PUBLIC IBRARY, NIUSEUM, AND ART GALEERY OF SOUTH AUSTRAIIA

## RECORDS

OF THE

## SOUTH AUSTRALIAN MCSEUM

Vol. V1, No. 1

Published by the Board of Governors, and edited by the Museum Director (Herbert M. Hale)

ADELAIDE, NOYEMBER $30 \mathrm{TH}, 1937$.

PRINTED AT THE HASSELL PRESS, 104 CURRIE STREET

# NOTES on the WEANING of a YOUNG KOALA (PHASCOLARCTUS CINEREUS) 

By A. Keith Minchin, Koala Farm, Adelaide.

## Plates i and ii.

In June, 1933, a member of my staff informed me that one of the female Koalas in the Adelaide Koala Farm appeared ill with diarrhoea. This female had been thriving and only five weeks before the baby she was carrying in her pouch had been seen with its head out for the first time. Six months previously (January, 1933) a slight swelling in the mother's pouch had first indicated the presence of the juvenile (at birth the young is about the size of a man's finger nail).

On inspection I discovered the Koala sitting back in the position illustrated on pl . ii, fig. 1. Only the head and forelegs of the young Koala were protruding from the mother's pouch, and its face was covered with a yellowish-green slime. The baby was forcing its nose into the mother's anus, and as it nuzzled it attempted, with its front claws, to enlarge the opening into which it was thrusting its snout.

The baby was energetically eating the substance from the mother's rectum. Although the parent appeared uncomfortable while this was going on, she remained quiet and made no attempt to "claw" the baby or to stop its activities by moving her position, as happened on other occasions when the young one became annoying. The posterior areas of the mother and the fur up to the pouch opening were saturated and stained with the yellowish-green material; at times the baby would cease eating from the anus to suck and claw at the stained fur.

This particular meal took an hour to complete and during that time the baby avidly and actively fed, giving the impression that it had at last discovered the food for which it had been craving. The substance appeared to be peptonized gum leaves, and in no way resembled faeces passed during diarrhoea.

On the ground immediately beneath the female was a mound of faeces somewhat like fresh cow manure. This mound was fresh, and on examination I found beneath the soft shapeless manure, soft well-formed pellets, mixed with hard dark pellets, such as are passed by any Koala under normal conditions. This seemed to indicate that the mother's lower bowel had been emptied so that the peptonized gum leaf from her upper bowel might be hurried along to nourish a baby requiring more than milk but yet still too young to digest such a coarse diet as gum leaves.

If a Koala becomes sick with diarrhoea its fur invariably remains matted and
stained for a long period; in the case described, within three hours both the mother's posterior and the face and fore limbs of the baby were dry and clean.

For almost a month the baby Koala took food in this manner every second or third day, but always between 3 p.m. and 4 p.m. My observations point to the probability that the mother Koala does not produce this food entirely voluntarily, but that the young Koala brings about the operation by massaging her anus with the nose and mouth. Before commencing this diet the baby had appeared weak and undeveloped (pl. i, fig. 1) ; twenty-four hours after the first meal it had grown and appeared so much stronger that it was difficult to believe that it was the same animal. Within two weeks its body weight appeared to have doubled and it began to take an interest in the tips of the youngest gum leaves. Within a month the baby was definitely weaned and had transferred its'attention from the mother's anus to gum leaves alone.

The writer has observed the same procedure in the case of each young Koala reared in his park, although the length of the period during which the young continue to take food from the rectum yaries according to seasonal or local conditions affecting the young edible tips of the gum leaves. If plenty of tender tips are available, the baby may be weaned in a month; on the other hand I have seen a young Koala feed from the mother's anus for as long as six weeks.

In June of this year I watched the fifteenth young Koala reared under observation take food from the mother's anus as had all the others. The weaning of this baby occupied five weeks, and during that period it took food from the mother always between noon and 2 p.m.

It may be well to mention that the Koalas were not under surveillance at night, and observations were made only between $9 \mathrm{a} . \mathrm{m}$. and $6 \mathrm{p} . \mathrm{m}$. It is possible therefore that the young feed upon partly-digested gum leaves more frequently than is thought, but I do not consider this probable as it would weaken the females too much.

A cinematograph record in colour of this strange method of weaning has been made by the writer. This film has been viewed by a number of interested persons, including the Professor of Human Physiology and Pharmacology at the University of Adelaide, Sir Stanton Hicks. The last-named has furnished the following comment:
"I have witnessed a showing of Mr. Minchin's film of the phenomenon recorded in the above notes, and have seen a specimen of the material passed by the bowel of the parent Koala subsequent to the stimulation by the young animal. I have no doubt that the phenomenon is a more extensive one than that generally known as reflex colonic peristalsis following rectal dilation and stimulation. It acquires greater interest in view of the fact that the dietary of the Koala is so
limited, and that the presence in it of poisonous essential oils involves special metabolic processes to ensure detoxication. The subject is one deserving extended biochemical and physiological investigation, and it is hoped that this may follow on Mr. Minchin's interesting and important observation.'"

## EXPLANATION OF PLATES.

## Plate i.

Fig. 1. Young Koala just prior to taking first meal of partly digested gum leaves. Note undeveloped hind-quarters.
Fig. 2. Young Koala twenty-four hours after first meal.

## Plate ii.

Fig. 1. Attitude of mother when feeding young on partly digested leaves; note paw of the infant gripping its mother's body.
Fig. 2. Young Koala one month after taking its last meal of partly digested gum leaves.


WEANING OF A YOTNG KOALA.

weanivg a young koala.

## ABORIGINAL CRAYON DRAWINGS

By C. P. Mountford, Acting Ethnologist, South Australian Museum


#### Abstract

Summary When examples of aboriginal art from various parts of Australia are examined, it is noticeable that those originating from the Northern Coast and, to a lesser extent, from the Eastern coastal fringe north of Sydney, are largely representations of various animals, fish and human beings. Some of the cave paintings from Napier Broome Bay (Mountford, 1937, pp. 30-40), Prince Regent River (Bradshaw, 1891, p. 100), and adjacent localities are drawn with a freedom of style that is not known in any other part of Australia.


# ABORIGINAL CRAYON DRAWINGS from the WARBURTON RANGES in WESTERN AUSTRALIA 

# Relating to the Wanderings of two Ancestral Beings 

The Wati Kutjara

By C. P. MOUNTFORD, Hon. Assistant in Ethnology, South Australian Museum.

Text fig. 1-27.
This paper places on record a series of aboriginal crayon drawings and the relevant details, which concern incidents in the life of two mythical ancestors, the Wati Kutjara, who belonged to the Ngadadjara tribe of the Warburton Ranges of Western Australia.

Tindale has already published a summary and map of the wanderings of these ancestral beings (Tindale, 1936, pp. 169-185). His paper deals with the songs, ceremonies and wanderings, while the present paper describes the drawings, the information gathered at the time that they were made, as well as an analysis of the designs, the colours used, and the ages of the artists concerned.

The drawings were collected in August, 1935, during an expedition carried out under the auspices of the Board for Anthropology at the University of Adelaide, assisted by funds from the Rockefeller foundation and administered by the National Research Council. They form a small part of an extensive collection. A general report on the Expedition appears in Oceania (Tindale, 1936, pp. 481-485, map).

The method of obtaining the drawings was as follows : Sheets of brown wrapping paper, approximately 50 cm . by 30 cm ., were distributed, together with crayons of the only colours available to the natives, i.e. red, yellow, black and white. The Australian aborigine is particularly susceptible to suggestion, and it was especially desired that nothing external should influence the choice either oí the subject, the colours chosen or the method of drawing; therefore no subject was nominated, and the native was asked only to make marks (walka) on his paper. On the completion of the drawings, the meanings of the various designs, and if possible, the mythological ideas associated with them, were obtained through an interpreter and the details noted on the sheet concerned. The registration number of the native and the date were also included. The registration symbol for the Warburton Range Expedition is K, and this letter precedes the numbers of the natives mentioned.

Before the confidence of the natives had been gained (this being fully established at the end of the first week) simple drawings of everyday things of aboriginal life were made, such as kangaroos, emus, trees, camps and waterholes. At the end of that time, drawings relating to the travels and exploits of the aboriginal's mythical ancestors began to be produced by the older men. From that time onward, no difficulty was experienced in obtaining designs, in fact, it was unfortunate that, as only a limited amount of time was available for the interpretation of the detail, and the recording of the data, the distribution of the sheets had to be curtailed.

Although no attempt was made to conceal the work from any member of the expedition, drawings would be covered if a woman, child, or uninitiated youth approached within 50 metres. In fact, in order to preserve further secrecy, the old men insisted that the sheets should be carried into our tent in a folded position.

The drawings secured, particularly those of the aged men, are mostly ceremonial in character, and refer to the exploits of such mythical beings as the kangaroo (malu), the wallaby (tawalpa), the snake (wanambi) who was responsible for most of the permanent water holes, two separate groups of ancestral women, and several human beings, including one called Jula, and the Wati Kutjara.

Other ancestors were mentioned, but this paper deals in detail only with drawings relating to the Wati Kutjara (Wati = man, Kutjara = two).

In order to secure accurate copies, the drawings were photographed, the designs outlined on the print and the photographic image bleached away. Thus unintentional alterations are not introduced in the process of copying for reproduction.

The Wati Kutjara, according to our interpreter Pitawara (K.6), were good looking and kindly young men, who made the best camping places for the natives, and were generally held up as models to the young men of the tribe.

After many adventures, they climbed into the sky and can be seen on any clear night, $\beta$ Gemini representing Kurukadi, the elder, and $a$ Gemini the younger, Mumba.

Fig. 1 depicts an incident in the life of the Wati Kutjara at Njidibunga, an unlocalized place some distance west of our base camp at Warupuju. The drawing was made by a middle-aged native, Mungalu (K.14). The two designs on the right hand side represent Kurukadi, the elder, while those on the left hand side picture Mumba, the younger. The latter was a lazy individual, who sat about most of his time, leaving his companion, Kurukadi, to do the greater share of hunting and cooking.

Mumba, A, is depicted as seated upon a stone, B, with fires (shown as small circles) on either side of him. The stone, $B$, is now a large hill at Njidibunga.

Kurukadi, C, is shown without fires. The upper pair of figures depicts Kurukadi, D, returned from the hunt and still carrying a kangaroo on his head. The upper black line on the forehead of $D$ represents the powdered charcoal and grease on his forehead, while the lower line refers to the red ochre rubbed around the nose (1). The fires are shown as adjacent to Kurukadi, and possibly represent cooking hearths. Mumba, E , is shown without legs, seated on some unspecified object. In

fig. 1

both A and E , Mumba is depicted as wearing a head-dress, whilst Kurukadi, at C, has only a black line across the face, and at D , as previously mentioned, the face was covered with powdered charcoal and ochre. Our informant, Mungalu, also indicated that these ancestors made extensive journeys through the country, creating many hills, waterholes and other natural features.

The placing of the figures, the choice of the colours, and the execution of this drawing make it one of the most attractive obtained from the area.

Fig. 2 is of unusual character, and like fig. 1 forms one of the more decorative sheets ${ }^{*}$ in the series. Tolaru (K.3) was responsible for this design. It refers to a waterhole, Lelele (see fig. 15) some distance north-west of Warupuju, where one

[^0]of the Wati Kutjara threw a boomerang, its circuitous path being illustrated by the incomplete ellipse A. He named the spot Lelele, picked up the boomerang, and continued his journey ; the ancestor is pictured in the centre. B indicates his head (kata), C and D the arms (ngaruka), F and G the feet (tjena), and E the body (jananggo). The footprints and chest scars are shown at $\mathrm{K}, \mathrm{L}$ and $\mathrm{M}, \mathrm{N}$.


Fig. 3 was made by a middle-aged native, Windinja (K. 51 ), and illustrates the natural features made by the Wati Kutjara during their journeys in country adjacent to two small water holes, A and B, known to the natives as Julduda and Jalatja. These are situated in a creek lined with gum trees. The trees are indicated by six series of concentric circles and spirals, D. E. F. G. H and J. The creek, Warumba, C, is shown as a meandering line across the top of the drawing. The only waterholes indicated are those at $A$ and B , but Windinja wheu making the drawing stated that other small water supplies could be found along the whole length of the creek.

The lower part of fig. 2 refers to the meeting of the two men with one of a group of ancestral Kunkarunkara women. This woman made the creek, K, and
camped at Jabu Muluta, M ( $\mathrm{jabu}=$ hill $)$. The Wati Kutjara quarrelled about the women, and one drove the other away, after which he rested at $P$, and slept with the woman. The following morning, the two men made up their quarrel, spirals N and O , indicating where they rested. (Although not specified by the artist, these spirals doubtless represent natural features, probably hills). In this place, the ancestral men laid down lines of bushes at $Q$, which, as time went on, were transformed into a range of hills.

From their resting places at N and O , one of the men travelled to a locality, R, near two hills called Jabu Njinga, where, in order to play a joke on his companion, he impersonated a kangaroo. The other man was about to spear the supposed animal when the joker revealed himself. The above-mentioned hills, $R$ and $S$, were created from the two nose-bones $\left({ }^{2}\right)$ left behind by the ancestors at this place.

From these hills they travelled to a spot, T, where a waterhole, Kapi Jiljudi, was created. Leaving this they camped or rested at U, Kapi Mrurara (kapi= water, or waterhole), journeyed past an umnamed water to V, Muludumbi, rested at W, and finally camped at X, Kapi Ngalbari. At the latter place a number of small waterholes, in addition to the larger ones shown at $X$, were made. The lines of spinifex at Y grew under the feet of the Wati Kutjara as they walked about.


An ancestral human being, Wati Muluta, camped at $Z$. This individual is not recorded in any other drawing, and is probably an unimportant mythical being. M. (Jabu Muluta) is associated with this ancestor.

An examination of fig. 3 will give some indication of how intimately these ancestors (for the Wati Kutjara is only one of many) are associated with the country, every natural feature being attrbiuted to the aqency of one or the other of them. The drawing also indicates the importance which natives of this arid country attach to water supplies.
(2) A short piece of bone pushed through a hole in the nasal septum for purposes of decoration.

Fig. 4 was drawn by Wanpiri (K.49) and deals with the wanderings of the Wati Kutjara near Kapi Konapurul. The being or beings lay down and slept at A and B. Where the buttocks rested, Kapi Kunpural, A, was formed, and the depression made by the head became Kapi Kulpudjara, B. An unnamed creek, which connects the two waterholes, was formed in the hollow made by the weight of the body. The ancestors then travelled to C, where another waterhole appeared, while a small unidentified waterhole to the right of C was made at the same time.


From here they went to $D$ where a series of small waterholes named Kapi Wangu now exist. Returning on the same track the Wati Kutjara passed through C, camped at E, forming Kapi Kanari (which is situated in a direction N.N.E. from our base camp at Warupuju). Travelling through F, Kapi Kumbul, the mythical beings camped at G, II.

Here again, as at A, B, two waters, Kapi Marltadara, G, and Kapi Kumpulta, H , appeared where the buttocks and head had rested. As before a creek connceting these two waters resulted from the gutter made by the weight of the body. No explanation was given as to the maker of Kapi Wiwara, J.

On being asked why a square design (an unusual symbol) was used to represent J, Wanpiri stated that he drew both this water and Kapi Kumbul, F, in that manner because that was their shape.

The zig-zag line K represents a range of hills made by the ancestral kangaroo. This he did by laying down bushes. On the same sheet were further drawings relating to the wanderings of this ancestor, and also those of the mythical wallaby. As these were not relevant to this series they are not reproduced.

Fig. 5 was drawn by Katabulka (K.1), the aged owner of Warupuju Spring (our base camp). The drawing relates to a time when the Wati Kutjara left two wanigi ( ${ }^{3}$ ) at Kalkakutjara (Tindale, 1936, p. 179).

A and B represent the wanigi.
Although designs $E$ and $F$ were marked on the sheet as representing two additional wanigi, it is likely that Katabulka was misunderstood. Fig. 4 was one of the first sheets of ceremonial drawings obtained, and considerable initial difficulty was experienced, even with the help of the interpreter, in understanding the explanations of the artist. The spiral designs at either end of E and F , and the more or less parallel lines connecting them, resemble AB and GH in fig. 3. Further as E and F are associated with the pubic tassels C and D , it is reasonable to suppose that the former are symbolic of the Wati Kutjara.

It is also likely that G, H and J, which Katabulka explained were painted on the backs and abdomen of the sub-initiates, represent the body decorations of the ancestors themselves. This supposition is strengthened by the fact that Pitawara (one of our interpreters) when referring to the Wati Kutjara ceremonies, at Kanba, of which he was the owner, made the following statement: "We must do the same as did Wati Kutjara. We sing the same songs, and have the one mark (i.e. identical marks) on our bodies."

G, F and J, the designs painted on the bodies of sub-initiates, may be representative of the marks on the bodies of the two ancestors. It is likely, then, that E and F are the two men, B and C their pubic tassels, G and H the designs painted on the back, and $J$ that on the abdomen, while $A$ and $B$ stand for the two wanigi left behind at this locality.

The design at K was given the name of Merejawara. The transverse lines are the marks on the chest, and the meandering lines a trail made by some being. For the same reason as mentioned earlier, the meaning of the word, or the significance of the symbol, could not be obtained. A rendering of Merejawara as mere $=$ dead or dying, and jawara = a mark made by a dragging object, would appear literally to mean "the trail made by a dying animal or man". This interpretation, however, may not be correct.

The two wanigi, A and B , were made at Turarurana (see fig. 8) and left at Kalkakutjara ('Lindale, 1936, p. 179).

[^1]Fig. 6 was drawn by a fully initiated young man (K.8), and illustrates waterholes and hills made by the Wati Kutjara. Reading from A across the centre of the figure the names of the waters are as follow : A, Wanatara; B, Parlka-parlka; C, Walbawati; D, Kindingara; E, Kalitara; F and G, Kalianda; H, Lutja; .J, Muri.


The remainder of the circles, $O, P$ and $Q$, and similar designs, are hills, while the parallel lines are the game pads made by present-day curos as they travel between the waterholes and the hills.

On fig. 7 the Wati Kutjara are depicted as carrying a sacred object between them at Kanba (Ghanda, P.B. 197 ( ${ }^{4}$ )). Tindale (1936, p. 174) gives the following description of the making of a sacred inna board at this place. "The Wati Kutjara cut off a slab of wood from the solid trunk of a large mulga tree, and made an inma (or large wooden object of the type called tjurunga in Central Australia). Two parallel marks were made up the trunk of the tree, and for three "nights" they hacked along the marks until they had cut out two deep grooves; a kandi or adze stone, mounted on the end of a spear-thrower, was used for the work. On the third night the slab of wood came off in their hands. . . . The long line of dark patches in the Milky Way, between a Centauri and a Cygnus, called pulinu pulinu, represents the inma (totem board) which the Wati Kutjara made, and then left at Kauba. It remains there in the sky always, notwithstanding that the material inmu board still exists on earth. . . . They left the inme in a cave near Kanba."

The sacred object being carried by the ancestors is the same as that described in the above legend. The attempt to show some peculiar form of head-dress on each of the men is of interest.

Fig. 8 relates to the doings of the Wati Kutjara at an unlocalized place, Tura-
(土) P.B. 197 is one of a series of official bench marks made in 1932, and may be found in Western Australian maps of this area, e.g. Plan IX/800.
ruranja, south-east from Julia (Tindale, 1936, p. 179). A and B represent two rock holes, C an echidna which the men had killed and eaten at this place, and D the trail made by a wanigi, which after having been constructed by the Wati Kutjara, was dragged away. Althourh the writer was not told that these ancestors were responsible for the creation of the rockholes ( ${ }^{\bar{a}}$ ) A and B , it is more than likely that it was so, the men having camped there, thus becoming ceremonially associated with the place.


Fig. 9 relates to the meeting of the Wati Kutjara with the aged "Moon man" and his grandson. This drawing was made by Mrungalu (K.14) towards the end of our stay, when comparative freedom from routine enquiries made possible the obtaining of a more complete story.

At the place A the old man and the boy camped for the night. The following morning they set out on a journey to a spot, D , the tracks made by the two being indicated at B and C respectively.

Kidjili, the aged moon man, was feeble and partly blind, and therefore unable to see that game was plentiful in the country. His grandson was anxious to obtain meat for the evening meal, and seeing a cat called out, "There is a wilka. Let us kill it for food." "No," said the old man crossly, "leave it alone. We have a long way to go, and there is no time for hunting."

After this rebuff the boy was silent until he saw an opossum. He again asked to be allowed to catch meat, but the old man refused, on the same grounds as before. On several occasions during the journey the boy made similar requests, only in receive a gruff denial.

The old man Kidjili knew that the Wati Kutjara, who were following, would catch and kill any game seen by his grandson. The boy, however, was not aware of this, the grandfather having intentionally kept such knowledge from him.
(5) An Australian term to signify a water catchment in a rocky outcrop.

When the two moon people reached D , the boy was given a wooden dish, and sent to a neighbouring rockhole, E , in order to bring water to the camp. On his arrival he found that the dish leaked so badly that long before he reached the camp it was empty. After several ineffectual journeys he achieved his purpose by blocking the holes in the dish with human excrement.

On his arrival he found to his surprise that the old man had already obtained fresh meat and had cooked it in the oven, T.

It transpired that during the boy's absence the Wati Kutjara had approached the camp from another direction, and, laying the captured game on the ground for the blind man, retired to their camps at $Q$ and $R$. The unused portion of the meat was transformed into a range of hills (see parallel lines M) ; the footmarks of the Wati Kutjara, now large gum trees, are indicated by círcles F, G, H and I, J, K.

The boy, knowing his grandfather to be too blind to catch game, said to himself: "I wonder where my grandfather obtained his meat?"


The same thing having happened on several occasions, the boy became suspicious and, instead of going for the water as instructed, watched the doings of the old man from the cover of some bushes. To his surprise two good-looking men came up and gave meat to the old man. The boy then showed himself, and the old man, finding that further subterfuge was useless, told the grandson that the Wati Kutjara were his "uncles".

The camps of the Wati Kutjara are now two large hills, Q being called Nangulpa, while $R$ is unidentified. The depression $S$ was made by the buttocks of
one of the men when he sat down to comb his beard, the creek P appearing where the beard had rested on the ground.

It is interesting to note the difference between Kidjili, the moon man, who was a relative of the Wati Kutjara, and Kulu, the mau who pestered the Kunkarunkara women, and who was finally killed by the Wati Kutjar'a at Tjilandi (Tindale, 1936, p. 176). In a drawing by our interpreter, Pitawara (K.6), which shows influences of his European associations, Kulu is described as 'the 'boss' of the Moon, as well as the morning and evening star".


Fig. 10 refers to a place situated some distance east of the base camp called Tjukata. The drawing, the work of Mungalu (K.14), is included in this series because it was at this place that the Wati Kutjara are stated to have killed and eaten the ancestral kangaroo, Malutjukur ( $\mathrm{malu}=$ kangaroo, tjukur $=$ relating to the long distant past).

Several mythical beings, in addition to the Wati Kutjara, were responsible for the hills, waterholes and creeks in this part of the country. The great snake, Wanambi, as it travelled between B and W, forced the hills, C and D, apart and created the creek A. The two hills are known as Jabu Tjukata. The ancestral eaglehawk was responsible for the waterholes $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H , the first two being called Tjukata and Wakaelabunga respectively ; the latter was described as a rock-
hole inside of a hill, and it is interesting to note that the artist has attempted to picture it in a different manner to the others.

The paired tracks and K belong to the ancestral kanqaroo who was killed and eaten by the Wati Kutajara, who, after they had finished their meal, left the head of the kangaroo behind. It and $V$ are spear-throwers that belonged to the hunters. Although not specifically mentioned these are probably natural features, most likely hills.

Fig. 11 drawn by Windinja (K.51) relates to the incidents surrounding the meeting of the Wati Kutjara and a group of "Sun" women at a place called Bubut.


The story given as an explanation of this drawing is as follows : At the end of a day's journey the Wati Kutjara made a camp at A, and while resting heard the sound of natives talking. The ancestors called out to the people "Come over here", but received no reply. The ancestral men than said to one another, "I wonder who they can be," and continued to call. As the people who were talking in the bush did not show themselves, the Wati Kutjara became angry, and set fire to the spinifex that covered the surrounding country. The fire burnt these unsociable people, who, it transpired, were a group of "Sun" Women ( ${ }^{6}$ ). At every spot

[^2]where a woman was burnt (indicated by the series of concentric circles) a spring arose. These are connected by large hills, drawn as parallel lines.

After the burning of the women the men travelled to $D$, where they lit a fire. The hill that stands at this spot rose out of the ashes of that camp fire.

X is another hill, N a spring of water, and A the first camp of the Wati Kutjara, a large group of gum trees. The meandering lines E, F and G, represent a series of creeks which flow into a waterhole at M.

Fig. 12 refers to a totemic centre called Julia (which place is identified by Tindale, 1936, p. 170, as Sladden Waters in the Rawlinson Range). The sketch was associated with the Wati Kutjara, but being one of the earlier drawings full details were not secured. According to the artist, Katabulka (K.1), the concentric aircles $\Delta, B, C$ and $D$ were painted on the chest and forehead, and $G$ on the back, of the sub-initiates during the time they were undergoing ceremonial training at this centre.


The rough sketches E and F were made by the writer, and Katabulka was asked to show the exact positions of the markings on the boy's body. This he did, explaining at the same time, that although the design covered the whole face of the rough figure $E$, the actual symbol was painted on the forehead only.

The meandering lines connecting the various groups of circles were named wanajawara, i.e. the trail made by the dragging of a digging stick ( ${ }^{7}$ ) (wana $=$ digging stick, jawara $=$ the trail made by a dragging object). This word suggests the possibility of women being associated with this place, for the digging stick is essentially a woman's implement.

It is almost certain that $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and F have a topographical significance, but, as explained in connection with fig. 4 , full details were not obtained.

[^3]Fig. 13 was drawn by Katabulka (K.1) and its details recorded by Tindale. It relates to the adventures of the Wati Kutjara at Tjawan, some two days' walk west of Windalda (Tindale, 1936, p. 175). At Tjawan the Wati Kutjara made a damper ( ${ }^{8}$ ) from an undentified fruit called turuba. The larger series of concentric circles, A represents a heap of the fruit, B and C the cooked dampers. The latter were made by mixing the ground or pulverized fruit with water, and cooking the mixture in the ashes.


The meandering lines connecting $\mathrm{A}, \mathrm{B}$ and C depict the fruit spilling out on the earth from the large heap at $A$. This may be a symbolic device by which an aborigine expresses the presence of a plentiful supply. The meanings of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and F apparently relate to the topography of the country. D and E are known to be a water supply and a hill respectively.

Fig. 14 drawn by Tolaru (K,3) refers to ranges of hills and a waterhole northeast of Warupuju. These hills were the handiwork of the Wati Kutjara. The two outer circles picture the ranges named Jabu Neridji, and the inner circle a waterhole called Kapi Palguduna.

Fig. 15 was drawn by Ngawanti (K.48) and relates to the country a few miles east of our camp. In this district the Wati Kutjara were responsible for eighteen waterholes, a creek and a low range, A, called Bimulba. The latter grew up from a game trap which had been constructed from the branches of trees for the purpose of catching wallabies. One man hunted the animals into the trap while the other killed them as they became entangled in the bushes. The two lines of concentric circles refer to the previously mentioned water supplies. Reading from the left the names of those on the bottom are N, Wildjeri ; O, Karnka (Tindale considers

[^4] fire. The name is not without its humorous side.

 The last I wo, $V$ and $W$, are monamed.

The names of the unper line, in the same mover, are: D, Duira; $E$, ${ }^{3}$, matapila; F, Katala; (f, Palkuta; Il, Kakili; I. Kapibura; K. Juara; M, Tamaja. Spinifex eonuntry sumrounded these waterholes.


FIG. 16


The matives believe that the rreek ( was formme wher the loosened hair string (8) of the Wati Kint jara rested after the wind hat blown it alour the erouml.

Fig. 16 was drawn by K. 8 and suggests that the Wati Kutjara were transformed lirom crested pigeons into hanan beings at one time in their existence. The large oval A represents a wet weather eamp, the small upper oval B the camp of the mother of the Wati Kutjara and her two childen (apparently the youthful Wati Futjara). The mother is at R and the childere at s , and their tracks at ( and I) tead away on the right. In the lower owal () ape the Wari Kut jara, T, theic tracks, being shown at II.

Inchoded in the same sheet are the drawing, of a crested piyeon, E, with its (backs al $\mathfrak{F}$. K. 8 explained that this pigeon or pigenns later became the Wati Kutjara. The camp of the crested pigeont at E is suw a well known waterhole Wimdum (Windarro, P.I. 280), whle the lare wal A is a place in the spinifex comntry known to the matives an daralubulba. of is a wanimi left behind by the Wuti Kutjara.

This fragmentary sidelight towhes on another aspect of the Wati Kutjara legend. It sugqests that a group of pugens were thansformed into human beings.


(0) The hair is bound in the form of a dhenom with a considerable length of fur string. Only fully initiated men are allowed to wear their hair in this fashion.
totem of the father of Pitawara (a Wati Kutjara totem man) was the mutumutu or pigeon (Tindale, 1936, p. 182).

Fig. 17, the work of an elderly aborigine, Tolaru (K.3) illustrates a group of three fig trees, jili (10), which grow adjacent to a water supply called Kapi Tukuntjara, some distance north-west of Warupuju. The Wati Kutjara who came from the south-west, camped at this place, and wherever they rested groups of fig trees sprang up. A, B and C are but three of these trees.

Several sheets of drawings having a bearing on the Wati Kutjara legend were drawn by our interpreter Pitawara (K.6). On all sheets, with the exception of two figured by Tindale ( $19: 36$, fig. 5 and 6 ), the designs used to illustrate the legendary stories were typically European. This was probably due to the fact that the aborigine had been in contact with missionaries and police officers since he was a young man, and thus had a restricted education in ceremonial matters. Pitawara thus had little or no knowledge of the traditional symbols used by his countrymen, although he appeared to be conversant with many of the legendary stories, particularly those relating to his own totem, the Wati Kutjara.

This would suggest that, although the legends are a matter of common knowledge to the men and to a lesser extent, the women, the method of depicting such stories would only be acquired after years of association with the secret life of the tribe.

In another of Pitawara's series of drawings, a story relating to Kulu, the morning and evening stars, and the new and full moon, is illustrated. The body of Kulu is marked to show the manner in which the Wati Kutjara decreed that all men should be decorated when they danced in the ceremonies relating to Kulu, who was killed by the Wati Kutjara for interfering with women called the Kunkarunkara (Tindale, 1936, p. 176). As mentioned in connection with fig. 9, Kulu should not be confused with Kidjili, the moon. According to Pitawara, Kulu is the master of the moon and morning and evening stars. The two latter, which the natives recognize as one and the same, is called Murunba, the new moon Kidjili pilda, and the full moon Kidjili takanba. The moons were depicted in the conventional European manner, i.e. a crescent and a circle respectively, Murunba, five pointed stars, and Kulu as a man in the usual manner.

Another drawing by the same aborigine shows a native dancing in the Wati Kutjara ceremonies. It depicts him as wearing shaved sticks in his hair and with his body marked with lines of down.

[^5]
## ANALYSIS OH DESIGNS.

When examples of aboriginal art from various parts of Austratia are examined, it is moticeable that those originating from the Northern Coast and, to a lesser extent, from the Eastern coastal fringe north of sydney, are largely representations of various amimals, fish and human beings. Some of the cave paintings from Napier Broome Lay (Mount ford, 19:37, pp. 30-40), D'rince Regent River (Bradshaw, 1891, p. 100), and adjacent localities are drawn with a freedom of style that is not known in mny other part of Australia.

When, however, the art of the natives from Central and south Austratia, Trasmania and Wextrrn Australia is examined, it will be noticed that by far the greatest number ot desigus in use are so highly conventionalized as to be indecipherable without the assistance of the artist who produced them.

The identituble figures of wen, amimals and reptiler form a small percentage of the designs to be seen at the various sites. An examination of Basedow's work on the rock carvings bi 'Honth Australia (Busedow, 1915, 1. 195-211), and the writer's work on the same subged (Mountford, 1928, p. 337-i366), will make this point clear.

The drawings in the Wati kintura suite and, for that maller, all those colleeted at the Wiarharton Rauges, showed characteristics similar to the designs from Central, Southeru and Western Australia.

F'or that reasom, it was decided to analyse the Wati hiatjarat suite under sis Leadings, as follows:
(a) 'I'ypes of desigus used.
(b) Number of occasious on which a particular design appears.
(c) Meaning attinehed to aspecitiod design in each particular figure.
(d) The numbers of each type design used.
(c) The choice of colours.
(f) Age of aborigines respousible for the production of the drawings.

## (a) Type on Design Used.

Figs. 1 and 2 , being anthropomorphic, are excluded from the analysis, figs. 3-17 only being considered.

An examination of the various figures showed that the symbolical designs used could be grombal under ten hadings. The drawings of miscellaneons objects, inchnding fuman, animal, and animal tracks, may be set under another two, making a lotal of twelve categories in all.

The ten symbolic designs are shown in tigs. 18 to 27. Three of the figures, i.e.

18-19, and 22 are considered to be amplifications of simpler figures such as 20,23 and 25.

Each of the figures, i.e. 18-27, was used by the natives to convey different meanings, and will be considered as a separate element.


As mentioned previously, the analysis excluded designs from figs. 1 and 2. These, however, would not influence the averages to any extent as they only contain 17 only in a total of 357 designs.
(b) Number of Figures in which a Particular Design is Used.

Concentric circles (fig. 18) .. .. .. .. .. 10
Parallel straight lines (fig. 19) .. .. .. .. 8
Meandering or zigzag lines (fig. 20) .. .. .. 5
Spirals (fig. 21) .. .. .. .. .. .. 6
Parallel meandering or zigzag lines (fig. 22) .. .. 4
Circles (fig 23) .. .. .. .. .. .. 5
Ellipses (fig. 24) .. .. .. .. .. .. 2
Straight lines (fig. 25) .. .. .. .. .. 2
Squares (fig. 26) .. .. .. .. .. .. 1
Fern leaf (fig. 27) .. .. .. .. .. .. 1
(c) Meanings Attached to Each Design Element.

Fig. 18. Concentric circles (10 figures).
Fig. 3-Hills, waterholes and gum trees.
Fig. 4-Waterholes and ceremonial marks placed on the bodies of the natives (which may refer to some totemic centre).

Fig. 6-Waterholes and hills.
Fig. 8-Waterholes.
Fig. り—Hills, gum trees and waterholes.
Fig. 10-Waterholes.
Fip. 12-Ceremonial body markings (see fig. 4 above).
Fig. 13-A "damper" made from ground or pounded fruit.
Fig. 15-Waterholes and hills.
Fig. 16-Waterholes.
Fig. 17-Ceremonial fig tree.
Fig. 19. Parallal straight lines (8 figures).
Fig. 4-Crecks between two waterholes.
Fig. 5-Ceremonial marks on aborigine's chest.
Fig. 6-Paths made by euros.
Fig. 7-The Wati Kutjara and an inma board,
Fig. 8-Mark made by dragring a ceremonial object.
Fig. 9-Creek and range of hills.
Fig. 11-Range of hills.
Fig. 17-No meaning obtained.
Fig. 20. Meundering or zigzag lines (5 figures).
Fig. 3-Creeks, ranges of hills, lines of spinifex.
Fig. 4-Ranges of hills.
Fig, 5-Trail made by dragging object.
Fin. 7-Creeks.
lig. 15-Creeks and ranges of hills.
fig. 21. Spirals (6 figures).
Hig. 3-Waterholes, hills and gum trees.
Fig. 亏-C'eremonial marks on backs of imitiates. Similar meaning on same plate for concentric circles.
Hig. 1:2-Ceremonial marks on backs of initiates.
Fig. 1: D-Danper made from ground fruit.
Wig. 10-Waterholes.
Fig. 17 - ${ }^{\text {rig ig trees. }}$

## Figt. D: Paralld meandering and zigzag lines (1 figures).

Wig. ! - Paths made ly ancestral beings.
Fix. 10-(ireek made by ancestral suake.
Fig. 12-Trail made by the dragging of digging sticks.
Fig. 13-Paths made by fruit as it rolled from large heap.

Fig.23. Simple circle (5 figures).
Fig. 3-Small waterholes.
Fig. 4-Waterholes.
Fig. 6-Waterholes.
Fig. 10-Waterholes.
Fig. 16-Opossum being's camp and windbreak.
Fig. 24. Ellipse (2 figures).
Fig. 9-Native oven.
Fig. 10-Hills.
Fig. 25. Simple straight lines (1 figure).
Fig. 11-Hills.
Fig. 26. Square (1 figure).
Fig. 11-Waterholes.
Fig. 2\%. Fern leaf design (1 figure).
Fig. 5-Pubic Tassels, Wanigi.

Summary of Analysis of Meanings Attached to Various Design Elements.
Fig. 18. Concentric circles.
These are largely used to represent a geographical feature, a locality, or a waterhole.

Fig. 19. Parallel straight lines had a broad range of meaning, such as was to be expected with so simple a design. In general, it represents creeks, ranges of hills, paths and ceremonial markings.

Fig.20. Meandering or zigzag lines.
The meanings attached to fig. 20 were similar to those associated with fig. 19, representing ranges, creeks and tracks followed by the various ancestors.

Fig.21. Spirals.
These were used side by side with the concentric circle, fig. 18. In many cases the figure was started as a spiral and completed as a concentric circle (see fig. 3'3, G.J.M.).

Fig. 22. Parallel meandering and zigzag lines.
This is an amplification of fig. 20, and the meanings used for the one are equally applicable to the other.

Fig. 23. Plain circles.
This figure, like that of the spiral, has similar significance to the concentric circles.

Fig. 24. Ellipse.
Used twice only, once picturing a mative cooking hearth, and in fig. 8 in a somewhat more elongated form depieting hills.

Fiy. 25. Straight line.
Although a simplified form of fig. 19, the single isolated straght lime was used twice. On each occasion it represented ranges of hills.

Fig. 26. Square.
This musual pattern was used on fig. :s to represent rock holes: the native drew the square to indicate particular rock holes of that shape.
Fig.2\%. Hernleaf.
Well known to students of primitive art from many parts of the word (Mometford, 19:35, p. elif), the form leat design appeared only in fig. t. In this case, it had two lotally unelated menmings, i.e. a pubic latsel and a uanigh.

Varions tracks of animals and men were noted in figs. "3, 10, 11 and 16 . It is more than likely that, in sutites of drawings relating to the personal experiences of the aboriginal artists, or to the domes of the animat ancestors, such as the kanguroos, emms or opossums, a mreater percentare of lootprints would occur. Nevertheles, they womid not approdeh the pereentage of human and animal foot
 In somuc localities, in the rock cenvinge site uf south Australia. various footprints form the bulk of the petroglyphs present.

## (d) Tie Numbers of Eiab Design Used.

| Fig. 18 | . | 64 | Fig. 23 | . . | . | 80 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fig. 19 | . | 10.4 | Fig. 24 | . |  | 5 |
| Fig. 20 | . | - | Fig. 25 |  |  | 2 |
| Fig. ${ }^{2} 1$ | . | 97 | Fig. 26 | . |  | 2 |
| Fix. '20 |  | 41 | Hig. 27 | . |  | 4 |

These ligures reveal an interesting fact. Ont of : $3 t 0$ figures drawn, the circular designs, j.e ligs, 18, 21,23 and 24 represent about one half, j.e. 176.

As most of the drawings are, in reality, carude maps of the country, it is to be experted that the circular bigures should predominate, for, as has already been
shown, such designs usually represent some well known topographical feature such as a hill, a waterhole, or an especially large tree. The predominance of circular designs is also evident in Aranda drawings (Mountford, 1937A, p. 193).

For the same reason, designs 20 and 22 (parallel straight and meandering lines) symbolical of creeks and ranges, were used 149 times, leaving 75 figures to represent other features.

The drawings of tracks, objects, and animal and human forms, which number 17 in all, are excluded from the above analysis.

## (e) The Choice of Colours.

As mentioned previously, the native was given the free choice of four coloured crayons, i.e. red, yellow, black and white. Especial care was taken to see that these colours were always on hand. One red crayon was, by chance, of a brighter hue than the others, and it was interesting to note that this crayon was in constant demand.

The colours used were also analysed, with the following results:

## Combinations of colours used.

(Number of figures in suite, 17.)


It will be seen that the most commonly used colours were red and white, each appearing in 16 out of the 17 figures. Yellow was used in only five sketches, and black in two.

In the majority of cases, white was used as an outline of the main design, whilst red, and in two cases, yellow, formed the main design. (12).

Red is the favourite colour of the aborigines, it being considered to be the sign of good health by the Narrinyeri peoples of the Lower Murray. During the smoke drying of the dead body, it was anointed with red ochre and grease for the same reason.

The colour is used most extensively in ceremonial as well as personal decoration, and long journeys are undertaken to obtain this valued cosmetic. The most famous of these journeys recorded was that undertaken by the Deiri tribe of the North-East of South Australia to the red ochre deposit at Blinman in the Northern
(12) The key to the colours used in Figs. 1-17 can be seen on Fig. 2.

Flinders Ratures in South Australia, a distance of :300 miles (Gason, 1879, p. 280). During a recent expedtion to the Northern Flinders it was asecrtained that natives travelled from Charlesville, S.W. Queensland, to Blimman, a journey of over 900 miles, for the same purpose.

Black, as the figures show, was ased in two drawings. Dislike of this colour could hardly be the reason for a not greater use, for ou many occasions during his stay at Warupuju the witer saw the natives decomang themselves with grease and powdered charcoal.

## Ages of the men who produced the drawings.

The majority of the drawings sollected on this expedition were the handiwork of the older men.

In the series under review, 15 figures were produced by men over 30 years of age, one by a native of about 21 years of age, and two by a youth of 18 .

Figs. $\overline{5}, 8,1^{23}$ and 13 , drawn by K .1 estimated age 50 .
Figs. ", 14, 17 "K.3 " 55.
Fig. 7 " "K. 4 ", 21.
Figs. 6 and 16 ", 8.8 " 18.
Figs. 1, 9 and $10 \quad$ "K. 14 , " 46.
Fig. 15 " "K. 48 , " 40.
Figs. 3 and 11 , "K.51 , „ 38.
(k.6), the iuterpreter Pitawara, also made form sketches (not reproduced); his estimated age was 24.

It will be seen that the arerage age by the seven artists responsible for the filteen figures is estimated to be thirty-seven years.

Gounger men, with the exception of K. S , made sketches of simple ohjectn, or lines of waterholes, similar to fig. 6. These men volunteered little detail. This is to be expected, for the iequisition of a full knowledge of the legembary stories requires years of training, as well as many lomg and arthous journeys to the varions totemic centres.
K.8, who drew the sketch indicating the origin of the Wati Kintara (fig. 16), although quite a yomg man, 18 years old, took a prominent part in the ceremonies.

He showed more personality than his companions of the same age and it is likely that this, compled with a higher degree of interest, cmabled him to aequire a deeper kuowledge of the eeremonial lite than that obtained by other young men.

SUMMARY.
This paper records a suite of aboriginal drawings relating to the wanderings of two legendary men, the Wati Kutjara. The drawings are the work of men of the Ngadadjara tribe of the Warburton Ranges of Western Australia.

The first part of the paper deals with a detailed description of each sheet, and the second, an analysis of the designs used, the meanings thereof, the favourite colours, and the ages of the aboriginal artists concerned.

## LITERATURE.

Tindale, N. B. (June, 1936) : Oceania, Vol. vi, No. 4, pp. 481-485.
Tindale, N. B. (Dec., 1936) : Oceania, Vol. vii, No. 2, pp. 169-185.
Spencer, B. and Gillen, F. J. (1899) : Native tribes of Central Australia.
Spencer, B. and Gillen, F. J. (1904) : Northern tribes of Central Australia.
Mountford, C. P. (1937) : Trans. Roy. Soc. of S. Aust., pp. 30-40.
Bradshaw, Jos. (1891) : Journ. Roy. Geog. Soc. Aust., Vic., p. 100.
Basedow, H. (1935) : Journ. Roy. Anthrop. Inst., xliv, pp. 195-211.
Mountford, C. P. (1928) : Aust. Ass. Adv. Sci., pp. 337-366.
Mountford, C. P. (1935) : Aust. Ass. Adv. Sci., p. 213.
Gason, Samuel M., Taplin, G. and others (1879) : Native tribes of South Australia, p. 280.

Mountford, C. P. (1937) : Trans. Roy. Soc. of S. Aust., p. 93.

# TASMANIAN ABORIGINES ON KANGAROO ISLAND SOUTH AUSTRALIA 

By Norman B. Tindale, B.SC., EThnologist, South Australian Museum


#### Abstract

Summary Scattered through early accounts of South Australia there are brief references to Tasmanian women who were brought to South Australia by sealers and escapees from Van Diemen Land during the early years of last century. The present paper summarizes some facts relating to four Tasmanian women and places on record a few words still known to the descendants of the Tasmanians. It also gives an account of two small pieces of archaeological work carried out by Dr. H. L. Movius of the Department of Anthropology, Harvard University, N. de Crespigny, and the writer at Cape Hart and at Antechamber Bay, in March, 1936.


# TASMANIAN ABORIGINES on KANGAROO ISLAND SOUTH AUSTRALJA 

By NORMAN B. 'I'INDALif, B.Sc., Birmnor,inger, Souri Aurralan Metseum.

Plate iii, and 'Text fig. 1-3.

## INTRODTICTION.

 to Tasmanian women who were brompht to South Australia he sealers and escapees from Van Diemen I and during the early years of last century.

The present batue smmarizes some facts relatime to fon Tasmanian women und plaess on reend a few words still known to the deseremtants uf the 'Tasmamians. It also sives an acount of two small pieces of arehaeolosieal work carrjed nut by Dr. П. I. Movius of the Department of Anthropology. Harvard ITniversity. N. du ('rospigny, and the writer at Cape Fart and at Antechamber Bay, in Mareh, 1936.

There are many references in the literature to the lawless perple of Tamanian. Anstralian and European origin who lived aloner the Nonthern colasts of Australia


 of these people daring the coluse of theif desoription of the archatongieal remains of an ancient occupation of Kangraroo Island.

In more recent years the collating of the reminiserness of some of the whest inhabitants of the island amd a stuly of official docmmems and records has enablerl the main outline of the story of the 'lasmanian native women on he fraced down to the time of the death of the last one about the year 1888.

Among those who have contributed to these defails irre Mr. Robert Snelling. born in 185:3, whose parents issued Govermment rations to the blacks on Kangaroo Island; Mr. Fred Buick, born in 18:万6; the late Mr. C. d. Mas, Curator of the Flora and Fanna Reserve at Fliuders Chase, ind Mr. A. Daw. I am indebted also to Mri. M. 'T. MrLean (Protector of Aborigines) for information contained in nfficial douket No. $390 / 1894$ in the Ahorigines Offies and in docket No. $280 / 1894$ of the Destitute [3nard Office. Mr. H. T. Condon kindly made drawings Nos. 12-15.

The only pictorial record of the Tasmanian women of Kangaroo Island is probably the one given in a sketch by Leiph (1839) opposite p. 105 of his aseount where three women are shown as squatting with leas folled before a fire, behind a low breakwind (pl. iii, fig. 1).

## THE NATIVE TVOMEN OF KANGAROO TSLAND.

 has belped to contume the recored but mumatoms aceomats attest to the presence of foner Tasmanian women on the ishand. 'The somb Anstratian remble rember for
 notes slates that " 4 natives of Van Diemen Land" were also prosent. In Destitute Board Office docket No, $28 / 18: 4$ there is correspoudener which disensspes the status, for reliof purposes, of Mary. the halde easte daughter of Belty, one of these 'lasmanims (italies are onrs) : "The applicant is not an aboriminal of N.A. blown, hut it has been the practien to assist aloriwines from the other Anstralian eolonies when located in South Australia. There were there (B) Trasmanian women, mathe



 (Sigued) F. H. Hamiloon, 8th. Sept. 1894."

This official record indicates the prohablity that the last Tasmamian anverved on Kangaroo Jsland until 1888.

In addition to the Tasmamian women at leasf two Anstralian ahoriginad women are mentioned in early records and it seems atvisable throfote of list the bames of both the Tamaniau and Anstraitan women and also in give supplementary details montioned by my informants ame a list of some other noto found in the ephemeral literature.

## Tasmantang.

## (1) Bumble-foot Sal = Biy Sut.

"Fint-looking big black", bunble-footed, harl lost two toen by hurning it a fire ; her hair was "wonderfully eurly as in stuke and Betty". Old uccounts state that she had dark skin and wonlly hair. She is supposed to have died somewhere near the waterfall at Middle River. She is mentionmel by Bull (1878, p, is) as ": Tasmanian hackwoman, called sial, who had lost half of ome of hel feet whest goung by sleeping with them too near the fire".
(2) Betty $=$ Pole-cat $=$ Old Bcl.

 children are mentioned in a newspapar artiele ("Sonth Australia Repister", athth S'plember, 1844) : "Nat Thomas has . . . a native woman whe cat،he wallahy for him. By her he has three very interesting lillo dhitdren, whe emmhine the iatelligence of the white with the activity of the native." The ron went 10 sed
amil was not heard of again. The danghterr both hat chikran of whom fire were still living in 1936. Thele are also numbers of netoroom doscomblants. Detailed

 in 1878 and was buried at Antechamber Bay ; the approximate sito of hor grave is known to be in a small field opposite the point where the main rant turn abroptly northwes away from the hanks of Chapman River (Seelion 7.j. Fmmed of Dudley). Unfortumately tha surface indications have been obliterated apedemtally hy plonghinge. Tolmer ( 1882 ) mentions old rat as a Tasmanian amd one of her danmoters, Mary, as the dith of Nat Thomas. Mary was stodied ame deserihed by Bery (1907). Her photormph is also published be Hallack (1905, p. 4:3). Mary's previonsly mentioned $189 t$ applieation to the (iowerment for shatenance was approved, and in retion for the surrender of her property she was allowed rations from the Aborigines Offiee mutil har death withe! !th Sentember, 191: A foll days after her death her oldest daughtere Emmat applied for permission in rotain the use of the cottage propere until it was sold hy the fovermment. Enama was then 60 yars of age. Her brother Toseph wrote to the Surveyor-fanmal from Pemeshaw on Anenst 31. 191t, asking tor partimars mequrding the "property lately ncenpied by my late mother Mary".

The other danghtar of Betty is stated to have married a fair-hareal man from Lincolnshire, and throf of her four sons and several grandohildom survive,
(3) Old Suke = Sal (not to be confiused with Tilthe Sal).
A. Tasmanian who was of a retiring hature. Sha was spldom seen in the later days excent when she gathered her rations. Aceordiner to If. Snelling she was the last to die. but there is doubt as to her burial place. In 1844 she was arrested with another woman by Tolmar for complicity in the killine of Moredith, an earls visitor from Van Diemen Land.

## (4) Puss.

A forth Tasmanian woman is mentioned under the name of Puss.
Puss aml Polecat (Betty) are deseribed as having been hromght, ogether. from Van Diemen Land by Robert Wallen (Worley, Whalley, Wally, Walker, Wallenss) who escaped from chstocly there abont 1817 (arriving at Kangaroo feland about 1819). Theres seems to be little remmoraber of frus on the island.

## Adetralians.

In addition to the above Tasmanians, several mainland natives are heljeved to have lived on the island and one or two hase been al limes eonfused with the foregoing. Two of them are given particular notice:
(1) Little Sal $=$ Sal.

In Tolmer's (1882) account of Kangaroo Island Little Sal is mentioned as having been abducted from Port Lincoln abont 1827. According to R. Snelling she claimed to be a mainlander. Two other informants emphasize that in contrast to Betty and Suke she had straight, or at most wavy hair, an Australian characteristic. It appears from local information that she was buried at Springy Water, near Stokes Bay, about the year 1877.

Two other informants, the late Mr. C. J. May, and Mr. A. Daw, regarded Little Sal as a Tasmanian, and Hallack (1905) states that the last of the Tasmanians is buried at the place called Springing Vale, near Stokes Bay, Kangaroo Island. This seems to be the same place as Springy Water.

The weight of evidence seems to be that Little Sal was a native of Port Lincoln.

## (2) Sally Walker.

This woman was well known as a native of the adjoining mainland. She lived at Hog Bay and had no associations with the Tasmanian women.

It seems that at most four Tasmanian women were among the permanent native inhabitants of Kangaroo Island during the lawless days preceding the foundation of the State. The earliest date suggested for their arrival is 1810 . They were definitely present in 1819. (ofticial records indicate the presence of four in 1866, and one of them lived on until about 1888. One (Betty) had children and some ten quadroon and octoroon descendants, live in South Australia to-day.

## ARCHAEOLOGICAL TRACES OF TIIE TASMANIANS ON KANGAROO ISLAND.

Mr. H. M. Cooper, who has displayed much interest in the systematic collecting of implements from camp sites on the mainland of South Australia, several years ago, was asked by the writer to extend his activities to Kangaroo Island. During the years 1935 to 1937 he found no fewer than 47 sites indicative of the ancient highly characteristic native occupation of Kangaroo Island. Some details of his discoveries are given in another paper in this series. In February, 1936, after one of his periodic visits to the island he brought back to the Museum a European gun flint and several strange bluish-grey flint implements of a type not previously found on the island.

At first glance these seemed to be of Tasmanian origin. Some of the flint implements and the gun flint had been found on a small rectangular site indicated by stones and by the remains of a stone chimney at Cape Hart. The others, even

 Whintappears in the 1910 edition of the Shadred map of Dudley.

Whe flint from which the implaments were mate proved to be similat that

 ant by IIowehin (1934, p. 1.5).
 istund, Dr. H. L. Movins, N. do Cpeppigny, and the writer, visited the sites in Mareb, 1936. Faimination led to the recovery of further flint flakes at tho ("ape

 the wind-swept are wered by the 7 mat site and in its immediate vieinity. Whe

 the west of ('ape Mart. Wint s.onm had dropped all momains io the limestone and hat removed most traces of food debris exeept for at few weathered bones.

The Ahtechamber bay site, which was silmated approxinately motres due


 debris on the site of what was noee a lut. Sevaral additional flint implement



 of a domino piece und several flints were recovered.

Examples of the flint implements, the gam" picce cthe half of the two of
 bottle are shown in plate iii, lif. $\because$. and une of the flints and the dame piece are shown in the fext figmres 1 and is.

On our visit to Antchamber Bay we wire accompanied by a girandson of tho Tasmanian woman Betty, who was mble to iudiente the site as being at the
 home of his grandmothor, who, later om, lived in a collage at seation gis, south "1" ('hapman River, until her death in 187s. betty's chilatren were mheneated by the wife of the lighbomse-kerme at Coane Willoughby, a bew kilometres away. Thbs statement arroborates one memtioned by Hallacts.

## Significance of the Implementr.

The Tasmanian implements, made on Kanparoo Island in the years immeni ately after 1819, are of considerable thenentical interest.

They are entirely unlike the coarse and lare implement: charathembe at the many sites of the archaic Kangaroo Lstand sulture. They were found on two statll aud restricted areas, associated with hut sites, and remote from places where implements of the Kaugaroo Island industry have leen found.

They indieate how, when conditions are favourable, even such it pransient oceupation as is indicated to us by our historical knowledere of Kamsaroo Ishand, may become recorded in archacological debris.

The presence of the Sonty Kangaroo as the principal mammalian font, places the periol of ocenpation of the Antechamber Bay hat site att an early date, within the period of lawless oceupancy hefore 1836, for it is stated that owimg 10 the depratations of the sealors theso animals soon became rare. In later yeats pigs. wallabies and goats provided the principal animal foods used on the island. Flinders in 1809, and Sutherland in 1819, both noticed tha amazins ahmedanse nt coun and kangurno at the eastern end of the indand, in comtrast with lanl (npeaking of the year 18:36) and Leigh (of $18: 37$ ) who both comment on the abomer of the ce creatures.

The home-made gamp-piece from Antechamber Bay surgests that for the refugees aud sealers, the tedium of life in their isolated home was matr maior hy means of games.

The flint implemonts indicate that their' Tasmanian women partners han mot yot become entirely divoreed from their old culture.

The implements tbemselves are nt eonsiderable interest.
In April. 1986, at the reçuest of the Cingal Soncety of Tasmania, the writer made a visit to Tasmania and exmmined amb reported on the pock carvinges found by Mr. A. Id. Meston (1933) at Mount C'ameron West. He Was amenmpanted on his visit by the Director of the Thamanian Museum, Dr. Pearsom, and by Mr. A. L. Mestun. A passing risit was malr to kocky r'ape ('ave where some years
 Lo a depth of more than two meters. Th. whs then notion that flints and implements from the basal strata of the cave were stromply patinated, while those from the superficial layers were unt so affected. When the colleetions marle by Mr. Meston in the Rocky Cape section were separated, athitrarils, into a patinated and nonpatinated series, it was apparont that important typolngical difformors were pros sent in the two. It should be emphasizel that these preliminary indieations shomber be tested liy a carrfully controlled excavation of the eomsinleable portions wit the site which remain undisturbed.

A few monthe later while on a visit to Cxford. Dr. Hemry balfour in formed the writer that some time previonsly he had determined the presence of two typolorically distinct series among the Tasmanian implements in the Oxford Musem collections. Thus it is evident that when careful excavations are made, considerable light will be thrown om the development of Tasmanian implement cultures.


2


Text fig. 1-3. 1. Three views of a flint inulement from Antechamber Bay ( $\times 6 / 5$ ) 2. Fint implement from N.W. Tasmania ( $X$ 行) . 3, Fortion of a hand-made domino piece ( $X$ (\%).

Implements of the Old Tasmaniam neries are typieally made from flakes which have been struck off from an unprepared platform. Those flakes are trimment around the edges before and during nse, aml while often of highly chanaeteristio form generally conform to the shape of the primary flake from whieh they were made. Specialized implements of the Newpe Tasmanian sreries are typically matho by striking off a flake from a preparem striking platform. The angre hetween that portion of the striking platform retaned on the implement and the flake surfate prontued, is an ohtuse one, usually temding 10 about $110^{\circ}$. Such implemunts are characteristic in form. 'Text fig. I shows a typical dint implammon from dula chamber Bay, Kangaroo 1sland. It may be eompareet with fir. ㅂ. int example from North Western Tasmania (A.23192 in the s. Anst. Musemm) , both of these implements agree in possessing the characters peouliar fo the Nower Tasmanian serips. That the implements made by Tasmanian women in the periont shortly after abour 1819, wre of this sperialized form, is therefore of some interest and importance to our study of Tasmanian chlture seduchees, since it helpe to confirm what we have already noticed in 'hasmania.

## 'Traces of a 'Tagmantan Vorabulary Smbuting on Kianiarmo Tmanto.

Joseph, a grandson of letty. the Tasmamian woman, a man of perhaps so
 He complained of inss of memory and it was dificuld for him to tall for loner on one subject, but it was exelt that much combl have heen learmed if time had permitted. The following words were written down in a phonetio system in use at
 enumeiated hy Joseph, whe remarked that they were tandeht to hims hy his grandmother, who had told him that they were in the "Hohart 'T'mwn Languare",

```
'uina th:'napari
lil tuinapari
'bulunta
ma:bir, ma:bier
you nuderstaucl.
do you understund?
po straight. thead.
po around.
```

The material is scanty. Two of the words have a matieal flavour. The prosnomu ['nina] appars in he the sane as the neenn - you, reorded for one of the Sonthern tribes of Tasmania. Aecordinge to athether grampon of bety the two families at one time used many worts whirh were not umblerstond hy nther prophe. but the children had forgoten most of them,

## SUMMARY.

Some details are given of the Tasmanian women who formerly liver on Kangaroo Island together with some notes on the mixed hond survivors.

Some stone implements, made on Kangarno lstand by the Tasmanian women, are described together with an account of the circumstances in which they were iound.

Several words, helired to be of Tasmanian oriewin, are transeribed in phonetie form.

## REFERENOES OIIED.

Moore, H. L'. (1925) : Notes on the early wettlers in South Australia prior to 1 sibld. Roy. (icag. A'oc. of Australiu, soulh Aust. Branch, Proceedings, xxv, pp. $81-$ 135.

Berry, R. J. $1 .(1907)$ : Limmer deseendant of an extinct ('Tasmanian) race. Proc. Roy. Soc. of Victoria, xx (n.4.), pp. 1-20, pl. i, with bibliography.
Tindale, N. B. and Macrath, B. (i. (1933) : Traces of an extinct aboriginal population on Kagmen Istand. Records of the S'. Aust. Uuseum, iv (3), pp. 27e289, figs. 1-11.
Leigh, W. H. (18:99) : Recomoitering Voyrages, travels and adventures in the new colonies of Nouth Australia, London.
South Australian P'arliamentary L'apers, 1866, No. 8, p. 12.
Bull, J. W. ( 187 s ) : Early experiences of colonial life in South Australia, Adelade.
Tolmer, A. (188\%) : Reminiscences of an adventurous and chepuered career al home and in the antipodes. "3 vols., London.
Hallack, E. H. (1905) : Kangaroo lsland. Adelaide.
Tindale, N. B. (1933) : I'runs. Roy. Soc. S. Austo, lvii, pp. 130-14e.
Howehin, W. (193-t) : Stone implements of the Adelaide tribe of aborigines now extinct. Adelaide.
Meston, A. L. ( $19: 34$ ) : Ahoriginal rock-carvings in Tannatuia. Antiquity, $\delta_{\text {, pp }}$ p. 179-184, pl. 1-4.
Tindale, N. B. ( 193 a) : Lexend of Waijumari, Jaralde Tribe, Lake Alexandrina, South Australia; and the phonetic system employed in its trauseription. Records of the S. Lust. Museum, v (3), pp. 26-274.

## HXP'LANATION OH PLATE LII.

F'ig. 1. Leigh 's encounter with the 'Tasmanian women of Kangatoo Islaud in 1836 (atter Leigh).
Nig. … Kemaius from Antechamber Bay. a-c. Flint implements, d. Turbo undulatus shell, e. gaming piece, f. base of a glass bottle.

 K.AN(GLOO MSLAND.

# RELATIONSHIP OF THE EXTINCT KANGAROO ISLAND CULTURE WITH CULTURES OF AUSTRALIA TASMANIA AND MALAYA 

By Norman B. Tindale, B.SC., Ethnologist, South Australian Museum


#### Abstract

Summary An account of some observations on the former human occupation of Kangaroo Island was given by Tindale and Maegraith (1931). At the time of its first discovery by Matthew Flinders in 1802, this island was devoid of inhabitants. Additional details regarding this occupation have come under notice in recent years and there has been opportunity for comparison with similar industries on the adjacent mainland; other discoveries have been made on mainland sites, which appear to bear some relation to the island one. The valued opportunity presented by the receipt in 1936 of a Carnegie Travelling Grant has enabled the writer to discuss the problem of these implements with research workers in Europe and America and also to see examples of similar objects, characteristic of the Upper Palaeolithic of Malaya, in the Royal Colonial Institute, Amsterdam, and at the Peabody Museum, Harvard University. The following observations summarize the results obtained by several field workers.


# RELATIONSHIP of rhe EXTINCT KANCAROO ISLAND CULTURE wrth CULTURES of AUSTRALIA TASMANIA and MALAYA 

By NORMAN B. 'I'INDALE, B.Sč, Ethnologist, South Australian Museum,

Fig. 1-16.

## INTRODUOTION.

An account of some ohservations on the former human occupation of Jiangaroo Istand was given by Tindale and Maegraith (1981). At the time of its first discovery by Mathew Flinders in 180 , this island was devoid of inhabitants. Additional details ragarding this accupation have come under notice in recent yoars and there has been opportunity for comparison with similar industries ou the adjacent manland ; other discoveries have hren made on maindand sites, which appear Io bear some relation to the island one. The valued opportumity presented by tho receipt in 1936 of a Carnegie Travelling Grant has enabled the writer to disenss the problem of these implements with rasearch workers in Europe and America and also to see examples of similar objects, characteristic of the l'pper Palamolithie of Malaya, in the Royal Colonial Institute, Amsterdam, and at the L'abody Mhsemm, Marvard University. The following observations stmmarize 1ha results obtained by several field workers.

Is December-eJanuary 1931-32, Mr. F. J. Hall accompanied the writer to the south coast of Kingraroo Island in order to examine Mount Taylor Cave. Although this cave proved to be unproductive implements of the Kangaroo Island Industry were found on surface sites at several other places, and in situ in estuarine silts at Rainy ('reek. In Drcember', 1984, a party of naturalists visited Flinders Chase
 of the island were published by Tindale, Fenner and Lall ( 1935 ), and several addilional sites for implements were found.

Mr. H. M. Cooper, who has extensively and systematically collected implemouts on mainland sites, was resuested to search for implement sites on Kangaroo

 were prediousty bumbed. (1) the implements hrought logether by Mr, Conper, thati have been domated to the Nouth Australian Dusenu, and are stmeded herem.

The implements found below a marime horizon, at Fulham, south Aust malia, by Capt. S. $\Lambda$. White, were recently lent by their discoverer for study.

The area m the vicinity of fulham where White (1919) found these implements, has leen under exammation for several years by a commither al mombre,

 hy White is now an arthrotal late athe is inateresibibte, hut hores drilled within the





 implements ure fignred in this paper.

This year Mre. Cooper and the writer made a conse stuly of a deeconty plounhed
 shomdere of the hill just below Halletl Cove Railway shation. Imptements of beal-

 ealcareous chay and sand in present on the flat ho ot ; hill. Fowed debris and ather
 recent campsite with black and soil, eath forminir a monnd, are prenent, and on the best preverved of these abutant food debrin and a few implements of the streallod "Hurundian" type were gathered.

Howehin (1903t) published 4 shost interesting neconnt of the typolong of imploment: fomme in the area ance werupied by the Adelate tribe. It is the
 distriets of south Anstralia near Allelaide. Huwehin is carefold to indicate that

 on the rapidity with which the aborgines disappeared is the face that, despite active search and enuniry, not one athentice stone implement, monmeat fom lase
 tion, cithor in Australia or abroad.

Howchan deals with the implements of all peoplas who nuy have lived in the
 be establisherd.

It is one of the praposen ot the dixenswion concluding this paper In iuthente
 to those established by Hald and Timbald (19:20) for the domar Martay Vallay.

## THE KANGAROO ISI」AND INDUSTRY.

New Tocalty Recordh and a Desmription of tite Rainy Creek Site.
During 1931-32 additional implements of this industry were found hy F. T. Mall and the writer at Hawks Nest, prineipally on some areas of ti-tree sermb which


Fig. 1. Sketeh map of Farta or Kangaros Island, to slow implement sites.
had been eleared and plotghed since our carlier visit. Other sites (Text fig. 1) were:
(11) Lig Timber, I. 6 kilometres east of "Fords".
(b) Jount Plasant, on croded laterite-gravel-covered ground.
(a) Eleanor Station.
(d) Kaisarre or Mount Pleasant Station, $3 \cdot 2$ kilometres S. of the station m the higher bank of Eleanor River.
(c) Redbank Station, near the southern gate on the road to IIrwks Nest, on Mroded laterite soil.
(f) Gyonet River, eroded from soil near the bridge on the Penneshaw road.
(g) Ramy Circek, near the homestead of Eleanor Slation. At this site a washout, caused he the artificial cuthiner of a ditch across a flat, has cansed the strean to ent to a depth of some two metres into a series of elay bods and silts; apparently of estuarine origin (Text fig. ©-4). These are situated at an extimated height of tive-six metres athove present sea level. The silts in this basin seem to have acen-
mulated behind a bar of calcareons dune limestone which marks the seaward margin of a former shoreline of Vironne Bay into which the waters of Rainy Creek once: flowed. At present its waters are captured by the Eleanor River which. after flowing tor $0 \cdot ;$ kilometre firther west parallel to the shore-line, turns sonth


Fig, st-5, ㅇ. Sketeh plan of the virinity of the junction of Eluanor River ame Rainy Creek, Fiangarou Trland. 3. Sketch section, Heross liainy Creck, 4. Enlarged gection of elay beds, con-
 patsage throuxh the coastal salud dumes,
and breaks out through the prosent "anatal dumes. Th doing so it has ent throbirh


 present sea level along the river banks ind on the foreshore.

The clay heds exposed at Ramy Creek (Text fig. 4) consist of a dark clay (forming the Jowest layer visible in the section) upon which there reats a metre thickness of yellow clay, followed by $0 \cdot 5$ metres of light yellow sandy clay, above which is the dark sandy soil of the present clay surface.
lmplements were present in the yellow clay at a depth of $1 \cdot 3$ metres and in Whe sandy clay at 0.8 metres from the surface, while seventeen others including both hammerstones and cutting implements were found on the flom of the washont where they had been deposited by the erosion of the elay. No traces of food remains or ash have been preserved. Samples of yellow day when washed and examined microseopically unfortumately do not sem to lurnish any direct indications of the associated fauma.

Other implements are present on the weathered surface of the calcareons dome. limestone near its junction with the old quartailes rast of hainy Gred as is also indicated in the section.

The local physiographer enditions sem to indicate the ponsibility that the abys wero laid down during a period whet the heds were at or near sea level, wharas at present Rainy (reek is engaral in entrenoling itself, to a shallow deptls, in jits own sediments.

Estimations al the area over which the implementh were distrabuterd mggent that the twenty foms implements reovered were derived from an area of 27.5 square metres by the matural washme of mome five hambed enthice metres of chay

During the 1913 生 visit to Kagaroo island a few forther implement sites were noticed.
(h) At bucky River unc excellent example of a hammaratome was piekeol "I by the caretaker of the Frlora and Fama Feserve (Mr. H. Hanmen) near the top of the old limestone clume immediately south of the Statiom homse. I' 10 the present no examples have bern turned up by the plongh on the neighborminy fiats, which lane vielded bones of many recuntly extinet mammals,
(i) About two kilometres downstrean trom the Station the Rocky River sud. denty entrenches itselt and drops into a rather deep limestons nopere exatated in dume limestones. (On its lomtherm bank the ateep walls are hollowed, im plates, imon shallow eaves. One of these is sulliciently large to server as a shelter. A suall occupational horizon had been disenvered here is few yeaks ago by one of vithe selters, who had been iu seareh of enamo. 'The whole of the floor debris had been sitted and the finer dhist and ash packed into sitcks, surural sacks foll of the sifted garth had not been taken away. 'The sateks were old and now deeayed. The coarse
 amik nome chatroal, but no implements were present. The patucity ul the remaths
and their disturbed condition prevented our arriving at any certain conchesions as to their significance.
(j) At Forth-East River, on the fat just above its junction with North-W esst River, a hammerstone was found on the surface.
(k) On hillside above Penneshaw School house.
(1) Between 1935 and 1937 Messrs. H. M. Cooper and R. Peake were ahle to devote several holiday periods to a search for additional sites m Kangaroo Island. They collected mumerous examples of the implements and have donated the firsi set of their finds to the South Australian Museum. The localities are too mumerous for detailed deseription but the Cooper collection number and name of the site will be given below together with summaries of their feld notes:

Anxious Bay (83). Waterworn pebbles from this locality probably furnished the stone used in making many implements.
Muston (84). Property of E. Davies; trom cultivated land ruming down lo a fresh water lagoon, dry in summer.
Mustom (8.5). Property of W. Davies, on cultivated ground near alagoon on dronstone rubble country. Several Port Lincoln Oyster (Ostra simuta) shells were also preseut.
Pemnington Bay (86) 。
Salt Lagoon (87). East side of Ameriem River, Maston. Near a small lamom on cleared but uncultivated land, on property of F . Buick. One quartath implement was anclosed in a block of louse limestonc; limestone ridges surrounding the lake yielded no implements.
Hog Bay liver Station (8!). On buttivated land slopmge to the ereek.
Deep Creek, Eastern Cove (91). On raised flat of cultivated gromd adjoinin! the creek. Coastal sandhills in the vicinity yielded no sites.
Red Banks, Nepeas Bay (92). Behind the coastal sandhills and iuland on the ironstone rubble country.
Taylor Lagoon (93).
Cape Hart (96). On wind-swept high limestone gronmel 0.4 kilometre north-eant of the scaler's lout site where Thsmanian implements were found ; one trimmed cure was of Cape Willoughby grauite.
Hog Bay River (97). Site on the cliffs above the river mouth.
Creck lay station (:98), C'ultivated area on bank of creek rumning into Lasibmat Lagoon. The largest specimen so far cliscovered, a chopping implemem weighing 108 oz. was found on this site.
Wallers (100), 'Three kilometres "ant of Pemmington Bay.
Bay of shoals (101). An extensive site on cultivated land on the property of $\mathbb{W}$.

Turner. Many implements nceurred on limestone ridges associated with an extensive swamp.
Disovery Jagroon (102). Eleven kilometren S.W. of Kingsote. This must have been a well oceupied area. Five inspections resulted in the largest collection of chopping implements found on any site in this list.
Teu Mile Lagoon (103). Five kilometres W. of Kingseote.
Pennington Bay (190). Six kilometres east of the Bay.
Muston-Red Banks road (121).
Thomas Station, Point Morrisou (122).
Muston Jetty (123).
Flom Cusk Bay (1.56), south-west of Salt Lagoon. Two hammerstones found on wind-swent limestone ridges together with many shells. The boastal sandhills themselves were examined, without result, for three kilometres to the westward and more than one kilometre eastward of the Anstralian Nalt Company 's Lake.
IIom Bay River, above month (157). Another site on the hanks of Mog Bay River which, together with sites $98,101,10 \pm$ constitute the most important localities found.
East of Hog Bay River (158).
S.W. of Point Tinline towards Cape Linois (159). One large flint flake, one hammerstone and a few unworked guartzite ohippings in the sandhills.
Lagronn inland from D'Estree Bay (ton kilometress S.W. of Kingseote-Muston turnoft (160). On cultivated ground.
East of White Lagoon (161). A ridge of embtivated ermond revealed implements.
Bulcara Station (162). Some very mueh worn hammerstones.
Hawk Nest Station (163).
Kaiwarra Station (164).
Eleanor River (165).
Karatta Station (166).
Sou'West River (167).
Cape Bordia Roid (168). Ten kilometres A. of Stokes Ibay turnoff. A single chopping implement in scrub-covered ironstone gravel country.
Western River (169). Ono hammerstome hehind the eoast sathdills: on the steep incline above tho high cliffs were several chopping implements and stone flakes.
Middle River (170). Althouph there are extensive coastal sandhills here, results were negative. One excellent hammerstone was collected a short distance inland.
Stokes Bay (171). On entivated ground,
Smith Bay (172).

Emu Bas, 1-3 kifometres fuland from the reashore (173).
Wisanger (174). Near the Gap,
Oymet River-Gap Road (175).
Lagoon N.W. of Cygnet River Post Office (176),
 implements.
Near Bay of Shoals (178). On Bell's homestead.
Railway, four kilometres inlaud from Muston Post Office (179).
Creek on property of C. Buick, American River (180).
The distribution of the alme loceatities on the map of Kamaroo Isand seems to indicate a concentration of the mexupation on the "astern half of the island. hut it must be rememhered that the pastern end has heen subjerodedoat far enveater amment of clearing than the western extremity, ant it is qenerally in ploughed groumd and oceasionalle in disturbed and dritting sably frombl, that finds have brem made. The western end of the island is still laromy uncleared and nnoultivated and a largu area is entosed within the Flimbers ('hase Flora and Fama Reserve, and is thus not subjerted to clearing operations. Mr. Cooper writes: "On present imperfect information it could perhaps be singreated that the mone eastary portions of the istand "arried the bulk of the population-the more open bature of the counley, warmur elimate and lowar ranfall, tocether with the abundance of Iagoons and swamps would tend to subatatiato this; the ruggen and damper western end was used perhaps more for hanting expedilinns. However, later working of the lant in the latter localitios may diaprove sumblan opiniom."

Only tro sites have yieded infomation rexardine the foods of the island penple. At Muston a fow Port Linooln Oyster ( Ostron simuta) shells may have heen ones left by these people, while in a wind-lilown area on site 120 , cast of Pennington Bay, where the specimens often have a thin eoating of white lime deposit, "fragments of emm copgublls, also oyster, mussel and limpet shells were obtained as well as a few choppers and hammerstones". Aceording to "Mr. dames Waller, wother old resident of Kanqaron Island. this drift commenered about forly years ago after aperiod of clearing amel hurning'.

## HMPLEMENTS OF TUE KAN(土.AROO ISLANT INDTSTRY.

In the light of the allmmented colledinn of implements brought together since 1931 it is possible to make some (letaided observations.

The dominant implement of the milture is umbonhtedly the elongate pebblecore implement, hammer-flaked along noe maryin, whioh was desirribed ly Tindate and Maerraith (1931, p. 281) is "elongate-oval (rimmed eore" (lor. fig. 9).

Among the well-worked implements they are second only to the hammerstones in abundance.

These olongate-oval trimmed cores have become known to archacologists in South-Eastern $\Lambda$ sia as "Sumatra-type implements", for in Sumatra and the Malay l'eninsula they oecur in several sites considered to belong to the Upper Palacolithic. Sites of this type are deseribed by Kiipper (19:30) and others.


Fig. 6-7. 6. Weights of 96 sumatra implements from Kangaron Island. 7. Length-breadth index of 57 sumatra implements from Kangaroo Island.

Examples of this type of implement from Malaya have been examined by the writer at the Royal Colonial Institute Musemm. Amsterdam, and at the Peabody Museum, Marvard. Specimens from Kanguron Tsland seem to be morphologically indistinguishable from these, and in this paper it is proposed to use therefore the term "Sumatra type implement" or briefly "sumatra" as a convenient name for the implement.

An analysis of the dimensions and weights of nearly one hundred examples of Kangaroo Island sumatra implements, puveals the presence of two sub-types which may be arbitrarily called "heavy" and "light".

When the wepht in ounces is ploted, hange intervatis of $t$ a\%, the graph ('lext

 ( 15 uns.), all "light sumatia" are 14 em, or mader in length while all "heayy sumutra" are 15 cm. or over. The length-hreadth index $\frac{\left(\mathrm{Br}^{\circ} \times 100\right)}{\text { leng } \dagger \mathrm{l}_{2}}$ indicates that although there is conciderable variation in proportions, as shown by the reane of indices from 15-90, yet the natives, momscionsly or otherwase. strove to make implements of the proportions indiratom hey a leneth-breadth indes of alsm go (Thext fig. 7). "Meayy" and "light shmatra" implement have approximatuly the same range in their proportions.

It wonla be of comsiderable interest to compare these pesulta with these fore the same type of implement found in Malata, whate the appleation of asermate statistical datal to series of implaments in varions ameds, misht wive significant clues as to their origin and uses.

The disenvery of furthre examples of the discoidal implements malled
 clearer inlea to be obtained of the fom and methot of manlufacture of these hiphly characteristic implements. If is mow widnt that there are fundamentat differ races betworn them and the sn-called armpion implements of ('entral Anstralia, and that they should not have loces classifioul together.
 pamples are either made from enees or from pehbles broken at vandem, all trute arapin algree with the trpe example ltom Itulala. Contral Australia (1.0. f.10) in being struck off as fakes form frepared core. A blow divered atainst a propared platform detached a characteristically shaped Hake. Teehnibally the "ramio is a mbeh mores advanced implement than the implements fotud on the island.

The Kingsuron Island eore implements which superfleially pesemble the arolluin
 form. A few examples are pally made from what are lowhinally flates, but as
 he recorded as in the main a "core industry".
 be known by a differat name from the aropun and it is pmponed to use for them tha
 Kamgaron lsland. The cxample deseribed and digurad by Timdale and Maequath (1931, p, 281, fig. 6) may be regariled as the lype example.

Mr. H. M. Conper has fomm that on most aites fierter are not as ecommon ath the Targer sumatra implements. At Mawks Nest. during the $19: 31$ survey they provert

Th be somewhat morn ablumdant, but the signifieance of this apparent differemere is not yet known.

Trimmed cores of the "horse-houl" "whe deseribod by Tindale and Maegraita
 that they must have fanctionch as imploments. All are watacterized be closely. Not steppad, serombary flaking noars maryining the right-ingled cuthing edge.


Fig. 8. Sumutro-like implement from Baleoratana Creek, South Australia ( $X$ 古)

In addition to the above mentiond implements and hundreds of hammerintones, a ireat many simple flakes, frequently of white fuartz, are found in association with the implements. Simple irregular flakes of quartzite are also abundant. Oecasional examples of white quarta seem to have been shaped to a definite form, approaching some of the coude diseridal stone implements characteristie of the Tartangan Industry described by Hate and Tindale (1930, p. 167, figs. 21, 29, ete.). However, quartz is a reffactory material and it is difficult to compare them with certainty; detailed description of the trpe may therefore be reserved Por the future, when examples made in a more satisfactory material may be discovered.

Before discussing the Kangaroo island industry and its signifinance it is proposed to mention several series of implements from the mainland.

## SUMATRA-LIKE IMPLEMENTS FROM BALCORACANA CREEK, S. AUSTRALIA.

During a recent visit to the Flinders Ranges, Mr. H. M. Cooper found a site on a rock-strewn ridge, on the north bank of Balcoracana Creek at Red Banks (his site No. 209), where two sumatra-like implements occurred. One of these weighed 16 oz . and measured $15 \times 8 \mathrm{~cm}$. It is figured herein (Text fig. 8). The other was smaller and only weighed 6 oz .

On the opposite bank of the creek, within 0.5 kilometre, there is a native site (his No. 144) where many pirri implements may be found.

After this paper had been prepared for press Mr. Cooper revisited the Flinders Range and found eight additional sites where implements resembling those from Kangaroo Island and Fulham occur. At Mount Chambers Creek (183) near a site possessing many rock carvings karta, horsehoof implements and sumatras occur alone. At several other waters Pirrian types of implements oceur with them, e.g. Emu Springs (136), while at Yappala Lagoon (187) and Little Bunkers (195) the only other implements seem to have a Murundian facies.

## IMPLEMENTS FROM TASMANIA RESEMBLING THOSE FROM KANGAROO ISLAND.

For several years the writer has been in communication with Mr. Adrian C. Smith, of St. Helens, Tasmania, who has kindly presented to the South Australian Museum many interesting Tasmanian implements. In a recent consignment he sent a series of large specimens including several which appeared to be comparable with the sumatra implement, the karta and even the "horsehoof" core of Kangaroo Island.

Text fig. 9 shows a karta-like implement of quartzite from St. Helens, weighing 9 oz.

The average of the weights of three sumatra-like examples is 16 oz . and the length/breadth index is 72. Text fig. 10 shows an example from St. Helens weighing 11 oz . and with a $L / B$ index of 71 . The original pebble from which this was made is more angular than are those from Kangaroo Island, but the method of manufacture is similar.

An examination of the fine collection of Tasmanian implements belonging to Mr. A. L. Meston at Launceston, suggests that kurta and sumatra-like implements are found in several places in Tasmania, but that relatively little attention has been paid to them. The smaller and finer implements are of considerable interest to collectors and in the past the large ones seem to have been passed over. Another
"xplamation may be considered. In a letter dated 1:3th Jume, 19:37, Mu ddrian Smith writon:
"The large sioncs at pebble type were not, as far as I remomber, foum on (har




Falls' was found in the hearl of the bush, in myrthe and fern country. 'The blhers wore foumd on Georges bily wit the golf links."

It may be suggested therefore that these relies may oceur wo siles where the ordinary l'asmanian implements are not present.

## IMPLEMENTS OF THE FULHAM SITE DESCRIBED BY S. A. WHITE.

Fig. 11 gives a generalized section of the beds associated with the implement site at Fulham described by White (1919) and Howchin (1919). It is based partly on their notes, partly on information provided by bores drilled by members of the Anthropological Society of South Australia in 193:-1934, and also on the writer's


Fig. 11. Section at Fulham, South Australia, indicating in generalized form the succession of beds and relationships of implement sites.
own observations. It is not proposed to discuss in detail the history of the site as revealed by the bore sections, for the results obtained are sufficiently interesting to warrant separate description. Suffice to state that bores at "A", at 10 yards S. of " $A$ ", and at " $B$ " seem to confirm the first two metres of White's section while deeper bores, at "Between $B$ and $C$ "' and at " $E$ ", " $F$ '", " $K$ " and " $M$ ", situated at distances of respectively $150,375,600,1,075$ and 1,300 yards in an easterly direction indicate the continuance of the blue-black clay of the estuarine lake-bed and also suggest the presence of an old land surface at the level indicated by White.

The implements ascribed to this old land surface comprise well worn hammerstones of two types (fig. 12 and fig 13), made from quartzite pebhles and several core-like implements, also of two types. The latter are similar to the karta and the horsehoof cores of Kangaroo Island and are made of quartzites. Fig. 14 shows an example of the karta 6.8 cm . in diameter. In manufacture it has been broken off from a large block of quartzite, apparently as a random "flake", and bears evidence of much marginal secondary flaking. Fig. 15 shows an example of the larger "horsehoof" core type of implement. It is 9 cm . in greatest diameter and 6 cm . in height, and is made of a fine-grained quartzite.

One of the core implements has attached to it part of the consolidated matrix of "River Sand with calcareous concretions" in which it was once imbedded.

Portions of this matrix, when mounted and examined under the microscope, compare closely with samples from the same bed.

During the study of the Fulham site it was observed that a small surface area of campsite containing abundant pirri together with other implements of a rich


Fig. 12-15. Implements from buried land surface at Fulham, South Australia. 12-13, Hammerstones, showing marked marginal wear. 14. Karta-like implement. 15. Horsehoof core ( $\times 1 / 2$ ).
stone industry, lay beside the line of section indicated by the bores. It was possible to demonstrate that this campsite was formed on top of the blue-black clay of the estuarine lake. It is thus later in date than the Fulham industry. Careful collecting brought to light the following implements :

Pirri 24 ; small crescents 6 ; small chipped-back knives 3; discoidal adze stones, prepared from flakes struck from prepared platforms 6 ; irregular adze stones 14 ; large pirri-like flakes 3 ; large cores 1 ; hammerstone 1.

The position of this site is indicated by the words "Pirrian Industry Site" on the general section of the Fulham area (fig. 11).

## Implements at hallett cove similar To Those ow the FULHAM INDUSTRY.

The Hallett Cove site is located on the western half of Section 562, Hundred of Noarlunga, and is situated a few hundred metres south-west of the Cove Railway Station, on a flat terrace forming the top of the cliffs. It is at a general height of sixty metres ( 200 feet) above sea level (Text fig. 16). Here an old soil of calcareous sandy nature is preserved over an area of some ten acres. Recent ploughing of the surface has revealed that large implements of the types present


Fig. 16. Plan and sketch section at Hallett Cove, to show an implement site of the Fulham industry overlain by a newer series.
at F'ulham, namely hurta-like implements, and "horsehoof" cores together with one or two doubtful sumatra implements and some hammerstones are present in the surface layer over the area where this special type of soil occurs. They are not associated with shells, or other signs of recent occupation.

Three small patches of black soil composed of ashes, abundant shell and other food remains and a poorly developed adze-stone industry are present on the southern side of this area and rest on the surface of this soil. The food remains of this upper stratum consist of :Tindale-Extinct Kangaroo 1sland CultureShells Turbo undulatus (dominant).Monodonta odontis
Nerita melanotragus
Mactra puraMaliotus sp. fragments only.
Crab Ozius truncatus
Bird Dromaets novaehollandiat, egg shells of emu.
Mammal Macropus sp. iragments of bones.55

These surface sites seen to the emparable with sites of recent oceupation which are elsewhere in South Australia called Murundian.

## DISCUSSION.

In the preceding pares some records of stone implement sites on Kangaroo Lstand, on the Anstratian mainland, and in Tasmania, have been set out, while several types of implements have been described and figured.

It is proposed now to speculate on the signilicance of these oceurrences and to discuss some tentative correlations.

The systematie study of Australian implement cultures is only just beginniug and it is certain that many of our conclusions will be modified in the light of new diseoveries. Pressiug desiderata are the systematie exploration of all rock shelter and other sites where it may be posisible to find evidence of successions. In particular it seems highly desirable that prelimiuary conclusions here arrived at reparding the sequence in 'lasmana should be tested by excavation of one of the rock-shelters present on the north coast of Tasmania.

At T'artanga and Devon Downs a sequence has been noted which has enabled fentative correlations to be made with surlace sites in other parts of sonth Austratia. In the aceompanying table is set out in diagrammatic form the additional details brought out by astudy of the Kangaroo Istand Industry and the closely related F'ulham Iudustry.

At liangaroo Island we seem to have an old culture which has connections with the i'pper l'alateolithic of Malaya and may thas represent the lype of implement culture which the dist visitors to Australia brought with them. These people may have heen the ancestors of the Tasmanian aborigines; for like those people they did not succeed in carrying the doy with them to Kangaroo 1stand. The presemer of similar implements in 'Tamania and ou some mainland sites lends colour to this surgestion.

TENTATIVE CORRELATION OF SOME IMPLEMENT SERIES IN AUSTRALIA AND TASMANIA.


The almost unvarying uniformity of implement type in over fifty campsites on Kangaroo Island, suggests that this industry stagnated on the Island until the inhabitants became extinct; the sumatra apparently remained the dominant implement.

In the Fulham Industry, as known to us at Fulham and Hallett Cove, as well as from scattered sites in other parts of South Australia, the sumatra seems to have lost its dominant position and is rare or even absent; otherwise the implement types remain the same.

At Fulham the industry appears to be associated with an old land surface which was covered by marine, estuarine, and lacustrine beds. At Rainy Creek on Kangaroo Island there is also some evidence of physiographic changes associated with a recent raised beach, and it also seems significant that on the island imple-
monts are not found in the present day eomstal sandhills althongh they are present relatively abusdantly on many of the hirher parts of the ishand. Tiudale and Mug graith (1931) have already druwn allention to certain upparent danges in climate assoreialed with the Hawks Nest site. 'Thee "xtinction of the Kangaron Lshaders inay have taken place a relatively long time ago.
 involving a rise ja river fevel, seew to be necessary Io explain the halding up of the sorips of lipper sill beds. These overlie the 'lattangan heds, which ennain hmman werenpational debris assorjated with an extmet species of l'nio. Mineralizatlimn of the bones preserved in the Jimpagan beds apparently tomk plate duringe this period of high river levels.
A. Devou Downs Rock-shelter on the Muray River the l'irrian is the carliest reengnizable industry in the type section deseribed by flale and Thadale (19130) and on several grounds it has been placed as later than the 'Tartangan.

A1, Fulham a Pirrian site neenrs mbove a lake hed which eovers the site of the Fulham Ludustry ; it is therelore jumger than the Frulham series.

Analysis of the implements preseut on the Riretan site at fulham showe that

 vents it is likely that the pereentage of pirfi lome has berm lowered hy the gather-

 "Pirri fadex." of 174. This index js lased on the recovory of i36 pirn and e1 ather implements lom the block of l'ircian strata excavated.
 Ha untouched l'irrian nite on the sumberm hatk of limgata kiver where the ratio of pire to other implements is is the neighburhowd of 100. 'Ihree kilometres away, near the present shome line at hayeock Point thore is a campsite of Mmondian faries, whth ahumant debris of recent menpation, where pirvi inplements da not asecur.

The presener of pirni in stach larae proportions among the implements necur rine in Piryian nites shegests that they were of considerable importance in the
 recent wrider. In size and lorm they are alosely similar to the pressmre-faked



a spear point. In the absence of further examples it may be suggested that it is an archaeological pirri put to a new use, but it may indicate that formerly these implements were in general use as spear points.

The great abundance of pirri around some waterholes and also on some now apparently waterless sandhill sites around the arid Lake Eyre Basin and in the country south of the Musgrave Ranges indicates that the Pirrian culture once thrived there. A seemingly significant feature in the Lake Eyre Basin, as elsewhere, is the absence of pirri from some areas where other implements such as adze-stones are otherwise abundant. On the basis of the Devon Downs section it is possible to interpret this variation as one of the effects due to presence of a succession of industries rather than to any very local, and seemingly haphazard variations in the contemporary distribution of styles of implement making techniques

In 1934 one of the last survivors of the Dieri (Dintibana) informed the writer that "pirri were natural stones which always had that form. They were found on the ground and were on occasion picked up and used as drills." Like the Neolithic polished stone axes called "thunder stones" by the people of Iron Age Europe, their human origin was not readily appreciated.

In an earlier paper in this volume, the writer has discussed the relationship between an Older and a Newer Tasmanian implement series. His observations were based on the examination of the open face of an excavation in Rocky Cape Cave and a study of the collections made therein by Mr. A. L. Meston. In the present paper is noted the occasional presence in 'l'asmania of implements similar' to those of the archaic Kangaroo Island Industry. This suggests the possibility that future work may lead to the recognition of at least two and perhaps three stages in the development of the Tasmanian implement culture.

The absence of any of the specialized implements of Tasmanian type on mainland sites has been an impressive argument for those who would derive the 'Tasmanians trom an extra-Australian source by a sea route, especially if they overlook the fact that implements of Tasmanian type are not found either in New Guinea, in New C'aledonia, or even in Patagonia whence they would like to derive them. If the I'asmanian implements have developed locally and if the prototypes are similar to those already recognized from the Australian mainland then one of the major bases for their argument lapses. A useful statement of recent opinion on the question of the origin of the Tasmanian culture is given by Davidson (1937) who also provides a bibliography of the subject. A general discussion on the problem of the origin of the Australians is given by Furer-Hamendort (1936) while Davidson has also considered the same problem.

## SUMMARY.

Additional sites for implements of the extinct Kangaron Island enlture are described and several artefact types are defined. The relationship of one of the implements with the sumatra-type ones of Palacolithic sites in Malaya is disenssed.

The original specimens found by White and indicative of the Fulhan Ludustry are described and figured, and a new locality is recorded at Hallett Cove for similar objects.

Implements similar to those of the Kangaroo Island culture are described from Tasmania and from Wirrealpa in South Australia.

A tentative correlation of these industries with the succession already descrobed from the Murray River is diseussed and it is sugrested that the Kangaroo Island Industry may be similar to that broaght to Anstralia from Malaya by the first native visitors, who may have been of Tasmanian type. The distinctive Leatures of the 'Tamantan implement culture are thonght to have lareely developed after their isolation on the island.

## REFERENCES OITED.

Tindate, N. B. and Alaegraith, S. (i. (19:31) : Traces of an extinct ahoriginal poprlation ou Kangaroo Island. Records of the s', Lust. Uuseum, iv (3), pp, "T5289 ; figs. 1-11, bibliography.
 able Pleistocene nge, Rocky River, Kimgroo Island. Truns. Ruy. Sore s. Ausb., 5!, pp. 10:3-106, figs. 1-3.
White, N. A. (1919) : Notes on the occurence of aborginal remains below marine deposits at the leedbeds, Fulham, near Adelaide. Trons. Roy. Soce S. Aust., 43, pp. 77-80, fig.
Howchin, W. (1919): Supplementary notes on the ocenrence of aboriginal xemans discovered by daptains $s$. A. White at Fultam (described in the preceding paper), with remark on the reological nection. Trons. Roy. Soc. N'. . Lust., 4is, pp. 81-8t.
Howehin, W. (1934) : Stone implements of the Adelate tribe of aborigines now extifuct. Adelaide, 19). 1-94, figs. 1-148.
Hale, H. Al. and Tindale, N. B. (19:30): Notes on some human remains in the Lower Huray Valley, south Australia. Records of the S. Aust. Museum, iv, (3), pp. 145-218, tigs. 1-249。

Küpper, H. (1930) : Palaeolithische Werktuigen uit Atjah, N. Sumatra. Tijdschr. van het kon. Nederl. Aardrijkskundige Genootschap, xlvii, pp. 985-988.
Davidson, D. S. (1937) : The relationship of Tasmanian and Australian cultures. Philadelphia Anthropological Society: twenty-fifth Anniversary Studies, University of Pennsylvania Press, pp. 47-62.
Haimendorf, Christoph von Fürer (1936) : Zur Urgeschichte Australiens. Anthropos, xxxi, pp. 1-36, 433-455.

# FURTHER NOTES ON THE CUMACEA OF SOUTH AUSTRALIAN REEFS 

By Herbert M. Hale, Director, South Australian Museum

## Summary

Since the publication of the last records of Cumacea from South Australia (Hale, 1936) collecting has been continued. As a result the following species are added to the forms known to occur in the littoral fauna of our State.

Cyclaspis cottoni sp. nov.
Paradiastylis tumida sp. nov.
Dic brevidactylum sp. nov.
Nannastacus nasutus var. camelus Zimmer.
Schizotrema depressum Calman.

# FURTHER NOTES on the CUMACEA of SOUTH AUSTRALIAN REEFS 

By Herbert M. HALE, Director, South Australian Museum.

Fig. 1-9.

Sinne the puhlication of the last records of Cumacea from South Australia (Hale, 1936) collecting has been continued. As a result the following specien are added to the forms known to oceme in the littoral fauna of our State.

> Cyclaspis cottoni sp. nov.
> Paradiastylis tumida sp. nov.
> Dio brevidaclylum sp. nov.
> Nannastacus nasutus var. camelus Zimmer.
> Schizotrema depressum Calman.

Twenty-one species have now been taken on the shore-line of Gulf St. Vincent and Speneer Gulf. The limestone reef at Port Willunga, three miles north of Sellick's reef, was worked systematically and, as would be expected, all the species recorded from the last-named were found at Port Willunga also.

The Cumacean fauna occurring on loose stones on our reefs is remarkably uniform. If short, filamentous algae are present to retain a film of sand even the smoothest rocks harbour Cumacea and other small Crustacea. For instance, in March of this year, Messrs. B. C. Cotton and K. Sheard spent a couple of hours on a tiny shingle patch in shallow water at Marino, a few miles from Adelaide. Here they immersed the larger smooth pebbles in weak formalin as previously described and obtained the following species:

## Family BODOTRIIDAE

Cyclaspis pura Hale.
( $\Lambda$ fully adult male has the hairs of the pleopods much longer than in the type.)

Piorocuma poectlota Hale.

# Famity DIASTYLIDAE 

Pantiystyins vietis Ifale.
Colurostylis watel (Hale).
(Sce Zimmer, 19:30, p. 651.)
Gynomasty $m$ simins Zimmer.
Gynomiastylis turempts Hale.

## Famis. NANNASTACIDAE

Nannastactis mibbosus Calman.
Cumblla dima Hale.
Cumella laeve Calman.
Sohizotrema bifrons var. aculeata Hale.
Again I have to acknowledqe my indebtedness to Mr. K. Sheard who spent many days painstakingly sorting out thousands of small crustaceans from tine debris.

## Family BODOTRIIDAE

Cyclaspis G. O. Sars.

Cyclaspis cottonisp. nov.
Ovigerous fomale. Integument firm but easily broken; surface slightly glossy. squamose. Carapace with dorsal edge, when viewed from the side, slightly irregular, less than one-third total length of animal. its depth more than half its length and less than its greatest breadth. Pseudorostral lobes not quite reaching apex of eyc-lobe. Most of the several ocular lenses, black. Antennal notch wide and deep, and tooth acute. Anterior halt of carapace with a sharp dorsal keel, on each side of which is a shallow depression; there is a double pit at the middle of the length of the carapace and posterior to these indentations the keel bifureates (the divergent portions being swollen and less elevated) forming a single keel again just before reaching the hinder margin. Most of the first pedigerous somite concealed : second to fifth somites with a low but distinet dorsal carina; third to fifth, wach with a pair of dorso-lateral elevations.

Pleon somites all feebly kepled abor" and with small lateral artioular processes on all but sixth; first to fourth and telsonic somite of approximately egual length; fifth distinctly lomger.


Fig. 1. Cyclaspis cottoni. Type female; a, lateral view; b, llorsal vitw uf carapace. e, Lateral view of allotype male (all $\times 38$ ).

First antennae with third segment Ionger than seend and with first as long as second and third togethre ; inner flagellum minute. elongate and apparently two-jointed; outer two-jointed, the first segment theer times as long ass second.

Basis of second maxillipeds a little louger than rest of appendage and with an apical plumnse spta. Basis of third maxillipeds wide st rongly geniculate, distinctly longer than the "palp" and with outer apical portion expanded, aud extending forwards heyoud level of insertion of carpus; outer distal part of merus also expanded and reaching almost to level of aprex of carpus, which is distally expandert on the inner side. First peraeofod with carpus reathing to apox of antennal augle: basis curved, subequal in length to remaining joints together, with inner (or veutral) distal portion produced into a sharp footh aud with a long plomose apical seta on oposite side; ischimm and merus together as long as carpus which is a little longer than propodus (15:14) ; dactylus three-fourths as long as
propodus, and with two unequal apical spines. Second peraeopods with basis as long as remaining joints together ; ischium short and merus longer than carpus; dactylus a little shorter than carpus and propodus together and with three unequal spines at the oblique apex. The last three pairs of limbs offer no special features. Peduncle of uropods nearly half as long again as telsonic somite, slender, with inner edge feebly serrate; exopod four-fifths as long as peduncle, a little longer than endopod and narrowly truncate distally, with two unequal terminal spines; endopod slender, distally pointed and with inner edge serrated for portion of its length.


Fig. 2. Cyclaspis cottoni. Paratype ovigerous female; a , first antenna; b and c, second and third maxillipeds; $d$, e and $f$, first, second and fourth peraeopods; $g$, uropod ( $a, \times 96$; $\mathrm{b}-\mathrm{g}, \times 62$ ).

Colour white with sooty markings and mottlings.
Length $3 \cdot 3 \mathrm{~mm}$.
Male. Differs from female in having carapace less deep, in the much larger ocular lenses, and in having the first pedigerous somite wholly concealed. The second pedigerous somite is shorter and its crest is less elevated. The inferolateral portions of the first to fifth pleon somites are expanded downwards as usual in this sex.

Length 3.2 mm .
Loc. South Australia: Spencer Gulf, Port Germein, "burrowing in dirty sand between tide marks" (B. C. Cotton, Apl., 1937). Types in South Australian Museum, Reg. No. C. 2140-2141.

This is one of the several Cumacea new to South Australia which have been collected by Mr. Cotton, and I have pleasure in associating his name with it. It

Whas secured by stiruing sand in a buckot of sea water and straining out the disturbed Crustacea.

Althourl the carapace exhihits no bold sculpture, the impressions at the temination of the anterior. clear-ent part of the dorsal carina and the waviness of the more faintly marked, double postrerior portion are responsible for stight but characteristic irreqularity in the dorsal outline.
C. cottoni is very closely allied to C. herdmani Calman (1904, p. 171, pl. iii, fig 56-69, and pl. iv, fig. 60-666) and ome would not hesitate to refer the South Australian sperimens on that surejes were it not for the fact that they differ in having the exoport of the mopod distally tromeate and with 1 wo distinctly artionlated terminal spines. ('alman in his fig'. 6.566 illustrates the uropods of $\mathrm{r}^{\prime}$. hordmant as he describes them-"Both rami are acutely pointed, without terminal spines."

Leptocuma (G. O. Sars.<br>Leptocuma sifeardi Hale.

Lephocmma shardi Hale, 1936, p. 409, fire. 3-4.
The adult male is now available. The carapace in dorsal view is marrower than in the female. The ocular lobe is sooty, with four of the eye lenses clear, prominent and glittering. The psendorostral lobes are produced in front of the eye-lobre but do not aome into contact. The exopod of the fourth peraeomels is rudimentary as in the female and young males.

In a male $5 \cdot 65 \mathrm{~mm}$. in Iength five pairs of pleopots are well developed and hear long selae, lint in an example $t \cdot a \operatorname{mom}$. lome the abominal appendagen are rudimentary.

The uropod of the adult male is much as in the female but is armed with longer and more numerous spines and setae.

The colour pattern is remarkably wiform and is as in the trpe (Hale, 1936. (iv. 3).

Loc. South Australia: Gulf st. Vincent, Port Willunga, on stones, 1 fath. (Hale and Sheard, Feh., 1937).

## Family DIASTYLIDAE

Gynodastylis Calman.
Gynodastylas truncatifrons Hale.
Gynodiastylis tmencatifrons Hale, 1928, p. 43, fig. 13-14.
Several specimens of this distinctive speries were secured at the southern end of Sellick's Reef. The type was taken five miles trom shore.

Loc. South Australia: Gulf St. Vincent, Sellick's Reef, 1 fath. (Hale and Sheard, Jan., 1937).

Paradiastylis Calman.

Paradiastylis tumida sp. nov.
Ovigerous female. Integument strongly indurated. Carapace one-third total length, much wider than deep; triangular in dorsal view, its greatest breadth occurring at posterior end, where it is almost as wide as long; a dorso-lateral fold or ridge on each side is marked off into three prominent tumidities ; there is also a large rounded elevation at each side near the hinder margin, and from it curves forwards and downwards a swollen ridge, which does not reach to the anterior margin. Pseudorostral lobes rather narrow, meeting in front of eye lobe for a distance equal to more than one-fifth of length of carapace. Ocular lobe wide, with three unpigmented lenses. Antennal notch distinct; a distinct tooth below notch and above the rounded and serrate infero-lateral angle of carapace.

First pedigerous somite exposed, short; second and third somites short dorsally but with pleural portions lengthened and swollen above articulation of peraeopods; dorsal length of fourth somite about equal to that of first three somites together; fifth smaller than any of others.

Pleon somites one to four not markedly differing in length; fifth somite onefourth as long again as fourth; telson three-fourths as long as fifth somite, and equal in length to sixth, with two upcurving rather prominent terminal spines and six pairs of smaller lateral spines.

First antennae with first joint barely longer than third and half as long again as second. Third maxillipeds without exopods; basis curved near proximal end, wide, and distally expanded, with a series of stout and very long plumose setae; length of basis equal to that of remaining segments together.

First peraeopods reaching but little beyond apex of pseudorostrum, basis only about two-thirds as long as rest of limb; ischium and merus each with a long plumose seta distally ; carpus a little longer than propodus, half as long again as merus and three times as long as ischium; dactylus subequal in length to merus, tipped with several setae, of which one is conspicuously the stoutest ; exopod short and slender. Second peraeopods widely separated from third pair; with basis very broad (two-thirds as wide as long) and having inner edge toothed; ischium suppressed ; carpus barely longer than merus but nearly twice as long as propodus; dactylus shorter than propodus, with one of the terminal setae strong; exopor relatively longer and stouter than in first peraeopods. Last three pairs of peraeopods with basis shorter than remaining joints together (much shorter in fifth
puir) ; (arpus much shorter than merns in third and fourth peraeopods but as lone an mprus in fifth : carpus in each pair with an munsually some and long distal seta and a slender bristle ; dactylus terminatiog in a strome claw-like seta. amf with one of two hristles near distal end.


Fig. : Pararlastylis tumida Type femalo; a lateral view; b, borsal view af eephalothorax; cu antero-lateral margin of carapace. Juvenile male; d, lateral view; e, dorsal vicw of cephalothorax (11-b), $\times 26$; c, $\times 60 ;$ d-e, $\times 36$ ).

Pedmele of uropods about half as long again as telson, wide (its greatest bradth neats one-fourth the length) and armed with three spines on imer marfin, two being placed near distal end: axcluding the terminal spines the endopod is a little lomer than exopod; including the spines the rami are subegual in lengtis: combent with first joint longer than second and the latter longer than third : forp
short spines on inner margin of endopod, one at middle of length and one at distal end of first joint, and one at distal ends of second and third joints.

Colour cream.
Length 3.75 mm .
Juvenile male. Carapace in dorsal view with sides parallel for posterior twothirds, relatively much narrower and not so deep ats in female; dorso-lateral and lateral ridges sharply defined and not swollen. Appendages as in female excepting that an exopod is present on the third maxilliped. the exopod of the first ant second peraeopods is much stouter, and the hases of second and fourth pairs of legs are wider, with the inner margin serrate.


Fig. 4. Paradiastylis tumiza, Paratype ovigerous female; a. first antenns; b, third maxilliped; e-p, first, sceond, third and fifth peraeopods; $g$, telson anel uropols ( $X$ ถू).

That the specimen is young is evidenced by the fact that exupods are absent on the third and fourth peraeopods, pleopods have not yet appeared and the second transverse suture of the endopod of the uropods is absent, although the spines are arranged as in the female; this two-jointed condition is without the slightest doubt due to immaturity.

