds of prey. Almost all the specics found in Australian birds are regarded as new. Exceptions are M, helix Cram from crows, and M. oriolus Petrov and Tseliertkova from an ariole. M. mirafrae m.sp. From a lark and a flycatcher is yery close to $M_{\text {i }}$ jakutensis Kontrimevichus from related birds in U.S.S.R., and M, paraccipiter n.sp. from an Australian Accipiter sp, is very close to M. accipiter Schell from an American Accipiter sp. It is noteworthy that Corvis, Mirafra, Oriohes, and Accipiter ate regarded as relatively recent arrivals in Australia (late Pliocene or Pleistocene).

METHODS

Adult female Microtctrameres were taken from the proventricular glands of the host. Infected glands are readily recognisable by their dark colour, and pressure on the adjoining proventricular wall causes the worm to pop out of the gland. The female lies in the gland with the tail end nearest the opening and often protruding through it (Fig, 61). Males and very young females are usually in the mucus on the surface of the proventriculus, but in two or three cases a male has apparently come out of a gland with a female. The greatest numbers of females present in one individual host were 40 in Tyso alba and 30 in Corves mellori. This compares poorly with 250 females from a Golden Eagle and 102 from a Great Horned Owl recorded by Schell (1953, p. 227).

[^10]The worms were fixed in 70% alcohol. The measurements of all species described are given in Tables 2-7. In all cases the length of the whole oesophagus and of the muscular part of the oesophagus has been taken from the anterior end of the body ta the posterior end of the organ in question. Measurements of the spicules have been taken along their whole length.

In giving the locality of specimens the State is abbreviated as follows: SA, South Australia; NT, Northern Territory; Qld, Qucensland; NSW. New South Wales; ACT, Australian Capital Territory; Tus, Tusmania; Vic, Victoria.

Types of new species will be deposited in the South Australian Museum, and other material in the Helminthological Collection of the Zoology Department University of Adelaide.

GENERAL DESCRIPTION OF THE AUSTRALIAN SPECIES

The head (Plate 1, Figs. 1, 2, 3 and 4) bears two lateral lips each with three swellings-a lateral one bearing the amphid, and a dorsal and a ventral with the submedian cephalic papillae. The mouth opening is more or less hexagonal. The inner circle of papillae around the mouth, described by Ali (1970), were not seen.

The buccal capsule is well-developed. In the male it is Jaterally comptessed, in the female barrel- or uri-shaped. In both sexes the anterior part is connected by a relatively thin cuticular sleeve to a chitinised basal ring lying just above the anterior end of the desophagus.

The oesophagus consists of an anterior narrower muscular and a longer glandular section. The nerve ring surrounds the anterior section at about a to " its length; the excretory pore is shortly behind this and the small cervical papillae at or behind the level of the excretory pore. The cervical papillac are seldom distinguishable in the gravid female, as the cuticle becomes inflated and folded in this region. In the female there is sometimes an apparent intes. tinal diverticulum, as the nesophagus joins the intestine obliquely; in one case (M. raptoris) two distinct diverticula are formed at this junction.

Female: The shape of the coil of the female varies to some extent among individuals, but the general form is more or less constant in one species. There are three types of coil, the spiral, the reversed spiral, and the irregular (Figs. 61, 72, 51). There is some evidence that the form is influenced by the shape of the gland
which in some birds (e.g- honeyeaters) is shallow, in other (e.g. falcons and hawks) deep and narrow. It seens impossible that the form of the coil can change, or be assumed as the worm emerges from the gland, as suggested by Ellis (1969, p-716). In fact, if the whole infested gland be dissected out and cleared, the contained worm, in its typical coil, can be seen inside (Fig. 61).

It appears that whether fertilised or not, the female enters the gland at an early stage (its body somewhat twisted and only slightly swollen). Young female worms have been found to thicken and coil before any eggs are visible (Fig. 72), so the swelling is not caused by pressure of eggs. Eggs are produced in great numbers even in unfertilised fernales. The shape of the female with infertile eggs is similar to that of the fenmale with fertile eggs although on closer inspection it is seen that the unembryonated eggs are thin-shelled, often mis-shapen, and smaller than fertile eggs of the same species. Both fertile and infertile eggs may be present in one feniale.

The posterior end of the female is aften surrounded by a prepuce formed by overgrowth of the prevulvar cuticle; this is not seen in young fermales.

Male: The tip of the tail ends in a small ball point. In all the Australian specimens there are two pairs of pre-anal papillae shottly in front of the cloaca, two pairs of post-anal papillac on the first half of the tail and at pair of phasmids laterally at $\frac{1}{2}-\frac{2}{4}$ of the tail length from the anus. In most specimens the papillac ure not exactly symmetrical; in a very few, one papilla is missing or one extra is present. The odd one is always aligned longitudinally with the others, and is never medial. The position of the papiliae with relation to the tail length yaries within the limits noted above; this vaciation is, however, as great among individuals from one host as among all the specimens examined from any host. The phasmids are usually small and often hard to see. It is presumed that they are present in all specimens.

The left, and louger spicule has a relatively short cylindrical hilt proximally and ends in a small terminal ala, The tip of the spictue within the ala is usually cleft or otherwise imperfectly chitinised. The shorter right spicule is simple and acicular or rounded at the tip. There is some thickening of the dorsal watl of the cloaca in some specimens, but this appears to be a variable feature, apparent in one or two specimens
of a number of species. In one species (M. raptoris) it is well-developed in all the males (16), and in another it is present but only lightly chitinised in the three males available.

CHARACTERS OF SPECIFIC TMPORTANCE

Females: The form of the coil is not a specific character, as even among females from the same bird there are variations, some a simple coil, some reversed once or lwice.

The length of the oesophagus and of its component parts, the position of the nerve ring, the cervical papillae (seen only in young specimens) and the excretory pore are very similar in all specimens examined. The presence or absence of an intestinal diverticulun at the point of junction with the ocsophagus is cited by some authors as a specific character; however, in the gravid femate its absence can only be aseerained by dissection.

Ellis (1969) considered that the size and shape of the buccal capsule and of the eges, and the presence or absence of cuticular ridges and flanges, is sufficient to differentiate the females of the various species of Microtesrameres, and he gave ($\mathrm{p}, 718$) a key to species from the western hemisphere bised on these characters in the female. In the Australian specionens, only as single worm was seen with cuticular flanges, and this was among and in other respects similar to, undlanged females taken from the same specimen of Corves bennetti. Most of the measurements of female worms are subject to error because of cuticular inflation to which the specimens are subject and because of the many curves of the intact worm. lis the present work the measureneents of the female considered to be most teliable are those cited by Ellis. i.e. those of the largest fertile egg and of the buccal capsule, However, these characters are not sufficiently varied throughout the genus to furm the sole basis for the identification of the species. The dilliculties of identification of species from femates only is apparent in the key given below in which only female characters are used. As some species are tepresented only by females. this key is given here, although the species are by no means fully segregated.

Males: In the male ats in the female the position of the nerve ring, cervical papillac and excretory pore in relation to each other and to the end of the museular oesophagus is similat in all specimens examined. The same situation is found with the positions of pre- and post-cloacal
papillac. Judging from figures given by authors, there is a marked similarity between the arrangement of the caudal papillae in all Microtelrameres species, except where a larger number of papillae have been described, Froin some descriptions it seems likely that a third pair of post-anal papillac ate in fact the phasmids.

Schell (1953) suggested that the position of the constriction in the male reproductive tube between the testis and the vas deferens, might be a constunt character within a species. This feature, however, is not clear in all of the Australion specimens and has not been used by other workers, Schell also used as a specific character the presence or absence of a "ball point" on the tip of the tail. Such a point is present on all the Australian males.

Another character used by Schell as a distinguishing feature, is the shape of the tip of the left spicule. However, this character must be used with diseretion as the tip may appear bifurcate in one view and rounded in another. The tip in almost all the Australian specimens is more or less cleft, or is imperfectly chitinised.

In the present study, the characters of the spicules have been considered most useful in diagnosis. The length of the longer spicule in retation to the body length, the ratio of the lengtlis of the two spicules and the shape and proportions of the hilt (proximal end) of the left spicule, appear to be of value in separating species. The spicule ratio has been used by many authors. In the present study both the spicule ratio and the shape and size of the hilt of the left spicule were found to be similar in specimens from the same host bird, and this similarity extends to those from the same host species and ofter to those from related species, from the same and different localities. At the same time. the spicule ratio and the shape and size of the hilt differ, often markedly, from thase of specimens from hosts belonging to a differcat group even from the same locality. The shape of the hilt (tapering, or slightly bulbous. ctc.) as well as the actual length: width ratio has been considered. To obtain this ratio, referred to in Tubles 1-7 as the Hilt Eactor, the width is measured atoross the base of the cylindrical part of the spicule in lateral view, just anterior to the longitudinal groove, in the position indicated in Fig. 6 by line $a b$; the length is the distance from this level to the proximal end of the spicule. The chief limitation to the use of the hilt of the left spicule as a specific character is that in a few specimens it is damaged or folded over so
that the shape, or at least the measurements, are not clear. As the hilt has seldom been noted by other workers, it cannot be used to compare the Australian specimens with many of the species already described. However, through the kindness of the Beltsville Parasitological Laboratory (U.S. Department of Agriculture), and of Dr. Schell (University of Idaho), male specimens of M. helix Cram, M. aquila Schell, M. bubo Schell, M. accipiter Schell and M. corax Schell, have been examined, and some comparisons have
been made. In particular it was noted (1) that the hilt has a different shape in each of Schell's species (Figs. 5, 55, 56 and 57) and (2) that the shape is similar in M. helix (Cram's specimens), M. corax (Schell's specimen) and specimens from Australian corvids.

The characters which have emerged as most indicative of the species among male worms are the body length, the spicule lengths, the length and breadth of the hilt of the left, or longer, spicule, and the length of the buccal capsule.

TABLE 1
Incidence of Microtetrameres spp. and Tetrameres spp. in "land" birds dissected. Numbers refer to specimens, not species.

LIST OF AUSTRALIAN SPECIES ARRANGED UNDER TIIEIR HOSTS

The following is a list of hosts from which Microtetrameres spp. have been taken. The numbers after each species indicates the number of host specimens in which Microtetrameres were found/the number of specimens examined. Microterameres is shown as M. throughout.

Passeriformis

Alaudidae
Mirafres javanica Horstield, M. mirafrac n.sp.; $1 / 2$, NT.

Camperhagidae
Coracina novachollandiae (Gmelin). M. coracinae n.sp.; $1 / 2 \mathrm{SA}, 0 / 1$ Tas, $0 / 2 \mathrm{NT}$.
Coracina hypoleuca Gould. M. coracinae n.sp.: 1/1 NT.
Lalage sueuri tricolor (Swainson) M. sp.; 2/3 SA.

Muscicapidae

Microeca lencophaea (Latham). M. mirafrae n.sp.; 2/9 SA; $1 / 2$ NT.

Eopsaltria australis (Shaw). M. eopsalriae n.sp.; 2/2 SA.

Falcunculidaf:

Orcoica gutturalis (Vig. \& Horsf.) M. sp.; 1/1 SA; l/5 NT.
Ptiloris sp. M. sp.; 1/1.

Metifrhagidae

Meliphaga virescens (Vieillot) M. meliphagidae n.sp.; 4/15 SA; O/5 NT.

Meliphaga lencotis (Latham) M. Meliphagidae 13.sp,; 2/10 SA.

Manorina melanocephala (Latham) M. meliphagidae n.sp.; 2/7 SA; 1/1 ACT.
Manorina flavigula Gould. M. meliphagidae n.sp.; 1/5 SA; 0/1 NT.

Entomyzon cyanotis (Latham). M. philemon n.sp.; 2/4 NT.

Philemon citreogularis (Gould). M. philemon $11,5 p,: 3 / 3$ NT.
Philemon argenticeps (Gould), M. philemon n.sp.; 3/11 NT.

Anthochoera chrysoptera (Latham), M. meliphagidae n.sp.; 3/11 SA.
Anthochoera carunculata (Shaw) M. meliphagidae n.sp.; 5/10 SA.
Acanthocephala rufogularis Gould. M. meliphagidae n.sp.; 10/18 SA; 0/5 NT.

Oriolidae

Oriolus sagittatus (Latham) M. oriolus oriolus Petrov \& Tschertchova. $1 / 3$ NT.
Sphecotheres flaviventris Gould. M. sphecotheres n.sp.; $1 / 2$ NT.

Grallinidae

Corcorax melanorhamphus (Vieillot) M. hellx Cram 2/9 SA.

Cracticidae

Strepera versicolor (Latham) M. streperae n.sp.; 1/7 SA: 0/1 NT.
Cracticus torquatus (Latham). M. cractici n.sp.; 1/5 SA.
Gymnorhina kibicen tibicen (Latham) M. gymnorhinae n.sp.: 0/4 SA; 0/2 NT, 8/16 ACT.
Gymnorhina tibicen leuconota Gould. M. gymnorhinae n.sp.; 9/58 SA.

Corvidae

Corvis mellori Mathews. M. helix Cam. 8/9 SA; 11/48 Tas.
Corvis bennetti North. M. helix Cram 3/3 NT. Corvis orru Bonaparte. M. helix Cram، 0.2 SA; 4/7 NT.
Corvus coronoides Vig. \& Horsf. M. helix Cram. 4/5 SA.

Caprimulgiformes

Aegotheles cristata Shaw. M. aegotheles n.sp.; 0/2 SA; 0/1 Tas; 1/3 NT.

Cuculfformes

Cuculus pallidus (Latham) M. coracinae n1.sp.: 1/4. NT; 0/1 Tas.
Cacomantis variolosus Vig, \& Horsf. M. cacomantis n.sp.: $1 / 1$ NT.
Cacomantis pyrrhophanus Vieillot, M. sp.; $1 / 9$ SA: $1 / 1$ Tas.

Accifitriformes

Accipiter fasciatus Vig. \& Horsf. M. paraccipiter n.sp.; 3/5 SA; $1 / 1$ Tas; 3/3 NT.

Accipiter cirrhocephalus Vieillot. M. sp.; $2 / 2$ SA; $1 / 1$ Tas; 0/2 NT.
Circus assimilis Jard, \& Selby. M. circi n.sp.
Falco berigora Vig. \& Horsf. M. raptoris n.sps; 2/4 SA; 0/1 Tas; 3/7 NT.
F. longipennis Swainson M. raptoris n.sp.; 0/2 Tas; 1/3 NT.
F. cenchroides Vig. \& Horsp, M. raptoris n.sp; $1 / 5$ SA; 0/1 NT.
F. peregrinus Tunstall. M. raptoris n.sp.; $2 / 4$ SA.

Strigiformes

Ninox novaeseelandiac (Gmelin) M. raptoris n.sp.: M, mïnoctis n.sp.; 4/12 SA; 0/1 Tas; 3/4 NT.
Tyto alba (Scopoli) M. tytonis n.sp; 0/6 SA: 1/1 NT.

Keys to Microtetrameres spp.

Two keys are offered. The first has been compiled from male characters. The second key, based ouly on the females, is necessatily restricted, but is included as the information conveyed may help other workers.

In some cases the ratios used were not given by the authors but have been calculated from data provided. Abbreviations have been used to assist in the lay-out of the keys, as follows: HF, hilt lactor; L, left; pap, papillae; R. right; spic. spicule; sp. rat, spicule ratioAll measurements are in $\mu \mathrm{mm}$.

1. Key to male Microtetraneres spp.
2. Gubernaculum absent or weakly developed. 2 Gubernaculum present 42
3. (1) Median preanal pap. present 3

Median preanal pap. absent A
3. (2) Sp. rat. 6.2; median preanal pap. on lip of cloaca M. calabocencis Diaz-Ungria
Sp, ratio 15-8: median preanal pap, anterior to cloacal lip . . . M. inermis (Linstow)
4. (2) Fewer than two preanal papillae 5 Two or more pre paits of preanal papillae 6
5. (4) No preanal papillac . M . xiphidiopici Barus One pair of preanal papillae
M. crimi (Travassos)
6. (4) Three pairs of preanal papillae ?

Two pairs of preanal papillae 9
7. (6) $S p$, rat. $32 \ldots$ M. mpillocephala Oshnarin Sp. rat. 25-26 \&
8. (7) R. spic. 85-88 M. erythrorhynch Ali R. spic. 150 Mf. cunudensi., Mawson
9. (6) L. spic, longer than body \& 10 L. spic. not longer than body 11
10. (9) Sp . rat. $16-22 \ldots$...... M. spiculara Boyd Sp. rat. $37 \ldots$... M. helix asialicus Oshmarin
11. (9) Four pairs of posi-cloacal pap.
M. oshmarini Soholev

Not more than three pairs of post-cloacal pap. 12
12. (11) Adanal pap.. present 13

Adanal pap. absent
13. (12) One pair of adanal pap. M. pusilta Travassos Two pairs of adanal pap.
M. travassosi Rasheed
14. (12) R. spic longer than tail 15
R. spic. shorter than tail 22
15. (14) L. spic. less than 1200........... 16
L. spic, more than 1300 17
16. (15) Vestibule length 25 M . cloucitectus Oshmarin

Vestibule length $19 \ldots .$. ... singhi Sultana
17. (15) Sp.. rath, over 18 M. centurì Barus

Spicule ratio not more than $17 \ldots 18$
18. (17) Sp. rat. less than 9........... 19

Sp. ra1, between 10-17 20
19. (18) Junction of vas deferens and testis 500-600 from cloaca M. buho Schell
Junction of vas deferens and cloaca $800-900$ from cloaca M. ©quila Schell
20. (18) Vestibule about 10 long , M, consaliriae n.sp.

Vestibule at least 13 long
21
21. (20) Hilt of L. spic, very long: HF 6-8.1
M. creomantis n.sp.

Hilt of Lo spic, shorter; HIF 2,5-3*3
M. cerci nisp.
22. (14) L. spic, 3200 Jong or more 23
L. spic, not longet than $3100 \ldots . . .25$
23. (22) Spicule ratio not more than 30; parasitic in crows M.. Betix hetix Cram
Spicule ratio more than $34 \ldots 24$
24. (23) Spicule ratio 36: parasitic in hornbills M. comorta (Wiednan)

Spicule ratio 40-45; parasitic in hornhills M. bucerotidae Ortlepp

25 (22) Vestibule 30 long . . . M. spiralis (Seurat) Vestibule not longer than $25 \ldots . .26$
26. (25) Sp. rat. 11 or less 27

Sp. rat. 12 or more . : 31
$27 .(26) \mathrm{L}$ spic. not mure than half hody length 28
L. spic. more than half body length . . 29
28. (27) Hilt of 1 , spic, long, slender HF $4 \cdot 7 \cdot 5 \cdot 6$
M. sphecotheres n.sp.

Hilt of L. spic. shorter; HF $1+6-1+9$
M. Iytonis n.sp.
29. (27) R. spic. 120 long
M_{1} oriohes oricntnlis Oshmarin
R. spic. 80-100 long

30
30. (29) From Tachyphomus sp., Brazil

M, minima (Travassos)
From Cracficus sp, Australia
M. cracticus n.sp.
31. (26) L. spic. not longer than 1050: egg longer than $75 \ldots$.
L. spic. rot shorter than 1060 ; egg shorter than 60

33
32. (31) R. spic. 66; vestibule 19 fong
M. longinviahs Barus
R. spic. 100; vestibule 14 long

M- asymmetrica Oshmarin
33. (31) Vestibule 21 or more long 34

Vestibule not longer than $20 \ldots . .35$
34. (33) L spic: over 2500 long: $1 / 1 \cdot 1$ of body length M. o. oriolns Oshmarin
L. spic. less than 2500 longi 1/1-7-1-8 of body length M. accipiler Schell
35. (33) Tail more than 1.5 times length of R. spic 36 Tail not more than $1-5$ times length of R. spic 37
36. (35) L. spic. 2032-2270; vestibule 16 long M. oriolus rashectue Skrjabin et al. L. spic. 1250; vestibule 11 long
M. aegatheles n.sp.
37. (35) Vestibule 18-20 long .. M. paruccipiter n.sp.

Vestibule not more than 16.5 lung 38
38. (37) L. spic. over 2200 long , , M, philemon n.sp.
L. spic. not longer than 2200

39
39. (38) Sp. tat. 21 M. streperue 14.sp.

Sp. rat not more than $20 \ldots . . .40$
40. (39) R. spic. almost equal to tail length . . 41
R. spic, distinctly less than tail length . . 42
41. (40) Vestibule elongate in shape M. Mrguei

Vestibule almost as wide as long
M. meliphaytue n.5p.
42. (40) Veslibule not more than 11 long 43

Vestibule not less than 12 long 44
43. (42) HF 6-1.7.9 M. coracinta n.sp. HF 3-4 M. mirafrae n.sp.
44. (42) From small passerines in Russia M. jukulensis Kiontrimavichus From Australian birds 45
45. (44) HF $2 \cdot 2-3 \cdot 3$; hilt more or less cylindrical
M. raptoris n.sp.

HF 3.3-4.4: hilt tapering towards extremity
M. gymmorhinae n.sp.
46. (b) Spic. rat, under 11 47

Sp. rat. over 13 49
47. (46) Length of ocsophagus less than that of body M. tuhucloucls Oshmarin

Length of vesophagus it- that of body 48
48. (47) L. spic. 1125 ; R. spic. 220-260
M. rashectue Sultana
I.. spic. 1950-2120; R, spic. 142
M. cephalaters Sultana
49. (46) L. spic. over 2200 long 50
L. spic, not longer than 2000 52
50. (49) R. spic, less than hall hail length: vestibule 23 M. egretes Rasheed
R. spic. more than half tail length; vestibule 17 or less \qquad
51, (50) R, spic. $100-110 \ldots$.... Minoctis n.sp.
R. spic. 190-230 M. malabari Ali
52. (49) Gubersaculum 20-21 long
f M. creplini (Vavilova)
Gubernaculum 28 long 53
53. (52) R, spic. 50-80; tail 100-120
M. osmanitce Rashced
R. spic. 80-90; tail 140-180
M. mirate Rasheed

2. Key to female Microtetramere.s spp.

M. contorta Wiedman is not included, as the length of the vestibule is not known; the eggs are 40-45 x $2(1-25 \mu \mathrm{~m}$.

1. Eggs yery long, 70 at least 2

Eggs very short, under $40 \ldots$.
Egg length between 40-60 4
2. Eggs 80-82 x 36-39; from Lanins sp.

M, asymmetrica Ashmarin
Eggs 70-73 $\times 20-23$; [rom Gluucidium sp.
M. longiovala Barus
3. Eggs 39 $\times 26$; vestibule 39 lang M. eryhhrorhynchi Ali

Egg 36×21; vestibule 24 long M. Prabussosi Rasheed

Egg $36 \times 20:$ vestibule 20 long
M, inermis (Linstow)

Egg 35×15; vestibule 24 long
M, egretes Rasheed
4. Vestibule not more than 12 long 5

Vestibule more than 12 long 6
5. Vestibule 12 long; egg 45×24; from Tachyphonms sp, Mt. minima (T'ravassos)
Vestibule 9 long; eggs $42-49 \times 28$; from Turdus sp. M\% pusilla Travassos Vestihule 12 Jong: eggs $45 \times 25-26$: from Aegotheles sp............. M. aegotheles $11 . s p$.
6. Vestibule not longer than 20

7
Vestibule longer llan $20 \ldots \ldots 13$
7. Body with two lougitudinal flanges
M. accipiter Schell

Body without llatiges 8
8. Breadth of egg not more than 28.19

Breadlh of egg more than $28 \ldots12$
9. Vestibule twice or more, as long us wide .. 10

Vestibule less thin twice as long as wide . 11
10. Egg length 40 ; . . . M canadensis Mawson Egg longth 45-49 ... M. ashmarim sobolev Egg length 50-60.... . M. бruzii Travassos
11. Vestibule 17-19; cgg 44-46 x 23-26
M. paraccipiter n.sp.

Vestibule 17-19:cge $43-50 \times 26-2 \mathrm{~s}$
A1. raptoris n.sp
Vestibule 19; egg $46 \times 26 \ldots$.... ninoctis n.sp.
Vestibule 15-17: egg 42-44 x 24-27
M. ryonis n.sp.

Vestibule 17-19; egg $45 \times 25-26$
M. cacomantis n.sp.

Vestibule $18-20$; cgg $44.48 \times 24-26$
M. armanise Rasheed
12. From Passeriformes:

Vestibule 15: čgg $46.49 \times 29-31$. M1. ञाetrei Barus
Vestibule 17; egg 49.53×32
A1. jukutensis Kontrimavichus
Vestibule 16; egg 44×31 . . M. eqpalriae n.sp.
Vestibute 13; egg $44 \times 25 \ldots$. M. coructrue nisp.
Vestihule 13-16; egg 45-50 $\times 31-35$
M. meriphasidte n.sp.

Vestibule $16=19$ egg 47-50 $\times 31-33$
M. philemen m.sp.

Vestibule 14-17: egg 51-55 x 33-34
M. streperae nisp.

Vestibule 17-20: cgg 49-51 x 31-33
M symmorhimue n.sp.
From loiciformes:
Vertibule 19; egg 49-53 $\times 33.38$
M. centani Barus

From Coraciblormes:
Vestibule 18; cgg 42.45×30.32
M. bucirolidae Ortlepp
13. From birds of prey 14

From other groups of birds 17
14. Vestibule not longer than $23 \ldots$... 15

Vestibule over $25 \ldots$.
15. Eggs 44-48×24-16..... M. mwnaniut Rasheed

Egg $44 \times 28 \ldots \ldots$.......... Mi. buho Schell
16. Egg $48 \times 28 \ldots$...... M. Mirzal Rashecd

Egg 44-50 x 23-26....... M. aquilo Schell
17. Egg at least 32 wide 18

Egg at most 31 wide.............. 19
18. Length of vestibule less than twice its widh M. xiphidiopici Barus
rength of vestibule at least twice its width
M. helix Ctam
19. Vestibule 30 long M. spiralis (Seurat)

Vestibule less than 25 long 20
20. Egg length $48-50 \ldots . . . M_{1}$. .piculata Boyd

Egg length less than $47 \ldots \ldots 21$
21. Vestibule length $21 . \operatorname{cgg}(34)-43 \times(17)-30$
M. oriolus oriolus Oshmarin

Vestibule length 23; egg 40-46 $\times 25-29$
M. oriolies rasheedac Skrjabin ef al

Microtetrameres helix Cram

Plate 1; Figs. 1-9; Table 2
Microtetrameres helix Cram 1926, p. 355.
Microretrameres corax Schell, 1953, p. 234.
Hosts and localities: Corvis mellori, Launceston, Tas; Balgowan, Ardrossan, Williamstown, Adelaide, SA; C. bennetii (F s only) Ayers Rock, Erldunda, NT: C. coronoides, Adclaide, Heatherleigh, Lock, Oodnadatta, SA; C. orru (os only) Ayers Rock, Alice Springs, Death Adder Creck, NT; Corcorax melanorhamphus, Mt. Crawford, Mantung, SA; Tnverleigh, Vic.
The numerous Austrolian specimens have been compared with M. corax (one male specimen lent by Dr. Schell) and with M. helix (male specimens from Dr. Lichlenfels) and it has been concluded that all belong to the same species.

Schell differentiates M, corax from M. helix in the male by the length of the body and of the left spicule, the bifid tip of the left spicule in M. helix, the absence of a ball point on the tip of the tail in M. helix, and by the distance of the vulva from the tip of the tail.

Examination of the single loaned male specimen of M. corax shows that the tip of the left spicule is slightly incised, resembling that of the Australian specimens (Fige 7), The four male specimens of M. helix (Cram's material) are mounted and are in a poor condition, because of air bubbles on the slides. The tips of the tails are not very clear, but in one there is definite

Figs. 1-8, M. hefix. 1 and 2, head of male, median and lateral views respectively: 3 and 4 , head of female, median and lateral views respectively; 5 , pasterior end of male; 6 and 7, hilt of left spicule in Australian and U.S.A. (M. corax Schell) specimens respectively; 8, tip of left spicule. Figs. 9-1U, M. oriolus. 9, posterior end of male; 10 , hili of left spicule. Figs, 1, 2, 3, 4, 6, 7, 8 and 9 to same scale; Figs. 5 and 10 to same scale.
indication of the presence of a ball point; the hilt of the left spicule is similar to those of the Australian specimens and to that of M. corax.

The measurements of all three sets of specimens are very close, except those of the eggs which in Cram's and Schell's descriptions are smaller than those of the Australian specimens. As it is easy to measure infertile eggs in Microtetrameres spp. this difference is not considered significant. Bethel (1973) recorded M. corax Schell from Pica pica hudsoni in Colorado and studied its life cycle. His young adult males agree in general appearance and in measurements with those of M. helix. Sultana (1962, 336) described M. helix from a hornbill, Tockus birostris, from India. The measurements of her specimens fall within, or close to, those of the Australian ones, except for those of the eggs which are smaller. Morgan and Waller (1941, 16) recorded M. helix from Corvus brachyrhynchos brachyrhynchos from eastern U.S.A. This work has not been seen by the present author.

Oshmarin $(1956,303)$ described M. helix asiaticus from four corvid species from Turkes\tan. This is a large worm known only from the
male. Only one set of measurements is given. It differs from Cram's specimens chiefly in the greater length of the left spicule which is longer than the body.

Other records of M. helix and of M. corax are by Ellis (1972, p. 31 et seq). It appears that the species has a wide distribution, and that it is apparently restricted to corvids and hornbills, apart from the two records from an Australian chough, not now regarded as a corvid. It is possible that closer examination of the specimens from hombills may show some differences not indicated in published measurements and drawings. M. malabari Ali, 1970, from a hornbill, is very similar to Sultana's specimens of M. helix in many points, but differs in the presence of a gubernaculum.

Microtetrameres oriolus Petrov and Tschertkova Figs. 9-10; Table 4

Microtetrameres oriolus Petrov and Tschertkova, 1950, 78. From Oriolus oriolus.

Host and locality: Oriolus sagittatus, Katherine Gorge, NT.

Only a single male worm was collected．It agrees with the description and measurements of M ．oriolus．In M ．oriolus rasheedae Sktj． （syn．M．orioles Rashced，1960，60）the spicules
are shorter．The subspecies M ．oriolus orientalis Oshmarin，1956，is a much smaller worm．The hilt of the left spicules of these species cannot at present be compared．

TABLE 2
Males of Microterrameres helix from Australian birds and from U．S．A．
Unless otherwise indicated，measurements are in $\mu \mathrm{m}$ ．

Host species \qquad Locality \qquad	Corvus mellori				C．coronoldes		C．spp． All Ause． Species．	C．amersé canusU．S．A．	C．coras		Corcorax spp． South Australia
	Tasmania		South Australia		South Australia				U．S．A．		
Number of specimens	19		16		5						
Male： Length（mm）．．．． Oesophagus－ Total Muse．	Range	Mear	Range	Mean	Range	Mean	Mean	（Ram）	Schell	PMM	PMM
	3－7－5．8	5.0	4．1－5．3	4.7	4－0－5－4	$4 \cdot 4$	$4 \cdot 4$	4.9	3．7－4．7	3.6	3．8－4．3
	$860-1200$	1076	900－1 200	1070	$900-1200$	1022	1058	826	885－1051	－	950－1 250
	260－350	309	230－330	298	225－300	265	28.9	274	244－266	二	$270-350$
Buccal capsule Length	19－23	21	19－23	16.7	24－26	21	20	214	21－25 \dagger	20	16－20
Ant．end－ Nerve ring $\ldots . .$.	175－260	187	140－190	179	150－190	163	174	191	151－187	－	160－185
Cerv．pap．．．．．	212－280	225	180－235	210	190－235	208	210	191	194－237	－	200－230
Exer，pore	175－280	214	150－245	202	180－225	4	201	－ 60	154－194	， 70	200－215
Spicule－Left ${ }_{\text {Right }}$	$2800-4200$ $120-162$	3625 140	$3600-4450$ $130-160$	3922	$3650-4510$ $125-145$	4042	3950	3600	$3200-3800$	2650	3000－3950
	$120-162$ $20 \cdot 7-32 \cdot 3$	140 27.6	$130-160$ $23 \cdot 1-30 \cdot 7$	144 27.5	125－145 $25-2-347$	133 $30-5$	141 28.2	135 26.6	$120-140$ $26.6-27.1$	22.1	$110-140$ $27 \cdot 3-29 \cdot 0$
Left spicule Hilt L Hilt factor \qquad	$23-32$ $1.7-2.8$	26 26 2.3	20－27 $1 \cdot 7-2.7$	24 24 2.2	$25-247$ $21-30$ $2.0-2.7$	30.5 27 2.3	28.2 2.2	26.6	$26 \cdot 6-27 \cdot 1+$ -	221 17 1.9	$\begin{gathered} 26-30 \\ 2 \cdot 0-2 \cdot 5 \end{gathered}$
Body Lileft spicule L ．．．．．． Tail	$1-1-1 \cdot 5$ $135-200$	1.3 172	$100-1 \cdot 3$ $140-180$	${ }_{152}^{1 / 2}$	$1 \cdot 1-1 \cdot 2$ $160-180$	$1 / 1$ 172	1164．5	$1 \cdot 3$ 183	$\frac{1 \cdot 1-1 \cdot 24}{160-207}$	1.4	$\begin{gathered} 1 \cdot 1-1+3 \\ 165-170 \end{gathered}$
Femate：							From Corvus arru				
	$1760-1900$	－	$1640-1900$	－	1800－2000	一					
Musc，．．．．．．．	340－360	－	340－380	二	1860－420	－	$\begin{array}{r}1400 \\ \hline 200\end{array}$	225－250	1625－1．709	二	－
Vestibule－											
Lerigth ．．．．．．．．．	11－0－25	－	${ }_{11 \cdot 2-26}$	－	$\frac{33-26}{8.8-12.1}$	－	22－23	22.5	24－35 \dagger	二	－
Ant end，Nervering	190－200	二	185－250	－	$190-210$	三	180	－	126－129	－	－
Tail ．．．．．．．．．．．．	200－220	－	190－220	－	190－310	－	180	141	129－187	－	－
Post．end vulva ．．．	$340-350$	－	300－330	－	320－450	－	290	216	237－240	－	－
Egg－Length．．．．t．	$\begin{gathered} 50-52 \\ 33 \end{gathered}$	－	$50-55$ 33	－	50－53	－	$57-53$ 33	42 31	47 32	－	－

As these proportions are taken from the largest and smallest measurements given by Schell they may be intexact．
\dagger Measured by the authors．

TABLE： 3
Measurements of Mictoterameres melinhasidae and A ，philemon．
Unless otherwise noted measurements are in $\mu \mathrm{m}$ ．

Host species．．．．．．．．．．．．．．．．．．．	Microtetrameres meliphagidue								Af，philemon	
	Acamhogenys sp．		Manorima spp．		Meliphriga spp．		Anthachoeral spp．		Philemonspp．	
Numbor af specimens	13		10		16		17		18	
Male，	Range	Mean	Range	Mean	Range	Mean	Range	Mcan	Range	Mean
Length（mm）	2－0－3－1	$2 \cdot 7$	1．9－2．2	2.1	1．9－2．7	2.2	1－8－2．8	$2 \cdot 3$	$2.8-4.3$	$3 \cdot 4$
Oesophagus－Total	550－680	6.4	450－600	552	490－650	562	500－730	587	600－850	736
Musc．	190－245	218	190 （1．${ }^{\text {（ }}$		170－240	193	180－240	202	205－250	230
Vestibule lengits	11－14	13	12－13	13	12－14	13	11－14	12	13－17	15
Ant．end－Nerve ring	130－170	152	135 （1x）	－	120－150	132	120－150	133	120－165	144
Cerv，Map．	160－210	194	170 （1x）	－	150－200	170	145－204	173	150－225	181
Left Spicule－Lety	$155-205$ $1450-2200$	182 1910		1642	125－180	153	130－177	152	140－205	166
Left Spicule－Left	$1450-2200$ $90-130$	1910	$1550-1770$ $50-110$	$\begin{array}{r}1642 \\ \hline 98\end{array}$		1644 96	$1500-2050$	1737	$2200-3000$	2571
Ratio	$90-130$ $14.1-20 \cdot 7$	16.9	1＋3－18．3	98 16.8	＋85－110	96 17.4	$80-120$ $15.9-14.8$	103 16.7	95－12．	109 23
Body L／left spiculs	1．2－1．6	1.4	J．2－1．3	$1 \cdot 2$	1－2－1－4	1.3	1．1－1．5	1.3	$1 \cdot 2-14$	1.3
Left spicule－Hilt L．	17－26	24	18－27	23	17－30	22	17－30	22	19－26	27
Hilt factor	$2 \cdot 0-3 \cdot 2$	2.5	2－2－3－3	2.8	2．2－3．3	$2 \cdot 6$	2－3－3．2	2.6	1．9－2．5	$2 \cdot 3$
Tail	110－140	112	100－130	115	$100-140$	115	95－130	112	120－150	131
Finmale：										
Ocsophagus－Total ．	1600 260	－	$850-1200$ $220-320$	－	1200 $270-280$	－	$\begin{aligned} & 980-1400 \\ & 200-300 \end{aligned}$	二	$900-1450$ $280-300$	－
Vestibule－Length ．．	13－15	－	－ $14-16$	－		－	200－300	－	280－300	\sim
Ext．Breadth	10－12	－	10－11	\square	10－11	二	10－11	－	10－12	
Ant，end Nerve ring	140	－	150－175	－	160－170	－	130.160		140－160	
Tail ．．．．．．．．	80－120	－	120－140	－	150	－	120		130	
Post．end vulya	130－220	－	220－270	－	240	－	230	－	230	
Egg－Length	49－50	－	48－30	－	50	－	50	－	\＄6－50	
Breadth	31－35	－	31－33	－	30	－	31－3，	－	31－33	

联3

Figs. 11-23, M. meliphagidae; unless otherwise stated, all from type host. 11, anterior end of male; 12 and 13, lateral and ventral views of posterior end of male; $14,15,16,17$, and 18 , hilt of left spicule; 14, from type host; 15 and 16, from Anthochoera sp.; 17, from Myzantha sp.; 18 , from Mcliphaga sp.; 19, entire female; 20, bead of female; 21 anterior end of female; 22, posterior end of female; 23, egg. Figs. 11, 12 and 13 to same scale; Figs. $14,15,16,17,18,20$ and 23 to same scale; Figs. 21 and 22 to same scale.

Microtetrameres meliphagidae n.sp.
Figs. 11-23; Table 4
Hosts and localities: Acanthogenys rufogularis, Pt. Augusta, Flinders Ranges, Blanchetown, Meningie, SA; Meliphaga virescens, Blanchetown, Eyse Peninsula and the Flinders Ranges, SA; M. leucotis, Eyre Peninsula, SA; M. melanocephala, Canberra, ACT, Naracoorte, SA; M. flavigula,

Flinders Ranges, SA; Anthochoera chrysoptera, Naracoorte, and Mt. Barker, SA; A. carunculata, Adelaide, Eyre Peninsula and Yorke Peninsula, SA.

The male of this species is of medium size, with a short buccal capsule almost as wide as long. The left spicule is rounded, with a small cleft at the tip. The right spicule is simple, rounded at the tip. There is no gubernaculum.

The body of the female is twisted into a reversed spiral, sometimes twice reversed, The buccal capsule is barrel-sthuped. There is a shore intestinal caecum. This species is closest to M. plitemon $n . s p_{4}$, in which the left spicule is longer and the spicule ratio greater; to M. saguei Barus (1966) from Myadestes sp. (Turdidae) from Cuba, and to M. gymnorhinae n.sp. in both of which however the buccal capsule is clongate,

Microtetrameres philemon $\mathrm{n} . \mathrm{sp}$.

Figs. 26-28: Table 4
Hosts and localities: Philemon argenticeps, Coomalie Creek and Berrimah, NT; P. citreogularis, ($\%$ s), Coomalie Creek, NT; Entymyzon cyanotis, (immature 95), Edith R, and Yam Creek, NT.

All the specimens of Microtetrameres taken from honeyeaters in the Northern Territory are distinctly larger than those from South Australia The specimens from Entomyzon, though immature, are larger and have a larger buccal capsule than those of a similar stage from Acanthogenys rufogularis from South Australia, and are similar to some from Philemon sp. The distinction between the two groups is not only
of size, as the spicule ratio is quite different. The hilt of the left spicule is similar to that of M. meliphagidae, and the ratio between the lengths of the left spicule and the body, the egg size, and the shape of the female body (though not its size) are similar in the two species. The size of the body and spicules are somewhat similar to those of M. oriolus oriolus but the buccal capsule and eggs are smaller.

Microtetrameres mirafrae $1 \mathrm{~s}, \mathrm{sp}$.

Figs. 26-28; Table 4
Host and locality: Mirafra javanica, ? loc ${ }_{1}$, NT (6 is s, 1 imm . ㅇ) ; Microeca leucophaea, Newcastle Waters, NT (1 of); Blanchetown, SA (1 of), Waikerie, SA (3 young 95).

These are small worms, in some ways resembling M. meliphagidae but the buccal capsule is more elongate and the left spicule shorter with a more slender hilt. The only females in the collections are immature. The male specimen from Microcca is very similar in shape and proportions to those from Mirafra. The females from Microeca from SA are placed in this species because they are from the same host species.

TABLE 4
Measurements of Micrufetrameres miafroe, M, symmorhinae, M, streperae and M, cractici Unless otherwise indicated. measurements are in $\mu \mathrm{tr}$.

Speciesss...	M, mirafrae		M. gymnorhinae			M. streperae	M. cractici
Host species	Mirafina jarunica	Microeca leucophaea	Gymnorhinat. tibicen	G. libicen leaconota	Mcan of all from Gymnorhince sp.	Strepera versicolor	Cracticus forquatus
Number of specimens...t.t.t	6	1	6	16		1	3
Male:							
Lengih (mm).	1.8-2.0	1.4	2.3-2.9	2.2-3.2	2.6	$3 \cdot 1$	1-3-1-7
Oesophagus-Total	480-560	470	750-1080	620-800	751	900	530-580
Musc.	170-210	190	230-290	215-300	245	260	195-210
Buccal capsule length (.).	12-13	12	14-19	14-17	16	14	13-16
Ant. end-Nerve ring. . $:$,	125-140	100	130-190	130-165	151	150	135-150
Cerv pap.	145-170	120	155-230	155-190	168	-	150-170
Excr. pore	148-160	120	150-180	145-200	171	-	150-165
Spicule-Lelt	$1100-1200$	1060	1500-1830	$1400-1960$	1685	2100	860-1000
Reight	80-92	80	90-124	100-120	113	100	80-100
Ratio	13.1-15.0	13.3	15.2-17.0	14-2-18.2	14.2	21.0	8.6-11.2
Left spictale-Length	1.3-1.7	1.3	1.3-1.7	1.4-1.8	1.6	1.5	1.5-1.7
Hilt	19-27	14	32-36	26-38	34	45	20-32
Factor	$3.0-4.0$	30	$3 \cdot 3 \cdot 4 \cdot 2$	3.3-4.4	3.7	$5 \cdot 0$	4.1-4.6
Tuil ,	115-130	120	130-180	130-160	-	130	110
Female:							
Ocsophagus-Total	-	650	1300-1320	1150	-	$1600-1800$	-
Musc. ...	-	190	280-310	. 250	-	330-400	-
Buceal crapsule-Length .1.	-	19	17-20	17-20	-	14-17	-
Breadih.	-	8.0	11-12	11	-	12-13	-
Tail	-	90	120-130	190	-	140-200	-
Post. end vulva	-	140	280-290	300	-	340-350	-
Egg-Lengit.	-	-	$49 \cdot 5-50 \cdot 6$	$49 \cdot 5$	-	50.6-55.0	-
Breadth	-	-	30.8-33.0	$30 \cdot 8-33 \cdot 0$	-	33-341	-

In the spicule ratio and the ratio of the lengths of the left spicule and the body，this species is very close to M ．jakutensis Kontrimavichus， 1958，from species of Alauda，Motacilla，Anthus and Prunella，but as it is impossible to compare the hilt of the left spicule and as females are not present in the Australian species，it is considered wiser to regard the Australian species as distinct， pending further information．

Microtetrameres gymnorhinae n．sp．

Figs，29－35；Table 4
Hosts and localities：Gymnorhina tibicen tibicen， Canberra，ACT；G．tibicen leuconota， Clarendon，Victor Harbor，One Tree Hill， Ashbourne，Blackwood，Naracoorte，SA．

Microletrameres specimens from Gymnorhina spp．are about the same overall size as those from honeyeaters．They are differentiated in the male mainly by the characters of the left spicule， which is rather shorter and has a more elongate Trilt and in botls sexes by the more elongate buccal capsule．

In many specimens the tip of the left spicule， which as in all the Australian species is enclosed in a small ula，is incompletely chitinised so that it appears bifid or broken．

The female body forms a complex coil，often twice reversed and sometimes with the tail end passing between the coils．The whole coil is about the same size as that of M ．meliphagidae．

Microtetrameres streperae n．sp．
Figs．36－40；Table 4
Host and locality：Strepera versicolor，Waikeric， SA（1古，4qs）．
The tip of the left spicule is bifid，within the terminal ala．The female body forms an irregu－ lar coil reversed two or three times．No intestinal diverticulum was seen．The egg is larger than that of most other Australian species．

In most measurements it resembles M．parac－ cipiter but the buccal capsule is shorter and the shape of the hilt of the left spicule is differens． It differs from M．gymnorhinae（from al host species closely related to Strepera）chicfly in the spicule ratio and the shape of the hilt of the left spicule．

Microtetrameres cractici n．sp．
Figs．41－42；Table 5
Host and locality；Cracticus porquatus，Eyre Peninsula，SA（3 as）．
The tip of the left spicule is entire and rounded，lying within the terminal ala．

The species is close to M ．asymmetrica Oshmarin，1956，from Lanis sp．，USSR，and to M，minima（Travassos，1914）from Tachyphonus sp．，Brazil．These three species are very similar in such measurements as are available．The male of M ．minima is briefly described and poorly figured．M．asymetrica differs from M．cractici in having the tail longer in comparison with the length of the right spicule and in the shape of the hilt of the left spicule．

TABLE 3
Messurements of Micmmenmerry oriolus，M．cocomants，M．aegotheles，M．coracinae，M，splecortheres，and M．copsaltriae． Unlest ntherwise inticated．all measurements are in $\mu \mathrm{m}$ ．

Host specties	A1．orish／us	AH． cucrmanis IM aegotheles			M．coracinae		M． sphbecotheres Sphecotheres flawhentris	M． copsaltriae Eopsalitio austrails
	Oriolus vagitsatters	Crmomanik variolasus	Aegotheles cristuta	Coracina bypoleuca	C．novae－ hollandiae	Cuculis palliclus		
Number at＇specimens ．．．	1	7	1	1	1	1	2	1
Male ${ }^{\text {－}}$								
	3.4	3：1－3．3	$2 \cdot 0$	$2 \cdot 1$		2.6		2.6
	710 800	（60）－900）	$\overline{10}$	－	480	＝	$7001(1 x)$ $190-200$	690 220
Buccul capsule ．－．	16	$1(1-22$	13	13	11	13	16－17	11
Ank end－Nerve ring in，	180	$140 \cdot 200$	200	－	－	－	130－132	141）
	$\overline{180}$	160）（15）	240	－	－	－	132－135	170
Spicule－luntr pore－	180 3000	$155(15)$ 1900.250	1250			1150	142 （18）	170
Spicule－Kil Righb．．．．．．．．．．．．．．．．．．．．．．	3000 110	－ $1.30-150$	1250 75	1000 100	300 90	1150 115	$1000-1100$ $95-115$	1420 130
Rern Rulio－．．．．．．．．．．．．．．．．．．．．．	$27 \cdot 3$	14：3－16：1	16－6	14.10	13.3	11.7	9－11	$10 \cdot 1$
Leth Spicule－Length ．．．．．．．．．．．．	$1-1$	1－6－1－4	1.6	1.5	1.4	1.9	$2 \cdot 0-2.3$	1.8
Hill L L－－．－．－．－．	26	55－78	27	37	47	50	36－40	27
Tail Hilt factor－1＋1т	2.5	6．0－8．1	3.5	7.9	－6．3	611	4．7－5．6	3.7
Ocsophayus－Tntal ．．．．．．．0．．．．．．．．．．	－	1150	$850-1040$	（1） x ）	－	－	－	7
	－	330	311		－－	－	－	295
Buctal capsulc－Lcogih，．．．．．．．．．．0．t	$=$	14－20	13	14	－	－	－	17
Toil Breadth $114, \ldots 10011$ L	－	11	9	11	－	－	$\underline{\square}$	10
Poil cnd vilya	－	160 300	190 320.330	－	二	－	－	160
Post，cnd Vilva	＝	300	$320 \cdot 330$ 45	4.4	－	－	二	220
Breadth	－	28	25－26	29	－	二	二	31

Figs. 36-40, M. streperae. 36, posterior end of male; 37, hilt of left spicule; 38, entire female; 39, posterior end of female; 40, egg. Figs. 41-42, M. cracticis. 41, posterior end of male; 42, hilt of left spicule. Figs. 43-45, M. cacomantis. 43, posterior end of male; 44, hilt of left spicule; 45 , posterior end of female. Fig. 46, M. coracina, hilt of left spicule. Figs. 47-48, M. sphecotheres. 47, posterior end of male; 48, hilt of left spicule. Figs. 36, 41, 43 and 47 to same scale; Figs. $37,40,42,44,46$ and 48 to same scale; Figs. 39 and 45 to same scale.

Microtetrameres cacomantis n．sp．
Figs，43－45；＇Jable 5
Host and localivy：Cacomantis variolosus，Tober－ mory，NT（7\％s，2空s）．
The males are distinguished by a combination and a low spicule ratio．The body of the female forms a more or less spherical knot from which of a short left spicule with it long slender hilt， head and tail protrude；one is ansimple and one a reversed spiral．

The species is perhaps nearest to M ．centuri Barus，1966，trom a Cuban piciforme bird，and M．cercl n．sp．from an Australian harrier．It is distinguished from both of these by the spicule ratio and actual spicule lengths，and from M ． cerci by the shape of the hilt of the Jeft spicule．

Microtetrameres coracinae n．sp．

Fig．46：Tuble 5
Hosts and localities：Coracima movachollandiae （ 13,3 juv． 9 s）from Culburra， $\mathrm{SA}: C$ ． hypolcuca（18，I broken o）Katherine， NT；Cucullis pallidus（1；；），Casuarina Beach，N＇T．
Although the three male specimens come from very different localities they are very similar in general morphology and in measurements．They resemble M ，cacomantis but are distinguished by the shorter spicules，and the fact that the right spieule is shorter than the tail．The specimens are not in good condition，but the chitinous parts are unimpaired．The shape of the hilt of the left spicule（Fig．46）distinguishes this from all other Australian species．

Microtetrameres sphecotheres n．sp．

Figs．47－48：＇Table 5
Host and locality：Sphecotheres flaviventris， Katherine Gorge，NT（3 is）．
The tip of the left spicule is indented and alate．The species is nearest to M ，tytomis（des－ cribed below）and M ，oriolus oriolus，It is dis－ tinguished from the former by the length of the buccal capsule．from the latter by the length of the left spicule in relation to the body length，and from both by the shape of the hilt of the left spicule．

Microtetrameres aegotheles n．sp．

Figs．49－52：Tuble． 5
Host and locality：Aegotheles cristam，Markar－ anka，NT（18，2申s）。

In the male the hilt of the left spicule is dis－ tinctly narrower than the shaft，a circumstance not seen in any other Australian specimen．The female forms a reversed spiral．There is a bulge， probably a diverticulum，at the anterior end of the intestine．The species is similar in muny features to M．saguel Barts，differing in the shorter left spicule and tin the ratio of that length to that of the right spicule．

Microtetrameres copsalltriae m．sp．

Figs．53－54，Table 5
Host and locality：Eopsaltria ansiralis，Heather－ leigh，SA（1 \＆， 1 \＆）．

The tip of the left spicule is not fully chiti－ nised．The right spicule is longer than the tail．

The female body forms a spiral reversed about its mid－length．

The measurements of this species are closest to those of M ．cercis n．sp．＇，the buccal capsule however，is much shorter．

Microtetrameres paraccipiter nisp．

Figs 58－61：Tables 6 and 7
Hosts and localities：Accipiter fasciulus from Darwin（\％）．（Type host and locality）． Kunoth Wells（s），and Petermann Range （ㅇ）NT：Happy Valley（q）and Mallala （i）SA；Longford，Tas（q）；Brisbane， Qld（\％）．

The male and female specimens listed above are placed together luere only because they occur in the same host species，but in no case were both males and females in the same host specimen． The female body forms an elongate simple spiral （Fig，61）：the morphology and the measure－ ments of the eggs and buccal capsule are similar in all the lemales present．No intestinal caecum was observed．The male worms are very similat to those of M ．accipiter Schell in measurements and appearance，and the species are separated on characters of the females，which in M．parac－ cipiter lack the longitudinal flange on the body． and the intestinal caecum described for M．acci－ piter．It seens more likely that the male worms from A．fasciatus in Australia belong to the same species as the female worms from the same host species than that they belong to M ．accipiter Schell from an Antrican host．

Figs. 49-52, M. degotheles. 49, posterior end of male; 50 hilt of left spicule; 51 , entire female; 52 , anterior end of fernale. Figs. 53-54, M. eopsaltriae. 53, posterior end of male, 54 , hilt of left spicule. Fig. 55, M. bubo, hilt of left spicule. Fig. $56, M$, aquila, hilt of left spicule. Fig, $57, M$. accipiter, hilt of left spicule. Figs. $58-61, M$. paraccipiter. 58 , anterior end of male; 59 , posterior end of male; 60 , hilt of left spicule; 61, entire female in proventricular gland of host. Figs. 49, 53 and 58 to same scale; Figs, 50, 54, 55, 56 and

57 to same scale; Figs. 51 and 61 to same scale.

TABLE 6

Unless otherwise indicated, measurements are in $\mu \mathrm{m}$.

Speries	M. maruccipiter	M. crrei	Mu. raptorls			Af, minoctis		Af, tyronis	N, sp,
	Accipifer Jaxciatus	Cepcus axximilias	Folco puregrimus	Finberyana	Nunox 3p,	Ninues spo		ryun alba	T ${ }^{1 / 16}$
Lucality	Kuneth Wells, Northarn Territory	Petermana Ka., Northern Territory	South Australlia	Northern Territory and South A ostralia	Northern Territory	Northern' Territory	South Australia	Norihern Tergitory	Norther: Territory
Number of specimens	2	10	6	7	3	1	2	4	1
Lenthy .i........i	3.4 .3 .7 900,950	$\begin{gathered} 2 \cdot 1-3 \cdot 3 \\ 530-800 \end{gathered}$			$\begin{gathered} 2 \cdot 1 \cdot-3 \cdot 0 \\ 8 \cdot 16-1200 \\ 19-20 \end{gathered}$二	$\begin{array}{r} 3.4 \\ 1250 \\ 300 \\ 30 \\ 170 \\ 300 \\ 205 \end{array}$	$\begin{gathered} 2 \cdot 6.3 .2 \\ ?, 1130 \\ ?, 310 \\ 17,21 \\ ?, 160 \\ ?, 210 \\ ?, 185 \end{gathered}$	$\begin{gathered} 2.9-3 \cdot 3 \\ 850-950 \\ 240-250 \\ 20-22 \\ 140 \\ 170-185 \\ 150-170 \end{gathered}$	$\begin{aligned} & 3.9 \\ & 850 \\ & 250 \\ & 20 \\ & 180 \\ & 220 \end{aligned}$
Oesophagus- Antis.	250, 2641								
Buccal capsule...	16,20	21-25							
Ant end-Nerve ring	140. 150								
Cerve pip.o.	190. 200	-							
Spicule-Lefle. Pre...	180,180 2000,2400	1400-1920						$\begin{aligned} & 150-170 \\ & 1200-1250 \end{aligned}$	1900
Spicule-Right	110, 120	115-150			990-130	- 100	-100, 110	115-135	160
Rato	18.2,20.0	10.4-16.0			12.5-16.8	22.5	22.7,24.9	$9.3-10.4$	11.9
L/left spicule--Longth	17, 1-5	1.5-1.8					111.133		$2 \cdot 1$
Hill L. ${ }_{\text {lile }}$	27, 31 $3.0,3.3$	20-32 $2.5-3.3$			$\begin{aligned} & 20-24 \\ & 2 \cdot 5-3 \cdot 3 \end{aligned}$	20 1.8	18.13 1.4 .25	$\xrightarrow{15-21} 1.6$	$4 \cdot 2$
	820, 740	$2.5-3.3$ $110-130$			$\begin{aligned} & 2.5-3.3 \\ & 150-190 \end{aligned}$	160	160, 160	150-155	170

TAMLE 7
 All measurements are in $\mu \mathrm{mm}$.

Species 1Host Species	Al. maracripiter			M, sp,		A. Puprarts			Af. ninoctis	Mr, lytonis
	Accipiter fasciatus			A. cirrancephalus		Faleo. peregrinus	F. berigora	F. hongipennis	Nimox unvacseelondiad	Tira alba
Licality	Northern Tertitory	South Australia	Tasmunia	Tasmania	Sourh Australia	South Australia	South Australia	Northern Territory	Northerti Territory	Northern Terrilory
Oesophagus-Total	1400	2000	1800	1300	1300	1100-2140	$1300-1400$	1050-1400	1500	1300-1400
Ant and merv. -	260	240	270	230	200	210-290	200-240	230-270	250	
Ant, end turve ring ,-*'	130	140	120	100	100	140-170	110-120	17-20	$\stackrel{\rightharpoonup}{21}$	$260-240$ $15-17$
Buccal capsule-Length	15 10	19	17 10	15 10	13 10	$17-20$ $10-12$	19 10	$17-20$ $10-11$	211	$13-17$ $9-10$
Tail	10 250	11	200	180	140	150-190	101)-210	150-170	,	200-280
Post, cruf vulva	400		3100	310	280	250-330	230-320	250-290	$\stackrel{1}{4}$	340-380
Egs-Length	44-45	$44-46$ $24-26$	-	$46-49$ $23-24$	44 24	50 28	-	26-27	46	42-44

Microtetrameres cerci n.sp.

Figs 62-65; Tables 6 and 7
Host and locality: Circus assmilis, Petermann Ranges, NT (12ds, no 오s).

Some of these specimens, all collected from at single host were found actually in the wall of the proventriculus between the glands. The buccal capsule is relatively long, the cloacal lips are outstanding. The tip of the left spieule is not divided, but there is an annular groove shortly before the tip (Fig. 65). In some specimens there is a definite chitinisation of the dorsal wall of the gubernaculum, but this is not present in all. The lips of the cloaca are more prominent in this than in any other Australian species.

The species is distinguished from M aquila and M, bubo by the greater spicule ratio; in measurements and proportions it is perhaps closest to M. centuri Barus and M. cacomantis n.sp., but is distinguished from the former by the very prominent cloacal lips from the latter by the shape of the hilt of the left spicule, and
from both by the rather different, though overlapping, range of measurements. Among Australian species, the measurements are closest to those of M. gymnorhinae, but the species are distinguished by the length of the tail compared to that of the right spicule.

Microtetrameres raptoris n.sp.

Figs. 66.74: Tables 6 and 7
Hosts and localities: Falco peregrinus, P t. Augusta, SA (5 ds, 14 is) (type host and locality), Mallala, SA (1 \% , 1\%); F. berigora, Blanchetown, SA, Robe, SA (9s), Petermann Ranges, NT: F. centhroides, Meningie, SA (2 s s, 1\%): F. longipenmis, Humpty Doo, NT (95); Ninox novaeseelandiae, Petermann Ranges, NT (4 8 s 。 јแv. ํ) .

The buccal capsule is elongate. The tup of the left spicule is bilid (within the terminal ala) and the hilt is stoutly built, tapering very slightly. It is slightly shorter, but similar in general shape,

Figs. 62-65, M. cerci. 62, anterior end of male; 63, posterior end of male; 64, hilt of left spicule; 65, tip of left spicule. Figs. 66-73, M. raptoris. 66, antcrior end of male; 67. posterior end of male; 68, 69, 70 and 71, hilts of left spicules from Falco peregrimus, 1%, berigora, F. cenchroldes, and Ninor novaescelandiae, respectively; 72, tip of left spicule; 73, female worm; 74, posterior end of femalc. Figs. 62, 63, 66 and 67 to same scale, Figg. 64, 65, 68, 69, 70, 71 and 72 to same scale.
in the specimens from F. berigora (Fig. 69) and F. cenchroides (Fig. 70) than in those from the other hosts (Figs. 68, 71). The right spicule is not more than two-thirds the length of the tail. In all specimens there is a distinct gubernaculum, most heavily chitinised in the type specimens.

The body of the female forms a spiral, usually simple, in a few cases reversed. The intestine forms two short cacca at its junction with the oesophagus. There were no females with fertilised eggs in any specimen from F. berigora.

Two male and one female specimens from Falco cenchroides were broken, so measurements are not given. Their general appearance, the hilts of the left spicules and the egg size agreed with those of the other specimens from Falco spp. The females from F. longipennis and those from F. berigora from Robe agree with those from the Blanchetown, but the identification is not certain.

Of the species in which a distinct gubernaculum has been described, the males of these Australian specimens fall closest to M. mirzae

Rasheed, 1960, M. osmaniac Rasheed, 1960 and M. creplini Vavilova, 1926. They differ in the shorter gubernaculum and the shorter buccal capsule from the first two of these. M. creplini was described from Accipiter niseus, from the U.S.S.R., from male specimens only; as the females cannot be compared it is safer to describe the Australian specimens as a separate species.

Microtetrameres ninoctis n.sp

Figs. 75-78, Tables 6 and 7
Host and Incalities: Ninox novacseelandiue. Berrimah, NT (1 in, 4 甲 s); Adelaide, SA ($2 \mathrm{~s} \mathrm{~s}, 2 \mathrm{q} \mathrm{s}$).
The three male worms are similar in measurements, but in those from South Australia the hilt of the left spicule is rather longer.

The tips of the Icft spicules are different in the three specimens-one bifid, one rounded and one truncated. A very slight chitinisation, $30 \mu \mathrm{~m}$ long, of the dorsal wall of the cloaca, which

Figs. 75-78, M. minoctis. 75, anterior end of male; 76, posterior end of male; 77 and 78 , hilts of left spicules from specimens from Berrimah and Adelaide, respectively. Figs. 79-82, M. tytonis: 79. anterior end of male; 80, posterior end of male; 81, hilt of left spicule; 82. egg. Figs. 75 and 79 to same scale; Figs. 76 and 80 to same scale; Figs. $77,78,81$ and 81 to same scale.
could be called a small thin gubernaculum, is present in two specimens, one of them from Berrimah.

The female specimens are broken and the form of the spiral is uncertain. Only one contained fertile eggs.

These specintens differ from M. raptoris recorded from the same host species chielly in the very much longer left spicule and the different spicule ratio. Among specimens in which a gubernaculum is present, the length of the left spicule brings it closest to M. egretes Rasheed, 1960 (from an egret) but the gubernaculum of the male, the buccal cupsule of both sexes, and the length of the eggs, are all shorter than those of M. egretes.

Microtetrameres tytonis a.sp.

Figs. 77-80, Tables 6 and 7
Host and localify: Tyto alba, Banka Banka, NT (4才s, 5 오) 。
Of the six male Microtetrameres found in the only host specimen, four (the type material for M. tytonis) were similar, the fifth was without any spicules, and the sixth was very different, in relative length of the left spicule, in the longer hilt of the left spicule, and in the length of the buccal capsule. The measurements of this sixth
specimen are given separately in Table 6 as it may belong to another species, or may be another aberrant form.

The left spicule in the four similar males is short, considerably less than half the body length; as in some other species the tip is nol well chitinised, looking like a collection of refractile pieces in the terminal ala.

The body of the female forms a long spiral, reversed in the most posterior coil. The eggs, which contain a spiny-headed larva (Fig, 80). are more strongly curved on one side than the other, and the operculum, presumably present, is not distinct.

The species is closest to M. sphecotheres in which the hilt of the left spicule is longer, and to M. raptoris-in which the left spicule ranges from just less than $\frac{1}{2}$ to $\frac{2}{3}$ the body length-but in which the spicule ratio is very different.

Microtetrameres spp.

Female worms only ware taken from the following hosts:-

Accipiter cirrhocephalus, from Koonamore, SA, and Flinders Island, Tas. The measurements of five females from SA and 1 from Flinders Island showed a small difference in the size of the buccal capsule and in the shape of the eggs, from
those of M. paraccipiter. Because of this and because no male is present, the specimens from A. cirrhocephalus have not been allotted to a species. In other respects the specimens from the two host species are similar.

Lalage sueuri tricolor, Mt Barker, SA (2 9 s) ; Sandy Creek, SA (2 qis) All without embryonated eggs. The buccal capsule is $14 \times 10 \mu \mathrm{~m}$.

Oreoicd gutturalis, Waikerie, SA (19), Petermann Ranges, NT, (1 juvenile of). The buccal capsule of the specimen from Waikerie is $12 x$ $10 \mu \mathrm{~m}$, the eggs $44 \times 22 \mu \mathrm{~m}$.

Ptiloris sp" two females, without fertile eggs. Buccal capsule $10 \times 11 \mu \mathrm{~m}$.

Anthus custralis, Reynella, SA, one female only, without fertile eggs.

Cacomantis pyrrhophamus, Gravelly Beach, Tas (19) wilh infertile eggs and Hamley Bridge, SA (3 immature $9 s$). The adult female is coiled in a reversed spiral. The barrel-shaped buccal capsule is $16.5 \mu \mathrm{~m}$ long, $11 \mu \mathrm{~m}$ wide. The specimen is very similar to the female of M. cacomantis n.sp., but is impossible to identify positively on the material available.

ACKNOWLEDGEMENTS

Many of the bird carcases from which Microsetrameres: spp. were obtained were given by the South Australian Museum, or by the Northern Territory Administration (Animal Industry and Agriculture Branch). Others were given by various friends, the late Dr. M. Smyth. Mrs. I. Paton, Dr. R. Swaby and Dr, I, Beveridge. Hosts from. Tasmania were sent by Dr. B. Munday of the Mt. Pleasant Laboratories of the Tasmanian Department of Agriculture, and by Mr. B. Green of the Victoria Museum, Launteston.

Paratype material was lent by Dr. S. C. Schell of the University of Idaho, and the types of M. helix by Dre Lichtenfels of the U.S. Department of Agriculture Research Service, Beltsvillo.

For assistance with the use of the Scanning Electron Mictoscope (Plate 1) 1 am indebted to Dr. Carl Bartusck, of the Geology Department, University of Adelaide.

I am more than grateful for all this help.

RFFERENCES

Alf. A. M. 1970. Observations on the family Tropisuridac Mamagut, 1961 (Nematoda, Spiruridea) with a revised classification of the genus 2'ropisurus (Dicsing. 1835) and it descrimion of four new spacies. Acta frarasto. pal. 18: 85-98.

Barus, V.e 196h. Nematodos te la Familia Tropisuridae Yurhaghth, 1461, Parasitos de AVes de Cuba. Poevoma Ser. A No, 20: 1-22.
Barus. Vo. 1969. Nemalodes parasitic in the burds of Cuba. Fest. cirl Spah =toul. 33: 193-210.
Boyu, E. Al. 1956. Two new species ol stomach worms (Nemutodat: Snirtroidea) from the Blue Jay, Cyano-

Cram. E. B.o 1927. Bird parasites of the mematode suhurders Strongylata Ascaridata and Spirurata. Bull. US. Natohed Musolim 140: 465 pp.

Diaz Ungria, Cos 1965. Nemitodos parasitos de aves de Calabozo. Soc: Vemezolana de ciens. nut. 36: 103. 128.

Ellis, C. Ju 1969. Jife history of Micrometrumeres centuri Barus, 1966 (Ncmatoda: Tetrumetidae) II Alults., d. Parasir. 5S: 713-719.

Ellis, C.J., 1972. Comprative measurentents and host ind geographical distribution of specics of Avicrotetromeres (Nematoda: Tetrameridae). Lowa Stare o Sei. 46: 29-47,
Konlrimavicus, V. L. 1458, studics on the belmuth fituna of passeriforme birds of Yakutya. Works of the Expeditions of the Helminthological Latboralory Actucmy Sciences, U.S.S.R. (1945-1957): 141-150 (in Russian).
Linstow, D. von, 1879. Helminthologische studien. Archir. f. Nallurs. Berl/h 7: 165-18k.

Mawson, P. M., 1956. Threc new species of spirurid mematudes fron Camadian bidds. Can. J. Zon. 34: 193-199.
Morgan, B. B. and Waller, E. E. . 1941. Sume parasites ul the eastern crow (Corwes brachurhynchos brachyrhynchas Brehmi. Bird Banding 12: 16-22,
Orltepp. R. J., 1964. Some Jelminths secovered from Redand Yellow-billed Hornbills from the Kruger Nattional Park. Undersrepoore /. ver. Res. 31: 3y-52.
 meridae) of domestic and wild birds of coustal areas. Trmely Akad. Nank U.SiSR. Firt Eisp Bramch. Koological Scries, 3: 28 J-314. (In Russian.)
Petrov, A. Mr. and Tschertokova, A. No 1950. Cuntribution to tho study of the nematode fauna of birds of southern Kirgixilit. Trwdy Gelmint Lab. i: 9(t-99.
Rastuced. S., 1960. The nematode parasites of the birds of Hyderabad (India). Blologia Lahore 6: 1-16.
Schell, S. C.. 1953. Four new species of Microtetrameres (Nematoda: Spirurodea) Irum North American bids Trums Am Mierose, Soc. 72: 227-236.
Seural, L. G.. 1915. Sur deux Tropidecerca des Ardeidac Comp1. Reml. Soce biol, daris 78: 279-282.
Skrjabin, K. T. and Sobulev. A. A., 1963: (Parasites of animals ind man. Vol. [1. Spiturata: Spiturodeal 572 pp. (In Russian.)
Sultana, A. 1962. On some known and new species of the family Telrameridae Travassos, 1914, from Indian birds. J. I1elminih. 36: 327-338.
Travarsos, I... 1914. Contribuiçes para o conhecimentor da fanna helmintologica brasitcira, 4, Subre at especes Irasileiras do genero Termameres Cseplin, 1846 (Portuguese and German texts.) Mem: Insr. Oswaldr CFル二 6: 150-162.
Travassos, t, 1995 . Sôbre as especice brasileiras de género Terrumeres Cplin (sic) 1846 (Noti previa). BrällAlidler 29: 297-298.
Vavilova, N. M. 1926. (Vogelnematoden Jes Moskatuer Gouvernements) Irudy Ciosularshi. Sist. Eksper. Vel., Moskves 3: 111-131, (R18sian, Gernian summary).
Weidman, Fo 1913. A study of metazoan parasites. found in the Philadelphia zoological gardens froce Acud. Nur. Sei, Phii. 65: 126-151.

LIST OF SPECIES
 Family Tetrameridae

Microtetrameres Travassos
M. helix Cram. syn. M. corax Schell
M. oriolus Petrov and Tschertkova
M. meliphagidae n.sp.
M. philemon n.sp.
M. mirafrae n.sp.
M. gymnorhinae n.sp.
M. streperae n.sp.
M. cacomantis n.sp.
M. coracinae n.sp.
M. sphecotheres n.sp.
M. aegotheles n.sp.
M. eopsaltriae n.sp.
M. paraccipiter n.sp.
M. cerci n.sp.
M. raptoris $\mathrm{n} . \mathrm{sp}$.
M. ninoctis n.sp.
M. tytonis n.sp.
M. accipiter Schell
M. bubo Schell
M. aquila Schell

Plate 1. Head of Microterrameres helix, female, S.E. micrograph. X 8000 . The lateral lobes of the lips became wrinkled and shrunken in drying the specimen, but the median lobes, with the amphids, are clear.

RECORDS OF THE SOUTH AUSTRALIAN MUSEUM

TAXONOMIC STUDIES OF SOME AUSTRALIAN LEPTODACTYLID FROGS OF THE GENUS CYCLORANA STEINDACHNER

By
MICHAEL J. TYLER AND ANGUS A. MARTIN

SOUTH AUSTRALIAN MUSEUM
North Terrace, Adelaide
South Australia 5000
VOLUME 17
NUMBER 15

TAXONOMIC STUDIES OF SOME AUSTRALIAN LEPTODACTYLID FROGS OF THE GENUS CYCLORANA STEINDACHNER

by Michael J. Tyler and Angus A. Martin

Abstract

Summary

The Australian leptodactylid frogs Cyclorana brevipes and C. cultripes are here redefined on the basis of adult morphology and mating calls. Frogs variously reported to be these species from Western Australia, the Northern Territory, Queensland and New South Wales are shown to represent different species. Five new species are described here.

TAXONOMIC STUDIES OF SOME AUSTRALIAN LEPTODACTYLID TROGS OF THE GENUS CYCl.ORANA STEINDACHNER

by

MICHAEL J. TYLER* AND ANGUS A. MARTIN*

Abstract

TYLER, M. J. and MARTIN, A. A, 1976. Taxonomic studies of some Australian leptodactylid fross of the genus Cychorana Stemdachnct Kecs $S_{\text {r }}$ A/sis. Alus, 17 (15): 261-276.

The Australian leptodactylid frogs Cyclorana brevipes and C.cultripes are here redefined on the basis of adult morphology and mating calls. Frogs variously reported to be these species from Western Australia, the Northern Territory, Queensland and New South Wales are shown to represent different species. Five new species are described here.

INTRODUCTION

The leptodactylid frogs of the genus Cyclorana Steindachner occur throughout Australia with the exception of the extreme south-eastern and southwestern portions of the contincnt. As defined by Parker (1940) the genus comprises seven species and, although its content has been changed substantially by subsequent workers, the total of species has been maintained. The additions are C. slevini Loveridge (1950) from southeast Queensland, and the type species C. novaehollandiae Steindachmer which was resurrected from the synonymy of C. australis (Gray) by Tyler \& Martin (1975). The species recognised by Parker but subsequently removed from the genus are C. inermis and C. albogutatus, which were shown by Straughan (1969) and Tyler (1974) respectively to be Jyylid frogs of the genus Litoria, Cogger (1975), on seemingly arbitrary grounds, retains albogutatus in Cuclorana. However, we continuc to regard it is a hylid frog of the genus Litoria, at disposition which has now received additional support from chromosomal studies (Morescalchi \& Ingram, 1974),

It has been suggested that the genus Cyclorana has hylid affinities, and also that Australian hylids and leptodactylids are derived from a common ancestor (Tyler 1970). There are considerable data in support of the first hypothesis: aftinities in musculature were demonstrated by 'Tyler' (1972), similarities of proportions of the adrenal catecholamines by Robinson \& Tyler (1972) and similarities in larval structure and biology by

Watson \& Martirn (1973). In addition, N. Gi Stephenson (pers, comm.) has found that there are numerous chromosomal similarities between C. platycephalus and species of Litoria.

In the course of studies of the poorly documented species C_{1}, brevipes and C. cultripes we had difficulty in confirming the identification of preserved specimens in various museum colleclions. Eventually it became clear that several undescribed species are included under these names. Our purpose here is to deline the existing species and describe new ones and thus take in futher step towards evaluating the genus.

MATERIAL AND METHODS

Specimens reported here are deposited in university and museum collections abbreviated as follows:-

$$
\begin{aligned}
& \text { A.M. }=\text { Australian Museum, Sydney } \\
& \text { B.M. }=\text { British Museum (Natural History) } \\
& \text { London } \\
& \text { J.C.U. }=\text { Department of Biology, James } \\
& \text { Cook University of North Queensland, } \\
& \text { Townsville } \\
& \text { M.C.Z. }=\text { Museum of Comparative Zoology, } \\
& \text { Harvard University, Boston, U.S.A. } \\
& \text { M.U.D.Z. }=\text { Departnent of Zoology, } \\
& \text { University of Melbourne } \\
& \text { N.M.V. }=\text { National Museun of Victoria, } \\
& \text { Melbourne } \\
& \text { N.P.W.S. = National Parks and Wildlife } \\
& \text { Service, Yeerongpilly, Brisbane } \\
& \text { N.T.M. }=\text { Northern Territory Museum, } \\
& \text { Alice Springs } \\
& \text { Q.M. = Queensland Museum. Brisbane } \\
& \text { S.A.M. = South Australian Museum, } \\
& \text { Adelaide } \\
& \text { W.A.M, = Western Australian Museum, } \\
& \text { Perth }
\end{aligned}
$$

Methods of measurement and of recording and analysis of mating calls follow our previous treatment of members of this genus (Tyler \& Martin 1975).

[^11]

FIG. J
Hands and reet of Cuchorona species: $A=$ Foot of C : foumipes (WAM $R 14157$) : $B=$ firs digit of C. lungthe's showing nuptial pats (WAMT R 14157): C fooi of C . cuftripes (NMV D 12703), D hand ul C. lungipes (IVAM R 14157); $E=$ hand of C_{0} cullipes (NMY D 12703).

SYSTEMATICS
 Cyclorana Stciladachner, 1867

The eptodactylid frogs of the subfamily Cycloraninae are distinguished morphologically from those of the Myobatrachinae by possession of a broad tongue, and omohyoideus muscle, pedunculate alary processes on the byoid, and confluent occipital condyles.

Cyctorana is distinguished from all other cycloranine genera by possession of a differentiated intermandibularis muscle, forming an apical element. It is further distinguished from Notaden by possession of teeth on the maxilla and premaxilla, and from Heleioporus, Mixoplyes and Neobatrachus by having the first finger opposed to the remainder (Fig. 1).

Lynch (1971) has provided a detailod generic diagnosis of Cyclorana, and we defer any major redefinition pending completion of our studies of all members of this genus. However, insofar as the species discussed here are concerned, the following data diverge from Lynch (1971), who studied other species:-

Squamosal:- The zygomatic process of the squamosal is in extensive juxtaposition with the maxilla (not a feature confined to cuustralis).

Palatine:-Each palatine bears pronounced pre- and post-chounal alae.

Tympanum:-The tympanum is normally visible, but is completely covered with skin in C. cryptotis.

Within the genus Cyclotana several species groups are recognisable. C. australis and C. novachollandice comprise one group. They are large, sobust frogs ($\mathrm{S}-\mathrm{Y}$ range for adults $61 \cdot 4-120$ mm) in which there is exostosis of the maxillary, premaxillary, frontoparietal ind squamosal bones (Tyler \& Martin 1975). Cyclornna platycephalus is similarly a large frog but lacks exostosed skull bones. It has extensive webbing between the toes, and possesses a shovel-shaped inner metatarsal tubercle. Cyclorana stahlit is a large frag adapted to aquatic conditions. It has fully webbed toes but lacks such a luberele, and lacks an exostosed skull.
The remaining species are smaller in size. possess two separate nuptial pads on the first finger (Fig. 1), and have little or no webbing between the fingers. These species form the subject of the present paper.

All the species on which we have call data share an essentially similar mating call structure Following the interpretation of Watkins (1967) of
signals of the kind represented, the basic call structure can be described as a pulse-modulated pure frequency. Interspecific variations oceur in frequency, pulse sate and duration of the signal
To assist in treatment of the undescribed forms the currently recognised species C. brevipes (Peters) and C. cultripes Patker are first redefined.

Cyclorana brevipes (Peters)

Chiroleptes brevipes Peters, 1871. Mber. Akad. Berlin 1871: 648
Chiroleptes brevipalmanis Gunther, 1876, J. Mus. Godeffroy, 12: 47
Phractops brevipes: Nieden, 1923: 523
Cyclorana brevipes: Parker, 1940: 21
Holotype: A presumably subadult specimen (S-V 31 mm) collected at Bowen ("Port Bowen"), Queensland, by Godeffroy, Specimen now missing (\mathbf{G}. Peters in litt.).
Definition: A small or moderate-sized species (S-V of males $36-45 \mathrm{~mm}$), clearly distinguished from congeners by its smooth skin and striking dorsal pattern of sharply demarcated areas of dark pigment on a very pale greyish or brownish background (Fig, 2).

Description: The head is broadly rounded when vicwed from above and ranges. from being distinctly broader than long to almost at broad as long (HL/HW 0.84-0.98). The snout is rounded when viewed from above and in profile. The cye is conspicuous, its diameter almost one and onehalf times the eye to naris distance. The canthus rostralis is sttaight and inconspicuous. The nostrils are inclined laterally and separated from one another by a distance which is almost invariably greater than the internarial span (E-N/IN 0.97-1.19). The tympanum is entirely visible except for the upper portion of its annulus which is occasionally hidden beneath the supratympanic fold.

The tongue has a diameter of about one-half of the gape of the mouth, and is almost entirely free behind. The choanae are small and widely spaced, and the vomerine teeth are on obliquely converging elevations whose posterior margins reach or extend behind the posterior margins of the choanae.

The fingers are short, unwebbed and without lateral fringes. The foot has a prominent inner metatarsal tubercle. The toes are webbed only at the base, the webbing on the fifth toe not reaching the subarticular tubercle at the base of the penultimate phalanx. The hind linibs are very short (TL/S-Y 0.36-0.45).

The skin of the dorsal surface is entirely smooth. The ventral surface is smooth anteriorly and finely granular on the abdomen.

In preservative the dorsal surface is pale grey marked with sharply defined vermiculations of black or dark slate. There is a narrow white vertebral stripe extending posteriorly at least as far as the sacral region. Dark markings are commonly absent from the posterior margin of the head, creating a pale, transverse, broad post-
ocular bar. There is a dark stripe from the tip of the snout to the eye. The posterior surfaces of the thighs are an immaculate dull brown. The ventral surface is usually white or a dull cream colour, with the submandibular margin of adult males varying from pale grey to black.
Material examined: Queensland-QM J 1877374 Ban Ban; JCU Al5 (4 specimens), SAM R 3966 (2) Bowen; QM J 1877614 km E. of Biggenden; AM R 16928 Gin Gin; QM J

K. 8 1976

1976

FIG. 2
A and B dorsal and lateral aspects of Cyclorana brevipes (SAM R 15223); C and D dorsal and lateral aspects of C. verrucosks (QM J 18117).

18775 Helidon; MUDZ 109/70, 110/70 6 km E. of Gracemere; SAM R 15223 Mourangee Station, Edungalba; QM J 18771; 18772, 18777, 18779, 18118, Murphy's Lagoon near Townsville; SAM R 15488 Bundaberg (alizarin); New South Wales-QM J 18778 Warrumbungle Natnl. Pk.
Comparison with other species: This species can be distinguished from all congeners except C. longipes and C. maculusus by the existence of very sharply demareated areas of black or intense brown pigment on the dorsum. Detailed comparisons of these species with C. brevipes appear in the accounts of those species. Some other species possess dark markings but in none is there a sharp delimitation from the background colouration.

The existence of the dark markings is sufficient to distinguish the species from C. cultripes which (in preservative) is most commonly a dull, dowdy grey frog lacking any dark pattern. In addition C. cultripes tends to have shorter legs, the TL/S-V ratio for C. brevipes being $0.36-0.45$ (mean 0.41) and for C. cultripes 0.33-0.40 (mean 0.37).

Call: Calls of C. brevipes were recorded 6 km E. of Gracemerc, Qld, on 19-20.i.1970. The frogs were calling from positions near the margins of a permanent pond in lightly-forested country; wet bulb air temperatures at the calling sites ranged from $23.8^{\circ} \mathrm{C}$ to $25.8^{\circ} \mathrm{C}$. Calls of five individuals were recorded, and mean values (with ranges in parentheses) are: call duration 1090
msec (957-1460); dominant frequency 1930 Hz (1470-2210) ; pulse repetition rate 169 pulses/sec (163-175) (Fig. 3).

Discussion: Chiroleptes brevipes Peters was based on a single, unsexed specimen with a "total length" (probably slightly more than snout to vent length) of 31 mm . No illustrations of the species were provided and, in the absence of the holotype and any previous critical studies, it is virtually obligatory for us to investigate its identity.

Boulenger (1882) referred Chiroleptes brevipalmatus Gunther to the synonymy of brevipes. In the light of the fraction of the Australian species known at that time, such an action also merits investigation, Insofar as the latter step is concerned our material conforms to, and varies from, the elaborate pattern depicted by Boulenger to an extent that eliminates any doubts based solely on external morphology.

Other than in size the only real areas of difference between our material and Peters" description of brevipes involve colouration. In particular none of our specimens tallies with the description of the surface of the thighs and of the ventral surface. Peters (1871) writes: "Die Hinterscite der Oberschenkel schwarz. Die ganz Unterseite einfarbig rostbraun". In other species examined by us there is not a difference of this magnitude between immature and adult material, leading us to attribute the darker colour of the holotype

FIG. 3
Diagrams showing male mating call structure of: \mathbf{A}, C. cultripes; B, C chyphotis; C, C. mainf; D, C. brewiper: E. C. maculosus. In cach case the upper trace is a representation of an audiospectrogram and the lower trace a diagram of the pulse repetition rate, showing the number of pulses in a 50 msec segment of the call. Details of recordiog localities are contained in the text.
venter to an artefact of preservation, rather than to an outogenetic trend.

Distribution: In addition to the localities cited above, this species has been taken at Port Denison, Peak Downs and Gayndah (types of C. brevipalmatus) and from Coomooboolaroo Station, Qld, (Slevin 1955). As indicated in Fig, 4 the species occurs in coastal Queensland south of latitude 19°, and east of the Great Dividing Range.
A series of four frogs (NMY D0737-40), taken at Lower Archer River on the Cape York Peninsula by J. Thompson in 1933, has been excluded from this species but is not assigned to any other at this stage. Their narrowly spaced nostrils (E-N/IN 1.22-1.25) are conspicuously different from the habitus of all 21 measured specimens throughout the considerable geographic
range of C brevipes. It is conceivable that these frogs represent longipes despite the vast gap in distribution between the Lower Archer River and north-eastern Western Australia.

Cyclorana cultripes Parker

Mitrolysis albogutatus (non Gunther): Loveridge (1935): 13 (part).

Cyclorana cultripes Parker, 1940: 22 (part).
Holotype: BM 1908. 2.25.33, an adult male, collected at Alexandra, Northern Territory, by W. Stalker.

Definition: A moderate-sized species (males 4352 mm , females 44.55 mm) with short hind limbs; dorsally marked with a broad, pale, transverse,

FIG. 4
Distribution of seven species of Cyelorana. The stippled area reprisents the geographic range of C. maint.
postocular bar and a narrow, pale vertebral stripe on an otherwise featureless dorsum (Fig. 5).

Description: The head is triangular and distinctly broader than long (HL/HW 0.88-0.97). The snout is rounded when viewed from above and in profile. The eye is inconspicuous but its diameter is greater than the eye to naris distance. The canthus rostralis is straight and inconspicuous. The nostrils are inclined laterally and are separated from one another by a distance which is greater than or less than the eye to naris distance (E-N/IN $0 \cdot 89-1-31$). The tympanum is entircly visible except for a portion of the superior margin of its annulus which is hidden beneath the supratympanic fold.

The tongue is broad and is almost entirely free behind. The choanae are small and widely spaced, and the vomerine teetls are on oblique converging elevations whose posterior margins just reach or extend posterior to the posterior margins of the choanae.

The fingers are short, unwebbed and lack lateral fringes, The foot has a prominent inner metacarsal tubercle (Fig, 1). The toes are only slightly webbed, the webbing on the fifth toe not reaching the subarticular tubercle at the base of the penultimate phalanx. The hind limbs are very short (TL/S-V 0.33-0.40).

The skin of the dorsal surface is smooth exeept for occasional rubercles on each side of the midline in a few specimens. Ventrally the skin is weakly granular in the posterior portion of the abdomen and smooth elsewhere.

Lh preservative the dorsum is a dull and uniform greyish or brawnish colour. A pale postocular bat varies from being conspicuous to just detectable, whilst a very fine, white or creamish vertebral stripe can be scen quitc clearly. The ventral surface is usually cream with the throat of males a dark grey. NMV D 12703 is entircly grey ventrally, but this may be an artefact of preservation.

Material examined: Northem Territory-BM 1908. 2.25.33 (Holotype), BM 1947, 2,18,46-47 (Paratypes), MCZ 11647, Alexandra: NMV D 5732 Chatlotte Waters: NMV D $12703{ }^{\circ}$ Central Australia" Spencer Collection: SAM R 14724-25 Alroy Downs: SAM R 14726 Barrow Creek. Westerm Australig-WAM R 2725117 km N. of Argyle turn olf on Duncan Highway. Queenslund -NPWS 12610, 12622 Durham Downsः NPWS 12628-29. 12632-36 Dynevor Downs.

Comparison wirli wher specles: Cyclorana cultripes is set apart from most congeners by its rather drab appearance. The dull greyish or
brownish dorsum is relieved only by the palc postoctar bar and the mid-vertebral stripe, of the six other species reported here only C. craphotis shares the absence of particularly conspicuous patches or motting of the dorsal surface. The externally visible tympanum distinguishes C. cultripes from C. cryptotis which has the tyrmpanum covered with skin and 50 not visible externally. Cyclorama culfripes lacks the dark lateral head stripe of C. maini.

Call: Calls of two specimens of C. cultripes were recorded at Alroy Dówns, $\mathrm{N}_{\mathrm{i}} \mathrm{T}_{\mathrm{p}}$, on 12.xii.1971. This locality is approximately 70 km W.S.W. of the type locality. The frogs were calling from the margins of a flooded roadside ditch; the wet bulb air temperature was $23 \cdot 8^{\perp} \mathrm{C}$. Means and ranges of call values ate: duration 221 msec (220-223); dominant frequency 1879 Hz (1857-1900); pulse repetition rate 373 pulses/sec (370-375) (Fig. 3).

Distribulion: As presently defined C. culmipess is known from tive localities, all in or adjacent to the Northern Territory. The presence of the species as far south as Charlotte Waters indicates that it probably occurs in South Australia. However the specimen involved is part of the Spencer Collection. Thus the precision of the locality is questionable.

Discussion: Parker (1940) was the first to observe that a wide diversity of animals were being identified as brevipes. Accordingly he referred four of the specimens available to him to the new species cullmipes which he erected to accommodate specimens from "Western New South Wales, Northern Territory and northern West Australia, probably northerm South Aus(ratia also". Parker was certainly correct in recognising the existence of an additional species. but he included in his type series a female from Wilcannia on tho Darling River, N.S.W. This individual we relier to the new species, verrucosus. Similarly Parker"s deductions about the identity of specimens from other parts of Australia and not examined by him are attributable to other species described in the present paper.

Cyclorana vertucosus new species

Phacrop, brevipalmatus (non Gunther), Fry 1915: 70.

Phracrops brevipes (non Peters). Loveridge, 1935: 12.

Cyclorunu cultripes Parker, 1940: 22 (patt).
Holotype: QM J 18105. a gravid femalc collected 18 km W. of Dalby, Qucensland by I. R. Straughan on 8.ii. 1964.

Definition: A moderate-sized species (males 3545 mm ; females $39-48 \mathrm{~mm} \mathrm{~S}-V$) with a duil and diffusely marked dorsal colouration and a slightly to extremely warty dorsal skin surface.

FIG. 5
Cycharana verpacesusi Photo: A. Easton
Description of Holotype: The head is high, broadly triangular and distinctly broader than long (HL/HW 0.91). The snout is rounded when viewed from above and in profile, The eye is large and prominent, and its diameter is equivalent to one and one-third times the distance between the eye and the naris. The canthus rostralis is poorly defined and very slightly curved. The nostrils are inclined dorso-laterally and are separated from one another by a distunce very slightly less than the internarial span(E-N/IN 1.03). The tympanum is visible except for a small superior portion of the annulus which passes beneath the supratympanic fold.

The tongue is very broad and is almost entirely free behind. The choanae are small and broadly spaced and the vomerine teeth are on oblique, converging elevations whose posterior margins are anterior to the posterior borders of the choanae.

The fingers are slender and unwebbed and lack lateral fringes. The foot has a prominent inner metatarsal tubercle and the toes ate webbed only at the basc: The webbing on the fifth toes does not reach the subarticular fubercle at the base of the penultimate phalanx. The lind limbs are short (TL/S-V 0.45).

The skin of the dorsal surface bears numerous. raised, circular, aval and elongated tubercles. There is a rather prominent supratympanic fold. The skin is fincly granular on the lower thighs and abdomen and smooth on the pectoral and submandibular region.
The dorsal surface is a very pale olive colour with small darker patches contorming to the lubercles and intermediate zones of dark grey.

There is a narrow dark stripe from the tip of the snout to the cye, broadening as a dark postocular patch covering the tympanum and botdered superiorly and posteriorly by the supratympanic fold. There is in extremely narrow white vertebral stipe (Fig. 5). The posterior surfaces of the thighs are dark brown motted with paler areas (Fig. 2). The ventral surface is dull cream with indistinct and sparse faint brown mottling on the submandibular area.

Dimensions: S-V 43.8 mm ; TL 19.5 mm ; HL $17.3 \mathrm{~mm}:$ HW 19.1 mm * E-N 3.6 mm ; iN 3.5 mm ; E 5.7 mm ; T 3.5 mm .

Partapes: There are 15 adult paratypes: Queensland-QM J 12274, Brookstead via Pittsworth, recd. 1. R. Straughan 17:ii.64; QM J 18108. 1811621 km E. of Dalby, coll. A. K. Lee and 1, R, Straughap, 16, xi, 63: QM J 1811118 km W. of Dalby, coll. I. R. Straughan. 8ili,64; QM J 18104, 18107 Watatah Stn. via Cunnamulla, coll. A. K. Lee: QM J $18109,18112,18114-15,18117$, Warrawee near Petrie, coll. I. R, Straughan, 7.xii.62-10.ii.64: New Somh Wales-BM 1947.2.18.48 (formerly 1911.3.28.1 and AM R 5149), Wilcannia, Darling River (Paratype of C. cultripes), MCZ. 35*5-86 (same locality), all coll. W. Stalker: SAM R 14081 Sturt Ntl. Pk. near Tibooburra, coll. R. Galt.

The male paratypes range in size from 37.3 to 45 mm and the females from 37.2 to 49.2 mm . Variations in body and limb propertions are presented in Table 1. The paratypes are fairly homogetheous and share a conspicuously roughened dorsal surface with diffuse markings. The dorsum varies from greyish to an obscure very dark brown; the posterior surfaces of the thighs are commonly a different shade of brown to the dorsum, and are asually irregularly flecked with pale grey. The vertebral stripe is a constant feature. The throats of the male paratypes are deeply suffiused with uniform slate.

An additional four specimens probably repre. sent verrucosus, but have been excluded from the paratype scrics, because of doubt about their conspecilicity. Three are recently metamorphosed

TABE 1
SHES AND PROIOIRTIONS OF SOME CICLORANA SPECIES

Species	0	$\begin{aligned} & \operatorname{siv} \\ & \& y \end{aligned}$	$\begin{aligned} & S-V \\ & 4+7 \end{aligned}$	T I./S-V	ENJIN	HLIIIW
Wrevipery - \%	21	th.4a45	13.44-18.3	1).31-17.45	0.97119	$0.4+-0.48$
cyprrotio . ${ }^{\text {a }}$	1	4118		0.12	1.13	8.81
cutripes - 1	15	42.7. 52.7	44.4-55.1	$0.3120 \cdot 40$	0.80-31	0.88-0.07
Mresitres ':	16	$37.5-43.9$	$43.8-17.8$	$0 \cdot 36.0 .45$	[.12.136	0.90-0.95
mactuoples.	S	4.714-49.5	$48 \cdot 8-50 \cdot 6$	0.3140 .38	0.95-114	$0.90-0.95$
Nutati......	54	35.464	38.7-47.3	(1) 3,2-0) 41	(1. 117 -1.23	4.88 .0468
wremotur	in	. $3+7-750$	3リ-3-47*	$0 \cdot 35-4.95$	11.94-1.25	0.69-0'ヶ

Messurements are in millimetres.
juveniles (QM J 18106, 18110,18113) ranging from 18.4 to $22.4 \mathrm{~mm} \mathrm{~S}-\mathrm{V}$. There is also a transforming tadpole (QM J 18119). The series was taker at Waratah Station with two of the verrucosus paratypes.

Comparison with other species: For many years field workers in eastern Queensland have recognised the existence of two species. The first is C, brevipes, and the second has been erroneously referred to as C. cultripes. With clarification of the morphology of C. cultripest the Queensland population can be distinguished quite readily by its tendency to exhibit verrucosities on the skin (C. cultripes is usually quite smoth), the extensive irregular mottling of the dorsum (see Fig. 2), and by a tendency for verrucasus to have longer hind limbs (Table 1).

Although C. brevipes and C. Verrucosus both have extensive dorsal pigmentation, the dark markings of C. brevipes are sharply detined peripherally, whercas C. verrucosus is diffusely marked. Individuals of both species may be rough skinned, but the verrucosities in C. verphcosus are rendered conspicuous by being surrounded by areas of paler pigmentation. In C. brevines there is no such highlighting and they are indistinct. In lateral view (Fig. 2) C. vertucosus. has a higher head than C. brevipes. As in members of the C, australis group (Tyler \& Martin 1975), We have been unable to express these differences in a quantitative fashion.

Distribution: Criclurana verrucasus extends from south-eastern Queensland to north-western New South Wales. It is sympatric with C. brepipes over at limited portion of its range (Fig. 4).

Cyclorana maculosus new species

Holotype: SAM R 14719, an adult male collected at Daly Waters, Northern Territory by B. Low and D. F. Gartside on 13.xii.1971.
Definition: A moderate-sized specíes (males 4749 mm , females $49-51 \mathrm{~mm} \mathrm{S-V}$) with short hind limbs and a pattern of markings in which there ate strong contrasts of small dark patches on a lighter background (Fig. 6).

Description of Holoype: The head is rather flattened, triangular and distinctly broader than long ($\mathrm{HL} / \mathrm{HW} 0.93$). The snout is rounded when viewed from above and in profilc. The eye is not prominent but its diameter is considerably greater than the eye to naris distance. The canthus sostralis is straight and distinguishable by the shelf-like structure of the maxilla, The nostrils are inclined superiorly and are separated from one another by a distance which is less than
the eye to naris distance (E-N/IN 1/13). The tympanum is entircly visible but for a portion of the superior margin of its annulus which is hidden beneath the supratympanic fold.

The tongue is broad and is almost entirely free behind. The choanae are widely spaced and the vomerine teeth are on oblique, converging elevations whose posterior margins are anterior to the posterior borders of the choanae.

The fingers are slender and unwebbed. The foot has a prominent inner metatarsal tubercle. The toes are slightly less than ohe-half wobbed: the webbing on the fifth twe not reaching the subarticular qubercle at the base of the penultimate phalanx. The hind limbs are very short (TL/S-V 0.34).

Mactoscopically the skin of the dersal surface is quite smooth; under low-power magnification it can be seen to be covered by numerous, flattened tubercles. Ventrally the skin is weakly granular over the posterior half of the abdomen, and smooth anteriorly.
The dorsal surface is a uniform very pale grey on which there are a few cloarly demarcated black markings. There is a stripe from the tip of the snout through each mostril to the eye. Behind the eye this stripe envelops the tympanum and continues to the insertion of the forearm, bordered superiorly by the supratympanic fold. There are a pair of sniall ellipsoid markings on the scapula and elongate markings on the flanks and in the groin. There is a narraw white vertebral stripe and a pale postocular bar. The posterior surface of the thighs is a uniform dull grey. The ventral surface of the body is cream with a dark slate submandibular region.
This adult male specinen has a submandibular vocal sac with short, paired openings near the mandibular articulation, and two distinctly separated, brown nuptial pads on each first digit.

Dimensions: S-V 47.4 mm ; TL 16.2 mm ; JL 16.9 mm : HW 18.1 mm : EN 3.6 mm ; 1 N 3.2 mm; E $5.4 \mathrm{~mm} ;$ T 3.6 mm .
Variation: There are five paratypes-SAM. R 14717-18. collected at the type locality with the holotype; SAM R 7612, Doomadgee Mission, Qld., G. Douglas. February, 1966: NTM 3178. Stuart Highway at Temant Creek, D. Lindner, 30.i.66; SAM R 14736, Temnant Creek, J. F. Ficld, April. 1907.

The paratypes comprise two adult males ($\mathrm{S}-\mathrm{Y}$ $48 \cdot 8-49 \cdot 5 \mathrm{~mm})$ and three adult females ($48.8-50.6$ mm). In all specimens the limbs are short (TL/S-Y 0.31-0.38). Topotypic material varies only in the extent and distribution of dark markings and difiers from the holorype in the presence
of a broad, pale postocular bar and a pale border on each side of the mid-vertebral stripe.

The lighter markings are most pronounced in the Doomadgee Mission specimen, whereas the paratypes from Tennant Creek vary from having minimal dark markings to extensive areas of dark pigment.

Comparison with other species: Cyclorana maculosus is a rather large species in comparison with the others described here. In fact each of
the three adult males is larger than all males of all other species included. However it is its striking dorsal colouration that sets maculosus apart from congeners. Namely the isolated, jet black, patches contrasting with a pale background. The species with which there is partial sympatry (C. cullripes and (., maini) Jack black patches, although the latter shares with maculosus a conspicuous dark stripe on the side of the head.

Call: The call of the holotype was recorded at Daly Waters, N.T., on 13.xii,197I. The site was

a small roadside ditch; wet bulb air temperature was $24.1^{\circ} \mathrm{C}$, Call values are: duration 1810 msec; dominant frequency 1767 Hz ; pulse repetition rate 108 pulses/sec. (Fig. 3),

Distithution: The species is currently known from two localities on the Stuart Highway, N.T., and one in Qucensland (Fig. 4).

Cycloramur sryplotis new species

Holosppe: SAM R 14716, an adult male collected at Daly Waters, Northern Territory by B. Low and D. F. Gartside on 13xiii. 1971.
Definition: A small species (male adult at 41 mm) which is also characterised by having the tympanum covered with skin (and hence invisible externally), and by its obscure greyish colouration (Fig. 7).

Description of Holotype: The head is rather flattencd, broadly triangular and distinctly broader than long (HL/HW approximately 0.87), The snout is rounded when viewed from above and rather truncated in profile. The eye is not prominent but its diameter js greater than the eye to naris distance. The canthus rostralis is almost strajght and very poorly defined. The nostrils are inclined superiorly and are separated from one another by a distance slightly less than the eye to naris distance. The tympanum is completely hidden beneath the skin.
The tongue is roughly circular, not large and almost entirely free behind. The choanae are widely spaced and the yomerine teeth are on elevations projecting slighty behind the posterior margin of the choanae.
The fingers are slender and unwebbed. The foot has a prominent inner metatarsal tubercle. The toes are approximately one-half webbed, the webbing on the fifth toe reaching the subarticular tubercle at the base of the penultimate phalan. Hind limbs are of moderate size (TL/S-V 0.42).
The skin of the dorsal surface is covered with numerous and densely aggregated, flattened tuberctes. Ventrally the skin is granular except in the pectoral region where it is almost smooth.
The dorsal surface is pale grey suffused with irregular darker markings. There is a narraw, disrupted, white vertebral stripe and broader, dack stripes between the nostril and cye and from the cye to the insertion of the forearm. The ventral surface of the body is creant with a greyish submandibular region. The plantar surface is lightly stippled with very dark brown: This adult mate specimen has a submandibular vocal sac with short, paired openings near the mandibu-
lar articulation, and two distinctly separated, unpigmented nuptial pads on each first digit.

Dimensions: S.V 40.8 mm ; TL 17.0 mm : HL 13.8 mm ; HW 17.1 mm ; E-N 3.4 mm ; 1 N 3.4 mm ; E $5.0 \mathrm{~mm} ; \mathrm{T} 2.2 \mathrm{~mm}$.

Comparison with other species: Cyclorand cryptotis has few obvious affinities with other species. The lack of any dark markings on the dorsum is shared by C. cultripes and some individuals of C. maini, However C. cryptoris has the tympanum completely covered with skin, whereas it is visible externally in C_{1} maini and all other members of the genus. A further feature unique to C. cryptotis is the rather compressed head producing the exceptionally low HL/HW ratio of $0.81(0.84-0.99$ are the limits of the ranges for all other species).

Call: The call of the holotype was recorded at Daly Waters, N.T., on 13xiii.1971, The frog was calling from the margin of a flooded ditch; wet bulb air temperature was $24.1^{\circ} \mathrm{C}$. Call values are: duration 530 msec; dominant frequency 1060 Hz ; pulse repetition rate 158 pulses/sec (Fig. 3).

Distribution: Cyclotana aryptotis is known solely from the type locality of Daly Waters. N.T., (Fig. 4).

Cyclorana longipes neiv species
Chiroleptes brevipalmatus (non Gunther), Fletcher, 1899: 678.
Phractops brevipalmaus (non Gunther), Fry, 1915: 200,
Holotype: WAM R 43258, an adult female collected at Mitchell Plateau ($140^{\circ} 52^{\prime} \mathrm{S}$: $125^{\circ} 50^{\prime}$ W), Kimberley Division, Western Australia by L. A. Smith and R. E. Johnstone on 5.ii, 1973.
Definition: A moderate-sized species (males $37.5-45.9 \mathrm{~mm}$: females $35.8-47.8 \mathrm{~mm}$) with a skin texture which varies from smooth to very coarsely granular, and a colouration of dark patches on a lighter background (Fig. 7). The nostrils are natrowly spaced (E-N/IN 1-12-1-36).

Description of Holotype: The head is high, triangular and almost as broad as long (HL/HW 0.91), The snout is triangular when viewed from above and evenly rounded in profile. The cye is small. its diameter equivalent to one and onequarter times the distance between the eye and the naris. The canthus rostralis is distinet and very slightly curved. The nostrils are inclined dorsolaterally and are separated from one another by a distance which is less than the cye to maris distance
(E-N/IN 1.25). The tympanum is almost entirely yisible except for the upper portion of the tympanic annulus which passes bencath the supratympanic fold.

The tongue is very broad and almost entirely free behind, The choanae are small and broadly spaced and the vomerine teeth are on prominent, oblique, converging elevations whose posterior margins are posterior to the choanae.
The fingers are moderately long, slender, unwebbed and without lateral fringes (Fig. 1). The foot has a small but prominent inner metatarsal tubercle. The webbing between the tocs is comparatively well developed, and on the medial surface of the fifth toe reaches the posterior cdge of the subarticular tubercle at the base of the penultimate phalanx. The hind limbs are very short (TL/S-Y 0.38).

Anteriorly the skin of the dorsal surface is very coarsely granular. There are distinct plicae
between the upper eyclids and in the form of a continuous dorsolateral glandular fold extending to the flanks. Posteriorly the skjn becomes progressively less conspicuously granular, the individual granules being smaller and less prominent. The ventral skin is finely granular from the posterior surface of the thighs to the post-axillary pectoral skin fold. Anterior to that fold the skin is smooth. There is a small posimandibular gland.

The dorsal surface is a dull brown colour which is to a great extent covered by large, elongate. irregular patches of darker brown. The arrangement is disrupted on a level with the tympanum. There is a dark and clearly defined stripe from the tip of the snout through the nostril and eye to the tympanum. There is also a pale vertebral stripe which is quite broad above the sacral region and tapers to a very natrow line at the snout and cloaca. The posterior surfaces of the thighs are spotted with pale grey on a dark brown back-

FIG. 7
Dor'sul ind lateral views of Cychorana species. A and $\mathrm{C}=\mathrm{C}=$ cryphopis (SAM R 1471 (i): B and $\mathrm{D}=\mathrm{C}:$ loneripos
ground, and there is similar spotting in the groin. The ventral surface of the body and limbs is a dull cream.