Length 2 mm
Loc. South Australia: Gulf St. Vincent, Port Willunga Reef, on stones, 1 fath., and Sellick's Reef, on stones, 1 fath. (H. M. Hale and K. Sheard, Jan. and Feh. 1937). New South Wales: Sydney Harbour, Vaucluse, on stones between tide marks (T. Harvey Johnston, Jan. 1937). Types in South Australian Museum, Reg. No. C. 2144-2147.

## Drc Stebbing.

Dic lasindactylum Zimmer.
Dir lasiodact!lım Zimmer, 1914, p. 193, fig. 17-18; Hale, 1936, p. 429, fig. 12-13.
In recording this species from South Australia, the writer described an immature male, larger than Zimmer's types and differing in having the carapace spiny and the telson and uropods relatively much longer and markedly spinose. The collecting of further material from sellick's and Port Willunga Reelis, shows that, as adults, both "typical" and "spiny" forms cover the same range of size. Thus, one finds origerous females from 3 mm. down to $2 \cdot 5 \mathrm{~mm}$. in length having the long spiny telson and rough carapace. On the other hand a "typical" female nearly is mon. in length is like Zimmer's specimens in so fiar as telson and uropods are eoncerned, but has a pair of spimules on the ocular lobe and the inferior margin of the carapace spinose (fig. 5, a).


Fig. 5 . a, Carapace of adult femate of typical form of Dic lasiondactylum. b, Carapace of idult female of Die Lasiodnctyhum var. spinicuada ( $X 46$ ).

As, however, the long, spiny telson cousistently distinguishes the "spiny" form from "typical" specimens of the same size, the varietal name spiniruuda is proposed for it. The carapace of var. spinicuuda always bears a goodly number of spines arranged more or less as shown in fig. $\overline{5}, \mathrm{~b}$; in some examples the spines are more abundant and the dorso-lateral elevation on each side is much more marked.

Dic brevidactylum sp. nov.
Ovigerons fomule. Integument rather thin. Carapace about as deep as wide, less than one-third total length ; in dorsal view the lateral margins, to level of base of pseudorostrum, are subparallel; surface without seupture save for a slight dorso-lateral bulare on pach side. Psendurostral lobes upthmed, meeting in front of ocular lobe for a distance equal to more than ons-fourth length of carapace. Ocular lobe very wide.

All pedigerous somites fully exposed; pleural parts of first and second produced forwards, of third to fifth backwardly produced.

Pleon a little longer than thorax; telson distinctly longer than sixth somite, without armature excepting a pair of rudimentary apical spinules.


Fig. 6. Dic brevidactylum. a, Lateral view of ovigerous female. Juvenile male; b, lateral view; c, dorsal view of cephalothorax ( $\times 32$ ).

First peraeopods with small exopod, tipped with a few very short setae; basis one-iffth as long as remaining joints together; carpus stout, one-third as long again as propodus, which bears a long apical spine; dactylus less than half as long as propodus and with only three apical setae. Second peraeopods with small exopod bearing one or two hairs ; ischium suppressed and carpus equal in length to propodus and dactylus together.

Peduncle of uropods nearly one-fourth as long again as telson, which is equal in Iength to exopod; endopod almost as long as exopod, with setae on inner edge, with a long terminal seta, and with third joint longer than second but shorter than first; exopod wtih two spines on outer margin and with three terminal setae.

Colour white.
Length 2.7 mm .

Immature mals. Rudimentary exopods are present on the first four pairs of peraeopods, and the second antennae do not nearly reach to hinder margin of carapace. Appendages otherwise much as in female.

Length $2 \cdot 1 \mathrm{~mm}$.


Fig. 7. Dic brevidactylum. Type female; a and b, first and second peraeopods; $c$, telson and uropod $(\times 70)$.

Loc. South Australia: Gulf St. Vincent, Sellick's Reef, on stones, 1 fath. (H. M. Hate and K. Sheard, Jan. and March 1937). Types in South Australian Museum, Reg. No. C. 2151-2152.

This species differs from D. lasiodactylum in the very different proportions of the segments of the first peraeopods and in the absence of long bristles on the dactylus of that limb, the subparallel (insteal of convergent) sides of the carapace as seen in dorsal view and in the character of the uropods.

## Pachystylis H. J. Hansen.

Anchicolurus of Stebbing seems to be a synonym of Colurostylis Calman (Hale, 1928 , p. 47 and Zimmer, 1930 , p. 651). The acquisition of a male of Pachystylis rictus makes it increasingly difficult to separate Colurostylis from Hansen's genus.

## Pachystylis vietus Hale.

## Pachystylis vietus Hale, 1936, p. 424, fig. 14-15.

The species was previously known only from the adult female. A single young male differs as follows. The first four peraeopods bear well-developed exopods, the accessory flagellum of the first antennae is not much shorter than the main flagellum, there are pleopods on the first two pleon somites and the apical spines of the telson, although tiny, are longer; the branches of the pleopods are rudimentary and are not furnished with long setae. The apex of the telson has two short, slender setae, in addition to the small spines, just as in the female.

Loc. South Australia: Gulf St. Vincent, Sellick's Reef (H. M. Hale, Heb. 1937) ; Port Willunga (H. M. Hale and K. Sheard, Jan. and Feb. 1937) ; Marino (K. Sheard and B. C. Cotton, Mar. 1937).


Fig. 8. Allodiastylis cretatus. a, Cephalothorax of adult female. b, Cephalothorax of male with form of female ( $\times 34$ ).

Allodiastylis Hale.
Allodiastylis cretatus Hale.
Allodiastylis cretatus Hale, 1936, p. 426, fig. 16-17.
This species was originally described from a single adult female and a single male. Further material now available reveals some curious facts.

The type female is abnormal in so far as the pseudorostrum and the anterior margin of the carapace are concerned; it has already been noted (Hale, ut supra, p. 428) that its first peraeopods do not form a symmetrical pair. In females now before me the pseudorostral lobes are upturned, are spinose inferiorly and have long setae radiating from the apex, while the antero-lateral angle of the carapace is
prominent and, like the inferor margin, is spinose. In lateral view the serratend dorsal marem exhibits a deeper indentation at the midde of its lemgh and the antero-lateral portions of cach dorso-lateral ridge are spinons, one of the spine being fairly prominent (fig. 8, a ). The appendages and telson are as in the type femate (with the exception of the malformed tirst right peraeopod of the latter) and no exopods are apparent on any of the thoracic limbs.
()ne example from sinuth Anstralia (fig. n, b) resemblen the females deseribed athere. but has exopods on the third maxiltipeds and first to fourth peraeopeds, allhough they are not fully developed ; the appendages gencrally are an in the th pe male. The seulpture is exactly as in the lemales, while the integument in indurated and chalky white, the pheudornstrom is upturned aud the telson terminates in : mirir of very short blunt spines, instead of long spines as in the type male.

Using the "formalin method" of enllecting on a reef in New South Wales, 1'rof. T'. Harvey dohnst on secured a number of temales in empany with an adulc muic: the latter agrees in every detail with the type male. Thes, this transheent male, with raised ocular lobe, downbent rostrum, strongly ridged carapace and fong telsonic spines, has now been found associated with the very different white females in two widely separated Australian localities-evidence supporting the atsumption that they aro the sexes of the one species.

The vartation exhibited by some other Cumacea indicates the desirability of rxaninimg large serics whenever possible. One may eite, for example, the range 11" variahility of 'liastylis glubra Zimmer (see Zimmer, 1926, pp. 57 and 72), A'ennusticcus musutus Zimmer, N. gibbosus Calman, N. zimmeri Calman, and Dic lasudactylum Zimmer.

Loc South Australin: Guit St. Vineent, Selliek's Reel, on stones, I lath. (H. M. Hale and K. Sheard, dan. 1937). New מouth Walps; Sydney Harthour, Fancluse, on mone between tide marks ('I'. Harvey Johnston, Jan. 19:i7).

## FAmily NANNASTACIDAE

## Nannastauus Spence Bate.

Nannastauus nasurus var. camelue Kimmer.

A number of specimens taken on Sunth Australian reels conform to the alove variels. 'The eye is pixmented in anf. A fonale $2 \cdot \overline{\mathrm{~m}} \mathrm{~mm}$. in length is ligured.

 dan.-H'el. 1937).

LLab. South-western and South Australia.


Fig. 9. Nannastacus nasutus var. camelus. Female; a, lateral view; b, dorsal view of cephalothorax ( $\times 30$ ).

## Schizotrema Calman.

Schizotrema depressum Calman.
Schizotrena depressum Calman, 1911, p. 361, pl. xxxiv, fig. 14-17.
Specimens of this species have now been taken in South Australian waters. Adult females attain a length of 2 mm . and have the carapace more rugose than that of smaller examples.

As noted by Calman the lateral setae of the cephalothorax and pleon are always encrusted-either with algae or mud-so that the bizarre appearance of the creature is increased.

Loc. South Australia : Gulf St. Vincent, Port Willunga Reef, on stones, 1 fath. (H. M. Hale and K. Sheard, Feb. 1937).

Hub. Gulf of Siam and South Australia.

## REFERENCES.

Calman, W. T. (1904) : Rep. Ceylon Pearl Fish., ii.
Calman, W. T. (1911) : Trans. Zool. Soc., xviii.
Hale, H. M. (1928) : Trans. Roy. Soc., S. Aust., lii.
Hale, H. M. (1936) : Rec. S. Aust. Mus., v, No. 4.
Zimmer, C. (1914) : F'auna Sïdwest Aust., v.
Zimmer, C. (1926) : Kungl. Svenska Vet.-Akad. Hand., Band iii, No. 2.
Zimmer, C. (1930) : Mitt. Zool. Mus., Berlin, Band xvi, Heft. 4.

# A REVISION OF THE AUSTRALIAN TROMBIDIIDAE (ACARINA) 

By H. Womersley, F.R.E.S., A.L.S., Entomologist, South Australian Museum

## Summary

Recently Dr. Sig Thor (Zool. Anz., 1935, ex, pp. 107-112) has divided the family Trombidiidae into ten subfamilies. In this paper therefore I propose to revise our knowledge of the Australian forms in the light of Sig Thor's studies.

Subfamily I, Trombellinae Sig Thor, 1935.
Body elongate, abdomen rectangular. Cuticle strong, tuberculate; hairs ciliated or simple, short and pointed; the two pseudostigmal hairs placed close together in the middle of the thorax on one or two prominences between the two pairs of stalked or sessile paired eyes. Fourth segment of palp with various spines or hairs; fifth segment long.

# A REVISION of rhe AUSTRALIAN TROMBIDIIDAE (ACARINA) 

By H. WOMERSLEY, F.R.E.S., A.L.S., Entomologist, Suuth Australian Museum.

Fig. 1-3.
Reclently Dr. Sigh Thor (Zool. Anz., 1935, ex, pp. 107-112) has divided the family Trombidiodar into ten subfamilies. In this paper therefore I propose to revise our knowledge of the Anstralian forms in the light of Sig Thor's studies.

## Subfamily I, Trombellinae Sig Thor, 1935.

Body elonsmate, abdomen rectangular. C'uticle strong, tuherculate; hairs ciliated or simple, short aud pointed; the two pseudostigmal hairs placed close together in the middle of the thorax on one or 1 wo prominences bet ween the two pairs of stalked or sessile paired eyes. Fourth segment of palp with various spines or hairs; fitth segment long.

In this subfamily Sig Thor places only the typical renns Trombella bert. 1887. In a subsequent paper (Zool. Anz. 1936, exiv, pp. '93-32), however, he puts the genera ('hyzaria C'anest. 1897 and Parurhyzoriu Hirst 1926 , both of which he omitted from the earlier paper, in the subfamily Microtrombultunt. Aceordiny Io his subfamily diagnosis, both the above genera seem to me to be more elosely related to Trombrlla and shomb, I believe, be grouped with that genus in the Trombrllima, rather than in the Microtrombidiout. Such inclnsinn, however, does necessitate a slight alteration in the diagnosis of the 'Trombellinae. In both rhyzeria and Parachyzeria the crista is absent and the psendostigmal hairs are placed close together on a single prominence, while the paired eyes are on long peduncles and not sessile. 'The above characteristies are inchuded in the diagnosis of the subtemily as given above.

The three gencra here included in the subtamily may be keyed as follows:

1. l'sendostirmal hairs on 1 wo slightly separated tubereles. Body hairs simple or very finely serrated. Eyes $\stackrel{2}{4}+2$, sessile. Dorsal surface of abdomen often with glandular depressions Gen. Trombella Berl: 1887.
l'sendost hemal hairs on a single tubereular prominence. borly with or without lateral processen; hairn ciliated and simple. Eyes $2+2$, pedunculate
2. Body with 4 lateral abdominal processes on each side. Dorsum posteriorly with simple sinuate hairs, overlying which are long ciliated hairs.

Gen. Chyzeria Canestrini 1897.
Body without above processes. Dorsum anteriorly with four brushes of very long ciliated hairs, underlying which posteriorly are the simple sinuate hairs as in Chyzeria .. .. Gen. Parachyzeria Hirst. 1926 (not Australian).

Genus Trombella Berlese, 1887.
The only known Australian species is Trombella warregensis Hirst 1929, which is recorded from New South Wales and South Australia.

## Genus Chyzeria Canestrini, 1897.

This genus is widely distributed in Australia and also oceurs in New Zealand. The following forms have been described and have been keyed in an earlier paper (Womersley 1934) ; C. australiense Hirst 1928; C. australiense v. musgravci Hirst 1929 ; C. a. var. occidentalis Hirst 1929; C. a. var. hirsti Wom. 1934; C. insulana Hirst 1929 ; C. montana Hirst 1929; C. armigera Hirst 1929.

## Subfamily II, Tanaupodinae Sig Thor, 1935.

Body moderately broad. Cuticle smooth or tuberculate; hairs pointed, short or long. Crista weak, without sensillary areas ; the two pseudostigmal hairs placed near the crista in the middle of the thorax. The two pairs of sessile eyes sometimes absent. Palpi with few spines. Legs short, seldom long.

This subfamily is as yet unknown from Australia. It includes the following genera: Tanaupodus Haller 1882; Eothrombium Berlese 1910; Rhinothrombium Berlese 1910; Typhlothrombium Berlese 1910; Neotanaupodes Garman 1925.

Subfamily III, Johnstonianinae Sig Thor, 1935.
Abdomen cylindrical, with pointed simple hairs. Crista well developed, with two sensillary areas in the middle (or at ends) and 4 (2 pairs) of pseudostigmal hairs. With a distinct nasus. Eyes shortly stalked or sessile. Palpi with or without a few tibial spines. Legs moderately long.

Included here by Sir Thor are Johnstoniana George 1909 ( = Diplothrombium Berlese $1910=$ Rohaultia Oudemans 1911), Centrotrombidium Kramer 1896, Notothrombium Storkan 1934. To these should be added Myrmicotrombium Womersley 1934. The genus Rohaultia Oudemans was erected for a larval form. As the genus Centrothrombidium Kramer possesses only one pair of pseudostigmal hairs on a single sensillary area of the crista, the inclusion of it here does
not seem natural. It would prohably he hetter planed in the Mierotrombintionare. With the exception of this renus and of N'otothrombium, the deseriptinu of which is not available to me, the two Australian mencra mas he separated thus :

1. Ryes ex - 2, sessild. ("rista with cither both on only ome pair of psendostigmat
 both pairs on sensillary arras.
(ter. Johnstomithu (ieorqe 1909.
( = Diplothromhinm. Ber]. = Rohanlth Ouds.) .
2. Eypes $1+1$, sessile. Crisha with two pairs of pemblostigmal hates placed at apposite puds, on sensillary ireas : Grn. Mrmmiontrombium Wom.. 1934.

Genus Johnstoniana George, 1909.
$=$ Diplathrombium Berl. 1910, Tirst 1928, Womersley 19734.
$=$ Rohaultin. Onds. 1911, Wom. 1934 .
Only a single species Johnstoninna arstraliense (Hirst, 1928) is known trom Australia. It was described by Hirst from Queensland and was later recordod by the present writer from South Anstralia.

## Genus Myrmicotrombusi Womersley, 1934.

This genus is only known from the type species M. Trevirristalum Wom. dosoribed from specimens found in all ants' nest in South Australia.

## Subfamily IV, Eutrombidiinae Sig Thor, 1935.

Abdomen broad, triangular (except the narrow Le ptothrombium), with short thickly ciliated hairs and with a few transverse furrors. A pex of abdomen with an oval shicld-like area, seldom withont. Therox anteriorly with a distinct nasus. Crista well developed, with a medial small but solid sensillary area and two pseudostigmal hairs between the shortly pedunculate or sessile paired eyes. Palpi with strong accessory claw and many strong spines. Lese strong, of variahle longth, Larvae with 2 or 3 dorsal shields; lower lip forming a chitinoms ring ; tarsal daws uf leg III strongly modified, the inner claw being stump-like and projecting backwards.

The grenera placed here by Siy Thor arr Eutrombidinm Vardmu 1909, Leptothrombium Berlese 1912, and C'enothrombinm Methlagl 1927. The last is only known from the larval stage, Eutrombidium from both larva and adult, and Leptothrombium from the adhlt only. The last gemmes is regarded by Perless is but a suligenus of Eutrombidium.

The following key will help in the separation of the genera.

1. Adults . .. .. .. .. .. .. .. 2. Larvae . .. .. .. .. .. .. .. 3.
2. Form broadly triangular ; body hairs uniform.

Gen. Eutrombidium Verdun, 1909.
Form narrow and elongate; body hairs of two forms.
Gen. Leptothrombidium Berlese, 1912.
3. Only two dorsal shields; coxal hairs short and stumpy and apically bifurcated.

Gen. Eutrombidium Verdun, 1909.
Three dorsal shields ; coxal hairs long, pointed and ciliated.
Gen. Cercothrombium Methlagl, 1927.
Genus Eutrombidium Verdun, 1909.
This is the only genus as yet known to occur in Australia. It is represented by Eutrombidium trigonum Herman, the larvae of which have been found attached to the Black-tipped Locust, Chortoicetes terminifera (Walker) at the Waite Institute, Glen Osmond, South Australia, by Mr. D. C. Swan in April, 1934.

## Subfamily V, Podothrombinnae Sig Thor, 1935.

Abdomen moderately broad, cordate, with shoulders and with fine, very weakly or unciliated hairs. No nasus. In the middle of the thorax and between the two pairs of shortly pedunculate eyes is a well developed sensillary area with two pseudostigmal hairs; crista behind sensillary area shortened and in front rudimentary. Fourth segment of palpi with accessory claw and many spines or combs; fifth segment (tarsus) large. Legs long.

The genus Podothrombium Berlese 1910 is the only one included in this subfamily. It does not occur in Australia.

> Subfamily VI, Trombiculinae Ewing, 1929. (Itch-or Chigger-mites.)

Body form in adult with the shape of an 8 , with a constriction behind the shoulders; abdomen rounded behind. Body hairs thick, soft, and finally ciliated. Thorax without nasus, sometimes with an anterior incision. Crista well developed, extending the whole length of thorax, posteriorly with a sensillary area and two pseudostigmal hairs. Eyes weakly developed, seldom one or two pairs near the sensillary area, often absent or rudimentary. Palpi long, fourth segment without comb or accessory claw, with few spines (more in Blankaartia). Legs short. Larvae with only one dorsal shield (two in Blankaartia).

In this group Sig Thor places the following genera: Heterothrombidium Verdun 1909, Neothrombium Bruyant 1909, Doloisia Oudemans 1910, Leeuwenhoekia

Oulemans 1911, Hannomamia Oudemans 1911. Gahrliepia Oudemans 191?, Sthön-
 Odontararus Ewing 1929, Walrhio Ewing 1932. Endotrombicula Ewing 1939, Alomus Latr. 1795 ( $=$ Metuthrombinm Ondemans 1909). I'rombinuln Perlesio 1905 (= Nvalrombirmla ILirst 1925).

Very few of these genera are known from the adnlt forms. most of them being represented in collowions by larvae. The larval stages are pencrally to be found as ectoparasites on wam-blooded animals (ineluding man) but some appear to he restricted to amphibians.

The gemms Atomus Latr. ( = Metathrombinm ()nds.) is here regerded as boins more properly placed in the Microtrombidinad.

The varions genera may be separated with the help of the following key :

1. Adtults; body 8 -shaped. Eyes one or none on cath sidu .. .. 5. Tarvare .. .. .. .. . . . . . .
ㅡ.. Fype plated at hase of large sencillary area of crista, or absent. Nensillary area broad with Iwo peetdostigmal hairs, Gen. Trombirula Berlese, 190\%. Eyes placed on anterion marein of thorax ; apex of thonas incised.

Gen. Blankarmbir Ourlemans, 1911. (not Anstralian).
8. With two median clorsal shields. Eyes two on cach site postorion rye the smatler. Dorsum hehind seeond shield with mmerons small symmetrion shields. Tanver lip not as a chitinons ring. Tarsi I amd If witl only 2 claws, III with three. Gen, Blankatatio Ondemans, 1971 (not Anstralian), With ome or three median dorsal shields and only one eye on each side . . 4.
4. Anterior lonsal shield with 3 or more pains of setae, in ardlition to the 1 won psendostigmal hairs
5.

Dorsal shieht with only tor 5 single setare hesides the pacodostigmal hairs !.
 leg I only divided; ono pair of setac hetwen maxe I ond one pair between coxae ITT. Palpal claw bifurcate. Gen. Gohmlicpir Oudemans, 1912.
( $=$ Tryphlothrombimm Ontemanq, 1911) (not Australian),
Dorsal shield with 3 pairs of setae .
6.
f. Psembestiermal hairs clavate.

Gen. Sehdimpustipllar Fiorst, 1915 (not. Anstralian). Pseudonifgmal hairs not clavate 7.
7. Median dopeal shiedd honger than broad: maxilary eoxal seta in front of palpi , Gen. If cterothrombïm Verdun. 1970 (nol Ansiralian). Dopsal shield broader than long

8. Dorsal shidf without imy mediam antwiur process but with a poolly deroloped erista Gen. Hannomania Oudemans. 1917 (nut Anstralian). Dorsal shied with a short median anterior process; withont erista.
(ien. Lrewmenhochia Ondemans, 1911.

> 9. Dorsal shield trapezoidal . . . . . . . . . . 10. Dorsal shield triangular. Palpal claw with $1-5$ points. Gen. Doloisia Oudemans, 1912 (not Australian).
10. Dorsal shield with only two pairs of setae besides the psendostigmal hairs; latter clavate. Eyes absent or rudimentary. Palpal claw trifurcate. Gen. Wralchia Ewing, 1931 (not Australian).
Dorsal shield with 5 setae in addition to the pseudostigmal hairs ; latter clavate or not . . . . . . . . . . 11.
11. Pseudostigmal hairs clavate .. .. .. .. .. 12. Pseudostigmal hairs not clavate .. .. .. .. .. 13.
12. Chelicerae with a row of teeth dorsally; palpal claw usually bifurcate. Gen. Schöngastia Oudemans, 1910. Chelicerae without more than one dorsal tooth; palpal claw trifurcate. Eyes two .. .. Gen. Neoschöngastia Ewing, 1929 (not Australian).
13. Dorsal shield distinctly pentagonal, with the posterior sides forming a strong angle. Eyes two on each side or absent .. .. .. .. 14.
Dorsal shield at most roughly 5 -sided, without strong posterior angle .. 15 .
14. Eyes two on each side. Gen. Pentagonella Sig Thor, 1936 (not Australian). Eyes absent .. Gen. Reidlinea Oudemans, 1916 (not Australian).
15. Dorsal shield poorly developed; all 5 setae placed near middle of shield; median anterior seta simple; pseudostigmal hairs short, simple, setiform. Chelicerae with 3 sharp recurved teeth on upper margin and a vestigial lateral tooth. Eyes $2+2$, well developed.

Gen. Endotrombicula Ewing, 1931 (not Australian).
Dorsal shield well developed, the 5 setae marginal or submarginal .. 16 .
16. Chelicerae with a row of teeth on upper margin.

Gen. Odontacarus Ewing, 1929 (not Australian).
Chelicerae with not more than one tooth on upper margin.
Gen. Trombicula Berlese, 1905.
( $=$ Neotrombicula Hirst, 1925) .
Of the above genera only Trombicula Berlese 1905, Schöngastia Oudemans 1910, and Leeuwenhoekia Oudemans 1911 are so far known to be represented in Australia.

Genus Trombicula Berlese, 1905.
The following five species of this genus are recorded from Australia, two as adults and three as larvae.

Trombicula signata Womersley, 1934.
Described from a solitary adult specimen from Western Australia. The type is in the South Australian Museum.

Trombicula tindalei Womersley, 1936.
Deseribed from a speeimen taken on Flinders ('hase, Kangaroo Island. south Australia by Mr. N. B. Tindale. Type in the South Australian Museum.
'Trombicula hikstr Sambon, 1927.
Only known from the larval form, this species is the "ti-tree itch mite" of Queensland and South Australia. Tts real host is unknown but recently the writer has had a specimen from a blackbird where it was found walking over the beak aftel the death of the bird. This sperimen was from Payneham, South Australia. June 30th, 1937.

Trombicula novae-mollandiae Hirst, 1929.
Described from larvae found on Rattus greyi from Kangaroo Island, South Australia, it was later taken on Potorous tridactylus in Tasmania.

Trombioula macrorus Womersley, 1934.
This species was deseribed from sperimens of larvac found attached to the scrotum of a wallaby from Darwin, Northern Australia.

Gemus Schöngastia Oudemans, 1910.
Of this larval genus five species have been described from the Anstralian enn tinent as follows:

Somöngastia antipodianum Hirst, 1929.
From Rattus groyi from Kangaroo Island, South Australia.
Schöngastia coorongensis Hirst, 1929.
From the ears of frodent at Robe, South Australia.
Schöngastia dasycerci Hirst, 1929.
From Dasycercus cristicaudu, Ooldea, South Australia.
Sohöncastia westraliense Womersley, 1934.
From the ears of a domestic cat, Greenbushes, Western Australia.
Sohöngastia petrogale Womersley, 1934.
From the scrotum of a wallaby, Musgrave Ranges, South Australia,

Genus Leeuwenhoekia Oudemans, 1911.
Leeuwenhoekia australiense Hirst, 1925.
Originally described from specimens taken on a human being in New South Wales, it has also been found on the ears of a domestic cat at Glen Osmond, South Australia.

## Subfamily VII, Microtrombidinae Sig Thor, 1935.

Body small to moderately large. Abdomen cordate. Body hairs very variable, smooth, thin, weakly ciliated or thick (apparently meiliated), dagger-like, clavate or globular, frequently combed on inner side. septate or not. Eyes usually in two pairs or absent, sessile or shortly pedunculate. The sensillary area of crista behind the eyes, usually posterior or subposterior, occasionally submedial. Palpi on fourth segment with one or a few spines (besides accessory claw), on inner side with a longer or smaller comb of stiff hairs and sometimes some spine-like setae. Nasus absent (except Neotrombidium). Legs generally shorter than or as short as body. Larvae with 1, 2 or 5 large dorsal plates, sometimes these followed by rows of round or quadrate plates bearing setae. Eyes usually two on each side, occasionally only one. Hind tarsi with 2 or 3 claws, modified or not. Lower lip of mouth parts not ring-like.

Within this subfamily Sig Thor places the following:
Microtrombidium Haller 1882 (subg. Enemothrombium Berlese, 1910; Campylothrombium Krause, 1916); Dromeothrombium Berlese, 1912; Ettmülleria Oudemans, 1911 (larvae); Atomus Latr., 1795 (=Metathrombium Oudemans, 1911) ; Polydiscia Methlagl, 1927; Neotrombidium Leonardi, 1901; Georgia Hull, 1918; Calothrombium Berlese, 1918; Haplothrombium Ewing, 1925 (larvae): Dendrothrombium Sig Thor, 1936; Platythrombidium Sig Thor, 1936; Camerothrombium Sig Thor, 1936.

In 1935 (Zool. Anz. cix, 111) in defining his subfamily Sig Thor expressed the opinion that Enemothrombidium and Campylothrombium should be regarded as only subgenera of Microtrombidium. Later, however (Zool. Anz. 1936, cxiv, 30-31) he further split up the Microtrombidium complex and erected three additional new genera, Dendrothrombium, Platythrombidium and Camerothrombium on corresponding differences in hair structure. As restricted in the present paper both Enemothrombidium and Campylothrombium are regarded as of generic status in accordance with Sig Thor's later paper. The genus Centrothrombium Krause, for reasons stated earlier, is also included in this subfamily. Here also the following new genera are erected and defined: Echinothrombium (type Ottonia spinosum Canest.) ; Laminothrombium (type M. myrmicum Womersley, 1934) ; Eutrichothrombium (type M. (E.) eutrichum Berlese, 1905).

The larval genus Etminllerith, allhongh evidence is sut condusive, would appear to the the larval stage of Echinothrombium or ('amerothombimm, more probably the Iatter (see Womersley 1936, J. Limn. Soce. Jondon, xi. 114).

Key th tile Genela of Mirikntrombininafe.

1. Larval forms .. .. .. .. .. .. 2.

Artult forms i. . . . . . . . . 5.
$\because$ With two larere dorsal shichds which are punctate. Iumar daw of tarsus IIT strongly modified. short stump-like and directed hackwards. Palpi with blaw
One or five large dorsal shields; if one, then this followed by a series of rows of large dorsal shicdds. Inner claw of tarsus III not as above
3. The dorsal swat behime the second shidel placed on small romm nlates. Fres $2+2$, sessile.

Gen. Ettmulloria Oudmans, 1911.
No small plates behind seend shield. Fres $2+2$ sessile.
Gen. Atomus Tatr., 1795.
( = Metathrombium Oudemans, 1909 (not Australian).
t. With 5 lagge transverse domsil shields. Eyes $1+1$. Tarsus of leag Tit with only two claws, one long and ono short, and a long stiff seta with lone secondary hairlets

Gen. Hoplothrombum Ewing, 1925 (not Australisn).
With one large dorsal mate. this lonm-chass shaperd aut pornus the forsum hehind nceupied by 16 large quadrate plates each bearing a seta. Eyas $2+2$. sessile, on small plates. Claws on all tansi ummodified.

Gen. Polylission Methlagl, 1027 (not Anstralian).
5. With a distinct nasus. Dorsal body hairs miform, trifureate from hase, with few ne no serrations ... Gen. Neotrombidinm Leonardi, 1911. Without a nasus
(i. Sensillary area of cricta submedial. Palpi with strone acessony waw, three stromg spines on immer side and \&-9 on outer side of tihia. Body lairs shopt but strong, frequently bifureated from hase the arms sometimes pxpanded and forming an enclosure, with strong hairlets.

Gea. Cnlnthrombinm Berlese, 1918. Sonsillary area of erista posterior or subposterion
 tihia with long apical claw and small accessory claw. Psendostigmal hairs "avite (Ondemans). Eyes $2+2$.

Gen. Centrotromhidiem Kranke. 1896 (not Anstralian). Not 80
8. Dorsal hatrs miformly of one type but sometimes of variahb length ..... 9.
Dorsal hairs of two distinct types ..... 17.
() Dotsal hairs tapering. pointed, will lome nutstanding hairlets ..... 10.
10. Legs I and IV shorter than the body. Subg. Microtrombidium Haller, 1882.
Legs I and IV longer than body. Subg. Dromeothrombium Berlese, 1912.
11. Dorsal body hairs long and spine-like with few serrations. Palpal tibia with one large accessory claw and a few spine-like setae.

Gen. Echinothrombium nov. (part).
(type O. spinosum Canest., 1877).
Not so . .. .. .. . . . . . . 12.
12. Dorsal body hairs tree-like with fine intermingling branches. Palpal tibia laterally with a strong forwardly directed spine. Tarsi I oval, broad, much longer than metatarsus.

Gen. Dendrothrombium Sig Thor, 1936 (not Australian).
Not so . .. .. .. .. .. . 13.
13. Dorsal body hairs not septate .. .. .. .. .. 14 .

Dorsal body hairs septate, divided into chambers .. .. .. 16
14. Dorsal body hairs sessile, short, conical, pointed with numerous short ciliations. Palpal tibia laterally with at least one, often many, strong spines. Tarsus I generally elongate-oval, longer than metatarsus.

Gen. Platythrombium Sig Thor, 1936.
Not so
. . .
15.
15. Dorsal body hairs more or less sessile, arising from short conical tubercles, leaf-like with marginal ciliations. Palpal tibia with strong accessory claw and without strong dorsal spines, Tarsus I short and broad.

Gen. Laminothrombium nov.
(type M. myrmicum Wom., 1934).
Dorsal body hairs on short peduncles, claviform, apically acute or rounded, with short ciliations .. Gen. Enemothrombium Berlese, 1905 (part).
16. Dorsal body hairs short stalked or sessile, cup-like with short stiff ciliations. Gen. Camerothrombium Sig Thor, 1936 (part).
Dorsal body hairs long, claviform and not cup-shaped, backwardly curved, with subapical septum and open apex.

Gen. Campylothrombium Kranse, 1916 (part) (not Australian).
17. Many of the dorsal hairs with thick stems and long strong hairlets and multiramous apically, the rami being as thick as the stem; other hairs equally thick with long hairlets but not ramous Gen. Georgia Hull, 1918 (not Australian).
Not so
18.

20. Longer hairs elongate, claviform, open at apex.

Gen. Campylothrombium Krause, 1916 (part) (not Australian).
Longer hairs cup-like or globose, on short peduncles.
Gen. Camerothrombium Sig Thor, 1936 (part).
21. Shorter hairs sessile, short, conical, pointed, with numerous ciliations, as in Platythrombidium, or else without ciliations and with $4-5$ short apical fungiform lobes; longer hairs claviform or rod-like with many ciliations.

Gen. Enemothrombium Berlese, 1905 (part). Shorter hairs globose; without septa, closely packed but with longer fine setae interspersed .. .. .. .. Gen. Eutrichothrombium nov. (type M. (E.) eutrichum Berlese, 1905) (not Australian). Geuus Ettrullerta Oudemans, 1911.
This larval genus is, so far, represented in Australia by the following two species.

Ettmulleria australis Womersley, 1936.
Reared from eggs which may have been those of a species of Echinothrombiun or Camerothrombinm Lrom Flinders Chase, Kangaroo Islaud, South Australia.

Etimulleria obsclira Womersley, 1936.
Only known from a single individual found in moss from Glen Osmond, South Austrulia.

Genus Neotrombidium Leonardi, 1901.
Represeuted in Australia by a single species N. barringunense Hirst 1928, which is known from New South Wales and South Australia.

Genus Calothrombiuar Berlese, 1918.
To this genus should be referred the lollowing three species.
Oalothrombium retentus (Banks, 1916).
$=$ Rhyncholophus retentus Banks, 1916.

- Microtrombidium retentus Womersley, 1934.

The longer dorsal hairs often bifureated with straight brauches. Palpal tarsus with :3 immer spines. 'farsuis I four times as long as high and only slightly longer than metatarsus.

This species is only known from the type material from Victoria.
Ualothrombiua koordanum (Hirst, 1928).
$=$ Mierotrombidium koordanum Hirst 1928, Womersley 1934.
The louger dorsal hairs bi- or trifureate from base, the branches widened, leaflike and forming more or less of an enclosure between the leaves. Palpi with clavate tatsus. Thasi I twice as long as high and equal in length to metatarsus.

Only known from type material from Koorda, Western Australia.

Calothrombium tubbi sp. nov.
(Text fig. I a-d).
Description. Colour reddish. Length 1.923 mm ., width 1.29 mm . Eyes $2+2$ sessile, placed well forward on anterior margin of thorax. Crista $345 \mu$ long with posterior sensillary area and two pseudostigmal hairs. Palpi $430 \mu$ long, femur almost cylindrical and but little swollen, tibia with large blunt apical claw and smaller accessory claw behind which are two spines, tarsus long and cylindrical reaching tip of claw. Legs short; I $1345 \mu$, tarsus elliptical $283 \mu$ by $170 \mu$, metatarsus $173 \mu$; Il $865 \mu$; III $770 \mu$; IV $1070 \mu$. Dorsal hairs uniform, bifurcated at base, one branch being fan- or leaf-like and convex, the other branch elongate and curved in towards the fan, both branches with long ciliae.

Locality. A single specimen collected by Mr. H. Tubb at Heathmont, Victoria, July 28th, 1934.

Genus Microtrombidium Haller, 1882.
Subgenus Dromeothrombium Berlese, 1912.
This is separated from the subgenus Microtrombidium s. str. by the great length of the first and fourth legs. The following Australian species should be placed here.

Microtrombidium (Dromeothrombium) attolus (Banks, 1916).
$=$ Rhyncholophus attolus Banks, 1916.
$=$ Microtrombidium attolus Womersley, 1934.
Only known from the type material from Sydney, New South Wales.
Subgenus Microtrombidium Haller, 1882, s. str.
Nine Australian species can be referred to this subgenus in the restricted sense. They may be keyed as follows :

1. Eyes wanting, Front tarsus 4 times as long as high. Dorsal hairs long and slender, $26 \mu$, tapering with long hairlets. Palpal tibia with 2 or 3 accessory claw-like spines .. ... M.(M.) barringunense Hirst, 1928. Eyes present, two on each side, sessile
2. Front tarsus elongate, at least $2 \frac{1}{2}$ times as long as high with straight sides which are parallel or converge perceptibly apically .. .. .. .. 3. Front tarsus elliptical with rounded sides, at most only slightly more than twice as long as high .. .. .. .. .. .. .. 4.
 Hairs variahle in length mp to fin $\mu$, with home motstanding harlets. Palpal liha with amessury waw and thre strong spines on imer side, withont dateral forwardly directed spine . . . M.(J.) westraliense Womersley, 19:34.
 variable in length ujg to $\overline{0} 0_{\mu}$, with long hairlats which on some of the longer hains lie caser apocally wivin aldate bushy appearance. Palpal tibia with strong accessory claw and laterally a strong forwardly directed spine.
M.(M.) myloriense sp. nov.
t. From lansus broudent basally, with a pery distinct basal angle. Dorsal hairs
 Front tarsus hroadest in the midde, without distinct basal angle . . . 6.
J. Smaller speries, $17: 10 \mu$, tarsus 1 twiee as long as high, $27 \log _{\mu}$ by $136 \mu$, metatarsus 136 $\mu$, Dorsal setac $35 \mu$ loug $\quad$. M. (M.) harmiense Womersley, 1934.
 high, $300 \mu_{\text {, }}$ Dorsal setae ${ }^{3} 5 \mu$ long
. M. (. U.) tusmunicum sp. novo
(6. Donsal hatis ${ }^{2} 6 \mu$, tapering, unifurm in length, tarsus $1272 \mu$ by $136 \mu$, sides strmely and wenly colved, widest in middle, m"atarsus exthp. l'alpal tibia with accessory claw, without strong lateral spine. Length $1275 \mu$. M. (M.) derquilis (Banks, 1916). Dorsal hairs 40 m or more lomg, uniform
3. Dorsal haids variable in Iength to $\overline{2} 2 \mu$, longer ones bushy at apex and appearing somewhat ulavate. 'limsus I, 200 0 by 90 p, broadest in middle. Palpal tarsus with tecessury claw. Length $930 \mu$ i. . Ms (M.) newmuni Wom. 1934. Dorsul hairs $4 \%_{\mu}$ Jong, nuiform ... ... .. .. . . . 8.
4. Tatsins I $167 \mu$ by $102 \mu$, "idesi in middle, metatarsus $109 \mu$ long'. Palpal tibiat will aneessory claw followed by a domal serges of spines. Langth $1000 \mu$ by $1100 \mu$
M.(M.) ideluidicum Womo, 1928.

 M. (M.) afthe Hirst, 1988.

Mrphorrombimion (M.) barmagunease Hitst, 1928.
Only known from the type material from Barringnn, New south Wales,

Fomud assemeinted with muts in Western Anstralia.
Monotrombintea (M.) Rarktensts Womersley, I日B4.
This specens is widely distributed in South Anstralia, and 1 have reeords of


 Mount Lotyty, Muy, 19:7.

Microtrombidium (M.) aequalis (Banks, 1916).
As stated in my previous paper, the type of this species appears to have become lost, but a second record from Western Australia was given.

Microtrombidium (M.) newmani Womersley, 1934.
Only known from the type record of Bedford-dale, Western Australia.
Miorotrombidium (M.) affine Hirst, 1928.
This species is fairly common in and around the Adelaide district of South Australia.

Microtrombidium (M.) adelaticum Womersley, 1934.
Not uncommon around Adelaide, South Australia.
Microtrombidium (M.) myloriense sp. nov.
(Text fig. 1, e-g).
Description. Length 1.91 mm ., width 1.335 mm . Colour reddish. Abdomen ovate, with moderately rounded shoulders, thorax small $550 \mu$ wide; eyes $2+2$, sessile, placed on lateral edge of thorax ; crista short, $300 \mu$ long, sensillary area broad with two pseudostigmal hairs, anterior arm of crista two-thirds as wide as sensillary area. No nasus. Palpal tibia with strong apical claw and accessory claw, laterally a strong forwardly projecting spine and on outer side of tibia with a number of strong spines; tarsus slightly clavate, reaching tip of claw. Legs shorter than body, I $1600 \mu$, tarsus. I with almost parallel sides, $415 \mu$ by $135 \mu$, metatarsus $235 \mu$ long. Body hairs slightly variable in length, $25-50 \mu$, pointed with long hairlets but in some of the longer ones the apical hairlets tend to cling giving a brush-like appearance.

Locality. Two specimens from under a stone along Cox Creek, Mylor, South Australia, September 26, 1937.

## Microtrombidiem (M.) tasmanicum sp. nov.

(Text fig. 1, k-n).
Description. Length 2.0 mm . Colour reddish. Abdomen ovate without distinct shoulders, $1 \cdot 2 \mathrm{~mm}$. wide, thorax $600 \mu$ wide without nasus. Eyes $2+2$, sessile, placed on anterior margins of thorax; crista $430 \mu$ long with posterior sensillary area and two pseudostigmal hairs. Palpal tibia with strong apical and
accessory claws and on outer side with some strong setae, apparently without lateral forwardy directed spine; tarsus not clavalle, reaching tip of claw. Lems shorter than body; tarsus $14.50 \mu$ by $270 \mu$, elliptical, broadest belore the middle, metatarsus $300 \mu$ long. Dorsal body hairs uniform, with strong lateral hairlets, but not forming a distinct apical taper ; lengeth of hairs $30-35 \mu$.

Loralit!. Two specimens collected by Mr. T. W. Evans on Monnt Wellingtom, Trasmania, October, 1935.

 uf puly; ef front tarsus andmetatarsus; d, dursal seta. b-g, Microlrombidinm (M.) myloriense sp, nov.; ri, tip of pulp: front tarsus and metatarsus; g, lorsal seta. h-j; Fnemothrombium
 biehum (M.) tasmanictm spo now; k, anterior und showing eyss and crista; 1 , tip of palp; m, tront. tarsus and metatarsus: $n$, dorsal seta.
(femus Eohinothrombum nov.
As in Microtrombidinin s. stro but all or some of the body hairs lone stroner and spine-like with relatively few or no short serrations.
 are M. cohidninum Hirst, 1931 ( $=$ M. victoriense Womersles; 193 ) ; U. spinutum Womersley, 19:54; O. Hystricinum Canestrini; diversipile Canestrini; M. sonthcolf Womersley, 1934; M. willngae Hirst, 1931.

Of these spinutum, cohidninom, southcotti and willungat are Australian, spinosum is Europetn while hystreinum and dinersipile are known from New Guinea.

Key to the Australian Species of Echinothrombium.

1. All the dorsal spines variable in length but uniform and spinelike with short serrations. Tarsus I $270 \mu$ by $135 \mu$, elliptical, metatarsus $190 \mu$ long. Palpal tarsus clavate, tibia with terminal and accessory claw and two spines.
E. spinatum (Wom., 1934).

Dorsal spines interspersed with different setae, short, smaller, with long hairlets
2. Dorsal spines sparsely and minutely serrated, tapering apically, $200-230 \mu$ long; smaller setae $25 \mu$, pointed with comparatively long hairlets. Tarsus I $3 \frac{1}{2}$ times as long as high, sides almost parallel. E. echidninum (Hirst, 1931). = victoriense (Wom., 1934).
Dorsal spines not much more than $100 \mu$ long; shorter setae not so pointed, with relatively shorter hairlets. Front tarsus elliptical. Species smaller .. 3.
3. Front tarsus twice as long as high .. .. E. southcotti (Wom., 1934). Front tarsus three times as long as high .. E. willungae (Hirst, 1931).

Echidninum spinatum (Womersley, 1934).
The type of this species was collected at Glen Osmond, South Australia.
Echinothrombium echidninum (Hirst, 1931).
$=$ M. echianinum Hirst, 1931.
M.(E.) victoriensis Womersley, 1934.

This is one of the most abundant Trombid mites in South Australia. It is undoubtedly synonymous with my species M.(E.) victoriensis.

Echinothrombium southcotti (Womersley, 1934).
$=$ M. (E.) southcotti Womersley, 1934.
Described from material from Belair, South Australia.
Genus Platythrombidium Sig Thor, 1936.
To this genus belongs the single Australian species.
Platythrombidium paranum (Hirst, 1928).
= Microtrombidium paranum Hirst 1928, Womersley 1934.
This species is only known from the type material from Gawler, South Australia.

Genus Laminothrombium nov.
Dorsal body hairs leaf-like with strong midrib and marginal ciliations. Front
tarni elliptical, width more than half the length. Palpal tibia with strong apical and accessory claws.

The type and only species of this genus is
Laminothrombitim myrmicum (Womersley, 1934).
$=$ M. myrmicum Womersley, 1934.
Described from material from the nest of ants in South Australia.
Genus Enemothrombium Berlese, 1905, s. str.
As restricted in the generic key this genus will inchade the two following species:

Enemothrombiua cyanus Womersley, 1936.
$=M .(E$.$) cygus Womersley, 1936$.
Described from a single specimen from Flinders Chase, Kangaroo Island, South Australia.

## Enemothrombuam evanst sp. nov.

(Text fig. $1 \mathrm{~h}-\mathrm{j}$ ).
Deseription. Length 1.1 mm., width 0.7 mm . Colour in life reddish. Eyes $2+2$, sessile and placed on anterior margin of thorax. Cristal $160 \mu$ long, well developed with posterior sensillary area and two psendostigmal hairs. Palpal tibia with strong apical ath subapical aceessory claws, dorsally with a series of strong spines running right to base and laterally and inwardly with mother shorter series. Legs shorter than body; tamsus I elliptical $176 \mu$ by $100 \mu$, widest in midelle, metatarsins ! $\mathrm{m}_{\mathrm{p}} \mathrm{l}$ long. Dornal boty hairs of approximately maiform leugth, sessile, cylindrical, with blunt apex and with longitudinal lines of fine sorrations.

Locality. The type of this species was found by Mr. J. W. Evans in a rotten loy on Mount Wpllington, Tasmatia, in May, 1935. A second specimen was trom moss from Brisbane, (queenslaud, in October, 19:-r, and a thitd fom Fern Tree Gully, Victoria, in efnuary, 1937.

Genus Camerothromblum Nis Thor, 1936.
Sig 'Thor places in this genus the following Austratian species 5 E. simile Hirst, E. collinum Hirst and E. hirsti Womersley. T'o them shombld be added E. wyandrae Hirst. These four species naty be separated as follows:

1. Smaller dursal hairs cup-shaped with minute denticles . .. .. 』.

Smaller dorsal hairs otherwise .. .. .. .. .. B.
2. Larger dorsal hairs with stem suddenly expanding to form cup. Tarsus I three and a half times as long as high .. C. simile (Hirst, 1928).
Larger dorsal hairs with stem gradually expanding to form cup. Tarsus I less than 3 times as long as high .. .. C.hirsti (Wom., 1934).
3. Smaller dorsal hairs very irregular, with small lateral fungiform lobes. Tarsus I more than 4 times as long as high .. .. C. wyandrae (Hirst, 1928).
Smaller dorsal hairs more regular, rod-like. Tarsus I more than 3 times as long as high .. .. .. .. C.collinum (Hirst, 1928).

Camerothrombium simile (Hirst, 1928).
$=M .(E$.$) simile Hirst, 1928$.
$=\boldsymbol{M} .(\boldsymbol{E}$.$) simile Womersley, 1934$.
This species is fairly widely distributed in South Australia.
Camerothrombium hirsti (Womersley, 1934).
$=$ M. (E.) hirsti Womersley, 1934.
As yet known from the type material only.
Camerothrombium wyandrae (Hirst, 1928).
=M. wyandrae Hirst, 1928.
Only known from the type material.
Camerothrombium collinum (Hirst, 1928).
$=$ M. collinum Hirst, 1928.
There are no further records beyond that of the type material.

## Genus Eutrichothrombium nov.

Dorsal body hairs globular, on peduncles, without septa and interspersed with fine longer needle-like setae; globular hairs finely ciliated. Palpal tibia without true accessory claw but with a few dorsal setae and with a strong inner lateral forwardly directed spine. Tarsi elliptical.

This new genus is erected for the Javanese species $\boldsymbol{E}$. eutrichum Berlese, 1903.
Subfamily VIII, Trombidiinae Michael, 1883 (part), Sig Thor, 1936.
Body large or very large, triangular or cordate, thickly covered with elongate or clavate or ciliated or feathered hairs, generally reddish. No nasus. Eyes paired on long peduncles. Crista with sensillary area and two pseudostigmal
hairs; sometimes the erista is tripartite, nsinally entire, always narnow. Palpi large ; tarsus long and elavate, tibia simple with apiral daw but no acersoory elaw or comb. Leas short and thick, tarsi withont pulvilli.

Inchuded hare are the genera Trombidiam Fibl). 1775 ( $=$ Sterionthrombiam IBerlese, 1910) : Dinothrombium Ondemans, 1910 ( $=$ Trombidium Berlese, 1905) : Tenolhrombium Oudemans, 1927 ; Capnothrombimm Oudemans, 1927: and Ahstrotherombium Womersley, 1984. They may be keyen thus:

1. (rista divided into three parts. with broad sensillary area, anterior arm mulage in a hroad rectangrlar plate in which thu fromt margin is straight or only sliphtly concave. Gen. Dinothronbium Ondemans, 1910 (not Australian). Crista eutire
2. Crista with the smsiltary area medial, anterion amo simple amb mot anding in a plate .. .. . . Gen. Fennflumbinem Ondemans. 1927. Crista with tho sensillary area anterior of middle 8.
3. Body hairs claviform on brash-like : apex of abdomen ineised.

Gen. Trombůlitw Fabs., 1775.
(Tarvae with lwo dorsal plates, front plate with : pairs of setae and a peemetostigmal hairs. Claw of maxillare paty hifureate. Median dorsal plate transversua front plate folding below to venter. Mouth-parts not visible froni ahove, lower lip ring-like. Taeg TTT with deformed inner claw+)
Not sn ; crista anteriorls with a broad transyerse plate..
4

1. Auterior mate of erista repre Aroply cheft. so as to appear fork-like.

Gen. Austrolltrombium Womersles, 1934.
Anteriof plate of erista with stragh or onls slighlly concave front margin.
Gen. Cafnothrombium Oudemans, 1927.
Genus Xenotimonibitm Oidemans, 1927.
Only represented in Australia by the following recently riseovered species.

> Xenothrombitm miratytum sp. nov.
(Text fig. 2 e-j.)
Description. Length to 3.0 mm ., width 1.5 mm ., with a distinct constriction behind the shoulders. Colour bright red. Crista well developed with the sensillary aroa anterior of the middle, anterior arm simphe and not endiug in a Lransversa plate. Eyees $2+2$, pedunculate. Palpi as fimured, tarsus long, davate,
 more or less with parallel sides, metatarsus $480 \mu$. Body thiekly clothed with very long eiliated hairs, mostly up to $300 \mu$ long and red, but some up to 7 -800 $\mu$ and white ( $\mathrm{cf} \mathrm{f}_{\mathrm{f}}^{\mathrm{f}} \mathrm{g} .2 \mathrm{Z}$ ) .

Locality. This species has so far been found only at the National Park, Belair, South Australia, 1936 and since. It is moderately common under stones and fallen branches.

$$
\text { Genus Caenothrombium Oudemans, } 1927 .
$$

This seems to be the dominant genus in South Australia, no fewer than ten species having been described to date.


Fig. 2. a-d, Caenothrombium furcatum sp. nov.; a, crista and eyes; b, palp; c, front tarsus and metatarsus with claws enlarged; d, dorsal seta. e-j, Xenothrombium hirsutum sp. nov.; e, dorsal view; f, crista; g, front tarsus and metatarsus; h, palp; i, shorter dorsal seta; j, longer dorsal seta.

## Key to the Species.

1. Anterior two pairs of legs with bifurcate, occasionally trifurcate, claws; posterior two pairs with simple claws. Tarsus I nearly 4 times as long as high, with parallel sides; metatarsus $\frac{3}{4}$ length of tarsus. Dorsal hairs $70 \mu$ long, pointed, with long hairlets .
.. C. furcatum, sp. nov.
All tarsal claws simple . .
.. .. .
2. Dorsal body hairs of two sizes. Front tarsus 3 times as long as high, $425 \mu$ long.
C. montivagum (Hirst, 1928).
= rainbowi (Hirst, 1929).
Dorsal body hairs more uniform
3. Front tarsus very elongate, about 7 times as long as high. Length of animal 2.4 mm . .. .. .. C. augustae (Hirst, 1928). Front tarsus much shorter, not exceeding $4 \frac{1}{2}$ times as long as high
4. Front and hind legs much longer than body. Front tarsus $4 \frac{1}{2}$ times as long as high, $780 \mu$ by $175 \mu$. A large well defined white patch on each shoulder and another at apex of abdomen
C. album Womersley, 1934.

Front and hind legs scarcely exceeding length of body . .
5. Species not exceeding 4.0 mm . in length 6.

Species more than 4.0 mm , long .. ... .. .. 7.
fi. Front tansus $t+1$ times as long as high. Dorsal body hairs bu- $90 \mu$ lone, Sonder, tapering with long buidets . Coborvidum (ITirst, 1928). $=$ taylori (Hirst, 1928).
Front tarsus almost 4 times as lony as hith. Dorsal body hairs stout, bhint and strongly ciliated, $60 \mu$ long ... O.miniatum Womersley, 19.34. Front tarsus $2 \frac{1}{2}$ times as long as high. Porly hairs fairly stout and reaching $60 \mu$ in length .. .. .. Cenhngancuse (Hirst 1928).
7. Posterion dorsal hairs short and stont, parallef sidend, with shmet hairlets, often
 fimes as long as hioh .. .. Ceseriratum (Rainbow, 1906).
= splendinum (ITirst, 1928).
$=$ ventricosum (Hirst, 1928).
Posterior body hairs lomper and straighter. 75 p lones. more tapering and wever swollen distally. Front tarsus 8 times as long as himh.
C. crossum (Hirst. 1028).

Posterior hody hairs longer still, $150 p$, slightly courved, more tapering and delicate .. .. .. .. C. mobile (Mirst. 1928).

## Cafnothrombirm fitrcatum sp. nov.

(Text fig. 2a-d.)
Description. Tangth to 1.73 mm ., width $1 \cdot 0 \mathrm{~mm}$. Colomr light red with at tendency to white patehes or bands behind the shoulders. Crista well developed with a broad sensillary area antero-medially and with two pseudostigmal hairs; anterior plate of erista with slightly concave front marcrin. Eyes $2+2$ on long peduncles, posterior eye the smatler. Front tarsus $397 \mu$. hy $110 \mu$, metatarsus $318 \mu$. Tarsi of legs I and II with bifureated claws oceasionally one or other claw trifurpate: clatrs of legs III and IV simple. Leg I 1.58 mm ., II 1.21 mm .. III 1.10 mm ., IV 1.69 mm . Palpal tibia with Iong strong apical claw; tarsus long and clavate. Dorsal body hairs arising from short conical tubereles, $70 \mu$ long, tapering in a point and with long strong hairlets.

Locality. Three specimens from a small paddock at Wond's Point. South Australia, Oetober 24th, 1925 (H.W.).

## Caenothrombuy montivadthm (First, 1928).

$=$ Microtrombidium montivanum. Hirst, 1928.
Dinothrombizm montivagum Hirst. 1929.
Dinothrombinem rainbout Hirst, 1929.
Clavnthrombium montruagum Womersley, 1934.
There are no fresh records for this species.

Caenothrombium augustae (Hirst, 1928).
$=$ Dinothrombium augustae Hirst, 1928.
Caenothrombium augustae Womersley, 1934.
This species is fairly widely distributed in the southern parts of South Australia.

Caenothrombium album Womersley, 1934.
Also a fairly widely distributed species.

Caenothrombium torridum (Hirst, 1929).
$=$ Dinothrombium torridum Hirst, 1929.
Dinothrombium taylori Hirst 1929.
Caenothrombium torridum Womersley, 1934.
This appears to be rather an uncommon species in the southern part of South Australia.

Caenothrombium miniatum Womersley, 1934.
Not uncommon around the Adelaide district.

Caenothrombium nynganense (Hirst, 1928).
= Dinothrombium nynganense Hirst, 1928.
Caenothrombium nynganense Womersley, 1934.
Common and widely distributed in South Australia; it also occurs in New South Wales.

Caenothrombium crassum (Hirst, 1928).
$=$ Dinothrombium crassum Hirst, 1928.
Caenothrombium crassum Womersley, 1934.
Only known from previously published records.
Caenothrombium sericatum (Rainbow, 1906).
$=$ Trombidium sericatum Rainbow, 1906.
Dinothrombium splendidum Hirst, 1928.
Dinothrombium ventricosum Hirst, 1928.
Caenothrombium sericatum Womersley, 1934.
I have no further records of this species to add to those already published.

Caenothrombiun nobile (Mirst, 1928).
$=$ Dinothrombinm nobile Hirst, 1928.
rapnothrombium mobil! Womersley, 1934.
No additional records.

Genus Austrothrombium Womersley, 1934.
Of this genus the three following species only are known from Anstralia :
Austrothrombuth austrabitense (Hirst, 1929).
$=$ Allothrombium (Mesothrombium) (tustrutiensc IIirst, 1929. Austrothrombium australimse Womerslev, 1934.
There are no further specimens to be recorded.
Austrothrombrum insigne (Hirst, 1928).
$=$ Allothrombium (Mesothrombiam) insigne Mirst, 1928. Austrothrombium insigne Womersley, 1934.
I know of no further specimens of this species.
Austrothromultm kondintum ( Hirst, 1928).
$=$ Allothrombinm (Mesothrombium) antipurdiamum v. Fondinium llirst, 1!9.8. Allothrombium (Mesothrombium) Rondinitm Hirst, 1929. Austrothrombium kondinium Womerslev, 1934.

Only known from the previonsly published records.

## Genus Trombidium Fab., 1775.

No adult speces of this gemms has yet bon fomm in Justralia, hut the following larval form has recently been discovered by the writer.

## Trombidita clarkt sp. nov.

(Text fig. 3a-f.)
Description, Length $2 \cdot 8 \mathrm{~mm}$., witth 1.5 mm . Colome red. Mouth parts not visible from above, lower lip forming a chitinous ring. Anterior dorsal plate only slighlty showing on the dorsal surface, mostly rentral, $17 \%$, wide posteriorly and $112 \mu$ anteriorly, finely and Jongitudinally striate, with three pairs of hairs and one pair of long tine pseudostimmal hains. Posterior plate wide and short, $1.2^{2} \mu$ by $50 \mu$, longitudinally striated with two hadre, $f$ times its own length from
the anterior plate. Eyes small, $2+2$. Dorsal body hairs short, fine with few ciliations and sparse, in 5 rows of 2, 4, 4, 4, 2. Legs : anterior pairs of coxae adjacent, tarsi with three claws, front two pairs with the middle claw long and slender, lateral claws stouter, shorter and subapically trifurcate; inner claw on leg III modified, stump-like and directed backwards, outer claw spine-like with long hairlets, middle one short and sickle shaped. Venter with three pairs of hairs behind third legs.


Fig. 3. a-f, Trombidium clarki sp. nov.; a, anterior half from above; b, same from below; c, entire dorsal view; d, front claws; e, posterior claws; f, dorsal seta.

Locality. Several specimens taken from an Anthomyid fly at Fern Tree Gully, Victoria, in January, 1937. It is named in honour of Mr. J. Clark, Entomologist to the National Museum, Melbourne.

Subfamily IX, Allothrombienae Sig Thor, 1936.
Body larger, with strong shoulders, rounded, with bristle-like feathered, seldom furcate hairs. Eyes $2+2$ on long peduncles. Crista distinctly tripartite,
with large broad, cross- or heart-shaped sensillary area which is placed on or in front of the middle ; susillary area with two pseudostigmal hairs. Palpi large, With large apical elaw hot without acecsory (rlaw or comb of spines. Legs short or moderately lour, tarsi with characteristie pulvili or on the onter side of each claw with a brusld-like bristle (in Coreothrothrombium).

The two genera Allothrombium Berlesp 1903 and Coreothrothrombium Oudemans 1928 , are placed in this subfamily. Only the first of these is known from Australia.

Ket to the Australian Species of Allothrombium.

1. Up to $1 \cdot \stackrel{y}{2}$ men, in kenth, sparso haired; form rather elongate and much constricted behind shoulders. Body hairs uniform and with few long secondary bairlets .. .. .. A. delicatulum Womersley, 1934. Large species .. .. .. .. .. .. .. 2.
2 . Dorsum with a distinct pattern of red and white. Some of the body hairs very much clongated .. .. .. A. guttatum Hirst, 1928. $=$ ornatum Hirst, 1928. Colour entirely red .. .. .. .. .. 3.
2. Body hairs miform, short, phomose. Front tarsus twice as long as high.
A. wyandrae Hirst, 1928.

Body hairs of two distinct types .. .. .. .. .. 4.
4. Lomger body hairs more clavate apically, axial thread thicker; shorter hairs more tapering apically .. .. .. A. antipodianum Hirst, 1926. = v. olorinum Hirst, 1926. parvulum Hirst, 1929. I wasseli IIrst, 1931.
Louror buty hairs less clavate apically, the hairlets longer near the base, stalk apparently shorter; short hairs not tapering apically.
A. lerrae-reginae Hirst, 1929.

Allotimombium delicatulum Womersley, 1934.
This smadi sperien is moderatols abumbant under loose stones, fallen branches and even on tree trunks in the National P'ark, Belair, South Anstralia.

Allothirombita gitutyatum Hirst, 1928.
$=$ Allothrombium guttatum Hirst, 1928.
Allothrombium ornatum IIirst, 1928.
Allothrombium guthotum Womersley, 1934.
I have no further records of this species since my earlier papers.

Allothrombium antipodianum Hirst, 1926.
= Allothrombium antipodianum Hirst, 1926.
Allothrombium antipodianum v. olorinum Hirst, 1926.
Allothrombium parvulum Hirst, 1929.
Allothrombium ? wasseli Hirst, 1931.
Allothrombium antipodianum Womersley, 1934.
I have no further records of this species. The species A. wasseli described posthumously by Hirst appears to be identical with the above form as far as one can judge by the description, the accompanying drawings of which were lost after Hirst's death.

Allothrombium terrae-reginae Hirst, 1929.
There is nothing further to add to the previously published data on this species.

Allothrombium wyandrae Hirst, 1928.
Only known from the type material from Mount Kosciusko, N.S.W.

## Subfamily X, Stygothrombinnae Sig Thor, 1936.

Body small, elongate, worm-like, swollen dorsally, with only small rudimentary hairs. Cuticle thin, striated, with low papillae. Crista similarly rudimentary, narrow, anteriorly with weak areola which, near the two sensory hairs, has 4 or 5 fine hairs. Rostrum outstanding, behind flask-like, in front spoon-like, with two bristles. Mandibles long and narrow with stylet-like claw. Palpal segments weakly differentiated, fourth segment can be distinguished with the reduced fifth attached; segment II has 2 thorns and 6 long hairs, II 3 thorns and some hairs, IV with a few hairs and a long thin end claw (no accessory claw). Legs with 3 claws, the lateral combed. Species living in water.

This subfamily is entirely unknown in Australia. It includes only the genus Stygothrombium Veitz, 1932, and its subgenus Cerberothrombium Veitz, 1934.

# EGGS AND EGG CASES OF SOME SOUTHERN AUSTRALIAN MOLLUSCA 

By Bernard C. Cotton, Conchologist, South Australian Museum

## Summary

Melo Miltonis Gray.
The South Australian Museum is indebted to the Director of the Western Australian Museum (Mr. W. L. Glauert) for the opportunity of examining the egg capsule of the Southern Australian Baler Shell, Melo miltonis Gray, and a series of seven juvenile shells from Cottesloe, Western Australia.
The egg capsule is cylindrical, 165 mm . long, 75 mm . in diameter and contains 47 protoconchs. The protoconchs average 26 mm , in length and 16.5 mm . in greatest width; they consist of four whorls, axially crinkled and finely, obsoletely, spirally ribbed subsuturally. The last 3.5 mm . of the outer lip has the typical triangular white blotches on the light brown ground, while the rest of the protoconch is uniformly cream coloured. In an adult specimen, 10 mm . of the protoconch rises above the shell.

# EGGS and EGG CASES of SOME SOUTHERN AUSTRALIAN MOLLUSCA 

By BERNARD C. COTTON, Conchologist, South Austratian Musfum.

Plate iv.
Melo miltonis Gray.
Tue South Australian Museum is indebted to the Director of the Western Ausfralian Museum (Mr. W. L. Glauert) for the opportunity of examining the eger capsule of the Southern Australian Baler Shell, Melo miltomis Gray, and a series of seven juvenile shells from Cottesloc, Western Australia.

The egge capsule is extindrical, 165 mm . long, 75 mm . in diameter and contains 47 protounchs. The protoconchs average 26 mm . in length and 16.5 mm . in greatest width; they enssist of four whorls. axially crinkled and finely, obsoletely, spirally ribbed subsuturally. The last $3 \cdot 5$ mm. of the outer lip las the typical triangular white blotehes on the light brown ground, while the rest of the protoeonch is uniformly cream coloured. In an adult speeinen, 10 mos. of the protoconch rises ahove the shell.

The protoronch of a commou Quecnsland apecies, Melor flommeum Bolteu, measures 19 mm . in length and $1: 3 \mathrm{~mm}$. in preatest width; ant adult is half as hig again as the fully grown IIclo miltomis. There does not appear to be the subsutural arinkling in the protoconch of Melo flammeum.

## Cominella adelaidensis Grosse.

The type locality of the species is "Port Adelaide". This species or variety is one of the Cominella lineolatu group, very nearly allicd, if not synonymous with ('ominella acutinodosa Reene (type locality, Sonth Australia). At the Outer Harbour there is an isolated group of stones in the middle of a vast sand and mud flat where C'ominclla adelaidensis is found in plenty, being the dowinant mollusean species.

The egre capsules are laid from the berinning to the cod of September, and all appear to be hatched by the end of October. The egge capsules are acminate blunt at the point, slightly expanded at the hase and attached individually in irregular groups or lines folowing the depressions or cracks on the under surfare of the stones. Height 8 mm , width 4 mm .

## Uber conicum Lamarck.

The collar-like egg nidi of this species are found in great numbers in spring time after storms, and are flexible when wet and extremely brittle after drying. Levens Beach, Yorke Peninsula and Holdfast Bay are two places where these egg nidi are particularly common. Specimens usually range from $100-150 \mathrm{~mm}$. in diameter; smaller specimens are sometimes found, probably incomplete, only 55 mm . in diameter or less.

## Haplochloaena maculosa Hoyle.

This small "Octopus" is frequently found in Pinna dolabrata Lamarck, and under rocky ledges at low tide in shallow water.

The eggs are attached individually by a delicate thin stalk to any convenient sheltered surface. Those figured are attached to the inner surface of a dead valve of the Port Lincoln Oyster (Ostrea sinuata Lamarck) collected at Dutton Bay by the Chief Inspector of Fisheries, Mr. F. W. Moorhouse, in April, 1937.

The eggs are club-shaped, smooth, shining, and are attached in clusters by their respective thin stalks. The cluster on the oyster contained about fifty eggs. Measurements are as follows: Length of flask, 17 mm .; width, 6 mm .; stalk length, 5 mm . ; width, 0.5 mm .

The female of this species broods over the eggs apparently syringing them from the funnel.

During a collecting trip with Messrs. H. M. Hale, Leo Stach and K. Sheard, a small adult female was taken at the Port Willunga Reef in shallow water. Evidently disturbed in the act of brooding the specimen swam away dragging some of the ova with her, and these were retained after capture. Some of the eggs on the point of hatching were collected and placed in a bowl of sea water, others not secured hatched and the young were seen swimming in the rock pool.

Sixty-three young hatched out in the bowl; all consistently swam to the shaded side, as did also the parent who adopted the inverted brooding attitude, actually covering some of the young while clinging to the surface of the dish.

The funnel is proportionately larger in the juvenile, but the colour pattern is similar in scheme to that of the adult, consisting of bluish bands on a cream ground, the bands being regular and transverse on the arms, oblique and irregular on the body. The average measurements of the newly-hatched young are as follows: Total length, 11 mm .; length of body, 5 mm .; width of body 3.8 mm .; length of funnel, 2 mm .; length of arms, 6 mm .

It is surprising to learn that in Robson's Monograph of Recent Pelecypoda the eggs sizes of only nine Octopi are listed, probably the only available records.

Ova are best preserved in weak formalin as alenhol, exen if diluted, shrinks them hopelessly.

## Amplisepia apama Gray.

Thirty eares of this species were laken on the beach of Nt. Vincent Gult, between Glenelg and Ienley Beach, in October, 19:32, after a storm. A few specimens placed in sea-water developed far enough to eonfirm the identification of the species. The specimen figured measures 60 mm . in total length, the flask being \$2 mm. long and 21 mm . wide. Further specimens were taken at Brighton in November, 193:, so that October and November can be refinitely pited as the breeding months.

Sepioteuthis australis Quoy and Gaimard.
Bunches of eagy nidi of this species were cast ashore in large numbers after tha above-mentioned storm of October, 1932. They are particularly common on the beach during early spring.

## EXPLANATION OF PLATE IV.

Fig. 1. Cominella acutinodosa Crosse, single egg capsule, lateral view ( $\times 6$ ) .
Fig. 2. Cominella acutinodosa Crosse, single egg capsule, top view $(\times 6)$.
Fig. 3. Cominella acutinodosa Crosse, group of egg capsules ( $\times 1 \cdot 25$ ).
Fig. 4. Amplisepia apama Gray, single egg (nat. size).
Fig. 5. Melo miltonis Gray, egg capsule ( $\times 0 \cdot 6$ ).
Fig. 6. Mclomiltonis Gray, protoconch showing commencement of colourations ( $\times 1 \cdot 6$ )
Fig. 7. Melo miltonis Gray, protoconch showing aperture $(\times 1 \cdot 6)$.
Fig. 8. Haptochlucna maculosa. Hoyle, eggs attached to Ostrea sinuata Lamarck $(\times 0.6)$.


# A NOTE ON THE OCCURRENCE OF RHABDOPLEURA ANNULATA IN SOUTH AUSTRALIAN WATERS 

By Professor T. Harvey Johnston, University of adelaide


#### Abstract

Summary The only published reference to the presence of Rhabdopleura in Australian waters is that of Harmer (1904, p. 23) who found in South Australian material a fragment which he did not determine specifically. Norman (1921, p.98) described R. annulata from localities close to the Three Kings, a group of islands lying to the north of New Zealand. His material consisted of coenoecia found on stones and on a shell dredged from depth of 183 and 549 metres.


# A NOTE on the OCCURRENCE of RHABDOPLEURA ANNULATA in SOUTH AUSTRALIAN WATERS 

By Professor 'T'. Harvey Joinstion, Universicy ue Auelaiue.

THas: only published reference the thesence of Rhabdophento in Anstralian waters is that of Ilarmor ( 1904,1 . $6: 3$ ) who found in South Austratian material a Fragment which he did not determine specifically: Norman (1921, 1.98 ) described Li. athmalata trom localities close to the Three Kings, a group of islands lyiur to the horth of New Zealand. His material consisted of cocnoecia found on stones and ou in sholl dredged from depth of 183 and 549 metres.

In an aceount which has for some yearn been awating publication in the Keports of the Australasian Antaretce Expedition of 1911-1!97, the present anthor has recorded the finding of tragments amonest the debris form a dredging in 6.is fiathoms off Maria Istand on the cast coast of Tasmania. Mention is also made in that report of the occurvence of the same speries, irlentilied as $k$. ammulata, at lwo collerting stations (Nos. 113 and 11 B ) of the British, Australian and New Zealfund Autarctic Researeh Expedition of 1929-19:3, buth lucalities heing off the eastern

 is close to the entrances to loanks Strait.

In the report just mentioned, it was sugenteal that liarmer's material which Was not definitely hosatized, might have been deteeted in dredgings taken ferm South Australian waters by the late Sir doseph Verco who, we know, forwarded fas entlection of Rolyzo to that investigator for identification. The continental shelf in the vicinity of Kangaroo Lstand wan suggested as a possible focality becanse of the depth. $\lambda$ mass of L'olyzoa taken by Verco from various localities oft ons sumbern ronast is at present in the eollection of the simatis Australian Museum, and Hhis was "xamined macroscopically in 1936 at my rentuent ly l\%. C. Cotom and by 1. sitath, the latter lomgerperially emgaged in at staly of the group. Hy own exanmination was only a chrsory one. As a result of these searehes, no trace of the characteristic peristomial tubes or pectocaulus was recognized,

Lu May of the present year, scrapings of the material atherent to the under surlinee of rocksat, or just below, low spring tide mark at Porm. Willunga Reef were rxamived for their coutent of lower invertebrate life and, quite unexpectedy, is frirly loug, well preserved counoecium of $l R$. annulata was found. The specimen was probably not taken in siluad ano dombt mas washed up from deeper water in
the vicinity as a result of storm action. The locality is open to the influence of south-westerly gales, so that it is possible that the tube may have been carried from the sea floor of Investigator Strait, whose depth varies from 60 to 70 fathoms between the end of Eyre's Peninsula and the western part of Kangaroo Island, but diminishes to 12 to 17 fathoms between the island and Yorke's Peninsula. The adjacent part of St. Vincent's Gulf varies from about 20 to 12 fathoms, shallowing rapidly close to the coast in the vicinity of Port Willunga.

As Harmer's article was published in 1904, his specimen must have been taken either in that year, or more probably earlier. Verco had been engaged in dredging prior to that date, but he stated (1935 Edit. Cotton) that, prior to January 1905, he had never dredged in depths greater than 35 fathoms.

The Port Willunga specimen, on which numerous minute filamentous algae were growing, is 2.53 mm . long and 0.265 mm . broad, the internal diameter of the tube being $0 \cdot 19-0.192 \mathrm{~mm}$. The maximum thickness of the wall at the projecting portion of each ring is $0 \cdot 02-0.025 \mathrm{~mm}$. The rings resemble closely those figured by Norman and are $0.042-0.045 \mathrm{~mm}$. apart. The length of the fragment is much greater than in those illustrated by Norman who noted, however, that such was variable, and reminded one of those of $R$. normani Allman. 'The projecting rim and other features agree completely with Norman's figures. It is to be remarked that $R$. normani is a very widely distributed species, occurring off Greenland, the Shetland Islands, the coast of Norway, and in the South Atlantic off Tristan da Cunha where it was taken by the "Challenger". The known depths for that species range from 5 metres (according to Schepotieff) to 500 metres. Broch (1927, p. 468) recorded briefly the finding of fragments of $R$. normani by the "Gauss" in the Antarctic at $66^{\circ} 02^{\prime} \mathrm{S}, 89^{\circ} 38^{\prime} \mathrm{E}$, in 350 metres, but since he considered that there was only one valid species ( $R$. normani), and as he did not figure his specimen, its relation to $R$. annulata is not known. A specimen taken by the "Siboga" in the East Indies, south-westerly from Celebes, in 75 to 94 metres and described by Harmer (1905, 127, Text fig. 2) as Rhabdopleurasp., was assigned by Norman (1921, 101) to R.annulata.

The present note extends greatly the known range of the species, which now includes the seas off the northern part of New Zealand, the east coast of Tasmania from Maria Island to Banks Strait, and the region in the vicinity of the entrance to St. Vincent's Gulf in South Australia.

## REFERENCES.

Broch, H. (1927) : Die Pterobranchier, Rhabdopleura. Deutsche Südpolar Exped., 19 (Zool. 11), 468.
Harmer, S. F. (1904) : Hemichordata. Cambr. Nat. Hist., 7, 21-32.
Harmer, S. F. (1905) : The Pterobranchia of the "Siboga'" Expedition. SibogaExpeditie. Monogr. 26 bis, 132, pp.
Johnston, T. H. (1911-1914) : Rhabdopleura. Rep. Austr. Antarct. Exp., Ser. C, 3 (4), in press.
Norman, J. R. (1921) : Brit. Antarct. ("Terra Nova'") Exp., Nat. Hist. Rep. Zool., 4 (4), 95-102.
Verco, Sir J. (1935) : Combing the Southern Seas. (Edit. by B. C. Cotton), Adelaide.

## PUBLIE LIBRARY, MUSEUM, AND ART GALLERY OF SOUTH AUSTRALIA

## RECORDS

OF THE

## SOUTH AUSTRALIAN MUSEUM

Vol. VI, No: 2

Published by the Board of Governors, and edited by the Museum Director (Herbert M. Hale)

Adelaide, December 24th, 1938.
PRINTED AT THE HASSELL PRESS, 104 CURRIE STREET

# OBITUARY OF JOHN SUTTON 

By Herbert M. Hale, Director and<br>H. Condon, Assistant in Zoology, South Australian Museum

## Summary

Mr. John Sutton, who succeeded the late Dr. A. M. Morgan as Honorary Ornithologist at the South Australian Museum, died on November $22^{\text {nd }}, 1938$, after a short illness. Mr. Sutton was a Victorian; he was born at Castlemaine on March $25^{\text {th }}, 1866$, and his early years were spent at Bendigo. He was a banker by profession, at one time being acting Manager of the National Bank in Adelaide, and later Inspector at Melbourne. On his retirement from the bank in 1917, Mr. Sutton returned to this State and acted as lecturer in Banking at the University of Adelaide. He was a member of the Institute of Bankers.

# OBITUARY of John Sutton 

By Herbbert M. Hale, Dirhector, and<br>H. CONDON, Astistant in Zoolocy, South Australian Musbum.

Mr, John Sutton, who succeeded the late Dr. A. M. Morgan as Monorary Ornithongist at tho Nouth Australian Musenm, died ou Noventher dend. 19:38, atter a short illness. Mr, Sutton was a Victorian; he was boru at Castlemaine on March $25 t h, 1866$, and his early yeats were spent at Bendigo. He was a banker by profession, at one tine being acting Manarer of the National Bank in Adelaide, and later Inspector at Melbourne. On his retirement from the bank in 1917, Mr. Sutton returned to this State and acted as lecturer in Banking at the University of Adelaide. He was a member of the Institute of Bankers.

At the age of 53, Mr. Sutton began seriously to study our native bircls. With characteristic: thoromghess and enthusiasm, he se abont observiug and recording the habits, calls, and distribution of the sonth Anstralian avifama, and whenever opportunity arose, extonded his researches into other parts of the Commomwealth. Mr. Sutton was not a private collector of birds, but many specimens found by him are now in the Museum collection. Several trips were made to Queensland, New South Wales, and Victoria, and the habits of the birls observed there were recorded.

Mr. Sutton was also keenly interested in the historical side of South Australian ornithology, and disposered many now and interesting facts about carly ornitholorists and their acticities in this State. He was the author of many papers and articles on birds as well as iunumerable short notes and deseriptions in the "Emu" and "South Australian Ornithologist". During his comparatively short carece as an ornthologist, it can be said that he berame one of the leading fignes in South Australiau nrnithology, and his knowledge and opinions were vatued areatly by all with whom he came into contact.

In J923, following the death of Mr, H. R. Keith, Ornithologist at the Museum, Dr. A. M. Morgim was appointed Honorary Ornithologist, and during the same Vear, Mr. Sutton joined him as Assistant Honorary Ornithologist. For the next filteen years, Mr. Sntton spent every afternoon at the Museum, and as a result of his organizing ability and thoroughens, about fifteen thousand specimens were registered, catalugued, and stored during this period. He was an expert penman, and all his records were kept with meticulous care.

Mr. Sutton joined the South Australian Ornithological Association in 1919, acted as Honorary Secretary for sixteen years, and was a member of the Editorial Committee of the "South Australian Ornithologist" for eleven years.

In October, 1934, on the death of Dr. Morgan, Mr. Sutton became Honorary Curator in Ornithology, which position he held until his death. He was a member of several learned and scientific societies, including the Royal Society of South Australia, the Royal Australasian Ornithologists' Union, the Royal Geographical Society, and the South Australian Ornithological Association.

# CONTRAST IN DRAWINGS MADE BY AN AUSTRALIAN ABORIGINE BEFORE AND AFTER INITIATION 

By C. P. Mountford, Acting Ethnologist, South Australian Museum


#### Abstract

Summary The remarkable change in the mental outlook of a partly detribalized aborigine, after he had passed through the ceremonies admitting him to full tribal membership, and the distinct alteration in the character of the crayon drawings, produced by him before and after initiation, form the subject of this paper. When the 1935 Adelaide University Anthropological Expedition to the Warburton Ranges in Western Australia ( ${ }^{1}$ ) left Laverton, two interpreters were employed; one, Pitawara, a fully initiated aborigine twenty-five years of age, the other, a youth named Nijau (p1, vii, Fig. 2), who, we understood at the time, had passed through all stages of initiation - that is to say, he had been circumcised and subincised.


# CONTRAST in l)RAWINGS MADE by an AUSTRALIAN ABORIGINE BEFORE and AFTER INITIATION 

By C. P. MOUNTFORD, Acting Ethinoiogisr, Soutit Australian Museum.

Plates v-vii.
Tum remarkable change in the mental outlook of a partly detribalized aborigine. after he had passed through the eremonies admitting him to full tribal membership, and the distinct alteration in the chameter of the crayon drawings protheed by him before and after initiation, form the subject of this paper.

When the 19:35 Adelaide Cniversity Inthropological Expedition to the Warburton Jianges in Western Anstralia (1) left Laverton, two interpreters were employed; one, Pitawara, a folly initiated aborigine twenty-five years of age, the other, a fouth named Nijau (pl. vii, fig. -9), who, we understood at the time, had passed through all stages of initiation-that is to say, he had been circumeised amt subincised.

After a journey of three hundred and fifty miles across uninhabited country, composed largely of mulga flats and spinifex-covered sandhills, we reached WaruPיinu, a :matl watcrhole on the junction of the Elder and Warburton Creeks. Here we pstablished our base camp and started work among a group of people of the Ngada tribe, who were practically untouched by civilization.

In order to gain some insight. into the art of the aborigines, sheets of brown paper and red, yellow, hack and white crayons were distributed amongst the natives.

For a while, when every-day objects formed the subjects of the drawings, the older men made no attempt to conceal them from our younger interpreter. But when confidence became established between the older men and myself and the drawings began to take on a more secret character, it became obvious that Nijau was not accepted by the tribal leader". He was diffedent and hostitating in their presence, and spent most of his time playing with boys many years his junior. Should Nijau pass near the place where the older men wre making the drawings, these were at once turned face downwards.

Inquiries then revealed the fact that our younger interpreter, although he

[^6]had been circumcised some years ago, had been persuaded by the mission authorities not to undergo the ritual subincision ceremonies, the participation in which would have granted him the rights and privileges of full tribal membership. He was therefore tribally a child, and as such would not be allowed to see drawings depicting legends known only to the initiated. Nijau was therefore useless as an interpreter.

During this period Nijau, in common with other aborigines, made a number of drawings; pl. v, figs. 1 and 2, are two examples of his work. The subjects are purely European, and are such as any white child in the upper classes of a primary school might have produced. In the first sheet (pl.v, fig. 1) the objects illustrated are easily recognizable, i.e. on the top of the sheet a policeman, then an aeroplane, railway train, axe, boot on the lower left, a revolver, and on the lower right a station hand, with his wide-brimmed sombrero and gay neckcloth, who had evidently caught the imagination of the aboriginal youth.

The drawings on the second sheet (pl. v, fig. 2) are, if anything, of a higher order. A, is a house on the Mount Margaret Mission ; B, a ram (reminiscent of one of the famous paintings at the Altimira Caves in Spain) ; C, an echidna; and D, a cauliflower in blossom. The lower drawing is an excellent representation of the stockyards, windmill and troughs at the above mission station. Considerable detail is shown, even to the wheel of the stop valve $E$, that controls the flow of water to the trough. These sketches showed considerable skill, for, as Nijau could neither read nor write, it is almost certain that he had not received instruction in drawing.

During the latter part of our stay, Nijau, in company with two other younger boys, passed through the subincision operation and rituals.

This act wrought a major psychological change in the youth. He no longer played with the boys or approached the men with downcast eyes or diffident mien, but associated freely with the elders, noticeably proud of his new status and the head-dress that proclaimed it ( pl. vii, fig. 1), while in his general conduct he displayed all the confidence and assurance of much older men.

No longer did the men turn their sheets of drawings face downward, but willingly explained, through Nijau, the meaning of the symbols on the sheets of drawings which illustrated the wanderings of their semi-human ancestors. The youth's pride and self-importance reached even greater heights when he was chosen as guardian to a boy selected for circumcision (pl. vii, fig. 1), and was, for the first time, allowed to sit in the circle of singers and chant the sacred songs of. his tribe.

Thus Nijau reached full tribal membership. But it was in the crayon draw-
ings that the remarkable psychological change was most clearly exhibited. After his initiation Nijau produced two sheets of drawings (pl. vi, fig. 1 and 2), and on these every object depicted is associated with the life of the uncivilized aborigine, and the symbols (with the exception of $\mathbf{F}$, fig. 2) are the same as those used by the older men to illustrate their traditional stories.

A (pl. vi, fig. 2) are the tracks of parent emus as they travelled backwards and forwards to their nest at $G$. B is a line of wallaby tracks leading into a cave at C ; a hill F overlooks this place. D pictures a distorted gum tree seen by the artist whilst on our outward journey; according to Nijau it had been blown over by the wind and had re-rooted itself. E indicates the roots of the tree. Except for A, a waterhole called Kapi Pilbit, and the associated creek (created by the ancestral Kangaroo) every object pictured would be known only to the fully initiated. B is a wanigi made by two ancestral beings, the Wati Kutjara, and left behind at Winduru Waterhole ( ${ }^{2}$ ).

At C is shown another wanigi seen by the author and Nijau at a semi-secret ceremony enacted at the expedition camp. D is a gnamma hole ( ${ }^{3}$ ), Kapi Matara; F, a somewhat Europeanized representation of an aborigine wearing the sacred wanigi supported from his head, his face painted with white pipeclay, and body decorated with lines of eagle-down, while E is the equally sacred bullroarer pupinba (equivalent to the Aranda tjurunga).

The cohesive power of the ceremonial life of the aborigines and the calamitous effect of any influences that tend to destroy that power will be evident from this short paper. If Nijau had not been subincised, he would have lived his life as an outcast from his tribe. At the same time, such nonconformity to native customs would not have rendered him more acceptable to the white community. For the happiness of the aborigine, the maintenance of his ceremonial life and social organization is vital.

## REFERENCE.

Mountford, C. P. (1937) : Rec. S. Aust. Mus., vi, pp. 5-28, fig. 1-27.

[^7]
## EXPLANATION OF PLATES.

Plate v.
Fig. 1 and 2. Crayon drawings produced by Nijau before subincision ceremony.
Plate vi.
Fig. 1 and 2. Crayon drawings produced by Nijau after subincision ceremony.
Plate vii.
Fig. 1. Nijau guarding initiate in circumcision.
Fig. 2. Nijau.




# A SURVEY OF AUSTRALIAN ABORIGINAL PEARL AND BALER SHELL ORNAMENTS 

By C. P. Mountford, Acting Ethnologist, and<br>Alison Harvey, Hon. Assistant in Ethnology

## Summary

The shell ornaments described in the following paper are used by the aboriginal population over wide areas in Australia. They may be divided into two general types, one made from the Baler shell (Melo diadema), the second from the shell of the Pearl Oyster (Meleagrina maxima), and from the smaller pearl shell (Meleagrina margaritifera).
The pearl shell ornaments are found almost exclusively in the western half of the continent, while with a few exceptions, the baler shell ornament is limited to Queensland, Western Central Australia and North-eastern South Australia.

# A SURVEY of AUSTRALIAN ABORIGINAL PEARL and BALER SHELL ORNAMENTS 

By C. P. MOUNTFORD, Acting; Eihnologist, and ALISON HARVF.Y, Hon. Asistant
in Ethelogy.

Plates viii-ix, and Text fig. 1-7.

## IN'TRODUUTION.

The shell omaments dexeribed in the following paper are used by the aboriginal population over wide areas in Australia. They may be divided into two general 1.jpes, one made from the baler shell (Mclodiadema), the second from the shell of The Pearl Oyster (Mctragrime marima), and from the smaller pearl shell (Melcagrina margarilifera).

The pearl shell ormaments ant found ahost exclusively in the western half of the continent, while with a few exceptions, the baler shell ornament is limited to Queensland, Western Central Anstralia and North-eastern South Australia.

## PEARL SHELL ORNAMENTS.

## Manufacture.

The pearl whell umaments of the North-west ('onst of Australia carly attracted the attention of visitors and scientists. Martin and Panter in 1863, p. 86, noted that the methor of wantacturing these objects consisted in grinding away about two-thirds of the marginal substance of the shell, and drilling a hole at one 'nd of the smaller diauseter for the hair-string. The patterns on the decorated ornaments were enyraved on a depth of about half a millimetre, and the spaces filled in with a pigment of grm and charcoal.

Stirliug, on at card in the south Australian Musemm, substuntiates the above tesereption. and moted that the rough onter surface of the shell was eovered with hot ashes and then removed lyy gronding with sand and water.

## Jsage.

Fine of the peathl urnanent lies in two firlds, as a mums of personal decoration and as an object of reprmonial importane. Love ( $1925, \mathrm{p}$. 27) points out that the men of the Worver thibe wear these shells as ornaments, and suspend them from
their belts at the back and front; while both men and women hang several of them down their backs from a necklet made of human hair. Small pieces of oval pearl shell are sometimes used as forehead ornaments.

Martin and Panter (1863, p. 86) noticed the coastal north-western tribes wearing these ornaments suspended from a waist band. These writers consider them to be largely ornamental, although Campbell (1914, p. 86) saw them, at Sunday Island, being worn by youths who were passing through the final stages of initiation. On these occasions they wore richly ornamented shells ( E and F , pl. viii). This evidence is supported by Mr. J. Heggie in connection with A and B, fig. 1. The dress of a fully initiated man consists of a plain shell.


Fig. 1. Distribution of Pearl and Baler Shell ornaments.

The shell ornaments of South-Western Queensland have two uses, one as a pubic ornament for "corroborees and other public rejoicings", the other, in the hands of malignantly-disposed people, as an object of evil magic.

In Central Australia, such ornaments have an important magical value. Nevertheless they are still used as a form of decoration (Spencer and Gillen, 1899, p. 544).

According to Mr. N. B. Tindale, pearl shells at Ooldea (H, fig. 3) were used
in the rain-making rituals, but a photograph by the late R. H. Pulleine, which pictures an aborigine wearing one as a neck pendant, suggests that on some occasions, the shells still perform the function of decoration.

In the Ngada tribe of the Warburton Range of Western Australia one of the authors observed that a pearl shell pendant was used by one of the older men as an article of dress in both the ordinary camp life and the initiation ceremonials.

In a recent interview a native called Waria, a member of the almost extinct Ngadjuri tribe of the middle north of South Australia, described how he wore pearl shell ornaments at the time of his circumcision. The shell ornaments, which he had not seen previously, were tied on the upper part of the leg (C, fig. 6) and according to Waria rattled and shone in the firelight as he ran round the ceremonial ground. The fact that Waria had not seen these ornaments before his initiation indicates their sacred character.

## Magic.

As articles of magical worth, these ornaments are widely distributed in Australia.

In Central Australia they are found as such, and the chief aspects of their magic being their potence as charms for women and their healing properties. Describing their use in connection with the latter, Spencer and Gillen (1899, p. 544) write: "If a man desires to charm a particular woman, he takes a Lonka-lonka, as the ornament is called, to some retired spot, and charms it by singing over it, 'Ma quatcha purnto ma qillia purtno', which conveys an invitation to the lightning to come and dwell in the Lonka-lonka. After the charming has taken place it is hung on a digging stick at the corroboree ground until night time, when a man removes it and ties it to his waist band. While he is dancing, the woman whom he wishes to attract, alone sees the lightning flashing in the Lonka-lonka, and all at once her internal organs shake with emotion. If possible, she will creep into his camp that night or take the earliest opportunity to run away with him."

From the description of the Lonka-lonka "flashing'" in the firelight, it would appear that the object was made from pearl shell, as a baler shell (which is also in use in this area) would not "flash".

On the same page, in a footnote, Spencer and Gillen refer to the healing qualities of the Lonka-lonka. Used in sickness of any kind its magic has great curative properties. Roth (1897, p. 163) also refers to the use of the pearl plate as an antidote to sickness because of its magical powers.

At Ooldea, according to Mr. Tindale, scrapings of the shell are used in the rain-making ceremonies.


Fig. 2. Decorated Pearl Shells. A, B, and D; Sunday Island, Western Australia. C; Oygnet Bay, Western Australia. E; Mount Casuarina, north-western Australia.

## Mythology.

Various myths are woven round the pearl shell. Professor A. P. Elkin, in a foreword of "Aboriginal Decorative Art" (McCarthy, 1938), writes that on the north-west coast a particular chant is sung when the design is being engraved on the pearl shell. The design cannot be made except by those who know the "song". This suggests that the patterns are traditional. This statement is supported by Mr. Heggie in connection with A, fig. 2.

According to Mr. N. B. Tindale, the natives at Ooldea believe that the shell comes from a place in the far north-west, where large lizards live in the water and attack the men who collect the shells (H, fig. 3).

## Description.

The pearl shell ornaments are somewhat oval in shape, and vary from two to eight inches in length. Each shell has at one end either a hole or a mass of resin or wax to which a hair-string is attached. Pearl shells are of two types, plain and engraved. The pattern on the latter is usually carried out on the concave face, but sometimes on both.

Twenty-eight examples of pearl shell ornaments, from the eighty-five available for study, were chosen as being representative of the various forms. These are illustrated in fig. 2-6.

A, fig. 2, collected at Sunday Island by Mr. J. Heggie, is a striking example of a maze design. Commencing at the lower edge of the shell, three parallel lines can be followed without a break over most of the surface, finishing in the middle of the left-hand side. Basedow (1925, p. 355) figures a pearl shell from the same locality in which a definite anthropomorphic figure can be traced, and the fundamental design of the Sunday Island specimen is similar. According to Mr. Heggie, the youths of this locality, after they have passed through the four earlier stages of their initiation, wear engraved ornaments, while the insignia of the fully-initiated is a plain pearl shell.

The owner of the ornament (A, fig. 2) explained to Mr. Heggie that the pattern had been thought out by somebody a "long long time ago", and in that form had been handed down, generation by generation, to the aborigines of the present day. This statement suggests that the design is associated with the tribal mythology.

B, fig. 2, is also from Sunday Islaud. The engraved pattern is the key or meander type-a definitely aboriginal concept belonging to the north-western area (Davidson 1937, p. 130) -but the lines of circles, the leaf, and the conventional designs make one suspect European influence, while the regularity and accuracy


Fig. 3. Decorated Pearl and Baler Shells. A; Pearl Shell, Roebuck Bay. B; Pearl Shell, Katherine River, Northern Territory. C; Pearl Shell, Roeburn, Western Australia. D; Baler Shell, Daly Waters, Central Australia. E; Pearl Shell, north-western district, Western Australia. F; Baler Shell, Central Australia. G; Pearl Shell, between Barrow and Tennants Creek, Central Australia. H; Pearl Shell, Ooldea, South Australia. J; Pearl Shell, Sunday Island, Western Australia.
of the circles suggest the use of a steel tool. With one exception (C, fig. 3) this shell is the only example in the collection on which the concentric circle is engraved. This design is that most commonly employed in Central Australian decorative art (Mountford, 1937, p. 25).

The ladder-like, meandering design on C, fig. 2 (from Cygnet Bay) resembles the snake motii often found in the tjurunga designs of the Central tribes. Mountford, 1937, fig. 9, illustrates a crayon drawing that relates to a snake totemic centre, the meandering line of which resembles that on the left-hand of C, fig. 2. It is not unlikely that the design of the pearl shell refers to some mythical snake ancestor. The significance of the other figures is unknown, except those resembling arrow heads, which throughout Australia represent bird tracks.

D, fig. 2, was collected from the same locality as A, fig. 2. These are two of the most decorative examples in the collection. Three parallel lines meander backwards and forwards over the whole surface of the shell, making a modified maze. The spaces between are filled with engravings of tracks of human beings, kangaroo-like creatures and birds.

Snake designs have been engraved across the centre of the shell, on the upper right-hand edge, and emerging from the drilled hole at the top. This pattern is repeated on the reverse side ( $\mathbf{F}$, fig. 2) in greater detail. Above the snake is a remarkable group, the significance of which could hardly be misunderstood. The upper figure pictures one of the many sharks that infest the northern waters, while that immediately below is strongly suggestive of a Sucker-fish or Remora (1) ready to attach itself to its host.

E, fig. 2, was obtained at Mount Casuarina, which is the most northerly locality at which engraved pearl shell plaques have been collected. No meaning can be ascribed to the pattern.

A, fig. 3, from Roebuck Bay, is in the collection of the Hamburg Museum, and was photographed there by Mr. N. B. Tindale in 1937. The patterns, which do not appear to be as deeply engraved as those previously described, are almost entirely naturalistic. The two main figures, one on the lower right, the other slightly left of the centre, are similar to representations of yams seen on bark paintings from Arnhem Land, and in crayon drawings of the Granites district in the north-west of Central Australia. In such figures the circles indicate the yams, and the connecting lines the roots. The engravings on this pearl shell may have a similar meaning. Several star forms are also present.

B, fig. 3, was collected on the Katherine River, Northern Territory. A sharp-

[^8]

Fig. 4. Decorated Pearl Shell. A; Derby, Western Australia. B; Roebuck Bay, Western Australia. C; Cygnet Bay, Western Australia. D; Bernice Bay, Western Australia. E; Bernice Bay, Western Australia. F; Kimberley Coast, Western Australia.
edged tool had been used to cut the pattern, which is composed entirely of fine lines, some almost indistinguishable. With the exception of a single star, only ladder-like designs are present.

A fragment of what must have been a particularly decorative example is shown in C, fig. 3. The original is in the possession of Mr. W. B. Saunders, of Georgetown, who collected it at Roeburn. He kindly permitted a rubbing to be made, and from this the illustration was prepared. The plant-like figures on the lower edge are suggestive of those on A , fig. 3. Meandering lines, stars, and a single concentric circle form the remainder of the designs.

E, fig. 3, was collected from the north-western districts of Australia by Davidson (1937, fig. 44). The engraving on the lower right hand probably represents the silver bat fish (Monodactylus argentius), and that on the centre left one of the coral fish. No meaning can be ascribed to the circular figures.

G, fig. 3, is a portion of a large pearl shell-collected between Barrow and Tennant's Creeks, Central Australia-on which the angular meander had been engraved. This design is strongly suggestive of the north-west coast, the home of this motif. The central portion of the pattern had been ground away, perhaps for the same reason as that recorded in connection with H , fig. $3\left(^{(2)}\right.$.

H, fig. 3, when sketched by Mr. N. B. Tindale at Ooldea, on the Trans-Australian Railway Line, was being used by the natives of those parts. Here again only a fragment of the original pearl shell remains, and consequently only portion of the engraved angular meander. According to Mr. Tindale the shell is called kararba. The natives claim that it comes from a place in the north-west, where large lizards live in the water and attack the men who collect the shell. Scrapings of the shell are used during rain-making ceremonies, which practice probably accounts for the small size of examples collected in South Australia (see also H, fig. 5 ; B, fig. 6 ; and as previously noted G, fig. 3).

By the courtesy of the Australian Museum, rubbings of J, fig. 3, as well as many others, were made available for study. This, in common with $\mathrm{A}, \mathrm{B}$, and D , fig. 2, was obtained from Sunday Island. The triple meandering lines, particularly on the upper right-hand side, resemble the almost obliterated design on H , fig. 5.

The long oval shell pictured on A, fig. 4, comes from Derby, north-west Australia, and had been cut from a shell already engraved with the angular meander. This example was attached to several long strings of shells, and had been used as a neck pendant. Similar, but unengraved, plates, attached to shell necklets, are in the South Australian Museum.

[^9]

Fig. 5. Decorated Pearl Shell. A, C, and J; Maratuna Tribe, Western Australia. B and D; Lake White, Northern Territory. E; Central Australia. F and G; Timber Creek, Northern Territory. H; Koonibba, South Australia.

B, fig. 4, is from Ruebuck Bay. The zig-zag lines predominate in the decoration of this shell ; the enmentric rhomboid is also present. This motif is untusu ou this class of (mameut, although emmon on other lorms of aboripinal mohile art (Davidson, 143T, p. 119).

C, fig. 4, is a pendant from Cygnet Bay engraved with a meandering design. and likn $\Lambda$, fig. 4 , it watattached to a necklet of shells. Fi, fig. in, from Central Australia, beurs an identical but almost obliterated design.

D, E, and F. fig. 4, were collected by Dr. D. S. Davidson (1937, fig. 44) from Bernice Jias, amd Kimberley ('oast, respectively. These are figured on account of the umsual lattice pattern on $D$, the zig-zag and leaf-like forms of $F$, and the striking representation of a crocodile on E . The distortion of the crocodile to fit into the a a ailable pate is a common feature of the batk drawings of Arnhem Land.

A, C, and J, fin. 5 , were photographed at the Leiden Musenm by Mr. N. B. I'indale. The patteru on all three examples is unlike any other in the series, with the possible expeption of the faint lines on Ib, fig. 6. These ornaments were made from the smaller pearl shell (M. margaritifira), by the Maratunia Tribe. The locality of the abore tribe could not be traced, but the fact that neither the larese nor the smaller pearl shell oceurs any further sonth than Hamelin Pool, on the West Coast of Australia, suggests that the tribe is north of this place.

B, D, Fr, and C , fig. 5 , were collected by Dr, C. J. Hackett while on medical reseatel in the Northern Territory, $B$ and $D$ (from Lake White), and $G$, from Timber Creek, are seratched with lattice patterns similar to those on D, fig. 4. A decorative ferm leaf design oceupies the lower edge of F (Timber Creek).

E, fig. 5 , comes from Central Australia. From the point of design this specimen is of unusual interest. The parallet limes and star motif, which is confined to the centre of the continent (fig. 7) had been seratehed on the surfince of this pearl ornameut. In addition, three faint meanderiug lines, reminiseent of those on C, fig. 4, from Cyynet Bay, proclaim, so to speak, the place of its birth. It would appear that this shell was engraved on the north-west coast, and, by the process of trade, found its way into Central Australia. Here it was again cuwraved, but this time with stars and parallel lines. Another anch example is illus. trated on $\mathrm{D}, \mathrm{pl}$ ix. $\Lambda$ baldr shell ormament bearing the same design is shown beside it for comparison.

II, fig. $\overline{5}$, is a fragment of the large pearl shell which, according to Mr. N. B. Tindale, had been traded to the natives of the Koonibha Station from Kalgomior. This shell has several seatcely diseernible meanelering lines on its inner surface, a remnant, no duabt, of the original engraving, This, as pointed out earliet, resembles the upper right-hand side of of, fig. 3.

B , fig. 6 , a specimen from Penong, is also a fragment, chipped to its present size from a much larger shell. On this ornament a series of very fine lines forms a ladder-like pattern.

Pearl shell ornaments, called Mukuli, of which no specimens have been collected, were used by the Ngadjuri tribe of the middle-north of South Australia in their circumcision ceremonies. C, fig. 6 , illustrates the method of wearing.


Fig. 6. Pearl and Baler Shell ornaments. A; Decorated Baler Shell, Coopers Creek, South Australia. B; Decorated Pearl Shell, Penong, South Australia. O; Method of carrying Pearl Shell ornaments by the Ngadjuri Tribe, South Australia. D; Decorated Baler Shell ornament, South Australia.

D, pl. viii, is the top of a fruit tin lid collected by the Canning Stock Route expedition. When obtained it was in use as a pubic ornament.

It is easy to imagine that the native, finding a lid when new, would see in it a striking resemblance to the shining pearl shell, and would wear it as such.

A, pl. viii, figures a plain pearl shell from Newcastle Waters, which illustrates the custom of repairing these shells, which have considerable value in this area.
$\mathrm{B}, \mathrm{pl}$. viii, is a shell bearing a modified maze design in which two bird tracks are incorporated. Both A and $\mathrm{B}, \mathrm{pl}$. viii, are attached to belts of hair string.

## BALER SHELL ORNAMENTS.

## Manufacture.

The method of production of the baler-shell ornaments for spear-throwers at Princess Charlotte Bay is described by Hale and Tindale (1934, p. 99) : "Two pieces of shell are roughly chipped to shape, and are then ground to an oval form on stones, sand and water assisting the operation; next the convex outer face is polished on a smooth rock, using finer sand as an abrasive, until it is pure white.

The shells are then placed, one on each side and with the concave or inside faces opposed, at the 'grip' end of the throwing-stick and fastened with beeswax, which fills the gap between them. A charm is frequently concealed within the adhesive between the two shells." G, pl. ix, pictures the haft of a spear-thrower from this area.

## Usage.

The use to which this ornament is put varies with the different localities; it may be used for ornamental or ceremonial purposes. Among the tribes of north-west-central Queensland it appears to be solely ornamental, being found as an article of personal adornment and as a decoration on the haft of spear-throwers. In the former case, Roth (1897, p. 112) states that as a chest ornament it is worn suspended on a hair string, and that it is occasionally but irregularly worn as a forehead ornament. He also gives the following description of its use as a spearthrower (1897, p. 149): "This (spear-thrower) has a sort of haft to prevent the hand slipping off; this, projecting at an angle from the same edge as the peg, is composed of a flattened ovate piece of beef-wood gum, about three inches or more in its greater diameter ; a white piece of shell . . . . with convex side outwards, is fixed to both sides of it."

Hale and Tindale (1934, p. 99), also found the baler shell used as a decoration for spear-throwers. Among the Dieri people of the far north-east of South Australia the shell ornament has a great magical value, and is closely connected with the circumcision ceremony in which it is worn by the initiate as a chest ornament.

Gason (1874, p. 18) refers to its use in the above ceremony, and states that, as soon as a boy shows signs of advancing manhood, the older men select a woman whose duty it is to suspend a "mussel" shell around the boy's neck, which she does at the appointed time, while engaging him in conversation.

Mr. T. Vogelsang, who spent many years among the Dieri people, related in a personal interview that the youths wear them immediately before, and just after, the circumcision ceremony. One of the tribal elders (the man who seized the youth chosen for initiation) also wore a plain baler shell around his neck, which gave him considerable authority and magical power.

Further south, the Urubunna and Wongkanguru tribes of the Peake district use this shell ornament in connection with initiation ceremonies in a way similar to the Dieri. In the manuscript notes by Mr. E. C. Kempe, on the Aborigines of the Peake District, the following reference is made to the initiation of a young man: "A certain rare shell is used in this ceremony. It is considered particularly precious by these blacks, and is handed down from operator to operator. When a young man is to be operated upon, he is, on a given signal, suddenly seized in camp
by two blacks, his mouth covered to prevent outcry, and the shell ornament hung round his neck by a string."

In the Anjamatana tribe in the Northern Flinders Range, these ornaments have the same ceremonial uses. A string of these shells, makili, is suspended round the neck of the youth during the initiation ceremonies after they have been handled by certain women relatives.

These shells are the objects of greatest value in the tribe, and are placed under the care of one of the old men, who informed one of us that if they had been lost or broken in the olden days he would have been killed for his carelessness ( F , pl. ix).

## Magic.

The only tribe known in which the Baler shells are used as objects of evil magic is the Dieri. Among the members of this tribe they serve the same purpose as the "pointing bone" of Central Australia, and have similar lethal qualities.

## Mythology.

These ornaments are used by the Anjamatana tribe of the Northern Flinders, who, not knowing their source, suppose them to have a mythical origin. Two such legends are known to these people. One tells of a great "whale" (Kukuri) who lived in the springs, but is now in the sea; from the back of his neck come the shells that make up the necklace worn by a youth in the first initiation ceremonies. At one phase in the above ceremony, the youth, placing his hand under the shells, rattles them as he runs around the ground $\left({ }^{3}\right)$.

In a variant of the foregoing legend, baler shells were "tick" on the neck of snakes. An Anjamatana native told one of the authors that he had heard that a mythical snake died in John Creek, and, on searching the locality, found an undrilled baler shell in a swamp near Wertaloona. This shell is one of the string still used by that tribe.

## Description.

The baler shell ornament has a fairly uniform appearance; it is an ovate piece of white Melo shell varying in length from two and a half to five inches, and has either a hole or a piece of resin gum to which the suspensory hair-string is attached. There are two types, one of which is plain, and the other engraved on the concave face (see $\mathbf{E}, \mathrm{pl}$. ix). In both, the inner face is smooth and white, and in most cases shows signs of having been coloured with red ochre, which makes the pattern stand
(3) This rattling of the shells was a feature in a similar ceremony of the more southerly tribe, the Ngadjuri (see C, fig. 6).
out clearly. In the plain forms, however, this colouring has almost disappeared, due no doubt to continual use.

Twenty-nine ornaments made from Baler shells (Melo diadema) are available for study, and of these seven are shown as text figures. They have been selected to illustrate types and designs. D, in fig. 3, collected at Daly Waters, exhibits the arrangement of stars anl parallel lines so characteristic of the Central Australian area (fig. 7). The lines of the design are about 0.5 mm . in width, engraved on the


Fig. 7. Distribution of engraved and plain Baler Shell ornaments in Australia.
concave face, and coloured with red ochre rubbed into the cuts. The topmost portion of the shell, above the hole through which the string is threaded, has been broken, and later repaired with gum made from Porcupine Grass (Triodia) resin.

F, also in fig. 3, is a variation of the above motif in which engraved stars predominate. The shell is smooth and white, but red ochre has been rubbed into the design. This specimen, collected in Central Australia by F. J. Gillen, has not been fully localized.

A, fig. 6, is from Cooper's Creek. A large lump of gum has been attached to
the top of the ornament, probably to fix the hair-string. Two parallel lines in a loop design have been lightly scratched at each side of the shell; this was the only specimen of baler shell which bore any sign of the meander motif so frequently found engraved on pearl shells, especially on those from the north-west coast. (See E and H , fig. 5 , and C, fig. 2.)

D , in the same text figure, is an unlocalized baler shell collected by Mr. R. T. Maurice. This specimen is one of two varying from the usual ovate form ; it bears an uncommon design composed of sets of dots and parallel lines. B, pl. ix, is a typical example of the plain baler shell. (The convex face has been photographed). The specimen-called Kuripikiri by the Mikari tribe-was collected at Minnie Downs, North-Eastern South Australia, by Mr. L. Reese. The smooth, white and glossy concave face was not engraved, but showed signs of having been coloured with red ochre, which remains as a faint trace in scratches on the face. Human hair string suspends the ornament through a hole in the top portion of the shell.

E, pl. ix, is a shell from Daly Waters bearing the characteristic line and star design on the concave face. Here again the engraved design was coloured with red ochre. A pearl shell (D, pl. ix) from Barrow Creek, three hundred and fifty miles south, is included for comparison on the same plate.

A, pl. ix, shows an unlocalized copy in bone of the plain baler shell ornament. Spencer and Gillen (1904, p. 446) in the legend of the two Oruntja men, tell of how one of them killed Induda, an opossum man, and from his shoulder-blade made a Lonka-lonka, which he wore as a forehead decoration.

C, pl. ix, shows the convex face of a "shell" ornament from Cooper's Creek, made from kaolin. This specimen was pale pink in colour, had acquired a surface gloss, and was made as a substitute for the true baler shell ornament. The latter is rare and of great value in this area.

F, pl. ix, is a photograph of a youth of the Anjamatana tribe of the northern Flinders wearing the baler shell ornament while undergoing initiation. This shell is called makali by these people ( ${ }^{4}$ ).

## Design and Distribution.

The engraved patterns of the ornaments described in this paper can be classified into two main groups:
(1) Geometric.
(2) Naturalistic.
(4) The name is similar to that given to the pearl shell ornament (see C, fig. 6) of the Ngulgura tribe who live in the area bounded by Wilpena Pound to the north, the western Flinders to the west, and Gawler in the south.

The former, which predominates, can again be subdivided into:
(a) The angular meander or maze designs.
(b) Meandering and zig-zag lines.
(c) Lattice and ladder designs.
(d) Parallel lines and stars.

## (1) Geometric.

(a) The angular meander or maze design (see A, B, D, and E, fig. 2; G and H, fig. 3; and A, fig. 4), originates on the north-west coast of Western Australia, whence all but four of these examples were obtained. The remaining ornaments, i.e. those collected on the Canning Stock Route, Western Australia, at Barrow Creek, Central Australia, sketched by Mr. Tindale at Ooldea (C, pl. viii, and G and H, fig. 3) and that seen by one of the authors in the Warburton Range of Western Australia, undoubtedly reached their present position by various native trade routes.
(b) The meandering and zig-zag pattern is largely confined to the far northwest. Fourteen pearl shells and one baler shell bearing this pattern were examined, and on the only three collected outside of this area ( E , fig. 5 , from Central Australia, A, fig. 6, and H, fig. 5, from the Great Australian Bight), the designs were hardly distinguishable, due no doubt to age and attrition. When, however, one considers how long it must have taken for such an ornament to have been traded from its source to the Great Australian Bight, it is not surprising that the engravings were almost obliterated and the shell much reduced in size, particularly in view of the custom mentioned in connection with H , fig. 3.
(e) The lattice and ladder motifs (C, fig. 2; B, fig. 3; D, fig. 4 ; B, D, C, J, fig. 5 ; and B, fig. 6) are, without exception, cut into the surface of the shell with a sharp tool. In general, these designs originate on the northwest coast, although B, fig. 3, was collected on the Katherine River, Northern Territory, and B, fig. 6 from the Great Australian Bight. The lines on the latter are so fine that a magnifying glass was necessary to distinguish them. A, C, and J, fig. 5, were decorated with lightly-incised lines. The latter were unlocalized, and unlike any other examples in the series.
(d) Twelve of the shell ornaments were engraved with the stars and parallel lines motif. Three of these were made of pearl shell. One, D, pl. ix, is compared with a baler shell, E, pl. ix, both from Central Australia. This
method of marking is confined entirely to the centre of the continent, and is more commonly seen on the baler shells of this area (see fig. 7).

## (2) Naturalistic.

With the exception of the single example from south-western Northern Territory ( $\mathbf{F}$, fig. 5) all naturalistic designs originated in the north-west. Some are decidedly decorative, i.e. F, fig. 2; A, C, and E, fig. 3, and E and F, fig. 4.

A comparison of the patterns engraved on pearl-shell and those on tjurungas of Central Australia show few, if any, points of resemblance. In fact, except for the tracks on D, fig. 2, the concentric circles on B, fig. 2 and C, fig. 3, and the zig-zag lines and concentric rhomboids on B , fig. 4 , none of the engravings on the shells of the north-west area appear on the tjurungas or the crayon drawings of the central tribes. The latter were collected by one of the authors.

It would seem that the art of the pearl-shell ornament is confined to the northwest, with the exception of the parallel lines and star motif, which is only found on both baler and pearl shells in the centre of the continent (fig. 7). It is noteworthy that the ornaments tend to become engraved with the typical design of the area in which they are used. Thus, a pearl shell from Barrow Creek (G, fig. 5), to which reference has already been made, has the typical design of the "centre" superimposed on an almost obliterated meander design of the north.

From the information already obtained, the southerly diffusion of these ornaments is a noteworthy feature. They originate in two well-defined areas, the pearlshell in north-western Australia, with King's Sound as an approximate centre, and the baler shell in the Cape York area of Northern Queensland. Both types can be traced through Central Australia to South Australia (fig. 1).

Numerous references in literature support this evidence. Campbell, 1914, p. 86, noticed pearl shells in the Gascoyne districts similarly marked to those at Sunday Island. He concluded that they had been carried southward by barter, as the shells indigenous to the Gascoyne districts were much smaller and belong to a different species (probably M. margaritifera).

Roth, 1897, p. 163, when studying the aborigines of south-western Queensland, found that the pearl shell ornaments were traded to those districts from the northwest. Similarly, the same author, in p. 112, mentioned that the baler shell ornaments reached the same districts by the north or north-easterly trade routes, originating in the Gulf of Carpentaria. He traces these routes in considerable detail.

Hale and Tindale (1934, p. 99) when at Princess Charlotte Bay, ascertained the direction of their diffusion; they write: "The area over which these baler shell
ornaments are made is limited to ('ape York, thet the shell dises are articlen of trade to southerm inland people."

Mr. T. Vogelsang, in a personal communication, said that trade in these ornaments, as well as pituri and other artioles, took place among the Dieri along the prewent Queensland stock ronte, which russ in a sonewhat north-easterly directime.

An examination of the distribution and uses of these ornaments reveals tur interesting fact. In places where the articles originate they have, in general, an utilitarian purpose, particularly in the case of the baler shell. As these are traded further from their souree they assume the function of ornament, and in the most distant localities are associated ouly with the ceremonial aspect of the tribe. In other words, they fend to take on a more secet character as they travel further from their' source. 'The two types mee in South Australia, the Anjanatana tribe, to the enst, using the haler shell, and the Ngadjuri tribe, the adjacent tribe to the west, the pearl shell.

## Rephacement.

The high value placed upon these shell ornaments in the inland districts is illustrated by the fact that momerous replacements or substitutes of both types of shell ormaments have been found, and that such replacements have oceured where the shells have magical or ceremonial value. Thus the kaolin specimen (U, pl. ix), eollereded at C'onper's ( 'reek, was made ly tribs among whom, as before observed, the bales shedl ornaments are of value both is magical objects and factors in initiafion rituals.

Tho bone example ( $\Lambda, \mathrm{pl}$. ix ) is unfortuately unlocalized, but the legend of the tro Oruntja men, collected by Spencer and Gillen in Central Australia, in
 are known in Central Australia. Roth (1897, p. 112) records that at Roxburgh, in north-west Qucensland, and south of that station (which is well within the area wherein the shells are used as ornaments at Boulia) the shell ornament is copied by grinding dowu pieces of hroken chinaware.

Another interesting replacement is that collected on the Cauning Stnek route of Western Anstralia, where a fruit tin lid had beeu used in place of a pearl shell ormament (D, pl. viii). $\mathrm{C}, \mathrm{pl}$, viii, figured as a comparison, is a pearl shell pendant, also collected on the Caming Stock route,

## Use isy Women.

In qeneral these slell ornaments are for male use only, and this is a fact to which many observers have drawn uttenion, If appears, however, that in certain
circumstances women are associated, as is shown by Gason's description of the circumcision ceremony, to which reference has been made earlier in this paper (Gason, 1874, p. 18). Also in the Anjamatana tribe of the Northern Flinders certain female relatives handle the baler shell necklace before it is placed round the neck of the initiate. Sir Edward Stirling, in a note on shell ornaments in a case in the South Australian Museum, also mentions their use "in certain circumstances" by women. Hale and Tindale obtained specimens of baler shell ornaments at Princess Charlotte Bay from both men and women.

## SUMMARY.

This paper describes the aboriginal shell ornaments of Australia. A selected number are figured and described, and their method of manufacture, use, magical value, mythology, design, and distribution are discussed.

## ACKNOWLEDGMENTS.

The authors wish to acknowledge the help received from both the Australian Museum of Sydney and Miss D. Cowan of Western Australia.

## LITERATURE.

Campbell, W. D. (1914) : Trans. Roy. Soc., W. Aust., 1.
Davidson, D. S. (1937) : Mem. Amer. Phil. Soc., IX.
Elkin, A. P. in F. D. McCarthy (1938) : Australian Aboriginal Art.
Gason, Samuel (1874) : The Dieyerie tribe of South Australian Aborigines, 1874. Hale and Tindale (1934) : Rec.S. Aust. Mus.
Love, J. R. B. (1915) : Trans. Roy. Soc., S. Aust., XLI.
Martin and Panter (1863) : Journals and reports of two voyages to the Glenelg River and North-Western Australia.
Mountford, C. P. (1937) : Trans. Roy. Soc., S. Aust., LXI.
Roth, Walter E. (1897) : Ethnological Studies among the North-Western Central Queensland Aborigines.
Spencer and Gillen (1899) : Native Tribes of Central Australia.
Spencer and Gillen (1904) : Northern Tribes of Central Australia.

Plate viii.
A. Repaired plain Pearl Shell ornament, Central Australia.
B. Engraved Pearl Shell ornament, Western Australia.
C. Engraved Pearl Shell ornament, Canning Stock Route, Western Australia.
D. Fruit tin lid used in place of Pearl Shell ornament, Canning Stock Route, Western Australia.
E. and F. Method of wearing Pearl Shell ornaments, Sunday Island, northwestern Australia.

## Plate ix.

A. Plain bone ornament, locality unknown.
B. Plain Baler Shell ornament, Minnie Downs, South Australia.
C. Plain Kaolin ornament, Cooper's Creek, South Australia.
D. Decorated Pearl Shell ornament, Barrow Creek, Central Australia.
E. Decorated Baler Shell ornament, Daly Waters, Northern Territory.
F. Initiate wearing Baler Shell ornament, Anjamatana Tribe, South Australia.
G. Baler Shell on spear-thrower, Princess Charlotte Bay, Northern Queensland.



# ILLUSTRATIONS OF STONE MONUMENTS OF THE WORORA 

By J. R. B. Love

## Summary

Attention has been called to the presence in Australia of arranged stones, presumably evidence of a stone-cult of the aboriginals, but concerning which there has been little recorded at first-hand from aboriginal informants.
Professor F. Wood Jones (1925) has drawn attention to some interesting arrangements of stones in South Australia, and he also notes references by Brough Smyth (1978) to arranged stones in Victoria.

# ILLUSTRATIONS of STONE MONUMENTS of the WORORA 

By J. R. B. LOVE.<br>Plates x -xiv.

Attention has been called to the presence in Australia of arranged stones, presumably evidence of a stone cult of the aboriginals, but concerning which there has been little recorded at first-hand from aboriginal informants.

Professor F. Wood Jones (1925) has drawn attention to some interesting arrangements of stones in South Australia, and he also notes references by Brough Smyth (1878) to arranged stones in Victoria.

The territory of the Worora tribe, which lies between the Glenelg and Prince Regent Rivers, in North-Western Australia, is plentifully besprinkled with stone monuments which still occupy an important place in the mythology, as also in the everyday talk, of the people.

The Worora stone monuments are of two different classes, viz. those which are natural rock formations and to which a mythological origin has been attributed by the Worora, and, secondly, those which are patently of human arranging. This second class is again to be divided into two groups, those to which the Worora attribute a supernatural origin, and those which are admittedly of human arrangement or erection.

Arranged stones, if heavy enough to withstand the levelling tendencies of rain and wind, remain as permanent memorials to the activities of the men who arranged them, even though, as must be the case in many parts of Australia, the people who knew their meaning have long been dead. But, whether arranged or natural formations, the stories associated with these rocks and stones can be obtained only from men to whom they have a meaning and value.

Fortunately, in the Worora tribe we have a surviving people who retain their traditional lore; this lore the elder men willingly impart to a trusted enquirer.

The Worora believe in a class of supernatural beings, named Wondjuna. Each local horde of the tribe has its own particular Wondjuna, with his own proper name. The Wondjuna have been elsewhere described by the writer (Love, 1929, p. 6-15) and by Professor A. P. Elkin of Sydney (1930, p. 256-269). Many of the natural features of the land, and also the arranged stones, represent in the Worora mythology, the scenes of exploits of one or many of the Wondjuna.

Animals, birds, and insects are also credited with human attributes in the times past, and many of the natural or arranged rocks and stones represent exploits of various of these creatures. The Wondjuna, and no less the lower creatures teatured in Worora mythology, are represented in story as having travelled about the land, hunting for food and performing ceremonies in much the same way as the present generation of Worora people, and have left the land dotted with monuments to their experiences.

Most of these places, whether naturally or artificially marked, play an important part in the Worora theory of conception and birth. The Worora belief is that a man conceives the spirit of his child, either in a dream or by catching it in a lightning flash, at some spot where the spirits of children are present, waiting to be conceived by the father. When a child is born, the father thinks back to where he imagines he may have camped and conceived the spirit of the child. When the child can sit up, the father gives it the name of the place where he believes he conceived it. This place is called wungguru. A normal child, boy or girl, claims a certain spot as his or her wungguru, the place from which his spirit emerged, and where other spirits are waiting to be conceived by man and born as children.

Some of the rock monuments, natural or arranged, are just described as wungguru, without any special incident in the mythical past being allotted to them. There does not seem to be any difference in efficacy or fertility between those wungguru which have an incident attached to them and those which have none.

In the illustrations to this paper it will be seen that the monuments may be
(1) Remarkable natural features;
(2) Monoliths, not heavier than one or two men could erect;
(3) Groups of elongated or peculiar-looking stones;
(4) Elaborate arrangements of stones, such as circles, parallel lines, ovals, or more intricate designs;
(5) Cairns.

Among monuments which have no mythological story are single stones erected to commemorate some striking incident, such as the killing of a big kangaroo, the place where a man had a narrow escape (e.g. from snakebite or fall from a horse). Also, a stone placed in a prominent position to draw attention to a sacred place, or even to a spot where a hunter might hope to find a kangaroo resting behind a rock. On one occasion when the writer shot a "plain turkey" his aboriginal companion marked the place with a stone. Such spots could become legendary, and, with repeated exaggerations in the telling, even mythical in time.

In ascribing natural features to the activities of mythical ancestors, the ob-
jects represented are enormously magnified by their monuments. Thus a parcel of cooked fruit is represented by a rock more than one hundred feet long ( $\mathrm{A}, \mathrm{pl} . \mathrm{x}$ ) ; the digging of an edible root is shown by a cleft in the rock many feet wide and many yards long, and the head of a Wondjuna is two feet in diameter. Cairns have quite different meanings in different localities. Thus, in the illustrations given, a cairn represents the place where a Wondjuna lay down and died (so Sir George Grey was not so far out in his assumption that the cairns he saw near the Prince Regent River were tombs) ; again, a big stone on a cairn represents a mass of cooked food (D, pl. xiv) ; and a group of cairns are "sneezing places" (C, pl. x).

It may be remarked that, with the one exception of the stone that represents a subincision ( $\mathrm{P}, \mathrm{pl}$. xiv), none of the long or cylindrical stones has any phallic significance.

A further type of stone arrangement is that left after death and burial cercmonies. On the first night after the death of a man the body, with thumbs tied together and big toes tied together, is doubled up, laid on its side on the ground, and surrounded by an oval of stones set in the earth. Next day the body is placed on a platform of branches, to await the drying and bleaching of the bones. The oval of stones remains, and is often to be found where the name of the man who died has long been forgotten. This oval looks like a grave, but no body remains are there ( $\mathrm{C}, \mathrm{pl}$. xiii). The burial platform is laid across poles supported by four corner posts, which are in turn supported by small piles of stones. When the platform has decayed, or been burnt by a bush fire, these corner supports remain, as four little heaps of stones. When the body is placed on the platform the custom is, or was, to put a long line, or else a circle, of large stones near, or surrounding, the body on the platform. Each stone represented a man. After a day or two, the elder men, particularly the banmandja, or wizard, examined this line or circle of stones. Should one of them be marked by a splash of the fluid dripping from the decomposing corpse on the platform it was taken as proof that the man represented by that stone was the guilty one, responsible for the death, and the suspected individual was speared by men detailed for the purpose. This line or circle of stones remains when the bones have been removed for placing in the appropriate cave.

## LITERATURE.

Brough Smyth, R. (1878) : Aborigines of Victoria.
Elkin, A. P. (1930) : Oceania, i, No. 3, pp. 258-269.
Love, J. R. B. (1929) : Trans, Roy. Soc., W. Aust., xvi, pp. 15-16.
Mountford, C. P. (1938) : Trans. Roy. Soc., S. Aust., 1xii.
Wood Jones, F. (1925) : Journ. Roy. Anthro. Inst., lv.

## EXPLANATION OF PLATES.

## Plate x.

A. Sandstone rock on the sea coast. The larger rock above the cliff represents 'a wallet of paper-bark, such as is used for carrying food. The smaller rock on top is a mass of cooked "mandjawora", a small black berry that is roasted, pounded into a mass, and then carried to the main camp to be shared. These masses may weigh five pounds. The rock is named "Tjimbaleri", which means the bark dish ( ${ }^{1}$ ).
B. The wungguru of the "white-fish", a hollow circle of stones. This is the reproductive centre for this species of fish.
C. Dindjin kari, meaning "Sneezing-things". Cairns of stones near Sale River. Seven cairns can be seen in the picture. The explanation is that a man who might pass that way on his hunting must deposit a spear or a stick on one of these heaps. Should he fail to do this, he would be troubled by sneezing for the rest of the day.
D. Wiarinja, a stingray. This is a rock that has fallen across a stream, several miles from the sea shore. It represents a stingray that swam from the sea to this place, but could go no further.

## Plate xi.

A. Kulorubada. The large round stone projecting from the earth represents the head of Kulorubada. It is a red stone. The name Kulorubada means "He-having-the-tranquil-dove". The white stone set on the head represents the dove (Geopelia tranquilla), named kulorugu. The dove is sitting on the head of Kulorubada. The little stones round the head are chicks of the dove.
B. Kunggurum, the wungguru of the Funggurum, a palm with an edible fruit.
C. Ilaidja, a yellow, cylindrical stone, set in a cave that contains the pictures of the Wondjuna named Kulorubada. Ilaidja is the edible root of a lily. The root is cooked in ashes, then pounded and rolled into a more or less cylindrical shape, really very like this stone in shape and colour. Beside the ilaidja stone is part of a human thigh bone, from a long-forgotten cave burial.
$D$. Stone set to mark the proximity of a store-house of sacra ("bull-roarers").
(1) Mountford, 1938, fig. 12, p. 252, figures an aboriginal crayon drawing from the Warburton Ranges of Western Australia that illustrates the wooden dish, resting on the lower grinding stone, which was left behind by the mythical Kunkarunkara women. These are now a large hill near Meitika water hole.

## Plate xii.

A. Renggnefi ingyanun!, meaning, "Where-the-heart-is". 'This is a heart-shapet stone, representing the heat of a kangaroo killed here by a proup of Wrondjuna.
b. Burai kengu, meaninge "He-wrestled". This is the scene of a great wrestling that tonk place among kangaroo ancestors. The stones set upright represent kangaroos that wrestled; stones lying on the gromed those thrown down in the struggle.
C. Ranggurj-inggumung. The heap of stones on a boulder is the spot where the Wrondjuna cooked the kangaroo, whose heart they put on another stone.
D. Kanawri, a great man of the Worora, once lay asleep near a tree. He was awalsened, or said that he was awakened, by a black suake passing over his thighs. Ife rose and set up this stone to mark the place, and is here seen with his hand resting on his kauanja (black snake) stone.

## Plate xiii.

A. Kulorubada, a cairn at the foot of a "bottle tree" (Adansonia gregorii). This marks the spot where the Wondjuna named Krulorubudu lay down and died.
B. Ngos-go. This group of stones is on the brow of a hill overlooking an arm of the sea. According to the story the sea once threatened to overflow the earth. As the tide rose in the valley below, a boobook owl, seeing the danger, tlew to the brow of the hill. He seated himself on this spot, looked down on the sea, and uttered his awe-inspiring cry, "Ngo:k-ngo:k! Ngo:k-ongo:l!" Seeing the big eyes of the owl, and hearing his terrifying voice, the sea receded. These stones arose spontaneonsly to mark the place where mumumgoiu, the boobook owl, saved the land from being overwhelmed by the sea.
$r^{\prime}$. Stones at the seeme of a burial platform. The remmants of the bleaching platform can be secn, four poles supported by stones. The line of big stones passing across the picture is the row of "inquest" stones. At the right can be seen the oval of stones where the corpse lay for the first night, before being placed upon the platform.
D. Then at the store of sacra. One man stooping to remove a "Bull-roarer" from the cleft where they are stored.

## Plate xiv.

A. T'jakarara-favi-kuljirim, a double row of stones that represents the root of a widd grape extending under the surface. In the centre forground, at the end
of the double row, is a stone with a hole in it. This represents the kuworu, or butt-of-the-stem, the part where the stem of the grape vine emerges from the soil.
B. $N$ janggaltja, subincision. This stone resembles a subincised penis, and has been set up because of its resemblance.
C. Tjakarara-tjari-kadjirim, which means "Where-they-dug-tjakarara", the root of the wild grape. This is an inlet of the sea, which is said to have been made by some Wondjuna digging out roots of the wild grape.
D. Tjakarara-tjari-kadjirim. The large stone set on the cairn represents the mass of cooked and pounded grape vine root. This cooked mass is called nuguwa.






# SOME AUSTRALIAN ABORIGINAL SCAPHOCEPHALIC SKULLS 

By Frank J. Fenner, Honorary Craniologist, South Australian<br>Museum

## Summary

The term scaphocephaly has been used in two ways in anthropological literature. Firstly, to describe long narrow normal skulls, like those of the Australian and the Eskimo, which are distinguished by a flattening of the paramedian parts of the frontal and parietal bones, and by the development of a sagittal crest of the parietal and sometimes also of the frontal bone.
Secondly, the term is used in connection with a very long narrow type of skull in which there is invariably a premature, probably foetal, synostosis of the sagittal suture. These skulls are rare, and occur in many races of man, European, Egyptians, Negroes, Australians, etc. In this paper, in accordance with Poirier (1931) the term scaphocephaly is used to describe the second type of skull, i.e. the pathological type.

# Some AUSTRALIAN ABORIGINAL SCAPHOCEPHALIC SKULLS 

By Frank J. Fenner, Honorary Craniologist, South Australian Museum.

Plate xv and Text-fig. 1-8.

## INTRODUCTION.

THE term scaphocephaly has been used in two ways in anthropological literature. Firstly, to describe long narrow normal skulls, like those of the Australian and the Eskimo, which are distinguished by a flattening of the paramedian parts of the frontal and parietal bones, and by the development of a sagittal crest of the parietal and sometimes also of the frontal bone.

Secondly, the term is used in connection with a very long narrow type of skull in which there is invariably a premature, probably foetal, synostosis of the sagittal suture. These skulls are rare, and occur in many races of man, Europeans, Egyptians, Negroes, Australians, etc. In this paper, in accordance with Poirier (1931) the term scaphocephaly is used to describe the second type of skull, i.e. the pathological type.

It may be noted here that premature closure of the sagittal suture may occur without any trace of scaphocephaly, e.g. skull A999 (South Australian Muesum, Adelaide), that of a youth of 14 years, shows complete synostosis of the posterior half of the sagittal suture without any deformation of the skull. Davis (1867) describes a similar skull, that of an Australian female about 17 years old with premature obliteration of the sagittal suture, but no scaphocephaly. Hamy (1874) also describes skulls with premature sagittal synostosis but no scaphocephaly, and suggests that in these the fusion begins at some later (postnatal) period, when the ossification of the parietals is well advanced. In scaphocephalic skulls the synostosis commences during intranterine life.

## PREVIOUS LITERATURE.

The only references which I can find to scaphocephaly in the Australian aboriginal are those of Davis (1867). He describes scaphocephalic skulls from McLeay River, New South Wales, and Victoria Tribe, Australia.
N. de Miklouko-Maclay (1883) published a short description of skull B1, described later in this paper, but did not recognize it as being scaphocephalic.

## SOURCE OF MATERIAL.

During an examination of over 2,000 Australian aboriginal skulls in the museums of Adelaide, Melbourne, Sydney, and Canberra, five scaphocephalic skulls were seen. Particulars of these skulls may be given :

| $\begin{gathered} \text { REFERENCE } \\ \text { No. } \\ \text { A. } 248 \end{gathered}$ | LOCALITY. <br> Wellington, R. Murray, South Australia | $\begin{aligned} & \text { AGE. } \\ & \text { c. } 6 \mathrm{yrs} . \end{aligned}$ | SEX. | MUsEUM. <br> S.A. Museum, Adelaide. |
| :---: | :---: | :---: | :---: | :---: |
| A. 16520 | Teatree Gully, South Australia | Adult | $0^{*}$ | S.A. Museum, Adelaide. |
| B. 1 | Rockhampton, Queensland | Adult | \% | Australian Museum, Sydney. |
| 31837 | Riverina District, N.S.W. | Adult | 07 | National Museum, Melbourne. |
| 38586 | Riverina District, N.S.W. | c. $4-5 \mathrm{yrs}$. | -- | National Museum, Melbourne. |

## OBSERVATIONS MADE.

All five scaphocephalic skulls were measured and examined. Circumstances prevented a fuller examination of the two specimens from the National Museum, Melbourne. A search for a comprehensive series of measurements with which to compare those of the abnormal skulls proved fruitless, and the figures given in Table 1 are from several sources. The reference numbers of the measurements correspond with those in Martin (1928), whose technique has been followed in all cases.
(a) Measurements $1,2,3,8,9,10,13,20,22$ a, 25, 26, 27, 28(1), 29, 30, 31(1), $32(1), 32(5), 33(1), 33(4), 38,43,44,45,46,48,50,51,52,54,55,72,73,74,75$, and $75(1)$ were made from the reconstructed normae of Wood Jones (1929).
(b) Measurements $5,17,28,31,40$ are the averages of the measurements of the first 50 skulls of Berry and Robertson's series (1914), from which Wood Jones's normae were constructed.
(c) Measurements $7,11,12,23,24,57,57(1)$ were made on a series of fifty adult crania (unsexed) from Swanport, S.A., which are housed in the South Australian Museum.
(d) Measurements 62, 63 are from Campbell (1925).

No measurements of juvenile Australian aboriginal crania were available for comparison. For this reason five normal aboriginal children's skulls of about six years of age were measured. The skulls are from the collection in the South Australian Museum.

The measurements are set out in Table 1, and the indices derived therefrom in Table 2. Where a figure is preceded by a question mark, the measurement is approximate owing to indefinite measuring points.

Table I.

| Measurement. |  | Normal Juvenile Skulls. |  |  |  |  | Normal <br> Adult <br> Skull. <br> Average figures. | Scapho Juvenile. |  | Skulls. Adult. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & \frac{0}{2} \\ & \stackrel{y}{4} \end{aligned}$ | $\underset{4}{-7}$ | $\frac{\sim}{N}$ | $\begin{aligned} & 8 \\ & 8 \end{aligned}$ |  | $\begin{aligned} & \text { of } \\ & \text { d } \\ & \text { a } \end{aligned}$ | $\begin{aligned} & \text { ® } \\ & \underset{\sim}{\circ} \end{aligned}$ | $\begin{aligned} & \text { 厃 } \\ & \infty \\ & \end{aligned}$ | " | $\begin{aligned} & \stackrel{\circ}{0} \\ & \frac{\text { H }}{4} \end{aligned}$ |
| Greatest skull length | 1 | 171 | 173 | 180 | 167 | 175 | 185 | 197 | 196 | 213 | 203 | 200 |
| Glabella-Inion length | 2 | 131 | 159 | 164 | 155 | 162 | 179 | 177 | 156 | 204 | 202 | 189 |
| Glabella-Lambda length | 3 | 163 | 161 | 172 | 164 | 167 | 180 | 187 | \%195 | \%208 | 197 | 189 |
| Skull base length | 5 | 88 | 89 | 87 | 85 | 87 | 98 | 86 | 84 | 114 | 101 |  |
| Length and width of | 7 | ${ }^{3} 33$ | 35 | 36 | 37 | 38 | 36 | 31 | 31 | 36 | 837 |  |
| foramen magnum |  | 30 | 27 | 28 | 32 | 31 | 31 | 30 | 26 | 30 | 32 |  |
| Greatest skull breadth | 8 | 131 | 121 | 129 | 126 | 125 | 130 | 122 | 134 | $123 \dagger$ | 121 | 113 |
| Smallest frontal, breadth | 9 | 90 | 89 | 90 | 91 | 89 | 94 | 93 | 95 | 101 | 90 | 88 |
| Greatest frontal breadth | 10 | 103 | 103 | 109 | 105 | 103 | 107 | 104 | 122 | 104 | 104 | 98 |
| Biauricular breadth | 11 | 105 | 99 | 105 | 104 | 106 | 119 | 100 | 93 | 115 | 108 |  |
| Greatest occipital breadth | 12 | 100 | 99 | 91 | 105 | 98 | 111 | 100 | 106 | \%108 | 106 | 102 |
| Mastoid breadth | 13 | 85 | 89 | 107 | 90 | 91 | 99 | 85 | 74 | 103 | 100 | - |
| Basion-Bregma height | 17 | 9114 | 119 | 119 | 119 | 116 | 130 | 112 | 8137 | 149 | 134 |  |
| Ear-Bregma height | 20 | 107 | 104 | 114 | 108 | 107 | 110 | 108 | 9131 | 128 | 118 | 110 |
| Highest point of skull from GlabelloInion line | 22 a | 95 | 90 | 95 | 98 | 93 | 94 | 101 | 130 | 116 | 101 | 98 |
| Horizontal circumference on GlabelloOpisthion line | 23 | 480 | 471 | 495 | 471 | 478 | 535 | 505 | 536 | 560 | 545 | 527 |
| Transverse arc from porion to porion | 24 | 267 | 265 | 284 | 276 | 270 | 293 | 267 | 8345 | 310 | 262 | \$260 |
| Median sagittal are | 25 | 341 | 342 | 357 | 343 | 345 | 360 | 392 | 458 | 420 | 408 |  |
| Median sagittal | 26 | 113 | 120 | 117 | 115 | 120 | 120 | 142 | 9188 | 138 | 136 | $\uparrow 136$ |
| Median sagittal parietal are | 27 | 115 | 108 | 127 | 118 | 128 | 128 | 137 | 8140 | ?160 | 152 | ${ }^{1} 127$ |
| Median sagittal occipital are | 28 | 113 | 114 | 110 | 109 | 109 | 112 | 113 | \$130 | \$122 | \$120 | - |
| Median sagittal supra-occipital arc | 28(1) | 75 | 75 | 67 | 69 | 69 | 56 | 75 | 995 | 65 | 50 | 72 |
| Median sagittal frontal chord | 29 | 97 | 102 | 103 | 99 | 102 | 111 | 110 | १137 | 121 | 103 | \$114 |
| Median sagittal parietal chord | 30 | 105 | 101 | 114 | 105 | 107 | 115 | 126 | \$134 | 150 | 135 | 9121 |
| Median sagittal occipital chord | 31 | 92 | 91 | 88 | 94 | 87 | 93 | 82 | ?102 | 998 | 96 | - |
| $\begin{aligned} & \text { Median sagittal } \\ & \text { supra-occipital } \\ & \text { chord } \end{aligned}$ | 31(1) | 65 | 65 | 57 | 64 | 61 | 52 | 65 | 885 | 859 | 48 | 64 |
| Frontal angle (Bregma-NasionInion) | 32(1) | $63^{\circ}$ | $62^{\circ}$ | $63^{\circ}$ | $63^{\circ}$ | $60^{\circ}$ | $57^{\circ}$ | $66^{\circ}$ | $70^{\circ}$ | $66^{\circ}$ | $57^{\circ}$ | $59^{\circ}$ |
| Angle of frontal convexity | 32 (5) | $127^{\circ}$ | $125^{\circ}$ | $127^{\circ}$ | $128^{\circ}$ | $120^{\circ}$ | $133^{\circ}$ | $108^{\circ}$ | $111{ }^{\circ}$ | $130^{\circ}$ | $126^{\circ}$ | $129^{\circ}$ |
| Angle of LambdaInion line with Frankfurt Horizontal | 33(1) | $157^{\circ}$ | $103^{\circ}$ | - | - | $104^{\circ}$ | $94^{\circ}$ | $114^{\circ}$ | $118^{\circ}$ | $104^{\circ}$ | $92^{\circ}$ | 897 ${ }^{\circ}$ |

Table I (continued).

|  | Normal Juvenile Skulls. |  |  |  |  |  |  | Scaphocephalic Skulls. enile. <br> Adult. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mcasurement. |  | 0 oid O N | $\begin{aligned} & \text { N } \\ & \underset{\sim}{N} \\ & \underset{4}{2} \end{aligned}$ | $\underset{y}{3}$ | $\begin{aligned} & \infty \\ & \stackrel{\infty}{N} \\ & 4 \end{aligned}$ | $\stackrel{0}{10}$ | Normal <br> Adult <br> Skull. <br> Average <br> figures. | $\begin{aligned} & \infty \\ & \text { H } \\ & \text { 4 } \end{aligned}$ | $\begin{aligned} & \mathscr{\infty} \\ & \infty \\ & \infty \\ & \infty \\ & \hline \infty \end{aligned}$ | $\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \sim \end{aligned}$ | F-1 | 0 0 0.1 0 |
| Occipital angle (Lambda-InionOpisthion) | 33 (4) | ) $129^{\circ}$ | $122^{\circ}$ | $122^{\circ}$ | $129^{\circ}$ | $120^{\circ}$ | $121^{\circ}$ | $104^{\circ}$ | $110^{\circ}$ | $115^{\circ}$ | $116^{\circ}$ | ?98 |
| Cubic capacity of skull (in c.cs.) | 38 | 1,090 | 1,040 | 1,230 | 1,140 | 1,070 | 1,290 | 1,160 | 83 | 1,400 | 1,270 |  |
| Face length | 40 | 984 | 92 | 92 | 85 | 86 | 99 | 887 | 83 | 105 | 一 |  |
| Upper facial breadth | 43 | 92 | 93 | 96 | 96 | 92 | 109 | 92 | \%97 | 119 | - |  |
| Biorbital breadth | 44 | 86 | 85 | 88 | 88 | 86 | 99 | 85 | - | 106 | - |  |
| Bizygomatic breadth | 45 | 997 | 105 | 116 | \$107 | 110 | 128 | 99 | - | 144 | - |  |
| Middle facial breadth | 46 | 77 | 79 | 87 | 77 | 76 | 93 | 80 | - | 999 | - |  |
| Upper facial height | 48 | 53 | 58 | 59 | 52 | 54 | 65 | 9 50 | 44 | 68 | $\square$ |  |
| Anterior interorbital breadth | 50 | 17 | 20 | 23 | 20 | 18 | 21 | 20 | - | 25 | 24 |  |
| Orbital breadth from | 51 | R. 36 | R. 34 | R. 33 | R. 36 | R. 35 | 39 | R. 34 | R. - | R. 44 | R. 42 |  |
| maxillo-frontal suture |  | L. 36 | L. 34 | L. 34 | L. 36 | L. 34 |  | L. 34 | L. 34 | L. 44 | L. - |  |
| Orbital height | 52 | R. 28 | R. 33 | R. 32 | R. 30 | R. 32 | 34 | R. 31 | R. - | R. 33 | R. 32 |  |
|  |  | L. 28 | L. 31 | L. 32 | I. 29 | L. 32 |  | L. 31 | L. 28 | L. 31 | L. - |  |
| Nasal breadth | 54 | 20 | 20 | 21 | 20 | 21 | 26 | 21 | - | 30 | - |  |
| Nasal height | 55 | 36 | 45 | 43 | 40 | 40 | 47 | ? 36 | - | 53 | - |  |
| Smallest breadth of nasal bone | 57 | 5 | 8 | 11 | 8 | 5 | 10 | 8 | - | 13 | - |  |
| Greatest breadth of nasal bone | $57(1)$ | ) 12 | 16 | 16 | 14 | 14 | 17 | 14 | - | ? 21 | - |  |
| Palatal length | 62 | 36 | 46 | 44 | 43 | 40 | 51.5 | 40 | - | 54 | - |  |
| Palatal breadth | 63 | 29 | 28 | 27 | 25 | 30 | 39 | 31 | $85^{\circ}$ | 35 | - |  |
| Profile angle | 72 | $84^{\circ}$ | $76^{\circ}$ | $78^{\circ}$ | $83^{\circ}$ | $80^{\circ}$ | $89^{\circ}$ | $991{ }^{\circ}$ | $85^{\circ}$ | $87^{\circ}$ | - |  |
| Nasal profile angle | 73 | $87^{\circ}$ | $79^{\circ}$ | $83^{\circ}$ | $86^{\circ}$ | $84^{\circ}$ | $92^{\circ}$ | ? $99^{\circ}$ | $87^{\circ}$ | $92^{\circ}$ | - |  |
| Alveolar profile angle | 74 | $78^{\circ}$ | $68^{\circ}$ | $62^{\circ}$ | $64^{\circ}{ }^{\circ}$ | $68^{\circ}{ }^{\circ}$ | $73^{\circ}$ | 9 | $81^{\circ}$ | $66^{\circ}{ }^{\circ}$ | - | - |
| Profile angle of nasal roof | 75 | $82^{\circ}$ | $69^{\circ}$ | $67^{\circ}$ | $76{ }^{\circ}$ | $76^{\circ}$ | $66^{\circ}$ | $99^{\circ}$ | - | $76^{\circ}$ | - |  |
| Angle of nasal roof with profile line | 75 (1) | ) $2^{\circ}$ | $7^{\circ}$ | $11^{\circ}$ | $7^{\circ}$ | $4^{\circ}$ | $13^{\circ}$ | $-8^{\circ}$ | - | $11^{\circ}$ | - |  |

## DESCRIPTION OF SKULLS.

(1) A 248, child of approximately six years, Wellington, South Australia. The accompanying figures (fig. 1, 4, and 5) show the remarkable shape of this skull. There is no trace whatever of a sagittal suture. The posterior third of the right and the posterior two-thirds of the left squamous sutures are also completely fused. All other sutures are normal for the age.

Accompanying this synostosis is a great forward bulging of the frontal bone, with a strongly orthognathic face, an elongation of the parietal bone, and downward projection of the occipital bone behind. There is a well-developed keel along the median sagittal plane of the frontal bone extending from glabella to just
behind bremma, where it is replaced by the flattening of a post-coronal depression. The parictats themselves are vers slightly keeled about half-way hack. From here the bone slopes anay rapidly in the necipital bone. There is no sign of a parietal tuberosity on either side.

Table 11.

|  | Normal Juvenile Sluulls. |  |  |  |  | Scaphocophalie Skulls. venile. <br> Adult. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Index. |  | $\begin{aligned} & \text { E } \\ & \stackrel{y}{7} \\ & \stackrel{y}{7} \end{aligned}$ | $\stackrel{y}{\square}$ | $\frac{\stackrel{\infty}{G 1}}{4}$ | $8$ | Normal <br> Adult Skull <br> Average <br> Figures. |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { on } \end{aligned}$ | $\begin{aligned} & \text { R } \\ & \text { N } \\ & \text { den } \end{aligned}$ | ¢ |  |
| Length-Breadth | $76 \cdot 6$ | $70 \cdot 0$ | 70.2 | $75 \cdot 4$ | 71.4 | $70 \cdot 7$ | 61.9 | 68.4 | 57.7 | $59 \cdot 6$ | 56.5 |
| Length-Meight | 669.7 | 68.8 | 66.1 | 71. ${ }^{\text {a }}$ | $(66.0$ | $70 \cdot 3$ | 56.8 | 69.4 | 70.0 | 66.0 |  |
| Breadth-Height | $87=0$ | 98.3 | 92.4 | 24.4 | 92.8 | $100 \cdot 0$ | 91.8 | 109.0 | 121. 1 | 117.4 |  |
| Lengtl-Auricular height | 68.6 | $60 \cdot 1$ | $63 \cdot 3$ | $64 \cdot 7$ | 61.1 | $59 \cdot 5$ | 54.8 | 66.8 | $60 \cdot 1$ | 58.1 |  |
| Skull Height | 72.5 | 56.7 | 57.9 | 63.9 | 51,2 | 52.5 | 57.1 | 83.3 | 56.8 | 50.0 | - |
| Transverec Frontal | 87.3 | $86 \cdot 6$ | 89.6 | 86.7 | 86.4 | 00.4 | 89.4 | 77.8 | 90.1 | 86.5 | 89.8 |
| Transversa Fronto-parietal | 68.7 | $73 \cdot 6$ | 69.8 | 72.2 | 71.2 | 79, 3 | $76 \cdot 9$ | 70.9 | 83.1 | 74.4 | 77.9 |
| Sigittal Fronto-parietal | 101.8 | 90.0 | 108.5 | $100 \cdot 3$ | 93-8 | 100.7 | 96.5 | 74.5 | 116.0 | 108.8 | 93.4 |
| Sagittal Frontal | 85.8 | 85.0 | 88.3 | 86.1 | 85.0 | 92.5 | 77.5 | 72.8 | 87.7 | $75 \cdot 7$ | 83.8 |
| Sagittal Parietal | 91.3 | 83.5 | 89.7 | 83.0 | $84+4$ | 89.8 | 93.0 | 9.51 | 93.8 | 88.8 | 05.3 |
| Sagittal Oecipital | 81.4 | 80.0 | 80.0 | 86.8 | 79.8 | 83.0 | 72.6 | 78.5 | 80.0 | 80.0 |  |
| Convexity Index of Supraoceipital | 86.7 | 86.7 | 85.8 | 92.7 | 88.4 | 93.0 | 86.7 | 89.5 | 90.8 | 06.0 | 88.9 |
| Upper Face | 54.6 | 55.2 | 50.9 | $48 \cdot 6$ | 49.1 | 50.8 | $55 \cdot 6$ | - | 64.8 | - |  |
| Orbital | 77.8 | 97-1 | $97 \cdot 0$ | 83.3 | 21.4 | 87.2 | 91. 1 | 89.3 | R. 75.0 | 70.2 |  |
| Iuterorbital | 19.8 | $23 \cdot 5$ | 26.1 | 22.7 | 29.3 | 21.9 | 93.5 | - | L. 70.5 | - |  |
| Nasal | 55.6 | 44.4 | 48.8 | $50 \cdot 0$ | $50 \cdot 3$ | 55.3 | 58.3 | - | 56.6 | - |  |
| Palatal | 80.6 | 80.9 | 01.4 | 78.2 | 75.0 | $76 \cdot 0$ | 77-5 | - | 64.8 |  |  |
| Transverse Cranlo-facial | 74.0 | 86.8 | 89.9 | 84.9 | 88.0 | 98.5 | 81.4 | - | 117.0 |  |  |
| Fronto-hiorbital | 97.8 | 85.7 | $93 \cdot 7$ | 94.8 | 96.7 | 90.11 | 101.0 | 98.0 | 84.0 |  |  |
| Juga-frontal | 92.8 | 84.8 | $77 \cdot 6$ | $85 \cdot 1$ | 80.9 | 73.4 | 94.0 | , | $70 \cdot 0$ | - |  |
| Transverse Nasal Bone | 41.7 | $50 \cdot 0$ | 68.8 | 57.1 | 35.7 | 58.8 | 57.1 | - | $68 \cdot 0$ | - | - |

A study of the measurements shows that the frontal and parictal bones have been considerably lenghened in a sarittal direction. The occipital bone has mudergone no lengthening, but it bulges down berause of the lower position of lambda.

In spite of the great longitudinal exteusion of the bones of the vault, the breadth measurements of the skull are only slightly rechuced. This is due, in the case of the greatest width measurement, to a lateral bulging of the squamons temporal bone, a condition probably associated with the partial fusion of the squamous sutures. In spite of the great length and normal width of the skull, the cranial contents are approximately normal. This is due to the pronounced lateral Glattening of the parietal bones.

As the photograph ( $\mathrm{pl} . \mathrm{xy}$, fig. 1) shows, there is a greater degree of local butginer in this skull than is usually spen. 'There are bulges in front of the sphenoparietal grooves, and the oceipital bone consists of a large supranceipital protubri auce and two smaller symmetrical bulges on the nuchal plane of the bone.

The basis cranii is of normal dimensions, though somewhat curved with its concavity downwards.

The face shows strong orthognathism, probably caused by the great bulging of the frontal bone, and accentuated by the flatness of the nasal bones.


Fig. 1. Diopterographic tracings of norma lateralis of the scaphocephalic skull A248 (Wellington, S.A.), compared with a normal aboriginal skull of a child about the same age (A56). ( $\mathrm{B}=$ bregma, $\mathrm{L}=$ lambda of A 248 ) ( $\mathrm{B}^{\prime}=$ bregma, $\mathrm{L}^{\prime}=$ lambda of A 56 ).

There is no trace of the sagittal beak of Trurner. The bone of the whole of the vault is considerably thinner than normal, and the juga cerebralia are particularly well marked. A skiagram of this skull ( $\mathrm{pl} . \mathrm{xv}$, fig. 2) shows the "beaten-silver" effect in the bones of the vault.

The surface of the parietals shows no trace of the radiations and etching of the bone on which Hamy comments, but this condition is evident on the frontal bone just above glabella. The outer table of the parietal bone is beset with many tiny vascular pores, some of which can be seen in figure. There are no parietal fora-
mina present, but in a series of 1,154 adult Australian skulls recently examined (Fenner, 1938) absence of these foramina bilaterally was recorded in 36 per cent.
(2) A.16520, adult male, Teatree Gully, South Australia.

This skull, of which the face and basis cranii have been destroyed, was found associated with a few other bones which are normal save for an exaggerated forward bowing of the upper third of both femora.


Fig, 2. Diopteragraphic tracing of norma lateralis of the scaphocephalic skull A16520 (Teatree Gully, S.A.).

There is no trace of a sagittal suture. The skull is that of an old man, and the coronal suture is obliterated save for pars complicata. The pars lambdoidea of the lamboid suture is completely fused. The other sutures are open.

The general shape of the skull can be seen in the diagrams (fig. 2, 4, and 5). There are no parietal tuberosities present, and there is a moderately well-developed sagittal keel of the frontal and anterior half of the parietal bones. It has an exceptionally long, narrow skull, and there is no bulging of the temporal bone as was noted in A. 248.

The bone of the vault is very much thinner and lighter than in a normal adult aboriginal skull. The surface of the bone has been somewhat injured by exposure,
but there are many tiny vascular pores over the parietal bones, especially near the midline. There is a parietal foramen on the right side in its ordinary position, and another small emissary foramen just above and to the right of lambda.
(3) B 1, adult male, Rockhampton, Queensland.

This skull is imperfectly preserved, and most of the face is missing. There is no trace of a sagittal suture. All other sutures are normal and not synostosed at all. Fig. 3, 4, and 5 show the shape of this specimen.


Fig. 3. Diopterographic tracing of norma lateralis of the scaphocephalic skull B1 (Rockhampton, Q.).

The features in which this skull differs from A. 16520 are in part those in which distinct differences are found between Queensland and South Australian skuils (Fenner, 1938), i.e. it is broader and higher, the temporal fossae are better filled, and the occiput is somewhat more steeply planed than A. 16520.

The sagittal keel is well developed, and extends along the whole of the frontal and the anterior half of the parietal bones. The parietal tuberosities are better de-
veloped than in the other scaphocephalic skulls, but would be classed as small. The surface of the parietal bones between the parietal tuberosities and the sagittal erest is quite flat. The transverse occipital torus and the mastoid processes are well developed, and the glenoid fossae deep. The basis cranii is of the usual aboriginal type. Beyond the fact that the bone of the vault is not excessively thinned, it is not possible to state whether there is any evidence of past disease of the bones.


Fig. 4. Diopterographic tracings of norma verticalis of the three scaphocephalic skulls A248, A16520 and B1. (Oriented about a common point $\mathrm{N}=$ nasion).
(4) 31837, adult male, Parish of Nyang, Southern Riverina, New South Wales.

This is a well preserved skull, rather highly impregnated with lime. There is no trace of a sagittal suture. The coronal suture is almost completely fused, whilst the pars asterica of the lambdoid is the only part of that suture not fused. The internasal suture is fused in the greater part of its extent.


Fig. 5. Diopterographic tracings of norma occipitalis of the three scaphocephalic skulls A248, A16520 and B1. (Oriented about a common Frankfurt horizontal).

It corresponds rather closely with the other adult Australian scaphocephalic skulls (see fig. 6 and 7). It is greatly elongated, narrow, and high, and the frontal bone is more bulging than usual. There is no sign of a parietal tuberosity on either side; the sagittal crest of the parietal bones is fairly well developed, and the bregmatic eminence of Klaatsch (1908) is strongly developed.

In its other features this skull is typical of the adult male Australian, with a pronounced transverse occipital torus, well developed superorbital ridges and
supramastoid crests, deep nasion, wide nasal aperture, subnasal prognathism, shallow guttered nasal margins, ete. There are no parietal foramina. The temporal lines are very high and well marked.

The glenoid fossae show advanced arthritic changes. The suture between the squamous temporal bone and the great wing of the sphenoid is raised up on a prominent crest, and in front of this there is a well marked spheno-parietal groove.


Fig. 6. Diopterographic tracing of norma lateralis of the scaphocephalic skull 31837 (Riverina District, N.S.W.).
(5) 38586, child c. $4-5$ years old, near Moulamein, Southern Riverina, New South Wales.

Although included here as a scaphocephalic skull, carly closure of the sagittal
suture probably played only a part in the development of its remarkable shape. It is fairly heavily mineralized and encrusted with carbonate of lime. The bones constituting the right side of the face are missing.


Fig. 7. Diopterographic tracing of norma facialis of the scaphocephalic skull 31837 (Riverina District, N.S.W.).

The sagittal, coronal, lambdoid, and greater part of both squamous sutures appear to be fused. In general contour it resembles A. 248 somewhat, with a very protruberant forehead; flattened, backwardly projecting parietal bones with no
definite parietal tuberosities and no parietal foramina ; and a rather bulbous occipital bone.

It has several features which distinguish it from the South Australian skull. Firstly, the extensive and general obliteration of sutures. Secondly, the large knob-like bulge of the sagittal part of the bones of the vault, in the neighbourhood of bregma. Also it is very heavy, and its great weight is due to the enormous thickness of the bone. The greater part of the vault of this skull appears to be up to 10 mm . in thickness, and the specimen weighs more than $3 \frac{1}{2} \mathrm{lb}$.


Fig. 8. Diopterographic tracing of norma lateralis of the scaphocephalic skull 38586 (Riverina District, N.S.W.)

There is a deep erosion just to the right of where lambda would probably lie. It has irregular edges and does not penetrate the bone completely. The surface of the bone has a curious pitted appearance over the greater part of the vault.

This skull merits a detailed study, and this short description is intended to do no more than bring the skull under scientific notice.

## DISCUSSION.

Hamy (1874), in his review of the subject, comes to the conclusion that scaphocephaly is the result of the synostosis of the two parietal bones, that this synostosis is the result of a pathological process, probably inflammatory, and that the deformation occurs only when the fusion begins during intranterine life at a time close to the commencement of ossification of the cranial vault.

The evidence provided by these skulls supports this hypothesis. In two of these skulls and in the McLeay River specimen described by Davis (1867) the surface of the bone was covered with fine vascular pores-evidence of the pathological condition of the bone. The other three skulls are not sufficiently well preserved to determine the condition of their bone.

Hamy describes a scaphocephalic skull in which the posterior third of the squamons suture is synostosed, and mentions that he considers this synostosis to be of quite a different origin from the sagittal fusion, namely secondary to growth changes in the underlying brain.

In skull A. 248 of this series there is a synostosis of the posterior parts of the squamous suture bilaterally ; skull 38586 shows but a trace of the squamous suture, and Davis's McLeay River specimen had a completely obliterated right squamous suture. Only three out of 1,200 normal aboriginal skulls recently examined showed fusion of the squamous sutures, and these were all the skulls of aged individuals. Thus it seems likely that the squamous synostosis in the skulls we are considering is definitely related to the sagittal synostosis, and there is no reason to doubt that it is a further result of the same underlying pathological process which was responsible for the early fusion of the sagittal suture. What this pathological process was, other than that it was probably inflammatory, is not known.

Hauschild (1921) said that scaphocephalic skulls showed a heavy layer of osseous tissue on the tabula interna beneath the obliterated sagittal suture. The vault of the skulls described here was not cut open, but there did not appear to be any great thickening of bone beneath the obliterated sagittal suture as far as could be ascertained.

## SUMMARY.

Five scaphocephalic Australian aboriginal skulls have been measured and described, and their measurements compared with those of series of normal aboriginal skulls.

## ACKNOWLEDGMENTS.

I am indebted to Professor F. Wood Jones for the diopterographic tracings of skulls 31837 and 38586 , and for his help in the preparation of the paper. I have
to thank Mr. D. J. Mithony; Director of the National Museum, Melbourne; Dr. C. Andernob, Dibertor of the Anstralian Museum, Sydney; and the Director, Mr. H. MI. Hate, and board of Governom of the Sonth Australian Museum, Adelate, for their kindness in allowing me to examine the skulls in their care. Mr. C. II. Marshall, of the Adclaide חospital, kindly prepared the skiagram reproduced in pl. xv, fig. 2.

## REFERFNCES.

Berryy, R. J. A. aud Robertson, A. W. D. (1914) : Diopterograplic Tracings in Three Normae of Ninety Australian Aboriginal Crania. Trans. Roy. Soc.. Vict., vi.
Comphell, T. D. (192.5): "The Dentition and Palate of the Australian Aborigine". University of Adclaide Pub., No. 1.
Davis, J. Barnard (1867) : Thesaurus Craninrum, London.
Femeri, F. J. (1938) : The Australian Aboriginal skull : Its non-metrical morphological characters (in manuseript).
Hamy, E. T. (1874) : Sur la genèse de la scaphocephalie. Bull. Soc. d'Anthrop. d.e Paris, Ner. 2, ix, p. 836.

Mauschild, M. W. (1921) : Verh. d. anatom. Gcs., Ergzh, Anatom. Anz., liv., p. $8 \overline{5}$ (Abstr. in Am. J. Phys. Anthrop., v, p. 91).
Klaatsch, II, (1908) : "The Skull of the Australian Aboriginal." Reports from the Pathologiral Laboratory of the Lunacy Department, N.S. Wales, i, Part 3, p. 45.

Martin, R. (1928) : "Lehrbuch der Anthropologie", Bd. II, Jena.
Miklouko-Maclay, N. de (1883): "On a very dolichocephalic skull of an Australian Aboriginal." Proc. Linn, Soc., N.S. Wales, viii, p. 401.
Poirire, P., Charpy, A., st Nicolas, A. (1931) : Traité d'anatomie Mumaine, 4th Ed., Tome 1, Fasce, 1, Paris.
Wood Jones, F. (1929) : Journal of Anatomy, 1xiii, p. 352.

EXPLANATION OH PLATE Xv.
Wig. 1. Photograph from norma lateralis of seaphocephalie skull A.248 (S.A.M., Adelaide). Note the small vasenlar foramina on the parietal bone and the fusion of the posterior part of the temporoparietal suture. (I'hoto: K. Sheard.)

Fig. 2. Skiagram from norma lateralis of scaphocephalic skull A.248. Note the thinning of the lateral parts of the vault due to the pressure of the growing brain, Photo: C.H. Marshall.)


# A NEW STROMATEIFORM FISH FROM SOUTH AUSTRALIA 

By Gilbert P. Whitley, F.R.Z.S., IChthyologist, The Australian Museum, Sydney

(Contribution from The Australian Museum,)

## Summary

A most interesting fish has been submitted to me for identification by the Director of the South Australian Museum. It belongs to the Series Stromateiformes, family Nomeidae, and represents a new genus and species, quite unlike any hitherto described.
It is hoped that efforts will be made to obtain further specimens of this fish, since the study of its oesophagus, to ascertain whether teeth are present there, its branchiostegals, gill-arches, and vertebrae is very desirable, and cannot be carried out on the unique type-specimen.

# A NEW STROMATEIFORM FISH from SOUTH AUSTRALIA 

By Gilbert P. Whitley, F.r.Z.S., Ichthyologist, The Australian Museum, Sydney.<br>(Contribution from The Australian Museum.)

> Plate xvi.


#### Abstract

A most interesting fish has been submitted to me for identification by the Director of the South Australian Museum. It belongs to the Series Stromateiformes, family Nomeidae, and represents a new genus and species, quite unlike any hitherto described.

It is hoped that efforts will be made to obtain further specimens of this fish, since the study of its oesophagus, to ascertain whether teeth are present there, its branchiostegals, grill-arches, and vertebrae is very desirable, and cannot be carried out on the unique type-specimen.


## Family NOMEIDAE

Genus Cridorsa gen. nov. Orthotype Cridorsa moonta sp. nov.

A genus of small Stromateiform fishes with the body deep, form not elongate, flesh firm. Eye large, without adipose lids. Jaws with cusped incisors in front and small canines at the side. First dorsal fin well developed, with twelve spines. Suft dorsal and anal fins with about twelve rays. Pectoral fins small. Ventral fins well developed. Scales ctenoid. Coloration patterned.

In some respects this genus may represent a form aneestral to the more highly specialized Stromateiformes.

Cridorsa moonta sp. nov.
D. $x i / 12 ;$ A. iii/12; P. $18 ;$ V. $1 / 5 ;$ C. 17.
L.lat.53. L.tr.8/1/20 from first dorsal spine, to $5 / 1 / 5$ on candal peduncle.

Head ( 15 mm .) 3, depth of body ( 21 mm .) $2 \cdot 1 \mathrm{in}$ standard length ( 45 mm .). Eye ( 5 mm .) 3, interorbital ( 6 mm .) , $2 \cdot 5$ in head. General facies as shown in pl. xvi. Head very scaly, except anteriorly, where there are many large pores, the
latter mingling with scales on the broad, weakly convex interorbital. Two large nostrils on each side. Eyes large, with supraorbital ciliary processes. Jaws equal anteriorly, deflected downwards laterally. Premaxillary well developed, reaching back under the scaly maxillary.

A single outer row of erect incisor teeth in each jaw, each one compressed and with several cusps. Behind these is a series of inconspicuous villiform teeth, and there are small spaced canines at sides of jaws. Apparently there are no teeth on vomer or palatines.

Tongue free, tip broadly rounded. Velum maxillare present. Margins of preorbital and of upper limb of preoperculum serrated. Lower limb of preoperculum weakly serrated. The interoperculum, suboperculum, and branchiostegals are covered by strong ctenoid scales. Opercular margin free, entire. A small opercular spine. Gill openings wide, the membranes slightly overlapping across the narrow isthmus.

Risk of damaging the unique specimen prevents me from examining the branchiostegals, gill-arches and oesophagus. Chin and breast scaly. The broadest part of the fish is just behind the eyes. Body compressed, deep oval, and entirely covered with imbricate, thin but strong, markedly ctenoid scales, which extend over the bases of the fins.

About forty predorsal scales.
Lateral line complete, not very conspicuous, subparallel to the dorsal outline, each scale with a short tube.

Vent small, with a papilla, a little in advance of anal fin.
Caudal peduncle constricted.
First dorsal fin well developed, of eleven spines of which the middle ones are longest. Soft dorsal base shorter than that of spinous dorsal, and invested with scales. Anal fin commencing below notch between dorsal fins. It has three stout spines (middle one longest), and the soft fin terminates before the end of the soft dorsal. Twelve dorsal and anal rays, the last ones divided to their bases. Pectorals small, rounded, upper rays longest. Ventrals well developed, not reaching anal when adpressed, but only as far as vent. Caudal damaged in this specimen but probably originally emarginate.

Colour. A water-colour painting of the fresh fish shows the ground-colour as dull brownish on the back, becoming red to orange on the flanks, and dirty yellowish on the belly.

The sides of the head, body, and caudal peduncle are well-endowed with about sixty large white oval spots which break the ground-colour into a network. There is a subhorizontal white stripe below the eye.

The pupil of the eye is blackish, the iris is reddish to white, and the orbital
margin grey. The fins are similar in ground-colour to the adjacent parts of the body. There is a good deal of white on the proximal half of the spinous dorsal, towards the rear of the soft dorsal, and over the caudal fin. The rays of the fins are largely greyish.

In spirit, the specimen is brownish-grey with the white spots now much duller. The fins are largely infuscated and the eye is blue. On the nape and belly the spots tend to fuse with their fellows of the other side to form cross-bars.

Described and figured from the unique holotype of the species, a specimen 45 mm . in standard length or about $21 / 5$ inches overall.

Loc. South Australia: Spencer Gulf, Moonta Bay (H. Kemp, Mar. 1938). Type in South Australian Museum, Reg. No. F. 2023.

EXPLANATION OF PLATE xvi.
Cridorsa moonta sp. nov. ( $\times 4$ ).


# IDOTASIA OF FIJI (COLEOPTERA, CURCULIONIDAE) 

By Elwood G. Zimmerman, Bernice P. Bishop Museum, Honolulu, T.H.


#### Abstract

Summary Heretofore five species and two varieties of Idotasia have been recorded from Fiji. In this paper I add three new species. In using the name Idotasia Pascoe in place of Trigonopterus Fauvel, I follow Hustache (Coleopterorum Catalogus, part 151, p. 264, 1937).

Through the kindness of the South Australian Museum I have been able to examine the types of Lea's Fijian species and varieties (Trans. Roy. Sco. S. Aust., 1ii, 1928, pp. 156-157). I have not seen specimens of Fairmaire's three species described as Trigonopterus anthrax, T. semicribosus, and T. merophysioides (Ann. Ent. Soc. France, 1881, pp. 314-316). Dr. P. Lesne, of the National Museum at Paris, kindly compared several of our specimens with the types of T. anthrax and T. semicribosus, and found that none of them was the same. The type of T. merophysioides could not be located. I have been unable to glean enough information from Fairmaire's original descriptions to feel safe in placing them in the key.


# IDOTASIA of FIJI (COLEOPTERA, GURCULIONIDAE) 

By Elluood G. Zimmerman, Bernice P. Bishop Museum, Honolulu, T.H.
Fig. 1.
Ilererororl five species and two varietien of Idotasia have been recorded from Fiji. In this paper I add three new species. In using the name Idotasia Pascoe in piace of Trigonoptcrus Fauvel, I follos Itustache (Coleopterorum C'atalogus, part 151, p. 264, 1937).

Through the kindness of 'The South Australian Museum I have been able to examine the trpes of Lea's Fijian species and varieties (Trans. Roy. Soc, S. Aust., lii, 1928 , pp. 156-157). I have not seen specimens of Farmaire's three species deseribed as Trigonopterus unthrax, T. semicribosus, and T', merophysioides ( Ann. Ent. Soc. France, 1881, 11), $314-316$ ). Dr. 1'. Lesene, of the National Museum at Paris, lindly compared several of our specimens with the types of $T$. anthrax and T'. semicribosus, and found that none of them was the same. The type of T. merophysiovides could not be located. I have been unable to glean enough information from Fairmaire's original deseriptions to feel safe in placing them in the key.

## Check List.

## 1. Idotasia humoralis Lea. Viti Levu.

1-a. Idotasia humeralis var. posthumeralis Lea. Viti Levu.
1-b. Idotasia humeralis var. immaoulatu Lea, Viti Levu.
2. Idotasia cribricollis Lea. Viti Levu (Colo-i-Suva).
3. Idotasia obsoleta, new species. Viti Levu (Colo-i-Suva).
4. Idolasid grandicollis, new species. Yuvutha and Ongea, Lau.
5. Idotasia dehiscens, new species. Ovalau.
6. Idolasia semicribosus (Fairmaire). Ovalau.
7. Idotasia anthrax (Fairmaire). "Fiji."
8. Idolasiu merophysioides (Fairmaire). "Fiji."

Key to the Spectes.
(I. anthrax, I. semicribosus and I. merophysioides omitted.)

1. Punctures on the pronotum comparatively small and round, separated by distances at least equal to, and often greater than their diameters, never close and coarse

Pronotal punctures coarse and close, often subhexagonal, separated by distances equal to or less than their diameters, often subconfluent
2(1). Form stout (fig. 1, b), prothorax broader than long, longitudinally convex; longitudinal dorsal outline of prothorax and elytra discontinuous, the elytra rising above the pronotum (fig. 1, e) ; ninth elytral stria with three abnormally large, coarse punctures at the base; fore femora with a blunt tooth on the outer side below .. .. .. .. obsoleta. Form elongate (fig. 1, a), prothorax as long as broad, or but slightly broader than long, the disk slightly or distinctly flattened; dorsal outline of prothorax and elytra subcontinuous, the elytra not rising above the pronotum (fig. $1, \mathfrak{f}$ ) ; ninth elytral stria without much larger punctures at the base; femora edentate
$3(2)$. Elytra with a large black area in the basal fourth touching at the base and lateral margin .. .. .. .. .. humeralis. Elytra with a large black spot before the middle that is isolated from the base, suture and lateral margin . . . humeralis var. posthumeralis. Elytra without a humeral black spot . humeralis var. immaculatus.
4(3). Elytra dehiscent, separately, subtubularly produced at the apex (fig. 1, d) dehiscens. Elytra either jointly and broadly rounded at the apex or slightly emarginate, not dehiscent nor separately produced (fig. 1, c)
5(4). Pronotum so strongly convex at the base that the dorsal outline of pronotum and elytra form a conspicuous notch; prothorax large, strongly rounded on the sides, punctures very deep and coarse, the interstices narrow and subcarinate .. .. .. .. .. grandicollis. Prothorax subparallel-sided in the basal half, the dorsal outline subcontinuous with that of the elytra, punctures moderately coarse, their interstices flat and not appearing like carinae .. .. cribricollis.

Idotasia obsoleta sp. nov. (fig. 1, b, e).
Male. Derm reddish, thorax piceous, reddish to piceous below, variable; with a small elongate patch of white scales near the apex of each elytron between stria four and six and along the dorsal edge of the hind femora.

Head finely reticulate and almost impunctate, with a small interocular puneture at the base of the median rostral carina. Rostrum with three polished dorsal carinae that terminate at about half-way between the antennae and apex; with fine, erect, or slanting setae in the striae; punctuation fine and inconspicuous. Prothorax broader than long $(3 \cdot 2: 2 \cdot 7)$, and almost as broad as the elytra in the male, broadest at about the middle, rounded on the sides and without a subapical constriction, apex gently arcuate and about half as broad as the base; the longitudinal dorsal outline evenly convex, slightly, but distinctly discontinuous with that of the elytra; the dorsal punctures round, medium-sized, separated by distances equal to or greater than their diameters; with a row of impressed punctures at the base; the punctures normally bearing short, fine setae. Elytra subcuniform,
broadest near the base, thence rapidly narrowing to the broadly rounded apex; striae obsolete, marked by series of small, shallow, inconspicuous oval punctures; with three large punctures at the base of row nine; intervals plain. Legs with the fore femora with a blunt tooth on the anterior ventral margin slightly beyond the middle that marks the termination of the outer ventral flange, the other femora


Fig. 1. Outlines of Fijian Idotasia: a, Idotasia humeralis; b, I. obsoleta; c, I. grandicollis; $\mathrm{e}, I$. dehiscens; e and f , dorsal outlines of $I$. obsoleta and $I$. humeralis.
edentate, with a punctate groove along the outer lower margin, and several irregular rows of punctures in the distal half; the tibiae without a median carina on the outer side, with an almost obsolete, hardly discernible tooth at the base of the uncus on the hind pair. Sternum with the mesosternal receptacle impressed on each side of the median line at the base only, with large round punctures; metasternum concave, with coarse punctures on the sides and apex. Venter with the first two ventrites rather deeply and narrowly caniculate down the middle, with coarse punctures bearing rather long, fine, erect setae on the sides, but impunctate in the middle; ventrites three and four with two or three setiferous punctures on each side; ventrite five concave, densely set with small setiferous punctures. Length, 3 mm . ; breadth, 1.4 mm .

Fiji, Viti Levu. Holotype male in Bernice P. Bishop Museum, collected by Mr. E. H. Bryan, Jr., at Colo-i-Suva, 29th June, 1924.

This species is closely allied to $I$. cribricollis Lea, but the prothorax is less coarsely and densely punctate, and the fore femora are not edentate as in that species.

Idotasia grandicollis sp. nov. (fig. 1, e).
Derm shiny, thorax, usually the head, rostrum and venter black, antennae and legs reddish, elytra reddish, black at the apex; with an elongate patch of white scales at the apex of each elytron between the third and sixth striae and white scaling along the dorsal edges of the hind femora.

Head almost impunctate on the crown, the front flattened and very coarsely and confluently punctate; with numerous fine, recumbent setae. Rostrum coarsely tricarinate to the apical fourth or near the apex in the male, less coarsely so and only in the basal half in the female; coarsely punctate throughout. Prothorax about as broad as the elytra in the female and slightly broader in the male, somewhat broader than long in the female $(3 \cdot 8: 2 \cdot 8)$, and distinctly broader than long in the male (3.8:3.2); rather straightly and slightly expanded on the sides from the base to the apical third, and thence rapidly narrowing to the apex; base subtruncate; dorsum strongly convex, very coarsely and densely punctate throughout; the punctures large and subhexagonal, the interspaces very narrow. Elytra twofifths longer than the prothorax, broadest near the base, thence rather rapidly narrowing to before the apex which is somewhat produced and rounded; striae impressed only at the base and apex, otherwise marked by small, well separated, elongate-oval punctures, the outer stria deeply impressed, its punctures very coarse in the basal third ; intervals flat, the outer one raised in the basal third ; apex coarsely punctate, with a dense, elongate patch of white scales in an impression between the second and sixth stria, inflexed at the sides. Legs with the femora edentate, the anterior pair serrate on the outer ventral edge in the basal two-thirds; rather densely, longitudinally punctate, with a sulcus along the outer ventral margin, the posterior pair with a dense dorsal patch of white scales in the distal hall, otherwise with erect or prostrate scales or setae; tibiae with a dorsal, median and ventral carina on the outer surface, with a small, obtuse tooth at the outer side above the base of the uncus on the hind pair. Sternum with the mesosternal receptacle slanting forward from the middle of the mid coxae to the posterior edge of the fore coxae, impressed on either side of the raised median line; metasternum set with coarse, setiferous punctures. Venter with the first two ventrites deeply and broadly concave in the male, shallowly concave in the female, rather closely and evenly set with large, coarse setiferous punctures; third and fourth ventrites impunctate; fifth ventrite somewhat concave, with numerous punctures bearing
sharp erect setae; the intercoxal process forming a broad angle. Length, 2•6-3•2 mm.; breadth, $1.2-1.5 \mathrm{~mm}$.

Fiji. Holotype male, allotype female, in Bernice B. Bishop Museum, and six paratypes from Yuvutha, Lau, August 11, 1924, from "Yangasa Cluster", and one paratype from Ongea, Lau, July 30, 1924, all collected by Mr. E. H. Bryan, Jr.

This species is allied to $I$. cribricollis Lea, but the thorax is broader and much more densely and coarsely punctured, and with the dorsal contour of the prothorax and elytra strongly discontinuous. The squamose area at the apex of the elytra is distinctly impressed, and the intervals at the sides of the squamose area form a round subcostaform area which overhangs the side margin of the elytra.

Idotasia dehiscens sp. nov. (fig. 1, d).
Male. Derm variable in colour, dark reddish to piceous; with but a few white squamiform setae near the apex of each elytron, and without a dense white patch; with dense white scaling on the dorsal edge of the hind femora.

Head with the front flattened and coarsely, closely, and irregularly punctate; finely punctate above. Rostrum somewhat dilated near the base, and there with five dorsal carinae, the lateral one on each side fine, the three median carinae rather irregular and continued nearly to the apex; striae between the carinae coarse and with fine erect setae. Prothorax somewhat subquadrate, slightly narrower than the elytra, distinctly broader than long ( $3 \cdot 3: 2 \cdot 8$ ), almost straight on the sides in the basal two-thirds, and thence abruptly narrowed to the truncate apex, which is half as broad as the base; the longitudinal dorsal outline gently convex, almost continuous with that of the elytra; coarsely and densely punctate throughout, the punctures separated by distances equal to about one-half of their diameters, each puncture bearing a fine recumbent seta. Elytra subcuniform, base slightly sinuous; broadest behind the base and thence sharply and almost straightly narrowed to near the apex which is produced, and the elytra separated, each elytron produced into a subconical process; strial grooves wanting on the disk, but the punctures elongate, close and conspicuous throughout, the ninth stria very coarsely punctate to above the hind coxa, and the seventh and eighth striae with large punctures near the base; punctures large and coarse at the apex, and bearing fine recumbent setae, those near the apex of stria three bearing a few white, squamiform setae; the first interval with a complete row of small punctures. Legs with the femora edentate, the fore pair minutely serrate in the basal half of the anterior ventral edge; with numerous setigerous punctures, coarser and more abundant on the fore pair; fore tibiae with two fine carinae between the dorsal and ventral carinae on the outer face, mid and hind tibiae with one median carina, that of the hind tibiae nearer the ventral than the dorsal carina; hind tibiae with a small but
distinct sharp tooth on the outer edge at the base of the uncus; all the tibiae with rows of fine, erect, or slanting setae between the carinae. Sternum with a large, foveaform impression on either side of the middle of the base of the mesosternal receptacle; metasternum transversally impressed near the base. Venter with the first two ventrites broadly and shallowly concave, with rather small punctures separated by distances about equal to twice their diameters; the second ventrite with a narrow vertical face behind ; ventrites three and four impunctate; ventrite five concave, densely set at the edges and apex with small setiferous punctures. Length, 3.5 mm . ; breadth, 1.4 mm .

Fiji, Ovalau. Holotype male, collected by Mr. M. Greenwood, June 4, 1922, to be deposited in the British Museum from whence it was sent by Sir Guy A. K. Marshall for study.

This species may be easily distinguished from all of the other known Fijian species by its dehiscent and conically produced elytral apices.

# THE AMPHIPOD GENERA EUONYX, SYNDEXAMINE AND PARADEXAMINE 

By Keith Sheard, Honorary Assistant in Zoology, South Australian Museum


#### Abstract

Summary The specimens treated below have been selected in order to revise the genera concerned. They were taken from tow nettings and dredgings made on the patrol boat of the Department of Fisheries and Game, during March, 1938, in Spencer Gulf, South Australia; these collections were made possible by the co-operation of the Chief Inspector of Fisheries and Game (Mr. F. W. Moorhouse). Acknowledgements are due to the Council for Scientific and Industrial Research and to the Board of Governors of the Public Library, Museum, and Art Gallery of South Australia for their assistance; to Professor E. Percival, of the Canterbury University College, New Zealand, for the loan of New Zealand type material for comparison and revision; to Professor G. E. Nicholls, of the University of Western Australia, for literature; and to Dr. R. C. Bassett, of Adelaide, for the use of his apparatus in the preparation of the drawings.


# The AMPHIPOD GENERA EUONYX, SYNDEXAMINE and PARADEXAMINE 

By Keith sheard, Honorary Assistant in Zoology, South Australian Museum.

Fig. 1-9.

Tire specimens treated below have been selected in order to revise the genera concerned. They were taken from tow nettings and dredgings made on the patrol boat of the Department of Fisheries and Game, during March, 1938, in Spencer Gulf, South Australia; these collections were made possible by the co-operation of the Chief Inspector of Fisheries and Game (Mr. F. W. Moorhouse).

Acknowledgments are due to the Council for Scientific and Industrial Research and to the Board of Governors of the Public Library, Museum, and Art Gallery of South Australia for their assistance; to Professor E. Percival, of the Canterbury University College, New Zealand, for the loan of New Zealand type material for comparison and revision; to Professor G. E. Nicholls, of the University of Western Australia, for literature; and to Dr. R. C. Bassett, of Adelaide, for the use of his apparatus in the preparation of the drawings.

The species dealt with in this paper are only a fraction of those obtained. The remainder cannot be described until the revision of Haswell's types of Australian Gammaridea, now in progress, has been completed.

A curious feature of the material collected was the very great predominance of Gammaridea in both tow-nettings (using Marine Biological Association standard nets) and dredgings. Copepoda, Euphausiacea and Mysidae were very scarce, Hyperiidea were absent, while fish eggs were only present in one tow-netting-and then in very small numbers. Nebalia and Sagittae as yet undetermined were moderately plentiful. This balance was constant from near the head waters of the Gulf up to and including the open sea near Kangaroo Island.

There would appear to be some connection between the abundance of destructive forms and the relative scarcity of fish and oysters, but since this is the first time tow-nettings have been made in these waters, any conclusions are premature.

## Family LYSIANASSIDAE

Euonyx Norman, 1867.
Stebbing, 1906, p. 19 (key) ; Chevreux, 1908, p. 1 (fig.), and 1919, p. 576 ; Barnard, 1916, p. 110 ; Chilton, 1921, p. 52 (fig.) ; Stephensen, 1923, p. 41 ; Schellenberg, 1926, p. 200 ; Pirlot, 1933, p. 120 (fig. and key) ; Sheard, 1937, p. 19.

Euonyx pirloti sp. nov.
Euonyx normani (nec Stebbing) ; Chilton, 1921, p. 52 ; Pirlot, 1933, p. 120; Sheard, 1937, p. 19.
Chilton ascribed his specimen ( © ) to Euonyx normani Stebbing (1888, p. 669 , pl. xix), and from manuscript notes in my possession, was considerably in-


Fig. 1. Euonyx pirloti: A, lateral view ( 9 ) ; B, detail of head and epistome; C, peduncle first antenna ( $O$ ) ; D, peduncle first antenna (Chilton's $\boldsymbol{\delta}^{7}$ ), refigured; $E$, attachment of antenna (只) ; F-I, details of urosome and uropoda (\%); L-K, telson (q). (K.S. del.)
fluenced in this by the fact that Stebbing's species was a (o) with the (o) yet to be discovered. Pirlot (loc cit. p. 120) in his key separates the two, while Sheard (loc. cit., p. 19) states that Chilton's specimen is probably not the ( $\hat{\circ}$ ) of Stebbing's species.

Specimens obtained by Mr. F. W. Moorhouse off Kangaroo Island led me to search carefully through the unnamed material in the Museum collection, with the result that a long series has been found ( 웅, $\hat{\delta} \hat{\delta}$ ) which, on examination, proved to be cospecific with Chilton's specimen. The new species has been named in recognition of the credit due to Professor J. Pirlot for his original separation.


Fig. 2. Euonyx pirloti ( $($ ) : A-E, details of mandibles; F, half of lower lip; G-L, details of first maxilla; M, second maxilla. (K.S. del.)

In a recent letter from Professor G. E. Nicholls, he remarks: "With reference to your remarks about Euonyx normani as identified by Chilton, I should tell you that I too have amongst the "Discovery" material a specimen (ovigerous if only), which I regard as new, and probably belonging to the same species as that referred by Chilton to E. normani Stebbing. If you are publishing shortly, would you let
me see the typescript, so that I may refer my species to your manuscript name if that is necessary. If, however, you are not proposing to publish immediately, I should still be glad if you would allow me to quote you as having made that same discovery from South Australian material."

Tracings of the South Australian specimen have been forwarded to Professor Nicholls. and thanks are due to him for his courtesy.

So far specimens have been obtained in dredgings close to land and in washings from reefs. The species is a moderately common element in the faunule, at a cursory glance quite like Waldcckia, but distinguishable therefrom by its chelate first gnathopod.


Fig. 3. Euonyx pirloti ( $(7)$ : A, first gnathopod; B, detail of chela; C, second gnathopod; D, lateral view, maxilliped. (K.S. del.)

The specimen figured ( $\circ$ ), Kangaroo Island, is representative of the series, ailthough those specimens collected in St. Vincent Gulf are slightly less robust, with gnathopods 1 and 2 slightly more slender. The specimen is fully figured so that only the main differences from Euonyx normani Stebbing are given here.

Mandible; palp with first segment equal to third, and three-quarters length of the second. (E. normani, one-third length of second.)

Maxilliped; the second segment of the palp appears to be relatively longer and more expanded.

Gnathopod 1; giving the basis (segment two) the value of one hundred, the proportions of the segments are as follows:

| E. pirloti | 100 | 90 | 39 | $55 \cdot 2$ | $69 \cdot 7$ | 25 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Segment | 2 | 3 | 4 | 5 | 6 | 7 |
| E. normani | 100 | 50 | $41 \cdot 8$ | $36 \cdot 2$ | $87 \cdot 5$ | 21 |

Gnathopod 2 ; giving the length of the basis the value of one hundred, the proportions of the segments are as follows:

| Segment | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| E. normani | 100 | $43 \cdot 7$ | 37 | 56 | 31 | $3 \cdot 1$ |
| E. pirloti | 100 | 50 | $23 \cdot 3$ | $68 \cdot 8$ | 20 | $3 \cdot 3$ |

Pleon segment 3 ; side plate not pointed behind.
Peraeopod 5; segment 5 is slightly longer than segment 4, not shorter as in E. normani Stebbing.

The rami of the uropods are approximately equal in length. (The outer ramus of uropod 2 is slightly foreshortened in fig. 1 (f).) No small teeth could be seen on the dorsal surface of the telson (c.f. Stebbing, 1888, pl. xix).

The relatively much longer gnathopod 1 of $E$. pirloti, due to a longer segment five, and its attachment nearer to the anterior end of segment four than in $E$. normani, readily distinguishes between them.

In passing, it may be noted that Chilton (loc cit. p. 52, fig. 5a) omitted a shallow groove on the anterior dorso-lateral surface of his figure of segment one of antenna 1. This groove gives a slightly keeled effect to this segment.

Loc. Nepean Bay, Kangaroo Island (F. W. Moorhouse, May, 1938) ; Brighton, St. Vincent Gulf (K. Sheard and B. C. Cotton, Mar., 1937) ; Sellick's Beach, St. Vincent Gulf (H. M. Hale, Apr., 1936) ; off Semaphore, St. Vincent Gulf (H. M. Hale, Mar., 1924) ; Spencer Gulf (A. Zeitz, 1887) ; Ardrossan (Dr. J. C. Verco, Jan., 1903) ; Western Shoal, Spencer Gulf (K. Sheard and F. Moorhouse, Mar., 1938).

## Family DEXAMINIDAE

Dexaminidae; Stebbing, 1906, p. 514 (lit. and syn.), and 1910, p. 602; Chilton, 1914, p. 332 ; Spandl, 1924, p. 56 ; Schellenberg, 1928, p. 655, and 1931, p. 209 ; Barnard, 1932, p. 217.

The following key is adapted from Stebbing (1906, p. 514) to include recent genera:
a. Maxillipeds, palp with 3 segments.
b. Lower lip, with inner lobes well developed. . .. .. Dexaminella
bb. Lower lip, with inner lobes rudimentary.
c. Peraeopods $1-5$, 4th segment shorter than 5 th and 6th combined .. .. .. .. .. Dexamine
cc. Peraeopods 1-5, 4th segment longer than 5th and 6th combined
. Tritaeta
aa. Maxillipeds, palp with four segments.
d. Maxilla 1, palp with one segment.
e. Maxillipeds, inner plates short and bud-like .. Dexaminoides
ee. Maxillipeds, inner plates of moderate size.
f. Lower lip, mandibular process absent .. .. Syndexamine
ff. Lower lip, mandibular process present .. .. Paradexamine
dd. Maxilla 1 palp with two segments.
g. Maxilla 1, second segment of palp large, maxillipeds, inner plates well developed

## Polycheria

gg. Maxilla 1, second segment of palp small, maxillipeds, inner plate rudimentary . . .. .. .. Guernea
The genera discussed here are Syndexamine and Paradexamine.
Professor E. Percival, to whom I wrote for types, states:
"There are no types of Paradexamine pacifica (Thomson), merely tubes of material labelled with the country of origin. You will need, I suppose, to select suitable specimens for description therefrom. Syndexamine carinata Chilton is represented only by two co-types."

Accordingly, specimens have been selected and figured as lectotypes.
In passing it is worth recording that the examination of some of Chilton's Amphipod material and its comparison with more modern work has convinced me that he tended to simplify the issue a little too much. While it is quite true that growth changes occur in the chitinous cuticle with age, that secondary sexual characters emerge and develop, and that every specimen varies in some slight particulars from every other specimen; it is also true that growth changes tend to follow a certain course within the species, that secondary sexual characters develop in a definite manner, while the intra-specific variation bears a high degree of relationship to the species itself. Consequently it is the business of the systematist to record outstanding differences and divergencies from the already known ranges of variation and not to seek to integrate the pattern until significant data, widely spaced along the curve of variation, is accumulated.

Full illustration of all differences is essential, an ideal often difficult of attainment.

Syndexamine Chilton.
Syndexamine Chilton, 1914, p. 332 (fig.).

## Syndexamine carinata Chilton.

Chilton's generic description must be slightly emended as a large well-defined molar area is present.

Lectotype ( $\hat{0}$ ). As described and figured by Chilton except in the following particulars:

A definite, large molar area is present.
An accessory plate (see fig. $4, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}$ ) is present.


Fig. 4. Syndexamine carinata (lectotype): A-D, mandibles; E, first maxilla; F, urosome. (K.S. del.)

The palp of Maxilla 1 appears to be broader than in Chilton's figure.
The small rounded protuberance in the mandibles mentioned by Chilton (loc. cit. p.334) appears to be the newly-developing mandibular cutting edge, previous to moulting.

The eye is slightly oval, and is situated between the two antennae at the base of the inter-antennal angle.

## Paradexamine Stebbing.

Paradexamine Stebbing, 1906, p. 518 (lit. and syn.), and 1914, p. 366 ; Chevreux, 1906, p. 88 and 1913, p. 181; Chilton, 1909, p. 632, 1912, p. 501 and 1925, p. 179 ; Stephensen, 1927, p. 347 ; Barnard, 1930, p. 389, and 1932, p. 217; Sheard, 1937, p. 25.
As it is difficult to find a reliable character which has been positively described by authors for each of the seven species of this genus, the following key which I have drawn up for their separation is even more suspect than most. It is accurate within its limits, but must be used in conjunction with the specific description.
a. Apex of telson with many small teeth on each lobe, interantennal angle pointed.
b. Gnathopod 2, joint 5 subequal to joint 6 .. .. P. pacifica
bb. Gnathopod 2, joint 5 more than $1 \frac{1}{2}$ times joint 6.
c. Lower lip, with no teeth on apex of each lobe . . P. moorhousei
cc. Lower lip, with one tooth on apex of each lobe . . P. barnardi
aa. Apex of telson with several small teeth together on each
lobe, then an outer spine. Inter-antennal angle convex.
d. Gnathopod 2, joint 6 longer than joint 5; antenna 1 , first joint of peduncle longer than second; antenna 2, peduncle stout, subequal to peduncle of antenna $1 \quad \ddot{5}$;
dd. Gnathopod 2, joint 6 shorter than joint 5; antenna 1, first joint of peduncle shorter than second; antenna 2, peduncle long and slender, longer than peduncle of antenna 1 .. .. .. .. P. frinsdorfi
aaa. Apex of telson with two teeth separated by a strong spine, antennal angle rounded (? P. nana).
e. Maxilla 11, setae on distal third of inner edge of inner plate $\quad \therefore$. $\quad .$.
ee. Maxilla 11, setae confined to end of inner
ee. Maxilla 11 , setae confined to end of inner P. findersi
P. sexdentata
P.nana
aaaa. Apex of telson without teeth, antennal angle rounded; lower lip, a tooth on inner margin of outer lobes; maxilla 11, seta on inner edge of inner plate.
P. fissicauda

Paradexamine pactifica (Thomson).
Stebbing, 1906, p. 518 (lit. and syn.) ; Chilton, 1909, p. 632; Stephensen, 1927, p. 347 (fig.) and 1938, p. 246 ; Schellenberg, 1931, p. 209 ; nec Barnard, 1930, p. 389, fig.

The specimens sent to me from the Chilton collection include some originally collected and named by Thomson, but the only locality given is New Zealand. As might be expected, there is a slight variation existing between the specimens in minor characters, but the complex is itself so clearly marked off from any other


Fig. 5. Paradexamine pacifica (lectotype ${ }^{7}$,, ): A, lateral view ( $\delta^{\top}$ ); B, peduncle first antenna ( $\delta^{*}$ ); C, peduncle second antenna ( $\delta^{*}$ ); D, portion of lower lip ( $\delta^{*}$ ); E, mandible ( $\delta^{\top}$ ); $F$, first maxilla ( $\delta^{1}$ ) ; G, second maxilla ( $\delta^{\prime \prime}$ ) ; H, head ( $q$ ) ; I, first maxilla ( $q$ ) ; J , second maxilla (保) ; K, tip of telson (ㅇ). (K.S. del.).
species of the genus that there would be nothing gained by making further new species or subspecies. When material is to hand with the localities definitely marked, splitting is to soma extent justified. The characters which present some degree of variation are as follows:

1. The armature of the peraeopods.
2. The presence in varying numbers of setae on the margins of the palp of maxilla 1.
3. The presence in varying numbers of scattered setae on the outer edge of the outer plate of maxilla 2 .
4. The finger of the palp of the maxilliped varying from slightly swollen and bliunt (type) to slender. In no case is it at all large.
5. The eye colour (spirit specimens) varies from very faded to very bright red.

Among the constant characters connecting all the specimens are the following:

1. The pointed inter-antennal angle of the head.
2. The slightly swollen first joint of antenna 1.
3. The relative proportions of the joints of the gnathopods and peraeopods.
4. The slightly greater length of peraeopod 4 as compared with peraeopods 3 and 5.
5. The presence of two spines on each side of the dorsal surface of the last urosome segment.

The last part of Thomson's statement, "Peraeopoda slender, thickly setose, all having the dactylos directed posteriorly, except the last pair, which are also much the longest" (Trans. N.Z. Inst., XI, 1878, p. 238), is incorrect in one particular. On account of the way in which the peraeopoda are carried it is very easy to consider the longest to be peraeopod 5 ; actually it is peraeopod 4.

Two specimens ( ot and if) have been erected as lectotypes. Their salient points have been figured. For the rest, while I am not quite satisfied that Stephensen (loc. cit. p. 345) was dealing with the same species, I can see no difference in the appendages named below, and since Thomson's specimens are somewhat damaged by long storage, while Stephensen's figures of the peraeopods and uropods are taken from comparatively fresh material, I see no necessity for duplicating his work. In the type selected the pleon side plates are slightly damaged. In other specimens they are as drawn by Stephensen (loc. cit. p. 345).

Distribution: New Zealand; East Coast of Australia (?).
Paradexamine barnardi sp. nov.
Paradexamine pacifica (nec Stebbing) Barnard, 1930, p. 389, fig.
At the request of Dr. H. K. Barnard, of the South African Museum, some specimens of this "Terra Nova"' species were sent to me by Dr. Isabella Gordon, of the British Museum.

As is usually the case with such expeditions, the specimens had obviously


Fig. 6. $A-R$, Paradexamine barnardi (type $\delta^{\wedge}$ ): A, peduncle, first antenna; $B$, sensory setae; C, cephalon; $D$, lower lip; $E$, upper lip; $F$, mandible; $G$, first maxilla; $H-I$, second maxilla; $J-M$, details of maxilliped; N first gnathopod; $O$, second gnathopod; $P$, hand, first gnathopod; Q, urosome; R, apex, telson; S, Paradexamine moorehousei: hand, first gnathopod; T, Paradexamine frinsdorf: hand, first gnathopod. (K.S. del.).
been for a considerable time in formalin before their transfer to spirit: This has had the usual effect of making the chitin very brittle, resulting in reticulations of the surface and false joints, very difficult to distinguish from true ones in the antennae, unless the underlying muscle fibres are made visible by appropriate staining.

Direct comparison with type specimens of $P$. pacifica (Thomson) and with other Paradexamine species shows that the "Terra Nova" specimens are distinct from, but fairly closely allied to, $P$. pacifica, and I regret that the time of going to press of this paper will not permit me to follow the course of returning them to their original author for fuller description.

The general facies, with the exceptions noted by Barnard, show a close resemblance to the $P$. pacifica group. The lower lip with its toothed apex resembles $P$. fissicauda, while the large outer plate of the maxilliped is somewhat like $P$. findersi.

However, unless the species concept is enlarged beyond the point when it will be of use in taxonomy, these are all distinct species.

The species is as described by Barnard (loc cit., p. 389) with the exception of the second joint of the peduncle of antenna 2 (fig. 9, A) and the addition of the following details.

Upper lip; slightly lobed on its upper marign.
Lower lip; with a tooth on the inner margin of the apex of each outer lobe. Maxilla; with two hairs on the inner plate.
Maxilliped; outer plate slightly longer than palp. Finger of palp very small.
Gnathopod 1; long and slender, joint five longer than joint six.
Gnathopod 2; long and slender, joint five about one-and-a-half times joint six.
The row of transverse fringed spines on the hands of the gnathopods vary much as in $P$. pacifica; in $P$. moorhousei and $P$. frinsdorfi the number is less, but there is a slight variation.
Pleopods; long and slender.
There appears to be only one long spine on each side of the dorsal surface of the last urosome segment near the telson.
Branchiae; pleated.
The fascicules of setae on the peduncle of the antennae are distinctive. Loc. Off Three Kings Island, north of New Zealand.

Paradexamine moorhousei sp. nov.
Very like Paradexamine pacifica (Thomson) but smaller and much more lightly spined.

The resemblances lie mainly in the pointed inter-antennal angle, the lower lip, the proportions of the peraeopods (peraeopod 5 excepted) the type of carination, the dentation of the apex of the telson, and in the general facies.


Fig. 7. A-L, Paradexamine moorhousei (type $ᄋ$ ): A, head and antennae; B, upper lip; C, mandible; D, first maxilla; E , second maxilla; F , half of maxilliped; $G$, first gnathopod; $H$, second gnathopod; I, urosome; L, basis peraeopod 5. (K.S. del.). J-K, Paradexamine sexdentata (after Schellenberg): J, first gnathopod; K, dorsal outline of pleon.

The main differences are:
Antenna 1; no tooth on the lower margin of the first joint of the peduncle, but instead rows of single setae.

Antenna 2; instead of spines the fourth joint of the peduncle bears a fringe of single setae.

Eyes; relatively larger, filling most of the side of the head and present as prominent black spots in spirit material.

Maxilla 1; relatively feeble, a single spine on the inner plate, four long hairs on the apex of the single-pointed palp; the eleven spine teeth on the outer plate are weak.

Maxilla 2; feeble, and with sparse hairs present on the apices of the plates only.

Maxilliped; the teeth on the outer plate are small, and the plate itself does not reach much above the second joint of the palp, of which the finger is slender and weak.

Gnathopod 1; much less setose than P. pacifica, and its greater slenderness is due to the more elongate and slender joint five.

Gnathopod 2; very little setose with joint five twice as long as joint six.
Peraeopod 5; the basis (fig. 6,1) is more rounded than in P. pacifica, and is only lightly spined.

The last urosome segment bears no spines.
The side plates are of moderate size, the first, second, third, and fourth with the margins very finely serrate.

This species was present in countless numbers in the waters of Spencer Gulf. The specimens collected varied in size between 3 and 5 mm . In life they are nearly transparent with prominent black eye-spots. Associated with them are many Nototropis homochir Haswell with the smaller specimens of which they are easily confused in the collecting dish.

Loc. Spencer Gulf, South Australia (K. Sheard and F. Moorhouse, March, 1938).

The species is named in recognition of the indispensable assistance given by Mr. F. W. Moorhouse (Chief Inspector of Fisheries and Game), particularly in the securing of tow-net material.

## Paradexamine frinsdorfi sp. nov.

Head; rostrum acute, inter-antennal angle convex. Antenna 1; peduncle shorter than that of antenna 2 ; first joint shorter than second, third very slender and shore; antenna 2, peduncle slender, joints 4 and 5 long and slender. Flagella in each case moderately long.

Carination of body; commencing from second last peraeon segment, accessory dentation from the last peraeon segment.

Lower lip; inner lobes long and slender, outer lobes with no tooth on inner margins, mandibular processes only slightly upturned.

Mandible; cutting edge complexly dentate, accessory cutting edge dentate, two spines on spine row, molar fairly prominent, the space between the spine row and the molar is occupied by a ridge with rounded teeth.

Maxilla 1; inner lobe with no end bristles, outer plate with $10-11$ toothed spines, single-jointed palp with six long hairs.

Maxilla 2; inner plate with strong setae, 3 to 5 on outer edge, 6 to 8 on apex, outer plate with the distal half fringed with scattered setae.


Fig. 8. A-L, Paradexamine frinsdorfi (type $\delta^{\pi}$ ): A-C, first gnathopod; D-F, second gnathopod; G-K, peraeopods; L, half maxilliped; M, Paradexamine pacifica (lectotype $\delta^{\text { }}$ ) half of maxilliped. (K.S. del.)

Maxilliped; inner plate small, outer plate not reaching much above second joint of palp, teeth small, finger of palp moderately strong.

Gnathopod 1; joint five slightly longer than six.

Gnathopod 2; joint five longer than joint six. Side plates of both; minutely dentate with short hairs growing between the teeth.

Peraeopods 1 to 5, comparable with $P$. findersi.


Fig. 9. Paradexamine frinsdorfi (type $\delta^{7}$ ): A, outline of body; B, margin of pleon side plate three; C, urosome; D, plan of head ; E, plan of urosome; F, upper lip; G, lower lip; H, mandible; I-J, first maxilla; K, second maxilla; L, apex of telson. (K.S. del.)

Pleopods; strong.
Uropods; comparable with P. fissicauda.
Telson ; cleft to base, each lobe bearing six teeth on its outer margin, the apex of each lobe is produced to a small point at the outer side, then follows a strong spine, then several very small teeth with no intermediary setule.

Branchiae; pleated.
Eyes ; large, oval and prominent (see fig. 7, d). Their colour varies from faded red to dark red in spirit.

Length; 6-8 mm.
Although not nearly as numerous as $P$. moorhousei, the species is quite common, and together with the first named, provided the bulk of the free Amphipodan fauna of the Gulf waters at the date of the collections.

In life, with its predominating colour of scarlet, eyes of reddish sapphire, and with prominent sapphire colour-spots on the side plates, it is at once recognizable in a collecting dish. In the darkness it is faintly phosphorescent.

Although the specimen described is probably an intersex (see rudimentary marsupial plate, fig. 7, J), it is characteristic of the species and neither (i人) nor (ㅇ) appear to exhibit any marked variation from this form.

The species was named after Mr. A. Frinsdorf (Senior Inspector of Fisheries) to whose knowledge of the Gulf waters and conditions our useful collections were largely due.

Loc. Off St. Francis Island, Great Australian Bight (Dr. J. C. Verco, 1907); Spencer Gulf (K. Sheard and F. W. Moorhouse, March, 1938).

The literature and synonomy of the other species admitted in the Genus (of which $\Gamma^{\prime}$. pacifica is the genotype) are as follows:

## Paradexamine fissicauda Chevreux.

Paradexamine fissicauda Chevreux, 1906, p. 88 (fig.) and 1913, p. 181; ? Chilton, 1912, p. 501 and ? 1925, p. 178; Schellenberg, 1931, p. 210; Barnard, 1932, p. 217 ; Stephensen, 1938, p. 240.

Paradexamine flindersi (Stebbing).
Dexamine flindersi Stebbing, 1888, p. 146.
Guernea findersi Stebbing, 1906, p. 522.
Paradcxamine flindersi Stebbing, 1910, p. 103, plate lii.
Paradexamine nana Stebbing.
Paradexamine nana Stebbing, 1914, p. 366; Schellenberg, 1931, p. 210.
Paradexamine sexdentata Schellenberg.
Paradexamine sexdentata Schellenberg, 1931, p. 211, fig. 106.

## LITERATURE.

Barnard, K. H. (1916) : Ann. S. Afr. Mus., xv, part 3.
Barnard, K. H. (1930) : Brit. Ant. ('T'erra Nova'") Exped., 1910, Zool. viii, No. 4.
Barnard, K. H. (1932) : Discovery Reports, v.
Chevreux, E. (1906) : Exped. Ant. Franc. (1903-05), "Amphipodes".
Chevreux, E. (1913) : Deux. Exped. Franc. (1908-10), "Amphipodes".
Cherreux, E. (1919) : Bull. Mus. Franc., xxv.
Chiltor, C. (1909) : Sub. Ant.Is. N.Z., Article xxvi.
Chilton, C. (1912) : Trans. Roy. Soc., Edinburgh, xlviii, part 2.
Chilton, C. (1921) : Biol. Res. "Endeavour", Sydney, v, part 2.
Chilton, C. (1925) : Com. Mus. Nac. Hist. Nat. Buenos Aires, ii.
Pirlot, J. (1933) : Siboga Exped., Mono. cxxxiii, livr. cxx.
Schellenberg, A. (1926) : Deutsche Südpolar-Exped. (1901-03), xviii, zool., x.
Schellenberg, A. (1928) : Trans. Zool. Soc., xxii, part 35.
Schellenberg (1931) : Swed. Ant. Exped., Further Zool. Res., xi, No. 6.
Sheard, K. (1937) : Trans. Roy. Soc., S. Aust., lxi.
Stebbing, T. R. R. (1888) : Challenger Reports, Zool., xxix.
Stebbing, T. R. R. (1906) : Das Tierreich, xxi.
Stebbing, T. R. R. (1910) : Mem. Aust. Mus., iv, part 2.
Stebbing, T. R. R. (1914) : Proc. Zool. Soc., Lond.
Stephensen, K. (1923) : Danish Ingolf-Exped., iii, part 8 (Amphipoda 1).
Stephensen, K. (1927) : Medd. fra. Dansk. foren., lxxxiii.
Stephensen, K. (1938) : Sond. Senckenbergiana, Bd. 20, No. 3/4.

# SOME NEMATODES FROM AUSTRALIAN MARSUPIALS 

By T. Harvey Johnston and P. M. Mawson

## Summary

The present paper is the third of the series relating to nematode parasites of our marsupials. The first (1938a) dealt with Filariidae, and the second (1938b) with Strongylidae (Trichoneminae), chiefly from Central Australian kangaroos and wallabies. We now give an account of a number of nematodes from various Queensland localities extending from the Gulf of Carpentaria to the coastal region adjacent to the New South Wales border. The species are distributed amongst the Filariidae, Spiruridae, Oxyuridae, and Trichostrongylidae.

# Some NEMATODES from AUSTRALIAN MARSUPIALS 

By T. HARVEY JOHNSTON and P. M. MAWSON.

The present paper is the third of the series relating to nematode parasites of our marsupials. The first (1938a) dealt with Filariidae, and the second (1938b) with Strongylidae (Trichoneminae), chiefly from Central Australian kangaroos and wallabies. We now give an account of a number of nematodes from various Queensland localities extending from the Gulf of Carpentaria to the coastal region adjacent to the New South Wales border. The species are distributed amongst the Filariidae, Spiruridae, Oxyuridae, and Trichostrongylidae.

This series of studies has been made possible by a Commonwealth grant to the University of Adelaide.

Oxyurids had not been recorded as occurring in Australian marsupials, but no less than four species, probably belonging to as many distinct genera, are described in this paper. Three of these were found in the preserved viscera (ileum and caecum) of a flying opossum, Petauroides volans var. minor collected by H. H. Finlayson on the Fitzroy River, Central Queensland, and forwarded to the South Australian Museum. Unfortunately this interesting assemblage of parasites is in a poor state of preservation. One of the forms has been assigned to a new genus, Austroxyuris. The fourth species was found in the common opossum, Trichosurus vulpecula, from South-eastern Queensland.

Only the female of the Spirurid, Protospirura marsupialis, was known previously. One of the two species of Filariids from the Gulf of Carpentaria is regarded as new, while the other, which was represented by immature females, is probably the female of one of our recently described species. The two Trichostrongylids belong to genera previously known from Australian marsupials, a second species being added to Austrostrongylus and Filarinema, which were monotypic, and described from material collected in zoological gardens in the United States and Pretoria respectively.

We are indebted for material to H. H. Finlayson, Honorary Curator of Mammals, South Australian Museum ; Dr. F. H. S. Roberts, Parasitologist, Department of Stock, Brisbane; the late Dr. T. L. Bancroft and his daughter, Dr. J. M. Mackerras, formerly of Eidsvold, Burnett River. The types of the new species have been deposited in the South Australian Museum, Adelaide.

## Hosts and Parasites Referred to tn this Report.

Macropus robustus Gould
Macropus sp.

Macropus dorsalis Gray
Trichosurus vulpecula (Kerr)

Petauroides volans (Kerr) var. minor Collett

Isoodon obesulus (Shaw)

Dipetalonema robertsi sp. nov.
Dipetalonema annulipapillatum
Johnston and Mawson
Austrostrongylus minutus sp. nov. Protospirura marsupialis Baylis Syphacia trichosuri sp. nov. Austroxyuris finlaysoni gen. et. sp. nov. Passalurus parvus sp. nov. Oxyuris (s.1.) acuticaudata sp. nov. Filarinema peramelis sp. nov.