Dimensions: S-V $47-8 \mathrm{~mm}$; TL 18 mm ; HL 16.3 mm ; HW 18 mm ; E-N $4 \mathrm{~mm}: 1 \mathrm{~N} 3.2 \mathrm{~mm}$; E 5 mm ; T 3.1 mm .
Variution: There are 43 paralypes, comprising nine adults and 34 juveniles, all from localities in Western Australia: WAM R 14157, Broome, K. Male. 14 iii. $1962 ;$ WAM R 43199-43200, L. A. Smith \& R.E. Johnstone 5.ii.73, R $43268-75$, Smith \& Johnstone $21 . \mathrm{ii}, 73$, R 4329495. R 43346 Smith \& Johnstone 22.iii,73, all from Mitchell Plateau; WAM R 32349-51, Wyndham, T. Nelson 19,iv:68; WAM R $44735-$ 59 Lake Argyle, Smith \& Johnstone, 5ii.72: WAM R 42388. Mt. Phire, W. H. Butler 29.ix. 63.

None of the female adult paratypes is as large as the holotype female, their size being 35-8-43.8 mm . Males bave an $\mathrm{S}-\mathrm{V}$ length tange of $37.5-$ 45.9 mm , and there is a female 40.3 mm lang. Thie subadult material ranges in S-V length from 21.8 to 33.2 mm .

Variations in adult dimensions are shown in Table 1; the consistently high E-N/IN ratio (1.12-1-36) is notable.

Colouration of adults and juveniles is rather variable. In the figured specimen from Broome the darker markings are particularly extensive, because the longitudinally arranged markings have partly coalesced. In many juveniles and adults from the Mitchell Platenu the Jongitudinal orientation is detectable, but the markings are broken up into separate segments. The featureless post-mrbital area, the presence of a midvertebral stripe and the spotted pattern of light markings on the posterior surface of the thighs are the only features common to all individuals.

Males have a submandibular, unilobular vocal sac and the submandibular area of the largest male (WAM R 14157) is almost black.

Comparison with other species: All individuals of C. longipes exhibit a dorsal pattern in which there are black markings on a contrasting light background. The only other species sharing such a feature are C. maculoses and C. brevipes. Cyelorcha maculusus tends to be a shorter-limbed frog (TL/S-V 0.31-0.38 as opposed to 0.36-0.45 in C. longipes). Similasly C. maculesus has a lower E-N/IN ratio range of $0.95-1 \cdot 14$, compared with 1-12-1.36. Other data in Table 1 indicate that C. longipes may be a slightly smaller species, However, existing samples of adults of each species are indequate to confirm the apparent trend.

Distribution: Fletcher (1898) reported Cycloo rana brevipes (as Chiroleptes brevipalmatus) from two localities in northern Western Australia (Kings Sound and the junction of Margaret Crcek. with the Fitzroy River). Parker (1940) attributes the records to C. cultripes. However the situation of these localities within the range of longipes. and the striking similarity of longipes to brevipes, cause us to favour the new identification. Thus C. longipes is now known to occupy the coastal zone of northern W.A. and to penetrate inland via the Fitzroy River. At its southern boundary the arid Eighty Mile Desert effectively isolates the species from C. maini. However there is no such geographic batrier to dispersal in the west, and longipes may extend into the Northern Territory and be sympatric with at least one other species reported here.

Cyclorana maini new species

Chiroleptes brevipalmatus (non Gunther), Speneer (1896): 165.

Cyclorena sp., Warburg (1967): 27. (1972): 91.
Cyctorana cultripes (non Parker), Cogger (1975) pl. 214.
Holotype: SAM R 15191. An adult thate collected at Barraw Creek, Northern Territory by D. F. Gartside and B. Low on 11.xii.1971,
Definition: A moderate-sized species (males $35 \cdot 4-46 \cdot 4 \mathrm{~mm}$; females $38.7-47.2 \mathrm{~mm}$) characperised by a dark lateral hoad stripe and irregular darker patches on a pale dorsum in most specimens (Fig, 8).

Description of Holotype: The head is high, distinctly broader than long, evenly rounded when viewed from above and projecting slightly downwards in profile (HL/HW 0.93). The eye is large and prominent, and its diameter is equivalent to one and one-half times the diameter of the distance between the eye and the naris. The canthus rostralis is straight and quite prominent. The nostrils are inclined dorsolaterally and ane separated from one another by a distance very slightly greater than the internarial span (EN/IN 1.03). The lympanum is visibic and is not overlapped by the supratympanic fold,
The congue is very broad and slightly free behind. The choanae are obliquely inclined and are separated in the midline, and the vomerine teeth are on converging, oblique elevations whose posterior margins are posterior to the chounac.
The fingers are slender, unwebbed and without lateral fringes, and have promisent subarticulat tubercles. The foot has al prominent inner
metatarsal tubercle and the toes are long and webbed only at the base. The webbing on the fifth toe extends slightly above the base of the penultimate phalanx. The hind limbs are very short (TL/S-V 0.36).

The skin of the dorsal surface is very slightly pitted and raised tubercles on other areas are totally lacking. The supratympanic fold is weak and the skin of the ventral surface is almost entirely smooth. The posterior surfaces of the thighs are weakly granular.

The dorsal surface is a dull brown on which areas of darker pigment are densely scattered. A fine white vertebral stripe is present, and a dark stripe extends between the nostril and the eye,
and then divides at the axillary region and is covered posteriorly by isolated patches of dark pigment on the flanks.

The submandibular region is an intense dark grey, and the remainder of the ventral surface is dull creamish.

This male specimen has paired nuptial pads on the first finger and a submandibular vocal sac.

Dimensions: S-V 46 mm ; TL 16.8 mm ; HL 16.3 mm ; HW 17.6 mm ; E-N 3.6 mm ; IN 3.5 mm ; E 5.2 mm ; T 3.3 mm .

Variation: There are 95 paratypes-Northern Territory-NTM 2309-11, 2316, Arid Zone Research Institute 5 km S of Alice Springs

21.x.64: SAM 1519210 km S of Alice Springs 3xi.63; SAM 6311, 1471527 km S of Alice Springs: NTM 3177 Mt, Doreen Stn, D. Lindner 23.i. 66 : SAM R 13038 A-D. Toko Range, S. Parker 20.i.72; Western Australia-SAM R 1711 Well No. 26, Camming Stock Route Expedition; WAM R 1440 Laverton, P. C. Warren, 1925 (accessed): WAM R 1510-11 Booylgoo Sine. E. L. Michel, 1925 (accessed): WAM R 10216 Mundabullangana, D. Lukis, 1951 (accessed); WAM R 10634 Roeburive, T. Stove, 1952 (accessed); WAM R 20546 Namine, P. J. Fuller, 2.iii. 63 ; WAM R 28486-508, SAM R 5979, R 15341-46 Mt. Edgar, A. R. Main \& G. M. Siorr, February, 1961; WAM R 28517. R 28536 Jigealong, 6.xii.1959, presumably E. Lindgren; WAM R 28634-35. R 28638-48, R 39193-94 Mundabullangana, G. M. Storr, February, 1961: WAM R 28795 New Yanarna, 29.i.1967, WAM expedition: $2 \times 806-0744 \mathrm{~km}$ SE of Leonora, WAM expedition: WAM R 28984-85, R 28987 8 km S of Mundabullangana, R. M. Sadfier, 26.v. 1960: WAM R 29127-28 Rocburne, Christchurch Grammar School, 22.v.67: WAM \mathbb{R} 31444 presumably near Exmouth, D. G. Bathgate 1965-68: WAM R 32373-80, R 32382 Koordarrie, N.T., Allen, 1967; WAM R 33188, Woodstock, E. H. M. Ealey 18.i. 56 , WAM R 33212, R 34791 , R 34793 Woodstock, E. H. M. Ealey, Fcbruary, 1957: WAM R 34206-07 Wittenoom, E. P. Hodgkin, 2.iii. 1954; WAM R 34208 S of Wanning, E. H. M. Ealey, June, 1954; WAM R 3609240 km N of Carnarvon. R. Humphries et al., 4.ii.1970; WAM R 36094-96 near Winniog. R. Humphries et al, 4.ii. 1970: WAM R 36105-06 Barrabiddy Creek, R. Humphries et al., 5,iii,1970; WAM R 36695 Mandidjarris R. H., NE of Carnegie, P. J. Fuller, 11.v: 1970 ; WAM R 37248 Angel 1s., Dampier Archipelo, W. K. Youngson \& P. Prince, 18vi. 1970; WAM R 39147 Talawana, J, B. Wade 3.ii. 997 L; WAM R 40355 Durba Hills, W. H. Butler, early August, 1971; WAM R 45665-67, Bamboo Creck. A. M. \& M. J. Douglas, 22.i. 1974.

Because of the wide geographic area occupied by C. mami (Fig. 4), and because of limited data, particulatly biological information, we are unable to give a definitive account of variation in this species. We can demonstrate that none of the individuals within this area represent $C_{\text {o }}$ cultripes, the species to which they have been referred in the literature; but we cantot assert that they all represent C. maini.

We have therefore omitied from our list of C. maini paratypes a number of individuals from Western Australia and the Northern Territory. Many are immature and others are so poorly
fixed or preserved that positive identification is not possible. Others again are satisfactorily preserved but possess sufficient morphological divergence from our concept of C, maini to warsant their exclusion. Individuals from the Peterman Ranges and adjacent localities in southeastern N.T. and Western Australia fall into this latter category. We are not able to make specific identification of this material, but suspect that they reperesen an additional species remaining undescribed. Rangts of measurements of \mathbf{C}. maint appear in Table 1.

Colour in life: Specimens from Jay Creek 20 km W of Alice Springs have an extremely variable colouration. Individuals can change from green to brown in a matter of a few hours. Invariably the pattern consists of dark and commonly longitudinally orientated markings on a paler background. In all specimens a dark catithorostral stripe continues behind the eye to the flanks.

Compurison wh other species: Cyclurona muini as defined here is readily distinguishable from congeners. Possession of a tympanum distinguishes it from C. cryprofis. and the limbs of the latter species may be slightly longer (TL/S-Y 0:33-0.41 in 50 mainis 0.42 in the single eryphatis). The nature of the dorsal pattern of markings in C. brepipes, C. longipes and C. maculosus (clearly demarcated islands of dark pigment on a pale background), distinguishes each from maini which has obscure longitudinat streaks. The allopatric C. verucosus has a dorsal skin with raised folds. or large tubercles highlighted by being surrounded by datk pigment. Cychordna culripes tends to be a larger frog lacking the dark lateral bead stripe and distinguished. as are most other species, by differences in mating call parameters (Fig. 3).

Distribution: Extending front the Hammersley Ranges in Western Australia in a continuous broad are throughout central and southern Northenn Territory to the western border of Queensland (Fig. 4).

Habitut: Main \& Storr (1966) state that this species occurs "in small temporary watercourses with sandy or gravelly beds", and occasionally in larger wooded creeks and at windmills. it is found in areas that forms swamps in wet weather but are dry at other times, and specimens have beeth dug from depths of 25 to 35 cm (Main 1965). It is clear from our examination of several sites at which this species has been taken that it can occur in flat, open, arid country subject to seasonal flooding.

Cull: Calls attributed to this species (reported as C. cultripes) are as follows. Main \& Calaby: (1957) describe the call in the Pilbara region as
resembling a sheep bleating. Main (1965) considered it a "bigh pitched even maa-a-a-a-a". Main \& Storr (1966) state that it is "loud, moderately high-pitched and rasping. Close up and in chorus, when the vibrato is clearly audible, the call sounds like an ambulance siren. At a distance it is more like the bleating of a sheep". Calls of two specimens were recorded at Barrow Creek, N.T., on 11.xii.1971. The frogs were calling at the edge of a pool in a sandy river bed; wet bulb air temperature was $22 \cdot 6^{\circ} \mathrm{C}$. Call values (mean and range) are: duration 814 msec (775-852); dominànt frequency 1922 Hz (18671977): pulse repetition rate 244 pulses $/ \mathrm{sec}$ (232255) (Fig. 3).

Biology: Main \& Calaby (1957) state that eggs are approximately $1: 2 \mathrm{~mm}$ in diameter. Main (1965) teports the tadpoles to be comparable to those of C. platyeephatus and that in their fater stages they are pink with an opaleseent sheen.

Details of the diet of 12 adult frogs are provided by Main \& Calaby (1957) and of a further three by Calaby (1960). Termites and ants predominated in the diet of those individuals. but a small centipede was included.

ACKNOWLEDGEMENTS

This project was funded by the Science and Industry Endowment Fund (administered by the C.S.I.R.O.), the Australian Biological Resources Study, and the University of Melbourne Research Vote.

Specimens were provided by Dr. S. Barker, Mr. P. Christy. Dr. H. G. Cogger, Ms, J. Covacevich, Mr. J. Coventry, Mr. W. Dowd, Dr. D. Garside, Mr, M. Gillam, Miss A. G. C. Grandison, Mr. D. Howe, Dr. B. Luw, Mr. K. R. McDonald, Mr. S, Parker. Dr. G, Storr and Professor E. E. Williams. To Ms. Covacevich, Mr. Howe. Dr. Storr and Dr. T, H. Houston we ure indebted for facilities provided at museums. and to the Donald Thompson Administration Conumittee for access to specimens in its care:

Dr, Low and Dr, Gartside very kindly provided tape recordings of nating calls of C. cryptatio, C. cultripes, Cr maculosus and C. maint. Dr. G. F. Watson's help in obtaining calls of C. brevipes is greatly appreciated.

Dr. Gunther Peters provided information on the fate of the type of C. brevipes, whilst the Queensland Museum generously made available the photograpls of C, verfucasus taken by MT. A. Easton. Finally we wish to express our deep gratitude to Miss K. B. Kowshall for the superbly executed line drawings of each of the species.

REFERENCES

Boulenger, G. A. 1882 Catalogue of the Batrachia Salientias 8. Ecatudata in the collection of the British Muscum. British Muscum, London: 1-503
Calaby, N, H., 1960. A note on the food of Australian deser! lrogs. W. Ausi, Nat. 7 (1): 79-80.
Cogger, H. G. 1975. Reptiles and Amphibians of Ausinalia. Reed: Sydney.
Fry. D. B. 1915, On a collection ol reptiles and batrachians from Western Ausiralia. Sec. W. Hust. Mus. 1: 174-210.
Fietcher. J. J. 1898. Conlributions to a mote exact knowledge of the geographical distribution of Australian Batrachia, No. 5. 2. Batrachia of Tasmania. b. Batrachia of West Australia, Pruc. Lintr. Soci, N.S.IF., Scr; 2, 12; 660-684.
Gunther, A. 1876. Descriptions of new species of reptiles fromi Australia, d. Mfle Gadeftrol, 5 (12): 45-47.
Lindgren. Li. de Main, A. R., 1961. Natural history notes from Jiggalong IV Firggs. H. Alss, Nal. 7 (8): 193-195.
Lovcridge, A. 1935. Australian Amphibia in the Museum of Comparative Zoology Cambridge. Massachusetts. Bull. Mus. Cump. Konl. 78 11: 1-60.
Loveridge, A. 1950. New frogs of the genera Cyclotatio and ifyla from south-castem Australia. Proc. Bioh. Soc. Wasth, 63: 131-138.
Lynch, I. D., 1971. Evolutionary relationships, osteology and zoogeugrapliy of leptodaciyloid frogs. Aisc. Pabl. Mfus. Nar. Hist. Uimb Kinusas (5): 1-238.
Main. A. R., 1965. Frogs of southern Weatern Ausiralia. (W. Aust. Nat. Club= Perth) Handbook No. 8, 73 pp.

Main, A, R. \& Calaby, J. H., 1957. New records and notes on the biology of frogs from north-western Australia. W. dusf. Nat. 5 (7): 216-228.
Main, A. R. \& Stort, G. M., 196G. Range extensions and notes on the biology of frogs from the Pilbara Region, Western Ausiralia, (W. Aust. Nut, 10 (3): 53-6).
Maresealchi. A \& Ingram, G. J. 1974. New chromosome numbers in Australian Leptodactylidac (Amphibia. Salientia). Experientia 30: $1134-1135$.
Parker, IF. W: 1940, The Australian frogs of the family Leptodactylidas, Novir, Zonl, 42 (1): 1-106.
Nicden. For 1923. Anura 1. Das Tiervich, Berlim. (46): 1-584.
Peters, W. 1871. Uher sinige arten der. herpetalogischen Sammlung der Berlinet Zoologischen Museum. Alandish. K, Preuss, Akad. Wire Berlin, 1871: 648.
Rubioson, K. L_{1} \& Tyler, M. J., 1972 The catecholamine content of the adrenal glands of froge as an index of phylogenelic relaifonships. Comp, Gen. Pharmarol. 3 (10): 167-170.
Slevin. J. R. $\mathbf{~ 7 9 5 5 , ~ N o t e s ~ o n ~ A u s t r a l i a n ~ a m p h i b i a n s . ~ P r o c . ~}$ Calif'. Arad Sci. 28 (8): 355-392.
Spencer, H., 1896. Report on the Works of the Horn Scientific Expedition to Central Australia. I. Introduction, Narmlive, Summary of results, suppiement to znologicil report. Amphibia (Melyille, Muller ś Slade: Melbournc), 152-175,
Siraughan, I. R., 1969. Hyka inermis (teeters), a species hitherto erraneously referred to the leptodactylid genus Cyelorma (Anura, Fylidac/Leptodactylidae). Zooti Meded 43 (17): 207-212.
Tyler. M_d., 1970. Patterns of distribulion and the origins of the Papuas hylid frog fauna. Sedels 1 (5): 246-247.
Tyler, M, J, 1972. Superliciad mandibutar mescudatures, vowal sacs and the plyylugeny of Australo-Paphan deptodactytid frogs. Rer, S. Ausf. Mus: 16 (9): $1-20$.
Tyler, M. J. 1974. The systematic position and geographic distriturion of the Auslralian frog Chirulepres albeguram: Gunther. Pruct R. Sof. Qhd, 85 (2): 27-32.
Tyler. M. J. \& Martin, A. A.. 1975. Australian leptadactylis frogs of the Cyclorama ambralis complex. 7nams. R. Soc. S. Alusf. 99 (2): 93-99.

Wurburg, M. R. 1967. On thermal and water balance of three Central Ausuralian frogs. Cempro Binchewn. Phessiol. 20: 27.43.

Warburth, M. re. 1972. Warer economy and thermal balance of Jstaeli and Australian amptibia from setic habitats. Simp Loot. Sue- Lond. 31: 7y-111.
Wathins, W. A. 1967. The harmonic interval: fact ot artifact in spectral analysis of pulse trains, in "Matine Bioacolistics", (W. N. Tavilga, Ed.), Vol. 2, pp. 15.43, Pergamohi: New Vork.

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

A NEW SPECIES OF THYLACOLEO (MARSUPIALIA: THYLACOLEONIDAE) WITH NOTES ON THE OCCURRENCES AND DISTRIBUTION OF THYLACOLEONIDAE IN SOUTH AUSTRALIA

By NEVILLE S. PLEDGE

A NEW SPECIES OF THYLACOLEO (MARSUPIALIA: THYLACOLEONIDAE) WITH NOTES ON THE OCCURRENCES AND DISTRIBUTION OF THYLACOLEONIDAE IN SOUTH AUSTRALIA

By NEviLLE S. PLEDGE

Summary

A new species, Thylacoleo hilli, is described from the Town Cave of Curramulka, South Australia, based on an upper carnassial P3, which is about half the size of that of T. carnifex but otherwise almost identical. It is markedly larger than the Miocene species of Wakaleo Clemens \& Plane, and because there is no indication of such a diminutive Pleistocene species, it is suggested that T. hilli is of Late Tertiary, possibly Miocene-Pliocene age.
A summary of the sites of thylacoleonid discoveries in South Australia is also presented.

A NEW SPECIES OF THYLACOLEO (MARSUPIALJA: THYLACOLEONIDAE) WITH NOIES ON THE OCCURRENCES AND DISTRIBUTION OF TIYLACOLEONIDAE IN SOUTH AUSTRALIA

By NEVILLE S, PLEDGE*

ABSTRACT

PLFDGE, NEVILLE S. 1975. A new species of trhylacoleo (Marsupialia: "Chylacoleonidac), with notes on the necurrences and distribution of "Thylacolconidac in South Aus tralia. Rec. S, AMr. Mus. 17 (16): 261-267.
\$South Australian Maseum, Adelaide, Soults Australlit. 50)(1).

A new species, Thylacoleo hill, is described from the Town Cave of Curramulka, South Australia, bused on an upper carnassial P^{3}, which is about laff the size of that of T. carnifex but otherwise almonst identical. It is markedly larger than the Miocene species of Wakaleo Clemens \& Plane, and because there is no indication of such a diminutive Pleistocene species, it is suggested that T. hilli is of Late Tertiary, possibly Miocene-Pliocene age.

A sumuary of the sites of thylacoleonid discoveries in South Australia is also presented.

INTRODUCTION

In 1956, the late Alan Hill collected an unusual tooth from the far recesses of the Town Cave (Y2) at Curramulka, on Yorke Peninsula, Soutls Australia.

The Curamulka Town Cave had at natural 30 m shaft entrance which was enlarged so that the cave could be used as the town's water supply. The easier passages were explored carly. bones being noted in passing. Germein (1960) published a popular account of his 1936 visit to the cave. In 1959. Messrs. B. Daily, G. Gross and P. Aitken of tho South Australian Muscum visited the cave, following reports from the Cave Exploration Croup of South Australia (CEGSA) which exarnisted it in 1956. Daily excavated lime- and sand-encrusted bone, including a partial skeleton of Thylacolen carnifex (P12784) and a crushed skulb of Protemmodon (P13027).

The cave is developed in the Early Cumbrian Kulpara Limestone along a system of vertical joints that probably were originally open to the surface. such as those that can how be seen in the nearby council quarry. The fissures filled with sediment and debris, which became partly lithitied as at tough, red bone-breccia. Subsequent ground water movement apparently re-excavated the fissures from the bottom. leaving high narrow passages roofed with breccia, Remains of Pleistocene marsupials have been lound in this breccia and in the soft red silt that pattially clogs some parts of the cave. It is
from the Jatter ithat Daily's specimens were collected, in the section called the "Bedroom Chamber". Although it has not yet been properly prepared or identified, a cursory inspection of the lossil fauna suggests that it is of Late Pleistocene age. Hill's specimen, however, does not fit this hypothesis and suggests that at least some purts of the cave may date from 'Tertiary' limes. This is discussed below.

The tooth is interpreted to be the upper 1eft carnassial (\mathbf{P}^{3}) of Thylacoleo, but is so much smaller than that tooth in other menbers of the genus that it warrants the erection of a new species.

DESCRIPTION

Systematic Palacontology:

Marsupiadia
Phalangeroideu
Thylacoleonidae
Thylacoleo Owen
Thylacolco hilli sp, nov.

Diagnosis: Thylacoleo with P" about half as long as in T, carnifex.

Holotype: upper left P^{2}. registered no. P18621 in the South Australian Museum.

Type loculity: Town Cuve (Y2), Curramulka. Yorke Peninsula.

Etymology: I have pleasure in naming this species for its finder, the late Alan Hill, it founding member of CEGSA in 1956, and a dynamicspeleologist until his untimely death in 1972.

Description:

The only known specimen, P 18621 , an upper left P^{3}, measures 24.4 min. long which is less than half the length of the equivalent tooth of Thylacoleo carnifer. It has a long trenchant ridge, with the highest point over the anterior root (broken away). The height is 12.2 mm on the outer face. From here the crista descends abruptly on the anterior face to a point below the general base level of the crown, though not ro obviously as in T. camifex, Posteriorly from the unterior cusp, the crest desicends gently (at about 20° below the horizontal the base of the enamel being taken as horizontal) for a little more than halfiway before abruptly levelling out to form the posterion "cusp" over the posterior root, then descends again at the same rate, In profile it is similar to $P^{\text {i }}$ ol T. carmifex, although with less development of the anterior "cusp",

There are more obvious differences in occlusal view. In Thylacolen hilli, p^{3} is relatively broad and shows a rather tuberous outline in contrast to the more slender form of T. carnifex. However, the crest has the same sigmoid form, starting slightly mesiad at the anterior end and curving, convex outwards, to the anterior "cusp". Thence it is almost straight until the midway break-in-slope, where it bends slightly but sharply
outwards to the posterior "cusp", after which it curves gently outwards to reach the posterior extremity. The sigmoid curve is thus rather more angular than in T. carnifex.

As in Thylacoleo carnifex, the anterior cusp is buttressed with a noticeable internal ridge and a somewhat more rounded external ridge, but in contrast to T. carnifex, this is not the widest part of the tooth. That point occurs

Fig. 1. Comparison of upper premolars of Thylacoleo carnifex P17654 (upper drawings) and T. hilli P18621, holotype, (lower drawings), in labial (left) and occlusal (right) views.

Fig. 2. Thylacolco carnifex left p3 (SAM P17654) a: labial view; b : lingual view. Natural size.
Fig. 3. Thylacoleo hilli n. sp. left \boldsymbol{p}^{3} (SAM P18621) Stereopairs; a: ocelusal view: b: labial view; c : lingual view. Natural size.
slightly posterior to the cusp and just before the midpoint of the tooth. Again as in T. carnifex, the outer face is convex while the inner face is slighty hollow to maintain a constant shap edge as woth-wear progresses. This is particularly noticeable in the central region of the ridge. where tooth-wear has bevelled the inner face of the crest in a one-millimetre band. The hollow part of the face is apparently unworn, and is gently rugose in a vertical direction.

The anterior ront appears to have been by far the stronger, although both are missing from the specimen. It has a deeply erescentic cross section at the base of the crown. There is no cingulum and the enamel thins and ends in a rather irsegular line, as in T. carnifex.

Discussion: Apart from Thylacoled, the only pther form to which the Hill tooth could be compared is the lower premolar (\mathbf{P}) of Protemnodon spp. (see Bartholomai 1974), but the dilferences in size and form (protemodon is too small, too fiat-bladed and too narrow, and lacks the anterior descension of the crown enamel) are too obvious for this to seriously considered.

The possibility has been considered that the Town Cave looth is an abnormal development. Various abnormalities of marsupial teeth have been discussed by Archer (1975) but the only type of interest here is the ephemeral tonth: that which may be present in embryo, but nomally is resorbed or shed in young juveniles. There does not seem to be any certain way of distinguishing an isolated, unustally small tooth as a deciduous or ephemeral tooth. In the present instance, however, it is likely that this possibility can be discounted, for several reasons: (1) the tooth is well calcified and had well-developed roots (by contrast, some specimens of unworn T. carnifex premolars have very thin walled. fragile roots). (2) the enamel is thick and solid, (3) the tooth was functional, having a smalt but well-defined wear facet.

The Thylacoleonidae have a relatively Tong history, which unfortunately is poorly represented for most of its length. A single undescribed toothless palate from the Mincene Etaduna Formation (Neapakaldi local fauna) (Stirton. Tedford and Woodturne 1968) in the Lake Eyre Basin. seems to be the first possible representative (Clemens and Plane 1974:659). This is followed by the two species of Watiateo (Clemens and Planc 1974) from later Miocene deposits; then by the rather poorly known Thylucoleo crassidentaius (Bartholomai 1962) from the Pliocene Chinchilla Formation of the Western Datling Downs in Oucensland. There is also
an unidentified specimen from the Lower Pliocene Allinghum Formation of north Queenstand (Archer \& Wade 1976:390), in which P^{3} is relatively shorter than in T. crassidentarus, bus larger than that estimnted for T. nilli (M. Archer: pers. comm. 11.ii.75). The Altingham species has been compared with a specimen trom Balla. donia, W.A., mentioned by Merrilees (1968:14). The best known species. Thylacolen camifes (Owen 1859), is widespread in Australian Pleistocene cave deposits and in some other apen situations (see Gill 1954).

Thylacoleo was an unusual animal in many ways, one of which was the apparent lack of deciduous check-teeth. Most notably, the large sectorial premolars apparently had no functional precursors, and persisted from the pouch stage to senility (Finch 1971). In two specimens in the Soutls Australian Museum (P13721, P13829), these full-sized catnassials are almosi filly crupted in jaws that are only $22-23 \mathrm{~mm}$ deep as the posterior end of the $[3$ alveolus, and 8590 mm long from the incisor alvenlus to the angular process. Mandibles of mature T. carnifex reach a depth, at the Pa alveolar margin, of up to 53 mm . The premolars are, therefore. apparently functional cven in pouch young; although the two specimens mentioned above show no signs of wear. It is thus unlikely that the Curramolka tooth, T. hilli, which is slighty worn and has well-developed roors, is deciduous.

It is impossible, however, to present conclusive evidence one way or the other as to whether the tooth in question is permanent or deciduous. On the one hand, there is a slight indication that it could be decidunus by comparison with its postulated closest relatives. Woods (1956:138) has indicated its phalangeroid affinities, and certainly the jaw of Wakulen oldfied bears some similarities in form with, say Burramys, which Broom (1898) concluded was close to the ancestral condition of the Thylacolconidae, Many groups of phalangeroids have diminutive deciduous premolars (e.g. SAM M5539, a juvenile Trichosurus vulpecula with JP3, M1-3. and P3 unerupted below dP3,). At the same time, a hoala M4625 has only the premolar and M1 fully erupted, und these premolars are identicat in size and form with those in adult, even senile, individuals which suggesis that the deciduous premolar, if it existed. was of very shon duration. A deciduous cheek tooth in a koala embryo was noted by an catly German embryologist (M. Archer, pers, comm. Nov. 1976).
On the wher hand, there is good eircumstantial evidence against the Hill tooth being decidunas, in that for all the scores of specimens

TABLE I
Lengths of premolars of Thylacoleonidan (calculated parameters are based on the sutio for $T=$ carnifer $P^{3}: P_{3}=1.295$)

Species	Carnassial Length			
	P^{3}			Ps
	Range	Mean	Range	Mean
Thytacoleo carnifer-				
Darling Downs (Woods, 1956)	35.3-40.7	38.6 (N $=4)$	49.8 .53 .8	$51.7(N=3)$
Weflington Caves (Australian Museum cull.)	35.7-46.0	39.8 (N - 48$)$	47.0.54.1	$50.7(\mathrm{~N}=23)$
Naracoorte Caves (S.. Aust. Mus. colt,).	37.1 -41.6	39.6 ($\mathrm{N}-24)$	$49 \cdot 2 \cdot 54 \cdot 5$	$52.2(\mathrm{~N}=14)$
	$35 \cdot 3-46 \cdot 0$	$39.6(N=761$	47.0.54.5	$51.3(\mathrm{~N}-40)$
T. crassidentarus-(Bartholomai, 1902) ,..	$35 \cdot 6.41 \cdot 4$.	$37.5(N-4)$		$\text { calc } 48 \cdot 6$
7', hilli n. sp,		calc 18.8		$24 \cdot 4$
Wakale yamderfent (rasge ufestimates) W. oldficlivi		$\begin{aligned} & 13.5-15 \cdot 3(N=1) \\ & 12.4 \end{aligned}$		calc 17.5-19.8
W. olaticlif				cals 16.1

of Thylacoleo carnifex, at all stages of development, thete is no other tooth of similar size known. Also, the roots were not being resorbed. Accordingly, the easiest explanation is that it is a valid diminutive species.

Thylacoleo hilli gives the mpression of being more akin to Thylacoleo carnifex. While there is an obvious similarity shown between the mandibles of Wakaleo and Thylacoleo carnifex, the P_{B} of the former is of different proportions, being relatively shorter, while the molars are relatively larger and better developed (Clemens and Plane 1974). In contrast, the P^{3} of Thylacoleo hilli is proportionally and morphologically closely similar to T, carnifex (see Fig, 1). It is not yet possible to compare directly the premolars of Wakuleo and T. hilli, but estimates of the size of the unknown premolars can be made, assuming that a regular size relationship between the upper and lower premolars of T. carnifex persists throughout the family. A large sample of premolars of T. carnifex in the Australian Museum, mostly from the Wellington Caves, and a somewhat smaller collection from the Naracoorte Caves, held by the South Australian Museum, have been measured, and using also the data in Woods (1956), the mean lengths of the upper and lowers calculated. The assumption was then made that the ratio of these two measurements ($\mathrm{P}^{3}: \mathrm{P}_{3}$) has been more or less constant at about 1.3. Using this constant, the lengths of $P_{i l}$ of Thylacoleo hilli and p^{3} of Wakaleo spp. have been calculated (see Trable 1), It is seen that the premolar of T. hilli is closer in size to Wakaleo than to T. carnifer. However, as discussed above, its form is nearer to the lattes. It is therefore more probably an ancestor of T. carnifex, and closer
in time to Wakaleo than T. carnifex, but unlikely to be a descendant of Wakalco. Clemens and Plane (1974) consider Wakaleo probably was not directly ancestral to Thylacoleo carnifex, and that thylacolconid phylogeny was a plexus of lineages rather than a single line. Thylacoleo hilli would then represent a short twig near the axis of this plexus.

Age: The age of T, hillt is unknown, though presumably late Tertiary, It is unlikely to be Pleistocene, as there is no indication of it in any of the ricl Pleistocene faunas known from Australia, It is not the sume as the Balladonia Thylacoleo (Merrilees 1968; Archer \& Wade 1976) which is regarded as Pleistocene. Nor is it likely to be a dwarled Pleistocene species, produced by insular isolation in the same way as the pigmy elephants of some Mediterranean islands (c.g. Kurtén 1968:135), for although Curramulka is in the midule of the low and clongate Yorke Peninsula, there is no evidence that this has been an island at any time during the Cainozoic, and certainly not during the Pleistocene. Furthermore T. carnifex has been found in contiguous areas, such as Port Piric and the Flinders Ranges, as well as in the Curramulka Town Cave itself and elsewhere on Yorke Peninsula. By comparison with the phylogenetic pattern of the Diprotodontidae (Stirton el, al, 1967) with its Pleistocene gigantism, and its absence from the late Pliocenc Chinchilla and Mampuwordu sands, I suggest that T. hilli lived in late Miocene or early Pliocene times. However, this cannot be confirmed batil mare material and other associated species of the sume age are found. Attempts io find the actual site within the cave, to collect more material, have so far been unsuccessful.

THYLACOLEONIDAE IN SOUTH AUSTRALIA

The discoveries of thylacoleonid fossils in South Australia are summarised in Table 2, and their distribution is shown in Fig. 4.

Remains of Thyacoleo carnifex were first reported from South Australia by Waterhouse (1879) in his annual report to the South Australian institute. These were found, with Diprotodon "Phuscolomys" (Phascolonus gigas) and Macropus by Mr. R. M. Robertson in a spring bog deposit in Salt Creck near Normanville. This deposit continued to yield bones until Zictz (1907) apparently worked it out with the discovery of more Thylacoleo. Zictz (1889) had previously reported Thylacoleo with Diprotodon from dam excavations at "Yam Creek" Bundarce". Gill (1954), unable to locate this place on a map, considered it a misspelling of Bungaree, but study of Museum reports shows that the site was at Bundey, about 40 km west of Morgan.

In the early 1900 's, a fragment of Thylacoleo carnifex was found with other bones on the gravel bars of the Warburton River, near (old) Kalumurina, The source of these bones is probably the croding channel deposits known as the Katipiri Sunds (Stirton, Tedford \& Miller 1961). This formation has yielded a single tooth at Lake Kanunka (idem) south of the Warburton River. Other open sites yielding Thylucoleo have been found in recent years: near Port Piric, and at Lake Fowler, Yorke Peninsula.

At the turn of the century, Thylacolco was found in cave deposits when William Reddan. Curator of the Naracoorte Caves, started excavating there, particularly in Alexandra Cave.

Zietz later undertook excayations in "Specimen Cave" and found considerable quantities of material. In recent years, better specimens have been collected from several other caves in the Naracoorte area: Haystall Cave (Pledge et al. unpubl.), Henschke's Quarry cave (Pledge in prep.), and particularly Victoria Cave (Smith 1971:185).

TABLE 2
Summary of distribution and discoveries of Thylacoleonidat in South Australia.

Fig. 4. Occurrences of Thylacolconidae specimens in South Ausirulia. -: Thytacoleo carnifex O : no record for the site, X : Waknlea aldfieded. 1. Normanville, 2, Bundcy, 3. Naracoorte, 4. Kalamurina (Warburton River), 5, Curramulka, 6. Lake Fowler, 7. Port Piric, 8. Bucknowie Caves, 9. M1. Gambier, 10 Lake Callabonna, 11. Rocky River. 12. Port. Augustis, 13. Itake Ngapakaldi.

Partial skeletons were recovered fron Cathedral Cave and from the two small caves in James Quarry, Naracoorte (Daily, 1960). The quarry and Town Cave at Curranulka on Yorke Peninsula, and Mairs Cave on Buckalowie Creek in the Flinders Ranges have also yielded some good material of Thylacoleo carnifex. Wakaleo oldfieldi was found in the Miocene Wipajiri Formation channel deposits at Lake Ngapakaldi (Clemens \& Plane 1974).

Possibly more interesting than the occurrences outlined above are those richly fossiliferous areas where Thylacoleo carnifex has not becu found. The species is apparently rare in the channel deposits intersected by the Warburton River and Cooper Creck. It is absent from the rich (though as yet poorly investigated) swamp deposits at Rocky River, Kangaroo Island, (Tindale, Fenner \& Hall 1935) and has not been found in any of the cave deposits nearby. Most notably, there has been no sign of it (or any other carnivore) in the vast Diprotodon "graveyard" of Lake Callabonna. At the Salt Creek (Normanville) site, broken bones bearing distinct tooth or cut marks were recovered: these have been ascribed to Thylacolco by A, Zietz (unpabl. note, 1907). No such indications have been reported from the Callabona fossils. No explanation has been offcred for these apparent gaps in the range of Thylacoleo carnifex, and none will be attempted here, save that the reason may have some bearing on the animals way of life, which is still speculative.

ACKNOWLEDGEMENTS

I wish to thank Dr. A. Ritchie for allowing me access to study the Australian Museum material. Mr. P. F. Aitken and Drs. R, T. Wells and M. Archer provided constructive criticism of the manuscript. Figures 1 and 4 were drawn by Mrs. Linda Blesing, and Mrs, Joan Murphy typed the numerous draft manuscripts.

RFFERENCES

Archer, M. (1975). Abnormal dental development and its significance in dasyurids and other marsupials. Mem. Qal A1us. 17 (2): 251-265.

Archer, M.s \& Wade, M. (1976) Results of the Ray E. Lamley Expeditions. Part 1. The Allingham Formalion and at new Plocene variebrate fauna from norihern Queensland. M/EM. Qd Alus. 17 (3)| 3/4. 397. pl. 54-58.

Bartholomai, A. (1962). A new species of Thryacolon and notes on some caudal vertebrae of Palonchestes azaed. Mem, Qd Mrus. 14 (2), 33-40.
Bartholomai. A. (1974). The Genus protemnoton Owen (Marsupialia: Macropodidae) in the Upper Cainozoic deposits of Queensland. Mem. Qu M/us. 16 (3). 309. 363, pl_{1} 9-23.
Hroom. R. (1898). On the affinities and huhits of Thylacoleo. Proc. Limm, Soc, N.S.1V, 23: 57.74.

Clemens, W. A. \& Plane, M. (1974). Mid-Tertiary Thylacoleonidac (Marsupialia, Marmmalia). J. Paleontol. 48 (4), 652-660, pl. 1.

Daily, B. (1960), Thylacoleo, the extinct Marsupial Lion. Austr. Mus, Mag. 13, 163-166.
Finch, E. (1971), Thylacoleo, marsupial lion or marsupial sloth? Austr. Neit. Hist. 17 (1), 7-11.
Germein, P. (1960). The Curramulka Caves. Aust. Amateur Mineralogist 6 (4) 106-108.
Gill, E. D. (1954). Fcology and distribution of the extinet giant marsupial, Thylacoleo. Vict. Nat. 71, 18-35.
Kurtén, B. (1968), "Pleistocene Mammals of Europe". (Weidenfeld \& Nicolson: London).
Merrilees, D. (1968). Man the Destroyer: Late Quaternary changes in the Australian marsupial fauna. J. R. Soc. W. Aust, 51 (1): 1-24.

Owen R. (1859). On the fossil mammals of Australia. I. Description of a mutilated skull of al large marsupial carnivore (Thylacoleo carnifex, Owen) from a calcareous conglomerate stratum, eighty miles S.W. of Melbourne, Victoria. Phil. Trans. R. Soc. Lond. 149, 309-322.
Smith, M. J. (1971). Small fossil vertebrates from Victoria Cave, Naracoorte, South Australia. I. Potoroinae (Macropodidae), Petauridac and Burramyidae (Marsupialia). Trans. R. Soc. S. Aust. 95: 185-198.

Stirton, R. S., Tedford, R. H. \& Miller, A. H. (1961). Cenozoic stratigraphy and vertebrate paleontology of the Tirari Desert, South Australia. Rec. S. Aust. Mus. 14 (1), 19-61.
Stirton, R. A., Tedford, R. H. \& Woodburne, M. O. (1968). Australian Tertiary deposits containing terrestrial mammals. Univ. Calif. Publ. Geol. Sci. 77 1-30.
Stirton, R. A., Woodburne, M. O. \& Planc, M. D. (1967). A phylogeny of the Tertiary Diprotodontidae and its significance in correlation. Bur. Min. Resour. Aust., Bull. 85, 149-160.
Tindale, N. B., Fenner, F. J. \& Hall, F. J. (1935). Mammal bone beds of probable Pleistocene age, Rocky River, Kangaroo Island. Trans. R. Soc. S. Abst. 59, 103-106.
Waterhouse, F. G. (1879). Appendix A. Report of the Curator of the South Australian Institute Museum on the progress of the Museum during the year ending 30th September, 1879. South. Aust. Institute Ann. Report. 1878-9, 10, 11.
Woods, J. T. (1956). The skull of Thylacoleo carnifex. Mem. Qd. Mus. 13 (2), 125-140.
Zietz, A. (1890), (Exhibit of Thylacoleo, with Diprorodon, from Yam Creek, Bundaree). Abst of Proc. Trans. R. Soc. S. Aust. 13, 245.
Zietz, A. (1907). (Exhibit of Thylacoleo carnifex and kangaroo bones found at Salt Creek, Normanville). Abst. of Proc., Trans. R. Soc. S. Aust, 31, 317.

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

METASQUALODON HARWOODI (SANGER,I88I)—A REDESCRIPTION

By NEVILLE S. PLEDGE and
KARLHEINZ ROTHAUSEN

SOUTH AUSTRALIAN MUSEUM North Terrace, Adelaide South Australia 5000

METASQUALODON HARWOODI (SANGER, 1881) - A REDESCRIPTION

by Neville S. Pledge and Karlheinz Rothausen

Summary

The long-lost holotype and several undescribed paratype teeth of the squalodontid whale Metasqualodon harwoodi have been rediscovered, and form the basis for a more detailed description. Comparison is made with the teeth of other squalodontids from Australia and New Zealand, and based on Rothausen's revision of European Squalodontidae, an attempt is made to classify Metasqalodon more precisely. The teeth represent a valid genus.

METASQUALODON HARWOODI (SANGER, 1881)—A REDESCRIPTYON

By NEVILLE S. PLEDGE* AND KARLHE[NZ ROTHAUSEN \dagger

ABSTRACT

PLEDGE, N.S. \& ROTHAUSEN, K., 1977: Merarquatadon hurwounf (Sanger, 1881) -a redestription. Rec, S., Alhs. Mus. 17 (17): 285-297.

The Jong-lost holotype and scveral undescribed paratype tecth of the squalodontid whale Metasiualodon harwoodi have been rediscovered, and form the basis for a more detailed description. Comparison is made with the teeth of other squalodontids from Australia and New Zealand, and based on Rothausen's revision of European Squalodontidae, an attempt is made to classify Melasqualodon more precisely. The teeth represent a valid genus.

General tendencies in the evolution of squaludontid teeth make it mote likely that Metasqualodon is nearer to the evolutionary stage of longirostral Lower Miocene species of Squalodon in the Northern Hemisphere llan to that of presently known brevirostral genera of the Southern Hemisphere. Nevertheless, curvature of the crown and roots, and the denticles on the anterior-most buccal tooth indicate that the teeth probably belong to a brevirostral form. This would mean that there was a tendency in the evolution of the teeth of brevirostral squalodontids similar to that shown in the longirostral forms of Europe.

In any case, this gives a supplementary indication to the disputed age of the find since, on the grnunds of preservation, it has been determined as coming from the uppermost part of the Ettrick Formation, and is therefore very late Oligocene.

INTRODUCTION

In 1880, Sanger (1881) reported to the Linnean Socicty of New South Wales the discovery of a tooth and some fragments of a second at Wellington, Souti Australia. "These he regarded as belonging to a new zeuglodont whale species "Zenglodon harwoodir". He figured and described a "molar" tooth, consisting of a nearcomplete serrated crown and the upper. conlluent part of the roots.

Later, Hall (1911), in discussing the systematic positions of Squalodon and "Zeuglodon" from Australia, compared "Z." harwoodi and Syualodon wikimsoni McCoy (1867), and put

[^12]both into new genera: viz. Metasqualodon harwoodi (Sanger) and Purasqualodon wilkinsoni (McCoy). His treatment of M. harwoodi wris necessarily only cursory and based on Sanger:s rather inadequate paper, because the whereabouts of the type material was unknown.

In 1948, Charles Fenner, then Honorary Curator of Fossils at the South Australian Muscum, discovered a box of teeth recorded is P8446 in the Palacontological Register, and stored as a holotype. The box contained six teeth or fragments thereaf, glued to it card labelling them as molars and canines. Twa of the "molars" were also labelled as types. In addition, a slip bearing the legend (in script):

Zeuglodon teeth	separated
(Notodanus tooth)	100^{r}

Wellington
J. C. Harwood

Sydnam
Norwond
and a cutting of the text tigures from Sunger's paper were enclosed. Fenner realised that this box contained Sanger's type material and more besides. The pencilled addition "separated" referred to the "Notidanns" tooth, which was not present in the box. This tooth was later discoyered (1972) elsewhere in the collection, and bears the additional information on its card:
"Fossil shark tooth, Notidanus sp?
River Murray Cliffs near Wellington, S. Austral.
pres. by Mr. J. C. Harwood, December 1881."

The tooth is additionally labelled "Notidanus. primigenius".

However, the whereabouts of Zellglodon harwoodi was not disclosed for some time, for it was not seen by Flynn (1948) when he minutely described the nearly complete skull ind mandibles of Prosqualodon davidi Flym: nor was it seen by Glaessner (1955) when he established Squalodon gambierensis, although he later rediscovered jt.

Rothausen (1968: $p \mathrm{p}, 85-86$) established a terminology and some indices to standardise the description of squalodontid whales. Appendix

Fig 1. Feature terminology in Squalodontoid tecth. Diagrams not to seale. A. Internal face of P8446.6, diagramatically showing crenelation, syst, cr. rug. and undation, B. Anterior view of P8446.5, showing basal region of antcriot carina with rim, prim. and possible ram. sec. C. lingual view of psa46.1, showing anterior and posterior denticles, and dentic, bas. ont, and posi,, syst, er, rug, and cingulum.

1 gives a summary of this terminology, with additional terms used herein. Λ number of them are commonly applied in the text as Latin abbreviations. See Fig. 1.

HISTORY OF STUDIES ON AUSTRALIAN AND NEW ZEALAND SQUALODONTIDS

Flynn (1948; $p, 185$) gave a precise and concise account of discoveries of and papers on Australasian archaeocetes and primitive odonlocetes, therefore only the time from 1948 till now shall be considered except for a few refer ences not mentioned by him.
1939. Pritchard describes a partial skull and jaws of a new whale Mammalodon prichardi. The preserved teeth are extremely worn, to the extent that comparison with other squalodontoid teeth is not possible.
1942. Cump and Kellogg (in Camp 1942: p. 367) agree with Thomson (1905: p. 491) in contrast to Benham (1935a: p, 238) (who thought it a reptile as accepted by Neave 1940 (b): p. 395 in wrong spelling "Tangarosaurus"), that Tangaroasaurus kakanuiensis Benham, 1935 represents the rostrum of a squalodontid; accepted also by Romer (1945: p. 624; 1966: p, 392) and Dechaseaux (1961: p. 860) both in wrong spelling (Tangarasaturus), and by Rothusen in his revision (1965: pp. 656-658), who could verify it in detail.
1948. Flynn published a full description of the near complete skull of Prosqualodon davidi Flynn, 1923 discovered by him at Wynyard, Tasmania, in September 1919 (vide Mahoney and Ride 1975; pp. 161-162). He first mentioned it in 1920 and described and named it in
1923. An addendum by Carter (in Flynn 1948: pp. 192-193) gives a microscopic comparison of the enamel structure of P. sluvid,. "Zeuglodon" osiris, several carnivores, a creadont, and an ungulate (Sus). The two whales show a closer affinity to the ungulate than to any carnivore. Flynn here discusses also-with other odonto-cetes-the position of Metasqualodon harwoodi.
1948. Sanger's type material is rediscovered in Adelaide, but its importance is not fully realised, and its whercabouts are not made known immediately.
1955. Glaessncy describes a buccal tooth. probably a lower right, found in Oligocene bryozoal limestone at Mt . Gambier. It is of a form not previously sccorded from Australasia, and is given the name Squalodon gambierense. (Fig, 3M,N):
1961. Rothausen discusses the position of "Microcetus" hectori Benham 1935 (b) and he is sure that it at least belongs in another genus than the genotype M. ambiguns (v, Meyer, 1840),
1964. Dickson describes Prosqualodon trarplesi Dickson 1964 from Upper Oligocene beds in New Zealand.
1965. Rothausen in a revision of European squalodontids also discusses the non-European forms in some detail. This part of his manuscript is not yet published, even in abstract form.
1970. Rothausen discusses general aspects of some Squalodontoidea from Australia and New Zealand in connection with the question of the Oligocene-Miocene boundary.
1972. Climo and Baker present an updated summary of studies on New Zealand squalodonts
and describe a new genus and species Austrosqualodon trirhizodonta based on a pair of edentulous mandibles collected in 1970 in Duntroonian (Middle Oligocene) siltstone near Nelson, New Zealand. The genus is considered by these wuthors to be allied to Squalodon Grateloup, but differs in having a small median third root on the molariform teeth.
1972. Glaessner redescribes a cetacean tooth from New Zealand, previously described by Davis (1888) as Squalodon serratus, It is from the same stratigraphic horizon as Kekenodon onomata Hector 1881 and shows some similarilies with, but is considerably smaller than, that species. Glacssner also to some extent clarifies the rather uncertain situation concerning isolated teeth of squalodontoids in the Australian-New Zealand area.
1973. Kcyes describes, but does not name, two buccal teeth of a "protosqualodontid" from the Lower Oligocene of Oamaru, New Zealand.

He also revises the records of all known fossil Cetacea from New Zealand.
1975. Mahoney and Ride, indexing the genera and species of Australasian fossil mammals, list fifteen species of fossil cetaceans, and inter alia note that the type of Metasqualodon harwoodi had disappeared and that the cranium and much of the skeleton of the type of Prosqualodon davidi Flynn had been lost in 1961 during renovations of the Zoology Department, University of Tasmania.
1976. Whitmore and Sanders review the Oligocene Cetacea, but do not mention Metasqualodon, apparently believing it to be a Miocene species.

In this present paper, a summary of the stratigraphic occurrences of the squalodonts of Australia and New Zealand, in the light of current knowledge and interpretation, is given in Table 1. This has been done in more detail for New Zealand species by Keyes (1973).

Table I
STRATIGKAPHIC DISTKIBUTION OF AUSTRACASIAN SQUALODONTOIDEA

Species	Locality	Formation	Age	Age Reference
Tongoroasaurus kakanuiensis Benlam, 1935a	Kakanui, Otago, N.L.	Blue clay	Otaian-Altonian (Early to Midale Miocenc) or Waitakian (Late Oligocene)	Keyes (1973) Climo and Baker (1972)
Prosqueludon stuvidi Elym, 1923 .,	Fossil Bluff. Wynyard, Tas.	Fossil Bluff Sandstone	Early Lengfordian (very early Miocene)	Ludbrook (1973)
Melosqualondon hurmoodi Sanger 18.31	Near Wellington. River Murray, S.A.	Ettrick Formation.	Janjukian (Late Oligocene)	This paper
Parasqualodon. wilkinsoni McCoy 1867	Castle Cove. Loc. AW3, Aire Coast, Vic.	Calder River Limestone	Janjukian (Late Oligocene to earliest Miocene)	Carter (1958) Ludbrook (19731
Sguuloden? 'udrewi Benham 1942	Clarendon Limestone Quarry, Otago, NiZ.		Waitakian (Late Oligocene)	
"Prosyualdodon" hamiltoni Benham 1937	Cavershani Quarry, Dunedin, N.Z.	Caversham Sandstone	Waitakian (Late Oligocene)	-
Prosynaladon marplesl Dickson 1964.	Near Trig. Z, Waitaki Valley, Otago, N.Z.	Waitoura Marl Member of Otekaike Llmestone	(Late Oligocene)	-
"Microcetw" hectori Benham 1935 b	Macrewhenua River. Waitaki Valley, Otago, N.Z.	Maerewhenus Glauconitic Limestone Member of Otekaike Limestone	Waitakian (Late Oligocene)	${ }^{-}$
Ausrosqualodon trirhisomelinta Climo and Baker 1972	S.E. of Fossil Point. N.W. Nelson. N.Z.	Glauconitic Sandstone	Duntroonian (Middle Oligocene)	Keyes (1973)
Squaloden" gambierensis Glaessner 1955	Pritchard"s Quarry Mount Gambier, S.A.	Gambier Limestonc	Early "Janjukjan" (Early Middle Oligocene)	Jenkins (1974) p.292
Squalodon?'serrahus Davis 1888	Karetu River, North Canterbury, N.Z.	Weka Pass Stone	WhaingaroanDuntroonian (Early Middle Oligocene)	Glaessner (1972)
Unnamed squalodontoid	Gay"s Limestone Quarry, Weston. Omaru, N.Z.	McDonald Limestone	Whaingaroan (Early Oligocene)	Keyes (1973)

TAXONOMY

Squalodontoidea Simpson, 1945
Squalodontidae Brandt, 1873
Squalodontinae Rothausen, 1968
Metasqualodon Hall, 1911
Metasqualodon harwoodi (Sanger 1881)
Zeuglodon Harwoodii Sanger 1881: 298-300, Fig. A, B.
Zeuglodori Harwoodi Sanger Stromer 1908: 147.

Metasqualodon harwoodi (Sanger) Hall 1911: 257, 262, 263, pl. 36, Fig. 7A, B (not Fig. 6).

Microzeuglodon ? Harwoodi (Sanger) Abel 1913: 220.
Zeuglodon harwoodi Sanger Abel 1913: 209.
S. harwoodi Sanger Winge 1919: 129.

Metusyualodon hamboodi (Sanger) Kellogg 1923: 20, 40.
Zeuglodon harwoodi Pritchard 1939: 153, 155.
Metasqualodon Hall 1911 Neave 1940: 133.
Metasqualodon harwoodi Flynn 1948: 186.
Metasqualodon harwoodi Glaessner 1955: 336.
Metasqualodon Hall 1911 Rothausen 1958: 372.

Metasqualodon ($=$ "Zeiuglodon") harmoodi Thenius 1959: 273.
Metusqualodon harwoodi (Sanger 1881)
Rothausen 1965: 659.
Metasqualodon harwoodi Rothausen 1970: Fig. 1.
Metasqualodon Hall 1911 Dubrovo 1971: 89.
Metasqualodon harwoodi Sanger Climo and Baker 1972: 61.
Metasqualodon harwoodi (Sanger) Gluessner 1972: 185.
Meiasqualodon Keyes 1973: 384.
Metasqualodon harwoodi Mahoney and Ride 1975: 158.
Zeuglodon harwoodi Sanger idem: 164.
Holotype: A buccal tooth lacking only the distal parts of the roots, some points of the crown and part of the enamel at the labial face (Fig. 3A-B; Sanger 1881: p. 298, Fig- A-B). South Australian Muscum, Adelaide P8446.1.

Paratypes: Five teeth or fragments of teeth (Fig. 3C-J), South Australian Museum. Adelaide P8446.2-6.

Type Locality: The teeth were found near Wellington, on the River Murray in South Australia (Fig. 2). ". . . in a bed of yellow calcareous clay, containing specimens of Echinus, Spatangus, Clypeaster, Pecten, Turritella, Corbis and Spondy/us:" (Sanger 1881: p. 298). These accompanying fossils have been lost, so their modern identities are unknown.

Age: Late Oligocenc (see discussion below).
Diagnosis: Typical squalodontoid teeth with the following characteristics:

Posterior buccal teeth with many dentic, ant. and dentic. post. including dentic. bas. ant. and post. on antero-posterior carina. Labial face shows only few weak cr. rug., the lingual face stronger. Characteristic number of cr, rug. about 14-15, ID with 18.6 is small. Low values for ant.-post. diameter of crown base, middle value for apical-angle, and not a very high degree of symmetry. Root with two fangs, confluent at top by thin isthmus extending for up to 10 mm (estimated) but often less in more posterior buccal teeth.

Fig. 2. Locality map.

Cheek teeth of more anterior position are similar but with fewer denticles and longer isthmus.

The interior-most cheek teeth show one or two denticles.

Redescription of Holotype; The Holotype (P8446.1; Fig. 3 A , B) is a well preserved buccal tooth which lacks most of the roots, the points of several denticles, and part of the enamel from the labial face. The crown is laterally compressed, triangular in facial aspect, with a distinct antero-posterior carina which is occupied with a number of well-defined, acutely-pointed denticles: three dentic. ant. and one dentic. bas. ant. as well as five dentic. post. and one dentic. bas. post. The dentic. bas. on each side is very small, and others are about the same size, somewhat smaller than the apical point, All denticles bear an antero-posterior carina.

The greatest length of this buccal tooth is above the base of the crown. at the level of the apices of the dentic, bas. Greatest width is in that part of the crown above the anterior root. The base of the enamel is visible only on the lingual fuce, and is struight except for a median V-shaped embayment. Both faces show a wide "sulcus" in this position, which corresponds to the junction between the two roots.

The labial face bears faint, near-vertical or. rug. which appear to converge near the apex,
some also diverging to enter the denticles. The enamel of the lingual face is more strongly decorated: above a smooth basal zone (the cingulum) up to 4 mm wide, irregular stronger cristae rugae converge near the apex, some also diverging to enter the denticles. The cristac are most pronounced at their lower ends where they have developed small tubercular prominences bordering the cingulum, above which they are papillated, especially those of the posterior part of the crown. The cr. rug, die out without reaching the apex.

In anterior profile, the crown is more convex on the labial face, but this only concerns the anterior part of the crown. The apical part is slightly incurved. The enamel is thickened al the base to form a smooth cingulum.

The two roots are broken off about 6.7 mm below the crown. The anterior root is circular in section, the other is laterally compressed. The fracture shows the radial structure of the dentine, and shows that the pulp cavities of the two roots join within the thin isthmus which connects the proximal portion of the roots. Irregular, deep, vertical striations are seen on the parts of the roots nearest to the base of the crown, particularly on the labial face.

Most characters and indices (Table 2) are in good accordance with B^{9-111} dext. of European Squalodontinae, but with very small absolute dimensions.

Table 2
DIMENSIONS OF HYPODIGM TEETH OF METASQUALODON HARWOODI

	Holotype	Paralypes				
	P8446. 1 post. B sup.?	P8446.2 post. B fragm.	P8446.3 post. B fragn. fragn	P8446. 4 inid. B sup. :	P8446.5 mid. B sup.?	P8446. 5 ant.B sun.?
(1) Max ant.-post, diameter of crown	22.8	?	?	~ 17.5	11.9	8.6
(2) Ant.-post. diameter al base of crown (a)	20.4	?	?	~ 17.5	11.2	8.5
(3) Apical-angle \ldots.... \ldots........	$55^{\prime \prime}$?	?	>47	33°	$\sim 31{ }^{\text {c }}$
(4) Lat. diameter at base of crown (ant in two-rooted leeth); (b)	8.8	?	\%	> 7.8	7.6	$7 \cdot 1$
(5) Lat diameter at base of post part of crown in twu-rooted teeth	72	?	?	>76	-	
(6) Number of dentic, ant.	4	4	\%	1	1	1
(7) Number of dentic, prosi.	\square	?	?	2	1	0
(8) Ant.-post. diameter of largest dentic. post. (adi)	3.8	?	\%	$5 \cdot 7$	~ 3.4	-
(9) Index dentic. (in\%)	18.6	?	?			
(1) Characteristic number of cr. rug.....	14/15	8	\%	-	-	-
(II) Vertical width of cingulum in the preserved parts	~ 4	>2	~ 4	~ 3	~ 1.1	~ 1.7
(12) Index bas, (in \%\%)	$43 \cdot 1$,	44.6	67.8	83.5
(13) Number of rools (14) Extent of isthmus	2 >9	~ 8.5	>6.2	> $1^{\frac{2}{0}}$	-	1
(14) Extent of isthmus ${ }^{\text {(15) Max. lat. diameter of ani nool or single }}$	>9	~ 8.5	>6.4	>10		
	78	~ 8		~ 8.5	$8 \cdot 2$	7.8
(16) Max. lat, diameter of post roder	6.6		?	~ 7.5	-	

Fig. 3. A-J, the hypodigm teeth of Metasqualodon harwoodi (Sanger 1881). A. P8446.1, labial face; B. ditto, lingual; C. P8446.2, lingual; D. P8446.3, lingual; E. P8446.4, labial; F. ditto, lingual; G. P8446.5, labial; H. ditto, lingual; 1. P8446.6, labial; J. ditto, lingual; K. Prosqualodon davidi Flynn, AUGD T857, labial; L. ditto, Jingual; M. Satidodon? gambierehsis Glaesisner, AUGD F15107, labial; N. ditto, lingual face. All approximately natural size. A, B, E-J stereophotos and to the same scale.

Description of Paratypesi Sanger (1881: p. 298) mentioned a fragment of a second tooth in his ariginal description. One fragment in the assemblage is labelled "typc". and consists of the anterior internal quarter of a check tooth, lacking the apex and most of the root (P8446.2: Fig. 3 C),
lis teatures are similar to those of the holotype, but it displays some better. Three dentic. ant. are present or indicated, and also a very small dentic, bas. ant All are sharply pointed, and separated by deep groaves. The cr. rug. are very strongly developed, producing sharp-crested ridges converging towards the apex. A smonth 2 mm high cingulum borders the root.

Only a few milimetres of root are present, but it has a roughly circular section, and is deep enough to indicate that the isthmus joining the roots did not extend very deeply-only 7.5 mm below the medial base of the crown enamel.

It is not possible to say more than that its position is middle or posterior buccal.

Another buccal tooth originally labelled as "canine tooth", is represented by the posterior internal quarter of the crown, and most of the posterior root (P8446.3; Fig, 3 D), It is not part of the tooth represented by the foregoing fragment. The preservation of the crown is poor: only the apex and the topmost dentic. post., or, more likely, only the two topmost dentic. post., are present with their lingual parts, and both lack apices through wear or damage; the cr. sug. are relatively course, but appear worn. The cingulum is 3-4 mot high.

The strongly incurved root is nearly complete, lacking only a short proximal portion and the labial part nearest ta the crown, so exposing the pulp cavity. The isthmus is short, about $6-7 \mathrm{~mm}$. In lateral view the root is straight.
This latter characteristic is typical for lower buccals in European squalodontids and thus we probably have a fragment of a B inf. dext. of middle or posterior position.

A more anterior cheek tooth is represented by a near-complete crown with a small portion of its root (P8446.4: Fig. 3 E, F). The crown is laterally compressed, is high-triangular in side view, and slightly incurved in profile: The antero-posterior carina bears one dentic. ant., near the base of the crown, and two widely spaced dentic. post. Small basal denticles may have been present, but are not preserved. The labial face is mainly smooth, having a few short,
poorly developed cr . rug, near the base posterior to the median sulcus. The enamel of the lingual face is preserved only in the anterior half, and shows strong irregular cr. rug.

The root is preserved, pootly, only on the lingual side. The two roots are seen to be confluent, but the extent of the isthmus carnot be determined. The pulp cavity is obscured by matrix.

In most quantitutive characteristics (Table 2) and in the general appearance, it is similar to a left B^{6} in European squalodontids, but with smaller absolute dimensions.

Two teeth, originally labelled as canines, we deem to be anterior-most buccal teeth.

The larger is a specimen lacking the crown apex and the distal portion of the single root (P8446.5; Fig. 3 G, H), The crown is a laterally compressed cone, incurved, with a pronounced antero-posterior carina. A small dentic. bas., with apex missing, is present at each end of the carina, and minute denticulations can just be perceived along the lingual side, a phenomenon in all anterior teeth of squalodontids for which one of the authots proposed the term "crenclation" (Fig. 1 A; Rothausen 1965: p. 26, Abb. 1). The labial face is convex, and smooth except for a few short, poorly developed cr. rug. near the middle and in the posterior half. The lingual face is concave in protite and is strongly decorated with cr. rug. converging in the direction of the apex. The systems of cr. rug. die out in a narrow smooth cingulum in which the enamel is not thickened. The root is somewhat tumid just below the crown, and is laterally compressed there. More distally it narrows and becomes circular in section.

Most of its characteristics and indices, except its smaller absolute dimensions, are similar to those of a B^{+}dext. of European squalodontids. But there are some differences in habitus. For example, in European forms no tooth anterior to B5\% has any dentic. ant, or bas ant.

An upper buccal tonth is especially indicated here by a character that seems eammon to all ancerior teeth of squalodontids-the carina divides into a main branch (ramus primus $=$ ram. prim.) and another, weaker one (ramus secundus $=$ ram. sec.) at its basal anterior part, and as far as it was possible to check this chatacter, the ram. sec. branches oft to the lingual side in upper teeth and to the labial side in lawer iecth. (Fig. 1 B. Rothausen 1965.

Abb. 21-28, 53-56). Here it branches off to the lingual side.

The sixth specimen is more complete and smaller, and from the opposite jaw or mandible (P8446:6; Fig. 3 I. J). Its identity is uncertain. as it shows the great length and curvature of root associated with canines and third incisors of squalodontids, and yet bears a distinct dentic. ant. near (4.7 mm) the antcrior end of the carina. Although there are, in other squalodontids, similar teeth which belong to the most anterior of the buccal series, nevertheless even these do not show such a denticle.

The crown is a compressed cone bearing a well developed antero-posterior carina. There is no discernable dentic. post. The labial face shows very weak cr. rug. and only at the posterior part is there other poorly developed sculpture: the crown shows weak undation here.

The lingual face is slightly concave in profile, and bears strong cr. rug. These are fully visible only at the posterior part because only a small portion of enamel remains on that face, but the striations have left distinct traces on the underlying dentinc. The er, rug. arise from a smooth cingulum 1.5 mm wide.

The root is slightly compressed at the base of the crown and is a little tumid below this; this also is a character more or less developed in anterior teeth of squalodontids, but often also (less pronounced) in posterior teeth, for which the term "Basiswulst" (Rothausen 1965: p. 27) or "basal swelling" has been proposed. It may be that the teeth were implanted that far in the connective tissuc. The root then narrows and becomes almost cylindrical. About $5: 7 \mathrm{~mm}$ above the end there is at "sharp" bend. and the lingual side veers labial. There is a slight but distinct constriction 3 mm from the end. On the anterior side, a shallow groove extends from the open end of the root to the constriction.

The position of this tooth is very uncertain. Because enamel is broken away at the lingual side of the crown there is only a possible vestige of a ram. sec. (Fig. 1B) at the denticle. If this were the case it would be an upper right tooth. There is some similarity with B^{1-2} in European squalodontids, but in far straller dimensions. The development of a dentic. ant. on a tooth anterior to $\mathrm{B} \%$ is however of generic significance.

DISCUSSION

Hall (1911), making some invalid assumptions based on Sanger's rather inadequate description
and figure, concluded that the faces of the lost teeth were smooth, and that a tooth from Mt. Gambier (Hall 1911: pl. 36, Fig. 6), possessing a nearly complete root with fangs coniltent for most of their lengul, was of the same species. This Jatter tooth, however, has the faces strongly ornamented with papillated cr, rug. Hall had disregarded this feature erroncously as being nontaxonomic, and based his two genera on the characters of the incomplete roots (1911: p. 262). which are of far less or even of no importance in this regard.

Kelloge (1923: p. 20) suggested the Mt. Gambier specimen was in reality closer to Parasqualodon? wilkinsoni (McCoy 1867); this was tentatively endorsed by Flynn (1948: p. 186), but it certainly differs in habitus and some very significant points: (a) the apical angle is far smaller $\left(40.5^{3}\right)$ than in a buccal tooth (P8446.4) of similar position ($>47^{\circ}$) of M_{1} harwoodi (b) the characteristic number of cr. rug should be taken at a B^{7} (see Appendix 1), but one may be sure that, according to Hall's figure where the er. rug. are mach coarser, the characteristic number of this tooth is far smaller than in M. harwoodi (14-15 in the holotype).

These differences clearly distinguish the Mt. Gambier tooth of Hall (1911: pl. 36. Fig, 6) from M. harwoodi, and we are sure that this tooth should be consequently included in Prosqualodon dovidi Flynn because almost the same diflerences are found between the tecth of P. davidi and M. harwoodh.

The holotype of farasqualorion? wilkinsoni (McCoy 1867) itself (Hall 1911: pl. 36. Fig. 5) is similar in shape to the penultimate lower buecal of P. duvidt. But we hesitate to include P.'s wilkinsoni (only the holotype remains in this genus and species) in P. davidi without comparing the material itself, since even Flynn accepted this taxon. and indeed there are some differences. We are in doubt whether the form. separation and kind of connection of roots are of any special taxonomic meaning. The occasional appearance of a third, lingual vestigial root (Flynn 1948: p. 183) in P. davidi is also of no taxonontic value, because this feature appears in most species of Squatodon Grateloup, 1840 with irregular variability in the check tecth behind the B^{5}. (Note, however, Climo and Baker (1972). The real third root they describe in lower cheek teeth of Austrosqualodon does seem to be of taxanomic value at least at the generic level.) But there are some other differences in the crown: in P. davidi only the anterior
carina is convex in lateral view, while in the holotype of P. ? wilkinsoni it looks as if the posterior one also is convex, All conparable buceal teeth of the Tasmanian form bear three dentic. ant. while the tooth of P. ? wilkinsoni only bears two but with some spacing, as in P. davidi and in the species of Squalodon. The cr. rug., as fart as it is possible to interpret from the figure of Hall (1911: pl. 36, Fig. S), are finer and their characteristic number is larger than in P. dew ithi.

All these differences hawever, compared with the differences between teeth within other squalodontoid genera, seem not to be of generic significance, and it is more likely that this Mt. Gambier tooth represents only another species of Prosqualodom Lydekker 1893. Because the material is poor, and becaluse there was no opportunity to compare the material itself, we cannot decide this question here finally, but the existence of the genus Parasqualodon Hall 1911 is questionable. An isolated tooth (AUGD T857) figured by Hall (1911: pl. 36, Fig, 4) as P . wilkinsini was regarded by Flynn (1948) to he Prosqualorion dewidi.

Thenius (1959: pp. 272-273) even united the Tasmanian species with the Australian one, including both under "Parasyualodon wilkinsoni", But even if he were right-which seems possible-the IRZN would require this species to be named "Prosqualodon wilkinsoni (McCoy 1867.) ${ }^{12}$.

Like S. gambicrensis Glaessner, 1955 (the genus is not entirely certain) M. harwoodi has dentic. ant. and post. well-defined, large, sharppointed, and smooth-faced. In contrast, the denticles of P. Arvidid are short, obtusely pointed. thick. less well-defined, and bear on their own carinae a varying number of small nod, sec. But this last character occurs in nosst of the European longirostral Squalodontidae and seems not to be of special taxonomice significance.

In stuperficial ornamentation, Metusqualodon stands between the relatively smooth-faced S, sumbierensis, and the rough-faced teeth of Parnsqualodon? and Prosqualodon davidi which are both-somewhat differently-covered with papillated er. rug, (see Fig. $3 \mathrm{~K}-\mathrm{N}$).

What is the tuxonomic significance of the ornamentation of teeth with syst. cr. rug.?

The cr. rage are only of a very limited importance in this regard. but it seems that beside a specific character, they show some general tendencies. For example, Middle Oligocene

European Squalodontoidea have chatacteristic numbers of cr. rug. of about 7 , as is also the case for the Upper Oligocene Microcetus umhiguts (Meyer 1840). Other Upper Oligncene European forms which are to be placed within Squalodontidae have characteristically $8-10 \mathrm{cr}$. rug., while most species of Mincenc Squalodon show 10 and more. Prosqualodon davidt and P australis Lydekker 1893 show eharacteristic numbers of about 7 , which seems to be a primitive character, like other features of the teeth of this genus (small apical angle, good symmetry of crowns, three dentic, post. only, ID about 2\% 28 per cent). The same is the case with early Oligocene squalodontoid buccal teetl described from Oamaru, New Zealand by Keyes (1973). There is a characteristic number of 6-7 with relatively weak cr. rug. (beside this; good symmetry of crowns, three dentic. ant. and post.. ID about 25 per cent and only a big apical angle as a specialised character similar to the manner in Xenorophus stemni Kelloge 1923).

It should be noted that Keyes apparently did not realise that Rothausen's systematic concept is one of stages and not of clades. Thercfore it is highly likely that the carly paths of evolution of Squalodontidac and other odontocetes are embedded in the more primitive agorophid stage, so far known only from such speciafised forms as those from the Oligucene upper part of the Jackson Group of South Carolina (Cooke and MacNeil 1952: p. 27). This part, the Cooper Marl, from which the cetacean fossils have been collected, las now been extended into the Upper Oligocene (Whitmore and Sanders 1976: p. 308), on the basis of new studies of the invertebrate fauna. Numerous odentocete skulls have been found there over the past five or six years. Complete skulls of Xenoropins stoani Kelloge 1923 have verified conclusions by Roth. ausen (1965; p. 652) based on the holotype fragment, that it belongs not to the Agorophiidae but must be classed as "incertae sedis" at this time. (pers, comin, to K. R_{1}, from Albert E_{1} Sanders, Charleston, June 1976, Whitmore and Sanders 1976: p. 310).

The teeth described by Keyes can only be placed in the superfamily Squalodontoides with our present knowledge; and thus Keyes in his comparisors (1973: p. 384, 385) is correct only in his opinion that the teeth cannot be placed in Prosqualodon, Parasqualoton. Microceths (contrary to Keyes, buecals are furnishod with dentic. ant.: Rothausen 1961) or Metasqualodoh.

Concerning the intensity of development of cr. rug, in squalodontoids, there is a difference between Oligocene Squalodontidae and other Otigocene Squalodontoidea. There are very pronounced er. rug. in the older Squalodontidae with a tendency to become weaker to varying degrees in Miocene forms. But there are only weat cr. ruge in many other Oligocene Squalo-dontoids-most Middle Oligocene and small forms-as far as we know them at present from material or useful figutes. These latter seem to offer more similarity, for instance, with Neosqualodon Dal Phaz 1904,

In all these characters M. harmoodi resembles very much the Aquitanian species of Siqualoton. as well as in the high number of 6 dentic. post. (including dentic, bas.), the loss of symmetry in lateral view. and the small ID.

Six dentic. post is the highest number found in Squalodontidae, known in Squalodom only very rarcly in Be (S, hellemensis Dal Piaz 1916; variability left/right:6/5. Rothausen 1965: p. 316). Three dentic post, for B in middle and posterior positions are characteristic for a relatively ancestral stage in the evolution of squalodontoids. In one lineage of species of Squalodon, 1-2 (3) dentic, post. were added later (catulli-group: Rothausen 1968; p. 91) in comection with longitudinal stretching of the crown, resulting in a larger apical angle, bending of basal parts of post. er. rug. in a posterior direction, loss of symmetry in lateral view, straight instead of convex posterior carina, and smaller ID. (In European Oligocene Squalodontidue, ID is $23-27$ per cent in the Mocene the ID of the more conservative bariensis group of Squalodon is. 20-23 per cent, while in the catull group: Iess than 20 per cent is normally indicated:)

Gliessner (1972) redescribed Squalodon ? serratus Davis 1888. After a new preparation of the single buccal tooth that represents the holotype, he was able to slow that Hall (1911) and Flynn (1948; p. 186) were wrong when they thought this form possibly belonged in M. hurwoodi, or that both were P, wilkinsum. Rothausen (1965: p. 660), expressing some doubt, had seen in the figure of Davis (1888: Fig 9) at jeast some similarity with M. harwooli. Glacssuet clearly showed it had a form of its own, but doubted whether it belonged to the genus Squatodoll. We are sure now that this taxon sliould be placed in a group with PrasgnatodonParasqualodon "-Squalodon? andrevi Benham

1942 and has nothing to do with Kekenoden onomata Hector 1881 which Kellogg (1923: p. 27) had already placed outside the Squalodontoidea.

All theso facts mentioned above make it seem very likely that M. harwoodi belongs to another group with Squmlodon-Phoberadon Cabrera 1926-Sipualodon? gambicrensis.
The fact that most teeth of M. harwoodi agree more with the teeth of longirostral squalodontids than those of brevirostral forms, as far as we know them, need not mean that it tepresents a longirostral taxon. It may be that these are teeth of a brevirostral species in which the dental evolution has teached a level similat to some Aquitanian Squalodon species in the northern hemisphere, but as yet unrepresented by complete skulls, The above-mentioned view has support in some aspects of the anterior buccal teeth of M. harwoodi, such as denticles on the most anterior B or curvature of crowns and roots of these anterior teeth.

It should be mentioned that while the teeth of both good species of Prosqualodon, P. davidi and P. anstralis, show primitive characters, in skull morphology they differ in similar manner as Eosigualodon Rothauser 1968 and Squalodon Grateloup 1840 (Rothausen 1965: Pp. 552. 560); the taxonomic consequences slould not be decided here.
One should mention in this connettion, as did Rotratusen (1965; p. 763), that as in the Equidat, where modern equine characters are combined in different ways with ancestral ones (Tobien 1960: p. 581), so there are here such character pairs in different combinations in Squalodontidae (here considering the buccal (ceth only): symmetry/asymmetry; original number of denticles/increased number; relatively big deaticles/relatively small ones: coarse $\mathrm{cr}_{\text {, }}$ rug. weak cr. rug.; vestige of third root/no vestige, etc, There must be similar split lines of evolution, but our knowledge of the Squalodontoidea is far inferior to that of the Equidae. Thus it is still nearly impossible to fix the position and taxonomic state of isolated squalodontoid teeth if the species is not also known by complete or near complete dentitions and skulls. Rothausen in his revision therefore prefers to name such linds in open nomenclature which, however, is not possible if there is already a valid nume, such as Metasqualodion harwoodi (Sanger 1881).

As mentioned by Keyes (1973: p. 381), the numerous different very early squalodontoids in the southern hemisphere (sce below; also new discoveries in New Zealand, pers. comm. R. E. Fordyce, Christchurch, 1975, 1976) have so tar been studied muich less than those in the north. A revision of this material, us is now being done for a purt by Fordyce, may help us to recognise clades as a base for a vertical classification system of the carly Odontoceti. This will be the more significant, as brevirostral squalodonts are so far known only from the southern hemisphere. and it is very likely that most modern odontocates are derived from this group.

STRATIGRAPHY

Sanger (1881: ppr 298-299) reported the following macto-fossils as coning from the same beds as the teeth: ($\mathrm{p}, 298$) "Echinus, Sputangus, Clypeaster. Pecten. Turriella, Corbis, and Spondylus" and (p. 299) "Lamma elegans, Notiduntis primigenius, Curcharodon angustidens, Nauilus (Atwia) sic-zac, Pecten Poulsoni. Crossuthella alta, and Clypeaster (Morlonia) Rogersi". The latter group he interpreted as typically Eocene in age, according to the state of knowledge ut that time. His passing description of the source being "in a bed of yellow calcateous clay" fits many of these fossils which may be equated with Miocene species from the Mannum Formation, a sequence of yellaw sandy limestones and marls. However, it is at variance with the state of preservation of the teeth, and with their accompanying label. The teeth of Metusqualodon are black. The rate shark teeth from the Manntim Formation are ferruginised pinkish- or orange-brown. If the label is interpreted correctly, the teeth came from a depth of 100 feet (about 33 m), presumably in a bore or well. It must be admitted that the only direct evidence for this is the note "100f" on the label. However, considering the tarity of fossil whale material. the fact that the teeth seem to form part of a sequence, mainly from one jaw, and the absence of any bone, the discovery of Metasqualodon hurwoodt during the sinking of a bore (rather than a well.) seems rather likely. The boring metbod would explain the damaged teeth and loss of such a large part of the specimen. Such discoveries are by no means unknown-several teeth and fragments of a marsupial were recently found at a depth of some 30 m in a bore in New South Wales (Pledge, in prep.). If the Metasqualodon teeth were found in outcrop, their preservation
would indicate that it more-or-less complete jaw or skull should have been discovered. and it was not. The possibility of such a jaw having disintegrated before discovery does exist, but the Iceth show no sign of erosion.

A search through ayailable records of the period has failed to produce any information on suct a bore. Two old wells of c. 1880 vintage are known (Hundred of Brinkley, Sections 78 and K^{\prime}) but both are abandoned and full of sand, and nothing is known of their depths or strabigraphy, Another bore in the area (Knight's Bore. Section 217. Hundred of Brinkley, completed 1899) was accurately logeded. In this bose, the interval around 100 ft . was well within the Oligocenc Eitrick Formation (O'Driscoll 1960: p. 230).

The shark tooth (SAM P10867) mentioned on the original label was relocated by one of us (N.S.P.) recently. It seems referable to Hexanchus agassizi (Cappetta 1976) although larger. It has a similar preservation to the Metasqualotion teetl-dark grey to blackwhich is typical of bone and teeth from glauconitic or other reducing sedments. The label with the tuath gives the additional information; "R. Murray Cliffs near Wellington".

The beds Sanger (1881) describes would seem to be part of the Mannum Formation (see Ludbrook 19(i)). This forms a large part of the cliffs at Tailem Bend, only 1.4 km upstream from Wellington, but it disappears from outcrop only a lew kilometres downstream, having been stripped oll and replaced by the Pliocene Norwest Bend Formation, a yellow calcareous sand unit with abundant bivalyes (notably Ostrea, with Spondylus and various pectintids). Some of Satrger's assemblages could eonceivably have been derived from this younger formation. It is in this same area, just south of Tailem Bend. that the Ettrick Formation nuakes one of its few surface appearances, as a lard, pale greenishgrey, finely glauconitic marl (Ludbrook 1961: p. 38), occurring as a bench at present pool level of the river. This pool level is largely artificial, following the installation of barrages at the mouth of the tiver, in the 1930 s, to control depth and salinity; It is therefore probable that the extent of outcrop of the Ettrick Formation was far greater circa 1880 . Being glauconitic. and thercfore of a somewhat reducing origin, the Eatrick Formation would yield peeth of a decidedly dark grey-black colouration.

Interestingly, a tooth of the Oligocene shark Carchurodon angustidens, collected at Tailem

Bend if 1936, has the same dark preservation as the Meqtaqualodon and Hexanchus teeth, and other shark teeti from reducing sediments, and adds support for the provenance of Mctasqualodon bejng the Ettrick Formation.

The conclusion is that, whatever the source of the invertebrates allegedly associated with them, the teeth of Metasquatodon were obtained from the Ettrick Formation, either in a bore or well or from oulcrop. The top of this unit is believed to be equivalent to the end of the Oligacene (Ludbrook 1973: Table 1). Hence the age of Mctasquatodon harwoodi (Sanger 1881) is Late Oligocme, possibly even Latest Oligocene. since it probably came from near the top of the formation. The younger age is also indicated on the basis of the form of the teeth in relation to the general tendencies and similarities seen in Lower Miocene species of Squalodon in Europe.

ACKNOWLEDGEMENTS

Wo are grateful to Enceritus Prof. M. F. Glacssner for bringing the material to our attention and arranging our collaboration, and also for critically reading the manuscript. Mr. J. M. Lindsay gave advice on certain stratigraphic matters. Mrs. L. Blesing drew tigures 1 and 2. Mrs. J. Murphy and Miss F. Gommers typed the manuseripts.

REPERENCES

Abel, 0. 1913. Die Vortuhren det Bartenwale. Donhsc/hr. Alked. Wisis, Wioht, muth. Has. Kl. 90: $155-224,12 \mathrm{pl}$,
Hurnham. W. H3. 1935. A Reptilitn Jaw from Kaharnui. South Island, New Kealand. Trans froc R. Some N. 2.6 6.. 232-238.

Benhan!. W. 13. 1935b. The leeth of an expinct whaste
 65. 234-243, 2 pl

Benham. W. 13. 1937. Jiossil Cetaces of New Zealand. 111. The skull and wher parts of the skeleton of Prot
 67: s-14, 4 pi.
130nhtm. W2 13. 1942. Fossil Celaceir of New Zentand. Va Mramerths, a denetic matre substituted for Lophacephaths Benhatm, Truns froxe. R. Suc. N.Z. 71: 260-270. 4 pl
Brandl. J, F. 1873. Untersuchungen iiber dic fossilen und subfossilen Celaceen Furopar. Mcm. Acad. Sici. SaintPéternhourg. 7. Ser. 20, 372 pp.. 34 pl.
Cabmera. A. 1926. Cetáceos foriles del Mureu de la Plati. Revista M1us. Lit Plafa. 29: 363-illl.
Canno. C. L: 1942. Ichbyosatir Rostra from Central California. J. Palkond. 16: 362-371. 2 m.
Cippettit H. 1976. Sclaciens nouveaux du London Clay del"Esssey (Yprexien du Bassin de Londrest. Gicohios, 9 (5): 551-575. 4 pl.
Cotler, A. N. 195 K . Tertiaty foraminiferat fron the Ajre dismoch. Victoriat. Bull. leent. Slut: Vict., 55: 1-76.
Chamman. F, 191s. Descriptions and revisisns of the Cretucentus and 'leriary fiahnemains from New Zeilland. Pellaront. Bull. Wedlimerons. 7 : 45 ppe. 9 pl

Clime, F. M. and Baker. A. N. 1972. A new Sharktoothed Dolphin (Cetaces: Squalodantidac) frum the Upper Oligocene of New Zcitland. J. R. Soc. N.Z. 2 (1): 61-6k.

Cooke, C. W. and MacNeit F. S. 1952 . Tertiary stratigraphy of South Carolina, U.S. Cicol. Survey, Prof. Paper 243-B, 19.29
Dat Piaz. C. 1904. Neosqualodon nuovo genere della famighia degli Squalodontidi. Mitm. Sors Nuldont. Smisse 31 : 1-21.
Dal Piaz. Ci. 1916. Cili Odantoceti del Mincene Rellunense. In. Squalodun. Memoric isf. xeal. miner. Univ. Pudores 4: 94 pper 10 pl .
Davis. J_{1} W. 1888. On fussil fish-remains from the 'Terlisry and Cretacen-Jeriary formations of New Zealand. Sci. Trum. \mathcal{K}, Dihh, Soco ser. 2. 4: 1-62
Dechsseaux, C. 1961. Cetacen. In Trate de Pabommbaire. J. Piveleau, ed. Masson ef Cie. Paris. 6 (1): 831-886.

Dickson, At. R. 1964. The skull and other semains of Prosquadurdon marplesi, al new species of fomsil whate. NiX. J. Geol. Geaphys. 7: 626-635.
Dubrove, 1. A. 1971. Novyi rod kitoobraznykis (Suc/ike limucerths cholmicus gen. el 5 p. nuv.) i\%. miolsena. o-va Sakhalin. (A new genus of celacea (Sachalfone chatmictes gen. et sp. noy.) from the Miocene of Sakhalin Island.) Akad. Nath SSSSR Paleonfol. Imst. Tr. 130: 87-103. (Russian).
Fabiani. R. 1949. Gili Odoatoect det Mbeene inforiore dellas Sicilia. Memoric Ist. Heol. sminer. Unis. Padote 16: 32 pro. 2 pl.
Flynn, 1, T, 1920, Squaludont Remains from the Tertiary Strata of Tasmaniad. Natures Lomd. 106: $4(16-407$.
Flynne. I, 1923. A whale of bygunc days. Aus\%. Mus. Map. 1: 266-272.
Flynn. T. T. 1932. A New Species of Fossil Cetacean from 'rysmania, Gech. Mag. 69: 327-329.
Filymn, T'. "r: 1948. Description of Prescembuton datidi Flynn. a fessil celaceun from Tasmania. Irann. zool. Sor. Lond. 26: 153-196.
Glatssner, M.F. 1955, Pclagic Fossils (Aluría, penguins, whales) from the Tertiary of South Australia. Rec. S. . 4 M57. M11. 11 353-372.
Glaessner. M. F. 1972 Redescription of the Tooth of an Oligocene Whale frum North Canterbury, New Kcaland. Rec: Comperbury M1us. 9 (2); 183-187
Grateloup, 1. P. S. 3840. Descripion dun fragment de mâchuire fossile d'un genre nouvena de Reptiles (Saurien) - - det. Acad. may. Sci. burdembix 2: 201-210.
Hall, 'T. S. 1911. On the systematic position of the species of Squalidon and Zeuglodon described tion Ausiralia. Proke J. Suc. Vich. (N.S.) 23: 257-265
Hector, J. 1881. Nutes on New Zealand Celacea, Recent and Fossil. Trans. JPrme. N.Z. Ihisf. 13: 434-436.
Jenkins. R. J. F, 1974. A new giant penguin from the Eocene of Ausirializo Polacontology 17: 291-310,
Kellogg, R, 1423, Déscription of two squalodonis recently cliscovered in the Calvert Cliffs, Maryland, and notes on the shark-toothed celilceans. proc: U.S, marm. Mis. 62: 69 pp .
Kellogg, K. ly2\%. The History of Whales, their Adaption so lite in the Water Q. Rel: Biol. 3: 29.76, 17420s.
Keyes, 1. W. 1973. Early Oligocene squalodont cetacean from Oantarn, New Yealand. N.Z. I. Marime med Pireshmatre Ris. 7: 381-391.
Ludbrook, N. H. I9G1. Siratigraphy of the Murvay Rasin in South Australia. Bull. getlo Surt. S. Alisp. 36: 96 एro. 8 pls.
Ludbrook, N. H. 1973. Distribution and Stratigyaphic Ulitity of Cenuzoic Moltuscan Faunas in Southern Australian Toheok Unim, Se\%. Nep., 2nad ser. (Gwath, Spec, Vi\%, 6 (Hatal Memoriwi Fol.) 241-261, 1 table pis. 24-28.

Lydekker, R. 189\%. Contributions ra a knowledge of the fossil vertebrates of Argentins. Celacestr skulls uf Palagonit, Ahn, Mos. Le Plate. Palseumf. Aigent. 2: 2-13.
Lydekker, R. 1899, On the skull of a bhark-louthed dolphin from Patagorid. Proc. =wol. She. Lomb, 184y: 919-922.
McCoy, F. 1867. On the Occurrence of the genus Samalodun in the Tertiary Strata of Victoria. Geal. Magn 4: 145. 1 pil.
Mahoney, f. A, and Ride, W. O. L. 1975. Index to the genelia und species of Jossil Marmatha described from Australia and New Guinea between 1838 and 1968. Spec. Publi. West. Alss. Mtris. No. 6, 1-250.
Meyci, H, Y 1 K4U. Uber Plucts ambigun Münster. Beilr. Perrelacionkurde, Grat all Minster 3: 1-7, I pl.
Neave, S. A. 194th. Namencharor Zoologicus 3: 1-1065.
Neave, S. A, 1940b. Namenclaror Zoulusicm at 1.758.
O'Driscall. E. P. D. 1960. The Hydrology of the Murray Basin Ppovince in South Ausiralia. Bull. geol. Surv. S. Aush. 35 (2 vols.) 300 pp. 14 charts.

Pritchard, B, C. 1939. On the discoyery of a fossil whate in the older tertiaries of Tisquay. Victoria. Victorian Naf. 55: 151-159.
Romer, A, S, 1945. Vemehrate Fatcontalugy 2nd ed." 687 ppe. Universily of Chicagu Press, Chicage
Romer, A. S. 196in. Fervebrate Paheontology 3 rit ed.. 468 pp. University of Chicago Press. Clicugb.
Ruthethen, K. 195% Marine Vertebraten (Odontaspidse, Lamnidae. Sparidae. Dermuchelyidac, Squalodontidae) im oberoliguzinen Mecressand von Süchteln and Diisseldorf. Fortschr. Gcol. Rheind Hesi/. 1: 363$3 \times 4$.
Rothatsen, K. 1961. L'ber Micrucelus, einen kleinen Sutialadontiden aus dem Oberoligozän. Neues Jh. Gicol. Paliom. Ahh. 112: 106-118.
Rothausen, k. 1965, Die europaischen Squalodontidae (Odontocelr) und ihre Stellung zu den übrigen Squalorlontoidea, I. Kraniales Skelett. Habilitalionscihr., $8.56 \mathrm{pp}-.77 \mathrm{pl} .0$ Mainz. (umpuhlished thesis').
Rothousen. K, 1968. Die systematische Stellung der ellropäischen. Squalodontidae (Odontoceli. Mamm.). froliunt. Z. 42: 83-104.
Rothausen, K. 1970, Martice Regtilia and Mammalla and the problem of the Oligucene-Miocene boundary. Comm. Mediterr. Neog Sirm. Proc 11'. Sens. Bulagna 1967: G. Ge oh. 35 (1): 181-189.
Sanger, E, B, 1881. On a Molar Toeth of Zeliglodon from the Terliary Beds on the Murtay kiver near Wellington, S.A. Prexc. Linn. Sor. N.S.H. 5: 298-300,
Simpion, G. G, 1945. The principles of chassificution and a
 85: 1-350.
Stromer. E. 1908. Die Archacuceli des Aegyplischen Eoziäns. Beitr. Puliunt. Cicol. Oster.alug. 21: 106. 178.

Thenils, E. 1959. Terifir. Wirhchierfauncn. Jandh. Straf. Geni. $1(2): 1.328$.
Thumson. T. A. 1905, The Gem Gravels of Kakanui; with remarks on the meology of the districi. Trans. Proc,

Tobien, H. 1460 , Zur Geswhichte der plerdeartigen Unpathufer im lerliai Europas. Z. di. Eed. Ges, 112i 580-581.
Winge, ti. 1919 Udsigh over Hyulernes Slacghtab, Vhlensk. Msidile danth. narmeh. Forcho. 70: 59-142,
Whitniore, F. C. Ir- and Sanders, A. E. 1976. Review of the Oligucene Celacea. Sysf. Zoml. 25: 304-320.
Zigna. A. de 1876. Sopia i resti di umn squalodonte scoperli nell'drenaris mincena sjel Bellunense, Memarle ?st. V'en. Sci. Lall. Arf, 20: 17-33.

APPENDIX 1

STANDARDISED TERMINOLOGY FOR SQUALODONTOID TEETH

Buecal tewih-(B). Rothatser (1965: م. 718 ; 196\% $=$ pp. 86, 100) stated that there was no way of determinisg the premblar-molar division and homolagy in most squalodontoids and proposed this more neutral ferm, stmilat to the sense of Dal Pliz (1916; p. 17) and Kellogg ($1928:$ p. 53). The term is equivalent to the informal "checktooth" (bured: Lill. check) also used herein. Buccal leelh are numbered consecutively from the front, i.e. Bt, Bys. $\mathrm{B}^{3} / \sqrt{3} \ldots \mathrm{~B}^{5} / \mathrm{m}^{+}$

Benticullus anterior: d, posterior-Dentic. andi- dempis posf. (dentriculus: Lat little tooth, denticle) small conical extensions on the sinterior and posterior cutting edges (carinae) of the Hattened biceal crowns.
Denficulhes hewis-Dentic. bas. Basal denticle-at small cusp at the basce of the crown on the anterfor or posterine cuges: They have special signilicance in some cases and therefore are mentioned separtitely.

Nodilus primus-Nod. prinn. Small lubercular extensiuns of the main carinat, cf neht seo Hoih are ta be strietly separated from "denticles".

Norlulas secuntus-Nord. rec. Small tubercle-like extensions on the cartinate of denticles.

Cingulum A smooth encircling zone of thickened enamel at the base of the crown.
Crisfu ragosa-Cro rug (crism: Lat ridge) Enamel ridges, mostly irregular, that may be more or less covered with enamel papillae.

Systcma cristarum rugasarum-Sysh. cr. rug. Viewing the apical end of a cr. rug. us the stem or trunk, one eees it divide into branches lotwards the base of the crown. Theso branches mayy anastomose with others from the same trunk, but not with those from another "stem". They belong to closed systems. These syst. or. ruge dio out at the cingulum (Fig. J). This observation secms to be true for all squalodontid teeth.

Undation (unda: Lal, wave). Comman, weak, tolatively broad, fongiltudinal, Wave-form surface relief on the crown face following the curyature of the crown of anterior iceth. (Fig. I: Rothausen 1965: p. 26, Abb. 4).

Creptation Minute serralion on the carinas of anterior treth of squalodontids (Fig. I: Rothausen 1965; p. 26. Abls. 4),

Ramuis primus-Ram prton. The main hranch of the carina when il-divides. (Fig. 1).

Ramus sacundus-Ramr. sec. A weaker, secondary branch at the basal end of the anterior carina in anterios leeth of squalodontids.. (Fig. 1).

Apicat amgle The angle enclased by lines from the apex to the anterior and posterior end points of the base of the crown: gives an index of the antero-posterior diameter (a) to the height of the crown.

Index alfortalormm-(ID). Expresses the relationshit between the basal diametes of the !argest dentic. post. (ad), measured in the direction of the carina, und the anterco posterior dianmeler of the crown (a).

$$
\text { i.e. } 10=\frac{100 \text { add }}{a} \text { per cent }
$$

For best comparison of species, the in should be calcalated only for B^{7} la $B^{\prime \prime}$ (Rothalusen 7965: p. 32).

Inder busulis- (β), Expresges the dattening of the crown. $\quad \beta=\frac{100 b}{a}$ where b is the iransverse diameler of the crawn (ahove the anterior sant in twa-rooted icetb).

Cristoe density-Cr, demsity. The characteristic number of cr, rug. The number of cr. tug counted in 5 mm Just pusterior of the mitdle of the labial face about 5 mm atove the hase of the crown, neeferably of a B^{7}.

RECORDS OF THE SOUTH AUSTRALIAN MUSEUM

PROTURA (INSECTA) OF THE NEW HEBRIDES

By S. L. TUXEN

VOLUME 17

NUMBER 18
10th September, 1977

PROTURA (INSECTA) OF THE NEW HEBRIDES

By S. L. TUXEN

Summary

Protura collected in the New Hebrides in 1971 are described. Nine species were found, four of which are described as new, viz. Eosentomon penelopae and insularum, Isoentomon pumilioides and Berberentulus tannae. The species composition compares well with the known fauna or the Bismarck Archipelago and the Solomon Islands.

PROTURA (INSECTA) OF THE NEW HEBRIDES

By S. L. TUXEN*

ABSTRACT

TUXEN, S. L. 1977. Prolura (Insecta) of the New Hebrides. Rec. S. Aust. Mus., 17 (18): 299-307.

Protura collected in the New Hebrides in 1971 are described. Nine species were found, four of which are described as new, viz. Eosentomon perelopae and insularum, Isoentomon pumilioides and Berberentulus tamae. The species composition compares well with the known fauna of the Bismarck Archjpelago and the Solomon Islands.

INTRODUCTION

Following the publication of our paper on the Solomon Island Protura (Tuxen \& Imadaté

1975a), Ms Penelope Greenslade of the South Australian Museum, Adelaide, separated out the Protura from the Berlese samples collected in the New Hebrides by the Royal Society-Percy Sladen Expedition to these islands in 1971 which are lodged in the South Australian Museum and forwarded them to me for identification. Although only a small collection of 52 specimens, the material contains some highly interesting representatives of no less than nine species which are the subject of this paper.

I am grateful to Ms Greenslade for giving me the opportunity to study this material.

SYSTEMATIC TREATMENT

I. Key to the Known Protura of the New Hebrides

1. Spiracles present; all three pairs of abdominal legs two-segmented (Eosentomoidea) 2
Spiracles absent; only the first pair of abdominal legs two-segmented (Acerentomoidea) 8
2. Sensilla e in foretarsus missing, sensilla g spiniform Isoentomon pumilioides n. sp.Sensillae e and g in foretarsus spatulate (Eosentomon)3
3. $\mathrm{b}^{\prime} 1$ absent in foretarsus; abdominal sterna I-VII with central posterior seta; tergal seta p 2 displaced anteriorly on abd. II-VI ... Eosentomon noonadanae Tx. \& Imad. b'1 present; abdominal sterna I-VII with an even number of setae; tergal p 2 not displaced 4
4. $t 1$ in forctarsus close to $a 3 ; f 1$ and b short ; stern. VIII with two anterior setae. . Eosentomon insularum n.sp. $\mathrm{t} \|$ midway between $\alpha 3$ and $\alpha 3^{\prime} ; \mathrm{fl}$ and b long; stern. VIII without anterior setae5
5. Seta $p 1^{\prime}$ on abd. terg. VI short and on line with $p 1$ and 2 , close to $p 2$; terg. X-XI with eight setac Eosentomon oceaniae Tx. \& Imad.
Seta p I' $^{\prime}$ on abd. terg. VI long, placed in row with $\mathrm{p} 2^{\prime}$ on hind margin 6
6. Terg. X-XI with eight setae; $p 1^{\prime}$ on terg. VII on line with $p 2^{\prime} \ldots \ldots, \ldots$ Eosentomon penelopae n.sp Terg. X with less than eight setae, $\mathrm{p} 1^{\prime}$ on terg. VII on line with p 1 and 2 and close to p 2 7
7. Terg. X with four setae, no. 1 and 4 \qquad Eosentomon sakura Imad. \& Yos. Terg. X with two setae (No. 4) or none Eosentomon wygodzirskyi Bon.
8. Sensilla a^{\prime} in foretarsus broadly vase-shaped, short, only reaching $\delta 3$; sensilla f midway between e and g; terg. VII with six anterior setae; stern. XI with six setae Berberentulis capensis (Wom.) Sensilla a' longer, sword-shaped, reaching $\delta 4$; sensilla Γ close to e ; terg. VII with two anterior setae; stern. XI with four setae .. Berberentulus tannae n.sp.
[^13]
II. Synopsis of the Species

1. Ensentomon oceaniae Tuxen \&

Imadaté 1975a: p. 350
Three specimens are present of this species which is casily recognisable among the Eosentomon species of the swani group by the position of seta p I^{\prime} on terg. VI.

Occurrence on the New Hebrides: Efate Island, Point Narabau, 100 m from high water mark on old beach surface, $17^{\circ} 45^{\prime} \mathrm{S}, 168^{\circ} 24^{\prime} \mathrm{E}$. Simple mesophyll notophyll vine forest, in soil of $0-8 \mathrm{~cm}$
depth. Coll, no, NH 19, K, E. Lee leg, July 13. 1971. One $\begin{gathered}\text { T, } \\ \text {, one maturus junior. }\end{gathered}$

Aneityum Island, near top of stecp slope above E side of Anelcauhat Bay, $20^{\circ} 15^{\prime} \mathrm{S}$, $169^{\circ} 46^{\prime} \mathrm{E}$. Disturbed coastal forest with Acacia spirorbis, in soil of $4-6 \mathrm{~cm}$ depth. Coll. no. NH 26. K. E. Lee leg. July 23, 1971, One 9 ¢.
Further distribution: Bismarck Archipelago and Solomon Islands, widely distributed (Tuxen \& Imadaté 1975a: p.352). Australia: North Queensland (Tuxen 1967: p. 6 and Tuxen \& Imadaté 1975b: p.195).

Figs. 1-3: Eiosenfonlon penelopae n-sp. 1: Pseudoculus, 2: Foretarsus in ventral-exterior view. 3: Foretarsus in dorsal-interior view. Figs. 4-5: Eosentomon wygodzinskyi Bon, from the New Hebrides. Foretarsus in exterior and interior views.

2. Eosentomon penelopae n.sp.

Figs. 1-3
This species is related to E. solomonense Tx. \& Imad. 1975 from the Solomon Islands, but it is smaller, pseudoculus is smaller, $\mathrm{p} 4^{\prime}$ is missing on terg. 11-11I and terg. VII has four setae instead of two.

Length of body $750 \mu \mathrm{~m}$, of forctarsus without claw $75 \mu \mathrm{~m}$.
Mouthparts normal, clypeal apodeme not visible (specimen seen in directly lateral view). Pseudoculus oval, small, $P R=12.5$ (Fig. 1). Labral setac present.

Foretarsus (Figs. 2-3). All setae inclusive of b'l present, position and size as in solomonense.
f and g spatulate, t 1 midway between $a .3$ and 3^{*}. $\mathrm{BS}=1.1$. Tarsus small, $\mathrm{TR}=6.0$. Empodium shorter than claw, $\mathrm{EU}=0.9$.

Empodium of middle and hind leg short.
Chaetotaxy: On thorax $p 1^{\prime \prime}$ on segment 111 long, behind the line p 1-2; the abdominal chaetotaxy set out in Table 1-p 4^{\prime} absent on terg. 11-111.-a 3 present on terg. IV; a 4 and 5 present on terg. Y-VII.-p 1^{\prime} short, on line with p 2', on terg. YII,-p 1" 2 not anteriorly displaced on terg. Vill.-no. 1 and 2 on terg. XI extremely small.

Female squama genitalis unknown.
Holotype and only known specimen: ot from Erromanga Island, Neiv Hebrides, 8 km SW of

TABLE I
Abdominal chactotaxy of Eosentomon penelopae n.sp. Numbers above a line refer to the number of setae in the anterior row. numbers below the same line refer to the number of setae in the posterior row.

segment	I	II-1II	IV	V-VI	VII	VIII	IX-X	X1	Telson
	4	10	10	4	4	6	8	8	9
tergum		14	16	16	16	9			
	4	6	6	6	6	7	4	8	12
sternum	4	4	10	10	10				

(') The presence or absence of the very small p 5 is very difficult to determine in most species.

Ipotak, $18^{\circ} 54^{\prime} \mathrm{S}, 169^{\circ} 13^{\prime} \mathrm{E}$. In soil of remnant grove of Podocarpus imbricalus, $0-4 \mathrm{~cm}$ depth. Coll. no. NH 36. K. E. Lee leg. Aug. 9, 1971. In the South Australian Museum, Adelaide.

Named in honour of Ms Penelope Greenslade.
3. Eosentomon wygodzinskyi Bonet 1950: 122

Figs. 4-8
Syn. E. solare Tuxen \& Imadaté 1975a: p. 356.
This species was described by Bonet in 1950 from two females from Itaguaí, Brazil, and redescribed by Tuxen (1964: 137). In 1975

Imadaté and Tuxen described the new species solare from a fairly large series from the Bismarck Archipelago and Solomon Islands. We mentioned that "the difference, such as the relative length of the filum processus of the female squama genitalis and of the foretarsal sensilla c^{\prime}, may be significant, although these two forms closely resemble each other". In 1976, after a renewed examination of the type of wygodzinskyi now in the Zoological Museum, Copenhagen, I concluded that "perhaps we did the wrong thing in describing solare" and the new material from the New Hebrides has convinced me of the synonymy.

Figs. 6-8: Eosentomon wygodzinsky: Bon. from the New Hebrides, 6: Clypeal apodeme. 7: Pseudoculus. 8: Female squama genitalis in ventral view. Figs. 9-13: Eosentomon insularum n.sp. 9: Clypeal apodeme. 10: Pseudoculus. 11: Female squama genitalis in ventral view. 12-13: Foretarsus in exterior and interior

Whereas the material of "solare" from the Bismarck and Solomon Islands showed no variation, the present material varies in chactotaxy and so I give a short description with drawings of a typical specimen from Aneityum, Now Hebrides,

Labral setae present; clypeal apodeme with broad "clubs", pseudoculus oval, PR - 13 (Fig. 4).