## Family FILARIIDAE

Dipetalonema robertsi sp. nov.
(Fig. 1-5.)
From the body cavity of Macropus robustus, from Normanton, North Queensland.

Male. 6.5 cm . long, 0.23 mm . in maximum breadth; female, represented by fragments of two specimens, one fragment being 11 cm . long with a maximum width 0.45 mm . Anterior end dome-shaped with papillae arranged in two rows, each with four large and two small (probably lateral) papillae. The cuticle possesses fine transverse striations which are not obvious except in the lateral lines, since they are masked elsewhere by deeper longitudinal markings. The lateral regions have each two irregular rows of "gland cells" or "pores". Mouth small, leading into a short vestibule, $6 \mu$ long, with its base supported by a chitinous ring. Oesophagus about 2 mm . long in both sexes; with narrower anterior portion, 0.55 mm . in female. Nerve ring at about 0.28 mm . from anterior end.

Male. Testis tube extends as far forwards as the posterior end of the oesophagus. Tail 0.48 mm . long, with rounded tip which is apparently without papillae. Larger spicule 0.24 mm . long, cylindrical proximally but tapering to a fine point; shorter spicule 0.12 mm . long, broad, ending in a rounded tip. Three pairs of preanal papillae, somewhat irregularly arranged, one pair immediately postanal, and another pair some distance behind the latter and not quite symmetrically placed.

Female. Tail 0.4 mm . long, with two very small subterminal papillae. Uter-
ine tubes extend posteriorly to within 1.7 mm . from the anus; the two tubes unite just behind the vulvar region, the single uterus passing forward to within 1 mm . from the oesophagus before turning posteriorly as the vagina the latter forming a loop before entering a small muscular pyriform bulb at the vulva which lies at 6.5 mm . from the anterior end of the worm.


Fig. 1-5. Dipetalonema robertsi. 1. Cloacal region of male, lateral view ; 2. head; 3. posterior end of female; 4. tip of female tail, ventral; 5. cuticle at lateral line. Fig. 6-7. D. annulipapitlatum. 6. posterior end of female ; 7. anterior end of female. Fig. 1 and 4 to same scale; 5 and 6 to same scale.

Explanation of lettering: a. anus; dr. dorsal ray ; dt. dorsal tooth; edr. externo-dorsal ray; elr, externo-lateral ray; ep. excretory pore; g. gubernaculum; i. intestine; ic. inflated cuticle; nr. nerve ring; plr. postero-lateral ray; s. spicule; ut. uterus; v. vulva; vd. vas deferens.
$D$. robertsi differs from other species of the genus in the number and arrangement of the head papillae. The female system resembles that of $D$. tenue Johnston and Mawson 1938. The specific name is given in recognition of the excellent work now being carried out by its collector, Dr. F. H. S. Roberts. Parasitologist, Depart, ment of Stock, Queensland.

Dipetalonema annulipapillatum Johnston and Mawson 1938.
(Fig. 6-7.)
The material consists of two female specimens, both immature, taken from the dorsal aorta of Macropus sp., at Inverleigh, near the Flinders River, Gulf of

Carpentaria, North Queensland, by Dr. F. S. Roberts. The larger is 9.5 cm . long, 0.07 mm . wide at the head, 0.4 mm . in maximum breadth, and 0.12 mm . broad at the anus. The anterior portion of the head of each worm is damaged, but one can distinguish a chitinous ring around the mouth, and there appears to be outgrowths of the hypodermis into the cuticle resembling those occurring in D. annulipapillatum, of which species only the male has been described. The oesophagus is 2.6 mm . long, with an anterior narrower portion 0.6 mm . in length, and a wider posterior part. The nerve cord is situated at 0.3 mm . from the anterior end. The anus lies at 1.18 mm . from the tip of the tail. The uteri are not readily distinguishable because of immaturity. They pass forward to enter a muscular vagina a short distance behind the vulva, the vagina coiling on itself once before entering a pyriform muscular structure leading into the small vulva. The latter lies at 5.3 mm . from the anterior end. The long tail has a rounded tip on which papillae were not detected.

The characters present suggest that the specimens may be females of $D$. annulipapillatum, recently described by us (1938) from three species of wallabies, two of them from the Burnett River, Central Queensland, and one from coastal New South Wales. The main differences are the presence of a chitinous ring around the buccal region, and the differentiation of the oesophagus into a narrower and a wider region.

## Family SPIRURIDAE

Protospirura marsupialis Baylis.
(Fig. 8.)
Baylis (1927) described only the female. Since our material contained both sexes, an account of the male can now be given. The host was the opossum, Trichosurus vulpecula, from Eidsvold, Burnett River, Central Queensland (collected by the late Dr. T. L. Bancroft and Dr. M. J. Mackerras) and from Brisbane.

The head and general features of the body have already been described by Baylis.

Male. About 3.5 cm . long, shorter and thinner than the female, and with two or three close coils at the posterior end. The distance from the anterior end of the head to the posterior end of the oesophagus is 4.05 mm . The thick-walled vestibule is 0.25 mm . long, with an internal diameter 0.07 mm . The nerve cord lies at $0.34-0.35 \mathrm{~mm}$. from the anterior end, and just in front of the excretory pore. The tail has long alae, 0.22 mm . wide, narrowing near the tip, slightly beyond the end of which they project. The spicules are subequal in length, but
the left is thinner than the right, to which the vas deferens is attached. In one specimen the right spicule measured 1.15 mm . and the left 1.2 mm .; in another they were 1.3 and 1.1 respectively. A gubernaculum is present. The cloaca is slit-like, slightly elongated transversely, and lies at 0.7 mm . from tail end. There are four pairs of pedunculate preanal papillae, and a similar pair about mid-way between the cloaca and the tip of the tail. There is a pair immediately postanal, as well as two or three pairs of very small papillae close to the end of the tail. The alae are ornamented with longitudinal striations, and similar markings form a very narrow zone across the ventral surface of the body in the immediate vicinity of the cloaca.

## Family OXYURIDAE

Austroxyuris finlaysoni gen. et sp. nov.
(Fig. 9-12.)
This tiny species was present in great numbers in the caecum and intestine of Petauroides volans var. minor, obtained by H. H. Finlayson in the Fitzroy River District, Central Queensland. The viscera in which the parasites were found were forwarded by the South Australian Museum. The state of preservation was poor,

Worms short, straight; male $1.7-1.8 \mathrm{~mm}$. long ; female about 2 mm . Cuticle with fine transverse striations. Maximum diameter of male 0.11 mm . of female 0.15 mm ., occurring at the level of the posterior end of the oesophagus, the body then tapering to the tail.

Head end rounded, with cuticle not regularly inflated. Mouth circular, directed forwards, with its margin supported by a continuation of the chitinous wall of the buccal capsule. One pair of lateral papillae. Buccal capsule 0.01 mm . in diameter and $5 \mu$ long in the female, with a projection outwardly from the middle of its wall. Oesophagus $0.3-0.4 \mathrm{~mm}$. long in the male $(1: 4.5-5 \cdot 6$ of body length) ; narrow, slightly constricted in front of the rounded bulb, the latter 0.035 mm . in diameter, and provided with valves. Anterior end of intestine swollen. Nerve ring at the end of the first third of the tubular portion of the oesophagus, and about 0.12 mm . from the head end. Excretory pore just behind the oesophageal bulb.

Male. A pair of symmetrical caudal alae with maximum width (each 0.01 mm .) at cloacal level, length 0.2 mm . Body narrowed suddenly just in front of the posterior end of the alae, continuing as a very thin tail 0.06 mm . long. A pair of adanal papillae; a median papilla immediately postanal; three lateral papillae just behind the anal region, arising close together, supported by long peduncles, one pair of these papillae being located at the widest part of the alae, the others
arising more ventrally. No papillae could be detected at the posterior end of the alae. Spicule single, short, cylindrical, $0.05-0.08 \mathrm{~mm}$. long, not strongly chitinized except at its proximal end, where it joins the vas deferens and has a wellchitinized ring. Gubernaculum absent.


Fig. 8. Protospirura marsupialis. Posterior end of male. Fig. 9-12. Austroxyuris finlaysoni. 9. posterior end of male; 10. ditto, lateral view; 11. head, lateral; 12. oesophageal region, lateral. Fig. 13-14. Passalurus parvus. 13. head; 14. posterior end of male, lateral. Fig. 15-16. Oxyuris acuticaudata. 15. oesophageal region; 16. head. Fig. 17-18. Syphacia trichosuri. 17. head; 18. oesophageal region. Fig. 9, 10, 14 and 17 to same scale; 11, 13 and 16 to same scale.

Female. Tail very long, 0.29 mm . in length, tapering to a fine point. Vulva large, round, dividing the body antero-posteriorly in the ratio $1: 1 \cdot 8$. Uteri very indifferently preserved, but appear to be divergent. Eggs not observed.

The species belongs obviously to Oxyurinae, near Passalurus, from which it differs chiefly in the characters of the vestibule, in the absence of a prebulbar swelling on the oesophagus, and in the absence of narrow cuticular flanges at the anterior end. Some of the features suggest those of Protozoophaga. A new genus Austroxyuris is proposed for it, and is diagnosed as follows:

Oxyurinae. Mouth simple with two papillae; cuticle without cephalic expansions; vestibule short, without teeth. Oesophagus with distinct bulb but without marked prebulbar swelling; excretory pore behind bulb. Male with alae, a pair of sessile adanal papillae, a median postanal, and three pairs of pedunculate postanal papillae; spicule, single, weakly chitinized, short; gubernaculum absent; tail short, resembling a spike. Female with very long tail, tapering to a fine point; vulva in anterior third. Type A. finlaysoni.

The species is dedicated to H. H. Finlayson, Honorary Curator of Mammals, South Australian Museum. In company with it were found the two Oxyurids, whose descriptions follow this account.

## Passalurus parvus sp. nov.

(Fig. 13-14.)
Found in company with other oxyurids in Petauroides volans var. minor, Fitzroy River, Central Queensland.

Short worms, females $3-3.5 \mathrm{~mm}$. long; single male found, 1.12 mm . long. Cuticle deeply annulate, finely striated longitudinally. Anterior end rounded. Mouth small, terminal, with three lips supported by chitinous prolongation from the buccal capsule. Two (perhaps four) small papillae at anterior end. Buccal capsule very large, 0.02 mm . long, 0.023 mm . wide at its base, with thin outwardly concave walls; three semi-circular teeth, $7 \mu$ long, arising from the anterior end of the oesophagus. Oesophagus 0.52 mm . long in male, 0.63 mm . in female; with a constriction between the tubular portion and the spherical bulb. Nerve cord and excretory pore not observed.

The posterior end of the only male available is in an unsatisfactory state. The single spicule is 0.06 mm . long, more strongly chitinized at its proximal end. There is a short spine-like tail. The papillary arrangement was not recognizable.

The female has a narrow tapering posterior end, the tail being 0.42 mm . long and markedly ringed. Position of vulva not determined. Eggs thick-shelled, 0.03 by 0.01 mm ., mostly with a thickening of the shell at one pole; embryos present.

The species belongs to a genus closely related to Passalurus. In view of the indifferent condition of the specimens, a satisfactory examination could not be made, and it has been considered advisable to place the species provisionally under that genus.

Oxyuris (s.1) acuticaudata sp. nov.
(Fig. 15-16.)
From caecum and intestine of Pctauroides volans var. minor, Fitzroy River, Central Queensland. Only females were found. They were $6-8 \mathrm{~mm}$. long, tapering gradually towards posterior end, with very finely-pointed tail, 1.4 mm . long. Cephalic cuticle inflated; body narrowed suddenly in the anterior 0.25 mm .; cuticle at extreme anterior end forming a collar 0.015 mm . in depth, surrounding oral aperture. Six minute papillae pass up through the collar and project about $1 \cdot 5 \mu$, a pair of larger papillae behind these. Buccal capsule wide, shallow, $0 \cdot 016$ by 0.007 mm . Oesophagus 0.7 mm . long, with wide lumen which narrows at the end of the anterior tubular portion, expanding again in the bulb; the latter wider than long. Nerve ring just in front of mid-oesophagus. Excretory pore in the vicinity of junction of first and second thirds of tubular part of oesophagus. Vulva strongly chitinized, lying at end of first quarter of the body length. Eggs 0.034 by 0.017 mm .

On account of the absence of males we prefer to assign the species to Oxyuris (s.1). It is certainly not a member of Oxyuris (s.str.).

Syphacia trichosuri sp. nov.
(Fig. 17-18.)
From the intestine of Trichosurus vulpecula, West Burleigh, South-eastern Queensland. Only females present; 5 mm . long; with cervical cuticle inflated for 0.12 mm . from the anterior end, the body being narrowed in this region. Tail long, 0.8 mm . in length, tapering to a point. Vestibule small, 0.015 mm . long, 0.02 mm . wide, chitinized, with three small rounded teeth at its base. Oesophagus 0.6 mm . long, with a constriction between the tubular portion and the spherical bulb which is about 0.1 mm . in diameter. Nerve ring at 0.3 mm . from the anterior end and at about mid-length of the tubular portion of the oesophagus. Vulva at about midlength; vagina muscular; uterus long, single. Two ovaries. Eggs 0.05 by 0.025 mm ., with very thick shells.

In most features the species agrees with those of Syphacia, but differs in possessing a definite vestibule and in having the vagina at mid-body. On account of the absence of males it is considered preferable to assign the parasite to Syphucia, all of whose previously described species occur in rodents.

# Family TRICHOSTRONGYLIDAE 

## Austrostrongylus minutus sp. nov.

(Fig. 19-21.)
From the intestine of Macropus dorsalis, Eidsvold, Burnett River, Queensland. Male $2 \cdot 9-3.1 \mathrm{~mm}$., female 3.2 mm , all specimens probably immature; reddish when collected. These small thin worms were coiled in alcohol. There are six longitudinal ridges on the body, a ventral and a dorsal pair, in addition to a very wide lateral pair. Each of the latter is about 0.035 mm . wide, and the others each about 0.012 mm . They extend from the region just behind the inflated area almost to the end of the body, and in the case of the female reach to the anus. The lateral lines are longest. The transverse striae are about $1 \cdot 6 \mu$ apart. Cuticle at head end inflated, but not striated, for a distance of 0.46 mm . Nouth small, circular. Buccal capsule dome-shaped anteriorly and funnel-like at its base, its chitinous walls being continued back into the oesophagus. Projecting into the base of the capsule is a relatively large dorsal tooth $8 \mu \mathrm{long}$ in the male, $10 \mu$ in the female. There are also a smaller ventral and two small lateral teeth. The capsule is $7-8 \mu$ long and $13-14 \mu$ wide in the male, $10 \mu$ long and $18 \mu$ wide in the female. The oesophagus is 0.20 mm . long in the male (about one-sixteenth of body length) and 0.25 mm . in the female (one-thirteenth of body length), widening posteriorly. The excretory pore lies at about 0.16 mm . from the head end, and in the vicinity of the junction of the third and fourth quarters of the oesophagus.

Male. Bursa expanded laterally and nearly symmetrical; ventral lobes slightly separated from the laterals; small dorsal lobe. Ventral rays widely separated and subequal, the ventro-ventral curving antero-ventrally, the latero-ventral extending directly laterally. Externo- and medio-lateral rays stout, close to each other and parallel ; postero-lateral ray much narrower than the other laterals. All ventral and lateral rays reach almost to the bursal edge, as also does each long narrow externo-dorsal which arises separately. Dorsal ray rather short, giving off two narrow curved branches at about half its length and then continuing a short distance before bifurcating into the short terminations. Spicules equal, $0 \cdot 35-0 \cdot 4$ mm . long, about one-eighth of body length, narrow, cylindrical, curved at the distal end to meet each other at a blunt point. A long narrow chitinization of the dorsal wall of the spicule sheath probably represents a gubernaculum.

Female. The tail ends in long spine-like portion. Anus at 0.09 mm . from the posterior end. Vagina very short; ovejectors stout, relatively long; eggs not present; vulva at $0.31-0.35 \mathrm{~mm}$. from tip of the tail, the distance being about one-ninth of body length.
A. minutus differs from the other known species, A. macropodis Chandler 1924, in the following features: smaller size, presence of lateral teeth in the buccal capsule, smaller dorsal tooth, rather shorter oesophagus, more posteriorly situated vulva, longer spicules, bursa much less markedly asymmetrical and of different shape, most of the bursal rays relatively stouter, and the different arrangement of the branches of the dorsal ray.

## Filarinema peramelis sp. nov.

(Fig. 22-25.)
From the intestine of a bandicoot, Isoodon obesulus, from West Burleigh, South-eastern Queensland. Male, $4 \cdot 6-4.9 \mathrm{~mm}$. long with a maximum diameter of 0.07 mm .; female, $5.8-6 \mathrm{~mm}$. Head very small, and its parts are difficult to determine accurately. Head end with a very narrow cuticular inflation extending back for about $0.05-0.06 \mathrm{~mm}$., the underlying region being somewhat narrower than the succeeding portion. There appear to be six minute lips. Longitudinal cuticular striations are present. There is no buccal cavity, the oesophagus reaching the anterior end. A tooth could not be recognized, though in a few specimens a tooth-like structure seemed to be protruding from the end of the oesophagus through the mouth. Oesophagus $0.35-0.38 \mathrm{~mm}$. long, thin, widening slightly towards its base. Intestine narrow. Nerve cord and cervical papillae not observed. Excretory pore quite distinct and lying in the vicinity of the mid-oesophagus, about 0.22 mm . from the head end.

Male. Bursa large, consisting of two large lateral lobes and a dorsal lobe, laterals with lower edges inturned. Ventral and lateral rays more or less equal in length and thickness, and all extending practically to the bursal edge; all of them arise together from a common stem, diverging in their distal third. Ventrals separate; ventro-laterals curved ventrally; postero-laterals slightly curved; externo-laterals nearly straight; medio- and postero-laterals bending rather dorsally. Dorsal ray stout and long, the externo-dorsals arising as stout curved rays from the end of its proximal third; the main stem continues a short distance and then gives off two short thin lateral branches, the main portion proceeding backwards to divide ultimately into two small bidigitate rays almost reaching the bursal edge. Spicules $0.14-0.15 \mathrm{~mm}$. long; anterior part cylindrical, 0.015 mm . in diameter; widest near middle; eventually subdividing to form three pointed processes, two shorter laterals, and a longer median. The lateral structures are comparable with the whip-like processes described by Mönnig for Filarinema fagrifor. The gubernaculum is spindle-shaped. There are two minute prebursal papillae.

Female. Tail $0 \cdot 08-0 \cdot 09 \mathrm{~mm}$. long, tapering to terminate in a median ventral
and two latero-dorsal conical processes, the ventral cone bearing on its dorsal surface a spine-like process 0.012 mm . long. Vulva 1.13 mm . from the posterior end and protected by a thin flap arising in front of it. Vagina short; ovejectors muscular; uteri divergent.


Fig. 19-21. Austrostrongylus minutus. 19. head, ventral; 20. head, lateral; 21. bursa, dorsal. Fig. 22-25. Filarinema peramelis. 22. bursa, ventral; 23. head end; 24. spicule, lateral; 25. spicule, subventral.

Fig. 19, 20, and 23 are drawn to scale adjacent to fig. $23 ; 21,22,24$, and 25 , to scale beside fig. 22.

The specific name is derived from Perameles, the generic name under which most Australian bandicoots were formerly placed. $H^{\prime}$. peramelis approaches most closely to F. flagrifer Mönnig 1929, from Macropus rufus, but differs in size; the presence of cuticular cephalic inflations and longitudinal striations; the form of the spicules; and the characters of the dorsal ray. The difference regarding the branching of the dorsal ray may be of generic value, but we prefer to place the species under Mönnig's genus because of the similarity of most of the other characters.

## LITERATURE.

Baylis, H. A. (1927) : Some new parasite nematodes from Australia. Ann. Mag. Nat. Hist. (9), 20, 1927, 214-225.
Chandler, A. C. (1924) : A new genus of Trichostrongylid worms from the kangaroo. Parasitol, 16, 1924, 160-163.

Johnston, T. H. and Mawson, P. M. (1938) : An account of some filarial parasites of Australian marsupials, Trans. Roy. Soc. S. Aust. 62 (1), 1938, 107-121.
Johnston, T. H. (1938) and Mawson, P. M. : Strongyle nematodes from Central Australian kangaroos and wallabies. Trans. Roy. Soc. S. Aust. 62 (2), 1938, 263-286.
Mönnig, H. O. (1929) : Filarinema flagrifer n.gen. n.sp., a Trichostrongylid parasite of the kangaroo. Rep. Dir. Vet. Serv. Pretoria, 15, 1929, 311-316.

# NEW SPECIES OF SOUTH AUSTRALIAN GASTROPODA 

By Bernard C. Cotton, Conchologist and<br>Frank K. Godfrey, Hon. Assistant Conchologist, South Australian Museum

## Summary

In preparing a list of South Australian Gastropoda we found that some new species awaited description, and that a few names required emendation. The more obvious are here dealt with. Holotypes are in the South Australian Museum, and their registration numbers are quoted herein.

Scissurella Cyprina sp. nov.
Scissurella ornata Cotton and Godfrey (nec May), S. Aust. Nat., Xv, Nov. 30, 1938, p. 21, p1. i. Fig. 8.

# NEW SPECIES of SOUTH AUSTRALIAN GASTROPODA 

By bernard C. COTTON, Conchologist, and<br>Frank K. GODFREy, Hon. Assistant Conchologist, South Australian Museum.

Plate xvii.

In preparing a list of South Australian Gastropoda we found that some new species awaited description, and that a few names required emendation. The more obvious are here dealt with. Holotypes are in the South Australian Museum, and their registration numbers are quoted herein.

Scissurella cyprina sp. nov.
Scissurclla ornata Cotton and Godfrey (nec May), S. Aust. Nat., XV, Nov. 30, 1938, p. 21, pl. i, fig. 8.
Minute, discoidal, somewhat oblique; colour yellowish-white; protoconch of one-and-a-half turns, squared by a beaded ridge, and sunken below the level of the two rounded adult whorls, which are somewhat angled by the canal; canal, a deep furrow, about mid-way between the suture and the periphery, has sharp, raised cdges, and the whole is surmounted on a distinct ridge surrounding the shell; radial ribs, sixteen, raised, curved, interrupted by the furrow, extend from the suture to the small, deep umbilicus; numerous spirals, smaller than the ribs, do not pass over those ribs which are between the canal and the suture, but pass over the lower ribs and develop a crested appearance; aperture defined by a continuous narrow margin ; slit open, deep, moderately wide. Holotype, height 1.5 mm ., diameter 2 mm., Venus Bay, S. Aust. (Reg. No. D 9674). Distribution: Cape Borda, S. Aust., Venus Bay, beach.

From Scissurella ornata May, the species is larger, the spirals stronger and radials weaker. South Australian examples have been formerly labelled ornata in error.

Zeidora legrandi Tate, 1894.
Zeidora tasmanica Cotton and Godfrey (nec Beddome), S. Aust. Nat., XV, March 27, 1934, p. 53, pl. i, fig. 12.

This is separable from Zeidora tasmanica Beddome in the position of the protoconch, which does not quite reach to the posterior margin, whereas in the Tasmanian species it sometimes overhangs. Furthermore the South Australian shell is twice as large as the Tasmanian. Holotype, length $9 \cdot 5 \mathrm{~mm}$., breadth 6 mm .,
height 2 mm ., depth of cleft 2 mm ., Corny Point, S. Aust. (D 13371). Distribution: Corny Point; Venus Bay; also dredged St. Francis Island, 35 fathoms; Backstairs Passage, 7-20 fathoms.

Calliostoma (Salsifotens) calliope sp. nov.
Calliostoma (Salsipotens) ciliare Cotton and Godfrey (nec Menke), S. Aust. Nat., XVI, April 10, 1935, p. 19, pl. i, fig. 9.
Pyramidal, broadly depressed, thin, imperforate; colour yellowish, redspotted along the suture; sometimes the adult whorls have a spiral line articulated brown and white like a twisted cord, below which are crescents of brown, open forwards, also with axial flames of brown growing wider as they descend to the periphery, beyond which they extend for a short distance across the base; sculpture obsolete, transversely striate, and decussated by very fine axial striae; whorls six, flat, margined below ; suture linear; base flat; aperture obliquely ovate, outer lip margin callous within. Holotype, height 23 mm ., diameter, 30 mm ., Gulf St. Vincent, S. Aust., 13-17 fathoms (D 13611). Distribution: Gulf St. Vincent; Investigator Straits; Backstairs Passage; 13-17 fathoms; also W. Aust., Swan River; Esperance Bay; on beach. Formerly misidentified as Calliostoma ciliare Menke, from North-west Australia, which is different in shape, sculpture, and colour.

## Ethminolia elveri sp. nov.

Trochoid, depressed, widely umbilicate, thin; whorls medially angulate, and subangulate above; colour extremely variable; base colour white or rose, axially flecked and blotched; protoconch minute, depressed, white, smooth, of one-and-ahalf whorls; sculpture of regular microscopic spiral lirae cut by fine, regular, accremental striae; umbilicus profound and narrow, spirally obsoletely ribbed; aperture subquadrate, outer lip thin; columella simple, very slightly convex at the lower half. Holotype, height 7 mm ., diameter 10 mm ., Gulf St. Vincent, S. Aust., 7 fathoms (D. 18388). Distribution: Beach, not common, Hardwicke Bay, Spencer Gulf; dredged, Gulf St. Vincent; Investigator Straits; Backstairs Passage; Cape Jaffa; 7-130 fathoms. Also King George Sound, W. Aust., on beach and dredged to 28 fathoms. South Australian Museum specimens have been labelled angulata Adams, prodictus Fischer, and later probabilis Iredale. The species is larger, higher, less shouldered, and less acutely angulate than the Peronian probabilis Iredale.

## Ethminolia cincta sp. nov.

Conical, elevated, umbilicate, spirally ribbed; colour, creamy-white with dull red interrupted zig-zags, except the first three whorls which are yellow; spiral
striae, very fine, crowded, present on the base and in the umbilicus; well marked axial wrinkles in the infrasutural excavation; spire rather high, scalar; protoconch small, blunt; adult whorls about five-and-a-half, convex medially, with a noduled shelf below the suture, angulated, and ribbed at about one-fifth of their breadth, and flatly rounded from the angulation to the suture; last whorl bluntly angulated at the edge of the rounded base; suture well defined; aperture slightly oblique, round; outer lip thin, sharp; inner lip thin, sharp, slightly spreading on the columella; interior iridescent; umbilicus wide, deep, much impressed at the suture, which is spirally continuous to the apex. Holotype, height 4.5 mm ., major diameter 6.5 mm ., minor diameter 5.5 mm ., Leven's Beach, Spencer Gulf, S. Aust., shallow water (Cotton) (D. 3389). Distribution: Beachport, to Hardwicke Bay, Spencer Gulf, to 200 fathoms.

Related to the Peronian shell, Ethminolia pulcherrima Angas (Minolia), but our shell has the sculpture more valid, though the base is almost smooth; the coloration is different from the bright dotting of the N.S. Wales shell. The deeper water form from 200 fathoms off Beachport is less validly sculptured, with whorls more rounded and smaller, with higher spire, recalling Ethminolia pulcherrima emendata Iredale, the Peronian deep-water form.

## Spectamen marsus sp. nov.

Conoidal, umbilicate, thin ; colour, protoconch white, consisting of one-and-ahalf whorls, then five adult whorls of saffron yellow, gradually fading out into very light yellow or dull grey; adult whorls and base have rather broad, equidistant, radiating, somewhat flexuous, rosy streaks which are disconnected at the periphery; spiral striae very crowded; spire elevated; whorls six, convex, de-pressed-canaliculate below the suture, gradate; last whorl carinate; aperture subquadrate; outer lip thin; columella scarcely arcuate, narrow, forming an angle with the basal margin; umbilicus funnel-shaped with two spiral carinae within, which are granulate; the angulate margin has about twenty tubercules, due to axial wrinkles in the umbilicus, which end just outside the border. Holotype, height 5.2 mm ., major diameter 7 mm ., minor diameter 6.5 mm ., Beachport, S. Aust., 40 fathoms (D. 13390). Distribution: Dredged, Beachport to 120 miles west of Eucla, Great Australian Bight, 40-300 fathoms.

Differs from Spectamen philippensis Watson, in being smaller, thinner, and less elate; it is somewhat less canaliculate at the suture, and the spiral lineations are more crowded ; it is yellowish instead of white; the rosy axial colour markings are fewer, and are present on the base; also there are two or three spirals in the umbilicus. In all these characters, except the colour, our shells show some varia-
tion, a few having been misidentified as Spectamen bellulus Angas, but they are not that species, and are merely variants of Spectamen marsus.

Basilissa bombax sp. nov.
Basilissa radialis var. bilix Verco (nec Hedley), Trans. Roy. Soc., S. Aust., XXX, 1906, p. 218, pl. x, fig. 1, 2, 3.

Depressedly conical, umbilicate; protoconch homostrophe, smooth, of one-and-a-quarter whorls; adult whorls six; spire somewhat gradate; one marked spiral rib in the first whorl and two in the others, becoming gradually more valid and distant; a secondary threadlet appears between the two ribs in the third whorl; another threadlet arises in the fourth, two in the fifth, and still another spiral rib in the body-whorl; the last rib forms the periphery and the suture, and, separated from its fellow by a furrow, gives an apparent canaliculate suture; sutures well marked; base flatly rounded with eight, equidistant, nearly equal, concentric rounded spiral lirae, as wide as their interspaces; shell surface cancellated by crowded narrow erect lamellae, crossing the spirals, and sinuous, but not following exactly the outline of the labrum, and ending at the outer basal lira; crowded radial striae cancellate and granulate the base; aperture obliquely quadrate, with a large posterior sinus in the outer lip, rather dceper than wide ;a second sinus at the baso-iabral junction, about as deep and rather wider, and a third shallow and wide at the baso-columellar angle; columella oblique, concave, expanded towards the umbilicus, truncate anteriorly; inner lip thin, smooth; interior of aperture smooth; umbilicus deep, small, margined with oblique plicate tubercles. Holotype, height 3.6 mm .; diameter 3.4 mm ., Cape Jatia, S. Aust., 130 fathoms (D. 13397). Also dredged from 300 fathoms off Cape Jaffa.

Formerly recorded as Basilissa radialis var. bilix Hedley, a Peronian shell, noticeably different in the validity of sculpture and the shape of the whorls. The species is well figured by Verco loc. cit.

Pellax gabiniana sp. nov.
Subglobose, thin, imperforate, smooth; ground colour whitish, beautifully closely lined or speckled with rose-which colour predominates; protoconch white; columella white; spire depressed, of three whorls; subangled at the lower portion of the body-whorl, where there is a white maculated band; aperture oval, simple. Holotype, height 6 mm ., diameter 4.5 mm ., Royston Head, Yorke Peninsula, S. Aust. (D. 13414). Distribution : Corny Point, and generally along the west coast of Yorke Peninsula, to Albany, W. Aust. This distinctive species has been incorrectly listed as Phasianella kochi Philippi.

Scala (Mazescala) beachportensis sp. nov.
Squat, imperforate; sculpture of thin, erect lamellae, forming a right-angled shoulder on the upper portion of each whorl; lamellae numbering seventeen on the body-whorl; interstices crossed by obscure spiral incisions; protoconch of four whorls, smooth, polished, sharp; aperture oval, free. Holotype, height 9 mm ., diameter 4 mm ., Beachport, S. Aust., 110 fathoms (D. 13302). The holotype is unique.

From Scala heloris Iredale, the species differs in being smaller, more numerously but less prominently variced, and in lacking the basal rib. From Scala bellicosa Hedley, it differs in being spirally sculptured and stouter.

## Scala (Narvaliscala) flindersi sp. nov.

Elongate, acuminate, imperforate, variced at about every one-and-a-quarter whorls; sculpture of longitudinal rounded ribs, about twenty-five on the bodywhorl, crossed by about six spiral threadlets; protoconch smooth, sharp, inconspicuous; adult whorls, fourteen, rounded; suture impressed; base smooth, defined by a fine basal rib; aperture circular. Holotype, height 24 mm ., diameter 7 mm ., 120 miles west of Eucla, Great Australian Bight, 300 fathoms (D. 13303). The holotype has the varices mostly on the dorsum, therefore only those at the upper quarter and the last one on the body-whorl, are seen in the figure.

Compared with Scala dorysa Iredale, the present species is separable by the greater height of the individual whorls, and their roundness. The last three whorls of Scala findersi together, form more than half the length of the shell, whereas in Scala dorysa they form less than half.

Scala (Nodiscala) subcrassa sp. nov.
Narrow, thick, imperforate; longitudinally sculptured with thick, low ribs, angled at the upper third, and obsolete at the rather deep suture, crossed by spiral threads; protoconch, fairly blunt, of two smooth whorls; adult whorls nine, flattened; basal keel indistinct; aperture oval, not separate from the body-whorl, a thick varix forming the outer lip; a further thick varix is situated in the middle back of̈ the penultimate whorl. Holotype, height 13 mm . diameter 4 mm ., Gulf St. Vincent, S. Aust., 22 fathoms (D. 13301). Allied to Scala apostolorum Iredale, but is larger, and also differs in that the basal rib is obsolete; the general appearance too is different.

The present species was formerly classed in error as Scala crassilabrum Sowerby, from the Philippines and Central America.

Reticunassa flindersi sp. nov.
Thin, white, sculptured with twenty obsolete, axial riblets, crossed by about eight spiral riblets, producing rather depressed tubercles at the intersections; base with five sharp, spiral riblets; protoconch of four depressed whorls, smooth, polished, horn coloured, with microscopic axial accremental striae only; adult whorls four, a little convex, sharply shelved at the suture. There is no abrupt cessation of sculpture at the commencement of the adult shell as in Reticunassa dipsacoides Hedley, but a very gradual formation of sculpture, leaving no definite axial indication as to the finish of the protoconch and the start of the adult shell ; the basal keel of the protoconch is only just discernible at the junction. Holotype, height 9 mm ., diameter 5 mm ., Cape Jaffa, S. Aust., 300 fathoms (D. 13298).

Distinguished from Reticunassa dipsacoides Hedley, by the less developed sculpture, the different basal sculpture, the protoconch features, and the relative height and diameter.

## Segnitila gen. nov.

Shell dextral, discoid, keeled, somewhat flattened beneath, last whorl comparatively rather large, spire small and sunken, umbilicus narrow, aperture acutely angled, no internal laminae. Genotype, Segmentina victoriae E. A. Smith, 1881.

This genus is introduced for that species, in describing which Smith stated: "It appears inconsistent to place a shell in Segmentina, lacking the essential characters of internal laminae."

## Ataxocerithium beasleyi sp. nov.

Protoconch, blunt, of three convex whorls, the first smooth, the second and third with distant, valid, axial, sigmoid, round cords. Spire whorls with close spirals, rounded, wider than the interspaces, five in the penultimate whorl, the lowest two more prominent throughout, the upper three diminishing in number towards the apex where there is but one; periphery roundly angular; base nearly flat with six spirals ; axial, obsolete, round costae, nearly as wide as the interspaces, fourteen in the penultimate whorl; mouth roundly rhomboid; outer lip slightly expanded, sharp, crenulated; inner lip erect and free; canal short, nearly closed at front of point of contact of inner and outer lip, reflected; collumella curved and forming an obtuse angle at the canal. Shell colour of holotype white. Holotype height 8 mm ., diameter 2.9 mm ., Cape Borda, S. Aust., 55 fathoms (D. 13435). Distribution : 81 miles west of Eucla, 4 fathoms; Gulf St. Vincent,? depth, seven specimens larger and more solid than the type, four are uniformly brown, another has the protoconch white and the rest of the shell brown, two are nearly white; 45
fathoms east of north of the Neptune Islands; Beachport, 100-150 fathoms, one specimen brown; Gulf St. Vincent, 10 fathoms ; 50 miles west of Eucla, W. Aust., 80 fathoms.

This species differs from $A$. serotinum in having valid spirals of obsolete axials. In A. serotinum the axials are more prominent than the spirals.

## Epideira flindersi sp. nov.

Fairly solid, acuminate, last whorl longer than the spire; colour, cream, blotched with light brown just below the sutures; sculpture of spiral lirae crossed by numerous, fine, axial plicae, which have each two small nodules arranged vertically, one at and one just below the suture; below the lower nodule is a narrow area in which the axial plicae are obsolete, there another nodule tops the longer plica of the whorls; plicae are somewhat cut by the axials but not sufficient to form distinct tuberculose sculpture; protoconch bulbous, of two smooth, turbinate whorls, set obliquely on the adult shell; adult whorls seven. Holotype, height 21 mm., diameter 8 mm ., 80 miles west of Eucla, Great Australian Bight, 75 fathoms (D. 13645).

The species is readily distinguished from others of the genus, the only one bearing the remotest resemblance is Epideira striata Gray, from New South Wales, which, however, has a coarser sculpture of a very different pattern.

## Epideira beachportensis sp. nov.

Very solid, acuminate, last whorl longer than the spire; colour cream, with distant lines of elongate, small, brown spots; sculpture of fine, regular, spiral riblets, with slightly wider interspaces, the whole crossed by weak, irregular axials; protoconch bulbous, of two smooth, turbinate whorls, set obliquely on the adult shell; adult whorls six; columella bearing a heavy callus; notch broad and shallow; outer lip not inflected ; canal very short. Holotype, height $31 \mathrm{~mm} .$, diameter $11 \mathrm{~mm} .$, Beachport, S. Aust., 150 fathoms (D. 13644).

This species appears quite distinct from all its congeners.

## Onustus flindersi sp. nov.

Onustus peronianus Cotton and Godfrey, nec Iredale, S.A. Nat., XIII, 1932, p. 38, pl. i., fig. 4.
Trochiform, medium size; white or yellowish, the basal ridges yellowishbrown ; growth lines strong, irregular, oblique, crossed by flexuous, curved, oblique striae; base with numerous, sharp-ridged, curved, granose ribs, with fine thread lines between, crossed by distinct spiral ribs; spire conical, slightly convex;
protoconch conic, whorls few, convex, smooth, polished, white, with marks where very small fragments have formerly adhered; adult whorls nine, the last keeled; base flat; aperture low, broad, interior porcellanous; outer lip produced above; inner lip reflexed, forming a thick, white, shining callus; juveniles narrowly umbilicate, adult shells without umbilicus; operculum squarish. Holotype, height 9 mm ., diameter 18 mm ., Petrel Bay, St. Francis Island, S. Aust., 15-20 fathoms (D. 13615).

The upper surface is almost or quite hidden by the agglutinated shells. Compared with Onustus peronianus Iredale, the species is smaller and differently sculptured, and has the usual South Australian molluscan shells attached.

## Gundlachia eremia sp. nov.

Limpet-like, subpellucid, thin, oval, obliquely conical, in two distinct tiers; the juvenile portion above, long and narrow, one-third overlapping the margin of the adult; viewed laterally the juvenile is set obliquely on the adult, but follows the median line when viewed dorsally; internal shelf well produced. Holotype, total length 3.5 mm ., breadth 1.8 mm ., juvenile, length 2 mm ., breadth 0.9 mm ., Mount Lofty, S. Aust., in creek (D. 13613). Distribution: Mount Lofty ; Aldgate; Reed Beds, River Torrens, near Henley Beach.

From Gundlachia petterdi Johnston, the species is smaller, thinner, smoother, and has the juvenile portion set along the median line and not obliquely to it, also the internal shelf almost reaches to the middle of the adult shell. It is comparatively rare in South Australia.

## EXPLANATION OF PLATE xvii.

Fig. 1. Epideira flindersi sp. nov. $(\times 2 \cdot 4)$.
Fig. 2. Gundlachia cremia sp. nov., dorsal view ( $\times 12$ ).
Fig. 3. Gundlachia erenia sp. nov., ventral view $(\times 12)$.
Fig. 4. Epideira beachportensis sp. nov. $(\times 1 \cdot 6)$.
Fig. 5. Scala (Mazescala) beachportensis sp. nov. $(\times 7 \cdot 6)$.
Fig. 6. Ataxocerithium beasleyi sp. nov. ( $\times 6$ ).
Fig. 7. Scala (Narvaliscala) findersi sp. nov. ( $\times 1 \cdot 8$ ).
Fig. 8. Reticunassa findersi sp. nov. $(\times 4)$.
Fig. 9. Ethminolia cincta sp. nov. $(\times 5 \cdot 6)$.
Fig. 10. Ethminolia elveri sp. nov. $(\times 4)$.
Fig. 11. Spectamen marsus sp. nov. $(\times 6)$.
Fig. 12. Pellax gabiniana sp. nov. $(\times 6)$.
Fig. 13. Scala (Nodiscala) subcrassa sp. nov. $(\times 4)$.


# PUBLIC LIBRARY, MUSEUM, AND ART GALLERY $\therefore$ OF SOUTH AUSTRALIA 

## RECORDS

OF THE

## SOUTH AUSTRALIAN MUSEUM

Vol VF, NO. 3

Published by the Board of Governors, and edited by the Museum Director (Herbert M, Hale)

ADELADE, DECEMBER 16TH, 1939.

# A NEW ASTROCONUS FROM SOUTH AUSTRALIA 

By H. Lyman Clark, Museum of Comparative Zoology, Cambridge, Mass., U.S.A.


#### Abstract

Summary Thanks to the kindness of the Director of the South Australian Museum, I have had the privilege of studying a very remarkable "basket star" (Gorgonocephalid) of the genus Astroconus. The specimen is exceptionally well preserved and very handsomely coloured, and hence quite different in appearance from any other specimen of the genus I have ever seen.


Astroconus Pulcher sp. nov.
Disk 35mm. in diamter, with five arms, exceeding 125 mm . in length, forking at least seven or eight times; width of arms at base 10 mm ., height 6 mm ., disk distorted by drying; in life it was undoubtedly more or less swollen with the radial and interradial areas about equal ; in its dry condition the radial ridges are elevated, the interradial areas much sunken; radial shields distally widely separated from each other, space between considerably depressed.

# A NEW ASTROCONUS from SOUTH AUSTRALIA 



## Plate xviii.

Thanke to the linduess of the Director of the Somb Anstralian Musenm, I have hat the miviluge of sturlying a very remarkable "basket star" (Goremocephatid) of the gemas astrocomes. The specimen is exeeptionally well preserved and very handsomely coloured, and henere guite different in appearabere from any othere specimen of the genus thave ever seen.

## Astrocones pulderer sp, nov.

Disk 35 mm . in diancter, with five amms, exeecting 125 mm . in length, forkiug at loast srien or oight times; width of arms at base 10 mm ., leight 6 um. disk distorted by Nrying; in tiles it was matoubtedy more or less swollen with the radial and intorradial areas abont efoal; in its drye eondition the radial ridges are devated. the interradial areas much sumken; radial shields distally widely separated from each othere, space betwern considerably depressed. The shrinkage of the disk causes the immer ends of the ratial rideres to overlap in an irregnlar manner laterally, making it impossible to sere the actual centre of the disk. Relatively large wrimked, conical tuhereles, 1 to '2 2 mm . high and nearly as thick at base, are scattered sparmely over the disk, chiefly at the distat ends of the radial shields. The conering of the disk is made mp of crowied gramules and plates as in typical Astroconus. beginning at the very base, the arms are covered by tubereled transverse. ridges all the way from the radial shields to the dips, the ridges separated from each other hy sightly depressed areas withont tubercles; if it were not for their distinetive colnmation they would be much less defined and difficult to make out. Covering of arms, ridges, and valleys similar, made up of granules and small smooth plates as on disk. Each ridge to the third or fourth fork of the arm carries
 there may he only ond on a ridge or very rarely nome, natally two, there, or four, very rarely five. On the outer branches of the arms tubereles are wanting.

Entire lower surface covered by a fine gramular coat, coarsest in the interradial areas. Teutacle spores small, but the first pair well within the disk and lacking any tentacle seale, appear to open at the tip of a more or less calcified papilla which has shmukeu on dryinge into a minute shapeless lemp. Each stmereding
spore more or less concealed by a slight ritherm the adoral side, which carries threa, four, live, or even six whot, thick, slightly flathened spines, terminating in at chaster
 ridges of the sides and upper surfaces of the arms. Each mouth angle carries a large number of teeth and oral papillae of diverse sizes, arrangex irregularly on the sides and angle of the daw. Genital slits comspienous, 5 mon. long, placed near the arm but distinctly separated from it. Madreporic plate single, well defined, close to the mouth frame in one interradial area.

Colour : above, a light ashy-rpey with a purplish tinge; disk with mumerous
 Erey, the depressed areas betwern lrownish-hack in sharp contrast; the large tubereles are ashy, hat mathy have the tips mom on less dusky. The ammation of the small branches of the arms is very handsome. Lower surface pale-buft os crean colour; on the interradial areas are numerous irregular lines and spots of brownish-black; the montl-frame and the lower sturface of the arms is prettily marked with ummeroms spots and small botehes of brownish-black. Arm spines lemon-yellow in marked contrast. Oral papilise and teeth pale orauge.

Holotype. South Australian Maseum Coll. No. K.561.
This very handsome, and at present unique, specimen was taken in at erayfish pot, in 20 fathoms of water, at Cape Duttom, South Austratia, by Mr. K. Matason. Aside from its colomation there is little to distinguish it from australis, but the regulat "riuging" of the arms is untike any specimen of that spectes which I have seen ( 71 in all). It is hard to sas\%, bowever, how much the valiclity of this charactev is affected by its close association with colom in the netr species. Only observation
 of putbher, Comparison with sperimens of anstiolis, of which no two specimens seem to be exactly alike, showed that it was very cluse to some specimens of that species. It is distmgushed at onea from accidentalis, the only other Astrocomus as yet describud, by the fact that the well marked transerse ridues wheh encitele the upper surface and sides of the arms carry but few tubercles (2-5), and these are relatively large and irregularly armonged.

As regards its relationship to australis, it may be only a colour form or extreme variety, but after considerable study it seems best to treat it as a distinct species, and I therefore have rentured th doseribe it an sudh. wiving it the name of mulcher, because of its beauty.


# NEW FOSSIL CHITONS FROM THE MIOCENE AND PLIOCENE OF VICTORIA 

By Edwin Ashby and Bernard C. Cotton, South Australian Museum


#### Abstract

Summary At the request of Dr. Sule, of Prague, Czechoslovakia, Edwin Ashby made arrangements with Walter Greed, of Hamilton, Victoria, to collect fossiliferous earth from three exposures in Victoria. By a special process, and by using millimetre and half-millimetre sieves, Dr. Sule washed out from four four-gallon tins of this material, no fewer than fifty species, of which 44 are new species of fossil chitons. As hitherto the number of authentic fossil chitons known from Australia was under twenty, the present additions more than treble the known fauna.


# NEW FOSSIL CHITONS from the MIOCENE and PLIOCENE of VICTORIA 

Br EdWin ashby amd Bfrnard C. Cotton, South Australian Museum.

Plates xix-xxi.

At the remuest of Dr. Sule, of Prague, Czechoslovakia, Edwin Ashby mate arrangements with Walter Creme of Itamiltom. Vichoria, to collect fossiliferous arth from three exposures in Victoria.

By a special process, and by using millimetre and half-millimetre sieves, Dr. Sule washert ont from four four-gallon tins of this material, no fewer than fifty species, of which $4 t$ are new species of fossil chitons. As hitherto the number of authentic fossil chitons known from Australia was under twenty, the present additions more tham treble the known fanm.

Still another species, which is represented by a unique specimen found in soil belouginer th the Inited states National Muselman from the same expensures, is described. This nnique specimen has been presented to the South Australian Museum.

The great increase in our knowledge of the Australian Fossil Chitons, due to the success of Dr. Sule's method, should stimulate interest in the Polyplacophora (Loricata), and seems to indicate that our ideas of the class may need considerable revision.

The beatiful figures here reprotuced ware prepared be Miss Varena Nothage, and, as an aid to the identification and understanding of the species, the missing parts of the valves have been reconstructed, the original portion being demareated by a dark line.

$$
\text { Protuchiton Ashby, } 1901 .
$$

Protonhiton granulosus Ashby and Torv, 1901.
The laxonomic importance of the ahove species cannot be too strongly stressed. Pilsbry (4) wrote: "It is commonly known that the earlier (Palaeozoic) Chitons are withont insertion plates, and belong therefore to the family Lepidoplruridae." In $1900(5)$ he proposed his sub-order Eoplacophorel for the reeception of all Palaenzoic gencra, and adds: "None of the Palacozoic genera are known to contimue into the Mezozoic, but are replaced by types more related to modern Chitons."

While the genus Lopidoplourns (still extant) has no insertion plates, it is recognized ly most stutents as being the promenitor of all living forms, and that the development of the insertion plate commenced with the end valves. $\Lambda$ shby (3) has shown that the genus Protochiton has no insertion plate in either of the end valves, but has begun to form one, still incomplete, in the merlian valves. It seems
 member of the family Lepidoplcuridat; it is undoubtedly the progenitor of the large family Acanthorhitomider. It would semm that the Aeanthochitonids have been derived from primitive (Palacozoio) stork along a separate and paralled lime to that which produced the Tepidopleuridue. Further, the tail valve of "Chiton gemmutus de Kominel" from the ('arbonifermes beds of Dunfermbine, Sentlant, in the peraliar character of the outward extension of the termentum, absence of insertion phate, and gencrat shape is semingly the protntype of the tail valso of Protechiton gromulasus. Ashby and Torr. The grains in the sendplure of $P^{\prime}$. gronnlosus are hollow, with a black dot on each grain, probably a sense organ, in which case the hollow grain may lave been filled with "nerve fibre", a feature we rlo not remember to lave seen in any living Chiton. We conclnde that the strange exteusion to the tegmentum, common to both Chiton gemmotus de Koninck and Protochiton gromulosus. Ashby and Torr, is a primitive survival factor, giving increased surface for the grider attachment wheh was later discarded in fivour of an extension of the articulamentum to form the insertion plate and eaves. From the single 1 in (four gallons) of materiat trom ('lifton bank (Lower Mineent) nime valves or fragments of valves of this speries were ohtained : me hoing a fairly porfect tail valve, the others median valyes.

## ? Protucniton sp.

Fron the same exposure also, comes a single median valve which is Acanthochitonend in character, hat with hollow indans which are widely differen from those of the above species. As this is too imperfect to make a holotype, its deseription is defered in the hope that future work will produce a better preserved example of what must he a very interesting species.

Afossocintun Ashby, 1925.
Afussonititon sule sp. nov.
Plate xx , fig. 01.
Head valve only, length $1.0 \mathrm{~m} . \mathrm{ml}$, width 1.25 mm . Striw coloured. Raised, auterion slope couvex and steep. Entire surface, under X:30 Zeiss binocular, evenly coverer with eireular, flat-topped polisherl, minute grains, which, althomgh
crowded, appear not to touch. Five ray ribs, three central ones strongly raised, outer ones little more than mere folds.

Articulamentum. Insertion plate extending well forward heyond tegmentum for one-fifth of width of hater ; colour white, three central ray ribs comtimed right arross inserdion plate, which is folded up, the fold standing ont beyond the margin of the insertion plate; wo trace of a slit.

Tegmentum inside without sculpture, turned over to an musual degree; three dark-eolumed apretures in three depressions correxponding with the three ray ribs of the tegmentum, and cach almost corresponding with the edge of tegmentum above.

Holotype. MeDonald's, Muddy Creek, Pliocene (Kialimnan). P. 4340, S.A.M. Beautifully preserved.

We bave great pleasure in naming this important discovery after Dr. Sule, to whose labours we are indebted for its discovery. Because of its excellent state of preservation, this specimen amply juslifies Ashby's primitive gemus, 1 fossuchiton, which has all the characters of $A$ cunthochiton execpt that of slits, and can be regarded as a direct progenitor of Acauthochiton. The three dark-coloured apertures suggest large nerve chamnels comnecting with the girdle at its junction with the tegmentum ; exactly similar features do not oceur in living Chitons.

## Afossochiton codmorei Ashby, 1925.

Plate xx , fig. 22.
One median valve from MeDonald's, Miocene (Lialimuan).

## Telocintun subg. nov.

Seupture confurming to that of Afossochton, but ray ribs of anterion and other valves contimed right across insertion plate in narrow raised ribs, which (in some casps) do not seem to be a prolongation of the tegmentum, but are built up out of the articulamentum. Genotype, Afossochiton (Telochiton) dendus sp. nov.

Arossochitron (Tesochiton) dendus sp. hov.
Plate $x x$, fig. 2t.
Incomplete head valve only; length of picce 3 mm ., width 3 mm . Tegmentum occupies about one-third of valve, insextion plate very wide; sculpture of crowded clliptical small grains with no rlefinite arrangement, those grains surmounting the ray rihs sometimes larger, some sevelal times as large, in one place apparently fused, larger near the posterior margin; fise strongly raised ray ribs, the space
concave between the two posterior and the one next to them; an unusual feature is that each rib in the tegmentum is continued right across the broad insertion plate in a narrow sharply-raised rib, apparently built of the lower layer of the articulamentum ; this appearance is not due to attrition of the tegmentum, for, in places, the anterior edge of the tegmentum has sculpture of small grains.

Articulamentum. White; tegmentum folded over at apex of valve, continuation of ray ribs across the insertion plate not by a prolongation of tegmentum but by a building-up of the articulamentum. No slits, but insertion plate edge considerably damaged.

Holotype : Clifton Bank, Grange Burn, Hamilton, Victoria. Lower Miocenc. P. 4342.

## Afossochiton (Telochiton) iscus sp. hov.

Plate xix, fig. 20.
Tail valve only, length 2 mm ., width 3 mm ., much elevated and arched, mucro at posterior third, tegmentum behind mucro vertical, reduced to one-third only of area of shell ; dorsal area very narrow, sides parallel, not wedge-shaped, with a narrow short groove on either side, the posterior portion of this area worn, though a perfect specimen may have a short second groove making this area narrowly and partially pinnatifid; area behind mucro, small, evenly covered with closely-packed small, rounded, ball-like grains, posterior margin with two very large grains and a third smaller one suggesting the beginning of a very coarse broken rib; a most unusual feature typical of this subgenus, and situated next to the girdle at the posterior portion of the insertion plate, are thrce ribs traversing the insertion plate, one in line with the dorsal area, and one on either side diverging. (Since writing this description, one rib has flaked off.) These do not appear to be narrow ridges of the tegmentum, but are rather narrow thickenings of the articulamentum. No slits. Area anterior to mucro decorated on either side with four horizontal rows of globular to subelliptical grains; the pattern is so regular that transverse rows of grains are formed.

Articulamentum. White; hollow under mucro unusually deep, either the sutural laminae were weak or the larger portion is missing.

Holotype: Clifton Bank, Grange Burn, Hamilton, Victoria, Lower Miocene. P. 4339, S.A.M.

Afossochiton (Telochiton) magnicostatus sp. nov.
Plate xx , fig. 23.
One median valve only, length 5 mm ., width 6.5 mm ., angle of divergence $90^{\circ}$. Carinated, beaked, dorsal ridge longitudinally convex, side slope steep; dorsal area
flaked nff, ceridenty longitudinally curved; plemral areal diagonally comeave, deeoratod with rather larese elliptieal grains arranged diagomally in Inngitudinal rows in some places; many of grains rectangular on the upper end, obtusely rounded at the lower: most striking feature is an exceptiomally narrow and high diagonal $r$ ib starting from the prominent beak and reaching the girdle not far posterior of the midelle of the valve; pleural area bends upwards at the diagonal rih, making pleural area concave; top of rih as wide as a single large elliptical grain; pleural area slope to top of diagonal ribg gradual, lut on the other side, that of the lateral arca, the slope is vertical ; consequently lateral area is depressed, and at a considerably lower level than the pleural area; seulpture of depoessed lateral area similar to that of pleural, but grains there a litte more spaced.

Molotype: MeDonald's, Muidy Creck, Pliocene (Kaliminan). P. 434:3, S.A.M.
The nurrow, much raised diagonal rib and depressed lateral area easily distinguish this 1 fossochiton. What appears to be an extension of the sutural lamime is on one site crossed by an extension of the diagonal rib. This feature is the
 of the tegmentum does, at the diagonal rib, extend across the articulamentum, is quite cortain. Any but very eations handlinf of the valve will break this. There still remains a possibility that the whole of the articulamentum showing has been produced by the flaking off of the tegmentum, for in places pieces of grain appar to have bean removed and then for have adhered to the articulamentum, or this appearance may be due to sears; additional examples are refuired for exact determination of this point.

Acanthomiton Gray, 1821.
Acanthocehtron forssythensis sp. nov.
Plate xx, fig. 26.
Tho median valves. One, lemgth 1.25 mm., width 2 mm. (holotype), and the other, length 3 mm ., width 3.8 mm . (paratype).

Carinated, dorsal area broadly wedge-shaped and pinnatifid, beaked, surface smonth, lateral-pleural area decorated by longitudinal rows of triangular, spaced, flattish grains of four eomplete and one hate-rows; grains regularly placed, forming rows cither way; apex of triangular errains point downwards and forwards.

Articulamentum. While; insertion plates and sutural Iammae broken off, tegumentum folded back at the beak, in centre of the valve articulamentum much thickened from one side to the other.

Itolotype: Forsyth's Grange Burn, near Hamilton, Victoria, Pliocenc (Kalimman). P. 4345.

Paratype: Same locality, median valve.
A further specimen from Clifton Bank, median valve, length 1.5 jmm , width e mm.

This species differs from ifossonhiton cudmore $i$ Ashby in that the triangutar grains are arranged regularly, while in cudmori hey are very ircegular, dorsal areas not pimatifid, and the carination less sharp.

Acanthochiton forsythensis relatus sub.sp. nov.
One median valve. Differs from forsythensis in lateral area being indicated by a shallow fold, mains arranged diagonally, but dorsal area and gratins similar.

Holotype: Clifton Bank, Grange Lurn, Hamilton, Victoria, Lower Miocene.
Acanthochiton drunus sp. nov.

$$
\text { Plate } x x \text {, fig. } 29 .
$$

One median valve, length 1.5 mm , width 2 mm . Dorsal area worn, narpower than in forsythensis, not pinnatificl, but suggests longitudinal striation; ritge strateht, not arehed; phental-lateral area desorated with straight lomeitudinal rown of grains arranged on the diagonal and almost, sometimes actually, tonehing; grains elliptical, slightly romed at apex, flattish but not actually flat; five rows of grains, one next to girdle has three grains and one next to dorsal hus worn grains.

Articulamentum. Sutural lammate present but worn, broad, shallow anteriorly, simus between wide; insertion plates have no indication of shit, though absence may be due to wearing.

Iolotype : McDonald's, Muddy Creek, Pliocene (Kalimuan). P. 4348, S.A.M.
Achanthochiton casus spo nov.

$$
\text { Plate } \mathrm{xx}_{7} \text { fig. } 30 \text {. }
$$

One median valve only; leugth 1.5 mm ., width 2 mm . Side slope steep; dorsal area, ridged, curved, and arched, less broad than in Acanthochiton forsythensis due 10 smaller angle of divergence, subpinnatifid, three grooves narrower than in forsythensis, lateral area not defined; pleural-lateral area slightly comeave, onter edge becoming less stecp; this area decorated with six and a partial seventh row of grains placed longitudinally; grains small, triangular, placed in rows at an acute angle, pointing forward; viewed transversely, rows are curved, not at right angles as in forsythensis; difference of pattern largely due to concavity of shell.

Articulamentum. Dirty-white; sutural laminae and insertion plates broken onf.

Holotype: Clifton Bank, Grange Burn, Lower Miocenc. P. 4349, S.A.M.
This species may be the progenitor of Acuuthochiton forsythensis, for, in several respects, they resemble one another.

Acanthochiton sabratus sp. nov.
Plate Kx, fig. 25.
One median valve, length 1.75 mm ., width 2.25 mm . Axelued, not carinated, side slope convex and dorsal ridge beaked; dorsal area has seulpture worn atway (if auy was present), narrowly wedge-shaped as shown by the seulpture of pleural area at the anterior end; pleural area separated from lateral by narrow rib, but except for this rib, lateral area is at same level as pleural area; sculpture of both areas and of the rib itself itentical; sendeture of small grans irrewnarly arranged and crowded, minute crowded round grains near the beak, across the pleural arca grains are double the size, and for a short distance are in a semi-longitudinal armagement, heome a little longer in shape, then another chanere takes plare, and a few grains along anterior margin are almost circular with flattish tops; briefly, grains are musually small, with little pattern, and vary in shape.

Articulamentum. Dirty white; only a small fragment of sutural lamina present; we judge this to have been well developed, and sinus between failly broad; all insertion plates missing; tegmentum folded over at beak.

Holotype: Clilton Bank, Grange Burn, Hamilton, Victoria, Lower Miocenc. P. 4344 , S.A.M.

## Lilkachiton subg. nov.

Plenral area decorated with narrow, widely-spaced ribs, instead of granulat ornamentation. In the genotype, Acranthochiton (Lirachiton) inexpectus spo, nov., the sculpture behind mucro and in area corresponding with lateral area in median valve is formed of triangular that grains; near the apex of each is an osellus or sense organ. While we have provisionally placed the subgenus Lirouhilon under Acunthochiton, it could be placed under Afossochiton with as much justification; the evidence of more material is needed to settle the point.

Achanthochiton (limachiton) inexime"rus sp. bov.

$$
\text { Plate xx, fig. } 31 .
$$

One tail valve only; length 2 mm., widih $2 \cdot 5 \mathrm{~mm}$. Shell arched, not carinated, side slope almost straight; in most of dorsal area tegmentum has broken off, but there is a litue lett at the anterior edge where it is smooth; muero a little posterior ol central, slope behind macro steep and decorated with flat triangulat grains,
most of which have been partially worn off, revealing that they are apparently hollow; at the sides, an area corresponding with lateral area in median valves where the triangular flat grains are well preserved and larger than the posterior ones; apertures situated near but not at the apex of each triangular grain, may be sense organs, but larger than those in hollow grains of Protochiton granulosus, corresponding with the ocelli common in several living genera; rest of portion anterior to mucro and corresponding with pleural area, traversed longitudinally by three much raised, rounded ribs, the trough between these ribs broad, and the ribs themselves overhanging.

Articulamentum. White; hollow under mucro wide and deep, nerve apertures exceptionally developed and numerous; slits not discernable, but two or three very shallow grooves may be connected with slits.

Holotype : McDonald's Muddy Creek, Pliocene (Kalimuan). P. 4350, S.A.M.
The nearest allied living species is, we think, Pseudotonicia cunata Suter, from New Zealand.

Acanthochiton pilsbryoides sp. nov.
Plate $x x$, fig. 27.
One median valve only, length 2.25 mm ., width 3 mm . Subcarinate, angle of divergence $110^{\circ}$. Dorsal area and small adjoining portion of pleural area croded on one side, and whole of sculpture eroded on the other ; major portion of sculpture on pleural-lateral area on the one side so well preserved and ornamentations so distinctive, that we describe it as new; sculpture of horizontal rows of grains, the larger portion in shape of rectangular ellipse, set in rows diagonally (similar to sculpture of the recent Acanthochiton pilsbryi Sykes), but near the dorsal area some grains are rhomboided and one or two fusiform.

Articulamentum. Insertion plate broad, no slits visible, but this may be due to erosion, which also accounts for bases only of the sutural laminae being left.

Holotype: Clifton Bank, Grange Burn, Hamilton, Victoria, Lower Miocene. P. 4346, S.A.M.

The specific name is suggested by the similarity of sculpture with that of the Australian recent species, Acanthochiton pilsbryi Sykes, but in the shape of the valves and absence of bridging in the sculpture, it is quite dissimilar.

## Acanthochiton trianguloides sp. nov.

## Plate xx , fig. 28.

One median valve, length 2 mm ., width 2.25 mm . Rather flat, arched, and beaked, dorsal area narrow and wedge-shaped, anterior half granulosely sculp-
thred; much seulpture flaked off, but what remains shows rather long ovate-elliptieal shallow srains, changine before the centre of area is reathed to three shallew rows of small, indistinet yrains ; pnsterior half of this area smooth and polished; beak protrudes wall beyond postorior marem of valve; plemal-lateral area decoratad with right or nine lompitudinal rows of small, spaced, slightly-raised (obtusetriangular) flat-topped grains: direction of rows not parallel, and in one place a short row is intercalated; armarement of rows a liffle indistinct, some angles of lighting sugrest more diagonal than lomgitudinal arrangement ; grains evenly spaced thromghot in the rows, and exceptionally even in siz'; no diasonal rih or fold, lateral area differing in that in the two outer rows at the posterior coner the graius, eight in all, are half as large again as the rest of the area.

Articulameutum. White; insertion plate and sutural laminae are missing.
Holotype : Forsyth's Grange Jurn, Hamiton, Victoria, Plioerne (Kalimman). 1. $4: 3 \pm 7$, S. A.M.

The sharply-eut, small, even in size, aud subtriangular grains make this quite a distinctive species. If, when a perfect specimen should be found, the insertion plates are unslit, the species will then have to be removed to A fossorehiton Ashby.

The description was made while viewing the specimen under X 30 Zoiss binocular.

Crymoprax Blainville, 1818.
Chyproplax matchabin IFall, 1904.
Plate xix, fixy. 20.
(Hyptoplus: gatliffi Hall (6) is as synonym of the above species. Ashby (3) shates: "The hololype of $C^{\prime}$. ghtliffi difters in one respeet ouly from the majority ul rpecimens deseribed as $C^{\prime}$. pritchetrdi Ifall, in that it posseseses a lobe-shaped plate on the inside, just under the apex." We now find that the "lobe-shaped plate" is common to all valves, although more marked in the three anterior valves. We find that Hall was incorecet in believing that any of the fossil examptes he had seen shoted the termentum, and we are eondident that the only diferenee is that pritehardi is the remains of an ordinary metian valve, and gotiofi was one of the three interior valves of the same species. Ashly (i3) also expressed the opinion that these worn "valves" may be of "Hon-Chitonoid origin". Now, thauks to Dr. Sule's washings, we have hundreds of these (!ryplopluix valves, very lew showin! sculpture.

We now express the following opinions:

1. Holotypes of pritchardi and gatliffi and all previonsly recorded examples have no visible tegmentum, and all seulpture has been worm off.
2. Hundreds of these worn examples might reasonably be considered one species, because in living forms there is aus equal discrepanoy in the valves of a single specimen, the first two and oftern the first three valves are brod, and the rest narrow, subject to variations in the tail valve.
3. The present shape of these worn valves is often not at all the original form, but that as they have heen ground out of all recognition by ceaseless roling of the waves, a valve has often been shortened by nearly one-third.
4. Not one per cent. of the valves shotvs any seulpture. We offer the explanifion that the shape is that of an elongate roller, which lends itself to rolling uver and over with the slightest ripple, ats well as in the more violent suri.

Pleisiotype. Ont af the first pamples of fossil reyptoplare to shmw sutticient data for specific: deseription, we selnet one as pleisiotype of the late Prof. Hall's C'ryptuphar pritchurdi, and we also place his C'ryptoplar galliffi as a synonym.

We also deseribe and name two distinct new species of Cryptoplax in the following pages.
Re-description from pleisiotype.
Median valve, length 6 mm ., width ${ }^{2} \mathrm{~mm}$. Sharply raised, side slope ennvex, dursal area very narrow, straight sides, raised, a little flattish top, beak slightly Worn ; sentuthe Lormsome area at the beak consisting of spaced, cireutar or spherical small erains (truly Acanthochitomed in charamer), from there the two upper ribs gramulose for a third the length of value; upper rib next the donsal area contimed parallel with the dursal arra alment to the anteriore edge of the valve, ant for the last two-hirds of its lengeth is a strmg irregular rils revy coarsels tonthed at its base on the upper side, the cffect of the coarse teeth is to suggest a series of puts: on one side ther are two outer ribs sculptured in the same mammer one over half the lenerth of value the other a lithle less than half, these two gramulese for half their length, then change to the coarse-toothed seulpture; ou the where sidn. While the two npper ribs correspond with the above description, there are also two outer short ribs (probably the outer one on the other side has been broken off); these fwo immediately beyond the grammese hase near the beak become a serips of cour'userl, irregular, highly-polisbed grains.

Articulanentum. Creamy-white; sutural laminau worn, insertion plato worn; fogmentum bent over at posterion forming a porket, the internal plateonly showing as a hollow rise.

Paratype 1. Same lncality, length 4.5 mm. ; worn, whole of tegmentum present and in proportion to size, the gramulose sculpture is a little more extensive.

Paratype 2. Length 4 mm., worn. Both 1 end 2 have well defined, raised dursal area.

Deisimppeand laratypes: MeDonahl's Muddy Creek, Plioceue (Kallmman).

## Cryptoplax sicus sp. nov.

## Plate xix, fig. 17.

Large median valve (holotype), length 6 mm ., long, narrow, steeply raised, beaked; forsal area colour "tawny" (Ridgeway) narrow, strabith-sided, strongly raised, roundel; senlpture, except at beak, composed of five dagger-like ribs on bither side, irory-like in appearance, commencing near the beak, narmw and slender, becoming swollen whithin third of their length from the chat, and then tapering to a sharp point, longest rib next to dorsal area, cuding one-fifth short of the anterior cotere of the value chose to beati ribes show slight granulation at their sides, and so for a very short distance, but the beak itself is partly broken away, and there might have been a small amount of gramuation had there been no breaking atway.

Articulanentum. White; the damage to the valve has still left the little internal "plate" in perfect preservation,

Holotype: McDomald's, Mudly Creek, Pliocene (Kialimuans). P. 43336, S.A.M工.
Paratype: One median valve, width 3 mun., worn, but showing most of the sculpture. Same locality as holotype.

Hypotype: Of heat valve, only specimen; badly worn, but showing some seulpture, althongh not suffecient to make it holotype heat valye. Name locality as holotype.

The name (from "sira", a dagger) is surgested by the dagger shape of the ribs.

Cryptohlax numieus sp. nov.
Plate xix, fig, 18 .
One median valve only, length 3 mm ., width $1 \cdot 5 \mathrm{~mm}$., in perfect state of preservation; wider than most species, arched, side slope less steep than usual; not beaked, but dursal area slopes down to shell margin posteriorly; dorsal area has no raised, narrow dursal ridge as in $C^{\prime}$. pritchardi and $G_{+}$sicus, but presents a broader convex surface than either; it is possible that this area received a good deal of erosion, but the exechtionally well preserved seulpture on other portions of valve seem to contradiet this idea; sculptare entirely granulose throughont, consisting of fue gramulose longitudinal ribs, the onter one very short, little more than the granulose thickeuing of the posterior edge of the tegmentum; upper rib close to edge of dorsal area, indistinct in places, possibly due to wearing, grains small, spherical, and mostly narrowly spaced.

Articulamentum. Creamy-white; insertion plate in grood state of preservafiom, sutural laminae wall defined, but shallow, texmentum folded orer at posterior
end, making that end slipper-heel shaped, a feature characteristic of Cryptoplax. Holotype : McDonald's, Muddy Creek, Pliocene (Kalimnan). P. 4337, S.A.M.

Molachiton gen. nov.
Dorsal area (worn in genotype) broad, smooth except for faint growth grooves; pleural area unique, crossed longitudinally with broad irregular ribs, composed of large grains shaped on upper side like a large molar tooth, whole series of grains in rib fused together, centre of each grain with a funnel-like depression, and in centre of funnel a black dot or nerve aperture ; ribs near dorsal area short, several run forward into dorsal area, but too worn to show "ocelli", if present; twelve ribs showing between dorsal area and girdle; lateral area sharply up-folded at the posterior margin; both raised portion, trough below, and a small part of the adjoining outer edge of pleural area decorated with imbricating, sub-triangular sub-convex grains.

Genotype (monotype) : Molachiton naxus sp. nov.
The unusual sculpture of the pleural areas with the sensory organ in the centre of each molar-shaped fused grain, and the absence of insertion plate or sutural lamina, precludes determination of the true position of the genus in the natural taxis, so provisionally we place it in the family Lepidopleuridae.

## Molaciitton naxus sp. nov.

Plate xx , fig. 32.
One half median valve only, length 4 mm ., width 4 mm . Strongly beaked, dorsal area a good deal worn, broad, smooth except for faint growth grooves; pleural area unique, crossed longitudinally by broad irregular ribs composed of large grains in the shape of a large molar tooth; whole series in rib fused together ; a funnel-shaped depression in centre of each grain, and in its centre a black dot or nerve aperture (ocellus), ribs near dorsal area short, and several run forward into that area; these are too worn to show ocelli even if present; twelve ribs showing in pleural area; lateral area sharply up-folded at posterior margin ; both raised portion, the trough (hollow below) and small part of adjoining outer edge of pleural area decorated with imbricating, subtriangular, sub-convex grains.

Articulamentum. Cream; insertion plate and sutural laminae missing. Holotype : McDonald's, Muddy Creek, Pliocene (Kalimnan). P. 4251, S.A.M.

Belchiton gen. nov.
Sculpture of pleural area consists of slender longitudinal ridges surmounted with minute spherical glossy or porcelain grains; the interspaces twice the width
of the granular ridges and shallowly bridged below cach grain; lateral area covered with closely-packed radial rows of grains similar to those of the pletral area, the rows in places intercalated with shorer rows; lateral area not raised as a whole, but near dorsal area and girdle are two shallow upward folds; sutural lamina in genotype appears perfect, weak and shallow, fuite characteristio: of palaeozoie forms; in common with Protochiton granulosus Ashley and Torre ath granule has a black dot or "sense aperture" at the summit. We place this genus in the family Le pidoplewridue.

Genotype (monotype) : Belchiton pulcherrinus sp. nov.
The sculpture is so different from iny other genus of Lepidopleuridas that we propose the above new genus.

Bflchiton puloherrimus sp. nov.

$$
\text { Plate xix, fig. } 10 .
$$

Two fragments median valves, good condition; larger (holotype) 3 mm . wide, smaller 2 m mm, wide. Framments almost square (reconstroted in figure) ; pleural area consed lonutudinally by numerons extremely slender riblets, each carrying at the top. tiny spherical glossy or porectain-like grains; near the dorsal area, viblets are crowded, several short mes interealated, where this oceurs almost tonching; from there until girdle is reathed, riblets are in proporion to their width, widely separated, each turning upward on reaching lateral area; an important fature of seulpture in the pleural area is the bridging, the transverse sculpure, very slemder and shallow, crosses from grain to grain; lateral area closely envered with radial rows of grains of same character as those in pleural area, which do not seem to sumomet a ridge, but lie on the surface; shorter rows intercalate in places; lateral area not raised as a whole, but near buth dorsal area and givdle a shathw upward fobl, grains in both areas with a black dot or aperture in their apiees, no doubt associated with sensory organs, a primitive feature found in the genus Protochiton Ashby.

Articulamentum. White; sutural lamina very small both ways (quite primitive in character), and placed towards outer margin ; tepmentum turned over full length of posterior margin.

Holotype: MeDonald's, Hamilon, Victoria, Lorrer Pliocence (Kalimnan). P. 4329, S.A.M.

The beanty of the senlpture suggests the name. A Zeiss X30 binocular and pocket lons $\mathrm{X}^{2}$ - 0 were used for examination.

Lepinopleurus Risso, 1826.
Lepidopleurus nivarus sp. nov.
Plate xix, fig. 5.
One median valve, holotype, length 2 mm., width 4.9 mm . Valye arched, not (arinated, athe of diverpence 10\%", side slope shightly convex, dorsal area eroded, shell bosed forward at beak; plemal area well preserved, crossed longitudinally by narrow granulose ribs, a few bifid, many wayy ; interspaces two to three times the width of ribs; lateral area sharply raised and closely decorated with five ray rows which almost tonch; grains small, circular, und rounded.

Articulamentum. Probably oriminally white, now staned; thickened aerows middle, no insertion plate.

Holotype: Clifton Bank, Grange Burn, Hamilton, Victoria, Lower Miocene. P. 4324, S.A.M.

Paratypes: Two fragments median valves, same locality.

## Lepinoplatrut pampitilius sp. nov.

Plate xix, fig. 2.
One median valve only, length 1.9 mm ., width 3 mm , ancrle of divergence $90^{\circ}$. Side slope straight, arched, not carinated, dorsal area beaked, broadly wedgeshaped, striate with slemder, closely packed, minntely granulose riblets; division between dorsal aroa and pletral area ill-defined because similar slender riblets to those of dorsal arta are continned for at least one-third of the pleural arca, and from there mont lateral area is reached, grains and riblets, of wheh they are part, increase till two or there times their size; lateral ared raised, narrow, ormamented with closely-packed tranules, which commence quite minute at the dorsal area, increasing in size towards the girdle, but even these are not as large as the arljoining portion of pleural area.

Articulamentum. White; the lamina on one side perfect except for small notel, demonstrating that laminae of this semms are weak and produced very far apart, a feature this genus has in common with all lenown forms of palacozoib chitons from the Primary Carboniferous Beds of Furope; no insertion plate.

Itolotype: Clifton Bank, Grange Buru, Mamilton, Victoria, Lower Miocene. I'. 4321, S.A.M.
laeitimileleurus badioides sp. hov.
Plate xix, fig. 4; xxi, 47.
'lail valve, length 1.75 mm ., width 2.25 mm . Mucro at anterior third, immediately behind mucro shell is vertical, from there posterior area is at at step
angle, flateningr out a little near posterior margin; whole of this area posterion to mucror and indudiug lonth sides of muero elothed with dosely-packed radiating minutely granulose riblets; small area anterior to mudro evenly decorated with proportionately widely-spaced gramular riblets, while coarser than those of posfryior portions, still slender; this seulpture present not only at sides of the ralve but continued over auterior half of dorsal area, which seems unseuptured at mucro itself.

Articulamentumi. No insertion plate, sutural laminne much rednced and far apart.

Holotype: Clifton Bank, Grange Burn, Hamilton, Victoria, Lower Miocene. ए. 432 , S. A.M. Fig. 4.

Hypotype of median valve. One well preserved, length 1.5 mmo, width 3.25 mm, from Forsyth's, Plioche (Kalimnan), subearinated, side slope convex; seulpture similar to that of area auterior to mucro in bolotype, but direction of slender riblets in lateral area radial.

Articulamentum. Cream; no insertion plate, sutural laminae missing, tegumentum folded over inder beak. Fig. 47. P. 4358, S.A.M.

Paratype 1 : Tail valve, hrokun, length $1.65 \mathrm{~mm}_{\mathrm{a}}$. width 2 mm . postorion and sides of muero clothed with closely-packed radiatimg minutely granulose riblets. a good deal chscured owing to wear. Same locality.

Pambye 2; Fragment of median valve-same locality as paratype 1.
The name budioides is suggested by the similarity to the recent batius Inedry and Hnill.
> ? Liepinobleitris uxblides sp. muv.
> Plate xix, fig. 18.

A portion of tail valve, length 1.25 mm , wiath 9.25 mm . Muero well defined, central, almost vertical immediately behind the mucro; from there to posterior bargin shall is fery flat, deeorated with closely-packed radiat ing suberamulose ribslets; width and crowding of riblets almost identical with the similar riblets in Lepidoplourus bodtoules Ashby and Cottom, bot in maellus, granulation is mily purtial; posterior area ends abruptly the mucro, not carried forward along the sides as in J. butiones; area anterior to muero much raised and decorated by mumarous, strong, longitudinal, pectimated ribs (not gramulose), the interspaces deep and about half the width of ribs; this sculpinre carried right across dorsal area, which is striate for its full length, the whole of the tegmentum is slate-grey.

Articulamentum. Greyish-blue; no evidence of insertion plate; a steep narrow ridge commencing $V$-shaped under mucro and reaching outer anterior maryin On either side; one side incomplete (due to breaking away), but on the other side,

Jidge is perfect, and shows a deep groove commencing at girdle and endiner near centre of valve; we do not recall a similar ridge in any other chiton.

Holotype: Forsyth's, Grange Burn, Pliocene (Kalimnan). P. tis32, S.A.M.
Although we have placed this species under the genus lecpidoplearus failing furtler data, the flatness of the area behind the muero, the colour of ariculamenfum, and to some extent the senlpture of the area anterion to the mucro, are not characteristic of the genas Lepidopleurus.

## Lepidopleurtis magoriranifer Ashby, 1925.

## Plate xix, fig. 3.

Four portions of median valves from Clifton Bank. The holotype deseribed by Ashby ( 3 , was picked from amomg fossils collected by Dembant and Tato from the fencral lncality "Muddy ('reees". some of which were also deseribed tyy Ashby and Torr (1).

We now designate the holotype locality as Clifton Bank, Grame Burn, Lower Miocene. Specimen figured Pleisiotype, P. 4322, S.A.M., has better preserved sculpture than that of the holotype.

## Lefidopleunus relatus sp. nov.

## Plate xix, fig. 12.

One incomplete median valve, length 2.25 mm., width 4.5 minn., thyle of divergence $90^{\circ}$, valve arched, side slope convex, dorsal area with some inconspicuous slender network seulpture, muels confused; pleural area near lo dorsal area crossed by wroded lomgitudinal ribn; from there they beeome widely spaced, still parallel to each other. hat becoming more and more bent uphateds near the lateral area ; pilis themselves very narrow, forming narme, rather high ritges with minute gramulittion near the ir hases, these mear the girdle berome nemer together with gramulation on top of ridges ; lateral area much raised and closely covered with irregular pebblelike grains, pattern conspicuously in transverse rows, grains in each row about the same size, but a row with coarse grains may be next to one with small grains, posterior cdge of this area consists entirely of large, pebbldelike grains, three and a partial fourth radial grooves.

Articulamentum. White; eentre much thickrr, thickening diycrging on cither site, but rapidly termiuating in a point; no insertion plate, and sutural laminae broken oft.

Molotype: Clifton Bank, Grange Burn, Hamilton, Victoria, Lnwer Miocene. P. 4331, S.A.M.

Paratypes: 'I'wo fragments of median valves.

Althongh resembling Lepidopleurus magnogranifor $\Lambda$ shby, $L$. relatus can be onsily distinguished by the narmow longitudinal ribs and mimute granulation.

Lepipoplajtres sephus sp. nov.
Plate six, fig. 11.
One median valve, half one side missing, complete side, length 2 mm., width from dorsal ridge to girdle 4 mm , valve arehed, side slope convex, angle of divergence $80^{\circ}$, dorsal area teymentum absent, pleural area crossed longitudinally by rather strong paralles ribs; ribs definitely straight and parallel right to girdle, subgranulose; most important feature is that they are mumeronsly and strongly bridged acress, yiving the seulpture a semi-honeyeomb appearance; brideng dops nut reach top of ribs or the honeycombing wonld be more marked; lateral area raised and decorated with radial ribbing; furcate in some cases; ribs coarsely subgranulose, but most reqular and almost smooth; total mumber of ribs and half-ribs, seven.

Articulamentum. Cream coloured; no insertion plate; remains of sutural lanina on one side only ; lamina weak and shallow, temmentum folded over along most of posterior margin.

Holotyper Forsyth's, Grange Burn, Hamiltom, Victoria, Plocene (Kalimnan). 1'. 4330 , S.A.M.

This species differs from both magnogramifer Ashby and rolatus Asliby and Cotton in the marked bridging of the plental area, and in the smooth, suberamulose rilss of the lateral area.

Leplbophaurug sinervus spo noy.
Plate xix, fig. 7.
One almost complete head valve, length $] .9 \mathrm{~mm}$, width 3.75 mm , seulpture of natrow riblets, closely-packed and smooth of surface, interspaces appearing muder X20 magnitiontions as mere erooves, but at the bottom of eroove in phaces pectinaterl; under X 330 magnifications, the bottoms of grooves seem to be series of minute perforations; at one side, a few riblets surmonnted with mimute granules suggest that when newly-formed they may be minutely granular, a feature that is quickly lost; riblets consistently twenty-three to twenty-four to the millimetre.

Articulamentum. Cream; much thickened in centre, no insertion plate or sutural laminae.

Holotype: Forsyth's, Grange Burn, Hamilton, Vietorin, Pliocene (Kanlimata). ए. 4326, N.A.M.

Pamatype: Large fragment, possibly of a large head valve, same location.

Leipidopleurus singus sp. nov.
Plate xix, fig. 8.
One tail valve ouly, length 2 mm ., width 3.1 mm .; mucro not defined, shell strongly raised, sloping sharply from the anterior edge to middle of valve, and from thure vertical to the girdle; whole shell decoraled with longitudinal, mostly parallel, riblets, those in centre more slender and more closely packed than elsewhere on the valve; interspaces vary a good deal; where interspaces are wide, ridges are bridged across; where closer together this feature is reduced to a mere hole; thiresen riblets to the millimetre, but this comet includes the entral crowded narrower riblets, so we estimate that the riblets in this speeics are only half the number shown in the preceding species, L. sinervus Ashlyy and Cotton.

Articulanentum. Colour buff, sutural laminae seeningly complete, very small and laterally narrow; altogether they are unusually small for even this primitive geuus.

Holotype: MeDonald's, Muddy Creek, Pliocene (Káaimnan). P. 4327, S.A.M,

## Lepidopleurus babidus sp. nov.

Plate xix, fig. 6.
One half median valve, length 1.9 mm ., width 3 mm . ; pleural area sculptured with longitudinal granulose widely-spaced ribs, but elose together near dorsal area; interspaces twice, sometimes thriee, the width of rib; rils parallel until near girde, where they beeome irregnlar and weak; interspaes in plenral area shatlowly bridged across ; transverse shalluw ridges correspond with grains which surmonn the ribs ; ribs tum upward, at the lateral area : lateral area much and irregulandy raised, cinht growth growes, two onter ones at a much lower level than those above; sculpture of lateral area eomposed of nomerous vadiating subgramulose riblets touching one another ; while these are much broken by the growthe grooves, the genemal radial pattern is maintained.

Articulamentum. White; no insertion plate, sutural laminae alsent.
Holotype : McDonald's, Muddy Creek, Pliocene (Kalimnan). P. 4325, S.A.M.
Paratype: Two worm fragments median values, samo locality.
This species is easily separated from any other speejes herein deseribed by the deep growth grooving in the lateral area, and from some others in the character of the bridging.

## Lepmobleurus diversichanosus sp. nov.

Plate xix, figs. I and 9.
One tail valve, length tom., width 3 mm., mucro at anterior third, area behind mucrosicep for two-thirds of area, and from there to outer margin almost flat, steep portion senlptured with minute grains forming under X20 a decussate pattern; outer portion of this area exhibits the start of about thirty gramulose, radiating, shallow sibs, qraius occupying about same area as four of the minute grans referred to above atoa anterior to muero narrow and longitndinally erossed by numerous, shallow, marow, subpectinated ribletr, interspaces vary from same widtla dis riblets to twice that width; dorsal area wedge-shaped, small, similarly minutely decussate as in area immediately posterior to mucro.

Articulauentum. Cream; saucer-shape, no insertion plate (Fig. 9).
Holotype: Clifton Bank, Lower Mioconc. ए. 4328, S.A.M.
IIypolype of median value, from same localily, widh 9.75 mm , bather flat, side shope straight ; part of dorsal area flaked ofle, what remains minntely gramulest; pleural area deenrated with slender, sather irsegular, minutely pectinated or subgranulose rihlets; lateral area separated frow pleural by a rather coarsely gramlose rib, much of this area minutely framulose, granules clonble the size of those of dorsal area, and no regular pattern ; yrains near girdle much larger and very irregrular. The hypotype value only. Fig. 1. P. 4320, S.A.M.

## Callochiton Gray, 1847.

Callocinton macdonaldi sp. mov.

$$
\text { Plate xxi, fig. } 46 .
$$

One median valve, lengtl 1.5 mm , with $: 3.5 \mathrm{~mm}$., shell is arched rather than carinated, side slope straight, tegmentum of dorsal area largely missing, but was evidently smooth and ill-defined; pleural area smooth, without sculpture except for four or five shallow growth grooves distinguished only by lateral lighting: lateral area raised and smooth, crossed by thee broad and deep growth grooves; colour pinkish-eimnamon (Ridgeway).

Articulawentum. White; sutural laminae weak and shallow; sinus between I mm. wide, broad in proportion to size of valve; articulamentum not joined across sinus, but edge of tegmentum slightly orerhangs; a strong raised rib runs from dorsal hollow almost to margin on either side. Shell arched rather than carinated, side slope straight, angle of divergence $100^{\circ}$.

Holotype: Muddy Creek, McDonald's, ILamilton, Victoria, Lower IPlocene
(Kalimman) P. 4368, S.A.M. Jnique example presented by the Natiunal Museum, Washingtom, IT.S.A., tothe Ashby collectiom in the Soth Australian Musemm. The valve wat morortunately broken in the washing, and was mended hy Dr. Sule before being sent to us. Although we have placed the species in Callochiton, the shape resembies that of Loricella, but the weak sutural laminae and complete ab)sence of forward extension of the articulamentum in the sutural simm absolutely removes it from Lamindla. The tegmentum surface in Callochiton seen moder $\mathfrak{X z}$ magnification is minutely decussate, a feature absent from macdonuldi; there is no insertion plate, but we assume this has broken off. We provisionally place the sprecies in Callochiton.

## Isennouhiton Gray, 1847 .

In the material before us there are several fragments of median valve of two allied members of this gemus; the sentpure of the plemal areas in these trayments may be broarly describer as vermiform, wavy, or V-shaped. While these forms of sculpture exist in living species, it is probable that had we a complete set of valves of these fossil species, the combination of seupture would more nearly conform to the regular recent Ischochiton pattern than it appears to do in the fragmentary valves.

Isellnociliton vinazus sp. nov.
Plate xx , fig. 36.
One halt median valve, width 3 mm ., pleural area decussate near dorsal area, but in outer halt riblets become vermiform, way, and increase in size towards the girdle; two onter ribs stouter ; lateral area raised, on anterior edge next to pleural area a row of eight vory coarse grains, third grain from girdle part of one of the extra stont ribs before-mentioned, continned right across lateral area; three further coarse transperse bars or elongate coarse grains; interspaces or true surface of this area covered with suall, inconspicuous grains.

Articulamentum. White; most of insertion plate and whole of sutural lamina broken away.

Holotype: MeDonald's, Muddy ('reek, Pliocene (Kalimuan). 1'. 4335, s'A. IL.
Paratypes: Two fragments of median valves ; lateral area with isolated pustules rather than baxs. Same locality.

Ischnochiton thaurus sp. nov.
Plate xix, fig. 15 ; xx, 35.
One half median valve $\mathrm{E}_{\mathrm{b}}$ mm, wide. Plenral area with narrow erowded riblets Withont patteru near the dorsal area, become small crowded riblets with a partial
diagonal dimestion, hut in outer half of area they form an irregular V-shaped pattern ; lateral arearaised at anterion edge, and here rather worn; rest of area erossed by six of mone hars, of which three are composed of angular shallow grains; other hars badly worn.

Articulamentum. White; insertion plate and sutural laminae missing.
Holotypo: MeDonald's, Muddy Creek, Pliocene (Kalimnan). P. 4334, S.A.M. Fiy. 15.

Paratype 1 : Fragment of median valve, same locality.
Paratype ${ }^{3}$ : Half median valve from Forsyth's, Pliocene (Kalimman).
Hypotype-of tail valve, length '2 mm., width 3 mm . Forsyth's Plivecne (Nalimnan), mucro central, but broken; slope behind mucro somewhat steep at first, theu becoming very flat, only a small part of sculpture present formed of concentric roms of less coarse phstukes than those of lateral area of holotype seculpture of anterior portion of this valve eorresponds exactly with $V$-shaped pattern of pleural inea ol' median valve. 'Ihis solitary specimen is assousted with Ischnochiton tiswres. Fig. 35, P. 4354, S.A.M.

Iscinnouhton cossyrus sp. hov.
Plate xx , fig. 37.
One thil valve only, Iength 3.75 mm , width 5 mm . Flattish, mucro central, area behind mucro nearly vertical for a short distance, then sloping at $45^{\circ}$ to the girdle; very little sculpture left, but what remains shows that this mrea was radially ribbed with shallow ribs irregularly sumomed with rather shallow pustulelike grains and elongate grainş; whole surface of shell was minutely grauulose with decussate pattern ; area anterior to mucro was decorated with rather coarse, more or less disjointed vermiform or wavy riblets; dorsal area flaked away.

Articulamentum. Large $V$-shaped area with its base bounded by two sutural laminale, and apex mader uncro with hifureating branclilets on cither side pure white; rest of inside cream; insertion plate much worn away, but eviclences of slitting exist ; sutural Jaminae weak (probably reduced by attrition) ; sutural simus wide.

Holotype: McDonald's, Muddy Creek, Pliocene (Kalimnan). P'. 4if56, S.A.M.

## Lsohnochutun numantivs sp. nov. Plate xix, fig. 16.

One almost complete and well preserved tail valve, length thmm., width 3.75 mm.; muero slightly anterior of central, dorsal area broken away; area behind muero steep at first, them to outer edge coneave; whole of this area decorated with
closely-packed subgranulose ribs, thinty-five in all; many interealated and not full lengtls; gramulation most even throughout with exception of anterior rib, where it is corarser a small area immodiately behind the muero smooth except for minute gramulation ; area anterior to mucro minutely decuscate, a pattern formed by minute subgranulose strings erossing one another at dight angles.

Articulamentum. The eentral V-shaped portion slightly raised; cream, with about five short way lowehes on either side; rest of valve white; insertion plate broken off, but slight evidences of slitting remain; only bases of sutural laminat remain.
 D. $4.3 \mathrm{~B}, \mathrm{~S}, \mathrm{~A} . \mathrm{M}$.

## lsemnouhton mhenus sp. nov.

Plate xx, figy is.
One juvenile: tail valve, 1 ength 1.25 mm . width $2 \cdot 25 \mathrm{~mm}$. in excellent state of preservation; mustalty flat, muero at anterior third; area immediately behimb muero at first almost vertical, and then continned at an angle of $47^{\prime \prime}$ until hald-way across area, and from there to margin almost that; mucro and a pateh equal to one-third width of whole valye and dorsal area, smooth, withont any signs of sculpture; rest of postcrior area consisting of a narrow rewion between the wnsenlptured pateh and the posterior margin of shell, and two large patches on cither side evenly and regularly scuphured with three conemtric rows of spaced, rather large grains; on either side are several short rows arranged in the same way ats the three outer ones; area anterior to mucro narrow and small, what seupture present is minutely granular, and under Xi30 magnification a fow paralled transverse scratches are visible; the apparent unsenlptured character of the anterior area (which corresponds with the pleural area in median valves) may take an additional pattern in the adult form, but the seulplure of the posterior area is likely to be maintained.

Articulamentum. Bluish-white; nine very clearly marked seratches radiating from beneath the mero to onter edge at girdle; these probably enrespond with nine slits which, owing to damage of insertion plate, cannol be seen; "scratches" may be really nerve chanacls, the specimen presenting one of the best examples of this feature seen; insertion plate broken away; sutural laminae were certainly weak and far apart, only the bases remaining.

Iolotype: MeDonald's, Minddy Creek, Pliocene (Kalimnan). ['. d852, S.A.M.

Iscinnochiton neglectus sp, nov.
Plate xx , fig. 34.
Half median valve, width 3 mon., dorsal area missing; pleural area seulptured with eleven longitudinal ribs, well preserved, but several towards girdle badly worn; ribs high and narrow, and each rib has at the summit a complete row of minute, polished. spherical grains, quite even in size, a little smaller than width of rib, alud all spaced fully the width of a single grain apart ; lateral areal raised and seulptured with seven spaced radial rows of large grains twenty times the size of minute grains referred to in pleural area; most of these grains spherical, but row arljoining pleural area larger and variable in shape; near the girdle grains smatler and less raised.

Articulamentum. White; base of insertion plate possibly showing, sutural daminar absent, tegmentum folded over at posterior margin.

Holotype: Forsyth's, Grange Burn, Hamilton, Victorin, l'liocene (Kalimnan). P. finas, S.A.M.

Paralypus: Several fragments of median valves, one possibly has insertion plate showing as in holotype, but the rest have no sign of it.

There are no complete valves, so the data available is unt sufficient to determine accurately the generic position. We have decided to describe it. under the genus Ischnochiton.

## Radsiella Pilsbry, 1892. <br> Iscinouchiton (Radsiella) Chiftonensis sp. nov.

Plate xix, fig. 14.
One median valve, length 4 mm., width 7.3 mm., angle of divergence $110^{\circ}$, valve well worn, subcarinated, side slope slighty concave; seulpture on dorsal areat and small portion of pleural entirely eroded; seulpture of remainder consists of a series of strong lomgitudinal ribs which furcate or somet imes fins ; rits flattened out in places to double their normal width, and then a short distance away narrow rapidly to normal width; lateral area not in any way defined; whole surface of valve with same sculpture except where worn away; longitudiual ribs inter-conneeted by narrow diagonal ribs of the same height; with lateral lighting this "bridgingr" wives at "honeycomb" effect, but with vertical lighting surface appear's as if studded with deep pits somewhat cuneiform in character.

Articulamentum. Cream; much thickened from the hollow under beak out
towards girdle; insertion plate and sutural lamman worn off, su there is dombt as to generic character.

Moloytpe: Clifton Bank, Grange Burn, Hamilton, Victoria, Lower Miocene. P. 4333, S.A.M.

Sculpture suggests affinity with Pilsbry's subgenus of Ischnochiton, Radsiella, of which south Africa has two representatives, but hitherto meither recent nor fossil representatives have been discovered in Australia.

Remis Cabhistochiton Dall, 1881.
Relatively much more time has heen expembed in the examination of umerons fragments (mostly merlian valves) of this genns, than on valves of other genera.

This is principally due to the following features:

1. The great variety of sculpture in a single individual.
2. The wide changes in sculpture from that of the juvenile to adult.
3. The depth of seulpture in this genus frequently makes a half-worn individual look entirely different from a perfect specimen.

## Callistochiton greedi sp. hov.

Plate xxi, fig. 41.
Median valve, width 2.5 mm . ; dorsal area missing; pleural area with only seven compheto lomgitudinal ribs remaining ; ribs strong, ahmost strathet and fatrallel, ridges high and many interspaces double width of ribs; ribs bridged from bases; ribs fo not tom upwards on reaching lateral area; lateral area composed of two strong nolulose, radiating ribs with a deep groove between, occupying the whole of this area; at bottom of groove ribs are bridged across forming a series of smatl pits; arrangement of nodules sugerests a number of fummels or cones fitted one into the other ; eleven nodules, some broken.

Articulamentum. White; sutural lamina weak.
Holotype: Forsyth's, Grange Burn, IIamiltou, Victoria, Pliocene (Kalimnan). P. 4369 , S.A.M.

Coarseness and regularity of ribs in pleural area distinguish the species. Named after Mr. Walter Greed, of LIamilton, Victoria, to whom we are indebted for packing the material sent to Dr . Sule for washing.

Paratypes: There are four other tragments of median valves belonging to this species, same locality.

Cablatotochiton reticulatles sp. nov.
Plate $x x i$, figs. $44,45$.
One eomplete median valve, length 1.25 mm ., width 9 mm.; valve arched, side slope eonvex, a longitudinal ridge correspomels with (ap) and surgests subearimation; dorsal area not defined, but decorated with slender wetwork seulpture continued well into the pleural area, beak broken atwas, slender network seulpture ocengyine a thiod of anterior portion of valve, in lomeitudinal rows fairly parallel to one another; network seulpture replaced at the posterior margin by widelyspaced longitudinal slender ribs; these ribs turn up) acutely at the pirtle, making the rihs fakeater rather than lomgitudinal; faleate ribs four, widest interspace four times width of rib; all interspaces between ribs narrowly and elosely crossed by slender theouds of sculpture ; lateral area composed of two highly raised, nodulone, narrow ralial ribs; five nodules and next to dorsal area three clougate grains, sulcus between the two ribs deep, and does not appear to have any bridging.

Articulamentum. I'ale blnish-grey; sutural lamina and insertion plate missing; tegruentum folded right aeross from side to side.

Holotype $\pm$ MeDonald's, Muddy Creek, Pliocene (Kalimuan). P. 4:370, s.A.M. Fig. 44.

The mearest living species is Callistochiton generos Iredale and Hull, from Which the species under review is casily separated; amongst other differences, $G$. gonoros has a gramular dorsal area and sharply-sloping posterior portion of tail valve, whereas in C. reticulatus the former has network aud the latter is flat. Fig. 45, P. 438:3, S.A.M.

Hypotyprs Tail valve taken as type of that valve. Wragment three-quarters of whole, width $2 \cdot 5 \mathrm{~mm}$., muero central, area behind muero flat, decorated with teu nodulnse ray ribs; dorsal area anterior to muero, brod; all network sentpture like holotype, rest of anterior area with nine longritudinal ribs as in pleural atrea of holotype, except that, owing to flat posterior portion, these ribs are barely falcate. Locality same as holotype.

Paratype: One median valve, length 2 mm ., width 5.5 mm. , flatly arched, side slope unusually convex, angle of divergence $100^{\circ}$, dorsal arca beaked, seulpture a good deal flaked and worn. Clifton Bank, Lower Miocene, one specimen.

In addition, there are two halfi-median valves, and two partly damaged tail valves from Forsy th's.

Callistochiton inexpectus sp. nov.
Plate sxi, figs. 41, 42.
Mediau valve, juvenile, lengiti 1.75 mom, width 4 mu, subcarinated side slope very slightly convex, rather flat, angle of divergence $110^{\prime \prime}$; dorsal and pleural areas
indistinguishable; a form of decussate sendpture minute near the posturior of dorsal ridge and increasiug in size, anteriorly and laterally; seulpture of this portion in less worn examples strietly of network form, in which the strands are coarser aud apertures of mesh mueh smaller than in C. retieulatus; three short diagonal ribs show close to girdle (an adult would no doubt have this feat ure far more developed); lateral areas formed by two coarse radial ribs, of which the nodules numbering five to six better resmble the flange of it wheel, and comtime down into the sule ma between the two ribs, emsing the ribs to be comersy bridged across.

Articulamentum. Palc-grey; insertion plate and sutural laminae missiny, termentum folded over for the full length of the posterior margin of this valve,
 Fig. 42.

Hypotype: Type of tail valve, length $1 \cdot 5$ mm, width 3 mm., mucro slightly anterior to centre, raised, at first very steep, and from there to posterion margin slightly slopine mely ; posterion area at first sumoth behime the mucro, rest of thin area decorated with eight noclulose ritus; nodules of ribs correspond with two broken concentric ribs; area anterior to mucro small and without seupture; surface and interspaces of both areas show signs of minnte erranulation. Same locality as holotype. Flig. 41.

In addition, there is one more fail valve and one more median valve of this species from the same locality.

The nearest recent species is Callistochiton movidionalis Ashby (3), from which incrpethes differs in the stouter nodules of the lateral arcas, the flatter pos terion portion of the tail valve, and the cotire absence of surface granulation.

## Anthochtron Thiele, 1893.

Thiele, iu "Das (ichiss der Schnecken, 189:", proposed three subgencra under the gemus Chilon, namely Clathropleuru, Rhyssonplax, and Anthochilon, but muly the last-named can date from 1893, because the genotype species of the other tivo were not published until 1909. Therofore those two subgenera date from 1909. Wo use Anthoohiton Thiele, 1893, us af full genus.

Anthochiton macdonaldensis sp. nov.
Plate rxi, fig. 39.
T'ail valve, length 2.5 mm ., width 3.75 mm ., mucro at anterior third, tegmentum worn off. mucro, posterior slope from muero straight at an angle of $43^{\circ}$; polished, stran colour. sturiace minutely decussate, a ferw shallow yrowth grooves, but no seupture in the area posterior to mucro; areat anterior to muero small, separated
from posterine area by a shallow fold, upper half smooth and polished like the posterior areat, but lower or outer half possesses three fairly strony polished ribs; ribs short owing to narrowness of this area ; ribs begin at the "fold" and terminate at anterior edge of valve; anterior edge minutely granulose by lateral lighting.

Artieulamentum. Creamy-white; insertion plate worn away, but evidences of numerons slitting; sutural laminae absent.

IJolotype: MeDonald's, Muddy ('reek, Pliocene (Kalimnan). P. 4359, S. A.M.

## Anthoomiton duodeni sp. nov.

## Plate xx , fig. 38 .

One sraall fragment of median valve; very small, but portion of pleural area dreomated with twelve narmo, strongly-ratisel ribs, bach of which bends upwards at the lateral areat, interspaces double width of ribs; lateral area smooth, but with several well-matked growth lines; this area strongly raised, slightly overhanging plemal area.

Holotyper : Mebonald's, Muddy Creek, Pliocene (Kalimnan). P. 4357, S.A.M. Name suggested by the twelve ribs.

## Anthochiton octocostatus sp. nov.

Plate xxi, fig. 40.
Three-quarter's of median valve; single side 3 mm . wide; carinated, side slope straight, angle of divergence $100^{\circ}$; teymentum flaked oft dorsal area, surface of vaiseminutely deronsate, only delinite seblpture dight longitudinal widely-spaced ribs, interspaces three to four times with of vilos themselves.

Articulamentum. White.
Holotype : MeDonald's, Muddy Creek, Pliocene (Kalimnan). P. 4360, S.A.M. Name suggested by the eight ribs.

Loricella Pilsbry, 1893,
Loricelia magnofustulosa sp. nov.
Plater xxi, figs. 50, 53.
Head valve, length 4 mm ., width 7 mm ., posterior edge imperfect, insertion plate missing; apex steep and worn, luwer half of shell rather flat ; eight and portion of ninth ray ribs surmonnted with two to three large, widely-spaced pustules; surface of shell smooth, exhibits evidence of wearing.

Articulamentum. Buffish-white, shows signs of wearing, nerve perforations correspond with ray ribs in temmentum.

Ifolotype : Ite Domald's. Muddy (reek, Lower Plocene (Kalimman). P. 4365. S.A.M., Fig. 53.

Hyputype: Half median valve, hroken, taken as type of median valve; length 3 mm ., width of half-valve 10 mm . ; insertion plate and sutural laminae missing; dorsal area and plemal arcas inseparable execopt for two broad growth grooves, and towarls girdle several miune growth mooves, but at junction of pletural aroa and lateral area fiftecn short ridges, interspaces appearing like fourteen deep pits; latual atrad defined by a very much maised diagnoal ribs surmotmed hy three larger widely-spaced pustules; most likely there were two more of these pustules nearer: the dorsal area, as shell hore shows signs of wearing; colom pinkish-cinnamon (Ridgeway), inside white. Same bombly and horizon as holotype. 1'. Hisht, N.A.M... Fig. 50.

Paratypes: Two head valves, much worn, appear to belong to this species, as they show faint signs of large pustules; same locality and horizon.

Loricella paticipustulosa Ashby and 'Torr, 1901.
Plate rxi, figs. 5e, 54.
One tail valve, length $2 \cdot 25$, width 6 mmog , no sculpture showing, though it may be worn off; as median valves only possess two inconspicuons shallow diagoual rihs earrying small, spaced pustules, it is possible that the tail valve never possessed any ribs; whole of upper surface of valve convex ; anterior and posterior margin much thickenod, and anal portion broadly upturned.

Hypolype: MeDonald's, Muddy Creek, Iliocene (Kalimman). We present this specimen as the Hypotype tail valve of the species Loricella paucipustulosa Ashby and Torr (1).

Lormella concava sp. nov.
Plate xxi, fig. 51.
Tail valve, length $1 \cdot \overline{5} \mathrm{~mm}$., width $3 \cdot 25 \mathrm{~mm}$, very flat, dotsat area much xaiserl, straight-sided, pleural area and lateral areas consist of one depressed smooth surface; posterior edge much thickened and raised, so that the pleural-lateral areas are concare; tail upturned, posterior edge bending inwards at the upturned porfion; only sculpture in pleural lateral area consists of four growth grooves at anterior portion and two at the anal ; the grooves traverse the areas, and comtinue up the posterior ridge.

Articulamentum. Insertion plates broken away, but sufficient of sutural laminate remain to indicate that they are hroad and wedl developed, sutural laminae joined atross the simis, artieulamentum extending beyond anterior edge of teg-
mentum; articalamentum mueh thickened and notehed in centre, posterior end hollowed out mader uptumed tail, evidently associated with some borly organ stoch as a syphon; from there to anterior edge of valve on either side articulamentum much thickened.