Foretarsus without claw $77 \mu \mathrm{~m}, \mathrm{BS}=1 \cdot 2$, $T R=5 \cdot 0$. Length and position of sensillae as in "solare" (Fig. 5-6).

Female squama genitalis, Fig. 7.
The usual abdominal chactotaxy is tabulated in Table 2-terg. V with anterior setac a 4. 5.-terg. VI-VII only a 5.-terg. X with setac no. 4 or none

TABLE: 2
Usual abdominal chaetotaxy of Eosentomon rygulzinsky/ Bonet. Numbers above a line refer to the sumber of setad in the anterior row, numbers below the same line refer to the number of setae in the posterior row.

scgment	1	17-III	IV	v	VI	VII	VIII	IX	x	XI	Telson
	4	10	10	4	2	2	6	8	0	4	9
tergum	8		$\overline{16}$	$\overline{16}$	16	$\overline{16}$	9				
	4	6	6	6	6	6	7	4	4	\star	12
sternum	7	4	$\overline{10}$	10	10	10					

at all.-terg. XI with setae no. 3 and 4 and one or two medial microchactae.-seta p 1^{\prime} on line with p 1-2 and close to p 2 on terg. VII.-p $1^{\prime \prime}-2$ not displaced on terg. Vill.

However, this is not exactly identical to the chaetotaxy of the type specimens of cither wygodzinskyi or solare. The chaetotaxy of important abdominal segments in all known specimens of the species is set out in Table 3.
'TABLE 3
Comparison of abdominal chaetotaxy for selected segments of all known examples of Eosentomon wygodzinskyi Bunct and Eosentomun solure Tuxen \& Imidaté.

terg.	IV		VI	VII	X	XI	
wygodsinskyi from Brazil	10	4	4	2	2	4	
"solare" from Bismarck Archipelago and Solomon Islands.	10	4	4	2	2		
$6.10 y$ godzinskyi from Aneityun, New Hebrides	10	4	$\stackrel{2}{2}$	2	$1)$		8) vara.
2 wygodzinsky from Erromanga, New Hebrides	10	4	$\frac{2}{4}$	$\frac{2}{2}$	0		8) yara,
1 wy godzinskyi from Etromanga. New Hebrides	10	4	4	2	2	4	f.prine
2 wygoulzinskyl from Malckula, New Hebrides -	4	4	4	2	2	4	var. b.

In one specimen from Aneityum seta no. 4 was present on one side of terg. X. The medial microchaetae on terg. Xl may all be present, or there may be only two of them or none at all. They are so small that they are very hard to see.

I deduce from this survey that the principal form is found in Brazil and atl over the Bismarck Archipelago and Solomon 1slands in all 27 adult specimens, is well as in one specimer on Erromanga. The var a with reduction of anterior setae on terg. VI and X is found on Aneityum and Erromanga (eight specimens). The var. b with reduction of anterior setae on terg. IV is found on Malekula (two specimens).

Occurrence on the New Hebrides: Malekula Island, Toro, terrace-like surface on mountain side ca. 2 km NNW of summit of Mount Yang' abalé. $16^{\circ} 16^{\prime} \mathrm{S}, 167^{\circ} 26^{\prime} \mathrm{E}$, Complex mesophyll vine forest, in soil of 0.4 cm depth. Coll. no. NH 57-58. K, E. Lee leg. Oct. 1, 1971. One fo, one mat. jun., one larva 11.

Erromanga Island, $1-2 \mathrm{~km}$ NNE of Nuangkau River bridge, $10-11 \mathrm{~km}$ WSW of Ipotak. $18^{\circ} 53^{\prime} \mathrm{S}, 169^{\circ} 12^{\prime} \mathrm{E}$, resp. $18^{\circ} 54^{\prime} \mathrm{S}, 169^{\circ} 11^{\prime} \mathrm{E}$ 。 Mixed mesophyll evergreen vine forest, in soil of $0-4 \mathrm{~cm}$ depth. Coll. no. NH 34-35. K. E. Lee leg. Aug. 3-7, 1971. Two §, one ㅇ, one mat. jun. and one larva I.

Aneityum Island 4 km NE by N of Anclcauhat $20^{\circ} 11^{\prime} \mathrm{S}, 169^{\circ} 47^{\prime} \mathrm{E}$. Mixed rainforest, in soil of $0-4 \mathrm{~cm}$ depth. Coll. no. NH 22. K. E. Lee leg. July 20, 1971. Ore , - -Near top of steep slope above E side of Analcauhat Bay $20^{\circ} 15^{\prime} \mathrm{S}$, $169^{\circ} 46^{\prime} \mathrm{E}$. Coastal forest with Acacia spirorbis, in soil of $0-6 \mathrm{~cm}$ depth. Coll. no. NH 26. K. E. Lee leg. July 23,1971 . One 3 , one 9 , one mat. jun.

Further distribution: Bismarck Archipelago and Solomon Islands (Tuxen \& Imadaté, 1975a) and Brazil (Tuxen, 1976).
4. Eosentomon sakura Imadaté \& Yosii 1959:7

This species is described in detail by Imadaté, 1974 and is casily recognised by the chaetotaxy of terg. X where only setae no. 1 and no. 4 are present.

Occurrence in the New Hebrides: Malekula Island, 500 mE of SE corner of Lambubu Bay, $16^{\prime \prime} 12^{\prime} \mathrm{S}, 167^{\circ} 23^{\prime} \mathrm{E}$, Complex mesophyll vine forest, in soil of $0-4 \mathrm{~cm}$ depth. Coll. no. NH 61. K, E. Lee leg. Oct. 4, 1971. One 8 , one p, one mat. jun.-Lamdorr, 3 km NNE of Wintua village, SW Bay, $16^{\circ} 28^{\prime} \mathrm{S}, 167^{\circ} 27^{\prime}$ E. Mixed mesophyll vine forest, in soil of $0-4 \mathrm{~cm}$ depth. Coll, no. NH 67. K. E. Lee leg. Oct. 11, 1971. One | d. |
| :---: |

Further distribution: In Japan this species is the commonest Ensentomon and has been found at almost all collecting sites, rarest on Hokkaido. Further afield it occurs in Formosa (Taiwan) (Imadaté 1964), Bismarck Archipelago and Solomon Islands (Tuxen \& Imadaté 1975).

5. Eosentomion insularum n، sp.

Figs. 9-13
This species is distinguishable from other New Hebrides Protura in the position of sensilla $t 1$ in
forctarsus (near a 3) and in the presence of two anterior setae on stern. VIII. It seems to be most closely related to E. asahi Imad, from Japan, but differs in many respects, is much smaller, has a different position of t on forctarsus as well as differences in chaetotaxy.

Length of body $560 \mu \mathrm{~m}$, of foretarsus without claw $58 \mu \mathrm{~m}$.

Mouthparts and clypeal apodeme of common shape (Fig. 8), labial setac present. Pseudoculus small, with three small "lines" (Fig. 9), $\mathrm{PR}=12-13$.

Foretarsus (Figs. 10-11) with all sensillac present incl. $b^{\prime} 1, \mathrm{t}$ I near a $3, \mathrm{BS}=0.85$. e and g spatulate, f 1 small, seta-like, f 2 knob-like. a^{\prime} weakly broadened basally, b'l neares to $\delta 3^{\prime}$ than to $\delta 4^{\prime}, \mathrm{c}^{\prime}$ short. Tarsus small, $\mathrm{TR}=7 \cdot 0$,

Empodium of middle and hind leg short, onefifth the claw.

Chactotaxy: On thorax p l' on segment III long, behind the line p 1-2; abdominal chaetotaxy set out in Table 4-a 3 missing on terg. $\mathrm{V}-\mathrm{VI}$ and a 1 and 3 on terg. VII-terg. XI with setae no. 3 and 4 , but in one case with all setae $1-4,-p\}^{\prime}$ long on all terga $1-\mathrm{VI}$, short and on line with $\mathrm{p} 2^{\prime}$ orl terg. VII,-p I ${ }^{\prime \prime}-2$ not displaced on terg. VIII.

TABLE 4
Ahdominal chactotaxy of Ensenfomon insularum n.sp. Numbers above a line refer to the number of setac in the anterior row: numbers below the same line refer to the number of setae in the posterior row.

segment	I	II-III	IV	$\mathrm{V}-\mathrm{VI}$	VII	VIII	1X-X	XI	Telson
	4	10	10)	8	6	6	8	4	9
tergum	8	$\overline{16}$	16	16	16	9			
	4	6	6	6	6	2	4	8	12
sternum	4	4	10	10	10	7			

Female squama genitalis (Fig. 12) of the swani or kumei type.
Holotype: 3 from Erromanga Island, New Hebrides, 1 km WSW of Nuangkau River bridge. 11 km WSW of Ipotak, $18^{\circ} 54^{\prime} \mathrm{S}, 169^{\circ} 11 \mathrm{E}$, Large grove of Agathis, in soil of $0-4 \mathrm{~cm}$ depth, Coll. no. NH 35. K. E. Lee leg. Aug. 7, 1971. In the South Australian Museum, Adelaide,

Occurrence in the New Hebrides: Erromanga Island (see above). Tanna Island, 8 km E of Lenakel near summit of main W-E road, $19^{\circ} 30^{\prime} \mathrm{S}$, $169^{\circ} 20^{\prime} \mathrm{E}$. Primary tropical rain forest, in soil of $0-4 \mathrm{~cm}$ depth. Coll. no. NH 30. K. E. Lee leg. July 27, 1971. One of, one larva 11, one larya I.

Aneityum Island, near top of steep slope above East side of Anelcauhat Bay, $20^{\circ} 15^{\prime} \mathrm{S}, 169^{\circ} 46^{\prime} \mathrm{E}$, Coastal forest with fire induced imperata, in soil of $0-8 \mathrm{~cm}$ depth. Coll, no. NH 27. K. E. Lee leg. July 23, 1971. Tivo

6. Eosentomon noonadanae Tuxen \&

$$
\text { Imadaté 1975: p. } 367
$$

This species is in many respects different from all other Eosentomon species, most evident is the presence of a central posterior seta oll abdominal sterna I-VII, see Tuxen \& Imadaté 1975a. The specimen from the New Hebrides agrees in all details with the holotype.

Occurrence on the New Hebrides: Malekula Island, Werimia, 2 km NE of Wintua village, SW Bay, $16^{\circ} 28^{\prime} \mathrm{S}, 167^{\circ} 27^{\prime} \mathrm{E}$. Mixed mesophyll vine forest, in soil of $0-4 \mathrm{~cm}$ depth. K. E. Lee leg. Oct. 11, 1971. One maturus junior.

Further distribution: Valoka, New Britain, Bismarck Archipelago: the holotype and only previously known specimen.

Isoentomon pumiliodes n. sp.
Figs. 14-17
The genus Isoentomon was erected by Tuxen in 1975 on species of "Eosentomon" with spini-or setiform sensillae e and g. It contained nine species, two of which differed from the others in missing sensilla e, To this group belongs the new species.

16

18

Figs. 14-17: Isoentomon pumiliodes n.sp. 14-15: Foretarsus in exterior and interior views. 16: Pseuduculus. 17: Female squama genitalis in oblique lateral view. Figs, $18-20 \%$ Berberentulus tannae n.sp, 18; Pseudoculus. 19: Labial palp in side view. 20: Canal of maxillary gland.

Length of body $530 \mu \mathrm{~m}$, of foretarsus without claw $50 \mu \mathrm{~m}$.

Mouthparts of the common shape, but the specimen is seen directly from the side. Pseudoculus small, circular, without "distinctions" (Fig. 13), $P R=14$. Labral setae absent.

Foretarsus (Figs. 14-15). t 1 closest to a 3, t 2 lanceolate as are also $\mathrm{b}^{\prime} 2$ and $\mathrm{f} 1, \mathrm{t} 3$ fairly long.
b broad, e missing, g short seta-like. a' swordshaped, placed anterior to $t 1$ (!), $b^{\prime} 1$ present, c^{\prime} absent (?). $\mathrm{BS}=0.9$, $\mathrm{EU}=0.9, \mathrm{TR}=60$.

Empodium of middle and hind leg short, onefifth the claw.

Chaetotaxy: On thorax $\mathrm{p} \mathrm{I}^{\prime}$ on segment 11I fairly long, behind the line p 1-2, abdominal chaetotaxy set out in Table 5-a 3 missing on

TABLE 5
Abdominal chaetotaxy of /socntomon pumilioides n.sp. Numbers above a line refer to the number of setae in the anterior row, numbers below the same line refer to the number of setae in the posterior row.

segment	I	H-II]	IV-VI	VII	VIII	1X-X	XI	Telson
	4	8	8	6	6	8	4	9
tergunt	8	12	14	14	9			
	?	6	6	6	7	4	8	12
sternum		4	10	10				

terg. II-VI, on terg. VII also a $1 .-\mathrm{p} 4^{\prime}$ missing on terg. II-VII, on terg. II-III also p 5.-On terg. VII p 1^{\prime} is as long as on the other tergites (a feature I do not remember having noticed on any other eosentomid)-On terg. VIII p $1^{\prime \prime}-2$ are displaced anteriorly.

Female squama genitalis (Fig. 16) seen in lateral view, but resembles that of pumilio Bon.

Holotype and only known specimen: ㅇ. New Hebrides, Tanna Island, on hillside above Bethel
village, 4 km S of Lenakel, $19^{\circ} 33^{\prime} \mathrm{S}, 169^{\circ} 13^{\prime} \mathrm{E}$ 。
Disturbed coastal forest, in soil of $0-4 \mathrm{~cm}$ depth. Coll. no. NH 31. K. E. Lee leg. July 28, 1971. In the South Australian Museum, Adelaide.

Three species of Isoentomon without sensilla e are now know, in only one specimen each: the present one from the New Hebrides, I. pumilio (Bon. 1950) from Mexico and I. pluviale Tx. 1975 from Brazil (Amazonia). They agree in many details, but the chaetotaxy of the present one is closest to that of pumilio-hence the name.

Figs, 21-24: Berberentulus tannae n.sp. 21-22: Foretarsus in exterior and interior views (from different specimens). 23: Right half of abdominal tergite VIlI. 24: Fenale squama genitalis in ventral view.

8. Berberentulus tannae n. sp .

Figs. 18-24
This species is closely related to B. rennellensis Tx. \& Imad. 1975, in fact it only differs in abdominal chaetotaxy. On terg. VI the anterior seta a 1 is present in tannae, absent in rennellensis. This may seem a minor difference, perhaps on subspecies level only, but as long as the importance of differences in chaetotaxy is not clearly understood it should be accorded specific rank. The difference in chaetotaxy is constant in both
species. B. buch ${ }^{\text {T }} \mathrm{Tx}$. \& Imad, which is different in chaetotaxy from both differs also in the sensilla e in foretarsus being much smaller than c ,
Length of body $670 \mu \mathrm{~m}$, of foretarsus without claw $70 \mu \mathrm{~m}$.
No rostrum. Labial palp with three setae and a sausage-like sensilla (Fig, 17). Pscudoculus circular (Fig. 18), $P R=13$, Canal of maxillary gland of normal shape except for some small dilatations (not excrescences) distal to calyx, proximal part fairly short, end dilatation bipartite (Fig. 19).
Foretarsus (Fig. 20) with sensillae of shape and length as in rennellensis. b-c-d may be on line ord placed a little distal to c. c and d close to each
other. Sensillae a, b and f extremely long. b^{\prime} missing, a^{\prime} long and sword-like reaching almost to a $4, \mathrm{BS}=0.5$. Claw with a small flap which is said to be missing in rennellensis but this flap may be visible or not and is no good as distinguishing character. $\mathrm{TR}=4.0$. $\mathrm{EU}=0.14$. Abdominal appendages 11411 with two setae, the apical one less than half the subapical,

Striate band reduced, no striae. Comb on terg VIII oblique, with 10-11 small teeth (Fig。22). Female squama genitalis (Fig. 23) with pointed acrostylus.

Abdominal chaetotaxy set out in Table 6-on terg. II-VI a 1, 2, 5 are present, on terg. VII only a 5.

TABLE 6
Abdominal chactotaxy of Berberentulus fannae n,sp. Numbers above a line refer to the number of setae in the anterior row. numbers below the same line refer to the number of setae in the posterior row.

segment-.........-.	1	II-III	IV-VI	VII	VIII	1x	x	XI	Telson
		6	6	6	2	4	14	12	6	9
tergum		12	$\overline{16}$	16	16	15				
		3	3	3	3	4	4	4	4	6
sternum:s....10............:......	2	5	8	8					

Holotype: of from the New Hebrides, Tanna Island, on hillside above Bethel village, ca. 4 km S of Lenakel, $19^{\circ} 33^{\prime} \mathrm{S}, 169^{\circ} 13^{\prime} \mathrm{E}$. Coastal forest, in soil of $0-4 \mathrm{~cm}$ depth. Coll. no. NH 31. K. E. Lee leg. July 27, 1976. In the South Australian Museum, Adelaide,

Further material: seven f, four of, three mat. jun., one larya II (?) from the same locality and date.
The specific name is derived from the name of the island.
9. Berberentulus capensis (Womersley 1931)

Berberentulus capensis Wom, Tuxen 1964: p. 311.

This species is easily distinguished from tannae in the shape and size of sensilla a^{\prime} in foretarsus which is short, only reaching is 3, and broadly vase-shaped; furthermore sensilla f is placed midway between e and g and e is only a little more than half the length of c. In chaetotaxy
the following characters are important: terg. VI with eight anterior setae ($1,2,4,5$), VII with six $(1,2,5)$ and stern XI with six setae $\left(1,1^{\prime}, 2\right)$.

Occurrence on the New Hebrides: Tanna Island, on hillside above Bethel village, ca. 4 km S of Lenakel $19^{\circ} 33^{\prime} \mathrm{S}, 169^{\circ} 13^{\prime} \mathrm{E}, \quad$ Coastal forest, in soil of $0-4 \mathrm{~cm}$ depth. Coll, no, NH 31, K. E. Lee leg. July 27, 1971. Two \&, one larva II.

Aneityum Island, near top of steep slope above E side of Anelcauhat Bay $20^{\circ} 15^{\circ} \mathrm{S}, 169^{\circ}$ $46^{\prime} \mathrm{E}$. Coastal forest with Acacia splrorbis, in soil of $4-6 \mathrm{~cm}$ depth. Coll. no. NH 26. K. E. Lee leg, July 23, 1971. One p.

Further distribution: South Africa, South-west Europe (Tuxen 1964); Australia (Tuxen 1967).

Berberentulus capensis (Wom.), travassosi (Silvo) from Brazil, and nelsoni Tx. from Brazil (both Sāo Paulo) form a group of their own, related to $\mathrm{B}_{\text {, rennellenis } T x . \text { \& Imad., buchi } T x \text {, \& Imad. }}$ and the above new species tannae, all three from Melanesia. See the key in Tuxen (1977).

REFERENCES

Imadaté, G., 1964. Formosan Proturan collected by Dr. K. Baba. Kontyu 32: 236-38.

Imadaté, G., 1974. Protura (Insecta). Fauna Japonica, Tokyo. 351 pp .
Tuxen, S. L., 1964. The Protura. A revision of the species of the world. With keys for determination. Hermann, Paris. 360 pp.
Tuxen, S. L., 1967. Australian Protura, their phylogeny and zoogeography. Z. zool. Syst. Evol.-forsch. 5: 1-53.
Tuxen, S. L., 1975. Isoentomon, a new genus within the Eosentomoidea (Protura: Eosentomidae). Ent. scand. 6: 89-101.

Tuxen, S. L., 1976, The Protura (Insecta) of Brazil, especially Amazonas. Amazoniana 5: 417-463.
Tuxen, S. L., 1977. The genus Berberentulus (Insecta, Protura) with a key and phylogenetical considerations. Rev. Ecol. Biol. Sol. (in press).
Tuxen, S. L. \& Imadaté, G., 1975a. The Protura of the Bismarck Archipelago and Solomon Islands. Bull. Br. Mus. nat. Hist. (Ent.) 31: 333-375.
Tuxen, S. L. \& Imadaté, G., 1975b. Corrections to S. L. Tuxen's "Australian Protura" (1967). J. Aust. Ent. Soc. 14: 193-195.
Womersley, H., 1931. A South African species of Protura. Ann. South Afr. Mus. 30: 89-91.

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

BRACHINA METEORITE-

 A CHASSIGNITE FROM SOUTH AUSTRALIABy J. E. JOHNSON, JUNE M. SCRYMGOUR, EUGENE JAROSEWICH and BRIAN MASON

brachina meteorite - a CHASSIGNITE From SOUTH AUSTRALIA

By J. E. Johnson, June M. Scrymgour, Eugene Jarosewich and Brian Mason

Summary

A small, achondritic stony meteorite, the second recorded chassignite, was found near Brachina, South Australia ($31^{\circ} 18^{\prime} \mathrm{S}, 138^{\circ} 23^{\prime} \mathrm{E}$) on $26^{\text {th }}$. May, 1974. It was in two pieces with a combined weight of 202.85 g . The form of the frontal surface and the types and distribution of the fusion crusts are indicative of oriented flight. The meteorite, which consists of unshocked subhedral grains of olivine (Fa33) with minor amounts of diopside and plagioclase and accessory chromite, troilite and pentlandite, is compared with the mineralogically and chemically analogous Chassigny meteorite. It is, however, unshocked in contrast to the original Chassigny which was severely shocked.

IRRACHINA METEORITE-A CHASSIGNITE FROM SOUTH AUSTRALIA

by
J. E. JOHNSON*, JUNE M. SCRYMGOUR*, EUGENE JAROSEWICH \dagger AND BRIAN MASON \dagger

ABSTRACT

JOHNSON, J. E., SCRYMGOUR, J. M., JAROSEWICH, E. and MASON, B.d 1977. Brachina meteorite-A Chassignite from South Australia. Rec. S. Aust. Mius. 17 (19): 309-319.

A small, achondritic stony meteorite, the second recorded chassignite, was found near Brachina, South Australia (31 $18^{\prime} \mathrm{S}, 138^{\circ}$ 23^{\prime} E) on 26th May, 1974. It was in two pieces with a combined weight of 202.85 g . The form of the frontal surface and the types and distribution of the fusion crusts are indicative of oriented flight. The meteorite, which consists of unshocked subhedral grains of olivine (Fans3) with minor amounts of diopside and plagioclase and accessory chromite, troilite and pentlandite, is compared with the mineralogically and chemically analogous Chassigny meteorite. It is, however, unshocked in contrast to the original Chassigny which was severely shocked.

[^14]
INTRODUCTION

The discovery of the Brachina meteorite was made at about $7.30 \mathrm{a} . \mathrm{m}$. on Wednesday, 26 th May, 1974 by Mr. Brian Eves, Senior Inspector for the South Australian National Parks and Wildlife Service, who noticed a shining black object lying on a small pedestal of soil with the frontal surface facing west-south-west. There had been rain during the night and Mr. Eves was uttracted first by the wet shining surface of the fusion crust and thought he had found a large australite. A smaller piece lying close by was also recovered.

On his return to Adelaide Mr. Eves brought the specimen to the South Australian Museum where it was recognised by one of us (JEJ) as a chassignite.

The meteorite was found at approximately $31^{\circ} 18^{\prime} \mathrm{S}, 138^{\circ} 23^{\prime} \mathrm{E}$ on the floodplain of Brachina Creek on the castern side of the Flinders Ranges (Fig. 1).

FIG. 1. Locality map.

DESCRIPTION

Weight and External Form

The main mass weighed $195 \cdot 30 \mathrm{~g}$ and the small detached fragment $7 \cdot 55 \mathrm{~g}$, the total recoyery being 202.85 g . Both pieces retained a distinct black fusion crust. The core of granular, greyish-brown. achondritic stony material could be seen where the crust was broken.

The main mass has a complete smouth fusion crust on the asymmetrically-domed frontal surface. The edges of this surface form an irregular five-sided polygon with rounded corners and one broken edge. Slightly off-centre from the apex is a very small depression from which radiate numerous striae and one shorter, broader groove (see Fig. 4). The maximum length is 62.4 mm and the minimum width about 10 mm less. Thickness from the apex of the domed anterior surface to the crest of the posterior central ridge is $41 \cdot 3 \mathrm{nmm}$.

The posterior surface is covered by a finely vesicular to scoriaceous fusion crust (see Fig. 6). When the detached fragment was replaced it was seen to form part of a longitudinal ridge coincident with the maximum lateral dimension which is flanked by subparallel "facets", two on each side, the two outermost and narrowest being aligned with polygon edges "a" and "cc". These bear the most highly scoriaceous crusts and are separated from the rather smoother inner facets by a distinct line of raised glassy material. The smooth fused crust of the frontal surface encroaches slightly on to these facets, and where this occurs the onlapping frontal crust is distinctly grooved at right angles to the edge of the outer facet (see Figs. 7, 8 and 9). The smooth (frontal), grooved (lateral) and scoriaceous (rear) crust types have the distribution relative to the domed frontal surface of a metcorite which was oriented in flight.

It is suggested that the faceting. may be the result of the longitudinal ridge acting like a "fin" during atmospheric flight causing the stone to oscillate Jaterally just after entry but later acting as a stabiliser in generating the domed frontal surface.

Chemical composition, mineralogy, perrology

The chemical analysis of the: Brachina meteorite is given in Trable 1, along with the calculated CIPW norm, and an analysis of the Chassigny meteorite for comparison. As can be seen. the analyses of the two meteorites are
closely comparable; the principal differences are the higher $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Na}_{2} \mathrm{O}$ in Brachina, a reffection of the higher plagioclase content in this meteorite, and the presence of sulfide in Brachina (a little sulfide is present in Chassigny, but was not determined in the analysis).

TABLI: 1
CHPMICAI. ANAI-YSIS AND CIPW NORM OF THE BRACHINA METEORITE
With inthassis: of Chassigny (McCarthy af uf. 1974) for comparison.

	Brachina	Chassigny	Hrachina norm (weight per cent)	
SiO_{2}	38.04	37.00	Olivine	74.0
Tios	$0 \cdot 12$	$0 \cdot 067$	Diopside	4.8
AlO_{3}	$2 \cdot 12$	0.36	Hypersthene	2.9
$\mathrm{Cr}_{2} \mathrm{O}_{1}$	0.58	$0 \cdot 83$	Albite	$5 \cdot 3$
FeO	23.69	27.44	Anorthile	2.7
MnO	0.34	0.533,	Oriboslase	0.4
Mgo	27:37	32.83	Chromite	0.4
CaO	$2 \cdot 10$	1.99	Apatite	11.6
Na O	0.63	$0 \cdot 15$	IImenite	0.2
$\mathrm{K} \mathrm{K}_{\mathrm{O}} \mathrm{O}$	0.08	0.031	ife Ni, Cols	4.2
PaO_{2}	0.27	0.041		
$\mathrm{H}_{2} \mathrm{O}+$	nd*	-		
$\mathrm{H}_{2} \mathrm{O}$	0.26	-		
C	[1.07	-		
185 5	3.59	-		
Nis	10.56	-		
cos	$0 \cdot 05$	-		
	99.77	101-27		
Total Fe	20-70	21.34		
$1 \mathrm{~m}^{* *}$	67.1	67.6		
S.G.	$3 \cdot 51$	$3 \cdot 57$		

Olivine ($\mathrm{Fa}_{3 \mathrm{al}}$) is the dominant mineral in Brachina; it also contains minor amounts of diopside (Won En $n_{16} \mathrm{Fs}_{24}$) and plagioclase (Anws). and accessory chromite, troilite, and pentlandite. The $0.27 \% \quad \mathrm{P}_{2} \mathrm{O}_{\overline{3}}$ indicates the presence of phosphate mincrals (apatite and/or merrillite), but these were not identified in microscopic and microprobe examination. The mineralogical composition corresponds very well with the CIPW norm (Table 2). Hypersthene is absent or present only in traces in the meteorite; normative hypersthene is present in solid solution in the diopside, which has a CaO content (18.7%) considerably lower than the theoretical content (25.9%) used in calculating normative diopside.

Trace elements in Brachina, in parts per million, determined by spark source mass spectrometry, (figures for Chassigny (Mason et al. 1976) in parentheses) are: $\mathrm{Rb} 2.0(0.4)$, Sr $15 \cdot 00(7-2)$, Y $2.4(0.64)$, $\operatorname{Zr} 2 \cdot 7(1.5)$. Nb 0.28 (0.32), Cs $0 \cdot 20$, Bа $12 \cdot 00(7 \cdot 1)$.

TABIE ב

MINERAL COMPOSTIIONS (MICROPROBE ANAI.YSES) IN 'IHE BRACHINA MEILEORITE

And a comparison of the calculated buth eomposition with the analytical tenalts in Table 1 ,

Nineral	(3ivine	Plagiaclase	Diopsidut	Chromite	Calculated componition	Analysis data
Weight \%	77	' $火$	N	11.8		
SiO_{2}	37-4	63.1	54.7	-	38.3	38. 194
$\mathrm{Al}_{2} \mathrm{O}_{3}$	-	23.1	11.92	8.5	1.99	$2 \cdot 12$
Fict	28.61	(0. 311	8.6	28-8	22-1	23-65
MnO	0.29	-	$0 \cdot 16$	0.32	11.25	0.34
MgO	3.3-5	-	$15 \cdot 7$	5.8	27-1	$27 \cdot 27$
CaO	10.2.5	4.71	18.7	-	$2 \cdot 117$	$2 \cdot 10$
Na		8.42	-	-	11.71	11.63
KıO	-	(1)26	-	-	$0 \cdot 112$	0.108
TiO_{2}	-	11-115	11.34	2.9 .4	13.105	U. 12
CraO_{3}	11.08	-	$0 \cdot 94$	$53 \cdot 2$	11.57	11.58

La $11.95(0.39)$, Ce $1.6(1.12)$. $\operatorname{Pr} 0.19$ (0.13), Nd 0.86(0.54), Sm 0.27 (0.11). Eu(0.11(0.0.38), Gd $0.27(0 \cdot 11)$. Tb 0.05 (0.02), Dy $0.32(0.12)$, Ho ().07 (0.03), $\operatorname{Er} 0.19(0.09), \mathrm{Yb} 0 \cdot 18(0 \cdot 10)$. Pb $(1.60$ (1.0), Th $0.13(0.057)$. As can be seen, for most trace elements the content in Brachina is approximately twice that in Chassigny. A comparison of the rare carth (REE) abundance is presented in Fig. 2. The distribution patterns are quite similar, showing a rapid decline in reltive abundances for the light REE (La-Sm) followed by a slight positive Eu anomaly and practically uniform relative abundances for the heavy REE ($\mathrm{Gd}-\mathrm{Yb}$). This distribution pattern may be unique to Brachina and Chassigny: the only comparable pattern among metcorites is that for Nakhla, an achondrite consisting of approximately 75% clinopyroxene (CasaMgsFes), 15\% olivine (Fam), minor plagioclase (Ansa). and accessory magnetite and sulfides. The REE distribution pattern for Nakhla, however. shows a uniform decline in relative abundances from La to Yb . and no Eu anomaly. Nakhlat is classified as a culcium-rich achondrite and Chassigny and Brachina are calcium-poor achondrites, but a genetic relationship may exist between them.

The texture of the Brachina meteorite can be described as subhedral-granular (Figs. 10) and 15). Individual grains of the silicate minerals range from 0.05-0.7 mm in greatest dimension. the average bejng about 0.2 mm . This is in Inarked contrast to Chassigny (Fig. 14), which is much coarser-grained, the range for the silicate minerals being $0 \cdot 3-1.8 \mathrm{~mm}$ and the average 0.7 mm ; Chassigny is also a shocked metenrite (evidenced by the cxtreme fracturing of the silicate grains). in contrast to the unshocked nature of Brachina. In Brachina chromite and
the sulfide minerals (troilite and pentandite) ate interstitiat to the silicate minerals. A small amount of limonite produced by terrestial weathering permeates the meteorite below the fusion crust.

The texture of Brachina suggests the slow crystallisation under static conditions of a body of magma of essentially the same composition. This composition in the $\mathrm{MgO}-\mathrm{FeO}-\mathrm{SiO}_{2}$ system would be completely molten at about $1600^{\circ} \mathrm{C}$ (Buwen and Schairer, 1935): the presence of minor components such as $\mathrm{CaO}, \mathrm{A}]_{2} \mathrm{O}_{3}$, and $\mathrm{Na} \leftrightharpoons \mathrm{O}$ would lower this temperature somewhat. The first phase to crystallise would be olivine, followed at about $1400^{\circ} \mathrm{C}$ by clino- and/or orthopyroxene. ind plagioclase at about $1200^{\circ} \mathrm{C}$; an immiscible sulfide melt would be present in small amount, and would crystallise interstitially to the silicates at considerably lower temperatures (1000 C or less).

Brachina is a somewhat friable metcoriteindividual silicate grains were detached from a smaller piece by gentle rubbing, although this fragment was removed trom the man mass only with considerable difficulty. The friability is due to the non-interlocking nature of many of the grains, and the presence of microscopic voids. The porosity is cleatrly seen in scanning electron micrographs (Figs. 12 and 13), as is the subhedral to euhedral nature of many of the grains* these features suggest the presence during crystallisation of a vapour phase.

The Brachina meteorite has a well-preserved fusion crust, a fortunate feature since without it the identification as a meteorite might have been difficult, in view of its mineralogical and textural similarity to a terrestrial peridotite. This is clearly seen in Fig. 10 and magnified in Fig. 11 Three distinct zones can be recognised. An outer

FIG. 2, Rare earth distribution, normatised to chondritic abundances, for (1) Brachinat, (2) Chassigny (Mason ef al., 1976), and (3) Nakhla (Nakamura and Masuda, 1973).
zone (up to 0.5 mm thick) consists of highly vesicular dark glass with small skeletal olivine crystals; in places this zone has been partly or wholly removed, probably by terrestrial abrasion. A median zone (averaging 0.4 mm thick) consists largely of skeletal olivine with interstitial glass and olivine. This skeletal olivine is notably more magnesian (Fo_{44}) than the olivine (Fo_{47}) of the main mass of the meteorite; the formation of the fusion crust results in the precipitation of some of the iron in the meteoritic olivine as $\mathrm{Fe}_{3} \mathrm{O}_{4}$. A very thin ($\sim 0.03 \mathrm{~mm}$) inner zone records the beginning vitrification of the silicate minerals, with the appearance of a dusting of magnetite (?) grains. Immediately below the
fusion crust the silicate grain boundaries have a thin sulfide coating, evidently developed from the fusion of sulfide grains, the least refractory of the meteorite phases.

DISCUSSION

Although classified as achondrites, Chassigny and Brachina are chemically comparable to the chondrites, specifically the L and LL chondrites, as has been pointed out by Dr. R. A. Schmitt (pers. comm.-see below). Using the criteria developed by Van Schmus and Wood (1967), we see the following analogies:

Unlike the chondrites, Brachina contains no free nickel-iron metal, and its $\mathrm{SiO}_{2} / \mathrm{MgO}$ ratio is lower than most chondrites. However, some carbonaceous chondrites have $\mathrm{SiO}_{2} / \mathrm{MgO}$ ratios similar to that of Brachina, e.g. Allende (1.39). The relatively high Fa content of the olivine in Brachina is similar to that in the LL and C3 chondrites. The classification of Brachina and Chassigny as achondrites is determined essentially by their granular non-chondritic textures; it should be remarked that chondritic structure is practically absent in the L chondrite Shaw, and texturally it resembles Brachina closely (Fredriksson and Mason. 1967). However, the distinctive rare-earth distribution pattern in Brachina and Chassigny does indicate that if those metecrites are related to the chondrites. some chemical fractionation has taken place.

Dr. R. A. Schmitt of Oregon State University (pers. comm.) has supplied the following additional information based on his unalysis of is small sample of Brachina metcorite.

> "Bulk and trace elements were determined in an aliquant of a powdered sample obtained from Brian Mason. The sample was analysed via instrumental neutron
activation analysis by Drs. A. V. Murali and M.-S. Ma. The results are listed below.

Per cent

3 a

FIG. 3a. Looking cast towards the Elinders Ranges from the site of the find. The specimen was found in the small open space at the ranger's feet.

FIG. 3b. Closer view of the site. The meteorite was lying on a small pedestal of soil within the ring of stones by the ranger's right foot.

From our analysis, we must conclude that essentially all abundances fall within the range for L - or LL-chondrites. The deficiency of free nickel-iron metal as reported by B. Mason accounts for the lower Co. Ni, Ir and Au abundances in Brachina. Perhaps the significant differences between REE patterns observed by B. Mason and us may be attributed to sampling problems. This would suggest that some trapped interstitial liquid may be responsible for these observations. Such it hypothesis would be consistent with current studies by our group on ten small (50 mg) chips of Chassigny."

ACKNOWLEDGEMENTS

We thank Mr. J. Nelen for the microprobe amalyses of the minerals, Mr. W. Brown for the scanning electron microphotographs and Dr. S. R. Taylor and Ms. P. Muir for assistance with the spark source mass spectrometric analyses for trace elements. Thanks are also due to Dr. R. A. Schmitt for permission to reproduce in full the results of a chemical analysis by Drs. A. V. Murali and M.-S. Ma.

Mr. R. Ruehle of the S.A. Muscum took the photographs and Ms. F. Gommers drew the locality map.

The South Australian Museum gratefully acknowledges the generosity of Mr. Brian Eves in donating the Brachina meteorite to the State Collections.

REFERENCES

Buwen, N. L., and Schairer, J. F.. 1935 . The system MgO-FeO-SiO Am. Jout. Sel. 29: 151-217.

Fredriksson. K. and Masont, B., 1967. The Shaw metcorite. Gicochim. Cosmochin. Aciu 31: 1705-1709.

McCarthy, T. S. Erlank, A. J. Willis, 1. P., and Ahrens. L. H., 1974. New chemical analyses of six achondrites and one chondrite. Mepeoritios 9: 215-221.

Mason, $3_{.,}$Nelen, J. A.s Muir, P.and Taylor, S. R.a 1976. The composiiton of the Chassigny meteurite. Meteoritics 11: 21-27.

Naknmura. N., and Masuda, A. 1973. Chondrites with peculiar rare-earth patterns. Earth Planet. Sci. Lesfors 19: 429-437.

Schmitt, R. A.g (pers. comm.) Letter dated yth Junc, 1976, on file, S.A. Museum.

Van Schmus, W. R., and Wood, J. A., 1967. A chemical petrologic classification of the chondritic meteorites. Geochim. Cosmochim. Acta 31: 747-765.

FIG. 4. Brachina meteorite. Scale in centimetres. Oriented anterior surface with striac. Edge "e" is a broken surface.
FIG. 5. Side clevation of edge "b" showing almost triangular outline with continuous fusion crust to the base of the ridge.
FIG. 6. Plaster cast. Posterior surface with detached piece restored to its original position, showing flattened longitudinal ridge, subparallel "facets" and scoriaceous fusion crust.
FIG. 7. Plaster cast. Side elevation of edge "c", showing grooved smooth crust of the frontal surfacc encroaching on to a scoriaceous "facet".
FIG. 8. Side elevation of edge "a".
FIG. 9. As for Fig. 7 but tilted down slightly towards viewer.

FIG. 10. Photomicrograph (transmitted light) of portion of a thin section of the Brachina meteorite illustrating the subhedral granular texture. Fusion crust is present at one edge (x23).

FIG. 11. Photomicrograph (transmitted light) of the fusion crust of Brachina meteorite. Total thickness of fusion crust is approximately 1 mm .

FIG. 12. Scanning electron micrograph of euhedral olivine crystal in a void (x675).
FIG. 13. Scanning electron micrograph of octahedral chromite crystal in a void (x400).

FIG. 14. Photomicrograph (transmitted light) of a thin section of the Chassigny meteorite (x 27). Most of the grains are olivine and show extreme fracturing due to shock.

FIG. 15. Photomicrograph (transmitted light) of a thin section of the Brachina meteorite at a higher magnification (x83). Most of the white grains are olivine, with minor pyroxene. Plagioclase is present as larger interstitial grains.

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

AUSTRALITES OF MASS GREATER THAN 100 GRAMS FROM SOUTH AUSTRALIA AND ADJOINING STATES

By W. H. CLEVERLY and JUNE M. SCRYMGOUR

AUSTRALITES OF MASS GREATER THAN 100 GRAMS FROM SOUTH AUSTARLIA AND ADJOINING STATES

by W. H. Cleverly and June M. Scrymgour

Summary

The 17 australites of mass exceeding 100 g known from eastern Australia are round, oval and dumbbell-shaped cores. They were found within a belt extending from Charlotte Waters, N.T. to western Victoria, and divergent south-ward from a more populous belt of unusually massive australites in Western Australia. There is a suggestion of radiation of australite distribution pattern from central Australia.

AUSTRALITES OF MASS GREATER THAN 100 GRAMS FROM SOUTII AUSTRALIA AND ADIOINING STATES

by
W. H. CLEVERLY* and JUNE M. SCRYMGOUR \dagger

ULEVERIY, W. H. and SCRYMGOUR, d. M. 1977 Auslrulites of mass ereater than 100 grams from South Ausbalia ind whoming States. Rec. S. Abis. Mhat. 17 (20): $321-330$.

ABSTRACT

The 17 tustralites of mass excecding 100 g known from castern Australia are round, oval and dumbbell-shaped cores. They were found within a belt extending from Charlote Waters. N.T. to western Victoria, and divergent southward from a more populous belt of unusually massive australites in Western Australia. There is a suggestion of radiation of australite distribution pattern from central Australia.

INTRODUCTION

Only one australite in about 2000 has muss 100 grams ur more. The purposes of this paper are to desuribe several such rare specimens from eastern Australia and to collate information on others known from the region. The methods and manner of presentation of Cleverly (1974) are followed.

The sites of tind and some physical details of the specimens are presented in Figure 3 and Table 1. The numbers allotted to the specimens in that table ate also used in the descriptive section below and on the illustrations. Figures in parentheses in the table are estimated restored dimensions or mass and each immediately precedes the observed figure, Specimens for which adequate descriptions are already available were not re-examined. Information on two further specimens which have been reliably reponted, but which could not be located, has also been included in Table 1.

DESCRIPTIONS

1. S.A.M. T1159. Salient details with illustrattions of the posterior sutface of Hight and a side elevation have been given by Fenner (1955: p. 90 and PI. VJI Figs, 3 and 4).
[^15]Though the surface of the specimen is considerably etched, the form is generally well preserved. The posterior surface in particular is deeply etched, Minor sculpture includes if system of grooves of V-shaped section forming is complex maze over the posterior pole but trending generally parallel to the long axis of the specimen and radiating towards the ends. Away from the central complex, short grooves occur singly or in "sheaves" with the peculiar form of those described and illustrated by Baker (1973). Each "sheaf" contains two or three parallel grooves and shallower extensions of the individual grooves form divided ends, A further swirling system of grooves together with more lightly etched schlieren crosses the first system near onte end of the specimen. There are three small areas of close pitting with almest scoriaceous appearance.

The rim is regular and generally sharp. The equatorial zone ($13-15 \mathrm{~mm}$ wide) shows twe only, much modified "flake scars", a few grooves of U-shaped cross section oriented normal to the rim and some etched schlieren. Circular and lunate etch grooves are abundant on the anterior surface with a few lightly etched schlieren.

Enlarged longitudinal and transverse profiles of the posterior surface were prepared in two ways-by projection with a lantern and using a travelling vernier microscope (readable io 0.01 mm horizontal and vertical). It was suspected that projection by lantern or photography might lead to some distortion of the profile of such an unusually large specimen. It is therefore of interest, considering the tediam of the microscopic method, that ares of circles fitted very closely to both of the prepared transverse profiles and gave insignificantly diflerent estimates of 2.96 mm and 2.95 mm respectively for the radius of curvature, If the shape of the primary body was a response to rotation of a mass of melt about the Y axis (Fig. 1), then depacture from circular transverse section to a shapo approximating an ellipse should be most evident in the principal transverse section, the effect declining outward towards the ends of the: mass. No such effect was detectable, despite the large
table 1

No.	Shape Type	Site of Find	Longitude (East)	Latitude (South)	Mass (g)	Dimensions (mm)	S.G.	Source of Information
1	Narrow oval	Karoonda, S.A.	$139^{\circ} 55^{\prime}$	$35^{\circ} 06^{\prime}$	$207 \cdot 88$	$84.4 \times 47.0 \times 37.7$	2.408	
2	Broad oval (fragment)	c. 25 km N.N.W. of Balaklava, S.A.	$138^{\circ} 20^{\prime}$	$33^{\circ} 58^{\prime}$	$(210 \pm 10) 141.00$	(c.82) $64.4 \times$ (c.59) 57.0×30.1	2.384	
3	Narrow oval	Connangorack Swamp. Victoria. .	$142^{\circ} 05^{\prime}$	$36^{\circ} 58^{\prime}$	(210 173.621	$78.9 \times 47.6 \times 34$	$2 \cdot 417$	Baker (1972)
4	Round.	Western Victoria or Teetulpa, S.A.			(c.168) 153.96	$52.7 \times(51.3) 51 \times 44.5$	2.399	Cleverly (1974)
5	Round.	c. 40 km S.S.W. of Charlotte Waters	$134^{\circ} 50^{\prime}$	$26^{\circ} 10^{\prime}$	149.31	$54.2 \times 51.8 \times 41+1$	2.448	
6	Boat	c. 5 km E. of Port Campbell, Victoria	$143^{\circ} 02^{\prime}$	$38^{\circ} 37 \prime$	141.575	$86.2 \times 41.3 \times 30.5$	2.414	Baker (1969)
7	Broad ova!	Gymbowen, Victoria	$141^{\circ} 36^{\prime}$	$36^{\circ} 45^{\prime}$	135.09	$55.0 \times 51.4 \times 36.3$	2.417	Baker (1969)
8	Round. .	Penwortham, c. 33 km N.E. of Balaklava	$138^{\circ} 38^{\prime}$	$33^{\circ} 55^{\prime}$	131.95	49.5 to 46.8×42.0	2.375	Baker (196).
9	Broad oval	c. 10 km S.S.W. of Abminga Siding	$134^{\circ} 48^{\prime}$	$26^{\circ} 13^{\prime}$	121.24	$54.4 \times 49.5 \times 35.7$	2.447	
10	Broad oval (fragment)	c. 13 km E. of William Creek Railway Siding, S.A.	$136^{\circ} 29^{\prime}$	$28^{\circ} 55^{\prime}$	(c. $120 \pm 5) 100 \cdot 71$	(c.66) $55.3 \times 51.7 \times 28.2$	$2 \cdot 390$	
11	Round.	Koralta Station, N.S.W.	$142^{\circ} 18^{\prime}$	$31^{\circ} 37^{\prime}$	117.99	46.6 to 44.6×44.4	2.401	
12	Round...	Lower Norton, Victoria	$142^{\circ} 04^{\prime}$	$36^{\circ} 47^{\prime}$	115.92	52×33	2.463	Baker (1969)
13	Dumbbell	Laing, Victoria	c. $142^{\circ} 50^{\prime}$	c. $38^{\circ} 25^{\prime}$	115.752	$74.9 \times 36 \times 29.7$	$2 \cdot 467$	Baker (1969)
17	Broad oval	Between Karoonda and Lowaldie, S.A.	c. $139^{\circ} 57^{\prime}$	c. $35^{\circ} 04^{\prime}$	113	$52.1 \times 51.5 \times 36.5$	2467	Fenner (1955)
15	Round.	Lake Wallace, Victoria	$141^{\circ} 18^{\prime}$	$37^{\circ} 02^{\prime}$	111.25	49.6×36.5	2.447	Baker (1969)
16 17	Boat.	Central Australia	$134{ }^{\circ} 56^{\prime}$	$25^{\circ} 56^{\prime}$	${ }_{103}^{110 \cdot 10}$	$75.2 \times 37.0 \times 28.4$	2.399	
		Charlote Waters, N.T.		255				D. H. McColl

F1G. 1. A. Principal transverse section of australite S.A.M. T1 192 with broken line indicating restored circulat section of primary body. Direction of tlight towards boltom of page. B. Principal longitudinal section of same australite showing atlempt to fit an ellipse having semi-minor axis equal to radius of principal transverse section and semi-major axis calculated by using co-ordinates of point P. More realistic partial reconstruction of profile indicated by broken line. C. Principal longitudinal sections of three idealised types of primary bodies formed in response to increasingly faster rates of rotation about the Y axis:- prolate spheroid (elliptical section), body with cylindrical mid-section (boat primary body), dumbbell. Axes X γ and Z are along the length, thickness and width respectively of the primary atustralite bodies and are patallel to the analogous dimensions of the australite specimen. Scale applies to A and B only,
size of the core, the circular arcs fitting the profile within the thickness of construction lines (Fig. 1A).

Unsuccessful attempts were made to fit an ellipse to the longitudinal profile using the transverse radius of curvature as the semi-minor axis of the ellipse (Fig. 1B). The failure arises from the considerable flattening of the central portion of the profile and strong curvature of the ends. Deep etching is inadequate to account for the lack of fit. The specimen appears to have been derived from a parent mass intermediate between a prolate spheroid and a dumbbell shape of more rapid rotation, when the sides were approaching parallelism and the shape approximated very roughly towards a cylinder with rounded ends (Fig. 1C). Such a form would be the ideal parent body for parallel-sided, boatshaped australites.

An approximate assessment of the parent body was made using a major axis positioned by the principal transverse radius of curvature, sketching the ends of the profile to completion on that axis, and summing the volumes of a number of short cylinders. On that basis, the parent body of dimensions c. $9 \cdot 5 \times 6 \times 6 \mathrm{~cm}$, volume c. $195 \mathrm{~cm}^{\text {" }}$ and mass c .470 g , lost rather more than one-third of its thickness and rather more than half its mass in forming the remnant core.
2. Fig. 2. S.A.M. T1391. Found by Mr. Robert Williams about 1969 in Hundred of Everard, Section 383 adjacent to Section 361 (c. 25 km north-north-west of Balaklava, S.A.). The specimen is about two-thirds of a broad oval core which has broken through a large bubble cavity. The cavity was open to the posterior surface. Lightly etched schlieren, small pits and the dull lustre of the fracture surface indicate its
considerable age. The mass and length prior to fracturing (Table 1) are based on the assumption that the specimen was initially symmetrical. The estimate of mass was made by immersing the complete end of the specimen in liquid to the adjudged mid-line and noting the loss of weight. The mass was then calculated by using the proportion of twice the loss of weight of the complete end/loss of weight of the whole specimen.

A depressed area on the pusterior surface contains a roughly radial system of short grooves which are V-shaped in cross section. A nonspherical bubble cavity e. 1 cm in diameter opens to the posterior and fracture sutfaces. It appears to have adjoined a smaller bubble cavity but the present shape is at least partially the result of weathering. The rim is shatp and regular. The equatorial zone, 15 mm wide, is bounded anterionly by a distinct shoulder. The anterior surface has abundant circular and lunate etched features and shows some bruising, apparently recent and artificial. A small area on the equatorial zone has also been artificially abraded. Short gutters, which ure U-shuped in section, are developed on the periphery of the anterior sutface and extend on to the equatorial zone. The depression on the posterior surface (Fig. 2-2A) affects the transverse and longitudinal profiles to the extent that no reliable estimate of the primary body is possible. The low specilic gravity is accounfable to high silica content as the refractive index is also low ($\mathrm{n}_{\mathrm{ca}}=1 \cdot 496$).
3. Fully described and figured by Baker (1972).
4. Briefly noted and figured by Fenner (1955: Pl. VII Figs. 5 and 6). Described by Cleverly (1974), who fayoured western Victoria rather than Teetulpa, S.A. as the Jikely place of find because of the limited distribution of large australites then known. A much wider distribution is reported in this paper and the low specific gravity of the specimen (2.399) is more nearly allied to the values for five specimens from central and southern South Australia (2.375$2 \cdot 408$, weighted mean $2-393$) than to the higher

Values for the six Victorian specimens (2.414-2-467, weighted mean 2-435). Tcetulpa, located in southern South Australia and within the belt of occurrence of large australites, is therefore at least equally likely to be the site of find.
5. Fig. 2. No. 194 in private collection Mr G. Latz. Mr, D. H. McColl (pers. comm.) states that the speciment was found by an Aboriginal jn 1969 at a point located approximately $134^{\circ} 50^{\prime}$ E., $26^{\circ} 10^{\prime}$ S. 'The co-ordinates indicate a site in South Australia about 40 km south-south-west of the abundoned Charlotte Waters Station.

The form is affected by old flake losses, the only minor sculpture being rounded and lunate features attributed to the etching of natural percussion scars. The equatorial zone, about 15 mm wide, is defined between the tim and a distinct shoulder. The core has its greatest diameter at the shoulder, i.e. bulges anterior to the rim. The only reasonably complete profile of the posterior surface throtigh the posterior pole gives an estimate of 6.6 cm for the diameter of the primary body, which, on the assumption that it had the sume density as the remnant core, had volume c. $150 \mathrm{~cm}^{3}$ and mass c. 370 grams. Losses from the primary body during atmospheric flight (including the stress shell) were approximately 40 per cent of volume and 38 per cent of thichness. These figures include small percentages accountable to terrestrial losses which have been minimised by allowing for the flakes.
6. and 7. Fully described and figured by Baker (1969).
8. Fig. 2. Private collection of Mr. L. French. The history of recovery is obscure. According to Mr. A. E. Bannear, who arranged the loan, the specimen is thought to have been found at Penwortham during excavation of a dan, either during the 1870's or early 1900's. Attempts were made to break the specimon and it was then discarded for many years. The resulling artifictal damage comprises only sonme bruising

FiG. 2, Austratites from custern Australiá numbered as in text and Table 1. Scales differ shyhtly and may be jutged by the dimension given for each specimen. In elevatlonal views direction of dight is towards bottont of page. 14 (left) and 2 (right). Posterior surfaces. Width flop to botlom of photographt is 51.7 mm for 10 and 57 mus for 2. Lower photugrnphs are both ort the same scale with proximal ends fained to emphastse bubhle cavities. 2A. Elevational view looking notimal to the lower right hand edge of Fig. 2. Note slightly sway-backed pasterior (upper) profile through etched depression. 5. Side devation. wilth 5.3 mm . x. Side elevalion, width 48 mm . 9 , Side clevation, witht 54.4 mm .11 . Side clevation. widh 45.5 mm . 16. Postcrior surface, lengit 75.2 mm . 16 A . Side elevarion. Protile al lett alfected by maturul loss ar material.

16A
and the loss of minor llakes, Additionally, a small area on the posterior surface has been artificially abraded. These losses represcnt only a few tenths of a gram of glass.

An old, natural flake loss from the posterior surface contributes to the marked asymmetry of the core and most of the sim has been lost by natural llaking, Two shallow depressions on the posterior surface each c. 7 mm diameter, are centres of development of a few short ($1-2 \mathrm{~mm}$). roughly radially disposed, gash-like grooves; the depressions were probably bubble craters, now considerably modified by weathering. A system of shost (1.4 mm) grooves of U-shaped section is oricntated approximately parallel to the flight path on the narrow flake scars where rim has been lost. A rew scars of detachment of the stress shell ("flake scars"); now greatly modified by weuthering, are still detectable on the equatorial zone, which averages 15 mm wide. The anterior surface is relatively smooth except for some short grooves of U -shaped section and some ctched circular and lunate "scars".

The specific gravicy is low but not abnommally so (cf. the Mortake, Victoria specimen of Chapman 1971: p. 6318) and might be indicam tive of high silica content rather than bubble cavities.
9. Fig. 2. S.A.M. T1392. Found about 10 km south-south-west of Abminga Siding by R. J. Hyde of Hamilton Station, Pedirka, via Port Augusta, prior to 1974. Tho specimen is asymmetrical as the result of old lake Josses from the posterior surface and variable thickness of the stress shell. The prolile is distinctly "peaked" in cnd elevation. The core is badly weathered but traces of the rim and an equatorial zone $8-10 \mathrm{~mm}$ wide with "llake scars" are still recognisable. Minor sculpture comprises a. few weathering pits and etched lumate and circular scars.
10. Fig. 2. Private collection of $\mathrm{Mr} . \mathrm{G}$, Hume. The specimen is the major part of at broad aval core which has broken through a large bubble cavity and been much madified by weathering, Estimates of the original lenth and mass were made as for No. 2 above. A depression on the posterior surface contains at highly
developed, roughly radial system of short, gashlike grooves. The rim is worn smooth and the equatorial zone is poorly detined, the elevational protile pussing with almost imperceptible change of angle to the anterior surface which has a high polish ("carry" polish"?).

There is a general similarity in shape and posterior sculpture to $\mathrm{No}, 2$ specimen and further similarity in the low specific gravity and refractive index indicative of high silica content. The somewhat complementary positions of the bubble cavities (Fig. 2, 10-2) might also suggest that the two specimens are parts of one original core. It is therefore emphasised that each specimen can be seen to be more than half ol its original by continuity of rim. The elevational profiles are also quite different. The No. 2 specimen is shallow posterior to the level of the rim and has. a well-defined shoulder anterior to it. The supersticial resemblances are therefore fortuitous but the other similarites could be due to similar chemical compositions. Two australites with closely comparable physical properties found in this same geographical belt have been analysed by Chapman (1971: p. 6318 "Match 9").
11. Fig. 3. Bureau of Mineral Resources collection R18277. Found on Koralta pastoral station, the homestead of which is located 87 km cast-north-east of Broken Hill, N.S.W.

The ratio of thickness 10 average diameter (0.97) makes this the most nearly spherical of any large australite core known, The diameter is greatest at the shoulder anterior to the rim. The rim is ill-defined and is affected by very old Hake losses. The lluke scars have the same etched lonate and circular "scars" which are the dominant sculpture elsewhere on the core, Surviving profiles of the posterior surface enable an estimate of c. 6.2 cm for the diameter of the parental sphere, which therefore had volume c. $72 \mathrm{~cm}^{3}$ and mass c .173 g on the assumption that it had the same density as the remnant core. Losses from the parental sphere, including terrestrial losses minimised as for specimen No. 5. were upproximately 30 per cent of volume and 14 per cent of thickness,
12. See Baker (1969).
13. Fully described and ligured by Baker (1909).

14. This specimen was examined by Jiemer (1955: p. 90 Pl. VII Figs. 7 and 8) whilst on loan to the South Australian Museum (T1162). where the site of find was recorded simply as "Karoonda". Present ownership is unknown.

15. See Baker (1969).

16. Fig. 2, Geological and Mining Museum, Sydncy 18408. Acquired in 1916 from Mr. W. T. Brown and attributed very vaguely to central Australia (not the political subdivision Central Australit. 1926-31). It is stated on a display label that the specinien was used by Aboriginals as a medicine stone. The source of that information is unknown but there is some support for it in the artificial abrasion of the specimen, apparently accomplished by rubbing it back and forth parallel to the length so that slight ridges remain between adjoining facets. This abrasion las removed the minor sculpture except from around one end of the equatorial zone and the tips of the posterior surface, where the surviving natural surface hiows considerable weathering. Abrasion of the posterior surface preclides assesment of the primary shape.
17. This specimen was noted by Mr, D. H. MeColl while in the possession of Mr. G. Hume. Its present whereabouts are unknown.

DISCUSSION

The 52 known australites having mass greater than 100 g were found in two belts or sectors which are divergent southward (inset to Fig. 3). Specimens were more numerous towards the southern cnds of the belts, with the most massive specimens (exceeding 200 g) on thic western sides and towards, but not at, the southern ends. The number of known specimens is so small that these observations must be treated wilh due caution.

The nunierical distribution by States with refierences to description of the specimens is as follows:

Eastern belt-

Northern Territory		This paper.
"Central Australia"		This paper.
South Australia		Fenner (1955) and this paper.
New South Wales		This paper.
Victoria		Baker (1969. 1972).
Western Victoria or		
Tectulpa, S, A,		Cleverly (1974) and this paper.

Western belt-

Western Australia ... 35 Cleverly (1974).
The Western Australian figure includes three undescribed speciniens which have only recently come to scientific notice. They are a round core of mass 197.2 g from 10.5 km south-east of Babakin, a round core of 132.7 g from Lake Grace, and a narrow oval core of 110.1 g from the Warburton Range area.

The shape types of the cores are shown in Table 2, columns 2-4. Diflerences in the proportions of the shape types within each belt are not significant in these small samples.

The definitions of the narrow oval and boat shapes used here are those of Fenner (1940), with the result that specimens Nos. 1 and 3 (described by previous authors as boats) are reclassified as narrow ovals. There could be justification for the alternative definition howeyer. which recognises parellelism of the sides as a criterion for identification of boat shapes rather than the length/width ratio used here. It is possible that increasingly higher rates of rotation of parent bodies of melt led to a series of primary

TAble 2
Shape types of large austraidite cores

Stape Type	Eastern Bell	Western Belt	Percentage of Total	Percentage of Toial (including Teardrops exceeding $50 \mathrm{~g})$	Estimated Percentages of Parent Bodies and their shapes
Round.	7	18	48.1	$44 \cdot 6$	46.3 Spheres and oblate spheroids
Broad Oval	5	12	32.7	30.4	31.5 Prolate spheroids
Narrow Onal	2	3	$9 \cdot 6$	$9 \cdot 0$	\} 13.0 Prolate spheroids ind
Boat ${ }^{\text {dum }}$	$?$	-	$3 \cdot 8$	$3 \cdot 6$	f 5.5 Boat Prinary Bodies
Dumbbell ,	」	2	$5 \cdot 8$.	$5 \cdot 3$	5.5 Dumbleli Primary Bodies
	-	-	-	7.1	3.7 Double Apioid Bodies

shapes ranging from ellipsoids through forms having a cylindrical mid-section (parental to boats'?) to dumbhell shapes (Mueller, 1971). The total figures for narrow oval and boat shapes in Table 2 are independent of the delinition used.

Teardrop cores are unknown amongst australites of mass exceeding 100 grams. Their parentat bodies are generally believed to have been apivids produced when masses of melt rotated so rapidly that they progressed beyond the dumbbell stage to separate as two bodies. Specimens simulating teardrop form could also develop when narrow-waisted dumbbells were slimmed by ablation strippinge, loss of stress shell, or terrestrial processes to the stage of separation. Aerial bumb forms probably had a similar parentage but for some reason (such as length/ diameter ratio) they adopted a different orientation during atmospheric transit (Chapman, et al. 1962: p. 19). In the sense that any teardrop or aerial bomb form was derived from only half the parent tnass, any specimen of mass greater than 50) y could be ranked with the other large australites discussed here. At least four such specimens are known-from Wongatwol Station, W.A. (E. S. Simpson Collection 22), Earalreedy Station, W.A. (W.A. School of Mines 10944), Renmark, S.A. (S.A.M, T92) and Diamantina (S,A,M, T91). Two of the localities are within the western belt and the other two are in or near the eastern belt depending upon the meaning given to "Diamantina". If these specimens are admitted to the class of the most massive australites. recalculation gives the figures of columin 5. Table 2.

The parental bodies of most of the round forms for which an assessment was possible were either spheres or spheroids which diftered little from spheres. Some of the broad oval cores were atso derived from such spheroids. Amongst the parental bodies of very large australites, spheres and spheroids were therefore about as abundant as all other shapes combined. The number of very rapidly rotating parent masses which separated into apioids was only half the number of teardrop type specimens. Recalculation thus gives the figures of column 6, Table 2. Despite the small total nomber involved, the figures of that column illustrate the generally aceptable concept that australites were derived from masses of melt of which the most abundant were monrotating or only sloswly rotating, while decreasing numbers of masses had the more rapid rates of rotation which culminated in their separation into two individual bodies,

With the exception of specimens Nos. 1 and 2 (a fragment), both of which were found in southero South Australia, the degree of preservaltion of the eastern Austalian specimens examined is generally poorer than for those fromsouth-west Western Australia, and these ure in Lurn more weathered than western Victorian specimens. The degree of preservation thus correlates in a general way with the humidity of the area concerned.

The eastern specinens have a much greater range of specific gravity than those from twestern Australia, suggesting that they bolong to more than one chemical type (cf. Chapman 1971: Fig. 2).

The distribution of localities in the eastern bett suggests the porssibility of mass grading, as has already been noted for the western bell (Cleverly 1974). However, the number of specimens is so small that the boundaries of the betts can be but vaguely detined and even their reality may be questioned and related to accidents of collection. There is. bowever, sume supporting evidence for the reality of the belts if specimens of somewhat lower mass are also considered. Of 115 known specimens of mass exceeding 62 g . all except tive were found within one or other dif the two belts. The exceptions include Iwo specimens altributed very vaguely to the Nullarbor Plain (one of which might be from Whyalla, S.A. , une from Eucla reported by Fenner (1934; p. 78) on hearsay evidence, one salid to have been found in the Ernabella Mission area by an Aborigimal, and one specimen from Pindera, N.S.W, which has the annotation "transported by Aborigines". There are therefore various degrees of vagueness or doubt concerning all five of the supposed exceptions.

Apropos the southerly divergence of the bets or sectors, it is noted that sectors no australite chemical types radiating from ceniral Australia maty be visualised on the map of Chapman (1971: Fig. 2). The need for lurther work on distribution pattern is cleatly evident from these observatuons.

ACKNOWLEDGMENTS

We thank particularly Mr. D. H. McCotl of Canberra who provided information on spectimens in private collections which would otherwise have tentined unknown to us. Mr. McColl also kindty arranged the loan of some specimens, Dr. Brian Mason (Smithsonitan Institution), Mh,
R. G. Hirst (Geological and Mining Museum, Sydney), Mr. G. Latz (Henley Beach, S,A.), Mr. G. Hume (Nobby Beach, Queensland), Mr. A. E. Bannear (Saddleworth, S.A.) and Mr. L. French (Auburn, S.A.) also kindly lent specimens for examination and/or supplied information.

REFERENCES

Baker, G. 1969. Five large australites from Victoria, Australia and their relationship to other large forms. Mem. Nat. Mus. Vict. 29: 53-64.
Baker, G. 1972. Largest australite from Victoria, Australia. Mem. Nat. Mus. Vict. 33: 125-130.
Baker, G. 1973 Australites from the Murray-Darling confluence region, Australia. Mem. Nat. Mus. Vict. 34: 199-208.

Chapman, D. R. 1971. Australasian tektite geographic pattern, crater and ray of origin and theory of tektite events. J. geophys. Res. 74: 6737-6776.
Chapman, D. R., Larson, H. K. and Anderson, L. A. 1962. Aerodynamic evidence pertaining to the entry of tektites into earth's atmosphere. NASA tech. Rep. R. 134.

Cleverly, W. H. 1974. Australites of mass greater than 100 grams from Western Australia, J, R. Soc. W. Aust 51: 68-80

Fenner, C. 1934. Australites, Part I. Classification of the W. H. C. Shaw collection Trans. R. Soc. S. Aust. 58: 62-79.
Fenner, C. 1940. Australites, Part IV. The John Kennett collection with notes on Darwin glass, bediasites, etc. Trans. R. Soc. S. Aust. 64: 305-324.
Fenner, C. 1955. Australites, Part VI. Some notes on unusually large australites, Trans, R. Soc, S, Aust. 78: 88-91.
Mueller, G. 1971. Morphology of sprays from the moon and elsewhere. (Abstract.) Meteoritics 6: 294-295.

RECORDS OF THE SOUTH AUSTRALIAN MUSEUM

THREE LARGE AUSTRALITES FROM SOUTH AND WESTERN AUSTRALIA

By JUNE M. SCRYMGOUR

THREE LARGE AUSTRALITES FROM SOUTH AND WESTERN AUSTRALIA

by June M. Scrymgour

Abstract

Summary

Three large australite cores weighing 225.07 g (W.A.), 220.13g (S.A.) and 120.30 g (S.A.) respectively are figured and described. The specimen from Shackleton, Western Australia is the largest recorded 'teardrop' shape. The new material fits well with the known distribution pattern for large australites.

ITHREE LARGE AUSTRALITES FROM SOUTH AND WESTERN AUSTRALIA

by

JUNE M. SCRYMGOUR*

ABSTRACT

SCRYMGOUR, J. M. 1977. Three large nustralites Irom South and Western Ausiruliin, Rec. S. Aust. Mus. 17 (21): 331-335.

Three large australite cores weighing $225 \cdot 07 \mathrm{~g}$ (W.A.), 220.13g(S.A.) and $120 \cdot 30 \mathrm{~g}$ (S.A.) respectively are ligured and described. The specimen from Shackleton, Western Australia is the largest recorded "teardrop" shape. The new material fits well with the known distribution pattern for large australites.

INTRODUCTION

Australites weighing more than 100 g are rare and of the 52 recorded only 7 weighed more than 200 g (Cleverly 1974; Cleverly and Scrymgour 1977). Two further specimens of more than 200 g weight have come to our attention since the previous paper was written-one from near Lameroo in the South East of South Australia (220 g) and one from near Shackleton in Western Australia (225 g). A third specimen, a narrow oval weighing 120 g from near Maitland on Yorke Peninsula, has been donated to the South Australian Museum collection by the finder, Mr. Mark Hasting.

In common with other large australites these specimens are all cores, the end result of ablation losses during oriented hypervelocity fight through the earth's atmosphere and subsequent spalling of the uerothermal stress shell. Some further losses of flakes and the development of minor surface sculpture have occurred as a result of weathering and crosion on the earth's surface after landing.

DESCRIPTIONS

Table 1 summarises locality and physical data of the three specimens described below.

1. Teardrop core from Shackleton, Western
Australiu (Figs. $1 \mathrm{a}, \mathrm{b}$)

The specimen is in the private collection of Mr. A. McConnell and was reputedly found during seeding in May, 1975 on a farm near Shackleton, Western Australia. This is by far the largest and heaviest teardrop-shaped australite known. It is more than two and a half times as heavy as the teardrop core (SAM T91: weight 83.5 g) from Diamantina illustrated by Fenner (1934: Pl. IX, Fig. 6). Shackleton is only about 65 km north-west of the locality near Notting where the heaviest of all known australites (weight 437.53 g) was ploughed up in 1969 (Cleverly 1974).

There is no well defined equatorial zone and a rim is present only around the narrow end, An abundance of "U"-grooves on one major surface and their absence on the opposing surface, however, indicates the flight orientation, U-grooves are characteristic of anterior surfaces etched by prolonged exposure to terrestrial weathering after the loss of the stress shell, (Chapman 1964; p. 849),

The narrow end is rounded rather than pointed and in this feature resembles the well-preserved specimen from Renmark, South Australia (SAM
:South Australian Museum, Adelaide. South Austrablia 500n

TABLE 1
shapes, sites of find and physical details of three large australite cores

Specimen No.	Shape Type	Site of Find	Latitude and Longitude	Dimensions mm	Weight g	Specific Gravity	Collection
1	Teandrop	Near Shackleton, W.A.	$\begin{array}{r} 31^{\circ} 56^{\prime} \mathrm{S} \\ 17^{\circ} 50^{\prime} \mathrm{E} \end{array}$	$6600 \times 56.95 \times 50.1$	225.07	242	Private Collection A. McConnell
2	Broad oval	Near Lameroo, S.A.	$\begin{array}{r} 35^{\circ} 30^{\prime} \mathrm{S} \\ 140^{\circ} 45^{\prime} \mathrm{E} \end{array}$	$61.2 \times 57.8 \times 50.15$	$220 \cdot 13$	$2 \cdot 42$	On indefinite loan to S.A. Museurn
3	Narrow oval	Near Mailland. S.A.	$\begin{array}{r} 34^{\circ} 25^{\prime} \mathrm{S} \\ 137^{\circ} 43^{\prime} \mathrm{E} \end{array}$	$\begin{aligned} & 76.8 \times 38.75 \\ & (c .40) \times 30.35 \end{aligned}$	$\begin{gathered} 120 \cdot 30 \\ (\mathrm{c} .123 \cdot 50) \end{gathered}$	2.40	SAM Reg. No. T1429

Dimensions and weights in parentheses are estimated after allowing for lhake loskes.
23rd Febrnury: 1978

T92) figured in side elevation by Fenner (1934: PI. IX. Fig. 5). This feature is presumably also a result of stress shell spallation from a large australite and is in contrast to the pointed ends of small teardrops. which have not lost a stress shell.

The anterior surface shows pitting and the abundant development of U -grooves generally fransverse to the length of the core, but with typical orientation at right angles. to the rim around the narrow end of the specimen. A thin flake has been removed by artificial fracturing.

The postcrior surface displays a variety of minor sculptural features including an area of close, deep pitting where scoriaceous glass has been exposed through removal of the surface by weathering processes. There are numerous pits. not usually more than 2 mm in diameter, a few ill-defined flow swirls indicated by etched scthlieren and a single shost and rather shallow U-groave.

Lass of a llake from one side of the posterior surface has resulted in a rather asymmetrical profile as seen in end elevation. The flake loss was an old one (and presumably therefore due to natural causes) as the scar is almost as decply and abundantly etched is other parts of the surface.

2. Broad oval core from near Lamerau, South Australia (Figs. 2a, b, c d)

The specimen was found by Mr. A. E. Vigar early in 1975 approximately 24 km south-east of Lameroo, on the southern edge of a large clay "flat". It was lying half-exposed on the crown of a freshly cut track in the top 20 cm of soil and appeared to have been exhumed by the grader. The area, where a clay soil horizon is overtain by sand dunes (niapped as Molincaux Sandsj* was cleared of vegetation in 1968.

The specimen is bridly weathered and the rim ill-defined except on one side where old flake losses have emphasised the profile (Fig. 2b, 2 e and 2d). The flake scars show small pits and occasional U-grooves, some randomly oriented, others showing the more typisal orientation at right angles to the rim.

The posterior surface is characterised by numerous circular and lunate depressions up to 5 mm in diameter, some with a raised central area (described as a "navel" by Chapman 1964: $\left.p_{i} 853\right)$. These features occasionatly overlap, A narrow area of close pitting is elongated
parallel to the etched schlieren and in some instances this has developed into a U-groove, A small ovoid flow swirl (approx, $12 \times 8 \mathrm{~mm}$) has been revealed by light etching on an old flake scar. A few small isolated pits are also present.

The commonest features of the anterior surface are circular and lunate depressions similar to those on the posterior surface. Some U-grooves extend across the flake scar on this surface.

3. Narrow oval core from hear Mailland, South Australia (Figs. 3a, b)

This specimen was found about four years ago in the south-west corner of Section 248, Hundred of Maitland, County Ferguson, by Mr، Mark Hasting. Though parallel-sided, it has been classed as a narrow oval rather than a boat in conformity with the shape definitions of Fenner (1940: p.. 312) which have been used consistently in recent publications on large australites (Cleverly 1974: Cleverly and Scrymgour 1977).

The rim is well-defined along one edge and at both extremities. Flake losses have removed the rim on the other long edge. Flaking is evidently of some age as the surface of the scars show shallow etching of flow structures and a few small pits. There are a few shallow U-grooves at right angles to the periphery, The equatorial zone is well-defined ($10-11 \mathrm{~mm}$ wide) between the rim and the shoulder and carries badly eroded flake scars.

On the posterior surface the most notable single feature is an etched flow swirl occupying almost the whole of that surface, running around the periphery of the rim and transitional in places into U-grooves. Numerous small pits are also occasionally transitional into short U-grooves.

The anterior surface is featureless except for minor etched schlieren and small pits.

DISCUSSION

Australites weighing more than 100 g have been found to occur in two wide bands trending south-west and south-east, with the heaviest specimens (over 200 g) towards the southern extremities and western matgins of the two zones (Chalmers ed al. 1976; Cleverly and Scrymgour 1977). The localities of these three new specimens fit well into this pattern (see Figure 1),

There are now 36 known specimens weighing 100 g or more from the western belt (including seven of more than 200 g) and 19 from the

[^16]eastern belt (including two of more than 200 g). The specific gravities of the two larger specimens are typical for their localities. The narrow oval from near Maitland is lower than average but not anomalously so. The variation may be due to internal bubble cavities.

ACKNOWLEDGEMENTS

The South Australian Museum gratefully acknowledges the donation by Mr. Mark Hasting of the narrow oval from Maitland, Yorke Peninsula.

Thanks are also due to Mr. A. McConnell and Mr. A. E. Vigar for the loan of specimens from Shackleton and Lameroo respectively. Mr. Roger Giesecke of the Chemical Engineering Department, University of Adelaide, kindly allowed us to use the Department's Mettler Balance for specific gravity measurements.

Ms. Faye Gommers drew the map and Mr. R. Ruehle took the photographs.

Special thanks are due to Mr, W. H. Cleverly
for the estimated original weight of the Maitland specimen and for helpful advice during the preparation of the manuscript.

REFERENCES

Chalmers, R. O., Henderson, E. P. \& Mason, B., 1976. Occurrence, distribution and age of Australasian tektites. Smithsonian Contributions to the Earth Sciences, No. 17: 1-46.
Chapman, D. R., 1964. On the unity and origin of the Australasian reklites. Geochim et Cosmochim. Acta, 28: 841-880.
Cleverly, W. H, 1974. Australites of mass greater than 100 grams from Western Australia. J. R. Soc. W. Aust. 57 (3): 68-80.

Cleverly, W. H. \& Scrymgour, June M., 1977. Australites of mass greater than 100 grams from South Australia and adjoining states. Rec. S. Alust. Mus: 17 (20): 321-330.
Fenner, C., 1934. Australites, Part 1: Classification of the W. H. C. Shaw Collection. Trans. R. Soc. S. Aust. 58 (1): 62-79.
Fenner, C., 1940. Australites, Part IV: The John Kennett Collection with notes on Darwin Glass, Bediasites, etc. Trans. R. Soc. S. Aust. 64 (2): 305-324.
Fenner, C., 1949. Australites, Part V: Tektites in the South Australian Museum, with some notes on theories of origin. Trans. R. Soc, S. Aust. 73 (1): 7-21.

FIG. 1. Locality map.

FIG. 2. (1a) Large teardrop core from near Shackleton, W.A. Side elevation showing remnant of rim at narrow end (right of photo). (1b) Anterior surface showing U-grooves and rounded shape of narrow end. Artificial flake loss has occurred at upper left. (2a) Broad oval core from near Lameroo, S.A. Posterior surface of flight showing numerous circular and lunate depressions. A small etched flow swirl can be seen at the lower left centre of the photograph. (2b) Side elevation showing remnant of rim with U-grooves developed on old flake scars. The flow swirl described in 2 a is visible at the top left centre of the photograph. (2c) and (2d) End elevations-left and right sides of 2b. (3a) Narrow oval core from near Maitland, S.A. Side elevation showing well-defined rim and equatorial zone with badly eroded flake scars. (3b) Posterior surface showing pits and large etched flow swirl.

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

VARIATION IN THE CRANIAL OSTEOLOGY OF THE AUSTRALO-PAPUAN HYLID FROG LITORIA INFRAFRENATA

By MARGARET DAVIES

SOUTH AUSTRALIAN MUSEUM North Terrace, Adelaide South Australia 5000

VARIATION IN THE CRANIAL OSTEOLOGY OF THE AUSTRALOPAPUAN HYLID FROG LITORIA INFRAFRENATA

by Margaret Davies

Abstract

Summary

The cranial osteology of specimens of Litoria infrafrenata from Tully (Queensland) and Aitape (New Guinea) and of Litoria infrafrenata militaria from Keravat (New Britain) were examined. The species were chosen because of their wide geographic range and known isolation for a considerable period of time, with a view to establishing the validity of skull character states as good species indicators. The only noteworthy variation found was in the extent and degree of ossification; the extent of development of the sphenethmoid in relation to the nasals; the relationship of th otic ramus of the squamosal to the crista parotica; the extent of development of the zygomatic ramus of the squamosal; and the shape and nature of the dentigerous processes of the prevomers. Examination of these characters only distinguishes those populations recognised already as sub-species. In view of the extent of isolation of Australia and New Guinea it is concluded that the character states examined are valid species indicators.

VARIATION IN TIE CRANIAL OSTEOLOGY OF THE AUSTRALO-PAPUAN HYLID FROG LITORJA INFRAFRENATA

by
MARGARET DAVIES*

Abstract

DAVIES, M. 1977. Variation in the cranisl osteology of the Alustralo-Piphan bylid frog Litorior infratrenuta. Rec. S. Alus. Mus. 17 (22): 337.345. * Department of Zoology, University of Adclaide.. North Terrace, Adclaide, South Australia 5000.

The cranial osteology of specimens of Litoria infrafrenata infrafrenata from Tully (Queensland) and Aitape (New Guinea) and of Litoria infrafrenatu militaria from Keravat (New Britain) were examined. The species were chosen because of their wide geographic range and known isolation for a considerable period of time, with a view to establishing the validity of skull chatacter states as good species indicators. The only noteworthy variation found was in the extent and degree of ossification; the extent of development of the sphenethmoid in relation to the nasals; the relationship of the otic ramus of the squamosal to the crista parotica; the extent of development of the zygomatic tamus of the squamosal; and the shape and nature of the dentigerous processes of the prevomers. Examination of these characters only distinguishos those populations recognised already as subspecies. In view of the extent of isolation of Australia and New Guinea it is concluded that the character states examined are valid species indicators.

INTRODUCTION

Studies are currently in progress in this laboratory on the hylid frogs of the genus Litoria of Australia and New Guinea to establish species groups in Litoria. Three major lines of investiga-tion-myology, karyology and osteology-form the basis of the study.

Little has been published to date on the cranial osteology of the Australian hylids. W. K. Parker (1881) described the skulls of Lhoria caerulea, L. myllochroal, L. ewingi and L. bicolor, Keferstein (1868) described the skull of I. aurea and L. freycmedi whilst Gillies and Perbody (1917) described the skull of $L_{\text {. }}$ carrulea with some references to that of L. aurea. Briges (1940) described L. uurea whilst Lynch (1971) examined L. albogutata (as Cyclorana alberguttatus).

[^17]The paucity of data available regarding osteology of the Australian hylids indicates a need to establish the limits of variation within a species of those characters commonly in usage in the definition of species groups (Duellman 1970). It is also necessary to determine the validity of such character states with reference to the Australo-Papuan fauna.

For these reasons; a frog species was chosen with a known wide geographic range having evidence of isolation of populations for varying periods of time. Litoria infrafrenata is the largest tree frog in the world (maximum length 135 mm) so that ease of preparation of material adds to its suitability for study, Its distribution ranges throughout New Guinea and includes the north-eastern portion of the Cape York Peninsula in Australia. Two subspecies are recognised: infrofrenata infrafrenata found in Cape York and throughout New Guinea, and imprafrenafa militaria restricted to New Britain (Tyler 1968). The subspecies are delineated by presence of absence of a projecting pollex. The karyotype of L. infrafrenata appears to differ in basic chromosome number from all other Australo-Papuan hylids so far examined (Menzies and Tippett 1976). This species, then is of particular interest in the general evolution of AustraloPapuan hylid fauna and an analysis of skull and skeletal characters is relevant to this overall study.

MATERIAL AND METHODS

L. infrafrenata militaria from Keravat, New Britain. South Austratian Museum (SAM) R7030, R7031, R7032, R7037, R7153, R7155.
L. infrafrehata infrafremata from Aitape, New Guinea. SAM R4156, R4157, R4159, R4160. R4161, R4162.
L. infrafrenata infrafrenata from Tully, N . Queensland.

Six specimens obtained live from banama inspection depat of S.A. Department of Agriculture 1975-1976. SAM R15854, R15855. R15856A, R15856B, R15857.

Animals were sexed and morphological measurements were made before preparation of the skulls. Dry preparations of the skulls were made with the exception of one entire skeleton from Tully which was prepared as an alizarin.

The following measurements were made of the skulls using dial calipers: skull length (the
absolute length of the skull), skull width, skull depth, the depth of pars dentalis of premaxillary, height of alary processes of premaxillary, length of anterior ramus of squamosal, length of posterior ramus of squamosal, distance from tip of anterior ramus of squamosal to post orbital process of pars facialis of maxillary (Table 1).

TABLE I MEASUREMENTS OF SKULLS OF IJTORIA JNERAFRENATM JNFRAFRENAYA FROM TULLY, QLD. (AUSTRALIA) AND AITAPE (NEW GUNNEA), AND IITORIA INFRAFREN\&TA MILIIARIA IIROM KERAVAT, NEW BRITAIN:

Lacality		Depth of skull as a percentage of length	Breadth of skull as a parcentage of length	Per cent distance to maxillary spanned by zygornatic urm of squarmosal	lleight of alary processes in selation do pars dentalis
	Mean. Standard deviation Range	$\begin{aligned} & 42 \\ & 1.58 \\ & 41.44 \end{aligned}$	$\begin{aligned} & 107 \cdot 4 \\ & 8.23 \\ & 100-114 \end{aligned}$	$\begin{gathered} 53.8 \\ 7.82 \\ 41-61 \end{gathered}$	$\begin{gathered} 2.98 \\ 0.4 \\ 2 \cdot 35-3.82 \end{gathered}$
Ailape, New Guinea (1L.500)	Mean. Standard deviation Range	$\begin{array}{r} 41 \cdot 67 \\ 2 \cdot 34 \\ 39-45 \end{array}$	$\begin{aligned} & 107 \\ & 10.78 \\ & 91-122 \end{aligned}$	$\begin{array}{r} 51 \cdot 33 \\ 6.53 \\ .39-57 \end{array}$	$\begin{gathered} 2.74 \\ 0 \cdot 25 \\ 2 \cdot 31-3 \cdot 04 \end{gathered}$
Keravat, New Britain 	Mean. Standard deviation Range	$\begin{gathered} 46 \cdot 33 \\ 3 \cdot 2 \\ 42-50 \end{gathered}$	$\begin{aligned} & 117 \cdot x \\ & 5 \cdot 2 \\ & 114-125 \end{aligned}$	$\begin{gathered} 74 \\ 2.28 \\ 72.78 \end{gathered}$	$\begin{gathered} 2.61 \\ 0 \cdot 18 \\ 2 \cdot 47.7 .84 \end{gathered}$

Outline drawings of selected skulls were made using a Wild M5 stercoscopic microscope with a Wild camera lucida attached.

OBSERVATIONS

Generalised description of the skull of L. infrafrenata infrafrenata,

The specimen used for this description was a female: SAM R15857 of S-V $91 \cdot 1 \mathrm{~mm}$ from Tully, Qld., Australia (Fig. 1).

The skull is generaliy broader than Jong with a snout in both profile and dorsal view that is rounded. The dorsal surfaces of the skull are smooth and unornamented and the skin overlying the head is frecly movable. There is no evidence of prenasal, jnternasal or dermal sphenethmoid bones. Similarly there are no labial flanges nor occipital crests present. The anterior supraorbital margins of the frontoparietals are expanded in the form of a flange. Posterolaterally, the frontoparietals do not overlap the erista parotica. The anterior arm of the squamosal extends approximately half the distance to the maxillary. The posterior arm of the squamosal is slightly shorter than the anterior arm, expanded medially and overlaps and broadly articulates with the distal portion of the crista parotica,

Tho pterygoid is ontly moderately robust. The medial ramus is well developed and makes a bony articulation with the otic capsule, The
anterior ramus has an extensive articulation with the maxillary at approximately mid-orbit, whilst the posterior ramus is poorly ossified and articulates with the ventral arm of the squanosal. The prooties and exoccipitals are fused and the columella is bony. The quadratojugal is well developed; it articulates anteriorly with the maxillia and posteriorly with the ventral arm of the squamosal. The parasphenoid lacks odontoid structures and extends anteriorly to the level of the widest portion of the supraorbital frontoparictal flange.

The premaxillaries are narrow and separated medially by connective tissue. The alary processes are widely separated medially and are posteriorly inclined at slightly less than an 80° angle. The processes are perpendicular to the pars dentalis and approximately four times as long as the depth of the pars dentalis. The premaxillaries articulate laterally with the pars palatina and pars dentalis of the maxillary; small palatine processes are present posteromedially on the premaxillaries.

The prevomers do not converge medially, the anterior borders lying posterior to the premaxillary dentigerous processes. Posterolaterally the prevomers bear wings forming the anterior, medial and posterior margins of the choanae: The dentigerous processes are small and moderately separated; they lie perpendicular to the midline and bear 9-11 teeth.

FIG. 1. Dorsal, lateral and ventral views of skull of Litoria infrafrenata infrafrenata R15857, if from Tully, Qld. The scale represents 10 mm .

The palatines ate narrow, slender bones forming the posterior margins of the choanae. with the distal ends slightly expanded and lying adjacent to the maxillaries; the posterior ends lie on the anterior ventrolateral corners of the sphencthmoid. The palatines bear very small posteroventral shelves.

The nasals are narrow and poorly ossified; the anterior tips are extended to meet the internasal scptum at the level of the tips of the alary processes of the premaxillaries. The nasals are barely separated from one another medially and overlap the sphenethmoid in places. The maxillary process of the nasal is sharp and slender and articulates twith the posterior process of the pars facialis: it does not extend to the level of the maxillary.

The maxillary bears a well developed pars facialis anterior to the orbit with all the surfaces free; the pars palatina is minute, extending the length of the maxillary ventromedially to the pars dentatis; the maxillary articulates with the slender quadratojugal firmly at the level of the prootic foramen.

The sphenethmoid is well ossified with the nasals extending anteriorly beyond its anterior terminus:

The frontoparietal fontanelle is moderutely sized and extends approximately half the length of the orbit. The frontoparietals are moderately developed, the anterior margin is almost indiso tinguishable anteriorly in the area of overlap of the frontoparietal and sphenethmoid, both bones forming there a slightly upturned supraorbital flange terminating at the posterior margin of the orbit. The frontoparietals have smooth distal margins which do not extend posterolaterally over the crista paratica.

Vmiation

The descriptive format of variation of individual bones enployed here follows that of Trueb (1973).

Frontoparietals: The frontoparictals are paired elements which may or may not be separated from the prootic and exoccipitals by connective tissue. (The presence of connective tissue is the usual condition in the hylids.) Variation can occur in the extent to which the frontoparietals fuse with each other and with the surrounding elements (exoccipital, prootic. sphenethonoid and nasals). Further vartation occars in the extent to which these bones are ossified. Ossificution of the frontoparietals is generally an indication of the overall ossification of the skull.

In L. infrafrenata imfrufrenata and L. infrafrenan militaria the presence of a supraorbital frontoparietal flange is consistent in all specimens examined. In the Tully and Aikape populations the frontoparietal formen is gencrally broad and ovoid, whilst in the Keravat population (L. imfrafrende milifaria) the foramen is partially covered by bone in two specimens.

In all but one (R15857) of the Tully specimens the frontoparietal gives the appearance of being a very thin bone, whilst in the Aitape population the bone appears to be thicker, and in the Keravat population the frontuparietals can be described as well ossified.

The general shape of the bones and their fusion with the surrounding elements is consistent between the three populations.

Nasals: The paired nasals can vary greally in size and shape. They can fuse to form a single element and the extent of ossification is very labile. They are equally variable in the existence and extent to which thicy articulate with olther skull elements.

The three populations show of all characters examined the greatest qualitative interpopulation variation in the relationship of the nasals to the sphenethond, and in the assification of the nasals (Fig. 2)

In the Tully population, the nasals are very thin bones (in fact opaque in appearance) that articulate along their posterior edge with the anterior edge of the splenethmoid. Int all but one of the specimens examined ($R 15857$) the sphenethmoid does not extend anteriorly between the nasals and the anterior extension is slight.

In the Aitupe popalation, the nasals are again very thin bones, two specimens showing slight signs of some additional bone deposition along the anterior edge. The posterior margins of the nasals articulate with the sphenethmoid which extends slightly forward between the two masal bones in these specimens.

In the Keravat population, the sphenethmoid extends between the nasals to the level of the anterior margins of these bones. The bones again are opaque but consistently show sonte signs of depasition of bone along the anterior margins to agreater extent than shown by Nitape specintens.

The maxillary processes of the uasals artuculate with the preorbital process of the maxillary in all three groups.

 \& from Tully, Qle. B, E, H, L. i. infrafenera R4157, from Aitape, New Gumea, and C, F. I, L. $/$. milituriu, R7030, of from Keravat, New Britain. The scale represents 10 mm . To aid comparison, diagrams have been reprodiced to the same size:

Premaxillaries: The premaxillaries are paired dermal elements which may or may not bear teeth on the pars dentalis. The premaxillaries may be narrow or bread and the pars palatina may be extended into a broad shelf or be greatly reduced. In addition the pars palatina may be expanded at its lateral extremity or be very darrow medially, in fact according to Trueb (1973) the nature of the palatine processes is' a useful specific character. These processes may or may not articulate with each other. Variation occurs. too, in the structure und orientation of the atary processes. These may be exceedingly store (less than or equal to the height of the pars dentalis) or very long (to five times the height of the pars dentalis).

The alary processes in some species are known to slope anteriorly, ustally at about 80^{-}with the horizontal plane of the skull. At the extremes, the processes may be displaced anterionly at angles of 10 to 20^{4}. Most alary processes. however, are nearly vertical, or inclined posteriorly at angles no greater than 135°. The alary processes generally consist of a bony shafi that is convex anteriorly (or ventrally) and concave posteriorly (or dorsally). An exception is Plectrohyla in which the alary processes are bifureate.

There is little to no variation in the premaxillaries between the three populations of L. inforsfrenata. All specimens have tecth on the pats dentalis. The premaxillaries are narrow and the pars palatina is extended into a broad shelf. The alary processes do not articulate with each other and are moderately long (2,3 to $3-0$ times the length of pars dentalis). They are inclined posteriorly at an angle of 80° to the fiorizontal plane of the skull. The shape of the processes is in no way outstanding.

Maxillaries: The pars dentalis of the maxillaries may or may not bear teeth. The maxillaries bear a lingual ledge termed the pars palatina, They are further expanded dorsolaterally into a facial flange, the pars factalis. Which usually has al preorbital process and, less often, a postorbital process. At the mosi, the pars lacialis articulates at five separate points with the remainder of the skull. These are (1) the pars dentalis and pars palatima at ale lateral edge of the premaxillary: (2) the preorbital process at the maxillary process of the natsal; (3) the pars dentalis and pars palatina sonntimes articulate at the anterolateral edge of the anterior pherygoid ramus; (4) the postorbital process articulates with the zygomatic process of the squamosal; and (5) the posterior end of the maxillaty atticulates with the quadratnjugal.

Varration can oceus also in articulation with the squamosal quadratojugal and nasal and in the development of the preorbital and postorbital processes of the pars facialis.

Thare is little to no varation in the maxillaries between the three populations of \mathcal{L}. infrafrenatu. A postorbital process is not present in this species, but the pars facialis atriculates at the other four points. There is no variation in articulation with the maxillary process of the nasal.

Qumdratojugnls: These bones are highly variable in occurrence and are frequently lost or reduced. particularly in smaller frogs or in those in which ossification is reduced. Reduction is always in an unteroposterior sequence, the first sign of reduction being the loss of aticulation with the maxillary.

The quadratojugals articulate with the maxillary in all specimens of the three populations of L. infrafrenata examined.

Parasphenoil: Variation in this bone is slight and concerns the length of the cultriform process, the presence and onentation of the alae and the presence of odontoid structures ventrally.

Any variation in these features in the groups under discussion is so slight as to be unnoticeable. Odontoid structures are not present (see Fig. 2).

Prevomers: Truch (1973) considers the prevomers to be amongst the most variable bones in the skull. The anterior ends of these bones usually lie in connective tissue and the lateral wings form the bony anterior, medial and posteromedial margins of the internal nares. The dentigerous processes generally lie at a level shightly anterior to the palatines. Minor variation is found in the overall size of the bones and in the orientation of the dentigerous ridges (these latter characters are useful diagnostically at genus and species levels and may be transverse. oblique, curved or angled). Teeth are sometimes absent and odonloids are occasionally present in the absence of true teeth. The prevomers have been known to fuse with palatine elements and variation also occurs in the subdivision into discrete interior and posterior elements,

Variation between the three populations lies in the orientation of the dentigerous processes of the prevomers. The overalt size and shape of the bones appears to seatrcely differ between the groups and the relationship between the prevomers and the palatines is consistent within the species. In the Tully population, the dentigerous processes, when present, are transyerse, as are thase of the Aitape poputation. However, the dentigerous processes of the Keravat population are curved.

Palatines: These bones usually lie adjacent to the maxillaries and articulate with the sphencthmoid medially. They are always edentate and may have a ventral transverse ridge which may be smooth or serrate. The palatines are frequently reduced in length or lost, reduction being in a medial to lateral direction.

Variation in the palatines is not discernable in the specimens examined.

Pterygoids: This triradiate bone shows variaton in the nature of the articulation of the anterior and medial rami, usually at the midlevel of the orbit. If the medial remus is absent, or lacks a cranial articulation, or if the skull is poorly ossified, the anterior ramus usually has an extensive articulation with the maxillary.

The medial ramus may be present or absent and if present, may or may not be articulated directly with the neurocranium. The medial rams may be reduced so that there is no bony articulation with the otic capsule, but in this case there is usually some indirect association by means of pseudobasal or basal processes.

Variation in this bone between the groups studied here is minimal. All three tami are present and a bony articulation occurs between the medial ramus and the otic capsule.

Squamosals: The greatest variation in this bone is in the nature and presence of the anterior (zygomatic) and posterior (otic) rami. The posterior arm can have one of three relationships with the medially adjacent crista parotica:
(1) bears medially expanded otic plate that broadly articulates with the dorsal portion of the crista parotica;
(2) the medial expansion of the otic ramus articulates with the posterolaterally expanded frontoparietal forming a complete or partial arch over the crista parotica; or
(3) the otic ramus is small and poorly developed and lies laterally adjacent to the crista parotica, but does not overlap it.

Litoria infrafrenata militaria
Keravat, New Britain

Litoria infrafrenata infrafrenata
July, Old, Australia

Fig. 3 Percentage distance to maxillary covered by zygomatic ramos of squamosal in three populations of Liforia infrafrenata. The mean is expressed by the vertical line. The rectangle represents standard deviation, and the horizontal line indicates the range.

Within the Tully population, the otic ramts varies from broad to slight overlap of the crista parotica. However, in the Aitape population, the variation is from slight overlap to no overlap at atl, and in the Keravat skuts, this is again the ease, with the majority of skulls showing no overlap of the otice ramus and the crista parotica.

A further variation between populations oceurs in the nature of this bone and this is in the relationship of the lenyth of the zygomatic ramus to the total distance to the maxilla. The Tully and Airape populations would appeatr to have simikar relationships; the anterior arm stretching from 40% to 61% of the distance to the maxila. The anterior rami of the squamosals of the Keravat population, however, extend much further toward the maxillary; the arms covering from 72% to 78% of the distance to be spanned (Figss. 2, 3).
Sphenethmoid: Variation in this bone is generally a question of ossification. The anterior terminus of the bone extends to the posterior level of the masals and posteriorly to the anterior margin of the frontoparietal fontanelle. Additional ossification can occur anteriorly in the form of an internasal septum and posteriorly around the optic foramen which is probably a feature of more heavily ossified skulls.

Variation in the shape of the sphenethmoid within the three groups under discussion has been considered in relation to the nasals. Again, in this bone there is al progression in the degree of bone deposition through the groups. The sphenethmoids of the Tully skulls are relatively thin, those of Aitape less so whilst the Keravat skulls have more extensive bone deposilion.

Oroccipital: The prootic and the exoccipital are indistinguishably fused in modero anurans, The same kind of variation occurs in ossification as in the sphencthmoid and there can also be at reduction in the number of nerve foramina.

Little or no variation in these features is observed in the three populations.

DISCUSSION

From the above data it is evident that in the samples studied the most noteworthy variations in the skull are:
(a) the extent and degree of ossification,
(b) the extent of development of the sphenethmoid in relation to the nusals.
(c) the relationship of the otic ramus of the sequmosal to the crista parotica.
(d) the extent of development of the zygomatic ramus of the squamosal (Fig. 3), and
(e) the shape and nature of the dentigerous processes of the prevomers.
There does not appear to be any sexual dimorplism apart from absolute size (Table 1).

Despite its size, the skull of L. infrafrenata is a relatively delicate structure in contrast to the dermal coossification and exostosis found in many large Sonth American hylids (Trueb 1970 Duellman 1970).

It could be postulated, then, that the only reasonably definitive characters distinguishing the samples are the relative length of the zygomatic ramus of the squamosal and the shape of the dentigerous processes of the provomers. These features distinguish only the populations recognised elsewhere as subspecies (Tyler 1968).

Isolation of Australia and New Guinea occurred for the last time 6000 years BP (Jennings 1972), so separating the frogs of the Cape York Peninsula from the population of southern New Guinea, In contrast, the isolation of the population in New Britain from New Guineat camot be attributed to recent eustatic changes and may be a much older cyent.

Although New Britain and New Guincas are separated by the very narrow Vitiaz Strait, the sea floor thete is 3000 m deep. In fact the rather depauperate nature of the frog faunus of New Britain is consistent with in interpretation of the thsence of a land commection with New Guinea at any time (7 weifel 1960); Tyler 1968: Brown and Tyler 1968). Theretore, the arrival of L. infrafrenata in New Britain is almost certainly the result of overwater dispersal. This does not imply that the greater morphological divergences between New Britain and New Guinea populations is necessarily indicative of extensive isolation. However, it is quite clear then the duration of isolation of New Britain and New Guinea is indeed much greater than that between Australia and New Guinea.

Truch (1968) described clinal variation in the skulls of Hyler lencasteri. Variation between extreme populations made recognition of the one species extremely difficult. However, variation in the intermediale ranges was interpreted as suggesting uninterrupted gene flow between adjacent populations.

Variation between the three populations examined here can be described as minimal. particularly in the light of Trueb's findings. It
would seem, therefore, that the character states under consideration vary little between geographically isolated populations and can be considered as valid species indicators.

ACKNOWLEDGEMENTS

l. would like to thank Mr. M. J. Tyler for helpful comment and criticism in the preparation of this manuscript, Mr. P. Kempster photographed the original diagrams and Miss R. Altman assisted in the production of Figures 1 and 3.

This work is being supported by a grant to M. J. Tyler by the Australian Research Grants Committee.

REFERENCES

Briggs, E. A. (1940). "Analomy of Animal Types". Ansus \& Robertson: Sydney and London.
Brown, W. C. \& Tyler, M. J. (1968). Frogs of the genus Platymuntis from New Britain with description of new species. Proc. Biol. Soc. Wash. 81: 69-86.
Duellman, W. E. (1970). The hylid frogs of Middle America. Monogr. Mits, Nat. Hist. Univ. Kansas i: $\mathrm{xi}+753 \mathrm{pp}$.
Gillies, C. D. \& Perbody, E. F. (1917). The anatomy of Hyla caeruled White. 2. The skull. Proc. Roy. Soc. Qid. 29: 117-122.

Jennings, J. N. (1972), Discussion on the physical environment around Torres Strait and its History, m D. Walker (Ed.) "Bridge and Barrier: the Natural and Cultural History of Torres Strait". Australian National University: Canberra.
L.ynch, J. D. (1971), Evolutionary relationships, osteology and zoogeography of Leptodactyloid frogs. Unin. Kansas Mus, Nat. Hist. Misc, Fubl. 53: 1-238.
Keferstein, W. (1868). Ueber die Batrachier Australien, Arch. Naturgesch. 34: 253-290.
Menzies, J. I. \& Tippett, J. (1976). Chromosome numbers of Papuan hylid frogs and the karyotype of Litoriut infrafrenata (Amphibit, Anura, Hylidae). I. Herpet. 10 (3): 167-173.
Parker, W. K. (1881), On the structure and development of the skull in the Batrachia Part III. Mhil. Trans. Koy. Soc. London, 172: 1-266.
Trueb, L. (1968). Variation in the tree frog Hy/a lancasteri. Copera (2): 285-299.
Trueb. L. (1970), Evolutionary relationships of casque-
headed iree frogs with coossified headed tree frogs with coossified skulls (family Hylidae). Univ. Kansas Puhh. Musv Nat. Mist. 18 (7): 547.716.

Trueb, L. (1973). Bones, Fiogs and Evoltuion. In J. L. Vial (Ed.) Evolutionary Biology of the Anurans. Contemporary Research on Major Problems". University of Missouri Press: Columbia.
Tyler, M. J. (1968). Papuan hylid frogs of the genus Hyla. Zool. Verh., Leiden No. 96: 1-203.
Zweifel, R. G. (1960) , Results of the 1958-1959 Gilliard New Britain Expedition. 3. Notes on the froges of New Britain. Am. Mis. Noyit. No. 2013: 1-27.

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

A REVIEW OF THE FROND-LIKE FOSSILS OF THE EDIACARA ASSEMBLAGE

By RICHARD J. F. JENKINS and JAMES G. GEHLING

[^18]
A REVIEW OF THE FROND-LIKE FOSSILS
 OF THE EDIACARA ASSEMBLAGE

by Richard F. Jenkins and James G. Gehling

Summary

Restudy of the frond-like fossils which occur as part of the Late Precambrian, Ediacara assemblage of the Flinders Ranges confirms previous reconstructions which show the majority of these forms to be basically foliate, leaf-like structures. In some, the axial zone or rhachis terminated in a disc-like anchoring device.

The genus Arborea Glaessner and Wade, 1966, is considered a synonym of Charniodoscus Ford, 1958, and a new species of this genus is described. The genus Glaessnerina Germs, 1973, is briefly reviewed and earlier opinion that Charniodoscus and Glaessnerina are probably related to the extant Pennatulacea is confirmed. Phyllozoon hanseni gen. Et sp. nov, is a new taxon resembling Pteridinium Gurich, 1930.

A REVIEW OF THL JROND-IIKE FOSSILS OF THE IEDIACARA ASSEMBLACE

by

RICHARD J. F. JENKINS ${ }^{*}$ and JAMES G. GEHLING +

ABSTRACT
 review of the frond-like fossile of the Fdiactar ussembatate. Rec. S. Atwr, M11s, 17 (23): 347-354.
remiro of Prewambrian Rescarch. University of Adelaide. Adefaide, Sonth Austratio 5 suot.
| Murrity 1'arh College of Advanced Diducation, 15 Lome Avenue. Minild, South Australit, 5072.

Restudy of the frond-like fossils which necur as part of the Lute Precambrian, Ediacara assemblage of the Flinders Ranges continns previous reconstructions which show the majority of these forms to be basically foliate, Jeaf-like structures. In some, the axial zone or rhachis terminated in a disc-like anchoring device.

The genus Arhorea Glacssner and Wade, 1966, is considered a synonym or Chamiodoscus Ford, 1958, and a new species of this genus is described. The genus Glaessherina Gerns, 1973, is briefly reviewed and eadier opinion that Chamiodosens and Glacsmerina are probably related to the extant Pennaulacea is confirmed. Phyllozoon humsent gen. et sp. nov is a new taxon resembling Pteridinium Gïrich, 1930.