IIolntyfu: McDonald's, Muddy Creek, Pliocene (Kalimnan). P. 4367, S.A.M.
This remarkable little valve is definitely a Loricolla. The tegmentum is in cacellent state of preservation, and sufficient of the articulamentum is preserved to definitely state that in the thickening of the articulamentum, both in the rentre and at the outer edre, it presents features hitherto unknown. The name concava is suggested by the concave tail valve.

## Lerica II. \& A. Adams, $185^{2}$.

We naturally expected that one of the thre valves in this material of juvenile Lorica would represent L. compressa Ashby and Torr. In neither L. oculca nor in L. varend is there any sign of the scatered large pustules (grains) in the lateral arra that were mentioned in Ashby and Torr's deseription of Lorica affinis. This Ashloy (3) considered a mere variety of $L$. compressa. We have now, through the kindmess of F . A. Cudmore, examined a series taken at 'Table Cape, Tasmania, and wo are satisfied that they are conspecific, the type of $I$. compressa being a batly worn example, and that of $L$. affinis a better preserved specimen of the same species. While it is quite possible that $L$. compressa may not always show this sculpture in the very juvenile stage, in the best example of the adult. we have seen the coarse grains make their appearance at a very early stage of growth.

We believe that the three juvenile Lorica valves here described represent two different speries, chiefly marked by the wreat differconce in the angle of divergente. and both differ from $L$. compressa in the entire absence of coarse pustules in the lateral areas.

Lorica rompressa Ashby and Torr, 1901.
There is one incomplete median valye that certainly belongs to the above species, and a tail valve which has lost all senlpture on the upper side, but is better preseryed on the underside. The tail valve of L. compressa Ashby (1), (3) has not been figuted or described, and the present specimen is ton prorly preserved to form a hypotype. From Clitton Bank, Grange Burn, Lower Miocene.
larica oculea sp. nov.
Plate sxi, fig. 48.
Median valve, well preserved, but a small fragment missing; width 2 mm ., angle of divergence $110^{\circ}$. Valve carinated, side slope straight, dorsal area ill-
defined, smooth except for two short and slender longitudinal ribs on either side; pleural area crossed by four subgranulose narrow high ribs, the interspaces three times width of ribs, each rib where it joins the lateral area with funnel-shaped pit, at the bottom of which is a black dot or aperture; in some lights this pit shows a shining spot, and it is certain these apertures lead to sense organs, which we assume are ocelli; lateral area much raised and minutely granulose; four transverse or growth ridges composed of larger granules than rest of lateral area; ridges under X30 Zeiss appear due to growth grooves which vary much in width, and the apparent large size of the grains on the ridges is an illusion caused by these grains catching more light.

Arliculamentum. Cream ; no definite slit can be seen, sutural laminae shallow but laterally wide, the sinus between wide, but a feature typical of both Lorica and Loricella is the joining across the sutural sinus of the two sutural laminae, by a forward extension of the articulamentum; this a marked feature of the holotype.

Holotype: Clifton Bank Grange Burn, Hamilton, Victoria, Lower Miocene. P. 4362, S.A.M.

Paratype: Median valve, small fragment missing, width 2 mm ., same locality. The black dot occurring in each valve is situated at the third of the lateral area from the girdle and a little posterior from the centre of the valve. It is circled by a ring of normal grains on this area; there is a rather large funnel-shaped aperture through the tegmentum and the articulamentum with what, at the bottom in ordinary light, appears to be a black dot. When the electric globe was almost directly above, the light was brilliantly reflected in the corner at the bottom of the deep funnel; again in good daylight the light from the window was squarely reflected. Hitherto, no oculae have been seen in this genus other than those at the junction of the ribs on the pleural area with the lateral area, so this discovery is the first record of the existence of "eyes" on the surface of the lateral areas (in fossil Lorica), and the first discovery of the preservation of the cornea in fossil forms. As in the adult fossil examples, the apertures at the junction of the ribs with the lateral area are much larger than in any known recent chitons; the nature of the sense organs has always been doubtful. This discovery seems to confirm the belief that they are true ocelli, and, owing to the position of the cornea at the bottom of a deep funnel preventing lateral sighting, it seems that they could only serve to distinguish daylight from dark because their deep setting prevents any lateral sighting.

Lorica varena sp. nov.

$$
\text { Plate xxi, fig. } 49 .
$$

One complete juvenile median valve, width from dorsal ridge to girdle 1.5 mm ., but, owing to steepness of carination, valve is only 2 mm . right across ; angle
of divergence $80^{\circ}$ (compared with $110^{\circ}$ in oculca) ; compared to oculca, ribs in plental areat more grambar, interspaces wider; laterat area has oue very deep and wide growth groove (ocultol has seperal), gramulate, less erowded and grains less raised ant more irrectular, the oeelli similar in position and size; otherwise remerally like oculfa, except is one-third smaller.

Holotype: Clifton bank, Grange Barn, IIamitom, Victoria, Lower Miocene, P. 4361, S.A.M.

Oocmiton Ashby, 1934.
Oomitton walli Ashby, 1934.
Plate xxi, fing. 55.
From one ten-gallon tin of fossiliferous soil from Clifton Bank, Hamilton, Victoria, Lower Miocenc, twelve median valves or fragments, four head valves, and one tail valve of the above species.

The original holotype of the lead valve of this species was destroyed when M1. Edwin Ashby's honse was burnt in a bushfire on Mareh 9, 1934. We now describe a Neotype:

Head valve, length 2 mm ., width 3 mm , height 2 mm ., angle of divergence acute; highly elevated, apex slightly recurved, anterior slope very steep and coneave (due to remerved apex) ; sculpture of strings of egglike pustules similar to
 commencing at the posterior margin and continuing to the inscrtion plate with considerable incroblarity, several strings bifureate, and in some places there are short intermediate rows; the strings or rows of pustules apparently have no relationship with the slits in insertion plate.

Articulamentum. Creamy white; highly polished, smooth, without any grooves; tegmentum unfolded at the apex, this mololded portion thiekls studded With egg-like pustules; insertion plate well produced, perfect except for a few minute chips; slits high, broad and short, spaeing irregular; upper side of insertion plate numerously grooved, plate broad and proportionately thick, but upper clgo bevelled off so that the actual edge is sharp, the gronves not contimung to the immer edge.

Neotype: Clifton Brank, Grange Bum, Hamiltom, Victoria, Jower Miocene.
The senlpture of this Oochiton is quite unique, the angle of divergence urusually small, resulting in the carination of the median valyes being very steep; the slape of the tail valve has no parallel in any living forms. The nearest to it is to be found in the upturned extremity of the same valve in the genus Lorica, and in both there would be body modifications to correspond.

We think that the two genera Loricella and Lorica seem to have little affinity with any other living forms, and may, together with Oochiton, have come down from Palaeozoic times along separate parallel channels to that of the Lepidopleuridae, as is certainly the case in the Acanthochitonoid group.

## BIBLIOGRAPHY.

1. Ashby and Torr (1901) : Fossil Polyplacophora from Muddy Creek, Mornington, Victoria. Trans. Roy. Soc. S. Aust., 25 (2), 136-144.
2. Chapman (1907) : New and Little known Vietorian Fossils in the National Museum. Proc. Roy. Soc. Vic., 20 (2), 218-220.
3. Ashby (1925) : Monograph on Australian Fossil Polyplacophora. Proc. Roy. Soc. Vic., 37 (2), 170-205.
4. Pilsbry (1892) : Manual of Conchology, 14, 23.
5. Pilsbry : In Zittel (English Translation by Eastman), 1, 433-444.
6. Hall (1905): On the occurrence of two species of Cryptoplax in the Tertiary Rocks of Victoria. Proc. Roy. Soc. Vic., 17.
7. Hull (1910) : Proc. Linn. Soc. N.S.W., 35, 654, and 39, 1915. (All Hull's types figured in Ashby's Monograph.)
8. Ashby (1929) : Notes on and Additions to Australian Fossil Polyplacophora. Proc. Roy. Soc. Vic., 41 (2), 220-230.

## EXPLANATION OF PIAATES．

## Plate xix．

Fig．1．Lecpidopleurus diversigranosus sp．nov．，Hypotype．
Fig．2．Lepidopleurus pamphilius sp．nov．，Holotype．
Fig．：3．Lepidopleurus magnogranifer Ashby，Holotype．
Fig．t．Lepidopleurus badioides sp．nov．，Holotype．
Fig．$\quad$ ．Lopidopletrus nivarus sp．nov．，Holotype．
Fig．fi．Lepidopleurus babidus sp．nov．，Holotype．
Fig．7．Lepidoplourus sinervus sp．nov．，Iolotype．
Fig．S．Lepidopleurus singus sp．nov．，Holotype．
Fig．9．Lepidopleurus diversigranus sp．nov．，Holotype．
Fig．10．Belchiton pulcherrimus sp．nov．，Holotype．
Fig．11．Lepidopleurus sephus sp．nov．，Holotype．
F＇ig．1巳丷．Lefpidoplcurus relalus sp．nov．，Holotype．
Fig．1：3．Lepidoplcurus uxellus sp．nov．，Holotype．
Fig．14．Ischnochiton（Radsiella）miftonensis sp．nov．．Holotype．
Fig．15．Ischnochiton tisurus sp．nov．，Holotype．
Fig．16．Ischnochiton numantius sp．nov．，Holotype．
Fig．17．（Hyptoplax sirus sp．now．，Holotype．
Fig．1s．Cryploplar mumirus sp．nov．，Holotype．
Pig．19．Oryptoplax：mbitehurdi Hall，Hypotype．
Wis．2．A fossochiton（Telnchiton）iscus sp．nove，Holotype．

## Plate xx．

Fig．221．Afossochiton sulci sp．nov．，Inolotype．
Fig．르․ A fossochilon sudmorei Ashby．IIolotype．
Fig．2：3．Afossochiton（T＇dochiton）magnirostatus sp．nov．，Holotype．
Fig．ㄹ．4．Afossochiton（Tclochiton）dendus sp．nov．，Holotype．
Fig．总．A canthochiton sabratus sp．nov．，Holoytpe，
Fig．efi．Acanthochiton forsythensis sp．nov．，Holotype．
Fig．27．Aranthochiton pilsbryoides sp．now．，Holotype．
Fig．28．Acanthochiton trianguloides sp．nov．，Holotype．
Fig．©9．Acanthochiton drumus sp．nov．，Holotype．
Fig．30．Acanthochiton casus sp．nov．，Holotype．
Fig．：31．Acauthochiton（Lirachilon）inexpectus sp．nov．，Holoytpe．
Fig．：39．Molnchiton nuxus sp．nov．，Holotype．

Fig. 33. Ischnochiton durius sp. nov., Holotype.
Fig. 34. Ischnochiton neglectus sp. nov., Holotype.
Fig. 35. Ischnochiton tisurus sp. nov., Hypotype.
Fig. 36. Ischnochiton vinazus sp. nov., Holotype.
Fig. 37. Ischnochiton cossyrus sp. nov., Holotype.
Fig. 38. Anthochiton duodeni sp. nov., Holotype.

## Plate xxi.

Fig. 39. Anthochiton macdonaldensis sp. nov., Holotype.
Fig. 40. Anthochiton octocostus sp. nov., Holotype.
Fig. 41. Callistochiton inexpectus sp. nov., Hypotype.
Fig. 42. Callistochiton inexpectus sp. nov., Holotype.
Fig. 43. Callistochiton greedi sp. nov., Holotype.
Fig. 44. Callistochiton reticulatus sp. nov., Holotype.
Fig. 45. Callistochiton reticulatus sp. nov., Hypotype.
Fig. 46. Callochiton macdonaldi sp. nov., Holotype.
Fig. 47. Lepidopleurus badioides sp. nov., Hypotype.
Fig. 48. Lorica oculea sp. nov., Holotype.
Fig. 49. Lorica varena sp. nov., Holotype.
Fig. 50. Loricella magnopustulosa sp. nov., Hypotype.
Fig. 51. Loricella concava sp. nov., Holotype.
Fig. 52. Loricella paucipustulosa Ashby and Torr, Hypotype.
Fig. 53. Loricella magnopustulosa sp. nov., Holotype.
Wig. 54. Loricella paucipustulosa Ashby and Torr, Paratype.
Fig. 55. Oochiton halli Ashby, Pleisiotype.




# EAGLE AND CROW MYTHS OF THE MARAURA TRIBE, LOWER DARLING RIVER, NEW SOUTH WALES 

By Norman B. Tindale, B.SC., Ethnologist, South Australian Museum


#### Abstract

Summary The literature relating to myths of the "Eaglehawk and Crow" series in South-Eastern Australia is growing, and a detailed study should be made of their distribution. During a recent visit to South-Western Australia, it was noticed that there were kindred myths among the ['Nona:] peoples, especially amongst the "-ap" ( ${ }^{1}$ ) tribes, who live in the extreme South-West and extend eastward along the Southern Coast to Cape Paisley.


# EAGLE and CROW MYTHS of the MARAURA TRIbE, LOWER DARLING RIVER, NEW SOUTH WALES 

By NORMAN B. TinDALE, B,Sc., Ethnologist, South Australan Museum.

Text-fig. 1-6.
Thua literature relating to myths of the "Eaglehawk and Crow" series in SnouthEastrm Anstraliat is growing, and a detailed study should be made of their distribution.

During al recent visit to South-Western Australia, it was noticed that there were kindred myths among the I'Nomat peoples, especially amongst the "-ap' (1) triben, who live in the extreme somth-West and extend eastward along the somthern Coast to Cape Paisley.

IIassell (1934) has reeords of at Crow and Eagle story amoner the "Wheelman" people who live within this arta, while rvidenees of these stories and their intlucurets on social organizational patterns are also to be met with among tribes such th the ['Wakaman!, I'Awamin], and ['Ba:baram], thus extending their range int.n the conntry on the western side of the Great Dividing Rante in North (Lusensland. In general, it may be moted that these stories can be found over a wide southern and matern periphasal belt in Australia, fom Bunbury in the Nouth- West, to Chillaroe in North Quecmsland. Texts have also been obtained in the [Tajane] and [Jaritcle'kald] languages. They tell of the activities of the Crow-man aloug the lower reaches of the dinsay and down the Corong as far as Mount Gambier, where his activitios were assuciated with what are helieved to have been voleanie eruptions.

The prescut contribution is intended to place on record only the form of the story belonging to the ['Maraura] people.

The prineipal Maraura text takes the form of a recital or monologue, in what may be regarded for convenience, as two atets. In this form it is told at evening gatherings, of both sexes, around the camp fire. Explanations and asides have bem ardded to rember the seduences clear to those nut familiar with particulars of the story, for it must be remembered that many, if not all, the details of these tales were well known to the audipuces tor which they were recited. The mere recountal of the dialngue and the dramatization introduced by change of voice and tone was sufficient to vividly recall to the listeners the actions of the heroes.

[^10]The informant was a seventy-fonm-yenr-old man of the Maraura tribe, who is remotely related. themugh his lather, with the liakimlji people. The action of the first story takes place near the north-eastern boundary of the latter tribe, but the Wanderings of the (row alan extend down the Darling and Murray livers to sonth Australia.

The range of the Maraura tribe, at the beginning of white contact, was from Avoea and Tapio on the Darling River, donnstream to Wentworth aud Moorna. They lived also on the westem mabranch of the Datimes as far north as Popilta, lat were excluled from Milkengray Lake, which tratitionally belonged to the [Hankindji]. On ocedsion, they wantered in the dry commery to the nortj-west of this area. All this area was their ['keina\}, or country, upom which they lived and louted. The Maraura are the "Waimbio tribe ${ }^{2 \prime}$ of Fison and IIowitt (1880, p. 288).

The Jatkintji lived as next-dour neighhours on both sides of the Datimes River, from about Ayoca northwards to Wileannia. It Maraura wished to visit on hunt on the ['keiba] of their neighbours, they had first to receive permissiou.

Athomgh both tribes possessed matrilineal social organizations of the Dutal type (with Makwora and Ki:lpara as moicty (crms), neither of them practised ciremucision in their intiations. Their ceremonies were indeed allied more with those of the Jarikakald near We month of the Numplay Rer. Elevatime of the youth to hanhood was maxked by a series of rites, inchuding hair-pluekiug and singeing, painting with red ochre, restrictions on the lonching of water, and avoidance of women.

The uative text has been supplied with an interlinean danslat inn with as close a reudering of the meanings is is possible at present ; where the phrase is given in inverted commas, only the general sense of the mative version hat ben ascertained. Tu such cases the rendering follows closely that of the informant, whu speaks English rather well, although he is unable to either read or write it. The other stories also follow his dietion as clusely as consistent with clarity and brevity. Critical passages are quoted verbatim in inverted commas within brackets. Opinions and diseussion of the statements detailed are plated in a concluding section of the paper.

The system of transeription follows that set out in previons papers by Tindale (1935, p. 264; 1937, p. 107). As in these papers, italies and black letters have been used to differentiate those vowel and consonantal sounds of which al close rendering is of principal interest to the student: of phoneties.

A song series is stated to be associated with the Eaglelawk and Crow story of the Maraura. Whare were many verses which were sung to deseribe ineidents in the lives of the ancestral beings. The present story still belongs to four men, and
althengly there is no ohjection to the telling of the tale, the somes may not be sume withont the permission of all four of them. They were only sung when the owners met for initiation rites.

In relating the story of ['Wa:ku] and his endeavours to marry the two sisters, the intormant on several oceasioms made aketehes on the ground with a stick. These are reproduced in figs. 1-5. Their general resemblance to scratchings in rock shelters along the Murray River is worthy of note.

## AN INTRODUCTION TO THE STORY OF WA:KU AND KA:NAU.

['Waku], or Crow, at man of the ['Kisipara] moiets, formerly lived at one end "If Manara Raure, and [Kamant, or Eagle, a man of the [Makwora] moiety, lived at the other. They were both |numili] ancestral beings, and in their time Makwora men were short, hitont, and dark-haired; while Kilpara. were tall and lighthaired. Mamara lange is situated in Western New South Wales ( $140^{\circ} 45^{\circ}$ East Longitude x $82^{2} 25^{\prime}$ 'South Latitude).

The homes of the two men stood up like hills, one at each end of the range, and the eamps are identified to-day with two peaks, believed to have been formed by the thrning to stone of the ancestral luts. In between the two camps lived two sisters ['wilulity]. ['Wituliy| is a special term applied to a pair' of sisters.

The |'witulin] were momarried girls of the Makwora moiety' and were ['tam. har ${ }^{\prime}$ (i.e. set inpari, forhidden, almost sacred), for no one was permitted either to approach, or turch, or even to have conversation with them. Ka:lau, as a leading man of the |'Barinclji] people (Titerally the "people of the trees", in contrant to ['Bakindji|, the people of the |'Isakal or Darting River), had the two ginls muter his care. He called them by the relationship term ['mam:a'ga], mother, of which the reciprocal is ['wimbaln!. Walku called them ['meititja] (sister's husband's mother, mother-in-law). The lBarindji folk had lived on the Manara Range, away from the Darling River, for a long time. They were friendly with the River folk.

The Ba:kiudji, at that time, wandered chiefly in the country on the eastern side of the Jarling, and were related to the lwo women as [ijultiali], morher's lrother"s sons |'wakatjal, mother's brothers, and ['tanguwa] (not trauslated). All these men were prepared to tight tor the two sisters if they should be molested.

Daily tho two young women went hunting, searching on the flats for ['jardu] (needspores of ithrsition Drammondii) and other vegetable fooch, and huntiag for opossums. In the intervals of food-gathering, they gromed their ['jarda] between stone mills, naking flour for ['ıardu] cakes, Kamau made a practice of killing Wallabies and kangaroos, and of leaving them secretly at the girls' camp in their absence. The girls suspected that their ['wimbaln」 was the food-bringer, but never saw him.

Kamau liad as wife the sister of Wa:ku (and thercfore also a Kilpara moiety woman). Ka:nant, who was a "good man", had no sister, and had been unable to give a sister to Waiku in exchange for the wife he had received.

## ACT I.

W. to K.: 'Ondadja 'nongomal'kai 'janta'jenginba 'noŋgadlui.

Brother-in-law woman-you've-got I-have-not "wife-of-my-own". 'Onkat'nel nongo 'bateire jengali. 'Jus'na Give-me woman it-will-be-grood "to-sit-down-with-a-glad-heart". It-you ilar 'jokandai 'nojgo nan 'janbar'duima. 'Ur'a don't allow-me-to-have woman "1-will-catch-you-with-a-bone". "1-am ( $\ddagger$ anba $=$ magic bone)
'watutu 'geinou 'nongo jodlo 'kaygarein'garn going-to-take" women two who-sit-down-together (i.e. the two sisters).

(Wa:ku goes away. A few days later he returns, and Kanau sees him approaching. He says to his son):
K. to boy: E!E! Itil 'wakatjarm

See your-mother's-brother \begin{tabular}{c}
'jowoporan'du. <br>
appears.

 

'Wuril bar'j <br>
You-go-away
\end{tabular}

(The boy gocs away, and the men talk together.)
K. to W.: Ila'naŋunj 'yokaঠ̌um 'nomgo 'natau 'wari I-cannot-see-the-way to-give-to-you woman "no-such"
'nongo 'ıerga:pa.
woman sits-down-here (i.e. is here).
W. to K. : 'narnba 'ondadja ila'najunj 'yokalmilali. The-bone brother-in-law "for-I-cannot-sec-my-way to-yield-to-you". (K. makes many excuses to W.-They are difficult to translate.)
K. to W.:'Ton:áŋeina: 'pa'jarta 'japsabaring 'pamil. 'Kitarn'bal Have-patience a-little-while about-it 1 -will-see. Obtain (kitarnda $=$ to obtain)
'intinj 'watulpi nongom tjuna 'yain'balat'pa. 'Einas
Imight by-asking woman by tormentiug-the-people. Then-again 'nalpi 'wata tumsari 'tjuna 'jima 'jainba'latpa 'gosta
perhaps get-by-asking by torment-the-people.
'wimbi 'narndu. 'Einu'nastin 'waijuti 'nalin 'gitri wismbi. Soon "they-might-pity-us" those people.
'Einanastipil 'baralelei badeil balku:l. 'Einas'nil yoksatum Then-1-will listen "for-good news". Then-you will-be-given 'loalcir 'balkur. 'Juna ilia jorkaduma 'baleir' 'balkur ianan grood news. However if-not giving grood news then
'jurri'lasli Tunat 'jeygali baral 'gitinka wimbiu naygun we-will-consider-it. After-a-while-we-listen those-fellows men will-show-us A-while-sit
'kulpilati 'juggi 'balku:nkari. Nadliu tun:a 'yengali 'barral how-they-are making their-own-news. You-and-I a-while sit listen
'gitinkadi wimbiuti naŋunj 'kulpi:lati. 'Juna those-fellow people see "how-they-are-treating-the-matter". However
baleir balkur jengali 'wora 'kulpilati gaji dani. grod news sit-and-wait how-are-they will-be-told-to-me.
'Jlima il:a 'baleir' 'halkur 'kulpati'jarn 'worn
However if-not good news "ili-they-don't-tell-me-true"
'naıonjarti. geli ıjengali "tunsa 'jin:atil 'jo ngali,
leave-it-to-them. We-two sit-down a-while at-that "we-will-sit-and-wait". (Kamau is helpless and is unable to assist Watkn. The two wateh each other for signs of treachery. Each fears the other.)
W. to K. 'Ondadja 'tekalatpil 'japrarai. 'Kaninarn

Brother-in-law I-return-home to-my-camp. Some-day 'pam:itum.
I-come-again-to-sec-you.
(They part. Several yars elapse. Watho broods over his tromble. He has other adventures. [See later part of this paper.] By magic, ho secrelly assaults the women, and when they rum away he masueesstully chases them down the Darling as far as Swan Reach. Embittered, he returns to the Manara liange. He decides to injure his brother-in-law for his part in the many troubles that have come over him. He thinks, "l'll kill my sister's child", the son of Kanau.)

AOT' II.

> W. to self: E!E! 'Purabarit'pili  "I-am-going-over", 'balkatu to-kill sister's son (of mine).
(Wa:ku journeys to the camp of Kaman at the other end of the liange.)

tail 'gindu 'yarndin 'kininka 'matjul 'wanga 'kininka 'ka:xaminki eat you raw meat to-morrow ora 'joswali. 'yali 'kana'tar 'imsali 'kayarn 'dogkarn.
"we" cook-it. We stay-here asleep this night.
(Katnau groes humtine, leaving W. and the boy at the camp. W. is supposed to be caring for the boy. The two have a large meal of wallaby flesh. The boy sits on one side of the fire, and Warku on the other. The boy is gorged with eating.)

Boy to W.: 'Wakatja! 'kuruntoi 'kadlarannil 'kututoi 'matjira: 'pili. Uncle belly paining-me belly is-full now.
(Waiku decides the boy has not gorged sufficiently lor his purpose.)

# W. to boy:'Paljarti, 'paljarti, 'katjilju 'noksatombari 'jitjuru'yi. Wait wait a-while 1-cut-you one-more-piece. 

Boy to W.: 'ja:ta'tau 'kuruntoi 'bo:'bomaranil 'jarukarpil 'bilkararpil Impossible belly full-now I-am-thirsty I-will-fetch 'yokso 'wistjalu. water to-drink.
W. to boy: Ei! Ei! 'woreitili
go-on
giksabara
run-down $\underset{\text { "wora 'witjalibil }}{ } \quad$ "mave-atrink" presently
'tek':arlembil.
come-back-again.
(Shrubs, bushes, and a wattle tree were between the camp and the water. The boy goes away to drink, and the uncle sets himself in ambush against his return. The boy goes down one side to fetch water.)
IV. to boy: $\mathbf{E}$ ! E ! 'wila'رayg!

Go-around-the-other-way.
Buy to W. :Wintjarndu 'jayka 'Wanga'latpai? 'Lianarnci 'jankarn. Did you-say that-side? "Which-way did-you-say."
W. 10 boy: 'yak:ur' 'wilumuj 'juwu 'wayga'lumbr.

Go-back "around-the-other-way" that-side.
(W. desires the boy to come around the right side of the bush so that he may take fair aim with his spear and pierce his belly. He squats on the ground with his spear: ['karlku] and spear-thrower ['yamsaga] (i.e. mother of the spear). Ife casts his weapon, and says:)
W. to self: 'Kayguin 'bandatuma.
"I-got-a-good-hit-at-you."
(The scene changes to the father. K. is Junting for wallaby. At the moment when his son is being speared he is raising his spear to a wallaby. He strikes, and misses the wallaby. He rubs his nose with his left fist, and wonders why he has missed the wallaby.)
K. to self:'II! ja! nayun 'djuljai 'keira 'wanga. Why missed-I this meat.
(He wonders, for, until now, every wallaby he has aimed at he has "pimed" down to the ground: this is his first mistake.)

|  |  |  |  | 'kiki 'keira. 'Wimba |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| to self : 'JakiaitExclamation! |  |  |  | chis-country". People |  |
| 'jarti coming | 'kagar'tanarn. "I-think-there-must-be". Wailjartil 'ka:rananil 'Janmartu. 'While another-one I-will-try. <br> (He stalks anuther wallaby, but it also escapes his aim.) |  |  |  |  |
|  | ha! 'nakarjitin those | *waki!!lin uncles-two | 'no:lu. they-two. | 'Paljartil Wait-awhile | 'gitjuruin once-more |
| $\begin{aligned} & \text { 'ka: } \\ & \text { anothe } \end{aligned}$ |  |  |  |  |  |

(Ka:nan breaks his spear-the oue that kills all his game for him. He now knows that something is wrong in the camp. He returns to see broken spears and pieces of boumerang seattered over the ground as though there has been a fight hetween many people. Wa:ku comes to him, limping, and crying like an old man.)

$$
\begin{aligned}
\text { K. to W. : A! 'ondadja } & \text { 'nanonja } \begin{array}{c}
\text { 'walijim? } \\
\text { (rother-in-law } \\
\text { what-is } \\
\text { wrong-with-you? }
\end{array}
\end{aligned}
$$

W. to K. (in tremulous vaice of un old man): O! O! 'ondadja 'narukayola Brother-in-law many-people
'bindalaji 'bira 'malkaji. 'Nanma 'jinka 'paudai y'gurta 'naru'ka assaulted-me with weapons. "I-chased-them" speared some others 'tambatam'bai 'joija 'narro. 'Naru'ka 'tambatam'bai 'jarau 'karlku ruming-away with-fright they-were. Others rumning-away spears 'ralui 'mik:ai.
full-of wounded.
(Wa:ku shows his legs.)
W. to $\mathrm{K}^{\prime}$ : 'Kilki 'yukila 'japa 'karlko 'rolka 'narro. 'Eineinu Here myself by-a-spear speared I-was. Then (while) 'narm'karai 'jorupa 'yokeila 'keinkutjai 'nadlaijin 'yapen I-was-hard-pressed they-hit my-sister's-son "in-confusion" 'nan 'malaji 'apra 'nadlaji 'narn 'jokseilai 'keijkutjai. ruming-and-chasing then struck-down (was) my-sister's-son.
'Ur:a 'pamis 'tjinanka 'iitu 'na'maramil'sai 'jinaai.

We see tracks there of-chasing-fighting there-are.
(W. points): 'Worilkata 'tjinanka 'it:uli. Those-are tracks there.
(W. points out to his brother-in-law the tracks where his combat with many blackfellows has taken place. Katnan can only see the twisted tracks, "pigeon-toed", of Wakk.)
 'keinlkudjarndu.
his-sister's-son.

(K. goes down into the hole, digs, and comes out again.)
$K$. to $W .:$ Ondadja! 'ijindu wil
Brother-in-law youlun your
once-more
dig.
(W. goes down a second time. Soon K. peers in and sees that it is deep enough.)

> K. to W. : 'Ken:o'tartin 'geito 'meinga in'djo im'sangaleil 'yarltu'tja That-is-enough that hole you lie-down "bottom-of- 'tar:
hole-to-see-if-it-will-be-suitable".
(K, tells W. to lie down in the proper position in the hole to test its shape.)
$K$. to W.: 'yartau 'nayonji $\begin{gathered}\text { imsan } \\ \text { lie-down }\end{gathered} \quad$ eno $\begin{gathered}\text { 'kcigkutjarn, } \\ \text { sister's-son. }\end{gathered}$
(K. stands over the grave and watches, telling him to move first one way and then another, until he is in the correct position.)

$$
\begin{gathered}
\text { K. to W.: 'Ken:o 'tartineli 'im:aygaleil! } \\
\text { That-is-enough lie-still! }
\end{gathered}
$$

(So saying, K. picks up the body of his son, throws it down on W., and hastily fills the grave with earth. I'hinking that le has made an end of Wa:ku, K. returns towards his camp. K. notices a dark cloud rising in the west. He says:)
$\pi$. to self: 'ijinda 'waygalan 'komboi 'mari 'pijgi 'alui. You rising-in-West "there-will-be" thunder-and-lightning.
'Wilpi larn 'jap:arai 'pingi 'alui. 'K(e)iski:li 'tailpánili. Build-I-must sliclter from-the-storm. Here-it-comes close-overhead. (W., meanwhile, is digging his way througl the ground "like a wombat". K. makes three separate camps, one aiter the other, so that if one is struck by lightning he may use the other, or if one becomes wet, he may jump into the other; the third one is supposed to be substantial enough to keep out any amount of water. Rain drives him into the third hut.)
K. to self: He! He! 'Ki:kilinu 'jap:arai 'ila 'balkara 'maji 'kamarn Here-it-is in-camp camnot strike me in-this 'jap:arai. camp.
(The finish comes-lightning strikes.)
Comment: 'Tal!'tal! 'malajinu 'piggi ura 'halkeirujai. 'Keikil
Crash! erash! struck lightning struck-down. With-this
'wombi'larpil.
he-flew-into-the-air.
(W. digs himself out of the ground, "like a goana", but it is a great struggle, and the effort turns him into a hird, and he becomes the crow. He is ['wanga] (i.e. a "meat" or totem). Each has condemned the other to be a bird. They speak to each other, as birds :)

| W. to K. 'Ondadja! | 'woreimba | 'wombilarli | 'karkano |
| ---: | :---: | :---: | :---: |
| Brother-in-law | from-now | flying-in-the-air | high-up |

'keirama:'lina.
will-be-oul-country.


## WA:KH KILLS HIS SISTER'S SON.

(English Rendering of Text.)
AC'I 1.
$W$. to $K$. Brothur-in-law, you have a wife, but I have not received any in return. Give me one, for it will be pleasant to have a woman. If you won't let me
have a wife I will point a bone (perform magic bone rites) at you. I am going to lake the two sisters (for whom you are caring).
K. to W.: Wait a few days, brother-in-law. Come and see me again about the matter. Your sister's son is listening to us. He may hear about the forbidden thing that we are discrussing. (W.'s desire to wed women who stood in the socinlogical relationship of wife's mother-)
K. to Boy: Look! Your mother's brother is coming. Go and play. Your mother's brother aud I must talk of secret things. Play far away from the seeret. I forbid vou to listen to our talk.
K. to W. : I camot see a way in which to provide you with a wife; there is no suitable woman here.
W. to K. : I will point the bone at your, brother-in-law. I will not yield my rights to you.
$\boldsymbol{K}$. to $W$. : Have patience ; in a while I will see about it. By continually asking for a woman I might obtain one from the people. If not, I may be able to get one by threatening them. Perhaps the people will take pity on us. I will listen for any hint of good news. I will give you the tidings. Lfowever, it there is no word, we will have to consider the matter forther. If we remain quict these fellows will soon show us what they have in mind. Yon and I will sit and listen, and find out how they are dealing with the matter. Any good metrs will be told to us if we sit and wait. If they don't give us good news it will be their fault. We will sit down and atwait the turn of events.
W. to $K^{K}$ : I will return to my own camp now, brother-in-law. Some day I will return (to hold you to your word).

## ACT TT.

W. to self: I will go over and kill my sister's son,
W. to K. : How are you, brother-in-law? My foot is aching from walking. You go and hunt for game; my nephew and I will remain here. He is making a fire. Wo will share out this wallaby when it is cooked. Some of it wo will eat, but we will leave your share. When you return to where we are camped you will find it prepared, ready to eat. To-morrow we can cook the raw meat you obtain. We will sleep here to-night.

Boy to W . : Uncle, my belly is aching. It is full.
W. to Boy: Don't stop eating yet; let me cut you off one more piece.

Boy to $W$. : Impossible. I am full. I am thirsty. I am qoing to fetch water to drinks.
W. to Boy: Run down (to the water), have your drink, and come hack again.
W. to Boy (after an interval) : Go around the other way.

Boy to W. : Did you say the other side? What did you say?
W. to self: That will finish you.
K. to self: Why did I miss my aim at that animal: What is happening" Strangers must be coming. I will try athother one, and see what happens. (something is happening to those relatims of mine.) Mold. I'll try once more.
K. to W.: Brother-in-law, what has gone wrong with you?
W. to $K$.: Oh! brother-in-law, a qreat erowd of people have assaulted me with weapons. Some of them I chased away momuded; ofters ran away in fright ; still others ran away pieped full of spears. I was wombed hore myself with in spear. White I was being assaulted and hard-pressed they hit my sister's son. In the coufusion of rumning and chasing, mer sister's som was struck down. See the track of the serimmage there (on the ground).
$K$. to self: This relation of mine, this man, has murdered his sister's son.
K. to W. All we can do is bury him. Brother-in-law, dig a hole for your sister's som, so that we may bury him.
W. to $K_{\text {. }}$ : Brother-in-law, it is your turn to dig.
$K$. to W.: Brother-in-law, continue the digging once more. That is deep enongh. Sie down in the hole and test it. Lie down in the proper way, inst an sour sister's son will be placed. That is enough. Lie still.
$\boldsymbol{K}_{\text {. }}$. 0 self: What is that rising in the west ; there is going to be a thunderstorm. I must build a shelter from the rain. It is close overhead. It comes. It cannot strike rue in this camp.

Comancht: Orash struck the limhtning; struck him down, At this he flew into the air (i.e. became transformed into a hird),
W. to $\mathrm{K}_{0}$ : Brother-in-law, from now on our comery will be high up in the air.
K. to W.: Yon, also, brother-in-law, will make your camp high in the air.

## WA:KU SEEKS TIIE TWO SISTERS AS WIVES.

Following the erents given in the first half of the above recital, Watku was lonely, and beeanse he was cmming ("much more clever than Makwora men") he songht ways to overcome the two sisters, his mothers-in-law.

From the Manara Rangi he watehed the ['witulin] squatting beside a claypaa, gathering foot. His penis became erect, and he sang a song which had magieal power. Thereupon it became long, and, passing through the ground came up under first one of the women and then the other.

One said to her companion: "(Ohder sister ['wit:uga], I have a strange feeling. What is wrong?"

The other replied: "We had better escape; old man Wa:ku is trying to trick us."

They both hecame big with child. The younger sister one day went away alone, for the first time, aud gave birth to a male child. She made a bed of soft grass, with a bark eovering, and left the child, returning empty-handed to the camp, where her older sister had already finished food preparations.
"What is wrong to-day ['kaitjaga], have you brought no foody"
To this the younger sister replied: "I have found something; it will be company for us. He is a little man. Come down the hill in the morning, and I will show him to you."

At daylight they went down on to the plain. "What a fine fellow! A little hoy. Ile will catch game for ns. Keep feeding him in the serub until he grows up."

The elder gave birth to a girl in like mamer. People began to notice their unusual actioms, and say: "I'hey have broken the rules. There is something wrong."

The ['switulin] saw they were hated by their own people, and ran array, travelling all dave mint they came to the ['Baka], Darling River, at ['Pu:n'keiri], Poonchira, of maps. Here they met a man mamed ['Tulatu, also called ['Tjul:u], or ['Tndlu], which is now the name of the kingfisher.
'Tulat was a noted fisherman, for no one else on the river was skilled at catching ['parndu], Murray Corl (MoCullochella macquariensis). Other people ate their food raw, but "Tulsu had fire, and was able to cook all he ate. Ba:kindji people could not understand why he was so difierent. 'Tulan watched the two fine, strange women as they came towards him.
"What arte your" he asked, and they replied, "Makwora".
"Tou are 'right' for me, for I am Kilpara." Then they tonk him as their hasband, at ['Pum'keiri]. 'Tulan fed them both well, and they were happy. for theres was a higg "hole" in the river stocked with abondance of fish.

Wa:ku, mischef-maker, followed after the ['witnliy]. On finding them, he satd to himself: "Ah! There they are. I'll kill that fellow, and take the two womes for myself."

Even while he was still a long way off, it was his intention to kill 'Tulun, and so hedevised a trick. He pretended he was an old man, and lame.

The women, having never seen him at close quarters, did not recognize him, and took pity. ("It is a devil's trick still done to-day.") They fed and made a carup for him.

Watku then asked Tulu why he was able to catch fish when all other men had failed. "Tonl:n lod him to the water's edge, and showed him how to dive down and peer into hollow logs lying in the mud. We found a big cod in a specially large hollow tree trunk. They went down to see it. In diving, Wakk noticed the bones of meu and a large spear lying in the log. When 'Tula urged him to dive through the low and seeure the fish, he was too emming to agree, and said to himself: "This is the trap of "Tulan. It is for people who ask him how to fish. They are all relations of mine. Many of my uncles (mother's brothers) have already died by the spear of "Tulat."

Wa:ku argued with 'Tul:u, who, to demonstrate that it was safe, himself dived
into the end of the log, and followed the fish through it. Watkit mande splashing noises, pretending that he was struggling with the cod. As "lnl:u appeared, he grasped him by his long heard, and piereced his head with the fish spoar. As Wa:kn struck the fatal blow, the two women had a feeling that some harm had come to their husband. They were sure when they saw Wakn approaching alone and without fish.

After the evening meal they made a camp for three, pacing Wa:ku in between them (Fig. 1). They refused his embraces. When he had gone to sleep, the women commeneed to groan and complain of pains, and of a desire to defecate. Each picked up her child and skin rugs. Their aches were a sham. They defecated, one on eath side of the camp, and they practiond marice by singing to their excreta, making them grow lurge. They tanght them to say: "We are coming sorn, we have bellyache, and camnot relieve ourselves."


Figs 1-5. Ground sketches by Maraura man made in illustrating story of Wa:ku, 1. Wit:ku sleeping between the two sisters. in. Women fishing for bream: a. Limbari Lake. b. Creek. c. Nut. 3. The magieal tree. a. Camp. b. Tree. e, Gall lump. 4. The old woman's camp. a, Ruand Camp, of old wome in a cave. 1 , The two sisters aslecp. 5. Men slecp around the magie trec. a. Ring ut sleeping men. 1. The man Nankuru. e. The magic troe. d. and e. The two women.

Then they escaped with their children. Each time Wa:ku stirred and impafiently called to them, the faeces answered for the women. At last the old fellow impatiently picked up his swordstiek cluth, and in the darknens struck first at on of the two black objects beside the camp, and then the other. The mess splashed and blinded him. Ife cleared his eyes. Then he sang. a sone to the daylight, and the dawn came up more quickly than usual. He saw the tracks of the women on the western banks of the rivar at ['Puankeri], and followed them to |'Timbari], a lake where he satw smoke rising from a fire, near where a creck entered the lake from the river. The two women had stretched a net across the channel, and, in the late afternoon, were engaged ius catehing bream (Fig. 2) . They brought a few fish to him, and made their camp. Watku at first refused to cohabit with the elder
sister, for he desired the yonger, but they would not allow this, and he had to be ronlant with the older after all.

Next morning he sant them to fish while he nused the babies. Still maxions to mate with the somper one, be pinched her baby till it cried; but the two women would not be separated, and came up the bank together. His patience was exhausted. He prepared "a camp" for the two children on a low grm saplinge, and sang in the tree until it grew up quickly. Then he enused a large gum tree gall to appear haltway down the trunk (Fig. 3), to prevent the rescue of the children, new high up in the air.

Watku then said to the chidren: "When you see the smoke of a fire in the distance, ery for jour mothers."

The children cricd out, and the women ran to the tree, but conld not elimb it. Thes they ran hack to the Darling liver, and told all the Baskindji people. ['Namkuru], Pelican, was the head man, a Makwota man like Ka:uau. All the people eame to the tree, and tried for many days to clinb it ; none suceecded in stumombing the pall swelling.
'Then the ['witulin] heard of a elever Maramra young man, a Jiilpara youth named ['Walpu], who lived about Lake Vietoria. 'Walpu was a ['tambar], set aphart to undergo his initiation, and therefore plastered thickly with a coating of red ochroand oil. His body was ['tambarl. This yonth lived with his motleer in n cave.
"Hetch that hoy ; he is the muly one to resene your children." The women listened to the Bakindji men, and travelled in haste to Jake Victoria, accomplishing the joumey in a single day. 'Walpu was away huntime, They fold the old woman about the plight of their children.
'The old woman was not anxious to help. "If be wishes to go, I will send him when he returns. I don't want him to gro, for strange men may kill him."

The lad returned, saw the "two dine women" waiting for him, and learned that they were Malswora. He decided to go. Night fell, and the ['wituliry] made a bed for three people, for they wished to reward the south. The hoy remembered that he was ['tambar'], and that the red ochre was still on his body, and refused their admances. He left secretly in the early hours of the night to resene the chiledren.

The ohd woman slept in the nearby eave (Hig. t). At dawn she came and commikprated with the women. "Ile will not go with you. (Bo ahead; I will try and persuade him to go."

At noom, as the women trudged along, they found several fat opossums lying wh the track. They were presents from the youth. They ate them, and kept finding others until they were in sight of the strange tree. The lad met and warned them not to disclose his presence, but to make all the Ba:kinji men lie around the tree. The I'witulin] were told to sleep apart, close to and with their heads toward the butt of the tree (Fig. 5).
'Naukuru satw the women lyiug apart, and desiret greatly 10 crawl over to one of them, hut he saw that it could not be done while the children were still in the tree. Then the [tambar] youth sneaked into the circle, and quictly sang a magic soner or ['wimbairgalpal. Old men still use this song formula when they desire to kill yomg men. The song made everyone sleep soundly. Then be jumped between and over their hodies, and came close to the tree. INe sang another magie somyr, and thin had the effect of making the tree become small. He did not climb the tree, but merely picked the children off, and placed one with each of the sleeping women. He spoke to them in turu, and said: "That is your mother. When you see a fire blaze up in the distance yon munt "ry, "Whore is my mother?" "

He fled and lit the fire; the chidren cried, and the camp awoke. 'Nankurn was the first to see what had happened, and, leaping to the sides of the women's bedk, pretended that he was the one who hat rescued them. Byy this he hoped to win the tavours of the two sisters.

Ther refused 'Namkurn, and went away down the ['Ba:ka] without anyone during to stop them. They came to the Murray LRiver, or ['Rinti], at Wentworth, and followed it downstream to Lake Victoria, keeping on the northerm bank until they came to Morgans, where the river turns south. The Maratra call this the country of the [Tangasi]. They continued then on the wastern side of the strenn beyond the comitry known to an older generation of Marama.

Old Wa:ku, who meanwhile had discovered the espapo of the two women, followed them. He was not able to catch up with them, for they had hud is long start.

Solar the story is as told to the informant by people who were alive before the white men came to the Darling River. Of the story of 'Wasko and the two women in the comntry of the people he ealled the Murundi, less is known; bat the informant ontlined it as he had heard it from them in later years. Ahrundi people me now all dead. The Murundi were a horde or clan of the Ngaiawang tribe, who


Watku attempted to catelup to the women by taking a short cut across NorthWest Comer. At Loxton he made a cave, into which he went, and, travelling underground, conerged at Swan Reach. (The exit is a deep cave, which has been described by Parkin, 1938.)

When Wa:ku emerged from the cave at Swan Reach he was ruite stupid from being so long underground. Many people lived at this place, and Wazk did not. know quite where he was. In his own country, children followed their mothers (i.e. there was matrilineal inheritance of the moiety terms), but he was no ronfused that he "turned the people around, and made his children follow their eather". Ine also desired to injure the two women lor deserting him. Thus there are no monety terms amoner the Murandi people, and children inherit thoir fat here's totem.

In Nyainwang mythology the two women became the wives of the ancestral man Nourunderi [ytrunde'ri]. They escaped from him downstream and, after many vicissitudes, were magically turned to stone by him as two small islands (the Pages), wit the coast of Encounter Bay, while they were fleeiner out to Kangaroo Island, which was then almost comected with the mainland.

Ater further adventures, which are not described in Maraura lore, Wa:ku returned to his country on the Darling River, and revisited his brother-in-law. He then tow revengeom his sister's som (as told in the second half of the above recital),

## DISUUSEION.

These stories of the Marama people offer us more than the mere recital of a
 as well as some vague indications of their former history. Withont this insight, our tormal sociologien diagrams, our lists of food-plants and relations, and our tribal maps mean little.

The southward directiou of movement of the story is interusting. The migrations of people along the Darling and Murray Rivers, evidently one of the main eorvidons of Australia, in ancient times as well as in later days, is attested by many
 ing. Fraser (1892) mentions some Maraura as being on the Darling River in 1831, and moving downstream.

That the Crow stories are of rather remote oripin in time may also be deduced fom their widespread distribution in the sonthern hall of Australia. Usually the Crow is the clever and mischisvous one; Eagle a. good man, although in more northem acomots the rôles are occusionally reversed. There is also the suggestion of racial difterences between them, for Kispara men are tall and light-haired, while Makwora are traditionally short, stout, and dark-haired. In this native observation we have perhaps some confirmation of the prescnce in former times on Whe Darling River of two forms of the Australian aboriginal, a stout, heary, shome and hairy "Southern" people and a more gracile and rather glabous "Northern" folls.

In their poxsession ul skin cloaks and rugs, the practising of southern Rorms of initiation rites, and in the focussing of the interests of the stories on the avoidance of a Kilpara man, may be read the suggestion that the Makwora persous involved in the story were mainly of the "Southern" type.

Elements of this story are found in many places. The unclimbable tree one is present in an unpublished story from the hills behind Encounter bay. In an unpublished Tangane text, Crow kills his mothor-in-law, and prepares tracks of a


Fig. 6. Distrihution of Eagle amd Crow myths in Australia.
mock battle to deceive. At Waroonie IIill (Tindale, 1937) Eagle punishes Crow by setting him on fire, and turning him into a bird. The Crow wanders far into New South Wales. One of the lost stories concerned ['Wargen-'wargen], the town otherwise known as Wagga Wagga, which is named after Wa:ku.

Brough Smyth (1878, I, p. 425), Mathew (1910, p. 191), Roth (1903), have recorded myths of Eagle and Crow type. Roheim (1925) has utilized them in an analysis of the development of Australian totemism. Ife suggests that the "conflict myths" contain elements so old that they may well be a remembrance of that
theoretical stage in the development of man when the Cyclopean horde family was the important unit of social organization. In their present form the stories are scarcely likely to be so ancient, and the present text may perhaps be equally readily interpreted as indicating the conflict to be due to ethnic clashes of the type suggested herein.

## SUMMARY.

Crow and Eagle myths of the Maraura tribe of the Lower Darling River in New South Wales are detailed, partly in text, with interlinear translation. Wa:ku, or Crow, an ancestral human being, seeks to take his two sociological mothers-inlaw as wives. Having failed, he kills his sister's son, and is turned into a bird by Kamau, whom he has thus injured.

In the discussion, some evidence is deduced for the belief that the stories recall the clash of two peoples along the Darling River. This river has evidently been, for a long time, an important corridor of migration from north to south in Australia.

## REFERENCES CITED.

Fison, L. and Howitt, A. W. : Kamilaroi and Kurnai. Melbourne, 1880.
Fraser, John : The Aborigines of New South Wales, 1892.
Hassell, E. : Folklore. 1934, p. 331.
Mathew, J.: Eaglehawk and Crow. London, 1899, pp. 14-19.
Mathew, J. : Two Representative Tribes, 1910.
Parkin, L. W. : South Australian Naturalist, 19, 2, 1938, p. 6-9.
Roth, W. E. : North Queensland Ethnography Bulletin, 5, 1903.
Smyth, R. Brough: Aborigines of Victoria, 2 volumes. London, 1878.
Tindale, N. B. : Legend of Waijungari . . . . and the Phonetic System employed in its Transcription. Rec. S. Aust. Mus., v, 3, 1935, pp. 261-274.
Tindale, N. B. : Native Songs of the South-East of South Australia. Trans. Roy. Soc. S. Aust., lxi, 1937, pp. 107-120.
Tindale, N. B. : Two legends of the Ngadjuri Tribe from the middle north of South Australia. Trans. Roy. Soc. S. Aust., lxi, 1937, pp. 149-152.

# INTERNAL PARASITES OF THE PIGMY SPERM WHALE 

By T. Harvey Johnston and Patricia M. Mawson, UnIVERSITY OF ADELAIDE.


#### Abstract

Summary The material on which this report is based was obtained from three pigmy sperm whales, Kogia breviceps (Blainville). From one specimen, stranded at Sandgate, Moreton Bay, Queensland, $2^{\text {nd }}$ June, 1933, nematodes belonging to Anisakis and Porrocaecum and fragments of a large species of Crassicauda, were obtained by Mr. H. A. Longman, Director of the Queensland Museum, Brisbane, and forwarded to us for identification. The other two whales were a female and its calf, which were stranded at Port Victoria, Spencer Gulf, South Australia, in April, 1937, both specimens being obtained by Mr. H. M. Hale, Director of the South Australian Museum. From the adult we collected the same three species of Nematoda (Anisakis kogiae n. sp., Porrocaecum kogiae n. sp., and Crassicauda magna n. sp.), as well as encysted larvae of a cestode, Phyllobothrium delphini. The calf contained Anisakis kogiae. The stomach of each of the South Australian whales contained beaks of cephalopods, Sepioteuthis australis (identified by Mr. B. C. Cotton).


# INTERNAL PARASITES of THE PIGMY SPERM WHALE 

By'T. harvey johnston anid Patricla m. Malvson, Univermiy of Avelaide.

'Text-fir. 1-16.

The material on which this report is based was obtained from thece pigny specrm whates, Kogu-breviceps (Blainville). From one specimen, strauded at Sandgate,
 Porrocuctum, and fragments of a large species of Crassicaudt, were obtained by Mr. II. A. Lomgman, Lireetor of the (queensland Musemm, Buishane, and forwarded to us for identification. The other two whales were a female and its calt, which were stranted at Port Victoria, Spencer Gulf, South Australin, in April, IV37, both suecinens being ohtained lye Mr. H. ML. Hale, Disector of the South Australian Musemm. From the adult we collected the same thees species of Nomatoda (Anis-
 well as encysted larvae of a cestode, Phyllobothrium delphini. The call contained Anisukis kogiue. The stomach of each of the Sonth Austrulian whales entained beaks of cephalopods, Scpioleulhis australis (iclentified by Mr. 13. C. Cotton).

The only helminth previously recorded from this rare whale is at Phyllobothriid cestode larva, Monomyma ammathii (Moniez), whose cecourvence was reported by Baylis ( 19206,$666 ; 1932,410)$. From the large sperm whate, Physelor catudon, two species of nematodes (Aniselis spp.), two of Acanthocephala (Bolbosomo spp.), and a cestode larva (Phyllobothrium physeteris) have been recorded.

The types of the species described as now in this paper ure deposited in the South Australian Musetm, Adelaide; paratype material has been placed in that mastinution, as well an in the Quernsland Intiseum, Brisbane. Acknowledgment is made of the kindness of the Directors of those Museums, Messis. Hale and Longman respectively, in giving us the opportmity to study the collections; and of assistance obtained through the Commonwealth heseatch grant to the University of $\Lambda$ delaide.

Anisakis kogiae 11. sp. (fig. 1-6).
From the stomach of Koym breviceps, Port Victoria, Spencer's Gulf, South Australia; and Moreton Bay, Queensland.

Male $5-5.5 \mathrm{~cm}$. ; female 4-6i-5 cm. Interlabia absent. Dentigerous ridges prescut, bilobed on cach lip, with about ten feeth on each lobe. Lips of approxi-
mately similar form and length; dorsal 0.05 mm . $10 \mathrm{ng}, 0.1 \mathrm{~mm}$. wide at base; laterals $0.1: 1 \mathrm{~mm}$. Wide, anterior end with shighty narower hilobed part not ver. distine Ifom latal portion; two double papillat on dumal lip. a donble papila om each ventro-lateral. Exeretory pore possibly between ventro-lateral lips. Cervical papillae at 0.44 mm ., and nerve ring at 0.31 mm . from head end. Cutiche annulate, also transversely and finely-longitudiually striate.

Male. Spicules unequal, 1.4 and 1.9 mm. Iong in a male 40 mun. in length. stont, tapering to rounded point. Ahout it paiss of preanal papillar, arrangod more or less in two longitudinel xows on cach side, extending for about $2 \cdot \frac{4}{} \mathrm{~mm}$. in front ol anns; a pair of adamal, two paids immediatrly postanal, stheneded by four pairs of stalked postanala arranged in two troups each of two papillar. ('andal alae abont 0.35 mm . in maximum width, reached just in front of level of anns. Tail (0.18 mm. long.

Female. Trail bluntly conical, $0 \cdot 4 \mathrm{~mm}$. long, sometimes with small papillalike termination. Vulva a little in front of mid-body; vagina 2.2 mm . long ; median uterus 6.75 mm . Egges in upper parts of uteri 0.32 by 0.25 mm .

Two species of Anisukis have been deseribed from the sperm whale, Physelor rutodn-A. physetcris Baylis (1923) and A. catudentis Baylis (1929). From the former it differs in size, length of s.phenkes, and in fle womber and arranement of the rambal papillace. It in distinguished from the latter in leing shandor, and in possessing less prominent lobes on the lips, shorter tail and spicules, while the nerve ring and cervical papillae aro more anteriorly situated. From do simplex (Rud.), a species widely distributed amongst Celacea, it differs in having the dursal lip slighty latger than the ofhers, an smaller mumber of postanal papillaw, und spicules unequal. From A. kifkenthati (which may perhaps be synonymons with A. simplex), it is distinguished by the possession of shorter length, shorter. spicules, fewer and differently arranged preanal and postanal papillae. It is shorter than A. dussumirri (Bemerten), aud has fewer postanal papillae. It differs

Figs 1-5. Anisalsia logiac. 1. head, pentral viow; 2. head, dorsal view; 3. unteriur can; f. hond anterior view; 5 . tail of male.

Figs. 0-8. Porrucuecum kogiac. B. anterior end; 7. tail of male, ventral; 8, heanl, hurenl.
Figs. 9-10. Crossiroudu mogna, 9. head, 1ateral; 10. head, dursal.
Figs. 11-10. Phylhohothrium delphini. 11-12. cyats, slightly flattened; 13. antoein end of neules romored from cybt and comprewsed; 14. Two bothridia and apex of sealex, showing arrangementio eferetory canals; 15. phexus of ducts leclonging to the ventral exeretory system of unu side in Lhe posterior part of the eyst; 16, pordion of dorsal plexus of whe side in the posterion region of tho eyst, arrows indicate direction of vestral canal proceding towarts the cxurulury hadder.

Figs. $1,2, \pm$ aud 8 are drawn to scale below fig. $1 ; 5$ and 7 to scalo brside fig. 7; 3, 9 and 10 to scale besintt lig. $3 ; 11,12$ and 13 to seale beride fig. $11 ; 14$ and 15 to seale heside fig. 15. a m, apical muscle; ce, caecun; ep, cervical papilta, de, dorsal exccetory canal; di, dureal lip; $i_{1}$ iutestine; $n$, norve ring; $u$, wesophagus; $v$, veutriculus; $\nabla c$, ventral excretory camal.

from $A$. typica (Dies.) in the form of the lips, relatively shorter ventriculus, shomer oesophagus, less difference in the size of the two spicules, and number and arrangement of the postanal and preanal papillae.

Porrocaecum kogiat n. sp. (fig. 7-8).
From the stomath of Kogia breviceps, Spencer's Gulf, South Australia; and Moreton Bay, Queensland.

Male 2-3 em, female $1 \cdot 5-3 \mathrm{~cm}$. Cuticle with anmatans but without fiver
 wide at hase; ventro-laterals about as long, but: narrover; internally-projecting bilohed part of each lip narrow (atont abip. wide, $10 p$ long in donsal lip), with rather long teeth in dentigerons ridge; one papilla on cach ventro-lateral lip, two on dorsal.

In a female $1 \cdot \bar{b} \mathrm{~cm}$. in length, owophagns 2 mm . long, $1: 7 \cdot 5$ of body leugth, anterior portion 1.75 mm , ventriculus 0.35 mm . Longi and usually more or less straght ; intestimal caterm slightly tomen than ventriculns. Nerve ring $19: 3 \mathrm{~mm}$. from the head end ; ecrvical papillae just behind nerve ring. Exerctory pore apparently at same level as nerve ring.

Male. Spicules mequal ; 0.17 and 0.9 mm . Iong in a worm 14.7 mm . long fonger spieule $1: 7 \cdot 3$ of body length; tapering. Abont 65-70 paiss of preanal gapultate arranged mure or hos in two longiturlinal tines laterally. the mone ant rion being seattered, the series extending to 0.9 mm . from posterior end of wom. Six pairs of postanal papillae armaged in two gronps of theer; the unve anterion group containing larger papilade, the middle one beine double. Three transerse rows of denticles just posterior to anus. (Gubernaculum present.

Female. Tail conical, pointed, $1: 50$ of borly length. Vulva a short distance behivel ocsophagus.
$P$. Rogive appears to be the first member of the genus to be described from eetaceans. It shows resemblance to $P$. decipiens, a widely distributed parasite of seals, bint dithers in being generally shorter, in the position of the vulva, in the presence of three rows of post-anal dentieles, and in the possession of mequal spicules and a greater number of preamal papillae.

Larvae of Porrocucoum were present amongst the material, these showing the same relative leagth of the oesophagus as in the adults. The three lips were not differentiated, but a larval tooth was present.

Crasicauda magna n. sp. (fig. 9-10).
From Koyik brevicops, Port Victoria, South Australia; and Moreton Bax: Queensland.

Whe south Australian worm, a female, was dissected from the neck region, where it ocemred entwined in the connective tissue, lying in a very narrow thmel. Its mesence was revealed during flensiug, the parasite having been cul across in several places. On account of the tangled manner in which it lay, it was dittienth to extruct it. The fotal length of the fragments obtamed measured. When in $n$ prescrved state, about 1 welve feet ( 3.7 metress), the longest umboken piece beiner over nine feet. The posterior region was not seen, and fragments were still traceable in the habher when colloet ing eeased. The speries appears to be the lomgest nomatode yet described. The Queensland material is also fragmentary, and has the same appeatance and diameter, and can safely be assigned to the same species.

Maximun diameter of preserved material $:-4 \mathrm{~mm}$. Ifead rounded, with two small lips in lateral positions; the two lateral and fom snbmedian papillae described by Baylis us charateristic of Crassicauda. Were not observed. Buceal "avity strongly chitinized; 0.14 mm. Inug; width from side to side 0.06 mm ., from dorsal to ventral walls 0.08 mm , Head, measured acoross base of buecal cavity, $0.48-0.53 \mathrm{~mm}$. Oesophagus total length 1.8 mm . firs 0.3 mm narrower than the remainder. Nerve ring 0.35 mm . From head end. Intestine 0.55 mm . wide materiorly. Eyges extremely abundant, $40-42 \mu$ by $23-28 \mu$, thiek-shelled.

Our species caceeds 6 . crassicaudo and $!!$ gitialiand in diameter and in the recorded length of frugments. Its buceal carity is relatively smaller than in any species in which it has heen deseribed. The cages are moth smaller than those retcorded for other species. C. bennelli appears to be a laryer worm than C. mugne. its body diameter ranging to 8 mm , but the frumments deseribed were shorter. O. boopis is abutus wide as C. mumul. O. bentettiamd C. boophis ato known only from posterine ends, while we have seon ouly in unterion bud from cach collection. The ags shells of (?. magna do not show the thickened midregion which seens to be chatacteristic of those of $C$, bennetti. Our species appears to be nearest to $U$. boopris from the hmmp-back whale, Mcyaplera boons ( $=$ M, notrosa).

Crussicaula is restricted to cetaceans, C. magna beiner the sixth species to be
 of thern.

The type ( $\because$ crassicauda (Creplin, 1829) originally deseribed as a Filarid. came from the urethra af a northern rorqual identifiex ans balarima rostroba, but
 amd Atkinson (1911: 1915) ereeted ('rassionude to receive a parasito reyarded h... them as belonging to Creplin's species, hut whained from a humphaek whatw, Megaptera notosa Boun, from worthern New Zealand watross. Lamilon (1916, 132) resorded the presence of $C$. massivender or a closely-related species in the


Ih, and $/ 3$. lopreatis Less., especially the first-named, in Scottish waters. Baylis (1916) gave udewription of the head region of a long fragment taken from the kidney of Cuvien's whale, Ziphius ravirostris, the worm being regarded as 6
 assisned doubljuly in (\% bonpis, is species which Paylis ( $1: 120,411$ ) erected to reveive Leiper und Alkinson's specjes, the latter being shown to be distinct from Creplin's. The truc C! rowsicaudu was redescribed, and hoth species were figured. materiat of the furmer having been collected from the blue whale, at Deception Island, sonth Shetbands. The presence of the genus, represented possibly by a third aperies. Wis memeded hy lbaylis (1920, 418) from the kidney of Hypervorton sp). from the south ordneys. Additimal infomation requeding ('. crussumeln
 rial from Myperoodon was described by Spaul (1926) ns C. bennetti. We consider it likely that Baylis's species from Ziphius was C. bennetti rather than ( $\because$ bumpis. Yorke and Maptestone (1920) republished Baylis's figures of ('. erassiramia. Hoeppli and Hsị (1929, 3is) described Onchorevea fuelleborni from
 transferved it to Coussicoudn. doyens und Baer (19:31) recorded C. crossicaulu from the mammary gland of Tursinps tursio Fabr. from the Mediterranean, but Shergabin and Audreata (19:34, 28) considw that the parasite prohable did not belong to that species, and proferred to designate it as (?rassiraula sp. In 193: BayLis, in his lish of worms parasitic in Cetacea, mentioned ( $p, 410$ ) that the oriminal


 C. bemotti; and grave a key to these fonr species. liaylis (1920, 1920) hat already expressed doubts regarding the correctness of assigning the genus to the Filaridate. Yonke and Maplestome (1926, 437) erected (rassicandinae (Filariislac), but Skrjabin and Andreewa (1934) considered that the genilus belonged to the Spirurata, and placed it in a separate family, Crassicnudidac (1934, 26-28).

## Pityblobotarium ded.pilini (Bose) Beneden (fig, 11-16).

A number of cysts, orate to cylindrical and measuring (when uncompressed) $7.0^{\circ}$ to 13.5 mm . long by 5 to 6 mm , wide, were found in the hlubber of the tail region. A spherical form, $7 \cdot 5$ mus. in dianneter, was also obtained. The smathest

 20. mm. in one $15 \cdot 5 \mathrm{~mm}$. lony, in which the head and anterior part of the neek
wore bent to hecome directed toward the region of invagination. The scolex was only shighty wider than the neek, the edges of the hothridia bemer confiderably folded. The tissues of the cyst, except the invaginated portion and the outer body wall, were eomposed of a very loose parenchyma. The width of the invaginated neck region, influding the denser tissue surrounding the eavity, was ahout onefifth to ome seventh that of the lightly eompressed eyst.

The bothritia varied in dimensions according to the state of contraction and folding. They were usually about 1.15 mm , loug by 0.5 mm . broad, with the margin thrown inte rather dep folds, except anteriorly. Each was provided in front with in well-ikeveloped sucker 0.16 t0 0.2 mm . in dimmeter when uneompressed. The from dut of the scolex projected as a low dome with a very weak apical muscle plag seen only in favourable preparations, and measuring 0.07 mm , in diameter. The neck shoneri definite transverse musculature, closely arramped and heginuing ut about one-quarter its length from the head, and becoming wore marked as it approached the bladder.

The excretory syatem was characteristio. The terminal bladder was usually somewhat tristed. 'lhe ventral and dorsal canals of each side suldivided and muderwent andstomoses, so that four somewhat laddr-like plexuses were formed, the narrower dorsal vessels more or less accompanying the wider ventral canals. The latter anastomosed to a greater extent than the dorsals. The arrangement of part of the system of one side in the vienity of the bladder is shomm in figs 15 and 16. The plexuses extended forwaris in the tissues of the cyst almost to the anterior end, where only the four chief canals passed over into the wall of the invagimated region, the two camals of each side then becoming wery closely approximated and thrown into very close zigzags. These camals formed a series of loops in the seolex, the where canals penetrating the bothridia, the arrangement beiner shown in fig. 14.

The form of the bothricia indicates that the larva belongs to Phyllothothrium and not to. $1 /$ ontr!!!!ma. In order to determine its relationships more clonely at sur. vey of the recorded occurrences of similar cysts in cetareans is necessary.

Bose (in Bufton, Hist. Nat., 3, 1802) reported findinin a larval eestode, named by him hydulis delphinit, in fatty tissue of Delphinus detphis. Laennec, in 1804 , regardal the hydatid of the dulphin as Cysticerens delphini. Rutolphi (1810,265) mentioned liceli's barlier reeord of eysts in the visecra and intestine of $D$. celphis, and placed them as Vermis delphini-delphis amongst doubtful genera. In 1819 Rudulphi reforred to the same repord (1819, 1s6 and 7日月), using the term delphini
 the doublinl speeies as Cysticercus dolphimi, though he wave a short account of it
(1419, $\overline{\text { int }}$ ) hased un badly preserven material collented by ('bamisso, no locality or host being mentioned.

In 1887 Bemmetr referred to the occurrence of numerous eysts of a species of





 Bemmett's statement regarding the lost. Diesing, in a later work (1864), wave u
 cognizat his error rearding the host for Bumett's cyst, and ealled it (p, fi7) (? pheyscleris 13 emnett.

Cobbold (1879, 421-2) referred to some of the foregoing records as well as to some relating to the presence of monostomes in the body wall of cetaceans, remarking wn the possibility of such trematodes being confused with eysticerei. The ocanrence of 'Phylhoothrim larvae in Physctor tursio (apparently Tursiops lursio, i, © T. Trumatus) Was also noted. ITe also mentioned that Van beneden (1870) consideved (! delphini to be an inmature stage of Phyllobothrinm delphini found uhmmantly in a specimen of $D$. Idphis in 1868 . This latter material han been
 1885 to Phyllotothrinm delphini from Delphinus tursio. Beneden, in 1888, re-
 ramirastris. Moniez (1889) described as a new species Tacnia grimaldii, in its
 neck, but the accoment was incomplete Jeidy $(1891,418)$ gave a very brief ac-
 (i.e. M. Didens). Stossich, in 1898, reported sholex Iolphini from the rectum of Grompus ofriscus in the Adriatic.

Jinton (190h) gave a description of some cysts from Jagenorhynchus acuths from New England waters (U.S.A.). There were two kinds present, the smaller belongin!" to Phyllabothrium, while the larger were described as Tarmia chumissumi. He stated that IRdoiphi's Cysticerens relphini (1810) appeared to belong
 with ' $T$ ', chamissontio. Linton vegarded the lattex as being an immature stage of a species of Tacmu or closely-related genus, whose adult condition was more likely to be reached in a mammal such as the killer whale, Oreints orch. A feature of his species was the presence of a relatively very long invaginated region. He was evi. dently maware of Moniez's observations.

Baylin (1919) gave a detailed acenunt of Monicr's cysticercus, assigning it. to Monoryuma, its nearest known species being M. eleqans Monticelli, 1890, as deseribed by Zschokke (1889) under M. perfectum Dies. He also stated that Ntenotroniu delphimi Gervais appeared to be jdentical with, or closely related 10 , the cysticercus. Baylis's material was ohtaned from Lagonomhmohs arutus from Fuglish waters.

In 1924 Meggitt assigned to Monoryema I'acnut grimaldia Jonis\%, T, chamissonei Linton, and shomburniu dolphini (dervais, while ('ysticerus physetrris Dies. was placed under I'hyllobatheium. Southwell (1925, 152), in his monograph of the Tedraphyllided, rephblished Levidy's secount of Phyllohothrium inchontum. and stated that the latter could not be differentiated from $P^{2}$. lactuca. IIe treated
 stated that Gysticercus I'acnice grimoldii prohably belonged Io Phyllohothrium (p.165). He placed l'o delphini Gervais (i.e. Tacnio rhamissomii Lintom) mononest. the cloubtful spereies ( $\mathrm{p}, 182$ ).

Baylis (1926) recorded tho accurvence of (?. Tapnias grimataii in a pigmy sperm whale, homio sp. Broviceps, from southern India, and reported that O. difhimi Rod. (187!), nere. 1s10), as well as the eysts descrihed by Moniez, Gervais, and Linton, were all closely related, and possibly identical, forms. In 1930 Baylis published his valmble list of worms recorded as parasitic in Cetacea.

We may now review the facts noted above. It is obvious that there afre Lwo distinet types of Phyllohothribd cysts to be fonnd in cetacenns, both of them origi. nally deseribed with the specifie nume delphini-l! delphani (1hose, 1802), Rud, 1810 (perhapss Laemnec, 180t), and C. delphemi Rud., 1819 . The former belonges to khyllobothriam, and includes also lhyllobothrium sp. of Lintom ( 1905,810 ) and $I^{3}$ oldphimi Beneden (1870). C. detphini Rud., 1819, is apparently the sumu as Taenin grimaldii and $T$. chamissomi and has been adedtutely described by Baylis. This latter group represents the larval stage of a specise of Monorygma.
 Tergitt, sime Rudolphi's (1sl9) aud Gervais' names are insalidated by bose (1802) and Iudolphi (1810). Alcnotemine (lervais is a synonym of Monarygmon. 'T'o which of these two groups the other eysts, to which some form of sejentifie name has been given, shoth be assignted, camot be determined as yet. Most of them are nomina nuda, Baylis listed $P^{\prime}$. physeteris (Dies.) as possibly identical with $P$. detphimi Bose.

Sonthwell's statement (1025) that $P$. inchoutum Leidy is a symomy of $P$. lachuca, is mot supporded hy our observations. Leidy's very brief aceome can be applich to our eysts, and the form of the seolex and of the bothridis in our speeimens is wen that of $I^{\prime}$. lucturn, hat resembles more elosely that of $I$. wnitaterate
 the hothridia are much more elongate and narrowed then in the European species. $P$. inchoatum can be regarded provisionally as a synonym of $P$. delphini (Bose). We attribute our cysts to the latter species.

Kogia breviceps is now known to larbour two kinds of Phyllobothrid eyststhose helonging to $P$. delphini and to Monorygma grimaldii. The adult, stage of each most oceur in am plasmohanch, probably one of the larmer sharts such as the widely distributed white pointer (Carcharodon carcharias L.) and tiger shark (Galeocerto arcticus Fab.), or perhaps the Greenland shark, Scymaus or Somnosus glacialis and its southern representative, which is not as yet identified deluitely. ( ${ }^{1}$ )

Linton (1922) described Phyllobothrium tumidnm from Carcharadon capchurios and Isurns defayi from Massachusetts waters. The form of the seolex and of the bothrislia is essentially the same as that fighred by us (compare Linton's fig. 15 and nur fis. 14). IIe believed that cestode larvae found in sequid and deseriber by Leidy in 1887 as Tachia Loliginis, and trausfersed in 1890 to Tetrobothrium or to Phyllobolhrium, represented early stages of the parasite. He recorded finding this type of larva in cephalopods and various fist, and noted its very close resemblance to Beneden's fiyure of the scolex of $P$. delphini Ben., 1870, from the blabher of a porpoise. We reqatel $P$. lumidum Lintom as the adult staten of $P$. Itphimi (Bose) Beneden, the latter name having priority; aud consider that. P. inchoatum Leidy is also at synouym.

It ray be pointed out that scals in the Antaretic and subantarctio may cons. tain large I'hyllobothrium efsts (distinct from, but closely related to, P. Aclphini) in the bluhber (Johnston, 19:37, 21-3t), while in species of Monorygma, H. macquariae Tohnston ( $1937,34-30$ ), has been deseribed from a suthern Nommonts sp., the cestode later being considered (1937, 59) us identical with M. magmam (Hart, 1936) from the Greenland shark. Large sharks like the whito and tiger sharks aroknown to prey on seals in the vicinity of P'ort Lincoln, South Anstralit, and could probably devour dolphins and small whates.

Blainville, in 1895, published a short acement of a smooth eyst foum at Haver,
 stated wis a synonym of Micropteron sowerbionsis, i.e. Mcsoplodon bidens. Thes parasite was named Monostomum delphini by Diesing (1850, 390) and M. Wainvillei by Cobhold in 1860. The latter (1879) refersed to the possibility of the species oceurring in Hyperoodon and Lagenorhynchus, and to the possibility of monostomes and cysticerei being confused. Branden, in 1892, placed Diesing's

[^11]species umter Monostomulum. Price (1930, 57) repmblished Blanville's aceoment, stated that the organism was not likely to be a larval monostome, and suggested that the worm was the metacercaria stage of . I/ario or a related trematode genus, and accordingly transferred it to A gamodistomum. It seems to us that the species may have been a Phyllobothrid cysticereus, perhaps $P$. delphini (Bose).

## REFERENCES.

Baylis, II. A. (1916) : On Crassipanda erascicanda (Cropl.) and its hosts. A.M. N.II. (8), 17, 144-48.

Baylis, H. A. (1919) : A remarkable cysticercus from a rare dolphin. A.M.N.H. (9), 3, 417-94.

Baylis, H. A. (1920): On the Classification of the Ascaridae T, etc. Parasitol., 12. 253-64.
Baylis, H. A. (1920) : Observations on the Genus Crassicanda. A.M.N.II. (9), 5, 410-19.
Baylis, П. A. (1922) : Note on the Iralitat and Structure of Crassicauda, Parasitol., 14, 9-12.
Baylis, 1I. $\Lambda$. (1926) : Note on the Ocenrence of "Cysticercus Taeniae grimaldii" in a New Host. A.M.N.H. (9), 18, 665-67.
Baylis, H. A. (1932) : A List of the Worms I'arasitic in Cetacea. Discovery Reports, $6,393-418$.
Bemuett, H. D. (18:77): On the Natural History of the Spermaceti Whale, P.Z.S., 1837, 39-42.
Cobbold, TT. S. (1879) : Parasiles: A Treatise of the Entozoa of Man and Animals.
Creplin, F. C. (1829) : Filariue et Monostomi speciam novam in Balaena rostrata repertain. Terth. d. Li, Loop. Chrol. Ali. Saturf. (Bomn.), 14 (2), 871-82.
Diesing, K. M. (1850-1) : Systema helminthmu.
Diesing, K. M. (1864) : Revision der Cephatocotylecn. Abr. Paramecocotyleen. Sb. K. Ah. Wiss. Wien, 48, 200-'345.
Diesing, K. M. (186t) : Revision der Cephaloentyleen. Aht. Cyeloentyleen. Sh. k. Ak. Wiss. Wien, 49, 357-4iso.

Gervais, II. (1870) : Sur les mozoaires des danphins. C.Rr. Acud. Sci. Paris, 71, 779.

Hamiltom, J. E. (1.916) : [Picport on Bermullyt Whating Slation.] Brit. Assoc. Rep. (1915), 124-46.
Hoeppli, R. and IIsii, H. F. (1929) : IIchminthologisehe Beitrảge aus Fukien mut Chekiang. Areh fo Sthiffs. u. Tropen-Ily!.. ish, Beikeft 1, 43 pp.

Johnston, T. II. (1937) : The ('estuda of the Australasian Antaretice Expedition. Austr. Antarct. Exp. Sci. Rep., Ser. C, 10 (4), 74 pp.
Joyenx, C. and Baer, J. G. (1931) : Sur la présencu du nématode Crassicauda erassicauda (Creplin, 1829) chez un dauphin des côtes de la France. Bull. Soc. Path. exot., 24, 198-203.
Leidy, J. (1891) : Notices of entozoa. Pr. Acad. Nat. Sci. Philot. (3), 20, 410-18.
Leiper, R. T. and Atkinsou, E. I. (191t) : Helminthes of the british Antaretic Expedition, 1910-1913. P.Z.S., 1914, 222-26.
Leiper, R. T. and Atkinson, E. L. (1915) : Parasitic Worms. Brit. Anterct. (Terra Nova) Exp. Nat. Hist. Rep. Zool., 2 (3), 19-60.
Linton, E. (1905) : Notes on Cestode Cysts, Taenia chamissonii, New Species from a Porpoise. Pr. U.S. Nat. Mus., 28, 819-82:.
Linton, E. (1922) : A New Cestode from the Man-eater and Mackerel Sharks. Pr. U.S. Nat. Mus., 61 (12), 1-16.

Meggitt, F. J. (1924): The Cestodes of Mammals. London.
 C. R. Acad. Sci., Paris, 109, 825.

Price, E, W. (1932) : The Trematode Parasites of Marine Mammals. Pr. U.S. Nat. Mus., 81 (13), 68 pp.
Rudolphi, (. A. (1810) : Entozoormm sive verminm intestinalium historia naturalis. Amsterdam.
Rudolphi, C. A. (1819) : Entozoorum Synopsis. Berlin.
Skrojabin, K. 1. and Andreewa, N. K. (1934) : Un nonveanx nématode, Crassicauda giliakiana m. sp., trouvé dans reins de Delphinoptera leucos. Ann. Parasitol., 12, 15-28.
Southwell, T. (1925) : $\Lambda$ monograph of the Tetraphyllidea, with Notes on the Related Cestodes. Mcm. Liverpool Sch. Trop. Mel., 2, 368 pp .
Spaul, E. A. (1926) : Crassicauda bennetti, sp. n., a New Nematode Parasite from the Bottle-nosed Whale (IIyperoodon). A.U.V.V.H. (9), 17, 581-85.
Stiles, C. W. and Hassall, $\Lambda$. (1899) : Internal Parasites of the Fur Seal. Rep. Fur Seal Investigations. Washington, D.U., 3, 9Y-177.
Yorke, W. and Maplestone, P. A. (1926) : The Nematode Parasites of Vertebrates.

# STUDIES IN AUSTRALIAN GAMMARIDEA 

(1) THE GENUS CERADOCUS

By Keith Sheard, Honorary Assistant in Zoology, South Australian Museum


#### Abstract

Summary This revision has been made possible by grants from the Trustees of the Science and Industries Endowment Fund of the Council for Scientific and Industrial Research and from the Board of Governors of the Public Library, Museum and Art Gallery of South Australia. Acknowledgements are also due to the Council of the Canterbury University College, New Zealand, for the loan of the whole of the extensive Chilton collection of Amphipoda; to the Trustees of the Australian Museum, Sydney, for the loan of their collection, including many of Haswell's type specimens; to the University of Sydney for the loan of the Macleay collection; to the Trustees of the National Museum, Melbourne, for the loan of the Sayce collection; and to Mr. H. M. Hale, Director of the South Australian Museum, whose extensive collections from South Australian waters provide a basis for these studies.


# STUDIES in AUSTRALIAN GAMMARIDEA 

## (i) The Genus CERADOCUS

By Keith sheard, Honorary Assistant in Zoology, South Australian Museum.

Text-fig. 1-8.
This revision has been made possible by grants from the Trustees of the Science and Industries Endowment Fund of the Council for Scientific and Industrial Research and from the Board of Governors of the Public Library, Museum and Art Gallery of South Australia.

Acknowledgments are also due to the Council of the Canterbury University College, New Zealand, for the loan of the whole of the extensive Chilton collection of Amphipoda; to the Trustees of the Australian Museum, Sydney, for the loan of their collection, including many of Haswell's type specimens; to the University of Sydney for the loan of the Macleay collection ; to the Trustees of the National Museum, Melbourne, for the loan of the Sayce collection; and to Mr. H. M. Hale, Director of the South Australian Museum, whose extensive collections from South Australian waters provide a basis for these studies.

This paper is the first of a series redescribing early Australian type Gammaridea, together with related forms collected later. Keys to the species and genera dealt with will be given where possible, but it cannot be sufficiently stressed that these do not necessarily express relationships, but are designed to permit workers to effect a preliminary sorting-out of material.

The Ceradocus group of genera appears to consist of the following, which may be separated by the key given below :

Metaceradocus (Chevreux 1925, p. 304); Ceradocoides (Nicholls 1938, p. 123); Paraceradocus (Stebbing 1899, p. 426) ; Ceradocopis (Schellenberg 1926, p. 365) ; Ceradocus (A. Costa 1853, p. 170) ; Quadrivisio (Stebbing 1907, p. 160) (=Pseudoceradocus Shoemaker 1933, p. 11) ; Bathyceradocus (Pirlot 1934, p. 223).

Ceradocus Group.
Gammaridae with the following characters (adapted from Stebbing 1906, p. 364).

Pleon segments 4-6 not coalesced; pleopods with two rami; uropod 3 with two elongate rami ; telson cleft; antenna 1, accessory flagellum of more than 2
segments; body not at all me searcely carimate, without groups of dorsal spimules; uropod 3 rami not very unequal.
a. Maxilla 1, inner plate setose at apex; maxilla 2, inner plate setose along inner margin.
b. Antenna 1, shorter than antenna 2

Metuecradocus
(M. perdentatus Chevreux. Senegal.)
bb. Autenna 1, longer than antenna 2.
c. Peraeopors $3-5$ with bases linear ..

Corulucoides
(C. chiltoni Nicholls, Commonwealth Bay, Mat(quarie Island.)
 ramphopus Stebbing, East Australia.)
at. Naxilla 1 and 2, immer plate setose along inner margin.
d. Tropod 3, outer ramus 2 segmented; luwer lip without
imner lobes .. .. .. .. .. .. Ceruducopsis (C. Wergucteni Schollenberg, Kerguelen.)
dd. Uropod '3, outer ramns normal, luwer lip with inner plates.
e. Side plate, gnathopod 1 produced lorwards to an acute anyle.

1. I'leon segments postero-torsally multidentate (Denticeradocus).
C. (D.) rubromaculatus (Stimpson), O. (D.) ramsayi (Hastrell), C. (D.) serratu (Spence Bate), C. (D.) sellickensis, C. (D.) burrierensis (Australian seas) ; O. (D.) chiltoni (New Zealand); C. (D.) chevreuxi (Pacific), C. (D.) barnardi (South Atrica).
2. Pleon segments not postero-dorsally multidentate. Ceradocus (Coradocus).
O. (C.) orchestiipos A. Costa (Mediterranean, Bermudas); C. (U.) semiserratus (Bate) (North Atlantic) ; C. (C.) torclli (Goës) (Arctic Occan) ; O. (C.) parkeri and C. (C) colci Kunkel (Bermulas).
C. (C.) baffini Stephenson (olf Baffin Land) should probably be referred to at least a sub-genus.
ee, Side plate, gnathopod 1 , rounded.
g. Mandible, palp, segment. ILI longer than semment 11. Quadrivisio. Q. bongalensis Stebbing (Pt. Camning, Bengal; brackish water, Zanzibar). Q. lutzi (Shoemaker) (British Guiana, West Indies).
gg. Mandible, palp, segment III shorter than seyment II. Bathyceradocus. B. stophensoni Pirlot (Liast Indies).

The gronp as a whole may bo readily separated from the Muera-Elasmopus group by the setose character of the inmer plates of maxillae 1 and 2. In this connection, the falcate segment III of the mandibular palp of Metaceradoces and the linear seqment III of Ceradocopsis are of interest. Through the kindness of Professor G. F. Nicholls I am able to figure ( $\mathrm{Fig}, 5, \mathrm{~N}-\mathrm{O}$ ) the mandible of Ceradoroides chittoni Nicholls, which shows, in my opinion. the partinl development of a process on surment I of the palp distally.

## Ueradocus A. Costa.

(For references see Stebbing 1906, p. 431), and 1910, p. 598.)
The examination of series of specimens related to Ceralocus rubromaculatus (Stimps.) makes it necessary to divide the menns into two sections, as follows:
(a) Ceradocus (Ceradocus) : Ceradocus as defined by Stebbing (1900, p. 430 ), with the addition of: pleon segments with posterodorsal margins not multidentieulate. (tenotype Coralocus (Ceradocus) orchestiopes A. Costa.
(b) Geralocus (Denticeradocus) sub-gen, nov.: Ceradocus as defined by Stebbing ( 1906,1 . 430 ), with the addition of: maxilla 1, outer plate with 9 spinetecth, palp with 1 is spines; pleou segments with postero-dorsal margins multideuticulate; mandible with segment I of palp always prodnced on inner margin distally.
It may le noted that in stebbing's definition cited above, he states that guathopod ${ }_{2}^{2}$, among other appendages, are as in Muera, i.c. \&nathopod 2 usually much the larger in the male. This is not strictly true for: the subgenus Denticeralocus, as here gnathopod 2 is usually of a comparative size in the two sexes, with that of the female occasionally attainiug the larger relative size in aged specimens.

Kéy to the Srecies of Ceradorijs (Denticeradocus).
a. L'leon segments 4 and 5 with a large medio dorsal tooth.
b. Telson ; cach half with 3 apical spines; 1 lateral hair.
C. (D.) capensis.
bb. Telson; each hall with $\overline{5}$ apical spines; 1 lateral hair. (1. (D.) ramsayi (Haswell).
aia. I'leon sergments 4 and $\bar{b}$; evenly dentate.
c. 'Telson; each half with 2 apical spiues, 1 lateral hair.
C. (D.) rubromaculatus (Stimpson).
ce. 'Telson; each half with thapical spines.
d. One lateral hatir on margin of telson.
c. Mandible; palp, serment III about $2 / 3$ segment I; pleon side plates 1 and 2 well toothed above and below.
U. (D.) sellickensis sp. nov.
ec. Mandible; palp, segment ILI sub-ecual to segment I; pleon side plates 1 and 2 barely serrate. plates 1 and 2 barcly servate.
O. (D.) scrruta (Bate).
dd. Two lateral hairs on margin of telson.
C. (D.) chilton, sp. nov.
ece. Telson, wach half with $\overline{3}$ apical spines, 1 lateral hair.
U. (D.) chevicuxi sp. nov.

The species are fairly uniform as to their maximum recorded lengtl, which is about 25 mm .

The specimen described by Miers (1884, 1). $567, \mathrm{pl}, 52, \mathrm{D}$, (1) from the Seychelle Tslands under the name of Maore diversimonus is undonbtedly to be placed in this subgenus, and lad best retain the name Cerulocus (Denticeradocus) diversimunus (ALiers).

## Cerabocus (Dentherdadous) sellithensis sp. hov.

(Ceruluchs rubromuculutus (nee Stimpson) ; Hale, 1927, p. 314; 1929, pp. 21:3-214 exeluding figs. $210=$ O. (D.) ramsuan (ITaswell), $211=O$. (D.) serratu Bate) ; Sheard, 1936, p. 177, fig. 4.
Description. Body elongate, head nearly equal to first two segments combined, inter-antemal angle producel and rounded, separated from lateral angle by a simus, Eyes small, sub-oval, dark.

Antema 2 with peduncle failing 10 reach to the eml of the peduncle of anstenna 1 ; the whole untenna reaching just beyond this print; wland eone just fails to reach next joint, ultimate segment of peduncle $4 / 6$ of ponultimate.

Mouth parts; upper lip rounded, lower lip with suall jnner lobes; mandible, palp, segment I with pronumeed hinge-like process on inner end, segment II long and setose on inner margin, segment 111 cone-shaped with long setae, about 2/3 scgment.

Maxilla 1; onter plate with 9 spine-tenth, palp with $1: 3$ spines, inner plate fringed with loug hairs to base of imer margin ; this plate appears to vary slightly from the shape figured to nearly the normal subquadrate.

Maxilla 2; tringed along imner margin of imer plate with two rows of setae.
side plates; first a little the deepest with its anterior angle forwardly drawn out to a sharp point, lightly thenged with small hairs along the lower margin; second and third rounded; fourth not excarate behind; fith, sixth, and seventh, small, bilobed.

Gnathopod 1 ; small, hasis a little indented on the imer margin; carpus, ratio of length to width $=2: 1$; propodus, ratio ol lenyin to width $=1 \cdot 7: 1$.


Fig. 1. Ceradocus (Denticeradocus) sellickensis (type $\mathrm{\delta}^{7}$ ): A, antenna 1; B, antenna 2; C, eye lobe and basal joints antenna 2; D, mandible, palp; E , mandible, cutting edge; F , maxilla 1, spines of outer plate; G, maxilla 1, inner plate; H, maxilla 2; I, gnathopod 1; J, gnathopod 1 , hand; K , gnathopod 1, defining angle palm ; L, gnathopod 2; M, gnathopod 2, palm; N , peracopod 1; O, peraeopod 1, dactyl; $\mathrm{P}-\mathbf{R}$, peraeopods $3-5$; $\mathrm{S}-\mathrm{U}$, pleon side plates $1-3$; V , uropod 3 ; W, telson. (K.S. del.)

Gnathopod 2 ; enlarged in both sexes, basis stout, propodus cularged, palm transperse, defined by a tooth-like proeess (which is occasionally much enkarged) not toothed, hut in older specimens werasionally becoming rugene, no differentiafion between the sexes.

Peracopods 1 and 2; slender, shorter than remainder, hasis the stoutest, not indentated along imer margin but with several small groups of hairs.

Peracopods $3-\overline{5}$; basis expanded and lightly serrate; the hinder margins prodnced to a simple, abute angle in peracopods 4 and 5.

Peracon smooth on dorsal surface, pleon serrate along the postero-dorsal natrfrins of the segments, pleon side plates 1 to 3 serrate above and below. Uroports 1 and 2 reach just beyond the peduncle of uropod 3 ; rami subequal, slender, the dorsal margins of those pleon segments sermate.

Uropod $\quad$; peduncle short, rami lanceolato and elongate hut irremular in outline, spinulose and truncate at the tips.

Telson; cleft, with divergent Lobes, wach lobe bearing 3 large and one small apical spine, with a small lair midway on each lateral margin. Dranchiac; medinu size, sac-like, inner wall thick.

Type (Reg. No. C. 2121, S.A. Museum).
Loc: Vivome Thay, Kangaroo Island (II. M. Male and N. B. Tindale); Nellick's Beach, St. Vincent Gulf (II. Mr. Hale, Mar., 1936), (H. M. Hale and K. Sheard, Nor., 1!!36, Jan., 19:37), K. Sheard (Apr., 193!), Port Willmga, St. Viucent Gulf (H. M. Hale, Mar., 1937), (II. M. Hale and K. Sheard, Jan., 1939); Marinn, St. V'incent Gulf ( (C. Baker, 1:910) ; Weedius’s lieef. Moonta biay, Spencer Gulf (B. I. Weeding, Nov., 1938) ; Investigator Straits (Dr. J. (C. Verco, 1910); Coffin Bay (J. 'L'. Mortlock, 1938).

## Ceradocus (Dentheradocus) ruhromaculatus (Stimp.).

Ganmarus vubromaoulatus Stimpson, 1855, p. 394.
Moera 1 ubromuculata (Stimpson) Haswell, 1880, p. 267, pl. X , fig. 4, 1882, p. 2085; 1885, p. 105, pl. XV, figs. 5-12.
Ceradocus rubromaculatus (Stimpson), Della Valle, 1893, p. 720 (part).
Cerulocus rubromaculatus (Stimpson), Sicbbing, 1906, p. 430 (part) ; : 1910, р. 598.
? Ceradocus rubromaculatus (Stimpson) Barmard, 1931, p. 124.
Stimpson's original description is as follows:
"49. Gammarus mbromaculutus. Rather large, spotted with crimson above, white below. Eyes sub-ovate. Superior antenmae half as long as the body, inferior
ones much shorter and more slender, First pair of hands very small and weak; those of the second pair large, compressed, and with a shan'p spine at the middle of the lower edge where the finger terminates. Abdomen exceeding the thorax in length or at least "qualling it, the appendages excluded. Last pair of caudal stylets half as long as the abdomen; their rami long and broad, equal and spinulated along their edges. Length halt an inch. Found on muddy bottom in the circumlittoral zone.


Fig. 2. Ceraslocus (Denticeradocus) rubromaculatus (Stimpson): (Haswell's original specimen) ( $¢$ ) ; $A$, head and antennae; $B$, upper lip; $C$, mandible, palp; $D$, maxilla $1 ; B$, gnath-
 plates $1-3 ; N-\mathrm{I}^{\prime}$, uropods $1-3 ; \mathrm{Q}-\mathrm{R}$, telson. (K.S. del.)
"Hab. Anstralia, at Port Jackson."
Ilaswell (1880, p. 267, pl. X, fig. 4), describes and figures with reasonable accuracy a specimen which he attributes to Stimpson's species from the same locality. In the same paper (p. 268, pl. X, (ig. 5 ) ho deseribes a new species Mnera spinosa, from Tasmania, evidently having overlooked Bate's Mcgrmoera scrrala from the same locality.

Farlier in the same paper (p. 26t) he ascribes provisionally to Melita, a new species ( $M(\%)$ ramsayi) with uropod 8 missing. In a later note ( $p .335$ ) this spereten is placed in. Morm. Haswel! (188.5, p. 10.) than unites the threes species and ineludes. Vorron fostiren ('hilton in the synonoms. This amalsamation is made
 reut, but later (1910, p. 64:3) rewarels the pesition as still doubtinh. Chilum (1916, P. 359 ) semates M. fcstica Chiltou from this synonomy.

The confusion was probably ramed, in the first platee, bey the fact that stehbing ( $\mathbf{1 8 8 8}$, p. 1008 , plates 95,96 ) gave a composite description, under the name 14. rubromandatus Stimpson, of two species, M. ramsayi Haswell, and the one whels is described in this paper as Covolocus (Deaticeradocus) caponsis. Later authors. lacking material, have had no option but to aseribe specimens to this species, and the tradition has grown up that Ceradocus rubromuculatus (Stimp.) is a cosmopolitan species. Ware the forms pelagice, this posilitity would of course have to be very seriously regarded, but as they are littoral, sneh an easy way out camut be taken withont very serious consideration.

For my part, after studying Haswell's ML', notes, 1 am reasonably certain that he described a specimeu which specifically conforms to stimpson's type. Inswell's specimen is here refigured, and such parts as are necessary are redescribed. In the Port dackson material, it is easy to find specimens, male and lemale, immature and adult, whith vary around the type specimen, and wheh do not cross aver into the ramsaniform.

Actually it would appear that here we have a case of two closely-related populations existing side by side. There is some evidence to show that their breeding rates and breeding seasons are slightly different, but this is inconclusive. At all eveuts, in life, they are readily distinguished since C. (D.) rubromaculutus (Stimp.) is spotled with crimson, while C. (D.) ramsayi (Haswell) is bauded, In littoral erustaceat generally, colour patterns appear to be an umeliahle ginide, but in this case there is a high slogree of correlation between the colurr and other characters.
Additions to Ithawell's Description (1880, 1). 26i7) :
Mouth parts; in general like C. (D.) sellickensis, but mandibular palp with segments I and III subequal; maxilla 1 with imer plate more truly subquadrate, wider than deep.

Gnathopod 1 with side plate produced; basis with seattered hairs on holh margins; carpus, ratio length to width $=2: 1$; propodus, ratio length to width $-1 \cdot 6: 1$.

Gnathonod 2 ; Tike (C. (D.) stilickensis but patm more oblique; as in the former species no specimens have becn found with a tendency to the development of teeth on the palm.

Peraeopods 1 aud 2, basis indeuted and setose along inner margin, merus very little expanded, almost linear.

Peraeopods 3-5; basis moderately expanded, hinder edge produced to longer point than in the preceding species.

Pleon side plates 1-3 well toothed above and below; 4 and 5 recularly dentate. no large teeth.

Uropods 1 and 2 reaching to end of peduncle of 3 ; uropod 3 with rami lancenlate and elongate hut strong and wide. 'Telson with two apical spines and one shor lateral hair on each half.

Branchiae of medium size, sac-like.
Loc. Port Jackson (Australian Museum, Reg. Nos. G. 5391, P. 2151, P. 3479, P. 3480-3481 (part), P. 3489).

Ceradocus (Denticeradoctis) ramsayi (Haswell).
Melita, \&ramsuyi Iraswell, 1880 , p. $264, \mathrm{pl} . \mathrm{X}_{\text {, fig. }} 1$.
Moeraramsayi (Haswell), 1880, p. 384; 1882, p. 253.

Macra rubromaculata (Stimpsou) Stebbinq, 1888, p. 1008 (part), pl. KCV A, pl. XCVI B.
Cerudocus rubromaculutus (Stimpson) Della Valle, 1893, p. 720 (part).
Ceradocus rubromaculatus (Stimpson) Stebbing, 1906, p. 431 (part).
Maera ramsayi Haswell, Stebbing, 1910, p. 642.
Cermborvs ruburmuculatus var. remsayi (IIaswell), Chilton, 1923, p. 94, fig. 4.
Ceratocus rubromaculatus non. Stimpson, Hale, 1929, fig. 210.
Ceradocus rubromaculatus (Stimpson), Sheard, 1937, p. 24 (part).
To Hasswell's description (1880, p. 264) is added the following:
Antenna 1; peduncle relatively stout, a litlle shorter than that of antenna 2.
Eye sub-oval. Mouth parts; of same gencral type as in C. (D.) sellickensis, but mandible or palp with segment II longer than segment I, hinge process rounded.

Maxilla 1 with spines of palp and outer plate weak, imer plate like that of
C. (J) ) rubromaculatus (Stimpson); maxilla 2 z with setae very long, plates widened. Lower lip setose.

Gnathopod 1 with side plate forwardly pointed, but not very mued outdrawn; hasis, with margins not indented; carpus, ratio of lencth to width, 2: 1 ; propodus. ratio of length to breadth, 1-5:1.

Gnathopod 2 ; one side, the right in the specimen described, but generally the left, enlarged, with the propodus well expanded, and always toothed on the palin


Fig. 3. Ceradocus (Denticeradoous) ramsayi (Haswell), (type ō): A, head; B, lower lip; C, mandibles; D , maxilla $1 ; \mathrm{L}$, maxilla. $2 ; \mathrm{F}$, maxilliped; $\mathrm{G}-\mathrm{H}$, gnathopod 1 ; I , grathopod ${ }^{2}$, right; J, gnathopod 2 right, palm; K, gnathopod 』, left; L, gnathopod 2, palm; M-N, peraeopols $1-2 ; 0$, peraeon segment 7 , pleon segments $1-3 ; Q$, peraeopod $5 ; R-1$, uropods $1-3$; 1 , telson: V, dorsal outline, pleon segments 4-5; W, gnathopor 2 , hand, Port Stephens sperimen, immature do. (K.S. del.)
in older specimens; sometimes in even immature specimens, the toothing may be solid across the palm or sometimes indented by the pressure of the finger (as figured); where teeth are present they are always three in number between the large defining tooth and the hinge.

Peraeopods 1 and 2 slender, as is usual, the basis not indented but furnished with a few setae on the inner margin; the merus is moderately expanded on its forward edge; 3-5, basis expanded, hind margin distally produced to an obtuse angle.

Pleon side plates; the first, with two very small teeth below, none above; the second with two slightly larger teeth below, slightly serrate above; and the third with two larger teeth below, more definitely serrate above. In this respect, the species is very different from $C$. (D.) rubromaculatus (Stimp.) (well serrate above and below on pleon side plates 1-3) and from C. (D.) capensis (side plate 2 smooth above, side plate 3 well serrate above and below). Pleon segment 4 dorsally denticulate, the mesial tooth well produced; 5 smooth, but with a prominent mesial tooth; 6 produced mesially to a small tooth.

Uropods 1 and 2 reaching just to the end of the peduncle of 3 , slender. Uropod 3 with rami lanceolate and elongate, fairly strong.

Telson with four long and one short spine apically, and one short plumose hair on the mid-lateral margin of each half.

Loc. Port Jackson (W. A. Haswell) ; off Eden, N.S.W., 25-30 fathoms (A. Livingstone, Apr., 1922) ; off Norah Head, Neweastle, N.S.W., 26-38 fathoms (F. A. McNeill, June, 1921) (Chilton collection) ; Port Stephens ; Balmoral, Port Jackson (T. Whitelegge) (Australian Museum, Reg. Nos. P. 5876, P. 3480-3481 part).

## Ceradocus (Denticeradocus) serrata (Bate).

Megamacra serrata Bate, 1862, p. 226, pl. XXXIX, fig. 5.
Moera spinosa Haswell, 1880, p. 268, pl. X, fig. 5; 1882, p. 257 ; 1885, p. 105, figs. 5-12 (part).

Ceradocus rubromaculatus (Stimpson) Della Valle, 1893, p. 720 (part).
Ceradocus rubromaculatus (Stimpson) Stebbing, 1906, p. 431 (part).
Maera spinosa Haswell, Stebbing, 1910, p. 642.
Ceradocus rubromaculatus non Stimpson, Chilton, 1921, p. 71, fig. 9.
Ceradocus rubromaculatus non Stimpson, Hale, 1929, fig. 211.
It appears reasonably certain that the species described by Haswell and Bate are the same. The figures given by both authors are poor, but coupled with the descriptions, they are sufficient to justify the union. An examination of a number


Fig. 4. Ceradocus (Denticeratocus) serrata (Bate); (Haswell's nriginal specimen q) 1 , hanl; B, lower lip, half; $C$, mandible; $D-E$, maxillae 1-2; $H$, maxilliped; $G$, gnathoporl 1; II, gnathopod 1, palm; I, gnathopod 1 , detail of palm; J-K, gnathopod 2 , right and left; L. peracopod 1; M-O, peraeopods 3-5; P, uropods 1-2; Q, uropod 3; R, telson; S, branchin. (K.心. del.)
of specimens from Thamanian localities gives no rason to suppose that there are two species oceupying that area, although on the Victorian coast specimens oceur which exhibit slight variations not sufficiently marked, however, to justily any separation. Additions to Bate's (1863, p. 2e9) and Uaswell's (1880, p. 268) deseriptions are:

The peduncle of antenna 2 just reaches to the pul of that of autemna 1 , the whole antena reaches well beyond this point : gland cone reaching to end of next segment.

Mount parts as usual, but mandibular palp with segment ITI sub-equal to segment $I$, hinge process pronounced.

Maxilla 2 with two phumose setae on the outer edge of the outer plate distally.
Gnathopod 1 with side plate moderately produced and pointed forwards, basis moderately expanded, selose behine, carpus donger than propotus, carpus ratio length to width $=2 \cdot 3: 1$; propodus ratin length to width $-1 \cdot 4: 1$, the palm ridged in the female as figured.

Gnathoporl 2 ; looth enlarged, with one as a rule slightly larger in both sexes, hand swollen and in very old specimens irregular in ontlint; palm oblique, in young specimens with a clean ontline, later hecoming more rutase and sometimes locoming split to form near the hinge a large lat tooth, followed by a dopression, then a lonere rounded rugose bulge. The tinger fits into a deep porket new the defining tooth, which is oceasionally wom nearly flat.

In specimens from Westernport, Vietoris, the fwotonthed form, similar to that tound in (., (D.) chiltomi, oceasionally appears.

1'erampods 1 and 2 with basis very lightly indented near the body, a row of hairs along the hinder margin; $3-5$ with hasis expanled and sometinnes probuced to a small angle distally on the himder edge; however, this is a very variable charaeter, and I can find no comelation between this factor and others. The best that can be said is that generally there is a tendency for the basal expansion to be produced to a pointed angle in peraeopods $t$ and $\tilde{n}$, particularly in the male.

Pleon side plate 1 lightly crenulate bohind, a nearly obsolete tooth present above and below; 2 lightly toothed above, two very small teeth below; 3 moderately toothed above, two tepth below; 4 and 5 denticnlated strongly but evenly.

Uropods 1 and 2 dairly strong, reaching just beyond the perluncle of 3 ; mopod 3 with rami lanceolate, strons, and elongate.

Telson with four spines, one nsually small, and one lateral hair on each half. Branchiae very large, jner wall very thin.

Lac. Tasmania (Haswell's original specinens); 10 miles north of Circular Head, Tasmania, Endeavour 492; Port Wynyard, Tasmanin (N. B. T'indale, Apr.,
1936) ; Altona, Port Phillip, Victoria (M. Freame, Jan., 1933), "colour uniformly bright scarlet'" (Aust. Mus. Reg. No. P. 10398) ; Port Phillip (O. A. Sayce) ; West Channel, Victoria (O. A. Sayce) ; Shoreham, Victoria (O. A. Sayce).


Fig. 5. A-Mr, Ceradocus (Denticeradocus) serrata (Bate); (Haswell's original specimen $\boldsymbol{Z}^{\circ}$ ) : A, head; B, lower lip; C, mandible; D-E, maxilla 1-2; F, gnathopod 2; $\mathrm{G}-\mathrm{I}$, peraeopods $3-5 ; \mathrm{J}$, pleon side plate 1 ; K , uropod 3 ; L-M, telson. (K.S. del.) N-O, Ceradocoides chiltoni Nicholls; N-M, two views of left mandible.

Ceradocus (Denticeradocits) chlumoni sp. nov.
Muerot spinnsa Chilton non Haswell, Chilton, 1883, p. 81, \& 2, f 3; 1916, p. 369.
Very like (!. (D.) serratu. (Bate), but with the following differences:
Autenna 2; peduncle fails to reach the end of the peduncle of antenna 1. Maxilla de withont plumose selae.

 [3, upper lip; C-D, loft and right mandibles; $E$, maxilia $1 ; F$ spinc-tootl from outer plate; $G$,
 $\mathrm{M}-\mathrm{O}$, perteoporls $3-5 ; \mathrm{P}-\mathrm{R}$, pleon sifleplates $1-3$; $\mathrm{S}-\mathrm{U}$, wropods $7-3$; $\mathrm{V}-\mathrm{W}$, telsm. (K. S . del.)

Gnathopod 1 ; carpus sub-cqual to propoclus, ratio length to width $=1 \cdot 9: 1$; propodus ratio length to width $=1 \cdot 9: 1$.

Pleon side plate 1 with margin a little meven above, two small teeth below; 2 with maryin smonth abore, two small foeth hodon: 3 well towthed above, two teeth below; 4 and 5 eveuly but lightly dentienlate.

Uropods 1 and 2 not as stronig as in C.(D.) smrato (Bate), but reach well beyond the peduncle of 8 , to halfway up the rami $; 3$ with rami slender, lanceolate but not elongate.

Telson with 4 spines set fairly well back (see figure), and with two lateral spine-like hairs on each half. Branehiae very large, sac-like, with a thick inner wall.