INTRRODUCTION

The large and distinctive frond-jike fossils which occur as frequent components of the Ediacara assenblage of the Flinders Ranges were first described by Glaessner (1959a). However an earlier indirect indication of these fossils was given by Sprigg (1949: p. 73), who identified some of them is algae. Glaessner (1959a) referred specimens to Rangea and Pteridinium Giirich, 1930, genera described from the Late Precambrian, Nama Group of Namibial (South West Africa) and to Chartia Ford, 1958. from rocks of comparable age al Charnwood Forest. Leicestershire, England. He considered these genera to bo related to the living Pematulacea. Formal descriptions of the same material were given by Glaessner (1959b) and bumerous citations concerning them have appeated in his later works, Glacssiner and Wade (1966) presented an updated formal taxonomic study in which they referred the then single known specimen of the Charmia-like form to Rangea, and erected the genus Arborea to accommodate some of the materials previously identified as belong-
ing to Rangea. The taxa which they recognised are als follows:-

Rangea longa Glaessner and Wade. 1966
Ranged grands Glaessner and Wade. 1966 (single Charnia-like specimen)
Pteridinium ef, simplex Gïrich, 1930
Arhorea arhorea (Glaessner 1959).
Germs (1973) considered R. longu and R. grandis distinct from Rangea Giirich and erected a new genus to contain then, Glacssnerina (typie species \mathcal{R}_{1} grandis). Glaessner's (1959a, b) placement of the above listed Australian tixa as relatives of the modern extocoral Order Pennatulaceat has generally been maintained in later studies (e,g. Glaessner and Wade 1966; Glaessner 1971b), although one current suggestion is that they may belong to a phylum intermediate between plants and animals, the "Petalonamac" (Pflug 1972b, c, 1973, 1974a, b). Glaessner and Walter (1975) consider that they ean best be classified provisionally as Coelenterata of uncertain systematic position,

Wade (1970) reported the discovery of the Ediacara assemblage at widely spaced localities in the western Finders Ranges and its known distribution has now been extended nver much of the Ranges (m,s. in preparation). Significant. new, well preserved specimens of frond-like fossils have been found at several of these localities (Fig. 1), mainly by J.G.G. working in conjunction with Messrs. C. H. Ford and D. A. Westlake. This new material sheds additional light on the structure and probable affinities of the previously described forms and indicates a greater diversity of taxil.

Current interest has been focused on Late Precambrian, frond-like fossils by works such 2 those of Pflug (1970a, b, 1971a, b, 1972a, b, c, 1973, 1974a, b), and the present study has been prepared to update information on the Australian examples.

Ediacara assemblage

Termier and Termicr (1960) etected the "Ediucaran" stage which they defined aty being characterised by the fossils from Ediacara and the other similar "Eocambrian" forssils then

known from England and southern Africa. In a later work the same authors (Termier and Termier 1967: p. 141) discuss "la faune d'Ediacara', and subsequently they refer to the different world occurrences of the comparable fossils as "la hanne ediacurienne" or "des faunes ediacariennes" "Termier and Termier 1968; p. 74 and 5. 76).

The English usitge "Ediacara fauna" was adopted by Wade (1970) in relercnce to the fossils from the Ediacara Range and elsewhere in the Flinders Ranges, Here it is considered that the term "Fauna" is more applicable to the ortginal living population of amimals and that the term "assemblage" is preferable fo denote the incomplete collection of fossils which, because of preservational factors, undoubtedly represents but a part of the original fauna. For example, in all of the known Australian occurrences the sand grains in the beds containing the fussils are too coarse to preserve imprims of small organisms (cf. Glacssner 1972).

Repositories

The repositories of the material studied ate the South Australian Museum (registered numbers prefixed ${ }^{3}$. in text) and the Palacontology Collection of the University of Adelaide (numbers prefixed T : or F ,).

DISCUSSION

The repositories of the material studied are the forsits in the Ediacara asseniblage are preserved as markings standing in either positive or negative relief on bedding plane surfaces of llagey sandstone or quartzite. Mostly the fossils occur on the undersides of such beds. Wade (1968) detailed the several alternative ways in which they were probably preserved and indicated general principles applicable for their interpretation.

Study of the available materials referred to Arborea confirms that the reconstruction given by Glaessner and Wade (1966; pp. 618-620, Fig. 2) is carrect in its major details. They consider that the organism was basically a fuliate, leat-shaped structure nomally preserved lying no one of its (two) broad sides in the plane of the bedding. This foliate structure or frond was clongate and symmetrical in form, and comprised a relatively narrow median zone or thachis from which lateral. primaty branches extended on either side
at an angle of between 45^{-}to 90° relative to the thachis. This interpretation is proved correct by a unique specimen (P .19687) in which the frond is overfolded near the middle of its length so that reatures of both sides are preserved.

It is also evident that the primary branches were linked by a foliate base which formed ane side of the frond the more or less smooth or "dorsal" side). The branclies were fleshy of intlated, and on the side upposite the foliate base (the "ventral") cach supported a free standing. Hap-like polyp-leaf. Each polyp-leaß shows a series of close-spaced grooves which evidently correspond to spicular supportive devices lying in the position of the joins or sutures between the polyp anthosteles. In some species the margins of the frond seem to have extended into a membraneous stricture or marginal-zone which was either featurcless or with faint indications of extensions of the axial traces of the branches.

Frequently, the thachis shows 3impressions of more or less straigh spicules which were longifudinally arranged within it (Glaessner 1959a, b, 1971b; Glaessner and Wade 1966). The new materials available indicate that the rhachis continued at the base of the frond as a stalk which terminated in a disc-Jike structure. Such a stalk. passing into the base of a frond at one end and attached to a "bulbous expansion" at the other, is partially figured in plate 103 figure I ol Glaessner and Wade (1966) and is discussed in the explanation of this figure on their page 624. The disc-like structure usually consists of a central cireular boss and an outer flange which may or may not show evidence of a radial musculature.

Specimens of Arborea have been preserved with a circular collapse structure indicating the position of the buried dise in the substrate and the frond bent over and laid flat from its position in life, Thus the disc was evidently an anchoring device.

Ford (1958) described frond-like and disc-like organisms from the Late Precambrian of Charnwood Forest, England. He erected the taxon Charhin masoni to include most of the frond-like organisms. The disc-like structures were included in his new taxon Chamiodisens concentrichs. Ford (1963) referred additional material to C. concentricus.

The holotype of Charniodiscus concentricus (illustrated in Ford 1958: pl. 13, fig. 2 and

[^19]Ford 1963: pl. 1, fig, a) is a disc-like structure associated with a stalked frond which appears to be attached to the centre of the dise (Figs. 2 and 4). Similat Australian materials (c,g. Fig. 3) provide confirmatory evidence that the disc and attached frond represent a single organism. Ford (1963) included this frond in Charnia

masoni, althotyh he previously remurked that it differed in structure from the holotype of that species. (Ford 1958: pp, 213-214). The frond is of comparable dimensions to the holotype of Charnia masoni, but differs markedly in that it shows a wide, tapering median rhachis and has upwards of 45 branches on each side of the

 the Late Precambrian of Charnwood Jorest. Leicestershre. England; s. .s.
Fig. 3. Pholograph of a cast of a specimen of Chumbudischs arhorohs (Glacssner 1959), P. W690, uscurring at Bunyeroo Gonge western Plinders Ranger. x. 45. The zone of imperfect pregervition between the dise and the batse of the frond is considered th have resulted from arching of the stalk.
thachis rather that about 20: in one area the brunches show of faint cross-structure, but strong secondary divisions are lacking. The reverse side of the fromed, fortuitonsly revealed by a small overfolded portion (Figs. 2 and 4), shows the branches to be smooth dorsally, though still delimited by weak grouves. Thus dhis trond cannot represent the reverse aspect of Chamia masomit and almost certuinly represents a separate genus and spectes, surely relerable to the availlable name taxon Chumbudiscus concentrichs.

The Ausuralian Ediacara materials included in Arborea are extruordinarily similar to Charniodiscus concemariths. Their thachis extends into a stalk atrached to a quate similar disc-like struclure. The number of branches is similat. upwards of 30 , and there is every indication that the form of the branches and the shape of the grooves between them is coniparable. The overfolded partion of the frond of the holotype of C. concentriens suggests that the branches were linked laterally by it foliate base.. Churniodiscus seens to differ from Arborea only in that some of its branches show a pronounced curvature rather than being nearly straight. This feature may well be exaggerated by distortion.

Considering the bourdly similar age of Athonea and Chamiodiseas (Late Erecambrian; see Gilaessner 1971at and their morphohngical similarity, there seems litle justificution in naintaining them as distinet genera and accordingly they are here considared ennencric, Arborta becoming a symonym of Charniodiscus. Churniodischs comentrichs caln be distinguished fiom the local forms of the genus at the specific level.

The forms which have been included in Arbomed whored (Glacssner) are herein split imo two separate species. Chamiodiscus arboreses is characterised by relatively narrow branches which ocene in allernate positions on eath bide of the thathis: the ventral track of the thachis is marrow and zig-zug towards the end of the frond ([Jig. 3). The new taxon, deseribed hercin as Chamodisens opposimes sp. nov. and illustrated in Figures 5 and 6, Has broad branches situated in opposite posisions on either side of the rhachis, the ventral track of which is relatively hrosid for its whole lengith.

A thiod and very rate form, which is new and still to be described, is entatively inctuded in Chamiodiseqs: It is ellaracterised by crinkled, resistive structures within the branches, Some of these struefures are bent or deformed, indicating an original flexibility.

As has already been mentioned, most of the frond-like fossils of the Edacara assemblage ate
preserved on lower surfaces of flagey sandstone beds. The holotype ol Rangea longa and the majority of the other specimens referted to this taxon by Glacsuner and Wade (1966) are unusual in that they are preserved on the upper surfaces of quartaite slabs. Twenty or more fromus (not including the holorype, P13777) occur lying in close juxtaposition on a number of similar quartzite slabs. (P12721a-i) which were evidently broken from a single bed. These fronds are all orientated in the same way, stretched out lenghisise by a curtent which eddied around them and scoured the sediment (Wade 1968). On the same or similar bedding surfaces (Γ 12716. P12721b and c, [P12736) are several more or less circular depressions which are evidently craters of collapse over anchoring devices resembling those described for Charniodisers. An impression of part of a thick stem extends from one of these collapse craters (P12716)). The organisms preserved were apparenty hent over from the position in which they were anchored in life and laid flat by the current. They were gregarious, living in near proximity to one another. with individuals at all stages of growth represented.

The fronds of R. /onga are generally preserved as external moulds. with sand underpacking spaces between the polyp-leaves and branches. No ancquivical interpretation of the structure of the frond is possible, partly because no single specimen shows a whole individual, and also bacanse of overlapping und distortion. Nevertheless it is consideted that the reconstruction of R. Kompl given by Glacssner and Wade (1966) is probably incorrect in showing polyp-leaves om buth sides of the frond. The specimens interpreted as showing this (Olaessnce 1959b: pl. 45 Fig. 17 inelude a cast (left side of figure just indicated) in which the rhachis is preserved by conposite moulding. In the holotype, partjcularly, the structure of the frond appears to be essentially simitar to that of Chamiodiscus, with inflated, haterally linked branches each bearing a polyp-lenf. The polyp-lcaves seem to marcow and lerminate at the cdge of the frond. It is considered that the other available specimens lend weight to those findings and accordingly Rangew longa is tentatively referred to Chaniodistus.

The frond of R longor stiows no evidence of a marginal membranous structure. One specimen (P12721c) seells to show the more lateral anthesteles on the polyp-leaves fanming outwards and forming a curved array at the edge of the frond, much as occurs in many modern pennatulaceans. Wade (pers. comm.) has indicated that text-figure te of Glaessner and Wade (1966)

Fig. 4. Interpretive oulline drawing made from the cast of the holotype of Churniedsaces concentricts Ford, 1958 , illusirated in figure $2, \times 08$ f. fractures in original rock surface: b, projecting irregularities in sediment: d, disce of organism and, s, stalk attached to it: r. shachis of fromd; m, oulline of frond: $g_{\text {, }}$ primary grooves hetween hranches of frond and p, pockets formed by these grooves. adjacent to the rhachist cr, faint cross-structure on branches; $x-y$, overfolded portion of frond.

Fig. 5. A reconstruction of Charmionfisens opposions sp. nov., about x. h_{h} of average suzed specimens. The organisn is shown in its inferfed life position, anchored in ripple-bedded sands. It is drawn is though it. Were partly iransparent. the spicales shown in the stalk and rhachis ware evitently imbedded in the sub-dermal interament
is based on similar evidence. but we consider that the polyp-leaves onty overlapped or enveloped one another to a mininial degree.

The genus Glaessherima Germs, 1973, is considered herein to include its type species Rangea grimulis Glaessner and Wade and one other new apecies yet to be described. Glaessmerina grandis is now represented by four specimens, three of Which show the polyp-bearing ventral side of the frond, and the other the dorsal side, which is characterised by a broad thachis (P, 19688). The beanches of its frond were evidently attached to the vential side of the shachis. The polyp anthosteles on one branch reached to or overlapped those of the next serial branch on the opposite side to completely hide the rhachis and give the elfect of a eig-zag nedial commissure. This overlap of the polyps is probably a function of compression during preservation, as in life the polyps must have projected away from the frond at an angle so that there was no interference between them during leeding.

Little new information can be added concerning the form which Glaessner (1963) and Glaessner and Wade (1966) identily as Preridinium of. simplex (Girich 1930), The majority of specimens are unusual in that they are preserved ats moulds and counterpart moulds in massive sandstone (Wade 1968, 1971). These fossils provide no indication as to how the organism may have been oriented relative to bedding, much less its possible orientation in life, Pflug (1970at, b, 1971a, b, 1972a, 1973) has now given an exrensive documentation of the material of Pferiditium from the Nama Group of Namibid. Their preservation is evidently the same as for the Australian examples. The African specimens often show three half leafshaped elements ("petaloids" of Pflug 1970a) extending from an exial line. One of the Australian specimens (plate 101, figure) of Glaessner and Wade 1966) also shows three pcialoids extending from the axis, two of the petaloids lying in close juxtaposition and separated by a thin lamina (about I mm thick) of quartzite, and the third more or less symmetrically opposite, on the other side of the axial line.

A new taxon, Ployllozoum hansent gen. et sp. nov, is erected for a leaf-shaped fossii, numerous individuals of which are eypically preserved together on lower surfaces of quartzite beds. The frond of this organism shows numerous distinct groover extending away from an zig-zag median suture, and appears to have had a membranous or foliate base. The lateral grooves extend from the axis of the frond at 65 * to 85
and gradually become more widely spaced in the direction of the end of the frond towards which they are inclined. It is evident that the median axis of the frond and the lateral grooves actually represent al llexible, resistive framework or skeletor. The edges of the frond are usually indistinct.

Specimens of frond-like fossils have been reported from the northern part of the Officer Basin in the possibly Late Precambrian Punkerri Beds of the Punkerri Hills, northwestern South Australin (Major 1974 and references therein). Restudy sugeests that one of the supposed remains is of inorganic origins a pseudofossil of striking realism simulated by a set of repeated parallel micro-faults. Imprints on another block of sandstone resemble parts of the frond af Charniodiscustr, but are so fragmentary that they should be considered essentially indeterminate.

The above discussion, tugether with more detailed studies too lenghy to be included in this work, provide the basis for the systematic listing below.

SYSTEMATICS

Genus Charnodischs Ford. 1958

Type species:

Charniodiscus concentricus. Ford. 1958: $213, \mathrm{pl}, 31 \mathrm{fig}, 2$, by monotypy.
Chumiodiscus Ford, 1958: 213; 1963: 57.
Rangea Gürich, 1930. Glaessner, 1959a: 1472-1473; 1959b: 383. Giluessner and Wade, 1966 (partim): 614-616.
Chamia Ford, 1958, Glaessnet, 1962: 483 (partim, with reference to pl. 1 fig. 5).
Arborea Gluessner and Wade, 1966 (parin1): 618-619.

Revised diagnosis: Frond large, leaf-like, fusiform or tapering; dorsal ttack of thachis wide, ventral track narrower, either straight or tapering aarrowly and cig-zag, base of rhachis forming a stalk allached to centre of a disc-shaped structure showing a central circular boss and an outer Olange which may have a radial ornaments branches about 30 to more than 50 in number (on eilther side of frond) sitwated either in alternate or opposite positions along thachis and diverging from it at 45° to 90°; individual branches evidently swollen or inflated during life. composed larguly of unresistant material, but generally with a stiffened or resistant structure positioned medially; each branch linked io immediate neighbours by a foliate base, and with
gronves betwen. these grooves curved and particularly deep near thachis' mature branches each bearing a flap or Ilange-like polyp-leaf which shows secendary grooves delimiting fused polyp anthosteles; edges of fronal either with or without a membranous marginal one.

Referred taxa: The Australian forms which are apparently referable to this genus are all evidently of Late Precambrian age and are as follows:

Kangea arborea Glaessncr; 1969, about 30 specimens from the Pound Quarkite and nceurving variously at Ediacara Range; Brachinat Gorge and Bunyeron Gorge, in the Elinders Ranges, The holotype is specimen P, 12891, and two paratypes are P. 12892 and P. 12895; other referable speciniens are P. 13787, P. 138016, P. 14212, P. 19689, and F. 16718: all from Ediacara Range. A cast of a specinen occurring at Bunyeroo Gorge. P. 19690, is shown in Figure 3.

Rangealongh Giaessner and Wade. 1966, approximately 30 specimens froms the Pound Quartaite, occurring mainly at Ediatera Range, but with one specimen from Mount Seott Range (coll. Dr, B, Disily), Flinders Ranges. The holotype is specimen P. 13777, with the paratypes including P. 12716, P. 12721 a-i. P. 12736 and P. 12743 : all from Ediacara Range Also referable to Chamiodisces is a specimen of a small part of a irond collected in a loose block on the lower patt of the Arumbera Formation, cast of Deep Well Honrestad, S.S.E. of Alice Springs, central Australian, and identilied by Glaessner (1969) as Rangea cf. longa. Restudy of the specimen suggests that it is too incomplete for specific identification.

Two new species from the Pound Quartzite of the Flinders Ranges; one represented by more than 40 apecimens and described below: the second very rare and yet to be described (see p. 351 above).

Charniodiscus opposiths sp. nov.
Figs. 5 and 6
Runged sp. Glaessner, 1959a (partim): 1472.3.

Rauged arborea Glaessner, 1959b (partin): $383, \mathrm{pl}, 43$ figs. 2 and $4, \mathrm{pl}, 44$ figs. 1 and 3. Glacssner. 1961 (partim): lig. p. 75: 1962 (partinn): 483-485, ph. 1 lig. 10.

Arbered arhorea (Glaessner 1954). Glacssner and Wade. 1966 (partim): 619.
Derivation of name; From the Latin opposinns.
in reference to the approximate opposite positioning of the branches on either sille of the thachis.

Diagnosis: Species reaching large size with frond up to 30 cm wide and well in excess of 73 cm long: frond broad, 2.5-4 times as long us wide in more complete specimens (excluding matginal zone): ventral track of shachis wide. only slightly narrower than the dorsal! branches about 30 in number (on each side of frond). located in nearly opposite positions on cither side of rhachis and diverging away from it at about 65° to 85° : branches relatively broad, 3-3.5 times as long as wide on more central parts of trond.

Material: 'This is one of the more numerous frond-like fossils in the Ediacara assemblage with upwards of 40 specimens being referable to it with greater or lesser degrees of confidence. The holotype is F. 17337 and the nominated paratypes are T, 94-2015, T. 94-2016. P, 12888, P. 12896. P. 14213, P. 19684, P. 19685 and P. 19687: all from Ediacara Range, Also referable is a specimen occurring at Bunyeroo Gorge and represented by u cast, P. 19686.

The majority of specimens are preserved as casts (sometimes with composite moulding) on the botom surfaces of randstone flage The holotype is unicquely preserved as a smiooth external mould wilhin a sandstone bed (Fig. 6).

Remarks: C, oppositus closely resembles C. concentricus. but differs in that its branches do not show a prenounced trend to decrease in width towards the tip of the trond and are possibly less numerous. The well marked radial wrnament on the outer flange of its attachment dise may also be clistinctive.
C. oppositus differs from C. arborens in the more regular width of its branches and in their opposite rather than alternate positioning on either side of the rhachis. The attachment disc has a smallep central boss relative to C. indorents. C. Iongus has at much more elongate frond with very numerous branches.

Zoological affinities: Glatssner (1959a, b, 1961. 1962, 1963. 1969. 1971a, b and Gluessner and Wade (1966) considered that the frond-like fossils of the kind just deseribed are allied to living members of the order Pennatulatea. The few difficulties which the above authors mised aguinst this interpretation are now largely obviated by information from the new materials for Chapnodisens to hand and studies of modern live pennatulids (e.g. Brafield 1969, tind observations made by J.G.G. on living atrimals on the sea floor and in aquaria). Some major sharac-

Fige 6. Holutype of Charniodisom opposinss $5 p$ nov. F.17337. from Fdiacara Range, x. 7. The specimen is un external mould of a eentral part of the polyp-beating (ventral) side of the frond. $r_{-} r^{\prime}$, rhachis: g, grooves between- the primary branches: 1-1'. flap-like polyp-leaves extending distally on the gight side of the frond and folded proximatly on the left side; s. spictlar suphorive devices in the palyp-leaves.
 two paratype specinoens. $B-B^{\prime}$ and $C-C^{\prime}$, from the Devils Peak. southern Flinders Ranges X. 1 . Composite moulding has oceursed where the end of specimen $C^{\prime}-C^{*}$ overlaps the holotype. $A-A^{\prime}$."
teristics shared by Chamiodischs and present-day peonatulaceans are an follows:-
a. Both have an anchoring structure charateterised by strong longitudinal or radial musculate. In the living genus Pterocides Herklots, 1858, the anchoring device is essentially a muscular sack which can be dilated with water. A sphincter muscle lies at the junction of this sack and the stalk. A basal expansion or protrusion of the sack (Bratielal 1969: pl. 1. lige al seems analagous to the eentral boss in the attachment disc of the fossil forms.
b. A stalk and median rhachis is present in each. In modern pennatulacerns the rhachis functions as 4 hydrostatic organ of support, becoming greatly swallen and stiffened by water drawn into large internal canals; in symmetrical forms additional support is pravided by a calcified rod or axis in the lower part of the rhachis and stalk. Charniodisens lacked this rod or axis; its thachis, though up $3-4 \mathrm{~cm}$ wide in large specimens. readily collapsed llat during preservations, suggesting that it was also filled targely With fluid during life.
c. Spicular elements mesent in the stalk and rhathis of Charniodiserus fesemble those cammonly occurring in the modern animuls.
d. In both, lateral branches extending from the rhachis bear Foliate structures. (polypleaves) showing secondary divisions (polyp anthosteles). The branches of modern forms can be inflated with water and some specimens of Charniodiscus also show evidence that the branches were dilated.
e. The large spicules evident in the polypleaves of Charniodisews seem analogous with those in species of Pemmatulu Linne. 175\%, and Preredides.
f. Modern pennatulids. even those with un axis, have considerable powers of distension and contraction, A livespecimen of Preverides has been observed to extend its length by ahout 100 per cent from the contracted to the expanded state. Specimens of Charnindiscus showing evidence of appreciable stretching by currents suggest that it also may have been capable of signticant distension.
Charniodiscus was seeningly elose to the living branched family Pennatulidae in its gross morph-
ology, but dificed in lacking actleified axis and in having its branches fused or linked laterally rather than free. The extant Renillidae have a centinuous foliate frond and no axis, but lack recognisable branches, Considering the diversily of form shown by modern pernatulaceans and their very long separation in time from the Ediacata assemblage, it is hardly surprising. that Charniodiscus shows several unique characleristics.

Genus Glaessnerma Germs. 1973

Type species; Rangea grandis Giaessner and Wade, 1966: 616, pl. 100 fig. 5, by original designation.

Glaessuerina Germs. 1973: 5.

Revised diagnosis: Frond large, tapering, with broad lapering dursal rhachis; primary branches situated in alternate positions on rhachis and diverging from it at approximately 40-65, with their lateral terminations sharply delimited: each primary branch bearing a row of large, similar, blunt secondary branches (polyp anthusteles.) projecting obliquely towards axis of frond at about $30-50$ to it: secondary branches of type species widest near thachis and becoming progressively narrower away from it; basal parts of primary branches and secondary brancloes overlapping in ventral midline to form a cig-zag commissute.

Remarks: In a number of his carlier works on the Ediacara assemblage Glaessner (1959a. 1959b, 1961, 1962) referred the type species of Unis tuxon, Rangea grandis, to the genus Charmia. Germs (1973) dean drew attention to the similarity between Glaessnerina grandis and Charria and suggested that further study of them might "make it advisable to place theni in the same genus", However, several marked diflerenees do occur between them and for this reason their separation is maintained here.

In Glaessherina part of each primary branch is continnous or undivided, and it is this undivided portion which bears the secondary branches. In Charmid, the secondary divisions exlend continuously across the primary brancles, and as well. have their long axis more nearly tiansverse to the axis of the whole frond. The secondary divisions of the branches of Cilaessfrerina are widest near the axis of the lrond and become progressively natrower towands the ends of the primary branches. The secondary structures of Charnia are narrow near the frond axis, become wider nour the middle of the length of each primary branch, and then narrow again towards the edge of the frond. A further distinctive character in

Charnig is that the secondary structures are thenselves regularly subdivided by tertiary grooves.

In its morphology Glaessnerina shows a resemblance to Chamiodiscus on the one hand. und a suggestive similarity to members of the extant l'ennatulidae on the other. It is almost centainly related to Charmodisous and thus can also probably be considered as allied to the pennatulaceans.

Genus Pteridinium Giirich. 1930

Type shecics: Plertidinm simplex Gürich, 1930: 637, by ariginal designation.

Interpretations given to this genus by Pflug (1970a, b, 1971a, b, 1972a, 1973 pose problems outside the scope of the present work, and it seems inappropriate to attempt to provide a generic didgnosis.

Referred taxat The single Australian form is represented by rare materials from Ediacara which Glaessmer (1963) and Glaessner and Wade (1966) identify us Peridinium cf, simplet: Aside from the brief remarks above on pp 353 bo new information can be given.

Genus Phyllozoon gen. nuv.

Type speciest Phyllozoon hanseni sp, nov,
Derivation of name: Phy/ho, from the Greek noun phyllon, Icaf: .ion, Greek for animal.

Diagnosis: As for type species.

Phyllozoon hansemi sp. nov.

 Fig. 7Derivation of name: 'The species is named aller Mr. Anthony Kym Hansen, who made the initial discovery of this taxon whilst studying geology at Adclaide University, and has since lost his life during seismio exploration in Western Ausiralia, 1976.

Dingnosis: Frond leaf-like, resembling Pteridinimm simplex in its incised zig-zag median line and almost evenly spaced, repetitive lateral grooves, but differing in that the organism was evidently of more or less planar or two dimensional form, not with three ribbed wings extending from the axis; incised axis and batcral grooves evidently representing a resistive skeleton which lay within foliate base of frond; lateral grooves extendiag from axis at about 70 . with their ends curved outwards; spacing of lateral grooves tending to beconte less at (?) proximal ent of frond.

Material: Fiftern or so individuals are available for study. The holotype, P. 19508A, a nearly complate frond, and eight or nine other frag-
mentary individuals, all necurring on a single bedding plane, were discovered by Mr. A. K. Hansen at Devils Peak. southern Flinders Ranges. Three individuals occurred at Mt. Mantell Ratige, central Flinders Ranges. Numerous individuals have been observed on rock slabs in the Heysen Range, western Flinders Ranges. particularly near Bunyeroo Gotge: a specimen occurs in a collection from Brachina Gorge. Several fradmentury remains showing resembiances to this taxon are present in collections from Ediacara.

Dimensions: The frond of the holotype (specimen A, A^{\prime} in Fig. 7) is about 18 cm long and 5.5 cm wide towards the middle of its length, with about 75 lateral grooves (on ench side of frond) spaced at aboat 2 mm (end of frond opposite to direction in which lateral groaves are inctined) to fractionally under 3 mm (averige). A spacing of about 3 mm is common in other specimens, Individuals may reach in excess of 23 cm long with upwards of 100 lateral grooves.

Remarks: Plyyltzoon hansemi apparently differs from the Namibiun material of Pteridinium simples in that it is a two dimensional frond. showing no evidence of an additional ribbed wing extending from the axis. Where separato, individual fronds overlup, composite moulding results, and if an additienal wing did exist it scems likely that it would be evidenced by this process. Another difference between the new form and P. simplex is that the Jateral grooves show a chatacteristic inclination relative to the axis (about 70°) in the former, but are nearly transesesse or variably inclined in the laterPhyllozoon does nut show a series of small distinct lobes adjacent to the axis, a character often present in Pecridinitum (where they have been iermed "commissurae" by Plug. 1970a).

P, hansent differs from the material from Ediacara identified as Preridinium of, simplex in that the ends of its lateral grooves curve in the opposite direction and do not converge together towards the margin of the frond, and "commissurace" are lacking.
f^{1}. hanseni shows a tesemblance to another of the forms occurring in the Nama Group. Nasepio altae Germs 1973. The later is deseribed ats consisting of ribbed, leaf-like bodies (petaloids) which have at "skeletal structure", However, a number of petaloids arre evidently bunded together in Nasepia and the individual petaloids seem to be broad rather than clongate in shape.

A striking, but probably superticial similarity of form exists between P, hansent and species of Plumalina Hall. 1858, frond-like temains oceur-
ring in the Middle Devonian to latest Devonian or earliest Mississipian of New York and the Middle Devonian of Eifel. Germany. In the detailed recent review of Plumatina presented by Suss and Rock (1975) it is described as being at plume or feather-like form. in which the separate lateral branches (or "pinnde") and perhaps the rhachis were apparently tubular prior to burial. P. hansent differs from Plumalina principally in having a foliate base to the frond rather than separato pinnae, and in its axial line consisting essentially of a single groove, not a distanet narrow band forming a clearly marked rhachis.

In their discussion of the likely allinities of Plimalina, Sass and Rock reject the possibility that it is a plant and compare it to members of the Gorgonacea and hydrozoans belonging to the feather-like Plumularidae, In the last paragrapls of their work they lavour and affinity with the hydrozou, a view with which we concur.

In. the Plumularidate and near relatives (members of the Order Hydroida) the colony consists of an axial stolon or hydrocaulus from which branch individual lateral stolons bearing small or microscopic polyps or lyydeanths (Hyman 1940). The stolons have a chitinous covering or periderm; the polyps are partially enclosed by goblet-shaped expansions of the periderm, the hydrothec, The colony grows by the progressive budding and branching of new single stolons from the distal end of the hydrocaulus. This mode of development would seem to preclude the evolution of a common membrane inter-connecting the individual branches of the frond. Thus it seems. unlikely that Plylozoon is allied to the Plumularidate and there is at dearth of evidence to link it with other hydrozoans.

In the shont recent review which Glaessner and Walter (1975) present on the now diverse array of frond- and sack-like lossils variously known from a number of fate Precambrian localities in the world, they consider that these remains all show a "general similariky" and imply that this reflects an underlying taxonomic unity. This viewpoint may. however, prove to be simplistic.

As has been argued above, the genera Charniodischs and Glaessnerina and probably Charnia are evidently ullies of the modern Pennatulacea. On the other hand. the unnamed Late Precambrian forms from Newfoundland which Glaessner (in Glaessner and Walter 1975) considered as possibly being allied to hydrozoans, show a pattern of branching consistent with this hypothesis. A comparable form of branching is present in Rangea (see Pflug 1070b; Germs 1973). A quite different phylum may be repre-
sented by the apparently sack-like form Arumbera banksi Glaessner and Walter, 1975, which is a relatively common fossil in the latest Precambrian of central Australia. Its walls are characterised by a skeleton of elongate, subparalled, sesistive fibrils, and the form shows a suggestive resemblance to promitive, thin-walled, vase-shaped sponges, suct as the Early Palacozoic Leptomitidae.

The possible systematic position of genera such as Pteridinium and Nasepla and the remaining forms grouped in the "Pelalonmate" is clouded, either because of imperfect preservation, or inconsistencies in presently available descriptions, There is ipparently little recorded field information which might throw light on either their life habits or life orientation. The resemblance which Phyllozoon shows to Pieriditiom, logether with its enigmatic state of preservation, dictate its present placenent within this essentially unclassified group.

ACKNOWLEDGEMENTS

Emeritus Professor M. F: Glaessnct, Liniversity of Adelaide, is sincerely thanked for constructive criticism of the manuscript and lively discussion: he also made comparisons with overseas materials and assisted with literature. Mr. Colin H. Ford. Esso Petroleum, Malaysia and Mr. Dennis A. Westlake, discovered important new naterials and provided invaluable assisfance in the field. Dr: B. Daily, University of Adelade, is also acknowledged for making available a significant new specimen. This work was partly supported by an Australian Research Grant.

KEFERENCES

Braficld, A: E. 1969. Witter suoveorents in the pernatulal coslenterate Pperdiles spisermm. J. Zool. Lond. 158 (3): 317.325.

Font, T. D. . 145s. Precambrian fossils from Churnwad Forest. Proc: Jomhwire (ical suc. 31 i3) 8: 211217.
Ford. T. D. 1963.. The Pre-Cambian fossim al Charnwool Forest. Trans. Iewiedser lil. phil. Sos. 57: 玉7-62.
Germs; G. S. B. |973. A reinterpretalion of Ramgera selmeiderhoelmi and the discovery of u telateal new fusxil from the Namti Girohpr, South West Alricat lechout 6 (1): 1-9.
Glaesmer. M. F., 1954a. Precambrian Coclenterata fram Australia, Africat and Eingland. Nature 183 (4673): 1472-1473,
Glatesner, M, Fro 195!b, In Glacssmer, M, J. \& B. Dibily. The geology and late Presambriun fiana of the Eulicara fossil teserve Rec. S. dusf, M1us. 13 (3): 369.401 .

Glaessner. M. F. 106I. Fere-Cambrian animals. Srieut. Ann. 204 131: 72-78.
Glassmer. M. Fio 1462. Precambrian fossils. Hial Rirw. 37 (4): 467-494.

Glaessner, M. F_{4}, 1963. Zur Kenntnis der Nama-Fossilien Siudwest-Afrikas, Annh, natuh, Mus. Wien 66: 113-120.
Glaessner, M. F. 1969. Trace fossils from the Precambrian and basal Cambrian. Lethaia 2 (4): 369-393.
Glaessner. M. F., 1971a. Geographic distribution and time range of the Ediacara Precambrian fauna. Bull. geol. Soc. A/m. 82: 509-514.
Glacssner, M. F., 1971b. The genus Conomedusites Glacssner and Wade and the diversification of the Cridaria. Polaonf. Z 45: 7-17.
Glacssner. M. F., 1972 . Precambrian palaeozoology. Centre for Precambrian Rescarch, Univr Adelaide, Spec. I'ap. 1: 43-52.
Glaessner, M. F. and Wade, M., 1966. The late Precambrian fossils from Ediacara, South Australia. Palaeontology 9 (4): 599-628.
Glacssner. M. F. and Walter, M. R., 1975. New Precambrian fossils from the Arumbera Sandstone, Norlhern Territory, Australia. Alcheringa 1: 59-69.
Hyman, L. H., 1940. The invertebrapes: Protozoa shrough Ctenophora. McGraw-Hill Book Co. Inc.
Major, R. B., 1974. The Punkerri Beds. Q. Geal. Nores geot. Suric. S. Ausf. 51: 2-5.
Pllug, H. D., 1970a. Zur Fauna der Nama-Schichten in Sutiwest-Afrika 1. Pteridinia, Baut und systematische Zugehörigkeit. Palapontographica Abr. A. 134 (4-6): 226-262.
Pflug, H. D., 1970b, Zur Fauna der Nama-Schichten in Sildwest-Afrika 11. Rangeidae, Bau uad systematische Zugehórigkcit. Sbis 135 (3-6): 198-231.
Pflug, H. D., 1971 it. Nene Zengnisse zum Ursprung der höheren Tiere. Nammisy 58 (7): 348-352.
Pflug, H. D., 1971b. Neue Fossilfunde im JungPrabambrium und ihre Aussagen zur Entstehung der höheren Tiere. Gcol. Rdsch. 60 (4): 1340-1350.
Pflug. H. D., 1972a. The Phanerozoic-Cryplozoic boundary and the origin of Metazoa. 24. Internat. Geol. Congr. Mourreal, Sect. I: 68-77.

Pllug, H, D., 1972b. Systematik der jung-präkambrischen Petalonamae Pfitg 1970. Palaont. 2. 46: 56-67.
Pflug, H. D. 1972c. Zur Faunt der Nama-Schichten in Südwest-Afrika 111. Erniettomorpha, Bau and Systematik, Palacontographica Abt. A. 139 (4-6): 134-170.
Pllug, H. D \quad 1973. Zur Fauna der Nama-Schichten in Südwest-Afrika IV. Mikroskopische Anatomie der Petalo-Organismen. Ibid 144 (4-6): 166-202.
Pflug, H. D., 1974a Vor-und Fruhgeschichte der Mctazoen (Precambrian history of the Metazoa). N. Jb. Geol. Palioont. Ab/F. 145 (3): 328-374.
Pflug, H, D., 1974b. Feinstruktur und Ontogenie der jungpratkambrischen Petalo-Organismen. Palionh. 2. 48: 77-109.
Sass, D. B. and Rock, B. N., 1975. The genus Flumalina Hall, 1858 (Coclenterata) -re-examined. Bull. Am. Palcont. 67: 407-422.
Sprigg, R. C., 1949. Early Cambrian "jellyfishes" of Ediacara, South Australia and Mt. John, Kimberley District, Western Australlia. Trans. R. Soc. S. Ahst. 73: 72-99.
Termier, H. and Termier, $\mathrm{G}_{4,}$ 1960. L'Ediacarien, premier étage paléontologique. Revue gén. Sci. pur. appl. 67: 79-87.
Termier, H. and Termier, G., 1967. Formation des continents et progression de la vie. Masson \& Co., Paris.
Termier H. and Termier, Ga, 1968. Biologie et tcologie des premiers fossiles. Masson \& Co, Paris.
Wade, M. 1968. Preservation of soft-bodied animals in Precambrian saudstones at Ediacara, South Australia. Lefhaia, 1: 238-267.
Wade, M., 1970. The stratigraphic distribution of the Ediacara fauna in Australia. Trans. R. Soc. S. Aust, 94: 87-104.
Wade, M. 1971. Bilateral Precambrian chondrophores from the Ediacari fauna, South Australia. Proc. K. Soc, Vict. 84 (1): 183-188.

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

SOME OBSERVATIONS ON THE EYREAN GRASSWREN AMYTORNIS GOYDERI (GOULD, I875)

By S. A. PARKER, I. A. MAY and W. HEAD

[^20]
SOME OBSERVATIONS ON THE EYREAN GRASSWREN AMYTORNIS GOYDERI (GOULD, 1875)

by S. A. Parker, I. A. May and W. Head

Abstract

Summary

Following the recent rediscovery of Amytornis goyderi in the eastern Simpson Desert (I. A. May 1977b), the present authors spent several days in the area studying the species. Reported here are the results of the latter expedition, including notes on plumage, habitat, status, voice, food, and the first description of the eggs. Also discussed are the relationships of A. goyderi within the genus, and previous European acquaintance with this little-known grasswren.

SOME OBSERVATIONS ON THE EYREAN GRASSIVREN AMYTORNIS GOYDERI (GOULD, 1875)

S. A. PARKER*, 1. A. MAX ${ }^{*}$ and W. HEAD*

Abstract

PARKER, 5 , A. MAY, 1, A. and HEAD. W, 1978. Some observations on the Fyrean Grasswren Amyrornis goyderi (Gould, 1875). Recis 5. Aust. Mus. 17 (24) 36l-371.

Following the recent rediscovery of Amytornis goyderi in the castern Simpson Desert (I. A. May 1977b), the present authors spent several days in the area studying the species. Reported here are the results of the latter expedition, including notes on phumage, Jabitat, status, voice, food, and the first description of the eggs. Also discussed are the relationships of A. goyderi within the genus, and previous European acquaintance with this Jittle-known grasswren.

[NTRODUCTION

The Eyrean Grasswren, Amytornis goyderi (Gould, 1875), was first collected by F. W, Andrews on the Lewis Expedition to the Lake Eyre district (Fig, 1) in 1874-1875. Of the six skins received by the South Australian Museum from Andrews (Waterhouse 1875) only three can now be traced: two are in the British Muscum (Natural History) (Warren and Hartison 1971: 211) and one is in the Australian Museum, Sydney (Hindwood 1945.), Of these, only BMNH 1881.5 .1 .516 has an (apparently) original label bearing details of locality: "Macumbr Lat $27^{\circ} 41^{\prime} 23^{\prime \prime \prime}$ (Mathews 192223: 207, confirmed by I. C. J. Galbraith in litt. 20th January, 1977). Although it is widely assumed that the other five specimens were also taken at this spot (e.g. Sutton 1927: Morgan ef al. 1961) there is no evidence for this; they could have been secured elsewhere on the expedition's route, which ran through a great deal of country to the north and east of Lake Eyre (Lewis 1876).

In the next 50 years, the species was reported twice nore in South Australia and once in the Northern Territary, but these reports were based on misidentified specimens of the Thick-billed

[^21]Grasswren A. texrilis (Parker 1972). In addio tion, Whitlock (1923: 273) on 5th November, 1923 observed two grasswrens that he identified as A. goyderi some 40 miles from Oodnadatta on the Macumba Run. On the basis of habitat, however-saltbush and low dead scrub on a low hill-the species involved was almost certainly A. textilis.

In 1922 Brooke Nicholls (1924) observed in canegrass on sandhills at Cowarje grasswrens that he identified as A. tevtilis: considering the habitat in this instance, however, it is far more likely that these were A. goyderi (Parker 1972).

In September, 1961, a party of Victorian ornithologists reported A. goyderi at Christmas Watcrhole, at about $27^{\circ} 35^{\prime} 54^{\prime \prime} \mathrm{S}$ on the Macumba River, nine miles upstream from the type locality (Morgan of al. op. cir.). They saw two adults, and found a nest containing two young in a tussock of Sundhill Canegrass, Zygochloa paradoxa. They published some notes on the habitat nesting and behaviour of the birds observed. A puzzling aspect of their account-how one of the birds passed through their mist net four times-will be discussed below.

In September, 1972, Ian May was driving over a large sandhill 65 km due east of Poeppel's Corner when he flushed several grasswrens from tussocks of Zygochloa paradoxa. Suspecting these to be A. goyderi, but unable at the time to investigate owing to mechanical troubles, he returned to the area in August. 1976 (May, 1977b). On his second visit, and assisted by his wife, he found A. goyderi common in Zygochloa on sandhills from 32 km to 75 km eust of Poeppel's Corner, and also recorded it in the adjoining area of Queensland. He collected two specimens (listed in Table 1), one at $26^{\circ} 00^{\circ} \mathrm{S}$, $138^{\circ} 46^{\circ}$ E (now SAM B30520) and one at $25^{\circ} 52^{\circ} \mathrm{S}, 138^{\circ} 39^{\prime} \mathrm{E}$ in Queensland (now in the Queensland Museum, No. 0.16606).

On J0th September, 1976, May set off once nore for the alea, this time with Shane Parker and Mr and Mrs Winston Head. The results of our expedition are presented below.

TABLE 1

"Listed as make by Warren and Harrison (1971: 211\%. (Numbers of observations in parenthesis).

AgeiSer	Winglength	Titil	Tarsus	Cumen (from Skull)	Bilf-depth at nostril
Ad, and subad, rs 3 (SAM)	56-6.4 (8)	76-79.2 (6), 89 (1)	23-24 (8)	12-13.5 (7). 15.8 (1)	$6.2-8(7)$
Ad, and subad. (SAM).	\$5.57 (4)	74-78 (3)	21.3-24 (4)	13-13.8 (3)	6.7 (4)
Immatures (SAM).......	53-58 (5)	(0)-71 (4)	21-24 (5)	11:2-13 (5)	$5 \cdot(6.1$ (5)
SAM B30z9y (ad. ${ }^{\text {a }}$ phaser	55	72,5	23	13.8	6.8
SAM 330297 (ad. phase).	57	72.5	23.5	damaged	6.1
SAM B30520 (at, is phase)	58.5	82.6	25	14	6.9
QM O.l6fors (but shase)	54	damaged	24.3	13	6.8
BMNH 1881,5.1.516 : 1 ad (phasce.	55,5	70)	23	12	65
BMNH 1881 5.1.517' (ad. of phase).,	60,5	72	24	13	7
	58	77	21,1	13.4	6.5

SEPTEMIBER 1976: A BRIEF LOG

12 th September-From camp at $26^{\prime \prime} 57^{\prime} \mathrm{S}$, $135^{\prime \prime} 50^{\prime}$ E on Allapalila Creek 50 km north of Macumba Station we travelled north to French Line, which we strack it $26^{\prime \prime} 18^{\prime \prime} \mathrm{S}$, $136^{\circ} 01^{\prime} \mathrm{E}$. From here we drove 37.5 km on a bearing of 78 true north, entering the Simpson Desert. At $26^{\circ} 13^{\prime} \mathrm{S}, 136 \quad 24^{\prime}$ E we changed direction to 150. L.A. 10 reach Makari nirstrip at about 13 km lurther on. After refuelling, we followed Seisnic Line WAA on aboring of 90 t.n. from Makari, camping ut 100 km along this line.

13th September-Continued for it further 16 km , where the line ended abrupily ut $26^{\circ} 20^{\prime} \mathrm{S}, 137^{\circ} 36^{\prime} \mathrm{E}$ an the western edge of a small un-named satlake. From here we drove due north to regain French Line at Lake Surprise (a dry sultake). Then continued along French Line on at berange of 84 L.18. venching Pocppel's Corner after dark ut about 2000 hours.

14th September-From Poeppel's Curner we continued along Frencl Line until it ended 19 km further on. We then drove 1.5 km south to the Queensland/South Australian bordew, then followed the border castwards. At $25^{\circ} 00^{\prime} \mathrm{S}$. $138^{\circ} 15^{\prime} \mathrm{E}$ (25 km cast of Pocppel"s Corner) we saw the first Eyroun Grasswrens of the Lrip. We continued along the booder to $138^{\prime \prime} 30^{\prime} \mathrm{E}(50 \mathrm{~km}$ cast of Pocppel's Corner') where we camped, sighting more grasswrens nearby just before dusk.

15th September-Searching from first lighi, we found A. goyderi common on the nearby sandhills, and collected cight birds ($330295-30302$) and a nest (B30327). We then resumed out journey casiwards along the border. camping at $26^{\circ} 00^{\circ} \mathrm{S}$. $138^{\circ} 40^{\prime} \mathrm{E}(66 \mathrm{~km}$ cats of Poeppel's Comer).

Loth September-Drove a few kilontetes south-west from camp and collected three more specimens of A. godyderi (B30303, 30312-3). Late in the afternoon we found three nests, one
with two young (nol collected) and one with two eggs, the first eggs known of this species.

17th September-After sending at radiolelegram to colleagues in Adelaide with news of the discovery of the eggs of A. goyderi, we continued due cast, encountering the species in abundance on all sandhills examined. At $26^{\prime \prime} 00^{\prime} \mathrm{S}, 138.45^{\prime} \mathrm{E}(75 \mathrm{~km}$ east of Pocppel's Comer) we came to the last sanulhill before the Coolibuh flats on the western side of Eyre Creck: although sandhills occurred regularls from bere to Eyre Creek itsell, this was the last on which we lound grasswrens, collecting a further eight specimens there (B30304-30311).

We crossed Eyre Creek 4 km south of the border at the southern end of Tertachi Waterhole, then resumied our journey along the border to camp at 26° ($30^{\prime} \mathrm{S}, 139^{\circ} 100^{\prime} \mathrm{E}$. Once across Eyre Creck wo ceased to look for grasswrens.

18th September-Drove on to Birdsville. From here May and Parker visited an isolated group of Zygochloa-clad sandhills on Durric Station, 9.3 kmi cist-north-east, from where grasswrens had been reported to May by the station owner. In th two-hour seareh of these sandhilds we found only partly-obliterated tracks that could have been of A, goyderi. We then rejoined Head, who had proceeded down the Bitdsville Track and was camped at Pandiburra Bore, on Cinyder's Lagoon.

SPECIMENS COLLECTED OF AMYTORNIS GOYDER1. SEPTEMBER. 1976

Adult and subadult males: six study skinz: (B30296, 30298, 30302, 30304, 30307. 30311), one mount (330300), one spirit specimen (B30303).
Adule make phase: one study skin (B30299).
Adult and subadult females: three study skins (1330295. 30301, 30305), one mount (B30306).

Adule fenmale phase: one spirit specimen (B30297)
Immatures: three sludy skins (B3030830310), two spirit specimens (B30312. 30313).

Nests: three (B30327-30329).
Eggs: one clutch of two eggs (B30330).
In addition, the contents of 15 stomachs from the above specimens were preserved and analysed (see Table 2 below); a further three stomachs in spirit speeimens have not been opened, and stomach contents of one specimen were not retained. The two mounted specimens were prepared in the field by Winston Head and are at present on exhibition in the Soush Australian Museum.

The term subadult refers here to specimens in adult plumage but with the skull not fully pneumatised and the palate usually yellow instead of the adults light grey. Possibly these individuals are the young of an autumn breeding season about sid months previously. The term immature relers here to individuals that appeared to Jave recently fledged. The ternis male and female are liere used to denote only those specimens that have been sexed by examination of the gonads: male phase ind female phase refer to specimens whose gonads could not be found, and which were sexed by plumage characters only.

TABLE 2
Stomach contents of A. goveleri

> Number of stomachs in which found (out of bifteen)

Plant remains, chiclly seeds 15
(Seeds of Zygachina paraduxa) . 12
(Seeds of Aristida browniana) .. 5
Arachnida: spiders 3
Orthoptera 4
Hemiptera 13 (Pentaromidae: Cephaloplarus) 4 (Lygaeidat: Oxycaremus) 4^{*}
Neuroptera larvac (ant-lions) (Myrmeleontidae, Ascalaphidae) 5
Colcoptera: adults 4 Jarvac 1
Lepidoptera: adults.t. 2 larvate......... 1
Hymenoptera: ants.......... 11
small wasps 3
Feather fragments 4

* One slomach contained 25-30 hemk.

GROSS EXTERNAI MORPHOLOGY

Plumage-(Numbers refer to the colours in Smithe 1975). Adult and subadult males-Ground-colour of crown, hindneck, sides of neck, back and rump cinnamon-brown (between 27 and 37), cacl feather with is whitish, dark-brownbordered, shuft-streak, this streaking obsolescent to obsolete on the runap. Feathers of face degenerate, dull white, theit borders grading from brownish on the upper chcek to black on the lower cheek: in indistinct black malar bar or moustache formed by the juxtaposition of the black-bordered feathers of the lower cheek and the adjacent line of throat-feathers, the latter being white with a black border on their dorsad edge. Tail and wing-feathers fuscous (near 21), primaries edged light brownish-grey (close to 45) grading to light cimamon (between 38 ind 39) on inner secondarjes; upper wing-coverts and inner secondaries with pale shaft-streaks: tail edged cinnamon (39). Underside dully creanywhite, tinged light cinnamon (near 39) on flanks and urissum. Adult and subadult fenales similar to males but with chestnut pateh (near 38) on either side of belly, this patch partly overlying the light cinnomon suffusion on the flanks. lmmatures (males) as adult males but plamage much duller, ground colour of dorsums dull brown (between 25 and 34), lacking rufous tones of adults, and streaking indistinct.

The plumage of the adults and subadulis is worn, markedly so on the wings and tail. The immatures are in Iledgeling plunage, with adult feathers growing through on the throat of one, B30309.

Colours of whfenthered parts (taken live minutes to two hours after death by Parker).

Iris-Immatures: olive. Adulis and subadults: manaly olive-brown, olive in one aduli male and fennale and one subadult female.

Legs and feet-lmmatures: legs pale violetgrey, toes and claws mediun grey. Adults and subadults: legs medium grey usually with violet tinge, loes and claws durket, soles ushen.

Bill-lomatures: upper mandible light grey. lower mandible paler, gape-llange dull yellow. Adults and subadults: $4 . \mathrm{m}$. light of pale grey, sometimes paler distally and usually with tip light brown: all or mid or mid-and-distal part of culmen darker grey, brownish grey or blackish; l.m. light or pale grey, usually with tip light brown.

Mouth-Imbatures: palate lemon, grading to orange-ycllow in pharynx. Subadults: palate light yellow or orange-yellow, grading to purplish-pink

Fig. 2. Amytornis goyderi (right side view). Left, adult male; right, adult female.
in pharynx. Adults: palate light grey, grading to purplish-pink in pharynx.
Eyerim-Immatures: brownish grey. Adults and subadults: various intensities of olive-grey, grey-brown, brownish grey or brownish black.
Measurements (see Table 1).
Morgan et al. (op.cit.) wrote of A, goyderi "In body size, the birds appeared about the same size as the Blue-and-White Wren [Malirrus leucopterus], perhaps a little longer, but more slender in appearance. The fact that it passed so readily through the mist net [four times] would suggest a more slender build than in most wrens. However, its habit of scurrying from one canc-
grass clump to another with wings half spread out at the sides and the tail partly fanned makes the bird appear larger than its true size". Our observations and specimens do not bear out these remarks at all. In body size and general proportions (except for its longer tail), A. goyderi is about the same size as the Thick-billed Grasswren A. textilis and at least twice the bulk of Malurus lencopterus (weight of 11 Malurus lencopterus $6 \cdot 5-9 \cdot 2 \mathrm{gms}$, weight of four \mathcal{A}. goyderi 17.518.5 gms). Only one bird in the Simpson Desert could be considered "more slender in appearance" than Malurus leucopterus, and that is the Rufous-crowned Emu-wren Stipiturus ruficeps (weight of one adult male 5.5 gms). We were also puzzled by how so substantial a

1.g. 3. Amytornis goyderi (ventral view), Left, adult male; right, adult female.
bird as A. goyderi could have passed with ease through what Morgan et al. described as a fine mesh nylon mistnet. However, Mr J. L. McKean (pers. comm.) informs us that the mistnet was lent to the party by him, and that its mesh was 1.5 inches $(3.8 \mathrm{~cm})$ across the stretched diagonal, as opposed to 1.25 inches (3.2 cm), the finest standard net now used.

Sexual dimorphism

There appears to be no sexual dimorphism in coloration of the unfeathered parts. In size, males are on average a little larger than females and have deeper bills. The main difference, and
one that occurs also in A. striatus, A. dorotheae, A. textilis and A. purnelli, is the chestnut patch on either side of the belly in the female, absent in the male.

HABITS

Habitat

We encountered Amytornis goyderi mainly in and among tussocks of Sandhill Canegrass, Zygochloa paradoxa, growing on the crests and sides of large sandhills. It was sometimes also seen in and around clumps of the legume Swainsona rigida, which grew in varying abundance among the tussocks of Zygochloa on many
sandhills. These two plants are of similar size and habit, and superficially resemble each other, particularly in their sere state (which most clumps were in). Throughout the area, the low grass Aristidn browniana grew abundantly on many of the sandluills, mainly on the mid and lower slopes. Of the larger plants growing on the dunes frequented by A. goyderi, the wattles Acacia dictyophleta and Ac. mutrayana, were the most prevalent, occurring mainly on the lower slopes. The grasswrens scemed most numerous among tussocks of Zygochloa growing on bare drilting sand at and near the crests of the dunes, though they were frepuently found lower down. At no time were they found away from the dunes; of two birds pursued to the bottom of a dunc, one doubled back to the top, whereas the other moved about erratically at the edge of the flat.

The vegetation of the swales was not examined closely by us. Most swales carried scattered Gidgea, Acacia cumbagei, and a corkwood, Hakea cyrema (syn. H. divaricata, H. intermedia). Triodia basedowif grew commonly on the flats and the lower slopes of the dunes cast to a little beyond Poeppel's Corner, where it petered olli.

Locomotion

As with other species of grasswrens, A, goyderi is reluctant to show itself. Most birds encountered kept to the cover of the clumps of Zygochifoa paradoxa, and less often Swainsona rigide, growing on the otherwise bare, windswept sand of the crests and upper slopes of large sandhills. They were very difficult to flustr: when they did flush, they half flew, half bounded from one tussock to the next with great rapidity. Depending on the degree to which they used their wings during these dashes, they fouchad the ground with their leet at intervals of $20-240 \mathrm{~cm}$. This method of locomotion left tracks of paired footprints, with one print of each pair invariably a little ahead of the other. These tracks are so distinctive that we used them to ascertain the presence of the species on a dune before secing the birds themselves. On a few occasions, individuals that had been flushed flew over Jow extensive clumps of Zygochloa for more that 10 metres before regaining cover. The species was almost entirely terrestrial, though one bird was seen perching more than a metre off the ground in a small bushy Grevillea nemurophylta on the lower slope of at dune.

 Note absence of malat stripe of moustache in A. tetilis and redtiction of same in A, goydet and f. formotsyi.

Fig. 5. Nert of Anvtomis goydert (SAM 1330324) from which eggs were laken.

Voice

Song and calls of the adults were difficuit to distinguish from each other, usually being uttered jumbled together in loud excited bursts. Among the elements recorded were a high sharp seep seep (also a fledgeling alarm call), an upwardinflected buzzing zzrrt zzrrt, bcautiful silvery cadences, pips, trills and long bursts of piercing staccato. Sometimes a song-phrase would end with a running-together of several notes into a high jangling flourish as in the song of the Dusky Grasswren A. purnelli. The almost inaudible whistling call swi-it switit reported by Morgan et al. was not heard by us.

Food

See Table 2.

Nests

B30328, 65 km east of Poeppel's Corner, 16 th September, 1976. Found by W. Head in tussock of Zygechloa paradoxa on crest of sandhill. Two immatures had just left the nest. Nest a deep truncated cup, the plane of the rim being 45° and the entrance facing eastwards lowards the leeward side of the dune. Front rim of nest 60 cm from ground. Nest fuirly loosely woven, wedged into (not woven around) a cluster of stout stems in the lussock, composed of fine dry greyish strips and stems of grass with many of the libre-bundles frayed apart, the stems at least 100 slender to be of Z sgochlog paradowa and probably of Aristida browniana; u very fow long strands of Zygochloa rootlets woven in near base of nest. Inner cup
of buer pieces of grass thum outer, with vegetable down and it few spiders" cocoons woven in. Measurements (mom): entronce (internal) 50 across, 59 from back to front. Widuth of rim ca 17, front rim to base 140, hind tim to base 180.
1330329 (Fig. 5), 65 kin east of Poeppels Corner. 16 th Seplember, 1976. Found by I. A. May in tussock of 2. paradeaz on flat crest of sandhill. Contained two eggs two-thitds incubated (8330330): incubating bird flushed (not collected). Nest a thuncated sphere (i.e. with definite lrood, untike truncated cup of B30328) , plane ol truncation 45", entrance facing castwards towards leetvard side of dune. Front sim of nest of 50 cm from ground. Nesi fairly compact, wedged admist cluster of stems in tussock: of same dry greyish grass as previous (?Aristidd browniana), with a few roollets of Zygochited but no excoons and apparently no vegetable down in lining. Measurements (mm): entrunce (internal) 46 across, 46 from back to front, widh of rim 20, tront rim to base 10 , lind rim to base 156.

B30327 (ou display). 49 kut cast of Poeppel's Corner, 15th September. 1976. Found by S. A. Parker. 130 ent lrom around in centre of dense heud-high tussock of Zygochloa; not visible Irom outside; bird (not collected) heard moving inside tussock. Nest (probably tead for egges) a deep truncated cup, like B30328, of teat-strips and stems uf ? Aristidu hrowniuna, with a feew strands of Zygochloa rootlets in outer cup. Entrance facing enstwards towards leeward side of dune.

A fourth nest wats found by W. Head in the same area at B30328 and B30329, again in :1 cussock of Zyguehtome and with the entrance facing the lecward side of the dune. This nest contained two naked young: ncither the youtg nor the nest was collected.

Eggs

The eggs of A. grovert have not hitherto been described. The clutch of two (B30330) from nest B30329, tound by I. A. May appears is be the first of this species ever to have been collected.

The eggs (Fig. (i) are typical in markings and colouration of those of the striath group*. One is a regular oval, the other almost biconical but with one end wighty more pointed than the other. The ovall ege measures $21 \cdot 40 \mathrm{x}$ 16.10 mm . Its ground colour is at fatly glossy

[^22]oll-white, peppered (save at the more pointed end) with barely visible specks of pale lavender grey. Larger spots and blotches of dull reddishbrowns, light purplist-greys and light olive are concentrated in a belt round the broad end, occurring sparingly elsewhere. The second ege measures $21.50 \times 15.55 \mathrm{~mm}$. It is similar to the first in ground colour and distribution of peppering. Close to the pole of the broad end is a belt of coalescent blotehes of light brownish-grey, light purplish-grey and light olive. Below this belt is a second more dispersed belt of darker spots and blotches of dull reddishbrowns, with specks of the same scattered sparingly over the rest of the shell.

RELATIONSHIPS OF A. GOYDERI

Kcast (1958) wrote: "Amytornis falls into two species groups, the striatus group, which has a fich and somewhat complicated colour pattern. and the rextitis group, with a simple colour pattern. Behavioural differences between typical species in the two groups include a "swect. rippling song" in A. striatus and the absence of a song in A. vextilis". In his striatus group Keast placed A. striaus, A. dorotheac, A. woodwardi and, tentatively, A, housei. In bis textitis group he placed A. resstilis. (in which he included A. pmmelli), A. modestus $(=A$, rextilis modesits) and A. goyderi, remarking of the last "A. goyderi , , represents the end-point of at (rend (cl. bill length) visible in modestas and obviously had a common ancestor with that species.

The relationships within Amytornis will be discussed elsewhere (Parker in prep.). Suffice il to say here that we regard A. goyderi as a member of the striatis group. At first glance it seems to lack the black malar stripe prominent in A. striatus (except A. s. merrotsyi). A closer examination shows that, as in A. s. merrotsy, the stripe is present but partly obliterated by white strcaks (see Figures 2 and 4 and notes under Plunaqe, above). In its unmarked underpats A. goyderi is similar to A. wo whited. The eggs of A. goyderi are like those of A. striatus. A. woodivardi and A. dorothene, and differ from those of A. textilis and A. purnelli (Fig. 6). The heavy bill of A goyderi is indeed closer in size to that of A. restitis than to the bill of any member of the striuths group, but this character is a plastic one (compare the bills of the species-pair A.textilis and A. purnelli). That A. goyderi has a musical song has been noted above. Contrary to Keast (op, cit.) A. textilis and A. purnelli also have a song (Parket in Frith 1976).

Fig. 6. Eggs of Amytormis spp.: A. goyderi, A. striams, A. lextilis. A. memell (in South Australian Museum).

ACKNOWLEDGEMENTS

We are indebted to Dr J. K. Ling (Director, South Australian Museum) and Messrs R. G. Lyons and A. R. Gobby (Director, and Superintendent, Field Operations, respectively, National Parks and Wildlife Service, South Australia) for quick decisions that allowed us to mount our expedition within seven days of May's return with the first two specimens. For information on the original specimens we thank Mr I. C. J. Galbraith and Mr D. Goodwin (British Muscum (Natural History)) and Mr H. J. de S. Disney (Australian Museum). We also thank Dr E. G. Matthews and Mr G. F. Gross for examining the stomach contents, Mr P. K, Latz (Arid Zone Research Institute, Alice Springs) for identifying the plants, Mr R. Ruehle for taking the photographs, Miss D. Rankin for typing the manuscript, Miss J. Thurmer for preparing the map, and Mr J. L. McKean (C.S.I.R.O., Canberra) for allowing us to use his observations.

REFERENCES

Frith, H, J. (consultant edifor), 1976. Reader's Digest Complete Book of Australian Birds.
Hindwood, K. A., 1945. The Eyrean Grass-Wren (Amytormis goyderi). A third specimen. Emut 44: 321-323.

Keast, A. J., 1958. Speciation in the genus Amyfornis Stejneger (Passeres: Musicapidac, Malurinac) in Australia. Aust. J. Zool. 6: 33-52.
Lewis, J. W., 1876. Journal of Mr. Lewis's Lake Eyre expedition, 1874-75. S. Aust. parl. Pop. 19: 1-42.
Mathews, G. M., 1922-23. The Birds of Australia, 10. London: Witherby.
May, I. A. 1977a. Sighting of the Rutous-crowned Emuwren in the Simpson Desert. S. Aust. Orm. 27: 172.
May, 1. A., 1977b. Recent rediscovery of the Eyrean Grasswren Amyormis goyderi (Gould, 1875). Emu 77: 23()-231.
Morgan, D. G. and L. R., Robinson L. N. and P. A., and Ashton D. H., 1961. The Eyrean Grass-Wren (Amytomis goyderi). Asst. Bird Watcher 1; 161-171.
Nicholls, E. D. B., 1924. A trip to Muageranie, central Australiat. Einu 24: 45-59.
Parker, S. A., 1972. Remarks on distribution and taxonomy of the grass-wrens Amytornis rextilis, modestus and purnelli, E゙mu 72: 157-166.
Parker, S. A. In prep. Remarks on the taxonomy and nomenclature of the Australian Maluridac.
Smithe, F. R., 1975. Naturalist's Color Guide. American Museum of Natural History, New York.
Sutton, J., 1927. Amytornis goyderi, Eyrean (formerly Goyder's) Grass-Wren, etc. S. Ausp. Otn. 9: 116-131.
Warren, R, L. M and Harrison, C. J. O. 1971. TypeSpecimens of Birds in the British Museum (Natural History), 2. Passerines. British Muscum (Natural History), London.
Watcrhouse, F. G., 1875. Somh Australian Register, 12th August, 1875: 7.
Whitlock, Fi. La, 1924. Joumey to Central Australia in search of the Night Parrot. Emu 23: 248-281.

ADDENDUM

In April 1977, Dr T. Houston, Curator of Herpetology, South Australian Museum (pers. comm.) saw A. goyderi on Zygochloa-clad sandhills 6 km west-south-west of Purni Bore at the western end of French Track (see Fig. 1). His report was confirmed by I. A. May and R. Lovell during a further west-cast crossing of the Simpson Desert in July and August 1977. In September 1977 May and Parker, accompanied by D. Close and P. Greenslade, visited the Simpson Desert once more, crossing from west to cast and dropping south from the centre to Kallakoopah Creek. These subsequent trips revealed that A. goyderi was not confined to the eastern part of the Desert, but was actually common throughout the southern half, from the western edge a few km west of Purni Bore to a few km west of Birdsville ${ }^{1}$, and south to the Kallakoopah. Assuming the northern half of the Desert to be similar to the southern half, A. goyderi may well occupy the whole Desert, some $143000 \mathrm{sq} . \mathrm{km}$.

The observations in 1977 confirmed that A.
goyderi occurred mainly in Zygochloa paradoxa on sandhills. On one occasion, however, at 8 km east-north-east of Purni Bore, we encountered a party on a flat between two sandhills, in Triodia basedowii, Acacia ligulata and the chenopod Rhagodia spinescens.

Also of interest here is the occurrence in the Simpson Desert of the Rufous-crowned Emuwren Stipiturus ruficeps. It was first recorded in the Desert by May in August 1976 (May 1977a), and on the trip in September 1977, we found it to be common throughout the southern half, in the same habitat as and usually in association with A. goyderi. The emu-wrens, however, were even more secretive than the grasswrens, keeping mainly to the interior of dense tussocks of Zygochloa (though a nest was found in a tussock of Triodia basedowii), and betraying their presence only by their almost inaudible call, a faint high cadence preceded by a markedly lower note and often ending with a highly compressed zitting burst of song.

[^23]
REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

ECHINODERM TYPE-SPECIMENS IN THE SOUTH AUSTRALIAN MUSEUM

By W. ZEIDLER

SOUTH AUSTRALIAN MUSEUM
North Terrace, Adelaide
South Australia 5000

ECHINODERM TYPE-SPECIMENS IN THE SOUTH AUSTRALIAN MUSEUM

BY W. ZEIDLER

Summary

The collection of echinoderms in the South Australian Museum contains type material of 64 species including 47 holotypes, the remainder being secondary types. Species are listed alphabetically according to the original name of the genus or species.

RCHINODERM TYPE-SPECIMRNS TN THE SOUTH AUSTRALIAN MUSEUM

by
W. ZEIDLER*

ZE:IDLER, W., 1978. Euhthodern type-specimens in the South Austratian Muscum, ker, s. Alast. M1u. 17 (25): 373-380.

The collection of echinoderms in the South Australian Museum contains bype material of 64 species including 47 holotypes, the remainder being secondary types. Species are listed alphabetically according to the original name of the genus or species.

INTRODUCTIION

During the years 189(1-1912, Sir Joseph Cooke Verco spent much of his time ind moncy dredging for matine life in Southern Australian waters (Verco 1935). Although Verco was mainly interested in molluses the echinoderm material collected by him was considerable and formed the basis of the collection now held by the South Australian Museum. The holothurians collected by Verco were examined by Joshua and Creed (1915) who described four new species from South Australian waters. H. L. Clark (1928) examined the remainder of Vercos collection of echinoderms and this study resulted in the bulk of the type material held by this nusetm.

Since Verco's cullecting efforts there have only been two other additions of note to the type collection of echinoderms. In $1938 \mathrm{H}, \mathrm{L}$. Clark donated paratypes of nine of the many new species that he described from his extensive collecting expedition to Australia (Clark 1938). More recent additions have come from the extensive BAN\%ARE collections and this muserm holds the Echinoidea (Mortensen 1950) and Ophiuroidea (Madsen 1967) types and some of the secondary types of the Crimoiden (John 1939) and Asteroidea (A. M. Clark 1962).

The 64 species ure artanged ulphabetically according to the original name of the genus of species. Where a mane change fous oceurred the most recent name is given together with the relevant relerence.

The following abbreviations are used in the text. BANZARE $=$ British. Australia and New Zealand Antarctic Rescarch Expedition, 1929. 1931. BM = British Muscum. MCZ

[^24]Muscum of Comparative Zonlogy, Harvard University, U.S.A. S.A. = South Australia. $\mathrm{SAM}=$ South Austatian Muscum. Vic. = Victoria. NMV - National Museum of Victoria. W.A. $=$ Western Australia. WAM $=$ Westem Australian Muscum.

CLASS CRINOIHEA

Genus Eunantedon A. H. Clark. 1912
Euantedon pateicirra H. L. Clark, 1928,
Rec: S. Alust. Mus. 3 (4): 369-370, fig. 109.
Hololype: K37 (was E399), dried specimen, from St, Vincent Gulf, S.A., collected by J. C. Vereo, date of collection unknown.

Gemus Nanometra A. H. Clark, 1907
Nanometra johnstoni Jolm. 1939.
BANZARE Rep.SC1. B. 4 (6): 193-196.
Paratypes: K1563, two specimens in spirit, from BANZARE station 113 (42"40) S. $148^{\prime \prime} 27^{\prime}$ 3()$\left.^{\prime \prime} \mathrm{E}\right)$, off Tasmania, depth 122 m , collected 23.iii. 1931. (Holotype and other paratypes in $B M_{\text {. }}$)
Note:-These specimens are incorrectly labelled as co-lypes as a type specimen was clearly selected.

Genus Teliacrimus Döderleín. 1912
Teliocrinus monarthrus H. L. Clark, 1928.
Rece. S. Aust. Mus. 3 (4) = 365-366, fig. 108.
$=$ Telocrinus springcri (A. H. Clarke, 1909);
after H. L., Clark: 1946: 20.
Holotype: K1382 (was E391), spirit specimen with no collection or locality data.

CLASS ASTEROHOLA

Genas Allostichaster Verrill, 1914
Allostichaster regularis H. L. Clark, 1928.
Rec, S. Aust. Alus. 3 (4): 400-401, fig. 115.
Holotype: Kl 69 (was E437), (tried specimen. from St. Vincent Gulf. S.A.. collected by J. C. Verco, date of collection unknown.

Paratypes: K1383. eleven dried specimens, from St. Vincent and Spencer Gulfs, S.A., collected by J. C. Veren, date of collection unknown.

Genus Asterina Nardo, 1834
Asterina alba H. L. Clark, 1938.
Mem. Mus, comp. Zool. Harv. 55; 150-152.
Paratypes: K718, two diy specimens. from Neds Beach, Lord Howe Island, collected April, 1932. (Hololype in MCZ).

Asterina crassispina H, L. Clark, 1928.
Rec. S. Aust. Mus. 3 (4): 390-391, lig. 112.
Holotype: K101 (was E425), dried specimen, from Northem Australia. No other collection data available.

Asterina lutea H. L. Clark, 1938.
Mem. Mus, comp. Zool. Harv. 55: 153-155, pl. 12, fig. 2.
Paralype: K716, dried specimen, from under surface of rock mear low water mark. Entrance Point, Broome, W.Aı, collected AugustSeptember. 1929. (Holotype in MCZ).

Genus Astropecten Gray, 1840

Astropecten syutomus H. L. Clark, 1928.
Rec. S. Aust. Mus. 3 (4): 372-373, lig. 110.
=Astropecten pectinatus Sladen, 1883; alter Sbepherd, 1968: 733.
Holotype: K45 (was E409), dried specimen with no collection or locality data but presumably from S.A.

Genus Cycellira Bell, 1902
Cycethra verrucosa mansoni A. M. Clark. 1962.
BANZARE Rep, Ser. B. 9 (1): 25-27.
Paratypes: K1530, five specimens in spirit, fom BANLARE station 30 ($66^{\prime \prime} 48^{\prime} \mathrm{S}, 71^{\prime \prime} 24^{\prime} \mathrm{E}$), off MacRobertson Land, depth 540 m, collected 27..xii. 1929. K1531, four specimens in spirit, from BANZARE station 39 ($66^{\circ} 10^{\circ}$ S, 49" 41' E) oft Enderby Land, depth 300 m , collected 17.i.1930. K1532, une specimen in spirit. from BANZARE station 41 ($65^{\circ} 48^{\prime} \mathrm{S}, 53^{\prime \prime} 16^{\circ} \mathrm{E}$), off Enderby Land, depth 193 m , collected 24.i.1930. K1533. onc specimen in spirit, from BANZARE station 42 ($65^{\circ} 50^{\prime} \mathrm{S}, 54^{\prime \prime} 23^{\prime} \mathrm{E}$), off Enderby Land, depth 220 m , collected 26.i.1930 (Holotype and other paratypes in BM).

Genus Echinaster Miiller and Trosched, 1840
Echinaster glomeratus var. extremus H. L. Clark. 1928.

Rec. S. Aust. Mus. 3 (4): 396, fig. 114.
Holotype: K156 (was E432), dried specimen with no collection or locality data but presumably from S.A.

Note:-The original label with the specimen, which is in Clark's handwriting, gives the varietal name as extremin, but it was eventually published as extremus, which is the correct Latin form of this superlative adjectival form.
Rehinaster varicolor H. L. Clurk. 1938.
Mem. Mis. comp. Zool. Hart, 55: 184-180, pl, 11. lig. 1.
Paratype: K729, dried specimen, from sandy bottom, S.W. of Broome, W. Ap, in $5-8$ fms." collected June, 1932 (Holotype in MCZ).

Genus Gonjodiscaster H. L. Clark, 19010
Goniodiseaster acantooles H. L. Clurk. 1938.
Men. Nus. comp. Zoul Hark 55: 84-87. pl. 5. lig. 2.
Paratype: K726, dried specimen, from firm sandy bottom. S.W. of Broome, W. A., in $7.8 \mathrm{fms}$. collected Itune, 1932. (Holotype in MC))

Geuns Kenricknster A. M. Clark, 1962
Kemrickaster pedicellaris A. M. Clark, 1962.
BANZARE Rep. Ser. 18. 9 (1): 81-82,
Paratypes: K1536. seven specimens in spirit. from 13ANZARE slation $39\left(66^{\circ} 10^{\circ} \mathrm{S}, 49^{\prime}\right.$ 41' E), ofl Enderby Lind, depth 300 m . collected 37.1.1930. K1537, two specimens in spirit, from BANZARE station 107 ($66^{\circ} 45^{\prime}$ S, $62^{\prime \prime} 03^{\prime}$ E), wf MacRobertson Lund, clepth 219 m , collected 16.ii.1931. (Holotype and other parutypes in 13 M).

Genus Lysasterias Fisher, 1908
Lysasterias digitata A. M. Clark. 1962.
BANZARE Rep. Scr. B. 9 (1): $91-92$.
Paratypes: K1534, four specimens in spirit, from BANZARE station 40 ($\left.66^{\prime}-12^{\prime} \mathrm{S}, 49^{-3} 37^{\prime} \mathrm{E}\right)$. off Enderby Land, depth 300 m , collected 17.j,1930. K1535, seven specimens in spirit, from BANZARE station $105\left(67^{\prime \prime} 46^{\circ} \mathrm{S}\right.$, 67 03' E). near Murray Monolith, MacRobertson Land, depth 163 m. collected 13.ii.1931. (Holotype and other paratypes in $B M$).

Cenus Nectria Gray. 1840

Nectria multispina H. L. Clark, 1928.
Rec, S. Aur. Mus. 3 (4): 375-378. fig. 111.
Holotype: K50 (was E413), dried specimen with no collection or locality data but presumably from St. Vincent or Spencer Gulf, S.A.

Paratypes: K52, two dried specimens with no locality data but presumably from St. Vincent or Spencer Gull, S.A.s collected by J. C. Verco, Fobruary, 1891.
Neetria saoria Shepherd, 1967.
Rec. S. Aust, Mus. 15 (3): 475-478, fig. 2.
Holotype: K670, driod specimen, from Wright mband, Encoumter Bay. S.A., on granite, on exposed side, living on encrusting sponge and ascidians, depth 30-40[t., collected by S. A. Shepherd, 8.ví1963.
Paratypes: K627, three dried specimens, from West Island, Encounter Bay, S.A., depth 30 ft, collected by S. A. Shepherd, 23.viii. 1964. K 628 , four aried specimens from submerged limestone reef between Wright Island and The Blufl, Encounter Bay, S.A., depth 30 ft , collected by S. A. Shepherd, 8,vi.1963. $K 656$, one driad specimen with same collection data as K628, K K 558 , one dried specinten, from limestone recf between Thistle and Hopkins [stand, Spencer Gulf, S.A., depth 30ft. collected by S. A. Shepherd, January, 1964.

Nectria wilsoni Shephert and Hodgkin. 1965.
J. Roy. Soc. IV.A. 48 (4): 119-121, fig, Ig.

Paratype: K613, dried specimen, from Hall Bank near Fremantle, W.A., on dead coral, collected by B3. R. Wilsun. 1,ii.1963, (Holotype and other paratypes in WAM).

Genus Nepanthia Gray, 1840
Nepanthia grandis H. L. Clark, 1928.
Rece. S. Aust. Mus, 3 (4): 393-395, fig. 113.
$=$ P'uraneponthia grandis (H, L. Clark, 1928), after H. L. Clark. 1938: 159.
Holotype: K152 (was E430), dried specimen, from S.A. coust, collected by J. C, Verco, date of collection unknown.
Paratypes: K151, one dried specimen, from Spencer Gulf, S.A., collected by J. C. Verco, date of collection unknown. K153, three dricd specimens, including a six and a four rayed individual, from Spencer Gulf, S,A., collected by J. C. Verco, date of collection unknown. K557, one dried juvenile with no collection or locality data but presumably from S.A.

Nepanfluàa variabilis H. L. Clark, 1938.
Mem. Mus. comp. Zool. Harn, 55: 176-179. pl. 10, lig. 4.
Paratype: K725, dried specimen, from Broome, W.A. collected August. 1929. (Holotype in $\mathrm{M}(\%)$.

Genus Paranepanthia Fisher, 1917
Paranepanihea rosea H. L. Clark, 1938.
Mem. Mus, comp. Zool, Harv, 55: 161-162.
Parntypes: K713, two dried specimens, from the cove on the N.E. corner of Rotnest Island, W.A. collected 19.x.1929. (Holotype in MCZ).

Genus Psalidaster Sladen, 1885
Psalidaster mordax rigidus A. M. Clark, 1962.
BANZARE Rep. Ser. B. 9 (1): 79-80).
Paratype: K1529, spirit specimen, from BANZARE station 105 ($64^{\circ} 46^{\prime} \mathrm{S} .67^{\prime \prime} 03^{\prime}$ E), near Murray Monolith, MacRobertson Land, depth 163 m , collected 13.ii.1931, (Holotype in BM).

Genus Smilasterias Sladen; 1889
Smilasterias irreqularis H. L. Clark, 1928.
Rec. S. Aust. Mus. 3 (4): 402-403, fig. 116.
Holotype: K171 (was E438). dried specimen, from St. Vincent or Spencer Gulf, S.A.. collected by J. C. Verco, date of collection unknown.

Genus Uniophora Giray, 1840
Uniophora gymmonota H. L. Clark, 1928.
Rec. S. Aust, Mlik. 3 (4): 405-7, fig. 118.
Holotype: K179 (was E440), dried specimen. dredged belween Backstairs Passage and The Pages. S.A., depth about 25 fms ., collected Field Naturalists Excursion, April. 1888.
Paratypes: K178, dried, non-typical specimen, with no collection or locality data. K180, dried specimen with no collection or locality data, K1384, dried specimen, from St Vincent or Spencer Gulf, S.A., collected by J. C. Verco, date of collection unknown.

Note:-Shepherd (1967a) considers this species as conspecific with U. hudla (Perrier, 1875) but Shepherd's revision of the genus still remains to be generally accepted.

Uniophora multispina H. L. Clurk, 1928.
Rec. S. Ahst, Mus. 3 (4): 407-409, fig. 119.
Holotype: K184 (was E441), dried specimen from Henley Beach, S.A., collected by C. B Adenck, November, 1890.
Paratypes: K185, two dried specimens with same locality and collection data as holotype,
Note:-Shepherd (1967a) considers this species as conspecific with U. grunifere (Lamarck, 1816).

Uniophora ohesa H. L. Chark, 1928.
Rec". S. Amst. Afus. 3 (4): 409-411, fig. 120.
Holotype: K190 (was E442), dried specimen. From Rocky Point. Eastern Cove, North Coast, Kangaroo !sland, S.A. collected 2.x.1901. (Paratype in MCZ).
Nole:-As for U. multispinu.
Uniophora uniscrialis H. L. Clark, 1928.
Rece. S. Aust. Afus. 3 (4): 413-416. fig. 122,
Holotype: K193 (wats E444), dried specimen, from St. Vincent Gulf. S.A. No other collection data available.
Paratype: K1385, dried juvenile specmen, from St. Vincent or Spencer Gulf, S.A., collected by J. C. Verco, date of collection unknown.
Note:-As for U. multispina.

CLASS OHHHUKOIDEA

Centis Amphinura Forhes. 1843
Amphitura phrixat H. L. Clark, 1938.
Mem. Mus. cump. Zool. Hav. 55: 232-233.
Paratypes: K745, two dried specimens, from Rocbuck Bay, Broome, W.A., depth 5-8 fms. collected June. 1932. (Holotype in MCZ).
Amphinera trisacantha H, L, Clark, 1928.
Rec. S. Aust. Mus. 3 (4): 425-426, fig. 125.
Holotype: K212 (was E455), dried spocimen consisting of dise and only one broken arm still uttached, no collection or locality data but presumed to be from either Spencer or St. Vincent Gulf. S.A.

Cenus Anophiura H. L. Clark, 1939
Anophiura bunzarei Madsen, 1967
BANZARE Rep. Ser. B.9 (3): 135-136, fig. 4.
Holotype: K1231, dried specimen, from BANZARE station 29 ($66^{\prime \prime} 28^{\prime}$ S, $72^{\prime} 41^{\prime}$ E). off Princess Elizabeth Land, depth 1266 m. collected 25.xii. 1929.

Genas Asteronyx Mueller \& Troschel 1842
Asteronyx banzaref Madsen, 1967.
BANZARE Rcp. Ser. B. 9 (3): |40-14|, pl. 1, figs. 1-2; text fig. 6.
Holotype: K1318. Uried specimen, from BANZARE station 76 (35 $18^{\prime} \mathrm{S}, 118^{\prime \prime} 15^{\prime}$ E), East of Albany, W,A., depth 62 m . collected 21.iii، 1930.
Paratypes: K13/9, six spirit specimens with same locality and collection data as holotype. (lncorrectly labellel co-types).

Other specintens: K1320, two aried, slightly dannaged specimens with same locality and collection data as holotype.
Note:-According to A. N. Baker, National Museum, Wellington. N.Z. (pers. commt.), this species is conspecific with Ophiuropsis athacrens (Studer). 1884.

Genss Asirocomis Dïderlein. 191!
Astroconus pulleher H. L. Clatk. 1939.
Rec. S. Alrst. Miss. 6 (3): 207-208. pl. 18. Holotype: K561. dried specimen, from Cape Dutton, S.A. (in crayfish pot). depth 20 fins.* collected by k. Mattson, date of collection unknown.

Genus Ophiacmutha Mueller \& Troschel. 1842 Ophiacautha brachygnthat H. L. Clark, 1928.
Rec, S, Aust. MHs, 3 (4): 420-422, fig.123. Holotype: K 208 (was E453), dried specimen from Spencer or St, Vincent Gulf, S.A., collected by J. C. Verco, date of collection unknown. (Paratype in MCZ).

Genus Ophatactis Lticken, 1856
Ophiactis fuscolineata H. L. Clark, 1938.
Mch. Mus. comp. Zool. Harv. 55: 266-267.
Parlitypes: K744, two dried specimens, from Broome, W. A. depth 5-8 fims, collected June, 1932. (Holotype in MCZ).

Ophiactis tricolor H. L. Clark, 1928.
Rec. S. Alus. Allus. 3 (4): 427-429, fig. 126.
Holotype: K213 (was E458), dried specimen with only four arnis, no collection or locality data but presumably from S.A.
['aratype: K214, dried specimen with only three arms, no colfection or locality data but presumably from S.A. (Other paratypes in MCZ).

Genus Ophiocoma Agassiz. 1836
Ophiocomat canaliculata var. pulchra $\mathrm{H}_{\text {. }} \mathrm{L}$. Clark, 1928.
Rec: S. Alust. Mifs. 3 (4): 439-440, fig, 131, $=$ Ophiocoma pulchra (H. L. Clatck. 1928): after H. L. Clark. 1938: 333.
Holotype: K241 (was E470), dried specimen with no collection or localily data.
Paratypes: K1387, three specimens in spirit. Pont St. Vincent Gulf, S.A.. collected by I. C. Verco, date of collection maknown, (Other patatypes in MCZ).

Ophiocoma oecidentalis H, I. Clark, 1938.
Mem. Mes'. comp. Zool. Harv. 55: 334-337. Paratype: K699, dried specinten, from Point Peron. W.A., collected October. 1929. (Holotype in MC'Z).

Grenus Ophiocomima Koehler, 1920
Ophiucomita ausiralis H. L. Clark, 1928.
Rec. S. Ausi. Mus, 3(4)=422-425, fig. 124.
Holotype: K211 (was E454), spirit specimen with no collection or locality data but presumably from S. N. $^{\text {s }}$
Patatypes: K 209 , five spirit specimens, from between Trowbridge Lighthouse and Backstaits Passage. S.A., collected by J. C. Verco. date of collection unknown. K 210 , three spitit specimens, from Port Vincent, S. A., collected by J. C. Verco, date of collection unknown. K1386, three spirit specimens, from near Trowbridge Islind, S.A. collected by J, C. Verco, date of collection unknown. (Other paratypes in $\mathrm{M}(\mathrm{Z})$.

Cemus Ophocrossota H. L. Clark, 1928
Ophinerossuta heteracanlha H. L. Clark, 1928.
Rec. S. Aust. Mus. 3 (4): 451-453., tig. 136. - Ophinerossma mbllispina (Ljungman. 1867) : aller H. L. Clark, 1946: 267,

Holotype: K25\% (was E484). dried specimen, from Spencer or St. Vincent Gulf, S.A., collected by J. C. Verco, date of collection unknown.
Paratypes: $K^{\prime} 1387$. thirty-eight spirit specimens with sime focality and collection data as holotype. (Oher paratypes in MC* $)$.

Genus Ophiocten Lütken, 1855
(Ophiocten banzarei Madsen, [967.
BANZARE Rcp, Ser, B, 9 (3): 139, pl. L. ligs. 3-4; text fig. 5.
Holotype: Kl302. dried specimen, fiom BAN7ARE station 39 ($66^{\circ} 10^{\prime} \mathrm{S}, 49^{\prime} 41^{\prime}$ E), off Enderby Land, depth 300 m ., collected 17.i.1930.

Other specimens: K1301. Iwo dried specimens with same locality and collection data as holotype. K1303, seven dried specimens, from BANZARE station 41 ($65^{\prime \prime} 48^{\prime} \mathrm{S}, 53^{\prime} 16^{\prime}$ E), off Enderby Land, depth $193 \mathrm{~m} .$, collected 25.i.1930. א1304, three small specimens in spirit, from BANZARE station $42\left(65^{\circ} 50^{\circ}\right.$ S. $54^{\prime \prime} 23^{\prime}$ E), ofl Enderby Lalld, deptl 220 m ., collected 26.i.1930.
Note:-No paratypes clesignated.

Cienus Ophiomusium Lyman, 1869
Ophiomusium anisacanlium H. L. Clath, 1928. Rec. S. Aust. Mus. 3 (4): 446-447. lig. 133.
Holotype: K254 (was E480), dried specimen consisting of disc and broken anoms, from St . Vincent or Spencer Gulf, S.A., collected by J. C. Verco, date of collection unknown.

Paralypes: KL388, two dried specimens with same locality and collection data us holotype, (Other paratypes in MCZ).

Ophiomusium হporum H, L, Clark, 1928.
Rec. S. Aus. Mus, 3 (4): 447-449, fig. 134,
Holotype: K255 (was E481), dried specimen. from St. Vincent or Spencer Gulf, S.A., collected by J. C. Verco, date of collection unknown. (Paratype in MCZ).
Ophiomosinm simplex var. austrule H. L. Clark, 1928.

Rec. S. Aust. Nus, 3 (4): 449, fig. 135.
Hulotype: K256 (was E482), dried specimen, from St. Vincent or Spencer Gulf, S.A. collected by J. C. Verco, date of collection unknown.

Genus Ophiothrix Mucller \& Troseticl, 1840 Ophiothrix albostriata H. L. Clark, 1928.
Rec. S.. Aust. Mus: 3 (4). 429-430, fig. 127. $=$ Ophiothrix (Placophiothrix) albostriara H. L. Clark, 1928; ufter A. M. Clark, 1967: 648.

Holotype: K215 (was E459), dricd specimen, from Great Australian Bight, presumubly collected by J. C. Verco, date of collection unknown.

Ophiothrix hymenacantha H. L. Clark, 1928. Rec: S. Allst. Mus. 3 (4); 431-432, fig, 12 S . $=$ Ophiothrix (Kcystnnea) hymenacontha H . L. Clark, 1928; after A. M. Clark, 1967: 648.

Holotype: K217 (was E462), dried specimen, from Great Australian Bight, presumably collected by J. C. Verco, date of collection unknown.

Ophiothrix lineocacrnlea H. L. Clark, 1928.
Rec. S. Aust. Mets. 3 (4): 432-433, Jig. 129.
$=$ Ophormix (Placophothrix) lineocacruled H. L. Clark, 1928; after A. M. Clark. 1967: 648.
Holotype: K218 (was E463), dried specimen, from St. Vincent or Spencer Gult. S.A. collected by J. C. Verea, date of collection unknown.

Note:-The cited locality of the holotype is probably incorrect as no other specimens of this species fowe been found in Southern Australia ind yet it is in common species in the Bronme region. W.A.

Genus Ophinrodun Matsumoto, 1415
Ophinrodon opacum H. 1., Clark, 1928.
Rec. S. Aust. Mus. 3 (4): 440-442, fig. 132,
Holotype: $K 243$ (was E471), dried specimen with broken arms, from St. Vincent or Spencer Gulf, S.A., collected by J. C. Vereis, date of collection unknown. (Paratype in MCZ).

Gemas Ophiarolepis Matsumber, 1915, cmend. Kochler. 1922
Ophinrolepis banzarei Madsen. 1967.
BANZARE Rep. Ser. 13. (3): 134, pl. 1, figs.. 7-8; text dig. 3.
Holotype: 51207 , spicit specimen, from BANZARE station $4\left(65^{\circ} 48^{\circ} S, 53^{\circ} 16^{\circ} \mathrm{E}\right)$ 。 off Enderby Lind, depth 193 m. e collected 24-2.5.i.1930.
Other specimens: K1206, four spirit specimens. from BANZARE Atation $39\left(66^{\circ} 10^{\circ} \mathrm{S}, 49^{\circ}\right.$ $\left.41^{\prime} E\right)$, ofl Enderby Land, depth 300 m, collected 17.i.!930. K1208, 44 spirit specimens with sante locality and collection data as holotype. K1209, one dried specinten with same locality and collection data as holotype. K 1210 , bine spirit specimens, from BANZARE station 42 ($05 \cdot 50^{\prime} \mathrm{S}, 54^{\prime} 23^{\prime} \mathrm{E}$) off Enderby Land, depth 220 m, collected 26.i.1930. K1211, two dried specimens, from BANZARE station 107 ($66^{\prime \prime} 45^{\circ} \mathrm{S}, 62^{-} 03^{\prime}$ E), off MacRobertson Land, depth 219 mo , collected 16.ii.1931. K1212, lwelve spirit specimens with same locality and collection dati! as K1211.
Note:-Nu paralypes designated.

CJASS FCCIMNOIDEA

Genus Amunotrophus 1H. L. Clark, 1928
Ammotropless çeline $\mathrm{H} . \mathrm{L}$, Clark. 1928.
Rec. S. Amst Mus. 3 (4): 471.474, lig. 140 ,
Holotyne: K 401 (was 12644), dried specimen, from Spencer or $S t$. Vincent Gulf, S.A.. collected by I. C. Vereo, date of collection unknown.
Paratypes: K397, twenty-cight dried specinens, dredged at Encounter Bay, S.A. collector and ditte of collection unknown. K 30 B , eleven drited specimens, from Erscoumer Bay. S.A. collected by H. Pulleine, date of collection
unknown. K399, one dried specinen with no collection or locality data. K504. two dried specimens with no collection or locality datu. K1341, twenty dried specintens, from Spencer or St. Vincent Ciulf. S. A 1 , collected by J, C. Verco, dafe of eollection unknown. (Other paratypes in MCD).

Ammotrophus platyterus H. L. Cliark, 1928.
Reco, S, Alls, M1ss 3 (4): 474-475, fig. 141.
Holotype: $K 477$ (was E645), dried specimen, dredged in deep water in St. Vincent Gulf, S.A.. coliceted by J. C. Yerco, date of collection umlinuwn.

Genus Aunhipneustes Kochler, 1900
Amphipneustes bifidus Mortensen, 1950.
BANZARE Rep. Sep. B, 4 (10): 304-305 p], 7, figs.. 1-3; pl. 9. Jies. 7-9.
Holotype: K857. dricd specimen, from BANZARE station 107 ($66^{\circ}-45^{\prime} \mathrm{S}, 62^{\top} 03^{\prime}$ E). off MacRobirtson Land, depth $219 \mathrm{\pi m.}$. collected 16.ii.1931.
Paratypes: K855, one juvenile specinten in spirit, from BANZARE station 41 ($65^{\circ} 48^{\prime}$ S. 5316° E), ofl Enderhy Land, depth 143 1 II ., collected 24, i, 1930. K856, two specimens in spirit. (one broken), from BANZARE station 42 ($65^{\prime \prime} 50$ S, $54^{\circ} 23^{\prime} \mathrm{E}$). off Enderby Land, depth 220 m ., collected 26.i.1930. K859, one spirit specimen with stune locality and collection data as holotype.
Other specimens:-K858, seven juvenile specimens in spirit witl same locality and collection datar as holotype.

Gemus Ctenocidaris Mortensen, 1910
Clenocidaris polyplax Mortensen, 1950.
BANZ.4RE Rep. Ser. B. 4 (10): 296-297, pl. 8, figs. 1, 2, 8; pl. 9, fig. 4.
Holotype: $K 815$, dried specimen, from BAN/ARE station 4) ($65^{\prime \prime} 48^{\prime} \mathrm{S}, 53^{\prime 3} 16^{\circ} \mathrm{E}$), oll Enderby Land, depth 200 m. , collected 24.i.1930.

Gemus Eucidaris Pomel, 1883
Tucidaris australize Mortensen. 1950.
BANZARE Rep. Ser. B. 4 (10): 291-293, pl. 8, figs. 5-7: pl. 9, ligs. 3, 5, 6; text figs. 1-4.
Holotyne: Ksol, dried specimen, from BANZARIE station 76 ($35^{\circ} 18^{\circ} \mathrm{S}, 118^{\circ} 15$! $E)$. Eals of Albany, W.A., depth 69 m . collected. 21.iii.1930.

Gemme Fibularia Lumatick, 1816
Fibularia plateia H. L. Clark, 1928.
Rer. S. Aust. Mıs. 3 (4): 477-478, fig. 142.
Holotype: K448 (Was E650), dried bare test, fromi Wallarso Buy. S.A., depth 15 fms.. collected by J. C. Verco, date of collection anknown.
Note:-Most of the specimens unentioned by Clark (1928) are present in the Muscum's collections but none have been designated paratypes. There are however, 37 paratypes from Backstairs Passage, S.A., in the MCZ.

Genus Genocidaris Agassiz 1869
Genocidaris incerta H. L. Clark, 1928.
Rec, S. Ausi. Mus. 3 (4): 457-458, lig. 137.
Holotype: K293 (was E623), dried, bare test. broken in half, from oft Cape Jaffi, S.A. dredged in 300 lins., collected by J. C. Verce. date of collection unknown.
Paratypet K294, dried, bare test with no locality or collection datat: (Other paratypes in MCZ.
Note:-Most of the other specimens mentioned by Clark (1928) are present in the Museum's collections but none have been designated paratypes.

Gemus Microcypluns Agassiz, 1841
Microcyphus pulchellus H. L. Clark, 1928.
Rec. S. Aust. Mus. 3 (4): 462-463, fig. 139. Holotype: K340 (was E628), dried bure test. from Spencer Gulf, S, A., presumahly collected by J. C. Veren, date of collection unkonw.

Genus Notocidaris Morkensen. 1909
Nolocilaris remigera Mortensen, 1950 ,
BANZARE Rep. Ser. B. 4 (10): 298-299, pl. 5, figs. $1-2 ;$ pl. 8 , figs. 3-4.
Holotype: K826, spirit specimen, from BANZARE station 107 ($66^{\prime \prime} 45^{\prime} \mathrm{S}, 62^{\prime \prime} 03^{\prime}$ E), off MateRobertson Land, depilh $219 \mathrm{HO}_{1}$ collected 16.ii. 1931.
Paratypes: K824. une dried, bare test and il few spines will same lowality and collection data as holotype, $K 825$, one dricd, hare test and at few spines with sane locality and collection dita as bolotype.
Other material: K821, five isolated dried spines, from BANZARE station 34 $\left(66^{\circ} 30^{\prime} \mathrm{S}\right.$, 49. 41° E). off Enderby Land. depth 300 m., collected 17.i.1930. K822, two isolated dried spines, from BANZARE station 40 (60
$12^{\prime} \mathrm{S}, 49^{\prime} 37^{\prime} \mathrm{E}$), off Enderby Land deptls 300 nn. collected 17.i.1930. K823, one very young dried specimen with same locality and collection data is holelype.

Genus Shylacunthes Brandt, 1835
Phyllacanthus irregularis var. Kimheri Cotton \& Godirey, 19t2.
Rec: S. Aust. Mus. 7 (2): 216-217, pl. 12.
Holotype: K576, dried specimen, from Port Willunga, S.A. collected by W. R. Steadman, ate of collection unknown.
Note:-Although a number of other specimens were available no paralypes were designated.

Genus Temnopleuriss Agussiz, 1841
Temnopleurus anstralis H. L. Clark, 1928.
Rec. S. Aush. Mis, 3 (4): 458-401, Tig. 138.

- Temmopleuras (Torenmatica) michaelseni (Dóderlein, 1914): atter Mortensen 1943: 105.
Holutype: K298 (was E464), dricd specimen. from Port Lincoln. S.A., collector and date of collection tuknown.
Paratypes: K299, one dried specimen with no locality or conllection datiz. K314, live dried specimens with same locality and collection data as hololype. K 315 , one dried specimen with no locality or collection datit (figured). $K 1390$, six shaill dried specimens, from between Trowhridge lighthouse ind Backstairs Passagle, S.A., collected by 1. C. Verco, date al callection unknown. (Other paratypes in MCZ).
Note:-Most of the other specimens mentioned by Clark (1928) are present in the Museum's collections but none have been designated paratypes.

CLASS HOLOTHURIOIDEA

Genus Cummaria Blainville. 1830)
Cucumaria striak Jeshua \& 保 (recd. 1915.
Trans. R. Soc. S. Alust, 3t, 18, pl. 3, figs, 2a-d. Holotype: K1371, spirit specimen, from Greal Australian Bight, W.A., collected by J. W. Howard, August 1888.

Genus Whyllophorus Grube, 1840
Phyllophorus ventripes Joshua \& Creed, 1915.
Trmas. R, Soce S. Aust. 39: 19, pl. 2, fig. 1: pl. 3, fig. 5.
$=$ Eiporsaneza ventrines (Joshuad de Creed. 19151. ilter H. L. Clark, 1938: 495.

Holotype: K1374, dried specimen, from S.A. coast, collected by J. C. Verco, date of collection unknown.
Other specimens: K1375, four spirit specimens collected with holotype and with note "in MSS ${ }^{7}$ 。

Geans Thyone Oken. 1815

Thyone nigra Joshua \& Creed, 1915.
Trans, R. Soc. S. Aust. 39: 20, pl. 3, figs, 3a-e, 4.
Holotype: K1376, spirit specimen and one slide of spicules, collected between $33^{\circ}-37^{\circ} \mathrm{S}$ and $132^{\prime \prime}-140^{3}$ E. S.A., by J. C. Verco, date of collection unknown.

Thyone vercoi Joshua \& Creed, 1915.
Trans, R. Soc. S. Aust. 39: 19, pl. 2, figs. 2-4; pl. 3, figs. Ial-g; pl. 4.
$=-$ Straurothyone vercoi (Joshua \& Creed, 1915); alter H. L. Clark, 1946: 397.

Holotype: K517, one slide of spicules from pharynx, one slide of T.S. pharynx, one slide of skin, one slide of tentacle tissue, dried remains of specimen, collected between $33^{\text {s. }}$ 37° S and $132^{\circ}-140^{\circ}$ E, S.A., by J. C. Verco, date of collection unknown.

Genus Trochodota Ludwig, 1891
Trochodota roebucki Joshua, 1914.
Proc. Roy, Soc. Vic. 27: 9, pl. 1, figs. 4a-c.
Paratypes: K1712, two dry specimens from Torquay Vic., collected by E. C. Joshua, October 1913.
Note:-Obtained on exchange from NMV, 1919. (Old NMY Reg, 60647-8).
Trochodota shepherdi Rowe, 1976.
Trans. R. Soc. S. Alist. 100 (4): 203-206, figs. 1-4.

Paratypes: K1366, two spirit specimens, from Proper Bay, Port Lincoln, among algae growing on Pinna dolabrata ($=$ P. bicolor), depth 10 m. , collected by S. A. Shepherd, 23.viii. 1975.

REFERENCES

Clark, A. M., 1962. Asteroidea, BANZARE Rep. Ser., B. 9 (1): 1-104, plates 1-6.

Clark, A. A1., 1967. Notes on the family Ophiotrichidae (Ophiuroidea). Allm Mug. nat. Hist. 9 (13): 637-655.
Clark, H. L.. 1928. 'The sea-lilies, seat-stars, brittle-stars and sea-urchins of the South Austrialian Museum. Rec. S. Aust. Mits. 3 (4): 361-482.

Clark, H. L., 1938 . Echinoderms from Ausiralia, an account of collections made in 1929 and 1932. Nem. Miss. comp. Zoal. Har!. 55: 1-596.
Clark. H. L. 1939. A new Asrwacturs from South Australia. Rec. S. Aust. Mius. 6 (3): 207-208, 1 pl.
Clark, H. L., 1946. The Echinoderm 「thlat of Austratia. Puhl. Carneq. /nsme, 566: 1-567.
Cotton, 13. C. and Godfrey, F, K. 1942. Echinodermata of the Flindersian Region, South Australia. Rec. St almst Mus. 7 (2): $193-238,1 \mathrm{pl}$:
John, D. D, 1939. Crinoidea. BANZARE Rep. Ser.n B. 4 (6): 189-212.
Joshua, E. C., 1914. Victorian Holothuroidea, with descriplions of new species. Proc. Roy-Soc: Fic, 27: Y, pl. 1, Fig. 4itc.
Joshua, E. C. and Creed. E., 1915. South Australian Holothurioiden, with deseriptions of new species. Trams. R.Soc. S. Aust. 39: 16-24, pls. 2-4.
Madser. F. J., 1967. Ophiuruidet. BANZARE Repre Ser. B. 9 (3): 121-145, 1 pl .

Mortensen, Ta. 1943. A monograph of the Echinoidea 3 (2) : 1-553.
Mortensen, T., 1950. Echinoidea, RANZARE Ref.. Setr. B. $4(10): 287-310,6 \mathrm{pls}$.
Rowe, F. W. E.. 1976. Restriction of the chiridotid genus Trochodora Ludwig (1891) (Holothurividea: Apodida), with the description of a new species from South Australia. Truns: R. Soc. S. Aust. 100 (4): 203-206. Figs 1-4.
Shepherd, S. A \quad 1967a. A revision of the starfish genus Uniophoras (Asteroideat; Astcridae). Trums. R. Soc. S. Alusp 91: $3-14,1 \mathrm{pl}$.

Shepherd, $S_{+} A_{4} 1967 \mathrm{~b}$. A review of the starfish genus Nectria (Asteroidea: Goniasteridae). Rec. S. Aust. Mis. 15 (3): 463-482.
Shepherd, S. A., 1968, The shallow water Echinoderm fauna of South Australia. Part 1: The Asteroids. Rec. S. Aust. Miss 15 (4): 729-756.
Shepherd, S. A. and Hodgkin, E.. [D., 1965. A new species of Nectria (Asteroidea, Goniasteridae) from Western Australia. J, Rov. Suc, W, Aust. 48 (4): 119-121.
Verco, J. C, 1935. "Combing the Southern Seas". Rigby, Adelaide.

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

MOLLUSC TYPE-SPECIMENS IN THE SOUTH AUSTRALIAN MUSEUM

I. CEPHALOPODA and SCAPHOPODA

By W. ZEIDLER and M. K. MACPHAIL

[^25]
MOLLUSC TYPE-SPECIMENS IN THE SOUTH AUSTRALIAN MUSEUM I. CEPHALOPODA AND SCAPHOPODA

BY W. Zeid Ler and M. K. Macphail

Abstract

Summary

Type-specimens of nine species of Cephalopoda and seventeen species of Scaphopoda in the South Australian Museum are catalogued. All are recent species and except for one scaphopod species from New Zealand, all are from Australian waters.

MOLLUSC TYPE-SPECIMENS IN TIIE SOUTH AUSTRAIIAN MUSEUM 1. CEPHALOPODA and SCAPHOPODA

by
W. ZEIDLER* and M. K, MACPHAIL*

ABSTRACT

ZEIDLER, Wo, and MACPHALL, M. K., 1978. Nollince type-specimens in the South Australizn Muscunn. I. Cephalopudis und Scaphopoda. Kec. S. Aus\%. Mus. 17 (26): 381.385.

Type-specimens of nine species of Cephalopoda and seventeen species of Scaphopoda in the South Australian Museum are catalogucd. All are recent species and except for one scaphopod species from New Zealand, all are from Australian waters.

INTRODUCTION

This is the first of an intended series of papers listing the molluse types held by the South Australian Museum.

The species are arranged alphabetically according to the original name of the genus or species. Full synonymics are not given, but where a name change has occurred, the most recent acceptable name is given logether with the relevant reference.

CLASS CEPHALOPODA

Cephalopod types in the South Australian Museum comprise "cuttles" (family Sepiidac) and one octopus. The Sepiidae are known only from the gladius and even now, Scpia braggi Verco, 1907 is the only species for which a whole animal is available, collected in 1969.

Nearly all the types were described by Bernard C. Cotton, the second curator of Molluses at the South Australian Muscum. Cephalopods were Cotton's first interest and the subject of his lirst paper (Verco \& Cotton 1928). The bulk of the types came from Western Australia and are described in Cotton (1929). Little research has been done on the group in South Australia since.