In this species gnathonod 2 is subject to considerable variation (see figures) in both males and females. The tendency, however, is always towards the develop-
 tooth. Generally the left gnathopot is more strongly developed.

Locality. Auckland; Akaroa, New Zealand. Chilton collection.
A single specimen which is attributed to this species from Great Barrier Island, New Zealand, is fignred.

The most noteworthy point is the fact that uropod 3 is elongate and strong. although 1 and 2 rach well beyond its pedunele.

Ceradocus (Denticemadoues) meneveuxi sp. nov.
Cerculocus rubromaenlatus Chevreux non Stimpson, Chevreux, 1908, p. 479, fig. 6.
? Ceradorus mbromaculatus non Stimpson Schellenberg, 1938, p. 63.
This species is clearly marked off from the others of its section by the possession of five spines on the apex of each half of the telson. The ciliations of the immer margin of the thlan lobes, the downward production of the posterior margin of the basis of peracopod $\mathrm{s}_{\mathrm{s}}$ and the reduction of Leeth, dorsal edge of the pleon segments, are of interest.

The fact that, in these specimens, the dorsal cilge of the pleon semments is somewhat eremulate, sugerests the remention of Denticradocus as a sub-penus onty.

Loc. Archipelagoes of Gambier and Tuamotu (Dr. Seurat, 190t); ? Fiji, Marshall Islands, British Solomon Islands, Ihilippines (Dr. Sixten Bock).

Ceradocus (Dentrchradocts) capensis sp. hov.
Marca rubromaculatus Stebhing non Nimpson; Ntebhing 1888, p. 1008 (part), pl. $\mathrm{XCV}(\mathrm{E})$.
Ceradocus rubromaculatus Nitebhiner nom sitimpson, 19018, p. 81; 1910 A, p. 456.
? Cervalucus mbromaculatus schellemberg non stimpson, Schellenberq, 1925, p. 154.

This species may be separated from $C$. (D.) ramsayi (Haswell) the only other spereies possessing a large mesiondorsal torth on the margins of pleon segments 4 and 5 , by the possession of only three spines on the apex of each lobe of the telson. However, from Stebbing's figures ( $1888, \mathrm{pl} . \mathrm{XCV}$ ) other good differences are:

The eye in C. (D.) ramsayi (Haswell) small and sub-oval, in C. (D.) capensis large, egg-shaped, filling most of tho interantennal angle.

Peracopods 1 and 2 with the basis strongly indented on the imer margin and strongly setose. Pleon side plate $\boldsymbol{S}_{3}$ with four teeth below. Uropods 1 and 2 with relatively shorter and stouter peduncles.


Fig. 7. Ccrallocus (Denticeradocun) chiltoni; variation in guathopod 2: $1-13$, guathopod 2, lott and right, aged $\circ$; ( - D, gnathopod $\because$, left and right, agod ot (K.S. del.)

Re-examination of the South African specimens is needed.
Loc'. Ofl Cape Agulhas, 274 metres, T'able Bay; ? German West Africa, I Swakopmund.

The following records cannot be evaluated from the literature. A recheck from the specimens is necessary.

Muera rubromuculatus Stimpsou. Miers (188t, pp. $315-316$; Port Molle; Dundas Straits, Northern Territory.

Ceradocus rubromaculatus (Stimpson) Walker (190t, p. 272, fig. 30). Gulf of Manaar. Walker's specimens certainly belong to the sub-genus.

Cerudocus ribromaculatus (Stimpson) Walker, 1909, p. 364. Wasin, in mud. Record only.


Fig. 8, A-Q, Corulocus (Denticerulncus) chilloni, Great Barrier Ts, mature ㅇ: $\Lambda$, head; 13, mandible, palp; C-D, maxillae 1-3; E, maxiliped; F, gnathopod 1; G-H, gathopor ${ }^{-1}$, left and right; $J$, peracopod $1 ; J-\mathrm{L}$, peraeopods $3-\overline{\mathrm{v}} ; \mathrm{M}-\mathrm{O}$, pleon side plates $1-3 ; \mathrm{P}$, urosome; Q , telson. IR-U, Crrallocus (Venticerudocus) chiltoni from Auckland: $\mathrm{R}-\mathrm{S}$, gnathopod 2, lett and


Ceradoctus rubromuculatus (Stimpsom) Chilton, 1922, p. 8.45 miles N.W. Cape elaubert, N.W. Australia.
(Ceradoras rwbromaculatus (Stimpson) Tattersall, 1922, pp. 6-8, pl. I, fig. 15, 16. Abrothos Istands. Western Australlia. This is almost eertainly a new species. Gevodorus rubromaculatus Stimpson. Pirlot, 1934, 1. 222. $6^{\circ} 8^{\prime}$ lat. N., $121^{\circ} 19^{\prime}$ long. E., $275 \mathrm{~m} . ; 8^{\circ} 43^{\prime}$ lat. $\mathrm{N}_{\mathrm{c},} 127^{\circ} 16^{\prime}$ loug. E., 828 m . (These depths are extreme for forms usnally found in lithoral waters.) Pirlot, 1936, p. 305. Lombok, Paternoster Island, ete., 0-90 m.

Conodoous subromaculatus (Stimpson) Barnard, 1937, p. 160, fig. 9. Red Sea. (This is probably a new specits. The tendency to a very oblique palm with little definition is certainly not characteristic of the known members of the subarenus. Probahly, "xamination will show that on her differences are correlated with this.)

Ceradurus mbromaculatus (Stimpson) Walker, 1905, p, 927. (This paper is not available to me.)

The Australian and New Zealaut species may be readily separated by the character of the telson and by the presenee or absence of tecth on the posterior
 well) is recornized by the prominent modio-postero dorsal tooth on each of the pleou segments 4 and 5 , as noted by Haswell.

## Systematio Characters in the Nuh-genus Denticeraboous.

As I have not seen sufficient specimens of the Ceradocus group, it is not possible to gencralize on the systematics of the gromp as athole. However, within the sub-genus $D_{\text {enticeradocus, the following observations appear to hold rood. }}^{\text {ghe }}$.

Growth Stuges. In the immature stages both sexes are very similar, and the palm of gnathopocl 2 is regular. The denticulation of the pleou appears to be fixed in pattern. Some differentiation omeurs duriug the sexhally mature stage: the patm of gnathopod !2 in the male becomes irregulat and tomthed, wectsionally on both sides of the berly, oreasionatly om the lelt, but mote often ou the right. The serration of the bases of peracopods $8-\overline{5}$ hecomes more marked and the dentation of the pleon more cvident. During the later stages, gnathopod 2 of the female tonds to become irregular, and in some cases is more heavily toothed than in the corresponding male. Generally the more heavily toothed grathonod is also the larger.

It would appear that the shape of the palm of gnathopod 2 is a very unreliable specific character, althongh its general shape and liability to the development of teethor not may be useful as a check. In Oevodocus (Denticerudocus) rubromaculutus (Stimpse) and in (\%. (D.) sellithonsis sheard, no trace of the breaking-up of
the palm into teeth has hem observed, athmuph a home range of specemens has been examined. ('haracters which appear to be mattered in the varions growth stages, and which appear to exhilit very little variability, are: the tolson, monthparts, particularly the patp of the mandible, and the dentation of the side platess of pleon segments 1-i3. Accordingly these characters have been used for the separation of the species.

Other characters wheh appear to be speceific but whith have not been checked over a wide range of specimens are the prombrion of length to width of segments V and V1 of gnathopod 1, the proportionate length of the gland cone, the character of the margins of the basis of peracopods 1 ande ${ }^{2}$, and the shape of the lower hind conner of the basis of peraeopords 3-5.

The eye shape and eulour varies to atout the same extent in all the species, the shape oval to round, colome dark red to light red (in spirit clark to pale). None of the Australian or New healand specimens furnish examples of the eye shape of C. (D.) caponsis Sheurd.

The close resemblatees whell mist hed ween the hwo subgentra make mo hessitate to dfect any furthere segaralion on the basis of literature, partieularly as it would appear that sume of the Northern species are misplated in the subgenus Cerndocus (Comurlus). However, this is a moblem which can only be solved by a worker with ateces to the Northern material.

Of very great interest is the tendency to the formation of flatapped teeth on
 It wond be idle to speculate on their origin until nome word has been done on the problem. An experiment carried out on Tatorchestin Novachollandia Stobhing (Sheard, 1938, p. 29) tends to show that the forees operating in the production of malformations of this kind are complex.

However, it might not he out of phace to suggest here that the position and incidence of the tecth may be controlled by fathors affecting the growth rate of the segment and by the position of the powerful museles within it. In all animals whose exoskeleton is periodically renwed, and which for varying periods of time is in a plastic state, mechanical stresses anch strains can be expected to produce very definite effeets.

## LITERATVIRE.

Barnard, K. II. (19is1) : Grcut Brtrier Rucf Exped. Brit. Mus. (Nah. Tist.), Nei. Rep. Vol. 4, No. 4.
Barnard, K. 11. (1937) : I'he John Muray Exp. 1933-1939 Brit. Mus. (Nal. Hist.) Sc. Rep. 4, Nr. 6, Lond.
Bute, C. S. (1862) : Cat. Amph. Crust. Liril. Mus. Lond.

Chevreux, E. (1908) : Mem. Soc. Zool. France, Vol. 20.
Chevreux, E. (1925) : Bull. Soc. Zool. France, Vol. 50.
Chilton, E. (1883) : Proc. Limn. Soc. N.S. Wales, Vol. 9.
Chilton, E. (1916) : Trans. N.Z. Insta, Vol. 48.
Chilton, E. (1921) : Biol. hes. Endcuvou, Syducy, V. part 2.
Chilton, E. (1922) : Kiungh. Svensk. Votensk. Hantl. Bd. 63, No. ヨ.
Chilton, E. (1923) : Rec. Lust. Mus., Vol. 14, No. 2.
Costa, A. (1853) : Rend. Soc. Buurbon N.S.IF., Vol. 2.
Della Valle, A. (1893) : F. F'l. Neapel, Vol. 20.
Hale, IL. M. (1927) : Truths, Roy. Soc. So dust., Vol. $\mathrm{BI}_{1}$
Hale, 15. M. (1929) : Crust. of S. Aust., Adelaide.
Haswell, W. A. (1880) : Pruc, Linn. Soc. N.S. IT ales, Vol. 4.
Haswell, W. A. (1882) : Aust, Stalk and S'cssilc Eycd Crust.
Haswell, W. A. (1885) : Proc. Limn. Soc. N.S. Walcs, Vol. 10.
Miers, E. .J. (1884) : Rep. Voy. Alcrt. Loud.
Nicholls, (X. E. (19:38) : Austr. Ant.Exped. 1911-1914, Šci. Keps. Series C, Vol. 10, pt. 4.
Pirlot, d. AI. (1934) : Siboga Rixp. Mono., B3el.
P’inlot, J. M. (1936) : Sithaya Exp. Monu., B33d.
Schellonberg, A. (1925) : Bcit. Komutis, Mveresfaunu West Afrikas, Vol. 3, No. I. $^{\text {I }}$
Schellenberg, A. (1926) : Deutsche Sulpolar-Exped. 1901-190:', Vol. 18.

Schellenberg, A. (19:38) : Kungl. Stro Fel. Alivid. Lundl., Bd. 16, No. 6.
Sheard, K. (1936) : Trans. Roy. Soc. Sth. Austro, Vol. (i0).
Sheard, K. (1937):Truns, Roy. Soc. Sth. Aust., Vol. 61.
Shoemaker, (1. (1933) : Am. Hus. Nut. Hist. Novitates, No. 598.
Stebbing, 'I. R. R. (1888) : Rep. V'oy. Challenger, Vol. 29.
Stebhing, T. R. R. (1899) : Trans. Linn. Soc. Loond., Ser, 2, Vol. 7.
Stebbing, 'T. F. R. (1906) : Das Tierreich, Vol. „1.
Stebbing, T'. IR. R. (1907) : Rec. Ind. Mus., Vol. 1, patt 2.
Stebbing, T', R. R. (1908): Amn. Sth. African Mus, Vol. 6.
Stehbing, 'I'. LR. R. (1010) : 11em. Aush. Mus. Sydncy, Vol. 4, part "..
Stebbing, T. R. R. (1910a) : Gon. Cut. Sth. African Unust. Ann. Sth. African IIns. Vol. 6.
Stephensen, K. (1933) : Mceld. Om. Groentund, Ba. 79, No. 7.
Stimpson, W. (1855) : Proc. Ac. Philudelphia, Vol. 7.
Tattersall, W. M. (1922) : Jour. Linh. Soer, Lond., Vol. 35.
Walker, A. O. (1904) : licp. Ceylon I'can Fisherics, Lomu., Vol. ㄹ.
Walker, $\Lambda .0 .(190 \overline{5})$ : lianna, Geog. Maldive and Lace. Arch, Vol. 2, Supp. 1.
Walker, $\Lambda$, O. (1909) : Trans. Linn. Soc. L.ond., Ser. 2, Zool., Vol. 12.

# THE EVOLUTION OF THE HUMAN MOTIF IN PAPUAN ARROW DESIGNS 

By R. M. Berndt, Hon. Assistant in Ethnology, South Australian Museum


#### Abstract

Summary The following observations record designs found on the heads of conical and barbed arrows from the south coast of New Guinea; the specimens being from the South Australian Museum collection. The paper is illustrated by drawings which have been prepared from rubbings of the arrows to show specific details. Although in this paper interest centres around the actual design, it is perhaps appropriate to review the peculiarities which appear in the arrow itself.


# The Elolution of the HUMAN Motif in PApuAN ARROW DESIGNS 

By R. M. Bernd't', Hon. Assistant in Ethnologi, Suetif Australian Museum.
Plate xxii, text-fig. 1-1.
The following observations record designs found on the heads of eonical and barbed arrows from the south coast of New Ginnea; the specimens being from the South Australian Museum collection. The paper is illustrated by drawings which have been prepared from rubbings of the arrows to show specifie details.

Although in this paper interest centres around the actual design, it is perhaps appropriate to review the peculiarities which appear in the arrow itself.

An examination of many specimens from the southern coastal region indicates that the designs illustrated are peculiar to arrows of which the heads are of conical or of barbed type (fig. 4, A and B).

## Arrows with Ileads of Conical. Form.

This type consists of blackwood or palmwood arrows with the heads carved with a scries of cones inserted one into the base of another, and of equal or mequal length. $\Delta t$ about the middle of the head ( $x$, fig. $4, \Lambda a$ ) there is a carved band of varied pattern. The fibre used for lashing the head to the shaft, shown at C , fig. $t$ $\Lambda$, is usually of gummed palmlear plaiting. The greater portion of the reed shaft is generally scraped and blackened, but part may be varnished with red gum, the rest remaining completely untouched. The upper internorle is often left intact, and the end of the shaft m-notehed.

These arrows average 155 cm . in length, and probably each tribe preserves an established length of its own.

The arerage lengths of the different parts are:
(a) the head, 42 cm .
(b) incised band, 4.5-6 cm.
(c) plaited cane band, connecting head to shaft, 3 cm .
(d) cane shaft, 108 cm .

Variations occurring in this type are:
(a) plain conical.
(b) a serits of cones, tipped with cassowary bone.
(c) barbed and conical (see also barbed type).
(d) barbed and conical, with cassowary bone tip (see also barbed type).

The eones are often coloured at each division with red ochne, and the middle incised band filled in with white.

Ifaddon (1912. 17T) states that the necks of the individala cones or other constrictions on the head were nicked before usp, so that they might the more readily break off and remain within the boty of the enemy.

## Arrows of Babbed Tyife.

The barbed type of head such as is illustrater in firs. $\neq 13$, is of blackwood or heavy palmwood, and is joined to the shatt by a plaited caue band; at about the middle of the head (fig. $4, \mathrm{~B} \mathrm{~b}$ ) is a carved band of varied pattern.

The relative lengths of the portions are as in the conical type. The upper portion of the head is armed with adpressed barbs.

The following variations oceur in this type of head:
(a) with single row of barbs;
(b) with barbs projecting on either side;
(c) with single row of barbs, apex tipped with cassowary bone;
(d) with double row of barbs, tipped with eassowary bone;
(e) with double row of barbs, and with grooved head;
(f) barbed and conical (see also conical type);
(g) barbed and conical, with cassowary bone tip (see also conical type);
(h) with a triangular-shaped head, and single row of barbs at the tip;
(i) with a notched head, eassowary tip.

On all examples examined, the main shatt of eane is devoid of nodal decoration, and the hilt of the arrow butt monotched. The designs deseribed in this paper are only found on this type of arrow.

Many arrows have no decoration at the centre of the head, but these probably were manufactured and sold to European traders as curios. (Haddon, 1894, 203.)

Only in the more highly decorated specimens are found the sorics of intricate incisings which may be hare termed band dexigns. These band designs, when they occur, are longitudinal to the arow, and are incised on the round or oval blackwood head, sometimes with rubhed-in white lime decoration accentuating the work. In such arrows the cones or barts are usually highly finished, but some are rough and unpolished.

Berndt (1939, pp, 8-12) has referred to the conital arrow, and has given examples of the similar occurrence of the cone within cone construction in the northern Australian spear-heads, many specimens showing a similarity both in decoration and manufacture to the Papuan arrows.

The large bows from Papuat are made usually of bamboo, although blackwood and light palmwood examples exist. In some cases these are ornamented at the
ends. The shaping of the bow is done by holding a length of selected wood over the fire (Haddom, 1912, p. 17:3). The bow string is a broad strip of the tough outer rind of a banboo, but, in some examples, plaited cord fibre is used.

Haddon (1912, p. 174) states that extra arrows are held in the bow-hand, that a quiver is not euployed, and that the bundles of arrows are tied in two places with string, the intermediate portion forming a handle for carrying the bundle.

As sketched in Edge-Partington's Album (p. 343, No. 4), a plaited strap connecting the two string bands is sometimes used for carrying the bunde when going out to fight.

## Distribution,

Oecurrence of these arrows is believed to be widespread. Haddon (1894, p. 1:3) suguests that they were probably brought in from the Toaripi area, and (1912,


Fig. 1. A map of the south coast of Papua (Papuan Gulf region). The shaded area shows the distribution of the arrow designs mentioned in the text.
p. 177) notes that they are traded from Papua into the Torres Strait Islands, while Edre-Partington (p. 260) records the conical arrow as being found at Redsear Bay. The South Australian Mnsemm possesses speeimens from Hanuabada (Port Moresby), the Toaripi area, and the Mekeo and Central districts.

It appears then that both the conical and barbed variety of these arrows are derived from the shaded area in the accompanying map (fig. 1).

## Design.

On examination of these arrows, one is struck by the persistence of the designs illustrated in this paper. These appear to have some definite simnificance, such as would be surgested by a real ohject, in this case a human form or face convention-
alizer, and remesenting in this manner a gradual degeneration hy sureessive coprings of the design.

When analysing primitive art, it is olten found that such designs assume a number of forms, many of which have searecly any resemblance to the original object, but which strictly symbolize its most significant aspects.

The native knows that the figme thus drawn is not like the original, for axample, "a man", but it does symbolically satisty his desire for expression.

Primitive art tends to be bound dom by the traditional code of the artists' forefathers, and very rarely is this altered, excupt slowly over in period.

The designs illustrated are of various patterns whose evolutiou can be traced from a common source.

IVaddon (1894, p. 135), in noting arrow decorations, mentions that there can be no doubt that the designs are derived from a human face, the features of which have bean laterally compressed and verically extended, through the pxigeucies of a restrimed npate ath the diftionlty of mone realistice carving on such a slemerer ret.

By tracing this anthropomorph through the designs found on a large number of arrows in the Sonth Anstralian Museum collection, and by contining these observations to a restrieted meorraphical area, as well as a particular type of arrow, the conventionalization of this figure becomes apparent.

In the ultimate designs simple geometrical decoration such as is illustrated in figr, $4, J$ and K , and in fig. $4, \mathrm{C}, \mathrm{K}$, and L , are evolved.

It has already been stated above that Haddon holds that these arrow-llesigns are derivatives of the buman face form, yet it must bo indicated that carh carving has retaimed also in fundamental prineiphe. ingredimots which ran be derived from a human figure in the squatting posture.

This homan figure can be defined as having the legs haunched or in a squatting position, the arms either flexed with the hands under the chin, or with the arms outsisetched.

## Tite Maunched Figure.

The human haunched figure appears widely in the art of primitive people.
 tion of the southopast coast of Papua, and in that paper a scries was arranged to demonstrate a gradual evolution from the matural to the extremely conventionatized form. the main ingredients of the original figure being fersistent dhonghout the series.

The importance of the haunched figure in arrow design is shown by the appearance in the figures of three definite types indicated in fig. ${ }^{2}, \Lambda, B$, and U respectively. Other desigus seem to have all been avolved from these three fundamental types.

The sex of the figure in arrow designs, like that of the spatula figure, fas not heen ascertained.

In addition to arrows and spatnlae, large-sized carved figures are made and nsed in this area, and in these the hamohed figure design is also prominent. Haddon (1901, p. 106-7, fig. 9) for example, illustrates a female figure in the squat posture. This was the wooden image of a girl with searification markings on her horly from Erul), hut originally from the islamd of Masig, in Torres Strait. ('alled won madub, it was used as a love charm. Similar male figures, sohop mondu, were nsed as tobaceogrowing charms. At Mabuiag Istand, wooden hmman effigies, modub, kept in a small hut along with bulltoarers, were believed to "turn devil" at aight time, and wo around the gardens swinging the bull-roarers to make the yams grow. Another male figure, from Mabuiag Island, called ornoradubu (dubw means male or man) was consulted before fighting, presents being given to it to invoke help in success in head-hunting raids.

The example, illustrated in plate xxii, figs. $\Lambda$ and ( (from the South Australim Museum (ollection) is an ornamented canoe mast from the D'Entrecasteaux (iroup, New Glunea, and is 25 cm . in height, and shows a similar trpe of duhb to that deseribed above.

## The Human Face Motif.

Haddon's (1894, p. 135) contention that designs of types illustrated are derived from the buman face, may have of be modified in the light of data presented in this paper.

Besides arrows, designs appear on other objects manufactured by the natives in this area (sonthern coastal reqion of Papua), and in the majurity of hark-belts, the decoration has a detinite resmblane to the hmman face (see plate xxii, fig. B). In this case, even when excessively conventionalized, the dwign has a rig-zag appearance which represents serrated teeth, and this may oceur, not only at the region of the month, but also on the rest of the face. Such an example is illustrated on plate xxii, fir. B, and shows the face decoration in a bark-belt from the L'apuan Gulf.

In comparing the haunched figure, arrow design, and human face derivative, "He must take into aceount the object upon which the art int carved, the small spare Por expression, and the extreme conventionalization possible.

When either the haunched figure or hman face become excessively convenfirmalized, the fundamental outlines berome the same and the original motif is lost. The following two examples (fig. 2, If and i) show how the elements of the hanched figure, as well as of the hmman face, may he extracted. Consideriug the hannched figure first : a horizontal line comventiomalizes the head, adeute angles the eves, and a perpmoticular the body. The line at the extrente left ruming from the


eye downwards and then upwards, represents the arm. The IL motil at centre gives the conventionalized equivalent of the haunched posture. The base represents feet. A slearer ontline of the posture is given in 2 J .

Secondly, in extracting the ingredient of the human face, the flexed "ellows'" of the siguthing figure design become the cyes of the face design. The flexed "knees" represent the mpturned corners of the month.

All the arrow desigus illustrated in this paper (except fig. $2, A, B$, and 0 ) may be comsidured open to either interpretation. As is often the case, the native mind may have played with the design and deliberately represented both a face and hamehell figure at one and the same time.

## Descrifition of Imuctrations.

T11 fig, 2, the arrow incisings $\mathbf{A}(a), \mathbf{C}(c), \mathbf{D}(\mathrm{c}), \mathbf{E}(\mathrm{c}), \mathbf{F}(f)$, and $K(k)$ have a line-sketch alongside of each to assist in tracing the human motif and the compressed MI (except in $\mathrm{C}(\mathrm{c})$ ) of the hatumed attitude.

In O , the line-drawing illustrates the eentre figure. Is is Aescriptive within itself, while $H$ corresponds with $\mathrm{F}^{(f)}$ ) and $G$ with $E(e)$.

Fig. 2 A is u human figure in hauched posture, having the M-like motif for the legs, the ontstretched arms, amd a $V$ and triangle conventionalizing the head.

Fig. 3 b B is a rmarkable entraving from a conical arrow collected at Port Moresby. At the tup of the clesign a horizontal line repressents the head, while at each side of the perpendicular body the arms are conventionalized. Again the M-motif symbolizes the figure's haunched attitude, while the buttocks are also inchaded in the artist's conception of this traditional design.
$\mathrm{H}^{\mathrm{H}} \mathrm{g}, 2 \mathrm{O}$ is an exceptional piece of incising, in that the whole figure is in profile. In order to suak the interpretation of this engraving clear, a simple figure has been drawn at the side (c).

The heads are conventionalized in an oval within an oval, while the perpendicular bodifs, horizontal shonlders, arms, and, in the second figure, one arm resting on the line upon which the body is seated, as well as the bent elbow, are as clearly shown as the buttocks indented upon the horizontal line, which possibly represents the ground. This is the only example of the style that cem be found among the may hundreds of arrows examined.

In the actual figure, but more sor in the line-sketch (e), an analogy with Egyplian treatment is shown.

The three examples described abova are of the haunched figure design, and in the illustrations followiug the same motil is used. At first sight these represent the hamehed figure highly conventionalized (fig. -2, D, E, F, (,$~ H$, and K), but, upon further examination, in doubt as to this origin may oceur, for it has already


Fig. \%. Arrow deaigns, showing tramation from the chatrontinualized typa of $A$ to the grometrical tigures of $\mathbb{K}^{\text {and }} \mathrm{I}_{\text {。 }}$.
been shown that such a design as fiy. 2. II and d, may be taken as representing oither a squat figure or' a human face.

The following designs have therefore been arranged to show their connection with the ahove.

Fig. 2 D is a spirited carving from a barbed arrow collected in the Toaripi area, and encresponds with $E$ in that the V-shupe is perceivable together with the serjes of smaller V's, one above the other, on the perpendicular line. If this figure represents a human form, it may be that the series of V's represent the ribs. If, on the other hand, it represents the face, they may be a series of ornamentations accentuating the mouth. Fig. 2 F is an even clearer example than either D or H, laving the main outlines of $\Lambda$, while in fig. 2 G , the upper design on the perpendicular line is surely a face derivaliom. Fig. 2 K 解 a typical design, from a single hurbed arrow. It resembles a mask, and still retains the compressed $M$, the conventionalized design following a curve around the centre diamond. $\mathrm{L}_{\mathrm{s}}$ is the side clevation of the same.

Fig. ${ }^{3}$ A has the main aspeet, that is the M, retaned by the artist. The centre is a dimmond with an M below, and an inverted M above. Comparisom with the traditional type, fig. 2 K shows the modification that has necmred.

Fig. 3 B is a peenliar modification, intermediate betwenn 2 G and 2 K , conventionalized into a meandering style comparable with the head of the design in E, thus assmming the human face aspect, although F may be a better intermediate

Fig. 3 C' serves to link $\mathrm{B}_{\mathrm{I}} \mathrm{I}$ and $\mathrm{I}_{\mathrm{E}} \mathrm{E}$, in whieh the trianqular decoration appears. Fig. 3 D retains the compressed II and invertud V , as in 2 F , while. 3 E has the actual base of the figure similar to that of 2 G .

Wirg. 3 H is secmingly deriverl from G , the face hecoming the essential accentuated, while Fig. 3 of is more formal but still comparable with H. In 3 L , the key pattern has become complicated, and a more elaborated version of the $Z$ and 1 riangle at the right-hand base of C .

In the triangle motif appearing in K , each pair of geometrical figures in the course of conventionalization has become joined by a line.

The extreme is shown in the designs in fise. 4 , where in If the heart-shaped centre (originally the compressed M ), the V at the base, and the inverted V at the hoad, show some similarity to the design in fig. 3 D .

Fig. 4, C and D , may be derived from 3 , II and J , as also may be $4 \mathrm{E}, \mathrm{F}$, and C , while 4 H cm be linked with 4 J , which has the centre diamond as in 2 K , and 4 K is possibly derived from either eJ or $G$, or both.

The last three are difficult to allocate, except in that they retain perpendicular (fig. 4 D) and other lines ruming from head to base with a break at centre, all that remains in 4 M being wavy broken lines,


Fig. A. A, Portions of conical type of arrow hean. B, kortinus of barbed type of ardow heal. 1)-N, Extreme modifieations of arrow desigus.

Little or no connection can be traced in fig. 4 N , and it is doubtful whether it can have originated from the others of the series. It is inserted here only because it appeared on the arrows of this area.

## SUMMARY.

This paper records designs found on the middle section of the heads of conical or barbed arrows of Papua, the actual specimens studied being in the South Australian collection,

Deseriptions are given of the two distinctive types of arrows, together with a classification of the variations, occurring in the restricted area of the southern coast of Papua bordering the Papuan Gulf.

The main discussion is on the incised decoration, but primitive art and its inspiration is considered, together with the native artists' mode of approach.

The evolution of the human motif in the designs, and its conventionalization, is analysed.

The illustrations may be modifications of either the haunched figure or the human face, and both origins are diseussed.

## REFERENCES CITED.

Berndt, R. M. (1939) : Ifuman Figure in Paphan Spatula decor, Trans. Roy. Soc., S. Aust., Vol. 63, pt. 1, pp. 51-62. Adelaide.

Berndt, R. M. (1939) : Comparison between N. Austr. Spear and N. Guinea Arrowhead. S. Austr. Naturalist, Vol. 19, pt. 4, pp. 8-12. Adelaide.
Edge-Partington, J. (1890) : Album of the Natives of Pacific Islands (pt. 1), pp. 260, 343.
Haddon, A. C. (1894) : Decor. Art of Brit. N. Guinea, pp. 13t, 135, 203. Dublin. Haddon, A. C. (1901): Head-hunters, black, white, and brown, pp. 106, 107. London.
Haddon, A. C. (1912) : Anthrop. Exp. to Torres Strait Is. (pt. 4), pp. 173, 174, 177. Cambridge.


$$
\begin{aligned}
& \text { 13. A human face desigu from a lark holt, showing sermated teeth. } \\
& \text { C. A hameded figure, profile of last. }
\end{aligned}
$$

## THE PROPHLIANTIDAE

# A PROPOSED NEW FAMILY OF AMPHIPODA, WITH DESCRIPTION OF A NEW GENUS AND FOUR NEW SPECIES 

By George E. Nicholls, University of Western Australia


#### Abstract

Summary The discovery, in the collection of Amphipods brought back in 1914 by the "Aurora" from Macquarie Island of a new genus Cylindryllioides (1938), closely akin to Bircenna, revived the question of the systematic position of the latter genus. Erected by Chilton, in 1883, for a single New Zealand species (Bircenna fulva), that author remarked: "I do not know where to place this peculiar-looking Amphipod; it may come near to Phlias, but the species of that genus . . . . are not described in sufficient detail to warrant one in forming any definite conclusion as to their relationship."


# The PROPHLIANTIDAE 

A PROPOSED NEW FAMILY OF AMPHIPODA, WITH DESCRIPTION OF A NEW GENUS AND FOUR NEW SPECIES<br>By GliolkGl: Li. NICHOLLS, Untverstry of Westers Austraria.

'1ext-figs. 1-10.
'The diseovery, in the eollection of Amphipods hrought back in 1914 by the " Aurcra" from Macquarie Island of a new geuns Cylindryllioides (1988), closely akin io Bircemu, revived the gnestion of the systematic position of the latter genus.

Erceted by Uhilton, in 1883, for a single New Zealand species (Bircenmu fulzu), that author remarked: "I do not know where to place this peculiar-looking Amphipod; it may come near to Phlias, but the species of that genns . . . . are not describer in sufficient detail to warrant one in forming any definite conclusion as to their relationship."

Chilton's mriginal accomt, which was very briel, mifordmately inaceurately recorded the telsou as "simple, not divided". While this may or may not have influcnced Ntohhing in assigning Livcennu (in "Das Tierreiclı", 1906) to the Phlitutidac, it was, ahmosi certaimly, responsible for Chevrenx's proposal of a new genas Wramdelith (1906) for a subantarctic species which was referred to the I'hliantidas (l'hliasidac), and was said to differ from Bircenmu notably in that the tolson was completely cleft.

In 1903 another peculiar Amphipod was recorded by Walker. He placed it in a new genus, $\kappa$ frora, noted its resemblance in many particulars to Bircenua, called attention to its cleft telson, questioned the propriety of the reference of such forms to the Pbliantidae, and finally left it incertac sadis. Stebbing, in 1906, included it. in the L'hliantidae.

Chilton (1909) having re-examined bincomu fulva, recognized the ervor in his description of the telson, and correctly described it, as "split to the base". He went further, and concluded that "Wandelia is identical with Birecome, and, indeed, Wundeliu crassipes is specifically not very ditherent from Bircenna fulva',

Chilton, however, in his examination of Bircema fuba, completely overlowked one very curions aud indeed mique character in that genus, viz. the oceurrence of a decp and strongly curved transverse plate projecting ventrally like a
collar, from the under surface of the first peracon segment (fig. $7 \Lambda$ ). It is obviously a development of the sternite of that segment, and may be referred to as the ventral flange. I find this present in all undoubted species of Birconna, and consider it a character of generic importance.

In the Western Australian species $B$. ignea, described below, this semi-circular flange extends sufficiently far forward to actually underlie the base of the head, its anterior surface being strongly concave, bounding a watch-pocket shaped recess.

In the South Australian species, $B$. nichollsi Sheard, and in the New Zealand B. fulva Chilton, it is, perhaps not quite so strongly developed, but is, nevertheless, a quite conspicuous feature.

In most of the members of this group of genera there is an unusually long articular region, or "neck", separating the head from the peraeon, but the head can be strongly retracted, in which case its lower surface and the hinder mouth parts are, in Bircenna, partly received in this pocket. In the genus Eophliantis, recently established by Sheard, as well as in Cylindryllioides, this structure is absent, nor can I find it in any of the new species Prophlias anomalus, Biancolinu australis and $W^{\top}$ andelia japonensis.

The specimens of Wandelia crassipes examined by Chevreux were smaller than fully-grown $B$. fitlva, and correspondingly more difficult to study, yet since Chevreux correctly recorded the cleft condition of the telson of his species, I cannot believe that he would have overlooked the above quite conspicuous sternal development had it been present. Indeed, his figure certainly suggests its absence, and for this reason I consider that Wandelia must be retained as a distinct genus, related much more closely to Eophliantis than to Bircenna.

In his "Note on the Amphipodan genera, Bircenna, Kuria, and Wandelia", Chilton (1909), while amending his account of Bircenna and proposing the abandonment of Wandelia, recognized that, in the completely cleft condition of the telson, this genus and Kuria differed from all the remaining Phliantidae known at that time. A further difference is found in that all the then remaining genera (Iphinotus, Percionotus, etc.) are markedly dorso-ventrally flattened. Indeed, in their appearance, they are utterly unlike the cylindriform Bircenna.

He hesitated, however, at the obvious step of establishing another family, and suggested, instead, the enlargement of the characters of the Phliantidae to accommodate these very dissimilar forms-but omitted to formulate the suitably modified tamily diagnosis he recommended.

Recently Sheard has tentatively proposed the division of the Phliantidae into two subfamilies, which he named respectively the Eophliantinae and the Phliantinac.

Classification must be, to a considerable extent, a matter of convenience, and the separation of these genera into two subfamilies does not completely meet the case. That they are not very distantly related may be at once conceded, but that is true of many accepted Amphipodan families.

Since there are now recorded no fewer than eight genera of this cylindroidal or compressed Amphipodan type, with telson cleft more or less completely, it seems reasonable to establish for them a distinct family, for which the name Prophliantidae is suggested, the depressed forms with entire telson constituting the Phliantidae.

Of these genera one, Prophlias, is new. In some particulars it seems least specialized, and, in these, probably comes nearest to the condition of the ancestral forms of both the Prophliantidae and of the Phliantidae: there is something about it curiously suggestive of the Lysianassidae. In other characters it is quite unusual, in many linking up with Kuria. It is represented by a single species $P$. anomalus $\mathrm{n}, \mathrm{sp}$.

As regards Biancolina, it seems extremely probable that under the name $B$. cuniculus, Stebbing (1906) has united two entirely distinct forms, and, while his species may well prove to be correctly referred to the Ampithoidae, Biancolina algicola Della Valle should, in my opinion, be removed from that family. With the new Western Australian Amphipod described under the name B. australis, it is here included in the Prophliantidae.

A third species of Bircenva, B. ignea n. sp., also from Western Australia, is here named and described.

The distribution of the species, at present recorded, is mainly Australasian, cight out of the twelve (or perhaps thirteen) occurring in that area; the remaining four (or five) consisting of one of the two Biancolina spp. (Mediterranean) Wandelia, with one sub-antarctic American and one Japanese species, and Kuria from the neighbourhood of Sokotra. If the Ceinu sp. taken by the Siboga Expedition near Sulu, proves to be actually identical with C. cgrcyia (Chilton) it will be the only example of wide distribution of a species.

All species, however, are very small, and, from the nature of their habitat, likely to be taken only by chance; they seem never to have been secured except in small numbers. It is probable that careful search will reveal the family to be of very wide occurrence.

I desire to take this opportunity of recording my thanks to Mr. K. Sheard, of the South Australian Museum, for facilitating my examination of the material in that Collection, as well as for help in several other ways, not least of these being the undertaking to see the paper through the press; also, in acknowledging my indebtedness to Dr. A. G. Nicholls for his assistance in the making of the prepara-
tions required, and of the camela luchda drawingen fom which the illustrations have been made.

Nore. -The term parachclate is proposed for that mehensile condition where a markedy eonver palm or a produced thumb is relatively minute and meets the betse whly, wh the dactyl. The deseription "minutely "halate' is noviously suitable only where the dactyl is small and fits against the tip of an equally small thumb.

## PROPHLIANTIDAE, fam, nov.

Body compressed or cylindrical, rostrom minute or absent. Eyes preseut. Peracon stromgly developed. Pleon segments 5 and 6 generally reduced or coalesced. Side plates generally shallow. Telson short, cleft or apically incised. Antennae short, without: aceessory flagellum. Mandible without palp, molar generally vestigial or wanting. Lower lip with or without imer lobes. Palp of maxilla 1 usually reduced or absent. Maxilliped generally with imner plate well developed. Guathopod 1 and 2 subchelate, parachelate, or simple. Laranchial famellae small. Uropods 1 and 2 biramons, uropod 3 variable.

With eight genera and twelve species.

1. Body compressed, carinate, side plates deep . . . . . .. 芭 Body sub-cylindrical, side plates shallow .. .. .. .. .. 4.
2. Wifth side plate very large, uropod 'd well developed, biramons.

Hitill side plate small, uropod is small, uniramots .
a. Sirle phates $1-t$ shallower than their rebated segments. maxilliped mone plate Jarge, felson apically cleft .. .. .. .. (!eina Della Valle (2).
 telson cleft almost to the base .. .. .. .. Kura Walker (i3).
3. Telson apically incised or partly clelt, uropod ${ }^{3}$ biranous.

Biancolina Della Valle (4). I'elson cleft to base, uropod is not biramous . . . . . . . . 5.
5. Pleon scgmonts - -6 small but distinct . . . Eophtichtis Sheard (5). Pleon segments $4-6$ coalesced .. .. .. . . . . . 6.
6. Pleopods biramons, uropod ? uniranous.
 P'eraeon segment: I with ventral lange .. . Birecnua Chilton (7). Pleopods uniramous, uropod: 3 without distinct ramus. Cyindryllioides Nicholls (8).

## 1. Promplias gen. nov.

Integument hard, calcified; body robust, emmpressed, sub-carinate; head deep, with minute rostrum; eyes round; mouth parts prominent; side plates not quite
as duep ds their related segments. Peracon semments 4-7 and plem segments 1-"i with postero-lateral comer produced into rounded inbercle, pleon segments th 6 moderately well developed, but boundaries not distinctly indieated; telson deeply cleft. Antema 1 short, stout, with large first segment; antema 2 short, broad, flagelliom wanting, the appendage earried flat upon the anterior surface of the head; labrum short, hroad, entire; mandible with small molar on left appendage; lower lip with well-developed imer lobe; maxilla 1 , inner plate small, one-segmented palp; maxilla $\mathfrak{2}$, inner plate feeble, shorter than outer ; maxilliped long, palp, 4-segmented, outer plate well developed, extending beyond second segment of palp, inner plate short, not reaching mictdle of tirst segment of palp.
( mathopods slender, alike, subetual, suluchelate, palnt short, transverse, conVex, dactyl short; pratoporl 3 has side plate, basos and meros speatly expanded, peraemods 4 and 3 side plates relatively small, basos expanded; pleopode bixamons, with pedmele relatively long and moderately produced mesially, two coupling hooks at postero-mesial angle; uropords biramons, $1-2$ with long slender pedmele, rami short, unequal; uropod 3 peanncle stout, rami cqual, stout and conical. rather longer than peduncle.

Remarks. This geuas differs from all the others included in this frmily, exeuptiug Geimu and fiuria, in its compressed condition and the dengee of development of the side plates. Except, however, that it is compressed instead of de. pressed, it approaches the Phliautidac in its hard exoskeledon and deeps side platers 1- D, and (apart from the masual development of third peracopod) recalls the mabthes firme of Phitus scruatus Guerin and Iteterophlias sechusus shomaker.

There is likewise a remarkahle resemblance to some members of that family in the antenuine, but with the difference that it is the second antenna of frophlins which is ftatened aud redneed. The first antennae arise close together mear the middle line, separated omly by the minute rostrum. The second are inserted more ventrally upon the anterior surface of the heat, and urs carried so thatened against that surface so that, in profle, they are dittient forecognize.

The pleopods, thongh modified, are less aberrant than in any other member of rither the Prophliantidae (with the exception of (ecinu eqvegia) or of the lhlianstidate, white the mos and the wopods are little redheed. The third uropods, in particular, are almost normal; in size and proportions they come namrest to some of' the I'hliantidae, cog. Quasimodia burnardi Sheard, where, however, only one stout ramus persists.

The expansion of the hinder peraeoporls, also recalls the condition found in those flattened forms, but in Prophlias in peraeopod is it reaches an extreme dovelopment, and involves the side plate ats well.


Fig. 1. Prophlits anomulus: A , , lateral riow; B , head (slightly flattened); C , antonua 1 ; b, antenna 2 ; E, labrum with both mandibles; $F$, lower lip with maxilla is still attachm; ( maxilla "3 of upposite side: H, maxilla 1 ; $I$, maxilliped; J, gnathopod 1 , with hand (enlarged) from another specimen; $\mathcal{K}$, gnathopod 2 ; $L$, frereopod 1 , with gill; $M$, peraeopod 2 with gill ant narrow brood lamella; $N, O, P$, peraeopods 3,4 , and $\overline{5}$ (peracopod 4 with gill).

## Prophlias anomalus sp. nov.

With the characters of the gemus. A more detailed description of some of the appendages may be added.

Fenale. Antenna 1. First segment of peduncle very stout, second and third progressively shorter and more slender, flagellam $t$-segmented with aesthetes on distal three segments. In antinna $\gtrsim \sim$, only five segments were made out, the second with a well developed antemary cone, segments $1-4$ flattened, the last short.

Labrum short and broad, with slightly sinnous free border.

The left mandible bears a reduced molar, its cutting edge apparently with two prominent teeth, the right with a small secondary cutting edge.

The lower lip is unusual in this family, with inner and outer lobes of almost equal size.

The maxillae seem to have undergone displacement: laterally occurs a pair of appendages, which I must suppose to be maxilla 1 with small inner plate armed with a single seta, while the moderately long palp appears unsegmented. Mesial, and adhering upon disscction to the lower lip, is the small maxilla 2, its inner plate, armed with few setae, shorter than the outer.

The maxilliped with very long basal segment, the distal (horizontal) portion bent upon the proximal almost at right angles, and consisting of a relatively short 4 -segmented palp, the well developed outer plate armed mesially with spines, inner plate difficult to make out, but seemingly short and unarmed.

The side plates 1-3 increase progressively in length and depth, the ventral margins are notched, 2 and 3 bearing setae in the notches; 4 strongly emarginate behind, armed with a few setae. The gnathopods are unusual in this family (excepting Ceina) in that the propod is rather wide and the dactyl short, scarcely projecting beyond the short convex palm, thus producing a subchelate hand. It seems probable that the simple or the parachelate gnathopods found in most members of this family have arisen by reduction from an originally subchelate condition such as this. In the second gnathopod the ischium is particularly long, as in Lysianassids. Peraeopods differ from gnathopods in having the carpus linear and the propod narrow.

The third peraeopod is peculiar. The side plate is relatively immense, deeper than all the rest, rather longer than the combined length of side plates $1-4$, and markedly bilobed. The basos is somewhat similar in shape and size, the meros broadly expanded. The limb appears to be partly retroverted (probably the distal 4 segments). Peraeopod 4 has basos expanded, narrowing rather abruptly towards its distal end ; while the basos of 5 is more regularly convex behind, the fourth and fifth segments strongly spined. Small simple gills are borne on thoracic legs 2-6. The brood lamellae are long and strap-shaped (fig. 1 N ).

The pleopods are biramous, the long peduncle being expanded mesially, two coupling hooks on inner distal angle. Uropod 1 longer than 2 , inner ramus little more than half the length of outer; uropod 2 with peduncle slender, the linear rami subequal and shorter than peduncle, the inner ramus in both uropods 1 and 2 armed terminally with two setae and a stout spine, which may represent a second segment. Similar stout terminal spines are found in Cylindryllioides, Bircenna, Eophliantis, Kuria, and Wandelia. The third uropod has a short stout peduncle, the two rami stout, conical, equal and rather longer than peduncle.

The telson is cleft nearly to the base, each half tapering to a pointed extremity and armed with a single seta.

Length. From 1.5 mm.-8 mm. Eipht examples were taken, Apr., 1939. Two large specimens dissected were both femalp-omp with fiom embryos ( $0 \cdot 3 \mathrm{~mm}$. long). I cannot discern any difference which combl be regarded as related to sex.

Colour. In spirit, pure white.
Loc. Rothest, Western Anstralia. (On west sidu of Bathurst Point, in fine sand and weed between large boulders where waves loweak continually. (Cotypes in South Australian Museum.)

 Chilton: pleopod.
2. Ceina Della Valle.

Della Valle, 1893; Stebbing, 1899 amt 1906; Chiltom, 1919; [Pirlot, 1936 (Periphilias) and 1938.
Body carinate, moderately compressed, head small, not deep, without rostrum : eye small, red; peraeon segment 1 produced into "hood" overhanging the head, longer than second segment; plem segments $4-6$ reduced; telson apically cleft; side plates 1-4 less deep than related semments; side plate 5 bilobed, shallow.

Antennae short, slender, antema 2 the longer ; mandible with molar small. modified; lower lip with inner lohe slightly indicated; maxillipedes normal; guathopods subchelate, grathoper ᄅ (in male) "helate; uroporls 1 and "hiramous; uropod 3 miramous.

Remarks, Just as this paper was mactically completed, my attention was directed by Mr. Sheard to Pirlol's references to this genns, who kindly sent me a copy of that author's later paper. Pirlot's deseription (under the generic name Periphlias) of his species carinatus had suggested that the Amphipod in question was a fairly typical Phliantid. In $19: 38$ the genus C'rina is listed among the Talytridae, and the species cominatus smok in egreghu. The genus differs, so far as at present known, from all of the remaining members of this family, as well as from
all of the Phliantidae, in the condition of the secomd gnathopod of the male. That condition, however, differs, in degree only, from what I have called the parachelate, and, sinces several of the species here recorded are known from the female only, Cicinn may prove not to be peenliar in this feature.

With one species.

## Ceman eqibecia Chilton.

Chilton, 188:3, 12. 77, pl. it (Niecta); Della Valle, 189:3, p. isis), pl. lyiii, figs. 14-21;
Stebbing, 1906, p. 54; Chilton, 1919, p. 120, figs. 1-25; 子 Pirlot, 1936, p. 295, figs. 121-3, and 1938, pp. 329-30.
Remarks, Pirlot (1.e. p. 3:30) considers that, apart trom the shape of the head (which he says Chilton has figured incorrecty), the discrepancies betwenn his account and that of Chiltom are to be attributed to the smaller size of his Siboga specimen.

While that may well be true of the antenme and perhaps of the mandible, the carpus of peracopod 5 , and the dactyl of + and 5 , it is rather unexpected to find changes (consequent on growth) such as those in side plates 1 and 4 or the meros of peraeopods 3 and 4 . In view of the fact that Cogrogiu has apparently a limited distribution in New Zealand, it sems quite possible that the Suln specimen will proye 10 belong to at istinct species.

## 3. Kuria Walker.

Walker, 190:3; Stebhing, 1906 ; Sheard, 1936.
Body compressed, head small, partly concealed by first side plate, without rostrum; sido plates 1-4 deeper than their related segments; pleon segments 4-6 coalesced; telson divided almost to the base. Antennae subernal, short, few seginented. Mandible with dentate primary and secondary edges; molar rather large; maxilliped with both plates small, especially the outer. Gnathopods alike, slender, subequal, subchelate; pereneopods $3-5$ very robnst; side plates moderate, basos and meros well expanded. Uropods 1 and 2 with peituncle shorter than the rami, which are eftal and similar"; uropod 3 , the single ramus at long as peduncle.

Kemarks, Of this genus, Walker remarks that it is very aberrant, but apparently most nearly related to Birccnma which, as he points out, "seems . . . . out of place with gencra such as I'crcionotus. Iphinotus, ete".

Tho generje definition given by Walker has been somewhat umplified, additional characters being introduced for eomparison with Prophlias, to which, mueh more than to Birenna, does it, show kinship. From Bircenna it differs most conspicuously in its compressed body and deep side plates, in both of which it resembles Prophlias.

With one species.

Kimera mongitañ Walker.
Walker, 1903, p. 298, pl. xiv B, fist 5-inn ; Stehhing, 1906, p. TU6; Chilton, 1909, p. 63 ; Sheard, $3936, \mathrm{pp} .457$ and 463.

Remur\%s. It is of interest that while this species has so much in common with $P$. anomulus, it yet differs quite strikingly in mumerons details; and one or the othere may retain it less specialized conditiom in respect to any given character. Thus in Kuriu the head appears less deep, the side plates deeper. Side plate $t$ is large, excavate behind, principally dorsally; side plates 5, 6, and 7 are apparently small ant alike, whereas in Propltios side plate 4 is curved and slender (that is, greatly exenvated), and side plate 5 is extrardinarily developed. In $\begin{aligned} & \text { ruma } \\ & \text { it } \\ & \text { is }\end{aligned}$ the basos of peracopod 5 which makes the largest contribution to the lateral shield, in Prophlios the basos of peracopod is is most developed. Lropod 3 is reduced in size and uniramons in Kuriu, whereas in $I \cdot$. anomutus it is well developed and rebains the more generalized equal bramons coudition.

Similarly with the head appendages. Kiuia shows both antennae momodifiof except that they are small, and few semmented, the peduncle being seareely distimenished from flagellar portion.

In Prophlias the sccond antemna is curionsly modified, and so dattened down upori the head that under cursory inspection it appears absent. In the mouth parts the mandible is less reduced in Kuria, but Prophtias anomalus (alone of the members of this fumily in which the mouth parts are fully described) has the first maxilla moderately complete, and the lower lip well developed and bilobed, in which latter it is approuched hy the coudition in Biancolina.

The maxilliped of Trurio shows the outer plate almost vestimial, whereas in Prophlias it is the imer plate which is very reduced.

In both species the ischimu is musually long in the gnathopots, and the hands
 extending well beyoul the falm, approaching the condition for which I have proposed the term paruchelate.

Notwithstandinir these differences Kouriu and Prophlius eonstitute a distincl gronp in this family remote from the more vermiform qencra-Biancolith, perhaps, providing a link.

## f. Biancolana Della Valle.

Della Valle, 1893, p. 569: Stebbing, 1906, p. 646, part.
Bouly sliphtty compressed, perucon strongly developed, seqments subequal, pleon segments 4-6 not greatly reduced. Head longer than deep, as long as combined length of peracon segments 1 and $\mathfrak{A}$. Eye small, round, red, $A$ moderately
well developed intersegmental region or "reck"; antema 1 Ionger than antenna ${ }^{2}$. Lathrum wide, short, its anterior horder slightly emarginate. Mandible with toothed cutting edge, without molar.


Fig. 3. Biancolina australis: $A$, , lateral view; B , head; ${ }^{C}$, houl, antero-dorsal view, showing insertion of antennae, and labrum with an overlying plate which from its position can searcely be a rostrum, but may be an epistome; D, D', mandibles; E, maxilla 1, with inner plate flrom opposite side; F, maxilla ${ }^{2}$; (G, maxilliped, with plates and palj) more highly magnified; 11 , telson and uropod 3 .

Lower lip with large inner lobe; maxilla 1 without palp, inner plate small with single seta; maxilla 2 small, inner plate slender with few terminal setae, and others scattered along its mesial border. Maxilliped with small inner plate, palp three- or four-segmented.

Side plates shallow，mathopods slender，subchelate or parachelate．Peraeo－ puds 1－is with bands expanded，oval ：1－4．whust with expanded umpos ；：3－5 slender with short narrow carpus，propod and dactyl forming prehensile，parachelate hand．

Pleopods with wide rami，peduncle，therefore，not appearing widened mesi－ ally．Uropods biramous，pedundes lamellar；those of 1 and 2 provided with phumose setae on their lateral border．

Telson apically cleft or emarginate．
Romaths．The likeness of the Western Australian species to that from the Mediterranean is watrordinarily chose extending frequently to such minute de－ tails that their close kinship is searcely open to doubt．The head is，however，alto－ gether mulike that firured by Stebbing（187t，fig．1h）for Ampithor cumirulus， with which that anther had idmatied（1899）Della Valle＇s speceres．This specenes deseribed by Nathing from the Enelish litoral is more than three times the lengeth of that from the Mediterrantem，and his sugqestion that Della Valle＇s small spesi－ mens ware but juvenile pemates（ $190(6$, p．647）was apparently an assumption，for， in miting these forms（ $\mathbf{1 8 9 9} 9$ ，p．850），Stehhing did not claim to have examined the Meditmranean species．The Westem Anstralian specimen is efually small， but is fully adult（a female with ernbryos）．

It seems probable，therefore，that this identification is mistaken，and that the for European forms are，as Dellat lalle believed，generically distinct and refer－ able to different families．

Like Prophliars anomolus，the Anstralian species of Biancolinn．Della Valle departs in several particulars from the Pircemmid lacies，but these differences ap－ pear，in every case，as remtions of a more primitive（i．e．less roduced）condition．
 だィンドa．

With two species，known from female only．
Telson apically cmarginate，uropods 1 and 2 with peduncle armed with few setare and with rami unernal ．．．．．．．．．．．．．．algicola． Telsmin apically cleft，uroporls 1 and＂with poducle armed with several setac， rami subequal ．．．．．．．．．．．．．．．．australis．

## Biancolina algicola Della Valle．

Della Valle， 1893 ，p．569，pl．iii，figs． 11 and 32，figs．38－58，
Biancolina cuniculus Stebbing，1906，p．647，part．
Remarks．Apparently known from two specinens only，probably female， 1.5 mm ．in length．Bright yellow in colour，＇laken in water less than 1 m ．in depth in the Bay of Naples．

Biancolina australis sp. nov.
Integument parchment-like. Body slender, sub-cylindrical. Head rounded, longer than deep. Eye small, round. Peraeon well developed, first segment not longer than second, side plates shallow, scarcely touching, pleon downturned, segments distinct, urus not extremely reduced, telson cleft at apex.

Antennae arising close to middle line on antero-dorsal surface of the head. Antenna 1 slender with rounded basal segment, remaining segments without differentiation into peduncle and flagellum, linear, 10 segments, with setae and with


Fig. 4. Biancolina australis: A, gnathopod 1; B, gnathopod 2; C, D, and E, peraeopods 2, 3 and 4 ; F, G, uropods 1 and 2; H, pleopod.
aesthetes on $7,8,9$. Antenna 2 stouter and shorter than antenna 1, only five distinct segments, with scattered setae, the last segment minute. Labrum wide and shallow, its free border faintly emarginate.

Mandibles exactly as in algicola: lower lip not seen; maxilla 1, with small inner plate armed with single seta, outer plate stout, with about seven stout spine teeth, palp wanting. Maxilla 2 and maxilliped agreeing with those of algicola, except that the appendages of australis are apparently slightly more setose, and that the palp is four-segmented (Della Valle shows but three, perhaps overlooking a basal segment). Gnathopods nearly alike, the hand rather closely resembling that of Bircenna (B. nichollsi and gnathopod 2 of B. ignea), the dactyl overlapping considerably the short convex palm. The carpus, however, is shorter and
more triangula in outline, as in Prophius. In gnathopot I the hinder border of carpus and proporl is armed with plose-set setac, appening denticulate.

Peratenods 1 and 2 , short and stout, with sub-aval hasos and wide decurrent meros; peraeopods $3-5$ longer and more slender, basos uniformly expanded with few crenations and setae, meros less widened, carpus distinctly marrowed, propol long and curved, fud with the daetyl apparently prelensile on a minute palm. Short simple pills on thoracie legs $2-5$, brood lamellae wider than in Prophlias. The pleoports biramous, wite pedtuncte with three conplinge books, the rami heidge so broad that the exprinsion of the peduncle is less obvious.

Uropods liramous; uropod 1 , peduacle wide, Ionger than rami, inner ramus more slonder and slightly shorter than outer; uropod 2 , peduncle shorter and narrower than in uropod 1, subequal to rami, which are slender and cqual. In both uropod 1 and 2 the onter aspect is set with long phmose setae more uumerons than in algicola. Iropod 3 lamellar with two equal slenter rami and one long seta. The inner ramus is straight, and bears two terminal setae; the onter is curved, its apex upturned, and bears a terminal hooked spine.

Size. Length as figured, 1.3 mm . Female, four embryos.
Colomr (in spirit) pale yellowish-green.
Lon. Rothest, Western Australia, West of Bathurst Point, in sand and weed ammor botilders with waves breaking contimully. Collected Apros 1939.

Remurks, The likeness to algicole is astonishiugly close, and in size the two
 tion of the pleopods and least reduction of uros and uropods. In its external form its shablows side plates, its imtemmer, monhlo parts, ghathomots, etce., it has attained the condition typical of the family.

## 5. Empilitanerts Sheart.

Perneon strongly ilevelonnet (sub-cylintrical). ITead almost spherical, separated by well-manked neek from the first peraeon segment, which is little longer than second, without stemal flange. side plates shallow. Pleon segments 4-6 distinct. Telson small, upturned, eleft to hase. Autennae short, sleuder, subequal, the first silightly longer ; molar pressent: on right mandible; maxilla 1 with
 with distal end of propod prodtued into slight tooth; peraeopods ${ }^{3}-5$ with basos broadly procluced, perampod the thenest : plongots hiramons, $2-3$ with peduncle widely expanded. Tropods 1 and 2 biramous, uropod is a very small hilobed structure. (1)

[^12]Romarks. Very near to Wandelia, from which it is distinguished by relative Shoriness of first peraeon segment, the shallowness of the side plates, the simple grathopors, the expanded pedumeles of pleopords se and $: 3$, and the condition of the third uropod.

With one species.

## Eophliantis tindalei Sheard.

Sheard, 1936, p. 457, figs. 1-2.
Remarks. 'Through the kindness of Mr. K. Sheard I have been able to examine a cotype of this species.


Fig. 5. A-F, Eophtiantis tindalei Sheard: A, head and peraeon segment 1, lateral view; $H$, maxilla $1 ; C$, telson with uropod 3 in position, in dorsal view; $D, E$, uropods 1 and 2 ; $F$, tropod 3 dissected out. $G-H$, Handelia crassipes Chevreux $G$, mandibles; $H$, urus in side view.

In the first maxilla I find the palp represented by a vestige only (fig. 5 B )。 $\mathrm{Mr}^{\text {. }}$. Sheard, to whom I have referred this point, has examined further material, and, in a recent letter, states that he is able to confirm this. Further, in the very small specimen (possibly very immature) which I have examined, the two lobes of uropod 3 are not separate from the peduncle. The species may prove to be less distinct from Wandctiu crassipes than has been supposed, and a study of more abundant material render it necessary to transfer this species to Wandelia. Judging from

Sheard's firures, there sems to be a small differnce in the first and seeond urofoods of male and female, the lirst pair in the female and the second in the mate being the louger.

## 6. Wandelia Chevreux.

Body robust, sub-eylindrical; head without rostrum. Eye small, oval. First peramon segmont much longer than secomb, its stemite not produced into ventral flange. Pleon segments 4 - 6 reduced. Telson cleft to the base.

Antemae short, slender, sub-equal, the second slightly the longer; upper lip) With margin contire, romuled; mandible with vestigial molar; first maxila without. patp; maxilla $\stackrel{2}{-}$ with outer plate longer than immer; maxilliped with imer plate longer thau outer, palp 4 -segmented.

Gnathopods alike, slender ; ischimm long, propod produced into a small tooth; peraeopods short and stout ; :3-5 with hasos expanded; pleopods biramons, with perduncleomly monderately widened ; uropuls 1 and 2 biramons, is with simele ramus incompletely marked off from peduncle.

With two species.
Head sub-globular, gnathopods long and slender, perapopods :3-.) with (arpus linear .. .. .. .. .. .. .. ... .. crassipes. Head longer than deep, ghathoporls short, peraropods ${ }^{3}-5$ with carpus expanded and decurrent .. .. .. .. .. .. .. .. juponcusis.

Wanielia rarassimes Chevreux.
Chevreux, 1906, 11. 45, figs. 24-6; Chilton, 1909 (Bircenna (rassipes), p.5!); Chevreux, 1913 (B. crassipes), pp. 113-4; Sheard, 1936, p. 460 (B. crassipes).
Remurks. This species differs from Bircenna spp. chiefly in the absence of Whe shernal flame on the first peraeon segment. Other differenees are lound in the grathopods and pleopods. In the second, figured by Chevreux, the peduncle is shown having a width onc-ind-a-hall times as great as the length. In preparations made ( ${ }^{2}$ ) by 'hilton, one of the pleopods, probably the first, shows the peduncle only as wide as long. In bircenna, as noted below, all of the pleopods have the peduncle expanded, the width leeing twice the length. In Prophlias, as already stated, the more usmal Amphipodan emotition is found with length of peduncle greater than width, althongh some widening is eviclent. In every case, however, the expansion is mesial, so that the rami of any pair of pleopods lend to be more widely removed, and the peduncles to come into contact.
(3) In one particular this specimen appents to differ from that described by Chevreux. The patty diasceteq heal shows the fwo mandibles sith atiached. The left is as figured lor Chertemx fut the right scrms to have a prominence representing the molar.

The thind uropod is said by Chevreux to possess a short peduncle from which the lameltar raums is not distinctly separated, whereas in Birce mut futhe ateording to Chilton (1909), the third uroporl consists in but a single bifid segment.

## Wandelia japonensis sp, nov.

Description. of Body robust, sub-cylindrieal ; head longer than deep; eye small, oval; first peraeon segment considerably longer than second; side plates very shallow, widely separated, telson appearing ublong, with corners rounded, cleft to the base.


Antonnae short, sub-equal ; antenna 1 with six segments, aesthetes on the last two; antenna ", also with six segments, slightly longer and stonter than antemal 1; upper lip, mandibles, maxillae, and maxillipeds as in crassipes except that the inner plate of maxilla 1 appears to bear but a single seta.

Gnathopods alike, parachelate; less silender and relatively shorter than in crossipes, ischia not unusually long, propod in gnathopod 1 minutely denticulate, its distal end produced into blunt tooth-like prominence. 1'eracopods robust; 1 and $\stackrel{y}{2}$ with basos oyal, 3-5 with basos expanded, but the hinder border not crenate, the carpus as well as the meros expanded and decurreut; most of the segments fringed with setae.

Pleopods, with peduncle comparatively little expanded mesially; most noticeably in pleopod 3 , which is shortest ; in 1 and 2 there is a marked production of the peduncle distally along the mesial edge of the inner ramus.


Fig. 7. $\Lambda-\mathrm{I}$, Wandelict japonewsis: $\mathrm{A}-\mathrm{B}$, antennae 1 and 2; C, lower lip; 1, gnathopod 1; E-G, uropois 1-3; H, telson; I, pleopod 3. J-O, Waulelia japonensis (Chilton's figs.) : J-K, mandibles; $\mathrm{I}-\mathrm{M}$, maxillac 1 and $2 ; \mathrm{N}$, half maxilliped; O , uropod ${ }^{2}$, uropod 3 , telson.

Uropods 1 and 2 alike, sub-egual, 3 with ramus indistinct (?).
Size: 3.5 mm . Three of $\circ$, two with fully-developed brood pouch.
Loc. Otaru, Hokkaido, Japan. Coll. Dr. Hatta, "From the Medulla of Undaria".

Remarks. These specimens form part of Dr. Chilton's collection of Amphipoda, and seem not to have been described. They were labelled Bircenna japononsis n. sp., but lack, however, the flange on the first peraeon segment, which is characteristic of Bircenna. From Wandelia crassipes they differ most noticeably in the long Caprella-like head (crassipes apparently agreeing with Eophliantis tindalei in having the head sub-globular), in the shorter and stouter gnathopods, and in the oval basos of peraeopods 1 and 2. The long first peracon segment is found in both crassipes and japonensis. The mouth parts and peraeopods are strikingly like those of crassipes excepting that more of the joints are widened and decurrent, and many are abundantly fringed with setae, which is unusual in this family.

Of interest is the occurrence of a short tendril-like twisting at the ends of many of the setae of the brood lamella. In the specimen dissected, so firmly were the lamellae linked by this device that they would more readily tear than separate. A similar twisting of these setae has been observed in Ceina egregia, Bircenna ignea, Cylindryllioides mawsoni, and in a new and undescribed Western Australian species of Quasimodia. In Prophlias, setae were wanting from most lamellae, but when present they show a slight apical twisting. It will probably prove to be of general occurrence in both the Prophliantidae and the Phliantidae.

Since writing the above notes, Mr. Sheard has informed me that he has obtained, through the courtesy of the Canterbury University Museum, New Zealand, manuseript and drawings of the late Professor Chilton referring to this species. These notes and drawings, which were made from a relatively fresh specimen, substantially agree with my own observations.

With regard to the mouthparts, uropod 3, and telson, Chilton states: "The first maxilla has no sign of a palp, the outer lobe is strong with tufts of setae near the middle of the outer margin and about 6 or 7 stout, dentate teeth at the extremity; the inner lobe is slender, slightly more than half as long as the outer, and ends in a single fine setae.
"The second maxilla has the two lobes of about the same size, the setae at the extremity of both lobes are rather stouter than usual in this appendage; the outer lobe has also several tufts of fine setae on its outer margin and a fringe of fine setae on its inner margin.
"The mandibles are slender, entirely without palp, and there is no molar tubercle; the cutting edge is broad, formed of three or four teeth, one larger than the others and triangular; the accessory process is small, and in each mandible ends in four very sharp curved teeth. The third uropod consists of a single piece which may represent the peduncle and ramus combined. The extremity curves upwards, and is shown in the figure as bent back on its more proximal portion; it
ends in a short sub-acute tooth, with two setae ou its outer side and one on its imucr. The telson appears elfeft on the hasc, wheh half is rectangular, and hears a fine seta at the inner distal angle."

Chilton's figures of these parts are reproduced (fig. 6, P-U).
Mr. Sheard has called ms attention, alsu, to the fact that Stephensen ('Trans. Sapporo Nat. Hist. Soc., Vol. 13, 1933) had published a description of a new Japanese Amphipod very probably from the same locality as $\mathbb{W}$. juponensis, which he named Ceinina japonice. This was said to be taken on brown algae, and was referred by Stephensen to the Talitridae.

It seems probable that, like C'rinu, it should also be assigned to the P'rophliantidae, but I am mable to determine this, ans no copy of stephensen's paper is available to me.

It is, of course, a possibility that it may prove to be identical with the species hera referred to IV mudelia. As set out, above, this species differs in several details from $W$. crassipes, but these differences seem searely sufficient to warrant the establishment of a new genus.

## 7. Biromnn Ohilton.

Body stib-cylindrical; head large, suh-spherical, without rostrum; eyes small, round $n^{\prime}$ oval. First peraeon segment longer than second; its stermite ventrully produced into a deep, ('urved transwerse flage, the concavity forwardy directed. Pleon segments 4-6 greatly reduced. Telson clelt to the base.

Antennae short, slender, sub-efual, the first slightly larger; mandible with molar weak or wanting; first maxilla without palp; maxilliped with palp foursermented; mathopods short, moderathy stont, parachelate or imperfectly subschelate; peraeopods $3-5$ with bases expanted ; pleopords biramons, with pedurcles broadly produced mesially; urounchs 1 and 2 hiramulb, $: 3$ with single ramus incompletely indicated.

With three species.

1. Molar wanting on mandible .. .. .. .. .. .. fulva.

Weak molar present on both mandibles .. .. .. .. .. 2.
 Autenmae stout, peracopods 3-5 longer than depth of body .. .. ignea.

## Girgenna fuluva Chilton.

Chilton, 1883 (B. fuluus), p. 264, pl. xxi, fig. 1; 1909 ( $B$. fulva), p. 59, figs. 1-8; Stebbing, 1889 ( $B$ fulvus), p. 421, and 1906, p. 205; Sheard, 1936, p. 460, fig. 3.

Romurks. The rather scanty figures of this species given by Chilton have been supplemented by shated in a number of drawings made from preparations of a syntype. The figure ( 3 E ) of maxilla 1 is, in my opinion, the complete appendan": otherwise it is difficult to reconcile with the condition of this appeulare in the two remaining species of this genus, which appear in othor respects rery closely akin to fulue. It seems probable that the thire member (fig. ; G ) is the detached outer plate of maxilla 2.

Chilton's habitus figure ( 1883 , fig. 1 ) fails to show the greater longth of the first peraton segment on which, too, the ventral sternal flange is quite well developed.

## Bircenna nichullai Sheard.

Sheard, 1936, p. 461, fig. 4.
homurks. Since 1936, when the first specimen (an ovigerous of) of this species was eollected, numerons other examples have come to light not only from Sellick Reef but also trom other localities in St. Vincent Gulf.
is s are perhaps represented in the collection, but if so, dilierences between the sexes must he very slight, appearine only in gnathopods and uropods. So for as the ghathopods are concerned small differences, which I take to be related to sex, are sech in propod and dactyl, the former stouter and the dactyl shorter in the jresumed male. In uropod 1 the inner ramus is the more slender, and is longer than the pedmele; nopod es shows the inequality of the rami more markedly; but these may prove to be merely individnal variations. In uropod is the small conical ramms is very incompletely separated from the jeduncular region, and in side view the appendage has the appearance of being bilobed. Pleoporis 1 and is exhihit that projection at the proximal end of the muter margin of the inuer ramus, to which C'lifton has called attention in futva (1909, fig. 1).

## Biroenna lanea sir. nov.

Deseription. Body sub-eylindrical, rather short and stout; head neardy globular, more massive in the of eye small, nearly round, with tew ocelli ( $17-20$ ), peraen strongly developed, peraeon segment 1 much longer than 2 ; side plates very shallow; pleon segments $4-6$ greatly reduced; telson completely cleft, the apices broadly rounded.

Antemnae sub-equal, short, antenna 1 of of with seven segments, all but the last of the four flagelfar segments with aesthetes, antenna 2 slightly stouter, with six clistinet segments; in the of the antemace are markedly stouter, antema 1 flagellum with five serments, four bearing bushy tutts of aesthetes. Upper lip


Fig. 8. A, Bircenna fulva: head and peraeon segment 1, lateral view. B-P, Bircenna nichollsi Sheard: B, entire animal, lateral view; C, peraeon segment 1, from the side, and D, from the front; E, maxilla $1 ; F$, distal part of maxilla $2 ; G, H$, inner and outer plates of maxilliped; 1 , urus and uropods from above; J, the same partly dissected and somewhat flattened; $K, I_{2}$, uropods 2 and $1 ; \mathrm{M}$, uropod 3 , lateral view; $N$, the same removed and more highly magnified; 0 , pleopod $3 ; P$, peracopod 5 , with part of hinder border of basos enlarged.
rounded, wider than deep. Mandille with molar weak, primary edge not definitely toothed, minute secondary cutting edge with three slender teeth. Tower lip withont immer lobes, rounded apices of outer lobes with setules; maxilla 1 with vestige of palp, imer plate with single setar reaching almost as far distally as the spines on outer plate; maxilla 2, with plates sulb-equal, inner plate much less ob-


Fig. 9. Bircenna ignea: A, lateral view; B, head, with peraeon segment 1 (\%); C, heat ( ${ }^{4}$ ); D , lowel lip; E , mandible; $\mathrm{t}-\mathrm{G}$, maxillae 1 and $\frac{1}{2}$; 11 , front view of peraeon segment 1 ; I , gmthupod 1 ; d, pleopod 3 ; $K$, urus, in torsal view, uropod a removed from one sitle.
liquely truncate than in nichollsi. Maxilliped with outer plate armed with setae along its imner border, shorter than inner plate.

The sternite of the first peraeon segment downwardly produced, the curved plate showing a paired circular perforation (or perhaps merely thin transparent area).

Gnathopods alike, minutely parachelate, slender, gnathopod 1 carpus as long as propod, the latter with minute phom, slender dactyl as long as hinder border of propocl ; gnathopod 2 with dactyl about three-fourthe of leagth of propod. Peraeopods stout. peratopod 1 with postoro-distal angle of propod produced into strong
tonth, approaching the condition figured by Shand for guathopod 2 of fulna ( $10: 36$, fig. : 3 R ) ; pracopods $t$ and $\overline{\mathrm{j}}$, expansion on hinder border of hatos with but a single notch and seta. Uropods 1 and 2 stout, rami subequal and longer than pedmales, each bearinger stout terminal spine; mropod: short lamellar with single small conical ramus. Apices of telson cach bearing a seta and a spimule.


Fig. 10. Bircenna ignea: A, gnathopod 2; H, propod and dactyl, peraeopod 1 ; $\mathrm{C}-\mathrm{L}$, peraenpods 3-5.

Length: $1.5 \mathrm{~mm} .-2 \mathrm{~mm}$.
Colour. A fiery red.
Loc. Amongst fine seaweed and sand: nearly a dozen specimens, including four 太̊ \%̂, taken in November, 1938, Shelly Beach, Nornalup, South-western Australia.

Remarlis. All three species of this genus are very closely alike. From michollst, igne'l may be distinguished by the lesser depth of its peraeon segments and the greater relative length of the hinder peraeopods. The expansion of the hatsos of these peraeopoch (3-5) is greater in michollsi, athough the legs are actually shorter. There is a difference in the shape of the head of these two species. The antemae are distinctly stouter in ignea, the only species in which sex distinctions affecting the antennae have been seen. The eyes are larger, but seem to have
fewer ocelli, which are black on a red pigmented ground. In nichollsi the ocelli are difficult to make out, but they appear to be more numerous and, in preserved specimens, quite black; the colour in life of this species is not recorded.

## Cylindryluifoides Nicholls.

Nicholls, 1938.
Body slender, sub-cylindrical. Head longer than deep, without rostrum, with sub-ocular incisure (?), and in the relaxed condition separated from the first peraeon segment by a wide intersegmental region or "neck". Peraeon long, first segment slightly longer than the second, and without ventral sternal projection. Side plates short and very shallow, widely separated. Metasome well developed, but pleon segments 4-6 greatly reduced without definite intersegmental boundaries. Telson minute, deeply cleft.

Antennae short, stout, subequal, 2 the shorter; upper lip rounded, with shallow median emargination ; reduced molar on left (?) mandible; lower lip without inner lobes; maxilla 1 without palp; maxilla 2 plates sub-equal; maxilliped with short stout four-segmented palp, inner and outer plates sub-equal. Gnathopod 1 shorter than 2, otherwise alike, slender, parachelate; peraeopods short, stout, basos expanded in $3-5$; pleopods with short peduncle, the single slender ramus with few segments; uropods 1 and 2 biramous, rami sub-equal, 3 peduncle lamellar, without rami.

With one species.

Cylindrylliotdes mawsoni Nicholls.
Nicholls, 1938, p. 59, figs. 30, 31.
Remarks. Of all of the species of this family, this has attained most nearly to the vermiform condition.

The side plates are extremely reduced and widely spaced, the urus quite minute, and the pleopods with but a single ramus, the peduncle small and scarcely widened.

Taken at Macquarie Island, by H. Hamilton, in 1913.
With the exclusion, from the Phliantidae, of Bircenna, Wandelia, and Kuria, the remaining genera constitute a more coherent family, which may be defined as follows:

## Phliantidae Stebbing.

Body depressed; peraeon side plates expanded. Pleon strongly flexed ventrally, subject to degradation. Antennae 1 and 2 very short. Antenna 1 with
peduncle expanded, no accessory flagellum. Upper lip with distal margin usually undivided. Lower lip with or without inner lobes. Mandible without palp. Maxilla 1 without inner lobe, palp absent or one-jointed, small. Maxilliped with palp variable. Gnathopods 1 and 2 simple or subchelate.( ${ }^{3}$ ) One or more pleopods with peduncle expanded. Pleopod 3 with inner ramus subject to degradation. Uropod 3 usually not biramous. Telson short, entire, not upturned.

With 10 genera, 13 species, including a new and as yet undescribed Quasimodia species from Western Australia.

These are all to be readily recognized by their broadly depressed body, short entire telson, and wide side plates.

Rather similar side plates are met with in the more compressed Prophliantidae, and in Biancolina the telson is almost entire. In the mouthparts the families are sharply separated by the condition of the first maxilla, and, in both, parallel degeneration has occurred in one or more of the parts and of the pleopods-perhaps consequences of similar habitat and mode of life.

## LITERATURE.

Chevreux, E. (1906) : Exped. Ant. Franc. (1903-1905), "Amphipodes".
Chevreux, E. (1913) : Deuxieme Exp. Franc. (1908-1910), "Amphipodes".
Chilton, C. (1884) : Trans, N.Z. Inst., Vol. 16.
Chilton, C. (1909) : Trans. N.Z. Inst., Vol, 41.
Chilton, C. (1919) : Trans. N.Z. Inst., Vol. 51.
Della Valle, A. (1893) : F. Fll. Neapel, Vol. 20.
Nicholls, G. E. (1938) : Austr. Ant. Exped. (1911-1914), Sci. Rep. Ser. C, Vol. 2, pt. 4.
Pirlot, J. M. (1936) : Siboga Expeditie Mono., 33e.
Pirlot, J. M. (1938) : Siboga Expeditie Mono., 33f.
Sheard, K. (1936) : Rec. S. Austr. Mus., Vol. V, pt. 4.
Sheard, K. (1937) : Trans. Roy. Soc. Sth. Austr., Vol. 61.
Stebbing, T. R. R. (1874) : Ann. Mag. Nat. Hist., Ser. 4, Vol. 14.
Stebbing, T. R. R. (1889) : Ann. Mag. Nat. Hist. Ser. 7, Vol. 3.
Stebbing, T. R. R. (1899) : Trans. Linn. Soc. Lond., Ser. 2, Vol. 7.
Stebbing, T. R. R. (1906) : Das Tierreich, Vol. 21.
Stephensen, K. (1933) : Trans. Sapporo Nat. Hist., Vol. 13. Walker, A. O. (1903) : Nat. Hist. Sokotra.
(3) Mr. Sheard informs me that the word "sub'' was omitted between the words "weakly", and 'chelate" in his definition of the sub-family Phliantinae (Sheard, 1936, p. 463).

## Berconves


 $1: \cdots, \quad \because!1,1-11$

# FOSSIL HUMAN SKULL FRAGMENTS OF PROBABLE PLEISTOCENE AGE FROM AITAPE, NEW GUINEA 

By Frank J. Fenner, M.B., B.S., D.T.M., Assistant Physical Anthropologist, South Australian Museum, Adelaide.

## Summary

This paper consists of a description of fragments of a fossil human skull found in situ in the Barida Area of the Aitape district of the Mandated Territory of New Guinea by Paul S. Hossfeld, now Senior Geologist of the Northern Australia Survey.
A short account of the discovery and geological surroundings of the specimen is given herewith from information communicated by the finder. Mr. Hossfeld intends to prepare a detailed geological description on his return from the extensive fieldwork on which he is at present engaged.

# FOSSIL HUMAN SKULL FRAGMENTS of PROBABLE PLEISTOCENE AGE from AITAPE, NEW GUINEA 

By FRANK J. FFinNER, M. B3., B.S., D.T.M., Assistant Physical. Antiropologist, South Austrbalian Museum, Abelatpr.

Plates sxiii-xxiv, 'lext-fig. 1-9.

Tus papro comsists ol a description of liagments of a fossil human skull fomd in sith in the Barida Area of the Aitape district of the Mandated Tervitory of Nerw Guinea by Paul S. Hossteld, now Senior Grologist of the Northem Australia survey.

A show account of the discovery and geological surxoundings of the specimen is given herewith from information commmicated by the finder. Mr. Hossfeld intends to prepare a detailed geological deseription on his ret urn from the rxtensive fieldwork on which he is at present engaged.

## LOCALITY OF THE DISCOVERY.

The skoll was fomm in 1909 and note was made of the fact at that time by Nason-r)mes (1930) in the report of the operations in New Guinca of the AngloPersian Oil Company. The ateomit reads, "From the ill-bedded blue clays of the Panirj Creck, which ire typural of the arpillacens facies throurhout the area, were obtamed the following fossils, indicating the life of the period [ Upper Wanims, Pleistocenc] which was very much that of the present day. Perhaps of most note is the record of a fragment of a human skull, which, together with carbonized coconnt-sliell, was found in a thin bed of Mollusea outcropping in the side of the stream. A further seareh for teeth or other remains was conducted withont success. aml the skall tragment remains in the possession of the fuder. Mr. P' S. Hossfeld." 'There is moperod of any other mammalian bones being present. The original spectmen is now housed in the Australian Institute of Anatomy, Canberra.

Fig 1 shows the locality of the find and is geological section of the wrea. The watet location is on the east bauk of the Paniri Creek near Barida Village, Aitape, New Griusa, 10 miles inlaud amd abont 300 ft , above seatevel.

The skull was overlain by four feet of undisturbed littoral marine deposit and six teet of allnvial gravel. Above this was soil with primary forest (1). In

[^13]He lotoral marine deposits in which the sknll necmred several specimens whells were collected. They include trea granosa (marine), Neritina cornoa (brackish water, mangrove), Tclescopium fusoum (brackish water), Cyrena coaxans, (fresh
 Lanoma sp. ('yelophor'us sp). I'apmina sp. (land shalls). In addition there were partly lignified remains of (!) cocomuthosk. Pl. xxiii shows some of the shells fomm in close association with the skull. The determination of these was carried out by Mr. B. O. Coton, comehologist at the South Australian Musenm, whose comments are attached as a suphloment to this paper.


Fig. 1. A, Map of New Gniuea showing locality of find. B, Diggrammatic section of beds to show nceurronce of Aitape skull fagment.

## PARTS PRESENT.

The fragment cousisted orjginally of four pieces, three of which were easily fitted together. The fracture lines between these picees were fresh and the breaks were cansed by the implement used at the time of diseovery. The reconstrueted calvarium eomprises the greater part of the frontal bone, the parts absent being the lent external angular process. the lower sections of both temporal processes fand both orbital plates. The nasal process is almost entire, and the suturul ime pressions for the masal bomes and tho masal monesses of the maxilla are preserver. On the right side the sutural impression for the frontal process of the zygomatie bone is nudamaged. Portions of both parietal homes are present, their broken edyes rumbing ronghly parallel to the coronal suture and about three centimetres behind it. The specimen shows un avidnae of heing waterworm.

The small pice which cond not be fitter to the other tragments probahly consists of parts of the loft fromtal and left great wing of the sphenoid and their intervening shtme. Its pact position boinw indelpmomate, it can vield no acemrate information and will not be mentioned forthere

PI, xxiv shows the exfent and comdition of the skull. The apparent whitenesg of the broken edge is due to a protective veneer of mineral wax.

## ORTENTATLON.

'The problom of: orjenting the specimen eoready is a difficult one. The Frankluet plane involving the estimation of two points, is obvionsly unsuitahle as a base line.

Keith (1925) has shown that a plane through the central parts of the frontomalar and paricto-mastoid sutmes comesponds approximately to the base of the cerebrum. Since the rigat fronto-matar suture is complote, 1 lave adopted this subectebeal plan as a base line, as it yiedis more information than the nasion-
 other tracings the beconstruction has been made in the left lateral normat.

The difficultics of cormetly oriohting the Aitape fragment are eonsiderably
 of matar and sphenoid bones, which Keith nsed to check his reconstructions,

During the discussion which follows $T$ shall anticipate some of the emonsions reached in later sections of tho paper. Firstly, there are no features of the remmant wheh demand its sepuration from the modern neant hropie type of sknll, Secondly, eomparing its gencul ontline and measurements with large series of Australim and New Guinea sknlls, it semed that there were closer resemblances to the sontheru type of Australian skull (type $\Lambda$, Femer (1!39)) than to modern sperimens from New Guinea. This does not imply that the Aitape fragment is idnotified with the southern Australian type.

It was decided, thorefore to urimate it an the assmmption that the complete skinll bore sume resemblance to the somthem type of Australian skull, and nse was made of berry and Robertson's tracings (1914) (o determine certain avarare values which might help in this attomph Series of th skulls (unsexed) from New Gninea and 50 skulls (unsexed) from Swanport, South Australia, were measmed, and the arerage figmes used in the reconstruction of the skull.

Lut southern Australian skulls the bregma lies ahout 88 mm ., and the vertex
 bremma. Orientating the Aitape skull with the bremma 88 nm , nbove the subeerebrat plane and using the mean southry dostralian values for sagital parictat.

sagittal occipital, parjeto-frontal and necipito-frontal indires, the outline of the posterior part of the skull was completed. (Hig. 2, broken line on base $\mathrm{s}^{\prime} \mathrm{C}^{\prime \prime}$ ).

It is obvious that this throws the lambda, the inion and the opisthion out of their true relations with the subcerebral plane. Two methods exist hy which to bring them into position; the bregma inay be lowered (or subcerebral plane raised),


Fig. 3. Diopterographie tracing from facitl aspect, skull orientated on subeerebral plane. $A A, B B, C C, D D, E F$ lines of sections shown in figs. $\overline{\bar{b}}, 6$ and 7 .
or the sugittal parietal index may be reduced (i.e. the curvature of the parietal bone increased). These alternatives are shown in fig, 2, SC being the subcerebral plane in its raised position and the fine dotted line representiug the curvature with it reduced sagittal parietal index. Owing to the defieiency ot the parietal bones it is impossible to say with certainty which is the corvect mothod. However.
from the specimen one gains the impression that the parietal bones were gently curved posteriorly, and thus the more strongly defined of the suggested outlines (on plane SC) is more probably correct. Another feature suggesting that the bregma should be brought nearer the subcerebral plane is that in the first position (fig. 2) the vertex lies 14 mm . above the bregma, compared with an average of 7 mm . for the southern Australian skulls previously mentioned.


Fig. 4. Diopterographic tracing from vertical aspect, skull orientated on subcerebral plane.

Controlling figures, for example, the projected distances along the subcerebral plane of the bregma, the lambda, the inion and the opisthion, and the angles of coronal suture and nasion-bregma line to the subcerebral plane, support the final reconstruction given in fig. ".

The estimated greatest length of the skull is $\mathbf{1 8 5 m m}$.

We may next consider the rather mearere clata that is analable for the estimadion of the maximum width:

```
Nmallest frontal width . . . . 92 mm.
greatest frontal width ...... 110 mmm. (estimated)
stephamion width . . ...... 94 mm.
post-orbital width . . .. .. !4 mm. (estimated)
upper facial breadth. . . . . . }114\textrm{mm}\mathrm{ . (estimated)
```

The most notable of the figures is the upper facial breatth which exceeds the greatest frontal width (cerebral) by $\pm$ mm. This is the reverse of the conditions. found in any modern race except the Austratian, and even here the disproportion is usually smaller.
'Two indices are availatole which will give some idea of the maximum skull width : the relations of the minimun and maximum frontal widths to the maximnin parictal width. In the southern Australian serjes these indices are $73 \%$ and $83 \%$ respecticely, giving values of 126 mm . and 132 mm . for the maximum width of the Aitape skull.

The cranial index derived from these measurements is about $70 \%$, which agrees with the impression that the skull was long and narrow.

Fig. 3 and 4 show facial and vertical aspects of the skull, orientated on the subcerebral plane.

## GENERAL FEATURES.

The surface of the bone is smooth and has no incrustration, the bone substance being fairly highly and miformly mineralized. The weight of the original fager ments before their assemblage was 105 grammes.

The bone of the vault is not unduly thick, its dimensions in various regions are eompared with some Australian specimens in table I. It will be noticed

(2) All metsurements in millimetres. Aッ-istl, A38030 and Algen housed in S.A. Museum. Adelaide: 119 ind 340 housed in the Mrasemb of the Department of Anatomy, University of Sydney.
and supra-orbital elements of the upper orbital boundary, the supra-orbital element
 Australian series, $53 \%$ for the New Guine series, and $59 \%$ for Ilomo soloonsis (skulls I, IV, V, VI). In this feature, therefore, the Aitape fragment falls within the neanthropic rang ind departs from tho Neanderthal feature of a great preponderance of supra-orbital clement.

Fig. 5 is a section of the Ditape frontal just to the lefl of the midline and shows the strong internal frontal erest, which is about 50 mm . long and is 10 mm . deep at its deepest part.

An estimation of the glabellar projection san be made by taking the following measurcments from this section--(a) the supra-ybabellar thickness, measured a sufficient distance from the midlime to exclude the effect of the internal frontal crest, (b) the basal thickness of the frontal bone, from nasion to foramen caecum, and (c) the glabellar thickness.

Table 11.

| Skull. | Basal thickness <br> of frontal. | Glabollar <br> thickness. | Supra-glabellar <br> thickriess. | Glabellar <br> projection. |
| :---: | :---: | :---: | :---: | :---: |
| Litape | 18 | 17 | 6 | 11 |
| Australian (Keith) | 91 | 21 | 11 | 10 |
| Galilee | 24 | 18 | 5 | 13 |
| (3) Australian 792 | 19 | 29 | 11. | 18 |
| 337 | 17 | 19 | 7 | 12 |
| 340 | 21 | 20 | 8 | 12 |
| 119 | 16 | 14 | 8 | 6 |

The glabellar projection is smaller, therefore, than in some large southern Australian skulls.

If we now take scetions in the mid supruciliary region twe can get a picture of the maximum development of the supraciliary ridges (fig. 6). From these the vertical and antero-posterior thicknesses of the supra-orbital region are determined (table III). There is obviously none of the shelf-like projection of the supra-orbital region which characterizes the Neanderthal type.

Table IIl.

Skull.
Aitape
Australian (Keith)
Galilee

Vertical thickness of supra-orbital region.
$19 \cdot 6$ (left)
a0.5 (right)
$17 \cdot 0$
$16 \cdot 5$

Antero-posterior thickness of supra-orbital region.
$16 \cdot 1$ (left)
18.0 (right)
14.0
21.0
(3) These skulls are housed in the Mosemm of the Department of Anatomy, Inirersity of Sydney.

CURVATURE OF THE FRONTAL BONE.
There are seyeral methods of expressing the curvature of the frontal bone. Some of these are preatly affected by varying degrees of development of the glabella, and thus they do not always provide an accurate picture of the cerebral curve.


Fig. 6. Sagittal sections of Aitape frontal at points of maximum thickuess of supra-orbital region. Above: 15 mm , to loft of midline ( BB fig. 3). Below: 20 mm , to right of midline (CC fig, 3). Maximum vertical and anteroposterior thicknesses of supra-orhital region shown. Cl. = coronal suture.
of the primitive neanthropie skull. Here agrain the Aitape skull eontrasts uith the low flattened gable of the Normdones specimens.

There is no evidence that the parietal bone fell nway sharply posteriorly; the prevailing eontour suggesto that they were gently rombed. It is most malikels that the parietal tuberosities were alt all prominent.

## ENDOCRANLAL CAST.

An endocranial cast wats made of the Aitape skill, and fig. 8 and ! illustrate different aspects of this cast when it was orientated in the subeerehral plame. Fonse defiefencies of the inner table interypur the fissurat patterm in several places. Thesw are indicated by dotting in the figures.

In general outline the frontal lohes, whirh constitute the greater part of the cast, are long and narros. They are suite wall rounded, showing no trace of the paramedian tlattening or depression found in many Anstralian brains. The mbital keel is not entire owing to the defiemory of the orbital plates of the frontat bume, lout enough of the urbital borders is present to show that the keel was well developed.

The frontal cap is missing on hoth sides, but on the right its approximate position can be estimated. F'urther posterionly the imprint of the meningeal vessels is clear, and corresponding to the pariotal part of the vand are several arachoidal gramulations.

In the report on the Galilec brain-cast. Keith disenssed the elfect of the eerebral eisterns in cansing the obliteration of sutural pattern. In this specimen the paramedian frontal cisterns camot be clearly defined, hut hevations corresponding approximately to the sub-coronal eisterns are present.

In the discussion of the sutaral patiera which follows the sulci have been numbered according to the system of Kaphery (1929) and (amparism has beern made throughont with the (hescription he Nhellshear (1937) of the umphology of the Australian aboriginal brain.

## 

The inferior frontal sulens ( + ) corresponds approximately with Shellsheares groups I of this sulens. Posteriorly it is contluent with the inferior part of the precentral suleus (5i) and from here it proceded forwards eurving slighty down wards to end by bifureating into 1 wo beanchess which spread out widely to form a terminal transverse piece of the lurow. Tho lower of these larminal braches is continnous with the sulens ladiatus (3).

A short distance in front of its union with the precentral sulcus there is a commention with in branch of tha midalse Prontal sulcus (7) which rises vertically


Fig. 8. Right (above) and left (below) lateral aspects of the Aitape endocranial cast orientated on the subcerebral plane (diopterographic tracings). Dotting corresponds to areas of broken bone. Numbering after Kappers (1929).
on the wall of the hemisphere. The whole arrangement resembles that of sheth shear's specimen Q2788L.

There is no obvions middle frontal sulens on the right side. Seseral indeterminate furrows, lummorg upards and slightly hackwards, are present; the must definite of these is that previonsly referped to as being connected with the inferior frontal suleus.

The superior frontal suleus (11) is taily clearly marked and appears to be broken into two parts. This is not quite definite owing to al flaw on the inner table in the vicinity,

The fronto-marginal sulcus (9) is alear. It dnes not become confluent with any of the horizontal froutal sulei. Arising on the femtal aspect of orbital rostrum it passes up and divides into 1 wo branches which then run matlel to ench other over the frontal pole.

The distinct furrow rising vertically between the sulcus radiatus (3) and the tronto-orbital sulens (9) probably represents the anterior end of the sub-frontal sulcus of Kappers (1). Shellshear notes that this sulu-frontal suture is common in Australiau lrains, and his figures show that it sombimes rises fairly high on to the anterior surface of the frontal lobe.

Several small unnamed sulei separate off the paramedian frontal convolutions.
Behind the region of the sub-coronal cistern, which here appears as postemonal rather than sub-eoronal, is a small vertically directed sulcus. This may represeut portion of the post-central sulens (15),

## Left Memisphere.

The convolutionary pattern is less dear on this side. The inferior fromtal sulcus cannot be accurately defined. The upper extremity of the suleus radiatus (i: courses up from the rogion in front of the frontal cap to become confluent with a sulens which probalby represents the anterior transverse part of the inferior lrontal suleus (4). There are several smaller shallow suld rumning vaguoly fonvards the middle frontal sulcus. The pre-central suleus caunot he defined.

The midalle fromtal sulous ( 7 ) is not clear. but appeass to be reppresented by a long sulcus passing basek roughly parallel to thomidine. Its iwo paris (7a and 7h) appear to be condment and anteriondy thare is nos somection witls the froutomatrinal sulcus.

The superior froutal suleus (11) comprises a contimnous sulcus lying paraltel (1) the medial horder of the hemisphere. Anteriorly it appears to effect a comedtion with the fronto-marginal suleus.

Jhere is a sulcus entresponding with that destribed on the right side at the posterior end of the east.

Fig. 4. Vertical (above) and facial (befow) aspecty of the Alape cadocranial cast orientated on the subcerebral plane (diopterographic (racings).


## MEASUREMENTR.

Comparative skull material from the Aitape district of New Guinea was not available. Twenty-five unsexed specimens from Sepik River and Papua, housed in the musem of the Department of Anatomy of the Thisersity of Sydney, were masured and the average measurments are given below as "New Guinea Series".

Fifty unsexed Australian skulls from Swanport, River Murray, Soulh Ans1ralia, in the collection of the South Australian Musemm, were measured and their aperaqe measurements are given in table VI as "Swanport Series".

ITseful comparative measurements (necessarily approximate) were made on the easts of the Ngandong skalls and on the oriminal Coltuma skull (which bas been eleaned by Professor Shellshear). This was all done in the Department of Anatomy, University of Sydney.

The definitions of measurements and puints given by Martin (1928) have hem used and his raference numbers are indieated in table VI.

Table VI.

|  | Ref. No. |  | Swamport | Nor Chinea |  | Nganilong |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description of measurement. | Martin. | Aitupe. | Surins. | Series. | Cohmma. | Skulls. |
| Smollest frontal breadth (ft.-ft.) | 4 | $0 \pm$ | 93, 0 | 91. ${ }^{3}$ | 86 | 101 |
| I'ustrorlital breadth | () (1) | $91(1)$ | :10-6 | 913-3 | 90 | 100 |
| Greatest frontal hreadth (eo.-eo.) | 10 | 10.1 (1) | 108.4 | $103 \cdot 8$ | 105 | 121 |
| Stephatrion breadth (st.-st.) | 10 H | ! 14 | 97.8 | 101.4 | 145 | 111 |
| Median sagittal frontal are ( $\mathrm{n}_{0}-\mathrm{H}_{0}$ ) | 20 | 130 | $125 \cdot 7$ | $1 \pm 291$ | 140 | 131 |
|  | +) 26 (1) | 3: | - | - |  |  |
| Median sagittal cerebral fure of frontal (s, s, - $)_{+}$) | 26 (12) | 88 | - | - | ${ }^{-}$ | - |
| Median sagittal frontal chord ( $11,-\mathrm{b}$. ) | 89 | 108 | 10! 0 | 107-1 | 126 | 118 |
| Median sagittal glabellar chord ( $\mathrm{u} .-\mathrm{rig}$. | $9!1$ (1) | 99 | - | - | - | - |
| Aredian sagittal cerebral chomal of frontal (sg.-b.) | 29 (2) | 81 | - | - | - | - |
| Angle of frontal couvexity | n9 (5) | $142^{\circ}$ | $192{ }^{\circ}$ | - | $147^{\circ}$ | - |
| Angla of convexity of cerebral part of frontal bone | 32 (i) | $155{ }^{\circ}$ | - | - | $158{ }^{\circ}$ | - |
| Upper facial breadth (fimt.-fmt.) | 43 | 114(1) | 107-:3 | 10:3.2 | 117 | 19:1 |
| li-orbital breadth | 44 | $106(-1)$ | 100.8 | ! 17.11 | 1111 |  |
| Anterior inter-orbitad breadih (inf.-mf.) | 50 | 45 | 31.9 | 21-3 | 97 | 47 |
| Orhital breadtls | 51 | 43(4) | $40 \cdot 8$ | $40 \cdot 0$ | 44 | - |

## DISCUSSION.

The difficulty of accurately sexing skalls is well known. When oue has ouly a fragment of the vanlt that difficulty is much greater. It is with considerable caution, therefore, that I suggest that the frament is part of a female skull, and the only support for this opinion lies in the comparative thinness and lightness of the bone of the vault.
(4) Estimatell musurements,

Conecrning its age, we know that the sateittal and eormal sutures are obliterated endocranially and that the lionto-nasal dmal frohto-maluy sutures ire still open. Using Todd and Lyons figurs we mey wey that the skull is that of an individual more than forty years old.

The fragmont is too small to allow more than an mppoximate racial diagnosis to tre made, It shows no aflinities with any of the aneiont human races (Homm
 neanthropic in type.

Comparing it with modern rapes from atjacent reatons it somms to correspont more closely with the Australian than the New Guinea type, althmush the latier is atemittedly very rariable. One might por firther and sugest that its affinities wre with the southern Australim type (typu $\mathrm{A}, \mathrm{F}^{\mathrm{P}}$ (1nmer). The low forehed, the buide of the supra-orbital region and the fan paridal bones all reeall this form of sknll.

The main points of distinetion belwent the Australian and the ditape fromat are the definte ophyronic grouve amt the wide unpmo Patial dianeter with great post-orbital narrowing, both primitive features.

There are no characters shagest ing aftinitits with the 'Tasmanians: lhe absence of the parmodian trontal and parietal grone stemsed ly Whuders (1939) and
 jossibility.

The entocrmial cast shons less frontal flattoming than is Hsuatly lound in tho Anstratian, hat there is mothing in its form or suleal puttorn in differentiate it trom a promitive neanthronic brain.

## OONOLISHONS.

A fragment of a fossil hmman skull limme at Aisome New Ginmea, in beots of
 first evidence fom Nen Ghinca ol haman rmains of aparent Pleistocone age.

It is suggested that the fragment is portion of a lemato skill about 45 years of age. The rachal aftinities of the skull are discussed. There is bo evidence that it belonged to an individual diflering greaty from the modern Australian aborimined (sonthern type). It must be remembered that neeasional rate" Australoid" types of Next Guinea skull (e.g. those described by Cave in Moyne (1936)) difter trom the Aitape fragment littemore than io average Anstalian skulls.

## AOKNOWLED(AMENTK.

 Institute of Anatomy, Canberah, whokindly lent me the sperimen for some months: and to Protessors burlitif and Shellshear, of Syduey Vhiversity, who placed their
comparative material at my disposal. I'rofessur Shellshear also helped me considerably in the study of the endoeranial cast.

I am deeply indebted to my colleages of the South Anstralian Museum, especially Alv. N. I3. Tindale, who made the endocranial cast and photographed the sknll. Professor F . Wood dones has kindly read through the manuseript, and his eriticisms and suggestions are gratefully acknowledged.

Financial aid for this stady was rendered by the David Morray Scholarship Fund of the Thiversity of Adelaide.

## REFERENCES CITED.

Berpy, R. J. A., and Robertson, A. W: D. (191t) : Truns. Roy, Snc., Fiet. Ti.
Cumningham, D. J. (1908) : Trons, Roy. A'uc., Ertion, xlvi (2), p. 288.

Jones, J. Nasom (19R0) : Geology of the Finseh Coast Area, North-wost New Ghinea in The Oil Expl. Work in Paphatat N. Quineat lye Anglo-Persian Oil Company on hehalf of the Comm. (dormot. of Alst., 1920-1929), iji, pr. 44 (Hare rison \& Sons Lted., Isondon).
Kappers, C. F. A. (1929) : Evolution of the Nervous Systom in Thvertobrates. Vertebrates, and Man. (Haarlem).

Koith, A. (1927): In Turvillededre, Researches in Prehistoric Galile (Pritish School of Archatoghy in Jerusilem, Lomdon).
Martin, R. (1928) : Ledrbuch ler Anthropolowie, ii (Jona).
Aloyne, Lord (19:36) : Walkabont ( Пeinemann, Fondom).
 293-409.


## BXPLANATION OF PLATES.

## Plate xxiii.

Shells oceurring in association with the Aitape skull.
1, 2, Area granosa Linn.; it, Telescopium fuscum Schumather; 4, Papuina sp.; 5,6 , Neritint cornct Limu. ; 7, 8, Neritind ef. satverbiand Montr.; 9, Lama spo; 10, 11, 12, Cyclophomes sp.; 13, 14, 18, 19, Mclanit (di. juncea Lea; 15, Cymeno coaxans Gmelin; 16, Mchuna et. canatioulata lieeve; 17, Melunia ef. recta Lea.?

## Plate xxiv.

Aspects of the Aitape skull. 1, right lateral view; 1a, small separate fragment; 2, skiagram showing development of frontal simuses; 3, facial aspect; 4, vertical ispect. Skiagram on larger seale tham photographs.


15


17
18
19


TIE ASSOCIATED MOLLISCA.

By B. C. COTTON.

A few mollusea from the Upper Wamimo Series have been reported upon in the Anglo-Persian Oil Comphn's Survey on behalt of the Commonwealth of Australia (Vol. IH, 1929, p. 4t). The tentative identifeations are in the matingenerally significant. The list served the perpose for which it was made, enabling the generally acenate eonelusion to be arrived at that "the evidence of brackish and fresh-water mollusea compled with in loraminiferal latna in which pelagic forms are practically absent, points to the history of the gront being that of the last phases of sedimentation and deposition along atising lithoral much indented by mud flats, large shallow bays and lagoons, evidence of a receding ocean".

The ateurate delemination of the species in a mather of some diffietaly in the present state ol our knonledere. Only a proper and ixtensive survey eould give retiable information, the marine mollusea bemg me problem and the dissimilar


The gents atelemion for example, has bot buen systematically worked out either for Nothero Australial or New Gininea, anm it is therefore a matfer of eonjedture whet her ond series is aliferent from thase deall with in the Commonweath Report of whether obseure specifie identifications are responsible for the seming diserepancies. This is a matter for luturn study. The foll value of the indications will only be realized when the genus Metonm has been systematically surveyed.

Area (Tanillaren) tranum Linn. (hig. 1-2) ; yype locality, Philippine Islands, The Area granosu complex is widely distributed in tropical deqions to the North of Anstralia. Subspecies aud related species have beot recorded frow the Gulf of Carpentaria, Westerif Australia (A. rhombea), Jipan, Papha, and from the Bar-
 This is the same species ths that dembifed as A Ire modose (athor i) in the Comtnonwcalth Report.

Telescopium fuseum Sehmather (liy, i); type Locality, East Indies (T. telescopium is a synonym). Widely distributed in Northand North-western Anstralia ; this species is not listed in the series recorded in the Comnonwealth Report.

Popuinasp.; Land shell (fig. 4).
Nertina cornca Linn. (fig. 5-6) : type locality, lhilippine Islands.
Neritua souverbiana Montrouzier (iis. 7-8); type locality, New Caledmia.
Laoma sp. (fig. 9).
Cyclophorus sp. (fig. 10-12).

Melania cf. juncea Lea (fig. 13, 14, 18, 19).
ILclania ef. recta Lea (fig. 17).
Melania cf. canaliculata Reeve (fig. 16).
Cyrena coaxans Gmelin (fig. 15).
Gencra not represented in our series but listed in the Report as occurring in the Upper Wanimo series are: Erycina, Paphia and Placenta.

# SOME POLYCHROME INCISED POTTERY WARE FROM MT. TURU, NEW GUINEA 

By Norman B. Tindale, B.SC., Ethnologist, South Australian Museum


#### Abstract

Summary In 1939 Dr. A. G. Schroeder, Medical Officer at the Government Station of Wiwiak, in North-East New Guinea, made a journey through some recently-opened country in the Upper Sepik District of the Mandated Territory of New Guinea. He visited villages about Mount Turu in the Biligil area. Among ethnological objects of special interest collected were three examples of a type of hand-turned, incised and painted pottery from the village of Ambakunja, in the vicinity of Mount Turu (on the Dividing Range east by south from Wiwiak, $143^{\circ} 22^{\prime}$ East Long. x $3^{\circ} 37^{\prime}$ South Lat.).


# SOME POLYCHROME INCISED POTTERY WARE from MT. TURU, NEW GUINEA 

By NORMAN B. TiNDALE, B. Sc., Ethmologist, South Australins Museum.

Plates xxv-xxvi and Text-lig. 1-3.

 in North-East New Guincer, made a joumey through some recently-opened eountry in the Upper Sepik District of the Mandated Territory of New Guinea. He visited villages about Mount Tum in the Biligil trea.