In their revision of the Scpiidae, Adan \& Rees (1966) discuss the synonomy of a number of species for which the South Australian Museum holds the types. However since the requisite type or number of specimens was then

[^26]not always available, the taxonomic status of several South Australian species could not be resolved. It is probable that the sub-genera Decorisepia and Solitosepia (given lull generic status by Iredale 1926) are no longer valid, but until further matcrial, particularly of the whole animal, is available, additional comment cannot be made.

In all cases, the Holotype was clearly selected but Puratypes were rarely designated, even when other good material was available.

Family Sepiidac

Genus Crumenasepia Iredale, 1926
Crumenasepia ursulac Cotton, 1929.
J. Proc. R. Soc: IV. Aust. 15: 9()-9], pl. 15, figs. 3, 4.
$=$ Sepia pharaonis Ehrenberg, 1831; after Adam \& Rees, 1966: 22.

Holotype: Dl0013, gladius with detached spine, from Cottesloe Beach. W, A. collector and date of collection unknown.
Paratypes: D10011, gladius with detached spine, from Cottesloe, W.A., collected by Mrs. U. Glanert, date of collection unknown. D16016 (ex. D10013), two gladiuses, one juvenile, the other with missing spine, both with same locality and collection data as holotype. (Puratype D10012 sent to Western Australian Museum.)
Note:-Paratypes incorrectly labelled co-types as a type specimen was clearly selected.

Genus Decorisepia Iredale, 1926
Decoriscpia coltestoensis Cotton, 1929.
J. Proce. R. Soc. IV. Alust., 15: 90, pl. 16. figs, 1, 2.
=Sepia (Decorisepia) cottestuensis (Cotton. 1929); after Colton and Ciodfrey, 1940: 438.

Holotype: D 13681 , gladius from Cottesloc. W.A., collector and date of collection unknown.

Decorisepia jacnschi Cotton, 1931.
S. Alust. Nat., 12 (3): 41, ligs, 5, 6.
-Sepia jaenschi (Cotton, 1931); ufter Adam \& Rces, 1966: 55.
Holotype: Dloj63, gladius broken in half (clean break), from Robe, S.A., eollected by B, C, Cotton, date of collection unknown.

Genus Sepia Linnéus, 1758
Sepia braggi Verco, 1907.
Trans. Roy. Soc. S. Aust., 31: 213, pl. 27. figs. Ga-d.
Holotype: D14130 (ex D3[1), gladius from Glenelg. S.A., collected by Mr. Bragg, 1907.
Paratypes: D15998 (cx. D311). three gladiuses, one broken, one very worn around the edges, from Torquay. Vic., collected by C. J. Gabriel, date of collection unknown. D16017 (ex D311 and D14130), gladius figured with holotype, with spine missing, Irom St. Vincent Gulf, S. A., collected by Λ. Zietz, date of collection unknown.
Note:-Cotton and Godfrey (1940) list the holotype as being held in the Manchester Museum, U.K., but a recent seareh there failed to locate any records of it. The specimen cited as the holotype here conforms exactly to that alescribed by Verco and the label with it in Verco's handwriting refers to it as the "figured type". "This must theretore be the authentic type.

Genus Solitosepia Iredsle, 1926
Solitosepia glauerti Cotton. 1929.
J. Proc. R. Soc. W. Aust., 15; 87. pl. 14. ligs. 3, 4.
$=$ Sepia (Solitosepia) glanerti (Cotton, 1929); after Cotton and Godirey, 1940: 421.
Holotype: Dl3628, gladius from Rotnest Is., W.A. collector and date of collection unknown.

Solitosepia hendryae Cotton, 1929.
J. Proc. R. Soc. W, Abst. 15: 87-88. ph. 15, figs. I. 2.
$=$ Sepiar (Solimsepia) Mendryak (Cotton. 1929): after Cotton and Godfrey, 1940: 421.

Holotype: D13625. gladius from Rolnest Is.. W.A., collector and date of collection unknown.

Solitosepia occidua Cotton, 1929.
I. Pros. R. Soc: H. Almt. 15; 88; pl. 14, Jigs. 1, 2.
$=$ Sepia (Solitosepia) occidua (Cotton, 1929) ; ilter Cotton and Godirey, 1940: 420.

Holotype: D13627, gladius from Rotmest Is. W.A., collector and date of collection unknown.

Cenus Tenuisepia Cotton. 1932
Tenuisepia mira Cotton, 1932.
Rec. S. Aust. Mus., 4 (4): 546-547, figs. 7-9.
-Sepia mira (Cotton, 1932); after Adam \& Rees. 1966: 87.

Holotype: D10507, gladius broken in half (clean break), from North-West Islet, Capricorn Group, Qld., collected by W. J. Kimber, date of collection unknown.

Farnily Octopodidac

Ciemus Octopus Lamarck, 1798
Octopus Hindersi Cotton, 1932.
Rec. S. Aust, Mus., 4 (4): 543-544, fig, 6.
Holotype: DJOL69, large female (in spirit) from Largs Bay, S.A., collected by L. Davidson. K. Heywood and H. Cobb, date of collection unknown.

CLASS SCAPHOPODA

Most of the scaphopod types in the South Australian Museum were collected around the turn of the century by Sir Joseph C. Verco (Verco 1935), subsequently Honorary Curator of Molluses at this muscum from 1914 to 1933. Only two species, one described by Suter (1907) and the other described by Tate and May (1900) were not collected by Verco but types were iccpuired by him for the museum collection. Verco (1911a, 1911b) described 7 of the 17 lypes in the museum's collections. Cotton and Ludbrook (1938) described the remaining Dentallidace (five species) and Cotton and Gindfrey (1940) described the remaining Siphonodentalidac (three species).

The taxonomy of the recent scaphopod molluses of South Australia have not been revised since Cotton and Godfrey (1940) but the supraspecific classification of the Scaphopoda has received considarable attention (Ludbrook 1960, Emerson 1962 and Palmer 1974). In this paper the classification proposed by Palmer (1974) is adopted. Thus most of the subgenera referred to by Cotton and Godfrey (1940) are now regarded is full genera.

In most cases the holotype was clearly selected but, as with the Cephalopoda, paratypes were rarely designated, even when other good material was available.

Family Dentaliidac

Genus Dentalium Limnéus, 1758
Dentalium francisense Verco, 1911.
Trans. R. Soc. S. Allst., 35: 207-208, pl, 26, figs. 1, la
$=$ Paradentalium francisense (Verco, 1911): after Palmer, 1974: 119,
Holotype: D13724, dry shell dredged in 1520 fims., Petrel Bay, St. Erancis Is., S.A., collected by J. C. Verco, date of collection unknown.
Paratype: D16004 (ex D13724), juvenile dry shell with same locality and collection data as holotype.

Dentalium hemileuron Verco, 1911.
Trans. R. Soc. S. Aust., 35: 208, pl. 26, fig. 2. $=$ Paradentalium hemileiron (Verco, 1911); after Palmer, 1974: 119.
Holotype: D13727, dry shell dredged in 300 fms., of Cape Jaffa, S.A., collected by J. C. Verco, date of collection unknown,

Dentalium hyperhemileuron Verco, 1911.
Trans. R. Soc. S. Aust., 35: 217-218, pl. 26. figs. 3, 3a.
EEpisiphon hyperhemileurm (Verco, 1911) (Laevidentallidae); after Palmer, 1974: 120.

Holotype: D13726, dry shell dredged in $12-$ 14 fms., King George Sound, W.A.. collected by J. C. Verco, December, 1910 or January, 1911.

Paratypes: D160no, four dry shells with same locality and collection data as holotype.
Note:-Paratypes incorrectly labelled co-types as a type specimen was clearly selected.

Dentalium octoplenron Verco, 1911.
Trans. R. Soc. S. Aust., 35: 206.
$=$ Paradentalium octopleuron (Verco. 1911): after Paimer, 1974: 119.
Holotype: D13725, dry shell dredged in 15 $22 \mathrm{fms}$. . St. Vincent Gulf, S.A., collected by J. C. Verco, date of collection unknown.

Subgenus Episiphon Pilsbry tnd Sharp, 1897
Dentalium (Eipisiphon) arenariun Suter, 1907. Proc. Mal. Soc. Lond. 7 (4): 214-215, pl. 18, fig. 11.
-Dentulium sutcri Emerson. 1954: after Emerson, 1954: 185.
Paratype: D16003, dry shell dredged in 18 fms.. Port Pegasus, Stewart 1s., New Zealand, collected by Captain J. Bollons, date of collec. tion unknown.
Note:-Specimen incorrectly labelled co-type as a type specimen was clearly selected.
The specific name arenarium was preocelpied when Suter first described this species. Emerson (1954) therefore erected the new name suteri to replace the homonym.

Dentalium (Eipisiphon) bordaensis Cotton and Ludbrook, 1938.
Trans. R. Soc. S. Aust. 62 (2): 220-221, pl. 12, fig. 3.
=Episiphon bordachsis (Coton and Ludbrook, 1938) (Latevidentallidac); after Palmer, 1974: 120.
Holotype: D13340, dry shell dredged in 60 fms . off Cape Borda, Kangaroo Island, S.A. collected by J. C. Verco, date of collection unknown.

Subgenus Eudentalium Cotons and Godfrey, 193.3

Dentalium (Eudentasium) beachportensis Cotton and Ludbrook, 1938.
Trans. R. Suc. S. Aust., 62 (2): 220, pl. 12, fig. 2.
=Entalina betchportensis (Cotton and Ludbrook, 1938) (Siphonodentallidac): after Ludbrook. 1954: 110.
Holotype: DI 3339 , broken and croded dry shell dredged in 110 fims., off Beachport, S.A., collected by I, C. Verco, date of collection unknown.

Subgenus Fissidentalium Fischer, 1885
Dentalum (Fissidentalium) jaffaensis Cotton and Ludbrook, 1938.
Trans. R. Soc. Aust., 62 (2): 221, p1. 12. fig. 5.
=Fissidentalium jaffuensis (Cotton and Ludbrook, 1938); after Palmer, 1974: 119,
Ifolotype:: D13337. dry shell dredged in 90 fms.: oft Cape Jaffia, S.A., collected by J. C. Verco. date of collection unknown.

Dentalium (Fissidentalimm) verconis Cotton and Ludbrook, 1938.
Trans. R. Soc. Aust., 62 (2): 221-222, pl. 12, fig. 1.
=Fissidentalium verconis (Cotton and Ludbrook, 1938): after Palmer, 1974: 119.
Holotype: D13341, dry shell dredged in 200 fms., off Beachport, S.A. collected by J, C. Verco, date of collection unknown.

Subgenus Paradentalium Cotton and Godfrey, 1933

Dentalium (Paradentalium) flindersi Cotton and Ludbrook, 1938.
Trans, R. Soc. S. Aust., 62 (2): 210, pl. 12, fig. 4.
$=$ Paradentalium flinderwi (Cotton and Ludbrook, 1938) : atter Palmer, 1974: 119.
Holotype: D13338. dry shell dredged in 22 fms. St. Vincent Gulf, S.A. collected by J. C. Verco, date of collection unknown.

Hamily Siphonodentaliidac

Genus Cadulus Philippi. 1844
Cadulus angustior Verco, 1911.
Trans. R, Soc. S: Alust., 35: 211-212, pi. 26, figs. 5 , 5a, 5b.
=Galila angustior (Verco, 1911) (Cadulidae): ufter Palmer, 1974: 121.
Holntype; D13728, dry shell dredged in 26 tms., 18 miles South-East of Newland Head, outside Buckstairs Passage, S.A., collected by J. C. Verco, date of collection unknown.

Cadulus occiduus Vereo, 1911.
Trans. R. Soc. S. Aust. 35: 218 , pl. 26, fig. 7. =Gadila occidus (Verco, 1911) (Cadulidac) after Palmer. 1974: 121.
Holotype: D|3759, dry shell dredged in 15 fims.. Geographe Bay, off Bunbury, W. An collected by J. C. Verco, December, 1910 or January, 1911.

Sulogenus Gadila Gray, 1847
Catiulus (Gadila) bordaensis Cotton and Godircy, 1940.

The Molluses of South Australia, Part If, Scuphopoda. Cephatopoda, Aplacophora and Crepipoda: 340, fig, 362.
=Gudila bordaensis (Cotton and Godfrey, 1940) (Cadulidae): after Palmer, 1974 : 121.

Holotype: D13761, dry shell dredged in 55 fms., off Cape Borda, Kangaroo Island, S.A., collected, by J. C. Verco, date of collection unknown.

Cadulus (Gadila) Judbrookae Cotton and Godfrey, 1940.
The Molluscs of Sonth Ausiralia, Part II. Scaphopoda, Cephalopoda, Aplacophora and Crepipoda: 340, fig. 362.
$=$ Gadila Iudbrookae (Cotton and Godfrey. 1940) (Cadulidae); after Palmer, 1974: 121.

Holotype: D13760, dry shell dredged in 62 fms ., North-West of Cape Borda, Kangaroo Island, S.A., collected by I. C. Verco, date of collection unknown.

Cadulus (Gadila) spretus Tate and May, 1900.
Trans, R, Soce, S, Aust., 24 (2): 102.
$=$ Gadila spretus (Tate and May, 1900)
(Cadulidae); after Palmer, 1974: 121.
Syntypes: D15848 (May No. 1048), twenty-two dry shells dredged in 24 fms., Port Esperance. Tasmania, collected by W. L. May, date of collection unknown. D16002 (ex. D303), five dry shells with no locality or collection dita.

Note:-Specimens originally labelled co-types.

Cadulus (Gadila) vincentianus Cotton and Gudfrey, 1940.

The Molluses of South Australia, Part 11. Scuphopode, Cephalopoda. Aplacophora and Crepripoda: 338-339, fig. 360.
$=$ Gadila vincentiamus (Cotton and Godfrey. 1940) (Cadulidae); nfter Palmer, 1974: 121.

11olotype: D13730, dry shell from Holdfast Bay, St. Vincent Gulf, S. A., collected by J. C. Verco, date of collection unknown.

Subgenus Polyschides Pilsbry and Sharp, 1898
Cadulus (Polyschides) gibbosus Verco, 1911.
Truns. R. Soc. S. Ausi. 35: 213, pl. 26, fig. 6. $=$ Polyschides gibbosus (Verco, 1911) (Cadulidae): after Palmer, 1974: 121.
Holotype: D13729, dry shell dredged in 300 fms., off Cape Jaffa, S.A., collected by J. C. Verco, date of collection unknown.

REFERENCES

Adam, W. and Rees, W. J, 1966. A review of the cephalopod family Sepiidae. John Murray Exped. Sci. Rep., 11 (1): 1-165.
Cotton, B. C. 1929. Contributions to the fauna of Rottnest Island. IV. Western Australian Sepiidae. J. Proc. R. Soc. W. Aust., 5: 87-91.

Cotton, B. C. 1931. Cuttlebones from Robe with description of a new species. S. Aust. Nat.: 12 (3): 39-41.
Cotton, B. C. 1932. Notes on Australian Mollusca, with descriptions of new genera and new species. Rec. S. Aust. Mus, 4 (4): 537-547.

Cotton, B. C. and Godfrey, F. K. 1933. South Australian Shells. Part 8. Scaphopoda. S. Aust. Nato, 14 (4): 135-150.
Cotton, B. C. and Godfrey, F. K. 1940. The Molluscs of South Australia. Part Il. Scaphopoda, Cephalopoda, Aplacophora and Crepipoda. Govt. Printer Adelaide 284 pp.
Cotton, B. C, and Ludbrook, N. H. 1938. Recent and fossil species of the scaphopod genus Dentalium in Southern Australia. Trans. R. Soc. S. Aust. 62 (2): 217-228.
Emerson, W. K. 1954. Notes on the scaphopod molluscs: Rectifitations of nomenclature, Proc. Biol. Soc. Wash., 67: 183-188.
Emerson, W. K. 1962. A classification of the scaphopod mollusks. Jour. Palaeonfology, 36 (3): 461-482, pls. $76-80$, two text figs.

Iredale, T. 1926. The cuttle-fish "bones" of the Sydney beaches. Aust. Zoologist, 4 (3): 186-196, pls. 21-23.
Ludbrook, N. H. 1954. Scaphopoda. John Murray Expedition, 1933-34, Sci. Rept., 10 (2): 91-120.
Iudbrook, N. H. 1960. Scaphopoda. In: Raymond C. Moore, ed. Treatise on invertebrate Palaeantology, vol. 1: $37-41$; three text figs. Univ. Kansas Press.
Palmer, C. P. 1974. A supraspecific classification of the scaphopod Mollusca. Veliger, 17 (2): 115-123.
Suter, H. 1907. Descriptions of six new species of shells and of Leptomya lintea Hutton, from New Zealand. Proc. Mal. Soc. Land., 7 (4): 211-216.
Tate, R. and May, W, L. 1900, Descriptions of new genera and species of Australian Mollusca (chiefly Tasmanian). Trans, R, Soc. S. Aust, 24 (2): 90-103.
Verco, J. C. 1907. Notes on South Australian marine Mollusca, with descriptions of new species. Part VI. Trans. R. Soc, S. Aust., 31: 213-230.
Verco, J. C. 1911a. Notes on South Australian marine Mollusca, with description of new species. Part XIV. Trans, R. Soc. S. Aust., 35: 204-215.
Verco, J. C. 1911b. Notes on the marine shells of Western Australia, with descriptions of new species. Part I. Trans, R. Soc. S. Aust, 35: 216-219.
Verco, J. C. 1935. Combing the Southern Seas. Rigby, Adelaide, 174 pp.
Verco, J. C. and Cotton, B. C. 1928. South Australian Cephalopoda. Rec. S. Aust. Mus., 4 (1): 125-133.

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

TREPONEMATOSES (YAWS AND TREPONARID) IN EXHUMED AUSTRALIAN ABORIGINAL BONES

By C. J. HACKETT

[^27]
TREPONEMATOSES (YAWS AND TREPONARID) IN EXHUMED AUSTRALIAN ABORIGINAL BONES

BY C. J. HACKETT

Summary

Active early treponemal bone lesions heal within a few months to leave little if any change. The active late ones may last for a year or more, and when healed leave changes that last for ever; they are thus more likely to be found in bone populations in which a treponemal infection is present. Diagnostic criteria are described and illustrated from exhumed Australian Aboriginal bones. The total of such specimens in Australian museums is not great, perhaps a few scattered among thousands of normal specimens.

TREPONEMATOSES (YAWS AND TREPONARID) IN EXHUMED AUSTRALIAN ABORIGINAL BONES

by

C. J. HACKETT

Department of Morbid Anatomy, Institute of Orthopacdics, Universily of London, WIN GAD

ABSTRACT'

HACKEETF, C. J. .9978. 'Treponematoses (yaws and trepenarid) in cxhumed Australian Abatigimal bones. Rec. S. Alus. Mus. 17 (27): $3 \times 7-405$.

Active early treponemal bone lesions heal within a few months to leave little if any change. The active late ones may last for a year or more, and when healed leave changes that last for ever; they are thus more likely to be found in bone populations in which a treponemal infection is present.

Diagnostic criteria are described and illustrated from exhumed Australian Aboriginal bones. The total of such specimens in Australian muscums is not great, perhaps a few scattered among thousands ol normal specimens.

introduction

Diagnostic eriteria of treponemal changes in dry bones have recenlly been proposed (Hackelt 1976) and frequent reference was made to similar changes in Australian Aboriginal bones in Australian museums. Unfortunately few good illustrations of these have been published (Hackett 1936b; McKay 1938). It would, therefore, seem useful to publish some illustrations of characteristic freponemal changes in these bones.

Extensive collections of Australian Aboriginal bones are in the South Austradian Muscum, Adclaide; the Anatomy Department of the Australian Museum, Sydney, and the Australian Institute of Anatomy, Canberra. The specimens in the Depariment of Anatomy in Melbourne and in Canberra are complementary in that they were excavated by the late Murray Black from the same site in the north west of Victoria and across the River Murray into New South Wales in 1944. 1949.

THE TREPONEMATOSES

These are a group of communicable diseases caused by spiral organisms (treponemes) that cannot be distinguished from each other by any visual means. To avoid the long-standing controversy about their identity or difference they
will be assumed to be four different diseases. This decision is based upon the work of Ouchin nikoy and Delekorskij (1970) and Turner and Hollander (1957).

Before European settlement only two treponematoses, yaws and trepobarid (previously called "endemic syphilis") were in Australía. These diseases are transmitted by non-venereal contact, probably by the fingers, in childhood; they are characterised by changes in the skin and bones (Hackett 1957), Yaws has an initial lestion mostly on the lower part of the Jeg through which the infection enters the body; in Ireponarid this is not usually recognised. The early infectious skin lesions of yaws are numerous, while those of treponarid are often scanty; both are transient.

Yaws occurs in the humid warm equatorial belt, and treponarid in the arid warm areas north and south of it. Treponarid is usually found in hunter/gatherer and pastoral nomad people (Rost 1942; Murray el al. 1956; Hudson 1958). This zonal distribution is curious, It is possible that treponarid developed from yaws when the then more extensive humid equatorial belt contracted and left the arid zones to the north and south much as they are today. This could have happened about 9000 years ago at the end of the last Ice Age (Hackett 1967). In West Africa a natural infection of baboons by a treponeme resembling that of yaws has been found in the northern arid zone as well as the adjacent humid zone (Fribourg-Blane 1972) in which treponarid and yaws respectively occur.

Abundant serological evidence of these two infections has been found in the Northern Territory of Australia (Garner et al. 1972).

A third treponcmal infection was brought to Australia by Europeans. This was the venercally transmitted disease of adults, syphilis. Early Australian explorers, ill-equipped to diagnose that disease, and shrinking from mentioning its forbidden name, often referred to it as the "loathe. some" disease; What they saw, however, was yaws or treponarid and not syphilis (Hackett 1936a).

Syphilis has initial genital lesions, skin and bone changes, and also causes grave damage to the heart, arteries and brain. Yaws and treponarid in childhood protect against syphilis in adult life. Syphilis was not in Australia before Europeans arrived, and is probably still absent in tribal groups in Central Australia. It can, thus, be accepted that any treponemal changes in Aboriginal bones are due to yaws, if they come from the north, or to treponarid, if they come from the centre or south.

The fourth treponemal disease, pinta, also starts in childhood but it affects the skin only, and is found only in Central and the northern part of South America. It too protects against syphilis so Columbus could not have taken syphilis to America, nor have brought it back to Europe when he returned with his 43 crewmen and 10 Indians in two ships in 1492!

The diagnostic criteria referred to apply equally to yaws, treponarid and syphilis.

DIAGNOSTIC CRITERIA

If the diagnosis of the changes in exhumed bones from the past is to contribute to knowledge, they must be based upon acceptable criteria. Such diagnoses cannot be a matter of weighing up points that are present against others that are absent before coming to a "majority verdict". Some of the changes thus diagnosed might occur in other conditions. So it is not a matter of knowing all and every bone change that can occur in a disease, but of recognising the changes that can occur in that disease only (Hackett 1976).

DISEASE IN A PAST POPULATION

The question arises of how many specimens in a bone population should have diagnostic criteria of a particular disease before that disease can said to have been present in that community (Hackett 1976).

When this question was raised with Professor F. J. Fenner, F.R.S., of Canberra, he replied in a letter (February 1973), "The whole exercise of diagnosis, with all the support of modern laboratory services, is an exercise in probability. Palaeopathology is just that much more difficult because there is only one kind of end-resultbone damage-upon which to base judgment. For this reason a single bone lesion on a continent would be suspect and one would have to suspend judgement; whereas a number consistent with
known pathology would enable a much better guess to be made".

There is some information about this which is worth briefly considering. In England, and probably elsewhere in Europe, in the first decade of this century before any really effective treatment was available for the treatment of syphilis, it is estimated (McElligott 1960) from serological studies that at least 10 per cent of the adult population was infected with syphilis. A study of about 2000 untreated early syphilis patients in Oslo between 1891 and 1920 (Gjestland 1955) indicated that about one per cent might be expected to develop bone lesions. Thus about one in a thousand of the previously mentioned adult population might have had bone lesions of syphilis at some time in their lives.

In 1937-1939 in Lira, Uganda, in a population with yaws whose disease pattern had probably been little influenced by modern treatment, a study was made of yaws bone lesions (Hackett 1951). At the local clinic between August 1937 and January 1938, when an estimated 1350 (Hackett, 1947) new yaws patients attended for treatment, 340 new yaws patients with bone lesions were seen at a study centre about 100 metres from the clinic. Although some of these patients were referred from the clinic to the centre, others came direct; treatment was free to attract patients. The 2.5 per cent of patients with bone lesions that these figures give may have little meaning. Steinbock (1976) estimates from published figures that yaws bone lesions might be found in roughly 1-5 per cent of skeletons from yaws endemic areas.

In 1939 among 100 consecutive Lango males in the Lira jail, after trial by their chiefs for petty offences, 81 were found to have serological cvidence of yaws (Hackett 1947). None had any obvious yaws lesions at the time. High prevalences would be expected in such populations in the last century before the effective treatment of yaws and the improvement of the standard of living of this century.

Perhaps about one per cent of Aboriginal skulls in Australian museums may have changes due to treponemal infection, i.e. changes of the caries sicca sequence. More precise information on this should be sought, especially in the collections of the Anatomy Department of the Melbourne University and of the Australian Institute of Anatomy, Canberra, which are of the same provenance and do not appear to have been selected against specimens with pathological changes.

Treponemal Changes in Exhumed Bomes

It is interesting that all the changes in bones in Eutopean medical muscums that can be regarded as diagnostic criteria of syphilis (Hackett 1976) are found in Australian Aboriginal bones and in bones from many Pacific Islands. At the same time a very frequent disease in Europeans in Australia and elsewhere until a few decades ago, haematogenous pyngenic osteonyeltis, is absent in Australian Aboriginal museums specimens. It was not seen in living Aboriginals until recently, but it js said now to occur in Aboriginal children in Central Australia (Dr. H. G. Heller, 1977, at personal letter) presumably because bacteria that cause such bone damage huve been carried into the Centre.

Sandison (1973 a, b), after a more thorough study of pathological changes in Australian Aboriginal bones, came to similar conclusions about the presence of treponemal changes in them.

Treponemal bone changes may occur in the early stage, during the first five years after infection, and in the late stage, usually after a symptom-free further period of several yoars. The carly lesions in children are transient and not destructive, while the late ones are destructive, and thus leave the bone changed for life. In both stages relapses of active changes are characteristic.

An occasional deformity in Aboriginal bones in Australia and elsewhere, at one time thought to be due to yaws, is boomerang leg (Hackett 1936b). Subsequent studies of yaws bone lesions in Ugandat provided no evidence for this (Hackett 1951).

Dr. H. G. Hillier. Aljce Springs, recently (1977) called my attention to the silmilarity of the bowed tibiate and fibulae described and illustrated by Weismann-Netter and Stuh] (1954) as "Toxopachyostéose diaphysaire tibio-poronicre" and bromerang leg. The more likely causes for this deformity could be excluded, and it was regarded as at least familial. Other bones were occasionally also changed, i.e.. shortened. The bowing in the illustrations involyed the middle of the shaft. and the bones were of normal length. In boomerang leg the curvature uniformly involves the whole bone, which is lengthened, and other long bones may be bowed (Hackett 1936b; Hackett 1957. in fig. 20 the length of the legs is exiggerated). More study is needed.

Skulls contain two broad sequences of late treponemal changes, a discrete and a contiguous. The latter may be regarded as the fusion of a
number of the former; their inter-relationsliph are us follows:-

Clustered pits	
Coniluent clustered pits	
Discrete	Contiguous
Focal superficial cavitation	Serpiginous cavitation
Circumvallate cavitation	Nodular cavitation 1
Radial scars	Caries sicca

The development of the changes in these twa sequences are indicated in Figures 1 and 2.

In the long honess, in which it is admittedly more dilicult to establish diagnostic criteria, a sequence of nodes and expansions with superficial cavitation can be recognised. A similarity witl caries sicca in the skull maty be seen.

The Illustrutions

These cover most of the diagnostic criteria of treponemal infections in skulls and other bones. Injury may perhaps influence the frequent involvement of parts of bones that are not very fir below the skin.

For the purpose of this paper the specimens illustrated may be regarded as pre-European, that is from burials $150-200$ years ago depending upon the locality from which they came. As late as the early 1930's there were tribal groups in the western part of Contral Australia who had had negligible contact with Europeans. They were unclothed, stonc-tooled hunter-gatherer nomads much as they probably had been, in many ways including their health and diseases, for tens of thousands of years. In this lics their considerable interest for the health of carly man.

CONCLUSION

The active early treponemal bone lesions heal within a few montlis to leave little if any change. The active late ones may persist for a year or more, and when healed leave changes that last forcver; they are thus more likely io be found in bone populations in which a treponemal infection is present.

In any population in which a bone damaging treponemal infection (yaws, treponarid or syphilis) is present caries sicca will be found in skulls, and nodes/expansions with superficial cavitations in other bones.

Exhumed Australian Aboriginal bones with pathological changes are valuable in the study of
disease in man in the past. Probably most of such bones that may ever been found are now in museums; hence the need for their conservation.

The total of such specimens in Australian museums is not great, perhaps a few hundred scattered among thousands of normal specimens. Would it not be practical for these specimens to

TREPONEMATOSIS SEQUENCE
(Yaws, Treponarid, Syphilis)

5
RADIAL
SCAR

FIG. 1. Treponematosis sequence; caries sicca, initial and discrete series.
be taken out of the general collection and held in a safe place in each museum, or at least to be separately indexed for ready retrieval? If some suitable central institution, such as a Museum of Man, be established, a full series of "type" specimens should be assembled there, supported by a list of all pathological Aboriginal bones in museums and other collections throughout Australia at least.

ACKNOWLEDGEMENTS

I am grateful to Springer-Verlag of Heidelberg for permission to reproduce Figures 1 and 2 in this paper from Hackett (1976). I am also indebted to Professor L. J. Ray for permission to use photographs of two of the specimens in his collection for Figures 6 and 9 .

TREPONEMATOSIS SEQUENCE

(Yaws, Treponarid, Syphilis)
Contiguous Series

6

SERPIGINOUS

Bone Destruction

7
nodular
cavitation

Bone Formation

TRAD

FIG. 2. Treponematosis sequence; caries sicca, contiguous series.

REFERENCES

Fribourg-Blanc, A. 1972. Treponema. In: Pathology of Simian Primates. (Fiennes, R. N. T.-W. ., ed.). Part 11. pp. 155-262. Kargar Base.
Garner, M. Po, Backhouse, J. L.., Moodie, P. M. and Tibbs, G. J. 1972. Treponemal intections in the Australian Northern Territory Aborigines. Bull. Whld Hlith Org. 46: 265-293.
Gjestland, T. 1955. The Oslo stady of marrated syphilis. 163, 182 Akademisk Forlag. Oslo.
Hackett, C. J. 1936ia. A crilical suryey of same references to syphilis and yaws among the Australian Aborigines Med. J. Aust. 1: 733-745.
Hackett, C. J. 1936b, Boomerang leg and yaws in Austrulian Aborigines. London, Royal Socicty of Tropical Medicine and Hygienc, Monograph 1, 66 p.
Hackett. C. 1. 1947. Incidence of yaws and of vencreal disease in Lango, Uganda. Brit, med. J. 1: 88.
Hackett, C. J. 1951. Bone lesions of yans in Uganela. 194 p. Blackwell, Osford.
Hackett, C. J. 1957. An infemationd Nomenclature of Yaw's Lesions. Monogruph Serjes No. 36, 103 p. 75 figs. World Health Organisation, Geneva.
Hackett, C. J, 1967. The human treponematoses. In Disease in Antiquity (Brothwell, D. and Sandison, A. Tor eds.), pp. 152-169. Charles (C. Thomas. Springfield.
Hackett, C. J. 1976. Diagnostic Criteria of Syphilis, Yuws and Treponarid (Treponematoses) and some other Discases in Dry Bones (for use in Osteu-Archacology) Sber, heidelb. Aked. Wiss, 434 p. 34 figs. SpringerVerlag, Heidelberg.
Hudson, E. H. 1958. Non-veneral Syphifis. A sociological and medical study of bejel. 204 p, 81 figs. E. \& S Livingstone Ltd., Edinburgh, London.
MeElligot, G. L. M. 1960. Vencreal Disease and the public health. Brit. J. vener. Dis. 36: 207-215.
McKay, C. V. 1938. Some pathological changes in Australian Aboriginal bones. Mél. J. Aust. 2: 537555.

Murtay, J. F.a Merriweather, A. M. and Freedman, J. J. 1956. Endemic syphilis in the Bakwena Reserve of the Bechuanaland Protectorate. Bull. Whd H/hh Org. 15: 975-1039.
Ouchinnilkov, N. M. and Delekarskij, V. V. 1970. Treponema pertenue under the electron microscope, Rrif. I. rener. Dis. 46: 349-379.

Rost, G. S. 1942. Roentgen manifestations of Bejel ("Endemic syphilis") ass observed in the Euphrates River delfa. Rudiology 38: 320-325.
Sandison. A. T. 1973a. Discase changes in Australian aboriginal skeletons. Aust. /nst. Aboris. Sind. Nenslefter 3: 20-22.
Sandison, A. T. 1973b. Palacopathology of human bones from the Murray River region hetween Mildura and Renmark, Australia. Mem. Nat. Nhus. Vicr. 34: 173174.

Steinbock, R. T. 1976. I'aloopathological Diagnosis and furerprefation. Bore disease in uncient human populsdions, 423 p. 161 ligs. Charles C. Thomas, Springfield.
Stewatl, T. D. and Spochr, A. 1952. Evidence on the paleopathology of yaws. Bull. Hist. Med. 26: 538 553.
'limner. ' $1, ~ 13$. and Hollander. E. T, 1957. Biolugy of the Treporematoses: Monograph Series No. 35. World Health Organisation, Geneva.
Virchow. R. 1896. Beitrag zur Geschichte der Lues. Derm. 7. 3: 1-9. (See Appendix.)
Weismann-Netler, K_{+}and Stuh1, L. 1954. D'une astéopathie congéritale fventuallment fumúliale, surtout défencé par l'curvature antéro-postéreure et l'épaississement des deux os de la jambe (Toxopachyosteose diaphysaire tibia-péroniére). Presxe Mrel. 62: 1618-22.

APPENDIX

Of curies siccu, Virchow (1896, f. 7) wrote:-
"The only reliable aind pathognomic lesion of syphilis is the scar which remains after superficial gummatous osteitis. This is not ordinary caries. The smallest scars . . always show the same characteristics. I want to emphusize that 1 know of no other disease causing such changes. It is casy to recognise such foci, however small they may be, but it may be dilficult to say how they differ from other defects. Most frequently a peculiar jagged, radiate, often star-shaped depression attracts attention. It is decpest in the centre and its borders are relatively smooth, round and not eroded. The diagnosis can be reached only by considering the appearance as a whole. One must note how the changes are grouped round the centre, radiate and join up again, but give the impression of a uniform pattern. This is what is decisive. It is unimportant whether the defect is deep or wide and flat. Its shape can never by caused by true [pyogenic] caries, lupus or Jeprosy." [Translation.]

FIG. 4. Confluent clustered pits. In two areas the confluence is peripheral, A triangular depression on the left frontal is the scar of previous active disease. Its slightly raised margin, depressed base, and groups of thin radiating lines suggest that it is made up of several radial scars. These active changes are a relapse. The cut on the right frontal shows the slightly thickencd outer table.

School of Public Health and Tropical Medicine, University of Sydney, Ifm indebted to Dr. P. M. Moodie and to the Illustrations Department of the University of Sydney for the photographs from which this figure and Figs. 10A, B were prepared.

FIG. 5. Focal superficial cavitation. These are usually smaller, but the raised rim and its striated inner surface are characteristic. With further healing the base will flatten and a few thin wavy radiating lines will appear. The changes in this specimen are made up by the confluence of $3-4$ smaller ones (see Stewart and Spoehr 1952, Fig. 3). In more extensive confluence the floor may be thin and perforated.

Anatomy Department, University of Melbourne (49 Box 442)

FIG. 6. Radial scars. This is a further stage of healing; later the rim may flatten to the level of the surrounding bone. Thin radiating scars marh its base.
Australian Institute of Anatomy, Canberra (SF 39:57 see No. 9)

FIG. 7. Serpiginous cavitation. Sonte pitting is seen round the horder of the change, enpecially above the suprotbilal ridges where there are also some periosteal bone deposits. This change does not cross the sutures, Other similar changes may be found on the same shull.

South Australian Museum (Al|521).

FIG. 8. Contiguous sequence of caries sicea. In the centre are nodules of caries sicea interrupted in at few places by the preceding nodular cavitation. Surrounding this is serpiginous cavitation separated in a few places from the surrounding unchanged bone by pitting. The soundness is, thus, demonstrated of the sequence of caries sicca, arising from nodular cuvitation and, with the earliest change, serpiginous clustered pits at the periphery.

FiG. 9. Caries sicea. This is the healed stage of the combighos serics. The regtatity of the nudules ant the left posterior quator ot the area is chatracteristic. The changes started atter the frombal suture had fused. The nudules naty be large, small, or that, all ato teen in this specimen, it is the regular pattern of nuduks and the intervening star-like sars that are important for its lecngnition (Vitchow, 1896: sec Appondix). The change stops at the coronal suture. Some satdial scars anfe on the jeft frontal and parictal bones. 'the ragged holes in the thinned left parietal result from rernite activity during hurial.

Anatomy Department. University of Meltumane (SIF44:88)

FIG. 10. Nasopalatine destruction. Only a small bat remains of the anterior mandible, and the central part of the patate is missing. The nasal cavity is empty, and its walls are smooth. That this gross damage has healed excludes malignant tumours. This is the gangosa of yaws and treponarid (see Hackett 1951: Fig. 129). The unworn tecth are notable.

School of Public Health and Tropical Medicine, University of Sydney.

FIG. 11. Node with superficial cavitation. The section shows the formation of the node by periosteal deposition of bone and the focal destruction of the cortex.

Australian Institute of Anatomy, Canberra (SF 20:37)

FIG. 12. Expansion and superlicial cayitation. Active stage in a young person. Similar smatl cavities were in a clavicle scapula and ilium (see Fig. 43; Hachett 1936b).
School of Public Mealth and Tropical Medicine, University of Sydney,
FIG. 13. Nodes with superficial cavitation. Sincle as well as multiple cavities. Similar changes are found in ribs, metacarpals and metatarsals.

FICi. 14. Expansions with superficial cavitation. Changes are extensive with much bony thickening, and encroachment upon the lower third of the medulla.
Australian Institute of Anatomy, Canberra (SF 19:27)

FIG. 15. Expansion with superficial cavitation. Healing is occurring; the openings are becoming smoother. Wellcome Museum of Medical Science, London.

FIG. 16. Superficial cavitation in clavicles. Litle bony thickening is present. Australian Institute of Anatomy, Canberra (SF19:6 \& 9)

FIG. 17. Superficial cavitation in a scapula. There is little deposition. McKay (1938, Fig. 17) illustrates similar changes and labels them osteitis. Similar changes can occur in the ilia.

Australian Institute of Anatomy, Canberra (SF 19:19)

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

A NEW SPECIES OF VIVIPAROUS ASTERINID ASTEROID FROM EYRE PENINSULA, SOUTH AUSTRALIA

By MICHAEL J. KEOUGH and ALAN J. DARTNALL

A NEW SPECIES OF VIVIPAROUS ASTERINID ASTEROID FROM EYRE PENINSULA, SOUTH AUSTRALIA

by Michael J. Keough and Alan J. Dartnall

Abstract

Summary

A new species of asterinid sea star, Patiriella parvivipara, is described. It is a viviparous, intraovarian brooder similar to Patiriella vivipara Dartnall, but it reaches maturity at a much smaller size. The new species occupies an extremely restricted, intertidal habitat under granite rocks and has only been recorded from five localities on the west coast of Eyre Peninsula, South Australia.

A NEW SPECIES OF VIYIPAROUS ASTERINID ASTEROID FROM EYRE PENINSULA, SOUTH AUSTRALIA

by
MICHAEL J. KEOUGH* and ALAN J. DARTNALL \dagger

KEOUGH, M. J. and DARNALL. A. It. 1977. A new species of viviparous asterinid astcroid from Eyrc Peninsula, South Australia. Rec.S. Aush. AM,. 17 (28): 407-416.

ABSTRACT

A now species of asterinid sea star, Paviriella parvivipara, is described. It is a viviparous, intra-ovarian brooder similar to Patiriella vivipara Dartnall, but it reaches maturity at a much smaller size. The new species occupies an extremely restricted, intertidal habital under granite rocks and has only been recorded from live localitics on the west coast of Eyre Peninsula, South Australia.

IN'I'RODUCTION

The asterinid sea stars are prominent members of the Australian littoral, particularly in southcastern Australia, where large aggregations of species Patiriella are found. This genus was examined by Dartnall (1971) and includes the viviparous species Patiriella vivipara Dartnall, 1969, which was the first sea star reported to be an intra-ovarian brooder. A second viviparous species is of obvious interest.

SYSTEMATIC ACCOUNT ASTEROIDEA

Family ASTERINIDAE Gray, 1840 .
Genus Patiriella Verrill, 1913.
Patiriella parvivipare new species, Figs, 1-4.

Description of Holotype

A small asterinid sea star with five rays. $\mathrm{R}=3.75 \mathrm{~mm}, \mathrm{r}=3.62 \mathrm{~mm}, \mathrm{R}: \mathrm{r}=1.1: 1$. Body comparatively thin and depressed, At this size it is dilficult to give an accurate measurement of body height (vh) because the spinulation causes a relatively greater margin of error than in larger species. The best available value of wh $=1.48 \mathrm{~mm}$ (averaged from dial caliper and micrometer readings),

[^28]Plates of the abactinal surface closely imbricated and few secondary plates present. Abactinal plates very flat and not greatly thickened at their free margins. Four rows of papulac on each side of the radial midline of which only the two inner rows reach the end of the ray. Spines of carinal plates in groups of 4-7: spines of abactinal, interradial area grouped $3-5$ to a plate. Abuctinal spines range from $0.15-0 \cdot 11$ mm in length and are about 0.1 nim broad at the base. Single madreporite is about 0.4 mm in djameter. Superomarginal plates not distinct from abactinal plates. Proximal inferomarginals each carrying four or five spines, the distal only two.

Distal actinal intermediate plates imbricated and broadly trilobed or convex at their exposed edge, with each plate carrying a single spine. occasionally two, about 0.2 mm long, "Floating", rounded, aspinous, actinal plates present behind moutli plates. The holotype has eight adambulacral plates, the first four bearing two furrow spines of which the distal spine of the pair is the longest (c. 0.4 mm). Distal to adambulacral four the remaining plates carry single farrow spines. Subambulacral spines arranged one to a plate and about the same size as the furrow spines, i.e. larger than the actinal spines.

Most of the oral plates carry five spines, two carry six and two, fout. The first spine is the largest $(0.9 \mathrm{~mm}$ lung $\times 0.25 \mathrm{~mm}$ wide at the base), the second is about 0.7 mm long and the remaining three (abont 0.4 mm long $\times 0.1 \mathrm{~mm}$ wide at the base) are grouped separately from the first two. The additional spine on two of the oral plates is inserted between the second spine and the final triad and is intermediate in size (c. 0.5 mm long). Suboral spines are absent on all oral plates but one where a short spine is present.

Colour in life

Colour is consistently reddish yellow, Munsell colour $7 \cdot 5$ YR 7/8, varying to $7 / 6$ and $8 / 6$.

Figure 1. P. parvivipara. Holotype SAM K781 (a) Actinal surface

Figure 2. P. parvivipara. Holotype SAM K781 (b) Abactinal surface

Figure 3. P. parvivipara. Paratype SAM K1720 (a) Actinal surface

Figure 4. P. parvivipara. Paratype SAM K1720 (b) Abactinal surface

Holorype and type loculity

One spirit-prescrved specimer, SAM K781: Smouth Prool, south of Point Westall, South Australia; Grid Reference: 928203. Deparment of Nutional Development $1: 250000$ series, Map S153-2, Lidition 1. Series R502. Collected by W. Zuidler. 28.ii.1975.

Paratypes and other matcrial examined

Abbreviations used: SAM-South Australian Muscum: AM—Austratian Museum: TM-Tasmanian Muscum: NMV--National Museum of Vietoria; WAM-Western Australian Museum.

Pamatypes

SAM K782 (I specimen). Smooth Pool. south of Point Westall. Coll, by W, Zeider, 1.iii. 1975

SAM K17ly (10). Smooth Pool, south of Point Westall. Under rocks inmertidally. M.Kcough 19,ix, 1975.

SAM K1720 (1). Smooth Prool, near Point Westall. Under granite rochs intertidally. P. Searle, 19.ix. 1975. Dried specinuen.

WAM 540/77 (1). Smooth Pool, near Point Westall. H. A. Searle, 14.ix, 1975 .

AM .110916 (1). Smonth Pool, near Point Westall. P. Scatle. 19.ix.1975.

TM HlOO2 (1), Smooth Pool, near Point Westall. H. A. Searle. 19.ix. 1975.

NMV H303 (1). Smooth Pool, south of Point Westall. Under rock. Intertidal. H. A. Searle, 19.ix. 1975.

Other manerial

SAM K783 (1). Whittlebee Point. S.A. W. Zeidler. I,iii. 1975.

SAM K784 (1), Whittlebee Point. S.A. W. Zeidter, 1.iii. 1975.

SAM K785 (1). Point Brown, S.A. W. Zeidler, 9,viii. 1974.

SAM K1713 (c.70). Smooth Pool, near Point Westall. Under granitc rocks intertidally. M. Keough. 19.ix. 1975.

SAM K1714 (10). Cape 1,abatt, Under granite rocks intertidally. M. Keough. 15.i. 1976.

SAM KI715 (1). D'Anville Bay, southern Eyre Peninsula. I. McNamara, I $1.1 i .1977$.
SAM K1716 (1). Adult with Energing young. Smooth Pool. S.A. H. A. Searle, 19.ix. 1975.

SAM K1717 (20). Smooth Pool, neal Point Westall, Under granite rocks intertidally. M. Keough, 27.ii. 1977.

Nole:-Other material is held at all above institutions.

Distribution and hathitut

The known distribation of Patiriella parvivipara extends from Whittlebee Point near Ceduna, south as far as D'Anville Bay and the species is known from five localities (sce Fig, 6). Despite searching, no specimens were found on Yorke Peninsula or on the eastern coasts of Eyre Peninsula, The Western Australian Museum contains no specimens of the species although detailed collecting has only been done along the south-western coast of Western Australia (Mrs. I.. M, Marsh. pers. conmm.).

Along Eyre Peninsula the species did not occur at a series of other localities searched (see Fig. 6) and at D'Anville Buy considerable seatching was necessary to collect the single specimen (.l. MeNamara, pers. comm.). At Cape Labutt, the population density is moderate, one to live animals per square metre of rock surface exatmined. At Point Westall, however, densities may reach 2000 individuals per square metre of rock underside. Even here the animal is extremely localised, only one rock pool of many containing the specics. A similar phenomenon was observed at Cape Labatt.

The habitat of the species is also very restricted. P. parvivipara nceurs in mid- to lower-intertidal rock pools of characteristic appearance, The pools are depressions in an igneous base rock, granite (Smooth Pool, Cape Labatt. Point Brown and Whittlebce Point) or basalt (D'Anville Bay) outcropping along a Pleistocene coastline (Parkin. 1969), Small rocks litter the bottom of the pools and P- parvisipara occurs under these rocks (see Fig. S). At Cape Labatt, some limestone rocks are also present but the species has not been found under these rocks.

The rocks sere alnost bare of cpibiota at Snooth Pool and D'Anville Bay and carried small arnounts at Whittebee Point and Point Brown. At Cape Labatt the rocks were cncrusted with calcareous algae, sponges and colonial ascidians as well as mobile species including Patiriclla gammii (Gray). Paranepanhia grandis (H. L. Clark), Allostichaster polyplas (Muller and Troschel), several species of molluses, the prawn Leander sp . and the ophiuroids Ctarkeoma canalicutara (Lutken). Ophionereis schageri (Muller and Troschel) and

Figure 5. Smooth Pool Type tocality, thoto courtesy of Bruce Chester.

Ophiuctis resiliens Lyman, I^{3} parvivipara occurred at the side of rocks partially shettered by calcareous algae.

The rock pools occurred in sheltered parts of exposed rocky shores and the localities on Eyre Peninsula at which P, pervibipara did not nccur were of different geology, with the exception of Cape Carnot which was a granite area. Granite areas of Yorke Peninsula were searched unsuccessfully by Mr. W. Zeidier of the South Australian Museun. The habitat is very specialised. a phenomenon shown by many small, cryptic Asterinidae. The eastern limit of distribution is probably fairly precisc. although further collecting may extend the range westwards.

Biological observations:

Patiriclla parvivipara is able to survive high temperatures, as at Sinooth Pool the temperature in the pool may excecd $30^{\circ} \mathrm{C}$ during sunmer and tidal flushing has little effect on the temperature. Thus the species is able to tolerate temperatures much higher than many asteroids (see Ursin, 1960: Smith, 1940). although it must be noted that the congeneric species Patiriella exigud has been recorded from waters of summer temperatures of $30-35 \mathrm{C}$ in South Australia (Shepherd, 1968).

Thermal stress may not be a problen to individuals during summer, but "reproductive stress" may be important. Specimens kept in laboratory aquaria for two months at $15^{\circ} \mathrm{C}$
changed very little. When kept at $20-23^{\circ} \mathrm{C}$, however, reproduction was induced and over seven days all animals of $\mathrm{R}>2 \mathrm{~mm}$ produced young. Anismals which were kept at $12^{\circ} \mathrm{C}$ and subjected to a rise of similar magnitude $\left(5 \cdot 5^{\circ} \mathrm{C}\right)$ produced no young, These specintens were collected during February, 1977, and examination of specimens collected at the sume time showed juveniles to be present. In the first trial, 25 animals were used, and in the second, 10. The results suggest that it is the temperature of 20 $23^{\prime \prime} \mathrm{C}$, rather than merely a rise in temperature, which stimulates emergence of juveniles.

Juveniles emerged through the abactinal sutface of the adult and, in aquaria, their emergence was always fatal to the adults. Most adults contain more than one juvenile and few carried none (sec Table 1). Emergent juveniles were as much as 25 per cent of adult diameter. The position of emergence corresponds closely to that of Patiriclla visipara (Dartnall, 1969a). Most adults carry many juveniles indicating considerable reproductive potential in the population. At Smonth Pool, the population is sheltered from both wave stress, and competitors and predators while the Cape Labatt and Point Brown populations are more exposed to wave action and to predators and competitors. At Cape Labatt Patiriclla gummii and Paranepanhhia grandis ure available as predators upon Patiriclla parvivipara and prawns ate not anknown as sea shar predators (Bruce. 1971).

TABLE 1
Distribution of number of young in adult P. parvivipara from Smooth Pool at different times of the year. Figures show the frequency of animals carrying given numbers of juveniles.

Month	Number of Young												
	0	1	2	3	4	5	6	7	8	9	10	>10	Adults Examined
February	13	1	I	2	2	1	0	0	0	0	0	0	20
May	3	2	3	1	2	3	3	2	1	0	0	0	20
July	-	-	-	-	1	-	3	-	-	-	-	-	4
September .	1	5	4	7	4	4	1	1	1	2	1	1	32

Data from September, 1975 and 1977 were homogeneous, and so were pooled.

The reproduction is extremely efficient, since each adult produces a few young, which are relatively large and thus have a greater probability of survival. It is therefore possible that, because of this and the lack of predators and physical stresses, the Smooth Pool population is approaching maximum density in contrast to the other sites. The role of temperature in reproduction suggests that breeding occurs in December-February as water temperatures rise about $20^{\circ} \mathrm{C}$. This behaviour contrasts with that of P. vivipara, which breeds throughout the year in colder Tasmanian waters (Dartnall, 1969a), although there may be a December-February breeding peak in that species as Hoggins (1976) believes that breeding is restricted to that period and tank experiments suggest a similar conclusion (G. Prestedge, pers. comm,).

The mode of reproduction does limit widespread dispersal, as evidenced by the distribution of this species (Fig. 6). The method of fertilization is as yet unknown, although Dr. F-S. Chia (pers. comm.) is currently investigating this.

It is possible that cross fertilization occurs, as in P. vivipara (F -S. Chia, pers. comm.) and if this is also true for P. parvivipara the reproduction would only restrict dispersal, without creating problems of inbreeding.

Some idea of the dynamics of the population of P. parvivipara at Smooth Pool may be inferred from measurements of size (i.e. greater radius R) and reproductive capacity of samples at different times. In September, 1975, before the summer rise in water temperature, mean R of animals was $3.31 \pm 0.6 \mathrm{~mm}$, while during February 1976, near the end of the probable reproductive season when warm water temperatures were nearing their end, mean size of the population had fallen, $R=1.85 \pm 0.6 \mathrm{~mm}$. In the following May mean size was intermediate, $R=2.6 \pm 0.631 \mathrm{~mm}$. (These specimens are no longer held as they were dissected for
juveniles, destroying the specimens). In February, 1977, mean size was again small, $R=1.95 \pm 0.62 \mathrm{~mm}$ and by July, mostly large animals were present, mean R being $2 \cdot 93 \pm$ 0.52 mm .

The data in Table 1 show that in February, most animals are immature and do not contain juveniles. In May and July many animals, whilst not fully grown, had reached maturity and contained juveniles, and by September, almost all animals were mature and contained juveniles.

The most reasonable explanation for these observations is that the animals are short-lived, juveniles are produced in early summer, grow rapidly and reach maturity between February and June. The animals continue to grow until fully grown the following summer when juveniles emerge. The larger animals present in February are slow-developing animals of the previous year. Since reproduction appears fatal, all adults of a given year die during the summer to be replaced by juveniles, i.e. the data are consistent with almost complete annual turnover of the population. Collection of monthly samples from Smooth Pool is continuing in an attempt to confirm this hypothesis, and more detailed ecological data will be presented at a later date.

Extent of morphological variation

The number of arms is extremely uniform. Of about 300 specimens examined, only one had four arms and one, six. This is less variable than in P. exigua where six- and four-rayed specimens are not uncommon ($5 \cdot 5$ per cent with other than five rays in 252 Tasmanian specimens (Dartnall, 1969b), but is similar to observed variation in P. vivipara where of a sample of 2016 specimens only two had six arms (Dartnall, loc. cit.).

Maximum R for the species is 4.7 mm , and sexual maturity is reached at about $\mathrm{R}=2 \mathrm{~mm}$. This compares with P. vivipara, which reaches

Figure 6. Distribution of Patiriella parvivipara. Closed triangles show localities where the species occurs; open circles localities searched unsuccessfully for the species.

TABLE 2
Comparative spine counts of "exigua" group.

	purvivipara	exigual	pseuducxigua ${ }^{12}$	vivipara ${ }^{14}$
Arms	$\stackrel{5}{(4 r ; 6 r)}$	$\left.\underset{\left(4 r_{i}\right.}{5} 6 c\right)$	$(4 r: 6 r)$	$\left(4 r^{5} ; 6 r\right)$
R: 5 range*	1.1-1.4	1.08-1.67	1.3	1,1-1.6
Oral spiness....	$\begin{gathered} 45 \\ (3 \mathrm{r}: 6 \mathrm{r}) \end{gathered}$	$\begin{aligned} & 5=6 \\ & (4 r) \end{aligned}$	$\stackrel{5}{n o t ~ k n o w n ~}$	${ }_{(5 c: 78)}^{6}$
Suboral spinesr.............	$\begin{aligned} & 0 \\ & (1 r) \end{aligned}$	$\stackrel{1}{(0 r)}$	$\stackrel{1}{\text { not known }}$	$\stackrel{1}{(0 r)}$
Actinal * interradial spines/plate	$\left(0 c^{1} \div 2 c\right)$	$\stackrel{1}{(0 c ; 2 c)}$	$(0 \mathrm{c}: 2 \mathrm{c})$	$(0 c ; 2 c)$
Furrow spines*.	$\left.\stackrel{2}{\left(3 r_{i}\right.} \mid c\right)$	$\left(3 r^{2} ; 1 r\right)$	$(2 c ; \mid c)$	$\underset{(2 c)}{3}$
Subambulacral spines = ¢ . . . : $0 . \ldots . . \mid$	$(2 r ; 0 r)$	$\stackrel{1}{(0 r)}$	$\stackrel{1}{(2 r ; 0 r)}$	$\left(2 c^{\prime} ; 0 r\right)$
Irieromarginal spines	$(4,5,6 c, 7 r)$	$(4,5)$	7-9)	4.5
Abactinal spines	14.10	4-20	4.20	3.14

Figures show the most common number of spines per plate and parenthesised figures indicate alternative counts. "c" indicates a common occurrence; "r" a rare occurrence.

* The number often varies on a particular animad and one animal may carry 0,1 and 2 spines on actinal plates and 3,2 and 1 furrow spines.
${ }^{1}$ Dartnall (1971) and Keough (unpublished observations)
11 Darinall (1971)
${ }^{112}$ Dartnall (1969) and Kcough (measurements on TM822 and TM927)
maximum size of $\mathrm{R}>15 \mathrm{~mm}$, and maturity at $5-6 \mathrm{~mm}$ (Dartnall, 1969b; Hoggins, pers. comm.). The larger specimens of P. parvivipara (i.e. $R>2 \mathrm{~mm}$) invariably contain juveniles.

Four or five oral spines are usually present in P, parvivipara though six occur occasionally. Individuals sometimes had oral plates carrying three, four and five spines on one animal, The usual lack of suboral spines, and smaller size at maturity distinguishes the species from P, vivipara in nearly all cases, but a comparison of species within the "exigma" group, P. exigua, P psendoexigua, P. vivipara and P. parvivipara shows that there is considerable morphological overlap between the species (see Table 2) and that no morphological character or combination of characters suffices to distinguish species in all cases, especially tor specimens of R less than 2 mm .

Preserved specimens are often exceedirgly dillicult to identify and existing keys are, at best, a general guide. There is a great need to inyestigate new characters, ecological, reproductive and possibly biochemical in an effort to provide reliable characters. It is fortunate that, at least within the "exigua" group, modes of reproduction serve to distinguish specimens of $\mathrm{R}>1.5 \cdot \mathrm{~mm}$.

In the field only two species are likely to occur in any area and these pairs are readily distinguishable. The combinations are P. parvivipara and
P. exiguta in South Australia, P. vivipara and P. exigua in Tasmania and P. exigua and P. psendoexigua in southern Queensland. The presence or absence' of gonoducts and their orientation, logether with colour, are adequare to identify the species.

DISCUSSION

The distribution of the "exigua" crop

The distribution of P. exigua, P. pseudoexigu4 and P. vivipara was described by Dartnall (1971) and it is interesting to note that P. parvivipara is continguous with P. exigua. The distribution pattern is shown in Figure 7.

The geographical separation of P, vivipara from P. parvivipara, together with the precosity of parvivipara strongly supports their separation as distinct species. They are also distinct from P. exigua and P. psendoexigua so that along the Australian coastline four similar species exist but reproductive isolating mechanisms have evolved which ensure the integrity of the species concerned. The idea proposed by Dartnall (1971) that the "exigua" group forms a triple sequence may be re-cxamined. The original idea (Dartnall, 1970) of sibling pairs may be valid and if

[^29]

Figure 7. Distribution of Patiriella species of the "exigua" group within Australia. Note that the broken lines link only the extremities of the range for each species, and do not indicate presence in water other than the intertidal areas on the Australian coastline
this is so two sibling pairs are now known to exist. There is little intellectual difficulty in deriving both Patiriella vivipara and P. parvivipara from P. exigua which lays its eggs in gelatinous packets on littoral rocks and which exhibits an abbreviated larval development. There is also little difficulty if one considers brooding a method of maintaining a consistent recruitment to a restricted, specialised habitat, although it may restrict the dispersal of the species where free swimming larvae are absent.

The reason for the speciation is uncertain, although brood protection is most characteristically a property of cold water species (Mileikovsky, 1971) and it could be argued that cold conditions in the past were involved in the speciation observed. Dartnall (1974), following Gill (1970), has invoked a Pleistocene closing of Bass Strait to explain other marine distributions in the area. Whether this phenomenon, combined with waters of glacial origin in south-castern Tasmania, and cold subantarctic water washing the shores of the Great Australian Bight, were appropriate triggers for the successful speciation of both P. vivipara and P. parvivipara must, hopefully, be a source of fruitful argument.

ACKNOWLEDGEMENTS

The co-operation of H. A. Searle, P, Searle, M. Dutschke and B. Chester in collecting and despatching specimens to one of us (M.J.K.), and the assistance of J. McNamara, D. Keough and A. Chugg in the field was greatly appreciated. We are also indebted to Mr. W. Zeidler, who readily made available the collections of the South Australian Museum, Mr. P. G. Kempster.
who photographed the specimens, and Miss R. Altmann, for drawing up the figures.

Finally, Dr. Frank Rowe provided much helpful advice, and constructive criticism of the manuscript, as did Dr. S. Oldfield.

REFERENCES

Anonymous 1954. Munsell Soil Color Charls. Munsell Color Com., Inc. Baltimore, Maryland.
Bruce, A. J. 1971, The shrimp that eatts starfish. Animals 13: 908-910.
Dartnall A. J. 1969a. A viviparous species ol Pupiriella (Asteroidea, Asterindae) from 'Гasmanis.. Proc: Limb. Soc. N.S.W. 93 (3): 294-247.
Dartnall, A.J. 1969b, The raxonomy and biogeogruplty of the sea stai geenus Patirieller ill Tasmania. Unpublished M.Sc. Thesis, University of Tasmania. 162 FR.
Dartnall, A. J. 1970. The asterinid sea stars of Thsmanis. Proc. Roy. Soc. Jasm., 104* 73-77.
Dartnall, A. J. 1971. Australitu sea slars of the genus Putiviella (Asteroidet, Asterinidae). Proc. Limh. Soc. N.S.W. 96 (1): 39-49.

Dartnall, A. J. 1974. Littoral biogeography. In, Williams, W. D. (cd.), Biogeography and ccology in Tasmumb. Junk, The Hague: 171-194.
Hoggins, D. D. 1976. Comparative ecological studics of two intertidal sea stars, Patiriella vivipara Darinall, 1969 and P. regularis Verrill, 1913. Unpublished B asc. Honours Thesis, University of Tasmania, 153 pp ,
Giill, E. D. 1970. Current Quaternary shoreline research in Australasian Arust. J. Sci. 32: 426-430.
Mileikovsky, S. A. 1971. Types of larval development in marine bottom invertebrates, their distribution and ccological significance: a re-cyaluation. Mar. Biol. 10 (3): 193-213.
Parkin, L. W. (ed.) 1969. Handhook of South Anstralian Geology, Geol. Survey of South Australia, 268 pp.
Shepherd, S. A. 1968. 'The Shallow Water echinoderm fauma of South Australit. I. The Asteroids. Rec. S. Alus., Mus. 15 (4): 729-756.

Smith, G. F. M. 1940. Factors limiting the distribution and size in the starfish. J. Fish. Res. Bd. Can. 5: 84-103.
Ursin, E. 1960. A quantitlve investigation of the echinoderm fratua of the Norlh Sea. Mcdd. Dumm. FiskIIanunders 2: 1-204.

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

THE GENUS BATHYCOELIA A \& S IN NEW GUINEA AND PRYTANICORIS GEN. NOV. FROM THE NEW GUINEA AREA AND THE NEW HEBRIDES
(Heteroptera-Pentatomidae-Pentatominea)

By GORDON F. GROSS

THE GENUS BATHYCOELIA A \& S IN NEW GUINEA AND PRYTANICORIS GEN. NOV. FROM THE NEW GUINEA AND THE NEW HEBRIDES (HETEROPTERA-PENTATOMIDAE-PENTATOMINEA)

By Gordon F. Gross

Summary

The genus Bathycoelia is recorded for the first time from New Guinea where it is represented by chlorospila Walker, originally described from the Aru Islands. Chlorospila is redescribed and figured and its male genitalia illustrated, the latter confirming that Bathycoelia is a member of the Pentatoma group. Prytanicoris gen. nov. is described and its four included species, ambivivens sp. nov. from New Guinea and the New Hebrides, dimorpha sp. nov. from New Guinea, novaebritaniae from the Bismark Archipelago and solomonensis from the Solomons, are described and figured; the genitalia of ambivivens indicate it belongs to a new grouping of pentatomine genera near the Antestia group.

TIIE GENUS BATHYCOELIA A \& S IN NEW GUINEA AND PRYTANICORIS GEN.NOV from the new guink area and the new herrides (HETEROPTERA-PENTATOMIDAE-PENTATOMINAE)

by
GORDON F. GROSS
South Australian Museum, Adelaide, South Australiu. 5000

ABSTRACT

GROSS, G. F. 1978: The Genus Balhycoctio A \& S in New Guinca and Pryanicorks gen nov, from the New Guineas area and the New Hebrides. Rec. Si Aust. Alus. 17 (29): 417-428,

The genus Bathycoelia is recorded for the first time from New Guinea where it is represented by chlorospilat Walker, originally described from the Aru Islands. Chlorospila is redescribed and figured and its male genitalia illustrated, the latter confirming that Buthycoelior is a member of the Pentatoma group. Prytanicoris gen.nov. is described and its four included species, ambivivens sp.nov. from New Guinea and the New Hebrides, dimorpha sp,noy, from New Guinea, novaebritsaniac from the Bismark Archipelago and solomonensis from the Solomons, are described and figured; the genitalia of umbivivens indicate it belongs to a new grouping of pentatomine genera near the Antestia group.

INTRODUCTION

During a visit to the B. P. Bishop Museum in 1969 a series of large New Guinea Pentatomidae was selected out as probably belonging to a new genus of what was then known as the subfamily Halyinac but subsequently characterised (Gross, 1976, pp. 448-451) as a group of genera, the Halys group, of the subfamily Pentatominae as tedefined in the preceding year (Gross, 1975, pp. 98-101. 1(14-109). Additional material of similar appearance was obtained in the New Hebrides during the 1971 Royal Society-Percy Sladen Expedition to these islands.

Closer examination proved that there were two genera in the series. The more greenish one proved to be Rathycoelia Amyot and Serville which was represented only in the New Guinea material by chlorospila Walker, previously known only from the type specimen from the Aru Islands. Bathycoclia was believed to belong to the Pentatoma group and dissection of its male genitalia has confirmed this, The second genus is new and likewise is not a member of the Halys group. On the basis of the elongated sima of the
scent gland and the form of its male genitalias it belongs to a hitherto unrecognised grouping of Pentatominae close to the Antestia group.

ACKNOWLEDGMENTS AND ABBREVIATIONS OF INSTITUTIONS

Most of the material for this study was made available by the Bernice P. Bishop in Honolulu. abbreviated in the text to BISHOP, and by the British Museum of Natural History, abbreviated to BMNH, I am particularly indebted to the late Miss S. Nakata of Honolulu and Dr. W. R. Dolling of the British Museum in assisting in the selection and transmission of the material. Some. of the specimens examined are in the South Australian Museum which is abbreviated to SAM. Funds for my visit overseas in 1969 were made available by the Sir Mark Mitchell Research Foundation and the C.S.I.R.O. Science and Industry Endowment Fund. The work in the New Hebrides was financed by the Royal Society of London and the Percy Sladen Trust.

The halftone illustrations of the dorsal aspect of the species were prepared by Mrs, Linda Blesing and for her meticulous work my thanks. are recorded here.

SYSTEMATICS

Pentatoma Group

Bathycoelia Amyot \& Serville, 1843
Bathycoelia Amyot \& Serville, 1843. D. 11 (1; type: Pentatoma buonopozicnsis Palisot de Beauvais, 1805 (monobasic). Stal, 1865. p. 189: 1876, p. 101. Kirkaldy, 1909, p. 139. Bergroth, 1913, p. 230. Distant. 1914, p. 376.
Bathycelia (sic) Herrich-Schaeffer, 1853, pp. 290. 326.

Gastraulax Herrich-Schaeffer, 1844, p. 61; type: Gastramlax vorquatus Herrich-Schaeffer. 1844 (first mentioned species). HerrichSchaeffer, 1853, p. 326; symonymy with

Bathycelia (sic). Bergroth, 1906, p. 9. Kirkaldy, 1909, pp. $x x x i$ and 139. Bergroth, 1913, p. 230 synonymy with Bathecaelik.
Jurpiner Stăl, 1867. p. 518; type: Pentatoma langirostris. Moutrouzier \& Signoret, 1861 (monobasic). Stetl, 1876, p. 101. Distant, 1902, p. 223. Bergroth. 1906; p. 9; synonymy with Gastraular. Bergroth, 1913. p. 230; synonymy with Barhycoelia.

Large greenish, greyish-green or ochraccousgreen Pentatomimate with hend rather triangular. ocelii widely separated, second segment of antennae shorter than third, labium reaching onto abdomen and considerably surpassing hind coxac, sometimes reaching almost to apex of abdomen; anterolateral margins of pronotum nearly straight and lateral angles acute or slightly produced; sctuellum with a black, purple or green metallic spot in each anterior angle; rima of scent gland produced as a long keel to near upper margin of metapleuron; tibiae sulate or not; venter slighty raised basally and strongly sulcate to teceive the labium medially.

Remarks: The gerus ranges from Alrica through the Comoro Islands, Madagascar, Réunion, India, Malaysia, the Phillippines, Indonesia, Aru Islands, New Caledonia and the Loyalty Islands to the New Hebrides and Fiji and is hete recorded from New Guinea for the first time.

Buthvoolia was placed by Stal (1876) and Distant (1902) with such genera as Alciphroth, Glancias (as Zangis) and Neaara which I (Gross, 1976, pp. 448-451) have shown to be closcly related to each other as a grouping of genera provisionally called the Pertaroma group. The form of the aedeagus and claspers of the species redescribed below from the Aru Islands and New Guinea indicates that Bathycoelia does belong to this group, the claspers having some similarity to those of Plautia and the aedeagus to Gilaucias and Alciphrun (Gross, 1976, figs. 201 A-F, 202 $A-B)$. The long rima of the scent gland opening and a greenish color are additional features, along with its general appearance, confirming its placement in the Pentatoma group.

Specimens from New Guinea, despite a somewhat more speckled appearance, appear on measurement to be conspecific with Bathycoclia chlorospila Walker, 1867, from the Aru 1slands. As it is a unique specimen the genitalia of the type of chlorospila have not been examined to contirm this.

Bathyooelia chlorospila belongs to that section of the genus in which the tibiae are sulcate whereas the species from more eastorn Pacific

Isfands, notably B. longirostris (Montrouzier \& Signoret. 1861) from New Calcdonia and B. simhondsi Izzard, 1932, from Fiji and the New Hebrides, have rounded tibiae

Bathycoelia chlorospila Walker, 1867

Figs. 1,2 A-C
Buthycoclia chlorospilte Walker. 1867. p. 350. Bergroth, 1913, p. 230.
Gastraulax chlorospilus Kirkaldy. 1909, p. 140.
Holotype yellowish-iestaceous but probably green in life. New Gulinea specimens greyishgreen with at finely speckled appearance, On dorsum numerous brown (type) or brownishblack punctations with some punctations, patches of punctations and markings iridescent greenishblack.

Head with anteclypeus, ocular peduncle and a patch inside and behind each eye glabrous: behind anteclypeus transversely strigose and except for two central longitudinal lines of punctations, imponcate. This glabrous area bordered on either side by a longitudinal line of punctations and another longitudinal line extends forward from ncelli, Juga obliquely strigose and punctate in their inner halves. At each inner basal angle of juga a black spot and lateral margins of juga narrowly black. Ocular peduncles flattened behind and touching anterior margins of pronotum. Antennac slender. Iength of segments (holotype) $1 \cdot 14,1=67,3-38 \mathrm{~mm}$. fourth and filth missing but in one New Guinea male with the full number of segments 0.93 , $1 \cdot 72,2 \cdot 96,3 \cdot 64,3.22 \mathrm{~mm}$ and in a New Guinca female $0 \cdot 73,1 \cdot 88,3 \cdot 43,3 \cdot 90,3 \cdot 70$: first segment pale brown, sometimes darkened basally and apically, second and third black, fourth pale brown in basal, third to half and dark apically, fifth palc brown with a broad blackish annulation after the middle.

Pronotum with anterior margin nbliquely truncate behind eyes and trapeziformly excavate behind collum, anterior angles formed into a small blunt spine anterolateral margins almost straight and moderately acuic, lateral angles shortly produced and almost rectangular posterolateral margins vaguely sinuated, posterior margin almost straight; dise with some trunsverse very low ridges in a somewhal vermiculate pattern, calli glabrous, inwardly of each anterior angle a triangular patch of iridescent greenish-black or purplish punctations, these two patches sometimes connected by a narrow line of similar punctations just behind anterjor margin.

Scutellum with a prominent greenish-black or purplish, transversely strigose, circular macula in

FIG. 1. Dorsal aspect of Bathyotia chlorospila Walker,
each basal angle, apex broadly rounded; disc only slightly raised anteriorly and punctations tending to be arranged in short lines to form a vermiculate pattern.

Hemelytra narrower than abdomen for most of their length, membrane just surpussing apex of abdomen; panctations on coriaceous portions tending to form groups or short lines to give a vermiculate appearance; membrane smoky hyaline with prominent, mostly parallel, veins,

Laterotergites with posterior angles acute and black tipped, anteriorly on each Jaterotergite a large purplish or greenish-black macula.

Dorsum of abdomen not seen.
Head bencath impunctate and yellowish, a short iridescent greenish-black or black line beginning at anterior margins of eyes and passing forward over antennifers but not nearly reaching apex: labrum well developed; labiun reaching unto sixth abdominal ventrite. stylets and extrente apex blackish.

Thorax beneath yellowish, propleura and sometimes hind part of metupleura with fine brownish punctations: mesosternum with a low raised keel: anteriorly of each fore coxia an elongate black spot, exteriosly on propleuron a curved black streak starting on anteriot margin and extending it least half length of segment, anterionly on mesopleuron a small black spot exteriorly and partly concealed under hind margin of propleumon, on metapleuron a curved black streak exteriorly margining the evaporative area; evaporation area with a vermiculate pattern, peritreme long and raised. Legs yellowish and not unduly longe tibiae sulcate exterjorly.

Abdomen with segments [LI-VI broadly sulcate medially; exterior anterior angles of each segment black, behind each spiracle a small black spot and midlaterally an oblique dark spot on anterior margin of scgments IV-VII; male genitalia concealed by ventrite VII, hind margin of pygophore forming a smooth concave curve but interiorly of this a complex, sinuous upright septum. a membranous eighth segment is present in front of the pygophore. Claspers, fig. 2C, large and T'shaped with a small lateral lobe on the main shatt. Aedeagus, fig 2A-B, with phallosoma moderately selerotized, three conjunctival lobes present, one dorsal and two lateral, the latter sclerotized at their apices; medial penial plates lying on either side of a short sclerotized vesica and rather curved. Female first gonocoxae somewhat convex and with hind margins faintly curved. paratergites IX rather triangular with rounded apices.

Length (holntype) 19.2 mm . (range) $18.7-$ 21.6 mm .

Maximum width (bolotype) 10.4 mn , (range) $10 \cdot 4-11 \cdot 9 \mathrm{~mm}$.

Remarks: The original description of Walker is too brief to adequately characterise this species.

Locationt of yppe: Holotype at, ARU ISLANDS, Satunder's. 65-13, in BMNH.

Specimens Exomincd: The type and NEWV GUINEA-PAPUA Daradac Plantation, 80 km north to Port Moresby, $500 \mathrm{~m}, 4$ \& 6.ix. 1959. T. C. Maas NORTH-EASTERN paratype 32果, Wau, Morobe District, 1200 m, 20.iii. 1964. $16 . \operatorname{vil}_{1} 19612-10 . x i .1961$, the two females at light, J. \& J. H. Scdlacek, IRIAN JAYA \&. W. Scontani, Cyclops Mountains, Hollandia area 150-250 m, 25.vi.1959. J. C. Maa; q, Bodem. $11 \mathrm{~km} \mathrm{5.E} .\mathrm{of} \mathrm{Oerberfaren;} \mathrm{7-17.vii.1959}$, MV light trap. T. C. Ma; i, Waris S. of Hollandia, 450-500 m. 1-7.vifi. 1959, T. C. Maa: all specimens except the type in BISHOP.

Prytanicoris Group

The new genus Prytanicoris is very similar in appearance to New Guined members of the Halys group (c.f. species of Acamhidicllum Kirkaldy, $1904=$ Rromocoris Horváth, 1915 and Coctoteris: Stail, 1858), especially in its large size, rather rectangular head, produced lateral angles of the pronotum and slender antennac. However, the long rima of the scent gland is.suggestive of a position somewhat nearer the Antestia, Penlalomo and Rhynchocoris groups though the form of the animal excludes it from any of those three. Dissection of the aedeagus confirms a placing close on the Antestia group. Prytanicoris may in fact lie somewhere along the line of development from the Halys group to Antestion and the two other groups (Pentatomen and Rhynchocoris) with a long rinkt, If so the Antestia group should be derived more directly from the Halys groups, than from neares the Asopus group as previously suggested (Gross 1975) in discussing the origins of the various groups of Australian genera of Pentatominat.

Although the Prytamicoris group is known at the moment only from the New Guinea, Bismark, Solomons and New Hebrides areas, its presence in this region adjacent to Australia further suggests that nearly all the groups of genera of Pentatonninae in the Australasian region, except the Potops and Strachiu groups, can he easily visualised as deriving from the Asoptse. Penecilotoma-Halos groups axis.

FIG. 2. A-C. Bathycoclia chlorospita (Walker). A. aedeagus-sinistral aspect. B. ditto-ventral aspect.

The features of the Prytanicoris group must for the time being be those of its only included genus.

Prytanicoris gen.nov.
Large or medium sized, speckled brown or blackish Pentatominae with head elongate and for most of its length parallel sided but anteriorly
broadly rounded, apices of juga not quite reaching apex of anteclypeus, ocelli widely separated and just behind a line between hind margin of eyes, second segment of antennae shorter than third, labium reaching onto third segment of abdomen; anterior margins of pronotum trapeziformly excavate behind collum and obliquely truncate behind eyes, slightly separated from
latter，anterior angles produced as a blunt tooth anterolateral margios of pronotun nearly straight and lateral angles produced as a conical recurved spine or rectangularly produced，posterolateral margins somewhat sinuate，postcrior margin straight：scutellum only slightly raised anteriorly on disce，apex rounded，a black fovea in each basal angle；bucculae long and low but not reaching base of head；mesosternum with a very low keels tibiac sulcare on their outer surfaces： second abdominal ventrite constricted and depressed，abdomen medially not sulcate． Claspers（Fig， 4 C－E．）foliaceous with a sumall hook like process dorsally or posteriorly；aedeagus （Fig． 4 A－B）with phallosoma lighily sclerotized． medial penial plates ventral and strap like：two snall，lateral，membranous cionjunctival lobes and a pair of parallel dorsal lobes which are membranous dorsally and selerolized ventially， vesica free apieally and emerying between the lateral conjunctival lobes．

Type：Prytanicoris ambivivens spenov．
Prytanicoris is known from tour species which may be separated as follows：－

Key to species of frytanicoris gen．nov．

1．Laree species，Ustatly oyer 17 min in length and some－ simes over 21 mmi and $10 \cdot 4$ ．mmi－12．3 mm in widit； lateral angles of pronotum produced into a shatro slightly securved spino ．．．．．．．．．atahividens n．sp． Smatler species，if exceating 17 mm in lengels 1 not exceedinit 19 bim and less than $10-4$ mm in widh： tateral togles of pronotum nroduced into a very shost conical prucess ul obluse．

2．（1）Lateral angles st pronehum produced anro a comical process！dorsal armearance brown ind alvdomen withoul it black sabluteral stripe
Latcral ingles of prouotum obruse and ufodomen with dark iriatesechs，broads sublatersil stripe－sobmaphensis m．sp．
3．（2）Males under 16 mm in lenglit athd under $y \mathrm{~mm}$ in width：from New Guinea
dimurphat in．ap．
Males nver 17 mm in lengith and 5 mm in width；Prom

Prytanicoris ambivivens sp，nov．

$$
\text { Figs. 3, } 4 \text { A-C }
$$

Ground colour yellowish－orange with fumer－ ous brown punctations and small brown patches joining and surrounding punctations making the dorsum appear brown and tinely speckled．

Punctations on juga sparse interiorly，exteriorly dense and concentrated into a broad sublateral line，latter frequently iridesecent green or hlackish－green．Between cyes and almost 10 base of collom six parallel lines of brown puneta－ tions，the olter pair of cach side joining and terminating behind ucelli where they are frequently greenish，these sending a sinall side beanch to bind margins of eyes．Anteclypeus anteriorly and laterally dirk，in its basal half a
medial orange glabrous streak which is con－ tinued to base of head．Length of antemal seginents（holotype）－11．04，11 1－77，111 3．07， IV $4=00$, V $3.04:$（allutype）－ $10.99,111.92$. $1112 \cdot 91$ ．IV $4 \cdot 16, ~$ y 3.70 mm ；first to third segments yellowish but black exteriorly．second and third maculated with brown and third infus－ cated at extreme apex，fourtio and lifth brown with base orange－yellow．

Pronotum with anterior angle produced into a small，blunt，reflexed tooth，behind this on lateral matgin a few crenulations，rest of anterolateral margin nearly straight and terminating in a rellexed spinose process just before true lateral angles；lateral angles shortly rounded，prostero－ lateral and posterior margins nearly straight．On disc of pronotum a small tumescence just inter－ iorly of each lateral angle：punctations on most of disc discrete and arranged in short randomly directed lines，around each punctation a smajl brown annulus，these coalesce to form lines here and there，anteriorly and laterally of each callus a dense patch of iridescent greenish or greenish－ black punctations．

Scutellum marked as for hind porsions of pronotum．

Henelyira narrower interiorly than hinder parts of thorax hut considerably narrower than abdomen for most of their length．Clavus and cotium marked as for dise of scutellum and hind portion of pronotum．Membrane fumose－hyatine with brown and apically parallel veins，Latero－ tergites yellowish，anteriorly on each an obliqua broad bur und posteriorly a thomboidal patch which are iridescent greenish or blackish and punctate，hind angles of each laterotegite pro－ duced into a small，backwardly directed，infus－ cated tooth．

Dorsum of abdomen not completely seen but apparently mostly yellowish－orange

Except for a few line punctations along base ol bucculac head beneath yellow and impunctate． lrom anterior margin of eye and running forward to ist front of antennifer a curved iridescent greenish or bluckish line，in front of this und separated from it and apex of head an elongate brown streak on underside of juga．Labrum and labium yellowish but ventrally narrawly black， apical segment of latter also black．Thoracic pleura yellow and finely brown punctate，so also on epipleura and epimera and posteriorly on propleuton and metapleuron．At appex of first and second coxal clefts a small black spot． propleuron with an elongate spot of dark irides－ cent punctations midway betwen apex of coxal cleft and outer margin which does not reach

FIG. 3. Dorsal aspect of Pryanicoris ambivivens gen. \& sp.nov.

FIG. 4. A.C. Pryanicoris numbivens gen. \& sp.nov. A. aedeagus-sinistral aspect. 13. ditto-dorsal dspect. C, clasper. D. Prytunicoris dimempha sp.nov-clasper. E. Pryanicaris novabriftaniac-ilasper.
anterior margin but joins a short transverse similarly coloured line in a sulcus just behind anterior margin; on meso- and metapleura a small spot centrally in line with the anterior spot and the abdominal spiracles. Legs normal and yellowish, fore femora maculated with brown in their apical three quarters, middle and hind femora noly maculated apically, sulci of tibiae margined with black, apices of claws black.

Abdomen yellowish beneath, spiracles black. Hind margin of pygophore decply excavated with
lateral lobes rounded when viewed from below but with a more inner oblique short black ridge when viewed from behind, projecting into the excavated a pilose bilobed structure. Clasper (Fig. 4C) with a short thick basal portion which is expanded on both sides distally into membranous extensions, the upper one hooked dorsally. Aedeagus (Fig. 4A-B) with phallosoma mediumly sclerotized and provided with a short membranous thecal shield. First gonocoxae of female with posterior margins somewhat concave, top of ninth paratergites slightly reflexed.

Length: (holotype) $19 \cdot 2$ (aldutype) 21.7, (range paratypes) $17 \cdot 2-20 \cdot 9 \mathrm{~mm}$.

Width: (holotype) 11-2, (allotype) 12.7. (Tange paratypes) $10 \cdot 4-12 \cdot 3 \mathrm{~mm}$.

Types: All from Wau, Morobe District, Northeast New Guinca and unless otherwise stated at 1200 m at\&itude, in M. V, light trap und collected J. Sedlacek-HOLOTYPE a̋ . 11-12 Apr. 1964. J. \& M. Sedlacek; ALLOTYPE ․ 1250 m. 9 Jun. 1963 ; PARATYPES 2 \&. 200 m .25 Mar. 1956. Gressitt \& Willies, 2 ¢, 1-20 Nov. 1961: 8.9 Apr. 1964; ; on Coviak Ridge, 763 m , 7 Dec, 1963. H. C.: ti, 5-13 Mar. 1464; b \& f. 14.24 Mar. 1964: \&. Mount Missim. 1150 m (not at light): \& \& 5 \&. $3-7$ Apr. 1964: 오, 11-12 Apr, 1964, J, \& M, Sedlacek; ㅇ. 15 Apr,15 May 1964, M. Sedlacek; \& , Hospital Creek, Feb. 1965, J. \& M. Sedacek; \& Hospital Creek, 17 Feb. 1965 , in Malaise trap; 1 a \& 2 吕, Hospital Creck. 7 Mar. 1965. J. \& M. Sedlacek. All in BISHOP.

Other specimens cuanined: NORTHEAST NEW GUINEA Fermin (3 BJSHOP), Mr. Missim (1 BISHOP). Mokit in Torricelli Mts. (3 BISHOP), Pindiu in Hunn Peninsuka (1 BISHOP). PAPUA Agenehambo near Popondetta (2 SAM), Kiunga on Fly River (9 (BISHOP). IRAN JAYA Humbold Bay District (4 BMNH), Tor River mouth-4 km E. of Hollandia (Kota Raya) (3 BISHOP), WarisS. of Hollandia (S BISHOP), Ifyr-Cyclops Mts, (1 BISHOP), Mt. Sabron-Cyclops Mts. (7 BMNH), Bewani Mts (I BMNH). UrupuruWissel Lakes (1 BISHOP), Sabil Vallcy-Star Mts. (I BISHOP). WAIGEU Cimp Nok (is BMNH). WOODLARK (MURUA) Kalumadau Hill (2 BISHOP). NEW HEBRIDES Vila-Efate (2 SAM).

Remarks: The Woudlark specimens are darker than those from the other localities and the New Hebrides specimens have the green ividescent areas on the pronotum strongly developed along the antero lateral margins and the lateral angles are more shortly spined. The New Hebrides and Woodlark specimens may represent two further new species but unfortunately both specimens of each form are female so the shapes of the mate claspers remain unknown. the colour paterns and measurements are, however, consistent with umbivisens.

Prytanicoris dimorphat sp.now.

Fig. 4D, 5A
Ground colour yellowistr-orange with numerous brown punctations and areas of dense blackish-green itidescent punctations making the
animal appear brown mactoscopically. Females murkedly Iarger than mites.
Punctations on juga sparse interiotly, exteriorly dense and darker and concentrated into a sub. lateral linc. Interionly of each eye a glabrous patch and head lalcrally behind eyes glabrous. interiorly of each glabrous patch two lines of concentrated punctations running forward from ocelli, the outer one frequently turning outward apically to join line on juga, behind ocelli fused to base of head and sending an oblique branch to interior of cye. Length of male antennal sogments in millimelres-holotype rirst, paratype in brackets- $1 \cdot 0 \cdot(1 \cdot 0)$, II $1 \cdot 7(1 \cdot 6)$. III $2 \cdot 8$ $(2 \cdot 6)$, IV $3 \cdot 8(3 \cdot 6), V$ missing: length of female antennal segments-allotype first, paratype in brackets-1 1.1 (1.0), [1]-7 (1-6). 1112.9 (2-9), IV missing (3.6), V missing. First and third antennal segments yellowish with brown maculations. first dark exteriorly, third darkened apically; second sometimes brown. sometimes yellow maculated with brown; third brown but pale basally.

Pronotum with anterion angles produced into is small, blunt, reflexed tooth, behind this anterolateral margins vaguely crenulate sinteriorly and straight posteriorly, terminating in a blunt short conical process just before true anterolateral angles. Lateral ingles obtusely rounded, posterolateral margins vaguely sinuate and postcrior margin nearly straight. On dise of pronotum a small low tumescence just interior of each lateral angle, punctations mostly discrete but aligned is a rather vermiculate pattern, around aach callus and sublaterally an interrupted line of dense iridescenl darker punctations.

Scutellum and coriaceous portions of bemeJylra marked ats for hind portion of pronotum, Sometimes a reddish diffusion posteriorly on latter. Membrane funose hyaline with brown veins.

Dorsum of abdomen not seen but laterotergites yellowish with a dark rugulose patch anteriorly and posteriorly on cach.

Head bencath yellowish and finely. sparsely and almost concoldrously punctate. Running forward from each eye to over and before each antennifer a black strak. unother dark streak in front of this but more cxteriorly under each jugum. Labrum ind labium yellowish but latter ventrally and apically black. Thoracic pleura finely and sparsely dark punctate, anteriorly or propleuron a T-shaped mark of dense jridescent punctations with the head of the T near the anterior inargin, on mesopletiron at small friangular patch ol similar punctations on disce and on metuplearaz a
not so well developed oblique bar exteriorly of evaporative area, a short iridescent-dark line exteriorly in anterior half. Legs nombial and yellowish, femora speckled with brown except at base, tibiate more finely speckled and sometimes darkened apically, claws bluck in apical hatves.

Abdomen yellowish, spisacles black. Hind margin of pygophore deeply and triangularly excavated, lateral lobes truneate apically. their transverse axes all the truncation directed obliquely inwards. In the anterior notels of the excavation semicircularly excised behind this a black macula and directed obliquely posteriorly from the noteh and macula a groove. Clasper Fig. 4D similar to that of ambiviven. but there is no thickened portion dividing the membranous apical portion into two, the ventral extension of the membranous expansion is triangular in shape and the upper portion is hooked apically, mut dorsally.

Lengh: (holotype) 15•6. (allotypes 17•7. (male and female paratypes) $15 \cdot 6$ and 18.7 mm .

Width: (holotype) $8 \cdot 5$, (allot type) $10 \cdot 3$, (male and lemale paratypes) 8.8 and 10.1 nm .

Typers: Holotype b, JRIAN JAYA, Waris S. of Kota Raya ($=$ Hollandia). $450-500 \mathrm{mr}$, 24-31 Aug. 1959, T'. C. Mas allotype and paratype 8\%, PAPUA. Owen Stanley Range, GoilaliLoloipa, 1-15 Feb, 1958. W. W, Brandit; paratype s, same data as allotype except date 21-31 Dec. 1957. All in BISHOP.

Prytanicoris noyacbrittaniac sponov.

Fig, 4E, 5B
Very similarly marked to P_{0}, simiorpha bul males significantly larger (length 17.1 to 15.6 mm). As the unique type is male it is not known whether there is a marked sive difference between the sexes. The following characters differ, The four basal antennal segments are yellow with only a faint suggestion of darker maculations, there is a durk subapical annulus on the third (firth missing). Lengths antennal segments (holotype) - $10 \cdot 9.111 \cdot 6,1112 \cdot 6$. IV $3 \cdot 7, Y$? On the dise of head tehind base of anteclypeus there are six, not four distinat longiundinal rows of punctations, The coriaceus parts of hemelytra are reddish-orange all over with the punctations, except on clavus, very litte darker. Head beneath almost glabrous with a line of line punctations along bucculac, Lateral Jobes of pygophore with at small tooth at the ventral end of the truncate lateral lubes. Clasper Fig. 4E very similar to dimorpha with the upper membranous extension booked apically but with
a medial thekened hongitudinal portion so that there are upper and lower laminate sections.

Length: 17.1 mim.
Width: 9.4 mm .
Type: Holotype s. NEW BRITAIN, Keravat, 30 m. 4 Apr. 1956, in light trap, J. L. Gressitt, in BISHOP.

Prytanicoris solomonensis noy,sp.
Fig. 5C
Much darker in appearance than the preceding species (except the Woodlark specimens of (mbinvenys) and with lateral angles of pronotum bluntly rectangular. Ground colour yellow with numerous shining piccous punctations.

Punctations on juga absent along extreme margin and sparse imtriorly, on disc of juga forming al dense picenus bar. Between eyes six lines of punctations, the inner four parallel, the outer two curved in front of ocelli and oblique bellind ocelli, these joined by a cross branch to outer of straight lines. Length of antemal seg-ments-1 1.1. II 1.9, Ill 2.9, IV \& Y missing. First antennal segment pale basally and brown apically, exteriorly this brown more extensive than interionly; seconid and third segments yellowish-brown with faint brown maculations. third intuscated upicully.

Pronothm with anterior margin obliquely thickened behind byes und anterior angles protuced into a small, blunt tooth; behind this anterolateral margins entire and straight, terminating as a fight angle just before true lateral angles. Latter obtusely rounded, posterolateral margins faintly concave and posterior margin staight. On dise of pronotum a small tumescence just interior of cach lateral angle, punctations piceous and mostly surrounded by a brown rings many of the punctations arranged in vaguely transverse rows with the brown rings coalescing to form brown lines, calli piceous.

Scutellum and coriaceous portions of hemelytra marked like dise of pronotum but punctations in apex of former small, sparse and not ringed with a brown ennulus, and on hemelyita the dark lines more irregularly disposed. Membrane funmse hyaline with concolorous veins,

Dorsum of abdomen not seen, laterolergites blackish with a large orange spot on lateral margin of each (not reaching incisutes), strongly punctate, punctations in black areas black and in orange areas orange.

Head beneath yellow. smooth excejt for a few punctations along base of bucculae and immediately in front of internifers. Behind eye

A

B
\qquad

FIG. 5. A. Dorsal aspect of anterior portion of frytanicoris dimorpha sp.nov. B. Dorsal aspect of anterior portion Prytanicoris novacbrittaniac sp.nov. "C. Dorsal aspect of anterior portion of Prytanicoris solomonensis sp.nov.
narrowly brown, in front of eye a brown bar passing forward over antennifer and tapering to end about half way to apex of head, on underside of juga a brown bar and in front of antennifer a diffuse brown patch. Labrum and labium yellowish but both ventrally black, stylets and
apical segment of labiun also black. Thoracic pleura ycllowish and sparsely punctate except posteriorly on propleuron where punctations are coarser. On disc of propleuron a large, greenish, iridescent, vaguely rectangular marking; on mesopleuron a brown to piccous patch at apex of
coxal cleft and another on dise nearer anterior margin than posterior; metapleuron darkened on evaporative area and behind and exteriorly of latter. Legs yellowish brown, femora faintly speckled with brown, tibiae darkened on either side of sulcus, tarsi darkened dorsally and laterally, claws dark in apical halves.

Abdomen yellowish, spiracles and a brown longitudinal band passing just below them brown, a short brown bar posteriorly in centre of segment VII. First gonocoxae mostly piceous along with interior halves of eighth paratergites.

Width: 9.9 mm .
Type: Holotype 오 SOLOMON ISLAND, Bougainville (S.), Mosigata, 25 m, 3 May 1956, E. J. Ford Jr., in BISHOP.

REFERENCES

Amyot, C. J. B. and Serville, A. 1843. Histoirs Naturelle des Insectes. Hémiptères. (Roret, Paris).
Bergroth, E. 1906. Neue austro-malayische Hemiptera. Wien. ent. Ztg., 25 (1): 12-16.

Bergroth, E. 1913. Note on the Genus Bathycoelia Am. \& Serv. (Hem. Pentatomidae.) Ann. Soc: ent. Belg., 57: 230-232.
Distant, W. L. 1902. The Fauna of Bribish India including Ceylon and Burma. Rhynchota-Vol. 1. (Friedländer \& Sohn, Berlin.)
Distant, W. L. 1914. Rhynchota from New Caledonia and the surrounding islands, in $\mathrm{F}_{\text {. Sarasin and I. Roux's }}$ Nova Caledonia, Zoologie, 1, Jivt. 4 (10): 369-390.
Gross, G. F. 1975. Plant feeding and other Bugs (Hemiptera) of South Australia Heteropetra-Part I. (Govt. Printer, Adelaide.)
Gross, G. F. 1976. Plant feeding and other Bugs (Hemiptera) of South Australia. Heseroptcra-Hars II. (Govt. Printer, Adelaide.)
Herrich-Schaeffer, G. A. W. 1842-1844. Die Wanzenartigen Insecten. Getreu nach der Natur abgebildet und beschrieben. Part 7. (C. H. Zeh'schen, Nuremberg.)
Herrich-Schaeffer, G. A. W. 1853. Die Wanzenarfigen Insecton. Getrue naoh der Natur abgebildet und beschrieben. Part 9. (J. L. Lotzbeck, Nuremberg.)
Kirkaldy, G. W. 1909. Catalogue of the Hemipterat (Ileteroptera) with Biological and Anatomical References, lists of Foodplants and Parasites, etc. Vol. 1 Cimicidae. (Felix Dames, Berlin.)
Stâl, C. 1865. Hemipiera Africana. Vol. 1. (Norstedt Oflice, Stockholm.)
Stâl, C. 1876. Enumeratio Hempterorum. 5. K. syenska Verensk Akad. Handl. 14 (4): 1 -162.
Walker, F. 1867. Catalogue of the Specimens of Heterop-terous-Hemiptera in the Collection of the British Museum. Brit. Mus. Pub., Pt. 1: 1-240.

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

THE TRIBE HYALOPEPLINI OF THE WORLD (HEMIPTERA: MIRIDAE)

By José C. M. CARVALHO

THE AUSTRALIAN FAUNA
In collaboration with GORDON F. GROSS

THE TRIBE HYALOPEPLINI OF THE WORLD (HEMIPTERA: MIRIDAE)

by Jose C. M. CaRvalho
The Australian Fauna in collaboration with Gordon F. Gross

Summary

The present paper comprises a monographic revision of the tribe Hyalopeplini (Hemiptera: Miridae, Mirinae) with descriptions of new genera and new species.

THE TRIBE HYALOPEPLINI OF THE WORLD (HEMIPTERA:MIRIDAE)

By José C. M. CARVALHO*

Museu Nacional, Rio de Janciro, Brazil

THE AUSTRALIAN FAUN \wedge
In collaboration with GORDON F, GROSS, South Australian Museum. Adelaide 5000
(Wish 242 lext-figures)

Abstract

CARVALHO, Jnse C. M, The Tribe Hyalopeplini of the World (Hemiptera:Miridae), The Australian Fauna in collaboration with Gordon F. Gross. Rec. S. Aust. Mus. 17(30): 429-531.

The present paper comprises a monographic revision of the tribe Hyalopeplini (Hemipicra:Miridae, Mirinac) with descriptions of new genera and new species. The taxa included and described are, in order: AUSTROHYALOMA Carvalho \& Gross n.gen - A. collessi Carvalho \& Gross m.sp., North Queensland: CHRYSORRHANIS Kirkaldy-C. daphne Kirkaldy, Pulo Laut, Sumatra, Larat, Borneo; G. hyalinus (Usinger) n.comb., Saipan; C, lineatus Carvalho n.sp., West Irian, Larat, Hainan; CORIZIDOLON Reuter-C: australiense Carvalho \& Gross n.sp ${ }_{1}$, Australia; C. dexlineatum Dellatre, Ivory Coast; C. notaticolle Reuter, Mauritius; GUIANERIUS Dis-tant-G. bypicus Distant, Borneo, Philippine Is.; GUISARDINUS n.gen.-G. neoguineanus Carvalho n.sp., New Guinea; G. solomonicus Carvalho n.sp., Solomon Is.; which is compared with Argenis incisuratus (Walker), a convergent member of the Mirini from Sri Lanka; GUISARDUS Distant-G. bogorensis Carvalho n.sps, Java; G. chinensis Carvalho n.sp. South China; G. crisoovalensis Carvalho n.sp., Solomon Is.; G. fasciatus Carvalho n.sp., Solomon Is.: G. pellucidus Distant, Java Malacca, Tenasscrin, Burma, Vietnam, Laos; G. strigicollis Poppius, Mentawei, New Guinea; HYALOPEPLINUS n.gen.-H. antennalis (Distant) n.comb., New Caledonia, Loyalty Is.; H .

[^30]calrnsensés Carvalho \& Gross n.sp., Queensland: H cristovalensis Carvalho m.sp., Solomon Is.: H . fijiensis Caryalho \& Gross m.sp., Fiji; H. malayensis Carvalho n.sp., Lans, Sumatra. Sri-Lanka, Malay Peninsula; H. papuensis Carvalhon.sp., Papua-New Guinea; H. philippinensis Carvalho n.sp., Philippine 1s.: H. samoanus (Knight) n.comb. Samoa; H. solomonensis Carvalho n.sp. Solomon 1s,i HYALOPEPLOIDES Poppius, H. alienus Carvalho \& Gross ñ.sp, Queensland; H_{1} australiensis Carvalho \& Gross n.sp, Queensland: H. bomeensis Carvalho n.sp., Borneo; H. cyanescens Poppius. New Guinea; H. fasciaus Carvalho n.sp., Java; H. maculatus Carvalho n.sp., New Guinea; H. neoguineanus Carvalho n,sp. New Guinea; H. ochraceus Carvalho n.sp., New Guinea; H, queenslandensis Carvalho \& Gross n.sp., Queensland; H. mbrinoides Carvalho n.sp., New Britain; Bismark Archipelago; H. rubriniscus Carvalho n.sp. New Ireland: H. similaris Carvalho n.sp., Solomon Is. : H. trinotatus Carvalho n.sp., New Ireland: HYALOPEPLUS Stál and ADHYALOPEPLUS n.subgen.-HYALOPEPLUS (HYALOPEPLUS) aneitymmensis Carvalho n.sp., Aneityum I.: H.(H.) clavatus Distant, Bangladesh; H.(H.) grandis Carvalho n.sp., Philippine Is.; H.(H.) gummensis Usinger, Guam I.; H.(H.) hebridensis Carvalho n.sp., New Hehrides; H.(H.) Kandanensis Carvalho n.sp., New Ircland, Solomon I_{i} H. (H.) malayensis Carvalho m.sp., Malaya; H.(H.) marquesunus Carvalho n.sp., Marquesas Is.; H.(H.) nigrifrons (Hsiao) n.comb., Philippines, Indonesid, New Guinea; H.(H.) nigroscutellatus Carvalho nisp., New Guinea, Philippine Is.; H.(H.) rama (Kirby), Sri Lanka, Sumatra, Philippines, Borneo, Java,

Malaya; H.(H.) rubroclavatus Carvalho n.sp., Queensland, West Irian; H.(H.) rubrojugatus Carvalho n.sp., New Guinea; H.(H.) smaragdinus Roepke, Java. Borneo; H.(H.) spinosus Distant, Vietnam, Assam; H.(H.) tongaensis Carvalho n.sp., Tonga I., Fiji; H.(H.) tutuilaensis Carvalho n.sp., American Samoa; H.(H.) vitripennis (Stal), Java, Sumatra, Borneo, Sarawak, Philippine Is., Malaya, Palau Is., Solomon Is., Moluccas, Mariana Is., New Hebrides, Babelthaup Is., New Britain, Papua New Guinea, Bismark Archipelago, Queensland, Singapore, Indo-China, Sumatra, Vietnam, Laos; H. HYALOPEPLUS (ADHYALOPEPLUS) n.subgen.-H. (A.) cuneatus Carvalho n.sp., New Guinea; H. (A.) loriae Poppius, New Guinea, Queensland, New South Wales; H.(A.) madagascariensis Carvalho n.sp., Madagascar; H.(A.) pellucidus (Stål), Hawaiian Is., Marquesas Is.; H.(A.) samoanus Knight, Samoa; H.(A.) similis Poppius, New Guinea, Malaya, India, Australia, Timor, Solomon Is., Philippines Is., New Britain, Borneo, Africa; HYALOPLICTUS n.gen.-H. minor n.sp., Solomon Is.; H, solomonicus Carvalho n.sp., Solomon Is.; ISABEL Kirkaldy-I. ravana (Kirby), Sri Lanka, Sumatra, Philippines, Burma, Formosa, South China, New Guinea; KOS MIOMIRIS Kirkaldy-K. rubroornatus Kirkaldy, Borneo, Malaya, Philippines, Thailand; MACROLONIUS Stal-M. schenklingi Poppius, Formosa; M. sobrinus (Stâl), Borneo, Sumatra, Malaya, Singapore; M. superbus Distant, Burma; ONOMAUS Distant-O. elegans Poppius, Burma; O. lautus (Uhler), Japan; O. pompeus Distant, Burma; RAMBEA Poppius-R. annulicornis Hsiao, Philippine Is.; R, gracilipes Poppius, Sumatra; R. malasica Carvalho n.sp., Malaya.

A list of genera and lists of species are included, together with keys to genera, subgenera and species. Each species is illustrated in full dorsal view and where possible also their external morphology and male genitalia. A neotype is designated for Capsus vitripennis Stål. The genera Macrolonidea Hsiao and Euhyalopeplus Hsiao are relegated to the synonymy of Chrysorrhanis Kirkaldy and Guisardus Distant respectively. The following species names have been relegated to synonyms:-Macrolonidea cyanescens Hsiao (of Chrysorrhanis daphne Kirkaldy); Guianerius palliditarsis Poppius (of G. typicus Distant); Hyalopeplus smaragdinus rubrinus Roepke (of H. rama (Kirby)); H. amboinae Carvalho (of H. vitripennis (Stål)); H. uncariae Roepke (of H. vitripennis (Stâl)); H. bakeri Poppius and H. horvathi Poppius (of H. similis Poppius); H. krishna Ballard (of H. similis Poppius); Isabel beccarii Poppius and I. horvathi Poppius (of Isabel ravana Distant); Kosmiomiris modigliani Poppius and K, scutellaris Poppius (of K. rubroornatus Kirkaldy).

The Australian and some of the Pacific Islands components of the tribe Hyalopeplini were written up in collaboration with Gordon F. Gross, Department of Entomology, The South Australian Museum, Adelaide. In the summary above and in the text which follows those new taxa on which we worked jointly are indicated by the use of both authors' names after the genus or species name.

CONTENTS

Introduction. 430
Tribe Hyalopeplini Carvalho. 431
List of genera included in the tribe 432
Key to the genera of Hyalopeplini 432
Genus Austrohyaloma Carvalho \& Gross,
n.gen. ...
Chrysorrhanis Kirkaldy 433
Corizidolon Reuter . 437
Guianerius Distant 440
Guisardinus n.gen. 441
Guisardus . 441
Hyalopeplinus n.gen......................... 451
Hyalopeploides Poppius 463
Hyalopeplus Stå 476
Hyalopeplus subgen.................... 478
Adhyalopeplus n.subgen, 503
Hyaloplictusn.gen. 511
Isabel Kirkaldy . 513
Kosmiomiris Kirkaldy 516
Macrolonius Stål . 520
Onomaus Distant. 523
Rambea Poppius 526
References . 530

INTRODUCTION

This paper deals with the tribe Hyalopeplini (Hemiptera: Miridae) of the World and is based principally on collections assembled by the Bernice P. Bishop Museum, Honolulu, by the Wau Ecological Station, Papua New Guinea and by the British Museum of Natural History.