Among ethological objects of special interest colfeted were three examples of a type of hand-turned, incised aud panted potery from the village of AmbaEmaja, in the vicinity of Mumt Trum (on the Dividing Rande cast by south from


The inhabitants of this portion of the 11 ppor Sepik district are relatively short, thick-set folk, omly a few of them reaching 5 ft .6 in . in height. They have uniformly woolly hair. Being kem auriculturalists, they live in open villages among their getrdens. Muprik, situated 19) miles lo the West of Mount Turn, is a typical example. Within 30 miles dathes of this village it has been estimated there is a population of sixpy thutsand prople. Houses in Maprik are centred aromed it tall ceremonial house wee filts foet high, build om a triangular ground plan (pl. xxvi, fig. 1). Theridge-bem is formed hy implanting a pole of considerable height in a leaning position in the gromnd, and the ritge is supported by two logs of smaller diameter uner like sheer-Iegis. The retatively small triangle enclosed by the three polcs is clused in with that ching foform a men's house. The decorations take the form of large painted face-designs. All such homses have a rope hangimg from the eaves in frout of the catrance, and reaching to within six feet or so of the ground. The masks kent within these houses are of basket work with body drapings of graws ( pl . xxvi , fig. ${ }^{2}$ ) .

Villages are partially mingatory within short distaces, the movements beher rendesed necessary by the mothods of gardening which are such as to deplete the soil of its most fertile constituents within a few years. At Maprik village a new erremonial house had just been completed, replacing an older one which, through slow migration of the village, had come to be almost ontside the inhabited area instead of near its centre.
 presented to the South Ansl malian Allsemm, may be listed as follons:
 contraster paintod deston in ted. white, yellons, and blak- a singh pieved lug on the rim. Jiannetre 98 cm. Weight 6 ounces ( 1 ig .1 ).




 (fis. 号) 。
 Ped and white on painted red backerond: I wor pierced lags approximately 1701
afart on the ratsed rim; this las been incised with a series of Hearly vortical marke. Tiameter 81 mmo , weight 92 ounces ( tig . 3 ).

The importance of Ambaknina at a pot-making eenter in the litigil area is parly determined hy the possession of adequate sourecs of clay. Pots from this village are traded chictly lo villages in a direction north of Mount Tarn. The only ofler pots at present kown to the made in this arsa are from an as yet undocalized



 Samark, and to sureral sther villages on the stath side of the Sepik-1'acifie Divide. Fxamples of this later type of pot have ant yet heen ohtained.
 dull brick-red. 'The firing is well done and wather complete. The example A.15925,

 marked traces of the same method of manalinetwre. In the smallest example, which is relatively much the hempest, the traces aro little evident. The asymmetrically plated hugs ampear to have los heir promary function; the piereng is carolessly dente, so that there seems likthe chance op their being of use for suspension.

The designs on the pots are reminisent of some patterns recorded by Joyee (1912) on arehacological sllerds from Rainu in the North-Fastern Division of Papua. They have been incised in the damp clay, and theu much of the areas between the designs has atso bern redneed so that the primarily incised portion and its margins come to stand partly in relief. Crudely painted pottery has been recorded by Edge-Partington ( 1898 ) from about the Mambare River, but the present examples appear to be rather dilferent from those hitherto described.

Mr. A. N. Chittleborough, in a recent address to the Anthropological Society of South Australia, miefly mentioned a phe-making village manel Kintaru, which


 This village is situated about thirty miles intand on the monntains ahove Jambare. In the centre of the village is at stome platform on which is placed at wooden forme. When he saw it this framework had strugs bound to it in varions directions, and at the intersections of strings wern clay balls. This was deseribed to him as an map of islands of the coast of New Guiuca, the clay balls represtenting ishands, and the strings the projections of directions of stars, utilized when mapigatine out to thene places. In some ways it was reminiscent of a I'olynesion "sailing chatt", but mate on a large seale. Although these Kintavu pot-makers were frequently engrant in hostilities with the const peoples, they managed to maintain a trade in pots with the
islands off the coast. Their canoes, laden with pots, were portaged to the coast in darkness, and they set out by night on their trading voyages. Retum landings were also made in secrecy. Owing to the exigencies of survey work on which ho was engaged, Mr. Chittleborough was unable to secure examples of Kintavu wares.

His deseription of the pots suggests that they were not unlike the previously mentioned examples from Mambare River district, which are in the Brisbane Maseum, and which were collected by Sir William McGregor.

## DISCUSSION.

The study of New Guinet pottery is not yet on a very firm basis. 1robably examples still exist in Museums without adequate deseription, and there are gaps in our knowledge of the use and dispersal of these elements of culture. Sherds and pots from Panacati have been recently described (Tindale and Bartlett, 1937). The desirability of collecting and recording pots as well as potsherds from Now Guinea and the surrounding islands cemmot be too strongly stressed. We are indebted to Dr. A. G. Schroeder for the photographs aceompanying this note.

## summary.

Polychromo incised pots made by the matad Mount Tura people of the Biligil area of the Upper Sepik district, New Guinea, are described and figured; some notes on the pot-makers of Kinlavu in the Mambare district are given.

## REFERENCES CITED.

Edge-Partington, J. and Heape, C. (1898) : Album of the Natives of the L'acilie Lslands, iii, pl. Ixxyi.
Joyee: T. A. (1912) : Jotin. Roy. Lnthrop. Inst. Lond., xlii, pp. 5t5-546.
Tindule, N. B. and Bartlett, II. K. (1937) : Trans. Roy. Soc. S. Aust., Ixi, pp. 159$162, \mathrm{pl}, \mathrm{ix}-\mathrm{x}$.

## EXPLANATION OH PLATES.

Plate xxv.
Fig. 1. Maprik men.
Fig. 2. Maprik husband and wife (same man as in fig. 3).
Fig. 3. Maprik men wearing artificial hair coiffures.

Plate xxvi.
Fig. 1. Newly-constructed ceremonial house at Maprik.
Fig. 2. Man concealed under mask, Maprik.



# FLINT IMPLEMENTS OF TASMANIAN MANUFACTURE FOUND AT CAPE HART, KANGAROO ISLAND 

By Alison Harvey, B.A., Honorary Assistant in Ethnology, S.A. Museum

## Summary

Archaeological research in the past decade has established the existence of an extinct Kangaroo Island stone implement culture of characteristic type associated with an ancient human occupation of the island. The "karta" and "sumatra" type of implements described by Tindale and Maegraith (1931) dominate the archaeological remains of this industry, and were apparently characteristic of the culture.

# FLINT IMPLEMENTS of TASMANIAN MANUFACTURE found at CAPE HART, KANGAROO ISLAND 

By Alison harvey, B.A., Honorary Assigtant in Firhinology, s.A. Museum.

Fig. 1-14.


#### Abstract

Arcmabomgical researeh in the past decade has established the existence of an extinct Kangaroo Istand stone implement colture of characteristic type associated will an meient hmman ocenpation of the island. The "karta" and "smmatra" type of implements deseribed by Tindale and Maecrath (1931) dominate the archacological remans of this imdustres, and were apparently characteristic of the culture.

Early in 1906, an apparently mow series of implements on Kangaroo Ishand rame to light when Mr. H. M. Cooper, at siteson Cape IFart and Antechamber Beyy, on the east coast of thr istant, collected flint implements whose appearance as 'lindale (19:37, p. 解) satyo, "sugqested a 'Tasmanian orimin". At both the localities in atiestion, the implements were collected om situs assuciated with the remains of carly white settlement.

T'indale records his examination of the site and leseribes some of the flint trols collected at the Antechamber basy site. In his paper, it was eoncluded, frome the archathorical eviduners of the situ and the appearane of the implements themselves, and from comparisons with tlint implements of 'Tasmanian iudustries from N.W. 'Tasmania, that the Antechamber Bay serjes were of 'Tasmanian manufacturo, made by thasimatian native women, who were bromght there by some members of the whaling colony in the carly ninetenth eontury. They conld be linked with a newer Tasmanian implement series.

The implements trom Cape Hart, here deserihed, emmprise 28 flint tools and 20 unworked flints. Nost of then were collected by Mr. Cooper in 1936. Associated with them are three pieces of worked flint identified as European gun flints.

1 am indebted to Mr. Corper for his permission to deseribe these specimens, which have been slared equally between his colloetion and that of the South Australian Museum, and to Mr. T'indale for his advice in the preparation of this paper.


TIIE SITE.
The Cape Ifard area comprises two associated sitos, ome hoing in the immediate vicinity of the remains of a European-buill stone chimury, which is deseribed by


Fig. 1-5. Stone implements from Cape Hart, Kangaroo Island.

Mr. Coopere as being on "a wind-blown sand flat muder the lee of a high-wooded abstal dmae". It lies ammoximately a halt-mile west of the cape, and near the shore. It was from here that the flint implements and the wun flints were ecovered.

The other site is at small area on the clge of a limestone shelf approximately a gmarter-mile west froms this area; Lere 'timdale, in 1930, found aseries of flint implements and a ghantily of chippings. Flint boulders oecur on the adjoining bereh, and broken ones associated with chippings on the hat site were also found.

## THE CAPE HART DMPTHEMENTG.

The flint is a smoth, lark hinish-gres, and has heen croded from Tertiary morine limestome beds. Traces of limestome matrix remain on many of the worked trous (c.e. fiy. .2, 3, 4, 5, 8, 9, 12).

The implements themselves are, with the excention of fin. 5 , made from flakes
 mole formed loy the plame of the striking platform and the flaked face, which, in all cases, is betwem the limits of $110^{\circ}$ and $120^{\circ}$ (v. fig. $3,6,8,10,12$, ete.).

The fashoning of the tool from the thake was carried ont with the wost arrity, further shatuge consisting merely ot secontary flakimg alomer portion of one murgin; the unworked part of the tool apparently served as a handhold.

The present series, tomether with examples eollected at Antechamber Bay, and abredy wefered to, is two the eharacterized by the frequent presence, in more or less marked degree, ot a worded point. or semi-cirenlar projection as part of thee tool. I'his fminence has, in all eases, veceisell careful secomdary working (fig. 1, 3. $5,6,7,10,13$, ete. $) ~ A$ qumel approximation to an ovate shape appears to dave bern thene at in the mantictme of the implements, but many divergences from Whis ocerte, botably in the ease of several hish-habed serapers (fig. 2), on clon-
 whith one is shown on fige is. Whatike all others in the suries, the implement shown in fig, 5 thes been made from a core on aemidantal lake of flint probably selected on account of its convenient shape, and the flint has been trimmed lyy flaking and seccondary chipping to form the characteristic pointed tool.

Measuring the specimens produced no evidence of prelerence for any particular size or weight. Most examples ranged between 6.9 gm . (fig. 8) and 51 gm . (figs. 3), there being a rather (wen and random distribution of weights between the 1wo limits. Two arre outstanding, one at $118 \mathrm{gm}_{\mathrm{m}}$. (fig. 1) and the other at 296 gm . (iim. .2).


Fig. fi-12. Stone implements from Cape Hart, Kangaroo Island.

## DISOUSNION.

Early writers refer to the settlements of whalers along the cast coast of Kangraroo Islaud; somo were certainly at Antechamber Bay and the surrounding district.

The presence of native Tasmanimn women in the honseholds of some of the whalers was also noted. Tindale (loc. cif. pp. $30-33$ ) gives a description, trom historical sourees, of the native women members of these settlements, together with a deseription of the archaenogical evidence of their presence on the istand. In his


Fig. lit-1t. Stone implements from North-Wist Tasmanis.
description of the implements from Antechamber Bay, he drew attention to their similarity to examples of the Newer 'Tasmanan industry from North-western Tasmania ; this resemblance is particularly notable in the specialized form of the tool, in the techmifue of manufacture + and in the angle between the plat form and the flaked face, already referred to.

The pointed form of gonge or scraper, so prominent in the series figured, seems to have been a characteristic feature of Tasmanian implements, both of the Older and the Newer Tasmantan industries. Of the sories of Tasmanian implements figured by Hambly (19:31) several show the pointed form, the author referring to one example as having "a nselut projection or duck bill" (loce rit. p. 89).

Many implements of the Newer Tasmanian series, two of which (figs. 13, 14) from the South Australian Museum Collection are figured in this paper, exhibit this characteristic.

The implements from Cape IIart under discussion share, in a marked degree, in the characteristics of the Antechamber Bay examples and those from the newer Tasmanian series, being apparently identical in their method of manufacture. The deduction is that they have the same cultural affinities and are of Tasmanian manufacture, and the handiwork of the Tasmanian native women brought to whalers' camps on Kangaroo Island in the early years of the nineteenth century.

The shape of the tools is suggestive of their use as scrapers or gouges. Hambly suggests the use of these as elastic terms in the classification of Tasmanian types of implements (loc cit. p. 90). Several writers who have described the early settlements on Kangaroo Island have referred to the trade in wallaby skins from the whaling camps, and the skin clothing worn by the men. An early reference in "The South Australian Register" (Sept. 25, 1844) sugqests that the native women were adept in the catching of these animals.

## REFERENCES CITED.

Hambly, W. D. (1931) : Amor. Anthrop, xxxiii.
Tindale, N. B. and Maegraith, B. C. (1931) : Rec. S. Aust. Mus iv (3), p. 275-289. I'indale, N, B. (1937) : Rec. S. Aust. Mus., vi (1), p. 29-37.

# THE INITIATION OF NATIVE-DOCTORS, DIERI TRIBE, SOUTH AUSTRALIA 

By R. M. Berndt, Hon. Assistant in Ethnology, South Australian Museum, and T. Vogelsang


#### Abstract

Summary The following paper records some observations and discussions on the methods and beliefs concerning native-doctors or medicine-men among the Dieri Tribe's people on the eastern shores and neighbourhood of Lake Eyre. The Dieri Tribe is divided into several groups, namely the [nadi'nani] or [Bukatjiri] who inhabit the country around Lake Perigundi; the [Pandu] or Lake Hope Dieri; the [Ku'na:ri] the Cooper's Creek Dieri inhabiting the country around the Kopperamanna and Killalapaninna districts; the ['Paritiltja] in the country from Kopperamanna northwards to the Salt Creek, and the [Tirari] who live on the south-east shores of Lake Eyre. The Tirari have been cited as a tribe by Stirling and Waite (1919, p. 106). These groups are bordered on the north by the Ngameni and 'Jauraworka; the north-west by the Wongkanguru; the north-east by the 'Jandruwanta; the east and south-east by the Pilatapa; the south-west by the Kujani; and on the south by the Wailpi and the 'Jadliaura.


# Tur INITIATION uF NATIVE-DOCTORS, DIERI TRIBE, SOUTH AUSTRALIA 

Br R. Mr. RERND'I, Hism, disistant in Fithnology, South Ausiratian Muefum, and T. VOGFISANG.

T'us following paper records some observations and diseussions on the methods and Foliofs concerninu nativedoetors or medicine-men among the Dieri Tribe's peopla outhe castem shomes aml nophbourhom of Lake Eyre. The Dieri Tribe is divided
 around Lake Perignuli; the [Paudu] or Lake Ilope Dieri, the [Ku'na:ri] the ('ooper's ('reek Dieri inthating the comontry around the Kopperamamnat and Killalapaninna districts; the |'Duritiltjit] in the comntry from Kopperamama nurthwards to the Salt C'roek, and the ['Tinari] who live on the soutlo-east shores of Lake Bywo. The 'Thrari have been cited as al tribe by Stirling and Waite (1919, p. 106).
 north-west lyy the Wongkanguru; the north-east by the 'Jandruwanta; the east ant sumthoeast ly the Pilatapa; the south-west by the Kujant ; and on the soulh lyy the Whitpi and the 'Jadlianra.

The primeipal information is based on a Dieri text, reenrded by one of us (T.
 buthe, treas or thiok serub; "ymmert, elose together) on Lakse Boocaltaninma, southpast of Killalapanima in the Dieri suntry, thed lived there for many rears.

In transeribing this, Dieri text, the alphathet of the Intermational Phometic Association as modifed for Anstratian laggages has been admered to as chosely as pussible. Details of the system are recorded by Timetate ( 1985 and 1940 ).

The first vocabulary and grammar of the Dieri was compiled by Gason (187t); imnthee important work on the language was undertaken by Gatti (1930). A Dieri vocabulars, us set unpublished, is contaned in the J. G. Renther manuseript in the possession of the somb Austratian Mnseim. Other workers in the Dierifield have berm (). Simpry, A. W, Howitt, C. Stpehlow. M, von Lembardi, II, Basedow and A. L'. EElkill.

## THE DIERI TEXT.

'This migne Diori text relates the experieness of' a postulant during his initiafion as a mative-doctor. It was taken down and tratsiated by one of us (Vogelsang) from the lips of Palkahai (Fnglish name, Elias), an old mative-floctor.

Palkalina was a reliable informant, whose portrait has been illustrated by Horne and Aiston (192t, p. 14, fig. 2; to the right). Palkalina is also mentioned in the Reuther Mannseript in this Musemm.

In telling of the story, each word would be pronounced deliberately, in a mannet that is called [igapu] (meaning quict: said of an uttermee of importmee). In the relating of mimportant phrases of unn-dramatic effece, the words would be gutickly passed over.

The original version of the text, with its interlaner translation, is followed by a general rendering of the experiences ol Palkolinat.

## THE MAKING OF PALKALINA INTO A NATIVE DOCTOR.

"Nulu kutjiele mili 'maramu namalkai, ditjini nauja 'kurukur" "He spirit followers many have, daytime he secretive gamai 'minkan, 'kaijeri 'mikirini, mita 'wipa'wipani, mita sits boles, precks deep place valleys. place
'huka'bukani, mita 'pidarmi, ja piri 'pilki ja 'pilkini. timbered country, place desert and places different and different.

Kutji purali 'inkani 'wirariai 'ja ditjini windri putapalpa Spirit always night-time walks and daytime only sometimes 'Kanljiriai, 'ja winte 'Taltira 'pirna mananani nauja wopai 'talara appears, and when heat great is he goes rain 'palkmị matrun, 'ja nania hakana 'kuru'kuru pamai watara clourl hadek, and he also secrelly sits dust-storm 'pirnani 'ja 'pildrípildrini 'ja 'nialánidlani, 'patara knkoni. hig and thunder and mirage, trees hollow, "ja kana 'japali yanai winta nauja 'wirarian 'paiajeri. and people frightened are when he walks about birdike.
 kunki。 'Jeruja jaan pundrana warai bakana kunki mative-doctor. Therefore [ thonght did also mative-doctor ŋanala, yadani yakani mili 'yakaymutru 'pirna ynndrala janai, to get, then my people of me great think will.


(1) "Tipupil:a, in the Nalt Creek country. This phace is sometimes mallent "Tippanarah.


[^14]'tikana warai 'Latuerikudn(d) mitai.",
home (our camp) did to Loweri-hole place."

## A GANERAL RENDERING OF TILE STORY.

"11e, the Spirit, has many followers. Duriug the daytime he is seeretive, hiding in deep holes, ereek beds, valleys, thickly-1imbered eomentry. desert wastes, and in other different places. In the night-time he always walks, hut does not usually during the day. Wheu the weather is very hot, he goes into a black rain-cloud. He also secretly sits (or is present in) dust-storms, during thunder, and is in the mirage one often sees. He inhabits hollow trees too

People are most frimhtened of him when he walks about in the form of a hird.
Only one person is safe from the spirit, and he is the litulk.
Therefore, I thought that I would get a hunkit to show me his art. I could then be made into one. Knowing that I am a powertul kumi, my people would estecm me and think we great.

Our kunki and I went to a place called Tipapillas. There we med a stranger Fumbit, who resembled the spirit. When I saw him, I shivered with great fear, being much alarmed. Suddenly the spirit disapporared, but almost immediately returned. I became very hungry.

The first day of our sechsion in the bush, with the spirit, at Tipapilla, he gave me food that I had not harl before. It was called Kujamara, or "spirit's food", which was an mative tobaceo. He then read my thoughts, and saw that I desired to be mafe into a kunki. He said that I should not think about other people, but only of the spirits. I then went batek to my companion, the kunki, I spoke to him in a confinsed manner. He frestioned mu", "What see you?" To which I answered, "Many spirits". He then said, "You ure how a luntio. In time, I believe, you will be a good one."

On the second day I went back into the bush, and the sipirit came to me and performed certain rituals which I learned. I then beturned to my compamion.

## TUE KUNKI.

Gason (1874, p. 08-29) was the first to recorl the "making" of a Dierinative doctor and his subsequent duties. Itessys: "The Koonkio [kunki] is anative who has seen the devil when a child (the devil is called hootchec [kutji]), and is supposed to have received power from him to heal all siek. The way in which at man or
(3) 'Lanerikulu, nativo mame retained by the Furopeans. It is on Salt Creek, and was the site of a large cattle station.
woman heromes a doctor, is, that if when voung they have had a mightmare on an mompleanant dram, and relate this to the camp, the immates eome to the eonclusion that her she has seen the devil. Themates never mactise nutil after cinemeision, and, in fact, are not demed proficient till ont of heir 'tems."

Howill (1904, p. 3.5 - -9 ) has also claborated on this duta, having as his authoridies O. Siebert aum S. Gasmo

Ia the Dicri country and the south-custern region of the continent, the nativedoctors olten ate as soreevers. Those who mre not endowed with the exter power that a bunti has received dhring his intiation know Jittle abont the profession, as the more seceretive and mysterious the pratitioners are with regard to it, the more impressed are both they themselves and others by the wonder of its form and the sreatuess of its effects.

The hanki welds more puwar and anthority in a Dieri commmaty than do any other individuals therecin. Lisually to is an chere of a totemic group, but not all delers are native-dochors. Flaze (1911, p. 367-7), when whting of Australiass native-doctors, mentions that "on at whote, it is highly signifieant, that, in the most
 cians or meticine-men who appen to have heen in process of developing into chicts's.

## The Demper on a Kunik.

 assuming the role of the sorecrer, but is the ordele of his group, foretelling coming
 alien magical influeners.

The soreery pratised by the tenki hiss bern recorded by 0. Siebert (1910, p. 55, 97), but the kollowing may be adfled:

In the nse nt the pointingobore 〔dukana」 (a storking bone), the Funti is assisted by an elder of his totemic group or by amother nativedoctor". At the completion of the bone-pointing ceremons. and the som of the vietim has bean eaught and is drawn iuto the bone throngh the blood of the Funti, a lump of wax wr clag is attached to the point. This lump is very necessary, as the soul might try to escape at the point. This clone, they bury the bone, wrapping it in emu feathers and in the | kujemaral plant, and leave it in the cartlo for several months. At the end of this period it is disinterred and ribually hurnt. As the lone burns, the victim becomes seriously ill, until finally, when it is completely consumed, he is dead.

When the dufanm is pointed, it is believel that a quarta-erystal which is usuatly chdowed with a liferviving substance, bone or pebble passes trom the
pointor throwg space into the victim. On the othere hand, the homel or som of the victim is drawn ont and enters into the pointer. The rutartzerystal whieh is porsessed of magical qualities is received by the liuntit at his "making". The heliel" that native-foctors can project substances in an invisible manner into their viotims is widespread in Anstralia. One of the mincipal propectives is quaty: espeefally in the erystallized form. Such as cargied us part of the "stock-in-trade" of the native-foctors, and it is said that the mee associated with the mythical past, being portion of the expreta of a mura'mura (an ancestral beingr). Howitt ( 1896 , p.90) states that the Whruncuri maves believed that ovil magic manipulated by
 man.

 'Jatalde of the lower River Muray, pharizerystal is athributed with manical matities is zealonsly gharded from the ayes of women and the manditated, ind is hiddelon in a ponch.
 may be mono bed suckinge and maswige by another limbiv. It is in this shty that the funtit assumes his real role of mativedoctore. In ruring a pationt.. foe may use varinns methods at which he is adept. A enem is affected by mbbing, pressim, or sucking the affected pat, sometimes acempaniod by an incontation of somp, and the subsequent extracion of a lomegh lualy, ax the catuse of evil. Slepght-nt-hame
 logieal moment, the centse of the sickness in the form of a boue sitone or piese of worl may be demoved trom tho aflicted fart wh the bots. Again, in the cering of it
 mesthorl.

 who kneel at the grave-side. 'The kimki, hodding a baton of wood an cach hanl, asks it who or what has bern the canse of its death. Th receive an answer the nativedoctor uses the art of ventrilornism, as recorded by liemot and Vogelsang ( 1983 ), 1. 169). There are also further methools of inquest at which he fonk presides: the examination of the borlies of the dan and the diviniug of epetain signts appeneine on the grave of a meently-dead person. The common belief is that the spirit "the "marderer", unknown to him, will visit from time fol time amt hant the
 find the spirit and identily it, thes reveating the seal "momerer". Nost derem the hatuting spirit will betray its own presence.

The spirit of the humli, diting sleep, mas visit distant persons or he visited by Them, Often the spirit takes the totemie form to which the dremer belongs. The spirit may also come into tonell with the departed. 'I'se interpretation of dreams [ipsitja] and visions seen during meditation form an important duty of the Runki
 dreans, and reveal to the datives of the dead the gerson hy whom the deceased has heen killed. Visions seen in treams are attributed to spirits. The phenomena of
 been dealt with lyy varions writers, including Rohnim (1930) and Elkin (1937, p. 55). The last-named writer, when spakine uf some tribes in Eastern Australia, says that spirit-snakes ure sent out by the medicinc-man during a vision to gathes information of what is happening at a distanee.

If the hombit declares that he has had at real vision of his departed friend, he mas order food to be phecer for the dead. of a fire to be made so that he can come and warm himself. By reasom of his spicitual "xperience at his "making", the luntio is believed (o) have direct emmmmication with spirits, called [katai], and also with (muratmmal.

The nativedoctor's rote as rain-maker will be deatt with later in this paper.
It is important fostress, bowever. That the abore daties could not be performed until the postulant had received the jower trom the |katiol at his "making".

## T'TE: Marintion a Nathit Docerole.

The hanti mast have a knowleder of the methorl and procedure and an tuderstanding of the rilnal lig which he was intitated or "mate". He must not only be
 it. Anone the Dieri, this power is acquited, not from lemming, but by a spirithat
 native-dector belomgine (o his own totemic group.

Atter the posthant has been subineised, he "leeds" that he wants to be a kuthe. He poes to his balivedoretor and asks the latter "o "make" him. There are, however, other simns whioh thaspisan is expecter to show a great interest in The tratitional lore of lis eromp; a thmoney to psyehice experionees, and un attactsment to tho elders and lewtht. He is tanght. the thelthod and proverlure appropriate To his profersion, Ite larms to conduct intuests. interpret dremos, ene the siek, and perform other duties which have been deserjbed above.

 paniom. Al a predected place he must stay for thren dass, the prerion be sedusiom. In this time he meditates on the spiritual experiences he las been told about, and
the powers he will reccive from the kutji, until it necum in a mystic lashion. 'The liubjit is materialized, being psychically projected hy the state ol tranee the postuland is moder, and initiates him. The first day the aspirand is given food by the spirit, who at the sime time substitutes the initiate's "man mind" with that ol a "spisit" or medicincman mind. The kut ji afterwards disappears. Tho posthdant reports his experience to his companion, who is smoe little distime away. The hunti explains to the former the significance of the experience. The serond day the spirit appeas and performs eertain detes. The katio then disapnears, The thire das it appears once more, and tinally empletes the "making". The
 ging-stiok, dilly-hag, cmu-feathere, fire-stick, mot, what is perhaps most important. a pliece of ghary\%erestal, which is possessed of magical dualitios.

Wpon the completion of his period of "making", the mativedentor has been Morn ; he is anew person, possessed of pownes which no ordinary person may even suspect. Ifon the day that far antere the sertol) for his period of sechision and meditation, be is belioved to ritually die, being mon'med for by his parents. It is not until the completion of the "making" on the third day Hat he is ruhorn. His old life has been completely forgoten.

The secret rites that oceur on the seeond day are somowhat ubscure, but it is
 thenghan incision, by tho kutji。 J'his spirit-snake may be sent during meditations fog gather intomation for the funht. Fruther, on that same dat. he may visit the sky-world and readiv his poner from there. Sieherd, as reorded by Itowit. (190-1,
 cord, and see a beatiful montry tull of tomemal liods. It is said that they drink the watar of the sky-lam, from which they obatim the power to take the life of those they doom, (iasom (1871) montions that tho hanki relate their wanderings in the sky-country in the form of crows, shakes, on other creatures. Elkin (1938, p. Deg-5) write that the mative-doctor is taken up to the sky hy mons of the magie-cord, and also to the foot of the raintow. In this way he receives not onts his endownent of matical substances, but also the power to hold intereourse wilh the dead, ind to visit the sky-world.

11, is clearly seen that, during the pustulant's mmitative sechusion, when his mind is in atate of receptivity durm the trance, he experiches this spiritual phenomenon.

Among the Neratjuri people of the middle-north of South Aust atia, in inlormant working wilh one of the above wrifers (R. M. Berult) relates that the native-doctor [mindapa| has to matergo a similar process of intiation. Than Nand. furi have a similar enllure to that of the Dieri.

As a child, he is singled out by his tribal elders for the future profession of a minduper. II is chosen becatise he does mot mix with those childeren of his own age, but prefers toplay and star with his parents in their own camp. The postulant, as he is considered by the edders, is speceialle tonchat, not only by his parents, but by the other mative-doctors of his gromp. When he reaches puberty he still avoids those of his own age, and will not take part in their games or ammsements. At this
 women. After the eircmoneison and eieatrization ceremonies, from which he has emerged a man, he does not return to the ynume men's canm, but retires alone to at place some distance atway: There he meditates and has converse with the spirits. which at special times be mayser. He will gen into trances amb see visions in which would be portrayod important fortheming events of tribal significance. Durine Hhis period of sechsion the receives his real pener to perform subsequent magient ats which are expected of him when he is a mindmu. Fon the period he is considered rithally dead, as it is only on the cemphom inm of his sedusion that he beromes "alive" or reborn as a new man. On serpipt of his powre from the spirit, he is received by the othe tribat mative-toetom, and doly lanetht the method and proedrare of the profession. Iintil he reaches the inde of about thirty, he must abstain from sexual intereourse. Female minhtmater also wonsidered clever, and to possess penvers at least equal to those of the mate mindopa. They abstain from sexual relations nutil their twenty-fouth m twonly-filth yen". Thein method of "making " is simstar to that ol the males.

## 'lue kitwist at a Rano makelio.

 drompht, the whale tribe one sronp joins under the direction of the fontio in the rithal of making rain。

Howitt (190t, D. 99t) states that the clonds are smposed to be bodies in whinh rain in matle ly ram-making muramurn (chicfly • Daman), influenced by the ecremonies wit the Dieri.

The clouds are called ['thatma'panksi], the substanme wf pain. Deranu is considered a powerful rain-making wheremert. He not only sontrolled the tain
 'paratji」 ('pildripildri, thunder; 'paratji light). It is said that lightninge emmes from thonder, while the wind "was born" or oriminated in the deep recessess of some caves in the hills about two miles east of Boolealtaniman.

The 'mure'murt Durdim, while on earth, wandered through the eountey around Lake Eyre. Datanu is one of the most jowertal of the Pandu Dieri 'mum'murn, Lin a description of $T^{\prime}$ ons, or abmigimad direction signs from this reaion,

Stirling and Waite (1914, ppo $104+126,131,134,135,136,138,149,141,14 \%, 147$, 148, 149, 159, 15: hate recorded some ol the places this mum'mbt visited. Howit ( 190 , p. 198-800) has ar rendering of the Durana Legend ; it is atso reforred to by Berndt and Vorelsang (19839, p. 171).

It was in the power of Dartue to give or withhold rain. In asking for rain, the bunti directly involed the jower of this 'mambumbly by performane of a rain-making ritual.

The following methods of making rain are practised by the himkt:
(a) Ram-making 'mura'mura soce called on to give the kuht poner to canse heavy rain to fall.
(b) The bult-romer is used by the knhtiduring the rain-making exremons.
(e) According to Itowitt (p, $39(\mathrm{~B})$ the prepuce, carefully proserved from a previous cirenmeision, is belineal to have ergeat power of producing daim, becanse of its association with the flow of wime and cjuculation of seminal fluid. It is kepi in fareel, which, when opened ly a conncil of lantio or elders, lostes its virtue.
(d) Goama lof enbbed om a youth's boty ceanses steam to rise. This is supposed to form into a clond from which san wonld tall. The ram-maker pertoms this ritual ame most often on his sum.
(e) Howitt ( 1904, , 3 . $391-\mathrm{y}$ ) has described is rain-making ecremony in which many members of the tribe take part. A hat is milt in which elders sit. Tivo Gunhit who have received power from the bain-making 'mura'mure have their arms eut so that the hoor flows on the men silling round in the hut, during which they throw handsful of down into the air. 'Ine blood symbolizess the rain, the down the clouls. The large stomes are placed in the contre of the lat (these are assereiated with Darama), represent ind gathering clouds presaginer rain. The two kunt afterWards place the stones in the brameheo of the lampest trec, and other men throw fine powdered gypsum [kopi] into a watmhole. These ritual actions completed, the 'mura'mura canses clonds to appar in tha sky. A cercmony is also enacted in the pulling-down of the but.

In the arid Dieri comisy where hronthts ulten ocent, the mative must he sure of his water-suphls. Ife knows every waterhole in his sumomatiag dervitory but aren these at times max (try up. Then he las monurse as deseribed by Cletand (19839, p. 6), to the whator-hearing row of the Mallere or other sucenlent plants. The frog, buried in the boul of a cerek, may be found, and, be compressing the minary Whadder, water is obtamed. Howith (188! 。 (r. 5t) relates that, in some parts of Sonth-Eastom Anstralia, when the raintall is likely to be exeession, the natives
 to be linll of water insteat of intestines and erpat rains would follow if one of them were killed.

## THE KUTVII (OR SPIRIT).

11. Was seem that the Funki was "made" by a kutji. which is a spirit. It is an inpordand figure in the Dieri belief in spirits, ind the shapes that it assumes are diverse.

The hutbit on |kutjichi| dwell usually in the shate of hushess and deep ioles. 'lhey show themselves in varions forms. such as a black crow | kawalkal, sanchill crow, faven, caule, owl, or as a liauquo or cum. They may be distinguished from the ordinary hird on anmal ly their circling romed a persou's hasd or behaving in al like manters. Actually. the spirit of the fintiat takes possession of the bind or mimal ennerered, hat bues not remain therein for any length of time. This does not detraet from the inhermt virtue or worthlessuess of a partichlar natural species, is dietated by legend. Usually the eagle is a good mam, the erow disliked gemerally, lming mischicyous, as is the use among the Dierio. Howeser, the bolds are decasionally meversed. The owl is atmost miversally regarded with great apprehemsion, so lhat while some creatures are regarded with fear and may baturatly be thomght to harbour readily an evil spirit, it is still mexplainced why those which are liked should hecome, for a time at least, ohjeets of fear. Tho hirds of anmats become possessed, and ontwardy show this evil possession by strange of unnsublations. Naturatly the native pxplans any deviation from the arthodox as being sinpernatmal. Thas a kangron with agred vime if moticed to be acting
 laken its form.

In the warm weather the hut, it mas bo in al black main-elont, or present in a dust-storm, dhring thunter, of in the distant mirape.

Whidwinds, beqment in the Lake Eyre rogion dhring dust-storms, contain fleme matignams spirith. Clonds of dust dused on the plains of Central Australia are ascribed by the Diari ln kutio, and it one of these dust-whirhwinds pusses
 great catamity will tollow. Ihnwilt ( 1904 . p. Ht6) relates how a man of the YondaKatragil section ol tho liabomma (Axabun) tribe chased a whirdwind, trying to kill the kutjo with hoomerangs. He fohl ifferwaris that he had lad a fight with this spurit wheds "Erowded" at him. Soon afterwords he dime.

Whirlwimls can be controlled by the hamio, who have special incantarions for this jurpose. 11 is satid that, meder the suell at a fonki, the whirlwind will there aside from its consere. Spirits are said to indabit whelwind is the (erent Vietoriat Desert reximo. The 'Antakining seg they are malignant eamp spirits in flight. White the Ngaljuri natives associate the whimwind with a sumbe-like ereathre. The whirlsind eollecets vielims, which it draws inte a waterhole to be swallowed whole loy this monstrons shake The hellji dellight in these whirlwinds (on willy-willies)
['watera'watura], as the erow and the raven wonld fly into them, and when beaten by the fury of the 'wutari wutard, would caw. People stop their cars so as not to hure this noise. A person who hunts away a Rutji crow or other creature will be: stricken with sickness. According to Elkin (1987a, p. 288), the kutji will carry a man away while he is sick, and the Immorara) (a grave-spinit which goes to the south, the Spirit Lamd, after death) will extract his kidney-fat.

There is also the long-tailed wren [kutjikutji], which is a small spinit, not so powerful as the kutji. The 'lutji"kutiolive in lonshes, and are important birds used by the kumki.

The nativedoctor is not afraid of the kufji, from whom he has recoived his power, and with whom he is in direct communication.

The lutji may canse sickness, and could only be driven ont hy suitalle means applied ly the kunti.

Visions are attributad is butji. Indeed, any strange apparition is called by the same term.

> STMMARY.

This paper records some new information abont the initiation of native-doctors of medicinemen among the Diepi. A Dieri foxt is given, together with a detailed discussion of the place of the native-doctor in the south dustratian aboripinat community.

## REFEREN(UEN CITED.

Berndt, 1R. M. (1940) : Occumia, x (3).
Berndt, R. M, and Vogelsang, T. (19:9) : Trmes. Roy. Sue. S. . Iusto, Ixiii.
Cleland, e. B. (1939) : Proc. Roy. Soc., Thsmanim.
Elkin, A. P. (19:37) : Mankind, ii.
Elkin, A. P. (19:3a) : Ocfumio, vii.
Elkin, A. P. (1998) : The Austratian Aborigines (syinny).
Frazer, J. Q. (1911) : The Magic Art, i.
Gason, G. (1874) : The Dicri Tribe, Adelaide.
Gatti, G. (1930) : La lingua Dierio Contribnto alla conoscenza telle Lingur Aus. traliane (Rome).
Horne, G. and Aiston, G. (1924) : Suvage Iife in Central Australia (London).
Howitt, A. W. (1889) : Joum. Roy. Anthrop, Inst., xviii.
Howitt, A. W. (1896) : Jown. Roy. Anthrop. Inst., xvi.
Howitt, A. W. (1904) : Native Tribes of South-East Australia.
Roheim, G. (1930) : Animism, Magic, and the Divine King.
Siehert, O. (1910): Globus.
Stirling, E. C. and Waite, E. R. (1919) : Rec.S. Austo. Mus., i.
Tindale, N. B. (1935) : Rer. S. Aust. Mus., v.
Tindule, N, B. (1940) : Trans, Roy. Soc., S. Austo, Ixiv.

# LITTORAL COPEPODA FROM SOUTH AUSTRALIA (I) HARPACTICOIDA 

By A. G. Nicholls, Ph.d., University of Western Australia


#### Abstract

Summary The collection of littoral copepods in the South Australian Museum has been sent to me for examination, and I am indebted to the Director of the Museum, Mr. H. M. Hale, for this opportunity of studying them. This collection comprised 15 tubes, divisible into two categories: A, samples taken by townet; and B. shore collections and dredgings. One of the former was taken at night, a light being used to attract animals, and so might be expected to contain bottomliving as well as planktonic forms. All of the collections were made in South Australia in the region of St. Vincent and Spencer Gulfs, with one exception from a salt lake at Beachport, with which we are not concerned at present.


# LITTORAL COPEPODA from SOUTH AUSTRALIA <br> <br> (i) HARPACTICOIDA 

 <br> <br> (i) HARPACTICOIDA}

By A. G. Nicholle, Ph,d., University of Western Australia.

Fig. 1-23.
The collection of littoral copepods in the South Australian Museum has been sent to me for examination, and I am indebted to the Director of the Museum, Mr. H. M. Hale, for this opportunity of studying them.

This collection comprised 15 tubes, divisible into two categories: A, samples taken by townet; and B , shore collections and dredgings. One of the former was taken at night, a light being used to attract animals, and so might be expected to contain bottom-living as well as planktonic forms. All of the collections were made in South Australia in the region of St. Vincent and Spencer Gulfs, with one exception from a salt lake at Beachport, with which we are not concerned at present.

The samples listed below, although divided into the two categories mentioned, are numbered consecutively, and these numbers are used in defining the occurrences of each species described.

## A. Townettings.

I. Smith Bay, Kangaroo Island, from 8.0-8.15 p.m., 15/3/38; contained Calanopia thompsoni only.
II. Western Shoal, on the west side of Spencer Gulf, at 8.30 p.m., 20/2/38 (Calanoids and Harpacticoids), by K. Sheard and F. W. Moorhouse.
III. Blanche Harbour, at the north end of Spencer Gulf, 8.30 p.m. $8 / 3 / 38$, by K. Sheard. (Mainly Calanoids, a few Harpacticoids.)
IV. Wallaroo Harbour, on the east coast of Spencer Gulf, at 8.15 p.m., 26/2/38. "Light shone on water from deck for 7 minutes, then townet hauled vertically." (Mainly Calanoids and one Peltidiid.)
V. Spencer Gulf, Eastern Shoal, mid-day haul, 4/3/38. (Calanoids only.)
VI. Beachport, on south-east coast of S. Australia, from a salt lake. (Calanoids and Ostracods only.)
B. Shiore Collections and Dredgings.
VII. Moonta Bay, Spencer Gulf, from a weed-covered reef exposed at very low tide; coll. B. J. Weeding, Feb., 1939. (Calanopia thompsoni, Peltidiids, Laophontid, Amphiascus sp.)

VITI. Port Willunga, from southern face of reef in one fathom at low tide: enll. H. M. Hale mal K. Sheard, 17/1/37. (Peltidiid.)
[X. Selliek Beach, to the sontlo of Pord Willunga, from at stone in five feet of water at low tide on sonth ellere of rect ; coll. H1. M. Jale, 31/1/37. (Calanopir thompsomi, many Harqueticoids and some Cyelopoids.)
5. Sollick Beach, from Cambriau Rocks in one fathom at low tide: coll. II. M. Hale, 18/2/35. (Numerons Harpacticoids and Cyelopoids.)
XI. Sellick Beach, at low tide: call. H. M. Hale, 2 , $8 / 3 / 39$. (Numeroms Hal'pacticoids and Cyclopoids.)
X゙II. Sellick Baath, coll. K. Sheard, April, 1939. (Numerous Harpacticoids and Cyelopoids.)
XIll. Sollick Reef, coll. K. Sheard. April, 1939. (Some Calanoids, mumerous Harpactienids and Oyclopoids.)
XIV. Spencer Gulf, washed from tredgings, Mareh, 19:38. (r'thenopies thompsomi, Harpacticoids and Cyclopoids.)
XV. Recveshy Island, Sir Joseph Banks group on the westerm side of Spencer Qulli. (One Notodelphyoil, from cast const of ishand coll. H. B. Cotton, $7 / 1^{2} / 36$.)
Dissections have beon mate of all the species deseribed in the following pages, and the preparations have been deposited in the South Australian Anseum. Picro-indigo-earmine wat used for stnining in every case, and Monk's (1938) Medium and Eumaral for momting. This method is very convenient, and the sian is most rlfective for chltion, us stated by Monk.

I am indebted to Mr. K. Sheard, of the South Anstratian Muserm, for valuable advice and help in nomenclatorial mattors, in which connection I have also recepived assistance from Professor ${ }^{\circ} \mathrm{G}$. $\mathrm{F}_{\mathrm{H}}$, Nicholls, of the Thiversity of Westam Anstralia, to both of whom I offer my best thanks. It is a plensure here to express my thanks to the Trustees of the Seience and hodustry Endowment Fund tor a grant enabling me to purchase a dissectimg miersenpe, which has hern of the egreatest nse in carrying ont this work.

## NOTES ON TIE DISTRTBTITION OF SPECIES.

There is litte to semark upm concerning the distribution within the area from which the collections were made. sine all those from the show, where Harpacticoids are more abmiant, were taken in al comparaticely smatl repion extenting for about 10 miles or so along the enast, about 301040 miles sonth of Adelaide.

The distribution of those species which have previonsly been recorded is, how. ever, of inderest. In eperem, the Harpacticoid fatmat of this remion shows ate-

Lationship with that of Coytom and the Malay Archipotage, the Real Sea, Mediter-
 has shown to beaffiliated with that of the Red Soa and Suez Canal.

This is paticularly expmplified by the occurmaco in this reximn of sud forms

 formuta. Cenloniclle urmatu and Metis jonssenneme.

On the other hand there is also frelationship with the more sonthern islands.
 metn and I'oredthtimm "ustrats. Heseribed fron Kavguelen and Porvatlithem fut-


## Famity Ionglpeididde Sars 1903.

Gemis Langhimena Clahis 1863 .
The gemas comprisus seren specier. to which is addod an bighth from fhis calle etion.

## REY To The Fr:MAlは.


 lomgispimu Monard 1928.
2. Find sagment of second endopod with first imper spine the most proximal . . 3. Fiml sumbert of seremd emtoporl with nhtor spime the most proximal . . 6. Fad sexment of serond endopod wilh first inner spine exaldy opposite the ont ar spine . . . . . . . . . . . . . .
P. Chatal rami as lom, as wide ... ... .. . . . . Cablal rimi half in lompagain as wiele .. .. .. .. $\overline{\text { a }}$
4. Eind sagment of second ondopod: times as lomy as iwo basal segments torether; amal onereahm with $t$ dentiches on bach side of median spone, which watams heyond the ealdal rami … minm $\mathrm{T}^{\prime}$ \& A . Seot1 189\%3.

 heyond the candal rami
. Webori $\lambda$. sont 190日.

 rambside .. . . . . . roronatio Clans 1863.
 modian spine and blateral spines as lous as median spine and a fine hair on cach

 with median spinn pxtending heyond cotudal momitad with 1 barge and 4 small denticles on arach side
sentle Sars 190:


 "hastrulien sp. mov.

Dongipedia coronata Clallis.
Occurrence: TII, 2 fernales; XII, 1 fimale.
Distribution: Widely distributal on the shores of the North Sea, North At lantic, Mediterranoan, and Suez Canal, also taken at Ceylon, Nicobar Islands, Chilka Lake, and Malay Arehipelago.


Hig 1. Lonaipmitia cormatu Clans, female.
This species is very variable, and has been shown by Gumey (1997b), and the specimens taken in these colleetions dilfer slighty from other forms (fig. 1), but there is little doubt that they should he refered to this species.

The most variable feature is size, which ranges from $0 \cdot 56 \mathrm{~mm}$, to $1 \cdot 3 \mathrm{~mm}$.; specimens fomb here measured about 1 mm .

## LLONGIPEDAA AUSTRALIIA SD.nov.

Ocmirence: 11.2 females; XII, 2 females, 1 male; XIV, 1 female.
Femalle : Length 1.1 mm , to 1.3 mm . This form resembles $L$, seroti in many respects, and might well be referved to that species but for some striking differences in the male. In the female the chief difterence is in the shape of the fifth leg. The armature of the operculum is much as in scotli. The relative position of the spones on the end segment of the second cndopod is somewhat different in austrolict, but: in another specimen examined the positions were such as it seotfo. The inner seta on the basal segment of the second endopod is quite short in scotti, and of a much greater length in the species found hore (fig. 名) .

The shape of the fifth leg in the form described as $L$, scolli Sars, by $A$. Scott (1909) and the very much lomger setate, both ou the basal segment of the second endopod and on the fifth leg, suggest that Scott's form is referable to the species deseribed here. It is necessary that the mate of his species should be found to be certain.


Fig. D. Longiprdia anstralica sip. nov., male nnd female.
Male: Lengeth 0.96 mm . In the first antenna the swollen fifth segment is almost is wide as lomg, and bears sereral hook-like spines on its onter margin. These were not seen in seothe (Nicholls, 1935, p. 48), and the fiftly segment is half as longe again as wide. The better devolopment of the setae on the basal segment of the second enclopod and fitth legs also forms a distinctive feature of this species.

In the males of this gemms the long segment of the second endopod bears only two spines (coronule appears to be an exeeption), and it is worth moting that in hoth scolti and atstrellef it is the outer spine which diswppears.

## Family PELTiDIIDAE Sars 1904.

The lamily is represented here by thre qeneri, Alfotha, P fliditm and Pardpettiotiom. Numerically the material is very rich.

Lang (19360, p. 30) sugrests that Ductylopusite platysome Thompson and Sentt (190:3) is a Peltidid and not a Thalestricl, but it it is excluded from the latere family by the swimming logs and flatened borly it is equally excluded from the Peltidatuo by the first leys. It appears to be intermediate and should perhaps he placed in a separate family.

The genus Parapeltidium was estahlished hy A. Scott (1909) for one specimen Which differed trom Peltidinm in the possession of a narrow endopod to the firs! legs and in having the two segments of the fith leg completely fused. As regards the first undopod this condition is regated an boing a male characteristice (see below, and has therefore no taxomomic value. The highly chitinized, fused fifth legs may be distinctive, and were found in two of the species faken here, whieh have therefore, been assigned to Parapeltidiam. The besegmented first antemat of Perapettidium johnstoni Scott is not of gencrice value either, since it finds a parallel in Pellidium awritailii (Clevo).

Key mo Pritmidat.

1. Bocly with anastomosing chition hands .. .. .. .. 2. Body without such bands . . . . . . . . .
․ With leg 2-segmented . . . . . Pellidium Philippi 1839. Fifth leg 1-sfgmented .. .. I'arapellidinm A. Sentt 1909.
2. First endopod is-segmented . .. .. .. .. .. 4. First endopod 2-regmented . . . . . . . . .
3. With lecgesegmented; first exopol with er or more terminal claws.

Altonthe Baird 1845.
Fifth leg 1-segmented; first cepool with single large terminal chaw.
Altruthella A. Scott 1909.
5. Rami of first lece subegual ... .- Fupelto Claus 1860. Exopod of first leg twice as long as endopurl . . . Eupelte Clatus 1860.
6. Basal segments of first leg linear, at ripht angles, rami long and slender.

Paralteutha ' T . Sent 1912. Basal segments of first leg as wide as long, rami short and stont.

Eupeltiminm A. Sentt 1900.

## Afteftra Baird 1845.

The dollowing species have heen assigned to this genus:
aberrans Czerniavski 1868, austrina T. S'cott 1912. dopresse Baird 1845, dubia T. Scott 1912, internupte (Goodsir) 1845, messinchsis Chans 186:3, nane Brady 1910 , nowac-zcaltudiac (Brady) 1899
purpurocinctu Norman 1868. sersi Monard 1924. signate Brady 1910, triarticulah em (Haller) 1879. trisctose Lang 1936e, typuem Czerniavski 1868, villosu Brady 1910.

Of these triorticulutum ( 1 Ialler) is insufficiently eleseribed; of uberons. and lypich I have not seen the descriptions, and these species are therefore not incheded in the key given bedow. According to Monard (1935a, p. 73) typica is probably at synonym of mossinensis Clans. A. villosa brady should clearly be transfered to Scott's geaus Parall culta.

Acording in Surs (1911, 1, B(0) the species described by him (190t) as (lepressu baird shonld have been identified as permurocinefo Norman, and sinee I have not seen baird's original description, represse has also been leffo out of the key.

Ket to Aluteutha Females.

1. Size () +1 mm.

Size at least 0.6 mm . .. .. .. Nuthe Brady 1910 .
2. Exopod of second antema ${ }^{2}$-segmented $\quad \cdots \quad \cdots$. . . Exopod of second antenma "-scrmpented - .. .. 3.
3. Basal segment ol font exoporl with inime sela 1863
lbasal segment of fouth exopert without inner selat $\quad .-\quad . \quad . \quad . \quad . \quad 4$.
4. Eud segment of fourth exoporl wilh 2 outar spines. novad-zealmadiac (Brady) 1899. End serment of fourth exopod with 9 outer spines .. .. .. 5 ,
i) First antema 7 -segmented . . . . . spinicaude sp.nov. First antema 8-segmented $\quad \therefore \quad \therefore \quad$ intermptu (Goodsir) 1845. Wirst antenna 9-segmented $\quad \therefore \quad \cdots \quad . \quad . \quad . \quad . \quad . \quad$.
6. Distal segment of filth leg is times as long as wide . . signuta Brady 1910. Distal segment of fifth leg twice as long as wide $\quad . \quad$ sarsi Monard 1924.
7. Middle segment of fourth endopod with imer seta
8. Ihasal segment of fiftin leg with imer extension .. ... .. 9. Basal segment of fifth leg without inner extension murpuroctucto Norman 1868.
9. Camdal rami with fomu teminal setae .. . . dubio'T' Seotl 1912. Candal rami with is terminal setae .. .. . brisetosa Lan 1936e.

## Alteutila spinicauda sp.nov.

Occurrence: XI, 3 females ( 1 ovigerous) ; XII, 1 male.
Female : Length $0.72-0.75 \mathrm{~mm}$., width 0.39 mm . First antema 7 -segmented, with sensory filaments on third and fourth; second antemna with 2-segmented


Fitting lees of usual shape. Caudal rams wider than long, with large spine at outer corner (fig. ;3).

Male. Lengili $1 \cdot 0 \mathrm{~mm}$., width $0 \cdot 48$ mu. First antenna 7 -segmented and somewhat modified; first legs with terminal portion of export, bearing chats, distinctly separated from end scomeut. Logs $2-1$ as in female, but outer spines of fourth exopod modified on first and second segments; fitch legs strongly chitinized. with spines only, no setae. Caudal ramie as in female.

This species differs from all but mu и in having only 7 segments in the first antenna; the filth legs are not mike those of nama, allowing for the spines to have been broken in Brady's specimen, but the shape of the body and much greater size preclude this species from identity with Brady's.
: Alteurba stgnata Brady 1910.
Oeemrence: $1 \mathrm{~N}, 1$ ovigerous female, 1 male.
Distribution: Kerguelen (Brady 1910, p. 552 , pl, lxi, 10-18).
Female: $L_{\text {ding tl }} 0.60 \mathrm{~mm}$., width 0.331 mm . The head was mitollunately lost during dissection, but lamely states that the first antemin is t-sumented. First legs


Map.

CR. $:$


Fig. A. Allentha signaler Brady, male and female. The female fth leg is shown in two porilions, and like that of the nate is strongly chitjuized.
 tami at least as long as wide, armed with seta te only.

Male: First intema 8-segmented. slightly modified ; second antenna with $\mathbf{Z}_{2}$ segmented exopod; legs $1-1$ as in font ale; wrosome more slender than in female : fifth leas strongly chitinized, with spines and setae; sixth legs represented by a single spine; caudal rani as in female.

This specics is ahmost certainly that described ly Tharly as signata, lout his drawings make comparison diffetult. In the text ( $\beta$, 50 足) he states that the body is atmost as wide as long, but this is mot borne out by his figure ( $\mathrm{pl}, \mathrm{lxi}, 10$ ), in which it is more than twice ats long as widn. It ischer from his figures that the fifth legs have been drawn without dissection, so that a close comparisom with the material found bure cannot be made, but the position of the spines appears to be rather similar. The maxiliped is short and strongly constructed in both, wht the cuthdel rami are very similat. The size and proportions are similay to those of Brady's species. In lisady's drewing the first exopor is relatiady more stender than in the specimens found here.

## Lemithuem Philipui 18:39.

 : preves described hy him; Momard (19:06) hets since added mother species, most;


 fion the previonsly manown mate of spervinsm is described.

The males are distingrisher in call wase by three featuess: 1 , mondifeation of the first antoma, which may not Be very marked; "g, structural biffernec in the first legs a 3, presencer of sixth legs.
 scoments are longer than wide, the second segment carried at an angle to the fiest; the endopod does not dexve its serments brodened as in the lemale. In the firss antenna the penultimato and ante-pemultimute segments are nisially monified with more or less promounced hooks.

Amomest the speceics of Pellirlimm hitherto deseribed, mates ate known in lomp
 Monard 19:8.

 male. The mate of mbrmm was lost in dissection, so that its eomplete structuro is not known, but brady (1915, plo xiii) figures the first lags of both sexes. In lais Aranings the exact upposite condition to that found here appears to be the case. He makes mo refurene to the differmee between the first leys of mate and femate in the text, and in view of his not indrempent mistakes of such a hature it is not unrensomable to assmon that be has tramposed the two appendages in his plate. For
 in which the first entomods are of the brond type, lout dismisses the male in af fow
words, with mo intormation on the strmetnre of its first less.. Of forcipulum Monard
 seme type as has been fonm in the males of this collection.

Arising out of this three more spereis must he comsidered. P'esta (19:0), p.

 first endopoed). IHe states that it is a lemule, but it is mot apparently uvigerous, and he does not illustrate the first antenna. The first legs me deaty of the type fomat in the mates of other species. It is possible, thereford, that he was hern dealing with a mate, althong the wosome shows mon wish legs (but these are easily overlooked muess songht for). The same may apply to grocile Clans, though I have mintorthan ely not seen his description.
$I$.otale Thompson and scott (190:3) was deserobed as a female, the male being manown. From an emantison of this species with the new species deseribed bedow ats simplor, which is distinguished from ofale chedy on certain differences in the
 specinma. 'the lirosmme is mot. illustrated, so that it is not possible to diseover Whether sixth ledes were present on not. In simp/rx the first anteman of the mate is fot medified, and is indistingenshable from that of the domales the fifth lege alser show mo difference, and the only distingushing chatractor, afarl from the prosence of the sixth legs, is the narrownems of the endopods of the first legs. For these remsons mode is requded as limving been described trom at mate and thorefore does bot torm au execption to the male.

It is of interest ( 0 mote that as at gembent sule in this gents the adult mate is smaller than the ovigerons female. Finthermone it is almost certam that the male Lemsters the spumatophore to the bomate when she is in the preadult stage, and at least no larerer than the wale. 'Thene emples of $P$. simptex sp. nov. were takent in the prated state, and in catch case the femate was abont 10 monlt, and showed mo trace of a skelmal pattern, whereas the mate was mathe.
 (Cleve) ntay ine a mate (onsing pesmably to the fom regments in the first and
 ambma as shown by (bleve (1901), on by the structure of the first legs. It is usual
 has the temate.

## Rey to Pbatimisa Feadadia.

1. Ebel seguctat oi tirst endopod with es appendayes
. $\quad 3$
 Fond segmant of fiest andoperd with 5 appendages . . . . 16.
2. All appendages simple setae of erpual thickness
Inner appendare a thicker seta oi spine
:3. Setae of equal leupth .. .. conspixum Norman and sentt 1905. Middle seta twice as long as other two .. . . rosei Monard 1936.
t. First antema 6 -segmented 5.

First antena 7 - to 9 -scgmented . . . purpurcum Philippi 1839.
5. Eud segment of fifth leg with 5 setae .. .. simplex spanor. End segment of fitth leg with 6 setace . sutecsphorum Monard 1928.
6. The 2 inmer aprendages of finst andopod thick setae or momodified spines 7. These appendages modified spines, ustally laminate on seroll-like .. 0.
7. First antema fi-segmented .. .. cxiguzm A. Scott 1909 . First antemat T-seqmented .. . . . . . . 8. First antemar 8-segmented .. . . robustum Clans 1889.
r. End segment of fifth leg with $\overline{5}$ setate spectoshm. Thompson and Seott $190 \%$. End segment of fifth leg with 6 setae .. . . rubrum Brady 1915.
9. Fijsi antenna T-segmented .. .. .. .. .. 10 .

First antenma 8-sigmented .. .. .. . . 15.
10. Lind segment of tittla leg with 1 setap -. rinerocum bitaly 1915. End sequent of fifth lear with inselate . . . . . . . 11.
11. Fifilu leg with onter branch of basal semmont of thre-rinarters of end serment, extonding hogond base of first seta
. 12.
 base ol first seta . . . . . intermedium A. scoth 1909.
12. Basal segment of first antemmathat as long atpant as second segment.
perplesum Thompson and seott 1903.
Basal serment of first antenna about cqual to second. .
13.
18. Rostrum rectangutar; claw of maxilliped abont halfolength of end segment, formoty an are . angulatum Thompson and Scott 1903 .
 distally
14. Terminal chats of first exopod not more that : times end segment.
falratum A. Seott 1909.
T'erminal claws of first exopod at least 5 times end segnent. proximum sponov.
1ㅇ. Caudal rami extending heyom und of genital soment monardi Iesta 19:\%. Coudal rami not reaching end of wenital segment huwaitonse Pesta 1935.
16. First antemat 5 -segmented ; setae of first endopod mmodified. ưTivillit (Cleve) 1901.
First antenna 9-sequenterl ; 2 inmer sethe of first matopod morlified.
cleyuns Wolfenden 1!00̆a.
Note. The data for rohnstum Claus 1889 have been taken fion Pesta ( 1935 . 15. 367 ) since I have not seen the original work.

## Key to Peltmom Males.

1. Find seqment of first andopod with :3 appendages End segment of first cudopod with 4 appendages
2. All these appendages simple setan .. .. .. ... ... 3. Inner appendage a spinè . . . . . . . . . $\quad$.
 Inner seta thicker than terminal setae .. .. .. .. 4.
3. End segment of fiftli leg with 5setae onaln 'limompsom and Scott 1903. Fnd segment of fifth leg with 6 sethe . . morpurnm Philippi 1839.
万. End segmeme of lifith leg with 5 setae . . . . . . . . End segment of fifth lew with 6 setae . sucesplumum Monard 1928.
(\%. Terminal setac of first endopod unegual: first antemmanodified.
forcipetum. Nondrd 192s. Terminal setae of first endopod egnal ; first autenna umodified.

> simple.. sp.mey
7. Thwo inmer spines mombified . . . . Foturn brady 1915.

Two imer spines mondified, seroll-like .. . . . .. 8.
8. First antemat 7 -segmented ... .. .. proximum sponov. Hirst antenna 8-segmented . . . speciosmom. Tlompson and Seot 1900.
 all the availathe evelence pointing in that direction, while there is no positive "videner against this interpretation. They ate therefore, induded in this key.
 That the orixinal description is somewhat indedmate.

Athough the deseription of the mate of sfeesphentem is incompleto, I hate inctuted it in the key to the males, sine thene is some donbt in my mind whether The illustration of p. 1 female wiven by Monatal (1928, p. 315, fiy. ix, 3 ) is not really that of the male. The slender condition of the first cmopod (ignoring the Pringed lamela) and Hes strmaly developed inuce spine lend suppor to this view.

Bruts 's illnstrition of the male of mbrom is confined to the first lege, and as exphaned above I consider that the first lem of male and female have been transposed. Thm illustration does mon make mone the comdition of its armature, but it appears to have 2 ? lateral setae and 2 'immer simple splates on the endopor.

## 1'elumath shablex spanov.

Octurente: $\mathrm{I}_{\mathrm{p}}$ several specimens of both sexes and vonup; $\mathrm{X}_{1} 1$ spmeimen: XI, 4 females; XII, 1 specimen; XLII, 1 immature.

Femate: Lengith $1 \cdot 56-1 \cdot 68 \mathrm{~mm}$. width $0 \cdot 90-0.99 \mathrm{~mm}$. Body founded in L'oont, with rostrum projecting slightly towatds the ventral surface, invisible dore Nally; skilalal pattern strongly developed on a simple plan (fig. $5, ~$, . F'imst antemar 6-sommented, sensory filmments on third and fourth segments; scoond anfomm witls basal segment incompletely divided, exopod 'r-segmented, atiached at middle of basal segment; month parts more or less normal (fig. 6).

First legs with basal segment of cudopod expanded, terminal segment less so, bearing [3 terminal setae and I inner spine; legs "? -1 with the following seta formula :

|  | endopod. | exopod. |
| :--- | ---: | ---: |
| p.2. | 1.2 .120. | 1.1 .223. |
| p.3. | 1.2220. | 1.1 .323. |
| p.t. | 1.2 .220. | 1.1 .323. |

Fifth Iege with end serment indistinctly separated from basal segment, dongate, with setae and spines all inserted distally; like the other appendages, the fitth legs are strongly chitinized. Candal rami short, not visible dorsally.

 mom 'Thompson and seott ; skeletal jatterns secu from aloove, not to sane spale.

Male: Lenghth 1.38 נmm. ; width $0 \cdot 69 \mathrm{~mm}$. Differs from female only in the smaller size of the first legs, with more slender endopods which are similarly armed. and in the possession of sixth legs. The male examined was obvionsly mature, and contained a spermatophore but the first antema is qute ummodified and indistinguishable from that of the female. The fifth leges are incutical in both sexes.

This species resembles ovefle in shape, hut has an simpler design in its skeletal pattern, and differs in the fifthlegs. The pattern is om the same general plan as in ovale, but differs in the anterior and posterion regions. The first antemate and
mud sements of the first endopods are very simitar to avale, and it is probably an Australion fomm of this species.


Fig. for Peltidinm simplex spo nover, male and female.
As already stated, in view of the similarity of the first antennate in both sexes of simplex and of its resomblane as a whole to mole, it is assmmed thet orale has heen deseribed from the male, sine the first legs of that species show the nimal modifiention found in males.

## Peltidider proximut sp.hov.

Ocenrenee: VII, $1: 3$ females, 1 male; LX , sevoral specimens; X , mumerons specimens; XII and XIII, 5 females ( 1 ovigerous) \# XIV, 4 females.

Female: Length $1.62-1.80 \mathrm{mmo}$, width $0.87-1.11 \mathrm{~mm}$. Body with prominent rostrum; very slight dorsal crest on head and thoracie segments; segmemi betring fifth leys fused with following segments; first antenmat 7 -segmented; second antema with distinetly divided basal seqment and long 2 -segmented exopod; mouth parts normal (fig. 7).

First legs with basal segments sub-rectangular, endopod widened, end segmont withe thim terminal setae and es imer setate, the latter strongly modified; seta formula of lage $2-1$ as in simple $x$. Fifth legs with segments distinct, very small
inner expansion and long outer branch. Caudal rani short with long terminal setae.

Mate: Length 1.38 mum.; width 0. Tb mm. Body as in female. First antenna 7-segmented, with usual sensory filaments and modified segments; first logs with elongate second basal segment, endopod slender, with two inner setae modified,


Fig. 7. Peltidium proximum sp, nor., male and female.
seroll-like as in Parapelliditum dubnium (fig. 11) ; legs 2 - 1 as in female; fifth legs with second outer spine much more strongly denticulate than in female; sixth leys with is setae.

In the first aud fifth legs this species resembles perplexum Thompson and Scott, but the skeletal pattern (fig. i, B) shows certain differences, and the size of perplexum is much smaller ( 1.1 mm ).

Pentmom sherosum Thompsou and Neote 190:3.

$I$ 。 minutum A. Seott. $1909+$ p. 205, pl. 1xv, fig. $16-20$.
 1 female; XII, 4 temales ; XIII, 1 female, 2 males; XIV, 6 females.

Distribution: Ceylon, washed from dredgings tron pearl banks; Aru Islands, washed from dredgings from pearl hanks, in 13 metres.

This species has been identified with speriosum on aceonnt of the strneture of the appondages bather than the similaty of the skeletal pathern (fige 5, C).



In both the Ceylon material and the Australian specimens the design reaches a rather complicated condition, and it is not certam whether all the longitudinal hars in the original drawings are on the dorsal surface or whether some may be ventral in position but connecting with those of the dorsal surface, as is the case in my specimens. For this reason a elnse comparison is not possible, but in gencral both A. Scott's minntum and the specimens found here agree with the original drawings, and in the stmetne of the appendages all three are in very close agrement. In size minutum is somewhat smaller ( 0.8 mm .), whereas this material agrees with that of Thompson and seott, but the size of these Peltidids varies over a considerable ramge, as has been shown.

Female: First antenna 7 -segmented, with the usual sensory filaments; second antenna with basal segment distinctly divided; mouth parts as usual. First legs with both segments of the endopod widened, end segment with 2 thin terminal setae and two lateral modified setae; seta formula differs from the usual:

$$
\begin{array}{ccc} 
& \text { endopod. } & \text { exopod. } \\
\text { p.2. } & 1.2 .120 . & 1.1 .223 . \\
\text { p.3. } & 1.2 .320 . & 1.1 .323 . \\
\text { p.4. } & 1.2 .220 . & 1.1 .323 .
\end{array}
$$

Fifth legs with segments distinct, sceond outer seta strong and spine-like with several large denticles.

Male: Length $1.08-1.32 \mathrm{~mm}$., width $0.62-0.69 \mathrm{~mm}$. The male has not previously been described. First antenna 8 -segmented, modified as usual ; second antenna with basal segment divided, exopod long, 2 -segmented; mouth parts as in female. First legs with clongate basal segments and slender endopod, end segment with 2 long thin terminal setae and 2 inner modified setae. Legs 2-4 with seta formula as in female; fifth legs similar to those of female, but second outer spine more strongly denticulate; sixth legs with is setae.

## Parapeltidium A. Scott 1909.

This genus was created for a single specimen taken in a vertical haul from 10 metres to the surface at night, while at anchor in Laiwui, Obi Major, Station 142 of the "Siboga" Expedition. An electric light was used in the net, and this is most probably a bottom living form.

The genus is retained, for the present, for such species of Peltidium as show a distinct fusion of the two segments of the fifth legs, and therefore includes servotum Thompson and Scott (1903), on whose "remarkable" fifth legs the authors commented at the time. Further points of similarity between the members of this genus, distinguishing them from Peltidium, are the noticeably flattened body and the development of dorsal crests to the body segments in the mid-line. These are stated to be present in johnstoni ( $\Lambda$. Scott, 1909, p. 212) though not shown in the figure ( pl .1 lv , fig. 1). In the case of serratum they are illustrated (Thompson and Scott, 1903, pl. xiii, fig. 18) but not mentioned in the text. They are present and strikingly developed in both the species described here (fig. 9, 10). The males show the same sexual differences found in Peltidium.

There are, therefore, now 4 species to be included in this genus: scrratum Thomp. and Sc., johnstoni Scott, cristatum and dubium spp.nov. The second of these, johnstoni, is presumably a male. Though described as a female there are no specifically female characters described or portrayed, whereas the first leg is obviously that of a male, and although supporting male characters are lacking.
yet in Peltintmu also males with monotilied first antemae are known. The very strone chitinization of the fitth ley may perhaps be requrded as a mate charaeteristie.

Thompson and Seot's species servolum is elearly a temale: sristatum is here rlaseribed from both sexes. while dubim is known only as a malle.

As already shown the 5 -segmented first momathere las no gemeric value. white the slender endopod of the first legs has nasystematic significance.

## Key to Parapeltinium Females.

 filth lese with ti sette .. .. . serratm Th. and Se. 190:
 like seta; fifth lex with sactar .. .. .. crislatum spanov.

Key to the Mates.
 Fibst matnoul with ${ }^{2}$ trminal setae and 2 imer modified spines.

2. Widh lege with 1 shore terminal spine, 1 inncre and of ruter spones and setat;




## Parapelationem ribistateminghon:


 P'int, A pril, 1939, 1 male.

Hemale: Length $1 \cdot 0-1 \cdot 65 \mathrm{~mm}$. , wifth $1.08-1 \cdot 11 \mathrm{~mm}$. Tiody flathoned in

 Margin slightly sermated as in sormbm. The skeletal pateron is of a simple design, with weak anterior and stronger positrion fransverse bands to each segment, but without longitudinal connecting has in the epomeral expansions. First antenna T-scgmented, with sensory flaments on thitd and fourth segments; second antema :3-seqmented, withe-segmented exopod attached at distal end of basal joint; mouth parts normal (fig. 9).

First leg with endopod much brodened, bearing is ummodified teminal setate, the immer of which is muth thicker that the othere two and spine-like; seta fommala of lexs 2-1:
indopod. exopod.

$$
\begin{aligned}
& \text { p.e. 1.2.120. 1.1.20! } \\
& \text { p.i. 1.2.2.20. 1.1.82: }
\end{aligned}
$$



Fig. 9. Parapoltidimm oristatmm ap. now, mala ami female. The first legs of hoth sexes are drawn to the same seale, but the male bth leg is drawn at andgnification equal to twice that of the female 5th leg; south parts are lrawn all to the same seale, but those of the male are slighty smatler than those of the female; maxilat from female, madible, maxilule, and maxilliped from male.

Wilth leas with segments fused, stromyly chitinized, with thin marginal lamella fringed with fine hairs. Candal rami clongatp, with terminal and lateral setae.

Male: Described liom at sibule spreimen taken in Western Australia. Lempth $1 \cdot \underline{2} 3 \mathrm{~mm}$., width $(0.9 \% \mathrm{~mm}$. Shape of body ind skeletal patterm as in lemale First antema 8 -segmented, sisth and sevouth slightly morlified for granping, sensory
dilaments on third and fourth; other houd appendages as in female-the maxillule is somewhat reduced from the ustal Peltidiid condition.

First legs with slender endopod, with : unmodified selae, the inner seto Sightly thicker than the two terminal setat" lows en as in femate; fifth leg searcely different from that of female.

That this species is distinet from Seott's is evident from the relatively simple design of the skeletal pattem, aud the greater number of segments in the first antennae. It differs from sermotum in the skeletal pattern, first endopod and filth logs.

## Parapehtidita netbeum sp.nov.

Occurrence: IV, 1 male.
Male: Length 1.29 mm., width 0.81 mm . Body with rather irvegular outline, rostrum asymmetrical, projecting; body seqments with large lateral expansions

 right side.
and dorsal crests (fig. 10). First antemal 8-segmented, thitd and fourth with sensory filaments, sixth and seventlo modified; second antema with basal secoment divided, exopod long, e-sermented; month parts normal (fied 11).


Fig. 11. I'traprllitium dabiom sp, nos., male.

First legs with dongate hasal semments and slender endopod, bearing e2 thin terminal setae, and 2 z modified serol-like inmer setac + lars ${ }^{2}-4$ with the following seta formula (right side) :
endopod. exopod.
р.2. 1.2.120. 1.1.223.
p.3. 1.1.320. 1.1.323.
p.4. 1.2.220, 1.1.32\%.

The third endopod on the right side is somewhat abnormal, hut the loft third leg was quite abnormal, the seeond and third segments of the endopod were fused and the exopod was t-segmented; filth legs with segments distinetly fused. Caudal rami long, with lomg setac, but invisible from abowe

# Fanher TEGASIHDAE Sars 1904. 

Trabastlo Norman 190:3.

A single male specinen of a species of Togastes measuring $0 \cdot 0 \cdot 3 \mathrm{~mm}$, vecurred in this collection (III), which I have been umable to identify with auy of the known species. The dissection was, howerre, somewhat incomplete, and the species will not he deseribed until more material has liem obtaned to chable a full study to be made.

Family PORCellidildale Sars, 190 t.

## Promeldamem claus 1860.




 been mable to trate this species.

Of those listed ly I'esta he states that pmondum and medom llaller' (1880)





To these he addes seolli for fimbrimt om of Thompsom and sonlt (190:3), which
 from Hawaia. To these have heran inded (wo varicties of fimbrutum, deserjbed by
 that leranoides Clatns (1889) is a rablly of fimbrinthm.

P'estan (loc. cit.) makes a new suereis of fimbratum ins described by Thmmson and sent on the propoctions of the segmenten of the first antemat, length and posifom of the imere seta on the first condopod, the position of the riblo in the fiftly leg. differences in the eatal rami and the difierent distribution.

The proportions of the segments of the first antenna as stated in the text by Thompsom and seoth are net home ont by the illustration (pl, xit, fig. D), in which they closely resemble the proportions (ftumed by lesta from Claus, and also agree with Sars' drawing ( $1911, \mathrm{pl} .1 \mathrm{xy}, \mathrm{a}, 1$ ). The positime of the immer setat on the first medopod is probably due to fantly observation sine the point of attachment of this seta is always hard to make ont (ef. Pesta 's drawing of this seta in rheverum, lor: vit., p. 377 , in which it is stated to be attached hasally). The position of the rib in the filth leg is merely at gnestion of the position in whith the leg is drawn, since it is ahays more or less central, and forms the angle at which the two halves
of the boat-shapmed segment meet. The dithernee in distribution has lithe valne. since many Mediterranean species have benn fonnd as tar away as the Malay Archipelago and Australia.

But the catal rami show cerlain differmees, as stated by Pesta, and even more important, the postero-lateral projections from the genital segment are distinelly rounded in fimbriutum Chas, and the fifth legs do not reach the ands of these projections, whereas in Thompson and seott's drawing the projections arm pointed, and the fifth legs extend beyond these points. Fon these reasons, therefore, fimbriutmo of Thompson and Seoth may be regarded as in distinct species, to whieh He mame scotti has been given by J'esta.

As pointed ont by P'esta (lor. cit., p.:376) claciucrum is of the fimbriuthm dype, and its cental rami resemble thase of fimbriatum Var, matrumu Honard (1928) in Hecir armature. Monard's variety in the female shows a considerable diference in the proportions of the candal rami from those of fimbriatum (lengeth to witth neardy $\bar{T}: 2$ compared with $2: 1$ ), amb chwightum has the normal proportions of fimbriutum. Furthermore, Lans ( 1 and has illustrated the catudal rami of lectmoikes Clans (1889) (the origibal deseription of which I have not secn), and
 Monard. It is probable, therecore, that chatgerwe is identical with lecenoides, and this vinw is suppretel by comparison with the illustrat ims of this species given by Norman and seotl (1906).

Below is a key to the remales of porenhilinm, from which are exclided those spenies which are unmerlain, mat those whim appear to be synonyms as well as sontutum. For tonnictula (lans (1860) und /renmaides Clans (1889) I have relied on the descriptions given by brody (1880) and Nomman and seott (1906) resucclively.

## Ker to Donelahamusal lematias.

1. Genital segment with mostero-tateral projections
Genital segment withont such projections

Genital segment withont such projuctions. . . . . 11.
⒉. Projections trom geatal semment reaching end of amal segment but not to


i3. Candal rami rectangular, trument . . . . . . . . . Cimdal rami lapering, pointed or rounded.. .. .. .. 5 .
4. Projections from genital segment with amves unter maryin; caudal rami lipped with 4 slon spines anh 1 seta .. lecamoides Clans 1889. Brojections from genital segment with embetve onter margin: catalal rami lipporl with setae omly .. .. .. .. srolli P'estal 1935.

- Projections from gental serment reaching middle of catdal rami.
armicaulatum Thomps. and seoth 1903. Projections from genitul segment extonding only slightly beyoncl anal rexment

6. Caudal rami pyriform, hapering distally 7.

Candal rami sub-rectangular proximally, outer margin rounded distally 8.
7. Caudal rami each tipped with a single spine, without other armature.
tenmictulde Claus 1860. Candal rami lipped with an single seta, and with 4 outer and 2 dorsal setae. brevicuulatum Thomp, and Scott 1903.
8. Hisst antema 6-segmented First mitenna T-segmented . . . . affine Quidor 1906.
9. Fifth legs extending round catud rami, overlapping posteriorly. interuptum (4. M. Thompson 1883. Fifth legs not meeting behind caudal rami 10.
10. Body length to width as $8::^{\circ}-$. .. fimbrutum Claus 1863 . Body length to width as E: 1 . . fulvum G. M. Thompson 1883.
11. Caudal rami as loug as wide .. .. .. custrote Brady 1910. Caudal rami wider than long .. .. Gurroti Quidor 1906.

## Porgeldidume fimbriatita Clans 7866 .

Oectrence: XII, 1 female.
Distribution: British Isles, Norway, Mediteramean.
A simgle specimen, an ovigerous temale, wat found in this collection, which showed the typical features of this species as described and illustrated by Sars


Fig. 13. Porellidum fimbrathan Chas, urosome ( $\mathrm{C} v$ ); and Porcellithm fulnm G. M. Thompson.
(1911). The lateral incisions in the expansons from the genital seyment (fig. 1.2, Ur) ine sonewhat deeper than is shown by sars, but there is little doubt that it is identical with (lats'species. Sength 0.96 mm . with 0.60 mm .

Porcellidum relayak G. M. Thompsom 188:\%.
(lecurrenec: $1 \mathbf{N}, 1$ femald.
Distribution: Otago mad Lytiteton Itarbours, New Zealand,
This single specimen, which was not ovigerous and may not have heen mature, is almost cerdainly identieal with that deseribed by Thompsom. He states that it is "hardly more than hati th long ats broad"; this specimen was slighty harrower. "Antcrior antemat very short . . . . not hatl' the width of the body:" "Camath segments quadrate, ciliated at the extremity." The size of his specimen, however, Was eonsiderably greater than mine ( $1 \cdot 0.5 \mathrm{~mm}$, as against 0.66 mm . $)$, hat this is probably mimportant. Apart from the masmal shape, the most striking resembiane is in the shormest of the imere sela on the dirst endopod, which does wom reach the (ond of the has al segment (fige 12) . The absence of an inner seta from the end sagment of the first examol in Thompents drawing (plo vi, fig. 10) cannot be regarded as important sine it is casily overlooked.

Seta formula ko legs ²- 4 :

$$
\begin{aligned}
& \text { rmatopoct. exupot. }
\end{aligned}
$$


Oecmrence: NL, 1 ovigeroms female.
Distribution: Suc\% Camal, Cevlon, Maldives, and Laccanlives.
This speries was originally described from deylow, and later deseribed by Gimesy from the sum Canall. There can be little doubt that Wolfenden's tubercredelum is indentical with this an stated by Gurney (1927b). The simgle ovigernun femate baken bere is somewhat larger than the type; it is intermediate in body proportions between the type and Wolfenden's form, and lacks the tuberculate
 is as in fuloum above.

1'orcelhmbera australe Brady 1910.

Distribution: Kerguelen Island.
The single female, talsen with the mate athached, was unfortumately immature, and a condition similat to that the the fledionde is wherved here in that the male

 arosome are drawa in ventral vien.
is found attached to immature fomales. While the latter is no Jatere than the male, whereas the aduld female is always larger than the male. Unlike the Peltidids. however, wher the sexes patio the male is altached to the fifth legs of the female by means of its strongly prehensite finst antentac, so that they are arranged in tandem. In the L'eltidids the male clasps the femate around the cephatosome, or between
that and the firs free thoracie segment, by means of its powerdul maxillipeds. In both eases, where paired amimats have bern taken, the femate was immature and about to moult into the adult condition, while the male was lully mature.

Although the female was immature it conld be identified with Brady's species, amb the male anrees well with his drawings as far as comparison could be made. Since his description is not very full, the specimens taken here are fully illustrated.

Lengtl 0.60 mm ., width 0.45 mm . both specimens the same size. The dorsal surlace of the male is strongly tubereulate.

## Family TISBIDAE (Sars) 1904. <br> Machamopus brady 188\%.

Lang (19360) in a revision of this gemms has concluded that the gemis Psemathe lbilippi is identical with Machatropus, and since the older name is preoceupied, Brady's name must stand. He grives a key to the species, from which ouly' sursi Brady 1910 is excluded. Since then he has described another species, antarrlious Lang (19:36e).

Two species oceurred in this enllection.

## Machamomus interameduts sphov.

Oechrence: $1 X$, several specimens; $X, 1$ female, 1 younig; XI, $\pm$ ovigerous females, 4 young; XII, 4 females ( 33 ovigerous), 2 mates.

Female': Length $0 \cdot 8 t$ mon. First antenua 9 -segmented; second antemat with 4 -semmenter exopod, of which the third segment is the shortest; mouth parts more or less typical (fig. 14) ; first leg with middle segrent of exopod swollen basally as in phumosu (brady), thongh to a less extent. Sota formula of legs ?-4:

|  | endopod. | exopod. |
| :--- | ---: | ---: |
| p.2. | 1.2 .221. | 1.1 .223. |
| p.3. | 1.2 .321. | 1.1 .323. |
| p.t. | 1.2 .221. | 1.1 .323. |

Fiteth legs very much as in the type speries, candal rani as in phomose. The genital segment is partially divided, ventrally and laterally.

Male: Length 0.66 mm . The male differs from the fenale mbly in the first antenuac, which are 8 -segriented, and fiftly and sixth legs.

It is with some hesitation that this species is separated from blumose, which has been redescribed by Lamg (1934). A comparisom with the original and with Lang's description shows several points of differener. Firstly in the proportions of the segments of the first antema, in which it also difters from longicaude
(Philippi, 18t0). The exopod of the second antematacks setac on the second and third segments; the mandible papp is different from that of Philippi's species. One of the distinguishing characters of Brady's species, according to Lang, is the swollen middle segment of the first exopoti. In intermolius this segment is swollen but to a muth smaller extent, the swelling being restricted to that portion proximat

 tip, ami is accompaniend by thandible in situ; the drawing of the maxilhate is taken from the male. The genital area of the femate was drawn as seen through the urosome from the dorssl surfate.
to the attachment of the setd. The fifth ley is very similar' in all three species, fund the caudal dami show ouly slight differences liom those of plumosa (cf. Lang, loc. cit., p. 19). The wale differs from plumose in the first antematand fifth and sixth legrs.

A second species of Whehoiropus ocenred in eolloctions from sellick Beach (LN). An ovigerous femate, monsuring 0.69 mmo, wan found, but minfortuately the fifth legs were lost during dissection, and without these it is nseless to deseribe the species.

## Family THALESTRIDAE Sars 1905.

Lang (19368) has recently revised this family, and gives keys to the family and genera. He divides the family into four sub-families, chiefly on the sexual characters.

## Sub-family Dactylopodinae Lang 1936.

## Eubactylopus A. Scott 1909.

This genus contains three species, whicls are discussed by Lang (loc. cit. p. B5̈).

## Rudactylopes australis sp.nov.

Occurrence: LX, e2 females; XII, 1 female; XIV, 1 female.
Female: Length $1 \cdot 26-1 \cdot 38$ min. Body comparatively slender, the wrosome forming more than half the total lengith. First minnal 9 -segmented; rostrmm prominent, rounded, mobile-not always visible dorsally; second antennat with exopod distinctly 2 -segmented; mouth parts showing greater development than in


Fig. 15. Eutactylopus australis sp, nov., female.
type species (fig. 15). Wirst legs like those of robustus (Clans, 1863) ; Iegs 2-4 with seta formula:

|  | (1ndopod. | exopod. |
| :--- | ---: | ---: |
| p.2. | 1.2 .221. | $1.1 .22 \%$ |
| p.3. | 1.5 .321. | 1.1 .323. |
| p.4. | 1.1 .221. | $1.1 .32 \%$. |

Fifth legs large, extending to the middle of the post-genital segment, basal sexpment with more or loss parallel sides, end segment pyriform. Caudal rams as wide as long.

Mals : Tnknown.
This speces shows several differenpestrom previonsly deseribed species. The genifal segment is yery large and is ahose as long as the remaining three urosome segments together". At the same time the body is relatively much more slender than in moustus. While the fifih legs are long, as in robustus, their segments are of a shape quite difterent from those of robusius, and they extend no further than the midde of the post-qenital segment, whereas in mbustus they reach at least to the hind margin ot this segment. In latipes (T. Seott, 180.t) they attain approximately the same position as in anstrulis, hat are of an entirely different shape. The 2 -segmmed exopod of the second antemat futher distinguishes this species from mbinstas ant from spoctobitis (Brian, 1923).

## Sub-family Thatestrinae Lang 1936.

Pifydiothalestris. Nats 190\%.
Aecording to Lang (op, cil., p. 4i, the genis contains ispecies, with a possible fourth.

$$
\text { Pitylifothabistris Mises (Claus) } 1863 .
$$

Ocenmence: XIII, de females ( 1 ovigerous).
Distribution: Norway, British Isles, Madeira, Mediterranean, Suez Cantl, Ceylon, Ohi Tslands.

The two females in this collection show only small differences from the type. The size is somewhat smaller, 1.1 mm , instoad of 1.4 mm ., and the end segment of the second cexopod has only 2 inner setae instead of 3 as shown by Sars (1911, pl. Ixxi). Horeover, the immers seta the basal segment of the fifth leg is relatively eloser to the terminal setale, and the second outer seta of the distal segment is not difterentiated as a spine, but this and the thind seda are slightly stronger than the other 4. In at specmen taken in Western dustrabia these 2 sotale are both small
spines. There seems to be a certain amome of variation in the fifth legs of this species (ct. Sars 1911, pl. 1xxi, and Monard 1928, fic, xyii, 1). The Western Australian form agrees with that from Sollick Reef in the seeond exopod, but the imen seta on the basal seqment of the fifth leqre is missing.

## Family DIOSACCIDAE, Sars 1906.

In conjunction with the prescht work I have made a revision of this family, dealing in particular with the genns Amphiosens and its closely-related genera.

This revision will be published soparately. It need only be noted here firstly, that Gurney's (1927b) genus Amphiascopsis is retained, but has been enlarged to inelude a mumber of related forms, and, secondly, that the debitis torms and related species are placed in at new gems. Amphitssoules.

A short definition of this now gemus is given in the appropriate plater.

## Amprimascopsta Gurney 1927b.

## Amphiascorsis ronghes spmov.

Ocenrence: VII, 1 female, X, 5 females ( 4 opigerous), 2 males; XIIT, 2 females (1 ovigerons).

Fernale : Lengith $0.93-1.05 \mathrm{~mm}$. Rostrum round antoriorly, with 1 seta on each side; first antembal 8 -semmented; cxopod of second antemna 3 -segmented, middle segment with sicta; first legs with very long dudopod and large middle segment in exopod, typical of the gents; legs 2-1 also typieal, with the following seta formula :

$$
\begin{array}{ccc} 
& \text { endopot. } & \text { exopod. } \\
\text { p.2. } & 1.9 .121 . & 1.1 .223 . \\
\text { p.3. } & 1.2 .321 . & 1.1 .323 . \\
\text { p.4. } & 1.1,221 . & 1.1 .323 .
\end{array}
$$

Fifth leog with clistal senment mearly as wide as loug, bearing 6 setae, basal expansion with 5 setac. Candal rami as wide as lonq, setace umodified.

Male: Length $0.90-0.96 \mathrm{~mm}$. Ditters from female only in the usual way. Basis of first endopod with large imner spine, which is strongly developed and enrved; end segments of first endopori relatively longer than in fenate; second endopod modified as ustal, with the spiness strongly developed. Filth legs with hasal segments of opposite sides united in mid-line and dach benring 2 small spines; distal semments with 6 setae $(2,1,3)$.

This species shows considerable resemblance to lagmaris Graudori, as illusfrated by Brian (1928). It differs in the very long first cmepod, with its sloort end
secments, and in the second endopod of the male. Other species of Amphitscopsis with very long first endopods are sexselntus, tonuinulus, gracilis, latifolius, minutus, acgyptins, phyllopus, havelocki, bamyulensis, and hirsulus. It differs from


Fig. 16. Amphiascopsis longipes spo nove, mate and female.
the first two in the shape of the fitth legs, and from these and gracilis in having 3 imer sctae on the end segment of the third exopod; from latifolius and the last 5 species in the first exopocl, tund from mimutys. in the fifth lear and mate second endopod.

Ampirdsoopsts atestrahs sp.inov.
Oecurvence: XIII, 4 females, 1 male.
Fewale : Length 0-75-0.93 mm. Rostrum triangutar, pointed. withont lateral setae, first antemmas asmenterl, segments short and eompact ; exopod of second antema 3 ssegmonted, middle segment without seta; first logs of Amphiascopsid type but endopod not ireatly elongated nor very slender; legs 2-4 with the usual soda formula for the spmes. i.e exactly as in longipes (abover); fifth leas with basal


Fig. 17. Amphiusiapsis nustiotio sp. nove, mate and femplen,
 rami wider than long and nearly as long is mal segment, setue ummodified.

Male: Length 0.99 mm. First antema ! sermented; second antema as in female. First legs with enlarged spinc at base of endopod, otherwise as in female: sceond endopod modificd, with 1 sicta ou basal secment, end segment with '3 lateral sedae, 1 terminal spine-like sela and 2 spines attached about midde of segment. Remaining legs as in temale. Filth legs with basal segments of opposite sides mited in mid-line, each bearing 2spines; distal segments cath with 6 setae $(2,1,3)$.

This speceses, which was found associaled with that deseribed above, is very liko it in some rospects, hat differs in the first intemat, exopod ot serend antemna,
first legs, candal rami and rostrum, In several respects, particularly in the proportions of the finst endopod, it resembles attenutus (Sars 1906) but ditiers in the clearly s-segmented exopod of the second antema, the relatively wider first sodopod, and in the shape and armature of the fitth leas. The mate differs from that of athenuthes, which has been deseribed by Wilsom (1932. p. 218). in the first and seeond legs.

## Amphiascomes gen. nov.

The following two characters serve to define this genns, which is composed of the debilis gromp of A mphiaseus sens. lat. with additions.

1: Middle segments of second and third matopods each with 1 inner seta.
2: Middle segment of first exopod withont immer seta, end segment with only 4 selformal/or spines.

For the full deseription of the fentis and list of spocies reforence will have to be made to the text of the revision whith it is hoperd will low published durimg $19+1$.


Distribution: Permmata.


Fig. 1s. Amphiascoiltes intrmintus (Willey), fombla.
[n 1920 ( 0.64 ) Willey deseribed a species of Amphitscus from Bermuda, which was close to A. debilis (Giesbrecht) and which he named subdebilis; at the sanne time he foma a varicty (intermixhes) which differed only in the shape of the fifth leg. Je has mon illnstrated his species very fully, and it is not known to what
extent subdebilis heparts from debilis, except in the seta tommota, fifth leg, and candal rami. The species fomul here has the distal serment of the fifth les indistinguishahle from that of his variety, while the seta formula for legs $2-4$ also agrees With subdebitis. In the proportions of the segments of the first endopod, however, it diflers from debifis to a certain extent, as dons also the rostrum, and failing information to the contrary it must be assmund that sublobilis aqrees with debitis in thase respects. It is nucertain what value should be aseribed to the proportions of legs, from at sostematice aspeet, and only extenstive breeding experiments can molighten ns. The size of sublobiles is qiven as $0 .-17 \mathrm{~mm}_{\mathrm{s}}$, that of the variety ass 0.69 mm . The examples fonud here mastred $0 \cdot 40 \mathrm{~mm}$.

In view of the constderable differenee in size and its wide distribution [ have raised the variety to the rank of a species. intomediate between dobilis and subdehilis, as Willey's choiee of name implies.

## TYomasionda A. Sent 190:

Timfomenclla A. Seott, 190:1, p.216.
Inlysus: Brian, 1927.

The genus was requited by Seot ans a Thalestrid, rolated to Datylopodenta, which it resembles in shape and in the relatively large basal secment of the first embopod. It is, however, ane stated by Lang ( $1936 \mathrm{e}, \mathrm{p}, 18$ ) demrly a Diosaccid, and
 memelle, wat corvedly placed in the Diesaceidun loy its anthor, thouch both Gut-
 more, Monard (loce celt.) includes Thdemanollo in the Thulestrider, and Gorney (lor, cit.) states that Inlysus "dilfors very litule" from Y'allembintw, which Lange (loe. cit.) regards at synomymoln with Dachlopodella. It is of interest to note


The close relationship) of Thelfomenth that lalysw is thus itudepemtently establisterd.
 hitherto deseribed and for the new spectics deseribed below. These are typica A . Scott 1909 \&rufun (brian) 1929 ; and robuster spmof.

## Key to the Females.

 wide
.. .. .. .. typied A. Scott 1909. These semments short and stont, nomore tham half as long again as wide .. 2.
$\because$. Second segment of first interma with large spine at distal comer.
infus (Brian) 1927.
Second sargment of first imfoma withon spine.
.. robusta sp.nov.

## Tydemanella roblesta sp.iov.

Occurrence: 1X, 1 female, ovigerous; XIV, 1 male.
Female: Length 0.78 mm . (anterior portion 0.54 , urosome 0.24 mm .) : greatest width 0.36 mm . Body wide anteriorly, tapering gradnally posteriorly.


Fig. 19. Tydemanella robusta si, nov., malle and female.
Rostrum large, not always visible from above oping to curvature of body. Urosome wide anteriorly and tapering strongly to caudal rami, segments strongly chitinized; genital segment imperfectly divided. Candal rami at least as wide as long. with 1 long terminal seta as long as the anterior portion of the boty, 1 small seta. and 1 spine.

First antema 8 -seqmented, the loasal segments shot and strongly built, and bearing sensory filmments on the third and fourth segments; distal portion with "3 short subequal segments and a long ent segment; seeond antenna 2 -segmentet, with a small 1 -sequented exopod attached at middle of basal semment, bearinge 1 lateral and 2 erminal setat mandible palp uniramous, 2 -segmented, line tre, the and segment with 4 setae; maxillule simply constucted, with 1 lobe; maxilla not seen; maxilliped normal.

First leg with 3 -segmented exopod, without inner setae, and ouly 3 setare on
 widened, end segment with "d claws and 1 seta. Seta formula for legs !コ-4:

$$
\begin{array}{rcr} 
& \text { endopod. } & \text { exopod. } \\
\text { (1) p.2. } & 1.1 .121 . & 0.1 .222 . \\
\text { p.3. } & 1.2 .221 . & \text { 0.1.32,. } \\
\text { p.4. } & 1.1 .2 \cdot 1 . & 11.1 .323 .
\end{array}
$$

Fifulleg with wide basal segnent bearing betae, an oval distal segmont with 6 setae. Thu female carries exg-saes, anch with at fow large curgs.

Mate: Lengeth 0.81 mum. (anterior portion 17.54 , urosome 0.27 mm .) Body
 fied; second antema mol month parts as in female f legs $1-4$ us in female, bute second endoport morlitied, "-segmented, end segment with 1 lateral and te terminal setae, and a parir of spines inserted close together. Pasal serment of first legs with large, strong, inner spine. Fifth legs with 2 strong spines on basal segmont and A setae on distal segmenl. ; sixth leqs with 1 large spine and 2 setate.

In the shape of the body this species anpees with the deseriptions given for typich and mfus, but has a greater depth than is indicated in scott's drawing. 'l'he first antemat closely resembles that of rufus, with the exception of the spine on the seeond segment in the latier. The secomel antenna is very like that of mfus, Hhongh with 2 terminal setac on the exopod in place of 7 ; in typict the exopod is very long and slender, and has a single terminal seta. The mandible palp differs from typirf in the steucture of the gnathobase. The mouth garts of rufus are neither deseribed nor illustrated by Brian exeept for the maxilliped which is stated to be rather robnst. Gumey ( 1.2274, p. 505) describes the mandible palp as "appatently a long, stenter", mbianched rod with theer setae", which would

[^15]closely resemble the condition in tha species deseribed here. His illustration (fige. 133, D) of the mexilliped shows similarity with that of robusta. In typica the maxilliped is slender, differing from both ruf us and robustif. The first legs agree in gencral with both species, but the sndopod difters from typied in the relatively shorter terminal segment armed with 2 spines and 1 seta. In rufus the basal segment of the endopod is considerably brodenen and not unlike that of thenea. The exopod in robuste differs, from the others in having only 3 appendages on the end segment ( $t$ in the male, which has an additonat small outer spine) and no imer seta on the middle" sument. Lerse '- 4 in tymica aie stated to be "nearly similar to those of Dactyfopoddtu", which differs from that tound here; in mive they are deseribed as bemg more or less like other Diosaceids.

The filth legs are like lypice, but with setae instead of spines on the basal sument, and are not very diferent lrom mpors. As in lirian's species, there aro two egex-sales, laterally comprossed, with a lew lareng ova. The egg-sach of typirat are unknown.

The male shoms many points ut' smilarity whth that of mfus, particularly in The strmeture of the second endopot, thongh the shape ul the end segment is not so strongly mondified, and the inner spine on the basipod of the first legs is not enlaged as it is in rufus, but resembles that of the lemale.

# Family Canthocamiptidate sars 1906. 

Mesiochira bueck, 1564.
? Mesochara iovidats (Clans) 1863.
Vecmarnee: 15,1 female.
Distributiou: Norway; Ifelizoland, Bermala, Woods IIole, Mediterranean, Suez Canal.

The single specimen, a female, ocenromg in this collection measured 0.27 mm.. whereas previous records have given its size as from $0+33-0 \cdot 40 \mathrm{~mm}$. The strueture of the first antemat cond not be made ont clearly in my preparation, neither was the expood of the secoud antemma visible. It appears to differ in the number of setace on the end segment of the fifth leg, having only 4 , and the inmer seta on the hasal segment of the first endopod is inserted mideway along the marein instead of being slightly nearer the base. Sinee there is only the single specimen, and that not fiully examined, it has been placed for the present, witl Claus' pygmath. which it very closely approaches.


Fig. ©ll. : Mesuchra pugmara (Clans), female.
Ortholsvilus brady and Robertson 1873.
Intil quife reeently this genus has been regarded as a Cletodid, but it has been ustablished by Lang (1936d) that it belongs to the Canthocemptictue (loc. cit., P. 451). Four species have been deseribed: lincuris (Cleths) 1866; propinques Monabd $1926 a$; wallini Lamg 1934; and mujor Kílic 1939.

The last of these has, so lat, been deseribod only in a preliminary notice, withont illustrations.

## Orthorsymatis bugusus sphov.

Oceurrence: X, 2 females.
Female: Lengith 0.81 mm . Lor specimen in contracted condition, 1.05 mm . for specimen with body segments extented. Bocly of usual shape, tapering slightly posteriorly; rostrum prominent, slightly down-turned at extremity; anal operculum and portions of anal segment strongly denticulate; caudal rami with similar denticulate fringes to inner and outer margins.

Head appendages more or less nommal, lirst antemae with the spur on the second segment slightly different on right and left sides (see fig. 21) ; end segment of mandible palp with 's setae.

First legs with endopod segments suberual, basal segment without inner seta; legs $2-1$ without imner setae on exopods, but tha ley las a lew inner hairs; seta formula :


Fig, al. Orthonswillus mumsus sp. nov., formale.
On the exopod of these legs the terminal seta which ustally accompanies the spine. and is reduced in linentis, is absent. The ferminal seta on the third endopod is reduced to a fine hair. The fifth legs resemble those of lincaris rather than any other
species; [any (19360) Jas shom that Clatus' species does ocent with the semments of the filth legs distinct.

Male: Unknown.
This species resembles lincuris in the structure of the filth legs (allowing for the segments to be distinct) but differs trom it in the caudal rami . In this respect it resembles the other three species. It differs from propinquns in the first legs, exopods of legs $2-4$, fifth legs and catldal rami; udthinh has only ${ }^{2}$ outer spines on exumods 2-4, whereas here there are: Without illustrations it is difficult to compare this species with metjon', but it would appear to differ in the first legs, which are asstmed to be like those of lincoris. and certainly differs in the maxillipeds.

# Family LAOPHONTIDAE Sars 1907. 

Ladphonte Philippi 1840.
Ladolonte chentota Philippi 1840 .
 female; XI, 1 fumate, 1 male; XIV, 1 wjgeroms female.

Distribulion: Lbritish Isles, Norway, Mateira, Meditervancan, Black sea, Sum Canal, Ceylon, Manay Archipelagu, Kerquelen, Falkland Istands,

Female : Length $0 \cdot 00-1 \cdot 02$ mon. Several specimens of this clearly defined and widely distributed species were lound: they do not depart from the description given by Nars 1911.

Male: Length $0 \cdot 90 \mathrm{~mm}$.
Lahblente mandilita sphom:
Ocemrence: $1 \mathrm{X}, 1$ mate.
 the fondte segment only sighty swollen; second antemae and month parts nomma ; first legs very slender, exopord $\underline{2}$-segmented, endopod with very short end segment, terminal chaw with small accessory seta; second lays apparently without endopod, but this may have been lost in dissection; third endopod with spine-like process at onter corner of midde serment; seta lormula :

|  | endopod. | exnpod. |
| :---: | :---: | :---: |
| p.2. | - | 0.0 .02 .2 |
| p.3. | 1.1 .110. | 0.0 .012. |
| p.t. | 0.120. | 0.0 .112. |

Filth legs with well developed end segment, bearing as selae, no inner basal as. pansion. Candal rami littlelonger than wide, with an inner basal tult of fine hains
projecting laterally, giving a somewhat indistinct outline to the bases of the rami, and also imparting a superficial resemblance to bulbifcra. Caudal setac louger than the whole body.



This species apmoaches rhoflater brims (1928), of which only the mate is known, hat has fewer setae on the swimming Jegs. The fitth legs and caudal rami are remarkably atike in both. It seems possible that rhodide may be the male of Tulbiferf-the similarity extends to several points, but it will be necessary for them to be taken together for such a relationship to be established. In some respects also this new species resembles butbiford, but there are no spurs on the first antennae, and the candal rami do not project inwards.

## liamily CEYLONiELLIDAE $\Lambda$. Scott.

## (Eellonielala abnata (Clims).

Jurimin trmata Clans 1866, p. 2in.
Ceylonia aculeata Thompsom and Scott 190;3, p. 265.
Qeylonia urmette A. Scott 1909, p. 2e2.
Ceylomio urnleata var. adriation Brimn 192:3, p. 130.
Ceylonirlla actloula Wilson 1924 (1925), p. 14.
Lomerinu armolo Wilson 192t (1925), 1. 15.

Ceytonia armata Gurney 1927b, p. 567.
Geyloniella arnleata var"。adratica Brian 19:38, p. obs.
Ceyloniella armata Willey 1930, p. 111.
Ceyloniella armata Monard 1935a, p. $8 \pm$.
Ceyloniella armata Monard 1937, p. 83.
This copepod was first described as Juriniu armala by Claus (1866) from the Mediterranean. In 190; Thompson and Scott deseribed a copepod Coylonia


Fig. :33. Ceytmiclla apmater (Chans), malle mad fomalle.
nembentu which A . Neoth (1909) showed to he identical with Clans' Itrimia armata, but since Claus' generic name was prenecupied Thompson and Scott's generie name was retained. In $192 \pm$ Wilson showed that Geylowit also was preocenpied, and renamed Thompson and Seott's genus Ceylomiflla; at the same time he changed Jurinia to Lourinu withont regard to its synonymy with Ceylonad. Ceylomicllu stands as the correct gencric name.

Ocemrenter: $X, \bar{j}$ females ( $t$ ovigerons), 1 male; XI, 1 female, 2 mates.
Distribution : Mediterranean, Sucz Canal, Ceylon, Malay Archipelago.
Fenale: Length 0.93-1.32 mm.
Male : Length $1 \cdot 02-1 \cdot 23 \mathrm{~mm}$. Despite eertain minor differences when compared with Thompson and Scott's figures there can be no doubt that the specimens found here belong to this species. The caudal rami of the female illustrated show peculiar setae, which were not fomd in the male, nor in other specimens. The female fifth leg, moreover, lacks one seta on the distal serment, in comparison with the Ceylon material, thas conforming to (lans' and Gurney's descriptions. The weta formula lor both sexes is identical, except for the male third endopod which is modified:

|  | endopod. | exopod. |
| :---: | :---: | :---: |
| p.2. | 1.311. | 0.1 .123. |
| p.3. | $1 . .321$. | 0.1 .123. |
| p.t. | 1.211. | 0.1 .123. |

A single specimen of what may prove to be a new species ocenrred in the collection (also trom sellick Reef), but since it is represented by a non-ovigerous femate, somewhat smaller than the other specimens, it is possibly only an immature speceimen.

$$
\text { l'amily METHDAE Sars } 1911 .
$$

## Metis Philippi 18t:

This arents has reently been revised by Stener (1937), who includes a key to the species.

$$
\text { Metis jocsseaumer (Richard) } 1892 .
$$

Oceurrence: A considerable number of specimens vecurved in the eollections from Sellick Reef, both sexes being represented.

Distribution: Aecording to Stener (19:37) it ranges from the North Atlantic to the Dacilis: (for details see Stener, op. cit.).

There is nothing to distinguish the specimens found here from those found dsewhere. The depthot pigmentation appors to be variable feature of the members of this genus. Speceinens from South Australia were all colourless, whereas others taken from Rotnest Island, Western Australia, were bright red when capiured. The pigment is destroyed on preservation in dilnte formalin.

As in the case of Gurney's specimens (1927h, p. 571) the long caudal seta is longer than the whole body.

## LITTRRA'TURE.

Relerences marked (\%) have not been consulted.
Baird, W. (1845) : Trans. Berwich Nat. Club, ii, p, 155.
*Bocek, A. (1864) : Vid. Selsh. Fork., Christimnia.
Brady, G. S. (1880) : Mon. british Copepoda, ii (Ray Sucjety, Lundun).
Brady, G. S. (188:3) : Challenger Reports, Kool., viii.
Brady, G. S. (1899) : Truts. Koolo Soc., Lonton, xr, pp. B1-54.
Brady, G. S. (1910) : Deutsche südpolar-Expocl., xi, Zool., iii, pp. 497-59:.
Brady, G. S. (1915) : Ann. Durbun Luts., i, pp. 13t-146.
Bradly, G. A. and Robertson, D. (187:3) : Amu. Mug. Ást. Hist. (1), xii, prp. 1:2614".