Type specimens and unnamed collections were also provided through the courtesy of the Zoological University Museum, Helsinki; Riksmuseum of Natural History, Stockholm; Natural History Museum, Leiden; National Natural History Museum, Budapest; American Museum of Natural History, New York; South Australian Museum, Adelaide; Australian National Insect Collection, Canberra; Department of Entomology, University of Queensland, Brisbane and by other museums or organisations, as mentioned in the text. Holotypes and other type categories are deposited in the various collections named after the descriptions.

The author wishes to acknowledge his grateful thanks to Doctors J. L. Gressitt and Wayne C. Gagne. who provided most of the material for this study and to express his appreciation to his colleagues W. R. Dolling (London); M. Meinander (Helsinki): R. C. Froeschner (Washington): I. Persson (Stockholm); T. Vasárhelyi (Budapest); P. Doesburg Jr. (Leyden); R. T. Schuh (New York); G. F. Giross (Adelaide); D. F. Waterhouse (Canberra) and T. E. Woodward (Brisbane), for the loan of material.

The greater part of work was undertaken at the National Museum, Rio de Janeiro. Most of the illustrations were made there under the author's supervision by Paulo Wallerstein, Luiz Antonio Alves Costa and Paulo Roberto Nascimento.

The Australian and some Pacific Islands material was studied jointly with my colleague Gordon $\mathrm{F}_{\text {. }}$ Gross and joint authorship of new taxa is indicated in the appropriate places. Mr. Gross also kindly went through the whole manuscript and corrected the English wherever an unidiomatic or awkward expression had crept in. He also illustrated several of the Australian species.

The following abbreviations for collections have been used

AMNH-	The American Museum of Natural History, New York.
ANIC-	The Ausiralian National Insect Collection, Canberra.
BISHOP-	The Bernice P, Bishon Museurr, Honolulu,
BMNH-	The Eritish Museum (Natural History), London.
BUDAPEST	Termeszettudományi Müzeum, Budapest.
HELSINK1-	Zoological Museum, University of Fielsinki,
LEIDEN-	Rijksmuseum van Natuurlijke Historie, Leiden.
OU-	Unversity of Oueensland, Brisbane.
SAM-	The South Australian Museum, Adelaide.
STOCKHOLM-	Narurhistoriska Riksmuseum. Stockholm.
USNM-	United States National Museum,
	Washington.

TRIBE HYALOPEPLINI CARVALHO, 1952

Hyalopeplini Carvalho, 1951, p. 133; Carvalho, 1952, p. 38; Carvalho, 1955, p. 14: Carvalho, 1959, p. 317

This tribe was erected to include a group of genera within the subfamily Mirinae with hemelytra glassy and transparent, without or with incomplete nervures, allowing the membranous wings and abdomen to be distinctly seen from above.

The great majority of species are found in the Pacific region and show several characters in common, such as the pronotum and scuicllum totally or partially rugose, rugose-punctate or coarsely punctate only; hemelytra vitreous, if not entirels then at least corium distinctly transparent, bus usually the whole upper wing is transparent though the cuneus and embolium or even the clavus may be opaque in some specimens, in this case with some sparse hairs.

Type genus: Hyalnpeplus Stál, 1870,
In previous works the genera Iridopeplus Bergroth, 1910 from South America and Moroca Poppius, 1912 from Papua-New Guinea were included in this tribe. In the present revision, however, these genera are excluded and transferred to the tribe Mirini Hahn, 1831, since they show a complete neuration on the corium and the opaque portions of hemelytra are due to structure and not to colour. Pleurochilophorus Reuter, 1905 from Africa was also recently studied by the author and found to have a complete neuration on the hemelytra, a character which excludes it from the tribe.

In this revision 15 genera are secognised as belonging to the tribe. Two formerly recognised genera: Macrolonidea Hsiao, 1944 and Euhyalopeplus Hsiao, 1944 are considered to be synonyms of carlier described genera and four new genera are described; Hyaloplictus n.gen., Hyalopeplinus n.gen., Guisardinus n.gen. and Austrohyaloma n.gen. The genus Hyalopeplus Stål, 1870 is subdivided into twa subgenera: Hyalopeplus Stal and Adhyalopeplus n.subgen.; based mainly on the structure of the pronotum and shape of the spiculum of the vesica of aedeagus.

List of genera included presently in the tribe:

1. Austrahyaloma Carvalho and Gross n.gen.
2. Chrysorrhanis Kirkaldy, 1902
3. Corizidolon Reuter. 1907
4. Guianerius Distant. 1903
5. Guisardinus nigen.
6. Guidardus Distant, 1904
7. Hyalopeplinus Carvalho and Gross n.gen.
8. Hyalopeploides Poppius, 1912
9. Hyalopeplus Stal, 1870
10. Hyaloplictus n, gen.
11. Isabel Distant. 1902
12. Kosmiomiris Kirkaldy, 1902
13. Macrolonius Stảl, 1870
14. Onomatus Distant, 1904
15. Rambea Poppius, 1912

Key to the genera of Hyalupeplini Carvalho

1. Corium with radial nervute present only apically; segment 1 of antenna slminst twice as long in widit of head; membrsnc with two charactenstic bent fasciac apically
fsabel Distant
Corium without netvures or median mervure complete segment 1 of antenna not almost twice as long as width of head, or if so then membrane without the swo lasciae mentioned above
2. Pronotum distinct, deep and cosrsely punctate, withous uraces of transverse fugositics (fie- 256)
Pronoruth smooth, distinctly rugose ransversely or with punctures intermixed with rugosities of only very finely punctulate (ligs. 158, 210, 276)
3. Collar smonth or with several faint oblique striations .. 4 Collar punctate, rugose-punctare, Rugose or transversely striate, usually wide, with medial length approximarely equal to half the width of eye
4. Rostrum reuching the 7th or 8 th abdominal segment, eyes occupying the whole sides of head; lorum strongly prominent Kosmiomiris Kirkaldy
Rostrum reaching the midde coxae; eyes not occupying the whule side of head; lorum normal

Ausirnhyaloma Carvalhes and Grnss. n.gen.
5. Scutellum smooth or only sparsely punctate; segment I of antenna longer than width of head

Chrysorthanius Kirkaldy
Scutellum distinctly, densely and coarsely punctuate ... 6
6. Humeral angles globose; head roundcd posteriorly eyes prominenti segment I of antenna incrassate subbasally; small species

Guisardinus n.gen.
Hfumeral angles not globose; head not rounded posteriorly, eyes not prominent; segment it antenna narrowed towards base, large species Macrolonious Stal
7. Pronoturn beset with numerous short dark bristles; first antennal segment narrowed at apical thind (incrassate subbasally ind at cxtreme apcx) ..- Corizidolon Reuter
Pronotum without short black bristles; tirst antennal segment not noticeably narrowed at apical third
8. Pronotum noticeably narrowed anterionly, collar very wide its mesal length greater than thickness of segment I of antenna which is bent outwards; cuncus more than twice as long as wide at base.................. Hyaloplichs r.gen. Pronotum not noticeably narrowed anteriorly or if so collar not very side, its mesal length equal to, or less than. thickness of segment Inf antenna; cuneus shorter
9. Pronotum and scutellum smooth (including collar) or only very finely punctulate; segment I of antenna longes than width of head (fig. 276)
Pronorum and scutellum distinctly rugose, at least on median portion, with black longitudinal tasciae ot spots, or when this is mot the case, segment I of antenna about as long as or shorter than width of head ($\mathrm{f}_{\mathrm{l}} \mathrm{g} .41,75$)
10. Eyes consiguous with collar; pronotum not constricted in front, strongly convex, calli obsolete; segment 11 of antennas slightly incrassate towards spex (ig, 23).

Guianerius Distant
Eyes placed at middle of headi pronotum noticeably constricted anteriorly; calli. prominent; segment Il of antennae linear (fig. 289)
11. Cuneus long, more than twice as long as wide at base; body erectly pilase mostly on scutellum; pubescence of hind tibiac shortep than width of segment; species pale yellow and bown or castaneous

Onomaus Distant
Cuneus short, less than iwice as long as uide at hase; body long and erectly pilose on pronotum and scutellum; pubescence of hind ribjac ercet, as long as or longer than width of segment (fig. 288)
12. Hewd wide, founded postenoriy, about three times wider than long, segment lof antenna incrassate subbasally; dise of pronotum coarscly rugnse, humeral angles globose (fig. 411,..... Guisardus Distant
Head only about twice as long as wide, not rounded posterivily: segment I of antenna narrower basally; if dise of pronotum tugose then humeral angles not globose, 13
13. Rugosities of pronotum present anly on the black fasciae or spot of dise and scutellum; segment 1 of antenna very short, ahoul as long as half the width of vertex: cunells sransparent, ochraceous, pale yethow or hyaline

Hyalopeplinhes ngen,
Rugosities of pronotum present on the whole surface of disc intermixed with punctures not, or present only on two anterior thirds of dise; segment I of antenna about as lone as width of head or if shorter, always longet half the width of vertex; cuncus usually opaque
14. Rugosities of pronatum occupying only the anterior two thinds, portion before hind margin finely punctate (fig. 98. 112. 113); dise noticenbly constricted anteriorly, calli prominent, humeral angles rounded

Hyalopeploides Poppius Rugosities of pronotum occupying the whole surface, including porrion before hind margin, anterior margin of disc nof noticeably constricted, calii not prominent; humeral angles usually spinously produced outwards (fig 75, 181)

Hyalopeplus Stal

Austrohyaloma Carvalho and Gross, n.gen.

Type-species: Austrohyaloma collessi Carvalho and

 Gross, n.sp.Body elongate and glabrous above. Head distinctly wider than long and virtually withont a collum, in front of eyes inclined vertically, clypeus not visible from above; frons obliquely striate, projecting between antennal peduncles and broadly rounded; vertex not carinate posteriorly and with a faint longitudinal sulcus on disc between eyes. Eyes widely separated dorsally, semistylate; laterally elliptical but not reaching base of head. In lateral view clypeus not very prominent and fecbly arched; gena and gula separated by a strong oblique fossa almost reaching antennal peduncle. Bucculae short but prominent and semicircular. Antennae cylindrical and long and slender, first segment as long as head and noticeably incrassated at base, second segment pilose and about iwice as long as first. Rostrum reaching to middle coxae, first segment incrassated and surpassing base of head.

Pronotum with a strong collar which is not punctate but has several faint, oblique striolations, calli prominent and glabrous and behind calli strongly and reticulately punctate; lateral margins
obtusely convex in region of calli, behind this nearly straight, lateral angles broadly rounded, posterior margin almost straight. Disc elevated postetiorly and sloping to region of calli and collar. Mesoscutum exposed, striolate laterally but glabrous medially. Seutellums slightly swollen and smooth, lateral margins crenulate.

Hemelytra nearly vitreous except for exocorium, clavus and cuncus which are more opaque. Underside of body with propleura punctate, mesosternum vaguely convex and medially divided, mesopleuria with oblique striations and orifice of scent gland without a pcritreme. All coxae relatively long, anterior pair nearly contiguous, rest of legs normal. Abdomen tapering, reaching about half lengits of cuncus.

Remarks; This genus is characterised by the portion of pronotum behind calli and scutellum being densely and reticulately punctate but punctations on pronotum absent from collar and calli.

Ausirohyaloma appears to be most closely related to Guisardinus n.gen, from which it differs in having the pronotal collar almost smooth, though there are in lact three oblique striations on each side to be seen under good lighting, in having the hind margin of the pronotum not bisinuate, the scitellum not punctate and the median vein reaching the hind margin of corium. It also upproaches Kosmiomiris Kirkaldy, 1902 which has also a smooth collar by the much shorter rostrum, by the eyes not occupying the whole side of head, and being much smaller in size.

Austrohyaloma collessi Carvalho and Gross, n.sp.

(Figs, 1-2)
Characterised by its colour and dimensions,
Fermale: Length 5.3 mm , width 1.6 mm . Head: Length 0.8 mm , width 1.0 mm , vertex 0.42 mm . Anfennai Segment I_{+}length $0.8 \mathrm{~mm}, ~ I I, 1.6 \mathrm{~mm}$; IlI, 1.1 mm ; IV, missing. Pronolum: Length 1.2 mm , width at base 1.6 mm . Cuneus: Length 0.86 mm , width at base 0.36 mm .

General coloration light brownish yellow with a faint greenish tinge; anternae and cyes brown; disc of pronotum with a thin median longitudinal brown line and on margin of lateral angles and on posterior lateral margin of collar a blackish-brown spot. Beneath rostrum brown, rest concolorous.

Glabrous above. appendages with a fine very short and recumbent pilosity, on tibiae and sarsi mixed with long, fine erect hairs. First aniennal segment swollen near base.

Underside of body sparsely and shortly pilose.
Male: Unknown.

Figs. 1-2-Austrohyaloma collessi Carlvalho \& Crross, n.sp.: fig. 1-Female, holotype; Ident, fig. 2-Lateral view of head ant pronoturn.

Holotype: female, NORTH QUEENSLAND; 16 kin (10 mi) S of Daintree, 25.iv,1967. D. H. Colless (ANIC).

Chrysorrhanis Kirkaldy, 1902
Chrysorrhanis Kirkaldy, 1902, p. 226; Poppius, 1912, p 439; Carvalho, 1959. p. 318.

Macrolonidea Hsiao, 1944, p. 372, (new synonymy); Carvalho, 1955, p. 106; Carvalho, 1959. p. 322.
Type-species: Chrysorrhanis dnphne Kirkaldy, 1902.
Body elongate; pronotum, including collar. strongly and deeply punctate, hemelytra hyaline, pubescence very short. Head wider than long, vertex short and longitudinally sulcate, immarginate, about as wide as one eye when seen from above; eyes slightly removed from anterior margin of pronotum; costrum reaching base of intermediate coxae. Antenna linear, longer than body, segment I about as long as pronotum, segment. If about twice as long as 1 .

Pronotuin coarsely and deeply punctuate, posterior lobe strongly convex ${ }_{1}$ lateral margins rounded, collar wide, punctate, calli small; mesosculum concealed; scutellum smooth, prominent, creaulate along lateral margins, apex acute.

Hemelytra hyaline, embolium slightly sinuate al middle, clavocorial and embolio-corial sutures with punctures, cuncus slightly longer than wide at base, membrane bicellulate. Propleura punctate, ostiolar
peritreme large, femora thickened before apex, tibiae minutely and sparingly spinulose parempodia convergent at apex.

Differs from Macrolonius Stal, 1870 by the smooth scutellum. and by the much smaller size.

Key to the specics of the genus Chrysoritanis:

1. Apical portion of hind femora enlarged, black, size larger, about 5 mm long
daphne Kirkaldy
Apical portion of hind femora not cnlarged, pale yellow; size smaller. .
2. Corium with a transverse dark fascia level with apex of çavus... linearis n.sp. Corium unicolorous, pale yellow to uchraceoun
hyalinus Usinger
Chrysorrhanis daphne Kirkaldy, 1902
Chrysorhanis daphne Kirkaldy, 1902a, p, 226: Poppius; 1912a, p. 440; Carvalho, 1959, p. 318.
Macrolonidea cyamescens Hsiao, 1944, p, 372, fig. i Carvalho, 1959, p, 322 (new synonymy),
(Figs. 3-7)
Characterised by the punctation of the body and by its colour.

Malè: Length 5.2 .5 .9 mm , width 1.6 mm . Head: Length 0.4 mm , width $0.8-0.9 \mathrm{~mm}$, vertex $0.28-0.30$ mm . Anterna: segment J_{1} length $1 \cdot 0.1 .1 .2 \mathrm{~mm} ; 11,2 \cdot 2-$ $2.6 \mathrm{~mm} ; 11,1.7 \mathrm{~mm}$; IV. 0.7 mm . Pronoume Length 1.2 mm , width at base 1.4 mm . Cuneus: Length 0.56 mm , width at base 0.40 mm .

General coloration flavous with dark brown markings; segments II-IV of antenna dark brown, pronotum with collar laterally, calli, humeral angles and two elongate spots or a single spot in the middle of disc posteriorly, base and apex of scutellum, dark brown. Hemelytra hyaline, extreme margin of embolium, apex of corium and cuneus, veins of membrane, dark brown. Metapleura, apex of abdomen, apex of anterior tibia, apical fourth of posterior femora and third tarsal segments fuscous to black.

Morphological characters as indicated for genus,
Genivaliar Penis (fig. 4) with membranous lobes and no sclerotised spiculs. Left paramere (fig, 5) falciform, pointed, with dorsal setae. Right paramere (fig. 6-7) elongate, tapering to apex, with numerous dorsal setae.

Female: Length $5 \cdot 6-6 \cdot 4 \mathrm{~mm}$, width $1 \cdot 5-1.7 \mathrm{~mm}$, Head: Length 0.4 mm , width 0.9 mm , vertex 0.72 mim. Antenna: Segment I, length $1.0-1.3 \mathrm{~mm}$; II, 2.0 .2 .7 mm ; III, $1.6 \mathrm{~mm} ;$ IV, 0.7 mm . Prononum: Length 1.3 mm , width at base 1.5 mm . Cuneus: Length 0.44 mm , width at base 0.36 mm . Similar to mate in coloration and general aspect, slightly more robust.

Fig 3-Macroloniden tyanescens Hsino, male, holotype ($=$ Chrysomhanis daphne Kirkaldy.)
Geographical distribution: Borneo, Sumatra, Pulo Laut and Larat Islands.

Types and specimens studied: female, holotype Chrysorrhanis daphne. INDONESIA: Pulo Laut, J. Gribode, Col. Kirkaldy, ex-col. Montandon (HELSINK1); female, Benkoelen. Mocreng Lima, Sumarra, (Mus. Paris, Col. Noualhier, 198); male, holotype Macrolonidea cyanescens Hsias; one female. Larat (Tenimbar Is.) , F. Mult, in the author's collection. EAST MALAYSIA; Sandakan. Baker 15.759 (USNM),

Remarks: Differs from Chrysorrhanis hyalinus (Usinget, 1946) by its larger size, by the colour of pronotum and posterior femora.

Chrysorrhanis hyalinus (USINGER, 1946), n.comb.
Macrolonidea hyalinus Usinger, 1946, p. 60, fig.: Carvalho, 1956, p. 97, fig:: Carvalho 1959. p. 322.
(Figs. $\mathrm{K}=10 \mathrm{O}$

Figs. 4-7-Chrysormanis daphne Kirkaldy: Fig. 4-Penis; Fig. S-Left paramere; Fig. 6, 7-Right paramere

Characterised by the coloration of the pronotum and by the size of the body.

Male: Length 4.2 mm , width 1.2 mm . Head: Length 0.3 mm , width 0.8 mm , vertex 0.32 mm . Anfenna: Segment I, Length 0.8 mm ; II, 1.6 mm ; III, $0.8 \mathrm{~mm} ;$ IV, 0.4 mm . Pronotum: Length 1.0 mm , width at base 1.2 mm . Cuneus: Length 0.44 mm , width at base 0.28 mm .

General coloration ochraceous with fulvous on head anteriorly, eyes brown, apex of second antennal segment and terminal segments (except for narrow white base of third) dark brown; pronotum with humeral angles and a fascia on either side of middle near hind margin brown; scutellum yellow with black base (mesonotum), an ill-defined brown line along middle, and apex brown. Hemelytra clear, hyaline, the inner margin of clavus broadly dark brown to black, the outer punctate margin of clavus brown, corium pale along costal margin and narrowly at apex of clavus, elsewhere along inner margin and apical margin brown, cuneus dark brown at inner base, pale along outer margin, membrane
clear. Underside of body mostly pale, brown at middle of abdomen, apex of rostrum and apices of tarsi brown.

Morphological characteristics as mentioned for genus; pronotum much less narrowed anteriorly than in daphne Kirkaldy, scutellum not rounded laterally.

Figs, K -10-Chrysorrhanis hyalinus (Usinger): Fig. 8-Female holotype; Fig. 9-Left paramere; Fig. 10-Right paramere

Genitalia: Penis with membranous lobes and no sclerotised spiculï. Left paramere (fig, 9) curved, with enlarged basal portion and dorsal setae, Right paramere (Fig, 10) elongate, slender, with dorsal setae

Female: Similar to male in coloration and general aspect. Length 4.6 mm , width 1.4 mm ; vertex 0.30 mm segment I of antenna 1.0 mm long.

Geographical distribution: MARIANA IS.. Saipan, Tinian, Garapan.

Host plant; Paipay (Guamia mariannae).
Specimens studied: females, Saipan, 1 to 2 miles east of Tanapag, Mar. 1944, Dybas col. beating vegetation.

Differs from Chrysorrhanis daphe Kirkaldy by its smaller size and by the hind femora being not enlarged apically and pale yellow. The genitalia of this species were studied from specimens in the type series.

Chrysorrhanis lineatus, n.sp.

(Figs. 11-15)
Characterised by the transverse fascia or line on the corium.

Male: Length 4.6 mm , width 1.4 mm , Head: Length 0.2 mm , width 0.8 mm , vertex 0.28 mm . Antennas Segment I_{2} length $1.0 \mathrm{~mm}: 11,2.2 \mathrm{~mm}$; III, $1.3 \mathrm{~mm} ;$ IV, 0.7 mm . Pronotum: Length 1.0 mm , width at base 1.3 mm . Cuneus: Length 0.48 mm . width at base 0.28 mm .

General coloration pale yellow to orchracedus with dark brown areas; eyes, apical portions of segment II of antenna, segments III-IV, and spot on humeral angles dark brown; mesoscutum and apex of scutellum fuscous; hemelytra glassy, transparent, outer and inner margins of embolium, clavus, corium and cuneus dark, a characteristic transverse fascia or line on corium level with apex of clavus; corial commissure, apex of corium and nervures of membrane dark brown, membrane hyaline, Underside of body pale yellow, a wide fascia on propleura, side of mesosternum and pleura dark brown; legs pale yellow, apex of hind femora slightly darker.

Corium fincly punctulate.

Genitalia: Penis (fig. 12) with two groups of sclerotised spines and sclerotised structures around secondary gonopore (fig. 13). Left paramere (fig. 14) falciform, tapering to apical end. Right paramere (fig, 15) wider subbasally, also tapering to apex.

Female: Similar to male in colour and general aspect, the underside of body pale yellow.

Fig. 11-Chrywrrhanis lineatus n.sp.: male, holotype.

Pigs. 12-15-Chpysorrhanis linearus nisp,: Fig, 12-Penis: Fig. 13-Appendages of secondary gonopore; Fig 14-Left paramese: Fig. 15-Right paramere.

Holorype: Male, INDONESIA: Muffin Bay, Irian Jaya, x.5.44, E. S. Ross, in the Collection of the Academy of Sciences of California, San Francisco; Larat (Tenimbar 15.) xii. 474 Paratypes; male and female, CHINA: Ta Han, Hainan, vii.6.35, J. L. Gressitt (BM 1964-26).

This species differs from the others in the genus by the iransverse dark fascia or line on corium level with apex of scutellum.

Corizidolon Reuter, 1907

Corizidolon Reuter, 1907, p. 3 ; Poppius, 1912b, p. 9 ; Carvalho, 1955, p.106; Carvalho, 1959, p. 338. Type-species: Corizidolon notaticolle Reuter, 1907.

Body elongare, pronotum, embolium and cuneus shortly setose, clavus and corium sparingly pilose. Head wider than lang, frons rounded, prominent between antennal bases, vertex immarginate; eyes large, slightly removed from collar; rostrum reáching middle coxac: Antenna cylindrical, segment 1 narrowed on apical. third, distinctly enlaryed subbasally, shortly setose, about as long as width of head; segment II abous iwo and two thirds times as long as I; segments III much shorter than II and IV much shorter than III.
Pronotum superficially rugose-punctate, collar and calli smooth, lateral margins slightly narrowed behind calli, hind margin broadly rounded; mesoscheum and scutellum smonth.

Hemelytra semihyaline and transparent, wings distinctly visible from above, embolium and cuneus setose, clavus and embolium sparingly pilose, cuneus longer than wide at base, merribsane bicellulate. Legs of medium size, tibiae with minute sclerotised dots and shorly spinulose, parempodia convergent towards apices.

Differs from other genera of the tribe Hyalopeplini by the superficially rugose-punctate pronotum and by the semse hairs covering its surface.

Key to the species of the genus Coriaidolon Reuter
L. Pronotum with six Jongitudinal brown virtae; rostrum reaching beyond the hind coxae id dexlineatum Delattre Promotum without six longitudinal brown vittae; rostrum reaching the middle coxac
\therefore Dise with twin black round spors behind calliz; apex of hind femora and trind tibiae palc ycllow. notalicalle Reuter Disc wihnout two black round spots hehind calli but with two shore, dark fasciae on disc of pronotum and two maculat laterally on cach side; apex of hand femora and tibiae reddish-hrown australiense Carvalho and Gross, nisp.

Corizidolon australiense Carvalho \& Gross, n .sp,

(Figs. 16-21)
Characterised by the colour of pronotum and by the structure of the first antennal segment.

Male: Length 5.0 mm , width 1.5 mm . Head; Length 0.8 mm , width 1.0 mm , vertex 0.30 mm . Antenna: Segment $10.8 \mathrm{~mm}, \mathrm{H}-\mathrm{IV}$, missing. Pronotum: Length 1.0 mm , width at base 1.5 mm . Cuneus: Length 0.80 mm , width at base 0.40 mm .
General coloration honey to lemon coloured; first antennal segment, basal two-thirds of second antennal segment, basal third of third antemal segment, apices of hind femora and all of hind tibiuc reddish-brown; upical third of second antennal segment, apical two thirds of third antennal segment, all of fourth antennal segment, terminal tarsal segments, a short scattered pilosity on the dorsal surface and a denser short pilosity on the appendages, blackish; corium, clavus and cuneus seminyaline brown; on the pronotum on either side of the midline a longitudinal brown bar and on the lateral margins of the pronotum a pair on each side of brown maculae, the posterior one of each pair at the lateral angles. In the type a pair of short parallei faint brown lines on either side of the midline of the scutellum about mid way back, The abdomen and thorax beneath with a not very dense whitish pilosity.
The short pilosity of the dorsal and ventrat surfaces and the appendages nearly recumbent. On the tibiac alsa some longer erect spines, those on the fore tibiae finer and shorter than those on the other tibiae.
Genitalia: Vesica of aedeagus (fig, 18) withoul spiculum, with two large membranous lobes. Left paremere (fig. 19) falciform, with acute apical extremity and long dorsal setae. Right paramere (figs. 20, 21) small, less selerotised ventrally, wilh long dorsal setae, anterior end acute.
Female: Length 6.6 mm , width 1.9 mm . Headi Length 1.0 mm , width 1.1 mm , vertex 0.47 mm Antenna: Segment I, length $0.8 \mathrm{~mm}: \mathrm{II}_{4} 2.7 \mathrm{~mm} ; 1 \mathrm{II}$, 1.3 mm ; IV, $0.5 \mathrm{~mm}:$ Pronotum: Length 1.3 mm , width al base 1.8 mm . Cuncus: Length 1.00 mm . width at base 0.60 mm .
General coloration and aspect similar to maleThe pale brown bars on the scutellum are absent on several of the female paratypes.
Holorype: female, AUSTRALIA: Queensland: Tamborine Mountain, 15.ii.1968, F. A. Perkins (QM): paratype 早, Lamington National Park, 19$22 . v .1963$. B. V. Timms; paratype ㅇ, Brisbane. 2.iv. 1957, 1. Martin' paratype 9 and one damaged male, Bald Mountain Area, $350-1200 \mathrm{~m}(1500-4000$ ft.), via Emu Vale, South East Queensland, 2731.i. 1972, B, K. Cantrell (QU); paratype 9 (Reg No. 120,936), Mt. Tambourine, A. N. Lea (SAM): paratype \&, Bunya Mt5. $610 \mathrm{~m}, 22 . \mathrm{i} .1938, \mathrm{~N}$. Geary: parstype \mathfrak{q}, Upper Broken River, Eungella.

Figs, 16-17-Corizidolon australiense Carvalho \& Gross, n.sp.: Fig. 16-Male, holotype; Fig. 17-Lateral view of head and pronotum.
12.xii. 1961, McAlpine \& Loss (AM). New South Wales: allotype d, Huon Brook near Mullumbimby. 2iii. 1965, D. K. McAlpine (AM).

The allorype is more seddish brown in appearance than the one other male specimen or the females in the seties and has reddish areas anteriorly on the head below the level of the eyes, on the anterior portion of the lateral margin of the pronotum, as two spots (one above the other on the mesopleuron and metapleuron) and as a sublateral longitudinal band on the abdomen. The brown marks on the scutellum are much more strongly marked than in females and much longer.

The species differs from Corizidolon notaticolle Reuter, by the colour and markings of the pronotum and by the structure of the first antennal segment.

Figs, 18-21-Corizidolon australtensé Carvalho \& Gross, n.sT.: Fig. 18-Vcsica of aedeagus; Fig. 19-Left paramers; Figs. 20, 21 -Right paramere.

Corizidolon dexlineatum Delattre, 1949
Corizidolon dexlineatum Delattre, 1949, p. 24; Carvalho, 1959, p. 318.
The author was not able to study the sype and cotypes of this species, collected at Bouake (C.I-), 27 .xii. 47 and 6.xii.47, attacking cotton (R. Delattre), The original description is as follows: "Conforme à la description du genre, sauf pour l'apex du rostre qui dépasse nettement l'apex des hanches postérieures, et pour les antennes dont les articles ont les longueurs relatives suivantes: I: 2,5 , II: 7, III: 6, IV: 3, 9. Les atticles M1 II. IV ont sensiblement le même diamètre. Une soie de chaque côté du front près des antennes.

Tette brun jaune, verdâtre à l'érat frais, avec deux traits longitudinaux rougeâtres, en forme de parenthèse, sut le vertex. Yeux brun noir, granuleux, saillants. Antenne brun pâle un peu rougeâtre, avec des zones rouge brun ats milieu et a l'apex de II et III. Rostre verdâtre, à apex brun noir, luisant, presque lisse, fortement jembruni vers le bord postérieur.

Thorax brun verdâtre, avec six lignes longitudbnales brun souge réparties ainsi: deux lignes médianes assez rapprochees, une ligne de chaque coté du disque, près du bord externe, et une ligne sur le milieu des pleurites Une tache noire dans l'angle postéricur externe du pronotum. Ecusson ridé transversalement luisant, brun noir, sauf une ligne plus claire au centre, et une tache de chaque coter à la base.

Elytres transparents, à ponctuation nette, régulière. Je cuneus lisse, l'aire costale vert clair sur le vivant, translucide a l'état sec, le bord commissural du clavus, suttout la base et lapex une tache sur le bord interne et postérieur de la corie. le bord antérieur du cuneus jusqu"à la fracture, la nervure de la grande cellule, de la membrane, bruns. Une tache en V sur les bords postérieurs interne et externe ulu cuneus, brun rouge, de même la nervure postêrieure de la pelite cellule brun rouge.

Pattes jaune pále, fémurs tachés de rougeâtre, tibias II et III vert pâle, avec des épines et des microtriches noirs, l'apex des tarses verdâtre.

Abdomen vert pâle avec des taches rouges étendues sur les sternites."

The mention of a punctate hemelytron, rostrum reaching beyond the hind coxae and colour of body seems to exclude the species from the genus Corizidolon Reuter. This, however, is merely a conjecture.

Corizidolon notalicolle Reuter, 1907
Corizidnlon notaticolle Reuter, 1907, p. 4; Poppius. 1912b, p. 10: Carvalho 1959, p. 318.
(Fig, 22)
Characterised by the colour of the pronotum and by the type of pubescence.

Male: Length 5.0 mm , widt! 1.8 mm . Head; Length 0.4 mm , width 0.6 mm , vertex 0.18 mm , Antenna: Segment I, length $0.7 \mathrm{~mm}, 11,2.1 \mathrm{~mm}$; III, 1.0 mm ; IV, broken, Pronotum; Length 0.9 mm width at base 1.5 mm . Cuneus: Length 0.78 mm , width at base 0.34 mm .

General coloration ochraceous to pale yellow: apex of segment 11 of antenna, a small spuss externally on segment 1 , margins of collar, twos
round spots behind callj on disc, two spots at humeral angles and two spots on mesoscutum externally dark brown to black; disc of pronotum with two obsolete longitudinal vittae, sutures and commissure of hemelytra, nervares of membrane, outer margin of embolium, fuscous; legs pale yellow, femora with small round dark spots, segment III of tarsi fuscous.

Morphological characters as mentioned for genus.
Genitalia: Not dissected for lack of appropriate specimens.

Female: Similar to male in colour and general aspect but slightly more robust. Length 6.2 mm , width 2.0 mm.

Geographical distribution; Mauritius Island.

Specimens studied: Male, La Réunion, Plaine dés Cafres, Pilon Manuel, 27.i.1955; male, Department of Agriculture, Mauritius Island, iii, 1962, C.1.E., in the author's collection,

This species is well characterised by the four round black spots on pronotum (notaticolle).

Guianerius Distant, 1903
Guianerius Distant, 1903, p. 269; Poppius, 1912, p. 436; Carvalho, 1955, p. 107; Carvalho, 1959, p. 318.

Type-species: Guianerius typicus Distant, 1903.
Body clongate, erectly pilose, pronotum very finely rugose-punctate, clavus opaque, densely pilose. Head wider than long, frons vertical, vertex marginate laterally, eyes contiguous with collar, rostrum reaching middle coxae. Antenna with segment 1 about as long as width of head, segment II twice as long as I, incrassate, scgment III-IV short, slender. Pronotum supetficially rugose-punctate, calli obsolete, collar smooth, disc convex, lateral margins rounded, hind margin straight at middle, rounded at humeral angles, erectly pubescent; mesoscutum partially covered; scutellum smooth, pilose. Hemelytra glassy, transparent (except on clavus, embolium, cuneus and black areas of corium), finely punctulate, cuncus twice as long as wide at base, clavus noticeably pilose, membrane bicellulate, apex of larger arcola rounded. Ostiolar peritreme prominent, legs of medium size, hind tibiace sulcate externally, parempodia divergent towards the apices.

This genus has the general fascies of Kosmiomiris Kirkaldy, 1902, but differs by having the pronotum only superficially rugose-punctate and by the much shorter fosirum.

Guiancrius typicus Distant, 1903

Guianerius Dipicus Distant, 1903, p. 269, fig, 14;
Poppius, 1912a, p. 437; Carvalho, 1959, p. 318.
Guianerius pallidizarsis Poppius, 1915, p. 44; Carvalho, 1959, p. 318 (new synonymy),
(Figs. 23-26)
Characterised by the colour of the body and by the rostrum reaching only the middle coxae.

Male; Length 6.2 mm , width 2.2 mm . Head: Length 0.6 mm , width 1.3 mm , vertex 0.56 mm : Antenna: Segment $I_{\text {, length }} 1.2 \mathrm{~mm} ; \mathrm{Il}, 2.4 \mathrm{~mm} ; 1 \mathrm{II}$, 0.8 mm ; V , broken. Pronotum; Length 1.5 mm , width at base 2.0 mm . Cuneus: Lengti $0.80 \mathrm{~mm}_{\text {, }}$ width at base 0.40 mm (lectotype of palliditarsis).

Fig. 22-Corizidolon motaticollê Reuter, male.

General coloration black with hyaline to citrine or lutescent areas; head and pronotum black (except hind margin, humeral angles and collar which are citrine to Jutescent); antenna brownish to black; scutellum citrine, black basally; clavus black, opaque; corium hyaline, glassy, wheth alack

Fig 23-Guianerius pallidirassis Poppius, male, holotype ($=$ Guianerius ryplews Distant).
transverse fascia level with apical fifth of clavus, followed by black commissure and another oblique fascia apically, cuneus hyaline intermally, tending to reddish externally; membrane fuscous on extraarcolar portion. Underside of body and inferior margin of propleura pale yellow, mesosternum, spot on metapleura, coxae totally or partially and a spot on abdomen from 5th to 9 th segments (except lateral portions of tergites VI-IX which are pale) black. Legs pale, hind tibiae and segment 111 of tarsi brown.

Morphological characters as mentioned for genus.
Genitalia: Penis (fig, 24) with an elongate secondary gonopore, without sclerotised spiculi. Left paramete (fig. 25) large and long, with an apical acuie and short point. Right paramere (fig, 26) small, as seen in illustration.

Female: Similar to male in colour and general aspect, slightly more robust. Length 7.0 mm , width 2.0 mm .

Geographical distribution: Malay Peninsula, Bornen, Philippines.

Figs. 24-26-Guianerius typicus Distant: Fig. 24-Pênis; Fig. 25-Left paramere; Fig. 26-Right paramere.

Specimens studied: Lectotype (new designation), male, PHILIPPINES: Los Banos, Baker (Guianerius palliditarsis Poppius) (HELSINKI): paralectotype, male, Mt. Makiling, Luzon, Baker, (same Museum); one male and two females, EAST MALAYSIA: Bundu Tukan, 18.ii,1959, T, C. Maa (BISHOOP) (compared with type).

The characters mentioned by Poppius for palliditarsis are within the sange of variation of typicus Distant.

According Distant (I.c.) "hovering over flowers in jungle; flight and movements very wasp-like."
Comparing specimens of pallidiarsis with the original drawing of Distant the author considers them as synonyms.

Guisardinus, n.gen.

Type-species: Guisardinus neoguineanus n.sp.

Body elongate, sparingly pilose. Head distinctly wider than long, with a short neck, vertes immarginate, slightly depressed, frons prominent. protruding in front of antennal bases, eyes semipedunculate, placed at middle of head, clypeus wide, rounded, buccula characteristic, rounded, Antenna cylindrical, segment 1 approximately as long as width of head, noticeably incrassated
towards base, with long and erect haits, their length about as long as or longer than width of segment; segment II densely pilose, slender and approximately twice as long as first: Rostrum reaching base of middle coxae.

Pronotum deep and coarsely punctate, except at posterior margin of disc where it is finely punctulate. collar wide, distinctly rugose transversally, calli large, smooth, humeral angles prominent, globose. lateral margins rounded, hind margin bisinuate in front of scutellum, rounded at humeral angles, propleura punctate, mesosternum rugose laterally; mesoscutum largely exposed; scurellum flat, coarsely punctate, lateral margins crenulate, beset with fine and erect hairs, apex pointed, smooth.

Hemelytra glassy, transparent, finely punctulate, sparingly pilose, clavo-corial and embolio-corial commissures with a row of punctures, embolium wide, explanate; medial vein reaching to about half length of corium, cuneus about twice as long as wide at base, membrane biareolate. Legs of medium size. beset with long and erect hairs, hind tibiae with scletotised minute tubercles and hairs about as long as width of segment, parempodia divergent towards apices

Guisardinus is most closcly allied to Austrohyaloma as noted under the latter. Guisardinus also approaches Guisardus Distant, 1904 but differs by having the pronotum and scutellum distinctly punctate; it differs also from Chrysorrhanis Kirkaldy, 1902 by the punctate scutellum and distinctly rugose collar.

The species Argenis incisuratus (Walker' 1873) in the tribe Mirini is strongly convergent with species of Guisardinus and can be very easily mistaken for a member of this genus. To help distinguish Argenis incisurarus from the species of Guisardinus it has been included in the key below and redescribed immediately after Guisardinus solomonicus.

Key to the species of the genus Cuisardinus n-gen.

1. Pronorum with black spots only on globose humeral angles: segment t of antenna incrassate subbasally; hemelytra with a ransverse fuscous spot at corial apen

Argenis inclsuratus (Walker)
Pronorum with four black spots; segment I of antenna mostly cylindrical; hemelyra without a transverse suscous spot at conial spex
2. Base of clavis infuscate; segment I of anterna with long and erect pubescence; lower margin of collar with an anterior nastow black spot Meoguineanus r.sp.
Base of clavus pale yellow: segment I of antenna with common medium size hairs; lower margin of collat with a posterior black fascia or spot , ,........ solomonicus ri.sp

Guisardinus neoguineanus n.sp.
(Fig. 27)
Characterised by the four dark round spots of pronotum.

Fig. 27-Cuisardinus neoguineanus s1,5p., femsle, holotype:

Female: Length 6.2 mm , width 1.9 mm . Head: Length 0.3 mm , width 1.1 mm , vertex 0.48 mm . Antenna: Segment I, length 0.9 mm II. 1.8 mm ; IIIIV, broken, Pronotum: Length 1.1 mm , width at base 1.6 mm . Cuneus: Length 0.08 mm , width at base 0.48 mm (holotype),

General coloration ochraceous to pale yellow; eyes, apex of second antennal segment, small longitudinal triangular vitta and small lateral spot on collar, a narrow longitudinal line on middle of disc. two roundish spots at posterior portion of disc, two others at humeral angles (one at each side) brown to black; hemelytra glassy, transparent, clavus internaly at base, apex and basal angles of scutellum, apex of clavus, apex of corial commissure and a small spat at apex of corium fuscous. Underside of body and legs pale yellow, segment. III of tarsi fuscous.

Morphological characters as mentioned for genus,

Male: Unknown.

Holotype: female, NEW GUINEA; NE, Eliptamin Valley, 1200-1350 m, June 19-30, 1959, W. W. Brandt (BISHOP),

Differs from Guisardinus solomonicusn,sp, by the colour of pronotum and mesoscutum.

Guisardinus solomonicus, ת.sp.
(Fig, 28)
Characterised by the colour of pronotum and mesoscutum.

Female; Length 5.2 mm , width 1.8 mm . Head: Length 0.4 mm , width 1.1 mm , vertex 0.48 mm . Antenna: Segment 1, length 0.8 mm ; 11.1 .6 mm ; III, 1.0 mm , IV, broken. Pronotum: Length 1.1 mm , width at base 1.6 mm . Cuneus: Length 0.56 mm , width at base 0.36 mm (holotype).

General coloration ochraceous to pale yellow; eyes, antemnae and two spots laterally on collar (one at each side) black; longitudinal line at middle of disc of pronotum (interrupted in middle of calli), spot at humeral angle, two roundish spots at posterior margin of disc and two others, equivalent, on mesoscutum dark browni; claval commissure, external margin of embolium and cuneus, nervures of membrane towards apex fuscous. Underside of body pale yellow, apex of clypeus, apex of buccula, anterior margin of coxal cleft I and obsolete spots on femora externally brown.

Fig. 28-Guisardinus solomonicus n.sp., female, holotype.

Head with flat vertex, external margin of clavus strongly crenulate, pubescence of legs noticeably long.

Male: Unknown.
Holotype; female, SOLOMON ISLANDS: NW, Malaita, Dala, 9.vi.1964, R. Straatman (BISHOP).

This species differs from Guisardinus neoguineanus $n, s p$. by colour of the antenna, pronotum and mesoscutum.

Argenis incisuratus (Walker, 1873)
(Figs. 29-33)
Characterised by the colour of the body and structure of male genitalia

Male: Length 3.8 mm , width 1.2 mm . Headi Length 0.3 mm , width 0.8 mm , vertex 0.24 mm , Antenna: Segment I, length 0.5 mm ; II, 1.5 mm ; III, 1.0 mm ; IV, 0.3 mm . Pronotum: Length 0.9 mm , width at base 1.2 mm . Cuneus: Length 0.40 mm . width at base 0.28 mm .

General coloration brown to fuscous with black areas; head, pronotum (except globose humeral angles which are shining black) and scutellum brown; eyes black, anterna fuscous, segment I pale: hemelytra with clavus fuscous to brown, corium pale (fuscous bordering clavus), with a large fuscous transverse spot apically which reaches outer margin of embolium, the latter and cuneus also pale with extreme margins fuscous, membrane with black nervures., Underside of body brown. legs pale yellow.

Antenna with segment I enlarged subbasally, pubescence very short, pronotum and scutellum punctate, vertex carinate, body with fine, long, erect hairs; clavo-corial and embolio-corial sutures with a row of punctures.

Fig. 29-Argenis incisuranus (Walker) n sp., male ", holotype.

Genitalia: Penis (fig. 30) with a pointed characteristic spiculum and membranous lobes. Left paramere (fig. 31, 32) enlarged basally, strongly curved, apex pointed and somewhat tilurcate at extremity. Right paramerc (fig, 33) small, globose, with pointed apex.

Female: Similar to male in colour and general aspect, slightly more robust.

This species collected by our colleague Karl V , Krambein in Sri-Lanka when it was being carried in flight by a solitary crabronid wasp, Encopognathus sp. (Hymenoptera).

It differs from the species of Gusardinus by the colour of the body; structure of segment I of antenna and male genitalia.

Figs. 30-33-Argenis incisuratus (Walker) n.sp.: Fig. 30-Vesica of aedeagus; Figs. 31-32-Left paramere; Fig. 33-Right рягатеге.

Guisardus Distant. 1904
Guisardus Distant, 1904, p, 436; Kirkaldy, 1906, p. 134; Reuter, 1910, p. 163; Carvalho, 1952, p. 97; Carvalho, p. 107; Carvalho, 1959, p. 319,
Euhyalopeplus Hsiao, 1944, p. 370: Carvalho, 1959, p. 318 (n.syn.).

Serropelis Poppius, $1012 a$, p. 425 (sym, by Knight, 1935, p. 211.).

Type-species: Guisardus pellicidus Distant, 1904.
Body elongate, glabrous ubove; head about three times as wide as long, vertex immarginate, frons prominent between antennal bases, eyes prominent, placed at middle of head, removed from collar: fostrum reaching to intermediate coxac; antenna cylindrical, segment I incrassate at base, about as long as width of head, segment II about twice as long as I, segments $111-1 \mathrm{~V}$ slender.

Pronotum with disc coarsely, regularly and transversely rugose, a little wider than long, posterior margin slightly bisinuate before scutellum, humeral angles rounded, distinctly thickened or globose, callii large, reaching sides of pronotum; mesoscutum covered; scutellum convex, lateral margins crenulate, in some specimens only a few punctures visible on its surface.

Hemelytra glassy, hyaline, except clavus, corium and clavus without nervures, the latter with a row of punctures, cuneus longer than wide at base.

Underside of body showing a punctate propleura, ostiolar peritreme conspicuous, legs Jong and slender, tibiae spinulose, hind femora with a few erect setae, parempodia divergent towards apices.

This genus has the general facies of Chrysorthanis Kirkaldy, 1902 but differs by the distinctly rugose pronotum and globose humetal angles. Knight (1935) erroneously synonymised this genus with Nesosylphas Kirkaldy, 1908, a genus of the tribe Mirini Hahn, from Fiji.

Key to the species of the genu* Guisardus Distant
I. Scutellum black, pale apically: metapleura with a black rugose fascia medially.
chinensis n. 5 p.
Sculellum pale yellow, sometimes with dark punctures of dark only apically; metapleura pale yellow
2. Dise of pronotum with two distinct. dark, round of elongate spots
Dise of pronotum without distinet dark spots, somelimes infuscatc medially or with a longitudinal median vitta . 5
3. Potterior margin of pronotum. with a round black spot, sometimes with two smaller ones at cach side; spots on disc elongate fasciuthern.sp. Posterior masgin of pronotum wimout as round black spot, vpois on disc rounded
\$. Scutellum withour black puncrures: dise withut median longitudinal dark vitta strigicollis (Poppius)
Scutellum with four to five black punctures; dise with a longitudinal vitta and three punctures black; pronotum with a narrow longitudinal median dark vitts erisrovalensis n.sp.
5. Scutellum with a subapical spot followed by a narrow.median longitudinal vitta and three punctures black; pronotum with a natrow longitudinal median dark vitia
bogorensis n-sp. Scutellum infuscatc only spically, without median longitudinal vitta; pronotum with a wide loggitudinal obsolete dark vilta. pellucidus Distant.

Guisardus bogorensis, n,sp.
(Figs. 34-37)
Characterised by the coloration of scutellum and clavus, and by the structure of male genitalia,

Male: Length 6.3 mm , width 1.6 mm . Head: Length 0.4 mm , width 1.1 mm , vertex 0.48 mm , Antenna: Segment I, length 1.0 mm ; $11,1.7 \mathrm{~mm}$; IIIIV, broken. Pronotum: Length 1.2 mm , width at base 1.6 mm . Cuneus: Length 0.72 mm , width at base 0.28 mm .

General coloration ochraccous to pale yellow; eyes and segments II-IV of antenna brown, segment I tending to pale; pronotum with a fine longitudinal median line (obsolete) and spots at humeral angles brownish to black: scutellum with three or four punctures, longitudinal line (obsolete in some specimens) and subapical portion black; clavus (except lateral margin), corial commissure, external margin of embolium, apical margin of corium, outer margin of cuneus and nervures of membrane brown, Underside of body and legs pale yellow, hind tibiae tending to brown, segments III of tarsi fuscous.

Clavus distinctly crenulate laterally, noticeably pilose.

Fig. 34-Guisardus hagorensis n.sp.. Vemale, holotype.

Genitalia: Penis (fig, 35) with large basal plate and theca, no spiculi present. Left paramere (fig, 36) falciform, noticeably narrowed towards apex. Right paramere (fig. 37) small, pointed apically.

Figs. 35-37-Guisardus bogorensis n.sp.i Fig. 35-Penis; Fig, 36 -l.eft paramere: Fig. 37-Right paramere.

Female: Similar to male in colour and general aspect. Vertex 0.56 mm , cuneus at base 0.36 mm .

Holotype: female, INDONESIA, Java, Bogor. ii.1957, O. D. Deputy (USNM). Allotype: male. idem. Paratypes; 4 females, in the Collection of the above Museum and of the author.

Differs from pellucidus Distant by the colour of the scutellum.

Guisardus chinensis, n.sp.
(Fig. 38)
Characterised by the colour of scutellum and by the black rugose vittae of metapleura

Female: Length 6.4 mm , width 1.6 mm : Head: Length 0.6 mm , width 1.1 mm , vertex 0.56 mm : Anterna: Segment I, length $0.8 \mathrm{~mm} * 1 I, 1.7 \mathrm{~mm}$; III, 1.4 mm : IV, 0.7 mm . Pronotum: Length 1.4 mm , width at base 1.6 mm . Cuneus: Length 0.80 mm , width at base 0.32 mm (holotype).

Fig. 38-Gitisardus chinensis n.sp., female holotype.

General coloration testaceous to ochraceous with dark brown areas; head with vertex infuscate and a black spot on reck behind eye, the latter castaneous; antenna black, segment 1 castaneous to pale towards base; pronotum with lateral margin, two median longitudinal wide vittae and a median line which narrowly coalesce between callis, and lateral margin of collar dark brown; laterally on pronotum two longitudinal, wide, pale vittae running from collar to hind margin through calli with the iwo on central portion of disc, one at each side of median line, narrower; scutellum black with apex pale; hemelytra glassy, transparent, without nervures, clavus, corial commissure, apical portion of corium and embolium, apex of cuneus and nervures of membrane black. Underside of body pale yellow,
collar inferiorly, propleura (except lower margin), mesosternum, meso- and metapleura rugose, black: abdomen pale yellow, segments VIII-IX black, apex of hind femur and tibiae tending to brown. apices of tarsi fuscous.

Pronotum coarsely transversely rugose, vertex depressed at middle, posterior margin lightly marginate, segment I of antenna incrassate basally.

Male: Unknown.

Holotype: female, SOUTH CHINA: Hianan I, Sam-ah-Kong, Yei, Hsian (District), Jan. 30, 1935, F. K. To, Brit, Mus. 1964-26 (BMNH).

This species differs from others in the genus by the black scufellum and by the black rugose fascia of metapleura.

Guisardus cristovalensis, n.sp.
(Fig, 39)
Characterised by the colour of pronotum.
Female: Length 5.4 mm , width 1.5 mm . Head: Length 0.4 mm , width 1.1 mm , vertex 0.48 mm : Antenna: Segment I, length $1.0 \mathrm{~mm} ; \mathrm{II}, 1.8 \mathrm{~mm}$; IIIIV, broken. Pronotum; Length 1.1 mm , width at base 1.4 mm . Cuneus: Length 0.78 mm , width at base 0.28 mm .

General coloration ochraceous with dark brown io fuscous areas; cyes brown, antenna pale yellow, apex of second joint fuscous; pronotum with suture between collar and calli, a spot between the latter, two spots at lateral sides of disc, humeral angles and a narraw longitudinal facia along its inner margin (coalescing with a black spot of lateral margin at middle of pronotum), middle of mesoscutum, basal angles and apex of scutellum, and clavis dark brown; corium glassy, transparent, outer margin of embolium, apical margin of corium, commissure, cuneal margins and nervures of membrane fuscous. Underside of body pale yellow, a longitudinal vitta on upper margin of propleura, sides of mesosternum and base of abdomen laterally dark legs pale yellow, hind femora with small fuscous spots,

Male: Unknown.

Holotype: female, SOLOMON ISLANDS: Guadalcanal, Lame nt. Mt. Tatuve, 300 mt , 18.v.1960, C. W. O'Brien (BISHOP). Allotype: female, San Cristoval, Kira Kira, 15, viii.1960, C. W. O'Brien.

This species differs from strigicollis (Poppius) by the presence of black punctures on the scutellum.

Fig. 39-Guisardus cristovalensis n.sp.- female, holotype.

Guisardus fasciatus, $\mathrm{n} . \mathrm{sp}$.

(Fig 40)
Characterised by the colour of pronotum and collar.

Male: Length 7.4 mm , width 1.9 mm . Head: Length 0.4 mm , width 1.2 mm , vertex 0.56 mm . Antenna: Segment I, length $1.4 \mathrm{~mm} ; 1 \mathrm{II}, 2.4 \mathrm{~mm}$; III, 2.8 mm ; IV, broken. Pronotum: length 1.4 mm , width 1.8 mm . Cuneus: Length 1.04 mm , width at base 0.36 mm (holotype).

General coloration ochraceous to citrine-lutescent; eyes and antennae brown, except basal portion
of segment I_{i} a longitudinal line at middle of dise of pronotum beginning behind calli (obsolete in one specimen), two longitudinal vittae well marked at central portion of disc, lateral margin of pronotum anteriorly and outer margin of collar, a spot at globose portion of humeral angles, a median roundish spot continguous to hind margin of dise and two small ones at either side of the latter dark brown to black; scutellum with two dark points subapically; hemelytra glassy, transparent, clavus (except external margin), outer margin of embolium and cuneus, corial commissure, apical margin of corium and nervures of membrane brownish; membrane hyaline. Underside of body ochraceous, femora with dark points externally, segment II of tarsi fuscous.

Clavus with short pubescence, pronotum strongly transversely rugose, frons with oblique striations.

Male: Unknown.
Holotype: female, SOLOMON ISLANDS: Guadalcanal, Gold Ridge, 800 m , vii.23.1956, J. L. Gressitt (BISHOP). Paratype: female, Buca Agric. Station, 6-10.xii, 1959, J. L. Gressitt.

Differs from other species in the genus by the colout of pronotum.

Fig. 40-Guisardus fascialus n.sp... Iemale, holotype.

Guisardus pellucidus Distant, 1904
Guisardus pellucidus Distant, 1904, p. 436, fig. 281; Poppius, 1914, p. 102; Carvalho, 1952, p. 97; Carvalho, 1959, p. 319.
Euhyalopeplus pulchellus Hsiao, 1944, p. 370, fig.; Carvalho; 1959 , p. 318 . New synonymy,
(Figs. 41-44)

Characterised by the colour of pronotum and structure of male genitalia.

Male: Length 5.6 mm , width 1.6 mm , Headi Length 0.4 mm , width 1.1 mm , vertex 0.48 mm , Antenna: Segment I, length $1 \cdot 1 \mathrm{~mm} ;[1,2.3 \mathrm{~mm}$; III, 0.8 mm ; IV, broken. Pronotum: Length 1.2 mm , Width at base 1.4 mm . Cuneus: Length 0.72 mm , width at base 0.28 mm .

General coloration pale yellow to citrine with fuscous to brown areas; eyes brown, sides of neck, collar, calli and humeral angles dark fuscous to black; middle of mesoscutum, apex of scutellum, sutures of hemelytra, margins of cuneus and nervures of membrane brown to fuscous; hemelytra and membrane glassy, transparent. Underside of body pale yellow, upper margin of propleura (following margin of pronolum) with a longitudinal vitta above coxal cleft I,

Head strongly vertical, clypeus flat, eyes large, prominent, exserted, removed from pronotum by a distance approximately equal to width of collar, a short neck visible; antenna with segment I thickened basally, as long as width of head; pronotum rugose transversally, calli smooth, hind margin of dise near humeral angles slightly punctate, the latter prominent, nodulose; scutellum sparsely punctate, serrate or crenulate laterally; hemelytra glassy, transparent, corium without nervures, cuneus about three times as long as wide at base; membrane biarcolate, apex of large areola rounded; pubescence of legs moderate.

Genitalia: Penis (fig, 42) without sclerotised spiculi. Left paramere (fig. 43) falciform, with a few dorsal setae, Right paramere (fig, 44) small, globose, with a more sclerotised acule apex.

Female: Similar to male in colour and general aspect but slightly more robust.

Geographical distribution: Java, Penang Island, Tenasserin Island, Burma, Laos, Vietnam.

Specimens studied: male, lectotype (new designation), BURMA, Tenass Valley, Myita, Doherty (Guisardus pellucidus Distant), BMNH; female, PENINSULAR MALAYSIA, Penang Island, Straits of Malacca (Baker), holotype, Euhyalopeplus pulchellus Hsiao (USNM No. 56716): LAOS: Vientiane Prov. Ban Van Eue, 14,iv.1966, 1. L. Gressitt; VIETNAM: Dak Song, 76 km SW of Banme Thuot, 870 m, 19.v.1960, L. W. Quate (BISHOP),

This species differs from others by the colour of pronotum and clavus.

Fig. 41-Euhyalopeplus pulchellus Hsiao, female, holorype (=Guisardus pellucidus Distant).

Figs. 42-44-Guisardus pellacidus Distant: Fig. 42—Penis; Fig. 43-Left paramere; Fig. 44-Right paramere.

Guisardus strigicollis (Poppius, 1912) Carvalho, 1952

Serropeltis strigicollis Poppius, 1912a, p. 425.
Guisardus strigicollis Carvalho, 1952, p. 97; Carvalho, 1959, p. 319.
(Figs. 45-48)
Characterised by the colour of pronoturn and scutellum.

Male; Length 6.7 mm , width 1.7 mm . Head: Length 0.5 mm , width 1.3 mm , vertex 0.48 mm . Antenna: Segment I, length $1.2 \mathrm{~mm} ; \mathrm{II}, 2.4 \mathrm{~mm}$; III, 2.2 mm ; IV, 0.6 mm . Pronotum: Length 1.4 mm , width 1.6 mm . Cuneus: Length 0.88 mm , width at base 0.32 mm .

General coloration pale testaceous; head reddish brown anteriorly, vertex brown between eyes, humeral angles black, two fasciae bent outwards, fused anterior and posteriorly on disc, diluted before hind margin (forming a longitudinal vitta from hind margin of calli to anterior margin of collar), lateral margins of scutellum to apical third of clavus, propleura in large extension, mesosternum and metapleura black; inner and outer margins of embolium narrowly, apicaly margin of corium, inner margin of cuneus widely, outer margin of same narrowly, membrane, antennae, a vitta on each side of abdomen and apices of tarsi dark brown; segment I of antenna pale yellow with apex and base darker; femora reddish brown with fuscous dots, paler towards base.

Fig. 45-Guisardus strigicollis (Poppiusi), mise.
Genitalia: Penis (fig, 46) with membranous lobes and elongate secondary gonopore, Left paramere (fig. 47) somewhat enlarged sub-basally, pointed apically, Right paramere (fig. 48) short, thick, sclerotised and pointed apically.

Female: Similar to male in colour and general aspect, slightly more robust.

Geographical distribution: Mentawei Islands. New Guinea.

Specimens studied: NEW GUINEA, NE, W. Highlands, Bayer R, 1150 m, x.19.1958, J, L. Gressitt; INDONESIA, Bokondini, 40 km N of Baleim Val, Irian Jaya, ca 1300 m, Sixii.1961, light trap, S. Quate and L. Quate (BISHOP).

The type of this species is mentioned by Poppius as deposited in the "Giacomo Doria" Natural History Museum, Genova. It could not be studied as this. Museum does not loan types.

Hyalopeplinus, n.gen

Type-species: Callicralides antennalis Distant, 1920.
Body elongate oval, mostly glabrous. Head twice as long as width, eyes prominent, continuous with anterior margin of pronotum, noticeably exserted beyond lateral margins of collar, clypeus vertical,
prominent, jugum, lorum and buccula of medium size, rastrum reaching hind margins of posterios coxae; antennae cylindrical, with segment I about as long as half the width of head, segment II about four times as long as I, segment III half as long as II. segment IV about half as long as III, pubescence short and dense.

Figs. 46-48-Gusapdus strigicollis (Poppius): Fig.. 46-Penis; Fig 47-Left paramere: Fig. 48-Right paramere

Pronotum wider than long, smooth, rugose only on black fasciae or spots, collar narrow with mesal length equal to thickness of second antennal segment, calli prominent, joined medially, simuate posteriorly, humeral angles not produced, submarginal area of disc with fine punctures; mesoscurum exposed, scutellum tumid, longitudinal vitta rugose.

Hemelytra glassy, corium and membrane transparent, embolium and cuneus opaque, sparsely pubescent, the latter about twice as long as wide at base, large cell rounded apically. Legs of moderate size, tibịae sparsely spinulose

This genus is close to Hyalopeploides Poppius. 1912 but differs by the restriction of the rugosities of the pronotum to the black fasciae of the spots on the dise; by the very short segment I of antenna. about
as long as width of vertex and by the smaller sizefrom 5.5 to 6.2 mm long. The anterior portion of pronotum does not show such a marked constriction and the body is more compact.

Besides the characters mentioned above the rable of measurements below indicates a further sequence of characters to separate the two genera:

(mra)	Hyalopeplinus	flyalopeploides
Length op hody	$5 \cdot 4-6.2$	6.5-9.5
Width of body	1.8-2 10	1-8-3-2
Width of vertex	0. 40.07 .48.	0.50-0.76
Lengthof antenna [11.5.4.6	0.5-1.2
Length or cunews	0.60-0.811.	(1-80-1+20

These measurements were mainly based on the type specimens. It is possible that in large series there are variations which might excced these limits.

List of specics of the genus Hyalopeplinks n. gen.

1. antennalls (Distant, 1420)-(as Callecrates)

New Caledonma and Layalty fy 2 caimsenvis Carbatho and Gross, ग. sp.

Australia (Queensland)
3. ristotalensisn.sp. Solomon is. (Sin Cristoval)
4. fitensk n.sp.

Fijels.
5. matayensis ra.sp.

Malay Peninsuli, Laos, Sumarra, Sri-Iznka, Viemam
©i. Mapuersis s.sp......- Papua New Guinea, New Britain
7. philippinesis r.sp.

8, samoantes (Knigh8, 1935)-(as Cimisardus)
Samoar Is., Socjety 15., New Hehrides

Key to the species of Hyalopeplinus negen.

1. Cillar to pronofum whehout langitudinat dark vilfae on hars: disc of pronotum with a M-shaped black marking enclosing two roundish spots (lig. 79)
Callat of proneyum with ine or more longotudial or crosy fasciae or bars; dise with a median longitudinal vitta enlarged hasally and iwo or four black spuls (one or two on each side)
2. Lateral arms of she M-shaped marking of clise sharrow. discumplourms. Tlesipleura and abdamen withoul black: velucty ocellate spots or bass; follar mostly lutescent so prange.1..... .. cristatatensis nisp.
Latectal arms of the Moshaped rearking of dise wide and costinuous; mesupleura and abdomen with hlack, velvety wellate sposs or bars; collar mostly black
solomanersis n.sp.
3. Frons without asmall black spot akove antennal peduncte a Frons with small black spot above antennal peduncle
t. Humeral angles with a blatck spot propleuras pale yellow latcrally anternalis(Distant) Humeral angles pale yellow or with a hatam apents propleurd with a longitudinal strigose hlack or brown witta
4. Collar with a wide datctal vitha or bar behond ege, upper portion of vitta an propleura closely appreximited th the small tateral black spot of cise
caimsensis Carvalho \& Grosta. nisp
Collar withour a lower lateral vilfa ar har hehind eyer upper portiun of vitta on propleura nut approaching the smali lateral black spot of dise. malayensis n.sp.
5. Sesubternum and metapleura pale yellow; areat of calli pale or mostly so . .1. phillppinensignisp.
Mesousernum daterally and melapleuta with black apols; ates of calli mostly thack
7 Humetal angles phale sellow; laterial portion of abdemen reddisil. .

рариенisisms.

Humeral angles with a black spot: sides of abdommal ventrites black dorsally
8. Scutellum excepl lor cental black line concolorbus;

Scutellum execpl for centrat batck line reddish: pygophore pale in dark hown
fifipmeis 58.8 p .
Hyalopeplinus antennalis (Distant, 1920), n.comb.
Callicratides antenmalis Distant, 1920, p, 160.
Hyalopeplus antennolis Carvalho, 1959, p. 319.
(Figs. 49-52, 86)
Characterised by the colour of pronotum and apex of hind femur.

Male: Length 5.4 mm , width 1.8 mm . Headi Length 0.6 mm , width 1.2 mm , vertex 0.44 mm . Antenna: Segment I, length $0.6 \mathrm{~mm} ; 11,2.8 \mathrm{~mm}: 111$, $0.9 \mathrm{~mm}: 1 \mathrm{~V}$, broken. Pronotunt: Length 0.8 mm . width at base 1.7 mm . Ctineus: Length 0.72 mm , width at base 0.40 mm (lectotype).
"Ochraccous; eyes black: antennac ochraceous. basal joint paic sanguineous, apex of second joint black, third and fourth joints black, with their bases narrowly ochraceous: pronotum with a short longitudinal black line on hasal area, three spots (sometimes wanting) on the anterior collar, and the extrems basal angles black, basat marginal area mote or less castaneous; margins and a central longitudinal line to scutellum, inner and outer margins of clavus, and narrow apical margins to corium black; membrane very pale ochraceous, with the venation black; body beneath and legs ochraccous, apices of the femora castaneousi corium more or less pale castaneous, with the lateral marginal areas and the cuncus very pale ochraceous: antemmae with the basal joint incrassated, gbout is long as head, second joint longest, moderately thickened, about four times as long as first: scutellum moderately long, tumid. subdepressed, and longitudinally sulcate; femore moderately incrassated. long, 5 mm . Hah. New Caledonia, Central Disprict and Upper Houadou R."

Pale yellowish to citrine or ochraceous; segments I and II of antenna pate yellow to castaneous. reddish apically; vertex and inner margins of eyes with obsolete, castancous, longitudinal vittae: eyes brown; collar with seven longitudinal bars (three median and two lower lateral running backwards on the propleura) fuscous to reddish; pronotum with a short longitudinal black vista on middle of disc, a median slender line between calli reddish, humeral angles black: mesoscutum with two oblique fasciae and scutellum with a rugose longitudinal black vitta (not reaching apex) and lateral margins (with punctures) also black: hemelytra with claval, clavacorial and corial sutures black: nervures of membrane fuscous; apex of hind femora reddish.

Fig. 49-Callicratides antennalis Distant, male, holotype (= Hyalopeplinus anternalis (Distant).

Male genitalia: Penis (fig. 50) with membranous lobes provided with minute sclerotized teeth. Left paramere (fig. 51) falciform, curved irregularly, with acute apex. Right paramere (fig. 52) small, enlarged apically, ending in a small sclerotized point.

Female: Similar to male in colour and general aspect. Length 6.0 mm , width 2.4 mm .

Geographical distribution: New Caledonia.
Specimens studied: male, lectotype (new designation) from Central NEW CALEDONIA, 5.xii.1914, P. D. Montague, 1918-87 (BMNH). Paralectotype: male, same data as type and 52 males and females, NEW CALEDONIA; male, Gadji, 23.ix.1962, G. F. Gross (SAM); Yahoué, 12,ii.1962, N. L. Krauss; Plum, 20-60 m, 23-25.iii. 1968, T. C. Maa; Pouebo,
2.i.1964, R. Straatman, light trap; St. Louis, 1950, N. L. H. Krauss; La Grouen, 150 m, 20-22.iii.1968, J. L. Gressitt; id. T. C. Maa, 15.iii.1961; Col. d'Amieu, 700-800 m, 31.iii.1968; Nouméa, v.1950, N. L. H. Krauss; Plateau de Dogmy, 1.000 m 9.iv.1969, J. L. Gressitt; Col. des Roussetes, 300-400 $\mathrm{m}, 29.1 .1969$; Poindimié, 50 m , i. 1969; Thio, 50 m , 7.i.1969; Saramea, 12.ii.1963; Ciu, 9.i.1969, N. L. H. Krauss; St. Louis Valley, 17.iii.1945, H. E. Miliron; LOYALTY ISLANDS: Mare I, La Roche, iii. 1959, N. L. H. Krauss (BISHOP).

This species differs from others in the genus by lack of a M-shaped figure on disc; frons without a small black spot over antennal peduncle; propleura pale laterally and collar with three upper vittae.

Eigs 50-52-1iyalopeptinus amennales (Distant): Fig. 50-Pcris: सig. 51-Lefl paramere: Fig. 52--Right paramere.

Hyalopeplinus cairnsensis Catvalho and Gross, n.sp.
(Figs. 53-57, 85)
Characterised by the absence of a black spot above antennal peduncle and by the colour of collar and sternal areas.

Male; Length 6.3 mm , width 1.9 mm . Head: Length 0.9 mm . width 1.3 mm , vertex 0.47 mm . Antenna! Seyment I, length 0.8 mm ; II, 2.6 mm ; III, 1.6 mm ; IV, 1.0 mm . Pronotum: Length 1.3 mm , width at base 1.8 mm . Cuneus: Length $1.09 \mathrm{~mm}_{3}$ width at base 0.47 mm .

General coloration ochraceous or honey coloured with dark areas; apex of a second anternal segment and whole of third and fourth segments and a thin longitudinal Jine on crown of head brown, On pronotum a central, broad, longitudinal, impressed and transversely striate line extending from anterior margin to about middle of disc of hind lobe; on either side of the expanded portion of the latter but near the lateral margins a depressed striate pit, and a spot on the lateral margins of the collat, black. A spot on each lateral angle and sometimes also a small spot on collar on cither side of midline about half way to lateral margin brown. On mesoscutume a spot on either side and on scutellum a broad, tapering, longitudinal, impressed and transversely striate line medially reaching about two thirds of the way back, black. Clavus outlined with black, this black continuing along imer veins of corium for a short distance behind apex of clavus; otherwise hemelytra and wings vitreous, embolium and clavus more
opaque. Apex of rostrum black. Laterally on propleuron a blackish or brownish strigose longitudinal impresses bar, wider posterionly than anteriorly, Mesosternum and sides of abdomen reddish or brownish orange. Legs faintly maculated with brown.

Pilosity restricted to appendages where it is short and dark and to apical portion of underside of abdomen where it is longer, sparser and pale,

Genitalia: Vesica (fig, 54) with membranous lobes and an indication of a weakly sclerotized spiculum (fig. 55), Left paramere (fig, 56) irregularly and broadly curved, apically acute. Right paramere (fig. 57) expanded before apex and with an apical tubercle.

Female: Length 6.3 mm , width 2.1 mm . Head: Length 0.8 mm , width 1.5 mm , vertex 0.55 . Antenna: Segment I_{1} length $0.8 \mathrm{~mm}, 11,2.7 \mathrm{~mm} ; 111$, 1.5 mm ; IV, 1.1 mm . Pronotum: Length 1.4 mm , width at base, 2.1 mm . Cuneus: Length 1.04 mm , width at base 0.49 mm .

Fig. 53-Hyalopeplinus cairnsensis Carvalha © Gross, n,sp,i male, parayec.

Figs. 54.57-Hyalopepllnus cairnsensis Carvalho \& Gross, n.sp.i Fig. 54-Penis; Fig. 55-Spiculum of vesicar Fig. 56-Left paramere; Fig. 57-Right paramere:

Colour and structure as for male. In some specimens the median line on the head is quite fainh, in others the two brown spots on cither side of the midline of the pronotal collar are absent. The width of the orange coloration on the sides of the abdomen varies considerably.

Holotype: male, AUSTRALIA North Queensland: (Reg, no, 120,966), paratype © and 4 paratype 우 (Reg. nos. 120,967-71), Cairns District, F, P. Dodd: paratype of (Reg. no. 120.977), Cairns District, A. M, Lea (SAM) ; allotype $\% .4$ paratype太., 3 paratype 9 , Iron Range, Cape York Peninsula, 27.iv_4v.1975, G. B. Monteith; paratype ठ, same locality, 13-14.xi.1965, G. Monteith; 3 paratype do, same locality, $16-23$.xi. 1965 , G, Monteith; paratype \$. paratype O, Lockerbic Scrub, Cape York, 1922.iv.1973, G. B. Monteith; paratype ơ + Churchill Creek, Mt. Lewis Road, via Julatten, 27.xi.1965, G. Monteith (QU); 4 paratype ठ. 2 paratype \%. Dunk lsland, Aug 1927, H. Hacker; 1 paratype bi, 1 paratype $\%$, to light, Little Cedar Creek, Mt. Spec, 1,ii.1965, E. Dahms (QM); paratype Q, Finch Hatton Gorge, 29.i.1975, B. K. Cantrell, Dept. Prim. Industries, Brisbance paratype do, Iron Range, 11.iv.1964, I. F. B. Common \& M. S. Upton (ANIC); Lockerbie, N. Cape York, Jan. 1958,

Darlington col. (BNMH); N. Queensland, RedJynch, 14.ii.1938, Papuan-Australian Archbold Exp., BM. 1947-448.

This species differs from Hyalopeplinus malayensis n.sp. by having the collar without a lower lateral vitta or bar behind eye and by the vitta of propleura fused to a small lateral black spot on disc.

Hyalopeplinus cristoyalensis, 11.5p.
(Figs, 58-61, 89)
Characterised by the colour of pronotum and by the structure of male genitalia.

Fig. 58-Hyalopeplinus cristountensis n.sp, male, Intotype.
Male: Length 5.4 mm , width 1.8 mm . Headi Length 0.4 mm , width 1.2 mm , vertex $0.4 \mathrm{~mm}_{1}$ Antenna: Segment I, length $0.6 \mathrm{~mm} ; \mathrm{II}_{3} 2.8 \mathrm{~mm} ; \mathrm{III}_{\text {, }}$ 1.2 mm ; IV broken. Pronotum: Length 1.0 mm , width at base 1.6 mm . Cuneus: Length 0.76 mm , width at base 0.36 mm (holotype),

General coloration ochraceous to lutescent with black areas; eyes, a longitudinal line on vertex and two spots on frons above antennal peduncles brown to black; antenna brownish, segment I pale to lutescent with spots or fascia on lower external
portion; pronotum with posterior margin of collar, posterior margins of calli (coalescent with a longitudinal median vitta which extends to middle of disc), two lateral vittae and two rounded spots (one at each side) on the disc and an irregular spot on propleura coalescing with a small rounded spot on lateral margin of dise brown to black: mesoscutum with three spots (median and two lateral) black; scutellum with a median longitudinal strigose vitta narrowed towards apex (not reaching extremity), two spots on basal angles and four small spots, sometirnes coalescent (two at each side) black; hemelytra glassy, corium and embolium transparent, clavus black, opaque, beset with silvery pubescence, external margin of corium and ebolium, corial commisure and corial apex, margin and apex of cuneus, niervures of mebrane fuscous, the latter byaline with two small longitudinal spots on the apical portion. Underside of body pale yellow to ochraceous, posterior margin of mesosternum, a spot on metapleura and a lateral, longitudinal fascia on abdomen pale yellow; femora with distinct black spots.

Lateral margins of pronotum, clavus, embolium and cuneus noticeably pilose, ventral surface of abdomen and pygophore with long hairs.

Genitalia: Penis (fig. 59) with a median sclerotized spiculum and membraneous lobe. Left paramere (fig, 60) curved, somewhal enlarged preapically, apex pointed. Right paramere (fig. 61) small, also pointed apically.

Figs. 59-61-Hyalopeplinus crisravalensis n,sp.: Fig. 59-1enis; Fig. 60-Left paramere; Fig. 61-Right paramere.

Female: Similar to male in colour and general aspect. Length 6.0 mm , width 2.0 mm , vertex 0.44 mm (allotype).

Holotype: male, SOLOMON ISLANDS: San Cristoval, Kira Kira, 26.vii.1960, light trap, C. W. O'Brien (BISHOP). Allotype: female, Bweinaniawarikiapu, 12.viii.1960, light trap, C. W. O'Brien. Paratypes: 6 females and 7 males, same data as types (BISHOP), and author's collection.

This species is close to Hyalopeplinus solomonensis n.sp. but differs by the colour of pronotum and by the lack of velvety spots on the sides of abdomen.

Hyalopeplinus fijiensis Carvatho \& Gross, n.sp.
(Figs, 62, 87)
Characterised by the reddish scutellum and by the black suffusion on calli covering most of calli.

Male: Length 5.7 mm , width 2.0 mm . Head: Length 1.0 mm , width 1.1 mm , vertex 0.48 mm . Antenna: Segment I. length $0.7 \mathrm{~mm}: 11,2.6 \mathrm{~mm} ; 111$, 1.0 mm , IV, 0.5 mm . Pronotum: Length 1.1 mm , width at base 1.8 mm . Cuneus: Length 0.8 mm , width at base 0.51 mm .

Fig, 62 -ITyalopeplinus fijiensis n.sp., malc. holotype.

General coloration ochraceous with a faint tinge of green shining through hind lobe of scutellum and corium, embolium, clavus and cuneus, On head clypeus from above reddish, on crown dorsally a thin longitudinal line brown and anteriorly a vivid black spat above each antennifer; apex of second and third antennal segments faintly infuscated, from the small portion left of one of the fourth segments that segment too may be wholly infuscated.

On pronotum five black bars on collar, central and extreme lateral ones wider and longer than the ones behind the inner margins of the eyes. Calli strongly marked with black except on their interior and exterior anterior margins. Between calli and anteriorly continuous with central line on collum and there extending back to just before level of lateral angles black, impressed and transversally striate line which is expanded basally, on either side of expanded portion of latter but near the lateral margins a depressed striate pit and a spot on the lateral angles also black, Mesoscutum blackish except for a short, oblique, reddish-orange bar on each side about midway between centre and lateral margin; on scutellum a central, longitudinal. depressed, transversely striate, black line, in anterior portion rest of dise dark reddish. Clavus outlined with black, more broadly so along inner and posterior margins, this black continuing on to corium for a short distance bebind apex of clavus. Hemelytra and wings vitreous, embolium and cuncus more opaque.

Anteclypeus anteriorly and latcrally also reddish, apex of rostrum black. Laterally on propleura in addition to the lateral black spot on collar and at the lateral angles of the pronotum a large K-shaped bluish-black area which is strigose in parts. Anterior scute of mesopleural region bluish-black, posteriop brownish yellow. Peritreme of scent gland brownish yellow, metapleuron above this bluish-black. Sides of abdominal ventrites black dorsally except for last and genital segments. Anterior portion of hind femora strongly maculated with brown.

Pilosity restricted to appendages where it is short and pale except for some longer thin spinous hairs on hind femora.

Genitalia: Penis with membranous lobes and a sclerotised spiculum. Left paramere falciform, pointed apically, Right paramere smaller, also with an acute distal extremity.

Female: Similar to male in coloration and general aspect, Length 6.1 mm , width 2.2 mm , vertex 0.50 mm .

Holotype: male, FIJI: Nadarivatu, Viti Levu, 8.ii. 1968, N. McFarland. (SAM, registered number 121,076).

Pararypes: males and females, Vitì Levu, ii. 1951. N. L. H. Kraus (BISHOP).

This species is close to Hyalopeplinus samoanus (Knight) but differs by the colour of scutellum and lateral portion of pronotum (figs, 83, 87).

Hyalopeplinus malayensis, nssp.
(Figs. 63-66, 91)
Characterised by the colour of frons, collar and lateral area of propleura.

Female: Length 6.2 mm , width 2.0 mm Head: Length 0.5 mm , width 1.2 mm , vertex 0.52 mm . Antenna: Segment I, length $0.6 \mathrm{~mm} ; 11,2.4 \mathrm{~mm}$; III, 1.0 mm ; IV, 0.8 mm . Pronorum: Length 1.0 mm . width at base 1.8 mm . Cuneus: Length 0.68 mm . width at base 0.40 mm (holotype),

Fig. 63-Hyalopeplinus malayensis n,sp., male, holotype

General coloration ochraceous with black to fuscous areas; eyes, median longitudinal vitta (dilated as a spot posteriorly) and two lateral spots on dise of pronotum, basal angles and a median longitudinal strigose vitta on scutellum (not reaching apex), lateral margins of clavus, claval commissure, apical margin and commissure of corium, margins of cuneus and nervures of membrane fuscous to black;
antenna fuscous, segment I ochraceous, corium and membrane glassy, transparent, embolium and cuneus opaque. Underside of body ochraceous, propleura above with a longitudinal vitta (enlarged posteriorly) black; between this vitta and the laterat rounded spot of pronotum there is also a small black spot; apex of rostrum fuscous; legs ochraceous, hind femora with a series of fuscous spots on external margin.

On the specimens from Malaya the apex of scutellum and a small area at each side of median longitudinal strigose vitta are paler yellow; on the Sumatran and Sri Lanka specimens the longitudinal median vitta of pronotum is continuous (on allotype this vitta extends also over vertex; and the collar, besides the median bar or vitta, also possessing two others on each side, one exteriorly and one laterally).

Male: Similar to female in general aspect but with collar showing two extra vittae on lower lateral margin. Length 5.4 mm , width 1.8 mm , vertex 0.52 mm .

Figs. 64-6́6-Hyalopeplinus malayensis n.sp.: 64-Vesica of aedeagus; Fig, 65-Left paramere; Fig 66-Right paramere.

Genitalia: Penis (fig, 64) with a small sclerotised spiculum and membranous lobes. Left paramere (fig, 65) falciform, pointed apically, Right paramere (fig. 66) small, enlarged apically, with a minute sclerotised apex.

Holotype: female, LA OS; Sedone Prov., Pakson, 18.v.1965, P. D. Ashlock, light trap (BISHOP). Allorype: male, INDONESIA: Dolok Merangir, Sumatra, July-Aug., 1971, Deihl (AMNH). Paratypes: female, SRI LANKA: Peradeniya, viii. 1911 (BMNH); female, INDONESIA: Sumatra, Dolok Merangir, Sept. 27-30, 1970, Diehl (AMNH)i fenale, same data as holotype; VIETNAM: Saigon, viii.1903, Donnateur Comm. Foukeut; Sanari, 1934.

This species resembles Hyalopeplinus cairnsensis n.sp. but vittae of the propleura do not come as close to the lateral spots on the dorsum of the pronotum.

Hyalopeplinus papuensis, n.sp.
(Figs, 67-70, 84)
Characterised by the colour of frons, sides of sternum and abdomen.

Male: Length 4.8 mm , width 1.8 mm . Head: Length 0.4 mm , width 1.2 mm , vertex 0.44 nim , Antehna: Segment I, length $0.7 \mathrm{~mm} ; \mathrm{II}, 2.4 \mathrm{~mm}$; III, 1.8 mm ; IV, 0.7 mm . Pronotum: Length 0.9 mm width at base 1.5 mm . Cuneus; Length 0.60 mm , width at base 0.32 mm (holotype).

Fig. 67-Hyalopeplinus papuensis n.sp. male; holotype.

General coloration ochraceous with fuscous to black areas; eyes, area of calli, five roundish spots on disc of pronotum, one median followed anteriorly by a longitudinal median vitta reaching collar and vertex, and four lateral spots, the larger ones seen from above and the smaller ones seen only from side (united or not with larger spots); two lateral spots on mesoscutuin, longitudinal strigose vitta of scutellum (not seaching apex) and clavus fuscous to black; embolial and cumeal margins, apical margin of corium and nervures of membrane fuscous; corium and membrane glassy, transparent, emboliam and cuneus opaque; sternal area ochraceous, propleura (except margin of anterior coxal cleft), mesosternum laterally, meso and metapleura black. In some specimens the posterior portion of propleuron below the dark fascia ochraceous; abdomen reddish laterally, The collar of this species shows three bars or vittae above (the median one extending whole length of the collar but the two lateral ones not reaching anterior margin) and two lower ones laterally behind eyes well marked and about as wide as width of segment I of antenna, black. Legs ochraceous, tibiae slightly darker.

Genitalia: Penis (fig, 68) with a small sclerotized spiculum and membranous lobes. Left paramere (fig, 69) falciform, pointed apically, Right paramere (fig 70) small, globose apically, ending in a blunt point.

Female: Similar to male in colour and general aspect. Length 6.5 mm , width 2.1 mm , vertex 0.48 mm .

Holotype: male, PAPUA-NEW GUINEA: Abaleti, Rossel Isl. $0.50 \mathrm{~m}_{4}$, no12, 28.ix, 1956, Filth Archbold Exp. to New Guinea, L. J. Brass (AMNH), Allorype: female, Biniguni, Gulariu River, 150 m, no3, July-Aug. 14.1953, Geoffrey M. Tate, Fourth Archbold Exp, Paratypes; two males, same data as holotype; female, Mt. Riu, Sudest Isl. $250-350 \mathrm{~m}$, no10, 9,i.1956, Fifth Archbold Exp, to New Guinea, L. J. Brass, male, New Guinca, S. E. Ruka $9 \mathrm{~m}, 12 . v i i i .1964, \mathrm{H}$. Clissold, light traps. INDONESIA: Irian Jaya, Waris S of Hollandia, 450-500 m, I-7.viii.1959, T, C. Maa; male, NEW BRITAIN: Linga Linga, W of Willeumes, P. En. Im. xiv. 1956, J. L. Gressitt.

Differs from Hyalopeplinus samoanus (Knight) by the pale humeral angles and by the reddish lateral fascia of alydomen.

Hyalopeplinus philippinensis, n.sp.
(Figs. 71-74, 88)
Gharactetised by the colour of frons, collar and lateral area of sternum.

Figs. $68.70-$ Hyalopeplinus papuensis n.sp.: Fig, 68-Vesica of aedeagusi Flg, 69 -Left paramere: Fig, 70 - Right paramere.

Male: Length 5.8 mm , width 1.8 mm . Head: Length 0.4 mm , width 1.2 mm , vertex 0.44 mm . Antenna: Segment I, length $0.7 \mathrm{~mm} ; 11.2 .7 \mathrm{~mm}, 111$. $1.4 \mathrm{~mm} ;$ IV, 0.9 mm . Pronotum: Length 1.1 mm , width al base 1.6 mm . Cuneus: Length 0.72 mm , width at base 0.40 mm .
General coloration ochraceous with fuscous to black areas; eyes, three spots on pronotum-one median followed anteriorly by a longitudinal vitta reaching collar, two lateral ones visible from above; median and lateral spots on mesoscutum, a median longitudinal strigose vitta on scutellum (not reaching apex) black; margins of clavus, commissure and apical margin of corium, margins of embolium, margins of cuneus and nervures of membrane fuscous; corium and membrane glassy, transparent: antenna ochraceous, segments III and IV fuscous. Underside of body ochraceous, a lateral fascia on propleura coalescing or not with lateral spot of disc
black; legs pale; collar with three median bars or vittae and two lower lateral ones (their width approximately equal to width or segment 1 of antenna) black; femora with fuscous spots externally, abdomen with a lateral orange fascia.

Genitalia: Penis (fig, 72) with a sclerotized spiculum and membranous lobes provided with minute teeth apically, Left paramere (fig. 73) falciform, pointed. Right paramere (fig, 74) globose, small.

Femaie: Similar to male in colour and general aspect. Length 6.0 mm , width 2.0 mm , vertex 0.46 mm.

Fig. 71-Hyalopeplinus philippinensis n.sp., male holotype,

Holotype: male, PHILIPPINES: Negros 1., Camp Lookout, Dumaguete, 14.v.1961, T, Schneiria, A. Reyes (AMNH), Paratypes: seven males and females Luzon, Prov, Ifugao, Mt. Mayoyao, 1000 1500 m , 7.vii.1966. $\mathrm{H}_{\text {. Torrevillas, light trap }}$ (BISHOP), and in the author's collection.

This species approaches Hyalopeplinus papuensis n.sp. but differs by the pale colour of sternal area and by the ochraceous area of calli,

Figs. 72-74-Hyalopeplinus philtppinensis n. np.: Fig. 72-Penis; Fig. 73-Left parumere; Fig. 74-Right paramere.

Hyalopeplinus samoanus (Knight, 1935), n. comb.
Guisardus samoanus Knight, 1935, p. 211, fig.; Carvalho, 1959, p. 31.9.
(Figs. 75-78, 83)
Characterised by the colour of pronotum and by the structure of male genitalia.

Male: Length 5.9 mm , width 2.0 mm , Head: Length 0.5 mm , width 1.3 mm , vertex 0.48 mm , Antema: Segment I, length $0.6 \mathrm{~mm} ; \mathrm{II}, 2.5 \mathrm{~mm}$; IIII, $1.4 \mathrm{~mm} ;$ TV, 0.5 mm . Pronotum: Length 1.0 mm , width at base 1.7 mm . Cuneus: Length 0.80 mm , width at base 0.40 mm .

General coloration ochraceous to pale yellow with fuscous to black areas; eyes, antenna (segments IIIV darker), narrow longitudinal line on vertex fuscous to brown, two spots above antennal peduncle on frons black, clypeus castaneous; pronotum with a wide vitta laterally, a small median longitudinal triangular vitta and two small (sometimes obsolete) spots or vittae at each side of median vitta of collar; hind margin of calli, a longitudinal median vitta following median vitta of collar, enlarged and globose posteriorly at middle of disc,
two sublateral spots, usually curved anteriorly, continuing or not with equivalent spot on lateral margin of pronotum, a spot at humeral angles, a longitudinal vitta on propleura coalescing with another at lateral margin fuscous to black; spots at middle and basal angles of mesoscutum, a longitudinal vitta on scutellum narrowed towards apex (but not reaching it) and basal angles black; clavus internal and externally, claval, corial and cuneal margins and nervures of membrane fuscous. Underside of body pale yellow, mesoscutum laterally, metapleura and spot on second abdominal segment fuscous, lateral longitudinal vitta on abdomen black; legs pale yellow, hind femora tending to castaneous apically with fuscous spots on outer surface.

Fig. 75-Hyalopeplinus samoanus (Knight), female.
Genitalia: Penis (fig. 76) with a sclerotised spiculum and membranous lobes. Left paramere (fig. 77) falciform, thicker at basal and subapical portions, pointed apically. Right paramere (fig. 78) small, thickest at middle, with a blunt point at apex.

Female: Similar to male in colour and general aspect Length 6.2 mm , width 2.2 mm , vertex. 0.52 mm .

Geographical distribution: Samoa, New Hebrides, Raratonga Is., American Samoa, Society Islands, Tabuai Is.

Specimens studied: several males and females. SAMOA: Afiamalu, Upolu, 10,vi.1940, 2200 ft , tu light, Swezey and Zimmerman; id. 25.vi.1940; id. 30.vi.1940; id. 5.vii. 1940; id, ii.1955, N, L. Krauss: Pago-Matafao trail, 13.vii.1940, Tutuila I, 2141 ft , beating shrubbery; Tapafao, Upolu, 21.v.1940, 1000 ft , at. light, Swezey \& Zimmerman; Afiamalu, Upolv, iii.1962, R. W. Taylor (BISHOP and AMNH). AMERICAN SAMOA: Tutuila, Tapuna, S.viii.1964, N. R. Spencer; Tatuputimu Farm, 11.xi.1963; Fagatogo, 19. vii. 1963 (BISHOP); NEW HEBRIDES: Espiritu Santo 1. (SW), Namatosopa, 300 m. 29, viii, 1957. Narango, $90 \mathrm{~m}_{3}$ vi. 1960 (BISHOP); Aneityum, Red Crest, $1200 \mathrm{ft}, 3 \mathrm{~m} \mathrm{NE}$ of Anelgaubat, v,1955; Erromanga, vii, 1930, L, E. Cheesman, (BMNH); Aneityum, Agathis Camp, 1921.vii.1971, G. Robinson (SAM). RARATONGA ISLAND: 2.ii. 1937 (BISHOP). SOCIETY ISLANDS: Moorea, Baie de Cook, iii, 1959, N. L. Krauss (BISHOP).

This species differs from others in the genus by the humeral angles and abdomen being black laterally,

Figs 76-78-Hyalopeplinus samoanus (Knight): Fig. 76-Penis: Fig. 71-Left paramere; Fig. 78-Right paramere.

Hyalopeplinus solomonensis, J, sp.
(Figs, 79-82, 90)
Characterised by the colour of pronotum and lateral margins of sternum.

Male: Length 5.6 mm , width 2.0 mm . Head: Length 0.3 mm , width 1.2 mm , vertex 0.44 mm . Antenna: Segment I, length $0.6 \mathrm{~mm} ; \mathrm{II}, 3.1 \mathrm{~mm}$; III, 1.4 mm ; IV, broken. Pronotum: Length 1.0 mm , width at base 1.8 mm . Cuneus: Length 0.60 mm , width at base 0.32 mm (holotype).

Fig. 79-Hyalopeplinus solomonensis n.sp., male, holotype.

General coloration ochraceous to citrine with dark silvery pruinose and brown areas; head with a longitudinal vitta on vertex, branched anteriorly, two spots above base of antennal peduncles, four spots on clypeus (base, sides and apex), vitta on lorum and vitta on lower margin of gena and spot on neck behind eye fuscous to black; eyes castancous: antenna with segment 1 and II pale yellow (segment 1 with a dark longitudinal vitta interiorly) segments III-IV black; pronotum with collar, a characteristic M -shaped pruinose spot on disc (running along hind margin of calli with two projections forwards), the
lateral and median longitudinal branches running backwards and becoming enlarged apically (not reaching hind margin of disc) black, extreme portion of humeral angles fuscous; mesoscutum at middle and external fossae black; scutellum with a longitudinal narrow strigose vitta (not reaching apex) and two vittae curving inwards and arising from the two black spots dark with silvery pruinosity; hemelytra glassy, transparent, clavus opaque, black, covered by silvery pruinosity, inner and outer margins of embolium and corium, commissure, inner and apical portion of cuneus, nervures of membrane fuscous to brown: membrane hyaline with two narrow longitudinal vitae at apical portion. Underside of body pale yellow, xyphus of prosternum, a characteristic spot on propleura with a round velvety black spot at middle, mesosternum (except a small pale spot) and a wide longitudinal vitta laterally on abdomen with elongate velvety spots on the upper portion of each segment fuscous to black; legs pale yellow, femora with small fuscous spots.

Pronotum strigose on black vittae or spots, scutellum also strigose at middle, clavus opaque, pilose, eyes large and prominent.

Figs, 80-82-8fyalopeplinus solomonemsis n.sp.; Fig. 80-penis; Fig, 81-Left paramere: Fig. 82-Right pargmere.

Geniralia: Penis (fig, 80) with a sclerotised spiculum and membranous lobes. Left paramere (fig, 81) falciform, pointed apically, Right paramere (fig. 82) small, globose.

Female: Similar to male in colour and general aspect. Length 6.0 mm , width 2.2 mm , vertex 0.48 mm (allotype).

Holotype: male, SOLOMON ISLANDS: Florida Group, Gairava, Mboli passage, Big Nggnela, 13.ix.1960. C. W. O'Brien (BISHOP). Allotype: female, same data as holotype. Paratypes: Eight males and fourteen females, same data as holotype and New Georgia Grp., Gizo 1, $100 \mathrm{~m}, 17 . v i 1,64, \mathrm{~J}$. Sedlacek, malaise trap; Florida Grp. Vunula, Small Nggela, 19.ix,60, light trap, C, W, O'Brien; Santa Ysabel, Tamatahi, 450 m , 2.vii. 1960 , light trap, C. W, O'Brien: N, W, Malaita, Dala, 2, vii,1964, R, Straatman, light trap; id. Kwalo, $600-750 \mathrm{~m}$, 29.ix.1957, light trâp. J. L. Gressitt; Guadalcanal, Jan. 1921, J. A. Kuschel; id. Roroni. 35 km of Honiara, $10 \mathrm{~m}, 13, \mathrm{v}, 1964$, R. Stratman: id. Lame nr. Mt. Tatuva, $300 \mathrm{~m}, 18 . \mathrm{v} .1960$, light trap, C. W. O'Brien; Paripao, 21.v. 1960, light trap; Bougainville, Kulugai Village, 150 m , xi, $1960, \mathrm{~W}, \mathrm{~W}$. Brandt: id. Buin, Kangu, 1-50 m, 3.v,1956, J. L. Gressitt.

This species approaches Hyalopeplinus cristovalensis n, sp. but differs by the colour of pronotum and velvety spots of abdomen.

Hyalopeploides Poppius, 1912

Hyalopeploides Poppius, 1912a, p. 419; Carvalho, 1959. p. 319.

Type-species: Hyalopeploides ryanescens Poppius, 1912.

Body elongate, mostly glabrous, shining. Head slightly wider than long, eyes almost contiguous with collar, frons with oblique striations (obsolete on absent in some species), clypeus prominent, compressed, rostrum reaching the middle coxac. Antenna with segment I thicker than others, about as long as width of head, segment 1 about three times as long as I_{p} segments 111 -IV slender, pubescence short.

Pronotum with anterior portion noticeably constricted (so as to appear three lobed), collar wide, calli prominent, reaching lateral margins and well separated from collar and disc, hind margin slightly sinuate at middle: surface of pronotum faintly transversely rugose, the rugosities more marked on the dark vittae or spots, submarginal portion linely punctate; mesoscutum partially exposed, scutellum longitudinally impressed (with a shallow wide sulcus) and rugose iransversely.

Hemelytra glassy, transparent, embolium and cuneus opaque, pubescent (in some species clayus also with hairs), clavo-corial and corio embolial sutures with a row of punctures, cuncus about twice or more as long as wide at base, membrane vitreous.

Figs. 83-91-Latcral view of bead and pronotum showing colous matkings on species of genus Hyalopepilius n.gen.: Fig 83-samoanus; Eig. 84-papuensis; Fig. 85-cairnsensis; Eig 86-antennalis, Fig. 87-filiensisi Fig, 88-philippinensis; Fig. 89-crisrovalensis: Fig. 90-solomonensis: Fig. 91-malayensis.

Legs fairly long, hind tibiae with hairs, spines and minute sclerotised tubercles, parempodia divergent cowards apices.

This genus is yery close to Hyalopepius Stall; 1870 but differs by the rugosities of pronotum occupying only the anterior two thirds and more evident on the black vittae or spots; by the submarginal portion of disc posteriorly finely punctate and without rugosities; by the disc noticeably constricted anteriorly as if being divided into three portions and by the rounded humeral angles.
List of species of the genus Hyalopeploides Poppius

1. alienus Carvalho \& Gross, n.sp.... Australia
2. australiensis Carvalho \& Gross, n.sp.

Australia

3. bomeensisn.sp. Borneo
4. cyanescens Poppius, 1912 Papua-New Guinea

5. macularus n.sp. Papua-New Guinea
6. neogumeanus n.sp..... Papua-New Guinca
7. ochraceus n.sp............ Papua-New Guinea
8. queenslandensis Carvalho \& Gross. n.s.s.

Áustraliáa
10. Hbriniscus n.sp. NewIreland
11. rubrinoides n.sp.

New Ireland
New Britain Bismark. Is. Solomon Is
12. similaris n.sp

New Ireland

Key to the species of the genus Hyalopeploides poppius
1 Body except cuncus ochraceous; dise of pronotum with obşolete longitudinal arange vittac. .
ochracess n.sp. Body with black or dark brown vittae or spots.
2. Head unicolorous; pronotum with theee rugose vitta-like black spots
Head with two spots on vertex ar a longıudinal median dark vitta or the latter plus two vittae along inner margin of eyes.
3. Collar without longitudinal dark vitzae or bars, pronotum with a median and two lateral brown fossae or spots alienus Carvatho \& Gross, m. sp,
Collar with longitudinal dark vittae or bars
4. Collar with only two lower hateral spots, one at each side; calli unicolorous
Collar with two median triangular black Iasciae or bars; call with two dark spots laterally, one at each side
queenslandensis Carvalho \& Gross, n. sp.
5. Cuneus black to dark brown; collar with four longitudinal median viltae, the lower ones larger and darker: vertex with two black spots at inner margin of eyes! calli mostly black or with black spots....... ... cyanescens Poppius
Cuneus reddish or sulphuresecnt: collar with tive to seven longitudinal vittae or bars
6. Diṣc of pronotum with a longitudinal median vitta seaching collar anteriorly and two sound central spots, or with such vitta and spots plus twa lateral vittae, one at each side, black; collar with three longitudinal viltae
Dise of pronotum with three Iongitudinak vittac, usually covered by silvery pruinosiry; collar with five to seven longitudinal bars or vittae
7. Dise of pronotum with a median longitudinal vitra and swo spors black; scurellum with two longitudinal black vittse maculalus π. sp.
Dise of pronotum with three longirudinal yittae and two spots black; scutellum with a single basal median longitudinal vitla borneensis n. sp.
8. Scutellum with twa longitudinal dark brown to black vittac; sometimes fuxed into one. y
Scutellum unicolorous ut nearly so, without longitudinal wack vittae
9. Collar with threc longitudinal black vittae or bars, the lower anes characteristic, large and quadrate; head with a single median vitta..
similaris л. sp.
Callar with five to seven longitudinal hlack vittae; tread with three longitudinal vittae
10. Collar with five longitudinal vittae, the rwo lower ones, one at each side, large, black, quadrate. .
fasciatusn. sp.
Collar with seven longrudinal vittae, the two lower ones distinct, not fused into one........ . . meoguineanus n. sp.
11. Head unicolorous, without longitudinal seddish vittae; disc of pronotum with two longitudinal brown vittae between the median and the lateral

Australiensis Carvalho \& Gross, n. \$p.
Head writ three longitudinal reddish vittae; djec without three longitudigal hrown vittae.
12. Collor with seven longitudinal vitae, the lower ones reddish; sides of abdomen with one red vitta above
rubriniseus n_{1} sp.
Collar with five longitudinal vittae, the two Iower ones characterissic, fused antesiorly; sides of abdomen with two red longitudinal lateral vittae
rubrinoides n. sp.

Hyalopeploides alienus Carvalho \& Gross, n. sp.
(Figs, 92, 128)
Characterised by the colour of pronotum and collar.

Female; Length 7.5 mm , width 2.0 mm . Head: Length. 1.0 mm , width 1.3 mm , vertex 0.54 mm , Antenna: Segment I, length $1.0 \mathrm{~mm} 311,2.8 \mathrm{~mm}$; III, 1.7 mm : 1V. 0.8 mm . Pronotum; Length 1.5 mm , width at base 2.0 mm . Cuneus: Length 1.22 mm width at base 0.49 mm (holotype).

General coloration brownish yellow; on head eyes blackish and apex of second and third and fourth antennal segments infuscated; pronotum with central depressed fossa pale brown and laterally to this on each side on lateral margins an oval brown spot; clayus vaguely darker then rest of hyaline portion of wings and hemelytra, embolium and cuneus pale yellowish brown: rest of hemelyira and wings hyaline. Dorsum of abdomen yellowish brown medianly, becoming more reddish brown laterally. Laterally and beneath concolorous with dorsal surface and apex of rostrum infuscated, apices of femora and towards lateral margins of abdomen faintly reddish.

Pilosity restricted to apical portion of embolium, cuneus, appendages and underside of abdomen, the pilosity dark on all but the underside of the abdomen where it is whitish. On tibiae some longer and paler spine like hairs interspersed with the shorter dark pilosity.

On pronotum medially a longitudinal, rather narrow, depressed transversely strigose groove extending from level of hind margin of calli to about $2 / 1$ of hind lobe. Disc of hind lobe faintly transversely strigose. Scutellum depressed anteriorly in the middle behind which is a longitudinal, depressed, transversely strigose groove running almost to apex.

Male: Unknown.

Holotype: female, AUSTRALIA: North Queensland, Cairns District, F. P. Dodd; 1 damaged female, Kuranda, F. P. Dodd (SAM Reg. no. I20,980).

Fig. 92-Hyalopeploides alienus Carvalho \& Gross, n.sp, female, holotype.

Differs from Hyalopeploides australiensis n.sp. by having the body considerably longer in relation to its width and also by having the eransversely strigose groove on the pronotum narrow and brownish in colour.

Fig. 93-fiyalopeploides australienpis Carvalho ce Grose, ת.xp.. female, holotype.

Hyalopeploides australiensis

Carvalho \& Gross, n. sp.
(Fig. 93, 129)
Characterised by the colour of head and pronotum.

Female: Length 6.8 mm , width 2.2 mm . Head; Length 0.5 mm , width 1.1 mm , vertex 0.52 mm . Amenna: Segment I, length, $1.0 \mathrm{~mm} ; 5,2.9 \mathrm{~mm}$; III. 1.5 mm ; IV, 0.7 mm . Pronolumi: Length 1.2 mm , width at base 1.9 mm . Cuneus: Length 0.76 mm , width at base 0.44 mm (holotype).

General coloration ochraceous with reddish and black areas; eyes castaneous, antenna reddish. apical portion of segment 11 , segment 111 (except base) and segment TV dark brown; collar with three vittae or bars above and two lateral (one of the latter
on each side wider and about as wide as segment I of antenna) dark brown; area of calli and disc with three strigose longitudinal vittae (with a silvery pruinosity on well preserved specimens), dise also with three longitudinal vittae plus two others wider and shorter al posterior portion brown, humeral angles black exteriorly: mesoscutum and scutellum with a longitudinal orange vitta reaching apex of scutellum; hemelytra glassy, transparent margins of clavus, commissure and apical margin of corium, nervures of membrane, inner and outer margin of embolium brown; cuneus and embolium opaque, the first reddish and the second ochraceous: membrane transparent. Underside of body pale yellow. propleura with a longitudinal, strigose brown vitta, legs pale yellow, hind femora reddish apically with two rows of small tuscous spots, hind tibiae and tarsi reddish, claws black.

Male: unknown.
Holotype: female, AUSTRALIA: Queensland; F. P. Dodd, 1907-54, Kuranda, Qld. F. P. Dodd, April 1904 (BMNH). Paratypes: female, same data as holotype, June, 1904; female, N. Queensland, Redlynch, 14.viii,1938, Papuan-Australjan Exp. B.M. 1947-48: female, Redlynch, Qld: xii.1938, B,M, 1949-61, R. F. Sternitsky, Papuan-Australian Exp., B.M. 1949-61. Femalc, Kuranda, F. Dodd, (SAM Reg, no, 120,981),

This species approaches Hyalopeplinus rubrinus n. sp, and Hyalopeplinus rubrinoides n. sp. bul differs by the colour of head and pronotum.

Hyalopeploides borneensis, n. sp ,
(Figs. 94-97, 132)
Characterised by the colour of head and pronotum.

Male; Length 6.5 mm , width 20 mm . Headi Length 0.5 mm , width 1.1 mm , vertex 0.48 mm . Antenna: Segment I. length $0.6 \mathrm{~mm} ; \mathrm{II}, 2.8 \mathrm{~mm}$; III and IV, mutilated. Pronotum: Length 1.3 mm , width at base 1.7 mm . Cunews: Length 0.60 mm , width at base 0.28 mm (holotype).

General coloration ochraceous with brown and reddish areas; eyes brown, antenna, dark brown, segment I reddish; pronotum and vertex with a continuous longitudinal, median vitta which is strigose and widened posteriorly on disc, two strigose lateral spots, humeral angles, two lower lateral vittac on collar, the lowest one reaching over calli dark brown to black; mesoscutum with two lateral black spots; scutellum with two black basal spots joining a longitudinal brown vitta widened basally, apical portion of scutellum lighter; hemelytra glassy, iransparent, margins of clavus, commissure and apical margin of corium, nervures of

Fig. 94-Hyalopeploides bomeensis n.sp. male, holotype
membrane, inner and outer margins of embolium and of cuneus castaneous, median area of latter orange to red; membrane transparent. Underside of body ochraceous, propleura with a lateral posterior strigose vitta fuscous, femora with small fuscous spots, the hind pair tending to orange apically, hind tibiae orange to seddish.