Brian, A. (1928) : Boll, Mus. Koot, Anal. crmp. l'nin, (ion, (e), vii, No. 18.

Chas, C. (186:3) : Did fireilebenden Copepoder (Lejpzig).
*(lans, C. (1866) : Dic Copepoden thana von Nizaa (Leipzig).
Claus, C. (1889) : Copepodenstudien. Die Peltidien.
Cleve, L'. 'T. (1901) : Kongl. Sucnskite V'bens.-Akud. Iltudt., xxxy (5).
*Czemiavsi, V. (1868): Verh. Versumm. Russ. Noturf., St. Petersburg, Abt. Zool., Copepoter, pp. 39-57.
*Goodsir, H. (1845) : Ann. May. Nitl. Mist. (1), xvi.
Glurney, R. (1927a) : Trans, Zool. Soce Lomulur, xxii, pp. 173-177.
Gumey, R. (1927b): Ibid. xxii, pp. 451-577.
*Haller, G. (1879) : Kool. Anz。, ii, pp. 178-180.

Klic, W. (1939) : Cool. Anz., cxxvi, pp. 223-226.
Lang, K. (1934) : Kiungl. Fysiogr. Sallsk. Mondl., A…'., xlv, No. 14.
Lang, K. (193̄̄) : Řungl. F'ysiogr. Sillsk. Lund Forkundl., v, No. 9.
Lang, K. (1935a) \# Ibid., No. 21.
Lang, K. (1936a) : Zool. Anz., exiii, pp). 171-177.
Lang, K. (1936b) : Ibid., cxiv, 11p. 3i:-40.
Lang, K. (1986c) : Ibid. exv, pp. 152-156.
Lang, K. (19:36d) : Zool. Jehrbo, Sysl., 1xviii, pp. 445-480.
Lang, Ǩ. (19:66) : swodish Antare Exped. (1901-1903), iii, B.
Monard, A. (192t) : Bull. Soc. \%ool. trance, xlix, pp. 666-67e.
Monard, A. (192(6a) : Arch.Kool. cxp. gen., Ixv, 1pp. 39-54.

Wonard，A．（1928）：Ibid．，Ixvii，pp．259－443．
Monard，A．（1934）：Rev．Yool．Bot．Africaines，xxyi，fasce， 1.
Monard，A．（1935）：I＇rav，Stat．Biol．Roscoff，Fasc．，xiii．
Monard，A．（1935a）：Stal．Occamogr．Salammbo，Intll．34．
Honard，A，（1936）：Bull．Trep．Stat．Aldequic．of de Peche．Castiglimne．Alger．
Monard，A．（1937）：Ibit．
Monk，C．1R．（1938）：Soience，lxxxviii，p， 184.
Nicholls，A．（Y．（1935）：Jowne Mur．Biol，Assoco，xx，pr．29－4．
Norman，A．M．（1868）＝Thit．Assoc．Reps．pp，247－936 and 314－345．
Norman，A．M1．（1903）：Ann．Mag．Nat．Hist．（7），xi，pp．367－369．
Norman，A．M．and Neott，T．（190а⿱⿱一口䒑日十 ：Am，Maq．Nat．Hist．（7）xv，pp，28t－300．
Norman，A．M，and Scote，＇1＇．（1906）：The Crustacea of Devon and Cornwall （Wesley \＆Son，London）．
［＇esta，O．（1935）：Zool．Jahtho，Syst．Ixvi，pp．369－879．
［＇hilippi，A．（1839）：Arch．fo．Futurge，v，pp．1：31－189．
I＇hilippi，A．（1840）：Ibid．，vi，pp．188－190．
＊Philippi，A．（1943）：Ibid．，ix．
（2uidor，A．（1906）：Copepodes，Expmition Autardiym frmmenise（190：3－190a）． Paris．

 （Ilampacticoida）（Bragen．）
Seot，A．（1909）：Sibagu－Expfo，Mon．xxixa，pp．1－32：（Leydon）．
S＇eot，＇T．（1894）：Troms．Linn．Soc．Lontom，2nd serio，vi，pp，J－161．


Steuer，A．（19：37）：Not．Ist Riolog．Romegno，ii（8）．
Thompsou，（4，M．（188：i）＝Tpams．N．L．Insl．，xv．pp．9\％－116．
Thompson，1．C．and Scot，A．（190：3）：Report on the Cojeporta．Ceylon Pearl Oyster Fisheries，Supp．Rep．Pt．1，No． 7 （Lomdom）．
Willey，A．（19：30）：Ann，Mag．Nat．Mist．（10），vi，pp，81－114．
Willey，A．（1935）：Amn．Mag．Nat．Hist．（10），xv，pp．50－100．
Wihson，U．13．（1924）：Proc．CI．s．Vot．Mus．，Ixiv（1925）．
Wilson，C．I3．（1932）：B＇ull U．א．Nat．Mun。．No． 158.
 Arehipetaroes， ii ，suppl．1，pp．980－1，010．

# NEMATODES FROM AUSTRALIAN MARINE MAMMALS 

By T. Harvey Johnston and Patricia M. Mawson, University of<br>ADELAIDE

## Summary

Very little attention has been paid to the nematode parasites of Australian marine mammals. The first to mention their presence was Krefft, who, in 1871, reported Ascaris sp. from Delphinus forsteri from Port Jackson, One of us (Johnston 1937) recorded Contracaecum osculatum (Rud.) from the hair seal from Pearson Island, Great Australian Bight, the host being indicated as Arctocephalus forsteri in error for Neophoca cinerea, the former name being that reserved for a New Zealand seal. We reported the occurrence of Anisakis kogiae J. \& M., Porrocaecum kogiae J. \& M., and Crassicauda magna J. \& M. from pigmy sperm whales, Kogia breviceps (Blainville) stranded in Moreton Bay, Queensland, and at Port Victoria, Spencer Gulf (Johnston and Mawson, 1939).

## NEMATOIDES from AUSTRALIAN MARINE MAMMALS

By T. Harvey gohnston and Patricla M. Mawson, Univergity of Abriaine.
Venv little attention has been paid to the nematode parasites of Australian marine mammals. The first to mention their presence was Krefft, who, in 1871, reported Ascaris sp. from Delphimus forsteri from Port Jackson. One of is (Johnston. 1937) recorded Contracacem osculatum (Rud.) from the hair scal from Pearson Island, Great Anstralian Bight, the host bemg inticated as Arefocephalus forsteri in error for Nepltoca cincred, the former mame being that reserved for a New Zealand seal. We reported the oecturence of Anisakis kogiute oI. \& M., Porrocusemm kogiue J. \& M., and Crassiruudu mugnu J. \& M. from pigmy sperm whates, hogiu browens (Blainville) stranded in Moreton Bay, Queensland, and at Pord Victoria. Spencer Gulf (Johnston and Mawson, 1939).

The material now reported on was collected by Dr. T. 13. Cleland; the Australian Musemm, Sertney; the South Ausidalian Muscum; the Tasmanian Biologjeal Snrvey; and the senior author. The investigation has been assisted by the ( ommonwalth Resparch Graut to the Rniversity of Adelaide.

The followiug is a list of the parasites now recorded, arranged moder their hosis:

Dugong anstrulis (Owen), Cairns, North Queensland.
Dujarlinut hulicoris (Owen).
Melphimus delphis L.
Echinocephntus uncinatus Molin (probably ingested with the prey), st. Vincent. Gulld, S.A.; Anisuhis simplex (lud.), Port Jackson, N.S.W.
T'masiops truncatus Montagu, Encomere Bay, S.A.
Hulocercus lagenorhymehi Baylts and Danbney. Iredale and Troughton (1934, 68) regard the short-nosed dobphin of southern Australia as being distinct from Montague's species, and have named it T. mungeunus.
Gormpidelphis exilis Iredale and Tronghton, Manly, N.S.W.
Orassicutede grempicolu spanor.
Ncophoct cinereo (Peron and Lesueur), Pearson I., S.A.
Contracaecum ossulatum Rusl.
Uypsophocr tasmanien (Scott and Lord), Derwent ILeads, Thasmania.
Contrucaceum gypsophocte sp,nov., Amisakis sp.
Hydrarye leptonys (Blainville), Dort Adelaide, S.A.
AMisakis similis (Buird), Contraracerm asmatum (Inul.), Phocasearis hudrurgae sp.nov., Contrucuerum ogmurhini sp,nos.

## Conthacaecum gyphophocae hphon.

Fig. 1-6.
Numerous specimens from the Tasmanian fur seal, (iypsomboce tasmanica from Franklin Island, of Derwent Iteds, Tasmania, collectol by the Tasmanian Biological Survey.


Fig. 1-2. Contracaecmm gypsophocar: 1. Jead, D. male tail. Fig. 3-4. Contracternm ogmorhinit 3. head, 4. male tail. Fig. す. Fhocasceris hyetherge: materior end. Fig. G-10. Crassicauda grampicole: 6, male tail rentral view, T. male tail sublateral view, 8-30, pasterior
 rervical papilla; v, vulva.
 wide; immature worms $2 . \overline{\mathrm{mm}}$. Male (ono specimen) 30 mm . long, 1 mm , wide. Lsips short, wide, withont marked lateral expansions; in female 45 mm . long, lips 0.5 mm . wide, 0.2 mm . long. Interdabia about two-thirds length of lips, with truncated extrmity. Collar region about as wide as head, narower than smeeced-
 about one-sixth oesophageal length; intestinal mecum nearly reaching collar region. Nervering at about level of antarion end of eacemm.

Male: Tail conical, $0 \cdot 0.5 m m$ long. Papillae six pair postanal arranged as in fita, 2, 19-7t pair premal in single row on either side of body. Only one spienlo


Finuale : Valva at med of anterior third of body. Tail short, conical. Eqges 40 ly $65 \mu$, smooth-shelled.

The species differs from others of the genus described from mammals in the arrangement of the candal mapilae and in the great Jength of the spicnle. Typen male and fomate in Tasmanian Musemm. Hohat ; paratypes in that Musem and in the Sonth Australian Musemm.

The species has atrealy been recorded by one of us (Johnston, 19:37. ) bom the South Anstralian hair seatl, Nophore cimmen, incorvectly Endicated as Ambor orplablas forstori, which is a New Zealand speries.

$$
\text { Hig. : } 3-4 .
$$

From ITydrerga Irphong, I'ort Adelaide, Oetober, $19+0$.
Malus up to 18 mm. Whu: fomales to 30 mm . Each dip with anturion lateral projection, domat lip with 1 wo, fand laterals fath with one large and one smatli



 postamal papilate areanged as in fisy 4 ; young mates with twentr-three pair proanal papillas, ofder with about forty paire, the addil fomal ones being much smaller. D'eanal papillac atways enranged in stratht row on cither side, the first tell on cach side boing eloser towether than the succeeding ones. Spicules egat, abont ome third body length.

Female tail short, conical, $0 \cdot 24 \mathrm{~mm}$. lones. Valsa two-fitths body lengith from head. Eggos about $39 \mu$ by $40 \mu$. The speeies is distinguished from C. ghpsophorate by the lengeths of interlabia, of oesophageal appendix, and of intestinal cacem, and by position of nerve ring, and number of preanal papillat in mald. In the relative lengths of ossophageal parts it resmbles (: asculatum, but differs in position of
cervical papillae and size of egus, as well as in the number of postanal and regular arrangement of preanal papillae in male.

The specifie name is based on a synonymic name for the host wemes.
Phocascarta myburgae spmop.
Fig. 5.
Immature forms trom a leopard seal, Itydrurat leptonys Blannille, which came ashore from the Port River, Port Adelaide, in 1939. Worms about 6 mm . 10 m , 0.35 mm . Wide. Head withont interlabia; dorsal lip with two papillae, ventrals each with one; clentigerous ridges absent. Oesophagus 1.2 mm . long, with appendix 0.6 mm 。 long; intestinal caectmm 0.75 mm . long. Nerve ring at 0.32 mm , and small rounded cervical papillace at 0.37 mm . from head end. 'Tail conical, 0.15 mm . long.

In spite of the absence of treth, ats figured and deseribed for Phoruscaris by Höst, we have assigned our speeies to that genns, the absence of interlabia, combined with the prosence of an owsophageal appendix and an intestinal cacenm, precluding its entry into any other. The ratios of the parts of the alimentary eaual and the posilion of the cervical papillae difterentiate it from $P^{2}$. phoref Hüst. 'Typr and paratypes in the South Australian Museum.

## Dtidardina hatuohe (Owen) Baylis.

This large specins was taken from an Australian dugong. Dugong australis. Own from Yirrabah, near Caims, North Queensland (Anstr. Musemm, Reg. No.


Antsaters smats (Baird) Baylis.
Numerous immature females from $H y$ druagu leptomy, from the Port River, Port. Adelaide, in 1937 are assigned to this species. The shape of the lips, length of oesophagus and ventriculus, and position of the vulva ampee with Baylis' deseription (1916, b70). The species had previonsly bech reconded by one of us (Johnston 1937, 18) from a leopard seal trom Macquarie Island.

## Anisaitis sp.

An immature female Anisakid worm was found in company with a number of Gontracuectm from Gypsophoca tasmanica, Franklin 1sland, Derwent. Heads, Tasmanit (Tasmanian Biological Smrvey). Length t2 mm., width 0.9 mm . Head 0.23 mm . wide, 0.09 mm , long; ventrat lips each with one papilla, dorsal lip with
two. Posterion limit of oesophagus not clear, but emmot be more than 5 mm . from head ench. (Curvical papillae large, slightly asymmetrically placed, 0.62 and 0.55 um. from anterior and. Tail end rounded. The head resembles that of A. simitis (bairl), low wh consider it preferable to identily the worm as Anisukios sp.

## Asisalis smplex (Rud.) Baylis.

Kirefit's specinnen of Ascaris sp. (1871, 212) from Dolphimus forsteri L. from Syduey Harlonu (Ausir. Musemm, Reg. No. G1110:3) has been re-examined. It is
 forstrit is al synomym of D. Idelphis.

## Halonercus madenomuyeni Baylis and Daubney.

Specimens aryecing with the deseriptim miven by Baylis and Daumey (1925) wereobtaned from the lume of a short-nosed dolphin, collected by Dr. .J. D. Cheland at Encomber Bay, S.A. Aceording to Wood fones (Handbooks Sonth Austr, Finna, Mammals, Part i3) the celacean is Twsiops trmeah Montagit, but Iredale?
 form the Edsopeat and have named it $T$. materames.

## Efitinomerialus tinoinatus Molin.

A single immature wom was taken from the intestime of Defphings dotphes
 -35) of larval torms from Phath and Whtobatis. The presence of this parasite in a dolphin sugerests that it was ingested alomge with its normal plasmobremeh host. The worm is in a good state of preservation, thomgh other nematodes takem along


## Cirasticauda ghambieola spromo.

Fig. 6-10.
From the pterygoid bussa of a grampus stranded at Manly, N.s.W. (Ansits. Musetm, Reg. No. Whenti) . The label indicates the name of the host as Grampus griseus, but Irediale and Troughton (Rec. Austr. Mus., 19, 19:3), 32) sulnseduently deseribed the specimen as Grumpitolphis critis J and T .

Several hodless males and females, lomerest pieces $10 \mathrm{~cm}_{\mathrm{t}}$ in lenoth : males 0.9 mm. wide, females $1-5 \mathrm{~mm}$. wide.

Mate: Posterior end without catdal alae or inrolling of lateral remions; no spicnles present ; smatl eirenlar cloaca $0.7-(0.8 \mathrm{~mm}$, from blutly rounded posterior
end; 13 papillae on one side, 12 on the other, arrangement asymmetrical and inconstant, generally a group of three or four on each side just in front of cloaca, the remaining papillae extending in a more or less straight line on each side toward posterior end of body.

Female : Tail varying in form, possibly with age; some elongate, some nearly as broad as long; all ending in short conical tip with anus at its base (fig. 6-8). Vulva in constriction around posterior end, as in other species of the genus; vagina very short ; eggs oval, 29 by $40 \mu$. In one, apparently young, female there was very little constriction of the body at the level of the vulva.

Owing to the absence of head ends, the variation in the shape of the posterior end of females, and the fact that males have not been described for many species, we are unable to compare adequately our form with all those already named. C. grampicola is the first Crassicauda to be recorded from a grampus, and appears to be smaller than any described. The shape of the male tail and the position of the anus in the female indicate that we are dealing with a new species. Types in, the Australian Museum, Sydney ; paratypes in the Australian and South Australian Museums.

## LITERATURE.

Baylis, H. A. (1937) : Parasitol., xxix, pp. 121-130.
Baylis, H. A. and Daubney, R. (1925) : Parasitol., xvii, pp. 201-216.
Baylis, II. A. and Lane, C. (1920) : Proc. Zool. Soc. London, pp. 245-310.
Höst, P. (1932) : Zhbl. Bakt. Jena Orig., cxxv, pp. 335-340.
Iredale, T. and Troughton, E. (1934) : Mem. Aust. Mus., vi, pp. 1-122.
Johnston, T. H. (1937) : Rep. Aust. Antarc. Exped., C, x (5), pp. 1-31.
Johnston, T. H. (1937a) : Proc. Limu. Soc., N.S. Wales, lxii, pp. 9-16.
Johnston, T. H. and Mawson, P. M. (1939) : Rec. S. Aust. Mus., vi, pp. 263-274.
Krefft, G. (1871) : Trans. Ent. Soc., N.S. Wales, ii, pp. 2-6-232.

# THE CORRELATION OF RECENT AND FOSSIL CREPIPODA (MOLLUSCA) OF THE AUSTRALIAN SUB-REGION 

By Bernard C. Cotton, Conchologist, South Australian Museum, and Benjamin J. Weeding


#### Abstract

Summary Study of the Molluscan Fauna of the Australian seas has received considerable attention during the past half-century, and useful work has been done in this field. Naturally this has entailed considerable reclassification of the living Mollusca, and many alterations and additions have been made to the nomenclature. With Australian Fossil Mollusca little has been done, consequently the nomenclature of this branch of the subject is in need of revision. There is a confusing diversity between the classification and nomenclature of the Fossil and the Recent species which can only be adjusted by extensive correlations. This work has been commenced, and some advance has been made in several groups: Pectinidae, Gatliff and Singleton (1930) ; Harpidae, Cotton and Woods (1933) ; Viviparidae, Cotton (1935) ; Turritellidae, Cotton and Woods (1935) ; and the Dentaliidae, Cotton and Ludbrook (1938). Much remains to be done. Since this paper was set up some fossiliferous material from a bore at Salisbury, near Adelaide, 331 feet, Lower Pliocene, has been examined, and it may prove even richer in chitons than the Victorian exposure.


# The (ORRELATION of RECENT and FOSsll CREPIPOi)A (Mollusca) of the AUSTRALIAN SUB-REGION 

Br bliknard C. Cotton, Cosemmagise, Sequtu Austratan Mubslam, and BENJAMIN J. WEFTDING.

NTTRODOCTON.

Stuby of the Molluscom Fanma of the Australian seas has deceived considerable attention during the past hallementy, and nseful work has been done in this field. Niaturally this has entailed considerable rechasifitation of the liviug Mollusea, and many altrations and additions have been mate to the nomenclature.

With Aushatian Fussil Mollusea little has betn done, emnsequently the nomenclature of this brancle of the subject is in need of revision. There is a confusing diversity betwen the classification and nomembature of the Fowsil and the Recent species which can moly lor adjusted by extensive correlations. This work has been commenced, and sommentrace has been mate in several gronps: P'retinidae, Gat-
 Cotton ( 19355 ) ; Turritelldae, Cotton and Woods ( 19950 ) ; and the Dentalidae, Cotton and Ludbrook (1938). Much remains to be done. Sineet this paper was set up some fossiliferous material from a lome at salisbury, near Arlelaide, 731 feet , Luwer 1'liocene, has heon examined, aul it may prove even richer in chitons than the Victorian exposure.

## A AURVEY OF RECENT AITSTRALAAN CREPIPODA.

The nam Crepiporlat Goldfuss 1820 is here used for the Order ot Mollunca commonly known as (lhitons. For many years the Ordinal name Polyplacophora Gray $18 \pm 1$ was uned for this group for reasons of prority, but later workers have introducel a name Laricata schmmacher 1817 (m) the same grounds. However, the name Loricatams was nsed by Desmarest in 7804 for a group of mammats, and this renders it molesirable for nse in the Moltused. Also the name Loripata has been used in the elassification of reptiles, crustaceans and rotifers.

It has been asserted that the international rules reqarding priority do not apply to Ordinal names, but we can see no hope of finality or stability in our nomenclature unless this principle te accepted. On these gromeds we have accepted the name iutroduced by Goldfuss in 1820, since it appears to be the first legitimate term available.

Also we are using the word "ehiton" as atemerul mame. Strictly speaking it should he retaned for a Wast Indian genus, but we believe it to be too firmly fixed in onr vocabulary to be easily dropped.

A large percentage of the world's chitons are found around the Anstralian consts. All four Orders are represented, and these include ten Families with fortythree genera and the one hundred and ninety-five species which have been recognized to date. These are classified as follows:

## Order EOPLACOPHORA.

'This (order is characterized by the absenee of insertion plates and the shanll, wak sulual lanimae. It is sepresented by one Fimily in this sub-region.

Lenicloplcuidac, with two geners; Tcremochiton (eight species); Paruchiton (nime species).

## Order MESOPLACOPHORA.

This Order has well developed but small and smooth insertion plates and sutural laminac. Two Families are found here.

Ischnochionidae with five pencerd; Aubtcrenochton (two species); Ischnochiton (thirty-eight species) : Stenochiton (fow species) ; Ischnorudsiu (fonv species) ; Anisomulsia (onespecies). Callistochitonidac with four genera; Cullistalusma (cirht species) : Callistassecha (ome species); Sotivagu (one rpecies): Lophochiton (1.wo species).

## Order ISOPLACOPHORA.

The distinguishing fothres of this Order are the barge sutural laminate and insertiou plates and non-sealy girdle. Where are four Families in this sub-reqion.

Cryptochitonidene with seven genera; (Iruspodochiton (two species'); ('ruspedoptas: (thice species): Mamophax (one specis') ; Acunthockiton (twenty-two specties) ; Notophax (eleven species); Bassellutlia (two species); Crocachiton (two species).

Cryptoplacidac has one gentis; Cryptophax: (eleven species).
Choriplacidae has one genus; Choriphosi (two species).
Plasiphorider has three gencra; Acrilamma (onse species); Poneroplux (foul species); Kopioneller (two species).

## Order TELEOPLACOPHORA.

This order eontuins all the most highly developed forms, characterized by grooved and pectinated insertiom plates. It has three families in these waters.

Aulacochitonidae(1) with two genera; Aulacochiton (three speceies); Loricolla (iwo species).

Callochitonidae with fluee genera; Eudoroplax (one species; Paricophax (two species) ; Acutoplax: (five species).

Chitonidac with fourteen genera; Delicatoplox (one species) : Tegulaplax (ome species) ; Authochiton (thirteen species) ; Mucrosquama (live species) ; Am. atrochiton (one species); Acouthozastera (one species); Acrathoplfura (one sprecies) ; Onithelly (two species); Owilhachiton (two species); Lacilina (sis species) ; Schizochiton (one species) ; Sypharochiton (wo species).

## A SURVEY OF AUSTRALAAN FOSSIL CHITONS.

## Localimes.

Fossil chitons have been found in New South Wales, Vichoriat Tasmania, and south Australia. The greatest mumber of spectimens las been formd in the worldlamons Mudty Creck shell heds which are situated five miles west of Hamilton. Westem Vietoria. In this area the following localities should be noted:

1. Forsyth's Bank, sthated on the Grathge Bum, which is a small stream Howing westerly to the Wamon liver. This horizon is recorded as Kialimman and remarded as Pliocenc.
$\therefore$ MacDonald's lbank is on the Muddy Creoks a tributary of the Grange Burn, and is also recorded as Kalimnan.
2. Clituon Benk is also sithated un the Muddy Creek, but the strata here are recorded as Balcombian and regarded as Miveenc.

Other localities in Victoria are Bateombe Bay (Mormington) and Gembrand Liver (near Williamstown). These localities are both on Port Phillip Bay and are regarded as Batcombian.

In Tasmania the 'able Cape heds are situated between Table Cape and Wynyard in North-West Tasmania. The fossils from this locality are recorded ans Jan.jukian.

From Soulh Australian the following localities are recorded:

1. Torrensville Bore, 190 fl ., at Torrensville.
$\therefore$ Holden's Bore, 380 ft ., at Woodville.
B. Gaza Bore, 80 lit., at Payneham.

These localities are near Adelaide, and are remarded as I'liocenc.
(1) The name Lorica Brom 1848 was int roduced for agenus of Crustacea so is uot available for chitons. The name accepted is Aulneocochiton Shuttleworth 185. Genotyle, Chiton rolvox Reme 1847, Sydury, N.S. Wates.

As will be seen, all the fossil chitons are from the comparatively reent 'lertiary Exa, but in New Sonth Wales the east of a chitom has been taken from the Permo-Carboniterous of Bundanom, Iredale and Lull (1920), and this recoret From the Palamzoic Era is the only one from such an early period. The debatatole
 Oreck, Yass, N.S. Wales is not regreded by us as a chiton valve.

## Chasammation of Hosma Cimpons.

In the elassification of living chitons the general form of the animal. the gills, radula, girdle, as well as the size, shape, and sentpture of the shell and, in some vasus, the station and hahitat, all contribute to the identification on tha species. "It is obvions that with fossil sperimens comprising often worn and broken fragmouts of 'alver, most of these leatures ate aboent, and identification depends wholly upon the shape and sealphere of the valden, from which even the insertion plates and
 (6) andont extent as artificial and fombtive. Workers have eompared fossil with

 attention on some dist inctive feather. This practiec wotd mon bustified in tiving forms, but in the absence of ofter featores in erontoned as a means of emphasizimes differences and as an aid 10 an more atecurate chassitication.

As might have been expmetert, owing to these diffeculliss, many of the specimons named have been vates, whish mone material has proved to bofong io specters alrealy named by other workers. Of the seventy-five specimens manted, sixty-fre ate here listed as distinte speotes, but this mumber mag be reduced whon more material is available. Several dombtal bames have been betatued until more specmens are disonvered to prove on disprove their validity.

Nu primitive fossil chithms hare heen diseovered in this sitb-reqion. The matetallofore us is as highy developed and in sthe cases ats highly specialized ats any living forms, but gencrally speaking the forms appear to bo much smader than similar material fomm in present-day shell sand aromed our coasts, a fact wheh apperse foldicate wimer sors in the Tertiary.

The name Lepidoplewtes is now erserved for at living European genus, and the small gramulated forms formerly phace in this gems two here included in the gemnis Trmorhiton. There are sereral iencric names avalable for small granulose chitons withont insertion plates, but Teremehiton is a seuus found living around the coast of the regiom whem thase fonsil ancestors are found. In the Family lepidopleuridae several specimens could be removed with justification to the Family

Isduochitonidat but matil specimens are fomd with insertion plates, we leave them where their athors placed them.

## Pleistocene.

The ord valves, which oeem in raised beaches and sub-fossil beds are all referable to living species in the material examined to date.

## Phiogene.

The Ofder Euplateophota is represented by une Fimmily, Lepidopleuridad with two genera; Ternockiton (five species) : Boldhitom (one species).

The Order Mexoplacophore is represented hy two F'amilies, Ischnochitonidae Wilh nne wems; Ischuochiton (eight species) ; Callistochitonidae one genus; Callistrlasma (three spectes).

The Onder Isoplatephora is mpresented by two Families. Cryptoconehthe with live enenern; Affosorhiton (one spectes); Trlochiton (one species); Acuntho. chiton (four speciss) ; Limachiton (one species) : Eophas (one species).

Cryptophacidac one gethes; (ryphophox (three species).
The Order Teleoplatophora is represmed by there ramilies. Autacochito-
 (fons species). (Chitonidae one gems; Anthothton (four species).

## Miocenf.

The (Order Eoplacophora is represented by one Family. Lepiduplenridac one semus: Tornochilon (four species).

The Orter Mesopturophore represented by one limuily, Isthochitomidac one gemus; Ischnochitun (Iwospeetes).

The Order Isoplatophora represented by thee Families. Cryptoconchidac Four wenera; Pratorfiton (one species); Afossochiton (wo species); Acanthochiton (five specios) ; Trlochtom (two spectes). Cryptoplacidae one genus; Cryptoplax: (one spacies). Phaiphoridac one gentus; I'oncrophax (two species).

The Order Teleoplacophora is represented by four Families. Callochitonidac with one genus : Ocellorhton (one species). Aulacochitonidae four genera; Protolorica (onespecies) ; Julacochiton (three species) ; Pseudoloricelln (one species) ; Lorictla (two species). Chitonidae three genera; Anthochiton (one species); Oochiton (one species) : and Lertouchiton (one species).

## REVIEW (OF PISOOENE SPECIES.

## Family Lepidopleuridate.

Of the five species recorded from this horizon, Terenochiton sincomus Ashby and Cotton. T', singus Ashby and Coton, T. wxellus Ashby and Cotton, and $T$. babidus Ashby and Cothon are mimate fragments of valyes with fine granulose seulpture similar to living species. The last-maned has corvurgated lateral areas similar to the recent $I$ 。 Litutus H. Adems and Augat. The filth species, T. sephts Ashby and Cotton will probahly prove to be an Isehurchitom.

The qenus belchiton was introdnced to emphasize the disfinctive sculptnwe of the shell. Befchiton puldocirimus. Ashby and Coton has enongh of the sutural laminae preserved to indicate the Family, and the holotype is better preserved than most of the specimens in this Fantily.

## Fiamher ISCHNOCHITONIDAE.

The material in this Family is so phor that it is better to teave the species as
 Ashoy and Cotionand 1 . Vismos Ashby ant Cotwon pore to be ident ical, the former name hats promity. J. cossmus Ashby and (oollom is abotly-croded spectmen which will be hard to intentily atgan, and 1 。 durius $A$ shby and Cuthon is a minnte juvenile vatre probably of the same species. I. Heyforus Ashby and Cotton is a frament
 mimute pusterion valve of a chiton drom the (iaza bore mater the heading of Ischmochiton? The specimen soon ermbled away when expoed to the air, and we can only leave it where the anthors placed it. Isphnochton bormete Coton and Godtrey ( 1940 ) is a posterior valye which was oriminally deseribed and figured as

 granules of the anti-mucronal area are finer and more evenly spaced than those of the pleural area of $I$. tisumes, and the post-mucronal shows none of the coarse eruinpled seapture of the lateral area of that speeies.

## Family CALLISTOCHITONiDAL.

Lot this Fimily the generie name Cullistolasma is used at the sporimens recorded are quite distinct from the sonth American genns Callistnchiton. Gallisfolasma incrpech Asliby and Cotton was seeorded as ('allistochiton muridionnlis Ashloy ( $1925, \mu .187$ ). It is closely allied to that recent Flindersian species. (Callis-

Uhasmar reficulath Ashby and ('otom has the nemwork seulpture formed hy straight ridges similar to ( $:$ antiqua Reere, and (? areeli Ashby and Coton has stronger sedpture and wider ribs.

## FAMily CRYITOCONCHIDAE.

several lossit generic twms hase bem introduced in this banily. Ifossochiton, with unslit insertion plates, has ono species in this horizon, A. sufci Ashby and Cotton with fine incerelarly grunulose senkpure, Telochiton with suy ribs or polds extending aeross the artiondmentim, T. matmicostatus Ashby and Cohton has cobrse, elongated oval, separated pustules. the most intoresting torm is Liruchitom mexpetes Ashby and Cotton, limarhiton appears to be the fossil ennivalent
 the shell develops. In the specimen deseribed the insertiom plates are well developed, but slits are not visible. Molechitom nastes Ashby and Cothon appearis to bea part of the median valo of the sane spectes, and is here regarded ats as shonym.

 Dolopleax spectiose 11. Aclums.
 evidenty heon plated in this gents provisionally as there are no insertion plates or shthral lamita to denote their generib posilion. Alowerer, the sentphate is very
 Ashby and Cotoon has long overdapping pastules similay to A. lafmymosus May


 bast specimen was crommansly figured by Ashly mad (otton (19:39, plo xx, fig. 2e)



## biamaly CRyP'OPLACIDAE.

 Was diseribed from valves for worm to show semplam, and their identity as chiton valves was doubted. Womenty many hondrels of these eroded valves have been diseovered, and from this material Ashby and (doton (1939) have selected and illustrated aplesiotspe which ean now he aceepted as this species. Two other


cherdi, but C. sicus Ashby and Cotton is in good condition and appears to be distinct. C. lublbrookae Ashby 1940 is a well preserved anterior valve from Holden's Bore, South Australia ; it is sculptured with irregular granules.

## Family AULACHOCHITONIDAE.

In this Fimily the only gemis recorded is Lomitelle, and three species have been separated, two of which are accepted. Loricello metmopustulosa Ashloy and Coton is very small for the genus, but appeans to be distinctive. Loricello conequa Ashby and Cotom is a minute juvenile specimen with ton few characteristice to loe casily recognized again. The name Loricolle puncipustulose Ashby and Torr is reserved for the Miocene specios, and tho two specimens recorded as such from MacDonalds, Muddy Creek, ane tiny undeveloped eroded specimens that cem only be Ieft with Is.mathopmstulosa.

## hamily CallochitonidaE.

Wne specimen in this Emmily has been recorded as Callochiton macdondrli drhby and Cotion. It looks like a batly-eroded juvenile valve of Paricoplax crocime Reeve. We record it in that wenms.

## Family CHitonidae.

In this Fimily the gents Anthothiton is remented by three species from Victorita and one from Aouth Ausiralia. Of the first three. Authochiton muedonuldensis Ashby and Cotton, A. Iuodemi Ashby and Cotlon, and A. octocostutus Ashby and Cotom are regatdel as distinct; if further material proves them to be identical the first name has priority. As the authors indicated, A thochiton relutus. Ashby and Cotton is very clusely related to A. Tricostalis 1 'ilsbry.

> Lscit of Pameraze sipenes.

## Order EOPLACOPHORA.

## finmizy Leplidopleuridae.

Tirenochiton Iredale 1914 (subtropicalis Iredale). sincruus Aslby and Coton 1939, Forsyths, Victoria. singne Ashby and Cotton 1939, Mactonalds, Victoria. uxcllus Ashby aud Cotton 1939, Forsyths, Victoria. bubidus Ashby aud Cotton 1939, MacDonalds, Victoria. sephus Ashby and Cotton 1939, Forsyths, Victoria.

Befohiton Ashby and Cotton 1939 (puldherrimus Ashby and Cotton). pulchermimus Ashby and Coton 1939. MacDonalds, Victoria.

## Order MESOPLACOPHORA.

## Family 1SCHNOCHITONIDAF。

Isthochiton Gray 1847 (toxtilis Gray).
bintzus Ashby and Cotton 19:3, MacDonaldes, Vietoria. fisurus Ashby and Cotton 19:39, Maebonalds. Victoria. rosesprus Ashby and Coton 19:39, Macemomalds, Victoria. durius Ashly and Cotton 1939, AmeDomalds, Vietoria. noglectus $\Lambda$ shby and Cotton 1933, Forsyths, Vietoria. memantius Ashby and ('otom 1939, Forsyths, Victoria. Jorenue Cottom and Codfrey 1940, MacDonalds, Vietoria.


## Family CALLISTOCHITONIDAE.


 reticulula Ashby ambl Cotton 14929. Victoria. (fredi Ashby and Cotion 1939. Horsythe, Vieloria.

## Order ISOPLACOPHORA.

## FAmily CRYPTOCONCHIDAE.

Ifossochilon Ashby 19 g (cudmotei Ashby).
suldad Ashby and Cotton 1939, MacDomatds. Vietoria.
Telorhiton Ashby and Cotton 1929 (demdus Ashloy and Cotton). mathicostatus dshby and Cotton 1939. MatoDomalds. Vietoria.
Ackuthochitom Gray 1821 (fosciculuris Limn). forsythensis Ashoy and cotton 1939, Forsy the, Victoria. trianguloides Ashby and Cotton 1939, Forsyths, Victoria. drunus Ashby and Cotton 1989, MacDonalds, Victoria. singletoni Cotton and Godfrey 1940, MacDonalds, Victoria. Livachiton Ashby aud Cotton 1939 (inexpectus Ashby and Cotton). inexpectus Ashby and Cotton 1939, Maebonalds, Vietoria. Eoplare Ashby and Cotton 1939 (adeluidlec Ashby and Cotton). adelaidae Ashby and Cotton 1936, Torrensville, South Australia.

## Family CRyPTOPLACidAE.

Cryptoplax Blanville 1818 (larvaeformis Bumow). pritcherdi Hall 1904, MacDonalds, Vietoria, sicus Ashby and Cotton 1939, MacDonalels, Vietoria. mumicus Ashby and Cotton 193:, MacDonalds. Victoria. Indbrooka Ashby 1940, Holden's Bore, South Australia.

# Order TELEOPLACOPHORA. 

## Family AULACOCHITONIDAF。

Laviemla Pilsbry 1895 (angasi II. Adams).
magnopustulose Ashby and (uttom 1939, Macl)onalds, Vietoriat. concoro Ashby and Cottom, Macelomaldts. Vietmia.

Famity CAllochitonidati。

Paricoplax Iredale and Inull 1929 (crocina Reeve). macdonuldi Ashby and (ontom 1939, Manemonalds, Victoria,

## Family CHitonidale.

Anthochiton Thiele 189:3 (tuliput).
mactonaldensis Ashby and Cotton 1939, MaeDonalds, Vietoria.
duodoni $\Lambda$ shby and Cotton J9:3!), MauDomalds, Victoria.
ontocostatus Ashby and Cottom 19:9, Macbomalds, Victoria.
refulus Ashby and Cotom 19:36, Tharensyille, Nouth Australito.

## REVIEW OF MOOCENE SPRCIES.

## Family Lepidopleuridal.

Of the six names recorded in this Fimily, four have been placed in the genus Tercnochiton. They are T.magnoyranifer Ashby 195-5, T. babioides Ashby ant Cotton, and T, divorsigranosus Ashby and Cotton. T. rellehus Ashby and Cotton is also included, although it is probably an eroded fragment of the first. Lepidnpteurus nivarus Ashby and Cotton has been removed to the lsehnorhitonidae. Lepidopleurus panphtilius Ashby and Cotton is a fragment of Protochiton granulosus Ashby, and becomes a synonym ol that species.

This Tramily is very poorly represented, and only two species are here res poried. Ischnochilom mindrus Ashby and Cotton is added to this genus as the fentures seem too distinctively Isehochitunoid to leave with the Jopidoplewridne. Ischmohiton ashbyi Cotton ant Codfies was described and figured by Ashby (1929) as Ischmokhton (Meterozona) cariosus Pilsbry. Athough this Miocene Lossil may possibly be allied to the living species the differences warrant the separafim. I. ashbyi does not show the strong broken deds wheh are prominent features on the lateral areas of $I$. cetriosus. The sub-ipramblose lime of the pleural area of
 romes the whole of the plemaral areat and the raised lateral area as well.

## Faminy CRYPTOCONCHIDAF.

This Ftunily is weresented by four genera, Protochilon tromulowns Ashby bul Tore has been well described and figured several timps. Ifaskockitom matmombi Ashing has diangulan pustules, and Actuthochitom susus Ashby and Cotton is a sery smatl juvenile with similar senptures so may moore to be a fuvenile of that spreies. 1 fossochiton rostrutus Ashby and Tom shombl be casily recognized by the few irreqularly-shaped pustules. Trdochiton drmilus $\Lambda$ sliby and Cotton with line grambes, armi 7: iseus Ashby and Cotfon with comrse gramules both show the chatacteristie ribhing of the genus. Neibher Aranthorbiton sabratus Ashby and Coltom with semi-cirentar grantles, nor Acwhthochaton pitgoryoines Ashby and Cothon with orably-pointed gramules, have insertion plates, so the correct generie position samot at present be asceptained, but Aranthechiton butrombicnsis Ashby 1939 with dlliptical flat-topped pustules is a mall-preserved and typical trathor rhilm valve.

## Finmay CRYPTOPLACIDAF*

In this Family the namo ciryploplax thettiffe Hall has been left on the list. It has been recorded as a synonym of Chyptoplew: pritchardi. Wall, a Pliocene fossil. The species was fontuded on a value from which all distinguishing tegmenthu hatl been eroded; further research in the foeality may prodluen material with sufficient venfoture to justify its separation.

## FAMIG PLAXIPHORIDAE.

In this Family two species have been deseribed which are heve placed in the gems Ponoroplat: Poneroplux grlthoradi Ashby and Tore differs from the living
$P$ costata Blanville chiefly in the colone, the tegmentum is black, and the artienlamentum white+ $P$. ronerntried Ashby and Torr is a small eroded specimen with pale buff termentum and white aticulament um.

## Famidy CALLOCHITONIDAF。

This Fanily is represented by one speces which has been deseribed as Callofliton (Ocellochiton) sulci Ashby 1939. This timy, fragile species is beantifully preserved and, curionsly enongh, appeat's to be elosely allied to Callorhtom (Isoplaxi) septemeostatur bergenhayn 191t, a vary small species wredged oft the shores of dapan. The genus octlochiton in here used as the fossil efluivalent the thving semus Icoplax Thiele.

The specimens reended as Lomich orzleu Ashby and Coflon and Iowirat worme Ashby and Coltom are both worn median valves of this species, and heeome synomyms.

## Famidy AULACOCHITONIDAE.

All but one of the described species of this Fimily have been tonnd in the Traht Cape beds of Tasmamia. Four genera have been used. Psoudoloriceller, introduced for species with contimuous sutural laminae, has one sjuecies, $P_{\text {, seut ptu } \Lambda \text { shby - If }}$
 species, Joriefle pancipus/ulusa Ashby and Tort with L. atkimsomi Hull, L. mutfnifica Hull and $L$. octoratiatu. Ifull as symonyms. The other specers is the large 1. gigutare Ashby and Tors. Prololorira was introduced fon the specimen of $n$ posterior valve which in enereal appearance is similar to an dularochitom valve but without the anal sinus and not reeurved. Protedorice uthinsomi Ashby is the only species, and its relationship to Anlucorthiton fadmorci- Ashby has wot yet lwan determined, but the two forms ape prohahly identical. Selecoefiton rompressus. Ashby and Torr with A. affinis Ashby and Torre and A. dumifne Hull ak symmyms
 along the whote coast-line of the Flimlersian lrovince. So also in Amfachothton froma Cotton and Godirev, the omly represmative of this Framily from the Mnddy Cred beds. It is very simila to the 'lasmania fossils, but until move specmens are found to prove or disprove them to be identical it is advisable to leave them separate.

## Finmay CHITONIDAE.

Three genera are incluted in this Family. Authochiton is represented by one species, A. fossicus Ashby and Torr, at badly-wom but recoqnizable median valve. Dochitom is also represented by mhly one species, Oochiton hulli Ashhy. This dis.
tinctive species is provisionally placed in the Family. In general appearanee it is very unlike any living species found around our coasts. This remark also applies to the genus Lavenachiton which was introduced lor the unique species $L$. cliftononsis Ashby and Cotton. The median valve of this species has been recorded as Ischnochiton (Radsiclla) cliftonensis by Ashby and Cotton (1939, p. 231). The more recent discovery of a posterior valve with identical sculpture but triangular in shape and with terminal muero, definitely separated it from the Ischnochitonidae, and a new genus Lavenachiton was introduced for it by Coton and Godfey (1940, ]. 569 ). The gents is placed in the Chtondaf provisionally ; it is unlike any living form with which we are familiar. As may be expected, in the AustraIian fossil beds, as in every Region in the world where fossil chitons are found. forms are diseovered which are certainly not congenerie with, and which appear to have no phylogenetic relationship with, any living species. They are either representatives of gronps which have become extinct or the species which would form the eomeeting link have not yef bean disenered. This is another reasom why at present the classification of onr fossil chitons must to some extent he reparded as artificial.

## List of Miocene Sppies.

## Order EOPLACOPHORA.

## Famity LFPIDOPLEURIDAF。

Terenochiton Iredale 1914 (subtropnicalis Iredal(e). magnogranifer Ashby 1925, Cliftons, Vietoria. badioides Ashby and Cotton 1939, Clittons, Victoria. diversigranosus Ashby and Cotton 1939, Cliftons, Vietoria. relatus Ashby and Colton 1939, Cliftons. Victoria.

## Order MESOPLACOPHORA.

## Family ischnochitonidaE.

Ischnochiton Gray 1847 (textilis Gray).
ashbyi Cotton and Godfrey 1940, Balcombe Bay, Victoria.
mivarus Ashloy amd Cotton 1989, Cliftons. Victoria.

## Order ISOPLACOPHORA.

## Family CRYPTOCONCHIDAE.

Protochiton Ashby 1925 (granulosus Ashby and Torr). gramulosus Ashby and Torr 1901, Balcombe Bay, Victoria. Afossochiton Ashby 1925 (cudmorci Ashby).
cudmorei Ashby 1925, Cliftons, Victoria. rostratus Ashby and Torr 1901, Balcombe Bay, Victoria. Telochiton Ashby and Cotton 1939 (dendus Ashby and Cotton). dendus Ashby and Cotton 1939, Cliftons, Victoria.
Acanthochiton Gray 1821 (fascicularis Linn). pilsbryoides Ashby and Cotton 1939, Cliftons, Victoria. sabratus Ashby and Cotton 1939, Cliftons, Victoria. casus Ashby and Cotton, 1939, Cliftons, Victoria. chapmani Ashby 1925, Cliftons, Victoria. balcombiensis Ashby 1939, Balcombe Bay, Victoria.

## Family CRYPTOPLACIDAE.

Cryptoplax Blainville 1818 (larvaeformis Burrow). gatliff Hall, Cliftons, Victoria.

## Family PLAXIPHORIDAE.

Poneroplax Iredale 1914 (costata Blainville).
gellibrandi Ashby and Torr 1901, Gellibrand, Victoria. concentrica Ashby and Torr 1901, Gellibrand, Victoria.

## Order TELEOPLACOPHORA.

## Family CALLOCHITONIDAE.

Ocellochiton Ashby 1939 (sulci Ashby).
sulci 1939, Cliftons, Victoria.

Family AULACOCHITONIDAE.
Protolorica Ashby 1925 (atkinsoni Ashby).
atkinsoni Ashby 1925, Table Cape, Tasmania.

Aulacochiton Shuttleworth 18 a3 (bolvox Recve).
cudmorei Ashby 1925, Table Cape, Tasmania.
compressus Ashby and Torx 1901, Table Cape, Tasmania.
erme Cotton and Godirey 1900, Cliftons, Victoria.
Pscudoloricella Ashby 1925 (soutpta Ashby).
sculutu Ashby 1921, Table Cape, Tasmamia.
Loricella Pilsbry 1890 (mugnsi II. Adams).
pancipustulosa Ashby and 'orr 1901, Table Cape, 'Tasmania.
gifumtae Ashby and Tors 1901, Table Cape, Tanmania.

## Family Chitonidae.

Anthochiton Thiele 1893 (tulizu Quoy and Gamard). fossicus Ashby and Torr 1901, Table Cape. Tasmania.
Uochiton Ashby 1934 (halli Ashby).
hellit Ashby 19:34, Cliftons, Victoria.
Latenachiton Cottou aud Gotfrey 1940 (cliftanensis Ashby amd Cotom).
chiftonensis Ashby ant Cotton 19:99, Cliftons, Vietoria.

## Other Strata.

## PERMIAN.

Permorhiton mustralianss Iredale and Hnll 19e6, 13undanoon, N.s. Wales.

REFERENCES OITED.
Ashby, E. (1921) : Phoc. Roy. Noc., Tism., p. 38, pla xy, fig. 1-2.
Ashby, E. (1925) : Trats, Roy. Soc., Fict., xxxvi, n.s., pp. 17-205, pl. xviii-xxii.
Ashby, E. (1929) : Trans. Roy. Soc., Vict., xli, u.s. pp. 220-230, pl. xxiv.
Ashby, E. (1939) : Proc. Limp. Sor", pp. 186-189, pl. iii.
Ashby E. and Torr, W. G. (1901) : Trams. Roy, Soro. So itust., xxp, pp. 186-144, pl. iv:
Ashby, F. and Cotton, B. C. (1936) : Rec. S. Aust. Dus., v, ppo 509-512.

Chapman, F. (1908) : Trans. Rog. Non, Vict., xx, n.s. p. 218, pl. xxii, fig. 5-7.
Cotom, 13. C. (1935) : Ree. S. Aust. Mus., v, p. 339.
Cotton, B. C. and Godirey F. K. (1940) : Mollnsen S. Aust.
Cotton, B. C. and Ludbrow, N. (19:3is) : Trons. Roy. soc., S. dust., svii, pp, g17228, pl. xii。

Cotton, B. C. and Woods, N. (1933) : Rec. S. Aust. Mus., v, p. 43.
Cotton, B. C. and Woods, N. (1935) : Rec. S. Aust. Mus., v, pp. 369-387.
Etheridge, R. (1897) : Rec. Geol. Surv., N.S. Wales, v, pp. 67-70, text-fig.
Gatliff, J. H. and Singleton, F. A. (1930) : Trans. Roy. Soc., Vict., xlii, pp. 71-77, pl. ii-iv.
Hall, T. S. (1905) : Trans. Roy. Soc., Vict., xvii, n.s., pp. 391-393, pl. xxx. Hull, B. (1901) : Proc. Linn. Soc., N.S. Wales, xxxv, p. 654, pl. xvii, fig. 1-2.
Hull, B. (1915) : Proc. Linn. Soc., N.S. Wales, xxxix, pp. 855-857, pl. xciv, fig. 1-2.
Tredale, T. and Hull, B. (1926) : Aust. Zool., iv, p. 141, pl. xiv.

# STUDIES IN AUSTRALIAN ACARINA (2) TYROGLYPHIDAE (s.l.) 

By H. Womersley, F.R.E.S., A.L.S., ENTOMOLOGIST, South Australian Museum

## Summary

The mites with which this paper deals are small, and except when they force themselves on our notice by sheer weight of numbers, are little known in Australia; nevertheless, they are of much economic importance.
Most of the species are free-living as adults, feeding upon organic matter such as various foodstuffs, grain, flour, cheese, etc., as well as in galls, where they eat the dead or dying gall-makers. These have sometimes been classed as the "Detriticolae", the few remaining forms which are parasitic on insects being the "Insecticolae".

## STUDIES in AUSTRALIAN ACARINA

(2) TYROGL.YPHIDAF, (s.l.)


Hig. 1- 41.
'Incmites with which this paper deals aresmall, and except when they force themselves on our notice by sheer weight of mombers, are little known in Anstralia; nevertheless, they are of much conomic importance.

Most of the species me tree-living as adhlts, feeding upon orpanie matter such as varions foorlstufls, grain, flour, checse, ele, as well its in galls, where they eat the dead or flying gall-makers. These have sometimes ben classed as the "Delriticolac", the fow remaming forms wheh are jarasitic un insects being the "Insecticolae".

Frequently certain species become serions pests of' stored food materials, and, during the war of 191t-18, much work was done in England by Newstead and his associates on their effect unon flowr and wheat. Other speeies attack cheese, and one may at times be a serions clomestic nuisance in the upholstery of furniture.

During this present war perion the necessity for again storing large quantities, 0L wheat and other foodstuffs in Australia stresses the importance of the recognition of these mites, and this paper should assist in the determination of the species known to ocew here. Most are cosmopolitan, and probably have been introduced by way of rommere; they are potential pests, and given suitable conditions mas become of serious importance.

Apart from brief notes in Apricultmal Joumals, little has previously been recorded of their occurence here. Rainbor", in his "Synopsis of the Australian Acarina'" (Rec. Aust. Mus., vi. pt. 3, 1906), lists only the following: Tyroglyphus quecuslomatiae Canestrini 1885, T. entomophagus Laboul, 1862, T. siro L. 1758, Pullata discoidalis C'mestr. 1885, Aleurobius farinuo De Gear 1778, and Glyciphagus domestives De Geer 1778; while Leta, 1908, in "Insect and Fungus Pests of Orchard and Farm' (Tasmania), records hhizoglyphus echinopus F. amt IR. 1868.

The material studied here, apart from that collected by the author and that housed in the Aonth Australian Museum colleetions, inelndes a considerable amount kindly forwarded to me by the different state Depurtments of Agriculture, by the

Division of Emonomice Entomology, C.S. and I.R., Canberta, and by the Waite Institule. Adelajdo. 'To all of these I extend sincere thanks for their assistance.

Diaunasis - Dlosily small, soft-skimned mitus ol oval to rounded form. Gnathosoma visible from above, sometimes hidden beneath a damerostome. Mandibles usually chclate, sometimes with a thim saw-like hade. Maxillary palpi y-5segmented. Frententy a suture tine betwen propodesomatad hystorosoma. A pain of vertical setac at front of propodosoman. Foves usually absent exeept in some dentonymphs. Raroly with tracheac, but never with stigmal openinus. Lears short on long, sometimes with spines; tarsi with sessile on peductate carnacle and claw, 1 and 11 ustally with a mone or less elavate sonsory reot. IV in mate freeghenly with a pare of anthesive dises. Sosual dimosphism generatly well-marked, males oltem with a dail of round dises on ench side of imms ; genital aperture in houth sexes mosily with it puir of tubereles on eath side.

Nymphal stage fecpuently of two forms-uble a hypophts, dentonymph, of resting slage without month-pints and with a posterior vemitral phato dumishod With e-8 suctorial dises ; mematly found unon insents of other Aethropods.

Not parasitic on feathers of hinds or tue of amimats.
Recent situdies of. the Aearina by Gudemants, Vitathom and others has led 10
 nition of which the folloning key is given. Nine are so fer known to be represented in Anstratia.

##  <br> (Muinly after Ondemans).

1. Mamalibles chelate, withont the satw-like proems $\because$
 hofween peopodosena and hystrosoma. Maxillary palpi flatenod wilh two thayellatike apmomagen. Jegs I and II lateral. Ambulader with sessile datr and small cabnole. Fomale genital aperture at transerse klit botweon propodo-ancl hysterosoma. With pores (on dises) in femate laterally betwern
 hetwenn chand 51 amd IV. Legs 111 and IV indeutongmph directed linwinds. Anoletionar Oud. 1904.
 helwern propods- and hysterosoma; with mopodosomal shith; of genital aperture between coxat if and IV, of betwen coxae IV; dises near anus and
 Ambulacta in udults with cambede only, in larvae and nymphs with minute claws on pedmendate caruncles; tarsi encling chan-like. Shtare between por-pado- and hysterosoma. Genital uperture in both seses bedimf axae IV; of with anal dises but no suckers on tarsi IV. Body setae loose: cuticle smosth; Gursi without spines. Larvae? Nanacambae Ond. 1920. Ambulatra with pedunculate cardincle and apical claw, often minute
2. 

 like
Body haits rather shom hatiry selae: hody elomeate, eonstrieted behind legs IV ; onticle smooth

Genus: Acabmesa yan Bmeden 1870.
t. Do eervical setac, these replaced by eyc-like organs on a level with trohaters 1

$\therefore$. Cervical satate dorsal. on leval with lmehanter $I$, minnte, smooth on absent. Cuticlesmonth

6 Corvical setae marsinal, betore trochanm I, nimbe, smooth; larsi ventrally
 Cervival sotae marginal, hodore trochanter I, hone, hairy, directod torwards and surved innatds and flownwards: cht icle smonth: tarst sentrally (sometimes also xlorsally) and (listilly with nimute spines 'I'veophacimat: Oul. 1924.
 spings, if prasent. may he lomy but bevers stom and eonical.
7. A stout cominal spine befort sumsory club on tarsi I and Il: "lege short aud thick with rohnsi dimes

 seltio
 modith ones very shord



 ('utivhesmoth lat mon thinime, lianimily but varially punctate or erambate.
 rods

Glachphambae Berl. 1887.
 shaped, of qualtangular. No sebsors end on tarsi I and I1. Parasitice on insects. ('anberminhoaf: 13otl, 1884. Cuticlo smmoth, comparallively shamg mitinized. Form oval to spinde-like, No stillte betwen promadi- and hysterosomat. So propodosomal shield. Nouth-pards hidden buthe it jroduct ion wi the propodosoma (camerostome).

Chortoghapitmae locrl. 1897.
 clan. Nol T!monlyphus-like. With or without suture between propodo- and hesternsoma. Winh mopodosomal shied. Larvae without stemal rods.
 Cuticto smooth. Form Tymulypher-like. With propodusomal shield and suture het ween proporfonoma and hysterosoma 9.

 (known)

Olafaenimate Ohd. 1927. Tarsi withoul such spoon-shaped br lancolate setae. ... 10 .
10. No cervical setae: ô withonl suckers mear anusor im larsi IV.....11. Gervical setae dorsal, minute, kmonth; with easily visible "pinch organs"; द with suckers netar amas and on tarsi if Lostormbanthate Ond. 1925.

Cervical setae marginal, long, hairy, directed forwards and curved iuwards and downwards .
11. Female genital aperture between coxae III and IV, male between coxae IV.

Enslaniellidae Vit\%. $192+$. Male and female genital apertures between coxae IV.

Winterschmidthdae Oud. 1924. Female and male qenital aperture behind coxac IV.

Chenspinskidae Oud. 1927.
12. Claws in lavere and 1 ymphs siugle, in of all legs. and legs I and 11 of is $Y$. shaped; if genital aperture between coxat 111, heteromorphous o botween trochanters IV; of with anal suckers and dises on tarsi IV. Laryae with sternal rods .. .. .. Tandoglipmidae Ond. 1927. Claws single; ogenital aperturs betwern coxat IV, of between trochanters IV : no anal suckers or tarsal dises in of . . Sarroglyphibas Oud. 1924.
In this paper 21 species are listed. Six of these are regarded as new, the rhmainder, with three exerptions, being ensmonolitan and probably introductions to Anstralia. Two previously deseribed species are recrarded as requiring rediscovery and study.

## HAT OF SPECIES.

Tyraglyphus forinar (Linne 1758'). (ilyoyphayns flomesticus (De Gees

Thyrcophagus entomophagu: (Lail). 1852).

Thyremphagus corticatis (Michacl 1885).

Cologlyphus bedesci (Michael 1903).
Caloglyphus mycophagus (Mexpin 1874).

Rhizughbohts echinophes (Fumouze and Robin 1868).
Rhizontyphus tcrmithm spanov.
Twrophagus putressentiuc (Achrank 1781).

Saproglyphus cocctphugus sp.nov.
Carpoglyphus Tactis (Limué 1763).
Calvolia ylabra spnov.
1778).

Glyeyphagns cerlevermm. (Scheank 1781).
(lonoglyphus mhmiger (Koch 18:35).
Sennertio quefnstundioe sponov.
Somertige bifilis (Canestrini 1898).
IIstiostoma foroniarum (Dutour
18:39).
Histiostoma nidholtsi sp.nov.
Anoctastoma oudemmisi g. et spmov.
Incortuo sedis:
l'uller discoidalis Canestrini 1898.
Tyroglyphus quecnslandiac Canes. trini 1898.

Lismily TYRO(iLYPHID)AE I)omadieu (1868), Oudemans (1932).
Oudemans, 1932 , restricts this fomily to the simgle egenis Tyroglyphas Latreille, of which there appears to be only one (at least well known) species, Tyruglyphus farinat.

## Tyrombypitus Latreille.

Acarus (part) Limmatis: Syst. Nat. ed. x, 1758, p. 617.
A/rurobius Canestrini : Tiroglifidi 1888, p. 7; Berlese: A.M.N., luse. Lxxxv, Nu. 12, 1898; Kramer: Das Tierreich, Lffg. vii, 1899, p. 137; Michael: Brit. Tyroglyphidac, $\mathrm{ii}_{5} 1903$, p. 71 ; Kambow : Ree. Aist. Mus. vi, 1906, p. 180 ; New. stead: Rept. Grain Pests (War) Committee, No.8, Roy. Soe., 1920, p. 20.
Tyrogtyphas Latreille : Precis Caraci. Lus, 1746, p. 185; Vitzthum: Tierwelt Mittelewropas, iii, 1529. p. 78; Oudemans: Ent. Bericht., viii, 1933, p. 356.
l'ropodo-and hysterosoman separated by at suture. Propodosoma with a posbrion row of four long, subergal setate. Cervical setae (a pair of short setae on sides of propodosomat about in line with trochanters of leg 1) present and ciliated. Tarsi 1 and 11 with somisory elub. Long sota of segment $I I$ of legs arising beyond midale of segucht. Genital aferture in lunh sexes with a pair of tubules on each side. Male with a pair of large anal dises, a pair of slises on tarsi IV, and with a strong spine-like apophysis on second sepuent of leg I. Apex of hysterosoma in both sexes with only a siugle pair of long setae.

Dentonymph with dorsal cutiele finely punctate; sucturial plate with 8 dises, median pain a little linger than rest, one on each side of valvat, none on cosae $\perp$ and 111.

## 'I'rughatphus bartinae (Limmarms).

(Meal or Flomr Mite)
Acturs ferinue Limnams : Syst. Nal., exl. x. 1708, p. 617.
Tyroglyphes formue Gervais in Walekenaer, Ins. Apt, iii, 184t, 1\%. 1t2; Berlese :
A.M.s., fuse xiv, No. 9, 188t; Vitathum: Tierwelt Mitteleuropas, iii, 1929. p. 78.

Alcurohius furinte Canestrini: Tiroglifidi, 1888, p. 7; Kramer : Dets Tiureich, Lig. vii, 1899,p. 137; Michael : Brit. Tyroglyphidat, [1, 1903, p. 71 \& Rainbow: Rec.
Aust. Mus., vi ( $B$ ), 1906 , p. 180 ; Newstead: lept. Grain Pests (War) Committee, No. 2, Roy. Suc., 1920, p. 20.

Length of adults, क to 0.7 mm , width to 0.4 mm ; \& length to 0.55 mm . width to 0.85 mm . ; of dentonymph, length 0.015 mm . width 0.17 mm . Body of both sexes onate as ligurerl. The dorsal and wentral views of temale, ventral view of mate, first leer of mate, and fourth tarsms of male showing suctorial dises are figured and require no further description.


The dentonymph or "hypopis's is also figured from specimens taken in packinge straw from England.

As the narue of this species implies, it is a frequent pest in all kinds of stored farinaceous material, but it is also known to attack checse and the pollen of beebives. The mate is at onee recognized by the first leg.



Loo. South Australia, Aclelade: Adults and dentonymphs from packing straw from England, May, 1934. Victoria, Burnley: On promed near mustard crop, July 19 $_{3}$. (R.T.M.P.)

Rainbow (1906) ouly says "Australiat (introduced)".

## Fiamily CALOGLYPHHDAE Oudemans (1932).

Acarologische Aanteckeningen, exii, Entom. Berichten, 1932, Dl. viii, p. 3 3̄6.
This family was erected by Ondenans to indende all the genera previonsly comsidered as in the Tyroglyphidac, with the exeeption of Tyroglyphus itself.

It is represented in Australia by the two genera Thyreophagus and Caloglyphus, each with two species, all of which are well-known in Europe and probably introduced into Aistralia.

## Thyreophamos Romdani.

Thyreophagus Rondani: Bull. Soc. ent. Ital., vi, 1874, p. 67. Histioguster Berlese: Iivo. Acc. Padova, xxxiii, 1883, 11. 45. Monicziella Berlese; A.M.N., fasc. Ixxxix, No. 9, 1897.

Genotype: Tyroglyphus entomophagus Lab. 185 .2.
Elongate to clongate-oval species with suture between propodo- and hysterosoma. Propodosontit witla two posterior long setat only. Cervical setae? Both sexes with genital tubules; of genital aperture between coxac $11 I$ and IV, zb be Iween coxat IV. Male with a posterior shieddlike projection and at pair of dises near anuts. Tarsi of legss I and II with sensory elub; long seta of segment II of legs arising beyond middle; leg IV of क without dises. Dentongmph, where known, with a pail of eye-like organs on a level with lases of trochanters I and placed laterally.

## Therbormanis bexomondatios (Labo.).

Acarus entomophayns Laboulbone: Amn. Sow ent. France, 1852; "[3ull.". p. 5. (lit.).
 Tyroylyphus entomophayus Laboulhene et Robin: Ann. Wis. cut. France, serv, 4, ii, 1868, pp. 317 -i38, pl. x; Rainbow: Rec. Aust. M11s., vi (3), 1906, p. 180.
Tyroglyphts mahs Murray: Econ, Entom., Aptera, 1877, p. 275.
Moniezielle chfomophaga Berlese: A.M.S., fasc, Ixaxix, No, 9, 1898.
Histiogaster entumophagus Kramer (part): Das Timreich, Lefg. vii, 1894, p. 142.
This is a less chongate and more owal speceics than the following, and is at once distinguished therefrom. Bevond siving the mesent figures from Australian material, it is hardly necessary to deseribe it in detail, for this has been done very thoroughly by Michatel (1903) and Newstead (1930).

Length of of $0 .+\mathrm{mm}$., width 0.18 mm ; of $\circ$ o 0.5 mm ., and 0.21 mm . respecstively. The tentonymph is devoid of a suctorial plate and dises, but is said to possess lateral eyes as in the sext species. It is minnown to me.

This species is as important a pest of flour and other farinaceous material as the previous one, and causes similar damage. Both species are responsible for the characteristic odour of infected flour.

Rainbow (1906) merely states "Australia, introduced", but I have material from flour labelled "Sydney, N.S.W., July 6, 1934".


 तै ventral.

## Thyreophagus corticalis (Michael).

Tyroglyphus roricalis Michael : J. R. Microse. Soc., ser. II, v, 1885, pu. 27-31, p. 885, pl. iii, figs. 1-14.
Hislioguster entomophagus Kramer (part) : Das Tiprreich, Lfeq. vii. 1899, p. 142. Histogaster corticalis Berlese : A.M.S., finse. 1vii, No. 7, 1890; Michael : Brit. Tyruglyphidae, ii, 1903, p. 66 ; Vitathme : Therwelt Miltelenopas, iii, 1929, p. Tt. Monieziella mali Berlese: A.M.S., Crypt. 189T, p. 107.

A much more elonqate and parallel-sided species than the preceding, it is asily recognized. Vitzthm (loc. cit. 1929), because of the supposed absence of the vertical setae, which are not figured by Michat (1903) or Berlese (1889-91), questions the placing of this spceies in the above genus. In all the Australian material before me, however, these vertieal setae are distinctly present ans figure $3 \Lambda$; otherwise my material agrees, and one can only assume that this pair of setge was overlooked.

The size of the specimens is: of length to 0.3 mm., width to 0.1 mm .; ㅇ 0.45 mm . and 0.12 mon . respectively. The cuticle is generally not so chitinized as in entamophaghs. As to the detailed deseription, the figures are sufficient. The dentonymph possesses a pair of lateral eye-like organs on the level of trochanters 1 , and to facilitate its recognition I qive figure 35 (after Michael).

Michael found this species feeding under the epidermis of Arumdo phragmites in England, and Berlese found it on Polyporus hirsutus in Italy.

Loc. New South Wales: Castle Hill, 24th July, 1934, in frass on Cypress Pine; Sydney, 16 th August, 1934, under bark of Mistletoe; Sydney, 16th May, 19:39, on Camellia bud.


Fig. 4. Thyreophagus corticalis (Mich.) (ardult): A, $q$ dorsal; B, same, ventral; C, legr 1 of 9 ; D genital aperture and anal dises of ot.

## Caloglyphus Berlese.

Centuria sesta di Acari Nuovi: Redia xv, 1923, p. 262.
Genotype: Tyroglyphus krameri Berlese, 1881.
Oval form, with suture between propodosoma and hysterosoma. Propodosomal shield present or doubtful. Propodosoma with posterior row of 4 setae of
which the median pair are very short. Cervical setae present or not, sometimes ventro-laterally at extreme apex of propodosoma a pair of thick rod-like setae. Tarsi I and II apically with a pair of long setae sometimes lanceolate; without a stout spine in front of the sensory club, secment II of legs with the long seta arising subapically; tarsi with a few stontish spines, tarsi If in male with a pair of dises. Genital aperture in both sexes between coxal IV, with a parir of tubules on each side. Male with a pair of anal dises.


## H

Fig E. Thyreophaghs corticalis (Mich.) (ilentonymph): Anterior portion from shove showing eyelike organs (aftor Michael).

## Caloflayphus berleset (Michacl).

Tyroglyphus myrophagus Berlese: A.M.S., fase. Iviii. No. 1. 1891; Kramer: Das Tierreich, Lfg. vii, 1899, p. 139.
Tyroglyphus berlesei Michacl: Brit, Twroglyphidae, ii, 1903, p. 116. Caloglyphus berlesei Berlese: Redia, xv, 192\%. p. 262.

I have a large amount of Australian material of this species, all of which agrees with the deseriptions and figures given by Berlese and Kramer for Tigroglyphus mycophagus Megnin 1874. Michael (1903), however, has shown that mycophagus Megnin is quite a different species, being really that figured by Berlese in 1888 (1.M.心. xlix, No, 10) as Tyroglyphus hramert.


Wig. 6. Caloglyphus berlesei (Michael) (adult): A, ㅇ dorsal; B oq ventral; ©, of dorsal;


In my specimens there does not appear to he any cervical setae, miness the pair of curved rods near the axtreme tip of the proporlosoma can be renarded as such. 'Ihe median pair of setae in the row of four on the posterior part of the propodosoma are louger and not so spint-rike athose shom by berlese and kramer, but in these latter they may jossibly he fore-shortmed.

Length of s tw 0.9 m mm. width to 0.42 mm . of of 102.0 mm . and 1.0 mm . respectively.

Lor* Western Australia : Claremont, 21st April, 1931 (II.W.). South Ans. tralia: Adelaide, on yam from China, 1909 (T.H.ol.). Aust. Capital Territory : Comberra, from killed monnd of Eutermes eritiosus (no date, G. F.II.) ; in labora-
 May, 1934; m enpra, Levuka, 19:89 (R.A.L.).

## Caloglyphes ? mypopthaga (Meguin).

Tyroglyphas myraphatus Mequin = J. Anat. M1ysiol, x, 1874, p. 225. Tymo!lyphas phyllarerat Riley sixth Repl. Ins, Missomid, 1874 , p. 52. T'yroglyphas hromeri burlese : Atti. Ist. Veneto, ser. $\overline{\text {, viii, 1881, p. 18: A.M.S. fuse. }}$ *lix, No. 10, 1888 ; Nichact: Brit. Tymoglyphidae, ii, 1903, p. 109.
''thoglyphus myequhtyus Vitathum: Therwelt Mittelemropas, iii, 1029, p. 74.
This species in the adult stage dificrs from the preceding in the strengith of the dorsal setare, the apparent latk of the anterolateral pod-like setae on the anterior part of the propodosoma, and the presence of distinet ciliated cervical setare. The last feature, however, doun not appear to be figured hy either Michael or Werlese, hence the material is referved to mycophagus with somm doubt, The propordosomal shield is also distinctly present in my material.

Lof. Vietoria, bumatar, Oelobers, 19:99 (R.TAM.P.) wh buths imported from Chilat.

## Family RHizoglyphidaE Oudemans 1923.

Characterized by the short thick legs and the presence of a stout short animal spine immediately in from of the sensory rod on tarsi 1 and $1 t$.

> Rhmonilyphos Claparede.
"Sindien an Acariden" in: Zeit. f. Wiss. Yowl, xviii (1868), po. 008.
Broadly aval species with shopt stout legs; gemerally well chitinized. Ambulacra sessile. With suture between propodosoma and hysterosoma. Propodosomat with distinct shied and a posterior row of unly two long setae. Front portion of hysterosoma with it quadrilateral of fome setale. No posterior hystorosomal shiple.


Corvical setac absent. Tarsi apically with 2 ventral, more or less lanceotate setae; a shory stont conical spine immediately after the smsory elnh. Genital aperture of of betwem coxae 111 and $I V$, of betwen coxac $[V$, woth with a lateral pail of tubules. Anus of of with a pair of large semi-cireular dises.

Deutonymph with all coxae touching, I and TII with a small circular pore or disce; another on sath side of vulva. Suctorial plate with 8 discs, the median pair Jong.

> Rmbonlaypius Emunoptrs (Fimmoze et Rohin).
(Bulh or Eucharis Mite).
Tyroulyphus cehtomas Fumonze et Robini : T. Anat. Thysiol., v, 1868, p. 287.
Rhizoglyphys cehmopms Mmray : "Econ. Entom." Aptcra, 1876; p. 257 : Kramer:
Das Therreich, It ter, vii, 189!, p. 14:3; Michatel Brit. Tyroglyphidae, ii, 1903.

Mittelemropas, iii (7). 1929, p. $7 t$.
Corpophagus echimonas Megnin: "Lues Pinpastes", 1880, p. 114.
Tyroglyuhas megnini hurlese: A.M.S., base. siv, No. To
Thereappears to be but one well-known species, characterizal as in the puncric retails given above and the aceompansing figures.

It is a well-known pest in Europe and Ameriea on all linds of bulto and tuhers, but whether it actually initiates danage to healthy buths has heen doubted by Michael.

Aecording to Michael (1903), p. 9\%, Mangin and Viala, in C.R. Ae. Sei. exxxiv, pp. 151-i, say that thoy recoived this species from Australia. The fignore given loy Lea (1908) for this species, which the refers to as " A Destructive Row Mite", leaves no donht bou that his determination was correce. Ite gives bus locality otho than 'rysmania in gromeal.

Lene. New sonth Wales: Windsor, 1.th May, 19\%子, on dahlia dubers (Dept. Agw.). New Zealand : Auckiand, from bulbs, 1998.

## 

Deutonymph: Length $78 \mu_{0}$, width G5 $\mu$, almost rown in form and stromgly convex. Dorsum with a shield of the same outline, outside of which the cutice is longitudinally striated, while laterally inside the shield are a pair of longitudinal simute lines almost extending to the posturion magein; laterally outside these lines the shied is longitndinally striated, while inside the surface is fincly spoted (or pitted), in pletes the spots (or pits) elumpines together. Dorsum apparently without sutae, axeept for 2 pairs of very small fine ones posteriorly. Ventrally the

Fig. S. Rhizoglyphus echinopus (R. and F.) (adult): A, ơ dorsal; B, ठ' ventral; C, 오 rentral; D, mandible; E, leg 1.
coxae are very large, all in contact and ocenpying most of the surface. Legs fairly short and stout, all tarsi with a long simuate claw and strong spines, but without subapical lancolate setac. Jeges I and II with long and strong spines. Segment. II of leg I with an apical clavate rod-like seta. Gnathosomal proeess as figured. Coxae I and III with a small dise or pore, and another on each side of vulva. Suctorial


Fig. 日. Rhizoglyphus termitmm 1,sp. (deutonsmph): A, dorsal; B, ventral; C, leg 1 dorsal; D, same, ventral; E, tritosternum.
plate with $6(88)$ dises, a pair of large median ones, a sumaller one on each side of these, and two small posterior ones; anterior ot the large median dises there may be another pair, but it is difficult to decide whether these are dises or the semicircular structure found between cach two outer dises. Ontside of the cosae are a few short fine setae.

Remorks: The uncertainty of the anterior pair of suctocial dises, the strong spines on tarsi I and III, the lack of lanceolate tarsal setae, and the structure of the
dorsal plate render it uncertain whether this dentonymph is a true Rhizoglyphus or not.

Loc, Aust. Capital Territory Canberra, associated with Eutermes exitiosus, May, 1930 (G.F.H.). New South Wales: With Porotermes sp., Eden, June, 1940 (S.L.A.).

## Family TYROPHAGIDAE Oudemans.

Eut. Berichten, 1924, D1, vi, p. 303.
Characterized as in the key to families. Withonly one genus so far known to oceur in Australia.

> Tvrophatus Ondemans.

Ent. Berichten, 1924, D1, vi, p. 650.
Of oval form with distinct suture betwern propodosoma and hysterosoma. Propodosoma with a posterior row of four long setae, the imuer. pair slightly the longer. Cervical setae present and ciliated. Hysterosomal setae long and shortly (olten unecrtainly) ciliated. (fenital aperture of of between coxac III and IV, of of between coxae IV, on each side a pair of tubules. Male with a pair of anal dises, and dises also on tarsi IV. Tarsi I and $1 I$ with sensory rod but no stroney spines; the long seta on segment II of legs subapical. 'Tarsi relatively long and slender.

Genotype: A carus putrespontiun Selnank 1781.
This genms is represented in Aust matia by the following nbigutous and cosmopolitan "humus mite".

## Throphagun purmeiscentiae (helurank).

Auarus mutrescentiac Schrank: Enum. Lns. Austriace, 1781, p. 521.
Acarus dimidiatus Herman: Mem. Apt., 1802, p. 85.
Tyroglyphus longior Gervais: Aptera, iii, 1844, p. 262.
Tyroglyphus infestans Derlese: A.M.S., dase. xiv, No. 8.
 1906, p. 15.
Tyroglyphus siro Rambow $\pm$ Rec. Aust. Hus., vi (B), 1906, p. 180; Leaz Ins. and F'ungus P'ests, Tas., 1". 112.
Tyrophagus humerosus Oudemans: Ent. Ber., vi, 19:2.t.
T'yrophatus dmidiatus Vitzthmm: Tierwelt Mitteleuropas, iii, 1929, p. 74.
Tyrophagus putreserntiae Vitathum: 'Treubia, viii, 1926, p. 180.


The first five of the ahove synomyms are gencrally rectarded as varieties, but the differences are very small and unerrtain, being to a large extent based on habitat. so that there secms little point in regarding them all other tham as the one species. The essential characters of the species are adernately shown in the accompanying figures.

This species decurs almost everywhere in deeaying humns, dung, roting timber and frut, and even on cherse and other foodstuffs ; it is widespread in Anstralia.

Loce. South Anstralia : Adelaide, in egerpowder from domdon, labelled as "T.

 nut, Ailelaide, Aug。 1939 (1L.W.). Western Australia: Perth, April, 1981 (II.W.) ; Wooroloo, Aug., 1932 (H.W.). Vietorida: In leal debris, Mont Dandenong, May, 1932 (J.W.R.). New Zealand: Auckland, May, 1940, in fungus culture (W.O.) ; Lineoln, August, 19:50 (Lad.).

Rainbow (1906) merely says: "Anstralia, introduced."

## linamly SAPROGLYPHIDAL Oudemans.

Fintom. Berichten 1924, D1, vi, p. 303.
Cuticle polished. Dandibles chelate. Ambufacra with sessile claw and eabo uncle. Body more or less Tyroglyphid-like, with suture between propodosoma and hysterosoma. Female genital aperture hetwen coxat II I and IV. Nale without dises near anms or on tarsi IV tarve without stemal rods (b).
'This family contains only the geuns suproglyphus Berlese, although Vitathum (1931) is inclined to inchate the gems. Actordime van Beneden.

Sairogliphes berlese.
A.al.s., lase, lvii. No. 6, 1890.

Elongate species with more me less parallel sides. Propodosoma separated from hysterosoma by a sulure. Propodonoma with a posterior transverse row of $\pm$ setae, the laterals very long and strong, medians small. Cervieal setae absent. Iysterosoma with 2 or + long posterion setac. Ambulacra and claws sessite. Tarsi rather clongate, withont strong spines, with the usmal sensory rod on I and If; segment If of leges with the long seta subapical. Genital aperture of of between coxac Ill and IV, fotwecn IV, in both sexes with a pair of tubereles on cach side. Male without anal dises or suekers on taxsi IV.

Genotype: S. ucylectus berlese 1890.

This gemus is represented in Australia by the followime new species or what may be only a variety of the Euronean form.

## Sardoglyrinds cocominagus sponov.

Description: Fumale, length to $340 \mu$, width to $185 \mu$; male, length to $270 \mu$, width to $135 \mu$. Female, dorsal surface: propodosoma with the usual pair of verLical setae $65 \mu$ long, and \& posterior setae in a transverse row, the outer ones very long and strong, $130 \mu$, inner ones very much shortcr, $66 \mu$; hysterosoma with a pair

 ture and penis of male.
of hummern setae, onter $104 \mu$, inner $26 \mu$; domally with 3 pairs of fine and moderately long setae; apically with only one pair of long setae, $260 \mu$ : laterally, on a level of trochanter IV, a pair of medium fine setae; all setae simple. Ventral surface: coxae I, II Ind IV with one fine seta of medim length sapex with one pair of long setae $130 \mu$; anterion of apex with a transverse row of fine setac; genital aperture large, placed betwems coxar ILI and IV with the usual 2 pairs of tubercles. Male, as in female, but the apical setae of the hysterosoma not so long; genital opening betwern coxae IV with the usual 2 pairs of tubercles; penis long, fine and pointed;
tarsi IV and anns without suctorial dises. Legs relatively long and slender, ambulacra and clews sessile, tarsi clongate without spines, tarsi I and II with a rather slender smsory rod near base, segment II of legs with a long seta arising subapically.

Loc. South Australia: Adelaide, Aug., 19at, on Cryptes baccorum (type material). New South Wales: Gouburn, Tth June, 19:3, from gall on tree-lueerne.

Remarks: This new species is very close to the genotype, s. negleotus Berlese, but differs in having only one pair of long dorsal apical setae instead of two.

## Family CARPOGLYPHiDAE Oudemans.

Ent. Berichten, D1, vi, 1923, p. 206.
Ambulacrap pedunculate with apical claw: Without suture between propodosoma aud hysterosoma. Propodosomal shield doubtint, probably absent. Cervical setac absent. Posterior row of propodosomal setae ouly Lwo. Tarsi clongate without strong spines; I and II with asinal sensury rod; longseta of segment If of legs arising near middle. Genital aporture of o betwedn coxar 11 and 111 , of between IU and 1 V , in both sexes with usinal pair of tubercles on each side. Male without amal dises or suckers ou tarsi IV. Dorsal setae rather strong and spinc-like.

Represented in Australia by the following cosmopolitan genns and species.

## Uarloglyprifus Robin.

J. Auat. Physiol., (6, 1869), 197-20t, pl. 7-8.

With the characters as outlined for the family. Dossal setae rather short and spline-like, simple; apex of hysterosoma with at pair of long setac and a pair of median setae. The setae of legs not plumed.

Genotype: Acarus lact is Lime 1763.
Caiboglatitits lactis (himaens). (Dried-truit Mite).

Acarus lectis Limmatus: Syst. Nat. cd. sii, 1763, p. 1024.
Acorus pussularum Hering: N. Aeta Ae. Leop. xpiii, 1836, p. 618.
Glyciphagus unonymus Haller: Jahreslı. Ver. Württemb, xxxviii, 1882, p. 297.
Trichodactylus anonymus Berlese : A.MI.S., fasc. xiv, No. 10, 1884.
Phycobius anon!mus Cancstrini : Prosp. Acarofana, iii, p. 392.
Actras dysenteriac Schuank: Ennm. Ins. Austriae, 1781, p. 510.
Shape oval. Length of male $400 \mu$, female $350 \mu$; width of male $250 \mu$, of female 240p. No suture betwren propodosoma and hysterosoma, only 2 setae in posterior

row of propodosomet Dorsal setar reatively shom and spine-like, exeept two pairs at posterior end. Legs relatively long and slender, with long tarsi and pedunpulate caruncles; tarsi I and II with the usual basal dorsal sensory rod; the long setne on metatarsi curved and arising from about the middle; the preceding segnent of leg I with two subapical setae, one fairly loug, the other very short. Other characters as in the ocneric diagnosis and the figures. Apparently withont a deutonymphal stage.

This mite commonly jutests sugary material, suct as dried firuit, and milk produces and, from one of the following records, also seale-inseets, pussibly attracted by sngary secretions.

Loc. South Anstralia: Adelaifle, $19 t 1$ dan., 1934, on dried truts; l'ort Adelaide, Fel., 19:3, on stored prubes. Westcrin Australia: Lpper Swan, May, 1931, on dried figs. Victoria : Melbomme (no date), on figs. New South Wales: Allandale, June, 1934, on scale-inliested Pillosporum.

## Family PONTOPPIDANIIDAE Oudemans.

Eutom. Berichten, D1, vii, 192m, p. 244.
This fiamily was erected for the arenus Pontoppidanion Onds. 1923, with Tyroylyphos littoralis Halbet 1920, atm whalt specios, as type. In Eut. Bor., D1, vi, 1924 , p. 2in1, Oudenans synonymizes this geuts with Catuolia Ouds. 1911, based on a two-eyed deutonymphal form. In the same publication, D1, vii, p. ${ }^{2} \pm 7$, he corrects himself, and recogrizes both qenera.

The tamily can be distingushed by the characters given in the key. It contains only the two geneva Pontoppidenia and Cutcolia, of which the latter is represented in Australia.

> Calyolia Oudemans.

Ent. Ber., 1911, D1, iii, p. 187.
Bentonymphal forms with a bair of earelike organs at the appex of the propo. dosoma. Propodosoma ind hysterosoma separated by a distinet suture. Legs III and IV very short and stumpy, withont claws, IV wiha a pair of long setae. Suctorial plate with 8 dises, 10 dises near vulva or on coxate I and III.

Genolype: The dentonymph of Michacl's Tyroghyphus heferocomus (brit. Tylooml., yol, 2, 1!0:

> Ganvolia graibra spraov.

Description; Dentonymph. Length 19 jp, width 1 wha. Dorsally with a distinct suture between propodosoma and hysterosoma, the former appearing to fit into the latter. Apex of proprodosomat with a pario of distinet eye-like lenses. Dorsal
surface apparently (even under $1 / 12$ in. oil immersion) devoid of setae, except for a pair of short ones at posterior end. Ventrally under the gnathosoma with a pair of long curved setar arising from a bilobed process. Legs I and II stout, but of moderate leugth, with distinct caruncle and claw, JII and IV short and stumpy,


Fig. 13. Calvolia glabra n.sp. (deutonymph): $\Lambda$, ventral; B , dorsal.
without claws, IV with a pair of long setae, coxae apparently without setae. Suetorial plate with 8 dises, a large middle pair, with a smaller one on each side, a pair of still smaller ones behind, and a pair of larger ones anteriorly.

Loc. South Austral. Museum collections labelled "from the branchium of a Boa, Adelaide Zoo (A.E.e.)"

Renarks: The above record may be doubtfin, but even Michael (loc. cit. p. 109) is not at all definite as to the habitat of what he considered the deutonymph of T. heterocomus, for, speaking of the species as a whole, he says that he first beat it from oak trees, and later fond it in numbers in the moss of a squirrel's summer nest. He claims to have reared it by feeding on Boletus.

# Family GLYCyPHAGidAE Berlese. 

Cryptostigm., i, 1897, p. 100.
Ambulacra pedurculate with terminal claw. With jndistinct suture hetweu propodosoma and hysterosoma. Dorsum smonth or gramulate; dorsal setate ciliated or feathered, long and numerons.

Of the genera placed in this family, Glyeyphamus. Ctonoglyphus and Sennertin ocelle in Australia.

## Gifycyphagus Hering.

Acta. Acad. Cres. Leop. Car. Nat. Cur., vol. 8, pt. ©, 18:38, p. 619.
Abdomen with dorsal setae long and more or less thickly ciliated, but not feathered or plune-like. Cuticle not strongly, if at all mranulate. Tarsi elougate, earuncle and claws woak, tarsi I and II with sensory rod, but no spines. Genital aperture between coxate III and IV ${ }^{\tau}$, with a pair of suall thbules on each side. No discs near ants or on tarsi IV. Thip of hysterosoma with a distinetly visible copulatory tulnte. Dentonymph coutained within larval skin, not free-living.

The following two speries have leen formed in Anstralia,

## Ghyoypharitis domestoms (DeGper).

Acarus domesticnes DeGeer: Mems. Hist. Ins., vii, 1778, pp. 88-89. Glyeyphagus domesticus Rainbow: Ree. Aust. MIus., vi (ij), 1906, p. 181.

Somewhat oval in shape with a suture line between propodosoma and hysterosoma. Propodosoma with a posterior row of 4 long, strongly ciliated setae. Cervical setae present, strongly ciliated. Dorsal setate numerons, as long as, or Ionger than body and strongly ciliated. Leqs long, tarsi elongate, 1 and $][$ with a sensory rod, but without the longe seale-like seta of the next species. Olaws and caruncle small. Female genitalia between eoxae II and IV. Tip of hysterosona with tubular copulatory process. Length, female to $550 \mu$, male $500 \mu$; width, femate $400 \mu$, male $350 \mu$.

This species difiers from the following in the lack of the long seale-like seta arising near the base of tarsi (see fiyr 10D). It is a common speeies in dried plant material, dehris from beehives, and frequently infests houses, oceuring in sugar, etc., as well as in upholstery.

Lof. South Australia: Adelaide, 11th Sept. 1983, in tohacen seeds; Glen Osmond, ouly, 1934, in moss (R.V.S.) ; Adelaide, Sept., 1940, in beehive debris. Western Australia: Perth, 1931; Waroona, May, 1931. Victoria: Burnley, July, 1938 on sugar-beet (R.T.M.P. $)_{4}$, New South Wales: Paddington, Syduey, in furniture (Rainbow).


## Glyeyphagese (Adavertia (Schramk).

Acurus cadfucrum Schrank 1781: Emum. Ins. Austrite, D. 51 .
Differs only from the above in the presence of the longe, seale-like seta on dars. It has similat habits.

Lor. South Anstralia: Adelaide, May, 1934, in packing straw from Englamd: Gien Osmond, Waite Institute, in grass sceds, March, 1936. Vietoria: Mellomurne, Aug., 1932, on imported seeds (R.T.A.P.) ; Melbourne, Aug.., 1938.

## Ctenominh hus Berlese.


As in the genus Glycyphnffrs, but the enticle is gramular, and the sptame conlilike. Legs rather shorter.

## Ctenonlypilets ludimiger (Kornh).


Cthenoglyphus phemiger Berlese: A,M.s.a, fince. xiv, No. 1, 1884.
Rather small oval species with gramular entiele and a line or depressed suture hetween proporlosmat and hysterosoma. Lengeth, female to $300 \mu$, widthe $200 \mu$, natb


Fig. 15. Ctemoglyphus phamiger Koch (adult): A, 呈dorsal; 13, tarsus I O; C, dorsal seta.
rather smaller. Leags relatively shom hat slender, tarsi I and II with usual sensory rod, claws and carnucle weak. Dorsal setne strongly comb-like, but the teeth straght and not curved inwards and mpwards. Tarsi without long seale-like seta.

Two specimens only of this speeies were found amonsst packing straw from Figgland, at Aclelaide in May, 1934.

Sennertia Oudemans.
Entom. Ber., 1905, D1, 2, p. 21.
Ambulacra with strone claws; with propodesomal plate only. Without suture line between propodosoma and hysterosomat. Dorsal setae enarse, haiped or featlcred, or fon-like. Epimeria I mital to stermm, Dentomymph : shape somewhat puntagonal, without sutwe. Cuticle striatich, mily one dorsal shield posteriondy. Dorsal setar relatively long and spine-like. Eyes absent. Legs T, II, and III with very strongs sideke-shapod claws; tarsi I inn II with sensory rod, IV without claws but ustally with one or more lomserminal setac. Venter with shorter spines; suctorial phate not in a chitinized horseshor-like frame, with 8 dises, 2 median large. t small posterior and $\frac{1}{2}$ sntall anterion ones near vilion.

This genus is mainly known from the deutorymphat lorms; only in a few species have the adult and othere stages been deseribet. Whe deutouymphe lise

 fod for climging to the hais of then host.

The following two spectes have heen foum in the hatis of speefmens of bees of the renens Xytocopa in the collections of the suth Aust paltan Museum.

## sennerita geqentlanmed sp.mov.

Thescription: Shape somewhat pentagonal. Latigh $410 \mu$ width 3330 . Dorsimm with a single posterior triangular shieh which appears to broadly turn over to the venter, and anteriorly does mot reach boym the line of eoxat III. Cuticie Transversely striated, shich pitted. Dorsmm with $\bar{T}$ pairs of stiff long spines, $16{ }^{2} \mu$, Jut not as long as in the following species; on the shield are of very small fine setae. Leqs monderately long and stron, tarsi l-111 with strong and large grasping claws; I and II with a stout sensory rod, IV withont clanss hot with a single long apical seta. Ventrally the setac are bey fine and simple, one on eoxate I, one laterally between mosar 11 and 15 I , in me of fone between coxat 111 , and one on cach side betweron enate IV and the suterial plate; on the purtion of dorsal shied thened
over is a pair of fairly long selae with a pair of shomer ones between. Suctorial. plate as figured, with 8 dises, a median large pmir, a posterior row of four very small ones, and am anterine pair of small ness, one on cach side of the valva.


Fig. 16. Sennertin queenstandica sphov. (deutonymph): $A$, dorsal; $B$, ventral.

Loc. Moa [d., Torres Straits (S.W. Schomberg). Found amongst the hairs of specimens of Mcsotrirhu Uryorum in the Aonth Anstratian Museum, Adelaide.
[n both this and the following speces the adults are unknown to me.

## Sennempla ? biplus Camestrini.

Termez. Fuzetek., 1898 : vol. 21,196 ; idit. 1897 , vol. 20, 174.
Deutonymph: Shape somewhat pentagomal. Longth $250 \mu$, width $170 \mu$. Dorsum with a single posterior oral sheld which reaches forward almost to the line of coxae IT ; outside of the shield with 4 mairs of long strong setae ( $104 \mu$ ). on each shoudder a long but finer sota and a pair of similar ones at apex of hysterosoma. Legs moderately long and strong. 1-III furnished with large, strong sickleshaped grasping claws, IV without claws lout with one longe seta, and a very short one apically; tarsi I and If with rod-like sensory seta. Ventrally the setae are short with broad base, then tapering sharply: there is one on coxae $I$, one between coxae If and III latemally, a row of ton between eoxae If and four between coxae
IV. The ventral suctorial plate has 8 dises, a large median pair", a posterior row of four smaller ones, and anterion of the medians, a very small me on eath side of the vulva.

Specimens, as described above, appear to be this species as far as I an able 10 judge from the meagre details given by Kramer 1899, Giard 1900 and Michact 1903. I have not been able to see Canestrini's oripinal papar.


Fig. 17. Semnertia bifilis (Canestr, 18!8) (ibutonymph): A. dorsal; [B, verftill.
They were found amongst the hairs of specimens of the large earpenter bee. Mesotricha bryorm in the collections of the South Australian Museum.

Loc. Bowen, Queensland-nodate. Mua Id., Torres Stris. (J. W, Achombergy). The species was originally deseribed from New Guinfa on Iylocopormbinuta.

## Family ANOETIDAl: Oudemans.

Entom. Bet., 1904, D1, i, p. 191.
Adults with mandibles provided with a more or less toothed "allyur-like" process. The apical segment of the esegmented palpi somewhat leati-like and with two lones setae. Withs asture line between the propodosmmand hysterosmata.

Ventrally there are pairs of circular or oval dises, one par in the region of coxae II and the other between coste III and IV. Carmole absent, claws sessile, tarsi with some small spines and 1 and II with sensorial rod. Withoul anal dises or dises on tarsus IV in male.

Deutonymph with suture between propodosoma and hysterosoma. Legs IIt and IV directel forwads, tibiand ansus indelintely separated; all legs slemder, claws small, tansi and metatarsi apieally usually with clavate on spathulate long setae. Suctorial plate with $4-8$ dises. With on without dises or pores on coxate and near vulva.

This farnily eontans a large number of "enera, most of which are based on the dentonymphal furms. The following are known in ocenr in Australia.

## Histiostoma Kramer.

Areh, Naturges., 1876 , vol. 42 (i), 105.
In 1904 Ondenthes symonymized this genus with Anowtus Dujardin 1842 ( $\mathrm{L}^{2}$ -
 p. i33) he modified his vinws and regatded Dujardin's wems as only in part symonmous with Histiostoma. Hoth wenorat were based upom ifentonsmphal forms, the


'The only gernerat of wheh the adults appear to be at all well known are II istionstomet Kramer 1876, Sellea Oudemans 19:9), and Wichmemen Oudemans 1929.

Adult boms with sulure between propothsoma and hysterosoma, former some. What triangular, latter quadrangular with fattened apex. Dorsmm often with romaded bosses. Otherwise as in family characterizations. Dentonymph with broadly oral suctorial plate wider than long and with 8 subergat dises. $A$ smatl circular pore or dise on coxars 1 and 111 and om each side of vilva.

Gemotype: Pyllastomb peetinetm Kramer 1876.

Histiosoma feroniarem (Dutour).
The synonymy of this speecies seems to be very emfinsed, hut appears to be as follows:

Tyrolglyphus rostro-sematus Mcornin: J. Anat, Plysiol., ix, 1873, ppos369-78.
Phyllostomo pertinetem Kramere : Arch. Naturges, xlii (i), 187e, p. 39.
Histiostomupertincem Krampr: Areh. Nuturges, xlii (i). 1876, p, 10権,


Histiostoma rostro-scmatus Michael : Brit. Tyroglyphidae, i, 1901, p. 208. Anoctus feroniurum Ourlenans: List, 1898, 1. 2n2, Vitzthum: Tierwelt Mittcocuropas, iii, 1929, p. 80.

Female: Lengeth to $: 385$, width to $215 h_{0}$. Gnathosoma distinctly visible from above in front of propodosoma. Palpi 2 -segmented, the segments expanded laterally leaf-like, with 2 long setae. Mandibles with a long, toothed "augur-like"

 D, mandifular saw-like orgin; $E$, leg 1 .
process (fig. 18d). Profoclosomat triangular, separated from hysterosoma by a distinct shtme; lysterosomat (fladrangulan'. Dorsma with a momber of rounded bosses, $3-4$ on propodosoma and 9 on hysterosmat ; dorsal setate fine and difticult to see (fig. 18a), cuticle with fine pubesechce. I ders. With short spines; claws sessile. The anus appears to be dorsal. Vintrally I can seeno setae, but there are two pairs of circular dises on pores, one pair immediately behind coxae II and other pair in the line between coxae III and IV. The male is mknown to me.

Deatonymph: Length $185 \mu$, widht 150 p. Suture distinctly present. Dorsmm apparently without any trace of setac. Ventrally as figured. Suctorial plate with

8 discs, subequal in size; a pair of small dises or pores on coxae I, coxae III and near vulva.

The material from which the above deseriptions and figures are drawn i believe belongs to this species.

Loc. New South Wales: Bathurst, from dahlia tuber, 23rd Nov., 1932 (N.L.A.) ; Lindfield, on tiger lily, 15th May, 1932 (N.L.A.) (adults). South Australia : Mount Barker, in moss, 24th June, 1934 (H.W.); Hallet, on millipede, 1st


Fig. 19. Histiostoma foroniarum (Duf.) (deutonymph): $\Lambda$, dorsul; B, ventral; C, leg 1.
Oct., 1938 (D.C.S.) (deutonymphs). New Zcaland: Auckland, on rotting bulbs, Jan., 1940 (W.C.) (adults).

## Histiostoma nichollsi sp.nov.

Dcscription: Deutonymph, length $185 \mu$ width $135 \mu$. Shape oval as figured with distinct suture between propodosoma and hysterosoma. Cuticle granular with long fine setae, somewhat resembling $H$. lorentzi (Onds.), but longer and differently arranged. As in Oudemans' species, there is a striated band of cuticle near the dorsal suture. There appears to be a more hyaline area outside of the propodoand hysterosomal shields.

Loc. Western Ausi ialia, on at small heetle from (frawley, sejpt. It, 1940 (G. Snowball).

Remarts: 'This species appeats tu be nearest to Oudemans' Histostoma forcutzi from New Guinea (Ent. Ber., D1, 2, p. 2ath, 1906, and Nova Gninea, vol. v (i), 1906, p. 146-7).


Anoetcostoma gen, nov.
Difters from all oher genera in which the dentomymphs have been deseribed in the arangenen of the dises of the suctorial plate. Th this plate there are only 6 dises, a median pair of large ones, posterior of which is transverse row of 4 small ones. Off the plate and ou each side of the valva is a small dise. There are 110 pores or dises on any coxae. The dorsal surface lacks a suture between propodosoma and lysterosoma, but there is a transverse depression at about one-third from apex; the surface is consely sramular.

> Anoestostoma oldemansi sp. hov.

Deseription: Deutonymph, Jength $165 \mu$, width $126 \mu$; oval, broadest at about one-thind from front, no suture, but at one-third from apex a transverse depression. Dorsum apparently without setac (even under (ill-immersion). Legs fairly lones and slender, tarsi with small claws; tarsi i imul II apically with a long clavate seta,
[at base with a long, clavate, rocl-like sensmry seta; second segment of leg I with long seta arising near apex, none present on lege II ; tarsi III and IV with long pointed apical seta; femmer of leg II with a lomg apical seta. Suctorial plate as in genus.

 (: $\log 1 ; D, \operatorname{leg} 3 ; L, \operatorname{leg} 1$.
 To relate this now enents to those previonsly deseribed trom the deutonymphs, I give the following key :

> Key to the Gexera of Anohtibie, Based on the Dhutonymifi.

1. Suctorial plato with only t dises; no dises near vulva or on coxae 1 and 111 .

Myianoctus Ouds. 1929.
Trpe Anoctus muscarum (L. 1758).
Nore than $\pm$ dises on suctorial plate
2. Suctorial plate with 0 dises .. .. .. .. .. 3.

Suctorial plate with 8 dises . . . .. .. .. 4.
3. The suctorial dises of equal size; apparently none no ar vulva or on cosae I or III. Leg III without the long femmer seta

S'cllea Ouds. 1929.
Type Histiostomu puthrmm Michael 1901. The two median suctorial dises very large, others very small; a small one on (ach side of vulva, none on coxate。 Leg III with a long femoral seta.

Anoctostoma nov.
Type 1. oudemansi sp. nov.
4. Suctorial plate with 2 large dises and 6 small posterior ones arranged in a hexagom ; dises near vulva and on coxac I and III Whatmannia Outs. 1929. Type Histiostoma spiniforus Mieh. 1901. The 6 small dises of smetorial plate armaged around the two central large ones . . . . . . . . . . . 5.
5. Tho small dises near vilva . . . . . . . . 6. No dises near vulva, but bristles instean . . . Kwidkia Ouds. 1924. Type Anoctus yuentheri Ouds. 1915.
6. On coxate I and 11 a anall club-like seta arising from a small basal ring. Anoctus Duj. 1842. Type Hypopus alicola Duj. 1849.
Not as above + .. .. .. 7.
7. Coxat 1 or 111 or both with small dises
Both coxae $[$ and III withont dises or setae $\quad$. $\quad$ Manduytuo Ouds. 1929. Type Anoctus tropicus Ouds. 1911.
8. Small dises on both coxae I and IlI .. . Histiostoma Kramer 1876. T'ype Histiostomb pectincum Kraner 1876.
Snall dises on coxat l hat not III .. .. Inoctoglyphus Vit\%. 1927. Small dises on coxal III but mi I.... Glyphanoetus Onds. 1929, Type G. fubmeki Ouds, 1929.

## (GENERA EN SPECIES INOLTRENDAE.

## Gemas Pollea Canestrini.



I'ulhea dincoionhis Cemestrimi 1881.
mive.
Canestrini grives a figure of the entire dorsal view, the: whathoma and leg I, and the stetorial plate of the dentonymph as well as at general description of the animal.

The shape is more or lest mond with a suture line on level of coxte 11 and ant other on level of eoxac III. The dorsal setac are long and fine. There is a short but distinct carmele and clate on all legs. In the dentonymph the dises of the suctorial plate are 6 in number, subequal, and arranged in a modian row of 4 and a posterior row of 9.

Oudemans (Ent. Ber., 14은, D1, vi. p. 2:32 and 328) is disposed to place this genus in the Carpoglyphidne, near to Corpoglyphus. In the 6 dises of the suctorial plate of the deutonymph it is closely related to the gemus sellou Ouds. of the Aunetidae, but if Canestrini correctly associated adult and dentonyuph then it cannol
possibly belong to this family, but more probably as Oudemans suggests. However, pending re-discovery, it is impossible to definitely ascertain its status.

It was found on a species of Chrysomelu (Coleoptera) from Queensland.
Tyroglyphus queenslandiae Canestrini 1884.
Ibid., p. 724, pl. ix, f.3.
This species is described from the deutonymph only. It is shown to have a dorsal furrow ruming backwards from the second legs, and then connecting by a transverse line. Canestrini's figure shows the suctorial dises as being on the dorsal surface; of these there are 8 , a median row of 4 subequal, two in front and two behind; there is also one on each side of where the vulva should be.

It was found on a species of Cetoniu from Queensland.
As with the previous species the description and figure do not permit of its recognition.

INDEX To GENERA AND SPECIES

## INDEX to GENERA and SPECIES







[^0]:    (1) The custom of greasing the face and the body, and rubbing on crushed red ochre or powdered charcoal was often witnessed during our stay.

[^1]:    ${ }^{(3)}$ A sacred object emblematic of some totemic animal or plant. Spencer and Gillen (1899, page 231) give an excellent description. The Aranda name is Waninga.

[^2]:    (6) These women were called Tjindulakalnguru. This word refers to one of the subdivisions in the social organization of the Ngadadjara tribe, and literally translated means "Those who sit, or camp in the sun". They thus belonged to the same generation as the Wati Kutjara. It will be seen that the translation, given by the interpreter as "sun women', is a reasonable one.

[^3]:    (7) Wana, a stick about 5 cm . in diameter and 1.5 metres long, sharpened to a chisel point at one end by means of fire. It is used by the women for digging out yams and small marsupials.

[^4]:    (8) An outback Australian term applied to a scone-like bread cooked in the ashes of a camp

[^5]:    (10) A tree (Ficus platypoda) which grows on rocky outcrops, the fruit of which is an aboriginal food.

[^6]:    (1) This was financed ly funds made available by the Rockefeller Foundation and administered by the Australian National Researcl Conneil.

[^7]:    (2) Figured by Mountford, 1937, p. 19, in a suite of drawings describing the exploits of these ancestors. Winduru is a large water-hole some fifteen miles north-east of the base camp of the expedition (see W. Aus. plan IX/800).
    ${ }^{(3)}$ A water catchment of limited supply found in the arid parts of Western Australia.

[^8]:    (1) The Sucker-fishes possess a large dorsal sucking dise and attach themselves to sharks, whales, or even the bottom of boats. When a meal is in sight the remora will leave its host, capture the prey, and return to its resting place.

[^9]:    (2) In Central Australia, similar unengraved ornaments, called Lonka lonka, are worn by men, especially during ceremonies (Spencer and Gillen, 1899, p. 544).

[^10]:    ${ }^{1}$ The terms $[$-et $]$ ] and $\mid$-in] ], the terminations of place names in separate areas of SouthWestern Austrilin, havo been used to divide the tribes of South-Western Australia into two series which diffor in language, social organization, and other characteristics.

[^11]:    (1) Waite, E. R. Fishos. Austr. Antarct. Exp. Rep., Scr. C.J, 1916, 万7.

[^12]:    (1) Mr. Sheard infurme muthat a reexamination of the ty ge ponfirms his original deserjution of this aprentage "ts "hiramous".

[^13]:    (1) Bossfuld makes the note "There are two topes of farest in Now (ininea, primary and secoudary. Tho primary forest is the true virgin forest, the secondary may appar to bo ao but is in fact the forest which has grown up after the primary forest has hren cleared for a temporary garden by the matives'".

[^14]:    (2) Kubtomarro, at species of Imsh, used is \% dative tobacco. Professor T. Haryey woluston is not ateruainted with this term. As at eonjectume he states that it may refer to pituri when it is lming worked ur iu the hand. The usuad form, hoverer, for prepared Dubolsia in the Dieri and
     Ruja-mara monns nesw fish. This plant is farticnlarly hised in soreory; for tustance the dukana (bointing-bons) ceremony, It is uften the especial property of the hithki. Fivjomara is diurther used in the mottuaty cermonials. It is nsed in poisoning waterholes lo eateli chus.

[^15]:    (1) In the single female at my disposal the 2nd endepors were asymmetrical, the end sug. ment boing imperfectly ileveloped on one side, It is possille that there ghonld tw en setae on the middle segment, as in iufus (ef. Gurnuy 1927b, p. 506).