Geniralla; Penis (fig. 95) with membranous lobes provided with minute teeth at extremitics, Left paramere (fig, 96) curved, enlarged subapically. Right paramere (fig. 97) smaller, simple,

Female: Similar to male in colour and general aspect. Length 6.5 mm , width 2.0 mm , vertex 0.48 mm . Cuncus: Length 0.72 mm , width at base 0.40 mm .

Holotype: Male, EAST MALAYSIA; Mt. Kinabalu, Manei Parei, $5000 \mathrm{ft}_{1}$ 5iii.1929, Exp. F.M.S., B.M. 1955-354, H. M. Pendlebury (BMNH). Allotype: female, Forest Camp $19 \mathrm{~km}, \mathrm{~N}$ of Kalabakan, 12.x.1962, Y. Hirashima, light trap (BISHOP). Papatype: male, same data as holotype.

Approaches Hyalopeplinus maculatus n, sp, but differs by the colour of pronotum.

Hyalopeploides cyanescens Poppius, 1912
Hyalopeploides cyanescens Poppius, 1912a, p. 419; Carvalho, 1959, p. 319.

Characterised by the colour of head, pronotum and cuncus.

Female: Length 6.5 mm , width 1.8 mm . Head: Length 1.0 mm , width 1.3 mm , vertex 0.60 mm . Antenria: Segment I, length $1.0 \mathrm{~mm} ; \mathrm{II}_{4} 2.9 \mathrm{~mm}$; IIIIV, broken. Pronolum: Length 1.5 mm , width at base 2.0 mm . Cuneus: Length 1.12 mm , width at base 0.44 mm (lectotype).

General coloration ochraceous with dark areas: inner margin of eye and posi-ocular area of head black, antemna pale yellow, apex of segment II and segments III and IV black; pronotum with collar showing four longitudinal vittae (the lower lateral ones larger and darker), spots on calli or the whole area, two lateral spots on dise and a narrow longitudinal vitta (not reaching the hind margin or obsolete in some specimens), propleura (except lower margin), lateral margin of mesosternum fuscous to black; hemelytra ochraceous, transparent, cuneus and embolium partially ochraceous. Underside of body and legs pale yellow to lurescent, hind tibiae tending to castaneous, abdomen with reddish tinge.

Pronotumt rugose anteriorly, noticeably constricted behind calli which are prominent, scutellum rugose at middle, clavus, embolium and cuneus pubescent.

Male: unknown.

Specimens studied; female, lectotype (new desig. nation). NEW GUINEA: Astrolabe Bai, Erima (HELSINKI); female, INDONESIA; Bodem, $100 \mathrm{~m}, 11 \mathrm{~km}$ SE of Oerberfaren, Irian Jaya, 10. vii, 1959, light trap (BISHOP),

This species is close to Hyalopeplus ochraceous n. sp . but differs by the colour of pronotum.

Hyalopepoides fasciatus, n. sp.
(Fig, 125)
Characterised by the longitudinal pruinose vitta of pronotum and by the two wide longitudinal vittae of scutellum.

Female: Length 8.4 mm , width 2.8 mm . Head: length 0.8 mm , width 1.4 mm , vertex 0.64 mm . Antenna: Segment 1, length $100 \mathrm{~mm} ; 15 ; 3.2 \mathrm{~mm} ; 1 \mathrm{II}$, 1.4 mm ; IV 0.8 mm. . Pronotum: Length 1.6 mm . width at base 2.4 mm . Cuneus: 1.12 mm , width at base 0.56 mm (holotype).

General coloration flavescent to citrine with datk brown to reddish areas; head, pronotum and scutellum citrine; a longitudinal vitta on middle of head, two lateral ones along inner margins of eyes (obsolete in some specimens) joining middle line of clypeus fuscous to brown; five vittae or bars on

Figs, 95-97-Hyalopeploides horneensis n.sp. Fig. 95-Penis; Fig. 96-Left paramere Fig. 97-Right paramere.
collar (the lower lateral ones forming a black rectangular spot behind eye), three longitudinal wide pruinose vittae on pronotum; one median and two lateral (these slightly inside the corresponding pair on calli) black, two obsolete longitudinal vittae running between the pruinose vittae castancous; mesoscutum and scutellum with lateral margins basally and two longitudinal vittae (not reaching apex) castaneous; hemelytra glassy, transparent, sutures black, cuneus reddish with outer margin pale; membrane glassy, slightly fuscous, nervures dark. Eyes castaneous, antenna reddish, apex of segment II black, segments III-IV black (with pale bases). Underside of body flavescent, a line along side of head, a vitta along upper margin of propleura and another above coxal cleft I castaneous to reddish; legs flavescent, apices of tibiae I and II reddish, femora suffused with red, hind pair apically and hind tibiae totally red, apices of tarsi fuscous.

Pronotum distinctly rugose, scutellum prominent, cuneus noticeably long.

Male: unknown

Holotype: female, INDONESIA: Bibidjilan, West Java, M. E. Welsh, 8.v. 38, in the collection of the author.

This species differs from allied forms by having three longitudinal wide pruinose fasciae on pronotum, two longitudinal fasciae on scutellum and a quadrate black spot present on lower lateral margin of collar.

Fig. ט8-Hvalopeploides cyanescens Poppius, female, lectotype.

Hyalopeploides maculatus, n. sp.
(Figs. 99-102, 123)
Characterised by the colour of pronotum. hemelytra and hind legs.

Female: Length 9.8 mm , width 3.2 mm . Head: Length 0.7 mm , width 1.6 mm , vertex 0.76 mm . Antenna: Segment I, length $1.2 \mathrm{~mm} \div$ II, 4.2 mm ; IIIIV, broken. Pronolum: Length 1.6 mm , width at base 2.8 mm . Cuneus: Length 1.20 mm , width at base 0.64 mm (holotype).

Fig. 99-Myalopeploides macularus n.sp: female, paratype.

Ceneral coloration ochraceous to lutescent with brown and reddish areas; a longitudinal vitta on head, eyes, antennae (except segment I) black; pronotal collar with three well marked longitudinal vistae (in some specimens only median vitta present), a longitudinal median vitta on dise not reaching posterior margin, two round spots at central portion, two longitudinal vittac near humeral angles, and a small spot at each angle brown 10 black: mesoscutum with four dark spots; scutellum with two median longitudinal vittae united or joined brown, apical portion pale; hemelytra glassy, transparent, clavus and corium with inner and outer margins and commissure brown, embolium opaque dark, cuneus opaque, pale at central portion,
reddish at apex and margins (in some specimens the median portion is also reddish): membrane fuscous. nervures brown, Underside of body ochraceous, posterior margin of ostiolar peritreme, keel of metapleura, and apical end of abdomen dark; legs ochraceous, hind femora black, hind tibiae brown. segment II of tarsi fuscous.

Male: Similar to female in colour and general aspect. Length 8.6 mm , width 2.7 mm , vertex 0.72 mm .

Genitalia: Penis (fig. 100) with membrannus lobes showing areas of sclerotised teeth. Left paramere (fig. 101) enlarged apically with a terminal short point. Right paramere (fig. 102) small with a szlerotised apical branched tubercle.

Holotype: female, INDONESIA; Swart Val, Karubaka, Irian Jaya, $1400-1600 \mathrm{~m}_{4}$ 9.xi. 1958, J. L. Gressitt (BISHOP). Allotype; male, same data as holotype. Paratypes; three females, idem, in the above collection and of the author,

This species approaches Hyalopeplinus similaris n. sp. but differs by the presence of two rounded spots on the dise of the prontotum.

Hyalopeploides neoguineanus, $\mathrm{m}_{\ldots} \mathrm{sp}$.
(Figs. 103-107, 126)
Characterised by the colour of the body and by the structure of male genitalia.

Male: Length 7.6 mm , width 2.6 mm , Head: Length 0.6 mm , width 1.2 mm , vertex 0.52 mm . Anterna: Segment 1, length $1.2 \mathrm{~mm} ; ~ \mathrm{II}_{1} 3.0 \mathrm{~mm}$; III, $1.1 \mathrm{~mm} ;$ IV. 0.6 mm . Pronotum: Length 1.5 mm , width at base 2.2 mm . Cuneus: Length 0.84 mm , width at base 0.52 mm (holotype).

General coloration ochraceous to citrine with brown and reddish areas: head with a median longitudinal and two lateral vittae (obsolete in some specimens), lateral vitta on gena brown, clypeus, jugum and lorum, posterior margin of eyes on neck. and segment I of antenna reddish, segments 111-IV brown to black (segment Il tending to reddish at base); pronotum seen from above with collar; calli and disc marked by five longitudinal vittae; one median and two lateral brown with silvery pruinosity; two sublateral and reddish (absent or obsolete in some specimens, especially on females); lateral margins, lower lateral vittae of collar (the upper ones brown to dark), longitudinal vitta on sternal area and lateral portion of abdomen reddish: mesoscutum with two median vittae (not reaching apex) and basal angles black, hemelytra glassy. transparent, inner and outer margins of clavus. corium and embolium (at basal portion), apical

Figs. 100-102-Hyalopeploides maculatus n.sp.: Fig, 100—Penis: Fig. 101-Lett paramere: Fig. 102-Right paramere.
margin of corium and nervures of membrane brown, apical portion (in the male the whole extension) of embolium, corial commissure and cuneus reddish, membrane ochraceous, transparent. Underside of body ochraceous, segment I of rostrum, ostiolar peritreme, upper margins of abdominal segments, terebra and area continguous reddish h_{4} segment IX brown, femora reddish, tibiae brown, the hind pair reddish, tarsi fuscous.

Genitalia: Penis (fig, 105) with membranous lobes provided with sclerotized teeth. Left paramere (fig. 106) curved, ended by a slender point. Right paramere (fig. 107) simple, with a sclerotized apical point.

Female: Similar to male in colour and general aspect. In some specimens the pronotum do not show the longitudinal vittae between the central and the two lateral ones. Length 8.3 mm , width 3.0 mm , vertex 0.52 mm . Cuneus: Length 1.00 mm , width at base 0.60 mm (allotype),

Holotype: Male, INDONESIA: Irian Jaya, Wisselmeren, 1700 m , Wagaete, Tigi L., 17, Aug. 1955, J. L. Gressitt (BISHOP), Allotype: female, NEW GUINEA: NE Elliptami Valley, 1 2001350 m , August 1-15, 1959, W. W, Brandt, Paratypes: 9 females, Ahl.V. Nodungl, 1750 m , 8.viii.1955. J. L. Gressitt; NE Torricelli Mts. Sugoitei Vill, $900 \mathrm{~m}, \mathrm{~W}, \mathrm{~W}$, Brandt, 1-5.ii.1959; Swart Vall., Karubaka, 10xi.1958; NE Feramin, 1450 m , 26.viii:63, R. Straatman; Wisselmeren, Moanemani, Kamo, 1500 m , J. Sedlacek; Duroto, E of Enarotadi, 1800 m , in the collection above and of the author.

Very close to Hyalopeplus rubrinus n. sp. but differs by the presence of longitudinal dark vittae on scutellum. It is also near Hyalopeplus fasciatus n. sp. from which it can be separated by the presence of the seven vittae on collar.

Fig. 103-Hyalopeploides neoguineanus n.sp., male, holotype.

Fig. 104-Hyalopeploides neoguineanus n.sp., female, allotype.

Hyalopeploides ochraceus, n. sp.
(Figs. 108-111, 122)
Characterised by the colour and structure of male genitalia.
Male: Length 7.6 mm , width 2.2 mm . Head: Length 0.5 mm , width 1.2 mm , vertex 0.64 mm . Antenna: Segment I, length 1.0 mm ; II, 2.9 mm ; III-IV, broken. Pronotum: Length 1.6 mm , width at base 2.2 mm . Cuneus: Length 0.80 mm , width at base 0.40 mm (holotype).

General coloration ochraceous tending to lutescent; pronotum and scutellum tending to citrine; in some specimens there is an indication of five longitudinal, orange vittae on dise of pronotum and also an indication of a longitudinal vitta on vertex, base on clypeus, lateral area of head and lateral portion of abdomen; eyes brown; cuneus tending to reddish internally; posterior femora with small reddish spots internally at apical portion.

Pronotum and scutellum noticeably rugose trans. versally, the disc constricted behind calli.

Genitalia: Penis (fig. 108) with a sclerotized spiculum (fig. 111) and membranous lobes with sclerotised teeth apically; secondary gonopore with groups of sclerotised teeth nearby. Left paramere (fig. 109) curved, pointed apically. Right paramere (fig. 110) globose, with an apical point.

Figs. 105-107-Hyalopeplaides neaguineanus n.sp.: Fig. 105-Penis; Fig. 106-Left paramere; Fig. 107-Right paramere.

Female: Similar to male in colour and general aspect. Length 7.6 mm , width $2 . .4 \mathrm{~mm}$, vertex 0.68 mm . Cuncus: Length 0.84 mm , width at base 0.56 mm (allotype).

Holotype: Male, NEW GUINEA: Elliptami Valt ley, $1200-1350 \mathrm{~m}$. August. 1-15, 1959, W. W. Brandt (BISHOP). Allotype: female, INDONESIA:

Swart Val., Karubaka, Irian Jaya, 10.xi, 1958, light trap, J, L. Gressitt, Paratypes: two males and three females, same data as holotype, in the above collection and of the author.

Differs from all others species included in the genus by the almost uniform ochraceous colour of the body.

Figs 108-111-Hyalopeploides ochraceus n.sp.: Fig. 108-Penis: Fig 114-Lett paramere; Fig. 110-Right paramere;-Fig. 111-Spiculum of aedeagus.

Hyalopepoides queenslandensis Carvalho \& Gross, n.sp.
(Figs. 112, 131)
Characterised by the colour of head and pronoturn.

Female: Length 8.4 mm , width 1.9 mm , Head: Length 0.5 mm , width 1.3 mm , vertex 0.50 mm . Autenna; Segment $I_{\text {, }}$ length $0.9 \mathrm{~mm} ; \mathrm{II}_{4} 2.8 \mathrm{~mm}$; IIT, 1.8 mm ; IV, broken. Pronotum: Length 1.3 mm , width at base 1.9 mm , Cuneus: Length 0.88 mm , width at base 0.36 mm (holotype),

General coloration ochraceous with brown to black areas; eyes brown, antennae dark brown, segment I ochraceous:" pronotal collar with two longitudinal triangular bars or vittae (the vertex touching calli), two lateral spots on calli, two small ones near the confluence of the latter posteriorly brown: a median longitudinal strigose vitta on disc, widened posteriorly and two lateral spots (also strigose) black; a small brown spot at each side near the two lateral spots but situated inferiorly and the humeral angles brown; mesoscutum and scutellum ochraceous, the latter darker near apex; hemelytra glassy, transparent, margins of clavus, commissure
and apical margin of corium, nervutes of membrane brown; embolium and cuneus opaque, orange to reddish membrane transparent. Underside of body ochraceous, a small spot above anterior portion of coxal cleft I and longitudinal strigose vitta on posterior portion of propleura brown; legs pale yellow, femora with reddish tinge apically.

Male: Unknown.

Holotype: female, AUSTRALIA: Kuranda, Qld., June 1904, F, P. Dodd, Queersland, F, P. Dodd, B. M. 1907-54 (BMNH).

This species approaches Hyalopeplinis rubriniscus n.sp. Hyalopeplinus rubrinoides n.sp. but differs by the colour of head and pronotum.

Fig. 112-Hyalopeploides queenslandensis Carvaltho \& Gross, n.sp. iemale, holotypt-

Hyalopeploides rubrinoides, n.sp.
(Fig. 127)
Characterised by the colour of collar.
Female: Length 8.4 mm , width 2.7 mm . Head: Length 0.8 mm , width 1.4 mm , vertex 0.64 mm , Antenna: Segment 1 , length $0.8 \mathrm{~mm} ; \mathrm{II}, 3.0 \mathrm{~mm}$; III, 1.3 mm ; IV, 0.8 mm , Pronotum: Length 1.6 mm .
width 2.4 mm . Cuneus: Length 1.00 mm , width as base 0.52 mm (holotype).

General colotation ochraceous with brown and reddish areas; head with a median longitudinal vitta and two lateral ones along inner margins of eyes which coalesce on clypeus, a lateral vitta on gena and lorum, as well as on jugum, reddish; eyes and antenna brown to black, segment | reddish; pronotum with three longitudinal brown to reddish vittae covered by silvery pruinosity, having also between them two submedian orange vittae (obsolete in some specimens); collar with s longitudinal brown median vitta, two reddish sublateral vittae (following those of head and pronotum) and two lower lateral ones black, fused anteriorly and characteristic for the species; mesoscutum and scutellum ochraceous; unicolorous; hemelytra glassy, transparent, sutures and commissures and nervures of membrane fuscous; embolium and cuneus reddish; membrane pale at intrareolar portion and ochraceous at extra-areolar portion, underside of body ochraceous, lateral margin of pronotum and a longitudinal vitta on side of sternal portion following longitudinal vitta of head and continuing through lateral portion of abdomen reddish; legs pale yellow, femora towards apices and hind tibiae reddish.

Embolium and cuneus distinctly pilose, scutellum coarsely rugose transversely.

Male: Unknown.

Holotype: female, NEW BRITAIN: Giseluve, Nakanai Mts. 1050 m, 26 July 1956, E. J. Ford Jr. (BISHOP). Paratype: female, Yalom, $1000 \mathrm{~m}, 16$ May 1962, Noona Dan Expedition, 1961-1962, in the Collection of the Universitets Zoologiske Museet. Copenhagen.

Very close to Hyalopeplinus rubriniscus n.sp. but differs by the shape of the lower lateral spot of collar.

Hyalopeploides rubriniscus, n.sp.
(Figs, 113-116, 134)
Characterised by the colour of collar and scutellum.

Female: Length 8.0 mm , width 2.8 mm . Head: Length 0.8 mm , width 1.3 mm , vertex 0.56 mm . Antenna: Segment J, length 0.8 mm ; II, 3.2 mm ; LII, 1.2 mm ; IV, 0.8 mm . Pronotum: Length 1.5 mm , width at base 2.2 mm . Cuneus: Length 1.00 mm , width at base 0.48 mm (holotype).

General coloration ochraceous with reddish and brown areas; head with a median longitudinal virta and two lateral ones along jnner margins of eyes, a longitudinal vitta on gena and lorum, jugum and
base of clypeus reddish; eyes and antennae brown, segment I reddish: pronotum with three longitudinal brown vittae covered by silvery pruinosity, collar with seven longitudinal vittae as follows: one brownish at middle; two submedian brown to reddish; two more distinct, laterally black; two on lower lateral margin reddish. in some specimens, especially on females, the two lateral vitface of head are followed posteriorly by a corresponding sublateral vitta on collar, calli and disc, between the darker vittae. Mesoscutum and scutellum ochraceous, unicolorous (in some specimens with an indication of a median orange longitudinal vitta); hemelytra glassy, transparent, inner and outer margins of corium and nervures of membrane fuscous to brown, embolium and cuneus reddish, membrane hyaline, Underside of body pale yellow, lateral margins of pronotum, lateral vitta on upper margin of propleura (covered with silvery pruinosity), longitudinal vitta on lower margin of propleura following the equivalent one on lorum and extending along side of sternum and upper margin of abdomen reddish; legs pale yellow, apical portion of femora with reddish tinge, hind tibiae reddish, apices of rostrum and tarsi fuscous.

Fig. 113-Hyalopeploides rubnniscus n.sp. female, holotype.

Embolium and cuneus opaque, pilose, pronotum strongly rugose transversely.
Genitalia: Penis (Fig. 114) with membanous lobes provided with sclerotized spines apically. Left paramere (Fig. 115) curved, enlarged apically, with a pointed apex. Right paramere (Fig, 116) simple, also pointed apically.

Ferrale; Similar to male in colour and general aspect, slightly more robust. Pronotal vittae more marked and five in number: three dark to brown and two sublateral reddish.

Holotype: male, NEW IRELAND: Schleinitz Mts, Lelet Plateau, Oct. 1959, W, W. Brandt (BISHOP). Allotype: female, same data as holotype. Pararypes: two females, Elemkamin, 16 April 1962. Noona Dan Expedition, 1961-1962, in the collection of the Universitets Zoologiske Museet, Copenhagen.

Very close to Hyalopeplinus neoguineanus n.sp, but differs by the colour of scutellum. It is also close to Hyalopeplinus nubrinoides n.sp. but differs by the colour of collar.

Hyalopeploides similaris, n. sp.
(Figs, 117-120, 124)
Characterised by the colour of head and collar.
Male: Length 7.4 mm , width 2.5 mm . Head: Length 0.6 mm , width 1.4 mm , vertex 0.64 mm . Antenna: Segment I, length $0.9 \mathrm{~mm} ;$ II, $3.3 \mathrm{~mm} ;$ IIIIV, broken. Pronotum: Length 1.4 mm , width at base 2.3 mm . Cuneus: Length 0.80 mm , width at base 0.52 mm (holotype).
General coloration ochraceous to futescent with black and reddish areas; head with a longitudinal vitta (more marked on vertex) dark, clypeus, a narrow longitudinal vitta on gena and segment I of antenna reddish; eyes and antennal segments II-IV brown to black; pronotum with three longitudinal vittae (covered by silvery pruinosity) dark: the median one reaching middle of collar where it is narrower but not reaching hind margin of disc, the two lateral beginning at posterior margin of calli (also not reaching hind margin of disc); collar with a lower lateral quadrate and characteristic black spot; mesoscutum and scutellum with two submedian vittae (those on scutellum not reaching apex) and two rounded spots at lateral margins of mesoscutum black; hemelytra glassy, transparent, inner and outer margins of clavus, corium, embolium and nervures of membrane brown to black; embolium and cuneus reddish, opaque; membrane hyaline. Underside of body ochraceous, a lateral vitta on
abdomen reddish (in some specimens the margin of mesosternum and metapleura dark), legs ochraceous, apices of femora and posterior tibiae brown. Embolium and cuneus distinctly pilose, opaque.

Genitalia: Penis (fig. 118) with membranous lobes provided with sclerotized spines apically, Left paramere (fig, 119) enlarged apically, with a small pointed tubercle at apex. Right paramere (fig. 120) small, with a short apical somewhat branched tubercle.

Female: unknown
Holotype: male, SOLOMON ISLANDS: Kolombangara, Gollifer's Camp, $700 \mathrm{~m}, 23.1 .1964$. P. Shanahan (BISHOP), Paratype: male, same data as holotype,

This species approches Hyalopeplinus maculatus n.sp. but differs by the absence of rounded spots on the disc of pronotum and by the characteristic black lower lateral spot or bar on the collar.

Figs. 114-116-Hyalopeploides rubriniscus n.sp.: Fig: 114-Penis; Fig. 115-Left paramere; Fig. 116-Right paramere.

Fig. 117-Hyalopeploides similaris n.sp., male, holotype.

Hyalopeploides trinotatus, n.sp,
(Figs. 121, 130)
Characterised by the colour of pronotum,
Female: Length 8.1 mm , width 2.3 mm , Head: Length 0.6 mm , width 1.3 mm , vertex 0.50 mm . Artenna: Segment I_{4} length $1.0 \mathrm{~mm} ; 11,3.2 \mathrm{~mm}$; IIIIV, broken. Pronotum: Length 1.4 mm , width at base 2.1 mm . Cuneus: Length 0.90 mm , width at base 0.44 mm (holotype).

General coloration ochraceous tending to lutescent or orange; eyes and segments II-IV of antenna fuscous to brown: pronotum with three characteristic black strigose vittae or spots on disc: one median and two lateral; extreme humeral angles dark; scutellum with lateral margins black at base, inner and outer margins of clavus, corium (widened towards apical portion) and embolium, commissure and nervures of membrane fuscous to black; cuneus internally red, black at apex, membrane hyaline, fuscous. Underside of body (except black apex of clypeus, epipharynx and valvulae) unicolorous lutescent to reddish; legs pale yellow to lutescent, femora with small fuscous spots on inner apical portion, tibiae light brown, tarsi fuscous apically.

Figs, 118-120-Hyalopeploides similaris n.sp.: Fig. 118-Penis,
Fig. 119-Left paramere; Fig. 120-Right paramere.

Pronotum rugose at middle of disc, scutellum rugose longitudinally at central portion, clavus, embolium and cuneus pilose.

Male: Unknown.

Holotype: female, NEW IRELAND: Schleinitz Mts. Lelet Plateau, ix.1959, W. W. Brandt (BISHOP).

This species differs from others in the genus by the colour of the pronotum.

Hyalopeplus Stål, 1870

Hyalopeplus Stâl, 1870, p. 670: Atkinson, 1890, p. 106: Distant, 1904b, p. 447: Reuter, 1905b, p. 1: Kirkaldy, 1906, p. 142: Reuter, 1910, p. 158: Poppius, 1912b, p. 2: Carvalho, 1952, p. 97: Carvalho, 1955, p. 107: Carvalho, 1959, p. 319.
Callicratides Distant, 1904b, p. 415: Reuter, 1905b, p. 1.

Type-species: Capsus vitripennis Stall, 1855
Body elongate, glabrous or with a few sparse hairs (more visible on cuneus and embolium), Head wider than long, vertex smooth, not marginated, frons rounded anteriorly, clypeus prominent, lorum shelflike, visible from above, buccula small, rostrum reaching apex of middle or base of hind coxae, segment I reaching middle of xyphus of prosternum; eyes slightly removed from collar (this distance being approximately equal to thickness of segment II

Fig. 121-Hyalopeploides trinotarus n.sp., female, holotype.
of antenna); antenna with segment I about two or three times as thick as II, the latter about five times as long as I, segments III and IV slightly longer than I, all segments with short pubescence.

Pronotum noticeably rugose transversally (typical subgenus)-on collar, rugose, rugose punctate or punctate-rugose on disc, this structure covering the whole dise behind calli and also whole propleura, calli slightly punctate or corrugate, posterior margin of disc slightly immarginated in the middle, humeral angles prominent (somewhat acutely pointed in
some species); mesoscutum partially covered, scutellum prominent, with a longitudinal median transversely rugose fascia and punctures inferiorly on laternal margin.

Hemelytra glassy (transparent), without nervures, the lower wings and abdomen clearly visible from above, clavo-corial and embolio-corial sutures with a row of punctures: membrane vitreous, transparent, the larger cell rounded apically. Legs with tibiae covered by minute sclerotized teeth, hairs and spines.

Figs. 122-134-Lateral view of head and pronotum of species of Hyalopeploides nigen., showing colour markings: Fig. 122-ochraceus; Fig. 123-maculatus; Fig. 124-similaris; Fig. 125-fasciatus; Fig. 126-neoguineanus; Fig. 127-rubrinoides; Fig. 128-alienus; Fig. 129-australiensis; Fig-130-trinotatus: Fig. 131-queenslandensis; Fig, 132-borneensis; Fig. 133-cyanescens; Fig. 134-rubriniscus.

It differs from others in the tribe by the structure of the pronotum and propleura, corium without nervures, rostrum reaching apex of middle or base of hind coxae, hemelytra glabrous and by the single elongate spiculum of vesica. Its closest allied genus is Hyalopeploldes Poppius, 1912 which has the disc of pronotum and propleura rugose only in patches and the pronotum is noticeably constricted anteriorly.

The genus may be subdivided into two subgenera on the structure of pronotum and propleura, and also of the spiculum of aedeagus, and these can be recognized as follows:

1. Disc of pronorum and propleura distinctly rugose trans-
vetsely, if punctures present obscured by rugosities;
spiculum of vesica usually clongate

Hyalopeplus Stàl, 1870
Dise of pronotum and propleura distinctly punctate rugose or punctate, the rugositics obscured by pumbtures; spicuium of vesica usually enlarged subasally.

Adhyalopeplus n, subgen.
Type-species of new subgenus: Capsus pelluridus Stal, 1859.

A reddish or reddish-coloured cuneus with the apex of hind femur and hind tibiut partially or torally red are characteristic of many of the spectes of this subgenus. The first antennal segment in the genus Hyalopeplus is usually over 1.10 mm long. while in the new subgenus it is usually less than 1.0 mm long.

Lise of the sprecies of the genus Hyalomeplas Stal

- Enmbonare Carvalho. 1956 $=$ zilripennis Stal

2. aneirvmerevisn ap
3. "hakeri Poppius. Ju1s $=$ sumilis Poppius
Clacemes Distant
. cumeatusn.sp.

- 乡raidičn np.
, guamensis Usinger, gyth
8, Hebritensis n.sp.
b. *hartath Poppius. 1912
$=$ similis Poppius

11. Kumdamensis n.pp. New 1relamed Is., Solomon is
12. "krishma Ballard, 1427 India
= rama Kjby, 1891-Cupsis
Amboina ls., Bábelthuapl Iş.
New Hehrides
Philippine Is.
Banglauesh, Malaya Prapua-New Guinea Plulippine is Guam 1s.
New Hebrides Stint Thame is
eifer Walker, 1873 -Capsus
Australiat

Inviue Popptus, 1912 Australlia, Japual New Guanca
13. madagascarieneis n sp. Madatiscat
15.. Malayensis n.5p... Malaya
14. marquesanusn.sp.

Marquesas Is.
17. nigufroms Hsiatr. 1944-Elliyalopeplers

Philipgine Is., Sumatra, Popua New Gutnea
18. nigroschellalus n.sp-

Philippine rs-, Papua New Guinea
19. pellucidurSial, 1859-Capsus...1..... Hakaiian Islands
20. rama Kirty 1891 - Capsus_ . . Oriental Region, Oceania
21. rubrotatutus n.sp........- ... Duncan lb., frian laya
22. nubrobkansn.sp.. Guinea
23. samoanms Krught, 1935 Samoanls.
24. spmilis Poppius, 7912

Ethiopian and Oriental Regions, Oceania
25. smaragdinus Roeptie, 1919
26. spinosws Distant, 1914

Rorners, Java
Assam, Victnam

27 tongaensisn.sn
Tungats
24. EHmilatmus" $>\boldsymbol{p}$

American Samua
29. vilpipentiss Stal. 1855-Caperm.

Oriental Regior, Oceania

* Names in symonymy

Key to the species of the subgenus fyalopeplus Stal

1. Hind margin of pronotum with a transverse reddish fuscia: clavas torally, or only internil and externally, sed
Hind margin of pronot claviss not red
2. Humeral angles spmously produced outwards, rellexeu: collar with seven longitudinal fuscous vitiac or bats: sculeltum castaneous; clavus fotally icd rubroclatus in sp.
Humeral angles rounded, collar reddish; seutellum sulphurescent, reddish apically, with a medjan iongitudinal orange vitta; clavus red, pale longitudinally at middle
rubrojugates n:\$n.
3. Dise of pronotum with two to six round spots, humeral angles and a median longitudinal vitta on disc black.
Dise of pronotum withoul frond spots, with or without humeral angles or a longitudinal median vilta black
4. Hind thbiae red; segment I of antenna red ta dark castaneous: segment TI palc
hebridensis n.sp.
IRind tibiae pale to ochraceous, segment I of antenna pale or light castaneous; segment II infuscated to black apically
5. Pronolum with two black spots behind callir, head with a mediars longitudinal vilta. marquesanus n.sp.
Pronolum with four in six black spots, situated posteriorly on disc.
n. Segment 11 of antenna Icss than 4 mm long: hind margin of dise uth suly four black spots (including those of humetal angles).
tutuilaensis n.sp
Segment If of antemma more than 4 mon long; hind margin of dise with six black spots (including those of humeral angles)
fongaensis o.ap
6. Seutellum and mesoscutum black: area of Eatli and a Iransterge fascia on hind margin of dise fuscous to black; general coloration orange fo ochraccous
nigrose'utellatus n.sp.
Scutellum and mesoscutum nan black: pronotum and body otherwise coloured
7. Mesoscuturi with black round spots at lateral fossae (one ai each side)
Mesoscutum without black round spots at lateral fossise . 10
8. Head with three longitudinal black vittae; collar with five bars or vittae; humeral angles noticeably pointed; emholium and curicus nchraceous
smaragdinus Roepke
Head without dark viltac; collar with only two lateral black bars; humeral angles rounded; cmbolium and cuncus reddish................................ kandanensisn.sp.
9. Segment I of antenna black ar reddish; scutellum with two black spots subapically; transverse black fascia or hind margin of disc scaching the hind border
Segment I of antenna pale yelluw to ochraceous, sometimes with reddish or fuscous dots, scutellum without two subapical black sporsi transversal black fascia of hind margin of dise when present submarginal. ...
11 Head pale yellow with a narrow longitudinal vitta; segment IIf of antenna pale on basal half; hind tibiae with short pubescence. guamensis Usinger
Head with three longirudinal witae, sometimes united to leave only two pale areas on vertex; segment ill of antenna palc only ai expreme hasc; hind tibiae with long pubescence
10. Frons totally black; collar and area of calli mostly black; scutellum lasgely black as middle....... nigrifons Hsiso
Frons pale; collar and area of calli pale yellow, varying in colout: scutellum black only at basal angles and

11. Humeral angles of pronotum rounded: segment If antenna and hind Cemora with reddish or fuscous dots; pronotum with threc tos finc longitudinal dark or reddish villat monly visitve on crillar
Hinmeral angles spinensly produced ourwards, pmoment; segment I of antennd and lind femora wathout reddish or fuscous dots pronotum withuut longitudinal vittae or when fiesent. not extending beyond calli

15
14. Cuneus reddish al madde; clypeus without a median longitudinal red viltatisize large, over 12 mm fong
malayensis n.sp.
Cuneus ochrascous; clypeus with is median longirudinal red vitta; size lexs than JJ mm long - ... vitripennis (\$tal)
15. Head and cellar without longitudinal dark virrae or hats: cureus reddish internally; species aboun 12 mm long
grandis n.sp.
Head and coltar with longitudinal dark vittae ur bars; cuneus palc yellow; species helow $11,5 \mathrm{~mm}$ Jong 16
i6. Calff without longitudinal zig-zag shaped vilta; hind submarginal fascia no pronolum narrow. claratus Distant
Callo with longitudinal zig-zag shaped vitae; hind submarginal fascia of pronotum wide
17. Humeral angles sitongly produced, pointed and turned backwards: Jower laceral wittae of collar much wider tham athers spinorus Distant
Humetal angles not strongly produced, pointed and lurned backwards: lower lateral vittac of collar equal to width of

Hyalopeplus (H.) aneityumensis, nusp.

(Fig. 135)
Characterised by the colour of collar and pronotum.

Female: Length 10.4 mm , width 2.8 mm . Head: Length $1.2 \mathrm{~mm}_{4}$ width $1.6 \mathrm{~mm}_{\text {+ }}$ vertex 0.60 mm . Antenna: Segment 1, length 1.2 mm ; I1, $4.2 \mathrm{~mm} ; 111$, 1.6 mm ; IV, broken. Pronotum: Length 2.0 mm , width at base 2.8 mm . Cuneus: Length $1.24 . \mathrm{mm}$, width at base 0.62 mm (holotype).

General coloration ochraceous with reddish areas; eyes and humeral angles black: three longitudinal vittae on head: one median and two lateral along inner margin of eyes and antennal peduncle, nine longitudinal vittac on collar: five continuing irregularly on dise of pronotum without reaching hind margin, two above on propleuta (one at each side) and two along coxal cleft I continuing through inferior margin of propleura red. The two fasciac which are aside the longitudinal median fascia of disc are characteristic (zig-zag-shaped), Hemelytra glassy, transparent, embolium and cuncus opaque: antenna pale, segment \mid with small reddish dots. Underside of body ochraceous, a longitudinal vitta on lorum, lateral spot on mesosternum, median spot on metapleura and longitudinal vitta on abdomen red apices of segments II and III of antenna dark brown.

Male: unknown.

Holotype: female, NEW HEBRIDES: Ancityum, xi.1930, L. E. Cheesman, B. M. $1931 \cdot 127$ (BMNH).

Fig. 135-Hyalopeplus ancilytmensis n.sp.o head and pronulum of female, holotype

This species is close to Hyalopeplus spinnsus Distant, 1904 but differs by the much less produced humeral angles and by the slender lower lateral vitta or bar of collar.

Hyalopeplus (H.) clavatus Distant. 1909
Hyalopeplus clavalus Distant, 1909, p. 509; Distant, 1910, p. 250.
(Fig. 136)
Characterised by strongly produced humeral angles.

Female: Length 10.2 mm , width 2.8 mm . Head: Length 1.0 mm , width 1.4 mm , vertex 0.64 mm . Antema: Segment 1, length 1.2 mm ; ll-1V, broken. Pronorum: Length 1.6 mm , width at base 2.8 mm . Cuneus: Length 1.12 mm , width at base 0.56 mm (lectotype).
"Head, pronotum scutellum, and corium bronzy ochraceous; head with three longitudinal black lines, the lateral ones converging anteriorly; antennae with the basal joint bronzy ochraceous, with a more or less distinct piceous line beneath, second joint black. with its base ochraccous (remaining joints mutilated in typical specimens); pronotal collar with the margins and three longitudinal lines black, the central line more prominent, posterior pronotal margin and the posterior angles black; clavus with the inner and outer margins and the suture black: corium with the costal margin area paler and bordered on each side with black; veins piceous; membrane pale olivaceous, subhyaline, the basal area reflecting the darker abdomen beneath, the cellular margins black; body bencath, rostrum, and legs ochraceous; antennae with the basal joint modetately thickened and a little longer than head, second joint slightly thickened and rearly four times as long as first; rostrum reaching the posterior coxae; pronolum with the anterior area subgranulose, the posterior ared transversely striate and
centrally longitudinally impressed, posterior angles slightly straightly prominent, scutellum with the dise very finely transversely striate. Length 10 mm ."

Male: unknown.

Geographical distribution: Bangladesh, Malaysia

Specimens studied: female, lectotype (new desig. nation), Hyalopeplus clavalus Distant, BANGLADESH: Lebong, 500 ft . (Lefroy), Bengal (BMNH), Paralectotype: female, same data as lectotype; id. PENINSULAR MALAYSIA; Kedah, nr, Jitra catchment area, 4.iv. 1928.

Distant compares this species correctly with Hyälopeplus spinosus Distant, 1904 which has much more produced humeral angles.

Fig. 136-Hyalopeplus clavalus Distant, female, holotype.
Hyalopeplus (H.) grandis, n.sp.
(Fig. 137)
Characterised by the large size and by the colour of the body.

Female: Length 12.3 mm , width 3.6 mm . Head: length 1.0 mm , width 1.8 mm , vertex 0.84 mm . antenna: Segment I, length $1.8 \mathrm{~mm} ;$ II, $6.4 \mathrm{~mm} ; 111$. IV, broken. Pronottm: Length 2.0 mm , width at base 3.6 mm . Guneus! Length 1.4 mm , width at base 0.68 mm (holotype).

Genctal coloration ochraceous with black and reddish areas; head with eyes, joints of segments I and II of antenna, apical portion of segments III-IV black (scgment II with more than half of basal portion whitish); pronotum with humeral angles black; hemelytra glassy, transparent, juner and outer margins of clavus, corium and embolium, commissure and apical margin of corium, and nervures of membrane castaneous to fuscous; embolium and cuneus opaque, the latter reddish at internal portion, membrane hyaline, Underside of body pale yellow, lateral portion of abdomen with indication of a longitudinal reddish brown vittae, legs pale yellow (hind pair mutilated).

Male: unknown
Holotype: female, PHILIPPINES: Mt. Province, Mayayao, Ifugao, $1200-1500 \mathrm{~m}$, 9.viii.1966, H. M. Torrevillas (BlSHOP), Paratype; female, Ifugao Prov. Liwa, 8 km E Mayayao, $1000-1300 \mathrm{~m}$, 1.ví1967. H. M. Torrevillas.

Differs from others in the subgenus by its unicolorous head and collar.

Hyalopeplus ($\mathbf{H}_{\text {- }}$) guamensis Usinger, 1946
Hyalopeplus guamensis Usinger, 1946, p. 58, fig 13; Carvalho, 1959, p. 320, 1959.
(Figs, 138-142)
Characterised by the colour of pronotum and head.

Male: Length 7.5 mm , width 2.1 mm . Head: Length 0.7 mm , width 1.3 mm , vertex 0.56 mm . Antenna: Segment I, length 0.9 mm ; II, 3.8 mm ; III, 1.2 mm : IV, 0.8 mm , Pronotum: Length 1.2 mm , width at base 2.0 mm . Cuneus: Length 0.88 mm , width at base 0.40 mm .
"Colour yellowish ochraceous with two long, interrupted brown stripes laterally and one shott median stripe on tylus, a median longitudinal brown stripe on vertex, seven longitudinal stripes on collar. Brown elsewhere as follows: hind margin of pronotum narrowly, eyes, inner margin of commissure of clavus, veins of hind wings of membrane, and apex of rostrum. Cuncus mostly reddish and costal margin of corium and cuneus light brown to ochraceous posteriorly. Antennae reddish with brown at extreme base and apex of second segment, and ochraceous bases and brownish apices of third and fourth segments. Front and middle legs pale with reddish apices of tibiae and reddish tarsi except for brown apices and claws. Hind femora pale with brown spots and red apices, tibiae and tarsi red with brown tarsal apices and claws:"

Fig.. 137-Hyalopephs grandis misp. female, holotype.

Genimlia: Penis (fig, 139) with membranous lobes provided with sclerotized spines apically, a median spiculum (fig. 140) and a group of spines near secondary gonopore. Lefi paramere (fig. 141) curved, pointed apically. Right paramere (fig, 142) smaller, also pointed apically.
Female: Similar to male in colour and general aspect, slightly more robust.

Host plant:" Thespesia populnea.
Specimens studied: Five males and females, compared with type, Ft, Oca, Guam, light trap, iv.1945. G. E. Bohard \& J. L. Gressitt; Gana, Guam, 15:v.1945, G. E. Bohart (BISHOP).

Usinger (1946), working with Poppius's key (1912) for the species of this genus, compared guamensis with horvathl Poppius and correctly pointed out that there were sensible differences in the structure of pronotum. Usinger's specics is a good representative of the typical subgenus while hortathi Poppius represents the new subgenus Adhyalopeplus.

Fig. 138 -Hyalopeplus gunmensiq Uainger. female. compared with type.

Figs. 130-142-Hyalopephas guamensis Usinger-Fig-134-Vesica of aedeagus; Fig, 140 -Spiculum of vesica; Fig. 141 - Left paramere: Fig. 142—Right paramere

This species is very close to Hyalopeplus rama (Kirby) but differs by having the pronotum citrine to ochraceous without indication of longitudinal lines, by the transverse fascia of posterior portion of disc being very slender and by the much less pubescent hind tibiae. The segments III-IV of antenna are palc in their basal halves while in rama only the extreme bases are pale:

Hyalopeptus (H.) hebridensis, 17.sp.
(Figs. 143-146)
Characterised by the colour of pronotum.
Female: length 8.8 mm , width 2.6 mm . Head: Length 0.7 mm , width 1.5 mm , vertex 0.60 mm , Antenna: Segment I, length $1.1 \mathrm{~mm} ; 11,4.6 \mathrm{~mm}$: لII, 1.3 mm ; IV, 0.8 mm . Pronotum: Length 1.6 mm , width at base 2.6 mm . Cuneus. Length 1.00 mm . width at base 0.52 mm (holotype).

General coloration ochraccous with dark brown and reddish areas; head with three longitudinal vittae (one central and wo along inner margins of eyes), vitta on clypeus and a vitta on jugum; lorum and gena reddish; eyes brown, antenna castaneous to reddish, joints of segments I and II, segments IIIIV (except pale basal portion) fuscous to black;
pronotum with collar showing seven longitudinal vittae (the two lower lateral ones narrow and reddish), four rounded spots on dise, humeral angles fuscous to black (in some specimens there is indication of a longitudinal reddish vitta on calli and middle of dise), mesoscutum with a black spot on each lateral fossa, scutellum with an obsolete longitudinal median castaneous line and two black rounded subapical spots" hemelytra glassy, transparent, inner and outer margins of clavus. embolium. corium and cuneus fuscous to brown, the latter reddish internally, membrane hyaline, nervures fuscous. Underside of body pale yellow with a reddish Iongitudinal vita present on side of head, coxal cleft, metapleura and side of abdomen; legs pale yellow, hind femora with reddish tinge apically, hing tibiae red, apices of tarsi fuscous. In some specimens the two hind spots on disc become united by a transverse brown fascia.

Pronotum and scutellum transversely rugose. humeral angles pointed, reflexed.

Male: Similar to female in colour and general aspect, Length 8.0 mm , width 2.1 mm , vertex 0.60 mm .

Fig. 143-Hyalopephus hebridensis n.spy, male, holotype.

Genitalia: Penis (fig. 144) with membranous lobes provided with groups of sclerotized teeth. Left paramere (fig. 145) curved, pointed apically, Right paramere (fig. 146) small, globose, pointed at apex.

Holotyper male, NEW HEBRIDES: Aneityum, Red Crest, $1200 \mathrm{ft}, 3 \mathrm{mi}$ NE of Anelgauhat, vi, 1955, L.E. Cheesman, B.M. [931-1927. Allotype: idem, Erromanga, vii. 1930, L, E. Cheesman, B.M, 1930496. Paratypes: 13 males and females same data as holotype and several specimens: Espiritu Santo, Apuna River, camp 3, $270 \mathrm{~m}, 9-12$ Sept. 1971, G. S. Robinson, at light; Malau Village in Big Bay, 14-15 Sept. 1971. G. S. Robinson: Ancityum, at light, Agathis Camp, 19 July 197I. G. S. Robinson, Royal Socicty-Percy Sladen Expedition (SAM) : Espiritu Santo, Narango, $90 \mathrm{~m}, 7.1960$, W. W. Brandt id. SW Namatasopa, $300 \mathrm{~m}, 29$. viii.1957, lighi trap, J. L. Gressitti Malckula Js. Lamap. 8-12.ix. 1967 (BISHOP).

This species approaches Hyalopeplus tongaensis n. sp. bur differs by the colour of the segment $I f$ of antenna and hind tibiac.

Hyalopeplus (H.) kandanensis, n,sp.

(Fig. 147)
Characterised by the colour of the head, pronotum and cuneus.

Female: Length 10.4 mm , width 3.2 mm . Head: Length 1.0 mm , width 1.8 mm , vertex 0.80 mm . Antema: Segment I, length $1.0 \mathrm{~mm} ; \mathrm{II}, 3.8 \mathrm{~mm}$, IIIIV, broken. Pranomm: Length 1.9 mm , width at base 2.8 mm . Cuneus: Length 1.20 mm . width at base 0.52 mm (holotype).

General coloration ochraceous with brown and reddish areas; eyes and antenna castaneous, segment I reddish; pronotum with collar showing a quadrate spot on lower lateral margin and a spot between calli anteriorly black, three longitudinal obsolete vittae on disc castaneous. mesoscutum with a black spot on each lateral fossa, scutellum infuscated longitudinally at middle; hemelyira glassy, transparent, innner and outer margins of clavus and corium fuscous, embolium and cuneus opaque, reddish; membrane hyaline, nervures brown. Underside of body pale yellow, ostiolar peritreme, longitudinal vitta and middle portion of abdomen reddish, segment IX brownish; legs pale yellow, femora towards apices and hind tibiae reddish, apices of tarsi fuscous.

Pronotum and scutellum noticeably transversely rugose, humeral angles rounded.

Male: unknown.

Figs. 144-146-Hyalopeplus hebridensis n.sp-: Fig. 144-Penis: Fig. 145-Left paramere; Fig. 146-Right paramere.

Holotype: female, NEW IRELAND: Kandan, 24.xii.1959, W.. W. Brandt (BISHOP). Paratype: SOLOMON ISLANDS: Guadalcanal, Sukakiki R, 22.vi.56, E. S. Brown.

Differs from Hyolopeplus smaragdinus Roepke, 1919 by the rounded humeral angles, by the head lacking longitudinal vittae and by the collar having only two dark bars or vittae.

Hyalopeplus (H,) malayensis, n.sp.
(Fig. 148)
Characterised by the colour of pronotum and cuneus.

Female: length 13.0 mm , width 2.8 mm . Head: Length 1.1 mm , width 1.3 mm , vertex 0.80 mm , Antenna: Segment $\mathrm{T}_{\text {, }}$ length 1.1 mm ; II, 4.8 mm ; III, 1.6 mm ; IV, broken: Pronorum: Length 2.1 mm , width at base 2.8 mm . Cuneus; Length 1.20 mm . width at base 0.56 mm (holotype).

General coloration ochraceous to Jutescent with redidish areas; eyes brown, antenna ochraceous, segment I with small red dots, segment II towards apex and segments III-TV castaneous; three longitudinal vittae on head (one median and two lateral along inner margins of eyes and antennal peduncles) following through pronotum with two others laterally (five vittae altogether) reddish to orange, a submarginal transverse median fascia

Fig. 147-Hyalopeplus kandanensis n.sp. fentale, holotype
extending somewhat onto mesoscutum and spot on humeral angles dark brown, hind margin of dise with a nasrow fascia contiguous with mesoscutum pale; the latter and scutellum ochraccous to lutescent; hemelytra glassy, fransparent, inner and outer margins of clavus, corial commissure and nervures of membrane, inner and outer margins of embolium and outer margin of cuneus castaneous, middle portion of latter reddish , membrane transparent.

Underside of body ochraceous, a spot on jugum, longitudinal vittae on lorum following through gena and inferior portion of propleura, two longitudinal vitac on propleura (median and superior), longitudinal vitta on abdomen and several small spots towards apices of femora reddish.

Male: unknown.
Holotype: female, PENINSULAR MALAYSIA: Pahang, Cameron's Highlands, $4800 \mathrm{ft}, 26 . v i, 1935$. H. M. Pendlebury, Ex. Coll. F.M.S. Muscum Natural History (BMNH). Pararypes: Lemale, Perak, (F.M.S.), Larut Hills, 4500 tt, 20 Feb. 1932. H. M. Pendlebury, Ex. F.S.M. Museum, B, M.. 1955-354. This species approaches Hyalopeplus virtipennis (Stål, 1855) but differs by the reddish colour on cuneus, by its larger size and by the absence of a red longitudinal vitta on clypeus.

Fig. 148-Hyalopeplus malayensis n.sp., female, halotype

Hyalopepius (H_{0}) marquesanus, n. sp.
(Figs. 149-152)
Characterised by the colour of pronotum.
Male: Length 6.4 mm , width 20 mm . Head Length 0.9 mm , width 1.2 mm , veriex 0.60 mm , Antenna: Segment I, lengh $0.8 \mathrm{~mm}: 11.3 .2 \mathrm{~mm}: 11 I_{\text {, }}$ 1.6 mm ; IV. 0.8 mm . Pronomm: Length 1.2 mm width at base $1.8 \mathrm{~m} / \mathrm{m}$. Cuncus: Length 0.40 mm , width at base 0.20 mm (holotype).

Fig. 149-Hyalopeplus marquesanus n sp., male, holotype.
General coloration ochraceous with brown and reddish areas; eyes and antenna brown, segment I pale towards base with small dark dots inferiorly, clypeus with three vertical fasciae at base, a small spot above antennal peduncle, pronotal collar with three longitudinal vittae above and two lower lateral ones wider and divided at middle, browni disc of pronotum with two characteristic black spots behind calli; a median longitudinal vitta along surface of dise, humeral angles and area contiguous of hind border (in some specimens only humeral angles) brown: mesoscutum with three median and two lateral spots, scutellum with subapical spot and median longitudinal line infuscate to black; hemelytra glassy, transparent, lateral margins of clavus. commissure and apical margin of corium, inner and outer margin of embolium, nervures of membrane,
outer margin of cuncus fuscous to brown (in fully coloured specimens cuneal margin red, in teneral specimens cuneus totally ochraceous). Underside of body and legs ochraceous, femora with several brown dots, tibiae with hairs and spines black.

Genitalia: Penis (tig. 150) with membranous lobes with sclerotized teeth spically and a median spiculam. Left paramere (fig. 151) curved, pointed apically, Right paramere (fig, 152) small, also, pointed apically.

Female: Similar to male in colout and general aspect, slightly more robust.

Holotype: female, MARQUESAS ISLANDS: Mohotni, $300 \mathrm{ft}_{4}$ 4,ii,1931, on Coreopsis sp. Le Bonnec \& H. Tauraa, Pacific Entomological Survey (USNM). Allotype: female, Eiao above Vaituha, $1 . x .29,800 \mathrm{ft}_{\text {, }}$ biting on Melochia velutina. A. M. Adamson, Pacific Entomological Survey, Paratypes: Two males and one female, same data as holotype.
The species is similat to Hyalopeplus tongaensis n .sp. and Hyalopeplus numilaensis n,sp, but differs in the structure of the pronotum,

Figs. 150-152-Hvalopeplus marquesanus n.sp.i Fig. 150-Penis:
Fig. 151 -Left parámere; Fig. 152-Righi paramere.

Hyalopeplus (H.) nigrifrons (Hsiao. 1944), n.comb, Hyalopeplus nigrifrons Hsiao, 1944. p. 369: Carvalho. 1959 p. 319.
(Fig. 153)
Chatactcrised by the colour of head and scuellum.

Male: Length 9.7 mm , width 2.4 mm . Head: Length 0.8 mm , width 1.7 mm , vertex 0.65 mm . Antenna: Segment T_{i} length $7.0 \mathrm{~mm} ; 11,4.4 \mathrm{~mm}$; 111, 1.9 mm ; IV. 1.3 mm . Pronotum: Length 1.4 mm . width at base 2.3 mm . Cuneus: Length 1.16 mm , width at base 0.60 mm (holotype).

General coloration ochraceous to pale yellow with black areas; "head black, two transverse spots on vertex, a triangular spot behind each eye, a spot at base of antennae, apical third of clypeus, lorum and whole underside of head ochraceous; antennae black; pronotum with collar (except a large spot on each side), calli, a longitudinal median line tapering anteriorly, and basal margin very broadly, black: scutellum black, lateral margins except apical fourth ochraceous; hemelytra glassy, transparent, corium, clavus, margins of embolium, cuneus and veins of membrane dark, embolium and cuneus opaque, the latter reddish; posterior lobe of ostiolar peritreme, posterior legs, side of ventral segments, apex of abdomen, and all third tarsal segments dark"

Fig. 153-Hyatopeplus nigrifrons Hsi\&o, male, holntype
Genitalia: Not dissected since holotype was only male studied.

Female: Similar to male in colour and general aspect. Length 10.2 mm , width 2.8 mm , vertex 0.72 mm .

Geographical distribution: Philippine Islands (Luzon, Mindanao, Negros), Indonesia (Sumatra, Irian Jaya).

Specimens studied: male, holotype, PHILIPPINES: Mt. Mackiling, Luzon, Baker col., Hyalopeploides nigrifrons Hsiao (USNM) together with seven males and females from: Negros Is., Camp Lookout. Dumaguete, 6.iv.-15.v.1961; Mindanao, Lanao, Gerain Mts, $1300 \mathrm{~m}, 16 . v .1958$, jungle around swamp. INDONESIA: Sumatra, 1800 m , Dolok Merangir, April-June, 1970, E.W. Diehl, Hollandia, Irian Jaya, L. Sentani, viii-ix, Markos Hart (AMNH and the author's collection),

This species is probably only a dark variety of Hyalopeplus rama (Kirby, 1891) with more black colour on head, anterior portion of pronotum and scutcllum. The presence of intermediate forms in specimens from the same locality has been found, Only a more careful study however will allow a definite proof on this matter. It can be separated from rama by the totally black frons and by the scutellum being extensively black in the middle.

Hyalopeplus (H.) nigroscutellatus, n.sp.
(Figs, 154-158)
Characterised by the colour of pronotum and scutellum.

Female: Length 11.8 mm , width 3.1 mm . HeadLength 1.0 mm , width 1.8 mm , vertex 0.80 mm . Anferma: Segment I, length $1.6 \mathrm{~mm} ; 11,5.1 \mathrm{~mm}$; IIIIV, broken. Pronotum: Length 1.8 mm , width at base 3.0 mm . Cuneus: Length 1.1 mm , width at base 0.72 mm (holotype).

Fig. 154-Hvalopeplus nigroscutellapus n.sp.. femate, holotype

General coloration orange to ochraceous with brown and reddish areas; head and pronotum ochraceous eyes and antenna (except base of segment 1) fuscous to black; pronotum with area of calli and a median icansverse spot on hind margin of disc fuscous to brown; scutellum and mesoscutum black; hemelyra glassy, transparent, inner and outer margins of clavas and corium fuscous, embolium and cuneus opaque, brown to reddish, membrane hyaline, neryures reddish. Underside of body brick red, mesosternum and ostiolar peritreme, coxae partially fuscous to black; femora reddish, tibiae and tarsi brown to black.

Pronotum and scutellum noticeably transversely rugose, humeral angles prominest, acute reflexed, claval commissure, embolium and cuneus pubescent.

Male: Similar to female in size, coloration and general aspect.

Genitalia: Penis (fig. 155) with membranous lobes provided with sclerotized teeth, vesica with a characteristic spiculum (fig. 156). Left paramere (fig. 157) enlarged subapically, apex acute. Right paramere (fig. 158) less sclerotized ventrally, apex pointed.

Holotype: female, NEW GUINEA: SE Popondetta, $60 \mathrm{~m}, 3-4 . i x, 1963, \mathrm{~J}, \mathrm{~L}$, Gressitt (BISHOP). Paratypes: five females. NE Torricelli, Mts. Mobitei,

750 m, 1-15 viii. 1959, J. L. Gressitt; Kokada, 400 m, 14-16.xi.1965, J. L. Gressitt; male, PHILIPPINES; Leyie, Abuyong, mi S Tacloda, 14.vii. 1961.

This species is readily separated from others in the genus by its black scutellum.

Hyalopeplus (H.) rama (Kirby, 1894) Kirkaidy, 1902
Capsus rama Kirby, 1894, p. 106.
Hyalopeplus rama Kirkaldy, 1902, p. 58, pl A, fig. 8; pl. B, fig. 6; Reuter, 1905b, p. 3; Poppius, 1912a, p. 147: Carvalho, 1953, p. 42; Carvalho, 1959, p. 320.

Callicratides rama Distant, 1904b, p. 417, fig. 265; Reuter, 1905a, p. 5, fig. 3; Distant, 1913, p. 174.

Hyalopeplus smaragdinus rubrinus Roepke, 1919, p. 73.
(figs, 159-169)
Characterised by the colour of head and pronotum.

Male: Length 9.6 mm , width 2.6 mm . Head: length 0.7 mm , width 1.5 mm , vertex 0.60 mm , Antenna; Segment I, length $0.8 \mathrm{~mm} ; \mathrm{II}, 4.4 \mathrm{~mm}$; III, 1.4 mm . IV. 1.2 mm . Pronorum: Length 1.1 mm , width at base 2.6 mm . Cuncus: Length 1.10 mm , width at base 0.44 mm (holotype).

Figs. 155-158-Hyalopeplus nigroscurellarus n.sp.: Fig. 155-Penis; Fig. 156-Spiculum of vesica; Fie. 157-Left paramere; Fig, 158 -Right paramere.

Figs. 159-161-Hyalopeplus pama (Kirby), Semale, lectotype Fig. 159; Fig. 160, 161-Colout variation of head and pronotum.
"Yellow, vertex with a slender black line between the cyes, and meeting behind them; pronotum blackish at the base, and with narrow black central and marginal lines, or with three short black lines at the base, the central line reddish, and the lateral lines reddish, black only at base; pale part of the pronotum transversely striated, the hinder margin black, the lateral angles not produced. Scutellum transversely striated, more or less black towards the base and extremity, and divided by a deep groove. Wings hyaline, the corium with brown תervures; the costal nervure, and the opaque space at the
extremity of the corium reddish, the latter yellowish in the center. Antennae reddish brown, darker or lighter, the second joint not distinctly thickened. joints 3 and 4 narsowly yellow at base. Legs yellowish, tarsi black, hind femora dolted with brown, hind tibiae red, Under surface of body yellow, with a narrow red line on each side. Pundaloya. Long. Corp. $8-10 \mathrm{~mm}$. Allied to Capsuy lineifer "Walket" (Kirby, 1894).

Studies undertaken on the type and fresh specimens from Sri-Lanka (Ceylon) have shown the following characters: general coloration yellow to citrine on bead, pronotum and scutellum; glassy and transparent on hemelytra and membrane; antenna brownish to castaneous, segment T lending to reddish; three lines on head: one median (usually interrupted or obsolete) and iwo lateral along innes margins of eyes, sometimes joined on vertex: seven lines on collar (usually narrowed towards calli) reaching anterior margin of calli, the median onte running backwards over dise of pronotum, usually reaching the transverse dark posterior fascia (which covers totally the hind margin of dise and humeral angles) dark to dark brown. The intensity and width of lines and fasciae are variable. Scutellum with extreme basal angles and two spots near apex brown to black, the extreme apex reddish or with reddish tinge, margins of clavus and corium, nervures of membrane and lower wings brown to black; cuneus and embolium reddish (embolium may be brown or pale at base), membrane vitreous. Underside of body yellow to citrine, a longirudinal reddish line laterally on head below eye which may be obsolete at side of sternum and abdomen. Legs pale yellow, hind femora with rows of brownish dots, apex of anterior and median tibiae, apical portion of hind femur (variable) and the hind tibiae totally red; tarsi infuscated towards apex.

Eyes usually removed from anterior margin of pronotum, dise transversely rugose, scutellum strigose sulcate longitundinally and distinctly longer than wide at base, rostrum reaching apex of middle coxae, hind tibiae densely pilose, length of hairs equal to or longer than width of tibia.

Genttalia: Vesica of aedeagus (fig, 162) with membranous lobes provided with sclerotized tecth apically and one spiculum (iig. 163). Left paramere (fig, 164) curved, eniarged apically, with an acute apex. Right paramere (figs. 165, 166) smaller. enlarged apically, also with a ierminal pointed lobe.

Geopraphical distribution: Sri-Lanka, Java, Sumatra, Borneo, Malaya, Philippines, Sabah.

Host plants: Thea sinensis and Melafoe sp.

> Figs. $162-166-$ Hyalopeplas rama (Kirby): Fig. $102-$ Vesica ofatdeagus; 「ig. $163-$ Spiculum of vesica; Fig. 164 -Left piramere: Figs, 165 . 166 Righl paramere.

Specimens sudied: SRI-LANKA: female, holotype, Pundaloy, Walker det. (BMNH): 3 males and 3 females, Kan Dist., Kandy 1800 ft , Peak View Motel, 7-14, Jan. 1970, Davis \& Rowe: INDONESIA: male, F.C. Drescher, Java: Preanger. N:O.I. Mt. Mocrangrang 1600 m , ix.1936; female, Blawan-Idjen, H. Luth (USNM); female, Asahan, Sumatra, 1912, Roepke; female, Asahan, S.O.K., on Melafoe, iv, '17, Corporal (det. by Leefmans as H. uncariae Rpke); two males and six females, Sumatra, W, Roepke; Goenong, Java, Roepke, 1919; Dolok Merangir, Sumatra, E.W. Diehl, April-June, 1970; id. Jan.-Feb. 1972; id. JulyAug. 1971; Central At Jeh, Sumatra, Kotadjane, 400 m, E.W. Diehl; id. 20 m , Kebon Belok, 60 km NW Medan, May 7, 1970; id. Langkat, E. coast, Namoe Dengas Est. col. Jourin; PHILIPPINES: Palawan, Brookes Point Uring, 17 Aug. 1961, Noona Dan Exp, 61-62; Busuanga Is.. 4 km San Nicolas, 26.v.1962, H. Holtmann, light trap; id. 21.v.1962; Negros Or. Mt. Talinas, $1000 \mathrm{~m}, 29$. 31.xii.60, at light, H. Holtmann; EAST MALAYSIA Tenompok, 1460 m Jesselton, $30 \mathrm{mi} E_{2} 26$ 31.i.1959, T.C. Maa; id. 15.ii.1959; Mt. Kinabalu, Mesilau, 14,ii.1964, J. Smart, Royal Soc. Exp. B.M. 1964-250; PENINSULAR MALAYSIA: Pahang. Cameron Highlands, 4800.5000 [t. 4-12-1939: Kuala Lumpur, at light, 19, xii, 1938, N.C.E. Miller (Hyalopeplus vitripennis Stal, N.C. Miller det. 1956).

This species has been confused with Hyalopeplus vitripennis (Stâ), 1855) but it is readily differentiated by the reddish cuneus and hind tibiae with long hairs, as well as, by the black transversal hind fascia of disc reaching hind border and humeral angles. It has also similarity with the species of the subgenus Adhyalopeplus n. subgen. but can be differentiated by the well marked transverse rugosities of pronotum and scutellum obscuring punctures.

Hyalopeplus (H.) rubroclavatus, n.sp.
(Fig. 170)
Characterised by the large size and by the colour of the clavus.

Female: Length 11.0 mm , width 3.0 mm . Head: Length 0.9 mm , width 1.6 mm , vertex 0.76 mm . Anfenna: Segment I, length $1.2 \mathrm{~mm} ; \mathrm{II}, 5.6 \mathrm{~mm} ; \mathrm{III}$, 1.8 mm ; IV, broken. Pronotum: Length 1.9 mm , width at base 3.0 mm . Cuneus: Length $1.24 \mathrm{~mm}_{4}$ width at base 0.64 mm (holotype).

General coloration ochraceous with brown and reddish areas; head above with three longitudinal vittac (one median and two lateral along inner margins of eyes), extreme base and apex of segment [of antenna and eyes fuscous to castaneous; segment II brown, darkened towards apex, segments III-IV black, basal portion of III pale; pronotum
with collar showing seven longitudinal bars or vittae fuscous, posterior margin of disc with a transverse red fascia, humeral angles black; mesoscutum and scutellum castaneous, unicolorous; hemelytra glassy, transparent, clavus, commissure and apical margin of corium, embolium and cuneus internally reddish; membrane hyaline, nervures brown to reddish. Underside of body pale yellow to lutescent, legs pale yellow, hind femora apically and tibiae towards base red.

Figs. 167-169—Hyalopeplus rama (Kirby): Figs.. 167, 168, 169-Colour variation of head and pronotum seent from side.

Pronotum rugose punctate, humeral angles prominent, pointed, reflexed, scutellum rugose punctate, hind margin of pronotum slightly concave at middle, embolium and cuneus pubescent.

Male: Unknown.

Holotype: female, AUSTRALIA: Cairns, North Queensland, F.P. Dodd, ex-tree (BMNH). Paratypes: 2 females, INDONESIA: Humboldt Bay Dist.

Bewani Mts,, Irian Jaya, ix. 1937, W. Stober, B, M, 1938-177, AUSTRALIA: Dunk Island, H. Hacker. Aug. 1927; same data as holotype, in the collection of the author.

Very close to Hyalopeplus rubrosignatus n.sp. bui differs by the spinously produced humeral angles, by the collar with dark fasciac or bars and by the unicolourous red clavus.

Hyalopeplus (H.) rubrojugatus, n.sp.
(Figs. 171-175)
Characterised by the colour of the jugum, collat and clavus.

Male: length 10.2 mm , width 2.4 mm . Head: Length 1.0 mm , width $1.6 \mathrm{~mm}_{4}$ vertex 1.04 mm . Antemra: Segment I, length 1.4 mm ; II 6.2 mm ; III. 2.0 mm ; IV, broken, Pronotum: Length $1.8 \mathrm{~mm}_{\mathrm{i}}$ width at base 2.4 mm . Cuneus! Length 1.00 mm , width at base 0.48 mm (holotype).

Fig. 170-Hyalopeplus rubrociavuus n.sp., femalc, holotype.

Fig. 171-Hyalopeplus rubrolugaus n.sp., male, hulotype.
General coloration ochraceous with brown and reddish areas; head with three longitudinal dark brown vittae, the median running over clypeus, sides of the latter, jugum and vitta on lorum reddish; eyes brown, segment I of antenna red, segment II castaneous, reddish towards apex, infuscate to black apically, segments III-IV black, pale at extreme base; pronotum and scutellum lutescent to citrine; collar, a transverse fascia on hind margin of pronotum and apex of scutellum reddish; hemelytra glassy, transparent, clavus red, pale along middie portion, embolium, commissure and apical margin of corium and cuneus red, membrane hyaline, nervures brown. Underside of body pate yellow, apex of abdomen, hind femora and tibiae red, apex of tarsus fuscous.

Pronotum sinuate at posterior margin, humeral angles rounded, second antennal segment very long.

Gentalia: Vesica of aedeagus (fig. 172) with membranous lobes, a sclerotized spiculum (fig. 173) and a group of spines near secondary gonopore. Left paramere (fig. 174) falciform, tapering to extremity, Right paramere (fig. 175) small, with an apical point.

Figs, 172-175-Hyalopeplus rubrojugaus n.sp.: Fig. 172-Vesica of aedeagus; Fig. 173-Spiculum of vesica; Fig. 174-Left paramere: Fig. 175-Right paramere.

Female: Similar to male in colour and general aspect, slightly more robust.

Holotype: male, INDONESIA: Genjan, 40 km W of Hollandia, Irian Jaya $100-200 \mathrm{~m}, 1 . \times 1960, \mathrm{~T}, \mathrm{C}$ Maa (BISHOP). Paratype: male, same data as holatype

Close to Hyalopeplus rubroclavatus n, sp, but differs by the colour of the jugum, clavus and by the rounded humeral angles.

Hyalopeplus (H.) smaragdinus Roekpe, 1919
Hyalopeplus smaragdinus Roepke, 1919a, p. 173, figs. 1-5; Roepke, 1919b, p. 1, 7 figs.; Corporal, 1920, p. 108; Carvalho. 1959, p. 320.
(Figs. 176-180)
Characterised by the black spots of the mesoscutum, the large size and colour of posterior tibiae.

Male: Length 9.6 mm , width 2.8 mm . Head: Length 0.8 mm , width 1.6 mm , vertex 0.76 mm . Antenna: Segment I, length $1.4 \mathrm{~mm} ; 11,5.2 \mathrm{~mm}$; III-IV, broken. Pronotum: Length 1.6 mm , width at base 2.6 mm . Cuneus: Length 1.2 mm , width at base 0.6 mm Scurellum: Length 2.6 mm , width at base 1.6 mm .

Fig. 176-Hyalopeplus smaragdinus Roepke, Icmale, syritype:

According to the original description both males and females are emerald green (bright green) when alive, Antennae dark cineraceous, segment 111 noticeably pale basally; head above with three longitudinal black lines, convergent anteriorly, the median one stronger; side of head with a longitudinal orange to red vitta which extends to the anal segment without reaching its apex; eyes reddish brown, rostrum light green, valvulae dark brown, apex dark; pronotum anteriorly with three longitudi. nal black lines, cotresponding to those of head and another on lateral margin; hind margin black with humeral angles pointed; scutellum light green margins and central line cineraceous; mesoscutum with two blackish points near lateral corners. Legs greenish cineraceous, apical portions of tibiae and tarsi becoming darkish; abdomen yellow translu-
cent. Hemelytra completely transparent, with black nervures; cuneus yellowish green; membrane unicolours and shining. Antennae with segment] and II slightly thickened, III and IV slender as hairs: head with spherical eyes, sirongly prominent, vertex slightly shorter than length of head. Rostrum reaching about the third abdominal segment. Pronotum rugose, with acute humeral angles, Body practically glabrous, "Length of both sexes 9.0-10.0 mm . Tjisampora (Soekaboemi) and Goenoeng Mas (Buitenzorg) about 1000 m , on tea plantation, Java.

The bugs live on flower buds, especially in old plantations.

The variety described by Roepke as Hyalopeplus smaragdinus rubrinus n. form from specimens collected in Goenoeng in tea plants (1918) is undoubtedly a synonym of Hyalopeplus rama (Kirby, 1891). All the characters indicated are those of rama, especially the reddish emboliam and cuneus, as well as the reddish apex of scutellum. apical third of hind femora and also hind tibiae.

The species lives in floral buds of tea. Nymphs reach the adult stage in a period of $9-10$ days after six ecdiases. Adults are very delicate and difficult to maintait in captivity.

Genitalia: Penis (fig. 177) with membranous lobes with groups of sclerotised spines and a median spiculum (fig, 178), Left paramere (fig. 179) curved, enlarged apically, with a terminal point. Right paramere (fig, 180) small, globose.

Female: Similar to male in colour and general aspect. Length 10.0 mm , width 2.8 mm , vertex 0.80 mm .

Host plants: Thea sinensis.
Specimens studied: INDONESIA: female, Op thee bloemtnop, Pd. Gedeh, vi.37, Proefst. us Java, Hyalopeplus smaragdinus Ropke (handwriting of Lecfmans?); two females, L, G, E, Kalshoven Java, Mr. Salals, $600 \mathrm{~m}, 11 . \AA .1925$; male, West Java, Ag. Malang, 4290, M.E, Walsh, 13.xii.37, EAST MALAYSIA: female, Bau District, Bidi, 240 m, 2,ix,1958, T, C Maa.

Geographical distribution: Java, Borneo.
In his second paper of 1919 Roepke presents more data for this species and states that it is not conspecific with rama (Kirby). Corporal (1920) gives data concerning fresh coloration.

The two black spots on mesoscutum are characteristic for the species. Its large size and colour of hind legs helps to separate it from allied species.

Figs. 177-780-Hyalopeplus smaragdinus Rocpke, female Fig, 177-Penis; Fig. 178-Spiculum of vesica; Fig. 179-Lefi paramere; Fig. 180 -Right paramere.

Hyalopeplus (H.) spinosus Distant, 1904
Hyalpeplus spinosus Distant, 1904b, p. 447; id, Poppius, 1912a, p. 416; Carvalho, 1959, p. 320.
(Fig, 181)
Characterised by the spinously produced humeral angles and by the colour of pronotum.

Female: Length 10.4 mm , width 3.0 mm . Head: Length 0.8 mm , width 1.4 mm , vertex 0.72 mm . Antenna: Segment I, length $1.2 \mathrm{~mm} ; 11,5.2 \mathrm{~mm}$; III, 1.8 mm ; IV, broken. Pronotum: Length 1.7 mm , width at base 3.2 mm . Cuneus: Length 1.28 mm , width at base 0.56 mm (holotype).

General coloration flavescent to citrine with brownish to reddish areas; head with a median and two lateral longitudinal vittae on vertex which run backwatds to pronotum, more visible over collar and calli where the two lines corresponding to those bordering inner margins of eyes are reddish and zig-zag-shaped, the median longitudinal vitta and the submarginal transverse fascia of disc, as well as the humeral angles are castaneous to black; hemelytra with sutures fuscous, embolio-corial margin dark longitudinally, external margin of cuneus and nervures of membrane fuscous. Underside of body
flavescent, a line on side of head, a line or vitta on upper margin of propleura and a vitta laterally on abdomen brown to reddish. Antennae castaneous, segment I paler, with small reddish dots, segment II infuscate apically, segment III black apically with basal $1 / 4$ pale.

Humeral angles strongly spinously produced out and backwards, pronotum distinctly rugose.

Male: Unknown,

Specimens studied: INDIA: female, lectotype (new designation), Margherita, Upper Assam, Doherty (BMNH); id, VIETNAM: Dalat, 1500 m , 29.iv.-4.v.1960, L. W. Quate.

Geographical distribution: India, Vietnam.

The lectotype is apparently the only remaining specimen of the original series. The legs are not mentioned in the original description. The species approaches Hyalopeplus clavatus Distant, 1909 but differs by the transverse submarginal fascia of hind margin of disc being much more distant from border, by the much more spinously produced humeral angles which are somewhat turned backwards and by the colour and shape of the lateral vittae or lines of pronotum.

Fig. 181-Hyalopeplus spinosus Distant, Femsle. Iectotype.
Hyalopeplus (H_{s}) tongaensis, п.sp.
(Figs. 182-186)
Characterised by the colour of pronotum, antenna and hind tibiae.

Male: Length 8.0 mm , width 2.2 mm . Head: Length 0.9 mm , width 1.4 mm , vertex 0.50 mm . Antenna: Segment I, length 1.0 mm ; $11,4.7 \mathrm{~mm}$; III, 1.5 mm ; $\mathrm{IV}, 0.8 \mathrm{~mm}$. Pronotum: Length $0.9 \mathrm{~mm}_{1}$ width at base 2.0 mm . Cuneus: Length 0.90 mm . width at base 0.40 mm (holotype).

General coloration ochraceous with brown and reddish areas; head with three longitudinal vittae (one median and two lateral along inner margins of eyes), vitta on clypeus, jugum, lorum and gena brown to reddish; eyes and antenna castaneous, segment I with small fuscous to reddish dots,
segments III-IV black towards apices (segments IIIIV pale basally); pronotum with collar showing five longitudinal vittae, the lower lateral one at each side quadrate and large, four rounded spots on dise and humeral angle fuscous to black; In some specimens there is also a median longitudinal vitta and two sublateral ones, between calli and humeral angles with same colour; mesoscutum with a rounded black spot at each lateral fossa, scutellum with an obsolete longitudinal line and two black subapical round spots; hemelytra glassy, transparent, inner and outer margins of clavus, corium, embolium and cuncus fuscous to brown, the latter reddish internally, membrane hyaline, nervures brown to fuscous. Underside of body pale yellow with a reddish vitta on coxal cleft I_{1} a black spot on mesosternum laterally and a reddish vitta on metapleura and sides of abdomen; legs pale yellow, hind femora reddish to fuscous apically with fuscous dots or bars, hind tibiae reddish, segment III of tarsi fuscous.

Pronotum and scutellum transversely rugose, humeral angles acute, prominent, reflexed.

Genitalia: Penis (fig. 183) with membranous lobes provided with sclerotised teeth apically and a spiclulum (fig. 184). Left paramere (fig. 185) curved, pointed apically, Right paramere (fig, 186) small, also with pointed apex.

Fig. 182-Hyalopeplus tongaensis n.sp., male, holotype.

Female: Similar to male in colour and general aspect. Length 8.3 mm width 2.5 mm , vertex 0.60 mm .

Holopype: male, TONGA ISLANDS: Ena, Pangai, 90-120 mi iii. 1969, N.L.H, Krauss (BISHOP). Allotype: female, same data as holotype Paratypes: two males and two females, Tongatapu, Haatapu, ()50 m. 11, ini.1969, N.L.H. Krauss; Eua, Parker's Hill
area, $200-300 \mathrm{~m}$, ini. 1969 . N.L.H. Krauss; 3 males and 7 females, FIJI ISLANDS: Nandarivatu, Viti Levu, 3.vii.1938, E. C. Zimmerman; id. Taviuni, xiï.1921, H. W. Simmonds; id Suva, 29, vii, 1923 and 2.v.1923, C. L. Edwards (BMNH).

Very close to Hyalopeplus pumilaensis n. sp. but differs by the colour of second antennal segment and also by the number of spots on the disc of pronotum.

Eigs. 183-186-Hyalopeplus tongaensis n.sp.: Fig. 183-Penis; Fig. 184 -Spiculum of vesica; Fig. 185-Lelt paramere; Fig. 186-Right paramere.

Hyalopeplus (H.) tutuilaensis, n.sp.
(Figs. 187-190)
Characterised by the colour of antemna and pronotum

Male: Length 6.7 mm , width 2.0 mm . Head: Length 0.6 mm , width 1.3 mm , vertex 0.56 mm . Antenna: Segment I, length $0.9 \mathrm{~mm} ; 11,3.9 \mathrm{~mm}$; III-IV, broken. Pronohmi: Length $1 \cdot 1 \mathrm{~mm}$, width at base 1.8 mm . Cuneus: Length 0.76 mm , width at base 0.44 mm (holotype).

Gencral coloration ochraceous with dark brown and reddish areas; head with three longitudinal vittae fone median and two lateral along inner margins of eyes), obsolete in some specimens, vilta on clypeus, jugum and gena, reddish to brown, eyes brown. antenus pale yellow, apex of segment II, segments III-IV (except pale hasc) fuscous to black, pronotum with collar showing five longitudinal vittae (three median and iwo lower lateral larger,
quadrate), dise with median longitudinal vitta and four rounded spots (humeral angles included) fuscous to black. In some specimens the lateral vitta on head follows backwards through collar and calli and there is also a narrow sublateral vitta between calli and humeral angles. Mesoscutum with a black spot on each lateral fossa, scutellum with a fine longitudinal castaneous, line and two subapical round spots; hemelytra glassy, transparent, ochraceous, inner and outer margins of clavus, embolium. cotium and cuneous fuscous to black, the latter reddish internally, membranc hyaline, nervures brown. Underside of body pale yellow, a longitudinal reddish vitta laterally beginning on lorum and running backwards, broken at certain points at side of abdomen, à characteristic black, round spot on mesosternum laterally, legs pale yellow, hind femora with difute fuscous spots or bars, segments III of tarsi fuscous.

Pronotum and scutellum with rugosities, humeral angles açute.

Fig. 187-Hyalopeplus muilaensis n.sp., male, holotype.

Genitalia: Penịs (lig. 188) with membranous lobes provided with sclerolized teeth apically und a sclerotized spiculum. Left paramere (fig. 189) curved, pointed apically. Right paramere (fig. 190) smaller, also pointed apically.

Female: Similar to male in colour and general aspect. Length 8.6 mm , width 2.6 mm , vertex 0.60 mm .

Holotype: male, AMERICAN SAMOA: Tutuila, Taputima, 12,xi. 1963, N. R. Spencer (BISHOP). Allotype: female, same data as holotype. Paratypes: four males and six females, same as data ahove and 16.ix.1963, 4.iii.1964; Apia Upolu, 2.ii.51, J.S. Armstrong, B.M. 1963-291 (BMNH).

This species approaches Hyalopeplus tongaensis n.sp. but differs by the colour of second antennal segment and number of black spots on pronotum.

Hyalopeplus (Ho) vitripennis (Stal, 1855) Stal, 1870
Capsus vitripennis Stal, 1855, p, 186; Stal, 1859, p. 255; Walker. 1873, p. 118.

Hyalopeplus vitripennis Stal, 1870, p. 671; 1870; Atkinson. 1890, p. 106; Distant, 1904a, p. 108; Distant. 1904b, p. 447, fig. 288; Reuter, 1905 b, p. 2; Poppius, 1912a, p. 417; Poppius, 1914, p. 101; Carvalho, 1952, 1. 97; Carlvatho, 1959, p. 320.

Capsus lineifer Walker, 1873. p. 122: Atkinson; 1890, p. 109; Kirkaldy, 1902c, p. 253.

Hyalopeplus uncariae Roepke, 1916, p. 182, fig. 3; Carvalho, 1959, p. 320 (n.syn.),
Hyalopeplus amboinae Caryalho, 1956, p. 74, figs. 1956 (n:syn.).
(Figs. 191-210)
Characterised by the colour of pronotum and cuneus.

Male: Length $7.6-8.0 \mathrm{~mm}$, widh 2.4 mm . Head: Length 0.8 mm , width 1.2 mm , vertex 0.68 mm , Amenna: Segment [, length 0.8-0.9 mm; II, 3.9.4:4 mm ; III, 1.2-1.3 mm; [V, $1.0-1.3 \mathrm{~mm}$. Pronotum: Length 1.6 mm , width at base 2.3 mm . Cuneus: Length 0.86 mm , width at base 0.48 mm .
"Virescenti-flavus; antennis, art. 1 excepto. fuscis; capite thoraceque longitudinaliter rufo-vel ferrugineo-lincatis, hoc etiam lineu transversa intramarginali basali nigrofusca; scutelli linea media maculisque 2 apicis brunnescentibus; hemelyrris flavo-hyalinis, obscurioribus; femoribus posticis fuscopunctatis; abdominis utrimque linea longitudinalis sanguinea, Lond. 8, Lat. 2.5 mm . Java" (Stal, 1855).
"Luteous; head with three, and pronotum with five longitudinal lines either red or black: scutellum with a central line similarly variable in colour: basal margin of pronotum black; antennae Juteous, sometimes (excluding basal joint) fuscous: hemelytra pale ochracepus hyaline, the venation piceous; apex of scutellum more or less castaneous. Length 9 to 10 mm . Assam (Margherita), Ceylon, Tenasserin (Myita), Mallacca, Java, Philippines, North Queensland. " (Distant, 1904). The figure 288 given for the species is correct.
"Testaceous, fusiform, very fincly punctured, Head and pronotum with three black parallel lines the lateral pair abbreviated on the prothorax hindward. Head triangular, Eyes piceous, promi. nent. Rostrum extending somewhat beyond hind coxac, Antennac piceous, slender, as long as the body; first joint stout, as long as head; second more than thrice as long as the first and less than thrice as long as the third; fourth shorter than the third. Prothorax with two exterior black and red lines on each side, in addition to thase before mentioned; transverse furrow extremely slighr, Legs rather long and slender. Wings cinereous, veins piccous. length of body 4 lines. Malacca." (Walket. 1873), The description is rather poor and the pronotum of the holotype is distinctly rugose.

Figs. 188-190—Hyalopeplus tutuilaensis n.sp.: Fig. 188-Penis; Fig. 189-Left paramere; Fig. 190-Right paramere.

Fig. 191—Capsus viripennis Stall, neotype.

Fig. 192-Capsus lineifer Walker, female, lectotype.

Fig. 193- Hyalopeplus uncariae Roepke, female, lectotype.
"Colour citrine to lutescent with glassy, transparemt hemelytra; seven longitudinal vittae on pronotum and propleura, the three median ones following those on head, median line and two spots at apex scutellum dark brown to reddish; veins of membrane and extreme apex of cuneus darker; gena with a longitudinal dark stripe. apex of rostrum and veins of membranous wings black; femora with tows of dark or reddish spots, tibiae and antennae with reddish tinge or minute reddish areas," (Carvalho. 1956).

Genitalia; Penis: (figs. 203, 207) with vesica of aedeagus provided with membranous lobes with sclerotised teeth apically or in groups and a sclerotised spiculum '(figs. 204, 208). Left paramere (figs. 205, 209) curved, pointed apically. Right paramere (figs. 206, 210) smaller, also pointed apically.

Female: Similar to male in colour and general aspect, more robust. Length 8.6 .9 .4 mm , width 2.4 2.6 mm , vertex $0.72-0.76 \mathrm{~mm}$. Cuneus: Length 0.90 . 1.12 mm , width at base 0.50 .0 .5 mm .

Host plants: Thea sinensis. Uncaria gambir,

Geographical distribution: Australia, Indonesia (Amboina, Java, Sumatra), Malaysia (Malacca, Peninsular Malaysia, East Malaysia), Philippines Babelthuap, Papua-New Guinea, Palau Islands, Mariana Islands, Solomon Islands, New Hebrides Islands, New Britain, Bismarck Archipelago Singapore, Sri-Lanka, Vietnam, Laos.

Specimens sudied: 2 females, Ins. Philipp., Semper and Malacca, Kinb. (STOCKHOLM). The Philippine specimens bears Stals handwriting: 'Hyalopeplus viripennis'; 10 paratypes of Hyalopeplus amboinae Carvalho, Amboina Island and Babelthuap Islands (BISHOP): INDONESIA: sev. eral males and females: Ambon, $70 \mathrm{~m}, 29 . \mathrm{iii} .1963$, A.M.R. Wegner: Ambon, Waai, 150 m, 10.i. 1964, A.M.R. Wegner; Bogor, Tegalega, Java, 21.xi,1960, P. Maric; Sumatra, Tandjong Morawa, 16.xi.1951, J.V.d, Vech?: lectotype (new designation) of Hyalopeplus uncariae Roepke, Asaham, Sumatra, 1912 (Leyden Museum); Pandang, W. Sumatsa, xi.1924, C.B.K.; J.B. Corporal, 1920-95. Prse. 1mp. Bur. Ent. 180 m Dolok Merangir, Sumatra, April-June, 1970. E.W. Diehi; Kebon Balok, $20 \mathrm{~m}, 60 \mathrm{~km}$ NW Medan،. Sumatra. T.v. 1970; Dairi, $1600 \mathrm{~m}_{4}$ NW end of Lake Toba, Sumatra: Eramboe, 80 km ex , Marauke, Irian Jaya, 29, i, 1960, T.C. Maa; PENINSULAR MALAYSIA: female, holotype, Capsus lineifer Walker. Malacca (BMNH): Selangor Subang Forest Reserve, 90. 120 m, 12-14.iii. 1958, T, C. Mad Selangor, Ulugombak, $300 \mathrm{~m}, 18 . v .1958$, T.C. Maa; Kuala Lumpur, viii, 1958, N,L.H. Krauss (on Melastama malabathricum): West Coast, Langkawi, Is,v,1928. West Coast, Perhentian, wii.1926. ex. F.M.S. Museum, B.M. 1955-354; Penang, King Geo. Nat. Park, 15.xii. 1958; EAST MALAYSIA: Tawau Residency, Kalabakan $R_{4} 48 \mathrm{~km}(30 \mathrm{mi}) \mathrm{W}, 18, \mathrm{ix}, 1958$, T.C. Maá: W. Coast Residency, Ranau, 13 km (8 mi) Paring Hot Springs, $500 \mathrm{~m}, \mathrm{x} .1958$, L.W. Quate d T.C. Ma;; id. 28,ix. $-7, x .1958$; 22-25.i.1959: Bundu Tukan, 18.ii.1959; 6.x.1959, T.C. Maa; Sandakan Residency, Gomaton Caves, $32 \mathrm{~km}(20 \mathrm{mi}) \mathrm{s}$. Sandakan, 22-26.ix.1958, T. C: Ma;, Penampang SE of Jesselton, 17,x.1958, T. C. Maa; Singkor, 19.i. 1959, T,C. Máa; Tenompok. $1460 \mathrm{~m}, 48 \mathrm{~km}$ (30 mi) E Jesselton, 17-21.x, 1958, T.C. Maa: Sensuron, 9-11.i.1959, T.C. Ma; Pontianak, F. Muir, T.C. Maa; Manorg, F. Muir: Ranau, 22-25. ii. 1959, T, C. Maa, Ranau, 13 km (8 mi) N Paring Hot Springs, 500 m. 9-18.x.1958; L.W. Quate; Keningau, 1217.i, 1959, T.G. Maa; SE, Forest Camp, 19 km N of Kalabakan, 60 m , 21 xi.1962; Kuching, Santubong, $797-1500 \mathrm{~m}, 18$-30.vi.1958, T.C. Maa, Merirai V. Kapit Dist. 1-6.viji 1958, 1,C. Maa, PHILIPPINES: Minanao, Zamboanga de Norte, $11 \mathrm{~km}-9 \mathrm{~km} \mathrm{E}$ of Sindagan, 20.vii, 1958, H. E. Mildanao; Bukidon, 1250 m . Mt. Katangland, 49. xiri 1959 , L. W. Quate:

Figs. 194-197-Hyalopephstitripennis (Slal): Colour variation of anknom, head and pronotum seen from above,

Negros Or, Sibulan, 30.ix.1959. L.W. Quate; Negros Or. Mt. Province Mayoyao, Ifugao, 12501500 m , I1.ix. 1966, H. Torrevillas; Busuanga Is. 4 km N San Nicholas, 25-27.1962, H. Holtmann; Misamiris Or, Mt. Empagatao, 25:iv.1961, H, Torrevilfas; Luzon Camarineu, Sur. Mt, Isarog, Pili, $800-900 \mathrm{~m}, 4 . v .1965$, H. M. Torrevillas; Luzon, Mi. Prov. Ifugao, Mayoyao, $1000-1500 \mathrm{~m}_{4}$ 8-9.ii.1966, H.M. Torrevillas; Palawan Mantalingajan, Pinigisan, $600 \mathrm{~m}, 9 . \mathrm{ix} .1961$, Noona Dan exp, 61-62; id. Brookes Peint Uring, 23.viii, 1961; Bur, Agr. Col.B, Aroe: Mt. Banahao, Baker; Cuemos, Baker; Surigao, Mindanao, Baker; Mt, Makiling, Luzon, Baker; PALAU ISLANDS: Koror ls. NE, 26.iv.1957, C. W. Sabroski: MARIANA ISLANDS: Guam, ii.1958, N.L.H. K'rauss; SOLOMON ISLANDS; Bougainville, Kukugai Village, 1500 m , xii 1960, N.W. Brandt; Guadalcanal, Gold Ridge, 21.iii.1955, E.S. Brown, Pres, com. Inst. ent. B.m. 1958-79. NEW HEBRIDES ISLANDS: Espiritu Santo Island, SW, Namatasopa, $300 \mathrm{~m}, 29$. viii. 1957, J. L. Gressitl: BABELTHAUP ISLAND: Iwang, Palau, $8 \mathrm{~m}, 19 \times \mathrm{xii} .1952$, J.L. Gressitt; NEW BRITAIN: Gisiluve, Nakanai Mts. 1050 m , 26.vii.1956. F. J, Ford Jr.; PAPUA-NEW GUINEA: Bisianuma St, 40 km NW Port Morseby, 29.iv. 1960, Port O Brien: BISMARK ARCHIPELAGO: Rossum, 6 km , SE of Lorengau, 180 m .23. xii. 1959: AUSTRALIA: North Queensland: Dunk Island, Aug. 1927, F1. Hacker; Davis Creek, 26.iii. $73, \mathrm{R}$. W. Broadleg; [ron Range, 19.vi.1971, S. R. Monteith; SINGAPORE: Col. Baker; H. N. Riley, 1904-2, id, 95-76; Gardens, xi.1922; Nee Sung Forest Reserve, $20 \mathrm{~m}, 7$, xii. 1958 ; VIETNAM: Haut Mekong, Nam Tiene, 14.iv, 1918, R, V, Salvaza, 1918-1; Dalat, $6 \mathrm{~km} \mathrm{~S}, 1400.1500 \mathrm{~m}$, 9.vii.1960, S, Quate, N,R. Spencer, R: Leech; LAOS: Sedone Prov, Paksong, 18.v.1965. The specimens mentioned are in the BMNH, BISHOP. USNM, QU and SAM.

The folotype of this species, described by Stal from Jave, has been lost (fide Doctor Inge Persson, curator of Insects, Naturhistoriska Riksmuseet. Stockholm, in a letter dated December, 1975).

The two other specimens deposited at Stockholm were however handled by Stal and used for the description of the gerius Hyalopeplus. These iwa females from the Philippines (Semper) and from Malacea (Kinherg) are typical vilripennis, the first specimen bearing the manuscript label 'Hyalopeplus vitripennis Stal' (Stal's own handwriting). On these specimens the lines or vittie of the pronotum are fairly well marked, but those on the propleura and sides of abdomen and head are only vaguely indicated. The segment I of antenna is spotted with small reddish dots.

These specimens when compared with a series of twelve others taken in Bogor. Java, Indonesia, Tjilebut, 13, xi, 1960, H. Hamann (BISHOP), have proved to belong to the same species. In these series the longitudinal stripes of head and pronotum, propleurs and abdomen show a fairly wide range of variation, as can be seen in the figures.

According to article 75 of the Intermational code of Zoological Nomenclature (1964) [am designating a male specimen from Bogor, Jave, Tjilebut, as a neorype of Capsus vitripennis Stál, 1855. Besides agreeing with the characters mentioned in the original description, they agree also with the specimens handled from the Philippines and Malacea: The locality, comparison with specimens handled by Stal and lodgement in the same Institution, in my view, renders it as a valid designation of the neotype.

Fig5, 198.202-Hyalopeplus visripennis (Stal): Colour variation of head and gronotum seen from side.

In the series from Bogor from which the neatype has been chosen the general coloration is uchraceous to pale yellow or cirrine on head pronotum and scutellum, the hemelytra and membrane vitreous, and transparent (in this species there is a tendency for the hemelytra to become opaque or leathery). The head obove shows three longitudinal lines or vittae (one median and two lateral along inner
margins of eyes); collar with seven distinct vittae or lines; one median and six lateral, plus one above the coxal cleft 1 and indication of another (sometimes obsolete) in front of coxal cleft, inferiorly; pronotum on fully coloured specimens also with seven longitudinal lines or vittae (greatly variable): five seen from above (one median and four lateral) and two slightly below lateral margin of propleura, which may have also two other lateral lines (one median and one inferiorly) following the lateral line of head and continuing to lateral portion of sternum and abdomen; scutellum with median line and two preapical spots (sometimes including the whole apex) reddish to dark brown or black. The intensity and colour of the lines varies considerably. Hind margin of pronotum with a transverse submarginal characteristic dark fascia not reaching hind border (as in rama Kirby), humeral angles black. Hemelytra and membrane vitreous, transparent, margins of clavus, corium, embolium, cuneus and nervures of membrane brown to black; legs pale yellow, hind femora with a few brownish or reddish dots on apical third; segment I of antenna in full coloured specimens with reddish dots.

Pronotum and longitudinal sulcus of scutellura transversally rugose, the latter and the cuncus abous as long as wide at base, rostrum reaching the apex of hind coxae, hind tibiae with spines, short hairs and minute sclerotized tubercles.

Though he indicates a series of 20 specimens examined when describing Hyalopeplus uncariae. Roepke (1916) apparently had before him a mixed series of vitripennis Stal and rama Kirby. Following his description and illustration, and based also on his label data: "Asaham. Sumatra, 1912, W. Roepke" I have chosen a female specimen as lectolype (hemelytra leathery and iransverse dark fascia of posterior portion of dise of pronotum not reaching the hind border). This specimen has the scutellum about as long as wide at base, cuneus only twice as long as wide and legs with the apex of hind femora and hind tibiae pale, not noticeably pilose. This species is identical with vitripennis Stal and must be treared as its synonym.

Other specimens examined in the series from Asaham, are as follows; 1 female, Asaham, Sumatra, 1912, W, Roepke; 1 female, Asaham (S.O.K. (alimatan), on Melafoe, iv. '17, leg Corporal, Hyalopeplus uncariae Rpke, det. Leeईmans; 2 males and 6 temales, Sumatra, W: Roepke。 belong to Hyalopeplus tama (Kirby, 1891). In all of them, the scutellum is noticeably longer than wide at base, the second antennal segment of males are longer (about $4.0-4.6 \mathrm{~mm}$ long), the cuneus is reddish and distinctly longer than wide at base, the apex of hind femora and the hind tibiae are reddish
hairs of tibia long. The transverse posterior dark fascia of disc reaching the hind border will separate it at once from vitripennis. The mention of "absence of colored fasciae on head and pronotum" is due to the fact that the specimens were kept in alcohol. Also the mention of a leathery hemelytra is a character that occurs occasionally in specimens of vitripennis.

Hyalopeplus amboinae Carvalho, 1956 is also a synonym of vitripennis Stal. At the time of its description the author was not aware of the colour variation of vitripennis and the differences indicated
in the structure of male genitalia were found to be also within the range of variation of the species.

Finally capsus lineifer Walker, 1873 was correctly synonymized with vitripennis by Distant, 1904. It represents the extremely intensely coloured specimens, usually females. In the series studied from Bogor I have found all colour variations which are here represented in figures.

This species approaches Hyalopeplus malayensis n.sp. but is readily differentiated by the colour of cuneus and size.

Figs, 203-206-Hyalopeplus amboinae Carvalho: Fig. 203-Penis; Fig. 204 -Spiculum of vesica; Fig. 205-Left paramere; Fig. 206-Right paramere.

Figs. 207-210-Hyalopeplus virripennis (Stâl): Fig. 207-Penis; Fig. 208-Spiclum of vesica: Fig. 209-Left paramere; Fig. 210-Right paramere.

Key to the species of the subgenus Adhyalopeplus nov.

1. Pronotum distinctly setose; hind femur apically and hind tibiac basally pale to brownish........ pellicidus (Stal) Pronotum glabrous or very sparsely and shortly setose; hind tibia otherwise coloured
2. Collar without longitudinal vittae or bars, infuscate to castaneous anteriorly; pronotum with a single longitudinal wide vitta samoanus Knight
Collar with longitudinal vittae or bars. 3
3. Inner base of cuneus and extreme apex of corium with a common black spot; scutellum very large and prominent, lutescent; cuneus opaque, sulphurescent to reddish
cunearus n.sp
Inner base of cuneus and extreme apex of corium without a common black spot; scutellum of normal size
4. Dise of pronotum with a single longitudinal line or vitta, sometimes presens only anteriorly or posteriorly; collas with a whitish pruinose vitta or bar laterally
similis Poppius
Disc of pronotum with five longitudinal lines or vittae, sometimes the two median obsolete; collar without a whitish pruinose bar laterally.
5. Longitudinal virtae or lines on dise wide; pronotum and scutellum coarsely punctate; cuneus totally reddish madagascariensis n.sp.
Longitudinal vittae or lines on disc narrowed towards head; pronotum and scutellum moderately punctate; cuneus reddish on base and outer margin loriae Poppius

Hyalopeplus (Adhyalopeplus) cuneatus, n.sp.

(Figs. 211-215)
Characterised by the large and prominent scutellum and by the colour of base of cuncus and apex of corium.

Fig, 211-Hyalopeplus cuneaus n.sp. male holotype.

Male: Length 8.9 mm , width 2.7 mm . Head: Length 1.0 mm , width 1.5 mm , vertex 0.68 mm , Antenna: Segment I, length $1.0 \mathrm{~mm} ; \mathrm{II}, 4.5 \mathrm{~mm} ;$ III, $1.5 \mathrm{~mm} ;$ IV, 1.3 mm . Pronotum: Length 1.4 mm , width at base 2.6 mm . Cuneus: Length 1.0 mm , width at base 0.72 mm (holotype).

General coloration ochraceous with castancous and reddislı areas; head with a Jongitudinal median vitta reaching clypeus, eyes, apical portion of segment I of antenna (main body of segment is pale yellow), segment II (except black apex) brown, segments III-IV (except pale base) black. The head in some specimens show also two lateral vittae along inner margins of eyes and a longitudinal vitta on gena reddish. Pronotum with collar showing seven longitudinal narrow viltae (in some specimens the three median ones reach the area of calli) brown, humeral angles black; scutellum lurescent with two subapical black spots (one at each side); hemelytra glassy, transparent. extreme base of clavus, commissure and apical area of corium, coalescent with base of cuncus, fuscous to castaneous: embolium and cuneus opaque, the latter sulphurescent; pale yellow or reddish in some specimens; membrane hyaline, Underside of body pale yellow, hind femora reddish towards apex, segments III of tarsi black.

Pronotum distinctly punctate-rugose, scutellum very prominent, punctate-rugose, the punctures more visible, humeral angles acute, frons striate,

Genitalia: Penis (fig. 212) with membranous lobes provided with groups of sclerotized spines, a median spiculum (fig, 213) and a group of spines near secondary gonopore: Left paramere (fig. 214) curved, enlarged apically, ending in an acute point. Right paramere (fig. 215) smaller, also ending in a point.

Female: Similar to male in colour and general aspect. Length 10.4 mm , width 3.1 mm , vertex 0:80 mm.

Holotype; male, INDONESIA: Waris, S of Hollandia, Irian Jaya, $450-500 \mathrm{~m}, 8-15$, viii. 1959 (BISHOP), Allorype: female, NEW GUINEA; NE Wau, $1200 \mathrm{~m}, 11 . x i i .1965, \mathrm{~J}$. Sedlacek. Paratypes: three males and three females, same data as holotype and Gazelle Pen., Gaulin, $140 \mathrm{~m}, 21-$ 27.x.1962, J. Sedlacek, malaise trap; Wareo, Finsch Haven, Rev. L. Wagner, in the collection above and of the author.

Differs from others in the subgenus by the peculiar spot common to base of cuncus and apex of corium, as well as by the large and prominent scutellum.

Figs. 212-215-Hyalopeplus cuneatus n. sp.: Fig. 212-Penis; Fig. 213-Spiculum of vesica; Fig. 214-Left paramere: Fig. 215-Right paramere.

Hyalopeplus (Adhyalopeplus) Ioriae Poppius, 1912
Hyalopeplus loriae Poppius 1912a, p. 415; Carvalho, 1959, p. 320.
(Figs. 216-220)
Characterised by the colour of pronotum and cuneus.

Male: length 7.8 mm , width 2.2 mm . Head: Length 0.7 mm , width 1.4 mm , vertex 0.56 mm . Antenna: Segment 1, length 0.6 mm ; $11,3.6 \mathrm{~mm}$; III-IV, broken. Pronotum: Length 1.3 mm , width at base 2.1 mm , Cuneus: Length 0.84 mm , width at base 0.50 mm .

General coloration ochraceous with brown and reddish areas; head with three longitudinal lines (one median and two lateral along inner margin of eyes); collar with seven longitudinal bars or vittae, disc with a median and two longitudinal lateral vittae becoming wider towards the hind portion and humeral angles brown to black, hind margin of dise with a transverse narrow dark fascia; base, lateral margins and apex of scutellum dark brown; hemelytra glassy, transparent, margins of clavus narrowly, apical portion of corium, cuneus internal and externally, nervure of membrane dark brown to reddish, Underside of body pale yellow, legs pale, apex of front tibiae, apex of hind femora and hind tibiae reddish; basal half of hind femora pale. Antenna brownish yellow, segments II and II towards apices and segment IV almost totally black, segment I reddish yellow with reddish dots.

Rostrum reaching the middle coxae, disc of pronotum punctate-rugose.

Fig. 216-Hyalopeplus loriae Poppius, male.

Genitalia: Vesica of aedeagus (fig, 217) with membranous lobes with groups of sclerotized spines apically and a median spiculum (fig. 218). Left paramere (fig, 219) curved, pointed apically. Right paramere (fig. 220) globose, also with a sclerotized point.

Female: Similar to male in colour and general aspect, slightly more robust.

Specimens studied: males and females, NEW GUINEA: Wau, Morobe Districe, 1200 m , 1.4.viii. 1962 (BISHOP), AUSTRALIA: N.S. Wales, 19 mi W of Woodenbong, nr. Kilarney, 8.xii. 1948; Queensland, Townsville, 14.v: 03, F. P Dodd, (BMNH). There are a number of specimens of this species in Australian collections from Queensland, the Northern Territory and the north of Western Australia. In coastal Queensland is extends as far south as Brisbane but elsewhere in Australia it is restricted to the far northern areas.

The holotype of this species is mentioned as being deposited in the Museum of Natural History "Giacomo Doria", Genova. It is close 10 Hyalope. plus (N.) madagascariensis n.sp, but differs by the colour of pronotum and cuneus.

Hyalopeplus (Adhyalopeplus) madagascariensis,

 1].sp.(Figs. 221-225)
Characterised by the wide longitudinal vittae of pronotum and colour of cuneus.

Male; Length 8.0 mm , width 2.1 mm . Headi Length 0.8 mm , width $1.2 \mathrm{~mm}_{1}$ vertex 0.48 mm Anfennai Segment I, length $0.7 \mathrm{~mm} ; ~ I I, 4.0 \mathrm{~mm}$: III-IV, broken. Pronotum: Length 1.4 mm , width ai base 2.1 mm . Cuneus: Length 0.92 mm , width as base 0.48 mm (halotype)

General coloration flavescent to citrine with dark brown and reddish areas; head, pronotum and scutellum cirrine; a longitudinal vitta on middle of head, including clypeus (which has also two lateral spots basally), two lateral ones bordering inner margins of eyes castaneous to fuscous; five longitudinal vittae on pronoturn: one median, two lateral (the three wide and continuous from collar to hind margin of disc) and two submedian (much more slender, almost obsolete, reddish-orange), a transverse marginal fascia posteriorly on disc and humeral angles dark brown to black; scutellum with median line, basal angles and apex dark brown, hemelytra glassy, transparent, sutures and external margins of embolium and cuneus black, the latter reddish with a pale fascia along inner margin. membrane glassy, slightly fuscous, nervures dark. Antenna castaneous to reddish, segment I dark
brown, segment II fuscous at apex, segment III black, pale basally, segment IV black; eyes castaneous. Underside of body flavescent, a vitta along side of head, a spot on collar behind eye and a virta on upper margin of propleura, as well as an identical one on lateral area of abdomen reddish to fuscous or black; legs pale yellow, hind femora reddish apically with brown spots, hind tibiae reddish, apices of tarsi fuscous.

Pronotum distinctly punctate-rugose on black fasciae, scutellum punctate, cuneus fairly short, tibiae moderately pubescent.

Genitalia: Penis (fig. 222) with membranous lobes, a median spiculum (fig. 223) and a group of spines near secondary gonopore. Left paramere (fig, 224) curved, enlarged apically, apex pointed. Right paramere (fig. 225) small, globose, pointed.

Figs. 217-220-Hyalopeplus loriae Poppius: Fig. 217-Vesics of aedeagus: Fig. 218-Spiculum of vesica; Fig, 219-Left paramere; Fig. 220-Right paramere.

Female: Unknown.

Holotype: male, MADAGASCAR: Morafenoche, Fôret Majesy, 5.52, R. Paulian, in the Collection of the author, Paratype; male, same data as holotype.

This species differs from loriae Poppius by the colour of pronorum and cuneus.

Hyalopeplus (Adhyalopeplus) pellucidus (Stâl, 1859) Stal. 1870

Copsus pellucidus Stal, 1859, p. 255; Walker, 1873. р. 127.

Hyalopeplus pellucidus Stâl, 1870, p. 671: Atkinson, 1890, p. 106; Kirkaldy, 1902c, p. 143: Reuter, 1905b, p. 2; Kirkaldy, 1907, p. 159; Yoppius, 1912a, p. 417: Cheesman. 1927, p. 157; Zimmerman, 1948, p. 218, fig. 97; Carvalho, 1959. p. 320.
(Figs. 226-230)
Characterised by the pubescence of pronotum and scutellum.

Male: Length 7.6 mm , width 2.3 mm . Head: Length 0.8 mm , width 1.4 mm , vertex 0.48 mm . Antenna: Segment I, length $0.9 \mathrm{~mm} ; \mathrm{II}, 3.8 \mathrm{~mm}$; III[V, broken. Pronotum: Length $1-3 \mathrm{~mm}$, width at base 2.0 mm . Cuneus: Length 0.92 mm , width at base 0.28 mm (holotype).

General coloration flavescent testaceous with castaneous and reddish areas; head, pronotum and scutellum flavescent testaceous; three longitudinal lines on head (on central and two lateral along inner margin of eyes), three longitudinal ones on pronotum (the lateral pair reaching only over calli, somerimes indicated or absent), the median one reaching, the hind border of disc (obsolete or absent in some specimens), a transverse submarginal posterior fascia and humeral angles fuscous to castancous or black; mesoscutum at middle, scutellum basally and two subapical spots fuscous to black; eyes castaneous, antennae fuscous to brown. segment I paler with small reddish dots, segments III and IV black with extreme base pale; hemelytra glassy, transparent, sutures of clavus and corium, outer margin of embolium and cuneus fuscous to
castaneous (cuneus frequently reddish), in some specimens darker externally; membrane glassy, nervures fuscous. Underside of body ochraceous to lutescent, a longitudinal fascia on side of head (sometimes obsolete or absent) and anteriorly on propleuta castaneous; legs pale yellow to testaceous, femora with numerous fuscous dots, tibiae flavescent to testaceous.

Fig. 221-Hyalopeplus madagascariensis n.sp., male, holotype.
Pronotum and scutellum noticeably setose, cuneus and hind tibiae densely pubescent.

Genitalir: Penis (fig. 227) with membranous lobes with sclerotized teeth apically, a median spiculum (fig. 228) and a group of spines near secondary gonopore. Left paramere (fig. 229) curved, painted apically. Right paramere (fig. 230) small, also pointed apically.

Female: Similar to male in colour and general aspect, slightly more robust.

Host plants: Acacia koa, Coprosma, Dodonaea, Hiblscus, Girava, Melrosideros, Piprurus, Sida, Strausia.

Specimens sudied: male, holotype, Oahu, Capsus pellucidus Stal (STOCKHOLM); HAWAIIAN ISLANDS: Haleakala, Maui, NW Slope, 4.iii. 1947, 3500 ft ; Ollaa, 2500 ft , Washmead, Hilo, 16 iv; Oahu, vi.1958, light trap, J. Rodgers; Puu Palikea, iv. 1960, E. l. Ford Ir.; Posmohotrail Koolau Mt.;

Maiawa. 15.i.1942 on Bougainvillea; Kilauea, Washmead: Manoa, on pear Buds, 1936; MacDonald Hotel; Pearl City, Oahu, 22.ii.1923, E. H Bryan; Castle Trail, Ohau, 27.ix. 1958, E. H. Bryan: Waimea, Hawaii, 18.vi.1922. Old Parker Place. Illingworth: Upper Hamakua, Ditch Trail. 10.i.1929, O. H. Swezey; Honolulu, Ohau, xii. 1925. S. C. Ball: Manca, Ohau, 2.v.1925, S. C.. Ball: Kam School, 5.viii.1922, Bryan Ex, Hibiscus; Koko Head, F. F. Illingworth; Hana, Maui, 7, v. 1920, E H. Bryan; Kiaulea. Hawaii, 10.ix.1929, Kipuka Puaplu, O.H. Swezey: Waimea, Hawaii, 15, vi. 1922. Old Parker Place, Illingworth; Kainalu, Molkai, O. H. Swezey; Hawaii, Olaa, 29 mi, in house, viii. 1938. A. Sichiro; Haelaau, Maui, 19.xii.1928, O. H. Swezey; Molokai, Waikalu, 29.iv 1955, Joyce: Kamiloloa, Molokaǐ, 19.xii.1925. O, H. Swezey; Wailae Beach, Oahu, Ilingworth: Mr. Kaala, 6.vii. Oahu, O. H. Swezey; Maui, 9.iii (BISHOP).

According to Kirkaldy this species is predacious, All indications however are that it is phytophagous. as are most other species in the genus. Zimmerman (1948) states that it is intoduced in Hawaii. Miss Cheesman (1927) records the species from Hiva-oa in the Marquesas Islands.

It differs from others in the subgenus by the distinctly setose pronotum and scutellum and by the unicolorous hind tibia which is flavescent to testaceous but without traces of reddish. Its closest ally is Hyalopeplus samoanus Knight which has the collar withour bars or lines, the disc of pronotum differently coloured and hind legs with the apex of femur and base of tibia reddish.

Hyalopeplus (Adhyálopeplus) samoanus Knighs, 1935

Hyalopeplus samoanus Knight, 1935, p. 213, fig. 5; Carvalho, 1959, p. 320,
(Figs. 231-235)
Characterised by the colour of pronotum and hind legs.

Male: Length 8.7 mm , width 2.4 mm . Head: Length 0.8 mm , width $[.5 \mathrm{~mm}$, vertex 0.61 mm , Antenna: Segment I, length $1.3 \mathrm{~mm} ; \mathrm{II}_{,} 5.2 \mathrm{~mm}$; III, 1.9 mm : [V. 1.3 mm . Pronolum: Length 1.6 mm : width at base 2.2 mm . Cunelis: Length 0.8 mm ; width at base 0.44 mm :

General coloration flavescent to tespacenus or citrine with castaneous and reddish areas: head, pronotum and scutellum ochraceous to citrine, vertex in some specimens with indication of three longitudinal fuscous lines (obsolete in others); collar castaneous anteriorly or totally castaneous; pronotum with a transverse submarginal castaneous to
black fascia which reaches the humeral angles, 4 longitudinal wide castaneous to black vitta on disc (in some specimens reaching calli, in others present only posteriorly), some darker specimens with hind margins of calli also dark, leaving only central area of dise flavescent testaceous; mesoscutum dark at middle or totally: scutellum with basal angles and two subapical spots castaneous to black (in extreme coloured specimens the base and apex of scutellum black); eyes castaneous, antenna yellow testaceous, segment I paler with minute reddish dots, segments

III and IV black, pale basally: hemelytra glassy, transparent, claval; corial and embolial sutures castanenus to black, cuncus reddish with outer margin pale, membrane transparent, nervures fuscous. Underside af body nchraceous, side of head and propleura with indication of a longitudirial vitta (in fully coloured specimens), legs pale testaceous, femora with fuscous spots, apex of hind femora, apices of tibiae and base of hind tibiae reddish. Pronotum punctate-rugose, cuncus noticeably long, hind tibiae densely pubescent.

Figs. 222-225-Hyalopeplus madagascarlensis n,sp.: Fig. 222-Penis: Fig. 223-Spiculum of vesica; Fig 224-Left paramere; Fig. 225-Right paramerc.

Genitalia: Penis (fig. 232) with vesica of redeagus showing membranous lobes provided with sclerotized teeth apically, a median spiculum (fig. 233) and a group of spines near the secondary gonopore. Left paramere (fig. 234) curved, enlarged apically, with an apical point, Right paramere (fig. 235) small, also pointed apically.

Female: Similar to male in colour and general aspect, but more rohust.

Geographical distribution: Samoan Islands.
Specimens studied: two paratypes, SAMOA: Upolu, Vailima and Apia Ts. Hyalopeplus samonaus Knight (BISHOP); Upolu, Savago, 0.100 m, 14.x.1969, N. L. H. Krauss; Manua, Tau E of Tau Village (Luma), $50-200 \mathrm{~m}$, 16.iii. 1965 , sweeping. Samuelson: Turuila 1s. 2.ii.1957, W, R. Kellen; Pago-Pago, 9.ix.1923, Swezey \& Wilder: Afinalu, Upolu, $6 . i i .1940,2200 \mathrm{ft}$, at light. Swezey \& Zimmerman: Vailima, Upolu Is.. Buxton \& Hopkins'; Afiamalt, Upolu, iii. 1962, R. W. Taylor light trap.

The species differs from allied forms by the colour of the collar (longitudinal bars or vittac absent), by the single longitudinal vitta on disc of pronotum and by the noticeably long cuneus.

Hyalopeplus (Adhyalopeplus) similis Poppius, 1912
Hyalopeplus similis Poppius, 1912b, p. 8; Poppius, 1912a, p. 41; Carvalhe, 1959, p. 320.
Hyalopeples horvathi Poppius, 1912a, Poppius, 1912b, p. 9. Carvalho, 1959, p. 320. (n.syn.).
Hyalopeplus hakeri Poppius, 1915, p. 3: Carvalho, 1959, p. 320 (n.syn.).
Hyalopeples krishna Ballard, 1927, p. 64, pl. 17, fig. 7; Carvaltho, 1959, p. 320 (n. syn.).
(Figs. 236-247)
Characterised by the colour of collar and pronotum and by the structure of the male genitalia.

Male: Length $7 \cdot 0.8 .4 \mathrm{~mm}$, width $2 \cdot 0.2 .4 \mathrm{~mm}$. Head: Lengh $0 \cdot 6-0.8 \mathrm{~mm}$, width $1 \cdot 2-1 \cdot 3 \mathrm{~mm}$, vertex
0.48-(1).58 mm. Antenna: Segment J, length 0.80.9 mm ; II, $4.0-4.4 \mathrm{~mm}$; (H-IV, broken. Pronorum: Length 1.4 .2 .0 mm , width at base $2.4-2.8 \mathrm{~mm}$, Cuntus: Length $0.80-1.0 \mathrm{~mm}$, width at base 0.400.44 mm .

Fig, 226-Hyalopeplus pellucidus (Stal), tnale, compared with type.

General coloration pale yellow to citrine with castaneous and reddish areas: pronotum and scutellum pale yellow to cirrine or lutescent; a longitudinal line on vertex and two nthers bordering inner margins of eyes, a median Jongitudinal line to pronotum and scutellum (obsalete or absent in some specimens) castaneous* collar castaneous to pale yellow with two characteristic whitish pruinose bars (one at each side) in well preserved specimens, the central portion with three bars, usually forming a somewhat triangular area darker in colour, its apex lying between front area of calli. The whitish pruinose bars and the dark briangular area are visible on fully coloured specimens. Pronotum with a transverse fascia posteriorly reaching the hind border of dise and humeral. angles castaneous to black; mesoscutum at middle and scutellum basally and apically (sometimes the subapical spot is divided into two small ones not reaching apex) castancous; antenns brown, apex of segment II and segments 111-IV fuscous, basal portions of segments pale; hemelytra glassy; transparent, claval, corial and
embolial sutures fuscous io black, cuneits reddish (pale at external margin), membrane glas5y, slightly fuscous, nervures castaneous, Underside ol hody ochraceous, a reddish castaneous vitta on lateral portion of head and another on upper margin of propleura reddish to caslancous, abdomen with a reddish lateral vitta (obsolete in some specimens); legs pale yellow, tibiae I and II reddish apically, hind femora and hind tibiace totally reddish.

Pronotum noticeably punctate-rugose, scutellum prominent, sulcate at middle, cuneus fairly long, hind tibiae with lang pubescence.

Genilaiia: Penis (fig. 237, 243) with membranous lobes provided with sclerotized apical teeth, a median spiculum (fig, 238, 244) and a group of spines near secondary gonopore, Left paramere (fig. 239, 245) curved, enlarged and pointed apically, Right paramere (fig. 240, 246) small, enlarged apically, with a ierminal point.

Female: Similar to male in colour and general aspect, more robust.
Geographical distributions. AFRICAi lvory Coast, Saint Thorme Island. ASIA: India, Mulay Peninsula. OCEANIA: Philippine Islands, Solomon Islands, New Britain, Borneo, Papua New Guiner, West Irian, Australia, Timor.

Specimens studied: male, lectotype (new designation), Hyalopeplus horvathi Poppius, Ins. St. Thome, Mocquerys (HELSINKI); female, lectotype (new designation), Hyalopeplus similis Poppins, Langenburg, iv.1898, Fulleborn (HELSINKI). Hyalopeplus bakeri Poppius, Los Banos, Philippines, Baker (HELSINKI): lectotype, Hyalopeplus krishna Ballard, Chapra. Mackenzie. Pres. by E. Ballara (BMNH); female, paralectotype, same data as lectotype.

Several males and females; PHILJPPINE ISLANDS: Luzon, Mt. Prov. Ifugao. Mayoyao. $1000-1500 \mathrm{~m}, ~ 8 . v i 1.1966, ~ M$. Torrevillas: Mindanao, Agusan, Los Arcos, 19-23.xi.1959, C. M. Yashimoto: Negros Is., Camp Lonkout, Dumaguete, 6.iv.1961, T, Schneiria, A, Reyes; Leyte. Aboyog, 35 mi S Tacloban, 7-14.vii. 1961; Balaban Dalawam Bay, 5.x.1961, Noona Dan Exp. 61-62; Acupan Benquet, Luzon 15. viĭ. C. S. Barks; Busuanga Is., 4 km N San Nicolas, 21.v.1962, M. Thompsoni Mindanao, Lanso, Grain Mis. 1380 m , 16.vi.1958, Ifugao Prov.; Liwo, 8 km E Mayoyao. $1000-1300 \mathrm{mi}$; Busuanga, 4 km N San Nicolas 26. र. 1962. H. Holtmam; Mt. Province Mayoyan. Ifugao, $1200-1500 \mathrm{~m}, 10$.viii.1966, H. M. Torrevillas; Mindanao, Lanao Butig Mis. 24 km , Ne Butig, $1080 \mathrm{~m}, \mathrm{H} . \mathrm{F}$. Milliron: SOLOMON ISLANDS: Guadalcanal, 8:1921, 1. A. Kuschel; New Georgia Gr. Gize Is, $30 \mathrm{Km}, 11-18, v i \mathrm{i} .1964$, J, M. Sedlacck.

Figs. 227.230—Hyalopeplus pellucidus (Stal): Fig. 227—Vesica of aedeagus; Fig. 228-Spiculum of vesica; Fig, 229-Left paramere; Fig. 230-Right paramere.

San Cristoval, Bwelnaniawarikiapu, 12.vii.1960, C. W. O'Brien; Santa Isabel f_{i} Tatamb, 24.vi.1960, C. W. O'Brien; Malaita, Auki, $20 \mathrm{~m}, 3-5 . v i .1964, \mathrm{~N}$. V.; Kolombangara, Gollifer's Camp, 700 m , 23.1.1964, P. Shanagan; Guadalcanal, Lame nr. Mt. Tatuve, $300 \mathrm{~m}, 17 . \mathrm{v} .1960, \mathrm{C}$. W. O'Brien. NEW BRITAIN: Gazelle Pen., Gaulim, $140 \mathrm{~m}, 21$ 27.x.1962, J. Sedlacek. BORNEO: Sarawak, Gunong Matang, $120 \mathrm{~m}, 16 . x i .1958$, M.V., J. L. Gressitt \& Maa. PAPUA NEW GUINEA: Elipramin Valley, W. W, Brandt; NE Tsenga, 1200 m , Upper Jimmi V., 15.viii.1955, J. L. Gressitt; Torricelli Mts., Mokai Vill. $750 \mathrm{~m}, 16$ - 31 .xii. 1958 , W. W. Brandt; Wau, $1200 \mathrm{~m}, 16$. viii. 1964, J. Sedlacek. INDONESIA: Waris, S of Hollandia, Irian Jaya, 4 500-5 $000 \mathrm{~m}, 8-15$.viii.1959, T. C. Maa; Waigeu, Camp Nok. 2500 ft . iv. 1938, L. E.

Cheesman, B.M. 1938-593; Kupang, Timor, 6 21.vi.1929, I. M. McKerras; MALAYSIA: Perak. Larut Hills, at light, 4500 ft , ii.1915, H. M. Pendlebury; Bettotan, NT, Sandakan, 24.viii,1927; CENTRAL INDIA: Mandhya Pradesh, Satpura Hills, ix. 1970, Pachmari 3500 ft . AUSTRALIA: North Queensland, Redlynch, 10.xii. 1938, PapuanAustralian Exp. B.M. 1947-448; id. 14;xii.1938; id. 21-30. vii.1938; Redlynch, Queensland, xii. 1938, B.M. 1949-61; Peach River, Shepards Battery Site, Cape York Pen., 800 ft, 13. viji. 1948, Archbold Exp. North Queensland; 3才 2 ㅇ Iron Range, Cape York Peninsula, 27.iv.-4.v.1973, G.B. Monteith; 12, same locality and collector but $5-10 . v .1968 ; 1$ 우, same locality and collector but 11-17, v.1968; 1 ㅇ, Lockerbie Scrub, Cape York, 19-22,iv.1973, G.B. Monteith; 19, Mt. Carbine, 5.i.1964, G. Monteith;
29. Upper Mulgrave River, 30.iv,1970, G. B. Monteith; 2 우, same locality and collector but 13.xii. 1965; 1 o Bowen, 8,ii. 1975, B. K. Cantrell; 2 ㅇ, 5 km (3 mi.) W of Mossman, 13.iii.1964, I.. F., B. Common \& M, S. Upton: $10^{7} 12$, Iron range, 10.iv. 1964, 1. F. B. Common \& M. S. Upton.

Fig. 231-Hyalopeplus samoanus Kright; male, compared with lype

Specimens recorded are in AMNH, BMNH, BISHOP, USNM, ANIC, QU and Department of Primary Industries Brisbane.

Differs from other species in the genus by the colour of collar and pronotum, by the noticeably long cuneus and by the hind tibiae densely pubescent.

Hyalopeplus similis Poppius was described based on two females from Lake Nyassa. In the present study we have examined specimens from Lamto, Toumodi, Ivory Coast; Bambari (on cotton) and Tafo. Hyalopeplus horvath is mentioned by Poppius as deposited in the Museum of Natural History. Budapest. At least one of the iwo males was retained in Helsinki and is being designated as lectotype.

In the present work horvath and bakeri are considered as synonyms of similis. Besides having a very close similarity in coloration and general aspect, especially bars of head and collar, the male genitalia are similar. Since the species is widely
spread over the Oriental Region and Oceania is quite probable that it has been introduced in the Ethiopian Region,

Hyaloplictus, n. gen.
Type-species: Hyaloplicus solomonicus n. sp.
Body elongate, glabrous above. Head with a short neck, vertex immarginate, frons prominent, striate, clypeus flat, visible from above, eyes prominent, slightly semoved from collar, jugum and lorum flat. buccula small, rounded, rostrum reaching hind coxac; antennae eylindrical, shortly pubescent. segment I slightly shorter than width of head, bent outwards, segment II about four times as long as I.

Pronotum smooth (in one specimen strigose on medial black spot of disc), noticeably constricted and narrowed anteriorly, collar very large, mesal length about equal to half the width of cyes, lateral margins sinuate in front of humeral angles (which are rounded), hind margin sinuate at middle and near humeral angles; mesoscutum exposed, scutcllum long, slightly convex.

Hemelytra glassy, transparent, corium without nervures; scutellum laterally, a line following claval suture internally and embolio-corial commissure with a row of punctures; cuncus about three times as long as wide at base, membrane biareolate, large areola rounded apically. Legs long, tibiae densely and shortly pilose.

This genus differs from others in the tribe by the very wide collar, by the disc of pronotum strongly narrowed and constricted anteriorly and by the segment 1 of antenna bent outwards.

Key to the species of the genus Hyaloplictus n. gen.

1. Collas black; cuneus sed; size large, over 10 mm long
solomonicus n. ap
Cobllar pale with black vitiae; cuneus pale; size medium, less

Hyaloplictus minor, n, sp.
(Fig. 248)
Characterised by the colour and size.
Female: Length 8.7 mm , width 2.2 mm , Head: Length 1.0 mm , width 1.4 mm , vertex 0.60 mm . Antenna: Segment 1, length 1.0 mm ; 11.3 .9 mm : III, 1.9 mm : IV, broken. Pronotum: Length 1.5 mm , width at base 2.0 mm . Cuneus: Length 1.00 mm , width al base 0.36 mm (holotype).

Figs, 232-235-Hyalopeplus samoanus Knight: Fig. 232-Vesica of aedeagus; Fig. 233-Spiculum of vesica; Fig. 234-Left paramere; Fig. 235-Right paramere.

General coloration ochraceous with black areas; eyes and antenna light castaneous, apex of segment II, segment III and IV infuscate; collar with narrow median longitudinal line and two lower lateral vittae, two round spots at lateral margins of pronotum and two small spots at middle of dise. spots on mesosternum fuscous to black; hemelytra glassy, ochraceous, inner and outer margins of clavus, corium, cuneous and embolium (narrowly) fuscous; membrane hyaline, nervures brown. Underside of body and legs pale yellow, lateral margin of abdomen with a longitudinal reddish vitta. Pronotum and scutellum smooth.

Male: Unknown

Holotype; female, SOLOMON ISLANDS: San Cristoval, Maniate, 6.viii, 1960, C. W. O'Brien (BISHOP).

Differs from Hyaloplictus solomonicus n.sp. by the colour of cuneus, collar and by the smaller size.

Hyaloplictus solomonicus, $\mathrm{n}: \mathrm{sp}$.
(Figs. 249-252)
Characterised by the large size and by the colour of the collar and cuneus.

Male: Length 10.6 mm , width 3.2 mm . Head: Length 1.0 mm , width 1.6 mm , vertex 0.60 mm . Antenna: Segment I, length 1.2 mm ; II, 5.0 mm ; III, 1.4 mm : IV, 1.2 mm . Pronolum: Length 1.7 mm , width at base 2.4 mm . Cuneus: Length 1.40 mm ; width at base 0.60 mm (holotype).

Figs. 237-240-Hyalopeplus bakeri Poppius: Fig. 237-Penis; Fig. 238-Spiculum of vesica: Fig, 239-Left paramere; Fig 240-Right paramere

Fig. 241-Hyalopeplus krishna Ballard, fernale, lectotype:

General coloration ochraccous to castaneous with red and black areas; eyes and antennae castaneous, segment I paler, pronotum with collar, two large round spois laterally and a small strigose median longitudinal spot black; hemelytra glassy, transparent, clavus, embolium, cuneus, commissure and apical margin of corium, nervures of membrane red: membrane hyaline. Underside of body and legs pale yellow with reddish tinge.

Pronotum rugose on black median spot.

Genitalia: Penis (fig, 250) with a sclerotized spiculum and membrenous lobes. Left paramere (fig. 251) curved, somewhat enlarged preapically, with pointed apex. Right paramere (fig. 252) small, ended by a sclerotized point.

Female: Similar to male in colour and general aspect. Length 11.1 mm , width 2.6 mm , vertex 0.60 mm (allotype).

Holorype: male, SOLOMON ISLANDS: Bougainville, Kukugau Vill., 150 m , xii. 1960. W W. Brandt (BISHOP). Paratype: female, Santa Isabel, Molao. 30.vi,1960, C. W. O'Brien.

Differs from Hyaloplictus minorn.sp, by the larger size, by the red cuneus and hlack collar

Isabel Kirkaldy, 1902
Isabel Kirkaldy, 1902, p. 58, Poppius, 1912a. p. 417: Carvalho. 1955, p. 107: Carvallo. 1959, p. 321,

Isabellina Distant, 1904b, p. 415 (syn. by Reuter, 1910. p. 166).

Type-species: Isabel ravana (Kirby, 1891).

Body elongate, glabrous above. Head triangular, subhorizontal, vertex sulcate longitudinally, immarginate, clypeus and lorum visible from above, eyes well removed from anterior margin of pronotum, this distance being approximately equal to thickness of first antennal segment; rostrum reaching apex of posterior coxae; antennae moderately long, slender, segment I distinctly longer than width of head, segment II twice as long as I, slightly incrassate apically, segments III and IV slender, shortly pubescent.

Pronotum considerably narrowed anteriorly, collar with mesal length equal to thickness of first antennal segment, calli flat, separate at middle, reaching sides of pronotum, which are rounded, disc convex, rugose-punctate, with a central longitudinal and two lateral impressed strigose vittae, humeral angles subspinously produced and reflexed, hind margin broadly rounded; mesoscutum exposed, scutellum tumid, noticeably rugose (rugosities of basal angles extending also to fossae of mesoscutum).

Fig. 242-Hyalopeplus horvarhi Poppius, male, lectotype,

Fig. 247-Hyalopeplus similis Poppius, Eemale, lectotype.

Hemelytra glassy, transparent, corium with costal nervure present only apically, clavo-corial and embolio-corial sutures with a row of punctures. cuneus longer than wide at base, membrane with large areola distinctly and acutely angulose apically. Legs of moderate length, hind femur incrassate, with numerous characteristic small black spines inferiorly, tibiae shortly spinose, parempodia divergent apically.

This genus is characterised by the apical nervure of corium, by the small black spines of hind femora and by the spinously produced and reflexed humeral angles of pronotum.

Isabel ravana (Kirby, 1891) Kirkaldy, 1902
Capsus ravana Kirby, I891, p. 106, pl. 4, fig. 10; Isabel ravana Kirkaldy, 1902, p. 58, pl. A. fig. 9. pl. B. fig. 6; Reuter 1910, p. 97; Carvalho, 1959, p. 321.

Isabellina ravana Distant, 1904b, p. 417.
Isabel beccaril Poppius, 1912a, p. 417 (n.syn.).

Isabel horwathi Poppius, 1915a, p. 10 (n.syn.).
(Figs. 253-256)
Characterised by the silvery vittae on pronotum and scutellum and by the longitudinal, extrareolat. bent virtae of membrane.

Male: Length 7.8 mm , width 2.0 mm , Head: Length 0.8 mm , width 1.0 mm , vertex 0.48 mm . Antenna: Segment I, length 1.6 mm : $11,3.3 \mathrm{~mm}$; III-IV, broken. Prononum: Length 1.2 mm , width as base 2.1 mm . Cuneus: Length 0.96 mm , width at base 0.40 mm (lectotype-Isabel beccarii Poppius),

Fig. 248-Hyaloplictus minor n.sp., female, holorype.
General coloration pale testaceous to ochraceous, more or less mottled and speckled with castaneous to reddish; head with longitudinal vittae (the two median ones wider) and striations on frons reddish, clypeus, lorum, gula and portion behind eyes with brown vittae or spots, eyes and antennae brown. segment I speckled with black, apex of segment II castaneous to dark, segments III-IV castaneous. pale basally; pronotum with five longitudinal, and a transverse sub-basal, vittae whitish, covered by silvery pruinosity and darkened at each side. humeral angles black, hind margin narrowly pale; mesoscutum and scutellum reddish to brown with three longitudinal pale to whitish vittue (one central,
two lateral): hemelytra ochraceous, transparent of semi-transparent, commissures, cuneus and nervures of membrane reddish, embolium in some specimens with four dark spots (basal, apical and two sub-median), the cuneus totally red or castaneous or with this colour only marginally; membrane hyaline with two characteristic apical bent longitudinal viltae brown to hlack. Legs pate yellow, speckled with brown, abdomen with a wide lateral brown band and small teddish dots ventrally, femora and tibiae pale with numerous brownish dots of hars, extreme apex reddish, the hind femur mostly brown with numerous black short spines ventrally, hind tibiae with a sub-hasal wide brown hand.

Fig. 249-Hyaloplicus solomonicus n.sp», male, holotype,

Gentralia: Penis (fig. 254) with membranous lobes and fields of sclerotized teeth. Left paramere (fig. 255) strongly curved. apex blunt. Right paramere (fig. 256) small, with a typical apical curved point.

Female: similar to male in colour and general aspect, slightly more robust.

Geographical distribusion: Burma, Chind, Formosa, Sri Lanka, Sumatra, New Guinea, Philippines.

Specimens studied: lectotype (new designation); male, SUMATRA: Mı. Singaland, vii. 1978, O. Beccari (Isahel beccarii Poppius.) (HELSINKI); PHILIPPINES: Albay Prov, Mt. Mayon, 16 km NW of Lagaspi, $900-1500 \mathrm{~m}, 4 . v .1962, \mathrm{H}$. M. Torrevillas: IRIAN JAYA: Wamena, $1700 \mathrm{~m}, 10-$ 25.ii. 1960. T. C. Maa: BURMA: Nam Tamai Valley, 23,vii. 1938 , R. Kaultrack, alt, 3000 ft (BMNH); SOUTH CHINA: Kwantung, Su-LingPaei, Yooshan District, Sepl 30, 1934, F. K. To (BMNH).

The specific characters pointed out by Poppius for Isabel beccarit and Isabel horvathi are within the range of variation of the species and appeats even in single individuals. The two species must be treated as synonyms of ravana (Kirby),

Kosmiomiris Kitkaldy, 1902
Kosmiomiris Kirkaldy, 1902, p. 253; Poppius, 1912a* p. 433; Carvalho, 1955, p.106; Carvelho, 1959, p. 321 ,

Type-species; Kosmiomiris rubroornatus Kirkaldy, 1902= Capsus Jucidus Walker, 1873.

Body elongate oval, beset with fine and erect pubsence. Head small, transverse, short, vertical in front of the eyes, vertex superficially sulcate longitudinally, immarginate, eyes removed from collar by a space about equal to thickness of first antennal segment, straight posteriorly, angulose at inner hind margin, occupying two thirds of head when seen from side, clypeus flat, jugum and lorum long, narrow, buccula small, rostrum very long, reaching to 6th abdominal segment; antenna inserted level with upper portion of eye, cylindrical, segment Il slightly incrassate; shortly pubescent, about twice as long as I, which is about as long as width of head.

Pronotum convex, deep and coarsely punctate, lateral margins rounded, calli small and flat, collar narrow and smooth, hind margin of disc straight at middle, oblique near humeral angles; mesosternum covered, scutellum strongly tumid, smooth or with sparse punctures (in some geographical populations the scutellum is punctured).

Hemelytra without nervures, glassy transparent (except on reddish or black areas). clavo-corial and embolio-corial sutures with a row of punctures, cuneus distinctly longer than wide at base, large areola rounded apically. Legs of moderate length, tibiac dense and shortly pilose, the spines of hind pair about as long as thickness of segment.

Figs. 250-252-Hyaloplicrus solomonicus n.sp.t Fig, 250-Penis; Fig. 251-Left paramere; Fig. 252-Right paramere.

Fig. 253-Isabel beccarii Poppius, male, holotype.

The genus is characterised by the coarsely punctate pronotum, by the very long rostrum and by the smooth collar. It differs from Guianerius Distant by the length of the rostrum. by the structure of pronotum and by the insertion of antenna on frons.

Kosmiomiris rubroornatus Kirkaldy, 1902
Capsus lucidus Walker, 1873, p. 124 (n. preoc. by Capsus lucidus Kirschbaum, 1855).
Kosmiomiris nubroornams Kirkaldy, p. 253, pl, f, fig. 4; pl. 6, fig. 6; Poppius, 1912a, p. 434; Carvalho, 1959, p. 322.
Kosmiomiris lucidus Distant, 1904a. p. 106.
Kosmiomiris modigliani Poppius, 1912a, p. 433 (N.SYN.).

Kosmiomiris scutellaris Poppius, 1912a, p. 433, (n.syn.).
(Figs. 257-264)
Characterised by the colour of the body and by the stucture of male genitalia,

Male: Length $4 \cdot 6-6.4 \mathrm{~mm}$, width $1 \cdot 8-2 \cdot 1 \mathrm{~mm}$. Head: Length 0.4-0.7 mm, width $0.5-1.3 \mathrm{~mm}$, vertex $0.44-0.48 \mathrm{~mm}$. Antenna: Segment I , length $0.81 .1 \mathrm{~mm} ;$ II, $1.6-2.3 \mathrm{~mm} ;$ III 1.0 mm ; IV, 0.7 mm . Pronolum: Length 0.7 .0 .8 mm , width at base $0.30-0.40 \mathrm{~mm}$.

Figs. 254-256-Isabel ravana Distant: Fig. 254—Penis; Fig. 255-Left paramere; Fig. 256-Right paramere.

Fig. 257-Capsus lucidus Walker, male, holotype.

General coloration ochraceous with brown, black and reddish areas; apex of abdomen, basal half of posterior tibiae and antennae black (in some specimens the basal third or the extreme base of segment III whitish, this variation occurs in specimens taken at the same locality, by the same collector; and on same day); pronotum, scutellum, cuneus (more or less), clavus at base, nervures and apical portion of membrane dull brownish black; clavus in a more or less extensive are (except basal portion), a characteristic V-shape spot (with apex on corial commissure) red; corium (except reddish areas), a cross bar at base of scutellum and base of membrane pale, transparent (in some specimens the whole membrane is black). Underside of body (except black apex of abdomen) pale, femora reddish, tibiae I and II pale brown, tibiae III black, pale apically, tarsi pale.

Genitalia: Penis (figs. 258,262) with a characteristic sclerotized cylindrical spiculum and membranous lobes. Left paramere (figs, 259, 263) enlarged basally, strongly curved at middle. Right paramere (figs. 260, 264) widest at middle, with a curved apical point.

Female: Similar 10 male in colour and general aspect but noticeable more robust. Length 7.35.0 mm , width $2.5-2.0 \mathrm{~mm}$, vertex (0.48 .0 .50 mm .

Gengraphical distrihution: Borneo, Malay Peninsula, Philippines. Thailand. Sarawak. Sumatra. Malacca.

Specimens spudied, male, hololype, 294, JENINSULAR MALAYSIA: Capsus lucidus Witker, Saunders, 65.13; sar. type (printed on green-bordered disc) (BMNH); female lectotype (new designation)s Museum Paris. Perak coll. Noualhier, 1898 (Kosmiomiris scutellaris Poppius) (HELSINK1); Selangor, Bukit Kutu, 3300 ft , jx 1932, H. M. Pendelhury; Kualu Lumpur, xii, 1939; INDONESIA: paralectotype, male, Soekaranda, Sumatra, Januar. 1894. Dohirn (HFELSINKI), E \wedge ST MALAYSIA: SE Forest camp, 19 km N of Kalabakan. 60 m. 24.x.1962; Gomatong caves, 2226.xi.1958. T. C. Maa. Sandakan Bry (NW) Sepilok For. Res., 1-10 m, 28.x.1957. J, L. Gressint; id. Sapagay Lumbet Camp; Samawang: Sadong, Kampong Tapuh, $300-400 \mathrm{~m} .10$ vii. 1958; PHILTPPISES: Palawan Mantalingajan, Pinigisan, 600 m , 23.ix. 1961, Noona Dan Exp, 61-62; PENINSULAR THAll.AND: Nakon Sri Tam trat, Khao Huang, 2500 ft iii, 1922, H. M. Pendelbuty, in the Collactions of BISHOP , BMNH and AMNH.

This unceles seems to vary in colour and also in size. The amount of red and black colos on the clavus varies in individuale táken at the same place. by the same collector and on the same date. Females tend to have the red coloration mone extensive. The same applies on the size, cspecially in populations from different geographical areas. Poppius based his species description mostly on the size and the colour of membrane, In the serics of specimens from Borneo and Sumatra the membtane may be totally black. pale basally or pale only apically.
Due to this colour and also size variation and also the regular and uniform pattern of the genitalia the Poppius species are here considered as synonyms of pubroormatus Kirkaldy.
The types of scutellaris Poppius and mbroornatus were studied. Kosmiomiris modigliani Poppius is stid to be in Genova (Giacomo Doria Museum of Natural Klistory) but the type could not be seen because that Museum does not loan types for study.

Macrolonius Stà, 1870
Mactolonius Sial, p. 670; Poppius. 1912a, p. 432 : Carvaiho, 1955, p. 106; Carvalho, 1959, p. 322.

Type-species: Macrolonius sobrinus (Stal, 1855).

Body elongate, glabrous, sides parallel. Head vertical, vertex wide, immarginate, eyes contiguous with collar, clypeus. jugum and lorum ffat, buccula prominent, rounded, convex gula, rostrum reaching hind coske: antenna inserted at level of middle portion of eyes, cylindrical, segment I longer than width of head, shorlly pubescent.

Pronotum punctate, including collar, calli small, median portion slightly carinate, collar narrow, its mesal length slightly greater than thickness of first antennal segment, lateral margins rounded, hind margin straight, oblique near humeral angles, memsoscutum covered, scutellum flat, punctate, apical portion prominent, rounded.

Hemelytra glassy, transparent, without nervures, clavas opaque, clavo-corial and embolio-corial sutures with a row of punctures, cuncus very long, about four times as long as wide at base, large areola rounded apically, Legs long, cylindrical, shortly pubescent, tibiae shortly spinulose.

The genus differs from other Hyalopeplini with coarsely punctate pronotum and scutellum by its large size: very long cuncus, large areola of membrane reaching well below apex of cuneus and by the punctate collar.

Key to the species of the genus Macrolonims Stal

1. Head seen from above uniculorous; pronotum with a median darkebrown spot on dise not reaching lateral margins: collarpale sobrimus (Stal)
Head seen from ahove with dark spots os vittaj pronotum with a mediun black spot reaching laleral margins; collar hack
2. 1icad with at median black lengitudinal siena; lateral margins of pronoturn with as single pale spot hehind calli
superbus (Distant)
Head black with a semilunar pale sput above: lateral margins of pronotum with two pale spors (one behind calli and onte at humeral angle)
schenklngi (Poppius)

Macrolonius schenklingi (Eoppius, 1915) Carvalho, 1959

Malalasta schenklingi Poppius, 1915a, p. 21; Macrolonius schenklingi Carvalho, 1959, p. 322.
(Fig, 265)
Characterised by the colour of head and pronotum.

Female: Length 10.2 mm , width 2.1 mm. Head: Length $0: 6 \mathrm{~mm}$, width 1.4 mm , vertex 0.56 mm . Antenna: Segment I, length $1.8 \mathrm{~mm} ; 1 \mathrm{I}, 2.8 \mathrm{~mm} ; 111$ and IV, broken. Pronotum: Length 1.6 mm , width at base 2.5 mm . Cuneus: Length 1.68 mm , width at base 0.40 mm (lectotype).

Fig. 265-Malalassa srhenklingi Poppius, femate, lectotype.
General coloration ochraceous to pale yellow with dark brown to black areas; head black with a semilunate pale spot on vertex and frons, eyes and antennae black; pronotum black with calli and two spots on lateral margins (one behind calli and one on humeral angle) pale to lutescent; scutellum citrine with two longitudinal vittae fused basally; hemelytra glassy, transparent, clavus and cuneus opaque, brown to black, the first in the middle and the second at inner portion pale to lutescent, membrane hyaline. Underside of body and legs pale yellow, hind tibiae tending to brown, tarsi fuscous.

Pronotum slightly sinuate laterally, mesoscuturm partially exposed, nervures of embranes very long, the large areolae rounded apically, superposing each other, cuneus very long.

Male: Unknown.

Geographical distribution: Formosa.
Specimens studied: female, lectotype (new designation), FORMOSA: Fuhosho, 7.ix.. H. Sauter (HELSINKI).

This species differs from the two others in the genus by the colour of head, lateral margins of pronotum and by the length of cuneus.

Macrolonius sobrinus (Stảl, 1855) Stâl 1870
Capsus sobrinus Stàl, 1835, p. 186.
Macrolonius sobrinus Stal, 1870, p. 670 Poppius, 1912a, p. 433; Carvalhio. 1959, p. 323.
Capsus discoidalis Walker, 1873, p. 122 (n,syn.)
Malacopeplus discoidalis Carvalho, 1959, p, 322.
(Fig. 266-270)
Characterised by the colour of head and pronotum.

Female: Length 9.6 mm , width 2.4 mm . Hend: Length 0.4 mm , width 1.4 mm , vertex 0.72 mm . Antenna: Segment I_{4} Length $1.8 \mathrm{~mm} ; 11,3.0 \mathrm{~mm}$; III, $1.6 \mathrm{~mm} ;$ IV, broken, Pronotum: Length 1.9 mm , width at base 2.4 mm . Cumeus: Length 1.16 mm . width at base 0.48 mm (lectotype of discoidalis Walker).

Fig. 266-Copsus discoidalis Walker, Iemale, lectutype.

Figs, 267.270-Macrolonus sobrinus (Stal): Fig, 267-Penis; Fig, 268-Spiculum of vesica; Fig. 269-Left paramete; Fig. 270-Right paramerc.

Gencral coloration ochraceous to lutescent with brown to cirrine areas; head, pronotum and scutellum lutescent to citrine, eyes and antennae (except base of segment III which is pale) castaneous, segment II darker towards apex; a central spot on dise of pronotum reaching posterior margin, clavus, two lateral spots on scutellum, corial commissure and znner apical margin of corium, outer margin of embolium and outer margin of cuncus, nervures of membrane fuscous to brown; cineus and embolium Jutescent, fuscous apically: clavus and cuneus opaque. Underside of body and legs pale yellow, hind tibiae brown, palc apically, tarsi fuscous.

Male. Similar to female in colour and general aspect, less robust.

Genitalin: Penis (fig. 267) with membranous lobes, fields of sclerotized teeth and a characteristic spiculum (fig. 268). Left paramere (fig.269) curved, pointed apically. Right paramere (fig. 270) small. tapering to apex.

Geographical dispribution: Borneo, Java, Malacea, Singaporc, Sumatra, Strawak, Malay Peninsula.

Specimens studied: female, lectotype (new designation), SINGAPORE, Saunders, 65-13, type (printed on green-bordered disc). 286. Capsus discoidalis; id. paralectotype (abdomen, wings and herrelytra missing), Mal. CA. Saunders, 65-13 (BMNH): INDONESIA: Somgei, Lalah, Indragiri, Sumatra, W. Burchard, 26.viii.1901; EAST MALAYSIA: W. Coast Residence, Ranau, 500 m , 22-25.i.1959, T. C. Maa, id. 28.ix.1958; id, 30.iv. 5.x. 1958; I., W. Quate: Ranai, 8 m N Paung Host Springs, $500 \mathrm{~m}, 8-11, \mathrm{x} .1958$, T. C... Maa (B1SHOP) Sandakan. Baker, (USNM); PENINSULAR MALAYSIA: Pehang, F.M.S. Jerantut, March,

1927: Kuala Lumpar, March 27, 1932;: SINGAPORE: Selitar, Aug. 1911 (BMNH).

Differs from Macrolonius schenklingi Poppits and Macrolomius superhus (Distant) by the colour of the head and pronotum.

Macrolonius superbus (Distant, 1904) Carvalho, 1952

Malatasta superba Distant, 19046, p. 446, fig. 287,
Machonius superbus Carvalho, 1959, p. 323.
(Fig. 271)
Characterised by the colour of head and pronotum.

Male: Length 8.2 mm , width 1.7 mm . Head: Length 0.5 mm , width 1.2 mm , vertex 0.56 mm . Ansema: Segment 1 , length 2.0 mm ; II, 3.4 mm ; [II-IV, broken. Pronotum: Length 1.5 mm , width at base 2.0 mm . Cuneus: Lengtio 1.28 mm , width at hase 0.32 mm (lectotype).

Gencral coloration pale ochtuceous to stramineous with black areas; head (except pale spots along inner margin of eyes), pronotum (except area of calli and pale marginal spot behind calli) black; scutellum ochraceous to pale with two longitudinal black spots (one at each side); hemelytra glassy, transparent, clavus and cuneus opaque, black to fuscous; membrane hyaline, nervures luscous. Underside of body pale yellow, abdomen with a black transverse spot on each side, anterior margin of penultimate segment and some apical spots black; apices of postefior femora, extreme bases. apices and a central amulation on postetion tibiae, the antennae (except base of first and third joints basally) brown tu) fuscóus.

Fig. 271-Malalasia superba Distant, male, lectotype.

Pronotum not sinuated laterally, nervures of membrane superposing each other along median line.

Genitalia: Not dissected as the author had access only to the lectotype.

Female: Similar to male in colour and general aspect.

Geographical distribution: Burma.

Specimens studied: male lectotype (new designation), Tenass Valley, Myiita (Doherty), distant Col. 1913-383, type (printed in red bordered disc, Malalasta superba Distant (author's handwriting) (BMNH).

This species differs from Macrolonius schenklingi (Poppius) by the colour of head and lateral margins of pronotum.

Onomaus Distant, 1904
Onomaus Distant, 1904b, p. 416; Poppius, 1912a, p. 438; Carvalho, 1955, p. 107; Carvalho, 1959, p. 323 .

Type-species: Onomaus pompeus Distant, 1904.
Body sub-elongate, smooth, with long and erect hairs on scutellum. Head slightly sulcate on vertex, hind border immarginate, eyes well separated from collar, placed near middle of head; antenna with segment I twice as long as width of head, cylindrical, segment II twice as long as I, shortly pubescent; rostrum reaching the posterior coxac,

Pronotum sub-triangular, constricted behind calli and narrowed anteriorly, collar also narrow, its mesal length about equal to thickness of first antennal segment, disc tumid, inclined forwards, posterior margin curved at lateral angles which are sub-prominent; scutellum tumid with long, erect pubescence, mesoscutum slightly exposed.

Hemelytra with lateral margin slightly sinuate, transparent, without nervures, cuneus about two and half times as long as wide at base, apex of large areola angulate, Legs long and slender, tibiae moderately spinulose.

Differs from Rambea Poppius, 1912 which has also a long first antennal segment and erect pubescence by the larger size and by the shorter pubescence on tibiae, as well as by the long cuneus.

Key to the species of the genus Onomaus Distant

1. Eyes situated at middle of head, space between eye and collar approximately equal to diameter of eye; species of medium size, less than 7 mm long . . . elegans Poppius.
Eyes not situated at middle of head or if so then space between eye and collar less than diameter of eye; species over 7 mm long
2. Scutellum with a median longitudinal black vitta; species of large size (10 mm long) pompeus Distant
Scutellum with three spots (one at apex and two lateral); species of medium size (8 mm long) lautus (Uhler)

Onomaus elegans Poppius, 1915

Onomaus elegans Poppius, 1915b, p. 6; Carvalho, 1959, p. 323.
(Fig. 272)
Characterised by the colour of pronotum and position of eyes on head.

Male: Length 6.2 mm , width 1.4 mm . Head: Length 0.4 mm , width 0.8 mm , vertex 0.36 mm . Antenna: Segment I, length 1.4 mm ; II, 2.9 mm ; III, 2.0 mm ; IV, 1.8 mm . Pronotum: Length 1.0 mm , width at base 1.3 mm . Cuneus: Length 0.96 mm , width at base 0.40 mm .

General coloration pale yellow to stramineous with dark brown areas; head pale with extreme posterior margin of vertex, spots behind eyes and extreme apex of clypeus black; eyes brown, clypeus towards base, frons anteriorly, jugum, lorum with reddish tinge; antenna black, extreme base of segment I pale; posterior margin of collar, carina of
lateral margin of pronotum anterionly, two longitudinal median vittac, enlarged as a spot behind calli and at posterior margin of disc (divided by a Iongitudinal pale yellow narrow vitta), spots (one at each side) near humeral angles dark brown, area of calli, sub-median posterior arca of disc and posterior margin of pronotum natrowly pale yellow; mesoscurum dark brown, scutellum pale yellow with a narrow longitudinal median vitta and apex black; hemelytra pale yellow, glassy, transparent, a basal spot, clavo-scutellar margin, sub-basal vitta on corium, apical spot on clavus, a characteristic subrectangular fascia or spot on corium, with anterior and posterior angles reaching nutwards forming a semi-circle, inner and apical margin of cuncus brown; membrane 1ransparent, pale with apical cod dark. Underside of body pale yellow, propleura, a spot on meso and metapleura dark brown; abdomen pale yellow with basal portion. lateral spots and apex reddish; coxae and legs pate yellow, hind femora with wo red rings (sub-median and apical).

Eyes situated at middle of head. distant from collar by a space approximately equal on diameter of eye.

Eig. 272-Onomaus plegans Poppius, male.

Geniralia: Penis with membranous lohes provided with apical sclcrotized teeth. Left paramere falciform, narrowing to extremity, Right paramere smaller, tapering to apex.

Female: Similar to male in colour and general aspect. Length 6.4 mm , width 1.4 mm , vertex 0.36 mm .

Specimens studied: two males and three females, UPPER BURMA: alt. $3000 \mathrm{fl}, \mathrm{La}$ L. N $27^{\circ} 42^{\prime}$ Long. E97* 54', Nam Tamai Vallcy, 26.viii. 1938, R, Kaucback, BM 1938-741 (BMNH and author's collection).

This species differs from Onomaus pompeus Distant. 1904 by its smaller size and by the colour of pronotum.

Onomaus lautus (Uhler, 1896) Poppius. 1912
Dicyphus laums Uhler, 1896, p. 267.
Onomaus lantus Poppius, 1912a, p. 439: Carvalho, 1959. p. 323.

Dicyphus laturs Esaki cl auct., 1952, p. 261, fig. 686.
(Figs. 273-276)
Characterised by the colour of seutellum and membrane

Male: Length 8.0 mm , width 2.4 mm . Head: l.ength 0.6 mm width 1.0 mm , vertex 0.44 mm , Antenna: Segment 1, length $1.2 \mathrm{~mm} .7 \mathrm{~T} .2 .8 \mathrm{~mm} ; 111$, 1.8 mm : IV mutilated. Pronotum: Length $1: 2 \mathrm{~mm}$, width at base 1.8 mm . Cuneus: Length 1.20 mm , width at base 0.60 mm .

General coloration pale ycllow with brown and reddish arcas; head brown to black with a pale transverse spot on vertex; antenna castancous. apical portion of segment II black, basal half of segment IIl palc; pronotum brown to dark brown, collar and a large spot on middle of disc pale yellow. the latter with a black, rugose spot it its middle: mesoscutum fuscous, scurellum pale yellow with basal angles and apex brown to black: hemelytria palc yelluw with basal angles and apex brown to black; hemelytra pale yellow, glassy, transparent, clavus (except middle portion and apex), r quadrate spot on corium extending outwards to embolium (at middle of corium), extreme apex of corium and apex of embolium brown to castaneous or reddish; membrane with basal half of areolar area dark, the extrareolar portion fuscous with two pale spots at each side. Underside of body pale yellow, propleura black with lower area pale, a spot on metaplcura fuscous; abdomen with segmenl II (first visible) and a longitudinal lateral vitta on segments ill-VIII
castaneous to reddish; femora reddish (except base and a narrow median ring), tibiae pale, base and apex reddish.

Genitalia; Penis (fig. 274) with membranous lobes provided with sclerotized apical teeth. Lelt paramere (fig, 275) falciform. Right paramere (fig, 276) with pointed apex.

Fig. 273-Onomaus laurus (Uhler), fermale.
Female: Similar to male in colour and general aspect, slightly more robust.

Geographical distribution: Japan:

Specimens studied: two females and one male. JAPAN: Mitsukuri, Takao, vii. 14, 1930, J. I. Gressitt, in the collection of the author.

Diflers from the swo other species in the genus by the colour of the scutellum and membrane.

Onomaus pompeus Distant. 1904

Onomaus pompeus Distant, 1904b, Г. 416; Carvatho, 1959. p. 323.
(Figs, 277-280)
Characterised by the large size and colour of pronotum and antenna.

Figs. 274-276-Onomaus laums (Uhler): Fig. 274-Penis; Fic. 275-Left paramere; Fig. 276-Right paramere.

Female: Length $10-2 \mathrm{~mm}$, width 2.6 mm . Head: Length 0.7 mm , width $1.2 \mathrm{~mm}_{4}$ vertex 0.60 mm . Antenna: Segment. I_{s} length $2.3 \mathrm{~mm} ; 11.4 .0 \mathrm{~mm}$; I11, 3.4 mm ; IV, 3.6 mm . Pronotum: Length 1.6 mm , width at base 2.6 mm . Cuneus: Length 1.52 width at base 0.64 mm (lectotype).

General coloration ochraceous to citrine or pale yellow with dark brown and reddish areas; head black with a semilunate wide pale vitta on vertex, antenna uniformily castaneous to dark brown, pronotum dark brown with collar, calli and a central spot on disc anteriorly pale, the latter with a rugose black spot at middle, bordering calli; mesoscutum fuscous, scutellum pale yellow with a median longitudinal vitta which enlarges and also covers the apex, fuscous; hemelytra ochraceous, glassy, transparent, clavus (central area castaneous), a transverse triangular fascia on corium extending outwards to embolium, extreme apex of corium, outer margin of cmbolium, apex of cuneous, nervures and extrareolar portion of membrane (except pale spot contiguous to apex of cuneous) fuscous to brown. Underside of body with external portion black, spots on coxal cleft 1, basilar plate and ostiolar peritreme pale; abdomen and femor reddish (except base and a

Fig 277-Onomaus pompeus Distant, female, lectotype.
narrow ring at middle), tibiae I and II pale, infuscate apically, tibiac III fuscous on basal half, pale on apical half, segments 111 of tarsi fuscous.

Male: Similar to female in colour and general aspect, a little less robust.

Genitalia: Penis (fig. 278) with membranous lobes provided with sclerotized teeth apically. Left paramere (fig. 279) falciform. Right paramere (fig. 280) slender apically.

Geographical distribution: Burma.

Specimens studied: female, lectotype (new designation), BURMA, Onomaus pompeus distant (BMNH); five males and females, BURMA: Nam Tamai Valley, 29viit.1938, alt. 3000 ft ., R. Kaulback, B. M. 1938-741; Mishmi Hills, Lohit River, 30.iii. 1935, M. Steele.

Differs from others in the genus by its large size and by the colour of pronotum and segment III of antenna.

Rambea Poppius, 1912
Rambea Poppius, 1912a, p. 440; Carvalho, 1955, p. 107; Carvalho, 1959, p. 324.

Type-species: Rambea gracilipes Poppius, 1912.
Body elongate, clathed with long, erect pubescencc. Head inclined, vertex sulcate longitudinally, slightly convex, gula long* eyes far removed from collar, seen from above small and rounded, placed at middle of head, seen from side obliquely ovate, post-ocular portion of head gradually but strongly narrowed; rostrum surpassing apex of posterior coxac; antenna linear, slender, segment II approximately twice as long as first.

Pronotum with dise strongly convex, posterior margin broadly rounded, lateral margins strongly sinuate behind calli, collar with mesal length nearly equal to thickness of first antennal segment, calli confluent, reaching side of pronotum, posterior margin broadly impressed, strongly punctate along

Figs. 278-280-Onomuus pompeus Distant: Fig. 278-Penist Fig. 279-Left paramere; Fig. 280-Right paramere.
the impression together with collar forming an interior lobe about half as long as the posterior lobe; lateral margins and three longitudinal bands of posterior lobe silvery; scutellum triangular, strongly convex before apex, depressed and deeply medially bipunctate.

Hemlytra finely punctulate, semi-transparent, clavus and corium without nervires, claval suture strongly punctate, membrane bicellulate, transparent, inner margin of large areola rounded.

Legs long and slender, tibiae finely spinulose, parempodia divergent towards apices.

This genus differs from others in the tribe by the longitudinal silvery bands of the pronotum and by the long and erect pubescence of body and hind tibiae.

Key to the species of the genus Rambea Poppius

1. Second antennal segment with a broad ring beyond basal fourth; pronotum with three pale longitudinal bands on anterior portion of dise annulicornis Hsiao
Second antennal segment unicolorous; pronotum with a single longitudinal vittu.
2. Disc of pronotum greenish; globose area of humeral angles pale green gracilipes Puppius
Disc of pronotum with a large dark brown spot, globose area of humeral angles with a black spot malasican.sp.

Rambea annulicornis Hsiao, 1944
Rambea annulicornis Hsiao, 1944, p. 373, Carvalho, 1959, p. 324.
(Figs, 281-284)
Characterised by the length and colour of second antennal segment.

Fig. 281-Rambea annulicornis Hsiao, Eemale, holotype.

Male: Length 6.3 mm , width 1.8 mm , Head: I.ength 0.6 mm , width 1.0 mm , vertex 0.50 mm . Antenna: segment 1 , length 1.3 mm ; II. 2.8 mm ; III, 2.1 mm ; IV, 1.2 mm . Pronotum: Length 1.2 mm , width at base 1.8 mm . Cuneus: Length 0.60 mm s width at base 0.40 mm .

Gencral coloration light greenish to stramineous; lorum and lateral margin of post-ocular part of head fuscous, antenna dark brown, segment I stramineous. a broad ring beyond bassal fourth of second segment, basal fourth of third and basal fifth of fourth whitish; pronotum with lateral margins and three longitudinal silverybands on posterior lobe, seen from side, with a fuscous longitudinal line along the anterior half of lateral margin; hemelytra semitransparent, emboliar margins narrowly fuscous. membrane transparent, Underside of body pale yellow, legs pale, base of tibiac white, extreme apex of lemora, a narrow sub-basal ring of tibiae and third tarsal segments fuscous.

Morphological characters is mentioned for genus, pubescence long and erect, especially on pronotum, scutellum and base of hemelytra.

Figs. 282-284-Rambea unnulicomis Hsiao: Fig. 282—Penis; Fig. 283-Left paramere; Fig. 284 -Right paramere.

Genitalia: Penis (fig. 282) with membranous lobes provided with apical papillae. Left paramere (fig. 283) falciform. Right paramere (fig. 284) small, pointed apically.

Male: Simitar to male in colour and general aspect.

Geographical distribution: Philippines.

Specimens studied: holotype, female, PHILIPPINES: Mt, Maquiling, Luzon, Philipines Islands (baker), Rambea annulicornis Hsiao (U.S.N.M, no. 56718). Allotype and Paratypes: Same data as types.

Differs from Rambea gracilipes Poppius, 1912 by the prosence of a pale ring on the second amtennal segment.

Rambea gracilipes Poppius, 1912
Ramben gracilipes Poppius, 1912a, p. 440; Carvalho, 1959. p. 324.
(Figs. 285-288)
Charactetised by the colour of second antenna 1 segment.

Male: Length 4.6 mm , width 1.6 mm . Head: Length 0.5 mm , width 0.9 mm , vertex 0.40 mm . Antenna: Segment I_{1} length $1.4 \mathrm{~mm} ; 11,2.4 \mathrm{~mm} ;$ IIIIV, broken. Pronotum: Length 1.0 mm , width at base 1.4 mm . Cuneus: Length 0.70 mm , width at base 0.28 mm (lectotype).

General coloration light greenish to pale yellow; head, collar, a longitudinal vitta at middle of dise, lateral margins, humeral angles, scutellum and underside of body whitish; base (on each side) and apex of clypeus, neck behind eye, lower margins of calli, a spot on humeral angles and an equivalent one laterally, as well as a spot on each side of base of abdomen fuscous to black: hind margins of calli, spots on each side of longitudinal pale vitta of disc. base and apex of cutellum, commissure and apex of chavus, inner and outer margins of embolium, outer margin of cuncus and nervures of membrane fuscous to brown, legs pale yellow.

Morphological characters as mentioned for genus,
Genitalia: Penis (fig 286) with membranous lobes ended by papillae. Left paramere (fig, 287) falciform. Right paramere (fig, 288) small, simple,

Female: Similar to male in colour and general aspect. Length 60 mm , width 1.7 mm . vertex 0.40 mm .

Geographical distribution: Sumatrá.

Fig. 285-Rambea gracilipes Poppius, male ${ }_{3}$ lectotype.

Specimens studied: male, lectotype (new designation); INDONESIA: Si-Rambee, Sumatra, xii. 1890, iii.1891, E. Modigliani (Rambea gracilipes Poppius) (HELSINKI); paralectotype, same data as male.

This species differs from Rambea annulicornis Hsiao, 1944 by the unicolorous second antennal segment and by the single longitudinal vitta on pronotum.

Rambea malasica n.sp.

(Figs. 289-292)
Characterised by the colour of pronotum and sterral area.

Male: Length 5.3 mm , width 1.4 mm . Head: Length 0.5 mm , width 1.0 mm , vertex 0.44 mm . Antenna: Segment I, length 1.5 mm ; II, 2.6 mm ; III, 1.9 mm ; IV, ? mm. Pronotum: Length 1.2 mm , width at base 1.5 mm . Chneus: Length 0.52 mm , width at base 0.28 mm (holotype).

General coloration pale greenish to pale yellow with brown and black areas; head pale, eyes brown, vitta on neck behind eye, jugum, lorum and gena fuscous; antenna fuscous, segment I and base of II pale; pronotum with area on lower lateral margins of calli and humeral angles black, collar with a median and two lateral fuscous bars anteriorly, a transverse fascia behind calli and a large V-shaped mark on disc, brown to dark brown, within the arms of the V shaped mark and also humeral angles pale, the surface of disc around brown area with silvery pruinose colour; mesoscutum brown, scutellum pale

Figs. 286-288-Rambea gracilipes Poppius: Fig. 286-Penis; Fig. 287-Left paramere; Fig. 288-Right paramere.
with a fuscous preapical spot; hemclytra nchraceous transparent, apex of corium, an obsolete transverse fascia on corium level with apical one fifth of clavus corial commissure fuscous, nervures of membrane dark, the latter transparent. Underside of body pale yellow, a black spot above coxal cleft I and another on ostiolar orifice, legs pale yellow iending to fuscous on apices of femora.

Fig, 289-Rambea malasica n.sp., male, holatype.

Genitalia: Penis (fig. 290) with vesica provided with two spiculi with minute sclerotized teeth, Left paramere (fig. 291) falciform, as seen in figure. Right paramere (fig, 292) slender, with acute apex.

Female: Unknown

Holotype: male, PENINSULAR MALAYSIA: Pahang, Gua'Ghe Yatim to Terrenggan, 17, xii, 1951 , L. W. Quate (BMNH).

Differs from Rambea gracilipes Poppius by the colour of the pronotum.

REFERENCES

ATKiNSON E T. 1890, Catalogue of the Insect3, 11. Order Rhyncheta. Suborder Hemiptera Heteroptera. Family Capsidae.J. Asiate Soc: Bergal 58 (2): 25-199 (1889).
BALIARD, E_{-}, 1927, Some new Indian Miridac (Capsidac). Mem. Dept. Agric. Ind. Ent. 10 (4): 61-68, 11 figs.

CARVALHO, 3, C, M. , 1951, On the riajor classification of the Miridae (hem, Het,). Trans, ninth int Congr. Ent. Amverdain 1: 133-134.
CARVALEIO. J. C. M, 1952, On the major classification of the Miridac (Hemptera). (With Keys to subfamilies and tribes and a catalogure of the world genera). An. Acad. brassl, Ci, 24 (1): 31-110.

Figs. 290-292-Rambea malasica n.sp.: Fig, 290-Penis: Fig 291-Left paramere; Fig. 292-Right paramere.

CARVALHO, J. C. Mi, Jy53, Sur les Miridae de Madagastar (Hemipteres). Mém. Insp. Sci. Madagascar(E) 3. 41-.51, fıg凶
CARVALHO, J. C. M. 1955, Keys to the Generat of Miridae of the World. Bol. Mus, Goeldi 11 (2): 151 p., 263 figs

CARVALHO, d. C. M. 1956. Insects of Micromesia. Heteroptera: Miridne, B, P Bishop Museum Insects of Micronesia 7 (1): 1-100. figs
CARVALHO, T, C. M.- 1959 , Catalogue of the Miridae of the World. Arg. Mus. Nue, R, Jan. 48 : 1-384.

CHEESMAN L. E., 1927, A contriburion towards the insect fauna of French Occania. Parl 1. Trans, enf. Soc. London. 75 (1): 147-161

CORPORAL_ J, B, $142 \mathrm{~V}_{2}$ Notiz über dee beiden Ruepke'schen gambirschädichen Capsiden. Tijdsche. E. Eni. 62: 107-108.
DELATTRE R. 1949 Description d'un nouveau Miridae gfricain (Herer.) Bull. Soc. ent; Fy. 54 (2): 24.
DISTANT, L., 1902, Report on the Rhynchota. Fascicule Malayensis Zool. 2: 223-272.

DISTANT, W. L. 1904a، Rhynchotal Notes-XXL.- Heteroptera), fam. Capsidae, Part IL. Arm, Mag. Nat. Hist. (7) 13 : 194-206.
DISTANT, W. Liy 1904b-1910. The Fauna of British India, including Ceyion and Burma. Rhynchota Vol. 2 (Heteroptera), pp. 412-488 and Vol. 5, Appendix, pp. 228-293, figs. Taylor \& Francis London.
DISTANT, W. L. 1909, Descriptions of Oriental Capsidae. Ann. Mag. naf. His1. (8) 4: 509-523.
DISTANT, W. L. 1913, Reports of the Percy Sladen Trust Expedition to the Indian Ocean in 2905. IX. Rhynchota, Part 1. Suborder Heteroptera. Trans. Linn. Soc. Lond. 16; 139. $190, \mathrm{pls} .11 .13$

DISTANT, W. L, Rhynchota from New Calendonia. Anr. Mag. nat. Hist. (9) 6: 143-165.

ESAKI et. al., 1952, Icon. Ins, Jap.
HSIAO, T-Y., 1944, New genera and species of Oriental and Australian plant bugs in the United States National Museum Proc. U.S. nat. Mus. 95 (3182): 369-396, figs.

KIRBY, W. F., 1894, Catalogue of the described Hem. Het. and Homoptera of Ceylon, based on the collections formed (chiefly at Pundaloya) by Mr. E. Ernest Green J. Linn. Soc. Lond. 24: 72-176, pls

KIRKALDY, G. W,, 1902a, Memoir on Oriental Rhynchota. J. Bombay nat. Hist. Soc. 14: 47-58; 259-309, pl. a. c.
KIRKALDY, G. W, 1902b, Eine neue morgenländische Miriden (Capsiden)-Gattung (Rhynchota). Wien. ent, Ztg. 21 (8-9) 225-6.
KIRKALDY, G. W., 1902c, Fauna Hawaijensis Vol, 3, part 2 (Cambridge University Press).

KIRKALDY, G. W., 1902d, Memoir upon the Rhynchotal family capsidae Auct. Trans. ent. Soc. Lond. 1902 (2;) 243 272, pls. V and VI.
KIRKALDY, G. W., 1906, List of the genera of the Pagiopodous Hemiptera-Heteroptera, with their type species from 1758 to 1904 and also of the aquatic and semiaquatic Trochalopoda Trans. Am. ent. Soc. 32 (2): 117-156.
KIRKALDY, G. W., 1907, Biological Notes on the Hemiptera of the Hawaiian Islands, No. 1, Proc, Hawaii., ent. Soc. 1:111161.

KNIGHT, H. H., 1935, Insects of Samoa, Part II. Hemiptera. Miridac and Anthocoridae, Fasc. 5, pp. 193-228, 9 figs.
POPPIUS, B., 1912a, Neue oder wening bekannte CapsarienGattungen und Arten, Ann. Mus, Nat. Hung. 10: 415-441.
POPPIUS, B., 1912b, die Miriden der Anthiopischen Region I. Mirina, Cylapina, Bryocorina. Acta. Soc. Sci. Fenr. 41 (3): 1-203, pl. 11 text figs.
POPPIUS, B., 1914. Zur Kenntnis der Miriden, Anthocoriden und Nabiden Javas und Sumatra. Tijdschr. U. Ent. (Suppl.) 56: 100-183

POPPIUS, 1915a, Sauters Formosa-Ausbeute: Nabidac, Anthocoridae, Termatophylidae, Miridae, Isometopiḍae und Ceratocombidae (Hemiptra). Arch. f. Naturg, 80 a: 1-80.

POPPIUS, B. 1915b, Zut Kenntnis der Indo-Australischen Capsarien. Ann. Mus. Nat. Hung. 13: 1.89.
REUTER, O , M., 1905a, Ad cognitionen Capsidarum Australiae. Ofv. F. Vet. Soc. Förh. 47 (5): 16 p., 1 pl., 7 figs.

REUTER, O. M+y 1905b, Capsidae Stalinianae secundum specimina typica redescriptac. I,II, Ofv, F. Vet. Soc. Förh. 47 (12): 20 p.

REUTER, O. M. 1907, Ad cogntiionem Capsidarum Aethiopicarum. IV. Ofv, f. Vet. Soc. Förh., 49 (7): 1-27.

REUTER, O. M., 1910, Neue Beiträge Zur Phylogenie und Systematik der Miriden nebst cinlectenden Bemerkung über die Phylogenie der Heteropteren-Familien-Mit einer Stammbaumstafel. Acta Soc. Sci, Fenn, 37 (3): iv +167 pp.
ROEPKE, W., 1916, Zwei neue Gambir-schảdliche Capsiden aus Sumatra. Tijdschr. v. Ent, 59 180-183, 3 figs.

ROEPKE, W., 1919a, Hyalopeplus smaragdinus n, $s p$, eine neue Thee-Capsiden aus Java (Rhynch. Hem. Heteropt.) Treubia 1 (2): 73-81, figs.
ROEPKE, W-, 1919b., De Bloemknop-Wants van de Theeheesters, Hyalopeplus smaragdninus Rpk. Buitenzorg Medd Procts. Thee 67: 1-10 figs.
STAL, C., 1855, Nya Hemiptera. Ofv. Kongl, Vet. Akad. Förh 12(4): 181-192.
STAL L, C 1859, Hemiptera. Species novas descripsit Kongl. Sv. Freg, Eugenies resa omkring jorde, Hemiptera, Miridae. pp. 254-259, Zoologi, Insecter
STAL, C., 1870, Hemiptera insularum Philippinarum, Bidrag til Philippinska oarres Hemipter-fauna. Ofv. Su. K. Akad Förh. 27: 607-776.

UHLER. P. R., 1896, Summary of the Hemiptera of Japan, presented to the United States National Museum by Professor Mitzukuri. Proc. U.S. nat. Mus. 19 (1108): 255297.

USINGER, R. L. 1946, Hemiptera Hetcroptera of Guam. Insects of Guam. II. Bul. B.P. Bishop Mus. 189: 1-111, 3-237, figs.
ZIMMERMAN, E. C, 1948, Insects of Hawaii, vol. 3 Heteroptera, p. 180-220, figs.
WALKER, F., 1873, Catalogue of the specimens of Hemiptera, Heteroptera in the Collection of the British Museum, Part V1. Catalogue of the Hemiptera Heteroptera, London.

INDEX

	Number
anmulipes, Euborellia	222, 223
Anophiura	376
Anoplocapros	175
antaeus, Protemnodon	216
Artechinus	197
antentalis, Callicratides	451,453
antennalis, Hyalopeplinus	429, 452-454, 463
Antennariidae	170
Antestia	417.420
Anura	.. 177
Austrosqualodon	287, 292
apicalis, Nesogasicr	221, 222,227,232
apodemoides, Pseudomys (Gyomys)	201
Apogonidae	172
aprorum, Ophiomusium	377
apothoracica, Cuspicona	$93,119,122,125,131,166$
appendicina, Chaetolabia	231
Aprasia	183
Aprosmictus	189
aquila, Microterramercs	242, 244, 245, 254, 255, 259
Aracana	175
arachidis, Marava	222, 234, 235
arachidis, Prolabis	221
Arborea	347, 351
Arborea, Arborea	347, 351
atborca, Rangea	354
arboreus, Charniodiscus	349-351,354
Archamia	172
arenarium, Dentalium (Episiphon)	383
Argenis.	429, 442-444
argenteus, Plotosus	170
Arumbera	358
asahi, Eosentomon	303
Ascopharynx	200
asiaticus, Microctrameres helix	243
asomatus, Lagorchestes	199
Asopus	420
Aspasmogaster	170
Aspideuris.	- 52
Asterina	374
Asterinidae	407-416
Asteroidea	373 fi.s.407ff.
Asteronyx	376
Astroconus.	- 376
Astropecten	374
Astur.	189
asymmetrica, Microtetrameres	244, 245,251
Atherinidae	. 170
Atheriniformes	. 170
Athyreus	11
Auchenornus	222, 228, 237
aurantiacus, Cheilinus	173
aurea, Litoria	337
aurora, Idiacanthus.	169
australe, Acentronura	171
australia, Clambus	9
australiae, Cybocephatus	9
australiae, Eucidaris	378
Australian aboriginal	387 ff .
australiense, Corizidalon	429, 437-439
australiensis, Hyalopeploides	429, 464, 466, 477
australis, Cyclorana	$261,263,269$
australis, Delma	184
australis, Dromornis.	214
australis, Ischnodon	208, 210
australis, Ocirrhoe	$55-58,60,62,63,67,166$
australis, Ophiscomina	377
australis, Prosqualodon	293,294

Number
gustralis, Rhynchocoris 54,60
australis, Temnopleurus 379
australites 321-335
Austrohyaloma 429-433, 442
Aves 206,214
Avicemia $54,92,96,160$
axe, bronze 23-25
bakeri, Hyalopeplus 430, 478, 509, 511-513
bakeri, Nesogaster 222, 227, 230
Balistidac 175
banksi, Arumbera 358
banzarei, Anophiura 376
banzarei, Asteronysc 376
banzarei, Ophiocten 377
banzarci, Ophiurolepis 378
barbatus, Amphibolurus 181
barcoo, Therapon 172
bariensis, Squalodon 294
Barygenys 179
bassiana, Wynyardia 215
Bathycoelia 417, 418, 421
Bathydraco 173
Bathydraconidae 173
baynesi, Lerista picturata 185
beachportensis, Dentalhum (Eudentalium) 383
beccarii, Isabel $430,516,517$
bellunensis, Squalodon 294
Berberentulus $299,304-306$
bertholdi, Vermicella 186
Berycidae 171
Beryciformes 171
Betiongia 199
beutenmulleri, Cuspicona 129, 166
bicolor, Litoria 337
bifida, Anisolabis 224
bifidus, Amphipneustes 378
bilineata, Diporiphora 182
Biprorulus 51, 96
birds 189, 193
birdselli, Macropus 212
bitubereulata, Labia $222,229,232,233$
bogotensis, Guisardus $429,444,445$
Bolboceras 11
Bolbothyreus 11
Boleophthalmus. 175
bonythoni, Ngapakaldia 209
bordaensis, Cadulus (Gadila) 384
bordaensis, Dentalium (Episiphon) 383
borea, Delma 184
borneensis, Hyalopeploides $429,464,466-468,477$
Brachina meteorite 309-319
brachygnatha, Ophiacantha 376
Brachylabis $222,225,226$
Birachynectes 174
braggi, Sepia 381, 382
brehus, Protemmodon 216
brehus, Sthenurus 217
brevicauda, Denisonia nigrostriata 186
brevipalmatus, Chiroleples 265,273
brevipalmata, Litoria 178
brevipes, Chiroleptes 265
brevipes, Cyclorana $261,263-269,273,275,276$
brittoni, Stenaspidius $11-14,15,21$
Bromocoris 420
Bronze Age $23-29$
broomensis, Megalosauropus 214
Brotulidac 172
Number
Chironemidac 173
Chiroptera 201
chlorospila, Bathycoelia 417-419, 421
Choerodon 173
Chondryichthyes 205
chrysochlora, Chalcophaps 189
Chrysococeys 190
Chrysorrhanis $429-435,442,444$
chrysorrhoa, Geobasileus 190
Ciconiiformes 207
Cinclosoma 190
citropa, Litoria $41-45,49,50$
Clambidae 1-10
Clamubs 1.9
Clarkcoma 410
clarum, Cinclosoma castanotum 190
clarus, Astur 189
clavatus, Hyalopeptus (Hyalopeplus) $429,478-480,494$
Climacteridat 192
Climacteris 192
Clinidae 174
cloacitectus, Microtetrameres 244
Clupieformes 169
Coctoteris 420
Coelenteratal 347
Coleoptera 1-21
collessi, Austrohyaloma $429,432,433$
Colluricincla 192
colossea, Titanolabis 221
Columbidae 189
Columbiformes 189
Comazus 1,2
concentricus, Charniodiscus 349-352, 354
condoni, Sericornis maculatus 190
Coniturus 200
contorta, Mierotetrameres 244
contrastens, Hylu 177
cooperi, Cuspicona 94, 102-104, 107, 166
Cophixalus 179
coplandi, Hyla 177
coracinae, Microtetramercs $239,242-245,251-253,259$
corax, Microtetrameres $239,242,245,246,259$
cordata, Brachylabis $222,225.226$
coriiceps, Notothenia 173
Corizidolon 429-432, 437-440
Cornufer 179
cornutus, Oxywrichthys 175
coronata, Ocirrhoe $57,70,85-88,166$
corylophoides, Clambus 2, 3
Coythoichathys 171
costatus, Leptonotus 171
cottesloensis, Decorisepia 381
cractici, Microtetrameres. $239,243,244,249,251,252$
crassidentatus, Thylacoleo 279.280
etassispinta, Asterina 374
crassispina, Echinophryne 170
Craterocephlaus 170
creplini, Microtetrameres 244,256
Cridorga 174
Crinia 178. 179
Crinodea 373
cristatus, lehthyocampus 171
cristovalensis, Guisardus $429,444,446,447$
cristovalensis, Hyalopeplinus $429,452,455,456,463$
crowcrofti, Rhizophascolonius 209.210
Crumenasepia 381
cruzi, H ificrotetrameres 243, 245Cryptobatrachus49
cryptotois, Cyclorana $265-268,271,272,275,276$
Ctenocidaris 378
Ctenotus 184
Cuculidae 190
Cuculiformes 190
cucullata, Petroica 191
Cucumaria 379
cultripes, Cyclorana $261-263,265-271,273,275,276$
cuneatus, Hyalopeplus (Adhyatopeplus) $430,47 \mathrm{~B}, 503,504$
curvicauda, Labia $222,229,231,233,235$
Cuspicona.............. $51-54,56,85,91,96,104,135,147,150,156,158,163,165,166$curtispina, Cuspicona$51-54,56,85,91,96,104,135,147,150,156,158,163,165,166$
cyanescens, Hyalopeploides $429,463,464,467,468,477$
cyanescens, Macrolonidea 430, 434
Cycethra 374
cyclius. Ammotrophus 378
Cyclopteridae 172
Cyclorana 261-276, 337
Cyclostomata 169
cygniterrae, Cuspicona 94, 132-134, 166
Cynodraco 173
Dacodraco 174
dahli, Cyclorana 263
dailyi, Pitikantia 212
dalhousiensis, Craterocephalus 170
dallasi, Ocirinoe $57,70-73,76,166$
Dampieria 172
daphne, Chrysorrhanis 429. 433-436
Dasiá 185
Dasyuridae 197
davidi, Prosqualodon 285-287, 290, 292, 293
Decorisepia 381,382
decurrens, Heleogramma 174
Delrna 184
Demansia 186
Denisonia 186
Dentalidae 383
Dentalium 383, 384
dentata, Chaetolabia $222,229,231,232$
dentata, Sphenophrync 179
Dermanyssidae 31-39
Dermaptera 221-238
Dermatopsis 172
dexlineatum, Conizidolor $429,437,439$
Diaphyta 54
digitata, Lysasterias 374
Diplodactylus 183
Diporiphiora 182
Diprotodon $213,281,282$
Diprotadontidae $209,213,217$
dimorpha, Prytanicoris $417,422,424-427$
Dinornis 215
Dinomithiformes 215
discoidalis, Capsus 521,522
domesticus, Clambus 6.8
Dorosomidae 169
dorothea, Amytornis 366, 369
dorsivena, Hyla 177
"dress fastener" 24
Dromadidac 206
Drombus 175
Dromicelus 206
Dromornis 214
Drornornithidae 206, 214
dubits, Calyptomerus 2
dumerili, Limnodynastes 179
dumense, Euryzygoma 217
duriceps. Ostophycephalus 170
Number
Echinaster 374
echinoderms 373-380
Echinoidea. $378 f f$
Echinophryne 170
Egemia 185
egretes, Microtetrameres $239,244,245,257$
Ektopodon 208
Ektopondontidae 208
Elapidae 186
Elasmobranchil 169
elderi, Diplodactytus 183
elegans, Delma 184
elegans, Onomaus $430,523,524$
elegans, Platycercus 189
Elcotris 174
Emeidae 215
Encopognathus 444
endoterus, Typhlops 186
enshamensis, Comazus. 2
eopsaltriae, Microtetrameres $239,242,244,245,251,254,259$
Eosentomon 299-304
Eosqualodon 294
Episiphon 383
Eptatretidae 169
Eptatretus 169
equisignata, Cuspicona $93,113,114,117,166$
eremius, Gobius 174
eremophilae, Cuspicona 94, 98-101, 104, 166
ecythropterus, Aprosmictus 189
crythrorhynchi, Microtetrameres 243, 245
esakii, Chaetolabja 231
Euantedon 373
Euborellia 222, 223
Eucanthus 16
Eucentronotus 174
Eucidaris 378
Eudentalium 383
Euhyalopeplus 430,431
Eupetrichthys 173
Euryzygoma 217
everardensis, Notomys alcxis 201
Everardia $54,96,156,165,166$
ewingi, Litoria 337
exigua, Fatiriella $411,412,414-416$
exiguus, Cophixalus 179
exnigrospersa, Cuspicona 92, 153-156, 166
extremus, Echinaster glomeratus 374
eyreius, Notomys fuscus 200
eyrensis, Phoeniconotius 207
Falcunculidae 192
fasciata, vermicella 186
fasciata, Ocirrhoe 83
fasciatus, Brachynectes 174
fasciatus, Guisardus $429,444,447,448$
fasciatus, Hyalopeploides $429,464,467,470,477$
rasciatus, Myrmecobius 197
feae, Marava $222,230,234$
felschi, Eucantlus 16
fenestra, Gehyra. 183
ferragus, Macropus 215
Fibularia 379
fijiensis, Hyalopeplinus 463
Fishes 169-175
Fissidentalium 383, 384
flavipes, Clambus 8
fleurieuensis, Platycercus elogans 189
flindersensis, Zosterops westernensis 192
Number
flindersi, Corythaichthys 171
Mindersí, Dentalium (Paradentalium) 384
Mindersi, Octopus 382
flindersi, Thylogale 199
forticornis, Cuspicona $93,134,146,151-153,155-166$
Fossils205-219, 347-359
francisca, Bettongia penicillata 199
francisense, Dentalium 383
freycineti, Litoria 337
frogs $261-276,337-345$
fulignosus, Calamanthus 191
fuscolineata, Ophiactis 376
fuscus, Ascopharynx 200
fuseus, Notonys 200
Gadila 384
galeatus, Diplodactylus 183
Galliformes 208
gallinaceus, Histiogamphelus 171
galwayi, Mugilogobius 175
gambierense, Squalodon 213.286
gambierensis, Squalodon? 285,287,290, 293, 294
Gasterosteiformes. 171
Gastrotheca 49
Gehyra 1.83
Gekkonidae 183
Genocidaris 379
Genyorris 206
Geobasileus 190
gibba, Amphibolurus 181
gibbosus, Anoplocapros 175
gibbosus, Cadulus (Polyschides) 384
gigas, Phascolomys 213
gigas, Phascolonus 214, 281
gigas, Tympanocryptis cephalus 182
gigas, Urolophus 169
gilesi, Planigale 197,198
Gilletinus 12
Glaessnerina 347, 349, 353, 356-358
glandulosa, Litoria $43,44,46,48,49,50,178$
Glaucias 52,418
Glauertia 179
glauerti, Solitosepia 382
glebopalma, Varanus (Odatria) 186
glomerarus, Echinaster 374
gloverì, Eupetrichthys 173
Gobiesocidae 170
Gobiesnciformes 170
Gobiidac 174
Gobius 174
goliah, Macropus 215
goliah, Procoptodon 216
Gomodiscaster 374
goyderi, Amytornis 361-371
gracilipes, Rambea $430,526-530$
gracilis, Carlia 184
gracilis, Leptosiagon 215
gracilis, Macrupus 215
gracilis, Phoerniconaias 207
grandis, Glaessnerina $349,353,356$
grandis, Hyalopeplus (Hyalopeplus) $429,478-481$
grandis, Macrotis lagotis 199
grandis, Nepanthia 375
grandis, Paranepanthia 410, 411
grandis, Rangea 347, 353, 356
grecni, Leiolopisma 185
greensladei, Brachylabis 226

	Number
gregorii, Phalacrocorax	207
greyi, Rattus	201
guamensis, Hyalopeplus (Hyalopeplus)	429, 478, 480, 482
Guianerius	429-432, $440,441,517$
Guisardinus	429-433, 441-444
Guisardus	429-432, 442, 444-451
gunnii, Patinella	410,411
gutturalis, Pachycephala	191
gymnonota, Uniophora	375
gymnorhinae, Microtetrameres	$239,243-245,249,250,255,259$
Gyomys	201
haematonotus, Psephotus	190
Haemolaclaps	31
"hair ring"	24,25
halberd, bronze	23-28
halei, Drombus	175
halmaturina, Crinia affinis	178
halmaturinus, Stipiturus malachurus	191
Halys.	51, 417, 420
Hamaxas	222,235, 238
hamiltoni, Notosudis	170
hanseni, Phyllozoon	347, 349, 353, 355, 357, 358
hardwoodi (sic), Metasqualodon	213
harmonica, Colluricincla	192
hamissoni, Aconichthys	173
harwoodi, Metasqualodon	285-290, 292-296
harwoodii, Zeuglodon	213,285
hawaiensis, Sphingolabis	222, 229, 232, 233
hectori, "Microcetus"	286, 287
hebridensis, Hyalopeplus (Hyalopeplus)	429,478,482, 483, 484
Helcogramima	174
Heleioporus	263
helix, Microtetrameres.	239, 242-247, 258,259
helix, Microtetrameres helix	244
hemileuron, Dentalium	383
Hemiphractus	
Hemiptera...	51-167, 429-531
hendryae, Solitosepia	382
hermannsburgensis, Mus	201
herrei, Siokunichthys	171
heteracantha, Ophiocrossota	
Heterodontiformes	. 169
Heteroclinus	.. 174
Heteroptera	417-428
Hexanchus	295, 296
hilli, Thylacoleo	277-282
hillsi, Leighiseus	206
Histiogamphelus	. 171
Histiophryene	170
Hoffmanseggiella	
hoggi, Ljunghia	31,33
Holothurioidea	... 379ff
Hoplostethus	171
horni, Chaloessus	169
horvathi, Anisolabis	224
horvathi, Hyalopeplus	430, 478, 482, 509, 511,514
horvathi, Isabel	430, 516
housei, Amytornis	369
houtmanensis, Sericornis maculatus	191
humerosus, Caranx.	172
hunteri, Dacodraco	174
hyatinus, Chrysorrhanis	429, 434, 435
Hyalopeplinus	429-432, 451-463
Hyalopeploides	429-432, 452, 463-478, 487
Hyalopeplus.	429-432, 464, 476, 478-511
Hyatoplictus	430-432, 511-517
Hyla	177, 178, 344

Number
Hylidae 41-50, 177, 337ff
hymenacantha, Ophiothrix 377
hyperhemileuron, Dentalium 383
Hypoaspis 31
Ichthyocampus 171
Idiacanthidac 169
Idiacanthus 169
ignita, Dampieria 172
inaurita, Aprasia 183
incerta, Genocidaris 379
incisuratus, Argenis 429. 442-444
inconspicua, Cuspicona 54.56
inconspicua, Ocirrhoe $57,73,74,76$
inermis, Cycloraлa 261
inerrnis, Microtetrameres 243, 245
infrafrenata, Litoria 337-344
infrafrenata, Litoria infraftenata 337-341, 343
ingeri, Cornufer 179
inornata, Delma 184
Insecta 299-307
insignis, Obdurodon 208, 215
insularis, Auchenomus 222, 228, 237
insularum, Eosentomon $299,301,303$
intacta, Cuspicona 56, 85, 94-99, 101, 104
intermedia, Tiliqua scincoides 186
intima, Tympanocryptis 182
Iridopeplus 431
Irish Early Bronze Age 23
irregularis, Phyllacanthus 379
irregularis, Smilasterias 375
Isabel $430-432,513-518$
Ischnodon 208
Iscentomon $299,304,305$
jaenschi, Decoriscpia 382
jaflaensis, Dentalium (Fissidentalium) 383
jakutensis, Microtetrameres $239,244,245,251$
javantertis, Selenocosmia 33
johnstoni, Nanometra 373
kakanuiensis, Tangaroasaurus 286,287
kandanensis, Hyalopeplus (Hyalopeplus) $429,478,483,484$ 7
kaszabi, Clambus
kaszabi, Clambus
Kathetostoma 173
keanei, Zygomaturus 212
Kekenodon 287,294
Kenrickaster 374
kentì, Troposadion 212,213
kintorei, Egernia 185
Kolupsis 217
Kosmiomiris $430-433,440,516,517,519$
krishna, Hyalopeplus $430,478,509,513$
kumei, Eosentorion 303
kundaghingan, Kyarannus. 179
kutjamarpensis, Litokoala 209: 210
Kyarranus 179
Labia $221,222,229,231-233,235$
Labidae $222+223,227$
Labridae 173
Lacertilia 181
Lagorchestes 199
lagotis, Macrotis 199
lalliae, Diporiphoria 182
Lameroo broad oval wore australite 331, 332, 334
laminata, Cuspicona $137+146,166$
Lamingtona 201

miselius, Thalacomys minor
Number 199
mitchelli, Diplodactylus
mitchelli, Nototherium 217
mitchelli, Varanus (Varanus) 186
Mixophyes 263
modestus, Amytornis 369
modestus, Amytornis textilis 367. 369, 370
modica, Hyla 178
modigliani, Kosmiomiris $430,519,520$
Moltuses 381-385
monarthrus, Teliocrimus 373
montana, Nyetimystes 178
Monotremata 208, 215
moonta, Cridosa 174
mordax, Psalidaster 375
morgani, Cinclosoma castanotum 190
morgani, Potorous 212
morio, Chelisoches $222,236.238$
Morna 51
Moroca 431
Mugilogobius 175
multiplica, Hyla 178
multiradiatus, Dermatopsis 172
multiscutata, Egernia whitii 1.85
multispina. Nectria 374
multispina, Uniophora 375
Muridae 200
Mus 201
Muscicapidae 191
Mygalomorph spiders 31.39
Myliobatiformes 169
Myrmecobins 197
mytmecophilus, Clambus 6,7
Nakhla achondrite 311
Nanometra 373
naracoortensis, Progura 208
Nasepia 357, 358
nasuta, Delma 184
Nectria 374,375
nelsoni ${ }^{\text {B }}$ Berberentulus 306
Nematocentris 170
Nematoda 239
Nemipterus 172
Neobatrachus 263
neocaledoniae, Cuspicona $93,146-150,156,166$
theoguineanus, Guisardinus $429,441-443$
neoguineanus, Hyalopeploides 477
Neohelos 209
Neosebastes 171
Neosqualodon 294
Nepanthia 375
Nephrurus 183
Nesogaster $221,222,227,230,232$
Nerosylphas 444
newtoni, Genyornis 206
Nezara 418
Ngapakaldia. 209
nigra, Thyone 380
nigricornis, Bolboceras 11, 12
nigricomis, Stenaspidius $11-14,16,19,21$
nigrifrons, Hyalopeploides 487
nigrifrons, Hyalopeplus (Hyalopeplus) 429, 478, 486,487
migripes, Thalacomys 198
nigrofasciatum, Kathetostoma 173
nigrorufus, Hamaxas $222,235,238$
nigrogularis, Psophodes 192
nigroscutellatus, Hyalopeplus (Hyalopeplus) $429,478,487,488$

Petroica 191
Petromyzoniformes 169
Phalactocoracidae 207
Phalacrocorak 207
Phalangeridac 199
Phascogate 197
Phascolagus 216
Phuscolarctidae 209
Phascolonys 213
"Phascolomys" 281
Phascolonus 214,281
phi, Cuspicona $93,107,115,116,119,166$
philemon. Microtetrameres $239,243-245,247,249,250,259$
philippinensis, Hyalopeplinus $429,452,459,460,463$Phoberodon294
Phocniconalias 207
Phoeniconotius 207
Phoenicopteridac 207
Phoenicopterus 207
phrixa, Amphiuta 376
Phyllacanthus 379
phyllochroa, Litoria 337
Phyllophorus 379
Phyllozoon $347,349,353,355,357,358$
Physogaster 227
picta, Everardia $156-158,166$
picturata, Lerista. 185
Piezodorus 52
pilbara, Gehyra 183
pilicomis, Labia 233
pinguicolla, Tympanocryptis linesta 183
pinguis, Typhlops 187
Pitikantia 212
Plaisiodon 217
Planigale 197
plateia, Fibularia 379
platycephalus, Cyclorana $261,263,276$
Platycercidae 189
Platycercus 189
Platymantis 179
platyterus, Ammotrophus 378
Platitia 52,418
Plectorhynchus 172
Plesiopidae 172
Pleurochilophorus 431
Plotosidae 170
Plotosus 170
Plumalina 357, 358
Plumulariidae 358
pluviale, Isoentomon 305
Podops 420
Poecilotoma 420
polyplax, Allostichaster 410
polyplax, Ctenoidaris 378
Polyschides 384
Polytelidae 189
Pomadasyidae 172
pompeus, Onomaus $430,523-527$
pondalowiensis, Psophodes nigrogularis 192
Potorous 212
prasinata, Ocirrhoe $56,57,67,84-86,88,166$
primigenius, Notidanus 285,295
Prionotemnus 213
pritchardi, Mammalodots 286
privata, Cuspicona $5,67,85,94,114-13,14,151,166$ procallosa, CuspiconaProcoptodon216
Number
Pragura 208
Prolabia 221
prora, Hyla 178
Prosqualodon 285-287, 290, 292-294
Protemnodon. 216, 277,279
Protura 299-307
proxima, Cuspicona 93, 140, 144-147, 156
Prytanicoris 417,420-424
Psalidaster 375
Psephotus 190
Pseudochromidae 172
pseudoexigua, Patiriella $414+415$
Pseudomys 201
pseudopulchella, Aprasia 183
Psittaciformes 189
Psophodes 192
Ptereoides 356
Pteridinium $347,349,353,357,358$
pubiventris, Clambus 3, 4
Pugione 51
pulchellus, Euhyalopeplus 449
pulchellus, Microcyphus 379
pulcher, Astroconus 376
pulleini, Ljunghia 31-39
pumilia, Isoentomon 305
pumilioides, Isoentomon 299, 304
purnelli, Amytornis 366, 368, 369,370
pusilla, Acanthiza 190
pusilla, Microtetrameres 244, 245
pusio, Procoptodon 216
Pygopodidae 183
Pyramios 217
quadrilineata, Litoria 178
queenslandensis, Hyalopeploides $429,404,472,473,477$
queenslandiae, Dinornis 215
rainbowi, Ljunghia $31,32,37,38$
rama, Hyalopeplus (Hyalopeplus) $429,430,478,482,487-491,493,501$$430-432,523,526-528$
Rambea $347,351,353,354,356,358$
Ranidae 177, 179
Ranidella 179
rapha, Procoptodon 216
raptoris, Microtetrameres $239-241,243-245,255-257,259$
rasheedae, Microtetrameres 244, 245
rasheedac, Microtetrameres oriolus 244,247
Ratus 201
raui, Trichosurus wilpecula 199
ravana, Isabel $430,514-516,518$
regius, Ctenotus 184
regularis, Allostichaster 373
remigera, Notocidaris 379
remota, Ranidela 179
rennellensis, Berberentulus 305, 306
Reptilia 206, 214
Reptiles 181-187
resiliens, Ophiactis 411
Rhaphigaster 60
Rhinobatidae 169
Rhinobatiformes 169
Rhipidura 191
Rhipiduridae 191
rhipiphalcus, Platymantis 179
Rhizophascolonus 209
Rhodona 186
rhothophilus, Tropidostethus 170
Rhynchocoris $51=55,65,92,96,165,420$

Number
suttoni, Calamanthus fuliginosus 191
swainsoni, Phascogale (Antechinus) 197
swani, Eosentomon 300, 303
Syngnathidae 171
Syngnathus 171
syntomus, Astropecten 374
syphilis 387-392
taeniata, Lygosoma (Sphenomorphus) 185
Tangaroasaurus 286,287
tannae, Berberentulus 299, 304-306
tasmani, Clambus $3-5$
tasmani, Sphaerothorax 3,4
tatei, Nematocentris 170
tedfordi, Ngapakaldia 209
Teleostomi 169
Teliocrinus 373
telkara, Ambassis 172
Temnopleurus 379
tenebrosa, Egernia white 185
tenuirostris, Acanthiza 190
Tenuisepia 382
tescorum, Petalaspis $162,163,165,166$
Tessaratomidae 52
Tetrameres 239
Tetroadontiformes (sic) 175
textilis, Amytornis $361,365-367,369,370$
Thalacomys 198, 199
Thalassoma 173
Therapon 172
Theraponidae 172
thoracica, Cuspicona 131
Threpterius 173
Thylacoleo 277-283
Thylacoleonidae 208, 277-283
Thylogale 199
Thyone 380
tierensis, Sphaerothorax 3-5
Tiliqua 186
Timaliidae 190
timida, Litoria 178
tindalei, Sthenurus 213
tirarensis, Neohelos 209
tirarensis, Pelecanus 207
titan, Macropus 215
Titanolabis 221
tongaensis, Hyalopeplus (Hyalopeplus) $430,478,483,486,495-497$
torus, Kolopsis 217
Trachinops 172
travassosi, Berberentulus 306
travassosi, Microtetrameres 244, 245
treponarid $387,388,390,391,400$
reponematoses387 ff
treponemes 387
triacantha, Leiolopisma 185
Triakidae 169
Trianectes 174
Trichosurus 199, 279
tricolor, Ophiactis 376
trilobus, Zygomaturus 217
trinotatus, Hyalopeploides $429,464,475-477$
Tripterygiidae 174
trirhizodonta, Austrosqualodon 287
trisacantha, Amphiura 376
Trochodota 380
troglodytes, Calyptomerus 2
tropicus, Clambus 8,9
Tropidostethus 170
Number
Troposodon 213, 217
Trygonorhina 169
tubocloacis, Microtetrameres 244
tutuilaensis, Hyalopeplus (Hyalopeplus) $430,478,486,496-498$
Tympanocryptis 182, 183
Typhlopidae 186
Typhlops 186,187
typicus, Guianerius $429,440,441$
tytonis, Microtetrameres $239,243-245,253,255,257,259$
uber, Ctenotus 184
uncariae, Hyalopeplus $430,490,499$
uniformis, Tympanocryptis 183
unimaculata, Ocirrhoe $56,57,66,67,76,79-83,88,90_{+} 166$
uninotata, Cuspicona 60, 166
Uniophora 375, 376
uniserialis, Uniophora 376
Uranoscopidae 173
Urolophidae 169
Urolophus 169
ursulae, Crumenasepia 381
vadnappa, Amphibolurus 182
validipes, Pelecanus 207
vanderleuri, Wakaleo 280
Varanidae 186, 206
Varanis 186, 206
variabilis, Nepanthia 375
varicolor, Echinaster 374
variegatus, Limnodynastes dumerili 179
varius, Ophiclinus 174
ventralis, Fur 169
ventripes, Phyllophorus 379
vercoi, Syngnathus 171
vercoi, Thyone 380
verconis, Dentalium (Fissidentalium) 384
verhoeffi, Anisolabis 222-225
Vermicella 186
verrucosa, Cycethra 374
verrucosus, Cyclorana 374 374
Vertebrates 169-219
Vespertilionidae 201
vestitus, Australiodes 9
vestitus, Clambus 9
victoriae, Nototherium 212
victoriae, Zygomaturus 212
vincentianus, Cadulus (Gadila) 384
virens, Pegala 54
virescens, Cuspicona 166
virescens, Ocirrhoe $56,57,67,82,83,88-90$
virgata, Egernia slateri 185
viride, Pentatoma 137, 166
viridipes, Rhaphigaster 60, 166
viridis, Cuspicona 166
Vitellus 163
vitripennis, Capsus $51,54,96,160,163$
vitripennis, Hyalopeplus (Hyalopeplus) $430,478,479,485,490,497-503$
vivipara, Patiriella $407,411,412,414-416$
Vombatidae 209, 213
vulpecula, Trichosurus 199
Wakaleo 208, 277-281
wagneri. Stenaspidius 11
waitei, Climacteris 192
wallacei, Marava 221
warburtonensis, Varanus 206
Weerutta 175
welchi, Therapon 172
Number
westernensis, Geobasileus chrysorrhoa 190
westernensis, Zosterops 192 192
westwoodi, Ocirrhoe $56,57,63-66,166$
whitei, Amytornis striatus 369
whitei, Egernia 185
whitii, Egernia 185
wildi, Paraliparis 172
wilkinsoni, Parasqualodon? 285,287,292-294
wilkinsoni, Squalodon 285
wilsoni, Nectria 375
wilsoni, Ocirrhoe $56,57,61-63,166$
winneckii, Nematocentris 170
wisselensis, Hyla 178
woodwardi, Amytornis 369
woodwardi, Parocirrhoe $140,145,160,161,166$
Wygodzinskyi, Eosentomon 299-302
Wyryardia 215
Wynyardiidae 215
xanthochlora, Cuspicona 122
Xenorophus 293
xiphidiopici, Microtetrameres 243, 245
yaloma, Brachylabis 226
yaws 387.391, 400
Zangis 418
zeloma, Cuspicona 166
Zeuglodon $213,285,286$
zietzi, Eucentronotus 174
Zosteropidae 192
Zosterops 192
zweifeli, Nyctimystes 178
Zygomaturus 212,217

[^0]: SOUTH AUSTRALIAN MUSEUM North Terrace, Adelaide South Australia 5000

[^1]: 1 Present address: Transvaal Museum, Pretoria, South Africa.

[^2]: SOUTH AUSTRALIAN MUSEUM North Terrace, Adelaide South Australia 5000

[^3]: * In this japer all dates qualed ate "conventional' ie. uncorrected.

[^4]: Geographic distribution of the Litoriat citropa complex. The close proximity of several adjacent localities is such that each individual locality cannot be shown on a figure of this scale.

[^5]: 22 mel stecember, 1975

[^6]: Notes--Waite recorded three specimens but only the registralion number of the "Type" was noted. It seems obvious that R87 and R89 are the other two.

[^7]: Notes-Wood Jones (1923) published the first description of Myrmecobius rufis based on at least two syntypes, the skulls of which are at the odontological museum of the Royal College of Surgeons, London. His description was of a preliminary nature in which the name Myrmecobius rufus was treated as a synonym of M. fasciatus (Waterhouse), pending further description in a "scientific journal". Finlayson (1933) apparently considered that Wood Jones had not made the name Myrmecobius rufus available in nomenclature and published a fresh description under the name Atprmecobius fasctatus ruftis, based on two new syntypes selected from a series of 17 examples. However, Wood Jones' original name undoubtedly is available under the provisions of Article 11 (d) of the Rules of Zoological Nomenclature and therelore has priority.

[^8]: Nores-Wood Joncs based his destription on a seties of nine specimens, ore of which he designated as she loolotype. Only three of the paralypes (M1749 (o M1751 above) were individually identified by number, but the demate (M202S) was almost certainly another parabype, zince she was presented to the South Ausualian Museum by Wood Jones and, from her collection data. must have heen the female mentioned in his deseription as bsving been shared on Flinders Island in 1924, The whercabouts of the renainlog four paratymes is unknown, but the skin of the holotype male is at the Britist Miuseum (Natumal Jlistory), registeted number 1925.10.8.11 and its skull is at the odontolngical musetum of the Royal College of Surgeons, London, registered number A. 347.91 .

[^9]: 1st Decenbur. 1976.

[^10]: Isf February, 1977

[^11]: *Department of Zuology, University of Adelaide, Adelaide, South Austratia, 5000 .
 fDepartment of Zoology, University of Melboume, Parkills, Vicloria, 3052.
 1st March, 1977

[^12]: * South Australian Museum. Adelaide. Sunth Ausiralim. 51011.

 1 D. 6500^{-}Minioz. Genwissenschaftiches Institul der Uniyersitab, Saarstr, 2I, Federal Republic of (iermany.
 8/h Alleart 1977

[^13]: * Zoological Museum, Copenhagen, Denmark.

 1-10:h Seprember, 1977

[^14]: * South Australian Museum, Adelaide 5000, Australia.
 \dagger Smithsonian Institution, Washington, D.C. 20560, U.S.A.

[^15]: *W.A. School of Mines, Kingoorlic, Western Australis. 5000

 South Australian Museum, Adelaide, Suth Ausitralia, 6430.

 1-20h fechrwary, 1978

[^16]: * Pinnaroa 1:250 100 Street, S.A. Depariment of Mines. Preliminary Editiun.

[^17]: The idemification of this anmal is suspect as the Ireanlity is given as Cape Yurk Peninsula; the species is not known to oceur as far north.
 1-28h February: 1978

[^18]: SOUTH AUSTRALIAN MUSEUM North Terrace, Adelaide South Australia 5000

[^19]: Fig. 1. Latality mans of linds of kidiucaran frond-like fossils in Australia, The larger map shows the greater part of the Flinders Ranges with outcop of the Pound Quartzite indicalad by areas of stipple; 刀umbers signify

 with crinhleal resistive strictures within the branches, 5^{5} Glucssnerinm gramelis (Glaessner and Wade, 1966).
 gen. ef 4p. now.

[^20]: SOUTH AUSTRALIAN MUSEUM North Terrace, Adelaide South Australia 5000

[^21]: \#South Australia Museum, Adclaide, South Australis 5000.
 \dagger National Patks and Wildife Service, Adclaide. South Australia suoc.

 1-30th May; 1978

[^22]: A. thormherat and of. mondurwdi cxamined its Nitional
 Rescanth (Canberna) respoctively,

[^23]: 1 Also noted 28.8 km west of Birdsville in November 1976 by J. L. McKean (pers. comm.).

[^24]: -Soulh Australian Museum, Adelaide. South Australiat 5010

 7 Ht Jume, 1978

[^25]: SOUTH AUSTRALIAN MUSEUM North Terrace, Adelaide South Australia 5000

[^26]: "South Australlitn Mlusemm, Nuelaide 5000
 12th June, 1978

[^27]: SOUTH AUSTRALIAN MUSEUM North Terrace, Adelaide South Australia 5000

[^28]: * Department of Zoology, The University of Adelaide, Box 498, GiP.O., Adelaide 5011.
 1 Department of Zoology, University of Tasmania, Box 252C, Hobart 7001

[^29]: ${ }^{1}$ Gonoducts are present in P. viviparar (F -S. Chis, pers, comm.), but they are diflicutt to observe, in contrast to P_{0}. sigma and P_{0} premioxigut.

[^30]: - Researcher of the National Council for Development of Science and Techoology (CNPq). Rio de Janeiro-I A.

